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Abstract 

Fatty acids are essential components of all living organisms and the fatty acid 

metabolism mechanisms are conserved across species. Fatty acids are important for 

membrane biogenesis, energy storage and they serve as signaling molecules and modulate 

growth and development. Caenorhabditis elegans (C. elegans) does not have adipocytes 

dedicated to fat storage like in mammals, hence they store fats as triglycerides (TAGs) in 

lipid droplets and yolk. In C. elegans, the intestine is the major organ where food absorption, 

incorporation of nutrients into metabolic pathways, fat storage and utilization take place. 

Fatty acid synthesis, elongation, and desaturation, such as mitochondrial and peroxisomal 

ß-oxidation of fatty acids, are conserved in C. elegans.  

Previously, we identified Krüppel-like factor 1 (KLF-1) as a major regulator of the longevity 

assurance caused by mitochondrial dysfunction in C. elegans. Now, we show that KLF-1 

negatively regulates neutral lipid levels in C. elegans mitochondrial 

isp-1(qm150);ctb-1(qm189) mutants, a defect that can be fully corrected upon klf-1 

knockdown. The role of KLF-1 in the regulation of genes involved in lipid metabolism and 

storage in isp-1;ctb-1 mutants is further emphasized by our microarray study. 

Moreover, we identified ACS-1, a peroxisomal acyl-CoA synthetase, to be essential for the 

longevity of mitochondrial isp-1;ctb-1 mutants. We also showed that PRX-5, a putative 

peroxisomal membrane protein, involved in protein import, has a similar role in suppression 

of increased lifespan in isp-1;ctb-1 worms. We further showed that both, ACS-1 and 

PRX-5 are important to sustain respiration in isp-1;ctb-1 mutants. Therefore, our data 

highlight the crosstalk between mitochondria and peroxisomes, especially lipid metabolism 

and shared fatty acid oxidation, as central to the response beneficial for organismal survival. 

Furthermore, we showed that loss of ACS-1 in isp-1;ctb-1 mutant induces massive lipid 

peroxidation and can trigger KLF-1 translocation to the nucleus, independent of 

mitochondrial ROS production. Finally, our preliminary data suggest that this increased lipid 

peroxidation and insufficient capacity to reduce lipid peroxides might result in the initiation 

of ferroptosis.  
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Zusammenfassung 

Fettsäuren sind ein essenzieller Bestandteil aller lebenden Organismen. Sie sind ein 

wichtiger Baustein für die Membranbiogenese, der Energiespeicherung und dienen darüber 

hinaus als Signalmoleküle, die Wachstum und Entwicklung modulieren. So ist der 

Fettsäurestoffwechsel speziesübergreifend zu finden. Bei Säugetieren dienen Adipozyten 

der Fettspeicherung. Der Fadenwurm Caenorhabditis elegans (C. elegans) besitzt keine 

Adipozyten, sondern speichert Fette als Triglyceriden in Lipidtröpfchen. Der Darm des 

Wurms ist das Hauptorgan und dient sowohl der Nahrungsaufnahme als auch der Aufnahme 

von Nährstoffen für weitere Stoffwechselwege, sowie der Fettspeicherung- und Verwertung 

von Fetten. Verschiedene Funktionen wie die Synthese, die Verlängerung und Entsättigung, 

aber ebenso die mitochondriale und peroxisomale Beta-Oxidation von Fettsäuren ist in 

C. elegans konserviert.  

Kürzlich wurde unsererseits der Krüppel-like Faktor 1 (KLF-1), als ein Hauptregulator für 

Sicherung der Langlebigkeit, identifiziert. Diese Langlebigkeit wird bei C. elegans durch 

eine mitochondriale Dysfunktion verursacht. In dieser Studie konnten wir zeigen, dass 

KLF-1 die Menge an Lipiden in der C. elegans mitochondrialen isp-1(qm150);ctb-1(qm189) 

Mutante negativ reguliert. Die geringe Lipidmenge, kann bei einem Knockdown des klf-1 

Gens vollständig korrigiert werden. Unsere Microarrayergebnisse spiegeln auch die Rolle 

von KLF-1 in der Regulierung von Genen, die am Lipidstoffwechsel und der Speicherung 

in isp-1(qm150);ctb-1(qm189) Mutanten beteiligt sind, wider. Darüber hinaus identifizierten 

wir ACS-1, eine peroxisomale Acyl-CoA-Synthetase, die für die Langlebigkeit 

mitochondrialer isp-1(qm150);ctb-1(qm189) Mutanten essenziell ist. Ergänzend konnte 

gezeigt werden, dass PRX-5, ein peroxisomales Membranprotein, eine ähnliche Rolle bei 

der Unterdrückung der verlängerten Lebensdauer bei isp-1;ctb-1 Würmern spielt.  

Des Weiteren konnte gezeigt werden, dass sowohl ACS-1 als auch PRX-5 wichtig sind, um 

die Zellatmung in isp-1(qm150);ctb-1(qm189) Mutanten aufrechtzuerhalten. Unsere 

Ergebnisse heben ein Zusammenspiel von Mitochondrien und Peroxisomen, insbesondere 

im Lipidstoffwechsel und bei der Oxidation von Fettsäuren hervor, die für das Überleben 

des Organismus von zentraler Bedeutung sind. Der Verlust von ACS-1 in der 

isp-1(qm150);ctb-1(qm189) Mutante führt zu einer massiven oxidativen Degradation von 

Lipiden, was wiederum eine Translokation von KLF-1 in den Zellkern begünstigt. 

Das geschieht unabhängig von der mitochondrialen ROS-Produktion. Schließlich legen 
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unsere vorläufigen Daten nahe, dass die erhöhte Peroxidation von Lipiden und die 

unzureichende Fähigkeit zur Reduktion von Lipidperoxiden, zur Einleitung einer Ferroptose 

führen kann.  
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1 Introduction 

1.1 C. elegans as a model organism 

Caenorhabditis elegans (C. elegans) was introduced as a model organism in 

development and molecular biology by Sydney Brenner (Brenner, 1974). Since then, 

C. elegans turned out to be an important model organism in many fields of biology such as 

regulating development, cell death, and aging (Brenner, 1974). Advantages of the nematode, 

as an experimental model for biological studies, are C. elegans simplicity, full transparency, 

easy growth and maintenance in culture, short lifespan, high progeny, suitability for genetic 

analysis and their small genome size (Wood, 1988). Moreover, the transparent body of the 

nematode allows using microscopy on a cellular level in the living organism (Altun, 2009). 

Small body size and fast life cycle, with a reproduction cycle of just three days, makes it an 

efficient tool for scientific research (Riddle, 1997). Approximately 99.9% of all worms in 

the population are hermaphrodites that can reproduce by self-fertilization and lay up to 300 

eggs (Altun, 2009). Thus, populations with low genetic variability can be grown. Males, 

which appear with a frequency of just 0.1%, allow the cross between different strains and 

can increase the genetic variability (Corsi AK, 2005-2018). Adult hermaphrodites reach an 

average length of 1 mm, while the male is smaller and thinner. Besides the smaller size, the 

male can be easily identified by the shape of its tail, which has a blunt end, compared to the 

pointed end of the hermaphrodite (Altun, 2009). C. elegans genome was the first 

multicellular genome which was fully sequenced and, as it shares 35% homology with 

Homo sapiens, the nematode is an optimal tool for studying conserved pathways. One of the 

additional very important advantages of C. elegans is that along with a large number of 

genetic mutants available, there is the possibility to silence any gene of interest through 

feeding double-stranded RNAi-expressing bacteria (Fire et al., 1998). This tool allows 

running large-scale RNAi screens to identify the functions of genes through the correlation 

between genotype and phenotype. The nematode has become an essential organism for 

studying aging and age-related diseases (Kaletta and Hengartner, 2006). The life cycle of 

C. elegans is temperature-dependent and takes approximately 20 days at 20°C. Adult 

hermaphrodites lay around 300 fertilized eggs in 3-4 days. During postembryonic 

development, C. elegans eggs hatch and go through four larval stages L1 to L4. Larval stages 

L1-L4 can be differentiated by their size as shown in the scheme below (Fig. 1.1). Under 
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stress conditions such as starvation, a dauer stage is formed , in which the nematode can last 

up to four months without food (Altun, 2009). 

 

 
Figure 1.1 C. elegans life cycle. 

Adult hermaphrodites lay eggs that hatch and go through four larval stages (L1 to L4). When the animals reach 

the gravid adult stage the life cycle is completed and worms are capable of egg-laying. In conditions like crowding, 

starvation, or high-temperature, L1 larvae change to dauer form in which worms can survive up to four months. 

As soon as the food is available the standard development resumes. Figure adapted from WormAtlas 

(www.wormatlas.org).

 

1.2 Mitochondria  

1.2.1 Mitochondria structure and function 

The mitochondria originated two billion years ago, and many features of the 

organelle reflect its endosymbiotic origin. Mitochondria are found in almost all eukaryotic 

cells, except for erythrocytes. Mitochondria are organelles defined by a double membrane 

system that separates four different compartments: the outer membrane (OMM), 

intermembrane space (IMS), inner membrane (IMM) and the matrix as seen in Figure 1.2 

(McBride et al., 2006). Due to the presence of porins that allow free diffusion of molecules 

with low molecular weight, the OMM is highly permeable to small molecules. The IMM is 
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folded into cristae and encloses the matrix. The IMM has more protein content and is less 

permeable than OMM. So, it is acting as a functional barrier for small molecules between 

the cytosol and matrix. The matrix harbors the mitochondrial DNA (mtDNA) a unique 

feature of mitochondria (Sherratt, 1991). C. elegans mtDNA is similar to human mtDNA, 

but encodes only 12, not 13 mitochondrial respiratory chain subunits (excluding ATP8). Both 

undergo heteroplasmy, polyploidy, and maternal inheritance. (Dancy et al., 2015). 

Heteroplasmy means that there are multiple mtDNA variants in a cell. The mtDNA is 

predominantly maternally inherited and mitochondrial genome is polyploid, since it is 

present in the cell in multiple copies (Wallace et al., 1988, Carugno et al., 2012).  

Most of the approximal 1500 mitochondrial proteins are encoded in the nucleus and needs 

to be imported into the mitochondria. Mitochondria are essential for the generation of 

cellular energy, adenosine triphosphate (ATP), through the process of oxidative 

phosphorylation (OXPHOS). Moreover, mitochondria are involved in various other cellular 

processes, such as iron-sulfur (Fe-S) cluster biogenesis, lipid biosynthesis, calcium 

homeostasis, apoptosis and generation of reactive oxygen species (ROS) (Wallace, 2005, 

Chan, 2006, Nunnari and Suomalainen, 2012).

 

 
Figure 1.2 Mitochondria inner structure  

The scheme represents the key characteristics of a mitochondrial structure. Mitochondria are defined by a double 

membrane composed of the outer membrane (OMM) and inner membrane (IMM). Between both membranes, 

there is the intermembrane space (IMS). The IMM forms cristae and encloses the interior of the organelle or 

matrix, which contains multiple copies of mtDNA. 
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1.2.2 Mitochondrial dysfunction and diseases 

Some of the most common metabolic disorders are caused by mitochondrial 

dysfunction. The first mitochondrial dysfunction was described in the 1962 by Luft and 

colleagues. Since then, the knowledge acquired of mitochondria in health, disease, and aging 

exponentially grew. Mitochondria play an essential role in the regulation of metabolism and 

energy production and mitochondrial dysfunction generally results from dysfunction of the 

mitochondrial oxidative phosphorylation (OXPHOS) system. Mutations in both 

mitochondrial and nuclear genes encoding subunits of mitochondrial respiratory chain 

complexes, proteins involved in their import and assembly or enzymes that control 

mitochondrial DNA replication, transcription or translation all lead to the development of 

mitochondrial diseases (Leonard and Schapira, 2000, Viscomi and Zeviani, 2020). In 

humans, mitochondrial disorders are a genetically heterogeneous group of diseases, caused 

by mutations in mitochondrial and nuclear DNA. Depending on where the gene defect is 

located, mitochondrial diseases can be inherited from an autosomal chromosome, the 

X-chromosome, or maternally. Besides that, mitochondrial diseases can appear in any organ 

system as highlighted in Figure 1.3 (Suomalainen and Battersby, 2018). 

The mitochondrial genome has an excessive mutation rate. The mutation rate varies between 

10- to 17-fold higher than seen in nuclear DNA (Ingman et al., 2000). The main mtDNA 

modifications are neutral polymorphisms (Ingman et al., 2000). The first pathogenic mtDNA 

mutations were identified in 1988 (Holt et al., 1988, Wallace et al., 1988). Since then, over 

250 pathogenic mtDNA mutations have been characterized in the “Human Mitochondrial 

Genome Database” (Tuppen et al., 2010).  

In mtDNA diseases, the patients are often heteroplasmic, meaning that they have two 

different mtDNA populations in the same cell or tissue. A heteroplasmic person will develop 

a disease just if the mutant mtDNA reaches a certain threshold that varies with both tissue 

and mutation type, usually in the range 50 to 100% (Ylikallio and Suomalainen, 2012). 

Examples for most common mtDNA diseases are mitochondrial diseases with onset in early 

infancy like the Leigh syndrome (LS). LS is a progressive neurodegenerative disease, which 

predominantly affects the brainstem, diencephalon, and basal ganglia and it is caused by 

failure of oxidative metabolism and a variety of different genetic defects affecting either the 

mitochondrial or nuclear genome (Tuppen et al., 2010).  
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There are also reports of classic phenotypes caused by mtDNA deletions, for example 

Kearns–Sayre syndrome (KSS) and Pearson syndrome (PS). The Pearson syndrome is a rare 

disorder of infancy characterized by sideroblastic anemia with pancytopaenia and exocrine 

pancreatic failure. KSS is a disorder caused by single, large-scale deletions (Maceluch and 

Niedziela, 2006). Patients often develop other neurological complications including 

cerebellar ataxia, cognitive impairment, and deafness, as well as non-neurological features 

of cardiomyopathy, complete heart block, short stature, endocrinopathies, and dysphagia 

(Maceluch and Niedziela, 2006).  

There are mitochondrial diseases which are accompanied with oxidative stress. One of the 

five most common is Friedreich's ataxia and antioxidant enzymes such as superoxide 

dismutase (SOD) and glutathione transferase (GST) activity are reduced in these patients 

(Chantrel-Groussard et al., 2001, Tozzi et al., 2002). Other examples include Leber's 

hereditary optic neuropathy (LHON), Mitochondrial encephalopathy with lactic acidosis and 

stroke like episodes (MELAS), Myoclonic epilepsy with ragged-red fibers (MERRF), and 

Lean-Syndrome (LS) (Hayashi and Cortopassi, 2015). 

The major cause of oxidative damage is reactive oxygen species (ROS). However, over the 

last decade, the ROS is being more investigated as a signaling molecule, especially as 

promoters of mitohormesis, in which low, non-cytotoxic concentrations of ROS support 

mitochondrial homeostasis. For example, caloric restriction (CR) and physical exercise can 

induce a mild increase in mitochondrial-derived ROS and have been reported to have a pro-

longevity effect through mitohormesis (Ristow and Zarse, 2010). Thus, a mitohormetic 

response is proposed to be activated by mitochondrial stress in which low concentrations of 

ROS can act as signals to mitochondrial and antioxidant signaling pathways and this 

promotes changes in the antioxidant defense system and mitochondrial dynamics resulting 

in extended lifespan (Palmeira et al., 2019) 

There is also a relationship between mitochondria and aging. On one hand, mitochondrial 

dysfunction contributes to numerous age-related diseases like diabetes, cardiomyopathy, and 

neurodegeneration, on another hand mild reduction of mitochondrial function prolongs the 

lifespan from yeast to mammals (Cristina et al., 2009, Durieux et al., 2011). The lifespan 

extension in C. elegans comes along with slower development, and a smaller body and brood 

size (Palikaras et al., 2015). The impaired mitochondrial function can be achieved either by 

genetic or pharmaceutical interventions in C. elegans (Palikaras et al., 2015). 
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The mechanisms by which mild mitochondrial dysfunction delays aging are not yet 

completely understood, but specific quality control mechanisms like the mitochondrial 

unfolded protein response (UPRmt), autophagy and mitophagy are proposed to play an 

important role (Cristina et al., 2009, Durieux et al., 2011, Palikaras et al., 2015). 

 

 
Figure 1.3 Mitochondrial diseases can appear in any organ 

Figure adapted from (Suomalainen and Battersby, 2018).

 

1.2.3 C. elegans mitochondrial mutants  

Publications of two individual groups drew interest to the role of mitochondrial chain 

dysfunction in lifespan determination. These two studies have shown that RNA interference 

(RNAi) of subunits of some mitochondrial respiratory chain complexes were able to extend 

the lifespan in C. elegans (Dillin et al., 2002, Lee et al., 2003). Later, similar findings were 

reported that a minor mitochondrial dysfunction of the mitochondrial electron transport 

chain (ETC) display a beneficial effect on lifespan in many organisms such as Drosophila 

melanogaster (Copeland et al., 2009) and Surf1-/- mouse, which was the first mouse model 

with increased lifespan (Lapointe and Hekimi, 2008, Agostino et al., 2003).  
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There are many genetic mutants and RNAi defined models of C. elegans with a deficiency 

in one of the electron transport chain components (Butler et al., 2010). Collectively they are 

called mitochondrial mutants (“mit-mutants”). In C. elegans, longevity induced by 

mitochondria dysfunction can be divided into three different groups, according to the way 

the ETC is affected.  

The first group consists of mitochondrial dysfunction created via RNAi which inactivates 

genes either directly or indirectly involved in the functionality of the electron transport chain. 

The second group are “mit-mutants” with genetic mutations in electron transport chain 

regulatory subunits and the third group represents mitochondrial dysfunction induced by 

chemicals which either partially or specifically inhibit electron transport chain activity. 

Oftentimes, the phenotypes studied in C. elegans “mit-mutants” reflect genetic 

mitochondrial disorders in human patients (Ventura and Rea, 2007, Ventura et al., 2006, 

Dancy et al., 2015, Dancy et al., 2014). A study by Hartman et al. in 2001 showed that not 

all “mit-mutants” have increased, but instead also show decreased lifespan (Hartman et al., 

2001). For example, gas-1 encodes a 49 kDa subunit of complex I of the electron transport 

chain and gas-(fc21) mutant is short-lived, has less progeny, shows delayed development 

and is extremely sensitive to oxidative stress (Hartman et al., 2001, Kayser et al., 1999). One 

more example is nuo-6 which encodes the C. elegans orthologous of mammalian 

NUDFB4/B15 subunit of complex I (Yang and Hekimi, 2010). These animals exhibit an 

increased lifespan and an accumulation of mitochondrial ROS (Yang and Hekimi, 2010). 

