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Zusammenfassung 

Diese Arbeit befasst sich mit der Anwendung von P-biphenyl-2,2‘-bisfenchol phosphiten 

(P-BIFOP-X, X = H, D, F, Cl, N3, CN, u. a.) als Liganden für die Pd-, Cu- und Fe-katalysierten 

enantioselektiven C–C-Kupplungen.  

Konkret handelt es sich bei der Pd-katalysierten C–C-Kupplung um die enantioselektive 

allylische Alkylierung (Tsuji-Trost-Reaktion), deren enantiomere Produktselektivität durch die 

Elektronegativität von Fluor am Phosphitliganden (P-BIFOP-F) umgekehrt werden kann. 

Dieser Effekt zeigt sich nicht nur bei acyclischen Substraten (bspw. Diphenylallylacetat) 

sondern auch bei cyclischen (bspw. Cyclohexenylacetat). Dieser besondere F-Effekt wird 

durch computergestützte Berechnungen erforscht und durch die Hilfe der „natürlichen 

Bindungsorbitalen“ (NBO) erklärt. Die NBO-Analyse zeigt, dass der F-Effekt durch eine 

Hyperkonjugation (lp)Pd → σ*(P-O) oder (lp)Pd → σ*(P-F), die durch die hohe 

Elektronegativität von Fluor beeinflusst wird, erklärt werden kann. Es konnten Ausbeuten von 

bis zu 91% und Enantiomerenüberschüsse von bis zu 70% isoliert werden. 

Unter der Cu-katalysierten C–C-Kupplung wird die enantioselektive 1,4-Addition von 

Nukleophilen an Enonen (Michael-Systeme) verstanden. Hierbei zeigen die P-BIFOP-X 

Liganden ihr Potenzial hohe Ausbeuten und Enantioselektivitäten zu generieren. Außerdem 

konnten die Stärken und Grenzen des Katalysatorsystems festgestellt werden. Die 

Kupferquelle (CuCl, CuCl2 oder Cu(OTf)2) ist entscheidend für die Ausbeute und 

Enantioselektivität ob es sich bei dem eingesetzten Substrat um ein cyclisches oder 

acyclisches Enon handelt. Dieser Selektivitätseffekt sowie die hohe Selektivität des P-

BIFOP-H Liganden werden mittels computergestützter Berechnungen erklärt. Acyclische 

Substrate (bspw. Chalcon) liegen im thermischen Gleichgewicht bevorzugt in einer syn-

Konformation vor (d. h. „En“ und „On“ befinden sich auf der gleichen Seite), wohingegen 

cyclische Enone (bspw. Cyclohexenon) in einer starren anti-Konformation (d. h. „En“ und 

„On“ befinden sich gegenüberliegend und damit nicht auf der gleichen Seite) vorliegen. Auch 

im Übergangszustand sind die Auswirkungen der thermodynamisch bevorzugten syn-

Konformation an einem Modellsystem (Methylvinylketon) zu sehen (der syn-TS ist um 3,7 

kcal/mol bevorzugt). In diesem Teil der Arbeit konnten Ausbeuten von bis zu 96% und 

Enantiomerenüberschüsse von bis zu 99% isoliert werden. 

Die Fe-katalysierten C–C-Kupplung verläuft analog zu Kupfer. Auch hier zeigt sich der P-

BIFOP-H Ligand in den Punkten Ausbeuten und Enantioselektivität als zuverlässig. Die 

Besonderheit der in dieser Arbeit behandelten enantioselektiven Fe-katalysierten 1,4-

Addition liegt in der Erkenntnis begründet, dass es sich bei dieser Reaktion im Gegensatz 

zur weitverbreiteten Annahme offensichtlich nicht um eine Lewissäure katalysierte Reaktion 
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handelt. Eine Vergleichsreaktion mit AlCl3 die als Lewissäure das FeCl3 imitieren sollte 

erbrachte weder einen Umsatz noch eine Ausbeute eines Produktes (das Substrat wurde 

reisoliert). Die gezeigten Experimente lassen die starke Vermutung zu, dass von einer Fe(I)-

alkyl Spezies ausgegangen werden kann, die starke Ähnlichkeit zum Mechanismus der 

Cu(I,III)-katalysierten 1,4-Addition besitzt. Somit kann vom Stand dieser Arbeit von einer 

Fe(I,III)-katalysierten 1,4-Addition ausgegangen werden. Der bislang prominenteste Vertreter 

der Fe(I,III)-katalysierten Reaktion war die Kreuzkupplung. Eine Verunreinigung des FeCl3-

Salzes durch Spuren von Cu kann durch die 1,4-Addition von Alkyl-Grignardreagenzien an 

Chromon ausgeschlossen werden. Das Substrat Chromon, was auch in der Cu-katalysierten 

1,4-Addition Anwendung fand, generiert in der Anwesenheit eines Cu-Katalysators zwar 

hohe Ausbeuten von bis zu 95%, aber verfügt über keinerlei Stereokontrolle wodurch 

ledglich Racemate der 2-Alkylchroman-4-one gebildet werden können. Die Fe-katalysierte 

1,4-Addition hingegen generiert Ausbeuten von bis zu 89% und Enantiomerenüberschüsse 

von bis zu 89% der 2-Alkylchroman-4-one. Ferner zeigt die Fe-katalysierte 1,4-Addition dass 

nur Alkyl-Grignardreagenzien ((Et,Me)MgBr) 1,4-addiert werden können, wohingegen ein 

Phenyl-Grignard mit sich selbst kreuzgekuppelt wird und Biphenyl entsteht.  

 Der letzte Teil dieser Arbeit befasst sich mit der Frage warum durch sterische (Ph-

Gruppen) oder elektronische (Estergruppe) Effekte die Regioselektivität bei der 

Photooxydation (Schenk-en Reaktion) beeinflusst werden kann. Befinden sich am α-

Kohlenstoff eines Allylalkohols statt Protonen oder Methylgruppen sterisch anspruchsvolle 

Phenylgruppen, wird die Regioselektivität des gebildeten Hydroperoxids fast ausschließlich 

zum γ-Kohlenstoffatom verschoben. Dieser Effekt zeigt sich noch deutlich stärker wenn 

anstelle eines Allylalkohols ein Enon bzw. Ester verwendet wird. Die Regioselektivität kann 

dadurch auf 98:2 zu Gunsten der γ-Photooxygenierung verschoben werden. Die Erklärung 

für dieses Verhalten findet sich in beiden Fällen in den computergerechneten, 

unterschiedlichen Energieprofilen des Übergangszustandes wieder. 
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Abstract 

In this work the use of P-biphenyl-2,2'-bisfenchol phosphites (P-BIFOP-X, X = H, D, F, Cl, 

N3, CN, and others) ligands for Pd-, Cu- and Fe-catalyzed enantioselective C-C coupling 

reactions are discussed. 

The Pd-catalyzed C-C coupling refers to the enantioselective allylic alkylation (Tsuji-Trost 

reaction). The enantioselectivity of product can be switched by the electronegativity of 

fluorine on the phosphite ligand (P-BIFOP-F). This effect is not only evident in acyclic 

substrates (i.e. diphenylallyl acetate) but also in cyclic ones (i.e. cyclohexenyl acetate). This 

particular “F-switch” is explored through computations and explained by the help of natural 

binding orbitals (NBO). This NBO-analyzes reveals that the explanation of this “F-switch” is a 

hyperconjugation effect (lp)Pd → σ*(P-O) or (lp)Pd → σ*(P-F) influenced by the high 

electronegativity of fluorine. During the reaction it is possible to isolate yields in up to 91% 

and enantiomeric excesses in up to 70%. 

The Cu-catalyzed C-C coupling means the enantioselective 1,4-addition of nucleophiles 

to enones (Michael systems). The P-BIFOP-X ligands show their potential generating high 

yields and enantioselectivities. In addition, the benefits and limitations of the catalyst system 

are determined. The copper source (CuCl, CuCl2 or Cu(OTf)2) is crucial for yield and 

enantioselectivity, whether the substrate is a cyclic or acyclic enone. This effect and the high 

selectivity of the P-BIFOP-H ligand are explained by DFT-computations. Acyclic substrates 

(e.g. chalcone) prefer a syn-conformation thermodynamically (this means "ene" and "one" 

are on the same side), whereas cyclic enones (e.g. cyclohexenone) are in a fixed anti-

conformation (this means "ene" and "one" areon the opposite side of each other). 

Furthermore the transition state reveals the thermodynamically preferred syn-conformation, 

also. A model system (methyl vinyl ketone) shows in its transition structure the same 

preference (the syn-TS is preferred by 3.7 kcal/mol). In this part of the work yields of in up to 

96% and enantiomeric excesses of in up to 99% could be isolated. 

The Fe-catalyzed C-C coupling works analog to copper. The P-BIFOP-H ligand is highly 

reliable in terms of yields and enantioselectivity, too. The specialty of the enantioselective 

Fe-catalyzed 1,4-addition discussed in this work, based on the widely accepted assumption 

that the reaction works with FeCl3 as a Lewis acid catalysis, shows the opposite (a Fe(I,III)-

catalyzed C–C coupling is likely). Comparing AlCl3 in caltaysis, mimicing FeCl3 as Lewis acid, 

resulted into no conversion and no product at all (the substrate is reisolated instead). The 

experiments leads to the conclusion that a Fe(I)-alkyl species can be assumed catalyzing the 

1,4-addition similar to Cu(I,III)-catalyzed 1,4-additions. Thus, this work shows strong 

evidence for a Fe(I,III)-catalyzed 1,4-addition. The most prominent representative of the 
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Fe(I,III)-catalyzed reaction to date has been the cross-coupling reaction. Contamination of 

the salt of FeCl3 by traces of Cu can be excluded by the 1,4-addition of alkyl-Grignard 

reagents to chromone. Chromone, which is also used in the Cu-catalyzed 1,4-addition, 

generates high yields in up to 95% in the presence of a Cu-catalyst, but has no stereocontrol 

whatsoever, resulting in a racemic mixture of 2-alkylchroman-4 one. However, the Fe-

catalyzed 1,4-addition yields 2-alkylchroman-4-one in up to 89% and delivers enantiomeric 

excesses in up to 89%. Furthermore, Fe-catalyzed 1,4-addition shows that only alkyl-

Grignard reagents ((Et, Me) MgBr) can be 1,4-added, whereas a phenyl-Grignard is cross-

coupled with itself forming biphenyl. 

The final part of this thesis questions the sterical (Ph groups) or electronical (ester group) 

properties that influences the regioselectivity of the photooxidation (Schenk-ene) reaction. If 

sterically demanding phenyl groups are present at α-carbon of an allylic alcohol compared to 

protons or methyl groups, the regioselectivity of the forming hydroperoxide is almost 

exclusively bifurcated to the γ-carbon atom. This effect is even stronger when an enone, or 

ester respectively, is used instead of an allylic alcohol. The regioselectivity for the latter is 

found to be 98: 2 favouring the γ-photooxygenation. The explanation for this behavior can be 

found by computation, showing the difference of the energy profiles of the transition state. 
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1. Introduction 

1.1 Catalyses in general 

Catalysis is one of the most powerful tools in syntheses measured in versatility and 

economy forming C-C bonds (Scheme 1) [1]. Small amounts of a catalyst, sometimes only 

tracks, are capable to generate large amounts of products [1]. Enantioselective catalysis 

represents the challenge to generate enantiomerically pure products with large application 

[1], especially in pharmaceutical field [2].  

 

 

Scheme 1. Historic C-C-coupling reactions. 

There are two different main fields of catalyses [7]: metal-mediated catalysis [8,9] and 

organo catalysis (Scheme 2) [10]. Generally organo catalysts enjoy the privilege to be non-

toxic and cheap [10,11]. However, large amounts of catalysts (mostly in up to 20 mol%) [10] 

are needed to create decent quantities of products or especially enantiomerically pure 

compounds [10]. Metal-mediated catalysis ensures economic amounts of catalyst (tracks in 

up to 5 mol%) [8,9] and are far more flexible in use [8,9], because each metal center can 

carry different ligands and vice versa [8,9].  
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Scheme 2. Organocatalysts and metal-mediated catalysts with an example of each. 

Examples of metal-mediated catalysis are the allylic substitution which is often referred to 

as Tsuji-Trost reaction [8a], or the conjugate 1,4-addition which is often referred to as 

Michael addition [8b]. 

1.2 Ligand classes 

Catalysts for metal-mediated catalysis are described by metal-ligand interaction [15]. An 

enantioselective catalyst is different because its ligand or system carries chiral information 

within, which is transferred to a substrate generating enantiomerically pure products [8]. 

Unfortunately, there is no catalyst which is superior to all reactions thus each reaction 
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demands its own designed catalyst [14]. Ligands are mostly lone-pair donating like N-

donation [16a]. Bidentate systems like N/N-[16b], N/P-[16c] or P/P-donating [17] ligands are 

quite promising as well (Figure 1). Lately the lp(P)-donating ligands (e.g. 7, 8, Figure 1, 

Figure 2) have been focused on [8,18]. Chiral C2-symmetric N/N-ligands like BOX-ligands (1, 

Figure 1) [16b] were introduced first in Pd-catalyzed allylic substitutions [16b,19]. The 

hardness of the nucleophile is restricted for N/N-ligands [16b], because nucleophiles 

supersede the ligand immediately at the metal-core and prevent enantioselective reactions 

[20]. Pfaltz, Helmchen and Williams et al. synthesized chiral N/P-ligands (2, Figure 1) 

[16b,21] which generate selectivity due to electronical differentiation between N and P 

[16b,21] as well as implemented sterical effects at the ligand moiety [16b,21].P/P-ligands like 

the Trost-ligand (3, Figure 1) [17a], DIOP (4, Figure 1) [17b], BINAP (5, Figure 1) [17c] and 

CHIRAPHOS (6, Figure 1) [17d] have already successfully been used in enantioselective 

hydrogenation reactions [17b-17d].  

 

 

Figure 1. N/N-, P/N-, P/P- and P-donating ligands employed in organocatalyses and metal-

mediated catalyses [16-18]. 
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Trost’s diphosphine (3, Figure 1) [17a] benefits from its larger P/P bite angle compared to 

DIOP (4, Figure 1) [18b], BINAP (5, Figure 1) [18c] and CHIRAPHOS (6, Figure 1) [18d], 

additionally to the intramolecular N/N support of the chiral diamine moiety [17a]. As a fact, 

chiral monodentate phosphorus halide ligands (P-Hal, Hal = F, Cl, Br) are rare with only a 

few examples like the TADDOL-based ligands (7, Figure 1) [18a], the BINOL-based ligands 

(8, Figure 1) [18b] and fenchol-based [9] phosphites (Figure 2) [8,9b,9c,9i,9j]. 

 

 

Figure 2. Monodentate phosphorus ligands established in literature [8,9].  

1.3 Palladium (Pd) catalyses 

The allylic substitution (Scheme 3) [1g,1i,1k,22] is one of few reactions where the 

substrate species can be used as racemic mixture, because one product is enantiomerically 

favoured due to the mechanistic process [22]. The reaction can take place under mild 

conditions [23] and tolerates a lot of functional groups (e.g. -CO2R, -OH, -OSiR3, -OMe, -

NMe2, -NO2, -CN, -Cl, -CF3, -CHO, -COMe, -OCH2O-) [23]. It is possible to couple 

functionalized allylic compounds [8a] or nitroalkenes [24a] with different C-[8a,9b,9i], N-, O-, 

S-, B- or Si-nucleophiles [24b]. As for the metal sources, Pd [8a,9i,24b], Pt, Ir, Au, Zr, Ru, Ni 

and Mo [24b] show the origin of variety that can be used. Even their metal-salts can be 

varied (e.g.  Pd(dba)2 vs Pd2(dba)3) resulting into different reactivities [25]. At least three 

ligand classes appeared to generate high enantioselectivities (e.g.  phosphines [24a], 

phosphites [8,9b,9i] and phosphoramidites [24a]) in allylic substitutions so far. These three 

classes can be splitted further into different ligand groups (e.g.  oxazolines [16b,21,24a], 

salen-related, ferrocenes, binaphthyls [24a], bicyclics and biphenyls [8a,9i,24a]). Besides of 

the allylic substitutions the Pd-catalyzed cross-couplings developed by Heck, Negishi, 

Suzuki, Kumada, Stille and Sonogashira et al. [26] are of high chemical interest but not a part 

of this work. 
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Scheme 3. Examples of Pd-catalyzed allylic alkylations (Tsuji-Trost reaction) [8a]. 

The nucleophiles can be formed by three different approaches for the allylic substitutions 

[8a]. In general, the reagent is treated with a catalytic amount of base to generate only small 

portions of the nucleophile in the process [8a]. Another way is to use the nucleophile as 

ready salt [8a]. Most organic solvents only resolve small portions of this salt for catalysis. The 

third method is established by Trost et al., where they constituted a method with BSA (BSA-

method) [8a,24a]. The reagent is treated with a stoichiometric amount of BSA which is similar 

to the first method but in most cases with more stereoselective results. New insights 

concerning a stereoselective electronical effect of fluorine attached to phosphorus have been 

reported recently [8a]. 
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Scheme 4. Proposed mechanism of the allylic substitution (Tsuji-Trost reaction) [24a]. 

As for the mechanistics in allylic substitutions [24a] the catalyst (Pd-metal core) 

undergoes a complexation with the substrate (I, Scheme 4). Then an ionization takes place 

(nucleofuge leaves the allylic substrate, II, Scheme 4) and the oxidative addition of the 

substrate to the Pd-metal core advances (II, Scheme 4). With the incoming nucleophile a SN2 

reaction is made, where the Pd-metal vanishes during the backside attack of the nucleophile, 

and builds up another complexation state (III, Scheme 4). After the decomplexation the 

product is separated and the catalyst regenerated (IV, Scheme 4). 

 

1.4 Copper (Cu) catalyses 

The conjugate addition, or 1,4-addition, of α,β-unsaturated carbonyl compounds (Scheme 

5) [8b,9j] or even similar ‘activated olefins’ (e. g. nitroalkenes) [1d,1h], are an elegant way to 

produce new C–C bonds [1d,1h,8b,9j]. It suits a broad use in generating large and highly 

functionalized C-skeletons in synthesis [1d,1h] and even enantiomerically pure products 

[1h,8b,9j]. The scope of application seems endless due to the variation of metal sources 

[1h,8b], ligands (cf. chapter 1.2, Figure 1, Figure 2), substrates and nucleophiles 
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[1b,1h,8b,9j]. As for the metal sources, Li, Ca, Co, Ni, Zn, Rh, Ru, Ir, La, Sc, Y [1b] and even 

Fe (cf. chapter 2.4) can be used. The metal-salts and their oxidative states can be varied 

(e.g. Scheme 5) [1c,1h,8b].  

 

 

Scheme 5. Examples of enantioselective Cu-catalyzed 1,4-additions [8b,9j]. 

There are four “ligand classes” suitable for the conjugate additions to generate high 

enantioselectivities (e.g.  phosphoramidites, phosphine-sulfonamides, phosphines [1b] and 

phosphites [1b,8b,9i]). These four classes can further be splitted into different ligand groups 

(e.g.  Figure 1, binaphthyls, TADDOLs, ferrocenes, oxazolines [1b], biphenyls and bicyclics 

[8b,9j]). As nucleophiles, organoaluminium, organozinc and organomagnesium reagents 

(Grignard reagents) have been used successfully and offer different reactivities [1b]. New 

insights concerning the mechanism of Cu-catalyzed reactions are reported recently [8b], 

where acyclic products prefer a ‘syn’ transition structure while cyclic products are fixed in an 

‘anti’ transition structure (cf. chapter 2.3, Scheme 24). 
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Scheme 6. Proposed mechanism of the Cu(I,III)-catalyzed 1,4-additions [27]. 

As for the mechanistic of 1,4-additions [27] the catalyst undergoes a complexation with 

the organometallic species, building up a trimetallic-(six-membered-ring)-complex (I, Scheme 

6). Then the substrate makes a π-coordination to the Cu-metal core (from the Cu-trimetallic-

complex one Cu-metal core, II, Scheme 6) and the oxidative addition of the substrate to the 

Cu-metal core advances (III, Scheme 6). The reductive elimination regenerates the catalyst 

and releases the intermediate product (IV, Scheme 6), which can be easily protonated during 

workup generating the product (V, Scheme 6). 
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1.5 Iron (Fe) catalyses 

 

 

 

Scheme 7. Proposed mechanism of the Fe(I,III)-catalyzed cross coupling reaction [28]. 

One of the best studied C–C bond reactions containing Iron is the cross-coupling reaction 

(Scheme 7) [28,29]. Lots of effort is put to the mechanistic aspects of this Fe(I,III)-catalysis 

[28,29].  

 

 

Scheme 8. Examples of the enantioselective Fe(I,III)- or Cu(I,III)-catalyzed 1,4-additions [30]. 

Capable of switching into different spin-states (S = 1/2, S = 3/2, S = 5/2) [28b] the 

thermodynamical pathway of cross-coupling reactions undergoes at least one switch of the 
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spin-state according to Norrby et al. [28b]. Every reaction which is no cross-coupling is 

believed to work with Fe-salts as Lewis acid catalyses, especially the 1,4-addition [31].  

 

 

Scheme 9. Fe-catalyzed conjugate addition [32,33]. 

Lai and Xu et al. reported the Fe-catalyzed enantioselective conjugate addition with 

various Fe-salts as Lewis acids (e.g.  FeCl3, Fe(ClO4)3, Fe(acac)3, FeCl2•4H2O) and chiral 

primary amines (e.g.  (R,R)-DPEN, (R,R)-DACH) to coumarin 32, yielding warfarin 33 (in up 

to 90% with 91% ee) [32]. White et al. reported the Lewis acid Fe-catalyzed enantioselective 

sulfa-Michael addition of thiols (e.g. i-Pr-SH) with a Salen-ligand based on a cis-2,5-

diaminobicyclo[2.2.2]octane scaffold, with FeIIICl encapsuled, to enones (e.g.  chalcone 25, 

yielding the thiol product 34 in up to 96%, 94% ee, Scheme 9) [33]. Furthermore White et al. 

proposed a possible mechanism (Scheme 10) and transition structure for the 

enantioselective Fe-catalyzed conjugate addition with Fe performing as a Lewis acid 

(Scheme 10) [33]. However, new insights concerning the mechanism of Fe-catalyzed 1,4-

additions are in preparation [30], where strong evidence of the catalytic activity of Fe(I,III) in 

1,4-additions is discussed (cf. chapter 2.4). Fürstner et al. have found that it is possible for 

Iron to switch between all of its possible oxidative states (-II, 0 or 0, II or I, III, Scheme 11) 

[29b]. However, Norrby et al. stated that the most probable mechanism has to be a Fe(I,III)-

catalyzed one [28]. 
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Scheme 10. Proposed mechanism of the Lewis acid Fe-catalyzed conjugate addition by White et 

al. [33]. 

 

 

Scheme 11. Proposed and analyzed mechanism of Fe-catalyses with Fe in all possible oxidative 

states [29b]. 
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1.6 Schenck ene reaction (photooxygenation) 

 

 

Scheme 12. Photooxygenation reaction of an allylic component to a peroxide: Schenck ene 

reaction [34]. 

Photooxygenation reactions are performed with molecular oxygen (O2). Since 3O2 has a 

triplet ground state a photosensitizer is used which is exited by light (hν) into a singlet state 

which converts into a triplet exited state by intersystem crossing. This exited triplet state 

reacts with 3O2 generating the reactive singlet oxygen species (1O2) [34]. 

  

1.7 Computational (chemistry) methods 

There are different computational techniques in computational chemistry like the 

molecular mechanics, semi-empirical approximations or the ab initio methods [35]. Molecular 

mechanics refer to the classical physics concerning the ‘ball and spring’ model [35]. With 

these force fields, bonds, angles and interactions can be energetically influenced and 

determined [35]. The advantage of this method lies in its fast computations, which means it 

can be used on small and simple computers and additionally this method can easily be used 

for thousands of atoms [35]. Typical methods are named by the force field like Charmm 

(Chemistry at Harvard Molecular Mechanics), OPLS (Optimized Potential for Liquid 

Simulations), UFF (Universal Force Field), Amber (Assisted Model Building and Energy 

Refinement) [35] and others. Semi-empirical methods use quantum physics and are based 

on experimental data [35]. They do a lot of approximations and can be used for at least 

hundreds of atoms [35]. Furthermore transitions states and excited states can be determined 

as well [35]. Established methods are NDDO (Neglect of Diatomic Differential Overlap), AM1 

(Austin Model 1), PM3 (Parametrized Method 3), PM6 (Parametrized Method 6) [35] and 

others. Finally, ab initio methods, which means ‘from the beginning’, use also quantum 

physics but in contrast to semi-empirical methods it is mathematically stringent without any 

empirical parameters [35]. Approximations are extensively working only for tens of atoms 

because it is a ‘expensive’ method due to the size of the basis set (see below) and the 

amount of electron correlations made [35]. On the other hand it is useful for a broad range of 

chemical problems and eventually it can converge to the exact solution [35]. The simplest ab 

initio method is the Hartree-Fock (HF) [35] one, which uses self-consistent fields (SCF) [35]. 

This means that every electron gets a wave function and the parameters are varied until the 
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wave function does not change anymore [35]. Besides, HF uses a single Slater determinant, 

while its mean field approximation is its most important weakness [35]. So called post HF 

methods like Møller-Plesset’s perturbation theory (MP2, MP3, MP4, MP5, etc.), CC (Coupled 

Cluster), CI (Configuration Interaction), QCI (Quadratic Configuration Interaction) or 

composite methods (G2, G3, CBS, T1, etc.) [35] modify the simple HF method by bringing 

back the electron correlation to a decent degree (>90% electron correlation) [35]. However, 

the Density Functional Theory (DFT) approaches a different method to evaluate the 

quantum-mechanical ground state of a multi electron system based on its electron density 

[35]. The definition that the ground state of a system of n electrons is explicitly defined by its 

electron density was made by Hohenberg-Kohn [35]. Therefore, physical properties derived 

from wave functions are also predictable by electron density, which implies that properties 

are also functional of the electron density and that solving of the Schrödinger equation is not 

necessary [35]. For DFT a lot of different formalisms have been established like Kohn-Sham 

formalism, LDA (Local Density Approximation), GGA (Generalized Gradient Approximation) 

and hybrid methods [35]. The Kohn-Sham formalism makes use of the Kohn-Sham 

equations, which means that the Schrödinger equation is replaced by a fictitious system 

(Kohn-Sham system) of non-interacting electrons having the same density than any other 

system of interacting particles [35]. By LDA the exchange correlation potential is seen as a 

function of electron density at a certain point in space, which is useful to describe metals with 

a density constant over space [35]. However, this method is ‘overbinding’ which means that 

the bonds are too short [35]. The GGA does not only use the density but also the first 

derivative of density at a certain point in space. Therefore the hybrid methods take only a 

part of the exchange correlation potential which is calculated with GGA, whereas the rest is 

done similar to HF method [35]. Commonly used hybrids are B3LYP and TPSS [35]. 

Advanced hybrids and more precise methods are the Minnesota functional (M06, M06-L, 

M06-2X and M06-HF) which differ in their HF-exchange correlation: M06 with ~25% HF-

exchange, M06-L with 0% exchange (thus it is no true hybrid), M06-2X with ~50% HF-

exchange and M06-HF with 100% HF-exchange [35]. 
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1.7.1 Basis sets 

Molecular orbitals (MO) are linear combinations of atomic orbitals (LCAO) [35]. There are 

Slater type orbitals (STO) and Gaussian type orbitals (GTO) [35].  

 

 

Figure 3. Example of a Slater-type function (e
–x

) of the 1s orbital and a Gaussian-type function  

(e
–x²

) of the 1s orbital [35]. 

The STO’s are known from the exact solution of hydrogen (H) [35]. They are numerically 

‘hard’ because of their two electron integrals, while the GTO’s are much worse in precision 

than STO’s, but numerically easier to handle and are much faster in their calculations to 

solve two electron integrals (Figure 3) [35]. However, GTO’s are also not appropriate at the 

nucleus and decrease too fast with their radius [35]. Thus a combination of both methods 

(STO’s and GTO’s) generates satisfying results [35]. The first so called minimum basis sets 

for computational chemistry (e.g. STO-3G or STO-6G) are introduced by Pople, which are 

translated that each STO is resembled by three (3G) or six Gaussian (6G) functions, 

respectively [35]. More advanced are Pople’s split-valence basis sets which are represented 

as X-YZG (e.g. 3-21G). X is representing the number of primitive Gaussians for each core 

atomic orbital (AO) as basis function. Y and Z are representing the inner and outer shell, 

indicating the valence orbitals which are composed of two basis functions each, resembling a 

linear combination of primitive Gaussian functions [35]. In this work the Ahlrich basis sets are 

mostly used (e.g. def2-SVP (SVP = split valence polarization; def2 = by definition), which is 

comparable to Pople’s basis 3-21G**) [35]. More accurate Ahlrich basis sets are def2-DZVP 

(comparable to Pople’s 6-31G** basis; DZVP = valence douple zeta polarization) or def2-

TZVP (comparable to Pople’s 6-311G** basis; DZVP = valence triple zeta polarization) [35]. 
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1.7.2 Natural bond orbital (NBO) method 

The concept of ‘natural’ orbitals is introduced by Per-Olov Löwdin which is searching for 

the best or optimal orbitals according to a sense of their maximum-density which is 

determined from the wavefunction of the system itself [36]. The ‘natural bond orbitals’ (NBO) 

are localized accommodations of the natural orbital algorithm of Löwdin’s concept and have 

been field-tested multiple times [36]. These NBO’s are capable of showing interaction and 

stabilizing energies of electronic effects,explaining certain phenomena (e.g. ‘F-switch’, cf. 

chapter 2.2, Figure 5, Figure 15, Table 8) [8a].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

2. Results and discussions [8a,8b,30,34b,37,38,39] 

2.1 P-BIFOP-H inversion 

 

Figure 4. Computational chemical inversion (flip) of P-BIFOP-H (10) ligand leading to the same 

conformation (B97D3/6-31G*).  

 DFT-Computation (B97D3/6-31G*) show that the P-BIFOP-H (10) ligand can be inverted into 

its same conformation (CH3-orientated, left and Ph-orientated, right) proven to be equal in energy 

(Figure 4). The barrier (TS) of this inversion is ΔGrel = 62.1 [kcal/mol] (Figure 4). In catalytic active 

metal complexes (e.g. Pd [8a], Cu [8b], Fe [30]) the P-BIFOP-H (10) ligand prefers the CH3-orientation 

of the P-H conformation, because the biaryl-backbone is stabilizing the metal complexes (cf. 

chapter 2.2, Table 5, Figures 11-14; chapter 2.3, Figure 21, Figure 22). 
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2.2 Ligand’s electronegativity controls sense of enantioselectivity in BIFOP-X 

Palladium-catalyzed allylic alkylations [8a,37] 

 

 

Scheme 13. Enantioselective Pd-catalyzed allylic alkylations. The attack of the nucleophile to the 

transition structure can be either cis or trans.  

