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ABSTRACT 
 

Activity-based probes (ABPs) are reporter-tagged inhibitors that label enzymes in an 

activity-dependent manner. Using ABPs, activity-based protein profiling (ABPP) 

portrays active enzymes in complex proteomes. A collection of ABPs was screened 

and characterized for labeling of Arabidopsis leaf extracts and tomato leaf apoplastic 

fluids (AFs). We focused on four ABPs: epoxide probe DCG-04; fluorophosphonate 

probe FP; vinyl sulfone probe MV151; and β-lactone probe IS4. First, we optimized 

the labeling conditions and identified the labeling targets. Second, we performed 

comparative ABPP and detected proteins whose activities are differential during 

benzothiadiazole (BTH)-induced plant defenses and pathogen infections. Third, we 

performed competitive ABPP and identified targets of pathogen-derived and 

chemically-synthesized inhibitors. The major findings are as follows: (i) Using DCG-

04, we labeled seven papain-like cysteine proteases (PLCPs) in tomato leaf AFs, and 

found that the activity of PLCP PIP1 is induced upon BTH treatment and is inhibited 

by Cladosporium fulvum effector protein AVR2. We also found that PLCP C14 is 

activated by 0.03% SDS in native AFs and is inhibited by Phytophthora infestans 

effector proteins EPIC1/2B. (ii) Using FP, we showed diversity of serine hydrolase 

activities in leaf extracts of unchallenged and Botrytis cinerea-infected Arabidopsis 

plants. We also detected differentials of serine hydrolase activities in tomato leaf AFs 

upon BTH treatment. (iii) Using MV151, we labeled three catalytic β subunits of the 

plant proteasome, and showed selective inhibition by aldehyde-based inhibitors. We 

also discovered a posttranslational, NPR1-dependent upregulation of proteasome 

activities upon BTH treatment in Arabidopsis. (iv) While characterizing IS4 profiling 

in Arabidopsis leaf extracts, we found that IS4 labeling occurs at N-terminus of 

chloroplast protein PsbP through a peptide bond and requires activity of PLCP RD21. 

This finding eventually led us to the discovery that RD21 acts as a peptide ligase in 

vitro. In conclusion, we demonstrated that ABPP is a powerful tool to dynamically 

track protein activities in plants, which facilitates the discovery and functional 

analysis of enzymes. 
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ZUSAMMENFASSUNG 
 
Activity-based probes (ABPs) sind von Inhibitoren abgeleitet, die kovalent mit einem 
Reportermolekül verknüpft sind und mit aktiven Enzymen reagieren können. Der 
Einsatz von ABPs in activity-based protein profiling (ABPP) erlaubt es aktive 
Enzyme in einem komplexen Proteom sichtbar zu machen. In dieser Arbeit wurde 
eine Kollektion solcher ABPs durchmustert und dahingehend charakterisiert, wie sie 
mit Arabidopsis Blattextrakten und der apoplastischen Flüssigkeit (AFs) aus 
Tomatenblättern reagieren. In der Folge wurden vier ABPs genauer untersucht: die 
Epoxydsonde DCG-04, die Fluorophosphonatsonde FP, die Vinylsulfonsonde MV151 
und die β-Lactonsonde IS4. Als erster Schritt wurden die optimalen 
Reaktionsbedingungen abgesteckt. Dann wurden vergleichende ABPP Experimente 
durchgeführt, bei denen Enzyme identifiziert wurden, deren Aktivität während 
Benzothiadiazole (BTH)-induzierter Pflanzenabwehr und Pathogeninfektion 
unterschiedlich waren. In einem dritten Schritt wurden kompetitive ABPPs 
durchgeführt, deren Ziel es war Zielproteine von Pathogen abgeleiteten und 
synthetischen Inhibitoren zu identifizieren. Folgende Erkenntnisse wurden gewonnen: 
(i) Durch den Einsatz von DCG-04 gelang es in den AFs von Tomatenblättern sieben 
Papain-ähnliche Cysteinproteasen (PLCPs) zu identifizieren. Die Aktivität einer 
dieser PLCPs, PIP1 war während BTH-Behandlung signifikant erhöht, wurde aber 
inhibiert durch das Effektorprotein Avr2 aus Cladosporium fulvum. Es wurde 
außerdem gezeigt, dass das PLCP C14 durch 0,03% SDS im sonst unbehandelten AF 
aktiviert wird und dass die Effektorproteine EPIC1/2B aus Phytophthora infestans 
diese Aktivität inhibieren. (ii) Durch den Einsatz von FP wurde gezeigt, wie 
verschieden die Aktivität von Serinhydrolasen in Blattextrakten von unbehandelten 
und Botrytis cinerea-infizierten Arabidopsispflanzen ist. Unterschiede in der 
Serinhydrolaseaktivität konnten auch in BTH-behandelten und -unbehandelten 
Tomaten AFs gezeigt werden. (iii) Mit der Sonde MV151 wurden die katalytischen 
Untereinheiten des Pflanzenproteasoms markiert und die Selektivität von Aldehyd-
Inhibitoren gezeigt. Außerdem wurde die Beobachtung gemacht, dass BTH-
Behandlung in Arabidopsis zu einer posttranslationalen, NPR1-abhängigen 
Hochregulierung der Proteasomaktivität führt. (iv) Während der Charakterisierung 
von IS4 in Arabidopsis Blattextrakten wurde beobachtet, dass IS4 über eine 
Peptidbindung mit dem N-Terminus des Chloroplastenproteins PsbP verknüpft wird 
und dass diese Reaktion die Anwesenheit der PLCP RD21 voraussetzt. Diese 
Beobachtung führte schließlich zur Entdeckung, dass RD21 in vitro als Peptidligase 
fungiert. Insgesamt wurde gezeigt, dass ABPP eine sehr potente Methode ist die 
Aktivität von Proteinen in Pflanzen dynamisch zu verfolgen und dass diese Methode 
die Entdeckung und funktionelle Analyse von Enzymen erheblich erleichtert.  
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CHAPTER 1: INTRODUCTION 
 

1.1 Activity-based protein profiling 

 

Proteins act at the front end of nearly all biological processes. One of the ultimate 

goals of biological research is to decipher their functions and networks. Therefore, 

detection and quantification of protein expression becomes very important for 

functional analysis of proteins. Due to a significant positive correlation between 

messenger RNA (mRNA) and protein expression, quantification of mRNA or its 

complementary DNA (cDNA) commonly works as an indicator for estimating protein 

levels (Fu et al., 2007). Such methods include northern blotting, quantitative reverse-

transcriptase polymerase chain reaction (qRT-PCR) and microarray analysis. 

Compared to protein measurements, mRNA measurements are less laborious and 

expensive, but may sometimes be less precise e.g. because of post-transcriptional 

modifications of mRNA and/or differentially controlled protein turnover (Gygi et al., 

2000). Western blotting with specific antibodies is a conventional and direct 

measurement to detect and quantify a protein of interest, and is more reliable than 

analytic methods on protein transcripts. Two-dimensional gel electrophoresis (2DE) 

plus mass spectrometry (MS) and isotope coded affinity tagging (ICAT) were 

recently-developed methods to detect and quantify proteins on a proteomic scale 

(Adam et al., 2002a). 

 

Proteins function only in active forms. The activities of proteins such as enzymes can 

be post-translationally regulated. For example, the pseudosubstrate sequence in the 

prodomain of a protease can autoinhibit proteolysis activity of the protease and the 

activation of the protease requires removal of the prodomain. Another example is that 

endogenous inhibitors residing in the active site of the target protease can also inhibit 

the proteolytic activity of the protease (Walsh et al., 2005). Post-translational 

modification may regulate the protein functions other than changing the protein 

quantities, leading to an impaired correlation between protein activity and quantity. 

For this reason, the techniques determining protein levels may fail to reflect levels of 

the active proteins and, thereby, misinform functional analysis of the proteins. 

Furthermore, classical enzyme activity readout methods using fluorogenic substrates 
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usually do not apply to the individual enzymes in a complex proteome (Harris et al., 

2000). 

 

To complement the protein measurements, activity-based protein profiling (ABPP) 

was introduced as an analytic technique for proteins in the complex proteomes. ABPP 

makes use of reporter-tagged inhibitor molecules named activity-based probes (ABPs). 

In native proteomes, ABPs bind to the active site of the target proteins with the 

inhibitor moiety (so-called reactive group) through a stable covalent bond. Therefore, 

ABPs label only functionally active proteins whose catalytic sites are available 

(Cravatt et al., 2008). Since active site accessibility and reactivity is an important 

indication for protein activity (Kobe and Kemp, 1999), mechanism-dependent 

chemical probes read out protein activities on the basis of function rather than 

abundance. 

 

 

1.2 Activity-based probe 

 

ABPs are the workhorses for ABPP. A typical ABP contains three major functional 

elements: a reactive group (also named warhead) for covalent binding to the active-

site residue of the target proteins, a reporter tag for detection and purification of the 

labeled proteins, and a linker as a spacer to keep reactive group and reporter tag 

spatially apart (Baruch et al., 2004). 

 

1.2.1 Reactive group 

 

In an ABP, the reactive group provides the covalent interaction to the target protein 

and desired target specificity. The reactive group is usually derived from a covalent 

irreversible inhibitor. Based on the nature of the prototype inhibitors, ABPs are 

generally classified into two types: directed ABP and non-directed ABP. In some 

ABPs, incorporation of a binding group into the reactive group may modify the 

specificity of the probe. In case that the prototype inhibitor is a noncovalent reversible 

one, integration of a photocrosslinker will provide the obligatory covalent interaction 

for the probe. 
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Directed ABP 

For directed ABP, the reactive group usually derives from a well-characterized 

irreversible enzyme inhibitor. This mechanism-based inhibitor holds an electrophile 

which can selectively and covalently react with the active-site nucleophilic residue of 

a family of enzymes. Based on the inhibitor, it is conceptually straightforward to 

design a directed ABP by incorporating the inhibitor moiety with a linker and a 

reporter tag. This type of ABPs includes fluorophosphonate probes derived from 

serine protease inhibitor diisopropylfluorophosphonate (DFP) for serine hydrolases, 

and epoxide probes derived from papain-like cysteine protease (PLCP) inhibitor E-64 

for PLCPs (Liu et al., 1999; Greenbaum et al., 2000). All directed ABPs have 

excellent target selectivity within a family of enzymes sharing cognate mechanism 

and function, and minimal interfamily cross-reactivity. For example, epoxide probe 

DCG-04 derived from E-64 only targets papain subfamily but not other cysteine 

protease subfamilies, or serine proteases or metalloproteases (Greenbaum et al., 

2002a). 

 

Non-directed ABP 

Due to a limited number of dedicated irreversible inhibitors, directed ABPs only cover 

a small fraction of the active proteomes. Many enzymes including proteases, esterases 

and phosphatases catalyze hydrolytic reactions by acting on the substrates through a 

nucleophilic attack mechanism. Therefore, theoretically an ABP carrying a 

moderately reactive electrophile can covalently react with the nucleophile of the 

enzymes. Carbon electrophiles, including those present in reactive natural products, 

become the resource of choice as reactive groups of non-directed ABPs. Examples are 

sulfonate ester probes, and the spiroepoxide probes derived from the bioactive natural 

compounds fumagillin and luminacin D (Adam et al., 2001; Evans et al., 2005). 

Interestingly, the identified labeling targets of non-directed probes belong to 

mechanistically distinct enzyme classes. 

 

Binding group 

In many cases, the specificity for targeting one particular subset of proteins is an 

intrinsic feature of the electrophile of an ABP (Thornberry et al., 1994). However, the 

target selectivity can be manipulated by embedding a binding group into the reactive 

group of an ABP. The binding group has a defined chemical structure, varying from 
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short peptides to alkyl, aryl or amine-derived chemical groups, which presumably 

docks the probe into the active site of certain proteins and, consequently, alters or 

enhances the target selectivity of the probe. For directed ABPs for proteases, probe 

designers exploit the knowledge on the substrates of the target proteases, and 

incorporate a small substrate-mimicking peptide of 2-4 amino acids as the binding 

group beside the reactive electrophile (Greenbaum et al., 2002a).  In non-directed 

ABPs, aliphatic or aromatic substitutions are usually integrated and determine specific 

targets whose binding pocket of the active site is seemingly complementary (Böttcher 

and Sieber, 2008). For diverse reactivity and target selectivity, ABPs are often 

synthesized and screened on a library scale (“cocktails”) with reshuffled amino acid 

sequences or diverse structure-modifying chemical groups in the binding group 

(Barglow and Cravatt, 2004). 

 

Photocrosslinker 

ABPs require a stable covalent bond for bridging the probes to the target proteins. If 

an enzyme class does not exploit a nucleophilic amino acid for catalysis and only has 

reversible inhibitors or non-covalent affinity molecules, photocrosslinkers can be 

attached to the inhibitor moieties or the affinity molecules, resulting in 

photocrosslinking ABPs. Adding a photocrosslinker is a universal strategy to convert 

reversible inhibitors into covalent ABPs (Saghatelian et al., 2004). When the ABP is 

tightly anchored into the active site of the target enzymes, ultraviolet (UV) irradiation 

can activate the photocrosslinker to form a covalent bond to the proximal regions in 

the active site of the enzymes. Examples of these ABPs are hydroxamate probes 

derived from a zinc-chelating reversible inhibitor of metalloproteases and 

suberoylanilide hydroxamic acid probes derived from a zinc-chelating reversible 

inhibitor of histone deacetylases. Both ABPs carry a benzophenone as 

photocrosslinker (Sieber et al., 2006; Salisbury and Cravatt, 2007).  

 

1.2.2 Reporter tag 

 

The reporter tag distinguishes an ABP from its prototype inhibitor, and allows quick 

detection and easy purification of the profiling targets. While a biotin tag is usually 

indispensible for isolation of the target proteins, a fluorescent tag is more 

advantageous in visualization and quantification of the labeling signals. While a 
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trifunctional probe carries both biotin and fluorescent tags, a click-chemistry probe 

does not contain either of the two tags but a small adapter ready for a chemical 

ligation to a reporter tag. 

 

Biotin tag 

An ABPP signal has little biological meaning until its identity is resolved. That is 

probably the reason why the earliest ABPs all used biotin as reporter tag, as it plays 

dual roles in both signal detection and identification. When an ABP carries a biotin 

tag, labeled proteins can be visualized with streptavidin-conjugated reporters (e.g. 

streptavidin-horse radish peroxidase, HRP) on protein blots, and can be enriched and 

purified with immobilized streptavidin (e.g. streptavidin agarose beads) for MS 

identification. The extremely strong and specific interaction between biotin and 

streptavidin guarantees the quantitative and sensitive detection and purification, even 

of low-abundant proteins (Solinas and Motto, 1999). While biotin remains the affinity 

tag of choice for target identification, for signal detection it has some disadvantages. 

First, western blotting-based detection is labor-intensive and time-consuming. Second, 

endogenously biotinylated proteins cause background that may mask the labeled 

proteins, so that unlabeled negative control (“no-probe control”) is strictly mandatory. 

Third, unspecific binding of the second reporter or luminescence reagents to abundant 

proteins on protein blots introduce background signals and decrease sensitivity. 

Finally, the hydrophilic character of biotin limits the cell permeability of the ABPs 

during in vivo profiling. 

 

Fluorescent tag 

The current trend of reporter tags for ABPs is a fluorophore. Commonly used 

fluorophores for ABPs include rhodamine and boron-dipyrromethene (BODIPY). 

Labeled proteins can be easily and immediately visualized in-gel with a fluorescence 

scanner after gel electrophoresis, although each experimental step involving a 

fluorescent ABP should take place in reduced light conditions to avoid 

photoquenching. Detection of fluorescent signals from probe-bound protein targets is 

sensitive and specific, with low background signals. Furthermore, the excellent 

dynamic range provided by advanced fluorophores and the measurement by modern 

fluorescence scanners ensures reliable quantification of signal intensities. Finally, 

fluorescent profiling is devoid of elaborate blotting procedures, and avoids signal 
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variation among different gels. This makes multiple gels quantitatively comparable, 

and facilitates high-throughput screening. In addiction, the hydrophobic character of 

the fluorophores makes fluorescent ABPs more cell membrane-permeable, and enable 

in vivo profiling and imaging in living cells (Jeffery and Bogyo, 2003). 

 

Trifunctional probe 

Two versions of one ABP, one with fluorescent tag, the other with affinity tag are 

usually synthesized to exploit advantages of the fluorophore for signal detection and 

biotin for target purification. Mutual competition can be done to confirm that the 

fluorescent signals are identical to the biotin signals. Another option is to combine 

both fluorophore and biotin into one reporter tag. The resulting ABP is called a 

trifunctional ABP: a reactive group for activity-based labeling, and a fluorophore and 

a biotin for simultaneous in-gel detection and affinity purification (Adam et al., 

2002b). As bonus, fluorescence scanning is a lot more sensitive than protein staining 

to locate and select enriched targets for MS analysis, and excludes co-isolated 

endogenously biotinylated proteins as background. However, trifunctional ABPs can 

have reduced probe reactivity due to a bulkier tag causing steric hindrance, and these 

probes are more challenging to synthesize. 

 

Click-chemistry probe 

The function of an ABP eventually relies in the inhibitor moiety. However, the 

reporter tag inevitably modifies the structure and physic-chemical features of the 

inhibitor, leading to changes in e.g. size and hydrophobicity. This may cause reduced 

cellular uptake or biased subcellular distribution of the ABP, particularly hampering 

its application for in vivo profiling. The click-chemistry probe is an untagged ABP, 

with a small chemical adapter for the attachment of a reporter tag after labeling. This 

“tag-free” ABP maximally resembles the prototype inhibitor and minimally affects its 

target binding, especially in vivo. Alkyne and azide are two such adapters. Following 

covalent labeling of protein targets, the probe is ligated to the reporter tag in vitro, 

through Cu(I)-catalyzed cycloaddition reaction (“click chemistry”; Speers et al., 

2003). In aqueous solution of biological samples, either adapter molecule is inert 

while their coupling is quick, efficient and specific under mild conditions. This two-

step labeling strategy also allows one probe to accept diverse reporter tags, and 

simplifies probe design and synthesis. Click-chemistry ABPs facilitate profiling 
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protein activities in living cells and even in whole animals, and have a deep impact on 

ABPP techniques (Speers and Cravatt, 2004). 

 

1.2.3 Linker 

 

A linker connects the reactive group to the reporter tag, and keeps them at an 

appropriate distance. Enough distance avoids steric congestion, so the reporter tag will 

not hinder the access of the reactive group to the active site of the target protein, and 

the reactive group will not hinder the access of the reporter tag to its counterpart for 

detection or purification. However, the linker is more than a scaffold. Commonly used 

linkers include the hydrophobic alkyl linkers and the hydrophilic poly ethylene glycol 

(PEG) linkers. The former may enhance cell membrane permeability of the probe 

favored by in vivo profiling, while the latter may enhance probe solubility in aqueous 

extracts favored by in vitro profiling. Two ABPs that only differ in the linker region 

may confer different profiling properties (Kidd et al., 2001). Furthermore, a linker 

region may also contain a latent analytical handle like a click-chemistry adapter, or 

other functional elements like a specific cleavage site (e.g. Tobacco Etch Virus (TEV) 

protease recognition peptide) for mild elution of affinity-isolated targets (Weerapana 

et al., 2007) 

 

1.3 Target identification 

 

To elucidate signal identities as well as labeling sites, target identification is 

absolutely a key step of ABPP. To this end, proteomes of interest are labeled in a 

large scale with biotin-tagged ABPs, and biotinylated proteins are then captured on 

avidin/streptavidin resins. Purified target proteins are subject either to gel-based or 

gel-free identification techniques, both eventually relying on mass spectrometry-based 

peptide sequencing and database searches for hypothetical peptide matches. 

 

1.3.1 Gel-based techniques 

 

Conventional proteomic techniques include the gel-based target identifications. In 

brief, target proteins are eluted under harsh conditions, separated by one-dimensional 
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gel electrophoresis (1DE) or two-dimensional gel electrophoresis (2DE) and 

visualized by staining. Next, gel slices containing labeling signals are excised and 

digested with trypsin. Tryptic peptides are extracted from the gel pieces and identified 

by first dimensional MS for peptide finger printing. Second dimensional MS or micro-

sequencing of the selected peptides further confirms the peptide sequence, and can 

identify the residue label by the probe. 

 

The gel-based target identification generates activity-based proteome reference maps, 

which mirror the labeling patterns of routine gel-based profiling and offer direct links 

between signals and their identities (Phillips and Bogyo, 2005). As reference standard, 

these index maps are important for comparative activity-based proteomics of, for 

example, abiotic and biotic stresses, and high-throughput selective inhibitor screening. 

The gel-based target identification is advantageous also because it retains topological 

information of target proteins and displays protein modifications. However, gel 

electrophoresis and protein staining limits protein separation and quantification. These 

limits are caused by the lack of resolving power for very large or small proteins, 

extremely hydrophobic, acidic or basic proteins and proteins in low abundance. These 

limitations make the high sensitivity of the MS not fully exploited. 

 

1.3.2 Gel-free techniques 

 

Multidimensional protein identification technology (MudPIT) is tailored for gel-free 

target identification of ABPP, and has greatly accelerated the development and 

application of ABPP. In brief, affinity-purified target proteins are digested with 

trypsin on-beads, and the tryptic peptides are separated by two-dimensional liquid 

chromatography (LC) based on charge separation (e.g. with ion exchange column) 

and hydrophobicity separation (e.g. with C18 reverse phase column). The difference 

between gel-based and gel-free methods lies in the tryptic peptides entering MS 

analytic platforms, which are either separated in protein by gel electrophoresis and 

then digested in-gel, or digested on-beads and then separated by tandem LC. 

 

In theory, tryptic peptides from all affinity-purified target proteins can be separated by 

tandem LC and identified by MS sequencing even in trace quantities undetectable by 

protein staining. MudPIT provides an extraordinary resolution, supreme sensitivity 
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and maximal target coverage — three crucial parameters for target identification of 

ABPP, far beyond gel-based techniques (Sieber and Cravatt, 2006). For example, 

Cravatt and coworkers identified seven FP targets in mammalian proteomes with gel-

based technique, and over fifty with gel-free technique (Kidd et al., 2001; Jessani et 

al., 2005a). However, MudPIT loses topological and modification information of 

analyzed proteins, and is unable to reveal the labeled residue. MudPIT also requires 

highly sophisticated equipment and daunting computation power, and lacks the 

desirable run-to-run reproducibility and reliable quantification. Thus, it is currently 

neither suitable for comparative ABPP nor compatible to high-throughput screening. 

Nevertheless, the gel-based and gel-free techniques have a complementary value, and 

their combination causes optimal balance between breadth and depth of analysis. 

 

 

1.4 Applications of ABPP 

 

Up to now, directed ABPs have been developed for more than a dozen enzyme classes 

including cysteine proteases, serine hydrolases, catalytic β-subunits of proteasome, 

metalloproteases, histone deacetylases, kinases and nucleotide-binding proteins, 

phosphotases, ubiquitin-specific proteases, glycosidases and cytochrome P450s, and 

non-directed ABPs for several other enzymes classes, many of which are implicated 

in important biological processes from normal metabolism to patho-physiology 

(Cravatt et al., 2008). The rapidly-expanding ABP toolbox has been applied to both 

basic research on function and regulation of individual proteins, and medical research 

from pharmacological studies to clinical practices. 

 

1.4.1 Applications in mammalian studies 

 

Activity-based proteomics and enzyme mechanism studies 

Genome-sequencing projects deciphered genetic codes on an overwhelming scale, yet 

left structure, function, regulation and interaction of most proteins largely untouched. 

Proteomics took over these challenges, and its focus gradually switches from whole 

proteomes to sub-proteomes for greater dynamic range of detection and more in-depth 

analysis. ABPs can not only be used to detect and measure activities of individual 
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proteins, but also be used on a proteomic scale. ABPP portraits proteomes with 

enzymes only in active forms, and fosters “activity-based proteomics” on a sub-

proteome of active enzymes extracted from a complex proteome, which are 

biochemically traceable with small molecule ABPs (Phillips and Bogyo, 2005). For 

any ABP, disclosure of its target spectrum in a model proteome with advanced MS is 

of paramount importance. This establishes reference for comparative ABPP 

mentioned below, and entitles the ABP as an activity-readout of any its target protein 

for functional analysis. 

 

Chemistry is the basis of biological processes. For this reason, ABPs as reactive 

chemical modifiers are undoubtedly a powerful tool to study enzyme mechanisms, 

including the catalytic mode, substrate selectivity and molecular function. For 

example, sialyl acetylesterase (SAE) had previously been reported as a protein of 

unannotated mechanism due to the lack of sequence homology, but was assigned by 

Cravatt and coworkers as a serine hydrolase through FP profiling and subsequent 

analyses (Jessani et al., 2005b). Thus, ABPP also facilitates structure-function 

investigation of individual proteins. 

 

Comparative ABPP and biomarkers/drug targets discovery 

By comparing protein activity profiles of two or more proteomes under normal and 

disease conditions or at different pathological stages, comparative ABPP identifies 

proteins whose activity level differs. These differential activities may be caused by 

different protein accumulation levels, or by a higher order of regulation, e.g. presence 

of inhibitors or cofactors. Differential protein activities can serve as biomarkers for 

diagnosis and/or drug targets for treatment. 