These two models show that mutations in the same complex can cause two different 

phenotypes. Another example is mutation in a complex II gene, mev-1 which encodes an 

integral membrane protein the C. elegans ortholog of the succinate dehydrogenase 

cytochrome b560 subunit (SDHC in mammals). These animals exhibit shorter lifespan, 

decreased fecundity, increased oxidative damage and hypersensitivity to oxidative stress 

(Ishii et al., 1998, Ishii et al., 2002, Yanase et al., 2002). In turn, the knockdown of complex 

IV subunits has been shown to have a beneficial effect on the lifespan (Lee et al., 2003, 

Suthammarak et al., 2010). The RNAi depletion of cco-1, an orthologue of cytochrome c 

oxidase 4 (COX4), showed an increased lifespan (Durieux et al., 2011).  

In this study we worked with the double mutant isp-1(qm150);ctb-1(qm189) (Fig. 1.4). The 

mutation in iron-sulfur protein isp-1(qm150) of mitochondrial complex III was first 

described in 2001 (Feng et al., 2001). The isp-1(qm150) mutant is characterized by increased 
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resistance to ROS, increased lifespan and decreased mitochondrial respiration 

(Feng et al., 2001). The isp-1(qm150) single mutant has a dramatically defective complex 

III function. Besides, the I:III:IV super-complex is severely disturbed and complex I activity, 

as well as complex I-III activity, is also dramatically impaired (Suthammarak et al., 2010). 

Another complex III mutation affecting cytochrome b, ctb-1(qm189), partly suppresses the 

phenotypes observed in isp-1(qm150) without affecting the longevity phenotype (Feng et al., 

2001).  

The ctb-1(qm189) mutant shows decreased complex III and complex I-III activity, although 

not to the same extent as isp-1(qm150) mutant, while the I:III:IV super-complex is not 

disrupted. But this additional mutation in the cytochrome b, improves complex I and III 

activity and is stabilizing super-complex assembly, which altogether partially suppresses the 

slow development and reproductive features, while the prolonged lifespan is not affected 

(Suthammarak et al., 2010, Dancy et al., 2015, Feng et al., 2001). 

 

 

 

Figure 1.4 The life span of the wild-type, the isp-1 (qm150) mutant and isp-1(qm150);ctb-1(qm189) double mutant 

A) Scheme of electron transport chain, consisting of complex I-V. Deficiency in complex II leads to increased 

mtROS. B) Life span curve of isp-1(qm150) single and isp-1(qm150);ctb-1(qm189) double mutant. 

Figure adapted from (Feng et al., 2001).

 

1.3 Fatty acids  

1.3.1 Fatty acids general features 

Fatty acids are important for membrane biogenesis and energy storage. They serve 

as signaling molecules and modulate growth and development. They are essential 
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components of all living organisms and the fatty acid metabolism mechanisms are conserved 

across species (Towle et al., 1997, Arrese and Soulages, 2010, Letunic et al., 2008). For 

humans, the most important dietary source of fatty acids are vegetable oils, milk products, 

meat products, grains, and fatty fish or fish oils (Watts, 2016). The most common saturated 

fatty acid in animals, plants, and microorganisms is palmitic acid (16:0). Stearic acid (18:0) 

is a minor fatty acid in animals, fungi, and a major component in plants. Fatty acids can be 

saturated and unsaturated. Saturated fatty acids do not have any double bonds between 

carbon molecules. Unsaturated fatty acids can be monounsaturated, meaning they contain 

one C-C double bond or polyunsaturated then they contain two or more C-C double bonds 

(Watts, 2009, Srinivasan, 2015). C-C double bonds in C. elegans are configurated in 

so-called “cis” orientation and are methylene intermitted (Watts, 2016, Watts and Ristow, 

2017, Wallis et al., 2002). Methylene intermitted stands for C-C double bonds that are spaced 

along the carbon chain at stated intervals of three carbons.  

As in all eukaryotes, fatty acids in C. elegans are composed exclusively of even chains of 

saturated and unsaturated carbon-carbon bonds. The major fatty acids are products of 16-, 

18- and 20-carbon chains (Fig.1.5). Fatty acids gained from the bacterial diet are converted 

to triglycerides and turn into the body fat in C. elegans (Watts, 2009, Watts and Browse, 

2002). C. elegans stores fat predominantly as triglycerides (Fig. 1.5). Triglycerides compose 

of three fatty acid chains anchored by glycerol backbone (Srinivasan, 2015, Watts and 

Ristow, 2017). 

 

 
 

Figure 1.5 Abundant C. elegans fatty acids and triglyceride molecule  

A) Structures of abundant C. elegans fatty acids. B) Structure of a triglyceride with the fatty acyl chains. 

Figure adapted from (Watts and Ristow, 2017). 
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1.4 Lipid metabolism 

1.4.1 C. elegans lipid metabolism 

In C. elegans the intestine is the main organ where food absorption, incorporation of 

nutrients into metabolic pathways, fat storage and utilization take place (Srinivasan, 2015). 

While C. elegans does not have adipocytes dedicated to fat storage like in mammals, they 

do store their fats as triglycerides (TAGs) in lipid droplets and yolk 

(Watts, 2009, Srinivasan, 2015). C. elegans synthesizes fatty acids de novo from acetyl-CoA 

(Coenzyme A), but also acquires them from its bacterial diet (Watts, 2009). Triglycerides 

are the main components of lipid droplets. They are localized in the intestine, epidermis, and 

germline of C. elegans. The processes of fatty acid synthesis, elongation, desaturation, as 

well as mitochondrial and peroxisomal ß-oxidation of fatty acids are highly conserved in 

C. elegans (Palgunow et al., 2012).  

As depicted in Figure 1.6, fatty acid de novo synthesis is driven by levels of acetyl-CoA. 

The needed carbon can originate from the glycolysis or ß-oxidation. The limiting step in 

fatty acid de novo synthesis is implemented by acetyl-CoA carboxylase (ACC). Acetyl-CoA 

carboxylase uses CO2 to carboxylate acetyl-CoA to form malonyl-CoA. Malonyl-CoA is 

used for fatty acid de novo synthesis by fatty acid synthase (FAS) and the elongation of fatty 

acids (Witkowski et al., 2011). Malonyl-CoA levels control mitochondrial fatty acid 

β-oxidation by regulating carnitine palmitoyl transferase (CPT) activity. Fatty acid storage 

happens incrementally by conversion of fatty acyl-CoAs into phosphatidic acid, 

diacylglycerol and in the end triacylglycerols (Fig. 1.6). The ß-oxidation of fatty acids can 

fuel ATP synthesis (Ashrafi, 2007, Watts, 2009, Watts and Ristow, 2017).  

C. elegans reproductive larvae, which are feeding and growing, consume nutrients, from 

which they utilize predominantly lipids and proteins and to some extent sugars 

(Erkut et al., 2016). C. elegans larvae metabolize these nutrients through glycolysis and the 

TCA cycle to generate energy. Carbohydrates themselves are broken down into acetyl-CoA 

and can be ultimately stored as fats (Ashrafi, 2007, Watts, 2009, Watts and Ristow, 2017). 

Glycolysis, a relevant energy providing process is highly conserved and well-characterized 

in C. elegans (Yilmaz and Walhout, 2016, Gebauer et al., 2016). It promotes the survival of 

nematodes for example under hypoxic states (LaMacchia et al., 2015).  



  Introduction 

3 

 

In the non-growing state, the dauer larvae, switches into a gluconeogenic mode in which 

metabolism is shifted toward the production of sugars from non-carbohydrate sources. This 

mode depends on the full activity of the glyoxylate shunt (GS), which supports the 

production of trehalose, sugar consisting of two molecules of glucose, from acetate (Fig. 1.6) 

(Erkut et al., 2016, Watts, 2009, Watts and Ristow, 2017). While sucrose, lactose, and 

maltose are the most significant disaccharides in mammalian biology, trehalose is the only 

disaccharide that has been characterized in nematodes (Watts and Ristow, 2017) 

Glucose is synthesized by gluconeogenic enzymes. The genome of C. elegans encodes 

enzymes for the glyoxylate pathway. Acetyl-CoA can be transformed into oxaloacetate and 

this passes into the gluconeogenesis pathway. Contrary to mammals, nematodes 

oxaloacetate can be used as a substrate for gluconeogenesis to produce carbohydrates and 

amino acids (Ashrafi, 2007, Watts, 2009, Watts and Ristow, 2017). 

 

 
Figure 1.6 Lipid metabolism in C. elegans 

Fatty acid synthesis requires acetyl-CoA from citrate that can be derived from glucose or fatty acids. Acetyl-CoA 

is carboxylated by ACC to yield malonyl-CoA. Malonyl-CoA functions as the fatty acid chain extender by FAS 

and regulates β-oxidation, through inhibition of CPT-1. Figure adapted from (Watts, 2009). 
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1.4.2 Lipid droplets general features 

Lipid droplets (LDs) are organelles present in many different organisms including 

mammals, Drosophila, yeast, and C. elegans. LDs are sites where cellular fat storage and 

mobilization are controlled (Mak, 2012). The first observation of triglyceride (TAG) storage 

in cells was reported in a study of Altmann and Wilson in the 1890s (Farese and Walther, 

2009, Walther et al., 2017), while in 1960, the biochemical reactions of the enzymatic 

synthesis of triglycerides were discovered by Kennedy and coworkers (Weiss et al., 1960). 

In mammals, fat is primarily stored in adipose tissue. Mammals have two types of adipose 

tissue, white and brown, where white adipose tissue functions as the main depot for fuel 

storage mammals (Ashrafi, 2007). Lipid droplets store energy in the form of TAGs and 

release free fatty acids by TAG degradation. Moreover, lipid droplets interact with other 

subcellular organelles such as endoplasmic reticulum, mitochondria, lysosome, endosome, 

and autophagosome (Barbosa et al., 2015, Welte, 2015, Yu and Li, 2017, Mak, 2012, 

Olzmann and Carvalho, 2019). The proliferation of white adipocytes and massive TAG 

storage in enlarged lipid droplets during adipocyte differentiation correlate with obesity in 

mammals (Faust et al., 1978, Rodeheffer et al., 2008). 

As already mentioned, the lipid storage capacity of lipid droplets is determined by its volume 

and controlled by the balance between triglyceride synthesis and degradation. This 

regulation is important to enable normal biological functions. Deregulation of these 

processes, may lead to the development of metabolic diseases, such as obesity, diabetes, 

fatty liver, cardiovascular disease, neurogenerative disease and cancer (Welte, 2015, Walther 

et al., 2017). Lipid droplets have a unique structure and are composed of a neutral lipid core 

with triglycerides and sterol esters encapsulated by a monolayer of phospholipids and 

numerous related proteins as represented in Figure 1.7 (Yu and Li, 2017, Olzmann and 

Carvalho, 2019). Phosphatidylcholine (PC) represents the main phospholipids next to 

phosphatidylethanolamine (PE) and phosphatidylinositol (PI). PLIN1 is the first described 

lipid droplet protein, initially identified in mammals, where it plays a key role in regulating 

fasting-induced lipolysis (Yu and Li, 2017).  

Thenceforth, several other types of LD- associated proteins were identified, such as enzymes 

involved in lipid droplet metabolism, neutral lipid synthesis and lipolysis (Yu and Li, 2017, 

Walther et al., 2017). In eukaryotes, lipid droplets are produced de novo from the 

endoplasmic reticulum, where most of the enzymes for triglycerides synthesis are localized. 
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Nascent lipid droplets bud out from the endoplasmic reticulum membrane and form cytosolic 

lipid droplets (Gao and Goodman, 2015, Barbosa et al., 2015).  

 

Also, a majority of C. elegans intestinal fat is stored in lipid droplets. Lipid droplets comprise 

a much-advanced amount of TAGs compared to phospholipids. In worms, well-conserved 

proteins, acyl-CoA synthase-22 (ACS-22) and diacylglycerol acyltransferase 2 (DGAT-2), 

which are required for the generation of lipid droplets, form a complex at the transition point, 

where LDs bud off from the endoplasmic reticulum (Fig. 1.7). C. elegans lipid droplets are 

small, usually in the size range of 1–2.0 µm (Mak, 2012, Srinivasan, 2015, Olzmann and 

Carvalho, 2019, Vrablik et al., 2015, Watts and Ristow, 2017). 

 

 
Figure 1.7 Lipid droplets 

Lipid droplets consist of a core of neutral lipids like triglycerides, steryl esters, and retinyl esters, which is 

enclosed by a monolayer phospholipids and proteins. Lipid droplets bud off from the endoplasmic reticulum and 

the two enzymes DGAT1 and DGAT2 synthesize diacylglycerol. Triglycerides initially gather between the two 

membranes of the endoplasmic reticulum (ER). Figure adapted from (Welte, 2015).

 

1.4.3 Peroxisomes structure and function 

Peroxisomes were first identified as organelles in mammalian cells in 1966 by de 

Duve (De Duve and Baudhuin, 1966). They are single membrane encircled organelles with 

a crystalline core of oxidative enzymes (Lodhi and Semenkovich, 2014). Peroxisomes 

alternate in their structure and stand from 0.1-0.5 µM in diameter (Lodhi and Semenkovich, 
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2014). Peroxisomes play an essential role in metabolic functions in mammalian cells, such 

as removal of reactive oxygen species, synthesis of bile acids, amino acid degradation, 

ß-oxidation of very-long-chain fatty acids, and α-oxidation of branched-chain fatty acids as 

summarized in Figure 1.8 (Lodhi and Semenkovich, 2014, Wanders et al., 2015).  

The two major categories of peroxisomal functions are lipid metabolism and ROS 

metabolism. Both categories are interconnected and need cooperation with other organelles, 

such as mitochondria, endoplasmic reticulum (ER), lipid droplets and lysosomes (Lodhi and 

Semenkovich, 2014). The peroxisomal respiration produces H2O2 and this makes up to 35% 

of total H2O2 in mammalian tissues (Boveris et al., 1972). To deal with the harmful effect of 

ROS, peroxisomes have abundant amounts of a dense crystalline core of antioxidant 

enzymes, like catalases (Fig. 1.8). Catalases, found in most cell types, reduce H2O2 to water 

(Cipolla and Lodhi, 2017, Lodhi and Semenkovich, 2014). Besides H2O2, peroxisomes also 

produce superoxide and nitric oxide radicals (Fransen et al., 2017, Lismont et al., 2015, 

Antonenkov et al., 2010).  

The importance of peroxisomes in human metabolism and development is seen in patients 

with the rare genetic human disease called the cerebrohepatorenal syndrome (CHRS), also 

called the Zellweger syndrome (ZS), which is a fatal autosomal recessive disorder (Brown 

et al., 1982). In this patients, peroxisomal biogenesis is completely or partially lost. Meaning 

patients lack multiple proteins required for the formation, proliferation, and maintenance of 

peroxisomes (Wanders et al., 2015, Brown et al., 1982, Wanders, 2004). Studies showed that 

peroxisomes also play a role in brain development and function since patients with defective 

peroxisomes develop neurogenerative diseases (Berger et al., 2016). Likewise, peroxisomal 

dysfunction has been related to many age-related diseases such as Type-II Diabetes, 

Alzheimer’s and Parkinson’s disease (Fransen et al., 2013).  

Peroxisomal proteins contain one of two peroxisomal targeting signals, PTS1 or PTS2, 

which are recognized by specific receptors that allow them to enter the peroxisomal 

membrane (Wanders, 2004). Peroxisomal proteins are encoded by nuclear genes, and they 

are synthesized in the cytosol, and go through post-translational import (Deori et al., 2018). 

The PTS1 targeting signal is recognized in the cytosol by the receptor PEX5 (Apanasets et 

al., 2014). This receptor-protein complex is localized at the peroxisomal membrane and 

when docking at the peroxisomal membrane, PEX5 releases proteins into the peroxisome 

matrix (Apanasets et al., 2014). Afterwards, PEX5 is monoubiquitinated and is recycled back 
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to the cytosol (Apanasets et al., 2014, Deori et al., 2018). Thus, PEX5 turnover is crucial for 

an immaculate matrix protein import (Apanasets et al., 2014, Deori et al., 2018, Lismont et 

al., 2015, Lodhi and Semenkovich, 2014, Ma et al., 2013). 

To accomplish their role in metabolism, peroxisomes require interactions with other 

subcellular organelles. For example, in adipocytes, peroxisomes are mostly small and 

localize close to lipid droplets (Lodhi and Semenkovich, 2014, Wanders et al., 2015). 

Already in 1982, a study by Moser and co-workers concluded that peroxisomes play a crucial 

role in the fatty acid ß-oxidation (Wanders, 2004, Brown et al., 1982). In humans, most of 

the β-oxidation occurs in mitochondria, but peroxisomes are essential for β-oxidation of 

very-long-chain fatty acids (VLCFA) and α-oxidation of branched-chain fatty acids (Yokota 

et al., 2002, Van Veldhoven and Baes, 2013, Olzmann and Carvalho, 2019). 

Peroxisomes are exclusive sites of yeasts β-oxidation (Lodhi and Semenkovich, 2014). 

Peroxisomes in nematodes were first described by Aueron und Rothstein 1974. In gravid 

adult C. elegans, peroxisomes are mainly found in the gut and the pharyngeal gland (Van 

Veldhoven and Baes, 2013, Yokota et al., 2002). PRX-5 is a C. elegans ortholog of the 

previously described human PEX5, which takes over similar functions (Wang et al., 2013). 

Thieringer and coworkers showed that knockdown of prx-5 leads to an early larval arrest at 

the L1 stage. Worms missing peroxisomes display a developmental blockade similarly to 

what is known from phenotypes of starvation-arrested nematodes (Thieringer et al., 2003).  

Peroxisomes and mitochondria are intimately linked, and the interplay between the two 

organelles is important (Narayan et al., 2016). Mitochondria and peroxisomes both generate 

ROS. When the peroxisomal catalase has a defect, mitochondrial redox balance can be 

interrupted (Hwang et al., 2012, Ivashchenko et al., 2011). Peroxisomes are conserved across 

species and C. elegans constitutes to be a promising model organism to study peroxisomes. 
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Figure 1.8 Peroxisome Structure and Function  

Figure adapted from (Lodhi and Semenkovich, 2014).

