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Abstract 

For a proportion of patients, HBV infection results in chronic disease with severe 

consequences like liver cirrhosis or hepatocellular carcinoma. Approved therapies of 

chronic hepatitis B include administration of antivirally active IFN-α and inhibitors of 

viral reverse transcription. These drugs control replication, but HBV cccDNA, the 

episomal transcription template, persists in most cases. Hence, lifelong therapy is 

required, accompanied by severe side effects and development of drug resistant 

mutants. An alternative and probably safe immunotherapeutic approach for clearance 

of HBV may be achieved by the stimulation of pattern-recognition receptors inducing 

an endogenous type-I IFN response. In this study the cytosolic helicase RIG-I was 

triggered by in vitro transcribed 5’-triphosphated (3p-) dsRNA. Stimulation induced an 

RIG-dependent antiviral type-I IFN response and controlled HBV replication in vitro in 

stable HBV replicating cell lines as well as in HBV infected primary human 

hepatocytes. In vivo, virus replication in HBV transgenic animals was transiently 

controlled when Rig I ligands were complexed and i.v. injected.  

To enhance and prolong the antiviral effect, siRNAs targeting overlapping open 

reading frames of the HBV genome at the 3´-end of multiple HBV-RNAs were 

designed and investigated whether they can be in vitro transcribed and act as RIG-I 

ligands, and thus combine the immune stimulatory potential with HBV specific gene 

silencing. 3p-siRNAs were transfected into HBV replicating cells, induced INF-I and 

IFN-stimulated genes. HBV replication markers were significantly reduced and the 

antiviral effect of 3p-siRNA was superior to siRNA or 3p-RNA alone. Stronger effects 

of 3p-siRNAs on HBV replication were confirmed in HBV infected primary human 

hepatocytes, as well as in vivo. Nevertheless, the gene silencing effect of 3p-siRNA 

seemed to be limited in the mouse model due to insufficient targeting of hepatocytes, 

the HBV host cells. Application of cholesterol coupled siRNA improved hepatocyte 

specific targeting. Furthermore, we showed that 3p-siRNA besides a direct antiviral 

effect additionally induced infiltration of cytotoxic CD8+ T cells to the liver, potentially 

leading to elimination of infected hepatocytes.  

The results of this study demonstrate that HBV-specific 5`-triphosphated siRNAs 

efficiently block HBV replication in vitro and in vivo. Combination of endogenous 

type-I IFN induction by stimulation of RIG-I with HBV sequence-specific gene 

silencing by RNAi in one single molecule could be a promising alternative to the 

actual standard therapeutic approaches against chronic HBV infection. 
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Zusammenfassung 

Eine Infektion mit dem Hepatitis B Virus führt bei einem Teil der Patienten zu einem 

chronischen Infektionsverlauf mit schwerwiegenden Spätfolgen, wie Leberzirrhose 

oder hepatozellulärem Karzinom. Die gängigen Therapien einer chronischen HBV 

Infektion umfassen IFN-α und Reverse Transkriptase Inhibitoren als Hemmstoff der 

viralen Replikation. Diese Medikamente kontrollieren die Virusreplikation. In den 

meisten Fällen ist es aber nicht möglich, die episomal persistierende virale 

Transkriptionsmatrize (HBV cccDNA) zu eliminieren. Dadurch wird eine lebenslange 

Therapie erforderlich, die von Nebenwirkungen und dem Entstehen von 

arzneimittelresistenten HBV-Mutationen begleitet sein kann. Die Stimulation von 

RIG-I, einer cytoplasmatischen Helikase, kann zu der Freisetzung von endogenem, 

antiviral wirksamen Typ 1 IFN führen und stellt somit einen neuen, therapeutischen 

Ansatz für eine Behandlung der chronischen Hepatitis B dar.  Die Stimulation von 

RIG-I mittels durch in vitro Transkription generierte 5´-triphosphorylierte (3p), 

doppelsträngige RNA führte in stabil HBV exprimierenden Zelllinien, in HBV 

infizierten primären humanen Hepathozyten und in HBV transgenen Mäusen zu einer 

Ausschüttung von Typ 1 IFN, und folglich zu einer Suppression der Virusreplikation. 

Um diesen antiviralen Effekt zu verstärken, wurden siRNAs entworfen, die die 

überlappenden offenen Leseraster des HBV Genoms am 3`-Ende aller viralen RNAs 

als Ziel haben. Es wurde untersucht, ob diese nach in vitro Transkription zur 

Stimulation von RIG-I fähig sind und es somit zu einer Kombination von 

Immunstimulation und Hemmung der viralen Genexpression kommt. Die 

ausgewählten 3p-siRNAs führten in HBV replizierenden Zellen zur Induktion von Typ 

1 IFN und IFN-stimulierter Gene. Sie kontrollierten die HBV Replikation sowohl in 

stabil HBV exprimierenden Zellen, in HBV infizierten primären Hepathozyten, als 

auch in HBV transgenen Mäusen effizienter als die alleinige Applikation von siRNA 

oder 3p-RNA. Im Mausmodel konnte außerdem durch die Kopplung von siRNA an 

Cholesterol ein verbessertes Targeting von Hepatozyten, den HBV-Wirtszellen, 

erreicht werden. Die Injektion von 3p-siRNAs führte in vivo zu Einwanderung von 

zytotoxischen CD8+ T-Zellen in die Leber, die zur Elimination der HBV infizierten 

Zellen beitragen können. Somit kann durch HBV-spezifische 3p-siRNA die HBV 

Replikation in vitro und in vivo effektiv unterdrückt werden. Vereinigt in einer 

Substanz stellt die kombinierte Induktion von endogenem Typ 1 IFN und die 

spezifische Hemmung der viralen Genexpression eine vielversprechende Alternative  

zu den Therapien der chronischen HBV-Infektion dar.  
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1 Introduction 
 

1.1 The Immune System 
 

The immune system is a multifunctional and highly adaptable defense system of 

mammalians to protect the body from different invading pathogenic microorganisms 

and eliminate infective pathogens. It is able to detect a wide variety of agents like 

viruses, bacteria, pathogenic fungi or parasites. Beside the ability to generate a 

variety of cells and proteins capable to recognize and eliminate foreign invaders, the 

immune system is additionally able to recognize and remove disordered and 

damaged cells, which are prone to emerge as malignant tumors. An essential 

assumption of this interacting, elaborate and dynamic network is the ability to 

distinguish infected or degenerated cells from healthy cells and tissues to 

differentiate between self and non-self. 

All components of the immune response are mediated by white blood cells, named 

leukocytes, which derive together with red blood cells (erythrocytes) from one 

common cell type in the bone marrow, the pluripotent hematopoetic stem cell. These 

lymphoid and myeloid progenitor cells differentiate in the bone marrow. The common 

lymphoid progenitors display the precursor of lymphocytes. There are three major 

types of lymphocytes: first, natural killer cells (NK cells); second, B-lymphocytes (B-

cells), which differentiate in the bone marrow and third, T-lymphocytes (T-cells), 

which differentiate in the thymus. The emerging myeloid progenitors are the 

precursor of granulocytes, circulating in the blood, as well as macrophages, dendritic 

cells (DCs) and mast cells entering tissues (Janeway, 2007). 

Immunity, the status of protection from infectious diseases, basically is divided into 

two phylogenetic different stages. The older and less specific component is the 

innate immunity, providing the first line of host defense against invading pathogens. 

The initial and antigen non-specific immune response is rapidly activated to eliminate 

or neutralize the invading organism. This effector response is primarily based upon 

anatomical barriers like skin and physiological barriers such as temperature or pH-

value in the host. Major tasks of innate immunity are activation of NK cells and 

leukocytes, like mast cells, eosinophils or basophils as well as phagocytic cells, such 

as macrophages, neutrophils and DCs. Furthermore the recognition of pathogen 
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specific patterns by non-catalytic receptors, followed by the synthesis of antimicrobial 

mediators like interferons play an important role in innate immune response. 

In contrast to the broad reactivity of the innate immune response, the phylogenetic 

younger and more specific component of the immune system is known as adaptive or 

acquired immunity. The antigen-specific adaptive immune response is activated after 

antigenic challenge to the organism and is established within five to six days after the 

initial exposure to the antigen in the late phase of infection. Repeated exposure to 

the specific antigen generates immunological memory. This fast occurring immune 

response, followed after a secondary encounter with the same specific pathogen, is 

stronger and more efficient and can lead to lifelong protection against the specific 

pathogen. Two types of adaptive immunity are involved in antigen-specific pathogen 

neutralization: first, the cellular immunity mediated by antigen-specific T-lymphocytes 

and their release of various cytokines in response to an antigen. The second 

component of the adaptive immune system is the humoral immunity, mediated by 

secreted antibodies produced by B-cells. 

The rapid and non-specific innate immune response provides the first line of defense 

during the critical period directly after exposure to the pathogen. In addition, it plays a 

crucial role in stimulation of adaptive immunity. The adaptive immune response 

requires some time to arrange a definite and pathogen specific immune response, 

after repeated exposition of the host to microbial pathogens (Janeway, 2007). 

 

 
1.1.1 Adaptive immunity 

 
The adaptive immune system is able to recognize, adapt to and selectively eliminate 

specific foreign microorganisms. Adaptive immunity is divided into a humoral 

response, mediated by B-cells and a cellular response, mediated by T-cells. The 

humoral response of B-cells is based on antibody production and reacts on 

pathogenic organisms and viruses as well as on extracellular free circulating, 

pathogen derived and foreign antigens. Naïve B-cells, that had no previous contact 

with an antigen, circulate in the blood after they left the bone marrow. They express a 

unique antigen-binding receptor on their surface, termed membrane-standing 

immunoglobulin (IgM) or B-cell receptor (BCR). BCRs consist of two identical heavy 

and two identical light polypeptide chains. Every chain contains a constant and a 
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variable region. The amino-terminal variable ends of the pairs form a cleft within the 

specific antigen binds (Janeway, 2007).  

The high diversity of BCRs is given by a mechanism called somatic recombination of 

gene segments, which results in the high genetic diversity in the variable regions. 

The number of B-cells that are able to bind to a given antigen is very small. To 

expand this population of B-cells, they are stimulated after antigen binding to divide 

rapidly into a clone with the same antigenic specificity, a process called clonal 

selection. During this process the progeny cells differentiate to effector B-cells. After 

activation the original membrane-standing BCRs are secreted as antibodies. On the 

one hand the antibodies neutralize pathogens or their toxic products by specific 

binding, and thus prevent the access of pathogens to potential target cells. On the 

other hand, phagocytotic cells recognize the constant region of the antibodies and 

ingest the antibody-covered pathogens. After the pathogenic antigen is removed from 

the body most of the effector B-cells undergo apoptosis (Banchereau, Briere et al. 

1994). A small population of naïve B-cells develop into memory B-cells during clonal 

selection by an immunoglobulin-isotype change from IgM to IgG. Memory B-cells 

circulate in the lymphoid organs and mediate lifelong immunity against the specific 

pathogenic antigen (Liu, Zhang et al. 1991).  

The cellular response mediated by T-cells is mainly directed against intracellular 

pathogens. It requires processing and presentation of pathogen-specific antigens by 

infected cells. After T-cells arise in the bone marrow, they migrate to he thymus gland 

to mature under positive and negative selection (Janeway, 2007). During maturation, 

T-cells express a unique antigen-binding receptor on their surface, called T-cell 

receptor (TCR). The TCR differs from BCR in structure, but the high diversity of 

TCRs is also obtained by somatic gene recombination. In contrast to BCRs, which 

can recognize antigens alone, TCRs can only recognize antigenic peptides that are 

bound to cell membrane proteins, called major-histocompatibility-complex (MHC) 

molecules (Klein 1986). This event is termed antigen presentation. T-lymphocytes 

can be differentiated into two well-defined subpopulations by the expression of 

membrane glycoprotein co-receptors beside the TCR, named CD4 and CD8 (CD, 

cluster of differentiation). These co-receptors differentiate both T-cell types in general 

and also determine their interaction with the MHC molecules. CD8+ T-cells interact 

with MHC I and CD4+ T-cells interact with MHC II (Lustgarten, Waks et al. 1991). 

MHC I is expressed by nearly all nucleated cells and presents processed intracellular 
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antigens, for example resulting from virus infection. Furthermore, MHC I and II are  

inherent body-identity markers. MHC II is expressed only by professional antigen-

presenting cells (APCs), like macrophages and DCs, and presents phagocytosed 

antigens of extracellular pathogens to CD4+ T-cells. This phenomenon is known as 

MHC restriction.  

As an exception, internalized extracellular antigens can be transferred to and 

presented by MHC I, a mechanism termed cross-presentation (Bevan 1976). After 

the uptake of extracellular proteins by DCs, macrophages (Brode and Macary 2004), 

B-cells (Hon, Oran et al. 2005) and also liver sinusoidal endothelial cells, LSECs 

(Limmer, Ohl et al. 2000), via receptor-mediated endo- or macropinocytosis, the 

proteins are transferred by an unknown mechanism into the cytoplasm where they 

are processed to peptides by the proteasome. Afterwards, they are transported by 

TAP (transporter associated with antigen processing) into the lumen of the ER, get 

loaded on MHC I (and MHC II) and presented on the cell surface to CD8+ (and CD4+) 

T cells. Thereby, professional APCs are able to present for example antigens from 

different viruses, which are not able to infect APCs (Sigal, Crotty et al. 1999).  

CD4+ T-cells bind antigens presented on MHC II and differentiate upon activation into 

effector T cells with specific effector functions and cytokine profiles. They essentially 

participate to humoral and cellular immunity, as well to initiation and development of 

immunological memory. During the adaptive immune response against HBV 

infection, HBV-specific CD4+ T-cells induce and maintain a CD8+ T-cell response and 

activate B-cells (Rehermann 2003). CD4+ T-cells are separated into T-helper cells 

(TH) and T-regulatory cells (Tregs). The population of TH-cells is subdivided into TH1-, 

TH2-, TH17- and TH22-helper cells with specific roles in host defense against certain 

pathogens and in organ-specific autoimmunity. TH1-cells activate macrophages, 

support antigen specific proliferation of CTLs and stimulate B-cells to produce 

opsonizing immunoglobulins, leading to phagocytosis of antibody-marked pathogens. 

TH2-cells assist the humoral immune response by B-cells activation to produce 

neutralizing antibodies (Ridge, Di Rosa et al. 1998). Another subset of TH-cells highly 

produce interleukin-17 (IL-17) and are designated TH17-cells. Their role, together 

with other inflammatory cells, in induction of tissue inflammation during host defence 

and organ-specific autoimmunity is under discussion (Korn, Oukka et al. 2007). 

Recently, a previously uncharacterized IL-22-and TNF- α producing T-helper cell 

population has been described (Trifari, Kaplan et al. 2009). These peripheral 
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lymphocytes, subject to be named TH22-cells, are primarily found in epithelial tissue 

and are involved in inflammatory and wound healing processes. A supposed 

contribution to HBV infection has to be elucidated.  

A small subpopulation of CD4+ T-cells, named regulatory T cells (Tregs) provide 

regulatory functions in adaptive immunity. Tregs additionally express surface markers 

such as CD25, CD45 or FoxP3. It was shown, that they regulate immune-

inflammatory aspects during viral infections (Suvas, Azkur et al. 2004) and may play 

a regulatory role in viral resistance during chronic HBV infection (Peng, Li et al. 

2008). CD8+ T-cells recognize intracellular or phagocytozed (by cross-presentation) 

antigens presented on MHC I complex and differentiate under the influence of TH cell-

derived cytokines to cytotoxic T lymphocytes (CTLs). CTLs kill infected or malignantly 

transformed cells. During an HBV infection CTLs specific for different HBV epitopes 

remove infected hepatocytes from the liver by lysis. Additionally, they may control an 

infection also on a non-cytolytic level by secreting antiviral cytokines (Guidotti, 

Ishikawa et al. 1996). 

Nevertheless, most of the microorganisms, which entered a healthy individual are 

already cleared within a few days by distinct defense mechanisms of the innate 

immunity. Before the adaptive immune response eradicates foreign pathogens, the 

innate immune system is able to repress a pathogenic invasion by distinct features. 

 

 
1.1.2 Innate immunity 
 

The less specific and initial acting part of the immune response is the innate immune 

system, which often leads to the destruction of pathogens during the first days of 

infection without the help of the adaptive immune response. This complex system 

unifies different types of defensive barriers during a first contact of the host with a 

nonspecific microbial pathogen (Kuby, 2000).  

First, the skin and mucosal membranes, as well as low pH-value in the stomach and 

digestive enzymes provide a protective anatomic, mechanical and chemical barrier 

between the internal and the external milieu. Once a pathogen passed this first 

barrier through a breached or wounded skin, the internal epithelial surface or body 

fluid exchange, the body possesses further physiological barriers. Normal body 

temperature or fever response inhibits the growth of some pathogens. Moreover,  
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chemical barriers, for example antiviral acting interferons, are produced by virus-

infected cells. Bactericidal peptides like defensins are produced or released by 

phagocytes after the ingestion of microorganisms, which represent the endocytotic 

barrier of the innate immune system.  

After a pathogenic microorganism crossed the anatomic barrier of epithelial cells and 

escaped all physiological barriers, the pathogen is able to start replication in the 

affected tissue of the host. Normally, the site of infection is immediately recognized 

and invaded by various cells that internalize (endocytose) and dissolve the foreign 

macromolecules. Circulating phagocytes, such as monocyte derived macrophages or 

neutrophils, phagocytose, kill and digest microorganism during beginning and acute 

phase of inflammation. Macrophages and neutrophils recognize pathogens via 

pattern recognition receptors (PRRs) on their cell surface and are able to discriminate 

between pathogen-associated molecular patterns (PAMPs) and those of the host.  

Once bound, microorganisms are engulfed and degraded in endosomes and 

lysosomes. The generated peptides can be presented by MHC class II to CD4+ T-

cells, a process connecting innate and adaptive immune response. Macrophages are 

localized especially in connective tissues, in the mucosa of the gastrointestinal tract, 

in the lung, in the spleen and also in the liver. In the liver the specialized 

macrophages are called Kupffer cells, where they remove large numbers of dying 

cells from the blood. Contact to the pathogen initiates the activation of macrophages 

to release chemical mediators, cytokines and chemokines (chemoattractant), which 

indicate an inflammation in the tissue. Neutrophils circulate in the blood stream and 

migrate, attracted by macrophage-derived cytokines, a process called chemotaxis, to 

the site of infection (Janeway, 2007).  

DCs are the key players of antigen presentation to T-cells. Immature phagocytotic 

DCs migrate to peripheral tissues, where they continuously and unspecifically take up 

extracellular material via macropinocytosis. Additionally they selectively recognize 

and ingest pathogens through receptor-mediated endocytosis (Banchereau, Briere et 

al. 2000). After uptake and degradation of a microorganism, the expression and 

presentation of MHC and co-stimulatory molecules on the cell surface is up-

regulated. DCs are now able to effectively present antigens on their surface, activate 

T-cells and stimulate the innate and adaptive immune response via secretion of 

cytokines like IL-6, IL-12, Il-18, IFN-α and IFN-γ (Banchereau, Briere et al. 2000). 

The DCs, now called mature, migrate to the local lymphoid tissue, where they 
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activate naïve T-cells. Thereby, following T-cell development can be driven in 

different directions. IL-12 and IFN-γ expressed by DCs lead to the differentiation of 

CD4+ T-cells into TH1-helper cells. (Lanzavecchia and Sallusto 2001). Uptake of 

extracellular pathogens by DCs and presentation via MHC II mediates development 

of CD4+ T-cells into TH2-helper cells (Moser and Murphy 2000). DCs also present 

phagocytosed and cross-primed antigens from viruses, bacteria and also tumors to 

CD8+ T-cells via MHC I, which thereupon become CTLs (Janssen, Lemmens et al. 

2003).  

The main pathway by which DCs get activated, mature and present antigens to naïve 

T-cells, is the recognition of PAMPs by PRRs. DCs display the key cell type coupling 

PRR-mediated innate immune recognition and initiation of adaptive immune 

response. Consequently, the innate immune response is not completely non-specific. 

The system is able to discriminate between self and broad variety of foreign 

pathogens (Janeway and Medzhitov 2002).  

 

 

1.1.3 Pathogen-associated molecular patterns: PAMPs 
 
The variety of pathogens that can be recognized is given through highly conserved 

structures, a broad spectrum of microbial components, and known as pathogen-

associated molecular patterns (PAMPs) or microbe-associated molecular patterns 

(MAMPs). PAMPS are essential for the survival of the microorganism and therefore 

difficult for the microorganism to alter. A prototypical PAMP is bacterial 

lipopolysaccharide (LPS) of gram-negative bacteria, a component of their outer 

bacterial cell wall. Other PAMPs are for example bacterial flagellin, peptidoglycan, 

unmethylated bacterial CpG-DNA, or nucleic acid variants of viruses, such as double-

stranded RNA (dsRNA) or double-stranded DNA (dsDNA) (Fig. 1). 

 

 
1.1.4 Pattern-recognition receptors: PRR 
 

Pattern-recognition receptors (PRR) are the key players in innate immune host 

defense. They are tagged by the PAMPs, which leads to induction and activation of 
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inflammatory and antimicrobial innate immune responses (Medzhitov 2001). Different 

PRRs react with specific PAMPs (Fig. 1). The binding activates specific signaling 

pathways, which lead to altered gene expression and to distinct antipathogenic 

responses. PRRs can be subdivided into four different families: a) Toll-like receptors 

(TLR) b) RIG-I-like receptors (RLR) c) C-type lectin receptors (CLR) and d) NOD 

(nucleotide binding and oligomerization domain) -like receptors (NLR) (Palsson-

McDermott and O'Neill 2007). 

Toll-like receptors are probably the most important family of PRRs. Their name 

originates from Toll, a receptor that was primarily identified in Drosophila (Hashimoto, 

Hudson et al. 1988). Subsequent studies revealed that Toll also play an essential 

role in insect innate immunity (Lemaitre, Nicolas et al. 1996). In the following, 

homologues of Toll were identified in mammals. To date 10 members of the human 

TLR family have been identified. TLRs, which are type I transmembrane 

glycoproteins are expressed by various immune cells including macrophages, DCs, B 

cells and specific types of T-cells, but also by non-immune cells such as fibroblasts 

and epithelial cells (Akira, Uematsu et al. 2006). The receptors are able to detect 

PAMPs derived from fungi, parasites, bacteria or viruses via an extracellular leucine-

rich repeat (LRR) sequences and transmit signals through the cytoplasmic Toll-

interleukin (IL)-1 receptor (TIR) domain. They can be divided in several subfamilies 

by different aspects and characteristics. One characteristic is that each subfamily of 

TLRs recognizes related PAMPs: TLR1, 2 and 6 predominantly recognize lipids, 

TLR5 flagellin and TLR9 bacterial and viral CpG-DNA. TLR3, 7 and 8 are triggered 

by viral nucleic acids (Barton 2007). TLR4 recognizes a collection of different ligands 

with totally different structures, such as lipopolysaccharide (LPS), viral proteins, 

fibronectin or heat-shock proteins. Another aspect for discrimination is that certain 

TLRs are expressed on the cell surface (TLR1,2,4,5 and 6), others are found in 

intracellular compartments such as endosomes (TLR3,7,8 and 9). Initially, TLRs were 

described to be involved in bacterial pathogen recognition (TLR1,2,4,5,6 and 9), but 

they also play a crucial role in the host response to viruses. Endosomal TLR3, 7 and 

8 recognize viral nucleic acids, which requires internalization to the endosome, 

before induction of an antiviral response is possible. In contrast viral glyoproteins 

interact with TLR 2 and 4 on the cell surface before or during viral entry (Akira and 

Takeda 2004; Akira, Uematsu et al. 2006; Thompson and Locarnini 2007).  
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Fig. 1.1: Toll like receptors (TLRs), cytosolic helicases and their different ligands. Illustration 

modified after (Chaudhuri, Dower et al. 2005) 

 

 

The second family of PRR identified to be involved in the recognition of viral nucleic 

acids beside TLRs are the retinoic acid-inducible gene–I (RIG-I)-like receptors (RLR). 

RLR comprise RIG-I (retinoic acid inducible gene-I), MDA-5 (melanoma 

differentiation associated gene 5) and LGP-2 (laboratory of genetics and physiology 

2) (Yoneyama, Kikuchi et al. 2004; Rothenfusser, Goutagny et al. 2005; Yoneyama, 

Kikuchi et al. 2005; Gitlin, Barchet et al. 2006). All RLRs are ubiquitously expressed 

cytosolic helicases. RIG-I and MDA-5 survey the cytoplasm for viral RNA and 

recognize different RNA viruses. Additionally, MDA-5, as well as TLR3 are 

preferentially triggered by poly(I:C) (polyinosinic:polycytidylic acid), a synthetic 

analogue of short double-stranded RNA (Alexopoulou, Holt et al. 2001; Gitlin, 

Barchet et al. 2006; Kato, Takeuchi et al. 2006). RLR binding of viral nucleic acids 

lead to the induction of an antiviral interferon type-I response, as further described in 

chapter 1.2.2 and 1.2.3. Although LGP-2 is able to recognize dsRNA, it lacks a 

downstream signaling domain and functions as negative regulator of RIG-I (Saito, 

Hirai et al. 2007).  

Another antimicrobial defense line of PRRs beside TLRs and RNA helicases are 

cytoplasmic DNA sensors that recognize viral or bacterial (B-form) DNA and induce 

IFN type-I (Ishii, Coban et al. 2006). DAI (DNA-dependent activator of IFN-regulatory 
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factors) was identified as a possible DNA receptor (Takaoka, Wang et al. 2007), but 

DAI knockout mice showed no abnormal DNA induced IFN production (Ishii, 

Kawagoe et al. 2008). Recently AIM2 (absent in melanoma 2), a PYHIN (pyrin and 

HIN domain-containing protein) family member, was identified as a receptor for 

cytosolic dsDNA recognition, which potently activates innate immunity via the 

inflammasome (Takaoka, Wang et al. 2007; Fernandes-Alnemri, Yu et al. 2009; 

Hornung, Ablasser et al. 2009).  

Membrane-bound C-type lectin receptors detect extracellular fungal PAMPs 

(Willment and Brown 2008). The cytosolic NOD-like receptors exhibit a characteristic 

C-terminal LRR and an internal nucleotide-binding domain (NBD). NLRs are known 

to detect cytoplasmic bacterial PAMPs. This leads to the activation of cytokine 

expression including IL-1β (Inohara, Chamaillard et al. 2005; Martinon, Gaide et al. 

2007).  

 

 

1.2 Cytosolic helicase RIG-I 
 
1.2.1 Structure of RIG-I, the retinoic acid inducible gene-I  

 
RIG-I, the retinoic acid inducible gene-I (also known as DDX58), was originally 

identified and named by the ability to be induced by retinoic-acid during differentiation 

of acute promyelocytic leukemia cells (Sun, 1997). Subsequently, RIG-I was 

described to be stimulated after transfection of synthetic dsRNA poly(I:C) and thereby 

activate IRF-regulated reporter gene expression (Yoneyama, Kikuchi et al. 2004). 

Expression of RIG-I can be enhanced by retinoic acid, interferon and viral infection. 

RIG-I is a member of the DExD/H box RNA helicase (dsRNA unwinding) family 

(Yoneyama, Kikuchi et al. 2005). The human RIG-I gene encodes for a protein of 925 

amino acids and 115 kDa that comprises two characteristic caspase recruitment 

domain (CARD)-like motifs at its N-terminus, and a C-terminal RNA binding domain 

(Fig. 2) (Cui, Eisenacher et al. 2008). CARD as the signaling domain is responsible 

for activation of a downstream signaling cascade, the C-terminal region containing 

several conserved helicase motifs and a repression domain (RD) (Yoneyama, 

Kikuchi et al. 2005), is responsible for RIG-I function. The C-terminal repressor 
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domain is involved in inhibition of RIG-I activation in the absence of stimulating viral 

RNAs (Saito, Hirai et al. 2007). The C-terminal domain (CTD), aa792-925, which is 

part of the RD-domain, is responsible for the recognition of specific viral RNAs (Cui, 

Eisenacher et al. 2008; Takahasi, Yoneyama et al. 2008). The helicase domain 

comprises an adenosine-triphosphate (ATP)-binding lysine residue. Substitution of 

lysine to alanin renders RIG-I into a dominant negative inhibitor form, which indicates 

that RIG-I requires ATP to activate signaling (Yoneyama, Kikuchi et al. 2004). 

 

                           
                   
Fig. 1.2: Schematic representation of RIG-I. N-terminal CARD (caspase recruitment domain) motifs 

are responsible for downstream signaling after binding of RNA to helicase domain and C-terminal 

domain (CTD), including the repressor domain. Modified after (Yoneyama and Fujita 2009) 

 

 
1.2.2 RIG-I activation 
 

RIG-I recognizes a specific set of RNA viruses, such as Flaviviridae, 

Paramyxoviridae, Orthomyxovirida and Rhabdoviridae (Kato, Takeuchi et al. 2006). 

All this viruses affiliate a common feature, an RNA genome modified by 

phosphorylation. Recent studies showed that RIG-I distinguishes viral RNA from the 

broad amount and variety of cellular RNAs by the recognition of 5`-triphosphates 

(Hornung, Ellegast et al. 2006; Pichlmair, Schulz et al. 2006). This oligonucleotide 

modification arises from RNA synthesis by various viruses already mentioned above. 

The variation of 5`-triphosphorylation is not found on cellular RNA due to several 

modifications. Although cellular primary transcripts contain 5`-triphosphate, just like 

the viral transcripts, they undergo several various modifications. The mRNA acquires 

a 7-methylguanosine CAP structure at its 5`-end; tRNA undergoes 5`-cleavage and 

series of nucleotide base modifications. Primary transcripts of ribosomal RNA are 

directly complexed with ribosomal proteins to form ribonucleoproteins, and are 

therefore masked. Modification of 5`-triphosphated RNA like artificial capping or base 

modifications abolished detection by RIG-I (Hornung, Ellegast et al. 2006). 
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Thus, RIG-I is the key sensor of negative strand RNA viruses in the cytosol of cells. 

RNA containing a triphosphate at the 5`-end activates RIG-I, but the exact structure 

of RNA supporting 5`-triphosphate recognition, the requirement of 5`-triphosphate 

group and the existence of RNA stimulating RIG-I in the absence of a 5´-triphosphate 

group remain controversial. Until now, there are six proposed RIG-I ligands, capable 

for the induction of an IFN type-I (IFN-I, IFN-α and -β) response (Schlee, Hartmann et 

al. 2009). Beside single-stranded (ss) and double-stranded (ds) RNA with 5`-

triphosphate groups, short (23 - 30 bp) dsRNA with 5`-monophosphate and 

triphosphorylated ssRNA with A- and U-rich sequence at the 3`-end, as well as 

intermediate (300 – 2000 bp) and short (23 - 30 bp) dsRNAs without 5`-triphosphate 

efficiently stimulate RIG-I. Nevertheless, sequence unspecific dsRNAs, prepared by a 

technique called in vitro transcription (IVT), preferentially activate RIG-I (Kato, 

Takeuchi et al. 2006), a characteristic that is utilized in this work. For this purpose, an 

ssDNA template is transcribed by a T7 RNA polymerase into dsRNA. During this 

procedure the 5`-ends of the RNA-oligonucleotide become triphosphorylated.  

A model of possible RIG-I activation by Yoneyama and Fujita (Yoneyama and Fujita 

2008) proposes, that RIG-I is inactivated in the absence of stimulating RNA by 

intramolecular interaction between C-terminal repressor domain (RD) and caspase 

recruitment domain (CARD) (Fig. 3). After the transfer of 5`-triphosphorylated dsRNA 

(5`ppp-dsRNA or shortly 3p-RNA) or the appearance of viral RNA as a result of viral 

infection in the cytoplasm of the cell, RIG-I detects the RNA motifs via basic cleft like 

structure of the C-terminal domain (CTD). Stable complex of RNA and RIG-I via CTD 

activates intrinsic ATPase, which leads to an ATP-dependent conformational change 

of RIG-I, rather than ATP-dependent RNA unwinding by the helicase function of RIG-

I (Takahasi, Yoneyama et al. 2008). Due to the conformational change of RIG-I the 

N-terminal CARD domain is exposed for interaction with downstream adaptor 

molecules. Alternatively, it was shown that RIG-I primarily could form a dimer or 

oligomer via RD (Fig. 3) in response to 3p-RNA interaction (Cui, Eisenacher et al. 

2008). The consequently activated RIG-I is predicted to directly interact with 

interferon beta promotor stimulator-1 (IPS-1), located in the outer membrane of 

mitochondria and also known as mitochondrial antiviral signaling (MAVS), CARD 

adaptor inducing interferon beta (CARDIF) or virus-induced signaling adaptor (VISA) 

(Kumar, Kawai et al. 2006). IPS-1 consists of two domains characterized as an N-

terminal CARD-like domain sharing homology with those of RIG-I, and a C-terminal 



Introduction 

	
   13	
  

effector domain. IPS-1 associates with RIG-I via the CARD domain and provides a 

link between RIG-I and downstream signaling molecules (Fig. 3 and 4). 

 

 

            
 

Fig. 1.3: Model of RIG-I activation. In the absence of stimulating RNA, RIG-I is present in an 

inactivated form by intramolecular interaction between C-terminal repressor domain (Inohara, 

Chamaillard et al.) and caspase recruitment domain (CARD) or a linker region of the helicase domain. 

In the presence of stimulating RNA in the cytoplasm, such as transferred 5`-triphosphorylated dsRNA 

(3p-RNA) or viral RNA, RIG-I detects this non-self RNA via basic cleft-like structures of the C-terminal 

domain (CTD). The detection of RNA induces an ATP-dependent conformational change and forming 

of a dimer, which allows CARD to interact with the mitochondrial downstream adaptor protein 

interferon beta promotor stimulator-1 (IPS-1), which itself include a CARD domain and links 

downstream signaling. Modified after (Yoneyama and Fujita 2009). 
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1.2.3 RIG-I signaling 
 

The RIG-I signaling cascade converges at the expression of activating transcription 

factors such as nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-

κB) and Interferon regulatory factors (IRFs). These factors are translocated to the 

nucleus, where they bind to the promotor region of IFN-I and other proinflammatory 

cytokines, in order to activate their transcription. Besides NFκB especially IRF-3 and 

IRF-7 are phosphorylated due to a viral induced signal and activate antiviral immunity 

(Sato, Suemori et al. 2000) (Fig. 4).  

More precisely, binding of activated RIG-I to IPS-1 via CARD-CARD interaction 

induces a complex downstream signaling cascade. First, IPS-1 is essential for RIG-I 

specific induction of IFN-I, demonstrated in IPS-1 KO cells, which show an impaired 

IFN-I induction after RIG-I specific stimulation (Kumar, Kawai et al. 2006; Sun, Sun et 

al. 2006). IPS-1 encodes beside an N-terminal CARD domain additionally a 

transmembrane domain at its C-terminal effector side and a proline-rich region (PRR) 

in the middle of the protein. The expression in the outer mitochondrial membrane 

suggests an essential role of mitochondria in RIG-I mediated signaling. It has been 

shown that tumor necrosis factor (TNF) receptor-associated factors (TRAF) 3, an E3 

ligase for Lys63-linked polyubiquitination, directly interacts with the PRR of IPS-1 

(Oganesyan, Saha et al. 2006), as well as TRAF 2 and TRAF 6 (Xu, Wang et al. 

2005).  The signaling cascade proceeds on one hand via the recruited TRAF family 

member associated NF-κB activator (TANK), which transmits the signal to 

downstream protein kinases, inhibitor of NF-κB (IκB) kinase (IKK) family members. 

The canonical IKK complex, consisting of IKK-α, IKK-β and the regulatory subunit of 

NF-κB essential modulator (NEMO), also termed IKK-γ, phosphorylates IκB. 

Subsequently, proteasome-dependent degradation of IκB allows functional NF-κB to 

translocate to the nucleus (Karin and Ben-Neriah 2000) and induces the transcription 

of proinflammatory cytokines like IL-1, IL-6 and TNF-α (Dinarello 2000) (Fig. 4, left 

part of cascade). In contrast, TANK recruits binding of non-canonical IKKs, TANK-

binding kinase 1 (TBK1) and IKK-ι (also termed IKK-ε), which themselves activate the 

signal-dependent phosphorylation of IRF-3 and IRF-7 to form a functional homodimer 

or heterodimer (Fitzgerald, McWhirter et al. 2003; Sharma, tenOever et al. 2003). 

Following translocation of IRFs into the nucleus allows transcription factor activity and 

the induction of IFN-I (Fig. 4, right part of cascade). The interaction between the PRR 
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region of IPS-1 and TRAF-3 is essential for the activation of both, canonical and non-

canonical IKK complexes, whereas TRAF-2 / -6 is responsible for NF-κB activation 

(Xu, Wang et al. 2005).  

