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Zusammenfassung

Wir leiten eine Beschreibung der Hut-Version der Heegaard Floer Homologie her im
Falle, dass das zugehörige Heegaard Diagramm durch einen Dehn Twist modifiziert
wurde. Als Resultat dieser Beschreibung erhalten wir eine neue exakte Sequenz
in der Hut-Version der Heegaard Floer Homologie. Um den in der Beschreibung
und den Sequenzen auftauchenden Moduln eine geeignete geometrische Interpretation
zu geben, verallgemeinern wir die KnotenhomologiêHFK auf homologisch nicht-
triviale Knoten und schwächen die Zulässigkeitsbegingungen in ihrer Definition ab.
Als Teil der gewonnenen exakten Sequenzen erhalten wir eineAbbildung von der wir
zeigen, dass sie nicht von den Wahlen abhängt, die für ihre Definition notwendig sind,
sondern nur vom Kobordismus abhängt, der durch den Dehn Twist induziert wird.
Mit dieser Abbildung leiten wir eine Transformationsregelher, welche die Invariante
für Legendre-Knoten und die Kontaktklasse miteinander verbindet. Wir geben drei
Anwendungen dieser Beziehung. Zuletzt beschäftigen wir uns mit der Beziehung der
neu gewonnenen exakten Sequenz und dem bekannten exakten Chirurgiedreieck in der
Knotenhomologie. Mit einer geeigneten Modifikation ihres Konstruktionsprozesses
sind wir in der Lage eine starke Beziehung zu den neu gewonnenen exakten Sequenzen
herzuleiten mit dem Ergebnis, dass wir einen Zusammhang herstellen zwischen dem
Zählen holomorpher Dreiecke in zweifach-punktierten Heegaard-Trippeln und dem
Zählen holomorpher Scheiben in punktierten Heegaard Diagrammen.

Abstract

We derive a representation of the hat-version of Heegaard Floer homology in case we
change the associated Heegaard diagram with a Dehn Twist. Result of this description
is a new exact sequence in the hat-version of Heegaard Floer homology. To give the
involved modules a suitable geometric interpretation, we generalize the knot Floer
homologyĤFK to homologically non-trivial knots and relax the admissibility condi-
tions used in their definition. As part of the exact sequence we obtain a map, which
we show not to depend on the choices made in its definition, buton the cobordism
induced by the Dehn Twist. With this map we derive a naturality property between the
invariant of Legendrian knotŝL and the contact element and give three applications.
Finally, we investigate the relationship between the newlydefined exact sequences
and the well-known surgery exact triangle in knot Floer homology. With a suitable



modification of the construction process of the surgery exact triangle we derive a strong
relationship to the newly defined exact sequences. This, finally, results in a relationship
between counting holomorphic triangles in doubly-pointedHeegaard triple diagrams
and counting holomorphic discs in pointed Heegaard diagrams.
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Chapter 1

Introduction

At the beginning of the new millennium Ozsváth and Sźabo defined a Floer-type
homology theory called Heegaard Floer homology (in the following HFT), assigning
to a Spinc-3-manifold (Y, s) a bunch of homologies, which are all connected with
each other by exact sequences (see [40], [39]). As all Floer homologies it has its
origins in the work of Gromov (see [19]), who brought holomorphic curves into the
realm of symplectic geometry, and the work of Floer, who was the first to transfer
the Morse homological scheme to the symplectic category (see [10],[11], [12], [13]
and [14]). From that time many flavors of Floer homologies arose like for instance
Seiberg-Witten Floer homology (see [23]). The motivation for the development of HFT
was to give a more topological description of Seiberg-Witten theory (see [43]). Those
two theories are conjecturally equivalent and there were some efforts made to bring
those two theories together, with some success, as Taubes just recently showed in [50]
the Seiberg Witten Floer homology to be isomorphic to embedded contact homology,
and coming from the other side, Lipshitz giving the cylindrical reformulation of HFT
(see [24]). It developed to a highly active research field with many applications and
contributions in knot theory but also in contact geometry. Besides the applications, the
theory itself was brought forward with recent extension of HFT to bordered manifolds.
And there are two flavors of the bordered invariant, a topological and a geometric
version: The Sutured Floer homology of András Juhasz (see [22]), which we interpret
as a geometric degeneration of the topological theory, and the topological theory given
by Robert Lipshitz, Peter Ozsváth and Dylan Thurston in [26].

Contact geometry in turn is among the important research fields of modern geometry.
First of all, contact geometry developed a rich theory, which makes it a valuable field
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of its own right. But besides its intrinsic value, contact geometry contributed to low-
dimensional topology very fruitfully as elegant contact geometric proofs arose from it
for delicate geometric theorems. Examples to mention wouldbe Cerf’s famous proof of
Γ4 = 0 (cf. [16]) or Geiges’ elegant contact geometric proof of the Whitney-Graustein
theorem (see [15]).

To a contact manifold (Y, ξ) one can associate an isotopy invariantc(ξ) of ξ , the
contact element, which is a class in the HFT̂HF(−Y) of −Y. Furthermore if we
additionally fix a Legendrian knotL we may associate a Legendrian isotopy invariant
L̂(L) of the Legendrian knot in the associated knot Floer homology ĤFK(−Y,L) of
the pair (−Y,L). Paolo Lisca and András Stipsicz showed in a series of papers (see
[28], [29], [30], [31] and with Ghiggini [17]) that there areexamples of families of
contact structures where conventional topological techniques fail to detect tightness,
the contact element however does. The contact element in thehands of Lisca and
Stipsicz has turned out to be a very powerful tool in generating tight contact structures.

The theme of this thesis may be located exactly between the two fields of HFT and
contact topology. The original question we tried to answer was if the contact element,
in case it is non trivial, is always primitive, or if there arecases where is is not a
primitive element. The most natural approach for tackling this problem is the one
used in this thesis. Let (P, φ) be an open book decomposition adapted to the contact
structureξ . How does the Heegaard Floer homology of (P,Dδ ◦ φ) look like, where
δ ⊂ P is a homologically essential embedded closed curve inP and Dδ denotes a
Dehn Twist alongδ? This question is closely related to the first one since Dehn Twists
of the given type can be translated into contact surgeries, which in turn can be used to
generate every contact manifold. We were not able to answer the question concerning
the primitiveness of the contact element. However, we discovered some new theory
which will be the focus of this thesis.

What is the contribution of this thesis?
Chapter 2 is an introduction to Heegaard Floer homology withsome emphasis on the
hat-theory. We are aware of the existence of introductory articles to this subject but we
tried to give an introduction without sweeping important details under the carpet. We
do not want to discredit the existing literature; the existing literature is very well written.
But we provide a different focus, and we believe that there isa lack of literature with
this kind of point of view. We are indeed convinced that this chapter can help graduate
students or researchers, especially those outside of Columbia, Princeton or other places
with a local expert on this subject, to understand the material. This introduction was
never meant to be complete or to give an overview of the given theory. We focus more
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on giving the foundations and hope that after reading this first chapter the reader has
developed intuition enough to understand the research literature without getting lost.

In Chapter 3 we derive a new representation of̂HF(P,Dδ ◦ φ) (Propositions 3.2.1
and 3.2.5). A consequence of this representation are the exact sequences given in
Corollaries 3.2.2 and 3.2.6. These exact sequences have interesting implications.
The most important contact geometric implication is Proposition 3.4.1. We set up a
naturality property between the isotopy invariant of Legendrian knots and the contact
element and give three applications (Proposition 3.5.1, Proposition 3.5.3 and Theorem
3.5.4). There are some problems occuring we would like to mention:

(a) The representation of̂HF(P,Dδ ◦ φ) given in Propositions 3.2.1 and 3.2.5 de-
scribes this group as a mapping cone of two complexes which happen to be the
knot Floer homologies in case the induced pair of base points(w, z) induces a
null-homologous knot. However, in most situations this will not be the case. We
need a geometric interpretation of these modules.

(b) The diagram describing one of these modules does not in general fulfill the weak
admissibility conditions. These are important ingredients in the compactification
of the moduli spaces involved in the definition of the differentials.

Both problems (a) and (b) require ageneralizationof the given HFT which we
provide in this thesis (see§2.4). However, we have to remark that the given theory
already inherits all ingredients to set up the generalizations. So we cannot really say
we generalized the theory but we made the observation that the given theory is not
restricted to the cases where Ozsváth and Szab́o define it. The knot Floer homology
seems to have some interesting properties when homologically non-trivial knots come
into play. There is a knot classK in S2 × S1 whose associated knot Floer homology
vanishes. This fact is central in the proof of Theorem 3.5.4.This is the first example
we know with this property.

In Chapter 3 we investigate the relationship between the sequences given in Corollaries
3.2.2 and 3.2.6 and the well-known surgery exact triangle inknot Floer homology. We
see that with a slight modification of the construction process of the surgery exact
triangle we are able to define a surgery exact triangle in the knot Floer homology
involving the cobordism mapŝF . Indeed this sequence and the one defined in Chapter 3
stay in a strong relationship which we outline in Theorem 4.1.5. In consequence we see
that the sequences given in Chapter 3 admit refinements with respect to Spinc-structures
and can be defined with coherent orientations. This consequence is summarized very
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briefly in Corollary 4.1.8. Secondly we learn that there is a relationship between
counting holomorphic triangles in Heegaard triple diagrams and counting holomorphic
discs in Heegaard diagrams: The sequences from Chapter 3 areinduced by short exact
sequences of chain complexes. The induced connecting morphism f can be defined
by counting holomorphic discs with suitable boundary conditions. The relationship
in Chapter 4 relates this map to the cobordism maps in knot Floer homology. These
cobordism maps are defined by a count of holomorphic triangles with suitable boundary
conditions. Finally we derive properties of the connectingmorphismsf .
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Chapter 2

Introduction to HF Theory

2.1 Introduction to ĤF as a Model for Heegaard Floer The-
ory

2.1.1 Heegaard Diagrams

From the Geometric Topologists’ point of view one of the major results of Morse the-
ory is the development of surgery and handle decompositions. Morse theory captures
the manifold’s topology in terms of a decomposition of it into topologically easy-to-
understand pieces calledhandles (cf. [18]). In the case of closed 3-manifolds the
handle decomposition can be assumed to be very symmetric. This symmetry allows us
to describe the manifold’s diffeomorphism type by a small amount of data. Heegaard
diagrams are omnipresent in low-dimensional topology. Unfortunately there is no con-
vention what precisely to call a Heegaard diagram; the definition of this notion underlies
slight variations in different sources. Since Heegaard Floer Homology intentionally
uses a non-efficient version of Heegaard diagrams, i.e. we fixmore information than
needed to describe the manifold’s type, we shortly discuss,what is to be understood as
Heegaard diagram throughout this thesis.

A short summary of what we will discuss would be that we fix the data describing
a handle decomposition relative to a splitting surface. LetY be a closed oriented
3-manifold andΣ ⊂ Y a splitting surface, i.e. a surface of genusg such thatY\Σ
decomposes into two handlebodiesH0 and H1. We fix a handle decomposition of
Y\H1 relative to this splitting surfaceΣ, i.e. there are 2-handlesh2

1,i , i = 1, . . . ,g,

11



and a 3-handleh3
1 such that (cf. [18])

Y\H1
∼= (Σ× [0,1]) ∪∂ (h2

1,1 ∪∂ . . . ∪∂ h2
1,g ∪∂ h3

1). (2.1.1)

We can rebuildY from this by gluing in two handlesh2
0,i , i = 1, . . . ,g, and a 3-handle

h3
0 . Hence,Y can be written as

Y ∼= (h3
0∪∂ h2

0,1∪∂ . . .∪∂ h2
0,g)∪∂ (Σ× [0,1]) ∪∂ (h2

1,1∪∂ . . .∪∂ h2
1,g∪∂ h3

1). (2.1.2)

Collecting the data from this decomposition we obtain a triple (Σ, α, β) whereΣ is the
splitting surface of genusg, α = {α1, . . . , αg} are the images of the attaching circles
of theh2

0,i interpreted as sitting inΣ andβ = {β1, . . . , βg} the images of the attaching
circles of the 2-handlesh2

1,i interpreted as sitting inΣ. This will be called aHeegaard
diagram of Y. Observe that these data determine a Heegaard decomposition in the
classical senseby dualizing theh2

0,i . Dualizing a k-handle Dk × D3−k means to
reinterpret this object asD3−k × Dk . Both objects are diffeomorphic but observe that
the former is ak-handle and the latter a (3− k)-handle. Observe that theα-curves
are the co-cores of the 1-handles in the dualized picture, and that slidingh1

0,i over h1
0,j

means, in the dual picture, thath2
0,j is slid overh2

0,i .

2.1.2 Introduction to ĤF — Topology and Analysis

Given a closed, oriented 3-manifoldY, we fix a Heegaard diagram (Σ, α, β) of Y as
defined in§2.1.1. We can associate to it the triple (Symg(Σ),Tα,Tβ) which we will
explain now:

By Symg(Σ) we denote theg-fold symmetric product of Σ, defined by taking the
quotient under the canonical action ofSg on Σ×g, i.e.

Symg(Σ) = Σ
×g/Sg.

Although the action ofSg has fixed points, the symmetric product is a manifold. The
local model is given by Symg(C) which itself can be identified with the set of normalized
polynomials of degreeg. An isomorphism is given by sending a point [(p1, . . . ,pg)] to
the normalized polynomial uniquely determined by the zero set {p1, . . . ,pg}. Denote
by

π : Σ
×g −→ Symg(Σ)

the projection map.
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The attaching circlesα andβ define submanifolds

Tα = α1× . . .× αg and Tβ = β1× . . .× βg

in Σ×g. Obviously, the projectionπ embeds these into the symmetric product. In the
following we will denote byTα andTβ the manifolds embedded into the symmetric
product.

The chain complex

DefineĈF(Σ, α, β) as the freeZ-module (orZ2-module) generated by the intersection
pointsTα ∩ Tβ inside Symg(Σ).

Definition 2.1.1. A mapφ of the 2-discD2 (regarded as the unit 2-disc inC) into the
symmetric product Symg(Σ) is said toconnecttwo pointsx, y ∈ Tα ∩ Tβ if

φ(i) = x,

φ(−i) = y,

φ(∂D ∩ {z∈ C |Re(z) < 0}) ⊂ Tα,

φ(∂D ∩ {z∈ C |Re(z) > 0}) ⊂ Tβ.

Continuous mappings of the 2-disc into the symmetric product Symg(Σ) that connect
two intersection pointsx, y ∈ Tα∩Tβ are calledWhitney discs. The set of homotopy
classes of Whitney discs connectingx andy is denoted byπ2(x, y) in caseg> 2.

In caseg ≤ 2 we have to define the objectπ2(x, y) slightly different. However, we
can always assume, without loss of generality, thatg > 2 and, thus, we will omit
discussing this case at all. We point the interested reader to [40].

Fixing a pointz∈ Σ\(α ∪ β), we can construct a differential

∂̂z : ĈF(Σ, α, β) −→ ĈF(Σ, α, β)

by defining it on the generators of̂CF(Σ, α, β). Given a pointx ∈ Tα ∩Tβ , we define
∂̂zx to be a linear combination

∂̂zx =
∑

y∈Tα∩Tβ

∂̂zx
∣∣∣
y
· y

of all intersection pointsy ∈ Tα ∩ Tβ . The definition of the coefficients will occupy
the remainder of this paragraph. The idea resembles other Floer homology theories.
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The goal is to definê∂zx
∣∣∣
y

as a signed count of holomorphic Whitney discs connecting

x and y which are rigid up to reparametrization. First we have to introduce almost
complex structures into this picture. A more detailed discussion of these will be given
in §2.1.3. For the moment it will be sufficient to say that we choose a generic path
(Js)s∈[0,1] of almost complex structures on the symmetric product. Identifying the unit
disc, after taking out the points±i , in C with [0,1]×R we defineφ to beholomorphic
if it satisfies for all (s, t) ∈ [0,1] × R the equation

∂φ

∂s
(s, t) + Js

(∂φ
∂t

(s, t)
)

= 0. (2.1.3)

Looking into (2.1.3) it is easy to see that a holomorphic Whitney discφ can be
reparametrized by a constant shift inR-direction without violating (2.1.3).

Definition 2.1.2. Given two pointsx, y ∈ Tα ∩ Tβ , we denote byMJs(x, y) the
set of holomorphic Whitney discs connectingx and y. We call this setmoduli
space of holomorphic Whitney discsconnectingx and y. Given a homotopy class
[φ] ∈ π2(x, y), denote byMJs,[φ] the space of holomorphic representatives in the
homotopy class ofφ.

In the following the generic path of almost complex structures will not be important
and thus we will suppress it from the notation. Since the pathis chosen generically
(cf. §2.1.3 or see [40]) the moduli spaces are manifolds. The constant shift in R-
direction induces a freeR-action on the moduli spaces. Thus, ifM[φ] is non-empty
its dimension is greater than zero. We take the quotient ofM[φ] under theR-action
and denote the resulting spaces by

M̂[φ] =M[φ]/R and M̂(x, y) =M(x, y)/R.

The so-calledsigned countof 0-dimensional components of̂M(x, y) means in case of
Z2-coefficients simply to count mod 2. In case ofZ-coefficients we have to introduce
coherent orientationson the moduli spaces. We will roughly sketch this process in
the following.

Obviously, in case ofZ-coefficients we cannot simply count the 0-dimensional com-
ponents ofM̂(x, y). The defined morphism would not be a differential. To circumvent
this problem we have to introduce signs appropriately attached to each component. The
0-dimensional components of̂M(x, y) correspond to the 1-dimensional components
of M(x, y). Each of these components carries a canonical orientationinduced by the
freeR-action given by constant shifts. We introduce orientations on these components.
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Comparing the artificial orientations with the canonical shifting orientation we can as-
sociate to each component, i.e. each element inM̂(x, y), a sign. The signed count will
respect the signs attached. There is a technical condition calledcoherence(see [40] or
cf. §2.1.3) one has to impose on the orientations. This technicalcondition ensures that
the morphism∂̂z is a differential.

The chosen pointz∈ Σ\(α ∪ β) will be part of the definition. The path (Js)s∈[0,1] is
chosen in such a way that

Vz = {z} × Symg−1(Σ) →֒ Symg(Σ)

is a complex submanifold. For a Whitney disc (or its homotopyclass)φ definenz(φ)
as the intersection number ofφ with the submanifoldVz. We define

∂̂zx
∣∣∣
y
= #M̂(x, y)0

nz=0,

i.e. the signed count of the 0-dimensional components of theunparametrized moduli
spaces of holomorphic Whitney discs connectingx andy with the property that their
intersection numbernz is trivial.

Theorem 2.1.3(see [40]). The assignment̂∂z is well-defined.

Theorem 2.1.4(see [40]). The morphism̂∂z is a differential.

We will give sketches of the proofs of the last two theorems later in §2.1.3. At the
moment we do not know enough about Whitney discs and the symmetric product to
prove it.

Definition 2.1.5. We denote byĈF(Σ, α, β, z) the chain complex given by the data
(ĈF(Σ, α, β), ∂z). Denote byĤF(Y) the induced homology theoryH∗(ĈF(Σ, α, β), ∂z).

The notation should indicate that the homology theory does not depend on the data
chosen. It is a topological invariant of the manifoldY, although this is not the
whole story. The theory depends on the choice of coherent system of orientations.
For a manifoldY there are 2b1(Y) numbers of non-equivalent systems of coherent
orientations. The resulting homologies can differ (see Example 2.1.2). Nevertheless
the orientations are not written down. We guess there are tworeasons: The first would
be that most of the time it is not really important which system is chosen. All reasonable
constructions will work for every coherent orientation system, and in case there is a
specific choice needed this will be explicitly stated. The second reason would be that
it is possible to give a convention for the choice of coherentorientation systems. Since
we have not developed the mathematics to state the convention precisely we point the
reader to Theorem 2.1.31.
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On Holomorphic Discs in the Symmetric Product

In order to be able to discuss a first example we briefly introduce some properties of
the symmetric product.

Definition 2.1.6. For a Whitney discφ we denote byµ(φ) the formal dimension of
Mφ . We also callµ(φ) theMaslov indexof φ.

For the readers that have not heard anything about Floer homology at all, just think of
µ(φ) as the dimension of the spaceMφ , although even in caseMφ is not a manifold
the numberµ(φ) is defined (cf.§2.1.3). Just to give some intuition, note that the moduli
spaces are the zero-set of a section in a Banach bundle one associates to the given setup.
The linearization of this section at the zero set is a Fredholm operator. Those operators
carry a property called Fredholm index. The numberµ is the Fredholm index of that
operator. Even if the moduli spaces are no manifolds this number is defined. It is called
formal dimension orexpected dimensionsince in case the zero set of the section is
a manifold, i.e. the moduli spaces are manifolds, the Fredholm index µ equals the
dimension of the moduli spaces. So, negative indices are possible and make sense in
some situations. One can think of negative indices as the number of missing degrees
of freedom to give a manifold.

Lemma 2.1.7. In case g(Σ) > 2 the 2nd homotopy groupπ2(Symg(Σ)) is isomorphic
to Z. It is generated by an element S withµ(S) = 2 and nz(S) = 1, where nz is defined
the same way as it was defined for Whitney discs.

Let η : Σ −→ Σ be an involution such thatΣ/η is a sphere. The map

S2 −→ Symg(Σ), y 7−→ {(y, η(y), y, . . . , y)}

is a representative ofS. Using this representative it is easy to see thatnz(S) = 1. It
is a property ofµ as an index that it behaves additive under concatenation. Indeed
the intersection numbernz behaves additive, too. To develop some intuition for the
holomorphic spheres in the symmetric product we state the following result from [40].

Lemma 2.1.8(see [40]). There is an exact sequence

0−→ π2(Symg(Σ)) −→ π2(x, x) −→ ker(nz) −→ 0.

The map nz provides a splitting for the sequence.
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Observe that we can interpret a Withney disc inπ2(x, x) as a family of paths in Symg(Σ)
based at the constant pathx. We can also interpret an element inπ2(Symg(Σ)) as a
family of paths in Symg(Σ) based at the constand pathx. Interpreted in this way there
is a natural map fromπ2(Symg(Σ)) into π2(x, x). The mapnz provides a splitting for
the sequence as it may be used to define the map

π2(x, x) −→ π2(Symg(Σ))

sending a Whitney discφ to nz(φ) · S. This obviously defines a splitting for the
sequence.

Lemma 2.1.9. The Kernel of nz interpreted as a map onπ2(x, x) is isomorphic to
H1(Y; Z).

With the help of concatenation we are able to define an action

∗ : π2(x, x) × π2(x, y) −→ π2(x, y),

which is obviously free and transitive. Thus, we have an identification

π2(x, y)
∼=- π2(x, x)∼= Z⊕ H1(Y; Z)

{∗}
�

- (2.1.4)

as principal bundles over a one-point space, which is another way of saying that the
concatenation action endowsπ2(x, y) with a group structure after fixing a unit element
in π2(x, y). To address the well-definedness of∂̂z we have to show that the sum in the
definition of ∂̂z is finite. For the moment let us assume that for a generic choice of path
(Js)s∈[0,1] the moduli spaceŝMφ with µ(φ) = 1 are compact manifolds (cf. Theorem
2.1.22), hence their signed count is finite. Assuming this property we are able to show
well-definedness of̂∂z in caseY is a homology sphere.

Proof of Theorem 2.1.3 for b1(Y) = 0. Observe that

M̂(x, y)0
nz=0 =

⊔

φ∈H(x,y,1)

M̂φ, (2.1.5)

whereH(x, y,1) ⊂ π2(x, y) is the subset of homotopy classes admitting holomorphic
representatives withµ(φ) = 1 and nz = 0. We have to show thatH(x, y,1) is a
finite set. Sinceb1(Y) = 0 the cohomologyH1(Y; Z) vanishes. By our preliminary
discussion, given a reference discφ0 ∈ π2(x, y), any φxy ∈ π2(x, y) can be written
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as a concatenationφxy = φ ∗ φ0, whereφ is an element inπ2(x, x). Since we are
looking for discs with index one we have to find allφ ∈ π2(x, x) satisfying the property
µ(φ) = 1− µ(φ0). Recall thatY is a homology sphere and thusπ2(x, x) ∼= Z ⊗ {S}.
Hence, the discφ is described by an integerk ∈ Z, i.e. φ = k · S. The property
µ(S) = 2 tells us that

1− µ(φ0) = µ(φ) = µ(k · S) = k · µ(S) = 2k.

There is at most onek ∈ Z satisfying this equation, so there is at most one homotopy
class of Whitney disc satisfying the propertyµ = 1 andnz = 0.

In caseY has non-trivial first cohomology we need an additional condition to make
the proof work. The given argument obviously breaks down in this case. To fix this
we impose a topological/algebraic condition on the Heegaard diagram. Before we can
define theseadmissibilityproperties we have to go into the theory a bit more.

There is an obstruction to finding Whitney discs connecting two given intersection
pointsx, y. The two pointsx andy can certainly be connected via paths insideTα and
Tβ . Fix two pathsa: I −→ Tα andb: I −→ Tβ such that−∂b = ∂a = y− x. This
is the same as saying we fix a closed curveγxy based atx, going toy alongTα , and
moving back tox alongTβ . Obviouslyγxy = b+ a. Is it possible to extend the curve
γxy, after possibly homotoping it a bit, to a disc? If so this would be a Whitney disc.
Thus, finding an obstruction can be reformulated as: Is [γxy] = 0 ∈ π1(Symg(Σ))?

Lemma 2.1.10(see [40]). The groupπ1(Symg(Σ)) is abelian.

Given a closed curveγ ⊂ Symg(Σ) in general position (i.e. not meeting the diagonal
of Symg(Σ)), we can lift this curve to

(γ1, . . . , γg) : S1 −→ Σ
×g.

Projection onto each factorΣ defines a 1-cycle. We define

Φ(γ) = γ1 + · · ·+ γg.

Lemma 2.1.11(see [40]). The mapΦ induces an isomorphism

Φ∗ : H1(Symg(Σ)) −→ H1(Σ; Z).
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By surgery theory (see [18], p. 111) we know that

H1(Σ; Z)
[α1], . . . , [αg], [β1], . . . , [βg]

∼= H1(Y; Z) (2.1.6)

The curveγxy is homotopically trivial in the symmetric product if and only if Φ∗([γxy])
is trivial. If we pick different curvesa andb to define another curveηxy, the difference

Φ(γxy)− Φ(ηxy)

is a sum ofα-andβ -curves. Thus, interpreted as a cycle inH1(Y; Z), the class

[Φ(γxy)] ∈ H1(Y; Z)

does not depend on the choices made in its definition. We get a map

ǫ : (Tα ∩ Tβ)×2 −→ H1(Y; Z)
(x, y) 7−→ [Φ(γxy)]H1(Y;Z)

with the following property.

Lemma 2.1.12. If ǫ(x, y) is non-zero the setπ2(x, y) is empty.

Proof. Suppose there is a connecting discφ then withγxy = ∂(φ(D2)) we have

ǫ(x, y) = [Φ(γxy)]H1(Y;Z) =
Φ∗([γxy]H1(Symg(Σ)))

[α1], . . . , [αg], [β1], . . . , βg]
= 0

since [γxy]π1(Symg(Σ)) = 0.

As a consequence we can split up the chain complexĈF(Σ, α, β, z) into subcomplexes.
It is important to notice that there is a map

sz: Tα ∩ Tβ −→ Spinc
3(Y) ∼= H2(Y; Z), (2.1.7)

such that PD(ǫ(x, y)) = sz(x) − sz(y). We point the reader interested in the defini-
tion of sz to [40]. Thus, fixing a Spinc-structures, the Z-module (orZ2-module)
ĈF(Σ, α, β, z; s) generated by (sz)−1(s) defines a subcomplex of̂CF(Σ, α, β, z). The
associated homology is denoted bŷHF(Y, s), and it is a submodule of̂HF(Y). Espe-
cially note that

ĤF(Y) =
⊕

s∈Spinc3(Y)

ĤF(Y, s).
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SinceTα ∩ Tβ consists of finitely many points, there are just finitely manygroups in
this splitting which are non-zero. In general this splitting will depend on the choice
of base-point. Ifz is chosen in a different component ofΣ\{α ∪ β} there will be a
difference between the Spinc-structure associated to an intersection point. For details
we point to [40].

Example 2.1.1.The Heegaard diagram given by the data (T2, {µ}, {λ}) (cf. §2.1.1) is
the 3-sphere. To make use of Lemma 2.1.7 we add two stabilizations to get a Heegaard
surface of genus 3, i.e.

D = (T2#T2#T2, {µ1, µ2, µ3}, {λ1, λ2, λ3}),

whereµi are meridians of the tori, andλi are longitudes. The complement of the
attaching curves is connected. Thus, we can arbitrarily choose the base pointz. The
chain complexĈF(D, z) equals one copy ofZ since it is generated by one single
intersection point which we denote byx. We claim that∂̂zx = 0. Denote by [φ] a
homotopy class of Whitney discs connectingx with itself. This is a holomorphic sphere
which can be seen with Lemma 2.1.8, Lemma 2.1.9 and the fact that H1(S3) = 0. By
Lemma 2.1.7 the setπ2(Symg(Σ)) is generated bySwith the propertynz(S) = 1. The
additivity of nz under concatenation shows that [φ] is a trivial holomorphic sphere and
µ([φ]) = 0. Thus, the spaceM(x, x)1

nz=0, i.e. the space of holomorphic Whitney discs
connectingx with itself, with µ = 1 andnz = 0, is empty. Hence

ĤF(S3) ∼= Z.

A Low-Dimensional Model for Whitney Discs

The exact sequence in Lemma 2.1.8 combined with Lemma 2.1.9 and (2.1.4) gives
an interpretation of Whitney discs as homology classes. Given a discφ, we define its
associated homology class byH(φ), i.e.

0−→ π2(Symg(Σ)) −→ π2(x, x)
H
−→ H2(Y; Z) −→ 0. (2.1.8)

In the following we intend to give a description of the mapH . Given a Whitney discφ,
we can lift this disc to a map̃φ by pulling back the branched coveringπ (cf. diagram
(2.1.9)).

F/Sg−1 = D̂
φ- Σ× Symg−1(Σ) - Σ

φ∗Σ×g
= F

6
eφ - Σ

×g

6

D2
?

φ - Symg(Σ)

π ?

(2.1.9)
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Let Sg−1 ⊂ Sg be the subgroup of permutations fixing the first component. Modding
out Sg−1 we obtain the mapφ pictured in (2.1.9). Composing it with the projection
onto the surfaceΣ we define a map

φ̂ : D̂ −→ Σ.

The image of this map̂φ defines what is called a domain.

Definition 2.1.13. Denote byD1, . . . ,Dm the closures of the components of the com-
plement of the attaching circlesΣ\{α ∪ β}. Fix one pointzi in each component. A
domain is a linear combination

A =

m∑

i=1

λi · Di

with λ1, . . . , λm ∈ Z.

For a Whitney discφ we define itsassociated domainby

D(φ) =

m∑

i=1

nzi (φ) · Di .

The mapφ̂ andD(φ) are related by the equation

φ̂(D̂) = D(φ)

as chains inΣ relative to the setα ∪ β . We defineH(φ) as the associated homology
class ofφ̂∗[D̂] in H2(Y; Z). The correspondence is given by closing up the boundary
components by using the core discs of the 2-handles represented by theα-curves and
theβ -curves.

Lemma 2.1.14.Two Whitney discsφ1, φ2 ∈ π2(x, x) are homotopic if and only if their
domains are equal.

Proof. Given two discsφ1 , φ2 whose domains are equal, by definitionH(φ1) =

H(φ2). By (2.1.8) they can only differ by a holomorphic sphere, i.e.φ1 = φ2 + k · S.
The equalityD(φ1) = D(φ2) implies thatnz(φ1) = nz(φ2). The equation

0 = nz(φ2)− nz(φ1) = nz(φ2)− nz(φ2 + k · S) = 2k

forcesk to vanish.
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The interpretation of Whitney discs as domains is very useful in computations, as
it provides a low-dimensional model. The symmetric productis 2g-dimensional,
thus an investigation of holomorphic discs is very inconvenient. However, not all
domains are carried by holomorphic discs. Obviously, the equality [D(φ)] = φ̂∗[D̂]
connects the boundary conditions imposed on Whitney discs to boundary conditions
of the domains. It is not hard to observe that the definition ofφ̂ follows the same
lines as the construction of the isomorphismΦ∗ of homology groups discussed earlier
(cf. Lemma 2.1.11). Suppose we have fixed two intersectionsx = {x1, . . . , xg} and
y = {y1, . . . , yg} connected by a Whitney discφ. The boundary∂(φ(D2)) defines a
connecting curveγxy. It is easy to see that

im( φ̂
∣∣∣
∂bD

) = Φ(γxy) = γ1 + · · · + γg.

Restricting theγi to theα-curves we get a chain connecting the setx1, . . . , xg with
y1, . . . , yg , and restricting theγi to the β -curves we get a chain connecting the set
y1, . . . , yg with x1, . . . , xg . This means each boundary component ofD̂ consists of a
set of arcs alternating throughα-curves andβ -curves.

Definition 2.1.15. A domain is calledperiodic if its boundary is a sum ofα-and
β -curves andnz(D) = 0, i.e. the multiplicity ofD at the domainDz containingz
vanishes.

Of course a Whitney disc is calledperiodic if its associated domain is a periodic
domain. The subgroup of periodic classes inπ2(x, x) is denoted byΠx .

Theorem 2.1.16(see [40]). For a Spinc-structure s and a periodic classφ ∈ Πx we
have the equality

µ(φ) = 〈c1(s),H(φ)〉 .