 

1.4.4 Comparison of mitochondrial versus peroxisomal ß-oxidation  

Fatty acid ß-oxidation (FAO) is a step-by-step mechanism by which fatty acids are 

catabolized in the cell in four-subsequent reactions (Fig. 1.9). Every ß-oxidation cycle is 

composed of the desaturation of fatty acyl-CoA esters between carbon 2 (C2) and carbon 3 

(C3) resulting in two products: acyl-CoA which is two carbons shorter, and acetyl-CoA or 

propionyl. The next reaction involves the hydration of the formed 2-enoyl-CoA. The third 

reaction consists of the dehydrogenation of 3-hydroxylacyl-CoA, while the last and fourth 

step includes the thiolytic cleavage of 3-oxoacyl-CoA (Watts and Ristow, 2017). 

Whereas reactions two to four are similar in both mitochondria and peroxisomes, the first 

step in peroxisomal FAO is catalyzed by FAD-dependent acyl-CoA oxidase (ACOX) 

(Fig 1.9) (Lodhi and Semenkovich, 2014, Fransen et al., 2017). Electrons from reduced FAD 

(FADH2) are passed directly to molecular oxygen (O2), thus generating heat and H2O2. In 

contrast, the first step in mitochondria is catalyzed by FAD-dependent acyl-CoA 

dehydrogenase (ACAD) and electrons from FADH2 are transported to the respiratory chain 

through the electron transfer flavoprotein (ETF) and the ETF dehydrogenase (ETFDH) 

(Wanders, 2004, Fransen et al., 2017, Van Veldhoven and Baes, 2013). 
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Mitochondria and peroxisomes have different groups of enzymes for each step in the 

ß-oxidation (Wanders, 2004, Wanders et al., 2015). Hence, both organelles have altered 

substrate specificities. In mammals, the peroxisomal ß-oxidation predominantly breaks 

down very-long-chain fatty acids. Very-long-chain fatty acids (VLCF) are fatty acids which 

are > 22 carbons in length. Mitochondrial ß-oxidation is responsible mainly for long, 

medium and short-chain fatty acids (Watts and Ristow, 2017, Fransen et al., 2017).  

Moreover, mitochondrial and peroxisomal ß-oxidation differ in their end products. 

Mitochondria oxidize their fatty acids to CO2 and H2O by the entrance of acetyl-CoA into 

the tricarboxylic acid cycle (TCA) and the reoxidation of NADH and FADH2 through the 

respiratory chain and generate 2 ATP molecules. It has been proposed that products of 

peroxisomal ß-oxidation are shortened fatty acids that are then sent to mitochondria for full 

oxidation (Fransen et al., 2017, Watts, 2009, Watts and Ristow, 2017, Wanders, 2004, 

Wanders et al., 2015). Mitochondrial and peroxisomal β-oxidation systems also vary in terms 

of fatty acyl-CoA import from the cytosol. The uptake of fatty acyl-CoAs throughout the 

mitochondrial membrane needs a carnitine switch system. This carnitine switch system 

comprises of two carnitine palmitoyl transferases (CPT1 and CPT2) and the transporter 

protein carnitine-acylcarnitine translocase (CACT). CPT1 is located in the outer 

mitochondrial membrane, where it replaces CoA for carnitine in the fatty acid, resulting in 

fatty acid carnitine, which is moved across the inner mitochondrial membrane by CACT. 

Then inside the matrix, fatty acid carnitine is converted back to fatty acyl-CoA by CPT2. 

Importantly, carnitine does not seem to be essential for fatty acyl-CoA import into 

peroxisomes (Lodhi and Semenkovich, 2014). 

However, peroxisomes need to reoxidize NADH to NAD+ to continue the ß-oxidation, a 

process that can only be achieved in mitochondria (Fransen et al., 2017). Although the 

mechanism is not fully understood, it has been proposed to include specific NAD(H)-redox 

shuttle, a carrier system in the peroxisomal membrane that catalyzes the switch between 

NADH in the peroxisome and NAD+ in the cytosol (Poirier et al., 2006). Indeed, a 

peroxisomal NAD(H)-redox shuttle has been reported in yeast (Baumgart et al., 1996). This 

NAD(H)-redox shuttle involves a malate-oxaloacetate based redox shuttle for reoxidation of 

peroxisomal NADH (Baumgart et al., 1996). In higher eukaryotes, no peroxisomal 

NAD(H)-redox shuttle has been identified, although some evidence, e.g. the presence of a 

lactate/pyruvate-based redox shuttle, suggest its existence (Baumgart et al., 1996). 
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Figure 1.9 Interplay of mitochondrial and peroxisomal ß-oxidation 

Figure adapted from (Fransen et al., 2017).

 

1.4.5 Lipid peroxidation 

Lipid peroxidation describes a process, where free radicals attack lipids containing 

carbon-carbon double bonds, preferentially polyunsaturated fatty acids (Ayala et al., 2014, 

Conrad et al., 2018). These include linoleic, arachidonic, and docosahexaenoic acids. During 

the process of lipid peroxidation free radicals appropriate electrons from phospholipids, 

leading to their degradation (Gaschler and Stockwell, 2017).  

Lipid peroxidation reaction consists of three key steps: 1. initiation, 2. propagation and 3. 

termination. It results in the formation of lipid peroxides or lipid oxidation products (LOPs) 

(Gaschler and Stockwell, 2017, Conrad et al., 2018). Firstly, initiation is the step where fatty 

acid radicals are produced. Initiators are H2O2 which gets converted into H2O and lipid 

radicals. In cells, this is done using iron and it is called Fenton-reaction. Secondly, in the 

propagation step, the fatty acid radical reacts with molecular oxygen and produces a peroxyl-
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fatty acid radical. This peroxyl-radical reacts with other lipids, starting a constant free radical 

lipid peroxidation chain reaction, so-called autooxidation (Porter, 1986, Gaschler and 

Stockwell, 2017). Both the hydroxyl and peroxyl radicals, can take over the hydrogen from 

the bis-allylic methylene of a membrane polyunsaturated fatty acid (PUFA), producing a 

resonance-stabilized, carbon-centered radical (Gaschler and Stockwell, 2017). This can react 

with molecular oxygen to form a lipid-peroxyl radical ROO.. This lipid-peroxyl radical can 

take over another hydrogen from different bis-allylic methylene, creating a lipid peroxide 

(ROOH) and another carbon-centered radical that reacts with oxygen (Gaschler and 

Stockwell, 2017). If the concentration of radicals is high enough for two radicals to react 

with each other, they will develop a new bond between. Finally, molecules that can donate 

electrons to radical compounds without themselves turning into a radical can stop radical 

propagation (Gaschler and Stockwell, 2017, Conrad et al., 2018, Su et al., 2019). 

The primary function of antioxidants is a defense against uncontrolled lipid peroxidation and 

other oxidative damage. Aldehydes are the major class of lipid peroxide degradation 

products, with 4-Hydroxynonenal (4-HNE) and malondialdehyde (MDA) being the most 

well described (Gaschler and Stockwell, 2017, Yang et al., 2016). Peroxidation of membrane 

lipids is known to extensively alter the physical properties of lipid bilayers. In particular, the 

peroxidation alters lipid-lipid interactions, ion gradients, membrane fluidity, and membrane 

permeability (Catala and Diaz, 2016, Gaschler and Stockwell, 2017, Yang et al., 2016). 
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Figure 1.10 Steps of lipid peroxidation and end products  

Figure adapted from (Gaschler and Stockwell, 2017).

 

1.4.6 Ferroptosis 

Ferroptosis is an iron-dependent non-apoptotic mode of cell death characterized by 

the accumulation of lipid peroxides (Fig. 1.11) (Gao et al., 2016, Gao et al., 2019, Su et al., 

2019, Li et al., 2020). Signs of ferroptosis differ from typical cell death, since the main 

characteristics of typical necrosis, like swelling of the cytoplasm and organelles and crack 

of the cell membrane are not present. Similarly, no characteristics of conventional apoptosis, 

such as cell shrinkage, chromatin condensation, the formation of apoptotic bodies and a 

breakup of the cytoskeleton are shown either (Gao et al., 2016, Yang and Stockwell, 2016, 

Li et al., 2020).  

Ferroptosis also does not have the formation of autophagic vacuoles. Ferroptosis is caused 

by the loss of cellular redox homeostasis. Further, it appears that lipid ROS or peroxides 

instead of cytosolic ROS play more important roles in ferroptosis (Fig. 1.11) (Gao et al., 

2019). Inactivation of glutathione peroxidase 4 (GPX4), an enzyme required for the 

clearance of lipid ROS, can induce ferroptosis even when cellular cysteine and intracellular 

glutathione (GSH) contents are normal. Importantly, it has been recently demonstrated that 

the intracellular metabolic pathway glutaminolysis also plays a crucial role in ferroptosis by 

promoting cellular ROS generation (Gao et al., 2016, Gao et al., 2019). It has been shown 

that during ferroptosis, mitochondria shrinks and shows increased membrane density and 
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reduction or relieving of mitochondrial cristae (Gao et al., 2016, Kagan et al., 2017, Li et al., 

2020). From the biochemical side, if the GSH is depleted and there is a decreased activity of 

glutathione peroxidase 4 (GPX4), lipid peroxides cannot be metabolized by the GPX4-

catalyzed reduction reaction, and Fe2+ oxidizes lipids in a Fenton-like manner, resulting in a 

large amounts of ROS, which further promotes ferroptosis (Yang et al., 2016, Yang and 

Stockwell, 2016, Perez et al., 2019). Ferroptosis mainly involves genetic changes in iron 

homeostasis and lipid peroxidation metabolism, but the specific regulatory mechanisms need 

to be further studied.  

As mentioned before, polyunsaturated fatty acids (PUFAs) are sensitive to lipid peroxidation 

and are one of the essential elements for ferroptosis as shown in Figure 1.10 in the previous 

section (Yang and Stockwell, 2016, Li et al., 2020). Free PUFAs need to be esterified into 

membrane phospholipids and oxidized to convey the ferroptosis signal (Li et al., 2020). 

Vitamin E and coenzyme Q10 can interact with peroxyl radicals to produce peroxide. These 

oxidized lipids can be detoxified by glutathione and glutathione peroxidase 4 (GPX4) and 

additional elements of the cellular antioxidant defense system (Conrad et al., 2018). 

In C. elegans ferroptosis is rarely described, but studies on numerous other organisms and 

conserved pathways present also in worms suggest a likely role. 
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Figure 1.11 Scheme of ferroptosis cascade 

Figure adapted from (Dodson et al., 2019).

 

1.5 Krüppel-like factor-1 

Recently, we identified Krüppel-like factor 1 (KLF-1) as a major regulator of the 

longevity assurance caused by mitochondrial dysfunction in C. elegans. In the mammalian 

system, 17 different members of this family play a significant role in cell homeostasis, 

metabolism, and survival (McConnell and Yang, 2010, Zhang et al., 2011, Wu and Wang, 

2013). Mammalian KLFs play central roles in lipid metabolism and they act as transcription 

key components, responsible for regulating adipocyte differentiation, adipogenesis, and 

obesity (Brey et al., 2009, Altun, 2009). 
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There is no precise mammalian homolog for C. elegans KLF-1. All three C. elegans KLFs, 

KLF-1, KLF-2, and KLF-3, reveal the highest similarity with members of mammalian KLFs 

in their C-terminal C2H2 zinc fingers, with a minor homology in the N-terminal region 

(Hashmi et al., 2008, Zhang et al., 2011, Brey et al., 2009). C. elegans klf-1 is expressed 

mainly in the intestine and to a lesser extent in the hypodermis, and a minority of neurons 

detectable during larval and adult stages (Zhang et al., 2011). We have recently described 

KLF-1 as a mediator of a cytoprotective response that affects longevity induced by mild 

mitochondrial dysfunction (Herholz et al., 2019). KLF-1 activates genes involved in the 

xenobiotic detoxification program, namely cytochrome P450 oxidases (CYPs) and those are 

longevity-assurance factors of mitochondrial mutants (Herholz et al., 2019). We showed that 

the sudden increase in the number of dysfunctional mitochondria in isp-1;ctb-1 mutant 

worms produces a signaling pulse of mtROS, which eases nuclear translocation and the 

activation of the KLF-1 mediated response (Herholz et al., 2019). Further, we demonstrated 

that the KLF-1 activation must be timed to day one of adulthood to support reproduction and 

the life-extending mitohormetic response, observed in “mit-mutants”. The closest homologs 

of C. elegans KLF-1, such as KLF2, KLF4, and KLF5, are also sensitive to oxidative stress, 

and appear to have precisely timed functions in mammalian cardiomyocytes and vascular 

endothelium (Hsieh et al., 2017, Cullingford et al., 2008).  

As mentioned earlier, our study also identified CYPs as direct effectors of the KLF-1 

mediated response that promotes longevity (Herholz et al., 2019). In mammals, cyp 

expression is done by a complex regulation process containing four nuclear transcription 

factors, two different cofactors, and an intricate signaling cascade (Tralau and Luch, 2013). 

Interestingly, mammalian KLFs were also shown to bind the basic transcription element 

(BTE) in different cyp promoters. Therefore, some KLFs probably regulate CYP expression 

(Zhang et al., 1998). We also determined that both KLF-1 and CYPs are required for the 

activation of phase II detoxification genes (Herholz et al., 2019), the majority of enzymes 

belong to the glutathione metabolism (An and Blackwell, 2003).  

The C. elegans transcription factor klf-1 was initially described by Hashmi and coworkers 

in 2008. They investigated the role of KLF-1 in cell death, phagocytosis and fat regulation 

(Zhang et al., 2011, Hashmi et al., 2008). They reported that klf-1 knockdown results in 

increased fat storage in worms, suggesting that loss-of-function of klf-1 leads to disorganized 

fat metabolism, thus increased fat storage (Hashmi et al., 2008). They further observed that 
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older hermaphrodites showed a lower production of progeny and accumulation of apoptotic 

cells upon klf-1 depletion (Hashmi et al., 2008). Additionally, they described that KLF-1 is 

not required for embryonic or germline development since germline, oocytes, and 

spermatheca were unaffected in klf-1 RNAi worms (Hashmi et al., 2008). Another study 

reported that KLF-1 mediates longevity of eat-2 mutant, a genetic model for caloric 

restriction-induced longevity in worms (Carrano et al., 2014). Moreover, they demonstrated 

that WWP-1, a HECT ubiquitin E3 ligase, ubiquitylates KLF-1, which in turn promotes 

dietary restriction-induced longevity. In this model, depletion of klf-1 resulted in increased 

lipid accumulation (Carrano et al., 2014).  

More recently, the role of KLF-2 and KLF-3 in C. elegans lipid metabolism, were also 

reported by a study of Ling and coworkers (Ling et al., 2017). They showed that 

KLF-3 is the main regulator of fatty acid synthesis, lipid secretion, and degradation 

(Ling et al., 2017). KLF-2 plays a comparable role in lipid metabolism but vary in 

quantitative and developmental pattern as compared to KLF-3. Klf-2 expression was 

detected in the intestine, suggesting a possible KLF-2 role in lipid metabolism 

(Ling et al., 2017). Here, they demonstrated that calcium might be the most effective in 

regulating fat storage and klf-2 expression, as high Ca2+ diet decreased klf-2 expression, and 

resulted in reduced fat accumulation (Ling et al., 2017). 
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1.6 Objectives 

As introduced above, lipids are essential components of all living organisms and the 

fatty acid metabolism is conserved across species. We recently identified KLF-1 as central 

transcription factor regulating longevity and beneficial effect of moderate mitochondrial 

dysfunction in C. elegans. Remarkably, lipid metabolism genes were one of the major 

KLF-1 targets in the long-lived mitochondrial isp-1;ctb-1 mutant. Therefore, this study 

focused on the role of lipid metabolism in mitochondrial isp-1;ctb-1 mutants and raises the 

following questions: 

 

1. Why do isp-1;ctb-1 mutant worms have lower lipid levels and what are the major lipid 

metabolism pathways regulating this?  

2. Is the change in lipid metabolism essential for the longevity of the isp-1;ctb-1 mutants? 

3. What is the role of mitochondria and peroxisomal interplay in lipid metabolism of the 

long-lived isp-1;ctb-1 mutant animal? 
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2 Material and methods 

2.1 C. elegans Methods 

2.1.1 Strains and maintenance 

Strains were grown at 20°C on nematode growth media agar plates (NGM) (0,25% 

bacto-peptone, 0,3 % NaCl, 1,7 % agar, 1mM CaCl2, 1mM MgSO4, 25mM KPI buffer pH 

6,5 μg/ml cholesterol, nystatin 25 units/ml) spread with Escherichia coli (E. coli) OP50, 

unless otherwise stated and kept in air-permeable boxes (Brenner, 1974). The following 

strains (Table 1) were used in this study.

 

Table 1 List of strains with respective genotypes used in this study 

Strain  Genotype 

N2, Bristol wild type 

MQ989  isp-1(qm150)IV;ctb-1(qm189) 

WBM170 wbmEx57 [acs-2p::GFP + rol-6(su1006)]. 

ATR4075 isp-1(qm150)IV;ctb-1(qm189);wbmEX57[acs-2p::GFP + 

rol-6(su1006)] 

VS15 hjIs8 [ges-1p::GFP-PTS1] 

NV6 pgst-4::nls-gfp 

ATR1040 isp-1;ctb-1;pgst-4::nls-gfp 

Grx prpl-17::Grx1-roGFP2 

ATR1045 isp-1;ctb-1;prpl-17::GRX-1-roGFP 

HyPer prpl-17::HyPer 

ATR1054 isp-1;ctb-1;prpl-17::HyPer  

ATR4081 N2;pvha-6::klf-1-yfp integrated 

ATR4082 isp-1;ctb-1 pvha-6::klf-1-yfp integrated 

RB675 pmp-4(ok396) IV. 

RB859 Y57A10C.6(ok693) II 

VS24  kat-1(tm1037) II. 

RB1899 F28F8.2(ok2457) V. 

ATR1022 N2; atEx100 [pklf-1::gfp;rol-6(su1006)] 
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2.1.2 Synchronization of C. elegans  

For all experiments, gravid adult worms were synchronized by hypochlorite 

treatment to obtain homogeneous C. elegans populations. Worms were washed off the plates 

and collected in 7ml M9 (20mM KH2PO4, 40 mM Na2HPO4, 80 mM NaCl, 1mM MgSO4). 

Bleaching solution, a mix of 1ml 5mM NaOH and 714µl hypochlorite solution 14%, was 

added. After 10 minutes incubation, by vortexing every 2 min, worms were spun down by 

centrifugation (3000 rpm 1 min). Eggs were washed 3 to 5 times by adding 4.5ml fresh M9 

buffer and spun down by centrifugation, as mentioned before, to get rid of bleaching 

solution. After washing and centrifugation steps eggs were directly pipetted on NGM plates 

and incubated at 20°C.

