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Zusammenfassung

Wir leiten eine Beschreibung der Hut-Version der HeegadodrfHomologie her im
Falle, dass das zugehorige Heegaard Diagramm durch eintem Tyeist modifiziert
wurde. Als Resultat dieser Beschreibung erhalten wir ei@eenexakte Sequenz
in der Hut-Version der Heegaard Floer Homologie. Um den in Beschreibung
und den Sequenzen auftauchenden Moduln eine geeignetestyesmime Interpretation
Zu geben, verallgemeinern wir die Knotenhomolog@ auf homologisch nicht-
triviale Knoten und schwéchen die Zulassigkeitsbeginganip ihrer Definition ab.
Als Teil der gewonnenen exakten Sequenzen erhalten wirAdibddung von der wir
zeigen, dass sie nicht von den Wahlen abhangt, die fir ihfimiben notwendig sind,
sondern nur vom Kobordismus abhangt, der durch den Dehnt Tdaziert wird.
Mit dieser Abbildung leiten wir eine Transformationsreger, welche die Invariante
fur Legendre-Knoten und die Kontaktklasse miteinandebivelet. Wir geben drei
Anwendungen dieser Beziehung. Zuletzt beschéftigen varmit der Beziehung der
neu gewonnenen exakten Sequenz und dem bekannten exakiengi€tireieck in der
Knotenhomologie. Mit einer geeigneten Modifikation ihresnistruktionsprozesses
sind wir in der Lage eine starke Beziehung zu den neu gewamexakten Sequenzen
herzuleiten mit dem Ergebnis, dass wir einen Zusammharsielien zwischen dem
Zahlen holomorpher Dreiecke in zweifach-punktierten Heed-Trippeln und dem
Zahlen holomorpher Scheiben in punktierten Heegaard Biagren.

Abstract

We derive a representation of the hat-version of Heegaarer Hlomology in case we
change the associated Heegaard diagram with a Dehn TwistiltRé this description
is a new exact sequence in the hat-version of Heegaard Fémeolbgy. To give the
involved modules a suitable geometric interpretation, waegalize the knot Floer
homolong/F\K to homologically non-trivial knots and relax the adnitiégty condi-
tions used in their definition. As part of the exact sequeneeoiatain a map, which
we show not to depend on the choices made in its definitionpbuhe cobordism
induced by the Dehn Twist. With this map we derive a natwyralibperty between the
invariant of Legendrian knot€ and the contact element and give three applications.
Finally, we investigate the relationship between the nesdfined exact sequences
and the well-known surgery exact triangle in knot Floer htwgyp. With a suitable



modification of the construction process of the surgery exemgle we derive a strong
relationship to the newly defined exact sequences. Thislyfinesults in a relationship
between counting holomorphic triangles in doubly-poinkéekegaard triple diagrams
and counting holomorphic discs in pointed Heegaard diagram
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Chapter 1

Introduction

At the beginning of the new millennium Ozsth and Sabo defined a Floer-type
homology theory called Heegaard Floer homology (in theoteihg HFT), assigning
to a Spirt-3-manifold (Y,s) a bunch of homologies, which are all connected with
each other by exact sequences (see [40], [39]). As all Floerdfogies it has its
origins in the work of Gromov (see [19]), who brought holojpilic curves into the
realm of symplectic geometry, and the work of Floer, who waeesfirst to transfer
the Morse homological scheme to the symplectic categomy [(5@],[11], [12], [13]
and [14]). From that time many flavors of Floer homologiessartike for instance
Seiberg-Witten Floer homology (see [23]). The motivationthe development of HFT
was to give a more topological description of Seiberg-Witteeory (see [43]). Those
two theories are conjecturally equivalent and there wemesefforts made to bring
those two theories together, with some success, as Tauiesgently showed in [50]
the Seiberg Witten Floer homology to be isomorphic to embddubntact homology,
and coming from the other side, Lipshitz giving the cylirditi reformulation of HFT
(see [24]). It developed to a highly active research fielchwitany applications and
contributions in knot theory but also in contact geometrgsiBles the applications, the
theory itself was brought forward with recent extension &flHo bordered manifolds.
And there are two flavors of the bordered invariant, a topokligand a geometric
version: The Sutured Floer homology of AadrJuhasz (see [22]), which we interpret
as a geometric degeneration of the topological theory, latbipological theory given
by Robert Lipshitz, Peter Ozath and Dylan Thurston in [26].

Contact geometry in turn is among the important researatisfiel modern geometry.
First of all, contact geometry developed a rich theory, Wwhitakes it a valuable field



of its own right. But besides its intrinsic value, contacoetry contributed to low-
dimensional topology very fruitfully as elegant contacbgestric proofs arose from it
for delicate geometric theorems. Examples to mention wiel@erf’s famous proof of
I'4 = 0 (cf. [16]) or Geiges’ elegant contact geometric proof @& Whitney-Graustein
theorem (see [15]).

To a contact manifold Y, £) one can associate an isotopy invariax§) of &, the
contact element, which is a class in the Hlfl\F(—Y) of —Y. Furthermore if we
additionally fix a Legendrian kndt we may associate a Legendrian isotopy invariant
E(L) of the Legendrian knot in the associated knot Floer homolld@T((—Y, L) of

the pair ¢Y,L). Paolo Lisca and Ands Stipsicz showed in a series of papers (see
[28], [29], [30], [31] and with Ghiggini [17]) that there aexamples of families of
contact structures where conventional topological tepes fail to detect tightness,
the contact element however does. The contact element ihahds of Lisca and
Stipsicz has turned out to be a very powerful tool in genegdiight contact structures.

The theme of this thesis may be located exactly between todiglds of HFT and
contact topology. The original question we tried to answas Vf'the contact element,
in case it is non trivial, is always primitive, or if there atases where is is not a
primitive element. The most natural approach for tacklihig problem is the one
used in this thesis. LetP(¢) be an open book decomposition adapted to the contact
structure¢. How does the Heegaard Floer homology Bf Qs o ¢) look like, where

6 C P is a homologically essential embedded closed curve iand Ds denotes a
Dehn Twist along)? This question is closely related to the first one since De¥iat$
of the given type can be translated into contact surgeribghn turn can be used to
generate every contact manifold. We were not able to andweguestion concerning
the primitiveness of the contact element. However, we disam some new theory
which will be the focus of this thesis.

What is the contribution of this thesis?

Chapter 2 is an introduction to Heegaard Floer homology satime emphasis on the
hat-theory. We are aware of the existence of introductdigles to this subject but we
tried to give an introduction without sweeping importantaile under the carpet. We
do notwant to discredit the existing literature; the erigliterature is very well written.
But we provide a different focus, and we believe that theme leck of literature with
this kind of point of view. We are indeed convinced that tiggter can help graduate
students or researchers, especially those outside of @iy Princeton or other places
with a local expert on this subject, to understand the radtefihis introduction was
never meant to be complete or to give an overview of the giwearly. We focus more



on giving the foundations and hope that after reading thés$ ¢inapter the reader has
developed intuition enough to understand the researcftiites without getting lost.

In Chapter 3 we derive a new representationl—/tff(P, Ds o ¢) (Propositions 3.2.1

and 3.2.5). A consequence of this representation are thet egguences given in
Corollaries 3.2.2 and 3.2.6. These exact sequences hamestihg implications.

The most important contact geometric implication is Prapms 3.4.1. We set up a
naturality property between the isotopy invariant of Ledygan knots and the contact
element and give three applications (Proposition 3.5.dp@xsition 3.5.3 and Theorem
3.5.4). There are some problems occuring we would like totioen

(&) The representation d/ﬂT:(P, Ds o ¢) given in Propositions 3.2.1 and 3.2.5 de-
scribes this group as a mapping cone of two complexes whigpédrato be the
knot Floer homologies in case the induced pair of base p¢mtg) induces a
null-homologous knot. However, in most situations thid wilt be the case. We
need a geometric interpretation of these modules.

(b) The diagram describing one of these modules does notiergkfulfill the weak
admissibility conditions. These are important ingredénthe compactification
of the moduli spaces involved in the definition of the differals.

Both problems ) and ) require ageneralizationof the given HFT which we
provide in this thesis (se$2.4). However, we have to remark that the given theory
already inherits all ingredients to set up the generabinati So we cannot really say
we generalized the theory but we made the observation tbagitken theory is not
restricted to the cases where Oagvand Szab define it. The knot Floer homology
seems to have some interesting properties when homolbgreai-trivial knots come
into play. There is a knot clags in S? x S' whose associated knot Floer homology
vanishes. This fact is central in the proof of Theorem 3.9His is the first example
we know with this property.

In Chapter 3 we investigate the relationship between theesemps given in Corollaries
3.2.2 and 3.2.6 and the well-known surgery exact trianglaot Floer homology. We
see that with a slight modification of the construction pescef the surgery exact
triangle we are able to define a surgery exact triangle in tiet Kloer homology
involving the cobordism marfs. Indeed this sequence and the one defined in Chapter 3
stay in a strong relationship which we outline in Theorem5l.In consequence we see
thatthe sequences givenin Chapter 3 admit refinementsesigiect to Spinstructures

and can be defined with coherent orientations. This conseguie summarized very



briefly in Corollary 4.1.8. Secondly we learn that there iselationship between
counting holomorphic triangles in Heegaard triple diagsamnd counting holomorphic
discs in Heegaard diagrams: The sequences from Chaptelir®laped by short exact
sequences of chain complexes. The induced connecting morghcan be defined
by counting holomorphic discs with suitable boundary ctads. The relationship
in Chapter 4 relates this map to the cobordism maps in kn@rfFlomology. These
cobordism maps are defined by a count of holomorphic triangith suitable boundary
conditions. Finally we derive properties of the connectimgrphismsf .
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Chapter 2

Introduction to HF Theory

2.1 Introduction to HF as a Model for Heegaard Floer The-
ory

2.1.1 Heegaard Diagrams

From the Geometric Topologists’ point of view one of the magsults of Morse the-
ory is the development of surgery and handle decompositivtzgse theory captures
the manifold’s topology in terms of a decomposition of itartbpologically easy-to-
understand pieces calldthndles (cf. [18]). In the case of closed 3-manifolds the
handle decomposition can be assumed to be very symmetrig sfiimmetry allows us
to describe the manifold’s diffeomorphism type by a smalbant of data. Heegaard
diagrams are omnipresent in low-dimensional topology.ddanhately there is no con-
vention what precisely to call a Heegaard diagram; the disfimof this notion underlies
slight variations in different sources. Since HeegaaraiFldomology intentionally
uses a non-efficient version of Heegaard diagrams, i.e. wadpe information than
needed to describe the manifold’s type, we shortly disaubat is to be understood as
Heegaard diagram throughout this thesis.

A short summary of what we will discuss would be that we fix tla¢addescribing
a handle decomposition relative to a splitting surface. Yebe a closed oriented
3-manifold and¥X C Y asplitting surface, i.e. a surface of genug such thatY\%
decomposes into two handlebodiely and H;. We fix a handle decomposition of
Y\H; relative to this splitting surfac&, i.e. there are 2-handleg;, i = 1,...,q,

11



and a 3-handid3 such that (cf. [18])
Y\H1 = ( x [0,1]) Uy (h§1 Up ... Uy hE ; Uy h3). (2.1.1)

We can rebuildy from this by gluing in two handlelaai ,i=1,...,0,and a 3-handle
h§. Hence,Y can be written as

Y = (h§Uph§ 1 Up ... Us hg ) Up (5 % [0,1]) Uy (N1 U ... Up hi g Ug hY). (2.1.2)

Collecting the data from this decomposition we obtain dédr{x, o, 5) whereX is the
splitting surface of genug, o = {a1, ..., ag} are the images of the attaching circles
of the hgyi interpreted as sitting ik and 3 = {31, ..., Ay} the images of the attaching
circles of the 2—hand|els;ii interpreted as sitting ix. This will be called aHeegaard
diagram of Y. Observe that these data determine a Heegaard decompasitioe
classical senséy dualizing thehj;. Dualizing ak-handle D¥ x D means to
reinterpret this object aB3~k x DX. Both objects are diffeomorphic but observe that
the former is ak-handle and the latter a (3 k)-handle. Observe that the-curves
are the co-cores of the 1-handles in the dualized pictuitrzat slidinghé’i overhé’j
means, in the dual picture, thig§; is slid overhg;.

2.1.2 Introduction to HF — Topology and Analysis

Given a closed, oriented 3-manifol, we fix a Heegaard diagrant(«, 3) of Y as
defined in§2.1.1. We can associate to it the triple (SY&), T, T) which we will
explain now:

By Synm#(X) we denote theg-fold symmetric product of 33, defined by taking the
quotient under the canonical action®f on >x9 j.e.

Synf(X) = £79/s,.

Although the action of§; has fixed points, the symmetric product is a manifold. The
local modelis given by SyR{C) whichitself can be identified with the set of normalized
polynomials of degreg. Anisomorphism is given by sending a poinp{(. . . , pg)] to
the normalized polynomial uniquely determined by the zeto{ps, . .., pg}. Denote
by

7 X9 — SynP(%)

the projection map.

12



The attaching circlesr and 5 define submanifolds
To=01x...xag and Tg= [y x ... x G

in %9, Obviously, the projectionr embeds these into the symmetric product. In the
following we will denote byT, and T3 the manifolds embedded into the symmetric
product.

The chain complex

Definea:(E, «, B) as the fre€Z-module (orZ,-module) generated by the intersection
pointsT, N T3 inside Sym(X).

Definition 2.1.1. A map ¢ of the 2-discD? (regarded as the unit 2-disc @) into the
symmetric product SyA{X) is said toconnecttwo pointsx,y € T, N T if

o)) = X
(=) =y,
p(0DN{ze C|Rdy <0}) C T,,
»0DN{ze C|Rq2) >0}) C Tg.
Continuous mappings of the 2-disc into the symmetric pro@yerf(>) that connect

two intersection points,y € T, NTgz are calledVhitney discs The set of homotopy
classes of Whitney discs connectir@ndy is denoted byra(X, y) in caseg > 2.

In caseg < 2 we have to define the objeeb(x,y) slightly different. However, we
can always assume, without loss of generality, tpat 2 and, thus, we will omit
discussing this case at all. We point the interested readd.

Fixing a pointz € ¥\ (« U 3), we can construct a differential
52: é\F(E> «, ﬁ) - a:(z> «, ﬁ)

by defining it on the generators GTF(E, a, ). Given a pointx € T, N Tg, we define
0zX 1o be a linear combination

DX = Z DX

yeToNTg

"y
y

of all intersection pointyy € T, N T. The definition of the coefficients will occupy
the remainder of this paragraph. The idea resembles otber Rbmology theories.