 

For example, Bogyo and coworkers profiled the life cycle of Plasmodium falciprum, 

the causative agent of human malaria, with DCG-04 and identified that a pathogen 

PLCP falcipain 1, but not falcipain 2 or 3, is upregulated in invasive merozoites 

(Greenbaum et al., 2002c). This implies that falcipan-1 plays a role in host cell 

invasion and that it is an anti-malaria drug target. Cravatt and coworkers profiled 33 

human specimen proteomes from 28 breast tumors and 5 healthy breast tissues with 

FP, and identified 7 membrane-associated serine hydrolases with differential activities 

common to breast cancer samples (Jessani et al., 2005a). Notably, a cDNA microarray 
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on the same samples provided a direct comparison of protein transcript and activity 

levels, and showed a negative correlation for thrombin and KIAA1363. This reveals 

that KIAA1363 is a potential breast cancer biomarker and drug target that would not 

have been recognized by molecular profiling methods other than ABPP. 

 

Competitive ABPP and inhibitor screening 

A competitive version of ABPP allows screening of small molecule libraries and 

evaluation of inhibitors, since most inhibitors compete with the ABP for the same 

active site of a target protein. In a typical experiment, the model proteome is 

pretreated with candidate inhibitors, and then labeled with ABP for the remaining 

active, not inhibited target proteins. Inhibitory efficacy is indirectly interpreted by the 

decrease in ABP labeling compared to inhibitor-untreated control, and is usually 

quantified and clustered into a heat-map for assessment. Screening of reversible 

inhibitors requires kinetically controlled conditions, because the end-point readout of 

ABPP is determined by both the affinity of the inhibitor and the rate of the probe 

reactivity. For this reason, labeling time must be optimized and restricted to the period 

before labeling with ABP reaches saturation (Jessani and Cravatt, 2004). 

 

Competitive ABPP facilitates the selection of potent and specific inhibitors of known 

drug targets to generate novel drugs, and for proteins with unknown function to carry 

out chemical knockout assays. It offers several advantages over conventional 

substrate-based inhibitor screening. First, it takes place directly in physiologically-

relevant complex proteomes with no requisite for purified recombinant target protein. 

Second, it is “substrate-free”, which makes the inhibitor selection for the target 

protein with unknown substrates possible. Third, the candidate inhibitors are 

examined against not only the target protein, but also many other family members 

with similar enzymatic mechanism, therefore, the selectivity of the inhibitors is 

evaluated simultaneously (Speers and Cravatt, 2004). 

 

For example, using competitive ABPP with DCG-04 probe, Bogyo and coworkers 

screened a tripeptide epoxide library for covalent inhibitors of Plasmodium falciprum 

PLCP falcipain 1, and discovered YA29-Eps(S,S) as a specific inhibitor (Greenbaum 

et al., 2002c). With this inhibitor, they successfully prevented parasite invasion of 

cultured human erythrocytes, demonstrating a role of falcipain 1 and indicating this 
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inhibitor as a potential lead for a new anti-malaria drug. Using competitive ABPP 

with FP probe, Cravatt and coworkers screened a mixed library of trifluoromethyl 

ketones and α-keto heterocycles for reversible inhibitors of KIAA1363, an 

uncharacterized membrane-associated protein with unknown substrates (Leung et al., 

2003). Based on and derived from the inhibitors discovered from this screening, the 

researchers designed and confirmed carbamate AS115 as a potent and selective 

inhibitor of KIAA1363 in vivo. Through chemical knockout using AS115, they 

characterized the function of KIAA1363 in ether lipid metabolism and identified that 

2-acetyl monoalkylglycerol is the substrate of KIAA1363 (Chiang et al., 2006). 

 

1.4.2 Applications in plant studies 

 

Detecting plant enzyme activities with reporter-tagged inhibitors had been performed 

before the concept of ABPP was formally introduced into the plant field. For example, 

Hara-Nishimura and coworkers infiltrated biotin-xVAD-fmk, a biotinylated 

irreversible inhibitor of mammalian caspases, into tobacco leaves and labeled two 

signals in vivo (Hatsugai et al., 2004). Although they did not directly identify the 

labeled proteins with MS, they demonstrated caspase activity of the target because 

other caspase inhibitors could outcompete the labeling, and indirectly confirmed the 

targets as vacuolar processing enzyme (VPE) because a VPE-specific antibody can 

immuno-deplete the labeling targets. Thus, with this prototype ABPP, the researchers 

discovered that VPE has caspase activity as they previously postulated. Interestingly, 

biotin-xVAD-fmk also prevented hypersensitive response (HR) in tobacco leaves, 

suggesting that an ABP during in vivo labeling may functionally affect living 

experimental samples. 

 

As a pioneer of ABPP in plants, van der Hoorn and coworkers profiled PLCP 

activities in leaf proteomes of the model plant Arabidopsis thaliana with the biotin-

version of DCG-04 (Van der Hoorn et al., 2004). They characterized profiling 

features, optimized labeling conditions and identified target proteins with gel-based 

separation coupled to MS analysis. Six PLCPs were identified and three were 

confirmed with specific antibodies. Competitive ABPP of diverse commercially-

available protease inhibitors to DCG-04 labeling showed the potential of DCG-04 

profiling for identification of PLCP inhibitors. De Wit and coworkers labeled tomato 
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apoplastic PLCP RCR3 with DCG-04, and identified the Cladosporium fulvum-

secreted protein AVR2 as a pathogen-derived inhibitor of RCR3, because AVR2 can 

outcompete DCG-04 labeling of RCR3 (Rooney et al., 2005). Interestingly, this 

inhibition only happens at pH 4.5-5.5 but not higher, consistent with the pH of 

apoplast, where the interaction naturally occurs. Also with DCG-04, Kamoun and 

coworkers labeled tomato apoplastic PLCP PIP1, and identified the Phytophthora 

infestans-secreted protein EPIC2B as a pathogen-derived inhibitor of PIP1, because 

EPIC2B can outcompete DCG-04 labeling of PIP1 in apoplastic proteomes (Tian et 

al., 2007). Since EPIC2B and PIP1 interact reversibly, the researchers chose restricted 

labeling times. Unlike in mammalian fields, these two studies highlight competitive 

ABPP in the discovery of plant pathogen-secreted inhibitors, but not synthesized 

inhibitors. 

 

Other applications of ABPP in plants involve DCG-04 profiling to monitor cysteine 

protease activity during wheat-leaf senescence; to test target specificity of cathepsin B 

inhibitors in Nicotiana benthamiana, and FP profiling to identify AtCXE12 as the 

major carboxyesterase in activating herbicide 2,4-D methyl in Arabidopsis (Martinez 

et al., 2006; Gilroy et al., 2007; Gershater et al., 2007). Undoubtedly, ABPP in plants 

is just at its beginning. At the crossroad of chemistry and biology, ABPP grows with 

technical advances in chemical synthesis and analytical systems to address 

fundamental biological questions. As a powerful tool to readout protein activities 

from proteome mining to structure-function analysis of individual proteins, ABPP in 

plants offers great opportunities in future plant research. Challenges are the 

development of ABPs for plant-specific proteins, comparative ABPP with biotic and 

abiotic stimuli, and competitive ABPP to identify and study novel endogenous or 

pathogen-derived inhibitors. 
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1.5 Research objective 

 

The objective of this project is to introduce novel ABPs in plant science, and to use 

these to detect differential enzyme activities during plant-pathogen interactions and 

immune responses, and to discover targets of pathogen-derived inhibitors. To achieve 

this objective, we will follow the following approaches: 

First, a collection of ABPs representing different chemotypes will be screened for 

robust labeling in Arabidopsis leaf proteomes. The probes with strong and 

reproducible signals will be chosen and their labeling will be characterized in detail. 

 

Second, labeling conditions of the best ABPs will be optimized, and their labeling 

targets in Arabidopsis leaf proteomes and tomato leaf apoplastic proteomes will be 

identified by large-scale purification and MS analysis. 

 

Third, comparative ABPP will be performed with selected ABPs to leaf proteomes of 

Arabidopsis during benzothiadiazole (BTH)-induced defense, and Pseudomonas and 

Botrytis infections. Comparative ABPP will be performed to tomato leaf apoplastic 

proteomes during BTH-induced defense. 

 

At last, competitive ABPP will be performed with selected ABPs to test putative 

pathogen-derived inhibitors in tomato leaf apoplastic proteomes and identify their 

targets. 
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CHAPTER 2: RESULTS 
 

2.1 ABPP with fluorophosphonate probe FP 

 

2.1.1 FP profiling of Arabidopsis leaf extracts 

 

Serine hydrolases comprise a large collection of enzymes from different structural 

classes that fulfill diverse biochemical roles such as proteases, lipases, esterases, and 

transferases. The Arabidopsis genome encodes for hundreds of serine hydrolases that 

belong to dozens of large multigene families (The Arabidopsis Genome Initiative, 

2000). Common to these enzymes is that the active site contains an activated serine 

residue that performs the nucleophilic attack on the substrate, resulting in a covalent 

intermediate. 

 

To study the diverse roles of serine hydrolases in plants and in other organisms in 

detail, it is essential to display the activities of these enzymes because enzyme 

activities depend on various post-translational processes like phosphorylation, 

nitrosylation, processing, cofactors, and inhibitors, and prediction of enzyme activities 

from transcriptomics or proteomics data can be misleading. Serine hydrolase activities 

can be displayed by activity-based protein profiling. A frequently used probe for 

serine hydrolases is based on fluorophosphonate (FP), which is also the reactive 

moiety in the broad range serine hydrolase inhibitor diisopropyl fluorophosphonate. 

When used on mammalian extracts, FP probes display dozens of serine hydrolase 

activities, including proteases, lipases, and esterases (Liu et al., 1999; Kidd et al., 

2000; Patricelli et al., 2001). In plants, the roles of serine hydrolases are even more 

diverse because many of these enzymes act in the production of elaborate secondary 

metabolites. To study the role of serine hydrolases in plants further, we applied serine 

hydrolase profiling using FP-based probes on Arabidopsis leaf extracts. 

 

2.1.1.1 Characterization of FP labeling 

 

In these studies we used three FP probes that differ only in the linker and reporter tags 

(Figure 1-1). The linker is either a hydrophobic C9 hydrocarbon linker or a 
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hydrophilic C8O4 polyethylene glycol (PEG; p) linker, which makes the probe more 

water-soluble (Kidd et al., 2001). The reporter tag is either biotin (Bio) for affinity 

purification or rhodamine (Rh) for fluorescence detection. 

 
 

 
 
 
FIGURE 1-1 Structures of activity-based probes FP-Bio, FPpBio and FPpRh. 
All carry the same fluorophosphonate (FP) reactive group. FP-Bio has a hydrocarbon linker and a 
biotin (Bio) reporter tag. FPpBio has a PEG linker and a biotin reporter tag. FPpRh has a PEG 
linker and a rhodamine (Rh) reporter tag. 
 

 

Because protein activities depend on pH, we tested labeling of Arabidopsis leaf 

extracts at various pH values. This revealed that the labeling of each signal has its 

own pH optimum (Figure 1-2A, left panel). The pH range for labeling of each signal 

is illustrated with double-ended arrowheads (Figure 1-2A, right panel). For example, 

the 48-kDa signal was only visible at pH 4-8, whereas the 40-kDa signal was strong at 

pH 5-11. pH dependence is a hallmark for activity-dependent labeling because it 

reflects that each enzyme has its own pH-dependent activity. Because most of the FP 

signals can be labeled at pH 8, this cytosolic pH was used for subsequent profiling 

experiments. The signals at 95-kDa and 35-kDa also appear in no-probe controls 

(Figure 1-2C). They represent endogenously biotinylated proteins 3-methylcrotonyl-
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CoA carboxylase (MCCA) and biotin carboxyl carrier protein (BCCP), respectively, 

and therefore are “background” signals on streptavidin-HRP-probed blots. 

 

 

 
 
 
FIGURE 1-2 Characterization of FP labeling in Arabidopsis leaf extracts. 
A, pH dependency of FP profiling. Leaf extracts were labeled with 0.1 µM FP-Bio at different pH 
values (left panel). For each specific FP-Bio signal, the labeling pH range is illustrated with 
double-ended arrows at its estimated MW (right panel). B, Time course of FP profiling. Leaf 
extracts were labeled with 0.1 µM FP-Bio at pH 8. Labeling reactions were terminated at various 
time points by adding cold acetone to a final concentration of 67%. C, Cofactor effects on FP 
profiling. Leaf extracts were heat-denatured, desalted with PD-10 size-exclusion column or mixed 
with cofactors CaCl2, MgCl2, EDTA, ATP, NAD or DTT at 1 mM, or SDS at 0.1%, and then 
labeled with 0.2 µM FPpBio at pH 8. D, FP profiling in various model plant species. 100 µg 
protein extracts from Arabidopsis thaliana cell culture, or leaves of Arabidopsis thaliana, 
Nicotiana benthamiana, tomato (Solanum lycopersicon), bean (Vicia faba) or barley (Hordeum 
vulgare) were labeled with 0.2 µM FPpRh. Labeled proteins were detected on protein gel (10 µg 
protein/lane) by fluorescence scanning.  
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To characterize the time course of FP profiling, labeling was followed over different 

periods. This shows that FP labeling occurs very fast, and the labeling of 48-kDa, 40-

kDa and 30-kDa signals saturates within 15 minutes (Figure 1-2B). 

 

The activities of some enzymes depend on certain cofactors. We examined the effects 

of enzyme cofactors and some small molecule additives on FP labeling profiles. No 

specific changes were caused by those cofactors, additives or the desalting condition 

to FP labeling profiles, except that 0.1% sodium dodecyl sulfate (SDS) globally 

suppresses the labeling (Figure 1-2C, lane 8). Labeling was completely prevented if 

the proteome was heat-inactivated (Figure 1-2C, lane 3), indicating that labeling with 

FPpBio is specific and dependent on protein activities. 

 

To expand the use of FP profiling, we tested the labeling of Arabidopsis cell cultures 

and leaf extracts from Nicotiana benthamiana, tomato (Solanum lycopersicum), bean 

(Vicia faba) and barley (Hordeum vulgare) with FPpRh. Advantageous over biotin-

tagged probe FPpBio, the fluorescent probe FPpRh avoids background signals 

including endogenously-biotinylated proteins MCCA and BCCP during visualization 

of the labeled targets (Figure 1-2D). The resulting labeling profiles are different but, 

interestingly, share some similarities (Figure 1-2D). There are three hallmark signals 

at 70-90-kDa, ~40-kDa and ~28-kDa for each proteome, though the relative intensity 

of each signal differs. 

 

2.1.1.2 Comparative FP profiling of defense-related and pathogen-infected 

Arabidopsis plants 

 

First, we applied FP profiling to investigate serine hydrolase activities in defense-

related Arabidopsis leaf proteomes. Benzothiadiazole (BTH) is a functional analogue 

of salicylic acid (SA), and application of BTH on Arabidopsis plants can trigger SA-

dependent signaling (Lawton et al., 1996). We sprayed BTH to wild-type Arabidopsis 

plants and labeled leaf extracts with FP at 5 day-post-treatment (dpt). Signal intensity 

of several FP targets was higher in BTH-treated plants compared to H2O-treated 

plants, and a 45-kDa signal only appeared in BTH-treated plants but not in H2O-

treated plants (Figure 1-3A). 
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FIGURE 1-3 FP profiling of defense-related and pathogen-infected Arabidopsis plants. 
A, FP profiling of leaf extracts of BTH-treated Arabidopsis plants. Four-week-old Arabidopsis 
plants were sprayed with H2O or 300 µM BTH. Leaf proteins were extracted after 5 days, and 
equal protein quantities were labeled with 0.4 µM FPpBio. B, Time course of FP profiling of 
Pseudomonas-infected Arabidopsis leaf proteomes. Four-week-old Arabidopsis wild type (left 
panel) and sid2 mutant (right panel) were sprayed with 10 mM MgCl2 mock solution (M), or 
bacterial suspension containing 5 x 108 CFU/ml Pseudomonas syringae pv. tomato DC3000 
avirulent strain AvrPphB (A) or virulent strain (V). Leaf proteins were extracted from each 
treatment at different dpi, and equal quantities were labeled with 0.4 µM FPpBio. C, Time course 
of FP profiling of Botrytis-infected Arabidopsis leaf proteomes. Four-week-old Arabidopsis wild 
type and pad3 mutant were infected with LB droplets containing 1 x 106 CFU/ml Botrytis cinerea 
spores. Leaf proteins were extracted, and equal quantities were labeled with 0.2 µM FPpRh at 
different dpi. Arrows indicate the specific signals which are discussed in detail in the text. 
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Next, we applied comparative FP profiling to study the changes in serine hydrolase 

activities in the interaction between A. thaliana and hemibiotrophic bacterial pathogen 

Pseudomonas syringae pv tomato (Pst), the model patho-system for molecular genetic 

analysis of plant-pathogen interactions. Pst is a Gram-negative, rod-shaped bacterium 

with polar flagella, that causes foliar spots and blights on Arabidopsis (Dong et al., 

1991). Wild-type A. thaliana ecotype Columbia-0 is susceptible to Pst DC3000, but is 

resistant to Pst DC3000 carrying AvrPphB, a cysteine protease that elicits the 

hypersensitive response (HR) (Whalen et al., 1991; Shao et al., 2002). The salicylic 

acid-induction deficient mutant-2 (sid2) of Arabidopsis, in which biogenesis of SA is 

impaired, is more susceptible to both virulent and avirulent forms of Pst (Nawrath and 

Métraux, 1999). 

 

To investigate serine hydrolase activities in the compatible interaction (susceptible 

plant with virulent pathogen) and the incompatible interaction (resistant plant with 

avirulent pathogen), we spayed Pst DC3000 virulent strain (V) and avirulent strain 

(A) carrying AvrPphB to wild-type Arabidopsis plants, and performed FP profiling on 

extracts taken at different day-post-infection (dpi). This analysis revealed diverse 

changes in the FP profile among three treatments during the first 3 days (Figure 1-3B, 

left panel). For example, the 65-kDa signal became upregulated in avirulent and 

virulent pathogen-infected leaves at 3 dpi (Figure 1-3B, left panel, black arrowhead); 

the 40-kDa signal became upregulated in avirulent and virulent pathogen-infected 

leaves after 1 dpi (Figure 1-3B, left panel, grey arrowhead); and the 30-kDa became 

upregulated transiently at 2 dpi in avirulent pathogen-infected leaves, while became 

downregulated in virulent pathogen-infected leaves after 1 dpi (Figure 1-3B, left panel, 

open arrowhead). 

 

The upregulation of the 65-kDa and 40-kDa signals was faster and stronger in sid2 

mutants than in wild-type plants (Figure 1-3B, right panel, black and grey 

arrowheads). The 30-kDa signal showed different and more dynamic changes: it was 

upregulated in the infection with virulent pathogen at 1 dpi and started decreasing 

since 2 dpi, while it was upregulated in the infection with avirulent pathogen only at 3 

dpi (Figure 1-3B, right panel, open arrowhead). In conclusion, FP profiling of leaf 

proteomes of Pst-infected Arabidopsis plants revealed miscellaneous and dynamic 

changes in serine hydrolase activities. 
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We also investigated changes in serine hydrolase activities during infection with the 

necrotrophic fungal pathogen Botrytis cinerea. Botrytis can penetrate healthy 

undamaged tissues of a wide range of plants and fruits and cause severe losses in the 

grape and fruit industry (Van Kan, 2006). Arabidopsis plants are well protected 

against Botrytis through the inducible production of phytoalexins like camalexin. 

Phytoalexin-deficient mutant pad3 carries a mutation in CYP71B15, which catalyzes 

the last step in camalexin biosynthesis (Zhou et al., 1999; Schuhegger et al., 2006). 

The absence of camalexin production in pad3 mutant plants explains their 

susceptibility for Botrytis infection (Ferrari et al., 2003). 

 

To investigate serine hydrolase activities during infection with Botrytis, we infected 

wild-type and pad3 mutant Arabidopsis plants with Botrytis and performed FP 

profiling on extracts taken at different days post-infection (dpi). This analysis 

revealed no changes in the FP profile during the first 3 days, consistent with the 3-day 

latent period of Botrytis infection (Figure 1-3C). At 4 and 5 dpi, the 25-kDa signal 

became weaker in Botrytis-infected leaves (Figure 1-3C, lanes 12, 13 and 17, 18). 

This process was faster in pad3 mutants than in wild-type plants. At 5 dpi a number of 

additional signals appeared in the pad3 mutant. At this stage, half of the Botrytis-

infected leaves of the pad3 mutant were macerated, whereas the infection in wild-type 

plants did not progress beyond the site of the inoculation (data not shown). 

 

2.1.1.3 Identification of FP targets in Botrytis-infected Arabidopsis plants 

 

To identify the FP targets Botrytis-infected Arabidopsis plants, we labeled leaf 

extracts of Botrytis-infected wild-type and pad3 mutant plants taken at 5 dpi with FP, 

and the biotinylated proteins were purified, separated on SDS-PAGE gel, and 

identified by tandem mass spectrometry (MS). Target purification and MS analysis 

was performed by Farnusch Kaschani at the Scripps Research Institute in San Diego, 

USA. The fluorescent FPpRh labeling profile (Figure 1-4) is consistent with the 

Coomassie blue-stained gel containing purified FP targets (data not shown), and 

shows that we can simultaneously detect the activities of serine hydrolases from both 

Arabidopsis and Botrytis. The wild-type Arabidopsis sample consists almost entirely 

of Arabidopsis enzymes, whereas the pad3 mutant sample also contains several 

Botrytis enzymes. The activities of Arabidopsis methylesterases MES2 and MES3 
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decrease in pad3 mutant plants (Figure 1-4, italic). FP profiling signals exclusively in 

pad3 mutant sample were caused by Botrytis-derived enzymes including a lactamase, 

an SCPL-like enzyme and two cutinases (Figure 1-4, bold). Thus, FP profiling 

revealed a series of serine hydrolase activities that change during Botrytis infection. It 

is possible that these serine hydrolase activities play a role during the Botrytis-

Arabidopsis interaction. 

 

 
 
FIGURE 1-4 Identities of serine hydrolases during the Arabidopsis-Botrytis interaction. 
Four-week-old Arabidopsis wild-type (wt) and pad3 mutant were infected with LB droplets 
containing 1 x 106/ml Botrytis cinerea spores. Leaf proteins were extracted at 5 dpi, and equal 
quantities were labeled with 0.2 µM FPpRh. The fluorescent signals represent serine hydrolases 
identified by in vitro FP labeling, affinity purification and tandem MS analysis. Proteins whose 
activities were upregulated are bold. Proteins whose activities were downregulated are italic. 

 
2.1.2 FP profiling of tomato apoplastic fluids 

 

The apoplast is an important molecular frontier of plant cells to shield invading 

pathogens. Plant cells secret a variety of proteases into apoplastic space to build a 

proteolytic barrier. The functions of these proteases during plant-pathogen 

interactions vary from non-self recognition to direct proteolytic defenses (Van der 

Hoorn and Jones, 2004; Boller, 2005). Coevolving with their host plants, pathogens 

developed counter-defense mechanisms including the secretion of protease inhibitors 

into the apoplastic space to assist the colonization (Misas-Villamil and Van der Hoorn, 

2008). Therefore, the plant apoplast became an appealing research model for studying 

the antagonistic plant-pathogen interactions in basal and R-gene mediated plant 

defenses. 
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To study the functions of soluble apoplastic proteins during plant defenses, apoplastic 

fluids (AFs) are advantageous over extracellular medium of cell suspension cultures. 

The AF of tomato (Solanum lycopersicum) can be obtained by simple vacuum-

infiltration and centrifugation with minimal intracellular contaminants (De Wit and 

Spikman, 1982). In this study, we utilized ABPP with FP probes to study the activities 

of serine hydrolases in tomato AFs and the activity changes during salicylic acid-

dependent defenses. Applying activity-based proteomics on tomato AFs is beneficial 

for the following reasons. First, protein expression can not be precisely predicted and 

estimated at gene transcript levels in apoplast. Second, the activities of apoplastic 

proteins can be regulated by posttranslational modifications during ER-Golgi 

secretion pathways or inhibited by pathogen-derived inhibitors. Therefore, the readout 

at the activity level is crucial for deciphering the functions of apoplastic proteins in 

defense. Third, the apoplastic proteome of a tomato leaf is less complicated than the 

leaf proteome. This will enhance the separation and identification of proteins by gel 

electrophoresis and MS analysis. We characterized FP profiling of tomato AFs, 

applied comparative ABPP to defense-related tomato AFs, and applied competitive 

ABPP to test if a pathogen-derived inhibitor can outcompete FP labeling. 

 

2.1.2.1 Characterization of FP labeling 

 

To take the advantages of both fluorescent probe for quick detection of profiling 

signals and biotin-tagged probe for affinity purification of labeling targets, we used 

both fluorescent FPpRh and biotin-tagged FPpBio in this study (Figure 1-1). First, we 

compared the labeling profiles of FPpRh and FPpBio probes. Tomato AFs were 

labeled with FPpRh and FPpBio, and labeled proteins were detected on protein gels 

by fluorescence scanning and on protein blots with streptavidin-HRP, respectively. 

Both FPpRh and FPpBio caused similar labeling patterns mainly with two strong 

signals at 70-kDa and 56-kDa, and four weak signals at 40-kDa, 36-kDa 33-kDa and 

26-kDa, though the relative intensity of each signal may vary between two labeling 

profiles (Figure 1-5A, lane 2). FPpRh labeling can be globally suppressed by 

preincubation with excess FPpBio, and FPpBio labeling can be globally suppressed 

by preincubation with excess FPpRh (Figure 1-5A, lanes 3). This “mutual 

competition” indicates that FPpRh and FPpBio label the same set of enzymes in 

tomato AFs, and the signals that FPpRh visualizes are identical to the signals that 
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FPpBio identifies. Both FPpRh and FPpBio labeling profiles contain no background 

signals (Figure 1-5A, lane 1). 