As a regulatory element NAK-associated protein 1 (NAP1) is involved in the non-

canonical IKK activation of IRFs (Sasai, Shingai et al. 2006). NEMO, which is known 

to be a regulatory subunit of the canonical IKK complex, also plays a role in the non-

canonical IKK complex formation and activation of IRFs (Zhao, Yang et al. 2007), 

pointing to a crosstalk between both IKK complexes during RIG-I signaling. Already 

upstream in the signaling cascade, Fas-associated death domain (FADD) and 

receptor interacting protein 1 (RIP1), which are both death domain-containing 

proteins, are involved in the IPS-1 signaling complex (Kawai, Takahashi et al. 2005). 

They interact with the C-terminal part of IPS-1 and activate the NF-κB inducing 

pathway via the activation of caspase-8 and caspase-10 (Takahashi, Kawai et al. 

2006). Additionally, tumor necrosis factor receptor (TNFR) -associated DD (TRADD) 

complexes with IPS-1, TRAF-3, TANK, RIP1 and FADD, which leads to the activation 

of NF-κB and IRF-3 (Michallet, Meylan et al. 2008).  

It remains unclear why IRF-3 is activated via IPS-1 containing signaling, but not via 

TNFR-mediated signaling. Possibly, mediator of IRF-3 activation (MITA), localized 

like IPS-1 on the outer mitochondrial membrane, is a critical scaffold protein for IRF-3 

activation. MITA interacts directly with IPS-1 and regulates the recruitment of TBK1 to 

the IPS-1 complex on mitochondria (Zhong, Yang et al. 2008). Other molecules are 

responsible for post-translational modifications of RIG-I signaling. The tripartite motif 

protein 25 (TRIM25), an E3 ubiquitin ligase, specifically interacts with the CARD-

domain of RIG-I and conjugates ubiquitin to RIG-I CARD, which results in a marked 

increase in RIG-I downstream signaling activity (Gack, Shin et al. 2007). The 

modification of RIG-I is essential for the interaction with IPS-1 and subsequent 

signaling. A negative regulator of RIG-I mediated signaling is NLRX1, a member of 

the NLR family. NLRX1 is also expressed on the outer membrane of mitochondria 

and negatively regulate IPS-1 activity by direct interaction between the IPS-1 CARD 

domain and NLRX1 (Moore, Bergstralh et al. 2008). This negative regulation is 

necessary, because prolonged and unwanted activation of antiviral signaling via RIG-

I and IPS-1 might be harmful for host survival.  
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Fig. 1.4: RIG-I-mediated signaling cascade and its regulation. Activated RIG-I interacts directly 

with mitochondrial IPS-1 and transmits the signal through the indicated signaling molecules, resulting 

in the activation of the transcription factors NF-κB and interferon-response factors (IRF) 3 and 7 

(detailed described in the text). Translocation to the nucleus allows transcription factor activity and the 

induction of proinflammatory cytokines and interferon type-I. Black arrows and blue lines indicate 

positive or negative regulation of the signal, respectively, by cellular proteins. Modified after 

(Yoneyama and Fujita 2009). 
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1.3 Interferon class I 
 

1.3.1 The interferon type-I system 

 

The detection of determined PAMPs by PRRs initiates effective antimicrobial 

machinery. The recognition of pathogenic nucleic acids by TLR3, 7, 8 and 9, RIG-I 

and MDA-5, as well as bacterial LPS by TLR4, induce an inflammatory response and 

the production of different cytokines. The antimicrobial key cytokine produced after 

stimulation of RIG-I is interferon type-I (IFN-I). IFN was initially identified as a soluble 

factor secreted by virus-infected cells, acting as an inhibitor of viral replication (Isaacs 

and Lindenmann 1957). Beside its antiviral activity, other major biological activities 

include antitumor and immunomodulatory effects.  

The IFN-I family comprises of one INF-β and 13 IFN-α subtypes in humans (plus 

IFNκ, IFNε, IFNο, IFNτ and IFNδ) (Roberts, Liu et al. 1998). The IFN-I system 

includes two different signaling cascades. First, an IFN-I producing signal, which is 

induced by PRR dependent recognition of specific oligonucleotides and second, an 

IFNα/β receptor (IFNAR) mediated signal, which is activated by released IFN-I itself 

(Randall and Goodbourn 2008). When IFN-I is released out of the cell, IFN α/β is 

bound autocrinic and paracrinic by the heterodimeric transmembrane receptor 

IFNAR, which is broadly expressed by nearly every cell type, and consists of two 

subunits, IFNAR-1 and IFNAR-2 (Gaboriaud, Uze et al. 1990). Interaction of IFN-I 

with IFNAR on the cell surface leads to the activation of the Janus-Kinase (Jak)-

signal transducer activator of transcription (STAT) pathway (Darnell, Kerr et al. 1994). 

The intracellular domains of the IFNAR subunits are associated with Janus protein 

tyrosine kinases (Jak PTKs or JAK), namely Tyk2 and Jak1. Binding of IFN-I to 

IFNAR results in cross-activation of these Jak kinases through a conformational 

change, bringing the two JAKs close enough to phosphorylate each other. After 

autophosphorylation the JAKs phosphorylate their downstream substrates, which are 

two members of the family of signal transducers and activators of transcription 

(STATs), named STAT1 and STAT2 (Darnell, Kerr et al. 1994). The tyrosine-

phosphorylated and activated STAT1 and STAT2 dissociate from the IFNAR receptor 

and form together with another transcription factor member, IRF-9, the heterotrimeric 

complex ISGF3. The complex translocates to the cell nucleus and subsequently 
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binds to its specific DNA sequence, the IFN-stimulated regulatory element, ISRE 

(Kessler, Veals et al. 1990). The IFN-stimulated activation of the promotor results in 

the transcriptional induction of more than 300 target genes, so called IFN-stimulated 

genes, ISGs (Der, Zhou et al. 1998). A few of these ISGs implicate antiviral effects, 

also against HBV (detailed explained in chapter 1.5.4), encoding for example for 

PRRs, transcription factors or candidates with immediate antiviral activity, which 

include proteins that regulate post-transcriptional and post-translational events.  

 
 

1.4 Hepatitis B virus 
 

1.4.1 Classification 
 

The Hepatitis B virus (HBV) is a small and enveloped desoxyribonucleic acid (DNA) 

virus, which is highly species- and liver specific. HBV replicates only in hepatocytes 

and belongs to the family of hepadnaviridae (hepatotrop associated DNA viruses) 

(Gust, Burrell et al. 1986). The replication of the DNA genome occurs via a 

ribonucleic acid (RNA) intermediate by reverse transcription in the cytoplasm of host 

liver cells. Therefore the virus also belongs to pararetroviruses. HBV is divided into 

four major serotypes (adr, adw, ayr, ayw) to distinguish between different variations 

in between subspecies of HBV (Magnius and Norder 1995). The differentiation is 

based on antigenic epitopes presented by the envelope proteins. Furthermore, HBV 

is divided into eight genotypes (A-H), according to diverse overall nucleotide 

sequence variations of the HBV genome (Kramvis, Kew et al. 2005). The genotypes 

differ by at least 8% of their sequence, which has been associated with 

anthropological history and exhibit distinct geographical distributions (Norder, 

Courouce et al. 1992). For example, type A is prevalent in Europe, North America 

and Africa (Norder, Hammas et al. 1993), genotype D has a worldwide distribution 

but predominates in the Mediterranean area (Lindh, Andersson et al. 1997). Type A 

and D are also predominant in Germany (Vieth, Manegold et al. 2002). The 

differences in between the genotypes A-H significantly affect the disease severity, 

the response to distinct treatment therapies and possible vaccination strategies 

against the virus. 
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1.4.2 HBV history and research 
 
Lürmann made the earliest record of an epidemic caused by HBV in 1885 in Bremen, 

Germany (Lürmann A., 1885). Almost a century later Blumberg discovered in 1965 

the `Australian antigen`, afterwards known to be the Hepatitis surface antigen, 

HBsAg, in the blood of Australian aboriginal people (Blumberg, Melartin et al. 1966). 

Subsequently, he identified the antigen as the infectious agents of viral hepatitis 

(Blumberg, Sutnick et al. 1969), a discovery made him receive the Nobel prize of 

Medicine in 1977. Finally, Dane discovered the virus particle in 1970 by electron 

microscopy (Dane, Cameron et al. 1970). In 1979, the genome of the virus has been 

sequenced (Galibert, Mandart et al. 1979). A vaccine against human hepatitis B is 

available since 1981. After completion of 3 required vaccinations, 95% to 100% of 

recipients achieve adequate protection in preventing HBV infection. 

Human HBV infects only humans and humanoid primates, such as Chimpanzees 

(Vaudin, Wolstenholme et al. 1988), Gibbons (Norder, Ebert et al. 1996) and Gorillas 

(Grethe, Heckel et al. 2000). Close relatives of human HBV, which also belong to the 

genus of orthohepadnaviridae and specifically infect different animal populations, are 

the Woodchuck hepatitis B virus (Summers, Smolec et al. 1978), the Beechey 

Ground squirrel hepatitis B virus (Marion, Oshiro et al. 1980) and the New World 

Woolly Monkey hepatitis B virus (Lanford, Chavez et al. 1998). Another genus of 

hepadnaviridae is called avihepadnaviridae, hepatitis B viruses that infect birds, 

including snow goose hepatitis B virus (Schettler 1971), Peking duck hepatitis B virus 

(Mason, Seal et al. 1980) and heron hepatitis B virus (Sprengel, Kaleta et al. 1988).  

There is a lack of appropriate animal models for investigations of interaction between 

virus and host in HBV research due to the high species specificity of HBV. The 

animal models already mentioned above are little characterized, difficult to keep and 

rather expensive. For this reason, up to date, HBV-transgenic mice serve as a model 

for chronic HBV infection (Chisari, Pinkert et al. 1985; Guidotti, Matzke et al. 1995). 

Additionally, the transduction of mice with adenoviral vectors for hepatocyte-specific 

expression of a complete HBV-genome reflects some characteristics of an acute 

HBV infection accompanied by liver inflammation and followed by elimination of HBV 

replication (Ren and Nassal 2001; Sprinzl, Oberwinkler et al. 2001; Isogawa, Kakimi 

et al. 2005). Surprisingly, hepatocytes of tupaia belangeri, a tree shrew, which is not 

related with primates, are infectable with human HBV (Walter, Keist et al. 1996; Yan, 
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Su et al. 1996). The tupaia hepatocytes can repopulated a mouse liver in immune 

deficient mice, whose endogenous hepatocytes were destroyed by a liverspecific 

urokinase treatment (Dandri, Burda et al. 2005). But this infection model is inefficient 

and self-limiting.  

The repertoires of cells, which can be infected with human HBV, and therefore are 

suitable as cell-culture model, are limited by the viral hepatotropism. Human 

hepatoma cell lines, such as HuH7 (Nakabayashi, Taketa et al. 1982) and HepG2 

(Hirayama, Kohgo et al. 1993), are not infectable with HBV apart from some rare 

clones for example HepG2-BV cell line (Bchini, Capel et al. 1990), but are a useful 

tool to investigate intracellular aspects of viral replication. For this purpose the HBV 

genome is transferred into the cells by transient transfection or adenoviral vectors. 

Nevertheless, HepaRG cells, a cell line that exhibits hepatocyte-like morphology and 

express specific hepatocyte functions, is susceptible to HBV infection. Differentiation 

and infectability are maintained only when these cells are cultured in the presence of 

corticoids and dimethyl sulfoxide (Gripon, Rumin et al. 2002). Stably HBV transfected 

hepatoma cell lines, such as HepG2 2.15 expressing genotype A HBV (Sells, Zelent 

et al. 1988) and HepG2 H1.3 expressing genotype D HBV (Jost, Turelli et al. 2007; 

Protzer, Seyfried et al. 2007), replicate from several copies of integrated HBV 

overlength genomes. These cells additionally allow the production of high titers of 

HBV, suitable for infection of HepaRG cells and primary human hepatocytes (PHH) 

(Schulze-Bergkamen, Untergasser et al. 2003). PHHs are isolated from surgical liver 

resections and are a useful tool to investigate early steps of HBV replication after 

acute infection with HBV. Interestingly, HepG2 H1.3 cells and HBV infected PHH 

additionally express covalently closed circular HBV-DNA (cccDNA). This supercoiled 

HBV-DNA form accumulates and persists as an episome in the nucleus of 

hepatocytes, serving as the viral transcription template during natural infection. 

 

 

1.4.3 Liver structure 
 

The liver (greek hēpar) is the central organ of metabolism in the human body. It can 

be divided into two lobes or 8 segments and has a wide range of functions, such as 

plasma protein synthesis (e.g. coagulation factors), utilization of nutritional 

components (e.g. glycogen and fat storage), cholesterin and bilic acid synthesis, as 
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well as detoxification. Nutrients, absorbed from the intestine into blood, catabolism 

products of the spleen and pancreatic hormones reach the liver by the portal vein. 

The liver predominantly consists of mostly multinucleated parenchymal cells, the 

hepatocytes (Fig. 2.27). Extended capillaries, so called liver sinusoids, are blood 

vessels located between hepatocytes that provide liver cells with oxygen-rich blood 

from the hepatic arteries and with nutrient-rich blood from the portal vein. The blood 

is then taken up by central veins, which join the liver vein, and finally delivered back 

to the circulation. Sinusoids are flanked by liver endothelial cells (LSECs) and contain 

specialized macrophages of the liver, so called Kupffer cells. The room between 

LSECs and hepatocytes, the space of Disse (named after Joseph Disse), contains a 

third type of non-parenchymal cells; vitamin A containing and fat-storing stellate cells 

named Ito cells. Nevertheless, HBV replication only takes place in the the 

hepatocytes.  

 

 

                  
             
                  
Fig. 1.5: Formation of liver cells. Modified after K. Esser.  
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1.4.4 Epidemiology of HBV infection 
 
Despite the availability of an HBV vaccine, infection rates of HBV increase constantly 

worldwide, especially in developing countries. The WHO estimate worldwide two 

billion infected people and more than 360 million chronic carriers, with high risk to 

develop liver cirrhosis and HCC. Approximately 700 000 people die each year due to 

the acute or chronic consequences of hepatitis B (WHO, 2008). Infection with HBV 

occurs by exchange of body fluids through blood or sexual contacts with an infected 

person and proceeds in between adults by horizontal transmission or from an 

infected mother to a newborn by vertical transmission (Ganem 1982). People with 

high risk of HBV infection therefore include parental drug users, people with multiple 

sex partners and infants born to HBV-infected mothers. After an acute phase of 

infection with HBV, some patients develop a chronic state with a lifelong infection. 

The two primary adverse outcomes of chronic HBV infection are liver cirrhosis and 

primary hepatocellular carcinoma (HCC); either of both can lead to a liver related 

death (Beasley, Hwang et al. 1981).  

HBV infection, acute or chronic, holds variable manifestations (Fig. 5). During the 

acute state, HBV infection can manifest as a subclinical or icteric hepatitis and rarely 

in 0.1% to 0.5% of patients, as acute fulminant hepatitis with acute liver failure. 

Chronic HBV infection can be asymptomatic or can be manifested by symptoms and 

signs of cirrhosis or hepatocellular carcinoma or both. Subsequent course of disease 

after primary HBV infection is individual and depends on age and general immune 

status of the patient. After primary infection with HBV the acute phase of infection 

starts with an incubation period without any symptoms (asymptotic) that ranges from 

four to six weeks. During the acute phase of infection approximately one third of all 

patients proceed asymptotic and develop neutralizing immunity. Thus, the majority of 

patients show after an asymptomatic incubation time symptoms like fatigue, malaise, 

anorexia or flu-like symptoms until jaundice may become apparent. Afterwards, the 

patients develop an acute liver inflammation (hepatitis). In 95% of infected adults the 

virus is cleared after an acute infection, only 5% of infected adults, but 20-50% of 

infants in early childhood (one to five years) and even 90% of infected perinatals 

develop a chronic state of infection (McMahon, Alward et al. 1985).  

Dependent on different phases of chronic infection, the annual rate of progression to 

cirrhosis in untreated patients has been estimated to be 2 – 9 % (Yim and Lok 2006). 
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HBV is a non-cytopathic virus, but strongly carcinogen. Severe liver damage is due to 

a strong inflammatory response against the virus (Chisari and Ferrari 1995 a; Chisari 

and Ferrari 1995 b) and the risk of hepatocellular carcinoma is 100 times higher in 

patients with HBV infection than in uninfected ones (Pungpapong, Kim et al. 2007).  
 

                     
 
Fig. 1.6: Clinical development of HBV infection in adults.  

 

 
About half of the world’s population has had contact with HBV, but HBV prevalence 

varies drastically worldwide (Fig. 6). Regions with low prevalence, where less than 

2% of the population is chronic HBsAg carrier, are developed countries in Central 

Europe, in North America, in southern parts of South America, as well as Australia. 

Decreasing numbers of between 0.4% and 0.7% (~500.000) of the population in 

Germany live with chronic hepatitis B (Robert Koch Institut, Epidemiologisches 

Bulletin 2004). Intermediate infection rates (2 -7% HBsAg positive) are found in East 

Europe, Middle East, Russia, India, North Africa and in southern parts of Brazil. High 

prevalence is given in developing countries like in Africa south of the equator, in 
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Southeast Asia, or in China, where hepatitis B is endemic and about 10% of the 

population is HBV positive (WHO, 2008).  

 

      
 

Fig. 1.7: Hepatitis B prevalence 2005. Worldwide distribution of chronic HBsAg carriers 

 

 
1.4.5 Morphology and structure of HBV 
 

Electron microscopy (EM) imaging of purified preparations of HBV from serum of 

patients shows that infected hepatocytes secret three different types of particles (Fig. 
7). First, infectious virions with a diameter of 42 - 47 nm, known as Dane particles 

and second two different types of subviral particles, which are not infectious (Dane, 

Cameron et al. 1970). Infectious virions contain a single copy of a partially double-

stranded DNA genome of ~3.2 kilo base (kb) pairs, which is covalently linked via a 

terminal protein (TP) domain at the 5`-end of the negative strand to the viral 

polymerase (P) (Bartenschlager and Schaller 1992). The viral genome is packaged 

into a icosahedral nucleocapsid of about 27 nm diameter, composed of 180 or 240 

homodimeric subunits of the viral core protein, which is arranged with triangulation 

numbers of T = 3 or T = 4 (Crowther, Kiselev et al. 1994). There are evidences, that 

cellular proteins, including chaperones and protein kinases are also packaged inside 

of nucleocapsids (Hu, Toft et al. 1997). The capsid itself is surrounded by a host 

derived lipid bilayer. Integrated into the lipid membrane are three different viral 
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surface proteins, expressed by the viral genome, the large (L-), the middle (M-) and 

the small (S-) protein (Neurath, Kent et al. 1985). All three surface proteins are 

anchored in the lipid membrane by a hydrophobic C-terminus with four 

transmembrane α-helices (Berting, Hahnen et al. 1995). The L-protein is expressed 

at levels of about 5 – 15 % compared to S-protein on the surface of Dane particles, 

the M-protein at levels of about 1 – 2 % compared to S-protein (Robinson, 1995). 

The secreted non-infectious subviral particles (SVP) are divided into spherical SVP 

(or spheres) and filamentous SVP (or filaments) with a diameter between 15 and 22 

nm and consist exclusively of surface proteins (Ganem and Prince 2004). Spheres 

represent, for a protein complexed particle uncommon, octahedral symmetry with a 

diameter of approximately 20 nm and comprise basically of S-protein and marginal 

M-protein. The enclosed lipids of spherical SVPs appear not to be located in a typical 

semifluid lipid bilayer, but rather in an immobilized form on the surface (Satoh, Imai et 

al. 2000; Gilbert, Beales et al. 2005). Filaments consist of all three surface proteins, 

L-, M- and S-protein, and are variable in size (Fig. 7). The SVPs contain neither viral 

capsids nor viral DNA and are therefore not infectious. Nevertheless they are highly 

immunogenic. The pathological role of SVPs is still unclear. Titers of Dane particles 

in the blood of patients can range from less than 104 / ml to more than 109 / ml. In 

contrast, filamentous SVP can be present in 100 fold excess, spherical SVPs even in 

10 000 fold excess (Ganem and Schneider 2001). For this reason, SVPs might be 

responsible for capturing anti-HBV antibodies, produced naturally in the body, which 

are preferentially directed against the S-protein. Through the neutralization of the 

antibodies the virions might be protected against an immune response of the host 

(Rehermann and Nascimbeni 2005). The HBV surface antigen HBsAg, predominantly 

exposed on SVPs and used as a serological marker, reaches concentrations of 500 

mg / ml in the blood of HBV patients (Hoofnagle 1981). 

All three surface proteins of HBV are translated from one open reading frame. They 

differ by distinct in-frame starting codons of initiation; the carboxyterminal ends are 

identical 
  



Introduction 

	
   26	
  

 

 
Fig. 1.8: Structures of hepatitis B virus particles. a) Electron microscopy (EM) from HBV carrier 

plasma and b) schematic presentation of human HBV particles structures. The infectious Dane 

particles (1.) with a diameter of ~42 nm are composed of a host derived lipid bilayer with integrated 

HBV surface proteins (L-, M- and S-protein). This envelope covers the nucleocapsid, composed of 

viral core proteins. The nucleocapsid harbors the 3.2kb HBV DNA genome, covalently linked via the 

terminal protein (TP) to the viral polymerase (Dandri, Burda et al.). The non-infectious subviral 

particles (SVP), filaments (2.) and spheres (3.), differ in structure, size and HBV surface-protein 

composition. SVPs contain neither viral capsids nor viral DNA. Images modified after a) (Gerlich and 

Kann) and 2005 b) (Glebe and Urban 2007)  

 

 

1.4.6 Genomic organization and protein function of HBV  
 

The HBV genome present in virions is a 3.2 kb partially double-stranded relaxed, 

circular DNA (rcDNA) molecule and the smallest known full replicative mammalian 

viral genome (Fig. 8). Therefore, the genome has a very complex organization with 

multiple overlapping open reading frames (ORFs). Every nucleotide in the HBV-

genome encodes for one of the HBV-proteins.  

The viral polymerase is covalently attached via the terminal protein (TP) to the 5`-end 

of the full-length antisense minus-strand, which is complementary to the viral mRNA. 

The 3`-end of the sense plus-strand is of variable length, hence a part of the viral 

genome is single stranded (ss). After infection of the cell the viral DNA translocates 

into the nucleus, where plus-strand of the rcDNA molecule is repaired, resulting in 

circularized cccDNA. The cccDNA serves as a template for the viral pre- (pg-) and 
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subgenomic (sg) messenger RNAs (mRNAs). The small and compactly organized 

HBV genome consists of four overlapping ORF on the (-)-antisense DNA-strand 

(Schlicht and Schaller 1989). The ORF preC/Core encodes for the precore protein 

(HBeAg) and the core protein (C), ORF preS1/preS2/S encodes for the surface 

proteins (L, M and S), ORF polymerase encodes for the viral polymerase (Pol) and 

the ORF X encodes for the viral X protein (X). The transcription of viral mRNAs is 

regulated by four promotors, the preC/C-, preS1 (L)-, preS2 (S)- and the X-promotor. 

Starting at these different promotor sites, transcription in all cases ends at one 

common polyadenylation (polyA) signal, resulting in one pregenomic and three 

subgenomic viral mRNAs (Cattaneo, Will et al. 1984). Two internal enhancer 

elements (Enh1/Enh2) differently influence the promotors. Enh1 increases 

transcription of all four promotors, whereas the liver-specific Enh2 (Hu and Siddiqui 

1991) only upregulates the transcription-rate of preS2/S (Ganem and Schneider 

2001).  

Once formed, the cccDNA in the nucleus serves as a template for the transcription of 

four groups of viral RNA. First these are the 3.5 kb pre-core mRNA (pre-C) and 

pregenomic (pg) RNAs. PreC mRNA (also named e mRNA in Fig. 8) is translated to 

produce a precore protein that is further proteolytically cleaved into e antigen 

(HBeAg). HBeAg is not a component of viral and subviral particles, but is secreted 

from infected liver cells. The function of HBeAg is widely undefined, but it has been 

implicated as an immune tolerogen, whose function is to promote a persistent 

infection (Milich and Liang 2003). Viral replication levels correlate with HBeAg levels 

in the serum of patients and HBeAg level is therefore used as serological marker. 

The 3.5 kb pgRNA transcript is bi-functional. On the one hand it serves as mRNA for 

the translation of viral capsid protein and the DNA polymerase, initiated at different 

startcodons. On the other hand pgRNA serves as a template for reverse 

transcriptional synthesis of the viral genome and is afterwards packaged together 

with the complex of viral polymerase and terminal protein into the nucleocapsid. The 

core protein has the intrinsic property to self-assemble into capsid structure (Zhou 

and Standring 1992) and contains a cluster of aminoacids at the C-terminus with 

RNA-binding activity to get in contact with the pgRNA (Hatton, Zhou et al. 1992).  
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Fig. 1.9: The HBV genome. a) Schematic organization of the HBV genome: The inner red and blue 

circles represent the partially double-stranded HBV genome, which displays the viral relaxed circular 

(rc) HBV DNA form, with polymerase (pol) and terminal protein (TP) as green circles, enhancer 

(Enh1/Enh2) and direct repeat (DR1/DR2) elements as boxes. PreC- (e-), Pre- and subgenomic 

mRNA transcripts are illustrated in black outer circles. PreC mRNA encodes for the precore protein 

(HBeAg), the pregenomic mRNA encodes for core protein and polymerase, subgenomic L-, M- and 

SHBs (large, medium and small hepatitis B surface) mRNAs for the envelope proteins. Triangles 

indicate transcription starts, the yellow square symbol the encapsidation signal (ε) and blue lined 

areas the post-translational regulatory element (PRE). The colored arrows inside the scheme depict 

the four open reading frames (ORFs) and the translated viral products: prec/core (HbeAg), core 

(capsid-protein), polymerase, preS2, preS1 and S (surface proteins L, M and S), and X (X-protein). 

Modified after (Gerlich and Kann 2005). 

 

 

The viral polymerase is functional divided into three domains. The terminal protein 

domain, which is involved in encapsidation and initiation of minus-strand synthesis; 

the reverse transcriptase (RT) domain, which catalyzes viral genome synthesis; and 
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the ribonuclease H (RNAseH) domain, which degrades pgRNA and facilitates 

replication. The three subgenomic RNAs include exclusively mRNA functions. The 

sgRNAs of 2.4 kb and 2.1 kb are the transcsripts for translation of all three viral 

surface envelope proteins L, M and S, and HBsAg, respectively. The mRNA of all 

surface proteins is transcribed from one ORF with different internal start-codons and 

all proteins share the S- protein sequence leading to identical C-termini. The M-

protein is extended by the preS2 domain at the N-terminus, the L-protein is extended 

by the preS2- plus the pres1 domain (Fig. 8). The surface proteins are synthesized at 

the endoplasmatic reticulum (ER), where they get integrated into the ER-membrane 

and thus build up the viral envelope. The sgRNA of 0.7 kb encodes for the X protein 

(HBx). HBx is indispensable for viral infection in vivo and influences multiple cellular 

gene functions necessary for virus survival, including signal transduction, 

transcriptional activation and inhibition of protein degradation (Bouchard and 

Schneider 2004). Moreover, HBx is controversially discussed to be involved in the 

mediation of HBV associated cancer. On the level of transcribed mRNA additional 

regulatory elements are found. Present on all mRNA is the post-transcriptional 

regulatory element (PRE), which suppresses splicing of the transcribed RNAs 

(Huang and Liang 1993). Additional posttranscriptional regulation elements within the 

HBV genome are the two direct repeats (DR1 and DR2) at the 5`-end of the plus-

strand, which are required for plus-strand specific DNA synthesis during replication 

(Seeger, Ganem et al. 1986). 

 

 

1.4.7 Replication of HBV 

 
The replication of hepadnaviridae occurs similar to retroviruses via a RNA-

intermediate that is packaged into the viral capsid in the cytoplasm of the host cell 

and afterwards reversely transcribed into viral DNA (Fig. 9). Therefore, HBV is also 

known as a pararetrovirus (Ganem and Schneider 2001). The replication of HBV is 

strongly restricted to hepatocytes of the host organism due to the liver tropism. Early 

steps of HBV infection, such as the attachment of the viral particle on the cell surface, 

the entry and release of the capsid into the cytoplasm and the transport of the viral 

genome into the nucleus of the host cell are not completely clarified. Nevertheless, 

actual data suggest that the N-terminal region of the L-protein is responsible for 
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attachment to the cell surface, followed by receptor-mediated endocytosis via still 

unknown receptor(s) (Tai, Suk et al. 2002). The binding of HBV to specific cellular 

receptor(s) is thought to trigger	
   the actin-independent and microtubule-dependent 

entry of the virion into hepatocytes by endocytosis (Schmitt, Glebe et al. 1999; Funk, 

Mhamdi et al. 2004). These findings support the idea of endocytosis since 

endosomes are transported via microtubules towards the perinuclear region.	
  

Presumably, the viral capsid is released into the cytoplasm from endosome upon 

fusion of the viral envelope and endosomal membranes, a process that might be 

induced by low pH and proteolytic cleavage of envelope proteins (Lu, Block et al. 

1996). After this uncoating event near the cell surface the intra-cytosolic translocation 

of the nucleocapsid to the nucleus is facilitated by the interaction with microtubules. 

Delivery of the rcDNA into nucleus is mediated by close contact of the viral capsid 

and the nuclear-pore complex (NPC) via interaction of a nuclear localization signal 

(NLS) at the C-terminus of the core protein and nuclear import receptors importin α 

and β. (Kann, Sodeik et al. 1999). Exposure of the NLS is regulated and depends on 

phosphorylation of the capsid protein (Kann, Schmitz et al. 2007). Size restrictions 

indicate that the complete disassembly of the capsid and the release of the viral 

genome into the nucleus occur in the nuclear basket of NPC (Andreyev, Norman et 

al. 2001). After entry of the viral genome into the nucleus the gap in the plus-strand 

of the partially double-stranded rcDNA molecule is repaired and completed by cellular 

enzymes, resulting in a supercoiled HBV genome with cccDNA form. Mechanisms 

and enzymes involved in this process are intensively investigated. The cellular RNA-

polymerase II promotes transcription from the cccDNA template to synthesize pre- 

and subgenomic RNAs. Afterwards, the RNA transcripts are transported into the 

cytoplasm without any splicing events (Kock and Schlicht 1993), where translation 

into viral surface proteins L, M and S as well as the X-protein based on subgenomic 

RNAs takes place. The translation of the surface proteins is mediated by ribosomes 

of the ER. The surface proteins get integrated into the ER membrane and obtain 

modifications like glycosylation and myristoylation, indispensable for proper protein 

folding (Helenius 1994) and infectivity of the virion (Glebe and Urban 2007). Free 

ribosomes promote the translation from preC-RNA to “pre-C protein” that is further 

proteolytically processed into HBeAg (Ganem and Schneider 2001). They also 

mediate the translation from the pgRNA to obtain viral polymerase and the capsid-

protein core. 
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Fig. 1.10: The replication cycle of HBV. HBV virions attach to the cell surface of the hepatocyte via 

an unknown receptor. During the entry step the nucleocapsid gets uncoated and is released into 

cytoplasm of the cell. The partially double-stranded DNA genome is imported into the nucleus, where 

cellular enzymes repair the plus-strand gap, leading to the formation of cccDNA. The episomal viral 

cccDNA genome is transcribed into viral pre- and subgenomic RNAs. After the export of the RNAs into 

the cytoplasm, translation into viral proteins takes place. The pregenomic RNA gets encapsidated and 

reverse transcribed into the HBV DNA genome. The viral genome of mature nucleocapsids is either 

re-imported into the nucleus or the capsid buds into the ER, where it receives its envelope containing 

the HBV surface proteins. Virions and subviral particles are transported through the ER/Golgi network 

to the cell surface and get secreted. 
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Additionally, the pgRNA represent the viral genome and is packaged in the viral 

capsid in the cytoplasm of the HBV-infected cell (Beck and Nassal 2007). Therefore, 

the complex of viral polymerase and terminal protein initially interacts with a stem-

loop structure (encapsidation-signal ε) at the 5`-end of the pgRNA and gets 

covalently linked to the pgRNA (Bartenschlager and Schaller 1992). The 

encapsidation of the pgRNA-protein-complex is initiated by the attachment of core-

protein-dimers to ε (Pollack and Ganem 1994), followed by self-assembling of the 

capsid. After completion of the newly synthesized capsid, the viral polymerase 

promototes reverse transcription of the pgRNA (Fig. 10). Binding of the DNA 

polymerase protein complex to ε at the 5`-end of pgRNA additionally initiate reverse 

transcription. A tyrosin residue of the terminal protein primes viral DNA minus-strand 

synthesis for extension of three nucleotides (Wang and Seeger 1992). Subsequently, 

polymerase and covalently attached nascent DNA is translocated to the 3`-end copy 

of DR1 and minus strand DNA synthesis continues by copying pgRNA. 

Simultaneously, the positive orientated RNA of the RNA/DNA-hybrid is eliminated by 

the RNAseH activity of the reverse transcriptase, (Fig. 10 a) (Walton, Wu et al. 

2001). When the polymerase reaches the 5`-end of pgRNA, an RNA oligomer that 

contains DR1 sequence is left uncleaved and subsequently translocated and 

annealed to DR2 (Fig. 10 b, left). This short RNA-oligonucleotide at the 5`-end 

serves as a primer (Lien, Aldrich et al. 1986) for plus-strand synthesis, initiated at 

DR2 (Beck and Nassal 2007). Several cis-elements appear to promote close 

proximity of the DR regions (Fig. 10 b, right). After the copy of the 5`-end of DNA 

minus-strand during synthesis the growing 3´-end of the DNA plus-strand switches to 

the 3`-end on the DNA minus-strand, which lead to circularization of the HBV 

genome and enables further elongation (Fig. 10 c) (Lien, Petcu et al. 1987). 

Extension of the DNA plus-strand on the DNA minus strand template creates the 

partially double-stranded relaxed, circular DNA (rcDNA) genome (Fig. 10 d).  

development of hepatocellular carcinoma. 
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Fig. 1.11: Schematic illustration of rc-DNA synthesis by reverse transcription. a) During (-)-DNA 

synthesis and completion, the DNA primer, still linked to TP, is extended from DR1* to the 5´-end of 

pgRNA. The pgRNA is simultaneously degraded by the RH domain, except for its capped 5´ terminal 

region including 5´ DR1 b) The RNA primer translocates to DR2, and is extended to the 5´-end of (-)-

DNA. c) The growing 3´-end of the (+)-DNA switches to 3´ -end (-)-DNA, enabling further elongation 

and circularization. d) Elongation on the (-)-DNA template creates rcDNA genome e) Double-stranded 

linear (dsL) DNA synthesis due to failed primer translocation to DR2, called "in situ priming". Modified 

after (Block, Guo et al. 2007). 
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A minor DNA form of double-stranded linear (dsl) DNA originates when the RNA 

primer failed to translocate from DR1 to DR2 (Fig. 10 e). This process is called “in 

situ” priming and occurs in around 1 - 5% of naive human HBV replication (Nassal 

1992). Dsl-DNA arises by in situ primimg or by non-homologous recombination (Yang 

and Summers 1995) can be integrated directly into the host DNA. It is assumed, that 

presence of foreign viral DNA in the host genome, together with expression of viral 

proteins such as X protein may trigger the subsequent 

When rcDNA is formed, the mature viral capsids can follow to different pathways. 

Some of them translocate through the cytoplasm back to the nucleus. The rcDNA is 

re-imported into the nucleus (Tuttleman, Pourcel et al. 1986) and converted into more 

cccDNA molecules (Wu, Coates et al. 1990), a way to increase cccDNA levels in the 

absence of re-infection of cell. This viral strategy operates very efficiently in the early 

stages of infection to build up and amplify the cccDNA pool, which is essential for 

HBV-transcription and replication (Werle-Lapostolle, Bowden et al. 2004). In stably 

infected hepatocytes of chronic HBV carriers, the nucleus may contain between 30 

and 50 copies of cccdDNA. The number of cccDNA molecules in vitro varies 

drastically. Stably HBV expressing HepG2 H1.3 cells contain approximately between 

4 - 10 copies of cccDNA per cell. (Illing, IMMIH, Cologne, Diploma thesis). Other 

mature viral capsids bud to the ER-lumen, by which they get enveloped with a lipid 

bilayer that contains the modified viral surface proteins integrated into the ER 

membrane (Huovila, Eder et al. 1992). Afterwards virions and SVPS pass the Golgi 

and the trans-golgi-network (TGN) and are then further transported to the plasma 

membrane in microtubule independent endosomal vesicles, distinct from the 

transcytotic pathway, to bud out of the cell by exocytosis and efficiently infect 

neighboring cells and new hosts. It is likely that sphingolipids (lipid rafts) are utilized 

for this transport, similar to other enveloped viruses like influenza (Scheiffele, 

Rietveld et al. 1999).  
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1.4.8 HBV specific immune response 
 
Analysis and determination of early events in human HBV specific immune responses 

are difficult, because HBV infected patients are screened for the first time after the onset 

of clinical symptoms, which means four to six weeks after primary infection. However, 

the following clinical courses and serologic profiles of acute and chronic hepatitis B differ 

in several aspects (Fig. 11). The typical course of acute and self-limiting hepatitis B (Fig. 