13



The goalisto define§zx as a signed count of holomorphic Whitney discs connecting

x andy which are rigid up to reparametrization. First we have toodtice almost
complex structures into this picture. A more detailed diston of these will be given
in §2.1.3. For the moment it will be sufficient to say that we cleasgeneric path
(Js)sepo,1) of almost complex structures on the symmetric product. tifieng the unit
disc, after taking out the pointsi, in C with [0, 1] x R we definep to beholomorphic

if it satisfies for all 1) € [0,1] x R the equation

o9 99

Js ot
Looking into (21.3) it is easy to see that a holomorphic Whitney disccan be
reparametrized by a constant shiftirdirection without violating (2L.3).

s,t) + Js(—=-(s,1)) = 0. (2.1.3)

Definition 2.1.2. Given two pointsx,y € T, N Tg, we denote byM 7 (x,y) the
set of holomorphic Whitney discs connectingand y. We call this setmoduli
space of holomorphic Whitney discsonnectingx andy. Given a homotopy class
[¢] € ma(X,y), denote by M 7 4 the space of holomorphic representatives in the
homotopy class ob.

In the following the generic path of almost complex struetuwill not be important
and thus we will suppress it from the notation. Since the mthosen generically
(cf. §2.1.3 or see [40]) the moduli spaces are manifolds. The anhshift in R-
direction induces a fre®&-action on the moduli spaces. Thus, M4 is non-empty
its dimension is greater than zero. We take the quotientfpf; under theR -action
and denote the resulting spaces by

Mig) = Myg/R and M(x,y) = M(xy)/R.

The so-callesgigned countof 0-dimensional components aﬂ\(x, y) means in case of
Z,-coefficients simply to count mod 2. In caseZ{coefficients we have to introduce
coherent orientationson the moduli spaces. We will roughly sketch this process in
the following.

Obviously, in case of.-coefficients we cannot simply count the 0-dimensional com-
ponents otﬂ(x, y). The defined morphism would not be a differential. To cirgemt
this problem we have to introduce signs appropriately hdddo each component. The
0-dimensional components Jf/l\(x, y) correspond to the 1-dimensional components
of M(x,y). Each of these components carries a canonical orientatthrcted by the
free R-action given by constant shifts. We introduce orientation these components.

14



Comparing the artificial orientations with the canonicaftsig orientation we can as-
sociate to each component, i.e. each elemeM(x, y), a sign. The signed count will
respect the signs attached. There is a technical condiibledcoherence(see [40] or
cf. §2.1.3) one has to impose on the orientations. This techoaradition ensures that
the morphism§Z is a differential.

The chosen point € X\ (o U 3) will be part of the definition. The path7)scio,1] is
chosen in such a way that

V, = {2z} x Synf~1(2) — Synf(%)

is a complex submanifold. For a Whitney disc (or its homotojagss)¢ definen,(¢)
as the intersection number ofwith the submanifoldv,. We define

O = #M(x, )3 _o,
y

i.e. the signed count of the 0-dimensional components ofitigarametrized moduli
spaces of holomorphic Whitney discs connectingndy with the property that their
intersection numben, is trivial.

Theorem 2.1.3(see [40]) The assignmerr§Z is well-defined.
Theorem 2.1.4(see [40]) The morphism§Z is a differential.

We will give sketches of the proofs of the last two theorenterlan §2.1.3. At the
moment we do not know enough about Whitney discs and the syrienpeoduct to
prove it.

Definition 2.1.5. We denote byCF(E «, 3,2) the chain complex glven by the data
(CF(E,a 5), 9;). Denote byHF(Y) theinduced homologytheony*(CF(E, , ), 0z).

The notation should indicate that the homology theory dagsdepend on the data
chosen. It is a topological invariant of the manifol, although this is not the
whole story. The theory depends on the choice of coherem¢rsyef orientations.
For a manifoldY there are 2() numbers of non-equivalent systems of coherent
orientations. The resulting homologies can differ (seeniiXa 2.1.2). Nevertheless
the orientations are not written down. We guess there aredagons: The first would
be that most of the time it is not really important which sysie chosen. Allreasonable
constructions will work for every coherent orientation teys, and in case there is a
specific choice needed this will be explicitly stated. Theosel reason would be that
it is possible to give a convention for the choice of cohemigntation systems. Since
we have not developed the mathematics to state the conugmécisely we point the
reader to Theorem 2.1.31.

15



On Holomorphic Discs in the Symmetric Product

In order to be able to discuss a first example we briefly intcedsome properties of
the symmetric product.

Definition 2.1.6. For a Whitney disep we denote byu(¢) the formal dimension of
M. We also calli(¢) theMaslov index of ¢.

For the readers that have not heard anything about Floer logsnat all, just think of
1(¢) as the dimension of the spade 4, although even in casg1, is not a manifold
the numben(¢) is defined (cf§2.1.3). Just to give some intuition, note that the moduli
spaces are the zero-set of a section in a Banach bundle augediss to the given setup.
The linearization of this section at the zero set is a Fradragerator. Those operators
carry a property called Fredholm index. The numpes the Fredholm index of that
operator. Even if the moduli spaces are no manifolds thishauns defined. Itis called
formal dimension oexpected dimensiorsince in case the zero set of the section is
a manifold, i.e. the moduli spaces are manifolds, the Fredhiodex p equals the
dimension of the moduli spaces. So, negative indices arglgesand make sense in
some situations. One can think of negative indices as thébauwf missing degrees
of freedom to give a manifold.

Lemma2.1.7.In case ¢>) > 2 the 2nd homotopy group,(Synf(X)) is isomorphic
to Z. Itis generated by an element S wijtfs) = 2 and n(S) = 1, where 1 is defined
the same way as it was defined for Whitney discs.

Letn: ¥ — ¥ be an involution such that /»n is a sphere. The map

is a representative d8. Using this representative it is easy to see g = 1. It

is a property ofu as an index that it behaves additive under concatenatiotieeth
the intersection numbem, behaves additive, too. To develop some intuition for the
holomorphic spheres in the symmetric product we state therfimg result from [40].

Lemma 2.1.8(see [40]) There is an exact sequence
0 — mo(SynP(X)) — ma(x,X) — ker(n,) — 0.

The map p provides a splitting for the sequence.

16



Observe that we can interpret a Withney dis@#ix, X) as a family of paths in Sy#fX)
based at the constant path We can also interpret an element7a(Synf(X)) as a
family of paths in Syi(X) based at the constand pathInterpreted in this way there
is a natural map fromry(SymP(X)) into m»(X, X). The mapn, provides a splitting for
the sequence as it may be used to define the map

(X, X) — m2(SynP(X))

sending a Whitney dis@ to ny¢) - S. This obviously defines a splitting for the
sequence.

Lemma 2.1.9. The Kernel of p interpreted as a map om,(x, X) is isomorphic to
H(Y; Z).

With the help of concatenation we are able to define an action

* 7T2(X7 X) X 7-‘-2()(7 y) B 7-‘-2()(7 y)7
which is obviously free and transitive. Thus, we have antifieation

(X, Y) —— T, X Z & HY(Y; Z)

AN (2.1.4)
{*}

as principal bundles over a one-point space, which is anethg of saying that the
concatenation action endows(x, y) with a group structure after fixing a unit element
in (X, y). To address the weII—definednesséAlgfwe have to show that the sum in the
definition of5Z is finite. For the moment let us assume that for a generic elaipath
(Js)sepo,1] the moduli spaceﬂ¢ with u(¢) = 1 are compact manifolds (cf. Theorem
2.1.22), hence their signed count is finite. Assuming thigoprty we are able to show
well-definedness 052 in caseY is a homology sphere.

Proof of Theorem 2.1.3 for1fY) = 0. Observe that

Moo= || M, (2.1.5)
PEH(XY,1)
whereH(x,y, 1) C m2(X,y) is the subset of homotopy classes admitting holomorphic
representatives withu(¢) = 1 andn, = 0. We have to show that(x,y,1) is a

finite set. Sinceby(Y) = 0 the cohomologyH(Y; Z) vanishes. By our preliminary
discussion, given a reference digg € mo(X,y), any ¢xy € m2(X,y) can be written

17



as a concatenatiotyy = ¢ * ¢g, Where¢ is an element inty(x,X). Since we are
looking for discs with index one we have to find alle 72(X, X) satisfying the property
w(®) = 1 — u(po). Recall thatY is a homology sphere and thug(x,xX) = Z ® {S}.
Hence, the dise is described by an integde € Z, i.e. ¢ = k- S. The property
w(S) = 2 tells us that

1— p(do) = (@) = pk- 9 = k- u(§ = 2k.

There is at most onk € Z satisfying this equation, so there is at most one homotopy
class of Whitney disc satisfying the propeyiy= 1 andn, = 0. O

In caseY has non-trivial first cohomology we need an additional ctiodito make
the proof work. The given argument obviously breaks dowrhig tase. To fix this
we impose a topological/algebraic condition on the Heatydemgram. Before we can
define thesadmissibilityproperties we have to go into the theory a bit more.

There is an obstruction to finding Whitney discs connecting given intersection
pointsx,y. The two pointsx andy can certainly be connected via paths insitjeand
Tg. Fix two pathsa: | — T, andb: | — Ty such that—0b = 0a =y — x. This

is the same as saying we fix a closed cufygbased aik, going toy along T,,, and
moving back tox along T 3. Obviously~y, = b+ a. Is it possible to extend the curve
Yxy, after possibly homotoping it a bit, to a disc? If so this wbbk a Whitney disc.
Thus, finding an obstruction can be reformulated asxdg = 0 € 71(SynP(X)) ?

Lemma 2.1.10(see [40]) The groupr1(SynP(X)) is abelian.

Given a closed curve ¢ SynP(X) in general position (i.e. not meeting the diagonal
of SynP(X)), we can lift this curve to

(V155 7g): St — B%9.
Projection onto each factdf defines a 1-cycle. We define
() =mn+-+
Lemma 2.1.11(see [40]) The map® induces an isomorphism

@, . Hi(Synf(2)) — Hi(Z; Z).
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By surgery theory (see [18], p. 111) we know that

H1(3; Z)
[Oél], sy [Oég]a [ﬁl]v ceey [ﬁg]

The curveyyy is homotopically trivial in the symmetric product if and grill @, ([yxy])
is trivial. If we pick different curvesa andb to define another curveyy, the difference

=~ Hy(Y: Z) (2.1.6)

D (1y) — P(17xy)
is a sum ofa-and 3-curves. Thus, interpreted as a cycleHi(Y; Z), the class
[2(1y)] € Ha(Y; Z)
does not depend on the choices made in its definition. We geipa m

e (TaNTE)*2 — Hy(Y;Z)
x) — [CI)('ny)]Hl(Y;Z)

with the following property.

Lemma 2.1.12.1f ¢(x,y) is non-zero the set,(X,y) is empty.

Proof. Suppose there is a connecting dis¢hen withyy, = (p(D?)) we have

Clpdrusmesy)
[al]a ceey [ag]a [ﬂlL s 759]

since [ny]wl(Symg(Z)) =0. :

(X Y) = [P(vxy)lHy(v;z) =

As a consequence we can split up the chain comalé@, «, (3, 2) into subcomplexes.
It is important to notice that there is a map

S To NTs — Spirg(Y) = HX(Y; Z), (2.1.7)

such that PD{(X,y)) = s/(X) — s:(y). We point the reader interested in the defini-
tion of s, to [40]. Thus, fixing a Spifstructures, the Z-module (orZ,-module)
a:(z,a,ﬁ,z; s) generated bysp)~1(s) defines a subcomplex @:(E,a,ﬁ, 2). The
associated homology is denoted ETyf(Y, s), and it is a submodule d?IT:(Y). Espe-
cially note that

HEY) = P HF(Y.9).

sespir(Y)
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SinceT, N Ty consists of finitely many points, there are just finitely mangups in
this splitting which are non-zero. In general this splgtiwill depend on the choice
of base-point. 1z is chosen in a different component Bf\{a U 5} there will be a
difference between the Sgistructure associated to an intersection point. For detail
we point to [40].

Example 2.1.1. The Heegaard diagram given by the daf&, {».}, {\}) (cf. §2.1.1) is
the 3-sphere. To make use of Lemma 2.1.7 we add two stahilizato get a Heegaard
surface of genus 3, i.e.

D = (T2HTH#T2 {1, p2, u3}, {1, A2, As)),

where u; are meridians of the tori, and; are longitudes. The complement of the
attaching curves is connected. Thus, we can arbitrarilpsédhe base poirt. The
chain complexa:(D,z) equals one copy of. since it is generated by one single
intersection point which we denote by We claim thatgzx = 0. Denote by §] a
homotopy class of Whitney discs connectigith itself. This is a holomorphic sphere
which can be seen with Lemma 2.1.8, Lemma 2.1.9 and the fatHt{S®) = 0. By
Lemma 2.1.7 the set,(Synf(X)) is generated b with the propertyn,(S) = 1. The
additivity of n, under concatenation shows tha |s a trivial holomorphic sphere and
u([¢]) = 0. Thus, the spaca1(x, x)lzzo, i.e. the space of holomorphic Whitney discs
connectingx with itself, with x = 1 andn, = 0, is empty. Hence

HF(S®) =~ 7.

A Low-Dimensional Model for Whitney Discs

The exact sequence in Lemma 2.1.8 combined with Lemma 2nd9q21.4) gives
an interpretation of Whitney discs as homology classeseiGa/discy, we define its
associated homology class B¥(¢), i.e.

0 — ma(SYMP(X)) — ma(%, X) —% Ha(Y:Z) — 0. (2.1.8)

In the following we intend togive a description of the mEp Given a Whitney dis@,
we can lift this disc to a map by pulling back the branched covering(cf. diagram
(2.1.9)). .

F/S1=D—2+ S xsSynf}(%) — %

P9 =F »x9 (2.1.9)

p2 ¢ Synf(x)

1
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Let §_1 C § be the subgroup of permutations fixing the first componentddituy
out §;—1 we obtain the map pictured in (2.1.9). Composing it with the projection
onto the surfac& we define a map

qgi D Y.
The image of this maﬂe defines what is called a domain.

Definition 2.1.13. Denote byD;, .. ., D the closures of the components of the com-
plement of the attaching circles\{a U }. Fix one pointz in each component. A
domainis a linear combination

m
A=) "N-D
i=1
W|th Al,...,AmEZ.

For a Whitney disep we define itsassociated domairby
m
D($) =Y _a(9) - Di.
i=1

The map$ andD(¢) are related by the equation
$(D) = D(¢)

as chains in: relative to the setv U 3. We defineH(¢) as the associated homology
class of&[]ﬁ)] in Hx(Y;Z). The correspondence is given by closing up the boundary
components by using the core discs of the 2-handles repessby thea-curves and

the 3-curves.

Lemma 2.1.14. Two Whitney disc®1, ¢, € m2(X, X) are homotopic if and only if their
domains are equal.

Proof. Given two discs¢1, ¢» whose domains are equal, by definitiét(¢1) =
H(¢2). By (2.1.8) they can only differ by a holomorphic sphere, ig.= ¢, + k- S.
The equalityD(¢1) = D(¢2) implies thatn,(¢1) = ny(¢2). The equation

0 = nz(¢2) — N(P1) = Ny(p2) — Ne¢p2 + k- § = 2K

forcesk to vanish. O
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The interpretation of Whitney discs as domains is very useflcomputations, as
it provides a low-dimensional model. The symmetric prodiscg-dimensional,
thus an investigation of holomorphic discs is very incomgenh However, not all
domains are carried by holomorphic discs. Obviously, theabty [D(¢)] = @[]IA)]
connects the boundary conditions imposed on Whitney dst®tndary conditions
of the domains. It is not hard to observe that the definitiorqubllows the same
lines as the construction of the isomorphidm of homology groups discussed earlier
(cf. Lemma 2.1.11). Suppose we have fixed two intersectiors {xy, ..., Xy} and

y = {y1,...,Yg} connected by a Whitney disg. The boundary(¢(D?)) defines a
connecting curveyy. It is easy to see that

im(3| ) =2(m) =m+

Restricting they; to the a-curves we get a chain connecting the ggt . ., Xy with
Y1,...,Yg, and restricting they; to the 5-curves we get a chain connecting the set
Y1,...,Yg With Xg,...,Xg. This means each boundary componenﬁotonsists of a
set of arcs alternating through-curves and3-curves.