 

 
 
FIGURE 1-5 Characterization of FP profiling in tomato apoplastic fluids. 
A, FPpRh and FPpBio label the same targets in AFs. Left panel: AFs were incubated with 0.2 µM 
FPpRh for 2 hr at pH 6 with or without a preincubation of 30 minutes with 2 µM FPpBio. Right 
panel: AFs were incubated with 0.2 µM FPpBio for 2 hr at pH 6 with or without a preincubation of 
30 minutes with 2 µM FPpRh. Please note that FPpRh and FPpBio share very similar labeling 
profiles, and one can outcompete the other’s labeling. B, Time course of FPpRh labeling. AFs 
were labeled with 0.2 µM FPpRh at pH 6 for different time. C, pH dependency of FPpRh labeling. 
AFs were labeled for 3 hr with 0.2 µM FPpRh at different pH values. 
 

 

Labeling time is a crucial parameter for competitive ABPP with reversible inhibitors. 

To characterize the time course of FP profiling, labeling of tomato AFs was followed 

over different periods (Figure 1-5B). This shows that FP labeling occurs within 1 

minute, and the labeling of all targets reaches the maximum within 1 hour. Therefore, 

a short labeling time is required for kinetically controlled competition assays with 

putative reversible inhibitors, as FP labeling is relatively fast. 
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The above experiments were performed at pH 6, the apoplastic pH. Because protein 

activities can be tightly controlled or flexibly regulated by different pH, we tested FP 

labeling of tomato AFs at various pH values. This pH dependency experiment showed 

that optimal pH range for labeling of both 70-kDa and 36-kDa signals is pH 6-11, and 

for 56-kDa and 33-kDa signals is pH 4-8 (Figure 1-5C). At pH 6, all signals can be 

labeled maximally, indicating that the target serine hydrolases in tomato AF are 

indeed active at their physiological pH (Figure 1-5C, lane 6). We used pH 6 for all 

subsequent FP profiling experiments in this study. 

 

2.1.2.2 FP profiling of apoplastic fluids of defense-related tomato plants 

 

Salicylic acid (SA) is a signal molecule that increases endogenously upon pathogen 

infection and triggers local defense and systemic acquired resistance (Shah, 2003). 

Benzothiadiazole (BTH) is a functional analog of SA with higher mobility in plants, 

and exogenous application of BTH triggers SA-dependent defense responses (Lawton 

et al., 1996). The advantages of defense induction in plants by BTH over live 

pathogens are apparent. First, since no pathogenic organism is involved, the research 

system is significantly simplified. Second, plant defense induction can be readily 

synchronized. Third, the effects of chemical induction can be tightly controlled in a 

dosage-dependent manner. 

 

Tomato plants were drenched with H2O or with BTH solution, and AFs of adult 

leaves were extracted at 5 days post treatment and labeled with FPpRh. Sufficient 

induction of defense responses was indicated by the accumulation of PR proteins in 

the AFs from BTH-treated tomato plants (Figure 1-6A). FPpRh profiling of AFs from 

H2O- or BTH-drenched tomato plants revealed extensive differentials of serine 

hydrolase activities on 1D gel (Figure 1-6B). The 70-kDa and 33-kDa signals were 

strongly upregulated upon BTH treatment, while the 56-kDa signal was 

downregulated, suggesting that their functions may relate to the SA-mediated 

apoplastic defense (Figure 1-6B, black dot, grey arrowhead and grey dot, 

respectively). 36-kDa and 26-kDa signals remained similar in H2O- and BTH-treated 

samples, implying that both may have a housekeeping function not directly involved 

in plant defense (Figure 1-6B, black and open arrowhead). 
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FIGURE 1-6 Differential activities of secreted FPpRh targets in BTH-treated tomato plants. 
A, Apoplastic PR protein accumulation in BTH-treated tomato plants. Five-week-old tomato 
plants were treated with H2O or BTH. AFs were isolated after 5 days, and equal volumes were 
separated on a 12% protein gel to visualize PR protein accumulation in the AF. B and C, Tomato 
plants were drenched with H2O or 300 µM BTH for 5 days, and apoplastic fluids were isolated. 
Equal volumes were used for protein activity profiling with FPpRh. Proteins were separated by 
1DE (B) or 2DE (C). 
 

 

We further separated the FPpRh-labeled serine hydrolases on 2D gels, resulting in a 

better separation of the signals (Figure 1-6C). The strong 70-kDa signal has different 

isoforms, whose activities may be differentially regulated during plant defense (Figure 

1-6C, black dot). Identification of purified FP targets on 2D gels will provide a 

detailed reference map of active serine hydrolases in tomato AFs, and facilitate 

studies on the activity regulation of target proteins. 
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2.1.2.3 FP labels P69B whose activity is upregulated in defense 

 

To identify the FP profiling targets, leaf AFs from H2O- and BTH-drenched tomato 

plants were labeled with FPpBio. The biotinylated proteins were purified on 

streptavidin agarose beads, and separated by 1DE. The profile of captured biotinylated 

signals on streptavidin blots is identical with the profile on coomassie-stained gel 

(Figure 1-7A). The coomassie-stained protein bands were excised from the gel, 

digested with trypsin and subjected to MS analysis. MS analysis was performed by 

Tom Colby at Proteomics Service Center of MPIZ in Cologne, Germany. The MS 

data demonstrated that both 70-kDa and 33-kDa signals contain specific peptides of 

P69B, a subtilisin-like serine protease that resides in tomato apoplast (Tornero et al., 

1997). Due to technical limitations, the tryptic peptides from other coomassie-stained 

protein bands could not be detected by MS. The identity of the two identified signals 

was confirmed by showing that purified biotinylated proteins cross-react with the 

antiserum specific to N-terminal peptide of P69 subtilase (Figure 1-7B; Tian et al., 

2004). The activity of P69B is upregulated in AFs when the tomato plants are treated 

with BTH (Figure 1-7). These results are consistent with pathogenesis-related (PR) 

nature of P69B which is induced and accumulates in the tomato apoplast upon 

pathogen attack or treatments with SA or BTH (Vera et al., 1989; Jorda and Vera, 

2000; Tian et al., 2004). 

 

 
 
FIGURE 1-7 Identification of major FPpBio target in tomato apoplastic fluids. 
A, Purification and identification of FPpBio-labeled proteins from AFs. Tomato plants were 
drenched with H2O or 300 µM BTH for 5 days, and AFs were isolated. Equal volumes of AFs 
from H2O- or BTH-treated plants were labeled with FPpBio, and biotinylated proteins were 
captured and purified on streptavidin-agarose beads. Proteins eluted from these beads were 
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analyzed on protein blots using streptavidin-HRP (left panel), and on protein gels stained with 
coomassie-blue (right panel). Coomassie-blue-stained protein bands were excised, digested with 
trypsin and analyzed by tandem MS. P69B was identified as major component of two major 
signals indicated with arrowheads. C, Confirmation of P69B as the major FPpBio target in tomato 
AFs. Two major signals were confirmed to be P69B using anti-P69 antibody on the purified 
proteins. Please note that activities of P69B in tomato AFs were upregulated upon BTH treatment. 
 

 

2.1.2.4 EPI1a can not outcompete FP labeling of P69B in tomato apoplastic fluids 

 

EPI1 is an extracellular protease inhibitor secreted by Phytophthora infestans during 

infection and has been shown to inhibit the tomato apoplastic subtilisin-like serine 

protease P69B (Tian et al., 2004). EPI1 contains two domains homologous to the 

Kazal family of serine protease inhibitors: an atypical Kazal domain EPI1a and a 

typical Kazal domain EPI1b (Figure 1-8A, upper panel). Using enzymatic assays with 

colorimetric substrates and coimmunoprecipitation assays, Kamoun and coworkers 

showed that the EPI1 inhibits and interacts with P69B, and the inhibition and 

interaction are achieved only through EPI1a domain, but not EPI1b domain (Tian et 

al., 2005). We ectopically expressed recombinant EPI1a in Escherichia coli, and 

performed competitive ABPP to examine if EPI1a can outcompete FP labeling of 

P69B. 
 

The rEPI1a has an N-terminal FLAG tag from expression vector pFLAG-ATS (Figure 

1-8A, bottom panel; Tian et al., 2005). Using anti-FLAG affinity gel, we purified 

rEPI1a from E. coli culture media, and determined the purity of the recombinant 

protein with silver nitrate staining. The purified rEPI1a has an expected size of 10-

kDa, and has high purity mainly in elution fraction-2 (Figure 1-8B, arrowhead). 

rEPI1a was then used as a reference inhibitor of P69B for competition assays with FP 

labeling of tomato AFs. 

 

To apply competitive ABPP, we preincubated 50 µL AFs from either H2O- or BTH-

treated tomato plants with 100 nM rEPI1a for 30 minutes, and then added 50 nM 

FPpRh in to label for another 30 minutes. Surprisingly, FPpRh profiling showed that 

EPI1a can not outcompete FP labeling of P69B in AFs of either H2O- or BTH-treated 

samples (Figure 1-8C). This suggests that rEPI1a may not affect the accessibility of 

FP probe to the catalytic serine residue at the active site of P69B protease. 
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FIGURE 1-8 EPI1a can not outcompete FP labeling of P69B in tomato apoplastic fluids. 
A, Schematic diagram of EPI1 and FLAG-rEPI1a structures. The signal peptide (SP), two Kazal 
domains (EPI1a and EPI1b) and FLAG-tag are represented in dark gray. The numbers indicate the 
amino acid positions from N-terminus. The diagram was modified from Tian et al, 2004. B, 
Ectopic expression and affinity purification of Kazal domain EPI1a of EPI1. Recombinant EPI1a 
with FLAG epitope tag at N terminus was ectopically expressed in E. coli, and purified with anti-
FLAG affinity gel from the culture medium. Silver nitrate staining shows the purity of the eluted 
protein. Elute fraction 2 was used in competition assays of FPpRh profiling. M, protein size 
marker. T, total input. F, flow-through. W, wash. E, elute. C, EPI1a can not outcompete FP 
labeling of P69B in tomato AFs. 50 µL of AFs from H2O- or BTH-treated plants were 
preincubated for 30 minutes with or without 100 nM EPI1a, and then labeled with 50 nM FPpRh 
for another 30 minutes. 
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2.2 ABPP with epoxide probe DCG-04 

 

2.2.1 PLCP activities and AVR2 inhibition of PIP1 in tomato apoplastic fluids 

 

Considering that invasion of the plant apoplast is a critical phase of the infection cycle 

of numerous pathogens, it can be postulated that this compartment serves as a 

molecular battlefield that contributes to the success of pathogen infection and plant 

resistance. Infection of tomato with various pathogens triggers the accumulation of a 

large amount of pathogenesis-related (PR) proteins in the apoplast, some of which 

directly target those pathogens by degrading their cell wall components (Kombrink et 

al., 1988; Joosten and De Wit, 1989; Van Loon et al., 2006; Ferreira et al., 2007). 

Pathogens, on the other hand, secrete different effector proteins during infection to 

prevent this degradation (Rose et al., 2002; Tian et al., 2004, 2005; Van den Burg et 

al., 2006; Van Esse et al., 2007). 

 

Although apoplast-localized plant proteases can play a role in defense, they might also 

act in signaling or perception upon pathogen infection (Van der Hoorn and Jones, 

2004). For example, RCR3, a secreted PLCP of tomato, is essential for the function of 

the tomato resistance gene Cf-2, which mediates recognition of the pathogenic fungus 

Cladosporium fulvum carrying the avirulence gene Avr2 (Krüger et al., 2002). RCR3 

is transcriptionally regulated as a PR protein, and the secreted AVR2 protein binds 

and inhibits RCR3. This mechanism of perception suggests that RCR3 is rather a 

virulence target of AVR2 that became guarded by the Cf-2 resistance protein to 

monitor pathogen entry (Van der Hoorn et al., 2002; Rooney et al., 2005; Jones and 

Dangl, 2006). The hypothesis that PLCPs can be virulence targets is also supported by 

the discovery that Phytophthora infestans secretes PLCP inhibitors during infection of 

tomato (Tian et al., 2007). 

 

These data indicate that tomato plants secrete PLCPs during defense to create a 

proteolytic apoplast that is harmful to pathogens. However, it is unknown what the 

full content of apoplastic PLCP activities is and to what extent these secreted PLCPs 

are inhibited by AVR2 and other pathogen derived inhibitors. In this study, we used 

ABPP with PLCP-specific fluorescent ABP TMR-DCG-04 to investigate which 
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PLCPs are active in the tomato apoplast during the benzothiadiazole (BTH)-triggered 

defense response and to determine the extent to which these PLCPs are inhibited by 

AVR2. 

 

 

 
 
 
FIGURE 2-1 Structures of activity-based probes DCG-04 and TMR-DCG-04. 
Both carry the same epoxide reactive group, binding group and linker, and differ in reporter 
groups: biotin in DCG-04 and BODIPY-TMR in TMR-DCG-04. 
 

 

2.2.1.1 BTH treatment results in increased PLCP activity in the tomato 

apoplastic fluids 

 

We employed protease activity profiling as a tool to display activities of PLCPs in the 

tomato AFs (Van der Hoorn et al., 2004). Protease activity profiling is based on the 

use of a BODIPY-TMR-tagged, broad-range PLCP inhibitor E-64 (called TMR-DCG-

04; Figure 2-1, lower panel), which reacts with the catalytic Cys residue of the 

protease in an activity-dependent manner (Greenbaum et al., 2000). E-64 lacks 

specificity-determining binding groups and is often used for diagnostic purposes since 

it is reactive to a wide range of PLCPs. Although the readout does not contain 

information on substrate specificity and conversion rates, signals represent the 

availability and abundance of active sites of PLCPs. 
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FIGURE 2-2 PIP1 is induced by BTH treatment and inhibited by AVR2 in the tomato 
apoplastic fluids. 
A, 1D fluorescent protease activity profiling of tomato AFs. Plants were treated with H2O or BTH 
for 5 days, and AF was isolated. Equal volumes of AF were used for protease activity profiling 
with TMR-DCG-04. The same volume of AF of BTH-treated tomato plants were also 
preincubated with 83 nM AVR2 before adding TMR-DCG-04 to label the remaining noninhibited 
proteases. Proteins were separated by 1D gel electrophoresis. Please note that only 25-kDa signal 
coinciding with PIP1 is significantly stronger from BTH-treated plants, and suppressed by 
addition of AVR2. B and C, 2D fluorescent protease activity profiling of PLCPs in tomato AFs. 
Plants were treated with H2O (B) or BTH (C) for 5 days, and AF was isolated. Equal volumes of 
AF were used for protease activity profiling with TMR-DCG-04. Proteins were separated by 2D 
gel electrophoresis. Signals on the 2D map (B) represent PLCPs identified by in vitro DCG-04 
labeling, affinity purification and tandem MS analysis, and are indicated with arrows. Please note 
that only signals coinciding with PIP1 are significantly stronger from BTH-treated plants (C). D, 
2D fluorescent protease activity profiling of PLCPs in tomato AFs in the presence of AVR2. Same 
volume of AF of BTH-treated tomato plants were preincubated with 83 nM AVR2 before adding 
TMR-DCG-04 to label the remaining noninhibited proteases. Proteins were separated by 2D gel 
electrophoresis. Please note that only signals coinciding with PIP1 are significantly weaker in the 
presence of AVR2. 
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To investigate secreted PLCP activities during the defense response of tomato, we 

isolated apoplastic fluids (AFs) 5 days after treating tomato plants with H2O or with 

the salicylic acid (SA) analog BTH. The AF of BTH-treated tomato contains the 

expected PR proteins, demonstrating that the BTH treatment was successful (Figure 

1-6A). 

 

Protease activity profiling with TMR-DCG-04 revealed three fluorescent signals in 

AF of H2O-treated tomato plants: a strong signal at 25-kDa, a weaker signal at 30-kDa, 

and a weak signal at 35-kDa (Figure 2-2A, lane 1). All three of these signals can be 

competed by adding an excess of E-64 during labeling (data not shown). These three 

signals are upregulated in AF of BTH-treated tomato plants (Figure 2-2A, lane 2). The 

differential activities of 30-kDa and 35-kDa signals are less pronounced than the 25-

kDa signal, which dominates the overall PLCP activities in AF of BTH-treated tomato 

plants. Thus, tomato plants create a proteolytic apoplast by secreting active PLCPs 

upon BTH treatment, especially the 25-kDa PLCP. 

 

2.2.1.2 Tomato apoplast contains activities of different PLCPs 

 

To identify the PLCPs in the tomato apoplast, AFs were labeled with DCG-04 (Figure 

2-1, top) and biotinylated proteins were purified, separated by 2DE, and identified by 

tandem MS. Target purification, 2DE and MS analysis were performed by Renier van 

der Hoorn, Anne Harzen and Tom Colby, respectively, at Proteomics Service Center 

of MPIZ in Cologne, Germany. This established 2D reference map of PLCP activities 

in tomato apoplastic fluids for comparative ABPP of BTH treatment and AVR2 

inhibition mentioned below with 2D fluorescent profiling. The advantages of profiling 

PLCP activities in tomato AFs by 2DE with fluorescent TMR-DCG-04 probe are 

apparent. First, 2DE provides indispensably excellent separation of plant PLCPs, as 

subsets of them share extremely similar molecular weight (MW) and therefore could 

not be efficiently detected and distinguished by 1DE (Van der Hoorn et al., 2004). 

Second, fluorescent profiling offers sensitive measurement of fluorescent signals with 

superb dynamic range, so that ensures reliable quantification of signal intensities. 

Third, it escapes, compared to biotin-streptavidin blots, background noises from the 

endogenously biotinylated proteins and unspecific binding of the second reporter or 
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luminescence reagents. Forth, it avoids introducing signal variations among different 

gels, so that makes multiple gels quantitatively comparable. 

 

Comparison of the fluorescent 2D map (Figure 2-2B) with the Coomassie blue-stained 

2D gel containing purified PLCPs (Shabab et al., 2008) indicates that we can detect 

the activities of PIP1, C14, CatB1, CYP3, and perhaps even ALP simultaneously in 

the AF of H2O-treated tomato plants using fluorescent protease activity profiling. The 

horizontal rows of spots for most of the proteases probably come from different 

isoforms that exist in planta or are generated during extraction. 

 

2.2.1.3 PIP1 is induced by BTH treatment and inhibited by AVR2 in the tomato 

apoplastic fluids 

 

The three signals detected by fluorescent protease activity profiling on 1D gel are 

consistent with those observed on 2D gels (Figure 2-2A-D). 1D gels show that BTH 

treatment results in a strong upregulation of the 25-kDa PIP1 and CYP3 signals and 

weak upregualtions of the 30-kDa and 35-kDa signals of mature isoform of C14 

(mC14), ALP, CatB and intermediate isoform of C14 (iC14), respectively (Figure 2-

2A, lane 1 and 2). 

 

Comparison of the fluorescent 2D activity profiling maps of AFs of H2O- and BTH-

treated tomato plants indicates that only the signal corresponding to PIP1 is 

significantly upregulated upon BTH treatment (Figure 2-2B and C). The signals 

corresponding to the other PLCPs remain similar when compared with the control. 

These data indicate that PIP1 dominates the increased PLCP activity during BTH 

treatment. The induction of PIP1 by BTH treatment is similar to those of PR genes 

(Sanz-Alferez et al., 2008), indicating that PIP1 gene expression is regulated through 

the SA pathway and that it can be considered as being a PR protein. 

 

Having identified the PLCPs that pathogens encounter when they invade the tomato 

apoplast, we next investigated which PLCPs are inhibited by AVR2 of the fungus C. 

fulvum (Rooney et al., 2005). AVR2 was produced as an N-terminally FLAG-tagged 

protein in E. coli by Mohammed Shabab. 
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To investigate the inhibition of PLCPs by AVR2 in crude AFs of BTH-treated tomato 

plants, we preincubated these AFs for 30 min with AVR2 and then added TMR-DCG-

04 to label the remaining, noninhibited proteases. These assays were analyzed by 1DE 

and revealed that AVR2 prevents the labeling of most of the 25-kDa proteases, 

whereas the other signals remain unaltered (Figure 2-2A, lanes 2 and 3). 

 

To determine the selectivity of AVR2 inhibition in more detail, we performed 

fluorescent protease activity profiling using TMR-DCG-04 on AF of BTH-treated 

tomato plants with and without preincubation with AVR2 and analyzed the samples 

on 2D gels. The 2D images were normalized using the fluorescent protein size 

markers and compared. Comparing the 2D fluorescent maps in the absence or 

presence of AVR2 shows that fluorescent labeling of C14, ALP, CYP3, and CatB1 is 

unchanged, whereas labeling of PIP1 is significantly reduced in the presence of AVR2 

(Figure 2-2C and D). These data indicate that AVR2 selectively targets PIP1 and does 

not inhibit other C14, ALP, CYP3, or CatB1 in the tomato apoplast. 

 

 

2.2.2 C14 activities and EPIC1/2B inhibition of C14 in tomato apoplastic fluids 

 

Tomato is a host for numerous other leaf pathogens with miscellaneous lifestyles. The 

oomycete pathogen Phytophthora infestans, for example, is a hemibiothrophic 

pathogen that requires living cells during the initial stage of infection, but then causes 

extensive necrosis at a later stage (Kamoun and Smart, 2005). The defense response 

of tomato against such pathogens is universal and includes the accumulation of 

proteins like cysteine proteases in the apoplast that are potentially harmful for these 

pathogens (Tian et al., 2005, 2007; Van Loon et al., 2006; Ferreira et al., 2007). 

These defense-related enzymes are thought to directly target the pathogens e.g. by 

degrading their cell wall components. Successful tomato pathogens evolved means to 

suppress these defense responses. For example, P. infestans secretes cystatin-like 

EPIC1 and EPIC2B proteins to inhibit tomato secreted papain-like cysteine proteases 

RCR3 and PIP1 (Tian et al., 2007; Song et al., 2009). These observations are 

consistent with the hypothesis that pathogen effectors evolve to inhibit harmful 

secreted proteases. 
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However, emerging concept is that most effectors have multiple targets (Hogenhout et 

al., 2009), and PIP1 and RCR3 are not the only PLCPs that are encountered by these 

pathogens during infection. Tomato secretes seven different papain-like cysteine 

proteases (PLCPs) into the apoplast that belong to four distinct classes. Besides RCR3 

and PIP1 (subfamily 5), tomato secretes five other PLCPs that belong to different 

subfamilies. These PLCPs are C14 (subfamily 1), aleurain-like ALP and CYP3 

(subfamily 7) and cathepsin B-like CatB1 and CatB2 (subfamily 8) (Beers et al., 

2004). C14 is unique amongst these proteases since it carries a C-terminal granulin 

domain with unknown function (Yamada et al., 2001). Like its Arabidopsis ortholog 

RD21, tomato C14 exists in two active isoforms, depending on the presence or 

absence of a C-terminal granulin domain. The intermediate isoform (iC14) carries the 

granulin domain and is 40-kDa, whereas the mature isoform (mC14) is 30-kDa and 

lacks the granulin domain. Here, we investigated which of the tomato secreted PLCPs 

are targeted by the EPIC1 and EPIC2B effectors of P. infestans. 

 

2.2.2.1 Characterization of DCG-04 labeling of recombinant C14 

 

In order to investigate the activities of the secreted PLCPs of tomato individually and 

the potential inhibition by EPICs, we produced tomato C14 by agroinfiltration in 

Nicotiana benthamiana by expressing C14 with the silencing inhibitor p19, and use 

extracts of agroinfiltrated leaves for activity-based protein profiling (ABPP) (Shabab 

et al., 2008). Ectopic overexpression of the recombinant tomato C14 (rC14) with the 

silencing inhibitor p19 ensures high levels of proteins produced in planta with all 

required post-translational modifications (Voinnet et al., 2003; Van der Hoorn et al., 

2000). rC14 was produced by Raju Chintha at MPIZ in Cologne, Germany. 

 

Labeling of N. benthamiana leaf extracts containing overexpressed rC14 with 2 µM 

DCG-04 at pH 5 reveals one strong signal at 30-kDa and one weak signal at 40-kDa, 

which represent two active isoforms of rC14: the 30-kDa mature rC14 and the 40-kDa 

intermediate rC14 (Figure 2-3A, B, C; indicated by black and gray arrowheads, 

respectively; Shabab et al., 2008). This indicates that the mature isoform of rC14 

dominates the overall activities of rC14 produced from agroinfiltration in N. 

benthamiana. 
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FIGURE 2-3 Characterization of DCG-04 profiling of recombinant C14 and of tomato 
apoplastic fluids. 
A, pH dependency of DCG-04 labeling of rC14. Extracts from agroinfiltrated N. benthamiana 
leaves overexpressing rC14 were used as a source of rC14, and were labeled at different pH values. 
B, Time course of DCG-04 labeling of rC14. rC14-containing extracts were labeled at pH 5, and 
the labeling reactions were terminated at various time points by adding cold acetone to a final 
concentration of 67%. C, SDS effects on DCG-04 labeling of rC14. rC14-containing extracts were 
labeled at pH 5 in presence of different SDS concentrations. D, pH dependency of DCG-04 
labeling of tomato AFs. AFs were extracted from tomato plants, and labeled at different pH values. 
E, Time course of DCG-04 labeling of tomato AFs. AFs were labeled at pH 5, and the labeling 
reactions were terminated at various time points by adding cold acetone to a final concentration of 
67%. F, SDS effects on DCG-04 labeling of tomato AFs. AFs were labeled at pH 5 in the 
presence of different SDS concentrations. Black arrowhead, iC14; grey arrowhead, mC14; open 
arrowhead, PIP1. 
 

 

The pH value is an important parameter for enzyme activities in vitro. Labeling at 

different pH causes different profiles (Figure 2-3A). Optimal pH range for labeling 

both intermediate and mature rC14 is at pH 4-6, consistent with the physiological pH 

of tomato apoplast (~pH 5.5). Activities of rC14 dramatically decrease at pH higher 
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than pH 7, which is characteristic for apoplastic PLCPs. Therefore, labeling of rC14 

was conducted at pH 5 in the rest of this work. 