  2.2.1 Abstract [8a,37] 

Palladium-catalyzed allylic alkylations of sodium dimethyl malonate with 1,3-

diphenylallyl acetate, employing P-BIFOP-H (biphenylbisfencholphosphite) and analogue 

(i.e. P-BIFOP-X, X = D, Cl, CN, N3) ligands, all yield (S)-enantiomeric products, while 

alkylations to cyclohexenyl acetate yield the (R)-enantiomeric C–C coupling product (in up to 

91% yield, 70% ee). The fluoro derivative P-BIFOP-F however, ‘‘switches’’ the sense of 

enantioselectivity, yielding the (R)-enantiomer for 1,3-diphenylallyl acetate and the (S)-

enantiomer for the cyclohexenyl acetate (in up to 92% yield, 67% ee). Computational 

analyses of transition structures (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP) for these 

Pd-catalyzed allylic alkylations reproduce the experimental preference of P-BIFOP-H (and 

analogue P-BIFOP-X ligands) for (R)- or (S)-enantiomeric products of 1,3-diphenylallyl or 

cyclohexenyl acetate, respectively. The ‘‘F-switch’’ of the sense of enantioselectivity from P-

BIFOP-H to P-BIFOP-F is also apparent computationally and is found (NBO-analyses) to 

originate from lp(Pd) → σ*(P–O) or lp(Pd) → σ*(P–F) hyperconjugations. The higher 

electronegativity of F vs. H in P-BIFOP-X hence controls the sense of enantioselectivity of 

this Pd-catalyzed allylic alkylation. 
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2.2.2 Results and discussion [8a,37] 

 

 

Scheme 14. Enantioselective [C3H5]PdCl•P-BIFOP-X-catalyzed allylic alkylation of 

Na(CH(CO2CH3)2) to rac-21 [8a,37]. 

Table 1. Evaluation of Na(CH(CO2CH3)2) to (rac,E)-1,3-diphenylallyl acetate (21) in 

enantioselective Pd-catalyzed allylic alkylation (Scheme 13, Scheme 14)
a
 [8a,37]. 

Entry Solvent Temp. [°C] Yield [%]
b
 ee [%]

c
 

1 THF 20 27 55 (S) 

2 THF 20 52 55 (S) 

3 dioxane 20 75 26 (S) 

4 Et2O 20 54 5 (S) 

5 MTBE 20 26 21 (S) 

6 MeCN -30 34 31 (S) 

7 MeCN 20 87 56 (S) 

8 toluene 20 11 n.d. 

9 n-hexane 20 69 34 (S) 

10 DMSO 20 77 23 (S) 

11 DMF 20 46 0 

12 DCM 20 72 62 (S) 

13 1,2-DCE 20 81 65 (S) 

14 1,2-DCE -30 42 64 (S) 

15
d
 1,2-DCE 40 82 26 (S) 

16
e
 1,2-DCE 20 78 63 (S) 

17
f
 1,2-DCE 20 73 60 (S) 

a
1 mol% [(C3H5)PdCl]2, 1 mol% P-BIFOP-H (10), 1.5 eq. of reagent Na(CH(CO2CH3)2), 4 d. 

b
Isolated yield after silica gel column chromatography (ethyl acetate : n-hexane, 1:10). 

c
Enantiomeric excess (ee) is determined via HPLC (Chiralpack® AD-H column [40a], tR = 19.7-

24.8 min (S), tR = 26.1-26.3 min (R), cf. Figure 7). 
d
Reaction finished after 1 d. 

e
The BSA method 

is used with CH2(CO2CH3)2 and KOAc instead of Na(CH(CO2CH3)2) analogue to ref.
 
[24a]. 

f
In 

situ generation of Na(CH(CO2CH3)2) with Na2CO3 and CH2(CO2CH3)2 similar  to ref. [24a], where 

Cs2CO3 is used instead of Na2CO3. 
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The Pd-P-BIFOP-H-catalyzed allylic alkylation of Na(CH(CO2CH3)2 with (rac,E)-1,3-

diphenyl allyl acetate (rac-21) yields (S,E)-dimethyl-2-(1,3-diphenylallyl)malonate (S)-22 in up 

to 81% yields with 65% ee (Scheme 13, Scheme 14, Table 1). The Pd-catalyzed allylic 

substitution is performed with three common methods to generate the nucleophile: the BSA 

method [24a] (Table 1, entry 16), the in situ generation of malonate (CH(CO2CH3)2) with 

sodium carbonate (Na2CO3) similar to ref. [24a] (in the ref. Cs2CO3 is used, Table 1, entry 17) 

and the method using pre-formed sodium enolate (Na(CH(CO2CH3)2) [21e], Table 1, entries 

13). All three methods yield the desired product with nearly equal results (cf. Table 1, entries 

13, 16 and 17). The highest yield and selectivity are obtained with pre-formed 

Na(CH(CO2CH3)2 (Table 1, entry 13). At low temperatures (e.g. -30 °C), the Pd-P-BIFOP-H-

catalyzed allylic alkylation of Na(CH(CO2CH3)2) with 1,3-diphenylallyl acetate (rac-21) yields 

malonate (S)-22 with loss of conversion but retaining stereocontrol (e.g. Table 1, 20°C, entry 

13: 81% yield, 65% ee vs. -30°C, entry 14: 42% yield, 64% ee). At higher temperatures (e.g. 

40°C) full conversions are achieved but with loss of stereocontrol (cf. Table 1, entry 15: 82% 

yield, 26% ee). Screening of the ether solvents (THF, dioxane, Et2O, MTBE) reveals for THF 

forming moderate yield and entantioselectivity (52%, 55% ee, Table 1, entry 2). Dioxane 

improves yield but decreases the enantioselectivity (75%, 26% ee, Table 1, entry 3) while 

Et2O provides nearly a complete loss of enantioselectivity (54%, 5% ee, Table 1, entry 4). 

MTBE is ordered between Et2O and dioxane in yield and enantioselectivity (cf. Table 1, 

entry 5, 26%, 21% ee). Switiching to polar solvents (MeCN, DMSO, DMF) shows that MeCN 

exceeds THF in yield while retaining enantioselectivity (cf. Table 1, entry 7, 87% yield, 56% 

ee), while DMSO decreases enantioselectivity (cf. Table 1, entry 10, 77% yield, 23% ee), and 

DMF shows a complete loss of sterecontrol (cf. Table 1, entry 11, 46% yield, rac). 

Nucleophilic solvents like DMSO and DMF mights coordinate to Pd, affecting negatively the 

outcome of enantioselectivity. Apolar solvents (e.g. toluene, n-hexane) show a different 

behavior. While n-hexane generates decent yield and moderate enantioselecitivty (cf. 

Table 1, entry 9, 69% yield, 34% ee,), toluene is capable to form π-interactions with the Pd-

center and thus hinders the catalysis to occur [41]. Finally, chlorinated solvents (e.g. DCM, 

1,2-DCE) improve yield and enantioselectivity in comparison to THF (e.g. Table 1, entry 12, 

DCM, 72% yield, 62% ee). 1,2-DCE exceeds even DCM in the same catalysis (cf. Table 1, 

entry 13, 81% yield, 65% ee) delivering the best results of all solvents. 
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Figure 5. Ratios of the active catalyst system and their influence on yield and ee (cf. Scheme 14, 

Table 2) [8a,37]. 

Different catalyst ratios ([(C3H5)PdCl]2 : P-BIFOP-X, X = H 10, Cl 13, F 12, in mol%) have 

been examined (Figure 5, Table 2). In the Pd-P-BIFOP-X-catalyzed (X = H 10, Cl 13, F 12) 

allylic alkylation of Na(CH(CO2CH3)2) to (rac,E)-1,3-diphenyl allyl acetate (rac-21) yielding (S, 

or R, E)-dimethyl 2-(1,3-diphenylallyl)malonate (S-, or R-22). The yield and enantioselectivity 

of (S, or R)-22 increases with less amount of [(C3H5)PdCl]2 used (Scheme 14, Figure 5, 

Table 2, e.g. entries 1-3) to a maximum at the ratio 1:1 (Scheme 14, Figure 5, Table 2, 

entries 3, 10, 17) and decreases with higher amounts of P-BIFOP-H (10) (Scheme 14, Figure 

5, Table 2, e.g. entries 4-7). Thus, the background reaction is favoured with higher amounts 

of [(C3H5)PdCl]2, catalyzing rac-22. 
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Figure 6. X-ray crystal structure of the active pre-catalyst (P-BIFOP-F•(C3H5)PdCl, 36, CCDC: 

1886562) with dislocation of the allylic(C3H5)-unit. Hydrogen atoms are omitted for clarity. In the X-ray 

crystal structure of the pure P-BIFOP-F (12) the P-F distance is 1.594 A [9b]; [8a,37]. 

Mixing [(C3H5)PdCl]2 and P-BIFOP-F (12) in 1,2-DCE and n-heptane, colorless prisms of 

Pd-P-BIFOP-F (36, Figure 6) can be obtained. The X-ray crystal structure shows the 

dislocation of the allylic-unit (C3H5) due to the equilibrium of the exo-endo-conformers [21]. 

The catalytic performance of different P-BIFOP ligands (10-20, except 14, Scheme 14, Table 

3) is examined in the [(C3H5)PdCl]2-catalyzed allylic alkylation of Na(CH(CO2CH3)2) to 

(rac,E)-1,3-diphenyl allyl acetate (rac-21) yielding (S, or R,E)-dimethyl 2-(1,3-

diphenylallyl)malonate (S)-22 (or (R)-22, Scheme 14, Table 3). P-BIFOP-H (10) yields (S)-22 

in up to 81% with 67% ee (Table 3, entry 1), while the 2H-isotopic P-BIFOP-D (11) yields (S)-

22 in up to 84% with 66% ee (Table 3, entry 2). No isotopic effect or influence is observed. P-

BIFOP-Cl (13) yields (S)-22 in up to 73% with 41% ee (Table 3, entry 3), while P-BIFOP-F 

(12) yields (R)-22 in up to 92% with 66% ee (Table 3, entry 4). P-BIFOP-Cl (13) loses yield 

and enantioselectivity relative to BIFOP-X (X = H 10, D 11, F 12). This means that P-BIFOP-

X (X = H 10, D 11, F 12) form more stable complexes with [(C3H5)PdCl]2 than P-BIFOP-Cl 

(13). 
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Table 2. Selection of catalyst ratios of [(C3H5)PdCl]2 • P-BIFOP-X (X = H 10, Cl 13, F 12, 

Scheme 14, Figure 5)
a
 [8a,37]. 

Entry BIFOP-X Ratio: [(C3H5)PdCl]2 • BIFOP-X Yield [%]
b
 ee [%]

c
 

1 X = H (6) 2:1 74 11 (S) 

2 X = H (6) 1.5:1 76 24 (S) 

3 X = H (6) 1:1 81 64 (S) 

4 X = H (6) 1:1.5 76 65 (S) 

5 X = H (6) 1:2 74 66 (S) 

6 X = H (6) 1:2.5 54 63 (S) 

7 X = H (6) 1:3 45 58 (S) 

8 X = F (9) 2:1 77 24 (R) 

9 X = F (9) 1.5:1 81 54 (R) 

10 X = F (9) 1:1 92 62 (R) 

11 X = F (9) 1:1.5 76 60 (R) 

12 X = F (9) 1:2 76 57 (R) 

13 X = F (9) 1:2.5 69 53 (R) 

14 X = F (9) 1:3 61 48 (R) 

15 X = Cl (7) 2:1 73 28 (S) 

16 X = Cl (7) 1.5:1 75 32 (S) 

17 X = Cl (7) 1:1 80 41 (S) 

18 X = Cl (7) 1:1.5 71 40 (S) 

19 X = Cl (7) 1:2 64 36 (S) 

20 X = Cl (7) 1:2.5 59 33 (S) 

21 X = Cl (7) 1:3 53 21 (S) 

a
Ratio of x:y mol% [(C3H5)PdCl]2, y mol% P-BIFOP-X (H 10, Cl 13, F 12), 1.5 eq. of reagent 

Na(CH(CO2CH3)2), 4 d. 
b
Isolated yield after silica gel column chromatography (ethyl acetate : 

n-hexane, 1:10). 
c
Enantiomeric excess (ee) is determined via HPLC (Chiralpack® AD-H 

column [40a], tR = 19.7-24.8 min (S), tR = 26.1-26.3 min (R), cf. Figure 7). 
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Figure 7. HPLC-analyses of 22 (Chiralpack® AD-H [40a], tR = 19.7-24.8 min (S), tR = 26.1-26.3 

min (R) column, cf. Table 2, Table 3).  

 

Table 3. Performance of P-BIFOP-X ligands in enantioselective [(C3H5)PdCl]2-catalyzed allylic 

alkylation to (rac, E)-1,3-diphenyl allyl acetate (21, Scheme 14)
a
 [8a,37]. 

Entry Ligand (P-BIFOP-X) Yield [%]
b
 ee [%]

c
 

1 X = H (10) 81 67 (S) 

2 X = D (11) 84 66 (S) 

3 X = Cl (13) 73 41 (S) 

4 (“F-switch”) X = F (12) 92 66 (R) 

5 X = N3 (15) 83 12 (S) 

6 X = CN (16) 78 11 (S) 

7 O-BIFOP-H (18) 89 58 (S) 

8 O-BIFOP-D (19) 87 60 (S) 

9 O-BIFOP-Cl (20) 81 40 (S) 

10 (MeO)2-P-BIFOP-Cl (17) 90 70 (S) 

a
20°C, 1,2-DCE, 1 eq. [(C3H5)PdCl]2 and 1 eq. BIFOP-X (X = H 10, Cl 13, F 12, D 11, N3 15, CN 

16), (MeO)2-P-BIFOP-Cl (17) or O-BIFOP-X (X = H 18, Cl 20, D 19) and 1.5 eq. of 

Na(CH(CO2CH3)2) to (rac, E)-1,3-diphenyl allyl acetate (21) yielding (S, or R, E)-dimethyl-2-(1,3-

diphenylallyl)malonate (S)-22 or (R)-22. 
b
Isolated yield after silica gel column chromatography 

(ethyl acetate : n-hexane, 1:10). 
c
Enantiomeric excess (ee) by HPLC (Chiralpack® AD-H column 

[40a], tR = 19.7-24.8 min (S), tR = 26.1-26.3 min (R), cf. Figure 7). 
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P-BIFOP-N3 (15) yields (S)-22 in up to 83% with 12% ee (Table 3, entry 5) while P-

BIFOP-CN (16) yields (S)-22 in up to 78% with 11% ee (Table 3, entry 6). Pseudohalogenic 

substitutions at the P-BIFOP-moiety (e.g. N3 15, CN 16, Figure 9) seem to have a detrimental 

effect to the enantioselectivities. This means, analogue to P-BIFOP-Cl (13), that P-BIFOP-N3 

(15) and P-BIFOP-CN (16) do not form stable complexes with [(C3H5)PdCl]2. In contrast to P-

BIFOP-X (X = H 10, Cl 13, D 11, Scheme 14, Table 3, entry 1-3), O-BIFOP-X (X = H 18, Cl 

20, D 19, Scheme 14, Table 3, entry 7-9) generate more yield but less enantioselectivity. O-

BIFOP-H (18) yields (S)-22 in up to 89% with 58% ee (Table 3, entry 7) while O-BIFOP-D 

(19) yields (S)-22 in up to 87% with 60% ee (Table 3, entry 8) and O-BIFOP-Cl (20) yields 

(S)-22 in up to 81% with 40% ee (Table 3, entry 9).  

The synthesis of O-BIFOP-F is attempted, starting with O-BIFOP-Cl (20), adding AgF, 

analogue to the synthesis (cf. chapter 3, 4.3.6) of P-BIFOP-F (12) [9b]. For this reaction the 

temperature of the reaction mixture is changed for each approach from 20°C to -78°C (20°C, 

0°C, -20°C, -40°C, -78°C). After each attempt, the rearranged tricyclic product (cf. chapter 3, 

experimental, 4.3.16) [9c] is achieved instead of the desired product O-BIFOP-F. The reason 

why O-BIFOP-X (X = H 18, Cl 20, D 19) generate more yield but less enantioselectivity 

during catalysis, in contrast to P-BIFOP-X (X = H 10, Cl 13, D 11), can be explained by the 

higher reactivity of O-BIFOPs in general, because of a larger bite-angle at the phosphor 

moiety [9b], forming more stable complexes with [(C3H5)PdCl]2. The loss of stereocontrol is 

caused by this angle. Relative to P-BIFOP-Cl (13) (cf. Table 3, entry 3, 73% yield, 41% ee), 

two MeO-groups increase the reactivity of the Pd-(MeO)2-P-BIFOP-Cl catalyst by lp(O)-

conjugation (cf. Table 3, entry 10, 90% yield, 70% ee). The mechanism for these 

rearrangements with formation of a carbo-cation at the fenchyl moiety and elimination of 

phosphonic acid (H3PO3), forming the tricyclic products, are discussed previously [9c]. With 

(MeO)2-P-BIFOP-Cl (17) an attempted variation of the (MeO)2-P-BIFOP-X substituent (i.e. X 

= H, F) was not successful. 
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Scheme 15. Enantioselective [C3H5]PdCl•P-BIFOP-X-catalyzed allylic alkylation of 

Na(CH(CO2CH3)2) to rac-23 [8a,37]. 

Table 4. Performance of P-BIFOP-X ligands in enantioselective [(C3H5)PdCl]2-catalyzed 

allylic alkylation to cyclohexenyl acetate 23 (Scheme 13, Scheme 15)
a
 [8a,37]. 

Entry P-BIFOP-X Yield [%]
b
 ee [%]

c
 

1 X = H (10) 83 64 (R) 

2 X = D (11) 88 66 (R) 

3 X = Cl (13) 71 54 (R) 

4 (“F-switch”) X = F (12) 82 67 (S) 

5 X = N3 (15) 82 13 (R) 

6 X = CN (16) 81 13 (R) 

7 O-BIFOP-H (18) 84 64 (R) 

8 O-BIFOP-D (19) 82 64 (R) 

9 O-BIFOP-Cl (20) 80 56 (R) 

10 (MeO)2-P-BIFOP-Cl (17) 91 67 (R) 

a
20°C, 1,2-DCE, 1 eq. [(C3H5)PdCl]2, 1 eq. P-BIFOP-X (X = H 10, Cl 13, F 12, D 11, N3 15, 

CN 16), (MeO)2-P-BIFOP-Cl (17) or O-BIFOP-X (X = H 18, Cl, 20, D 19) and 1.5 eq. of 

Na(CH(CO2CH3)2) to (rac)-cyclohexenyl acetate (23) yielding (R, or S)-dimethyl-2-

(cyclohexenyl) malonate (R)-24 or (S)-24. 
b
Isolated yield after silica gel column 

chromatography (ethyl acetate : n-hexane, 1:10). 
c
Enantiomeric excess (ee) by chiral GC 

device with a CP-Chiralsil®-DEX-CB [40b] (25 m x 0.25 mm, 0.25 mm thickness, tR = 22.4-

22.8 min (S), tR = 23.1-23.9 min (R) column, cf. Figure 8). 
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Figure 8. Chiral GC-analyses of 24 (CP-Chiralsil®-DEX-CB [40b] (25 m x 0.25 mm, 0.25 mm 

thickness, tR = 22.4-22.8 min (S), tR = 23.1-23.9 min (R) column, cf. Table 4).  

(MeO)2-P-BIFOP-Cl (17) is easily synthesized by deprotonation of (MeO)2-BIFOL (pre-17, 

Figure 9) and addition of PCl3.  
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Figure 9. X-ray crystal structures of P-BIFOP-CN (16, CCDC: 1886565), p-NO2-BIFOL (37, 

CCDC: 1886559), (MeO)2-P-BIFOL (alias EB-BIFOL, pre-17, CCDC: 1886561) and a rearranged 

product of pre-17 (38, CCDC: 1886560). The hydrogen atoms attached to carbon atoms are omitted 

for clarity [8a,37]. 
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Figure 10. X-ray crystal structures of DIME-BIFOL (39, CCDC: 1886564), the tricyclic rearranged 

product (40, CCDC: 1886558) and the attempted P-BIFOP-NH-c-hex which resulted to an 

intramolecular rearranged spiro product (41, CCDC: 1886563). The hydrogen atoms attached to 

carbon atoms are omitted for clarity [8a,37]. 

The “F-switch” is found for the [(C3H5)PdCl]2-catalyzed allylic alkylation of 

Na(CH(CO2CH3)2) with rac-cyclohexenyl acetate (rac-23) yielding (S)-dimethyl-2-

(cyclohexenyl) malonate (S)-24, in case of P-BIFOP-F (12), or (R)-dimethyl-2-(cyclohexenyl) 

malonate (R)-24 for the other P-BIFOP-X (X = H 10, Cl 13, F 12, D 11, N3 15, CN 16), 

(MeO)2-P-BIFOP-Cl (17) or O-BIFOP-X (X = H 18, Cl 20, D 19), too. P-BIFOP-H (10) yields 

(R)-24 in up to 83% with 64% ee (Scheme 15, Table 4, entry 1), while P-BIFOP-D (11) yields 

(R)-24 in up to 88% with 66% ee (Table 4, entry 2). P-BIFOP-Cl (13) yields (R)-24 in up to 

71% with 54% ee (Table 4, entry 3), while P-BIFOP-F (12) yields (S)-24 in up to 82% with 

67% ee (Table 4, entry 4). P-BIFOP-N3 (15) yields (R)-24 in up to 82% with 13% ee (Table 4, 

entry 5) while P-BIFOP-CN (16) yields (R)-24 in up to 81% with 13% ee (Table 4, entry 6). O-

BIFOP-H (18) yields (R)-24 in up to 84% with 64% ee (Table 4, entry 7) as well as O-BIFOP-

D (19) which yields (R)-24 in up to 82% with 64% ee (Table 4, entry 8). O-BIFOP-Cl (20) 

yields (R)-24 in up to 80% with 56% ee (Table 4, entry 9). (MeO)2-P-BIFOP-Cl (17) yields 

(R)-24 in up to 91% with 69% ee (Table 4, entry 10) and appears to be the superior ligand in 

the [(C3H5)PdCl]2-catalyzed allylic alkylation (cf. Table 3, Table 4). Comparing the 

monodentate P-BIFOPs with the established P,N-ligands of Pfaltz-Helmchen-Williams, P-

BIFOP-ligands are more bulky than the PHOX ligands but lack in transfer of 

stereoinformation forming lesser ee’s. (MeO)2-P-BIFOL (pre-17, Figure 9) cannot be obtained 

by a direct lithiation with BuLi and TMEDA [8a,9] of 3,3’-dimethoxy-biphenyl, because DIME-

BIFOL (39, Figure 10) is isolated instead. A reaction of 39 with PCl3 leads to the carbo-

cationic rearranged tricyclic product 40 (Figure 10), similar to the rearrangement of (MeO)2P-

BIFOP-Cl (17) to spiro[fenchyl-9-fluorenyl] product 38 (Figure 9) [9c]. 
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2.2.3 Computational results [8a,37] 

 

 

Scheme 16. Model scheme of possible transition structures to explain the origins of 

enantioselectivities (cf. Table 3, Figure 7, Table 4, Figure 8) [8a,37]. 

The origins of enantioselectivity are considered by eight different conformations (Scheme 

16). These catalyst-conformations differ with the Pd-core close to a Ph-group of the biaryl 

backbone or close to a Me-group of the fenchyl moiety (Scheme 16). The allyl cation can be 

orientated in an exo-conformation (exo means, the H of the C2 of the allylic(C3H5)-group is 

pointing upwards), or an endo-conformation (endo means, the H of the C2 of the 
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allylic(C3H5)-group is pointing downwards, Scheme 16). The nucleophilic attack can occur on 

the C1 (trans-attack compared to phosphor, Scheme 16) or C3 (cis-attack compared to 

phosphor, which is mostly unfavoured, cf. Scheme 13) of the allyl(C3H5)-unit [21], leading to 

eight different possibilities for either P-BIFOP-H (10) or P-BIFOP-F (12, Scheme 16).  

Table 5. Computed transition structures (TS) of attached (E)-1,3-diphenyl allyl acetate (21) 

for P-BIFOP-X (X = H 10; F 12, Scheme 13, Scheme 16, Figure 11)
a
 [8a,37]. 

TS (pro(R/S))
b
 Conformer (Ar- or 

Me-orientated) 

imag. freq.  

[cm-
1
] 

ΔGrel 

[kcal/mol] 

Boltzmann 

distribution [%] 

H: TS-2a (S) (Ar)-trans-exo -301.94 0.0 56.00 

TS-1a (R) (Ar)- trans-endo -282.73 1.0 19.07 

TS-3a (S) (Ar)-cis-endo -311.86 1.3 13.80 

TS-4a (R) (Ar)- trans-exo -294.38 1.5 11.12 

TS-6a (R) (Me)-trans-endo -301.94 11.0 <0.01 

TS-7a (S) (Me)-cis-endo -311.86 11.1 <0.01 

TS-5a (R) (Me)-trans-exo -282.73 11.5 <0.01 

TS-8a (S) (Me)-cis-exo -294.38 12.5 <0.01 

F: TS-1a (R) (Ar)-trans-endo -291.93 0.0 53.33 

TS-2a (S) (Ar)-trans-exo -302.23 0.9 20.22 

TS-4a (R) (Ar)-cis-exo -289.62 1.2 14.64 

TS-3a (S) (Ar)-cis-endo -311.86 1.4 11.80 

TS-6a (R) (Me)-trans-exo -302.23 10.2 <0.01 

TS-7a (R) (Me)-cis-endo -320.94 10.6 <0.01 

TS-5a (S) (Me)-trans-endo -291.93 10.7 <0.01 

TS-8a (S) (Me)-cis-exo -289.62 11.2 <0.01 

a
M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, 293.15 K, p = 1 bar, gas phase. 

b
The 

change of stereochemistry resulting from the NH3-nucleophile is switched to match the C-

nucleophile dimethylmalonate for the 1,3-diphenylallyl acetate (21, Figure 11).  
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Figure 11. Computed crucial transition structures of rac-21 (cf. Scheme 13, Scheme 16) 

comparing P-BIFOP-H (10) with P-BIFOP-F (12) [8a,37]. 

The bent structure of the ligand attached to the Pd-core results from a strong π-

backdonation [41]. The transition structures (H: TS-1a, TS-2a and F: TS-1a, TS-2a, Scheme 

16, Table 5, Figure 11) are the crucial (energetically favoured) transition structures of P-

BIFOP-H (10) and P-BIFOP-F (12), which are responsible for the enantioselectivity (cf. 

experimental data Table 3 with computed data Table 5).  
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Figure 12. Computed crucial transition structures of rac-21 (cf. Scheme 13, Scheme 16) 

comparing P-BIFOP-H (10) with P-BIFOP-F (12) [8a,37]. 
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Table 6. Computed transition structures (TS) of attached cyclohexenyl acetate (23) for 

BIFOP-X (X = H 10; F 12, Scheme 13, Scheme 16, Figure 12)
a
 [8a,37]. 

TS (pro(R/S)) Conformer Imag. Freq. 

[cm-
1
] 

ΔGrel 

[kcal/mol] 

Boltzmann 

distribution [%] 

H: TS-1b (R) (Ar)-trans-endo -307.38 0.0 55.37 

TS-4b (R) (Ar)-cis-exo -322.47 0.5 32.31 

TS-2b (S) (Ar)-trans-exo -308.51 1.6 9.88 

TS-3b (S) (Ar)-cis-endo -322.44 2.9 2.43 

F: TS-2b (S) (Ar)-trans-exo -307.33 0.0 59.46 

TS-1b (R) (Ar)-trans-endo -308.72 0.8 25.11 

TS-3b (S) (Ar)-cis-endo -324.23 1.5 11.82 

TS-4b (R) (Ar)-cis-exo -321.17 2.6 3.62 

a
M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, 293.15 K, p = 1 bar, gas phase in 

kcal/mol. 

 

Comparing the conformers (Table 5), H: TS-2a; F: TS-1a and H: TS-1b; F: TS-2b (Table 

6), there has to be a reason of the change in stereochemistry (cf. H: TS-1a > TS-2a; F: TS-

1a < TS-2a, Scheme 16, Table 5, Figure 11 and H: TS-1b < TS-2b; F: TS-1b > TS-2b, 

Scheme 16, Table 6, Figure 12). The same results of favourizing the crucial transition 

structures are found by switching the nucleophile of NH3 to the C-nucleophile 

diphenylmalonate (H: TS-1c < TS-2c; F: TS-1c > TS-2c and H: TS-1d < TS-2d; F: TS-1d < 

TS-2d, Table 7, Figure 13, Figure 14). An explanation is the higher electronegativity of F vs. 

H in the P-X (X = H, F) moiety, such governance of electronegativity has been studied 

[9b,9n]. Strong negative hyperconjugation is known for fluorine substituents, stabilizing 

normally less favoured conformations and thus altering the stereochemistry in organo- and 

metal-mediated catalyses [42]. 

 

Table 7. Computed transition structures (TS) of attached cyclohexenyl acetate (23, 

TS-1c,2c) or diphenylallyl acetate (21, TS-1d,2d) for P-BIFOP-X (X = H 10; F 12, 

Scheme 13, Scheme 16, Figure 13, Figure 14)
a
 [8a,37]. 

TS (pro(R/S)) Conformer (Ph- or Me-

orientated) 

Imag. Freq. [cm-
1
] ΔGrel [kcal/mol] 

H: TS-1c (R) (Ar)-trans-endo -173.12 0.0 

TS-2c (S) (Ar)-trans-exo -218.71 0.5 

F: TS-2c (S) (Ar)-trans-exo -291.04 0.0 

TS-1c (R) (Ar)-trans-endo -195.76 0.7 
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H: TS-2d (S) (Ar)-trans-exo -239.20 0.0 

TS-1d (R) (Ar)-trans-endo -235.93 0.7 

F: TS-1d (R) (Ar)-trans-endo -241.76 0.0 

TS-2d (S) (Ar)-trans-exo -230.67 0.7 

a
M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, 293.15 K, p = 1 bar, gas phase 

in kcal/mol. 

 

 

Figure 13. Computed crucial transition structures of rac-23 (cf. Scheme 13, Scheme 16) 

comparing P-BIFOP-H (10) with P-BIFOP-F (12) with dimethyl malonate as C-nucleophile [8a,37]. 
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Figure 14. Computed crucial transition structures of rac-21 (cf. Scheme 13, Scheme 16) 

comparing P-BIFOP-H (10) with P-BIFOP-F (12) with dimethyl malonate as C-nucleophile [8a,37]. 