11a) is initiated with detectable HBV-DNA in the serum four weeks after primary 

infection, with low concentrations about 102 to 104 genome equivalents per ml blood 

(Rehermann and Nascimbeni 2005). HBsAg arises four weeks after primary exposure to 

the virus, followed by HBeAg and antibody responses against the viral core protein (anti 

HBc) two weeks later, which primarily disclose an IgM-isotype during early progress 

(Hoofnagle 1981). Viremia is established with high viral titers of about 109 to 1010 viral 

particles per ml (Ribeiro, Lo et al. 2002) and studies with chimpanzees revealed that 75 

– 100% of hepatocytes are infected at this time point (Kajino, Jilbert et al. 1994). 

Additionally, after 5 to 15 weeks after primary infection, alanine aminotransferase (ALT) 

levels in the serum rise during the acute phase and jaundice may appear, indicating a 

cytotoxic liver-inflammation and the begin of an adaptive immune response. ALT is 

secreted by apoptotic hepatocytes and is used as a clinical marker for the degree of liver 

damage. HBeAg is usually cleared early at the peak of clinical illness, whereas HBV 

DNA and HBsAg persists in the serum for the duration of symptoms and are cleared with 

recovery. In 95% of infected adults the virus is cleared after an acute infection, 

accompanied by the formation of HBc-, HBs- and HBeAg specific IgG antibodies, 

providing protective immunity (Rehermann and Nascimbeni 2005).  

Patients who develop chronic hepatitis B show similar initial patterns of serological 

markers with appearance of HBV DNA, HBs- and HBeAg, as well as anti HBc (Fig. 11b). 

The subsequent course and severity of chronic hepatitis B is quite variable (Ganem and 

Prince 2004). In contrast to acute infection, the chronic progression is characterized by 

lack of anti HBsAg specific IgG antibodies and a late and weak HBeAg specific antibody 

response. Also typical for chronic hepatitis B are variably high but persistent HBV DNA 

and ALT levels and a persisting production of HBsAg, which remains detectable for 

years, if not for life after primary exposure to HBV (Ganem and Schneider 2001).  
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Fig. 1.12: Clinical courses and serologic profiles of a) acute resolving and b) chronic hepatitis B. 
Relative amounts and appearance of viral replication (HBV DNA), HBV proteins (HBs- and HBeAg), HBV 

specific antibodies (anti-HBc, - Hbs, -HBe), liver injury (alanine aminotransferase, ALT) and symptoms 

during time-courses of a) acute, self-limiting and b) chronic hepatitis B infection. Modified after (Liang 

2009). 

 

 

The course of HBV infection strongly depends on the adaptive T-cell immune response 

of the host (Wieland, Thimme et al. 2004). Cytotoxic T-cells are responsible on the one 

hand for elimination of the virus during acute and self-limiting hepatitis B and on the 

other hand for liver injury during chronic HBV-infection (Thimme, Wieland et al. 2003). 

Patients with acute but resolving hepatitis B develop a strong, polyclonal and virus 

specific T-cell response (Bertoletti, Ferrari et al. 1991). The T-cell response in patients 

with a chronic course in contrary is weak, monoclonal and virus non-specific (Penna, 

Chisari et al. 1991; Webster, Reignat et al. 2004). Cell lysis and turnover repopulate the 
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liver with new and uninfected cells. However, a chronic liver inflammation and following 

massive regenerative processes may also lead to mutagenesis that could promote 

development of DNA damage and consequently HCC formation (Chisari and Ferrari 

1995). Additionally, it has been shown that an HBV-specific T-helper cells response is 

absent during chronic HBV infection (Ferrari, Penna et al. 1990), but regulatory T-cells 

(Tregs) have a suppressive impact on T-cell response, supporting persistence of HBV 

(Stoop, van der Molen et al. 2005).  Other in vivo studies suggested that HBV core-

antigen specific B-cells respond in a T-cell independent fashion along with production of 

neutralizing antibodies to prevent infection of new hepatocytes (Cao, Lazdina et al. 

2001).  

To prevent elimination HBV was thought to widely circumvent innate immune response 

and is therefore considered as a “stealth” virus. For instance, a study of experimental 

HBV infection of chimpanzees suggested that infection, per se, might induce no or little 

innate response in hepatocytes (Wieland, Thimme et al. 2004). However, several studies 

over three decades of research indicate that HBV is able to counteract the innate 

immune response by inhibition of several actors of the IFN-signaling pathway or down-

regulation of functional TLR expression (Twu, Lee et al. 1988; Foster, Goldin et al. 1993; 

Visvanathan, Skinner et al. 2007; Wu, Xu et al. 2007; Xie, Shen et al. 2009). In contrast, 

recent analysis of patients revealed early development of NK and CD56+ natural T (NT) 

cell response during early stages of HBV infection (Fisicaro, Valdatta et al. 2009). 

Furthermore, it has been shown that HBV induces IL-6 production in primary human liver 

cells and that IL-6 inhibits transcription of HBV (Hösel et al., 2009, in press). These 

controversial results indicate that HBV is not a stealth virus at all and that the innate 

immune system is able to sense HBV and allow timely induction of adaptive immune 

response. 

Nevertheless, HBV developed like other viruses different escape mechanisms to evade 

elimination by the immune system of the host. An important role in chronic course is 

proposed for the high quantity of produced SVPs. They contain high amounts of strongly 

immunogenic HBsAg-monomers and are produced in 104 - 106 fold excess over virions. 

Therefore they might be responsible for capture of HBsAg specific antibodies, thus mask 

infectious particles and prevent them from neutralization (Mangold and Streeck 1993; 

Rehermann and Nascimbeni 2005). Moreover high amounts of secreted HBeAg seem to 

participate to tolerating effects of HBV-specific T-cell (Milich and Liang 2003). HBV also 

seems to attenuate the expression of MHC I on hepatocytes, required for effective 



Introduction 

	
   38	
  

presentation of HBV specific antigens on the cell surface to stimulate cytotoxic T-cell 

response (Chen, Tabaczewski et al. 2005). Another escape mechanism of HBV to evade 

an immune response is the outgrowth of mutated viruses. But this phenomenon occurs 

very rarely during acute and chronic HBV infection (Rehermann, Pasquinelli et al. 1995; 

Whalley, Brown et al. 2004). “Escape” variants of HBV, such as the G145R mutant with 

alterations in the S-protein, are frequently found in vaccinated individuals with 

breakthrough infections (Kalinina, Iwanski et al. 2003) or in graft infected liver transplant 

recipients under passive immunoprophylaxis with polyclonal hepatitis B hyperimmune 

globulin (HBIG) (Protzer-Knolle, Naumann et al. 1998). 

 

 

1.5 Therapeutic approaches 
 
1.5.1 Approved and novel inhibitors for antiviral therapy against HBV 

 
Prophylactic vaccination against hepatitis B, available since 1981, provides efficient 

protection from HBV infection and its consequences. Acute hepatitis B infection does 

not usually require treatment, because 95% of adults clear the infection 

spontaneously. Early antiviral treatment is required in less than 1% of patients, 

whose infection develop into a fulminant hepatitis or who are immuno-compromised. 

Therapy of patients chronically infected with HBV mirrors the main effort for 

development of antivirals, which made significant improvements during the last 

decade. Approved and novel inhibitors potentially target all steps of viral replication 

(Fig. 12). Chronic hepatitis B hallmarks of candidates for therapy are active viral 

replication in the hepatocytes, positive HBV surface antigen levels for more than six 

months (Ganem and Prince 2004) and variable, but persistent HBV titers in the blood 

for more than twenty weeks (Robinson, 1996).  

Approved treatments (Fig. 12, in red) include orally administered nucleos(t)ide 

reverse transcriptase inhibitors (NRTIs), also called nucleos(t)ide analogues. Their 

application inhibits viral replication and improves clinical outcome, including reduction 

of hepatocellular carcinoma (Liaw, Sung et al. 2004). There are currently licensed 

four NRTIs; Lamivudine (or Epivir), Telbivudine (Tyzeka), Entecavir (Baraclude) and 

Adefovir (Hepsera). Additionally, Emtricitabine and Tenofovir are approved in patients 
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co-infected with the human immunodeficiency virus	
   (HIV) and HBV. Treatment of 

chronic HBV patients with NRTIs is well tolerated and strongly suppresses HBV 

replication, but require long-term application, which is limited by the increasing risk 

for the development of drug-resistant mutants. Due to spontaneous viral genome 

variability, pharmacological pressure may select for the viral species that exhibit the 

best replication capacity in this new treatment environment. Mutations that might lead 

to NRTI resistance are located in the viral polymerase gene. 

Alternative to a monotherapy with one of the RT-inhibitors, IFN-α is used for antiviral 

therapy alone or in combination with lamivudine and enables in 10 - 15% an 

elimination of HBV (Marcellin, Lau et al. 2004). IFN-α treatment relies on distinct 

antiviral effects with anti-proliferative and immunoregulatory properties, including the 

stimulation of the immune system by T-cell response activation (Guan 2000). 

Previously, treatment of chronic HBV patients with standard IFN-α required an 

injection every second day. To date, stabilized pegylated (PEG) IFN-α (Pegasys) is 

approved and has to be injected only once weekly (Barnard 2001). The treatment 

efficacy is limited, also dependent on the individual and on the genotype of the virus 

(Kao, Wu et al. 2000). Only in 30% of chronically infected patients, treated for one 

year with PEG IFN-α, the therapy is associated with a sustained antiviral effect 

(Marcellin, Lau et al. 2004; Lau, Piratvisuth et al. 2005). Moreover, treatment with 

IFN-α is attended by occurrence of severe side effects, such as anemia, 

thrombocytopenia, neuropenia and depression. In addition, the available drugs rarely 

clear the infection, but they potentially stop viral replication and minimize liver 

damage.  

Nevertheless, the single HBV replication cycle steps (Fig. 12, in blue) implicate and 

encourage the development of novel inhibitors (Fig. 12, in orange). First, viral entry 

represents a target for antiviral compounds. It was shown that myristoylated peptides, 

identical to the pre-S1 domain of the large viral envelope protein, which interacts with 

the cellular receptor, are able to inhibit viral entry in vitro (Glebe, Urban et al. 2005). 

The next possible target step in viral replication, the cccDNA formation, is the most 

ambitious aspect in the development of new antivirals. The major reason for needful 

life-long treatment of chronic patients with approved drugs is that these not 

necessarily eliminate cccDNA. The cccDNA may persist over decades, even after 

serological clearance of viral infection. The discovery of compounds specifically 

inhibiting cccDNA formation remains a major goal of HBV research.  
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There were several approaches to target HBV genome transcription or the viral 

transcripts themselves, using small interfering RNAs (siRNAs), antisense 

oligonucleotides or ribozymes, often limited by the delivery of such nucleic acids to 

hepatocytes in vivo (von Weizsacker, Wieland et al. 1997; Klein, Bock et al. 2003; 

Shlomai and Shaul 2003). Phenylpropenamide derivates were shown to inhibit 

nucleocapsid formation by inhibition of pgRNA packaging in vitro, also in lamivudine 

resistant HBV strains (Delaney, Edwards et al. 2002). Heteroaryldihydropyrimidines 

are able to inhibit viral capsid formation and increase degradation of the core protein 

(Deres, Schroder et al. 2003). Furthermore, IFN-α also affects stability of the viral 

nucleocapsid (Schultz, Summers et al. 1999; Wieland, Guidotti et al. 2000). The next 

step, viral reverse transcription can be efficiently inhibited, as already mentioned, by 

nucleos(t)ide analogues (Zoulim 2004) or antisense oligonucleotides (Robaczewska, 

Narayan et al. 2005). Moreover, several studies showed that iminosugars interfere in 

the correct folding of viral envelope proteins and therefore disturb proper virion 

packaging morphogenesis (Block and Jordan 2001). Strategies to support defective 

immune responses against HBV include treatment with IFN-α or PEG-IFN-α to 

stimulate and activate an HBV specific T-cell response, as mentioned above, as well 

as the development of DNA or recombinant protein vaccines (Zhang, Jiang et al. 

2008; Rapicetta, D'Ugo et al. 2009). Furthermore, it was shown that modified primary 

human T-cells, which express chimeric TCRs directed against HBV surface proteins, 

efficiently lyse HBV replicating and cccDNA-positive cells (Bohne, Chmielewski et al. 

2008). Additionally, several studies revealed that modulations of TLR-signaling and 

response efficiently inhibit HBV replication in vitro and in vivo (Isogawa, Robek et al. 

2005; Wu, Lu et al. 2007). 

Finally, as ultimate salvation for patients, who already developed liver failure by HBV-

related cirrhosis, HCC or both, often only orthotropic liver transplantation remains 

(Todo, Demetris et al. 1991), accompanied with high risk for graft re-infection or graft 

rejection. 
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Fig. 1.13: New targets of antiviral therapy. Approved inhibitors (red) and novel inhibitors in 

development (orange) of hepatitis B life cycle (blue). All steps of HBV replication are potential targets 

of antiviral therapy, except the inhibition of cccDNA formation. Modified after (Zoulim and Lucifora, 

2006). 
 

 

1.5.2 Combinatorial treatment of HBV 

 

Nevertheless, the variety and efficacy of already approved monotherapies, such as 

nucleos(t)ide analogues and IFN-α are strongly limited. Their application along with 

severe side effects and treatment of patients is time-consuming and associated with 

high costs. For that reasons, the development and improvement of novel antiviral 

therapies are indispensible. More efficient therapies with combined antiviral activity 
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acting simultaneously on several steps of the HBV life cycle are preferentially 

required. Immunotherapeutic strategies that combine HBV-specific and HBV-

nonspecific treatments are a promising approach, which additively and 

advantageously act along with avoidance of HBV resistance during treatment. It has 

been demonstrated that induction of antiviral cytokines by stimulation of TLR-9 with 

CpG-oligonucleotides (HBV-nonspecific) paired with the application of polymerase 

inhibitor lamivudine (HBV-specific) represents a promising combination to suppress 

HBV replication in vitro (Vincent, Lucifora et al. 2009).  

The immunotherapeutic and combinatorial antiviral approach aspired in this study is 

to affiliate induction of antiviral innate immunity by stimulation of RIG-I (HBV-

nonspecific) with siRNA mediated gene silencing, targeting free cytosolic HBV 

pgRNA (HBV-specific). Lately, it has been shown, even though in another context, 

that 5`-triphosphorylated siRNA (3p-siRNA) efficiently turns gene silencing and RIG-I 

activation against melanoma (Poeck, Besch et al. 2008). Potential induction of 

antiviral IFN-I via RIG-I stimulation in combination with HBV-sequence specific siRNA 

silencing by 3p-siRNA appears to be a powerful tool for combinatorial treatment of 

chronic hepatitis B. 

 

 

1.5.3 Antiviral activity of IFN-I against HBV  
 
IFNs and interferon-stimulated genes (ISGs) are key components of the innate 

immune response, and therefore are the first line of defense against virus infection, 

as well as potent inhibitors of viral replication (Fig. 13). We hypothesized that IFN-I 

induction by 3p-(si)RNA stimulation of RIG-I exhibits antiviral activities against HBV 

replication. First, IFN-α/β (and IFN-γ) inhibit HBV-replication in a proteasom 

dependent way by an unknown mechanism (Robek, Wieland et al. 2002; Zhang, 

Protzer et al. 2004). An IFN-induced increase in ubiquitination of proteins required for 

viral particle assembly or maturation could lead to their degradation by the 

proteasome, thus limiting viral replication. Second it was shown, that IFN-I inhibits the 

formation and/or promotes the destabilization of immature HBV RNA-containing 

capsids in HBV transgenic (tg) mice (Wieland, Guidotti et al. 2000). 
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Fig. 1.14: Principles and antiviral activity of IFN-I system. a) Schematic summary of the antiviral 

IFN-I system and b) fluorescence microscopy of IFN-I activity. The image show cells infected with 

parainfluenza virus (PIV5) and 24h later stained with antibodies to the viral nucleocapsid protein (virus 

antigen, yellow) and to the cell nuclei, (DAPI, blue). Virus infection (and also 3p-RNA stimulation) 

induces a cell (a+b, left) to synthesize IFN-I, which acts autocrine or paracrine via the Jak-STAT 

pathway on the induction of interferon stimulated genes (ISGs). These ISGs code for antiviral acting 

proteins responsible for the inhibition of virus multiplication in neighboring cells (a+b, right). IFN may 

also act in an autocrine manner on the IFN producer cell.	
  Modified after a) (Samuel 2001) and b) 

(Randall and Goodbourn 2008) 

 

 

Furthermore, IFN-I stimulates the expression of distinct ISGs, which efficiently 

suppress HBV replication. For example, induced IFN-I directly enhances the 

expression of PRRs, such as RIG-I, in turn resulting in increased pattern (3p-

(si)RNA) recognition. But ISGs also code for other antiviral effector proteins believed 

to affect virus multiplication within single cells (Fig. 14). 2`-5` oligoadenylate 

synthetase (2`-5` OAS) activates the endoribonuclease RNAse L leading to RNA 

degradation. IFN-I, induced via activation of RIG-I or TLR3, activates the latent form 

of 2`-5` OAS that synthesizes 2`-5`-linked phosphodiester bonds to polymerize ATP 

into oligomers of adenosine (Rebouillat and Hovanessian 1999). These unique 2`-5` 

oligomers again specifically activate the latent form RNAse L. The enzyme RNAse L 

is constitutively expressed as an inactive monomer. Upon binding of 2`-5`- oligomers, 

generated by OAS proteins, homodimerization take place. The active dimeric enzyme 

then degrades viral RNA and cellular RNAs, including cellular rRNA, by cleaving on 

the 3`-end of UpXp-sequences (Silverman 2007). Viral RNA degraded by RNAse L is 
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able to activate the cytoplasmic PRRs like RIG-I itself or MDA-5, resulting in 

enhanced ISG induction again (Floyd-Smith, Slattery et al. 1981).  

IFN-I also induces the expression of guanosine-hydrolysing GTPases, probably the 

best characterized and most efficient antiviral effector protein. But only the human 

GTPase MxA (myxovirus resistance protein A) demonstrates antiviral activity, also 

potentially inhibiting HBV replication at a posttranscriptional level (Gordien, 

Rosmorduc et al. 2001). MxA has a large N-terminal GTPase domain, a central 

interacting domain (CID) and a C-terminal leucine zipper (LZ). The CID and the LZ 

domain are required to recognize the main viral target, which are nucleocapsid-like 

structures. Following stimulation with IFN-I, MxA accumulates in the cytoplasm on 

intracellular membranes, such as the ER, as oligomers via association between CID 

and LZ domains. Upon virus infection, the oligomers bind viral nucleocapsids or other 

viral components to degrade them. Interestingly, MxA proteins do not interact with 

HBV nucleocapsids, but inhibit the nucleocytoplasmic export of HBV mRNA via the 

PRE sequence (Gordien, Rosmorduc et al. 2001). 

Another validated IFN-inducible, dsRNA dependent effector is the protein kinase R 

(PKR), which belongs to a small family of kinases that respond to environmental 

stress to regulate protein synthesis. PKR is found predominantly as a monomer in the 

cytoplasm and associated with ribosomes (Thomis, Doohan et al. 1992). IFN-I leads 

to activation of PKR by dimerization through autophosphorylation. Following 

activation, PKR catalyzes the phosphorylation of the α-subunit of translation initiation 

factor eIF-2α. This results in impairment of the limiting guanine nucleotide exchange 

factor eIF-2β that catalyzes the recycling of GDP, required for translation. For this 

reason, the activation of PKR by IFN-I leads to the inhibition of viral and cellular 

mRNA translation (Samuel 2001).  

Accessory IFN-I induced antiviral acting proteins are members of the APOBEC 

family. APOBEC3G (A3G) and APOBEC3C (A3C) are cellular cytidine deaminases 

with a broad spectrum of antiretroviral activity (Mangeat, Turelli et al. 2003; Harris 

and Liddament 2004). Both contain an N-terminal RNA-binding domain and one 

(A3C: C-terminal) or two, respectively (A3G: N- and C-terminal) deaminase domains 

(Harris and Liddament 2004). The larger A3G protein (384aa), by chance entrapped 

into preassembled capsids by HBV-RNA binding, is thought to inhibit subsequent 

steps of capsid formation and HBV DNA synthesis in vitro (Rosler, Kock et al. 2005). 

The smaller A3C protein (190aa), readily packaged into replication-competent 
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capsids, may deaminate newly synthesized HBV-DNA. The C-to-U editing could 

results in enhanced hypermutation of HBV DNA (Baumert, Rosler et al. 2007). 

However, it was recently suggested, that induction of APOBEC proteins is not 

responsible for the control of HBV by IFN-I (Turelli, Liagre-Quazzola et al. 2008). 

 

 

 

 
Fig. 1.15: Anti-HBV functions of IFN-I inducible proteins. Among IFN-I induced proteins thought to 

affect HBV replication within single cells are OAS synthetase and RNAse L nuclease, which mediate 

RNA degradation; MxA protein GTPase, which appear to inhibit nucleocytoplasmic export of HBV 

mRNA; PKR kinase, which inhibits translation initiation through phosphorylation of protein synthesis 

initiation factor eIF-2α; and APOBEC A3C and A3G, which edit newly synthesized HBV-DNA and may 

block capsid formation, respectively. IFN-I induced expression of MHC class I antigens might 

contribute to the antiviral multiple-cell response. Modified after (Samuel 2001). 
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1.5.4 Antiviral activity of HBV-sequence specific siRNA  
 

Application of siRNA potentially mediates HBV-sequence specific gene silencing by 

targeting the pgRNA. Several studies demonstrated that siRNA mediated gene 

silencing show potent antiviral effects against HBV (Shlomai and Shaul 2003; 

Morrissey, Lockridge et al. 2005; Peng, Zhao et al. 2005). The genomic organization 

in overlapping ORFs and multiple RNAs make the virus particularly susceptible to 

RNA interference (Mahato, Cheng et al. 2005).  

RNA interference (RNAi) is a natural process by which canonical siRNA duplex 

directs sequence-specific post-transcriptional gene silencing of homologues genes 

(Almeida and Allshire 2005). The siRNA binds to its complementary mRNA and 

triggers its elimination. This evolutionary highly conserved mechanism controls gene 

activity in most eukaryotic cells and protects the genome against invasion by distinct 

viruses. Potent knockdown of a gene of interest with high sequence-specificity 

provided RNAi as a powerful tool for studying gene function and is already used for 

treatment for various diseases. RNAi takes place post-transcriptionally in the 

cytoplasm (Zeng and Cullen 2002) and is an ATP-dependent and translation 

independent process. siRNAs are 9 - 27 bp dsRNA molecules with a characteristic 

overhang of two nucleotides at the 3´-end on both strands. Each strand has a 5` 

phosphate group and a 3` hydroxyl group. In mammalian cells this structure is the 

result of processing by the RNAse III nuclease named Dicer (Zhang, Kolb et al. 

2004). Dicer converts either virus derived long dsRNA, cellular microRNA (miRNA), 

responsible for gene regulation or short hairpin RNAs (shRNA) used in expression 

vectors, into siRNAs. Therefore, dicer catalyzes the first step in the RNAi pathway 

and then delivers the siRNA to the RNA-induced silencing complex (RISC) (Tang 

2005).  

Exogenous siRNA can be directly introduced into target cells by various transfection 

methods (Fig. 15). The delivered siRNA binds independent of Dicer to RISC, which 

contains the splicing protein Argonaute 2 (Ago2). After the siRNA is loaded onto 

RISC, Ago 2 unwinds the siRNA, cleaves both strands and releases the sense or 

“passenger” RNA strand in an ATP dependent process (Meister, Landthaler et al. 

2004). This leads to activation of RISC, loaded with the single stranded antisense or 

“guide” RNA molecule. Afterwards the siRNA/RISC complex associates with the 
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target mRNA. Target mRNA molecules complementary to the antisense siRNA 

strand are recognized and then cleaved by Ago2 (Tang 2005). 

Chemical modifications and incorporation of siRNA into cationic liposomes are widely 

used to improve siRNA stability, cellular uptake and gene silencing effectivity in 

RNAi-based therapy (Soutschek, Akinc et al. 2004; Wolfrum, Shi et al. 2007). 

 

 

               
 
Fig. 1.16: RISC-model of siRNA mediated gene silencing. Binding of the RNA-induced silencing 

complex RISC follows delivery of siRNA into the cell. RISC component Ago-2 mediates ATP 

hydrolysis dependent siRNA unwinding, cleavage of the siRNA strands and maturation of RISC. 

Mature RISC loaded with the siRNA “guide” strand associates with the complementary target mRNA 

sequence and cleaves it. Modified after RNAi gene silencer, Santa Cruz Biotechnology, Inc.. 
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1.6 Aims of the study: Hypothetical activity of 3p-siRNA against HBV 
 

As said before, chronic HBV infection is the major cause of liver cirrhosis and primary 

liver cell carcinoma. These long-term consequences of persistent HBV infection 

represent a severe health problem leading to high mortality worldwide. Approved 

clinical therapies of chronic hepatitis B include administration of antiviral active IFN-α, 

as well as nucleos(t)ide analogues, which inhibit viral reverse transcription. These 

drugs can control replication effectively, but HBV cccDNA, the episomal replication 

template, persists in most cases, generating a relapse of infection after the therapy 

has been ceased. Hence, lifelong therapy is required, often accompanied by severe 

side effects and development of drug resistant mutants (Dienstag 2009). Therefore, 

new combinatorial treatment concepts targeting multiple steps in HBV replication 

cycle are urgently required for antiviral HBV therapy.  

It is known that induction of IFN-I by stimulation of TLRs results in strong suppressive 

antiviral effects on HBV replication (Isogawa, Robek et al. 2005). Moreover, distinct 

hepatoma cell lines are susceptible to IFN-I induction by stimulation of the cytosolic 

helicase RIG-I (Preiss, Thompson et al. 2008) and thus, HBV replication can be 

controlled in vitro (Guo, Jiang et al. 2009). In addition, it was shown that RIG-I is 

stimulated by in vitro transcribed 5`-triphosphated RNA (3p-RNA), leading to a potent 

IFN-I expression (Hornung, Ellegast et al. 2006). 

Accordingly, we wanted to analyze, whether stimulation of the cytosolic helicase RIG-

I by in vitro transcribed 3p-RNA may induce an endogenous antiviral active type-I IFN 

response, suppressing HBV replication. Moreover, it was shown that 5`-

triphosphorylated siRNA (3p-siRNA) efficiently combines gene silencing and RIG-I 

activation in treatment of melanoma (Poeck, Besch et al. 2008). Consequently, 

suitable HBV sequence-specific siRNAs were sought to be in vitro transcribed to 

additionally act as RIG-I ligands, combining induction of antiviral active IFN-I by RIG-I 

stimulation with HBV-sequence specific gene silencing. Therefore, the following study 

addressed the question, whether an alternative immunotherapeutic approach for 

successful treatment of HBV could be achieved by application of in vitro transcribed 

3p-siRNA to efficiently suppress HBV replication. It was investigated, whether 3p-

siRNA could lead on the one hand to siRNA mediated gene silencing of HBV by 

RNAi (Model, Fig. 16, left side), combined on the other hand with the activation of 
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the RIG-I signaling cascade, followed by the induction of antiviral acting IFN-I and 

ISGs (Model, Fig. 16, right side).  

 

 

 
 

Fig. 1.17: Schematic model of HBV specific gene silencing and IFN-I signaling activation by RIG-I 

stimulation with 3p-siRNA and resulting antiviral effects on HBV replication in hepatocytes. 

Delivery of 3p-siRNA into HBV infected hepatoytes might have on the one hand a specific antiviral 

effect on HBV replication by RNAi (left).  On the other hand cytosolic helicase RIG-I binds distinct viral 

RNAs, but also in vitro transcribed 3p-siRNA (stimulation). Binding of 3p-siRNA should lead to 

activation of IFN-I signaling cascade via different adaptor molecules. Transcription factors IRF3/7 

induce production of IFN-I. IFN-I exhibits antiviral effects against HBV via unknown, probably 

intracrinic acting mechanisms. Furthermore, IFN-I is secreted from the cell and binds auto- or 

paracrinic to IFNAR1 receptor, which leads to activation of JAK-STAT pathway and therefore to the 

induction of IFN-stimulated genes (ISGs) (signaling). ISGs code for several antiviral active proteins, 

which provide immune stimulated antiviral effects against HBV replication (right). Modified after 

(Bowie and Unterholzner 2008). 
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2 Results 
 

 

2.1 Hepatocellular expression profile of RIG-I 
	
  
	
  
HBV replication is IFN-I sensitive. Activation of the innate immune system by 

stimulation of the ubiquitous cytosolic helicase RIG-I results in a strong induction of 

endogenous IFN-I potentially suppressing HBV replication. Liver derived cell lines are 

useful tools to investigate the influence of therapeutic approaches for suppression of 

HBV replication in vitro. Human hepatoma cells such as HuH7 are not permissive for 

HBV, but are suited to analyze HBV replication. Stably HBV expressing hepatoma 

cells like HepG2 2.15 and HepG2 H1.3 mimic a chronic HBV infection in vitro. In 

contrary, HBV infected primary human hepatocytes (PHHs) simulate acute HBV 

infection.  

To find a suitable in vitro model for this study it was first investigated, whether the 

cytosolic helicase RIG-I is present in different hepatoma cell lines and primary human 

hepatocytes. Previous IFN-I stimulation of cells is known to increase the expression 

of RIG-I (Bowie and Unterholzner 2008). Therefore, presence of cytosolic RIG-I was 

compared by Western blot analysis, with and without previous addition of IFN-I into 

the supernatant of the cells.  

Both, the hepatoma cell line HuH7 and its subline HuH7.5 contained comparable 

RIG-I levels, strongly increased after stimulation with IFN-I (Fig. 2.1 a). Also the 

stably HBV producing cell lines HepG2 H1.3 and HepG2 2.15 strongly expressed the 

cytosolic helicase, although at different levels (Fig. 2.1 b). PHHs also showed RIG-I 

expression, compared to HepG2 H1.3 cells even at higher levels (Fig. 2.1 c). In all 

cell types the expression of RIG-I could be enhanced by previous addition of 

exogenous IFN-I.  
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Fig. 2.1. RIG-I expression in hepatoma cell lines and primary human hepatocytes. Comparison of 

RIG-I expression levels in a) Hepatoma cells HuH7 and HuH7.5  b) stably HBV expressing hepatoma 

cells HepG2 H1.3 and HepG2 2.15 c) stably HBV expressing hepatoma cells HepG2 H1.3 and primary 

human hepatocytes (PHHs). Cells were cultured for 36 hours with and without previous addition of 

exogenous IFN type I (1000 U / ml). Total cell lysates were prepared and RIG-I expression was 

determined by Western blot analysis with ß-actin as loading control. a) and c) 40 µg b) 50 µg total cell 

lysate was applied per lane.  

 

 

2.2 Applicability of 3p-RNA 
 
2.2.1 Induction of IFN-β by 3p-RNA 
 

IFN-I production can be induced by different RNA-oligonucleotides serving as RIG-I 

ligands (Schlee, Hartmann et al. 2009). The exact structure of the RNA stimulating 

RIG-I, predominantly supported by 5`-triphosphate recognition, remains controversial. 

However, it was reported that short dsRNA generated by in vitro transcription (IVT) 

induces IFN-I in cell lines (Kim, Longo et al. 2004). Subsequently, it was shown that 

in vitro transcribed 3p-RNA strongly induces IFN-I by stimulation of RIG-I (Hornung, 

Ellegast et al. 2006). The 3p-RNA used in this study consists of a dsRNA-

oligonucleotide of 23 nucleotides with an overhang of one nucleotide at the 5`-

position, both 5`-ends are coupled with triphosphate groups due to in vitro 

transcription by T7 polymerase.  Quantity and potency of IFN-β induction by 3p-RNA 

differed drastically between different 3p-RNA in vitro transcriptions. Therefore, a dual-
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luciferase assay was used to determine the potency of each 3p-RNA to induce IFN-β. 

This assay was performed with human embryonic kidney cells (HEK 293), a cell line, 

which well compensates necessary transfections and allows high transfection 

efficiency (Aiello, Guilfoyle et al. 1979). Therefore, HEK 293 cells were firstly 

transfected with two plasmids. One construct contained a Firefly-luciferase cassette 

under control of an IFN-β promotor as a reporter gene. The second construct 

included a Renilla-luciferase cassette with a constitutive promotor and was used as 

an internal control to determine transfection efficiency. On the following day cells 

were transfected with 3p-RNA from four different in vitro transcriptions (#1 - 4) to be 

tested. It is known that IFN-I expression peaks 6 - 18 hours after treatment with 3p-

RNA in vitro (Hornung, Ellegast et al. 2006). Therefore, HEK cells were lysed 12 

hours after stimulation with 3p-RNA, Firefly-luciferase substrate (Luciferin) was 

added to the lysate and IFN-β dependent activity of the Firefly-luciferase was 

quantified by measuring luminescence. After quantifying the firefly luminescence the 

reaction was stopped and simultaneously the renilla luciferase reaction was initiated 

by addition of its substrate (Coelenterazien). Accordingly, the quotient of Firefly- and 

Renilla luciferase expression correlated with induced IFN-β expression. Cells 

expressing both luciferase constructs but not transfected with 3p-RNA served as 

mock control (Fig. 2.2). 
 

                                                                                             
 

Fig. 2.2: RIG-I expression in HEK 293 cells and induction of IFN-β by 3p-RNA prepared of 

different in vitro-transcriptions. a) RIG-I expression levels in HEK 293 cells with and without 

previous addition of exogenous IFN type I (1000 U / ml). 50 µg total protein lysate per lane b) HEK 

293 cells were transfected with dual luciferase constructs and treated with several 3p-RNA 

preparations of different in vitro transcriptions (IVT). Luminescent signals (relative light units, RLU) of 

Firefly- and renilla luciferase, respectively, were determined in a luminometer. Data are shown as 

mean ± SD, n=3.  



Results 

	
   53	
  

 

The dual luciferase assay showed different levels of IFN-β induction by 3p-RNA after 

four different in vitro transcriptions. 3p-RNA of IVT #1 and #3 revealed only minor and 

3p-RNA of IVT #4 medial IFN-β induction, whereas 3p-RNA generated by IVT #2 

exhibited the strongest potency to induce IFN-β and was thereby favoured for further 

experiments. The results show the variability of IFN-β stimulation by 3p-RNA 

generated in several in vitro transcriptions, which was normalized before application 

of 3p-RNA in further experiments. 

                              

 
2.2.2 Induction of IFN-β by 3p-RNA in HuH7 cells 
 

To determine the potency of 3p-RNA to induce IFN-I in different hepatoma cell lines, 

HuH7 and HuH7.5 cells were transfected with 3p-RNA (0.5 µg / ml) and IFN-β 

expression levels were determined after 12h by quantitative RT-PCR (qRT-PCR) 

(Fig. 2.3). Poly(I:C) (0.05 µg / ml) was transfected as a positive control. Poly (I:C), 

polyinosinic-polycytidylic acid, is a synthetic analogue of dsRNA that induces a 

potent IFN type I response triggering another ubiquitous cytosolic helicase, the 

human melanoma differentiation associated gene-5 (MDA-5) (Gitlin, Barchet et al. 

2006) as well as the endosomal TLR 3 (Kulka, Alexopoulou et al. 2004). Inert (non-

stimulating) polyA-RNA (polyriboadenosine) was used as negative control (Ctrl-RNA). 

Cells treated only with transfection reagent Hiperfect served as mock control.  
 

             
             
Fig. 2.3: IFN-I induction by 5´-triphosphorylated dsRNA in HuH7 cell lines. a) HuH7 cells and b) 

HuH7.5 cells were treated with 3p-RNA, Ctrl-RNA (polyA-RNA; negative control) and poly(I:C) 
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(polyinosinic:polycytidylic acid, a synthetic analog of double-stranded RNA; positive control). Mock 

cells were treated with transfection reagent Hiperfect. IFN-ß levels were analyzed by quantitative RT-

PCR relative to GAPDH and normalized to mock treated cells 12 hours p. tr.. Data are shown as mean 

± SD, n=3. 
 