 

2.1.3 RNAi treatment 

In the year 1998, Fire and coworkers reported that injection of double-stranded RNA 

(dsRNA) into worms leads to exclusive degradation of the corresponding messenger RNA 

(mRNA), known as RNA interference (RNAi). In this study, a standard feeding RNAi 

protocol, with bacteria expressing the desired dsDNA, to produce knock-down phenotypes, 

were used as described previously (Kamath et al., 2003). All RNAi clones were obtained 

from Ahringer RNAi library and verified by sequencing before use (Kamath et al., 2003). 

All clones used for RNAi experiments were transformed into E. coli HT115 strain. Worms 

feeding on a bacterial clone, carrying the empty vector (L4440), were used as control. In 

brief, bacterial cultures were grown in Luria broth media until reaching OD595=0.5. Isopropyl 

β-D-1-thiogalactopyranoside (IPTG) (Applichem, Darmstadt, Germany) was added to a 

concentration of 1mM to induce bacteria for three more hours by shaking at 37°C and seeded 

on NGM plates, additionally containing 100 μg/ml ampicillin, 25 μg/ml tetracycline, 1mM 

IPTG. After 1-2 days, eggs were placed on these NGM plates. That way worms were treated 

from hatching and phenotypes were observed from the first day of adulthood (D1). 
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Table 2 RNAi clones Ahringer RNAi library 

Gene Sequence Location 

klf-1 F56F11.3 III-1J15 

acs-2 F28F8.2 V-10A16 

acs-1 F46E10.1 V-4D12 

acs-3 T08B1.6 V-14L24 

prx-5 C34C6.6 II-6G16 

cpt-1 Y46G5A.17 II-10D09 

cpt-2 R07H5.2 IV-5P12 

 

2.1.4 Lifespan assay 

The purpose of the lifespan assay was to investigate the effect on lifespan of different 

RNAi treatments. Therefore, 100 worms of synchronized populations were used per 

condition and scored every second day. The first day of adulthood (D1) was defined as 

day 1 of lifespan. From that point on worms that escaped the plate, or died due to internal 

hatching or protrusions, were censored.

 

2.1.5 Oxygen consumption 

Oxygen consumption rates were measured using an Oroboros Oxygraph 2k 

(Oroboros Instruments GmbH). In brief, 300 animals on the first day of adulthood were 

manually picked and transferred to non-seeded NGM plates. Worms were washed off the 

non-seeded NGM plates step by step with 500µl M9 and resuspend in 50µl 1M 

mitochondrial respiration buffer (MIB) and poured into the Oxygraph chamber containing 

2ml of MIB. Oxygen consumption was measured at least 20 minutes at 20/25°C and repeated 

at least three times. Data were analyzed using DatLab7 software.  
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Table 3 Mitochondrial respiration buffer pH 7.2 

Reagent PM (g/mol) Amount for 500ml 

Sucrose 342.3 20.54g 

KCl 75.5 1.89g 

Tris-HCl 121.1 1.21g 

EGTA 380.3 0.19g 

KH2PO4 136.1 0.27g 

MgCl2 203.3 0.20g 

BSA 50 mg for 50 ml 

 

2.1.6 Movement assay 

Worms were grown on respective RNAi plates. On day one of the adulthood worms 

were individually picked on non-seeded NGM plates and allowed to settle for a 1 min. 

Following this, the movement was scored as the number of body bends that a worm made 

moving forward or backward, for 3 minutes. Body bends are defined as the times a 

determined region (e.g. head or midbody) reaches the maximum bend during measurement. 

The data were presented as the number of body bends per minute.

 

2.1.7 Pharyngeal pumping 

Worms were grown on respective RNAi plates. On day one of the adulthood worms 

were individually picked on seeded NGM plates. Pharyngeal pumping was scored as the 

number of pumping for 1 minute. At least 15 animals were counted per condition and data 

were presented as pumping per minute. 

 

2.1.8 KLF-1 nuclear localization 

KLF-1 nuclear localization was examined by using ATR4081 and ATR4082 strains. 

Animals were grown from eggs on RNAi plates and were imaged on the first day of 

adulthood. Activation was quantified as “low” when less than 2 nuclei per animal were 

stained, “medium” when 2–6 nuclei were stained, and “high” when more than 6 nuclei were 

observed. Each experiment was repeated at least three times on different days. 
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2.1.9  The klf-1 expression under stress conditions 

As previously described (Herholz et al., 2019) ATR1022 strain was used and grown 

until adulthood on L4440 RNAi NGM plates at 20°C and treated for osmotic stress by 

transferring worms to NGM plates containing 500mM NaCl kept for 20 hours. After 20 

hours animals were washed off the plates using M9 buffer containing 300mM NaCl and 

transferred to L4440 RNAi NGM plates. Heat stress was induced by incubating worms at 

35 °C for 9 hours. For oxidative stress, worms were grown from eggs until adulthood on 

0.1mM paraquat throughout the development or young adults were either transferred to 

16mM paraquat plates for 24 hours. 

 

2.1.10 Determination of peroxisomal network 

To visualize peroxisomes, the VS15 strain was used. Worms were grown until 

adulthood on L4440, cyc-1 or cco-1 RNAi NGM plates at 20°C and were imaged on the first 

day of adulthood. For Western blot experiments, worms were treated with either L4440, 

cyc-1, cco-1, antimycin A and hydrogen peroxide (H2O2) and proceeded as described in 

section 2.2.7 Western Blotting.

 

2.2 Molecular biology and biochemistry 

2.2.1 Standard genotyping PCR 

After crossings worms were genotyped. Single worms were collected in a PCR tube 

stripe, one worm per tube, in 10µl of worm lysis buffer (30 mM Tris pH 8, 8 mM EDTA, 

100 mM NaCl, 0.7% NP40, 0.7% Tween 20, proteinase K 100 µg/ml). After that, worms 

were stored at -80°C for at least 10 min and activation and inactivation of proteinase K was 

performed by exposure to 60°C for one hour and followed by 15 minutes at 95°C in the 

Veriti 96-Well Thermal Cycler. Next, the lysis program (65°C for 1h, 90°C for 15 min) was 

run in the Veriti® 96-well Thermal Cycler (Thermo Fisher, USA). Dream Taq and respective 

primers (Table 4) were used for genotyping experiments in 20 μl reaction volume (2 μl DNA, 

1μl forward primer, 1 μl reverse primer, 3.2µl 1.25mM dNTP mix, 2µl Dream Taq buffer, 

0.1µl Dream Taq polymerase, water to 20μl). The amplified product was digested by BsmAI 

restriction enzyme. Therefore 10 μl of the digestion mix (0.5µl BsmAI Enzyme, 2µl cutsmart 

and 7.5µl water) and 10 μl of the PCR product were filled into a new tube and incubated for 
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4 hours at 55°C. The gel electrophoresis was used to separate the DNA by size and charge 

to identify the genotype of crossed worms.

 

Table 4 Primers used for genotyping 

Allele Primer Restriction 

isp(qm150) Fw 5'-CAAATCGCGAACTTTTCTTCA-3' BsmAI 

 Rv 5'-AACGTCGTGCTCTTCCAACT-3'  

 

2.2.2 Gel electrophoreses 

PCR products were then analyzed by 2% agarose (Roth, Germany) gel 

electrophoresis using Gene Ruler DNA Ladder Mix (Fermentas, Thermo Scientific, 

Braunschweig, Germany) and Ethidium bromide stain (Sigma Aldrich, USA). The gel 

electrophoresis was run with 135V for 30min and extraction Zymoclean Gel DNA Recovery 

Kit (Zymo Research, Germany) was used according to manufacturer’s instructions. 

 

2.2.3 Neutral lipids staining  

BodiPY 498/503 (D2933, Thermo Fisher, Germany) was used to stain neutral lipids 

the major storage compartments, intestine and hypodermis, and in oocytes and embryos. 

Worms were grown till the first day of adulthood on different RNAi treatments. On the day 

of experiment D1 old worms were washed off the plates with M9 and washed additionally 

to remove bacteria. A mixture of 2x MRWB buffer and 2% PFA was added and worms were 

incubated for 1 hour by shaking at room temperature (RT). After 1-hour worms were washed 

twice with M9 buffer to get rid of the mixture. Subsequently, 999 µl M9 + 1µl of 5mM 

BodiPY 498/503 was mixed and 500µl was added and allowed to shake for 1 hour in the 

dark. Afterward, worms were extensively to remove the dye and 10µl was placed on a slide 

and imaged on the green channel immediately. 

 

2.2.4 Lipid absorption assay 

For lipid absorption assay BodiPY C12 500/510 (D3823, Thermo Fischer, Germany) 

was used to trace the fatty acid uptake. Therefore, one day in advance NGM plates were 

seeded with heat-inactivated bacteria. Bacteria were grown as described in chapter 2.1.3, 
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aliquoted in 1ml Eppendorf tubes and heat-inactivated at 65° for one hour by shaking. On 

the day of the experiment, 1ml M9 + 0.75µl of BodiPY C12 500/510 were mixed and 500µl 

of this mixture was seeded on top of the heat-inactivated bacteria. Plates were dried under 

the hood. Meanwhile, worms were washed off the plate, washed again to remove bacteria 

and placed on plates with BodiPY C12 500/510 dye. Plates were kept in the dark and worms 

were imaged after one, three and six hours. NaN3 was used to paralyze the worms for 

imaging.

 

2.2.5 Lipid peroxidation 

For lipid peroxidation, BodiPY C11 581/591 (D3861, Thermo Fischer, Germany) 

was used. One day in advance NGM plates were seeded with heat-inactivated bacteria. On 

the day of experiment 500µl of the fresh mixture of 5 ul BodiPY C11 + 1ml M9 were seeded 

on top of the heat-inactivated bacteria and dried under the hood. In the meantime, day one 

old worms were washed off the plates and washed twice to get rid of bacteria. Animals were 

placed on NGM plates with heat-inactivated bacteria and BodiPY C11 dye. Worms were 

stained 45 minutes in dark. At the stated time worms were washed extensively to remove the 

dye, 100µl M9 + 10 Levamisole were added and incubated by shaking in the dark for 15 

minutes. Finally, 10µl of stained worms were placed on a slide and imaged by red and green 

channels immediately.

 

Table 5 RIPA buffer 

Reagent Concentration Amount 500ml 

Tris-HCl, ph7.4 50mM 25ml of 1M 

NP-40 1% 5ml 

Na-deoxycholate 0.5% 2.5g 

SDS 0.1% 0.5g 

NaCl 150mM 15ml of 5M 

EDTA 2mM 2ml of 0.5M 

NaF 50mM 1.05g 
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2.2.6 Triglyceride Assay Kit  

Quantification of triglyceride was performed by using the Triglyceride Assay Kit as 

described in the EnzyChromTM Triglyceride Assay Kit (Bioassay Systems) manufacturer’s 

instructions. Briefly, synchronized 200–300 worms were collected on the first day of 

adulthood in M9 buffer and lysis buffer was added according to the pellet. Worm pellets 

were frozen in liquid nitrogen and thawed again to tissue lyse in six cycles followed by 

centrifugation at 11000rpm at 4°C. Supernatant was used for the quantification of 

triglycerides which were normalized to total protein content determined using Bradford 

assay (Bio-Rad).

 

2.2.7 Western blotting 

As described in (Herholz et al., 2019) for the protein sample preparation worms were 

collected on the first day of adulthood from at least three full 9 cm plates with M9 buffer. 

Lysis buffer was added according to the pellet and worm pellets were frozen in liquid 

nitrogen. On the day of experiment worm pellets were thawed and tissue lysed in six cycles 

followed by centrifugation of cell debris at 11000 rpm at 4°C for 15 min. The supernatant 

was decanted to fresh Eppendorf tubes and kept on ice. Protein concentration was 

determined by Bradford (Sigma Aldrich) assay. Samples were diluted 1:5 and 10µl of the 

dilution + 250µl of Bradford solution were used to measure the protein concentration. SDS 

page was run by standard technique. In brief, protein samples were loaded in 10% SDS gel 

and run using a 1x Running buffer. First, the gel was running for 15 minutes at 75V and 

proceeded with 150V for 1hour, after samples entered the separating gel. PageRuler 

Prestained Protein Ladder (Thermo Scientific) was used as a size standard. Membrane 

transfer was done by using nitrocellulose membrane-like for standard procedures. For 

primary antibodies, the membrane was blocked with 5% milk or 5% ECL-solution in PBST 

and incubated overnight at 4°C followed the next day with secondary antibodies at room 

temperature for 1 hour. The development of the blots was performed by using ECL solution 

(ThermoFisher, 32106) to visualize protein bands. Western blotting was performed using 

primary antibodies against GFP (1:2000, provided by Jan Riemer), HSC70 (1:2000, Santa 

Cruz sc-7298) and 4-HNE (1:2000, Millipore, AB5605). Secondary antibodies used against 

anti-mouse (1:2000, Sigma-Aldrich, A4416), anti-rabbit (1:2000, Sigma-Aldrich, A6154) 

and anti-goat (1:7000, Sigma-Aldrich, AP106P). 
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Table 6 Recipe for two 10% Separating gels 

Reagent  Amount 

Acrylamide Bisacrylamide 40% (37.5:1) 4.5ml 

Seperating Buffer 4.5ml 

H2O 8.9ml 

Ammonium Persulfate (10%) 100µl 

TEMED 10µl 

 

Table 7 Separating buffer (1.5M Tris-HCl pH 8.6 ) 

Reagent Amount 

Tris base  54.46g 

ddH2O 150 ml 

Adjust pH 8.8 with HCl and add H2O up to 300ml 

 

Table 8 Recipe for two 4% Stacking gels 

Reagent Amount 

Acrylamide Bisacrylamide 40% (37.5:1) 0.9ml 

Stacking Buffer 1.9ml 

H2O 5.1ml 

Ammonium Persulfate (10%) 100µl 

TEMED 10µl 

 

Table 9 Stacking buffer (0.5M Tris-HCl pH 6.8) 

Reagent Amount 

Tris base 12g 

ddH2O 120ml 

Adjust to pH 6.87 with HCl and add H2Oup to 100ml 
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Table 10 10x Running buffer 

Reagent Amount 

Tris base 302g 

Glycine 142g 

SDS 10g 

H2O up to 2L 

 

Table 11 10x Transfer buffer 

Reagent Amount 

Tris Base 30,3g 

Glycine 144,1g 

ddH2O up to 1L 

For 1x Transfer buffer mix 100ml of 10x Buffer with 200ml Methanol 

 

2.2.8 ROS measurements 

Mitotracker Red CM-H2XRos was used. Worms were grown until one day of 

adulthood. The day before, NGM plates were seeded with heat-inactivated bacteria. On the 

day of the experiments, 200μl of 10μM dye solutions were added on top of the bacteria. 

Animals were then added to the plates and incubated for 1 h in the dark. After one-hour 

worms were extensively washed to remove the dye and placed on NGM plates without dye. 

Thereafter worms were imaged. 

 

2.2.9 Oil-Red-O staining 

Fat staining with Oil-Red-O in whole worms to determine neutral lipids amount. In 

brief, two days in advance 0.5g Oil-red-O powder was diluted in 100ml isopropanol and left 

on stirrer for at least two days. One day in advance 2x MRWB buffer was prepared. On the 

day of the experiment, Oil red was diluted to 60% with water and incubated for 1hour 

shaking. Meanwhile, day one old worms were washed off the plates with 1x PBS. After three 

more washing steps, approximal 120µl was left in the tube and 120µl MRWB buffer was 

added. Worms were incubated for 1 hour shaking at room temperature. After that worms 
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were washed with 1xPBS and 1ml of 60% Isopropanol was added and incubated for exactly 

15 min at room temperature. Then 60% Isopropanol was removed, 1ml filtered Oil Red was 

added and worms were incubated overnight shaking in the dark. The next day, the dye was 

removed, 200µl of 1x PBS containing 0,01% Triton X-100 was added and worms were 

immediately imaged. 

 

Table 12 2x MRWB buffer 

Reagent Concentration 

KCl 160mM 

NaCl 40mM 

Na2EGTA or EGTA pH 8.0 14mM 

Spermidine-HCl 1mM 

Spermine 0.4mM 

Na-PIPES pH 7.4 30mM 

Mercaptoethanol 0.2% 

Paraformaldehyde (PFA) 2% 

 

2.2.10 qPCR 

Worms were collected from a 9cm plate and total RNA was isolated with Trizol 

(Invitrogen). DNAse treatment was performed using DNA-freeTM, DNAse and removal 

(Ambion, Life Technologies), according to the manufacturer’s protocol. RNA was 

quantified by spectrophotometry and 0.8μg of total RNA was reversely transcribed using the 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). For each condition, 

five independent samples were prepared. qPCR was performed using the Step One Plus 

Real-Time PCR System (Applied Biosystems), with the following PCR conditions: 3 min at 

95 °C, followed by 40 cycles of 5s at 95 °C and 15s at 60 °C. Amplified products were 

detected with SYBR Green (Brilliant III Ultra-Fast SYBR Green qPCR Master Mix, Agilent 

Technologies). 
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Table 13 Primers used for qPCR-based gene expression analysis 

Genotype Sequence 5’-3’ Application 

acs-2 ATTTCGGGCTGAACAACAAC qPCR 

GGACTTTGATGGGAAGACCA 

acs-1 GATGAACGATTCGGTGAGGT qPCR 

GAGACGACTTGCTGGAGACC 

 

2.2.11 Lipidomics 

Glycerophospholipid (GPL) and triacylglycerol (TAG) species in C. elegans were 

quantified by nano-electrospray ionization tandem mass spectrometry (Nano-ESI-MS/MS) 

with direct infusion of the lipid extract (Shotgun Lipidomics): 

1,500 C. worms were homogenized in 400 µl of Milli-Q water using the Precellys 24 

Homogenisator (Peqlab, Erlangen, Germany) at 6,500 rpm for 30 sec. The protein content 

of the homogenate was routinely determined using bicinchoninic acid. For the analysis of 

GPL species (PC, PE, PI, PS) aliquots of the homogenates being equivalent to 70 µg of 

protein were diluted to 500 µl with Milli-Q water. 1.875 ml of methanol/chloroform 2:1 (v/v) 

and internal standards (144 pmol PC 17:0-14:1, 143 pmol PE 17:0-14:1, 127 pmol PI 17:0-

14:1, 136 pmol PS 17:0-14:1; Avanti Polar Lipids, Alabaster, AL, USA) were added. For 

the analysis of TAG species, separate homogenate aliquots equivalent to 70 µg of protein 

were used, to which 1.875 ml of chloroform/methanol/37 % hydrochloric acid 5:10:0.15 

(v/v/v) and 30 µl of 4 µM d5-TG Internal Standard Mixture I (Avanti Polar Lipids) were 

added. Lipid extraction and Nano-ESI-MS/MS analysis of GPL species were performed as 

previously described (Kumar et al., 2015).The Nano-ESI-MS/MS analysis of TAG species 

is described in (Rashid et al., 2019).