Definition 2.1.15. A domain is calledperiodic if its boundary is a sum ot-and
B-curves andn,(D) = 0, i.e. the multiplicity of D at the domainD, containing z
vanishes.

Of course a Whitney disc is callegeriodic if its associated domain is a periodic
domain. The subgroup of periodic classesriifx, X) is denoted bylly.

Theorem 2.1.16(see [40]) For a Spirf-structure s and a periodic clasg € II, we
have the equality

1(9) = (ca(s), H(9)) -

This is a deep result connecting the expected dimension afriadic disc with a
topological property. Note that, because of the additigitthe expected dimensiomn,
the homology groups can be endowed with a relative gradifigeteby

gr(x,y) = p(9) — 2-nz(9),

whereg is an arbitrary element of>(x, y). Inthe case of homology spheres this defines
a relativeZ-grading because by Theorem 2.1.16 the expected dimenaioshes for
all periodic discs. In case of hon-trivial homology theytjuanish moduloj(s), where

6(s) = ged (cu(9),A),
AcH(Y:Z)

i.e. it defines a relativés) -grading.

22



Definition 2.1.17. A pointed Heegaard diagrant(«, 3, 2) is calledweakly admis-
sible for the Spifi-structures if for every non-trivial periodic domairD such that
(c1(9), H(D)) = 0 the domain has positive and negative coefficients.

With this technical condition imposed th% is a well-defined map on the subcomplex
a:(z,a,ﬁ,s). From admissibility it follows that for everyk,y € (s,)~(s) and

j, K € Z there exists just a finite number ofe m2(X, y) with u(¢) =], n(¢) = k and
D(¢) > 0. The last condition means that all coefficients in the dasedt domain are
greater or equal to zero.

Proof of Theorem 2.1.3 for10Y) # 0. Recall that holomorphic discs are either con-
tained in a complex submanifol@ or they intersectC always transversely and al-
ways positive. The definition of the pattVd)scjo,1) (cf. §2.1.3) includes that all the
{z} x SymP~Y(%) are complex submanifolds. Thus, holomorphic Whitney slisc
always satisfyD(¢) > 0. O

We close this paragraph with a statement that appears todjel der developing
intuition for Whitney discs. It helps imagining the strormpoection between the discs
and their associated domains.

Theorem 2.1.18(see [40]) Consider a domairD whose coefficients are all greater
than or equal to zero. There exists an orienfzdhanifold S with boundary and a map
¢. S— X with ¢(§ = D with the property thaty is nowhere orientation-reversing
and the restriction ofs to each boundary component of S is a diffeomorphism onto its
image.

2.1.3 The Structure of the Moduli Spaces

The material in this paragraph is presented without anyildeiBhe exposition pictures
the bird’s eye view of the material. Recall from the last gaaphs that we have to
choose a path of almost complex structures appropriatelgfioe Heegaard Floer the-
ory. So, a discussion of these structures is inevitable. é¥ew a lot of improvements
have been made the last years and we intend to mention sotnenof t

Let (j, n) be a Kahler structure on the Heegaard surfatd.e. n is a symplectic form
andj an almost-complex structure that tamgsLet z, .. . , z,, be points, one in each
component of2\{a U 3}. Denote byV an open neighborhood in Syiix) of

DU (| {z} x SynP (%)),

i=1
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whereD is the diagonal in SyA{X).

Definition 2.1.19. An almost complex structurd on Syn¥(X) is called {,7,V)-
nearly symmetric if J agrees withsyn¥(j) over V and if J tamesn, (%) over V°.
The set of |, n, V)-nearly symmetric almost-complex structures will be dedoby
JG,n. V).

The almost complex structursynf(j) on Syn¥(X) is the natural almost complex
structure induced by the structurelmportant for us is that the structudeagrees with
syn¥(j) on V. This makes thgz} x Symf~1(X) complex submanifolds with respect
to J. This is necessary to guarantee positive intersectiorsWititney discs. Without
this property the proof of Theorem 2.1.3 would break dowrhim ¢ase the manifold
has non-trivial topology.

We are interested in holomorphic Whitney discs, i.e. discthé symmetric product
which are solutions of (2.1.3). Denote by the, the Cauchy-Riemann type operator
defined by equation (2.1.3). Defiri&(x,y) as the space of Whitney discs connecting
x andy such that the discs converge xcandy exponentially with respect to some
Sobolev space norm in a neighborhood ahd —i (see [40]). With these assumptions
the solutiond z¢ lies in a space oEP-sections

LP([0, 1] x R, ¢*(TSynP(X))).
These fit together to form a bundl& over the basds(x, y).
Theorem 2.1.20.The bundle — B(x,y) is a Banach bundle.

By construction the operatad 7, is a section of that Banach bundle. Let us define
Bo — B(x,y) as the zero section, then obviously

Mz (%,¥) = (0.7) " (Bo)-

Recall from the Differential Topology of finite-dimensidmaanifolds that if a smooth
map intersects a submanifold transversely then its prenis@ manifold. There is
an analogous result in the infinite-dimensional theory. gaeeralization to infinite
dimensions requires an additional property to be imposethermap. We will now
define this property.

Definition 2.1.21. Amapf between Banach manifolds is callecedholm if for every
point p the differential Tpf is a Fredholm operator, i.e. has finite-dimensional kernel
and cokernel. The difference dimKgf — dimcokerTpf is called theFredholm
index of f atp.
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Fortunately the operatad s, is an elliptic operator, and hence it is Fredholm for a
generic choice of path’fs)sco,1) Of almost complex structures.

Theorem 2.1.22.(see [40]) For a dense set of patligs)scio,1; of (j, , V)-nearly sym-
metric almost complex structures the moduli spadédsg,(x,y) are smooth manifolds
forall x,y € T, N Tg.

The idea is similar to the standard Floer homological préofe realizes these paths
as regular values of the Fredholm projection

. M — Q(j(JanaV))?

where Q(J(,n,V)) denotes the space of paths #(j,n,V) and M is the un-
parametrized moduli space consisting of paifg, ¢), where Js is a path of |, n, V)-
nearly symmetric almost complex structures gnaWhitney disc. By the Sard-Smale
theorem the set of regular values is an open and dense $Kj 0f, V).

Besides the smoothness of the moduli spaces we need the nafrdre-dimensional
components to be finite. This means we require the spa/z\tes Y)OZ:o to be com-
pact. One ingredient of the compactness is the admisgilpfibperty introduced in
Definition 2.1.17. In (2.1.5) we observed that

M(Xa Y)gzzo = |_| M¢”
peH(xy,1)

where H(x,y, 1) is the set of homotopy classes of Whitney discs with= 0 and
expected dimensiom, = 1. Admissibility guarantees that(x,y, 1) is a finite set.
Thus, compactness follows from the compactness oﬁ\/ﬁ@ The compactness proof
follows similar lines as the Floer homological approacHolibws from the existence
of anenergy bounihdependent of the homotopy class of Whitney discs. Theentis
of this energy bound shows that the moduli spa&.\t&, y) admit a compactification
by adding solutions to the space.

Without giving the precise definition we would like to givense intuition of what
happens at the boundaries. First of all there is an operatilad gluing making

it possible to concatenate Whitney discs holomorphicalven two Whitney discs

1 € ma(X,y) and ¢, € mo(y, w), gluing describes an operation to generate a family of
holomorphic solutiongs# ¢4 in the homotopy clasg; * ¢1.

Definition 2.1.23. We call the pair ¢, ¢1) abroken holomaorphic Whitney disc.
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Moreover, one can think of this solutiogp#¢1 as sitting in a small neighborhood
of the boundary of the moduli space of the homotopy class ¢1, i.e. the family
of holomorphic solutions as — oo converges to the broken disex ¢1). There
is a special notion of convergence used here. The limitifjgodd can be described
intuitively in the following way: Think of the disc, after neoving the pointsti, as a
strip R x [0,1]. Choose a properly embedded arc or an embedddd R x [0, 1].
Collapse the curve or thB! to a point. The resulting object is a potential limiting
object. The objects at the limits of sequences can be debyegplying several knot
shrinkings and arc shrinkings simultaneously where we bakeep in mind that the
arcs and knots have to be chosen such that they do not intéierescdetailed treatment
see [33]).

We see that every broken disc corresponds to a boundary ecempaf the compactified
moduli space, i.e. there is an injection

fouel Mg, X My, — OM i,

But are these the only boundary components? If this is the, dasadding broken
discs to the space we would compactify it. This would resulthie finiteness of the
0-dimensional spaceﬁ¢. A compactification by adding broken flow lines means that
the 0-dimensional components are compact in the usual .sénsenple dimension
count contradicts the existence of a family of discs in a @efisional moduli space
converging to a broken disc. But despite that there is a seossison for us to wish
broken flow lines to compactify the moduli spaces. The rﬁgphould be a boundary
operator. Calculatin@Z o 52 we see that the coefficients in the resulting equation equal
the number of boundary components corresponding to broises dt the ends of the
1-dimensional moduli spaces. If the gluing map is a bijectie broken ends generate
all boundary components. Hence, the coefficients vanish Znod

There are two further phenomena we have to notice. Besidedkibg there might be
spheres bubbling off This description can be taken literally to some point. Fegi1
illustrates the geometric picture behind that phenomerigubbling is some kind of
breaking phenomenon but the components here are discs lagespWe do not need
to take care of spheres bubbling off at all. Suppose that tuadary of the moduli
space associated to the homotopy clasge have breaking into a dist; and a sphere
S, i.e. ¢ = ¢1 xS . Recall that the spheres in the symmetric product are gtkby
S, described ir32.1.2. Thusgp = ¢1 x k- Swheren,(S) = 1. In consequenca,(¢) is
non-zero, contradicting the assumptions.
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Figure 2.1: Bubbling of spheres.

Definition 2.1.24. For apointx € T,NT ana-degeneratedisc is a holomorphic disc
¢: [0,00) xR — SynP(X) with the following boundary conditiong({0} xR) C T,
and¢(p) — X asx — oo.

Given a degenerate disg, the associated domaiR(z)) equals a sphere with holes,
i.e. D(v) equals a surface iR with boundary thex-curves. Since the-curves do not
disconnect:, the domain covers the whole surface. Thugy) is non-zero, showing
that degenerations are ruled out by assumingrthat 0.

Proof of Theorem 2.1.4 witli,-coefficients. Fix an intersectiorx € T, N Tg. We
compute

ox = 0 > #MX oY)

yGTaﬂTg
LY RO W

y,weTaNTg

We have to show that the coefficient in frontef denoted byc(x, w) vanishes. Observe
that the coefficient precisely equals the number of compisn@mod 2) in

M Y)R,—0 x My, W), o
Gluing gives an injection
M Y)—o x My, W)P,_o — DM W), _o.

By the compactification theorem the gluing map is a bijegtisince bubbling and
degenerations do not appear due to the conditioa 0. Thus, (mod 2) we have

cx,W) = #HMXY)S_o x M(y,wW)%_o)
= OM(X, Wi o
= 0,
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which shows the theorem. O

Obviously, the proof breaks down ifi-coefficients. We need the mod 2 count of ends.
There is a way to fix the proof. The goal is to make the map

fglue: M¢>2 X M¢1 — 6-/\/l<i>2*¢>1

orientation preserving. For this to make sense we need thelivgpaces to be oriented.
An orientation is given by choosing a section of treterminant line bundle over the
moduli spaces. The determinant line bundle is defined asuheld det(f]) — M,
given by putting together the spaces

det)) = /\"ker@y0z) ® /\"*ker(Dy0z)"),

wherey is an element oM . If we achieve transversality fd@t,, i.e. it has transverse
intersection with the zero sectidfy — £ then

det@)) = A™ker@u0z) ® R*
= N= Ty Mg ® R*.

Thus, a section of the determinant line bundle defines amtatien of M. These
have to be chosen in a coherent fashion to nfgkeorientation preserving. The gluing
construction gives a natural identification

det(p1) A det() — detipathor).

Since these are all line bundles, this identification matkjesssible to identify sections
of det(Jp1]) A det([¢2]) with sections of detgp, * ¢1]). With this isomorphism at hand
we are able to define a coherence condition. Namely(let) and o(¢,) be sections
of the determinant line bundles of the associated modukespathen obviously we
need that under the identification given above we have

o(¢1) A o(¢2) = o(¢2 * ¢1). (2.1.10)

In consequence,@herent system of orientationss a sectioro(¢) of the determinant
line bundle detf) for each homotopy class of Whitney disgsconnecting two inter-
section points such that equation (2.1.10) holds for eagtfgrawhich concatenation
makes sense. It is not clear if these systems exist in genBgakonstruction with
respect to these coherent systems of orientations thefgnag orientation preserving.

In the case of Heegaard Floer theory there is an easy wayggaiconstruction for
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coherent systems of orientations. Namely, fix a Ssittuctures and let{xo, ..., %}

be the points representing i.e. (&) X(s) = {Xo,...,%}. Let¢,...,dq be a set
of periodic classes inry(Xo, Xo) representing a basis fad1(Y;Z), denote byd; an
element ofma(Xg, X). A coherent system of orientations is constructed by dingos
sections over all chosen discs, i), i = 1,...,qando(f;), j = 1,...,|. Namely,
for each homotopy clasg € m(x,%) we have a representation (cf. Lemma 2.1.8,
Lemma 2.1.9 and (2.1.4))

¢ =a1p1 + -+ agpq + 0 — 0
inducing an orientatiom(¢). This definition clearly defines a coherent system.

To give a proof of Theorem 2.1.4 in case @fcoefficients we have to translate
orientations on the 0-dimensional components of the mosmmcesﬂjs(x, y) of
connecting Whitney discs into signs. Ferwith u(¢) = 1 the translation action
naturally induces an orientation onl,. Comparing this orientation with the coherent
orientation induces a sign. We define gigned countas the count of the elements by
taking into account the signs induced by the comparisoneoatition orientation with
the coherent orientation.

Proof of Theorem 2.1.4 fdf.-coefficients. We stay in the notation of the earlier proof.
With the coherent system of orientations introduced we ntlaglenap

fawe! MO Y)R—0 X MUY, W)R,—o = OM(x, D =g
orientation preserving. Hence, we see tb@t w) equals
#M(x Y)0,=0 X M(y, W)7, o)
which in turn equals the oriented count of boundary comptmeh 8/\7(x, z)lz:o.