 

HuH7 cells treated with 3p-RNA or poly(I:C), respectively, showed only IFN-β 

induction at background levels 12 hours after transfection (Fig. 2.3 a). HuH7.5 cells, 

a subline of HuH7 cells, exhibit no measurable IFN-β expression at all after 

transfection of the appropriate ligands (Fig. 2.3 b). Other groups have already shown 

that Huh7 cells are inadequate for production of IFN-I caused by minor TLR 3 

expression and by an defect on RIG-I receptor level (Li, Chen et al. 2005; Preiss, 

Thompson et al. 2008) The results show that the human hepatoma cell line HuH7 as 

well as its subline HuH7.5 are devoid of proper signaling after stimulation of RIG-I by 

3p-RNA or intracellular TLR3 by poly(I:C) transfection, respectively, and hence were 

not suitable for further in vitro experiments. 

 

 
2.2.3 Three different HBV models 
 

Other hepatoma derived cell lines display different PRR expression patterns 

compared to HuH7 cells, such as HepG2 cells, which are known to be impaired in 

TLR3 dependent, but competent for RIG-I dependent IFN-I signaling (Preiss, 

Thompson et al. 2008). Additionally, a stably HBV expressing cell line was preferred 

for cell culture experiments. Available stably HBV expressing HepG2 cells, such as 

HepG2 H1.3 (Jost, Turelli et al. 2007; Protzer, Seyfried et al. 2007) and HepG2 2.15 

(Sells, Chen et al. 1987) replicate HBV at higher levels than comparable HBV 

producing HuH7 cells (Bohne, Chmielewski et al. 2008). In order to use the optimal 

stably HBV expressing cell line for this work, initially HepG2 H1.3 were preferred over 

HepG2 2.15 cells due to their enhanced expression of RIG-I (Fig. 2.1 b). Moreover, 

HepG2 H1.3 cells also express, in comparison to HepG2 2.15 cells, episomal 

cccDNA as an additional and sensitive marker of HBV replication (Fig. 2.4, Southern 

blot (SB) analysis kindly provided by D.Webb).  

Primary human hepatocytes (PHHs) are another useful in vitro system to investigate 

early steps of HBV replication after acute infection with HBV. Nevertheless, their 
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availability is restricted because they are isolated from fresh liver specimen. PHHs 

expressed cytosolic RIG-I at levels comparable to HepG2 H1.3 cells (Fig. 2.1 c) and 

also establish a nuclear cccDNA pool. According to that reason, the stable HBV 

expressing hepatoma cell line HepG2 H1.3 as well as HBV infected PHHs were 

considered as optimal tools for further in vitro investigations (Fig. 2.4).  

To investigate the different aspects of antiviral RIG-I stimulation by 3p-RNA in vivo, 

two distinct HBV transgenic (tg) mouse strains were available. On the one hand, 

HBV1.3 tg mice and on the other hand HBV1.3 –xfs tg mice containing a frameshift 

mutation within the X-gene (Weber, Schlemmer et al. 2002). We found that HBV1.3 –

xfs tg mice replicate HBV at 10 times higher levels (107 -108 virions per ml serum) 

than HBV1.3 tg mice. Therefore, HBV1.3 –xfs mice were used in all following in vivo 

studies (Fig. 2.4). 

 

             
    
Fig. 2.4: Potential induction of antiviral IFN-I by 3p-RNA in 3 HBV-model systems. Three different 

HBV models were used to test 3p-RNA for potential induction of an antiviral IFN-I response against 

HBV. Stably HBV expressing hepatoma cell line HepG2 H1.3 and HBV infected primary human 

hepatocytes (PHHs) were used as in vitro models, HBV tg mice were used as an in vivo model.  
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2.2.4 Cytotoxicity of 3p-RNA 

 

After the choice of the best model systems, potential toxicity of 3p-RNA was analyzed 

for liver cells and HBV tg mice, respectively. Therefore, different amounts of 3p-RNA 

were transfected into HepG2 H1.3 cells and cell viability was determined by an XTT-

based assay over a period of 16 days (Fig. 2.5 a). No obvious toxicity at a 

concentration of up to 0.5 µg per ml medium was observed. Furthermore, 3p-RNA 

complexed with jetPEI was injected intravenously (i.v.) at day 0 and day 3 into the tail 

vein of HBV tg mice (Hornung, Ellegast et al. 2006). PolyA-RNA was used as 

negative control (Ctrl-RNA). Mice treated with the RNA delivery agent jetPEI served 

as mock control. Alanine aminotransferase (ALT) levels, a marker for cytotoxic liver 

damage, were determined in the sera of mice 6 hours after the two injections and at 

day 6, respectively (Fig. 2.5 b). 3p-RNA injected at a concentration of 25 µg per 

application showed no cytotoxic effects after both injections until day 6 in comparison 

to mock treated mice. Surprisingly, significantly elevated ALT levels were observed in 

a few mice treated with Ctrl-RNA over time.  

According to these results, 3p-RNA was applied at 0.5 µg per ml medium in all 

following in vitro experiments. Due to its known toxicity, poly(I:C) was transfected at 

lower concentrations of 0.05 µg per ml medium throughout the study. 25 µg 3p-RNA 

per mouse and application were injected twice at day 0 and day 3 in all further in vivo 

experiments throughout the study. 
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Fig. 2.5: Cytotoxicity of 3p-RNA in vitro and in vivo. a) HepG2 H1.3 cells were transfected with 

different doses of 3p-RNA and cell viability was monitored by XTT-cell-viability-test at indicated time 

points. Data are shown as mean ± SD, n=3. b) HBV tg mice (n=3) were intravenously injected twice 

(at d0 and d3) with 25 µg of 3p-RNA or Ctrl-RNA (polyA-RNA; negative control), respectively, per 

mouse and application. Mock (HBV tg) mice were treated with RNA delivery agent jetPEI. Serum 

alanine aminotransferase (ALT) levels were determined 6 hours after the first injection at day 0 and 6 

hours after the second injection at day 3, respectively, as well as at day 6. 
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2.3 Functionality of 3p-RNA as RIG-I ligand in HBV replicating liver cells 
 

2.3.1 IFN induction by 3p-RNA and activation of interferon-stimulated genes in 
vitro and in vivo 
 

After exclusion of cytotoxic effects, 3p-RNA dependent induction of IFN-β and IFN-γ, 

as well as activation of interferon-stimulated genes such as 2`-5`-oligoadenylate 

synthetase (OAS) and IFN-inducible protein 10 (IP-10), respectively, were 

determined in all three models. The IFN-I induced expression of 2`-5`-OAS 

(Hovanessian 1991) leads to the activation of the latent endoribonuclease RNaseL, 

which is able to effectively degrade viral RNA (Hassel, Zhou et al. 1993). Moreover, 

IFN-I and IFN-II (IFN-γ) stimulate the expression of IP-10 (also named CXCL10), a 

chemokine that is secreted predominantly by monocytes, endothelial cells and 

fibroblasts. PRR stimulation with ligands such as LPS or poly(I:C) also induces 

expression of IP-10, which functions as a chemoattractant for the recruitment of 

effector T cells, macrophages, NK cells and DCs in vivo (Luster, Unkeless et al. 

1985; Dufour, Dziejman et al. 2002). 

HepG2 H1.3 cells and HBV-infected (MOI 100) PHHs were transfected with 3p-RNA, 

poly(I:C) as positive control and inert polyA-RNA as negative control (Ctrl-RNA). 

Cells treated with the transfection reagent Hiperfect were used as mock control. In 

addition, 3p-RNA or Ctrl-RNA, respectively, was injected intravenously into the tail 

vein of HBV tg mice with. Mice treated with nucleic acid delivery reagent jetPEI 

served as mock control. Expression of IFNs and interferon-stimulated genes 2`-5`-

OAS and IP-10 were determined on mRNA level by qRT-PCR at indicated 

timepoints.  

Transfection of both, 3p-RNA or poly(I:C), respectively, exhibited induction of IFN-β 

(Fig. 2.6 a) and IFN-I dependent 2`-5`-OAS (Fig. 2.7 a) in HepG2 H1.3 cells. The 

expression of both remained at high levels until day 3 and was still detectable until 

day 6 after transfection. Accordingly, HBV infected PHHs also revealed strong 

induction of IFN-β at day 1 after stimulation with 3p-RNA or poly(I:C), respectively 

(Fig. 2.6 b), as well as IFN-I induced expression of 2`-5`-OAS, which decreased over 

time (Fig. 2.7 b). Both cell types showed no induction of IFN-β after Ctrl-RNA or 

mock transfection.  
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Injection of 3p-RNA in HBV tg mice resulted in a very fast and potent IFN-I response, 

which dropped markedly until day 3 and was not detectable at day 6 after 

administration (Fig. 2.6 c). Despite high amounts of IFN-α in the sera of mice 

determined 6 hours after application of 3p-RNA, only residual expression of 2`-5`-

OAS was found at day 6 after application (Fig. 2.7 c).  

 

                

     
 
Fig. 2.6: IFN-I induction by 5´-triphosphorylated dsRNA in vitro and in vivo. a) HepG2 H1.3 cells 

b) HBV infected PHHs and c) HBV tg mice were treated with indicated RNA-oligonucleotides. Mock 

(HepG2 H1.3 and PHH) Hiperfect; mock, (HBV tg mice) jetPEI. IFN-ß mRNA expression was analyzed 

by quantitative RT-PCR relative to GAPDH mRNA levels and normalized to mock treated cells at 

indicated timepoints. Serum IFN-α levels of HBV tg mice were determined by cytokine bead assay at 

indicated time points. Data are shown as mean ± SD, n=3. 
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Fig. 2.7: IFN-I dependent induction of 2`-5`-oligoadenylate synthetase (OAS). a) HepG2 H1.3 

cells b) PHHs and c) HBV tg mice were treated with indicated RNA-oligonucleotides and 

hepatocellular 2`-5`-OAS mRNA levels were determined at indicated timepoints by quantitative RT-

PCR relative to GAPDH and normalized to mock treated cells or animals, respectively. Data are 

shown as mean ± SD, n=3.  

 

 

The results clearly showed that application of 3p-RNA led to a strong induction of 

IFN-I and is followed by expression of 2`-5`-OAS in vitro and in vivo. 

In contrast, IFN-γ expression could not be detected in any model system, at any 

timepoint. Nevertheless, transfection of 3p-RNA or poly(I:C), respectively led to the 

expression of IP-10 in HepG2 H1.3 cells (Fig. 2.8 a) and in PHHs (Fig. 2.8 b). Ctrl-

RNA or mock transfected cells exhibited no IP-10 expression at any timepoint. 

Remarkably, 3p-RNA injected HBV tg mice showed no residual IP-10 expression at 

day 6, independent of treatment (Fig. 2.8 c).  

 

 



Results 

	
   61	
  

These results show that IP-10 expression was strongly induced, at least in the cell 

culture systems, after application of 3p-RNA and in the absence of IFN-γ. Type II 

interferon (IFN-γ) was not induced or, if so, to minor extends. 

 

 

                  
 
Fig. 2.8: IFN dependent induction of IP-10. a) HepG2 H1.3 cells b) PHHs and c) HBV tg mice were 

treated with indicated RNA-oligonucleotides and analyzed at indicated timepoints for mRNA 

expression of IP-10 by quantitative RT-PCR relative to GAPDH and normalized to mock treated cells 

or animals, respectively. Results of a) are representative of three different experiments, data of b) and 

c) are shown as mean ± SD, n=3.  
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2.3.2 RIG-I dependent IFN-β induction by 3p-RNA  
 

To confirm the contribution of RIG-I in 3p-RNA induced IFN-I expression, RIG-I 

expression was knocked down by transient transfection of a RIG-I specific siRNA in 

HepG2 H1.3 cells and PHHs (Fig. 2.9). RIG-I expression was determined on protein 

levels at several time points after siRNA treatment. The most prominent reduction of 

about 80% was observed 72 hours after siRNA transfection (Fig. 2.9 a). In parallel, it 

was investigated, whether the auto- and paracrinic acting IFN-pathway via the 

interferon-α/β-receptor (IFNAR) was also required for the antiviral induction of IFN-I 

by 3p-RNA. Functional active human IFNAR consists of two subunits, IFNAR-1 and 

IFNAR-2 (Gaboriaud, Uze et al. 1990). Therefore, the expression of the interferon-

α/β-receptor in HepG2 H1.3 cells was inhibited by using an IFNAR specific siRNA. 

RIG-I specific - and an HBV sequence specific siRNA (Ctrl siRNA) were used as 

negative controls. Knockdown-efficiency of IFNAR-I was determined on mRNA level 

by quantitative real-time PCR (qRT-PCR). Expression of IFNAR was significantly 

reduced by 70% upon RNAi knockdown after 72 hours in comparison to Ctrl siRNA 

treated cells (Fig. 2.9 b). According to these results, HepG2 H1.3 cells were 

stimulated 72 hours after treatment with siRNAs against RIG-I or IFNAR-1, 

respectively, with 3p-RNA to stimulate IFN-I signaling. Unstimulated cells transfected 

previously with Ctrl siRNA served as negative control. In fact, significantly reduced 

IFN-β levels were observed in HepG2 H1.3 cells in which RIG-I had been knocked 

down. However, the cells with IFNAR knockdown only showed a minor reduction on 

IFN-β expression (Fig. 2.9 c). Confirming results were obtained in PHHs (Fig. 2.9 d). 

These data indicate that RIG-I is strictly required for 3p-RNA induced IFN-β 

response, while a positive fee-back via IFNAR-pathway seems to play a minor role. 
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Fig. 2.9: RIG-I dependent IFN-β induction by 3p-RNA. HepG2 H1.3 cells (a-c) and PHHs (d) were 

transfected with siRNA against RIG-I, IFNAR-1 or with Ctrl-siRNA (HCV-sequence specific siRNA). a) 

HepG2 H1.3 cells treated with αRIG-I siRNA were lysed at indicated timepoints and analyzed for RIG-I 

expression by Western blot analysis with ß-actin as loading control. 30 µg total cell lysate was applied 

per lane. b) HepG2 H1.3 cells treated with indicated siRNA were lysed 72 h p. tr. and IFNAR-1 

expression was determined by quantitative RT-PCR c) HepG2 H1.3 cells and d) PHHs were 

transfected with indicated siRNAs. After 72 h indicated cells were transfected with 3p-RNA and after 

12 h analyzed for IFN-ß expression by quantitatitative RT-PCR. RT-PCRs are relative to GAPDH and 

normalized to Ctrl siRNA treated cells. Data are shown as mean ± SD, n=3 (*P<0.05, t-test). 
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2.4 Antiviral effects of 3p-RNA induced IFN-I on HBV 
 

2.4.1 Antiviral effects of 3p-RNA treatment in vitro 

 

To test the therapeutic potential of 3p-RNA on HBV replication, first the antiviral 

effects of transfected 3p-RNA (0.5 µg / ml) were determined in stably HBV 

expressing HepG2 H1.3 cells. Therefore, the cells were transfected with indicated 

RNA-oligonucleotides. After treatment accumulated HBV-DNA levels of progeny virus 

released into the supernatant of cells were measured at three different timepoints by 

qRT-PCR (Fig. 2.10). Released HBV-progeny DNA levels were comparable at day 1 

after application. At day 3, HepG H1.3 cells treated with 3p-RNA secreted less virions 

relative to ctrl-RNA and mock controls. At day 6 after transfection the media of cells 

transfected with 3p-RNA contained strongly reduced (1.5 log scales) HBV-DNA 

levels, but not after treatment with Ctrl-RNA (polyA-RNA) (Fig. 2.10 a). Additionally, 

affected HBeAg and HBsAg secretion were determined by ELISA, HBeAg was about 

50% and HBsAg about 40% reduced, compared to untreated cells (Fig. 2.10 b). 

 

  
 
Fig. 2.10: Suppression of HBV replication by IFN-I induction after application of 3p-RNA in 

HepG2 H1.3 cells. HepG2 H1.3 cells were treated with 3p-RNA, Ctrl-RNA (polyA-RNA; negative 

control) or poly (I:C) (positive control). Mock cells were treated with transfection reagent Hiperfect. a) 
Quantiative RT-PCR analysis of HBV-DNA levels at day 1, day 3 and day 6 p. tr., respectively. b) 

Enzyme immunoassay of HBV-antigen levels (HBsAg and HBeAg) in supernatant of 3p-RNA treated 

HepG2 H1.3 cells at 6 days p. tr.. One representative of three different experiments is shown. 
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Second, the antiviral effect of 3p-RNA was examined in HBV infected PHHs. The 

primary cells were analyzed for HBV-replication markers at day 6 after treatment 

(Fig. 2.11). Both, 3p-RNA and poly(I:C) treated PHHs exhibited a significant 10-fold 

reduction of secreted virions compared to untreated cells (Fig. 2.11 a). Antigen levels 

in the supernatant were significantly reduced (Fig. 2.11 b). In addition, quantification 

of pgRNA levels by qRT-PCR disclosed a significant reduction of HBV-RNA in PHHs 

after application of 3p-RNA (Fig. 2.11 c). Antiviral effects were as strong as those of 

poly(I:C). 

 

            

 
Fig. 2.11: Stimulation of RIG-I by 3p-RNA suppressed HBV replication in primary human 

hepatocytes. HBV infected PHHs were treated with indicated RNA-oligonucleotides. Mock cells were 

treated with transfection reagent Hiperfect. a) Quantiative PCR analysis of HBV-DNA levels and b) 

enzyme immunoassay of HBV-antigen levels (HBeAg, HBsAg) in the supernatant of PHHs at day 6 p. 

tr. c) Quantitative RT-PCR ofpregenomic RNA levels at day 6 p. tr. relative to GAPDH and normalized 

to mock treated cells. Data are shown as mean ± SD, n=3 (**P<0.01, ***P<0.001, t-test). 

 

 



Results 

	
   66	
  

The results clearly demonstrate a strong immuno-stimulatory, antiviral activity of 3p-

RNA against HBV by induction of IFN-I via RIG-I stimulation. Analyzed HBV-

replication markers were significantly reduced in both HepG2 H1.3 cells and HBV 

infected PHHs. 

 

 

2.4.2 Antiviral effects of 3p-RNA treatment in vivo 

 

Next, the antiviral effects of 3p-RNA were examined in HBV tg mice. Ctrl-RNA and 

jetPEI injected mice served as negative controls. HBV replication markers such as 

progeny HBV-DNA and HBV-antigens levels in the sera as well as HBV-RNA levels 

in the livers of HBV tg mice were determined at day 6 p. inj. (Fig. 2.12).  

HBV tg mice showed a 1.6 log reduction of HBV-DNA levels in the blood after 3p-

RNA injection compared to Ctrl-RNA or mock treated mice (Fig. 2.12 a). 

Furthermore, HBsAg levels were significantly reduced (Fig. 2.12 b). HBeAg, at 

comparable levels at the day of application, was significantly reduced at day 6 

compared to untreated mice or basal levels at day 0 (Fig. 2.12 c). 3p-RNA 

application also reduced pregenomic HBV-RNA (Fig. 2.12 d). RT-PCR results were 

confirmed by Northern blot analysis of pooled liver RNA within the different groups. It 

showed a reduction of both HBV-RNA forms, pgRNA and sgRNA after injection of 3p-

RNA compared to untreated mice (Fig. 2.12 e). GAPDH served as loading control 

and indicated that loaded RNA amount of 3p-RNA treated mice was lower than of 

mock treated mice, suggesting even stronger differences in HBV-RNA levels. 

The data confirm the potent therapeutic effectivity of 3p-RNA by induction of antiviral 

IFN-I leading to strong suppression of HBV replication in vivo. 
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Fig. 2.12: Stimulation of RIG-I by 3p-RNA suppressed HBV replication in HBV tg mice. HBV tg 

mice were treated with 3p-RNA or si-Ctrl (HCV-sequence specific siRNA; negative control) or with 

nucleic acid delivery reagent jetPEI as mock control. a) Quantiative PCR analysis of HBV-DNA levels 

and b) HBsAg levels in serum of HBV tg mice at day 6 p. inj. and c) HBeAg levels in serum at the day 

of application (day 0) and day 6 p. inj. (EIA) d) Quantiative RT-PCR analysis of intrahepatic 

pregenomic RNA levels relative to GAPDH, normalized to mock treated mice and e) Northern blot of 

pooled liver RNA (n=4/group) that reflect the effect of 3p-RNA on pre- and subgenomic RNA levels at 

day 6 after treatment with indicated RNA-oligonucleotides. GAPDH as loading control. 25 µg pooled 

total RNA was applied per lane. Data are shown as mean ± SD, n=4 (*P<0.05, **P<0.01, ***P<0.001, 

t-test). 
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2.5 HBV sequence specific 3p-siRNA as RIG-I ligand 

 

2.5.1 Design of HBV-sequence specific siRNAs 
 

To enhance the therapeutic efficiencycy against HBV it was intended to combine the 

antiviral immune regulatory effect of RIG-I stimulation with an RNAi mediated gene-

silencing effect on cytosolic HBV-RNAs. Therefore, three different HBV-sequence 

specific siRNAs of 19 nt were designed, which target three different regions at the 3`-

end of the HBV-RNAs within the overlapping ORFs of HBV (Fig. 2.13). The siRNA si-

1.1 targets a region of the HBV genome within the overlapping ORFs of the X-protein 

and the precore protein (processed to HBeAg), and was predicted to affect all HBV-

mRNAs (Fig. 2.13, orange arrows). The siRNA si-1.2 targets an alternative region 

within the X-protein ORF, but, as si-1.1, all HBV-mRNAs transcripts. Another 

alternative HBV-genome target region, the ORF of the polymerase, is targeted by 

siRNA si-1.3, which potentially affects all HBV mRNA transcripts except for the 0.7 kb 

transcript of the X-protein. All HBV targeting sequences are conserved among all 

HBV genotypes, except the rare genotype F. Genotype D HBV is present in HepG2 

H1.3 cells and in the HBV tg mice used in this study. In contrast, primary hepatocytes 

were infected with HBV genotype A before treatment, originated and purified from 

stably HBV expressing hepatoma cell line HepG2 2.15. 

To combine the antiviral effect of siRNA mediated HBV gene silencing and 

endogenous IFN-I induction via RIG-I stimulation, DNA templates for HBV-sequence 

specific siRNAs were reverse transcribed by in vitro transcription and thereby 

coupled to triphosphate groups at both 5`-ends. The resulting RNA-oligonucleotides 

were named 3p-1.1, 3p-1.2 and 3p-1.3, according to their unphosphated siRNA 

counterparts. 
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Fig. 2.13: HBV-sequence specific siRNA targeting. The HBV-sequence specific siRNAs named si-

1.1, si-1.2 and si-1.3 were designed to target the ORFs of the X-protein or the polymerase within the 

3`-end region of the mRNA transcripts near the polyadenylation signal, indicated by orange arrows. 

 
 
2.5.2 Functionality of 3p-siRNA as RIG-I ligand  

 
Subsequently, the ability of 3p-siRNA to induce an antiviral IFN response was tested. 

Therefore, HepG2 H1.3 cells were transfected exemplarily with 3p-1.2, 

(triphosphorylated, HBV-sequence specific siRNA), its non-phosphorylated 

counterpart si-1.2 (HBV-sequence specific siRNA) or si-Ctrl (inert HCV-sequence 

specific siRNA). Mock cells were treated with transfection reagent Hiperfect (Fig. 
2.14). Only HepG2 H1.3 cells transfected with 3p-1.2 showed an induction of IFN-β 

after 12 hours determined on mRNA level by quantitative RT-PCR. Cells treated with 

si-1.2 or si-Ctrl, respectively, revealed no or only marginal IFN-β expression in 

comparison to mock treated cells (Fig. 2.14 a). Next, IFN-I induction levels of all 

three triphosphorylated siRNAs (3p-1.1, 3p-1.2 and 3p-1.3) were compared. 

Therefore, IFN-I stimulated 2`-5`-OAS levels were determined 8 days after 
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transfection of the 3p-siRNAs in HepG2 H1.3 cells (Fig. 2.14 b) and in HBV infected 

PHHs (Fig. 2.14 c). Cells treated with transfection reagent Hiperfect were used as 

mock controls. All three 3p-siRNAs induced 2´-5`-OAS in both in vitro models; in 

HepG2 H1.3 cells at comparable levels, in PHHs less pronounced and at variable 

strength. 

 

          
 
Fig. 2.14: HBV sequence specific 5`-triphosporylated siRNAs served as RIG-I ligands. a) HepG2 

H1.3 cells were transfected with control siRNA (HCV-sequence specific siRNA), si-1.2 (unphosphated 

HBV-sequence specific siRNA) or 3p-1.2 (triphosphorylated HBV-sequence specific siRNA). Mock 

cells were treated with transfection reagent (Hiperfect). 12h after treatment the cells were tested for 

IFN-ß induction by quantitative RT-PCR relative to GAPDH and normalized to mock treated cells. Data 

are shown as mean ± SD, n=3. b+c) HepG2 H1.3 cells and HBV infected PHHs were transfected with 

3p-siRNAs (3p-1.1, 3p-1.2 or 3p-1.3), mock cells were treated with transfection reagent Hiperfect. 

Cells were analyzed by quantiative RT-PCR at day 8 p. tr. for mRNA expression of interferon-inducible 

2´-5`-oligoadenylate synthetase (OAS) relative to mRNA GAPDH, normalized to mock treated cells. 

One representative of three different experiments is shown. 
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This data clearly elucidate that HBV sequence specific triphosphated siRNAs were 

suitable as RIG-I ligands, competent for induction of IFN-I, as determined by IFN-I 

induced 2`-5`-OAS expression in both in vitro models. 

 
 
2.5.3 Antiviral effects of 3p-siRNA treatment in vitro  
 

To elucidate the therapeutic efficiency of the modified RIG-I ligands, the effects of 

applied 3p-siRNAs on HBV-replication markers were determined at day 8 after 

transfection in HepG2 H1.3 cells and HBV infected PHHs (Fig. 2.15). All three 3p-

siRNAs had a significant impact on HBV-progeny release of HepG2 H1.3 cells 

(Fig.2.15, a) and PHHs (Fig.2.15, b). 3p-1.2 reduced virion secretion in HepG2 H1.3 

cells about 1 log (Fig. 2.15 a). All 3p-siRNAs reduced HBV-DNA release from HBV-

infected primary cells more than 0.75 log scales (Fig. 2.15 b). Furthermore, the 

antiviral effects of 3p-siRNAs on HBV-antigen levels (HBeAg and HBsAg) were 

examined by ELISA assays (Fig. 2.15 c + d). All three 3p-siRNAs led to a clear 

reduction of secreted HBeAg in HepG2 H1.3 cells, on average around 50% (Fig. 2.15 
c) and in HBV infected PHHs of approximately 35% (Fig. 2.15 d). HBsAg levels were 

also significantly reduced in HepG2 H1.3 cells by all three 3p-siRNA, but most 

drastically for 80% by the application of 3p-1.2 (Fig. 2.15 c). In HBV infected PHHs 

3p-siRNAs showed a minor effect on HBsAg, with reduction of approximately 40% 

(Fig. 2.15 d).  

HepG2-H1.3 cells and HBV infected PHHs additively express episomal HBV-

cccDNA. This supercoiled HBV-DNA accumulates and persists in episomal form in 

the nucleus and serves as viral transcription template during HBV infection. 

Examined cccDNA levels were decreased after application of 3p-siRNAs in both, 

HepG2 H1.3 cells (Fig. 2.15 e) and in PHHs (Fig. 2.15 f). 

Taken together, these results indicate that 3p-siRNAs efficiently suppress HBV-

replication on HBV-DNA and HBV-protein level. Furthermore, nuclear HBV cccDNA 

levels were reduced by 3p-siRNA application in both cell types. 
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Fig. 2.15: HBV-sequence specific 3p-siRNAs suppressed HBV replication in vitro. HepG2 H1.3 

cells and HBV infected PHHs were transfected with different 3p-siRNAs (3p-1.1, 3p-1.2 or 3p-1.3) and 

analyzed at day 8 p. tr.. Mock cells were treated with transfection reagent (Hiperfect). Supernatants of 

HepG2 H1.3 cells and PHHs were analyzed for (a+b) HBV-DNA levels by quantiative PCR, 

normalized to mock treated cells and for (c+d) HBeAg by enzyme immunoassay and HBsAg levels by 

ELISA. Data are shown as mean ± SD, n=3 (*P<0.05,**P<0.01, ***P<0.001, t-test). Additionally, 

quantiative RT-PCR analysis of cccDNA levels relative to mitochondrial DNA normalized to mock 

treated cells was performed (e+f). Data are representative of three different experiments. 
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As already said, PHHs were infected with genotype A HBV, secreted from stably 

HBV expressing HepG2 2.15 cells. To confirm the therapeutic efficiency of 3p-

siRNAs on genotype A HBV, HepG2 2.15 cells were treated directly with the different 

3p-siRNAs (Fig.2.16). At day 6 after application IFN-I dependent 2`-5`-OAS induction 

was determined on mRNA level by qRT-PCR (Fig. 2.16 a).  
 

 

       

 
Fig. 2.16: HBV-sequence specific 3p-siRNAs suppressed genotype A HBV replication in HepG2 

2.15 cells. HepG2 2.15 cells were transfected with different 3p-siRNAs (3p-1.1, 3p-1.2 or 3p-1.3) and 

analyzed at day 6 p. tr.. Mock cells were treated with transfection reagent (Hiperfect). a) 2´-5`-OAS 

induction was tested on mRNA level by qRT-PCR relative to GAPDH mRNA and normalized to mock 

treated cells. Supernatants of HepG2 2.15 cells were analyzed for b) progeny HBV-DNA levels by 

quantitative PCR and for c) HBeAg levels by enzyme immunoassay. d) pgRNA levels were 

determined by quantitative RT-PCR. Data are shown as mean ± SD, n=3 (*P<0.05, ***P<0.001, t-test). 
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None of the transfected 3p-siRNAs revealed any, or only residual, expression of 2´-

5´-OAS at day 6 after transfection in HepG2 2.15 cells, possibly due to already 

strongly reduced 2`-5`-OAS expression at this timepoint, but more likely through 

absence of IFN-I induction, which coincidences to the reduced sensitivity of HepG2 

2.15 cells against IFN (Guan, Lu et al. 2007). Nevertheless, apparently independent 

of IFN-I induction, progeny HBV-DNA levels were decreased on average around 60% 

(Fig. 2.16 b). HBeAg levels (Fig. 2.16 c) and pgRNA levels (Fig. 2.16 d) were also 

significantly diminished after transfection of 3p-siRNAs.  

These results indicate despite lacking IFN-I response an effective suppression of 

HBV replication by RNAi mediated gene silencing also on genotype A HBV. 

 

 

2.5.4 Comparison of 3p-RNA and 3p-siRNA treatment in vitro 
 

To analyze whether immunostimulation and RNAi-mediated gene silencing acts 

synergistically to suppress HBV replication, the primarily used 3p-RNA was 

compared with the 3p-siRNAs in HepG2 H1.3 cells. Therefore, HepG2 H1.3 cells 

were transfected with the original RIG-I ligand 3p-RNA, the 3p-siRNAs 3p-1.1, 3p-1.2 

and 3p-1.3 and si-Ctrl RNA, respectively. HepG2 H1.3 cells treated with transfection 

reagent Hiperfect served as mock control. The effects on HBV replication were 

analyzed within an expanded timeframe at day 4 and day 8 post transfection, 

determining intracellular HBV-DNA levels by Southern blot analysis (Fig. 2.17 a), 

episomal HBV cccDNA levels by qRT-PCR (Fig. 2.17 b) and HBV-protein levels by 

Western blot analysis (Fig. 2.17 c).  

Indicated bands of the Southern blot analysis represented different HBV-DNA forms 

such as rcDNA, linear and single-stranded HBV-DNA, as well as replicative 

intermediates of variable size (Fig. 2.17 a). Detection of integrated HBV genomes 

served as a loading control. Intracellular HBV-DNA levels were strongly reduced at 

day 4 after treatment with the original 3p-RNA. Intriguingly, all three 3p-siRNAs 

displayed a slightly more pronounced reduction in HBV-DNA levels compared to 3p-

RNA at this timepoint. Surprisingly, also si-Ctrl RNA treatment slightly reduced 

hepatocellular HBV-DNA levels in comparison to mock control (Fig. 2.17 a, left). The 

antiviral effect of the original 3p-RNA ligand nearly disappeared at day 8 after 
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treatment, whereas the effect on intracellular HBV-DNA levels by all 3p-siRNAs 

persisted (Fig. 2.17 a, right).  
Accordingly, a superior antiviral effect of 3p-siRNA compared to 3p-RNA alone could 

be shown on HBV cccDNA levels (Fig. 2.17 b). The displayed quantitative PCR 

products of cccDNA, relative to mitochondrial DNA as loading control, indicated a 

potent reduction of the episomal HBV-DNA form at day 4 after treatment by both, 3p-

RNA and all 3p-siRNAs in comparison to mock control. However, again si-Ctrl had 

some effect (Fig. 2.17 b, left), probably to its low, but clearly detectable 

immunostimulatory activity (Fig. 2.14 a). On day 8 3p-siRNA still decreased cccDNA 

levels, whereas 3p-RNA had no effect anymore (Fig. 2.17 b, right). This difference in 

antiviral activity was confirmed by Western blot analysis of the large HBV envelope 

protein (Fig. 4c upper panel). In addition, the HBV core-protein was only slightly 

affected by 3p-RNA at day 4, whereas all three 3p-siRNAs had a post-translational 

effect on core-protein expression at this timepoint. Core-protein expression was 

completely restored in 3p-RNA treated cells at day 8, but still decreased in cells 

treated with 3p-1.2 and 3p-1.3 (Fig. 4c lower panel). 
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Fig. 2.17: 3p-siRNA combined RIG-I stimulation and siRNA mediated gene silencing in vitro. 

HepG2 H1.3 cells were treated with indicated RNA-oligonucleotides and analyzed 4 days and 8 days 

after treatment. Mock (cells treated with transfection reagent Hiperfect), 3p-RNA (in vitro transcribed 

5`-triphosphated dsRNA), si-Ctrl (HCV-sequence specific siRNA) served as negative control, 3p-1.1, 

3p-1.2 and 3p-1.3 (in vitro transcribed 5´-triphosphated HBV-sequence specific siRNA). a) Southern 

blot analysis of intracellular HBV-DNA in HepG2 H1.3 cells. 20 µg total DNA was applied per lane. b) 

Agarosegel of PCR products using cccDNA specific primers. Mitochondrial DNA PCR served as 

control. c) Western blot analysis of intracellular HBV L- and core protein expression. ß-actin was 

detected as loading control. 15 µg total cell lysate was applied per lane. 
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The results indicate comparable antiviral effects of the original RIG-I ligand 3p-RNA 

and the modified 3p-siRNAs on HBV replication at early time-points (day 4 after 

transfection) in HepG2 H1.3 cells. In contrast, an enhanced and prolonged antiviral 

effect of 3p-siRNAs was detected at later time-points (day 8 after tarnsfection). 

 

 

2.5.5 Long-term treatment of HBV by 3p-siRNA in vitro 

 

To prove the sustained antiviral effects of 3p-siRNAs, the antiviral efficiency of 3p-

RNA was compared with the most promising 3p-siRNA (3p-1.2) and its 

unphosphated counterpart si-1.2 over a period of 16 days in HepG2 H1.3 cells (Fig. 

2.18). Poly (I:C) served as positive control, mock cells were treated with transfection 

reagent Hiperfect. Therapeutic effects were monitored in terms of progeny HBV-DNA 

release by quantitative PCR (Fig. 2.18 a) and HBeAg secretion by ELISA (Fig. 2.18 
b). Analysis started 12 h after treatment, followed by day 4 and subsequently every 

second day until day 16. The medium of cells was changed every second day from 

day 4 onwards. The early antiviral response until day 6 was comparable between all 

oligonucleotides at progeny HBV-DNA and HBeAg levels. Nevertheless, both, 3p-1.2 

as well as its synthetic counterpart si-1.2 controlled HBV-DNA synthesis over time. 

3p-1.2 was significantly superior to si-1.2 from day 10 onwards (Fig. 2.18 a). HBeAg 

level reduction by 3p-1.2 was significantly superior to 3p-RNA or si-1.2 from day 8 

onwards. Accordingly, 3p-1.2 showed a prolonged antiviral response than si-1.2 and 

3p-RNA alone. Probably, IFN-I mediated reduction of HBV replication by 3p-RNA and 

3p-1.2 diminished over time. Therefore, 3p-RNA and 3p-1.2, as well as poly(I:C) as 

IFN-I inducing positive control, were equally active at early timepoints. But 3p-RNA 

and poly(I:C) lost their antiviral activity at later timepoints due to the absence of gene 

silencing activity. 