 

2.3 Computer analyses and microscopy 

2.3.1 Microscopy 

Animals were immobilized on 2% agarose pads in 5 mM levamisole buffer in M9 

and imaged using an AxioImager Z.1 epifluorescence microscope, equipped with a 

Hammamatsu camera (OrcaR2) and AxioVision software 4.8. Likewise, the CECAD 
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imaging facility was used to image animals with the Meta 710 Confocal Microscope (Zeiss). 

Images were analyzed using Fiji/ImageJ (National Institutes of Health). 

 

2.3.2 Statistical analyses and graphical representation 

A two-tailed unpaired Student’s t-test was used to determine statistical significance. 

Error bars represent standard error of the mean (SEM). All p values below 0.05 were 

considered significant: p*<0.05, p**<0.01, p***<0.001; p****<0.0001. All statistical 

analyses and generation of graphs were performed in GraphPad Prism 8. (GraphPad 

Software, USA). 
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3 Results 

3.1 Expression of KLF-1 in C. elegans 

3.1.1 The klf-1 expression increases specifically upon oxidative stress and upon 

other types of stresses 

We have previously shown that klf-1 knockdown normalizes the lifespan of the long-

lived isp-1;ctb-1 mitochondrial mutant (Herholz et al., 2019). Since many long-lived 

mutants show resistance to various stresses, we wanted to understand how KLF-1 behaves 

under different stress conditions. Firstly, we investigated whether the klf-1 expression 

changes when worms are exposed to different stresses. For this purpose, we used a strain 

expressing gfp under the klf-1 promoter (Fig. 3.1), which shows the highest activity in the 

gut, muscle, and few neurons. We exposed young adults (D1 – adult day 1) to the following 

stresses: a) osmotic, where worms were transferred to higher concentration of NaCl of 

500mM; b) heat stress, where worms are shifted from the culturing temperature of 20°C to 

35°C for 9 hours; c) paraquat which has been shown to increase reactive oxygen species 

(ROS) levels and thus induce oxidative stress (Wang et al., 2014). While high concentrations 

of paraquat, such as 16 mM used here is toxic for the worms, treatment with a low 

concentration (0.1mM) has been previously shown to increase the lifespan (Yang and 

Hekimi, 2010, Schaar et al., 2015). Our results clearly show that klf-1 expression is affected 

by heat shock and oxidative stress. Even more, the expression level on paraquat seems to be 

dosage dependent. This in accordance to our previous data (Herholz et al., 2019), where the 

levels of klf-1 increase in the mitochondrial isp-1;ctb-1 mutant due to increased ROS 

production as seen in Fig. 3.1 A. 

Next, we investigated the role of KLF-1 in the response of animals to different stresses. To 

this end, the survival of worms during a heat shock or osmotic stress were evaluated 

(Fig 3.1 B and C). The klf-1 knockdown did not affect the survival of wild type and 

isp-1;ctb-1 mutants upon heat stress (Fig. 3.1 B). While isp-1;ctb-1 mutants were more 

tolerant to osmotic stress, compared to wild type worms (Fig.3.1 C), the survival on high 

concentration NaCl significantly decreased when klf-1 was depleted (Fig. 3.1 C). Together, 

these data suggest that KLF-1 has a role in protection against osmotic stress. 
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Figure 3.1 Oxidative stress increases expression of klf-1 

A) Fluorescent images of the strain pklf-1::gfp;rol-6(su1006) expressing gfp under the klf-1 promoter. Young 

adults were exposed to osmotic and heat stress or 16 mM paraquat. For 0.1 mM paraquat, animals were treated 

with the drug during the larval development and imaged on the first day of adulthood. Images were quantified by 

the percentage of survival. B) Quantification of survival of worms under heat stress. C) Quantification of survival 

of worms under osmotic stress. Bars represent mean ±SEM (p*<0.05, p**<0.01, student’s T-test). 
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3.2 Investigation of Triglycerides and the role of KLF-1 

3.2.1 KLF-1 regulates Triglyceride levels in C. elegans 

KLF-1 was proposed to be a regulator of lipid metabolism, as loss of its function 

results in lipid accumulation (Hashmi et al., 2008). As mentioned earlier, we showed that 

KLF-1 is a mediator of a cytoprotective response that commands longevity forced by 

reduced mitochondrial function and increases in mitochondrial ROS production (Herholz et 

al., 2019). KLF-1 promotes genes involved in the xenobiotic detoxification program, 

specifically cytochrome P450 oxidases, which act as longevity-assurance factors of 

mitochondrial mutants. As another group of KLF-1 regulated targets, we identified multiple 

genes involved in lipid metabolism (Herholz et al., 2019). A role of KLF-1 as a regulator of 

the lipid metabolism has previously been suggested by Hashmi and coworkers (Hashmi et 

al., 2008). We thus aimed to further investigate the lipid metabolism in the long-lived 

isp-1;ctb-1 mutant. 

Firstly, we assessed the lipid levels in isp-1;ctb-1 mutants, by staining the worms with Oil-

Red O, a stain that preferentially stains neutral lipids, such as triglycerides (TAGs). 

isp-1;ctb-1 mutants showed low neutral lipid levels that are fully corrected by klf-1 

knockdown (Fig. 3.2 A). The effect of klf-1 deficiency increased lipid levels in both wild 

type and isp-1;ctb-1, further strengthening KLF-1 involvement in the lipid metabolism 

(Fig. 3.2 A). To confirm these results, we next determined levels of lipids extracted from 

wild type and isp-1;ctb-1 mutants in control conditions, and upon 

klf-1 depletion, using the Triglyceride Assay Kit on day one of adulthood animals 

(Fig. 3.2 B). Here, the triglyceride levels in isp-1;ctb-1 mutant were congruent with the 

results in the Oil-Red O staining experiment (Fig. 3.2 A). Upon klf-1 knockdown, the lipid 

levels also came back to those in wild type N2 (Fig. 3.2 B). Conspicuously, the lipids levels 

in wild type N2 upon klf-1 depletion showed upregulation when assayed with Oil-Red O 

staining, while we detected mild decrease when using triglyceride assay kit (Fig. 3.2 B). The 

reason for this discrepancy could be in that Oil-Red O stains all neutral lipids, while the 

assay kit stains only triglycerides. Alternatively, Oil-Red-O is used on the whole worms, 

while for the triglyceride assay kit lipids need to first get extracted.  
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Figure 3.2 KLF-1 regulates lipid metabolism in C. elegans 

Wild type worms N2 and isp-1(qm150);ctb-1(qm189) mutants treated with RNAi targeting klf-1 gene. On day one 

of the adulthood worms were either stained with A) Oil-red O or used for B) Triglyceride assay kit to determine 

lipid levels. Results shown are means ±SEM (p*<0.05, p**<0.01 Students T-test) for three independent biological 

replicates. Data are normalized to the current control. Together with Dr. Marija Herholz. 
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3.2.2 Mitochondrial isp-1;ctb-1 mutants have fewer triglyceride levels, but elevated 

phospholipids 

Since neutral lipid levels were lower, we wanted to understand the global changes in 

lipid composition in isp-1;ctb-1 mutant. Therefore, we analyzed the lipid profiles of wild 

type N2 and isp-1;ctb-1 mutant on the first day of adulthood (D1). This was performed by 

nano-electrospray ionization tandem mass spectrometry with a direct infusion of the lipid 

extract. Figure 3.3 depicts a summary of triglycerides and phospholipids found in 

wild type N2 compared to isp-1;ctb-1 mutant (Fig. 3.3 A). Fatty acids are abbreviated X:Y, 

where X represents the number of carbon atoms, and Y represents the number of double 

bonds (Fig. 3.3 A). Long-chain fatty acids detected have a size of C14 to C20 or higher.  

Our results show that the most common fatty acids present in both wild type N2 and 

isp-1;ctb-1 mutants are C17:1, known as heptadecenoic acid and 18:2, known as linoleic 

acid (Fig 3.3 A). In agreement with Oil-Red O staining and triglyceride assay kit data, the 

isp-1;ctb-1 mutant had overall fewer triglyceride levels (Fig. 3.3 A). Unexpectedly, the 

isp-1;ctb-1 mutant showed a massive increase in phospholipid levels as seen in Figure 3.3B.  

All five classes of phospholipids: phosphatidylcholine (PC), phosphatidylethanolamine 

(PE), phosphatidylinositol (PI) and phosphatidylserine (PS) were significantly increased. 

High upregulation of phospholipids could be explained by an increase in the total amount of 

organellar membranes. Indeed, we have shown that isp-1;ctb-1 mutants increase overall 

mitochondrial mass to compensate for respiration deficiency (Herholz et al., 2019). 
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Figure 3.3 The isp-1(qm150);ctb-1(qm189) mutant has less triglycerides levels, but increased amounts of 

phospholipids A) Triglyceride levels and B) Phospholipid levels. Investigated by mass spectrometry. 15000 worms 

per condition were used. Bars represent mean ±SEM (p**<0.01, p***<0.001, Student’s T-test). Experiments were 

performed together with Susanne Brodesser (CECAD, Lipidomics facility).  
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3.3 Uptake of fatty acids and KLF-1 

3.3.1 Pharyngeal pumping and food intake are decreased in isp-1;ctb-1 mutants  

The decreased amount of lipids in the mitochondrial mutant can either come from a 

decrease in the nutrient uptake and/or increased utilization of lipids. To distinguish between 

the two, we first assayed the feeding behavior of the mitochondrial mutant. In the nematode, 

feeding occurs via rhythmic contractions, pumping of the pharynx, the feeding organ 

(Trojanowski et al., 2016). A decrease in the pumping rate would lead to a decrease in the 

food intake, such as in eat-2(ad1116) mutant, which is commonly used as a model for dietary 

restriction (Lakowski and Hekimi, 1998). Thus, we counted the rate of pharyngeal pumping 

on 15 animals of each genotype on the first day of adulthood. Worms were observed on the 

NGM agar plate and the rhythmic contractions were counted for one minute. We found that 

wild type N2 animals pumped 170 times per minute, whereas the isp-1:ctb-1 mutant animals 

just pumped 100 times per minute (Fig. 3.4 A). Thus, the pharyngeal pumping was 

significantly decreased in isp-1;ctb-1 mutants. Remarkably, upon klf-1 RNAi, pharyngeal 

pumping of isp-1;ctb-1 mutant is mildly, but significantly improved (Fig. 3.4 A). This data 

indicates that KLF-1 suppresses pharyngeal pumping in the isp-1;ctb-1 mitochondrial 

mutant, but since the effect of KLF-1 on pharyngeal pumping is only mild, it cannot explain 

the differences seen in the lipid levels. 

To further investigate this, we fed worms with GFP-expressing bacteria. This allows us to 

better visualize the feeding of the worms. Gravid adult worms of wild type N2 and 

isp-1;ctb-1 mutants were plated on seeded NGM plates with a confluent lawn of GFP-

expressing bacteria. Animals were allowed to feed for 15 min and after that worms were put 

on a slide and anesthetized with NaN3. Images of a whole worm using a GFP filter were 

taken. A significant decrease in uptake of GFP-expressing bacteria in the isp-1;ctb-1 mutant 

was observed (Fig. 3.4 B).  
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Figure 3.4 Pharyngeal pumping and food intake is decreased in isp-1;ctb-1 mitochondrial mutant 

A) Pumps per minute were counted for wild type N2 and isp-1(qm150);ctb-1(qm189) mutants on day one of 

adulthood. Worms were grown on NGM plates with either control L4440 or klf-1 RNAi. 

B) Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were feed with OP50 bacterial strain expressing GFP. 

Worms were imaged by AxioImager Z.1 epifluorescence microscope and images were analyzed by ImageJ. 

N=15 animals were counted per condition. Bars represent mean ±SEM (p*<0.05; p***<0.001; p****<0.0001, 

Student’s T-test). 

  



  Results 

26 

 

3.3.2 The isp-1;ctb-1 mitochondrial mutant shows delayed uptake of fatty acids 

Next, we determined the uptake of fatty acids. Here, BodiPY C12, a fluorescent fatty 

acid analog has been used to follow lipid trafficking for six hours. Animals were grown until 

the first day of adulthood and were moved from RNAi NGM plates to fresh plates, containing 

the fluorescent dye BodiPY C12. The fluorescence of worms was measured after one, two, 

three and six hours.  

The isp-1;ctb-1 mutants initially (1 – 3h) showed a delayed uptake of fatty acids (Fig. 3.5). 

However, after six hours isp-1;ctb-1 mutants on control conditions reached the lipid uptake 

level like wild type N2 worms (Fig.3.5). Upon klf-1 depletion, the uptake of fatty acids 

increases immediately after one and two hours in the isp-1;ctb-1 mutant animals (Fig. 3.5). 

These data indicate that the presence of KLF-1 suppresses the uptake of fatty acids in 

isp-1;ctb-1 mutant animals. 

 

 
Figure 3.5 Lipid absorption assay using BodiPY C12 fluorescent fatty acid analog 

Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were grown on NGM plates with either L4440 or klf-1 

RNAi. Uptake of fatty acids was analyzed by feeding worms with specific dye BodiPY C12 and images were taken 

by AxioImager Z.1 epifluorescence microscope with a magnification of 5x. Images were analyzed using ImageJ.  

Bar represents mean ±SEM (p**<0.01, p***<0.001; p****<0.0001 Student’s T-test).  
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3.4 Gene expression in isp-1;ctb-1 mitochondrial mutant upon klf-1 depletion 

3.4.1 Microarray data of mitochondrial-and peroxisomal ß-oxidation genes 

As mentioned earlier, we previously performed a microarray analysis of the 

isp‐1;ctb‐1 mutant animals at day five of adulthood. Next to the detoxification pathway, the 

second most changed pathway was lipid metabolism. Expression of many of these genes was 

changed in the KLF-1 dependent manner (Herholz et al., 2019). Figure 3.6 lists the genes 

involved in both mitochondrial and peroxisomal FAO in isp-1;ctb-1 mutant normalized to 

wild type levels upon klf-1 knockdown. One of the genes whose expression was mostly 

altered are two acyl-CoA synthetases that prime fatty acids for peroxisomal and 

mitochondrial FAO, ACS-1 and ACS-2 respectively (Fig. 3.6 A and B). Their expression 

changed in the KLF-1 dependent manner. Acyl-CoA synthases catalyze the conversion of 

free fatty acids to acyl-CoA derivates as a step preceding fatty acid oxidation in both 

mitochondria and peroxisomes.

 

 
Figure 3.6 Microarray data of isp-1(qm150);ctb-1(qm189) mutants upon control or klf-1 RNAi  

Microarray data of isp-1(qm150);ctb-1(qm189) mutants on day five of adulthood. A) presents microarray data of 

the peroxisomal ß-oxidation (left) and B) presents microarray data of the mitochondrial ß-oxidation (right). Red 

represents which genes are downregulated. Additional analysis of microarray data from (Herholz et al., 2019). 
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3.4.2 Acyl-CoA synthases acs-2 and acs-1 are upregulated in mitochondrial 

isp-1;ctb-1 mutant 

In agreement with microarray data, our qPCR data indicate that genes encoding for 

mitochondrial and peroxisomal acyl-CoA synthase acs-2 and acs-1 respectively, are highly 

overexpressed in the isp-1;ctb-1 mitochondrial mutant in comparison to wild type N2, on 

day one of adulthood (Fig 3.7 A and B). In wild type N2 worms, acs-2 is almost not 

expressed at all, on day one of adulthood. Only after klf-1 depletion, the expression of acs-2 

in wild type N2 animals was observed (Fig. 3.7A). The expression of acs-1 decreases upon 

klf-1 knockdown, in wild type N2 worms compared to control conditions (Fig. 3.7B).  

KLF-1 deficiency impairs the expression of acs-2 and acs-1 in isp-1;ctb-1 mitochondrial 

mutant. In wild type N2 animals klf-1 knockdown enhances the expression of acs-2 but 

reduces the expression of acs-1. In conclusion, these data suggest that mitochondrial mutants 

increase the expression of genes involved in FAO, in a KLF-1 dependent manner. However, 

the CHIP-seq data did not identify acs-1 and acs-2 as direct targets of the KLF-1 (Herholz 

et al., 2019). Thus, it still remains unclear whether KLF-1 directly or indirectly regulates the 

expression of these genes.  
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Figure 3.7 Expression levels of mitochondrial acs-2 and peroxisomal acs-1 gene 

The expression levels measured by qPCR of A) mitochondrial ß-oxidation gene acs-2 and B) peroxisomal 

ß-oxidation gene acs-1 in isp-1(qm150);ctb-1(qm189) mutant on day one of adulthood. Worms were treated either 

with control L4440 or klf-1 RNAi. Bars represent mean ±SEM (p*<0.05, p**<0.01, p****<0.0001, Student’s 

T-test). 



3.5 Behavioral parameters upon depletion of acs-2 and acs-1 

3.5.1 Pharyngeal pumping improves after acs-2 depletion in isp-1;ctb-1 mutant 

animals 

To understand if priming of fatty acids for mitochondria and peroxisomes was of 

equal importance for longevity and fitness in mitochondrial mutants, we concentrated on 

acyl-CoA synthetases ACS-2 and ACS-1. Initially, we investigated behavioral parameters 

upon deletion of acs-2 and acs-1 genes, in wild type N2 and mitochondrial isp-1;ctb-1 

mutant animals. Firstly, we measured pharyngeal pumping of wild type N2 and isp-1;ctb-1 

mutant animals treated with either control, or acs-2 and acs-1 RNAi on day one of adulthood.  

Overall, Figure 3.8 shows that pharyngeal pumping is significantly improved upon acs-2 

knockdown in both strains. This means that for isp-1;ctb-1 mutant animals, the pharyngeal 

pumping rate upon acs-2 depletion comes back to wild type control levels (Fig. 3.8). The 

knockdown of acs-1 decreased the pumping rate in wild type N2, while the pharyngeal 

pumping rate, of isp-1;ctb-1 mutant animals, stayed unaffected (Fig. 3.8). These data suggest 

that the peroxisomal acyl-CoA synthetase, acs-1, is not essential for the pharyngeal pumping 

in our mitochondrial mutant. 