This is a deep result connecting the expected dimension of a periodic disc with a
topological property. Note that, because of the additivityof the expected dimensionµ,
the homology groups can be endowed with a relative grading defined by

gr(x, y) = µ(φ)− 2 · nz(φ),

whereφ is an arbitrary element ofπ2(x, y). In the case of homology spheres this defines
a relativeZ-grading because by Theorem 2.1.16 the expected dimension vanishes for
all periodic discs. In case of non-trivial homology they just vanish moduloδ(s), where

δ(s) = gcd
A∈H2(Y;Z)

〈c1(s),A〉 ,

i.e. it defines a relativeZδ(s) -grading.
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Definition 2.1.17. A pointed Heegaard diagram (Σ, α, β, z) is calledweakly admis-
sible for the Spinc-structures if for every non-trivial periodic domainD such that
〈c1(s),H(D)〉 = 0 the domain has positive and negative coefficients.

With this technical condition imposed thê∂z is a well-defined map on the subcomplex
ĈF(Σ, α, β, s). From admissibility it follows that for everyx, y ∈ (sz)−1(s) and
j, k ∈ Z there exists just a finite number ofφ ∈ π2(x, y) with µ(φ) = j , nz(φ) = k and
D(φ) ≥ 0. The last condition means that all coefficients in the associated domain are
greater or equal to zero.

Proof of Theorem 2.1.3 for b1(Y) 6= 0. Recall that holomorphic discs are either con-
tained in a complex submanifoldC or they intersectC always transversely and al-
ways positive. The definition of the path (Js)s∈[0,1] (cf. §2.1.3) includes that all the
{zi} × Symg−1(Σ) are complex submanifolds. Thus, holomorphic Whitney discs
always satisfyD(φ) ≥ 0.

We close this paragraph with a statement that appears to be useful for developing
intuition for Whitney discs. It helps imagining the strong connection between the discs
and their associated domains.

Theorem 2.1.18(see [40]). Consider a domainD whose coefficients are all greater
than or equal to zero. There exists an oriented2-manifold S with boundary and a map
φ : S−→ Σ with φ(S) = D with the property thatφ is nowhere orientation-reversing
and the restriction ofφ to each boundary component of S is a diffeomorphism onto its
image.

2.1.3 The Structure of the Moduli Spaces

The material in this paragraph is presented without any details. The exposition pictures
the bird’s eye view of the material. Recall from the last paragraphs that we have to
choose a path of almost complex structures appropriately todefine Heegaard Floer the-
ory. So, a discussion of these structures is inevitable. However, a lot of improvements
have been made the last years and we intend to mention some of them.

Let (j, η) be a K̈ahler structure on the Heegaard surfaceΣ, i.e. η is a symplectic form
and j an almost-complex structure that tamesη . Let z1, . . . , zm be points, one in each
component ofΣ\{α ∪ β}. Denote byV an open neighborhood in Symg(Σ) of

D ∪
( m⋃

i=1

{zi} × Symg−1(Σ)
)
,
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whereD is the diagonal in Symg(Σ).

Definition 2.1.19. An almost complex structureJ on Symg(Σ) is called (j, η,V)-
nearly symmetric if J agrees withsymg(j) over V and if J tamesπ∗(η×g) over Vc .
The set of (j, η,V)-nearly symmetric almost-complex structures will be denoted by
J (j, η,V).

The almost complex structuresymg(j) on Symg(Σ) is the natural almost complex
structure induced by the structurej . Important for us is that the structureJ agrees with
symg(j) on V . This makes the{zi} × Symg−1(Σ) complex submanifolds with respect
to J. This is necessary to guarantee positive intersections with Whitney discs. Without
this property the proof of Theorem 2.1.3 would break down in the case the manifold
has non-trivial topology.

We are interested in holomorphic Whitney discs, i.e. discs in the symmetric product
which are solutions of (2.1.3). Denote by the∂Js the Cauchy-Riemann type operator
defined by equation (2.1.3). DefineB(x, y) as the space of Whitney discs connecting
x and y such that the discs converge tox and y exponentially with respect to some
Sobolev space norm in a neighborhood ofi and−i (see [40]). With these assumptions
the solution∂Jsφ lies in a space ofLp-sections

Lp([0,1] × R, φ∗(TSymg(Σ))).

These fit together to form a bundleL over the baseB(x, y).

Theorem 2.1.20.The bundleL −→ B(x, y) is a Banach bundle.

By construction the operator∂Js is a section of that Banach bundle. Let us define
B0 →֒ B(x, y) as the zero section, then obviously

MJs(x, y) = (∂Js)
−1(B0).

Recall from the Differential Topology of finite-dimensional manifolds that if a smooth
map intersects a submanifold transversely then its preimage is a manifold. There is
an analogous result in the infinite-dimensional theory. Thegeneralization to infinite
dimensions requires an additional property to be imposed onthe map. We will now
define this property.

Definition 2.1.21. A map f between Banach manifolds is calledFredholm if for every
point p the differentialTpf is a Fredholm operator, i.e. has finite-dimensional kernel
and cokernel. The difference dim kerTpf − dim cokerTpf is called theFredholm
index of f at p.
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Fortunately the operator∂Js is an elliptic operator, and hence it is Fredholm for a
generic choice of path (Js)s∈[0,1] of almost complex structures.

Theorem 2.1.22.(see [40]) For a dense set of paths(Js)s∈[0,1] of (j, η,V)-nearly sym-
metric almost complex structures the moduli spacesMJs(x, y) are smooth manifolds
for all x, y ∈ Tα ∩ Tβ .

The idea is similar to the standard Floer homological proof.One realizes these paths
as regular values of the Fredholm projection

π : M−→ Ω(J (j, η,V)),

where Ω(J (j, η,V)) denotes the space of paths inJ (j, η,V) and M is the un-
parametrized moduli space consisting of pairs (Js, φ), whereJs is a path of (j, η,V)-
nearly symmetric almost complex structures andφ a Whitney disc. By the Sard-Smale
theorem the set of regular values is an open and dense set ofJ (j, η,V).

Besides the smoothness of the moduli spaces we need the number of one-dimensional
components to be finite. This means we require the spacesM̂(x, y)0

nz=0 to be com-
pact. One ingredient of the compactness is the admissibility property introduced in
Definition 2.1.17. In (2.1.5) we observed that

M̂(x, y)0
nz=0 =

⊔

φ∈H(x,y,1)

M̂φ,

where H(x, y,1) is the set of homotopy classes of Whitney discs withnz = 0 and
expected dimensionµ = 1. Admissibility guarantees thatH(x, y,1) is a finite set.
Thus, compactness follows from the compactness of theM̂φ . The compactness proof
follows similar lines as the Floer homological approach. Itfollows from the existence
of anenergy boundindependent of the homotopy class of Whitney discs. The existence
of this energy bound shows that the moduli spacesM̂(x, y) admit a compactification
by adding solutions to the space.

Without giving the precise definition we would like to give some intuition of what
happens at the boundaries. First of all there is an operationcalled gluing making
it possible to concatenate Whitney discs holomorphically.Given two Whitney discs
φ1 ∈ π2(x, y) andφ2 ∈ π2(y,w), gluing describes an operation to generate a family of
holomorphic solutionsφ2#tφ1 in the homotopy classφ2 ∗ φ1 .

Definition 2.1.23. We call the pair (φ2, φ1) abroken holomorphic Whitney disc.
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Moreover, one can think of this solutionφ2#tφ1 as sitting in a small neighborhood
of the boundary of the moduli space of the homotopy classφ2 ∗ φ1, i.e. the family
of holomorphic solutions ast → ∞ converges to the broken disc (φ2, φ1). There
is a special notion of convergence used here. The limiting objects can be described
intuitively in the following way: Think of the disc, after removing the points±i , as a
strip R × [0,1]. Choose a properly embedded arc or an embeddedS1 in R × [0,1].
Collapse the curve or theS1 to a point. The resulting object is a potential limiting
object. The objects at the limits of sequences can be derivedby applying several knot
shrinkings and arc shrinkings simultaneously where we haveto keep in mind that the
arcs and knots have to be chosen such that they do not intersect (for a detailed treatment
see [33]).

We see that every broken disc corresponds to a boundary component of the compactified
moduli space, i.e. there is an injection

fglue: Mφ2 ×Mφ1 →֒ ∂Mφ2∗φ1.

But are these the only boundary components? If this is the case, by adding broken
discs to the space we would compactify it. This would result in the finiteness of the
0-dimensional spaceŝMφ . A compactification by adding broken flow lines means that
the 0-dimensional components are compact in the usual sense. A simple dimension
count contradicts the existence of a family of discs in a 0-dimensional moduli space
converging to a broken disc. But despite that there is a second reason for us to wish
broken flow lines to compactify the moduli spaces. The map∂̂z should be a boundary
operator. Calculatinĝ∂z◦ ∂̂z we see that the coefficients in the resulting equation equal
the number of boundary components corresponding to broken discs at the ends of the
1-dimensional moduli spaces. If the gluing map is a bijection the broken ends generate
all boundary components. Hence, the coefficients vanish mod2.

There are two further phenomena we have to notice. Besides breaking there might be
spheres bubbling off. This description can be taken literally to some point. Figure 2.1
illustrates the geometric picture behind that phenomenon.Bubbling is some kind of
breaking phenomenon but the components here are discs and spheres. We do not need
to take care of spheres bubbling off at all. Suppose that the boundary of the moduli
space associated to the homotopy classφ we have breaking into a discφ1 and a sphere
S1 , i.e.φ = φ1 ∗S1. Recall that the spheres in the symmetric product are generated by
S, described in§2.1.2. Thus,φ = φ1 ∗ k ·S wherenz(S) = 1. In consequencenz(φ) is
non-zero, contradicting the assumptions.
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Figure 2.1: Bubbling of spheres.

Definition 2.1.24. For a pointx ∈ Tα∩Tβ anα-degeneratedisc is a holomorphic disc
φ : [0,∞)×R −→ Symg(Σ) with the following boundary conditionsφ({0}×R) ⊂ Tα

andφ(p)→ x asx→∞.

Given a degenerate discψ , the associated domainD(ψ) equals a sphere with holes,
i.e.D(ψ) equals a surface inΣ with boundary theα-curves. Since theα-curves do not
disconnectΣ, the domain covers the whole surface. Thus,nz(ψ) is non-zero, showing
that degenerations are ruled out by assuming thatnz = 0.

Proof of Theorem 2.1.4 withZ2-coefficients. Fix an intersectionx ∈ Tα ∩ Tβ . We
compute

∂̂zx = ∂̂z
( ∑

y∈Tα∩Tβ

#M̂(x, y)0
nz=0 · y

)

=
∑

y,w∈Tα∩Tβ

#M̂(x, y)0
nz=0#M̂(y,w)0

nz=0 · w.

We have to show that the coefficient in front ofw, denoted byc(x,w) vanishes. Observe
that the coefficient precisely equals the number of components (mod 2) in

M̂(x, y)0
nz=0× M̂(y,w)0

nz=0

Gluing gives an injection

M̂(x, y)0
nz=0× M̂(y,w)0

nz=0 →֒ ∂M̂(x,w)1
nz=0.

By the compactification theorem the gluing map is a bijection, since bubbling and
degenerations do not appear due to the conditionnz = 0. Thus, (mod 2) we have

c(x,w) = #(M̂(x, y)0
nz=0× M̂(y,w)0

nz=0)

= ∂M̂(x,w)1
nz=0

= 0,
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which shows the theorem.

Obviously, the proof breaks down inZ-coefficients. We need the mod 2 count of ends.
There is a way to fix the proof. The goal is to make the map

fglue: Mφ2 ×Mφ1 →֒ ∂Mφ2∗φ1

orientation preserving. For this to make sense we need the moduli spaces to be oriented.
An orientation is given by choosing a section of thedeterminant line bundle over the
moduli spaces. The determinant line bundle is defined as the bundle det([φ]) −→Mφ

given by putting together the spaces

det(ψ) =
∧

max ker(Dψ∂Js)⊗
∧

max ker((Dψ∂Js)
∗),

whereψ is an element ofMφ . If we achieve transversality for∂Js , i.e. it has transverse
intersection with the zero sectionB0 →֒ L then

det(ψ) =
∧

max ker(Dψ∂Js) ⊗ R∗

=
∧

maxTψMφ ⊗ R∗.

Thus, a section of the determinant line bundle defines an orientation ofMφ . These
have to be chosen in a coherent fashion to makefglue orientation preserving. The gluing
construction gives a natural identification

det(φ1) ∧ det(φ2)
∼=
−→ det(φ2#tφ1).

Since these are all line bundles, this identification makes it possible to identify sections
of det([φ1]) ∧det([φ2]) with sections of det([φ2 ∗φ1]). With this isomorphism at hand
we are able to define a coherence condition. Namely, leto(φ1) ando(φ2) be sections
of the determinant line bundles of the associated moduli spaces, then obviously we
need that under the identification given above we have

o(φ1) ∧ o(φ2) = o(φ2 ∗ φ1). (2.1.10)

In consequence, acoherent system of orientationsis a sectiono(φ) of the determinant
line bundle det(φ) for each homotopy class of Whitney discsφ connecting two inter-
section points such that equation (2.1.10) holds for each pair for which concatenation
makes sense. It is not clear if these systems exist in general. By construction with
respect to these coherent systems of orientations the mapfglue is orientation preserving.

In the case of Heegaard Floer theory there is an easy way giving a construction for
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coherent systems of orientations. Namely, fix a Spinc-structures and let{x0, . . . , xl}

be the points representings, i.e. (sz)−1(s) = {x0, . . . , xl}. Let φ1, . . . , φq be a set
of periodic classes inπ2(x0, x0) representing a basis forH1(Y; Z), denote byθi an
element ofπ2(x0, xi). A coherent system of orientations is constructed by choosing
sections over all chosen discs, i.e.o(φi), i = 1, . . . ,q ando(θj), j = 1, . . . , l . Namely,
for each homotopy classφ ∈ π2(xi , xj) we have a representation (cf. Lemma 2.1.8,
Lemma 2.1.9 and (2.1.4))

φ = a1φ1 + · · ·+ aqφq + θj − θi

inducing an orientationo(φ). This definition clearly defines a coherent system.

To give a proof of Theorem 2.1.4 in case ofZ-coefficients we have to translate
orientations on the 0-dimensional components of the modulispacesM̂Js(x, y) of
connecting Whitney discs into signs. Forφ with µ(φ) = 1 the translation action
naturally induces an orientation onMφ . Comparing this orientation with the coherent
orientation induces a sign. We define thesigned countas the count of the elements by
taking into account the signs induced by the comparison of the action orientation with
the coherent orientation.

Proof of Theorem 2.1.4 forZ-coefficients. We stay in the notation of the earlier proof.
With the coherent system of orientations introduced we madethe map

fglue: M̂(x, y)0
nz=0× M̂(y,w)0

nz=0 →֒ ∂M̂(x, z)1
nz=0

orientation preserving. Hence, we see thatc(x,w) equals

#(M̂(x, y)0
nz=0× M̂(y,w)0

nz=0)

which in turn equals the oriented count of boundary components of ∂M̂(x, z)1
nz=0.

Since the space is 1-dimensional, this count vanishes.

More General Theories

There are variants of Heegaard Floer homology which do not force the condition
nz = 0. To make the compactification work in that case we have to take care of
boundary degenerations and spheres bubbling off. Both can be shown to be controlled
in the sense that the proof of Theorem 2.1.4 for the general theories works the same
way with some slight additions due to bubbling and degenerations. The thesis mainly
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focuses on thêHF-theory, so we mostly exclude these matters from our exposition.
Note just that we get rid of bubbling by a proper choice of almost complex structure. By
choosingj on Σ appropriately there is a contractible open neighborhood ofsymg(j) in
J (j, η,V) for which all spheres miss the intersectionsTα∩Tβ . Moreover, for a generic
choice of path (Js)s∈[0,1] inside this neighborhood the signed count of degenerate discs
is zero. With this information it is easy to modify the given proof for the general
theories. We leave this to the interested reader or point himto [40].

2.1.4 Choice of Almost Complex Structure

Let Σ be endowed with a complex structurej and letU ⊂ Σ be a subset diffeomorphic
to a disc.

Theorem 2.1.25(Riemann mapping theorem). There is a3-dimensional family of
holomorphic identifications of U with the unit discD ⊂ C.

Consequently, suppose that all moduli spaces are compact manifolds for the path
(Js)s∈[0,1] = symg(j). In this case we conclude from the Riemann mapping theorem
the following corollary.

Corollary 2.1.26. Let φ : D2 −→ Symg(Σ) be a holomorphic disc withD(φ) isomor-
phic to a disc. Then the moduli spacêMφ contains a unique element.

There are several ways to achieve this special situation. Wecall a domainD(φ) α-
injective if all its multiplicities are 0 or 1 and its interior is disjoint from theα-circles.
We then say that the homotopy classφ is α-injective.

Theorem 2.1.27.Let φ ∈ π2(x, y) be anα-injective homotopy class and j a complex
structure onΣ. For generic perturbations of theα-curves the moduli spaceMsymg(j),φ

is a smooth manifold.

In explicit calculations it will be nice to have all homotopyclasses carrying holomorphic
representatives to beα-injective. In this case we can choose the path of almost complex
structure in such a way that homotopy classes of Whitney discs with disc-shaped
domains just admits a unique element. This is exactly what can be achieved in general
to make theĤF-theory combinatorial. For a class of Heegaard diagrams called nice
diagrams all moduli spaces withµ = 1 just admits one single element. In addition
we have an exact description of how these domains look like. In Z2-coefficients with
nice diagrams this results in a method of calculating the differential ∂̂z by counting the
number of domains that fit into the scheme. This is successfully done for instance for
the ĤF-theory in [47].
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Definition 2.1.28(see [47]). A pointed Heegaard diagram (Σ, α, β, z) is callednice if
any region not containingz is either a bigon or a square.

Definition 2.1.29(see [47]). A homotopy class is called an empty embedded 2n-gon
if it is topologically an embedded disc with 2n vertices at its boundary, it does not
contain anyxi or yi in its interior, and for each vertexv the average of the coefficients
of the four regions aroundv is 1/4.

For a nice Heegaard diagram one can show that all homotopy classesφ ∈ H(x, y,1)
with µ(φ) = 1 that admit holomorphic representatives are empty embedded bigons
or empty embedded squares. Furthermore, for a generic choice of j on Σ the moduli
spaces are regular under a generic perturbation of theα-curves andβ -curves. The
moduli spaceM̂φ contains one single element. Thus, the theory can be computed
combinatorially. We note the following property.

Theorem 2.1.30(see [47]). Every3-manifold admits a nice Heegaard diagram.

2.1.5 Dependence on the Choice of Orientation Systems

From their definition it is easy to reorder the orientation systems into equivalence
classes. The elements in these classes give rise to isomorphic homologies. Leto and
o′ be two orientation systems. We measure their difference

δ : H1(Y; Z) −→ Z2

by saying that, given a periodic classφ ∈ π2(x, x), we defineδ(φ) = 0 if o(φ) and
o′(φ) coincide, i.e. define equivalent sections, andδ(φ) = 1, if o(φ) ando′(φ) define
non-equivalent sections. Thus, two systems are equivalentif δ = 0. Obviously, there
are 2b1(Y) different equivalence classes of orientation systems. In general the Heegaard
Floer homologies will depend on choices of equivalence classes of orientation systems.
As an illustration we will discuss an example.

Example 2.1.2. The manifold S2 × S1 admits a Heegaard splitting of genus one,
namely (T2, α, β, z) whereα andβ are two distinct meridians ofT2.

Unfortunately this is not an admissible diagram. By the universal coefficient theorem

H2(S2× S1; Z) ∼= Hom(H2(S2× S1; Z),Z) ∼= Hom(Z,Z).

Hence we can interpret Spinc-structures as homomorphismsZ −→ Z. For a number
q ∈ Z definesq to be the Spinc-structure whose associated characteristic class, which
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we also callsq , is given bysq(1) = q. The two curvesα andβ cut the torus into two
components, wherez is placed in one of them. Denote the other component withD .
It is easy to see that the homology classH(D) is a generator ofH2(S2× S1; Z). Thus,
we have

〈c1(sq),H(λ · D)〉 = 〈2 · sq,H(λ · D)〉 = 2 · sq(λ · 1) = 2λq.

This clearly contradicts the weak admissibility condition. We fix this problem by
perturbing theβ -curve slightly to give a Heegaard diagram as illustrated inFigure 2.2.
By boundary orientationsZ 〈(D1−D2)〉 are all possible periodic domains.

α

x
z

D1

D2

y

β

Figure 2.2: An admissible Heegaard diagram forS2× S1.

Figure 2.2 shows that the chain module is generated by the points x andy. A straight-
forward computation givesǫ(x, y) = 0 (see§2.1.2 for a definition) and, hence, both
intersections belong to the same Spinc-structure we will denote bys0 . Thus, the
chain complexĈF(Σ, α, β; s0) equalsZ ⊗ {x, y}. The regionsD1 andD2 are both
disc-shaped and henceα-injective. Thus, the Riemann mapping theorem (see§2.1.4)
gives

#Mφ1 = 1 and #Mφ2 = 1.

These two discs differ by the periodic domain generatingH1(S2 × S1; Z). Thus, we
are free to choose the orientation on this generator. Hence,we may choose the signs on
φ1 andφ2 arbitrarily. Thus, there are two equivalence classes of orientation systems.
We defineo∗ to be the system of orientations where the signs differ ando0 where they
are equal. Thus, we get two different homology theories

ĤF(S2× S1, s0; o∗) = Z⊕ Z

ĤF(S2× S1, s0; o0) = Z2.
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However, there is a special choice of coherent orientation systems. We point the reader
to §2.2 for a definition of HF∞ . Additionally, instead of usingZ-coefficients, we can
use the ringZ[H1(Y)] as coefficients for defining these Heegaard Floer group. The
resulting group is denoted by HF∞ . We point the reader to [40] for a precise definition.
As a matter or completeness we cite:

Theorem 2.1.31(see [39], Theorem 10.12). Let Y be a closed oriented3-manifold.
Then there is a unique equivalence class of orientation system such that for each torsion
Spinc-structure s0 there is an isomorphism

HF∞(Y, s0) ∼= Z[U,U−1]

as Z[U,U−1] ⊗Z Z[H1(Y; Z)] -modules.

2.2 The HomologiesHF∞ , HF+ , HF−

Given a pointed Heegaard diagram (Σ, α, β, z), we define CF−(Σ, α, β, z; s) as the free
Z[U−1]-module generated by the points of intersection (sz)−1(s) ⊂ Tα ∩ Tβ . For an
intersectionx we define

∂−x =
∑

y∈(sz)−1(s)

∑

φ∈µ−1(1)

#M̂φ · U
−nz(φ)y,

whereµ−1 are the homotopy classes inπ2(x, y) with expected dimension equal to one.
Note that in this theory we do not restrict to classes withnz = 0. This means even with
weak admissibility imposed on the Heegaard diagram the proof of well-definedness as
it was done in§2.1 breaks down.

Definition 2.2.1. A Heegaard diagram (Σ, α, β, z) is calledstrongly admissiblefor the
Spinc-structures if for every non-trivial periodic domainD such that〈c1(s),H(D)〉 =

2n ≥ 0 the domainD has some coefficient greater thann.

Imposing strong admissibility on the Heegaard diagram we can prove well-definedness
by showing that only finitely many homotopy classes of Whitney discs contribute to
the moduli spaceMJs(x, y) (cf. §2.1).

Theorem 2.2.2.The map∂− is a differential.
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As mentioned in§2.1, in this more general case we have to take a look at bubbling and
degenerate discs. The proof follows the same lines as the proof of Theorem 2.1.4. With
the remarks made in§2.1 it is easy to modify the given proof to a proof of Theorem
2.2.2 (see [40]). We define

CF∞(Σ, α, β; s) = CF−(Σ, α, β; s) ⊗Z[U−1] Z[U,U−1]

and denote by∂∞ the induced differential. From the definition we get an inclusion of
CF− →֒ CF∞ whose cokernel is defined as CF+(Σ, α, β, s). Finally we get back to
ĈF by

ĈF(Σ, α, β; s) =
U · CF−(Σ, α, β; s)

CF−(Σ, α, β; s)
.

The associated homology theories are denoted by HF∞ , HF− andĤF. There are two
long exact sequences which can be derived easily from the definition of the Heegaard
Floer homologies. To give an intuitive picture look at the following illustration:

CF∞ = . . . U−3 U−2 U−1 U0 U1 U2 U3 . . .

CF− = . . . U−3 U−2 U−1

ĈF = U0

CF+ = U0 U1 U2 U3 . . .

We see why the condition of weak admissibility is not strong enough to give a well-
defined differential on CF∞ or CF− . However, weak admissibility is enough to make
the differential on CF+ well-defined, since the complex is bounded from below with
respect to the obvious filtration given by theU -variable.

Lemma 2.2.3. There are two long exact sequences

. . . - HF−(Y; s) - HF∞(Y; s) - HF+(Y; s) - . . .

. . . - ĤF(Y; s) - HF+(Y; s) - HF+(Y; s) - . . . ,

where s is aSpinc-structure of Y .

The explicit description illustrated above can be derived directly from the definition of
the complexes. In this thesis we will mainly focus on thêHF-theory so we leave this
to the interested reader (see also [40]).

2.3 Topological Invariance

Given two Heegaard diagrams (Σ, α, β) and (Σ′, α′, β′) of a manifold Y, they are
equivalent after a finite sequence of isotopies of the attaching circles, handle slides of
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theα-curves andβ -curves and stabilizations/destabilizations. Two Heegaard diagrams
are equivalent if there is a diffeomorphism of the Heegaard surface interchanging the
attaching circles. Obviously, equivalent Heegaard diagrams define isomorphic Hee-
gaard Floer theories. To show that Heegaard Floer theory is atopological invariant
of the manifoldY we have to see that each of the moves, i.e. isotopies, handle slides
and stabilization/destabilizations yield isomorphic theories. We will briefly sketch the
topological invariance. This has two reasons: First of all the invariance proof uses ideas
that are standard in Floer homology theories and hence appear frequently. The ideas
provided from the invariance proof happen to be the standardtechniques for proving
exactness of sequences, proving invariance properties, and proving the existence of
morphisms between Floer homologies. Thus, knowing the invariance proof, at least
at the level of ideas, is crucial for an understanding of mostof the papers published
in this field. The second reason to mention is our usage of the isormophisms we will
construct later in this thesis. We will deal with thêHF-case and and point the reader
to [40] for a general treatment.

The invariance proof contains several steps. We start showing invariance under the
choice of path of admissible almost complex structures. Isotopies of the attaching
circles are split up into two separate classes: Isotopies that generate/cancel intersection
points and those which do not change the chain module. The invariance under the
latter Heegaard moves immediately follows from the independence of the choice of
almost complex structures. Such an isotopy is carried by an ambient isotopy inducing
an isotopy of the symmetric product. We perturb the almost complex structure and thus
interpret the isotopy as a perturbation of the almost complex structure. The former Hee-
gaard moves have to be dealt with separately. We mimic the generation/cancellation
of intersection points with a Hamiltonian isotopy and with it explicitly construct an
isomorphism of the respective homologies by counting discswith dynamic boundary
conditions. Stabilizations/ destabilizations is the easiest part to deal with: it follows
from the behavior of the Heegaard Floer theory under connected sums. Finally, handle
slide invariance will require us to define what can be regarded as the Heegaard Floer
homological version of the pair-of-pants product in Floer homologies. This product
has two nice applications. The first is the invariance under handle slides and the second
is the association of maps to cobordisms giving the theory the structure of a topological
field theory.
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2.3.1 Stabilizations/Destabilizations

We determine the groupŝHF(S2 × S1#S2 × S1) as a model calculation for how the
groups behave under connected sums.

z

x1
y1

x2 y2

D1D2

D3

D4

Figure 2.3: An admissible Heegaard diagram forS2× S1#S2× S1.

Example 2.3.1.We fix admissible Heegaard diagrams (T2
i , αi , βi) i = 1,2 for S2×S1

as in Example 2.1.2. To perform the connected sum ofS2× S1 with itself we choose
3-balls such that their intersectionD with the Heegaard surface fulfills the property

J i
s|D = sym(j i).

Figure 2.3 pictures the Heegaard diagram we get for the connected sum. Denote byT
a small connected sum tube insideΣ = T2

1#T2
2 . By construction the induced almost

complex structure equals

(J 1#J 2)s
∣∣
T×Σ

= sym2(j1#j2).

All intersection points belong to the same Spinc-structures0 . For suitable Spinc-
structuress1 , s2 on S2× S1 we have thats0 = s1#s2 and

ĈF(Σ, α, β, s1#s2) = Z⊗ {(xi , yj ) | i, j ∈ {1,2}} ∼= ĈF(T2
1, s1)⊗ ĈF(T2

2, s2).

The conditionnz = 0 implies that for every holomorphic discφ : D2 −→ Symg(Σ)
the low-dimensional model (cf.§2.1) φ̂ : D̂ −→ Σ stays away from the tubeT .
Consequently we can split up̂D into

D̂ = D̂1 ⊔ D̂2,

36



where D̂i are the components containing the preimage (φ̂)−1(T2
i \D). Restriction to

these components determines mapsφ̂i : D̂i −→ T2
i inducing Whitney discsφi in the

symmetric product Sym1(T2). Thus, the moduli spaces split:

M(J 1#J 2)s
((xi , yk), (xj , yl ))nz=0

∼=
−→ MJ 1

s
(xi , xj)nz=0×MJ 2

s
(yk, yl )nz=0

φ 7−→ (φ1, φ2).

For moduli spaces with expected dimensionµ = 1, a dimension count forces one
of the factors to be constant. So, the differential splits, too, i.e. for ai ∈ ĈF(T2

i , si ),
i = 1,2 we see that

∂̂(J 1#J 2)s
(a1⊗ a2) = ∂̂J 1

s
(a1)⊗ a2 + a1 ⊗ ∂̂J 2

s
(a2).

And consequently

ĤF(S2× S1#S2× S1, s1#s2; o1⊗ o2) ∼= ĤF(S2× S1, s1; o1)⊗ ĤF(S2× S1, s2; o2).

The same line of arguments shows the general statement.

Theorem 2.3.1(see [39]). For closed, oriented3-manifolds Yi , i = 1,2 the Heegaard
Floer homology of the connected sum Y1#Y2 equals the tensor product of the Heegaard
Floer homologies of the factors, i.e.

ĤF(Y1#Y2) = H∗(ĈF(Y1)⊗ ĈF(Y2)),

where the chain complex on the right carries the natural induced boundary.

Stabilizing a Heegaard diagram ofY means, on the manifold level, to do a connected
sum with S3. We know thatĤF(S3) = Z. By the classification of finitely generated
abelian groups and the behavior of the tensor product, invariance follows.

2.3.2 Independence of the Choice of Almost Complex Structures

Suppose we are given a 1-dimensional family of paths of (j, η,V)-nearly symmetric
almost complex structures (Js,t). Given a Whitney discφ, we defineMJs,t,φ as the
moduli space of Whitney discs in the homotopy class ofφ which satisfy the equation

∂φ

∂s
(s, t) + Js,t

(∂φ
∂t

(s, t)
)

= 0.

37



Observe that there is no free translation action on the moduli spaces as on the moduli
spaces we focused on while discussing the differential∂̂z. We define a map̂ΦMJs,t

between the theories (̂CF(Σ, α, β, z), ∂̂Js,i ) for i = 0,1 by defining forx ∈ Tα ∩ Tβ

Φ̂Js,t(x) =
∑

y∈Tα∩Tβ

∑

φ∈H(x,y,0)

#MJs,t,φ · y,

whereH(x, y,0) ⊂ π2(x, y) are the homotopy classes with expected dimensionµ = 0
and intersection numbernz = 0. There is an energy bound for all holomorphic
Whitney discs which is independent of the particular Whitney disc or its homotopy
class (see [40]). Thus, the moduli spaces are Gromov-compact manifolds, i.e. can be
compactified by adding solutions coming from broken discs, bubbling of spheres and
boundary degenerations (cf.§2.1.3). Since we stuck to thêHF-theory we impose the
condition nz = 0 which circumvents bubbling of spheres and boundary degenerations
(see§2.1.3).

To check that̂Φ is a chain map, we compute

∂̂Js,1 ◦ Φ̂Js,t,z(x)− Φ̂Js,t ◦ ∂̂Js,0,z(x) =
∑

y,z
φ∈H(x,y,0),ψ∈H(y,z,1)

#MJs,t (φ)#M̂Js,1(ψ)z

−
∑

y,z
φ∈H(x,y,1),ψ∈H(y,z,0)

#M̂Js,0(φ)#MJs,t (ψ)z

=
∑

z

c(x, z) · z.

The coefficientc(x, z) is given by
∑

y,I

(
#MJs,t,φ · #M̂Js,1,ψ − #M̂

Js,0, eψ
· #M

Js,t,eφ

)
, (2.3.1)

whereI consists of pairs

(φ, φ̃) ∈ H(x, y,0)× H(y, z,0) and (ψ, ψ̃) ∈ H(x, y,1)× H(y, z,1).