 

Labeling kinetics is crucial for competitive ABPP to detect reversible inhibitors. To 

characterize the time course, labeling was followed over different periods (Figure 2-

3B). This shows that labeling occurs within 15 minutes and the labeling of both 

intermediate and mature rC14 reaches saturation within 2 hours. 

 

As an anionic surfactant, SDS can modify conformation, interaction and activity of 

proteins at certain concentrations. To study the effects of SDS as an additive to the 

activity of rC14, rC14-containing extracts were labeled with DCG-04 in the presence 

of different concentrations of SDS. 0.01-0.03% of SDS decreases the labeling of 

intermediate rC14, while has no effect on the labeling of mature rC14 (Figure 2-3C, 

lane 2 and 3). 0.1-1% of SDS completely prevents the labeling of intermediate rC14 

and dramatically reduces the labeling of mature rC14 (Figure 2-3C, lane 4 to 6). 

These experiments show that low concentrations (0.1%-1%) of SDS decrease the 

labeling of rC14 with DCG-04. 

 

2.2.2.2 Characterization of DCG-04 labeling of tomato apoplastic fluids 

 

Labeling of crude apoplastic fluids (AFs) of tomato plants under normal growth 

conditions with 2 µM DCG-04 at pH 5 reveals three signals, one signal at 40-kDa 

representing intermediate C14 (iC14), one signal complex at 30-kDa including mature 

C14 (mC14), ALP and CatB, and one signal at 25-kDa mainly consisting of PIP1 

(Figure 2-3D, E, F; indicated by black, gray and open arrowheads, respectively; 

Chapter 2.2.1.2 of this thesis). On 1D gel, we can not accurately distinguish mC14, 

ALP or CatB within the 30-kDa signal. 

 

Different pH values affect labeling profiles of three hallmark signals differently 

(Figure 2-3D). Optimal pH range for labeling of 40-kDa iC14 and 30-kDa signals is 

from pH 4 to pH 6, and the labeling of those two signals dramatically decreases at pH 

higher than pH 6.5. 25-kDa PIP1 is active through the experimented pH range of pH 

4-8.5, while its optimal pH range for labeling is at pH 5.5-6.5. At basic pH of pH 8-

8.5, labeling of iC14 is completely abolished and the background increases globally 
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(Figure 2-3D, lane 9 and 10). These results indicate that all the DCG-04-labeled 

PLCPs in tomato AFs have acidic pH ranges optimal for their activities, which is in 

concert with their apoplastic location. Compared to the studies on rC14, iC14 in 

tomato AFs has identical pH profile as intermediate rC14, and the 30-kDa signal has a 

pH profile similar to mature rC14 (Figure 2-3, A and D). Thus, rC14 produced from N. 

benthamiana can represent C14 from the native proteome of tomato AF in the 

biochemical aspect of pH dependency of DCG-04 labeling. 

 

Time course study on DCG-04 profiling of tomato AFs shows that the labeling of 40-

kDa iC14 and 30-kDa signal complex occurs within 1 hour and reaches the maximal 

within 3 hours (Figure 2-3E). These observations on 40-kDa iC14 signal and 30-kDa 

signals in tomato AFs are consistent with the time course of labeling of iC14 and 

mC14 ectopically overexpressed in recombinant forms, respectively (Figure 2-3, B 

and E). In contrast, the labeling of 25-kDa PIP1 is slower: it starts to appear after 2 

hours and does not yet saturate in 5 hours. 

 

When we studied the effects of SDS at different concentrations on DCG-04 labeling 

of tomato AFs, we found that SDS at 0.1% or higher prevents the labeling of 30-kDa 

signals, and SDS at 0.03% or higher strongly prevents the labeling of PIP1 (Figure 2-

3F). Interestingly, the labeling of iC14 tolerates SDS at the concentrations from 

0.01% to 1%, and 0.03% SDS can significantly increase this labeling, which is 

drastically different from its effect on the labeling of ectopically-overexpressed 

recombinant iC14 (Figure 2-3, C and F, lane 3). Thus, 0.03% SDS shows contrasting 

effects on the activity of iC14 in native tomato AFs and in a recombinant form 

overexpressed in N. benthamiana. 

 

2.2.2.3 Characteristics of EPIC1/2B inhibition of recombinant C14 

 

In order to study the inhibitory effects of P. infestans-secreted cystatin-like effector 

proteins EPIC1 and EPIC2B on tomato C14, EPIC1 and EPIC2B were ectopically 

expressed in E. coli, and affinity-purified by Mohammed Shabab. The N. 

benthamiana leaf extracts containing overexpressed rC14 were preincubated with 

EPIC1 and EPIC2B at different concentrations for 30 minutes, and then incubated 

with DCG-04 at pH 5 to label the non-inhibited proteases. We studied the strong 
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interaction between tomato PLCP C14 and EPICs by using long labeling times (3 

hours), at relatively high DCG-04 concentrations (300 nM), and low EPIC 

concentrations (4-65 nM). Under these conditions, weak, reversible interactions will 

not be detected since DCG-04 reacts irreversibly and would eventually label all 

proteases. 

 

 

 
 
 
FIGURE 2-4 EPIC1/2B outcompete DCG-04 labeling of recombinant C14. 
EPIC1 (A) and EPIC2B (B) outcompete DCG-04 labeling of rC14 at low nM concentrations. 
rC14-containing extracts were incubated with different concentrations of EPIC1 (A) or EPIC2B 
(B) for 30 minutes at pH 5. DCG-04 was added after preincubation to label the non-inhibited 
rC14s. Please note that the rC14 labeling is slightly stronger in the presence of 4 nM EPIC1 or 
EPIC2B, than the no-inhibitor control. Black arrowhead, intermediate rC14. Grey arrowhead, 
mature rC14. 
 

 

 

Competitive ABPP reveals that EPIC1 inhibits mature rC14 at concentrations above 

16 nM, but not intermediate rC14 even at 65 nM (Figure 2-4A). Similarly, EPIC2B 

inhibits mature rC14 potently at concentrations above 16 nM, but it also inhibits 

intermediate rC14 at concentrations above 32 nM (Figure 2-4B). This indicates that 

EPIC1 and EPIC2B have similar yet not identical affinity for rC14, and EPIC2B 

outcompetes DCG-04 labeling of both intermediate and mature rC14 more thoroughly 

than EPIC1 at concentrations above 32 nM (Figure 2-4 A and B, lane 1 and 2). 

Interestingly, we observed that at low concentrations (4-8 nM) both EPIC1 and 

EPIC2B enhance DCG-04 labeling of mature rC14 (Figure 2-4 A and B, lane 4 and 5). 

This indicates that EPIC1 and EPIC2B activate target PLCPs at low concentrations. 
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2.2.2.4 Characteristics of EPIC1/2B inhibition of PLCPs in tomato apoplastic 

fluids 

 

To investigate if the inhibitory effects of EPIC1 and EPIC2B on C14 also occur in 

secreted proteomes, we preincubated apoplastic fluids isolated from tomato with 65 

nM EPIC1 or EPIC2B for 30 minutes, and then labeled with 500 nM DCG-04 at pH 5 

for 3 hours. This competitive ABPP demonstrates that EPIC1 prevents biotinylation 

of iC14, while EPIC2B prevents biotinylation of iC14 and of 30-kDa signals and PIP1 

weakly (Figure 2-5A). The selective inhibition of iC14 indicates that, under stringent 

conditions, these two inhibitors target iC14 and form tight complex that persist over 

long incubation time. 

 

The competition assays described above were done at 65 nM inhibitor concentrations. 

To investigate inhibition at lower inhibitor concentrations, tomato AFs were incubated 

with or without various concentrations of EPIC1 or EPIC2B respectively for 30 

minutes, and then incubated with 500 nM DCG-04 at pH 5 for 3 hours. This revealed 

that EPIC1 inhibits iC14 at the concentration of 65 nM (Figure 2-5B, left panel, lane 

2), and EPIC2B inhibits C14 at concentrations above 32 nM (Figure 2-5B, right panel, 

lane 2 and 3). 65 nM EPIC2B also weakly inhibits 30-kDa mC14-containing signals 

and the lowest signal which predominantly represents PIP1 (Figure 2-5B, right panel, 

lane 2). This competitive ABPP demonstrates that EPIC2B is a more potent 

competitor than EPIC1 to DCG-04 labeling of PLCPs in tomato AFs, which is 

consistent with their inhibitory characteristics to rC14 (Figure 2-4A and B, and 2-5B). 

 

At last, we tested the EPIC1 and EPIC2B inhibition of iC14 in tomato AFs by 

competitive ABPP with DCG-04 labeling in the presence of 0.03% SDS, as 0.03% 

SDS can maximally uncover the activities of iC14 in tomato AFs in vitro (Figure 2-

3F). Surprisingly, we found that in the presence of 0.03% SDS, EPIC2B can not only 

inhibit iC14 but also other 30-kDa signals and PIP1 (Figure 2-5C, lane 5), and 

EPIC1can inhibit all three signals that DCG-04 can profile even stronger (Figure 2-

5C). In the presence of 0.03% SDS, both EPIC1 and EPIC2B exhibit broad inhibition 

of all PLCPs in tomato AFs, and EPIC1 exhibits more potent inhibition of iC14 than 

EPIC2B in contrast to its inhibition of iC14 in tomato AFs or of rC14 without SDS. 
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FIGURE 2-5 EPIC1/2B selectively inhibit PLCPs in tomato apoplastic fluids. 
A, EPIC1 and EPIC2B outcompete DCG-04 labeling of iC14 in tomato AFs. AFs were 
preincubated with 65 nM EPIC1, 65 nM EPIC2B or 40 µM E-64 at pH 5 for 30 minutes before 
adding DCG-04 to label the remaining non-inhibited PLCPs. B, EPIC1 (left panel) and EPIC2B 
(right panel) outcompete DCG-04 labeling of iC14 at low nM concentrations in tomato AFs. AFs 
were incubated with different concentrations of EPIC1 or EPIC2B at pH 5 for 30 minutes. DCG-
04 was added after preincubation to label the non-inhibited PLCPs. C, EPIC1 and EPIC2B 
selectively inhibit PLCPs in tomato AFs in the presence of 0.03% SDS. In the presence of 0.03% 
SDS, AFs were incubated with EPIC1 or EPIC2B at pH 5 for 30 minutes. DCG-04 was added 
after preincubation to label the non-inhibited PLCPs. Please note that in the presence of 0.03% 
SDS, EPIC1 and EPIC2B also outcompete DCG-04 labeling of mC14-containing signals and PIP1. 
Black arrowhead, iC14. Grey arrowhead, mC14-containing signals. Open arrowhead, PIP1. 
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2.3 ABPP with vinyl sulfone probe MV151 

 

 

Plants are able to adapt to changing environments and undergo drastic developmental 

changes. These processes require effective and selective protein turnover machinery. 

Turnover of most cytosolic and nuclear proteins is mediated by the 

ubiquitin/proteasome system (Sullivan et al., 2003). This system is highly conserved 

in eukaryotes and well studied in yeast. The 26S proteasome is a large multisubunit 

protease residing in the cytosol and nucleus and consists of a 20S core protease (CP) 

and a 19S regulatory particle (RP). The RP accepts ubiquitinated substrates, unfolds 

them and feeds them into the CP (Kurepa and Smalle, 2008). 

 

The CP is structured as a 670-kDa hollow cylinder formed by four stacked rings of 

seven subunits (Groll et al., 1997). The outer rings consist of seven different α 

subunits, while the inner rings consist of seven different β subunits, stacked together 

in the ‘αββα’ configuration. The proteolytic activity resides in three of the seven β 

subunits which are located in the inner cavity of the cylinder. Subunit β1 has caspase-

like activity (cleaving after acidic residues); β2 has trypsin-like activity (cleaving after 

basic residues); and β5 has chymotrypsin-like activity (cleaving after hydrophobic 

residues) (Dick et al., 1998). Together, these subunits degrade the substrate proteins 

into peptides of 3-20 amino acids that are released into the cytosol or nucleus. 

 

ABPP is a powerful tool to track protease activities in proteomes and living cells, and 

ABPs based on vinyl sulfone (VS) reactive groups were shown to label the catalytic 

subunits of the mammalian proteasome (Kessler et al., 2001; Verdoes et al., 2006). To 

generate new approaches to study plant proteasome functions, we proposed to 

optimize in vitro activity-based profiling to display activities of all three catalytic 

subunits of the Arabidopsis proteasome using VS-based probes, and develop MV151 

as readout of proteasome activities in plants. This would facilitate the identification 

and selection of subunit-specific inhibitors, and enables the display of activities of the 

different catalytic subunits during biological processes, by, for example, investigating 

proteasome activities during defense responses. 
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FIGURE 3-1 Labeling by VS probes of Arabidopsis leaf extracts. 
A, Molecular structures of the VS probes used in this study. Both probes carry a vinyl sulfone 
(VS) reactive group; a Leucine tripeptide binding group; and a long linker region. MV151 carries 
a BODIPY fluorescent reporter tag. BioVS (also called AdaK(Bio)Ahx3L3VS, Kessler et al., 
2001) carries a biotin reporter tag and an adamantane to enhance membrane permeability. B and C, 
Labeling profiles of MV151 and BioVS. Arabidopsis leaf extracts were labeled for 3.5 hours with 
0.4 µM MV151 or for 2.5 hours with 2 µM BioVS. Labeled proteins were detected on protein gel 
by fluorescence scanning (B) or on protein blot using strept.-conjugated HRP (C). Specific signals 
are indicated with circles and triangles. 
 
2.3.1 Characterization of MV151 labeling 

 

Two activity-based probes were used in this study (Figure 3-1A). Both probes carry a 

vinyl sulfone (VS) reactive group, a leucine tripeptide binding group, and a long 

nonnatural peptide linker. The probes differ, however, in the reporter tags. MV151 

contains a Bodipy fluorescent group for fluorescent imaging (Verdoes et al., 2006), 

whereas BioVS (previously called AdaK(Bio)Ahx3L3VS, Kessler et al., 2001) 

contains a biotin tag for detection and affinity purification. 

 

Labeling of Arabidopsis leaf extracts with 0.4 µM MV151 reveals three strong 

fluorescent signals at 25-kDa, and two weak signals at 30- and 40-kDa (Figure 3-1B, 

lane 2, indicated by triangles and dots, respectively). As will be demonstrated later 

(Figure 3-3A), the strong 25-kDa signals represent the three proteasome catalytic 

subunits whereas the weak 30- and 40-kDa signals represent PLCPs. All these signals 

are suppressed by preincubation with 20 µM BioVS, indicating that BioVS competes 

for the same target proteins as MV151 (Figure 3-1B, lane 3). Labeling of Arabidopsis 

leaf extracts with 2 µM BioVS also causes three signals at 25-kDa, and a few 
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additional signals (Figure 3-1C, lane 2). Many of these additional signals are also 

present in the no-probe-control, indicating that these are caused by endogenous 

biotinylated proteins (Figure 3-1C, lane 1). We choose to use MV151 labeling for 

activity profiling for the low background, ease of work and signal quantification. 

 

To characterize labeling at different MV151 concentrations, Arabidopsis leaf extracts 

were labeled with 0.01-4 µM MV151 and fluorescent signals were quantified and 

plotted against the concentration. These data show that at low MV151 concentrations 

there is a preference of labeling of the upper two 25-kDa proteins (β2 and β5 

subunits) and that labeling of the lowest signal (β1 subunit) and 40-kDa (RD21A) is 

saturated at concentrations above 1 µM (Figure 3-2A). 

 

To characterize this labeling further, labeling was followed over different periods, and 

the fluorescence quantified and plotted in a time-course. This shows that labeling 

occurs within minutes and that the strong 25-kDa signals label consecutively at 

increasing MV151 concentrations: first the middle signal (β5), then the upper signal 

(β2) and finally the lower signal (β1) (Figure 3-2B). Labeling of the 40-kDa signal 

(RD21A) is slower and saturates after 1 hour (Figure 3-2B). Thus, although the 

labeling occurs quickly, incubation times of four hours are required to saturate 

labeling of the β1 subunit. 

 

The above labeling experiments were performed at pH 7.4. Labeling at different pH 

causes different profiles (Figure 3-2C). At pH 4, there is no labeling of the 25-kDa 

signals, whereas the signals at 40- and 30-kDa become stronger, and an additional 50-

kDa signal appears. At pH 5 there are multiple weak signals in the 25-kDa region. At 

increasing pH (pH 6-7) some of these signals become stronger and others weaker. 

Profiles at pH 7-8 are similar with three strong 25-kDa signals. At basic pH (pH 9-11) 

the 25-kDa signals become weaker, the background increases and a new signal 

appears at 70-kDa. The 70-kDa signal and the background signals can not be 

competed with MG132 and E-64 and are therefore considered to be nonspecific (data 

not shown). The 40-kDa signals (RD21A) have a constant intensity at neutral and 

basic pH and are increasingly intense at low pH. These experiments show that MV151 

labeling profiles strongly depend on pH and that the 25-kDa proteasome-derived 

signals are strongest at pH 7.5. 
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FIGURE 3-2 Characteristics of MV151 labeling. 
A, Concentration dependency of MV151 labeling. Arabidopsis leaf extracts were labeled for three 
hours with different concentrations of MV151 (left panel). Signals were quantified and plotted in a 
graph (right panel). B, Time course of MV151 labeling. Arabidopsis leaf extracts were labeled 
with 0.4 µM MV151 for different time points (left panel). Signals were quantified and plotted in a 
time course graph (right panel). C, pH dependency of MV151 labeling. Arabidopsis leaf extracts 
were labeled for 2 hr with 0.4 µM MV151 at different pH. D, Reducing agent DTT increases 
labeling of some proteins. Arabidopsis leaf extracts were labeled for 4 hr with 0.4 µM MV151 in 
the absence or presence of 1 mM dithiothreitol (DTT). The upper two signals (dots) are increased 
by adding DTT, whereas the others (triangles) are not. 
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To optimize labeling further we added a series of putative cofactors like ATP, NAD, 

magnesium and calcium ions and reducing agents during labeling. These cofactors 

had no effect on the labeling profile (data not shown), except for the reducing agent 

DTT. Adding 1 mM DTT enhances labeling of the 30- and 40-kDa signals but does 

not alter the intensities of the 25-kDa signals (Figure 3-2D). This is consistent with 

the notion that activities of PLCPs can be induced with reducing agents. 

 

2.3.2 Identification and confirmation of the probe targets 

 

To identify the labeled proteins, Arabidopsis leaf extracts were treated with BioVS. 

The resulting biotinylated proteins were purified on streptavidin beads and detected 

on a coomassie-stained gel. Three signals at 25-kDa coincided with the three 

biotinylated signals detected by protein blotting (Figure 3-3A). These protein bands 

were excised, digested with trypsin, and subjected to tandem mass spectrometry. The 

MS data revealed that the upper signal represents the β2 catalytic subunit of the 

proteasome (PBB1, At3g27430), the middle signal represents subunit β5 (PBE1, 

At1g13060), and the lower signal subunit β1 (PBA1, At4g31300) (Figure 3-3B). 

There were no specific peptides identified from PBB2 and PBE2 in this analysis, but 

PBB2 has been detected from the upper 25-kDa signal in a repetition experiment (data 

not shown). The identified peptides are all from the mature subunits and not from the 

prodomain, which is autocatalytically removed before the proteasome assembly 

(Heinemeyer et al., 1997). None of the peptides carries the catalytic Threonine which 

resides at the N-terminus of the mature protein. Labeling of this residue by BioVS 

probably makes the N-terminal peptide too large to be detected by MS. MS analyses 

were performed by Tom Colby at Proteomics Service Center of MPIZ in Cologne, 

Germany. 

 

To independently demonstrate that PBA1 is amongst the purified biotinylated proteins, 

we took advantage of an antibody that has been raised against PBA1 (Yang et al., 

2004). Probing the purified BioVS-labeled proteins with this PBA1 antibody revealed 

a single strong signal at 23-kDa, demonstrating that the lowest of the three signals is 

indeed PBA1 (Figure 3-3A). Furthermore, western blot analysis of MV151-labeled 

proteomes with PBA1 antibody revealed a second signal at a slightly higher molecular 

weight, consistent with being MV151-labeled PBA1 (Figure 3-3C). 
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FIGURE 3-3 Identification and confirmation of the MV151 labeled proteins. 
A, The three 25-kDa signals represent the three catalytic β-subunits of the proteasome. 
Arabidopsis leaf extract was labeled with BioVS and biotinylated proteins were purified, separated 
on protein gel, and stained with coomassie (left panel). Proteins from the three bands were 
digested by trypsin and analyzed by MS/MS. Proteins were identified as PBB1, PBE1 and PBA1, 
respectively. The identity of PBA1 is confirmed with a PBA1 antibody (right panel). B, Sequences 
of the three catalytic subunits with the identified peptides. Italics, prodomain; grey, boxed T, 
catalytic Threonine; underlined, identified peptides. C, Labeling by MV151 causes a shift in gel 
migration of PBA1. Leaf extracts were labeled with 0.4 µM MV151 and proteins were detected by 
fluorescent scanning and PBA1 antibody. D, The 40-kDa signal is absent in the rd21A-1 knockout 
line. Arabidopsis leaf extracts from wild-type (wt) and rd21A-1 mutant plants were preincubated 
with or without 40 µM E-64 and labeled for 4.5 hours with 0.4 µM MV151 at pH 6.5 and pH 7.4. 
E, MV151 prevents labeling of RD21A by DCG-04. Arabidopsis leaf extracts were preincubated 
with 40 µM MV151 and labeled with 2 µM 24 DCG-04. Labeling of intermediate (i) RD21A is 
prevented by preincubation with MV151, whereas labeling of Arabidopsis aleurain-like protein 
(AALP) is not. 
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Analysis of proteins at the 30- and 40-kDa regions revealed peptides of PLCP RD21A 

(data not shown). The identification of PLCPs is consistent with our previous study 

when identifying in vivo targets of MVA178, which is an azide-labeled version of 

MV151 (Kaschani et al., 2009a). In vivo labeling with MVA178 causes strong 

labeling at 30- and 40-kDa. Purification of these labeled proteins using click-

chemistry revealed that the 40-kDa signal contains RD21A (At1g47128), whereas the 

30-kDa signals contain RD21A, RD19A (At4g39090) and RD21C (At4g16190). 

Consistent with the observation that PLCP labeling in vivo is stronger than in vitro 

(Kaschani et al., 2009a), the signals detected with MV151 are weak, but probably 

caused by labeling the same PLCPs. 

 

To confirm that PLCPs are causing the 30- and 40-kDa signals in the MV151 labeling 

profile, we preincubated leaf extracts with and without E-64, which were then labeled 

with MV151 at pH 6.5 and 7.4. Preincubation with PLCP inhibitor E-64 prevented 

labeling at 30- and 40-kDa, and had no effect on labeling of the signals at 25-kDa 

(Figure 3-3D). To demonstrate that RD21A causes the signal at 40-kDa, we labeled 

extracts of leaves of the rd21A-1 knockout line (Wang et al., 2008). The 40-kDa 

signal in extracts of rd21A-1 knockout line is missing, confirming that this signal is 

caused by RD21A (Figure 3-3D). The signal at 30-kDa is reduced in the rd21A-1 

knockout line. This is consistent with the fact that RD21A exists as 30- and 40-kDa 

isoforms which are both active (Yamada et al., 2001; Van der Hoorn et al., 2004). 

The remaining 30-kDa signals in the MV151 labeling profile of rd21A-1 lines are 

probably caused by RD19A or RD19C, or other PLCPs, since these PLCPs were 

found in this region during in vivo labeling with VS-based probes (Kaschani et al., 

2009a). 

 

To confirm that MV151 targets PLCPs, we preincubated leaf extracts with 40 µM 

MV151 and then labeled with 2 µM DCG-04, a biotinylated derivative of E-64 which 

labels PLCPs (Greenbaum et al., 2000). Labeling with DCG-04 on Arabidopsis leaf 

extracts results in a typical activity-based profile containing intermediate (i) RD21A 

at 40-kDa, a mixture of various PLCPs at 30-kDa, and Arabidopsis aleurain-like 

protease (AALP) at 25-kDa (Van der Hoorn et al., 2004). Preincubation with E-64 

prevents labeling of all these signals (Figure 3-3E, lane 3). Interestingly, 

preincubation with MV151 prevents labeling of the 40- and 30-kDa signals but not of 
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the 25-kDa AALP signal (Figure 3-3E, lane 4), indicating that MV151 labels many 

PLCPs but not all. 

 

2.3.3 Proteasome inhibitors 

 

We next tested if MV151 labeling can be used to identify subunit-specific inhibitors. 

MG132 (zLLLcho) is a tri-leucine aldehyde and a frequently used proteasome 

inhibitor in plant science. Preincubation of leaf extracts with MG132, followed by 

labeling with MV151 demonstrates that MG132 blocks MV151 labeling of β1 and β5 

subunits and suppresses labeling of the β2 subunit (Figure 3-4A, lane 4). Importantly, 

MG132 also prevents labeling of the 40-kDa RD21A. Preincubation with PLCP 

inhibitor E-64 prevents MV151 labeling of the 40-kDa RD21A signal, but not the 

proteasome-derived signals (Figure 3-4A, lane 3), consistent with the presumed high 

selectivity of E-64 (Powers et al., 2002). 

 

The availability of many commercial peptide aldehyde-based inhibitors and the 

observation that MG132 only partially inhibits β2 subunit, prompted us to test other 

peptide aldehydes for selective inhibition of the proteasome. These inhibitors all carry 

a C-terminal aldehyde but differ in the residues of the peptide. Many of these peptide 

aldehyde-based inhibitors are designed to inhibit caspases, which are selective for 

aspartate (D) at the P1 position of the inhibitor. Preincubation with these inhibitors 

was followed by MV151 labeling to reveal the remaining activities (Figure 3-4A, top). 