Taken together, the results indicate that the combination of immuno-stimulation and 

gene silencing in one single molecule displayed superior antiviral activity than each 

mechanism alone in vitro. 
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Fig. 2.18: Longterm effects of 3p-siRNA on HBV replication in vitro. a) Quantiative PCR analysis 

of progeny HBV-DNA and b) enzyme immunoassay of HBeAg levels in supernatant of HepG2 H1.3 

cells until day 16 after treatment with indicated RNA-oligonucleotides; mock cells were treated only 

with transfection reagent Hiperfect. The experiments were performed in triplicates and results were 

given as mean ± SD. Significant differences were shown between si-1.2 and 3p-1.2 treated cells 

(*P<0.05,**P<0.01, ***P<0.001, t-test) . 
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The experiments showed a slight increase in HBV-DNA levels after treatment with 

3p-1.2 or si-1.2 over more than 12 days in HepG2 H1.3 cells. Accordingly, a reduced 

or hampered binding of siRNA to HBV-DNA due to mutations selected by RNAi 

induced selection pressure was excluded. For this, the intrinsic siRNA binding site of 

si-1.2 was sequenced in secreted virions at day 10 and day 16 (Fig. 2.19 b + c). 

HBV-DNA sequence of mock treated cells at day 0.5 after application served as 

control (Fig. 2.19 a). The correct sequence of the control was verified by comparison 

with the known HBV genome sequence. None of the analyzed DNA fragments 

revealed any mutations inside the HBV-genome sequence targeted by si-1.2 or 3p-

1.2, neither at day 10 nor at day 16 after transfection.  

 

                               
                                     
Fig. 2.19: Direct sequencing analysis of siRNA binding site within the HBV-DNA genome of 
secreted virions. DNA was extracted from supernatant of HepG2 H1.3 cells treated with si-1.2 or 3p-

1.2 at day 10 and day 16 after transfection. Si-1.2 binding site spanning fragment of HBV-DNA was 

amplified by PCR and analyzed by direct sequencing.  
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2.5.6 Antiviral effects of 3p-siRNA treatment in vivo 
 

Next, the ability of 3p-1.2 and 3p-RNA to induce an antiviral IFN-I response was 

compared in vivo (Fig. 2.20). Therefore, 3p-1.2, 3p-RNA and si-1.2, respectively, 

were injected intravenously twice (day 0 and day 3) into HBV tg mice and sera of 

mice were tested 6 h after injection for IFN-α by ELISA assay. Mice treated with 

HCV-sequence specific siRNA (si-Ctrl) served as negative control (Fig. 2.20 a). Both 

ligands 3p-1.2 and 3p-RNA triggered a fast IFN-α response at comparable levels, 

whereas si-1.2 treated and control mice showed no response. 

Next, the impact of 3p-RNA was compared with the antiviral effect of 3p-siRNAs on 

HBV replication in HBV tg mice. Therefore, mice were injected with 3p-RNA, 3p-1.1 

and 3p-1.2, as well as their non-phosphorylated counterparts si-1.1 and si-1.2, 

respectively. Si-Ctrl treated mice served as negative control. HBV replication levels 

were determined by Southern blot analysis of pooled, intrahepatic HBV-DNA, isolated 

at day 6 after treatment. HBV genome integrates served as a loading control. HBV-

DNA of HepG2 H1.3 cells, treated with or without the HBV-sequence single-cutter 

EcoRI, served as a control for different HBV-DNA forms (Fig. 2.20 b). Consistent with 

the in vitro data at day 6, mice treated with 3p-RNA, siRNA and 3p-siRNA showed a 

clear reduction on HBV-DNA replication in comparison to the control group (si-Ctrl). 

Nevertheless, 3p-RNA seemed to reduce HBV DNA levels superior to 3p-siRNA or 

siRNA at this timepoint. 

The results confirm a rapid IFN-I induction by 3p-1.2 comparable to 3p-RNA in vivo. 

Moreover, mice treated with 3p-siRNA, 3p-RNA or siRNA, respectively, showed a 

drastic reduction of intracellular HBV-DNA levels at day 6 after treatment.  
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Fig. 2.20: 3p-siRNAs were functional as RIG-I ligands in vivo. a) IFN-α concentration in serum of 

HBV tg mice treated with indicated RNA-oligonucleotides, measured by ELISA 6 h after first injection 

at day 0. Data are shown as mean ± SD, n=4. b) Southern blot analysis of pooled (n=5) intrahepatic 

HBV-DNA (75 µg total DNA was applied per lane) of HBV tg mice 6 days after treatment with indicated 

RNA-oligonucleotides. HBV genome integrates in HBV tg mice served as loading control. HBV-DNA of 

HepG2 H1.3 cells, treated with or without the HBV-sequence single-cutter EcoRI, served as a control 

for different HBV-DNA forms.  
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2.5.7 Long-term treatment of HBV by 3p-siRNA in vivo 
 

The antiviral efficiency of both RNA-oligonucleotides was compared over an 

extended time period of 15 days. Therefore, HBV tg mice were injected intravenously 

with 3p-RNA, 3p-1.2, si-1.2 or si-HCV (si-Ctrl) as negative control, respectively. 

Therapeutic effects against HBV were monitored at day 6, day 9 and day 15 after 

application by determination of hepatocellular HBV pgRNA levels and progeny HBV 

DNA levels in the serum of mice by qRT-PCR (Fig. 2.21), as well as by cytoplasmic 

HBV core-protein staining in liver sections (Fig. 2.22).  

Mice treated with si-1.2 exhibited a slight decrease of pgRNA levels at day 6 and day 

9. 3p-RNA or 3p-1.2 treatment, respectively, led to a significant and comparable 

reduction of pgRNA at day 6. However, 3p-1.2 that combines HBV-specific gene 

silencing and immune stimulatory properties, showed a significantly stronger effect 

on HBV pgRNA than 3p-RNA and si-1.2 alone at day 9. Of note, no effect on pgRNA 

was detectable anymore at day 15 (Fig. 2.21 a). 

HBV DNA levels in the sera of the mice were comparable in all groups at day 0, the 

day of application. Mice treated with si-1.2 showed only a minor reduction of HBV 

viremia, and the effect had disappeared at day 9. In contrast, both, 3p-RNA more 

than 3p-1.2 injected mice showed a significant drop of HBV viremia at day 6 and day 

9 after treatment in comparison to control group, consistent with Southern blot data 

(Fig. 2.20 b). Furthermore, HBV viremia remained reduced until day 15 in comparison 

to control mice. (Fig. 2.21 b). 
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Fig. 2.21: Combined antiviral efficiency of 3p-siRNA in vivo. a) Quantitative PCR analysis of HBV 

DNA levels in serum of HBV tg mice at day 0, 6, 9, 12 and 15, respectively, after treatment with 

indicated RNA-oligonucleotides. b) Quantiative PCR analysis of hepatocellular pgRNA levels in HBV 

tg mice at day 6, 9 and 15, respectively, after treatment with indicated RNA-oligonucleotides, relative 

to mRNA levels GAPDH, normalized to mice treated with control siRNA.Results are shown as mean ± 

SD, n=4 (*P<0.05, **P<0.01, ***P<0.001, t-test). 
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To investigate the antiviral effect of 3p-RNA and 3p-1.2 on protein expression, the 

Pathology of Helmholtz Zentrum München additionally performed a HBV core-

antigen staining of the liver tissue of treated animals (Fig. 2.22). Two different core-

antigen staining patterns were observed. First, core-protein that assembles in the 

nucleus of HBV positive hepatocytes by an unknown mechanism remained 

unaffected by treatment. This phenomenon occurs frequently in HBV mouse models 

and results in a nuclear core staining (N), which was observed in 90 - 95% and at 

comparable intensity in all samples. In addition, cytoplasmic core-staining (CP) was 

detected, predominantly located in the area of central veins (CV). Mice treated with 

si-1.2 exhibited little effect, whereas 3p-RNA treatment led to a drastic reduction of 

cytoplasmic core-protein at day 9. Strongly decreased levels of cytoplasmic core-

protein were also observed in mice injected with 3p-1.2, even though not as drastic 

as in 3p-RNA treated mice (Fig. 2.22 a). Cytoplasmic HBV core-antigen staining at 

day 15 was not affected anymore in si-1.2 treated mice, but slightly diminished in 

both, 3p-RNA and 3p-1.2 treated mice with superior effects of 3p-1.2 (Fig. 2.22 b). 
 

 
 
Fig. 2.22: HBV-core antigen staining in liver of RNA-oligonucleotide treated HBV tg mice. HBV 

tg mice were injected with indicated RNA-oligonucleotides. Liver tissue was analyzed by HBV core-

antigen staining at a) day 9 and b) day 15 after treatment. N: nuclear positivity; CP: cytoplasmic 

positivity; CV: central vein; PV; portal vein. Results are representative for n=5 mice per group, 2 mice 

per group were analyzed. 
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The in vivo results confirmed that the combinatorial antiviral effect of 3p-1.2 was 

superior to siRNA or 3p-RNA. 

 

 
2.6 Liver directed targeting of RNA-oligonucleotides in vivo 
 

As already shown, HBV-sequence specific siRNAs acted on cytosolic HBV RNAs in 

HBV replicating hepatocytes in vitro and in vivo. For that, RNAi inducing 3p-1.2 and 

si-1.2 had to reach the hepatocytes. Within the in vitro systems efficient targeting was 

given by direct transfection. In the in vivo system, in contrast, the RNA-

oligonucleotides were injected into the tail vein of HBV tg mice and had to reach the 

hepatocytes via bloodstream transport. In order to protect them from degradation and 

enhance efficient liver targeting, all RNA-oligonucleotides were complexed prior to 

injection with “in-vivo-jetPEI”, a reagent that protects and delivers nucleic acids to 

various tissues via the intravenous route, also to the liver. Nevertheless, in vivo 

experiments indicated a lower impact on HBV replication by non-phosphorylated si-

1.2, indicating an insufficient delivery into hepatocytes.    

 
 
2.6.1 Targeting specificity of applied RNA-oligonucleotides  
 

To determine the delivery efficiency of RNA-oligonucleotides into the liver and to 

specify other targeted organs, HBV tg mice were injected intravenously with 

complexed si-1.2 or 3p-1.2, respectively. After isolation of liver, spleen, kidney, heart 

and gastric lymphatic glands 6 hours after injection, IFN-β expression was 

determined on mRNA levels in respective organs by qRT-PCR (Fig. 2.23). 
Interestingly, mice treated with unphosphated si-1.2 showed a strong IFN-β induction 

in isolated lymph nodes and in the spleen. No or minor IFN-β expression was 

detectable in the liver, kidney and heart, respectively, after application of si-1.2. 

Accordingly, 3p-1.2 injected mice revealed a potent IFN-β expression in gastric 

lymphatic glands and at reduced levels also in the spleen. No IFN-β induction was 

observed neither in the kidney nor in the heart or in the liver. 
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Fig. 2.23: IFN-β expression in different organs of si-1.2 and 3p-1.2 treated HBV tg mice. HBV tg 

mice were injected intravenously with jetPei complexed si-1.2 and 3p-1.2, respectively. 6 hours after 

injection IFN-β expression was determined in different isolated organs on mRNA level by qRT-PCR 

relative to GAPDH, normalized to IFN-β values in the liver of mice treated with si-1.2. Results are 

shown as mean ± SD, n=2. 

 

 

The results demonstrate that both complexed si-1.2 and 3p-1.2 were predominantly 

delivered into gastric lymph nodes and into the spleen after systemic administration, 

where they efficiently induced IFN-β, likely via TLR3 or RIG-I stimulation. No or only 

minor amount of injected RNA-oligonucleotides ended up in the liver. 

To confirm and visualize these results, mice were injected intravenously with jetPEI 

complexed si-1.2, which was fluorescently labeled at the 5`-end of the plus-strand 

with Alexa 488 via a biotin residue. Liver, spleen, kidney and lung were isolated 6 

hours after injection, thin sections of isolated organs were prepared and Alexa 488 

localized by fluorescence microscopy (Fig. 2.24). Comparing the examined organs, 

only a small amount of applied fluorescently labeled si-1.2 localized to the liver, but at 

least partially in double-nucleated hepatocytes (solid white arrows). Most of it, 
however, accumulated and clotted in undefined areas of the liver (dashed white 

arrows), likely in LSECs or Kupffer cells. Most of the intravenously applied siRNA 

ended up in the spleen. Rare single fluorescence signals could also be detected in 

the kidney and in the lung.  



Results 

	
   87	
  

                                             
 

Fig. 2.24: Targeting efficiency of fluorescently labeled and complexed si-1.2 to different organs. 

Mice were injected intravenously with fluorescently labeled (Alexa 633) si-1.2., previously complexed 

with jetPEI. Organs were analyzed for siRNA distribution 6 hours p. inj., indicated by white arrows. 

Solid arrows point to siRNA distribution in hepatocytes, dashed arrows to aggregates in undefined 

structures, likely Kupffer cells or LSECs. Results are representative for n=2 / group.  

 

 

The results validated that most of the complexed and intravenously injected RNA-

oligonucleotides predominantly ended up in the spleen and only a low amount 

reached the liver. 
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2.6.2 Liver-specific targeting of RNA-oligonucleotides 

 

Targeting and delivery of siRNAs into specific cell types is a major problem in RNAi 

treatment. To improve the RNAi-based effect of 3p-siRNA mediated combinatorial 

therapy of HBV, the hepatocellular uptake of siRNA had to be improved. Several 

possibilities for enhanced liver specific delivery were considered. A promising 

approach included the application of the siRNA by an alternative injection technique. 

The hydrodynamic injection (HDI) technique was already used to efficiently deliver 

nucleic acids to the liver (Klein, 2003 #668;Giladi, 2003 #1753;Morrissey, 2005 

#764;Huang, 2006 #1781}. By hydrodynamic injection the siRNA is rapidly injected in 

a large volume under high pressure intravenously into the tail vein of the mice. To 

compare the efficiency of RNA-oligonucleotide delivery by classical intravenious 

injection and hydrodynamic injection, mice were injected by both injection techniques 

with naked (not complexed with jetPEI) si-1.2, which was previously fluorescently 

labeled at the 5`-end of the plus-strand with Alexa 488. Liver, spleen, kidney were 

isolated 6 hours after injection and siRNA-coupled Alexa 488 was localized in 

different organs by fluorescence microscopy (Fig. 2.25). Fluorescently labeled siRNA 

applied by classical intravenous injection predominantly accumulated in the spleen. A 

small amount of applied si-RNA reached the liver, but was primarily localized outside 

of the hepatocytes. Additionally, injected siRNA was detectable to a minor extent in 

the kidney of the mice. (Fig. 2.25 a). In contrast, hydrodynamic injection led to an 

increased targeting of the siRNA to hepatocytes, especially to hepatocytes located in 

an area near sinusoidal blood vessels. Less siRNA was delivered to the spleen and 

only minor amounts to the kidney (Fig. 2.25 b). 

The results indicate an enhanced delivery of naked siRNA to the liver and especially 

into hepatocytes by hydrodynamic injection in comparison to classical intravenous 

injection. Nevertheless, the structure and vitality of the liver seemed to be negatively 

affected by hydrodymaic injection. 
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Fig. 2.25: Targeting efficiency of fluorescently labeled naked siRNA to different organs by 

intravenious injection and hydrodynamic injection. Mice were treated with naked (uncomplexed) 

fluorescently labeled (Alexa 633) si-1.2. by a) classical intravenous injection or b) hydrodynamic 

injection (HDI). Organs were analyzed for siRNA distribution 6 hours p. inj.. Results are representative 

for n=2 / group. 
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An alternative method to enhance the delivery efficiency of the nucleic acid to the 

liver is the linkage of a targeting ligand to the siRNA. Bioconjungation of the siRNA to 

cholesterol at the 3´-end of the plus strand via a cleavable linker (TEG, triethylene 

glycol) was already shown to significantly increase targeting efficiency of the modified 

siRNA to human liver cells (Soutschek, Akinc et al. 2004). Therefore, HBV-specific si-

1.2 was coupled at the 3`-end of the plus-strand with cholesterol and labeled 

fluorescently at the 5`-end of the plus-strand with Alexa 488. To investigate the liver 

targeting of modified cholesterol-linked siRNA and additionally compare different 

delivery strategies, cholesterol-conjugated si-1.2 was injected by different methods 

and localized by fluorescent microscopy 6 hours after application (Fig. 22.6). First, 

modified siRNA was complexed before application with jetPEI and then classically 

injected intravenously (Fig. 22.6 a). Second, naked (not complexed with jetPEI) 

modified si-1.2 was classically injected intravenously (Fig. 22.6 b) and third, naked 

modified si-1.2 was injected by hydrodynamic injection (Fig. 22.6 c). All three 

applications led to a comparable accumulation of siRNA in the spleen, but no or only 

minor residues of siRNA were detected in the kidneys. Mice classically intravenously 

injected with complexed modified siRNA revealed an increased amount of siRNA in 

the liver compared to mice treated with jetPei complexed but unmodified siRNA (Fig. 
2.24), although a high amount accumulated outside of hepatocytes (Fig. 22.6 a). In 

contrast, naked modified siRNA, classically injected intravenously, was also 

efficiently delivered into the liver, but additively localized in hepatocytes (Fig. 22.6 b). 

Only little amount of naked modified siRNA injected by hydrodynamic injection ended 

up in the liver (Fig. 22.6 c).  
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Fig. 2.26: Targeting efficiency of cholesterol coupled siRNA to different organs using different 
forms of applications. HBV tg mice were treated with cholesterol-coupled and fluorescently labeled 

(Alexa 633) si-1.2. by a) classical intravenous injection, previously complexed with JetPei b) classical 

intravenous injection, uncomplexed (naked) or c) hydrodynamic injection (HDI), uncomplexed (naked). 

Organs were analyzed for siRNA distribution 6 hours p. inj.. Results are representative for n=2 / group. 

 

 

The results indicate that naked cholesterol-coupled siRNA, injected by classical 

intravenous application, efficiently reaches the liver including hepatocytes. In 

comparison of all investigated applications, cholesterol coupling to 5`-triphosphate 

RNA may represent a powerfull targeting-tool. Nevertheless, the preferred method for 

liver directed targeting, although not optimal, was the classical intravenous injection 

of jetPEI-complexed nucleic acids during this study. 
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2.6.3 IFN-β induction by 3p-siRNA in different liver cell populations 

 
As already stated, the liver consists beside hepatocytes also of non-parenchymal 

cells, such as liver sinusoidal endothelial cells (LSECs) and Kupffer cells. The 

previous described delivery studies revealed that injected nucleic acids partially 

reached the liver, but only to some extent the hepatocytes. A certain proportion 

apparently ended up in other liver cells, likely LSECs or Kupffer cells. To elucidate 

whether 3p-siRNA potentially induced an IFN-I response also in these non-

parenchymal cell types, LSECs and Kupffer cells were isolated beside PHHs from 

fresh human liver specimen and treated with both, 3p-siRNA and si-1.2, respectively, 

poly(I:C) was used as positive control, si-Ctrl as negative control (Fig. 22.7). To 

mimic a potential uptake like in the in vivo situation, RNA-oligonucleotides were 

complexed with “in vivo-jetPEI” and added into the supernatant of the PHHs (Fig. 
22.7 a), LSECs (Fig. 22.7 b) and Kupffer cells (Fig. 22.7 c), respectively. Potent IFN-

β induction was shown 6 hours after application on mRNA levels by qRT-PCR in all 

cell types.  

 

                         
 

Fig. 2.27: IFN-β induction in different liver cell populations after uptake of complexed 3p-siRNA. 

Indicated RNA-oligonucleotides were complexed with JetPei and added to the supernatant of purified 
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liver cell populations. IFN-β expression was determined in a) Primary human hepatocytes (PHHs) b) 

liver sinusoidal endothelial cells and c) Kupffer cells by quantitative RT-PCR analysis 20 hours after 

treatment, relative to GAPDH, normalized to si-Ctrl (HCV-sequence specific siRNA) treated cells. Data 

represent mean values ± SD, n=3.  

 

 

2.7 Initiation of an adaptive immune response against HBV 
 
2.7.1 3p-siRNA induced expression of proinflammatory cytokine in liver cells  
 

It is known that poly(I:C) stimulation of TLR3 leads to a potent expression of 

proinflammatory cytokines like IL-6 in murine non-parenchymal liver cells, in LSECs 

and Kupffer cells (Wu, Lu et al. 2007). Accordingly, it was shown that stimulation of 

RIG-I induces the transcription of proinflammatory cytokines like IL-1, IL-6 and TNF-α 

via the canonical IKK pathway (Dinarello 2000). Secretion of proinflammatory 

cytokines like IL-6 and TNF-α lead to the recruitment of natural killer cells, natural 

killer T cells and T-cells. Accordingly, clearance of HBV is typically associated with 

multispecific CD4+ and CD8+ T cell response (Rehermann 2003).   

Therefore, LSECs and Kupffer cells were stimulated with both, 3p-1.2 and si-1.2, 

poly(I:C) was used as positive control, si-Ctrl RNA as negative control. Based on the 

results of the previous experiment, RNA-oligonucleotides were complexed and 

applied by addition into the supernatant. Cells were tested 6 hours after application 

for secretion of IL-6 and TNF-α into the supernatant by ELISA assay.  

Isolated LSECs and Kupffer cells showed a strong basal expression level of IL-6 

(dotted red line). Nevertheless, application of 3p-1.2 and poly(I:C), respectively, led to 

significant additive induction of IL-6 in LSECs. In contrast, Kupffer cells revealed a 

lower basic induction of IL-6 and only application of 3p-1.2 induced a significant 

additive IL-6 expression (Fig. 2.28 a). Additionally, LSECs and Kupffer cells showed 

significant induction of TNF-α following 3p-1.2 stimulation (Fig. 2.28 b).  

 



Results 

	
   94	
  

             
 
Fig. 2.28: IL-6 and TNF-α induction in purified liver cell populations after uptake of complexed 

3p-siRNA. Indicated RNA-oligonucleotides were complexed with JetPei and added to the supernatant 

of purified liver cell populations. Liver sinusoidal endothelial cells, LSECs (left panels) and Kupffer 

cells (right panels) were analyzed for a) IL-6 and b) TNF-α expression by ELISA 6 hours after 

treatment. Basic induction indicated by dotted red line. Data represent mean values ± SD, n=3. 
 

 

The results indicate that uptake of 3p-1.2 by liver sinusoidal endothelial cells (LSECs) 

and Kupffer cells induced potent expression of proinflammatory cytokines such as IL-

6 and TNF-α. 

 

 
2.7.2 Induction of an adaptive immune response against HBV after RNA-

oligonucleotide stimulation in vivo 
 
It was shown that application of immune-stimulatory RNA-oligonucleotides led to a 

potent stimulation of an antiviral acting innate immune response against HBV. 

Furthermore it was presumed, due to the previous experiment, that application of 3p-
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siRNA additionally led to the expression of proinflammatory cytokines and potentially 

could be followed by the induction of an HBV antigen specific adaptive immune 

response after several days. Therefore it was investigated in vivo, whether the mice 

previously treated with immune-stimulatory and antivirally active RNA-

oligonucleotides revealed any induction of an adaptive immune response (Fig. 2.29). 

Accordingly, mice treated with 3p-RNA, 3p-1.2, si-1.2 and si-Ctrl as negative control, 

respectively, were analyzed for liver damage by determining serum alanine 

aminotransferase (ALT) levels at day 0, 4, 9 and 15 after injection (Fig. 2.29 a). In 

fact, nearly all treated mice showed significantly elevated ALT levels at day 9 after 

injection, irrelevant of the RNA-oligonucleotide, in comparison to normal ALT values 

at day 4. The ALT levels decreased back to normal ranges at day 15 in almost all 

treated mice.   

Additionally, the livers of mice were analyzed at day 9 and 15 after injection for 

expression of CD8 (Fig. 2.29 b) and IFN-γ (Fig. 2.29 c) on mRNA level by qRT-PCR. 

CD8 is a surface marker of predominately cytotoxic T cells lymphocytes (CTLs). IFN-

γ is a cytokine produced predominately by CD8+ CTLs during antigen specific 

adaptive immune response. The analysis revealed slightly increased overall CD8 

expression in treated mice at day 9 in comparison to day 15. In particular 3p-RNA 

and 3p-1.2 treated mice, respectively, showed an increase in CD8 expression, 

indicating CD8+ T cell infiltration. Furthermore, overall IFN-γ expression was slightly 

increased at day 9 in comparison to day 15, in turn particularly in 3p-RNA and 3p-1.2 

injected mice.  

The results indicate induction of an HBV antigen specific adaptive immune response 

at day 9 after application of both, 3p-RNA and 3p-1.2, but need to be confirmed by 

specific T cell assays like intracellular IFN-γ staining after e.g. peptide stimulation. 
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Fig. 2.29: Induction of an adaptive immune response in HBV tg mice. HBV tg mice were injected 

twice (day 0 and day 3) with indicate RNA-oligonucleotides. a) Alanine aminotransferase (ALT) levels 

in serum of mice at day 4, day 9 and day 15 after treatment. b) Quantitative RT-PCR analysis of CD8 

expression and c) IFN-γ expression in liver of mice at day 9 and day 15 after treatment with different 

RNA-oligonucleotides relative to GAPDH. Data represent mean values ± SD, n=5 (**P<0.01, t-test). 

 

 

To support these results of an inflammatory immune response, the Pathology of 

Helmholtz Zentrum München performed histological analyses of the liver tissues of 

treated HBV tg mice at day 9 and day 15 after injection, respectively (Fig. 2.30). 

Histopathological alterations were classified in changes affecting the portal tracts, 

including liver arteries, -veins and –bile duct (e.g. inflammation, degenerative 

changes of the bile ducts, fibrosis), changes affecting the lobule, which are clear 

anatomical divisions or extensions (e.g. spotty and bridging necrosis, degenerative 

changes of the hepatocytes, fibrosis) and changes affecting the vessels (e.g. 

inflammation, fibrosis, thrombosis). Furthermore, alterations were graded as mild, 

moderate and severe, depending on their frequency and severity.  



Results 

	
   97	
  

 
 
Fig. 2.30: Liver staining (HE and PAS) of RNA-oligonucleotide treated HBV tg mice. HBV tg mice 

were injected with indicated RNA-oligonucleotides. Liver tissue was analyzed by HE and PAS staining 

for alterations along with an adaptive immune response at a) day 9 and b) day 15 after treatment. One 

representative out of n=5 mice per group is shown, 2 mice per group were analyzed. 

 

 

The histological analysis revealed clear symptoms of an inflammatory reaction in the 

liver of si-1.2, 3p-RNA and 3p-siRNA treated mice, respectively, at day 9 after 

injection. Foci of spotty necrosis with apoptotic hepatocytes were found in almost all 

cases of treated animals, except for si-Ctrl (Fig. 2.30 a, middle and right). 
Moreover, infiltration of immune cells resulting in a mild to moderate subendothelial 

inflammation (endothelitis) of the central and portal veins (Fig. 2.30 a, left and right), 
sometimes associated with perivenular necrosis of hepatocytes (Fig. 2.30 a, middle) 
was found only in treated animals.  

Furthermore, in comparison to modest liver tissue with normal portal tracts of si-Ctrl 

treated animals at day 15 (Fig. 2.30 b, left), only small foci of spotty necrosis (Fig. 
2.20 b, middle) and mild subendothelial infiltration of portal veins (Fig. 2.20 b, 
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middle) were found in treated animals at this timepoint. Therefore, we concluded that 

inflammatory changes had ceased at day 15. 

The results indicate, in correlation with previous serological results (ALT values), an 

inflammatory reaction in the liver of si-1.2, 3p-RNA and 3p-siRNA treated animals, 

respectively, at day 9 after treatment and its resolution towards day 15.  
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3 Discussion 
 
About two billion people worldwide (~ 30%) have been infected with HBV and about 

360 million (5 - 7%) live with a chronic state of infection. Estimated 700 000 persons 

die each year due to the acute or chronic consequences of hepatitis B (WHO, 2008). 

Approved therapies of chronic hepatitis B include antiviral active IFN-α and inhibitors 

of viral reverse transcription. Their use leads to suppression of viral replication, but 

with partially limited effectiveness concerning sustained antiviral effects or even 

elimination of the virus. Indeed, following treatment termination, persistent cccDNA is 

able to initiate a new HBV replication cycle (Protzer and Schaller 2000), even after 

serological clearance of viral infection (Werle-Lapostolle, Bowden et al. 2004).	
  

Therefore, a lifelong therapy, accompanied by appearance of severe cytotoxic side 

effects and drug-resistant HBV mutants, is indispensable in most cases. This rather 

limited clinical success demonstrates the necessity for the development of new 

therapies, focused on the effective and long-lasting suppression of HBV replication, 

associated with enhanced physiological compatibility. Combinatorial strategies 

targeting simultaneously multiple steps of HBV replication represent a promising tool 

for the treatment of chronic hepatitis B. In this project we developed a novel 

immunotherapeutic approach, combining endogenous IFN-I induced antiviral activity 

against HBV by stimulation of the cytosolic helicase RIG-I with HBV sequence 

specific gene silencing by RNAi in one single molecule.  

The therapeutic aspects of (1) IFN-I induction by RIG-I stimulation in (2) combination 

with siRNA mediated gene silencing targeting HBV replication, as well as (3) options 

for efficient delivery of the designed molecule in vivo and (4) simultaneous initiation 

of an HBV-specific immune response will be consecutively discussed below. 
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3.1 RIG-I dependent induction of IFN-I and interferon stimulated genes by 
3p-RNA suppressed HBV replication in vitro and in vivo  
 

3.1.1 3p-RNA induced IFN-I suppresses HBV replication  
 

Hornung et al. showed in a series of elegant studies that in vitro transcribed 5`-

triphosphated-dsRNA (3p-RNA) strongly induces endogenous IFN-I by stimulation of 

RIG-I (Hornung, Ellegast et al. 2006). We intended to use 3p-RNA to initiate an 

endogenous antivirally active IFN-I response by stimulation of RIG-I to potentially 

suppress HBV replication in this study.  

To test the therapeutic potential of 3p-RNA against HBV in this project, we revealed 

the antiviral effects of transfected 3p-RNA on HBV replication in stably HBV 

expressing HepG2 H1.3 cells and in HBV infected PHHs. Both cell types showed a 

potent reduction of HBV-DNA levels after transfection with 3p-RNA, but not after 

treatment with control RNA. Additionally, HBeAg, HBsAg and HBV pgRNA levels 

were significantly diminished compared to untreated cells, indicating an antiviral 

activity at the level of transcription and posttranscriptionally. In addition, we examined 

the antiviral effect of 3p-RNA in vivo. HBV tg mice revealed a significant decrease of 

HBV-DNA levels in the blood. Furthermore, HBV antigen and intrahepatic 

pregenomic RNA levels were drastically reduced. These results suggest that 

selective engagement of RIG-I by 3p-RNA displays pronounced antiviral activity in 

vitro and in vivo. 

RIG-I, broadly expressed in almost every cell type (Melchjorsen, Jensen et al. 2005) 

was proposed to detect long dsRNA (Yoneyama, Kikuchi et al. 2004) and additionally 

identified as a cellular key sensor of negative-strand RNA viruses (Plumet, Herschke 

et al. 2007; Habjan, Andersson et al. 2008; Takeuchi and Akira 2008). Furthermore, it 

has been demonstrated that RIG-I is essential for the production of antiviral 

interferons in response to RNA viruses that express a phosphorylated RNA genome 

(Kato, Takeuchi et al. 2006). Moreover, the presence of a triphosphate group at the 

5`-end of both, ssRNA and dsRNA is an important molecular feature that is 

recognized by RIG-I (Kim, Longo et al. 2004; Hornung, Ellegast et al. 2006; 

Pichlmair, Schulz et al. 2006; Cui, Eisenacher et al. 2008; Saito, Owen et al. 2008; 

Takahasi, Yoneyama et al. 2008). In contrast, recent work by Kato et al. suggests 
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that long dsRNA of vesicular stomatitis virus (> 300 bp) can substitute for the 

presence of a 5´-triphosphate group (Kato, Takeuchi et al. 2008). In summary, 

stimulation of antivirally active IFN-I can be induced by different RNA-

oligonucleotides serving as RIG-I ligands, the exact structure of the RNA remains 

controversial (Schlee, Hartmann et al. 2009). The antiviral effect of IFN-I on HBV 

replication was described extensively in vitro and in vivo (Guidotti and Chisari 1999; 

Rang, Gunther et al. 1999; Schultz, Summers et al. 1999; McClary, Koch et al. 2000; 

Wieland, Guidotti et al. 2000; Pasquetto, Wieland et al. 2002) and led to approved 

application of exogenous IFN-α in clinical treatment of chronic HBV infection, 

although still inducing severe side effects.  

In search for appropriate HBV model systems we analyzed several hepatoma 

derived cell lines as well as isolated PHHs (Schulze-Bergkamen, Untergasser et al. 

2003) for expression of RIG-I. Previous stimulation of cells with IFN-I is known to 

increase the expression of RIG-I (Bowie and Unterholzner 2008). We detected 

expression of endogenous RIG-I protein in all analyzed liver cells, which could be 

drastically enhanced by addition of exogenous IFN-I. It remains to be elucidated 

whether the expression of RIG-I can also be increased by induction of endogenous 

IFN-I after transfection of 3p-RNA. However, neither HuH7 cells (Nakabayashi, 

Taketa et al. 1982) nor its subline HuH7.5 (Blight, McKeating et al. 2002) revealed 

any induction of IFN-β by 3p-RNA or poly(I:C), respectively. Consistently, it has been 

published that Huh7 cells failed to produce IFN-I via TLR3 or RIG-I signaling 

pathway, explained by insufficient TLR3 expression and by an undefined defect on 

RIG-I receptor level, respectively (Li, Chen et al. 2005; Preiss, Thompson et al. 

2008). This holds also true for HuH7.5 cells, which are highly permissive for 

replication of HCV RNA replicons (Blight, McKeating et al. 2002), but are also devoid 

of proper IFN-induction in absence of TLR3 and due to a point mutation of RIG-I 

within its CARD-like domain (Sumpter, Loo et al. 2005). In contrast, HepG2 cells 

(Hirayama, Kohgo et al. 1993) are known to be competent for IFN-I signaling via RIG-

I stimulation (Preiss, Thompson et al. 2008). Moreover, the use of a stably HBV 

expressing cell line for in vitro investigations was preferred, therefore HepG2 H1.3 

cells (Jost, Turelli et al. 2007; Protzer, Seyfried et al. 2007) were chosen. This cell 

line additionally establishes, in contrast to HepG2 2.15 cells, episomal cccDNA, 

helpful as an accessory replication marker and hardly to affect by antiviral therapy. 

PHHs were selected as an in vitro HBV infection model, which also express cccDNA 
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during HBV replication. In addition, as an in vivo model system, we decided to use 

HBV1.3 –xfs transgenic (tg) mice carrying a genotype D HBV1.3 overlength genome, 

with a frameshift mutation (GC) in the x-gene at position 2916/2917  (Weber, 

Schlemmer et al. 2002). The virus replicating in HBV1.3 –xfs mice is non-infectious in 

vivo as suggested by studies using X-mutated woodchuck HBV (WHV) in 

woodchucks (Chen, Kaneko et al. 1993).  

A dual-luciferase assay performed in RIG-I expressing HEK 293 cells (Aiello, 

Guilfoyle et al. 1979) revealed clear differences in the potency to induce IFN-I via 

RIG-I stimulation of different 3p-RNAs derived from seperate in vitro transcriptions. 

These observations could be explained as a consequence of inefficient 

triphosporylation during reverse transcription by T7 RNA polymerase within diverse 

preparations. Another important conclusion that can be drawn from several 

puplications is that induction of IFN-I by RIG-I stimulation strongly depends on the 

structure and sequence of the 3p-RNA. Interestingly, short-hairpin 3p-RNAs 

synthesized by T7 RNA polymerase do not induce IFN-I (Gondai, Yamaguchi et al. 

2008). The 3p-RNA used in this study includes a GU-rich dsRNA sequence with an 

overhang of one G-nucleotide at the 5`-position of both strands and was already 

shown to strongly induce IFN-I (Hornung, Ellegast et al. 2006). The guanine-base 

overhang increased transcription efficiency, whereas presence of the pyrimidine base 

uracil within the dsRNA sequence was shown to be essential for double-strand 

formation during in vitro transcription by T7 RNA polymerase (Schlee, Roth et al. 

