UNTERSUCHUNGEN ZU KOMPLEXVERBINDUNGEN MIT STICKSTOFFREICHEN LIGANDEN UNTER BESONDERER BERÜCKSICHTIGUNG DER f-Elemente

INAUGURAL-DISSERTATION

ZUR

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

> vorgelegt von Roland Pohl aus Bonn

> > Köln 2010

Berichterstatter:

Prof. Dr. A. Klein Prof. Dr. G. Meyer

Tag der mündlichen Prüfung:

02.02.2010

Vorwort

Die vorliegende Arbeit wurde in der Zeit von August 2007 bis Dezember 2009 am Lehrstuhl I des Instituts für Anorganische Chemie der Universität zu Köln durchgeführt.

Herrn Prof. Dr. A. Klein danke ich vielmals für die interessante Themenstellung und die große Freiheit bei der Ausführung dieser Arbeit.

Für die Übernahme des Korreferats und seine großzügige Unterstützung möchte ich Herrn Prof. Dr. G. Meyer danken.

Mein besonderer Dank gilt Herrn Dr. N. Maggiarosa für seine stete Diskussionsbereitschaft über die Chemie und "Gott und die Welt".

Für die Aufnahme der NMR-Spektren danke ich Frau D. Naumann, für die Aufnahme der IR-Spektren und EI-Massenspektren danke ich Frau A. Baum. Ich danke auch Frau Dr. M. Engeser und Herrn Dr. M. Schäfer für die Aufnahme der ESI-MS-Spektren, Frau N. Tosun und Frau S. Kremer für die Durchführung der Elementaranalysen, Frau I. Müller und Herrn Dr. I. Pantenburg für die Durchführung der röntgenographischen Vermessung von Einkristallen.

Herrn J. Wiebke gilt mein Dank für zahlreiche Erläuterungen bei Fragen theoretischer Natur und der Hilfe bei allen LAT_EX-Fragen.

Frau K. Butsch, Herrn A. Uthe und Herrn A. Schueren danke ich für die Aufnahme zahlreicher ESR-Spektren.

Für das stets gute Klima bin ich meinen Laborkollegen Frau S. Nitsche, Herrn R. Lepski und Herrn Dr. N. Mockus sehr dankbar.

Meiner Familie

So eine Arbeit wird eigentlich nie fertig. Man muss sie für fertig erklären, wenn man nach Zeit und Umständen das Mögliche getan hat.

Johann Wolfgang von Goethe, "Italienreise" (1787)

Abkürzungsverzeichnis

Allgemein

ABAN	Amin-bis-acetonitril
ABAT	Amin-bis-acetotetrazolat
Bnz	Benzyl
BT	5,5'-Bitetrazolat
BTB	Bis(tetrazol-5-yl)benzolat
BTT	Bis(tetrazol-5-yl)triazenat
B1MTT	Bis (1-methyltetrazol-5-yl) triazen at
B2MTT	Bis (2-methyltetrazol-5-yl) triazen at
Bu	Butyl
DMF	N,N-Dimethylformamid
DMSO	Dimethylsulfoxid
EDTAN	Ethylendiamintetraacetonitril
H_4EDTAT	Ethylendiamintetra acet otetrazol
H_4EDTA	Ethylendiamintetraessigsäure
Hex	Hexyl
НМРТА	Hexamethylphosphorsäuretriamid
М	Metall
Me	Methyl
PNP	${\rm Bis}({\rm triphenylphosphin}){\rm ammonium}$
R	Organylrest
THF	Tetrahydrofuran

\mathbf{NMR}

Ι	Kernspin
J	Kopplungskonstante
D^P	relative Empfindlichkeit gegenüber Protonen
T^D	Wartezeit zwischen FID und Puls

Inhaltsverzeichnis

1	Einl	eitung		1			
	1.1	Motiva	ation	1			
	1.2	Tetraz	ole	2			
	1.3	Allgen	neine Synthese von Tetrazolen	7			
	1.4	Überga	angsmetallkomplexe mit Tetrazolen	10			
	1.5	Tetraz	ole als energiereiche Materialien	13			
	1.6	Zielset	zung der vorliegenden Arbeit	14			
2	Disk	cussion	der Ergebnisse	16			
	2.1	Bis(tet	trazol-5-yl)benzole	16			
		2.1.1	Darstellung von Barium-bis (tetrazol-5-yl) benzol-Derivaten $\ .\ .\ .$	16			
		2.1.2	Darstellung von Lanthanoid-bis (tetrazol-5-yl) benzol-Derivaten $\ .$.	20			
	2.2	2.2 5,5'-Bitetrazol und 5,5'-Bitetrazolate					
		2.2.1	Darstellung von Barium-5,5'-bitetrazolat	27			
		2.2.2	Darstellung von Lanthanoid-5,5'-bitetrazolaten	29			
			2.2.2.1 Strukturtyp A	32			
			2.2.2.2 Strukturtyp B	35			
			2.2.2.3 Strukturtyp C	37			
		2.2.3	Darstellung eines Actinoid-5,5'-bitetrazolats	40			
		2.2.4	Zusammenfassende Beschreibung der 5,5'-Bitetrazolat-Komplexe $% \mathcal{A}$.	43			
	trazol-5-yl)triazene	44					
		2.3.1	Darstellung von Natrium-bis(tetrazol-5-yl)triazenat	44			
		2.3.2	Darstellung von Lanthanoid-bis (tetrazol-5-yl) triazenaten $\ .\ .$.	46			
	2.4	Organ	ylamin-bis-acetotetrazole	51			
		2.4.1	Versuche zur Darstellung von H_4EDTAT	53			
		2.4.2	Darstellung von $[^{n}$ HexABAT $(SnMe_3)_2$]	58			
		2.4.3	Darstellung von BnzABAT-Derivaten	62			

		2.4.4	Versuche zur Darstellung von Übergangsmetallkomplexen mit dem				
			BnzABAT-Liganden	65			
		2.4.5	Zusammenfassende Beschreibung der Organyl-bis-acetotetrazole $% \mathcal{A}$.	68			
	2.5	Hexal	cis(5-trifluormethyltetrazolyl)titanat(IV)	69			
3	Aus	gangsv	rerbindungen	72			
4	Ana	lyse- u	nd Messmethoden	73			
	4.1	Kernr	esonanzspektren	73			
	4.2	Masse	enspektren	73			
	4.3	DTA/	'TG	74			
	4.4	Eleme	entaranalysen	74			
	4.5	Röntg	genstrukturanalysen	74			
	4.6	ESR-S	Spektroskopie	74			
5	Exp	erimen	iteller Teil	75			
	5.1	Allger	neine Hinweise	75			
	5.2	5.2 Bis(tetrazol-5-yl)benzole					
		5.2.1	Darstellung von Barium-bis(tetrazol-5-yl)benzol-Derivaten	75			
		5.2.2	Darstellung von Lanthanoid-bis (tetrazol-5-yl) benzol-Derivaten $\ .$.	76			
	5.3	5,5'-B	itetrazol und 5,5'-Bitetrazolate	77			
		5.3.1	Darstellung von Mangan-5,5'-bitetrazolat	77			
		5.3.2	Darstellung von Barium-5,5'-bitetrazolat	77			
		5.3.3	Darstellung von Natrium-5,5'-bitetrazolat	78			
		5.3.4	Darstellung von 5,5'-Bitetrazol	78			
		5.3.5	Darstellung von Lanthanoid-5,5'-bitetrazolaten	79			
		5.3.6	Darstellung von Thorium-5,5'-bitetrazolat	80			
	5.4	Bis(te	etrazol-5-yl)triazenate	80			
		5.4.1	Darstellung von Natrium-bis(tetrazol-5-yl)triazenat	80			
		5.4.2	Darstellung von Lanthanoid-bis (tetrazol-5-yl) triazenaten $\ .$	81			
	5.5	Organ	ylamin-bis-acetotetrazole	82			
		5.5.1	Versuche zur Darstellung von H_4EDTAT	82			
		5.5.2	Darstellung von $^n{\rm Hexylamin-bis-aceto}({\rm trimethylstannyl}){\rm tetrazol}$.	83			
		5.5.3	$Darstellung \ von \ Benzylamin-bis-aceto(trimethylstannyl) tetrazol \ .$	83			
		5.5.4	Darstellung von Benzylamin-bis-acetotetrazol	84			
		5.5.5	Darstellung des Natrium-benzylamin-bis-acetotetrazolat	84			

Zus	Zusammenfassung und Ausblick 1					
5.7	Krista	llstrukturdaten	. 88			
5.6	Versue	che zur Darstellung von Hexakis (trifluormethylte trazolyl) titanaten . $\ \ \ \ \ \ \ \ \ \ \ \ \ $	87			
	5.5.8	Darstellung von Kupfer-benzylamin-bis-acetotetrazolat $\ . \ . \ .$.	86			
		Benzylamin-bis-acetotetrazol-Liganden	85			
	5.5.7	Versuche zur Darstellung von Lanthanoid-Komplexen mit dem				
	5.5.6	Darstellung des Barium-benzylamin-bis-acetotetrazolat	85			

6 Zusammenfassung und Ausblick

Literaturverzeichnis

192

Anhang	199
Kurzzusammenfassung	200
Abstract	201
Lebenslauf	202
Erklärung	203

1.1 Motivation

Stickstoffreiche Liganden kann man grundsätzlich in zwei Klassen unterteilen. Zum einen die Liganden, die zu 100% aus Stickstoff bestehen (z.B. N₂, N₃⁻, N₅⁻), und zum anderen Liganden, die nicht zu 100% aus Stickstoff bestehen (z.B. NH₃, N₂H₄). In der ersten Gruppe stellt vor allem das Pentazolatanion N₅⁻ eine Herausforderung dar. Es wurde lange Zeit nur in substituierter Form beschrieben [1–14], und konnte erst durch K. O. Christe et al. 2002 massenspektrometrisch detektiert werden [15]. Das Pentazolatanion

Abbildung 1.1.1: Pentazolatanion, isolobale Analoga und deren bekannte Sandwichkomplexe.

ist isoelektronisch zum Cyclopentadienidanion und könnte ähnliches Koordinationsverhalten gegenüber Metallkationen zeigen. Diese Hypothese wird durch einige theoretische Studien gestützt [16–18], wenngleich auch aufgrund der explosiven Natur des Anions bisher noch keine solche Verbindung dargestellt werden konnte. Das Phosphor-Analogon P_5^- ist allerdings dafür bekannt, η^5 -Koordinationen an Übergangsmetallen auszubilden. So sind Verbindungen wie $[(\eta^5-Cp^*)Cr(\eta^5-P_5)Cr(\eta^5-Cp^*)]$ oder $[PPh_4]_2[(\eta^5-P_5)_2Ti]$ (Abbildung 1.1.1) schon beschrieben worden [19, 20]. Im Hinblick auf die geringere Elektronen-

affinität des Phosphors gegenüber Stickstoff sowie der allgemeinen chemischen Ähnlichkeit von Phosphor und Kohlenstoff erscheint dieses Verhalten verständlich [21]. Tauscht man im Pentazolatanion ein Stickstoffatom durch eine isoelektronische CH-Gruppe aus, so gelangt man zum Tetrazolatanion, welches thermodynamisch um ein Vielfaches stabiler ist. Dies macht Tetrazolate zu interessanten Kandidaten stickstoffreicher Liganden in der Koordinationschemie; deren η^5 -Koordination wurde bereits postuliert [22].

1.2 Tetrazole

Tetrazole sind heterocyklische Fünfring-Verbindungen und bestehen aus einem Kohlenstoff- und vier Stickstoffatomen. Die substituierten Tetrazole können prinzipiell in drei verschiedenen tautomeren Strukturen vorliegen, wobei die nichtaromatische 5,5'disubstituierte Struktur selten vorkommt (Abbildung 1.2.1). Zwischen den beiden aro-

Abbildung 1.2.1: Tautomere Strukturen disubstituierter Tetrazole.

matischen Strukturen besteht die typische annulare Tautomerie, die durch sterische und elektronische Effekte der Substituenten beeinflusst werden kann. Bei den 5-alkylsubstituierten Tetrazolen ist die Protonierung des N1-Atoms bevorzugt (Abbildung 1.2.2) [23]. Auch eine Amino-Imino-Tautomerie ist von Bedeutung für 5-Hydroxy-, 5-Amino- und 5-

Abbildung 1.2.2: Annulare Tautomerie der Tetrazole.

Thioltetrazole, die vorwiegend in der Imino-Form vorliegen [24–26]. Allgemein gilt, dass die Imino-Form dann bevorzugt ist, wenn sie durch intramolekulare Wechselwirkungen stabilisiert werden kann [27, 28]. Dies wird im Falle des 5-N-Acylaminotetrazols durch

Schema 1.2.1: Amino-Imino-Tautomerie bei Tetrazolen.

eine Wasserstoffbrückenbindung zwischen dem Proton an N1 und dem Acylsauerstoff möglich (Schema 1.2.1). Die dritte Tautomerie ist die Ring-Ketten- oder auch α -Azido-Imin-Tautomerie (Schema 1.2.2). Vielfältige Beispiele hierzu beschreibt *R. N. Butler* in einem Übersichtsartikel [29].

Schema 1.2.2: α -Azido-Imin-Tautomerie.

Die physikalischen Eigenschaften substituierter Tetrazole unterscheiden sich stark in Abhängigkeit von der Art des Substituenten, dem Ort der Substitution und der Anzahl der Substituenten. Die Schmelzpunkte der monosubstituierten Tetrazole sinken in der Reihenfolge 5R- \gg 1R- > 2R-Tetrazol. Die 5R-monosubstituierten Tetrazole sind bei 25 °C regelmäßig Feststoffe; lediglich das 5-Trifluormethyltetrazol ist bei dieser Temperatur eine Flüssigkeit. Im Gegensatz dazu sind viele 1R- und 2R-Tetrazole flüssig. Dies liegt hauptsächlich an der fehlenden Möglichkeit, Wasserstoffbrückenbindungen auszubilden.

Das Messen der Schmelztemperatur stößt bei Tetrazolen allerdings auf Schwierigkeiten. Die meisten Tetrazole zerfallen ab Temperaturen von ca. 160 °C unter N₂-Abspaltung oder Umlagerungsreaktionen. Oft erfolgen diese Zersetzungsreaktionen explosionsartig. Besonders empfindlich reagieren z.B. 5-Diazotetrazol, 5-Azidotetrazol oder 1,6-Di(tetrazol-5-yl)hexazadien (Abbildung 1.2.3) [30]. Diese Verbindungen und deren Hydraziniumsalze werden als HEDM (high energy density materials) diskutiert und auf mögliche Verwendung als raucharme Treib- und Explosivstoffe getestet [31]. Gegenüber

Abbildung 1.2.3: 5-Diazotetrazol, 5-Azidotetrazol und 1,6-Di(tetrazol-5-yl)hexazadien.

den 1R- und 2R-substituierten Tetrazolen besitzen 5-monosubstituierte Tetrazole ein acides Proton und sind N-Analoga der Carbonsäuren. Die pK_S-Werte 5-monosubstituierter Tetrazole sowie ihrer Anionen sind mit denen entsprechender Carbonsäuren bzw. Carboxylate vergleichbar [32]. Auf Grund ihrer ähnlichen physikalischen und vergleichbaren pharmakologischen Eigenschaften werden sie auch als Bioisostere der Carbonsäuren und Carboxylate bezeichnet [33]. Die Isosterie im eigentlichen Sinn ist dabei aber kein notwendiges Kriterium der Bioisosterie. Entscheidend ist vielmehr eine nahezu gleiche Molekülgeometrie mit annähernd gleicher Elektronenverteilung bei ähnlichen physikalischen Eigenschaften [34].

Abbildung 1.2.4: Einige 5-monosubstituierte Tetrazole und ihre pK_S -Werte [35].

Die wahrscheinlich erste Tetrazolverbindung wurde im Jahre 1885 von J. A. Bladin beschrieben.

"..... Einwirkung salpetriger Säure auf das Dicyanphenylhydrazin.

Dicyanphenylhydrazin wurde in Schwefelsäure aufgelöst und zu der abgekühlten, concentrirten Lösung Kaliumnitrit nach und nach zugesetzt. Hierbei findet keine Gasentwicklung statt, bald aber erstarrt die ganze Lösung zu einer grauen, aus kleinen Nadeln bestehenden Krystallmasse. Diese Verbindung ist sehr unbeständig; in trockenem Zustande wird sie verharzt, feucht hält sie sich besser, warum es unmöglich ist, dieselbe in einem für die Analyse geeigneten Zustande zu erhalten. Wird die Krystallmasse mit Wasser erwärmt, so schmilzt sie bald unter Gasentwicklung - starker Geruch nach Blausäure wurde erkannt - zu einem braunen Oel, welches beim Erkalten zum grössten Theil erstarrt. Das Reactionsproduct wird durch Aether ausgezogen, und nach dem Abdestilliren des Aethers der Rückstand mit Wasserdämpfen destillirt, wobei ein gelbliches Oel übergeht, welches bald erstarrt. Nach einer Umkrystallisation aus verdünntem Alkohol wird die Verbindung völlig rein in langen, farblosen Nadeln vom Schmelzpunkt 55,5-56° erhalten. Sie ist in Alkohol und in Aether leicht, in Wasser sehr schwer löslich. Die im Exsiccator über Schwefelsäure getrocknete Substanz wurde analysirt. Die Analyse führt also zur Formel $C_8H_5N_5$, und die Verbindung enthält folglich keinen Sauerstoff. Merklich ist der für eine aromatische Verbindung hohe Stickstoffgehalt. \dots [36](Schema 1.2.3)

Schema 1.2.3: Synthese des 2-Phenyl-5-cyanotetrazols.

Die Struktur konnte sieben Jahre später durch *O. Wiedmann* aufgeklärt werden [37]. Es war wiederum *J. A. Bladin*, dem die Darstellung des einfachsten Vertreters dieser Stoffklasse, dem 1H-Tetrazol, gelang. Die Synthese folgt einem komplexen Reaktionsablauf (Schema 1.2.4) analog zu dem bereits bekannten 1,3,5-Triazol [38]. Diese Synthesen veranschaulichen eindrucksvoll die Beständigkeit des Tetrazolrings selbst gegenüber starken Reduktions- und Oxidationsmitteln sowie gegenüber extremen Reaktionsbedingungen.

In den darauf folgenden Jahren wurden mehrere grundlegende Untersuchungen über die Darstellung verschiedener Tetrazole, ihrer physikalischen Eigenschaften und ihrer Reaktivität durchgeführt. Die für zahlreiche Synthesen wichtige Ausgangsverbindung, nämlich das 5-Aminotetrazol, wurde von *J. Thiele* [39] und Mitarbeitern [40, 41] synthe-

Schema 1.2.4: Synthese des 1H-Tetrazols.

tisiert. Von A. Pinner [42–45] und W. Lossen et al. [46–49] sind 5-Aryltetrazole und von M. Freund und T. Paradies [50] Thio-Derivate des Tetrazols dargestellt und untersucht worden. E. Oliveri-Mandalà entwickelte zahlreiche neuartige Synthesen für Tetrazole und untersuchte als erster deren Säure-Base-Verhalten [51]. Von 1914 bis 1937 führte R. Stollè umfangreiche Untersuchungen an Tetrazolen durch [52]. Dennoch waren bis 1947 erst rund 300 Tetrazole bekannt. Einen umfassenden Überblick über die Chemie der Tetrazole bis zum Jahr 1947 gibt der Artikel von F. R. Benson [53].

In den 1960er Jahren erlebte die Chemie der Tetrazole eine Renaissance. Dies lag hauptsächlich an der Bioisosterie der 5-substituierten Tetrazole zu Carbonsäuren; die Anwendung dieser Verbindungen lag hauptsächlich im Bereich der Biochemie und der Pharmakologie. Ein Beispiel für die Austauschbarkeit der Carboxylgruppe durch ein Tetrazol ist die Nikotinsäure und das 5-(Pyrid-3-yl)tetrazol (Abbildung 1.2.5), welches als Anti-Thrombosemittel diskutiert wurde [54]. Aufgrund der oftmals höheren Stabilität

Abbildung 1.2.5: Nikotinsäure und 5-(Pyrid-3-yl)tetrazol.

gegenüber Metabolisierung zeigen Tetrazolverbindungen eine länger anhaltende Aktivität im Körper [55]. Die wohl bekanntesten und wichtigsten biologisch aktiven Tetrazole

sind das Cardiazol und das Losartan (Abbildung 1.2.6). Cardiazol wirkt stimulierend auf das zentrale Nervensystem und wird als Kreislaufstimulanz verwendet. Losartan ist ein Angiotensin-II-Receptor-Blocker und wird meist zur Behandlung von essenzieller Hypertonie (Bluthochdruck) oder chronischer Herzinsuffizienz eingesetzt [56]. Einen Überblick über die Chemie der Tetrazole geben die Artikel von R. N. Butler aus den Jahren 1977 und 1984 [29, 57].

Losartan

Abbildung 1.2.6: Cardiazol und Losartan.

1.3 Allgemeine Synthese von Tetrazolen

Bei der Synthese von Tetrazolen bedient man sich auch heute noch der traditionellen Methoden. Allerdings hat die kommerzielle Verfügbarkeit von löslichen Verbindungen wie Trimethylsilylazid oder Trimethylzinnazid die Synthese wesentlich vereinfacht. Grundsätzlich kann man bei der Synthese von Tetrazolen zwischen solchen Methoden unterscheiden, bei denen nur eine neue Bindung geknüpft wird, und Methoden, bei denen in pericyklischen Reaktionen zwei neue Bindungen geknüpft werden.

Eine Möglichkeit der Synthese, bei der nur eine neue Bindung geknüpft wird, ist die Cyklisierung von Imidoylaziden. Diese Route hat sich bei der Darstellung sowohl von 5- und 1-monosubstituierten als auch von 1,5-disubstituierten Tetrazolen bewährt. Die Bedingungen dabei sind, dass das freie Elektronenpaar der Imino-Funktion und die Azido-Funktion *cis*-ständig zueinander sind und die Substituenten keine stark elektronenziehende Eigenschaft haben. Letztendlich handelt es sich bei der Synthese von

Tetrazolen über diese Route um die Darstellung von Imidoylaziden, da diese normalerweise spontan cyklisieren [29, 57]. Die wohl einfachste Methode ist der Austausch von Halogeniden oder anderen guten Abgangsgruppen am Imidoyl-System (Schema 1.3.1).

Schema 1.3.1: Imidoylazid-Route

Die vielfältigste Methode, 5-mono- und 1,5-disubstituierte Tetrazole darzustellen, ist die 1,3-dipolare Cykloaddition einer Azidofunktion an eine Nitril- oder Isonitrilfunktion. Der Einsatz des brisanten HN_3 bei der Darstellung 5-monosubstituierter Tetrazole kann umgangen werden, indem man NaN_3 nutzt und das entstehende Natriumtetrazolat mit Mineralsäure umsetzt. Bei dieser Reaktion muss man allerdings das Azid durch katalytische bis stöchiometrische Mengen einer Säure aktivieren (Schema 1.3.2). Als Säuren im

Schema 1.3.2: 1,3-dipolare Cycloaddition.

Sinne Brønsteds werden dafür meist Ammoniumsalze eingesetzt. Die Verwendung von Lewis-Säuren, wie z.B. AlCl₃ oder SnCl₄, ist ebenfalls möglich, kann aber zur Bildung brisanter Verbindungen, wie z.B. Sn(N₃)₄, führen. Hier haben die eingangs erwähnten, kommerziell verfügbaren Verbindungen Me₃SiN₃ und Me₃SnN₃ zu Vereinfachungen geführt. Zum einen liefert Trimethylsilylazid lösliche, funktionalisierte Tetrazole, die auf vielfältige Weise übertragen werden können. Zum anderen steigert Trimethylzinnazid die Ausbeute deutlich und dies bei wesentlich milderen Reaktionsbedingungen. Das liegt vor allem daran, dass Trimethylzinnazid selbst als Lewis-Säure fungiert und auch in Lösung das Zinn fünffach koordiniert vorliegt. Koordiniert das Zinnatom des Me₃SnN₃ in Lösung zusätzlich noch das Nitril, so könnten sich durch Berry-Pseudorotation die beiden Komponenten näher kommen und die Reaktion zum Tetrazol begünstigen. Ein möglicher Reaktionsmechanismus ist in Schema 1.3.3 dargestellt. Die so gebildeten 5-Alkyl-2-

Schema 1.3.3: Berry-Pseudorotation am Trimethylzinnazid-Nitriladdukt.

Schema 1.3.4: Zentrale Rolle der 5-Alkyl-1H-tetrazole in der Synthese von Metalltetrazolaten.

Stannyltetrazole lassen sich durch Umsetzung mit HBr in die 5-Alkyl-1H-tetrazole überführen, die bei der Funktionalisierung eine zentrale Rolle spielen. Aus ihnen lassen sich mit Alkali- oder Erdalkalimetallhydroxiden viele Verbindungen darstellen, die salzartiger Natur sind. Aber auch bei der Darstellung von Hauptgruppenelement-5-alkyltetrazolen sind sie wichtige Ausgangsverbindungen. Schema 1.3.4 verdeutlicht die zentrale Rolle der 5-Alkyl-1H-tetrazole in der Synthese geeigneter Substrate und Übergangsmetallkomplexe. Eine weitere Methode, die vor allem dazu geeignet ist, direkt zu Übergangsmetallkomplexen mit Tetrazolen zu gelangen, ist die Reaktion von Übergangsmetallaziden oder Azidometallaten mit Nitrilen. Auf diese Methode wird in Kapitel 1.4 kurz eingegangen.

1.4 Übergangsmetallkomplexe mit Tetrazolen

Die Chemie der Übergangsmetallkomplexe von Tetrazolverbindungen reicht ebenfalls bis auf *J. A. Bladin* zurück. So konnte er schon 1892 über die Synthese der ersten Tetrazolverbindung der sogenannten späten Übergangsmetalle berichten [38], nämlich das $Ag(N_4CH)$. Es folgten weitere 5-Organyl-tetrazolsalze des Silbers und des Quecksilbers [40, 58]. Diese Verbindungen wurden aus wässrigen Lösungen gefällt und erwiesen sich teilweise als äußerst stoß- und schlagempfindlich.

Abbildung 1.4.1: $trans-[(PPh_3)_2Pd(CN_4Ph)_2]$ und $cis-[(PMe_3)_2Pd(CN_4Me)_2]$.

In den 1960er Jahren waren es vor allem *C. H. Brubaker jr. et al.* und *W. Beck et al.*, die umfangreiche Untersuchungen an Tetrazolkomplexen durchführten [59–62]. Diese Untersuchungen konzentrierten sich hauptsächlich auf Salze 5-monosubstituierter Tetrazole mit den Kationen der Metalle Ni, Cu, Zn, Pd und Pt. Die Synthesen gin-

gen meist von Metallaziden oder Azidometallaten aus. Die erste röntgenographische Strukturlösung einer solchen Verbindung gelang 1972 *W. Beck et al.* an dem *trans*-Bis(5-phenyltetrazolato)-bis(triphenylphosphine)palladium. Interessanterweise wird das Palladium bei dieser Verbindung über das Stickstoffatom N2 im Tetrazolring koordiniert im Gegensatz zum *cis*-(5-Methyltetrazolato)-bis(trimethylphosphine)palladium, wo das Palladium, wie sich ein Jahr später herausstellte, über das Stickstoffatom N1 koordiniert ist (Abbildung 1.4.1) [63, 64].

Während die späten d-Übergangsmetalle nach dem HSAB-Prinzip als weich zu bezeichnen sind und eine erhöhte Bindungstendenz zu N-Donorliganden zeigen, ist dies bei den frühen Übergangsmetallen nicht der Fall. Zwar sind die Eigenschaften der Tetrazolate vergleichbar mit denen der Carboxylate, doch zeigen die Tetrazolate weiterhin eine höhere Affinität zu weichen Metallen, so wie es für N-Donorliganden zu erwarten ist. Es verwundert daher auch nicht, dass erst 2001 *C. Yélamos et al.* über einen Tetra-

Schema 1.4.1: Darstellung des ersten Tetrazolyl-Titan-Komplexes.

zolkomplex mit einem frühen Übergangsmetall berichten konnten (Schema 1.4.1) [65]. Erst nachdem 2004 *R. Haiges et al.* über die Darstellung der binären Titan(IV)azide berichteten, eröffnete sich auch für die frühen Übergangsmetalle die Möglichkeit des Synthesewegs über die Metallazide [66]. Darauf aufbauend konnte *P. J. Eulgem* 2006 über die Darstellung weiterer Tetrazolyl-Titan-Komplexe berichten (Schema 1.4.2) [67].

Versuche zur Darstellung von Tetrazolato-Lanthanoid-Komplexen in Wasser unternahmen erstmals *T. M. Klapötke et al.*, indem sie Bariumtetrazolate mit den Lanthanoidsulfaten umsetzten [68]. In wässrigen Lösungen führten diese Versuche allerdings nur zu Hydraten und es konnte keine Koordination beobachtet werden. Über die ersten Tetrazolato-Lanthanoid-Komplexe, bei denen Tetrazole in der ersten Koordinationssphäre liegen, wurde erst 2008 berichtet [69–71]. Liganden, die dabei verwendet wurden, sind in Abbildung 1.4.2 wiedergegeben.

Schema 1.4.2: Darstellung des Bis(tetramethylammonium)-hexakis(5-trifluormethyl-tetrazolato)titanats(IV).

Abbildung 1.4.2: Multidentate Tetrazolylliganden.

1.5 Tetrazole als energiereiche Materialien

Eine chemische Explosion ist das Ergebnis einer chemischen Reaktion, bei der innerhalb kürzester Zeit große Wärme- und Gasmengen freigesetzt werden. Die bei der Explosion freigesetzten Gase nehmen für sehr kurze Zeit das Volumen des Explosivstoffes ein. In Kombination mit den hohen Explosionstemperaturen entwickelt sich ein sehr großer Druck. Die resultierenden Druckwellen können sowohl die Gefäßwand als auch umgebende Objekte zerstören. Generell enthalten Explosivstoffe Sauerstoff, Stickstoff und oxidierbare Komponenten (z.B. Kohlenstoff und Stickstoff). Explosivstoffe werden nach ihren Eigenschaften eingeteilt in primäre, sekundäre und tertiäre Explosivstoffe (letztere oft auch nur Treibstoffe genannt). Primäre Explosivstoffe können schon durch leichte mechanische Beanspruchung, durch Funken oder auch durch elektrischen Strom gezündet werden. Sekundäre Explosivstoffe benötigen zur Zündung ausreichende Schockwellen, die praktischerweise durch die Explosion eines Primärexplosivstoffes hervorgerufen werden. Die Explosionsgeschwindigkeiten primärer und sekundärer Explosivstoffe übertreffen die Schallgeschwindigkeit um ein Vielfaches und können bis zu 10 $\rm km s^{-1}$ betragen. Die Klasse der Treibstoffe beinhaltet zwar auch hochenergetische Materialien, die durch Funken oder Flamme gezündet werden können, jedoch besitzen diese Stoffe keine supersonischen Explosionsgeschwindigkeiten [84].

Explosivstoffe werden vielseitig und keineswegs nur "destruktiv" eingesetzt. So werden in Friedenszeiten mehr energetische Materialien verbraucht als bei bewaffneten Konflikten, und ohne sie wären die heutigen Fortschritte und das moderne Leben undenkbar. Wo eine kontrollierte Energieabgabe über einen Zeitraum von Millisekunden oder Sekunden erforderlich ist, werden Treibstoffe eingesetzt, die Gase entwickeln. Sie dienen zum Antrieb von Geschossen und Raketen, zum Antrieb von Turbinen, zum Betrieb von Pumpen, zur Bewegung von Kolben und beim Starten von Motoren. Sind eine extrem schnelle Energiefreisetzung und hohe Drücke gefragt, so kommen primäre und sekundäre Explosivstoffe zum Einsatz: bei der Erzeugung von hoch intensiven Schockwellen in Luft, Wasser und Gestein, bei Sprengarbeiten im Bergbau und anderen Tiefbauprojekten, beim Schneiden, Metallschweißen und Formen sowie bei Fragmentierungen, in Hohlladungen und vielen Spezialgeräten, die hohe Energieübertragungsgeschwindigkeiten erfordern, sowie zur Auslösung von Detonationen [85].

Für militärische Zwecke werden HMX, RDX oder TNT, Nitroglycerin oder Nitrocellulose als Einkomponenten-Explosivstoffe verwendet. Die meisten kommerziellen, technisch eingesetzten Materialien beruhen allerdings auf Ammoniumnitrat. In der Pyrotechnik

kommen vor allem für Leuchteffekte Metallpulver zur Anwendung. Aus allgemein vorhandenem Interesse an umweltschonenden Materialien und Verfahrensweisen sowie zur Entwicklung von leistungsfähigeren Materialien sind auf dem Gebiet der Explosivstoffe weltweit zahlreiche Forschungsprogramme im Gange [85–88].

Ein anderes, auf dem Gebiet der Kriminaltechnik wesentliches Interesse besteht darin, Explosivstoffe anhand ihrer Schmauchspuren identifizieren bzw. hochspezifisch zurückverfolgen zu können. So sehen z.B. die Technischen Richtlinien für Polizeimunition vor, dass mindestens ein Element mit der Ordnungszahl größer 50 in Schmauchspuren noch deutlich nachweisbar zu sein hat. Gerade in diesem Bereich bieten sich Verbindungen der Lanthanoide an. In Schmauchspuren von Lanthanoid-Tetrazolaten könnten Lanthanoid-Nitride oder -Carbide UV-Vis-spektroskopisch nachzuweisen sein. Auch fluoreszenzspektroskopisch sollten sich so vor allem Terbium-Rückstände leicht nachweisen lassen.

1.6 Zielsetzung der vorliegenden Arbeit

Aufbauend auf den Arbeiten von *Klapötke et al.* sollen neue Lanthanoid-Tetrazolate dargestellt und durch geschicktes Design der Liganden eine Koordination der stark elektropositiven Lanthanoide erreicht werden. Zur Übertragung der Liganden auf die Lanthanoiden wird weitestgehend auf die Umsetzung von Bariumtetrazolaten mit den Lanthanoidsulfaten zurückgegriffen (Schema 1.6.1). Diese Methode hat den großen Vorteil,

Schema 1.6.1: Übertragung der Liganden auf Übergangsmetallkationen.

dass durch das Fällen von $BaSO_4$ keine weiteren Verbindungen in Lösung verbleiben. Während der Anfertigung dieser Arbeit konnte die Arbeitsgruppe um *M. Mazzanti* zeigen, dass auch die Lanthanoidtriflate als mögliche Ausgangsverbindungen genutzt werden können [89]. Die von *P. J. Eulgem* untersuchten N-silylierten Tetrazole konnten zwar durch Umsetzung mit den Übergangsmetallfluoriden auf *d*-Elemente übertragen werden, aber dieses Konzept scheitert bei den Lanthanoiden an der Unlöslichkeit der Fluoride. Eine weitere Möglichkeit wäre die Umsetzung von 1H-Tetrazolen mit elementaren Lanthanoiden in der Schmelze. Versuche dazu führten aber regelmäßig zu Explosionen in der Nähe der Schmelz- bzw. Zersetzungstemperaturen der Tetrazole.

Ausgehend von diesen Überlegungen ist die Darstellung und Charakterisierung neuer multidentater Tetrazolat-Liganden und deren Bariumsalze ein wesentliches Anliegen dieser Arbeit. Dabei sollen die Tetrazolat-Funktionen in den Liganden durch geeignete "Spacer" so angeordnet sein, dass sich bei der Koordination eines Metalls ein fünfgliedriger Ring bildet. Auch die Anzahl an Tetrazolat-Funktionen soll dabei variabel bleiben. Mögliche Grundgerüste für diese Liganden sind in Abbildung 1.6.1 dargestellt. Die

Abbildung 1.6.1: Mögliche Grundgerüste für neue multidentate Tetrazolat-Liganden.

Koordinationschemie dieser Liganden mit Lanthanoiden soll untersucht werden. Aber auch andere Übergangsmetalle des d-Blocks wie z.B. Ti^{IV} oder auch Cu^{II} sind für diese Liganden geeignete Zentralionen.

2 Diskussion der Ergebnisse

2.1 Bis(tetrazol-5-yl)benzole

2.1.1 Darstellung von Barium-bis(tetrazol-5-yl)benzol-Derivaten

In der Koordinationschemie kommen die Anionen der Phthalsäure, Isophthalsäure und der Terephthalsäure vor allem zum Aufbau von MOFs (Metall-Organic-Frameworks) zum Einsatz. Die Tetrazol-Analoga sind seit fast 40 Jahren bekannt [90] und sollten prinzipiell auch zum Aufbau von Koordinationspolymeren bzw. MOFs geeignet sein. Die drei Isomere des Barium-1,x-bis(tetrazol-5-yl)benzols, mit x = 2, 3, 4, (Ba-1,x-BTBs) ließen sich einfach aus den von *P. Scheiner* beschriebenen 1,x-bis(1H-tetrazol-5-yl)benzolen und Bariumhydroxid in wässrigen Lösungen darstellen. Die Bariumsalze sind hervorragend wasserlöslich und werden beim Eindampfen als farblose, wasserhaltige Pulver in nahezu quantitativer Ausbeute erhalten (Schema 2.1.1). Nach sorgfältiger Trocknung im Hochvakuum bei 180 °C können die Salze wasserfrei erhalten werden und die C,H,N-Elementaranalysen stimmen mit den berechneten Werten sehr gut überein. Die Verbindungen sind wenig hygroskopisch und lösen sich gut in polaren Lösemitteln

Schema 2.1.1: Synthese der Barium-1, x-bis(tetrazol-5-yl)benzole (x = 2, 3, 4).

wie Methanol, DMF, DMSO und THF. Die ¹H- und ¹³C-NMR-Spektren der Salze in D_2O zeigen keinen Unterschied zu denen der Kaliumsalze und bestätigen die Annahme der vollständigen Dissoziation in wässrigen Lösungen. Das 1,2-bis(tetrazol-5-yl)benzol-

Anion zeigt im ¹H-NMR Spektrum die für ein AA'BB' System zu erwartenden Signale bei $\delta = 7.31$ und 7,11 ppm. Die Signale zeigen deutliche Kohlenstoff-Satelliten und die ¹J¹³C-¹H Kopplungskonstante beträgt 159 Hz. Die Kohlenstoffatome der Tetrazolringe zeigen Resonanz bei $\delta = 161,5$ ppm und die des Benzolringes bei $\delta = 128,5, 129,4$ und 130,1 ppm. Das ¹H-NMR Spektrum des 1,3-Isomers zeigt die für ein AA'BX Spinsystem zu erwartenden Signale, nämlich ein Singulett bei $\delta = 8,24$ ppm, ein Duplett bei 7,75 und ein Triplett bei 7,30 ppm. Auch diese Signale zeigen deutliche Kohlenstoff-Satelliten und die ${}^{1}J^{13}C$ - ${}^{1}H$ Kopplungskonstanten betragen 160, 162 und 154 Hz. Die Signale im ¹³C-NMR Spektrum bei $\delta = 161.8, 129.6, 129.1, 127.3$ und 124.0 ppm sind ebenfalls erwartungsgemäß. Die 1,4-Species zeigt aufgrund der Symmetrie die einfachsten Spektren. Im ¹H-Spektrum ist nur ein Singulett bei $\delta = 8,00$ ppm mit den entsprechenden Kohlenstoff-Satelliten zu sehen. Die ${}^{1}J^{13}C^{-1}H$ Kopplungskonstante beträgt hier 154 Hz. Auch das ¹³C-NMR Spektrum zeigt erwartungsgemäß weniger Signale. Das Tetrazol-Kohlenstoffatom zeigt bei 162 ppm Resonanz und die quarternären Kohlenstoffatome des Benzolringes bei 129 ppm. Die Kohlenstoffatome der CH-Gruppen sind alle magnetisch äquivalent und erscheinen bei 127,1 ppm. Die ¹⁴N-NMR Untersuchungen sind wegen des hohen Quadrupolmomentes, des komplexen Relaxationsverhaltens und des ungünstigen Kernspins des ¹⁴N-Kerns nur wenig aussagekräftig und für ¹⁵N-NMR Untersuchungen ist die Löslichkeit der Verbindungen nicht gut genug.

Die IR-Spektren der drei Isomere zeigen im Bereich von 1800 bis 400 cm⁻¹ einige Gemeinsamkeiten. Alle drei Isomere zeigen eine breite Absorptionsbande bei etwa 1635 cm⁻¹ wie es bei allen Tetrazolverbindungen beobachtet wird. Zusätzlich werden auch scharfe, intensive Absorptionsbanden bei 1430 und 750 cm⁻¹ für alle Isomere beobachtet. Zu den markantesten Unterschieden gehören bei der 1,2-Species zwei zusätzliche, scharfe und intensive Absorptionsbanden bei 1362 und 1014 cm⁻¹. Das 1,4-Isomer zeigt ebenfalls zwei zusätzliche, scharfe aber nicht ganz so intensive Absorptionsbanden bei 1008 und 1272 cm⁻¹, während bei der 1,3-Species keine weiteren intensiven Absorptionsbanden auffallen. Zusätzlich zeigen sich schwache, teilweise nicht aufgelöste Banden im Bereich von 400 bis 1400 cm⁻¹, die in Kapitel 5.2.1 aufgeführt sind. In Abbildung 2.1.1 sind die IR-Spektren der drei Isomere wiedergegeben.

Im Fall des Barium-1,2-bis(tetrazol-5-yl)benzols konnten aus Methanol für die röntgenographische Untersuchung geeignete Einkristalle erhalten werden. Die Verbindung kristallisiert in der orthorhombischen Raumgruppe *Pccn* (Nr. 56) mit den Gitterkonstanten a = 11,5565(17), b = 14,6049(15), c = 16,805(2) Å und Z = 4. Die salzartige Verbindung enthält acht Moleküle Methanol, die das Bariumion in einem quadratisch-

Abbildung 2.1.1: IR-Spektren der Ba-1,x-BTB-Isomere (x = 2, 3, 4).

antiprismatischen Koordinationspolyeder über die Sauerstoffatome koordinieren. Die Abstände zwischen Bariumion und Sauerstoffatomen liegen bei 2,746(4) Å für Ba1–O22 und bei 2,776(4) Å für Ba1–O21 (Abbildung 2.1.2). Das 1,2-Bis(tetrazol-5-yl)benzolanion ist über Wasserstoffbrückenbindungen an die Methanolmoleküle in der ersten Koordinationssphäre geknüpft. Auch wenn die Wasserstoffatome nicht in der Fourier-Karte gefunden werden konnten, ist anzunehmen, dass sich zwischen O21 und N13 bzw. zwischen O22 und N12 jeweils noch ein Hydroxy-Wasserstoffatom befindet (Abbildung 2.1.2). Die Abstände zwischen den Stickstoff- und Sauerstoffatomen deuten mit 2,735(6) und 2,828(6) Å auf recht starke Wasserstoffbrücken hin. Jeder Tetrazolring bildet vier Wasserstoffbrückenbindungen aus und verbrückt so je zwei Barium-Koordinationspolveder miteinander (Abbildung 2.1.3). Die Tetrazolringe sind um $47,2(7)^{\circ}$ bzw. $47,8(7)^{\circ}$ aus der Ebene des Benzolringes verdreht. Die Bindungsverhältnisse innerhalb der Tetrazolringe ähneln denen im N2-silylierten 1,2-BTB [67]. Die Bindungen C11-N12 und C11-N15 sind mit 1,331(6) und 1,341(8) Å ähnlich lang wie die N12–N13 und N14–N15 Bindungen mit 1,339(7) bzw. 1,348(7) Å. Nur die N13–N14 Bindung ist mit 1,308(7) Å signifikant kürzer. Weitere ausgewählte Abstände, Winkel sowie kristallographische Details sind in Kapitel 5.7 aufgelistet.

2 Diskussion der Ergebnisse

Abbildung 2.1.2: Asymmetrische Einheit von $[Ba(MeOH)_8]$ 1,2-BTB.

Abbildung 2.1.3: Ausschnitt aus der Struktur von [Ba(MeOH)₈]1,2-BTB.

Abbildung 2.1.4: Ansicht der Packung von [Ba(MeOH)₈]1,2-BTB entlang (001).

2.1.2 Darstellung von Lanthanoid-bis(tetrazol-5-yl)benzol-Derivaten

Ausgehend von den Barium-1,x-bis(tetrazol-5-yl)benzolen, mit x = 2, 3 und 4, und Lanthanoidsulfaten, gelang die Darstellung mehrerer Salze der Lanthanoiden (Schema 2.1.2). Bei den Reaktionen fiel Bariumsulfat quantitativ aus, und aus den Lösungen konn-

Schema 2.1.2: Synthese der Lanthanoid-1, x-bis(tetrazol-5-yl)benzole (x = 2, 3, 4).

ten die entsprechenden Lanthanoid-bis(tetrazol-5-yl)benzol-Derivate isoliert werden. Die C,H,N-Elementaranalysen der aus wässrigen Lösungen erhaltenen Feststoffe zeigen deutlich, dass sich noch Kristallwasser in den Verbindungen eingelagert haben muss. Auch durch Trocknung im Hochvakuum bei 100 °C lässt sich dieses Wasser nicht vollständig entfernen. Ansonsten aber entsprechen die Verhältnisse von Kohlenstoff zu Stickstoff den berechneten Werten (Tabelle 2.1.1). Der gefundene Wassergehalt pro Formeleinheit schwankt von ca. 20 bei den aus Wasser kristallisierten Verbindungen bis ca. 3 bei den im Hochvakuum getrockneten.

Verbindung	N [%] (ber.)	C [%] (ber.)	H $[\%]$ (ber.)	Wassergehalt
$\overline{\text{Ce}_2-1,2-\text{BTB}_3}$	34,60 (34,60)	30,19 (29,70)	1,95(1,85)	3
Sm_2 -1,2- BTB_3	$33,\!61\ (32,\!16)$	$27,34\ (27,58)$	$3,96\ (2,31)$	6
Eu_2 -1,2- BTB_3	$31,\!07\ (32,\!06)$	$27,\!25\ (27,\!49)$	$3,53\ (2,32)$	6
Yb_2 -1,2- BTB_3	$25,\!12\ (25,\!03)$	20,55(21,46)	2,57 $(3,91)$	20
$Sm_2-1, 3-BTB_3$	$23,\!80\ (25,\!90)$	20,70 (22,20)	2,33 (4,03)	20
Eu_2 -1,3- BTB_3	$24,00\ (25,90)$	21,40(22,20)	2,44 (4,03)	20
$Sm_2-1, 4-BTB_3$	24,99(25,90)	$21,\!52\ (22,\!20)$	4,02 $(4,03)$	20

Tabelle 2.1.1: C,H,N-Elementaranalysen

Von den Salzen Sm₂(1,2-BTB)₃, Eu₂(1,2-BTB)₃, Nd₂(1,3-BTB)₃, Eu₂(1,3-BTB)₃ und La₂(1,4-BTB)₃ konnten durch Umkristallisation aus Wasser, für die röntgenographische Untersuchung geeignete, Einkristalle erhalten werden. Die Verbindungen des Samariums und Europiums mit dem 1,2-BTB kristallisieren isotyp in der monoklinen Raumgruppe C2/c (Nr. 15) und mit den Gitterkonstanten a = 26,515(5), b = 13,206(2), c = 26,674(5)Å, $\beta = 117,07(2)^{\circ}$ für Sm₂-1,2-BTB und a = 26,528(4), b = 13,201(1), c = 26,551(4)Å, $\beta = 117,107(17)^{\circ}$ für Eu₂-1,2-BTB. Die asymmetrischen Einheiten enthalten je 3 HBTB⁻ Einheiten und ein [Ln(H₂O)₈]³⁺ Kation. Zusätzlich sind sieben Moleküle Wasser eingelagert, von denen sich eines auf einer speziellen Lage befindet. Die Verbindungen können demnach am besten als [Ln(H₂O)₈](HBTB)₃)×6,5H₂O beschrieben werden. Folglich werden die BTB-Dianionen beim Lösen der Verbindungen einfach protoniert. Dies liegt hauptsächlich daran, dass die Lanthanoidkationen *Lewis*-Säuren sind und deren wässrige Lösungen leicht sauer reagieren (Tabelle 2.1.2). Die pH-Werte wässriger Lösungen der Lanthanoiden liegen im Bereich des pK_S-Wertes des 5-Phenyltetrazols (Abbildung 1.2.4) [91].

	1 0			,	0			L J		
c $[mmolL^{-1}]$	La	Ce	Pr	Nd	Sm	Eu	Gd	Yb	Υ	
100		$5,\!00$	4,45	4,09					3,38	
50	4,71	5,15	$4,\!85$	4,39	$4,\!30$	$4,\!49$	$4,\!23$	$3,\!98$	$3,\!63$	
10	$5,\!85$	$5,\!56$	$5,\!53$	$5,\!36$	$5,\!05$	$5,\!33$	$5,\!29$	4,90	$4,\!35$	

Tabelle 2.1.2: pH-Werte wässriger Lösungen der Lanthanoidsulfate. [91]

Die Strukturdaten für das $\text{Sm}_2(1,2\text{-BTB})_3$ sind so gut, dass die meisten Wasserstoffatome in der Fourier-Karte gefunden und isotrop verfeinert werden konnten. In Abbildung 2.1.5 ist das $[\text{Sm}(\text{H}_2\text{O})_8]^{3+}$ Kation und eine HBTB⁻ Einheit wiedergegeben. Das Sm^{III} ist in einem quadratisch-antiprismatischen Koordinationspolyeder von acht Wassermolekülen umgeben, die wiederum über Wasserstoffbrückenbindungen Kontakt zu den Tetrazolringen haben. Diese intermolekularen Wasserstoffbrückenbindungen sind bei Metall-Tetrazolyl-Hydraten ein typisches Strukturelement [68]. Interessant ist, dass

Abbildung 2.1.5: Das $[Sm(H_2O)_8]^{3+}$ Kation und eine 1,2-HBTB⁻ Einheit in der Kristallstruktur von $[Sm(H_2O)_8](HBTB)_3) \times 6.5H_2O$.

die HBTB⁻-Einheit das Proton über eine intramolekulare Wasserstoffbrückenbindung chelatisiert. Der so gebildete siebengliedrige Ring ist sicherlich auch ein Grund dafür, dass die Verbindung als saures Salz kristallisiert. Desweiteren ist zu beobachten, dass die Tetrazolringe, anders als beim Barium-1,2-bis(tetrazol-5-yl)benzol, fast coplanar zum

2 Diskussion der Ergebnisse

Benzol-Ring angeordnet sind. Der Diederwinkel beträgt hier zwischen 8,0(6) und $1,7(7)^{\circ}$ und zeigt damit deutlich geringere Werte als beim Bariumsalz. Obwohl primär Wasserstoffbrückenbindungen für die Ausbildung der Strukturen verantwortlich sind, so findet man gleichwohl das Strukturmodell des π -Stackings, bei dem sich aromatische Einheiten in der festen Phase coplanar in einem Abstand von unter 4,5 Å zueinander anordnen. In Abbildung 2.1.6 ist deutlich zu sehen, wie sich die HBTB⁻ Einheiten zu Schichten anordnen; deren Abstand zueinander beträgt im Mittel 3,5 Å.

Abbildung 2.1.6: Ansicht von $[Sm(H_2O)_8](HBTB)_3) \times 6,5H_2O$ entlang (100). Wasserstoffatome und Kristallwasser wurden der Übersichtlichkeit halber ausgeblendet.

Die Salze des 1,3-BTBs zeigen ähnliches Verhalten in wässrigen Lösungen. Auch hier werden die BTB Einheiten einfach protoniert. Die Struktur des Europiumsalzes konnte zwar in der triklinen Raumgruppe $P\overline{1}$ mit direkten Methoden gelöst werden, ließ sich aber nicht verfeinern. Das isotrope Strukturmodell zeigt die Zusammensetzung $[Eu(H_2O)_8](HBTB)_3) \times 4H_2O$. Die Struktur des Neodymsalzes weist hingegen die Zusammensetzung $[Nd(H_2O)_9](HBTB)_3) \times 7H_2O$ auf. Es kristallisiert in der monoklinen Raumgruppe P21/c (Nr. 14) mit den Gitterkonstanten a = 9,8896(15), b = 19,816(2), c = 22,620(4) Å und $\beta = 103,503(17)^{\circ}$. Als Koordinationspolyeder bildet das $[Nd(H_2O)_9]^{3+}$ Kation ein dreifach überkapptes trigonales Prisma. Auch wenn die Wasserstoffatome nicht in der Fourier-Karte gefunden werden konnten, lassen sich doch Wasserstoffbrückenbindungen diskutieren. Die Abstände zwischen den Sauerstoffatomen des Wassers und

2 Diskussion der Ergebnisse

den benachbarten Stickstoffatomen der Tetrazolringe liegen alle unter 3 Å (Abbildung 2.1.7). Auch in dieser Stuktur sind die Tetrazolringe annähernd coplanar zum Benzolring angeordnet. Die Diederwinkel betragen hier zwischen 0,3(1) und $8,5(1)^{\circ}$. Die HBTB⁻-

Abbildung 2.1.7: Das $[Nd(H_2O)_9]^{3+}$ Kation und eine 1,3-HBTB⁻-Einheit.

Einheiten sind auch hier in Schichten angeordnet und durchschnittlich 3,4 Å voneinander entfernt (Abbildung 2.1.8). Die aromatischen Ringe liegen dabei nicht exakt übereinander, sondern sind so verschoben, dass die Zentren der Ringe einen Winkel von $23,7(2)^{\circ}$ zu den Ebenen der Ringe einschließen. Der Abstand der Zentren zueinander beträgt dann 3,65(1) Å (Abbildung 2.1.9). Wie statistische Untersuchungen in Kristallstrukturdatenbanken gezeigt haben, ist dies typisch bei π - π -Wechselwirkungen zwischen Aromaten [92, 93].

Als Vertreter der Lanthanoid-1,4-bis(tetrazol-5-yl)benzole konnte das Lanthan-Salz kristallisiert werden. Die Verbindung kristallisiert in der orthorhombischen Raumgruppe *Pbca* (Nr. 61) mit den Gitterkonstanten a = 17,136(3), b = 13,723(3), c = 28,253(6) Å und Z = 8. Die asymmetrische Einheit enthält ein $[La(H_2O)_9]^{3+}$ Kation und nur zwei BTB Einheiten. Somit kann nur eine der beiden BTB Einheiten einfach protoniert sein um den Ladungsausgleich zu erreichen. Die Verbindung kann demnach am besten als $[La(H_2O)_9](HBTB)(BTB)) \times 6H_2O$ beschrieben werden. Als wichtigstes Strukturelement sind auch hier die Wasserstoffbrückenbindungen zwischen den Wassermolekülen und den Stickstoffatomen der Tetrazolringe zu nennen. In Abbildung 2.1.10 ist gut zu sehen, wie eine BTB Einheit zwei $[La(H_2O)_9]^{3+}$ Kationen über Wasserstoffbrücken verknüpft.

Abbildung 2.1.8: Blick entlang (100).

Abbildung 2.1.9: π -Stacking.

Abbildung 2.1.10: Wasserstoffbrückenbindungen in $[La(H_2O)_9](HBTB)(BTB)) \times 6H_2O$.

Auch in der Struktur des $[La(H_2O)_9](HBTB)(BTB)) \times 6H_2O$ kommt es zur Stapelung der aromatischen Anionen entlang der *b*-Achse (Abbildung 2.1.11). Dabei liegen die Anionen derart versetzt zueinander, dass jeweils die vier Atome C24, C25, C26 und C21 des Benzolringes genau über den Atomen C13, C14, C18 und N181 zu liegen kommen (Abbildung 2.1.12). Der Abstand dieser Ebenen zueinander beträgt im Mittel 3,5 Å. Die Zentren der Tetrazolringe sind hier mit 4,1(1) Å deutlich weiter voneinander entfernt als in den übrigen Strukturen. Daher ist auch der Verschiebungswinkel mit 29,9(1)° deutlich größer. 2 Diskussion der Ergebnisse

Abbildung 2.1.11: Blick entlang (010) in $[La(H_2O)_9](HBTB)(BTB)) \times 6H_2O$.

Abbildung 2.1.12: π -Stacking in $[La(H_2O)_9](HBTB)(BTB)) \times 6H_2O$.

Zusammenfassend kann über die Lanthanoid-bis(tetrazol-5-yl)benzol-Derivate gesagt werden, dass sie aus wässrigen Lösungen als salzartige Verbindungen kristallisieren. Die Lanthanoidkationen reagieren in wässrigen Lösungen leicht sauer, und so werden die BTB Einheiten teilweise protoniert. In keiner der Verbindungen konnte in der festen Phase eine Koordination der Lanthanoidkationen durch einen Tetrazolring beobachtet werden. Auch in Lösung ist nicht davon auszugehen, dass Lanthanoidkationen durch Tetrazole koordiniert werden. Alle NMR-Spektren, die von Lösungen angefertigt wurden, zeigen keine prinzipiellen Unterschiede zu den Alkalisalzen und deuten so auf die vollständige Dissoziation der Salze hin.

2.2 5,5'-Bitetrazol und 5,5'-Bitetrazolate

2.2.1 Darstellung von Barium-5,5'-bitetrazolat

Die Synthese von 5,5'-Bitetrazol gelang erstmals *E. Oliveri-Mandalà* 1914 [94]. Er beschrieb die Reaktion von konzentrierten wässrigen Lösungen von HN_3 mit Dicyan (Schema 2.2.1). Eine wesentlich ungefährlichere und praktikablere Methode zur Darstellung

Schema 2.2.1: Synthese von 5,5'-Bitetrazol.

des 5,5'-Bitetrazols, in Form seines Mangan^{II}-Salzes, ist die Kupfer-katalysierte Reaktion von Braunstein mit Natriumcyanid und Natriumazid, wie sie 1956 von *W. Friedrich* durchgeführt wurde [95]. Das Mangansalz ist wiederum Ausgangsverbindung zur Darstellung des freien 5,5'-Bitetrazols, des Natriumsalzes und auch des Bariumsalzes (Schema 2.2.2).

Die Synthese des Natriumsalzes gelang mit 66% Ausbeute und die Verbindung konnte nach mehrmaligem Umkristallisieren in Form eines farblosen Pulvers erhalten werden. Die C,H,N-Elementaranalysen stimmen sehr gut mit den berechneten Werten für die wasserfreie Verbindung überein. Hochaufgelöste negative ESI-MS-Spektren (Elektronen Spray Ionisations Massenspektrometrie) zeigen Peaks bei m/z = 137,17 [HC₂N₈⁻] und 159,14 [NaC₂N₈⁻] im Verhältnis 10:1. Zweifach negativ geladene Ionen wurden nicht detektiert und es ist durchaus üblich, dass mehrfach negativ geladene Ionen nicht nur

Schema 2.2.2: Einfache Synthese von 5,5'-Bitetrazol und Derivaten.

Protonen, sondern auch, wie in diesem Fall, andere Kationen assoziieren. Ein ¹³C-NMR-Spektrum zeigt bei $\delta = 154,3$ ppm eine Resonanz in Form eines Singuletts. Dies ist der typische Bereich in dem substituierte Tetrazolkohlenstoffatome Resonanz zeigen. Ein ¹⁴N-NMR-Spektrum zeigt zwei Signale, nämlich bei $\delta = 16$ und -52 ppm. Aufgrund des hohen Quadrupolmoments des ¹⁴N-Kerns sind die Signale aber sehr stark verbreitert. Das IR-Spektrum des Natriumsalzes zeigt im sogenannten Fingerprintbereich sehr scharfe und intensive Absorptionsbanden bei 1631, 1458, 1345, 1326, 1307, 1182, 1148, 1048, 1015 und 734 cm⁻¹.

Ausgehend vom Natriumsalz gelang die Synthese des freien 5,5'-Bitetrazols in 25% Ausbeute. Dies liegt vor allem an der guten Löslichkeit beider Verbindungen und der daraus resultierenden Schwierigkeit, sie durch fraktionierende Kristallisation zu trennen. Auch Versuche, das Natriumsalz über einen sauren Kationentauscher in das freie 5,5'-Bitetrazol zu überführen, erbrachten keine besseren Ausbeuten. Dennoch konnte die Verbindung als wasserfreies, farbloses Pulver isoliert werden, und die C,H,N-Elementaranalyse bestätigt den hohen Stickstoffgehalt von 81%. Die wasserfreie Substanz ist weder schlag- noch reibungsempfindlich und zersetzt sich erst ab einer Temperatur von 270 °C. Bei Kontakt mit einer offenen Flamme tritt schlagartige, rauchfreie Verpuffung ein.

Aufgrund der geringen Ausbeute des freien 5,5'-Bitetrazols wurde das Barium-5,5'bitetrazolat, ausgehend vom Mangansalz, durch Umsetzung mit Bariumsulfid dargestellt. Nach mehrmaligem Umkristallisieren des Rohprodukts konnte die Verbindung schwefelfrei isoliert werden und die C,H,N-Elementaranalyse bestätigt das. Die Ausbeute betrug in diesem Fall 70%. Das ¹³C-NMR-Spektrum zeigt keine Veränderung gegenüber dem Natriumsalz, was ebenfalls auf die vollständige Dissoziation der Salze in Lösung hindeutet.

2.2.2 Darstellung von Lanthanoid-5,5'-bitetrazolaten

Die Darstellung von Lanthanoid-5,5'-bitetrazolaten gelang ausgehend vom Barium-5,5'bitetrazolat und den entsprechenden Lanthanoidsulfaten (Schema 2.2.3). Nachdem Bari-

Schema 2.2.3: Darstellung von Lanthanoid-5,5'-bitetrazolaten.

umsulfat abfiltriert wurde, konnten die Verbindungen aus den wässrigen Lösungen kristallisiert werden. Einmal kristallisiert, sind die Verbindungen nur schwer wieder löslich. Die C,H,N-Elementaranalysen der im Vakuum getrockneten Verbindungen entsprechen grob den berechneten Werten für die Zusammensetzung $[Ln_2(BT)_3] \times 20H_2O$ (Tabelle 2.2.1).

Verbindung	N [%] (ber.)	C $[\%]$ (ber.)	H [%] (ber.)
La_2BT_3	30,70 $(32,12)$	6,60 (6,88)	3,40(3,85)
Ce_2BT_3	$31,\!80\ (32,\!05)$	6,77 (6,87)	3,59(3,84)
$\mathrm{Nd}_{2}\mathrm{BT}_{3}$	31,08 (31,80)	6,78 $(6,82)$	3,20 $(3,81)$
$\mathrm{Sm}_2\mathrm{BT}_3$	31,40(31,44)	6,63 $(6,74)$	3,12 (3,77)
$\mathrm{Eu}_{2}\mathrm{BT}_{3}$	31,70(31,34)	6,70 (6,72)	2,97(3,76)
$\mathrm{Tb}_{2}\mathrm{BT}_{3}$	$30,\!40\ (30,\!94)$	$6,49\ (6,63)$	3,66(3,71)
$\mathrm{Er}_{2}\mathrm{BT}_{3}$	$30,\!90\ (30,\!48)$	6,64 (6,53)	$3,\!19\ (3,\!65)$

Tabelle 2.2.1: C,H,N-Elementaranalysen der $[Ln_2(BT)_3] \times 20H_2O$ Verbindungen

Thermisch lassen sich die Substanzen weiter entwässern. Ab einer Temperatur von $350 \,^{\circ}\text{C}$ zersetzen sie sich aber explosionsartig. Als Modellsubstanz wurde das $\text{Eu}_2\text{BT}_3 \times 20\text{H}_2\text{O}$ differenzial-thermoanalytisch und thermogravimetrisch untersucht und die DTA/TG-Kurven sind in Abbildung 2.2.1 wiedergegeben. Die Substanz wird im Bereich von

Abbildung 2.2.1: DTA/TG von $Eu_2BT_3 \times 20H_2O$.

30-180 °C in mehreren, leicht endothermen Prozessen entwässert. Ab einer Temperatur von 190 °C beginnt eine langsame Zersetzung des wasserfreien Komplexes. Davon unabhängige EI-Massenspektren zeigen, dass zunächst H_2O^+ (m/z = 18) und ab Temperaturen von über 200 °C nur noch N_2^+ (m/z = 28) detektiert werden können. Die Zersetzung der Substanz führt also vermutlich zum Europiumcarbid.

Die Substanzen zeigen charakteristische Färbungen, wie sie bei den entsprechenden Lanthanoiden zu beobachten sind. Die Lanthan- und Cer-Verbindungen sind farblos, während die Praseodym-Verbindung grün ist. Das $Nd_2BT_3 \times 20H_2O$ ist leicht violett gefärbt und die Samarium-Verbindung leicht gelblich. Die Europium- und Terbium-Verbindungen sind beide farblos, aber das $Er_2BT_3 \times 20H_2O$ ist pink. Diese Farben beruhen auf f-f Übergängen und werden wegen der kernnahen Lage der 4f-Elektronen kaum von Liganden beeinflusst. Die UV-Vis Spektren wässriger Lösungen sind identisch mit denen entsprechender Lanthanoidsulfate.

Die IR-Spektren der Verbindungen zeigen im Bereich von 1800 bis 1000 cm^{-1} signifikante Unterschiede. Die Terbium-Species zeigt eine schlecht aufgelöste, breite Bande bei 1655 cm^{-1} und nur wenige scharfe bis sehr scharfe Banden bei 1336, 1315, 1295, 1192, 1166, 1054 und 1029 $\rm cm^{-1}$. Die Cer-Species hingegen zeigt anstatt der breiten, nicht aufgelösten Bande, 4 scharfe Banden bei 1691, 1645, 1615 und 1599 cm^{-1} . Zusätzlich sind auch viel mehr scharfe Absorptionen im sogenannten Fingerprint-Bereich zu sehen. Sehr scharfe Banden bei 1349, 1330, 1323, 1293, 1261, 1231, 1209, 1178, 1157, 1048, 1039 und 1020 cm^{-1} lassen darauf schließen, dass die BT-Einheiten in der Cer-Species mehr oder unterschiedliche Schwingungsfreiheitsgrade besitzen. Die stärksten Absorptionsbanden bei allen Verbindungen kommen aber von den Schwingungsmodi der Wassermoleküle, die als sehr breite, nicht aufgelöste Banden bei ca. $3000-3500 \text{ cm}^{-1}$ in allen Spektren zu beobachten sind. In einem kürzlich erschienenen Artikel über Lanthanoid-diazo-5,5'bitetrazolate wurde über Kation-abhängige Wasserschwingungen bei noch höheren Wellenzahlen berichtet [96]. Dort zeigte sich, dass eine scharfe Absorptionsbande bei ca. 3600 cm^{-1} für die Lutetium-Species zu niedrigeren Wellenzahlen verschoben wird, wenn man zu den leichteren Lanthanoiden kommt. Im Fall der hier gefundenen Lanthanoid-5,5'-bitetrazolate ist dieses Phänomen sogar noch stärker ausgeprägt. Im IR-Spektrum des Cer-5,5'-bitetrazolat-hydrats ist diese Absorptionsbande bei 3587 $\rm cm^{-1}$ zu beobachten, während sie bei der Terbium-Species bei 3622 cm^{-1} erscheint. Steinhauser et al. schreiben, dass dafür die Lanthanoidenkontraktion und die damit einhergehende stärkere Koordination der Wassermoleküle bei den schwereren Lanthanoiden ursächlich sei. Je stärker die Koordination der Sauerstoffatome, desto geringer soll die Kraftkonstante der H–O Bindungen der entsprechenden Wassermoleküle sein. Dies deckt sich aber nicht mit den gemachten Beobachtungen.

Die schlechte Löslichkeit der Verbindungen verhindert es, mit vertretbarem Zeitaufwand ¹³C-NMR-Spektren aufzunehmen. Vermutlich sind aber die Verbindungen in Lösung, ähnlich wie die Ln_2BTB_3 -Verbindungen, vollständig dissoziiert. Glücklicherweise konnten die Verbindungen alle kristallisiert und strukturell aufgeklärt werden. Es wurden drei verschiedene strukturelle Typen gefunden.