A computational scan (B3LYP-D3(BJ)/def2-SVP) of a simpler model system Mod-X (X = 

H, F, Cl) reveals electronically preferred conformations (Figure 15, Table 8). For Mod-(H, Cl), 

two exo-minima as well as two endo-maxima (Figure 15) are computed. Negative 

hyperconjugation from the Pd-lp donor is favoured with the stronger σ*(P-O) acceptor rather 

than the σ*(P-X, X = H, Cl) unit (Table 8). The fluoro substituent in Mod-F gives rise to only 

one (global) endo-minimum and one exo-maximum, because of the stronger acceptor 

behavior of σ*(P-F) over σ*(P-O, Figure 15). The electronical difference between the oxygen 
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in σ*(P-O) and fluorine in σ*(P-F) gives rise to the stereochemical switch in the experiments, 

because fluorine exceeds the influence of the σ*(P-O) changing the stereochemistry by 

stabilizing the generally less favoured complex, instead. Thus the sense of enantioselectivity 

is changed. This hypothesis is further approved by a rotatory scan of the (allyl)Pd-P-X (X = 

H, Cl, F) dihedral showing for Mod-(H, Cl) nearly the same graphical behavior, while Mod-F 

is showing a different one (Figure 15). The only difference between Mod-Cl and Mod-F is the 

higher electronegativity of fluorine over chlorine. This evidence explains the experimental 

results (cf. experimental: Table 2, Table 3, Table 4, with theoretical: Figure 11-14). NBO-

analyzes reveal that this F-switch arises from hyperconjugation lp(Pd)→σ*(P-O) influenced 

by the high electronegativity of fluorine (Figure 15, Table 8). 

 

Figure 15. Computation (B3LYP-D3(BJ)/def2-SVP) of rotational (dihedral (H, F, Cl)-P-Pd-allyl) 

scan of complex Mod-(H, F, Cl), representing the energy profiles (cf. Table 8) [8a,37]. 
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Table 8. NBO-analyzes: stabilizing hyperconjugation of the model- (Mod-H, F, Cl) and 

“real”-(TS-1a,2a; TS-1b,2b;TS-1c,2c; TS-1d,2d) complex (Figure 11-15, Table 5, Table 6, 

Table 7, Table 8)
a
 [8a,37]. 

Conformer 

(model vs “real”) 

NBO 

lp(Pd) → σ*(P-O) 

[kcal/mol]
b
 

Dihedral angle 

(allyl)Pd-P-(H, Cl, F) 

[°] 

ΔGrel 

[kcal/mol] 

Mod-H 

(exo-trans) 

8.4
c
 187.5 0.0 

Mod-H 

(endo-trans) 

8.5 15.5 0.1 

Mod-Cl 

(exo-trans) 

8.3
c
 168.6 0.0 

Mod-Cl 

(endo-trans) 

8.3 24.3 0.3 

Mod-F 

(endo-trans) 

7.5 22.9 (“F-switch”) 0.0 

Mod-F 

(exo-trans) 

7.2 202.3 0.7 

H: TS-2a 

(exo-trans) 

7.6 110.3 0.0 

TS-1a 

(endo-trans) 

3.2 1.6 1.0 

F: TS-1a 

(endo-trans) 

8.0 1.9 (“F-switch”) 0.0 

TS-2a 

(exo-trans) 

6.6 110.5 0.9 

H: TS-1b 

(endo-trans) 

7.9 107.7 0.0 

TS-2b 

(exo-trans) 

7.1 20.0 1.6 

F: TS-2b 

(exo-trans) 

7.3 14.3 (“F-switch”) 0.0 

TS-1b 

(endo-trans) 

4.5 122.6 0.8 

H: TS-1c 

(endo-trans) 

10.1 179.8 0.0 

TS-2c 

(exo-trans) 

8.8 168.1 0.5 

F: TS-2c 

(exo-trans) 

9.2 24.3 (“F-switch”) 0.0 
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TS-1c 

(endo-trans) 

4.9 19.1 0.7 

H: TS-2d 

(exo-trans) 

13.3 95.6 0.0 

TS-1d 

(endo-trans) 

10.7 40.3 0.7 

F: TS-1d 

(endo-trans) 

9.2 19.7 (“F-switch”) 0.0 

TS-2d 

(exo-trans) 

8.0 20.4 0.7 

a
M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, T = 293.15 K, p = 1 bar, gas phase in 

kcal/mol. 
b
Hyperconjugation: lp(Pd)->σ*(P-O) is mainly responsible for the stabilizing effect. 

c
The hyperconjugation lp(Pd)→σ*(allyl) exceeds the lp(Pd)→σ*(P-O) in this specific case. 

Further analyzes of the Pd-geometry [43a], the full NBO-analyzes [36] and electronic 

effects concerning the X-substituents [43b,43c] is given in the appendix 6.2, Tables 22, 23. 

 

2.2.4 Conclusions [8a,37] 

Palladium-catalyzed allylic alkylations of sodium dimethyl malonate with (rac,E)-1,3-

diphenylallyl acetate (21), employing P-BIFOP-X ligands (i.e. X = H 10, Cl 13, D 11, N3 15, 

CN 16) yield (S,E)-dimethyl-2-(1,3-diphenylallyl) malonate (S)-22 (in up to 92%, 70% ee, cf. 

Scheme 14, Table 3), while alkylations with rac-cyclohexenyl acetate (23) yield (R)-dimethyl-

2-(cyclohexenyl) malonate (R)-24 (in up to 91%, 67% ee, cf. Scheme 15, Table 4). Employed 

ligands for these Palladium-catalyzed allylic alkylations are P-BIFOP-X (X = H 10, Cl 13, F 

12), O-BIFOP-X (X = H 18, Cl 20) and newly synthesized ligands P-BIFOP-X (X = D 11, N3 

15, CN 16), (MeO)2-P-BIFOP-Cl (17) and O-P-BIFOP-D (19). During the syntheses of new 

(MeO)2-BIFOP-X (i. e. X = H, F) ligands, carbo-cationic rearrangements are found at the 

fenchyl moieties  (spiro[fenchyl-9-fluorene] 38, cf. 4.3.25, and tricyclic product 40, cf. 4.3.16, 

4.3.21, for mechanism cf. ref. [9c]). Evaluation of catalyst ratios is achieved by variation of 

[(C3H5)PdCl]2 and P-BIFOP-X (X = H 10, Cl 13, F 12) in different amounts (3:1 to 1:3) and 

employing these amounts in the Pd-catalyzed allylic alkylation of Na(CH(CO2Me)2) with 1,3-

diphenylallyl acetate (21) yielding malonate (S)-22 (or (R)-22, cf. Figure 5, Scheme 14, Table 

2). This evaluation reveals a 1:1 ratio as optimized condition (Figure 5). This 1:1 ratio can 

also be seen at the isolated X-ray crystal structure of (C3H5)PdCl • P-BIFOP-F (36, Figure 6). 

(MeO)2-P-BIFOP-Cl (17) affords the best results of all tested ligands (90% yield, 70% ee, cf. 

Tables 3, 4 entries 10). O-BIFOP-D (19) affords similar results as O-BIFOP-H (18, cf. Tables 

3, 4, entries 7, 8). P-BIFOP-CN (16) affords similar results as P-BIFOP-N3 (15, cf. Tables 3, 

4, entries 5, 6). P-BIFOP-F (12) originates the stereochemical “F-switch” which is achieved 
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for both substrates, yielding either (R,E)-dimethyl 2-(1,3-diphenylallyl)malonate (R)-22 (92% 

with 66% ee, cf. Figure 11, Figure 14, Scheme 14, Table 3, entry 4) or (S)-dimethyl 2-

(cyclohexenyl)malonate (S)-24 (82% with 67 ee, cf. Figure 12, Figure 13,  Scheme 15, Table 

4, entry 4). NBO-analyzes [36] reveals that the explanation of this “F-switch” is a 

hyperconjugation effect (lp)Pd → σ*(P-O) or (lp)Pd → σ*(P-F) influenced by the high 

electronegativity of fluorine (Figure 15, Table 8). This gives rise to a switch in the transition 

structures of the favoured enantiomer by stabilizing hyperconjugation energy (e.g. less 

favoured F: TS-2a ΔGrel = 3.2 kcal/mol, to favoured F: TS-1a ΔGrel = 7.6 kcal/mol, Figure 11, 

Table 5; cf. experimental Scheme 14, Table 3 with Scheme 16, Table 5, 7 and Scheme 15, 

Table 4 with Scheme 16, Table 6, 7). This “F-switch” demonstrates how electronegativity can 

be employed in ligand and catalyst design to control enantioselectivity in Pd-catalyzed allylic 

alkylations. 

2.3 Enantioselective Cu-catalyzed 1,4-additions of Grignard reagents to enones: 

exceptional performance of the hydrido-phopshite-ligand P-BIFOP-H [8b,38] 

 

 

Scheme 17. Crucial steps of the Cu(I,III)-catalyzed 1,4-addition mechanism (cf. introduction 1.4, 

Scheme 6), mimicking a model system of methyl-vinyl ketone and phosphorus ligands ((MeO)2P-X, X 

= H, F, Me, OMe, NMe2 or PMe3) [8b,38]. 

 2.3.1 Abstract [8b,38] 

Enantioselective Cu(I,III)-(i.e. CuCl, CuCl2, Cu(OTf)2)-catalyzed 1,4-additions of 

organozinc, i.e. (Et, Me)2Zn, and Grignard reagents, i.e. (Et, Me)MgBr, to chalcone, 

cyclohexenone and chromone are studied, employing fencholate-based phosphorus ligands, 

e.g. biphenyl-2,2’-bisfenchyl hydrido phosphite = P-BIFOP-H. The CuCl•P-BIFOP-H-

catalyzed 1,4-addition of Et2Zn to chalcone yields in up to 93% and 99% ee, exceeding 

established BINOL- and TADDOL-based phosphoramidite ligands. Remarkably, CuCl 

performs better in 1,4-additions to chalcone (CuCl: 76% ee; Cu(OTf)2: 49% ee; CuCl2: 42% 

ee) while Cu(OTf)2 performs better in 1,4-additions to cyclohexenone (Cu(OTf)2: 65% ee; 

CuCl: 20% ee). The computation of the reaction pathway is done for the Cu(I)-catalyzed 1,4-

addition to chalcone (Cu(II) will be reduced in situ to Cu(I) by reagent, TPSS-D3(BJ)/def2-
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TZVP//B3LYP-D3(BJ)/def2-SVP) for six different model ligands, i.e. (MeO)2P-X (X = H, F, 

Me, OMe, NMe2 and PMe3). Origins of enantioselectivities are analyzed (M06-2X-D3/def2-

TZVP//B3LYP-D3(BJ)/def2-SVP) for transition structures of the 1,4-methylation of chalcone 

with the Cu•P-BIFOP-H catalyst and explain the experimentally observed (R)-enantiomer's 

preference. 

2.3.2 Results and discussion [8b,38] 

 

 

Figure 16. X-ray crystal structure (CCDC 1862862) of [CuCl-P-BIFOP-H]2 (42). Hydrogen atoms 

of C-H units are omitted for clarity. The hydrogen atoms at phosphor atoms are located from difference 

in electron maps and refined freely by the crystallographer J.-M. Neudörfl [8b]. The P-H distance in 

non-coordinating BIFOP-H (10) is 1.310 Å (cf. X-ray crystal structure of BIFOP-H, 10, [9j]). 

Enantioselective CuCl-catalyzed 1,4-additions of organozinc-, (Et, Me)2Zn, and Grignard 

reagents, (Et, Me)MgBr, to three different enones (chalcone 25, cyclohexenone 27, 

chromone 29) employing P-BIFOP-X (X = Me 43, Et 44, H 10, Cl 13, F 12, or O-BIFOP-H 18, 

cf. introduction 1.2, Figure 2) are studied with different copper sources, i.e. CuCl, CuCl2 and 
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Cu(OTf)2. The dimeric Cu-catalyst [CuCl•P-BIFOP-H]2 (42, Figure 16) is analyzed by its 

single crystal X-ray structure, grown from a solution of CuCl and P-BIFOP-H (10) in dried and 

absolute decalin (42, Figure 16). The 1:1 (Cu:ligand) composition of 42 is remarkable. 

Hitherto described Cu-phosphoramidite complexes are represented by a Cu(I)-BINOL-based 

N,N-dimethyl phosphoramidite complex with a 1:3 ratio [44a] and a CuBr•Me2S N,N-dimethyl 

phosphoramidite 1:2 complex [44b]. The 1:1 (Cu:ligand) composition in X-ray 42 therefore 

points to the high steric demand of the P-BIFOP-H (10) ligand (Figure 16). The P-H function 

in 42 is unique among Cu-catalysts [9j]. The P-H distance in Cu-coordinated 42 is with 1.28 

Å (Figure 16) significantly shorter than in non-coordinating BIFOP-H (10) with 1.31 Å [9j].  

 

 

Scheme 18. Stability of P-BIFOP-X (X = H 10, Cl 13, F 12) ligands in presence of the alkylating 

reagents ZnMe2 or (Et, Me)MgBr (Table 9) [8b,38]. 

Table 9. Assessment of the stability of P-BIFOP-X (X = H 10, F 12, Cl 13) ligands in 

the presence of the alkylating reagents Me2Zn or (Et, Me)MgBr (Scheme 18)
a
 [8b,38]. 

Entry BIFOP-X Reagent Re-isolated yields of 

of P-BIFOP-X [%]
b
 

1 X = H (10) Me2Zn 95 

2 X = H (10) EtMgBr 92 

3 X = H (10) MeMgBr 93 

4
c
 X = Cl (13) EtMgBr < 3

c
 

5
d
 X = Cl (13) MeMgBr < 26

d
 

6
e
 X = F (12) Me2Zn n.d.

e
 

7
e
 X = F (12) Et2Zn n.d.

e
 

a
Reaction conditions are -78°C to 100°C, toluene, 2.5 eq. of reagent (Me2Zn or (Et, 

Me)MgBr), 6 h, cf. ref. [9j]. A deprotonation of P-BIFOP-H (10) with strong bases (e.g. 

n-BuLi) is possible but the in situ generated species is not active in catalysis cf. ref. 

[9b]. 
b
Determined after column chromatography, Et2O:n-hexane 1:4, Rf = 0.75. 

c
P-

BIFOP-Et (44) is isolated in 97% yield. 
d
P-BIFOP-Me (43) is isolated in 74% yield. 

e
Decomposition of the reaction compounds. 
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The stabilities of P-BIFOP-H (10) and of P-BIFOP-Cl (13) ligands against nucleophilic 

alkylations and therefore their suitability as chiral ligands for Cu-catalyzed 1,4-additions, is 

apparent from reactivities with organometallic reagents, i.e. Me2Zn and (Et, Me)MgBr 

(Scheme 18, Table 9). P-BIFOP-H (10) proves to be rather robust against both, Me2Zn (2.5 

eq.) and (Et, Me)MgBr (Table 9, entries 1 to 3). In contrast, P-BIFOP-Cl (13) is known to 

react with halophilic Et2Zn, yielding 44 (Scheme 18) [9j]. Its P-Cl function is also alkylated by 

Grignard reagents (Et, Me)MgBr (Table 9, entries 4 and 5). P-BIFOP-F (12) decomposes 

under reaction conditions of 1,4-additions (Table 9, entry 6, 7), while its P-F function is stable 

in Pd-catalyzed cross-couplings [9b] and Pd-catalyzed allylic alkylations [8b,9i]. This shows, 

that the P-Hal functions of P-BIFOP-Cl (13) and P-BIFOP-F (12) are not compatible with 

reaction conditions of Cu-catalyzed 1,4-additions of organozinc and Grignard-reagents 

(Scheme 18, Table 9, entries 4-7).  

 

 

Scheme 19. Enantioselective Cu•P-BIFOP-X-catalyzed 1,4-additions of (Et, Me)2Zn or (Et, 

Me)MgBr to 25 [8b,38]. 
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Table 10. Enantioselective 1,4-additions of Et2Zn to chalcone 25 with P-BIFOP-H (10) 

yielding (R)-3-ethyl-1,3-diphenylpropan-1-one (R)-26a with different Cu-salts (Scheme 19)
a
 

[8b,38]. 

Entry Cu-salt Temp. [°C] Solvent Yield [%]
b
 ee [%]

c
 

1 Cu(OTf)2 -30 THF 87 21 (R) 

2 Cu(OTf)2 -50 THF 90 41 (R) 

3 Cu(OTf)2 -78 THF 89 49 (R) 

4 CuCl2 -30 THF 76 20 (R) 

5 CuCl2 -50 THF 88 39 (R) 

6 CuCl2 -78 THF 92 42 (R) 

7 CuCl -30 THF 91 56 (R) 

8 CuCl -50 THF 89 69 (R) 

9 CuCl -78 THF 86 76 (R) 

10 CuCl -78 toluene 88 83 (R) 

11 CuCl -78 Et2O 93 99 (R) 

12
d
 CuCl -78 Et2O 91 0

[d]
 

a
-78°C, Et2O, 1 mol% Cu-salt, 2 mol% P-BIFOP-H (10), 1.5 eq. of Et2Zn, 6 h. 

b
Yields are 

determined after column chromatography, Et2O:n-hexane, 1:20, Rf = 0.10. 
c
ee 

determination by HPLC (Chiralpack AD-H column [45a,45b], for Et: tr = 8.45 min, tr = 9.52 

min, cf. Figure 18 ). 
d
No ligand is used. 

 

P-BIFOP-H (10), however appears to be a suitable and stable ligand for this type of 

catalysis (Scheme 18, Table 9, entries 1-3). The influence of different temperatures (-30°C, -

50°C, -78°C, cf. Table 10), solvents (THF, Et2O, toluene, Scheme 19, Table 10) and Cu-

sources (CuCl, CuCl2, Cu(OTf)2) are determined for the enantioselective Cu-catalyzed 1,4-

additions of Et2Zn to chalcone 25 (e.g.  Table 10, entry 11). Lower temperatures increase the 

yields (in up to 93%, Table 10, entry 11) and also increase the enantioselectivities (in up to 

99%, Table 10, entry 11, cf. Table 10, entry 1-3, 4-6, 7-9). Cu(OTf)2 is found to be superior to 

CuCl2 (Table 10, entry 1-3, 4-6) while CuCl is superior to both other Cu-sources (Table 10, 

entry 7-11). The solvent Et2O provides the best results of all solvents screened (i.e. in up to 

93% yield and 99% ee, Table 10, entry 11). In absence of P-BIFOP-H (10) only racemic 

product is isolated (Table 10, entry 12). 
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Table 11. Ratios of CuCl : P-BIFOP-H (10) for enantioselective 1,4-additions of (Et, 

Me)2Zn to chalcone 25, yielding (R)-3-ethyl- or (R)-3-methyl-1,3-diphenylpropan-1-one (R)-

26a,b (Scheme 19, Figure 17)
a
 [8b,38]. 

Entry CuCl:P-BIFOP-H Reagent Yield[%]
b
 ee[%]

c
 

1 3:1 Et2Zn 92 0 

2 2:1 Et2Zn 89 19 (R) 

3 1:1 Et2Zn 91 66 (R) 

4 1:1.5 Et2Zn 89 83 (R) 

5 1:2 Et2Zn 92 99 (R) 

6 1:3 Et2Zn 90 99 (R) 

7 3:1 Me2Zn 88 0 

8 2:1 Me2Zn 88 5 (R) 

9 1:1 Me2Zn 92 17 (R) 

10 1:1.5 Me2Zn 91 44 (R) 

11 1:2 Me2Zn 95 67 (R) 

12 1:3 Me2Zn 93 67 (R) 

a
-78°C, Et2O, CuCl:P-BIFOP-H ratio (e.g.  1:2 = 1 mol% CuCl : 2 mol% P-BIFOP-H, 10), 

1.5 eq. of (Et, Me)2Zn, 6 h (Scheme 19). 
b
Yields are determined after column 

chromatography, Et2O:n-hexane, 1:20, Rf = 0.10. 
c
ee determination by HPLC (Chiralpack 

AD-H column
 
[45a,45b], for Et: tr = 8.45 min, tr = 9.52 min, for Me: tr = 8.25 min, tr = 9.33 

min, cf. Figure 18). 

 

 

Figure 17. Ratio of CuCl:P-BIFOP-H (10) in enantioselective catalyzed 1,4-additions of (Et, 

Me)2Zn to chalcone 25 yielding (R)-ethyl- or (R)-methyl-1,3-diphenylpropan-1-one (R)-26a,b (Scheme 

19, Table 11) [8b,38]. 
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Figure 18. HPLC-analyses of 26 (Chiralpack AD-H column
 
[45a,45b], for Et: tr = 8.45 min, tr = 9.52 

min, for Me: tr = 8.25 min, tr = 9.33 min, cf. Table 10-12). 

After determination of the optimal reaction conditions, the performance of P-BIFOP-X (X 

= Me 43, Et 44, H 10, F 12) or O-BIFOP-H (18) with varying alkylation reagents is examined. 

The enantioselective CuCl-catalyzed 1,4-additions of (Et, Me)2Zn or (Et, Me)MgBr to 

chalcone 25 at -78°C in Et2O yielding either (R)-3-ethyl-1,3-diphenylpropan-1-one (R)-26a or 

(R)-3-methyl-1,3-diphenylpropan-1-one (R)-26b is studied (Scheme 19, Table 12). With 

Et2Zn as alkylating reagent, the Cu-P-BIFOP-H catalyst yields (R)-26a with 93% yield and 

99% ee (Table 12, entry 1). With Cu•P-BIFOP-F catalyst, reaction compounds are 

decomposed (Table 12, entry 2), according to an undefinable NMR-spectra. With P-BIFOP-

Me (43) the alkylation with Et2Zn yields (R)-26a with 89% and 42% ee (Table 12, entry 3), 

while P-BIFOP-Et (44) yields (R)-26a with 87% and 33% ee (Table 12, entry 4). With O-

BIFOP-H (18 the alkylation of Et2Zn yields (R)-26a with 91% and 83% ee (Table 12, entry 5). 

Catalysis without ligand but with 1 mol% CuCl yields 90% of the racemic product 26a (Table 

12, entry 6).  
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Table 12. Ligand (P-BIFOP-X, X = H 10, F 12, Me 43, Et, 44, or O-BIFOP-H, 18) 

screening in enantioselective CuCl-catalyzed 1,4-additions of (Et, Me)2Zn or (Et, Me)MgBr 

to chalcone 25 yielding (R)-3-ethyl- or (R)-3-methyl-1,3-diphenylpropan-1-one (R)-26a,b 

(Scheme 19)
a
 [8b,38]. 

Entry BIFOP-X Reagent Yield [%]
b
 ee [%]

c
 

1 X = H (10) Et2Zn 93 99 (R) 

2
d
 X = F (12) Et2Zn n.d.

d
 n.d.

d
 

3 X = Et (44) Et2Zn 87 33 (R) 

4 X = Me (43) Et2Zn 89 42 (R) 

5 O-BIFOP-H (18) Et2Zn 91 83 (R) 

6 None Et2Zn 90 0 

7 X = H (10) Me2Zn 96 67 (R) 

8 X = Et (44) Me2Zn 87 11 (R) 

9 X = Me (43) Me2Zn 84 11 (R) 

10 O-BIFOP-H (18) Me2Zn 91 30 (R) 

11 X = H (10) EtMgBr 91 56 (R) 

12 X = Et (44) EtMgBr 88 26 (R) 

13 X = Me (43) EtMgBr 76 19 (R) 

14 O-BIFOP-H (18) EtMgBr 87 28 (R) 

15
e
 None EtMgBr 75

e
 0

e
 

16 X = H (10) MeMgBr 83 39 (R) 

17 X = Et (44) MeMgBr 77 23 (R) 

18 X = Me (43) MeMgBr 68 19 (R) 

19 O-BIFOP-H (18) MeMgBr 85 26 (R) 

a
-78°C, Et2O, 1 mol% CuCl, 2 mol% P-BIFOP-X (X = Me 43, Et 44, H 10, F 12, or 2 mol% 

O-BIFOP-H, 18). 
b
Yields are determined after column chromatography, Et2O:n-hexane, 

1:20, Rf = 0.10. 
c
ee determination by HPLC (Chiralpack AD-H column [45a,45b], for Et: tr 

= 8.45 min, tr = 9.52 min, for Me: tr = 8.25 min, tr = 9.33 min, cf. Figure 18). 
d
Solution 

turned to black, decomposition of the compounds with undefinable NMR (cf. Table 9, entry 

6, 7). 
e
1,2-adduct also observed with 12% yield, rac. 

 

When Et2Zn is changed to Me2Zn, P-BIFOP-H (10) yields (R)-26b with 96% and 67% ee 

(Table 12, entry 7). P-BIFOP-Me (43) and P-BIFOP-Et (44) achieve nearly even results 

yielding (R)-26b in up to 87% with 11% ee (Table 12, entry 8-9). O-BIFOP-H (18) yields (R)-

26b with 91% and 30% ee (Table 12, entry 10). When using EtMgBr as alkylating reagent P-

BIFOP-H (10) forms (R)-26a with 91% yield and 56% ee (Table 12, entry 11). With P-BIFOP-

Et (44) the alkylation with EtMgBr yields (R)-26a with 88% and 26% ee (Table 12, entry 12) 

while P-BIFOP-Me (43) yields (R)-26a with 76% and 19% ee (Table 12, entry 13). O-BIFOP-
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H (18) yields (R)-26a with 87% and 28% ee (Table 12, entry 14). When no ligand is used the 

catalysis forms with 1 mol% CuCl the racemic product 26a in 75% yield (Table 12, entry 15). 

When EtMgBr is changed to MeMgBr, P-BIFOP-H (10) yields (R)-26b with 83% and 39% ee 

(Table 12, entry 16). P-BIFOP-Et (44) yields with MeMgBr as alkylating reagent product (R)-

26b in 77% and 23% ee (Table 12, entry 17), while P-BIFOP-Me (43) yields (R)-26b with 

68% and 19% ee (Table 12, entry 18). O-BIFOP-H (18) yields (R)-26b with 85% and 26% ee 

(Table 12, entry 19).  

 

 

Scheme 20. Enantioselective Cu•P-BIFOP-X-catalyzed 1,4-additions of (Et, Me)2Zn or (Et, 

Me)MgBr to 27 [8b,38]. 

Since Grignard reagents exhibit higher reactivities than organozinc reagents [46], the 

enantioselectivities are less satisfying with the former. Also, the Grignard reagents leads to a 

decrease of yields for the 1,4-adducts but form 1,2-adducts additionally (cf. Table 13, entries 

14-16). The enantioselective CuCl-catalyzed 1,4-addition of (Et, Me)2Zn or (Et, Me)MgBr to 

cyclohexenone 27 at -78°C in Et2O yields either (R)-3-ethylcyclohexanone (R)-28a or 3-

methylcyclohexanone 28b (Scheme 20, Table 13).  
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Table 13. Ligand (P-BIFOP-X, X = H 10, F 12, Me 43, Et, 44, or O-BIFOP-H, 18) 

screening in enantioselective CuCl-catalyzed 1,4-additions of (Et, Me)2Zn or (Et, 

Me)MgBr to cyclohexenone 27 yielding (S)-3-ethyl- or rac-3-methyl-1,3-

cyclohexanone (S)-28a, rac-28b (Scheme 20)
a
 [8b,38]. 

Entry P-BIFOP-X Reagent Yield [%]
b
 ee [%]

c
 

1
d
 X = H (10) Et2Zn 90 20

d 
(S) 

2, ref. [9j]
e
 X = H (10)

e
 Et2Zn 92

e
 65

e
 (R) 

3
f
 X = F (12) Et2Zn n.d.

f
 n.d.

f
 

4 X = Et (44) Et2Zn 85 0 

5 X = Me (43) Et2Zn 84 0 

6
d
 O-BIFOP-H (18) Et2Zn 89 15

d
 (S) 

7 None Et2Zn 91 0 

8
g
 X = H (10) Et2Zn 86

g
 0

g
 

9
h
 X = H (10) Et2Zn 88

h
 0

h
 

10
i
 X = H (10) Me2Zn 0

i
 - 

11
i
 X = Et (44) Me2Zn 0

i
 - 

12
i
 X = Me (43) Me2Zn 0

i
 - 

13
i
 O-BIFOP-H (18) Me2Zn 0

i
 - 

14
j
 X = H (10) EtMgBr 86

j
 0

j
 

15
j
 None EtMgBr 84

j
 0

j
 

16
j
 X = H (10) MeMgBr 57

j
 0

j
 

a
-78°C, Et2O, 1 mol% CuCl, 2 mol% P-BIFOP-X (X = Me 43, Et 44, H 10, F 12, or 2 

mol% O-BIFOP-H, 18). 
b
Yields are determined after column chromatography, 

EtOAc:n-hexane, 1:2, Rf = 0.35. 
c
ee determination with chiral GC (Lipodex E column

 

[45c], tr = 58.44 min, tr = 60.35 min, cf. Figure 19). 
d
No base line separation. 

e
Already 

published result with Cu(OTf)2
 
[9j] for a direct comparison with CuCl. 

f
Solution turned 

to black, decomposition of the compounds with an undefinable NMR spectrum (cf. 

Table 9, entry 6, 7). 
g
CH2Cl2 as solvent at -40°C. 

h
toluene as solvent at -30°C. 

i
Substrate is isolated. 

j
The rac -1,2-adducts are also formed in up to 39% yield. 
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Figure 19. Chiral GC-analyses of 28 (Lipodex E column [45c], tr = 58.44 min, tr = 60.35 min, cf. 

Table 13). 

With Et2Zn P-BIFOP-H (10) yields (R)-28a with 90% and 20% ee (Table 13, entry 1, cf. 

Table 13 entry 2, 92%, 65% ee from ref. [9j] with Cu(OTf)2). A possible explanation for the 

better results with Cu(OTf)2 is a bridging effect of the triflate-anion which is shown in the 

proposed reaction mechanisms [9j,48a,48b]. The catalysis with P-BIFOP-F (12) forms an 

undefinable NMR-spectrum that points out that the reaction compounds are decomposed 

(Table 13, entry 3, cf. Scheme 18 Table 9, entry 6, 7). Either P-BIFOP-Et (44) or P-BIFOP-

Me (43) yields 28a with nearly even results in up to 85% but only the racemic product is 

isolated in both cases (Table 13, entry 4-5). O-BIFOP-H (18) with Et2Zn yields (R)-28a in up 

to 89% with 15% ee (Table 13, entry 6). Catalysis without ligand yields 28a in up to 91% as 

racemic product (Table 13, entry 7). When Et2Zn is changed to Me2Zn, no product is formed, 

independently of the ligand (Table 13, entry 10-13). Changing the alkylating reagent of (Et, 

Me)2Zn to (Et, Me)MgBr in a catalysis to cyclohexenone 27, P-BIFOP-H (10) yields either 

28a (86%, Table 13, entry 14) while 28b is formed alongside the racemic 1,2-adduct of 

cyclohexenone 27 (57%, Table 13, entry 16). The catalysis with no ligand and 1 mol% CuCl 

adding EtMgBr yields the racemic product 28a in up to 84% yield (Table 13, entry 15). 