2009). Controversially, it was recently suggested that fully synthetic 5`-triphosphate 

short blunt-end dsRNA structure with out an overhang, as contained in the panhandle 

of negative-strand RNA genomes, confers full RIG-I ligand activity (Schlee, Roth et 

al. 2009). However, it remains to be elucidated whether 5`-triphosphate short blunt-

end dsRNA without an overhang of one G-nucleotide at the 5`-postion on both 

strands would increase IFN-I induction by stimulation of RIG-I in our models.  

3p-RNA has been shown to selectively induce apoptosis in melanoma cell lines by an 

IFN-independent antiviral signaling pathway (Poeck, Besch et al. 2008; Besch, Poeck 

et al. 2009). To exclude toxic effects of 3p-RNA in our cellular system, HepG2 H1.3 

cells were transfected with different concentrations of 3p-RNA. Tolerance of treated 

cells for the 3p-RNA concentration used throughout the study (0.5 µg / ml) was 

confirmed by a cell viability assay determining active metabolism in mitochondria. 

The formed dye was quantitated in a spectrophotometer, absorbance directly 



Discussion 

	
   103	
  

correlated with number of living cells. Vitality levels above 100% can be explained 

due to determination by means of linear regression analysis. Identical concentrations 

of Ctrl-RNA were used throughout the in vitro studies. Synthetic dsRNA poly(I:C), 

used as positive control, was transfected in lower concentrations (0.05 µg / ml), due 

to its known toxicity in high concentrations. Neither Ctrl-RNA, nor poly(I:C) showed 

any obvious cytotoxicity at applied concentrations in vitro, but has to be further 

investigated by cell viability analysis or determination of alanine aminotransferase 

(ALT) levels that is predominately secreted by damaged liver cells in detail. 

In addition, toxicity of RNA-oligonucleotides in vivo, complexed with the cationic 

polymer polyethylenimine (PEI) before systemic distribution by intravenous injection, 

was examined by monitoring serum ALT levels. HBV tg mice exhibited unchanged 

ALT levels 6 hours after both applications of 3p-RNA (25 µg per mouse and injection, 

respectively), and also at day 6, comparable to mock treated mice, which 

demonstrated the safety of the therapy in vivo. Surprisingly, several mice treated with 

Ctrl-RNA revealed significantly elevated ALT levels. This apparent discrepancy could 

be explained by a possible contamination of the synthetic Ctrl-RNA by bacterial 

components, such as LPS, which might have elicited an inflammatory response by 

TLR or by complement activation in some of the animals (Zhong, Deaciuc et al. 2006; 

Zhang, Kimura et al. 2007).   

After exclusion of cytotoxic side effects, we analyzed the potency of 3p-RNA to 

stimulate IFN-I expression. We found that 3p-RNA induced a potent IFN-I response 

in vitro and in vivo. The IFN-β response in HepG2 H1.3 cells even remained 

detectable until day 6 after transfection, whereas it was significantly reduced in PHHs 

at this timepoint. Remarkably, IFN-I expression levels in PHHs at day 1 after 

application were comparable with those of HepG2 H1.3 cells at day 3. This result 

indicated that initial IFN-I induction by 3p-RNA was significantly higher in HepG2 

H1.3 cells than in PHHs, possibly as a result of reduced transfection efficiency of 

hardly transfectable PHHs. Since TLR3 expression is known to be diminished in 

HepG2 cells (Preiss, Thompson et al. 2008), its likely that the strong IFN-I induction 

in poly(I:C) treated HepG2 H1.3 cells appeared by stimulation of cytosolic helicase 

MDA-5 (Alexopoulou, Holt et al. 2001; Gitlin, Barchet et al. 2006; Kato, Takeuchi et 

al. 2006). However, the TLR expression pattern of PHHs is not well known and is 

currently characterized in our laboratory.  
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To obtain immunostimulatory activity of 3p-RNA in vivo, HBV tg mice were injected 

twice (day 0 and day 3), related to the experiences of our collaborators Poeck and 

colleagues, who observed comparable IFN-I induction after both applications, each 

peaking 6 hours (unpublished data). Accordingly, we detected high serum IFN-α 

levels 6 hours after the first injection of 3p-RNA. Interestingly, the expression of IFN-

α was already markedly reduced 6 hours after the second injection at day 3 and not 

detectable at day 6 in an ELISA assay. 

Consistent with our data, 2`-5`-oligoadenylate synthetase (OAS), which is known to 

be activated by IFN via dsRNA stimulation (Hovanessian and Justesen 2007; 

Silverman 2007), was induced by 3p-RNA application in our in vitro models. In the 

murine system studied here, only remaining levels of intrahepatic 2`-5`-OAS were 

detectable on mRNA level at day 6 after injection, which was unexpected considering 

the stunning induction of IFN-α detected in the serum of 3p-RNA treated mice 6 

hours after application in comparison to mock treated mice. Reflecting this apparent 

discrepancy, and taking into account that the majority of 3p-RNA was taken up by 

non-hepatocytes, it appears more likely that IFN-α expression is also initiated by 

accessory cells targeted by 3p-RNA after systemic distribution. This was further 

investigated and results revealed that also non-parenchymal cells, such as LSECs 

and Kupffer cells are capable to strongly induce IFN-I. 

After having confirmed IFN-I and 2`-5`-OAS induction in our HBV models, no further 

analysis of IFN-induced ISGs were performed in this study. Many studies aimed at 

defining how interferons act on HBV. Analyzing the different steps of the HBV 

replication cycle it became obvious, that mainly posttranscriptional steps were 

affected (Klocker, Schultz et al. 2000; Robek, Boyd et al. 2004), but at higher doses 

also transcription was controlled. Guidotti et al. showed that RNase L, an enzyme 

induced by 2´-5`-OAS, which is able to degrade viral RNA and cellular RNAs (Floyd-

Smith, Slattery et al. 1981), does not affect HBV replication in vivo, demonstrated in 

RNase L-/- knockout mice (Guidotti, Morris et al. 2002). The group showed in a similar 

study that the IFN induced dsRNA-dependent protein kinase (PKR) could mediate 

the antiviral activity against HBV (Guidotti, Morris et al. 2002). Furthermore, IFN-I 

upregulates the expression of GTPases Mx (Martens and Howard 2006; Haller, 

Staeheli et al. 2007). In addition, it was suggested that the human GTPase MxA 

(myxovirus resistance protein A) exhibits antiviral activity and inhibits HBV replication 

at posttranscriptional level in HuH7 and HepG2 cells (Melen, Keskinen et al. 2000; 
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Gordien, Rosmorduc et al. 2001). Furthermore, Wieland et al. revealed that gene 

expression of the murine GTPases IIGP is strongly upregulated by IFN stimulation 

and is tightly associated with inhibition of HBV replication (Wieland, Vega et al. 

2003). Moreover, IFN-I induced proteins of the APOBEC3 family, which are cellular 

cytidine deaminases, were assumed to be involved in antiviral inhibition of HBV 

replication in hepatoma cell lines (Rosler, Kock et al. 2005; Baumert, Rosler et al. 

2007). Bonvin et al. detected significantly elevated APOBEC3 mRNA levels in PHHs 

stimulated with IFN-I (Bonvin, Achermann et al. 2006). Nevertheless, it has been 

recently demonstrated by Tuarelli and colleagues that IFN-induced viral clearance of 

HBV occurs independently of APOBEC3 in HBV tg mice (Turelli, Liagre-Quazzola et 

al. 2008). It therefore remains to be further elucidated, whether IFN-I stimulated 

expression of antivirally active PKR and GTPases is also involved in the suppression 

of HBV replication in our model systems. 

In addition, we investigated whether the applied RNA-oligonucleotides stimulate the 

induction of type-II interferon (IFN-γ). We were not able to detect hepatocellular 

expression of IFN-γ on mRNA level in our model systems after stimulation with 3p-

RNA or poly(I:C), respectively. Moreover, we were interested whether the IFN 

inducible protein 10, IP-10, which is a chemoattractant for the recruitment of effector 

T cells, macrophages, NK cells and DCs in vivo (Luster, Unkeless et al. 1985; 

Dufour, Dziejman et al. 2002) is expressed after administration of 3p-RNA and 

poly(I:C) in vitro and in vivo. Despite the absence IFN-γ, both ligands induced strong 

expression of IP-10 via IFN-I induction in vitro. Remarkably, RNA-oligonucleotide 

treated mice showed only minor residual expression of IP-10 at hepatocellular mRNA 

level after treatment with Ctrl-RNA at day 6. Nevertheless, it is conceivable that high 

expression of IFN-I in the circulation of the murine system was followed by systemic 

induction of IP-10, as it has been recently described by Harkins et al. (Harkins, 

Szymanski et al. 2008). However, this aspect has to be further investigated. 

In search for the mechanism and to further elucidate the contribution of RIG-I and 

interferon-α/β-receptor (IFNAR) in 3p-RNA-induced expression of IFN-I, we knocked 

down RIG-I and IFNAR expression, respectively, by siRNA transfection in HepG2 

H1.3 cells and PHHs. We observed significantly reduced IFN-β levels in both cell 

types treated previously with siRNA against RIG-I, but astonishingly, only a minor 

reduction of IFN-β expression in cells previously treated with IFNAR specific siRNA. 
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Accordingly, it has been shown that hepatoma cell lines such as HuH7 and HepG2 

exhibit only a minor suppression of IFN-I signal transduction after knockdown of 

IFNAR-I in comparison to other hepatoma derived cell lines (Damdinsuren, Nagano 

et al. 2007). Nevertheless, we concluded from these experiments that RIG-I is strictly 

required for 3pRNA-dependent induction of IFN-I. However, a feed-back loop via the 

IFNAR seems to play a minor role in 3p-RNA-mediated suppression of HBV 

replication in vitro and in vivo. For the murine system it would be helpful to cross HBV 

tg mice with RIG-I deficient (RIG-I-/-) (Kato, Takeuchi et al. 2006) or IPS-1 deficient 

(IPS-1-/-) mice (Kumar, Kawai et al. 2006), as well as with common IFNAR deficient 

(IFNAR-/-) mice, respectively, to dissect this. 

 

 

3.1.2 HBV escapes from antiviral activity of IFN 
 

Detailed analysis revealed a reduced antiviral effect in PHHs in comparison to 

HepG2 H1.3 cells. Concurrently, we observed lower induction of 2`-5`-OAS after 

treatment with 3p-RNAs, which indicated a weaker antiviral IFN response due to 

hampered transfection efficacy. Moreover, a diminished IFN-I induction in PHHs 

might go along with an active counteraction of HBV against IFN-induced antiviral 

activity. Active HBV evasion to circumvent or even inactivate IFN-I antiviral 

mechanisms have been described and may be also responsible for limited IFN-I 

efficacy in around 30% of chronic HBV patients.  

It has been shown that HBV developed various strategies to counteract IFN signaling 

pathways. Assumingly, HBV is able to overcome or inhibit mechanisms of antiviral 

effector molecules and may also inhibit IFN signaling pathway. For example it was 

proposed that HBV suppresses IFN-β expression at transcriptional level by direct 

binding of HBV-core protein to the regulatory sequence of the IFN-β gene (Twu, Lee 

et al. 1988; Twu and Schloemer 1989; Whitten, Quets et al. 1991). Furthermore, it 

had been published that expression of the IFN effector protein MxA is inhibited by 

direct binding of the core-protein to regulatory elements of the MxA promotor 

sequence in HepG2 2.15 cells (Fernandez, Quiroga et al. 2003; Guan, Lu et al. 

2007), in HepG2 cells transiently transfected with a recircularized HBV genome 

(Fernandez, Quiroga et al. 2003) and in peripheral blood momonuclear cells (PBMC) 

from HBV chronically infected patients (Fernandez, Quiroga et al. 1997). Confirming 
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previous studies it has been suggested that encapsidation of spliced HBV RNA leads 

to the secretion of circulating HBV defective particles (referred to as dHBV DNA), 

which have been detected at higher level in patients evolving chronicity in 

comparison to those recovering from acute HBV infection (Rosmorduc, Petit et al. 

1995; Soussan, Pol et al. 2008). The dHBV DNA may lead to cytoplasmic 

accumulation of the core-protein, which strongly reduced the antiviral activity of IFN-α 

by inhibition of MxA expression in vitro (Rosmorduc, Sirma et al. 1999). Besides the 

core-protein, other HBV proteins have been proposed to interact with the IFN 

pathway. For instance, it has been demonstrated that 5% of human fibroblasts 

transfected with the terminal protein (TP) domain of the HBV polymerase are 

resistant to IFN and dsRNA stimulation (Foster, Ackrill et al. 1991). Moreover, to 

clarify a potential clinical relevance of this inhibitory effect, expression of TP was 

analyzed in liver cells of patients with chronic hepatitis B. Accordingly, it was 

suggested that TP expression is associated with a failure of hepatocytes to respond 

to IFN therapy (Foster, Goldin et al. 1993). A report by Wu et al. supported these 

results. The authors revealed that TP inhibits expression of several interferon 

stimulated genes, such as ISG15 and adaptor protein MyD88 (myeloid differentiatial 

primary response protein 88) by direct interference with the target promotor activity 

through blockage of STAT1 nuclear import (Wu, Xu et al. 2007). Moreover, it was 

shown that also HBV S- and X-protein are directly involved in inhibition of antiviral 

IFN signaling. A report by Christen et al. indicated that the S- and, or X-protein, 

respectively, could block nuclear import of STAT1 by upregulation of a cellular protein 

phosphatase named pp2A in vitro and in liver biopsies from chronically infected HBV 

patients (Christen, Duong et al. 2007). Additionally, Zhang et al. described that HBV 

X-protein may inhibit cellular proteasome activity, necessary for viral protein 

degradation, and coevally enhances viral replication (Zhang, Protzer et al. 2004). 

Altogether, these reports point to the fact that HBV counteracts IFN-induced 

suppression by interference of different HBV proteins with several actors of the IFN 

signaling pathway and moreover, might enhance simultaneously its own replication 

level. Accordingly, it was recently observed in our group that treatment of HBV 

replication with low concentrations of different types of IFN-α, conventionally used in 

antiviral therapy, led to slightly increased levels of HBV replication markers in vitro 

(Yuchen Xia, unpublished data). Higher dose of IFN, however, can clearly overcome 

the escape mechanisms and show antiviral activity. 
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There is evidence that an additionally escape mechanism of HBV is reflected in the 

direct interaction with PRR signaling cascades. Besides reports of HBV dependent 

modulation of TLR expression (Visvanathan, Skinner et al. 2007; Chen, Cheng et al. 

2008), it was demonstrated that HBV suppress innate antiviral immune response 

elicited by TLR3 and TLR4 stimulation of both, hepatocytes and non-parenchymal 

cells, respectively. Accordingly, the authors found suppression of IFN-β production 

and decreased IFN stimulated gene expression (Wu, Meng et al. 2009). These 

strategies of HBV to counteract antiviral activity of IFN-I could have assisted a 

decreased antiviral effect in PHHs. A better understanding of these mechanisms 

might provide means to enhance and support antiviral treatment with IFN. 

 

 

3.2 3p-siRNA combines RIG-I stimulation and siRNA mediated gene 
silencing and indicates a long lasting and superior anti-HBV effect 

 
3.2.1 HBV-sequence specific siRNAs 
 

To enhance the therapeutic efficiency against HBV we intended to combine the 

antiviral immune regulatory effect of RIG-I stimulation with an RNAi mediated gene-

silencing effect of vulnerable cytosolic HBV-RNA. Therefore, we designed three 

different HBV-sequence specific siRNAs, targeting three different regions within or 

near the common polyadenylation signal region at the 3`-end of HBV-RNAs. The 

targeted regions offer the possibility of interfering with several sensitive sites due to 

overlapping open reading frames (ORFs). RNAi is a powerful tool to inhibit the 

function of HBV target genes and has already been shown to exhibit a potent antiviral 

effect against HBV in vitro (Hamasaki, Nakao et al. 2003; Konishi, Wu et al. 2003) 

and in vivo (Giladi, Ketzinel-Gilad et al. 2003; Klein, Bock et al. 2003; McCaffrey, 

Nakai et al. 2003). Moreover, it has been reported that the highest inhibitory effects 

induced by different siRNAs targeted HBcAg and HBx gene (McCaffrey, Nakai et al. 

2003; Shlomai and Shaul 2003). Accordingly, we designed a siRNA named si-1.1 

that targeted this preferential region of the HBV genome within the overlapping ORFs 

of the X-protein and the precore/core protein and therefore affected all HBV-mRNAs. 

The siRNA named si-1.2 target an alternative region within the X-protein ORF, but 
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also affected all HBV-mRNAs transcripts. Another alternative HBV-genome target 

region, the ORF of the polymerase, was directed by siRNA si-1.3, which affects all 

HBV mRNA transcripts except for the 0.7 kb transcript of the X-protein. The HBV 

targeting sequences of all siRNAs are conserved within the different genotypes, 

except the rare genotype F HBV. 

Delivery of siRNA into mammalian cells is known to often induce a non-specific 

innate immune response. The RNA-activated protein kinase (PKR) can be stimulated 

by sequence unspecific double-stranded siRNA (Bridge, Pebernard et al. 2003; 

Sledz, Holko et al. 2003). Therefore, asymmetrical siRNA possessing a standard 3`-

overhang, such as our siRNAs, have become more widely used in an attempt to 

improve RNAi potency (Soutschek, Akinc et al. 2004). However, it was demonstrated 

that blunt-ended RNA, including siRNA, can also bind to and activate RIG-I, when the 

RNA is released into the cytoplasm (Hornung, Guenthner-Biller et al. 2005; Marques, 

Devosse et al. 2006). Moreover, delivered siRNA can interact with sequence-

unspecific TLR3 and sequence-specific TLR7 or TLR8, respectively, as the RNA 

traffics through the endosomal compartment (Akashi, Miyagishi et al. 2005; Judge, 

Sood et al. 2005). These “off-target” effects lead to the production of IFN-I, as well as 

proinflammatory cytokines and induce NFκB activation. Nevertheless, in 

consideration of our intention to combine siRNA mediated gene silencing of HBV with 

the immuno-stimulatory activity of 3p-dsRNA, endogenous IFN response is rather 

desired. Accordingly, we resigned any stabilizing chemical modifications of the siRNA 

for nuclease degradation resistance, for example substitution of the 2`-OH group in 

the ribose sugar backbone to a 2`-O-methyl (2`OMe) group, as they were used for 

HBV siRNA treatment in vivo (Morrissey, Lockridge et al. 2005). It was shown that 2`-

OMe modified siRNAs are recognized with high affinity by TLR7/8, but do not induce 

downstream signaling (Sioud, Furset et al. 2007). 2`-OMe modification of the siRNA 

is sufficient to abrogate siRNA-mediated interferon induction also in vivo (Judge, Bola 

et al. 2006). It has to be further investigated, whether application of unmodified 

siRNA had any attenuating impact on siRNA stability and efficiency in vitro or in vivo. 
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3.2.2 HBV-sequence specific 3p-siRNAs efficiently suppress HBV replication  
 

5`-triphosphate groups were coupled to siRNAs during in vitro transcription and 

resulting oligonucleotides were termed 3p-1.1, 3p-1.2 and 3p-1.3. Combination of 

siRNA mediated gene silencing with additional antiviral approaches was already 

shown to exhibit greater inhibitory effects on HBV replication. For example, it was 

shown that combination of siRNA with lamivudine exerted a pronounced inhibition of 

HBV replication in HepG2 2.15 cells (Li, Xu et al. 2007). Moreover, a very recent 

report by Vincent et al. described the enhanced inhibitory effect by the combination of 

CpG-induced cytokines with lamivudine against HBV replication in HBV infected 

differentiated HepaRG cells (Vincent, Lucifora et al. 2009). Concerning our 

combinatory approach of IFN-I induction by RIG-I stimulation and siRNA mediated 

gene silencing, it has been lately shown by our collaborators Poeck et al. that 3p-

siRNA efficiently turns gene silencing and RIG-I activation against melanoma (Poeck, 

Besch et al. 2008). The particular advantage using a combinatorial therapeutic 

strategy of immunostimulatory and siRNA over conventional monotherapy using 

nucleos(t)ide analogues is that the immunostimulatory 3p-component targets 

specifically HBV replication, whereas the siRNA gene silencing component acts 

independently from HBV replication and will be thus less subjected due to 

development of resistance. A limited half-life period and absence of cytotoxic side 

effects of systemically applied 3p-siRNA would prefer our combinatory molecules 

before other HBV treatment strategies in development, such as redirected T-cell 

therapy. 

To demonstrate the therapeutic efficiency of our new molecules, we first showed a 

clear induction of IFN-β in 3p-1.2 treated HepG2 H1.3 cells, whereas cells treated 

with si-1.2 elicited no IFN-β expression. Next, we tested the potency of all three 3p-

siRNAs to induce IFN-I. As expected, 2`-5`-OAS levels were strongly induced in both, 

HepG2 H1.3 cells and HBV infected PHH. Consistent with the upregulation of IFN-I 

and 2`-5`-OAS by all three 3p-siRNAs, we observed a significant reduction of 

progeny HBV DNA copies, as well as HBeAg and HBsAg levels. Similar results were 

obtained in HBV-infected primary cells. Remarkably, also cccDNA levels, which 

indicate HBV persistence and are hardly affected by any anti-HBV drug, were 

decreased after application of 3p-siRNAs in both in vitro models. Nevertheless, 
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comparing the antiviral effects of all three 3p-RNAs, the equally potent IFN induction 

did not lead to the same strong antiviral effect, suggesting a combinatorial antiviral 

effect of RIG-I stimulation with variable potent siRNA mediated gene silencing. 

To test the efficacy against different HBV genotypes, PHHs were infected with 

isolated virus from stably HBV producing hepatoma cell line HepG2 2.15 several 

days before treatment. HepG2 2.15 cells express genotype A HBV in comparison to 

HepG2 H1.3 cells, which replicate genotype D HBV. Comparable reduction efficiency 

of HBV replication markers in HepG2 H1.3 and HBV infected PHHs indicated that the 

RNAi component of 3p-siRNA was also functional against genotype D HBV. To 

further sustain this result we tested the therapeutic efficiency of 3p-siRNAs also in 

HepG2 2.15 cells. Surprisingly, the transfected 3p-siRNAs revealed none or only 

minor residual expression of 2´-5´-OAS at day 6 after application, fitting to the 

reduced sensitivity of HepG2 2.15 cells against IFN (Guan, Lu et al. 2007). 

Nevertheless, probably independent of IFN-I induction, progeny HBV DNA-, HBeAg- 

and pgRNA levels, respectively, were significantly reduced. These results supported 

effective siRNA dependent HBV gene silencing of genotype A HBV and moreover, 

independent of the fact that HepG2 2.15 cells replicated HBV approximately twice as 

high as HepG2 H1.3 cells. It remains to be further elucidated, whether 2`-5`-OAS 

levels were already strongly diminished on day 6 or if RIG-I expressing HepG2 2.15 

cells showed no triphosphate induced IFN-I response at all. 

To analyze whether immunostimulation and RNAi-mediated gene silencing acted 

synergistically to suppress HBV replication, we compared the primarily used 3p-RNA 

with our new 3p-siRNAs in HepG2 H1.3 cells. We observed strongly reduced viremia, 

as well as cccDNA and HBV-protein levels, respectively, after treatment with the 

original 3p-RNA. Intriguingly, all three 3p-siRNAs revealed an even more pronounced 

reduction of HBV-DNA levels compared to 3p-RNA alone. Nevertheless, comparing 

all in vitro results, 3p-1.2 indicated the most promising antiviral effects and was used 

for further experiments.  

To prove the sustained antiviral effects of 3p-siRNA, we compared the antiviral 

efficacy of 3p-RNA with 3p-1.2 over a prolonged period of 16 days in HepG2 H1.3 

cells. Because HBV replication is attenuated until the cell layer is confluent, we 

detected only low progeny HBV-DNA and HBeAg levels at day 0.5. In correlation to 

increasing hepatocellular differentiation (Quasdorff, Hosel et al. 2008), HBV 

replication increased constantly until day 10. Application of both, 3p-1.2 and si-
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1.2decreased HBV-DNA and HBeAg levels at all timepoints. Yet, 3p-1.2 showed a 

significantly more prolonged antiviral response than si-1.2 or 3p-RNA alone. Thus, 

our data demonstrated that the early antiviral response until day 6 is comparable 

between all therapeutic oligonucleotides, but IFN mediated reduction of HBV 

replication by 3p-RNA and 3p-1.2 decreased over time. Therefore, 3p-RNA was 

equally active at early timepoints, but 3p-1.2 was superior over time due to its gene 

silencing activity. These results confirmed the superior antiviral activity by the 

combination of immunostimulation and HBV gene silencing in one single molecule in 

vitro. In addition, we excluded hampered siRNA binding to HBV-RNA due to 

appearance of mutations by RNAi selection pressure in 3p-1.2 or si-1.2 treated cells. 

These observations indicated a combinatory antiviral effect of IFN-I induction by RIG-

I stimulation and siRNA mediated HBV gene silencing in vitro, superior than each 

mechanism alone. 

In vivo, both molecules, 3p-RNA and 3p-1.2, induced comparable IFN-α levels, 

determined 6 hours after the first injection in the sera of mice. 3p-RNA and 3p-siRNA 

elicited comparable reduction of hepatocellular HBV-DNA and HBV pgRNA levels at 

day 6 after application. In contrary and consistent with our in vitro data, 3p-1.2 

showed a significantly stronger effect than 3p-RNA on HBV pgRNA at day 9, pointing 

to an effective combinatory antiviral mechanism of 3p-1.2 in vivo. Remarkably, the 

antiviral effect of 3p-RNA and 3p-1.2 on HBV viremia remained until day 15. As 

previously described, HBV RNA-containing capsids are preferentially targeted by 

IFN-I (Schultz, Summers et al. 1999; Wieland, Guidotti et al. 2000). Consistently, 3p-

RNA and 3p-siRNA induced IFN-I exhibited a strong impact on cytoplasmic core 

protein expression at day 9, which persisted until day 15.  

Surprisingly, si-1.2 treatment alone showed only minor reduction of HBV replication 

markers in vivo over time. This observation suggested that all RNAs, including the 

siRNAs, were not effectively delivered to hepatocytes to fully elicit their gene 

silencing component after systemic administration. Nevertheless, the in vitro 

experiments confirmed that gene silencing is an important key function of 3p-1.2. 

Likewise, the lower antiviral response induced by si-1.2 in vivo highlighted the 

importance of inducing an innate immune response. In fact, detailed analysis 

revealed that even PEI complexed 3p-siRNA is systemically distributed. More than 

the liver, the lymphatic glands and the spleen expressed IFN-I after intravenous 

injection of 3p-1.2, likely via stimulation of endosomal TLRs and RIG-I in immune 
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cells (Applequist, Wallin et al. 2002; Heil, Hemmi et al. 2004; Hornung, Ellegast et al. 

2006). In addition, fluorescently labeled si-1.2 complexed with PEI was enriched 

predominantly in the spleen, and to reduced extend in liver. This indicate that liver 

cells played only a subordinary role in antiviral IFN-I induction by systemic 3p-siRNA 

application. Remarkably, the results showed that also unphosphated si-1.2 induced 

IFN-I in lymphatic glands and in the spleen, although to a minor extent, referred as 

an “off-target” effect by stimulation of TLRs or RIG-I, respectively (Akashi, Miyagishi 

et al. 2005; Hornung, Guenthner-Biller et al. 2005; Judge, Sood et al. 2005; Marques, 

Devosse et al. 2006). 

 
 

3.3 Liver targeting of modified siRNAs using different applications in vivo 
 

Due to the poor hepatocellular uptake of siRNA and to improve the effect of 3p-

siRNA based combinatory therapy we wanted to improve hepatocyte targeting. 

Different groups already followed up several strategies in this context, using delivery 

vehicles or chemical modifications and bioconjugations. The most widely used 

vehicles for this purpose are based on positively charged (cationic) agents that 

complex with, or encapsulate, the negatively charged nucleic acid. The cationic 

polymer PEI (polyethylenimine), used in this study for 3p-RNA application (Poeck, 

Besch et al. 2008), could not yield the desired hepatocyte targeting. Importantly, such 

delivery vehicles are typically taken up into cells by endocytosis, and are 

concentrated in endosomal compartments prior to releasing the nucleic acid into the 

cytoplasm (Robbins, Judge et al. 2009). This fact could contribute to the limited 

observed gene silencing efficiency of both, si-1.2 and 3p-siRNA in vivo. Alternatively, 

hydrodynamic injection (HDI) was shown to deliver nucleic acids more efficiently to 

the liver (Giladi, Ketzinel-Gilad et al. 2003; Klein, Bock et al. 2003; Morrissey, 

Blanchard et al. 2005; Huang, Wu et al. 2006). Using this injection technique we 

observed an increase of fluorescently labeled si-1.2 in liver cells and simultaneously 

a decrease in spleenocytes, compared to si-1.2 after conventional intravenous 

administration. Nevertheless, this approach seemed rather promising, because 

structure and vitality of liver cells seemed to be negatively affected by HDI, due to the 

rapid intravenous injection of a large volume under high pressure. 
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In addition, chemical modifications by bioconjugation are used to increase liver 

directed targeting. Conjugated cholesterol to the 3`-end of the sense-strand was 

shown to significantly increase the levels of hepatocellular uptake (Soutschek, Akinc 

et al. 2004). We observed that cholesterol-conjugation to fluorescently labeled si-1.2 

drastically increased the hepatocellular uptake particularly by hepatocytes after 

conventional injection, in comparison to unmodified si-1.2. Previous complexation 

with PEI even increased the targeting efficiency. Application of cholesterol-coupled 

si-1.2 by HDI showed no accessory targeting effect. An antagonizing attribute might 

be the limited stability of uncomplexed siRNA (Braasch, Jensen et al. 2003; 

Czauderna, Fechtner et al. 2003), which is exposed to drastic shear forces during 

HDI. In summary, the data showed promising prospects to further enhance 

hepatocelluar uptake of 3p-siRNA by bioconjugation with cholesterol. Nevertheless, it 

remains to be investigated in more detail, whether 5`-triphosphated siRNA could be 

stabilized by sugar backbone modifications and moreover, modified by 3`-cholesterol 

coupling, or whether stoechiometric limitations might drop this approach. However, 

various considered alternative approaches could further enhance hepatocyte specific 

targeting of 3p-siRNA. Morrissey et al. incorporated chemically modified siRNAs 

against HBV into a specialized liposome to form a stable nucleic acid lipid particle 

(SNALP). After intravenous administration significant improvement of efficacy 

combined with a longer half-life were observed in the liver of treated animals 

(Morrissey, Blanchard et al. 2005; Morrissey, Lockridge et al. 2005). Furthermore, we 

considered the use of recombinant adeno-associated viral (rAAV) vector as a delivery 

vehicle. AAV-8 pseudotype shows high natural liver tropism and was already used in 

preclinical evaluations as a vector for hepatocyte specific delivery approaches (Gao, 

Alvira et al. 2002; Grimm, Zhou et al. 2003). Alternatively, antibody-mediated delivery 

is an effective method of targeting siRNA to liver cells. Wen et al. constructed a 

fusion protein containing a single chain of the human variable fragment (scFv) 

against HBsAg, coupled to HBV-sequence specific siRNA. The modified siRNA was 

specifically delivered into HBsAg-positive cells and effectively inhibited HBV gene 

expression in vitro and in vivo (Wen, Liu et al. 2007). Thus, efficient delivery of 3p-

siRNA into hepatocytes remains the main goal of further investigations.  

Previous described delivery studies revealed that injected complexed nucleic acids 

only partially reached the liver and only to some extent the hepatocytes. A certain 

proportion apparently ended up in non-parenchymal cells (NPCs) such as LSECs or 
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Kupffer cells. Therefore, we wanted to elucidate the contribution of these cells, 

beside heaptocytes, in 3p-siRNA mediated induction of IFN-I. To mimic a potential 

uptake like in the in vivo situation, PEI-complexed 3p-1.2. was added to all isolated 

cell types and a potent IFN-β induction could be shown in all cases. These results 

clearly indicated the potency of NPCs to contribute to an anti-HBV response via 

stimulation of endogenous IFN-I and ISGs, as it was already shown by Wu and 

colleagues (Wu, Lu et al. 2007). It has to be further investigated, whether other cell 

types are contributed to the strong IFN-I expression after systemic distribution of 

triphosphated RNA-oligonucleotides in vivo. 

 

3.4 Application of immune-stimulatory RNA-oligonucleotides initiates an  

adaptive T cell response against HBV 
 

Further investigations of LSECs and Kupffer cells revealed that both cell types 

additionally expressed the proinflammatory cytokines IL-6 and TNF-α, respectively, 

after treatment with 3p-1.2., and in contrast to PHHs. It was already shown that 

hepatoma cells are defective for induction of Il-6 and TNF-α after stimulation with 

transfected poly(I:C), acting as a TLR3 or MDA-5 ligand (Wu, Lu et al. 2007; Preiss, 

Thompson et al. 2008). It has to be further investigated whether this is probably also 

applied for RIG-I stimulation of PHHs. Nevertheless, we assumed that expression of 

proinflammatory cytokines might be an indicator for the induction of an HBV antigen 

specific adaptive immune response after several days.  

A cytolytic clearance of HBV infection is dependent on adaptive T cell response by 

cytotoxic CD8+ T cells (CTLs), which inhibit viral replication and kill infected cells 

(Guidotti, Ishikawa et al. 1996). The elimination of cccDNA containing hepatocytes is 

essential for the clearance of HBV infection. HBV tg mice are immunologically 

tolerant to HBV antigens. Nevertheless, it was shown that the HBV tg mice used in 

this study are not completely xenotolerant (Quasdorff, Hosel et al. 2008). The study 

demonstrated that HBV envelope proteins were not expressed during the embryonic 

phase of development and thus probably do not induce tolerance by deletion of T 

cells. HBV replication only starts after birth. This enables appearance of an adaptive 

T cell response in HBV tg mice.  
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In fact, a major part of mice treated with 3p-RNA or 3p-1.2, respectively, revealed 

enhanced levels of IFN-γ and CD8 mRNA in the liver and significantly elevated ALT 

levels at day 9 after application, indicating a CD 8 T cell influx into the liver. A similar 

picture was obsereved in a very recent study during early stages of HBV infection in 

patients (Fisicaro, Valdatta et al. 2009). Moreover, histological analysis of liver tissue 

confirmed appearance of an inflammatory reaction in treated mice at this timepoint. A 

clear shift towards resolution of the inflammatory changes indicated by decrased ALT 

levels, as well as diminished expression of CD8 and IFN-γ could be observed at day 

15. It is conceivable that an accessory adaptive T cell response, induced after RNA-

oligonucleotide application, might additionally enhance the antiviral activity. However, 

this needs to be proven by the analysis of liver associated lymphocytes. It was 

observed that the expression of MHC I on HBV infected hepatocytes, required for 

effective presentation of HBV specific antigens on the cell surface to stimulate 

cytotoxic T-cell response, was significantly diminished (Chen, Tabaczewski et al. 

2005). In contrast, it was shown that IFN-I modulates a number of immunoregulatory 

functions involving interactions between cells. This multiple-cell response includes 

the IFN-I induced expression of MHC-I antigens, (Samuel 2001), which is also 

increased after application of 3p-RNA or 3p-siRNA, respectively (Poeck, Besch et al. 

2008). An IFN-I induced increase of antigen presentation could stimulate the 

direction of the adaptive immune response by priming T helper cells and cytotoxic T 

cells (Biron 1999), which might result in complete elimination of HBV replication. 

Detailed characteristics have to be examined, but it is conceivable that an optimized 

induction of IFN-I by RNA-oligonucleotides could even assist the cytolytic adaptive 

immune response against HBV. 
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4 Material and Methods 

 

4.1 Biotic and abiotic material 
All solutions were prepared with deionised water from the Ultra Pure Water System 

Easy Pure UV/UF (Werner Reinstwassersysteme, Wilhelm Werner GmbH, 

Leverkusen, Germany). At a resistance of 16 Mega Ohm or more obtained water is 

valid as desalted and is comparable to double-distilled water (ddH2O). 