2.2.2.1 Strukturtyp A

Die Verbindungen des Lanthans, des Cers und des Praseodyms kristallisieren isotyp in der triklinen Raumgruppe $P\bar{1}$ (Nr. 2) mit den Gitterkonstanten a = 7,519(1), b = 7,599(1), c = 13,5659(17) Å, $\alpha = 84,38(1), \beta = 78,58(1), \gamma = 74,94(1)^{\circ}$ für die Lanthan-Verbindung, a = 7,4985(14), b = 7,5777(15), c = 13,522(3) Å, $\alpha = 84,33(2), \beta = 78,89(2), \gamma = 74,96(2)^{\circ}$ für die Cer-Verbindung und a = 7,4803(11), b = 7,5580(11), c = 13,498 Å, $\alpha = 84,291(12), \beta = 78,813(12), \gamma = 74,986(11)^{\circ}$ für die Praseodym-Verbindung. Die BT Liganden ko-

Abbildung 2.2.2: Das Motif in der Struktur des $La_2BT_3 \times 14H_2O$.

ordinieren die Lanthanoidionen zum einen chelatisierend und zum anderen auch überbrückend. In den Strukturen überbrückt je ein BT2– zwei Metallzentren. Dabei sind die Tetrazolringe über das Stickstoffatom N2 an die Lanthanoidionen gebunden. Zusätzlich ist jedes Lanthanoidion chelatisierend von einem BT^{2-} über die Stickstoffatome in

Position N1 gebunden. Die Bindungsverhältnisse innerhalb der Tetrazolringe der chelatisierenden und überbrückenden Liganden sind sich auffallend ähnlich. Zum Beispiel sind in der Praseodym-Species die Abstände im überbrückenden Liganden mit C3–N31 1.327(5), N31–N32 1.348(5), N32–N33 1.305(5), N33–N34 1.344(5), N34–C3 1.344(5) Å fast identisch mit denen im chelatisierenden Liganden mit C1–N11 1.333(5), N11– N12 1.328(4), N12–N13 1.304(4), N13–N14 1.337(5), N14–C1 1.335(4) Å. Es fällt lediglich auf, dass, egal über welches Stickstoffatom im Tetrazolring eine Koordination zum Metall aufgebaut wird, die Bindung zwischen N2 und N3 im Tetrazolring immer die kürzeste Bindung zwischen zwei Stickstoffatomen darstellt. Die Koordinationssphäre der Metallzentren wird von sechs Wassermolekülen vervollständigt und als Koordinationspolyeder ist ein leicht verzerrtes, dreifach überkapptes trigonales Prisma zu beobachten. In Abbildung 2.2.2 ist das Motiv der Struktur wiedergegeben. Zwei Moleküle

Abbildung 2.2.3: Ansicht der Packungsstruktur des $La_2BT_3 \times 14H_2O$ entlang (011).

Wasser sind über Wasserstoffbrückenbindungen in die Struktur intercaliert und daraus folgt die Zusammensetzung $Ln_2BT_3 \times 14H_2O$. Die Abstände zwischen den Lanthanoidionen und den Sauerstoffatomen der koordinierten Wassermoleküle variieren zwischen 2,484(15) und 2,623(17) Å für das $La_2BT_3 \times 14H_2O$ und zwischen 2,45(3) und 2,72(3) Å für Ce₂BT₃×14H₂O. Die Abstände zwischen Metall- und Stickstoffatomen liegen zwischen 2,61(2) und 2,80(3) Å und sind somit nicht wesentlich länger als die M–O Abstände. Wichtiges Strukturelement sind auch hier die Wasserstoffbrückenbindungen. Die Wasserstoffatome konnten in der Fourier-Karte gefunden und isotrop verfeinert werden. Die Abstände zwischen N-Donor-Atomen und Wasserstoffatomen liegen zwischen

Abbildung 2.2.4: Wasserstoffbrücken in La₂BT₃ \times 14H₂O.

Abbildung 2.2.5: π -Stacking in La₂BT₃×14H₂O.

1,8(1) und 2,5(1) Å. Im Vergleich mit vielen, unter anderem neutronendiffraktometrisch bestimmten Strukturen, können die Wasserstoffbrückenbindungen als mittelstark angesehen werden [97]. Alle Stickstoffatome der Tetrazolringe, die nicht bereits an ein Metall gebunden sind, nehmen am Netzwerk der Wasserstoffbrücken teil. In Abbildung 2.2.4 ist die asymmetrische Einheit und das sich daran anschließende Netzwerk am Beispiel der Lanthan-Verbindung wiedergegeben. Die meisten und auch kürzesten Wasserstoffbrücken liegen in der Ebene, die durch die Tetrazolringe aufgespannt wird. Teilweise, wie z.B. N14, bilden Stickstoffatome aber auch zwei Wasserstoffbrücken aus. Diese schließen dann einen Winkel von ca. 75° ein. Aber auch in diesem Fall liegen Donor-Donor-Abstände nicht über 3 Å. Das Strukturelement des π -Stackings zeigt im Strukturtyp A eine Besonderheit. Jeweils die chelatisierenden und überbrückenden Tetrazole sind zu sich coplanar angeordnet (Abbildung 2.2.3). Untereinander schließen sie aber einen Winkel von 68,7(1)° ein. Die Zentren der Tetrazolringe liegen alle auf einer Geraden und zeigen mit 3,56(1) bzw. 3,61(1) Å dennoch Abstände, die für π -Stacking typisch sind (Abbildung 2.2.5).

2.2.2.2 Strukturtyp B

Die Strukturen der Neodym-, Samarium- und Europiumverbindungen sind ebenfalls isotyp. Die Verbindungen kristallisieren in der triklinen Raumgruppe $P\bar{1}$ (Nr. 2) mit den Gitterkonstanten a = 9,0948(12), b = 9,2820(12), c = 10,9285 Å, $\alpha = 99,160(1),$ $\beta = 93,56(1), \gamma = 112,397(9)^{\circ}$ für die Neodym-, a = 9,00753(15), b = 9,3630(17),c = 10,986 Å, $\alpha = 99,67(2), \beta = 93,17(2), \gamma = 112,72(2)^{\circ}$ für die Samarium- und a = 9,068(1), b = 9,233(1), c = 10,891(1) Å, $\alpha = 99,15(1), \beta = 93,68(1), \gamma = 112,45(1)^{\circ}$ für die Europiumverbindung. In den Strukturen sind keine überbrückenden BT-Einheiten mehr zu beobachten. Jedes Metallkation ist von einer BT-Einheit chelatisierend über die Stickstoffatome N1 der Tetrazolringe koordiniert. Die Koordinationssphäre der Lanthanoidkationen wird mit Wassermolekülen zu der Koordinationszahl 9 aufgefüllt. Zusätzlich ist eine BT-Einheit zum Ladungsausgleich über Wasserstoffbrückenbindungen an Wassermoleküle der ersten Koordinationssphäre gebunden.

Die Abstände der Lanthanoidkationen zu den Stickstoffatomen der chelatisierenden BT-Einheiten nehmen von der Neodym- bis zur Europiumspecies leicht ab und betragen 2,644(3) und 2,718(3) Å für die Neodym-, 2,615(5) und 2,695(5) Å für die Samariumsowie 2,698(2) und 2,597(3) Å für die Europiumspecies. Dieser Trend spiegelt sich auch in den Abständen des Kations zu den Sauerstoffatomen der koordinierten Wassermoleküle wieder. Durchschnittlich betragen die Abstände 2,490(47) Å für die Neodym-,

Abbildung 2.2.6: Ausschnitt aus der Struktur des $Nd_2BT_3 \times 20H_2O$.

Abbildung 2.2.7: Ansicht der Struktur des $Nd_2BT_3 \times 20H_2O$ entlang $(0\bar{2}\bar{1})$.

2,467(38) Å für die Samarium- und 2,448(49) Å für die Europiumspecies. Die empirische Standardabweichung ist deshalb so groß, weil es bei einigen Wassermolekülen zu einem komplementären Effekt kommt. So nimmt beispielsweise der Abstand Ln–O5 in der Reihe stetig zu (Tabelle 2.2.2).

Atome	$\rm Nd_2BT_3{\times}20H_2O$	$Sm_2BT_3 \times 20H_2O$	$Eu_2BT_3 \times 20H_2O$
Ln–O1	2,501(3)	2,416(4)	2,394(2)
Ln–O2	2,479(3)	2,477(5)	2,526(2)
Ln–O3	2,568(3)	2,518(5)	2,451(2)
Ln–O4	2,497(3)	2,416(4)	2,383(3)
Ln–O5	2,431(3)	2,465(5)	2,480(2)
Ln–O6	2,438(3)	2,480(5)	2,469(2)
Ln–O7	2,516(3)	2,498(4)	2,433(2)

Tabelle 2.2.2: Bindungslängen [Å] in Lanthanoid-5,5'-bitetrazolaten des Strukturtyps B.

Zusätzlich sind pro asymmetrischer Einheit drei Moleküle Wasser intercaliert. Die Zusammensetzungen können folglich am besten als $[LnBT(H_2O)_7]_2BT \times 6H_2O$ beschrieben werden. In Abbildung 2.2.6 ist als Beispiel ein Ausschnitt aus der Struktur des Nd₂BT₃×20H₂O wiedergegeben. Die Wasserstoffbrückenbindungen sind vergleichbar mit denen im Strukturtyp A. Alle Stickstoffatome, die nicht bereits an ein Metall gebunden sind, nehmen an der Ausbildung der Wasserstoffbrückenbindungen teil. Die BT-Einheiten sind in diesem Strukturtyp alle coplanar angeordnet und stapeln sich in Abständen von 3,24(1) bzw. 3,33(1) Å. Wie es bei π -Stacking oft beobachtet wird, liegen die aromatischen Ringe nicht exakt übereinander, sondern sind in einem Winkel von 23,7(1)° verschoben. Die Zentren der Tetrazolringe sind im Durchschnitt 3,6(1) Å voneinander entfernt.

2.2.2.3 Strukturtyp C

Der Strukturtyp C kann bei den späten Lanthanoiden Terbium und Erbium beobachtet werden. Die Terbium- und Erbiumverbindungen kristallisieren in der triklinen Raumgruppe $P\bar{1}$ (Nr. 2) mit den Gitterkonstanten a = 8,3163(12), b = 10,4566(15),c = 10,9904(18) Å, $\alpha = 94,681(12), \beta = 96,207(12), \gamma = 113,018(11)^{\circ}$ bzw. a = 8,2951(14),b = 10,4235(17), c = 10,986(2) Å, $\alpha = 94,82(2), \beta = 96,27(2), \gamma = 113,019(18)^{\circ}$. Die Strukturen weisen keine koordinierenden BT-Einheiten mehr auf. Die Koordinationssphäre der Lanthanoidkationen ist durch acht Wassermoleküle abgesättigt. Als Koordinationspolyeder findet man ein leicht verzerrtes, quadratisches Antiprisma. Wasser-

Abbildung 2.2.8: Ausschnitt aus der Struktur des $Tb_2BT_3 \times 20H_2O$.

stoffbrückenbindungen sind auch in diesem Strukturtyp wichtig. Da keine BT-Einheiten an Metallionen gebunden sind, können alle Stickstoffatome der Tetrazole an der Ausbildung des Netzwerks teilnehmen. In Abbildung 2.2.8 ist die Koordinationssphäre eines Terbium-Kations gezeigt. Die Abstände zwischen den Kationen und den Sauerstoffatomen der koordinierten Wassermoleküle sind signifikant kleiner als bei den frühen Lanthanoiden. Bei der Terbium-Species betragen die Abstände Tb-O1 2,436(5), Tb-O2 2,387(7), Tb-O3 2,377(3), Tb-O4 2,340(5), Tb-O5 2,352(3), Tb-O6 2,391(6), Tb-O7 2,347(6) und Tb-O8 2,337(5) Å. Die Abstände bei der Erbium-Species sind nochmals etwas kürzer und betragen Er-O1 2,410(6), Er-O2 2,353(9), Er-O3 2,350(5), Er-O4 2,322(8), Er-O5 2,332(7), Er-O6 2,369(8), Er-O7 2,328(7) und Er-O8 2,305(6) Å. In Abbildung 2.2.9 ist die Packungsstruktur im $Tb_2BT_3 \times 20H_2O$ dargestellt. Die Tetrazolringe liegen hier alle coplanar zueinander und bilden ein Netzwerk durch π -Stacking. Die Zentren der Tetrazolringe liegen dabei mit 3,341(1) Å, im Vergleich zu den anderen Strukturen, sehr nah beieinander. Die Ebenen, die durch die Tetrazolringe aufgespannt werden, haben zueinander einen Abstand von 3,285(5) Å. Der Winkel, um den die Tetrazolringe gegeneinander verschoben sind, ist somit auch etwas kleiner und beträgt $20,4(1)^{\circ}$. In Abbildung 2.2.10 ist das π -Stacking in der Struktur des Tb₂BT₃×20H₂O wiedergegeben.

Abbildung 2.2.9: Packung des Tb₂BT₃×20H₂O. Ansicht entlang (100).

Abbildung 2.2.10: π -Stacking in der Struktur des Tb₂BT₃×20H₂O.

2.2.3 Darstellung eines Actinoid-5,5'-bitetrazolats

Der primäre Unterschied zwischen Lanthanoiden und Actinoiden ist die Existenz stabiler, höherer Oxidationsstufen bei den leichten Actinoiden. Die Chemie der frühen Actinoide wird also im Gegensatz zu den Lanthanoiden stark von den *f*-Elektronen beeinflusst. Alle Actinoide sind radioaktiv und die Transurane (Elemente schwerer als Uran) können nur synthetisch hergestellt werden. Neben Uran kommt vor allem Thorium häufig in der Natur vor. Mit 11 ppm Massenanteil an der Erdhülle kommt Thorium etwa zweitausendmal häufiger vor als Gold. Dabei ist das ²³²Th-Nuklid mit annähernd 100% das häufigste Isotop und mit seiner extrem langen Halbwertszeit von $1,4 \times 10^{10}$ Jahren (nur α -Zerfall) lässt sich Thorium, im Vergleich zu anderen Actinoiden, leicht handhaben.

$$2 \operatorname{Na}_{2}^{+} \begin{bmatrix} - & & \\ N & N & N \\ || & & & \\ N & N & N \\ & & - \end{bmatrix} + \operatorname{Th}(\operatorname{NO}_{3})_{4} \xrightarrow{H_{2}O} \operatorname{Th} \begin{bmatrix} - & & \\ N & N & N \\ || & & & \\ N & N & N \\ & & - \end{bmatrix}_{2}$$

Schema 2.2.4: Darstellung von Thorium-5,5'-Bitetrazolat.

Abbildung 2.2.11: Ansicht des $[(OH)_2 Th_2(H_2O)_{14}]^{6+}$ -Kations und den Wasserstoffbrückenbindungen zu den Anionen in der Kristallstruktur des Thorium-5,5'-bitetrazolat-hydrats.

Abbildung 2.2.12: Elementarzelle des Thorium-5,5'-bitetrazolat-hydrats. Intercalierte Wassermoleküle sind der Übersichtlichkeit halber nicht dargestellt.

Thorium weist in wässrigen Lösungen die Oxidationsstufe +IV auf. Gemäß Schema 2.2.4 lässt sich das Thorium-5,5'-bitetrazolat darstellen. Auch wenn Thorium nur α -Zerfall aufweist, ist dennoch darauf zu achten, möglichst in geschlossenen Apparaturen zu arbeiten und so möglichst wenige Geräte zu kontaminieren. Daher wurde auch auf C,H,N-Elementaranalysen verzichtet. Eingeschlossen in eine Glaskapillare konnten aber Einkristalle gefahrlos röntgenographisch untersucht werden. Das Thorium-5,5'bitetrazolat-hydrat kristallisiert in der triklinen Raumgruppe P1 mit den Gitterkonstanten a = 10,582(2), b = 10,816(2), c = 11,367(2) Å und $\alpha = 73,46(2), \beta = 83,98(2), \beta = 83,98($ $\gamma = 66,01(2)^{\circ}$. Die Kristallstruktur zeigt Ähnlichkeiten zu den Strukturen des Terbiumund Erbium-5,5'-bitetrazolats. Es konnte keine signifikante Metall-Stickstoff Wechselwirkung beobachtet werden. Die Thoriumionen sind in der ersten Koordinationssphäre von Wassermolekülen umgeben. Jeweils zwei solche Koordinationspolyeder sind über eine Kante verknüpft. Das so gebildete Th₂O₂-Parallelogramm weist Th–O Bindungslängen von 2,38(3) bzw. 2,35(5) Å auf. Die O-Th-O Winkel betragen 65,3(2)° und die Th-O-Th Winkel 114,7(3)°. Die Distanz zwischen den beiden Th-Atomen beträgt 3,99(7) Å (Abbildung 2.2.11). Änliches beobachtet man in Chlorid- und Nitrathydraten des Thoriums (Tabelle 2.2.3).

	$[(\rm OH)_2 Th_2 (H_2 O)_{14}]^{6+}$	$[({\rm OH})_2{\rm Th}_2{\rm Cl}_2({\rm H}_2{\rm O})_{12}]^{4+}$	$[(OH)_2 Th_2 (NO_3)_4 (H_2O)_8]^{2+}$
Th–O1	2,35(5)	2,351(4)	2,333(3)
Th–O1'	2,38(3)	2,360(4)	$2,\!369(3)$
Th–O2	2,48(2)	2,497(5)	2,482(3)
Th–O3	2,53(4)	2,494(5)	2,544(3)
Th–O4	2,50(1)	2,498(5)	2,485(3)
Th–O5	2,48(3)	2,523(4)	2,521(3)
Th–O6	2,48(2)	2,554(4)	
Th–O7	2,52(2)	2,500(5)	
Th–O8	2,57(4)		

Tabelle 2.2.3: Bindungslängen [Å] in dimeren Thoriumhydroxohydraten

Bei den Untersuchungen von L. Soderholm hat sich gezeigt, dass es sich dabei um überbrückende Hydroxidionen handelt [98]. Auch quanten-chemische Berechnungen in Kooperation mit J. Wiebke vom Institut für Theoretische Chemie haben gezeigt, dass es sich dabei um überbrückende Hydroxidionen handeln muss [99]. Folglich ist die Verbindung am besten als $[(\mu-OH)_2Th_2(H_2O)_{14}]BT_3-H_2BT\times 10H_2O$ zu beschreiben. Die BT-Einheiten sind auch hier über Wasserstoffbrückenbindungen an die Wassermoleküle der ersten Koordinationssphäre gebunden. Die Bindungsverhältnisse innerhalb der BT-Einheiten sind vergleichbar mit denen in den Lanthanoid-Verbindungen. Die kürzesten Bindungen zwischen zwei Stickstoffatomen sind auch hier wieder die Bindungen zwischen den Positionen N2 und N3 im Tetrazolring. Wie man in Abbildung 2.2.12 sehen kann, liegen zwei Anionen mit ihren Inversionszentren auf speziellen Lagen, nämlich zum einen auf den Ecken (100), (110) und daraus resultierend auch auf (001) und (011) und zum anderen auf allen Kanten entlang der c-Achse $(00\frac{1}{2}), (10\frac{1}{2}), (01\frac{1}{2})$ und $(11\frac{1}{2})$. Diese Anionen sind planar und auch zueinander coplanar. Das dritte Anion ist aber überraschenderweise nicht planar. Der Torsionswinkel N12–C2–C1–N13 beträgt 10°. Vermutlich liegt das an den Wasserstoffbrückenbindungen. Während O6, N14, O2, N11, N2, O1 und N12 relativ eben zueinander liegen und damit auch die Wasserstoffbrücken zwischen diesen Atomen, so ragt O5 deutlich aus dieser Ebene heraus. Die Wasserstoffbrücke zu N13 könnte verantwortlich für diese Verzerrung des Anions sein (Abbildung 2.2.11). Die Wasserstoffatome konnten nicht in der Fourier-Karte gefunden werden, was bei Anwesenheit von sehr schweren Elementen ein generelles Problem ist [100]. Dennoch sprechen die Abstände O6-N14 2,678(10), O2-N11 2,836(10), O2-N2 2,756(13), O1-N12 2,965(12) und O5–N13 2,781(13) deutlich für Wasserstoffbrücken, wie sie auch bei den Lanthanoid-Verbindungen gefunden werden konnten.

2.2.4 Zusammenfassende Beschreibung der 5,5'-Bitetrazolat-Komplexe

Die erhaltenen 5,5'-Bitetrazolat-Komplexe zeigen abhängig vom Metallkation unterschiedliches Koordinationsverhalten. Die frühen Elemente der Lanthanoiden werden sogar in Wasser von den Tetrazolylliganden koordiniert. Dies ist insoweit ein Novum, als dass bisherige Versuche, ähnliche Verbindungen aus Wasser zu kristallisieren, immer zu vollständig hydratisierten Lanthanoidionen führten [68]. Die Beobachtung, dass entlang der Lanthanoide mit steigender Ordnungszahl das Koordinationsbestreben der Tetrazolate sinkt, steht im Einklang mit dem HSAB-Prinzip. Die steigende Kernladungzahl bei gleichzeitiger Auffüllung der 4f-Elektronenschale führt zu stetig abnehmenden Ionenradien und damit zu stetig härteren Ionen. Die daraus resultierende, stetig steigende Hydratationsenthalpie kann ab einem bestimmten Punkt nicht mehr von der Koordination eines Tetrazolanions überkompensiert werden. Der Chelateffekt kann diesem Trend zwar bis zu einem gewissen Grad entgegenwirken, so dass auch Strukturen, wie sie in Kapitel 2.2.2.2 zu finden sind, jedoch werden die chelatisierenden BT-Einheiten bei höheren Hydratationsenthalpien durch die härteren Wassermoleküle substituiert. Abbildung 2.2.13 zeigt deutlich den Zusammenhang zwischen Ionenradius, steigender effektiver Kernladung und Hydratationsenthalpie.

Abbildung 2.2.13: Zusammenhang von steigender effektiver Kernladung, Ionenradius [pm] und Hydratationsenthalpie $[kJ mol^{-1}]$.

Das vierfach geladene Thoriumkation hat, bei einer Koordinationszahl von neun, einen ähnlichen Radius (109 pm) wie das dreifachgeladene Ion von Terbium (110 pm) oder Erbium (106 pm)[101]. Daher überrascht es nicht, dass das Thorium, ähnlich den Verbindungen in Kapitel 2.2.2.3, nicht koordiniert wird. Ferner zeigt sich durch die Dimerisierung über Hydroxidbrücken der stark *Lewis*-saure Charakter dieses Kations.

2.3 Bis(tetrazol-5-yl)triazene

2.3.1 Darstellung von Natrium-bis(tetrazol-5-yl)triazenat

Das 1,3-bis(1H-tetrazol-5-yl)triazen wurde erstmals 1892 von *J. Thiele* beschrieben [39]. Etwa 20 Jahre später berichteten dann *K. A. Hofmann* und *H. Hock* über eine praktikable Synthese (Schema 2.3.1) [30]. Die Synthese konnte reproduziert werden. Das

Schema 2.3.1: Synthese des Natrium-1,3-bis(1H-tetrazol-5-yl)triazenats.

Mononatriumsalz wurde nicht isoliert, sondern weiter mit Natriumhydroxid zum Trinatriumsalz deprotoniert. Dieses konnte aber mit 60% Ausbeute als beiger Feststoff erhalten werden. Die C,H,N-Elementaranalyse zeigt, dass dieser Stoff noch zwei Äquivalente Wasser enthält. Auch in diesem Zustand ist die Substanz empfindlich gegenüber Reibung. Ab einer Temperatur von 79 °C zersetzt sich die Verbindung explosionsartig und so gelang es nicht, sie weiter zu trockenen. Das Trinatriumsalz löst sich unzersetzt in Wasser bis zu Konzentrationen von 6 mol L^{-1} . In aprotischen, polaren Lösemitteln wie DMF oder DMSO zersetzt sich die Verbindung unter Gasentwicklung. Ein hochaufgelöstes, negatives ESI-MS-Spektrum zeigt Peaks bei $m/z = 180,15 [C_2H_2N_{11}]$ und $202,15 [NaC_2HN_{11}^{-}]$. Die Tetrazolylkohlenstoffatome zeigen im ¹³C-NMR-Spektrum eine Resonanz bei $\delta = 171.4$ ppm und sind damit, im Vergleich zu 5-alkylsubstituierten Tetrazolylkohlenstoffatomen, signifikant zu tieferem Feld verschoben. Aufgrund der hervorragenden Löslichkeit konnte ein ¹⁵N-NMR-Spektrum allein anhand des natürlichen Gehalts an ¹⁵N-Kernen aufgenommen werden (¹⁵N: I = 1/2, $D^P = 3.85 \times 10^{-6}$, $T^D =$ 1 min). Die Kerne zeigen Resonanzen bei $\delta = 108,5$; -6,9; -93,7 und -95,1 ppm im integralen Verhältnis von 1:4:2:4. Das Signal bei 108,5 ppm kann somit dem mittleren N-Atom zugeordnet werden. In vergleichbaren Triazenen ist das Signal des mittleren N-Atoms ebenfalls immer das Signal bei tiefstem Feld [102]. Die Signale bei -6.9 und -95,1 können den Stickstoffatomen in den Tetrazolen zugeordnet werden, wobei die Stickstoffatome an den Positionen N2 und N3 im Falle der Tetrazolylanionen ebenfalls stets bei tiefstem Feld Resonanz zeigen [102]. Besonders interessant ist allerdings das Signal bei -93,7 ppm. Auch wenn das Signal mit einer Halbwertsbreite von 15 Hz etwas verbreitert ist, so scheinen die beiden äußeren N-Atome der Triazenbrücke magnetisch äquivalent zu sein. Dies lässt sich durch die mesomeren Grenzstrukturen in Schema 2.3.2 erklären.

Schema 2.3.2: Mesomere Grenzstrukturen in anionischen Triazenen.

Abbildung 2.3.1: ¹⁵N-NMR-Spektrum von Natrium-1,3-bis(tetrazol-5-yl)triazenat.

2.3.2 Darstellung von Lanthanoid-bis(tetrazol-5-yl)triazenaten

Ausgehend vom Trinatrium-bis(tetrazol-5-yl)triazenat gelang die Synthese einiger Lanthanoid-bis(tetrazol-5-yl)triazenate (Schema 2.3.3). Die Verbindungen sind in Wasser

Schema 2.3.3: Darstellung der Lanthanoid-bis(tetrazol-5-yl)triazenate.

schwer löslich und fallen als orangefarbene Pulver an. In warmem Wasser und aprotischen, polaren Lösemitteln wie DMSO oder DMF zersetzen sich die Verbindungen unter Gasentwicklung ohne dass merkliche Mengen in Lösung gehen. Im Gegensatz zu dem Natriumsalz sind die Verbindungen erstaunlich hitzebeständig. Erst bei Temperaturen von über 300 °C zersetzen sie sich explosionsartig. Die C,H,N-Elementaranalysen zeigen zum Teil starke Abweichungen von den berechneten Werten. Dies kann daran liegen, dass die Verbindungen nicht phasenrein erhalten wurden. Allerdings ist es generell schwierig, korrekte Werte für Verbindungen mit hohem Stickstoffgehalt zu messen [103].

Von der Samariumverbindung konnte ein IR-Spektrum aufgenommen werden. Im Bereich der Valenzschwingungen schwerer Atome fällt eine besonders starke Absorption bei $\tilde{\nu} = 1346 \text{ cm}^{-1}$ auf. Zwar zeigen alle Tetrazole in diesem Bereich typische Valenzund Gerüstschwingungen, aber diese sind meist sehr scharf. Eine genauere Betrachtung wird durch eine quanten-chemische Untersuchung möglich. Die Geometrie eines Modells der Verbindung wurde mithilfe von DFT-Methoden (Dichte Funktional Theorie) in der Punktgruppe C_1 optimiert, und anschließend wurden die harmonischen Schwingungsfrequenzen analytisch berechnet. Tabelle 2.3.1 stellt die berechneten und experimentell gefundenen Frequenzen gegenüber. Die starke Absorption ist folglich auf die asymmetrische Valenzschwingung des mittleren Stickstoffatoms in der Triazenbrücke zurückzuführen. Die berechneten Frequenzen sind systematisch zu etwas höheren Wellenzahlen verschoben. Dies liegt hauptsächlich an der Überschätzung der Bindungslängen und der Vernachlässigung von anharmonischen Effekten. In Tabelle 2.3.1 sind die berechneten Wellenzahlen schon mit dem Korrekturfaktor $\chi = 0,994$ versehen. Dieses Verhältnis zwischen berechneten und experimentell ermittelten Werten wurde von J. Neugebauer und B. A. Hess bei Verwendung des B3LYP Funktionals [104, 105] und Ahlrichs' triple- ζ valence plus polarisation (TZVP) Basissatz [106] gefunden [107].

Berechnet	DFT/B3LYP/TZVP	Beobachtet		
$\tilde{\nu}[\mathrm{cm}^{-1}]$	Intensität [%]	$\tilde{\nu}[\mathrm{cm}^{-1}]$	Zuordnung	
496,88	0,02	473,74		
628,11	0,12	595,75		
673,91	0			
$675,\!05$	$0,\!02$			
718,53	0			
723,81	1,42	717,47		
739,41	0,73	773,82		
887,67	$2,\!41$	798		
935,21	$3,\!19$	851,95		
942,29	$0,\!35$			
$953,\!65$	$0,\!87$			
983,70	0,03			
$1054,\!43$	5,09	$1045,\!60$	$ u(\text{N-N})_{ring}$	
1055,77	4,19			
1099,16	$0,\!21$	1093,14	ν (C-N-N) _{ring}	
1120,27	1,21	1144,93	$ u({ m N-N})_{ring}$	
		1152,99	$ u(\text{N-N})_{ring}$	
		1168, 15	$ u(\text{N-N})_{ring}$	
$1227,\!56$	$3,\!01$	1218,73		
1228,93	0,81			
$1257,\!44$	1,50			
$1281,\!15$	$2,\!30$	1299,39		
1342,78	10,73			
1349,37	100	$1346,\!05$	$\nu_{as}(\text{N-N-N})_{triaz}$	
		$1437,\!47$		
1479,01	$20,\!92$	$1471,\!07$		
1483,01	0,44	1507,08		
		1642,09		
		$1675,\!54$		

Tabelle 2.3.1: Berechnete und beobachtete Frequenzen

Obwohl die Verbindungen hauptsächlich als Pulver bzw. mikrokristalline Substanz erhalten wurden, konnten von NdBTT und SmBTT sehr kleine Kristalle für eine röntgenographische Untersuchung präpariert werden. Die Zellkonstanten, die jeweils nach ca. 6000 Reflexen bestimmt wurden, sind ähnlich und deuten mit a = 9,07, b = 9,31, c = 11,04 Å, $\alpha = 99,52$, $\beta = 93,35$, $\gamma = 112,54^{\circ}$ für die Neodym- und a = 9,10, b = 9,45, c = 10,93 Å, $\alpha = 99,23$, $\beta = 93.10$, $\gamma = 112,98^{\circ}$ für die Samariumspecies auf trikline Kristallsysteme hin. Lediglich die Struktur des SmBTT konnte im triklinen Kristallsystem durch direkte Methoden [108] gelöst werden. Es zeigte sich dann bei der Verfeinerung, dass die richtige Raumgruppe C2/c (Nr. 15) ist und die Zellkonstanten a = 7,214(2), b = 14,649(4), c = 13,419(4) Å, $\beta = 97,25(3)^{\circ}$ betragen. Das Samariumion wird von den

Abbildung 2.3.2: Ausschnitt aus der Struktur des SmBTT.

Stickstoffatomen an Position N1 in den Tetrazolringen und dem mittleren Stickstoffatom der Triazenbrücke tridental koordiniert. Zusammen mit den sechs zusätzlich koordinierten Wassermolekülen liegt als Koordinationspolyeder ein leicht verzerrtes, dreifach überkapptes trigonales Prisma vor. In Abbildung 2.3.2 ist zu erkennen, dass durch die Atome O1, O1', O2, O2', N11 und N11' das trigonale Prisma gebildet und dieses von den Atomen O3, O3' und N2 überkappt wird. Das BTT Anion ist dabei planar und die Bindungslängen innerhalb des Anions N1–N2 1,31(2), N1–C1 1,39(2), N11–N12 1,35(2), N12–N13 1,32(2) und N13–N14 1,37(2) Å lassen ein ausgedehntes π -System vermuten.

Die Bindungslängen zwischen den Samariumionen und den Sauerstoffatomen des Wassers sind mit Sm–O1 2,51(2), Sm–O2 2,47(3) und Sm–O3 2,40(2) Å vergleichbar mit denen im SmBT-Komplex. Die Bindungslänge zwischen dem Tetrazolstickstoffatom und dem Samariumion ist aber mit 2,53(2) Å signifikant kürzer als im SmBT-Komplex. Der Abstand zum Stickstoffatom der Triazenatbrücke Sm–N2 ist mit 2,74(2) Å erwar-

tungsgemäß länger. Die bisher einzige Struktur eines Übergangsmetall-Komplexes dieser Ligandenklasse, das [Ni(B2MTT)₂] (B2MTT = 1,3-Bis(2-methyltetrazol-5-yl)triazenat) zeigt ebenfalls, dass diese Liganden planar sind und dass das mittlere Stickstoffatom der Triazenbrücke als Donoratom fungiert [109]. Auch wenn die Koordinationsabstände zum Metall bei der Nickelspecies wesentlich geringer sind, so sind die Bindungsverhältnisse innerhalb des Liganden doch sehr ähnlich. Interessanterweise zeigt das erst kürzlich von *Klapötke et al.* untersuchte Natrium-1,3-bis(1-methyltetrazol-5-yl)triazenat (B1MTT) unterschiedliches Koordinationsverhalten. Zwar zeigt das Anion ebenfalls eine Koordination über das mittlere Stickstoffatom der Triazenbrücke zusammen mit den N1 Atomen der Tetrazolringe, wenn die Substanz aus Methanol kristallisiert wird, aber es ist auch eine η^2 -Koordination der Triazenbrücke zu beobachten, wenn die Verbindung aus Wasser kristallisiert wird [110]. In Tabelle 2.3.2 sind die Bindungslängen der Liganden miteinander verglichen.

Atome	SmBTT	SmBTT(DFT)	$Ni(B2MTT)_2$ [109]	Na_2B1MTT [110]
C1–N1	1,39(2)	1,395	1,382(2)	1,430(2)
N1–N2	1,31(2)	1,308	1,304(2)	1,313(2)
N2-N1'	1,31(2)	1,308	1,304(2)	1,313(2)
N1'-C1'	1,39(2)	$1,\!395$	1,382(2)	1,385(2)
C1-N14	1,328(22)	1,350	1,338(2)	1,396(2)
N14-N13	1,375(22)	1,350	1,339(2)	1,362(2)
N13–N12	1,324(20)	1,320	1,312(2)	1,372(2)
N12-N11	1,358(20)	1,350	1,326(2)	1,378(2)
N11-C1	1,338(20)	1,360	1,354(2)	1,380(2)

Tabelle 2.3.2: Vergleich der Bindungslängen [Å] in der Triazeneinheit

Zusätzlich zu den koordinierten Wassermolekülen sind zwei weitere über Wasserstoffbrückenbindungen in der zweiten Koordinationssphäre intercaliert. Wasserstoffatome konnten aber in der Fourier-Karte nicht gefunden werden. Jedoch ist das Strukturelement des π -Stackings auch wieder zu finden. In Abbildung 2.3.3 sind die beiden Modi wiedergegeben. Bei dem einen Modus beobachtet man, dass Tetrazolringe im Abstand von 3,529(1) Å eclipsed genau übereinander liegen. Bei dem anderen Modus ist wieder eine Verschiebung der aromatischen Ringe um einen Winkel von 15,3(4)° festzustellen, wobei der Abstand zwischen den Zentren der Ringe mit 3,752(1) Å etwas größer ist.

Abbildung 2.3.3:
 $\pi\mbox{-}Stacking$ in der Struktur des SmBTT.

Abbildung 2.3.4: Beobachtetes und berechnetes Pulverdiffraktogramm für SmBTT $\times 8 {\rm H}_2 {\rm O}.$

Wegen nur geringer Güte der Kristalldaten (siehe Tabelle 5.7.72) und der Tatsache, dass die Verbindung hauptsächlich als mikrokristallines Pulver anfällt, wurde von einer Probe ein röntgenographisches Pulverdiffraktogramm aufgenommen. Verglichen mit dem für die Kristallstruktur berechneten Diffraktogramm sollte es möglich sein, eine Aussage darüber zu treffen, ob die Verbindung phasenrein vorliegt und inwieweit die Kristallstruktur mit der Struktur der mikrokristallinen Substanz übereinstimmt. In Abbildung 2.3.4 ist das berechnete dem beobachteten Diffraktogramm gegenübergestellt. Während sich die Diffraktogramme unterhalb von 7° 2θ signifikant unterscheiden, so sind sie sich doch über 7° 2θ recht ähnlich. Ist der Reflex für (111) etwas verschoben, so sind doch zum Beispiel die Reflexe für (023), $(\overline{13}1)$, (112) und die sich überlagernden Reflexe (022) und $(\overline{112})$ nahezu identisch. Auch wenn nicht alle Reflexe übereinstimmen, so ist doch ein hohes Maß an Ähnlichkeit zu erkennen. Kleinere Unterschiede zwischen Diffraktogrammen, die aus Einkristallstrukturdaten berechnet wurden, und experimentellen Diffraktogrammen sind üblich. Aufgrund von bevorzugter Orientierung der Moleküle im Einkristall und der statistisch verteilten Orientierung im Pulver können Unterschiede in den Diffraktogrammen auftreten; diese Unterschiede sind Teil aktueller Untersuchungen.

2.4 Organylamin-bis-acetotetrazole

Ausgehend von den physikalischen Ähnlichkeiten der Tetrazole mit den Carbonsäuren war es das Ziel, neue, multidentate Liganden darzustellen, deren Carbonsäure-Derivate bereits erfolgreich in der Komplex-Chemie Anwendung finden. Einer der bekanntesten und meistverwendeten Liganden ist sicherlich die Ethylendiamintetraessigsäure (H_4EDTA). H_4EDTA wird in Form seines Dinatriumsalzes (Na_2H_2EDTA) weltweit jährlich in Mengen von einigen hundert Kilotonnen hergestellt. Verwendung findet es vor allem als Zusatz in Waschmitteln als "Enthärter", indem es Ca²⁺- und Mg²⁺-Ionen maskiert. Weiterhin findet das Eisen^{III}-EDTA-Salz Anwendung in der Fototechnik und zwar als Oxidationsmittel für die Farbentwicklung. Auch in der Analytischen Chemie findet es als TITRIPLEX®-Maßlösung Anwendung zur quantitativen Bestimmung von Metallkationen. Überraschenderweise ist die entsprechende Tetrazolverbindung erst kürzlich nachgewiesen worden [111] und die davon abgeleiteten Organylamin-bis-acetotetrazole sind noch nicht untersucht worden (Abbildung 2.4.1). Lediglich über Untersuchungen am Tetrazolanalogon der Nitrilotriessigsäure (NTA) wurde berichtet [112, 113]. Es ist verwunderlich, dass diese Verbindungen kaum untersucht worden sind, weil die entsprechenden Ausgangsverbindungen eigentlich sehr leicht synthetisiert werden können.

Abbildung 2.4.1: Tetrazolanalogon zu H₄EDTA und abgeleitete Liganden.

Die entsprechenden Nitrile sind Intermediate der allgemein bekannten *Strecker*-Synthese und können durchaus isoliert werden (Schema 2.4.1). In der Patentschrift von *H. Ulrich* und *E. Plötz* aus dem Jahr 1937 [114] ist die Synthese dieser Nitrile beschrieben und die dort angegebenen Ausbeuten von 70% konnten reproduziert werden. Besonders gut funktioniert diese Synthese mit frisch zubereiteter Formaldehyd-Lösung.

Schema 2.4.1: Synthese von Alkylamin-bis-acetonitrilen.

Die dargestellten Alkylamin-bis-acetonitrile wurden hauptsächlich NMR-spektroskopisch untersucht. Verglichen mit den ¹H-Spektren der entsprechenden Amine ist jeweils ein neues Signal für die zusätzlichen Methylengruppen zu beobachten. Die chemische Verschiebung dieser Methylengruppen ist relativ unabhängig von der Art der Substitution des Amins und zeigt meist zwischen $\delta = 3,6$ und 3,8 ppm Resonanz. Aminprotonen der Edukte sind nicht mehr zu detektieren. Bei den ⁿPropyl- und ⁿHexylamin-bisacetonitrilen ist auffällig, dass die zum Amin β -ständige Methylengruppe der Alkylkette im Vergleich zu den entsprechenden Aminen systematisch um 0,2 bis 0,3 ppm zu tieferem Feld verschoben ist.

Auch wenn die meisten Alkylamin-bis-acetonitrile schon in der Literatur beschrieben wurden, so sind bislang noch keine Kristallstrukturdaten zu einem Vertreter dieser Verbindungsklasse zu finden gewesen. Dies mag zwar daran liegen, dass viele dieser Verbindungen bei Normalbedingungen Flüssigkeiten sind, aber gerade das Ethylendiamintetraacetonitril ist ein Feststoff. Auch andere Organylamin-bis-acetonitrile sind Feststoffe, wenn es sich bei dem Organylrest um hinreichend lange, sterisch anspruchsvolle Alkylketten handelt. Auch wenn der ^tButylrest nicht als besonders sterisch anspruchsvoll anzusehen ist, so hat doch auch schon das ^tButylaminbisacetonitril einen Schmelzpunkt von 39 °C und kann als Feststoff isoliert werden. So gelang es in dieser Arbeit zumindest von zwei Vetretern dieser Verbindungsklasse Einkristallstrukturdaten zu erhalten. In der Abbildung 2.4.2 sind die Molekülstrukturen von Ethylendiamintetraacetonitril und ^tButylaminbisacetonitril wiedergegeben.

Abbildung 2.4.2: Abbildung der Molekülstrukturen von Ethylendiamintetraacetonitril und t BuABAN.

Ausgehend von diesen Nitrilen sollte es möglich sein, mithilfe von Aziden die entsprechenden Tetrazolverbindungen aufzubauen. Dabei können prinzipiell, wie in Kapitel 1.3 beschrieben, mehrere Azid-Quellen in Betracht gezogen werden. Die vielversprechendste Methode ist sicherlich die Verwendung von Me₃SnN₃. Allerdings ist aus ökonomischer Sicht die kostengünstige Variante über NaN₃/[NH₄]Cl zu bevorzugen.

2.4.1 Versuche zur Darstellung von H₄EDTAT

Die Darstellung und Isolierung des Ethylendiamin-tetrakis-acetotetrazols (H₄EDTAT) ausgehend vom Ethylendiamintetraacetonitril ist bislang noch nicht beschrieben worden. Versuche entsprechend Schema 2.4.2 die Substanz in DMF darzustellen scheiterten. Die Reaktionslösungen zeigten auch nach mehreren Stunden bei 130 °C im ¹³C-NMR Spektrum noch immer die Anwesenheit von Nitrilgruppen, die bei $\delta = 115$ ppm zu detektieren sind. Auch wenn ein Überschuss von sechs Äquivalenten NaN₃/[NH₄]Cl eingesetzt wurde, konnten noch immer Nitrile in den Reaktionslösungen detektiert werden. Zwar konnte auch die Bildung von Tetrazolen beobachtet werden, aber die Umsetzungen waren nie vollständig und führten immer zu Produktgemischen.

Schema 2.4.2: Mögliche Synthese von EDTAT.

Versuche, aus diesen Produktgemischen durch Ansäuern der wässrigen Lösungen mit HCl die Tetrazole zu fällen, scheiterten daran, dass die Ethylendiamine protoniert wurden und sich so lösliche Ammoniumsalze bildeten. Diese ließen sich auch nicht durch fraktionierende Kristallisation vom [NH₄]Cl und NaCl trennen. Wie bereits in Kapitel 1.4 erwähnt, zeigen Tetrazole als N-Donor-Liganden eine erhöhte Bindungstendenz zu weichen Metallionen und deren Komplexe sind weitestgehend unlöslich. Tatsächlich konnten so aus den Reaktionslösungen mit CuSO₄ blaue Verbindungen gefällt werden. Die C,H,N-Elementaranalyse dieses Feststoffes zeigt zwar einen relativ hohen Stickstoffgehalt von 48,0%, aber im Verhältnis zu den Werten für Kohlenstoff (26,7%) und Wasserstoff (3,8%) passt diese Analyse nicht zu den berechneten Werten für das [Cu(H₂EDTAT)] (N 56,3%, C 26,8%, H 2,7%). Ein ESR-Spekrum dieser pulverförmigen Substanz zeigt ein für Cu^{II} typisches Signal. Das Signal ist, wie bei Feststoffproben üblich, stark verbreitert und es kann keine Hyperfein-Aufspaltung beobachtet werden (^{63,65}Cu, I = 3/2, 100% nat. Häufigkeit). Das Spektrum ist in Abbildung 2.4.3 dargestellt.

Eine weitere Umsetzung dieses Feststoffes mit Na_2S in Wasser führte zur Bildung von CuS, das als schwarzer Feststoff abgetrennt werden konnte, aber aus den Filtraten dieser Ansätze konnten nur graue, amorphe Feststoffe isoliert werden, die außerdem noch einen hohen Schwefelgehalt hatten.

Diese Beobachtungen führten zu der Überlegung, Trimethylzinnazid als Azid-Quelle einzusetzen. Zum einen sollten die milderen Reaktionsbedingungen längere Reaktionszeiten ermöglichen und zum anderen sind bei der Aufarbeitung keine weiteren Substanzen beim Isolieren der Stannyltetrazole abzutrennen. Dem Schema 2.4.3 entsprechend wurde versucht, das Stannyltetrazol-Derivat darzustellen. Bei 110 bis 120 °C in DMF und nach

Abbildung 2.4.3: ESR-Spektrum des möglichen [Cu(H₂EDTAT)]-Komplexes.

Schema 2.4.3: Synthese des EDTAT-tetrakis(trimethylstannyl)-Komplexes.

Reaktionszeiten von 48 Stunden konnten in den Reaktionslösungen keine Nitrile mehr ¹³C-NMR-spektroskopisch detektiert werden. Aus braunen, aufkonzentrierten Reaktionslösungen fällt bei Zugabe von Ethanol ein grauer Feststoff aus, der abfiltriert wird und nach Waschen mit kaltem Ethanol als farbloses Pulver isoliert werden kann. Die C,H,N-Elementaranalyse des Feststoffes stimmt mit den berechneten Werten gut überein. Im ¹H-NMR Spektrum einer Lösung in DMSO-d₆ werden Singuletts bei $\delta = 3,97$, 2,69 und 0,65 ppm im integralen Verhältnis von 8:4:36 detektiert. Das Signal bei 0 ppm zeigt die typischen ^{117,119}Sn-Satelliten mit einer Kopplungskonstante von 70 Hz. In einem ¹³C{¹H}-NMR-Spekrum sind Signale bei $\delta = 159, 50, 48$ und 0 ppm zu beobachten.

Wie bereits erwähnt, wurde kürzlich über die Synthese des H₄EDTAT berichtet [111]. Die Arbeitsgruppe um *J. Hasserodt* konnte das H₄EDTAT auf einem anderen Wege darstellen. In einer 5-Stufen-Synthese gelang es, das H₄EDTAT zu isolieren. Ausgehend von Chloracetylchlorid konnte das H₄EDTAT in ca. 30% iger Ausbeute erhalten werden (Schema 2.4.4). Auch wenn das 1-Benzyl geschützte 5-Chlormethyltetrazol ein inter-

Schema 2.4.4: Synthese von H_4 EDTAT nach Hasserodt [111].

essantes Synthon zur Einführung von Tetrazolfunktionen darstellt, ist das Entschützen mit 600 Gew.-% Pd/C (5%ig) sicherlich nicht die ökonomischste Variante. Hier könnten die stannylsubstituierten Tetrazole eine Vereinfachung darstellen, da die Trimethylstannylgruppen sehr effektiv und kostengünstig mit HBr abstrahiert werden können (Schema 2.4.5). Das Trimethylzinnbromid kann aus diesen Reaktionsmischungen mit Ether ausgewaschen werden und das H₄EDTAT verbleibt als unlöslicher, farbloser Feststoff. Die NMR-Spektren dieses Feststoffes in DMSO-d₆ zeigen, dass keine Trimethylzinngruppen

Schema 2.4.5: Abstraktion der Trimethylstannylgruppen.

mehr vorhanden sind und die C,H,N-Elementaranalysen stimmen sehr gut mit den berechneten Werten überein. Leider konnten nur wenige Milligramm isoliert werden und Kristallstrukturanalysen waren bislang noch nicht erfolgreich. Verglichen mit dem Reaktionsweg von *J. Hasserodt* konnten ähnliche Ausbeuten erzielt werden und der Einsatz von teuren Katalysatoren wurde vermieden. Einen großen Vorteil bietet die Synthese auch dahingehend, dass das entstehende Me₃SnBr relativ leicht wieder in das Me₃SnN₃ überführt werden, und so die Synthese im Kreislauf betrieben werden kann (Schema 2.4.6).

Schema 2.4.6: Kreislaufreaktion mit Trimethylzinnazid.

2.4.2 Darstellung von [ⁿHexABAT(SnMe₃)₂]

Ausgehend vom ^{*n*}Hexylamin-bis-acetonitril gelang die Darstellung des Tetrazolderivats entsprechend dem Schema 2.4.7. Die Verbindung konnte als farbloses Pulver erhalten werden. Die C,H,N-Elementaranalyse stimmt hervorragend mit den berechneten Werten überein. In unpolaren Lösemitteln wie Pentan, Diethylether oder Toluol ist die Substanz unlöslich. Auch Lösemittel von höherer Polarität, wie z.B. THF oder Acetonitril scheinen nur sehr geringe Mengen Substanz zu lösen. Lediglich in DMF, DMSO oder Ethanol löst sich die Verbindung in merklichen Mengen. Das ¹H-NMR Spektrum einer

Schema 2.4.7: Synthese von $[^{n}$ HexABAT $(SnMe_{3})_{2}]$.

DMSO-d₆-Lösung zeigt, im Vergleich zu dem entsprechenden Nitril, eine deutliche Verschiebung für die Methylengruppen am Tetrazolring zu tieferem Feld. Das Nitril zeigt für diese beiden Methylengruppen eine Resonanz bei $\delta = 3,6$ ppm, während die tetrazolsubstituierten Methylengruppen bei $\delta = 4,18$ ppm Resonanz zeigen. Die übrigen Signale sind nicht wesentlich anders als beim ⁿHexylamin-bis-acetonitril, jedoch ist bei $\delta = 0,95$ ppm das Signal der Trimethylstannyl-Gruppen im korrekten integralen Verhältnis zu sehen. Das Signal weist typische, sich überlagernde ^{117,119}Sn-Satelliten auf, und die ²J-Kopplungskonstante beträgt 70 Hz.

Die Bildung des Tetrazolrings ist besonders gut in einem ¹³C{¹H}-Spektrum zu beobachten. Das Signal der Nitrilgruppen bei $\delta = 114$ ppm ist nicht mehr zu detektieren, während ein für 5-alkylsubstituierte Tetrazole typisches Signal bei $\delta = 160$ ppm erscheint. Auch die ¹³C-Verschiebung der Methylengruppen ändert sich signifikant von $\delta = 41$ beim Nitril zu $\delta = 48$ ppm beim Tetrazolderivat. Ein zusätzliches Signal bei $\delta = 0$ ppm ist den Trimethylstannylgruppen zuzuordnen. Alle anderen Änderungen im ¹³C-Spektrum liegen im Kommabereich und könnten schon durch Konzentrationsunterschiede hervorgerufen werden, weshalb sie hier nicht diskutiert werden.

Auch schwingungsspektroskopisch erweist sich die Substanz als rein. Es können keine

Schwingungen für Nitrile oder Azide gefunden werden. Das IR-Spektrum der Verbindung weist einige, für Tetrazole typische, Schwingungsbanden auf. Eine breite Absorptionsbande bei 1637, sowie einige scharfe Banden bei 1466, 1400, 1227, 1197 und 1125 cm⁻¹ sind typischen Schwingungen im Tetrazolring zuzuordnen. Eine besonders intensive Absorption bei 788 cm⁻¹ könnte ebenfalls Schwingungen im Tetrazolring zugeordnet werden, aber dafür ist sie, verglichen mit anderen Spektren von Tetrazolen, zu intensiv. Viel wahrscheinlicher ist, dass es sich dabei um asymmetrische Sn–C-Schwingungen handelt, wie sie auch für das Trimethylzinnhydroxid beschrieben wurden [115]. Auch die Schwingungen bei 551 cm⁻¹ könnte von Schwingungen der Trimethylstannylgruppe stammen. Die Absorptionsbanden bei 2955, 2927 und 2857 cm⁻¹ sind den C–H-Valenzschwingungen zuzuordnen.

Eine EI-massenspektrometrische Untersuchung der Substanz zeigte keinen Molekülpeak. Schon bei geringen Temperaturen und der sanften Ionisierungsenergie von 20 eV wird hauptsächlich Me₃Sn⁺ (m/z = 165) detektiert. Charakteristisch für Tetrazole in massenspektrometrischen Untersuchungen ist die Retro-1,3-dipolare Cycloaddition. Denkbar wäre, dass, nachdem die Trimethylstannylgruppen abstrahiert wurden, die Tetrazole in das entsprechende Nitril und HN_3^+ (m/z = 43) zerfallen. Die Nitrile können nicht detektiert werden, wohl aber HCN^+ (m/z = 27) und HN_3^+ . In Schema 2.4.8 ist

Schema 2.4.8: Mögliche Fragmentierung.

die mögliche Fragmentierung dargestellt. Die Struktur mit m/z = 360 kann im Massenspektrum detektiert werden und das Isotopenmuster zeigt einen Habitus, wie er für eine Verbindung mit einem Zinnatom erwartet wird. Zusätzlich beobachtet man Peaks bei m/z = 290, 276, 248 und 229, die zwar ein für Zinnverbindungen typisches Isotopenmuster aufweisen, aber nicht zugeordnet werden können.

Die Verbindung kristallisiert in der monoklinen Raumgruppe $P2_1/c$ (Nr. 14) mit den Zellkonstanten a = 6,4235(9), b = 21,273(3), c = 19,733(3) Å und $\beta = 95,280(17)^{\circ}$. Die Molekülstruktur zeigt, dass die Zinnatome in apicaler Position von je zwei Tetrazolringen koordiniert werden und somit eine trigonale Bipyramide als Koordinationspolyeder vorliegt. Dabei sind die Stickstoffatome an Position N1 und N3 an der Koordination beteiligt und jeder Tetrazolring überbrückt so je zwei Zinnatome. Diese komplexen Struk-

Abbildung 2.4.4: Abbildung der Molekülstruktur des $[^{n}$ HexABAT $(SnMe_{3})_{2}]$.

turen im Festkörper wurden bereits bei anderen Trialkylstannyltetrazolen beobachtet [75, 78, 116–119]. Sie hängen mit dem *Lewis*-sauren Charakter des Zinns zusammen. Das Zinn assoziiert dabei weitere Elektronendonatoren und die Koordinationszahl kann so auf bis zu 7 ansteigen [67]. Die Bindungslängen zwischen den Tetrazol-Stickstoffatomen und dem Zinn sind vergleichbar mit literaturbekannten Trialkylstannyltetrazolen und sie sind unabhängig davon, ob es sich um Stickstoffatome an Position N1 oder N3 handelt.

Abbildung 2.4.5: Abbildung der Packungsstruktur des $[^{n}$ HexABAT $(SnMe_{3})_{2}]$. Blick entlang (100). Die n Hexylreste sind wegen der Übersichtlichkeit weggelassen.

Die Bindungslängen betragen für Sn1-N2 2,366(5), für Sn1-N8 2,391(5), für Sn3-N10 2,370(5) und für Sn3–N3 2,369(5) Å. In Abbildung 2.4.4 ist die Molekülstruktur wiedergegeben. Aufgrund der sterisch anspruchsvollen Trimethylstannyl-Gruppen kommt es in der Struktur zu keinem π -Stacking. Zwar sind auch hier alle Tetrazolringe zueinander nahezu coplanar, doch die dadurch aufgespannten Ebenen haben zueinander Abstände von über 5 Å. Vielmehr wird die Struktur von den überbrückenden Trimethylstannyl-Gruppen geprägt. Jeweils zwei molekulare Einheiten sind über zwei Zinnatome so miteinander verknüpft, dass sich Ringe aus 18 Atomen bilden. Diese Ringe sind wiederum über zwei molekulare Einheiten verknüpft, so dass sich Ringe aus 34 Atomen bilden. In den Freiraum dieser größeren Ringe ragen dann die langen Alkylketten und haben dort selbst im Festkörper viel Platz zum Schwingen. Folglich sind die isotropen und anisotropen Auslenkungsparameter dieser Atome sehr groß. Für Verbindungen mit langen Alkylketten stößt man allerdings bei röntgenographischer Strukturaufklärung systematisch auf dieses Problem [100]. In Abbildung 2.4.5 ist ein Ausschnitt aus der Kristallstruktur wiedergegeben, wobei Wasserstoffatome und die ⁿHexylreste der Übersichtlichkeit halber nicht dargestellt sind.

2.4.3 Darstellung von BnzABAT-Derivaten

Ausgehend vom Benzylamin-bisacetonitril konnte das Stannyltetrazolderivat entsprechend Schema 2.4.9 dargestellt werden. Die Substanz fällt als farbloses Pulver an und

Schema 2.4.9: Synthese von $[BnzABAT(SnMe_3)_2]$.

die C,H,N-Elementaranalyse bestätigt dessen Reinheit. In DMSO, DMF und Ethanol löst sich die Verbindung gut. Ein ¹H-NMR-Spektrum einer DMSO-d₆ Lösung zeigt für die aromatischen Protonen ein Multiplett bei $\delta = 7,3$ ppm. Die Methylengruppe am Benzolring zeigt Resonanz bei 3,5 ppm. Die zwei Methylengruppen an den Tetrazolen erfahren, verglichen mit dem Bisacetonitril, wieder eine Verschiebung zu tieferem Feld und können bei $\delta = 3,9$ ppm detektiert werden. Bei $\delta = 0,6$ ppm erscheint das Signal der Trimethylstannylgruppen mit den typischen ^{117,119}Sn-Satelliten. Die ²J¹¹⁷Sn¹H und ²J¹¹⁹Sn¹H Kopplungen liegen auch hier sehr nah beieinander und der Mittelwert der Kopplungskonstanten beträgt 70 Hz. Auch die Signale im ¹³C{¹H}-Spektrum zeigen eindeutig, dass sich Tetrazole gebildet haben. Das Signal der Nitril-Kohlenstoffe bei $\delta = 115$ ppm kann nicht mehr detektiert werden, wohl aber ein Signal bei 159 ppm, welches den Tetrazolkohlenstoffatomen zuzuordnen ist.

Das IR-Spektrum der Substanz zeigt Absorptionsbanden für die C-H Valenzschwingungen bei 3062, 3028, 2995, 2919, 2847 und 2804 cm⁻¹. Die für Tetrazole typischen Banden sind bei 1654, 1453 und 1395 cm⁻¹ zu finden. Darüberhinaus zeigt der sogenannte Fingerprintbereich sehr viele scharfe Absorptionsbanden zwischen 1400 und 1000 cm⁻¹, die nicht alle zugeordnet werden können. Als sehr intensive und scharfe Banden seien aber noch die für Trimethylstannylverbindungen typischen Banden bei 786 und 551 cm⁻¹ genannt, die auch schon beim ⁿHexylderivat beobachtet werden konnten.

Durch Umsetzung mit HBr konnte erstmals auch das unsubstituierte Benzylamin-bisacetotetrazol dargestellt und im präparativen Maßstab isoliert werden. Die Verbindung ist löslich in Methanol und Pyridin. In Wasser und aprotischen, polaren Lösemitteln löst

sie sich nur bei Zugabe einer Base oder Säure. Aus Methanol konnte die Verbindung in Form von farblosen Kristallen rein erhalten werden. Die C,H,N-Elementaranalyse bestätigt die Reinheit. Eine röntgenographische Strukturbestimmung gestaltete sich schwierig, da Kristalle der Verbindung stets polysynthetische Verzwillingung ähnlich dem Albit aufweisen. Dennoch gelang es, einen zur Untersuchung geeigneten Splitter eines Kristalls zu präparieren. Die Verbindung kristallisiert in der orthorhombischen Raumgruppe $P2_12_12_1$ (Nr. 19) mit den Gitterkonstanten a = 8,9341(11), b = 9,7691(8) und c = 29,308(3) Å. Interessanterweise kristallisiert die Verbindung nicht in einer zwitterionischen Form, so wie man es erwarten würde. Die aciden Protonen, deren Positionen der Fourier-Karte entnommen werden konnten, sind an den Tetrazolen lokalisiert. Zwar zeigen diese Protonen teilweise mittelstarke, intermolekulare Wechselwirkungen mit Stickstoffatomen benachbarter Tetrazolringe und schwache intramolekulare Wechselwirkungen mit der Aminfunktion, aber eine zwitterionische Form mit protonierter Aminfunktion ist nicht zu beobachten.

Abbildung 2.4.6: Intermolekulare Wasserstoffbrücken im Benzylamin-bis-acetotetrazol.

In Abbildung 2.4.6 sind die intermolekularen Wasserstoffbrückenbindungen anhand der asymmetrischen Einheit dargestellt. Der Abstand zwischen den beiden Stickstoffatomen N002 und N018 beträgt 2,953(1) Å. Der zweite protonierte Tetrazolring (Abbildung 2.4.7) zeigt etwas kürzere Wasserstoffbrückenbindungen zu benachbarten Tetra-

Abbildung 2.4.7: Intramolekulare Wasserstoffbrücken im Benzylamin-bis-acetotetrazol.

zolringen. Hier betragen die Abstände zwischen den Stickstoffatomen N020 und N009 2,833(1) Å. Zusätzlich ist hier eine intramolekulare Wechselwirkung des Protons mit dem Stickstoffatom der Aminfunktion nicht ausgeschlossen. Der Abstand zwischen dem Aminstickstoffatom N003 und dem Proton H053 beträgt zwar 2,58(1) Å und der Winkel, der durch die Donoratome und dem Proton aufgespannt wird, liegt weit entfernt von 180°. Wasserstoffatome, auch wenn sie in der Fourier-Karte als entsprechende Restelektronendichte erscheinen, können nur mittels Neutronendiffraktometrie im Festkörper zuverlässig lokalisiert werden.

Auch wenn prinzipiell die Möglichkeit zur Ausbildung von π - π Wechselwirkungen gegeben ist, kann weder zwischen den Benzolringen noch den Tetrazolringen eine solche Wechselwirkung beobachtet werden. Durch die Wasserstoffbrückenbindungen zwischen den Tetrazolringen bilden sich im Festkörper kettenartige Strukturen aus. Auffallend ist dabei, dass sich die Wasserstoffbrücken nahezu parallel zur *b*-Achse ausbilden. In Abbildung 2.4.8 ist die Packung wiedergegeben und die Wasserstoffbrücken-Ketten sind mit Pfeilen kenntlich gemacht.

Abbildung 2.4.8: Packung des Benzylamin-bis-acetotetrazols. Ansicht entlang (100).

2.4.4 Versuche zur Darstellung von Übergangsmetallkomplexen mit dem BnzABAT-Liganden

Weil das Benzylamin-bis-acetotetrazol in guten Ausbeuten im präparativem Maßstab hergestellt werden konnte, diente es als Modellsubstanz bei den Versuchen zur Darstellung von Übergangsmetallkomplexen. Entsprechend dem Schema 1.3.4 konnten sowohl das Barium- als auch das Natriumsalz hergestellt werden. Die C,H,N-Elementaranalysen stimmen sehr gut mit den berechneten Werten überein, wobei das Bariumsalz nicht vollständig wasserfrei erhalten werden konnte. NMR-Spektroskopische Untersuchungen an den Salzen ergaben keine signifikanten Unterschiede zum Stannylderivat. Im ¹H-NMR-Spektrum sind jeweils die Methylengruppen bei $\delta = 3,4$ und 3,9 ppm im integralen Verhältnis von 1:2 zu detektieren. Die Salze zeigen eine gute Löslichkeit in polaren Lösemitteln wie Acetonitril, DMF, Methanol und auch Wasser und es kann angenommen werden, dass die Verbindungen in Lösung vollständig dissoziiert sind. Kristallisationsversuche führten aus allen Lösemitteln lediglich zu mikrokristallinen Pulvern und es konnten keine messbaren Einkristalle erhalten werden. Nach Schema 2.4.10 wurde versucht, die Bariumsalze mit Metallsulfaten und die Natriumsalze mit Metallchloriden umzusetzen.

Die Umsetzungen mit Lanthanoidsulfaten in DMF oder Wasser führten dazu, dass neben Bariumsulfat auch die Zielverbindungen ausfallen und aus den Filtraten der Reaktionsansätze konnten nach Abdestillieren des Lösemittels keine nennenswerten Mengen

$$x \operatorname{Ba}^{2+} \operatorname{L}^{2^{-}} \xrightarrow{\operatorname{\mathsf{M}}(\operatorname{SO}_4)_x} \operatorname{\mathsf{ML}}_x \xrightarrow{\operatorname{\mathsf{MCI}}_x} \operatorname{\mathsf{MCI}}_x \operatorname{\mathsf{X}}_2(\operatorname{Na}^+)_2 \operatorname{L}^{2^{-}}_x$$

Schema 2.4.10: Syntheseschema zu Übergangsmetallkomplexen.

isoliert werden. Insbesondere konnte bei farbigen Lanthanoiden (Pr, Nd, Er) beobachtet werden, dass die Filtrate der Reaktionsansätze nicht mehr die entsprechende Färbung zeigen. Die Bariumsulfat-Produkt-Gemische wurden nicht weiter untersucht.

Die Umsetzungen der Natriumsalze mit den entsprechenden Lanthanoidchloriden in DMF oder Wasser führten dazu, dass die Lanthanoidkomplexe als amorphe Feststoffe ausfallen. Die Substanzen konnten isoliert werden und die C,H,N-Elementaranalysen zeigen die zu erwartenden Werte, wobei noch mehrere Äquivalente Lösemittelmoleküle (Wasser bzw. DMF) pro Formeleinheit enthalten sind. In Tabelle 2.4.1 sind die gefundenen Werte den berechneten gegenübergestellt.

Verbindung	N $[\%]$ (ber.)	C $[\%]$ (ber.)	H [%] (ber.)
$Pr_2(BnzABAT)_3 \times 20H_2O$	27,54 (26,08)	29,30 (27,33)	4,97(5,07)
$Nd_2(BnzABAT)_3 \times 20H_2O$	26,40 (25,96)	$28,\!84\ (27,\!21)$	4,86(5,05)
$\mathrm{Er}_{2}(\mathrm{BnzABAT})_{3} \times 20\mathrm{H}_{2}\mathrm{O}$	$26,55\ (25,17)$	27,23 (26,37)	4,75(4,89)
$\Pr_2(BnzABAT)_3 \times 12DMF$	$26,\!69\ (27,\!77)$	41,82 (42,13)	$6,95\ (5,99)$
$Nd_2(BnzABAT)_3 \times 12DMF$	$25,\!34\ (27,\!68)$	40,72 $(41,99)$	$6,\!68\ (5,\!97)$
$\mathrm{Er}_2(\mathrm{BnzABAT})_3 \times 12\mathrm{DMF}$	27,21 (27,05)	40,93 $(41,04)$	$6,\!61\ (5,\!84)$

Tabelle 2.4.1: C,H,N-Elementaranalysen der Lanthanoid-Komplexe

Die Verbindungen sind in gängigen Lösemitteln wie DMSO, Acetonitril und auch HMPTA unlöslich. Einkristalle zur röntgenographischen Strukturbestimmung konnten nicht erhalten werden.

Die Arbeitsgruppe um *M. Mazzanti* konnte 2009 über die Darstellung einiger Lanthanoid-Komplexe mit multidentaten Tetrazolylliganden berichten [89]. Dabei wurden Lanthanoidtriflate mit Tetrazolylterpyridinen und Triethylamin in Methanol umgesetzt. Die so erhaltenen Lanthanoidkomplexe konnten kristallisiert, und die Kristallstrukturen bestimmt werden.