The signals were quantified and plotted in a heat map (Figure 3-4A, bottom). 

 

Interestingly, many of these caspase inhibitors prevent MV151 labeling of the β1 

subunit, which is consistent with the caspase-like activity of this subunit (Figure 3-

4A). Labeling of the β1 subunit can also be blocked by AcLLMcho (Figure 3-4A, lane 

12), which carries a methionine (M) at the P1 position. Furthermore, IEPDcho is not 

effective in inhibition of β1, but IETDcho is, indicating that the proline (P) at the P2 

position prevents inhibition of the β1 subunit. Labeling of the β2 subunit can be 

prevented by leupeptin (AcLLRcho), which is a frequently used PLCP inhibitor 

(Figure 3-4A, lane 6), and originally described as a proteasome inhibitor (Wilk and 

Orlowski, 1980). The fact that leupeptin can suppress labeling of the β2 subunit is 

consistent with the presumed trypsin-like activity (cleaving after basic residues) of the 
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β2 subunit, since leupeptin carries an arginine (R) at the P1 position. Labeling of the 

β5 subunit can only be inhibited with MG132 and MG115 (zLLNvacho) (Figure 3-4A, 

lanes 4 and 5). This is consistent with the presumed chymotrypsin-like activity 

(cleaving after hydrophobic residues) of the β5, since both inhibitors carry a leucine at 

the P1 position. Finally, labeling of the 40-kDa RD21A signal can be prevented by E-

64, MG132, MG115, leupeptin and LLMcho, but not by caspase inhibitors (Figure 3-

4A, lanes 3-13). This is consistent with the fact that PLCPs like RD21A are selective 

for substrates having hydrophobic residues at the P2 position. 

 

 

 

 
 
 
 
FIGURE 3-4 Selective inhibition of proteasome catalytic subunits. 
A, Inhibition of MV151 labeling. Arabidopsis leaf extract was preincubated with various 
inhibitors (50 µM) and then labeled with MV151 (0.5 µM). Fluorescent signals indicate the 
absence of inhibition. Signals were quantified, normalized to the DMSO control (lane 1), and 
plotted in a heat map (bottom) indicating the remaining activities (black). B, Concentration 
dependency of inhibition. Arabidopsis leaf extracts were preincubated at different concentrations 
of MG132 and epoxomicin and then labeled for 2 hours with 0.4 µM MV151. Proteasome-derived 
signals were quantified and plotted against the inhibitor concentration in dose-response graphs 
(bottom). 
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A dilution series of MG132 confirms that MG132 preferentially inhibits β5 and β1 

(Figure 3-4B, lanes 2-7). Epoxomicin carries an epoxy ketone reactive group and is a 

selective inhibitor of the proteasome (Meng et al., 1999). Preincubation with 

epoxomicin indeed prevents MV151 labeling of all three subunits, but not of 40-kDa 

RD21A (Figure 3-4B, lane 10). Quantification of the signals from an epoxomicin 

dilution series indicates that epoxomicin inhibits β1, β2, and β5 with similar affinities 

(Figure 3-4B, lanes 8-12). 

 

2.3.4 MV151 profiling of other Arabidopsis organs and leaves of other plant 

species 

 

To expand the use of MV151 profiling, we tested labeling of other Arabidopsis organs. 

Labeling of seed, stem and root extracts revealed similar profiles as those from leaf 

extracts, but the relative intensities differ (Figure 3-5A, lanes 2, 6 and 10). Signals at 

30- and 40-kDa were only observed in stem and root. These signals are caused by 

PLCPs, since they are absent after preincubation with PLCP inhibitor E-64 (Figure 3-

5A, lanes 4, 8 and 12). The three signals at 25-kDa differ in overall intensity between 

the organs and the lowest signal is usually the weakest. These signals probably 

represent proteasome catalytic subunits since labeling can be suppressed by MG132 

but not by E-64 (Figure 3-5A, lanes 3, 4, 7, 8, 11 and 12). The differences in 

intensities of the proteasome signals in different tissues can be caused by differences 

in proteasome concentrations and differences between the content of the extracts and 

are subject to optimization of labeling conditions. 

 

To test if MV151 profiling can also be used in other plant species we labeled leaf 

extracts of tomato (Solanum lycopersicum), bean (Vicia faba) and barley (Hordeum 

vulgare) with MV151. The resulting labeling profiles are different, but share 

similarities (Figure 3-5B). PLCPs can be distinguished, since these signals can be 

competed by preincubation with E-64 and MG132. PLCPs are labeled in tomato at 

35-kDa, in bean at 30-, 27- and 40-kDa, and in barley at 40- and 32-kDa. These data 

are consistent with the different DCG-04-labeling profiles of different plant species 

(Van der Hoorn et al., 2004). The stronger signals are probably caused by proteasome 

labeling since this can only be competed by MG132. In tomato extracts there is a 

strong signal at 25-kDa and a weak signal just below, in bean a strong signal at 25-
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kDa, a medium intense signal at 23-kDa and a very weak signal in between, and in 

barley, three equally intense signals at 23-, 24- and 25-kDa. Some of these signals 

might be a combined signal from two proteasome subunits. These data indicate that 

there are slight size differences in the catalytic subunits of the proteasome between 

different plant species. Thus, although the profiles are different between different 

plant species, all display strong proteasome derived signals in the 25-kDa region and 

several weaker PLCP-derived signals at 30-40-kDa. 

 

 

 
 
 
FIGURE 3-5 MV151 labeling of other tissues and other plant species. 
Extracts from Arabidopsis seed, stem and root (A) and from leaves of tomato, bean and barley (B) 
were preincubated with and without 40 µM MG132 or E-64, and then labeled for 3 hours with 0.4 
µM MV151. 
 

 

 

2.3.5 Proteasome activity is induced during defense 

 

To investigate if proteasome activities change during defense, we sprayed Arabidopsis 

plants with and without benzothiadiazole (BTH), which induces the salicylic acid 

(SA) signaling pathway, resulting in a defense response (Kohler et al., 2002). Extracts 

from H2O- and BTH-treated plants were subjected to MV151 profiling. Interestingly, 

BTH-treatment results in increased activity of proteasome. This upregulation occurs at 

one day after BTH treatment and remains for at least five days (Figure 3-6A). 
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Although the upregulation is moderate, it occurs consistently in independent leaves 

and in different biological replicates (Figure 3-6B). Quantification showed a 1.46 ± 

0.17 (n=7) -fold upregulation of the 25 kDa signals, and is statistically significant 

(Students t-test: P = 0.000013). Western blot analysis show equal levels of PBA1, 

indicating that the proteasome levels are equal between water and BTH treated plants 

and that the activity is post-translationally upregulated (Figure 3-6C). 

 

To show that the elevated proteasome activity in BTH-treated plants depends on the 

SA signaling pathway, we investigated BTH-induced proteasome activities in 

Arabidopsis SA signaling mutant npr1. When npr1 mutant plants were treated with 

BTH, proteasome activities were elevated in wild-type, but not in npr1 lines (Figure 

3-6D). These data show that the proteasome activity is not directly induced by BTH, 

but requires NPR1 function, indicating that elevated proteasome activities are a 

response to the SA signaling pathway. 

 

To investigate in which cellular compartment the increased proteasome activity 

resides upon BTH-treatment, we fractionated extracts from H2O and BTH-treated 

plants in a nuclear-depleted (ND) and nuclear-enriched (NE) fraction and subjected 

those to MV151 profiling. Subcellular markers, phosphoenolpyruvate carboxylase 

(PEPC) for the cytoplasm and histone H3 for the nucleus (Noel et al., 2007; Cheng et 

al., 2009), confirmed that the fractions were not cross-contaminated (Figure 3-6E). 

The increased PEPC level upon BTH-treatment is consistent with the BTH-

inducibility of this gene (www.genevestigator.com; Zimmerman et al., 2004; Von 

Rad et al., 2005). Labeling of the proteasome in the nuclear-enriched fractions did not 

occur, presumably because the high DNA concentration causes a low pH and 

improper labeling conditions. However, the nuclear-depleted fraction, containing over 

90% of the proteasomes, shows an elevated labeling upon BTH-treatment (Figure 3-

6E), demonstrating that BTH-induced activity occurs in the cytoplasm. 
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FIGURE 3-6 Upregulated proteasome activities in BTH-treated plants. 
A, Increased proteasome activity upon BTH treatment. Arabidopsis plants were sprayed with H2O 
or benzothiadiazole (BTH). Leaf proteins were extracted and equal quantities were labeled with 
MV151 at different days post treatment (dpt). B, Reproducibility of BTH-induced proteasome 
activities. Three different pots with each four plants were sprayed with H2O or BTH. Extracts of 
four leaves of each pot were labeled with MV151. Shown is a representative of three biological 
replicates (left panel). Signals were quantified and plotted in a graph (right panel). C, Proteasome 
activation occurs post-translationally. Extracts from B were detected with anti-PBA1 antibody. D, 
BTH-induced proteasome activity is NPR1 dependent. Wild-type and npr1 mutant plants were 
treated with H2O (H) or BTH (B) and leaf extracts were labeled with MV151. E, Proteasome 
activation occurs in the cytoplasm. Total cell extracts (T) from H2O (H) and BTH (B) treated 
plants were separated into nuclear depleted (ND) and nuclear enriched (NE) fractions, and labeled 
with MV151. Anti-phosphoenolpyruvate carboxylase (α-PEPC) and anti-histone H3 (α-His) are 
markers for cytoplasmic and nuclear proteins, respectively. 
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2.4 Labeling of β-lactone probe IS4 

 

The genome of the model plant Arabidopsis thaliana encodes ~320 putative serine 

and ~140 putative cysteine proteases, including large families of ~60 subtilase-like 

proteases, ~60 serine carboxypeptidase-like proteins and ~30 papain-like cysteine 

proteases (PLCPs) (Beers et al., 2004). Some of these proteases have key regulatory 

roles in defense and development, but the roles, substrates and activation mechanisms 

of most of these enzymes are unknown (Van der Hoorn, 2008). 

 

ABPP is a powerful tool to track protease activities in proteomes and living cells, and 

ABPs for serine and cysteine have been generated for PLCPs, caspases, legumains, 

gingipains, deubiquitinating and desumoylating enzymes, granzymes and other serine 

proteases in animal research (reviewed in the Introduction chapter). However, to date 

the applications of ABPP are still limited in plant fields (reviewed in the Introduction 

chapter). 

 

To expand the range of serine and cysteine proteases that can be monitored by 

activity-based protein profiling (ABPP) in plants, we designed a new series of ABPs 

containing a β-lactone reactive group. This reactive group is found in covalent 

inhibitors of lipases, cysteine proteases and the proteasome (Dick et al., 1997; Lall et 

al., 1999; Drahl et al., 2005). The recent use of β-lactone reactive groups in ABPs 

resulted in probes that label various enzyme classes in bacterial proteomes, including 

proteases (Böttcher and Sieber, 2008). This labeling, however, requires side chains on 

the β-lactone that probably confer binding affinity for various enzymes. To target β-

lactone probes to serine and cysteine proteases, we added a peptide backbone with a 

variant amino acid. We then tested the labeling of Arabidopsis leaf extracts with these 

non-directed β-lactone probes. 

 

2.4.1 Labeling leaf proteomes with β-lactone probes 

 

To design a new class of ABPs for serine and cysteine proteases, we used a threonine-

based β-lactone linked to a variant amino acid, an amide linker and biotin (“IS” 

probes, Figure 4-1A). The IS probe collection consists of six probes (IS#; 2, 3, 4, 5, 8 
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and 9) with various amino acid residues representing hydrophilic, aromatic or 

aliphatic side chains (Figure 4-1A). For all of the probes except IS9, nonbiotinylated 

derivatives (IS#-n; 2, 3, 4, 5 and 8) were synthesized to serve as competitors of IS 

labeling (Figure 4-1A). Probe syntheses were conducted by in-group organic chemists 

Zheming Wang and Rengarajan Balamurugan at Chemical Genomics Center in 

Dortmund, Germany. 

 

 
 
FIGURE 4-1 β-lactone probes and their labeling of leaf extracts. 
A, Structures of β-lactone probes. Biotinylated (IS#) and nonbiotinylated (IS#-n) β-lactone 
derivatives were synthesized with various amino acid residues (R) next to the threonine-based β-
lactone moiety. B, Labeling with IS probes yielded similar profiles with various intensities. IS 
probes (2 µM) were incubated with Arabidopsis leaf extracts, and biotinylated proteins were 
detected on protein blots using streptavidin-HRP. C, Labeling with IS4 and DCG-04 is specific 
and distinct. Arabidopsis leaf extracts were incubated for 2 h with 2 µM DCG-04 or IS4 in the 
absence or presence of nonbiotinylated 200 µM E-64 or 60 µM IS4-n, respectively. DCG-04 
labeled AALP and the intermediate (i) and mature (m) isoforms of RD21. D, Inhibition of IS4 
labeling by IS#-n. Arabidopsis leaf extracts were preincubated with 30 µM IS#-n for 30 min, and 2 
µM IS4 was added and incubated for 1 hour. Dashed lines indicate lanes that were left out from 
the blot. *, Hallmark band. 
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We first incubated Arabidopsis leaf extracts with the IS probes and detected 

biotinylated proteins on protein blots probed with streptavidin–horseradish peroxidase 

(HRP). IS3, IS4 and IS5 had similar labeling profiles, with strong signals at 23- and 

36-kDa (Figure 4-1B). In contrast, IS2, IS8 and IS9 did not cause any labeling 

compared to the no-probe control (Figure 4-1B). Thus, IS probes with glutamine, 

proline and serine do not label, whereas IS probes with hydrophobic residues 

tryptophan, phenylalanine and especially leucine have similar labeling profiles with 

multiple signals. 

 

IS4 labeling was further investigated, as it was synthesized in the largest quantity. 

Because IS probes potentially target serine and cysteine proteases, we compared IS4 

labeling to that of DCG-04, which labels PLCPs (Greenbaum et al., 2000). DCG-04 

labels six PLCPs in Arabidopsis leaf extracts, including AALP and intermediate and 

mature isoforms of RD21 (Van der Hoorn et al., 2004). The RD21 intermediate 

isoform carries an additional C-terminal granulin domain of unknown function that is 

proteolytically removed during maturation (Yamada et al., 2001). As shown 

previously, the DCG-04 activity profile contains signals from the 40-kDa RD21 

intermediate isoform, 30-kDa RD21 mature isoform and 25-kDa AALP, all of which 

were competed by adding an excess of E-64 during labeling (Figure 4-1C). The 

remaining 30-kDa and 80-kDa signals are background signals, as these were also 

present in the no-probe control. IS4 labeling was of strong intensity compared to the 

DCG-04 activity profile, and its profile was different, indicating that IS4 does not 

label the same set of PLCPs (Figure 4-1C). The presence of an excess of 

nonbiotinylated IS4-n during IS4 labeling outcompeted the biotinylation, indicating 

that the labeling is specific (Figure 4-1C). IS4 labeling was also competed by IS3-n 

and IS5-n, but not by IS2-n or IS8-n (Figure 4-1D). These observations are consistent 

with the labeling of the biotinylated IS series, indicating that the same set of proteins 

is labeled with IS3, IS4 and IS5. 

 

Further characterization of IS4 labeling revealed that it occurs mainly at pH 7-9, with 

an optimum pH of 8 (Figure 4-2A) and requires the presence of a reducing agent 

(Figure 4-2B). 
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FIGURE 4-2 Labeling with IS4 depends on pH and reducing agent. 
Arabidopsis leaf extracts were labeled with IS4 at different pH (A) or with or without 1 mM DTT 
(B). *, Hallmark band. 
 

 

2.4.2 IS4 labels PsbP at the N-terminus 

 

In all labeling experiments, there were consistent strong signals at 36- and 23-kDa. 

The 23-kDa protein was identified through large-scale affinity capture on streptavidin 

magnetic beads (Figure 4-3A) and tandem MS. The other biotinylated proteins could 

not be captured efficiently on streptavidin beads. MS data (explained in detail below) 

indisputably showed that the 23-kDa protein represents protein P of the oxygen-

evolving complex of photosystem II (PsbP) (Yi et al., 2007). The identity was 

confirmed by showing that purified, biotinylated proteins cross-react with PsbP-

specific antiserum (Figure 4-3A). 

 

PsbP has a mature size of 23-kDa and is abundant in leaf extracts (Yi et al., 2007). 

The labeling of PsbP by IS4 is notable, as PsbP is not a serine or cysteine protease, 

and no nucleophilic serine or cysteine residues have been reported for this protein. To 

identify the labeling site, we examined the MS spectra in detail. Comparison of the 

spectra of the IS4-labeled sample and the no-probe control revealed a series of 

peptides specific for the IS4-labeled sample (Figure 4-3B, top). Most of these peptides 

matched the predicted tryptic PsbP peptides, covering 65% of the mature protein 

(Figure 4-3B, bottom). The fact that these peptides were found with the predicted, 
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unmodified masses indicates that IS4 was not attached to these regions of PsbP. 

Among the ‘missing’ peptides of PsbP was the N-terminal peptide, which should have 

a mass of 1,351.70 Da. Notably, the spectrum of the IS4-specific sample contained an 

additional mass of 1,938.99 Da (Figure 4-3B, top inset), which fits the sum of the 

masses of the N-terminal peptide and the predicted mass of IS4 (Figure 4-3B, bottom). 

The second additional mass at 1,954.99 Da from the IS4-specific sample is the 

oxidized version of this labeled N-terminal peptide. 

 

To determine the site of IS4 labeling within the N-terminal peptide, we investigated 

the peptide fragmentation data of the labeled N-terminal peptide. The N-terminal 

peptide has the sequence AYGEAANVFGKPK. The MS/MS data contained a long 

series of y ions with the predicted masses, indicating that IS4 is not attached to any of 

the C-terminal peptide series, up to GEAANVFGKPK (Figure 4-3C, y3-11). In 

contrast, masses for N-terminal peptide fragments up through AYGE were found as b 

ions in the MS/MS spectrum, but only if the mass of IS4 was added (Figure 4-3C, b4-

7). The presence of the b4 ion indicates that IS4 is attached to the N-terminal alanine. 

The MS/MS spectrum also contained the mass of IS4 itself (b3), indicating that the 

linkage between IS4 and alanine is likely to be an amide bond, as these bonds break 

during post source fragmentation (Figure 4-3C, b3). The b2 and b1 ions indicate that 

IS4 loses masses corresponding to a threonine and phenylalanine, respectively, 

indicating that the peptide bonds in IS4 are preserved and no other modifications 

occurred (Figure 4-3C, b2 and b1). Taken together, these data indicate that IS4 is 

attached to the N-terminus of PsbP through a peptide bond between a C-terminal 

threonine of the probe to the N-terminal alanine of PsbP (Figure 4-3D). MS analyses 

were performed by Tom Colby at Proteomics Service Center of MPIZ in Cologne, 

Germany. 

 

To investigate whether other proteins are labeled by IS4 at primary amino groups, we 

treated the leaf proteome with sulfo-N-hydroxysuccinimide acetate (sulfo-NHS-Ac). 

Sulfo-NHS-Ac reacts with deprotonated primary amino groups of N-termini above pH 

7 and lysines above pH 9. Pretreatment of the leaf proteome with sulfo-NHS-Ac in 

PBS buffer (pH 7.5) suppressed labeling by IS4 globally (Figure 4-3E), indicating that 

IS4 is linked to N-termini of labeled proteins. 
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FIGURE 4-3 Identification of the major IS4-labeled protein and labeling site. 
A, Purification of IS4-labeled proteins from Arabidopsis leaf extracts. Arabidopsis leave extracts 
were labeled with and without IS4 and biotinylated proteins were captured and purified on 
magnetic streptavidin beads. Proteins eluted from these beads were analyzed on protein blot, 
probed with streptavidin-HRP (left), and on coomassie-stained protein gel (middle). The 
differential protein band at 23-kDa was isolated (brackets), analyzed by tandem mass spectrometry 
and confirmed as being PsbP using specific PsbP antisera on the purified proteins (right). The 
additional protein on the coomassie gel is streptavidin that leaked from the beads. B, Peptide-mass 
fingerprint (PMF) of the 23-kDa protein band. Proteins isolated from the 23-kDa region of the 
IS4-labeled proteins (blue) and no-probe control (NPC; red) were analyzed by MS. Only part of 
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the PMF is shown. Peptides from bovine serum albumin (*), streptavidin and trypsin were present 
in both the IS4 and NPC samples. The remaining IS4-specific peptides covered most of the 23-
kDa mature PsbP protein (bottom). Peptides a-e are indicated on the PMF; the other matching 
peptides were outside the shown region. The section of the PMF with the IS4-modified, N-
terminal peptide is shown in the inset and explained by the calculation on the bottom. Both the 
IS4-labeled peptide and its oxidized form have predicted masses that match the masses in the PMF 
inset. C, Fragmentation data of the IS4-labeled N-terminal peptide. The predicted y ions (bottom 
right) are found in the spectrum at the expected masses (top). The b ions are also found in the 
spectrum, with the additional mass of IS4. IS4 itself and fragments of IS4 are also found in the 
spectrum (b1, b2 and b3 ions). D, Proposed structure of the N-terminus of IS4-labeled PsbP, based 
on the peptide fragmentation data. IS4 is linked by a normal threonine through a peptide bond to 
the N-terminal alanine of PsbP. E, IS4-labeling is prevented by primary amine modification. 
Arabidopsis leaf extracts were preincubated with or without 200 µM Sulfo-NHS-Ac (NHS) or 200 
µM IS4-n for 1 hour at pH 7.5. Treated proteomes were then labeled with 2 µM IS4. *, PsbP. 
 

 

 

2.4.3 IS4 labeling requires cysteine protease RD21 

 

The mechanism by which IS4 labels the N-terminus of PsbP was puzzling, given that 

PsbP is not a serine or cysteine protease and that labeling does not occur at serine or 

cysteine residues. However, a clue to the mechanism of IS4 labeling came when 

protease inhibitors were studied. IS4 labeling was inhibited with cysteine protease 

inhibitors E-64 and leupeptin, but not with serine protease inhibitor PMSF (Figure 4-

4A). Because E-64 specifically targets PLCPs, these data suggest that a PLCP is 

required for IS4 labeling. 

 

The Arabidopsis genome encodes ~30 PLCPs, of which at least 10 are expressed in 

leaves (http://www.genevestigator.ethz.ch/) and 6 were previously identified by DCG-

04 labeling in leaf extracts (Van der Hoorn et al., 2004). We reasoned that one of 

these leaf PLCPs could be responsible for IS4 labeling. We therefore generated 

PLCP-knockout lines by selecting lines carrying a T-DNA insertion in the genes 

encoding leaf-expressed PLCPs. IS4 labeling of extracts from these mutant plants 

revealed that labeling occurs in leaf extracts of all mutants except those of the rd21-1 

line (Figure 4-4B). The absence of IS4 labeling was confirmed with an independent 

knockout line, rd21-2 (data not shown). These data indicate that only RD21 is 

required for IS4 labeling in leaf extracts. 
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FIGURE 4-4 IS4 labeling requires active cysteine protease RD21. 
A, IS4 labeling requires cysteine, but not serine, protease activities. Arabidopsis leaf extracts were 
preincubated with 40-400 µM protease inhibitors and then incubated with 2 µM IS4. PIC, protease 
inhibitor cocktail (diluted to 1 x according to the Instruction Manual, Roche, Switzerland). B, IS4 
labeling requires the PLCP RD21. Leaf extracts of Arabidopsis PLCP knockout lines were 
incubated with IS4. wt, wild type. C, Absence of IS4 labeling in extracts of rd21 plants is not due 
to the absence of PsbP. PsbP was detected in leaf extracts using protein blots probed with PsbP 
antibodies. Dashed line indicates lanes that were left out from the blot. D, Recombinant RD21 
(rRD21) activity compared to that in Arabidopsis leaf extracts. RD21 was overexpressed by 
agroinfiltration in Nicotiana benthamiana and used as a source of rRD21. Leaf extracts from 
agroinfiltrated leaves and from Arabidopsis leaves of wild-type and rd21 mutant plants were 
labeled with DCG-04 at pH 8 to reveal relative RD21 activities. To get similar levels of RD21 
activities, 40x less protein was loaded from agroinfiltrated leaves compared to Arabidopsis leaves. 
E, rRD21 complements IS4 labeling in extracts of rd21 mutant plants. Leaf extracts from wild-
type and rd21 mutant plants were labeled with IS4 in the absence or presence of rRD21-containing 
extracts. F, Recombinant RD21 complements IS4 labeling in E-64-treated proteomes from wild-
type Arabidopsis leaves. Leaf extracts were treated with 20 µM E-64. Excess E-64 was removed 
by gel filtration, and extracts were labeled with IS4 in the absence or presence of rRD21-
containing extracts. Dashed lines indicate lanes that were left out from the blot. *, PsbP. 
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The absence of labeling in the rd21 lines could be caused by the absence of PsbP and 

other acceptor proteins. To exclude this possibility, the rd21-1 proteome was probed 

with antibody to PsbP and compared to signals from the wild-type proteome. This 

western blot showed that PsbP is present in both wild-type and rd21-1 mutant plants, 

unaltered in size or quantity (Figure 4-4C). Thus, the absence of IS4 labeling is not 

caused by the absence of acceptor proteins in rd21 mutants. 