Furthermore, the enantioselective CuCl•P-BIFOP-H-catalyzed 1,4-addition of Et2Zn to 

cyclohexenone 27 at -40°C in CH2Cl2, yields 28a with 86% as racemic product (Table 13, 

entry 8). The conditions at -40°C in CH2Cl2 is a common method in literature [9j,48b,48c] as 

well as the methodology at -30°C in toluene [1d,48b,48c] (88% yield, racemic product, Table 

13, entry 9).  

The catalysis at -30°C in toluene yields 28a with 88% as racemic product (Table 13, entry 

8). In our previous reported methodology, P-BIFOP-H (10) is employed in the 

enantioselective Cu(OTf)2-catalyzed 1,4-addition of Et2Zn to cyclohexenone 27, at -40°C in 

CH2Cl2, yielding (R)-28a with 95% and 65% ee [9j]. Comparing the latter result with our 

previously mentioned results (cf. Table 13, entry 1, 6, 7), yielding 28a with CuCl•P-BIFOP-H 

as racemic product (86%, rac, Table 13, entry 7), while this catalysis at -78°C in Et2O yields 

(R)-28a with 90% and 20% ee (Table 13, entry 1). Thus, a significant difference between the 

two metal sources Cu(OTf)2 and CuCl is observed for the outcome of catalytic 1,4-additions 

to cyclohexenone 27. A possible explanation for this effect is given in the computational 

analysis part (2.3.3) later on. Alkylations to chromone 29 are employed by Feringa et al. 

using CuBr•SMe2 with (R,S)-rev-Josiphos, yielding (R)-30a in up to 98% and 95% ee [47a]. 

Addition of (Et, Me)MgBr to chromone 29 with P-BIFOP-H (10) does not transfer 

stereoselective information, yielding only the racemic products (Scheme 21, Table 14, e.g.  

95%, rac, entry 8). With (Et, Me)2Zn at -78°C to 20°C in Et2O with P-BIFOP-H (10), only 
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chromone 29 is re-isolated (Table 14, entry 1, 3-5) which is observed without ligand (P-

BIFOP-H, 10) as well (Table 14, entry 2). However, changing the solvent to toluene and 

rising the temperature to 100°C, both organozinc reagents ((Et, Me)2Zn) yield the racemic 

product of 30a or 30b in up to 93%, rac (Table 14, entry 4, 7).  

 

 

 

Scheme 21. CuCl•P-BIFOP-X-catalyzed 1,4-additions of (Et, Me)2Zn or (Et, Me)MgBr to 29. 

Table 14. CuCl•P-BIFOP-H-catalyzed 1,4-additions of (Et, Me)2Zn or (Et, Me)MgBr to 

chromone 29 yielding rac-2-ethyl- or rac-2-methylchroman-4-one, rac-30a,b (Scheme 21)
a
 

[8b,38]. 

Entry Reagent Solvent Temp. [°C] Yield [%]
b
 ee [%]

c
 

1
d
 Et2Zn Et2O -78 0

d
 - 

2
d,e

 Et2Zn Et2O -78 0
d,e

 - 

3
d
 Et2Zn Et2O 20 0

d
 - 

4 Et2Zn toluene 100 93 0 

5
d
 Me2Zn Et2O -78 0

d
 - 

6
d
 Me2Zn Et2O 20 0

d
 - 

7 Me2Zn toluene 100 93 0 

8 EtMgBr Et2O -78 95 0 

9
e
 EtMgBr Et2O -78 93

e
 0 

10 MeMgBr Et2O -78 94 0 

a
1 mol% CuCl, 2 mol% P-BIFOP-H (10), 1.5 eq. of (Et, Me)2Zn or (Et, Me)MgBr, 6 h, if not 

stated otherwise. 
b
Yields are determined after column chromatography, Et2O:n-hexane, 

1:10, Rf = 0.25. 
c
ee determination by HPLC (Chiralcel OD-H column [47a,47b], tr = 14.4 

min, tr = 16.2 min). 
d
Substrate is isolated. 

e
No ligand is used. 

 

Hence, CuCl-catalyzed 1,4-additions of (Et, Me)2Zn to chromone 29 are possible (e.g. 

100°C, Table 14, entry 4, 7) with nearly quantitative yields, but with complete loss of 

enantioselectivities. Trapping the formed enolate of chromone 29 with benzaldehyde has 
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been described [47c]. Changing (Et, Me)2Zn to (Et, Me)MgBr at -78°C in Et2O yields 30a or 

30b in up to 94%, rac (Table 14, entry 8, 10). With no ligand rac-30a is yielded in up to 93% 

(Table 14, entry 9). The main difference between the direct alkylation of Grignard reagents to 

chromone 29, comparing the results in this work (Table 14) with the results of Feringa et al., 

is the different denticity of the phosphorus ligands (P-BIFOP-H 10 vs (R,S)-rev-Josiphos 

used by Feringa et al.) [47a]. P-BIFOP-H (10) represents a monophosphorus-monodentate 

ligand (which generates racemic products of 30a,b), while (R,S)-rev-Josiphos is a 

biphosphorus-bidentate ligand (which generates in up to 95% ee of 30a) [47a]. Thus, a 

bidentate ligand appears to be superior for the enantioselective Cu-catalyzed 1,4-addition of 

Grignard reagents (e.g. (Et, Me)MgBr) to chromone 29. A monodentate ligand, such as P-

BIFOP-H (10), is superior for the enantioselective Cu-catalyzed 1,4-addition of organozinc 

and Grignard reagents ((Et, Me)2Zn or (Et, Me)MgBr, to chalcone 25 (e.g. Scheme 14, Table 

12, entries 1, 7). 

2.3.3 Computational analysis [8b,38] 

 

 

Scheme 22. The rate-determining step (TS-B, reductive elimination) is showing the crucial 

transition structure, explaining the origins of enantioselectivities [8b,38]. 

The mechanistic pathway of enantioselective Cu(I)-catalyzed 1,4-additions has been 

studied computationally [49] (Cu(II) will be in situ reduced to Cu(I) by reagent) [17b], with 

kinetic methods [50a-50e] as well as with NMR experiment [50f-50l]. The rate-determining 

and the enantioselective step is found to be the reductive elimination (Scheme 22) [49d,49e]. 

To model the experimentally applied catalysts (Scheme 19, Table 12, Scheme 17, Scheme 

22), Cu-catalyzed 1,4-methylations are computed without counter ion and with 

dimethoxyphosphites (MeO)2P-X (X = H, F, Me, OMe, NMe2) as well as trimethyl phosphine 

(PMe3, Scheme 17, 22, Scheme 23). The computed energy barrier of the oxidative addition 

of the Cu-catalyzed 1,4-methylation of methyl-vinyl ketone is remarkably low for all 

phosphorus ligands, i.e. (MeO)2P-X, X = H, F, Me, OMe NMe2 or PMe3 (Scheme 23, Table 
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15). Stable cuprate intermediates are formed (e.g. EΔH = -13.8 kcal/mol for X = F, Scheme 

23, Table 15) but the following, reductive elimination and rate-determining step provides high 

energy barriers (e.g. Ea‡ = 26.5 kcal/mol for PMe3, Table 15). The fluoro phosphite (X = F) 

should be the most favourable ligand according to its low energy barrier in the reductive 

elimination step of 7.1 kcal/mol (Ea‡ = 20.9 kcal/mol – (EΔH = 13.8 kcal/mol = 7.1 kcal/mol), 

Table 15). However, the experimental application of P-BIFOP-F (12, Scheme 23, Table 15, 

entry 2, Scheme 23, Table 15, entry 2) leads to decomposed reaction compounds (cf. 

Scheme 18, Table 9, entry 6, 7). 

 

 

Scheme 23. Computed reaction pathway (TPSS-D3(BJ)/def2-TZVP//B3LYP/def2-SVP) of a 

“CuMe”-catalyzed 1,4-addition with six different chiral phosphorus ligands (Table 15). The pathways 

are displayed in color: X = H (dark blue), F (red), Me (green), OMe (purple) NMe2 (cyan) and PMe3 

(orange, Schemes 22, 23, Table 15) [8b,38]. 
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Table 15. Computed reaction pathway of the “MeCu”-catalyzed 1,4-addition to methyl-vinyl 

ketone with six different phosphorus ligands ((MeO)2P-X, X = H, F, Me, OMe, NMe2 or 

PMe3, Scheme 23)
a
 [8b,38]. 

(MeO)2P-X or PMe3 E
a‡

 (TS-A) E
ΔH

 

(Cuprate) 

E
a‡

 (TS-B) E
ΔH

 (Enolate) 

X = H 0.5 -10.7 20.7 -19.4 

X = F -0.3 -13.8 20.9 -20.6 

X = Me 1.1 -8.7 19.7 -15.2 

X = OMe 0.0 -13.6 23.3 -21.2 

X = NMe2 0.6 -11.9 22.8 -17.0 

PMe3 0.1 -13.3 26.5 -21.4 

a
TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, T = 293.15 K, solvent = diethylether 

in kcal/mol. 

 

The hydrido phosphite (MeO)2P-H, modelling P-BIFOP-H (10), shows for the reductive 

elimination a higher energy barrier of 10.0 kcal/mol, but the second lowest activation energy, 

(Ea‡ = 20.7 kcal/mol, – (EΔH = 10.7 kcal/mol = 10.0 kcal/mol), Table 15). PMe3 shows the 

highest activation energy (Ea‡ = 26.5 kcal/mol, Table 15), pointing to the more favourable 

electron withdrawing ligands, e.g. phosphites, in Cu-catalyzed 1,4-additions. Hence, hydrido-

phosphite ligands appear to exhibit similar electronic benefits (without large sensitivity 

against nucleophilic reagents) compared to P-Hal ligands, which explains the good 

experimental performance of P-BIFOP-H (10, Scheme 19, Table 12, entry 1, 7, 11, 16; 

Scheme 20, Table 13 entry 1; vs P-BIFOP-Me 43, Scheme 19, Table 12, entry 4, 9, 13, 18; 

Scheme 20, Table 13, entry 4). To explore the origins of experimental enantioselectivities 

(Table 12, Table 13), transition structure models based on the enantioselective CuCl-

catalyzed 1,4-addition of Me2Zn to chalcone 25 with P-BIFOP-H (10, MeCu•P-BIFOP-H, 

Table 16) are computed for the rate-determining reductive elimination step [49d,49e] 

(Scheme 17, Scheme 22, Table 16, Table 17, Table 18). Two conformations of chalcone 25 

(i.e. syn and anti) are considered for the TS models [51]. It should be pointed out that the 

syn-structures are energetically favoured over the anti-structures (Scheme 24, Table 18). In 

addition to the syn- or anti- arrangement of chalcone 25, the re- and si-configurations for 

additions of Me-nucleophiles, have to be considered, too. Thereby the re-complexes are pro 

(R)-configured which means they form the (R)-enantiomer while si-complexes form the (S)-

enantiomer. Experimentally, the (R)-enantiomer is always favoured (e.g. chalcone 25, 

Scheme 19, Table 12 and cyclohexenone 27, Scheme 20, Table 13), while chromone 29 

produce racemates in any case (Scheme 21, Table 14). 
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Figure 21. Computed competing transition structures (TS-B) of the MeCu-reductive elimination 

step with P-BIFOP-H (10) to chalcone 25 (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, solvent = 

diethylether, T = 293.15 K, p = 1 bar, Table 16). TS-10 is disvafoured because of the CH-interactions 

(d: 1.78 Å, sterical repulsion) between the aryl- and fenchyl-moiety [9q]; [8b,38]. 

Table 16. Computed selection of competing transition structures of the reductive 

elimination (TS-B) of the chalcone 25 • MeCu • P-BIFOP-H (Scheme 22, Figure 21)
a
 

[8b,38]. 

TS-B pro(R/S)
[b]

 Imag. freq. [cm
-1

] ΔG [kcal/mol] Boltzmann distribution [%] 

TS-9 (R) -377.22 0.0 99.50 

TS-10 (S) -368.08 3.1 0.46 

TS-11 (R) -398.95 4.9 0.02 

TS-12 (S) -378.86 5.2 0.01 

TS-13 (R) -402.55 6.0 <0.01 

TS-14 (R) -382.66 6.1 <0.01 

TS-15 (S) -370.94 6.6 <0.01 

TS-16 (S) -405.75 11.6 <0.01 

a
M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, solvent = diethylether, T = 293.15 K, p 

= 1 bar. Also, TS-10 is disfavoured because of CH-repulsions (d: 1.78 Å) between aryl. And 

fenchyl-moieties. 
b
cf. experimental (formation of (R)-3-ethyl or (R)-3-methyl-1,3-

diphenylpropan-1-one (R)-26a,b, Scheme 19, Table 12, entry 1, 7). 
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The preference of TS-9 over TS-10 (Figure 21, Table 16), can be explained by sterical 

repulsion (Caryl-H vs H-Cfenchyl, d = 1.78 Å) of the biphenyl backbone with the fenchyl-groups 

of the catalyst disfavouring TS-10 by +3.1 kcal/mol (Figure 21, Table 16). For other 

fencholates a restricted aryl-fenchyl rotation show a preferred dihedral (O-C-C(ar)-Caryl): -47.2° 

alignment which decreases with higher sterical demand to minimize the CH-interactions of 

the fenchyl-aryl moiety (O-C-C(ar)-Caryl): -12.1° [9q]. This preferred alignment is also apparent 

in TS-9, (O-C-C(ar)-Caryl): -152.81°, which is also decreasing, minimizing the fenchyl-aryl 

interactions (sterical repulsions), in TS-10 (O-C-C(ar)-Caryl): -110.27° but still disfavoured by 

3.1 kcal/mol (Figure 21, Table 16).  

 

 

Figure 22. Computed competing transition structures (TS-B) of the MeCu-reductive elimination 

step with P-BIFOP-H (10) to cyclohexenone 27 (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, 

solvent = diethylether, T = 293.15 K, p = 1 bar, Table 17). TS-12 is disfavoured due to sterical 

repulsions of the Me-group approaching front side underneath the biaryl-unit [9q]; [8b,38]. 

Table 17. Computed selection of competing transition structures of the 

reductive elimination (TS-B) of the cyclohexenone 27 • MeCu • P-BIFOP-H 

(Scheme 17, Scheme 22, Figure 22)
a
 [8b,38]. 

TS-B pro(R/S)
b
 Imag. freq. [cm

-1
] ΔG [kcal/mol] 

TS-11 (R) -429.13 0.0 

TS-12 (S) -463.18 3.1 

a
M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, solvent = diethylether, T 

= 293.15 K, p = 1 bar. 
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The preference of TS-11 over TS-12 (Figure 22, Table 17) can be explained by the 

approach of the nucleophile, with TS-12 having undesirable trajectory from the front side, 

repulsing with the biaryl backbone (Figure 22). For TS-11 the trajectory is more desirable 

with the nucleophile approaching sideways, minimizing sterical repulsions with its 

surroundings. 

 

Scheme 24. Computed reaction pathway (TPSS-D3(BJ)/def2-TZVP//B3LYP/def2-SVP) of the 

crucial steps of “CuMe”-catalyzed 1,4-addition with energetic difference (TS-B, syn-enone favoured by 

3.7 kcal/mol) of the syn-enone and the anti-enone (Table 18) [8b,38]. 

Table 18. Computed crucial structures of the Cu-catalyzed 1,4-addition to methyl-vinyl 

ketone with competing syn- vs anti-enone (Schemes 17, 22, 24)
a
 [8b,38]. 

Step anti-enone syn-enone  ΔGrel 

Cuprate -10.7 -12.5 1.8 

Reductive Elimination (TS) 10.0 6.3 3.7 

Product -19.4 -24.0 4.6 

a
TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, T = 293.15 K, solvent = diethylether 

in kcal/mol. 
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2.3.4 Conclusions [8b,38] 

The enantioselective CuCl-catalyzed 1,4-addition of Et2Zn to chalcone 25 with the P-

BIFOP-H (10) ligand exceeds other P-BIFOP-X (X = Me 43, Et 44, F 12) as well as O-

BIFOP-H (18) ligands, yielding the 1,4-ethylation product (R)-3-ethyl-1,3-diphenylpropan-1-

one (R)-26a in up to 93% with 99% ee. CuCl•P-BIFOP-H catalyzed Me2Zn-addition to 

chalcone 25 yields the methylation product (R)-3-methyl-1,3-diphenylpropan-1-one (R)-26b 

in up to 96% with 67% ee. In contrast an ethylation of the substrate cyclohexenone 27 yields 

(R)-3-ethylcyclohexanone (R)-28a in up to 90% with 20% ee. The enantioselective CuCl•P-

BIFOP-H-catalyzed 1,4-addition of Et2Zn is found to perform better with chalcone 25 (CuCl: 

86%, 76% ee; Cu(OTf)2: 89%, 49% ee, THF, Table 10), while the Cu(OTf)2•P-BIFOP-H-

catalyzed 1,4-addition of Et2Zn performs better with the cyclohexenone 27 substrate 

(Cu(OTf)2: 92%, 65% ee [9j]; CuCl: 90%, 20% ee, Table 13). This effect is explained by the 

presence of Cu(OTf)2 which is capable of improving yields and especially enantioselectivity, 

by involving the triflate-anion in the reaction mechanism [9j,48a,48b]. With CuCl of course, 

this effect is not present for the enantioselective 1,4-addition of Et2Zn to cyclohexenone 27. 

The CuCl•P-BIFOP-H-catalyzed (Et, Me)MgBr-1,4-addition to chromone 29 provides 4-alkyl-

chromanones (4-ethyl-chroman-2-one 30a and 4-methyl-chroman-2-one 30b) in up to 95% 

yield but only racemic. With (Et, Me)2Zn this addition is achieved only at 100°C (toluene, 

93%, rac, Table 14).  

DFT-computations of elementary steps of the catalytic cycle with different model ligands 

for P-BIFOP-X, i.e. (MeO)2P-X (X = H, F, Me, OMe, NMe2) and PMe3 show that the reductive 

elimination (TS-B) is rate-determining. Computational analyses reveal the lowest activation 

barrier for the (MeO)2P-F ligand, followed directly by (MeO)2P-H, which is the electronic 

model for the experimentally employed P-BIFOP-H ligand (Table 15). As P-BIFOP-F (12) 

decomposes under reaction conditions of 1,4-additions (Table 9, entries 6, 7, in contrast to 

its stability in Pd-catalyzed cross-couplings [9b] and allylic substitutions [8a,9i]), P-BIFOP-H 

(10) appears to be most favorable for Cu-catalyzed 1,4-additions. Transition structure 

analyses of the Cu•P-BIFOP-H-catalyzed methylation of chalcone reveal that the re-transition 

structure (TS-9, Table 16) is energetically favoured by 3.1 kcal/mol relative to its competing 

si-TS-10 due to steric repulsions of the fenchyl with the aryl moiety (Table 16, Figure 21). 

This explains the experimentally observed preference of the (R)-enantiomers in Cu-P-

BIFOP-X catalyzed 1,4-alkylations. Furthermore it is shown that the syn-enones, such as 

chalcone 25, deliver energetically favoured transition structures in contrast to the anti-

enones, such as cyclohexenone 27, (Table 16 vs Table 17; Table 18). 
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2.4 Enantioselective 1,4-additions with Fe(I)-alkyl catalyst [30] 

 

 

Scheme 25. Crucial steps of the Fe(I,III)-alkyl catalyzed 1,4-addition mechanism with P-BIFOP-H 

(10) to chromone (29, mechanism analogue to copper cf. chapter 2.3, Scheme 17) [30]. 

 2.4.1 Abstract [30] 

Enantioselective Fe(I,III)-alkyl catalyzed 1,4-additions are performed of Grignard (RMgBr, 

R = Et, Me) and organozinc reagents (R2Zn, R = Et, Me) to enones (e. g. cyclohexenone, 

yielding 3-alkyl-cyclohexanone (alkyl = Et, Me) in up to 92%, rac; chalcone yielding 3-(R)-

alkyl-1,3-diphenyl propanone (alkyl = Et, Me) in up to 94%, 67% ee; chromone yielding 2-(R)-

alkyl chroman-4-one (alkyl = Et, Me) in up to 89%, 86% ee). A Lewis acid AlCl3-catalyzed 

1,4-addition of  Zn(Et, Me)2 to chalcone is not observed,  thus a catalytic activity of Fe(I,III) is 

highly probable. Further evidence for a possible catalytic activity of Fe(I,III)-alkyl catalyzed 

1,4-additions, arises from previous studies of the Cu(I,III)-catalyzed  1,4-additions of (Et, 

Me)MgBr to chromone yielding 2-ethyl-, or 2-methyl chroman-4-one in up to 95%, rac, while 

these 1,4-additions of Fe(I,III)-alkyl catalyst to chromone yields 2-ethyl-, or 2-methyl 

chroman-4-one in up to 89% with 89% ee. DFT computations (OPBE-D3(BJ)/def2-

TZVP//ONIOM(OPBE-D3(BJ)/def2-SVPP:PM6) of the enantioselective Fe(I,III)-catalyzed 1,4-

alkylations reveal the similarity to enantioselective Cu(I,III)-catalyzed 1,4-additions. 

Especially the rate-determining step of Fe(I,III)-catalyses equals the reaction pathway of 

Cu(I,III)-catalyses, where the reductive elimination (TS-RE) induces the enantioselective 

step. Of all possible spin states Fe can pass through (S = 1/2, 3/2, 5/2) the spin state S = 1/2 

is energetically favoured for the enantioselective Fe(I,III)-alkyl catalyzed 1,4-alkylation. 
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2.4.2 Results and discussion [30] 

The enantioselective Fe(I,III)-alkyl catalyzed 1,4-additions of 1.5 eq. Et2Zn to chalcone 

25, with 1 mol% FeCl3-2-MTHF solution and 2 mol% P-BIFOP-H (10) at -78°C for 6 h in Et2O, 

yielding 3-(R)-ethyl-1,3-diphenyl propanone (R)-26a in up to 93% and 64% ee (Table 19, 

entry 1). 1 mol% FeCl3 (solid) yielded (R)-26a in up to 94% and 77% ee (entry 5). With 1.5 

eq. Me2Zn and 1 mol% FeCl3-2-MTHF solution 3-(R)-methyl-1,3-diphenyl propanone (R)-26b 

is yielded in up to 95% and 68% ee (entry 9). With 1 mol% FeCl3 as solid the 1,4-addition 

yielded 3-(R)-methyl-1,3-diphenyl propanone (R)-26b in up to 93% and 59% ee (entry 13).  

 

 

Scheme 26. Enantioselective FeCl3-catalyzed 1,4-addition of (Et, Me)2Zn or (Et, Me)MgBr to 

chalcone 25. 

Table 19. Screening of P-BIFOP-X (X = H, Et, Me) ligands or O-BIFOP-H, iron sources 

and reagents for the enantioselective Fe(I,III)-alkyl catalyzed 1,4-additions to chalcone 25 

yielding 3-(R)-alkyl-1,3-diphenyl propanone 26a,b (alkyl = Et, Me, Scheme 26)
a
. 

Entry P-BIFOP-X Iron source Reagent Yield [%]
b
 ee [%]

c
 

1 X = H FeCl3-2-MTHF-solution Et2Zn 93 64 (R) 

2 X =Et FeCl3-2-MTHF-solution Et2Zn 84 31 (R) 

3 X = Me FeCl3-2-MTHF-solution Et2Zn 84 36 (R) 

4 O-BIFOP-H FeCl3-2-MTHF-solution Et2Zn 92 60 (R) 

5 X = H FeCl3 (solid) Et2Zn 94 77 (R) 

6 X = Et FeCl3 (solid) Et2Zn 89 34 (R) 

7 X = Me FeCl3 (solid) Et2Zn 86 37 (R) 

8 O-BIFOP-H FeCl3 (solid) Et2Zn 92 66 (R) 

9 X = H FeCl3-2-MTHF-solution Me2Zn 95 68 (R) 

10 X = Et FeCl3-2-MTHF-solution Me2Zn 86 35 (R) 

11 X = Me FeCl3-2-MTHF-solution Me2Zn 80 35 (R) 

12 O-BIFOP-H FeCl3-2-MTHF-solution Me2Zn 89 65 (R) 

13 X = H FeCl3 (solid) Me2Zn 93 59 (R) 

14 X = Et FeCl3 (solid) Me2Zn 82 27 (R) 
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15 X = Me FeCl3 (solid) Me2Zn 88 21 (R) 

16 

17
d
 

18
e
 

19
f
 

20
g 

21
h
 

22
h
 

23
i
 

24
i
 

25
j
 

26
j 

O-BIFOP-H 

X = H 

X = H 

X = H 

X = H 

none 

none 

X = H 

X = H 

X = H 

X = H 

FeCl3 (solid) 

FeCl3-2-MTHF-solution 

FeCl3 (solid) 

FeCl3-2-MTHF-solution 

FeCl3 (solid) 

FeCl3-2-MTHF-solution 

FeCl3 (solid) 

AlCl3 (solid) 

AlCl3 (solid) 

FeCl3 (solid) 

FeCl3-2-MTHF-solution 

Me2Zn 

EtMgBr 

EtMgBr 

MeMgBr 

MeMgBr 

Et2Zn 

Et2Zn 

Et2Zn 

Me2Zn 

PhMgBr 

PhMgBr 

92 

62
d
 

59
e
 

79
f
 

81
g
 

88
h
 

87
h
 

0
i
 

0
i 

0
j
 

0
j
 

55 (R) 

0 

0 

0 

0 

0 

0 

- 

- 

- 

- 

a
1 mol% Fe(III)-sources (FeCl3 as solid or FeCl3-2-MTHF as solution) and 2 mol% P-

BIFOP-H (10) at -78°C for 6 h in Et2O. 
b
Isolated yields after column chromatography. 

c
ee 

determination by HPLC (Chiralpack AD-H column
 
[45a,45b], for Et: tr = 8.6-8.7 min, tr = 

10.3-10.4 min (major, R), for Me: tr = 8.6 min, tr = 9.33 min (major, R), cf. Figure 23). 
d
1,2-

adduct is also observed (31%, rac). 
e
1,2-adduct also observed (28%, rac). 

f
1,2-adduct is 

also observed (11%, rac). 
g
1,2-adduct is also observed (12%, rac). 

h
No ligand is used. 

i
No 

reaction is observed at -78°C, only the chalcone 25 can be re-isolated in up to 93% yield. 

j
Biphenyl is isolated in up to 94% yield. 

 

 

Figure 23. HPLC-analyses of 26 (Chiralpack AD-H column
 
[45a,45b], for Et: tr = 8.63-8.73 min, tr = 

10.27-10.36 min (major, R), for Me: tr = 8.62 min, tr = 9.33 min (major, R), cf. Table 19). 

The enantioselective Fe(I,III)-alkyl catalyzed 1,4-additions of 1.5 eq. (Et, Me)MgBr to 

chalcone 25 with either 1 mol% FeCl3-2-MTHF solution or 1 mol% FeCl3 and 2 mol% P-

BIFOP-H (10) at -78°C for 6 h in Et2O yielding (R)-26a,b in up to 81% as racemic products 

(Table 19, entries 17-20). In all entries (Table 19) P-BIFOP-H (10) is superior compared to 

the other ligands (O-BIFOP-H, 18 and P-BIFOP-X, X = Et 44, Me 43). An enantioselective 

Al(III)-catalyzed 1,4-addition of (Et, Me)2Zn to chalcone 25 with 1 mol% AlCl3 as solid and 2 

mol% P-BIFOP-H (10) at -78°C for 6 h in Et2O did not occur. The chalcone 25 is re-isolated 
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in up to 93% yield instead (Table 19, entries 23, 24). With PhMgBr the Fe(I,III)-catalysis 

prefers cross coupling and yields biphenyl (Table 19, entries 25, 26). Apparently a Lewis acid 

catalysis does not taking place. This stands in contrast to what commonly is believed [31]. 

 

 

Scheme 27. Enantioselective FeCl3-catalyzed 1,4-additions of (Et, Me)2Zn or (Et, Me)MgBr to 

chromone 29 [30]. 
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Table 20. Enantioselective Fe(I,III)-alkyl catalyzed 1,4-addition of 1.5 eq. (Et, Me)2Zn (or 

(Et, Me)MgBr) to chromone 29 yielding 2-(R)-alkyl-chroman-4-one 30a,b (alkyl = Et, Me, 

Scheme 27)
a
 [30]. 

Entry Metal source Reagent Yield [%]
b
 ee [%]

c
 

1
d
 FeCl3-2-MTHF-solution Et2Zn 0

d
 - 

2
d
 FeCl3-2-MTHF-solution Me2Zn 0

d
 - 

3 FeCl3-2-MTHF-solution EtMgBr 89 89 

4 FeCl3-2-MTHF-solution MeMgBr 82 83 

5
d
 FeCl3 (solid) Et2Zn 0

d
 - 

6
d
 FeCl3 (solid) Me2Zn 0

d
 - 

7 FeCl3 (solid) EtMgBr 74 77 

8 

9
e
 

10
f
 

11
g
 

12
g
 

13
h
 

14
h
 

FeCl3 (solid) 

FeCl3 98% (solid) 

FeCl2 (solid) 

CuCl (solid)
f
 

CuCl(solid)
f
 

FeCl3 (solid) 

FeCl3-2-MTHF-solution 

MeMgBr 

EtMgBr 

MeMgBr 

EtMgBr 

MeMgBr 

PhMgBr 

PhMgBr 

73 

93
e
 

52
f
 

95
g
 

94
g
 

0
h
 

0
h
 

68 

79 

40 

0
f
 

0
f
 

- 

- 

a
1 mol% Fe(III)-sources (FeCl3 as solid or FeCl3-2-MTHF as solution) and 2 mol% P-

BIFOP-H (10) at -78°C for 18 h in Et2O. 
b
Isolated yields after column chromatography. 

c
ee 

determination by HPLC (Chiralcel OD-H column [47a,47b], Et: tr = 13.7-14.0 min (major, R), 

tr = 17.2-17.4 min, Me: tr = 8.6-8.8 min (major, R), tr = 10.4-10.5 min, cf. Figure 24). 
d
No 

reaction is observed at -78°C, only the substrate is re-isolated in up to 93% yield. 
e
The 

FeCl3 compound is impured with 2% of CuCl.  
f
FeCl2 is used instead of FeCl3. 

g
The CuCl-

catalyzed 1,4-additions yields 2-alkyl-chroman-4-one 30a,b (alkyl = Et, Me) in up to 95%, 

rac  are published  already (cf. Chapter 2.3, Table 14, entries 8, 10) [8b]. 
h
Biphenyl is 

isolated instead in up to 93% yield. 