Eigene Versuche, Benzylamin-bis-acetotetrazol mit Triethylamin zu deprotonieren und dann mit Lanthanoidtriflaten umzusetzen, führten leider immer zu unlöslichen, amorphen Feststoffen.

Abbildung 2.4.9: IR-Spektren von $BnzH_2ABAT$ und dem $[Cu(BnzABAT)] \times DMF$ als KBr-Presslinge.

Daher wurde eine Möglichkeit gesucht, die Tetrazole in Gegenwart der Metallionen so langsam wie möglich zu deprotonieren, um den entstehenden Komplexen genügend Zeit zum Kristallisieren zu lassen. So zerfällt DMF photolytisch sehr langsam in Kohlenmonoxid und Dimethylamin [120]. Das Benzylamin-bis-acetotetrazol löst sich gut in DMF und sollte darin nur sehr langsam durch das Dimethylamin deprotoniert werden. Tatsächlich fällt aus einer CuCl₂-Lösung in DMF zunächst kein Feststoff aus, wenn sie mit Benzylamin-bis-acetotetrazol versetzt wird. Die zunächst gelbe Lösung des CuCl₂ färbt sich bei Zugabe des Benzylamin-bis-acetotetrazols intensiv grün. Leider konnten auch so keine Kristalle für eine Strukturlösung erhalten werden, denn nach kurzer Zeit fällt auch hierbei ein amorpher Feststoff aus. Dieser Feststoff zeigt eine intensive blau-violette Färbung und die C,H,N-Elementaranalyse passt mit den Werten für Stickstoff (34,3%), Kohlenstoff (40,7%) und Wasserstoff (4,3%) auffallend gut zu der Zusammensetzung [Cu(BnzABAT)]×DMF (berechnet: N 34,5%, C 41,4%, H 4,5%). In Abbildung 2.4.9 ist das IR-Spektrum des Kupfer-Komplexes dem des freien Benzylamin-bis-acetotetrazols gegenübergestellt. Beim Vergleich der IR-Spektren fällt auf, dass der Kupfer-Komplex deutlich weniger Absorptionsbanden im sogenannten Fingerprintbereich zeigt bzw. dass diese nicht so gut aufgelöst sind wie bei dem freien Liganden. Während sich die Spektren im Bereich von 600-900 cm⁻¹ kaum unterscheiden, so sind im Bereich von 900-1700 cm⁻¹ die Absorptionsbanden stark unterschiedlich. Zwar liegen die Banden teilweise in beiden Spektren bei identischen Wellenzahlen, aber die Intensitäten sind in dem Kupfer-Komplex wesentlich geringer. In dem Kupfer-Komplex ändern sich folglich bei einigen Schwingungen die Dipolmomente nicht mehr. Ein möglicher Grund dafür wäre ein hochsymmetrischer Aufbau des Komplexes. Das ESR-Spektrum dieser Substanz zeigt kein Signal und die erste Überlegung diesbezüglich war, dass das Cu^{II} zu Cu^I reduziert worden sein könnte. Dagegen spricht allerdings die für Cu^{II} typische blaue Farbe. Es könnte aber auch durch ein Mehrkernspinsystem zu einer starken Zustandsmischung kommen und, daraus folgend, zu einer starken Signalunterdrückung.

2.4.5 Zusammenfassende Beschreibung der Organyl-bis-acetotetrazole

Wie gezeigt, lassen sich die Organyl-bis-acetotetrazole aus den verfügbaren Acetonitrilen darstellen. Leider waren die Versuche über die ökonomische NaN₃[NH₄]Cl-Route aufgrund der umständlichen Aufarbeitung nicht erfolgreich. Über die Me₃SnN₃-Route konnten aber das ⁿHexyl- und das Benzyl-Derivat dargestellt und vollständig charakterisiert werden. Die Kristallstruktur des Benzylamin-bis-acetotetrazols zeigt nicht die zu erwartende zwitterionische Struktur, sondern intermolekulare Wasserstoffbrückenbindungen. Dennoch ist das Verhalten der Substanzen ähnlich dem der Aminosäuren. Im Sauren lösen sich die Verbindungen sehr gut, was auf die Protonierung der Aminfunktion und die daraus resultierende Bildung von Ammoniumsalzen zurückzuführen ist. Im Basischen werden die Tetrazole deprotoniert und so konnten die löslichen Salze des Natriums und Bariums hergestellt werden. Durch Metathesereaktionen wurde versucht, die Liganden an Übergangsmetalle des f-Blocks zu binden. Die dabei anfallenden Verbindungen konnten zwar isoliert und elementaranalytisch untersucht werden, aber die weitere Strukturaufklärung durch NMR-Spektroskopie oder Einkristallröntgendiffraktometrie scheiterte an der Unlöslichkeit dieser Verbindungen. Es ist anzunehmen, dass in den erhaltenen, unlöslichen Verbindungen die Tetrazole und das Amin durchaus an die Metallkationen binden. Wie in den von M. Mazzanti gefundenen Strukturen werden die Metallkationen wahrscheinlich chelatisierend von den Liganden koordiniert. Ein Grund für die Unlöslichkeit der erhaltenen Verbindungen kann sein, dass, ähnlich wie bei den Stannyl-Derivaten, die Tetrazolringe mehrere Koordinationen eingehen und sich so Koordinationspolymere bilden.

2.5 Hexakis(5-trifluormethyltetrazolyl)titanat(IV)

Ein weiteres Anliegen dieser Arbeit war die Fortführung der Arbeiten von *P. J. Eulgem* bezüglich des $[Ti(CN_4CF_3)_6]^{2-}$ mit dem Ziel, die Struktur des Anions aufzuklären. *P. J. Eulgem* konnte das Anion ¹³C- und ¹⁹F-NMR-spektroskopisch charakterisieren und als Tetramethylammoniumsalz in 65%iger Ausbeute in Form eines leuchtend gelben Feststoffes isolieren [67]. Aus den ¹³C- und ¹⁹F-NMR Daten schloss er auf eine oktaedrische Struktur des Anions. Dies sollte anhand einer Einkristallstrukturuntersuchung verifiziert werden. Die Synthese konnte reproduziert werden und auch die ¹³C- und ¹⁹F-NMR Daten sind äquivalent. Entsprechend Schema 2.5.1 konnten sowohl das Tetramethylammonium-

Schema 2.5.1: Darstellung des Hexakis(5-trifluormethyltetrazolato)titanats(IV).

als auch das Tetrabutylammoniumsalz dargestellt werden. Zusätzlich zu den ¹³C- und ¹⁹F-NMR-Spektren konnte von einer sehr konzentrierten Lösung ein ¹⁵N-NMR-Spektrum aufgenommen werden (Abbildung 2.5.1). Das Signal bei $\delta = -315.6$ ist den Ammoni-

Abbildung 2.5.1: ¹⁵N-NMR-Spektrum einer konzentrierten Reaktionslösung von $[NBu_4]_2[Ti(CN_4CF_3)_6].$

umkationen zuzu
ordnen und mit einer Halbwertsbreite von 6 Hz ist es sehr scharf. Bei dem Signal bei
 $\delta = -233,0$ konnte die Phase nicht korrigiert werden;
es handelt sich dabei wahrscheinlich eher um eine Rotationsbande. Die Signale bei
 $\delta = -65,7; -56,5$

und -22,2 sind für ¹⁵N-Signale ungewöhnlich stark verbreitert und die Halbwertsbreiten betragen ca. 30 Hz. Für das Natrium-5-trifluormethyltetrazolat in einer D₂O-Lösung wurden Signale bei $\delta = -65,14$ und 5,55 ppm beschrieben [121]. Das Spektrum ist nicht einfach zu verstehen. Einerseits erwartet man, vorausgesetzt die Anionen koordinieren das Ti⁴⁺ η^{1} -fach, vier verschiedene Signale für die Tetrazolstickstoffatome. Dann sollte das koordinierende Stickstoffatom wesentlich zu tieferem Feld verschoben sein, doch bis $\delta = 100$ ppm sind keine weiteren Signale zu sehen. Auch eine η^{2} Koordination der Liganden über die Stickstoffatome an Position N1 und N2 würde zu vier Signalen führen. Nimmt man andererseits aber an, dass die Tetrazolylliganden über die Stickstoffatome an den Positionen N2 und N3 das Ti⁴⁺ η^{2} -fach koordinieren, so würde man nur zwei Signale erwarten. Eine η^{5} Koordination würde ebenfalls zu zwei Signalen führen. Möglicherweise ist in Lösung aber auch ein schneller Austausch der Liganden und ihrer Koordinationsmodi für die Verbreiterung der Signale verantwortlich.

In negativ ESI-MS-Spektren dieser Lösung konnte das Anion nicht detektiert werden. Peaks bei m/z = 137,0 [CN₄CF₃]⁻; 516,37 [(CN₄CF₃)₂(NBu₄)]⁻; 895,69 [(CN₄CF₃)₃(NBu₄)₂]⁻ und 1654,35 [(CN₄CF₃)₅(NBu₄)₄]⁻ konnten zugeordnet werden. Peaks, die ein für Titan typisches Isotopenmuster zeigen, sind bei m/z = 402,95 und 418,95 zu finden. Diese können aber keiner erklärbaren Species zugeordnet werden.

Versuche, mittels Flüssig-Flüssig- oder auch Gas-Flüssig-Diffusion geeignete Einkristalle aus Lösungen der Salze zu erhalten, waren bislang erfolglos. Nicht nur aus kristallographischer Sicht ist das [PNP]-Kation ([PNP] = $Ph_3P=N=PPh_3$) ein besonders hilfreiches Kation, weil es keine Fehlordnungen in Strukturen zeigt, sondern auch weil der Winkel P-N-P sehr flexibel ist und sich das Anion so den räumlichen Umständen im Kristall anpassen kann. Folglich wurde versucht, das Tetramethylammoniumsalz in das [PNP]-Salz zu überführen (Schema 2.5.2). Aus Lösungen des [PNP]-Salzes kristallisierte

$$[NMe_4]_2[Ti(CN_4CF_3)_6] \xrightarrow{2 [PNP]Br} [PNP]_2[Ti(CN_4CF_3)_6]$$

Schema 2.5.2: Umsalzung vom Tetramethylammonium- zum [PNP]-Salz.

dann das [PNP](CN₄CF₃) in Form von farblosen Nadeln. Die Verbindung kristallisiert in der triklinen Raumgruppe $P\bar{1}$ (Nr. 2) mit den Gitterkonstanten a = 9.7400(12), b = 17.133(2), c = 32.237(4) Å, $\alpha = 78.233(10)$, $\beta = 88.343(10)$ und $\gamma = 83.035(10)^{\circ}$. In Abbildung 2.5.2 ist das Motiv der Kristallstruktur wiedergegeben. In der asymmetrischen Einheit befinden sich jeweils drei [PNP]⁺ und drei CN₄CF₃⁻ Ionen. Die kristallographisch unabhängigen Anionen unterscheiden sich kaum voneinander. Nur die

Abbildung 2.5.2: Motiv in der Kristallstruktur des $[PNP](CN_4CF_3)$.

[PNP]⁺ Kationen unterscheiden sich durch die Anordnung der Phenylringe und die P-N-P Winkel, die 139,26(15), 142,01(15) bzw. 166,64(20)° betragen. Eine weitere Diskussion der Bindungsverhältnisse in den Kationen ist aber nicht von Interesse. Wechselwirkungen zwischen den Kationen und den Anionen sind nicht zu beobachten. Die kürzesten $F \cdots H$ Abstände betragen 2,740(4) und 2,748(4) Å. Die Bindungsverhältnisse innerhalb der Tetrazolringe sind erwartungsgemäß. Die kürzesten N-N Bindungen sind wieder die zwischen den Stickstoffatomen an Position N2 und N3. Sie betragen 1,223(15) Å. Die Abstände zwischen den Positionen N1 und N2 bzw. N3 und N4 liegen zwischen 1,377(11) und 1,334(13) Å. Die Bindungslängen der Stickstoffatome zum Kohlenstoffatom sind mit 1,228(12) und 1,289(8) Å wieder etwas kürzer. Die Einfachbindung zur Trifluormethylgruppe beträgt 1,395(12) Å und die C-F Bindungen liegen im Bereich von 1,249(9) und 1,300(12) Å. Die Tatsache, dass aus Lösungen des $[PNP]_2[Ti(CN_4CF_3)_6]$ lediglich das [PNP](CN₄CF₃) auskristallisiert, lässt zusammen mit den Befunden des ¹⁵N-NMR-Spektrums und den im ESI-MS gefundenen $[NBu_4]_x[CN_4CF_3]_y$ Clustern vermuten, dass in Lösungen vielleicht gar nicht alle Trifluormethyltetrazol-Anionen an das Titan gebunden sind. Eine abschließende Aussage über die Koordinationsgeometrie kann auch mit diesen neuen Ergebnissen noch nicht getroffen werden. Ob eine Strukturaufklärung in Zukunft gelingt, bleibt abzuwarten.

3 Ausgangsverbindungen

Die Umsetzungen wurden, wo nötig, mit Standardvakuum-Techniken unter Argonatmosphäre durchgeführt. Lösemittel wurden entsprechend der Literatur [122] gereinigt und getrocknet. Alle käuflich erworbenen Substanzen wurden ohne weitere Reinigung oder Überprüfung eingesetzt. Die Herkunft der kommerziell erworbenen Chemikalien ist in Tabelle 3.0.1 aufgelistet.Die Lanthanoid-sulfate und -chloride wurden nach der Literaturvorschrift [123] aus den entsprechenden Oxiden hergestellt. Die Amin-bis-acetonitrile wurden entsprechend der Patentschrift von *H. Ulrich* und *E. Plötz* [114] dargestellt. Die Darstellung der Bis(tetrazol-5-yl)benzole erfolgte nach der Vorschrift von *P. Scheiner* [90].

Verbindung	Herkunft
Aminoguanidinnitrat	Acros
Aminotetrazol	Acros
Benzylamin	Acros
Ethylendiamin	Merck
Formaldehyd (37%ig)	Acros
^{<i>n</i>} Hexylamin	Acros
Lanthanoidoxide	Merck
Natriumcyanid	Acros
Natriumazid	Acros
Tetrabutylammoniumazid	Sigma Aldrich
Thoriumnitrat	Merck
Titantetrafluorid	Acros
Trimethylzinnazid	Sigma Aldrich
Trimethylsilylazid	Sigma Aldrich
Trifluoracetonitril	ABCR

Tabelle 3.0.1: Herkunft der kommerziell erworbenen Chemikalien

4 Analyse- und Messmethoden

4.1 Kernresonanzspektren

Die NMR-Spektren wurden mit den Spektrometern AVANCE 300 und AVANCE 400 der Firma Bruker, Analytische Messtechnik GmbH, Karlsruhe aufgenommen. Die Messfrequenzen sind in Tabelle 4.1.1 zusammengefasst.

Kern	Messgerät	Messfrequenz	Standardsubstanz
$^{1}\mathrm{H}$	AVANCE 300	300,13	TMS
$^{13}\mathrm{C}$	AVANCE 300	$75,\!46$	TMS
$^{1}\mathrm{H}$	AVANCE 400	400,13	TMS
$^{13}\mathrm{C}$	AVANCE 400	100,61	TMS
^{14}N	AVANCE 400	$28,\!93$	$MeNO_2$
$^{15}\mathrm{N}$	AVANCE 400	$40,\!56$	$MeNO_2$

Tabelle 4.1.1: Messfrequenzen und Standardsubstanzen für die NMR-Spektroskopie

4.2 Massenspektren

Die EI-Massenspektren wurden mit dem Massenspektrometer MAT 95 der Firma Finnigan MAT, Bremen aufgenommen. Zur Ionisation wurde ein Elektronenstrahl mit 20 eV verwendet. Die Quellentemperatur betrug 200 °C.

Hochaufgelöste ESI-Massenspektren wurden mit dem Massenspektrometer MAT 900 S der Firma Finnigan MAT, Bremen aufgenommen. Das MAT 900 S hat einen doppelfokussierenden Sektorfeld-Analysator, an den sich eine Quadrupol-Ion-Trap (EB-Q-Trap) anschließt. Proben wurden mit Methanol oder Acetonitril auf Konzentrationen von ca. 1×10^{-5} molL⁻¹ verdünnt und mit Flussraten von ca. 1-5 μ Lmin⁻¹ in das Gerät eingebracht.

4.3 DTA/TG

Die Differenz-Thermoanalyse und die thermogravimetrische Untersuchung wurden an einem Gerät des Typs NETZSCH STA 409 durchgeführt. Etwa 10 mg Substanz wurde dazu eingesetzt. Um Beschädigungen des Gerätes zu vermeiden, wurde damit nicht bis zu den Zersetzungstemperaturen der Substanzen gemessen.

4.4 Elementaranalysen

Die C,H,N-Elementaranalysen wurden mit einem Gerät vom Typ CHNS Euro Elementaranalysator der Firma Hekatech durchgeführt. Das Gerät arbeitet mit Helium als Trägergas.

4.5 Röntgenstrukturanalysen

Für die Röntgenstrukturanalysen wurden geeignete Einkristalle in Glaskapillaren eingeschmolzen und diese auf einem Goniometerkopf befestigt. Als Messinstrumente dienten die Flächenzähler IPDS I und II der Firma Stoe & Cie. (Mo K_{α}, $\lambda = 0,71$ nm, 50 kV, 40 mA, Graphitmonochromator [002]). Alle Berechnungen wurden mit den Programmen SIR92 [108] und SHELXL-97 [124] durchgeführt. Alle Nicht-Wasserstoffatome wurden anisotrop verfeinert. Wasserstoffatome, die nicht in der Fourier-Karte gefunden werden konnten, wurden mit dem sogenannten Reitermodell an entsprechende Atome gebunden und isotrop verfeinert. Numerische Absorptionskorrekturen wurden mit dem Programm X-RED V1.22 [125] durchgeführt, nachdem mit X-SHAPE V1.06 [126] die Form der Kristalle ermittelt wurde.

4.6 ESR-Spektroskopie

ESR-Spektren wurden im X-Band an einem Bruker ELEXSYS 500E im CW-Verfahren aufgenommen. Die g-Werte wurden mit Hilfe einer dpph-Probe kalibriert.

5 Experimenteller Teil

5.1 Allgemeine Hinweise

Vorsicht! Stickstoffreiche Substanzen wie auch Tetrazole sind potenziell Explosivstoffe. Vor allem in trockenem Zustand können diese Substanzen empfindlich gegenüber Reibung und Hitze sein. Bei Arbeiten mit diesen Substanzen sind adäquate Sicherheitsmaßnahmen zu treffen. Dazu gehören Kevlar®-Handschuhe, Gesichtsschutz und Gehörschutz. Auch sollte man sicherheitshalber mit Plastik- bzw. Teflon®-Apparaturen arbeiten, weil Glasgeräte im Falle einer Explosion zu gefährlicher Splitterbildung führen.

5.2 Bis(tetrazol-5-yl)benzole

5.2.1 Darstellung von Barium-bis(tetrazol-5-yl)benzol-Derivaten

	Tabelle 5.2.1: Reaktionsa	ansatz
Verbindung	[g/mol]	Einwaage
H ₂ BTB	214,19	10 g (46,7 mmol)
$Ba(OH)_2 \times 8H_2O$	315,46	14,7 g (46,7 mmol)

10 g (46,7 mmol) des entsprechenden 1,x-H₂BTB und 14,7 g (46,7 mmol) Bariumhydroxid Octahydrat wurden in ca. 400 ml heißem Wasser gelöst, die Lösung heiß filtriert und das Filtrat am Rotationsevaporator eingeengt. Der Rückstand wurde mit wenig kaltem Wasser gewaschen und anschließend im Hochvakuum (1×10⁻³ mbar) bei 110 °C getrocknet. Die Ausbeute betrug jeweils durchschnittlich 15 g (43 mmol, ca. 94%). ¹**H-NMR** (D₂O) Ba-1,2BTB δ = 7,31(2H); 7,11(2H) ppm. Ba-1,3BTB δ = 8,24(1H); 7,75(2H); 7,30(1H) ppm. Ba-1,4BTB δ = 8,00(4H) ppm. ¹³C-NMR (D₂O) Ba-1,2BTB δ = 161,5; 130,1; 129,4; 128,5 ppm. Ba-1,3BTB δ = 161,8; 129,6; 129,1; 127,3; 124,0 ppm. Ba-1,4BTB δ = 162,0; 129,0; 127,1 ppm.

	*		
Verbindung	N [%] (ber.)	C $[\%]$ (ber.)	H [%] (ber.)
Ba-1,2-BTB Ba-1,3-BTB Ba-1,4-BTB	$31,30 (32,06) \\ 31,70 (32,06) \\ 31,30 (32,06)$	27,00 (27,49) 28,10 (27,49) 27,80 (27,49)	$\begin{array}{c} 1,40 \ (1,15) \\ 1,50 \ (1,15) \\ 1,30 \ (1,15) \end{array}$

Tabelle 5.2.2: Elementaranalysen berechnet für $C_8H_4N_8Ba$ (M = 349,49 g/Mol).

5.2.2 Darstellung von Lanthanoid-bis(tetrazol-5-yl)benzol-Derivaten

	1000110 0.100 1000110110000000	
Verbindung	[g/mol]	Einwaage
Ba-1,xBTB	349,5	0,50 g (1,43 mmol)
$Ln_2(SO_4)_3 \times 9H_2O$	727,7 (Ln = La)	0,35 g (0,48 mmol)
	729,7 (Ln = Ce)	0,35 g (0,48 mmol)
	733,7 (Ln = Nd)	0,35 g (0,48 mmol)
	753.8 (Ln = Sm)	0,36 g (0,48 mmol)
	755.8 (Ln = Eu)	0,36 g (0,48 mmol)
	797.8 (Ln = Yb)	0,38 g (0,48 mmol)

Tabelle 5.2.3: Reaktionsansätze

Je 0,5 g (1,43 mmol) Barium-1,x-bis(tetrazol-5-yl)benzol gelöst in wenig Wasser wurde zu einer Lösung aus der entsprechenden Menge eines Lanthanoidsulfates in Wasser gegeben. Das ausgefallene Bariumsulfat wurde abfiltriert und das Filtrat am Rotationsevaporator bis zur Trockenheit eingeengt. Die so erhaltenen Feststoffe wurden mit sehr wenig Wasser gewaschen und dann im Hochvakuum (1×10⁻³ mbar) getrocknet. Die Ausbeuten lagen durchschnittlich bei 0,4 g (4,56 mmol, 95%).

Verbindung	N [%] (ber.)	C [%] (ber.)	H [%] (ber.)	Wassergehalt
$\overline{\text{Ce}_2\text{-}1,2\text{-}\text{BTB}_3}$	34,60 (34,60)	30,19(29,70)	1,95(1,85)	3
Sm_2 -1,2- BTB_3	33,61 (32,16)	27,34 (27,58)	3,96(2,31)	6
$Eu_2-1,2-BTB_3$	31,07(32,06)	27,25(27,49)	3,53(2,32)	6
$Yb_2-1,2-BTB_3$	25,12 (25,03)	20,55(21,46)	2,57(3,91)	20
Sm_2 -1,3- BTB_3	$23,\!80\ (25,\!90)$	20,70 (22,20)	2,33 (4,03)	20
Eu_2 -1,3- BTB_3	24,00 (25,90)	21,40 (22,20)	2,44 (4,03)	20
$Sm_2-1, 4-BTB_3$	24,99(25,90)	21,52 (22,20)	4,02 (4,03)	20

Tabelle 5.2.4: Elementaranalysen berechnet für $C_{24}H_{12}N_{24}Ln_2 \times xH_2O$.

5.3 5,5'-Bitetrazol und 5,5'-Bitetrazolate

5.3.1 Darstellung von Mangan-5,5'-bitetrazolat

Tabelle 5.3.1: Reaktionsansatz			
Verbindung	[g/mol]	[g/ml]	Einwaage
NaCN	49,00		50 g (1 mol)
NaN_3	$65,\!01$		65 g (1 mol)
MnO_2	86,94		50 g (0,58 mol)
CH ₃ COOH	60,05	1,05	80 ml
H_2SO_4	$98,\!08$	$1,\!83$	55 ml
$CuSO_4 \times 5H_2O$	249		2 g (8 mmol)

Entsprechend der Literaturvorschrift [95] wurden 50 g (1 mol) Natriumcyanid und 65 g (1 mol) Natriumazid in 600 ml Wasser gelöst und unter Rühren 50 g (0,58 mol) Braunstein zugegeben. Unter Kühlung (0 °C) wurde dann eine Lösung aus 80 ml Essigsäure, 55 ml Schwefelsäure und 2 g Kupfersulfat in 200 ml Wasser zugetropft. Anschließend wurde der Ansatz erst bei Raumtemperatur weitere 4 Stunden gerührt und danach bei 95 °C für 12 Stunden. Es verblieb eine trübe Suspension von dunkelbrauner Farbe. Der Feststoff wurde abgetrennt und mehrmals mit kaltem Wasser gewaschen. Dieser schwerlösliche, beige Feststoff wurde direkt und ohne Analyse weiterverarbeitet.

5.3.2 Darstellung von Barium-5,5'-bitetrazolat

	Tabelle 5.3.2: Reaktionsansatz	
Verbindung	[g/mol]	Einwaage
MnBT BaS	191,01 169,39	81 g (0,42 mol) 71,84 g (0,42 mol)

In einem 500 ml Schlenk-Kolben wurden 81 g (0,42 mol) Mangan-5,5'-bitetrazolat und 71,84 g (0,42 mol) Bariumsulfid in 300 ml Wasser suspendiert. Unter anaeroben Bedingungen wurde drei Tage lang gerührt und anschließend der Feststoff abfiltriert und mit Wasser extrahiert. Die vereinigten wässrigen Phasen wurden am Rotationsevaporator eingeengt und der verbliebene Feststoff im Hochvakuum (1×10⁻³ mbar) bei 100 °C getrocknet. Ausbeute: 80 g (70%). Elementaranalyse für C₂N₈Ba (M = 273,40 g/Mol): C 8,52 (ber. 8,78); H 1,84 (ber. 0); N 39,64 (ber. 40,98)%. ¹³C-NMR (D₂O): $\delta = 154,3$ ppm. ESI-MS (negativ) m/z = 137,17 [C₂HN₈⁻].

5.3.3 Darstellung von Natrium-5,5'-bitetrazolat

Verbindung	[g/mol]	Einwaage
MnBT	191,01	40 g (0,21 mol)
NaCO ₃	82,99	22,2 g (0,21 mol)

In einem 800 ml Becherglas wurden 40 g (0,21 mol) Mangan-5,5'-bitetrazolat und 22,2 g (0,21 mol) Natriumcarbonat in 500 ml Wasser suspendiert und mehrere Stunden gekocht. Das Mangancarbonat wurde abfiltriert und das Filtrat am Rotationsevaporator eingeengt. Der verbliebene Feststoff wurde so oft aus Wasser umkristallisiert, bis er absolut farblos war. Nach Trocknung im Hochvakuum (1×10⁻³ mbar) bei 100 °C konnten 25,2 g (66%) erhalten werden. Elementaranalyse für C₂N₈Na₂ (M = 182,05 g/Mol): C 12,94 (ber. 13,19); H 0 (ber. 0); N 59,21 (ber. 61,55)%. ¹³C-NMR (D₂O) δ = 154,3 ppm. ESI-MS (negativ) m/z = 137,17 [C₂HN₈⁻], 159,14 [NaC₂N₈⁻]. IR (KBr) $\tilde{\nu}$ = 1631, 1458, 1345, 1327, 1307, 1182, 1148, 1072, 1048, 1016, 734, 586 cm⁻¹.

5.3.4 Darstellung von 5,5'-Bitetrazol

Tabelle 5.3	.4:	Reaktionsansatz
-------------	-----	-----------------

Verbindung	[g/mol]	Einwaage
$\overline{\frac{Na_2BT}{HCl_{aq}}}$	182,05	20 g (0,11 mol)

In einem 200 ml Becherglas wurden 20 g (0,11 mol) Natrium-5,5'-bitetrazolat in 150 ml Wasser gelöst und tropfenweise wässrige Salzsäure zugegeben bis sich ein farbloser Feststoff bildete. Dieser wurde abgetrennt und mehrmals mit eiskaltem Wasser gewaschen. Aus der Mutterlauge konnte durch langsames Eindampfen noch mehr Substanz erhalten werden, jedoch war diese dann zunehmend durch Natrium-5,5'-bitetrazolat und mitgefallenes Natriumchlorid verunreinigt und musste noch häufiger mit Wasser gewaschen werden. Nach Trockung der Substanz im Hochvakuum (1×10^{-3} mbar) bei 80 °C konnten 3,8 g (25%) isoliert werden. Elementaranalyse für C₂H₂N₈ (M = 138,09 g/Mol): C 17,23 (ber. 17,38); H 1,37 (ber. 1,46); N 80,90 (ber. 81,15)%.

5.3.5	Darstellung	von	Lant	hanoid	-5,5	'-bitetrazo	laten
-------	-------------	-----	------	--------	------	-------------	-------

		010
Verbindung	[g/mol]	Einwaage
$\begin{array}{c} BaBT\\ Ln_2(SO_4)_3 \times 9H_2O \end{array}$	273,40 727 (Ln = La) 729 (Ln = Ce) 732 (Ln = Pr) 733 (Ln = Nd) 753 (Ln = Sm) 755 (Ln = Eu) 768 (Ln = Tb) 784 (Ln = Er)	$\begin{array}{c} 1,15 \ \mathrm{g} \ (4,2 \ \mathrm{mmol}) \\ 1,00 \ \mathrm{g} \ (1,38 \ \mathrm{mmol}) \\ 1,00 \ \mathrm{g} \ (1,38 \ \mathrm{mmol}) \\ 1,01 \ \mathrm{g} \ (1,38 \ \mathrm{mmol}) \\ 1,01 \ \mathrm{g} \ (1,38 \ \mathrm{mmol}) \\ 1,04 \ \mathrm{g} \ (1,38 \ \mathrm{mmol}) \\ 1,04 \ \mathrm{g} \ (1,38 \ \mathrm{mmol}) \\ 1,04 \ \mathrm{g} \ (1,38 \ \mathrm{mmol}) \\ 1,06 \ \mathrm{g} \ (1,38 \ \mathrm{mmol}) \\ 1,08 \ \mathrm{g} \ (1,38 \ \mathrm{mmol}) \end{array}$

Tabelle 5.3.5: Reaktionsansätze

In jedem Fall wurde 1,15 g (4,2 mmol) Barium-5,5'-bitetrazol in wenig Wasser gelöst und mit einer Lösung der entsprechenden Menge eines Lanthanoidsulfates in Wasser versetzt. Das ausfallende Bariumsulfat wurde abfiltriert und die Filtrate in Bechergläsern an der Luft zur Kristallisation der Substanzen aufbewahrt. Nach zwei Tagen konnten die Kristalle gesammelt werden. Die Substanzen fielen durchweg als Hydrate Ln₂BT₃×xH₂O an, wobei sofort nach der Isolierung der Substanzen x = 20 ist. Informationen über Ausbeute und Elementaranalysen sind in Tabelle 5.3.6 zusammengefasst. **IR** (KBr) Ce₂BT₃ $\tilde{\nu}$ = 3586(s), 3500-3000(vb), 2250(b), 1691, 1645, 1615, 1599, 1349, 1322, 1293, 1209, 1178, 1156, 1048, 1038, 1020, 729, 668(b) cm⁻¹. Pr₂BT₃ $\tilde{\nu}$ = 3586, 3550-2900(vb), 1629, 1458, 1440, 1382, 1349, 1322, 1197, 1154, 1031, 778, 727, 662(b) cm⁻¹. Tb₂BT₃ $\tilde{\nu}$ = 3622(s), 3480-2900(vb), 1654, 1458, 1436, 1358, 1335, 1315, 1295, 1222, 1192, 1166, 1105, 1054, 1029, 987, 756(vb) cm⁻¹

Verbindung	N [%] (ber.)	C [%] (ber.)	H [%] (ber.)	Ausbeute [g] $([\%])$
La_2BT_3	30,70(32,12)	6,60 $(6,68)$	3,40(3,85)	1,18 (81)
Ce_2BT_3	$31,\!80\ (32,\!05)$	6,77 $(6,87)$	3,59(3,84)	1,05~(71)
Pr_2BT_3	31,50 $(32,00)$	$6,\!63\ (6,\!86)$	$3,\!60\ (3,\!83)$	$1,06\ (71)$
Nd_2BT_3	31,08(31,80)	6,78 $(6,82)$	$3,\!20\ (3,\!81)$	0,95~(64)
$\mathrm{Sm}_2\mathrm{BT}_3$	31,40(31,44)	6,63 $(6,74)$	3,12(3,77)	$1,10\ (73)$
Eu_2BT_3	31,70(31,34)	6,70 $(6,72)$	2,97 (3,76)	$1,10\ (73)$
$\mathrm{Tb}_{2}\mathrm{BT}_{3}$	$30,\!40\ (30,\!94)$	$6,49\ (6,63)$	$3,\!66\ (3,\!71)$	0,87~(57)
$\mathrm{Er}_{2}\mathrm{BT}_{3}$	$30,\!90(30,\!48)$	6,64 (6,53)	$3,\!19\ (3,\!65)$	0,97~(63)

Tabelle 5.3.6: Elementaranalysen der $Ln_2BT_3 \times 20H_2O$

5.3.6	Darstellung	von	Thorium-5,5'-bitetrazolat
-------	-------------	-----	---------------------------

Tabelle 5.3.7: Reaktionsansatz				
Verbindung	[g/mol]	Einwaage		
Na ₂ BT	182,05	0,32 g (1,75 mmol)		
$Th(NO_3)_4 \times 5H_2O$	$570,\!13$	$0,50 { m ~g} (0,87 { m ~mmol})$		

In einem Becherglas wurden 0,5 g (0,87 mmol) Thoriumnitrat in 10 ml Wasser gelöst und eine Lösung aus 0,32 g (1,75 mmol) Natrium-5,5'-bitetrazolat in Wasser tropfenweise zugegeben. Kurz vor vollständiger Zugabe wurde die Bildung eines farblosen Niederschlags beobachtet, der sich langsam wieder auflöste. Nach 12 Stunden bildeten sich mehrere, farblose, teils mehrere Millimeter große Kristalle.

Vorsicht! Thorium ist radioaktiv. Es zerfällt über mehrere α - und β -Spaltungen über ²²⁸Ra, ²²⁸Ac, ²²⁸Th, ²²⁴Ra, ²²⁰Rn, ²¹⁶Po, ²¹²Pb, ²¹²Bi, ²⁰⁸Tl zum stabilen ²⁰⁸Pb. Strahlenschutzmaßnahmen sind zu treffen. Kontaminierte Geräte und Verbrauchsmaterialien sind sorgfältig und fachgerecht zu entsorgen.

5.4 Bis(tetrazol-5-yl)triazenate

5.4.1 Darstellung von Natrium-bis(tetrazol-5-yl)triazenat

Tabene 5.4.1. Reaktionsansatz				
Verbindung	Einwaage			
$CN_4H_6 imes HNO_3$	10 g (72,9 mmol)			
NaNO $_2$	7 g (101,4 mmol)			
CH_3COOH	7,34 g (122,2 mmol)			
NaOCOCH $_3$	5 g (60,9 mmol)			
NaOH	1 45 g (36 45 mmol)			
VaNO ₂	7 g (101,4 m			
CH ₃ COOH	7,34 g (122,			
VaOCOCH ₃	5 g (60,9 m			
VaOH	1,45 g (36,4			

Tabelle 5.4.1: Reaktionsansatz

Entspechend der Literaturvorschrift [30] wurden 10 g (72,9 mmol) Aminoguanidinnitrat, 5 g (60,9 mmol) Natriumacetat und 7,34 g (122,2 mmol) Essigsäure in 50 ml eiskaltem Wasser gelöst. Zu dieser Lösung wurden 7 g (101,4 mmol) Natriumnitrit in 30 ml Wasser tropfenweise zugegeben. Alternativ können auch 2 Äquivalente Aminotetrazol mit einem Äquivalent Natriumnitrit in einem Acetatpuffer umgesetzt werden. Die weitere Verfahrensweise ist aber gleich. Nach 12 Stunden Rühren wurde die Lösung eingeengt und durch fraktionierte Kristallisation das Natriumnitrat abgetrennt. Dabei fiel zunächst kristallines Natriumnitrat aus und aus den Mutterlaugen konnte das Dinatriumsalz er-

5 Experimenteller Teil

halten werden. Der gelbliche, pulverförmige Feststoff wurde in 30 ml Wasser mit 1,45 g (36,45 mmol) Natriumhydroxid umgesetzt. Die Lösung wurde sofort eingeengt und der Rückstand bei Raumtemperatur im Hochvakuum (1×10⁻³ mbar) getrocknet. Die Ausbeute betrug 5,36 g (60%). Elementaranalyse für C₂N₁₁Na₃×2H₂O (M = 283,09 g/Mol): C 9,80 (ber. 8,48), H 1,50 (ber. 1,42), N 56,2 (ber. 54,42)%. ¹³C-NMR (D₂O) δ = 171,4 ppm. ¹⁵N-NMR (D₂O) δ = 108,5(1N), -6,9(4N), -93,7(2N), -95,1(4N) ppm. ESI-MS (negativ) m/z = 180,15 [C₂H₂N₁₁⁻], 202,15 [NaC₂HN₁₁⁻].

5.4.2 Darstellung von Lanthanoid-bis(tetrazol-5-yl)triazenaten

Verbindung	[g/mol]	Einwaage		
$\overline{\text{Na}_3\text{BTT}\times 2\text{H}_2\text{O}}$	283,09	0,28 g (1 mmol)		
$Ln_2(SO_4)_3 \times 9H_2O$	733 (Ln = Nd)	0,73 g (1 mmol)		
	753 (Ln = Sm)	0,75 g (1 mmol)		
	755 (Ln = Eu)	0,75 g (1 mmol)		
	784 (Ln = Er)	0,78 g (1 mmol)		

Tabelle 5.4.2: Reaktionsansätze

Zu gekühlten (5 °C) Lösungen von 0,28 g (1 mmol) Natrium-bis(tetrazol-5-yl)triazenat in 10 ml Wasser wurde jeweils eine Lösung aus der entsprechenden Menge eines Lanthanoidsulfats in wenig Wasser zugetropft. Nach etwa 24 Stunden konnte teilweise die Bildung von kleinen Kristallen beobachtet werden. Wurden die Lösungen auf Raumtemperatur erwärmt, so konnte teilweise auch eine Gasentwicklung beobachtet werden. Im allgemeinen fielen die Substanzen als gelbe Pulver aus. Die Ausbeuten konnten nicht reproduzierbar bestimmt werden und betrugen im Mittel ca. 20%. **IR** (KBr) SmBTT×8H₂O $\tilde{\nu}$ = 1675, 1642, 1507, 1471, 1437, 1346(vs), 1299, 1218, 1168, 1152, 1144, 1093, 1045, 851, 798, 773, 717, 595, 473 cm⁻¹.

Verbindung	N [%] (ber.)	C [%] (ber.)	H [%] (ber.)	M [g/Mol]
$\overline{\text{NdBTT} \times 8\text{H}_2\text{O}}$	$33,\!63\ (33,\!03)$	5,36(5,15)	2,83(3,46)	466,45
$SmBTT \times 8H_2O$	29,33 (30,29)	4,56(4,72)	2,44(3,96)	472,57
$EuBTT \times 8H_2O$	31,00 (30,20)	4,86 (4,71)	2,64(3,95)	474,18
$ErBTT \times 8H_2O$	39,80(31,48)	6,18(4,91)	3,03 $(3,29)$	489,47

Tabelle 5.4.3: Elementaranalysen der LnBTT×8H₂O ($C_2H_{16}N_{11}O_8Ln$).

5.5 Organylamin-bis-acetotetrazole

5.5.1 Versuche zur Darstellung von H_4EDTAT

	Tabelle 5.5.1: Reaktionsansatz		
Verbindung	[g/mol]	Einwaage	
EDTAN	216,24	1,08 g (5 mmol)	
Me_3SnN_3	205,83	4,11 g (20 mmol)	

In einem 100 ml Kolben mit Rückflusskühler wurden 1,08 g (5 mmol) Ethylendiamintetraacetonitril (EDTAN) und 4,11 g (20 mmol) Trimethylzinnazid in 50 ml DMF gelöst und unter Rühren auf 110 °C erhitzt. Nach 24 Stunden war die Lösung leicht gelblich gefärbt und das Lösemittel wurde im Hochvakuum abdestilliert. Der ölige Rückstand wurde mit Ethanol gewaschen, wobei ein farbloser Feststoff ausfiel. Der Feststoff wurde abfiltriert und im Hochvakuum (1×10^{-3} mbar) getrocknet. Ausbeute 1,5 g (30%). Elementaranalyse für C₂₂H₄₈N₁₈Sn₄ (M = 1039,57 g/Mol): C 24,32 (ber. 25,41); H 5,11 (ber. 4,65); N 23,55 (ber. 24,25)%. ¹**H-NMR** (DMSO-d₆) $\delta = 3,97(8H)$; 2,69(4H); 0,65(36H) ppm. ¹³**C-NMR** (DMSO-d₆) $\delta = 159, 50, 48, 0$ ppm.

Abstraktion der Trimethylstannylgruppen

Verbindung	[g/mol]	[g/ml]	Einwaage
$\frac{[\text{EDTAT}(\text{SnMe}_3)_4]}{\text{HBr}_{aq} (47\% \text{ig})}$	$1039,58 \\ 80,91$	1,48	$1,5 ext{ g (1,4 mmol)} $ $0,65 ext{ ml (5,6 mmol)}$

In einem 10 ml Rundkolben wurden 1,5 g (1,4 mmol) Trimethylstannyl-EDTAT in 2 ml Wasser suspendiert und mit 0,65 ml (5,6 mmol) Bromwasserstoffsäure (47%ig) versetzt. Die Suspension wurde für 24 Stunden gerührt, bevor das Lösemittel im Hochvakuum abdestilliert wurde. Der verbliebene Rückstand wurde dreimal mit 4 ml Ether gewaschen. Ausbeute 0,30 g (55%). Elementaranalyse für C₁₀H₁₆N₁₈ (M = 388,35 g/Mol): C 29,50 (ber. 30,93); H 5,22 (ber. 4,15); N 62,87 (ber. 64,92)%. ¹H-NMR (DMSO-d₆) δ = 3,98(8H); 2,70(4H) ppm. ¹³C-NMR (DMSO-d₆) δ = 159, 50, 48 ppm.

5 Experimenteller Teil

5.5.2 Darstellung von ⁿHexylamin-bis-aceto(trimethylstannyl)tetrazol

Tabelle 5.5.3: Reaktionsansatz				
Verbindung	[g/mol]	Einwaage		
ⁿ Hexylamin-bis-acetonitril	179,26	1.8 g (10 mmol)		
Me ₃ SnN ₃	205,83	4,12 g (20 mmol)		

In einem 100 ml Rundkolben wurden 1,8 g (10 mmol) ^{*n*}Hexylamin-bis-acetonitril und 4,12 g (20 mmol) Trimethylzinnazid in 40 ml DMF gelöst und unter Rühren für 12 Stunden auf 110 °C erhitzt. Das Lösemittel wurde im Hochvakuum abdestilliert und der Rückstand dreimal mit je 5 ml Ethanol gewaschen. Ausbeute 3,4 g (57%). Elementaranalyse für C₁₆H₃₅N₉Sn₂ (M = 590,92 g/Mol): C 31,98 (ber. 32,52); H 5,88 (ber. 5,97); N 21,30 (ber. 21,33)%. ¹H-NMR (DMSO-d₆) δ = 4,18(4H); 2,60(2H); 1,7-1,4(8H); 1,16(3H); 0,95(18H) ppm. ¹³C-NMR (DMSO-d₆) δ = 160, 52, 48, 31, 27, 26, 22, 14, 0 ppm. EI-MS (20 eV) m/z = 27 [HCN⁺], 48 [HN₃⁺], 165 [Me₃Sn⁺], 229, 248, 276, 290, 360. IR (KBr) $\tilde{\nu}$ = 3500, 2955, 2927, 2378, 2264, 2062, 1637, 1560, 1466, 1400, 1353, 1296, 1227, 1197, 1125, 1095, 1027, 978, 961, 788, 698, 552 cm⁻¹.

5.5.3 Darstellung von Benzylamin-bis-aceto(trimethylstannyl)tetrazol

Tabelle 5.5.4: Reaktionsansatz				
Verbindung	[g/mol]	Einwaage		
$\begin{array}{c} Benzylamin-bis-acetonitril\\ Me_3SnN_3 \end{array}$	$185,22 \\ 205,83$	0.5 g (2.7 mmol) 1.2 g (5.8 mmol)		

In einem 50 ml Kolben mit Rückflusskühler wurden 0,5 g (2,7 mmol) Benzylamin-bisacetonitril und 1,2 g (5,8 mmol) Trimethylzinnazid in 20 ml DMF gelöst und unter Rühren für 24 Stunden auf 110 °C erhitzt. Die leicht bräunliche Lösung wurde im Hochvakuum vom Lösemittel befreit und der Rückstand solange mit absolutem Ethanol gewaschen, bis er absolut farblos war. Ausbeute 0,81 g (52%). Elementaranalyse für $C_{17}H_{29}N_9Sn_2$ (M = 596,89 g/Mol): C 34,18 (ber. 34,21); H 4,46 (ber. 4,89); N 20,92 (ber. 21,12)%. ¹**H-NMR** (DMSO-d₆) δ = 7,38-7,20(5H); 3,82(4H); 3,55(2H); 0,59(18H) ppm. **IR** (KBr) $\tilde{\nu}$ = 3416, 3062, 3028, 2995, 2919, 2847, 2804, 2377, 1709, 1654, 1490, 1482, 1453, 1395, 1358, 1318, 1252, 1240, 1223, 1197, 1138, 1120, 1094, 1074, 1029, 991, 964, 917, 870, 785, 743, 701, 612, 550, 507, 478, 432 cm⁻¹.

5.5.4 Darstellung von Benzylamin-bis-acetotetrazol

Tabelle 5.5.5: Reaktionsansatz				
Verbindung	[g/mol]	[g/ml]	Einwaage	
Benzylamin-bis-acetostannyltetrazol HBr_{aq} (47%ig)	596,89 80,91	1,48	1 g (1,7 mmol) 0,4 ml (3,4 mmol)	

In einem 10 ml Rundkolben wurde 1 g (1,7 mmol) Benzylamin-bis-aceto(trimethylstannyl)tetrazol in 2 ml Wasser suspendiert und mit 0,4 ml (3,4 mmol) Bromwasserstoffsäure versetzt. Das Reaktionsgemisch wurde für 12 Stunden gerührt und anschließend das Lösemittel im Hochvakuum abdestilliert. Der Rückstand wurde dreimal mit wenig Ether gewaschen und im Hochvakuum getrocknet. Ausbeute 0,1 g (23%). Elementaranalyse für C₁₁H₁₃N₉ (M = 271,28 g/Mol): C 48,10 (ber. 48,70); H 4,83 (ber. 4,83); N 47,10 (ber. 46,47)%. ¹H-NMR (DMSO-d₆) δ = 7,34-7,19(5H); 4,05(4H); 3,66(2H) ppm. IR (KBr) $\tilde{\nu}$ = 3103, 3016, 2929, 2847, 2773, 2666, 2567, 2442, 1887, 1662, 1560, 1532, 1518, 1457, 1446, 1421, 1380, 1369, 1347, 1252, 1136, 1102, 1078, 1033, 997, 978, 950, 878, 831, 789, 739, 698, 662, 614, 515, 484, 440 cm⁻¹.

5.5.5 Darstellung des Natrium-benzylamin-bis-acetotetrazolat

Tabelle 5.5.6: Reaktionsansatz				
Verbindung	[g/mol]	Einwaage		
Benzylamin-bis-acetotetrazol	271,28	1 g (3,7 mmol)		
NaOH	40,00	$0.3 { m g} (7.4 { m mmol})$		

In einem 10 ml Rundkolben wurd 1 g (3,7 mmol) Benzylamin-bis-acetotetrazol in 3 ml Wasser suspendiert und mit 0,3 g (7,4 mmol) Natriumhydroxid versetzt. Dabei löste sich der Feststoff vollständig auf. Die Lösung wurde filtriert und das Lösemittel im Hochvakuum vollständig entfernt. Ausbeute 1,1 g (94%). Elementaranalyse für C₁₁H₁₁N₉Na₂ (M = 315,24 g/Mol): C 41,87 (ber. 41,91); H 3,37 (ber. 3,52); N 39,34 (ber. 39,98)%.

5.5.6 Darstellung des Barium-benzylamin-bis-acetotetrazolat

Tabelle 5.5.7: Reaktionsansatz				
Verbindung	[g/mol]	Einwaage		
Benzylamin-bis-acetotetrazol Ba $(OH)_2 \times 8H_2O$	$271,28 \\ 315,46$	1 g (3,7 mmol) 1,16 g (3,7 mmol)		

In einem 10 ml Rundkolben wurde 1 g (3,7 mmol) Benzylamin-bis-acetotetrazol in 3 ml Wasser suspendiert und mit 1,16 g (3,7 mmol) Bariumhydroxid Octahydrat versetzt. Dabei löste sich der Feststoff vollständig auf. Die Lösung wurde filtriert und das Lösemittel im Hochvakuum vollständig entfernt. Ausbeute 1,4 g (93%). Elementaranalyse für $C_{11}H_{11}N_9Ba \times 4H_2O$ (M = 442,62 g/Mol): C 27,92 (ber. 27,60); H 4,00 (ber. 4,00); N 26,22 (ber. 26,33)%.

5.5.7 Versuche zur Darstellung von Lanthanoid-Komplexen mit dem Benzylamin-bis-acetotetrazol-Liganden

Tabelle 5.5.8: Reaktionsansatz				
Verbindung	[g/mol]	Einwaage		
Natrium-benzylamin-bis-acetotetrazolat	315,24	0.2 g (0.6 mmol)		
NdCl ₂	247,26 250 59	0.1 g (0.4 mmol) 0.1 g (0.4 mmol)		
ErCl ₃	273,61	0,11 g (0,4 mmol)		

Taballa 5 5 8. Paaletionas

Zu einer Lösung von 0,2 g (0,6 mmol) Natrium-benzylamin-bis-acetotetrazolat in 5 ml DMF oder Wasser wurde eine Lösung aus der entsprechenden Menge des Lanthanoidchlorids in 5 ml DMF bzw. Wasser langsam zugetropft. Nach wenigen Minuten bildete sich ein feiner Niederschlag der entsprechend der charakteristischen Farbe des verwendeten Lanthanoids leicht farbig war (Pr = grün, Nd = violett, Er = pink). Der Niederschlag wurde jeweils abfiltriert und im Hochvakuum $(1 \times 10^{-3} \text{ mbar})$ getrocknet. Die so erhaltenen Feststoffe waren in gängigen Lösemitteln unlöslich. Ausbeuten betrugen durchschnittlich 0,4 g bei den Umsetzungen in Wasser und 0,55 g bei den Umsetzungen in DMF. In Tabelle 5.5.9 sind die Elementaranalysen dieser Stoffe wiedergegeben.

5 Experimenteller Teil

			I · · ·
Verbindung	N [%] (ber.)	C $[\%]$ (ber.)	H [%] (ber.)
$\overline{\text{Pr}_2\text{BnzABAT}_3 \times 20\text{H}_2\text{O}}$	27,54 (26,08)	29,30 (27,33)	4,97(5,07)
$Nd_2BnzABAT_3 \times 20H_2O$	26,40 (25,96)	28,84 (27,21)	4,86(5,05)
$Er_2BnzABAT_3 \times 20H_2O$	26,55 $(25,17)$	27,23 (26,37)	4,75(4,89)
$Pr_2BnzABAT_3 \times 12DMF$	$26,\!69(27,\!77)$	41,82 (42,13)	6,95 $(5,99)$
$Nd_2BnzABAT_3 \times 12DMF$	25,34 (27,68)	40,72 (41,99)	$6,\!68\ (5,\!97)$
$Er_2BnzABAT_3 \times 12DMF$	27,21 (27,05)	40,93 $(41,04)$	$6,\!61\ (5,\!84)$

Tabelle 5.5.9: C,H,N-Elementaranalysen der Lanthanoid-Komplexe

5.5.8 Darstellung von Kupfer-benzylamin-bis-acetotetrazolat

Tabelle 5.5.10: Reaktionsansatz				
Verbindung	[g/mol]	[g/ml]	Einwaage	
Benzylamin-bis-acetotetrazol	271,28		0.5 g (1.8 mmol)	
$CuCl_2$	$134,\!45$		$0,25 {\rm ~g} {\rm ~(1,8 {\rm ~mmol})}$	

In einem 10 ml *Schlenk*-Kolben wurden 0,25 g (1,8 mmol) Kupferchlorid in 5 ml DMF gelöst. Zu der intensiv gelben Lösung wurde eine farblose Lösung von 0,5 g (1,8 mmol) Benzylamin-bis-acetotetrazol in 2 ml DMF gegeben. Die Lösung färbte sich sofort intensiv grün. Nach einigen Minuten bildete sich ein feiner, blau-violetter Niederschlag, der abfiltriert und im Hochvakuum $(1 \times 10^{-3} \text{ mbar})$ getrocknet wurde. Die Ausbeute betrug 0,7 g (95%). Elementaranalyse für C₁₁H₁₁N₉Cu×DMF (M = 409,90 g/Mol): C 40,7 (ber. 41,4); H 4,3 (ber. 4,5); N 34,3 (ber. 34,5)%. **IR** (KBr) $\tilde{\nu} = 3087, 3052, 3023, 2925, 1662, 1496, 1457, 1438, 1392, 1344, 1253, 1176, 1097, 1064, 954, 864, 784, 748, 696, 611, 522, 410 cm⁻¹.$

5.6 Versuche zur Darstellung von Hexakis(trifluormethyltetrazolyl)titanaten

Tabelle 5.6.1: Reaktionsansatz				
Verbindung	[g/mol]	[g/ml]	Einwaage	
Titantetrafluorid	123,86		0,25 g (2 mmol)	
Trimethylsilylazid	115,21	0,88	1,05 ml (8 mmol)	
Tetrabutylammoniumazid	284,48		1,14 g (4 mmol)	
Trifluoracetonitril	$95,\!02$		3 g (31 mmol)	

In einem Schlenk-Kolben wurden 0,25 g (2 mmol) Titantetrafluorid in 20 ml Acetonitril suspendiert und auf -40 °C gekühlt. Diese Lösung wurde mit 1,05 ml (8 mmol) Trimethylsilylazid versetzt und solange gerührt, bis sich eine klare, gelbe Lösung gebildet hatte. Zu dieser Lösung wurde bei Raumtemperatur 1,14 g (4 mmol) Tetrabutylammoniumazid (oder 0,46 g Tetramethylammoniumazid) gegeben. In diese [NBu₄]₂[Ti(N₃)₆]-Lösung wurde über einen Zeitraum von vier Stunden ein Überschuss von ca. 3 g (31 mmol) Trifluoracetonitril eingeleitet. Dabei färbte sich die Lösung intensiv orange. Bei 1×10^{-3} mbar wurde die Lösung aufkonzentriert und NMR-spektroskopisch analysiert. ¹³C-NMR (Aceton-d₆ extern) $\delta = 154,3$; 123,5; 56,6; 23,2; 19,3; 13,7 ppm. ¹⁵N-NMR (Aceton-d₆ extern) $\delta = -22,2$; -56,5; -65,7; -315,6 ppm. ¹⁹F-NMR (Aceton-d₆ extern) $\delta = -22,2$; -56,5; -65,7; -315,6 ppm. ¹⁹F-NMR (Aceton-d₆ extern) $\delta = -22,2$; -56,5; -65,7; -315,6 ppm. ¹⁹F-NMR (Aceton-d₆ extern) $\delta = -22,2$; -56,5; -65,7; -315,6 ppm. ¹⁹F-NMR (Aceton-d₆ extern) $\delta = -59,6$ ppm. **ESI-MS** (negativ) m/z = 137,0 [CN₄CF₃]⁻; 402,95; 418,95; 516,37 [(CN₄CF₃)₂(NBu₄)]⁻; 895,69 [(CN₄CF₃)₃(NBu₄)₂]⁻; 1654,35 [(CN₄CF₃)₅(NBu₄)₄]⁻.

Umsalzung zum [PNP]-Salz

Eine entsprechend Kapitel 5.6 hergestellte Lösung von $[NMe_4]_2[Ti(CN_4CF_3)_6]$ wurde mit zwei Äquivalenten [PNP]Br in wenig Acetonitril versetzt. Tetramethylammoniumbromid fiel dabei als farbloses Pulver aus und konnte abfiltriert werden. Die verbliebene gelbe Lösung wurde eingeengt und es bildeten sich dabei lediglich farblose, nadelförmige Kristalle von [PNP](CN_4CF_3).

5.7 Kristallstrukturdaten

Summenformel / Molmasse [g mol ⁻¹]	$C_{16}H_{36}BaN_8O_8 / 605,87$
Messtemperatur [K]	293
Kristallgröße [mm]	$0.2 \ge 0.3 \ge 0.2$
Kristallsystem / Raumgruppe	orthorhombisch / Pccn (Nr. 56)
a [Å]	11,5565(17)
b [Å]	14,6049(15)
	16,805(2)
V [Å ³] , Z	2836, 37(61), 4
Dichte $[g \text{ cm}^{-3}]$	1,41873
Absorptionskoeffizient	1,449
F(000)	1232
Gem, 2θ -Bereich	2,55 bis 28,16
Indexbereich	-15 <h<15, -17<k<17,="" -22<l<22<="" td=""></h<15,>
Gemessene / Unabhängige Reflexe	32454 / 3284
Beobachtete Reflexe / R _{int}	1361 / 0,2020
Daten / Restraints / Parameter	3284 / 0 / 151
$GOF F^2$	0,770
$R_1; wR_2(I > 2\sigma)$	0,0403; 0,0764
R_1 ; w R_2 (alle Daten)	$0,1271;\ 0,0926$
Restelektronendichte (max / min)	$0,503 \ / \ -0,745$

Tabelle 5.7.1: Kristalldaten für $Ba(1,2-BTB) \times 8MeOH$

Tabelle 5.7.2: Atomkoordinaten in $\mathrm{Ba}(1,2\text{-}\mathrm{BTB}){\times}8\mathrm{MeOH}$

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
Ba1	4c	2	1,25000	1/4	-0,04203(3)	
C1	8e	1	0,7713(4)	0,2052(4)	0,1803(3)	
C2	8e	1	0,7900(5)	0,1620(5)	0,2526(4)	
H2	8e	1	0,81710	0,10200	0,25310	0,173(12)
C3	8e	1	0,7696(6)	0,2056(5)	0,3233(4)	
H3	8e	1	0,78210	$0,\!17520$	0,37120	0,173(12)
C11	8e	1	0,8044(4)	0,1575(4)	0,1062(3)	
N12	8e	1	0,8699(3)	0,1940(3)	0,0493(3)	
N13	8e	1	0,8842(4)	0,1271(4)	-0,0043(3)	
N14	8e	1	0,8299(4)	0,0534(4)	0,0194(3)	
N15	8e	1	0,7773(3)	0,0703(4)	0,0895(3)	

5	Experimenteller	Teil
---	-----------------	------

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
C21	8e	1	0,9548(6)	-0,1340(6)	0,1912(5)	
H21A	8e	1	1,03240	-0,11130	0,19670	0,173(12)
H21B	8e	1	0,94140	-0,18100	0,23000	0,173(12)
H21C	8e	1	0,90100	-0,08480	0,19940	0,173(12)
O21	8e	1	0,9400(3)	-0,1699(3)	0,1153(3)	
C22	8e	1	1,0323(6)	0,3909(6)	0,0717(5)	
H22A	8e	1	0,95740	0,38870	0,09640	0,173(12)
H22B	8e	1	1,03200	$0,\!43610$	0,03030	0,173(12)
H22C	8e	1	1,08950	0,40670	$0,\!11080$	0,173(12)
O22	8e	1	1,0578(4)	0,3074(3)	0,0401(3)	
C23	8e	1	1,3550(7)	0,3952(6)	0,1338(5)	
H23A	8e	1	1,37490	0,45740	0,14600	0,173(12)
H23B	8e	1	$1,\!42060$	0,35640	0,14330	0,173(12)
H23C	8e	1	1,29190	0,37610	0,16710	0,173(12)
O23	8e	1	1,3220(4)	0,3886(3)	0,0535(3)	
C24	8e	1	1,0640(6)	0,4079(5)	-0,1619(4)	
H24A	8e	1	1,05610	0,46400	-0,19120	0,173(12)
H24B	8e	1	1,01040	0,40770	-0,11820	0,173(12)
H24C	8e	1	1,04800	$0,\!35700$	-0,19630	0,173(12)
O24	8e	1	1,1796(3)	0,4005(3)	-0,1320(3)	

Tabelle 5.7.3: Anisotrope Auslenkungsparameter in Ba(1,2-BTB) $\times 8 \mathrm{MeOH}$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ba1	0,03898(18)	0,0377(2)	0,0587(3)	-0,0059(4)	0,00000	0,00000
C1	0,031(4)	0,055(3)	0,044(3)	-0,004(2)	0,002(2)	0,004(2)
C2	0,045(3)	0,092(6)	0,054(4)	0,006(3)	0,005(3)	0,013(4)
C3	0,049(5)	0,145(8)	0,047(3)	0,004(4)	0,001(3)	0,020(4)
C11	0,028(2)	0,050(4)	0,049(4)	-0,001(2)	-0,002(2)	0,009(3)
N12	0,046(2)	0,044(3)	0,056(3)	-0,0050(19)	0,010(2)	-0,003(3)
N13	0,056(3)	0,046(4)	0,063(3)	-0,001(2)	0,015(2)	-0,001(3)
N14	0,062(3)	0,043(4)	0,078(4)	-0,004(2)	0,007(3)	-0,006(3)
N15	0,046(4)	0,050(3)	0,070(3)	-0,008(2)	0,005(2)	0,005(2)
C21	0,067(4)	0,112(8)	0,079(6)	-0,004(4)	0,005(4)	-0,022(5)
O21	0,052(2)	0,081(3)	0,054(3)	-0,018(2)	0,006(2)	-0,018(2)
C22	0,081(5)	0,076(7)	0,140(8)	-0,003(4)	0,028(5)	-0,020(5)
O22	0,069(3)	0,054(3)	0,120(4)	-0,008(2)	0,040(3)	-0,030(3)
C23	0,120(7)	0,097(7)	0,077(6)	-0,007(5)	0,004(5)	-0,011(5)
O23	0,082(3)	0,051(3)	0,058(3)	-0,019(2)	-0,012(2)	-0,001(2)
C24	0,064(4)	0,064(5)	0,082(5)	0,004(3)	-0,020(4)	-0,011(4)

Atom	U ₁₁	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
O24	0,051(2)	0,049(3)	0,094(3)	-0,0021(17)	-0,020(2)	0,012(2)

Tabelle 5.7.4: Ausgewählte Atomabstände in $\mathrm{Ba}(1,2\text{-}\mathrm{BTB}) \times 8\mathrm{MeOH}$

Atome	d [Å]	Atome	d [Å]
Ba1—O23	2,715(4)	C3—C3iv	1,374(15)
Ba1—O23i	2,715(4)	C11—N12	1,331(7)
Ba1—O22i	2,746(4)	C11—N15	1,341(7)
Ba1—O22	2,746(4)	N12—N13	1,339(6)
Ba1—O21ii	2,775(4)	N13—N14	$1,\!308(7)$
Ba1—O21iii	2,775(4)	N14 - N15	1,348(6)
Ba1—O24i	2,788(4)	C21—O21	1,390(8)
Ba1—O24	2,788(4)	O21—Ba1ii	2,775(4)
C1-C2	1,386(8)	C22—O22	1,362(8)
C1—C1iv	1,399(11)	C23—O23	1,406(9)
C1-C11	1,478(7)	C24—O24	$1,\!431(7)$
C2—C3	1,369(9)		

Tabelle 5.7.5: Ausgewählte Winkel in $Ba(1,2-BTB) \times 8MeOH$

Atome	Winkel [°]	Atome	Winkel [°]
023—Ba1—O23i	107,49(19)	O23i—Ba1—O24	144,98(12)
O23—Ba1—O22i	71,50(14)	O22i—Ba1—O24	138,50(12)
O23i—Ba1—O22i	73,92(13)	O22—Ba1—O24	78,21(15)
O23—Ba1—O22	73,92(13)	O21ii—Ba1—O24	82,00(12)
O23i—Ba1—O22	71,50(14)	O21iii—Ba1—O24	70,03(12)
O22i—Ba1—O22	119,7(2)	O24i—Ba1—O24	114,4(2)
O23—Ba1—O21ii	144,98(13)	C2—C1—C1iv	118,7(4)
O23i—Ba1—O21ii	72,87(13)	C2—C1—C11	119,0(6)
O22i—Ba1—O21ii	137,23(14)	C1iv—C1—C11	122,1(3)
O22—Ba1—O21ii	73,23(13)	C3—C2—C1	121,5(7)
O23—Ba1—O21iii	72,87(13)	C2—C3—C3iv	119,8(4)
O23i—Ba1—O21iii	144,98(13)	N12—C11—N15	111,3(5)
O22i—Ba1—O21iii	73,23(13)	N12—C11—C1	124,3(6)
O22—Ba1—O21iii	137,23(14)	N15—C11—C1	124,3(5)
O21ii—Ba1—O21iii	127,35(17)	C11—N12—N13	105,1(5)
O23—Ba1—O24i	144,98(12)	N14—N13—N12	109,7(5)

Atome	Winkel [°]	Atome	Winkel [°]
O23i—Ba1—O24i	79,75(12)	N13—N14—N15	109,4(5)
O22i—Ba1—O24i	78,21(15)	C11—N15—N14	104,5(5)
O22—Ba1—O24i	138,50(12)	C21— $O21$ — $Ba1ii$	131,6(4)
O21ii—Ba1—O24i	70,03(12)	C22— $O22$ — $Ba1$	130,1(4)
O21iii—Ba1—O24i	82,00(12)	C23—O23—Ba1	134,5(4)
O23—Ba1—O24	79,75(12)	C24—O24—Ba1	121,5(4)

Tabelle 5.7.6: Kristalldaten für $\rm Sm(1,2\text{-}HBTB)_3 \times 14,5 H_2O$

$C_{48}H_{82}N_{48}O_{29}Sm_2 / 2037,85$
293
$0,1 \ge 0,1 \ge 0,1$
monoklin / C_2/c (Nr. 15)
26,515(5)
13,206(2)
26,674(5)
117,07(2)
8316,89(85), 4
1,6274
1,503
4016
2,72 bis $28,13$
-27 <h<34, -17<k<17,="" -35<l<0<="" td=""></h<34,>
17537 / 9434
6020 / 0,0405
9434 / 0 / 677
0,826
$0,0345;\ 0,0866$
$0,0651;\ 0,0978$
$0,863 \ / \ -0,919$

Tabelle 5.7.7: Atomkoordinaten in $\rm Sm(1,2\text{-}HBTB)_3 \times 14,5H_2O$

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
N40	8f	1	-0,29850(17)	0,1091(3)	-0,11310(14)	
N41	8f	1	-0,24205(16)	0,1009(3)	-0,08737(14)	
N60	8f	1	-0,26942(17)	0,0959(3)	-0,17710(14)	