Since the space is 1-dimensional, this count vanishes. O

More General Theories

There are variants of Heegaard Floer homology which do nateféhe condition
n, = 0. To make the compactification work in that case we have te talte of
boundary degenerations and spheres bubbling off. Botheahdwn to be controlled
in the sense that the proof of Theorem 2.1.4 for the geneealrigs works the same
way with some slight additions due to bubbling and degeimrat The thesis mainly
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focuses on theFIT:-theory, so we mostly exclude these matters from our étipos
Note just that we get rid of bubbling by a proper choice of atammplex structure. By
choosingj on X appropriately there is a contractible open neighborhoaslyof(j) in
J(j,n, V) for which all spheres miss the intersectidnsN T 3. Moreover, for a generic
choice of path (fs)sc[o,1] inside this neighborhood the signed count of degenerats dis
is zero. With this information it is easy to modify the giveropf for the general
theories. We leave this to the interested reader or pointdif#O].

2.1.4 Choice of Almost Complex Structure

Let ¥ be endowed with a complex structyrand letU C ¥ be a subset diffeomorphic
to a disc.

Theorem 2.1.25(Riemann mapping theoremYhere is a3-dimensional family of
holomorphic identifications of U with the unit digz c C.

Consequently, suppose that all moduli spaces are compaufahda for the path
(Js)sefo,11 = sym¥(j). In this case we conclude from the Riemann mapping theorem
the following corollary.

Corollary 2.1.26. Let ¢p: D? — SynP(X) be a holomorphic disc with(¢) isomor-
phic to a disc. Then the moduli spadd, contains a unique element.

There are several ways to achieve this special situation.cANea domainD(¢) «-
injective if all its multiplicities are 0 or 1 and its interior is disjui from the«-circles.
We then say that the homotopy clagss a-injective.

Theorem 2.1.27.Let ¢ € m(X,y) be ana-injective homotopy class and j a complex
structure onX. For generic perturbations of the-curves the moduli spac&tsyng(),¢
is a smooth manifold.

In explicit calculations it will be nice to have all homotopiasses carrying holomorphic
representatives to be-injective. In this case we can choose the path of almost ®mp
structure in such a way that homotopy classes of Whitneysdigith disc-shaped
domains just admits a unique element. This is exactly whabesachieved in general
to make theI:IT:-theory combinatorial. For a class of Heegaard diagraaiecnice
diagrams all moduli spaces witlh = 1 just admits one single element. In addition
we have an exact description of how these domains look likeZ,lcoefficients with
nice diagrams this results in a method of calculating thieihtial 52 by counting the
number of domains that fit into the scheme. This is succdgstohe for instance for
the I-/|T:-theory in [47].
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Definition 2.1.28(see [47]) A pointed Heegaard diagranx(«, (3, 2) is callednice if
any region not containing is either a bigon or a square.

Definition 2.1.29(see [47]) A homotopy class is called an empty embeddeegan

if it is topologically an embedded disc withn2vertices at its boundary, it does not
contain anyx; ory; in its interior, and for each vertexthe average of the coefficients
of the four regions around is 1/4.

For a nice Heegaard diagram one can show that all homotopgeda < H(x,y, 1)

with ©(¢) = 1 that admit holomorphic representatives are empty emloetampns

or empty embedded squares. Furthermore, for a genericecbbjcon X the moduli
spaces are regular under a generic perturbation otwtieeirves ands-curves. The
moduli spaceﬂ@ contains one single element. Thus, the theory can be comhpute
combinatorially. We note the following property.

Theorem 2.1.30(see [47]) Every3-manifold admits a nice Heegaard diagram.

2.1.5 Dependence on the Choice of Orientation Systems

From their definition it is easy to reorder the orientatiorsteyns into equivalence
classes. The elements in these classes give rise to isoimdghologies. Leb and
o' be two orientation systems. We measure their difference

§: HY(Y: Z2) — Z5

by saying that, given a periodic clagse m(X,X), we definej(¢) = 0 if o(¢) and
o' (¢) coincide, i.e. define equivalent sections, aiid) = 1, if o(¢) ando’(¢) define
non-equivalent sections. Thus, two systems are equivilént 0. Obviously, there
are 2:(Y) different equivalence classes of orientation systemseiretal the Heegaard
Floer homologies will depend on choices of equivalenceselasf orientation systems.
As an illustration we will discuss an example.

Example 2.1.2. The manifoldS? x S' admits a Heegaard splitting of genus one,
namely 2, o, 3,2) wherea and 8 are two distinct meridians of2.

Unfortunately this is not an admissible diagram. By the argal coefficient theorem
H?(S? x St Z) 2 Hom(Hx(S? x S*; Z), Z) = Hom(Z, Z.).

Hence we can interpret Spistructures as homomorphisris— 7. For a number
q € Z defines, to be the Spiftstructure whose associated characteristic class, which
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we also callsy, is given bysy(1) = g. The two curvesy and 5 cut the torus into two
components, where is placed in one of them. Denote the other component ®ith
It is easy to see that the homology cldgéD) is a generator oHx(S? x S*;Z). Thus,

we have

(Ci(s), H(A - D)) = (2- 59, H(A - D)) = 2- sy(A - 1) = 2\q.

This clearly contradicts the weak admissibility conditiofVe fix this problem by
perturbing thes-curve slightly to give a Heegaard diagram as illustrateléigure 2.2.
By boundary orientation. (D1 — D>)) are all possible periodic domains.

.
oZ
9
.

y

D>

Figure 2.2: An admissible Heegaard diagram$3rx S*.

Figure 2.2 shows that the chain module is generated by timégpoandy. A straight-
forward computation gives(x,y) = 0 (see§2.1.2 for a definition) and, hence, both
intersections belong to the same Spatructure we will denote by. Thus, the
chain complexa:(E, a, 3; %) equalsZ ® {x,y}. The regionsD; and D, are both
disc-shaped and heneeinjective. Thus, the Riemann mapping theorem (&2#.4)
gives

#M¢1 =1 and #A/l¢>2 =1

These two discs differ by the periodic domain generatitigS? x S'; 7). Thus, we
are free to choose the orientation on this generator. Heveeenay choose the signs on
¢1 and ¢, arbitrarily. Thus, there are two equivalence classes ehtation systems.
We defineo* to be the system of orientations where the signs differ@here they
are equal. Thus, we get two different homology theories

HFS2 x SLs0%) = ZDZ
HFES? x S, s9;00) = Zo.
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However, there is a special choice of coherent orientatistems. We point the reader
to §2.2 for a definition of HP®. Additionally, instead of using.-coefficients, we can
use the ringZ[H1(Y)] as coefficients for defining these Heegaard Floer groupe Th
resulting group is denoted by ¥~ We point the reader to [40] for a precise definition.
As a matter or completeness we cite:

Theorem 2.1.31(see [39], Theorem 10.12) et Y be a closed oriente®manifold.
Then there is a unigue equivalence class of orientatioreaystuch that for each torsion
Spirf-structure g there is an isomorphism

HF*(Y, 50) = Z[U, U™

asZ[U, U1 ®z Z[H(Y; Z)]-modules.

2.2 The HomologiesHF>*, HF", HF~

Given a pointed Heegaard diagrab, ¢, 3, 2), we define CF (X, o, 3,z S) as the free
Z[U~1-module generated by the points of intersectisp) () € T, N Tg. Foran
intersectionx we define

ox= 3 Y #M, Uy,
ye(s)~U(s) pep—1(2)

where;~1 are the homotopy classesia(x, y) with expected dimension equal to one.
Note that in this theory we do not restrict to classes with= 0. This means even with
weak admissibility imposed on the Heegaard diagram thef mfomell-definedness as
it was done ir§2.1 breaks down.

Definition 2.2.1. AHeegaard diagran®], o, 3, 2) is calledstrongly admissiblefor the
Spirf-structures if for every non-trivial periodic domairD such that(c;(s), H(D)) =
2n > 0 the domainD has some coefficient greater than

Imposing strong admissibility on the Heegaard diagram weptave well-definedness
by showing that only finitely many homotopy classes of Whitdéscs contribute to
the moduli spaceM 7.(x,y) (cf. §2.1).

Theorem 2.2.2.The mapd~ is a differential.
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As mentioned ir§2.1, in this more general case we have to take a look at bighhiid
degenerate discs. The proof follows the same lines as tloé @idheorem 2.1.4. With
the remarks made ig2.1 it is easy to modify the given proof to a proof of Theorem
2.2.2 (see [40]). We define

CF(2,a, 3,9 = CF (2,0, 3;9) ®zu-1 Z[U,U™]

and denote by the induced differential. From the definition we get an istba of
CF~ — CF>® whose cokernel is defined as €f, a, 3,9). Finally we get back to
CF by
U-CF (X, a,08;9

CF(3,a,8;9
The associated homology theories are denoted by? HFF~ and HF. There are two

long exact sequences which can be derived easily from theitiefi of the Heegaard
Floer homologies. To give an intuitive picture look at thédwing illustration:

CF(,a, 89 =

CF° = ... U2 U2 u?tue ut vz us
CF = ... u?®u?ut!

CF = ue

CFh = uo ut u?z ud

We see why the condition of weak admissibility is not strongugh to give a well-
defined differential on CF or CF~. However, weak admissibility is enough to make
the differential on CF well-defined, since the complex is bounded from below with
respect to the obvious filtration given by thevariable.

Lemma 2.2.3. There are two long exact sequences

.. — HF (Y;5) — HF>(Y;s) — HF'(Y;s) — ...
.. — HF(Y:9 —= HFY(Y;9 — HFT(Y;9) — ...,
where s is aSpirf-structure of Y .

The explicit description illustrated above can be deriviedadly from the definition of
the complexes. In this thesis we will mainly focus on tHE-theory so we leave this
to the interested reader (see also [40]).

2.3 Topological Invariance

Given two Heegaard diagram& (o, 5) and ¢, o/, 3') of a manifoldY, they are
equivalent after a finite sequence of isotopies of the aittgatircles, handle slides of
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the a-curves ands-curves and stabilizations/destabilizations. Two Hesgjdmgrams
are equivalent if there is a diffeomorphism of the Heegaarthse interchanging the
attaching circles. Obviously, equivalent Heegaard dimgraefine isomorphic Hee-
gaard Floer theories. To show that Heegaard Floer theorytapa@ogical invariant
of the manifoldY we have to see that each of the moves, i.e. isotopies, haliits s
and stabilization/destabilizations yield isomorphicathies. We will briefly sketch the
topological invariance. This has two reasons: First otalihvariance proof uses ideas
that are standard in Floer homology theories and hence afnee@ently. The ideas
provided from the invariance proof happen to be the stantisntohiques for proving
exactness of sequences, proving invariance propertigspaving the existence of
morphisms between Floer homologies. Thus, knowing therigmee proof, at least
at the level of ideas, is crucial for an understanding of nobghe papers published
in this field. The second reason to mention is our usage ofstireniophisms we will
construct later in this thesis. We will deal with tié-case and and point the reader
to [40] for a general treatment.

The invariance proof contains several steps. We start stgpimvariance under the
choice of path of admissible almost complex structures.tofes of the attaching
circles are split up into two separate classes: Isotopeg#nerate/cancel intersection
points and those which do not change the chain module. Tleigmce under the
latter Heegaard moves immediately follows from the indelesice of the choice of
almost complex structures. Such an isotopy is carried byrarent isotopy inducing
an isotopy of the symmetric product. We perturb the almostmex structure and thus
interpret the isotopy as a perturbation of the almost corgileicture. The former Hee-
gaard moves have to be dealt with separately. We mimic therggon/cancellation
of intersection points with a Hamiltonian isotopy and wittekplicitly construct an
isomorphism of the respective homologies by counting digitis dynamic boundary
conditions. Stabilizations/ destabilizations is the esispart to deal with: it follows
from the behavior of the Heegaard Floer theory under coedestims. Finally, handle
slide invariance will require us to define what can be reghakethe Heegaard Floer
homological version of the pair-of-pants product in Floemwlogies. This product
has two nice applications. The firstis the invariance undedte slides and the second
is the association of maps to cobordisms giving the theagtiucture of a topological
field theory.
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2.3.1 Stabilizations/Destabilizations

We determine the groupF(S2 x SHS2? x S) as a model calculation for how the
groups behave under connected sums.

Figure 2.3: An admissible Heegaard diagram$8r< S#S? x St.

Example 2.3.1.We fix admissible Heegaard diagran® (o, 3) i = 1,2 for S? x St
as in Example 2.1.2. To perform the connected sur“ok S with itself we choose
3-balls such that their intersectidh with the Heegaard surface fulfills the property

\75||D = s‘qui)'

Figure 2.3 pictures the Heegaard diagram we get for the cbedisum. Denote by
a small connected sum tube insitle= T2#T2. By construction the induced almost
complex structure equals

(jl#jz)S‘TXZ = Syn%ol#lz)

All intersection points belong to the same Spsitructuresy. For suitable Spit
structuress;, s; on S? x St we have thaty = s1#s, and

CF(, a, 8, s1#%2) = Z @ {(%, ;) |i,] € {1,2}} = CF(T2, &) ® CF(T3, %).

The conditionn, = 0 implies that for every holomorphic disg: D? — Synf(X)
the low-dimensional model (c§2.1) ¢: D — X stays away from the tub@ .
Consequently we can split Up into

]ﬁ):f})ll_l@z,
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where D are the components contalnlng the prelmag),fj((TZ\D) Restriction to
these components determines ma;ps D — T2 inducing Whitney discs; in the
symmetric product SyAfT?). Thus, the moduli spaces split:

M 7157206, Y0, (5, Mo — M g2 (%, %m0 X M z2(Yk, Y)n—0
¢ = (o1, 92).

For moduli spaces with expected dimension= 1, a dimension count forces one
of the factors to be constant. So, the differential spliig, i.e. fora € CF(Tiz,s),
i =1,2 we see that

5(Jl#jz)s(al ®ap) = 5Jsl(al) Qay+a® gjsz(az)-
And consequently

HF(S? x S™%S? x S, s1#%; 01 ® 02) =2 HF(S? x S, 81; 01) © HF(S? x S, 5; 02).

The same line of arguments shows the general statement.

Theorem 2.3.1(see [39]) For closed, oriente@-manifolds Y, i = 1, 2 the Heegaard
Floer homology of the connected sun#Y, equals the tensor product of the Heegaard
Floer homologies of the factors, i.e.

HAF(Y1#Y,) = H,(CF(Y1) @ CF(Y,)),

where the chain complex on the right carries the natural rethboundary.

Stabilizing a Heegaard diagram ¥fmeans, on the manifold level, to do a connected
sum withS3. We know thatHF(S®) = Z. By the classification of finitely generated
abelian groups and the behavior of the tensor product,ianvee follows.