 

Feringa et al. reported a direct Cu(I)-catalyzed 1,4-additions of Grignard reagent (e.g. 

EtMgBr) to chromone 29 yielding 2-(R)-ethylchroman-4-one 30a in up to 98% with 95% ee 

[47a]. The Fe(I,III)-alkyl catalyzed 1,4-addition of Zn(Et, Me)2 to chromone 29 does not 

perform (Table 20, entries 1, 2, 5, 6), a switch to the more reactive Grignard reagents (e.g. 

(Et, Me)MgBr) is tested and yielded 2-(R)-ethyl-chroman-4-one 30a in up to 89% with 89% 

ee  (Table 20, entries 3, 7) and 2-(R)-ethyl-chroman-4-one 30a in up to 82% with 83% ee  

(Table 20, entries 4, 8). The CuCl-catalyzed 1,4-additions of (Et, Me)MgBr to chromone 29 

are part of previous work [8b] and yielded 2-alkyl-chroman-4-one 30a,b (alkyl = Et, Me) in up 

to 95% but as racemate (Table 20, entries 11, 12; cf. Table 14, entries 8, 10) [8b].  
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Figure 24. HPLC-analyses of 30 (Chiralcel OD-H column [47a,47b], Et: tr = 13.74-13.95 min 

(major, R), tr = 17.23-17.36 min, Me: tr = 8.67-8.81 min (major, R), tr = 10.35-10.53 min, cf. Table 20). 

Since the CuCl-catalyzed 1,4-additions have no stereocontrol at all (Table 20, entries 11, 

12; cf. Table 14, entries 8, 10) [8b], but the Fe(I,III)-alkyl catalyzed 1,4-additions have 

stereocontrol (cf. Table 20, entries 3, 4, especially 7, 8, 9, 10). A test with 2% Cu-impured 

FeCl3 [52] forms the 2-(R)-alkyl-chroman-4-one 30a with 93% yield with 79% ee (Table 20, 

entry 9), similar to the FeCl3-2-MTHF-solution yielding 2-(R)-alkyl-chroman-4-one 30a in up 

to 89% with 89% ee. Thus it is possible that a (Cu/Fe)-co-catalysis [20b,53] is occurring, 

granting higher yields and enantioselectivities (Table 20, entries 3, 4, 9) while 99.9% pure 

FeCl3 forms lesser yields and enantioselectivities (in up to 74% yield with 77% ee, cf. Table 

20, entries 7, 8). However, the 99.9% pure FeCl3•P-BIFOP-H delivers enantioselectivities 

while the 99.999% pure CuCl•P-BIFOP-H does not, leads to the conclusion that there has to 

be a Fe(I,III)-catalysis. 
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Scheme 28. FeCl3-catalyzed 1,4-additions of (Et, Me)2Zn or (Et, Me)MgBr to cyclohexenone 27 

[30]. 

Table 21. Enantioselective Fe(I,III)-alkyl catalyzed 1,4-addition to cyclohexenone 

27 yielding racemic 3-alkyl-cyclohexanone 28a,b (alkyl = Et, Me, Scheme 28)
a
 [30]. 

Entry Iron source Reagent Yield [%]
b
 ee [%]

c
 

1 FeCl3-2-MTHF-solution Et2Zn 0
d
 - 

2 FeCl3 (solid) Et2Zn 0
d
 - 

3 FeCl3-2-MTHF-solution Me2Zn 0
d
 - 

4 FeCl3 (solid) Me2Zn 0
d
 - 

5 FeCl3-2-MTHF-solution EtMgBr 86 0 

6 FeCl3 (solid) EtMgBr 92 0 

7 FeCl3-2-MTHF-solution MeMgBr 89 0 

8 FeCl3 (solid) MeMgBr 88 0 

a
 1.5 eq. (Et, Me)2Zn, 1 mol% Fe(III)-sources (FeCl3 as solid or FeCl3-2-MTHF as 

solution) and 2 mol% P-BIFOP-H (10) at -78°C for 6 h in Et2O. 
b
Isolated yields after 

column chromatography. 
c
ee is racemic and is determined on a chiral GC (Lipodex 

E column
 
[45c], tr = 58.4 min, tr = 60.4 min). 

d
No reaction is observed at -78°C, only 

the cyclohexenone 27 is re-isolated in up to 92% yield. 

 

The enantioselective Fe(I,III)-alkyl catalyzed 1,4-additions of (Et, Me)2Zn to 

cyclohexenone 27 with either 1 mol% FeCl3-2-MTHF solution or 1 mol% FeCl3 as solid and 2 

mol% P-BIFOP-H (10) at -78°C for 6 h in Et2O no reaction is observed. The cyclohexenone 

27 is re-isolated in up to 92% yield (Table 21, entry 1-4). The identical results are found for 

the 1,4-additions with (Et, Me)MgBr yielding 28a,b in up to 92%, rac (Table 21, entries 5-8). 

This implies that the stereocontrol of FeCl3-catalyzed reactions appears to be limited to the 

substrates which are used. 
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2.4.3 Computational analysis [30] 

The mechanistic pathway of enantioselective Fe(I,III)-alkyl catalyzed 1,4-additions 

(Scheme 25) are considered similar  to the Cu(I,III)-catalyzed 1,4-alkylations (Scheme 23). 

The DFT computations (OPBE-D3(BJ)/def2-TZVP//ONIOM(OPBE-D3(BJ)/def2-SVPP:PM6) 

of enantioselective Fe(I,III)-alkyl catalyzed 1,4-additions reveal that the rate-determining 

step, the reductive elimination, equals the mechanistics of the enantioselective Cu(I,III)-

catalyzed 1,4-additions (cf. Scheme 23, Figure 21, Table 16 with Scheme 25, Table 22, 

Figures 25-28). 

Table 22. DFT-computations of the mechanistic pathway (ΔGrel) of the enantioselective Fe(I,III)-alkyl 

catalyzed 1,4-addition to chromone 29 taking all possible spin states of Fe into account (Scheme 25)
a
 

[30]. 

Entry/Spin 

state/facial 

Ground 

state 

π-complex TS-OA σ-complex 

(ferrat-like) 

TS-RE Product 

1, S = 1/2, 

re 

0.0 -1.4 1.9 -5.0 7.0 -58.0 

2, S = 3/2, 

re 

23.0 17.3 14.1 12.2 8.2 -20.0 

3, S = 5/2, 

re 

76.2 58.0 53.3 72.1 47.4 38.8 

4, S = 1/2, 

si 

0.0 -1.4 2.1 -11.5 8.2 -50.4 

5, S = 3/2, 

si 

23.0 17.3 22.8 7.0 15.6 -20.1 

6, S = 5/2, 

si 

76.2 58.0 50.2 72.1 64.7 18.6 

a
OPBE-D3(BJ)/def2-TZVP//ONIOM(OPBE-D3(BJ)/def2-SVPP:PM6), solvent = diethylether, T = 

293.15 K, p = 1 bar, ΔGrel in kcal/mol. 
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Figure 25. Computed competing transition structures (TS-RE) of the MeFe-reductive elimination 

step with P-BIFOP-H (10) to chromone 29 (OPBE-D3(BJ)/def2-TZVP//ONIOM(OPBE-D3(BJ)/def2-

SVPP:PM6), solvent = diethylether, T = 293.15 K, p = 1 bar, Table 22) [30]. 
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Figure 26. Computed re-facial reaction pathway of the enantioselective Fe(I,III)-catalyzed 1,4-

alkylation with P-BIFOP-H (10) to chromone 29 with all possible Fe spin states (OPBE-D3(BJ)/def2-

TZVP//ONIOM(OPBE-D3(BJ)/def2-SVPP:PM6), solvent = diethylether, T = 293.15 K, p = 1 bar, Table 

22) [30]. 

 

 

Figure 27. Computed si-facial reaction pathway of the enantioselective Fe(I,III)-catalyzed 1,4-

alkylation with P-BIFOP-H (10) to chromone 29 with all possible Fe spin states OPBE-D3(BJ)/def2-

TZVP//ONIOM(OPBE-D3(BJ)/def2-SVPP:PM6), solvent = diethylether, T = 293.15 K, p = 1 bar, Table 

22) [30]. 

The preference of the pro (R) TS-RE1 (7.0 kcal/mol) over the pro (S) TS-RE2 (8.2 

kcal/mol, Figure 25, Table 22) can be explained by less interactions of the aryl-side of the 

chromone 29 with the P-BIFOP-H (10) ligand. In TS-RE1 the aryl-side of the chromone 29 is 

pointing into the left periphery  of the P-BIFOP-H (10) ligand, while in TS-RE2 the ligand (10) 

is sitting above the substrate 29. This explains the experimentally observed preference of the 

(R)-enantiomer (cf.experimental Schemes 26, 27 and Tables 19, 20 with Figures 25, 26, 27, 

28 and Tables 22, 23). Iron (Fe) can switch between three different spin states (S = 1/2, 3/2, 

5/2, Figures 26, 27). According to the computations (Table 22, Figures 26, 27) the spin state 

S = 1/2 is energetically favoured for the Fe(I,III)-catalyzed 1,4-alkylation. 
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Table 23. Computed crucial transition structure (TS-OA, TS-RE) of the enantioselective 

Fe(I,III)-catalyzed 1,4-addition of “FeMe” to chalcone 25 (Figure 28)
a
 [30]. 

Transition structure / facial Imag. freq. [cm
-1

] enone  ΔGrel [kcal/mol] 

Oxidative Addition (TS-OA), re -48.5 syn 7.5 

Oxidative Addition (TS-OA), si -64.8 syn 0.0 

Oxidative Addition (TS-OA), re -67.3 anti 4.6 

Oxidative Addition (TS-OA), si -81.0 anti 0.0 

Reductive Elimination (TS-RE), re -281.8 syn 0.0 

Reductive Elimination (TS-RE), si -418.2 syn 6.5 

Reductive Elimination (TS-RE), re -265.0 anti 0.0 

Reductive Elimination (TS-RE), si not found anti - 

a
OPBE-D3(BJ)/def2-TZVP//ONIOM(OPBE-D3(BJ)/def2-SVPP:PM6), solvent = 

diethylether, T = 293.15 K, p = 1 bar, ΔGrel in kcal/mol. 

 

 

 

Figure 28. Computed competing transition structures (TS-RE) of the MeFe-reductive elimination 

step with P-BIFOP-H (10) to chalcone 25 (OPBE-D3(BJ)/def2-TZVP//ONIOM(OPBE-D3(BJ)/def2-

SVPP:PM6), solvent = diethylether, T = 293.15 K, p = 1 bar, Table 23) [30]. 
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As shown with chromone 29 before, the preference of the pro (R) TS-RE3 (0.0 kcal/mol) 

over the pro (S) TS-RE4 (6.5 kcal/mol, Figure 28, Table 23) is found for the chalcone 25 as 

well. The pro (R) TS-RE3 explains the experimentally found preference of the (R)-enantiomer 

(cf. experimental Scheme 28, Table 19 with Table 23, Figure 28). 

2.4.4 Conclusions [30] 

The enantioselective FeCl3-catalyzed 1,4-addition of Et2Zn to chalcone 25 with P-BIFOP-

H  (10) yields 3-(R)-ethyl-1,3-diphenylpropaneone 26a in up to 94% with 77% ee (Table 19, 

entries 1,5) and the 1,4-addition of Me2Zn to chalcone 25 yields 3-(R)-methyl-1,3-

diphenylpropaneone 26b in up to 95% with 68% ee (Table 19, entries 9, 13), while the 1,4-

additions of (Et, Me)2Zn with AlCl3 to chalcone 25 is not observed (Table 19, entries 23, 24), 

delivering strong evidence of a catalytic Fe(I,III)-alkyl (alkyl = Et, Me) species instead of a 

Lewis acid performance. The enantioselective 1,4-addition of PhMgBr to chalcone 25 or 

chromone 29 does not occur but the cross-coupling product of biphenyl 48 is isolated 

instead, in up to 94% yield (Table 19, entries 25, 26; Table 20, entries 13, 14). The 1,4-

additions of (Et, Me)2Zn to cyclohexenone 27 is not observed (Table 21, entries 1-4). The 

cyclohexenone 27 is reisolated in up to 92% yield instead. Obviously the cyclohexeone 27 is 

not electrophilic enough to react with the (Et, Me)2Zn reagent at -78°C (cf. Table 21, entries 1-4). 

The enantioselective FeCl3-catalyzed 1,4-additions of (Et, Me)MgBr with P-BIFOP-H (10) to 

chromone 29 yielded 2-(R)-alkyl-chromane-4-one (alkyl = ethyl, methyl) 30a,b in up to 89% 

with 89% ee (Table 20, entries 3, 4). Changing the Fe-source from FeCl3 to FeCl2, the 1,4-

addition of MeMgBr yields 2-(R)-methyl-chromane-4-one 30b in up to 52% with 40% ee 

(Table 20, entry 10), indicating that the Fe(II)-catalyst follows a different mechanistic pathway 

than the Fe(I,III)-alkyl catalysts. Comparing the enantioselective FeCl3-catalyzed 1,4-

additions of (Et, Me)MgBr with P-BIFOP-H (10) to chromone 29 with the CuCl-catalyzed 1,4-

additions, strong evidence of a catalytic behavior of Fe(I,III)-alkyl catalyst is observed (cf. 

Table 20, entries 3, 4 vs Table 14, entries 8, 10). Cu-impured FeCl3 as solid with only 98% 

purity catalyzes the 1,4-addition of MeMgBr to chromone 29 boosting the yield but generates 

less enantioselectivity (cf. Table 20, entry 9), hences the possibility of a Cu/Fe-cocatalysis to 

perform. It is shown that the mechanistics of the Fe(I,III)-alkyl catalyzed 1,4-addition equals 

the mechanistics of the Cu(I,III)-alkyl catalyzed 1,4-addition, with the same crucial rate-

determining step to be the reductive elimination. The DFT computations (OPBE-D3(BJ)/def2-

TZVP//ONION(OPBE-D3(BJ)/def2-SVPP:PM6) explain the experimentally found preference 

of the (R)-enantiomer to be the major enantiomer of the generated products of chalcone 25 

and chromone 29. Furthermore of all possible spin states concerning the Fe (S = 1/2, 3/2, 

5/2) the spin state S = 1/2 is energetically favoured (cf. Table 22, Figures 26, 27) in 

enantioselective Fe(I,III)-catalyzed 1,4-alkylation. 
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2.5 Strong Asymmetry in the Perepoxide Bifurcation Mechanism: The Large-

Group Effect in the Singlet Oxygen Ene Reaction with Allylic Alcohols [34b,39] 

 

 

Scheme 29. The steric effect at α-carbon position during experimental photooxygenation 

reaction. The effect of an ester at the α-carbon position during photooxygenation [34b,39]. 

 2.5.1 Abstract [34b] 

The increase of steric effects at α-carbon of allylic alcohols is analyzed. Increasing the 

steric demands at α-carbon of allylic alcohols leads to a directing effect of the singlet oxygen 

to the γ-carbon with regioselectivities in up to 90:10, while switching the substrate to enones 

leads to regioselectivities in up to 98:2. DFT computations reveal that the early transition 

states are responsible for the decisive symmetry-breaking bifurcation in the mechanistic 

pathway. 

2.5.2 Results and discussion [34b] 

Experimentally, the steric increase at α-carbon of allylic alcohols (49-H, 49-CH3, 49-Ph) 

leads during the photooxigenation reaction (Scheme 29) to two different hydroxyperoxides 

for each allyl alcohol (50a,b, 51a,b, 52a,b) [34b]. The regioselectivity (90:10) prefers the 

hydroxyperoxide 52b with increase of the steric demand at α-carbon position (Scheme 29) 

[34b]. Starting the photooxygenation with an enone (53-CO2CH3), instead of an allylic 

alcohol, the two hydroperoxides (55a,b) are formed, but with regioselectivities of 98:2, 

preferring the hydroxyperoxide 55b [34b]. 
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2.5.3 Computational results [34b,39] 

Studying the mechanistic transition structures (TS-O-O-R2, Scheme 29) of the bifurcation 

pathway, the preferred route of photooxydizing the γ-carbon is supported by large groups (cf. 

Scheme 29, R = CH3 vs R = Ph) and DFT-computations (TPSS-D3(BJ)/def2-TZVP, Figure 

29, Figure 30). 

 

Figure 29. The computed (TPSS-D3(BJ)/def2-TZVP) steric effect at the α-carbon of allylic 

alcohols during photooxygenation showing similar results for the R = CH3 groups (left) and 

different results by R = Ph groups (right) [34b,39]. 

 

Figure 30. The computed (TPSS-D3(BJ)/def2-TZVP) photooxygenation of an ene with X = 

CH3 (left) and different results by R = Ph an enone (right) [34b,39]. 
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The preference of 1O2 adding at the γ carbon is even more convincing by changing the 

substrate of an allyl alcohol (e. g. 49-Ph) to an enone (53-CO2CH3, Figure 29). The 

regioselectivity of an enone (53-CO2CH3, Figure 29) at the γ-carbon is favoured by 4.8 

kcal/mol (Figure 30). 

2.5.4 Conclusions [34b] 

DFT-computations (TPSS-D3(BJ)/def2-TZVP, Figure 29, Figure 30) are delivering the 

explanation why the photooxygenation reaction of 1O2 to allylic alcohols (49-H, 49-CH3, 49-

Ph) or enones 53-CO2CH3 are preferred at the γ-carbon atom, generating the hydroperoxide 

52b (in case of 49-Ph) or 55b (in case of 53-CO2CH3) in high regioselectivities in up to 98:2 

(Figure 29). This preferred photooxygenation is influenced by large steric groups at the α 

carbon pushing up the regioselectivities from 50:50 (Figure 29, Figure 30) to 90:10  (Figure 

29) or 98:2 (Figure 30) respectively. 
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3. Conclusions [8a,8b,30,34b,37,38,39] 

In the first part of this work, the Palladium-catalyzed allylic alkylations of sodium dimethyl 

malonate with (rac,E)-1,3-diphenylallyl acetate (21), employing P-BIFOP-X ligands (i.e. X = H 

10, Cl 13, D 11, N3 15, CN 16) yield (S,E)-dimethyl-2-(1,3-diphenylallyl) malonate (S)-22 (in 

up to 92%, 70% ee, cf. Scheme 14, Table 3), while alkylations with rac-cyclohexenyl acetate 

(23) yield (R)-dimethyl-2-(cyclohexenyl) malonate (R)-24 (in up to 91%, 67% ee, cf. Scheme 

15, Table 4), is reported. Employed ligands for these Palladium-catalyzed allylic alkylations 

are P-BIFOP-X (X = H 10, Cl 13, F 12), O-BIFOP-X (X = H 18, Cl 20) and newly synthesized 

ligands P-BIFOP-X (X = D 11, N3 15, CN 16), (MeO)2-P-BIFOP-Cl (17) and O-P-BIFOP-D 

(19). During the syntheses of new (MeO)2-BIFOP-X (i. e. X = H, F) ligands, carbo-cationic 

rearrangements are found at the fenchyl moieties  (spiro[fenchyl-9-fluorene] 38, cf. 4.3.25, 

and tricyclic product 40, cf. 4.3.16, 4.3.21, for mechanism cf. ref. [9c]). Evaluation of catalyst 

ratios is achieved by variation of [(C3H5)PdCl]2 and P-BIFOP-X (X = H 10, Cl 13, F 12) in 

different amounts (3:1 to 1:3) and employing these amounts in the Pd-catalyzed allylic 

alkylation of Na(CH(CO2Me)2) with 1,3-diphenylallyl acetate (21) yielding malonate (S)-22 (or 

(R)-22, cf. Figure 5, Scheme 14, Table 2). This evaluation reveals a 1:1 ratio as optimized 

condition (Figure 5). This 1:1 ratio can also be seen at the isolated X-ray crystal structure of 

(C3H5)PdCl • P-BIFOP-F (36, Figure 6). (MeO)2-P-BIFOP-Cl (17) affords the best results of 

all tested ligands (90% yield, 70% ee, cf. Tables 3, 4 entries 10). O-BIFOP-D (19) affords 

similar results as O-BIFOP-H (18, cf. Tables 3, 4, entries 7, 8). P-BIFOP-CN (16) affords 

similar results as P-BIFOP-N3 (15, cf. Tables 3, 4, entries 5, 6). P-BIFOP-F (12) originates 

the stereochemical “F-switch” which is achieved for both substrates, yielding either (R,E)-

dimethyl 2-(1,3-diphenylallyl)malonate (R)-22 (92% with 66% ee, cf. Figure 11, Figure 14, 

Scheme 14, Table 3, entry 4) or (S)-dimethyl 2-(cyclohexenyl)malonate (S)-24 (82% with 67 

ee, cf. Figure 12, Figure 13,  Scheme 15, Table 4, entry 4). NBO-analyzes [36] reveals that 

the explanation of this “F-switch” is a hyperconjugation effect (lp)Pd → σ*(P-O) or (lp)Pd → 

σ*(P-F) influenced by the high electronegativity of fluorine (Figure 15, Table 8). This gives 

rise to a switch in the transition structures of the favoured enantiomer by stabilizing 

hyperconjugation energy (e.g. less favoured F: TS-2a ΔGrel = 3.2 kcal/mol, to favoured F: TS-

1a ΔGrel = 7.6 kcal/mol, Figure 11, Table 5; cf. experimental Scheme 14, Table 3 with 

Scheme 16, Table 5, 7 and Scheme 15, Table 4 with Scheme 16, Table 6, 7). This “F-switch” 

demonstrates how electronegativity can be employed in ligand and catalyst design to control 

enantioselectivity in Pd-catalyzed allylic alkylations. 

In the second part of this work, the enantioselective CuCl-catalyzed 1,4-addition of Et2Zn 

to chalcone 25 with the P-BIFOP-H (10) ligand exceeds other P-BIFOP-X (X = Me 43, Et 44, 

F 12) as well as O-BIFOP-H (18) ligands, yielding the 1,4-ethylation product (R)-3-ethyl-1,3-
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diphenylpropan-1-one (R)-26a in up to 93% with 99% ee, is reported. CuCl•P-BIFOP-H 

catalyzed Me2Zn-addition to chalcone 25 yields the methylation product (R)-3-methyl-1,3-

diphenylpropan-1-one (R)-26b in up to 96% with 67% ee. In contrast an ethylation of the 

substrate cyclohexenone 27 yields (R)-3-ethylcyclohexanone (R)-28a in up to 90% with 20% 

ee. The enantioselective CuCl•P-BIFOP-H-catalyzed 1,4-addition of Et2Zn is found to 

perform better with chalcone 25 (CuCl: 86%, 76% ee; Cu(OTf)2: 89%, 49% ee, THF, Table 

10), while the Cu(OTf)2•P-BIFOP-H-catalyzed 1,4-addition of Et2Zn performs better with the 

cyclohexenone 27 substrate (Cu(OTf)2: 92%, 65% ee [9j]; CuCl: 90%, 20% ee, Table 13). 

This effect is explained by the presence of Cu(OTf)2 which is capable of improving yields and 

especially enantioselectivity, by involving the triflate-anion in the reaction mechanism 

[9j,48a,48b]. With CuCl of course, this effect is not present for the enantioselective 1,4-

addition of Et2Zn to cyclohexenone 27. The CuCl•P-BIFOP-H-catalyzed (Et, Me)MgBr-1,4-

addition to chromone 29 provides 4-alkyl-chromanones (4-ethyl-chroman-2-one 30a and 4-

methyl-chroman-2-one 30b) in up to 95% yield but only racemic. With (Et, Me)2Zn this 

addition is achieved only at 100°C (toluene, 93%, rac, Table 14). DFT-computations of 

elementary steps of the catalytic cycle with different model ligands for P-BIFOP-X, i.e. 

(MeO)2P-X (X = H, F, Me, OMe, NMe2) and PMe3 show that the reductive elimination (TS-B) 

is rate-determining. Computational analyses reveal the lowest activation barrier for the 

(MeO)2P-F ligand, followed directly by (MeO)2P-H, which is the electronic model for the 

experimentally employed P-BIFOP-H ligand (Table 15). As P-BIFOP-F (12) decomposes 

under reaction conditions of 1,4-additions (Table 9, entries 6, 7, in contrast to its stability in 

Pd-catalyzed cross-couplings [9b] and allylic substitutions [8a,9i]), P-BIFOP-H (10) appears 

to be most favorable for Cu-catalyzed 1,4-additions. Transition structure analyses of the 

Cu•P-BIFOP-H-catalyzed methylation of chalcone reveal that the re-transition structure (TS-

9, Table 16) is energetically favoured by 3.1 kcal/mol relative to its competing si-TS-10 due 

to steric repulsions of the fenchyl with the aryl moiety (Table 16, Figure 21). This explains the 

experimentally observed preference of the (R)-enantiomers in Cu-P-BIFOP-X catalyzed 1,4-

alkylations. Furthermore it is shown that the syn-enones, such as chalcone 25, deliver 

energetically favoured transition structures in contrast to the anti-enones, such as 

cyclohexenone 27, (Table 16 vs Table 17; Table 18). 

In the third part of this work, the enantioselective FeCl3-catalyzed 1,4-addition of Et2Zn to 

chalcone 25 with P-BIFOP-H  (10) yields 3-(R)-ethyl-1,3-diphenylpropaneone 26a in up to 

94% with 77% ee (Table 19, entries 1,5) and the 1,4-addition of Me2Zn to chalcone 25 yields 

3-(R)-methyl-1,3-diphenylpropaneone 26b in up to 95% with 68% ee (Table 19, entries 9, 

13), while the 1,4-additions of (Et, Me)2Zn with AlCl3 to chalcone 25 is not observed (Table 

19, entries 23, 24), delivering strong evidence of a catalytic Fe(I,III)-alkyl (alkyl = Et, Me) 

species instead of a Lewis acid performance, is reported. The enantioselective 1,4-addition 
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of PhMgBr to chalcone 25 or chromone 29 does not occur but the cross-coupling product of 

biphenyl 48 is isolated instead, in up to 94% yield (Table 19, entries 25, 26; Table 20, entries 

13, 14). The 1,4-additions of (Et, Me)2Zn to cyclohexenone 27 is not observed (Table 21, 

entries 1-4). The cyclohexenone 27 is reisolated in up to 92% yield instead. Obviously the 

cyclohexeone 27 is not electrophilic enough to react with the (Et, Me)2Zn reagent at -78°C (cf. 

Table 21, entries 1-4). The enantioselective FeCl3-catalyzed 1,4-additions of (Et, Me)MgBr with 

P-BIFOP-H (10) to chromone 29 yielded 2-(R)-alkyl-chromane-4-one (alkyl = ethyl, methyl) 

30a,b in up to 89% with 89% ee (Table 20, entries 3, 4). Changing the Fe-source from FeCl3 

to FeCl2, the 1,4-addition of MeMgBr yields 2-(R)-methyl-chromane-4-one 30b in up to 52% 

with 40% ee (Table 20, entry 10), indicating that the Fe(II)-catalyst follows a different 

mechanistic pathway than the Fe(I,III)-alkyl catalysts. Comparing the enantioselective FeCl3-

catalyzed 1,4-additions of (Et, Me)MgBr with P-BIFOP-H (10) to chromone 29 with the CuCl-

catalyzed 1,4-additions, strong evidence of a catalytic behavior of Fe(I,III)-alkyl catalyst is 

observed (cf. Table 20, entries 3, 4 vs Table 14, entries 8, 10). Cu-impured FeCl3 as solid 

with only 98% purity catalyzes the 1,4-addition of MeMgBr to chromone 29 boosting the yield 

but generates less enantioselectivity (cf. Table 20, entry 9), hences the possibility of a Cu/Fe-

cocatalysis to perform. The DFT computations (OPBE-D3(BJ)/def2-TZVP//ONIOM(OPBE-

D3(BJ)/def2-SVPP:PM6) of the rate-determining step of the reductive elimination shows 

showing a huge equality of the enantioselective 1,4-additions of Fe(I,III)- and Cu(I,III)-

catalyses. Besides, of all possible spin states for Fe (S = 1/2, 3/2, 5/2) the spin state S = 1/2 

is energetically favoured (Table 22, Figures 26, 27) for the enantioselective Fe(I,III)-catalyzed 

1,4-additions. 

In the fourth and last part of this work, DFT-computations (TPSS-D3(BJ)/def2-TZVP, 

Figure 29, Figure 30) are delivering the explanation why the photooxygenation reaction of 

1O2 to allylic alcohols (49-H, 49-CH3, 49-Ph) or enones 53-CO2CH3 are preferred at the γ-

carbon atom, generating the hydroperoxide 52b (in case of 49-Ph) or 55b (in case of 53-

CO2CH3) in high regioselectivities in up to 98:2 (Figure 30), is reported. This preferred 

photooxygenation is influenced by large steric groups at the α carbon pushing up the 

regioselectivities from 50:50 (Figure 29, Figure 30) to 90:10  (Figure 29) or 98:2 (Figure 30) 

respectively. 
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4. Experimental part [8a,8b,9b,9c,9j,9k,37,38] 

4.1 General methods  

All actions are carried out under an argon (Air Products RT Ar BIP) atmosphere using oven 

dried glassware and using standard Schlenk techniques.  

All solvents are reagent grade and are dried and distilled prior to use, if necessary.  

Column chromatography, is performed on silica gel (SiO2) (Silica gel for chromatography 

from Acros Organics, size 35-70 μm, 60 Å). TLC is performed on a TLC silica gel 

60/Kieselguhr F254 from Merck. Components are visualized by a universal UV-lamp from 

Lamag 29,200 and staining with a solution of a mixture of KMnO4 (5.0 g) and K2CO3 (5.0 g) 

in H2O (250 mL).  

Elemental analyses are analyzed with a Vario EL CHN from Elementaranalysensysteme 

GmbH.  

GC-MS, are recorded on a Varian 4000 with an Agilent DB35-HT column (30 m, 25 μm, 0.25 

mm).  

1H- and 13C-NMR, are recorded on a Bruker AV300 (300 and 75 MHz, respectively) using 

CDCl3 as solvent. 31P- and 19F-NMR are recorded on a Bruker AV300 (125.5 and 282.4 MHz, 

respectively). Chemical shift values are reported in ppm with the solvent resonance as the 

internal standard (CHCl3: d = 7.26 ppm for 1H, d = 77.0 ppm for 13C; H3PO4 (85%): d = 0.00 

ppm for 31P). Data are reported as follows: chemical shifts, multiplicity (s = singlet, d = 

doublet, t = triplet, q =quartet, m = multiplet, br = broad), coupling constants (Hz), and 

integration.  