 

2.4.4 RD21 complements IS4 labeling in vitro 

 

Having determined that RD21 is required for IS4 labeling, we tested whether RD21 

could also complement IS4 labeling in rd21 or E-64-treated proteomes. We produced 

Arabidopsis RD21 by agroinfiltration in N. benthamiana by expressing RD21 with the 

silencing inhibitor p19 (Van der Hoorn et al., 2000; Voinnet et al., 2003). This 

procedure ensures high levels of recombinant proteins produced in planta with all 

required post-translational modifications. RD21 production was confirmed using 

RD21-specific antibodies (data not shown). Extracts containing recombinant RD21 

were diluted to a concentration at which RD21 activity was similar to that of 

Arabidopsis leaf extract (Figure 4-4D). 

 

We next tested whether recombinant RD21 could complement IS4 labeling in 

proteomes of rd21-1 mutant plants. Adding recombinant RD21 to proteomes of rd21-

1 mutant plants complemented IS4 labeling (Figure 4-4E). This restoration of IS4 

labeling did not occur when recombinant RD21-deficient extracts of agroinfiltrated N. 

benthamiana were added, again indicating that recombinant RD21 is required to 

restore IS4 labeling (data not shown). No IS4 labeling was observed in recombinant 

RD21-containing extracts themselves, because these were diluted to adjust the 

recombinant RD21 concentration (Figure 4-4E). 

 

To investigate the mechanism by which E-64 inhibits IS4 labeling, we incubated leaf 

extracts of wild-type plants with E-64 to inactivate RD21 and other PLCPs. The 

excess of E-64 was removed by gel filtration, and the E-64-treated proteome was used 

for IS4 labeling. No IS4 labeling occurred on these E-64-treated proteomes (Figure 4-

4F). However, IS4 labeling was restored to normal levels by adding recombinant 

RD21 (Figure 4-4F). These results indicate that E-64 does not act by occupying IS4-
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binding sites on the target proteins, but rather by inactivating PLCPs, presumably 

RD21. 

 

 

 
 
 
FIGURE 4-5 In vivo labeling with IS4. 
A, Labeling with IS4 can not be detected in Arabidopsis cell cultures. 2-week old Arabidopsis cell 
cultures were washed and incubated for 4 hours with 20 µM IS4. Dashed lines indicate lanes that 
were left out from the blot. B, Labeling with IS4 can not be detected in detached Arabidopsis 
leaves.6-week old Arabidopsis leaves were detached and incubated with their petiole in solutions 
containing 10 µM IS4 for 6 hours. Proteins were extracted and analyzed on protein blots probed 
with streptavidin-HRP. The experiment was done in duplo and repeated twice with similar results. 
C, IS4-n can not prevent IS4 or DCG-04 labeling of detached Arabidopsis leaves. 6-week old 
Arabidopsis leaves were detached and incubated with their petiole in 100 µM E-64 or 150 µM 
IS4-n for 4 hours. Proteins were extracted and labeled with 2 µM DCG-04 at pH 6 or IS4 at pH 8 
for 1 hour, and proteins were analyzed on protein blots probed with streptavidin-HRP. The 
experiment was done in duplo and repeated twice with similar results. *, PsbP. 
 

 

We also investigated whether IS4 could label in living cells. We used both 

Arabidopsis cell cultures and detached leaves. Incubation of cell cultures with IS4 did 

not label specific proteins, even when the pH was increased from 5.7 to 8 (Figure 4-

5A). Similarly, no IS4-specific labeling was detected when detached leaves were 

incubated with IS4 (Figure 4-5B). To test whether the nonbiotinylated IS4-n could 

enter the tissue and reach RD21, leaves were preincubated with IS4-n and E-64 in 

vivo, and then proteins were extracted and used for labeling with DCG-04 and IS4. 

Preincubation with E-64 blocked labeling of RD21 by DCG-04 and prevented IS4 

labeling, indicating that E-64 inhibits RD21 activity in vivo (Figure 4-5C). In contrast, 

preincubation with IS4-n did not block labeling of RD21 by DCG-04, indicating that 
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there is no inhibition of RD21 by IS4-n in vivo. Extracts from leaves pretreated with 

IS4-n could be labeled with IS4, consistent with the absence of inhibition of RD21 by 

IS4-n (Figure 4-5C). Thus, IS4-n may not be reaching RD21 in living tissues because 

it is unstable in vivo or not membrane permeable. Limited in vivo labeling of β-lactone 

probes was also noted in studies on bacterial cell cultures (Böttcher and Sieber, 2008). 

 

2.4.5 Binding of β-lactones to RD21 

 

The above data show that labeling of IS4 to other proteins is mediated by RD21. To 

investigate whether RD21 itself is labeled by IS4, we analyzed purified IS4-labeled 

proteins with RD21-specific antisera. Neither intermediate nor mature RD21 signals 

were detected among the labeled proteins, indicating that RD21 is not labeled by IS4 

(Figure 4-6A, bottom panel). These data are consistent with our previous observation 

that the IS4-labeling pattern does not contain signals of the size of intermediate RD21 

(Figure 4-1C). 

 

These findings suggest that IS4 binds to RD21 as an unstable intermediate that is not 

retained during purification of the labeled proteins. To show that IS4 binds to RD21, 

we labeled Arabidopsis leaf extracts with DCG-04 in the presence of excess 

nonbiotinylated IS4-n and IS2-n. IS4-n prevented labeling of intermediate RD21 by 

DCG-04, suggesting that IS4 occupies the substrate binding groove of RD21 (Figure 

4-6B). In contrast, IS2-n could not prevent labeling of iRD21 by DCG-04 (Figure 4-

6B), indicating that IS2 does not label (Figure 4-1B) because it does not interact with 

iRD21. Notably, AALP was labeled by DCG-04, indicating that this protease does not 

bind IS4-n (Figure 4-6B). 

 

We next tested the pH dependency of IS4-n binding. RD21 reacts with DCG-04 at pH 

5-10 (Figure 4-6C), indicating that RD21 is active at a wide pH range. However, 

preincubation with IS4-n prevented DCG-04 labeling of RD21 at pH 6-9 (Figure 4-

6C), indicating that IS4-n binds to RD21 only in this pH range. The range of IS4-n 

binding coincides with that of IS4 labeling (pH 7-9; Figure 4-2A), except for pH 6. 

These data suggest that at pH 6, IS4 binds to RD21, but there is no transfer onto other 

proteins. 
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FIGURE 4-6 Binding of β-lactones to RD21. 
A, IS4 does not label RD21. Arabidopsis leaf extracts were labeled with IS4 and the total labeled 
extract (T) and purified biotinylated proteins (P) were detected with streptavidin-HRP (left) and 
RD21 antiserum (right). Both intermediate (i) and mature (m) isoforms of RD21 were detected. 
Dashed lines indicate lanes that were left out from the blot. B, Nonbiotinylated IS4-n prevents 
intermediate RD21 isoform (iRD21) labeling in leaf extracts. Arabidopsis leaf extracts were 
labeled with 2 µM DCG-04 in the presence or absence of 200 µM nonbiotinylated E-64, IS2-n or 
IS4-n. C, IS4-n prevents iRD21 labeling at pH 6-9. Arabidopsis leaf extracts were incubated with 
1 µM DCG-04 with or without 200 µM IS4-n at various pH values. *, PsbP. 
 

 

 

2.4.6 RD21 ligates peptides 

 

Given the above results, we hypothesized that IS4 binds to RD21 and forms a 

thioester intermediate that can be transferred to the N-terminus of PsbP. Because a 

thioester bond is common to all intermediates of PLCPs with their substrates, we 

tested whether thioesters formed from peptides could also be ligated to other proteins 

by RD21. To ensure that the peptides would bind RD21, we designed them based on 

sequences of IS4 (Bio-FTβ) and the N-terminus of PsbP (AYGEAAN). Three 

peptides were synthesized: the biotinylated peptides Bio-FTAYGE (PepA) and Bio-

FTA (PepB) and the nonbiotinylated peptide AYGEAAN (PepC; Figure 4-6A). These 

peptides are nonelectrophilic agents that combine key recognition elements of IS4 and 

the N-terminus of PsbP. 
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FIGURE 4-7 RD21 can ligate peptides. 
A, Biotinylated peptides PepA, PepB and PepC were compared to sequences of IS4 (red) and PsbP 
(blue). B, PepA labeling can be prevented by E-64, IS4-n and PepC. Leaf extracts were 
preincubated with or without 120 µM E-64, 120 µM IS4-n or 300 µM PepC and labeled with or 
without 20 µM PepA or 3 µM IS4. Only half of the IS4-labeled sample was loaded. C, PepA 
labeling occurs at primary amino groups. Leaf extracts were preincubated with or without 600 µM 
sulfo-NHS-Ac (NHS) at pH 7.4 to block the N-terminal amino groups and then labeled with 30 
µM PepA. D, PepA labeling is RD21 dependent. Leaf extracts of wild-type and rd21 mutant plants 
were labeled with PepA in the presence or absence of recombinant RD21 (rRD21). E, rRD21 
complements PepA labeling in E-64-treated proteomes. Leaf extracts were treated with 20 µM E-
64. Excess E-64 was removed by gel filtration, and extracts were labeled with 30 µM PepA in the 
absence or presence of rRD21. wt, wild type. 
 

 

Labeling of leaf extract with PepA resulted in a profile very similar to that of IS4 

(Figure 4-7B). PepB, in contrast, did not cause any biotinylation (data not shown). 

Analogous to labeling by IS4, PepA labeling was prevented by adding E-64 or IS4-n 

and required the reducing agent DTT (Figure 4-7B). PepA labeling was reduced by 
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adding the nonbiotinylated PepC (Figure 4-7B), indicating that PepC competes with 

PepA labeling of acceptor proteins such as PsbP. Labeling by PepA was suppressed 

by preincubation with sulfo-NHS-Ac (Figure 4-7C), indicating that PepA labels at 

primary amines, presumably N-termini. Labeling with PepA was absent in rd21-1 

mutant proteomes and was complemented by recombinant RD21 (Figure 4-7D). 

Finally, PepA labeling was absent from E-64-treated proteomes but was 

complemented by recombinant RD21 (Figure 4-7E). Taken together, these 

observations indicate that RD21 ligates the N-terminal moiety of PepA to the N-

termini of acceptor proteins. 
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CHAPTER 3: DISCUSSION 
 

3.1 ABPP with fluorophosphonate probe FP 

 

3.1.1 FP profiling of Arabidopsis leaf extracts 

 

We optimized ABPP of Arabidopsis leaf extracts with FP, resulting in a highly 

reproducible and robust FP labeling. We next characterized FP labeling in more detail, 

and found that the labeling of most targets occurs maximally at cytosolic pH 8, and is 

saturated within 15 minutes. Among tested enzyme cofactors and chemical additives, 

only 0.1% SDS was found to affect FP labeling. FP labeling is absolutely absent in the 

heat-denatured leaf proteome, indicating that the labeling is activity-dependent. The 

knowledge obtained from this characterization greatly facilitated the large-scale 

purification of the labeling targets, and led to the identification of over 50 Arabidopsis 

serine hydrolase activities from more than 10 different serine hydrolase families 

including many proteases, lipases and esterases (Kaschani et al., 2009b). 

 

Two FP probes that only differ in linker region confer different profiling properties. In 

general, FP probes having a PEG linker label with stronger intensities and more 

signals than those with a hydrocarbon linker (Figure 1-2). This was also found in 

animal proteomes and is probably due to the increased water solubility and 

accessibility of this probe (Kidd et al., 2001). 

 

The Arabidopsis genome encodes for 198 serine proteases and even more 

nonproteolytic serine hydrolases (Van der Hoorn and Jones, 2004), but not all those 

serine hydrolases were detected with FP profiling. The absence of the other serine 

hydrolases can have different reasons. First, many Arabidopsis serine hydrolase genes 

are not expressed in leaves under the conditions tested. This holds, for example, for 

many genes encoding subtilases (Rautengarten et al., 2005). Second, some serine 

hydrolases may not be active under the conditions tested. We showed, for example, 

that labeling depends on pH (Figure 1-2A), indicating that many enzymes cannot be 

labeled at non-optimal conditions. Third, some FP-labeled serine hydrolases might not 

be abundant enough to be detected with gel-based target identification or even with 
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MudPIT. Fourth, FP may not react with every serine hydrolase. For example, there are 

other FP probes available that label different serine hydrolases (Dijkstra et al., 2008). 

Differences in labeling profiles between FP-Bio and FPpBio indeed indicate that 

labeling depends on the probe used. 

 

Profiling with FP is a powerful tool to assist in the functional analysis of serine 

hydrolases, e.g. to monitor serine hydrolase activities in defense-induced or pathogen-

infected Arabidopsis plants. We treated Arabidopsis plants with BTH to trigger SA-

dependent defense responses, and labeled leaf extracts with FP to detect serine 

hydrolase activities during plant defense. This type of plant defense induction is 

independent of living pathogens and provides opportunities to study the changes in 

protein activities solely from the plant side. FP profiling revealed that BTH 

extensively upregulates activities of several serine hydrolases (Figure 1-3A). The 

identities of these specific FP targets still need to be clarified. Nevertheless, they may 

play roles in plant defense, and therefore may become host targets for invading 

pathogens to inhibit or suppress. Extensive changes in serine hydrolase activities were 

also observed in leaf extracts of wild-type Arabidopsis or in sid2 mutant plants 

infected with virulent or avirulent strains of bacterial pathogen P. syringae (Figure 1-

3B). The protein activity changes are dynamic during the first three days of infection, 

and may reflect serine hydrolase activities from both Arabidopsis and Pseudomonas. 

Identification and functional characterization of those differential serine hydrolases 

will greatly enrich our knowledge on the dynamic interactions between Arabidopsis 

and Pseudomonas during early infection stages. 

 

We used 1D protein gel analysis to monitor the infection of Arabidopsis by B. cinerea 

and provide a first glimpse into the differential hydrolase activities during Botrytis 

infection. Both Arabidopsis and Botrytis hydrolases were detected in infected pad3 

mutant plants (Figure 1-4). Botrytis cutinases and lipases are thought to play a key 

role in Botrytis infection process because Botrytis infects by dissolving the cuticle 

(Van Kan, 2006). However, knock-out strains lacking cutinase CutA and lipase lip1 

did not cause reduced virulence (Van Kan et al., 1997; Reis et al., 2005). Our data 

indicate that CutA is not the dominant cutinase during infection and that at least two 

Botrytis cutinase-like lipases are produced and active during infection. This activity 

information, combined with the Botrytis genome sequence, is essential information 
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for focused strategies to further investigate Botrytis pathogenesis. Several Arabidopsis 

enzymes show differential activities during Botrytis infection. The activities of 

methylesterases MES2 and MES3, for example, were down-regulated (Figure 1-4). It 

is unknown whether these effects are mediated by the pathogen to promote infection 

or mediated by the plant to suppress pathogen invasion. MES2/3 activities, for 

example, might be down-regulated by Botrytis to suppress salicylic acid signaling 

pathways. These FP labeling experiments illustrate the kinds of questions that are 

raised by investigating plant-pathogen interactions using ABPP. However, more 

experiments are required to confirm the differential activities and to reveal their 

molecular mechanisms and biological functions. 

 

3.1.2 FP profiling of tomato apoplastic fluids 

 

We used tomato apoplastic fluids as a research model for investigating secreted 

proteases and their functions in plant apoplastic defense, and applied ABPP with FP 

profiling to study the serine hydrolase activities in SA-dependent plant defense 

responses. Biochemical characterization of FP labeling of tomato AFs revealed that 

most of the FP targets are maximally active at pH 6, which is consistent with the 

physiological pH of the acidic apoplast. Treatment of tomato plants with BTH, a 

functional analogue of SA, results in substantial changes in serine hydrolase activities. 

Two major FP targets, whose activities are significantly upregulated upon BTH 

treatment, were identified as P69B, a secreted subtilisin-like serine protease. This is 

consistent with previous findings that P69B is a PR protein which is induced by 

pathogen attack or SA treatment and accumulates in tomato leaf apoplast (Tornero et 

al., 1997; Jorda and Vera, 2000). 

 

Various interactions occur in apoplast during plant development and responses to the 

environment full of stresses. Therefore, it is pivotal to study the proteins in plant 

apoplastic space. Apoplastic proteins are usually secreted from the plant cell through 

ER-Golgi secretion pathway, and are involved in non-self recognition, development, 

nutrition and responses to abiotic and biotic stresses (Berger and Altmann, 2000; 

Boller, 2005; Tasgin et al., 2006; Kusumawati et al., 2008; Paungfoo-Lonhienne et al., 

2008). There are at least three major material resources for plant apoplastic secretome 

research: extracellular medium of suspension cell culture, xylem sap and leaf 
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apoplastic fluid (Lee et al., 2004; Djordjevic et al., 2006; Tran and Plaxton, 2008). 

Tomato leaf apoplastic fluid is native, dynamic and experimentally easy to obtain, and 

is particular useful for studies on apoplastic plant-microbe interactions, as the tomato 

apoplast is the entry site of numerous pathogens. Previously, tomato AF was 

successfully used to study the interactions between apoplastic proteases and effector 

proteins secreted from different pathogens (Tian et al., 2004; Rooney et al., 2005). 

 

We focused on serine hydrolases including serine proteases in tomato leaf AF, and 

monitored the activities of tomato apoplastic serine hydrolases using ABPP with FP 

labeling. Particularly, we sought for serine hydrolases whose activities are altered 

upon BTH treatment, as they may function in SA-dependent defense responses and 

may become host targets for pathogens to inhibit. SA biogenesis, signaling network 

and downstream defense responses within plant cells were comprehensively surveyed 

in last decade (Loake and Grant, 2007), but SA effects on plant apoplastic defense 

remains less characterized. Chitinase and β-1,3-glucanase, for example, are among 

few well-studied apoplastic PR proteins that can be induced by exogenously-applied 

SA (Bowles, 1990). Besides of those, Park and coworkers recently treated 

Arabidopsis cell culture with SA and identified a dozen of SA-responsive secreted 

proteins including GDSL-like lipase-1 (GLIP1), which is implicated in plant 

resistance to the fungus Alternaria brassicicola (Oh et al., 2005). Popova and 

coworkers found that SA differentially regulates the activities of antioxidant enzymes 

in the apoplast of winter wheat by enzymatic activity assays (Tasgin et al., 2006). 

Williamson and coworkers observed that SA stimulates the secretion of mannitol 

dehydrogenase (MTD) into tobacco leaf apoplast (Cheng et al., 2009). The authors 

hypothesized that these SA-induced MTDs may serve to eliminate the antioxidant 

mannitol secreted by fungal pathogens, and consequently coordinate reactive oxygen 

species (ROS)-mediated plant defenses. We recently investigated PLCPs in tomato 

AFs using ABPP with DCG-04 labeling, and detected at least seven PLCP activities 

when plant defense was triggered with BTH treatment (Shabab et al., 2008). We 

identified PIP1 as an apoplastic PR protein whose activity is upregulated by BTH, and 

found that fungal effector protein AVR2 from C. fulvum inhibits PIP1. The tomato 

leaf apoplast contains a large variety of uncharacterized hydrolytic proteins. To 

expand the spectrum of the hydrolases, we profiled tomato AF with the serine 

hydrolase-specific probe FP. 
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While profiling tomato AFs with FP, we used two probes, FPpRh and FPpBio, with 

identical reactive group and linker but different reporter groups for quick detection 

and affinity purification of labeling targets, respectively (Figure 1-1). FPpRh and 

FPpBio cause similar but not identical labeling profiles, although mutual competition 

assay suggested that both probes target almost the same set of serine hydrolases 

(Figure 1-5A). The subtle differences between two labeling profiles may be an 

outcome of different reactivity of each probe towards distinct targets. For example, in 

comparison to the 70-kDa hallmark signal, FPpRh labels the 56-kDa signal much 

stronger than FPpBio does (Figure 1-5A, grey dot). Furthermore, a 40-kDa signal can 

only be labeled with FPpRh but not with FPpBio. This observation is consistent with 

the fact that FPpBio can not efficiently outcompete FPpRh labeling of this 40-kDa 

signal (Figure 1-5A). Finally, the FPpRh profiling revealed that the activity of 56-kDa 

target was downregulated in AFs of BTH-drenched tomato plants (Figure 1-6B). 

Unfortunately, this 56-kDa signal is absent when tomato AFs were labeled with 

FPpBio, and therefore we could not identify this FPpRh target (Figure 1-7A). We 

postulate that the 56-kDa signal on 1D gel contains several FP labeling targets, and 

that one serine hydrolase in this mixture is downregulated upon BTH treatment and 

can be labeled only with FPpRh but not with FPpBio. The distinct effects of reporter 

tags on the reactivity of FP probes has been noted by Cravatt and coworkers, as the 

trifunctional FP probe labels much less serine hydrolase targets than FP probes with 

either a biotin tag or a rhodamine tag (Benjamin Cravatt, personal communication). 

The development and synthesis of an FP probe with an affinity tag that can both 

detect and purify this 56-kDa of SA-regulated enzyme should be a priority for future 

investigations. 

 

The 70-kDa FP signal in tomato AFs was identified as P69B by affinity purification 

and MS analysis, and confirmed by western blotting with anti-P69B antibody (Figure 

1-7). We found that P69B is upregulated upon BTH treatment both at activity level 

(Figure 1-7) and expression level (data not shown). These results are in line with 

P69B being a pathogenesis-related (PR) protein. P69B is induced and accumulates in 

the tomato apoplast upon citrus exocortis viroid infection or SA or BTH treatment 

(Vera et al., 1989; Jorda and Vera, 2000; Tian et al., 2004). P69B is a subtilisin-like 

serine protease (subtilase) with a molecular weight of ~69-kDa, and a member of P69 

subtilase subfamily consisting of six highly-homologous subtilases, P69A-F (Tornero 
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et al., 1997; Jorda et al., 1999, 2000). Vera and coworkers investigated the expression 

profiles of all six P69s by promoter analysis with GUS reporter in transgenic 

Arabidopsis plants, and showed that P69A is constitutively expressed in all tissues 

expect roots and flowers; P69D is transiently expressed in cotyledons and emerging 

leaves; P69E is only expressed in roots; and the expression of P69F is restricted in the 

leaf hydathodes (Jorda et al., 1999, 2000). P69A, D, E and F are not induced by 

virulent/avirulent Pseudomonas infections or SA treatment. In contrast, P69B and 

P69C are not constitutively expressed in all developmental stages, but are strongly 

induced locally and systemically by both Pseudomonas and SA. Induced expression 

of P69B is restricted in leaf veins, while induced expression of P69C is scattered all 

over the leaf lamina (Jorda et al., 1999; Jorda and Vera, 2000). However, we found 

that FP labels all P69A, P69B, P69C, P69E and P69F in the leaf AFs of H2O-treated 

tomato plants; and the activities of all five P69s are significantly upregulated upon 

BTH treatment (Kaschani et al., unpublished data). Improved separation of purified 

FP target proteins on 2D gel is expected to lead to the identification of different P69 

isoforms and their post-translational modifications, and differential activities during 

SA-mediated defense responses. 

 

The 33-kDa BTH-inducible FP target in tomato leaf AFs was also identified and 

confirmed to represent P69B (Figure 1-7). FP is believed to covalently react with Ser-

531, the conserved putative catalytic residue of P69B (Tornero et al., 1997), and the 

anti-P69B antibody was raised against the N-terminal peptide of P69B (aa114-126; 

Tian et al., 2004). Any P69B isoform that can both be labeled with FP and be 

recognized by anti-P69B antibody should have a size larger than ~45-kDa, but the 33-

kDa signal is much smaller than this theoretical minimal size. We speculate two 

possibilities for it. The first possibility is that certain alternative splicing event may 

occur to the P69B transcript, leading to a loss of peptide sequence prior to Ser-531 

and a shortened translation product of P69B. Indeed, sequence alignment analysis 

indicated that tomato P69 subtilases has a long peptide sequence insertion prior to the 

catalytic serine and a long C-terminal peptide sequence after the catalytic serine when 

compared to non-plant subtilases (Tornero et al., 1996, 1997). The second possibility 

is that this 33-kDa signal is a degradation fragment of mature P69B, in which amino 

acid other than Ser-531 was labeled by FP or a peptide other than aa114-126 could be 
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bound by anti-P69B antibody. Affinity purification and MS analysis of the 33-kDa 

signal and identification of the FP-labeling site will give a final answer to this puzzle. 

 

Though as a PR protein P69B is induced by pathogen attack or SA treatment and may 

play a role in SA-mediated plant defenses, the biological function of P69B is still 

unknown. Unlike the majority of PR proteins whose expression is delimited to the 

necrotic zones caused by HR when the plants are challenged with pathogens, the 

virulent and avirulent Pseudomonas-triggered accumulation of P69B is not 

preferentially around the necrotic lesions (Jorda and Vera, 2000). The authors 

postulated that P69B may process apoplastic substrate proteins to remodel the 

extracellular matrix and/or to activate signal transduction, rather than directly interact 

with invading pathogens. Nevertheless, the involvement of P69B in plant defense 

implies that this protease may become a host target for pathogen-derived effector 

proteins. Kamoun and coworkers discovered a Kazal-like extracellular effector 

protein EPI1 from P. infestans which is expressed during infection and inhibits tomato 

P69B (Tian et al., 2004). This inhibition of P69B is accomplished by the atypical 

Kazal domain EPI1a but not by the typical Kazal domain EPI1b, which was 

demonstrated with in-gel protease activity assay at pH 8 using colorimetric substrates 

(Tian et al., 2005). Kazal-like EPI1a is an active-site inhibitor and inhibits the target 

subtilases by sterically blocking the active-site to the substrates (Read et al., 1983). 