5 Experimenteller Teil

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
N65	8f	1	-0,31440(18)	0,1057(3)	-0,16686(14)	
N66	8f	1	-0,15114(16)	0,1065(3)	0,00574(13)	
N83	8f	1	-0,12631(17)	0,1259(3)	0,06142(14)	
N84	8f	1	-0,07249(17)	0,1404(3)	0,07739(14)	
N85	8f	1	-0,06076(17)	0,1304(3)	0,03378(15)	
C6	8f	1	-0,22374(19)	0,0933(3)	-0,12654(16)	
C15	8f	1	-0,11529(19)	0,0913(3)	-0,06757(16)	
C20	8f	1	-0,16559(18)	0,0834(3)	-0,11914(16)	
C31	8f	1	-0,1100(3)	0,0570(5)	-0,1695(2)	
H31	8f	1	-0,10850	0,04560	-0,20320	0,0760
C76	8f	1	-0,11042(18)	0,1095(3)	-0,01026(16)	,
C84	8f	1	-0,0609(3)	0,0645(4)	-0,1198(2)	
H84	8f	1	-0,02600	0,05840	-0,11980	0,0730
C87	8f	1	-0,1610(2)	0,0667(4)	-0,16884(18)	,
H87	8f	1	-0,19400	0,06190	-0,20270	0,0640
C90	8f	1	-0,0635(2)	0,0813(4)	-0,0696(2)	7
H90	8f	1	-0.02990	0.08600	-0.03630	0.0630
N42	8f	1	-0.39972(17)	0.6536(3)	0.00039(15))
N44	8f	1	-0.25545(18)	0.6003(3)	-0.15117(15)	
N45	8f	1	-0.30472(16)	0.5975(3)	-0.10675(14)	
N46	8f	1	-0.30709(17)	0.5948(3)	-0.15825(15)	
N48	8f	1	-0.34407(16)	0.6507(3)	0.03550(14)	
N59	8f	1	-0.35848(16)	0.6280(3)	-0.05041(13)	
N62	8f	1	-0.21868(16)	0.6080(3)	-0.09581(14)	
N64	8f	1	-0.40900(17)	0.6390(3)	-0.05103(15)	
C23	8f	1	-0.31832(17)	0.6356(3)	0.00319(15)	
C46	8f	1	-0.1379(2)	0.6197(4)	0.08033(19)	
H46	8f	1	-0.09860	0.61650	0.09850	0.0610
C49	8f	1	-0.25672(18)	0.6285(3)	0.02488(15)	0,0010
C73	8f	1	-0.22666(18)	0.6146(3)	-0.00697(15)	
C74	8f	1	-0.25067(19)	0.6067(3)	-0.06917(16)	
C78	8f	1	-0.2251(2)	0.6381(3)	0.08413(16)	
H78	8f	1	-0.24450	0.64740	0.10530	0.0540
C83	8f	1	-0.1673(2)	0.6101(3)	0.02219(18)	0,0010
H83	8f	1	-0.14690	0.60040	0.00190	0.0540
C89	8f	1	-0.1676(2)	0.6341(4)	0.11120(18)	0,0010
H89	8f	1	-0.14840	0.64090	0.15010	0.0620
N43	8f	1	0.00124(18)	0.3679(4)	-0.07389(16)	0,0020
N61	8f	1	-0.02692(17)	0.3765(3)	-0.00994(14)	
N63	8f	1	-0.05519(16)	0.3616(3)	-0.09924(14)	
N67	8f	1	-0.1700(2)	0.3417(5)	-0.24717(15)	
N81	8f	1	-0.1462(2)	0.3491(4)	-0.19079(16)	
N81	8f	1	-0,1462(2)	0,3491(4)	-0,19079(16)	

5 Experimenteller Teil

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
N82	8f	1	0,01785(18)	0,3768(4)	-0,02038(15)	
N86	8f	1	-0,2241(2)	0,3411(5)	-0,26470(15)	
N87	8f	1	-0,23647(17)	0,3457(4)	-0,22096(14)	
C16	8f	1	-0,07275(19)	0,3669(3)	-0,05933(16)	
C27	8f	1	-0,13044(18)	0,3622(3)	-0,06558(15)	
C39	8f	1	-0,18141(18)	0,3551(3)	-0,11656(15)	
C81	8f	1	-0,18721(19)	0,3504(4)	-0,17487(16)	
C82	8f	1	-0,1347(2)	0,3629(4)	-0,01517(17)	
H82	8f	1	-0,10170	0,36700	0,01860	0,0550
C85	8f	1	-0,1855(2)	0,3578(4)	-0.01333(18)	,
H85	8f	1	-0,18650	0,35760	0,02100	0,0610
C86	8f	1	-0,2324(2)	0.3510(4)	-0.11348(18))
H86	8f	1	-0.26600	0.34670	-0.14670	0.0550
C88	8f	1	-0.2350(2)	0.3531(4)	-0.06317(19)	,
H88	8f	1	-0.26990	0.35130	-0.06270	0.0590
Sm1	8f	1	-0.10014(1)	0.71526(2)	-0.15695(1)	0,0000
03	8f	1	-0.14902(18)	0.8082(3)	-0.24390(13)	
04	8f	1	-0.08810(18)	0.6089(4)	-0.22593(15)	
05	8f	1	-0.11070(15)	0.6175(3)	-0.08602(12)	
06	8f	1	-0.0304(2)	0.8162(4)	-0.17244(16)	
011	8f	1	-0.17000(15)	0,8102(1) 0.8121(3)	-0.14418(13)	
012	8f	1	-0.05001(15)	0,8121(3) 0.8125(3)	-0.07214(12)	
012	01 8f	1	-0.18649(16)	0,6125(3) 0.6185(3)	-0.20560(13)	
070	8f	1	-0.01230(18)	0,0100(0) 0.6229(4)	-0.10664(14)	
077	01 8f	1	-0.4271(2)	0,0225(1) 0.1146(5)	-0.1445(2)	
078	8f	1	-0.0068(3)	0,1140(5) 0.4576(5)	-0.2016(3)	
079	01 8f	1	-0.0764(2)	0,1370(3) 0,1745(7)	-0.2738(2)	
080	8f	1	-0.3001(3)	0,1740(1) 0 3402(8)	-0.2733(2) -0.1777(2)	
081	10	2	0	0,3402(0) 0.7158(0)	-0,1111(2) -1/4	
082	40 8f	1	-0.4635(7)	0,7130(9) 0.4733(9)	-0.2/00(6)	
083	8f	1	-0.0124(3)	0,4100(3) 0.2461(7)	-0.3273(2)	
H1	8f	1	-0.0124(3) -0.011(2)	0,2401(1) 0.613(4)	-0.3213(2) -0.204(2)	0.040(16)
H9	8f	1	-0.211(2) -0.207(2)	0,013(4) 0.613(4)	-0.204(2) -0.252(2)	0,040(10) 0.065(15)
112 H3	01 8f	1	-0,207(2) 0.137(3)	0,013(4) 0.620(4)	-0,252(2) 0.078(2)	0,000(15)
нэ Ц4	8f	1	-0,137(3)	0,020(4) 0.822(4)	-0,078(2)	0,000(10)
114 Ц5	01 8f	1	-0,000(3) 0.167(2)	0,822(4) 0.821(4)	-0,045(2) 0.105(2)	0,077(17)
но Н6	8f	1	-0,107(2) 0.180(3)	0,021(4) 0.812(4)	-0,100(2) 0.250(2)	0,005(10) 0.057(10)
но Н7	01 8f	1	-0,100(3)	0,012(4) 0.615(6)	-0,209(2)	0,007(19)
117 По	01 01	1 1	0,012(3)	0,010(0) 0.614(5)	-0,034(3)	0,19(3)
110	01 01	1	-0,000(3) 0.019(2)	0,014(0)	-0,044(3) 0,102(2)	0,09(2)
П9 U10	01 01	1	0.068(2)	0,023(0) 0.245(4)	-0,100(3)	0,09(3)
111U U11	01 01	1	-0,000(2) 0.127(2)	0,240(4)	-0,200(2)	0,000(10)
пш ———	01	T	-0,137(3)	0,009(0)	-0,209(3)	0,09(2)

5	Experimenteller	Teil
---	-----------------	------

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
H12	8f	1	-0,077(3)	0,571(6)	-0,235(3)	0,09(3)
H13	8f	1	-0,026(4)	0,151(7)	-0,322(3)	0,13(3)
H14	8f	1	-0,3940(14)	0,425(2)	-0,1933(13)	0,000(7)
H15	8f	1	-0,118(2)	0,612(4)	-0,266(2)	0,058(14)
H16	8f	1	-0,012(4)	0,827(7)	-0,169(4)	0,12(4)
H17	8f	1	-0,203(3)	0,822(5)	-0,163(3)	0,08(2)
H18	8f	1	-0,045(4)	0,846(9)	-0,219(5)	0,20(4)
H19	8f	1	-0,015(4)	0,825(6)	-0,045(3)	0,14(3)
H20	8f	1	-0,061(2)	0,425(4)	-0,238(2)	0,061(15)
H21	8f	1	-0,204(3)	0,108(5)	-0,036(3)	0,10(2)
H22	8f	1	-0,344(3)	0,607(6)	-0,084(3)	0,14(3)
H23	8f	1	-0,020(9)	0,206(16)	-0,303(8)	0,33(12)
H24	8f	1	0,059(6)	0,726(10)	-0,246(5)	0,24(5)
H25	8f	1	-0,117(4)	0,348(10)	-0,177(4)	0,20(5)
H26	8f	1	-0,022(6)	0,384(10)	-0,221(5)	0,23(5)

Tabelle 5.7.8: Anisotrope Auslenkungsparameter in $Sm(1,2-HBTB)_3 \times 14,5H_2O$

Atom	U ₁₁	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
N40	0,037(2)	0,062(2)	0,0318(17)	0,0009(17)	0,0112(15)	0,0049(16)
N41	0,037(2)	0,050(2)	0,0308(16)	-0,0027(16)	0,0136(15)	0,0027(15)
N60	0,043(3)	0,075(3)	0,0263(16)	0,0051(19)	0,0118(15)	0,0067(16)
N65	0,044(3)	0,077(3)	0,0315(17)	0,004(2)	0,0125(16)	0,0091(17)
N66	0,037(2)	0,055(2)	0,0285(16)	-0,0088(16)	0,0117(15)	-0,0037(15)
N83	0,042(3)	$0,\!070(3)$	0,0292(16)	-0,0105(19)	0,0132(15)	-0,0062(16)
N84	0,039(3)	0,078(3)	0,0356(18)	-0,011(2)	0,0142(16)	-0,0071(18)
N85	0,035(2)	0,074(3)	0,0366(18)	-0,0104(19)	0,0127(16)	-0,0068(18)
C6	0,046(3)	0,039(2)	0,0287(18)	-0,0001(19)	0,0171(17)	0,0046(16)
C15	0,042(3)	0,040(2)	0,0365(19)	-0,0035(19)	0,0206(18)	-0,0024(17)
C20	0,041(3)	0,038(2)	0,0318(18)	0,0010(18)	0,0178(17)	0,0033(16)
C31	0,077(4)	0,084(4)	0,050(3)	0,003(3)	0,046(3)	-0,001(2)
C76	0,032(2)	0,041(2)	0,0331(18)	-0,0044(17)	0,0130(16)	-0,0002(16)
C84	0,057(4)	0,072(4)	0,069(3)	0,002(3)	0,041(3)	-0,006(3)
C87	$0,\!056(3)$	0,072(3)	0,033(2)	0,005(2)	0,021(2)	0,001(2)
C90	0,039(3)	$0,\!070(3)$	$0,\!050(3)$	-0,002(2)	0,021(2)	-0,007(2)
N42	0,042(3)	$0,\!076(3)$	0,0385(18)	-0,004(2)	0,0257(17)	-0,0083(18)
N44	0,047(3)	0,083(3)	0,0385(19)	-0,007(2)	0,0249(18)	-0,0035(19)
N45	0,039(2)	$0,\!070(3)$	0,0297(16)	-0,0028(18)	0,0166(15)	-0,0066(16)
N46	0,042(3)	$0,\!089(3)$	0,0345(18)	-0,004(2)	0,0207(17)	-0,0053(19)
N48	0,043(2)	0,059(2)	0,0356(17)	0,0020(18)	0,0237(16)	-0,0049(16)

5 Experimenteller Teil

Atom	U ₁₁	U_{22}	U ₃₃	U ₁₂	U_{13}	U ₂₃
N59	0,036(2)	0,057(2)	0,0305(16)	-0,0003(16)	0,0166(15)	-0,0038(15)
N62	0,037(2)	0,063(2)	0,0370(17)	-0,0047(17)	0,0194(16)	-0,0012(16)
N64	0,040(2)	0,075(3)	0,0399(18)	0,0030(19)	0,0217(17)	-0,0059(18)
C23	0,033(2)	0,036(2)	0,0324(17)	0,0003(16)	0,0179(16)	-0,0013(15)
C46	0,036(3)	0,056(3)	0,045(2)	-0,001(2)	0,0047(19)	0,003(2)
C49	0,038(3)	0,031(2)	0,0304(17)	-0,0015(16)	0,0151(16)	-0,0012(15)
C73	0,037(3)	0,030(2)	0,0318(18)	-0,0005(16)	0,0134(16)	0,0008(15)
C74	0,039(3)	0,037(2)	0,0342(19)	0,0009(17)	0,0195(17)	0,0022(16)
C78	0,052(3)	0,047(3)	0,0321(19)	0,003(2)	0,0159(19)	-0,0017(18)
C83	0,039(3)	0,051(3)	0,043(2)	0,000(2)	0,0169(19)	0,0033(19)
C89	0,053(3)	0,055(3)	0,032(2)	-0,001(2)	0,007(2)	-0,0027(19)
N43	0,035(3)	0,104(4)	0,0393(19)	0,006(2)	0,0146(17)	0,006(2)
N61	0,036(2)	0,081(3)	0,0270(16)	0,0042(19)	0,0068(15)	0,0015(17)
N63	0,029(2)	0,090(3)	0,0320(17)	0,0035(19)	0,0122(15)	0,0020(18)
N67	0,044(3)	0,147(5)	0,0293(18)	-0,016(3)	0,0126(18)	-0,009(2)
N81	0,042(3)	0,109(4)	0,0298(17)	-0,009(2)	0,0163(18)	-0,006(2)
N82	0,036(3)	0,098(3)	0,0321(18)	0,005(2)	0,0084(16)	0,0068(19)
N86	0,045(3)	0,133(4)	0,0276(18)	-0,019(3)	0,0101(17)	-0,006(2)
N87	0,038(3)	0,092(3)	0,0315(17)	-0,011(2)	0,0108(16)	-0,0070(19)
C16	0,037(3)	0,046(2)	0,0301(18)	0,0045(19)	0,0133(17)	0,0035(17)
C27	0,036(3)	0,040(2)	0,0292(17)	0,0023(18)	0,0126(16)	0,0005(16)
C39	0,036(3)	0,042(2)	0,0316(18)	-0,0029(18)	0,0169(16)	-0,0027(16)
C81	0,039(3)	0,055(3)	0,0283(18)	-0,005(2)	0,0105(17)	-0,0012(18)
C82	0,042(3)	0,062(3)	0,0325(19)	0,003(2)	0,0157(18)	-0,0013(19)
C85	0,058(3)	0,062(3)	0,039(2)	0,000(2)	0,028(2)	-0,006(2)
C86	0,040(3)	0,056(3)	0,038(2)	-0,005(2)	0,0141(18)	-0,0046(19)
C88	0,043(3)	0,058(3)	0,055(3)	-0,004(2)	0,031(2)	-0,005(2)
Sm1	0,02581(11)	0,05622(13)	0,02026(8)	-0,00089(11)	0,00976(7)	-0,00259(10)
O3	0,036(2)	0,091(3)	0,0293(14)	0,0070(18)	0,0128(14)	0,0088(15)
O4	0,045(2)	0,085(3)	0,0372(17)	0,0045(19)	0,0140(15)	-0,0168(17)
O5	0,033(2)	0,076(2)	0,0332(15)	-0,0005(16)	0,0139(14)	0,0073(14)
O6	0,038(3)	0,093(3)	0,0364(17)	-0,011(2)	0,0183(16)	0,0001(17)
O11	0,033(2)	0,084(3)	0,0282(14)	0,0097(16)	0,0131(13)	-0,0018(14)
O12	0,037(2)	0,072(2)	0,0336(14)	-0,0087(15)	0,0185(14)	-0,0120(14)
O37	0,033(2)	0,097(3)	0,0299(15)	-0,0174(18)	0,0156(14)	-0,0114(15)
O70	0,035(2)	0,100(3)	0,0365(17)	0,016(2)	0,0134(15)	0,0021(16)
O77	0,094(4)	0,148(5)	0,099(3)	0,025(3)	0,059(3)	0,007(3)
O78	0,115(5)	0,120(5)	0,131(5)	0,041(4)	0,037(4)	-0,008(4)
O79	0,078(4)	0,231(8)	0,083(4)	-0,026(5)	0,022(3)	0,025(5)
O80	0,114(5)	0,305(11)	0,082(4)	0,011(6)	0,059(4)	-0,039(5)
O81	0,269(16)	0,164(10)	0,238(13)	0,00000	0,211(13)	0,00000
O82	0,56(3)	0,196(9)	0,283(12)	0,025(12)	0,319(17)	-0,024(9)

Atom	U ₁₁	U_{22}	U_{33}	U_{12}	U_{13}	U ₂₃
083	0,105(5)	0,144(6)	0,060(3)	0,023(4)	0,039(3)	0,018(3)

Tabelle 5.7.9: Ausgewählte Atomabstände in Sm
(1,2-HBTB)_3 $\times 14,5{\rm H}_2{\rm O}$

Atome	d [Å]	Atome	d [Å]
N40—N65	1,298(5)	N61—N82	1,337(6)
N40—N41	1,337(5)	N63—C16	1,344(5)
N41—C6	1,341(5)	N67—N86	1,292(6)
N41—H21	1,28(7)	N67—N81	1,344(5)
N60—C6	1,342(5)	N81—C81	1,337(6)
N60—N65	1,346(6)	N81—H25	0,68(10)
N66—C76	1,330(5)	N86—N87	1,349(5)
N66—N83	1,347(4)	N87—C81	1,326(5)
N66—H21	1,34(7)	C16—C27	1,463(6)
N83—N84	1,304(5)	C27—C82	1,400(5)
N84—N85	1,340(5)	C27—C39	1,418(5)
N85—C76	1,335(5)	C39—C86	1,392(6)
C6-C20	1,468(6)	C39—C81	1,493(5)
C15—C90	1,405(6)	C82—C85	$1,\!370(7)$
C15—C20	1,419(6)	C82—H82	0,9300
C15—C76	1,494(5)	C85—C88	$1,\!381(7)$
C20—C87	1,402(6)	C85—H85	0,9300
C31—C87	1,367(7)	C86—C88	1,375(6)
C31—C84	1,375(8)	C86—H86	0,9300
C31—H31	0,9300	C88—H88	0,9300
C84—C90	1,391(7)	Sm1-O11	2,399(3)
C84—H84	0,9300	Sm1-O12	2,407(3)
C87—H87	0,9300	Sm1-O5	2,410(3)
С90—Н90	0,9300	Sm1-O3	2,414(3)
N42—N64	1,293(5)	Sm1-O37	2,420(4)
N42—N48	1,341(5)	Sm1-O70	2,423(4)
N44—N46	1,296(6)	Sm1-O4	2,449(4)
N44—N62	1,353(5)	Sm1-O6	2,463(5)
N45—C74	1,329(5)	O3—H6	0,74(6)
N45—N46	1,347(5)	O3—H11	$0,\!87(7)$
N45—H22	1,42(8)	O4—H12	$0,\!67(7)$
N48—C23	1,336(5)	O4—H15	1,00(5)
N59—N64	1,340(5)	O5—H3	0,82(6)
N59—C23	1,343(5)	O5—H8	1,05(7)
N59—H22	1,16(8)	O6—H16	$0,\!48(8)$

Atome	d [Å]	Atome	d [Å]
N62—C74	1,332(5)	O6—H18	1,19(11)
C23—C49	1,467(6)	O11—H5	1,01(5)
C46—C83	1,389(6)	O11—H17	0,79(7)
C46—C89	1,388(7)	O12—H4	0,99(6)
C46—H46	0,9300	O12—H19	$0,\!89(8)$
C49—C73	1,417(6)	O37—H1	$0,\!67(5)$
C49—C78	1,418(5)	O37—H2	1,10(5)
C73—C83	1,405(6)	O70—H7	1,76(8)
C73—C74	$1,\!486(5)$	O70—H9	$0,\!60(7)$
C78—C89	1,357(7)	O78—H20	$1,\!38(6)$
C78—H78	0,9300	O78—H26	1,09(13)
С83—Н83	0,9300	O79—H10	1,08(5)
C89—H89	0,9300	O80—H14	1,18(3)
N43—N82	1,294(5)	O81—H24	1,51(13)
N43—N63	1,335(5)	O83—H13	1,33(10)
N61—C16	1,331(5)	O83—H23	0,9(2)

5 Experimenteller Teil

Tabelle 5.7.10: Ausgewählte Winkel in $\rm Sm(1,2\text{-}HBTB)_3 \times 14,5H_2O$

Atome	Winkel $[^{\circ}]$	Atome	Winkel [°]
N65—N40—N41	106,8(4)	N67—N86—N87	110,7(4)
N40—N41—C6	108,9(3)	C81—N87—N86	106,2(4)
N40—N41—H21	134,(3)	N61—C16—N63	107,4(4)
C6—N41—H21	117,(3)	N61 - C16 - C27	$123,\!6(4)$
C6—N60—N65	106,1(3)	N63 - C16 - C27	129,0(4)
N40—N65—N60	110,8(4)	C82-C27-C39	117,6(4)
C76—N66—N83	106,7(3)	C82-C27-C16	115,4(4)
C76—N66—H21	115,(3)	C39-C27-C16	127,1(3)
N83—N66—H21	136,(3)	C86-C39-C27	118,2(4)
N84—N83—N66	107,5(3)	C86-C39-C81	114,7(4)
N83—N84—N85	110,7(3)	C27 - C39 - C81	127,1(4)
C76—N85—N84	105,0(4)	N87—C81—N81	107,8(4)
N41—C6—N60	107,4(4)	N87—C81—C39	124,0(4)
N41—C6—C20	129,2(4)	N81 - C81 - C39	128,2(4)
N60—C6—C20	123,4(4)	C85 - C82 - C27	123,0(4)
C90 - C15 - C20	117,4(4)	C85— $C82$ — $H82$	118,500
C90—C15—C76	115,0(4)	C27— $C82$ — $H82$	118,500
C20 - C15 - C76	127,5(4)	C82 - C85 - C88	119,1(4)
C87-C20-C15	118,7(4)	C82 - C85 - H85	$120,\!400$
C87—C20—C6	115,1(4)	C88—C85—H85	120,400

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
C15—C20—C6	126,2(3)	C88—C86—C39	122,6(4)
C87—C31—C84	119,3(4)	C88—C86—H86	118,700
C87—C31—H31	120,300	C39—C86—H86	118,700
C84—C31—H31	120,300	C86—C88—C85	119,5(4)
N66—C76—N85	110,1(3)	C86—C88—H88	120,200
N66—C76—C15	128,3(4)	C85—C88—H88	120,300
N85—C76—C15	121,7(4)	O11—Sm1—O12	73,39(12)
C31—C84—C90	120,0(5)	O11—Sm1—O5	78,52(12)
C31—C84—H84	120,000	O12— $Sm1$ — $O5$	76,09(11)
C90—C84—H84	120,000	O11—Sm1—O3	75,75(12)
C31—C87—C20	122,6(4)	O12—Sm1—O3	117,20(12)
C31—C87—H87	118,700	O5—Sm1—O3	145,41(13)
С20—С87—Н87	118,700	O11—Sm1—O37	75,78(13)
C84—C90—C15	122,0(5)	O12—Sm1—O37	140,23(11)
C84—C90—H90	119,000	O5—Sm1—O37	73,65(12)
C15—C90—H90	119,000	O3—Sm1—O37	77,88(13)
N64—N42—N48	110,7(3)	O11—Sm1—O70	143,08(11)
N46—N44—N62	110,6(3)	O12—Sm1—O70	76,55(13)
C74—N45—N46	107,8(3)	O5— $Sm1$ — $O70$	73,82(13)
C74—N45—H22	114,(3)	O3—Sm1—O70	138,46(14)
N46—N45—H22	137,(3)	O37—Sm1—O70	117,89(15)
N44—N46—N45	107,1(3)	O11—Sm1—O4	141,78(12)
C23—N48—N42	106,1(3)	O12—Sm1—O4	143,80(13)
N64—N59—C23	108,0(3)	O5— $Sm1$ — $O4$	112,58(13)
N64—N59—H22	135,(4)	O3—Sm1—O4	76,49(14)
C23—N59—H22	117,(4)	O37—Sm1—O4	73,09(13)
C74—N62—N44	105,3(4)	O70—Sm1—O4	72,91(13)
N42—N64—N59	107,3(3)	O11—Sm1—O6	114,99(14)
N48—C23—N59	107,9(4)	O12—Sm1—O6	74,53(12)
N48—C23—C49	124,0(3)	O5— $Sm1$ — $O6$	141,84(13)
N59—C23—C49	128,1(3)	O3—Sm1—O6	71,30(15)
C83—C46—C89	119,6(5)	O37—Sm1—O6	142,71(12)
C83—C46—H46	120,200	O70—Sm1—O6	76,07(16)
C89—C46—H46	120,200	O4— $Sm1$ — $O6$	79,62(15)
C73—C49—C78	118,1(4)	Sm1—O3—H6	123,(4)
C73—C49—C23	127,0(3)	Sm1—O3—H11	122,(5)
C78—C49—C23	114,9(4)	H6—O3—H11	106,(6)
C83—C73—C49	117,9(4)	Sm1 - O4 - H12	156,(7)
C83—C73—C74	114,7(4)	Sm1—O4—H15	118,(3)
C49—C73—C74	127,3(4)	H12—O4—H15	85,(7)
N45—C74—N62	109,2(3)	Sm1—O5—H3	127,(4)
N45—C74—C73	128,0(4)	Sm1—O5—H8	124,(4)

Atome	Winkel [°]	Atome	Winkel [°]
N62—C74—C73	122,8(4)	Н3—О5—Н8	94,(5)
C89—C78—C49	122,7(4)	Sm1-O6-H16	156,(10)
C89—C78—H78	118,600	Sm1-O6-H18	116,(5)
C49—C78—H78	118,600	H16—O6—H18	86,(10)
C46—C83—C73	122,1(4)	Sm1—O11—H5	120,(3)
C46—C83—H83	119,000	Sm1—O11—H17	134,(5)
C73—C83—H83	118,900	H5—O11—H17	100,(5)
C78—C89—C46	119,5(4)	Sm1—O12—H4	122,(3)
C78—C89—H89	120,200	Sm1—O12—H19	143,(5)
C46—C89—H89	120,200	H4—O12—H19	89,(5)
N82—N43—N63	107,7(4)	Sm1—O37—H1	137,(4)
C16—N61—N82	106,9(3)	Sm1—O37—H2	120,(3)
N43—N63—C16	107,9(3)	H1—O37—H2	94,(5)
N86—N67—N81	106,5(4)	Sm1—O70—H7	115,(3)
C81—N81—N67	108,7(4)	Sm1—O70—H9	139,(7)
C81—N81—H25	135,(8)	Н7—О70—Н9	91,(8)
N67—N81—H25	116,(9)	H20—O78—H26	49,(7)
N43—N82—N61	109,9(4)	H13—O83—H23	40,(10)

5 Experimenteller Teil

Tabelle 5.7.11: Kristalldaten für Eu
(1,2-HBTB)_3 $\times 14,5 \mathrm{H_2O}$

Summenformel / Molmasse [g mol ⁻¹]	$C_{48}H_{82}N_{48}O_{29}Eu_2 / 2041,07$
Messtemperatur [K]	293
Kristallgröße [mm]	$0,15 \ge 0,1 \ge 0,1$
Kristallsystem / Raumgruppe	monoklin / C_2/c (Nr. 15)
a [Å]	26,528(4)
b [Å]	13,2011(13)
	26,551(4)
β [°]	117,107(17)
$V[Å^3], Z$	8276,79(72), 4
Dichte $[g \text{ cm}^{-3}]$	1,63787
Absorptionskoeffizient	1,607
F(000)	4024
Gem, 2θ -Bereich	2,73 bis 28,20
Indexbereich	-31 <h<35, -16<k<15,="" -35<l<0<="" td=""></h<35,>
Gemessene / Unabhängige Reflexe	18501 / 9567
Beobachtete Reflexe / R_{int}	2676 / 0,1114
Daten / Restraints / Parameter	9567 / 0 / 574
$GOF F^2$	0,631
$R_1; wR_2(I > 2\sigma)$	0,0460; 0,1067
R_1 ; w R_2 (alle Daten)	0,1738; 0,1325
----------------------------------	----------------
Restelektronendichte (max / min)	0,719 / -1,158

Tabelle 5.7.12: Atomkoordinaten in Eu(1,2-HBTB) $_3 \times 14,5H_2O$

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
N40	8f	1	-0,2988(3)	0,1105(8)	-0,1129(4)	
N41	8f	1	-0,2417(3)	0,1020(8)	-0,0860(3)	
N60	8f	1	-0,2697(3)	0,0972(8)	-0,1774(3)	
N65	8f	1	-0,3153(4)	0,1054(9)	-0,1674(3)	
N66	8f	1	-0,1524(3)	0,1071(8)	0,0048(3)	
N83	8f	1	-0,1259(3)	0,1264(8)	0,0618(3)	
N84	8f	1	-0,0717(4)	0,1398(9)	0,0782(3)	
N85	8f	1	-0,0612(3)	0,1291(8)	0,0334(3)	
C6	8f	1	-0,2242(4)	0,0946(9)	-0,1264(4)	
C15	8f	1	-0,1157(4)	0,0917(9)	-0,0674(4)	
C20	8f	1	-0,1667(4)	0,0863(9)	-0,1189(4)	
C31	8f	1	-0,1105(6)	0,0577(11)	-0,1690(5)	
H31	8f	1	-0,10840	0,04620	-0,20260	0,0840
C76	8f	1	-0,1110(4)	0,1090(9)	-0,0111(4)	
C84	8f	1	-0,0607(5)	0,0653(11)	-0,1183(6)	
H84	8f	1	-0,02570	0,05920	-0,11810	0,0880
C87	8f	1	-0,1636(5)	0,0671(10)	-0,1701(4)	
H87	8f	1	-0,19660	0,06090	-0,20400	0,0660
C90	8f	1	-0,0635(4)	0,0817(10)	-0,0688(4)	
H90	8f	1	-0,03010	0,08640	-0,03520	0,0670
N42	8f	1	-0,0999(4)	0,1533(8)	-0,4998(4)	
N44	8f	1	-0,2449(3)	0,1006(8)	-0,3482(3)	
N45	8f	1	-0,1946(3)	0,0983(8)	-0,3931(3)	
N46	8f	1	-0,1928(3)	0,0954(8)	-0,3409(3)	
N48	8f	1	-0,1566(3)	0,1508(7)	-0,5355(3)	
N59	8f	1	-0,1420(3)	0,1271(7)	-0,4495(3)	
N62	8f	1	-0,2809(3)	0,1079(8)	-0,4040(3)	
N64	8f	1	-0,0898(3)	0,1390(8)	-0,4476(3)	
C23	8f	1	-0,1819(4)	0,1342(8)	-0,5032(4)	
C46	8f	1	-0,3617(4)	0,1196(10)	-0,5802(4)	
H46	8f	1	-0,40100	0,11620	-0,59820	0,0700
C49	8f	1	-0,2433(4)	0,1271(8)	-0,5249(4)	
C73	8f	1	-0,2732(4)	0,1138(8)	-0,4935(4)	
C74	8f	1	-0,2486(4)	0,1064(8)	-0,4314(4)	
C78	8f	1	-0,2743(4)	0,1370(9)	-0,5828(4)	

5 Experimenteller Teil

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
H78	8f	1	-0,25470	0,14630	-0,60390	0,0590
C83	8f	1	-0,3325(4)	0,1106(10)	-0,5229(4)	
H83	8f	1	-0,35280	0,10190	-0,50240	0,0630
C89	8f	1	-0,3327(5)	0,1338(9)	-0,6112(5)	
H89	8f	1	-0,35190	0,14110	-0,65030	0,0710
N43	8f	1	0,0013(4)	0,3698(10)	-0,0741(4)	
N61	8f	1	-0,0267(3)	0,3767(9)	-0,0101(3)	
N63	8f	1	-0,0552(4)	0,3626(9)	-0,0987(4)	
N67	8f	1	-0,1706(4)	0,3425(10)	-0,2485(3)	
N81	8f	1	-0,1464(4)	0,3493(9)	-0,1910(4)	
N86	8f	1	-0,2244(4)	0,3403(10)	-0,2649(4)	
N87	8f	1	-0,2372(3)	0,3459(8)	-0,2216(3)	
N88	8f	1	0,0176(3)	0,3766(9)	-0,0211(4)	
C16	8f	1	-0,0727(4)	0,3669(10)	-0,0596(4)	
C27	8f	1	-0,1309(4)	0,3638(9)	-0,0661(4)	
C39	8f	1	-0,1817(4)	0,3569(9)	-0,1169(4)	
C81	8f	1	-0,1870(4)	0,3511(10)	-0,1757(4)	
C82	8f	1	-0,1351(4)	0,3634(10)	-0,0160(4)	
H82	8f	1	-0,10200	0,36650	0,01800	0,0650
C85	8f	1	-0,1858(4)	0,3584(10)	-0,0142(4)	
H85	8f	1	-0,18660	0,35860	0,02050	0,0680
C86	8f	1	-0,2323(4)	0,3513(9)	-0,1135(4)	
H86	8f	1	-0,26580	0,34600	-0,14700	0,0610
C88	8f	1	-0,2351(4)	0,3533(10)	-0,0631(4)	
H88	8f	1	-0,26990	0,35120	-0,06240	0,0690
Eu1	8f	1	-0,10005(2)	0,71565(5)	-0,15664(2)	
O3	8f	1	-0,1500(2)	0,8087(7)	-0,2442(2)	
O4	8f	1	-0,0884(3)	0,6075(7)	-0,2260(3)	
O5	8f	1	-0,1109(3)	0,6182(6)	-0,0857(3)	
O6	8f	1	-0,0300(3)	0,8165(7)	-0,1721(3)	
011	8f	1	-0,1704(3)	0,8115(6)	-0,1443(3)	
O12	8f	1	-0,0499(2)	0,8132(6)	-0,0717(3)	
O37	8f	1	-0,1878(3)	0,6204(7)	-0,2059(3)	
O70	8f	1	-0,0120(3)	0,6247(8)	-0,1056(3)	
O80	8f	1	-0,0141(4)	0,2434(9)	-0,3270(3)	
O81	8f	1	-0,4288(4)	0,1128(11)	-0,1447(4)	
O82	8f	1	-0,0758(4)	0,1794(13)	-0,2731(4)	
O83	8f	1	-0,0069(6)	0,4568(12)	-0,1998(6)	
O84	4e	2	0	0,721(2)	-1/4	
O85	8f	1	-0,3898(5)	0,3495(16)	-0,1797(5)	
O86	8f	1	-0,4599(18)	0,4681(19)	-0,2460(14)	

			0.1		, , , , , , , , , , , , , , , , , , , ,) - 2 -
Atom	U ₁₁	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
N40	0,040(5)	0,083(9)	0,041(5)	0,000(5)	0,021(4)	0,011(5)
N41	0,039(5)	0,065(8)	0,038(5)	0,003(4)	0,018(4)	0,009(4)
N60	0,045(5)	0,082(8)	0,034(4)	0,006(5)	0,017(4)	0,006(5)
N65	0,054(5)	0,091(9)	0,034(5)	0,003(5)	0,018(4)	0,010(5)
N66	0,050(5)	0,068(8)	0,036(5)	-0,007(5)	0,019(4)	-0,005(4)
N83	0,046(5)	0,082(8)	0,037(5)	-0,009(5)	0,024(4)	-0,006(5)
N84	0,047(5)	0,095(9)	0,035(5)	-0,015(5)	0,014(4)	-0,011(5)
N85	0,045(5)	0,089(9)	0,038(5)	-0,012(5)	0,018(4)	-0,012(5)
C6	0,044(6)	0,058(9)	0,027(5)	0,004(5)	0,013(4)	0,003(5)
C15	0,037(5)	0,052(9)	0,045(6)	-0,005(5)	0,014(5)	-0,003(5)
C20	0,047(6)	0,052(9)	0,037(5)	-0,003(5)	0,022(4)	0,003(5)
C31	0,097(11)	0,079(11)	0,065(9)	-0,006(8)	0,065(9)	-0,009(7)
C76	0,041(6)	0,054(9)	0,039(5)	-0,004(5)	0,018(5)	-0,011(5)
C84	0,066(8)	0,078(12)	0,097(11)	0,007(7)	0,055(8)	0,007(8)
C87	0,054(7)	0,074(10)	0,037(5)	0,002(6)	0,021(5)	0,002(6)
C90	0,041(6)	0,082(11)	0,043(6)	-0,001(6)	0,017(5)	-0,008(6)
N42	0,057(6)	0,084(9)	0,042(5)	0,000(5)	0,031(4)	0,003(5)
N44	0,041(5)	0,102(9)	0,040(5)	0,005(5)	0,023(4)	-0,001(5)
N45	0,042(5)	0,084(9)	0,034(4)	-0,008(5)	0,016(4)	0,001(4)
N46	0,043(5)	0,103(10)	0,043(5)	0,006(5)	0,021(4)	0,002(5)
N48	0,040(4)	0,068(7)	0,046(4)	0,002(4)	0,023(4)	0,006(4)
N59	0,036(4)	0,065(8)	0,049(5)	-0,001(4)	0,021(4)	-0,002(5)
N62	0,042(4)	0,074(8)	0,050(5)	0,009(4)	0,026(4)	0,004(5)
N64	0,041(4)	0,084(8)	0,041(5)	0,000(4)	0,024(4)	0,004(5)
C23	0,040(5)	0,051(8)	0,034(5)	0,003(5)	0,022(4)	0,001(5)
C46	0,034(5)	0,075(11)	0,054(7)	-0,005(5)	0,010(5)	-0,012(6)
C49	0,043(5)	0,039(8)	0,034(5)	0,001(5)	0,015(4)	-0,005(5)
C73	0,043(5)	0,039(8)	0,037(5)	0,000(5)	0,018(4)	0,002(5)
C74	0,039(5)	0,053(8)	0,036(5)	0,005(5)	0,022(4)	0,002(5)
C78	0,050(6)	0,053(9)	0,043(6)	0,001(6)	0,021(5)	-0,003(5)
C83	0,035(5)	0,077(10)	0,048(6)	-0,014(5)	0,021(5)	-0,013(6)
C89	0,057(7)	0,064(10)	0,047(6)	0,001(6)	0,017(5)	0,004(6)
N43	0,039(5)	0,129(11)	0,039(5)	0,002(6)	0,011(4)	-0,002(6)
N61	0,042(5)	0,105(10)	0,028(4)	0,004(5)	0,013(4)	-0,006(5)
N63	0,033(5)	0,104(10)	0,044(5)	0,004(5)	0,014(4)	0,009(6)
N67	0,042(5)	0,170(13)	0,025(4)	-0,012(6)	0,003(4)	-0,016(6)
N81	0,043(5)	0,120(11)	0,042(5)	-0,016(5)	0,015(4)	-0,007(6)
N86	0,035(5)	0,152(13)	0,038(5)	-0,011(6)	0,009(4)	-0,005(6)
N87	0,039(5)	0,111(9)	0,028(4)	-0,010(5)	0,014(4)	-0,003(5)

Tabelle 5.7.13: Anisotrope Auslenkungsparameter in $Eu(1,2-HBTB)_3 \times 14,5H_2O$

5	Experimenteller	Teil
---	-----------------	------

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
N88	0,034(5)	0,11(1)	0,040(5)	0,000(5)	0,005(4)	0,001(5)
C16	0,032(5)	0,075(10)	0,032(5)	-0,005(5)	0,012(4)	0,000(5)
C27	0,038(5)	0,060(9)	0,033(5)	-0,002(5)	0,018(4)	0,000(5)
C39	0,041(5)	0,056(9)	0,030(5)	-0,001(5)	0,013(4)	-0,003(5)
C81	0,038(5)	0,079(10)	0,043(6)	-0,014(6)	0,018(5)	0,000(6)
C82	0,035(5)	0,076(11)	0,042(6)	-0,001(6)	0,009(4)	-0,010(6)
C85	0,056(6)	0,085(11)	0,031(5)	-0,006(6)	0,021(5)	-0,004(6)
C86	0,025(5)	0,083(10)	0,039(5)	-0,007(5)	0,009(4)	-0,012(6)
C88	0,050(6)	0,079(11)	0,057(7)	-0,004(6)	0,035(6)	-0,008(6)
Eu1	0,0322(2)	0,0709(4)	0,0291(2)	-0,0003(4)	0,01320(15)	-0,0024(4)
O3	0,039(3)	0,086(8)	0,025(3)	0,005(4)	0,004(3)	0,001(4)
O4	0,053(4)	0,091(8)	0,045(4)	-0,001(4)	0,022(4)	-0,015(4)
O5	0,044(4)	0,084(7)	0,036(4)	-0,001(4)	0,016(3)	0,011(4)
O6	0,040(4)	0,104(9)	0,036(3)	-0,012(4)	0,017(3)	0,001(4)
O11	0,043(4)	0,073(7)	0,043(4)	0,010(4)	0,021(3)	-0,001(4)
O12	0,040(3)	0,073(7)	0,039(4)	-0,006(4)	0,019(3)	-0,009(4)
O37	0,046(4)	0,098(8)	0,033(4)	-0,017(4)	0,019(3)	-0,013(4)
O70	0,036(4)	0,126(9)	0,034(4)	0,017(5)	0,010(3)	0,004(5)
O80	0,103(6)	0,178(16)	0,060(5)	0,024(7)	0,032(5)	0,018(6)
O81	0,086(7)	0,189(14)	0,089(7)	0,019(7)	0,044(6)	0,002(7)
O82	0,059(5)	0,30(2)	0,101(8)	-0,021(8)	0,021(5)	0,067(10)
O83	0,171(11)	0,149(14)	0,153(11)	0,076(10)	0,084(9)	0,018(9)
O84	0,35(3)	0,15(2)	0,33(3)	0,00000	0,29(3)	0,00000
O85	0,090(8)	0,40(3)	0,112(9)	-0,003(11)	0,058(7)	-0,085(12)
O86	0,86(8)	0,17(2)	0,43(4)	0,00(3)	0,53(5)	-0,02(2)

Tabelle 5.7.14: Ausgewählte Atomabstände in Eu
(1,2-HBTB)_3 $\times 14,5 \rm H_2O$

Atome	d [Å]	Atome	d [Å]
N40—N65	1,310(11)	C49—C78	1,381(13)
N40—N41	1,353(11)	C73—C83	1,402(12)
N41—C6	1,349(12)	C73—C74	1,474(12)
N60—C6	1,342(12)	C78—C89	1,382(14)
N60—N65	1,354(11)	C78—H78	0,9300
N66—C76	1,344(12)	C83—H83	0,9300
N66—N83	1,371(11)	C89—H89	0,9300
N83—N84	1,311(11)	N43—N88	1,273(12)
N84—N85	1,346(11)	N43—N63	1,340(12)
N85—C76	1,339(12)	N61—N88	1,334(11)
C6—C20	1,452(13)	N61—C16	1,330(12)

5	Experimenteller	Teil
---	-----------------	------

Atome	d [Å]	Atome	d [Å]
C15—C90	1,408(14)	N63—C16	1,317(13)
C15—C20	1,421(13)	N67—N86	1,289(11)
C15—C76	1,459(14)	N67—N81	1,363(11)
C20—C87	1,421(14)	N81—C81	1,314(13)
C31—C84	1,396(17)	N86—N87	1,341(12)
C31—C87	1,402(16)	N87—C81	1,336(12)
C31—H31	0,9300	C16— $C27$	1,475(13)
C84—C90	1,366(16)	C27—C82	1,385(13)
C84—H84	0,9300	C27—C39	1,410(12)
C87—H87	$0,\!9300$	C39—C86	1,386(13)
C90—H90	$0,\!9300$	C39—C81	1,503(14)
N42—N64	1,299(11)	C82 - C85	1,369(13)
N42—N48	1,367(11)	C82—H82	0,9300
N44—N46	1,306(10)	C85 - C88	1,362(13)
N44—N62	1,352(11)	C85 - H85	0,9300
N45—C74	1,329(11)	C86—C88	1,375(13)
N45—N46	1,365(10)	C86—H86	0,9300
N48—C23	1,325(11)	C88—H88	0,9300
N59—C23	1,336(11)	Eu1-O5	2,404(7)
N59—N64	1,371(10)	Eu1—O11	2,398(7)
N62—C74	1,355(11)	Eu1—O12	2,404(7)
C23—C49	1,465(12)	Eu1—O3	2,421(7)
C46—C89	1,370(15)	Eu1-O70	2,419(7)
C46—C83	1,362(14)	Eu1-037	2,436(7)
C46—H46	$0,\!9300$	Eu1—O4	2,457(8)
C49—C73	1,398(12)	Eu1—O6	2,469(7)

Tabelle 5.7.15: Ausgewählte Winkel in Eu $(1,2\text{-HBTB})_3 \times 14,5\text{H}_2\text{O}$

Atome	Winkel [°]	Atome	Winkel [°]
N65—N40—N41	107,9(8)	C46—C89—H89	120,900
C6—N41—N40	107,1(8)	C78—C89—H89	120,900
C6—N60—N65	106,1(8)	N88—N43—N63	106,5(9)
N40—N65—N60	110,0(8)	N88—N61—C16	106, 6(8)
C76—N66—N83	105,2(8)	C16 - N63 - N43	109,3(9)
N84—N83—N66	108,9(8)	N86—N67—N81	105,2(9)
N83—N84—N85	109,3(8)	C81—N81—N67	108,3(8)
C76—N85—N84	106,4(8)	N67—N86—N87	112,6(8)
N60—C6—N41	108,9(9)	C81—N87—N86	104,4(8)
N60—C6—C20	123,1(9)	N43—N88—N61	110,7(8)

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
N41—C6—C20	128,1(9)	N63—C16—N61	106,8(8)
C90-C15-C20	119,0(9)	N63—C16—C27	129,2(9)
C90—C15—C76	114,7(9)	N61-C16-C27	124,0(9)
C20-C15-C76	126,3(9)	C82—C27—C39	117,3(8)
C87—C20—C15	119,1(9)	C82—C27—C16	115,2(8)
C87—C20—C6	113,4(9)	C39—C27—C16	127,4(9)
C15—C20—C6	127,5(9)	C86—C39—C27	118,2(9)
C84—C31—C87	120,9(10)	C86—C39—C81	115,4(8)
C84—C31—H31	119,500	C27—C39—C81	126,4(9)
C87—C31—H31	119,500	N81—C81—N87	109,4(9)
N85—C76—N66	110,2(9)	N81—C81—C39	128,3(9)
N85—C76—C15	121,6(9)	N87—C81—C39	122,2(9)
N66—C76—C15	128,2(9)	C85—C82—C27	122,9(9)
C31—C84—C90	119,7(11)	C85—C82—H82	118,500
C31—C84—H84	120,100	C27—C82—H82	118,500
C90—C84—H84	120,100	C82—C85—C88	120,1(9)
C31—C87—C20	119,5(10)	C82—C85—H85	120,000
C31—C87—H87	120,300	C88—C85—H85	120,000
C20—C87—H87	120,300	C88—C86—C39	123,1(9)
C84—C90—C15	121,8(10)	C88—C86—H86	118,500
C84—C90—H90	119,100	C39—C86—H86	118,500
C15—C90—H90	119,100	C86—C88—C85	118,3(9)
N64—N42—N48	111,3(8)	C86—C88—H88	120,800
N46—N44—N62	109,8(7)	C85—C88—H88	120,800
C74—N45—N46	107,9(7)	O5—Eu1—O11	78,3(3)
N44—N46—N45	107,6(7)	O5—Eu1—O12	76,4(3)
C23—N48—N42	106,0(7)	O11—Eu1—O12	73,8(2)
C23—N59—N64	109,0(7)	O5—Eu1—O3	144,6(2)
C74—N62—N44	106,4(7)	O11—Eu1—O3	75,2(2)
N42—N64—N59	105,3(7)	O12—Eu1—O3	117,1(2)
N48—C23—N59	108,3(8)	O5—Eu1—O70	74,1(3)
N48—C23—C49	123,8(8)	O11—Eu1—O70	143,0(2)
N59—C23—C49	127,8(8)	O12—Eu1—O70	76,1(3)
C89—C46—C83	119,6(9)	O3—Eu1—O70	139,1(2)
C89—C46—H46	120,200	O5—Eu1—O37	73,6(2)
C83—C46—H46	120,200	O11—Eu1—O37	74,5(3)
C73—C49—C78	117,7(9)	O12—Eu1—O37	139,9(2)
C73—C49—C23	127,3(8)	O3—Eu1—O37	77,0(3)
C78—C49—C23	114,9(9)	O70—Eu1—O37	119,2(3)
C49—C73—C83	117,9(8)	O5—Eu1—O4	112,1(2)
C49—C73—C74	126,3(8)	O11—Eu1—O4	141,3(2)
C83—C73—C74	115,8(8)	O12—Eu1—O4	144,0(2)

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
N62—C74—N45	108,3(8)	O3—Eu1—O4	77,0(3)
N62—C74—C73	122,2(8)	O70—Eu1—O4	73,3(3)
N45—C74—C73	129,4(8)	O37—Eu1—O4	73,3(2)
C89—C78—C49	123,7(10)	O5— $Eu1$ — $O6$	141,9(2)
C89—C78—H78	118,200	O11—Eu1—O6	115,5(2)
C49—C78—H78	118,200	O12—Eu1—O6	74,4(2)
C46—C83—C73	122,8(9)	O3—Eu1—O6	72,0(2)
C46—C83—H83	118,600	O70—Eu1—O6	75,7(3)
С73—С83—Н83	118,600	O37—Eu1—O6	142,8(2)
C46—C89—C78	118,2(10)	O4—Eu1—O6	80,0(3)

Tabelle 5.7.16: Kristalldaten für $\rm Nd(1,3\text{-}HBTB)_3\times7,5H_2O$

Summenformel / Molmasse [g mol ⁻¹]	C ₂₄ H ₄₂ N ₂₄ O ₁₅ Nd / 1013,76
Messtemperatur [K]	293
Kristallgröße [mm]	$0.1 \ge 0.15 \ge 0.2$
Kristallsystem / Raumgruppe	monoklin / $P2_1/c$ (Nr. 14)
a [Å]	9,8896(15)
	19,816(2)
	22.620(4)
β [°]	103,503(17)
V [Å ³], Z	4310,36(1763), 4
Dichte $[g \text{ cm}^{-3}]$	1,56209
Absorptionskoeffizient	1,293
F(000)	1987
Gem, 2θ -Bereich	1,85 bis 24,12
Indexbereich	-11 <h<11, -22<k<22,="" -25<l<25<="" td=""></h<11,>
Gemessene / Unabhängige Reflexe	27117 / 6776
Beobachtete Reflexe / R _{int}	3483 / 0,1399
Daten / Restraints / Parameter	6776 / 0 / 595
$GOF F^2$	0,797
$R_1; wR_2(I > 2\sigma)$	$0,0452;\ 0,0746$
R_1 ; w R_2 (alle Daten)	0,1098; 0,0848
Restelektronendichte (max / min)	0,697 / -1,306

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
N1	4e	1	-0,1331(7)	0,0828(4)	0,0670(3)	
N10	$4\mathrm{e}$	1	0,6110(7)	0,0825(4)	-0,0143(3)	
N13	$4\mathrm{e}$	1	-0,1375(7)	0,0782(4)	0,1256(3)	
N23	$4\mathrm{e}$	1	0,0809(7)	0,0750(4)	0,1206(3)	
N26	$4\mathrm{e}$	1	0,4953(7)	0,0835(4)	0,0076(3)	
N27	$4\mathrm{e}$	1	0,5773(7)	0,0757(4)	-0,0737(3)	
N29	$4\mathrm{e}$	1	0,4386(7)	0,0735(4)	-0,0936(3)	
N38	$4\mathrm{e}$	1	-0,0081(7)	0,0740(4)	0,1595(3)	
C14	$4\mathrm{e}$	1	0,0507(8)	0,0819(5)	0,0085(4)	
C23	$4\mathrm{e}$	1	0,1461(8)	0,0864(5)	-0,0979(4)	
H23	$4\mathrm{e}$	1	0,17770	0,08800	-0,13350	0,0370
C24	$4\mathrm{e}$	1	-0,0423(8)	0,0881(4)	-0,0464(4)	
H24	$4\mathrm{e}$	1	-0,13700	0,09090	-0,04810	0,0340
C104	$4\mathrm{e}$	1	0,3902(8)	0,0784(4)	-0,0425(3)	
C107	$4\mathrm{e}$	1	0,0046(8)	0,0793(4)	0,0649(4)	
C111	$4\mathrm{e}$	1	0,0054(9)	0,0904(5)	-0,1005(4)	
H111	$4 \mathrm{e}$	1	-0,05780	$0,\!09460$	-0,13780	$0,\!0450$
C113	$4\mathrm{e}$	1	0,1945(8)	0,0777(4)	0,0108(4)	
H113	$4 \mathrm{e}$	1	0,25830	$0,\!07330$	0,04800	0,0280
C115	$4\mathrm{e}$	1	0,2397(8)	0,0802(4)	-0,0424(4)	
N2	$4\mathrm{e}$	1	0,7376(7)	0,2385(4)	-0,0608(3)	
N5	$4 \mathrm{e}$	1	0,7697(6)	0,2439(4)	-0,0015(3)	
N12	$4\mathrm{e}$	1	$0,\!6510(6)$	0,2493(4)	0,0189(3)	
N20	$4\mathrm{e}$	1	0,1444(7)	0,2350(4)	0,1653(3)	
N24	4e	1	0,0169(7)	0,2375(4)	$0,\!1325(3)$	
N25	$4\mathrm{e}$	1	$0,\!5995(7)$	0,2411(4)	-0,0818(3)	
N33	$4\mathrm{e}$	1	0,0200(7)	0,2429(4)	0,0743(3)	
N36	$4\mathrm{e}$	1	0,2342(7)	0,2379(4)	0,1269(3)	
C2	$4\mathrm{e}$	1	0,2054(8)	0,2473(4)	0,0155(4)	
C9	$4\mathrm{e}$	1	0,5494(9)	0,2475(5)	-0,0305(4)	
C18	$4\mathrm{e}$	1	$0,\!3987(8)$	0,2503(4)	-0,0339(4)	
C19	$4\mathrm{e}$	1	0,3489(8)	0,2464(5)	0,0196(4)	
H19	$4\mathrm{e}$	1	0,41100	$0,\!24310$	0,05730	$0,\!0300$
C116	$4\mathrm{e}$	1	0,1556(8)	0,2430(5)	0,0716(4)	
C120	$4\mathrm{e}$	1	0,1148(8)	0,2528(5)	-0,0402(4)	
H120	$4\mathrm{e}$	1	0,01950	0,25340	-0,04280	0,0320
C126	$4\mathrm{e}$	1	0,3057(8)	0,2565(5)	-0,0889(4)	
H126	$4\mathrm{e}$	1	0,33750	0,26000	-0,12440	$0,\!0400$
C132	$4\mathrm{e}$	1	0,1626(9)	0,2575(5)	-0,0919(4)	

Tabelle 5.7.17: Atomkoordinaten in $\rm Nd(1,3\text{-}HBTB)_3\times7,5H_2O$

5	Experimenteller	Teil
---	-----------------	------

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
H132	4e	1	0,09980	0,26150	-0,12930	0,0450
N3	4e	1	-0,4615(7)	0,5892(4)	-0,0507(3)	
N7	$4\mathrm{e}$	1	-0,3449(7)	0,5934(4)	-0,0715(3)	
N16	$4\mathrm{e}$	1	0,3971(7)	0,5674(4)	0,0874(3)	
N18	$4\mathrm{e}$	1	0,2366(7)	0,5667(4)	0,1394(3)	
N19	$4\mathrm{e}$	1	-0,2889(7)	0,5773(4)	0,0283(3)	
N28	$4\mathrm{e}$	1	-0,4300(7)	0,5799(4)	0,0078(3)	
N106	$4\mathrm{e}$	1	0,4591(7)	0,5564(5)	0,1459(3)	
N110	$4\mathrm{e}$	1	0,3647(8)	0,5557(5)	0,1777(3)	
C3	$4\mathrm{e}$	1	-0,0938(8)	0,5863(5)	-0,0237(4)	
C11	$4\mathrm{e}$	1	0,0089(7)	0,5825(4)	0,0292(4)	
H11	$4\mathrm{e}$	1	-0,01600	0,58090	0,06630	0,0290
C16	$4\mathrm{e}$	1	0,1504(9)	0,5809(5)	0,0281(4)	
C20	$4\mathrm{e}$	1	0,1846(9)	0,5839(5)	-0,0287(4)	
H20	$4\mathrm{e}$	1	0,27750	0,58290	-0,03060	0,0350
C102	$4\mathrm{e}$	1	0,0837(9)	0,5882(5)	-0,0809(4)	
H102	$4\mathrm{e}$	1	0,10790	0,59030	-0,11820	0,0490
C114	4e	1	-0,2410(8)	0,5861(4)	-0,0223(4)	
C121	4e	1	0,2567(8)	0,5728(5)	0,0847(4)	
C127	$4\mathrm{e}$	1	-0,0552(8)	0,5894(5)	-0,0787(4)	
H127	4e	1	-0,12350	0,59230	-0,11470	0,0390
Nd1	$4\mathrm{e}$	1	0,66675(5)	0,31956(3)	0,23267(2)	
01	$4\mathrm{e}$	1	0,6634(5)	0,3278(3)	0,1240(2)	
O4	$4\mathrm{e}$	1	0,5177(5)	0,2252(3)	0,1817(2)	
O6	$4\mathrm{e}$	1	0,8125(5)	0,2237(3)	0,2050(2)	
07	$4\mathrm{e}$	1	0,4311(5)	0,3689(3)	0,1932(2)	
08	$4\mathrm{e}$	1	0,8150(5)	0,2642(3)	0,3258(2)	
011	4e	1	0,9129(6)	0,3604(3)	0,2441(3)	
O12	$4\mathrm{e}$	1	0,6656(5)	0,4034(3)	0,3154(2)	
O17	$4\mathrm{e}$	1	0,6805(6)	0,4467(3)	0,1980(3)	
O18	$4\mathrm{e}$	1	0,5101(5)	0,2742(3)	0,2965(2)	
O13	$4\mathrm{e}$	1	0,5640(6)	0,1014(3)	0,1342(3)	
O16	$4\mathrm{e}$	1	0,9286(6)	0,1410(3)	0,3013(3)	
O21	$4\mathrm{e}$	1	0,3571(6)	0,0461(4)	0,1913(3)	
O23	$4\mathrm{e}$	1	0,1903(6)	0,0771(4)	0,3433(3)	
O26	$4\mathrm{e}$	1	0,3203(7)	0,1582(3)	0,2688(3)	
O27	$4\mathrm{e}$	1	0,3263(8)	0,4477(4)	0,2776(3)	
O123	4e	1	1,0240(8)	0,4812(4)	0,2387(3)	
O124	4e	1	1,1640(7)	0,3118(6)	0,2719(3)	

	ene 9.1.10. 11m	boulope Husi	omangopara	motor m na	(1,9 11 1 1)3 /	1,01120
Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
N1	0,028(4)	0,025(5)	0,041(5)	0,000(3)	0,020(3)	0,000(4)
N10	0,018(4)	0,041(6)	0,039(5)	-0,003(4)	0,014(4)	0,000(4)
N13	0,024(4)	0,050(6)	0,042(5)	-0,001(4)	0,008(4)	-0,001(4)
N23	0,022(4)	0,049(6)	0,035(5)	-0,005(4)	0,011(4)	-0,002(4)
N26	0,013(4)	0,032(6)	0,036(4)	-0,004(4)	0,005(4)	0,000(4)
N27	0,019(4)	0,049(6)	0,033(5)	-0,005(4)	0,009(3)	-0,005(4)
N29	0,022(4)	0,043(6)	0,030(4)	-0,002(4)	0,010(3)	-0,002(4)
N38	0,036(5)	0,049(6)	0,042(5)	0,000(4)	0,014(4)	-0,006(4)
C14	0,020(5)	0,022(6)	0,032(5)	-0,004(4)	0,010(4)	-0,001(4)
C23	0,025(5)	$0,\!037(7)$	0,033(5)	-0,002(4)	0,010(4)	0,002(4)
C24	0,016(4)	0,029(7)	0,040(5)	0,001(4)	0,007(4)	0,003(4)
C104	0,022(5)	0,018(6)	0,023(5)	-0,002(4)	0,005(4)	0,005(4)
C107	0,017(4)	0,022(6)	0,034(5)	0,003(4)	0,010(4)	-0,003(4)
C111	0,019(5)	$0,\!056(8)$	0,034(6)	-0,008(5)	0,002(4)	0,012(5)
C113	0,017(5)	0,025(6)	0,029(5)	0,009(4)	0,008(4)	0,004(4)
C115	0,011(4)	0,023(6)	0,025(5)	-0,002(4)	0,002(4)	-0,002(4)
N2	0,015(4)	0,048(6)	0,034(5)	-0,001(4)	0,011(3)	0,003(4)
N5	0,016(4)	0,041(6)	0,021(4)	0,001(4)	0,007(3)	-0,004(4)
N12	0,012(4)	0,041(6)	0,027(4)	-0,001(3)	0,007(3)	-0,003(3)
N20	0,023(4)	$0,\!063(7)$	0,028(4)	-0,003(4)	-0,001(3)	0,001(4)
N24	0,021(4)	0,047(6)	0,031(4)	-0,001(4)	0,002(3)	0,000(4)
N25	0,016(4)	0,042(6)	0,031(4)	0,002(4)	0,004(3)	0,000(4)
N33	0,020(4)	0,031(6)	0,029(4)	-0,003(4)	0,015(3)	0,001(4)
N36	0,025(4)	$0,\!053(6)$	0,030(4)	-0,002(4)	0,016(3)	-0,001(4)
C2	0,013(4)	0,019(6)	0,028(5)	0,002(4)	0,004(4)	-0,002(4)
C9	0,020(5)	0,042(8)	0,018(5)	-0,002(5)	0,007(4)	0,004(4)
C18	0,012(4)	0,022(6)	0,031(5)	0,001(4)	0,008(4)	-0,002(4)
C19	0,015(5)	0,031(6)	0,027(4)	0,001(4)	0,000(3)	0,000(4)
C116	0,012(4)	0,024(6)	0,020(5)	-0,002(4)	0,004(4)	-0,006(4)
C120	0,015(4)	$0,\!038(7)$	0,026(5)	-0,005(4)	0,004(4)	-0,007(4)
C126	0,022(5)	$0,\!050(7)$	0,029(5)	0,005(4)	0,008(4)	-0,001(4)
C132	0,017(5)	0,061(9)	0,032(6)	0,007(5)	0,001(4)	$0,\!005(5)$
N3	0,020(4)	$0,\!036(6)$	0,034(5)	0,001(4)	0,005(3)	-0,003(4)
N7	0,017(4)	$0,\!038(6)$	0,036(4)	0,003(4)	0,011(4)	-0,004(4)
N16	0,022(4)	0,032(6)	0,038(5)	0,006(4)	0,000(4)	-0,003(4)
N18	0,024(4)	0,075(7)	0,037(5)	0,001(4)	0,010(4)	0,005(4)
N19	0,019(4)	0,035(6)	0,030(4)	-0,001(4)	0,001(3)	0,003(4)
N28	0,025(4)	0,040(6)	0,039(5)	0,000(4)	0,010(4)	0,000(4)
N106	0,017(4)	$0,\!080(8)$	0,046(5)	0,009(4)	-0,005(4)	0,001(5)

Tabelle 5.7.18: Anisotrope Auslenkungsparameter in $Nd(1,3-HBTB)_3 \times 7,5H_2O$

5	Experimenteller	Teil
---	-----------------	------

Atom	U ₁₁	U_{22}	U ₃₃	U_{12}	U ₁₃	U ₂₃
N110	0,032(5)	0,101(9)	0,034(5)	0,005(5)	0,003(4)	0,003(5)
C3	0,020(5)	0,020(6)	0,021(5)	-0,002(4)	0,006(4)	0,003(4)
C11	0,021(4)	0,030(6)	0,027(5)	0,003(4)	0,013(4)	-0,005(4)
C16	0,024(5)	0,023(7)	0,039(6)	0,004(4)	0,016(4)	-0,002(4)
C20	0,019(5)	0,033(7)	0,039(6)	0,005(4)	0,014(4)	0,005(5)
C102	0,027(5)	0,057(8)	0,042(6)	0,000(5)	0,015(5)	0,010(5)
C114	0,014(4)	0,024(6)	0,029(5)	-0,002(4)	0,004(4)	0,004(4)
C121	0,012(5)	0,038(7)	0,041(6)	-0,006(4)	0,006(4)	-0,001(5)
C127	0,018(5)	0,049(8)	0,030(5)	-0,004(5)	0,002(4)	-0,001(5)
Nd1	0,01444(19)	0,0385(3)	0,0191(2)	0,0014(3)	0,00580(14)	-0,0012(3)
O1	0,024(3)	0,037(4)	0,030(3)	0,004(3)	0,010(2)	-0,001(3)
O4	0,020(3)	0,042(4)	0,039(3)	-0,005(3)	0,005(3)	-0,008(3)
O6	0,024(3)	0,043(5)	0,038(3)	0,004(3)	0,011(3)	-0,010(3)
07	0,026(3)	0,047(5)	0,038(3)	0,016(3)	0,008(3)	0,003(3)
08	0,023(3)	0,063(5)	0,022(3)	0,005(3)	0,004(2)	0,006(3)
O11	0,025(3)	0,060(5)	0,048(4)	-0,016(3)	0,012(3)	-0,004(3)
O12	0,030(3)	0,061(5)	0,033(3)	0,001(3)	0,010(3)	-0,017(3)
O17	0,045(4)	0,047(5)	0,051(4)	0,003(3)	0,016(3)	0,000(3)
O18	0,028(3)	0,083(6)	0,024(3)	-0,018(3)	0,007(3)	0,010(3)
O13	0,033(4)	0,046(5)	0,062(4)	-0,002(3)	0,017(3)	-0,006(3)
O16	0,042(4)	0,052(5)	0,058(4)	0,005(3)	0,015(3)	0,019(4)
O21	0,047(4)	0,063(6)	0,050(4)	0,000(4)	0,016(3)	0,002(4)
O23	0,034(4)	0,111(7)	0,050(4)	-0,008(4)	0,011(3)	0,004(4)
O26	0,052(4)	0,064(6)	0,052(3)	-0,004(4)	0,013(3)	0,001(4)
O27	0,049(4)	0,122(8)	0,054(5)	0,025(5)	0,016(4)	-0,009(5)
O123	0,142(6)	0,111(7)	0,080(5)	-0,063(5)	0,029(5)	-0,007(5)
O124	0,122(6)	0,217(9)	0,149(6)	0,020(7)	0,041(5)	-0,012(7)

Tabelle 5.7.19: Ausgewählte Atomabstände in $\rm Nd(1,3\text{-}HBTB)_3\times7,5H_2O$

Atome	d [Å]	Atome	d [Å]
N1—N13	1,340(9)	C19—H19	0,9300
N1—C107	1,376(9)	C120—C132	1,363(11)
N10—N26	1,348(8)	C120—H120	0,9300
N10—N27	1,315(9)	C126-C132	1,401(11)
N13—N38	1,332(9)	C126—H126	0,9300
N23—C107	1,312(10)	C132—H132	0,9300
N23—N38	1,382(9)	N3—N28	1,300(9)
N26—C104	1,351(10)	N3—N7	1,346(8)
N27—N29	1,340(9)	N7—C114	1,335(10)

5	Experimenteller	Teil
---	-----------------	------

Atome	d [Å]	Atome	d [Å]
N29—C104	1,353(9)	N16—N106	1,341(9)
C14—C24	1,368(11)	N16—C121	1,38(1)
C14—C113	1,414(11)	N18—C121	1,304(10)
C14—C107	1,451(10)	N18—N110	1,375(9)
C23—C115	1,381(11)	N19—C114	1,348(9)
C23—C111	1,381(11)	N19—N28	1,365(9)
C23—H23	0,9300	N106—N110	1,305(9)
C24—C111	1,411(11)	C3—C11	1,379(10)
C24—H24	0,9300	C3—C127	1,385(11)
C104—C115	1,489(10)	C3—C114	1,464(10)
C111—H111	0,9300	C11—C16	1,406(11)
C113—C115	1,378(10)	C11—H11	0,9300
C113—H113	0,9300	C16—C20	1,403(11)
N2—N5	1,310(8)	C16—C121	1,464(12)
N2—N25	1,338(8)	C20—C102	1,360(11)
N5—N12	1,362(8)	C20—H20	0,9300
N12—C9	1,317(10)	C102—C127	1,386(11)
N20—N24	1,306(8)	C102—H102	0,9300
N20—N36	1,380(8)	C127—H127	0,9300
N24—N33	1,328(9)	Nd1—O1	2,455(4)
N25—C9	1,37(1)	Nd1—O18	2,517(5)
N33—C116	1,357(9)	Nd1—O4	2,491(5)
N36—C116	1,314(10)	Nd1—O7	2,492(5)
C2—C120	1,369(9)	Nd1—O12	2,504(5)
C2—C19	1,401(11)	Nd1—O8	2,521(5)
C2—C116	1,466(11)	Nd1—O6	2,549(5)
C9—C18	1,476(10)	Nd1—O11	2,520(5)
C18—C126	1,370(11)	Nd1-017	2,652(7)
C18—C19	1,410(11)		