Optical rotations (λ = 589 nm), are measured in CHCl3 on a LmP-WR polarimeter (Polartronic 

MH8) from IBZ Messtechnik with a 10 cm cell (c is given in g/100 mL). The measurements 

are made isothermal (± 0.5°C) at 20°C.  

HPLC, enantiomeric excess values are determined by using a VWR Hitachi L-2130 pump 

EliteLaChrom HPLC equipped with a VWR Hitachi L-2400 UV detector and a VWR 

Chromaster 5310 column oven. The constant temperature of the column oven is 25°C. 

Chiral GC, enantiomeric excess values are determined by using a Hewlett Packard 6890 

device with a Machery-Nagel Lipodex E column (25 m, 25 μm, 0.25 mm) and a Agilent 7683 

injector. 
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GC-MS, analyses are carried out on a Varian 4000 device with an Agilent DB35-HT column 

(30 m, 25 μm, 0.25 mm). 

X-ray analysis is made with a Kappa-CCD-4-circle diffractometer with Cu-Kα radiation (λ = Å, 

monochromator: highly orientated graphit) and control software from Nonius, type COLLECT. 

The calculations concerning the F2-values are made under considerance of the Lorentz- and 

polarization effects with the program SAINT. Software is DENZO, SHELX-97, SHELXS-97, 

SADABS, ORTEP and PLATON for data reduction, refinement and solution, scaling and 

absorbance correction as well as visualization [54].  

Melting points or decomposed products are measured on a SMP3 from Stuart Scientific and 

are not corrected.  

IR-spectra are measured on a Perkin-Elmer spectrometer (Paragon 1000 FT-IR). The 

substances are solved in Et2O and the bands are classified with s = strong and b = broad. 

Weighing machine, was a Faust MB-BC 106 (max. 210 g weight) device. 

UV-lamp: Lamag 29,200 universal UV-lamp. 

4.2 Chemicals and solvents  

Toluene, Tetrahydrofuran (THF) and diethylether (Et2O) are distilled over 

Na/benzophenone. Dichloromethane (CH2Cl2) is distilled over phosphor pentaoxide. The 

ligands are synthesized using common methods (s.b.). The copper salts (CuCl, 99.999% 

purity, CuCl2, 99.99% purity and Cu(OTf)2, 95% purity) and (+)-Fenchone (98% purity) are 

purchased from Alfa Aesar, as well as the solid iron salt (FeCl3, 99.9% purity). The palladium 

salt ([(C3H5)PdCl]2) and chromone 29 are purchased from Sigma-Aldrich. Organomagnesium 

reagents RMgBr (Grignard, R = Et, Me) and Organozinc reagents R2Zn (R = Et, Me) are 

purchased from Acros Organics.  

4.2.1 List of chemicals 

Ar, is purchased from Air Products (RT Ar BIP) with the specification: O2 <10 ppb, H2O <20 

ppb, CO+CO2 <100 ppb, THC (as CH4) <100 ppb, N2 <1 ppm. 

(+)-Fenchone, is purchased from Alfa Aesar with 98% purity.  

PPh3, is purchased from Alfa Aesar with +99% purity. 

trans-Chalcone, is purchased from Alfa Aesar with 97% purity. 

2-Cyclohexen-1-one, is purchased from Alfa Aesar with 97% purity. 
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CuCl, is purchased from Alfa Aesar with 99.999% (metal basis) purity. 

CuCl2, is purchased from Alfa Aesar with 99.995% (ultra dried, metal basis) purity. 

3-Bromoanisol, is purchased from Sigma-Aldrich with >98% purity. 

FeCl3, is purchased from Sigma-Aldrich with >99.9% (trace metal basis) purity. 

FeCl3 solution (0.2 M) in 2-methyltetrahydrofurane, is purchased from Sigma-Aldrich. 

Chromone, is purchased from Sigma-Aldrich with 99% purity.  

trans-1,3-diphenyl-propen-1-ol, is purchased from Sigma-Aldrich with >98% purity. 

PCl3, is purchased from Acros Organics with 99% purity. 

Biphenyl, is purchased from Acros Organics with 99% purity.  

Flavone, is purchased from Acros Organics with 99% purity. 

MeLi (1.6 M) in diethyl ether, is purchased from Acros Organics. 

n-BuLi (2.5 M) in n-hexane, is always freshly purchased from Acros Organics.  

t-BuLi (1.9 M) in n-pentane, is purchased from Acros Organics. 

Me2Zn in toluene (1.2 M), is purchased from Acros Organics. 

Et2Zn in n-hexane (1.0 M), is purchased from Acros Organics.  

MeMgBr (3.0 M) in diethyl ether, is purchased from Acros Organics. 

EtMgBr (3.0 M ) in diethyl ether, is purchased from Acros Organics. 

KOt-Bu, is purchased from Acros Organics with >98+% purity. 

Silica gel (SiO2): Acros Organics for chromatography 35-70 μm, 60 Å. 
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4.3 Syntheses  

4.3.1 2,2’-dilithiobiphenyl • 2 TMEDA 56 [7b,8a,8b,9b,9c,9i,9j,9r] 

 

 

Biphenyl (48, 0,2 mol, 30.8 g, 1.0 eq.) is added in an appropriate dried and Ar-flushed 

Schlenk flask with dripping funnel and is dissolved in dried TMEDA (0.44 mol, 66.4 mL, 2.2 

eq.). n-BuLi (2.5 M, 0.44 mol, 176 mL, 2.2 eq.) is putted into the dripping funnel and dropped 

within 2 h to the mixture at room temperature (color changes from yellow to orange, when the 

color shows a strong black tune then something went wrong). After 1 d, the orange solution 

with yellow crystals inside is taken to the cooler and kept there for 4 h at -20°C. A cooling 

bath with -78°C is prepared for the Schlenk flask and the solution is separated from the 

yellowish crystals 56 (the crystals can be freezed to the bottom of the flask so that the 

solution can easily be decanted and the rest of the remaining solution is separated via a 

syringe, 0.13 mol, 51.8 g, 65% yield).  

Chem. form.: C24H40Li2N4. 

 

4.3.2 P-biphenyl-2,2’-bisfenchol (P-BIFOL, 57) [7b,8a,8b,9b,9c] 

 

 

2,2’-dilithiobiphenyl • 2 TMEDA (56, 0.13 mol, 51.8 g, 1.0 eq.) is dissolved in dried and 

absolute Et2O (100 mL) and dried and absolute THF (20 mL, Schlenk flask is the same as in 
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4.3.1, after separation of the solution). The mixture is cooled with an ice bath to 0°C and to 

the yellow solution (+)-Fenchone (0.28 mol, 45 mL, 2.2 eq.) is added fast and the solution 

turned to purple after a while. The cooling bath is separated and the mixture is stirred over 

night at room temperature and quenched with saturated aqueous NH4Cl solution (50 mL). 

The mixture is separated and the water layer is extracted with DCM (2×50 mL). The 

combined organic layers are dried over Na2SO4, filtered and the solvent is evaporated under 

vacuo. Purification by crystallization and recrystallization from DCM afforded the desired 

product 57 as fine colorless needles (with a lot of acetone to solve the needles, they can 

grow up in an Erlenmeyer flask in up to 3 cm of length and 0.5 cm of width, furthermore it is 

beneficial to separate the first crystal-precipitate because it contains a small portion of 

racemate, 0.08 mol, 36.7 g, 62% yield, overall: 40% yield). 

Chem. form.: C32H42O2. 

m.p.:  241°C. 

[α]589
20:  +152.3° (c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.60 (d, 2H, 3J = 8.1 Hz), 7.22 (td, 2H, 3J = 8.1, 

1.5 Hz), 7.11 (td, 2H, 3J = 6.9, 0.9 Hz), 6.90 (dd, 2H, 3J = 7.5, 1.5 Hz), 2.85 (s, 2H), 2.40 

(dd, 2H, 3J = 10.6 Hz), 2.23–2.14 (m, 2H), 1.70 (d, 2H, 3J = 4.4 Hz), 1.63–1.56 (m, 2H), 

1.39–1.28 (m, 4H), 1.10 (s, 6H), 1.02 (td, 2H, 3J = 12.3, 5.0 Hz), 0.70 (s, 6H), 0.65 (s, 

6H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 144.06, 141.20, 131.09, 129.92, 124.74, 124.34, 

86.13, 54.69, 49.18, 46.48, 42.51, 34.03, 30.02, 23.69, 21.18, 17.54. 

HR-mass: [M]+(C32H42O2) [u] = calc. mass: 458.318; measured mass: 440.308 (M+ -H2O). 

IR: ṽ [cm-1] = 3548 (s, OH); 3423 (b, OH); 3113 (aromate); 3047 (s, aromate). 

EA: [%]  C  H  

calc.:   83.79  9.23  

found:   83.78  9.24 
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4.3.3 P-biphenyl-2,2’-bisfenchol-chloro phosphite (P-BIFOP-Cl, 13) [8a,8b,9b,9c] 

 

 

P-biphenyl-2,2’-bisfenchol (57, 21.8 mmol, 10.0 g, 1.0 eq.) is dissolved in an appropriate 

dried and Ar-flushed Schlenk flask with dried and absolute Et2O (60 mL) and dried and 

absolute THF (10 mL). To the mixture n-BuLi (2.5 M, 45.0 mmol, 18 mL, 2.1 eq.) is added 

moderately and stirred for 2 h at room temperature. The slight pink solution (can be black 

with n-BuLi excess) is cooled with an ice bath to 0°C and PCl3 (23.0 mmol, 2.0 mL, 1.1 eq.) is 

added dropwise. The mixture is stirred for 10 min at 0°C then the ice bath is separated and 

the solution stirred over night. It is quenched with saturated aqueous NH4Cl solution (30 mL) 

and separated, where the water layer is extracted with DCM (2×20 mL). The combined 

organic layers are dried over Na2SO4, filtered and the solvent is evaporated under vacuo. 

Purification by crystallization and recrystallization from DCM afforded the desired product 13 

as fine colorless needles (with acetone to solve the needles, they can grow up in an 

Erlenmeyer flask in up to 2 cm of length and 0.5 cm of width, 21.6 mmol, 11.3 g, 99% yield). 

Chem. form.: C32H40ClO2P. 

m.p.:  147°C. 

[α]589
20:  +17.5° (c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.70 (d, 1H, 3J = 8.2 Hz), 7.57 (d, 1H, 3J = 8.1 

Hz), 7.32 (s, 1H), 7.31 (s, 1H), 7.29 (d, 1H, 3J = 3.2 Hz), 7.25 (td, 1H, 3J = 8.3, 1.4 Hz), 

7.05 (td, 1H, 3J = 8.0, 1.2 Hz), 6.76 (dd, 3J = 7.7, 1.5 Hz), 2.76–2.56 (m, 2H), 2.49 (dd, 

1H, 3J = 10.6, 1.7 Hz), 2.32 (dd, 1H, 3J = 10.6, 1.7 Hz) 1.79 (s, 3H), 1.66 (dt, 4H, 3J = 

17.4, 5.6 Hz) 1.52 (d, 3H, 3J = 6.9 Hz), 1.47–1.23 (m, 6H), 0.91 (s, 3H), 0.73 (s, 3H), 0.37 

(s, 3H), 0.01 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 144.43, 142.34, 142.11, 142.02, 138.89, 136.92, 

133.47, 128.66, 128.33, 126.53, 125.71, 125.16, 123.93, 98.63, 96.47, 56.25, 52.65, 
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51.30, 50.66, 48.89, 46.82, 44.49, 43.82, 35.59, 30.92, 29.14, 28.03, 24.00, 22.78, 20.51, 

20.11, 19.77, 19.31. 

31P-NMR: (125.5 MHz, CDCl3): δ [ppm] = 154.3; 1J(P-Cl) = 6.5 Hz. 

HR-mass: [M]+(C32H40ClO2P) [u] = calc. mass: 522.245; measured mass: 522.246. 

IR: ṽ [cm-1] = 3113 (aromate); 3047 (s, aromate). 

EA: [%]  C  H 

calc.:   73.48  7.71 

found:   73.46  7.68 

 

4.3.4 P-biphenyl-2,2’-bisfenchol-hydrido phosphite (P-BIFOP-H, 10) [9a,9b,30] 

 

 

P-biphenyl-2,2’-bisfenchol-chloro phosphite (13, 9.6 mmol, 5.0 g, 1.0 eq.) is dissolved in 

an appropriate dried and Ar-flushed Schlenk flask with reflux condenser and drying tube with 

dried and absolute Et2O (60 mL) and dried and absolute THF (10 mL). To the mixture solid 

LiAlH4 (48.0 mmol, 1.8 g, 5.0 eq.) is added portionwise during Ar-flushing and stirred for 2 h 

at room temperature. Then the mixture is heated to 40°C over night and carefully quenched 

with 1 M aqueous HCl solution (20 mL) and separated, where the water layer is extracted 

with DCM (2×20 mL). The combined organic layers are dried over Na2SO4, filtered and the 

solvent is evaporated under vacuo. Purification by crystallization and recrystallization from 

DCM afforded the desired product 10 as fine colorless needles (7.6 mmol, 3.7 g, 79% yield). 

Chem. form.: C32H41O2P. 

m.p.:  179°C. 
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[α]589
20:  +38.8° (c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.55 (d, 2H, 3J = 7.9 Hz), 7.22 (d, 2H, 3J = 7.7 

Hz), 7.06 (d, 2H, 3J = 7.6 Hz), 6.85 (d, 2H, 3J = 7.7 Hz), 2.41 (d, 2H, 3J = 10.4 Hz), 2.36 

(s, 2H), 1.84 (d, 2H, 3J = 8.9 Hz), 1.67 (s, 3H), 1.44 (d, 2H, 3J = 3.4 Hz), 1.39 (d, 2H, 3J = 

2.0 Hz), 1.34 (s, 2H), 0.93 (d, 2H, 3J = 14.1 Hz), 0.74 (s, 3H), 0.66 (s, 3H), 0.50 (s, 3H), 

0.29 (s, 3H), 0.00 (s, 3H).   

13C-NMR: (75MHz, CDCl3): δ [ppm] = 144.06, 132.96, 131.09, 129.91, 124.74, 124.33, 

54.70, 49.19, 46.48, 42.51, 34.03, 30.02, 23.69, 21.18, 17.54.  

31P-NMR: (125.5 MHz, CDCl3): δ [ppm] = 138.0; 1J(P-H) = 213.5 Hz. 

HR-mass: [M]+(C32H41O2P) [u] = calc. mass: 488.284; measured mass: 488.284.  

IR: ṽ [cm-1] = 2274 (s, P-H). 

EA: [%]  C  H 

calc.:   78.66  8.46 

found:   78.66  8.45 

 

4.3.5 P-biphenyl-2,2’-bisfenchol-deutero phosphite (P-BIFOP-D, 11) [8a,8b] 

 

 

P-biphenyl-2,2’-bisfenchol-chloro phosphite (13, 9.6 mmol, 5.0 g, 1.0 eq.) is dissolved in 

an appropriate dried and Ar-flushed Schlenk flask with reflux condenser and drying tube with 

dried and absolute Et2O (60 mL) and dried and absolute THF (10 mL). To the mixture solid 

LiAlD4 (48.0 mmol, 2.0 g, 5.0 eq.) is added portionwise during Ar-flushing and stirred for 2 h 

at room temperature. Then the mixture is heated to 40°C over night and carefully quenched 

with 1 M aqueous HCl solution (20 mL) and separated, where the water layer is extracted 
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with DCM (2×20 mL). The combined organic layers are dried over Na2SO4, filtered and the 

solvent is evaporated under vacuo. Purification by crystallization and recrystallization from 

DCM afforded the desired product 11 as fine colorless needles (7.8 mmol, 3.8 g, 81% yield). 

Chem. form.: C32H40DO2P. 

m.p.:  180°C. 

[α]589
20:  +39.1° (c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.64 (d, 2H, 3J = 8.1 Hz), 7.24 (d, 2H, 3J = 7.5 

Hz), 7.14 (t, 2H, 3J = 7.4 Hz), 6.94 (d, 2H, 3J = 7.4 Hz), 2.89 (s, 1H), 2.44 (d, 2H, 3J = 

10.3 Hz), 2.22 (t, 2H, 3J = 10.2 Hz), 1.74 (d, 2H, 3J = 3.6 Hz), 1.66 (d, 1H, 3J = 3.6 Hz), 

1.38 (m, 4H), 1.14 (s, 6H), 1.07 (td, 2H, 3J = 12.3, 4.8 Hz), 0.74 (s, 6H), 0.69 (s, 6H).   

13C-NMR: (75MHz, CDCl3): δ [ppm] = 144.07, 141.21, 131.11, 129.92, 124.78, 124.37, 

68.14, 54.71, 49.20, 46.49, 42.53, 34.06, 30.06, 23.72, 21.23, 17.93.  

31P-NMR: (125.5 MHz, CDCl3): δ [ppm] = 138.0; 1J(P-H) = 213.5 Hz. 

HR-mass: [M + H]+(C32H40DO2P) [u] = calc. mass: 489.647; measured mass: 489.646.  

EA: [%]  C  H 

calc.:   78.49  8.65 

found:   78.54  8.81 

 

 4.3.6 P-biphenyl-2,2’-bisfenchol-fluoro phosphite (P-BIFOP-F, 12) [8a,8b,9b] 

 

 

P-biphenyl-2,2’-bisfenchol-chloro phosphite (13, 9.6 mmol, 5.0 g, 1.0 eq.) is dissolved in 

an appropriate dried and Ar-flushed Schlenk flask with dried DMF (40 mL). To the mixture 
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AgF (48.0 mmol, 6.1 g, 5.0 eq.) is added portionwise and the flask is veiled with kitchen foil 

(AgF is light sensitive and the product dito) and stirred over night at room temperature. The 

solution is quenched with saturated aqueous NH4Cl solution (20 mL) and separated, while 

the water layer is extracted with DCM (2×20 mL). The combined organic layers are dried 

over Na2SO4, filtered and the solvent is evaporated under vacuo. Purification by 

crystallization and recrystallization from DCM afforded the desired product 12 as fine 

colorless needles (7.5 mmol, 3.8 g, 78% yield). 

Chem. form.: C32H40FO2P. 

m.p.:  122°C. 

[α]589
20:  -48.5° (c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.60 (d, 2H, 3J = 8.2 Hz), 7.22 (d, 2H, 3J = 1.7 

Hz), 7.19 (dd, 2H, 3J = 9.6, 1.4 Hz), 7.01 (td, 1H, 3J = 7.4, 1.0 Hz), 6.73 (dd, 1H, 3J = 7.4, 

1.0 Hz), 2.21–2.14 (m, 2H), 1.65 (d, 2H, 3J = 4.7 Hz), 1.56 (d, 2H, 3J = 2.7 Hz), 1.54 (s, 

3H), 1.36–1.28 (m, 4H), 0.98–0.94 (m, 2H), 0.88 (s, 3H), 0.80 (dd, 2H, 3J = 10.5, 7.0 Hz), 

0.69 (s, 3H), 0.42 (s, 3H), 0.08 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 145.15, 135.97, 133.23, 128.44, 128.38, 125.68, 

125.15, 124.67, 123.92, 50.16, 48.89, 44.68, 44.57, 36.03, 35.48, 28.42, 26.92, 23.63, 

22.54, 19.54.  

31P-NMR: (125.5 MHz, CDCl3): δ [ppm] = 125.5; 1J(P-F) = -1218.2 Hz, (dd, 5.3 Hz). 

19F-NMR: (282.4 MHz), CDCl3): δ [ppm] = -53.17; 1J(P-F) = -1220.0 Hz (dt, -4.8 Hz). 

HR-mass: [M]+(C32H41FO2P) [u] = calc. mass: 506.275; measured mass: 506.266. 

EA: [%]  C  H 

calc.:   75.86  7.96 

found:   75.88  7.92 

 

 

 

 



97 
 

4.3.7 P-biphenyl-2,2’-bisfenchol-azido phosphite (P-BIFOP-N3, 15) [8a]  

 

 

P-biphenyl-2,2’-bisfenchol-chloro phosphite (13, 9.6 mmol, 5.0 g, 1.0 eq.) is dissolved in 

an appropriate dried and Ar-flushed Schlenk flask with dried DMSO (40 mL). To the mixture 

NaN3 (48.0 mmol, 3.1 g, 5.0 eq.) is added and stirred over night at room temperature. The 

solution is quenched with saturated aqueous NH4Cl solution (20 mL) and separated, where 

the water layer is extracted with EtOAc/cyclohexane (1:1, 2×30 mL). The combined organic 

layers are dried over Na2SO4, filtered and the solvent is evaporated under vacuo. Purification 

by crystallization and recrystallization from acetone afforded the desired product 15 as 

colorless crystals (7.2 mmol, 3.8 g, 75% yield). 

Chem. form.: C32H40N3O2P. 

m.p.:  147°C. 

[α]289
20:  +56.5° (c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.59 (d, 2H, 3J = 8.1 Hz), 7.22 (d, 2H, 3J = 3.3 

Hz), 7.03 (td, 2H, 3J = 7.7, 1.2 Hz), 6.78 (dd, 2H, 3J = 7.7, 1.5 Hz), 2.38 (dd, 4H, 3J = 

18.6, 11.4 Hz), 2.16 (t, 4H, 3J = 11.7 Hz), 1.57 (d, 6H, 3J = 5.9 Hz), 0.80 (s, 3H), 0.68 (s, 

3H), 0.43 (s, 3H), 0.16 (s, 3H), 0.00 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 145.14, 143.47, 141.43, 139.37, 136.21, 133.86, 

129.15, 128.59, 126.00, 125.48, 125.10, 124.30, 94.27, 94.12, 56.10, 53.16, 51.13, 

51.06, 50.31, 49.17, 48.03, 45.35, 44.74, 41.23, 36.14, 29.40, 28.56, 24.12, 23.78, 22.61, 

20.53, 19.86.  

31P-NMR: (125.5 MHz, CDCl3): δ [ppm] = 131.2. 

HR-mass: [M+ Na]+(C32H40N3O2P) [u] = calc. mass: 552.275; measured mass: 552.275. 

EA: [%]  C  H  N 
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calc.:   72.56  7.61  7.93 

found:   72.73  7.80  7.88 

 

4.3.8 P-biphenyl-2,2’-bisfenchol-nitrilo phosphite (P-BIFOP-CN, 16) [8a] 

 

 

P-biphenyl-2,2’-bisfenchol-chloro phosphite (13, 9.6 mmol, 5.0 g, 1.0 eq.) is dissolved in 

an appropriate dried and Ar-flushed Schlenk flask with dried DMSO (40 mL). To the mixture 

KCN (48.0 mmol, 3.1 g, 5.0 eq.) is added and for 3 d at 50°C. The solution is quenched with 

saturated aqueous NH4Cl solution (20 mL) and separated, where the water layer is extracted 

with EtOAc/cyclohexane (1:1, 2×30 mL). The combined organic layers are dried over 

Na2SO4, filtered and the solvent is evaporated under vacuo. Purification by crystallization and 

recrystallization from EtOAc/cyclohexane afforded the desired product 16 as colorless 

crystals (7.8 mmol, 4.0 g, 81% yield). 

Chem. form.: C33H40NO2P. 

m.p.:  169-170°C. 

[α]589
20:  +52.8° (c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.68 (d, 1H, 3J = 8.1 Hz), 7.62–7.57 (m, 1H), 7.32 

(d, 2H, 3J = 4.6 Hz), 7.28–722 (m, 2H), 7.06 (td, 1H, 3J = 7.7, 1.0 Hz), 6.77 (dd, 1H, 3J = 

7.6, 1.5 Hz), 2.53–2.27 (m, 4H), 1.87 (s, 3H), 1.85 (s, 3H), 1.51 (d, 4H, 3J = 7.6 Hz), 

1.43–1.27 (m, 4H), 0.88 (s, 3H), 0.74 (s, 3H), 0.39 (s, 3H), 0.05 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 193.79, 174.55, 167.02, 162.64, 132.53, 126.60, 

125.70, 125.09, 124.21, 50.31, 48.41, 17.40.  

31P-NMR: (125.5 MHz, CDCl3): δ [ppm] = 104.8; 1J(P-CN) = (t, 11.3 Hz). 
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HR-mass: [M + Na]+(C33H40NO2P) [u] = calc. mass: 536.269; measured mass: 536.269. 

EA: [%]  C  H  N 

calc.:   77.16  7.85  2.73 

found:   77.23  7.92  2.72 

 

Figure 27. X-ray crystal structure of 16 (cf. chapter 2.2, Figure 9, CCDC: 1886565). 

 

4.3.9 2-(fenchane-2-ylidene-1,2-dihydro)-[1,1’-biphenyl]-2’-(fenchol)-N-cyclohexyl-

phosphonic amide 41 [8a] 

 

 

Cyclohexylamine (58, 19.0 mmol, 2.2 mL, 5.0 eq.) is dissolved in an appropriate dried 

and Ar-flushed Schlenk flask with dried and absolute Et2O (40 mL) and dried and absolute 
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THF (5 mL). To the mixture at -78°C n-BuLi (1.6 M, 19.2 mmol, 12.0 mL, 5.0 eq.) is added 

moderately the cooling bath is separated and the solution stirred for 2 h at room temperature. 

P-biphenyl-2,2’-bisfenchol-chloro phosphite (3.8 mmol, 2.0 g, 1.0 eq.) is added portionwise. 

The mixture is stirred over night. It is quenched with saturated aqueous NH4Cl solution (30 

mL) and separated, where the water layer is extracted with DCM (2×20 mL). The combined 

organic layers are dried over Na2SO4, filtered and the solvent is evaporated under vacuo 

which gave the desired product 41 as brown-yellowish crystals (2-(fenchane-2-ylidene-1,2-

dihydro)-[1,1’-biphenyl]-2’-(fenchol)-N-cyclohexylphosphonic amide). Purification by 

crystallization and recrystallization from DCM afforded colorless prism blocks (3.4 mmol, 2.0 

g, 89% yield). 

Chem. form.: C38H52NO2P. 

m.p.:  172-175°C. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.42 (dd, 1H, 3J = 6.0, 3.5 Hz), 7.30 (dd, 1H, 3J = 

5.7, 3.7 Hz), 7.14 (dd, 2H, 3J = 6.0, 3.5 Hz), 6.71 (dd, 1H, 3J = 10.2, 4.1 Hz), 5.85 (dt, 1H, 

3J = 9.3, 5.5 Hz), 5.76–5.66 (m, 1H), 5.45 (dd, 1H, 3J = 9.0, 4.4 Hz), 3.25 (td, 1H, 3J = 9.9, 

3.8 Hz), 2.82 (dd, 1H, 3J = 5.7, 3.7 Hz), 2.33 (d, 2H, 3J = 10.8 Hz), 1.92 (d, 2H, 3J = 11.3 

Hz), 1.82 (dd, 2H, 3J = 7.3, 2.1 Hz), 1.75 (d, 1H, 3J = 4.6 Hz), 1.69–1.60 (m, 2H), 1.55 (s, 

3H), 1.51 (d, 1H, 3J = 3.2 Hz), 1.44–1.36 (m, 3H), 1.32 (s, 2H), 1.22 (s, 3H), 1.18–1.10 

(m, 2H), 1.09–1.04 (m, 2H), 1.02 (s, 3H), 0.72 (s, 3H), 0.61 (s, 3H), 0.60 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 163.60, 142.45, 135.31, 134.51, 134.08, 133.65, 

130.50, 126.86, 124.04, 122.16, 121.15, 118.05, 95.88, 55.75, 54.20, 53.00, 52.03, 

51.45, 50.00, 49.19, 48.05, 47.91, 44.15, 42.49, 37.20, 35.81, 34.11, 30.22, 29.64, 25.69, 

25.61, 25.36, 25.06, 24.31, 23.69, 21.19, 18.35, 17.54. 

HR-mass: [M]+(C38H52NO2P) [u] = calc. mass: 585.374; measured mass: 585.374. 

EA: [%]  C  H  N 

calc.:   77.91  8.95  2.39 

found:   78.10  9.08  2.41 
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Figure 28. X-ray crystal structure of 41 (cf. chapter 2.2, Figure 10, CCDC: 1886563). 

 

4.3.10 4-nitro-biphenyl-2,2’-bisfenchol (p-NO2-BIFOL, 37) [8a] 

 

P-biphenyl-2,2’-bisfenchol (9.6 mmol, 5.0 g, 1.0 eq.) is dissolved in an appropriate dried 

and Ar-flushed Schlenk flask with dried DCM (5 mL). To the mixture nitrating acid (7.0 mL (3 

mL HNO3 + 4 mL H2SO4), 5.0 eq.) is added dropwise and the mixture is stirred over night at 

room temperature. The orange solution is quenched with saturated aqueous NH4Cl solution 

(7 mL) and separated, where the water layer is extracted with DCM (2×10 mL). The 

combined organic layers are dried over MgSO4, filtered and the solvent is evaporated under 

vacuo. Purification by crystallization and recrystallization from acetone/n-hexane afforded the 

desired product 37 as small yellow crystals (0.04 mmol, 0.02 g, <1% yield). The main product 

is a decomposed product (biphenyl-2,2’-bis(2,6,6-trimethyltricyclo[3.2.0.02,7]heptanes [9c], 

8.0 mmol, 4.0 g, 89% yield). 

Chem. form.: C32H41NO4. 

m.p.:  187-188°C. 
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[α]589
20:  +52.8° (c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 8.54 (t, 2H, 3J = 2.6 Hz), 8.11 (dt, 1H, 3J = 9.0, 2.4 

Hz), 8.00 (dt, 2H, 3J = 8.6, 2.6 Hz), 7.01 (t, 2H, 3J = 8.9 Hz), 2.66 (s, 1.5H), 2.53 (s, 0.5H), 

2.43 (dd, 3H, 3J = 19.6, 10.9 Hz), 2.09–1.98 (m, 3H), 1.79 (d, 2H, 3J = 2.8 Hz), 1.47 (d, 

2H, 3J = 2.8 Hz), 1.26 (d, 2H, 3J = 2.8 Hz), 1.08 (s, 3H), 1.08 (d, 3H, 3J = 9.6 Hz), 0.73 (s, 

3H), 0.71 (s, 3H), 0.68 (s, 6H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 184.09, 182.73, 181.18, 177.06, 174.12, 22.35. 

HR-mass: [M]+(C32H41NO4) [u] = calc. mass: 503.304; measured mass: 503.303. 