We found, however, that EPI1a can not outcompete FP labeling of P69B in leaf AFs 

of either H2O- or BTH-treated tomato plants (Figure 1-8C), and therefore were unable 

to show EPI1a inhibition of P69B by competitive ABPP with FP labeling. This raises 

the question on the fidelity of ABPP, which in principle readouts active-site 

accessibility of the target enzymes, in reflecting the enzymatic activity of the probe 

targets, which is defined as “moles of substrate converted per unit time”. When EPI1a 

interacts with P69B and resides on the active site of the serine protease to repel the 

substrates from approaching the active site, it may not cut off the access of the FP 

warhead to the catalytic serine residue of P69B. For this reason, FP profiling of P69B 

in the presence of EPI1a may bring false interpretation of P69B activity. 

 

Another conflicting result we obtained is on the pH dependency of P69B enzymatic 

activity and FP labeling of P69B. During biochemical characterization of P69s, 

Conejero and coworker showed that viroid-induced P69s (mainly P69B and P69C) are 
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maximally active at pH 8.5-9 but not active at all at pH 6 using fluorogenic casein and 

RuBisCO as substrates (Vera and Conejero, 1988). While profiling tomato AFs with 

FP, we found that the pH optimum of FP labeling of P69s is pH 6-8 (Figure 1-5C), 

meaning that P69s are more active at pH 6 than at pH 9, which is not in agreement 

with the results from Conejero group. In order to maximally mimic the biologically 

relevant environment, we used pH 6, which is close to the physiological pH of tomato 

leaf apoplast, for in vitro FP profiling. The different pH values chosen in enzymatic 

assays (pH 8) and competitive ABPP (pH 6) for EPI1a inhibition of P69B may be the 

cause of the contradictory outcomes. In general, conclusions from ABPP results on 

protein activities should be drawn with care, and if possible, enzymatic assays with 

specific substrates should be performed in parallel with ABPP to ensure the 

consistency of the activity readouts.  

 

 

3.2 ABPP with epoxide probe DCG-04 

 

3.2.1 PIP1 is induced by BTH treatment and inhibited by AVR2 in the tomato 

apoplastic fluids 

 

The apoplast, a battlefield between plant defending cells and invading pathogens, is 

likely to be ancient, predating the evolution of translocation mechanisms for effector 

proteins by which pathogens manipulate the host cytoplasm and suppress host defense 

responses. Therefore, understanding the nature of plant defenses in the apoplast and 

the counter defense mechanisms that pathogens evolved to overcome these defenses is 

essential for a comprehensive understanding of host-pathogen interactions and should 

complement the body of knowledge that has emerged on cytoplasmic effectors and 

defense mechanisms. 

 

We used the apoplast of tomato (Solanum lycopersicum) as a research model, which is 

easily accessible for biochemical experiments and ideal for studying apoplastic 

molecular plant-pathogen interactions. We focused on papain-like proteases in the 

tomato apoplast by applying protease activity profiling to study the activities of the 

PLCPs and the interactions between the PLCPs and pathogen-secreted inhibitors. This 
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sub-project revealed seven active PLCPs in the apoplast of tomato, using the broad-

range active site-directed probe TMR-DCG-04, which reacts with a wide range of 

PLCPs (Van der Hoorn et al., 2004). The seven PLCPs that we detected are probably 

not the full set of secreted PLCPs but certainly comprise the majority of active PLCPs 

in the tomato apoplast. It is likely that extracellular pathogens will encounter these 

secreted PLCPs during infection. 

 

PIP1 is strongly upregulated at activity level upon BTH treatment, and the 

upregulated activity of PIP1 is correlated with the transcript accumulation (data not 

shown). This indicates that the PIP1 gene is under control of the SA signaling 

pathway and that PIP1 belongs to the class of PR proteins that accumulate during the 

basal immune response. Consistent with BTH induction, PIP1 is upregulated during 

infection with P. syringae and P. infestans (Zhao et al., 2003; Tian et al., 2007). 

However, since SA signaling is not the only pathway that is active during infection, 

the final levels of PLCPs will strongly depend on the time point, cell type, and 

pathogen. Infection of tomato with P. syringae, for example, induces the expression 

of C14 but not CatB2 (Zhao et al., 2003). Furthermore, infection of potato plants with 

avirulent P. infestans results in upregulation of both C14 and CatB2 (Avrova et al., 

1999, 2004). Thus, although the other PLCP genes are not induced by the SA analog 

BTH, their expression can be induced during infection, probably through other 

pathways. 

 

We showed that the C. fulvum AVR2 effector protein specifically targets the defense-

related protease PIP1 in tomato apoplastic fluids, using ABPP with TMR-DCG-04. 

The fact that only BTH-induced PIP1 is inhibited by AVR2 is an interesting 

observation; although it cannot be excluded that C. fulvum secretes other proteins that 

target other PLCPs. Although these data suggest that PIP1 plays a role in defense in 

the absence of Cf-2, this remains to be demonstrated. Recently, De Wit and coworkers 

showed that AVR2 is a genuine virulence factor of C. fulvum in both Arabidopsis and 

tomato plants (Van Esse et al., 2008). 

 

The approach taken in this study to identify secreted proteases and analyze their 

inhibition by pathogen-derived proteins has revealed interesting aspects of an 

apoplastic molecular battlefield between plants and pathogens. Given these 



  DISCUSSION 

 79

observations, it seems likely that many pathogens secrete PLCP inhibitors during 

infection and that these inhibitors, the proteases, and their substrates are involved in a 

continuous coevolutionary battle. How coevolution shaped the apoplastic defense, and 

how these defense-related proteases discriminate between self and non-self remain 

exciting questions to resolve. 

 

3.2.2 C14 activities and inhibition by EPIC1/2B in tomato apoplastic fluids 

 

Suppression of host defense responses is an important strategy of adapted plant 

pathogens. This study revealed that the EPIC1 and EPIC2B effector proteins of the 

oomycete pathogen P. infestans both target and inhibit intermediate isoform of tomato 

C14, an abundant, ubiquitous, stress-related protease that is typified by an additional 

C-terminal granulin domain and resides mostly inside the host cell. C14, a partially 

secreted tomato PLCP, is supposed to play a role in plant basal defense in apoplast as 

its activity is slightly upregulated upon BTH treatment (Figure 2-2A, lane 1 and 2). 

The oomycete EPIC proteins are strong inhibitors of C14, since the EPIC-C14 

interaction is specific and occurs at low inhibitor concentrations. The EPICs are 

supposed to suppress C14-related defense machinery and facilitate the pathogen to 

colonize the host plant. 

 

C14 is a highly conserved protease that occurs throughout the plant kingdom. C14-

like proteases are characterized by a unique, C-terminal granulin-like domain that 

shares homology to animal growth hormones that are released upon wounding 

(Bateman and Bennett, 1998). The tomato C14 is relatively abundant and has been 

studied many times under the names TDI-65, CYP1 and SENU1, and is known to be 

transcriptionally induced by heat, cold, drought and senescence (Schaffer and Fisher, 

1988, 1990; Drake et al., 1996; Harrak et al., 2001). The potato ortholog of C14 is 

called CYP1 and is transcriptionally induced in resistant potato cultivars early during 

infection of P. infestans (Avrova et al., 1999). The Arabidopsis ortholog is named 

RD21, and accumulates in vesicles (Hayashi et al., 2001; Yamada et al., 2001). 

Although the function of C14-like proteases is currently unknown, these data suggest 

that C14-like proteases have an intrinsic function related to general stress responses. 
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C14 is not the only target of EPICs. This is consistent with the emerging concept in 

effector biology that most effectors have multiple targets in the host (Hogenhout et al., 

2009). It was previously shown that EPIC2B but not EPIC1 inhibits PIP1 (Tian et al., 

2007). In addition, EPIC1 and EPIC2B both inhibit RCR3, which is closely related to 

PIP1 (Song et al., 2009). Short labeling times and different probe and inhibitor 

concentrations were used in these assays to show that EPICs prevent biotinylation of 

PIP1 and RCR3. The specificity and biological function of EPIC1 and EPIC2B 

inhibition of each tomato PLCP secreted into apoplast remains to be further elucidated. 

Particularly for C14, profiling of apoplastic fluids from P. infestans-infected tomato 

plants with DCG-04 could reveal if C14-EPIC interaction occurs in vivo. 

 

To characterize the EPIC inhibition of tomato C14, we monitored the activities of 

both recombinant C14 ectopically overexpressed in N. benthamiana and C14 in the 

crude tomato apoplastic fluids. rC14 produced with agroinfiltration retains necessary 

modifications taking place only in planta (Van der Hoorn et al., 2000), and offers 

opportunities to study the activities of both iC14 and mC14 simultaneously, because 

in tomato AFs mC14 could not be efficiently separated from CatB and ALP by 1DE. 

2DE with fluorescent DCG-04 profiling is a robust analytical platform to monitor the 

activity of mC14 in tomato AFs (Figure 2-2B), and will facilitate the study on EPIC-

mC14 interaction in the apoplast. 

 

DCG-04 labeling of recombinant iC14 is identical in pH dependency and time course 

compared to the labeling of iC14 in tomato AFs, indicating that C14s have a similar 

physicochemical properties in different biological context. However, addition of 

0.03% SDS differentially affects iC14 activities in vitro: it suppresses DCG-04 

labeling of recombinant iC14 while enhances DCG-04 labeling of iC14 in tomato AFs. 

SDS is an anionic detergent widely used in protein research. At high concentrations it 

denatures, unfolds and negatively charges proteins, while at low concentrations it may 

activate proteins as shown for the proteasome, matrix metalloproteases, cysteine 

proteases and other enzymes (Tanaka et al., 1989; Springman et al., 1990; Yamada et 

al., 1998; Cong et al., 2009). The fact that SDS activation of iC14 in tomato AFs can 

be detected by DCG-04 profiling demonstrates that 0.03% SDS can cause structural 

changes around the active site of the enzyme, leading to the enhanced accessibility of 

the probe to the active site. 
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In this case, there might be several possible mechanisms for this activation of iC14 by 

SDS. First, the active site of iC14 may be buried inside by a secondary structure of the 

intermediate form of the protease (e.g. the granulin domain), and 0.03% SDS may 

alter the protein conformation and expose the active site to the probe and substrates. A 

similar regulation model was recently reported by Decker and coworkers that SDS 

activates phenoloxidase by twisting its intrinsically flexible Hc domain I from domain 

II and III, and exposing the entrance to the active site (Cong et al., 2009). Second, 

iC14 may form face-to-face dimer and mask the active site of one monomer by the 

other, and 0.03% SDS may dissociate the dimerization and activate the protease by 

unmasking the active sites. SDS dissociates, as reported by Prakash and coworkers, 

multimeric protein carmin into its monomers at low concentrations (Sudhindra and 

Prakash, 1993). Third, under normal conditions in vitro, the active site of iC14 may be 

predominantly occupied by endogenous inhibitory proteins or small molecules to keep 

it in an inactive form, and 0.03% SDS may break such relatively weak interactions 

between iC14 and its inhibitory ligands to activate iC14. SDS interferes with many 

protein-protein or protein-small molecule interactions. For example, Tόth and 

coworkers found that low concentration of SDS detaches the ligand tetrahydropterin 

from its stabilizing enzyme type-III nitric oxide synthase, while does not disturb the 

quaternary structure of the enzyme itself (Tόth et al., 1998). 

 

Nevertheless, SDS activation of iC14 in tomato AFs suggests that the activity of iC14 

can be regulated in its physiological environment, and 0.03% SDS is a way to release 

its full activity. We hypothesized that the endogenous iC14 is mainly in an inactivated 

form as a reservoir of proteolytic potential, to be activated promptly upon specific 

signals.  

 

The fact that EPIC1 and EPIC2B are strong inhibitors against C14 and other tomato 

PLCPs was also highlighted by their strong inhibition of tomato AFs in the presence 

of 0.03% SDS. EPIC1 and EPIC2B show high similarity in amino acid sequences, and 

close relationship from phylogenetic analyses (Tian et al., 2007). However, they also 

exhibit differentials in inhibitory potency to recombinant iC14 and iC14 in tomato 

AFs.  Recently, Michaud and coworkers tried to tailor the specificity of tomato 

cystatin SlCYS8 toward cysteine proteases, and successfully fine-tuned its specificity 

by single mutations at positively selected amino acid sites (Goulet et al., 2008). This 
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research demonstrates that subtle amino acid differences at defined positions in 

cystatin can cause diverse selectivity to their target cysteine proteases. Thus, single 

amino acid replacement in EPIC1 and EPIC2B may identify their target selectivity 

and dissect their functions against different PLCPs in tomato AFs. 

 

The most interesting observation in this research is that at low EPIC1 or EPIC2B 

concentrations of 4-8 nM both P. infestans-derived inhibitors can moderately activate 

the mature isoform of rC14. Recently, Von Pawel-Rammingen and coworkers also 

found that human protease inhibitor cystatin C activates Streptococcal IgG-cleaving 

cysteine protease IdeS, which contains a typical papain-like structural fold (Vincents 

et al., 2008). In this research, fluorogenic substrates were used to measure cysteine 

protease activities, and kinetic analysis revealed that cystatin C significantly 

accelerated the proteolytic velocity of the pathogen-derived cysteine protease. In our 

case, low concentrations of EPIC1 and EPIC2B may modify the active site of mC14, 

making it more accessible to probe or substrates. As enhanced accessibility of the 

enzyme active site to substrates may lead to accelerated substrate cleavage of the 

protease, our DCG-04 profiling may shed lights on the mechanism of this atypical 

cysteine protease activation by cystatins. 

 

Another lesson from this observation is that it is of instrumental importance to 

measure in vivo the ratio of pathogen-derived inhibitors and the plant proteases during 

pathogen infection. Only by doing that we could then more precisely determine the 

effects of inhibitors on their interacting host proteases at biologically-relevant 

concentrations in vitro, and clarify whether these plant proteases are inhibited or 

hijacked for functional analysis of these pathogen-derived inhibitors. 

 

 

3.3 ABPP with vinyl sulfone probe MV151 

 

It has been widely accepted that substrate specificity of the proteasome is mostly 

determined by selective ubiquitination of target proteins (Sullivan et al., 2003). 

However, proteasome activities also play regulatory roles itself. Interferon treatment 

of mammalian cells results in the production of “immunoproteasomes” which contain 
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different catalytic β-subunits to release hydrophobic peptides for antigen presentation 

(Rock et al., 1994; Goldberg et al., 2002). In some mammalian tissues proteasomes 

occur as subpopulations with different subunit compositions and different proteolytic 

activities (Drews et al., 2007). Nearly all proteasome subunits in Arabidopsis are 

encoded by two genes, suggesting that proteasome subpopulations may occur (Kurepa 

and Smalle, 2008). The catalytic subunits, for example, are encoded by PBA1 (β1), 

PBB1 and PBB2 (β2) and PBE1 and PBE2 (β5). In tobacco, transcript levels encoding 

a β1 catalytic subunit are specifically upregulated during defense, suggesting the 

existence of “plant defense proteasomes” (Suty et al., 2003). 

 

Developing tools to monitor the activity of the proteasome is instrumental to study 

proteasome functions. Monitoring proteasome activities during development and 

defense could lead to the identification of novel proteasome inhibitors and activators 

of endogenous or exogenous origin, as well as changes in the composition of the 

proteasome complex. Furthermore, selection of specific inhibitors for each catalytic 

subunit can be used to determine the role of each proteasome subunit. Genetic 

approaches to address subunit-specific roles are limited, since inactivation of one 

subunit usually affects the assembly and activity of the other subunits (Heinemeyer et 

al., 1997). 

 

We showed that VS-based probes can be used to monitor the activity of all three 

catalytic subunits of the proteasome. The procedure can be used to study the activity 

of proteasome subunits during different biological processes in different tissues, and 

in different plant species. The method also facilitates the selection of subunit-selective 

inhibitors that can be used to address the subunit-specific functions of the proteasome. 

 

The β5 subunit is preferentially labeled at low probe concentrations and short labeling 

times. This is consistent with the fact that MV151 carries a leucine at the P1 position, 

which is an ideal inhibitor for β5, since it has chymotrypsin-like activity (cleaving 

after hydrophobic residues). Equal labeling of all three catalytic subunits can be 

achieved by prolonged labeling at high probe concentrations. Labeling is optimal at 

pH 7.5, which coincides with the pH of the cytoplasm and nucleus. 
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The β2 and β5 subunits are encoded by two highly homologous paralogs, PBB1, 

PBB2 and PBE1 & PBE2, respectively. The paralogs are difficult to discriminate 

since the corresponding protein sequences are nearly identical. However, in different 

assays we have identified specific peptides of PBA1 (β1), PBB1 (β2), PBB2 (β2) and 

PBE1 (β5) (this manuscript) and PBE1 (β5) and PBE2 (β5) in an in vivo labeling 

experiment (Kaschani et al., 2009a). These data suggest that both paralogous subunits 

occur simultaneously and indicate that different proteasome complexes may exist in 

plants. 

 

The VS probes also label some PLCPs like RD21A. This was confirmed by MS 

analysis, mutant analysis, pretreatment with the PLCP-specific inhibitor E-64, and 

competition experiments with DCG-04. PLCP labeling was also observed in different 

Arabidopsis organs and in leaves of other plant species. Labeling of PLCPs is 

consistent with the fact that VS inhibitors can covalently inhibit PLCPs (Powers et al., 

2002). However, not all PLCPs are targeted by VS-based inhibitors, as was 

demonstrated for AALP (Figure 3-3D). Labeling of PLCPs is weak when compared to 

labeling of the proteasome, but it can be stronger if a reducing agent is added (Figure 

3-2D), or if the labeling is done in vivo (Kaschani et al, 2009a). 

 

Simultaneous activity-based profiling of the three catalytic subunits and PLCPs is a 

powerful tool to test the selectivity of protease and proteasome inhibitors. When 

testing different commercially available inhibitors, we found a striking inconsistency 

with the advertised selectivity. For example, proteasome inhibitors MG132 and 

MG115 also target PLCPs, and PLCP inhibitor leupeptin and various caspase 

inhibitors also target the proteasome. However, since all these inhibitors are aldehyde-

based and differ only in the amino acid residues, the inhibitory profiles could be 

correlated to the residues at the P1 and P2 positions. These data show a consistent 

picture, since PLCPs are selective for hydrophobic residues at the P2 position, 

whereas the proteasome catalytic subunits are selective for residues at P1: β1 for 

acidic residues, β2 for basic residues, and β5 for hydrophobic residues. The ability to 

design and test subunit selective inhibitors has tremendous potential since these 

inhibitors would enable to determine subunit-specific functions of the proteasome. 
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The proteasome is a highly conserved proteolytic complex in eukaryotes. This is 

underlined by the consistency of our data with previous findings (Kurepa and Smalle, 

2008). To expand ABPP of the proteasome in plants we tested different Arabidopsis 

organs and leaf extracts from different plant species. We could display proteasome 

activities in each of these organs, as demonstrated with different inhibitors. However, 

labeling of each subunit remains to be optimized for other Arabidopsis tissues, and the 

signals from the different plant species probably overlap and require further 

separation. Nevertheless, these experiments show the broad applicability of the 

technique. 

 

ABPP with MV151 revealed that proteasome activities are 1.5-fold upregulated in 

BTH-treated plants in an NPR1-dependent manner. This was unexpected, since 

transcript levels of genes encoding proteasome subunits are unaltered upon BTH 

treatment (www.genevestigator.com, Zimmermann et al., 2004; Von Rad et al., 2005). 

Our data suggest that the upregulated proteasome activity is post-translational. 

Although the mechanism of this post-translational activation of the proteasome is 

unknown at this point, it is well-described that the plant proteasome can be post-

translationally regulated by e.g. oxidation of proteasome subunits (Basset et al., 2002). 

 

The upregulated proteasome activity is in line with a role of the proteasome in various 

defense responses. The avrRpm1-induced hypersensitive response requires 

proteasome activity (Hatsugai et al., 2009) and induction of NPR1-regulated genes 

require degradation of phosphorylated NPR1 by the proteasome (Spoel et al., 2009). 

Furthermore, Pseudomonas syringae pv. syringae produces proteasome inhibitor 

Syringolin A which contributes to their virulence (Groll et al., 2008). Besides 

regulatory roles, the proteasome may also play a role in releasing amino acids for the 

synthesis of defense-related proteins and compounds, and protect cells against the 

reactive oxygen species and pathogen-inflicted damage. BTH causes a severe change 

in metabolism to generate defense-related proteins and compounds (Dietrich et al., 

2004). We speculate that an increased proteasome activity in the cytoplasm is required 

for efficient, large scale proteolytic processes during defense. Defense-related 

proteasomes may even have different enzymatic activities, similar to mammalian 

‘immunoproteasomes’ which releases hydrophobic peptides for antigen presentation 

(Rock et al., 1994; Goldberg et al., 2002). Interestingly, plant defense proteasomes 



  DISCUSSION 

 86

are thought to occur in tobacco where transcript levels encoding a β1 catalytic subunit 

is specifically upregulated during elicitation (Suty et al., 2003). The properties and 

role of defense-related proteasomes will be subject to future studies. 

 

In conclusion, proteasome activity profiling is a simple and robust method to discover 

changes in proteasome activities. This method will significantly support our future 

analysis of proteasome activities during pathogen infection, and is now available to 

the plant research community to study proteasome activities in a wide range of 

biological processes. 

 

 

3.4 Labeling with β-lactone probe IS4 

 

The data are consistent with a model in which β-lactones and peptides bind to RD21 

and form a thioester bond that is transligated to abundant, unmodified N termini of 

acceptor proteins (Figure 4-8). The binding of donors to RD21 is probably mediated 

by a phenylalanine residue at the P2 position, which is consistent with a preference for 

such hydrophobic P2 residues by PLCPs (Powers et al., 2002). Transfer of the donor 

molecule occurs at neutral or basic pH levels, when the N terminus of acceptor 

molecule is deprotonated and can act as a nucleophile. 

 

The fact that more plant PLCPs are active in leaf extracts (Van der Hoorn et al., 2004), 

yet no labeling is observed in extracts of rd21 knockout lines, indicates that 

phylogenetic analysis of the protease domain of RD21 shows that RD21 falls in a 

separate clade that lacks animal counterparts (http://merops.sanger.ac.uk/). RD21 

exists in two active isoforms: a 40-kDa intermediate isoform with granulin domain 

and a 30-kDa mature isoform without granulin domain (Yamada et al., 2001). Both 

isoforms are present in leaf extracts, but whether the granulin domain is required for 

transligation remains to be tested. 

 

At this stage, it is not known whether PsbP is a natural acceptor for RD21 

transligation, as all labeling experiments were performed on leaf extracts, and PsbP 

and RD21 might be compartmentalized in living cells. Post-translational modification 
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of N termini can be an important regulatory mechanism (Walling, 2006), and RD21 

might regulate proteins by ligating donor molecules to their N termini. One way to 

investigate this further is to examine which proteins are N-terminally modified by 

RD21 in vivo using labeled donor molecules. The identification of the native N-

terminal modification on these natural acceptors might lead to the identification of 

native donor molecules and the discovery of a novel, plant-specific posttranslational 

modification. 

 

Although we were unable to detect labeling by IS4 in living cells, it seems likely that 

transligation can occur at physiological conditions, as it requires RD21, a reducing 

agent, neutral or basic pH, donor peptides and acceptor proteins with unmodified N 

termini. RD21 has been detected in vesicles and vacuoles of Arabidopsis (Hayashi et 

al., 2001; Carter et al., 2004), and the tomato RD21-like protease C14/TDI-65 has 

been detected in apoplasts, chloroplasts and nuclei (Tabaeizadeh et al., 1995). The pH 

of some of these compartments would allow transligation reactions. At this stage, 

however, we can not exclude that RD21 would only act as a transligase in extracts and 

as a protease on natural substrates in vivo. 

 

Studies of some of the presumed plant proteases revealed that they can also catalyze 

nonproteolytic reactions. Phytochelatin synthase, for example, acts as a glutathione 

transpeptidase, yielding phytochelatin, which is required for heavy-metal tolerance 

(Clemens, 2006). A number of serine carboxypeptidase-like proteins act as 

acyltransferases in the production of sinapoyl secondary metabolites, which protect 

plants against UV radiation (Lehfeldt et al., 2000). So far, there are two other plant 

cysteine proteases described that catalyze transpeptidation reactions. Phytochelatin 

synthase (family C72) cleaves the tripeptide glutathione and ligates the γGlu-Cys 

moiety to glutathione to produce phytochelatin, which is essential for heavy-metal 

tolerance (Cobbett and Goldsbrough, 2002). Vacuolar processing enzyme (family 

C13) is required for the production of a circular peptide (cyclotide) called kalata B1, 

which might have a role in insect defense (Saska et al., 2007). RD21 is the first 

representative of a third cysteine protease family (C1A, the PLCPs) that can catalyze 

transpeptidation reactions. 

 

 



  DISCUSSION 

 88

   
 
 
Figure 4-8 Model for β-lactone and peptide labeling of PsbP by RD21. 
A to D, β-lactone probes (A) and peptides (B) bind to RD21. The phenylalanine residue of these 
acceptor molecules (IS4 and PepA, respectively) is at the P2 position, making contact with the S2 
substrate binding pocket of RD21. The active-site cysteine of RD21 acts as a nucleophile, 
resulting in an unstable thioester intermediate (C). At neutral to basic pH, the N-terminal amino 
group of PsbP acts as a nucleophile on the thioester intermediate, resulting in labeling of the N 
terminus of PsbP through a peptide bond (D). 
 