 

4.1.1 Consumable items 

Cell culture flasks     Nunc, Wiesbaden, Germany 

Cell culture dishes     Nunc, Wiesbaden, Germany 

Cell culture well plates    Nunc, Wiesbaden, Germany 

Cell strainer      Nunc, Wiesbaden, Germany 

Centrifuge vials (15 / 50ml)  Falcon, BD GmbH, Heidelberg, Germany 

Chamber Slides LabTekII, RS Glass Nunc, Wiesbaden, Germany 

Cryo vials      Nunc, Wiesbaden, Germany 

Cuvettes      Sarstedt, Nümbrecht, Germany 

ELISA 96-well-plates   Maxisorb, Nunc, Wiesbaden, Germany 

Filter paper Whatman 3MM  Biometra, Göttingen, Germany 

Freezing Container     Nalgene, Nunc, Wiesbaden, Germany 

Perfusion cutlery    BD Valu-SetTM, Heidelberg, Germany 

Pipetts, single use    Sarstedt, Nümbrecht, Germany 

Hyperfilm ECL     GE Healthcare, Buckinghamshire, UK 

Pipette tipps      Starlab GmbH, Ahrensburg, Germany 

Reaction vials     Eppendorf, Hamburg, Germany 

Reflotron® ALT stripes     Roche Diagnostics, Mannheim, Germany 

Saran folie      Roth, Karlsruhe, Germany 

Tissue paste Histoacryl®   Braun, Melsung, Germany 

Syringes     Heiland Med GmbH, Hamburg, Germany 

Ultra centrifuge-tubes, polyallomer Beranek Laborgeräte, Weinheim, Germany  

Nylon membrane, positively charged Roche Diagnostics, Mannheim, Germany 

PVDF membrane     Amersham, Buckinghamshire, UK 

X-ray film     Biomax MR-Film, Kodak, Germany 
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4.1.2 Chemicals 

Acidic acid      Roth, Karlsruhe, Germany 

Acryl amide      Sigma, Deisenhofen, Germany 

Agarose SeaKem LE    Cambrex Bio Science, Rockland, USA 

Ammonium acetate    Merck, Darmstadt, Germany 

Ammoniumpersulfate    Roth, Karlsruhe, Germany 

Aqua-Phenol (pH 4,5)   Roth, Karlsruhe, Germany 

Bradford Reagent     Sigma, Deisenhofen, Germany 

Bromphenol blue     Merck, Darmstadt, Germany 

BSA (Bovines serum albumine)   Serva, Heidelberg, Germany 

Caesium chloride    Roth, Karlsruhe, Germany 

Collagen      Serva, Heidelberg, Germany 

1,4-Diazabicyclo[2,2,2]octane 98%  

(DABCO)     Sigma Aldrich Chemie GmbH, Steinheim, 

      Germany 

DEPC (Diethylpyrocarbonate)   Roth, Karlsruhe, Germany 

Developer G153 A + B   Agfa Geveart NV, Mortsel, Belgium  

Dimethylsulfoxide (DMSO)   Merck, Darmstadt, Germany 

Ethanol      Roth, Karlsruhe, Germany 

Ethylenedinitrilotetraacedic acid  

(EDTA)      Roth, Karlsruhe, Germany 

Ethidium bromide     Merck, Darmstadt, Germany 

Formaldehyde     Roth, Karlsruhe, Germany 

Formamide      Roth, Karlsruhe, Germany 

Glycerine (Glycerol)    Roth, Karlsruhe, Germany 

Glucose      Sigma, Deisenhofen, Germany 

Glutaraldehyde     Sigma, Deisenhofen, Germany 

Hydrochloric acid     Roth, Karlsruhe, Germany 

Isopropanol      Roth, Karlsruhe, Germany 

Methanol      Roth, Karlsruhe, Germany 

Milk powder      Sigma, Deisenhofen, Germany 

Mowiol 4-88 reagent   Calbiochem, La Jolla, CA, USA  

NP-40      Roth, Karlsruhe, Germany 

Paraformaldehyde    Merck, Darmstadt, Germany 
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Polyethylenglycol (PEG) 6000  Serva Electrophoresis, Heidelberg, Germany 

Ponceau S      Roth, Karlsruhe, Germany 

Potassium      Roth, Karlsruhe, Germany 

Potassium chloride     Merck, Darmstadt, Deutschand 

Potassium acetate     Merck, Darmstadt, Germany 

Potassium dihydrogenphosphate  Roth, Karlsruhe, Germany 

Rapid Fixer G354    Agfa Geveart NV, Mortsel, Belgium 

RNALater      Quiagen, Hilden, Germany 

Roti-Phenol (pH 7,5)    Roth, Karlsruhe, Germany 

Saccharose      Sigma, Deisenhofen, Germany 

Sodium acetate     Merck, Darmstadt, Germany 

Sodium chloride     Roth, Karlsruhe, Germany 

Sodium citratdihydrate    Roth, Karlsruhe, Germany 

Sodium dihydrogenphosphate   Roth, Karlsruhe, Germany 

Sodium hydroxid     Roth, Karlsruhe, Germany 

Sodium dodecylsufate (SDS)   Merck, Darmstadt, Germany 

Spermidine-HCl     Sigma, Deisenhofen, Germany   
Sucrose      Sigma, Deisenhofen, Germany 

Tetramethylethylendiamine (TEMED) Sigma, Deisenhofen, Germany 

Tissue-Tak® Tec     Sakura Finetec, Torrance, USA 

Tris-Base      Roth, Karlsruhe, Germany 

Tris-HCl      Roth, Karlsruhe, Germany 

Triton X-100      Roth, Karlsruhe, Germany 

Trizol reagent    Invitrogen, Karlsruhe, Germany 

Tween 20      Roth, Karlsruhe, Germany 

Virkon disinfectant     Tetenal AG & Co KG, Norderstedt, Germany 

Yeast extract     BD Microbiology Systems, Sparks, USA 

 
4.1.3 Kits 
4.1.3.1 Cell isolation 

Kupffer cells     Pierce, Rockford, IL, USA 

LSECs     Miltenyi, Bergisch Gladbach, Germany 
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4.1.3.2 DNA labelling 

Rediprime DNA Labeling System  Amersham, Buckinghamshire, UK 

 
4.1.3.3 ELISA 

Human IFN-γ     BD Microbiology Systems, Sparks, USA 

Human IL-6      BD Microbiology Systems, Sparks, USA 

Mouse IFN-α     Biosource, Solingen, Germany 

Murex HBsAg Version 3   Abbott, Wiesbaden, Germany 

 
4.1.3.4 In vitro transcription (IVT)  

Silencer siRNA construction Kit  Ambion, Huntington, UK 

T7 promotor primer    Metabion Int. AG, Martinsried, Germany 

 
4.1.3.5 Luciferase detection 

Dual Luciferase reporter Assay  Promega GmbH, Mannheim, Germany 

 

4.1.3.6 Nucleic acid isolation 

High pure RNA isolation kit   Roche, Mannheim, Germany 

MinElute PCR Purification Kit  Qiagen, Hilden, Germany 

Mini Quick Spin™ Oligo Column  Roche, Mannheim, Germany 
Nucleospin Tissue Kit    Macherey-Nagel, Düren, Germany 

Nucleospin RNA II    Macherey-Nagel, Düren, Germany 

PCR Purification Kit    Qiagen, Hilden, Germany 

QIAquick Gel Extraction Kit  Qiagen, Hilden, Germany 

QIAamp DNa Blood Mini Kit  Qiagen, Hilden, Germany 

QIAamp MinElute Virus Spin Kit  Qiagen, Hilden, Germany 

 

4.1.3.7 Plasmid preparation 

QIAprep Miniprep, Maxiprep,  

EndoFree Maxiprep Kit   Qiagen, Hilden, Germany 

 

4.1.3.8 PCR reaction mix 

PuRetaq ready-to-go PCR Beads Amersham, Buckinghamshire, UK 

PCR DNA Amplification Kit   Roche Diagnostics, Mannheim, Germany 
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4.1.3.9 Real time PCR 

DNA Amplification Kit SYBR® Green Roche Diagnostics, Mannheim, Germany 

First-strand cDNA synthesis  

qRT-PCR, Superscript III   Invitrogen, Karlsruhe, Germany 

LightCycler® 1.5:  

Cycler® Capillaries (20µl)    Roche Diagnostics, Mannheim, Germany 

LightCycler® 480II: 

96-microtiter plates     Roche Diagnostics, Mannheim, Germany 
 
4.1.3.10 Transfection reagent 

FuGENE 6®     Roche Diagnostics, Mannheim, Germany 
Lipofectamin 2000®    Invitrogen, Karlsruhe, Germany 

HiPerFect®     Qiagen, Hilden, Germany 

 

4.1.3.11 Nucleic acid complexation 

invivo-jetPEI ®    Polyplus transfection, New York, NY, USA 

 

4.1.3.12 Radioactive probes  

Rediprime II Random Prime Labelling  

System     Amersham, Buckinghamshire, England 

 

4.1.3.13 Western blot 

ECL Western Blotting Detection   

Reagents      Amersham, Buckinghamshire, UK 

Enhanced Chemiluminescence  Pierce, Rockford, USA 

 

4.1.3.14 XTT-Test 

XTT - Cell Proliferation Kit II   Roche Diagnostics, Mannheim, Germany 

 

4.1.4 Cell culture  
4.1.4.1 Cell lines and primary cells 

HEK 293   - human embryonic kidney cell line (Aiello, Guilfoyle et al. 1979) 
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HepG2 H1.3 - stably HBV producing hepatoma cell line, containing one copy of a 

1.3-fold overlength HBV genome, genotype D, which establishes 

HBV cccDNA as additional transcription template (Jost, Turelli et al. 

2007; Protzer, Seyfried et al. 2007) 

HepG2.2.15   - stably HBV producing hepatoma cell line, containing four copies of a  

      1.1-fold HBV genome, genotype A (Sells, Zelent et al. 1988) 

HuH7    - human hepatoma cell line (Nakabayashi, Taketa et al. 1982) 

HuH7.5   - human hepatoma cell line, point mutation in CARD-domain of RIG-I 

      (Blight, McKeating et al. 2002) 

Kupffer cells   - liver macrophages, isolated from fresh liver specimen 

LSEC - liver sinusoidal epithelial cells, isolated from fresh liver specimen     

PHH    - primary human hepatocytes, isolated from fresh liver specimen  

      (Schulze-Bergkamen, Untergasser et al. 2003) 

 

4.1.4.2 Consumable cell culture items  

Collagenase     Worthington Biochemical Corporation,  

      Lakewood, NJ, USA 

Dimethylsulfoxid (DMSO)    Merck, Darmstadt, Germany 

Dulbeccos MEM     Gibco, BRL, Eggenstein, Germany 

Ethyleneglycolbis (2-aminoethyl)   

-tetraacetic acid (EGTA)   Roth, Karlsruhe, Germany 

Fetal Calf serum (FCS)    Biochrom AG, Berlin, Germany 

Glutamine      Gibco, BRL, Eggenstein, Germany 

HBSS      Gibco BRL, Eggenstein, Germany 

HEPES      Gibco BRL, Eggenstein, Germany 

Hydrocortisone     Sigma, Deisenhofen, Germany 

Inosine      Serva, Darmstadt, Germany 

Insulin      Serva, Darmstadt, Germany 

Non essential amino acids (NEAA) Biochrom AG, Berlin, Germany 

RPMI 1640     Gibco, BRL, Eggenstein, Germany 

Sodium pyruvate    Gibco BRL, Eggenstein, Germany 

Trypsine      Gibco, BRL, Eggenstein, Germany  

Universal type-I interferon   PBL Interferon Source, Piscataway, NJ, USA 

Williams Medium E     Gibco, BRL, Eggenstein, Germany 
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4.1.4.3 Antibiotics  

Ampicilline      Sigma, Deisenhofen, Germany 

Geniticine (Neomycine) G418  Invitrogen, Karlsruhe, Germany 

Gentamycine     Gibco BRL, Eggenstein, Germany 

Penicilline/Streptomycine   Biochrom AG, Berlin, Germany  

 

4.1.4.4 Cell culture media 

Cell freezing medium    Dulbeccos MEM  500 ml 

      FCS                      20% 

      DMSO     10%  

HEK 293 cultivation medium  Dulbeccos MEM  500 ml 

      FCS                      10 %  

   Glutamine, 200 mM     1.1 %  

   P/S, 5000 U/ml     1.1 % 

HepG2.2.15 / HepG2 H1.3 cultivation  

medium     Dulbeccos MEM  500 ml 

      FCS                      10 % 

  Glutamine, 200 mM     1.1 %  

  P/S, 5000 U/ml     1.1 % 

 NEAA, 100 x      1.1 % 

HepG2 2.15 virus production medium PHH medium  250 ml 

  Williams E medium  250 ml 

  FCS                      5 % 

  Glutamine, 200 mM     0.5 %  

  P/S, 5000 U/ml     0.5 % 

 NEAA, 100 x      0.5 % 

HuH7 / HuH7.5 cultivation medium Dulbeccos MEM  500 ml 

      FCS                      10 % 

  Glutamine, 200 mM     1.1 %  

  P/S, 5000 U/ml     1.1 % 

  NEAA, 100 x      1.1 % 

LSECs cultivation medium   PHH medium  500 ml  

 FCS    5 % 
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Kupffer cells medium   RPMI     500 ml 

 FCS    5 % 

Primary human hepatocytes, PHH 

- Preperfusion medium    HBSS, Ca/Mg-free  500 ml  

 EGTA, 100 mM  0.5 % 

 Heparine, 5000 U/ml 0.2 %  

- Collagenase medium    Williams Medium E  250 ml 

  CaCl2, 1 M   0.36 %  

      Gentamycine, 10 mg/ml 1 %  

 Collagenase typeIV  200 mg 

- Wash medium     Williams Med E  500 ml 

      Glutamine, 200 mM  1.1 % 

  Glucose, 5%   1.2 %   

  Hepes, 1 M, pH 7.4  2.25 % 

  P/S,5000U/ml  1.2 % 

- PHH medium     Wash medium  500 ml  

 Gentamycin, 10 mg/ml 1 %   

          Hydrocortison             0.1 % 

      Insulin    0.45 mg 

      DMSO    1.75 % 

      Inosine, 82.5 mg/ml  0.4 %   

 

 
4.1.5 Oligonucleotides for in vitro transcription (IVT) 
T7 promotor:  5´ CTATAGTGAGTCG 3´ 

 

DNA-template:           5´ AAGCTGACCCTGAAGTTCATCCC 3´ 

3p-RNA:  5´ppp GAAGCUGACCCUGAAGUUCAUCCC 3´  

                    3´ UUCGACUGGGACUUCAAGUAGGGG ppp 5´ 

 

DNA-template:            5´ TTTCACCTCTGCCTAATCA 3´ 

3p-1.1:  5´ ppp GUUUCACCUCUGCCUAAUCA 3´ 

                                          3´ AAAGUGGAGACGGAUUAGU ppp 5´ 
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DNA-template:           5´ CGACCTTGAGGCATACTTC 3´ 

3p-1.2:  5´ ppp GCGACCUUGAGGCAUACUUC 3´   

             3´ GCUGGAACUCCGUAUGAAGG ppp 5´   

 

DNA-template:        5´ CTATTAACAGGCCTATTGA 3´  

3p-1.3:  5´ ppp GCUAUUAACAGGCCUAUUGA 3´ 

             3´ GAUAAUUGUCCGGAUAACTG ppp 5´ 

 

 
 

Fig. 4.1: Schematic representation of triphosphated siRNA   

 
 
4.1.6 siRNAs (Eurogentec, Leiden, Belgium) 

Ctrl-RNA  

polyA-RNA (Polyriboadenosine)  5´ AAAAAAAAAAAAAAAAAAA 3´ 

  

siRNAs 

si-1.1 (3105 - 3124): HBV target 5´ TTTCACCTCTGCCTAATCA 3´  

                        sense  5´ UUUCACCUCUGCCUAAUCAdTdT 3´ 

             antisense 3´ UGAUUAGGCAGAGGUGAAAdTdT 5´  

 

si-1.2:  (2973 - 2992) HBV target 5´ CGACCTTGAGGCATACTTC 3´ 

      sense  5´ CGACCUUGAGGCAUACUUCdTdT 3´ 

     antisense 5´ GAAGUAUGCCUCAAGGUCGdTdT 3´  
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si-1.3: (2241 – 2260) HBV target 5´ CTATTAACAGGCCTATTGA 3´ 

      sense  5´ CUAUUAACAGGCCUAUUGAdTdT 3´ 

      antisense 5´ TCAAUAGGCCUGUUAAUAGdTdT 3´ 
 

si-Ctrl (HCV):    sense  5´ CUGAUAGGGUGCUUGCGAGdTdT 3´ 

      antisense 5´ CUCGCAAGCACCCUAUCAGdTdT 3´ 
      

4.1.7 PCR Primer (Invitrogen, Karlsruhe, Germany) 

Amplification primer 

HBV -2595- fw    5´ GAGCAAACATTATCGGGACT 3´ 

HBV -3081- rev    5´ GACCAATTTATGCCTACAGC 3´ 

 
Sequenzing primer 

HBV -2595- fw    5´ GAGCAAACATTATCGGGACT 3´ 

 
4.1.8 Quantitative real time PCR primers (Invitrogen, Karlsruhe, Germany) 

HBV primers 

HBV rcDNA1745 fw    5´ GGAGGGATACATAGAGGTTCCTTGA 3´ 

HBV rcDNA1844 rev   5´ GTTGCCCGTTTGTCCTCTAATTC 3´ 

HBV pgRNA 383 fw    5´ CTCCTCCAGCTTATAGACC 3´ 

HBV rpgRNA 705 rev   5´ GTGAGTGGGCCTACAAA 3´ 

HBV cccDNA 92 fw    5´ GCCTATTGATTGGAAAGTATGT 3´ 

HBV cccDNA 2251 rev   5´ AGCTGAGGCGGTATCTA 3´ 

  

mitochondrial DNA primers 

mitoDNA 8686 fw    5´ CCCTCTCGGCCCTCCTAATAACCT 3´ 

mitoDNA 8796 rev    5´ GCCTTCTCGTATAACATCGCGTCA 3´ 

 

Human primers 

human IFN-β fw    5´ GCCGCATTGACCATCT 3´ 

human IFN-β rev    5´ AGTTTCGGAGGTAACCTG 3´ 

human 2`-5`-OAS fw   5´ CAGTTAAATCGCCGGG 3´ 

human 2`-5`-OAS rev   5´ AGGTTATAGCCGCCAG 3´ 

human IFNAR fw    5´ ATTTACACCATTTCGCAAAGC 3´ 
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human IFNAR rev    5´ CACTATTGCCTTATCTTCAGCTTCTA 3´ 

human GAPDH fw    5´ GGTATCGTGGAAGGACT 3´ 

human GAPDH rev    5´ GGGTGTCGCTGTTGAA 3´ 

 

Mouse primers 

mouse IFN-β fw    5´ TTACACTGCCTTTGCCA 3´ 

mouse IFN-β rev    5´ GCGTAGCTGTTGTACTTC 3´ 

mouse 2`-5`-OAS fw   5´ CAGTGGATTGGACACTCT 3´ 

mouse 2`-5`-OAS rev   5´ AGCACTTGAATGTTCACC 3´ 

mouse CD8 fw    5´ GGATTGGACTTCGCCTG 3´ 

mouse CD8 rev    5´ CAAGTATGCTTTGTGTCAAAGA 3´ 

mouse IFN-γ fw    5´ ATGGTGACATGAAAATCCTG 3´ 

mouse IFN-γ rev    5´ GTGGACCACTCGGATGA 3´ 

mouse GAPDH fw    5´ ACCAACTGCTTAGCCC 3´ 

mouse GAPDH rev    5´ CCACGACGGACACATT 3´ 

 

4.1.9 Primers for PCR amplification of purified HBV-DNA (Invitrogen) 
HBV-2595 fw       5` GAGCAAACATTATCGGGACT 3` 

HBV-3081 rev      5` GACCAATTTATGCCTACAGC 3` 
 

4.1.10 Sequencing primer of purified HBV-DNA (Invitrogen) 
HBV-2595        5` GAGCAAACATTATCGGGACT 3` 

 
4.1.11 Enzymes 

DNase I      Fermentas, St. Leon Rot, Germany 

Exo-Minus Klenow DNA polymerase  Epicentre Biotechnologies, USA 

Hind III restriction enzyme (hc. 10 U/µl) Roche Diagnostics, Mannheim, Germany 

Other restriction endonucleases   Fermentas, St. Leon Rot, Germany 

RNaseA 10 mg/ml     Roche Diagnostics, Mannheim, Germany 

RNAse free DNase     Quiagen, Hilden, Germany 

Proteinase K     Roth, Karlsruhe, Germany 

Proteinase K inhibitor “Complete”  Roche Diagnostics, Mannheim, Germany 

T7 RNA polymerase   Fermentas, St. Leon Rot, Germany 
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4.1.12 Weight- and Length standards 

4.1.12.1 DNA standards 

SmartLadder, 0.2-10 kb    Eurogentec, Liege, Belgium 

SmartLadder, 0.1-2 kb    Eurogentec, Liege, Belgium 

4.1.12.2 Protein standards 

Prestained Protein ladder    Invitrogen, Karlsruhe, Germany 

 

4.1.13 Antibodies 

4.1.13.1 Primary antibodies Western Blot 

core-protein- Rabbit anti core (H800)     kindly provided by H. Schaller   

      (ZMBH, University of Heidelberg, Germany) 

L-protein - Goat anti HBsAg Antibody  Murex HBsAg ELISA, Version 3 

Mouse anti RIG-I – Alme-1   Alexis biochemicals, Axxora, Lörrach,  

      Germany  

Rabbit anti -actin     Sigma, St. Louis, MO, USA 

 

4.1.13.2 Secondary antibodies Western Blot 

Goat anti rabbit, HRP-conjugated  Sigma, Deisenhofen, Germany  

Goat anti mouse, HRP-conjugated  Sigma, Deisenhofen, Germany 

Donkey anti goat, HRP-conjugated  Sigma, Deisenhofen, Germany 

 

4.1.13.3 Histology 

Polyclonal rabbit anti hepatitis B  

core antigen     Diagnostic Biosystems, CA, USA  

 
4.1.14 Radioactive [32P] dCTP  Amersham, Buckinghamshire, England 
 
4.1.15 Mouse strain 

HBV transgenic mouse strain HBV1.3 -xfs was kindly provided by Prof. H. Schaller, 

ZMBH, University of Heidelberg, Germany. The mouse genome contains a genotype 

D HBV1.3 overlength genome, with a frameshift mutation (G/C) in the x-gene at 

position 2916/2917 (Weber, Schlemmer et al. 2002). 
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4.1.16 Technical equipment 
4.1.16.1 Instruments 

Dot blot fraction recovery system  Beckman, München, Germany 

Biocycler Thermocycler T3  Biometra, Göttingen, Germany 

Blot chamber MiniProtean®3 Cell  BIO-RAD Laboratories, Hercules, USA 

Dot blot apparatus Minifold I  Schleicher & Schuell, Dassel, Germany 

ELISA Reader MRX Revelation  Dynex, Gaithersburg, USA 

Film processor Curix 60   Agfa Geveart NV, Mortsel, Belgium 

Flow cytometer FACSCanto™   BD Biosciences, Heidelberg, Germany 

Gel chambers     BIO-RAD Laboratories, Hercules, USA 

Heating block Thermomixer comfort Eppendorf, Hamburg, Germany 

Incubator      Heraeus Holding GmbH, Hanau, Germany 

LightCycler® 1.5 and 480 II  Roche Diagnostics, Mannheim, Germany 

Luminometer     Berthold Technologies, Bad Wildbad,  

      Germany 

pH-Meter      WTW, wissenschaftlich technische  

      Werkstätten, Uniklinik Köln / MRI München 

Cryostate CM 3050S   Leica Microsystems, Wetzlar, Germany 

Pipetboy Swift Pet®    Abimed, Langenfeld, Germany 

Phosphoimager, Molecular Imager FX BIO-RAD Laboratories, Hercules, USA 

Phosphoscreen-cassette    Amersham, Buckinghamshire, England 

Photometer Smart Spec 3000  BIO-RAD Laboratories, Hercules, USA 

Photometer Nanodrop   Implen, München, Germany 

Photo system for agarose gels   BIO-RAD Laboratories, Hercules, USA 

Gel-doc 2000     BIO-RAD Laboratories, Hercules, USA 

Power Supplies Pack300   BIO-RAD Laboratories, Hercules, USA 

Refrigerators and freezer    Liebherr, Lientz, Germany 

Rocking platform WT12   Biometra, Göttingen, Germany 

Shaker      Innova 4230, New Brunswick Scientific, USA 

Sterile hood (cell cultur)    Heraeus Holding GmbH, Hanau, Germany 

UV-Oven GS Gene LinkerTM   BIO-RAD Laboratories, Hercules, USA 

ALT measurement, Reflotron®  Roche Diagnostics, Mannheim, Germany 
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4.1.16.2 Centrifuges 

Centrifuge 5417C / 5417R   Eppendorf, Hamburg, Germany 

Megafuge 1.0 / 1.0 R   Heraeus Holding GmbH, Hanau, Germany 

Sorvall RC 50 Plus     Kendro, Langenselbold, Germany 

XL 70       Beckman, München, Germany 

Scales Kern 440-47    Sartorius AG, Göttingen, Germany 

 

4.1.16.3 Microscopes 

Fluorescence microscope IX81    Olympus, Hamburg, Germany  

Confocal microscope FluoView1000 Olympus, Hamburg, Germany 

 

4.1.16.4 Software 

Autoradiography    Quantity One, 4.2.1, BIO-RAD   

      Laboratories, Hercules, USA 

Fluorescence microscopy   Cell P, AnalySIS, Soft Imaging   

      System GmbH, Münster, Germany 

Light Cycler      Probe Design Analysis and Rel Quant,     

 Roche Diagnostics, Mannheim, Germany 

Luminometer     Magellan Software, Tecan, Grödig, Austria 

Data processing     Microsoft MS Office 2008 for Mac,  

      Word and Excel 12.1.3, Microsoft,  

      Redmont, USA 

      Apple Macintosh OS-X, Cupertino, CA, USA 

Graphic programmes    Adobe Photoshop CS3 10.0.1, Adobe  

      Illustrator, CS3 13.0.2, Adobe, San Jose, 

      USA 

 Prism 5, 5.0a, for Mac OS X, Graphpad, La 

Jolla, CA, USA  

 Power Point 2008 for Mac, 12.1.3, Microsoft, 

Redmont, USA 

Statistical Analysis    Prism 5, 5.0a, for Mac OS X, Graphpad, La 

      Jolla, CA, USA Bibliography  

      EndNote X2, Thomson, San   

      Francisco, CA, USA 
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4.2 Methods 

 

4.2.1 Molecular biology methods 
 

4.2.1.1 In vitro transcription (IVT) 
Chemically synthesized RNA oligonucleotides were purchased from Eurogentec 

(Leiden, Belgium). In vitro-transcribed RNAs were synthesized using the Silencer 

siRNA construction Kit (Ambion, Huntingdon, UK) or according to the following 

protocol: Using partially overlapping single stranded DNA oligonucleotides, a double-

stranded DNA template was constructed using Exo-Minus Klenow DNA polymerase. 

The obtained templates contained a T7 RNA polymerase consensus promoter 

sequence (5´ CTATAGTGAGTCG 3´). 20 pmol of the DNA template were incubated 

with dNTP-Mix (2.5 mM each dATP, dCTP, dGTP and dTTP), 30 U T7-RNA 

polymerase, 40 U RNase inhibitor, 0.3 U yeast inorganic pyrophosphatase in a buffer 

containing 40 mM Tris-HCl pH 8.0, 10 mM DTT, 2 mM spermidine-HCl (Sigma) and 

20 mM MgCl2. In vitro transcription was carried out overnight at 37 °C. The DNA 

template was digested using DNase I (Fermentas) and subsequently RNAs were 

purified using the High pure RNA isolation kit with the following modifications: Binding 

buffer was 2.0 M guanidine thiocyanate in 70 % ethanol and wash buffer was 

substituted by 100 mM NaCl, 4.5 mM EDTA, 10 mM Tris HCl in 70 % ethanol. After 

elution, excess salts and NTPs were removed by passing the RNAs through a Mini 

Quick Spin™ Oligo Column. Size and integrity of RNAs was checked via gel 

electrophoresis.  
 

4.2.1.2 Alexa 488 and cholesterol coupled siRNA 

Si-1.2 was labeled at the sense-strand with 5`-Biotin or 5`-Biotin plus 3`-cholesterol, 

respectively (Eurogentec).  Si-RNAs were incubated for 1 h at 37°C in the dark with 

Alexa-488 coupled strepatavidin, 1 µg / µg siRNA (S21375, Invitrogen, Karlsruhe, 

Germany). Thereby, Alexa-488-strepatavidin was linked to biotin at the 5`-end of the 

siRNA sense-strand. Fluorescently labeled siRNAs were precipitated (10% v/v 3M 

NaAc pH 5 and 400% v/v EtOH) at -20°C over night. Solution was centrifuged at 

13.000 rpm for 30 min at 4°C. The siRNA pellet was washed once with 75% EtOH 

and solved in ddH2O. Concentration was determined via OD measurement. 
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Fig. 4.2: Schematic representation of fluorescently labeled and/or choslesterol coupled si-1.2. 
 
4.2.1.3 DNA and RNA quantification 

To calculate the concentration of a DNA (or RNA) preparation, the absorption at 260 

nm and 280 nm was determined with a photometer (Nanodrop). This technique relies 

on the characteristic of nucleic acids to absorb UV light with a wave-length of 260 

nm.  Absorption at 260 nm (OD260) of 1 equals a DNA concentration of 50 µg/ml (40 

µg/ml). The ratio of the absorption at 260 nm and 280 nm allows estimating the purity 

of the DNA (or RNA) and should range between 1.8 and 2.0. The absorption was  

normalized to ddH2O.   

 

4.2.1.4 Gelelectrophoresis 

DNA (or RNA) molecules are negatively charged, with the charge being proportional 

to the molecular weight. Therefore they can be separated according to their size in 

an electric field. Electrophoresis was performed in 0.8 - 2 % agarose gels. The 

agarose was dissolved in 1 x TAE buffer, and ethidium bromide was added to a final 

concentration of 0.5 µg/ml, after the agarose was cooled. Ethidium bromide 

intercalates into dsDNA. This results in a complex, which fluoresces when exposed to 

UV light (254 nm to 366 nm). Emission of 590 nm light allows the visualization of the 

DNA, with a detection limit of approximately 20 ng dsDNA (or RNA). The polymerized 

gel was covered with TAE buffer and electrophoresis was performed with a constant 

voltage of 30 to 120 V. The samples were mixed with 1x DNA (or RNA) sample buffer 
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to firstly ballast the DNA (or RNA) with glycerol, and to secondly mark the separation 

front with bromphenol blue. In addition to the samples a DNA (or RNA) standard with 

defined DNA (or RNA) sizes was loaded on the gel.   

 

4.2.1.5 Polymerase chain reaction  
PCR is a method to amplify specific DNA sequences located between 2 primers. 

These are complementary to the 5` and 3` ends of the sequence. The polymerase 

specifically amplifies the sequence in repeated amplification rounds. A master-mix 

was prepared with the following contends per reaction: 

 

Reagent   Concentration 

Polymerase buffer   4 µl 

Pfu polymerase   2 µl  

Primer fw    5 pmol 

Primer rev    5 pmol 

ddH2O    12 µl  

 

150 to 300 ng template DNA or ddH2O were added per reaction. The Thermocycler 

was programmed as follows: 

 

Step        Temperature  Time 

1. Initial denaturation 94°C   2 min      

2. Denaturation  94°C   30 sec 

3. Annealing   60°C   30 sec 

4. Elongation   72°C   90 sec 

5. Final elongation  72°C   5 min 

 

Steps 2 to 4 were repeated 30 times. The final elongation step is necessary to allow 

the complete amplification of the sequence fragments.    

 
4.2.1.6 DNA sequencing 

DNA sequencing was performed by GATC Biotech AG, Konstanz, Germany. 

Therefore, 30 µl of both, 10 - 50 ng / µl PCR-product and 10 pmol / µl sequencing 
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primer, respectively were dispatched separately. Taq-polymerase and 

didesoxynucleosidtriphosphates (ddNTPs) were provided by the company.   

 
4.2.1.7 cDNA synthesis 

To circumscribe RNA into cDNA the reverse ranscription kit `First-strand cDNA 

synthesis qRT-PCR, Superscript III` (Invitrogen) was used according to manufactures 

instructions. 

 
4.2.1.8 Quantitative real time polymerase chain reaction (qRT-PCR) / Light 
cycler© PCR) 

Real time PCR detection techniques make a kinetic quantification possible. PCR 

amplification depends mostly on the template concentration. However, reaction 

efficiency is also important: In high efficient reactions with low template 

concentrations the same plateau can be reached as in reactions with high template 

concentrations but low reaction efficiency. Therefore, end point quantification 

analyses are sometimes not accurate. The advantage of real time PCR is the 

measurement in the log-linear phase of constant amplification. This allows the 

precise quantification of the amount of starting material. For fluorescence detection 

the SYBR Green I Dye was used. This fluorescent dye intercalates only in dsDNA. 

The fluorescence intensity of this DNA-SYBR green complex is much higher than the 

intensity of the dye alone. Therefore, during annealing and elongation phases the 

fluorescent signal increases. The signal intensity is directly proportional to the DNA 

amount, and the highest signal is obtained at the end of the elongation phase. In the 

used LightCycler® systems 1.5 and 480 II, respectively, in which the PCR reaction 

takes place, a rapid thermal transfer is guaranteed. The fluorescence intensity is 

measured at the end of each elongation phase at a certain temperature in a single 

optical unit. The LightCycler PCR is very sensitive with a detection limit of 1 to 10 

copies for plasmid DNA per sample. For genomic DNA the detection of a single-copy 

gene of 3 pg DNA is estimated. Different quantification methods are available with 

the LightCycler© System. Absolute quantification is performed with an external 

standard curve of known concentrations of the target DNA. The relative quantification 

expresses the target gene concentration in relation to a reference gene, usually a 

house keeping gene or mitochondrial DNA. Standard curves of both target and 

reference gene are used to obtain the concentrations. The template concentration is 
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determined with so-called crossing points. These points are defined as the cycle 

numbers, in which all amplifications exhibit the same fluorescence intensity. The 

identification of specific DNA products is possible using melting curve profiles. The 

melting temperature of dsDNA depends on length, GC contend and sequence. Thus, 

every sequence has a specific melting curve profile. Within the PCR reaction, the 

melting curve is obtained by steadily increasing temperatures while the fluorescence 

is monitored.       

This sensitive PCR technique was used to detect absolute amounts of HBV rcDNA, 

as well as relative amounts of HBV pgRNA, IFN-β, IFN-γ, 2`-5`-OAS, IFNAR and 

CD8, relativated to the housekeeping gene GAPDH, as well as HBV cccDNA relative 

to mitochondrial DNA. Quantification was performed relative to an internal calibrator 

dilution row or to an external plasmid HBV DNA standard (rcDNA) on a Light Cycler© 

instrument 1.5 or 480 II with the LightCycler FastStart DNA Masterplus SYBR Green I 

(Roche). This reaction mix contains the Taq-DNA-polymerase, reaction buffer, MgCl2 

and dNTPs. The following master-mix was prepared per reaction:                 

 

Reagent        Vol. 

LightCycler FastStart DNA Masterplus SYBR Green I  10 µl 

Primer fw        1 µl            
Primer rev        1 µl 

ddH2O        6 µl  

 

2 µl template DNA or ddH2O (negative control) were added to the mix. The light 

cycler instrument was basically programmed as followed: 

 

Step    Temperature  Time 

1. Initial denaturation    95°C  5 min      

2. Denaturation     95°C  15 sec 

3. Annealing      60°C  4 sec 

4. Elongation      72°C  25 sec 

5. Detection      88°C  2 sec 

 

Targeting gene dependent modifications of the program were performed. 
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4.2.1.9 Isolation of progeny HBV-DNA from cell supernatant 
HBV rcDNA was isolated from cell supernatant or mouse serum with QIAamp 

MinElute Virus Spin Kit (Qiagen) according to the manufacturers instructions. 

 

4.2.1.10 Protein precipitation 

Cells were washed with ice cold PBS and for whole cell protein isolation treated with 

SDS lysis buffer (15mM TRIS-HCl pH 6.8, 2.5% Glycerol, 0.5% SDS (10%) and 1 

tablet proteinase-inhibitor `Complete`(Roche)) for 10min. Lysates were centrifuged at 

11.000 rpm in table top centrifuge and supernatants were used for Western blot 

ananlysis. 

 

4.2.1.11 Calculation of protein concentrations 

To determine total protein concentrations the BCATM Protein Assay Kit (Pierce) was 

used. This assay is based on the reduction of Cu2+ to Cu+ by proteins in an alkaline 

medium, combined with the colorimetric detection of Cu+ with a reagent containing 

bicinchonic acid (BCA). The complex formed by the chelation of 2 BCA molecules 

with 1 Cu+ exhibits a strong absorbance at 562 nm. The absorbance is linear with 

increasing protein concentrations over a working range of 20 to 2000 µg / ml. The 

reaction was performed according to the manufacturers introductions, and an 

albumin protein dilution series served as protein standard.  