 

 
Figure 3.8 Pharyngeal pumping is increased in the mitochondrial isp-1;ctb-1 mutant upon asc-2 depletion 

Pumps per minute were counted for wild type N2 and isp-1(qm150);ctb-1(qm189) mutants on day one of 

adulthood. Worms were grown on NGM plates with either control L4440 or acs-2 or acs-1 RNAi. 10 animals were 

counted per condition. Bars represent mean ±SEM (p***<0.001; p****<0.0001, Student’s T-test).
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3.5.2 Uptake of fatty acids upon acs-3 knockdown is increased 

Next, we wanted to see how the effect of acs-1 and acs-2 on pharyngeal pumping 

reflects on the fatty acid uptake. It has been already reported that acyl-CoA synthases are 

crucial for lipid synthesis and breakdown. It has been previously shown by Mullaney and 

co-workers, that acs-3 increases the intestinal uptake of fatty acid and thus is crucial for lipid 

synthesis and breakdown (Mullaney et al., 2010). Thus, we decided to use acs-3 depletion 

as a positive control for fatty acid uptake. On day one of adulthood, worms were imaged 

after one, three and six hours of feeding with BodiPY C12. Wild type N2 worms reach their 

maximum uptake after six hours of feeding (Fig. 3.9). As shown before, the isp-1;ctb-1 

mutant in control condition has a lower uptake and reached its maximum also after six hours 

(Fig. 3.9). 

The acs-3 knockdown repaired the fatty acid uptake of isp-1;ctb-1 mutants during the first 

hour. This advantage is lost after three hours already and reached the same uptake rate as 

isp-1;ctb-1 control conditions (Fig. 3.9). Upon acs-2 depletion, we could not observe any 

significant difference to isp-1;ctb-1 control conditions, despite the increased pharyngeal 

pumping. On the other hand, upon acs-1 depletion isp-1;ctb-1 mutant worms have a 

significantly decreased uptake of fatty acids after the dedicated time points (Fig. 3.9). The 

effect of acs-3 on fatty acid uptake clearly uncouples the decreased fatty acid uptake in 

mitochondrial isp-1;ctb-1 mutant from pharyngeal pumping. These data also strongly 

implicate ACS-1 in this process.  
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Figure 3.9 Lipid absorption assay using BodiPY C12 fluorescent fatty acid analog upon ACS knockdowns  

Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were grown on NGM plates with either L4440 or acs-2, 

acs-1, and acs-3 RNAi. Uptake of fatty acids was analyzed by feeding worms with specific dye BodiPY C12 and 

images were taken by AxioImager Z.1 epifluorescence microscope with a magnification of 5x. Images were 

analyzed using ImageJ. Bar represents mean ±SEM (p*<0.05, p**<0.01, p***<0.001; p****<0.0001 Student’s 

T-test).

 

3.5.3 Respiration deteriorates after depletion of peroxisomal genes  

Next, we determined metabolic and behavioral parameters of wild type N2 and 

isp-1;ctb-1 mutant animals upon acs-2 and acs-1 depletion. Figure 3.10 compares respiration 

and movement of wild type N2 and isp-1;ctb-1 mutant animals, upon knockdown of 

mitochondrial- and peroxisomal ß-oxidation genes acs-2 and acs-1 on day one of adulthood.  

Surprisingly, when blocking enzymes that prime fatty acids for mitochondrial ß-oxidation 

by knocking down acs-2, basal respiration and movement increased in both wild type N2 

and isp-1;ctb-1 mutant animals compared to control conditions (Fig 3.10 A). Likewise, the 

movement of both strains increased significantly (Fig. 3.10 A).  

Contrary, depletion of acs-1 leads to impaired respiration and movement in isp-1;ctb-1 

mutant animals, while wild type N2 worms remain not affected at all (Fig. 3.10B). To further 

confirm peroxisomal effect on these parameters, we depleted prx-5, encoding a protein that 

is important for the import of peroxisomal proteins. This decreased respiration in both wild 

type N2 and isp-1;ctb-1 mitochondrial mutant animals (Fig. 3.10 C). Here however, the 

movement of either worm strain was not affected (Fig 3.10 C). 
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Figure 3.10 Knockdown of peroxisomal genes decrease respiration and movement 

Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were treated with RNAi targeting either L4440 or acs-2, 

acs-1 or prx-5 gene. 300 animals were assayed per condition for basal respiration and 10 animals were assayed per 

condition for movement. Oxygen consumption and movement were analyzed on the first day of adulthood (D1). 

Bars represent mean ± SEM (p*<0.05, p**<0.0, p***<0.001; p****<0.0001, Student’s test).

 

Taken together, depletion of mitochondrial acs-2 resulted in improved basal respiration and 

movement, an indicator of health status, of wild type N2 and isp-1;ctb-1 mutant animals. In 

contrast, depletion of peroxisomal genes, resulted in a massive decrease of basal respiration 

in isp-1;ctb-1 mutant animals and worms move slower and look sicker. These data indicate 

that mitochondrial mutant worms need intact peroxisomal function for maintaining normal 

function and fitness.
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3.5.4 The acs-3 depletion results in increased respiration of mitochondrial 

isp-1;ctb-1 mutant animals 

Since lipid metabolism is strongly coupled to overall energy status, we wanted to see 

to which extent the increased fatty acid uptake changes observed upon acs-3 knockdown 

could affect the metabolic and behavioral parameters of wild type N2 and isp-1;ctb-1 mutant 

animals. Firstly, we measured the respiration rate in control conditions and upon acs-3 

knockdown. As expected, isp-1;ctb-1 mutant animals had decreased respiration in basal 

conditions that was normalized upon acs-3 depletion. (Fig 3.11 A). The knockdown of acs-

3 did not have an impact on the wild type N2 animals (Fig. 3.11 A). Remarkably, the lower 

movement rates in isp-1;ctb-1 mutant animals remained unchanged, whereas RNAi of 

acs-3 leads to raised body bends in the wild type N2 worms (Fig. 3.11 B).

 

 
Figure 3.11 Oxygen consumption measurements and movement assay upon acs-3 knockdown 

Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were treated with RNAi targeting acs-3 gene. Three times 

300 animals were assayed per condition for basal respiration and 10 animals were assayed per condition for 

movement. A) Oxygen consumption and B) movement were analyzed on the first day of adulthood (D1). 

Bars represent mean ± SEM (p*<0.05, p**<0.01, p****<0.0001 Student’s test). 
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These results indicate that the movement defect could be uncoupled from the mitochondrial 

respiration rate in isp-1; ctb-1 mutant animals, questioning our current understanding of 

cause-consequence in “mit-mutants”. However, they should also be taken with caution, as 

the respiration rate decrease observed in this analysis was not as strong as previously 

detected, suggesting potential issues with the strain or the analysis, hence should be repeated.

3.5.5 Depletion of peroxisomal genes mediate the longevity of mitochondrial 

isp-1;ctb-1 mutant animals 

Next, we elucidated the role of Acyl-CoAs ACS-2 and ACS-1 in longevity assurance, 

of mitochondrial isp-1;ctb-1 mutant animals compared to wild type N2. In addition to 

acs-1, we included the knockdown of prx-5 which is required for peroxisomal import 

(Thieringer et al., 2003). Chlorpromazine (CPZ), a peroxisomal ß-oxidation inhibitor was 

also used (Weeks et al., 2018). Our results show that peroxisomal genes depletion and CPZ 

treatment suppressed the long-lived phenotype in the isp-1;ctb-1 mitochondrial mutant, but 

do not affect wild type lifespan (Fig. 3.12). 

In contrast, the depletion of mitochondrial acyl-CoA synthetase ACS-2 did not show any 

effect on wild type N2 or isp-1;ctb-1 mitochondrial mutant lifespan. Therefore, these results 

demonstrate that peroxisomal lipid metabolism is essential for longevity in mitochondrial 

mutant animals.  
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Figure 3.12 Peroxisomal genes suppress the longevity of isp-1(qm150);ctb-1(qm189) mutant without affecting the 

lifespan of the wild type worms. Lifespan curves of wild-type animals (left) and isp-1(qm150);ctb-1(qm189) mutant 

(right) grown their whole life on control L4440 or acs-2, acs-1 and prx-5 RNAi plates or plates containing 25µM 

chlorpromazine (CPZ). 100 worms were counted per condition at 25°C.  
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3.5.6 Depletion of mitochondrial carnitine acyltransferase 1 (CPT-1) improves 

respiration in mitochondrial isp-1;ctb-1 mutant 

To further elucidate the role of mitochondrial beta-oxidation on the fitness of 

mitochondrial mutant, we investigated CPT-2 and CPT-1, carnitine palmitoyl transferases 

which catalyzes the step in long-chain fatty acid import from the cytoplasm into the 

mitochondrial matrix for further ß-oxidation, and KAT-1, a 3-Ketoacyl-coA thiolase, which 

catalyzes the last step of mitochondrial fatty acid oxidation (Berdichevsky et al., 2010, 

Sebastián et al., 2009, Violante et al., 2010). 

 

 
Figure 3.13 Respiration and movement are not affected upon depletion of mitochondrial ß-oxidation genes.  

 

A 

B 

C 
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Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were treated with RNAi targeting either L4440 or cpt-1,  

cpt-2 or kat-1 gene. 300 animals were assayed per condition for basal respiration and 10 animals were assayed per 

condition for movement. Oxygen consumption and movement were analyzed on the first day of adulthood. 

Bars represent mean ± SEM (p*<0.05, p**<0.0, p***<0.001; p****<0.0001, Student’s test). 

 

We checked for metabolic and behavioral parameters in wild type N2 and isp-1;ctb-1 

mitochondrial mutant worms on day one of adulthood. Remarkable, if genes encoding 

proteins involved in mitochondrial ß-oxidation are knocked down, respiration and movement 

partially increase, or stayed unchanged in wild type N2 and isp-1;ctb-1 mutant animals 

(Fig.3.13). The depletion of cpt-1 leads to enhanced basal respiration in isp-1;ctb-1 mutant 

animals. The wild type N2 stays unaffected but shows improved body bends in the 

movement assay, while the movement of isp-1;ctb-1 remains constant (Fig. 3.13 A).  

The same applies to knockdown of kat-1, no changes are detected in the basal respiration 

and movement of wild type N2 and isp-1;ctb-1 mitochondrial mutant (Fig. 3.13 C). This in 

agreement with our previous results obtained upon acs-2 depletion, suggesting that 

downregulation of mitochondrial fatty acid oxidation has a beneficial effect on isp-1;ctb-1 

mutant animals (Fig. 3.13 B). 

 

3.5.7 ACS-2 enhances and ACS-1 depreciates triglyceride levels in mitochondrial 

isp-1;ctb-1 mutant animals 

Next, we quantified triglyceride levels of wild type worms N2 and isp-1;ctb-1 mutant 

animals on control (L4440), or plates containing RNAi targeting either acs-2, and acs-1 

gene. Figure 3.14 shows that in isp-1;ctb-1 mutant worms the triglyceride levels increased 

significantly after the depletion of acs-2. Intriguingly, acs-1 RNAi shows the opposite effect 

and leads to a further decrease in triglycerides levels. These results go hand in hand with the 

lower take up of fatty acids (Fig. 3.9). Wild type N2 did not show any difference in all tested 

conditions (Fig. 3.14).  
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Figure 3.14 Mitochondrial isp-1;ctb-1 mutants reveal decreased TAG levels upon acs-1 depletion 

Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were treated with RNAi targeting L4440 or acs-2 or 

acs-1 gene. On day one of adulthood EnzychromeTM Triglyceride assay kit was used to determine triglyceride 

levels. 1000 worms per condition were used. Bars represent mean ± SEM (p*<0.05, p**<0.01, Student’s T-test). 

 

3.6 Investigation of behavioral parameters in peroxisomal mutant animals 

3.6.1 Respiration decreases in peroxisomal mutant pmp-4(ok396) and daf-22(ok693) 

Thus far, our results reveal that knocking down peroxisomal genes in mitochondrial 

isp-1;ctb-1 mutant resulted in a shorter lifespan, decreased respiration and movement. To 

further dissect the peroxisomal role in the context of mitochondrial dysfunction, we used 

mutant strains: pmp-4(ok396) (peroxisomal membrane protein) and daf-22(ok693) 

(peroxisomal ß-oxidation protein). Here we again tested metabolic and behavioral 

parameters to determine if reciprocally, also peroxisomal mutants depend on mitochondrial 

function.  

Therefore, we treated our peroxisomal pmp-4 and daf-22 mutants with RNAi targeting the 

cyc-1 gene. Cyc-1 encodes the cytochrome c reductase, a component of complex III of the 

electron transport chain and its depletion increases longevity in C. elegans (Cristina et al., 

2009). This is important to understand if the effect of peroxisomal fatty acid oxidation is 

universal for mitochondria dysfunction or is specific for our isp-1,ctb-1 mutant strain. 
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Figure 3.15 Oxygen consumption and movement of peroxisomal pmp-4(ok396) and daf-22(ok693) mutants 

Wild type N2 and pmp-4(ok396) and daf-22(ok693) mutants were treated with RNAi targeting either L4440 or 

cyc-1 gene. 300 animals were assayed per condition for basal respiration and 10 animals were assayed per 

condition for movement. A) Oxygen consumption and B) movement were analyzed on the first day of adulthood 

(D1). Bars represent mean ± SEM (p*<0.05, p***<0.001; p****<0.0001, Student’s test).

 

Interestingly, basal respiration was significantly and strongly impaired in peroxisomal 

pmp-4 and daf-22 mutants compared to wild type N2 worms even in control conditions 

(Fig. 3.15 A). The depletion of cyc-1 has influenced the basal respiration of both wild type 

N2 and peroxisomal daf-22 mutant significantly, while pmp-4 peroxisomal mutant just 

displays a mild, not significant decrease in basal respiration (Fig. 3.15 A). The decrease in 
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the respiration was not reflected in the change of movement in both strains on the first day 

of adulthood (Fig. 3.15 B). However, upon cyc-1 RNAi the movement rate declined strongly 

in all strains, as shown in Figure 3.15 B.

 

3.7 Determination of peroxisomal dynamics 

3.7.1 Peroxisomal mass in intestinal cells is increased after depletion of 

mitochondrial electron transport chain genes cyc-1 and cco-1 

We next sought to further understand the importance of peroxisomes in 

mitochondrial dysfunction. To visualize peroxisomes, we used a strain expressing gfp with 

a peroxisomal targeting sequence PTS1, under gut specific ges-1 promotor. This strain has 

been shown to be useful in observing and estimating the changes in peroxisomal network 

upon different external and internal stimuli (Weir et al., 2017). To examine the changes in 

peroxisomal dynamics upon mitochondrial dysfunction, worms were treated with either 

L4440 or RNAi targeting mitochondrial electron transport chain cyc-1 (UQCR4 subunit of 

complex III – cytochrome C reductase) and cco-1 (COX5B subunit of complex IV – 

cytochrome C oxidase) genes. Additionally, worms were exposed to Antimycin A (inhibitor 

of complex III).  

In Figure 3.16 A images of the different conditions are shown. Although size of peroxisomal 

vesicle did not change significantly upon different conditions we detected a significant 

increase in the peroxisomal numbers, shown as the number of vesicles, in long-lived models 

of mitochondrial dysfunction triggered by cyc-1- and cco-1 depletion (Fig. 3.16 B). 

Mitochondrial dysfunction caused by treatment with complex III inhibitor antimycin A, also 

increased peroxisomal amount (Fig. 3.16 B).  

Further confirmation of these results came from the analysis of GFP levels on the Western 

blot. Worms were again treated either with L4440, cyc-1, cco-1, antimycin A and this time 

also with hydrogen peroxide (H2O2). Interestingly, Western blot analysis did not show any 

change in the GFP levels upon either drug treatment (Fig. 3.16 C). When genes of 

mitochondrial electron transport chain cyc-1 and cco-1 were depleted, we detected a stronger 

GFP signal (Fig. 3.16 C), suggesting a link between mitochondrial dysfunction and changes 

in peroxisomal dynamics. 
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Figure 3.16 Number and size of peroxisomes in C. elegans intestinal cells 

A) Representative fluorescent images of a strain expressing gfp under the ges-1 promoter. Animals were treated 

with either L4440 or RNAi targeting cyc-1 and cco-1 gene or Antimycin A and imaged by Meta 710 confocal 

microscope (Zeiss) with a 20x objective on the first day of adulthood. B) Quantification of the number and size of 

peroxisomes in intestinal cells and C) protein levels of GFP in intestinal cells in C. elegans. The number and size of 

peroxisomes and blots were analyzed by ImageJ. Bars represent mean ±SEM (p*<0.05, p**<0.01, p****<0.0001, 

Student’s T-test). 
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3.8 Determining the lipid droplet mass 

3.8.1 Number and size of lipid droplets decline after acs-1 depletion 

The major storage compartments of lipid droplets are intestine, hypodermis, oocytes, 

and embryos in C. elegans. In Fig. 3.17 A , we quantified lipid droplets after depleting 

mitochondrial and peroxisomal acyl-CoA synthase acs-2 and acs-1, respectively. In wild 

type N2 and isp-1;ctb-1 mutant animals, we determined number and size of lipid droplets by 

BodiPY 493/503 staining. 

 

 
Figure 3.17 Lipid droplets number and size upon acs-2 and acs-1 knockdown. 

Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were treated with either L4440 control or RNAi targeting 

acs-2 and acs-1 gene and A) imaged by Meta 710 confocal microscope (Zeiss) with a 20x objective. 

B) Quantification of the number and C) the size of lipid droplets were analyzed by ImageJ. Bars represent mean 

±SEM (p*<0.05, p***<0.001; p****<0.0001, Student’s T-test)

 

As expected, isp-1;ctb-1 mutant animals had a smaller amount of lipid droplets compared to 

wild type N2 (Fig. 3.17 B). In wild type N2 worms, depletion of either acs-1 or acs-2 resulted 

in 30% decrease in the number of lipid droplets, although the size was differentially affected 

by either RNAi treatment. (Fig. 3.17B). In the isp-1;ctb-1 mutant depletion of acs-2 resulted 
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in mild, but not significant change in the number of lipid droplets (Fig 3.17 B). Blocking of 

acs-1 lead to a dramatic, 75% loss of the number of lipid droplets in isp-1;ctb-1 

mitochondrial mutant animals (Fig 3.17 B). The size of lipid droplets was not significantly 

affected in isp-1;ctb-1 mitochondrial mutant by depletion of either enzyme (Fig 3.17 B and 

C). Taken together, our results show that the acyl-CoA synthetase ACS-1 is important for 

C. elegans to generate lipid droplets.

 

3.8.2 Lipid droplets number and size increase upon acs-3 depletion 

To understand if the increased lipid uptake affects levels of lipids in tissues, we used 

BodiPY 493/503 to stain lipid droplets in wild type N2 and mitochondrial isp-1;ctb-1 mutant 

animals, to investigate the number and size of vesicles. After treatment with either control 

L4440 or RNAi targeting klf-1 or acs-3 gene, animals were imaged by Meta 710 confocal 

microscopy, on day one of adulthood. Representative images are seen in Figure 3.18 A. We 

observed more and larger lipid droplets in isp-1;ctb-1 mutant worms upon klf-1 and acs-3 

knockdown (Fig 3.18 B). 