 

Little is known of the mechanisms of transpeptidases. The data suggest that water is 

somehow excluded from the active site to promote transpeptidation reactions. It will 

be interesting to investigate whether the acceptor molecule is already bound before 

formation of the thioester intermediate to exclude water from the active site. 
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The post-translational fusion of peptides or proteins through peptide bonds using 

enzymes has great potential for applications in research and medicine (Lombard et al., 

2005). Sortin, for example, is a bacterial transpeptidase that has been used to ligate 

peptides to ‘sortagged’ cell wall proteins on living cells (Popp et al., 2007; Tanaka et 

al., 2008). Subtiligase, derived from a subtilase, has been used for protein 

semisynthesis (Chang et al., 1994; Tan et al., 2008). Each of these enzymes has its 

own opportunities and limitations. The use of RD21-like PLCPs might open new 

avenues for controlling post-translational modifications, but further optimization and 

characterization are required. For example, the specificity requirements for the donor 

and acceptor molecules and the efficiency of transpeptidation compared to proteolysis 

remain to be addressed. 

 

Although we have designed β-lactone derivatives as non-directed ABPs, the fate of 

these small molecules in plant extracts seems more complex than we predicted. IS4 

labeling does not depend on the activity of the targeted proteins, but rather results 

from indirect labeling through a presumed protease. This indicates that further 

investigation of unexpected labeling sites can lead to intriguing molecular 

mechanisms. The mechanism of transligation, the selectivity for donor and acceptor 

substrates, and whether these reactions also occur in living cells are topics worthy of 

further study. 
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CHAPTER 4: MATERIALS AND METHODS 
 

4.1 Materials 

 

4.1.1 Biological materials  

 

Arabidopsis plant materials 

Arabidopsis plants were grown in a growth cabinet on a 12-hr light regime at 24 °C 

(day) and 20 °C (night). T-DNA insertion mutants of RD21 (At1g47128: 

SALK_090550 (rd21-1) and SALK_065256 (rd21-2); At5g43060: SAIL_781H05 

(rd21B)), SAG12 (At5g45890: SALK_124030), XCP1 (At4g35350; SALK_84789), 

XCP2 (At4g35350: SALK_057921), RD19 (At4g39090: SALK_031088), AALP 

(At4g60360: SALK_075550), ALP2 (At3g45310: SALK_088620), CATB1 

(At4g01610: SALK_019630) and CATB2 (At1g02300: SALK_110946) were 

obtained from the Salk Institute Genomic Analysis Laboratory. All are in the ecotype 

Columbia-0 background (Col-0). Homozygous lines were selected using T-DNA and 

gene-specific primers designed by SIGnAL (http://signal.salk.edu/cgi-

bin/tdnaexpress/). Mutant lines sid2 (Nawrath and Métraux, 1999) and pad3 

(Glazebrook and Ausubel, 1994) were provided by Dr. Bart Thomma (Wageningen 

University). Mutant line npr1 (Cao et al., 1994) was provided by Dr. Jane Parker 

(Max Planck Institute for Plant Breeding Research). 

 

Usually, leaf proteins were extracted from rosette leaves of 4-8-week-old plants. Stem 

proteins were extracted from the stems of a 9-week-old plant. Root proteins were 

extracted from whole roots of 9-week-old potted plants after intensive washing with 

H2O. Seed proteins were extracted from 1-day-old germinating seeds soaked in H2O 

at 4 °C in the dark. Proteins were usually extracted by grinding plant organs in H2O in 

a 1.5 mL Eppendorf tube with a plastic “blue stick” homogenizer and centrifugation. 

 

Arabidopsis cell cultures (ecotype Landsberg; May and Leaver, 1993) were weekly 

subcultured in medium containing 3% w/v sucrose (pH 5.7), 0.5 mg/l naphthalene 

acetic acid, 0.05 mg/l 6-benzylaminopurine and 4.4 g MS Gamborg B5 vitamins 

(Duchefa). Before assays, the medium of a 7-day-old cell culture was replaced with 



  MATERIALS AND METHODS 

 91

fresh medium. Cell culture proteins were usually extracted by grinding cells in H2O in 

a 1.5 mL Eppendorf tube with a plastic “blue stick” homogenizer (Roth) and 

centrifugation. 

 

Other plant materials 

Nicotiana benthamiana and tomato (Solanum lycopersicum cv Money Maker) were 

grown in a climate chamber at a 14-hr light regime at 22 °C (day) and 18 °C (night). 

Usually, 4- to 6-week old plants were used for experiments. N. benthamiana leaf 

proteins were usually extracted from the agro-infiltrated leaves at 3 day-post-

infiltration, or from the third fully unfolded leaves of a 5-week-old plant for FPpRh 

profiling. Tomato leaf proteins were extracted from the third fully unfolded 

compound leaf of a 4-week-old plant. Proteins were usually extracted by 

homogenizing leaves in H2O with ice-cold mortar and pestle, and centrifugation. 

 

Bean (Vicia faba) plants were grown outside in the show garden of Max Planck 

Institute for Plant Breeding Research. Leaf proteins were extracted from a young leaf 

of a 1-meter-high plant. Barley (Hordeum vulgare cv. Golden Promise) seedlings 

were grown in a growth chamber at 20 °C under 16-hour light regime. Leaf proteins 

were extracted from leaves of 2-week-old plants. Proteins were usually extracted by 

grinding leaf punches in H2O in a 1.5 ml Eppendorf tube with a plastic “blue stick” 

homogenizer and centrifugation. 

 

Other biological materials 

E. coli strain XL1-blue containing pFLAG-EPI1a (Tian et al., 2005) was provided by 

Dr. Sophien Kamoun (The Sainsbury Laboratory). AVR2 protein (Rooney et al., 

2005) was provided by Dr. Pierre de Wit (Wageningen University). EPIC1 and 

EPIC2B (Tian et al., 2007) proteins were provided by Dr. Sophien Kamoun (The 

Sainsbury Laboratory). Pseudomonas syringae pv tomato DC3000 virulent strain and 

avirulent strain AvrPphB (Puri et al., 1997) were provided by Dr. Scott Peck 

(University of Missouri). Botrytis cinerea strain was provided Dr. Bart Thomma 

(Wageningen University). Agrobacterium tumefaciens strain GV3101 pMP90 was 

provided by Dr. Csaba Konz (Max Planck Institute for Plant Breeding Research). 
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4.1.2 Chemical and biochemical materials 

 

Activity-based probes 

Fluorophosphonate probes (FP-Bio, FPpBio and FPpRh; Liu et al., 1999; Kidd et al., 

2001) were provided by Dr. Benjamin Cravatt (The Scripps Research Institute). 

Epoxide probes (DCG-04 and TMR-DCG-04; Greenbaum et al., 2000, 2002b) were 

provided by Dr. Matthew Bogyo (Stanford University). Vinyl sulfone probes (BioVS 

and MV151; Kessler et al., 2001; Verdoes et al., 2006) were provided by Dr. Herman 

Overkleeft (Leiden University). β-lactone probes (IS# probes) were synthesized by Dr. 

Rengarajan Balamurugan and in-group chemist Zheming Wang in Chemical 

Genomics Centre, Dortmund, Germany. All probes were solved in DMSO to a stock 

concentration of 1 mM and stored at -20 °C. Fluorescent probes were always kept in 

the dark. 

 

Chemical inhibitors and other chemicals 

Chemical inhibitors E-64, MG132, MG115, leupeptin, WEHDcho, LLMcho, 

epoxomicin, PMSF, AEBSF, TLCK and TPCK were purchased from Sigma. 

DEVDcho and VADfmk were purchased from Calbiochem. ESMDcho, IETDcho, 

IEPDcho, YVADcho were purchased from Bachem. Protease Inhibitor Cocktail 

(Complete tablet) was purchased from Roche. β-lactone inhibitors (IS#-n inhibitors) 

were synthesized by Dr. Rengarajan Balamurugan and in-group chemist Zheming 

Wang in Chemical Genomics Centre, Dortmund, Germany. All inhibitors were solved 

in DMSO and stored at -20 °C. 

 

BTH 50WG (Actigard/Bion, 50% wettable granule) was ordered from Ciba-Gygi or 

provided from Tong Lin (Bayer CropScience). Sulfo-NHS-Ac was purchased from 

Pierce. Biotinylated peptides were ordered from JPT Peptide Technologies. PepA 

(FTAYGE) and PepB (FTA) contain a Ttds linker (4,7,10-trioxa-1,13-

tridecanediamine succinimic acid) with biotin at the N-terminus and a carboxyl at the 

C-terminus. The AYGAEEN peptide has an amine at the N-terminus and a carboxyl 

at the C-terminus. 

 

General laboratory chemicals and reagents were mainly purchased from Sigma 

(St.Lois, USA) and Merck (Darmstadt, Germany). 
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Antibodies 

Anti-P69B antibody (Tian et al., 2004) was provided by Dr. Sophien Kamoun (The 

Sainsbury Laboratory). Anti-PBA1 antibody (Yang et al., 2004) was purchased from 

BIOMOL. Anti-PEPC and anti-histone H3 antibodies (Noel et al., 2007; Cheng et al., 

2009) were provided by Dr. Jane Parker (Max Planck Institute for Plant Breeding 

Research). Anti-RD21 antibody was provided by Dr. Carol MacKintosh (University 

of Dundee). Anti-PsbP antibody was purchased from Agrisera. Bovine HRP-

conjugated anti-sheep antibody was purchased from Santa Cruz Biotechnology. 

Donkey HRP-conjugated anti-rabbit antibody was purchased from Amersham. 

 

 

4.2 Methods 

 

4.2.1 BTH treatments 

 

To Arabidopsis plants, H2O solution of 300 µM BTH (Bion, Syngenta) and 0.01% 

Silwet (Lenne Seeds) was sprayed with a perfume sprayer (Roth) to the leaf surface 

until the droplets ran off. To tomato plants, the soil in 9 cm x 9 cm pot of each plant 

was drenched with 80 ml of 300 µM BTH H2O solution at days 0, 2 and 4, and the 

plant samples were harvested at day 5. 

 

4.2.2 Pathogen infections 

 

For Pseudomonas infection, Pseudomonas syringae pv tomato DC3000 from -80 °C 

frozen stock was grown overnight at 28 °C in 10 ml LB medium in a 50 ml Falcon 

tube. The culture was centrifuged at 3000 g for 10 min with a Falcon tube centrifuge 

(Heraeus), and the bacterial pellet was washed with 10 mM MgCl2 and diluted to 

OD600 of 0.3 (measured by spectrometer Ultrospec II, LKB Biochrom) with 10 mM 

MgCl2 and 0.01% Silwet. The bacterial suspension was then sprayed with a perfume 

sprayer to the leaf surface of Arabidopsis plants until the droplets ran off. 

 

For Botrytis infection, Botrytis cinerea -80 °C frozen stock of 107 spores/ml was 

thawed to room temperature (22-25 °C) and diluted 10 times to 106 spores/ml with LB 
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medium. Expanded rosette leaves of 4-week-old Arabidopsis plants were inoculated 

with one 6 µl-droplet of 106 B. cinerea spores/ml on each leaf, using a 1-ml 

disposable pipette tip (PD-Tips, Plastibrand) and an automatic pipetter (Handy-step 

electronic). Inoculated plants were kept in trays with transparent covers to maintain 

high humidity, and grown under standard conditions in a growth chamber. Inoculated 

leaves were harvested at 5 day- post-infection and subject to ABPP. 

 

4.2.3 Agro-infiltration in N. benthamiana 

 

Agrobacterium tumefaciens strain GV3101 pMP90 transformed with binary vector 

pFK containing recombinant Arabidopsis PLCP expression cassette was grown 

overnight at 28 °C in 10 ml LB medium containing 50 µg/ml kanamycin and 50 µg/ml 

rifampicin in a 50 ml Falcon tube. The culture was centrifuged at 3000 g for 10 min, 

and the bacterial pellet was resuspended in 10 mM MES (pH 5), 10 mM MgCl2 and 

0.2 µM acetosyringone to a final OD600 of 2. Agrobacterium suspensions containing 

binary PLCP expression vectors were mixed with Agrobacterium suspensions 

containing binary expression vector for RNA silencing inhibitor p19 at the ratio of 1:1 

(Voinnet et al., 2003). The mixtures were kept at room temperature for 3 hr. The fully 

expanded leaves of 5-week-old N. benthamiana plants were poked with a needle (BD), 

and the mixed Agrobacterium suspensions were vacuum-infiltrated into the leaves 

through the needle-holes using a 1-ml syringe (Plastipak, BD) without a needle. 

Leaves were harvested after 3 days, and the proteins were extracted by 

homogenization in H2O plus 1 mM DTT (Roche) with ice-cold mortar and pestle, and 

cleared by centrifugation at 16000 g for 1 min with a tabletop centrifuge (5415D, 

Eppendorf). 

 

4.2.4 Recombinant EPI1a expression in E. coli and affinity purification 

 

E. coli strain XL1-blue transformed with plasmid pFLAG-EPI1 containing rEPI1 

expression cassette (Tian et al., 2005) was grown overnight at 37 °C in 20 ml LB 

medium containing 100 µg/ml ampicillin. The bacterial culture was diluted to OD 600 

of 0.1 in 800 ml LB medium containing 100 µg/ml ampicillin and 1 mM IPTG, and 

incubated at 37 °C for 5 hr with vigorous agitation at 200 rpm on a shaker (Infos). 

Then the bacterial culture was centrifugated at 6000 g for 30 min with Sorvall RC-5B 
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centrifuge (Du Pont Instruments), and the supernatant containing secreted rEPI1 was 

filtered through 0.22 µm filters (Steritop, Millipore) and mixed with 2 volumes of -

20 °C acetone. Secreted proteins in the supernatant were pelleted by centrifugation at 

12210 g for 30 min at 4 °C and resolved in TBS buffer by gentle agitation on a roller 

mixer (SRT2, Stuart). rEPI1a recovered from the culture supernatant was captured 

and purified by immunoaffinity using a Poly-prep C-column (Bio-Rad) packed with 

500 µl anti-FLAG M2 affinity gel (Sigma) at 4 °C. The column was washed 3 times 

with 2 ml TBS buffer, and the bound proteins were eluted with 0.1 M glycine (pH 3.5) 

and immediately equilibrated in 20 mM Tris buffer (pH 8.0).  

 

4.2.5 Tomato apoplastic fluid isolation 

 

Mature leaves from 6-week-old tomato plants were picked and submerged into 200 ml 

H2O in a 500 ml beaker underneath a grid and a moderate weight to avoid up-floating 

of the leaves. Then H2O was vacuum-infiltrated into tomato leaf apoplast by pumping 

out of the air for 5 min and releasing the vacuum slowly in an exicator. H2O-

infiltrated leaves were dried on surface using tissue paper and centrifuged at 1600 g 

for 10 min at 4 °C in a tube with holes (diameter = 1 mm) in the bottom (generic “AF-

isolation device”). The AF was collected below in a larger collection tube. 

 

4.2.6 Nuclear fractionation 

 

Arabidopsis leaves of 2 g fresh-weight were homogenized with mortar and pestle in 4 

ml Honda buffer containing 2.5% Ficoll 400, 5% Dextran T40, 0.4 M sucrose, 10 mM 

mgCl2 and 5 mM DTT in 25 mM Tris buffer (pH 7.4), and filtered through a 64 µm 

nylon mesh. Triton X-100 was added into the leaf extracts to a final concentration of 

0.5%, and the sample for total protein was taken. The extracts were then incubated on 

ice for 15 min and centrifuged at 1500 g for 15 min at 4 °C, and the supernatant was 

the nucleus-depleted fraction. Protein pellet was washed with Honda buffer plus 0.1% 

Triton X-100 once and with Honda buffer once. After two washes, starch and cell 

debris were spun down by centrifugation at 100 g for 5 min at 4 °C, and nuclei in the 

supernatant were then spun down by centrifugation at 2000 g for 5 min at 4 °C in a 

new Eppendorf tube. 
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4.2.7 Protein concentration quantification 

 

Protein concentration quantification was done with Bio-Rad protein assay. In brief, 

serial dilutions of BSA standard (Promega) of 0.1-0.5 mg/ml were prepared, and the 

protein samples were diluted to a concentration of 0.1-0.5 mg/ml. 10 µl of each 

concentration standard and each protein sample were loaded into wells of a 96-well 

microtiter plate (Microtest, Falcon), and mixed with 200 µl of 1: 4-diluted dye reagent 

concentrate (Bio-Rad). The absorbance at 595 nm was measured with 680 Microplate 

reader (Bio-Rad), and the concentrations of the protein samples were deduced from 

the standard curve made from the concentration standards. Protein solutions were 

assayed in duplo. 

 

4.2.8 Activity-based labeling 

 

Arabidopsis leaf extracts 

Proteins were extracted by grinding one rosette leaf from a 4-6-week-old Arabidopsis 

plant in H2O in a 1.5 mL Eppendorf tube with a plastic “blue stick” homogenizer. The 

extract was mixed with 0.5 ml of H2O and cleared by centrifugation at 16000 g for 1 

min with a tabletop centrifuge. Protein concentration was quantified with Bio-Rad 

protein assay (see 4.2.7). FPBio, FPpBio or FPpRh labeling was usually done by 

incubating ~100 µg protein in 0.5 ml containing 50 mM Tris buffer (pH 8) and 0.4 

µM FPBio, FPpBio or FPpRh for 2 hours (in the dark for FPpRh). DCG-04 labeling 

was usually done by incubating ~20 µg protein in 0.5 ml containing 50 mM sodium 

acetate buffer (pH 6) with 1 mM DTT and 2 µM DCG-04 for 5 hours. MV151 or 

BioVS labeling was usually done by incubating ~100 µg protein in 0.5 ml containing 

50 mM Tris buffer (pH 7.4) and 0.4 µM MV151 or 2 µM BioVS for 3-4 hours (in the 

dark for the MV151). IS4 labeling was usually done by incubating ~20 µg protein in 

0.5 ml containing 50 mM Tris buffer (pH 8) with 1 mM DTT and 2 µM IS4 for 2 

hours. All labeling reactions were performed at room temperature under gentle 

agitation on a rotator (STR4, Stuart). Equal volumes of DMSO were added to the no-

probe controls. Proteins were precipitated after labeling by adding 1 ml -20 °C 

acetone and subsequent centrifugation at 16000g for 1 min. The protein pellet was 

dissolved in 2x SDS-PAGE loading buffer containing β-mercaptoethanol, and the 

proteins were separated on 12% SDS PAGE gels at 200 V using Novex Minicell 
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system (Invitrogen), with ~10 µg protein per lane for FP or MV151/BioVS labeling, 

or ~4 µg protein per lane for DCG-04 or IS4 labeling. 

 

Tomato apoplastic fluids 

FPpBio or FPpRh labeling was usually done for 1D analysis by incubating 200-300 µl 

tomato AFs in 0.5 ml containing 50 mM sodium acetate buffer (pH 6) and 0.4 µM 

FPpBio or FPpRh for 2 hours (in the dark for FPpRh). Proteins from 40-60 µl AFs 

were loaded to each lane in SDS PAGE. FPpRh labeling was done for 2D analysis by 

incubating 617.5 µl tomato AFs in 650 µl containing 50 mM sodium acetate buffer 

(pH 6) and 0.4 µM FPpRh for 2 hours in the dark. Proteins from 560 µl AFs were 

used to soak IEF stripe (see 4.2.11). DCG-04 labeling was usually done for 1D 

analysis by incubating 200-300 µl tomato AFs in 0.5 ml containing 50 mM sodium 

acetate buffer (pH 5) with 1 mM DTT and 2 µM DCG-04 for 3 hr for C14 profiling or 

5 hr for PIP1 profiling. Proteins from 40-60 µl AFs were loaded to each lane in SDS 

PAGE. TMR-DCG-04 labeling was done for 2D analysis by incubating 565 µl tomato 

AFs in 650 µl containing 50 mM sodium acetate buffer (pH 5) with 1 mM DTT and 3 

µM TMR-DCG-04 for 5 hours in the dark. Proteins from 460 µl AFs were used to 

soak IEF stripe (see 4.2.11). All labeling reactions were performed at room 

temperature under gentle agitation on a rotator (STR4, Stuart). 

 

Profiling at various pH values was done using 50 mM sodium acetate (pH 4-6.5) or 

Tris (pH 7-11) buffers. Competition or inhibition assays were done by preincubating 

the protein extracts with competitor or inhibitor molecules for 30 minutes before 

labeling with activity-based probes. 

 

4.2.9 In-gel fluorescence scanning 

 

SDS-PAGE gel containing fluorescent probe-labeled proteins was washed 3 times 

with ddH2O and labeled proteins were visualized by in-gel fluorescence scanning 

using a Typhoon 8600 scanner (Molecular Dynamics) with excitation and emission at 

532 and 580 nm, respectively. Fluorescent signals were quantified with ImageQuant 

5.2 software (Molecular Dynamics). 
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4.2.10 Western blotting 

 

After SDS PAGE, proteins were transferred onto polyvinylidene fluoride membrane 

(Immobilon-P, Millipore) at 200 mA for 60-70 min using X-Cell II Blot Module 

system (Invitrogen). After the transfer, the membrane was moved into a 50 ml Falcon 

tube and blocked with 5 ml of 3% BSA (biomol) solution for 5 min with gentle 

agitation on a roller mixer (SRT2, Stuart). In the detection of biotinylated proteins, the 

membrane was incubated with streptavidin-HRP (Ultrasensitive, Sigma) at 1:3000 in 

the presence of 2% Tween-20 for 1 hr, and then washed 5 times with TBS buffer plus 

0.1% Tween-20 for 5 min each time. In the detection of nonbiotinylated proteins, the 

membrane was incubated with the protein-specific first antibody (see 4.1.2) at 1:5000 

in the presence of 2% Tween-20 for 1 hr, and then washed 5 times with TBS buffer 

plus 0.1% Tween-20 for 5 min each time. Next, the membrane was incubated with 

HRP-conjugated anti-rabbit secondary antibodies (Amersham) at 1:5000 in the 

presence of 2% Tween-20 for 1 hr, and then washed 5 times with TBS buffer plus 

0.1% Tween-20 for 5 min each time. At the end, the membrane was covered with 

chemiluminescent substrates of HRP (SuperSignal West Pico/Femto, Pierce) 

underneath a piece of overhead-projection transparency, and exposed to X-ray films 

(BioMax MR, Kodak) in the darkroom. The exposed film was developed by 

automatic X-ray film processor (Optimax, Protec). 

 

4.2.11 2-dimentional  electrophoresis 

 

Two volumes of acetone containing 10% trichloroacetic acid were mixed with the 

labeled protein extracts, and the resulting mixture is stored at -20 °C for at least 24 hr. 

Proteins were precipitated by centrifugation at 27000 g for 10 min at 4 °C, washed 

with -20 °C acetone twice, and solved in 160 µl of IEF buffer containing 9 M urea, 

2% CHAPS, 0.5% v/v ampholytes (ZOOM Carrier pH 3-10, Invitrogen), 0.002% 

bromophenol blue and 20 mM DTT. The protein sample was impregnated overnight 

into an IPG strip (ReadyStrip pH 3-6 for DCG-04 profiling or pH 3-10 for FPpRh 

profiling, Bio-Rad). Isoelectric focusing (IEF) was done in ZOOM IPGRunner 

cassettes (Invitrogen) attached to a ZOOM IPGRunner Core (Invitrogen) with a 

voltage program (175 V for 15 min; 175 to 2000 V ramp for 45 min; 2000 V for 30 

min) of a voltage ramp-compatible power supply (EPS 3501XL, GE). After IEF, 
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strips were incubated in 5 ml of equilibrium buffer containing 35% glycerol, 0.4% 

SDS, 7 M Urea, 50 mM DTT and 0.1% bromophenol blue in 60 mM Tris buffer (pH 

6.8) for 15 min, and then loaded to a 12% SDS PAGE gel. The proteins were further 

separated by the 2nd dimension electrophoresis at 200 V using Novex Minicell 

system (Invitrogen). 

 

4.2.12 Affinity purification and target identification 

 

For large-scale labeling of Arabidopsis leaf extracts, rosette leaves of 4-8-week-old 

Arabidopsis plants were homogenized in H2O with ice-cold mortar and pestle, and the 

leaf extracts were cleared by centrifugation at 16000 g for 1 min with a tabletop 

centrifuge. Then 2.5 ml leaf extracts at a concentration of ~4 mg/ml were labeled with 

20 µM BioVS in 50 mM Tris buffer (pH 9) with 1 mM DTT for 4 hr, or with 40 µM 

IS4 in 50 mM Tris buffer (pH 8) with 1 mM DTT for 2 hr. For large-scale labeling of 

tomato apoplastic fluids, 2.5 ml AFs were isolated from 6-week-old tomato plants 

(see 4.2.5), and labeled with 3 µM FPpBio in 50 mM Tris buffer (pH 8) for 2 hr. All 

labeling reactions were performed at room temperature in a 15 ml Falcon tube under 

gentle agitation on a rotator (STR4, Stuart). The labeled protein extracts were applied 

to PD-10 size exclusion columns (Econo-Pac 10-DG, Bio-Rad) to remove the 

unlabeled probes. Desalted protein samples were eluted with 3.5 ml of new 50 mM 

Tris buffer (pH 8) from the columns, and then incubated with 100 µl of streptavidin 

agarose beads (Pierce) for BioVS or FPpBio labeling, or 100 µl magnetic streptavidin 

beads (Promega) and protease inhibitor cocktail (Complete tablet, Roche) for IS4 

labeling, for 1 hour at room temperature under gentle agitation. After the incubation, 

streptavidin agarose beads were collected by centrifuging at 3000 g for 10 min; 

washed twice with 0.1% SDS, twice with 6 M urea, once with 50 mM Tris buffer (pH 

8) containing 1% Triton X-100, once with 1% Triton X-100 and once with H2O; and 

boiled in 30 µl of 2x SDS-PAGE gel loading buffer containing β-mercaptoethanol. 

Affinity-purified proteins were separated on 12% 1D SDS PAGE gel and stained with 

coomassie blue (Imperial Protein Stain, Pierce). The specific bands were excised from 

the coomassie-stained gel and subjected to in-gel tryptic digestion and subsequent MS 

analysis. 
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