Looking at the ends of the moduli spacesMJs,t (η) for an η ∈ H(x, z,1), the gluing
construction (cf.§2.1.3) together with the compactification argument mentioned earlier
provides the following ends:

( ⊔

η=ψ∗φ

(MJs,t (φ)× M̂Js,1(ψ))
)
⊔
( ⊔

η= eψ∗eφ

(M̂Js,0(ψ̃)×MJs,t (φ̃))
)
, (2.3.2)
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where the expected dimensions ofφ and φ̃ are 1 and ofψ and ψ̃ they are 0. A
signed count of (2.3.2) precisely reproduces (2.3.1) and hencec(x, z) = 0 – at least in
Z2-coefficients. To make this work in general, i.e. with coherent orientations, observe
that we have the following condition imposed on the sections:

os,t(φ) ∧ o1(ψ) = −o0(ψ̃) ∧ os,t(φ̃).

For an arbitrary coherent orientation systemos,t we get an identification of orientation
systems,ξos,t say, such thatΦ is a chain map between

(ĈF(Σ, α, β, z), ∂̂oJs,0
) −→ (ĈF(Σ, α, β, z), ∂̂

ξos,t

Js,1
).

Observe that we can choose the coherent systemos,t arbitrarily. This will only affect
the identificationξos,t .

We reverse the direction of the isotopy and define a mapΦ̂Js,1−t . The compositions

Φ̂Js,1−t ◦ Φ̂Js,t and Φ̂Js,t ◦ Φ̂Js,1−t

are both chain homotopic to the identity. In the following wewill discuss the chain
homotopy equivalence for the map̂ΦJs,t ◦ Φ̂Js,1−t .

Define a pathJs,t(τ ) such thatJs,t(0) = Js,t∗Js,1−t andJs,t(1) = Js,0. The existence
of this path follows from the fact that we choose the paths inside a contractible set
(cf. §2.1.3 or see [40]). Define the moduli space

MJs,t(τ ),φ =
⋃

τ∈[0,1]

MJs,t(τ ),φ.

Theorem 2.3.2. Let J(t1,...,tn) be an n-parameter family of generic almost complex
structures andφ a homotopy class of Whitney discs with expected dimensionµ(φ).
ThenM, defined as the union ofMJ(t1,...,tn),φ over all J(t1,...,tn) in the family, is a
manifold of dimensionµ(φ) + n.

There are two types of boundary components: the one type of boundary component
coming from variations of the Whitney discφ which are breaking, bubbling or de-
generations and the other type of ends coming from variations of the almost complex
structure.

We define a map

ĤJs,t(τ )(x) =
∑

y∈Tα∩Tβ

∑

φ∈H(x,y,−1)

#MJs,t(τ ),φ · y,
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whereH(x, y,−1) ⊂ π2(x, y) are the homotopy classesφ with nz(φ) = 0 and expected
dimensionµ(φ) = −1. According to Theorem 2.3.2, the manifoldMJs,t(τ ),φ is 0-

dimensional. We claim that̂H is a chain homotopy between̂ΦJs,t ◦ Φ̂Js,1−t and the
identity. By definition, the equation

Φ̂Js,t ◦ Φ̂Js,1−t − id− (∂̂Js,0 ◦ ĤJs,t(τ ) + ĤJs,t(τ ) ◦ ∂̂Js,1) = 0 (2.3.3)

has to hold. Look at the ends ofMJs,t(τ )(ψ) for µ(ψ) = 0. This is a 1-dimensional
space, and there are the ends

( ⊔

ψ=η∗φ

M̂Js,0,η ×MJs,t(τ ),φ

)
⊔
( ⊔

ψ=eη∗eφ

MJs,t(τ ),eη × M̂Js,1,eφ

)

coming from variations of the Whitney disc, and the ends

MJs,t(0),ψ ⊔MJs,t(1),ψ

coming from variations of the almost complex structure. These all together precisely
produce the coefficients in equation (2.3.3). Thus, the Floer homology is independent
of the choice of (j, η,V)-nearly symmetric path. Variations ofη andV just change the
contractible neighborhoodU aroundξg

sym(j) containing the admissible almost complex
structures. So, the theory is independent of these choices,too. A j′ -nearly symmetric
path can be approximated by aj -symmetric path given thatj′ is close toj . The set of
complex structures on a surfaceΣ is connected, so step by step one can move from a
j -symmetric path to anyj′ -symmetric path.

2.3.3 Isotopy Invariance

Every isotopy of an attaching circle can be divided into two classes: creation/anhillation
of pairs of intersection points and isotopies not affectingtransversality. An isotopy
of an α-circle of the latter type induces an isotopy ofTα in the symmetric product.
Compactness of theTα tells us that there is an ambient isotopyφt carrying the isotopy.
With this isotopy we perturb the admissible path of almost complex structures as

J̃s = (φ−1
1 )∗ ◦ Js ◦ (φ1)∗

giving rise to a path of admissible almost complex structures. The diffeomorphismφ1

induces an identification of the chain modules. The moduli spaces defined byJs and
J̃s are isomorphic. Hence

H∗(ĈF(Σ, α, β), ∂̂Js
z ) = H∗(ĈF(Σ, α′, β), ∂̂

eJs
z ) = H∗(ĈF(Σ, α′, β), ∂̂Js

z ), (2.3.4)
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where the last equality follows from the considerations in§2.3.2. This chain of equal-
ities shows that the isotopies discussed can be interpretedas variations of the almost
complex structure.

The creation/cancellation of pairs of intersection pointsis done with an exact Hamil-
tonian isotopy supported in a small neighborhood of two attaching circles. We cannot
use the methods from§2.3.2 to create an isomorphism between the associated Floer
homologies. At a certain point the isotopy violates transversality as the attaching tori
do not intersect transversely. Thus, the arguments of§2.3.2 for the right equality in
(2.3.4) break down.

Consider an exact Hamiltonian isotopyψt of an α-curve generating a canceling pair
of intersections with aβ -curve. We will just sketch the approach used in this context,
since the ideas are similar to the ideas introduced in§2.3.2.

Defineπt
2(x, y) as the set of Whitney discsφ with dynamic boundary conditions in the

following sense:

φ(i) = x,

φ(−i) = y,

φ(0 + it) ∈ Ψt(Tα)

φ(1 + it) ⊂ Tβ

for all t ∈ R. Spoken geometrically, we follow the isotopy with theα-boundary of
the Whitney disc. Correspondingly, we define the moduli spaces ofJs-holomorphic
Whitney discs with dynamic boundary conditions asMt(x, y). Forx ∈ Tα∩Tβ define

Γ̂Ψt (x) =
∑

y∈Tα∩Tβ

∑

φ∈Ht(x,y,0)

#Mt
Js,φ · y,

whereHt(x, y,0) ⊂ πt
2(x, y) are the homotopy classes with expected dimensionµ = 0

andnz = 0. Using the low-dimensional model introduced in§2.1, Ozv́ath and Szab́o
prove the following property.

Theorem 2.3.3(see [40],§7.3). There exists a t-independent energy bound for holo-
morphic Whitney discs independent of its homotopy class.

The existence of this energy bound shows that there are Gromov compactifications of
the moduli spaces of Whitney discs with dynamic boundary conditions.
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Theorem 2.3.4. The mapΓ̂Ψt is a chain map. Using the inverse isotopy we define
Γ̂Ψ1−t such that the compositionŝΓΨt ◦ Γ̂Ψ1−t and Γ̂Ψ1−t ◦ Γ̂Ψt are chain homotopic to
the identity.

The proof follows the same lines as in§2.3.2. We leave the proof to the interested
reader.

2.3.4 Handle slide Invariance

The Pair-of-Pants Product

In this paragraph we will introduce the Heegaard Floer incarnation of the pair-of-pants
product and with it associate to cobordisms maps between theFloer homologies of
their boundary components. In case the cobordisms are induced by handle slides
the associated maps are isomorphisms on the level of homology. The maps we will
introduce will count holomorphic triangles in the symmetric product with appropriate
boundary conditions. We have to discuss well-definedness ofthe maps and that they
are chain maps. To do that we have to follow similar lines as itwas done for the
differential. Because of the strong parallels we will shorten the discussion here. We
strongly advise the reader to first read§2.1 before continuing.

Definition 2.3.5. A set of data (Σ, α, β, γ), whereΣ is a surface of genusg andα,
β , γ three sets of attaching circles, is called aHeegaard triple diagram.

We denote the 3-manifolds determined be taking pairs of these attaching circles as
Yαβ , Yβγ andYαγ . We fix a pointz∈ Σ\{α ∪ β ∪ γ} and define a product

f̂αβγ : ĈF(Σ, α, β, z) ⊗ ĈF(Σ, β, γ, z) −→ ĈF(Σ, α, γ, z)

by counting holomorphic triangles with suitable boundary conditions: A Whitney
triangle is a mapφ : ∆ −→ Symg(Σ) with boundary conditions as illustrated in
Figure 2.4. We call the respective boundary segments itsα-, β - and γ -boundary.
The boundary points, as should be clear from the picture, arex ∈ Tα∩Tβ , w ∈ Tα∩Tγ

andy ∈ Tβ ∩ Tγ . The set of homotopy classes of Whitney discs connectingx, w and
y is denoted byπ2(x, y,w).

Denote byM∆
φ the moduli space of holomorphic triangles in the homotopy class of

φ. Analogous to the case of discs we denote byµ(φ) its expected/formal dimension.
For x ∈ Tα ∩ Tβ define

f̂αβγ(x⊗ y) =
∑

w∈Tα∩Tγ

∑

φ∈H(x,y,w,0)

#M∆
φ · w,
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Figure 2.4: A Whitney triangle and its boundary conditions.

where H(x, y,w,0) ⊂ π2(x, y,w) is the subset withµ = 0 and nz = 0. The set of
homotopy classes of Whitney discs fits into an exact sequence

0−→ π2(Symg(Σ)) −→ π2(x, y,w) −→ ker(nz) −→ 0, (2.3.5)

wherenz provides a splitting for the sequence. We define

Xαβγ =
(∆× Σ) ∪ eα × Uα ∪ eβ × Uβ ∪ eγ × Uγ

(eα × Σ) ∼ (eα × ∂Uα), (eβ × Σ) ∼ (eβ × ∂Uβ), (eγ × Σ) ∼ (eγ × ∂Uγ)
,

whereUα , Uβ andUγ are the handlebodies determined by the 2−handles associated
to the attaching circlesα, β andγ , andeα , eβ andeγ are the edges of the triangle∆.
The manifoldXαβγ is 4-dimensional with boundary

∂Xαβγ = Yαβ ⊔ Yβγ ⊔ −Yαγ .

Lemma 2.3.6. The kernel of nz equals H2(Xαβγ ; Z)

Combining (2.3.5) with Lemma 2.3.6 we get an exact sequence

0−→ π2(Symg(Σ)) −→ π2(x, y,w)
H
−→ H2(Xαβγ ; Z) −→ 0, (2.3.6)

whereH is defined similarly as for discs (cf.§2.1.2). Of course there is a low-
dimensional model for triangles and the discussion we have done for discs carries over
verbatim for triangles. The conditionnz = 0 makes the productfαβγ well-defined in
caseH2(Xαβγ ; Z) is trivial. Analogous to our discussion for Whitney discs and the
differential, we have to include a condition controlling the periodic triangles, i.e. the
triangles associated to elements inH2(Xαβγ ; Z). A domainD of a triangle is called
triply-periodic if its boundary consists of a sum ofα-,β - and γ -curves such that
nz = 0.
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Definition 2.3.7. A pointed triple diagram (Σ, α, β, γ, z) is calledweakly admissible
if all triply-periodic domainsD which can be written as a sum of doubly-periodic
domains have both positive and negative coefficients.

This condition is the natural transfer of weak-admissibility from discs to triangles. One
can show that for givenj, k ∈ Z there exist just a finite number of Whitney triangles
φ ∈ π2(x, y,w) with µ(φ) = j , nz(φ) = k andD(φ) ≥ 0.

For a given homotopy classψ ∈ π2(x, y,w) with µ(ψ) = 1 we compute the ends by
shrinking a properly embedded arc to a point (see the description of convergence in
§2.1.3). There are three different ways to do this in a triangle. Each time we get a
concatenation of a disc with a triangle. By boundary orientations we see that each of
these boundary components contributes to one of the terms inthe following sum

f̂αβγ ◦ (∂̂αβ(x)⊗ y) + f̂αβγ ◦ (x⊗ ∂̂βγ(y)) − ∂̂αγ ◦ f̂αβγ(x⊗ y). (2.3.7)

Conversely, the coefficient at any of these terms is given by aproduct of signed counts
of moduli spaces of discs and moduli spaces of triangles and hence – by gluing –
comes from one of these contributions. The sum in (2.3.7) vanishes, showing that̂fαβγ
descends to a pairinĝf ∗αβγ between the Floer homologies.

Holomorphic rectangles

Recall that the set of biholomorphisms of the unit disc is a 3-dimensional connected
family. If we additionally fix a point we decrease the dimension of that family by one.
A better way to formulate this is to say that the set of biholomorphishms of the unit
disc with one fixed point is a 2-dimensional family. Fixing two further points reduces
to a 0-dimensional set. If we additionally fix a fourth point the rectangle together
with these four points uniquely defines a conformal structure. Variation of the fourth
point means a variation of the conformal structure. Indeed one can show that there
is a uniformization of a holomorphic rectangle, i.e. a rectangle with fixed conformal
structure, which we denote by�,

� −→ [0, l] × [0,h],

where the ratiol/h uniquely determines the conformal structure. With this uniformiza-
tion we see thatM(�) ∼= R. The uniformization is area-preserving and converging to
one of the ends ofM(�) means to stretch the rectangle infinitely until it breaks atthe
end into a concatenation of two triangles.
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Theorem 2.3.8. Given another set of attaching circlesδ defining a map̂fαγδ , the
following equality holds:

f̂ ∗αβγ (̂f ∗αγδ( · ⊗ ·)⊗ ·)− f̂ ∗αβδ( · ⊗ f̂ ∗βγδ( · ⊗ ·)) = 0. (2.3.8)

This property is calledassociativity.

Figure 2.5: Ends of the moduli space of holomorphic rectangles.

If we count holomorphic Whitney rectangles with boundary conditions inα, β , γ and
δ and withµ = 1 (see Definition 2.1.6) the ends of the associated moduli space will
look like pictured in Figure 2.5. Note that we are talking about holomorphicity with
respect to an arbitrary conformal structure on the rectangle. There will be two types
of ends. We will have a degeneration into a concatenation of triangles by variation
of the conformal structure on the rectangle and breaking into a concatenation of a
rectangle with a disc by variation of the rectangle. By Figure 2.5 an appropriate count
of holomorphic rectangles will be a natural candidate for a chain homotopy proving
equation (2.3.8). Define a pairing

H : ĈF(Σ, α, β, z) ⊗ ĈF(Σ, β, γ, z) ⊗ ĈF(Σ, γ, δ, z) −→ ĈF(Σ, α, δ, z)

by counting holomorphic Whitney rectangles with boundary components as indicated
in Figure 2.6 andµ = 0. By counting ends of the moduli space of holomorphic

Tα

Tβ

Tγ

Tδ

Figure 2.6: The boundary conditions of rectangles for the definition of H .
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rectangles withµ = 1 we have six contributing ends. These ends are pictured in
Figure 2.5. The four ends coming from breaking contribute to

∂̂ ◦ H( · ⊗ · ⊗ ·) + H ◦ ∂̂( · ⊗ · ⊗ ·). (2.3.9)

In addition there are two ends coming from degenerations of the conformal structure
on the rectangle. These give rise to

f̂αβγ (̂fαγδ( · ⊗ ·)⊗ ·)− f̂αβδ( · ⊗ f̂βγδ( · ⊗ ·)). (2.3.10)

We see that the sum of (2.3.9) and (2.3.10) vanishes, showingthat H is a chain
homotopy proving associativity.

Special Case – Handle Slides

Handle slides provide special Heegaard triple diagrams. Let (Σ, α, β, z) be an admis-
sible pointed Heegaard diagram and define (Σ, α, γ, z) by handle slidingβ1 over β2 .
We push theγi off the βi to make them intersect transversely in two cancelling points.
This defines a triple diagram, and obviouslyYβγ equals the connected sum #g(S2×S1).

A very important observation is that the Heegaard Floer groups of connected sums of
S2× S1 admit a top-dimensional generator. By Example 2.1.2 and Theorem 2.3.1,

ĤF(#g−1(S2× S1), o∗) ∼= Z2g−2 ∼= H∗(T
g; Z),

where the last identification is done using the
∧
∗(H1/Tor)-module structure (see [40]).

We claim that the behavior of the Heegaard Floer groups underconnected sums can be
carried over to the module structure, and thus it remains to show the assertion for the
caseg = 1. But this is not hard to see.

Each pair (βi , γi) has two intersectionsx+
i and x−i . Which one is denoted how is

determined by the following criterion: there is a disc-shaped domain connectingx+
i

with x−i with boundary inβi andγi . The point

x+
= {x+

1 , . . . , x
+
g }

is a cycle whose associated homology class is the top-dimensional generator we denote
by Θ̂βγ . For a detailed treatment of the top-dimensional generatorwe point the reader
to [40].

Plugging in the generator we define a map

F̂αβγ = f̂ ∗αβγ( · ⊗ Θ̂) : ĤF(Σ, α, β, z) −→ ĤF(Σ, α, γ, z)
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between the associated Heegaard Floer groups. Our intention is to show that this is an
isomorphism.

We can slide theγ1 back overγ2 to give another set of attaching circles we denote
by δ . Of course we make the curves intersecting all other sets of attaching circles
transversely and introduce pairs of intersections points of the δ -curves with theγ -and
β -curves. LetF̂αγδ be the associated map. Then the associativity given in (2.3.8)
translates into

f̂ ∗αβγ (̂f ∗αγδ( · ⊗ Θ̂γδ)⊗ Θ̂βγ)− f̂ ∗αβδ( · ⊗ f̂ ∗βγδ(Θ̂βγ ⊗ Θ̂γδ)) = 0.

The proof of the following lemma will be done in detail. It is the first explicit calculation
using the low-dimensional model in a non-trivial manner. The proof is carried out as a
model for proofs that will be discussed in the remainder of this thesis.

Lemma 2.3.9. Given the map̂fαγδ , we have

f̂βγδ(Θ̂βγ ⊗ Θ̂γδ) = Θ̂βδ.

Hence, we havêFβγδ(Θ̂βγ) = Θ̂βδ .

Proof. The complement of theβ -circles in Σ is a sphere with holes. We have a
precise description of how the setsγ and δ look like relative toβ . The Heegaard
surface cut open along theβ -curves can be identified with a sphere with holes by
using an appropriate diffeomorphism. Doing so, the diagram(Σ, β, γ, δ) will look like
given in Figure 2.7. In each component we have to have a close look at the domains
D1 , D2 andD3. To improve the illustration in the picture we have separated them.
There are exactly two domains contributing to holomorphic triangles with boundary
points in{Θ̂βγ , Θ̂γδ}, namelyD1 andD3 . The domainD3 can be written as a sum
of D1 andD2, the former carryingµ = 0, the latter carryingµ = 1. Consequently,
every homotopy class of triangles usingD3-domains can be written as a concatenation
of a triangle with a disc with the expected dimensions greater than or equal to those
mentioned. Consequently, the expected dimension of the triangle using aD3-domain
is strictly bigger than zero and thus does not contribute toF̂βγδ(Θ̂βγ ⊗ Θ̂γδ). All
holomorphic triangles relevant to us have domains which area sum ofD1-domains.
Taking boundary conditions into account we see that we need aD1-domain in each
component. Thus, there is a unique homotopy class of triangles interesting to us. By
the Riemann mapping theorem there is a unique holomorphic map φ̂ : D̂ −→ Σ from
a surface with boundarŷD whose associated domain equals the sum ofD1-domains.
The mapφ̂ is a biholomorphism and thuŝD is a disjoint union of triangles. The
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−
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z

γ

δ
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Figure 2.7: The Heegaard surface cut open along theβ -curves.

uniqueness of̂φ tells us that the number of elements in the associated modulispace
equals the number of non-equivalentg-fold branched coveringŝD −→ D2. SinceD̂

is a union ofg discs, this covering is unique, too (up to equivalence) and thus the
associated moduli space is a one-point space.

Lemma 2.3.9 and (2.3.4) combine to give the composition law

F̂αβδ = F̂αγδ ◦ F̂αβγ .

We call a holomorphic trianglesmall if it is supported within the thin strips of isotopy
betweenβ andδ .

Lemma 2.3.10(see [40], Lemma 9.10). Let F: A −→ B be a map of filtered groups
such that F can be decomposed into F0 + l, where F0 is a filtration-preserving
isomorphism and l(x) < F0(x). Then, if the filtration on B is bounded from below, the
map F is an isomorphism of groups.

There are two important observations to make. The first is that we can equip the
chain complexes with a filtration, called thearea filtration (cf. [40]), which is indeed
bounded from below. In this situation the top-dimensional generatorΘ̂βδ is generated
by a single intersection pointx+ ∈ Tβ ∩ Tδ . The mapF̂αβδ is induced by

f̂αβδ( · ⊗ x+),
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which in turn can be decomposed into a sum off0 and l , where f0 counts small
holomorphic triangles andl those triangles whose support is not contained in the thin
strips of isotopy betweenβ and δ . The mapf0 is filtration preserving andl , if the
δ -curves are close enough to theβ -curves, strictly decreasing. By Lemma 2.3.10 the
map F̂αβδ is an isomorphism between the associated Heegaard Floer homologies.

To conclude topological invariance we have to see that the following claim is true.

Theorem 2.3.11. Two pointed admissible Heegaard diagrams associated to a3-
manifold are equivalent after a finite sequence of Heegaard moves, each of them
connecting two admissible Heegaard diagrams, which can be done in the complement
of the base-point z.

The only situation where the pointz seems to be an obstacle arises when trying to
isotope an attaching circle,α1 say, over the base-pointz. But observe that cutting the
α-circles out ofΣ we get a sphere with holes. We can isotopeα1 freely and pass the
holes by handle slides. Thus, the requirement not to passz is not an obstruction at
all. Instead of passingz we can go the other way around the surface by isotopies and
handle slides.

2.4 Knot Floer Homologies

Knot Floer homology is a variant of the Heegaard Floer homology of a manifold.
Recall that the Heegaard diagrams used in Heegaard Floer theory come from handle
decompositions relative to a splitting surface. Given a knot K ⊂ Y, we can restrict to
a subclass of Heegaard diagrams by requiring the handle decomposition to come from
a handle decomposition ofY\νK relative to its boundary. Note that in the literature
the knot Floer variants aredefined for homologically trivial knots only. However,
the definition can be carried over nearly one-to-one to give awell-defined topological
invariant for arbitrary knot classes. But the generalization comes at a price. In the
homologically trivial case it is possible to subdivide the groups in a special manner
giving rise to a refined invariant, which cannot be defined in the non-trivial case. Given
a knotK ⊂ Y, we can specify a certain subclass of Heegaard diagrams.

Definition 2.4.1. A Heegaard diagram (Σ, α, β) is said to besubordinate to the knot
K if K is isotopic to a knot lying inΣ and K intersectsβ1 once, transversely and is
disjoint from the otherβ -circles.
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SinceK intersectsβ1 once and is disjoint from the otherβ -curves we know thatK
intersects the core disc of the 2-handle, represented byβ1 , once and is disjoint from
the others (after possibly isotoping the knotK ).

Lemma 2.4.2. Every pair (Y,K) admits a Heegaard diagram subordinate to K .

Proof. By surgery theory (see [18], p. 104) we know that there is a handle decompo-
sition of Y\νK , i.e.

Y\νK ∼= (T2× [0,1]) ∪∂ h1
2 ∪∂ . . . h

1
g ∪∂ h2

1 ∪∂ . . . ∪∂ h2
g ∪∂ h3

We close up the boundaryT2 × {0} with an additional 2-handleh2∗
1 and a 3-handle

h3 to obtain

Y ∼= h3 ∪∂ h2∗
1 ∪∂ (T2× I ) ∪∂ h1

2 ∪∂ . . . h
1
g ∪∂ h2

1 ∪∂ . . . ∪∂ h2
g ∪∂ h3. (2.4.1)

We may interpreth3 ∪∂ h2∗
1 ∪∂ (T2 × [0,1]) as a 0-handleh0 and a 1-handleh1∗

1 .
Hence, we obtain the following decomposition ofY:

h0 ∪∂ h1∗
1 ∪∂ h1

2 ∪∂ . . . ∪∂ h1
g ∪∂ h2

1 ∪∂ . . . ∪∂ h2
g ∪∂ h3.

We get a Heegaard diagram (Σ, α, β) whereα = α∗
1 ∪ {α2, . . . , αg} are the co-cores

of the 1-handles andβ = {β1, . . . , βg} are the attaching circles of the 2-handles.

Having fixed such a Heegaard diagram (Σ, α, β) we can encode the knotK in a pair
of points. After isotopingK onto Σ, we fix a small intervalI in K containing the
intersection pointK∩β1 . This interval should be chosen small enough such thatI does
not contain any other intersections ofK with other attaching curves. The boundary
∂I of I determines two points inΣ that lie in the complement of the attaching circles,
i.e. ∂I = z−w, where the orientation ofI is given by the knot orientation. This leads
to a doubly-pointed Heegaard diagram (Σ, α, β,w, z). Conversely, a doubly-pointed
Heegaard diagram uniquely determines a topological knot class: Connectz with w
in the complement of the attaching circlesα andβ\β1 with an arcδ that crossesβ1

once. Connectw with z in the complement ofβ using an arcγ . The unionδ ∪ γ is
represents the knot klassK represents. The orientation onK is given by orientingδ
such that∂δ = z−w. If we use a different path̃γ in the complement ofβ , we observe
that γ̃ is isotopic toγ (in Y): SinceΣ\β is a sphere with holes an isotopy can move
γ across the holes by doing handle slides. Isotope the knot along the core discs of the
2-handles to cross the holes of the sphere. Indeed, the knot class does not depend on
the specific choice ofδ -curve.
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The knot chain complex̂CFK(Y,K) is the freeZ2-module (orZ-module) generated
by the intersectionsTα ∩Tβ . The boundary operator̂∂w , for x ∈ Tα ∩Tβ , is defined
by

∂̂w(x) =
∑

y∈Tα∩Tβ

∑

φ∈H(x,y,1)

#M̂φ · y,

whereH(x, y,1) ⊂ π2(x, y) are the homotopy classes withµ = 1 andnz = nw = 0.
We denote byĤFK(Y,K) the associated homology theoryH∗(ĈFK(Y,K), ∂̂w). The
crucial observation for showing invariance is, that two Heegaard diagrams subordinate
to a given knot can be connected by moves thatrespect the knot complement.

Lemma 2.4.3. ([38]) Let (Σ, α, β, z,w) and (Σ′, α′, β′, z′,w′) be two Heegaard dia-
grams subordinate to a given knot K⊂ Y . Let I denote the interval inside K connecting
z with w, interpreted as sitting inΣ. Then these two diagrams are isomorphic after a
sequence of the following moves:

(m1) Handle slides and isotopies among theα-curves. These isotopies may not
cross I .

(m2) Handle slides and isotopies among theβ2, . . . , βg . These isotopies may not
cross I .

(m3) Handle slides ofβ1 over theβ2, . . . , βg and isotopies.

(m4) Stabilizations/destabilizations.

For the convenience of the reader we include a short proof of this lemma.

Proof. By Theorem 4.2.12 of [18] we can transform two relative handle decomposi-
tions into each other by isotopies, handle slides and handlecreation/annihilation of the
handles written at the right ofT2× [0,1] in (2.4.1). Observe that the 1-handles may be
isotoped along the boundaryT2×{1}. Thus, we can transform two Heegaard diagrams
into each other by handle slides, isotopies, creation/annihilation of the 2-handlesh2

i

and we may slide theh1
i over h1

j and overh1∗
1 (the latter corresponds toh1

i sliding
over the boundaryT2×{1} ⊂ T2× I by an isotopy). But we are not allowed to move
h1∗

1 off the 0-handle. In this case we would lose the relative handle decomposition. In
terms of Heegaard diagrams we see that these moves exactly translate into the moves
given in (m1) to (m4). Just note that sliding theh1

i over h1∗
1 , in the dual picture, looks

like sliding h2∗
1 over theh2

i . This corresponds to move (m3).
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Proposition 2.4.4. Let K ⊂ Y be an arbitrary knot. The knot Floer homology group
ĤFK(Y,K) is a topological invariant of the knot type of K in Y . These homology
groups split with respect toSpinc(Y).

Proof. Given one of the moves (m1) to (m4), the associated Heegaard Floer homolo-
gies are isomorphic, which is shown using one of the isomorphisms given in§2.3.
Each of these maps is defined by counting holomorphic discs with punctures, whose
properties are shown by defining maps by counting holomorphic discs with punctures.

Isotopies/Almost Complex Structure.Denote byJ the path of almost complex struc-
tures used in the definition of the Heegaard Floer homologies. Let M be an isotopy or
perturbation ofJ. Let Φ̂ be the isomorphism induced byM . We split the isomorphism
up into

Φ̂ = Φ̂
w

+ Φ̂
6=,

where Φ̂w is defined by counting holomorphic discs with punctures (fora precise
definition look into§2.3.2 and§2.3.3) that fulfill nw = 0. Let us denote withM0 the
associated moduli space used to define the mapΦ̂. The index indicates the value of
the indexµ. The chain map property of̂Φ was shown by counting ends ofM1 which
contains the same objects we needed to defineΦ̂ but now with the index fulfilling
µ = 1 (see Definition 2.1.6). We restrict our attention toMw

0 andMw
1 , the superscript

w indicates that we look at the holomorphic elements inM0 (or M1 respectively)
with intersection numbernw = 0: The additivity of the intersection numbernw and
the positivity of intersections guarantees that the ends ofMw

1 lie within the spaceMw
0

provided thatM respects the pointw. If M is an isotopy, respectingw means, that no
attaching circle crosses the pointw. If M is a perturbation ofJ, respectingw means,
that we perturbJ through nearly symmetric almost complex structures such that V
(cf. Definition 2.1.19) also contains{w} × Symg−1(Σ). Hence, we have the equality

(∂M1)w
= ∂Mw

1 .

Thus, Φ̂w has to be a chain map between the respective knot Floer homologies. To
show thatΦ̂ is an isomorphism, we invert the moveM we have done and construct the
associated morphism̂Ψ. To show that̂Ψ is the inverse, we construct a chain homotopy
equivalence between̂Ψ ◦ Φ̂ and the identity (or between̂Φ ◦ Ψ̂ and the identity) by
counting elements ofMch

0 which are defined by constructing a family of moduli spaces
Mτ

−1, τ ∈ [0,1], and combining them to

Mch
0 :=

⊔

τ∈[0,1]

Mτ
−1.
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The spacesMτ
−1 are defined like done in§2.3.2 and§2.3.3. We show the chain

homotopy equation by counting ends ofMch
1 . Restricting our attention toMch,w, this

space consists of the union of spacesMτ,w
−1 , τ ∈ [0,1] (cf. §2.3.2 and§2.3.3). We

obtain the equality

(∂Mch
0 )w

= ∂Mch,w
0 .

And hence we see that̂Φw is an isomorphism.

Handle slides.In case of the knot Floer homology we are able to define a pairing

f̂αβγ : ĈFK(Σ, α, β,w, z) ⊗ ĈFK(Σ, β, γ,w, z) −→ ĈFK(Σ, α, γ,w, z)

induced by a doubly-pointed Heegaard triple diagram (Σ, α, β, γ,w, z). We have to
see, that in case the triple is induced by a handle slide, the knot Floer homology
ĤFK(Σ, β, γ,w, z) carries a top-dimensional generatorΘ̂βγ , analogous to the discus-
sion for the Heegaard Floer homologies, with similar properties (recall the composition
law). It is easy to observe that, in case of a handle slide, thepointsw andz lie in the
same component ofΣ\{β ∪ γ}. Hence, we have an identification

ĤFK(Σ, β, γ,w, z) = ĤF(#g(S2× S1)).

Counting triangles withnw = 0, the positivity of intersections and the additivity of the
intersection numbernw guarantees that the discussion carries over verbatim and gives
invariance here.

Remark. If a handle were slid overβ1 , we would leave the class of subordinate
Heegaard diagrams. Recall that subordinate Heegaard diagrams come from relative
handle decompositions.

Admissibility

The admissibility condition given in Definition 2.1.17 suffices to give a well-defined
theory. However, since we have an additional pointw in play, we can relax the
admissibility condition.

Definition 2.4.5. We call a doubly-pointed Heegaard diagram (Σ, α, β,w, z) extremely
weakly admissiblefor the Spinc-structures if for every non-trivial periodic domain,
with nw = 0 and 〈c1(s),H(D)〉 = 0, the domain has both positive and negative
coefficients.
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With a straightforward adaptation of the proof of well-definedness in the case of̂∂z we
get the following result (see [40], Lemma 4.17, cf. Definition 2.1.17 and cf. proof of
Theorem 2.1.3).

Theorem 2.4.6.Let (Σ, α, β,w, z) be an extremely weakly admissible Heegaard dia-
gram. Then∂̂w is well-defined and a differential. �

Note that Ozsv́ath and Szab́o impose weak admissibility of the Heegaard diagram
(Σ, α, β, z). The introduction of our relaxed condition is done since wewill find setups
in this thesis where it is convenient to relax the admissibility condition like introduced.

Other knot Floer homologies

By permitting variations ofnz in the differential we define the homology HFK− : Let
CFK−(Y,K) be theZ[U−1]-module (orZ2[U−1]-module) generated by the intersec-
tion pointsTα ∩ Tβ . A differential ∂−w is defined by

∂−w (x) =
∑

y∈Tα∩Tβ

∑

φ∈H(x,y,1)

#M̂φ · y,

whereH(x, y,1) ⊂ π2(x, y) are the homotopy classes withnw = 0 (possiblynz 6= 0)
andµ = 1. To make this a well-defined map we may impose the strong admissibility
condition on the underlying Heegaard diagram or relax it like it was done for weak
admissibility in Definition 2.4.5. Using this construction, and continuing like in§2.2,
we define variants we denote by HFK∞ and HFK+ . The groups are naturally connected
by exact sequences analogous to those presented in Lemma 2.2.3.