2.3.2 Independence of the Choice of Almost Complex Structes

Suppose we are given a 1-dimensional family of pathg.of, {/)-nearly symmetric
almost complex structureg7{;). Given a Whitney dise), we defineM 7, 4 as the
moduli space of Whitney discs in the homotopy clasg afhich satisfy the equation

260+ Jau 2 (s) = 0
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Observe that there is no free translation action on the nnegates as on the moduli
spaces we focused on while discussing the differerdtial We define a mag .,

between the theorieﬁ:@, o, B,2), aki) for i = 0,1 by defining forx € T, N Ty

b= > > #Mzsy.

yeToaNTg peH(XY,0)

whereH(x,y, 0) C m2(X,y) are the homotopy classes with expected dimengiea 0
and intersection numbem, = 0. There is an energy bound for all holomorphic
Whitney discs which is independent of the particular Whitdésc or its homotopy
class (see [40]). Thus, the moduli spaces are Gromov-campauifolds, i.e. can be
compactified by adding solutions coming from broken disabbting of spheres and
boundary degenerations (¢R.1.3). Since we stuck to thﬁz—theory we impose the
condition n, = 0 which circumvents bubbling of spheres and boundary degdops
(see§2.1.3).

To check that® is a chain map, we compute

3,1 © Py f(X) — Py 0 Do AX) = > #My (WM, ()2
Z
¢€H(X-,y,0))/.,weH(y,z,1)

- > #M (M, ()2

y’z
$€H(xY,1),4€H(y,z,0)

= Zc(x,z)-z_

z

The coefficientc(x, 2) is given by

Z(#Mjs,t,q‘) Mg —H#M g T #M
A |

szt’g), (2.3.1)

wherel consists of pairs

(6, ) € H(X,Y,0) x H(y,z 0) and ¢, %) € H(x,y,1) x H(y,z 1).

Looking at the ends of the moduli spacad;, () for ann € H(x,z 1), the gluing
construction (cf§2.1.3) together with the compactification argument memtibearlier
provides the following ends:

(L M@ x Mo, @) U (] Mool x Mo, @), (232)
n=vx¢ 77:1’/;*5
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where the expected dimensions ¢fand q? are 1 and ofy and J they are 0. A
signed count of (2.3.2) precisely reproduces (2.3.1) amddwe(x,2) = 0 — at least in
Z,-coefficients. To make this work in general, i.e. with coméi@ientations, observe
that we have the following condition imposed on the sections

0s1(¢) A 01(1h) = —0o(¥)) A 0st().

For an arbitrary coherent orientation systega we get an identification of orientation
systems{,,, say, such tha® is a chain map between

=& A <5 SEos
(CF(Za «, 67 Z)7 8?75’0) - (CF(Za «, 67 Z)7 8:75;[{)
Observe that we can choose the coherent systgnarbitrarily. This will only affect
the identifications,, .
We reverse the direction of the isotopy and define a '&\‘9@1_‘- The compositions
©js,17t o (I)Js,t and (I)Js,t o ©~73,1—t

are both chain homotopic to the identity. In the following wil discuss the chain
homotopy equivalence for the map;,, o ® 7, ,.

Define a path7st(7) such that7s:(0) = Jst* Js1-t andJst(1) = Jso. The existence
of this path follows from the fact that we choose the pathgles contractible set
(cf. §2.1.3 or see [40]). Define the moduli space

Maynre = | Mz
ref0,1]

Theorem 2.3.2.Let J,,...t,) be an n-parameter family of generic almost complex
structures andy a homotopy class of Whitney discs with expected dimensioh.

,,,,,

manifold of dimension(¢) + n.

There are two types of boundary components: the one type widawy component
coming from variations of the Whitney dis¢ which are breaking, bubbling or de-
generations and the other type of ends coming from variatidrihe almost complex
structure.

We define a map

H\JS,I(T)(X) = Z Z #Mjs,t(T)v‘z’ Y

yeToNTg peH(Xy,—1)
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whereH(x,y, —1) C m2(X,y) are the homotopy classéswith n,(¢) = 0 and expected
dimensionu(¢) = —1. According to Theorem 2.3.2, the manifald 7 ()¢ is O-
dimensional. We claim thatl is a chain homotopy betweetijs’t o @53114 and the
identity. By definition, the equation

&\)js,t o (/Isjs,l_t —id - (5(75,0 o H\JS,I(T) + H\js,t(T) © 5575,1) =0 (233)

has to hold. Look at the ends & 7, () (¥) for () = 0. This is a 1-dimensional
space, and there are the ends

( |_| Mjs,o,n X Mjs.,t(T)yd)) U ( |_| MJSJ(T):?? X Mjs,lyg)
Y=nd P=ijx¢

coming from variations of the Whitney disc, and the ends

M 74,09 U Mz,

coming from variations of the almost complex structure. Sehell together precisely
produce the coefficients in equation (2.3.3). Thus, therfHoenology is independent

of the choice of j( n, V)-nearly symmetric path. Variations gfandV just change the
contractible neighborhootd aroundggym(j) containing the admissible almost complex
structures. So, the theory is independent of these chdmesA |’ -nearly symmetric
path can be approximated byj &ymmetric path given that is close toj. The set of
complex structures on a surfagkis connected, so step by step one can move from a
j-symmetric path to anj/-symmetric path.

2.3.3 Isotopy Invariance

Every isotopy of an attaching circle can be divided into tlasses: creation/anhillation
of pairs of intersection points and isotopies not affectiragnsversality. An isotopy
of an a-circle of the latter type induces an isotopy Bf, in the symmetric product.
Compactness of th&,, tells us that there is an ambient isotopycarrying the isotopy.

With this isotopy we perturb the admissible path of almoshplex structures as

s§s = (QbIl)* o Jso (¢1)«

giving rise to a path of admissible almost complex strucuféhe diffeomorphismy,
induces an identification of the chain modules. The modultep defined by/s and
Js are isomorphic. Hence

H.(CF(, a, 8), 35%) = H.(CF(, o/, §), 35%) = H.(CF(, o/, B), 35%),  (2.3.4)
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where the last equality follows from the consideration§ar8.2. This chain of equal-
ities shows that the isotopies discussed can be interpastedriations of the almost
complex structure.

The creation/cancellation of pairs of intersection poiatdone with an exact Hamil-
tonian isotopy supported in a small neighborhood of twachitay circles. We cannot
use the methods frorgR2.3.2 to create an isomorphism between the associated Floer
homologies. At a certain point the isotopy violates transaiity as the attaching tori

do not intersect transversely. Thus, the argument2#.2 for the right equality in
(2.3.4) break down.

Consider an exact Hamiltonian isotopy of an «-curve generating a canceling pair
of intersections with &-curve. We will just sketch the approach used in this context
since the ideas are similar to the ideas introducej2i.2.

Definens(x,y) as the set of Whitney dises with dynamic boundary conditions in the
following sense:

o) = X
o(=1) =,
pO+it) € W(Ta)

p(L+it) C Ty

for all t € R. Spoken geometrically, we follow the isotopy with theboundary of
the Whitney disc. Correspondingly, we define the moduli epaaf Js-holomorphic
Whitney discs with dynamic boundary conditions/et(x, y). Forx € T,NTj define

Te )= > Y #MYy,-y

yeTaNT 3 pcHt(x,y,0)

whereH:(x,y,0) C m5(x,y) are the homotopy classes with expected dimengien0
andn, = 0. Using the low-dimensional model introducedsihl, Oz\ath and Sza
prove the following property.

Theorem 2.3.3(see [40],§7.3). There exists a t-independent energy bound for holo-
morphic Whitney discs independent of its homotopy class.

The existence of this energy bound shows that there are Groorpactifications of
the moduli spaces of Whitney discs with dynamic boundandims.
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Theorem 2.3.4.The mapl“qut is a chain map. Using the inverse isotopy we define
F\pl . such that the compositiorisy, ol“q,1 . and Fq,l tqu,, are chain homotopic to
the identity.

The proof follows the same lines as §8.3.2. We leave the proof to the interested
reader.

2.3.4 Handle slide Invariance
The Pair-of-Pants Product

In this paragraph we will introduce the Heegaard Floer ingaaon of the pair-of-pants
product and with it associate to cobordisms maps betweefklted homologies of
their boundary components. In case the cobordisms are eéddbg handle slides
the associated maps are isomorphisms on the level of homolbige maps we will
introduce will count holomorphic triangles in the symmefproduct with appropriate
boundary conditions. We have to discuss well-definedne#iseofnaps and that they
are chain maps. To do that we have to follow similar lines agsas done for the
differential. Because of the strong parallels we will shorthe discussion here. We
strongly advise the reader to first regi1 before continuing.

Definition 2.3.5. A set of data ., «, 8, 7), where is a surface of genug and o,
B, v three sets of attaching circles, is calleHeegaard triple diagram.

We denote the 3-manifolds determined be taking pairs ofetlataching circles as
Yos, Ygy @andY,,. We fix a pointz € ¥\{a U 3 U~} and define a product

foz,ﬁ"y CI:(2 auﬂaz) (®CF(2 Baf}/az) I (:I:(2 « 772)

by counting holomorphic triangles with suitable boundaopnditions: A Whitney
triangle is a map¢: A — SynP(X) with boundary conditions as illustrated in
Figure 2.4. We call the respective boundary segments-ifs3- and ~-boundary.
The boundary points, as should be clear from the pictures ar&',NTg, w € T,NT,
andy € Tg N T,. The set of homotopy classes of Whitney discs connecting and

y is denoted byra(X, y, w).

Denote bde% the moduli space of holomorphic triangles in the homotoggslof
¢. Analogous to the case of discs we denoteufy) its expected/formal dimension.
Forx e T, N Ty define

fup,(x@y) = > > o#ME w

weT,NT, peH(X,y,w,0)
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Figure 2.4: A Whitney triangle and its boundary conditions.

where H(x,y,w, 0) C m2(X,y,w) is the subset with, = 0 andn, = 0. The set of
homotopy classes of Whitney discs fits into an exact sequence

0 — m(SynP(X)) — ma(X,y, W) — ker(n,) — 0, (2.3.5)

wheren, provides a splitting for the sequence. We define

(AxX)Ue, xUyUez x UgUe, x U,

X = (e % 9) ~ (@ % 0U,), (6 x ) ~ (85 % 0Uz), (€ % ) ~ (&, X 0U5)’

whereU,,, Ug andU, are the handlebodies determined by thehandles associated
to the attaching circles,, 3 and~, ande,, e3 ande, are the edges of the triangle.
The manifoldX,3, is 4-dimensional with boundary

E)Xam = Yaﬁ (] Y[g7 (] —Ya,y.

Lemma 2.3.6. The kernel of pequals H(X.z; Z)

Combining (2.3.5) with Lemma 2.3.6 we get an exact sequence
0 — m(SymP(X)) — m2(X, Y, W) — Ha(Xagy: Z) — O, (2.3.6)

where H is defined similarly as for discs (c§2.1.2). Of course there is a low-
dimensional model for triangles and the discussion we hawe fbr discs carries over
verbatim for triangles. The condition, = 0 makes the produdt,z, well-defined in
caseHz(X.3+; Z) is trivial. Analogous to our discussion for Whitney disasdéethe
differential, we have to include a condition controllingetperiodic triangles, i.e. the
triangles associated to elementsHa(X,3,;Z). A domainD of a triangle is called
triply-periodic if its boundary consists of a sum ai-,3- and -curves such that
n,=0.
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Definition 2.3.7. A pointed triple diagramX, o, 3, v, 2) is calledweakly admissible
if all triply-periodic domainsD which can be written as a sum of doubly-periodic
domains have both positive and negative coefficients.

This condition is the natural transfer of weak-admisdipiiiom discs to triangles. One
can show that for givef k € Z there exist just a finite number of Whitney triangles
¢ € ma(X, Y, W) with 1(¢) =], nz(¢) = k andD(¢) = 0.

For a given homotopy clasg € m(Xx,y, w) with u(yy) = 1 we compute the ends by
shrinking a properly embedded arc to a point (see the déiseripf convergence in

§2.1.3). There are three different ways to do this in a triandgtach time we get a
concatenation of a disc with a triangle. By boundary origos we see that each of
these boundary components contributes to one of the terths iiollowing sum

fagy © (90500 @ Y) +Tapy 0 (X gy () = Dy © Tapy (X @ Y). (23.7)

Conversely, the coefficient at any of these terms is given mpduct of signed counts
of moduli spaces of discs and moduli spaces of triangles amden— by gluing —
comes from one of these contributions. The sum in (2.3.7ishas, showing thzfgm
descends to a pairinﬁm between the Floer homologies.

Holomorphic rectangles

Recall that the set of biholomorphisms of the unit disc is difBensional connected
family. If we additionally fix a point we decrease the dimeamsof that family by one.

A better way to formulate this is to say that the set of bihalgphmishms of the unit

disc with one fixed point is a 2-dimensional family. Fixingatfurther points reduces
to a 0-dimensional set. If we additionally fix a fourth poihetrectangle together
with these four points uniquely defines a conformal strietirariation of the fourth

point means a variation of the conformal structure. Indeeel @an show that there
is a uniformization of a holomorphic rectangle, i.e. a ragta with fixed conformal

structure, which we denote ky,

0 — [0,1] x [0, h],

where the ratid /h uniquely determines the conformal structure. With thigamiiza-
tion we see thai\(((J) = R. The uniformization is area-preserving and converging to
one of the ends oM ([J) means to stretch the rectangle infinitely until it breakehat
end into a concatenation of two triangles.

44



Theorem 2.3.8. Given another set of attaching circles defining a mapﬁwg, the
following equality holds:

g (- ® )@ ) = Tigs(- @T5,5(-® ) =0. (2.3.8)

This property is callegssociativity.
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Figure 2.5: Ends of the moduli space of holomorphic recesgl

If we count holomorphic Whitney rectangles with boundamditons in«, 3, v and

¢ and with u = 1 (see Definition 2.1.6) the ends of the associated modudiespal
look like pictured in Figure 2.5. Note that we are talking abbolomorphicity with
respect to an arbitrary conformal structure on the rectanghere will be two types
of ends. We will have a degeneration into a concatenatiomiarigles by variation
of the conformal structure on the rectangle and breaking @ntoncatenation of a
rectangle with a disc by variation of the rectangle. By FegRr5 an appropriate count
of holomorphic rectangles will be a natural candidate fohaiw homotopy proving
equation (2.3.8). Define a pairing

H: é\F(E,a,ﬁ,Z) ®a:(27ﬁa7az) ®a:(2777572) B a:(E,Oé,(S,Z)

by counting holomorphic Whitney rectangles with boundawgnponents as indicated
in Figure 2.6 andu = 0. By counting ends of the moduli space of holomorphic

Tps

Ty Ts

T,

Figure 2.6: The boundary conditions of rectangles for tHendion of H.
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rectangles withy = 1 we have six contributing ends. These ends are pictured in
Figure 2.5. The four ends coming from breaking contribute to

JoH(-® - ® Y)+Hod(-® -® ). (2.3.9)

In addition there are two ends coming from degenerationsetbnformal structure
on the rectangle. These give rise to

FagrFans (- @ ) @ ) = Fags(- @ Fars(- @ ). (2.3.10)

We see that the sum of (2.3.9) and (2.3.10) vanishes, shothigigH is a chain
homotopy proving associativity.

Special Case — Handle Slides

Handle slides provide special Heegaard triple diagrams.(Lex, 8, 2) be an admis-
sible pointed Heegaard diagram and defibled(, v, 2) by handle slidings;, over 5.
We push they; off the 5; to make them intersect transversely in two cancelling goint
This defines a triple diagram, and obviou3ly, equals the connected Surf($? x S1).