 

 

Figure 3.18 The acs-3 depletion affects lipid droplets number and size 
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Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were treated with RNAi targeting klf-1 and acs-3 gene and 

A) imaged on day one of adulthood by Meta 710 confocal microscope (Zeiss) with 20x objective. 

B) The number of lipid droplets per animal and C) the size of vesicles per animal were analyzed by ImageJ. 

Bars represent mean ±SEM (p*<0.05, p**<0.01, Student’s T-test).

 

The number of lipid droplets of wild type N2 animals significantly changed upon klf-1 and 

their size increased upon both klf-1 and acs-3 depletion (Fig. 3.18 B and C).  

These results provide a strong argument that higher lipid uptake upon depletion of ACS-3 

increases size and number of LDs in both, wild type N2 animals and isp-1;ctb-1 mutant 

animals and leave open question if ACS-3 might play further role in the regulation of lipid 

droplet morphology.

 

3.8.3 Acs-3 enhances triglyceride levels in mitochondrial isp-1;ctb-1 mutant animals 

We could further confirm our previous results (Fig. 3.18), using the Triglyceride 

Assay Kit (Fig. 3.19). Taken all together, knockdown of both acs-3 or acs-2 improved 

number and size of the lipid droplets, as well as the uptake of fatty acids in the mitochondrial 

isp-1;ctb-1 mutant.  

 

 

 
Figure 3.19 Knockdown of acs-3 leads to increased triglyceride levels in isp1;ctb-1 mitochondrial mutants  
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Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were treated with RNAi targeting either L4440 or acs-3 

gene. On day one of adulthood EnzychromeTM Triglyceride Assay kit was performed to determine Triglyceride 

levels. 1000 worms were used for each condition. Bars represent mean ±SEM (p*<0.05, p**<0.01, Student’s 

T-test). 

However, this effect seems to be specific for the mitochondrial mutant, since the same 

phenotype was not observed in the wild type N2 animals (Fig. 3.19).

 

3.9 Quantification of the level of lipid peroxidation 

3.9.1 Depletion of acs-2 and acs-1 leads to elevated lipid peroxidation in 

mitochondrial isp-1;ctb-1 mutant worms 

Reactive oxygen species (ROS) are produced by normal physiological processes and 

play important roles in cell signaling and tissue homeostasis (Su et al., 2019). ROS damage 

various cellular components like lipids, proteins, and DNA, and are involved in cancer, 

cardiovascular disease, neurodegenerative disorders and aging (Su et al., 2019). 

The isp-1;ctb-1 mutant animals have increased mitochondrial ROS (mtROS) levels due to 

their deficiency in complex III, which causes a decreased electron flow through respiratory 

complex III. Excessive ROS can lead to oxidative damage, that further leads to peroxidation, 

mainly of membrane lipids, through a process named lipid peroxidation 

(Kwiecien et al., 2014).  

To monitor lipid peroxidation levels, we used BodiPY C11 dye and stained wild type N2 

and isp-1;ctb-1 mutant animals after treatment with either L4440 control or with RNAi 

targeting acs-2 and acs-1 genes on day one of adulthood. Images were taken by Meta 710 

confocal microscope (Zeiss) (Fig 3.20 A). The ratio between green- and red channel were 

used to quantify oxidized lipids. Depletion of acs-2 and especially acs-1 lead to a massive 

upregulation of oxidized lipids, in isp-1;ctb-1 mutant animals (Fig. 3.20 B). 
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Figure 3.20 Lipid peroxidation increases in isp-1(qm150);ctb-1(qm189) mutant upon acs-1 RNAi 

Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were treated with RNAi targeting either L4440 or acs-2, 

acs-1 gene. On the first day of adulthood worms were feeding with the fluorescence dye BodiPY C11 for one hour 

in the dark and A) Representative images by Meta 710 confocal microscope (Zeiss) with a 20x objective. 

B) The quantification of the ratio between green and the red channel was determined by using ImageJ. 

Bars represent mean ±SEM (p*<0.05, p****<0.0001, Student’s T-test). 
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3.9.2 Peroxisomal mutant animals show elevated lipid peroxidation after cyc-1 

depletion 

We show that in particular depletion of peroxisomal acyl-CoA synthase acs-1 

resulted in massive upregulation of oxidized lipids, in isp-1;ctb-1 mutant animals. To 

investigate if peroxisomal dysfunction on its own leads to increased lipid peroxidation we 

repeated the staining for lipid peroxidation in our mutants pmp-4(ok396) and daf-22(ok693) 

and wild type N2 upon in control conditions or cyc-1 depletion. While the peroxisomal 

mutant animals do not show any increase in lipid peroxidation on its own, the depletion of 

cyc-1 revealed the strong upregulation of oxidized lipids in both, peroxisomal mutant 

animals, but also wild type N2 (Fig. 3.21).  

 

 
Figure 3.21 Lipid peroxidation in peroxisomal mutants pmp-4(ok396) and daf-22(ok693) 
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Wild type N2 and peroxisomal mutants pmp-4 and daf-22 were treated with RNAi either targeting the L4440 or 

cyc-1 gene. On day one of the adulthood worms were feeding with the fluorescence dye BodiPY C11 and were 

imaged by Meta 710 confocal microscope (Zeiss) with a 20x objective. The quantification of the ratio between 

green and the red channel was determined by using ImageJ. Bars represent mean ±SEM (p****<0.0001, Student’s 

T-test). 

 

3.9.3 4-Hydroxynonenal levels are not changed in isp-1;ctb-1 mutant animals 

Aldehydes like 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), are the 

major class of lipid peroxide degradation products (Kwiecien et al., 2014). The 4-HNE levels 

were detected by Western blotting in wild type N2 and isp-1;ctb-1 mutant animals, in control 

conditions, and upon treatment with acs-2 and acs-1 RNAi (Fig. 3.22). Although the Western 

blot analysis suggested that there might be an increase in 4-HNE signal upon deletion of 

acs-1, in both wild type N2 and isp-1;ctb-1 mutant animals (Fig. 3.22 A) further 

quantification did not confirmed this initial observation (Fig. 3.22 B).

 

 
Figure 3.22 4-Hydroxynonenal levels in wild type N2 and isp-1(qm150);ctb-1(qm189) mutant 

Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were treated with either L4440 or RNAi targeting acs-2  and 

acs-1 gene. On day one of adulthood protein pattern was analyzed by ImageJ. A) 4-HNE protein levels determined 

by western blot. B) Quantification of protein levels. Bars represent mean ±SEM. 



3.9.4 Enhanced 4-Hydroxynonenal levels in peroxisomal mutant animals 

To investigate level of 4-HNE in peroxisomal FAO mutants we again used the 

pmp-4(ok396) and daf-22(ok693) mutant animals. Worms were treated with either control 

L4440 or RNAi targeting cyc-1 gene, and proteins were isolated at day one of adulthood. 

This analysis showed elevated 4-HNE levels in peroxisomal mutant animals already in 

control conditions (Fig. 3.23 A). The cyc-1 depletion caused further increase in 4-HNE levels 

in all strains, with stronger effect in peroxisomal mutant animals (Fig. 3.23 A). Since we just 

ran two samples per condition to visualize it on one blot, we could not do proper statistics, 

but the blot reflect the trend seen in the 4-HNE protein pattern (Fig. 3.23 B).

 

 
Figure 3.23 4-Hydroxynonenal levels in wild type N2 and peroxisomal mutants pmp-4(ok396) and daf-22(ok693) 

Wild type N2 and peroxisomal pmp-4(ok396) and daf-22(ok693) mutants were grown on NGM plates containing 

RNAi targeting L4440 or cyc-1 gene. On day one of adulthood protein levels were analyzed by ImageJ. 

A) 4-HNE protein pattern by western blot. Actin was used as a control. B) Quantification of pattern levels. 

Bars represents mean ±SEM. 



 

3.9.5 Vitamin E reverses upregulation of oxidized lipids in mitochondrial 

isp-1;ctb-1 mutant animals 

Previous studies described that a soluble form of antioxidant Vitamin E, called 

α-tocopherol, protects against H2O2 induced lipid peroxidation (Kwiecien et al., 2014). 

Therefore, we tested this by growing wild type N2 and isp1;ctb-1 mutant worms on NGM 

plates containing 200ul/ml Vitamin E. Young adult worms at first day of adulthood were 

grown in either control conditions or upon RNAi against acs-1, stained with the lipid 

peroxidation sensor BodiPY C11. Animals were imaged by confocal microscope and lipid 

peroxidation levels were quantified by ImageJ software. Our results confirm that the 

depletion of acs-1 leads to the substantial upregulation of oxidized lipids that can be fully 

corrected by addition of Vitamin E (Fig. 3.24) 

 

 
Figure 3.24 Lipid peroxidation upon Vitamin E treatment 

Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were grown on NGM plates containing RNAi targeting 

L4440 or acs-1 gene ± 200 ul/ ml Vitamin E. On day one of the adulthood worms were feeding with the fluorescent 

dye BodiPY C11 and were imaged by Meta 710 confocal microscope (Zeiss) with a 20x objective. 

The ratio between green and the red channel was determined by using ImageJ. Bars represent mean ±SEM 

(p**<0.01, p****<0.0001), Student’s T-test. 
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3.10 Investigation of oxidative damage  

3.10.1 isp-1;ctb-1 mutant shows specific ROS increase upon acs-2 depletion 

To test if increased level of lipid peroxidation is a product of increased ROS 

production we first tested if acs-1 or acs-2 depletion influence ROS production in 

isp-1;ctb-1 mutant animals. 

MitoTracker Red CMH2XROS is a reduced, nonfluorescent dye that fluoresces upon 

oxidation. We used this dye as a marker for mitochondrial ROS (mtROS) production. Day 

one old wild type and isp-1;ctb-1 animals were used and stained. As we previously reported 

(Herholz et al., 2019), due to hormetic effect of KLF-1 activation, isp-1;ctb-1 worms show 

decreased ROS levels (although in this case not significant due to high variation in control 

animals) (Figure 3.25). Remarkably, upon depletion of acs-2, isp-1;ctb-1 mutants showed 

increased mtROS levels, while acs-1 showed no effect (Fig. 3.25).

 

 
Figure 3.25 Mitochondrial ROS increases upon acs-2 RNAi  

Wild type N2 and isp-1(qm150);ctb-1(qm189) mutants were grown on NGM plates containing RNAi targeting 

L4440 or acs-1 gene. On day one of the adulthood worms were fed with bacteria containing the dye Mitotracker 

red CM-H(2)XROS and imaged by AxioImager.Z1 (Zeiss) on a 5x objective. Bars represent mean ±SEM 

(p**<0.01, Student’s T-test).
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3.10.2 ACS-1 does not affect mitochondrial isp-1;ctb-1 mutants cytosolic H2O2 and 

redox potential 

We further determined the origin of the oxidative stress signal. Back and coworkers 

established Caenorhabditis elegans strains carrying the genetically encoded fluorescent 

biosensors HyPer for the detection of hydrogen peroxide (H2O2) and Grx1-roGFP2 for 

detection of the glutathione redox potential (Back et al., 2012). Hyper is a peroxide specific 

sensor protein. When Hyper interacts with H2O2, it passes through a conformational change 

resulting in a ratio matric shift (Back et al., 2012). If there is an increase in peroxide levels, 

one can monitor the oxidation/reduction ratio and quantify the cytosolic H2O2 production. 

Worms were grown on NGM plates containing RNAi targeting the L4440 or acs-1 gene. On 

day one of the adulthood animals were imaged by Meta 710 confocal microscope (Zeiss) 

with a 20x objective. We observed that in the isp-1;ctb‐1 mutant animals compared to wild 

type N2 worms show reduced levels of cytosolic H2O2 in control conditions (Fig. 3.27A). 

This appears to be ACS-1 independent. 

For the glutathione redox potential, we used the Grx1-roGFP2 reporter. As mentioned 

Grx1-roGFP2 is a radiometric biosensor that specifically detects GSH redox potential. On 

the other hand, Glutathione is an antioxidant peptide and several GSH-linked antioxidant 

enzymes catalyze the reduction of H2O2 by using Glutathione as the donor (Back et al., 

2012). However, we found that oxidized/ reduced ratio was increased in isp-1;ctb-1 mutant 

animals compared to wild type N2 (Fig. 3.26 B). We could not notice a change in reduced 

levels of cytosolic H2O2 nor differences in the GSH redox potential levels in the 

mitochondrial isp-1;ctb-1 mutant after depletion of peroxisomal acyl-CoA synthase 1. These 

suggest, that even though GSH redox potential levels in the mitochondrial isp-1;ctb-1 mutant 

are changed, this seems to be acs-1 independent. 
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Figure 3.26 Isp-1(qm150);ctb-1(qm189) mutants reveal a decrease in cytosolic H2O2, but increased redox imbalance 

Worms were grown on NGM plates containing RNAi targeting L4440 or acs-1 gene A) Wild type N2 and 

isp-1(qm150);ctb-1(qm189) mutant expressing HyPer were imaged at day one of adulthood and levels were 

analyzed by the change in fluorescence between oxidized and reduced HyPer. 

B) Glutathione redox potential was assessed by Grx-roGFP in wild type N2 and isp-1(qm150);ctb-1(qm189) mutant 

on the first day of adulthood. Both strains were imaged by Meta 710 confocal microscope (Zeiss) with a 10x 

objective. Bars represent mean ±SEM (p*<0.05, p***<0.001; Student’s T-test). 
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3.10.3 ACS-1 depletion results in high translocation of KLF-1 to the nucleus 

We recently showed that KLF-1 activation is mediated by redox signaling 

(Herholz et al., 2019). Under normal conditions, most of KLF-1 is localized in the cytosol, 

and upon increased mitochondrial ROS it translocates into the nucleus (Herholz et al., 2019). 

Here, we used C. elegans strain with KLF-1-YFP, expressed under gut-specific vha-6 

promoter, to follow nuclear localization of KLF-1. As we previously showed (Herholz et al., 

2019), in the isp-1;ctb-1 mutant we observed persistent KLF-1 localization at day one of 

adulthood compared to wild type N2 under control conditions (Fig 3.27). Remarkably, 

depletion of acs-1 leads to a further increase in already high nuclear localization of KLF-1 

in the isp-1;ctb-1 mutant (Fig.3.27). 

 

 
Figure 3.27 Nuclear Localization of KLF-1 

Nuclear localization of pklf-1::klf-1-yfp in wild type worms N2 and isp-1(qm150);ctb-1(qm189) mutants feeding 

bacteria carrying the L4440 or targeting acs-2 and acs-1 gene. Animals were assayed based on KLF-1 nuclear 

localization as follows: “low” as less than 2 nuclei, “medium” 3–10 nuclei, and “high” where all nuclei were 

stained. Animals were imaged on day one of adulthood. 
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This goes in hand with other findings of this study showing that acs-1 depletion in 

isp-1;ctb-1 mutant leads to decreased longevity, respiration, body movement, and a massive 

increase in lipid peroxidation. In agreement with other results on the beneficial effect of 

acs-2 depletion on isp-1;ctb-1 mutants, we observed decreased KLF-1 translocation to the 

nucleus (Fig 3.27). In wild type worms, depletion of both acs-1 and acs-2 lead to higher 

KLF-1 translocation to the nucleus suggesting that multiple stressors might activate this 

transcription factor (Fig 3.27). 
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4 Discussion  

4.1 KLF-1 in regulating lipid metabolism in C. elegans 

In this study, we presented strong evidence that KLF-1 regulates lipid metabolism in 

C. elegans. This is in agreement with previous observation by Hashmi and coworkers, who 

reported that klf-1 silencing by RNA interference (RNAi) results in an increase in fat storage 

in control worms, suggesting that loss-of-function of this gene might disturb the normal fat 

metabolism and thus increase the fat storage (Hashmi et al., 2008). We showed that a strong 

decrease in the level of neutral lipids in the isp-1,ctb-1 mutant is fully corrected upon klf-1 

knockdown, confirming the findings that KLF-1 regulates neutral lipid levels in C. elegans  

(Fig. 3.2). KLF-1 is mainly expressed in the gastrointestinal tract of the worms, a tissue that 

is also the main site of lipid storage and metabolism of C. elegans, even though some 

expression could be discovered in hypodermal and neuronal cells (Brock et al., 2006). KLF 

proteins are highly conserved among mammals from human to mouse, with many KLFs also 

having homologs in Gallus gallus (chicken), Danio rerio (zebrafish), and Xenopus laevis 

(frog) (McConnell and Yang, 2010). Eight mammalian KLFs including KLF2 to KLF7, 

KLF11, and KLF15 have been reported to have a specific role in adipogenesis (Zhang et al., 

2011). KLF2, KLF6, and KLF15 are expressed in the pancreas, adipose tissue, liver, and 

muscle (McConnell and Yang, 2010). KLF2 and KLF3 were reported to inhibit adipocyte 

differentiation since mice lacking KLF2 or KL3 are more willing to differentiate into 

adipocytes (McConnell and Yang, 2010, Hashmi et al., 2011, Zhang et al., 2011, Zhang et 

al., 2013). For example, both KLF4 and KLF5 bind to a variety of co-factors and 

transcription factors and form complexes that are essential for the differentiation of fat cells 

and can promote obesity (Brey et al., 2009, McConnell and Yang, 2010). The knockdown 

of klf6 has been reported to prevent adipogenesis (McConnell and Yang, 2010, Hashmi et 

al., 2011). In the case of KLF15, it has been described that it regulates adipogenesis and 

energy metabolism in the liver, skeletal muscle, and adipocytes. It contributes to the 

transcriptional activation of mitochondrial acyl-CoA synthetase 2 in skeletal muscle and 

liver (McConnell and Yang, 2010, Hashmi et al., 2011, Zhang et al., 2011, Hashmi et al., 

2013). 