2.4.1 Refinements

If the knot K is null-homologous, we get, using a Mayer-Vietoris computation, that

Spinc(Y0(K)) = Spinc(Y)× Z. (2.4.2)

Alternatively, by interpretation of Spinc-structures as homology classes of vector fields,
i.e. homotopy classes over the 2-skeleton ofY, we can prove this result and see that
there is a very geometric realization of the correspondence(2.4.2). Given a Spinc-
structuret on Y0(K), we associate to it the pair (s, k), wheres is the restriction oft on
Y and k an integer we will define in a moment. Beforehand, we would like to say in
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what way the phraserestriction of t onto Ymakes sense. Pick a vector fieldv in the
homology class oft and restrict this vector field toY\νK . Observe that we may regard
Y\νK as a submanifold ofY0(K). The restricted vector field may be interpreted as
sitting onY. We extendv to the tubular neighborhoodνK of K in Y, which determines
a Spinc-structures on Y. However, the induced Spinc-structure does not depend on
the special choice of extension ofv on νK , sinceK is homologically trivial.

To a Spinc-structuret we can associate a linkLt and its homology class determines the
Spinc-structure. Denote byµ0 a meridian ofK in Y, interpreted as sitting inY0(K).
ThenLt can be written as a sum

Lt = k · µ0 + . . . ,

and thus we can computek with

k = lkY(L, λ) = #Y(L,F) = #Y0(K)(L, F̂) = 〈
1
2

c1(t), [F̂]〉,

whereλ is a push-off ofK in Y and F̂ is obtained by taking a Seifert surfaceF of K
in Y and capping it off with a disc inY0(K).

We can try to separate intersection pointsTα ∩ Tβ with respect to Spinc-structures of
Y0(K). This defines a refined invariant̂CFK(Y,K, t), for t ∈ Spinc(Y0(K)), and we
have

ĈFK(Y,K, s) =
⊕

t∈Hs

ĈFK(Y,K, t),

whereHs ⊂ Spinc(Y0(K)) are the elements extendings∈ Spinc(Y). We have to show
that ∂̂w preserves this splitting. We point the interested reader to[38].

2.5 Maps Induced By Cobordisms

The pairing introduced in§2.3.4 can be used to associate maps to cobordisms. In
general, every cobordism between two connected 3-manifolds Y and Y′ can be de-
composed into 1-handles, 2-handles and 3-handles (cf. Proposition 4.2.13 in [18]). All
cobordisms appearing through our work will be induced by surgeries on a 3-manifold.
A surgery corresponds to a 2-handle attachment to the trivial cobordismY× I . For
this reason we will not discuss 1-handles and 3-handles. We will give the construction
for cobordisms obtained by attachments of one single 2-handle. For a definition of the
general, very similar construction, we point the interested reader to [44].
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Given a framed knotK ⊂ Y, we fix an admissible Heegaard diagram subordinate toK .
Without loss of generality, we can choose the diagram such that β1 = µ is a meridian
of the first torus component ofΣ. The framing ofK is given, by pushingK off itself
onto the Heegaard surface. The resulting knot onΣ is determined byλ+ n · µ, for a
suitablen ∈ Z. With this done, we can represent the surgery by the Heegaardtriple
diagram (Σ, α, β, γ) whereγi , i ≥ 2, are isotopic push-offs of theβi , perturbed, such
that γi intersectsβi in a pair of cancelling intersection points. The curveγ1 equals
λ+ n · µ.

Proposition 2.5.1. The cobordism Xαβγ ∪∂ (#g−1D3 × S1) is diffeomorphic to the
cobordism WK given by the framed surgery along K .

We define
F̂WK = f̂ ∗αβγ

as the map induced by the cobordismWK . Of course, for this to make sense, we
have to show that̂FWK does not depend on the choices made in its definition. This is
shown by the following recipe: Suppose we are given mapsF̂1 and F̂2, induced by
two sets of data that can be connected via a Heegaard move. Then these maps fit into
a commutative box

ĤF
bF1 - ĤF

ĤF

∼= ?
bF2 - ĤF

∼=?

where the associated Heegaard Floer homologies are connected by the isomorphism
induced by the move done to connect the diagrams. If we did a handle slide, we use
associativity together with a conservation property analogous to Lemma 2.3.9 to show
a composition law reading

F̂αγγ′ ◦ F̂αβγ = F̂αβγ′ .

In a similar vein one covers handle slides among theα-circles. Invariance under
Isotopies and changes of almost complex structures is shownby proving, that the
isomorphisms induced by these moves make the correspondingdiagram commute.

Given a framed linkL = K1 ⊔ · · · ⊔ Km, observe that we can obviously define a map

F̂L : ĤF(Y) −→ ĤF(YL),

whereYL is the manifold obtained by surgery alongL in Y, in the same way we did
for a single attachment. We claim that associativity, together with a conservation law
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like given in Lemma 2.3.9, will suffice to show that the mapF̂L associated to multiple
attachments is a composition

F̂L = F̂Km ◦ · · · ◦ F̂K1

of the mapŝFKi associated to the single attachments along theKi . The associativity
will prove that the maps in this chaincommute. Although we have to be careful by
sayingthey commute. The maps, as we change the order of the attachments, are defined
differently and, thus, differ depending on the attachment order.

There is a procedure for defining maps associated to 1-handleattachments and 3-
handle attachments. Their construction is not very enlightening, and the cobordisms
appearing in our discussions will mostly be induced by surgeries.

2.6 The Surgery Exact Triangle

Denote byK a knot in Y and letn be a framing of that knot. We will briefly recall
the notion of framings to fix the notation. Given a tubular neighborhoodνK →֒ Y
of K , we fix a meridianµ of the boundary∂νK . A framing is given by a push-off
n of K , sitting on∂νK , such that #(µ,n) = 1. The pairµ, λ determines a basis for
H1(∂νK; Z). Any other framingλ′ can be written asλ′ = m · µ + λ, for an integer
m ∈ Z, and vice versa any of these linear combinations determinesa framing onK .
Thus, when writingn as a framing forK it makes sense to talk about the framing
n + µ. If the knot is homologically trivial, it bounds a Seifert surface which naturally
induces a framing on the knot calledthe Seifert framing. This serves as a canonical
framing, and having fixed this framing we can talk about framings as an integern ∈ Z.
This identification will be done whenever it makes sense.

There is a long exact sequence

. . .
∂∗−→ ĤF(Y)

bF1−→ ĤF(Yn
K)

bF2−→ ĤF(Yn+µ
K )

∂∗−→ . . . , (2.6.1)

whereF̂i denote the maps associated to the cobordisms induced by the surgeries. The
mapF̂2 is induced by a surgery along a meridian ofK with framing−1. The exactness
of the sequence is proved by showing thatF̂1 – on the chain level – can be perturbed
within its chain homotopy class to fit into a short exact sequence of chain complexes
and chain maps (see [39])

0−→ ĈF(Y)
ebF1−→ ĈF(Yn

K)
bF2−→ ĈF(Yn+µ

K ) −→ 0. (2.6.2)
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The map∂∗ in (2.6.1) denotes the induced coboundary. This enables us to prove the
existence of the surgery exact triangle.

Theorem 2.6.1.In the situation described above, letν denote a meridian ofµ and F̂3

the map induced by surgery alongν with framing−1. There is a long exact sequence

ĤF(Y)
bF1 - ĤF(Yn

K)

ĤF(Yn+µ
K )

� bF 2

� bF
3

which is calledsurgery exact triangle.

n n+µ n n n n n

K K K K K K K

−1 0 −1 −1

µ µ µ µν
−1

ν
0

Figure 2.8: The topological situation in the exact triangle.

Proof. Observe that the topological situation is very symmetric. The long exact se-
quence (2.6.1) corresponds to the topological situation pictured in Figure 2.8. Each
arrow in Figure 2.8 corresponds to an exact sequence of type (2.6.1). With the iden-
tifications given, we can concatenate the three sequences togive the surgery exact
sequence of Theorem 2.6.1.

A second proof, one more appealing to our aesthetic sense, although only valid for
Z2-coefficients, was also developed by Ozsváth and Szab́o. We will discuss the proof
in the remainder of this paragraph. It contains a very interesting algebraic approach
for showing exactness of a sequence.

The composition̂f2 ◦ f̂1 in the sequence

ĈF(Y)
bf1−→ ĈF(Yn

K)
bf2−→ ĈF(Yn+µ

K ) (2.6.3)

is null-chain homotopic. Let (Σ, α, β, z) be a Heegaard diagram subordinate to the
knot K ⊂ Y. We can choose the data such thatβ1 is a meridian of the first torus
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component ofΣ. A Heegaard diagram ofYn
K can be described by (Σ, α, γ, z) where

γi , i ≥ 2 are isotopic push-offs of theβi such thatβi andγi meet in two cancelling
intersections transversely. The curveγ1 equalsn · β1 + λ whereλ is the longitude of
the first torus component ofΣ determining the framing onK . We define a fourth set
of attaching circlesδ whereδi , i ≥ 2 are push-offs of theγi which meet theγi andδi

in two cancelling intersections. The curveδ1 equals (n+ 1)β1 + λ. Thus, (Σ, α, δ) is
a Heegaard diagram ofYn+µ

K . By associativity (2.3.8), the composition̂f2 ◦ f̂1 is chain
homotopic to

f̂αβδ( · ⊗ f̂βγδ(Θ̂βγ ⊗ Θ̂γδ)),

where the chain homotopyH is given by counting holomorphic rectangles with suitable
boundary conditions (cf.§2.3.4). To computêfβγδ(Θ̂βγ ⊗ Θ̂γδ) we use a model
calculation. Figure 2.9 illustrates the Heegaard triple diagram.

Θ̂βγ

Θ̂γδ

z

δ1

β1 Θ̂γδ

γ1
β2 γ2

δ2

Figure 2.9: Heegaard triple diagram for computation off̂βγδ(Θ̂βγ ⊗ Θ̂γδ).

There are exactly two homotopy classes of Whitney triangleswe have to count. Each
domain associated to the homotopy classes is given by a disjoint union of triangles.
Thus, the moduli spaces associated to these homotopy classes each carry one single
element (cf. Lemma 2.3.9). Hence, inZ2-coefficients

f̂βγδ(Θ̂βγ ⊗ Θ̂γδ) = 2 · Θ̂βδ = 0.

In general we have to see that we can choose the signs of the associated elements
differently. But observe that the domains of both homotopy classes contributing in
our signed count differ by a triply-periodic domain. We can choose the signs on these
elements differently.

This discussion carries over verbatim for any of the maps in the surgery exact sequence.
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The symmetry of the situation, as indicated in Figure 2.8, makes it possible to carry
over the proof given here.

There is an algebraic trick to show exactness on the homological level. Let

H : ĈF(Y) −→ ĈF(Yn+µ
K )

denote the null-homotopy of̂f2 ◦ f̂1 (cf. §2.3.4). Define the chain complexAbf1,bf2
to be

given by the moduleA = ĈF(Y)⊕ ĈF(Yn
K)⊕ ĈF(Yn+µ

K ) with the differential

∂ =



∂̂Y 0 0
f̂1 ∂̂Yn

K
0

H f̂2 ∂̂Yn+µ
K


 .

Lemma 2.6.2. The sequence (2.6.3) is exact on the homological level atĈF(Yn
K) if

H∗(Abf1,bf2
) = 0.

Proof. Suppose we are given an elementb ∈ ĈF(Yn
K) ∩ ker(̂f2) with ∂̂Yn

K
b = 0. Since

H∗(Abf1,bf2
, ∂) is trivial there is an element (x, y,w) ∈ A such that (0,b,0) = ∂(x, y,w).

Thus, we have
b = f̂1(x) + ∂̂Yn

K
(y)

proving, that [b] ∈ im(F̂1).

Definition 2.6.3. For a chain mapf : A −→ B betweenZ2-vector spaces we define
its mapping coneto be the chain complexM(f ), given by the moduleA⊕ B with
differential

∂f =

(
∂A 0
f ∂B

.

)

The mapping cone is a chain complex (cf. Lemma 3.1.1).

From the definition of mapping cones there is a short exact sequence of chain complexes

0−→ ĈF(Yn+µ
K )

bf1−→ Abf1,bf2

bf2−→ M(̂f1) −→ 0

inducing a long exact sequence between the associated homologies. The connecting
morphism of this long exact sequence is induced by

(H, f̂2) : M(̂f1) −→ ĈF(Yn+µ
K ).

The triviality of H∗(Abf1,bf2
, ∂) is the same as saying that (H, f̂2)∗ is an isomorphism.

60



Lemma 2.6.4([42], Lemma 4.2). Let {Ai}i∈Z be a collection of modules and let

{fi : Ai −→ Ai+1}i∈Z

be a collection of chain maps such that fi+1 ◦ fi , i ∈ Z is chain homotopically trivial
by a chain homotopy Hi : Ai −→ Ai+2. The maps

ψi = fi+2 ◦ Hi + Hi+1 ◦ fi : Ai −→ Ai+3

should induce isomorphisms between the associated homologies. Then the maps
(Hi , fi+1) : M(fi) −→ Ai+2 induce isomorphisms on the homological level.

If we can show that the sequence

. . .
bf3−→ ĈF(Y)

bf1−→ ĈF(Yn
K)

bf2−→ ĈF(Yn+µ
K )

bf3−→ . . .

satisfies the assumptions of Lemma 2.6.4, then for every pairf̂i and f̂i+1 , the associated
map (H, f̂i+1)∗ is an isomorphism. With the arguments from above, i.e. analogous to
Lemma 2.6.2, we conclude that im(F̂i) = ker(̂Fi+1). Hence, Theorem 2.6.1 follows.

2.7 The Contact Element andL̂

2.7.1 Contact Structures

A 3-dimensional contact manifold is a pair (Y, ξ) whereY is a 3-dimensional manifold
andξ ⊂ TY a hyperplane bundle that can be written as the kernel of a 1-form α with
the property

α ∧ dα 6= 0. (2.7.1)

Those 1-forms satisfying (2.7.1) are calledcontact forms. Given a contact manifold
(Y, ξ), the associated contact form is not unique. Supposeα is a contact form ofξ
then, given a non-vanishing functionλ : Y −→ R+ , we can change the contact form
to λα without affecting the contact condition (2.7.1):

λα ∧ d(λα) = λα ∧ dλ ∧ α+ λ2α ∧ dα = λ2α ∧ dα 6= 0.

The existence of a contact form implies that the normal direction TY/ξ is trivial. We
define a sectionRα by

α(Rα) 6= 0 and ιRαdα = 0.

This vector field is calledReeb fieldof the contact formα. The contact condition
implies thatdα is a non-degenerate form onξ . Thus,ιRαdα = 0 implies that for each
point p ∈ Y the vector (Rα)p is an element ofTpY\ξp. Thus,Rα is a section ofTY/ξ .
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Definition 2.7.1. Two contact manifolds (Y, ξ) and (Y′, ξ′) are calledcontactomor-
phic if there is a diffeomorphismφ : Y −→ Y′ preserving the contact structures,
i.e. such thatTφ(ξ) = ξ′ . The mapφ is acontactomorphism.

It is a remarkable property of contact manifolds that there is a unique standard model
for these objects.

Definition 2.7.2. The pair (R3, ξstd), whereξstd is the contact structure given by the
kernel of the 1-formdz− y dx, is calledstandard contact space.

Every contact manifold is locally contactomorphic to the standard contact space. This
is known asDarboux’s theorem. As a consequence we will not be able to derive
contact invariants by purely local arguments, in contrast to differential geometry where
for instance curvature is a constraint to the existing localmodel.

Theorem 2.7.3(Gray Stability, cf. [16]). Each smooth homotopy of contact structures
(ξt)t∈[0,1] is induced by an ambient isotopyφt , i.e. the condition Tφt(ξ0) = ξt applies
for all t ∈ [0,1].

An isotopy induced homotopy of contact structures is calledcontact isotopy. So, a
homotopy of contact structures can be interpreted as an isotopy and, vice versa, an
isotopy induces a homotopy of contact structures. As in the case of vector fields, we
have a natural connection to isotopies, i.e. objects whose existence and form will be
closely related to the manifold’s topology.

A contact vector field X is a vector field whose local flow preserves the contact
structure. An embedded surfaceΣ →֒ Y is calledconvexif there is a neighborhood of
Σ in Y in which a contact vector field exists that is transverse toΣ. The existence of a
contact vector field immediately implies that there is a neighborhoodΣ × R →֒ Y of
Σ in which the contact structure is invariant inR-direction. Thus, convex surfaces are
the objects along which we glue contact manifolds together.

Definition 2.7.4. A knot K ⊂ Y is calledLegendrian if it is tangent to the contact
structure.

The contact condition implies that, on a 3-dimensional contact manifold (Y, ξ), only 1-
dimensional submanifolds, i.e. knots and links, can be tangent toξ . Every Legendrian
knot admits a tubular neighborhood with a convex surface as boundary. Hence, it is
possible to mimic surgical constructions to define the contact geometric analogue of
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surgery theory, calledcontact surgery. Contact surgery in arbitrary dimensions was
introduced by Eliashberg in [8]. His construction, in dimension 3, corresponds to
(−1)-contact surgeries. For 3-dimensional contact manifolds Ding and Geiges gave
in [2] a definition of contact-r -surgeries (cf. also [3]) for arbitraryr ∈ Q > 0. It is
nowadays one of the most significant tools for 3-dimensionalcontact geometry. Its
importance relies in the following theorem.

Theorem 2.7.5(see [3]). Given a contact manifold(Y, ξ), there is a linkL = L+⊔L−

in S3 such that contact-(+1)-surgery along the linkL+ and contact-(−1)-surgery
along L− in (S3, ξstd) yields (Y, ξ).

Moreover, if we choose cleverly, we can accomplishL+ to have just one component.
Using (−1)-contact surgeries only, we can connect an arbitrary contact manifold with
an arbitrary overtwisted contact manifold. For a definitionof overtwistedness we point
the reader to [16]. Thus, starting with a knotK so that (+1)-contact surgery along
K yields an overtwisted contact manifold (Y′, ξ′), for any contact manifold (Y, ξ), we
can find a linkL− , such that (−1)-contact surgery alongL− in (Y′, ξ′) yields (Y, ξ).
An example for such a knotK is the Legendrian shark (see Figure 3.19).

2.7.2 Open Books

For a detailed treatment of open books we point the reader to [9].

Definition 2.7.6. An open bookon a closed, oriented 3-manifoldY is a pair (B, π)
defining a fibration

P →֒ Y\B
π
−→ S1,

whereP is an oriented surface with boundary∂P = B. For every componentBi of
B there is a neighborhoodι : D2× S1 →֒ νBi ⊂ Y such that the coreC = {0} × S1

is mapped ontoBi underι andπ commutes with the projection (D2× S1)\C −→ S1

given by (r · exp(it),exp(is)) 7−→ exp(it). The submanifoldB is calledbinding andP
thepage of the open book.

An abstract open book is a pair (P, φ) consisting of an oriented genus-g surface
P with boundary and a homeomorphismφ : P −→ P that is the identity near the
boundary ofP. The surfaceP is calledpage and φ the monodromy. Given an
abstract open book (P, φ), we may associate to it a 3-manifold. Letc1, . . . , ck denote
the boundary components ofP. Observe that

(P× [0,1])/(p,1) ∼ (φ(p),0) (2.7.2)
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is a 3-manifold. Its boundary is given by the tori

(
(ci × [0,1])/(p,1) ∼ (p,0)

)
∼= ci × S1.

Fill in each of the holes with a full torus D2× S1: we glue a meridional disc D2×{⋆}
onto{⋆}×S1 ⊂ ci ×S1. In this way we define a closed, oriented 3-manifoldY(P, φ).
Denote byB the union of the cores of the tori D2× S1. The setB is calledbinding.
By definition of abstract open books we obtain an open book structure

P →֒ Y(P, φ)\B−→ S1

onY(P, φ). Conversely, given an open book by cutting a small tubular neighborhoodνB
out of Y, we obtain aP-bundle overS1. Thus, there is a homeomorphismφ : P−→ P
such that

Y\νB∼= (P× [0,1])/(p,1) ∼ (φ(p),0).

Inside the standard neighborhoodνB, as given in the definition, the homeomorphism
φ is the identity. So, the pair (P, φ) defines an abstract open book.

Definition 2.7.7. Two abstract open books (P, φ) and (P, φ′) are calledequivalent if
there is a homeomorphismh: P −→ P, which is the identity near the boundary, such
that φ ◦ h = φ′ ◦ h. We denote by ABS(Y) the set of abstract open books (P, φ) with
Y(P, φ) = Y, up to equivalence.

Two open books are called equivalent if they are diffeomorphic. The set of equivalence
classes of open books is denoted by OB(Y). An abstract open book defines an open
book up to diffeomorphism. With the construction given above we define a map

Ψ : ABS(Y) −→ OB(Y)

and its inverse. Thus, to some point, open books and abstractopen books are the same
objects. Sometimes, it is more convenient to deal with abstract open books rather than
open books themselves.

2.7.3 Open Books, Contact Structures and Heegaard Diagrams

Given an open book (B, π) or an abstract open book (P, φ), define a surfaceΣ by
gluing together two pages at their boundary

Σ = P1/2 ∪∂ P1.
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The manifoldY equals the unionH1∪H2 whereHi = π−1([i/2, (i + 1)/2]), i = 0,1.
Any curve γ in Y running fromH1 to H2, when projected ontoS1, has to intersect
{1/2,1} at some point. Thus, the curveγ is forced to intersectΣ. The submanifolds
Hi are handlebodies of genusg(Σ) and

Y = H0 ∪∂ H1

is a Heegaard decomposition ofY.

Definition 2.7.8. A systema = {a1, . . . ,an} of disjoint, properly embedded curves
on P is calledcut systemif P\{a1, . . . ,an} is topologically a disc.

To system of curves is a cut system if and only if it defines a basis for the first homology
of (P, ∂P).

Interpreting the curveai as sitting onP1/2 andai as sitting insideP1, we can combine
them toαi = ai ∪∂ ai , i = 1, . . . ,n. The discai × [0,1/2] can be embedded into
P×[0,1] and by going over to the quotient (2.7.2) we obtain a disc inH0 with boundary
αi . This means we can interpret the set{α1, . . . , αn} as a set of attaching circles for
the handlebodyH0. The gluing of the two handlebodiesH0 and H1 is given by the
pair (id, φ) where id is the identity onP1/2 and φ the monodromy, interpreted as
a mapP1 −→ P0. These two maps combine to a map∂H0 −→ ∂H1. Define bi ,
i = 1, . . . ,n, as small push-offs of theαi that intersect these transversely. Then we
defineβi = bi ∪ φ(bi ), i = 1, . . . ,n. Thus we following lemma is immediate.

Lemma 2.7.9. The triple (Σ, α, β) is a Heegaard diagram of Y . �

Given an abstract open book (P, φ), defineP′ by attaching a 1-handle toP, i.e. P′ =

P∪ h1 . Choose a knotγ in P′ that intersects the co-core ofh1 once, transversely. The
monodromyφ can be extended as the identity overh1, and, thus, may be interpreted as
a homeomorphism ofP′ . We denote byD±

γ the positive/negative Dehn twist alongγ .

Definition 2.7.10. The abstract open book (P′,D±
γ ◦ φ) is called apositive/negative

Giroux stabilization of (P, φ).

We will see that open books, up to positive Giroux stabilizations, correspond one-to-one
to isotopy classes of contact structures.

Lemma 2.7.11.Stabilizations preserve the underlying3-manifold, i.e. the manifolds
Y(P′, φ′) and Y(P, φ) are isomorphic.
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A priori, it is not clear that stabilizations preserve the associated 3-manifold. A proof
of this lemma can be found in [9]. But in the following we will discuss an alternative
proof. Our proof uses a construction introduced by Lisca, Ozsvá, Stipsicz and Szabó
(see [27], Alternative proof of Theorem 2.11).

Lemma 2.7.12([27]). There is a cut system{a1, . . . ,an} on (P, φ) that is disjoint
from γ ∩ P.

Proof. Denote byγ′ the arcγ∩P. If P\γ′ is connected, we choosea1 to be a push-off
of γ′ and then extend it to a cut system ofP. This is possible sinceH1(P, ∂P) is torsion
free and [a1] a primitive element in it. IfP\γ′ disconnects into the componentsP1

and P2, then we may choose cut systems onPi , i = 1,2, arbitrarily. The union of
these cut systems will be a cut system ofP and disjoint fromγ′ .

The given cut system onP can be extended to a cut system onP′ . We can choosean+1

as the co-core ofh1 . The set of curvesa1, . . . ,an+1 is a cut system ofP′ . Choose the
bi , i = 1, . . . ,n + 1, as small isotopic push-offs of theai . Then, for i = 1, . . . ,n, we
have

φ′(bi) = φ ◦ D±
γ (bi) = φ(bi )

φ′(bn+1) = D±
γ ◦ φ(bn+1) = D±

γ (bn+1).

Consequently,φ′(bn+1) looks like γ outside the handleh1. The curveβn+1 has to be
disjoint from allαi , i < n + 1.

Proof of Lemma 2.7.11.On the level of cobordisms the pairαn+1 and βn+1 which
meet in a single point correspond to a cancelling pair of handles attached to the boundary
Y(P, φ)× {1} of Y(P, φ)× I . Thus, we have

Y(P′, φ′) = S3#Y(P, φ).

A contact structureξ is supportedby an open book (B, π) of Y if ξ is contact isotopic
to a contact structureξ′ which admits a contact formα such thatdα is a positive area
form on each pagePθ = π−1(θ) andα > 0 on∂Pθ . We gave the definition as a matter
of completeness, but a detailed understanding of this definition will not be interesting
to us in the remainder of this thesis. For a detailed treatment we point the reader to [9].
Every contact structure is supported by an open book decomposition.
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Theorem 2.7.13(cf. [9]). There is a one-to-one correspondence between isotopy
classes of contact structures and open book decompositionsup to positive Giroux
stabilization.

Given a Legendrian knotL ⊂ (Y, ξ), we know by definition that its tangent vector
at every point ofL lies in ξ . The tangent bundle of a closed, oriented 3-manifold is
orientable, which especially implies the triviality ofTY|L . The coorientability ofξ
implies that ξ|L is trivial, too. By definition of Legendrian knots the tangent vector
of L lies in ξ . The 2-dimensionality implies thatξ , in addition, contains a normal
direction. The triviality of the tangent bundle overL implies that this normal direction
determines a framing ofL. This framing which is determined by the contact structure
is calledcontact framing. In case of contact surgery it plays the role of the canonical
0-framing, i.e. we measure contact surgery coefficients with respect to the contact
framing. Note that ifL is homologically trivial, a Seifert surface determines a second
framing onL. Surgery coefficients in a surgery presentation of a manifold are usually
determined by measuring the surgery framing with respect tothis canonical Seifert
framing (cf.§2.6). Measuring the contact framing with respect to the Seifert framing
determines a numbertb(L) ∈ Z which is called theThurston-Bennequin invariant.
This is certainly an invariant ofL underLegendrian isotopies, i.e. isotopies ofL
through Legendrian knots. By definition, the coefficients are related by

smooth surgery coefficient= contact surgery coefficient+ tb(L).

It is possible to find an open book decomposition which supports ξ such thatL sits
on a page of the open book. Furthermore, we can arrange the page framing and the
contact framing to coincide. This is the most important ingredient for applications of
Heegaard Floer homology in the contact geometric world. Theproof relies on the fact
that it is possible to find CW-decompositions of contact manifolds which are adapted
to the contact structure. These are calledcontact cell decompositions. The 1-cells in
such a decomposition are Legendrian arcs. With these decompositions it is possible to
directly construct an open book supporting the contact structure. Since the 1-cells are
Legendrian arcs we can include a fixed Legendrian knot into the decomposition and in
this way modify the open book such that the result follows. For details we point the
reader to [9].

Lemma 2.7.14(cf. [27]). Let L⊂ (Y, ξ) be a Legendrian knot and(P, φ) an abstract
open book supportingξ such that L sits on a page of the underlying open book. Let
(Y±

L , ξ
±
L ) denote the3-manifold obtained by(±1)-contact surgery along L. Then

(P,D∓
γ ◦ φ) is an abstract open book supporting the contact structureξ±L .
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2.7.4 The Contact Class

Given a contact manifold (Y, ξ), we fix an open book decomposition (P, φ) which sup-
portsξ . This open book defines a Heegaard decomposition and, with the construction
stated in the last paragraph, we are able to define a Heegaard diagram. We now put in
an additional datum. The curvesbi are isotopic push-offs of theai . We choose them
like indicated in Figure 2.10: We push thebi off the ai by following with ∂bi the
positive boundary orientation of∂P.

PageP×{1/2} of the open book

z

ai bi

Figure 2.10: Positioning of the pointz and choice ofbi .

The point z is placed outside the thin strips of isotopy between theai and bi . We
denote byxi the unique intersection point betweenai andbi . Define

EH(P, φ, {a1, . . . ,a2g}) = {x1, . . . , x2g}.

By construction of the Heegaard diagramEH is a cycle in the Heegaard Floer homology
associated to the data (−Σ, α, β, z).

Lemma 2.7.15(see [39]). The Heegaard Floer cohomologŷHF∗(Y) is isomorphic to
ĤF(−Y).

The Heegaard diagram (−Σ, α, β) is a Heegaard diagram for−Y and, thus, represents
the Heegaard Floer cohomology ofY. Instead of switching the surface orientation
we can swap the boundary conditions of the Whitney discs at their α-boundary and
β -coundary, i.e. we will be interested in Whitney discs in (Σ, β, α). The elementEH
can be interpreted as sitting in the Heegaard Floer cohomology of Y. The push-offbi

is chosen such that there is no holomorphic disc emanating from xi .

Theorem 2.7.16.The class EH(P, φ, {a1, . . . ,a2g}) is independent of the choices
made in its definition. Moreover, the associated cohomologyclass c(Y, ξ) is an isotopy
invariant of the contact structureξ , up to sign. We call c(Y, ξ) contact element.
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The proof of this theorem relies on several steps we would like to sketch: Anarc slide
is a geometric move allowing us to change the cut system. Any two cut systems can
be transformed into each other by a finite sequence of arc slides. Leta1 anda2 be two
adjacent arcs. Adjacent means that inP\{a1, . . . ,a2g} one of the boundary segments
associated toa1 and a2 are connected via one segmentτ of ∂P. An arc slide ofa1

over a2 (or vice versa) is a curve in the isotopy class ofa1 ∪ τ ∪ a2. We denote it by
a1 + a2 .

Lemma 2.7.17.Any two cut systems can be transformed into each other with a finite
number of arc slides.

It is easy to observe that an arc slide affects the associatedHeegaard diagram by two
handle slides. The change under theα-circles is given by a handle slide ofα1 over
α2 . But the associatedβ -curve moves with theα-curve, i.e. we have to additionally
slideβ1 overβ2 . We have to see that these handle slides preserve the contactelement.
To be more precise: After the first handle slide we moved out ofthe set of Heegaard
diagrams induced by open books. Thus, we cannot see the contact element in that
diagram. After the second handle slide, however, we move back into that set and,
hence, see the contact element again. We have to check that the composition of the
maps between the Heegaard Floer cohomologies induced by thehandle slides preserves
the contact element. This is a straightforward computation.

Definition 2.7.18. Let a Heegaard diagram (Σ, α, β) and a homologically essential,
simple, closed curveδ on Σ be given. The Heegaard diagram (Σ, α, β) is called
δ -adapted if the following conditions hold.

1. It is induced by an open book and the pairα, β is induced by a cut system
(cf. §2.7.3) for this open book.

2. The curveδ intersectsβ1 once and does not intersect any other of theβi , i ≥ 2.

We can always findδ -adapted Heegaard diagrams. This is already stated in [20] and
[27] but not proved. We wish to give a proof because this specific choice is crucial
throughout this thesis

Lemma 2.7.19. Let (P, φ) be an open book andδ ⊂ P a homologically essential
closed curve. There is a choice of cut system on P that inducesa δ -adapted Heegaard
diagram.
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Observe thata1, . . . ,an to be a cut system of a pageP essentially means to be a basis
of H1(P, ∂P): Suppose the curves are not linearly independent. In this case we are
able to identify a surfaceF ⊂ P, F 6= P, bounding a linear combination of some of the
curvesai . But this means the cut system disconnects the pageP in contradiction to the
definition. Conversely, suppose the curves in the cut systemare homologically linearly
independent. In this case the curves cannot disconnect the page. If they disconnected,
we could identify a surfaceF in P with boundary a linear combination of some of the
ai . But this contradicts their linear independence. The fact that Σ\{a1, . . . ,an} is a
disc shows that every element inH1(P, ∂P) can be written as a linear combination of
the curvesa1, . . . ,an .

Proof. Without loss of generality, we assume thatP has connected boundary: Suppose
the boundary ofP has two components. Choose a properly embedded arc connecting
both components of∂P. Define this curve to be the first curvea0 in a cut system.
Cutting out this curvea0, we obtain a surface with connected boundary. The curve
a0 determines two segmentsS1 and S2 in the connected boundary. We can continue
using the construction process for connected binding we state below. We just have to
check the boundary points of the curves to remain outside of the segmentsS1 andS2 .
Given thatP has more than two boundary components, we can, with this algorithm,
inductively decrease the number of boundary components.