Tabelle 5.7.20: Ausgewählte Winkel in $Nd(1,3-HBTB)_3 \times 7,5H_2O$

Atome	Winkel [°]	Atome	Winkel [°]
N13—N1—C107	107,0(7)	N106—N16—C121	106, 2(7)
N26—N10—N27	110,0(6)	C121—N18—N110	106,8(7)
N38—N13—N1	108,9(6)	C114—N19—N28	103,9(6)
C107—N23—N38	107,7(6)	N3—N28—N19	109,6(6)
N10—N26—C104	104,1(6)	N110—N106—N16	108,9(6)
N29—N27—N10	109,9(6)	N106—N110—N18	108,9(7)
N27—N29—C104	104,5(6)	C11—C3—C127	118,7(8)

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
N13—N38—N23	107,6(7)	C11—C3—C114	121,0(7)
C24—C14—C113	119,7(7)	C127—C3—C114	120,2(7)
C24— $C14$ — $C107$	121,2(7)	C3—C11—C16	121,4(8)
C113—C14—C107	119,1(7)	C3—C11—H11	119,300
C115—C23—C111	119,9(8)	C16—C11—H11	119,300
C115—C23—H23	120,100	C11—C16—C20	117,9(8)
C111—C23—H23	120,000	C11—C16—C121	120,1(7)
C14—C24—C111	120,0(7)	C20—C16—C121	121,9(8)
C14—C24—H24	120,000	C102—C20—C16	120,9(8)
C111—C24—H24	120,000	C102—C20—H20	119,600
N29—C104—N26	111,4(7)	C16—C20—H20	119,500
N29—C104—C115	123,8(7)	C20—C102—C127	120,2(8)
N26—C104—C115	124,8(7)	C20—C102—H102	120,000
N23—C107—N1	108,7(7)	C127—C102—H102	119,900
N23—C107—C14	128,2(7)	N7—C114—N19	111,6(7)
N1—C107—C14	123,1(7)	N7—C114—C3	123,8(7)
C23—C111—C24	119,9(8)	N19—C114—C3	124,6(7)
C23—C111—H111	120,100	N18—C121—N16	109,1(7)
C24—C111—H111	120,000	N18—C121—C16	127,1(7)
C14—C113—C115	119,7(8)	N16—C121—C16	123,8(8)
C14—C113—H113	120,100	C102—C127—C3	120,9(8)
C115—C113—H113	120,200	C102—C127—H127	119,600
C23—C115—C113	120,8(7)	C3—C127—H127	119,500
C23—C115—C104	117,3(7)	O1—Nd1—O18	137,00(17)
C113—C115—C104	121,9(7)	O1—Nd1—O4	73,60(19)
N5—N2—N25	110,0(6)	O18—Nd1—O4	67,71(18)
N2—N5—N12	109,4(6)	O1—Nd1—O7	79,76(16)
C9—N12—N5	104,9(6)	O18—Nd1—O7	72,35(19)
N24—N20—N36	108,6(6)	O4—Nd1—O7	74,1(2)
N20—N24—N33	108,9(6)	O1—Nd1—O12	134,6(2)
N2—N25—C9	104,1(7)	O18—Nd1—O12	72,42(19)
N24—N33—C116	107,3(7)	O4—Nd1—O12	137,62(17)
C116—N36—N20	106,1(6)	O7—Nd1—O12	80,84(18)
C120—C2—C19	119,8(7)	O1—Nd1—O8	137,30(17)
C120—C2—C116	121,4(7)	O18—Nd1—O8	71,36(17)
C19—C2—C116	118,8(8)	O4—Nd1—O8	103,1(2)
N25—C9—N12	111,5(7)	O7—Nd1—O8	141,55(16)
N25—C9—C18	121,3(7)	O12—Nd1—O8	76,56(19)
N12—C9—C18	127,2(7)	O1—Nd1—O6	71,33(18)
C126—C18—C19	119,3(7)	O18—Nd1—O6	109,5(2)
C126— $C18$ — $C9$	120,5(7)	O4—Nd1—O6	68,56(17)
C19—C18—C9	120,2(7)	O7—Nd1—O6	$137,\!65(18)$

5 Exper	imenteller	Teil
---------	------------	------

Atome	Winkel [°]	Atome	Winkel [°]
C2-C19-C18	119,6(8)	O12—Nd1—O6	141,19(17)
C2—C19—H19	120,200	O8—Nd1—O6	68,21(17)
C18—C19—H19	120,200	O1—Nd1—O11	82,46(17)
N36—C116—N33	109,1(6)	O18—Nd1—O11	139,86(18)
N36—C116—C2	125,8(7)	O4—Nd1—O11	137,86(18)
N33—C116—C2	125,0(7)	O7—Nd1—O11	135,3(2)
C2-C120-C132	120,7(7)	O12—Nd1—O11	83,26(18)
C2-C120-H120	119,600	O8—Nd1—O11	72,22(19)
C132—C120—H120	119,700	O6—Nd1—O11	71,1(2)
C18—C126—C132	120,0(8)	O1—Nd1—O17	68,3(2)
C18—C126—H126	120,000	O18—Nd1—O17	126, 18(19)
C132—C126—H126	120,000	O4—Nd1—O17	129,92(19)
C120—C132—C126	120,5(8)	O7—Nd1—O17	68,28(19)
C120—C132—H132	119,800	O12—Nd1—O17	66,4(2)
C126—C132—H132	119,800	O8—Nd1—O17	126,95(19)
N28—N3—N7	110,1(6)	O6-Nd1-O17	124,35(18)
C114—N7—N3	104,9(6)	O11—Nd1—O17	67,1(2)

Tabelle 5.7.21: Kristalldaten für La
(1,4-HBTB)(BTB) $\times 15 \rm H_2O$

Summenformel / Molmasse [g mol ⁻¹]	C ₁₆ H ₃₈ N ₁₆ O ₁₅ La / 797,75
Messtemperatur [K]	293
Kristallgröße [mm]	$0,15 \ge 0,1 \ge 0,2$
Kristallsystem / Raumgruppe	orthorhombisch / Pbca (Nr. 61)
a [Å]	17,136(3)
b [Å]	13,723(3)
c $[Å]$	28,253(6)
$V[\dot{A}^3]$, Z	6643,90(234), 8
Dichte $[g \text{ cm}^{-3}]$	1,59499
Absorptionskoeffizient	1,371
F(000)	3100
Gem, 2θ -Bereich	2,39 bis 28,25
Indexbereich	-20 <h<20, -18<k<17,="" -37<l<37<="" td=""></h<20,>
Gemessene / Unabhängige Reflexe	62081 / 7681
Beobachtete Reflexe / R _{int}	3893 / 0,1182
Daten / Restraints / Parameter	7681 / 0 / 433
$GOF F^2$	1,252
$R_1; wR_2(I > 2\sigma)$	$0,0475;\ 0,0643$
R_1 ; w R_2 (alle Daten)	$0,1158;\ 0,0696$
Restelektronendichte (max / min)	0,983 / -1,925

Atom	Wyck.	Site	x/a	y/b	z/c	$\mathrm{U}[\mathrm{\AA}^2]$
N171	8c	1	-0,3465(2)	0,1894(3)	0,19442(19)	
N172	8c	1	-0,3225(3)	0,1899(3)	0,23917(16)	
N173	8c	1	-0,2452(3)	0,1977(3)	0,24081(17)	
N174	8c	1	-0,2173(2)	0,2023(3)	0,19577(17)	
N181	8c	1	-0,2009(2)	0,2428(3)	-0,05701(15)	
N182	8c	1	-0,2214(3)	0,2513(3)	-0,10288(15)	
N183	8c	1	-0,2964(3)	0,2431(3)	-0,10551(17)	
N184	8c	1	-0,3271(3)	0,2293(3)	-0,06144(15)	
C11	8c	1	-0,2780(3)	0,2026(4)	0,11713(19)	
C12	8c	1	-0,2063(3)	0,2152(4)	0,0947(2)	
H12	8c	1	-0,16080	0,21770	0,11250	0,0340
C13	8c	1	-0,2027(3)	0,2238(4)	0,0463(2)	
H13	8c	1	-0,15460	0,23240	0,03160	0,0350
C14	8c	1	-0,2707(3)	0,2197(4)	0,01898(19)	
C15	8c	1	-0,3412(3)	0,2071(4)	0,04137(19)	
H15	8c	1	-0,38680	0,20450	0,02360	0,0410
C16	8c	1	-0,3448(3)	0,1983(4)	0,09025(18)	
H16	8c	1	-0,39290	0,18950	0,10490	0,0380
C17	8c	1	-0,2813(3)	0,1973(3)	0,16861(18)	
C18	8c	1	-0,2666(3)	0,2312(4)	-0,03174(19)	
N271	8c	1	-0,7331(3)	0,0511(3)	-0,12249(16)	
N272	8c	1	-0,7574(3)	0,0539(3)	-0,16785(17)	
N273	8c	1	-0,8334(3)	0,0449(4)	-0,16979(18)	
N274	8c	1	-0,8615(3)	0,0350(4)	-0,12514(19)	
N281	8c	1	-0,8701(3)	0,0020(4)	0,13053(18)	
N282	8c	1	-0,8434(3)	-0,0079(4)	0,17562(19)	
N283	8c	1	-0,7676(3)	-0,0124(4)	0,17516(17)	
N284	8c	1	-0,7415(3)	-0,0064(3)	0,13035(16)	
C21	8c	1	-0,8004(3)	0,0310(4)	-0,0456(2)	
C22	8c	1	-0,8707(3)	0,0234(4)	-0,0217(2)	
H22	8c	1	-0,91720	0,02460	-0,03870	0,0420
C23	8c	1	-0,8730(4)	0,0141(4)	0,0273(2)	
H23	8c	1	-0,92060	0,00900	0,04290	0,0420
C24	8c	1	-0,8044(3)	0,0123(4)	0,05234(18)	
C25	8c	1	-0,7345(3)	0,0200(4)	0,02851(19)	
H25	8c	1	-0,68790	0,01910	0,04530	0,0290
C26	8c	1	-0,7332(3)	0,0289(4)	-0,0197(2)	
H26	8c	1	-0,68540	0,03370	-0,03520	0,0290
C27	8c	1	-0,7984(3)	0,0384(4)	-0,0972(2)	

Tabelle 5.7.22: Atomkoordinaten in La(1,4-HBTB)(BTB) $\times 15 \mathrm{H_2O}$

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
C28	8c	1	-0,8055(3)	0,0026(4)	0,10373(19)	
La1	8c	1	-0,49452(2)	0,41235(2)	0,30190(1)	
01	8c	1	-0,5753(2)	0,4194(3)	0,38027(15)	
O2	8c	1	-0,3990(2)	0,2693(3)	0,31575(13)	
O3	8c	1	-0,4113(2)	0,4467(3)	0,37362(14)	
O4	8c	1	-0,5626(2)	0,2446(3)	0,31072(14)	
O5	8c	1	-0,6321(2)	0,4302(3)	0,27274(14)	
O6	8c	1	-0,3677(2)	0,4725(3)	0,26692(15)	
07	8c	1	-0,4910(3)	0,3268(2)	0,22179(11)	
08	8c	1	-0,5098(3)	0,5936(3)	0,32614(14)	
O9	8c	1	-0,5115(4)	0,5429(3)	0,22968(15)	
O10	8c	1	-0,1216(2)	0,2195(3)	0,31081(15)	
O11	8c	1	-0,0148(2)	0,1079(2)	0,11931(12)	
O12	8c	1	-0,5068(3)	0,7602(3)	0,05495(15)	
O13	8c	1	-0,5452(2)	0,2351(3)	0,03803(14)	
O14	8c	1	-0,5047(4)	0,3551(2)	0,11041(14)	
O15	8c	1	-0,5093(3)	0,0326(3)	0,04819(13)	

5 Experimenteller Teil

Tabelle 5.7.23: Anisotrope Auslenkungsparameter in $La(1,4-HBTB)(BTB) \times 15H_2O$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
N171	0,024(3)	0,043(3)	0,029(3)	-0,0013(18)	0,006(2)	0,000(2)
N172	0,029(3)	0,059(3)	0,025(3)	-0,002(2)	0,006(2)	-0,002(2)
N173	0,031(3)	0,056(3)	0,031(4)	0,000(3)	0,000(3)	-0,003(2)
N174	0,024(3)	0,043(2)	0,022(2)	-0,0009(17)	0,000(2)	0,000(2)
N181	0,027(3)	0,035(2)	0,019(2)	-0,001(2)	0,002(2)	0,0003(19)
N182	0,031(3)	0,045(3)	0,017(2)	-0,008(2)	0,0010(19)	-0,004(2)
N183	0,039(3)	0,039(3)	0,026(3)	-0,005(2)	-0,004(2)	0,001(2)
N184	0,028(3)	0,041(3)	0,024(3)	-0,001(2)	-0,0028(19)	0,005(2)
C11	0,020(3)	0,019(3)	0,023(3)	-0,001(2)	0,005(2)	-0,002(2)
C12	0,022(4)	0,042(4)	0,021(3)	-0,001(2)	0,000(2)	-0,001(3)
C13	0,020(3)	0,042(4)	0,026(3)	-0,002(2)	0,001(2)	-0,001(3)
C14	0,018(3)	0,024(3)	0,027(3)	0,002(2)	-0,001(2)	0,000(2)
C15	0,015(3)	0,058(4)	0,029(3)	-0,002(2)	-0,004(2)	0,004(3)
C16	0,017(3)	0,053(3)	0,026(3)	-0,001(2)	0,001(2)	-0,001(3)
C17	0,027(4)	0,024(3)	0,022(3)	0,003(2)	0,002(2)	-0,005(2)
C18	0,026(3)	0,025(3)	0,023(3)	0,003(2)	-0,002(2)	-0,002(2)
N271	0,021(3)	0,038(3)	0,020(2)	0,0003(19)	0,0006(19)	0,001(2)
N272	0,029(3)	0,051(3)	0,021(3)	-0,008(2)	0,005(2)	0,003(2)
N273	0,030(3)	0,060(3)	0,019(3)	-0,007(2)	-0,002(2)	0,006(2)

5	Experimenteller	Teil
---	-----------------	------

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
N274	0,025(3)	0,061(3)	0,023(3)	-0,007(2)	0,001(2)	0,000(2)
N281	0,019(3)	0,072(4)	0,021(3)	-0,004(2)	0,0035(19)	-0,001(3)
N282	0,028(4)	0,085(4)	0,020(3)	-0,008(3)	0,004(2)	-0,002(3)
N283	0,029(3)	0,078(4)	0,019(3)	0,002(3)	0,000(2)	0,009(3)
N284	0,020(3)	0,050(3)	0,019(2)	0,003(2)	0,0017(19)	0,004(2)
C21	0,021(3)	0,022(3)	0,023(3)	0,000(2)	0,005(2)	0,000(2)
C22	0,020(3)	0,065(4)	0,020(3)	0,001(3)	-0,003(2)	-0,001(3)
C23	0,023(4)	0,065(4)	0,018(3)	0,000(3)	0,003(2)	0,006(3)
C24	0,015(3)	0,029(3)	0,020(3)	0,003(2)	0,001(2)	0,000(2)
C25	0,022(3)	0,027(3)	0,023(3)	-0,002(2)	-0,001(2)	0,003(3)
C26	0,016(3)	0,030(3)	0,028(3)	-0,005(2)	0,004(2)	0,005(3)
C27	0,017(3)	0,028(3)	0,022(3)	0,000(2)	0,002(2)	0,002(2)
C28	0,017(3)	0,034(3)	0,021(3)	-0,001(2)	0,002(2)	0,000(3)
La1	0,01360(13)	0,03760(12)	0,01597(9)	-0,00029(17)	0,00055(16)	-0,00160(16)
01	0,023(2)	0,072(3)	0,036(2)	-0,004(2)	0,0084(16)	0,003(3)
O2	0,023(2)	0,052(2)	0,030(2)	0,0031(17)	-0,0003(16)	-0,0019(17)
O3	0,027(2)	0,053(2)	0,020(2)	0,0050(17)	-0,0003(17)	-0,0089(18)
O4	0,023(2)	0,055(2)	0,044(3)	-0,0049(17)	-0,0033(18)	0,015(2)
O5	0,027(2)	$0,\!056(3)$	0,022(2)	0,0065(19)	-0,0049(15)	0,009(2)
O6	0,021(2)	0,069(3)	0,025(2)	-0,0089(19)	0,0057(17)	0,003(2)
O7	0,045(3)	0,061(2)	0,0241(16)	-0,002(2)	-0,001(2)	-0,0095(16)
08	0,039(3)	0,0404(17)	$0,\!095(3)$	0,000(3)	-0,005(3)	0,009(2)
O9	0,069(4)	0,099(3)	0,063(3)	-0,011(3)	-0,004(3)	0,030(2)
O10	0,034(3)	0,061(3)	0,039(3)	0,0017(18)	0,0016(19)	0,001(2)
O11	0,034(3)	0,036(2)	0,048(2)	0,0009(17)	0,0000(18)	-0,0054(15)
O12	0,043(3)	0,083(3)	0,062(2)	0,007(3)	0,012(3)	0,018(2)
O13	0,028(2)	0,061(3)	$0,\!056(3)$	0,0023(18)	0,0026(19)	0,000(2)
O14	0,039(3)	0,062(2)	$0,\!079(3)$	-0,004(3)	0,003(3)	-0,011(2)
O15	0,061(3)	0,078(2)	0,043(2)	0,005(3)	0,009(3)	0,0156(19)

Tabelle 5.7.24: Ausgewählte Atomabstände in La
(1,4-HBTB)(BTB) $\times 15\mathrm{H_{2}O}$

Tabelle 9.1.24. Musgewanite Montabstande in La(1,4 IIDTD)(DTD)×191120					
d [Å]	Atome	d [Å]			
1,330(7)	N281—C28	1,341(7)			
1,338(6)	N281—N282	1,360(7)			
1,330(7)	N282—N283	1,301(7)			
1,360(6)	N283—N284	1,345(7)			
1,341(6)	N284-C28	$1,\!336(7)$			
1,343(6)	C21— $C26$	1,365(7)			
1,348(6)	C21—C22	1,385(8)			
	$\begin{array}{r} \begin{array}{c} \text{d} \ [\text{\AA}] \\ \hline 1,330(7) \\ 1,338(6) \\ 1,330(7) \\ 1,360(6) \\ 1,341(6) \\ 1,343(6) \\ 1,348(6) \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			

Atome	d [Å]	Atome	d [Å]
N182—N183	1,292(6)	C21—C27	1,461(8)
N183—N184	1,365(6)	C22—C23	1,390(7)
N184—C18	1,334(7)	C22—H22	0,9300
C11—C16	1,376(7)	C23—C24	1,372(8)
C11—C12	1,392(7)	C23—H23	0,9300
C11—C17	1,457(7)	C24— $C25$	1,378(7)
C12—C13	1,373(8)	C24— $C28$	1,458(7)
C12—H12	0,9300	C25— $C26$	1,369(7)
C13—C14	1,400(7)	C25—H25	0,9300
C13—H13	0,9300	C26—H26	0,9300
C14—C15	1,374(7)	La1—O5	2,509(4)
C14—C18	1,443(7)	La1—O3	2,522(4)
C15—C16	1,388(7)	La1—O6	2,526(4)
C15—H15	0,9300	La1—O7	2,551(3)
C16—H16	0,9300	La1—O2	2,586(4)
N271—C27	1,340(7)	La1—O8	2,594(4)
N271—N272	1,348(7)	La1—O4	2,593(4)
N272—N273	1,309(7)	La1—O1	2,613(4)
N273—N274	1,357(7)	La1—O9	2,731(4)
N274—C27	1,339(7)		

5 Experimenteller Teil

Tabelle 5.7.25: Ausgewählte Winkel in La(1,4-HBTB)(BTB) $\times 15 \mathrm{H_2O}$

Atome	Winkel [°]	Atome	Winkel $[^{\circ}]$
N172—N171—C17	105,1(4)	C23—C24—C28	120,3(5)
N173—N172—N171	110,0(4)	C25 - C24 - C28	120,3(5)
N172—N173—N174	108,7(5)	C26-C25-C24	120,5(5)
C17—N174—N173	104,2(4)	C26— $C25$ — $H25$	119,700
C18—N181—N182	107,6(4)	C24— $C25$ — $H25$	119,700
N183—N182—N181	107,9(4)	C21 - C26 - C25	121,4(5)
N182—N183—N184	110,0(5)	C21— $C26$ — $H26$	119,300
C18—N184—N183	105,8(4)	C25 - C26 - H26	119,300
C16—C11—C12	119,2(5)	N274—C27—N271	111,3(5)
C16—C11—C17	121,0(5)	N274-C27-C21	124,6(5)
C12—C11—C17	119,7(5)	N271—C27—C21	124,1(5)
C13—C12—C11	120,3(5)	N284—C28—N281	111,0(5)
C13—C12—H12	119,900	N284 - C28 - C24	124,0(5)
C11—C12—H12	119,900	N281 - C28 - C24	125,0(5)
C12—C13—C14	120,6(5)	O5—La1—O3	140,95(13)
C12—C13—H13	119,700	O5—La1—O6	130, 38(12)

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
С14—С13—Н13	119,700	O3—La1—O6	76,52(13)
C15—C14—C13	118,8(5)	O5—La1—O7	77,04(14)
C15—C14—C18	120,9(5)	O3—La1—O7	141,79(14)
C13—C14—C18	120,2(5)	O6—La1—O7	77,47(14)
C14-C15-C16	120,6(5)	O5—La1—O2	135, 93(12)
C14—C15—H15	119,700	O3—La1—O2	70,28(12)
C16—C15—H15	119,700	O6—La1—O2	76,27(12)
C11—C16—C15	120,5(5)	O7—La1—O2	76,69(12)
C11—C16—H16	119,700	O5—La1—O8	84,14(13)
C15—C16—H16	119,700	O3—La1—O8	70,47(13)
N171—C17—N174	112,0(5)	O6—La1—O8	82,93(14)
N171—C17—C11	125,5(5)	O7—La1—O8	132,71(11)
N174—C17—C11	122,4(5)	O2—La1—O8	138,79(12)
N184—C18—N181	108,6(5)	O5—La1—O4	72,27(12)
N184—C18—C14	125,7(5)	O3—La1—O4	110,07(13)
N181—C18—C14	125,6(5)	O6—La1—O4	$135,\!63(13)$
C27—N271—N272	104,6(4)	O7—La1—O4	71,76(12)
N273—N272—N271	110,2(5)	O2—La1—O4	66,19(13)
N272—N273—N274	108,9(5)	O8—La1—O4	141,33(13)
C27—N274—N273	105,0(5)	O5—La1—O1	77,12(13)
C28—N281—N282	104,6(5)	O3—La1—O1	67,15(11)
N283—N282—N281	109,3(5)	O6—La1—O1	140,82(13)
N282—N283—N284	109,8(5)	O7—La1—O1	141, 39(14)
C28—N284—N283	105,2(5)	O2—La1—O1	103, 59(13)
C26— $C21$ — $C22$	118,2(5)	08—La1—O1	71,79(14)
C26-C21-C27	121,1(5)	O4—La1—O1	73,32(14)
C22— $C21$ — $C27$	120,8(5)	O5—La1—O9	65,82(15)
C21-C22-C23	121,1(6)	O3—La1—O9	122,54(14)
C21—C22—H22	119,500	O6—La1—O9	65,48(16)
C23—C22—H22	119,500	O7—La1—O9	68,99(13)
C24-C23-C22	119,5(6)	O2—La1—O9	132,73(15)
C24—C23—H23	120,300	O8—La1—O9	63,72(13)
C22—C23—H23	120,300	O4—La1—O9	127, 32(14)
C23—C24—C25	119,4(5)	O1—La1—O9	123,54(16)

Tabelle 5.7.26: Kristalldaten für La₂BT₃×14H₂O

Summenformel / Molmasse $[g mol^{-1}]$	$C_{3}H_{14}LaN_{12}O_{7} / 469,17$
Messtemperatur [K]	293
Kristallgröße [mm]	$0,2 \ge 0,15 \ge 0,1$

Kristallsystem / Raumgruppe	triklin / $P\bar{1}$ (Nr. 2)
a [Å]	7,519(1)
b [Å]	7,5998(10)
c [Å]	13,5659(17)
$\alpha \left[\circ\right]$	84,376(10)
β [°]	78,578(10)
γ [°]	74,943(10)
$V [Å^3]$, Z	732,87(239), 2
Dichte $[g \text{ cm}^{-3}]$	2,12597
Absorptionskoeffizient	2,976
F(000)	458
Gem, 2θ -Bereich	2,78 bis 29,57
Indexbereich	-10 <h<10, -10<k<10,="" -18<l<18<="" td=""></h<10,>
Gemessene / Unabhängige Reflexe	7575 / 4073
Beobachtete Reflexe / R_{int}	3905 / 0,0661
Daten / Restraints / Parameter	4073 / 0 / 266
$GOF F^2$	1,091
$R_1; wR_2(I>2\sigma)$	0,0287; 0,0715
R_1 ; w R_2 (alle Daten)	0,0298; 0,0723
Restelektronendichte (max $/$ min)	1,273 / -1,767

 $U[Å^2]$ Atom Wyck. Site z/c x/a y/b La1 2i 1 0,74805(1)0,34629(2)0,76535(1)O12i 1 0,9928(3)0,5297(3)0,74770(17)O22i 1 0,6312(3)0,6191(3)0,65778(17)O32i 1 0,6039(3)0,6090(3)0,89110(18)N32 2i 1 0,5873(3)0,2063(4)0,63662(18)O41 0,3057(4)0,59641(17)2i0,9559(3)O72i1 1,0018(3)0,2002(4)0,40593(17)O52i 1 0,3925(3)0,4171(3)0,81125(17)N13 2i 1 1,3335(3)-0,1156(4)0,74954(18)N23 2i 1 0,3051(4)1,07947(16)0,9918(3)0,8675(2)06 1 2i 0,6463(4)0,0834(4)N11 2i 1 1,0652(3)0,0780(3)0,77723(16)N31 1 2i0,6419(3)0,0568(3)0,58285(17)N24 2i 1 1,1293(3)0,1846(4)1,02424(17)N14 2i 1 1,3233(3)-0,0458(3)0,83893(17)C22i 1 1,0670(3)0,1832(4)0,93900(18)N212i 1 0,8979(3)0,2974(3)0,93971(16)

Tabelle 5.7.27: Atomkoordinaten in $La_2BT_3 \times 14H_2O$

5 Experimenteller Teil

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
N12	2i	1	1,1807(3)	-0,0424(4)	0,71357(18)	
N22	2i	1	0,8549(3)	0,3716(3)	1,02979(17)	
N33	2i	1	0,4235(3)	0,3057(4)	0,6190(2)	
N34	2i	1	0,3663(3)	0,2200(4)	0,5537(2)	
C1	2i	1	1,1554(3)	0,0732(4)	0,85341(18)	
C3	2i	1	0,5025(3)	0,0685(4)	0,53329(19)	
H024	2i	1	0,981(7)	0,594(8)	0,803(4)	0,047(13)
H025	2i	1	0,990(8)	0,587(9)	$0,\!695(5)$	0,073(19)
H026	2i	1	0,631(9)	0,642(10)	0,941(5)	0,076(18)
H027	2i	1	0,713(8)	0,009(8)	0,903(4)	0,064(15)
H028	2i	1	0,933(6)	0,140(6)	0,384(3)	0,033(10)
H029	2i	1	0,534(6)	0,723(7)	0,693(4)	0,042(12)
H030	2i	1	$0,\!659(7)$	0,634(8)	0,600(4)	0,053(14)
H031	2i	1	0,321(9)	0,482(10)	0,868(5)	0,084(19)
H032	2i	1	0,930(6)	0,281(7)	0,548(3)	0,040(11)
H033	2i	1	1,079(11)	0,110(12)	0,419(6)	0,10(3)
H034	2i	1	0,527(8)	0,697(8)	0,892(4)	0,061(15)
H035	2i	1	0,547(8)	0,050(8)	0,867(4)	0,050(14)
H036	2i	1	0,333(6)	0,421(7)	0,764(4)	0,045(12)
H037	2i	1	1,077(7)	0,284(7)	0,587(4)	0,053(13)

Tabelle 5.7.28: Anisotrope Auslenkungsparameter in $La_2BT_3 \times 14H_2O$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U ₂₃
La1	0,01617(10)	0,01761(11)	0,01647(10)	-0,00219(5)	-0,00549(5)	-0,00170(6)
O1	0,0335(10)	0,0328(12)	0,0255(9)	-0,0135(8)	-0,0070(8)	-0,0029(9)
O2	0,0344(10)	0,0256(11)	0,0259(9)	0,0041(8)	-0,0035(8)	0,0027(8)
O3	0,033(1)	0,0301(12)	0,0361(11)	0,0057(8)	-0,0135(9)	-0,0149(10)
N32	0,0275(10)	0,0284(12)	0,0278(10)	-0,0063(8)	-0,0082(8)	-0,0106(10)
O4	0,0235(9)	0,0572(16)	0,0222(9)	-0,0055(8)	-0,0043(7)	-0,0113(10)
O7	0,0345(10)	0,0342(12)	0,0317(10)	-0,0072(8)	-0,0104(8)	-0,0067(9)
O5	0,0208(8)	0,0437(13)	0,0300(9)	-0,0015(7)	-0,0047(7)	-0,0123(10)
N13	0,0241(10)	0,0294(12)	0,0269(10)	0,0009(8)	-0,0033(8)	-0,0057(10)
N23	0,0309(10)	0,0279(12)	0,0203(9)	-0,0070(8)	-0,0057(8)	-0,0040(9)
O6	0,0381(12)	0,0426(15)	0,0738(18)	-0,0217(10)	-0,0355(12)	0,0313(14)
N11	0,0226(9)	0,0217(11)	0,0225(9)	0,0015(7)	-0,0069(7)	-0,0046(9)
N31	0,0224(9)	0,0290(12)	0,0272(10)	-0,0051(8)	-0,0084(8)	-0,0074(9)
N24	0,0256(9)	0,0321(13)	0,0232(10)	-0,0047(8)	-0,0106(8)	-0,0005(9)
N14	0,0214(9)	0,0264(12)	0,0261(10)	0,0005(7)	-0,0058(8)	-0,0032(9)
C2	0,020(1)	0,0214(12)	0,0196(10)	-0,0043(8)	-0,0068(8)	0,0001(9)

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
N21	0,0223(9)	0,0220(11)	0,0195(9)	-0,0011(7)	-0,0062(7)	-0,0034(8)
N12	0,0275(10)	0,0270(12)	0,0249(10)	-0,0018(8)	-0,0049(8)	-0,0059(10)
N22	0,0277(10)	0,0259(11)	0,0213(9)	-0,0049(8)	-0,0034(8)	-0,0056(9)
N33	0,0280(11)	0,0367(14)	0,0367(13)	-0,0030(9)	-0,0123(10)	-0,0145(12)
N34	0,028(1)	0,0310(13)	0,0347(12)	-0,0022(9)	-0,0151(9)	-0,0085(11)
C1	0,0196(9)	0,0190(11)	0,0211(10)	-0,0029(8)	-0,0051(8)	-0,0009(9)
C3	0,0218(10)	0,0259(13)	0,0209(10)	-0,0074(8)	-0,0047(8)	-0,0029(10)

Tabelle 5.7.29: Ausgewählte Atomabstände in $\rm La_2BT_3 \times 14H_2O$

Atome	d [Å]	Atome	d [Å]
La1—O2	2,484(2)	N23—N22	1,307(3)
La1—O4	2,502(2)	N23—N24	1,343(3)
La1—O6	2,516(3)	N11—N12	1,335(3)
La1—O1	2,545(2)	N11—C1	1,337(3)
La1—O5	2,5465(19)	N31—C3	1,333(3)
La1—O3	2,624(2)	N24—C2	1,332(3)
La1—N11	2,726(2)	N14—C1	1,339(3)
La1—N32	2,741(2)	C2—N21	1,339(3)
La1—N21	2,769(2)	C2—C1	1,444(3)
N32—N33	1,320(3)	N21—N22	1,342(3)
N32—N31	1,339(3)	N33—N34	1,344(3)
N13—N12	1,305(3)	N34—C3	1,338(3)
N13—N14	1,351(3)	C3—C3i	1,456(5)

Tabelle 5.7.30: Ausgewählte Winkel in $\rm La_2BT_3 \times 14H_2O$

Atome	Winkel $[^{\circ}]$	Atome	Winkel $[^{\circ}]$
02—La1—O4	73,46(8)	O5—La1—N21	109,34(7)
O2—La1—O6	141,66(8)	O3—La1—N21	65,31(7)
O4—La1—O6	121,85(11)	N11—La1—N21	60,88(6)
O2—La1—O1	75,75(8)	N32—La1—N21	147,93(8)
04—La1—O1	$69,\!81(8)$	N33—N32—N31	110,3(2)
O6—La1—O1	141,03(8)	N33—N32—La1	115, 98(18)
O2—La1—O5	74,33(8)	N31—N32—La1	$133,\!64(16)$
O4—La1—O5	129,73(7)	N12—N13—N14	110,1(2)
O6—La1—O5	69,57(8)	N22—N23—N24	110,1(2)

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
01—La1—O5	135,26(8)	N12—N11—C1	105,2(2)
O2—La1—O3	75,42(8)	N12—N11—La1	134,45(16)
O4—La1—O3	137,03(9)	C1—N11—La1	119,24(16)
O6—La1—O3	100,91(10)	C3—N31—N32	104,4(2)
O1—La1—O3	74,35(8)	C2—N24—N23	104,2(2)
O5—La1—O3	66,43(7)	C1—N14—N13	103,9(2)
O2—La1—N11	140, 19(7)	N24—C2—N21	111,9(2)
O4—La1—N11	69,50(8)	N24—C2—C1	128,3(2)
O6—La1—N11	73,37(8)	N21—C2—C1	119,8(2)
O1—La1—N11	78,26(8)	C2—N21—N22	104, 48(19)
O5—La1—N11	142,81(8)	C2— $N21$ — $La1$	118, 13(16)
O3—La1—N11	125,06(7)	N22—N21—La1	137,07(15)
O2—La1—N32	77,72(8)	N13—N12—N11	109,4(2)
O4—La1—N32	69,46(7)	N23—N22—N21	109,4(2)
O6—La1—N32	76,59(9)	N32—N33—N34	108,4(2)
O1—La1—N32	136, 12(7)	C3—N34—N33	105,2(2)
O5—La1—N32	66,70(7)	N11—C1—N14	111,5(2)
O3—La1—N32	130,54(7)	N11—C1—C2	120,3(2)
N11—La1—N32	101,93(7)	N14—C1—C2	128,2(2)
O2—La1—N21	133,39(8)	N31—C3—N34	111,7(2)
O4—La1—N21	120,86(7)	N31—C3—C3i	124,2(3)
O6—La1—N21	72,59(8)	N34—C3—C3i	124,1(3)
O1—La1—N21	70,44(7)		

Tabelle 5.7.31: Kristalldaten für $\rm Ce_2BT_3{\times}14H_2O$

Summenformel / Molmasse [g mol ⁻¹]	$C_{3}H_{14}CeN_{12}O_{7} / 470,38$
Messtemperatur [K]	293
Kristallgröße [mm]	$0,18 \ge 0,2 \ge 0,15$
Kristallsystem / Raumgruppe	triklin / $P\bar{1}$ (Nr. 2)
a [Å]	7,4985(14)
b [Å]	7,5777(15)
c [Å]	13,522(3)
α [°]	84,33(2)
β ^[°]	78,89(2)
γ [°]	74,96(2)
$V[Å^3]$, Z	747,74(335), 2
Dichte $[g \text{ cm}^{-3}]$	2,08905
Absorptionskoeffizient	3,104
F(000)	460

Gem, 2θ -Bereich	2,75 bis 29,28
Indexbereich	-9 <h<9, -17<l<17<="" -9<k<9,="" td=""></h<9,>
Gemessene / Unabhängige Reflexe	6253 / 3199
Beobachtete Reflexe / R_{int}	3101 / 0,0587
Daten / Restraints / Parameter	3199 / 0 / 266
$GOF F^2$	1,127
$R_1; wR_2(I>2\sigma)$	0,0433; 0,1096
R_1 ; w R_2 (alle Daten)	0,0463; 0,1188
Restelektronendichte (max / min)	2,113 / -2,869

 $U[Å^2]$ Atom Wyck. Site x/a y/b z/c 1 Ce010,24906(2)2i0,34617(2)0,76499(1)N14 2i 1 0,8231(6)-0,0440(5)0,8380(3)O42i 1 0,4536(5)0,3079(6)0,5975(3)O22i1 0,1330(6)0,6169(5)0,6588(3)1 O1 2i 0,4930(5)0,7473(3)0,5270(5)O72i 1 0,4989(6)-0,2022(6)0,5931(3)1 O52i-0,1041(5)0,4152(5)0,8114(3)O62i1 0,1497(7)0,0833(6)0,8646(4)N21 2i1 0,9390(3)0,3974(5)0,2977(5)N12 2i1 0,6801(6)-0,0412(6)0,7124(3)C21 2i0,5654(6)0,1849(6)0,9388(3)O32i 1 0,1053(6)0,6090(5)0,8897(3)N13 2i1 -0,1148(6)0,7487(3)0,8338(6)N32 2i1 0,0885(5)0,2085(6)0,6365(3)C12i1 0,6561(6)0,0724(5)0,8527(3)N31 1 2i0,1437(5)0,0571(5)0,5835(3)N24 2i1 0,6281(5)0,1850(5)1,0248(3)N23 2i 1 0,4892(6)0,3059(5)1,0796(3)N22 2i1 0,3529(6)0,3732(5)1,0292(3)N11 2i1 0,5643(5)0,0801(5)0,7765(3)N34 1 2i-0,1331(6)0,2223(6)0,5523(3)C32i1 0,0025(7)0,0701(6)0,5331(3)N33 1 2i-0,0758(6)0,3071(6)0,6188(3)H026 2i 1 -0,183(8)0,425(8)0,762(4)0,021(13)2i 1 H027 0,195(13)-0,003(13)0,915(7)0,07(2)H028 1 2i-0,182(11)0,472(11)0,863(6)0,06(2)H030 2i1 0,466(14)0,605(15)0,796(8)0,05(3)1 H031 2i0,041(13)0,077(11)0,873(6)0,04(2)

Tabelle 5.7.32: Atomkoordinaten in $Ce_2BT_3 \times 14H_2O$

5 Experimenteller Teil

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
H032	2i	1	0,443(11)	0,279(11)	0,540(7)	0,05(2)
H033	2i	1	0,516(15)	0,584(14)	0,681(8)	0,08(3)
H034	2i	1	0,164(10)	0,630(9)	0,609(6)	0,034(17)
H035	2i	1	0,554(14)	-0,134(14)	0,610(8)	0,09(3)
H037	2i	1	0,575(11)	0,287(10)	0,587(6)	0,052(19)
H038	2i	1	0,156(18)	0,654(18)	0,948(10)	0,12(4)
H039	2i	1	0,019(15)	0,695(14)	0,896(8)	0,10(3)
H040	2i	1	0,041(16)	0,702(15)	$0,\!693(8)$	0,06(3)
H041	2i	1	0,391(12)	-0,130(11)	$0,\!600(6)$	0,07(2)

Tabelle 5.7.33: Anisotrope Auslenkungsparameter in $Ce_2BT_3 \times 14H_2O$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ce01	0,0218(2)	0,0226(2)	0,0202(2)	-0,00909(13)	-0,00619(12)	-0,00321(10)
N14	0,0306(18)	0,032(2)	0,031(2)	-0,0079(17)	-0,0091(15)	-0,0049(14)
O4	0,0317(18)	0,060(3)	0,0255(18)	-0,0128(18)	-0,0052(14)	-0,0100(15)
O2	0,043(2)	0,037(2)	0,0258(19)	-0,0098(18)	-0,0025(16)	-0,0009(14)
O1	0,0432(19)	0,0377(18)	0,0285(18)	-0,0199(16)	-0,0105(14)	-0,0055(13)
O7	0,041(2)	0,044(2)	0,0332(19)	-0,0173(19)	-0,0102(16)	-0,0087(14)
O5	0,0277(16)	0,049(2)	0,0334(19)	-0,0108(16)	-0,0061(14)	-0,0134(15)
O6	0,047(2)	$0,\!053(3)$	$0,\!075(3)$	-0,032(2)	-0,039(2)	0,031(2)
N21	0,0275(18)	0,030(2)	0,0252(18)	-0,0095(16)	-0,0049(15)	-0,0071(13)
N12	0,0324(19)	0,034(2)	0,027(2)	-0,0104(18)	-0,0054(15)	-0,0077(15)
C2	0,029(2)	0,024(2)	0,027(2)	-0,0127(19)	-0,0088(17)	-0,0014(15)
O3	0,0391(19)	0,037(2)	0,044(2)	-0,0028(18)	-0,0181(17)	-0,0143(15)
N13	0,0311(19)	0,033(2)	0,032(2)	-0,0096(17)	-0,0047(16)	-0,0078(14)
N32	0,0305(19)	0,036(2)	0,032(2)	-0,0127(17)	-0,0088(16)	-0,0116(15)
C1	0,0254(19)	0,026(2)	0,022(2)	-0,0120(17)	-0,0063(16)	-0,0030(14)
N31	0,0291(18)	0,035(2)	0,0296(19)	-0,0127(17)	-0,0101(15)	-0,0086(14)
N24	0,0330(19)	0,0317(19)	0,0282(19)	-0,0095(17)	-0,0118(15)	-0,0045(14)
N23	0,037(2)	0,0318(19)	0,0264(19)	-0,0148(18)	-0,0080(16)	-0,0015(14)
N22	0,035(2)	0,035(2)	0,0238(18)	-0,0153(18)	-0,0054(15)	-0,0058(14)
N11	0,0291(18)	0,0312(19)	0,0268(19)	-0,0096(16)	-0,0082(15)	-0,0057(13)
N34	0,034(2)	0,039(2)	0,035(2)	-0,0141(19)	-0,0141(17)	-0,0097(17)
C3	0,028(2)	0,028(2)	0,026(2)	-0,013(2)	-0,0089(18)	-0,0004(17)
N33	0,035(2)	0,042(2)	0,041(3)	-0,0103(19)	-0,0148(18)	-0,0148(18)

	0		4
Atome	d [Å]	Atome	d [Å]
Ce01—O2	2,451(4)	N12—N13	1,299(6)
Ce01—O1	2,469(3)	N12—N11	1,433(6)
Ce01—O6	2,486(4)	C2—N24	1,297(6)
Ce01—N32	2,611(3)	C2—C1	1,537(6)
Ce01—O4	2,615(4)	N32—N33	1,342(6)
Ce01-O5	2,623(4)	N32—N31	1,386(6)
Ce01—N21	2,665(4)	C1—N11	1,284(5)
Ce01-O3	2,729(4)	N31—C3	1,297(5)
Ce01—N11	2,802(4)	N24—N23	1,445(6)
N14—N13	1,359(5)	N23—N22	1,280(5)
N14—C1	1,395(6)	N34—N33	1,305(5)
N21—C2	1,379(7)	N34—C3	1,409(7)
N21—N22	1,382(5)	C3—C3i	1,464(9)

Tabelle 5.7.34: Ausgewählte Atomabstände in $Ce_2BT_3 \times 14H_2O$

Tabelle 5.7.35: Ausgewählte Winkel in $Ce_2BT_3 \times 14H_2O$

Atome	Winkel [°]	Atome	Winkel [°]
02—Ce01—O1	74,93(13)	O4—Ce01—N11	65,24(13)
O2—Ce01—O6	141,80(14)	O5— $Ce01$ — $N11$	144, 19(12)
O1—Ce01—O6	141,78(12)	N21—Ce01—N11	64,35(12)
O2—Ce 01 —N 32	79,03(13)	O3— $Ce01$ — $N11$	129,87(11)
O1—Ce 01 —N 32	$133,\!05(13)$	N13—N14—C1	109,6(3)
O6— $Ce01$ — $N32$	77,39(14)	C2— $N21$ — $N22$	110,6(4)
O2—Ce01—O4	76,12(15)	C2— $N21$ — $Ce01$	114,6(3)
O1—Ce01—O4	67,17(12)	N22— $N21$ — $Ce01$	134,5(3)
O6—Ce01—O4	121,37(18)	N13—N12—N11	113,3(3)
N32—Ce01—O4	69,04(12)	N24— $C2$ — $N21$	108,2(4)
O2— $Ce01$ — $O5$	74,51(14)	N24— $C2$ — $C1$	126,5(4)
O1— $Ce01$ — $O5$	134,54(12)	N21— $C2$ — $C1$	125,3(4)
O6— $Ce01$ — $O5$	$69,\!69(15)$	N12—N13—N14	103,8(4)
N32—Ce01—O5	71,36(12)	N33—N32—N31	115,9(3)
O4— $Ce01$ — $O5$	134, 14(12)	N33— $N32$ — $Ce01$	112,3(3)
O2—Ce 01 —N21	132,73(12)	N31— $N32$ — $Ce01$	131,8(3)
O1—Ce01—N21	$73,\!57(11)$	N11—C1—N14	109,7(4)
O6— $Ce01$ — $N21$	70,96(12)	N11— $C1$ — $C2$	116,8(4)
N32—Ce01—N21	147,02(13)	N14— $C1$ — $C2$	133,5(4)
O4— $Ce01$ — $N21$	120,79(12)	C3—N31—N32	99,5(4)

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
O5—Ce01—N21	105,02(12)	C2—N24—N23	104,7(4)
O2—Ce01—O3	73,40(14)	N22—N23—N24	112,7(3)
O1—Ce01—O3	79,02(13)	N23—N22—N21	103,8(4)
O6—Ce01—O3	99,33(17)	C1—N11—N12	103,6(4)
N32—Ce01—O3	129,03(12)	C1— $N11$ — $Ce01$	117,4(3)
O4—Ce01—O3	139,15(13)	N12— $N11$ — $Ce01$	138,0(3)
O5— $Ce01$ — $O3$	60,44(11)	N33—N34—C3	107,3(4)
N21—Ce 01 —O 3	66,71(13)	N31—C3—N34	113,4(4)
O2—Ce 01 —N11	138,92(14)	N31—C3—C3i	119,0(6)
O1—Ce01—N11	$77,\!65(12)$	N34—C3—C3i	127,7(5)
O6— $Ce01$ — $N11$	74,59(15)	N34—N33—N32	104,0(4)
N32—Ce01—N11	98,78(12)		

Tabelle 5.7.36: Kristalldaten für $\mathrm{Pr_2BT_3{\times}14H_2O}$

$C_{3}H_{14}PrN_{12}O_{7} / 471,17$
293
$0,2 \ge 0,2 \ge 0,2$
triklin / $P\bar{1}$ (Nr. 2)
7,4803(11)
7,5580(11)
13,498(2)
84,291(12)
78,813(12)
74,986(11)
722,09(265), 2
2,1669
3,436
462
1,54 bis $27,15$
-9 <h<9, -17<l<17<="" -9<k<9,="" td=""></h<9,>
5976 / 3159
3129 / 0,0640
3159 / 21 / 252
1,281
0,0258; 0,0729
0,0262; 0,0731
1,051 / -1,483

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
Pr1	2i	1	0,25061(2)	0,15399(2)	0,23509(1)	
C1	2i	1	-0,1554(5)	0,4263(5)	0,1469(3)	
N11	2i	1	-0,0649(4)	0,4209(5)	0,2235(2)	
N12	2i	1	-0,1795(4)	0,5406(5)	0,2874(2)	
N13	2i	1	-0,3328(4)	0,6145(5)	0,2510(2)	
N14	2i	1	-0,3232(5)	0,5458(5)	0,1621(2)	
C2	2i	1	-0,0660(5)	0,3171(5)	0,0611(3)	
N21	2i	1	0,1039(4)	0,2011(4)	0,0611(2)	
N22	2i	1	0,1482(5)	0,1271(5)	-0,0286(2)	
N23	2i	1	0,0122(5)	0,1934(5)	-0,0799(2)	
N24	2i	1	-0,1280(4)	0,3139(5)	-0,0245(2)	
C3	2i	1	0,4956(5)	0,4314(6)	0,4669(3)	
N31	2i	1	0,3568(4)	0,4430(5)	0,4166(2)	
N32	2i	1	0,4112(5)	0,2903(5)	0,3636(2)	
N33	2i	1	0,5738(5)	0,1923(5)	0,3818(3)	
N34	2i	1	0,6325(5)	0,2776(5)	0,4476(3)	
O1	2i	1	0,0075(4)	-0,0248(4)	0,2522(2)	
H1A	2i	1	0,016(9)	-0,088(7)	0,198(3)	$0,\!053(5)$
H1B	2i	1	0,021(9)	-0,093(8)	0,307(3)	0,053(5)
O2	2i	1	0,3669(4)	-0,1166(4)	0,3407(2)	
H2A	2i	1	0,473(6)	-0,195(8)	0,317(4)	$0,\!053(5)$
H2B	2i	1	0,334(8)	-0,118(9)	0,4070(16)	0,053(5)
O3	2i	1	0,0472(4)	0,1916(5)	0,4022(2)	
H3A	2i	1	0,073(8)	0,224(9)	0,460(3)	0,053(5)
H3B	2i	1	-0,075(3)	0,198(10)	0,415(4)	0,053(5)
O4	2i	1	0,6024(4)	0,0853(5)	0,1889(2)	
H4A	2i	1	$0,\!674(7)$	0,041(9)	0,132(3)	0,053(5)
H4B	2i	1	0,665(7)	0,082(10)	0,238(3)	0,053(5)
O5	2i	1	-0,0003(4)	0,2972(4)	0,5932(2)	
H5A	2i	1	0,069(7)	0,366(7)	0,611(5)	0,053(5)
H5B	2i	1	-0,112(5)	0,373(7)	0,586(5)	0,053(5)
O6	2i	1	0,3489(5)	0,4161(5)	0,1364(3)	
H6A	2i	1	0,450(7)	0,453(9)	0,144(5)	0,053(5)
H6B	2i	1	0,282(7)	0,498(7)	0,097(4)	0,053(5)
07	2i	1	0,3938(4)	-0,1074(5)	0,1109(2)	
H7A	2i	1	0,479(7)	-0,213(5)	0,118(5)	0,053(5)
H7B	2i	1	0,337(8)	-0,120(8)	0,062(4)	0,053(5)

Tabelle 5.7.37: Atomkoordinaten in $\mathrm{Pr_2BT_3{\times}14H_2O}$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Pr1	0,01510(15)	0,01442(16)	0,01521(14)	-0,00245(7)	-0,00483(8)	-0,00207(8)
C1	0,0171(15)	0,0118(17)	0,0172(14)	-0,0038(12)	-0,0033(12)	-0,0031(13)
N11	0,0195(14)	0,0195(16)	0,0179(13)	-0,0010(11)	-0,0035(11)	-0,0067(12)
N12	0,0209(15)	0,0202(17)	0,0224(14)	-0,0011(12)	-0,0027(12)	-0,0080(13)
N13	0,0214(15)	0,0183(17)	0,0254(15)	-0,0011(11)	-0,0022(12)	-0,0069(13)
N14	0,0228(15)	0,0192(17)	0,0242(14)	-0,0009(12)	-0,0063(12)	-0,0022(13)
C2	0,0145(15)	0,0170(18)	0,0190(15)	-0,0038(12)	-0,0030(12)	0,0008(14)
N21	0,0214(15)	0,0126(15)	0,0194(13)	-0,0012(11)	-0,0072(11)	-0,0050(12)
N22	0,0274(16)	0,0173(17)	0,0202(14)	-0,0057(12)	-0,0052(12)	-0,0053(13)
N23	0,0294(17)	0,0246(18)	0,0204(14)	-0,0087(13)	-0,0088(13)	-0,0005(13)
N24	0,0199(15)	0,0260(18)	0,0200(14)	-0,0056(12)	-0,0068(12)	-0,0004(13)
C3	0,0166(16)	0,026(2)	0,0180(15)	-0,0076(13)	-0,0039(13)	0,0033(15)
N31	0,0245(15)	0,0196(17)	0,0220(14)	-0,0060(12)	-0,0077(12)	-0,0089(13)
N32	0,0218(15)	0,0286(19)	0,0243(15)	-0,0069(12)	-0,0044(12)	-0,0094(14)
N33	0,0284(18)	0,028(2)	0,0349(18)	-0,0032(14)	-0,0119(15)	-0,0157(16)
N34	0,0280(17)	0,029(2)	0,0316(17)	-0,0049(14)	-0,0139(14)	-0,0076(16)
01	0,0333(15)	0,0261(16)	0,0228(12)	-0,0127(11)	-0,0076(11)	-0,0022(12)
O2	0,0277(14)	0,0244(16)	0,0225(12)	0,0039(11)	-0,0029(11)	0,0011(12)
O3	0,0175(13)	0,053(2)	0,0188(12)	-0,0055(12)	-0,0017(10)	-0,0095(13)
O4	0,0208(13)	0,0391(18)	0,0267(13)	-0,0024(11)	-0,0043(11)	-0,0100(13)
O5	0,0340(16)	0,0285(17)	0,0291(14)	-0,0072(12)	-0,0097(12)	-0,0089(13)
O6	0,0346(17)	0,039(2)	0,066(2)	-0,0210(14)	-0,0296(17)	0,0298(19)
07	0,0306(15)	0,0281(17)	0,0346(15)	0,0038(11)	-0,0177(12)	-0,0101(13)

Tabelle 5.7.38: Anisotrope Auslenkungsparameter in $Pr_2BT_3 \times 14H_2O$

Tabelle 5.7.39: Ausgewählte Atomabstände in $\mathrm{Pr_2BT_3{\times}14H_2O}$

Atome	d [Å]	Atome	d [Å]
Pr1—O2	2,440(3)	C3—N31	1,327(5)
Pr1—O3	2,461(3)	C3—N34	1,344(5)
Pr1—O6	2,468(3)	C3— $C3i$	1,457(9)
Pr1—O1	2,497(3)	N31—N32	1,348(5)
Pr1—O4	2,511(3)	N32—N33	1,305(5)
Pr1—O7	2,594(3)	N33—N34	1,344(5)
Pr1—N11	2,698(3)	O1—H1A	$0,\!89(2)$
Pr1—N32	2,706(3)	O1—H1B	$0,\!869(19)$
Pr1—N21	2,734(3)	O2—H2A	0,882(19)
C1—N11	1,333(5)	O2—H2B	0,880(19)

5	Experimenteller	Teil
---	-----------------	------

Atome	d [Å]	Atome	d [Å]
C1—N14	1,335(4)	O3—H3A	0,90(2)
C1-C2	1,440(5)	O3—H3B	0,89(2)
N11—N12	1,328(4)	O4—H4A	0,890(19)
N12—N13	1,304(4)	O4—H4B	0,879(19)
N13—N14	1,337(5)	O5—H5A	0,90(2)
C2—N24	1,331(5)	O5—H5B	0,90(2)
C2—N21	1,344(4)	O6—H6A	0,90(2)
N21—N22	1,331(4)	O6—H6B	0,893(19)
N22—N23	1,306(4)	O7—H7A	0,89(2)
N23—N24	1,351(5)	O7—H7B	0,88(2)

Tabelle 5.7.40: Ausgewählte Winkel in $\rm Pr_2BT_3{\times}14H_2O$

Atome	Winkel [°]	Atome	Winkel $[^{\circ}]$
02—Pr1—O3	73,33(10)	C1—N11—Pr1	119,1(2)
O2—Pr1—O6	$141,\!67(11)$	N13—N12—N11	109,1(3)
O3—Pr1—O6	121,40(14)	N12—N13—N14	110,1(3)
O2—Pr1—O1	76,07(10)	C1—N14—N13	104,4(3)
O3—Pr1—O1	69,62(11)	N24— $C2$ — $N21$	111,5(3)
O6—Pr1—O1	140,96(10)	N24— $C2$ — $C1$	128,6(3)
O2—Pr1—O4	74,6(1)	N21—C2—C1	120,0(3)
O3—Pr1—O4	129,84(10)	N22— $N21$ — $C2$	104,9(3)
O6—Pr1—O4	69,53(11)	N22— $N21$ — $Pr1$	137,1(2)
O1—Pr1—O4	$135,\!80(11)$	C2— $N21$ — $Pr1$	117,8(2)
O2— $Pr1$ — $O7$	74,93(10)	N23—N22—N21	109,6(3)
O3—Pr1—O7	136,66(12)	N22—N23—N24	109,8(3)
O6— $Pr1$ — $O7$	101,78(13)	C2-N24-N23	104,2(3)
O1—Pr1—O7	$74,\!68(11)$	N31—C3—N34	111,7(4)
O4—Pr1—O7	66,25(11)	N31—C3—C3i	125,1(4)
O2—Pr1—N11	140,23(9)	N34—C3—C3i	123,2(4)
O3—Pr1—N11	69,69(10)	C3—N31—N32	104,3(3)
O6—Pr1—N11	73,14(11)	N33—N32—N31	110,2(3)
O1—Pr1—N11	77,81(10)	N33—N32—Pr1	$116,\!6(3)$
O4—Pr1—N11	142,58(11)	N31—N32—Pr1	133,1(2)
O7—Pr1—N11	125,42(9)	N32—N33—N34	109,1(4)
O2—Pr1—N32	77,53(12)	C3—N34—N33	104,7(3)
O3—Pr1—N32	69,27(10)	Pr1—O1—H1A	114(4)
O6— $Pr1$ — $N32$	76,40(12)	Pr1—O1—H1B	104(4)
01—Pr1—N32	$135,\!89(10)$	H1A—O1—H1B	114(4)
O4—Pr1—N32	66,85(10)	Pr1—O2—H2A	119(4)

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
07—Pr1—N32	130,21(10)	Pr1—O2—H2B	121(4)
N11—Pr1—N32	102,08(10)	H2A—O2—H2B	116(4)
O2—Pr1—N21	132,90(11)	Pr1—O3—H3A	128(4)
O3—Pr1—N21	121,56(9)	Pr1—O3—H3B	126(4)
O6—Pr1—N21	73,04(11)	H3A—O3—H3B	105(4)
O1—Pr1—N21	$70,\!38(9)$	Pr1—O4—H4A	128(4)
O4—Pr1—N21	108,55(9)	Pr1-O4-H4B	117(4)
O7—Pr1—N21	65,07(9)	H4A - O4 - H4B	114(4)
N11—Pr1—N21	$61,\!54(9)$	H5A-O5-H5B	107(4)
N32—Pr1—N21	148,44(10)	Pr1—O6—H6A	123(4)
N11—C1—N14	110,9(3)	Pr1-O6-H6B	126(4)
N11—C1—C2	120,0(3)	H6A—O6—H6B	110(4)
N14—C1—C2	129,0(3)	Pr1-O7-H7A	130(4)
N12—N11—C1	105,5(3)	Pr1-O7-H7B	121(4)
N12—N11—Pr1	134,3(2)	H7A—O7—H7B	107(4)

Tabelle 5.7.41: Kristalldaten für $\rm Nd_2BT_3{\times}20H_2O$

Summenformel / Molmasse [g mol ⁻¹]	C ₃ H ₂₀ NdN ₁₂ O ₁₀ / 528,55
Messtemperatur [K]	170
Kristallgröße [mm]	$0.15 \ge 0.3 \ge 0.2$
Kristallsystem / Raumgruppe	triklin / $P\bar{1}$ (Nr. 2)
a [Å]	9,0948(12)
	9,2820(12)
	10,9285(14)
α [°]	99,159(10)
β [°]	93,564(10)
γ [°]	112.397(9)
$\mathbf{V} \begin{bmatrix} \mathbf{A}^3 \end{bmatrix}, \mathbf{Z}$	834,44(400), 2
Dichte $[g \text{ cm}^{-3}]$	2,10352
Absorptionskoeffizient	3,190
F(000)	524
Gem, 2θ -Bereich	1,14 bis 29,7
Indexbereich	-12 <h<12, -12<k<12,="" -15<l<15<="" td=""></h<12,>
Gemessene / Unabhängige Reflexe	8700 / 4637
Beobachtete Reflexe / R_{int}	4322 / 0,0306
Daten / Restraints / Parameter	4637 / 0 / 317
$GOF F^2$	$1,109^{'}$
R_1 ; $wR_2(I > 2\sigma)$	0,0319; 0,0824
R_1 ; wR ₂ (alle Daten)	0,0341; 0,0836

Restelektronendichte (max / min)	1,297 / -1,036
----------------------------------	----------------

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
Nd01	2i	1	0,52029(2)	0,28479(2)	0,24485(1)	
O3	2i	1	0,5626(3)	0,5490(3)	0,3881(3)	
01	2i	1	0,7481(3)	0,3682(3)	0,4168(3)	
O2	2i	1	0,4434(4)	0,4522(4)	0,1202(3)	
N33	2i	1	-0,0381(4)	-0,2912(4)	0,3466(3)	
O5	2i	1	0,4385(3)	0,1554(4)	0,4205(3)	
O4	2i	1	0,6288(4)	0,0734(4)	0,2205(3)	
O6	2i	1	0,7720(3)	0,4439(3)	0,1774(3)	
O009	2i	1	0,4212(4)	-0,2201(4)	0,3269(3)	
08	2i	1	-0,3183(4)	-0,2414(4)	0,1540(3)	
07	2i	1	0,5251(4)	0,1919(4)	0,0165(3)	
N21	2i	1	0,2328(4)	0,2903(3)	0,2933(3)	
N24	2i	1	-0,0335(4)	0,1836(4)	0,2683(3)	
N11	2i	1	0,2582(4)	0,0299(4)	0,1478(3)	
N23	2i	1	0,0212(4)	0,3285(4)	0,3421(3)	
O017	2i	1	0,1627(4)	0,4898(4)	0,0662(3)	
N32	2i	1	0,1177(4)	-0,2092(4)	0,3638(3)	
N14	2i	1	-0,0033(4)	-0,1100(4)	0,1062(3)	
N34	2i	1	-0,1115(4)	-0,2047(4)	0,4069(3)	
N12	2i	1	0,2301(4)	-0,1120(4)	0,0754(3)	
N13	2i	1	0,0748(4)	-0,1946(4)	0,0509(3)	
N31	2i	1	0,1512(4)	-0,0668(4)	0,4366(3)	
N22	2i	1	0,1791(4)	0,3930(4)	0,3568(3)	
C1	2i	1	0,1133(4)	0,0271(4)	0,1645(3)	
C2	2i	1	0,0992(4)	0,1639(4)	0,2405(3)	
C3	2i	1	0,0087(4)	-0,0676(4)	0,4617(3)	
H028	2i	1	0,330(9)	-0,217(8)	0,332(6)	0,051(18)
H029	2i	1	0,442(19)	-0,27(2)	0,310(15)	0,18(6)
H030	2i	1	-0,307(7)	-0,224(7)	0,217(6)	0,034(16)
H031	2i	1	-0,231(10)	-0,208(9)	0,126(7)	0,06(2)
H032	2i	1	0,074(9)	0,408(9)	0,048(6)	0,057(19)
H033	2i	1	0,141(12)	0,555(13)	0,111(9)	0,10(3)
H034	2i	1	0,349(9)	0,459(8)	0,107(6)	0,053(18)
H035	2i	1	0,506(11)	0,523(12)	0,116(8)	0,09(3)
H036	2i	1	0,777(7)	0,460(7)	0,106(5)	0,032(13)
H037	2i	1	0,848(8)	0,528(8)	0,233(6)	0,050(17)

Tabelle 5.7.42: Atomkoordinaten in $\rm Nd_2BT_3{\times}20H_2O$

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
H038	2i	1	0,501(8)	0,180(8)	0,484(6)	0,040(15)
H039	2i	1	0,350(9)	0,091(9)	0,433(6)	0,052(18)
H040	2i	1	0,52(2)	0,58(2)	0,431(15)	0,22(8)
H041	2i	1	0,656(10)	0,612(10)	0,403(7)	0,06(2)
H042	2i	1	0,762(6)	0,432(7)	0,485(5)	0,033(13)
H043	2i	1	0,834(8)	0,365(8)	0,402(6)	0,051(17)
H044	2i	1	0,724(8)	0,098(8)	0,235(6)	0,042(16)
H045	2i	1	0,58(3)	0,01(3)	0,22(2)	0,39(13)
H046	2i	1	0,609(9)	0,176(9)	-0,010(7)	0,07(2)
H047	2i	1	0,468(7)	0,208(7)	-0,037(5)	0,033(14)

Tabelle 5.7.43: Anisotrope Auslenkungsparameter in $Nd_2BT_3 \times 20H_2O$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Nd01	0,01323(11)	0,01611(11)	0,01743(11)	0,00554(7)	0,00188(6)	-0,00027(6)
O3	0,0213(12)	0,0215(12)	0,0249(12)	0,0079(10)	0,0018(9)	-0,0010(9)
O1	0,0201(12)	0,0265(13)	0,0231(12)	0,0104(10)	0,0029(9)	0,0009(10)
O2	0,0272(14)	0,0318(15)	0,0281(13)	0,0126(12)	0,0048(11)	0,0103(11)
N33	0,0226(15)	0,0231(14)	0,0271(15)	0,0071(12)	0,0042(11)	0,0042(12)
O5	0,0177(12)	0,0299(14)	0,0286(13)	0,0013(10)	-0,0002(10)	0,0083(11)
O4	0,0206(13)	0,0243(13)	0,0456(17)	0,0106(11)	-0,0055(12)	-0,0045(12)
O6	0,0227(13)	0,0289(13)	0,0214(12)	0,0052(10)	0,0038(10)	0,0039(10)
O009	0,0288(15)	0,0373(16)	0,0362(16)	0,0165(13)	0,0071(12)	0,0083(13)
08	0,0237(14)	0,0299(14)	0,0299(15)	0,0089(11)	0,0035(11)	0,0065(12)
07	0,0251(14)	0,0427(16)	0,0225(13)	0,0195(12)	0,0024(10)	0,0013(11)
N21	0,0177(13)	0,0187(13)	0,0212(13)	0,0075(10)	0,0035(10)	0,0017(10)
N24	0,0199(14)	0,0267(15)	0,0245(14)	0,0110(11)	0,0059(11)	0,0051(12)
N11	0,0182(13)	0,0204(13)	0,0233(14)	0,0074(11)	0,002(1)	-0,0017(11)
N23	0,0235(15)	0,0289(15)	0,0247(14)	0,0140(12)	0,0029(11)	0,0005(12)
O017	0,0262(14)	0,0270(14)	0,0325(14)	0,0080(12)	0,0013(11)	0,0040(11)
N32	0,0235(15)	0,0215(14)	0,0292(15)	0,0062(12)	0,0053(12)	0,0044(12)
N14	0,0225(14)	0,0205(14)	0,0252(14)	0,0070(11)	0,0041(11)	0,0007(11)
N34	0,0233(15)	0,0237(14)	0,0252(14)	0,0075(12)	0,0059(11)	0,0024(12)
N12	0,0223(15)	0,0238(15)	0,0272(15)	0,0086(12)	0,0021(11)	-0,0028(12)
N13	0,0216(14)	0,0215(14)	0,0269(15)	0,0058(11)	0,0024(11)	0,0016(12)
N31	0,0212(14)	0,0224(14)	0,0267(15)	0,0080(11)	0,0052(11)	0,0042(12)
N22	0,0214(14)	0,0227(14)	0,0243(14)	0,0108(11)	0,0019(11)	$0,\!0011(11)$
C1	0,0155(14)	0,0190(14)	0,0214(15)	0,0041(11)	0,0018(11)	0,0026(12)
C2	0,0168(14)	0,0202(15)	0,0218(14)	0,0075(12)	0,0049(11)	0,0058(12)
C3	0,0199(15)	0,0212(15)	0,0210(15)	0,0059(12)	0,0059(12)	0,0077(12)