The C. elegans genome encodes three members of KLFs including klf-1 (F56F11.3), 

klf-2 (F53F8.1) and klf-3 (F54H5.4), all of which show high similarity with members of 
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mammalian KLFs (Brey et al., 2009). C. elegans KLFs share the highest sequence similarity 

with mammalian KLFs in their C-terminal C2H2 zinc-fingers, but differ in their 

N-terminal sites (Hashmi et al., 2015). Beside klf-1, the other two members of KLFs in 

C. elegans klf-2 (F53F8.1) and klf-3 (F54H5.4), were also reported to regulate lipid 

metabolism (Zhang et al., 2011, Ling et al., 2017). However, our previous results argue that 

in mitochondrial mutants, KLF-1, and not KLF-2 and KLF-3 play a role in longevity 

assurance (Herholz et al., 2019). 

The role of lipid levels in C. elegans longevity was mainly studied in the context of the 

insulin signaling pathway regulated by the DAF-16/FoxO transcription factor (Ackerman 

and Gems, 2012). Remarkably, mitochondrial mutants or worms under dietary restriction, 

have less fat, but insulin-signaling mutants and germline-lacking animals contain far more, 

yet all of these animals are long-lived. This indicates that there is no easy explanation for the 

correlation between lifespan and lipid content.  

One of the questions we wanted to address is: why the mitochondrial isp-1;ctb-1 mutant 

exhibits less neutral lipids? Firstly, we investigated global changes in the lipid composition 

in isp-1;ctb-1 mutant animals. A general decrease in the level of triacylglycerides (TAGs) 

and an extraordinary increase in the amount of all phospholipids (PLs) was detected in 

mitochondrial isp-1;ctb-1 mutant animals (Fig 3.3). We further focused on triglyceride levels 

and investigated the effect of KLF-1 on food intake and the usage of triglycerides to 

understand the mechanism behind decreased lipid content. Although isp-1;ctb-1 mutant 

animals exhibited delayed uptake of dietary fatty acids, the overall levels were the same and 

not affected by the klf-1 depletion (Fig. 3.5). 

Other studies reported that KLFs are involved in fatty acid biosynthesis, lipid secretion, beta-

oxidation, insulin signaling, and mitochondrial proliferation, but the accurate mechanistic 

pathways behind it are still not fully understood (Hashmi et al., 2013, Hashmi et al., 2015). 

Mammalian KLFs have major roles in lipid metabolism (Hashmi et al., 2015). As introduced 

in C. elegans KLF-3 is the main regulator of fatty acid synthesis, lipid secretion, and 

degradation, while KLF-2 shows a comparable role in lipid metabolism, but vary in 

quantitative and developmental pattern as compared to KLF-3 (Zhang et al., 2011, Ling et 

al., 2017). KLF-3 controls β-oxidation of fatty acids and modification. The depletion of 

klf-3 results in a fat phenotype characterized by extreme fat deposition and large lipid droplet 

formation in C. elegans intestine (Zhang et al., 2011). The klf-2 expression was identified in 
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the intestine, suggesting a possible KLF-2 role in lipid metabolism (Ling et al., 2017). 

Together with our results, there is strong evidence for a key role of KLFs in general and in 

C. elegans lipid metabolism.

 

4.2 Role of peroxisomes in mitochondrial isp-1;ctb-1 mutants 

As we did not observe the difference in the overall lipid intake in the isp-1;ctb-1 

mutant we further focused on the usage of fatty acids. We investigated ß-oxidation next, and 

our qPCR and microarray data revealed two different acyl-CoA synthetases as the most 

upregulated, making them promising-candidates to examine further. Exceptionally, the most 

upregulated genes involved in lipid metabolism encode ACS-1 and ACS-2, acyl-CoA 

synthases expected to prime fatty acids for peroxisomal and mitochondrial FAO, 

respectively. They catalyze the conversion of free fatty acids to acyl-CoA derivates as a step 

preceding FAO in both mitochondria and peroxisomes. Interestingly, loss of acs-1 led to full 

repression of longevity phenotype in isp-1;ctb-1 mutant animals, with only a minor effect 

on the longevity of wild type worms. Further approval for the role of peroxisomes came from 

experiments displaying the depletion of prx-5, the peroxisomal biogenesis factor 5, and 

treatment with chlorpromazine, a drug that blocks peroxisomal biogenesis, results in a 

comparable damaging effect on the longevity of isp-1;ctb-1 mutant animals (Fig 3.12). 

These results thus identified peroxisomal lipid metabolism as fundamental for longevity 

assurance in mitochondrial isp-1;ctb-1 mutant animals. Peroxisomes fulfill numerous crucial 

lipid metabolic functions such as fatty acid beta-oxidation; ether phospholipid biosynthesis, 

and fatty acid α-oxidation (Watkins and Ellis, 2012, Wanders et al., 2010). Almost all these 

functions require that an acyl group, either fatty acid or the acyl side chain of a steroid 

derivative, be thioesterified to coenzyme A (CoA) for subsequent reactions to continue 

(Watkins and Ellis, 2012). This " initiation” reaction, catalyzed by enzymes belonging to the 

acyl-CoA synthetase family, is therefore central for cellular lipid metabolism. However, in 

spite of the relevant understanding of peroxisomal metabolic pathways, little is known about 

the specific peroxisomal acyl-CoA synthetases that participate in these pathways (Watkins 

and Ellis, 2012). The results of this study identified ACS-1, to be essential for the longevity 

of mitochondrial isp-1;ctb-1 mutant animals. We also showed that PRX-5, a putative 
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peroxisomal membrane protein involved in protein import has a similar role in suppression 

of increased lifespan in isp-1;ctb-1 mutants. 

We show that both ACS-1 and PRX-5 are important to sustain respiration in mitochondrial 

isp-1;ctb-1 mutant worms. Our further results demonstrate that ACS-1 has a vital role in 

isp-1;ctb-1 mutant animals. Notably, depletion of acs-1, but not acs-2 decreased overall 

respiration and body movements. Additionally, ACS-1 plays a major role in the suppression 

of increased lifespan and likewise, it has an impact on the uptake of the fatty acids. The 

uptake of fatty acid was slowed down in mitochondrial isp-1;ctb-1 mutant animals in control 

conditions and is further aggravated after acs-1 depletion (Fig.3.9). These all highlight the 

importance of peroxisomes for isp-1;ctb-1 mutant worms to generate lipid droplets 

(Fig. 3.17). However, the exact effect that suppression of acs-1 has on lipid metabolism, 

specifically on TAG levels and lipid droplet size, is currently unclear. 

The increase in acs-1 levels is not exclusive for isp-1;ctb-1 mutant animals. It was also 

observed in our other long-lived models of mitochondrial dysfunction, such as upon cyc-1 

and cco-1 RNAi, who also show increased KLF-1 activation. The increase in acs-1 levels in 

worms upon cyc-1 and cco-1 depletion was accompanied by a strong increase in levels of 

peroxisomes and the state of the fused network (Fig. 3.16). Additionally, mitochondrial 

dysfunction caused by treatment with complex III inhibitor and pro-oxidant antimycin A 

also increased peroxisomal biogenesis, intending a connection between mitochondrial ROS 

production and peroxisomal biogenesis (Fig. 3.16).  

Our data highlight the crosstalk between mitochondria and peroxisomes, especially 

regarding lipid metabolism and shared fatty acid oxidation as central to a response beneficial 

for organismal survival. Accordingly, peroxisomal- and mitochondrial lipid metabolism 

affect each other (Fransen et al., 2017). For example, defects in peroxisome function lead to 

accumulation, of very-long-chain-fatty-acids (VLCFA), like seen in Zellweger syndrome 

patients, which can directly or indirectly lead to mitochondrial dysfunction (Lismont et al., 

2015). Treatment of several cell types, like astrocytes or oligodendrocytes, with carboxylates 

like phytanic acid and pristanic acid, which arise due to peroxisomal dysfunction in α- or 

β-oxidation, has been reported to provoke mitochondrial depolarization, respiratory chain 

dysfunction, oxidative stress and loss of cytochrome c (Schonfeld et al., 2011, Reiser et al., 

2006, Baarine et al., 2012). Vice versa, studies on skeletal muscle reported that impaired 

mitochondrial FAO results in an enhanced peroxisomal FAO (Wicks et al., 2015). 
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Also, mitochondrial and peroxisomal ß-oxidation allocate co-substrates which can again, 

directly, or indirectly alter metabolic activities, among each other. The best example 

represents the last step of peroxisomal ß-oxidation because NADH formed in peroxisomes 

needs to be reoxidized to NAD+ and this solely takes place in mitochondria (Wanders et al., 

2015). Other studies reported, that defects in peroxisomal biogenesis, peroxisomal fatty acid 

metabolism, and peroxisomal antioxidant capacity have harmful effects on mitochondrial 

function (Pascual-Ahuir et al., 2017). Importantly, these failings induce functional 

mitochondrial alterations such as abnormal cristae, depleted membrane potential, and 

respiration rates, increased ROS productions, reduced fatty acids oxidation, DNA alterations 

and an increase in the mass of several organs like brain, liver or kidney (Deori et al., 2018, 

Cipolla and Lodhi, 2017, Pascual-Ahuir et al., 2017, Fransen et al., 2017, Baumgart et al., 

2001). However, both organelles show the ability to share information from one to the other 

through the distribution of biological messengers such as lipids, ROS or other metabolites 

(Fransen et al., 2017). Taken together, isp-1;ctb-1 mutant worms, which have a deficiency 

in complex III of the electron transport chain, need implicitly functional peroxisomes for 

lipid metabolism and are not able to deal with deficiencies in the function of this organelle, 

as mimicked by depletion of acs-1 or prx-5.

 

4.3 Lipid peroxidation in mitochondrial isp-1;ctb-1 mutants 

The depletion of acs-1 in isp-1;ctb-1 mutant animals lead to a mild increase in overall 

neutral lipid levels, but we observed an increase of oxidized lipids accompanied by massive 

upregulation of GST-4, a major antioxidant enzyme in C. elegans with glutathione 

transferase activity. Our data indicate that loss of ACS-1 in isp-1;ctb-1 mutant worms 

induces further massive lipid peroxidation, including the accumulation of 4-Hydroxynonenal 

(4-HNE), one of the end products of lipid peroxidation (Fig. 3.20 and 3.22). Remarkably, 

we did not observe changes in overall O2- or H2O2 production rates, showing that increased 

lipid peroxidation might be the main consequence of decreased peroxisomal fatty acid 

oxidation.  

As already mentioned, peroxisomes are crucial for immaculate functioning of the eukaryotic 

cell. Aside from breaking down fatty acids, the reactive oxygen species metabolism is the 

most important function of peroxisomes, since alterations in peroxisomes result in fatal 
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oxidative damage (Schrader and Fahimi, 2006). Peroxisomes are also provided with multiple 

enzymatic and non-enzymatic antioxidant defense systems that scavenge harmful H2O2 and 

free radicals, like mitochondria (Antonenkov et al., 2010, Lismont et al., 2015). The most 

specified peroxisomal antioxidant enzyme is catalase. Catalase can eliminate H2O2 in a 

catalatic and peroxidative manner (Antonenkov et al., 2010, Lismont et al., 2015). Upon 

oxidative stress, PEX5 the receptor for PTS-1-containing proteins, was observed to lose its 

ability to reutilize and accumulate on the membrane, a feature necessary for an optimal 

peroxisomal protein import (Cipolla and Lodhi, 2017, Deori et al., 2018, Apanasets et al., 

2014, Ma et al., 2013). ROS generated by peroxisomes changes the oxidative state of 

mitochondria and results in mitochondrial fragmentation and cell death (Wang et al., 2013, 

Ivashchenko et al., 2011, Pascual-Ahuir et al., 2017). In the previous chapter phytanic acid 

was mentioned, which accumulates in patients with α-oxidation defects, causes an increase 

in cytosolic Ca2+, mitochondrial depolarization and ROS generation, and leads to cell death 

within a few hours (Reiser et al., 2006, Schonfeld et al., 2011). Studies on isolated 

mitochondria from rat brain and heart show that phytanic acid also enhances the production 

of O2
•− in mitochondria resulting in lower mitochondrial GSH and NADH levels, a decreased 

membrane potential and oxidative modification of lipids and proteins (Schonfeld et al., 

2011). Compared to phytanic acid, pristanic acid has even a stronger cytotoxic effect due to 

a more intense mitochondrial depolarization and stronger production of ROS that leads to 

swelling of mitochondria due to impairment of the mPTP (Lismont et al., 2015). 

Regarding our results, ferroptosis might be relevant in our mitochondrial isp-1;ctb-1 mutant 

animals. Our data confirm that the depletion of acs-1 leads to the extensive upregulation of 

oxidized lipids that can be fully corrected by addition of Vitamin E. Increased lipid 

peroxidation and insufficient capability to reduce lipid peroxides, result in the initiation of 

ferroptosis, a regulated cell death program genetically and biochemically distinct from 

apoptosis and necrosis (Conrad et al., 2018, Yang et al., 2016, Yang and Stockwell, 2016, 

Su et al., 2019).
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4.4 acs-1 suppresses KLF-1 translocation into the nucleus 

Recently, we reported that KLF-1 activates genes involved in the xenobiotic 

detoxification program and identified cytochrome P450 oxidases, the KLF-1 main effectors, 

as longevity-assurance factors of mitochondrial mutants (Herholz et al., 2019). The 

cytochrome P450 oxidases represent, a large family of NADPH-dependent mono-

oxygenases that are mostly involved in the metabolism of fatty acids and lipid signaling and 

oxidation (Riddick et al., 2013, Aarnio et al., 2011). The CYP-35A protein family is widely 

expressed in the C. elegans intestine, which is the major site of fat storage (Imanikia et al., 

2015). Moreover, it has been reported that inactivation of cyp-35 results in a moderated 

accumulation of intestinal fat, hence implying that CYPs are involved in lipid storage 

(Aarnio et al., 2011, Imanikia et al., 2015, Riddick et al., 2013).  

We previously showed that KLF-1 is not involved in the transcription regulation of catalases, 

which are major H2O2 metabolizing enzymes, but that it translocate into the nucleus upon 

increased oxidative stress (Herholz et al., 2019). It is reported that upon improved oxidative 

stress due to peroxisomal deficiency, caused by an imbalance between production and 

accumulation of ROS, and the inability to detoxify the reactive products, an overload of 

reactive oxygen species, particularly H2O2 can escape from the peroxisome and diffuse into 

the surrounding environment (Fransen et al., 2017, Lismont et al., 2015).  

We showed that the expression of ROS scavenging enzyme the cytoplasmic gst-4 is not 

upregulated in isp-1;ctb-1 mutant animals and that the levels even went down upon klf-1 

depletion (Herholz et al., 2019). In C. elegans, transcriptional activation of gst-4 is regulated 

by SKN-1-dependent pathways that are activated by stress (Detienne et al., 2016, Choe et 

al., 2009). The same group reported that gst-4 can also be transcriptionally activated by 

EOR-1, a transcription factor of the epidermal growth factor (EGF) pathway (Detienne et 

al., 2016).  

However, as already mentioned we could not detect any changes in overall O2- or H2O2 

production rates after depletion of acs-1. Instead, these results suggest that not only increased 

mitochondrial ROS and changes in redox state, but also lipid peroxidation can trigger 

KLF-1 translocation to the nucleus
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4.5 Outlook 

To further understand the role of proteins specifically involved in peroxisomal fatty 

acid oxidation one should repeat experiments on isp-1;ctb-1 mutant animals by 

downregulating genes involved in all four steps of peroxisomal FAO acox-1, maoc-1, 

dhs-28, and daf-22. There is evidence indicating that mammalian mitochondrial metabolism 

and ROS generation are a connecting factor in promoting adipocyte differentiation, thus 

directly influencing lipid metabolism. The dynamic of peroxisomal and mitochondrial 

networks can be followed using gut-specific reporter strains. It has been shown that 

mitochondrial mass and activity increases in the cell triggering the production of ROS 

through mitochondrial complex III, resulting in the induction of PPARγ transcriptional 

machinery which is necessary to initiate adipocyte differentiation (Tormos et al., 2011). Our 

preliminary data indicate that direct manipulation of ROS levels by the drugs paraquat or 

antimycin A affects lipid contents in worms. We also showed that depletion of the ROS 

scavenging enzyme, the cytoplasmic GST-4, leads to changes in lipid content in wild type 

worms. However, we still do not know to what extent these alterations and changes in lipid 

metabolism depend on KLF-1. 

Although our initial analyses show that lipid uptake in isp-1;ctb-1 mutant animals over time 

can reach wild type levels, we detected also delayed uptake, that could also influence lipid 

levels in mutant animals, as approximately 80% of fatty acids in worms originate from 

dietary fat. To further address if a decrease in fatty acid uptake might contribute to changes 

observed in isp-1;ctb-1 mutant worms, depletion of acs-3, a long-chain acyl-CoA synthase, 

whose loss causes enhanced intestinal lipid uptake, de novo fat synthesis, and accumulation 

of enlarged, neutral lipid-rich intestinal depots would be of great significance for future 

experiments (Mullaney et al., 2010). Together with the effect on TAG and lipid droplets 

distribution and size, other critical experiments like measurement of mitochondrial 

respiration rate, and effect on the lifespan extension should be repeated, upon acs-3 

depletion.  

Besides its known role in peroxisomal FAO, ACS-1 was proposed to have a role in the 

biosynthesis and activation of monomethyl branched-chain fatty acids (mmBCFAs) 

(Kniazeva et al., 2004). In C. elegans, mmBCFA are found in quite a lot of lipid species, 

including TAGs, PC, and PE, and have a critical role as structural components of 

sphingolipids (Watts and Ristow, 2017). The mmBCFAs are exclusively derived from 
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de novo synthesis because these fatty acids are not present in the E. coli diet and cannot be 

produced from modification of bacterial fatty acids in C. elegans (Watts and Ristow, 2017). 

The increased lipid peroxidation could possibly lead to ferroptosis in mitochondrial 

isp-1;ctb-1 mutant animals upon acs-1 depletion. To test if the loss of peroxisomal function 

in mitochondrial mutants leads to massive lipid peroxidation resulting in ferroptosis, worms 

could be treated with (i) vitamin E; a lipophilic antioxidant; (ii) liproxstatin, a selective 

ferroptosis inhibitor; or (iii) salicylaldehyde isonicotinoyl hydrazone (SIH), lipophilic acyl 

hydrazine; all of which scavenge intracellular iron and mobilize it for extracellular clearance. 

In summary, our results display strong evidence that peroxisomes are important for the 

mitochondrial isp-1;ctb-1 mutant animals for lipid metabolism and longevity assurance. 

Peroxisomal deficiency results in a decrease in lipid levels, respiration, shortened lifespan, 

and a massive increase in lipid peroxidation.  
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