The mapφ is an element of the mapping class group ofP. Thus, if {a1, . . . ,an} is a
cut system, then{φ(a1), . . . , φ(an)} is a cut system, too. It suffices to show that there
is a cut system{a1, . . . ,an} such thatδ intersectsai once if and only ifi = 1.

γ

Figure 2.11: Possible choice of curveγ .

We start by taking a band sum ofδ with a small arcγ as shown in Figure 2.11. We are
free to choose the arcγ . Denote the result of the band sum bya2. The arca2 indeed
bounds a compressing disc in the respective handlebody because its boundary lies on
∂P. Because of our prior observation it suffices to show thata2 is a primitive class in
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H1(P, ∂P). SinceH1(P, ∂P) is torsion free the primitiveness ofa2 implies that we can
extenda2 to a basis ofH1(P, ∂P). The curves defining this basis can easily be chosen
to be not closed, with their boundary lying on∂P.

Writing down the long exact sequence of the pair (P, ∂P)

H2(P) - H2(P, ∂P)
∂∗- H1(∂P) - H1(P)

ι∗- H1(P, ∂P) - 0

= ∼ = ∼ =

0 - Z〈[P]〉
∂∗- Z〈[∂P]〉 - H1(P)

ι∗- H1(P, ∂P) - 0

we see that∂∗ is surjective since∂∗[P] = [∂P]. Hence, exactness of the sequence
implies that the inclusionι : P −→ (P, ∂P) induces an isomorphism on homology.
Note that the zero at the end of the sequence appears because∂P is assumed to be
connected. Letg denote the genus ofP. Of courseH1(P; Z) is Z2g, which can be seen
by a Mayer-Vietoris argument or from handle decompositionsof surfaces (compute the
homology using a handle decomposition). Sinceδ was embedded it follows from the
lemma below that it is a primitive class inH1(P; Z). The isomorphismι∗ obviously
sendsδ to a2 , i.e. ι∗[δ] = [γ]. Thus,a2 is primitive in H1(P, ∂P).

Cut open the surface alongδ . We obtain two new boundary components,C1 and
C2 say, which we can connect with the boundary ofP with two arcs. These two
arcs, in P, determine a properly embedded curve,a1 say, whose boundary lies on
∂P. Furthermore,a1 intersectsδ in one single point, transversely. The curvea1 is
primitve, too. To see, that we can extend to a cut system such that δ is disjoint from
a3, . . . ,an , cut open the surfaceP along δ and a1. We obtain a surfaceP′ with one
boundary component. The curvesδ anda1 determine 4 segments,S1, . . . ,S4 say, in
this boundary. We extenda2 to a cut systema2, . . . ,an of P′ and arrange the boundary
points of the curvesa3, . . . ,an to be disjoint fromS1, . . . ,S4 . The seta1, . . . ,an is a
cut system ofP with the desired properties.

As a consequence of the proof we may arrangeδ to be a push-off ofa2 outside a small
neighborhood where the band sum is performed. Geometrically spoken, we cut open
δ at one point, and move the boundaries to∂P to get a2. Given a positive Giroux
stabilization, we can find a special cut system which is adapted to the curveγ . It is not
hard to see that there is only one homotopy class of trianglesthat connect the old with
the new contact element and that the associated moduli spaceis a one-point space.

Lemma 2.7.20.An embedded circleδ in an orientable, compact surfaceΣ which is
homologically essential is a primitive class of H1(Σ,Z).
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Proof. Cut open the surfaceΣ along δ . We obtain a connected surfaceS with two
boundary components sinceδ is homologically essential inΣ. We can recover the
surfaceΣ by connecting both boundary components ofS with a 1-handle and then
capping off with a disc. There is a knotK ⊂ S∪ h1 intersecting the co-core ofh1

only once and intersectingδ only once, too. To construct this knot take a union of
two arcs inS∪ h1 in the following way: Namely, definea as the core ofh1 , i.e. as
D1× {0} ⊂ D1× D1 ∼= h1 and letb be a curve inS, connecting the two components
of the attaching sphereh1 in ∂S. We defineK to bea∪ b. Obviously,

±1 = #(K, δ) = 〈PD[K], [δ]〉.

SinceH1(Σ; Z) is torsion, freeH1(Σ; Z) ∼= Hom(H1(Σ; Z),Z). Thus, [δ] is primitive.

Recall that a positive/negative Giroux stabilization of anopen book (P, φ) is defined
as the open book (P′,D±

γ ◦ φ) whereP′ is defined by attaching a 1-handle toP and
γ is a embedded, simple closed curve inP′ that intersects the co-core ofh1 once (see
Definition 2.7.10). Using the proofs of Lemma 2.7.11 and Lemma 2.7.12, we see that
there is a cut system{a1, . . . ,an+1} of the stabilized open book such thatγ intersects
only an+1 which is the co-core ofh1 . Denote byα = {α1, . . . , αn} the associated
attaching circles. We define a map

Φ : ĈF(Σ, α, β, z) −→ ĈF(Σ#T2, α ∪ {αn+1}, β ∪ {βn+1}, z)

by assigning tox ∈ Tα ∩ Tβ the elementΦ(x) = (x,q) where q is the unique
intersection pointγ ∩ an+1 . This is an isomorphism by reasons similar to those given
in Example 2.3.1.

With our preparations done, we can easily prove one of the most significant properties
of the contact element: Its functoriality under (+1)-contact surgeries. We will outline
the proof since it can be regarded as a model proof.

Theorem 2.7.21([41]). Let (Y′, ξ′) be obtained from(Y, ξ) by (+1)-contact surgery
along a Legendrian knot L. Denote by W the associated cobordism. Then the map

F̂−W : ĤF(−Y) −→ ĤF(−Y′)

preserves the contact element, i.e.F̂−W(c(Y, ξ)) = c(Y′, ξ′).

Proof. Let an open book (P, φ) adapted to (Y, ξ,L) be given. By Lemma 2.7.14, a
(+1)-contact surgery acts on the monodromy as a composition with a negative Dehn
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x′1 z Dz

γ1

β1 Θ̂1

x1

α1

Domain of a holomorphic triangle

1

2

Figure 2.12: Significant part of the Heegaard triple diagram.

twist. Without loss of generality, the knotL just intersectsβ1 once, transversely
and is disjoint from the otherβ -circles. Moreover, we can arrange the associated
Heegaard triple to look as indicated in Figure 2.12. The contact elementc(Y, ξ) is
represented by the point{x1, . . . , xn}. Obviously, there is only one domain which
carries a holomorphic triangle. It is the small holomorphictriangle connectingx1 and
x′1 (cf. §2.3.4). Thus, there is only one domain with positive coefficients, withnz = 0,
connecting the points{x1, . . . , xn} with {x′1, . . . , x

′
n}. By considerations similar to

those given at the end of the proof of Lemma 2.3.9, we see that the associated moduli
space is a one-point space. Hence, the result follows.

2.7.5 The Invariant L̂

Ideas very similar to those used to define the contact elementcan be utilized to define
an invariant of Legendrian knots we will briefly call LOSS. This invariant is due to
L isca,Ozsv́ath,Stipsicz andSzab́o and was defined in [27]. It is basically the contact
element but now it is interpreted as sitting in a filtered Heegaard Floer complex. The
filtration is constructed with respect to a fixed Legendrian knot:

Let (Y, ξ) be a contact manifold andL ⊂ Y a Legendrian knot. There is an open
book decomposition ofY, subordinate toξ , such thatL sits on the pageP×{1/2} of
the open book (cf.§2.7.3). Choose a cut system that induces anL-adapted Heegaard
diagram (cf.§3.2.1, Definition 2.7.18 and Lemma 2.7.19). Figure 2.13 illustrates the
positioning of a pointw in the Heegaard diagram induced by the open book. Similar to
the case of the contact element those intersection pointsαi ∩ βi who sit onP× {1/2}
determine one specific generator of̂CF(−Y). This element may be interpreted as
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PageP×{1/2} of the open book

w z

w
z

Figure 2.13: Positioning of the pointw depending on the knot orientation.

sitting in ĈFK(−Y,L), and it is a cycle there, too. The induced element in the knot
Floer homology is denoted bŷL(L).

Remark. Since this is an important issue we would like to recall the relation between
the pair (w, z) and the knot orientation. In homology we connectz with w in the
complement of theα-curves andw with z in the complement of theβ -curves (oriented
as is obvious from the definition). Incohomologywe orient in the opposite manner,
i.e. we move fromz to w in the complement of theβ -curves and fromw to z in the
complement of theα-curves.
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Chapter 3

Dehn Twists in ĤF Homology

3.1 Algebraic Preliminaries

We outline some algebraic tools used in the next sections. Wepresent this material for
the sake of completeness.

Lemma 3.1.1. Suppose we are given two complexes(C, ∂C) and (D, ∂D) and a mor-
phism f: D −→ C of complexes. Then(C ⊕ D, ∂f ) is a chain complex where
∂f := ∂C + f − ∂D , i.e.

∂f
=

(
∂C f
0 −∂D

)
.

Proof. For (p,q) ∈ C⊕ D we calculate

(∂f )2(p,q) = ∂f
(
∂Cp + f (q),−∂Dq

)

=

(
∂2

Cp + ∂Cf (p) + f (−∂Dp), ∂2
Dp
)

= 0,

where the last equality holds, since∂C and ∂D are differentials andf is a chain
map.

A nice, immediate consequence of this construction is the following Lemma.

Lemma 3.1.2. There is a long exact sequence

. . .
−f∗- H∗(C, ∂C)

Γ1 - H∗(C⊕ D, ∂f )
Γ2 - H∗(D,−∂D)

−f∗- . . . ,
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wheref∗ is the map in homology induced byf , andΓ1 andΓ2 are given as follows:

• Γ1 is induced by the map

γ1 : (C, ∂C) −→ (C⊕ D, ∂f ), x 7−→ x⊕ 0;

• Γ2 is induced by the map

γ2 : (C⊕ D, ∂f ) −→ (D,−∂D), x⊕ y 7−→ −y.

Proof. We first have to see thatγ1 andγ2 are chain maps. Given an elementc ∈ C,
observe that

γ1(∂Cc) = ∂Cc = ∂f c = ∂f γ1(c).

Furthermore, we see that

γ2(∂f (c⊕ 0)) = γ2(∂Cc) = 0 = γ2(c⊕ 0) = −∂D(γ2(c⊕ 0)).

We continue with an elementd ∈ D:

γ2(∂f (0⊕ d)) = γ2(f (d) − ∂D(d)) = ∂D(d) = −∂D(γ2(0⊕ d)).

Thus, bothγ1 andγ2 are chain maps. Finally,γ1 andγ2 obviously fit into the short
exact sequence

0 - (C, ∂C)
γ1 - (C⊕D, ∂f )

γ2 - (D,−∂D) - 0

of chain complexes. Hence, by standard results in AlgebraicTopology (see [1]) this
short exact sequence induces a long exact sequence

. . .
∂∗- H∗(C, ∂C)

Γ1 - H∗(C⊕ D, ∂f )
Γ2 - H∗(D,−∂D)

∂∗- . . .

It remains to show that the connecting homomorphism∂∗ equals−f∗ . Recall that for
d ∈ ker(∂D) the morphism∂∗ is defined by

∂∗[d] = [γ−1
1 (∂f (γ−1

2 (d)))].

Of course,γ1 andγ2 are not necessarily invertible. However, we take the preimages
as given in the equation, and, by standard algebraic topology, all the elements in the
preimage will belong to the same equivalence class. Observe:

∂∗[d] = [γ−1
1 (∂f (γ−1

2 (d)))]

= [γ−1
1 (∂f (0⊕−d))]

= [γ−1
1 (−f (d))]

= −[f (d)]

= −f∗[d]
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Of course, the whole construction works iff goes the other way, i.e.f : C −→ D. In
this case we form the complexC⊕ D with the differential

∂f =

(
∂C 0
f −∂D

)
.

In an analogous manner we obtain a long exact sequence

. . .
−f∗- H∗(D,−∂D)

Γ1 - H∗(C⊕D, ∂f )
Γ2 - H∗(C, ∂C)

−f∗- . . .

3.2 Two New Exact Sequences in Heegaard Floer Homology

3.2.1 Positive Dehn Twists

Let an open book (P, φ) and a homologically essential closed curveδ in P be given.
We first ask how a Dehn twist alongδ would change the associated Heegaard Floer
homology. There is a specific choice of attaching circles that are – in a sense – adapted
to the closed curveδ . Figure 3.1 depicts a small neighborhood of the pointδ ∩ β1 in
the Heegaard diagram induced by the open book decomposition. The page at the right
side of the boundary pictured in Figure 3.1 isP× {1/2}. The dotted line indicates
the neighborhood of∂P where the monodromyφ is the identity. The proof of Lemma
2.7.19 shows that we can arrange a neighborhood ofδ ∩ β1 to look like in Figure 3.1,
i.e. it is possible to arrange the curveδ and the attaching circles like indicated in Figure
3.1 due to the arguments given in the proof of Lemma 2.7.19.

With respect to the surface orientation given in Figure 3.1 this is the appropriate
setup for performing a positive Dehn twist alongδ : Denote byβ′ the β -curves after
performing the Dehn twist. Obviously,β′ = {β′1, β2, . . . β2g}. Observe that

Tα ∩ Tβ′ = Tα ∩ Tβ ⊔ Tα ∩ Tδ, (3.2.1)

whereTδ is given by the setδ = {δ, β2, . . . , β2g} (by abuse of notation sinceδ also
denotes the curve onP but what is meant will be clear from the context). The set of
curvesδ may be interpreted as a set of attaching circles. In the following we will call
the arcβ′1 ∩ β1 the β -part of β′1 and the arcβ′1 ∩ δ the δ -part of β′1. Figure 3.2
depicts the situation before and after the Dehn twist.

The main observation is that there can be no holomorphic discin (Σ, α, β′) that
connects aTα∩Tβ -intersection ofTα∩Tβ′ with a Tα∩Tδ -intersection ofTα∩Tβ′ .
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boundary ofP
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Figure 3.1: A small neighborhood ofδ∩β1 in the Heegaard surfaceΣ = P×{1/2}∪
(−P)× {0}.
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Figure 3.2: Before and after the positive Dehn twist.

Suppose there is a discφ starting atx ∈ Tα ∩ Tβ and going toy ∈ Tα ∩ Tδ along
its α-boundary. Then, at theβ -boundary, the discφ has to run fromy to x along
the β′ -curves. Sinceδ ∩ β1 contains only one point, namely the intersection that can
be seen in Figures 3.1 and 3.2, the disc has to run through either D∗ or D∗∗ (since
nz(φ) = 0 we cannot use theDz-region). But since we are moving from theδ -part
of β′1 to theβ -part of β′1, we see thatn∗(φ) < 0 or n∗∗(φ) < 0, in contradiction to
holomorphicity. So, there are just three choices for theβ -boundary of a holomorphic
disc.

1. It starts at theδ -part ofβ′1 and stays there.

2. It starts at theβ -part ofβ′1 and stays there.
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3. It starts at theβ -part ofβ′1 and runs to theδ -part ofβ′1 and stays there.

This immediately shows that

ĤF(Yδ) = H∗(ĈF(α, β) ⊕ ĈF(α, δ), ∂),

where∂ is of the form (
A C
0 B

)
.

If we perform a negative Dehn twist alongδ in the situation indicated in Figure 3.1, we
would connectD∗ with D∗∗ and keep separateDw andDz. Observe that we would
have, a priori, no control of holomorphic discs like in the case of positive Dehn twists.
To get back into business, in case of negative Dehn twists, wehave to first isotopeδ
inside the page of the open book appropriately (see§3.2.2).

Proposition 3.2.1.Let (Σ, α, β) be aδ -adapted Heegaard diagram of Y and denote by
Yδ the manifold obtained from Y by composing the gluing map, given by the attaching
curvesα, β , with a positive Dehn twist alongδ as indicated in Figure 3.2. Then the
following holds:

ĤF(Yδ) ∼= H∗(ĈF(α, β) ⊕ ĈF(α, δ), ∂f ),

where∂f is of the form (
∂̂w
αβ f

0 ∂̂w
αδ

)

with f a chain map between(ĈF(α, δ), ∂̂w
αδ ) and (ĈF(α, β), ∂̂w

αβ ).

Proof. There is a natural identification of intersection points

Tα ∩ Tβ′
-� Tα ∩ Tβ ⊔ Tα ∩ Tδ,

i.e. we get an isomorphism

ǫ : ĈF(α, β′)
∼=
−→ ĈF(α, β) ⊕ ĈF(α, δ)

of modules. Pick an intersection pointx ∈ Tα ∩ Tβ′ such thatǫ(x) ∈ Tα ∩ Tβ .
Looking at the boundary

∂̂δx =
∑

y

∑

φ

#M̂φ · y (3.2.2)

we want to see that the moduli space of holomorphic discs connecting x with an
intersectiony ∈ ǫ−1(Tα ∩ Tδ) is empty: Assume this were not the case. This means
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there were a holomorphic discφ connectingx with an elementy = (y1, . . . , yn) ∈
ǫ−1(Tα ∩ Tδ). Observe thaty1 is a point inδ ∩ α1. Hence,D(φ) includesD∗ or D∗∗

since these are the only domains giving a connection betweenTα ∩ Tβ andTα ∩ Tδ .
Boundary orientations force the coefficient ofφ at D∗ or D∗∗ to be negative. Since
holomorphic maps are orientation preserving, this cannot be the case. So, the pointx
can be connected to points inǫ−1(Tα ∩ Tβ) only.

Next observe that discsφ appearing in the sum (3.2.2) all have the propertyn∗(φ) =

n∗∗(φ) = 0. Indeed, suppose there were a discφ with nonnegative intersectionn∗ or
n∗∗ . Theβ -boundary ofφ starts atx and runs through∂D∗ or ∂D∗∗ . The discφ is
holomorphic, so, theβ -boundary runs from theβ -part to theδ -part ofTβ′ . At the end
of theβ -boundary ofφ the disc converges to a point inTα∩Tβ . Thus, theβ -boundary
of φ has to come back through eitherD∗ or D∗∗ . The boundary orientation would
forceφ to negatively intersect{∗} × Symg−1(Σ) or {∗∗} × Symg−1(Σ). This cannot
happen.

D∗

c

a

w
d

α1 β′

1

D∗∗

b

z

D∗

c z

w
d

D∗∗

α1

δ

D∗

a b

z

w D∗∗

α1

β1

Figure 3.3: Picture of the three different boundary conditions arising in our discussion.

Denote by [a, c] the small arc inβ′1 running through Figure 3.3 and define [b,d]
analogously. All discs arising in the sum have boundary conditions in Tα and

Tβ′\{{[a, c] ⊔ [b,d]} × β2× . . .× βg}.

Observe thatTβ′\{{[a, c]⊔[b,d]}×β2×. . .×βg} has two components, one lying inTβ
and one lying inTδ . Since theβ -boundary of the discφ starts inTβ , it remains there
all the time. Moreover, looking at discsφ in (Σ, α, β, z,w) with nz(φ) = nw(φ) = 0,
an analogous line of arguments as above shows that theβ -boundary of these discs
stays away from

[a,b] × β2× . . . × βg,
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where [a,b] is the arc inβ pictured in the right of Figure 3.3. Thus, the boundary
conditions for discs connecting intersectionsTα ∩Tβ are the same in (Σ, α, β′, z) and
(Σ, α, β, z,w). Thus, we have

∂̂δx = ∂̂w
αβx.

Now suppose thatx ∈ ǫ−1(Tα ∩ Tδ). Then

∂̂δx =
∑

y

∑

φ

#M̂φ · y

=
∑

y∈Tα∩Tδ

∑

φ

#M̂φ · y +
∑

z∈Tα∩Tβ

∑

φ

#M̂φ · z.

With an analogous line of arguments as above we see that the first sum counts discs
with n∗ = n∗∗ = nz = 0 only. The triviality of these intersection numbers and
holomorphicity implies that the discs have boundary conditions in Tα and

Tβ′\{{[a, c] ⊔ [b,d]} × β2× . . .× βg}.

As mentioned above this set has two components, where one of them lies inTδ . The
β -boundary ofφ starts inTδ and therefore remains there all the time. Again, we see
that discs connecting intersection pointsTα ∩ Tδ in (Σ, α, β′, z) and (Σ, α, δ, z,w)
have to fulfill identical boundary conditions. Thus, the moduli spaces are isomorphic.
This shows the equality

∂̂δx = ∂̂w
αδx +

∑

z∈Tα∩Tβ

∑

φ

#M̂φ · z.

In the right sum we only count discs wheren∗ 6= 0 or n∗∗ 6= 0. We will denote this
right sum withf (x). We have to see thatf defines a chain map

f : (ĈF(α, δ), ∂̂w
αδ ) −→ (ĈF(α, β), ∂̂w

αβ ).

This can be proved in two ways: We know that∂δ = ∂w
αβ + ∂w

αδ + f . Hence,f is

a sum of three boundaries. The equality 0= (∂δ)2 implies that f is a chain map
(cf. Lemma 3.1.1). The second way is to test the chain map property directly. To do
so, pick a generatory ∈ Tα ∩ Tβ′ lying in the preimage ofTα ∩Tδ underǫ. Observe
that (̂∂w

αβ ◦ f − f ◦ ∂̂w
αδ)(x) equals

∑

z∈Tα∩Tδ

( ∑

(y,φ2,φ1)

#M̂(φ2)#M̂(φ1)−
∑

(y′,φ′2,φ
′
1)

#M̂(φ′2)#M̂(φ′1)
)
· z

=
∑

z∈Tα∩Tδ

c(x, z) · z,
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where the first sum in the definition ofc(x, z) goes over elements (y, φ2, φ1) in the set
Tα ∩ Tβ × π2(y, z)× π2(x, y) with µ(φ2) = µ(φ1) = 1, and the second sum goes over
(y′, φ′2, φ

′
1) ∈ Tα ∩ Tδ × π2(y, z) × π2(x, y) with µ(φ′2) = µ(φ′1) = 1. Furthermore,

look at the boundary of a moduli spacêM(φ) connecting a point inTα ∩ Tδ with
a point in Tα ∩ Tβ with µ(φ) = 2. Observe that we do not have to take care of
boundary degenerations or spheres bubbling off since we arelooking for maps with
nz = 0 (cf. [40]). The only phenomenon appearing at the boundary is breaking. The
boundary ofM̂(φ) is modelled on

⊔

φ1∗φ2=φ

M̂(φ1)× M̂(φ2).

There are two cases. Eithern∗(φ1) = n∗(φ) or n∗(φ2) = n∗(φ) (the discussion forn∗∗
is analogous):

Intersection points inTα ∩ Tδ

k

0

m

n

n∗=k

Intersection points inTα ∩ Tβ

Figure 3.4: Here we figure a moduli space withµ = 2 and its possible ends.

To prove this, we have to show that a given family of discsφn in M̂(φ) cannot
converge to a broken discφ1 ∗ φ2 with n = n∗(φ1) 6= 0 and m = n∗(φ2) 6= 0.
Figure 3.4 represents a moduli space of discs withµ = 2 andn∗(φn) = k. We know
that n + m = k, since intersection numbers behave additively under concatenation.
Assume thatn,m were both non-zero: Sincen is non-zero, we know thatφ1 connects
a point in Tα ∩ Tδ with one in Tα ∩ Tβ . The bottom intersection is aTα ∩ Tβ -
intersection, sinceφn connectsTα ∩Tδ with an Tα ∩Tβ -intersection by assumption.
Hence,φ2 connects a point ofTα ∩ Tβ with a point inTα ∩ Tβ and runs through the
domainD∗ . This is simply not possible because of orientation reasons. Thus, either
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n∗(φ1) = k and n∗(φ2) = 0 or n∗(φ1) = 0 andn∗(φ2) = k. This means the ends of
M̂(φ) precisely look like

( ⊔

φ2∗φ1=φ

M̂(φ2)∗ × M̂(φ1)
)
⊔
( ⊔

φ′2∗φ
′
1=φ

M̂(φ2)× M̂(φ1)∗
)
,

where ∗ means that the associated discs have non-trivial intersection numbern∗ or
n∗∗ . Now consider the union of moduli spaces of discs connectingthe pointx and z
with Maslov index 2. According to our discussion, the ends look like

( ⊔

(y,φ2,φ1)

M̂(φ2)× M̂(φ1)∗
)
⊔
( ⊔

(y′,φ′2,φ
′
1)

M̂(φ′2)∗ × M̂(φ′1)
)
,

where the first union goes over (y, φ2, φ1) ∈ Tα∩Tβ×π2(y, z)×π2(x, y) with µ(φ2) =

µ(φ1) = 1 and the second union goes over (y′, φ′2, φ
′
1) ∈ Tα ∩Tδ × π2(y, z)× π2(x, y)

with µ(φ′2) = µ(φ′1) = 1. Hence, the coefficientsc(x, z) all vanish, proving the
theorem.

An immediate, simple algebraic consequence (cf.§3.1) of this description is the fol-
lowing Corollary.

Corollary 3.2.2. Let K ⊂ Y be the knot determined byδ . Then there is a long exact
sequence

. . .
∂∗- ĤFK(Y,K)

Γ1 - ĤF(Y−1(K))
Γ2 - ĤFK(Y0(K), µ)

∂∗- . . .

with ∂∗ = −f∗ where f is the map defined in the proof of Proposition 3.2.1. The knot
µ denotes a meridian of K .

Proof. With Proposition 3.2.1 we see that̂HF(Yδ) fulfills the assumptions of Lemma
3.1.1 and therefore Lemma 3.1.2 applies. Finally, we apply Proposition 2.4.4 to identify
H∗(ĈF, ∂̂w) with the respective knot Floer homology. It is easy to observe that with
respect to the framing induced by the open book the manifoldYδ equalsY−1(K),
i.e. the result of (−1)-surgery along the knotK . We obtain the sequence

. . .
∂∗- ĤFK(Y,K)

Γ1 - ĤF(Y−1(K))
Γ2 - ĤFK(Yαδ,K2)

∂∗- . . . ,

where (Yαδ,K2) is the pair given by the data (Σ, α, δ, z,w). It is easy to see that the pair
(w, z) in the diagram (Σ, α, δ) determinesβ1 up to orientation, i.e. the attaching circle
β1 interpreted as a knot inYαδ . This attaching circleβ1 is a meridian for a tubular
neighborhoodµ of K in Y. Finally, we have to see thatYαδ equals the 0-surgery along
K with respect to the framing induced by the open book. This is straightforward.
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Corollary 3.2.3. In the situation of Proposition 3.2.1 we define a map

f : ĈFK(Σ, α, δ, z,w) −→ ĈFK(Σ, α, β, z,w)

by sending an element x∈ Tα ∩ Tδ to

f (x) =
∑

z∈Tα∩Tβ

∑

φ∈H(x,y,1)

#M̂φ · y,

where H(x, y,1) are classes inπαβ
′

2 (x, y) with µ = 1 and with the pair of intersection

numbers(n∗(φ),n∗∗(φ)) 6= (0,0). We denote byπαβ
′

2 (x, y) the homotopy classes of
Whitney discs associated to the diagram(Σ, α, β′, z). The defined f is a chain map and
its induced map on homology satisfies f∗ = ∂∗ where∂∗ is the connecting morphism
in the sequence given in Corollary 3.2.2. �

A few words about admissibility: The reader may have noticedthat we did not say
anything about admissibility of the Heegaard diagram (Σ, α, δ, z,w), but nonetheless
talk about the knot Floer homologŷHFK(Yαδ,K2) induced by this diagram. We could
restrict to just saying we take the homology induced by the data. The respective
boundary operator is well defined (finite sum) since∂̂δ is. However, we would like
to remark that the diagram (Σ, α, δ, z,w) is always admissiblein a relaxed sense. We
may relax the weak-admissibility condition imposed by Ozsváth and Szab́o for the
definition of knot Floer homology to the extreme weak-admissibility condition given in
Definition 2.4.5. The diagram (Σ, α, δ, z,w) is always extremely weakly-admissible:
Let D be a non-trivial periodic domain withnw(D) = 0 (see§2.4) and lets be an
arbitrary Spinc-structure such that〈cs(s),H(D)〉 = 0. By definition of the boundary,
∂D can be written as

∂D =
∑

i≥1

λiαi + κ1δ +
∑

j≥2

κjβj .

Assuming thatλi 6= 0 for a i ≥ 2 or κj 6= 0 for a j ≥ 2, we see thatD has both
positive and negative coefficients due to the fact that∂D runs through a configuration
like given in Figure 2.10. Thus, let us assume thatλi and κj would vanish, for all
i, j ≥ 2. The boundary ofD could be written as

∂D = λ1α1 + κ1δ.

However,κ1 has to vanish, sinceδ runs through∂Dw∩ ∂Dz (see Figure 3.3). Finally,
we get that∂D = λ1α1. Examining the middle part of Figure 3.3 we see that the part
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of α1 which is at the right ofδ is surrounded by the regionDz. Thus,λ1 = 0.

With help of the geometric realization of the
∧
∗(H1/Tor)-module structure given in

[40] we can easily prove the following proposition.

Proposition 3.2.4. The mapsΓ1 and Γ2 from the exact sequence of Corollary 3.2.2
respect the

∧
∗(H1/Tor)-module structure of the Heegaard Floer groups in the following

sense. Letγ ⊂ Σ be a curve. Then the following identities hold:

AYδ
[γ]Yδ

(Γ1(x)) = Γ1(AY
[γ]Y

(x))

Γ2(AYδ
[γ]Yδ

(x)) = AYαδ
[γ]Yαδ

(Γ2(x))

Proof. Recall the geometric realization of the
∧
∗(H1/Tor)-module structure. Given a

point x ∈ Tα ∩ Tβ ⊂ Tα ∩ Tβ′ (cf. the proof of Proposition 3.2.1 for the appropriate
identification), by definition

AYδ
[γ]Yδ

(x) =
∑

y

∑

φ∈H(x,y,1)

a(γ, φ) · y,

where H(x, y,1) ⊂ π2(x, y) is the set of Whitney discs withnz = 0 and µ = 1.
Furthermore,

a(γ, φ) = #M̂φ · #(u({−1} ×R, γ × Symg−1(Σ))Tα .

where the right factor denotes the intersection number ofu({−1} × R) and γ ×
Symg−1(Σ) inside Tα . Fixing another pointy ∈ Tα ∩ Tβ , recall that these points
are connected bŷ∂w

αβ if and only if they are connected bŷ∂δ . Moreover, there is an
identification of the respective moduli spaces. Thus, fixinga discφ connecting these
points (inαβ′ ), we know – sincenz(φ) = 0 – thatφ connects these intersection points
in theαβ -diagram, too. Denoting by [φ] its class inπ2, we see that

#M̂αβ
[φ] = #M̂αβ′

[φ] .

Moreover, the intersection number inTα used to definea(γ, [φ]) coincides for both
diagrams sinceφ is a common representative. Thus, we see that

aYδ (γ, [φ]) = aY(γ, [φ]).

Recall that there are no connections fromTα ∩ Tβ -intersections to aTα ∩ Tδ -
intersection in theα, β′ -diagram. Hence, the first equality given in the proposition
follows.
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To show the second, fix a pointx ∈ Tα ∩ Tδ ⊂ Tα ∩ Tβ′ . Use the same line of
arguments as above to show that the following identity holds:

AYδ
[γ]Yδ

(x) =
∑

y

∑

φ∈H(x,y,1)

aYδ (γ, φ) · y +
∑

z

∑

ψ∈H(x,z,1)

aYδ (γ, ψ) · z

= AYαδ
[γ]Yαδ

(x) +
∑

z

∑

ψ∈H(x,z,1)

aYδ (γ, ψ) · z.

The second sum is an element in̂CF(Σ, α, β, z,w). Recall thatΓ2 is induced by the
projection ontoĈF(Σ, α, δ, z,w). Hence, the second sum cancels when projected under
the mapΓ2. The second equality of the proposition follows.

In §3.3 we will derive suitable naturality properties of the sequence to show that the
maps involved in the sequences are indeed topological. We will be interested in the
maps denoted byΓ1 since these are directly related to the surgery representedby the
Dehn twist.

3.2.2 Negative Dehn Twists

The approach for negative Dehn twists is pretty much the sameas for positive Dehn
twists. In§3.2.1 we already mentioned that the situation indicated in Figure 3.1 is not
suitable for performing negative Dehn twists. Performing anegative twist, we could
not make an a priori statement about what generators can be connected by holomorphic
discs like we did in§3.2.1. To get back into business we just need to isotope the curve
δ inside the page a bit (or equivalently isotope some of the attaching circles). Figure
3.5 indicates a possible perturbation suitable for our purposes. Comparing Figures 3.2
and 3.5 we see that we isotoped the curveδ a bit. Observe that with this perturbation
done, we again can read off the behavior of holomorphic discslike in §3.2.1 (carry over
the discussion of§3.2.1 to this situation). As a consequence, the following proposition
can be proved. The proof of Proposition 3.2.1 carries over verbatim to a proof of
Proposition 3.2.5.