EA: [%]  C  H  N 

calc.:   76.31  8.20  2.78 

found:   76.38  8.37  2.82 

 

Figure 29. X-ray crystal structure of 37 (cf. chapter 2.2, Figure 10, CCDC: 1886559). 
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4.3.11 2,2’-dilithiobiphenylether • 2 TMEDA 60 [8a,8b,9b,9c] 

 

 

Biphenylether (59, 0,2 mol, 34.0 g, 1.0 eq.) is added in an appropriate dried and Ar-

flushed Schlenk flask with dripping funnel and is dissolved in dried TMEDA (0.44 mol, 66.4 

mL, 2.2 eq.). n-BuLi (2.5 M, 0.44 mol, 176 mL, 2.2 eq.) is putted into the dripping funnel and 

dropped within 2 h to the mixture at room temperature (color changes from yellow to orange 

to green). After 3-5 h, the green solution with colorless (beige) amorph crystals inside 

solidifies. A cooling bath with -78°C is prepared for the Schlenk flask and the solution is 

separated from the crystals 60 (the crystals can be freezed to the bottom of the flask so that 

the solution can easily be decanted and the rest of the remaining solution can be separated 

via a syringe, 0.2 mol, 82.8 g, >99% yield).  

Chem. form.: C24H40Li2N4O. 

4.3.12 Biphenylether-2,2’-bisfenchol (O-BIFOL, 61) [8a,8b,9b,9c] 

 

 

2,2’-dilithiobiphenylether • 2 TMEDA (60, 0.2 mol, 82.8 g, 1.0 eq.) is dissolved in dried 

and absolute Et2O (150 mL) and dried and absolute THF (30 mL, Schlenk flask is the same 

as in 4.3.11 after separation of the solution). To the solution (+)-Fenchone (0.42 mol, 67 mL, 

2.1 eq.) is added moderately (heat development) and the solution turned to an orange color 

(first yellow, then brown, then, orange, then red, then back to orange). The mixture is stirred 

over night at room temperature and quenched with saturated aqueous NH4Cl solution (50 

mL). The mixture is separated and the water layer is extracted with DCM (2×50 mL). The 
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combined organic layers are dried over Na2SO4, filtered and the solvent is evaporated under 

vacuo. Purification by crystallization and recrystallization from DCM afforded the desired 

product 61 as fine colorless powder, nearly impossible to crystallize crystals of larger 

dimensions (even from many different solvents, 0.2 mol, 94.7 g, >99% yield, overall: >98% 

yield). 

Chem. form.: C32H42O3. 

m.p.:  272°C. 

[α]589
20:  +205.5° (c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.70–7.61 (m, 2H), 7.17–7.05 (m, 3H), 7.04–6.95 

(m, 2H), 6.85 (dd, 1H, 3J = 7.8, 1.6 Hz), 4.51 (s, 1H), 4.03 (s, 1H), 2.55–2.40 (m, 2H), 

2.36 (t, 2H, 3J = 10.1 Hz), 1.78 (dd, 4H, 3J = 19.1, 3.7 Hz), 1.44–1.35 (m, 3H), 1.33 (s, 

6H), 1.23 (t, 1H, 3J = 4.5 Hz), 1.19 (s, 3H), 1.17–1.10 (m, 1H), 1.02 (s, 3H), 0.66 (s, 3H), 

0.60 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 157.17, 155.03, 135.24, 135.13, 129.98, 129.78, 

127.95, 126.61, 122.99, 122.84, 121.11, 118.06, 85.89, 85.27, 53.52, 53.41, 50.30, 

49.24, 45.78, 45.01, 41.44, 41.02, 34.15, 33.37, 30.18, 29.78, 24.36, 24.26, 22.27, 22.23, 

18.23, 18.18. 

HR-mass: [M]+(C32H42O3) [u] = calc. mass: 474.313; measured mass: 456.302 (M+ -H2O). 

IR: ṽ [cm-1] = 3487 (s, OH), 2924 (s, aromate). 

EA: [%]  C  H 

calc.:   80.97  8.92 

found:   80.91  9.10  
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4.3.13 Biphenylether-2,2’-bisfenchol-chloro phosphite (O-BIFOP-Cl, 20) [8a,8b,9b,9c] 

 

 

Biphenylether-2,2’-bisfenchol (61, 21.1 mmol, 10.0 g, 1.0 eq.) is dissolved in an 

appropriate dried and Ar-flushed Schlenk flask with dried and absolute Et2O (60 mL) and 

dried and absolute THF (10 mL). The mixture is cooled with an ice bath to 0°C and n-BuLi 

(2.5 M, 44.0 mmol, 17.6 mL, 2.1 eq.) is added in moderate speed, the ice bath is separated 

and the solution is stirred for 2 h at room temperature. The slight pink solution (can be black 

with n-BuLi excess) is cooled again with an ice bath to 0°C and PCl3 (23.0 mmol, 2.0 mL, 1.1 

eq.) is added dropwise and stirred over night at room temperature. The mixture is filtered 

over 2 cm of dried celite with the help of a reverse frit (the Lithiumsalts remain on top of the 

celite) and washed with dried and absolute Et2O (20 mL). The product is highly unstable in 

the presence of air and moist. The solvent of the filtered solution is evaporated into a cooling 

trap under vacuo to receive the desired product 20 as a colorless white powder (20.8 mmol, 

11.2 g, 99% yield, overall: 97% yield). 

Chem. form.: C32H40ClO3P. 

[α]589
20:  +47° (c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.65 (d, 2H, 3J = 6.3 Hz), 7.56 (d, 2H, 3J = 6.3 

Hz), 7.27–7.20 (m, 2H), 6.97 (t, 1H, 3J = 9.1 Hz),  6.77 (d, 1H, 3J = 6.3 Hz), 2.78 (m, 4H), 

2.53 (m, 3H), 2.47 (m, 3H), 2.39 (d, 2H, 3J = 9.2 Hz), 1.60–1.25 (m, 8H), 0.85 (s, 3H), 

0.79 (s, 3H), 0.45 (s, 3H), 0.13 (s, 3H).  

13C-NMR: (75MHz, CDCl3): δ [ppm] = 148.78, 128.41, 125.59, 122.83, 121.88, 115.16, 

96.32, 52.69, 51.30, 49.84, 49.44, 42.37, 38.57, 32.63, 22.71, 22.16, 21.09, 18.34.  

31P-NMR: (125.5 MHz, CDCl3): δ [ppm] = 161.5; 1J(P-Cl) = 3.6 Hz.. 

HR-mass: [M]+(C32H40ClO3P) [u] = calc. mass: 538.240; measured mass: 538.238. 

EA: [%]  C  H 
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calc.:   71.30  7.48 

found:   71.24  7.52 

 

4.3.14 Biphenylether-2,2’-bisfenchol-hydrido phosphite (O-BIFOP-H, 18) 

[8a,8b,9b,9c] 

 

 

Biphenylether-2,2’-bisfenchol-chloro phosphite (20, 9.6 mmol, 5.0 g, 1.0 eq.) is dissolved 

in an appropriate dried and Ar-flushed Schlenk flask and drying tube with dried and absolute 

Et2O (60 mL) and dried and absolute THF (10 mL). To the mixture solid LiAlH4 (46.5 mmol, 

1.8 g, 5.0 eq.) is added portionwise during Ar-flushing and stirred over night at room 

temperature. The mixture is filtered over 2 cm of dried celite with the help of a reverse frit 

(the Lithium- and Aluminiumsalts remain on top of the celite) and washed with dried and 

absolute Et2O (20 mL). The product is highly unstable in the presence of air and moist. The 

solvent of the filtered solution is evaporated into a cooling trap under vacuo to receive the 

desired product 18 as a colorless white powder (8.2 mmol, 4.2 g, 79% yield, overall: 74% 

yield). 

Chem. form.: C32H41O3P. 

[α]589
20:  +54° (c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.56 (d, 2H, 3J = 6.3 Hz), 7.05–6.87 (m, 4H), 6.65 

(d, 1H, 1J = 189.8 Hz), 1.75 (s, 1H), 1.70 (s, 1H), 1.55 (d, 2H, 3J = 6.3 Hz), 1.33 (t, 2H, 3J 

= 6.3 Hz), 1.25 (s, 3H), 1.13–1.06 (m, 6H), 0.99 (t, 1H, 3J = 6.3 Hz), 0.75 (s, 6H), 0.58 (s, 

6H), 0.38 (s, 6H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 149.72, 145.21, 138.77, 136.76, 126.08, 125.04, 

124.49, 123.93, 122.80, 122.47, 118.16, 116.88, 99.25, 97.93, 54.55, 52.36, 49.49, 

43.48, 42.42, 34.41, 23.19, 24.82, 24.13, 23.83, 22.79, 18.30.  
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31P-NMR: (125.5 MHz, CDCl3): δ [ppm] = 151.9; 1J(P-H) = 189.8 Hz. 

HR-mass: [M]+(C32H41O3P) [u] = calc. mass: 504.279; measured mass: 504.278. 

EA: [%]  C  H 

calc.:   76.16  8.19 

found:   76.11  8.52 

 

4.3.15 Biphenylether-2,2’-bisfenchol-hydrido phosphite (O-BIFOP-D, 18) 

[8a,8b,9b,9c] 

 

 

Biphenylether-2,2’-bisfenchol-chloro phosphite (20, 9.6 mmol, 5.0 g, 1.0 eq.) is dissolved 

in an appropriate dried and Ar-flushed Schlenk flask and drying tube with dried and absolute 

Et2O (60 mL) and dried and absolute THF (10 mL). To the mixture solid LiAlD4 (48.0 mmol, 

2.0 g, 5.0 eq.) is added portionwise during Ar-flushing and stirred over night at room 

temperature. The mixture is filtered over 2 cm of dried celite with the help of a reverse frit 

(the Lithium- and Aluminiumsalts remain on top of the celite) and washed with dried and 

absolute Et2O (20 mL). The product is highly unstable in the presence of air and moist. The 

solvent of the filtered solution is evaporated into a cooling trap under vacuo to receive the 

desired product 19 as a colorless white powder (7.6 mmol, 3.8 g, 77% yield, overall: 72% 

yield). 

Chem. form.: C32H40DO3P 

[α]589
20:  +54° (c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.65 (d, 1H, 3J = 8.2 Hz), 7.55–7.49 (m, 1H), 7.23 

(d, 1H, 3J = 3.2 Hz), 7.18 (dd, 1H, 3J = 8.3, 1.4 Hz), 7.03–6.95 (m, 1H), 6.71 (dd, 1H, 3J = 

7.7, 1.5 Hz), 2.71–2.49, (m, 2H), 2.43 (d, 1H, 3J = 10.6 Hz), 2.26 (dd, 1H, J = 10.6, 1.7 
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Hz), 1.74 (s, 3H), 1.62 (t, 2H, 3J = 5.6 Hz), 1.60 (dt, 2H, 3J = 12.1, 4.8 Hz), 1.47 (d, 3H, 3J 

= 6.9 Hz), 1.42–1.16 (m, 6 H), 0.85 (s, 3H), 0.67 (s, 3H), 0.32 (s, 3H), 0.05 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 144.37, 142.34, 138.89, 136.92, 133.47, 128.33, 

126.53, 125.71, 125.16, 123.93, 56.25, 56.23, 52.65, 52.61, 51.30, 51.22, 50.66, 48.89, 

46.82, 46.79, 44.49, 43.82, 35.59, 35.18, 29.14, 29.12, 28.03, 24.00, 23.63, 22.78, 19.77, 

19.31.  

31P-NMR: (125.5 MHz, CDCl3): δ [ppm] = 151.9; 1J(P-H) = 189.8 Hz. 

HR-mass: [M]+(C32H41O3P) [u] = calc. mass: 504.279; measured mass: 504.278. 

EA: [%]  C  H 

calc.:   76.01  8.37 

found:   76.19  8.51 

 

4.3.16 Biphenylether-2,2’-bis(2,6,6-trimethyltricyclo[3.2.0.02,7]heptane 62 [8a,9c] 

 

 

Biphenylether-2,2’-bisfenchol-chloro phosphite (20, 9.6 mmol, 5.0 g, 1.0 eq.) is dissolved 

in an appropriate dried and Ar-flushed Schlenk flask with dried DMF (40 mL). To the mixture 

AgF (46.5 mmol, 5.9 g, 5.0 eq.) is added portionwise and the flask is veiled with kitchen foil 

(AgF is light sensitive) and stirred over night at room temperature. The mixture is filtered over 

2 cm of dried celite with the help of a reverse frit (the Silversalts remain on top of the celite) 

and washed with dried and absolute Et2O (20 mL). The solvent of the filtered solution is 

evaporated into a cooling trap under vacuo, which gave the desired product 62 as a colorless 

powder (Biphenylether-2,2’-bis(2,6,6-trimethyltricyclo[3.2.0.02,7]heptane), 9.0 mmol, 3.9 g, 

94% yield, overall: 91% yield). 
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Chem. form.: C32H38O. 

 

4.3.17 3-(bromomagnesium)anisole 63 [8a,55] 

 

 

Mg (0.27 mol, 6.5 g, 1.0 eq.) is put together with dried and absolute THF (100 mL) in an 

appropriate Ar flushed Schlenk flask with a high reflux condenser and a dripping funnel. 3-

bromoanisol (0.27 mol, 50 g = 34 mL, 1.0 eq.) is given into the dripping funnel together with 

dried and absolute THF (20 mL). The Grignard (organomagnesium reagent) is started by 

dropping one quarter (13.5 mL) of the 3-bromoanisol/THF solution to the Mg. After start of 

the Grignard (bubbling) a dripping speed is chosen that the rest of the 3-bromoanisol/THF 

solution is given to the Mg in about 1-2 h. The dripping funnel can be separated and 

exchanged by a drying tube. The Grignard is refluxed for further 6 h. Now, the Grignard must 

be hot filtered through a frit into another appropriate dried and Ar-flushed Schlenk flask so 

that the rest of the not converted Mg is separated from the Grignard reagent 63 (important).  

Chem. form.: C7H7BrMgO. 

 

4.3.18 3,3’-dimethoxy biphenyl 64 [8a,55] 
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The Schlenk flask with the prepared Grignard 63 from 4.3.17 is equipped with a high Ar-

flushed reflux condenser and the apparatus has to stay open at the top of the reflux 

condenser for the next steps (important). 1,2-dichloroethane (DCE, 0.16 mol, 11 mL, 0.6 eq.) 

is given immediately to the Grignard reagent and FeCl3-2-MTHF solution (0.2 M, 1.0 mmol, 

0.2 mL, 0.004 mol%) is carefully added. A very heavy reaction is taking place while the 

Grignard reagent is homo-coupled (this reaction is called Cahiez-coupling [55], when the 

temperature is to low it does not taking place, but be careful with hot Grignard reagents). The 

mixture is stirred at room temperature for at least 2 h and then carefully quenched with 1 M 

aqueous HCl (100 mL). The mixture is extracted with DCM (3x 50 mL) and the combined 

organic layers are dried with MgSO4 and evaporated under vacuo. Purification by flash 

chromatography over silica gel, using Et2O:n-hexane 1:10 afforded the homo-coupled 

product 3,3’-dimethoxybiphenyl 64 as a colorless oil (0.195 mol, 41.8 g, 72% yield). 

Chem. form.: C14H14O2. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.40 (t, 2H, 3J = 7.9 Hz), 7.21 (dd, 4H, 3J = 13.3, 

4.5 Hz), 6.95 (dd, 2H, 3J = 8.2, 2.5 Hz), 3.90 (s, 6H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 159.97, 142.68, 129.77, 119.74, 113.01, 112.86, 

55.31, 27.03. 

 

4.3.19 3,3’-dimethoxy-4,4’-dilithiobiphenyl • 2 TMEDA 65 [8a] 

 

 

3,3’-dimethoxybiphenyl (64, 21.9 mmol, 4.7 g, 1.0 eq.) is added in an appropriate dried 

and Ar-flushed Schlenk flask with dripping flunnel and is dissolved in dried TMEDA (48.0 

mmol, 7.2 mL, 2.2 eq.) and cooled with an ice bath to 0°C. n-BuLi (2.5 M, 48.0 mmol, 19.2 

mL, 2.2 eq.) is putted into the dripping funnel and dropped within 1 h to the mixture at 0°C 

(solution turns brown, when all n-BuLi is dropped to the mixture the ice bath can be 
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separated). After 1 d, the yellow solution with yellow crystals inside is taken to the cooler and 

kept there for 4 h at -20°C. A cooling bath with -78°C is prepared for the Schlenk flask and 

the solution is separated from the yellow crystals 65 (the crystals can be freezed to the 

bottom of the flask so that the solution can easily be decanted and the rest of the remaining 

solution can be separated via a syringe, 9.5 mmol, 4.4 g, 43% yield).  

Chem. form.: C26H44Li2N4O2. 

 

4.3.20 3,3’-dimethoxybiphenyl-4,4’-bisfenchol (39, DIME-BIFOL) [8a] 

 

 

3,3’-dimethoxy-4,4’-dilithiobiphenyl • 2 TMEDA (64, 21.9 mmol, 4.4 g, 1.0 eq.) is 

dissolved in dried and absolute Et2O (15 mL, Schlenk flask is the same as in 4.3.19 after 

separation of the solution). To the solution (+)-Fenchone (46.0 mmol, 7.4 mL, 2.1 eq.) is 

added dropwise and the solution turned to a green (petrol) color. The mixture is stirred over 

night at room temperature and quenched with saturated aqueous NH4Cl solution (10 mL). 

The mixture is separated and the water layer is extracted with DCM (2×10 mL). The 

combined organic layers are dried over Na2SO4, filtered and the solvent is evaporated under 

vacuo. Purification by crystallization and recrystallization from acetone afforded the desired 

product 39 as fine colorless needles (2.3 mmol, 1.2 g, 11% yield). 

Chem. form.: C34H46O4. 

m.p.:  210°C. 
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1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.30–7.16 (m, 3H), 7.14–7.10 (m, 3H) 3.89 (s, 

2H), 3.86 (s, 6H), 2.03–1.85 (m, 4H), 1.60 (s, 2H), 1.39 (t, 4H, 3J = 10.5 Hz), 1.31 (s, 4H), 

1.18 (s, 6H), 0.97 (s, 3H), 0.90 (s, 3H), 0.86 (s, 3H), 0.82 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 159.91, 143.05, 135.02, 129.66, 119.65, 118.62, 

112.91, 112.42, 109.09, 55.20, 43.56, 38.48, 32.50, 29.75, 26.98, 22.16, 14.86. 

EA: [%]  C  H   

calc.:   78.72  8.94   

found:   78.92  9.15 

 

Figure 30. X-ray crystal structure of 39 (cf. chapter 2.2, Figure 10, CCDC: 1886564). 

4.3.21 3,3’-dimethoxy-4,4’-bis(2,6,6-trimethyltricyclo[3.2.0.02,7]heptanes [8a] 
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3,3’-dimethoxybiohenyl-4,4’-bisfenchol (39, 2.3 mmol, 1.2 g, 1.0 eq.) is dissolved in dried 

and absolute Et2O (10 mL). The mixture is cooled with an ice bath to 0°C and n-BuLi (2.5 M, 

4.8 mmol, 1.9 mL, 2.1 eq.) is added dropwise, the ice bath is separated and the solution is 

stirred for 2 h at room temperature. The slight pink solution (can be black with excess of n-

BuLi) is cooled again with an ice bath to 0°C and Ph2PCl (4.8 mmol, 0.9 mL, 2.1 eq.) is 

added dropwise and stirred over night at room temperature and quenched with saturated 

aqueous NH4Cl solution (5 mL) and separated, where the water layer is extracted with DCM 

(2×5 mL). The combined organic layers are dried over Na2SO4, filtered and the solvent is 

evaporated under vacuo, which gave after purification by crystallization and recrystallization 

from acetone the desired product (3,3’-dimethoxy-4,4’-bis(2,6,6-

trimethyltricyclo[3.2.0.02,7]heptanes, 40), 2.0 mmol, 0.96 g, 87% yield). 

Chem. form.: C34H42O2. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.31 (d, 1H, 3J = 7.3 Hz), 7.19 (s, 2H), 7.15 (d, 

3H, 3J = 10.4 Hz), 3.88 (s, 6H), 2.10–1.88 (m, 4H), 1.63 (s, 2H), 1.44 (t, 2H, 3J = 7.3 Hz), 

1.35–1.26 (m, 4H), 1.21 (s, 6H), 1.00 (s, 3H), 0.94 (s, 3H), 0.89 (s, 3H), 0.85 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 160.31, 140.93, 135.06, 125.41, 118.67, 109.11, 

54.84, 48.25, 47.94, 43.59, 38.51, 32.55, 29.79, 27.00, 26.72, 25.52, 22.20, 14.91. 

EA: [%]  C  H 

calc.:   84.60  8.77 

found:   84.73  8.93 

 

Figure 31. X-ray crystal structure of 40 (cf. chapter 2.2, Figure 10, CCDC: 1886558). 
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4.3.22 2,2’-dibromo-5,5’-dimethoxybiphenyl 66 [8a,56] 

 

 

3,3’-dimethoxybiphenyl (0.195 mol, 41.8 g, 1.0 eq.) is given in a normal flask with dried 

tube  together with dried acetonitrile (MeCN, 120 mL). The solution is cooled by an ice bath 

to 0°C and N-bromosuccinimide (NBS, 0.39 mol, 69.4 g, 2.0 eq.) is added portionwise. The 

mixture stirs over night at 0°C to room temperature and is quenched with ice water (VE, 100 

mL). The precipitate is suction filtrated over a Büchner funnel and purified by washing with 

hot water (100 mL) and hot n-hexane (100 mL) yielding the 2,2’-dibromo-5,5’-

dimethoxybiphenyl product (0.144 mol, 53.6 g, 74% yield). 

Chem. form.: C14H12Br2O2. 

m.p.:  135-136°C. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.54 (d, 4H, 3J = 8.5 Hz), 6.85–6.81 (m, 4H), 3.81 

(s, 6H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] =158.58, 142.71, 133.18, 116.28, 115.44, 113.77, 

55.55. 

 

4.3.23 P-5,5’-dimethoxy-biphenyl-2,2’-bisfenchol pre-17 ((MeO)2-P-BIFOL, alias EB-

BIFOL) [8a] 
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2,2’-dibromo-5,5’-dimethoxybiphenyl (66, 19.0 mmol, 7.0 g, 1.0 eq.) is given into an 

appropriate dried and Ar-flushed Schlenk flask with dripping funnel and is dissolved with 

dried and absolute Et2O (40 mL). The mixture is cooled to -78°C and the dripping funnel is 

filled with t-BuLi (1.9 M, 77.1 mmol, 40.6 mL, 4.1 eq.), which is dropped over 1 h to the 

mixture (Brom-Lithium exchange). The mixture is warmed to room temperature (rests of t-

BuLi reacts) and stirred for further 10 min. (+)-Fenchone (40.0 mmol, 6.4 mL, 2.1 eq.) is 

added dropwise under Ar-flushing. The mixture is stirred for 6 h and quenched with saturated 

aqueous NH4Cl solution (25 mL). The mixture is separated and the water layer is extracted 

with DCM (2×25 mL). The combined organic layers are dried over Na2SO4, filtered and the 

solvent is evaporated under vacuo. Purification by crystallization and recrystallization from 

acetone/n-hexane afforded the desired product pre-17 as fine colorless needles (6.7 mmol, 

3.5 g, 61% yield, overall: 33% yield). 

Chem. form.: C32H46O4. 

m.p.:  201°C. 

[α]589
20:  +160° (c = 0.5, CHCl3).  

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.58 (d, 2H, 3J = 8.2 Hz), 7.14 (d, 2H, 3J = 8.2 

Hz), 7.08 (s, 2H), 5.11 (s, 2H), 3.96 (s, 6H), 2.53–2.44 (m, 2H), 2.26 (d, 2H, 3J = 10.5 

Hz), 1.74 (s, 4H), 1.48–1.36 (m, 2H), 1.34 (s, 6H), 1.31–1.16 (m, 4H), 1.14 (s, 6H), 0.49 

(s, 6H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 158.17, 139.34, 138.24, 136.96, 131.97, 129.19, 

118.24, 109.66, 85.32, 55.34, 52.54, 50.05, 44.84, 40.77, 33.34, 29.43, 24.64, 22.38, 

18.22. 

HR-mass: [M]+(C32H46O4) [u] = calc. mass: 518.340; measured mass: 500.338 (M+ -H2O). 
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EA: [%]  C  H 

calc.:   78.72  8.94 

found:   78.68  8.92 

 

Figure 32. X-ray crystal structure of pre-17 (cf. chapter 2.2, Figure 9, CCDC: 1886561). 

 

4.3.24 P-5,5’-dimethoxy-biphenyl-2,2’-bisfenchol-chloro phosphite 17 ((MeO)2-P-

BIFOP-Cl, alias EB-BIFOP-Cl) [8a] 

 

 

P-5,5’-dimethoxy-biphenyl-2,2’-bisfenchol (pre-17, 3.9 mmol, 2.0 g, 1.0 eq.) is dissolved 

in an appropriate dried and Ar-flushed Schlenk flask with dried and absolute Et2O (60 mL) 

and dried and absolute THF (10 mL). The mixture is cooled with an ice bath to 0°C and n-

BuLi (2.5 M, 44.0 mmol, 17.6 mL, 2.1 eq.) is added slowly, the ice bath is separated and the 

solution is stirred for 2 h at room temperature. The slight pink solution (can be black with n-



117 
 

BuLi excess) is cooled again with an ice bath to 0°C and PCl3 (2.0 mmol, 2.2 mL, 1.1 eq.) is 

added dropwise and stirred over night at room temperature. The mixture is filtered over 2 cm 

of dried celite with the help of a reverse frit (the Lithiumsalts remain on top of the celite) and 

washed with dried and absolute Et2O (20 mL). The product is highly unstable in the presence 

of air and moist. The solvent of the filtered solution is evaporated into a cooling trap under 

vacuo to receive the desired product 17 as a colorless white powder (2.6 mmol, 1.5 g, 67% 

yield, overall: 22% yield). 

Chem. form.: C34H46ClO4P. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.54–7.49 (d, 2H, 3J = 8.2 Hz), 6.82–6.76 (dd, 2H, 

3J = 8.2, 1.5 Hz), 6.49–6.48 (d, 2H, 3J = 1.5 Hz), 3.80 (s 6H), 2.86 (s, 2H), 2.45–2.30 (d, 

2H, 3J = 8.2 Hz), 2.28–2.15 (m, 2H), 1.73–1.53 (m, 4H), 1.37–1.32 (m, 4H), 1.11 (s, 6H), 

0.47–0.70 (d, 12H, 3J = 9.0 Hz)  

13C-NMR: (75MHz, CDCl3): δ [ppm] = 155.46, 145.09, 133.62, 130.86, 116.25, 110.17, 

85.81, 55.01, 54.64, 49.17, 46.43, 42.40, 33.93, 30.22, 23.78, 21.33, 17.61.  

31P-NMR: (125.5 MHz, CDCl3): δ [ppm] = 154.3; 1J(P-Cl) = 6.6 Hz.  

EA: [%]  C  H 

calc.:   70.03  8.94 

found:   70.17  9.12 

  

4.3.25 1',6'-dimethoxy-trimethyltricyclo[3.2.0.02,7]heptan-4'-yl)spiro[fenchyl-9'-fluorene] 

38 [8a] 

 

 



118 
 

P-5,5’-dimethoxy-biphenyl-2,2’-bisfenchol-chloro phosphite (17, 1.7 mmol, 1.0 g, 1.0 eq.) 

is dissolved in an appropriate dried and Ar-flushed Schlenk flask and drying tube with dried 

and absolute Et2O (15 mL). To the mixture solid LiAlH4 (8.5 mmol, 0.3 g, 5.0 eq.) is added 

portionwise during Ar-flushing and stirred over night at room temperature. The mixture is 

filtered over 2 cm of dried celite with the help of a reverse frit (the Lithium- and 

Aluminiumsalts remain on top of the celite) and washed with dried and absolute Et2O (10 

mL). The solvent of the filtered solution is evaporated into a cooling trap under vacuo, which 

gave the desired product 38 (5,5’-dimethoxy-2,2’-bis(2,6,6-

trimethyltricyclo[3.2.0.02,7]heptanes, 1.4 mmol, 0.68 g, 82% yield). 

Chem. form.: C34H42O2. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.59 (dd, 1H, 3J = 7.8, 1.6 Hz), 7.29 (dd, 1H, 3J = 

10.4, 4.5 Hz), 7.19–7.13 (m, 1H), 7.06 (d, 1H, 3J = 7.4 Hz), 6.99 (dd, 1H, 3J = 7.7, 3.9 

Hz), 6.60 (dd, 1H, 3J = 49.4, 7.9 Hz), 4.88 (dd, 1H, 3J = 38.3, 23.8 Hz), 2.12 (dd, 2H, 3J = 

31.3, 15.0 Hz), 2.00–1.88 (m, 5H), 2.03–1.85 (m, 4H), 1.79 (d, 2H, 3J = 4.8 Hz), 1.63 (d, 

2H, 3J = 8.9 Hz), 1.54 (d, 2H, 3J = 20.3 Hz), 1.44 (s, 3H), 1.35 (d, 4H, 3J = 11.4 Hz), 1.22 

(s, 3H), 1.19 (s, 3H), 1.14 (d, 2H, 3J = 4.3 Hz), 1.05 (s, 3H), 1.02 (s, 3H), 1.01 (s, 3H), 

0.99 (s, 3H), 0.85 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 160.31, 159.03, 157.05, 154.32, 134.79, 134.42, 

129.21, 127.54, 127.06, 123.34, 122.01, 121.62, 120.98, 120.40, 118.73, 1117.34, 

105.68, 47.99, 47.91, 42.71, 38.45, 33.16, 27.54, 27.20, 25.98, 23.11, 22.73, 22.37, 

21.89, 20.28, 16.01, 15.76. 

EA: [%]  C  H 

calc.:   84.60  8.77 

found:   84.66  8.81 



119 
 

 

Figure 33. X-ray crystal structure of pre-17 (cf. chapter 2.2, Figure 9, CCDC: 1886560). 

 

4.3.26 2,2’-(N-phenylpyrrole)dilithium • 2 TMEDA 68 [57] 

 

 

N-phenylpyrrole (34.9 mmol, 5.0 g, 1.0 eq.) is added in an appropriate dried and Ar-

flushed Schlenk flask with dripping funnel and is dissolved in dried TMEDA (76.8 mol, 11.6 

mL, 2.2 eq.). n-BuLi (2.5 M, 76.8 mol, 30.7 mL, 2.2 eq.) is putted into the dripping funnel and 

dropped within 2 h to the mixture at room temperature (color changes from yellow to orange, 

when the color shows a strong black tune then something went wrong). After 1 d, the orange 

solution with yellow crystals inside is taken to the cooler and kept there for 4 h at -20°C. A 

cooling bath with -78°C is prepared for the Schlenk flask and the solution is separated from 

the yellow crystals 68 (the crystals can be freezed to the bottom of the flask so that the 
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solution can easily be decanted and the rest of the remaining solution can be separated via a 

syringe, 14.6 mmol, 3.1 g, 42% yield). 