	0		-
Atome	d [Å]	Atome	d [Å]
Nd01—O5	2,431(3)	N24—C2	1,334(4)
Nd01—O6	2,438(3)	N24—N23	1,342(4)
Nd01—O2	2,479(3)	N11—C1	1,333(4)
Nd01—O4	2,497(3)	N11—N12	1,346(4)
Nd01—O1	2,501(3)	N23—N22	1,315(4)
Nd01—O7	2,516(3)	N32—N31	1,342(4)
Nd01—O3	2,568(3)	N14—C1	1,334(4)
Nd01—N11	2,644(3)	N14—N13	1,347(4)
Nd01—N21	2,718(3)	N34—C3	1,338(5)
N33—N32	1,312(4)	N12—N13	1,310(4)
N33—N34	1,349(4)	N31—C3	1,338(4)
N21—C2	1,340(4)	C1— $C2$	1,456(5)
N21—N22	1,347(4)	C3—C3i	1,461(7)

Tabelle 5.7.44: Ausgewählte Atomabstände in $Nd_2BT_3 \times 20H_2O$

Tabelle 5.7.45: Ausgewählte Winkel in $Nd_2BT_3 \times 20H_2O$

Atome	Winkel [°]	Atome	Winkel [°]
05—Nd01—O6	136,85(10)	O4—Nd01—N21	133,87(10)
O5—Nd01—O2	139,11(10)	O1—Nd01—N21	120,96(9)
O6—Nd01—O2	76,59(10)	O7—Nd01—N21	112,84(9)
O5—Nd01—O4	76,42(11)	O3—Nd01—N21	69,83(9)
O6—Nd01—O4	84,07(11)	N11— $Nd01$ — $N21$	62,19(9)
O2—Nd01—O4	140,43(11)	N32—N33—N34	110,0(3)
O5—Nd01—O1	68,13(9)	C2—N21—N22	104,5(3)
O6—Nd01—O1	69,47(9)	C2—N21—Nd01	118,1(2)
O2—Nd01—O1	128,58(10)	N22—N21—Nd01	137,4(2)
O4—Nd01—O1	73,04(10)	C2—N24—N23	104,1(3)
O5—Nd01—O7	135,28(11)	C1—N11—N12	105,0(3)
O6—Nd01—O7	$68,\!62(10)$	C1—N11—Nd01	120,7(2)
O2—Nd01—O7	70,33(10)	N12—N11—Nd01	134,3(2)
O4—Nd01—O7	$70,\!53(11)$	N22—N23—N24	110,3(3)
O1—Nd01—O7	126,20(9)	N33—N32—N31	109,0(3)
O5—Nd01—O3	$87,\!98(10)$	C1—N14—N13	104,3(3)
O6—Nd01—O3	$83,\!51(10)$	C3—N34—N33	104,3(3)
O2—Nd01—O3	70,92(10)	N13—N12—N11	109,0(3)
O4—Nd01—O3	140,94(10)	N12—N13—N14	110,0(3)
O1—Nd01—O3	67,92(9)	C3—N31—N32	105,2(3)

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
07—Nd01—O3	136,32(10)	N23—N22—N21	109,0(3)
O5—Nd01—N11	75,85(10)	N11—C1—N14	111,7(3)
O6—Nd01—N11	137,45(9)	N11—C1—C2	119,7(3)
O2—Nd01—N11	92,47(10)	N14— $C1$ — $C2$	128,6(3)
O4—Nd01—N11	78,87(10)	N24—C2—N21	112,1(3)
O1—Nd01—N11	138,33(10)	N24— $C2$ — $C1$	128,6(3)
O7—Nd01—N11	68,98(10)	N21—C2—C1	119,2(3)
O3—Nd01—N11	132,00(9)	N34—C3—N31	111,5(3)
O5—Nd01—N21	71,1(1)	N34—C3—C3i	125,6(4)
O6—Nd01—N21	141,53(9)	N31—C3—C3i	122,9(4)
O2—Nd01—N21	68,86(10)		

Tabelle 5.7.46: Kristalldaten für $\rm Sm_2BT_3{\times}20H_2O$

$C_{3}H_{20}SmN_{12}O_{10} / 534,66$
293
$0,1 \ge 0,15 \ge 0,2$
triklin / $P\bar{1}$ (Nr. 2)
9,0753(15)
9,3630(17)
10,986(2)
99,67(2)
93,17(2)
112,719(19)
841,39(853), 2
2,11024
3,567
528
2,41 bis 28,04
-12 <h<12, -12<k<12,="" -14<l<14<="" td=""></h<12,>
7348 / 3752
3141 / 0,0661
3752 / 41 / 317
1,030
$0,0303;\ 0,0787$
0,0418; 0,0829
0,903 / -1,211

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
Sm1	2i	1	1,02221(3)	0,28780(3)	0,24418(3)	
01	2i	1	1,2709(6)	0,4481(6)	0,1779(4)	
O2	2i	1	1,1336(7)	0,0827(6)	0,2192(5)	
O3	2i	1	1,0661(6)	0,5475(6)	0,3834(5)	
O4	2i	1	0,9410(6)	0,1607(6)	0,4178(5)	
O5	2i	1	0,9405(6)	0,4450(6)	0,1173(5)	
O6	2i	1	1,2480(5)	0,3686(5)	0,4137(4)	
07	2i	1	1,0287(6)	0,1965(6)	0,0182(4)	
08	2i	1	0,1805(6)	-0,2365(7)	0,1532(5)	
O9	2i	1	0,9245(7)	-0,2175(8)	0,3296(6)	
O10	2i	1	0,6606(7)	0,4872(7)	0,0667(6)	
C1	2i	1	0,6165(7)	0,0321(7)	0,1667(5)	
N11	2i	1	0,7622(6)	0,0358(6)	0,1480(5)	
N12	2i	1	0,7337(7)	-0,1060(6)	0,0765(5)	
N13	2i	1	0,5781(7)	-0,1895(6)	0,0539(5)	
N14	2i	1	0,5000(6)	-0,1038(6)	0,1097(5)	
C2	2i	1	$0,\!6028(7)$	0,1692(7)	0,2421(5)	
N21	2i	1	0,7374(6)	0,2946(6)	0,2946(5)	
N22	2i	1	$0,\!6854(7)$	0,3980(6)	0,3578(5)	
N23	2i	1	0,5271(7)	0,3347(7)	0,3416(5)	
N24	2i	1	0,4711(6)	0,1897(6)	0,2688(5)	
C3	2i	1	0,5105(7)	-0,0670(7)	0,4615(5)	
N31	2i	1	$0,\!6532(6)$	-0,0623(6)	0,4361(5)	
N32	2i	1	$0,\!6221(7)$	-0,2041(7)	0,3642(5)	
N33	2i	1	$0,\!4667(7)$	-0,2885(6)	0,3484(5)	
N34	2i	1	0,3913(6)	-0,2044(6)	0,4089(5)	
H035	2i	1	0,659(14)	0,537(16)	0,137(4)	0,17(7)
H036	2i	1	0,567(6)	0,424(10)	0,048(9)	0,10(4)
H037	2i	1	1,009(7)	$0,\!586(9)$	0,358(8)	0,06(3)
H038	2i	1	1,153(4)	$0,\!618(7)$	0,399(8)	$0,\!06(3)$
H039	2i	1	1,109(10)	0,035(12)	0,148(4)	0,08(4)
H040	2i	1	1,229(3)	0,106(9)	0,234(6)	0,03(2)
H041	2i	1	1,295(10)	$0,\!45(1)$	0,109(3)	$0,\!07(3)$
H042	2i	1	1,335(8)	0,526(6)	0,222(5)	$0,\!04(3)$
H043	2i	1	0,851(4)	0,112(8)	$0,\!433(7)$	$0,\!05(2)$
H044	2i	1	0,982(10)	0,225(10)	0,485(4)	0,11(4)
H045	2i	1	0,208(10)	-0,208(12)	0,231(3)	$0,\!08(3)$
H046	2i	1	0,084(5)	-0,241(16)	$0,\!15(1)$	0,17(5)
H047	2i	1	0,892(9)	-0,271(9)	0,260(4)	$0,\!07(3)$

Tabelle 5.7.47: Atomkoordinaten in $Sm_2BT_3 \times 20H_2O$
Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
H048	2i	1	0,848(7)	-0,189(9)	0,335(7)	0,07(2)
H049	2i	1	1,108(6)	0,186(7)	-0,006(8)	0,06(2)
H050	2i	1	0,981(8)	0,091(4)	0,028(7)	0,12(2)
H051	2i	1	1,337(5)	0,369(10)	0,409(7)	0,06(2)
H052	2i	1	1,262(9)	0,427(8)	0,479(4)	0,03(3)
H053	2i	1	0,854(6)	0,461(9)	0,120(8)	0,06(2)
H054	2i	1	1,002(7)	0,537(4)	0,120(8)	0,09(3)

Tabelle 5.7.48: Anisotrope Auslenkungsparameter in $\rm Sm_2BT_3{\times}20H_2O$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Sm1	0,01225(17)	0,01477(16)	0,01912(17)	0,00520(11)	0,00319(11)	0,00067(10)
O1	0,030(3)	0,033(3)	0,029(2)	0,005(2)	0,007(2)	0,004(2)
O2	0,031(3)	0,033(3)	0,053(3)	0,019(2)	-0,005(3)	-0,006(2)
O3	0,028(3)	0,026(2)	0,044(3)	0,011(2)	0,002(2)	-0,001(2)
O4	0,020(2)	0,043(3)	0,041(3)	0,001(2)	0,004(2)	0,018(3)
O5	0,043(3)	0,045(3)	0,040(3)	0,027(3)	0,015(2)	0,019(2)
O6	0,018(2)	0,033(2)	0,026(2)	0,0077(19)	0,000(2)	0,000(2)
O7	0,030(3)	0,044(3)	0,032(2)	0,019(2)	0,010(2)	0,004(2)
08	0,029(3)	0,043(3)	0,049(3)	0,010(2)	0,001(3)	0,012(3)
O9	0,046(4)	0,065(4)	0,060(4)	0,033(3)	0,011(3)	0,015(3)
O10	0,034(3)	0,037(3)	0,047(3)	0,013(2)	0,000(3)	0,006(2)
C1	0,019(3)	0,023(3)	0,026(3)	0,008(2)	0,003(3)	0,006(2)
N11	0,021(3)	0,028(3)	0,030(3)	0,010(2)	0,007(2)	-0,001(2)
N12	0,026(3)	0,028(3)	0,033(3)	0,009(2)	0,008(3)	-0,003(2)
N13	0,027(3)	0,026(3)	0,037(3)	0,008(2)	0,005(3)	-0,003(2)
N14	0,020(3)	0,025(3)	0,035(3)	0,006(2)	0,003(2)	0,003(2)
C2	0,016(3)	0,025(3)	0,023(3)	0,008(2)	0,004(2)	0,009(2)
N21	0,021(3)	0,025(3)	0,028(2)	0,011(2)	0,006(2)	0,004(2)
N22	0,030(3)	0,028(3)	0,029(3)	0,014(2)	0,005(2)	0,001(2)
N23	0,027(3)	0,036(3)	0,035(3)	0,019(2)	0,004(3)	0,002(2)
N24	0,019(3)	0,033(3)	0,034(3)	0,014(2)	0,004(2)	0,003(2)
C3	0,022(3)	0,025(3)	0,023(3)	0,005(2)	0,005(3)	0,010(2)
N31	0,022(3)	0,028(3)	0,037(3)	0,005(2)	0,007(3)	0,009(2)
N32	0,031(3)	0,027(3)	0,039(3)	0,010(2)	0,007(3)	0,008(2)
N33	0,029(3)	0,026(3)	0,034(3)	0,005(2)	0,006(3)	0,003(2)
N34	0,023(3)	0,026(3)	0,034(3)	0,001(2)	0,003(2)	0,003(2)

Atome	d [Å]	Atome	d [Å]
Sm1-01	2,410(4)	N12—N13	1,308(8)
Sm1-O4	2,416(4)	N13—N14	1,358(7)
Sm1-O5	2,465(5)	C2—N24	1,323(7)
Sm1-O2	2,477(5)	C2—N21	1,338(8)
Sm1-O6	2,480(5)	N21—N22	1,344(7)
Sm1-O7	2,498(4)	N22—N23	1,313(8)
Sm1-O3	2,518(5)	N23—N24	1,340(8)
Sm1—N11	2,615(5)	C3—N31	1,326(8)
Sm1-N21	2,695(5)	C3—N34	1,329(8)
C1—N14	1,322(8)	C3—C3i	1,474(12)
C1—N11	1,338(7)	N31—N32	1,342(8)
C1-C2	1,459(8)	N32—N33	1,307(8)
N11—N12	1,345(7)	N33—N34	1,350(7)

Tabelle 5.7.49: Ausgewählte Atomabstände in $Sm_2BT_3 \times 20H_2O$

Tabelle 5.7.50: Ausgewählte Winkel in $Sm_2BT_3 \times 20H_2O$

Atome	Winkel [°]	Atome	Winkel [°]
01—Sm1—O4	137,12(18)	O2—Sm1—N21	134,94(17)
O1— $Sm1$ — $O5$	76,66(17)	O6— $Sm1$ — $N21$	120,58(15)
O4— $Sm1$ — $O5$	139,28(16)	O7— $Sm1$ — $N21$	113,52(15)
O1—Sm1—O2	84,25(17)	O3— $Sm1$ — $N21$	69,74(16)
O4— $Sm1$ — $O2$	76,70(18)	N11— $Sm1$ — $N21$	62,83(15)
O5— $Sm1$ — $O2$	139,34(17)	N14—C1—N11	111,8(5)
O1—Sm1—O6	70,14(16)	N14— $C1$ — $C2$	128,5(5)
O4—Sm1—O6	67,53(16)	N11— $C1$ — $C2$	119,7(5)
O5— $Sm1$ — $O6$	130,88(17)	C1— $N11$ — $N12$	105,1(5)
O2— $Sm1$ — $O6$	72,03(18)	C1— $N11$ — $Sm1$	120,5(4)
O1—Sm1—O7	68,54(17)	N12— $N11$ — $Sm1$	134,5(4)
O4—Sm1—O7	135,53(18)	N13—N12—N11	109,0(5)
O5— $Sm1$ — $O7$	69,11(16)	N12—N13—N14	109,6(5)
O2— $Sm1$ — $O7$	70,54(18)	C1— $N14$ — $N13$	104,5(5)
O6— $Sm1$ — $O7$	$125,\!90(15)$	N24— $C2$ — $N21$	112,3(5)
O1—Sm1—O3	82,23(16)	N24— $C2$ — $C1$	128,8(6)
O4— $Sm1$ — $O3$	88,57(18)	N21— $C2$ — $C1$	118,9(5)
O5— $Sm1$ — $O3$	72, 13(18)	C2— $N21$ — $N22$	104,6(5)
O2—Sm1—O3	140, 48(18)	C2— $N21$ — $Sm1$	118,0(4)
O6—Sm1—O3	68,45(16)	N22— $N21$ — $Sm1$	137,3(4)

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
07—Sm1—O3	135,56(16)	N23—N22—N21	108,4(5)
O1—Sm1—N11	137,66(16)	N22—N23—N24	110,6(5)
O4—Sm1—N11	76,02(18)	C2— $N24$ — $N23$	104,0(5)
O5—Sm1—N11	90,90(18)	N31—C3—N34	112,2(5)
O2—Sm1—N11	79,49(17)	N31—C3—C3i	123,0(7)
O6—Sm1—N11	137,70(16)	N34—C3—C3i	124,8(7)
O7—Sm1—N11	69,20(15)	C3—N31—N32	105,0(5)
O3—Sm1—N11	132,56(15)	N33—N32—N31	108,9(5)
O1—Sm1—N21	140, 39(16)	N32—N33—N34	110,0(5)
O4—Sm1—N21	71,19(16)	C3—N34—N33	103,9(5)
O5—Sm1—N21	68,57(15)		

Tabelle 5.7.51: Kristalldaten für Eu $_2BT_3{\times}20H_2O$

$C_{3}H_{20}EuN_{12}O_{10} / 536,27$
170
$0,2 \ge 0,2 \ge 0,25$
triklin / $P\bar{1}$ (Nr. 2)
9,0687(12)
9,2335(12)
10,8911(14)
99,147(10)
93,680(11)
112,449(10)
824,32(432), 2
2,16044
1,941
259
1,91 bis 29,57
-12 <h<12, -12<k<12,="" -15<l<15<="" td=""></h<12,>
8350 / 4574
3971 / 0,0239
4574 / 0 / 321
1,024
0,0247; 0,0555
$0,0314;\ 0,0577$
1,203 / -1,011

Atom	Wvck.	Site	x/a	v/b	z/c	U[Å ²]
Eu01	9i	1		0.21578(2)	0.75540(1)	- L J
O_5	21 2i	1	-0.01930(2)	0,21078(2) 0.3086(3)	0,75540(1) 0.0813(2)	
O_2	21 2i	1	-0,0231(3) 0.0617(3)	0.0450(3)	0,5010(2) 0.6131(2)	
O_{2}	21 2i	1	-0,0017(3) 0.0615(3)	0.3/13(3)	0,0101(2) 0.5818(2)	
N12	21 2i	1	0,0010(3) 0.3183(3)	0,3410(3) 0.1038(3)	0.6435(2)	
N34	21 2i	1	0.3480(3)	0,1050(3) 0.5665(3)	0.5634(3)	
06	21 2i	1	-0.2456(3)	0.1346(3)	0,5054(0) 0.5854(2)	
N23	21 2i	1	0,2400(0) 0.4226(3)	0,1040(0) 0.6952(3)	0.9486(3)	
01	21 2i	1	-0.2677(3)	0.0582(0) 0.0586(3)	0.8211(2)	
07	21 2i	1	0.0547(3)	0.0506(3)	0,8793(2)	
O_3	21 2i	1	-0.1265(3)	0.4240(3)	0,7798(3)	
0013	21 2i	1	0.8181(3)	0.7420(3)	0.8457(3)	
N21	2i	1	0.2387(3)	0.4680(3)	0.8514(2)	
0015	2i	1	0.3354(3)	1,0094(3)	0.9348(3)	
N33	2i	1	0.3814(3)	0.7097(3)	0.6361(3)	
N13	2i	1	0.4771(3)	0.1677(3)	0.6584(3)	
N14	2i	1	0.5330(3)	0.3144(3)	0.7320(2)	
N11	2i	1	0.2657(3)	0.2076(3)	0.7070(2)	
O020	2i	1	0.0763(3)	0.7192(4)	0.6721(3)	
N22	2i	1	0.2671(3)	0.6108(3)	0.9234(3)	
N31	2i	1	0.6116(3)	0.7062(3)	0.5924(3)	
N24	2i	1	0.5021(3)	0.6101(3)	0.8935(3)	
C2	2i	1	0.3866(3)	0.4727(4)	0.8354(3)	
C1	2i	1	0,3996(3)	0,3348(4)	0,7595(3)	
N32	2i	1	0.5375(3)	0.7927(3)	0.6531(3)	
C3	2i	1	0,4910(4)	0,5677(4)	0,5383(3)	
H028	2i	1	-0,340(6)	-0.043(6)	0,759(5)	0.040(13)
H029	2i	1	-0,333(7)	0,141(7)	0,601(5)	0,045(14)
H030	2i	1	0,041(8)	0,295(7)	1,039(6)	0,058(16)
H031	2i	1	0,421(7)	1,092(7)	0,956(5)	0,042(14)
H032	2i	1	0,727(7)	0,708(6)	0,867(5)	0,038(13)
H033	2i	1	-0,006(6)	0,318(5)	0,517(5)	0,024(10)
H034	2i	1	-0,157(7)	-0,124(7)	0,595(5)	0,035(12)
H035	2i	1	-0,260(5)	0,074(6)	0,519(5)	0,030(12)
H037	2i	1	0,158(8)	0,414(8)	0,565(5)	0,056(16)
H038	2i	1	-0,280(9)	0,055(9)	0,887(7)	0,08(2)
H039	2i	1	-0,020(7)	-0,034(7)	0,891(5)	0,051(15)
H040	2i	1	0,143(7)	0,046(6)	0,884(5)	0,041(13)
H041	2i	1	-0,225(8)	0,403(7)	0,772(6)	0,056(17)

Tabelle 5.7.52: Atomkoordinaten in $Eu_2BT_3 \times 20H_2O$

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
H042	2i	1	-0,025(17)	-0,090(17)	0,585(13)	0,17(6)
H043	2i	1	0,799(7)	0,739(7)	0,779(6)	0,051(17)
H044	2i	1	0,170(8)	0,733(7)	0,676(6)	0,053(16)
H045	2i	1	-0,099(8)	0,325(7)	1,012(6)	0,055(16)
H046	2i	1	0,357(9)	0,946(9)	0,900(7)	0,08(2)
H048	2i	1	0,056(12)	0,770(12)	0,694(9)	0,11(4)
H049	2i	1	-0,088(9)	0,497(10)	0,734(7)	0,13(2)

Tabelle 5.7.53: Anisotrope Auslenkungsparameter in $\mathrm{Eu_2BT_3{\times}20H_2O}$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U ₂₃
Eu01	0,01009(7)	0,01388(8)	0,01426(8)	0,00444(5)	0,00165(4)	-0,00027(5)
O5	0,0222(14)	0,0406(17)	0,0196(13)	0,0179(12)	0,0027(9)	0,0011(10)
O2	0,0153(13)	0,0195(14)	0,0201(13)	0,0068(10)	0,0019(8)	0,0009(9)
O4	0,0161(13)	0,0276(14)	0,0246(14)	0,0032(10)	0,0003(9)	0,0081(10)
N12	0,0168(12)	0,0178(12)	0,0207(12)	0,0068(10)	0,0016(9)	-0,0005(10)
N34	0,0156(12)	0,0212(13)	0,0238(13)	0,0061(10)	0,004(1)	0,0044(11)
O6	0,0153(12)	0,0228(14)	0,0202(13)	0,0069(9)	0,0019(8)	0,0010(9)
N23	0,0192(12)	0,0198(13)	0,0220(13)	0,0061(11)	0,0031(10)	0,0003(10)
O1	0,0188(11)	0,0264(13)	0,0178(11)	0,0050(9)	0,0030(9)	0,0025(10)
O7	0,0192(11)	0,0257(12)	0,0245(11)	0,0083(10)	0,0046(9)	0,0077(10)
O3	0,0188(12)	0,0219(12)	0,0348(13)	0,0092(10)	-0,0038(10)	-0,0013(10)
O013	0,0189(11)	0,0269(13)	0,0272(13)	0,0089(10)	0,0039(10)	0,0085(10)
N21	0,0156(11)	0,0183(12)	0,0202(12)	0,0073(10)	0,0035(9)	0,0001(10)
O015	0,0224(12)	0,0214(12)	0,0295(13)	0,0076(11)	0,0002(10)	0,0015(10)
N33	0,0187(12)	0,0192(13)	0,0241(13)	0,0056(10)	0,0043(10)	0,0041(11)
N13	0,0177(12)	0,0238(14)	0,0214(12)	0,0110(11)	0,0018(10)	-0,0005(11)
N14	0,0168(12)	0,0214(14)	0,0210(12)	0,0091(11)	0,0037(10)	0,0014(10)
N11	0,0142(11)	0,0189(12)	0,0192(12)	0,0073(10)	0,0038(9)	0,0031(10)
O020	0,0225(13)	0,0351(15)	0,0345(14)	0,0155(12)	0,006(1)	0,0084(12)
N22	0,0185(12)	0,0181(13)	0,0239(13)	0,0063(10)	0,0027(10)	-0,0016(10)
N31	0,0186(12)	0,0214(13)	0,0205(12)	0,0054(11)	0,0032(10)	0,0028(10)
N24	0,0168(12)	0,0201(13)	0,0220(12)	0,0062(10)	0,0028(10)	0,0016(10)
C2	0,0115(12)	0,0185(14)	0,0173(13)	0,0046(11)	0,0018(10)	0,0024(11)
C1	0,0102(12)	0,0180(14)	0,0168(12)	0,005(1)	0,0022(9)	0,0044(11)
N32	0,0166(12)	0,0218(13)	0,0230(13)	0,0048(10)	0,0046(10)	0,0042(11)
C3	0,0163(13)	0,0190(14)	0,0155(13)	0,0051(11)	0,0035(10)	0,0059(11)

	0		- 2 -
Atome	d [Å]	Atome	d [Å]
Eu01—O4	2,383(3)	N23—N22	1,309(4)
Eu01—O1	2,394(2)	N23—N24	1,355(4)
Eu01—O7	2,433(2)	N21—N22	1,344(4)
Eu01—O3	2,451(2)	N21—C2	1,349(4)
Eu01—O6	2,469(2)	N33—N32	1,311(4)
Eu01—O5	2,480(2)	N13—N14	1,347(4)
Eu01—O2	2,526(2)	N14—C1	1,339(3)
Eu01—N21	2,597(3)	N11—C1	1,338(4)
Eu01—N11	2,698(2)	N31—C3	1,337(4)
N12—N13	1,319(4)	N31—N32	1,351(4)
N12—N11	1,343(3)	N24—C2	1,324(4)
N34—C3	1,339(4)	C2— $C1$	1,453(4)
N34—N33	1,341(4)	C3—C3i	1,459(6)

Tabelle 5.7.54: Ausgewählte Atomabstände in $Eu_2BT_3 \times 20H_2O$

Tabelle 5.7.55: Ausgewählte Winkel in $\mathrm{Eu_2BT_3{\times}20H_2O}$

Atome	Winkel [°]	Atome	Winkel [°]
O4—Eu01—O1	136,78(8)	O3—Eu01—N11	134,51(9)
O4—Eu01—O7	139,15(8)	O6—Eu01—N11	121,07(8)
O1—Eu01—O7	76,32(9)	O5—Eu 01 —N11	112,91(8)
O4—Eu01—O3	77,10(9)	O2—Eu 01 —N11	69,40(8)
O1—Eu01—O3	$83,\!86(9)$	N21—Eu 01 —N11	62,79(8)
O7—Eu01—O3	$139,\!88(9)$	N13—N12—N11	109,0(2)
O4—Eu01—O6	68,05(8)	C3—N34—N33	105,1(3)
O1—Eu01—O6	69,33(8)	N22-N23-N24	109,7(3)
O7—Eu01—O6	$128,\!84(9)$	N22— $N21$ — $C2$	104,3(3)
O3—Eu01—O6	$72,\!63(8)$	N22— $N21$ — $Eu01$	134,41(18)
O4—Eu01—O5	$135,\!59(9)$	C2— $N21$ — $Eu01$	121,3(2)
O1—Eu 01 —O5	$68,\!89(9)$	N32—N33—N34	109,1(2)
O7—Eu01—O5	70,03(8)	N12—N13—N14	110,1(2)
O3—Eu01—O5	70,36(9)	C1—N14—N13	104,0(2)
O6—Eu 01 —O5	126,02(8)	C1—N11—N12	104,8(2)
O4—Eu01—O2	87,23(8)	C1— $N11$ — $Eu01$	$117,\!66(18)$
O1—Eu 01 —O 2	$83,\!57(8)$	N12— $N11$ — $Eu01$	137,5(2)
O7—Eu01—O2	71,43(8)	N23—N22—N21	109,6(2)
O3—Eu01—O2	140,75(8)	C3—N31—N32	104,1(2)
O6—Eu 01 —O 2	68,14(8)	C2— $N24$ — $N23$	104,4(2)

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
O5—Eu01—O2	136,72(8)	N24—C2—N21	112,0(3)
O4—Eu01—N21	76,05(9)	N24— $C2$ — $C1$	129,3(3)
O1—Eu01—N21	137,49(8)	N21—C2—C1	118,7(3)
O7—Eu01—N21	92,70(9)	N11—C1—N14	112,1(3)
O3—Eu01—N21	78,81(8)	N11—C1—C2	119,5(2)
O6—Eu01—N21	137,97(8)	N14— $C1$ — $C2$	128,4(3)
O5—Eu01—N21	68,75(9)	N33—N32—N31	110,1(3)
O2—Eu01—N21	132,15(8)	N31—C3—N34	111,6(3)
O4—Eu01—N11	70,99(8)	N31—C3—C3i	125,4(3)
O1—Eu01—N11	141, 14(8)	N34—C3—C3i	123,0(4)
O7—Eu01—N11	69,00(8)		× /

Tabelle 5.7.56: Kristalldaten für $\mathrm{Tb_2BT_3{\times}14H_2O}$

$C_{3}H_{20}TbN_{12}O_{10} / 543,23$
293
$0,05 \ge 0,2 \ge 0,15$
triklin / $P\bar{1}$ (Nr. 2)
8,2869(15)
10,4625(17)
10,915(2)
94,606(14)
96,596(15)
112,906(13)
857,83(578), 2
2,10297
4,198
534
1,90 bis 29,88
-11 <h<11, -13<l<13<="" -14<k<14,="" td=""></h<11,>
7716 / 4779
3829 / 0,0303
4779 / 40 / 316
1,025
$0,0372;\ 0,0865$
$0,0529;\ 0,0952$
1,339 / -1,462

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
Tb1	2i	1	0,22960(3)	-0.82245(3)	0,23315(3)	
O1	2i	1	0,2748(6)	-0,9506(4)	0,0531(4)	
O2	2i	1	0,3692(9)	-0,5917(7)	0,3458(10)	
O3	2i	1	-0,0292(6)	-1,0312(4)	0,1644(5)	
O4	2i	1	0,2943(7)	-0,6762(5)	0,0781(5)	
O5	2i	1	-0,0124(6)	-0,7579(5)	0,2009(5)	
O6	2i	1	0,3069(7)	-0,9932(5)	0,3284(5)	
07	2i	1	0,1219(8)	-0,8413(7)	0,4236(5)	
08	2i	1	0,5376(6)	-0,7498(5)	0,2579(5)	
O9	2i	1	0,6515(7)	-0,2012(6)	0,3557(5)	
O10	2i	1	0,3266(9)	-0,0484(7)	0,7199(9)	
C2	2i	1	0,0279(7)	-0,3794(5)	0,1630(5)	
N21	2i	1	-0,0628(6)	-0,5096(5)	0,1844(5)	
N22	2i	1	-0,2084(7)	-0,5057(5)	0,2244(5)	
N23	2i	1	-0,2043(7)	-0,3799(5)	0,2264(5)	
N24	2i	1	-0,0557(7)	-0,2967(5)	0,1881(5)	
C1	2i	1	0,1967(7)	-0,3327(5)	0,1161(5)	
N11	2i	1	0,2870(7)	-0,4118(5)	0,0979(5)	
N12	2i	1	0,4312(7)	-0,3287(5)	0,0543(5)	
N13	2i	1	0,4257(7)	-0,2061(5)	0,0471(5)	
N14	2i	1	0,2777(7)	-0,2053(5)	0,0848(5)	
C3	2i	1	0,0704(8)	-0,4368(6)	0,4872(6)	
N31	2i	1	0,2195(7)	-0,4326(6)	0,4480(5)	
N32	2i	1	0,3086(7)	-0,3000(6)	0,4325(6)	
N33	2i	1	0,2185(8)	-0,2262(6)	0,4623(5)	
N34	2i	1	0,0673(7)	-0,3103(6)	0,4973(5)	
H036	2i	1	0,574(9)	-0,810(5)	0,260(8)	0,04(2)
H038	2i	1	0,614(8)	-0,680(5)	0,246(9)	0,07(3)
H039	2i	1	-0,045(10)	-1,111(3)	0,172(7)	0,04(2)
H040	2i	1	-0,102(8)	-1,034(7)	0,108(6)	0,06(2)
H041	2i	1	0,364(10)	-0,676(8)	0,033(7)	0,06(3)
H042	2i	1	0,305(11)	-0,597(3)	0,095(7)	0,05(2)
H043	2i	1	0,078(12)	-0,787(8)	0,437(8)	0,07(3)
H044	2i	1	0,191(10)	-0,834(10)	0,484(5)	0,07(3)
H045	2i	1	-0,102(5)	-0,811(5)	0,219(6)	0,031(17)
H046	2i	1	-0,017(10)	-0,684(4)	0,198(8)	0,04(2)
H047	2i	1	0,312(7)	-0,558(6)	0,304(5)	0,011(14)
H048	2i	1	0,341(19)	-0,574(17)	0,411(6)	0,20(7)
H049	2i	1	0,662(15)	-0,264(8)	0,315(11)	0,11(5)

Tabelle 5.7.57: Atomkoordinaten in $Tb_2BT_3 \times 14H_2O$

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
H050	2i	1	0,559(8)	-0,246(9)	0,377(10)	0,09(3)
H051	2i	1	0,313(12)	0,020(6)	0,707(8)	0,06(3)
H052	2i	1	0,373(17)	-0,057(13)	0,661(9)	0,13(5)
H053	2i	1	0,374(4)	-0,915(6)	0,041(6)	0,031(16)
H054	2i	1	0,277(11)	-1,021(6)	0,075(9)	0,05(3)
H055	2i	1	0,406(10)	-0,99(3)	0,34(2)	0,23(12)
H056	2i	1	0,269(18)	-1,039(13)	0,382(10)	0,11(5)

Tabelle 5.7.58: Anisotrope Auslenkungsparameter in $\mathrm{Tb_2BT_3{\times}14H_2O}$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Tb1	0,02535(14)	0,02176(13)	0,03560(16)	0,01113(9)	0,01029(9)	0,00699(9)
O1	0,034(2)	0,0267(19)	0,048(2)	0,0146(17)	0,0157(18)	0,0113(18)
O2	0,052(4)	0,057(4)	0,136(7)	0,015(3)	0,031(5)	-0,037(4)
O3	0,036(2)	0,026(2)	0,051(3)	0,0131(17)	0,010(2)	0,0071(18)
O4	0,053(3)	0,036(2)	0,068(3)	0,030(2)	0,032(3)	0,026(2)
O5	0,036(2)	0,032(2)	0,062(3)	0,0186(18)	0,019(2)	0,020(2)
O6	0,050(3)	0,046(3)	0,066(3)	0,030(2)	0,030(2)	0,031(2)
O7	0,073(4)	0,086(4)	0,040(3)	0,061(3)	0,019(3)	0,015(3)
08	0,031(2)	0,032(2)	0,063(3)	0,0142(18)	0,011(2)	0,016(2)
O9	0,045(3)	0,054(3)	0,057(3)	0,025(2)	0,019(2)	0,014(3)
O10	0,059(4)	0,050(3)	0,150(8)	0,037(3)	0,032(4)	0,029(4)
C2	0,031(2)	0,026(2)	0,031(3)	0,013(2)	0,006(2)	0,007(2)
N21	0,032(2)	0,024(2)	0,046(3)	0,0121(18)	0,013(2)	0,010(2)
N22	0,029(2)	0,032(2)	0,050(3)	0,010(2)	0,011(2)	0,012(2)
N23	0,032(2)	0,035(3)	0,050(3)	0,015(2)	0,015(2)	0,011(2)
N24	0,031(2)	0,027(2)	0,050(3)	0,0135(19)	0,012(2)	0,010(2)
C1	0,031(3)	0,023(2)	0,035(3)	0,013(2)	0,008(2)	0,009(2)
N11	0,040(3)	0,028(2)	0,044(3)	0,018(2)	0,017(2)	0,010(2)
N12	0,037(3)	0,035(2)	0,045(3)	0,019(2)	0,018(2)	0,010(2)
N13	0,039(3)	0,027(2)	0,053(3)	0,014(2)	0,024(2)	0,011(2)
N14	0,037(3)	0,024(2)	0,051(3)	0,0137(19)	0,017(2)	0,008(2)
C3	0,035(3)	0,041(3)	0,034(3)	0,021(3)	0,013(2)	0,009(2)
N31	0,038(3)	0,037(3)	0,049(3)	0,018(2)	0,017(2)	0,008(2)
N32	0,038(3)	0,041(3)	0,052(3)	0,018(2)	0,020(2)	0,012(2)
N33	0,046(3)	0,036(3)	0,049(3)	0,021(2)	0,020(2)	0,014(2)
N34	0,044(3)	0,036(3)	0,048(3)	0,023(2)	0,020(2)	0,013(2)

Atome	d [Å]	Atome	d [Å]
Tb1-08	2,338(4)	N23—N24	1,339(7)
Tb1—O4	2,341(4)	C1—N14	1,332(7)
Tb1—O7	2,348(5)	C1—N11	1,332(7)
Tb1—O5	2,352(4)	N11—N12	1,341(7)
Tb1—O3	2,378(4)	N12—N13	1,310(7)
Tb1—O2	2,387(6)	N13—N14	1,340(7)
Tb1—O6	2,392(4)	C3—N34	1,330(8)
Tb1—O1	2,436(4)	C3—N31	1,339(7)
C2—N21	1,330(7)	C3—C3i	1,456(12)
C2—N24	1,333(7)	N31—N32	1,330(7)
C2—C1	1,459(7)	N32—N33	1,312(7)
N21—N22	1,343(7)	N33—N34	1,340(7)
N22—N23	1,302(7)		

Tabelle 5.7.59: Ausgewählte Atomabstände in $Tb_2BT_3 \times 14H_2O$

Tabelle 5.7.60: Ausgewählte Winkel in $\mathrm{Tb_2BT_3{\times}14H_2O}$

Atome	Winkel [°]	Atome	Winkel [°]
08—Tb1—O4	80,08(17)	O3—Tb1—O1	70,61(15)
O8—Tb1—O7	112,6(2)	O2— $Tb1$ — $O1$	136,9(2)
O4—Tb1—O7	$141,\!64(18)$	O6-Tb1-O1	78,96(17)
O8—Tb1—O5	146, 91(15)	N21— $C2$ — $N24$	111,5(5)
O4—Tb1—O5	$75,\!54(16)$	N21— $C2$ — $C1$	124,5(5)
O7—Tb1—O5	76,05(18)	N24— $C2$ — $C1$	124,0(5)
O8—Tb1—O3	138, 33(16)	C2— $N21$ — $N22$	104,4(4)
O4—Tb1—O3	111,75(19)	N23—N22—N21	109,9(4)
O7—Tb1—O3	83,3(2)	N22—N23—N24	109,3(5)
O5-Tb1-O3	$72,\!65(15)$	C2— $N24$ — $N23$	104,9(4)
O8— $Tb1$ — $O2$	$70,\!6(2)$	N14— $C1$ — $N11$	111,9(5)
O4— $Tb1$ — $O2$	75,8(3)	N14— $C1$ — $C2$	$123,\!6(5)$
O7-Tb1-O2	75,1(3)	N11— $C1$ — $C2$	124,5(5)
O5-Tb1-O2	81,9(2)	C1—N11—N12	104,6(4)
O3—Tb1—O2	$149,\!97(19)$	N13—N12—N11	109,2(4)
O8—Tb1—O6	71,26(16)	N12—N13—N14	109,8(4)
O4—Tb1—O6	142,97(16)	C1—N14—N13	104,4(4)
O7—Tb1—O6	$73,\!03(18)$	N34—C3—N31	110,7(5)
O5—Tb1—O6	139,26(15)	N34—C3—C3i	124,7(6)
O3—Tb1—O6	$77,\!96(18)$	N31—C3—C3i	124,6(7)

Atome	Winkel [°]	Atome	Winkel [°]
O2—Tb1—O6 O8—Tb1—O1 O4—Tb1—O1 O7—Tb1—O1 O5—Tb1—O1	$114,2(3) \\76,39(17) \\71,76(16) \\145,09(18) \\115,63(17)$	N32—N31—C3 N33—N32—N31 N32—N33—N34 C3—N34—N33	$105,4(5) \\109,4(5) \\109,3(5) \\105,3(5)$

Tabelle 5.7.61: Kristalldaten für $\mathrm{Er_2BT_3{\times}14H_2O}$

Summenformel / Molmasse $[g mol^{-1}]$	$C_3H_{20}ErN_{12}O_{10} / 551,57$
Messtemperatur [K]	293
Kristallgröße [mm]	$0,1 \ge 0,1 \ge 0,2$
Kristallsystem / Raumgruppe	triklin / $P\overline{1}$ (Nr. 2)
	8,2951(14)
b [Å]	10,4235(17)
c [Å]	10,986(2)
α $[\circ]$	94,82(2)
β ^[°]	96,27(2)
γ [°]	113,019(18)
$V [Å^3]$, Z	860,65(801), 2
Dichte $[g \text{ cm}^{-3}]$	2,12827
Absorptionskoeffizient	4,951
F(000)	540
Gem, 2θ -Bereich	2,65 bis 28,10
Indexbereich	-10 <h<10, -13<k<13,="" -14<l<14<="" td=""></h<10,>
Gemessene / Unabhängige Reflexe	7512 / 3837
Beobachtete Reflexe / R_{int}	3010 / 0,0580
Daten / Restraints / Parameter	3837 / 40 / 316
$GOF F^2$	1,018
$R_1; wR_2(I > 2\sigma)$	$0,0379;\ 0,0951$
R_1 ; w R_2 (alle Daten)	0,0559; 0,1024
Restelektronendichte (max / min)	1,384 / -1,621

Tabelle 5.7.62: Atomkoordinaten in $Er_2BT_3 \times 14H_2O$

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
Er1 O1	2i 2i	1 1	$\begin{array}{c} 0,22912(5) \\ 0,2746(7) \end{array}$	-0,82251(4) -0,9497(6)	$\begin{array}{c} 0,23230(3) \\ 0,0550(5) \end{array}$	

5 Experimenteller Teil

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
02	2i	1	0,3652(12)	-0,5933(10)	0,3418(12)	
O3	2i	1	-0,0276(7)	-1,0293(6)	0,1652(6)	
O4	2i	1	0,2911(9)	-0,6787(7)	0,0781(7)	
O5	2i	1	-0,0108(8)	-0,7589(7)	0,2011(6)	
O6	2i	1	0,3037(9)	-0,9930(7)	0,3254(6)	
O7	2i	1	0,1235(11)	-0,8416(9)	0,4207(6)	
08	2i	1	0,5325(7)	-0,7513(7)	0,2574(6)	
O9	2i	1	0,6545(9)	-0,1984(8)	0,3592(7)	
O10	2i	1	0,3255(12)	-0,0498(10)	0,7224(11)	
C2	2i	1	0,0271(9)	-0,3802(8)	0,1636(6)	
N21	2i	1	-0,0646(8)	-0,5107(7)	0,1844(6)	
N22	2i	1	-0,2102(8)	-0,5068(8)	0,2240(7)	
N23	2i	1	-0,2061(8)	-0,3805(8)	0,2276(7)	
N24	2i	1	-0,0550(8)	-0,2957(7)	0,1896(6)	
C1	2i	1	0,1961(10)	-0,3335(8)	0,1160(7)	
N11	2i	1	0,2882(9)	-0,4125(7)	0,0988(6)	
N12	2i	1	0,4322(9)	-0,3291(8)	0,0539(6)	
N13	2i	1	0,4277(9)	-0,2060(8)	0,0463(7)	
N14	2i	1	0,2787(9)	-0,2055(7)	0,0844(6)	
C3	2i	1	0,0707(10)	-0,4354(9)	0,4874(7)	
N31	2i	1	0,2192(9)	-0,4324(8)	0,4481(7)	
N32	2i	1	0,3088(10)	-0,2990(8)	0,4339(7)	
N33	2i	1	0,2184(11)	-0,2245(8)	0,4636(7)	
N34	2i	1	0,0665(9)	-0,3093(8)	0,4989(6)	
H036	2i	1	0,584(10)	-0,801(7)	0,255(8)	0,02(2)
H038	2i	1	0,614(7)	-0,684(5)	0,251(8)	0,03(3)
H039	2i	1	-0,069(14)	-1,113(3)	0,17(1)	0,06(4)
H040	2i	1	-0,117(10)	-1,040(12)	0,121(11)	0,09(5)
H041	2i	1	0,366(11)	-0,677(11)	0,035(8)	0,05(3)
H042	2i	1	0,330(15)	-0,594(2)	0,085(12)	0,07(4)
H043	2i	1	0,097(14)	-0,777(8)	0,436(9)	0,05(3)
H044	2i	1	0,197(12)	-0,815(12)	0,481(7)	0,06(4)
H045	2i	1	-0,106(10)	-0,809(11)	0,218(14)	0,11(5)
H046	2i	1	-0,043(18)	-0,695(10)	0,202(13)	0,08(4)
H047	2i	1	0,319(10)	-0,547(8)	0,307(6)	0,000(19)
H048	2i	1	0,352(15)	-0,554(11)	0,402(5)	0,05(4)
H049	2i	1	0,648(18)	-0,260(11)	0,308(12)	0,11(6)
H050	2i	1	0,559(7)	-0,252(9)	0,367(10)	0,05(3)
H051	2i	1	0,308(14)	0,016(8)	0,701(10)	0,05(3)
H052	2i	1	0,392(10)	-0,031(10)	0,674(7)	0,03(3)
H053	2i	1	0,363(8)	-0,905(10)	0,028(10)	0,05(3)
H054	2i	1	0,325(14)	-1,001(11)	0,067(12)	0,07(4)

Atom	Wyck.	Site	x/a	y/b	z/c	$\mathrm{U}[\mathrm{\AA}^2]$
H055	2i	1	0,395(13)	-0,973(18)	0,373(10)	0,23(7)
H056	2i	1	0,260(18)	-1,033(14)	0,382(11)	0,12(5)

Tabelle 5.7.63: Anisotrope Auslenkungsparameter in $Er_2BT_3 \times 14H_2O$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Er1	0,01865(19)	0,0153(2)	0,0281(2)	0,00907(12)	0,00924(11)	0,00633(11)
01	0,024(3)	0,023(3)	0,036(3)	0,012(2)	0,015(2)	0,009(2)
O2	0,045(5)	0,039(6)	0,118(8)	0,005(4)	0,029(5)	-0,040(5)
O3	0,021(3)	0,019(4)	0,044(3)	0,006(2)	0,008(3)	0,006(2)
O4	0,046(4)	0,028(4)	0,060(4)	0,024(3)	0,034(3)	0,028(3)
O5	0,027(3)	0,031(4)	0,055(4)	0,023(3)	0,016(3)	0,016(3)
O6	0,041(3)	0,033(4)	0,050(4)	0,024(3)	0,024(3)	0,028(3)
07	0,063(5)	0,071(6)	0,036(4)	0,054(4)	0,020(4)	0,017(3)
08	0,015(3)	0,026(4)	0,056(4)	0,010(2)	0,009(2)	0,016(3)
O9	0,031(4)	0,049(5)	0,054(4)	0,019(3)	0,018(3)	0,014(3)
O10	0,052(5)	0,043(6)	0,145(9)	0,034(4)	0,039(5)	0,035(6)
C2	0,020(3)	0,015(4)	0,027(4)	0,010(3)	$0,\!006(3)$	0,006(3)
N21	0,022(3)	0,022(4)	0,036(4)	0,009(3)	0,009(3)	0,008(3)
N22	0,020(3)	0,027(4)	0,044(4)	0,011(3)	0,015(3)	0,012(3)
N23	0,020(3)	0,026(4)	0,043(4)	0,008(3)	0,013(3)	0,010(3)
N24	0,021(3)	0,017(4)	0,039(4)	0,009(3)	0,012(3)	0,009(3)
C1	0,024(4)	0,015(4)	0,027(4)	0,010(3)	0,007(3)	0,006(3)
N11	0,034(4)	0,023(4)	0,033(3)	0,017(3)	0,016(3)	0,012(3)
N12	0,029(3)	0,030(4)	0,039(4)	0,016(3)	0,020(3)	0,012(3)
N13	0,031(4)	0,024(4)	0,045(4)	0,013(3)	0,023(3)	0,013(3)
N14	0,029(3)	0,014(4)	0,043(4)	0,011(3)	0,018(3)	0,009(3)
C3	0,031(4)	0,028(5)	0,025(4)	0,015(4)	0,013(3)	0,008(3)
N31	0,029(4)	0,028(4)	0,043(4)	0,016(3)	0,018(3)	0,009(3)
N32	0,035(4)	0,032(5)	0,038(4)	0,016(3)	0,019(3)	0,010(3)
N33	0,047(4)	0,031(5)	0,042(4)	0,023(4)	0,019(3)	0,013(3)
N34	0,034(4)	0,038(5)	0,037(4)	0,023(3)	0,020(3)	0,016(3)

Tabelle 5.7.64: Ausgewählte Atomabstände in $\rm Er_2BT_3 \times 14H_2O$

Atome	d [Å]	Atome	d [Å]
Er1—O8	2,305(5)	N23—N24	1,355(8)

Atome	d $[Å]$	Atome	d [Å]
Er1—O4	2,323(6)	C1—N14	1,336(9)
Er1—O7	2,328(6)	C1—N11	1,340(9)
Er1—O5	2,332(5)	N11—N12	1,347(9)
Er1—O3	2,350(6)	N12—N13	1,307(10)
Er1—O2	2,354(8)	N13—N14	1,350(8)
Er1—O6	2,370(6)	C3—N34	1,325(11)
Er1—O1	2,411(6)	C3—N31	1,340(9)
C2—N21	1,327(9)	C3— $C3i$	1,471(15)
C2—N24	1,339(9)	N31—N32	1,328(10)
C2—C1	1,464(9)	N32—N33	1,319(10)
N21—N22	1,342(8)	N33—N34	1,346(10)
N22—N23	1,30(1)		

5 Experimenteller Teil

Tabelle 5.7.65: Ausgewählte Winkel in $\mathrm{Er_2BT_3{\times}14H_2O}$

Atome	Winkel [°]	Atome	Winkel $[^{\circ}]$
08—Er1—O4	81,0(2)	O3—Er1—O1	70,98(19)
O8—Er1—O7	111,9(3)	O2— $Er1$ — $O1$	136,8(3)
O4—Er1—O7	142,1(2)	O6— $Er1$ — $O1$	79,0(2)
O8—Er1—O5	147,3(2)	N21— $C2$ — $N24$	111,8(6)
O4— $Er1$ — $O5$	75,3(2)	N21— $C2$ — $C1$	124,7(6)
O7—Er1—O5	76,5(2)	N24— $C2$ — $C1$	123,5(6)
O8—Er1—O3	138,5(2)	C2— $N21$ — $N22$	104,6(6)
O4— $Er1$ — $O3$	111,1(2)	N23—N22—N21	110,3(6)
O7—Er1—O3	83,3(3)	N22—N23—N24	109,0(6)
O5— $Er1$ — $O3$	72,2(2)	C2-N24-N23	104,4(6)
O8— $Er1$ — $O2$	70,9(3)	N14—C1—N11	111,2(6)
O4— $Er1$ — $O2$	76,1(4)	N14— $C1$ — $C2$	124,1(6)
O7— $Er1$ — $O2$	75,2(4)	N11— $C1$ — $C2$	124,8(7)
O5— $Er1$ — $O2$	81,6(3)	C1—N11—N12	104,8(6)
O3— $Er1$ — $O2$	149,4(2)	N13—N12—N11	109,7(6)
O8— $Er1$ — $O6$	71,1(2)	N12—N13—N14	109,3(6)
O4—Er1—O6	143,2(2)	C1—N14—N13	105,0(6)
O7— $Er1$ — $O6$	72,6(2)	N34—C3—N31	111,8(7)
O5— $Er1$ — $O6$	138,9(2)	N34—C3—C3i	124,7(8)
O3—Er1—O6	77,9(2)	N31—C3—C3i	123,4(9)
O2— $Er1$ — $O6$	114,8(4)	N32—N31—C3	104,8(6)
O8—Er1—O1	76,5(2)	N33—N32—N31	109,6(6)
O4—Er1—O1	71,4(2)	N32—N33—N34	109,2(7)
O7—Er1—O1	145,0(2)	C3—N34—N33	104,6(6)

Atome	Winkel [°]	Atome	Winkel [°]
O5—Er1—O1	115,6(2)		

Tabelle 5.7.66: Kristalldaten für ThBT ₂ \times 13H ₂ O	
---	--

Summenformel / Molmasse [g mol ⁻¹]	$C_4H_{26}ThN_{16}O_{13} / 738,45$
Messtemperatur [K]	293
Kristallgröße [mm]	$0,3 \ge 0,2 \ge 0,2$
Kristallsystem / Raumgruppe	triklin / $P\bar{1}$ (Nr. 2)
a [Å]	10,582(2)
b [Å]	10,816(2)
c [Å]	11,367(2)
$\alpha [^{\circ}]$	73,46(2)
β [°]	$83,\!98(3)$
γ [°]	66,01(2)
$V [Å^3]$, Z	1139,35(1235), 2
Dichte $[g \text{ cm}^{-3}]$	2,15237
Absorptionskoeffizient	6,635
F(000)	712
Gem, 2θ -Bereich	3,19 bis 28,08
Indexbereich	-13 <h<13, -14<k<14,="" -14<l<14<="" td=""></h<13,>
Gemessene / Unabhängige Reflexe	9861 / 5044
Beobachtete Reflexe / R_{int}	4662 / 0,0786
Daten / Restraints / Parameter	5044 / 0 / 285
$GOF F^2$	1,126
$R_1; wR_2(I>2\sigma)$	0,0581; 0,1619
R_1 ; w R_2 (alle Daten)	0,0628; 0,1726
Restelektronendichte (max / min)	3,802 / -4,499

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
Th01	2i	1	0,57463(3)	0,37268(3)	0,66480(2)	
N1	2i	1	0,8460(9)	0,1469(9)	1,4197(8)	
N2	2i	1	0,9691(11)	0,3799(11)	1,4532(9)	
N3	2i	1	0,8292(12)	0,7519(12)	0,9976(10)	
N4	2i	1	1,0569(10)	0,0704(9)	1,3441(8)	
N5	2i	1	0,8492(11)	0,2228(10)	1,3062(10)	

Tabelle 5.7.67: Atomkoordinaten in $\text{ThBT}_2 \times 13\text{H}_2\text{O}$

5	Experimenteller	Teil
---	-----------------	------

Atom	Wyck.	Site	x/a	y/b	z/c	$\mathrm{U}[\mathrm{\AA}^2]$
N6	2i	1	0,9601(11)	0,7033(10)	0,9684(9)	
N7	2i	1	0,9706(10)	0,1801(10)	1,2619(8)	
N8	2i	1	1,0402(11)	0,6056(11)	1,0607(9)	
N9	2i	1	1,1144(11)	0,4247(11)	1,3163(10)	
N10	2i	1	1,1025(11)	0,3506(11)	1,4318(10)	
N11	2i	1	0,9724(10)	-0,0896(10)	1,1611(9)	
N12	2i	1	0,8941(10)	0,4724(11)	1,3572(8)	
N13	2i	1	0,8199(12)	0,6812(12)	1,1132(9)	
N14	2i	1	0,8169(11)	0,0955(10)	1,0347(8)	
N15	2i	1	0,8493(11)	-0,0488(11)	1,2179(9)	
N16	2i	1	0,7580(11)	0,0600(12)	1,1437(10)	
C1	2i	1	0,9510(12)	0,5944(11)	1,1494(10)	
C2	2i	1	0,9852(11)	0,4995(11)	1,2724(9)	
C3	2i	1	0,975(1)	0,0538(10)	1,4414(9)	
C4	2i	1	0,9493(10)	0,0012(10)	1,0488(8)	
01	2i	1	0,3775(7)	0,5193(7)	0,5395(6)	
O2	2i	1	0,8301(8)	0,2940(8)	0,6578(7)	
O3	2i	1	0,3864(8)	0,5181(8)	0,7843(7)	
O4	2i	1	0,6238(8)	0,5756(9)	0,6790(7)	
O5	2i	1	0,4120(8)	0,2555(8)	0,7390(7)	
O6	2i	1	0,6402(9)	0,3260(8)	0,8811(7)	
07	2i	1	0,593(1)	0,2167(9)	0,5303(8)	
08	2i	1	0,7047(9)	0,1108(8)	0,7698(9)	
O9	2i	1	0,3382(11)	0,4699(12)	1,0293(9)	
O10	2i	1	0,3032(11)	0,1579(11)	0,5991(9)	
O11	2i	1	0,5165(11)	0,7843(11)	0,8012(9)	
O12	2i	1	0,5704(11)	-0,0331(11)	0,5950(9)	
O13	2i	1	0,5766(10)	-0,0411(11)	0,9280(9)	

Tabelle 5.7.68: Anisotrope Auslenkungsparameter in $\rm ThBT_2 \times 13 H_2O$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Th01	0,0214(3)	0,0264(2)	0,0220(2)	-0,01187(16)	0,00261(14)	-0,00642(15)
N1	0,029(4)	0,033(4)	0,035(4)	-0,009(4)	0,007(4)	-0,012(4)
N2	0,036(5)	0,044(5)	0,039(5)	-0,025(4)	0,006(4)	-0,005(4)
N3	0,043(6)	0,056(6)	0,037(5)	-0,025(5)	0,009(5)	-0,004(5)
N4	0,034(4)	0,034(4)	0,028(4)	-0,014(4)	0,004(4)	-0,003(4)
N5	0,041(5)	0,026(4)	0,046(5)	-0,005(4)	0,001(4)	-0,004(4)
N6	0,039(5)	0,036(4)	0,029(4)	-0,017(4)	0,006(4)	-0,005(4)
N7	0,040(5)	0,032(4)	0,032(4)	-0,014(4)	0,006(4)	-0,005(4)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
N8	0,047(5)	0,044(5)	0,035(4)	-0,026(4)	0,014(4)	-0,014(4)
N9	0,030(5)	0,047(5)	0,038(5)	-0,021(4)	0,013(4)	-0,008(4)
N10	0,032(5)	0,047(5)	0,050(6)	-0,022(4)	0,003(4)	-0,006(5)
N11	0,034(5)	0,038(4)	0,040(5)	-0,016(4)	0,004(4)	-0,006(4)
N12	0,033(5)	0,050(5)	0,034(4)	-0,025(4)	0,009(4)	-0,010(4)
N13	0,039(5)	0,050(6)	0,029(4)	-0,015(5)	0,003(4)	-0,004(4)
N14	0,041(5)	0,041(5)	0,029(4)	-0,014(4)	0,003(4)	-0,005(4)
N15	0,037(5)	0,043(5)	0,035(5)	-0,014(4)	0,002(4)	-0,007(4)
N16	0,040(5)	0,051(6)	0,043(5)	-0,016(5)	0,004(5)	-0,010(5)
C1	0,038(5)	0,037(5)	0,033(5)	-0,027(5)	0,009(4)	-0,013(4)
C2	0,030(5)	0,035(5)	0,031(5)	-0,017(4)	0,009(4)	-0,015(4)
C3	0,026(4)	0,027(4)	0,027(4)	-0,010(4)	0,001(4)	-0,004(4)
C4	0,025(4)	0,032(4)	0,022(4)	-0,010(4)	-0,005(4)	-0,001(4)
O1	0,025(3)	0,036(3)	0,025(3)	-0,016(3)	0,002(3)	-0,003(3)
O2	0,027(3)	0,040(4)	0,039(4)	-0,014(3)	0,004(3)	-0,004(3)
O3	0,032(4)	0,040(4)	0,029(3)	-0,008(3)	0,003(3)	-0,014(3)
O4	0,031(4)	0,052(4)	0,036(4)	-0,023(3)	0,004(3)	-0,017(4)
O5	0,029(3)	0,039(4)	0,040(4)	-0,015(3)	0,007(3)	-0,008(3)
O6	0,043(4)	0,037(4)	0,028(3)	-0,007(3)	-0,005(3)	-0,008(3)
O7	0,057(5)	0,049(4)	0,049(4)	-0,037(4)	0,025(4)	-0,027(4)
O8	0,038(4)	0,033(4)	0,065(5)	-0,014(3)	0,008(4)	-0,017(4)
O9	0,073(2)	0,074(3)	0,073(2)	-0,032(2)	0,005(2)	-0,021(2)
O10	0,073(2)	0,074(3)	0,073(2)	-0,032(2)	0,005(2)	-0,021(2)
O11	0,073(2)	0,074(3)	0,073(2)	-0,032(2)	0,005(2)	-0,021(2)
O12	0,073(2)	0,074(3)	0,073(2)	-0,032(2)	0,005(2)	-0,021(2)
O13	0,073(2)	0,074(3)	0,073(2)	-0,032(2)	0,005(2)	-0,021(2)

Tabelle 5.7.69: Ausgewählte Atomabstände in $\rm ThBT_2 \times 13 H_2O$

Atome	d [Å]	Atome	d [Å]
Th01-01	2,354(7)	N4—C3	1,349(12)
Th01—O1i	2,388(6)	N5—N7	1,277(14)
Th01—O6	2,479(8)	N6—N8	1,328(15)
Th01-O2	2,482(8)	N8—C1	1,321(13)
Th01-O5	2,478(7)	N9—C2	1,336(16)
Th01—O4	2,502(8)	N9—N10	1,353(15)
Th01-O3	2,527(7)	N11—C4	1,345(13)
Th01-O7	2,523(7)	N11—N15	1,352(13)
Th01—O8	2,567(8)	N12—C2	1,349(12)
Th01—Th01i	3,9931(15)	N13—C1	1,348(17)

5	Experimenteller	Teil
---	-----------------	------

Atome	d [Å]	Atome	d [Å]
N1—N5	1,323(13)	N14—C4	1,349(14)
N1—C3	1,323(13)	N14—N16	1,353(13)
N2—N12	1,317(15)	N15—N16	1,308(16)
N2—N10	1,327(14)	C1— $C2$	1,458(15)
N3—N6	1,310(15)	C3—C3ii	1,474(19)
N3—N13	1,335(14)	C4— $C4iii$	1,459(18)
N4—N7	1,334(14)	O1—Th01i	2,388(6)

Tabelle 5.7.70: Ausgewählte Winkel in ThBT₂×13H₂O

Atome	Winkel [°]	Atome	Winkel $[^{\circ}]$
O1—Th01—O1i	65,3(3)	O1i—Th01—Th01i	32,38(16)
O1—Th01—O6	136,0(2)	O6—Th01—Th01i	152,87(19)
O1i—Th01—O6	141,1(3)	O2—Th01—Th01i	107,29(19)
O1—Th01—O2	140,2(2)	O5—Th01—Th01i	104, 61(19)
O1i—Th01—O2	74,9(2)	O4—Th01—Th01i	82,26(18)
O6— $Th01$ — $O2$	76,6(3)	O3—Th01—Th01i	95,15(18)
O1—Th01—O5	77,0(2)	O7—Th01—Th01i	73,5(2)
O1i—Th01—O5	130,0(2)	O8—Th01—Th01i	140,1(2)
O6-Th01-O5	88,8(3)	N5—N1—C3	103,7(8)
O2—Th01—O5	135,1(3)	N12—N2—N10	110,3(9)
O1—Th01—O4	92,8(3)	N6—N3—N13	107,0(11)
O1i—Th01—O4	74,1(2)	N7—N4—C3	103,0(9)
O6— $Th01$ — $O4$	72,9(3)	N7—N5—N1	111,2(9)
O2—Th01—O4	74,0(3)	N3—N6—N8	112,7(9)
O5—Th 01 —O4	141,6(2)	N5—N7—N4	110,1(9)
O1—Th01—O3	69, 6(2)	C1—N8—N6	103,(1)
O1i—Th01—O3	119,6(2)	C2—N9—N10	105,8(9)
O6—Th01—O3	66,4(3)	N2—N10—N9	107,9(10)
O2—Th01—O3	134,2(3)	C4—N11—N15	104,6(9)
O5—Th01—O3	71,7(2)	N2—N12—C2	105,8(9)
O4—Th01—O3	70,1(2)	N3—N13—C1	105,3(10)
O1—Th01—O7	80,8(3)	C4—N14—N16	104,2(9)
O1i—Th01—O7	71,6(2)	N16—N15—N11	109,7(9)
O6—Th01—O7	133,6(3)	N15—N16—N14	110,(1)
O2—Th01—O7	88,8(3)	N8—C1—N13	112,(1)
O5—Th01—O7	71,0(2)	N8-C1-C2	125,7(11)
O4—Th01—O7	144,6(2)	N13—C1—C2	122,3(9)
O3—Th01—O7	136,4(3)	N9—C2—N12	110,2(10)
01—Th01—O8	138,9(3)	N9—C2—C1	123,8(9)

Atome	Winkel [°]	Atome	Winkel [°]
O1i—Th01—O8 O6—Th01—O8 O2—Th01—O8 O5—Th01—O8 O4—Th01—O8 O3—Th01—O8	$\begin{array}{c} 122,7(3) \\ 66,6(3) \\ 66,4(3) \\ 68,8(3) \\ 128,2(3) \\ 117,7(3) \end{array}$	N12—C2—C1 N1—C3—N4 N1—C3—C3ii N4—C3—C3ii N11—C4—N14 N11—C4—C4iii	$126,(1) \\112,0(9) \\124,3(11) \\123,7(11) \\111,5(9) \\125,6(11)$
O7—Th01—O8 O1—Th01—Th01i	67,1(3) 32,91(15)	N14—C4—C4iii Th01—O1—Th01i	$122,9(11) \\ 114,7(3)$

Tabelle 5.7.71: Kristalldaten für SmBTT $\times 8H_2O$

Summenformel / Molmasse [g mol ⁻¹]	$C_2H_{16}BSmN_{11}O_8 / 472,62$
Messtemperatur [K]	293
Kristallgröße [mm]	$0,1 \ge 0,1 \ge 0,1$
Kristallsystem / Raumgruppe	monoklin / C_2/c (Nr. 15)
a [Å]	7,2141(17)
b [Å]	14,649(4)
c [Å]	13,419(4)
β [°]	97,25(3)
V [Å ³] , Z	1406, 77(541), 4
Dichte $[g \text{ cm}^{-3}]$	2,23137
Absorptionskoeffizient	4,239
F(000)	924
Gem, 2θ -Bereich	2,78 bis 28,03
Indexbereich	-9 <h<9, -17<l<17<="" -19<k<19,="" td=""></h<9,>
Gemessene / Unabhängige Reflexe	6500 / 1695
Beobachtete Reflexe / R_{int}	1311 / 0,3398
Daten / Restraints / Parameter	1695 / 0 / 102
$GOF F^2$	1,032
$R_1; wR_2(I > 2\sigma)$	$0,0956;\ 0,2325$
R_1 ; w R_2 (alle Daten)	0,1173; 0,2470
Restelektronendichte (max $/$ min)	4,599 / -4,714

Tabelle 5.7.72: Atomkoordinaten in SmBTT $\times 8 \mathrm{H}_2\mathrm{O}$

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
Sm1	4e	2	0	0,37692(7)	1/4	

5	Experimenteller	Teil
---	-----------------	------

Atom	Wyck.	Site	x/a	y/b	z/c	$\mathrm{U}[\mathrm{\AA}^2]$
01	8f	1	-0,3113(13)	0,4497(7)	0,1952(10)	
O2	8f	1	0,1452(15)	0,3124(9)	0,4118(11)	
O3	$8\mathrm{f}$	1	-0,0480(15)	0,4936(9)	0,3685(11)	
N1	8f	1	-0,1204(17)	0,1411(8)	0,2928(11)	
N2	$4\mathrm{e}$	2	0	0,1901(11)	1/4	
N11	$8\mathrm{f}$	1	0,2493(16)	0,2896(8)	0,1726(10)	
N12	$8\mathrm{f}$	1	0,3977(15)	0,3158(10)	0,1264(11)	
N13	$8\mathrm{f}$	1	0,4714(19)	0,2406(11)	0,0932(11)	
N14	$8\mathrm{f}$	1	0,378(2)	0,1637(11)	0,1181(14)	
C1	$8\mathrm{f}$	1	-0,248(2)	0,1983(11)	0,3310(14)	
O4	8f	1	0,1417(18)	0,0512(12)	0,4574(11)	

Tabelle 5.7.73: Anisotrope Auslenkungsparameter in SmBTT $\times 8 \mathrm{H}_2\mathrm{O}$