A very important observation is that the Heegaard Floer pgaaf connected sums of
S? x S admit a top-dimensional generator. By Example 2.1.2 andfime 2.3.1,

HF(# (8% x SY), 0%) 22 22972 22 H(T9, Z),

where the last identification is done using tRgH1/Tor)-module structure (see [40]).
We claim that the behavior of the Heegaard Floer groups wawarected sums can be
carried over to the module structure, and thus it remainddavghe assertion for the
caseg = 1. But this is not hard to see.

Each pair {,~i) has two intersections” and x. Which one is denoted how is
determined by the following criterion: there is a disc-shéyglomain connecting;"
with X~ with boundary in; and~;. The point

xXF={x,....q}

is a cycle whose associated homology class is the top-dioraigenerator we denote
by ©3,. For a detailed treatment of the top-dimensional genexvagéqpoint the reader
to [40].

Plugging in the generator we define a map

/F\aﬁ"/ = i:\o:kﬁ'y( ‘® (:j) : |:|T:(27 «, ﬁa Z) - F'T:(Z, o, 7, Z)
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between the associated Heegaard Floer groups. Our imeatio show that this is an
isomorphism.

We can slide they; back over~, to give another set of attaching circles we denote
by 6. Of course we make the curves intersecting all other setstathang circles
transversely and introduce pairs of intersections poihtsed -curves with they-and
(B-curves. Letﬁw(; be the associated map. Then the associativity given in§R2.3.
translates into

5, (s ® 0.5) ® Og,) — a5 (- @T5,5(B, ® B9)) =

The proof of the following lemma will be done in detail. Itfstfirst explicit calculation
using the low-dimensional model in a non-trivial mannere pnoof is carried out as a
model for proofs that will be discussed in the remainder & thesis.

Lemma 2.3.9. Given the maf,,.s, we have
f316(0 3y © ©,5) = O 5.

Hence, we havé&;,5(0,) = Ogs.

Proof. The complement of thej-circles in X is a sphere with holes. We have a
precise description of how the sefsand § look like relative to3. The Heegaard
surface cut open along th@-curves can be identified with a sphere with holes by
using an appropriate diffeomorphism. Doing so, the diagfan®, ~, ) will look like
given in Figure 2.7. In each component we have to have a aimdedt the domains
D1, D, andD3. To improve the illustration in the picture we have sepatatem.
There are exactly two domains contributing to holomorphigngles with boundary
points in {©,, 6,5}, namelyD; and D3. The domainD; can be written as a sum
of D1 andD,, the former carryingu = 0, the latter carrying: = 1. Consequently,
every homotopy class of triangles usifig-domains can be written as a concatenation
of a triangle with a disc with the expected dimensions grethi@n or equal to those
mentioned. Consequently, the expected dimension of thegié using @>3-domain

is strictly bigger than zero and thus does not contribut& $0;(© 3, ® ©.5). Al
holomorphic triangles relevant to us have domains whichassam of D;-domains.
Taking boundary conditions into account we see that we neBg-domain in each
component. Thus, there is a unique homotopy class of tmngterestmg to us. By
the Riemann mapping theorem there is a unique holomorphmgztnaﬂ) — ¥ from

a surface with boundarﬂb) whose associated domain equals the surfPpidomains.
The maquS is a biholomorphism and thuB is a disjoint union of triangles. The
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Figure 2.7: The Heegaard surface cut open alongstioairves.

uniqueness otzAS tells us that the number of elements in the associated megate
equals the number of non-equivalapfold branched covering@ — D2. SinceD
is a union ofg discs, this covering is unique, too (up to equivalence) dmus the
associated moduli space is a one-point space. O

Lemma 2.3.9 and (2.3.4) combine to give the composition law
/F\a,6’6 = I/:\owé © /F\a,ﬁ’w

We call a holomorphic trianglsmall if it is supported within the thin strips of isotopy
betweens and$é.

Lemma 2.3.10(see [40], Lemma 9.10)Let F: A — B be a map of filtered groups
such that F can be decomposed intg F |, where F is a filtration-preserving
isomorphism and(k) < Fo(X). Then, if the filtration on B is bounded from below, the
map F is an isomorphism of groups.

There are two important observations to make. The first is weacan equip the
chain complexes with a filtration, called theea filtration (cf. [40]), which is indeed
bounded from below. In this situation the top—dimensiormigator(:)ﬁg is generated
by a single intersection pointt € Tg N Ts. The mapﬁag(g is induced by

i:\ozﬁﬁ( - ® XJF)?
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which in turn can be decomposed into a sumfgfand I, where f, counts small
holomorphic triangles antithose triangles whose support is not contained in the thin
strips of isotopy betwee and §. The mapfy is filtration preserving andl, if the
d-curves are close enough to thecurves, strictly decreasing. By Lemma 2.3.10 the
mapﬁam is an isomorphism between the associated Heegaard Floeybgies.

To conclude topological invariance we have to see that thexing claim is true.

Theorem 2.3.11. Two pointed admissible Heegaard diagrams associated ® a
manifold are equivalent after a finite sequence of Heegaaode®, each of them
connecting two admissible Heegaard diagrams, which candoe ¢h the complement
of the base-point z.

The only situation where the poirzt seems to be an obstacle arises when trying to
isotope an attaching circley; say, over the base-poiat But observe that cutting the
a-circles out ofY we get a sphere with holes. We can isotepefreely and pass the
holes by handle slides. Thus, the requirement not to pasaot an obstruction at
all. Instead of passing we can go the other way around the surface by isotopies and
handle slides.

2.4 Knot Floer Homologies

Knot Floer homology is a variant of the Heegaard Floer hogylof a manifold.
Recall that the Heegaard diagrams used in Heegaard Flamytheme from handle
decompositions relative to a splitting surface. Given atkQa Y, we can restrict to
a subclass of Heegaard diagrams by requiring the handlergexsition to come from
a handle decomposition of\vK relative to its boundary. Note that in the literature
the knot Floer variants argefined for homologically trivial knots only. However,
the definition can be carried over nearly one-to-one to giwelrdefined topological
invariant for arbitrary knot classes. But the general@attomes at a price. In the
homologically trivial case it is possible to subdivide th®gps in a special manner
giving rise to a refined invariant, which cannot be definedh@rton-trivial case. Given
a knotK C Y, we can specify a certain subclass of Heegaard diagrams.

Definition 2.4.1. A Heegaard diagrant], «, ) is said to besubordinate to the knot
K if K is isotopic to a knot lying i andK intersectsf; once, transversely and is
disjoint from the others-circles.
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SinceK intersects@; once and is disjoint from the othet-curves we know thaK
intersects the core disc of the 2-handle, represented; bpnce and is disjoint from
the others (after possibly isotoping the krG}.

Lemma 2.4.2. Every pair(Y, K) admits a Heegaard diagram subordinate to K.

Proof. By surgery theory (see [18], p. 104) we know that there is allgadecompo-
sition of Y\rvK, i.e.

Y\vK 2 (T? x [0,1]) Uy 5 Ug ... hg Uy i Up ... Ug h§ Uy h°

We close up the boundai¥? x {0} with an additional 2-handl&@?* and a 3-handle
h3 to obtain

Y2 h3 Uy hf* Up (TP x 1) Ug 3 Us ... hgUp hE Uy ... UghGUp h°. (2.4.1)

We may interpreth® Uy h2* Uy (T2 x [0,1]) as a 0-handlé® and a 1-handléh}*.
Hence, we obtain the following decomposition\of

hOUth*Uah%Ua...UahéUah%Ua...Uathah?’.

We get a Heegaard diagrar®t (o, 5) wherea = aj U {ap, ..., ag} are the co-cores
of the 1-handles and = {1, ..., 3y} are the attaching circles of the 2-handlegl]

Having fixed such a Heegaard diagrab, {, 3) we can encode the kn#t in a pair

of points. After isotopingK onto X, we fix a small intervall in K containing the
intersection poinK N G1. This interval should be chosen small enough suchltkdaes
not contain any other intersections Kf with other attaching curves. The boundary
ol of | determines two points i&x that lie in the complement of the attaching circles,
i.e. 0l = z— w, where the orientation df is given by the knot orientation. This leads
to a doubly-pointed Heegaard diagrai, &, 8, w, 2). Conversely, a doubly-pointed
Heegaard diagram uniquely determines a topological krastscl Connect with w

in the complement of the attaching circlasand 3\ 5, with an arcé that crosses’;
once. Connectv with z in the complement off using an arcy. The uniond U «y is
represents the knot klasé represents. The orientation @&his given by orientingd
such thattd = z— w. If we use a different path in the complement of}, we observe
that~ is isotopic toy (in Y): SinceX\ is a sphere with holes an isotopy can move
~ across the holes by doing handle slides. Isotope the knogdhe core discs of the
2-handles to cross the holes of the sphere. Indeed, the lasst does not depend on
the specific choice of-curve.
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The knot chain compleCFK(Y, K) is the freeZ,-module (orZ-module) generated
by the intersection§', N Tz. The boundary operat@", for x € T, N Ty, is defined

by
5W(X) = Z Z #M\¢ Y,
yeToNTg pcH(x,y,1)
whereH(x,y, 1) C ma(X,y) are the homotopy classes with= 1 andn, = n, = 0.
We denote bW/F\K(Y, K) the associated homology theokyk(C/F\K(Y, K), 5‘”). The
crucial observation for showing invariance is, that two ¢serd diagrams subordinate
to a given knot can be connected by moves thgpect the knot complement

Lemma 2.4.3.([38]) Let (2, o, 5,z,w) and (X', o/, 3',Z,w) be two Heegaard dia-
grams subordinateto agivenknot&Y . Let | denote the interval inside K connecting
z with w, interpreted as sitting ix. Then these two diagrams are isomorphic after a
sequence of the following moves:

(m;) Handle slides and isotopies among thecurves. These isotopies may not
cross |.

(mp) Handle slides and isotopies among the, ..., 3;. These isotopies may not
cross |.

(mg) Handle slides of3; over thef,, ..., By and isotopies.

(my) Stabilizations/destabilizations.
For the convenience of the reader we include a short prodfistemma.

Proof. By Theorem 4.2.12 of [18] we can transform two relative harditcomposi-
tions into each other by isotopies, handle slides and hamdion/annihilation of the
handles written at the right af? x [0, 1] in (2.4.1). Observe that the 1-handles may be
isotoped along the boundafy x {1}. Thus, we can transform two Heegaard diagrams
into each other by handle slides, isotopies, creationfdlation of the 2—hand|esi;1i2
and we may slide thé&' over h' and overhj* (the latter corresponds ta' sliding
over the boundaryi? x {1} ¢ T? x | by an isotopy). But we are not allowed to move
hi* off the 0-handle. In this case we would lose the relative laddcomposition. In
terms of Heegaard diagrams we see that these moves exaciyatie into the moves
given in (my) to (my). Just note that sliding thiat over hi*, in the dual picture, looks
like sliding h2* over theh?. This corresponds to moven). O
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Proposition 2.4.4. Let K C Y be an arbitrary knot. The knot Floer homology group
HFK(Y, K) is a topological invariant of the knot type of K in Y. These bgy
groups split with respect t&pirf(Y).

Proof. Given one of the movesrg) to (my), the associated Heegaard Floer homolo-
gies are isomorphic, which is shown using one of the isomsmpé given in§2.3.
Each of these maps is defined by counting holomorphic distis puinctures, whose
properties are shown by defining maps by counting holomorgisics with punctures.

Isotopies/Almost Complex Structure.Denote byJ the path of almost complex struc-
tures used in the definition of the Heegaard Floer homologiesM be an isotopy or
perturbation ofl. Let ® be the isomorphism induced . We split the isomorphism
up into

o = OV + O7,
where & is defined by counting holomorphic discs with punctures @agprecise
definition look into§2.3.2 and2.3.3) that fulfill n, = 0. Let us denote with\Mg the
associated moduli space used to define the Eaaﬂ'he index indicates the value of
the indexu.. The chain map property @b was shown by counting ends @#t; which
contains the same objects we needed to definbut now with the index fulfilling
p = 1 (see Definition 2.1.6). We restrict our attentiont¢f and MY, the superscript
w indicates that we look at the holomorphic elementshty (or M1 respectively)
with intersection numben,, = 0: The additivity of the intersection numbey, and
the positivity of intersections guarantees that the end$(¢flie within the spaceMy
provided thatM respects the point. If M is an isotopy, respecting means, that no
attaching circle crosses the point If M is a perturbation ofl, respectingw means,
that we perturbJ through nearly symmetric almost complex structures sueah th
(cf. Definition 2.1.19) also containgnv} x SynfP~1(X). Hence, we have the equality

OM)" = oMY,

Thus, ®" has to be a chain map between the respective knot Floer hgiesloTo
show thatd is an isomorphism, we invert the mok we have done and construct the
associated morphisrﬁ. To show that¥ is the inverse, we construct a chain homotopy
equivalence betweet o & and the identity (or betwees o U and the identity) by
counting elements 0M8h which are defined by constructing a family of moduli spaces
M7, 7 €0, 1], and combining them to

MG = || M7,
7€[0,1]

52



The spacesMT™ ; are defined like done i§2.3.2 and$2.3.3. We show the chain
homotopy equation by counting ends.®1$". Restricting our attention tdA"Y, this
space consists of the union of spamf‘i", 7 € [0,1] (cf. §2.3.2 and§2.3.3). We
obtain the equality

OME = oM.
And hence we see thadt" is an isomorphism.

Handle slides.In case of the knot Floer homology we are able to define a pgirin
Tf\oz,ﬁ"y : (:/F\K(Zu Q, ﬂa W7 Z) ® (:/F\K(Zu /87 v, W7 Z) E— (:/F\K(Zu a, 7, W7 Z)

induced by a doubly-pointed Heegaard triple diagrama(, 3,~,w, 2). We have to
see, that in case the triple is induced by a handle slide, tio¢ kloer homology
H/F\K(E, 08,7, W, 2) carries a top-dimensional genera@gv, analogous to the discus-
sion for the Heegaard Floer homologies, with similar prtépsi(recall the composition
law). It is easy to observe that, in case of a handle slideptits w and z lie in the
same component df\{3 U v}. Hence, we have an identification

HFK(S, 3,7, W, 2) = HF(#(S? x SY).

Counting triangles witn,, = 0, the positivity of intersections and the additivity of the
intersection numben,, guarantees that the discussion carries over verbatim aed gi
invariance here. O

Remark. If a handle were slid ovep;, we would leave the class of subordinate
Heegaard diagrams. Recall that subordinate Heegaardadisgtome from relative
handle decompositions.

Admissibility

The admissibility condition given in Definition 2.1.17 sgfis to give a well-defined
theory. However, since we have an additional pointn play, we can relax the
admissibility condition.

Definition 2.4.5. We call adoubly-pointed Heegaard diagrarh &, 5, w, z) extremely
weakly admissiblefor the Spiri-structures if for every non-trivial periodic domain,
with n, = 0 and (ci(s), H(D)) = 0, the domain has both positive and negative
coefficients.
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With a straightforward adaptation of the proof of well-defiimess in the case 0f we
get the following result (see [40], Lemma 4.17, cf. Definiti.1.17 and cf. proof of
Theorem 2.1.3).