Chem. form.: C22H39Li2N5. 

 

4.3.27 N-phenylpyrrole-2,2’-bisfenchol (Neo-BIFOL, 69) 

 

 

2,2’-(N-phenylpyrrole)dilithium • 2 TMEDA (68, 14.6 mmol, 3.1 g, 1.0 eq.) is dissolved in 

dried and absolute Et2O (20 mL) (Schlenk flask is the same as in 4.3.26 after separation of 

the solution). To the yellow solution (+)-Fenchone (32.1 mmol, 5.1 mL, 2.2 eq.) is added fast 

and the solution turned to purple. The mixture is stirred over night at room temperature and 

quenched with saturated aqueous NH4Cl solution (10 mL). The mixture is separated and the 

water layer is extracted with DCM (2×10 mL). The combined organic layers are dried over 

MgSO4, filtered and the solvent is evaporated under vacuo. Purification by crystallization and 

recrystallization from DCM afforded the desired product 69 as fine colorless needles (it is 

beneficial to separate the first crystal-precipitate because it contains a small portion of 

racemate, 7.0 mmol, 3.1 g, 20% yield, overall: 8% yield) 

Chem. form.: C30H41NO2. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.65 (dd, 1H, 3J = 8.0, 0.9 Hz), 7.28 (dt, 1H, 3J = 

8.1, 1.7 Hz), 7.18 (td, 1H, 3J = 7.5, 1.3 Hz), 7.11 (dd, 1H, 3J = 7.7, 1.7 Hz), 6.42 (t, 1H, 3J 

= 2.0 Hz), 6.24–6.18 (m, 2H), 3.55 (s, 1H), 2.39 (dd, 1H, 3J = 10.6, 1.5 Hz), 2.22 (dd, 1H, 

3J = 10.1, 1.5 Hz), 2.19–2.06 (m, 1H), 1.71 (dd, 1H, 3J = 25.2, 4.0 Hz), 1.61 (ddd, 1H, 3J = 

8.8, 5.3, 2.6 Hz), 1.43–1.20 (m, 2H, 3J = 10.5 Hz), 1.21 (s, 3H), 1.17 (s, 3H), 1.10–0.92 

(m, 2H), 0.90 (s, 3H), 0.87 (s, 3H), 0.82 (s, 3H) 0.72 (s, 3H), 0.71 (s, 3H), 0.63 (s, 3H). 
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13C-NMR: (75MHz, CDCl3): δ [ppm] = 142.77, 139.07, 138.38, 130.13, 130.09, 125.85, 

125.72, 123.66, 110.37, 106.87, 86.72, 83.39, 54.75, 54.09, 49.55, 49.25, 46.53, 45.98, 

42.21, 41.40, 33.67, 31.69, 30.01, 29.81, 24.59, 23.63, 21.37, 20.11, 17.97, 17.62. 

 

4.3.28 N-phenylpyrrole-2,2’-bisfenchol-chloro phosphite (Neo-BIFOP-Cl, 70) 

 

 

2,2’-(N-phenylrpyrrole)bisfenchol (69, 7.0 mmol, 3.1 g, 1.0 eq.) is dissolved in an 

appropriate dried and Ar-flushed Schlenk flask with dried and absolute Et2O (20 mL). The 

mixture is cooled with an ice bath to 0°C and n-BuLi (2.5 M, 44.0 mmol, 17.6 mL, 2.1 eq.) is 

added in moderate speed, the ice bath is separated and the solution is stirred for 2 h at room 

temperature. The slight pink solution (can be black with n-BuLi excess) is cooled again with 

an ice bath to 0°C and PCl3 (23.0 mmol, 2.0 mL, 1.1 eq.) is added dropwise and stirred over 

night at room temperature. The mixture is filtered over 2 cm of dried celite with the help of a 

reverse frit (the Lithiumsalts remain on top of the celite) and washed with dried and absolute 

Et2O (20 mL). The product is unstable in the presence of air and moist (becomes a pink oil). 

The solvent of the filtered solution is evaporated into a cooling trap under vacuo to receive 

the desired product 70 as a colorless white powder (6.1 mmol, 3.1 g, 88% yield). 

Chem. form.: C30H39ClNO2P. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.65 (dd, 1H, 3J = 8.0, 0.9 Hz), 7.28 (dt, 1H, 3J = 

8.1, 1.7 Hz), 7.18 (td, 1H, 3J = 7.5, 1.3 Hz), 7.11 (dd, 1H, 3J = 7.7, 1.7 Hz), 6.42 (t, 1H, 3J 

= 2.0 Hz), 6.24–6.18 (m, 2H), 3.55 (s, 1H), 2.39 (dd, 1H, 3J = 10.6, 1.5 Hz), 2.22 (dd, 1H, 

3J = 10.1, 1.5 Hz), 2.19–2.06 (m, 1H), 1.71 (dd, 1H, 3J = 25.2, 4.0 Hz), 1.61 (ddd, 1H, 3J = 

8.8, 5.3, 2.6 Hz), 1.43–1.20 (m, 2H, 3J = 10.5 Hz), 1.21 (s, 3H), 1.17 (s, 3H), 1.10–0.92 

(m, 2H), 0.90 (s, 3H), 0.87 (s, 3H), 0.82 (s, 3H) 0.72 (s, 3H), 0.71 (s, 3H), 0.63 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 142.77, 139.07, 138.38, 130.13, 130.09, 125.85, 

125.72, 123.66, 110.37, 106.87, 86.72, 83.39, 54.75, 54.09, 49.55, 49.25, 46.53, 45.98, 

42.21, 41.40, 33.67, 31.69, 30.01, 29.81, 24.59, 23.63, 21.37, 20.11, 17.97, 17.62. 
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4.3.29 4-ketofenchon 71 [58] 

 

 

Dried glacial acetic acid (100 mL) is given into a three neck dried and Ar-flushed flask 

with a mechanical stirrer, a dripping funnel and a cooling device (15°C) together with CrO3 

(122.0 mmol, 12.2 g, 1.54 eq.). (-)-Fenchone (79.0 mmol, 20 mL, 1.00 eq.) is added 

dropwise. The mixture has to be stirred for 20 d (after 7 d the red solution turns to green and 

after 14 d the solution becomes intense green). After 20 d the glacial acetic acid is distilled 

off the mixture and the residue is worked up with water and alkalized with Na2CO3 which is 

added portionwise. The mixture is separated and the water layer is extracted with Et2O (2×50 

mL). The combined organic layers are dried over Na2SO4, filtered and the solvent is 

evaporated under vacuo. A fractional distillation under vacuo (0.0 mbar, Fenchone at 69°C, 

4-ketofenchone at 108°C) delivered the desired product 71 as colorless oil, which crystallizes 

after 1-2 d as colorless plates (13.4 mmol, 2.2 g, 17% yield). 

Chem. form.: C10H14O2. 

m.p.:  42-43°C. 

[α]589
20:  +75.8° (c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 2.45 (s, 1H), 2.06–2.02 (m, 1H), 1.98 (s, 1H), 

1.85 (t, 2H, 3J = 13.5 Hz), 1.11 (s, 3H), 1.01 (s, 3H), 0.98 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 59.62, 45.30, 39.43, 22.39, 22.33, 14.72. 

 

4.3.30 4-ketofenchone dihydrazone 72 
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4-ketofenchone (71, 6.0 mmol, 1.0 g, 1.0 eq.) is dissolved in an appropriate dried and Ar-

flushed Schlenk flask with reflux condenser and drying tube in MeOH (20 mL). To the mixture 

hydroxylammonium chloride (HO-NH2 • HCl, 12.6 mmol, 876 mg, 2.1 eq.) is added 

portionwise together with KOAc (13.2 mmol, 1.3 g, 2.2 eq.) and H2O (2 mL). The mixture is 

refluxed over night. The MeOH is distilled off and to the residue cold H2O (10 mL) is added. 

After filtration the desired product is isolated in fine colorless needles (5.6 mmol, 1.1 g, 93% 

yield). 

Chem. form.: C10H14O2. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 2.04 (s, 1H), 1.63 (ddd, 3H, 3J = 16.2, 10.9, 6.5 

Hz), 1.46 (dd, 2H, 3J = 19.7, 7.3 Hz), 1.32–1.22 (m, 1H), 1.03 (s, 3H), 0.92 (s, 6H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 54.03, 42.43, 38.20, 22.31, 21.17, 15.89. 

 

4.3.31 1-naphthalene-fenchol 74 

 

 

1-bromonaphthalene (73, 14.3 mmol, 2.0 mL, 1.0 eq.) is given into an appropriate dried 

and Ar-flushed Schlenk flask with dripping funnel and is dissolved with dried and absolute 

Et2O (40 mL). The mixture is cooled to -78°C and the dripping funnel is filled with t-BuLi (1.9 

M, 30.0 mmol, 15.8 mL, 2.1 eq.), which is dropped within 20 min. to the mixture (Brom-
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Lithium exchange). The mixture is warmed to room temperature (20°C, rests of t-BuLi reacts) 

and stirred for further 10 min. (+)-Fenchone (15.7 mmol, 2.5 mL, 1.1 eq.) is added dropwise 

under Ar-flushing. The mixture is stirred for 6 h and quenched with saturated aqueous NH4Cl 

solution (25 mL). The mixture is separated and the water layer is extracted with DCM (2×25 

mL). The combined organic layers are dried over Na2SO4, filtered and the solvent is 

evaporated under vacuo. Purification by crystallization and recrystallization from DCM/n-

hexane afforded the desired product 74 as colorless needles (8.6 mmol, 2.4 g, 60% yield). 

Chem. form.: C20H24O. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 9.00 (dd, 1H, 3J = 7.8, 1.6 Hz), 7.86–7.77 (m, 

2H), 7.72 (d, 1H, 3J = 8.1 Hz), 7.52–7.37 (m, 3H), 2.54 (dd, 1H, 3J = 10.4, 1.9 Hz), 2.51–

2.40 (m, 1H), 2.00 (s, 1H), 1.93–1.79 (m, 2H), 1.57–1.44 (m, 4H), 1.42 (s, 3H), 1.36 (s, 

3H), 1.29 (td, 1H, 3J = 12.8, 4.0 Hz), 0.51 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 140.47, 135.00, 133.94, 129.01, 128.78, 127.80, 

126.67, 125.07, 126.67, 125.07, 124.86, 123.49, 66.72, 54.63, 50.90, 44.74, 41.16, 

34.35, 29.30, 24.56, 23.00, 18.46. 

HR-mass: [M]+(C32H46O4) [u] = calc. mass: 518.340; measured mass: 500.338 (M+ -H2O). 

 

4.3.32 Allylic acetate 21, 23 [59] 

 

The presubstrate, trans-1,3-diphenylpropen-1-ol (5.2 mmol, 1.1 g, 1.0 eq.) or 2-

cyclohexen-1-ol (5.1 mmol, 5.0 mL, 1.0 eq.), is dissolved in pyridine (10 mL) and stirred for 

30 min. To the mixture acetic anhydride (8.2 mmol, 8.6 mL, 1.6 eq.) is added dropwise. The 

reaction mixture is stirred over night and quenched with 1 M aqueous HCl solution (50 mL). 

The product is extracted with dichlormethane (CH2Cl2, 2x 50 mL) and the extract is washed 

with 1 M aqueous HCl solution (25 mL), 1 M aqueous Na2CO3-solution (25 mL) and the 

solvent is evaporated under vacuo to give the desired product (21 or 23). 
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Chem. form. 21: C17H16O2. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.41–7.16 (m, 10H), 6.62 (d, 1H, 3J =15.8 Hz), 

6.45 (d, 1H, 3J =6.9 Hz), 6.34 (dd, 1H, 3J =15.7, 6.7 Hz), 2.13 (s, 3H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 170.1, 139.3, 136.2, 132.6, 128.6, 128.5, 128.3, 

128.1, 127.6, 127.2, 126.8, 76.2, 21.4. 

 

Chem. form. 23: C8H12O2. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 5.94 (m, 1H), 5.73–5.63 (m, 1H), 5.24 (m, 1H), 

2.06 (s, 3H), 2.10–1.56 (m, 6H). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 170.9, 132.7, 125.8, 68.2, 28.6, 25.1, 21.6, 19.1. 

 

4.4 Catalyses 

4.4.1 trans-Dimethyl-2(S or R)-(1,3-diphenylallyl) malonate (S or R)-22 [8a] 

 

 

[(C3H5)PdCl]2 (0.0014 mmol (already divided by 2)), 1.0 mg, 1 mol%) and L (0.0028 

mmol, s.b., 2 mol%) are dissolved in dried 1,2-DCE (3.0 mL) and the mixture is stirred at 

room temperature for 10 min. To the mixture trans-1,3-diphenylallyl acetate (21, 0.14 mmol, 

35.3 mg, 1.0 eq.) is added dropwise. The reaction mixture is stirred for another 10 min at 

room temperature. The nucleophile sodium dimethyl malonate (0.15 mmol, 23.7 mg, 1.1 eq.) 

is added portionwise over 1 h at room temperature and stirred for 4 d (full conversion is 

determined) and quenched with saturated aqueous NH4Cl solution (3 mL). The mixture is 

separated and the water layer is extracted with DCM (2×5 mL). The combined organic layers 

are dried over Na2SO4, filtered and the solvent is evaporated under vacuo. Purification by 
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flash chromatography over silica gel, using EtOAc:n-hexane 1:10 afforded the desired 

product (S or R)-22. 

L = PPh3, 0.7 mg, racemic product is formed (0.127 mmol, 41.2 mg, 91% yield, rac). 

L = P-BIFOP-H (10), 1.4 mg, enantioselective (S)-product 22 is formed (0.113 mmol, 36,7 

mg, 81% yield, 67% ee). 

L = P-BIFOP-F (12), 1.4 mg, enantioselective (R)-product 22 is formed (0.129 mmol, 41.8 

mg, 92% yield, 66% ee). 

L = EB-BIFOP-Cl (17), 1.6 mg, enantioselective (S)-product 22 is formed (0.126 mmol, 

40.9 mg, 90% yield, 70% ee). 

[α]589
20: -13.2° (S, c = 0.5, CHCl3). 

[α]589
20: +10.9° (R, c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.33–7.20 (m, 10H), 6.49 (d, 1H, 3J = 15.6 Hz), 

6.33 (dd, 1H, 3J = 15.6, 8.0 Hz), 4.29 (dd, 1H, 3J = 10.6, 8.5 Hz), 3.97 (d, 1H, 3J = 10.7 

Hz), 3.70 (s, 3H), 3.51 (s, 3H). 

4.4.2 Dimethyl-2-(cyclohexenyl)-1(S or R)-malonate (S or R)-24 [8a] 

 

 

[(C3H5)PdCl]2 (0.0014 mmol (already divided by 2)), 1.0 mg, 1 mol%) and L (0.0028 

mmol, s.b., 2 mol%) are dissolved in dried 1,2-DCE (3.0 mL) and the mixture is stirred at 

room temperature for 10 min. To the mixture 2-cyclohexenyl acetate (23, 1.0 mmol, 0.1 mL, 

1.0 eq.) is added dropwise. The reaction mixture is stirred for another 10 min at room 

temperature. The nucleophile sodium dimethyl malonate (1.0 mmol, 65 mg, 1.0 eq.) is added 

portionwise over 1 h at room temperature and stirred for 4 d (full conversion is determined) 

and quenched with saturated aqueous NH4Cl solution (3 mL). The mixture is separated and 

the water layer is extracted with DCM (2×5 mL). The combined organic layers are dried over 

Na2SO4, filtered and the solvent is evaporated under vacuo. Purification by flash 
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chromatography over silica gel, using EtOAc:n-hexane 1:10 afforded the desired product (R 

or S)-24. 

L = PPh3, 0.7 mg, racemic product is formed (0.891 mmol, 189.1 mg, 89% yield, rac). 

L = P-BIFOP-H (10), 1.4 mg, enantioselective (R)-product is formed (0.832 mmol, 176,6 

mg, 83% yield, 64% ee). 

L = P-BIFOP-F (12), 1.4 mg, enantioselective (S)-product is formed (0.822 mmol, 174.5 

mg, 82% yield, 67% ee). 

L = EB-BIFOP-Cl (17), 1.6 mg, enantioselective (R)-product is formed (0.117 mmol, 24.8 

mg, 91% yield, 67% ee). 

[α]589
20: +28.3° (R, c = 0.5, CHCl3). 

[α]589
20: -38.7° (S, c = 0.5, CHCl3). 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 5.80 (m, 1H), 5.22 (m, 1H), 3.72 (s, 3H), 3.70 (s, 

3H), 3.27 (d, 1H, 3J = 9.6 Hz), 2.00 (m, 2H), 1.76 (m, 1H), 1.70 (m, 1H), 1.55 (m, 1H), 

1.34 (m, 1H). 

 

4.4.3 (R)-3-Ethyl-1,3-diphenylpropan-1-one, (R)-1,3-diphenylpentan-1-one (R)-26a or 

(R)-3-Methyl-1,3-diphenylpropan-1-one, (R)-1,3-diphenylbutan-1-one (R)-26b [8b,30] 

 

 

CuCl (0.01 mmol, 1.0 mg, 1 mol%; or solid FeCl3, 0.01 mmol, 1.6 mg, 1 mol%; or FeCl3-

2-MTHF-solution, 0.2 M, 0.01 mmol, 0.2 mL, 1 mol%) and L (0.02 mmol, s.b., 2 mol%) are 

dissolved in dried and absolute Et2O (3.0 mL) and the mixture is stirred at room temperature 

for 10 min. The mixture is cooled to -78°C and subsequently 1.5 eq. of the corresponding 

organozinc reagent (Et2Zn, 1 M, 1.5 mmol, 1.5 mL or Me2Zn, 1.2 M, 1.5 mmol, 1.25 mL) in 

solvent are added dropwise. The reaction mixture is stirred at -78°C for 20 min. Then the 

trans-chalcone (25, 1.0 mmol, 208 mg, 1.0 eq.) is added portionwise over 1 h. The reaction 
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mixture is stirred for 6 h at -78°C (full conversion is determined) and quenched with saturated 

aqueous NH4Cl solution (3 mL). The mixture is separated and the water layer is extracted 

with DCM (2×5 mL). The combined organic layers are dried over Na2SO4, filtered and the 

solvent is evaporated under vacuo. Purification by flash chromatography over silica gel, 

using EtOAc:n-hexane 1:10 afforded the desired product (R)-26a,b. 

L = PPh3, 5.3 mg, racemic products are formed (for Et, 0.95 mmol, 226 mg, 95% yield, 

rac; for Me, 0.94 mmol, 211 mg, 94% yield, rac). 

L = P-BIFOP-H (10), 9.8 mg, enantioselective (R)-products are formed (for Et, 0.93 

mmol, 222 mg, 93% yield, 99% ee; for Me, 0.96 mmol, 215 mg, 96% yield, 67% ee).  

Chem. form.: C17H18O. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.86–7.84 (m, 2H), 7.53–7.50 (m, 1H), 7.42–7.39 

(m, 2H), 7.28–7.12 (m, 5H), 3.48–3.38 (m, 3H), 1.93–1.88 (m, 1H), 1.64–1.59 (m, 1H), 

0.68 (t, 3H, 3J = 7.2 Hz). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 199.32, 140.18, 136.84, 131.85, 129.13, 128.74, 

128.49, 127.18, 57.66, 49.20, 29.74, 13.70. 

 

Chem. form.: C16H16O. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 8.16–7.94 (m, 2H), 7.84–7.82 (m, 1H), 7.77–7.71 

(m, 1H), 7.63–7.59 (m, 1H), 7.18–6.93 (m, 5H), 4.67–4.61 (m, 1H), 4.35–4.29 (m, 1H), 

4.03–3.97 (m, 1H) 1.29 (t, 3H, 3J = 6.6 Hz). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 199.06, 144.88, 133.50, 129.47, 128.87, 128.67, 

128.50, 127.45, 127.25, 47.96, 29.74, 23.58. 
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4.4.4 (S)-3-ethylcyclohexanone (S)-28a or rac-3-methylcyclohexanone 28b [8b,30] 

 

 

CuCl (0.01 mmol, 1.0 mg, 1 mol%; or solid FeCl3, 0.01 mmol, 1.6 mg, 1 mol%; or FeCl3-

2-MTHF-solution, 0.2 M, 0.01 mmol, 0.2 mL, 1 mol%) and L (0.02 mmol, s.b., 2 mol%) are 

dissolved in dried and absolute Et2O (3.0 mL) and the mixture is stirred at room temperature 

for 10 min. The mixture is cooled to -78°C and subsequently 1.5 eq. of the organozinc 

reagent (Et2Zn, 1 M, 1.5 mmol, 1.5 mL) in solvent is added dropwise. The reaction mixture is 

stirred at -78°C for another 20 min. Then the 2-cyclohexenone (27, 1.0 mmol, 0.1 mL, 1.0 

eq.) is added dropwise over 1 h. The reaction mixture is stirred for 6 h at -78°C (full 

conversion is determined) and quenched with saturated aqueous NH4Cl solution (3 mL). The 

mixture is separated and the water layer is extracted with DCM (2×5 mL). The combined 

organic layers are dried over Na2SO4, filtered and the solvent is evaporated under vacuo. 

Purification by flash chromatography over silica gel, using EtOAc:n-hexane 1:10 afforded the 

desired products (S)-28a, rac-28b (with MeMgBr no product is observed). 

L = PPh3, 5.3 mg, racemic product is formed (0.91 mmol, 115 mg, 91% yield, rac). 

L = P-BIFOP-H (10), 9.8 mg, enantioselective (S)-product is formed (0,90 mmol, 114 mg, 

90% yield, 20% ee).  

Chem. form.: C8H14O. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.86–7.84 (m, 2H), 7.53–7.50 (m, 1H), 7.42–7.39 

(m, 2H), 7.28–7.12 (m, 5H), 3.48–3.38 (m, 3H), 1.93–1.88 (m, 1H), 1.64–1.59 (m, 1H), 

0.68 (t, 3H, 3J = 7.2 Hz). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 212.28, 48.01, 41.54, 40.79, 30.88, 29.33, 25.30, 

11.25. 

 



130 
 

Chem. form.: C7H12O. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 8.16–7.94 (m, 2H), 7.84–7.82 (m, 1H), 7.77–7.71 

(m, 1H), 7.63–7.59 (m, 1H), 7.18–6.93 (m, 5H), 4.67–4.61 (m, 1H), 4.35–4.29 (m, 1H), 

4.03–3.97 (m, 1H) 1.29 (t, 3H, 3J = 6.6 Hz). 

13C-NMR: (75MHz, CDCl3): δ [ppm] = 211.98, 41.92, 26.99, 24.94. 

 

4.4.5 2-(R)-ethylchroman-4-one 30a or 2-(R)-methylchroman-4-one 30b [8b,30] 

 

 

CuCl (0.01 mmol, 1.0 mg, 1 mol%; or solid FeCl3, 0.01 mmol, 1.6 mg, 1 mol%; or FeCl3-

2-MTHF-solution, 0.2 M, 0.01 mmol, 0.2 mL, 1 mol%) and L (0.02 mmol, s.b., 2 mol%) are 

dissolved in dried and absolute Et2O (3.0 mL) and the mixture is stirred at room temperature 

for 10 min. The mixture is cooled to -78°C and subsequently 1.5 eq. of the corresponding 

Grignard reagent (EtMgBr, 3 M, 1.5 mmol, 0.5 mL or MeMgBr, 3 M, 1.5 mmol, 0.5 mL, which 

are further diluted in -78°C cool Et2O, 19.5 mL) in solvent are added dropwise. The reaction 

mixture is stirred at -78°C for 20 min. Then the chromone (29, 1.0 mmol, 146 mg, 1.0 eq.) is 

added portionwise over 1 h. The reaction mixture is stirred for 6-18 h at -78°C (full 

conversion is determined) and quenched with saturated aqueous NH4Cl solution (3 mL). The 

mixture is separated and the water layer is extracted with DCM (2×5 mL). The combined 

organic layers are dried over Na2SO4, filtered and the solvent is evaporated under vacuo. 

Purification by flash chromatography over silica gel, using Acetone:n-hexane 1:20 afforded 

the desired product (R)-30a,b. 

L = PPh3, 5.3 mg, racemic products are formed (for Et, 0.93 mmol, 164 mg, 93% yield, 

rac; for Me, 0.93 mmol, 151 mg, 93% yield, rac). 

L = P-BIFOP-H (10), 9.8 mg, racemic products are formed (for Et, 0,89 mmol, 156.8 mg, 

89% yield, 89% ee; for Me, 0.82 mmol, 133 mg, 82% yield, 83% ee). 
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Chem. form.: C11H12O2. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.88 (dd, 1H, 3J = 7.8, 1.6 Hz), 7.48 (td, 1H, 3J = 

7.8, 1.5 Hz), 7.02–6.98 (m, 2H), 4.45–4.36 (m, 1H), 2.67 (d, 2H, 3J = 8.0 Hz), 1.94–1.71 

(m, 2H), 1.06 (3H, t, 3J = 7.2 Hz).  

13C-NMR: (75MHz, CDCl3): δ [ppm] 192.63, 161.70, 136.07, 126.98, 121.32, 121.09, 

118.10, 79.21, 42.53, 28.06, 9.49. 

Chem. form.: C10H10O2. 

1H-NMR: (300MHz, CDCl3): δ [ppm] = 7.86 (dd, 1H, 3J = 7.8, 1.5 Hz), 7.46 (ddd, 1H, 3J = 

8.5, 7.5, 1.6 Hz), 7.05–6.90 (m, 2H), 4.70–4.49 (m, 1H), 2.70 (d, 2H, 3J = 7.9 Hz), 1.55 

(3H, d, 3J = 6.5 Hz).  

13C-NMR: (75MHz, CDCl3): δ [ppm] 192.63, 161.70, 136.07, 126.98, 121.32, 121.09, 

118.10, 74.32, 44.63, 21.06. 

4.5 Computational Methods 

All computations are performed with GAUSSIAN 16, Revision B.01 [60]. Transition state 

structures are localized using the B3LYP functional [61] with the def2-SVP(P) basis set [62] 

or OPBE functional [63]. Energies are refined using either the M06-2X functional [64] with the 

def2-TZVP basis set [62] or TPSS functional [65] with def2-TZVP basis set [62] Grimme’s 

dispersion (D3) with Becke–Johnson damping (BJ) [66] is added. The computed pictures are 

generated with CYLview [67]. The NBO-analyzes [36] are performed with NBO6. All 

functions are implemented in the GAUSSIAN 16 program package. 
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6. Appendix 

6.1 Outlook 

The P-5,5’-dimethoxy-biphenyl-2,2’-bisfenchol-chloro phosphite (EB-BIFOP-Cl, 17) 

appears to be promising, considering its performance in the Pd-catalyzed allylic alkylations 

compared to the P-BIFOP-H (10) ligand with the best results (cf. chapter 2.2, Table 3, entry 

10; Table 4, entry 10 vs Table 3, entry 1, Table 4 entry 1). Unfortunately phosphite 17 cannot 

perform in the Cu-catalyzed 1,4-addition nor in the Fe-catalyzed 1,4-addition, as it reacts with 

the catalytic system and decomposes (cf. chapter 2.2, Figure 9, 38; chapter 2.3, Table 9, 

entries 4, 5). Thus, the P-5,5’-dimethoxy-biphenyl-2,2’-bisfenchol-hydrido phosphite (EB-

BIFOP-H) ligand would be desired (Scheme 30) to check its performance in the 1,4-additions 

in comparison to the P-BIFOP-H (10) ligand which delivers excellent results (cf. chapter 2.3, 

Table 12, entries 1, 7; chapter 2.4, Table 19, entries 1, 5, 9, 13 and Table 20, entries 3, 4). 

 

Scheme 30. Possible synthesis of the P-5,5’-dimethoxy-biphenyl-2,2’-bisfenchol-hydrido phosphite 

(EB-BIFOP-H) ligand. 

A possible synthesis for the P-5,5’-dimethoxy-biphenyl-2,2’-bisfenchol-hydrido phosphite 

(EB-BIFOP-H) ligand is to deprotonate EB-BIFOL (pre-17) with n-Buli and use the 

dichlorophosphine (PHCl2) as reagent to yield the desired product (EB-BIFOP-H, Scheme 

30). Then it could be tested and compared with P-BIFOP-H (10) in the Cu- and Fe-catalyzed 

1,4-additions. 
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6.2 Additional material 

 

Table 22. Computation of DFT-NBO-analyzes to Pd0/PdII•L (L = model ligand)a [8a,37]. 

Pd0/PdII•Lb NPA 

Pd-charge 

ΔGrel NBOc 

(Pd(lp) -> 

σ*(P-X) 

X = H, C, O, F 

P-hybridization 

(P-Pd) 

ΔG 

[kcal/mol]d 

CO  0.06 / 1.39 - - 58.0 / 145.1 

PH3 -0.10 / 0.98 4.7 / 1.5 sp1.97 / sp6.62 50.8 / 223.7 

PMe3 -0.24 / 0.75 4.8 / 2.3 sp2.65 / sp8.69 58.1 / 304.2 

POMe3 -0.23 / 0.75 5.7 / 3.3 sp1.93 / sp5.55 59.8 / 312.4 

PH2F -0.13 / 0.93 8.1 / 4.1 sp1.90 / sp5.67 57.5 / 224.5 

PMe2F -0.22 / 0.79 7.4 / 4.3 sp2.30 / sp7.33 60.2 / 282.2 

P(OMe)2F -0.19 / 0.75 6.7 / 3.7 sp1.82 / sp5.11 57.7 / 282.5 

aTPSS-D3(BJ)/def2-TZVP, 293.15 K, 1 bar. bThe values are stated as Pd0/PdII. cStabilizing 

energy in [kcal/mol]; the energy for PH3, PMe3 and POMe3 is divided by 3. For PH2F, PMe2F 

and P(OMe)2F only the σ*(P-F) is given (higher electronegativity of F). dBonding energy of 

Pd0/PdII•L. 
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6.3 Abbreviations 

cf.   confer 

et al.  et alii, et aliae, et alia 

rac   racemic mixture 

ee   enantiomeric excess 

vs   versus 

e.g.  example given 

i.e.   in example 

min  minutes 

h   hours 

imag. freq.  imaginary frequency 

m.p.  melting point 

EA   elemental analysis 

NBO  natural bond orbital 

NPA  natural population analysis 

STO  Slater type orbital 

GTO  Gaussian type orbital 

bspw.  beispielsweise 

bzw.  beziehungsweise 

u. a.  und andere 

d. h.  das heißt 
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6.4 Content structures [8a,8b,30,34b] 
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6.5 Content X-ray crystal structures [8a,8b] 
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