Atom	U_{11}	U_{22}	U ₃₃	U_{12}	U_{13}	U_{23}
Sm1	0,0120(6)	0,0121(6)	0,0396(8)	0,00000	0,0105(4)	0,00000
01	0,016(4)	0,020(5)	0,057(7)	-0,002(4)	0,011(4)	0,004(5)
O2	0,015(4)	0,042(7)	0,062(8)	-0,002(5)	0,011(5)	0,009(6)
O3	0,020(5)	0,037(7)	0,060(8)	0,002(5)	0,022(5)	-0,009(6)
N1	0,027(6)	0,013(6)	0,046(8)	-0,004(5)	0,027(5)	-0,006(5)
N2	0,027(8)	0,007(7)	0,041(11)	0,00000	$0,\!008(7)$	0,00000
N11	0,021(5)	0,014(5)	0,029(6)	-0,003(4)	0,008(5)	-0,002(5)
N12	0,010(5)	0,033(7)	0,042(8)	0,005(5)	0,018(5)	0,005(6)
N13	0,022(6)	0,043(7)	0,049(7)	0,004(6)	0,030(5)	0,003(6)
N14	0,034(7)	0,030(7)	0,067(11)	0,011(6)	0,034(7)	$0,\!006(7)$
C1	0,025(6)	0,016(7)	0,052(10)	0,003(6)	0,019(7)	0,008(7)
04	0,037(6)	0,066(10)	0,050(9)	-0,002(7)	0,019(6)	-0,004(7)

Tabelle 5.7.74: Ausgewählte Atomabstände in SmBTT $\times 8 \mathrm{H}_2\mathrm{O}$

Atome	d [Å]	Atome	d [Å]
Sm1—O3	2,389(13)	N1—C1	1,387(19)
Sm1—O3i	2,389(13)	N2—N1i	1,315(14)
Sm1-O2	2,476(14)	N11—C1i	1,340(19)
Sm1—O2i	2,476(14)	N11—N12	1,358(15)
Sm1—O1i	2,511(10)	N12—N13	1,324(19)
Sm1-O1	2,511(10)	N13—N14	1,38(2)

Atome	d [Å]	Atome	d [Å]
Sm1—N11i	2,534(12)	N14—C1i	1,331(19)
Sm1—N11	2,534(12)	C1—N14i	1,331(19)
Sm1-N2	2,736(16)	C1—N11i	1,340(19)
N1—N2	1,315(14)		

Tabelle 5.7.75: Ausgewählte Winkel in SmBTT $\!\!\times 8\mathrm{H}_{2}\mathrm{O}$

Atome	Winkel [°]	Atome	Winkel $[^{\circ}]$
O3—Sm1—O3i	88,7(7)	O1i—Sm1—N11	71,3(4)
O3— $Sm1$ — $O2$	76,7(5)	O1— $Sm1$ — $N11$	138,5(4)
O3i— $Sm1$ — $O2$	140,9(4)	N11i— $Sm1$ — $N11$	119,4(5)
O3— $Sm1$ — $O2i$	140,9(4)	O3— $Sm1$ — $N2$	135,7(3)
O3i— $Sm1$ — $O2i$	76,7(5)	O3i— $Sm1$ — $N2$	135,7(3)
O2— $Sm1$ — $O2i$	135,1(7)	O2— $Sm1$ — $N2$	67,5(3)
O3—Sm1—O1i	72,6(4)	O2i— $Sm1$ — $N2$	67,5(3)
O3i—Sm1—O1i	72,0(4)	O1i— $Sm1$ — $N2$	115,1(2)
O2— $Sm1$ — $O1i$	69,0(4)	O1— $Sm1$ — $N2$	115,1(2)
O2i—Sm1—O1i	133,1(4)	N11i— $Sm1$ — $N2$	59,7(3)
O3—Sm1—O1	72,0(4)	N11— $Sm1$ — $N2$	59,7(3)
O3i— $Sm1$ — $O1$	72,6(4)	N2—N1—C1	109,6(12)
O2— $Sm1$ — $O1$	133,1(4)	N1—N2—N1i	113,7(16)
O2i— $Sm1$ — $O1$	69,0(4)	N1— $N2$ — $Sm1$	123,2(8)
O1i—Sm1—O1	129,8(5)	N1i—N2—Sm1	123,2(8)
O3— $Sm1$ — $N11i$	85,3(4)	C1i—N11—N12	105,7(13)
O3i— $Sm1$ — $N11i$	143,5(4)	C1i— $N11$ — $Sm1$	121,(1)
O2— $Sm1$ — $N11i$	72,0(4)	N12—N11—Sm1	133,3(9)
O2i— $Sm1$ — $N11i$	85,6(4)	N13—N12—N11	107,0(13)
O1i—Sm1—N11i	138,5(4)	N12—N13—N14	111,7(12)
O1— $Sm1$ — $N11i$	71,3(4)	C1i—N14—N13	102,3(14)
O3—Sm1—N11	143,5(4)	N14i—C1—N11i	113,2(15)
O3i— $Sm1$ — $N11$	85,3(4)	N14i— $C1$ — $N1$	120,2(14)
O2— $Sm1$ — $N11$	85,6(4)	N11i—C1—N1	126,5(14)
O2i—Sm1—N11	72,0(4)		

Tabelle 5.7.76: Kristalldaten für EDTAN

Summenformel / Mo	$plmasse [g mol^{-1}]$	$C_{10}H_{12}N_6 / 216,26$	

Messtemperatur [K]	293
Kristallgröße [mm]	$0,3 \ge 0,3 \ge 0,4$
Kristallsystem / Raumgruppe	monoklin / $P2_1/n$ (Nr. 14)
a [Å]	6,0607(9)
b [Å]	8,6364(17)
c [Å]	10,9402(18)
β [°]	100,356(18)
$V [Å^3]$, Z	563,31(186), 2
Dichte $[g \text{ cm}^{-3}]$	1,27492
Absorptionskoeffizient	0,085
F(000)	228
Gem, 2θ -Bereich	3,02 bis $28,14$
Indexbereich	-7 <h<7, -11<k<11,="" -14<l<14<="" td=""></h<7,>
Gemessene / Unabhängige Reflexe	5190 / 1274
Beobachtete Reflexe / R_{int}	708 / 0,0590
Daten / Restraints / Parameter	1274 / 0 / 73
$GOF F^2$	1,028
$R_1; wR_2(I>2\sigma)$	0,0446; 0,1229
R_1 ; w R_2 (alle Daten)	$0,0899;\ 0,1327$
Restelektronendichte (max $/$ min)	$0,135 \ / \ -0,174$

	Tabele 5.1.11. Atomkoordinaten in EDTAN					
Atom	Wyck.	Site	x/a	y/b	z/c	$U[{\rm \AA}^2]$
C001	4e	1	0,4741(4)	0,3404(2)	0,8969(2)	
N002	$4\mathrm{e}$	1	0,7331(3)	0,12617(17)	0,96552(13)	
C003	$4\mathrm{e}$	1	0,5543(4)	0,0109(2)	0,94357(16)	
H00A	$4\mathrm{e}$	1	0,61560	-0,08720	0,92220	0,0350
H00B	$4\mathrm{e}$	1	$0,\!44160$	0,04320	0,87380	0,0350
C004	$4\mathrm{e}$	1	0,6606(4)	0,2811(2)	0,99026(19)	
H00C	$4\mathrm{e}$	1	0,78720	0,35090	0,99470	0,0430
H00D	$4\mathrm{e}$	1	$0,\!61510$	0,28170	1,07080	0,0430
C005	$4\mathrm{e}$	1	0,7667(4)	0,1437(3)	0,7434(2)	
C006	$4\mathrm{e}$	1	0,8784(4)	0,1205(3)	0,87340(17)	
H00E	$4\mathrm{e}$	1	0,95290	0,02060	0,87950	0,0450
H00F	$4\mathrm{e}$	1	0,99340	0,19900	0,89400	0,0450
N007	$4\mathrm{e}$	1	0,6807(4)	0,1592(3)	0,64292(17)	
N008	$4\mathrm{e}$	1	0,3282(4)	0,3802(3)	0,8245(2)	

Tabelle 5.7.77: Atomkoordinaten in EDTAN

Atom	U ₁₁	U_{22}	U ₃₃	U_{12}	U ₁₃	U ₂₃
C001	0,0448(16)	0,0291(11)	0,0488(13)	0,0029(10)	0,0132(11)	0,0046(9)
N002	0,0252(10)	0,0293(8)	0,0288(8)	-0,0016(7)	0,0041(6)	0,0032(7)
C003	0,0352(12)	0,0258(10)	0,0270(9)	-0,0015(8)	0,0072(8)	-0,0008(7)
C004	0,0371(14)	0,029(1)	0,0409(11)	-0,0052(9)	0,0047(9)	-0,0008(9)
C005	0,0333(14)	0,0480(14)	0,0392(11)	0,003(1)	0,0153(9)	0,0068(10)
C006	0,0276(14)	0,0478(13)	0,0373(10)	0,0023(10)	0,0072(8)	0,0106(9)
N007	0,0522(15)	0,0882(17)	0,0387(11)	0,0063(12)	0,0115(9)	0,012(1)
N008	0,0568(16)	0,0664(16)	0,0703(14)	0,0211(12)	0,0051(12)	0,0187(12)

Tabelle 5.7.78: Anisotrope Auslenkungsparameter in EDTAN

Tabelle 5.7.79: Ausgewählte Atomabstände in EDTAN

Atome	d [Å]	Atome	d [Å]
C001—N008	1,129(3)	N002—C003	1,459(2)
C001—C004	1,473(3)	C003—C003i	1,512(4)
N002—C004	1,449(3)	C005 - N007	1,137(3)
N002—C006	1,453(3)	C005—C006	1,474(3)

Tabelle 5.7.80: Ausgewählte Winkel in EDTAN

Atome	Winkel [°]	Atome	Winkel $[\circ]$
N008—C001—C004	177,3(2)	N002—C003—C003i	111,71(18)
C004—N002—C006	113,73(16)	N002-C004-C001	114, 35(16)
C004—N002—C003	114,84(16)	N007 - C005 - C006	178,9(2)
C006—N002—C003	112,78(15)	N002—C006—C005	115,70(17)

Tabelle 5.7.81: Kristalldaten für $^t\mathrm{BuABAN}$

Summenformel / Molmasse $[g mol^{-1}]$	$C_8H_{13}N_3 / 151,21$
Messtemperatur [K]	293
Kristallgröße [mm]	$0,1 \ge 0,2 \ge 0,1$
Kristallsystem / Raumgruppe	monoklin / $P2_1/c$ (Nr. 14)
a [Å]	11,6139

<i>b</i> [Å]	9,1141(9)
c [Å]	8,6909(13)
β [°]	92,136(18)
$V[Å^3]$, Z	919,29(65), 4
Dichte $[g \text{ cm}^{-3}]$	1,09247
Absorptionskoeffizient	0,069
F(000)	328
Gem, 2θ -Bereich	2,84 bis 28,19
Indexbereich	0 <h<15, -11<k<11,="" -11<l<11<="" td=""></h<15,>
Gemessene / Unabhängige Reflexe	4055 / 2135
Beobachtete Reflexe / R _{int}	1503 / 0,0244
Daten / Restraints / Parameter	2135 / 0 / 154
$GOF F^2$	0,936
$R_1; wR_2(I > 2\sigma)$	0,0549; 0,1465
R_1 ; w R_2 (alle Daten)	0,0713; 0,1570
Restelektronendichte (max / min)	0,035 / -0,025

Tabelle 5.7.82: Atomkoordinaten in $^t\mathrm{BuABAN}$

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
N1	4e	1	0,25817(9)	0,52457(12)	0,27057(12)	
N3	$4\mathrm{e}$	1	0,38455(13)	0,40691(18)	0,60833(16)	
N5	$4\mathrm{e}$	1	0,08629(15)	0,2211(2)	0,1723(2)	
C2	$4\mathrm{e}$	1	0,26677(12)	0,59110(16)	0,11419(15)	
C5	$4\mathrm{e}$	1	0,14781(12)	0,46477(18)	0,31257(17)	
C6	$4\mathrm{e}$	1	0,35113(11)	0,42285(16)	0,31147(15)	
C7	$4\mathrm{e}$	1	0,2767(3)	0,4768(3)	-0,0127(2)	
C9	$4\mathrm{e}$	1	0,11222(12)	0,3272(2)	0,23227(19)	
C11	$4\mathrm{e}$	1	0,36925(12)	0,41425(16)	0,47895(16)	
C15	$4\mathrm{e}$	1	0,3733(2)	0,6886(3)	0,1174(3)	
C16	$4 \mathrm{e}$	1	0,1634(2)	0,6904(3)	0,0840(3)	
H001	$4\mathrm{e}$	1	0,3398(13)	0,326(2)	0,2694(19)	0,075(4)
H002	$4\mathrm{e}$	1	0,1547(15)	0,443(2)	0,422(2)	0,088(5)
H003	$4\mathrm{e}$	1	0,4246(16)	0,457(2)	0,269(2)	0,086(5)
H004	$4\mathrm{e}$	1	0,0863(16)	0,538(2)	0,294(2)	0,088(5)
H005	$4\mathrm{e}$	1	0,277(2)	0,530(3)	-0,109(3)	0,137(8)
H006	$4\mathrm{e}$	1	0,375(2)	0,736(3)	0,018(3)	0,119(7)
H007	$4\mathrm{e}$	1	0,443(4)	0,624(4)	0,140(4)	0,177(13)
H008	$4\mathrm{e}$	1	0,172(2)	0,749(3)	-0,008(3)	0,128(8)
H009	$4\mathrm{e}$	1	0,200(2)	0,433(3)	-0,023(3)	0,124(8)
H010	$4\mathrm{e}$	1	0,150(2)	0,755(3)	0,176(3)	0,136(9)

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
H011	4e	1	0,378(3)	0,762(4)	0,208(4)	0,155(11)
H012	$4\mathrm{e}$	1	0,097(3)	0,623(3)	0,066(3)	0,127(9)
H013	4e	1	0,351(4)	0,405(5)	0,017(5)	0,186(14)

Tabelle 5.7.83: Anisotrope Auslenkungsparameter in t BuABAN

Atom	U ₁₁	U_{22}	U ₃₃	U_{12}	U_{13}	U_{23}
N1	0,0681(9)	0,0666(10)	0,0659(9)	0,0027(4)	0,0065(4)	0,0014(4)
N3	0,0983(11)	0,0959(13)	0,0786(10)	-0,0089(7)	-0,0059(6)	0,0134(6)
N5	0,0939(12)	0,1103(15)	0,1315(15)	-0,0299(9)	0,0059(8)	-0,0066(10)
C2	0,0830(11)	0,0728(11)	0,0668(10)	0,0015(5)	0,0075(5)	0,0050(5)
C5	0,0705(10)	0,0838(12)	0,0765(10)	0,0034(6)	0,0107(5)	0,0042(6)
C6	0,0722(10)	0,0687(11)	0,0722(10)	0,0030(5)	0,0024(5)	-0,0016(5)
C7	0,158(2)	0,0978(16)	0,0698(11)	-0,0153(13)	0,0208(10)	-0,0047(8)
C9	0,068(1)	0,0939(14)	0,0929(12)	-0,0119(6)	0,0047(6)	0,0069(7)
C11	0,0736(10)	0,0663(11)	0,0793(11)	-0,0039(5)	-0,0015(5)	0,0056(5)
C15	0,1091(15)	0,0938(16)	0,1043(14)	-0,020(1)	0,0109(10)	0,0216(10)
C16	0,1125(16)	0,133(2)	0,0982(15)	0,0351(14)	0,0094(11)	0,0367(12)

Tabelle 5.7.84: Ausgewählte Atomabstände in t BuABAN

Atome	d [Å]	Atome	d [Å]
N1—C5	1,4519(18)	C2—C16	1,519(2)
N1—C6	1,4570(17)	C2— $C15$	1,523(2)
N1—C2	1,4950(16)	C2-C7	1,524(2)
N3—C11	1,1338(19)	C5-C9	1,486(2)
N5—C9	1,134(2)	C6—C11	1,4650(19)

Tabelle 5.7.85: Ausgewählte Winkel in t BuABAN

	0.00		
Atome	Winkel [°]	Atome	Winkel $[^{\circ}]$
C5—N1—C6	110,66(11)	C16—C2—C7	111,31(19)
C5-N1-C2	118,06(11)	C15— $C2$ — $C7$	109, 18(17)
C6—N1—C2	113,94(10)	N1— $C5$ — $C9$	115,55(12)
N1—C2—C16	108,64(13)	N1—C6—C11	110,74(11)

Atome	Winkel [°]	Atome	Winkel [°]
N1-C2-C15 C16-C2-C15 N1-C2-C7	107,56(12) 106,97(18) 112,95(13)	N5—C9—C5 N3—C11—C6	$178,95(19) \\ 179,18(16)$

Tabelle 5.7.86: Kristalldaten für $[^{n}\mathrm{HexABAT}(\mathrm{SnMe}_{3})_{2}]$

Summenformel / Molmasse [g mol ⁻¹]	$C_{16}H_{35}Sn_2N_9 / 590,95$
Messtemperatur [K]	293
Kristallgröße [mm]	$0,1 \ge 0,2 \ge 0,1$
Kristallsystem / Raumgruppe	monoklin / $P2_1/c$ (Nr. 14)
a [Å]	6,4235(9)
b Å]	21,273(3)
	19,733(3)
	95,280(17)°
$V[Å^3]$, Z	2685,02(427), 4
Dichte $[g \text{ cm}^{-3}]$	1,4618
Absorptionskoeffizient	1,877
F(000)	1176
Gem, 2θ -Bereich	2,28 bis 28,15
Indexbereich	-7 <h<7, -26<l<26<="" -28<k<28,="" td=""></h<7,>
Gemessene / Unabhängige Reflexe	$31588 \ / \ 6077$
Beobachtete Reflexe / R_{int}	$3297 \ / \ 0,0928$
Daten / Restraints / Parameter	6077 / 11 / 232
$GOF F^2$	0,760
$R_1; wR_2(I > 2\sigma)$	0,0441;0,0874
R_1 ; w R_2 (alle Daten)	$0,0982;\ 0,0991$
Restelektronendichte (max / min)	1,350 / -0,597

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
Sn1	4e	1	0,38841(7)	0,14396(2)	0,03645(2)	
Sn3	4e	1	-0,09776(9)	0,23885(2)	0,29050(2)	
N1	$4\mathrm{e}$	1	0,1568(10)	0,1856(2)	0,1682(3)	
N2	$4\mathrm{e}$	1	0,2207(9)	0,1333(2)	0,1377(2)	
N3	$4\mathrm{e}$	1	0,0701(10)	0,1664(2)	0,2224(3)	
N5	$4\mathrm{e}$	1	0,3971(11)	-0,1016(3)	0,1028(3)	

Tabelle 5.7.87: Atomkoordinaten in $[^{n}HexABAT(SnMe_{3})_{2}]$

5 Experimenteller Teil

Atom	Wyck.	Site	x/a	y/b	z/c	$\mathrm{U}[\mathrm{\AA}^2]$
C6A	4e	1	0,6702(13)	0,1072(4)	0,0853(4)	
H6A1	$4\mathrm{e}$	1	0,66890	0,06220	0,08180	0,0980
H6A2	$4\mathrm{e}$	1	$0,\!68250$	0,11910	0,13240	0,0980
H6A3	$4\mathrm{e}$	1	0,78690	0,12360	0,06380	0,0980
N7	$4\mathrm{e}$	1	0,2733(16)	-0,0205(3)	0,2125(4)	
N8	4e	1	0,4307(9)	-0,1512(2)	0,0639(2)	
N10	$4\mathrm{e}$	1	0,2595(9)	-0,1856(2)	0,1433(3)	
N12	$4\mathrm{e}$	1	0,3483(10)	-0,2022(2)	0,0867(3)	
N18	$4\mathrm{e}$	1	0,0706(10)	0,1039(2)	0,2282(3)	
C1	$4\mathrm{e}$	1	0,2878(13)	-0,1247(3)	0,1516(3)	
C3	$4\mathrm{e}$	1	0,1945(13)	0,0175(3)	0,1554(3)	
H3A	$4\mathrm{e}$	1	0,06220	0,00030	0,13620	0,0680
H3B	$4\mathrm{e}$	1	0,29180	0,01560	0,12070	0,0680
C5	$4\mathrm{e}$	1	0,1670(14)	0,0827(5)	-0,0179(4)	,
H5A	$4\mathrm{e}$	1	0,04890	0,10670	-0,03670	0,1120
H5B	$4\mathrm{e}$	1	0.12120	0.05150	0.01260	0,1120
H5C	4e	1	0.23160	0.06240	-0.05410	0.1120
C6	$4\mathrm{e}$	1	0.1635(11)	0.0848(3)	0.1748(3)	1
C10	4e	1	-0.3013(18)	0.2602(5)	0.2046(5)	
H10A	4e	1	-0.24380	0.29380	0.17980	0.1500
H10B	4e	1	-0.43430	0.27280	0.21860	0.1500
H10C	4e	1	-0.31920	0.22370	0.17600	0.1500
C11	4e	1	0.329(2)	0.2415(4)	0.0334(5)	0,2000
H11A	4e	1	0.19420	0.24920	0.00940	0.1380
H11B	4e	1	0.43460	0.26240	0.01030	0.1380
H11C	4e	1	0.33060	0.25750	0.07890	0.1380
C12	4e	1	0.207(2)	-0.0852(4)	0.2054(5)	-,
H12A	4e	1	0.05520	-0.08530	0.19780	0.1210
H12B	4e	1	0.24290	-0.10580	0.24870	0.1210
C17	4e	1	0.1867(16)	0.2874(6)	0.3054(6)	0,1-10
H17A	4e	1	0.19370	0.31820	0.27010	0.1800
H17B	4e	1	0.30040	0.25830	0.30400	0,1800
H17C	4e	1	0 19630	0.30800	0.34890	0.1800
C20	4e	1	-0.170(3)	0.1661(5)	0.3564(7)	0,1000
H20A	4e	1	-0.06000	0.16250	0,39270	0.3340
H20R	4e	1	-0 18240	0,12720	0,33270 0,33170	0,3340
H20C	4e	1	-0 29920	0,12720 0.17530	0,33110 0.37500	0,3340
C21	4e	1	0,23320 0.498(2)	-0.0092(7)	0.2307(7)	0,0010
H21A	4e	1	0,100(2) 0.52310	0.03530	0.23780	0 2020
H21R	4e	1	0.57740	-0 02310	0 19400	0.2020
C22	тс 4е	1	0.566(2)	-0.0444(7)	0.2030(7)	0,2020
H22A	тс Де	1	0.46060	-0.03850	0.32540	0 2020
H22A	$4\mathrm{e}$	1	0,46060	-0,03850	0,32540	0,2020

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
H22B	4e	1	0,56680	-0,08880	0,28250	0,2020
C23	$4\mathrm{e}$	1	0,764(3)	-0,0297(7)	0,3292(8)	
H23A	$4\mathrm{e}$	1	0,76590	0,01420	0,34230	0,2020
H23B	$4\mathrm{e}$	1	$0,\!87300$	-0,03600	0,29880	0,2020
C24	$4\mathrm{e}$	1	0,813(5)	-0,0708(17)	0,3937(16)	
H24A	$4\mathrm{e}$	1	0,73590	-0,05640	0,43080	0,7190
H24B	$4\mathrm{e}$	1	0,77960	-0,11460	0,38440	0,7190
C25	$4\mathrm{e}$	1	1,050(5)	-0,0612(19)	0,4100(19)	
H25A	$4\mathrm{e}$	1	1,11680	-0,06120	0,36790	0,6660
H25B	$4\mathrm{e}$	1	1,07470	-0,02070	$0,\!43170$	0,6660
C26	$4\mathrm{e}$	1	1,146(6)	-0,1125(18)	0,4565(15)	
H26A	$4\mathrm{e}$	1	1,27720	-0,09810	0,47820	0,7220
H26B	$4\mathrm{e}$	1	1,16810	-0,14940	$0,\!43020$	0,7220
H26C	$4\mathrm{e}$	1	1,05320	-0,12220	$0,\!49050$	0,7220

5 Experimenteller Teil

Tabelle 5.7.88: Anisotrope Auslenkungsparameter in $[^{n}HexABAT(SnMe_{3})_{2}]$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Sn1	0,0422(3)	0,0355(2)	0,0376(2)	0,00178(18)	0,01423(16)	-0,00176(17)
Sn3	0,0644(4)	0,0432(2)	0,0448(3)	0,0026(2)	0,0254(2)	-0,0079(2)
N1	0,063(4)	0,040(3)	0,053(3)	$0,\!006(3)$	0,024(3)	-0,004(2)
N2	0,050(4)	0,037(3)	0,041(3)	0,002(2)	0,017(2)	-0,010(2)
N3	0,067(4)	0,041(3)	0,043(3)	0,003(3)	0,027(3)	-0,007(2)
N5	0,090(6)	0,045(3)	0,066(4)	0,001(3)	0,047(4)	0,004(3)
C6A	0,053(6)	0,082(6)	0,061(4)	0,003(4)	0,012(4)	-0,001(4)
N7	0,188(10)	0,035(3)	0,069(4)	0,014(4)	0,052(5)	0,005(3)
N8	0,053(4)	0,043(3)	0,040(3)	-0,001(2)	0,027(2)	0,004(2)
N10	0,058(4)	0,045(3)	0,046(3)	0,001(2)	0,027(3)	0,011(2)
N12	0,066(4)	0,043(3)	0,047(3)	-0,005(3)	0,026(3)	0,004(2)
N18	0,085(5)	0,039(3)	0,050(3)	0,007(3)	0,033(3)	-0,002(2)
C1	0,071(6)	0,047(4)	0,047(4)	0,009(3)	0,029(3)	0,002(3)
C3	0,082(6)	0,038(3)	0,052(4)	0,005(3)	0,022(4)	-0,006(3)
C5	0,065(6)	0,108(7)	0,053(4)	-0,027(5)	0,018(4)	-0,014(4)
C6	0,052(5)	0,045(3)	0,042(3)	0,000(3)	0,018(3)	-0,008(3)
C10	0,090(8)	0,114(8)	0,093(7)	0,029(6)	-0,018(6)	-0,057(6)
C11	0,160(11)	0,042(4)	0,083(6)	0,024(5)	0,058(6)	0,007(4)
C12	0,165(11)	0,061(5)	0,090(6)	0,004(6)	$0,\!086(7)$	0,014(5)
C17	0,049(7)	0,145(10)	0,163(10)	0,008(6)	-0,002(6)	-0,099(9)
C20	0,46(3)	0,061(6)	$0,\!190(13)$	0,060(12)	0,251(18)	0,029(8)
C21	0,184(11)	0,138(7)	0,168(9)	0,034(7)	-0,058(7)	0,000(6)

Atom	U ₁₁	U_{22}	U_{33}	U_{12}	U_{13}	U ₂₃
C22	0,184(11)	0,138(7)	0,168(9)	0,034(7)	-0,058(7)	0,000(6)
C23	0,184(11)	0,138(7)	0,168(9)	0,034(7)	-0,058(7)	0,000(6)
C24	0,75(9)	0,38(5)	0,56(6)	-0,15(5)	-0,52(7)	0,24(4)
C25	0,62(9)	0,72(10)	0,29(5)	0,26(8)	-0,14(5)	0,08(5)
C26	0,76(10)	0,46(7)	0,21(3)	0,10(6)	-0,02(4)	0,11(3)

Tabelle 5.7.89: Ausgewählte Atomabstände in $[^{n}$ HexABAT $(SnMe_{3})_{2}]$

Atome	d $[Å]$	Atome	d [Å]
Sn1—C11	2,111(7)	N7—C3	1,439(10)
Sn1—C6A	2,121(8)	N7—C12	1,445(11)
Sn1—C5	2,143(8)	N7—C21	1,475(13)
Sn1—N2	2,367(5)	N8—N12	1,306(7)
Sn1—N8i	2,391(4)	N8—Sn1i	2,391(4)
Sn3—C10	2,094(9)	N10—C1	1,316(8)
Sn3—C17	2,096(11)	N10—N12	1,346(7)
Sn3—C20	2,10(1)	N10—Sn3iii	2,370(5)
Sn3—N3	2,368(5)	N18—C6	1,322(7)
Sn3—N10ii	2,370(5)	C1—C12	1,486(10)
N1—N3	1,315(7)	C3—C6	1,500(8)
N1—N2	1,347(6)	C21—C22	1,486(13)
N2—C6	1,336(8)	C22—C23	1,428(14)
N3—N18	1,335(7)	C23—C24	1,552(17)
N5—N8	1,334(7)	C24— $C25$	1,54(2)
N5—C1	1,338(8)	C25— $C26$	1,518(18)

Tabelle 5.7.90: Ausgewählte Winkel in $[^{n}HexABAT(SnMe_{3})_{2}]$

Atome	Winkel [°]	Atome	Winkel $[^\circ]$
C11—Sn1—C6A	121,4(4)	N18—N3—Sn3	126,7(4)
C11— $Sn1$ — $C5$	118,3(4)	N8—N5—C1	104,3(5)
C6A— $Sn1$ — $C5$	120,2(4)	C3—N7—C12	112,2(8)
C11—Sn1—N2	91,3(3)	C3—N7—C21	111,4(8)
C6A— $Sn1$ — $N2$	91,0(2)	C12—N7—C21	116,9(10)
C5— $Sn1$ — $N2$	91,8(2)	N12—N8—N5	111,5(4)
C11— $Sn1$ — $N8i$	90,8(3)	N12—N8—Sn1i	125,7(4)
C6A— $Sn1$ — $N8i$	86,6(2)	N5—N8—Sn1i	122,9(4)

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
C5—Sn1—N8i	88,6(2)	C1—N10—N12	107,3(5)
N2—Sn1—N8i	177, 37(19)	C1— $N10$ — $Sn3iii$	131,4(4)
C10—Sn3—C17	118,6(6)	N12— $N10$ — $Sn3iii$	121,3(4)
C10—Sn3—C20	120,3(8)	N8—N12—N10	$106,\!6(5)$
C17—Sn3—C20	121,0(8)	C6—N18—N3	103,7(5)
C10—Sn3—N3	88,0(3)	N10—C1—N5	110,4(5)
C17—Sn3—N3	87,9(3)	N10— $C1$ — $C12$	126, 3(6)
C20—Sn3—N3	90,5(3)	N5-C1-C12	123,2(6)
C10—Sn3—N10ii	91,5(3)	N7—C3—C6	112,4(6)
C17—Sn3—N10ii	90,5(3)	N18—C6—N2	111,5(5)
C20—Sn3—N10ii	91,5(3)	N18—C6—C3	125,2(6)
N3—Sn3—N10ii	177,88(18)	N2—C6—C3	123,3(5)
N3—N1—N2	106,0(5)	N7-C12-C1	119,2(7)
C6—N2—N1	106,5(5)	N7-C21-C22	109,2(13)
C6—N2—Sn1	134,9(4)	C23-C22-C21	118,7(14)
N1—N2—Sn1	118,7(4)	C22-C23-C24	112,3(16)
N1—N3—N18	112,4(4)	C25-C24-C23	103,(2)
N1—N3—Sn3	120,5(4)	C26-C25-C24	112,(3)

Tabelle 5.7.91: Kristalldaten für $\mathrm{BnzH}_2\mathrm{ABAT}$

	2
Summenformel / Molmasse [g mol ⁻¹]	C ₁₁ H ₁₁ N ₉ / 269,29
Messtemperatur [K]	293
Kristallgröße [mm]	$0.3 \ge 0.3 \ge 0.4$
Kristallsystem / Raumgruppe	orthorhombisch / $P2_12_12_1$ (Nr. 19)
a [Å]	8,9341(11)
b $[Å]$	9,7691(8)
	29,308(3)
$V[A^3]$, Z	2557,95(46), 12
Dichte $[g \text{ cm}^{-3}]$	2,09765
Absorptionskoeffizient	0,145
F(000)	1680
Gem, 2θ -Bereich	2,38 bis 28,14
Indexbereich	-11 <h<11, -11<k<11,="" -38<l<38<="" td=""></h<11,>
Gemessene / Unabhängige Reflexe	19975 / 5778
Beobachtete Reflexe / R _{int}	$2541 \ / \ 0.0674$
Daten / Restraints / Parameter	5778 / 0 / 365
$GOF F^2$	0,599
$R_1; wR_2(I > 2\sigma)$	0,0381; 0,0962
R_1 ; w R_2 (alle Daten)	0,1190; 0,1435

Restelektronendichte (max $/$ min)	0,246 / -0,257	

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
N001	4a	1	1,3108(6)	0,5353(6)	-0,0184(2)	
N002	4a	1	1,1889(6)	1,0364(7)	-0,0191(2)	
N003	4a	1	1,0421(5)	0,5821(6)	-0,1073(2)	
N004	4a	1	0,7079(7)	0,8004(7)	-0,1056(2)	
N005	4a	1	1,0943(6)	1,1229(7)	0,0016(2)	
N006	4a	1	1,4534(5)	1,0825(6)	-0,1076(2)	
C007	4a	1	1,0628(8)	0,5416(8)	-0,0597(3)	
H00A	4a	1	1,07360	0,44280	-0,05860	0,0430
H00B	4a	1	0,97280	0,56500	-0,04290	0,0430
N008	4a	1	0,5707(7)	0,7396(7)	-0,1016(3)	
N009	4a	1	1,7937(6)	1,3010(7)	-0,1055(2)	
N010	4a	1	1,7639(5)	1,0782(7)	-0,1047(2)	
N011	4a	1	1,4057(6)	0,6246(7)	0,0018(2)	
N012	4a	1	0,5833(6)	0,6082(8)	-0,1011(2)	
N013	4a	1	1,1531(6)	1,2456(8)	-0,0035(2)	
N014	4a	1	1,3491(6)	0,7423(7)	-0,0027(2)	
C015	4a	1	1,6931(7)	1,2019(7)	-0,1073(2)	
N016	4a	1	1,2840(6)	1,2380(6)	-0,0262(2)	
C017	4a	1	1,1948(7)	0,6051(8)	-0,0358(2)	
N018	4a	1	1,2165(6)	0,7359(6)	-0,0263(2)	
C019	4a	1	1,1782(7)	0,5684(10)	-0,1352(3)	
H01A	4a	1	1,23210	$0,\!48730$	-0,12550	0,0590
H01B	4a	1	1,24210	$0,\!64680$	-0,12960	0,0590
N020	4a	1	0,7302(5)	0,5852(6)	-0,1048(2)	
N021	4a	1	1,9133(6)	1,1083(7)	-0,1006(2)	
C022	4a	1	0,9705(8)	0,7133(8)	-0,1135(3)	
H02A	4a	1	0,99270	0,74830	-0,14370	0,0430
H02B	4a	1	1,00900	0,77790	-0,09130	0,0430
C023	4a	1	1,3048(7)	1,1076(8)	-0,0351(2)	
C024	4a	1	1,4337(6)	1,0414(7)	-0,0604(2)	
H02C	4a	1	1,52530	1,06170	-0,04400	0,0330
H02D	4a	1	$1,\!41970$	0,94300	-0,05950	0,0330
N025	4a	1	1,9297(6)	1,2385(8)	-0,1016(3)	
C026	4a	1	1,0474(11)	0,4636(11)	-0,2021(3)	
H026	4a	1	0,99140	0,41110	-0,18180	0,0810
C027	4a	1	0,8052(8)	$0,\!6995(8)$	-0,1079(3)	

Tabelle 5.7.92: Atomkoordinaten in ${\rm BnzH_2ABAT}$

5	Experimenteller	Teil
---	-----------------	------

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
C028	4a	1	1,3492(9)	1,0608(11)	-0,1841(3)	
C029	4a	1	1,1490(9)	0,5580(11)	-0,1858(3)	
C030	4a	1	1,5281(7)	1,2154(8)	-0,1134(3)	
H03A	4a	1	1,48890	1,28000	-0,09130	0,0400
H03B	4a	1	1,50710	1,25070	-0,14370	0,0400
C031	4a	1	1,3159(9)	1,0646(11)	-0,1340(3)	
H03C	4a	1	1,24780	1,13950	-0,12760	0,0640
H03D	4a	1	1,26730	0,97990	-0,12510	0,0640
C032	4a	1	1,0927(13)	0,5256(12)	-0,2777(3)	
H032	4a	1	1,07600	0,51130	-0,30870	0,1050
C033	4a	1	1,2995(16)	1,133(2)	-0,2600(5)	
H033	4a	1	1,23970	1,18500	-0,27940	0,1590
C034	4a	1	1,2196(12)	0,6393(15)	-0,2157(5)	
H034	4a	1	1,29080	0,70160	-0,20550	0,1220
C035	4a	1	1,4374(13)	0,9629(13)	-0,2023(3)	
H035	4a	1	1,47760	0,89650	-0,18310	0,1010
C036	4a	1	1,2820(13)	1,1503(13)	-0,2148(4)	
H036	4a	1	1,22440	1,22260	-0,20390	0,1050
C037	4a	1	1,4711(16)	0,9576(18)	-0,2497(4)	
H037	4a	1	1,54080	0,89640	-0,26150	0,1230
C038	4a	1	1,0295(18)	0,4477(18)	-0,2476(4)	
H038	4a	1	0,96840	$0,\!37700$	-0,25780	0,1320
C039	4a	1	1,1854(17)	0,6303(17)	-0,2633(4)	
H039	4a	1	1,22450	$0,\!69310$	-0,28400	0,1360
C040	4a	1	1,3921(13)	1,0512(13)	-0,2778(3)	
H040	4a	1	1,40830	1,05210	-0,30920	0,1610
H050	4a	1	1,34070	$0,\!43970$	-0,01990	0,004(6)
H051	4a	1	1,14580	0,94190	-0,01970	0,50(12)
H052	4a	1	1,70960	$0,\!97680$	-0,10770	0,33(6)
H053	4a	1	0,77590	$0,\!47980$	-0,10720	0,009(7)

Tabelle 5.7.93: Anisotrope Auslenkungsparameter in $BnzH_2ABAT$

Atom	U ₁₁	U_{22}	U ₃₃	U_{12}	U_{13}	U ₂₃
N001	0,024(3)	0,024(4)	0,045(3)	-0,001(3)	-0.007(3)	0,004(3)
N002	0,032(3)	0,020(4)	0,041(3)	0,000(3)	0,005(3)	-0,005(3)
N003	0,027(3)	0,034(4)	0,038(3)	0,005(2)	0,000(2)	0,001(3)
N004	0,046(3)	0,024(4)	0,051(4)	0,000(3)	-0,009(3)	-0,003(3)
N005	0,037(3)	0,024(4)	0,044(4)	-0,007(2)	0,005(2)	-0,001(3)
N006	0,028(3)	0,030(4)	0,038(4)	-0,009(2)	0,003(2)	-0,005(3)

5	Experimenteller	Teil
---	-----------------	------

Atom	U ₁₁	U_{22}	U ₃₃	U ₁₂	U ₁₃	U ₂₃
C007	0,044(3)	0,024(4)	0,039(4)	0,004(3)	-0,012(3)	-0,001(3)
N008	0,049(3)	0,024(4)	0,065(5)	0,010(3)	0,002(3)	-0,003(3)
N009	0,020(2)	0,030(4)	0,062(4)	-0,006(2)	-0,005(3)	0,002(3)
N010	0,022(2)	0,039(4)	0,046(3)	0,007(2)	0,003(2)	-0,001(3)
N011	0,028(3)	0,028(4)	0,059(4)	-0,010(2)	-0,015(3)	-0,002(3)
N012	0,031(3)	0,043(4)	0,062(4)	-0,001(3)	-0,012(3)	0,000(4)
N013	0,038(3)	0,033(4)	0,045(4)	0,001(3)	0,005(3)	0,000(3)
N014	0,031(3)	0,021(4)	0,050(4)	0,000(2)	-0,011(2)	-0,007(3)
C015	0,027(3)	0,020(4)	0,032(3)	-0,005(3)	0,007(3)	0,001(3)
N016	0,033(3)	0,022(4)	0,053(4)	0,004(3)	0,003(3)	-0,006(3)
C017	0,034(3)	0,017(4)	0,034(3)	-0,001(3)	-0,001(3)	-0,002(3)
N018	0,027(3)	0,025(4)	0,045(4)	0,006(2)	-0,007(2)	0,001(3)
C019	0,016(2)	0,071(6)	0,061(5)	0,006(3)	0,005(3)	-0,003(4)
N020	0,029(2)	0,011(3)	0,046(3)	0,0073(19)	-0,001(2)	-0,001(2)
N021	0,028(3)	0,025(4)	0,062(4)	-0,001(3)	-0,011(3)	-0,002(3)
C022	0,036(4)	0,024(5)	0,048(5)	0,004(3)	0,000(3)	0,002(3)
C023	0,017(2)	0,025(4)	0,036(3)	-0,004(3)	0,000(3)	0,002(3)
C024	0,017(2)	0,022(4)	0,042(4)	0,003(3)	0,001(2)	0,002(3)
N025	0,017(2)	0,046(4)	0,068(5)	0,002(2)	-0,003(3)	0,001(3)
C026	$0,\!085(5)$	0,074(7)	0,042(4)	-0,004(5)	-0,015(4)	-0,005(4)
C027	0,033(3)	0,022(4)	0,034(3)	0,000(3)	0,000(3)	0,001(3)
C028	0,042(4)	0,058(7)	$0,\!051(5)$	-0,015(4)	-0,012(4)	-0,005(4)
C029	0,050(4)	0,065(7)	0,039(4)	0,018(4)	0,010(3)	0,004(4)
C030	0,024(3)	0,031(5)	0,044(4)	0,004(3)	0,003(3)	0,008(3)
C031	0,052(4)	0,072(6)	0,036(4)	-0,021(4)	-0,002(3)	-0,008(3)
C032	0,112(8)	0,103(7)	0,048(5)	0,007(5)	0,003(5)	-0,014(4)
C033	$0,\!108(8)$	0,211(18)	$0,\!078(8)$	0,001(9)	-0,050(7)	0,031(9)
C034	0,070(6)	0,142(12)	0,093(8)	-0,030(7)	0,017(6)	-0,003(7)
C035	0,115(7)	0,090(8)	0,048(5)	0,015(7)	-0,019(5)	0,003(5)
C036	$0,\!105(8)$	0,096(8)	0,061(6)	-0,006(6)	-0,039(5)	0,021(5)
C037	0,12(1)	0,134(12)	0,052(7)	-0,008(8)	0,012(7)	-0,016(6)
C038	0,167(13)	0,119(11)	0,044(6)	-0,035(9)	0,000(7)	-0,007(5)
C039	0,142(10)	0,144(14)	0,055(6)	0,031(9)	0,028(7)	$0,\!051(7)$
C040	0,137(11)	0,221(18)	0,044(6)	-0,089(11)	-0,024(7)	0,039(7)

Tabelle 5.7.94: Ausgewählte Atomabstände in ${\rm BnzH_2ABAT}$

Atome	d [Å]	Atome	d [Å]
N001—C017 N001—N011	$1,342(9) \\ 1,354(8)$	N014—N018 C015—C030	$1,374(8) \\ 1,491(9)$

Atome	d [Å]	Atome	d [Å]
N002—N005	1,340(8)	N016—C023	1,314(10)
N002—C023	1,333(9)	C017—N018	1,322(10)
N003—C022	1,444(9)	C019—C029	1,508(12)
N003—C019	1,471(9)	N020—C027	1,305(9)
N003—C007	1,463(10)	N021—N025	1,280(9)
N004—C027	1,316(10)	C022—C027	1,492(10)
N004—N008	1,366(9)	C023—C024	1,513(9)
N005—N013	1,316(9)	C026—C038	1,353(14)
N006—C024	1,452(10)	C026—C029	1,378(13)
N006—C031	1,463(9)	C028—C035	1,349(15)
N006—C030	1,470(9)	C028—C036	1,391(13)
C007—C017	1,505(10)	C028—C031	1,497(12)
N008—N012	1,289(10)	C029—C034	1,341(15)
N009—C015	1,323(9)	C032—C038	1,295(18)
N009—N025	1,365(8)	C032—C039	1,382(19)
N010—C015	1,366(10)	C033—C040	1,26(2)
N010—N021	1,373(8)	C033—C036	1,345(19)
N011—N014	1,263(9)	C034—C039	1,430(18)
N012—N020	1,335(8)	C035—C037	1,422(15)
N013—N016	1,347(8)	C037—C040	1,420(19)

5 Experimenteller Teil

Tabelle 5.7.95: Ausgewählte Winkel in $BnzH_2ABAT$

Atome	Winkel [°]	Atome	Winkel $[^{\circ}]$
C017—N001—N011	108,9(6)	N025—N021—N010	108,8(6)
N005—N002—C023	108,7(6)	N003—C022—C027	110,2(6)
C022—N003—C019	112,2(6)	N016—C023—N002	108,9(6)
C022—N003—C007	114,6(6)	N016—C023—C024	128,3(6)
C019—N003—C007	113,6(6)	N002 - C023 - C024	122,7(7)
C027—N004—N008	105,7(6)	N006—C024—C023	116, 1(5)
N013—N005—N002	105,7(6)	N021—N025—N009	110,1(6)
C024—N006—C031	111,7(5)	C038—C026—C029	119,7(11)
C024—N006—C030	114,2(6)	N020—C027—N004	107,3(6)
C031—N006—C030	115,2(6)	N020 - C027 - C022	126,4(6)
N003—C007—C017	115,5(6)	N004 - C027 - C022	126,3(7)
N012—N008—N004	110,8(6)	C035 - C028 - C036	116,3(10)
C015—N009—N025	106,3(6)	C035 - C028 - C031	121,4(9)
C015—N010—N021	105,4(6)	C036—C028—C031	122,1(10)
N014—N011—N001	106,8(5)	C034—C029—C026	118,6(10)
N008—N012—N020	104,6(6)	C034—C029—C019	121,4(10)

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
N005—N013—N016	110,6(6)	C026—C029—C019	119,9(8)
N011—N014—N018	110,9(5)	N006—C030—C015	110,9(6)
N009—C015—N010	109,3(6)	N006-C031-C028	110,8(6)
N009—C015—C030	127,8(6)	C038 - C032 - C039	119,2(10)
N010—C015—C030	122,9(6)	C040—C033—C036	124,2(12)
C023—N016—N013	106,0(6)	C039— $C034$ — $C029$	120,1(12)
N018—C017—N001	107,3(6)	C028 - C035 - C037	122,4(12)
N018—C017—C007	127,7(7)	C028—C036—C033	120,6(13)
N001—C017—C007	125,0(7)	C040 - C037 - C035	116,0(12)
C017—N018—N014	106,0(6)	C032 - C038 - C026	123,6(14)
N003—C019—C029	114,2(6)	C034— $C039$ — $C032$	118,1(11)
C027—N020—N012	111,5(6)	C033—C040—C037	119,5(10)

Tabelle 5.7.96: Kristalldaten für $[\mathrm{PNP}](\mathrm{CN}_4\mathrm{CF}_3)$

Summenformel / Molmasse [g mol ⁻¹]	$C_{38}H_{30}F_3N_5P_2 / 648,73$
Messtemperatur [K]	293
Kristallgröße [mm]	$0.2 \ge 0.2 \ge 0.2$
Kristallsystem / Raumgruppe	triklin / $P\bar{1}$ (Nr. 2)
a [Å]	9,7400(12)
b [Å]	17,133(2)
c [Å]	32,237(4)
$\alpha \left[\circ \right]$	78,233(10)
β [°]	88,343(10)
γ [°]	83,035(10)
$V [Å^3]$, Z	5227,60(1263), 6
Dichte $[g \text{ cm}^{-3}]$	1,23634
Absorptionskoeffizient	0,173
F(000)	1940
Gem, 2θ -Bereich	1,49 bis 27,36
Indexbereich	-10 <h<12, -21<k<19,="" -41<l<41<="" td=""></h<12,>
Gemessene / Unabhängige Reflexe	45143 / 21765
Beobachtete Reflexe / R_{int}	$6799 \ / \ 0.0727$
Daten / Restraints / Parameter	21765 / 0 / 285
$GOF F^2$	0,837
$R_1; wR_2(I>2\sigma)$	$0,0486;\ 0,0693$
R_1 ; w R_2 (alle Daten)	$0,1793;\ 0,0845$
Restelektronendichte (max / min)	0,422 / -0,337

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
P005	2i	1	0,67761(9)	1,03376(5)	0,20136(3)	
P156	2i	1	0,50589(9)	0,92688(6)	0,25822(3)	
N157	2i	1	0,6372(2)	0,96630(16)	0,23932(7)	
C010	2i	1	0,8032(3)	1,0858(2)	0,22073(10)	
C012	2i	1	0,3702(3)	0,93769(19)	0,22072(9)	
C013	2i	1	0,6914(4)	0,7929(2)	0,28729(10)	
H013	2i	1	0,75750	0,82860	0,28430	0,0760
C019	2i	1	0,8669(3)	1,0533(2)	0,25915(11)	
H019	2i	1	0,84120	1,00600	0,27550	0,0790
C024	2i	1	0,3942(3)	0,9008(2)	0,18637(10)	
H024	2i	1	0,47610	0,86740	0,18470	0,0730
C027	2i	1	0,7294(4)	0,7120(3)	0,30232(11)	
H027	2i	1	0,82120	0,69320	0,30920	0,0960
C028	2i	1	0,4577(4)	0,7673(2)	0,2817(1)	
H028	2i	1	0,36570	0,78560	0,27480	0,0820
C030	2i	1	0,4383(3)	0,9668(2)	0,30279(10)	
C031	2i	1	0,2976(4)	0,9134(2)	0,15457(11)	
H031	2i	1	0,31430	$0,\!88730$	0,13200	0,0820
C035	2i	1	0,5541(4)	0,8213(2)	0,27664(9)	
C037	2i	1	0,5357(3)	1,1064(2)	0,17958(10)	
C041	2i	1	0,1788(4)	0,9630(3)	$0,\!15565(13)$	
H041	2i	1	0,11480	0,97160	0,13390	$0,\!1080$
C051	2i	1	0,3413(4)	0,9306(2)	0,32965(11)	
H051	2i	1	0,30840	0,88480	0,32440	$0,\!1040$
C055	2i	1	0,7557(3)	0,9896(2)	$0,\!15888(10)$	
C062	2i	1	0,2498(4)	0,9875(3)	0,22215(12)	
H062	2i	1	0,23170	1,01280	$0,\!24500$	$0,\!1050$
C064	2i	1	0,8453(4)	1,0012(3)	0,08794(12)	
H064	2i	1	0,86560	1,03300	0,06200	$0,\!1080$
C066	2i	1	0,7885(4)	1,0372(2)	0,12069(11)	
H066	2i	1	0,77280	1,09290	$0,\!11690$	0,0960
C068	2i	1	0,4870(4)	1,1652(2)	0,20173(12)	
H068	2i	1	0,53350	1,17050	$0,\!22560$	0,0920
C069	2i	1	0,8421(3)	1,1572(2)	$0,\!19675(11)$	
H069	2i	1	0,79970	1,17960	0,17090	0,0760
C077	2i	1	0,4658(4)	1,0989(2)	0,14429(11)	
H077	2i	1	$0,\!49890$	1,05940	0,12930	0,0950
C081	2i	1	0,9439(4)	1,1951(2)	0,21131(13)	
H081	2i	1	$0,\!97010$	1,24230	$0,\!19510$	0,0910

Tabelle 5.7.97: Atomkoordinaten in $[PNP](CN_4CF_3)$
5 Experimenteller Teil

Atom	Wyck.	Site	x/a	y/b	z/c	$\mathrm{U}[\mathrm{\AA}^2]$
C084	2i	1	0,8713(4)	0,9194(3)	0,09386(14)	
H084	2i	1	0,90830	0,89570	0,07190	0,1110
C087	2i	1	0,9692(4)	1,0912(3)	0,27334(12)	
H087	2i	1	1,01350	1,06860	0,29890	0,0910
C088	2i	1	0,6314(5)	0,6592(3)	0,30709(11)	
H088	2i	1	0,65740	0,60470	0,31730	0,1060
C093	2i	1	0,4349(6)	1,0658(3)	0,34650(15)	,
H093	2i	1	0,46600	1,11210	0,35170	0,1580
C098	2i	1	0,4855(4)	1,0332(3)	0,31183(12)	,
H098	2i	1	0,55280	1,05750	0,29450	0,1150
C103	2i	1	0,7852(3)	0,9078(2)	0,16450(11)	7
H103	2i	1	0.76640	0.87560	0.19040	0.0810
C109	2i	1	1,0053(4)	1,1628(3)	0,24947(14)	7
H109	2i	1	1,07170	1,18890	0,25950	0,0950
C110	2i	1	0.3665(5)	1.2170(3)	0.18792(16)	7
H110	2i	1	0.33350	1.25740	0,20230	0.1130
C111	2i	1	0.2979(5)	1.2074(3)	0.15290(17)	1
H111	2i	1	0.21720	1.24080	0.14400	0.1310
C117	2i	1	0.3399(5)	1.0286(3)	0.37243(13)	-,
H117	2i	1	0.30700	1.04910	0.39590	0.1290
C129	2i	1	0.4959(5)	0.6863(3)	0.29695(12)	-,
H129	2i	1	0.43000	0.65040	0.30030	0.1000
C130	2i	1	0.8432(4)	0.8726(3)	0.13181(14)	0,2000
H130	2i	1	0.86260	0.81710	0.13590	0.1060
C131	2i	1	0.2926(5)	0.9621(3)	0.36447(12)	0,2000
H131	2i	1	0.22700	0.93740	0.38240	0.1230
C136	2i	1	0.1543(4)	1.0004(3)	0.18934(14)	0,1200
H136	2i	1	0.07310	1.03460	0.19030	0.1300
C137	2i	1	0.3471(5)	1.1494(3)	0.13107(14)	0,2000
H137	2i	1	0.30050	1 14390	0.10720	0.1240
P148	2i	1	0.59660(9)	0.27689(6)	0.48052(3)	0,1-10
P152	2i	1	0.41962(9)	0.32287(6)	0.39938(3)	
N159	2i	1	0.5238(3)	0.30126(18)	0.43690(8)	
C016	2i	1	0.3544(3)	0.4281(2)	0.39068(9)	
C018	2i	1	0.7407(3)	0.3317(2)	0.48026(11)	
C021	2i	1	0.2740(3)	0.2672(2)	0,10020(11) 0,40888(11)	
C022	2i	1	0.8003(4)	0.3649(2)	0,44210(11)	
H022	2i	1	0.76230	0.36010	0 41670	0.0840
C025	2i	1	0.1750(4)	0.5367(3)	0.36852(11)	0,0010
H025	2i	1	0.08700	0 55540	0.35760	0 0890
C029	2i	1	0.4574(4)	0.3389(2)	0.31265(11)	0,0000
H029	2i	1	0.37680	0.37470	0.30980	0.0860
11040	<u> </u>	Ŧ	0,01000	0,01110	0,00000	0,0000

5 Experimenteller Teil

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
C032	2i	1	0,2200(4)	0,2489(2)	0,44932(12)	
H032	2i	1	0,26190	0,26410	0,47150	0,0870
C034	2i	1	0,2236(4)	0,4551(2)	0,3744(1)	
H034	2i	1	0,16820	0,41910	0,36740	0,0730
C036	2i	1	0,4841(3)	0,2978(2)	0,52269(11)	
C045	2i	1	0,4359(4)	0,4815(3)	0,40030(11)	
H045	2i	1	0,52440	0,46350	0,41090	0,0950
C057	2i	1	0,6592(4)	0,1722(2)	0,49082(10)	
C065	2i	1	0,8018(4)	0,3384(2)	0,51772(12)	
H065	2i	1	0,76390	0,31660	0,54370	0,1000
C070	2i	1	0,9158(4)	0,4053(2)	0,44131(15)	,
H070	2i	1	0,95270	0,42930	0,41560	0,1050
C072	2i	1	0,7718(4)	0,1397(3)	0,51668(11)	,
H072	2i	1	0,81660	0,17210	0,53040	0,0980
C073	2i	1	0,9191(5)	0,3775(3)	0,51645(16)	,
H073	2i	1	0,95940	0,38160	0,54160	0,1220
C074	2i	1	0.2082(4)	0.2449(2)	0.37675(12)	,
H074	2i	1	0,24170	0,25690	0,34920	0,1000
C080	2i	1	0.3873(5)	0.5623(3)	0.39439(12)	7
H080	2i	1	0,44310	0.59850	0,40100	0.1090
C082	2i	1	0.2571(5)	0.5889(2)	0.37887(11)	7
H082	2i	1	0,22420	0.64310	0.37530	0.0960
C085	2i	1	0.8174(5)	0.0578(3)	0.52192(14)	7
H085	2i	1	0,89130	0,03550	0,53980	0,1280
C096	2i	1	0.6973(4)	0.2355(3)	0.31959(16)	7
H096	2i	1	0,77940	0,20110	0,32180	0,1260
C097	2i	1	0.6280(4)	0.2507(2)	0.35591(12)	,
H097	2i	1	0.66270	0.22540	0,38250	0.0970
C104	2i	1	0.2910(5)	0.3332(5)	0.5831(2)	7
H104	2i	1	0,22320	0,34360	0,60280	0,1610
C112	2i	1	0,3700(6)	0,2618(4)	0,58942(16)	,
H112	2i	1	0.36180	0.22500	0.61470	0.1620
C113	2i	1	0.5082(3)	0.3032(2)	0.35274(10)	7
C114	2i	1	0.3100(5)	0.3910(4)	0.54753(17)	
H114	2i	1	0,25920	0,44150	0,54380	0.1550
C115	2i	1	0.5966(4)	0.1219(3)	0.47053(13)	7
H115	2i	1	0.52120	0.14310	0,45310	0.1080
C116	2i	1	0.4651(4)	0.2419(3)	0.55840(13)	7
H116	2i	1	0,51450	0,19100	0,56220	0.1270
C119	2i	1	0.7546(7)	0.0099(3)	0.50102(17)	-,5
H119	2i	1	0.78780	-0.04420	0.50420	0.1460
C120	2i	1	0,5264(5)	0,3214(3)	0,27683(12)	- ,

5 Experimenteller Teil

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1180 0,1150 0,1170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,1150 0,1170
H121 $2i$ 1 $0,41960$ $0,41070$ $0,49300$ C125 $2i$ 1 $0.0410(5)$ $0.1864(3)$ $0.42527(19)$	0,1150 0,1170
C125 2i 1 $0.0410(5)$ $0.1864(3)$ $0.42527(19)$	0,1170
	0,1170
H125 2i 1 -0,03670 0,15920 0,43080	0 1070
C126 2i 1 $0,1048(4)$ $0,2084(3)$ $0,45728(15)$	0 1070
H126 2i 1 0,07060 0,19610 0,48480	0,1070
C127 2i 1 $0,6446(5)$ $0,2711(3)$ $0,28087(15)$	
H127 2i 1 0,69120 0,26050 0,25670	0,1190
C138 2i 1 $0,0912(5)$ $0,2043(3)$ $0,38521(16)$	
H138 2i 1 0,04760 0,18940 0,36320	0,1270
C140 2i 1 $0,6433(6)$ $0,0413(3)$ $0,47553(16)$	*
H140 2i 1 0,59950 0,00860 0,46170	0,1390
C160 2i 1 $0,9753(4)$ $0,4096(3)$ $0,47886(18)$	*
H160 2i 1 1,05480 0,43480 0,47840	0,1150
P151 2i 1 0,48990(8) 0,70273(5) 0,07881(2)	7
P153 2i 1 0.31590(9) 0.58501(5) 0.12862(2)	
N158 2i 1 $0.3616(2)$ $0.65687(15)$ $0.09422(7)$	
C011 2i 1 $0.6181(3)$ $0.69038(18)$ $0.11949(9)$	
C014 2i 1 $0.5728(3)$ $0.6688(2)$ $0.03441(9)$	
C015 2i 1 $0.2987(4)$ $0.8335(2)$ $0.05086(9)$	
H015 2i 1 0.23710 0.79650 0.05010	0.0760
C023 2i 1 $0.4347(3)$ $0.8082(2)$ $0.06365(9)$	1
C026 2i 1 $0.1205(4)$ $0.4800(2)$ $0.13014(11)$	
H026 2i 1 0.15720 0.45430 0.15640	0.0810
C033 2i 1 $0.2522(3)$ $0.6177(2)$ $0.17576(10)$	-)
C039 2i 1 $0.7997(4)$ $0.6620(2)$ $0.18639(12)$	
H039 2i 1 0.86060 0.65200 0.20910	0.0920
C040 2i 1 $0.5784(3)$ $0.71336(19)$ $0.15711(10)$	-)
H040 2i 1 0.48960 0.73880 0.15990	0.0680
C042 2i 1 $0.5256(4)$ $0.8640(2)$ $0.06459(10)$	-)
H042 2i 1 0.61660 0.84650 0.07310	0.0780
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,0100
H043 $2i$ 1 0.39290 0.43450 0.10430	0.0860
C044 2i 1 $0.4490(3)$ $0.5021(2)$ $0.14434(10)$	0,0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H046 $2i$ 1 0.77990 0.64160 0.08960	0.0840
C047 2i 1 $0.6516(4)$ $0.5598(3)$ $-0.00082(13)$	0,0010
H047 2i 1 0.65430 0.50600 -0.00240	0.1080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,2000
H048 2i 1 0.54380 0.54930 0.18670	0.0870
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-,

Atom	Wyck.	Site	x/a	y/b	z/c	$\mathrm{U}[\mathrm{\AA}^2]$
H049	2i	1	0,11130	0,69130	0,27070	0,1130
C052	2i	1	0,7177(4)	0,6106(3)	-0,03024(12)	
H052	2i	1	0,76510	0,59130	-0,05220	0,0940
C054	2i	1	0,2052(3)	0,6984(2)	0,17301(11)	
H054	2i	1	0,20810	0,73420	0,14720	0,0820
C056	2i	1	0,1214(3)	0,5844(2)	0,06835(10)	
H056	2i	1	0,15790	0,62920	0,05280	0,0760
C059	2i	1	0,0103(4)	0,4520(2)	0,11414(14)	
H059	2i	1	-0,02810	0,40790	0,12960	0,0990
C060	2i	1	0,8418(4)	0,6396(3)	0,14955(13)	
H060	2i	1	0,93070	0,61410	0,14710	$0,\!1100$
C061	2i	1	0,1771(3)	0,5467(2)	0,10694(10)	
C063	2i	1	0,1909(4)	0,5927(3)	0,24960(12)	
H063	2i	1	0,18610	0,55700	0,27540	0,1140
C067	2i	1	0,2563(4)	0.9164(3)	0,03914(11)	,
H067	2i	1	0,16580	0,93460	0,03040	0,0940
C071	2i	1	0,5794(4)	0,5895(2)	0,03184(11)	,
H071	2i	1	0,53490	0,55470	0,05230	0,0930
C076	2i	1	0,6693(4)	0,6990(2)	0,19064(10)	,
H076	2i	1	0,64180	0,71440	0,21600	0,0840
C078	2i	1	-0.0419(4)	0.4898(3)	0.07527(16)	,
H078	2i	1	-0,11450	0.47010	0.06420	0.1050
C079	2i	1	0.5708(5)	0.3773(3)	0.13210(15)	,
H079	2i	1	0.57760	0.33360	0.11880	0.1180
C089	2i	1	0.3473(5)	0.9703(3)	0.04057(11))
H089	2i	1	0.31770	1.02500	0.03300	0.1070
C090	2i	1	0.4827(5)	0.9454(2)	0.05303(12)	,
H090	2i	1	0.54400	0.98280	0.05360	0.0990
C091	2i	1	0.6445(4)	0.7185(2)	0.00418(11)	-)
H091	2i	1	0.64450	0.77210	0.00570	0.0980
C094	2i	1	0.0106(4)	0.5557(3)	0.05255(12)	-)
H094	2i	1	-0.02770	0.58140	0.02650	0.0920
C095	2i	1	0.6691(4)	0.3833(3)	0.16007(16)	-)
H095	2i	1	0.74430	0.34370	0.16520	0.1160
C101	2i	1	0.6606(4)	0.4456(3)	0.18067(13)	-)
H101	2i	1	0.72860	0.44770	0.20000	0.1060
C105	2i	1	0.2429(4)	0.5651(2)	0.21414(11)	0,2000
H105	2i	1	0.27180	0.51070	0.21620	0.0940
C106	2i	1	0.1532(4)	0.7261(3)	0.20921(15)	0,0010
H106	 2i	-	0.12370	0.78030	0.20750	0.1070
C118	2i	1	0.7162(4)	0.6891(3)	-0.02833(12)	0,1010
H118	2i	1	0,76290	0,72290	-0,04870	0,1080

5 Experimenteller Teil

Atom	Wyck.	Site	x/a	y/b	z/c	$U[Å^2]$
F020	2i	1	0,7571(3)	0,4631(3)	0,28244(13)	
F053	2i	1	0,9097(3)	0,5135(2)	0,30728(13)	
F135	2i	1	0,8569(5)	0,4051(3)	0,33547(13)	
N017	2i	1	1,0874(4)	0,3587(2)	0,22601(11)	
N038	2i	1	0,9640(4)	0,3934(2)	0,23726(11)	
N086	2i	1	1,1737(4)	0,3554(2)	0,25534(15)	
N100	2i	1	1,1082(5)	0,3856(3)	0,28686(12)	
C050	2i	1	0,9824(4)	0,4077(2)	0,27435(12)	
C099	2i	1	0,8793(6)	0,4462(4)	0,29740(19)	
F102	2i	1	0,0963(6)	0,0109(3)	0,6079(2)	
C132	2i	1	0,1444(12)	0,0772(6)	0,6107(2)	
F139	2i	1	0,2491(6)	0,0496(5)	0,6333(2)	
N124	2i	1	-0,0382(7)	0,1812(4)	0,59888(19)	
N142	2i	1	0,0469(6)	0,1455(4)	0,66106(19)	
N154	2i	1	-0,0935(10)	0,2248(5)	0,6264(4)	
N155	2i	1	-0,0532(10)	0,2087(6)	0,6631(3)	
C092	2i	1	0,0511(6)	0,1353(4)	0,6244(2)	
F144	2i	1	0,1960(7)	0,0953(3)	0,57459(18)	
F108	2i	1	0,8056(5)	0,3357(2)	0,03454(14)	
F122	2i	1	0,7297(5)	0,2358(3)	0,0651(2)	
F128	2i	1	0,8668(8)	0,2770(4)	0,09221(16)	
N123	2i	1	0,9656(5)	0,2169(3)	-0,00039(16)	
N134	2i	1	1,0379(6)	0,1707(4)	0,06412(17)	
N149	2i	1	1,1171(8)	0,1397(4)	0,0347(3)	
N150	2i	1	1,0733(9)	0,1622(6)	-0,0020(3)	
C058	2i	1	0,9507(5)	0,2174(3)	0,03892(18)	
C133	2i	1	0,8443(8)	0,2709(5)	0,0553(2)	

Tabelle 5.7.98: Anisotrope Auslenkungsparameter in $[PNP](CN_4CF_3)$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
P005	0,0511(6)	0,0535(6)	0,0534(5)	-0,0048(5)	0,0003(4)	-0,0117(5)
P156	0,0504(6)	0,0561(6)	0,0489(5)	-0,0031(5)	0,0029(4)	-0,0123(4)
N157	0,0451(16)	0,067(2)	0,0522(16)	-0,0084(14)	0,0025(12)	-0,0040(14)
C010	0,049(2)	0,052(2)	0,058(2)	-0,0055(18)	0,0036(17)	-0,0198(18)
C012	0,0401(19)	0,058(2)	0,052(2)	0,0001(17)	0,0038(15)	-0,0172(17)
C013	0,065(3)	$0,\!070(3)$	0,054(2)	-0,002(2)	-0,0001(18)	-0,0136(19)
C019	0,057(2)	$0,\!080(3)$	0,065(2)	-0,010(2)	0,0041(19)	-0,023(2)
C024	0,055(2)	0,062(2)	0,065(2)	0,0078(18)	-0,0081(19)	-0,0201(19)
C027	0,085(3)	0,079(3)	0,067(3)	0,016(3)	-0,005(2)	-0,010(2)