Theorem 2.4.6.Let (2, a, 8, W, 2) be an extremely weakly admissible Heegaard dia-
gram. Thend% is well-defined and a differential. O

Note that Ozs&th and Szab impose weak admissibility of the Heegaard diagram
(2, a, 8, 2). The introduction of our relaxed condition is done sincewilefind setups
in this thesis where it is convenient to relax the admigsjbdondition like introduced.

Other knot Floer homologies

By permitting variations of, in the differential we define the homology HFK Let
CFK~(Y, K) be theZ[U~1]-module (orZ,[U~1]-module) generated by the intersec-
tion pointsT, N Tgz. A differential 0, is defined by

G= > > #M,-y,

yeTaNT s pEH(XY,1)

whereH(x,y, 1) C m(x,y) are the homotopy classes witly, = 0 (possiblyn, # 0)
and = 1. To make this a well-defined map we may impose the strongsaitoility
condition on the underlying Heegaard diagram or relax # likwas done for weak
admissibility in Definition 2.4.5. Using this constructicand continuing like ir2.2,
we define variants we denote by HFKand HFK' . The groups are naturally connected
by exact sequences analogous to those presented in LemiBa 2.2

2.4.1 Refinements

If the knot K is null-homologous, we get, using a Mayer-Vietoris compatg that
Spirf(Yo(K)) = Spirf(Y) x Z. (2.4.2)

Alternatively, by interpretation of Spfrstructures as homology classes of vector fields,
i.e. homotopy classes over the 2-skeletoriYgfwe can prove this result and see that
there is a very geometric realization of the correspondgBee?2). Given a Spin
structuret on Yp(K), we associate to it the pais, k), wheres is the restriction ot on
Y andk an integer we will define in a moment. Beforehand, we would tik say in
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what way the phrasgestriction of t onto Ymakes sense. Pick a vector fieldn the
homology class of and restrict this vector field t¥\vK . Observe that we may regard
Y\vK as a submanifold offp(K). The restricted vector field may be interpreted as
sitting onY. We extend to the tubular neighborhooeK of K in Y, which determines

a Spirf-structures on Y. However, the induced Sgirstructure does not depend on
the special choice of extension wion vK, sinceK is homologically trivial.

To a Spiri-structuret we can associate a lik and its homology class determines the
Spirf-structure. Denote by,y a meridian ofK in Y, interpreted as sitting itYp(K).
ThenL; can be written as a sum

Lt:k',uO"i'---a

and thus we can computewith
K= V(L) = #Y(L F) = #60(L F) = (Zeu(0), [FD)

where\ is a push-off ofK in Y andF is obtained by taking a Seifert surfaéeof K
in Y and capping it off with a disc iYg(K).

We can try to separate intersection poifits N Tz with respect to Spiftstructures of
Yo(K). This defines a refined invarialﬁfF\K(Y, K,t), for t € Spirf(Yo(K)), and we
have
CFK(Y,K,s) = P CFK(Y.K, 1),
teHs
whereHs C Spirf(Yo(K)) are the elements extendirsge Spirf(Y). We have to show
that oW preserves this splitting. We point the interested readg38p

2.5 Maps Induced By Cobordisms

The pairing introduced i§2.3.4 can be used to associate maps to cobordisms. In
general, every cobordism between two connected 3-masiféldnd Y’ can be de-
composed into 1-handles, 2-handles and 3-handles (cfoBitmm 4.2.13 in [18]). All
cobordisms appearing through our work will be induced bgsties on a 3-manifold.

A surgery corresponds to a 2-handle attachment to theltgelsordismY x |. For

this reason we will not discuss 1-handles and 3-handles. MMgive the construction

for cobordisms obtained by attachments of one single 24{batkar a definition of the
general, very similar construction, we point the interéstader to [44].
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Given a framed knoK C Y, we fix an admissible Heegaard diagram subordinaté.to
Without loss of generality, we can choose the diagram suahdh= . is a meridian
of the first torus component @f. The framing ofK is given, by pushind off itself
onto the Heegaard surface. The resulting knobbis determined byA + n - i, for a
suitablen € Z. With this done, we can represent the surgery by the Heeddplel
diagram &, o, 3,v) where~;, i > 2, are isotopic push-offs of th@, perturbed, such
that ~; intersectss; in a pair of cancelling intersection points. The curyeequals
A+N-p.

Proposition 2.5.1. The cobordism X3, Us (#9-1D3 x S?) is diffeomorphic to the
cobordism W given by the framed surgery along K.

We define

Fuic = fagy
as the map induced by the cobordidv. Of course, for this to make sense, we
have to show thaFy, does not depend on the choices made in its definition. This is
shown by the following recipe: Suppose we are given niapsnd F», induced by

two sets of data that can be connected via a Heegaard mova.tAdse maps fit into
a commutative box

HF HF
o s
AE . AF

where the associated Heegaard Floer homologies are cednegithe isomorphism

induced by the move done to connect the diagrams. If we dichdlbalide, we use

associativity together with a conservation property agails to Lemma 2.3.9 to show
a composition law reading

Fayy ©Fapgy = Fagy-

In a similar vein one covers handle slides among ¢heircles. Invariance under
Isotopies and changes of almost complex structures is shyproving, that the
isomorphisms induced by these moves make the correspodiiggam commute.

Given a framed link. = Ky U - - - LI Ky, Observe that we can obviously define a map
Fu: HRF(Y) — HF(W),

whereY, is the manifold obtained by surgery alohgin Y, in the same way we did
for a single attachment. We claim that associativity, tbgetvith a conservation law
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like given in Lemma 2.3.9, will suffice to show that the miap associated to multiple
attachments is a composition

FL =Fkno---oFg,

of the mapsIEKi associated to the single attachments alongktheThe associativity
will prove that the maps in this chatommute Although we have to be careful by
sayingthey commuteThe maps, as we change the order of the attachments, aredlefin
differently and, thus, differ depending on the attachmedéen

There is a procedure for defining maps associated to 1-hatélehments and 3-
handle attachments. Their construction is not very ergiging, and the cobordisms
appearing in our discussions will mostly be induced by siege

2.6 The Surgery Exact Triangle

Denote byK a knot inY and letn be a framing of that knot. We will briefly recall
the notion of framings to fix the notation. Given a tubulargmiorhoodvK — Y
of K, we fix a meridianu of the boundaryovK. A framing is given by a push-off
n of K, sitting ondvK, such that #¢,n) = 1. The pairu, A determines a basis for
H1(0vK;Z). Any other framing)\’ can be written as\" = m- u + A, for an integer
m € Z, and vice versa any of these linear combinations deternzirfemming onK.
Thus, when writingn as a framing forK it makes sense to talk about the framing
n+ u. If the knot is homologically trivial, it bounds a Seifertrface which naturally
induces a framing on the knot call#te Seifert framing. This serves as a canonical
framing, and having fixed this framing we can talk about fragsias an integer € Z.
This identification will be done whenever it makes sense.

There is a long exact sequence

2 AEY) AR 2 AR O (2.6.1)

whereF; denote the maps associated to the cobordisms induced byreries. The
mapﬁz is induced by a surgery along a meridiarkofvith framing —1. The exactness
of the sequence is proved by showing tkat— on the chain level — can be perturbed
within its chain homotopy class to fit into a short exact segeeof chain complexes
and chain maps (see [39])

0 — CF(Y) =% CF(Y)) 72 CF(YI™) — 0. (2.6.2)
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The mapo, in (2.6.1) denotes the induced coboundary. This enables psove the
existence of the surgery exact triangle.

Theorem 2.6.1.In the situation described above, ketdenote a meridian of and ﬁg
the map induced by surgery alomgwith framing —1. There is a long exact sequence

HF(Y) = HFOR)
HF(Y,Q**‘)
which is calledsurgery exact triangle
n N+p n n n n n
-1 0
. 2 K B\ =\ = [\
R — > S

K K K

Figure 2.8: The topological situation in the exact triangle

Proof. Observe that the topological situation is very symmetribe Tong exact se-
quence (2.6.1) corresponds to the topological situatictupgd in Figure 2.8. Each
arrow in Figure 2.8 corresponds to an exact sequence of &/pelf. With the iden-
tifications given, we can concatenate the three sequencgwedhe surgery exact
sequence of Theorem 2.6.1. O

A second proof, one more appealing to our aesthetic sertbough only valid for
Z,-coefficients, was also developed by Cattvand Szat We will discuss the proof
in the remainder of this paragraph. It contains a very iistérg algebraic approach
for showing exactness of a sequence.

The compositiorf, o f; in the sequence

CF(Y) R CF(YK) CF(YQJ”L) (2.6.3)

is null-chain homotopic. Let(, «, 3,2) be a Heegaard diagram subordinate to the
knot K C Y. We can choose the data such titatis a meridian of the first torus
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component of. A Heegaard diagram ofg can be described by( «, v,2) where
~i, 1 > 2 are isotopic push-offs of thg such that3 and~; meet in two cancelling
intersections transversely. The curygequalsn - 51 + A where\ is the longitude of
the first torus component &f determining the framing oK. We define a fourth set
of attaching circle® whered;, i > 2 are push-offs of the; which meet they; and §;
in two cancelling intersections. The curdgequals §+ 1)8; + A. Thus, @, a,d) is
a Heegaard diagram df”“ By associativity (2.3.8), the comp03|t|cﬁﬂo f, is chain
homotopic to

fags(- ©T5,6(05, © 0,5)),
where the chain homotog is given by counting holomorphic rectangles with suitable

boundary conditions (cf§2.3.4). To compute‘gw(@g7 ® @w) we use a model
calculation. Figure 2.9 illustrates the Heegaard tripbegdam.

01

A\ 8, " B2 2

é'yé 02

Figure 2.9: Heegaard triple diagram for computatiorfﬁqu(@)m ® (:)w).

There are exactly two homotopy classes of Whitney trianglesiave to count. Each
domain associated to the homotopy classes is given by ardisjpion of triangles.
Thus, the moduli spaces associated to these homotopy €laash carry one single
element (cf. Lemma 2.3.9). Hence, #3-coefficients

i:\g,yg(@g’y & @75) =2 @@5 =0.

In general we have to see that we can choose the signs of theiaissl elements
differently. But observe that the domains of both homotofasses contributing in
our signed count differ by a triply-periodic domain. We céoase the signs on these
elements differently.

This discussion carries over verbatim for any of the maplsérstirgery exact sequence.
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The symmetry of the situation, as indicated in Figure 2.8kesdt possible to carry
over the proof given here.

There is an algebraic trick to show exactness on the honuablgvel. Let
H: CF(Y) — CF(Yg ™)

denote the null-homotopy d oty (cf. §2.3.4). Define the chain compla%l?2 to be
given by the module = CF(Y) & a:(YE) ® a:(YQﬂ‘) with the differential

d 0 0
o=|f1 oy O
H f2 aYn+;L

K

Lemma 2.6.2. The sequence (2.6.3) is exact on the homological Ievé\l%(w) if

H*(A?l,fAz) =0.

Proof. Suppose we are given an elemént a:(Y{(‘) N ker(E) with &Qb = 0. Since
H*('Aﬂfz’ 0) is trivial there is an elemeni(y, w) € A such that (0b, 0) = 9(Xx,y, w).
Thus, we have R

b =109 + vy (y)

proving, that p] € im(Fy). O

Definition 2.6.3. For a chain mag: A — B betweenZ,-vector spaces we define
its mapping coneto be the chain compleX(f), given by the moduléA & B with

differential
_(Oan O
a-(0)
The mapping cone is a chain complex (cf. Lemma 3.1.1).
From the definition of mapping cones there is a short exaciesexg of chain complexes

o_>cAF(YQ+“)L>AmLM(ﬂ)_>o

inducing a long exact sequence between the associated dgiesl The connecting
morphism of this long exact sequence is induced by

(H,%): M(f) — CF(Yg™).

The triviality of H*(Aﬂ;z, 0) is the same as saying th&ﬂ,(fAz)* is an isomorphism.
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Lemma 2.6.4([42], Lemma 4.2) Let {A }icz be a collection of modules and let
{fir A — Aaliez

be a collection of chain maps such thatifo fi, i € Z is chain homotopically trivial
by a chain homotopy H Ai — Ai12. The maps

Y =figooHi+ Hijrofit A — Aigs
should induce isomorphisms between the associated homslogrhen the maps
(Hi, fir1): M(fi) — Ai2 induce isomorphisms on the homological level.
If we can show that the sequence
.. 2, CReY) % CRevD) -2 CReyE ™y =
satisfies the assumptions of Lemma 2.6.4, then for ever)fi[mildﬂH, the associated

map H,fi11). is an isomorphism. With the arguments from above, i.e. aytals to
Lemma 2.6.2, we conclude that iR} = ker(Fi+1). Hence, Theorem 2.6.1 follows.

2.7 The Contact Element and’

2.7.1 Contact Structures

A 3-dimensional contact manifold is a pa¥,§) whereY is a 3-dimensional manifold
and¢ C TY a hyperplane bundle that can be written as the kernel of arh-fowith
the property

a A da # 0. (2.7.1)

Those 1-forms satisfying (2.1) are calleccontact forms. Given a contact manifold
(Y, &), the associated contact form is not unique. Suppese a contact form of
then, given a non-vanishing function: Y — R™, we can change the contact form
to A« without affecting the contact condition (2.7.1):

A Adha) = Aa AdA A a4+ A2a Ada = A2a A da # 0.

The existence of a contact form implies that the normal tiwacTY/¢ is trivial. We
define a sectioiR, by
o(R,) # 0 and (g, da = 0.

This vector field is calledReeb field of the contact formn. The contact condition
implies thatda is a non-degenerate form @n Thus, g, da = 0 implies that for each
point p € Y the vector R,), is an element o Y\¢p. Thus,R,, is a section ofTY/¢&.
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Definition 2.7.1. Two contact manifolds(, ) and (Y, ¢’) are calledcontactomor-
phic if there is a diffeomorphismp: Y — Y’ preserving the contact structures,
i.e. such thafl¢(£) = £’'. The mapg is acontactomorphism

It is a remarkable property of contact manifolds that thera unique standard model
for these objects.

Definition 2.7.2. The pair R3, £sid), whereégy is the contact structure given by the
kernel of the 1-formdz— y dx, is calledstandard contact space

Every contact manifold is locally contactomorphic to thenstard contact space. This
is known asDarboux’s theorem. As a consequence we will not be able to derive
contact invariants by purely local arguments, in contrasiifferential geometry where
for instance curvature is a constraint to the existing locadlel.

Theorem 2.7.3(Gray Stability, cf. [16]) Each smooth homotopy of contact structures
(&Dtepo,1 Is induced by an ambient isotopy, i.e. the condition B({o) = & applies
forall t € [0, 1].

An isotopy induced homotopy of contact structures is catledtact isotopy So, a
homotopy of contact structures can be interpreted as aopgand, vice versa, an
isotopy induces a homotopy of contact structures. As in #se ©f vector fields, we
have a natural connection to isotopies, i.e. objects whesteace and form will be
closely related to the manifold’s topology.