Proposition 3.2.5.Let (Σ, α, β) be aδ -adapted Heegaard diagram of Y and denote by
Yδ the manifold obtained from Y by composing the gluing map, given by the attaching
curvesα, β , with a negative Dehn twist alongδ as hinted in Figure 3.5. Then we have

ĤF(Yδ) ∼= H∗(ĈF(α, β) ⊕ ĈF(α, δ), ∂f ),
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Figure 3.5: Before and after a negative Dehn twist alongδ .

where∂f is of the form (
∂̂w
αβ 0

f ∂̂w
αδ

)

with f a chain map between(ĈF(α, δ), ∂̂w
αδ ) and (ĈF(α, β), ∂̂w

αβ ). �

Corollary 3.2.6. Let K ⊂ Y be the knot determined byδ . Then there is a long exact
sequence

. . .
∂∗- ĤFK(Y0(K), µ)

Γ2 - ĤF(Y+1(K))
Γ1 - ĤFK(Y,K)

∂∗- . . .

with ∂∗ = −f∗ where f is the map defined in the proof of Proposition 3.2.5. The
knot µ denotes a meridian of K . Moreover, identities hold similar to those given in
Proposition 3.2.4. �

3.3 Invariance

Our goal in this paragraph is to show that the mapΓ1 in the sequences introduced are
topological, i.e. just depend on the cobordism associated to the surgery represented by
the Dehn twist. To do that, we have to generalize our approacha bit and try to see
that everything we have done, especially the proof of Proposition 3.2.1, works without
using a Heegaard diagram that is necessarily induced by an open book. Obviously, the
geometric situation given in Figure 3.3 builds the foundation of the proof. To clarify
the situation, look at Figure 3.6.
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z

β1

δ

Figure 3.6: The important geometric configuration.

We, for the moment, stick to the notation of§3.2. We need the curveδ to intersectβ1

once, transversly and to be disjoint from the otherβ -circles. In addition, the top right
domain at the pointδ ∩ β1 ∈ Σ has to contain the base pointz (cf. Figure 3.6). Given
this configuration, the proof of Proposition 3.2.1 applies.The situation figured, does
not occur exclusively when the Heegaard diagram is induced by an open book.

K K K

z z z

β1 β1 β1
α α α

β2 β2 β2
(a) (b) (c)

Figure 3.7: Preparation of the Heegaard diagram.

Given a Heegaard diagram subordinate to a knotK , we can isotope the knotK onto the
Heegaard surface. The isotoped knot intersects just oneβ -circle once, transversely.
Without loss of generalityK intersectsβ1. To generate a geometric configuration like
indicated in Figure 3.6, we may isotope the knot again to movethe intersectionβ1∩K
to lie next to aDz-region: Cutting theα-circles out of the Heegaard surface, we obtain
a sphere with holes. The regionDz is a region in this sphere. EitherDz is the whole
sphere with holes or not. In case it is the whole sphere all theβ -circles touch the
regionDz and we are done. In caseDz is not the whole sphere, there has to be at least
oneβ -circle touching the boundary ofDz. If β1 touches the boundary ofDz, we are
done. Ifβ1 does not touch the boundary ofDz, we obtain a configuration like indicated
in part (a) of Figure 3.7. Without loss of generality we assume thatβ2 touchesDz.
Note that it not possible forβ2 to separateDz from β1 , since the complement of the
β -circles inΣ is connected. We are allowed to slideβ1 over thisβ -circle (cf. part (b)
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of Figure 3.7). After the handle slide there is a small arca insideβ1 touchingDz. By
a small isotopy of the knotK we can move the intersection pointK ∩β1 along the new
β1-circle until it enters the arca (cf. part (c) of Figure 3.7).

Care has to be taken of the surgery framing. Here, we stick to surgeries or to framed
knotsK such that there exists a subordinate Heegaard diagram with the framing induced
by the Heegaard surface coinciding with the framing of the knot. Evidence indicate
that every framing can be realized in this way.

We saw that our discussion from the last paragraph can be carried over to a more
general situation. We, indeed, do not need the Heegaard diagram to be induced by
an open book. So far, we restricted the discussion to Heegaard diagrams induced by
open books, since we are interested in applications to the contact geometric parts of
the theory, which makes a discussion of this class of diagrams inevitable.
Given two Heegaard diagrams subordinate to a pair (Y, δ), we transform the one
diagram into the other by the moves introduced in Lemma 2.4.3. These moves respect
the knot complement ofδ . The goal is to show that each move preserves the exact
sequence and the maps inherited. In the following we will call Heegaard diagrams,
realizing a geometric situation as given in Figure 3.3 for a knot δ , δ -suitable.

Θ

x

y

Tα Tβ

Tα′

Figure 3.8: Triangles that have to be counted for handle slides among theα-curves.

We begin showing invariance under handle slides among theα-curves. Although
used in some papers it was never explicitly mentioned which triangles are counted for
handle slides among theα-curves (cf.§2.3.4). Given a Heegaard diagram (Σ, α, β),
denote byα′ the attaching circles obtained by a handle slide among theα-curves. The
associated map between the respective homologies counts holomorphic triangles with
boundary conditions inα, α′ andβ . Figure 3.8 pictures a Whitney triangle connecting
a point x ∈ Tα ∩ Tβ with a point y ∈ Tα′ ∩ Tβ . Observe that in this situationΘ
is a top-dimensional generator of̂HF(α′, α) (note the order of the attaching circles).
To not confuse the maps induced by handle slides among theα-circles with the maps
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induced by handle slides among theβ -circles, we introduce the following notation:
let us denote byΓα,α′;β the map induced by a handle slide among theα-circles (like
indicated above) and byΓα;β,β′ the map induced by a handle slide among theβ -circles
(like indicated in§2.3.4).

Proposition 3.3.1.Let (Σ, α, β, z) be aδ -suitable Heegaard diagram and(Σ, α′, β, z)
be obtained by a handle slide of one of theαi . Denote by

Γ
w
α,α′;β : ĈFK(Σ, α, β, z,w) −→ ĈFK(Σ, α′, β, z,w)

Γ
w
α,α′;δ : ĈFK(Σ, α, δ, z,w) −→ ĈFK(Σ, α′, δ, z,w)

Γα,α′;β′ : ĈF(Σ, α, β′, z) −→ ĈF(Σ, α′, β′, z)

the induced maps. These maps induce a commutative diagram with exact rows

. . .
∂∗- ĤFK(Σ, α, β, z,w)

Γ1- ĤF(Σ, α, β′, z)
Γ2- ĤFK(Σ, α, δ, z,w)

∂∗- . . .

. . .
∂′∗- ĤFK(Σ, α′, β, z,w)

Γ
w,∗
α,α′;β ?

Γ′
1- ĤF(Σ, α′, β′, z)

Γ∗

α,α′;β′ ?
Γ′

2- ĤFK(Σ, α′, δ, z,w)

Γ
w,∗
α,α′ ;δ ?

∂′∗- . . .

.

Proof. The proof of this proposition is quite similar to the proof ofProposition 3.2.1.
To keep the exposition efficient, we do not point out all details here. Start looking at
the mapΓα,α′;β′ . It is defined by counting triangles with boundary conditions in Tα ,
Tα′ , Tβ′ .

D∗

c

a

w
d

α1 β′

1

D∗∗

b

z

D∗

c z

w
d

D∗∗

α1

δ

D∗

a b

z

w D∗∗

α1

α′

1

β1

Figure 3.9: Picture of the three different boundary conditions arising in our discussion.

Figure 3.9 illustrates the boundary conditions and how theylook like near the region
where the Dehn twist is performed. Analogous to the discussion in the proof of
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Proposition 3.2.1 the picture shows that

Γα,α′;β′ =

(
Γw
α,α′;β Γ

0 −Γw
α,α′;δ

)
,

whereΓ is a map defined by counting triangles that connectTα′ ∩ Tδ -intersections
with Tα ∩ Tβ -intersections. This immediately shows commutativity of the first two
boxes, i.e.

Γ
∗
α,α′;β′ ◦ Γ1 = Γ

′
1 ◦ Γ

w,∗
α,α′;β

Γ
′
2 ◦ Γ

∗
α,α′;β′ = −Γ

w,∗
α,α′;δ ◦ Γ1.

It remains to show that
Γ

w,∗
α,α′;β ◦ ∂∗ = ∂′∗ ◦ −Γ

w,∗
α,α′;δ .

Recall that∂∗ equals the mapf in the definition of the boundarŷ∂δ . These were
defined by counting discs withn∗ 6= 0 or n∗∗ 6= 0. Look at the following expression

Γ
w,∗
α,α′;β ◦ f∗ + f ′∗ ◦ Γ

w,∗
α,α′;δ.

The strategy to show its vanishing is analogous to the discussion of the chain map-
property off in the proof of Proposition 3.2.1. There are two ways to see this: Recall
thatΓα,α′;β′ is a chain map. Hence, with the representation of∂̂δ given in Proposition
3.2.1, this means that

f ′ ◦ Γ
w
α,α′;δ + Γ

w
α,α′;β ◦ f = ∂̂w

α′β ◦ Γ + Γ ◦ ∂̂w
α′δ. (3.3.1)

Thus,

0 = (f ′ ◦ Γ
w
α,α′;δ + Γ

w
α,α′;β ◦ f )∗

= f ′∗ ◦ Γ
w,∗
α,α′;δ + Γ

w,∗
α,α′;β ◦ f∗

since all maps involved are chain maps. Hence, the third box commutes, too. Alter-
natively, look at the ends of the moduli spaces of Whitney triangles with boundary
conditions inTα , Tα′ , Tβ′ with Maslov index 1 and non-trivial intersection number
n∗ or n∗∗ . The ends look like given in Figure 3.10. There are three possible ends. But
observe that the top end (cf. Figure 3.10) corresponds toΓ(x⊗ ∂̂Θ̂+), which vanishes
since by definition∂̂Θ̂+ = 0. Hence, for our situation there are just two possible
types of ends to consider (the both at the bottom of Figure 3.10). Recall that breaking
is the only phenomenon that appears here (cf. proof of Proposition 3.2.1 or see [40]).
Proceeding as in the proof of Proposition 3.2.1, the commutativity of the third box
follows.
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α′

α′

α′ α′

α′ α′

α

α

α α

α
α

β′

β′ β′

β′ β′

β′

fixed pointΘ̂+

Figure 3.10: The moduli space has three possible ends. But only two of them count
non-trivially, since∂̂Θ̂+ = 0.

Proposition 3.3.2. Isotopies of theα-circles induce isomorphisms on the homologies
such that all squares commute. Isotopies of theβ -curves that miss the points w and z
induce isomorphisms such that all squares commute.

Proof. We realize isotopies of the attaching circles by Hamiltonian isotopies. Hence,
the induced mapΦ on homology is defined by counting discs with dynamic boundary
conditions in theα-curves. Theβ -side remains untouched. Hence, by an analogous
argument as in the proofs of Theorems 3.2.1 and 3.3.1 the map on homology splits into
three components. The commutativity withΓ1 andΓ2 is then obviously true, and the
only thing to show is the commutativity with the connecting homomorphism∂∗ and
∂′∗ . But this again can be done by counting appropriate ends of moduli spaces or by
looking into the chain map equation ofΦ with respect to the representation of∂̂δ .

Consider the following situation: Let (Σ, α, β, z) be aδ -suitable Heegaard diagram.
With the discussion in§3.2.1 we obtain a long exact sequence

. . .
∂∗- ĤFK(Σ, α, β, z,w)

Γ1- ĤF(Σ, α, β′, z)
Γ2- ĤFK(Σ, α, δ, z,w)

∂∗- . . .
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where we define the attaching circles

β′ = {β′1, β2, . . . , βg}

δ = {δ, β2, . . . , βg}

as it was done in§3.2.1. Defineβ′′ by performing a handle slide among theβi , i ≥ 2,
or by a handle slide ofβ′1 overβi . Perform the same operation on the set of attaching
circlesβ to obtainβ̃ . Finally, take an isotopic push-off ofδ , δ′ say, that intersectsδ
in a cancelling pair of intersection points. Do the same withthe βi , i ≥ 2, to getβ′i ,
i ≥ 2. In this way we define another set of attaching circlesδ′ which is given by

δ′ = {δ′, β′2, . . . , β
′
g}.

Using these data we have the following result.

Proposition 3.3.3.Let (Σ, α, β, z) be aδ -suitable Heegaard diagram and(Σ, α, β′′, z)
be obtained by a handle slide among theβi , i ≥ 2 or by a handle slide ofβ1 overβi .
Denote by

Γ
w
α;β,eβ

: ĈFK(Σ, α, β, z,w) −→ ĈFK(Σ, α, β̃, z,w)

Γ
w
α;δ,δ′ : ĈFK(Σ, α, δ, z,w) −→ ĈFK(Σ, α, δ′, z,w)

Γα;β′,β′′ : ĈF(Σ, α, β′, z) −→ ĈF(Σ, α, β′′, z)

the induced maps. These maps induce a commutative diagram with exact rows

. . .
∂∗- ĤFK(Σ, α, β, z,w)

Γ1- ĤF(Σ, α, β′, z)
Γ2- ĤFK(Σ, α, δ, z,w)

∂∗- . . .

. . .
∂′∗- ĤFK(Σ, α, β̃, z,w)

Γ
w,∗

α;β,eβ ?
Γ′

1- ĤF(Σ, α, β′′, z)

Γ∗

α;β′,β′′ ?
Γ′

2- ĤFK(Σ, α, δ′, z,w)

Γ
w,∗
α;δ,δ′ ?

∂′∗- . . .

.

Before goingin medias res, we would like to explain our strategy. The idea behind
all main proofs concerning the exact sequences was to show that certain holomorphic
discs cannot exist. Up to this point we always used the base points w andz in the sense
that we tried to see what implications can be made from the conditions nz = nw = 0.
In addition, keeping in mind that holomorphic maps between manifolds of the same
dimension are orientation preserving, we were able to proveeverything we needed.
Here, however, it is not so easy. First we would like to to see that the mapΓα;β′,β′′ can
be written as

Γα;β′,β′′ =

(
Γ1 Γ

0 Γ2

)
.
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This means we would like to show that there are no triangles connectingαβ -intersections
of Tα ∩ Tβ with αδ′ -intersections ofTα ∩ Tβ′′ (cf. Figure 3.11). This part is very
similar to the proofs already given. We could try to continuein the same spirit and
identify moduli spaces as we did before, but this is quite messy in this situation. The
reason is that we are counting triangles, and being forced tomake an intermediate stop
at the pointΘ̂, we are able toswitch our directionthere. So, comparing the boundary
conditions given in the three triple diagrams is not very convenient. Unfortunately
we were not able to avoid these inconveniences completely, but could minimize them.
After proving the splitting, we stick toΓα;β′,β′′ and show that the mapsΓ1, Γ2, Γ are
chain maps and that all boxes in the diagram commute. This is realized by counting
ends of appropriate moduli spaces of holomorphic trianglesand squares. Finally, to
minimize the messy task of comparing triangles in three diagrams, we just stick toΓ1

and show that this map essentially equalsΓw
α;β,eβ

on the chain level. The 5-Lemma

then ends the proof.

a1 z

D∗

y1

w

a2

y2

D∗∗

α1

β′

1β′′

1

Figure 3.11: The important part of the Heegaard diagram after handle slide.

Proof. First observe thatβ′1 andβ′′1 meet in two pairs of cancelling intersection points.
Thus

Γα;β′,β′′ = f̂αβ′β′′( · ⊗ Θ̂)

= f̂αβ′β′′( · ⊗ {a1, θ2, . . . , θg}) + f̂αβ′β′′( · ⊗ {a2, θ2, . . . , θg}).
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So, we are looking for triangles with intermediate intersection {a1, θ2, . . . , θg} and
triangles with intermediate intersection{a2, θ2, . . . , θg}.

Step 1– Splitting. Let x ∈ Tα ∩ Tβ andy ∈ Tα ∩ Teβ
be fixed. Let

f̂αβ′β′′(x⊗ {a1, θ2, . . . , θg})
∣∣∣
y

be the coefficient of̂fαβ′β′′(x · ⊗{a1, θ2, . . . , θg}) at the generatory. Suppose were is
a triangle starting atx and going toy along theα-boundary and then running toa1

along itsβ′ -boundary. From that point we have to go back tox again, following the
red curve pictured in Figure 3.11. Ata1 we have two choices: we go upwards along
the red curve, or we go downwards. Observe that going upwards, this would lead us
to entering theDz-region at some point and forcenz to be non-zero in contradiction to
our assumptions. Going downwards, we again enter theDz-region and the boundary
conditions forcenz to be non-zero, again. Thus, there is no holomorphic triangle
connectingx with y alonga1. Thus

f̂αβ′β′′(x⊗ {a1, θ2, . . . , θg})
∣∣∣
y
= 0.

The next step is to compute

f̂αβ′β′′(x⊗ {a2, θ2, . . . , θg})
∣∣∣
y
.

Suppose there were a triangle that contributes. Going alongthe boundary of that
triangle we would start atx and go toy along theα-boundary of the triangle and then
try to go to a2 following the pink curve in Figure 3.11. At some point we enter Dz

forcing nz to be non-trivial. Hence, we have

f̂αβ′β′′(x⊗ {a2, θ2, . . . , θg})
∣∣∣
y
= 0.

This shows that

Γα;β′,β′′ =

(
Γ1 Γ

0 Γ2

)
.

Step 2 – Γ1 = Γw
α;β,eβ

. First of all it is easy to see that holomorphic triangles,

contributing inΓw
α;β,eβ

, fulfill the property thatny1 = 0. Hence, together withnw =
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nz = 0 the triangles have to stay away from the regions surrounding β ∩ δ . Hence, we
have

Γ1 = Γ
w
α;β,eβ

+ R.

The mapR counts all holomorphic triangles not contributing toΓw
α;β,eβ

. Conversely,

all holomorphic discs contributing toΓ1 should be shown to fulfilln∗ = n∗∗ = ny1 =

ny2 = 0. In this caseR = 0 and both maps coincide on the chain level. Look at Figure
3.12: The situation for theαββ̃ -diagram is pictured.

1. Observe that there is exactly one holomorphic triangle with n∗∗ 6= 0. This
triangle contributes toΓ.

2. There is no holomorphic triangle contributing toΓ1 with n∗ 6= 0.

3. In a similar vein observe that these triangles in additionhave trivial intersection
with y1 andy2 .

Thus, we see thatR = 0.

z

y1

a2

w β̃1

α1
β1

Figure 3.12: What happens.

Step 3 – Chain map properties and commutativity. Given pointsx ∈ Tα∩Tδ and
y ∈ Tα ∩ Teβ

, look at the moduli space of holomorphic triangles connecting x with y,
with Maslov index 1. There are, a priori, eight ends from which we just write down
four. The four ends missing in Figure 3.13 are those contributing to Γ( · ⊗ ∂Θ̂), which
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vanishes since∂Θ̂ = 0. We know thatΓα;β′,β′′ is a chain map, i.e.

0 = ∂ ◦ Γα;β′,β′′ + Γα;β′,β′′ ◦ ∂

= ∂w
αeβ
◦ Γ1 + Γ1 ◦ ∂

w
αβ

+∂w
αeβ
◦ Γ + f ′ ◦ Γ2 + Γ1 ◦ f + Γ ◦ ∂w

αδ

+∂w
αδ′ ◦ Γ2 + Γ2 ◦ ∂

w
αδ .

The first two terms vanish since we identifiedΓ1 with Γw
α;β,eβ

, which is a (∂w
αβ , ∂

w
αeβ

)-

chain map. The next four terms vanish since these correspondto the ends illustrated in
Figure 3.13. Finally, since the whole equation is zero. the last two terms cancel each
other. Thus,Γ2 is a chain map as desired. By construction, two of three boxesin the
diagram commute. We have to see that on the level of homology

Γ1 ◦ f = f ′ ◦ Γ2.

Recall we showed that on the chain level

∂w
αeβ
◦ Γ + f ′ ◦ Γ2 + Γ1 ◦ f + Γ ◦ ∂w

αδ = 0.

Hence,Γ is a chain homotopy betweenΓ1 ◦ f and f ′ ◦ Γ2.

αδ αδ

αδ αβ
αδ αδ

(1) (2) (3) (4)αβ̃ αβ̃

αδ′ αβ̃

αβ̃ αβ̃

Figure 3.13: The ends of the moduli space providing commutativity

In [27] the authors give an alternative proof for the independence of the contact element
of the choice of cut system. We are especially interested in the technique they used
to prove Proposition 3.3 of [27]. Recall, that given an open book (P, φ), a positive
Giroux stabilization of (P, φ) is the open book (P ∪ h1, φ ◦ D+

γ ) where γ is a
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α1

β1

Figure 3.14: Illustration of what happens while Giroux stabilizing.

closed curve inP ∪ h1 that intersects the co-core ofh1 once, transversely. Fixing a
homologically essential, simple closed curveδ in P we call the Giroux stabilization
δ -elementary if, after a suitable isotopy,δ intersectsγ transversely in at most one
point (cf. Definition 2.5. of [27]). Their invariance proof relies on the fact that, given
a positive Giroux stabilization, one can choose a cut systema1, . . . ,an of (P, φ) such
that the curveγ does not intersect any of theai . Observe that, given such a cut system
for (P, φ) and definingan+1 to be the co-core of the handleh1 , thena1, . . . ,an+1 is a
cut system for the Giroux stabilized open book. Furthermore, observe that fori ≤ n

φ ◦D+
γ (ai) = φ(ai).

Figure 3.14 illustrates howφ ◦ D+
γ (αn+1) looks like. Thus, all intersections between

αi and βj for i, j ≤ n remain unchanged, whereαn+1 intersects onlyβn+1 once,
transversely. Furthermore,D+

γ (an+1) is disjoint from all ai , i ≤ n. And, hence,
βn+1 is disjoint from all αi , i ≤ n. Thus, the induced Heegaard diagram looks
like a stabilized Heegaard diagram induced by the open book (P, φ) with cut system
a1, . . . ,an . Denote byq the unique intersection point ofαn+1 and βn+1. Then the
map

Φ : ĈF(P, φ, {a1, . . . ,an}) −→ ĈF(P∪ h1,D+
γ ◦ φ, {a1, . . . ,an+1}),

given by sending a generatorx of ĈF(P, φ, {a1, . . . ,an}) to Φ(x) = (x,q), is clearly
an isomorphism of chain complexes preserving the contact element.

We will, however, focus our attention on a special version ofpositive Giroux stabi-
lization. Recall, that we call (Σ#T2, α′, β′) a stabilization of the Heegaard diagram
(Σ, α, β) where we defineα′ = α ∪ {µ} andβ′ = β ∪ {λ} with µ a meridian andλ
a longitude ofT2.
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α1

β1

Figure 3.15: The choice ofγ for a topological stabilization.

Definition 3.3.4. Let (P, φ) be an open book decomposition and let (P′, φ ◦ D+
γ ) be

a positive Giroux stabilization. We say that the Giroux stabilization represents a
topological stabilization if there is a cut system{a1, . . . ,an,an+1} of P′ with the
following properties:

(1) The set{a1, . . . ,an} is a cut system forP.

(2) Denote by (Σ, α, β) the Heegaard diagram induced by (P, φ, {a1, . . . ,an}) and
let (Σ′, α′, β′) be the Heegaard diagram induced by (P′, φ◦D+

γ , {a1, . . . ,an+1}).
The diagram (Σ′, α′, β′) is a stabilization of (Σ, α, β) up to isotopy of the
attaching circles.

Look into Figure 3.15. In this picture we present how to choose γ such that the positive
Giroux stabilization represents a topological stabilization. Indeed, the following lemma
holds.

Lemma 3.3.5. Let (P, φ) be an open book decomposition and let(P′, φ ◦ D+
γ ) be

a positive Giroux stabilization. The Giroux stabilizationrepresents a topological
stabilization up to isotopy of the attaching circles if and only if γ is isotopic to the
black curve pictured in Figure 3.15.

Proof. Given an open book decomposition (P, φ) and a positive Giroux stabilization
(P′, φ ◦D+

γ ) with γ like indicated in Figure 3.15, this stabilization clearly represents a
topological stabilization up to isotopy: Recall thatP′ = P∪ h1 . Choose a cut system
{a1, . . . ,an} of P such that∂ai , i = 1, . . . ,n, is disjoint from the region where the
handleh1 is attached on. Definean+1 as the co-core of the handleh1. Picturing the
resulting Heegaard diagrams we see that the positive Girouxstabilization represents a
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topological stabilization up to isotopy.
Conversely, suppose we are given a Giroux stabilization representing a topolgical
stabilization up to isotopy, then we have to show thatγ is isotopic to the black curve,
γs say, indicated in Figure 3.15. First note that the handle is attached on one boundary
component ofP. If h1 connects two different boundary components ofP, the genus
of the resulting Heegaard surface would increase by 2. By assumption there is a cut
system{a1, . . . ,an+1} for P′ fulfilling properties (1) and (2), given in Definition 3.3.4.
As in Definition 3.3.4, denote by (Σ, α, β) and (Σ′, α′, β′) the respective Heegaard
diagrams. By assumption,Σ′ = Σ#T2 and, after applying suitable isotopies,αi = α′

i

andβi = β′i for all i = 1, . . . ,n. We have, that

α′
n+1 = an+1 ∪ an+1

β′n+1 ∼ an+1 ∪ φ ◦ D+
γ (an+1)

with

α′
n+1 ∼ µT2 (3.3.2)

β′n+1 ∼ λT2. (3.3.3)

By (3.3.2), we see thatan+1 is isotopic to the co-core ofh1. This can be read off from
Figure 3.16. Hence, we have

an+1 ∪ φ ◦ D+
γ (an+1) = βn+1 ∼ λT2 ∼ an+1 ∪ φ ◦ D+

γs(an+1).

So, φ ◦ D+
γ (an+1) is isotopic toφ ◦ D+

γs
(an+1), which is equivalent to saying that

Dγ(an+1) is isotopic toDγs(an+1). But this finally implies thatγ is isotopic toγs.

Proposition 3.3.6. Let (P, φ) be an open book decomposition of Y and(P′, φ ◦ D+
γ )

a positiveδ -elementary Giroux stabilization representing a topological stabilization
(cf. Definition 3.3.4 and look at Figure 3.15). Then there areisomorphismsφ1, φ2 and
φ3 on homology such that the following diagram commutes

. . .
∂∗ - ĤFK(P, φ, δ)

Γ1 - ĤF(P,D+

δ ◦ φ)
Γ2 - ĤFK(P, φ̃)

∂∗- . . .

. . .
∂′∗- ĤFK(P′, φ ◦ D+

γ , δ)

φ1
∼=
?

Γ′
1- ĤF(P′,D+

δ ◦ φ ◦ D+
γ , z)

φ2
∼=
?

Γ′
2- ĤFK(P′, φ̃ ◦ D+

γ )

φ3
∼=
?

∂′∗- . . .

.

Remark. General positive Giroux stabilizations do not preserve theexact sequence.
The reason is that in the general situationγ ∩P andφ−1(δ) might intersect and cannot
be separated. In the topological situation, however, the special choice ofγ makes it
possible to separateγ ∩ P from φ−1(δ).
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Σ′ P′

h1

an+1 µT2

h1

an+1

Figure 3.16: The left portion picturesΣ′ and the right portion the pageP′ and how it
is obtained fromP.

Proof. Denote byγ1 the part ofγ that runs throughP. Since we are just doing a
topological stabilization, we can attach the handleh1 in such a way thatγ1 andφ−1(δ)
are disjoint. Just chooseγ like indicated in Figure 3.15. Even ifφ−1(δ) intersects
γ1, we can separate them with help of a small isotopy. By choosing a cut system
{a1, . . . ,an} for (P, φ) appropriately, we can extend this cut system to a cut system
for the stabilized open book by choosingan+1 like indicated in Figure 3.15. For
all Heegaard diagrams in the following, we will use this cut system. Sinceφ−1(δ)
and γ are disjoint, the associated Heegaard diagram of (P′,D+

δ ◦ φ ◦ D+
γ ) will look

like a stabilization of the Heegaard diagram induced by the open book (P,D+

δ ◦ φ).

The same holds for (−P′, φ̃) and (−P′, φ̃ ◦ D+
γ ). Using the isomorphism induced

by stabilizations as discussed above we can defineφ1, φ2 and φ3 as indicated in
Proposition 3.3.6. These maps are all isomorphisms and obviously commute on the
chain level.

Theorem 3.3.7. The mapΓ1 is topological, i.e. it just depends on the cobordism
induced by the surgery.

Proof. The cobordism induced by the Dehn twist depends only on the 3-manifold Y
and the framed knot typeK which the curveδ , together with its page framing, represents
inside Y. This pair, on the other hand, is described by an open book decomposition
adapted toδ and aδ -adapted cut system. These data determine a Heegaard diagram
subordinate to the pair (Y,K) (cf. §2.4). Given another adapted open book together

101



with an adapted cut system, the associated Heegaard diagramis equivalent to the first
after a sequence of moves which are described in Lemma 2.4.3.All of these moves are
recovered via Proposition 3.3.1, Proposition 3.3.2, Proposition 3.3.3 and Proposition
3.3.6. Of course, after some point, we might leave the class of Heegaard diagrams
induced by open books. But the propositions cited do not use this open book structure
as discussed at the beginning of the section.

3.4 Implications to Contact Geometry

In this section we will focus our attention on contact manifolds (Y, ξ). Let (P, φ) be an
open book decomposition that is adapted to the contact structure ξ (cf. §2.7.3). Recall
that the contact element and the invariant defined in [27] sitin the Heegaard Floer
cohomology (cf.§2.7.4 and Lemma 2.7.15). Because of the well-known equivalence

ĤF∗(Y) = ĤF∗(−Y)

we will be interested in the behavior of−Y rather thanY (cf. Lemma 2.7.15). Recall
from §2.7.4 that we have two choices to extract the Heegaard Floer homology of−Y
from data given by a Heegaard diagram ofY. We can either switch the orientation of
the Heegaard surface or switch the boundary conditions.

Let L ⊂ Y be a Legendrian knot (cf.§2.7.1) and denote byY+
L the manifold obtained

by doing a (+1)-contact surgery alongL. There is an open book decomposition
(P, φ) adapted toξ such thatL sits on the pageP× {1/2} of the open book and the
page framing coincides with the contact framing. A (+1)-contact surgery acts on the
open book like a negative Dehn twist alongL, i.e. (P, φ ◦ D−,P

L ) is an adapted open
book decomposition of (Y+

L , ξ
+
L ) whereD−,P

L denotes a negative Dehn twist alongL
with respect to the orientation ofP. Observe thatL sits on the wrong page for our
construction of the exact sequence. Fortunately, the identity

φ ◦ D−,P
L = D−,P

φ(L) ◦ φ (3.4.1)

holds. Thus, a surgery alongL can be interpreted as a left-hand composition of the
monodromy with a Dehn twist. In addition (P,D−,P

φ(L) ◦ φ) is an adapted open book

decomposition of (Y+
L , ξ

+
L ). To see the effect on the Heegaard Floer cohomology, we

have to change the surface orientation. We see that

−Y+
L = (−P,D−,P

φ(L) ◦ φ) = (−P,D+,−P
φ(L) ◦ φ). (3.4.2)
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One very important ingredient for our construction is the fact that we may choose an
L-adapted Heegaard diagram whereL sits on P × {1/2}. Because of the identity
(3.4.1) we need a Heegaard diagram with attaching circles adaptedto φ(L) in the
following sense: the curveφ(L) intersectsβ1 once, transversely and is disjoint from
all otherβ -circles. This condition is satisfied forL-adapted Heegaard diagrams since
φ(ai ) = bi . This means we are able to simultaneously match all conditions for setting
up the exact sequence and seeing the invariantL̂(L). Recall that the sequence requires
the point w defining L to be in a specific domain of the Heegaard diagram. This
positioning ofw induces an orientation onL. On the other hand, a fixed orientation of
L determines wherew has to be placed. These two orientations, the one coming from
the sequence and the one from the knotL itself, have to be observed carefully. We
have to see whether every possible choice of orientation ofL induces a positioning of
w inside the Heegaard diagram that is compatible with the requirements coming from
the exact sequence.

Proposition 3.4.1.Let (Y, ξ) be a contact manifold and L⊂ Y an oriented Legendrian
knot.

(i) Let W be the cobordism induced by(+1)-contact surgery along L. Then the
cobordism−W induces a map

Γ−W : ĤFK(−Y,L) −→ ĤF(−Y+
L ),

such thatΓ−W(L̂(L)) = c(Y+
L , ξ

+
L ).

(ii) If L carries a specific orientation and W denotes the cobordism induced by a
(−1)-contact surgery along L. Then the cobordism−W induces a map

Γ−W : ĤF(−Y−
L ) −→ ĤFK(−Y,L)

such thatΓ−W(c(Y−
L , ξ

−
L )) = 0.

Proof. Recall that

−Y+
L = (−P,D+,−P

φ(L) ◦ φ)

−Y−
L = (−P,D−,−P

φ(L) ◦ φ).

We choose a cut system which isL-adapted. This means thatL intersectsα1 trans-
versely, in a single point and is disjoint from the otherα-circles. Hence,φ(L) (sitting
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on the other side of the Heegaard surface) intersectsβ1 in a single point and is disjoint
from the otherβ -circles. We first try to prove the results concerning the (+1)-contact
surgery. After possibly isotoping the knotL slightly, we can achieve a neighborhood
of φ(L) ∩ β1 to look like the left or right part of Figure 3.17.

w

L L
z z

β1 β1

α1 α1

w binding of the open book binding of the open book

2

1

2

1

Figure 3.17: Setting things up for a contact (+1)-surgery.

In each part of the picture the knotL and the pointw are placed in such a way that
the Dehn twist associated to the (+1)-contact surgery connects the regions where the
points w and z lie. Thus, each picture shows a situation in which we may apply
the proof technique used for Proposition 3.2.1 (resp. Proposition 3.2.5). Observe that
Figure 3.17 shows the situation for each orientation ofL. Since we are doing a (+1)-
contact surgery, we perform a positive Dehn twist alongL with respect to the surface
orientation given in Figure 3.17 (cf. Equality (3.4.2) and cf. discussion at the beginning
of this paragraph). Thus, we are able to define a map

Γ
+ : ĤFK(−Y,L) −→ ĤF(−Y+

L ).