Atom	U ₁₁	U_{22}	U ₃₃	U_{12}	U ₁₃	U ₂₃
C028	0,068(3)	0,060(3)	0,072(2)	-0,003(2)	0,0041(19)	-0,006(2)
C030	0,062(2)	0,060(2)	0,055(2)	-0,006(2)	0,0070(18)	-0,0198(19)
C031	0,075(3)	0,074(3)	0,061(2)	-0,001(2)	-0,007(2)	-0,026(2)
C035	0,057(2)	0,052(2)	0,0495(19)	-0,008(2)	0,0055(17)	-0,0121(16)
C037	0,050(2)	0,056(2)	0,059(2)	0,0006(18)	-0,0041(17)	-0,0058(18)
C041	0,071(3)	0,118(4)	0,083(3)	0,009(3)	-0,025(2)	-0,035(3)
C051	0,108(3)	0,091(3)	0,068(3)	-0,027(3)	0,028(2)	-0,028(2)
C055	0,058(2)	0,064(3)	0,053(2)	-0,010(2)	0,0052(17)	-0,0208(19)
C062	0,062(3)	0,128(4)	0,077(3)	0,017(3)	-0,008(2)	-0,048(3)
C064	0,100(3)	0,118(4)	0,060(3)	-0,041(3)	0,022(2)	-0,026(3)
C066	0,093(3)	0,083(3)	0,068(3)	-0,025(2)	0,020(2)	-0,023(2)
C068	0,056(2)	0,072(3)	0,098(3)	0,004(2)	-0,006(2)	-0,017(2)
C069	0,056(2)	$0,\!059(3)$	0,076(2)	-0,002(2)	-0,0022(19)	-0,019(2)
C077	0,075(3)	$0,\!085(3)$	0,069(3)	0,006(2)	-0,018(2)	-0,001(2)
C081	0,072(3)	0,063(3)	0,097(3)	-0,015(2)	0,004(2)	-0,023(2)
C084	0,080(3)	0,131(4)	0,091(3)	-0,038(3)	0,022(2)	-0,064(3)
C087	0,058(2)	0,101(4)	0,075(3)	-0,001(2)	-0,013(2)	-0,036(3)
C088	0,120(4)	0,064(3)	0,070(3)	$0,\!007(3)$	0,000(3)	0,000(2)
C093	0,182(5)	0,121(4)	0,119(4)	-0,052(4)	0,061(4)	-0,080(4)
C098	0,121(4)	0,098(3)	0,084(3)	-0,030(3)	0,042(3)	-0,048(3)
C103	0,068(3)	0,064(3)	0,074(3)	-0,009(2)	0,010(2)	-0,024(2)
C109	0,062(3)	$0,\!080(3)$	0,109(3)	-0,015(2)	0,005(3)	-0,050(3)
C110	0,078(3)	$0,\!077(3)$	0,121(4)	0,012(3)	0,013(3)	-0,022(3)
C111	0,068(3)	0,110(5)	0,126(5)	0,014(3)	-0,007(3)	0,018(3)
C117	0,145(5)	0,107(4)	0,079(3)	-0,013(4)	0,035(3)	-0,046(3)
C129	0,096(3)	0,066(3)	0,086(3)	-0,015(3)	0,007(3)	-0,007(2)
C130	0,089(3)	0,086(3)	0,103(3)	-0,018(3)	0,023(3)	-0,047(3)
C131	0,124(4)	0,113(4)	0,073(3)	-0,019(3)	0,045(3)	-0,030(3)
C136	0,065(3)	0,154(5)	0,110(4)	0,039(3)	-0,018(3)	-0,067(3)
C137	0,083(4)	0,116(4)	0,097(4)	0,004(3)	-0,033(3)	0,006(3)
P148	0,0541(6)	0,0637(7)	0,0527(5)	0,0009(5)	-0,0048(4)	-0,0117(5)
P152	0,0518(6)	$0,\!0589(7)$	0,0529(5)	-0,0008(5)	-0,0033(4)	-0,0135(5)
N159	0,0667(19)	0,092(2)	0,0457(15)	0,0059(17)	-0,0234(14)	-0,0126(15)
C016	0,053(2)	0,056(2)	0,0463(19)	-0,002(2)	0,0009(16)	-0,0137(17)
C018	0,056(2)	0,067(3)	0,059(2)	-0,0028(19)	0,0003(18)	-0,0201(19)
C021	0,056(2)	0,052(2)	0,064(2)	0,0035(18)	-0,0010(19)	-0,0081(19)
C022	0,061(2)	0,073(3)	0,074(3)	0,000(2)	-0,004(2)	-0,014(2)
C025	0,074(3)	0,073(3)	0,073(3)	0,013(3)	-0,006(2)	-0,018(2)
C029	0,063(2)	0,095(3)	0,059(2)	-0,001(2)	0,0036(19)	-0,029(2)
C032	0,061(3)	0,076(3)	0,081(3)	-0,008(2)	0,008(2)	-0,018(2)
C034	0,060(2)	$0,\!059(3)$	0,063(2)	-0,004(2)	0,0034(18)	-0,0138(19)
C036	0,058(2)	0,084(3)	0,054(2)	-0,005(2)	-0,0045(18)	-0,019(2)

5 Experimenteller Teil

Atom	U ₁₁	U_{22}	U ₃₃	U ₁₂	U ₁₃	U ₂₃
C045	0,074(3)	0,068(3)	0,097(3)	-0,008(2)	-0,021(2)	-0,017(2)
C057	0,065(2)	0,061(3)	0,054(2)	-0,005(2)	0,0025(18)	-0,0130(19)
C065	0,080(3)	0,106(4)	0,074(3)	-0,023(3)	-0,006(2)	-0,033(2)
C070	0,071(3)	0,077(3)	0,112(4)	-0,006(2)	0,014(3)	-0,015(3)
C072	0,088(3)	0,082(3)	0,064(2)	0,007(3)	-0,004(2)	0,002(2)
C073	0,080(3)	0,130(4)	0,112(4)	-0,025(3)	-0,007(3)	-0,054(3)
C074	0,082(3)	0,085(3)	0,087(3)	-0,024(3)	-0,002(2)	-0,018(2)
C080	0,112(4)	0,069(3)	0,098(3)	-0,026(3)	-0,016(3)	-0,021(3)
C082	0,106(4)	0,056(3)	0,074(3)	0,006(3)	0,001(2)	-0,015(2)
C085	0,111(4)	0,098(4)	0,084(3)	0,033(3)	0,016(3)	0,014(3)
C096	0,073(3)	0,137(5)	0,113(4)	0,023(3)	0,007(3)	-0,066(3)
C097	0,069(3)	0,092(3)	0,081(3)	0,013(2)	-0,004(2)	-0,032(2)
C104	0,076(4)	0,236(8)	0,113(5)	-0,014(4)	0,008(3)	-0,094(6)
C112	0,144(5)	0,178(6)	0,088(4)	-0,034(4)	0,048(4)	-0,038(4)
C113	0,050(2)	0,068(3)	0,061(2)	-0,0030(19)	-0,0013(17)	-0,0254(19)
C114	0,091(4)	0,206(7)	0,097(4)	0,051(4)	-0,016(3)	-0,087(4)
C115	0,103(3)	0,062(3)	0,102(3)	0,000(3)	-0,018(2)	-0,014(3)
C116	0,113(4)	0,125(4)	0,087(3)	-0,024(3)	0,036(3)	-0,037(3)
C119	0,164(6)	0,072(4)	0,113(4)	0,027(4)	0,014(4)	-0,007(3)
C120	0,086(3)	0,157(5)	0,061(3)	-0,003(3)	0,008(2)	-0,046(3)
C121	0,094(3)	0,118(4)	0,074(3)	0,021(3)	-0,006(2)	-0,034(3)
C125	0,067(3)	0,067(3)	0,156(5)	-0,018(2)	0,008(3)	-0,010(3)
C126	0,068(3)	0,075(3)	0,113(4)	-0,003(3)	0,019(3)	$0,\!003(3)$
C127	0,076(3)	0,150(5)	0,091(3)	-0,015(3)	0,019(3)	-0,071(3)
C138	0,089(3)	0,117(4)	0,124(4)	-0,043(3)	-0,008(3)	-0,037(3)
C140	0,144(5)	0,069(4)	0,138(4)	-0,011(3)	-0,016(4)	-0,025(3)
C160	0,072(3)	0,089(4)	0,140(4)	-0,023(3)	0,001(3)	-0,047(3)
P151	0,0463(5)	0,0543(6)	0,0450(5)	-0,0025(5)	0,0012(4)	-0,0115(4)
P153	0,0452(5)	0,0582(6)	0,0468(5)	-0,0035(5)	-0,0022(4)	-0,0121(4)
N158	0,0431(15)	0,0615(19)	0,0490(15)	-0,0099(14)	0,0011(12)	0,0012(14)
C011	0,0420(19)	0,047(2)	0,0532(19)	-0,0009(16)	0,0002(15)	-0,0172(16)
C014	0,048(2)	0,061(2)	0,0453(19)	-0,0003(19)	-0,0036(15)	-0,0135(17)
C015	0,064(3)	0,067(3)	0,056(2)	0,005(2)	-0,0066(18)	-0,0125(19)
C023	0,048(2)	0,054(2)	0,0516(19)	0,0018(19)	0,0004(16)	-0,0112(17)
C026	0,058(2)	0,073(3)	0,073(2)	-0,008(2)	-0,0013(19)	-0,022(2)
C033	0,057(2)	0,057(2)	0,053(2)	-0,0098(19)	0,0034(16)	-0,0116(18)
C039	0,063(3)	0,085(3)	0,085(3)	0,011(2)	-0,033(2)	-0,033(2)
C040	0,050(2)	0,066(3)	0,057(2)	-0,0012(18)	-0,0016(17)	-0,0233(18)
C042	0,061(2)	$0,\!059(3)$	0,070(2)	0,001(2)	-0,0053(18)	-0,006(2)
C043	0,064(3)	0,073(3)	0,075(2)	0,011(2)	-0,0056(19)	-0,022(2)
C044	0,045(2)	0,058(2)	0,054(2)	-0,0045(18)	-0,0077(16)	-0,0029(18)
C046	0,057(2)	0,091(3)	0,067(2)	0,005(2)	-0,0076(19)	-0,037(2)

Atom	U ₁₁	U_{22}	U ₃₃	U ₁₂	U ₁₃	U ₂₃
C047	0,096(3)	0,095(3)	0,099(3)	-0,022(3)	0,020(3)	-0,059(3)
C048	0,073(3)	0,065(3)	0,076(3)	-0,010(2)	-0,019(2)	0,002(2)
C049	0,085(3)	0,129(4)	0,090(3)	-0,032(3)	0,030(3)	-0,066(3)
C052	0,070(3)	0,110(4)	0,065(3)	-0,002(3)	0,006(2)	-0,047(3)
C054	0,055(2)	0,079(3)	0,073(2)	-0,008(2)	0,0075(19)	-0,023(2)
C056	0,060(2)	0,066(3)	0,065(2)	-0,001(2)	-0,0059(19)	-0,020(2)
C059	0,060(3)	0,084(3)	0,109(3)	-0,022(2)	0,012(2)	-0,028(3)
C060	0,058(3)	0,114(4)	0,108(3)	0,025(2)	-0,020(2)	-0,054(3)
C061	0,0402(19)	0,058(2)	0,0495(19)	-0,0032(18)	0,0005(15)	-0,0173(17)
C063	0,113(4)	0,125(4)	0,055(2)	-0,036(3)	0,018(2)	-0,025(3)
C067	0,075(3)	0,077(3)	0,071(3)	0,021(3)	-0,009(2)	-0,003(2)
C071	0,089(3)	0,077(3)	0,075(3)	-0,025(2)	0,028(2)	-0,031(2)
C076	0,075(3)	0,086(3)	0,054(2)	-0,009(2)	-0,006(2)	-0,027(2)
C078	0,056(3)	0,096(4)	0,125(4)	-0,007(3)	-0,012(3)	-0,055(3)
C079	0,078(3)	0,078(3)	0,132(4)	0,018(3)	0,000(3)	-0,020(3)
C089	0,109(4)	0,067(3)	0,076(3)	0,018(3)	0,008(3)	0,005(2)
C090	0,091(3)	0,056(3)	0,096(3)	-0,010(2)	0,012(3)	-0,004(2)
C091	0,093(3)	0,078(3)	0,071(3)	-0,002(2)	0,025(2)	-0,018(2)
C094	0,067(3)	0,084(3)	0,083(3)	0,001(2)	-0,025(2)	-0,031(2)
C095	0,058(3)	0,080(4)	0,131(4)	0,016(3)	0,001(3)	0,017(3)
C101	0,070(3)	0,086(4)	0,098(3)	-0,006(3)	-0,030(2)	0,010(3)
C105	0,103(3)	0,085(3)	0,051(2)	-0,023(2)	0,010(2)	-0,017(2)
C106	0,076(3)	0,099(4)	0,104(3)	-0,016(3)	0,021(3)	-0,048(3)
C118	0,103(3)	0,097(4)	0,065(3)	-0,002(3)	0,029(2)	-0,012(3)
F020	0,075(2)	0,334(5)	0,259(4)	0,032(3)	-0,025(2)	-0,201(4)
F053	0,118(3)	0,203(4)	0,306(5)	-0,031(3)	0,042(3)	-0,180(4)
F135	0,271(5)	$0,\!307(6)$	0,139(3)	-0,049(4)	0,097(3)	-0,063(3)
N017	0,097(3)	$0,\!091(3)$	0,087(3)	-0,009(2)	0,005(2)	-0,026(2)
N038	0,080(3)	0,137(3)	0,086(3)	0,008(2)	-0,020(2)	-0,042(2)
N086	0,089(3)	0,116(3)	0,125(3)	0,009(2)	-0,036(3)	-0,041(3)
N100	0,104(3)	0,161(4)	0,097(3)	0,034(3)	-0,044(3)	-0,054(3)
C050	0,059(3)	0,062(3)	0,070(3)	-0,010(2)	-0,015(2)	-0,018(2)
C099	0,094(4)	0,146(5)	0,112(4)	-0,019(4)	0,003(3)	-0,058(4)
F102	0,230(5)	0,165(4)	0,430(9)	-0,008(4)	0,039(5)	-0,133(5)
C132	0,224(10)	0,176(9)	0,098(5)	-0,009(8)	-0,014(6)	-0,026(6)
F139	0,212(5)	0,42(1)	0,326(8)	0,176(6)	-0,075(5)	-0,136(6)
N124	0,253(7)	0,138(6)	0,187(6)	0,013(5)	-0,141(6)	0,008(4)
N142	0,160(5)	0,200(6)	0,131(4)	0,031(4)	-0,038(4)	-0,080(4)
N154	0,260(9)	0,097(5)	0,338(13)	0,036(5)	-0,042(9)	-0,096(7)
N155	0,181(7)	0,228(9)	0,263(9)	0,002(6)	-0,011(7)	-0,155(8)
C092	0,104(4)	0,092(4)	0,090(4)	-0,012(3)	-0,023(3)	-0,013(3)
F144	0,50(1)	0,260(6)	0,207(5)	-0,064(6)	0,173(6)	-0,088(5)

Atom	U ₁₁	U_{22}	U ₃₃	U_{12}	U ₁₃	U ₂₃
F108	0,344(6)	0,137(3)	0,222(4)	0,121(4)	0,147(4)	0,062(3)
F122	0,183(4)	0,132(3)	0,461(9)	0,012(3)	0,109(5)	-0,062(4)
F128	0,489(11)	0,284(6)	0,125(4)	0,032(7)	0,061(5)	-0,055(4)
N123	0,116(4)	0,252(6)	0,103(3)	0,020(4)	-0,025(3)	-0,088(4)
N134	0,136(5)	0,130(5)	0,178(5)	-0,001(4)	-0,059(4)	0,018(4)
N149	0,111(5)	0,110(4)	0,338(12)	0,017(3)	0,018(7)	-0,083(7)
N150	0,144(7)	0,296(11)	0,270(9)	0,002(6)	0,010(6)	-0,231(9)
C058	0,083(4)	0,075(3)	0,095(4)	0,009(3)	-0,007(3)	-0,023(3)
C133	0,149(6)	0,183(8)	0,103(5)	-0,024(6)	0,014(5)	0,046(5)

Tabelle 5.7.99: Ausgewählte Atomabstände in $[PNP](CN_4CF_3)$

Atome	d [Å]	Atome	d [Å]
P005—N157	1,579(2)	C104—C114	1,378(7)
P005—C037	1,799(3)	C104—H104	0,9300
P005—C010	1,794(3)	C112—C116	1,408(5)
P005—C055	1,802(3)	C112—H112	0,9300
P156—N157	1,569(2)	C114—C121	1,394(5)
P156—C012	1,785(3)	C114—H114	$0,\!9300$
P156—C035	1,794(3)	C115—C140	1,378(5)
P156—C030	1,789(3)	C115—H115	$0,\!9300$
C010—C019	1,381(4)	C116—H116	$0,\!9300$
C010—C069	1,395(4)	C119—C140	1,368(6)
C012—C062	1,370(4)	C119—H119	$0,\!9300$
C012—C024	1,383(4)	C120—C127	1,344(5)
C013—C027	1,380(5)	C120—H120	$0,\!9300$
C013—C035	1,394(4)	C121—H121	$0,\!9300$
C013—H013	0,9300	C125 - C126	1,359(5)
C019—C087	1,389(5)	C125—C138	1,356(5)
C019—H019	0,9300	C125—H125	$0,\!9300$
C024 - C031	1,378(4)	C126—H126	$0,\!9300$
C024—H024	0,9300	C127—H127	$0,\!9300$
C027 - C088	1,378(5)	C138—H138	$0,\!9300$
C027—H027	0,9300	C140—H140	$0,\!9300$
C028-C035	1,380(4)	C160—H160	$0,\!9300$
C028-C129	1,383(4)	P151—N158	1,571(2)
C028—H028	0,9300	P151—C014	1,788(3)
C030—C098	1,364(5)	P151—C011	$1,\!800(3)$
C030—C051	1,379(4)	P151—C023	1,793(3)
C031—C041	1,355(4)	P153—N158	1,579(2)

5	Experimenteller	Teil
---	-----------------	------

Atome	d [Å]	Atome	d [Å]
С031—Н031	0,9300	P153—C033	1,794(3)
C037—C077	1,378(4)	P153—C061	1,790(3)
C037—C068	1,381(4)	P153—C044	1,804(3)
C041—C136	1,370(5)	C011—C046	1,374(4)
C041—H041	0,9300	C011—C040	1,381(4)
C051—C131	1,390(5)	C014—C071	1,372(4)
C051—H051	0,9300	C014—C091	1,389(4)
C055—C103	1,371(4)	C015—C023	1,390(4)
C055—C066	1,384(4)	C015—C067	1,407(5)
C062—C136	1,395(5)	C015—H015	0,9300
C062—H062	0,9300	C023—C042	1,384(4)
C064—C084	1,369(5)	C026-C059	1,380(5)
C064—C066	1,397(5)	C026—C061	1,396(4)
C064—H064	0,9300	C026—H026	0,9300
C066—H066	0,9300	C033—C105	1,382(4)
C068—C110	1,407(5)	C033—C054	1,388(4)
C068—H068	0,9300	C039—C060	1,359(4)
C069—C081	1,390(5)	C039—C076	1,365(4)
C069—H069	0,9300	C039—H039	0,9300
C077—C137	1,379(5)	C040—C076	1,381(4)
C077—H077	0,9300	C040—H040	0,9300
C081—C109	1,364(5)	C042—C090	1,384(4)
C081—H081	0,9300	C042—H042	0,9300
C084—C130	1,359(5)	C043—C079	1,390(5)
C084—H084	0,9300	C043—C044	1,396(4)
C087—C109	1,386(5)	C043—H043	0,9300
C087—H087	0,9300	C044—C048	1,383(4)
C088—C129	1,371(5)	C046—C060	1,401(4)
C088—H088	0,9300	C046—H046	0,9300
C093—C117	1,357(6)	C047 - C052	1,355(5)
C093—C098	1,399(5)	C047—C071	1,396(4)
C093—H093	0,9300	C047—H047	0,9300
C098—H098	0,9300	C048—C101	1,397(5)
C103—C130	1,391(4)	C048—H048	0,9300
C103—H103	0,9300	C049—C106	1,362(5)
C109—H109	0,9300	C049—C063	1,378(5)
C110—C111	1,376(6)	C049—H049	0,9300
C110—H110	0,9300	C052—C118	1,356(5)
C111—C137	1,365(6)	C052—H052	0,9300
C111—H111	0,9300	C054—C106	1,406(4)
C117—C131	1,353(5)	C054 - H054	0,9300
C117—H117	0,9300	C056—C061	1,373(4)

Atome	d [Å]	Atome	d [Å]
C129—H129	0,9300	C056—C094	1,389(4)
C130—H130	0,9300	C056—H056	0,9300
C131—H131	0,9300	C059—C078	1,369(5)
C136—H136	0,9300	C059—H059	0,9300
C137—H137	0,9300	C060—H060	0,9300
P148—N159	1,550(2)	C063—C105	1,384(4)
P148—C018	1,779(3)	C063—H063	0,9300
P148—C057	1,789(4)	C067—C089	1,364(5)
P148—C036	1,787(3)	C067—H067	0,9300
P152—N159	1,557(3)	C071—H071	0,9300
P152—C113	1,783(3)	C076—H076	0,9300
P152—C021	1,789(4)	C078—C094	1,361(5)
P152—C016	1,806(3)	C078—H078	0,9300
C016—C045	1,367(4)	C079—C095	1,362(6)
C016—C034	1,382(4)	C079—H079	0,9300
C018—C065	1,393(4)	C089—C090	1,380(5)
C018—C022	1,389(4)	C089—H089	0,9300
C021—C074	1,374(5)	C090—H090	0,9300
C021—C032	1,381(4)	C091—C118	1,388(4)
C022—C070	1,387(5)	C091—H091	0,9300
C022—H022	0,9300	C094—H094	0,9300
C025—C082	1,365(5)	C095—C101	1,360(5)
C025 - C034	1,397(4)	C095—H095	0,9300
C025—H025	0,9300	C101—H101	0,9300
C029—C113	1,389(4)	C105—H105	0,9300
C029—C120	1,387(4)	C106—H106	0,9300
C029—H029	0,9300	C118—H118	0,9300
C032—C126	1,380(5)	F020—C099	1,275(5)
C032—H032	0,9300	F053—C099	1,325(6)
C034—H034	0,9300	F135—C099	1,311(6)
C036—C116	1,363(5)	N017—N086	1,271(4)
C036—C121	1,383(5)	N017—N038	1,349(4)
C045 - C080	1,384(5)	N038—C050	1,290(4)
C045 - H045	0,9300	N086—N100	1,343(4)
C057 - C072	1,387(4)	N100—C050	1,289(4)
C057—C115	1,387(5)	C050 - C099	1,411(6)
C065—C073	1,387(5)	F102—C132	1,302(9)
C065—H065	0,9300	C132—F144	1,248(8)
C070—C160	1,376(5)	C132—F139	1,258(9)
C070—H070	0,9300	C132—C092	1,396(9)
C072—C085	1,397(5)	N124—C092	1,289(6)
C072—H072	0,9300	N124 - N154	1,334(9)

5	Experimenteller	Teil
---	-----------------	------

Atome	d [Å]	Atome	d [Å]
C073—C160	1,354(5)	N142—C092	1,229(6)
C073—H073	0,9300	N142 - N155	1,377(9)
C074—C138	1,397(5)	N154 - N155	1,224(10)
C074—H074	0,9300	N154-C092	1,962(11)
C080—C082	1,367(5)	F108—C133	1,197(7)
C080—H080	0,9300	F122—C133	1,331(7)
C082—H082	0,9300	F128—C133	1,244(8)
C085—C119	1,368(6)	N123—C058	1,273(5)
C085—H085	0,9300	N123—N150	1,326(8)
C096—C127	1,358(5)	N134-C058	1,278(5)
C096—C097	1,389(5)	N134—N149	1,356(8)
C096—H096	0,9300	N149—N150	1,240(9)
C097—C113	1,377(4)	N149—C058	1,989(8)
C097—H097	0,9300	C058-C133	1,458(8)
C104—C112	1,346(7)		

Tabelle 5.7.100: Ausgewählte Winkel in $[\mathrm{PNP}](\mathrm{CN}_4\mathrm{CF}_3)$

Atome	Winkel [°]	Atome	Winkel [°]
N157—P005—C037	114,64(14)	C104—C114—C121	118,8(5)
N157—P005—C010	107,48(15)	C104—C114—H114	120,600
C037—P005—C010	108, 11(16)	C121—C114—H114	120,600
N157 - P005 - C055	110,46(16)	C140 - C115 - C057	121,8(4)
C037 - P005 - C055	107,77(16)	C140—C115—H115	119,100
C010 - P005 - C055	108,20(15)	C057—C115—H115	119,100
N157—P156—C012	113,58(14)	C036—C116—C112	119,5(5)
N157—P156—C035	108,76(15)	C036—C116—H116	120,300
C012 - P156 - C035	107, 14(16)	C112—C116—H116	120,300
N157—P156—C030	111,42(16)	C140—C119—C085	120,2(5)
C012—P156—C030	108,46(15)	C140—C119—H119	119,900
C035 - P156 - C030	107,20(15)	C085—C119—H119	119,900
P156—N157—P005	139,26(17)	C127—C120—C029	119,9(4)
C019—C010—C069	119,2(3)	C127—C120—H120	120,100
C019—C010—P005	119,7(3)	C029—C120—H120	120,100
C069 - C010 - P005	121,0(3)	C036-C121-C114	121,2(4)
C062 - C012 - C024	118,8(3)	C036—C121—H121	119,400
C062 - C012 - P156	122,7(3)	C114—C121—H121	119,400
C024— $C012$ — $P156$	118,2(2)	C126-C125-C138	119,6(4)
C027—C013—C035	120,2(4)	C126-C125-H125	120,200
C027—C013—H013	119,900	C138-C125-H125	120,200

5 Experimenteller Teil

Atome	Winkel [°]	Atome	Winkel [°]
С035—С013—Н013	119,900	C125—C126—C032	120,5(4)
C087—C019—C010	120,1(3)	C125—C126—H126	119,700
C087—C019—H019	120,000	C032—C126—H126	119,700
С010—С019—Н019	120,000	C120—C127—C096	121,3(4)
C031 - C024 - C012	120,4(3)	C120—C127—H127	119,400
C031—C024—H024	119,800	C096—C127—H127	119,400
C012—C024—H024	119,800	C125—C138—C074	120,4(4)
C088—C027—C013	120,0(4)	C125—C138—H138	119,800
C088—C027—H027	120,000	C074—C138—H138	119,800
C013—C027—H027	120,000	C115—C140—C119	119,4(5)
C035—C028—C129	120,9(4)	C115—C140—H140	120,300
C035—C028—H028	119,600	C119—C140—H140	120,300
C129—C028—H028	119,600	C073—C160—C070	120,6(4)
C098—C030—C051	118,1(3)	C073—C160—H160	119,700
C098—C030—P156	120,3(3)	C070—C160—H160	119,700
C051—C030—P156	121,7(3)	N158—P151—C014	111,26(16)
C041 - C031 - C024	121,2(3)	N158—P151—C011	112,67(14)
C041—C031—H031	119,400	C014—P151—C011	107,53(14)
C024—C031—H031	119,400	N158—P151—C023	109,54(15)
C028—C035—C013	118,9(3)	C014—P151—C023	108,72(15)
C028—C035—P156	121,6(3)	C011—P151—C023	106,95(16)
C013—C035—P156	119,5(3)	N158—P153—C033	111,54(16)
C077—C037—C068	119,8(3)	N158—P153—C061	107,83(15)
C077—C037—P005	121,2(3)	C033—P153—C061	107,47(14)
C068—C037—P005	118,5(3)	N158—P153—C044	115,02(14)
C031—C041—C136	119,0(4)	C033—P153—C044	107,45(16)
C031—C041—H041	120,500	C061—P153—C044	107,20(16)
C136—C041—H041	120,500	P151—N158—P153	142,02(16)
C030—C051—C131	120,4(4)	C046—C011—C040	119,3(3)
C030—C051—H051	119,800	C046—C011—P151	122,4(2)
C131—C051—H051	119,800	C040—C011—P151	118,2(2)
C103—C055—C066	119,2(3)	C071—C014—C091	117,7(3)
C103—C055—P005	119,9(3)	C071—C014—P151	120,0(3)
C066—C055—P005	120,9(3)	C091—C014—P151	121,9(3)
C012—C062—C136	120,0(4)	C023—C015—C067	118,6(4)
C012—C062—H062	120,000	C023—C015—H015	120,700
C136—C062—H062	120,000	C067—C015—H015	120,700
C084—C064—C066	120,3(4)	C042—C023—C015	120,2(3)
C084—C064—H064	119,900	C042—C023—P151	120,8(3)
C066—C064—H064	119,900	C015—C023—P151	119,0(3)
C055—C066—C064	119,6(4)	C059—C026—C061	120,1(3)
C055—C066—H066	120,200	C059—C026—H026	120,000

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
C064—C066—H066	120,200	C061—C026—H026	120,000
C037—C068—C110	119,5(4)	C105—C033—C054	119,0(3)
C037—C068—H068	120,200	C105—C033—P153	122,4(3)
C110—C068—H068	120,200	C054—C033—P153	118,5(3)
C081—C069—C010	120,4(3)	C060—C039—C076	121,0(3)
C081—C069—H069	119,800	С060—С039—Н039	119,500
С010—С069—Н069	119,800	С076—С039—Н039	119,500
C037—C077—C137	120,4(4)	C011—C040—C076	120,6(3)
С037—С077—Н077	119,800	C011—C040—H040	119,700
C137—C077—H077	119,800	C076—C040—H040	119,700
C109—C081—C069	119,9(4)	C090—C042—C023	120,7(4)
C109—C081—H081	120,000	C090—C042—H042	119,700
C069—C081—H081	120,000	C023—C042—H042	119,700
C130—C084—C064	120,2(4)	C079—C043—C044	120,2(4)
C130—C084—H084	119,900	C079—C043—H043	119,900
C064—C084—H084	119,900	C044—C043—H043	119,900
C019—C087—C109	120,1(4)	C048—C044—C043	119,6(3)
С019—С087—Н087	120,000	C048—C044—P153	120,5(3)
C109—C087—H087	120,000	C043—C044—P153	119,5(3)
C129—C088—C027	120,5(4)	C011—C046—C060	119,8(3)
C129—C088—H088	119,800	C011—C046—H046	120,100
C027—C088—H088	119,800	C060—C046—H046	120,100
C117—C093—C098	118,9(5)	C052—C047—C071	118,9(4)
С117—С093—Н093	120,500	C052—C047—H047	120,500
C098—C093—H093	120,500	C071—C047—H047	120,500
C030—C098—C093	121,6(4)	C044—C048—C101	119,3(4)
C030—C098—H098	119,200	C044—C048—H048	120,400
C093—C098—H098	119,200	C101—C048—H048	120,400
C055—C103—C130	120,7(4)	C106—C049—C063	120,6(4)
C055—C103—H103	119,700	C106—C049—H049	119,700
C130—C103—H103	119,700	C063—C049—H049	119,700
C081—C109—C087	120,3(4)	C047—C052—C118	121,4(4)
C081—C109—H109	119,800	C047—C052—H052	119,300
C087—C109—H109	119,800	C118—C052—H052	119,300
C111—C110—C068	119,3(4)	C033—C054—C106	120,1(4)
C111—C110—H110	120,300	C033—C054—H054	119,900
C068—C110—H110	120,300	C106—C054—H054	119,900
C137—C111—C110	120,7(5)	C061 - C056 - C094	120,0(3)
C137—C111—H111	119,600	C061—C056—H056	120,000
C110—C111—H111	119,600	C094—C056—H056	120,000
C093—C117—C131	120,6(4)	C078—C059—C026	119,4(4)
C093—C117—H117	119,700	C078—C059—H059	120,300

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
C131—C117—H117	119,700	C026—C059—H059	120,300
C088—C129—C028	119,6(4)	C039—C060—C046	119,7(3)
C088—C129—H129	120,200	C039—C060—H060	120,200
C028—C129—H129	120,200	C046—C060—H060	120,200
C084—C130—C103	120,0(4)	C056—C061—C026	119,4(3)
C084—C130—H130	120,000	C056—C061—P153	120,6(3)
C103—C130—H130	120,000	C026—C061—P153	120,0(3)
C117—C131—C051	120,3(4)	C105—C063—C049	120,1(4)
C117—C131—H131	119,800	C105—C063—H063	120,000
C051—C131—H131	119,800	C049—C063—H063	120,000
C041—C136—C062	120,7(4)	C089—C067—C015	120,2(4)
C041—C136—H136	119,600	C089—C067—H067	119,900
C062—C136—H136	119,600	C015—C067—H067	119,900
C077—C137—C111	120,1(4)	C014—C071—C047	121,5(4)
C077—C137—H137	119,900	C014—C071—H071	119,300
C111—C137—H137	119,900	C047—C071—H071	119,300
N159—P148—C018	109,68(16)	C039—C076—C040	119,5(3)
N159—P148—C057	110,10(17)	C039—C076—H076	120,200
C018—P148—C057	108,05(17)	C040—C076—H076	120,200
N159—P148—C036	112,08(16)	C094—C078—C059	121,2(4)
C018—P148—C036	107,60(16)	C094—C078—H078	119,400
C057—P148—C036	109,23(17)	C059—C078—H078	119,400
N159—P152—C113	108,53(16)	C095—C079—C043	119,0(4)
N159—P152—C021	112,53(16)	C095—C079—H079	120,500
C113—P152—C021	109,48(16)	C043—C079—H079	120,500
N159—P152—C016	110,07(16)	C067—C089—C090	121,3(4)
C113—P152—C016	108,69(16)	C067—C089—H089	119,300
C021—P152—C016	107,48(16)	C090—C089—H089	119,300
P148—N159—P152	166,7(2)	C042—C090—C089	118,9(4)
C045—C016—C034	119,8(3)	C042—C090—H090	120,500
C045—C016—P152	119,4(3)	C089—C090—H090	120,500
C034—C016—P152	120,7(3)	C014—C091—C118	120,8(4)
C065 - C018 - C022	118,2(3)	C014—C091—H091	119,600
C065—C018—P148	121,7(3)	C118—C091—H091	119,600
C022—C018—P148	120,0(3)	C078—C094—C056	119,8(4)
C074—C021—C032	117,9(3)	C078—C094—H094	120,100
C074—C021—P152	122,2(3)	C056—C094—H094	120,100
C032—C021—P152	119,8(3)	C079—C095—C101	121,9(4)
C070—C022—C018	120,9(4)	C079—C095—H095	119,000
C070—C022—H022	119,600	C101—C095—H095	119,000
C018—C022—H022	119,600	C095—C101—C048	120,0(4)
C082—C025—C034	119,7(4)	C095—C101—H101	120,000

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
C082—C025—H025	120,100	C048—C101—H101	120,000
C034—C025—H025	120,100	C063—C105—C033	120,5(4)
C113—C029—C120	120,3(4)	C063—C105—H105	119,700
C113—C029—H029	119,900	C033—C105—H105	119,700
C120—C029—H029	119,900	C049 - C106 - C054	119,6(4)
C021—C032—C126	121,0(4)	C049—C106—H106	120,200
C021—C032—H032	119,500	C054—C106—H106	120,200
C126—C032—H032	119,500	C052—C118—C091	119,6(4)
C016—C034—C025	119,6(4)	C052—C118—H118	120,200
C016—C034—H034	120,200	C091—C118—H118	120,200
C025—C034—H034	120,200	N086—N017—N038	108,5(4)
C116—C036—C121	119,1(4)	C050—N038—N017	105,5(3)
C116—C036—P148	122,8(3)	N017—N086—N100	108,7(4)
C121—C036—P148	118,0(3)	C050—N100—N086	105,7(3)
C016—C045—C080	120,4(4)	N100—C050—N038	111,5(4)
C016—C045—H045	119,800	N100—C050—C099	124,3(4)
C080—C045—H045	119,800	N038—C050—C099	124,1(4)
C072—C057—C115	118,4(4)	F135—C099—F053	99,6(5)
C072—C057—P148	122,9(3)	F135—C099—F020	101,7(5)
C115—C057—P148	118,6(3)	F053—C099—F020	105,0(5)
C018—C065—C073	120,3(4)	F135—C099—C050	114,0(5)
C018—C065—H065	119,900	F053—C099—C050	115,2(5)
C073—C065—H065	119,900	F020—C099—C050	118,7(5)
C160—C070—C022	119,5(4)	F144—C132—F139	102,5(10)
C160—C070—H070	120,200	F144—C132—F102	100,4(7)
С022—С070—Н070	120,200	F139—C132—F102	100,3(9)
C057—C072—C085	119,4(4)	F144—C132—C092	117,6(9)
C057—C072—H072	120,300	F139—C132—C092	117,1(7)
C085—C072—H072	120,300	F102—C132—C092	116,1(9)
C160—C073—C065	120,5(4)	C092—N124—N154	96,8(6)
С160—С073—Н073	119,700	C092—N142—N155	107,6(6)
С065—С073—Н073	119,700	N155—N154—N124	119,7(10)
C021—C074—C138	120,5(4)	N155—N154—C092	79,0(7)
C021—C074—H074	119,700	N124—N154—C092	40,7(4)
C138—C074—H074	119,700	N154—N155—N142	100,1(9)
C082—C080—C045	119,8(4)	N142—C092—N124	115,8(7)
C082—C080—H080	120,100	N142—C092—C132	123,0(6)
C045—C080—H080	120,100	N124—C092—C132	121,2(7)
C080—C082—C025	120,7(4)	N142—C092—N154	73,4(5)
C080—C082—H082	119,700	N124—C092—N154	42,4(4)
C025—C082—H082	119,700	C132—C092—N154	163, 6(7)
C119—C085—C072	120,8(5)	C058—N123—N150	104,1(6)

5	Experimenteller	Teil
---	-----------------	------

Atome	Winkel [°]	Atome	Winkel [°]
С119—С085—Н085	119,600	C058—N134—N149	98,1(6)
С072—С085—Н085	119,600	N150 - N149 - N134	114,2(9)
C127—C096—C097	119,8(4)	N150—N149—C058	74,9(6)
С127—С096—Н096	120,100	N134—N149—C058	39,5(3)
С097—С096—Н096	120,100	N149—N150—N123	106,3(8)
C113—C097—C096	120,2(4)	N123 - C058 - N134	116,9(5)
С113—С097—Н097	119,900	N123—C058—C133	122,8(6)
С096—С097—Н097	119,900	N134-C058-C133	120,2(6)
C112—C104—C114	120,2(6)	N123 - C058 - N149	74,5(4)
C112—C104—H104	119,900	N134-C058-N149	42,4(4)
C114—C104—H104	119,900	C133 - C058 - N149	162,3(6)
C104—C112—C116	121,0(6)	F108—C133—F128	109,6(10)
C104—C112—H112	119,500	F108—C133—F122	104,9(7)
C116—C112—H112	119,500	F128—C133—F122	94,7(6)
C097—C113—C029	118,5(3)	F108—C133—C058	120,4(6)
C097—C113—P152	120,2(3)	F128—C133—C058	113,0(7)
C029—C113—P152	121,3(3)	F122—C133—C058	110,9(8)

6 Zusammenfassung und Ausblick

Ziel dieser Arbeit war es einerseits, Koordinationsverbindungen der Lanthanoide mit stickstoffreichen Tetrazolylliganden zu untersuchen und andererseits, neue Tetrazolylliganden darzustellen und zu charakterisieren. Von besonderem Interesse war dabei die Darstellung von multidentaten Tetrazolylliganden, um eine N-Koordination der stark elektropositiven und oxophilen Lanthanoidionen sogar in O-Donor-Lösemitteln zu erreichen.

Dazu wurden zuerst die Bis(tetrazol-5-yl)benzole (H₂BTB) in die entsprechenden Bariumsalze überführt und in Metathesereaktionen mit den Lanthanoidsulfaten umgesetzt. Die Strukturen der erhaltenen Verbindungen konnten größtenteils durch Röntgendiffrak-

Schema 6.0.1: Synthese der Lanthanoid-1, x-bis(tetrazol-5-yl)benzole (x = 2, 3, 4).

tometrie an Einkristallen aufgeklärt werden. Dabei wurden keine Wechselwirkungen zwischen Tetrazolyl-Stickstoffatomen und den Metallionen gefunden. In den leicht sauren, wässrigen Lösungen wurden die Tetrazole sogar teilweise protoniert und die Strukturen weisen Zusammensetzungen der Form $[Ln(H_2O)_x](HBTB)_y \times zH_2O$ mit x = 8-9, y = 3 auf.

Eine Koordination der Lanthanoidionen durch Tetrazolyl-Stickstoffatome konnte bei Verwendung des 5,5'-Bitetrazolats beobachtet werden. Die Lanthanoid-5,5'-bitetrazolate wurden ebenfalls durch Metathesereaktionen aus den entsprechenden Lanthanoidsulfaten dargestellt. Die Strukturen dieser Verbindungen konnten durch Röntgendiffraktome-

Schema 6.0.2: Darstellung von Lanthanoid-5,5'-bitetrazolaten.

trie an Einkristallen gelöst werden und zeigten für die frühen und größten Lanthanoidionen (La^{III}-Pr^{III}) die Besonderheit, dass zusätzlich zu einem chelatisierenden Modus des Liganden auch ein überbrückender Modus auftritt. Die kleineren Lanthanoidionen Nd^{III} bis Eu^{III} werden nur noch von einem chelatisierenden Liganden koordiniert und ein weiteres Anion ist über Wasserstoffbrückenbindungen in die zweite Koordinationssphäre intercaliert. Bei den noch kleineren Ionen Tb^{III} und Er^{III} wurden gar keine Wechselwirkungen zwischen den Liganden und den Metallionen gefunden. Als Modellsubstanz wurde das $[Eu(BT)(H_2O)_7]_2BT \times 6H_2O$ differenzthermogravimetrisch untersucht und es konnte gezeigt werden, dass es möglich ist, die Substanzen thermisch vollständig zu entwässern. Die Strukturen der wasserfreien Substanzen konnten noch nicht geklärt werden.

Ein besonders interessantes Koordinationsverhalten ist in den Lanthanoid-bis(tetrazol-5-yl)triazenaten zu beobachten. Diese konnten aus dem Trinatrium-bis(tetrazol-5-yl)triazenat, welches zum ersten Mal vollständig NMR-spektroskopisch untersucht wurde, dargestellt werden. Röntgendiffraktometrische Untersuchungen an Einkristallen des

Schema 6.0.3: Darstellung der Lanthanoid-bis(tetrazol-5-yl)triazenate.

Samarium-bis(tetrazol-5-yl)triazenats zeigten, dass der Ligand η^3 -fach das Samariumion koordiniert. Dabei ist es ungewöhnlich, dass das mittlere Stickstoffatom der Triazenatbrücke als Elektronendonator fungiert.

6 Zusammenfassung und Ausblick

Aus einer neuen Klasse multidentater Tetrazolylliganden, den Organylamin-bis-acetotetrazolen, konnten Vertreter dargestellt und vollständig charakterisiert werden. Von besonderer Bedeutung ist dabei das Tetrazolanalogon der Ethylendiamintetraessigsäure (H₄EDTA) (Abbildung 6.0.1). Auch wenn die Synthese dieser Substanz vor kurzem be-

Abbildung 6.0.1: Das Tetrazolyl-Analogon des H₄EDTA.

reits publiziert wurde [111], so konnte doch eine alternative und vielleicht ökonomischere Syntheseroute gefunden werden. Metallkomplexe von Cu^{II} und einigen Lanthanoiden mit den Organylamin-bis-acetotetrazolaten konnten dargestellt und elementaranalytisch sowie teilweise spektroskopisch untersucht werden. Die Strukturaufklärung mittels Einkristallröntgendiffraktometrie an diesen Verbindungen scheiterte jedoch an der Unlöslichkeit der Substanzen und der daraus resultierenden Schwierigkeit, geeignete Kristalle zu erhalten.

Die Fortführung der Arbeiten von *P. J. Eulgem* bezüglich des $[Ti(CN_4CF_3)_6]^{2-}$ Anions lieferte neue Daten und Hinweise. Hervorzuheben ist dabei ein ¹⁵N-NMR-Spektrum einer konzentrierten Lösung von $[NBu_4]_2[Ti(CN_4CF_3)_6]$. In ESI-MS Spektren konnte das Anion leider nicht detektiert werden, weil es wahrscheinlich schon bei den milden Bedingungen in der Gasphase dissoziiert. Die Peaks, die zwar für Titan-Verbindungen typische Isotopengatter aufweisen, bei m/z = 402,95 und 418,95 können aber keiner erklärbaren Species zugeordnet werden. Bei den Versuchen, das Anion als [PNP]-Salz auszukristallisieren, konnte leider nur das [PNP](CN₄CF₃) in Form von Einkristallen erhalten werden. Es bleibt daher noch abzuwarten, ob eine Strukturaufklärung dieses interessanten Anions in Zukunft gelingen wird.

Literaturverzeichnis

- [1] R. Huisgen and I. Ugi Angew. Chem., 68, 705–706, **1956**.
- [2] R. Huisgen and I. Ugi Chem. Ber., 90, 2914–2927, 1957.
- [3] I. Ugi and R. Huisgen Chem. Ber., 91, 531–537, **1958**.
- [4] I. Ugi, H. Perlinger, and L. Behringer Chem. Ber., 91, 2324–2329, 1958.
- [5] I. Ugi Angew. Chem., 73, 172, **1961**.
- [6] J. D. Wallis and J. D. Dunitz J. Chem. Soc. Chem. Comm., 910–911, 1983.
- [7] M. Witanowski, L. Stefaniak, H. Januszewski, K. Bahadur, and G. A.Webb J. Cryst. Mol. Struct., 5, 137–140, 1975.
- [8] R. M. Müller, J. D. Wallis, and W. v. Philipsborn Angew. Chem., 97, 515–517, 1985.
- [9] R. N. Butler, S. Collier, and A. F. M. Fleming J. Chem. Soc. Perkin Trans. 2, 801–803, 1996.
- [10] R. N. Butler, A. Fox, S. Collier, and L. A. Burke J. Chem. Soc. Perkin Trans. 2, 2243–2248, 1998.
- [11] L. A. Burke, R. N. Butler, and J. C. Stephens J. Chem. Soc. Perkin Trans. 2, 1679–1684, 2001.
- [12] A. Hammerl and T. M. Klapötke Inorg. Chem., 41, 906–912, 2002.
- [13] R. Janoschek Angew. Chem., 105, 242–244, **1993**.
- [14] K. F. Ferris and R. J. Bartlett J. Am. Chem. Soc., 114, 8302–8303, 1992.
- [15] A. Vij, J. G. Pavlovich, W. W. Wilson, V. Vij, and K. O. Christe Angew. Chem., 114, 3177–3180, 2002.

- [16] M. Lein, J. Frunzke, A. Timoshkin, and G. Frenking *Chem. Eur. J.*, 7, 4155–4163, 2001.
- [17] M. Lein, J. Frunzke, and G. Frenking *Inorg. Chem.*, 42, 2504–2511, 2003.
- [18] A. C. Tsipis and A. T. Chaviara *Inorg. Chem.*, 43, 1273–1286, **2004**.
- [19] O. J. Scherer, J. Schwalb, G. Wolmershäuser, W. Kaim, and R. Gross Angew. Chem., Int. Ed. Engl., 25, 363–364, 1986.
- [20] H. Sitzmann Angew. Chem., Int. Ed. Engl., 41, 2723–2724, 2002.
- [21] K. B. Dillon, F. Mathey, and J. F. Nixon, eds., *Phosphorus: The Carbon Copy.* John Wiley&Sons, Chichester, **1998**.
- [22] E. O. John, R. D. Willet, B. Scott, R. L. Kirchmeyer, and J. M. Shreeve Inorg. Chem., 28, 893–897, 1989.
- [23] D. W. Moore and A. Whittaker J. Am. Chem. Soc., 82, 5007, **1960**.
- [24] E. Lieber, C. N. R. Rao, R. Pillai, J. Ramachandran, and R. D. Hites Can. J. Chem., 36, 801–809, 1958.
- [25] J. P. Horwitz, B. E. Fisher, and A. J. Tomasewski J. Am. Chem. Soc., 81, 3076– 3079, 1959.
- [26] J. C. Kauer and W. A. Sheppard J. Org. Chem., 32, 3580–3592, 1967.
- [27] M. Charton J. Chem. Soc. B, 1240–1244, 1969.
- [28] R. M. Herbst and W. L. Garbrecht J. Org. Chem., 18, 1283–1291, 1953.
- [29] R. N. Butler, "Advances in heterocyclic chemistry, vol. 21," 323 ff, Academic Press, New York, 1977. und hierin zitierte Literatur.
- [30] K. A. Hofmann and H. Hock Ber. Dtsch. Chem. Ges., 44, 1866–1871, **1910**.
- [31] T. M. Klapötke. persönliche Mitteilung.
- [32] R. M. Herbst and K. Wilson J. Org. Chem., 22, 1142–1145, **1957**.
- [33] G. A. Patani and E. J. LaVoie *Chem. Rev.*, 96, 3147–3176, **1996**.
- [34] A. Burger *Prog. Drug Res.*, 37, 287, **1991**.

- [35] G. I. Koldobskii, D. S. Soldatenko, E. S. Gerasimova, and M. B. Shcherbini Russ. J. Org. Chem., 33, 1771–1783, 1997.
- [36] J. A. Bladin Ber. Dtsch. Chem. Ges., 18, 1544–1551, **1885**.
- [37] O. Wiedmann Ber. Dtsch. Chem. Ges., 26, 2617–2621, 1893.
- [38] J. A. Bladin Ber. Dtsch. Chem. Ges., 25, 1411–1413, 1892.
- [39] J. Thiele Justus Liebigs Ann. Chem., 270, 1–63, 1892.
- [40] J. Thiele and H. Ingle Justus Liebigs Ann. Chem., 287, 233–265, 1895.
- [41] J. Thiele and J. T. Marais Justus Liebigs Ann. Chem., 273, 144–160, 1893.
- [42] A. Pinner Ber. Dtsch. Chem. Ges., 27, 984–1009, 1894.
- [43] A. Pinner Ber. Dtsch. Chem. Ges., 30, 1871–1890, 1897.
- [44] A. Pinner Justus Liebigs Ann. Chem., 298, 1–53, 1897.
- [45] A. Pinner Justus Liebigs Ann. Chem., 97, 221–271, 1897.
- [46] W. Lossen and J. Colman Justus Liebigs Ann. Chem., 298, 107–116, 1897.
- [47] W. Lossen and C. Kirchnick Justus Liebigs Ann. Chem., 298, 105–107, 1897.
- [48] C. Lossen Justus Liebigs Ann. Chem., 263, 92–108, 1891.
- [49] W. Lossen and F. Statius Justus Liebigs Ann. Chem., 298, 90–105, 1897.
- [50] M. Freund and T. Paradies Ber. Dtsch. Chem. Ges., 34, 3110–3122, 1901.
- [51] E. Olivieri-Mandalà Gazz. Chim. Ital., 43, 491, **1913**.
- [52] U. a. [13] und [18]. Einen Überblick über die Arbeiten R. Stollés liefert F. R. Benson [34].
- [53] F. R. Benson Chem. Rev., 41, 1–61, 1947. und hierin zitierte Literatur.
- [54] K. Sugiura, R. Ushijima, and K. Shimizu Jpn. Kokai, 1972. 7242770.
- [55] G. F. Holland and J. N. Pereira J. Med. Chem., 10, 149–154, 1967.

- [56] W. Forth, D. Henschler, and W. Rummel, eds., Allgemeine und spezielle Pharmakologie und Toxikologie. URBAN & FISCHER, München, 9 ed., 2005.
- [57] R. N. Butler, "Comprehensive heterocyclic chemistry, vol. 5," 791 ff, Pergamon Press, Oxford, 1984.
- [58] R. Stollé Chem. Ber., 62, 1118, **1929**.
- [59] G. L. Gilbert and C. H. B. jr. *Inorg. Chem.*, 2, 1216–1219, **1963**.
- [60] W. Beck, K. Feldl, and E. Schuierer Angew. Chem., 77, 485–492, 1965.
- [61] W. Beck, K. Feldl, and E. Schuierer Angew. Chem., 78, 267, 1966.
- [62] W. Beck, W. P. Fellhammer, H. Bock, and M. Bauder Chem. Ber., 102, 3637–3646, 1969.
- [63] P. Kreutzer, C. Weis, H. Boehme, T. Kemmerich, W. Beck, C. Spencer, and R. Mason Z. Nat.forsch., 27, 745–747, 1972.
- [64] G. B. Ansell J. Chem. Soc. Dalton Trans., 4, 1973.
- [65] C. Yélamos, K. R. Gust, A. G. Baboul, M. J. Heeg, H. B. Schlegel, and C. H. Winter *Inorg. Chem.*, 40, 6451–6462, **2001**.
- [66] R. Haiges, J. A. Boatz, S. Schneider, T. Schroer, M. Yousufuddin, and K. O. Christe Angew. Chem., 116, 3210–3214, 2004.
- [67] P. J. Eulgem. PhD thesis, Universität zu Köln, 2006.
- [68] A. Hammerl, G. Holl, T. M. Klapötke, P. Mayer, H. Nöth, H. Piotrowski, and M. Warchhold *Eur. J. Inorg. Chem.*, 834–845, **2002**.
- [69] P. J. Eulgem, A. Klein, N. Maggiarosa, D. Naumann, and R. W. H. Pohl Chem. Eur. J., 14, 3727–3736, 2008.
- [70] J.-M. Lin, Y.-F. Guan, D. Y. Wang, W. Dong, X.-T. Wang, and S. Gao J. Chem. Soc. Dalton Trans., 44, 6165–6169, 2008.
- [71] M. Giraud, E. S. Andreiaadis, A. S. Fisyuk, R. Demadrille, J. Pécaut, D. Imbert, and M. Mazzanti *Inorg. Chem.*, 47(10), 3952–3954, 2008.

- [72] R. Guilard, I. Perrot, A. Tabard, P. Richard, C. Lecomte, Y. H. Liu, and K. M. Kadish *Inorg. Chem.*, 30, 27–37, **1991**.
- [73] K. D. Demadis, E. El-Samanody, T. J. Meyer, and P. S. White *Inorg. Chem.*, 37, 838–839, **1998**.
- [74] S. F. Palopoli, S. J. Geib, A. L. Rheingold, and T. B. Brill Inorg. Chem., 27, 2963–2971, 1988.
- [75] M. S. Hill, P. B. Hitchcock, and N. Smith Polyhedron, 23, 801–807, 2004.
- [76] P. A. Bethel, M. S. Hill, M. F. Mahon, and K. C. Molloy J. Chem. Soc., Perkin Trans. 1, 3507–3514, 1999.
- [77] K. Sisido, K. Nabika, T. Isida, and S. Kozima J. Organometal. Chem., 33, 337–346, 1971.
- [78] M. Hill, M. F. Mahon, J. McGinley, and K. C. Molloy J. Chem. Soc., Dalton Trans., 835–845, 1996.
- [79] R. F. Ziolo, J. A. Thich, and Z. Dori *Inorg. Chem.*, 11, 626–631, 1972.
- [80] L. A. Oro, M. T. Pinillos, C. Tejel, M. C. Apreda, C. Foces-Foces, and F. H. Cano J. Chem. Soc., Dalton Trans., 1927–1933, 1988.
- [81] H. P. H. Arp, A. Decken, J. Passmore, and D. J. Wood *Inorg. Chem.*, 39, 1840– 1848, 2000.
- [82] L. Carlucci, G. Ciani, and D. M. Proserpio Angew. Chem., 111, 3700–3704, 1999.
- [83] P. N. Gaponik, S. V. Voitekhovich, and O. A. Ivashkevich Russ. Chem. Rev., 75, 507–539, 2006.
- [84] J. Akhaven, "The Chemistry of Explosives," RSC Paperbacks, 1998, Reprinted 2001.
- [85] R. P. Singh, R. D. Verma, D. T. Meshri, and J. M. Shreeve Angew. Chem., 118, 3664–3682, 2006.
- [86] G. Steinhauser and T. M. Klapötke Angew. Chem., 120, 3376–3394, 2008.

Literaturverzeichnis

- [87] T. M. Klapötke, B. Krumm, G. Holl, and M. Kaiser, "Energetic materials: Modeling of phenomena, experimental characterization, environmental engineering," 2000. Fraunhofer-Institut, Karlsruhe.
- [88] R. L. Simpson, P. A. Urtiew, D. L. Ornellas, G. L. Moody, K. S. Scriber, and D. M. Hofman *Propellants Explos. Pyrotech.*, 22, 249–255, **1997**. und darin zitierte Literatur.
- [89] E. S. Andreiadis, R. Demadrille, D. Imbert, J. Pecaut, and M. Mazzanti Chem. Eur. J., 15, 9458–9476, 2009.
- [90] P. Scheiner, E. Stockel, D. Cruset, and R. Noto J. Org. Chem., 37, 4207–4209, 1972.
- [91] T. T. Moeller J. Phys. Chem., 50, 242–250, **1946**.
- [92] C. Janiak J. Chem. Soc., Dalton Trans., 3885–3896, 2000.
- [93] C. A. Hunter, K. R. Lawson, J. Perkins, and C. J. Urch J. Chem. Soc., Perkin Trans. 2, 651–669, 2001.
- [94] E. Olivieri-Mandala Gazz. Chim. Ital., 43, 465–475, 1914.
- [95] W. Friedrich, "Deutsches Bundes-Patent 952811," 1956.
- [96] G. Steinhauser, G. Giester, C. Wagner, N. Leopold, J. H. Sterba, B. Lendl, and M. Bichler *Helv. Chim. Acta*, 92, 1371–1384, **2009**.
- [97] G. A. Joffrey, An Introduction to Hydrogen Bonding. Paperback, University of Pittsburgh, 1997. und darin zitierte Literatur.
- [98] R. E. Wilson, S. Skanthakumar, G. Sigmon, P. C. Burns, and L. Soderholm *Inorg. Chem.*, 46, 2368–2372, 2007.
- [99] R. W. H. Pohl, J. Wiebke, A. Klein, M. Dolg, and N. Maggiarosa Eur. J. Inorg. Chem., 2472–2476, 2009.
- [100] W. Massa, *Kristallstrukturbestimmung*. Teubner, 6 ed., **2009**.
- [101] R. D. Shannon Acta Crystallogr., Sect. A, 32, 751–767, 1976.

- [102] S. Berger, S. Braun, and H. O. Kalinowski, NMR-Spektroskopie von Nichtmetallen, vol. 2 - ¹⁵N-NMR-Spektroskopie. Georg Thieme Verlag, Stuttgart, 2 ed., **1992**. und darin zitierte Literatur.
- [103] M. M. Williams, W. S. McEwan, and R. A. Henry J. Phys. Chem., 61, 261–267, 1957.
- [104] A. D. Becke J. Chem. Phys., 98, 1372, **1996**.
- [105] C. Lee, W. Yang, and R. G. Parr Phys. Rev. B, 37, 5648, 1988.
- [106] A. Schäfer, C. Huber, and R. Ahlrichs J. Chem. Phys., 100, 5829–5836, 1994.
- [107] J. Neugebauer and B. A. Hess J. Chem. Phys., 118, 7215–7225, 2003.
- [108] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, and M. J. Camalli J. Appl. Crystallogr., 27, 435–436, 1994.
- [109] A. S. Lyakhov, P. N. Gaponik, D. S. Pytleva, S. V. Voitkhovich, and L. S. Ivashkevich Acta Crystallogr. Sect. A, 60, 421–422, 2004.
- [110] T. M. Klapötke, N. K. Minar, and J. Stierstorfer Polyhedron, 28, 13–26, 2009.
- [111] F. Touti, P. Maurin, and J. Hasserodt Eur. J. Org. Chem., 10, 1495–1498, 2009.
- [112] I. A. Shikhova, T. A. Sinitsyna, and N. I. Latosh Russ. J. Gen. Chem., 60, 2135– 2140, 1990.
- [113] I. A. Shikhova, T. A. Sinitsyna, and N. I. Latosh Russ. J. Appl. Spectrosc., 51, 126–129, 1989.
- [114] H. Ulrich and E. Plötz, "Deutsches Reichspatent 694780," **1937**.
- [115] H. Kriegsmann, H. Hoffmann, and S. Pischtschan Z. Anorg. Allg. Chem., 315, 283–190, 1962.
- [116] S. M. Bhandari, F. Mahon, and K. C. Molloy J Chem. Soc., Dalton Trans., 1951– 1956, 1999.
- [117] M. Hill, M. F. Mahon, and K. C. Molloy J. Chem. Soc., Dalton Trans., 1857–1865, 1996.

- [118] A. Gooder, M. Hill, M. F. Mahon, J. McGinley, and K. C. Molloy J. Chem. Soc., Dalton Trans., 847–852, 1996.
- [119] S. Bhandari, C. G. Frost, C. E. Hague, M. F. Mahon, and K. C. Molloy J. Chem. Soc., Dalton Trans., 663–669, 2000.
- [120] J. Juillard Pure and Appl. Chem., 49, 885–892, 1977.
- [121] J. H. Nelson, N. E. Takach, R. A. Henry, D. W. Moore, W. M. Tolles, and G. A. Gray Magn. Reson. Chem., 24, 977–983, 1986.
- [122] D. D. Perrin and W. L. Armarego Purification of Laboratory Chemicals. Pergamon Press, 3 ed., 1988.
- [123] G. Brauer Handbuch der Präparativen Anorganischen Chemie. Ferdinand Enke Verlag, Stuttgart, 2 ed., 1962.
- [124] G. M. Sheldrick, "Shelxl-97, Ein Programm zur Verfeinerung von Kristallstrukturen.," 1997. Universität Göttingen.
- [125] STOE X-RED, Data Reduction Program, Version 1.22/Windows, STOE & Cie., Darmstadt.
- [126] STOE X-SHAPE, Crystal Optimisation for Numerical Absorption Correction, Version 1.06/Windows, STOE & Cie., Darmstadt.

Kurzzusammenfassung

Im Rahmen dieser Arbeit wurden zuerst Natrium- und Barium-Salze literaturbekannter multidentater Tetrazolylliganden dargestellt und untersucht. In Metathesereaktionen wurde dann versucht, diese Liganden auf die stark elektropositiven Lanthanoid-Kationen zu übertragen. Im Falle der Tetrazolylanaloga der Phthalsäure, Isophthalsäure und Terephthalsäure konnten so mehrere salzartige Verbindungen der Lanthanoide dargestellt und deren Struktur einkristalldiffraktometrisch bestimmt werden. Diese Verbindungen zeigen keine Koordinationen zwischen Tetrazolen und Lanthanoid-Kationen. Bei Verwendung von 5,5'-Bitetrazolat als Ligand konnten koordinative Wechselwirkungen zwischen Tetrazol und Lanthanoid-Kationen erreicht werden und diese Liganden zeigen sowohl chelatisierende, als auch überbrückende Koordinationsmodi. Es konnte zusätzlich gezeigt werden, dass die Lanthanoid-5,5'-bitetrazolate thermisch vollständig entwässert werden können. Einen besonders interessanten Koordinationsmodus gegenüber den Lanthanoid-Kationen zeigt das Bis(tetrazol-5-yl)triazenat, welches zum ersten Mal $^{13}\mathrm{C}\text{-}$ und $^{15}\mathrm{N}\text{-}\mathrm{NMR}\text{-}\mathrm{spektroskopisch}$ charakterisiert wurde. Dieses koordiniert ungewöhnlicherweise η^3 -fach über die Tetrazolstickstoffatome und das mittlere Stickstoffatom der Triazenbrücke. Eine neue Klasse von multidentaten Tetrazolylliganden, die Organylamin-bis-acetotetrazole, wurden untersucht und die Hexyl- und Benzylamin-bisacetotetrazole konnten isoliert und vollständig charakterisiert werden. Auch das Tetrazolylanalogon des H₄EDTA konnte dargestellt werden und eine erst kürzlich beschriebene Syntheseroute des H_4 EDTATs verbessert werden. Versuche, diese neuen Liganden auf fund d-Übergangsmetalle zu übertragen, waren zwar erfolgreich, aber eine Strukturaufklärung mittels Einkristalldiffraktometrie scheiterte bislang an der Unlöslichkeit dieser Verbindungen. Die Fortführung der Arbeiten von P. J. Eulgem bezüglich des homoleptischen Tetrazolyltitanats $[Ti(CN_4CF_3)_6]^{2-}$ lieferte neue Daten und Hinweise. Von besonderem Interesse ist dabei ein ¹⁵N-NMR-Spektrum einer Lösung des Tetrabutylammoniumsalzes. Leider waren Versuche der Strukturaufklärung mittels Einkristalldiffraktometrie bislang erfolglos. Es konnte nur das $[PNP](CN_4CF_3)$ kristallisiert werden.

Abstract

First of all, this work covers the preparation and characterisation of salts of well-known multidentate tetrazolyl-ligands. By inorganic methathesis reactions, it was attempted to transfer these ligands to the strongly electropositive lanthanoids. In the case of the tetrazolyl-analogues of phthalic-, isophthalic and terephthalic acid, many salt-like compounds of the lanthanoids could be prepared and characterised by means of single-crystal X-ray diffraction. These compounds do not exhibit any interactions between lanthanoidcations and the tetrazolyl-ligands. Using the 5,5'-bitetrazole as a ligand it was possible to achieve a coordination between the lanthanoid-cations and the tetrazolyl-ligands. In these compounds the 5,5'-bitetrazol-ligands exhibits both a chelating and a bridging mode. For the first time the bis(tetrazol-5-yl)triazenate ligand could be fully characterised by means of ¹³C- and ¹⁵N-NMR spectroscopy and in case of the samariumbis(tetrazol-5-yl)triazenate also by single crystal X-ray diffraction. In this structure the ligand shows the unusual η^3 fold coordination via the tetrazols and the middle nitrogen atom of the triazene-bridge. A new class of multidentate tetrazolyl-ligands, the organylamine-bis-acetotetrazoles, was studied and the hexyl- and benzyl-derivatives were fully characterised. Also the tetrazolyl-analogue of the well-known EDTA could be prepared and the recently reported synthesis was improved. Attempts to prepare transition metal complexes with these new ligands were successful although the insolubility of these complexes prevented the characterisation via single-crystal X-ray diffraction. The continuation of P. J. Eulgem's work concerning the homoleptic tetrazolyl titanate $[Ti(CN_4CF_3)_6]^{2-}$ yielded further information. Especially a ¹⁵N-NMR spectrum of a concentrated solution of $[NBu_4]_2[Ti(CN_4CF_3)_6]$ could be measured. Attempts were made to exchange the cation, but only the $[PNP](CN_4CF_3)$ crystallised and could be characterised by means of single-crystal X-ray diffraction yet.

Lebenslauf

Personalien	Roland Pohl
	Hermann-Löns Str. 3a
	50321 Brühl
	Geb.: 28. Oktober 1977, Bonn
	ledig

Schulbildung

08/84-07/88	Grundschule
08/88-07/98	Priv. Gymnasium St. Ursula, Brühl, Abschluss Abitur
Zivildienst	
08/98-09/99	Krankenpflege, Marienhospital Brühl
Studium	
09/99-10/05	Lehramtsstudium, Universität zu Köln
10/05-08/07	Diplomstudium Chemie, Universität zu Köln, Abschluss 30.8.07, Diplom
02/07-08/07	Diplomarbeit unter Anleitung von Prof. Dr. D. Naumann, Universität zu Köln
09/07 - 12/09	Dissertation unter der Leitung von Prof. Dr. A. Klein, Universität zu Köln

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie – abgesehen von unten angegebenen Teilpublikationen – noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. A. Klein betreut worden.

Roland Pohl

"New Rare Earth Metal Complexes with Nitrogen-Rich Ligands: 5,5'-Bitetrazolate and 1,3-Bis(tetrazol-5-yl)triazenate—On the Borderline between Coordination and the Formation of Salt-Like Compounds", Patrick J. Eulgem, Axel Klein, Nicola Maggiarosa, Dieter Naumann und Roland W. H. Pohl, *Chem. Eur. J.* **2008**, *14*, 3727-3736.

"A New 5,5'-Bitetrazol Thorium^{IV} Compound: Synthesis, Crystal Structure and Quantum Chemical Investigation", Roland W. H. Pohl, Jonas Wiebke, Axel Klein, Michael Dolg und Nicola Maggiarosa, *Eur. J. Inorg. Chem.* **2009**, 2472-2476.