 

4.2.1.12 SDS-page gel electrophoresis 

Protein samples were mixed with WB sample buffer (2ml glycerol, 2ml 10% SDS, 

0,25% bromphenol blue, 0.5 M TRIS-base and 1ml 10% SDS, added to 10ml with 

H2O, 5 v/v β-mercaptoethanol were added freshly before use) and boiled for 10 min 

at 100°C. The indicated amount of protein was transferred to a 12.5 % SDS gel. 

(Resolving gel, 12.5%: 6.25 ml Acrylamid, 40%, 5 ml Tris, 1.5 M, pH 8.8, 8.55 ml 

H2O, 230 µl SDS, 10%, 20 µl TEMED, 100 µl, APS, 10%; Stacking gel, 5%: 0.375 ml 

Acrylamid, 40%, 1.2 ml Tris, 0.5 M, pH 6.8, 3.325 ml H2O, 50 µl SDS, 10%, 4 µl 

TEMED, 50 µl APS, 10%). As a standard for protein size a pre-stained marker 

(Fermentas) was added. The proteins were separated by electrophoresis in a blot 

chamber (MiniProtean®3 Cell, BIO-RAD) with constant amperage (25 mA per gel).   
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4.2.1.13 Western blot analysis 

The proteins were transferred with transfer-buffer (25 mM TRIS, 192 mM Glycin, 20% 

methanol) from the SDS gel onto a methanol-activated PVDF membrane (Roche) 

using a semi-dry transfer cell (BIO-RAD). The amperage was calculated with the 

following formula: 1.2 mA/cm² of the gel for 1 h transfer. After protein transfer the 

membrane was blocked in blocking solution (5% w/v milk powder in PBS) for 1 h at 

RT or over night at 4°C and probed for 2 h at RT or over night at 4°C with the 

indicated antibody (H800 1:2000, goat anti HBsAg Ab and Alme-1 1:1000, anti β-

actin Ab 1:5000) in antibody solution (10 mm TRIS, 5% w/v milk powder, 2% v/v 

BSA, 0.1 % Tween-20, pH 7.6). After 6 washing steps with PBS-Tween (0.5% v/v) 5 

min each, the respective secondary HRP-conjugated antibody (1: 8000) was added 

in antibody solution and incubated for 1 h at RT. Blots were again washed 6 times, 5 

min each with PBS-Tween (0.5% v/v). The detection was performed with the 

Enhanced Chemiluminescence detection kit (Amersham). If re-probing of the 

membrane with another antibody was necessary, the membrane was previously 

stripped with 0.2 M NaOH for 10 min. PDVF membranes were re-activated in 

methanol, and blocking and antibody incubation were performed as previously 

described.  

 

4.2.1.14 ELISA assay HBsAg 

The HBsAg ELISA (Murex, Abbott) detects different epitopes of the HBsAg. It was 

performed according to the manufacturers’ instructions. The readout was in dual 

frequencies at 450 nm and, as a reference wavelength, 620 nm in a plate reader.  

   

4.2.1.15 ELISA assay human IFN-γ and IL-6 and mouse IFN-α    

 ELISA assays were performed with undiluted cell supernatant or mouse sera 1:25 

diluted according to manufacturers instructions. 

 
4.2.1.16 Preparation of total RNA with Trizol® 

Total RNA of murine liver cells was isolated out of 50 mg liver tissue by lysis in 1ml 

Trizol® reagent (Invitrogen). Isolation was performed according to manufacturers 

instructions.  
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4.2.1.17 Separation of total liver cell RNA and Northern blot analysis 

Extracted total-RNA was separated in a vertical 1% agarosegel. 1,5 g agarose was 

boiled in 15 ml autoclaved 10x E-Puffer (300 mM NaH2PO4-2H2O, 50 mM EDTA) and 

105 ml DEPC-H2O. After cooling down to 60°C, 30 ml formaldehyd (37%) were 

added. Agarose was transferred into the gel chamber. 25 µg of total-RNA were mixed 

on ice with 10 µl 10x E-Puffer, 15 µl formaldehyde and 40 µl formamide for 

denaturation. Samples were boiled 10 min at 65°C, placed on ice and 5 µl loading 

buffer were added to each sample. Gel electrophoresis was performed in 1 x E-Puffer 

at 80-100 V for 4 - 5 h at 4°C. Afterwards, the gel was washed 2x in H2O and 

incubated for 4 min in 10 x SSC. Transfer onto a positively charged nylon-membrane 

was performed with 10 x SSC via capillary forces during 12 - 16 h.  Membrane was 

washed for 5 min with 2 x SSC and then dried at RT for 10 min. RNA was cross-

linked to the membrane under UV light at 125 mJ / cm2. Membrane was stored at RT 

until hybridization with radioactive labeled HBV-genome specific probe. 

 
	
  
4.2.1.18 Preparation of genomic DNA 

Total DNA extraction from cultured HepG2 H1.3 cells or from liver tissue of mice, 

respectively, was performed by phenol / chloroform extraction. 1 x 107 cells or 50 mg 

of homogenyzed liver tissue were lyzed in 1 ml proteinase K buffer (100 mM Tris pH 

8,5; 5 mM EDTA; 0,2 % SDS; 200 mM NaCl) and 20 µl Proteinase K (20 mg/ml) 

under rotation at 37°C over night. Then, 1 ml of phenol was added, the suspension 

mixed and centrifuged 5 min at 5000 rpm and 4°C. Nucleic acids were solved due to 

their hydrophilic residues in the aqueous phase, whereas proteins accumulated in the 

interphase. Upper aqueous phase was transferred in a new reaction tube and 1ml of 

a mixture of phenol-chloroform (1:1) was added. After centrifugation for 5 min at 5000 

rpm and 4°C the upper aqueous phase was again transferred to a new tube and 1 ml 

chloroform was added in order to remove residual phenol. After centrifugation for 5 

min at 5000 rpm and 4°C the DNA containing upper aqueous phase was transferred 

to a new reaction tube and precipitated. Therefore, 600 µl of ice-cold isopropanol was 

added and incubated at 4°C for 30 min. Precipitated nucleic acids was pelleted by 

centrifugation at 14.000 rpm for 20 min and afterwards washed with 250 µl of 70 % 

ethanol. After repeated centrifugation the pellet was air-dried and resolved in 500  µl 

ddH2O. Then, RNA was digested with 2,5 µl of RNAse A (60mg / ml) for 2 h at 37°C. 
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Precipitation was repeated, DNA was resolved in 200 µl ddH2O and stored at -20°C 

until further experiments. 

 

4.2.1.19 Separation of total liver cell DNA and Southern blot analysis 
Before separation, the genomic DNA was digested with high concentrated (10 U / µl) 

restriction enzyme Hind III over night at 37°C, which affected the HBV-DNA. Isolated 

HepG2 2.15 DNA as size control was additionally restricted with EcoR I, an HBV-

genome single-cutter restriction enzyme, for 3 h at 37°C to perform linearization of 

the HBV-genome. DNA was separated in a vertical agarose-gel (0.8% w/v agarose in 

1x TAE buffer) at 35 V for 16 h. After separation, the gel was washed with ddH2O, 

incubated for 15 min with 0.4 M NaOH to denature the DNA and then incubated with 

0.2 M HCl for 5 min for depurination of the DNA. Transfer onto a positively charged 

nylon-membrane was performed with 0.4 M NaOH via capillary forces during 12 - 16 

h.  for neutralization, membrane was washed for 3 min with 2 x SSC and then dried 

at RT for 10 min. DNA was cross-linked to the membrane under UV light at 125 mJ / 

cm2. Membrane was stored at RT until hybridization with radioactive labeled HBV-

genome specific probe. 

 

4.2.1.20 Radioactive HBV-genome specific probes 
25 ng of HBV-DNA (isolated of HBV-wt plasmid) or GAPDH-DNA, respectively, were 

primed with desoxy-cytosine-tri-phosphates [(α32P) dCTP] by random-priming with 

Rediprime II DNA Labeling System (Amersham), according to manufacturers 

instructions. 

 
4.2.1.21 Hybridization with radioactive labeled probes 
Northern- or southern blot membranes were incubated at 65°C for 3 h with Church-

buffer (6 x SSC, 5 x Denhardts solution; Denhardts solution: 1% w/v Ficoll 400, 1% 

w/v Polyviynlpyrrolidon, 1% w/v BSA) and 50 µl (10 µg / ml) salmon-sperm to block 

unspecific binding sites. Radioactive probe was denatured at 100°C for 5 min, cooled 

on ice and then added to the buffer solution. Hybridization was performed over night 

at 65 °C. Then, membranes were washed at 65°C for 15 min each with pre-warmed 

washing buffer I (2 x SSC, 0.1% SDS), washing buffer II (1 x SSC, 0.1% SDS) and 

washing buffer III (0.5 x SSC, 0.1% SDS). Membranes were air-dried for 10 min, 
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radioactive signal was quantified via X-ray film or phosphoscreen after different 

timepoints with a phosphoimager (BIO-RAD). 

 

 

4.2.2 Cell biology methods 
All procedures were carried out under sterile conditions using sterile solutions and 

equipments. All cells were cultivated in a humidified incubator at 37°C containing 5% 

CO2.   

 

4.2.2.1 Eukaryotic cell lines 
Cells were incubated at 37°C and 5% CO2. The human hepatoma cell lines HuH7, 

HuH7.5 were maintained in complete DMEM medium and passaged at a ratio of 1:5 

when confluent. HepG2 H1.3 and HepG2.2.15 cell were cultivated in complete 

DMEM or, for virus production, in a 1:1 mixture of PHH medium and complete 

Williams E medium. HEK 293 cells were kept in complete DMEM and passaged at a 

ratio of 1:5 when confluent.  

 

4.2.2.2 Isolation of primary human hepatocytes (PHHs) 
PHH were isolated from fresh surgical liver specimen from patients undergoing partial 

hepatectomy. The procedure was approved by the local Ethics Committee, with 

obtained consent of the patients. Protocol was performed as previously described 

(Schulze-Bergkamen, Untergasser et al. 2003). The pre-perfusion medium, perfusion 

medium, and the PHH medium were warmed to 37°C prior to the perfusion, and the 

wash medium was cooled to 4°C. The healthy liver tissue piece was placed on a 

kidney dish. A large branch of the port vein was canulated, and the canula was fixed 

with tissue paste. The two-step collagenase perfusion started with 500 ml pre-

perfusion medium, with a flow rate between 20 and 40 ml/min. For a satisfactory 

result it is important that the whole tissue is evenly perfused. At cut surfaces with high 

medium passage, the large vessels were occluded with tissue paste. The medium 

was discarded after traversing the liver tissue. After 15 to 20 min, perfusion was 

continued with 250 ml perfusion medium containing freshly added collagenase type 

IV (Worthington). 100 ml of the collagenase perfusion medium were kept and 

perfusion was continued with this remaining amount of medium. Collagenase 

treatment was performed for 15 to 20 min, depending on liver section size. As soon 
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as the tissue softened and liver cells appeared in the medium, the liver was cut into 

small peaces and the tissue was scratched off with a scalpel. If collagenase digestion 

was incomplete, the suspension was transferred to a sterile beaker and stirred for 10 

min at 37°C. The cell suspension was filtrated through double-layered gaze and a 70 

µm cell strainer. After centrifugation in 50 ml Falcon tubes for 5 min at 50 x g at 10°C, 

the pellet was re-suspended in 40 ml wash medium. Supernatant was used for 

isolation of LSECs and Kupffer cells. The wash step was repeated 3 times. The cells 

were re-suspended in PHH medium and the cell number and viability was 

determined. The cells were seeded on collagenised cell culture dishes at a density of 

to 8 x 105 cells per ml in PHH medium supplemented with 10% FCS. After 3 h the 

medium was exchanged to remove non-adherent cells. One day post seeding, the 

cells were kept in medium containing 5% FCS. From day 2 post seeding the cells 

were cultivated in FCS-free medium and were usable for experiments. 

 

4.2.2.3 Isolation of LSECs and Kupffer cells 
Seperation of human Kupffer cells (KCs) and liver sinusoidal endothelial cells 

(LSECs) from human liver non-parenchymal cell (NPC) suspension (in 1. supernatant 

of PHH cell isolation described above) was performed as followed: Kupffer cells: 

Suspension of cells were centrifuged with 300 rcf, 10 min, at 4°C. Pellet was washed 

with PBS and again centrifuged with 300 rcf, 10 min, at 4°C. Simultaneously, density-

Gradient was prepared: 20 ml 9% OptiPrep diluted with PBS over 10 ml 16% 

OptiPrep. Pellet was resuspended in 20 ml PBS and the suspension carefully applied 

on the density gradient. Gradient was centrifuge with 800 rcf, 25 min, at RT, with 

deactivated break. NPCs were now separated into two bands: the upper band 

contained the ITO cells, the lower band the KCs and LSECs. The lower band was 

collected, cells resuspended with PBS in a 50 ml reaction tube and centrifuged with 

300 rcf, 10 min, at 4°C. Then, cell pellet was resuspended in PHH medium, the 

volume depended on the size of the pellet. LSECs and Kupffer cells were separated 

as followed. Cells were counted, and dispersed (5x105 cells / ml) for 12-well plate 

range. For the adherence step of KCs, cell suspension was incubated for 20 min in 

humidified incubator at 37°C containing 5% CO2 without the possibility of shaking. 

KCs adhered to the plastic surface. Medium was taken of and collected (contained 

LSECs). Each well was washed three times with warm PBS, the supernatant was 

collected each time.  Adherent KCs were incubated with RPMI medium in a 
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humidified incubator at 37°C containing 5% CO2 for further experiments. All 

supernatants from the washing steps were collected in a 50 ml reaction tube for 

isolation of LSECs:  

Collected supernatants were centrifuged at 300 rcf, 5 min, at RT. Supernatant was 

dispersed and the pellet resuspended in an adjusted volume of LSEC medium. Cells 

were counted and 20 µl FcR blocking reagent (Miltenyi) per 107 cells was added. 

Suspension was mixed gently and incubated for 5 min at 4°C. Afterwards, 20 µl 

CD31 magnetic beads (Miltenyi) pro 107 cells were added, suspension was mixed 

gently and incubated for 15 min at 4°C. 1 ml LSEC medium per 107 cells was added 

and centrifuged with 300 rcf, 5 min, at RT. Pellet was resuspended in 1 ml LSEC 

medium. Miltenyi MS column in the magnetic field were prepared. MS column was 

equilibrated with 500 µl LSEC medium. Cell suspension was applied onto the column 

and afterwards washed 3x with LSEC medium. Then, the column was removed from 

the magnet and CD31 positive cells squeezed out using 1 ml LSEC medium and the 

stamp. Separated cells were counted and applied in collagenized wells with LSEC 

medium. Cells were incubated in a humidified incubator at 37°C containing 5% CO2 

for further experiments. 

 

4.2.2.4 Transfection of cells 

All cell types cell were transfected with the indicated RNA-oligonucleotides using 

HiPerFect® (Qiagen) according to the manufacturers protocol: Cells were plated 

immediately prior to transfection in fresh medium to obtain a 40 to 60% confluent 

monolayer at the following day. 1 µg RNA-oligonucleotide was used per 3.125 x 105 

cells, except poly(I:C), due to cytotoxicity, only 1/10 was used (1 µg per 3.125 x 106 

cells). The RNA-oligonucleotide was mixed with serum free medium and 8,75 µl 

HiPerFect per µg RNA-oligonucleotide. After 10 min incubation the solution was 

added drop wise to the cells. Inoculums were left on the cells over night. Fresh 

medium was applied at the next day.      

 
4.2.2.5 Production of wild type HBV  
For the production of wtHBV the HepG2.2.15 cell (genotype A) line was used. This 

cell line contains 1.1 fold over-lengths HBV genomes stably integrated into the 

cellular genome. Therefore, they permanently produce HBV, which can be harvested 

in the supernatant of the cells. The cells were cultivated until confluent in complete 
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DMEM medium. Then the medium was exchanged to 50% PHH medium and 50% 

complete Williams E medium. Every 2 to 3 days the virus-containing medium was 

collected and cell debris was removed by centrifugation at 1000 rpm for 10 min. The 

supernatant was transferred to centrifugal filter devices (Centricon Plus-70, Biomax 

100, Millipore Corp.) The first centrifugation was performed at 3500 x g for 1 h. In this 

step, the virus particles are captured in a filter. Because of the exclusion limit of 100 

kDa, serum proteins flow through, while proteins larger than 100 kDa are kept. In a 

second, invert centrifugation step, performed at 1000 x g for 3 min, the filter system 

was turned upside down, to elute the virus. The virus containing concentrate was 

filled to 1 ml with PBS and a final concentration of 10% glycerol. The virus 

concentrate was stored in 100 µl aliquots at -80°C until further use. The titer of the 

produced wtHBV was measured as enveloped, DNA-containing viral particles. A 

CsCl density-gradient, followed by dot blot analysis, was performed as outlined 

below. 

 
4.2.2.6 Caesium chloride density gradient 
In the context of a virus production different types of particles are obtained in the 

preparation: nacked DNA, unenveloped DNA-containing capsids, and enveloped 

virions. Their different densities enable to separate them in a density gradient. DNA is 

centrifuged down to the bottom, because of the very small size. DNA-containing 

capsids sediment at a density of 1.3 g/l while intact virions can be found in the 1.22 

g/l fraction. The CsCl density gradient ultra centrifugation was performed with the 

SW-60 swing bucket rotor. In SW-60 polyallomer vials (Beranek Laborgeräte) 500 µl 

of CsCl solutions with the following densities were carefully layered one upon the 

other: 1.4 g/l, 1.3 g/l and 1.15 g/l. On top of the CsCl solutions 500 µl of a 20% 

sucrose solution was layered, and the sample was applied. The vials were filled up 

with PBS and tared on micro scales. Ultra-centrifugation was performed at 55.000 

rpm at 20°C for 4 h to over night. The first 12 density fractions from the bottom were 

collected with a Dot Blot Fraction recovery system (Beckman). Each fraction 

contained a volume of approximately 175 µl. The fractions were subjected to 

quantitative dot blot analysis.       
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4.2.2.7 Dot blot analysis 
To quantitatively and qualitatively analyze the produced wtHBV, a DNA dot blot was 

performed. The DNA fractions, obtained by CsCl density centrifugation, were dotted 

to a nylon membrane in a dot blot aperture. A HBV DNA standard ranging from 8 pg 

to 1000 pg was added. Samples and standard were washed once with 200 µl PBS 

and the membrane was transferred to a 3 mm Whatman paper. Following 

denaturation in Soak 1 (0.5 MNaOH, 1 M NaCl ), renaturation in Soak 2 (0.5 M Tris, 

pH 7.4, 3 M NaCl) was performed. Then the DNA was cross-linked at 125 mJ / cm2 

to the membrane in a UV oven. The membrane hybridized with a 32P-labelled HBV 

DNA probe at 65°C over night, as previously described. After wrapping the 

radioactive membrane in seran wrap, the DNA was quantified with a phospho-imager 

(BIO-RAD). 

 

4.2.2.8 HBV-infection of PHHs 

Infection of PHHs with HBV was performed in medium containing 5% PEG 8000. The 

cells were incubated over night with HBV at a MOI of 100 virions/cell. After over night 

inoculation, cells were washed 3 times with PBS. Cells were further cultivated in fresh 

medium, and cell culture medium was collected at indicated time points. To monitor 

infection, HBsAg and HBeAg were determined using commercial immuno-assays 

(Axsym®, HBeAg 2.0, HBsAg V2, Abbott Laboratories, HBsAg ELISA, Abbott).        

 

4.2.2.9 Dual-luciferase assay 

First, 2x105 HEK 293 cells were plated per 24-well-plate and incubated over night. At 

day 1 cells were transfected (Fugene6, according to manufacturers instructions) with 

a) 100 ng/well of plasmid p125, containing ORF of Firefly-Luciferase under IFN-β 

promotor (nt-125 - nt-55) and b) 10 ng/well of plasmid pRL-TK, containing ORF of 

Renilla luciferase, used as internal control for transfection efficiency. To enhance 

RIG-I expression, 1000U / ml medium of universal type-I IFN  (PBL) was added 

appropriate 8 h after transfection for 16 – 20 h (until day 2) to supernatant of cells. 

Therefore medium was changed previously to P/S free HEK 293 medium. At day 2 

3p-RNA oligonucleotides were transfected (Lipofectamine 2000, according to 

manufacturers instructions) into cells. At day 3 cell lysates were prepared for 

lufirease detection assay. Supernatant of cells was discarded and 100 µl of 1x 
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passive lysis buffer / well was added. For lysis (4.2.2.5.1) cells were incubated for 20 

min at RT on a shaker platform. 

Plasmids and dual luciferase kit were kindly provided by Dr. Katharina Eisenächer, 

AG PD Dr. med. Anne Krug, II. Medizinische Klinik und Polyklinik (Gastroenterology), 

MRI München.  

 

4.2.2.10 Luciferase detection 

Firefly (Photinus pyralis) and Renilla (Renilla reniformis) luciferase are enzymes that 

convert their substrate Beetle luciferin into oxyluciferin (Firefly) or coelenterazine into 

coelenteramide (Renilla). In this reaction light is emitted proportional to the enzyme 

concentration. To quantify the light emission the Firefly-Luciferase Assay system 

(Promega) was used, according to to manufacturers instructions. HEK 293 cells were 

lysed in 100 µl lysis buffer per well at day 3 post transfection. 80 µl LAR II buffer 

(luciferase assay buffer + luciferin) was added into a cuvette and 20 µl of lysate was 

added. After mixing by pipetting for 5 seconds the samples were transferred to a 

luminometer (Berthold Technologies). After 5 sec the light emission of Firefly 

luciferase expression was measured for 10 sec in a luminometer (measurement I). 

After quantifying the firefly luminescence 80 µl of Stop & Glow was added, which 

stopped the reaction and simultaneously the initiated the renilla luciferase reaction by 

adding its substrate (Coelenterazien). Samples were mixed by vortexing. Renilla-

Luciferase expression was measured according to measurement of Firefly-Luciferase 

(measurement II). The luminescence (RLU) of measurement I were set as relative 

value to RLU of measurement II and normalised to mock transduced cells, serving as 

negative control. The RLU determined in these samples were defined as 1, the other 

values were adapted proportionally. 

 

4.2.2.11 Cytotoxicity assays XTT 

Viability of HepG2 H1.3 cells after transfection of RNA oligonucleotides in triplicate 

was tested with XTT - Cell Proliferation Kit II (Roche), according to manufacturers 

instructions at indicated timepoints from 24h up to 16 days. 25µl XTT labeling mixture 

was added to each well and incubated for 2 h.  

The cell viability assay determining cleavage of tetrazolium salts (XTT) to formazan 

by the "succinate-tetrazolium reductase" system. This system belongs to the 

respiratory chain of mitochondria, and is only active in metabolically active cells. The 
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assay is based on the cleavage of the tetrazolium salt XTT in the presence of an 

electron-coupling reagent, producing a soluble formazan salt. This conversion only 

occurs in viable cells. Cells grown in a 96-well tissue culture plate are incubated with 

the XTT labeling mixture for approximately 2 - 20 hours. After this incubation period, 

the formazan dye formed is quantitated using a scanning multi-well 

spectrophotometer (ELISA reader). The absorbance revealed directly correlates to 

the cell number.  

 
 

4.2.3 Mouse experiments 
Animal experiments were approved by the ethics committee of the Bezirksregierung 

Köln and were performed in accordance with the German animal protection law. HBV 

tg mice used in this study were of comparable weight and age. 

 
4.2.3.1 Bleeding of mice and serum preparation 
Mice were bleeded retro bulbar or sacrificed, respectively. After scarification mice 

fixed and blood was extracted from the heart muscle with a syringe. Blood was 

centrifuged for 10 min at 6000 rpm and RT. Serum supernatant was added to a new 

reaction tube and stored at -20°C for further analysis of ALT levels or determination 

of viral DNA and antigen load. 

 
4.2.3.2 Determination of ALT activity 

The liver specific enzyme alanine aminotransferase (ALT) is secreted by apoptotic 

hepatocytes into the blood. The concentration is therefore a highly specific marker for 

liver damage. Determination of ALT activity in the blood was used to specify the 

grade of liver inflammation in mice. Analysis was performed with 32 µl of fresh mouse 

serum on Reflotron® stripes in Reflovet® automat.  

 

4.2.3.3 Classical and hydrodynamic intravenous injection 	
  
All mouse studies were conducted at animal facility of IMMIH in Köln under S2 

conditions and animal care guidelines (authorized by Regierung von Köln). RNA 

oligonucleotides (25g/mice/injection) were intravenously injected after complexation 

with in vivo-JetPEI (Polyplus) in a total volume of 200 µl (5% glucose), according to 
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manufacturers instructions. Injection was repeated after 3 days and antiviral effects 

were analyzed 6 to 15 days after first injection.  

Alternatively, mice were injected by hydrodynamic injection (HDI). By HDI the nucleic 

acid is intravenously injected in a high volume of buffer (8% of body weight) during 5 

– 10 seconds under high pressure into the tail vein of the mice. By an averaged 

bodyweight of 20 g per mouse the siRNA is diluted in 1,6 ml of PBS, which reflects 

~50% of the blood volume. 

 

4.2.3.4 Organ perfusion 
Mice were sacrificed and perfused with 50 ml buffered paraformaldehyd (PFA, 4%) 

via left ventricle, vena portae or the vena cava, respectively. Fixed organs were 

removed and stored in buffered PFA (4%) over night. To remove H2O, organs were 

then stored in 25% sucrose solution at 4°C over night. For tissue-slices organs were 

completely embedded in Tissue-Tak® Tec. After freezing at -80°C over night organ 

slices of 8µm were cut in a cyrostate (Leica) and embedded on object-slides. Organ-

slices were mounted with Mowiol/Dabco. A cover slip was sealed on the slide with 

nail polish. The slides were stored at 4°C and analyzed by fluorescence microscopy. 

 

4.2.3.5 Fluorescence microscopy 
Examination was performed on an Olympus IX81 microscope or on an Olympus 

FluoView1000 confocal microscope.        
 

4.2.3.6 Histology 
Mice were sacrificed and organs were removed. Organ samples were treated with 

formalin. Pathology Helmholtz-Center Munich embedded the pieces in paraffin for 

blinded histological examination. Two-µm-thick sections were cut and stained with a) 

haematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) or b) polyclonal rabbit 

anti hepatitis B core antigen antibody. The histopathological alterations were 

classified for a) in: -changes affecting the portal tracts (e.g. inflammation, 

degenerative changes of the bile ducts, fibrosis); - changes affecting the lobule (e.g. 

spotty and bridging necrosis, degenerative changes of the hepatocytes, fibrosis); - 

changes affecting the vessels (e.g. inflammation, fibrosis, thrombosis). The 

histopathological alterations were graded as mild, moderate and severe depending 

on their frequency and severity. Focal lesions (e.g. spotty necrosis) were counted 
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through the whole tissue specimen. The histopathological core-staining was 

classified in: nuclear positivity; the intensity was comparable in all samples, the 

localization was always diffuse. As well as in cytoplasmic positivity; the localization, 

intensity and distribution (diffuse: around most central venules; multifocal: around 

multiple central venules; focal) were determined.  

 

4.2.4 Statistical analysis 
For statistical analysis, the data were subjected to unpaired, two-tailed Student’s t-

test and statistical significance was determined confidence intervals of 95%. 

 

 

4.2.5 HBV sequence 
Read from ASCII file hpb ayw.gbo; HBV -3182 nt- (ayw)-Galibert; AccNo. J02203;  

ori set to core ATG. 

Targeting sequences of siRNAs si-1.1, si-1.2 and si-1.3 are marked 

 

ATGGACATCGACCCTTATAAAGAATTTGGAGCTACTGTGGAGTTACTCTCGTTTTTGCCTTC
TGACTTCTTTCCTTCAGTACGAGATCTTCTAGATACCGCCTCAGCTCTGTATCGGGAAGCCT
TAGAGTCTCCTGAGCATTGTTCACCTCACCATACTGCACTCAGGCAAGCAATTCTTTGCTGG
GGGGAACTAATGACTCTAGCTACCTGGGTGGGTGTTAATTTGGAAGATCCAGCGTCTAGAGA
CCTAGTAGTCAGTTATGTCAACACTAATATGGGCCTAAAGTTCAGGCAACTCTTGTGGTTTC
ACATTTCTTGTCTCACTTTTGGAAGAGAAACAGTTATAGAGTATTTGGTGTCTTTCGGAGTG
TGGATTCGCACTCCTCCAGCTTATAGACCACCAAATGCCCCTATCCTATCAACACTTCCGGA
GACTACTGTTGTTAGACGACGAGGCAGGTCCCCTAGAAGAAGAACTCCCTCGCCTCGCAGAC
GAAGGTCTCAATCGCCGCGTCGCAGAAGATCTCAATCTCGGGAATCTCAATGTTAGTATTCC
TTGGACTCATAAGGTGGGGAACTTTACTGGGCTTTATTCTTCTACTGTACCTGTCTTTAATC
CTCATTGGAAAACACCATCTTTTCCTAATATACATTTACACCAAGACATTATCAAAAAATGT
GAACAGTTTGTAGGCCCACTCACAGTTAATGAGAAAAGAAGATTGCAATTGATTATGCCTGC
CAGGTTTTATCCAAAGGTTACCAAATATTTACCATTGGATAAGGGTATTAAACCTTATTATC
CAGAACATCTAGTTAATCATTACTTCCAAACTAGACACTATTTACACACTCTATGGAAGGCG
GGTATATTATATAAGAGAGAAACAACACATAGCGCCTCATTTTGTGGGTCACCATATTCTTG
GGAACAAGATCTACAGCATGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCC
GACCACCAGTTGGATCCAGCCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCC
CAACAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAGCATTCGGGCTGGGTTTCA
CCCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATACTACAAACTTTG
CCAGCAAATCCGCCTCCTGCCTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCTGTC
TCCACCTTTGAGAAACACTCATCCTCAGGCCATGCAGTGGAATTCCACAACCTTCCACCAAA
CTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGCTCCAGTTCAGGAACA
GTAAACCCTGTTCTGACTACTGCCTCTCCCTTATCGTCAATCTTCTCGAGGATTGGGGACCC
TGCGCTGAACATGGAGAACATCACATCAGGATTCCTAGGACCCCTTCTCGTGTTACAGGCGG
GGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCT
CTCAATTTTCTAGGGGGAACTACCGTGTGTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAA
TCACTCACCAACCTCTTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTT
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TTATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTAT
CAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGGATCCTCAACAACCAGCACGGGACCATG
CCGGACCTGCATGACTACTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACCAAAC
CTTCGGACGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAATTCCTA
TGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTACTAGTGCCATTTGTTCAGTGGTT
CGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATGGATGATGTGGTATTGGGGGCCAA
GTCTGTACAGCATCTTGAGTCCCTTTTTACCGCTGTTACCAATTTTCTTTTGTCTTTGGGTA
TACATTTAAACCCTAACAAAACAAAGAGATGGGGTTACTCTCTAAATTTTATGGGTTATGTC
ATTGGATGTTATGGGTCCTTGCCACAAGAACACATCATACAAAAAATCAAAGAATGTTTTAG
AAAACTTCCTATTAACAGGCCTATTGATTGGAAAGTATGTCAACGAATTGTGGGTCTTTTGG
GTTTTGCTGCCCCTTTTACACAATGTGGTTATCCTGCGTTGATGCCTTTGTATGCATGTATT
CAATCTAAGCAGGCTTTCACTTTCTCGCCAACTTACAAGGCCTTTCTGTGTAAACAATACCT
GAACCTTTACCCCGTTGCCCGGCAACGGCCAGGTCTGTGCCAAGTGTTTGCTGACGCAACCC
CCACTGGCTGGGGCTTGGTCATGGGCCATCAGCGCATGCGTGGAACCTTTTCGGCTCCTCTG
CCGATCCATACTGCGGAACTCCTAGCCGCTTGTTTTGCTCGCAGCAGGTCTGGAGCAAACAT
TATCGGGACTGATAACTCTGTTGTCCTATCCCGCAAATATACATCGTTTCCATGGCTGCTAG
GCTGTGCTGCCAACTGGATCCTGCGCGGGACGTCCTTTGTTTACGTCCCGTCGGCGCTGAAT
CCTGCGGACGACCCTTCTCGGGGTCGCTTGGGACTCTCTCGTCCCCTTCTCCGTCTGCCGTT
CCGACCGACCACGGGGCGCACCTCTCTTTACGCGGACTCCCCGTCTGTGCCTTCTCATCTGC
CGGACCGTGTGCACTTCGCTTCACCTCTGCACGTCGCATGGAGACCACCGTGAACGCCCACC
AAATATTGCCCAAGGTCTTACATAAGAGGACTCTTGGACTCTCAGCAATGTCAACGACCGAC
CTTGAGGCATACTTCAAAGACTGTTTGTTTAAAGACTGGGAGGAGTTGGGGGAGGAGATTAG
GTTAAAGGTCTTTGTACTAGGAGGCTGTAGGCATAAATTGGTCTGCGCACCAGCACCATGCA
ACTTTTTCACCTCTGCCTAATCATCTCTTGTTCATGTCCTACTGTTCAAGCCTCCAAGCTGT
GCCTTGGGTGGCTTTGGGGC 
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6 List of abbreviations 

   
2`-5`-OAS   2`-5`-oligoadenylate synthetase 

3p    5`-Triphosphated  

A    Adenine 

aa    Amino acid 

ALT    Alanine aminotransferase  

Ab    Antibody 

APS    Ammonium persulphate 

bp    Base pair 

C    Cytosine 

cccDNA   Covalently closed circular DNA form of HBV 

cDNA    CopyDNA, to mRNA complementary DNA 

C-terminal   Carboxy-terminal 

Ctrl    Control 

d    Day 

ddH2O   Double distilled water 

DNA    Desoxyribonucleic acid 

ds    Double-stranded 

EDTA    Ethylenedinitrilotetraacedic acid 

e.g.    exempli gratia 

EIA   Enzyme immuno-assay 

ELISA   Enzyme linked immunoabsorbent assay 

Enh    Enhancer 

EtBr    Ethidiumbromide 

FCS    Fetal calf serum 

G    Guanine 

GAPDH   Glyceraldehyde 3-phosphate dehydrogenase 

h    Hour 

HBeAg   HBV e-antigen 

HBsAg   HBV s-antigen  

HBV    Hepatitis B virus 

HCC    Hepatocellular carcinoma 
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HRP    Horse radish peroxidase 

IFNAR   Interferon α/β receptor 

Ig    Immunoglobulin 

IL-6    Interleucin-6 

IFN    Interferon 

IP-10    Interferon-inducible protein 10    

IVT    In vitro transcription 

kb    Kilo base 

kDa    Kilo Dalton 

l    Liter 

L-protein  Large surface protein of HBV envelope 

LPS    Lipopolysaccharide 

mA    Milli-ampere 

MDA-5   Melanoma differentiation associated gene-5  

µg    Microgram 

mg    Milligram 

MHC    Major histocompatibility complex 

Min   Minute 

µl    Microliter 

ml    Milliliter 

µM    Micromolar 

mM    Millimolar 

MOI    Multiplicity of infection; infection ratio in number of virus per cell  

M-protein  Middle surface protein of HBV envelope 

mRNA   Messenger RNA 

n    Number 

ng    Nanogram 

nM    Nanomolar 

N-terminal   Amino-terminal 

nt    Nucleotide 

OD    Optical density 

ori    Origin of replication 

ORF    Open reading frame 

P     P-value 
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PAGE   Polyacrylamide gel electrophoresis 

PCR    Polymerase chain reaction 

pgRNA   Pregenomic RNA template of HBV 

PHH    Primary human hepatocytes 

PolyA    Polyriboadenosine 

Poly(I:C)   Polyinosinic-polycytidylic acid 

preS1    C-terminal domain of HBV L-protein 

preS2    C-terminal domain of HBV M-protein 

p.inf.    After infection 

p.inj.    After injection 

p.tr.    After transfection 

qRT-PCR   Quantitative real-time polymerase chain reaction 

rcDNA   Relaxed circular DNA: partial double-stranded HBV-genome  

RIG-I    Retinoic acid inducible gene I 

RLU    Relative light units  

RNA    Ribonucleic acid 

Rpm   Rounds per minute 

RT   Room temperature 

scFv    Single chain fragment of the variable region  

SD    Standard deviation 

sgRNA   Subgenomic RNA template of HBV 

S-protein  Small surface protein of HBV envelope 

ss    Single-stranded 

SVP    Subviral particle 

T    Thymine 

TAE    Tris-acetate-EDTA buffer 

TBS    Tris buffered saline 

Tg    Transgenic 

TLR    Toll-like receptor 

TNFα    Tumor necrosis factor α 

U    Uracil 

U    Units 

v/v   volume per volume 

w/v    weight per volume 	
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