The situations in both pictures are designed to apply the proof technique of Proposition
3.2.1. The induced pair (w, z) determines an orientation onL. To match the induced
orientation with the one of the knotL we either use the left or the right picture of Figure
3.17. By definition ofΓ+ we see that

Γ
+(L̂(L)) = c(Y+

L , ξ
+
L ).

To cover (−1)-contact surgeries, look at Figure 3.18.

The same line of arguments as above applies to define a map

Γ
− : ĤF(−Y−

L ) −→ ĤFK(−Y,L).
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L
z z

β1 β′

1

α1 α1

binding of the open book binding of the open book

2

1

2

1w w

Legendrian invariant
contact element

Figure 3.18: Setting things up for a contact (−1)-surgery.

Again, recall thatw is placed in the Heegaard diagram in such a way that allows us
to define the mapΓ− . The pair (w, z) induces an orientation onL. The opposite
orientation will be denoted byob. What can be seen immediately from the picture
is that the Dehn twist separates the contact element and the invariant L̂(L, ob): The
arguments show that we have the following exact sequence.

0 - ĈFK(Y0(L), µ) - ĈF(−Y−
L )

Γ−

- ĈFK(−Y, (L, ob)) - 0

• - c

• - L̂(L, ob)

To speak in the language of the proof of Proposition 3.2.1: the elementc is anαβ -
intersection, whereas the elementL̂(L, ob) is anαδ -intersection. By exactness, the
contact elementc lies in the kernel ofΓ− .

Definition 3.4.2. The orientationob(P, φ) from the last proof is called theopen book
orientation.

To prove Corollary 3.4.3 we have to recall that Honda, Kazez and Matíc introduced in
[21] an invariantEH(L) of a Legendrian knotL in the Sutured Floer homology (cf. [22])
of a contact manifold with boundary. To be more precise, given L ⊂ (Y, ξ), they define
an Legendrian isotopy invariant ofL, calledEH(L), sitting in SFH(−Y\νL,Γ) where
Γ are suitably chosen sutures. Furthermore, Stipsicz and Vertesi have shown in [48]
that this invariant is equipped with a morphism SFH(−Y\νL,Γ) −→ ĤFK(−Y,L)
that mapsEH(L) to L̂(L). Composing this morphism with the one coming from
Theorem 3.4.1 we get the following result.

Corollary 3.4.3. There is a map

γ : SFH(−Y\νL,Γ) −→ ĤF(−Y+
L )
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such thatγ(EH(L)) = c(Y+
L , ξ

+
L ). �

Corollary 3.4.4. Let L be a Legendrian knot in a contact manifold(Y, ξ). Then
EH(L) = 0 implies that c(Y+

L , ξ
+
L ) = 0. �

It is also possible to derive these corollaries using methods coming from [48].

Proposition 3.4.5.Let L be a Legendrian knot in a contact manifold(Y, ξ) carrying the
open book orientation induced by an adapted open book(P, φ). Let(P′, φ′) be the once-
stabilized open book that carries the Legendrian knot S+(L) (see Proposition 3.4.11).
The open book orientationob(P′, φ′) coincides with the orientation incuded by the
stabilization.

We will give a proof of Proposition 3.4.5 in the following paragraph.

3.4.1 Stabilizations of Legendrian Knots and Open Books

Stabilizations as Legendrian Band Sums

Recall that stabilization basically means to enter a zigzaginto the front projection
of a Legendrian knot. If we are not in the standard contact space, we perform this
operation inside a Darboux chart. Which zigzag is regarded as a positive/negative
stabilization depends on the knot orientation. Positivity/Negativity is fixed by the
following equations

tb(S±(L)) = tb(K) − 1

rot(S±(L)) = rot(L) ± 1.

This tells us that

S+(L) = S−(L). (3.4.3)

Given two Legendrian knotsL andL′ , we can form theirLegendrian band sumL#LbL′

in the following way: Pick a contact surgery representationof the contact manifold in
such a way that the surgery linkL stays away fromL∪ L′ . In this way we can think of
L andL′ as sitting in the standard contact space and, so, can performthe band sum. We
denote byL0 andL0 the oriented Legendrian shark with the orientations as indicated
in Figure 3.19.
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L0 L0

Figure 3.19: The oriented Legendrian shark and its inverse.

Proposition 3.4.6. Given a Legendrian knot L, we can realize its stabilizationsas
Legendrian band sums, i.e.

S+(L) = L#LbL0

S−(L) = L#LbL0,

where#Lb denotes the Legendrian band-sum.

Proof. We prove the equality for positive stabilizations. The caseof negative stabi-
lizations is proved in a similar fashion. No matter what orientation the knotL carries,
we will find at least one right up-cusp or one right down-cusp.In case of a right
down-cusp we perform a band-sum involving this right down-cusp onL an the left
up-cusp onL0. In case we use a right up-cusp we perform the band-sum as indicated
in the left part of Figure 3.20. In Figure 3.20 we indicate theLegendrian isotopy that
illustrates that we have stabilized positively.

Figure 3.20: The Legendrian band-sum in case of a right up-cusp and a Legendrian
isotopy.

Open Books and Connected Sums

Suppose we are given open books (P1, φ1) and (P2, φ2) for manifolds (Y1, ξ1) and
(Y2, ξ2). Let B1 be the binding of (P1, φ1). Denote byνB1 an equivariant tubular
neighborhood ofB1. Fix a point p on B1 and embed a 3-ballD3 such that it is
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centered atp. Furthermore, the ball should sit insideνB1 such that the north and
south pole ofD3 equalB1 ∩ S2. Denote byf1 : D3 −→ νB1 ⊂ Y1 the embedding.
Embedg: D3 −→ Y2 in the same fashion. Composeg with a right-handed rotation
r that swaps the two hemispheres ofD3 to get another embeddingf2 = g ◦ r . Use
these embeddings to perform the connected sum. By its definition, the gluingf2 ◦ f−1

1
preserves the open book structure. Note that the rotation isneeded to make the pages
of the open book glue together nicely with their given orientation. Moreover, we are
able to explicitly describe the resulting open book. The newpageP equalsP1∪h1 P2,
whereh1 is a 1-handle connectingP1 and P2 and the bindingB equalsB1#B2. To
define the monodromy, first extendφ1 andφ2 as the identity along the handle and the
complementary page. Then defineφ as the compositionφ2 ◦ φ1 = φ1 ◦ φ2.

Lemma 3.4.7. The open book(P, φ) is an adapted open book for(Y1#Y2, ξ1#ξ2).

Proof. Observe that the given operation is a special case of the Murasugi sum. The
lemma then follows from [9].

Corollary 3.4.8. Let (Y, ξ) and (Y′, ξ′) be contact manifolds and L⊂ Y a Legendrian
knot. Then we have

ĤFK(−Y#Y′,L) ∼= ĤFK(−Y,L) ⊗ ĤF(−Y′)
L̂(Y#Y′,L) = L̂(Y,L) ⊗ c(ξ′)

.

Proof. Let (P1, φ1) be an open book decomposition adapted to the knotL and the
contact structureξ . Denote by (P2, φ2) an open book for (Y′, ξ′). We define an open
book (P, φ) by using the open books forY and Y′ as given above. Recall, that the
pageP is given by joining the pagesP1 andP2 with a 1-handleh1 , i.e.

P = P1 ∪h1 P2.

Denote byf : ∂h1 −→ ∂P1⊔∂P2 the attaching map. Furthermore, let{a1, . . . ,an} be
a cut system forP1 and{a′1, . . . ,a

′
m} a cut system forP2. Choose isotopic push-offs

bi of theai so thatai andbi intersect each other in a pairx+
i , x−i of intersection points.

The push-offs are chosen like specified in§2.7.4 (cf. also Figure 2.10). Analogously,
the curvesb′j , j = 1, . . . ,m, are defined; denote the points of intersection byy+

j , y−j ,
j = 1, . . . ,m. The names are attached to the intersection points in such a way that
{x+

1 , . . . , x
+
n } represents the clasŝL(Y,L) and that{y+

1 , . . . , y
+
m} representsc(ξ′). We

additionally fix base pointszi ∈ Pi , i = 1,2, and a third one,w say, inP1 determining
the knot L. These choices induce Heegaard diagrams we denote by (Σi, αi , βi ),
i = 1,2. We require the chosen cut systems to fulfill the following two conditions:
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(1) Im (f ) ∩
(⋃n

i=1 ∂ai ∪
⋃m

j=1 ∂a′j
)

= ∅

(2) Im (f ) ⊂ ∂Dz1 ∪ ∂Dz2

As a consequence of these two conditions and the fact that by definition φ|Pi
= φi ,

i = 1,2 andφ|h1 = idh1 we see that

φ(ai ) ∩ a′j = ∅ and ai ∩ φ(a′j ) = ∅. (3.4.4)

The set{a1, . . . ,an} ∪ {a′1, . . . ,a
′
m} is a cut system for the open book (P, φ). Denote

by (Σ, α, β) the induced Heegaard diagram, then with (3.4.4), we see that

Σ = Σ1#Σ2, α = α1 ∪ α2, β = β1 ∪ β2

and the pointszi , i = 1,2, lie in the regions unified by the connected sum tube. Choose
a base pointz∈ Σ lying in this unified region. Thus, — with the same reasoning as in
the proof of [39], Proposition 6.1. — we see that

ĤFK(−Y#Y,L) ∼= ĤFK(−Y,L)⊗ ĤF(−Y). (3.4.5)

By construction, the intersection point{x+
1 , . . . , x

+
n , y

+
1 , . . . , y

+
m} represents the class

L̂(Y#Y′,L). But the isomorphism giving (3.4.5), ϕ say, has that property that

{x+
1 , . . . , x

+
n , y

+
1 , . . . , y

+
m} 7−→ {x

+
1 , . . . , x

+
n } ⊗ {y

+
1 , . . . , y

+
m},

i.e. ϕ(L̂(−Y#Y′,L)) = L̂(−Y,L)⊗ c(ξ′).

Lemma 3.4.9. ([9]) If γ is a non-separating curve on a page of an open book(P, φ),
we can isotope the open book slightly such thatγ is Legendrian and the contact framing
agrees with the page framing.

This fact follows from the Legendrian realization principle. As a consequence, we get
the following corollary.

Corollary 3.4.10. If the Legendrian knots Li ⊂ Pi sit on the ages, then, on the page
P of (P, φ), we will find a Legendrian knot L with the following property:There
is a naturally induced contactomorphismφc such thatφc(L) equals L1#LbL2 after
performing a right-handed twist along the Legendrian band.Indeed, we obtain L by a
band sum of L1 and L2 on the page P.
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Proof. Let (Pi, φi ) be open books adapted to (Yi , ξi,Li), i = 1,2. OnPi there is a set
of embedded, simple closed curvesci

1, . . . , c
i
n whose associated Dehn twists generate

the mapping class groups ofPi . The associated Dehn twists can be interpreted as
contact surgeries along suitable Legendrian knots (cf. Theorem 2.7 in [27]). Thus,
using the open book decomposition we are able to find a (maybe very inefficient)
contact surgery representation of (Yi , ξi) which is suitable for our purposes to perform
the Legendrian band sum (cf. beginning of this section). Moreover, we can think ofL1

to pass the bindingB1 of P1 very closely at some point: this means that there is a point
p1 in the binding, and a Darboux ballD1 aroundp1, such that the curve intersects
this Darboux ball. Suppose this is not the case, then we can isotope the Legendrian
knot L1, which sits onP1, as a curve inP1, to pass the binding closely (as described
above). The isotopy is not necessarily a Legendrian isotopy. However, by Theorem 2.7
of [27], we know that the isotoped curve determines a uniquely defined Legendrian
knot, which is Legendrian isotopic toL1. With a slight isotopy of the open book, we
can think of this new knot as sitting onP1. By abuse of notation, we call the new
knot L1. After possibly isotoping the open book we can think ofL1 as sitting in the
complement ofD1. We obtain a situation like indicated in the top row of Figure3.21.
Since we have the identification (Y1, ξ1) ∼= (S3(L1), ξL1), the ballD1 can be thought
of as sitting inS3. The complement ofD1 in S3 is again a ball we denote bỹD1. We
may make similar arrangements forL2: however, we would likeL2 and the associated
surgery linkL2 to sit insideD1 and D̃1 to be the ball in whichL2 comes close toB2

(cf. bottom row of Figure 3.21). We can form the connected sum

S3(L1 ⊔ L2) = S3(L1)\D1 ∪∂ S2× [0,1] ∪∂ S3(L2)\D̃1 (3.4.6)

where the gluing is determined by the naturally given embeddings (cf.§4.12 in [16])

ι1 : D1 →֒ S3 and ι2 : D̃1 →֒ S3.

For a detailed discussion of connected sums of contact manifolds we point the reader to
[16]. The induced contact structure is the connected sumξL1#ξL2 = ξL1⊔L2 (cf. §4.12
of [16]). The knotsL1 andL2 are contained in this connected sum and, here, we can
perform the Legendrian band sum as defined at the beginning ofthis section; we can
perform a band sum which looks like given in Figure 3.22. Recall that we introduced
a connected sum operation such that the open books (Pi, φi) glue together to give the
open book (P, φ) whereP = P1 ∪h1 P2 andφ is given as the composition of the two
monodromiesφ1 andφ2. To perform the connected sum operation such that the open
book structures are preserved, we have to modify the construction slightly. We modify
the inclusionι1 by composing it with a rotation about they-axis with angleπ . Without
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S3(L1) =

S3(L2) =

Binding

Binding

D̃1

D̃1

D1

D1

L1

L2

∂

∂

Figure 3.21: Our specific arrangement for performing the connected sum.

loss of generality we can thinkL1 ∩ ∂D1 andL2 ∩ ∂D̃1 to be identified by the gluing
induced by the inclusion mapsι1 andι2. We can also assume that the rotationr swaps
the two intersection pointsL1 ∩ ∂D1. We obtain a new gluing map,f say, and get

Y = S3(L1)\D1 ∪f S3(L2)\D̃1

with induced contact structureξ . With this identification the knotsL1 and L2 glue
together to give a knotL. This knot L corresponds to a band sum ofL1 and L2 on
the pageP (after possibly applying Proposition 3.4.9). Recall that contact structures
on S2 × [0,1] are uniquely determined, up to isotopy, by the characteristic foliations
on S2 × {j}, j = 0,1 (cf. Lemma 4.12.1 and Theorem 4.9.4 of [16]). Consider the
connected sum tube used in (3.4.6), and extend it with small collar neighborhoods
of the boundaries ofS3(L1)\D1 and S3(L2)\D̃1. The characteristic foliationξL1⊔L2

induces at the boundary will coincide with the characteristic foliation ξ induces on a
suitably chosen tubular neighborhood of∂D1

∼= S2 × [0,1] in Y. Thus, there is a
contactomorphism betweenνD1 and this thickened connected sum tube. Moreover,
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L1 L2

L1 L2

Performing the band sum

Figure 3.22: Performing a band sum ofL1 andL2 insideS3(L1 ⊔ L2).

the contactomorphism can be extended to a contactomorphism

φc : (Y, ξ) −→ (S3(L1 ⊔ L2), ξL1⊔L2)

which just affects the connected sum tube and fixes the rest. As one can derive
with some effort, this contactomorphism basically rotatesthe S2-factor once while
going through the handleS2× [0,1]. Thus,φc(L) looks like a band sumL1#LbL2 in
S3(L1 ⊔ L2) after twisting the band once. Figure 3.23 applies.

The following statement is due to Etnyre. Since there is no proof in the literature, we
include a proof here for the convenience of the reader.

Proposition 3.4.11.([9]) Let (Y, ξ,L) be a contact manifold with Legendrian knot and
(P, φ) and open book adapted toξ with L on its page such that the page framing and
contact framing coincide. By stabilizing the open book oncewe can arrange either
the stabilized knot S+(L) or S−(L) to sit on the page of the stabilized open book as
indicated in Figure 3.24.
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L1 L2

L1 L2

Connected sum after applyingφc

Figure 3.23: Schematic picture of the band bum after idenifying (Y, ξ) with (S3(L1 ⊔

L2), ξL1⊔L2).

Legendrian knot

Legendrian knot

positive stabilization

Figure 3.24: The stabilized open book and a positive Legendrian stabilization.

The following result concerning the vanishing of the Legendrian invariant under positive
stabilizations is due to Lisca, Ozsváth, Stipsicz and Szabó and follows from their
connected sum formula given in [27]. Their proof carries over verbatim even for knots
which are homologically non-trivial. Here we reprove a special case of Theorem 7.2.
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of [27] using different methods.

Proposition 3.4.12([27], Theorem 7.2). Given any Legendrian knot L in a contact
manifold (Y, ξ), we haveL̂(S+(L)) = 0.

Proof. Let (P, φ) be an open book decomposition adapted to (Y, ξ,L). By Proposition
3.4.11 we know that a stabilized open book (P′, φ′) carries the stabilized knotS+(L).
Furthermore, from Figures 3.24 and 3.30 we can see how the induced Heegaard diagram
(adapted to capturing the contact geometric information) will look like near the base
point w. This is done in Figure 3.25. We may use Proposition 3.4.5 to check that the

x1

x2

w

z

p
q

Binding
1

2

Figure 3.25: Parts of the Heegaard diagram induced by the open book carrying the
stabilized knot.

positioning of the pointw in Figure 3.25 is correct. First observe thatL̂(S+(L)) is the
homology class induced by the point

{x1, x2, x3, . . . , x2g}.

Recall that by definition of the pointsxi every holomorphic disc emanating fromxi is
constant. Thus, a holomorphic disc emanating fromQ := {p,q, x3, . . . , x2g} can only
be non-constant atp,q. By orientation reasons and the placement ofw the shaded
region is the only region starting atp,q which can carry a holomorphic disc. Since it
is disc-shaped, it does carry a holomorphic disc. Hence

∂̂wQ = {x1, x2, x3, . . . , x2g}

showing thatL̂(S+(L)) vanishes.
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The knotL

The curve along which
to perform a Dehn Twist

Figure 3.26: The open book necessary to carry the Legendrianunknot with tb = −1
and rot = 0.

Proof of Proposition 3.4.11.Given a triple (Y, ξ,L), there is an open book (P, φ)
adapted toξ such thatL sits on a page of the open book. By Proposition 3.4.6,
Lemma 3.4.7 and Corollary 3.4.10 we perform a connected sum (Y, ξ)#(S3, ξstd) on
the level of open books using the open book of (S3, ξstd) pictured in Figure 3.26. By
construction, the new open book carries the Legendrian knotL2 pictured in Figure
3.27. In Figure 3.28 an isotopy is given, showing thatL2 corresponds to the band sum

L1

L2

−1

Figure 3.27: The knotL2 in (Y, ξ)#(S3, ξstd).

L#LbL0 and, thus, representsS±(L).

By Figure 3.26 what happens on the level of open books can be pictured as in Fig-
ure 3.29.

Proof of Proposition 3.4.5.Using Proposition 3.4.11, we have a tool to compare the
open book orientation before and after the stabilization. We start with an open book
adapted to the triple (Y, ξ,L) and choose anL-adapted cut system. By Proposition
3.4.11 we can generate an open book adapted to the positive stabilization by stabilizing
the open book. Doing this appropriately, we may extend the cut system to an adapted
cut system of the stabilized open book as indicated in Figure3.30. Recall the rule with
which the knot orientation is determined by the points (w, z) (see remark in§2.7.5). In
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L1

L1

L1

L1

L1

L1L1

L1

L1

L1

L1

L1

L1L1

L2

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

Figure 3.28: Legendrian isotopy showing thatL2 corresponds to the Legendrian band
sum ofL with the Legendrian sharkL0.

Figure 3.30 we can now compare the open book orientation of the stabilized knot with
the orientation induced by the stabilization. We see that the orientations coincide.

3.5 Applications – Vanishing Results of the Contact Element

In this paragraph we want to derive some applications of the theory developed in
§3.2, §3.3 and§3.4. First to mention would be Proposition 3.5.1, which can also be
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(a) (b) (c)

L stabilized knot

Figure 3.29: What happens during stabilization.

open book orientation on its stabilization

S+(L)

L
open book orientation
on the knot

Figure 3.30: Comparing induced with open book orientation.

derived using methods developed in [29]. There, Lisca and Stipsicz show that (+1)-
contact surgery along stabilized Legendrian knots yield overtwisted contact manifolds,
which implies the vanishing of the contact element. A secondapplication would be
Proposition 3.5.3, which is meant as a demonstration that calculating the Legendrian
knot invariant and using Proposition 3.4.1 to get information about a contact element
under investigation can be more convenient than using othermethods, since the knot
Floer homologies have additional structures we may use. A third application would be
Theorem 3.5.4 which is a vanishing result of the contact element which can be easily
read off from a surgery representation. This application uses the knot Floer homology
for arbitrary knots and makes use of a phenomenon that seems to be special about
these, namely that there are knots for which the knot Floer homology vanishes. We do
not know any other example with this property.
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Proposition 3.5.1. If (Y, ξ) is obtained from(Y′, ξ′) by (+1)-contact surgery along a
Legendrian knot L which can be destabilized, the element c(ξ) vanishes.

Proof. There are two cases to cover. Give the knotL an orientationo. Suppose that

(L, o) = S+(L′, o′).

Then Proposition 3.4.12 shows the vanishing ofL̂(L, o). By Proposition 3.4.1 the
elementc(ξ) vanishes, too. Now assume that

(L, o) = S−(L′, o′).

We see that
(L, o) = S−(L′, o′) = S+(L′, o),

hence,L̂(L, o) = 0. By Proposition 3.4.1 againc(ξ) = 0.

There are some immediate consequences we may derive from this theorem. The first
corollary is well-known but with help of our results we are able to reprove it.

Corollary 3.5.2 (Ozsv́ath and Szab́o). If (Y, ξ) is overtwisted, the contact element
vanishes.

Proof. Recall that the surgery diagram given in Figure 3.31 is an overtwisted contact
structureξ′ on S3.

+1+1

−1

Figure 3.31: Surgery diagram for an overtwistedS3 in the homotopy class ofξstd.

This overtwisted contact structure is homotopic toξstd as 2-plane fields (cf. [4]). By
Eliashberg’s classification theorem (see [7]), a connectedsum of (Y, ξ) with (S3, ξ′)
does not change the contact manifold, i.e.

(Y, ξ) = (Y, ξ)#(S3, ξ′).
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Denote byK the shark on the left of Figure 3.31. The manifold (Y, ξ) admits a surgery
representationS3(L) where L = K ⊔ L′ . Furthermore,K and L′ are not linked.
Denote by (Y′, ξ′′) the contact manifold with surgery representationS3(L′). We obtain
(Y, ξ) out of (Y′, ξ′′) by (+1)-contact surgery alongK , which can be destabilized
insideY′ . Proposition 3.5.1 implies the vanishing ofc(ξ).

Remark. For a detailed discussion of the homotopy invariants of overtwisted contact
structures onS3 see [5].

Another consequence is that performing a simple Lutz twist along a transverse knot kills
the contact element. The resulting contact structure is clearly overtwisted. Thus, by
work of Ozsv́ath and Szab́o the contact element vanishes. But besides this approach we
can show the vanishing of the contact element without referring to overtwistedness at all.
In [6] a surgical description for simple Lutz twists along transverse knots is presented.
This description involves (+1)-contact surgeries along a Legendrian approximationL
of the transverse knot and another Legendrian knot which is astabilized version ofL.
Proposition 3.5.1 then implies the vanishing of the contactelement.

When looking at a homologically trivial knotL, to show the vanishing of a contact
element after surgery alongL it can be convenient to show the vanishing ofL̂(L)
and then apply Proposition 3.4.1, because of the various gradings on the knot Floer
homological level. The following proposition is meant as anillustration of this fact.

Proposition 3.5.3.A (+1)-contact surgery along the Legendrian realizations Ln given
in Figure 3.32 of the Eliashberg-Chekanov twist knots En with n∈ −2N all give contact
manifolds with vanishing contact element.

n n

Ln
En

Legendrian realizations of the twists

Figure 3.32: The Eliashberg-Chekanov twist knotsEn and Legendrian realizationsLn.
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Proof. Since the invariantL̂(Ln) of the Legendrian realizationsLn of the knotsEn

live in ĤFK(−S3,En), and because of the correspondence

ĤFK(−S3,En) = ĤFK(S3,En),

whereEn denotes the mirror knot, we have to compute the groupŝHFK(S3,En). The
knots are all alternating. Therefore we will stick to Theorem 1.3 of [37] for a convenient
computation of the groups. We compute the Alexander-Conwaypolynomial using its
skein relation and get

∆En
(T) = (1− n) +

n
2

(T1
+ T−1).

To compute the signature of the knotsEn, we use the formula given in Theorem 6.1
of [37] and see that all these knots have signatureσ(En) = −n− 2. By Theorem
1.3 of [37], which describes the knot Floer homology groups of an alternating knot
in terms of the coefficients of the associated Alexander-Conway polynomial, the knot
Floer homology ofEn looks like

ĤFKj(S
3,En, i) =





Z−n/2, i = −1, j = −1 + −n−2
2

Z|1−n|, i = 0, j = −n−2
2

Z−n/2, i = 1, j = 1 + −n−2
2

0, otherwise

.

According to [35], the Legendrian invariant̂L(Ln) lives in ĤFKM(Ln)(−S3,En,A(Ln))
where A(Ln) is the Alexander gradingof Ln and M(Ln) is calledMaslov grading.
These gradings are computed using the formulas (see [35])

2 · A(Ln) = tb(Ln)− rot(Ln) + 1

d3(ξstd) = 2A(Ln)−M(Ln),

whered3 denotes the Hopf-invariant (cf. [18]). However, note that with the conventions
used in Heegaard Floer theoryd3(ξstd) = 0. With a straightforward computation we
see thattb(Ln) = −4 androt(Ln) = 1, which give the following Alexander gradings
and Maslov gradings

A(Ln) = −1

M(Ln) = −2.

Consequently, we can show, by using the computed Alexander and Maslov gradings,
that for every knotLn, n 6= 0, the invariantL̂(Ln) is an element of a vanishing

120



Figure 3.33: The Legendrian isotopy showing thatL0 can be destabilized.

subgroup ofĤFK(S3,En). To show the vanishing of̂L(L0) we observe thatL0 can be
destabilized.

The isotopy is pictured in Figure 3.33. By Proposition 3.5.1c(ξ+L0
) vanishes, too.

Using Proposition 3.4.1 the proposition follows.

The following theorem is a new vanishing result of the contact element, which uses
the knot Floer homology for arbitrary knots. Furthermore, we make use of the fact
that in S2× S1 there are homologically non-trivial knots whose associated knot Floer
homology vanishes.

Theorem 3.5.4.Let (Y, ξ) be a contact manifold given as a contact surgery along a
Legendrian link in(S3, ξstd). If the surgery diagram contains a configuration like given
in Figure 3.34, the contact element c(Y, ξ) vanishes.

+1

+1

K′

K

Figure 3.34: Configuration in a surgery diagram of (Y, ξ) killing the contact element.

Proof. We start looking at the knot Floer homology group of the pair (S2 × S1,G)
whereG is a specific knot representing a generator ofH1(S2 × S1): Figure 3.35 is a
Heegaard diagram adapted to this specific knotG. A straightforward calculation gives
ĤFK(S2 × S1,G) = 0. In Figure 3.36 we see a surgery diagram ofS2 × S1 with the
knot G in it. Returning to Figure 3.34, we can interpretK′ as an ordinary knot and
remove it from the surgery description. We obtain a contact manifold (Y′#S2× S1, ξ′)
andK′ is a Legendrian knot in it. A (+1)-contact surgery alongK′ will yield (Y, ξ).
Furthermore, as a topological knot,K′ can be written asK′′#G whereK′′ ⊂ Y and
G ⊂ (S2 × S1) is a knot representing a generator ofH1(S2 × S1). Hence, we have
(cf. [27])

ĤFK(Y′#(S2× S1),K′) = ĤFK(Y′,K′′)⊗ ĤFK(S2× S1,G) = 0.
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α

x
z

w

y

β

Figure 3.35: Heegaard diagram adapted toG

G

0

Figure 3.36: Surgery diagram ofS2× S1 with knot G in it.

The same holds if we reverse the orientation on the manifold.We perform a (+1)-
contact surgery alongK′ to obtain (Y, ξ). Denote byW the induced cobordism. By
Proposition 3.4.1 this induces a map

Γ−W : ĤFK(−Y′#(S2× S1),K′) −→ ĤF(−Y)

with c(Y, ξ) = Γ−W(L̂(K′)). So, the contact element vanishes, sinceL̂(K′) = 0.
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Chapter 4

Holomorphic Discs and Surgery
Exact Triangles

In this chapter we will refer to the sequences given in Corollaries 3.2.2 and 3.2.6 as the
Dehn Twist sequences. The second part of this thesis, i.e. this chapter, mainly focuses
on the relationship between the Dehn Twist sequences and thesurgery exact triangle
in knot Floer homology (cf.§2.6).

In this chapter we will begin proving that in the situation given in §3.2 we can set up
an exact sequence by using maps defined by counting holomorphic triangles, i.e. with
the cobordism maps:

. . .
∂∗- ĤFK(Y,K)

bFw
W1- ĤF(Y−1(K))

bFw
W2 - ĤFK(Y0(K), µ)

∂∗- . . . (4.0.1)

Of course, this strongly resembles the surgery exact sequence in knot Floer homology.
However, the mapŝFw

W1
and F̂w

W2
are defined slightly different than in the situation of

the knot Floer homology sugery exact sequence: the pointw – encoding the knot – is
used differently in the definition of these maps. Moreover, with this slight modification
we see, that the Sequence (4.0.1) stays in a strong relationship with the Dehn Twist
sequence from§3.2: we get the following diagram where all triangles and boxes
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commute (cf. Theorem 4.1.6).

ĤFK(Y0(K), µ)
f∗- . . .

. . .
∂∗- ĤFK(Y,K)

bFw
W1- ĤF(Y−1(K))

bFw
W2 -

Γ2
-

ĤFK(Y0(K), µ)

bFw
αδeδ ?

∂∗- . . .

6

. . .

6

f∗- ĤFK(Y,K)

bFw
αβeβ ?

Γ1

-
(4.0.2)

As a consequence, the Dehn Twist sequences can be defined withcoherent orientations
and refined with respect to Spinc-structures. Moreover, the connecting morphismf∗
of the Dehn Twist sequence and the connecting morphism∂∗ fit into the following
commutative square.

ĤFK(Y,K)
f∗ - ĤFK(Y0(K), µ)

ĤFK(Y,K)

bFw
Y×I?

∂∗ - ĤFK(Y0(K), µ)

bFw
Y0(K)×I

6
(4.0.3)

By looking at the mapping cone proof of the surgery exact sequence of Ozsv́ath and
Szab́o we see that (4.0.1) can be modified to give a surgery exact sequence where∂∗ is
replaced bŷFw

W3
. In consequence, the image and kernel ofF̂w

W3
and∂∗ coincide. The

composition law will show that this fact implies that the image and kernel of̂Fw
W3

and

f∗ coincide. It follows immediately that the rank of the image and kernel ofF̂w
W3

can
be computed combinatorially. Of cource, a more general result is already known by
work of Lipshitz, Manolescu and Wang (see [25]). However, the relation we derived
provides a new proof of this fact – at least in the knot Floer homology case – and
gives rise to an alternative algorithm for the combinatorial computation. As a matter
of fact the mapf∗ is defined by counting holomorphic discs in a suitable Heegaard
diagram and this map carries information of the mapF̂w

W3
which is defined by counting

holomorphic triangles in a Heegaard triple diagram. To us, it seems that this fact makes
it interesting to study properties off∗ . In §4.2.1 we will discuss in what situations the
mapf∗ can be defined and study properties of them. These maps fulfillproperties very
similar to the properties of the cobordism maps: they fit intoa surgery exact triangle
and preserve contact geometric information when induced by(+1)-contact surgeries.
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4.1 Surgery Exact Triangle and Dehn Twist Sequence

The shape of the Dehn Twist sequence strongly resembles the known surgery exact
triangle in knot Floer homology (cf.§2.6). We will try to investigate and derive their
relationship.

Given an abstract open book (P, φ), let δ ⊂ P be a homologically essential, simple
closed curve. Let (Σ, α, β, z) be an induced Heegaard diagram such thatδ intersects
β1 once, transversely and is disjoint from the otherβ -circles. We define the following
sets of attaching circles

β′ = {β′1, . . . , β
′
g}

δ̃ = {δ̃, β
′′

2 , . . . , β
′′

g},

whereβ′1 = D+

δ (β1) and D+

δ denotes a positive Dehn Twist alongδ . Theβ′i , i ≥ 2,
are isotopic push-offs of theβi such thatβi and β′i intersect in a cancelling pair of
intersection points. Furthermore, letβ

′′

i , i ≥ 2, be push-offs of theβ′i . As above,
the push-offs are chosen such that theβ

′′

i and β′i intersect in a cancelling pair of
intersection points. The curvẽδ is given as a perturbation (cf. Figure 4.1) of the curve
δ , like indicated in Figure 4.1.

w w

w w

Dz Dz

Dz Dz

α1 α1

α1 α1

z z

z z

(a) (b)

(c) (d)

1 1

1 1

2 2

2 2

δ

δ̃

β1

β′

1 β̃1

Figure 4.1: The relevant attaching circles.

Using the defined attaching circles we may form a sequence

ĈFK(Σ, α, β, z,w)
bFw
αββ′- ĈF(Σ, α, β′, z)

bFw
αβ′eδ- ĈFK(Σ, α, δ̃, z,w). (4.1.1)
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In the following we will use the notation̂F for both the map induced by a Heegaard
triple on the homological level and the map induced on the chain level. Which one we
are referring to will always be clear from the context. The superscript-w indicates that
the map counts holomorphic triangles withnw = 0. Using the mapping cone proof of
Ozsv́ath and Szab́o (cf. [42] or cf.§2.6), we can show that these fit into a surgery exact
triangle

ĤF(Y−1(K))

ĤFK(Y,K) �
bFw

W3

bF
w
W 1 -

ĤFK(Y0(K), µ)

bF w
W
2
- (4.1.2)

where F̂w
W1

and F̂w
W2

correspond to the mapŝFw
αββ′ and F̂w

αβ′eδ
in sequence (4.1.1).

The mapF̂w
W3

is the map on homology induced by the doubly-pointed triple diagram

(Σ, α, δ̃, β,w, z) (cf. §2.6). We will focus our attention on the sequence (4.1.1) and
discuss the behavior of the mapsF̂ therein with methods similar to those used in§3.2.

By abuse of notation, we will denote byδ the set of attaching circles{δ, β′2, . . . , β
′
g},

too. The work done in§3.2 shows that we have a short exact sequence of chain
complexes

0 - ĈFK(Σ, α, β̃, z,w)
Γ1- ĈF(Σ, α, β′, z)

Γ2- ĈFK(Σ, α, δ, z,w) - 0. (4.1.3)

The sequences (4.1.1) and (4.1.3) are designed to coincide at the middle term, namely
at ĈF(Σ, α, β′, z).

boundary ofP
β2

α2

β′

1

α1

α2

β2

β1
z Dz

w

1
2

Figure 4.2: Heegaard triple diagram definingF̂w
αββ′ .
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Lemma 4.1.1. The mapsF̂w
αββ′ and F̂w

αβ′δ respect the splitting of̂CF(Σ, α, β′, z),
given in Proposition 3.2.1, i.e. given by the sequence (4.1.3).

Proof. We show that the claim is true for the map̂Fw
αββ′ . We look at Figure 4.2

and try to show that there is no holomorphic triangle from anαβ -intersection to an
αδ -intersection (cf.§3.2.1) that contributes tôFw

αββ′ :

Θ̂ Θ̂z zDz Dz
β1 β1β′

1 β′

1
w w

α1 α1

1
2

1
2

Figure 4.3: Here we can see thatF̂w
αββ′ respects the splitting.

Let φ be a triangle that connects a pointx ∈ Tα ∩ Tβ with a point y ∈ Tα ∩ Tδ ⊂

Tα ∩ Tβ′ . The triangleφ connectsy with Θ̂ along itsβ′ -boundary. In Figure 4.3 we
illustrate the two possible ways to do that. In both cases theβ′ -boundary ofφ follows
the black arrow pictured there. We either cause a non-negative intersection number
nw (cf. left of Figure 4.3) or a non-negative intersection number nz (cf. right part of
Figure 4.3). Thus,nw(φ) 6= 0 or nz(φ) 6= 0, which shows thatφ does not contribute to
F̂w
αββ′ . A similar line of arguments can be used to prove the claim forF̂w

αβ′δ .

It is a consequence of the last lemma that

F̂w
αβ′eδ
◦ F̂w

αββ′ = 0.

Using the given attaching circlesα, β , β̃ , δ and δ̃ we may introduce the mapŝFw
αβeβ

and F̂w
αδeδ

.

Lemma 4.1.2. The diagram

ĈFK(Σ, α, β, z,w)
bFw
αββ′- ĈF(Σ, α, β′, z)

ĈFK(Σ, α, β̃, z,w)

bFw
αβeβ ?

⊂

ι

-

commutes whereι denotes the inclusion induced by a natural identification ofgener-
ators.
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regions not used
by holomorphic
triangles

regions not used
by holomorphic
triangles

Θ̂
z zDz Dzβ1

β1

w w
α1 α1

Θ̂β′

1 β̃1
2 2

1 1

Figure 4.4: Comparing the boundary conditions ofF̂w
αββ′ and F̂w

αβeβ
.

Let us denote byh the mapF̂w
αββ′ and by g the mapF̂w

αβeβ
. There is a canonical

inclusion
ι : ĈFK(Σ, α, β̃, z,w) −→ ĈF(Σ, α, β′, z,w)

induced by an identification of intersection points. Namely, observe that

Tα ∩ Tβ′ = Tα ∩ Tβ ⊔ Tα ∩ Tδ

= Tα ∩ Teβ
⊔ Tα ∩ Tδ

in caseβ̃ is a suitable perturbation ofβ we will define in a moment. We definẽβi = βi ,
for all i ≥ 2, andβ̃1 as indicated in Figure 4.4 (see also Figure 4.1). We would like to
show thath = ι ◦ g.

Definition 4.1.3. Let (Σ, α, β, z) be a Heegaad diagram and denote byD1, . . . ,Dk the
components ofΣ\{α ∪ β}. We say that a Whitney discφ does not usea domainDi ,
i ∈ {1, . . . , k}, if the domainDi does not appear inD(φ), i.e. writingD(φ) as

D(φ) =

k∑

j=1

dj · Dj ,

the coefficientdi vanishes. We also say that the domainD(φ) does not useDi .

The main idea is to first prove that given intersectionsx, y ∈ Tα ∩ Tβ , all positive
domainsD , i.e. all coefficients inD are greater than or equal to 0, connectingx andy,
with nw(D) = nz(D) = 0, do not use certain components ofΣ\{α∪β} or Σ\{α∪ β̃}.

128



Which domains are expected not to be used is indicated in Figure 4.4, the left part
illustrating the situation forh, the right part illustrating the situation forg. With this
information, we compare the boundary conditions of holomorphic triangles forh and
g. The conclusion will be that, with itsβ′ -boundary, the holomorphic triangles counted
by h always stay insideTβ′ ∩ Teβ

. And, with its β̃ -boundary, holomorphic triangles
counted byg stay insideTeβ

∩ Tβ′ . Thus, we are able to identify the moduli spaces of
holomorphic triangles contributing toh andg with arguments similar to those used in
the proof of Proposition 3.2.1.

Proof. Figure 4.4 shows the part of the Heegaard triple diagrams where the boundary
conditions for the holomorphic triangles involved in the definition of h andg differ. The
picture illustrates which regions are not used by holomorphic triangles that contribute
to h andg. This has to be shown in the following: We start our discussion with the map
h and look at Figure 4.5. Each part of Figure 4.5 covers one of the cases which we will
discuss in the following. The different parts of Figure 4.5 show parts of the Heegaard
diagram pictured in the left of Figure 4.4. We focused on those parts important to our
arguments. Denote byφ a holomorphic triangle that contributes toh. The domains,
which we want to show not to be used byφ, will be denoted byDxi , i = 1,2,3. In
each of these regions we fix a pointxi , i = 1,2,3. If φ uses one of the domainsDxi ,
the associated intersection numbernxi is non-zero.

α β

β′

Interesting holomorphic
triangles

Θ̂ Θ̂
z β1 z
β1 x3

w w wα1 α1 α1x2

x1
β′

1 β′

1
β′

11 1
1

2 2 2

Figure 4.5: Here we see whynxi , i = 1,2,3 have to be trivial.

Suppose the domainD(φ) has non-trivial intersection numbernx1 (cf. left part of
Figure 4.5). This means we generate aβ′ -boundary pointing insideDw, as indicated
by the black arrow in the left part of Figure 4.5. Consequently, nw has to be non-zero.

Suppose the domainD(φ) has non-trivial intersection numbernx2 (cf. middle part of
Figure 4.5). As we can see from the middle part of Figure 4.5 (by following the black

129



arrow), this forcesnz to be non-zero, since we generate aβ′ -boundary that has to run
to Θ̂.

Suppose the domainD(φ) has non-trivial intersection numbernx3 (cf. right part of
Figure 4.5). This generates aβ′ -boundary emanating from̂Θ. Sincenz vanishes, the
boundary has to run once alongβ′1 . But thennw is non-zero, as indicated by the black
arrow.

This shows that every holomorphic triangle that contributes toh has trivial intersection
numbernxi , i = 1,2,3.

Interesting holomorphic
trianglesα β

β̃ Θ̂

β1
x1 z z

β1

w wα1 α1

Θ̂ Θ̂
β̃1 β̃1 x21 1

2 2

Figure 4.6: Here we see whynxi , i = 1,2 have to be trivial.

We continue arguing that holomorphic triangles contributing to g, cannot use the
domains indicated in the right part of Figure 4.4. Letφ be a holomorphic triangle
contributing tog. Analogous to the discussion done forh, we denote the regions not
expected to be used byφ with Dxi , i = 1,2. In each of the domains we fix a pointxi .
We want to show thatnxi to be non-zero impliesnw 6= 0 or nz 6= 0. The different parts
of Figure 4.6 show parts of the Heegaard diagram pictured at the right of Figure 4.4.

Suppose the domainD(φ) has non-trivial intersection numbernx1 (cf. left part of
Figure 4.6). Sincenw = 0, we generate aβ -boundary pointing insideDz, as it is
indicated in the left part of Figure 4.6 (the boundary follows the black arrow). We see
that nz 6= 0.

Suppose the domainD(φ) has non-trivial intersection numbernx2 (cf. right part of
Figure 4.6). Sincenz = 0, we generate aβ -boundary pointing insideDw (cf. right
part of Figure 4.6) forcingnw to be non-zero.

Thus, using arguments that are similar to those applied in the proof of Proposition
3.2.1, we can identify the moduli spaces of holomorphic triangles that contribute toh
andg.
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Lemma 4.1.4. The diagram

ĈFK(Σ, α, δ, z,w)

ĈF(Σ, α, β′, z)
bFw
αβ′eδ-

π
--

ĈFK(Σ, α, δ̃, z,w)

bFw
αδeδ ?

commutes whereπ is the projection induced by a natural identification of generators.

Proof. The proof is analogous to the proof of Lemma 4.1.2. Analogousto ι we can
define the projectionπ by identifying

Tα ∩ Tβ′ = Tα ∩ Tβ ⊔ Tα ∩ Tδ

= Tα ∩ Tβ ⊔ Tα ∩ Teδ
,

i.e. by identifyingTα ∩ Tδ with Tα ∩ Teδ
. This induces a projectionπ between the

respective chain modules.

regions not used by holomorphic triangles

δ̃

z zDz Dz
δ

Θ̂w w
α1 α1

β′

1
δ̃

Θ̂ regions not used
by holomorphic
triangles

1 1
2 2

Figure 4.7: Comparing the boundary conditions ofF̂w
αβ′eδ

and F̂w
αδeδ

.

In the following we will denote byh the mapF̂w
αβ′eδ

and byg the mapF̂w
αδeδ

. This time,

we would like to show thath = g◦π . Figure 4.7 indicates which domains are not used
by holomorphic triangles (in the sense of Definition 4.1.3) that contribute tog andh.
This has to be shown in the following discussion. Observe that each part of Figure 4.8
shows a part of the Heegaard diagrams pictured in Figure 4.7.Each of these portions
will be relevant in one of the cases we will have to investigate. There are two domains
not to be used by holomorphic triangles contributing tog (cf. left part of Figure 4.7).
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In each of these domains we fix a pointxi and denote the associated domain byDxi ,
i = 1,2 (cf. left and middle part of Figure 4.8). There is one domainnot to be used
by triangles contributing toh (cf. right part of Figure 4.7). We fix a pointx3 in this
domain and denote the associated domain byDx3 (cf. right of Figure 4.8). Letφ be a
holomorphic triangle that contributes tog.

Suppose the domainD(φ) has non-trivial intersectionnx1 (cf. left part of Figure 4.8).
This generates aβ′ -boundary like indicated by the black arrow in the left portion of
Figure 4.8. This boundary cannot be killed, i.e. cannot be interpreted as sitting in
the interior ofD(φ), sincenw = 0. This β′ -boundary, thus, has to emanate from̂Θ
forcing it to follow the black arrow like indicated. Thus,nz is non-zero.

Suppose the domainD(φ) has non-trivial intersectionnx2 (cf. middle part of Figure 4.8).
We create aβ′ -boundary like indicated by the black arrow in the middle portion of
Figure 4.8. This boundary points towardŝΘ. But recall that theβ′ -boundary ofφ
has to emanate from̂Θ, as can be seen by looking at the triangle pictured at the top of
the left and middle part of Figure 4.8. Thus, we have to generate aβ′ -boundary going
alongβ′ once, completely. But this impliesnw to be non-zero.

Now suppose thatφ is a holomorphic triangle that contributes tog. Assume the
domainD(φ) has non-trivial intersectionnx3 (cf. right part of Figure 4.8). This time
we generatẽδ -boundary like indicated by the black arrow in the right portion of Figure
4.8. This boundary cannot be killed, sincenz = 0. This boundary has to emanate
from Θ̂ as can be seen by looking at the triangle pictured at the top ofthe right part of
Figure 4.8. But this is impossible, sincenw = 0.

We have seen that holomorphic triangles, that contribute toh or g, do not use the do-
mains indicated in Figure 4.7. Again, using arguments that are similar to those applied
in the proof of Proposition 3.2.1, we can identify the modulispaces of holomorphic
triangles that contribute toh andg. This shows thath = g ◦ π .

From Lemma 4.1.2 and Lemma 4.1.4 we see that (4.1.1) is a shortexact sequence of
chain complexes (since (4.1.3) is) and, thus, it induces a long exact sequence

ĤF(Y−1(K))

ĤFK(Y,K) �
∂∗

bF
w

W1 -

ĤFK(Y0(K), µ)

bF w
W
2
- (4.1.4)
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Interesting holomorphic
trianglesα β α δ

β′ Θ̂ δ̃ Θ̂

z z
x3

zδ̃ δ̃ δ

w
α1

w x2
α1

w Θ̂
α1

Θ̂
β′

1 Θ̂
β′

1 δ̃
1

2
1

2
1

2

x1

Figure 4.8: Here we see whynxi , i = 1,2 have to be trivial forf and whynx3 has to
be trivial for g.

between the homologies. When comparing with the sequence (4.1.2), we immediately
see that

im(F̂w
W3

) = im(∂∗)
ker(̂Fw

W3
) = ker(∂∗)

. (4.1.5)

Moreover, putting together both Lemma 4.1.2 and Lemma 4.1.4, we derive a strong
relationship between the sequences (4.1.1) and (4.1.3).

Theorem 4.1.5.All triangles and boxes in the following diagram commute.

ĤFK(Y0(K), µ)
f∗- . . .

. . .
∂∗- ĤFK(Y,K)

bFw
W1- ĤF(Y−1(K))

bFw
W2 -

Γ2
-

ĤFK(Y0(K), µ)

bFw
αδeδ ?

∂∗- . . .

6

. . .

6

f∗- ĤFK(Y,K)

bFw
αβeβ ?

Γ1

-
(4.1.6)

Proof. We put together Lemma 4.1.2 and Lemma 4.1.4 to get two short exact sequences
of chain complexes that are related like claimed, i.e. we have

ĈFK(Σ, α, δ, z,w) - 0

0 - ĈFK(Σ, α, β, z,w)
bFw
αββ′- ĈF(Σ, α, β′, z)

bFw
αβ′eδ-

π
-

ĈFK(Σ, α, δ̃, z,w)

bFw
αδeδ ?

- 0

0 - ĈFK(Σ, α, β̃, z,w)

bFw
αβ eβ ?

ι
-

.
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To identify the diagonal sequence, i.e. the sequence

0 - ĈFK(Σ, α, β̃, z,w)
ι- ĈF(Σ, α, β′, z)

π - ĈFK(Σ, α, δ, z,w) - 0

with the Dehn Twist sequence given in Corollary 3.2.2, we have to isotopeβ̃1 a bit.
Observe that̃β1 does not match with the situation given in Corollary 3.2.2 orwith the
situation given in Proposition 3.2.1 (cf. Figure 4.1 and theproof of Proposition 3.2.1).
The isotopy, however, is supported withinDz∪Dw. Furthermore, recall that an isotopy
not generating/cancelling intersection points, acts on the Heegaard Floer homology as
a perturbationJs,t of the path of almost complex structuresJs,0 (cf. §2.3.3) used in
the definition of the Heegaard Floer homologies. We have to see that the induced map
Φ̂Js,t (cf. §2.3.2 and§2.3.3) is the identity on the chain level: In the definitionΦ̂Js,t we
count 0-dimensional components of holomorphic discs withnw = nz = 0. The family
Js,t coincides withJs,0 outside of a set, which is contained in (Dz∪Dw)×Symg−1(Σ),
since the isotopy perturbing̃β1 is supported inDz ∪ Dw. Thus, forx, y ∈ Tα ∩ Tβ ,
we have an identification

(
MJs,t (x, y)

)µ=0

nz=nw=0
=

(
MJs,0(x, y)

)µ=0

nz=nw=0
, (4.1.7)

where the notation should indicate that we are interested inmoduli spaces with Maslov
index 0 and whose elements satisfynz = nw = 0. The moduli space on the right of
Equation (4.1.7), in the following denoted byM, is empty unlessx = y: Suppose
there is a holomorphic Whitney discφ connectingx with y. Assumingx and y are
not equal, the discφ is non-constant. So, because of the translation action (cf.§2.1.2)
the discφ comes in a 1-dimensional family. Thus,φ cannot be an element ofM. If
x and y are the same point, the moduli spaceM contains the constant holomorphic
disc. But it does not contain non-constant holomorphic discs by the same reasoning
done forx 6= y.

Consequently, the map̂ΦJs,t is the identity on the chain level. We know from§2.3.2

that the map̂ΦJs,t is a chain map, i.e. we have

0 = ∂̂Js,1 ◦ Φ̂Js,t − Φ̂Js,t ◦ ∂̂Js,0 = ∂̂Js,1 − ∂̂Js,0.

Thus, the signed count of holomorphic discs with Maslov index 1 in both

ĈFK(Σ, α, β, z,w) and ĈFK(Σ, α, β̃, z,w)

equals for each homotopy class admitting holomorphic representatives. Thus, we may
replace the mapι with Γ1. The mapπ already equalsΓ2.
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Corollary 4.1.6. The following equalities hold

im(F̂w
W3

) = im(f∗)

ker(̂Fw
W3

) = ker(f∗),

where f is the map defined in Corollary 3.2.3.

Proof. Consider the commutative diagram

ĤFK(Y,K)
f∗ - ĤFK(Y0(K), µ)

ĤFK(Y,K)

bFw
Y×I?

∂∗ - ĤFK(Y0(K), µ)

bFw
Y0(K)×I

6
(4.1.8)

which is the square from sequence (4.1.6) and which commutesaccording to Theo-
rem 4.1.5. Note that the vertical maps are induced by the triplesαββ̃ andαδδ̃ , which
can be associated to the trivial cobordismsY× I andY0(K)× I . As we have observed
in (4.1.5), the kernel and the image ofF̂w

W3
coincide with the kernel and image of∂∗ .

Thus, we may writêFw
W3

instead of∂∗ at the lower arrow. Doing so, the box does

not commute anymore but the composition ofF̂w
W3

with the vertical maps yields a map
whose kernel and image coincides with the kernel and image off∗ . By the composition
law of the maps induced by cobordisms the composition is again a map associated to a
cobordism. Denote this cobordism byW. The following square indicates the situation.

ĤFK(Y,K)
f∗

bFw
W

- ĤFK(Y0(K), µ)

ĤFK(Y,K)

bFw
Y×I?

∂∗

bFw
W3

- ĤFK(Y0(K), µ)

bFw
Y0(K)×I

6
(4.1.9)

Using the composition law we get

F̂w
W = F̂w

Y×I ◦ F̂w
W3
◦ F̂w

Y0(K)×I = F̂w
Y×I∪W∪Y0(K)×I = F̂w

W3

giving the desired result.

So, basically, instead of counting holomorphic triangles,we can count holomorphic
discs to gain information about the map̂Fw

W3
. Especially, given that (Σ, α, β′, z) is a

nice Heegaard diagram (in the sense of Sarkar and Wang, see [47] orcf. Definition
2.1.28). In this case the mapf can be computed combinatorially. In this way we get
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an algorithm to combinatorially compute the rank of the kernel and the image of̂Fw
W3

.
Note that Lipshitz, Manolescu and Wang in [25] determine an algorithm to do that
for cobordism maps in the hat-theory in case ofZ2-coefficients. Their result is more
general than ours, however, in case of knot Floer homologieswe are able to present a
different algorithm.

Corollary 4.1.7 ([25]). The rank of the kernel and image ofF̂w
W3

can be computed
combinatorially.

Proof. To compute the ranks it suffices to compute the ranks of the kernel and image
of f∗ combinatorially. Recall thatf∗ is part of the boundarŷ∂αβ′ . It remains to show
that there is a nice Heegaard diagram (cf. Definition 2.1.28)induced by an open book
decomposition and which is adapted to the setup used to definethe sequences given
in Corollaries 3.2.2 and 3.2.6. In [45] Plamenevskaya showsthat the Sarkar-Wang
algorithm (see [47]) can be modified to apply for open books byjust using isotopies
of the monodromy. This means that a given open book (P, φ) can be modified to
an isotopic open book (P, φ′) such that the associated Heegaard diagram is nice. To
give some more details: Start with an open book (P, φ) and choose a cut system to
define an associated Heegaard diagram (Σ, α, β). Use finger moves (see [47]) of the
β -curves inside the pageP× {1} to obtain a nice Heegaard diagram (cf. Definition
2.1.28). These finger moves add up to give an isotopyϕt of the pageP. This isotopy,
by construction, is the identity near the boundaryP. The resulting diagram is adapted
to the curveφ1(δ).

The following corollary is an immediate consequence of Theorem 4.1.5. We will not
outline the proof, since the construction is lengthy but straightforward. The horizontal
part of the sequence given in Theorem 4.1.5 can be defined withcoherent orientations,
and it refines with respect to Spinc-structures (in the sense of [40]). The diagonal part,
i.e. the Dehn Twist sequence, commutes with the horizontal part, so, we can use the
refinements and the coherent orientations on the horizontalpart to generate refinements
and coherent orientations on the Dehn Twist sequence.

Corollary 4.1.8. The Dehn Twist sequences, i.e. the sequences given in Corollar-
ies 3.2.2 and 3.2.6, can be defined with coherent orientations. Furthermore, these
sequences refine with respect toSpinc-structures. �
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4.2 Chain Maps and Holomorphic Discs

The last paragraph enlightened a connection between counting holomorphic triangles
in doubly-pointed Heegaard triple diagrams and counting holomorphic discs in doubly-
pointed Heegaard diagrams. This connection gave rise to an alternative algorithm to
compute ranks of cobordism maps combinatorially. We will focus our attention on the
mapsf , as defined in Corollary 3.2.3, and try to answer the following questions: Is it
possible to give a definition off in general situations? What properties do these maps
have?

4.2.1 General Definition

To give a general definition of the mapf , suppose we are given a pair (Y,K) whereY is
a 3-manifold andK ⊂ Y a knot. Let (Σ, α, β, z) be a subordinate Heegaard diagram,
i.e. we write

T2#Σ
′
= Σ

such thatK is the core of the first torus component, i.e. ofT2. We apply the notation
from Proposition 3.2.1. Letµ be a meridian ofT2 and defineβ̃1 asλ+ n · µ where
λ + n · µ represents the surgery framing ofK . The left part of Figure 4.9 illustrates
the situation:

w w
z z

δ K′

µY
K β̃

Figure 4.9: Heegaard diagrams suitable for definingf .

The diagram (Σ, α, δ,w, z) represents the pair (Y,K) and (Σ, α, β̃,w, z) represents the
surgered manifoldYK , and in it, a knotµY

K . These two diagrams fit into an exact
triangle (cf. Corollary 3.2.2)

ĤFK(Σ, α, δ, z,w)
f∗ - ĤFK(Σ, α, β̃, z,w)

ĤF(Σ, α, β′, z)
� Γ1

�

Γ
2

(4.2.1)
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whereβ′ is defined by applying tõβ1 a positive Dehn Twist alongδ . With Proposition
3.2.1 the sequence is defined (analogous to the sequence given in Corollary 3.2.2) and
by Corollary 3.2.3 we get a definition off within (4.2.1). Namely, forx ∈ Tα ∩ Tδ

we define
fαδ,w(x) =

∑

y∈Tα∩Teβ

∑

φ∈H∗(x,y,1)

#M̂φ · y,

whereH(x, y,1) ⊂ παβ
′

2 (x, y) are the homotopy classes with Maslov index 1 and such
that the pair (n∗(φ),n∗∗(φ)) does not equal (0,0). As defined in Corollary 3.2.3, we
denote byπαβ

′

2 the Whitney discs associated to the diagram (Σ, α, β′, z). We define
f∗ = (fαδ,w)∗ .

Proposition 4.2.1. Let K′ be a push-off of K (with respect to its framing) in Y . The
knotµY

K is the knot K′ interpreted as sitting in YK .

µY
K

n n n

K′ K′ K′K K K
n n

Slide isotopy

µY
K µY

K

Figure 4.10: Determining the knotµY
K

Proof. The manifoldYK is given by

YK = Y\(S1× D2) ∪ϕ S1× D2

n · µ+ λ ←−[ µ0

−µ ←−[ λ0

whereλ is the longitude determining the framing given by the tubular neighborhood
of K , µ0 is a meridian andλ0 the standard longitude ofS1 × D2. The knotµK

Y is
determined via the pair (w, z) in the diagram (Σ, α, β̃). By definition of the pair (w, z),
the induced knot, i.e.µY

K , intersects the co-core of the 2-handle determined byK once,
transversely and is disjoint from all other 2-handles. Hence, in the decomposition
above, the curveµY

K equals the longitudeλ0. The gluing map sends the curveλ0 to a
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meridian ofK . Hence, the situation described in the left part of Figure 4.10 applies.
Sliding µY

K over the 2-handle determined byK (cf. Figure 4.10), we see that inYK the
knot µY

K is isotopic to a push-off ofK that determines the surgery framing onK .

Thus, we obtain a map

f∗ : ĤFK(Y,K) −→ ĤFK(YK , µ
Y
K).

Theorem 4.2.2.The map f∗ does not depend on the choices made in its definition. It
just depends on the cobordism induced by the surgery along K .

Proof. This immediately follows from the invariance properties derived in §3.3).

4.2.2 Properties

Given a 3-manifold and a knotK ⊂ Y with framing n, let us do surgery alongK with
its specified framing and denote byW1 the induced cobordism. With the discussion
done in paragraph§4.2.1, we can associate to the cobordismW1 a map

fW1 : ĤFK(Y,K) −→ ĤFK(Yn
K ,K

′),

whereK′ = µY
K is a meridian ofK in Y interpreted as sitting inYn

K . We continue to
form a surgery exact triangle (cf.§2.6), i.e. we do (−1)-surgery alongK′ , and denote
its induced cobordism byW2. We obtain a map

fW2 : ĤFK(Yn
K ,K

′) −→ ĤFK(Yn+1
K ,K′′),

whereK′′ = µ
Yn

K
K′ . Interpreted as sitting inY, the knotK′′ is a meridian ofK′ , and it is

not linked withK . Surgery alongK′′ with framing (−1) yields the manifoldY, again.
Denote the associated cobordism byW3.

Theorem 4.2.3. The maps fWi , i = 1, . . . ,3, fit into the following surgery exact
sequence

ĤFK(Y,K)
fW1 - ĤFK(Yn

K ,K
′)

ĤFK(Yn+1
K ,K′′)

� fW2

�

fW
3

(4.2.2)
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n n + 1 n + 1
K K K

n+1

K′′′

K′′′ K′′′ K′′′
Rolfsen twist handle slide slam dunk

−1

−1

0 0

Figure 4.11: Determining the type ofK′′′ .

Proof. First of all we have to see thatK′′′ = µ
Yn+1

K
K′′ is isotopic toK in Y. The left part

of Figure 4.11 pictures the knotK′′′ in the surgery diagram ofY induced by the surgery
triangle. With a Rolfsen twist, a handle slide ofK′′′ over K and a slam dunk we show
that K′′′ is a copy ofK . Thus,fW3 is, indeed, a map as indicated in (4.2.2). It remains
to show exactness of the sequence, given in the theorem: In the present situation we
intend to show that the cobordismsWi , i = 1, . . . ,3, induce an exact triangle

ĤFK(Y,K)
bFW1 - ĤFK(Yn

K ,K
′)

ĤFK(Yn+1
K ,K′′)

� bFW2

�

bF
W
3

(4.2.3)

To do that, we have to see that the cobordisms fit topologically into a surgery exact
triangle (cf.§2.6). This is done in Figure 4.12. The left portion shows the moves done
to produce sequence (4.2.2). We start with a pair (Y,K) and topologically do a surgery
alongK with framing n. Comparing this move with the corresponding move pictured
in the right part of Figure 4.12, we see that both are equivalent after a handle slide, as
indicated in the picture. Following the second and the thirdarrow in the left portion
of Figure 4.12, we perform the same recipe, i.e. we compare with the right portion of
Figure 4.12 and detect equality after a suitable handle slide. Since we are in a suitable
topological situation, with a straightforward adaption ofthe proof of the surgery exact
triangle in knot Floer homology given by Ozsváth and Szab́o, we see that (4.2.3) is,
indeed, an exact sequence. Using Corollary 4.1.6 (especially Diagram (4.1.9)) at each
arrow of the sequence (4.2.3), we can replace the mapsF̂Wi with fWi , i = 1, . . . ,3,
without affecting exactness. Thus, we get (4.2.2).
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Y

K n

K′ Y

K n K′ n

n
K′

n n n

−1 K′′ K′′ −1 K′′

−1

Figure 4.12: The left portion determines the topological moves done to produce the
triangle, given in (4.2.2). The right portion those moves done to produce (4.2.3).

Theorem 4.2.4.Let (Y, ξ) be a contact manifold, L⊂ Y a Legendrian knot and let W
be the cobordism induced by a(+1)-contact surgery along L. Then the map

f−W : ĤFK(−Y,L) −→ ĤFK(−Y+
L ,L

′)

preserves the contact geometric information, i.e.f̂−W(L̂(L)) = L̂(L′). Here L′ is a
push-off of L in Y interpreted in Y+L .

Proof. The top row and the bottom row of Figure 4.13 illustrate the situation for both
possible orientations ofL. Choose an open book decomposition (P, φ) adapted to the
contact structureξ such thatL sits on a page of the open book with the contact framing
coinciding with the page framing. We may choose a cut system in such a way thatL
intersects the firstβ -circle once and is disjoint from the otherβ -circles. Theβ -circle,
having a non-trivial intersection withL, should be denoted byδ . We obtain a set of
attaching circles

δ = {δ, β2, . . . , βg}.

This set of attaching circles can be used to define the Heegaard diagram (Σ, α, δ, z).
We include an additional pointw such that the pair (z,w) determinesL as an oriented
knot. The left column of Figure 4.13 illustrates both possibilities, i.e. the positioning
for both potential orientations onL. We defineβ1 to be the curve, obtained after
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L δ β1 β′

1

z z

a b a bα1 α1
∗

∗∗

w w
binding of the open book binding of the open book

1 1
2 2

L δ β1 β′

1

z z

α1 α1

binding of the open book binding of the open book

1 1
2 2

b a b aw w∗
∗∗

Figure 4.13: The top row and bottom row illustrate the situations for both orientations
on the Legendrian knot.

applying toδ a negative Dehn Twist alongL. We obtain a third set of attaching circles

β = {β1, β2, . . . , βg}.

Observe that the cobordismW given by the triple (Σ, α, δ, β) is induced by a (+1)-
contact surgery alongL. Furthermore, observe that the data (Σ, α, β,w, z) and the
curveδ ⊂ Σ are suitable for applying Proposition 3.2.1. We get an exactsequence as
given in Corollaries 3.2.2 and 3.2.6. The induced connecting morphism is denoted by

f−W : ĤFK(−Y,L) −→ ĤFK(−Y+
L ,L

′),

whereL′ is a push-off ofL interpreted as sitting in−Y+
L . The mapf−W is induced by

the mapfαβ,w (see Corollary 3.2.3) which is defined forx ∈ Tα ∩ Tδ by

fαβ,w(x) =
∑

y∈Tα∩Tβ

∑

φ∈H(x,y,1)

#M̂φ · y,

whereH(x, y,1) ⊂ παβ
′

2 (x, y) are the homotopy classes of Whitney discs in (Σ, α, β′, z)
with µ = 1 and (n∗(φ),n∗∗(φ)) 6= (0,0). Hence, the right column of Figure 4.13 ap-
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plies. There are specific intersectionsxi ∈ αi ∩ βi , i ≥ 2, such that the point
{a, x2, . . . , xg} represents the Legendrian knot invariantL̂(L) in ĤFK(−Y,L) and such
that {b, x2, . . . , xg} represents the knot invariant̂L(L′) in ĤFK(−Y+

L ,L
′) (cf. Fig-

ure 4.13). There is only one holomorphic discφ connecting{a, x2, . . . , xg} and
{b, x2, . . . , xg}. This disc satisfiesn∗(φ) = 1, and ,hence, it appears in the definition
of fαβ,w. The positions of the pointsw and z circumvent the existence of any other
holomorphic disc emanating from{a, x2, . . . , xg}. Thus, we see that

fαβ,w({a, x2, . . . , xg}) = {b, x2, . . . , xg}

completing the proof.
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Staatsangeḧorigkeit deutsch

Familienstand verheiratet

Schulbildung
1986-1990 Grundschule Nesselrodestr. in Köln
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