A contact vector field X is a vector field whose local flow preserves the contact
structure. An embedded surfake— Y is calledconvexif there is a neighborhood of

3 in Y in which a contact vector field exists that is transversE tdrhe existence of a
contact vector field immediately implies that there is a hbayhoodY x R — Y of

3 in which the contact structure is invariantirdirection. Thus, convex surfaces are
the objects along which we glue contact manifolds together.

Definition 2.7.4. A knot K C Y is calledLegendrian if it is tangent to the contact
structure.

The contact condition implies that, on a 3-dimensional acinthanifold ¥, &), only 1-

dimensional submanifolds, i.e. knots and links, can bedantp¢. Every Legendrian
knot admits a tubular neighborhood with a convex surfacecamdbary. Hence, it is
possible to mimic surgical constructions to define the adrg@ometric analogue of
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surgery theory, calledontact surgery. Contact surgery in arbitrary dimensions was
introduced by Eliashberg in [8]. His construction, in dim&m 3, corresponds to
(—1)-contact surgeries. For 3-dimensional contact marsf@dg and Geiges gave
in [2] a definition of contact--surgeries (cf. also [3]) for arbitrary € Q > 0. Itis
nowadays one of the most significant tools for 3-dimensi@oaltact geometry. Its
importance relies in the following theorem.

Theorem 2.7.5(see [3]) Given a contact manifol@Y, &), thereis a linkL = LT UL~
in S such that contac{-+1)-surgery along the linkL* and contact(—1)-surgery
alongL~ in (S3, &) yields (Y, €).

Moreover, if we choose cleverly, we can accomplish to have just one component.
Using (—1)-contact surgeries only, we can connect an arbitraryacpmbanifold with
an arbitrary overtwisted contact manifold. For a definitbddovertwistedness we point
the reader to [16]. Thus, starting with a kni§tso that ¢1)-contact surgery along
K yields an overtwisted contact manifold’(¢’), for any contact manifoldY(, &), we
can find a linkIL—, such that {1)-contact surgery alonfy~ in (Y’,¢’) yields (Y, €).
An example for such a knd is the Legendrian shark (see Figure 3.19).

2.7.2 Open Books

For a detailed treatment of open books we point the readé]to [

Definition 2.7.6. An open bookon a closed, oriented 3-manifoM is a pair 8, )
defining a fibration
P— Y\B- st

whereP is an oriented surface with boundaty? = B. For every componenB; of
B there is a neighborhood D? x S! < vB; C Y such that the cor€ = {0} x S!
is mapped ontd; under. and= commutes with the projectiorD€ x SH\C — St
given by ¢ - exp(t), exp(s)) — exp(t). The submanifolB is calledbinding and P
the page of the open book

An abstract open bookis a pair P, ¢) consisting of an oriented gengssurface
P with boundary and a homeomorphissn P — P that is the identity near the
boundary ofP. The surfaceP is called page and ¢ the monodromy. Given an
abstract open bookP( ¢), we may associate to it a 3-manifold. L&t .. ., ¢k denote
the boundary components Bf Observe that

(P x[0,1])/(p, 1) ~ (¢(p), 0) (2.7.2)
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is a 3-manifold. Its boundary is given by the tori

(6 x[0,1])/(p, 1) ~ (p,0)) = ¢ x S™.

Fill in each of the holes with a full torus Dx S*: we glue a meridional disc Hx {x}
onto {x} x S* c ¢ x S. In this way we define a closed, oriented 3-manif¥i@P, ¢).
Denote byB the union of the cores of the tori’Dx S1. The setB is calledbinding.
By definition of abstract open books we obtain an open boaktre

P < Y(P,¢)\B — St

onY(P, ¢). Conversely, given an open book by cutting a small tubwagimborhood/B
out of Y, we obtain aP-bundle oveiSt. Thus, there is a homeomorphism P — P
such that

Y\vB = (P x[0,1])/(p, 1) ~ (¢(p), 0).

Inside the standard neighborhoo®, as given in the definition, the homeomaorphism
¢ is the identity. So, the paiP( ¢) defines an abstract open book.

Definition 2.7.7. Two abstract open book®(¢) and @, ¢’) are calledequivalent if
there is a homeomorphisim P — P, which is the identity near the boundary, such
that ¢ o h = ¢’ o h. We denote by ABX() the set of abstract open bookg, () with
Y(P, ) =Y, up to equivalence.

Two open books are called equivalent if they are diffeomiarphihe set of equivalence
classes of open books is denoted by ®B(An abstract open book defines an open
book up to diffeomorphism. With the construction given abwoxe define a map

U: ABS(Y) — OB(Y)

and its inverse. Thus, to some point, open books and abstractbooks are the same
objects. Sometimes, it is more convenient to deal with abstipen books rather than
open books themselves.

2.7.3 Open Books, Contact Structures and Heegaard Diagrams

Given an open bookB; ) or an abstract open boolP(¢), define a surfaces by
gluing together two pages at their boundary

Y = P1/2 Uy P1.
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The manifoldY equals the uniotd; UH, whereH; = 7= 1([i/2, (i + 1)/2]), i = 0,1.
Any curve v in Y running fromH; to Ha, when projected ont&!, has to intersect
{1/2,1} at some point. Thus, the curveis forced to intersecE. The submanifolds
H; are handlebodies of gengé>’) and

Y = Hg Uy Hy
is a Heegaard decomposition ¥f

Definition 2.7.8. A systema = {ay,...,a,} of disjoint, properly embedded curves
on P is calledcut systemif P\{ay,...,an} is topologically a disc.

To system of curves is a cut system if and only if it defines &hiasthe first homology
of (P, 0P).

Interpreting the curvey as sitting onP, /, anda; as sitting insideP;, we can combine
themtoa; = g Uy @, i = 1,...,n. The discag x [0,1/2] can be embedded into
P[0, 1] and by going over to the quotient (2.7.2) we obtain a diddgwith boundary

«;. This means we can interpret the dets, ..., an} as a set of attaching circles for
the handlebodyHg. The gluing of the two handlebodiddy, and Hy is given by the
pair (d,¢) whereid is the identity onP;/,, and ¢ the monodromy, interpreted as
a mapP; — Py. These two maps combine to a maplo — 9H;. Defineb;,

i =1,...,n, as small push-offs of the; that intersect these transversely. Then we
define3 = bj U é(by), i = 1,...,n. Thus we following lemma is immediate.

Lemma 2.7.9. The triple (2, o, ) is a Heegaard diagram of Y . O

Given an abstract open booR, (¢), defineP’ by attaching a 1-handle t8, i.e. P’ =
PUh!. Choose a knot in P’ that intersects the co-core bt once, transversely. The
monodromye¢ can be extended as the identity ovér and, thus, may be interpreted as
a homeomorphism d?. We denote b}Diﬁ the positive/negative Dehn twist along

Definition 2.7.10. The abstract open boole’ D$ o ¢) is called apositive/negative
Giroux stabilization of (P, ¢).

We will see that open books, up to positive Giroux stabilad, correspond one-to-one
to isotopy classes of contact structures.

Lemma 2.7.11. Stabilizations preserve the underlyi@gmanifold, i.e. the manifolds
Y(P', ¢') and Y(P, ¢) are isomorphic.
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A priori, it is not clear that stabilizations preserve the@gated 3-manifold. A proof
of this lemma can be found in [9]. But in the following we willsduss an alternative
proof. Our proof uses a construction introduced by Liscasv@zStipsicz and Széb

(see [27], Alternative proof of Theorem 2.11).

Lemma 2.7.12([27]). There is a cut systerfias, ..., an} on (P, ¢) that is disjoint
from~yNP.

Proof. Denote byy’ the arcynP. If P\« is connected, we choosg to be a push-off
of 4/ and then extend it to a cut systemRf This is possible sinckl;(P, OP) is torsion
free and §] a primitive element in it. IfP\+’ disconnects into the componeri®g
and P, then we may choose cut systems@n i = 1,2, arbitrarily. The union of
these cut systems will be a cut systenfoénd disjoint fronry’. O

The given cut system oR can be extended to a cut systemRn We can choosen, ;1

as the co-core dfit. The set of curvesy, ..., an,1 is a cut system oP’. Choose the
b,i=1,...,n+ 1, as small isotopic push-offs of tteg. Then, fori =1,...,n, we
have

dy) = ¢oDI() = o(by)

¢(bre1) = DEod(bniy) = DE(bner).

Consequentlyg’ (bn, 1) looks like ~ outside the handla!. The curves,.1 has to be
disjoint from all ¢, i < n+ 1.

Proof of Lemma 2.7.11.0n the level of cobordisms the pair,;1 and (,..1 which
meetin asingle point correspond to a cancelling pair of lesattached to the boundary
Y(P, ¢) x {1} of Y(P, ¢) x |. Thus, we have

Y(P, ¢') = S*#Y(P, ¢).

O

A contact structure is supportedby an open bookR, ) of Y if £ is contact isotopic
to a contact structur€’ which admits a contact forme such thatda is a positive area
form on each pagey = 7—1(9) anda > 0 ondP,. We gave the definition as a matter
of completeness, but a detailed understanding of this definwill not be interesting
to us in the remainder of this thesis. For a detailed treatmerpoint the reader to [9].
Every contact structure is supported by an open book decsitigpo
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Theorem 2.7.13(cf. [9]). There is a one-to-one correspondence between isotopy
classes of contact structures and open book decompositipn® positive Giroux
stabilization.

Given a Legendrian knot C (Y, &), we know by definition that its tangent vector
at every point ofL lies in £&. The tangent bundle of a closed, oriented 3-manifold is
orientable, which especially implies the triviality afY|, . The coorientability of¢
implies that¢|, is trivial, too. By definition of Legendrian knots the tangeector

of L lies in ¢£. The 2-dimensionality implies thag, in addition, contains a normal
direction. The triviality of the tangent bundle overimplies that this normal direction
determines a framing df. This framing which is determined by the contact structure
is calledcontact framing. In case of contact surgery it plays the role of the canonical
O-framing, i.e. we measure contact surgery coefficienth waspect to the contact
framing. Note that ifL is homologically trivial, a Seifert surface determines ecsel
framing onL. Surgery coefficients in a surgery presentation of a mah#ioké usually
determined by measuring the surgery framing with respethitocanonical Seifert
framing (cf.§2.6). Measuring the contact framing with respect to thee®effaming
determines a numbeb(L) € Z which is called thelhurston-Bennequin invariant.
This is certainly an invariant of. underLegendrian isotopies i.e. isotopies ofL
through Legendrian knots. By definition, the coefficients rlated by

smooth surgery coefficiert contact surgery coefficient th(L).

It is possible to find an open book decomposition which sugpoisuch thatlL sits
on a page of the open book. Furthermore, we can arrange tleefizaging and the
contact framing to coincide. This is the most important &atjent for applications of
Heegaard Floer homology in the contact geometric world. @roef relies on the fact
that it is possible to find CW-decompositions of contact rfds which are adapted
to the contact structure. These are catiedtact cell decompositions The 1-cells in
such a decomposition are Legendrian arcs. With these dexsitigns it is possible to
directly construct an open book supporting the contactsira. Since the 1-cells are
Legendrian arcs we can include a fixed Legendrian knot irg@ttcomposition and in
this way modify the open book such that the result followsr details we point the
reader to [9].

Lemma 2.7.14(cf. [27]). Let L C (Y, &) be a Legendrian knot anfP, ¢) an abstract
open book supporting such that L sits on a page of the underlying open book. Let
(Y, &) denote the3-manifold obtained by(+1)-contact surgery along L. Then
(P, DX o ¢) is an abstract open book supporting the contact strucﬁﬁ_‘fe
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2.7.4 The Contact Class

Given a contact manifoldY(, £), we fix an open book decompositioR, () which sup-
ports&. This open book defines a Heegaard decomposition and, veitbathstruction
stated in the last paragraph, we are able to define a Heegagrdm. We now put in
an additional datum. The curvéds are isotopic push-offs of the,. We choose them
like indicated in Figure 2.10: We push the off the g by following with db; the
positive boundary orientation ¢fP.

PageP x {1/2} of the open book

i
V4
.

a by

Figure 2.10: Positioning of the poimtand choice ob;.

The pointz is placed outside the thin strips of isotopy between dhand b;. We
denote byx the unique intersection point betweanandb;. Define

EH(P, ¢,{a1, ... ,azg}) = {X1, ..., Xeg}-

By construction of the Heegaard diagr&hl is a cycle in the Heegaard Floer homology
associated to the data-E, o, 3, 2).

Lemma 2.7.15(see [39]) The Heegaard Floer cohomolog@\F*(Y) is isomarphic to
HF(-Y).

The Heegaard diagram-§, o, ) is a Heegaard diagram ferY and, thus, represents
the Heegaard Floer cohomology #f Instead of switching the surface orientation
we can swap the boundary conditions of the Whitney discseit th-boundary and
B-coundary, i.e. we will be interested in Whitney discs i ¢, o). The elemenEH
can be interpreted as sitting in the Heegaard Floer cohnayaidY. The push-offb;

is chosen such that there is no holomorphic disc emanatimg fr.

Theorem 2.7.16.The class EKP, ¢, {as,...,axy}) is independent of the choices
made in its definition. Moreover, the associated cohomobtags <Y, £) is an isotopy
invariant of the contact structuré, up to sign. We call ¢, £) contact element
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The proof of this theorem relies on several steps we wouétbksketch: Ararc slide

is a geometric move allowing us to change the cut system. Anycut systems can
be transformed into each other by a finite sequence of arsslideta; anda, be two
adjacent arcs. Adjacent means thaPix{ay, ..., ax} one of the boundary segments
associated t@; anda, are connected via one segmenbdbf JP. An arc slide ofa;
over a; (or vice versa) is a curve in the isotopy classsefJu 7 U a,. We denote it by
a; + ap.

Lemma 2.7.17. Any two cut systems can be transformed into each other wittita fi
number of arc slides.

It is easy to observe that an arc slide affects the assodigtedaard diagram by two
handle slides. The change under thecircles is given by a handle slide of; over
az. But the associate@-curve moves with thev-curve, i.e. we have to additionally
slide 5, over 3». We have to see that these handle slides preserve the celeant.
To be more precise: After the first handle slide we moved othefset of Heegaard
diagrams induced by open books. Thus, we cannot see thect@hament in that
diagram. After the second handle slide, however, we mov& beo that set and,
hence, see the contact element again. We have to check ¢hebiiposition of the
maps between the Heegaard Floer conomologies induced hgtitke slides preserves
the contact element. This is a straightforward computation

Definition 2.7.18. Let a Heegaard diagrant(«, 3) and a homologically essential,
simple, closed curvé on X be given. The Heegaard diagram, ¢, 3) is called
0-adaptedif the following conditions hold.

1. Itis induced by an open book and the pair ¢ is induced by a cut system
(cf. §2.7.3) for this open book.

2. The curve intersectss; once and does not intersect any other ofthe > 2.

We can always find-adapted Heegaard diagrams. This is already stated in f2D] a
[27] but not proved. We wish to give a proof because this $jgechoice is crucial
throughout this thesis

Lemma 2.7.19. Let (P, ¢) be an open book and C P a homologically essential
closed curve. There is a choice of cut system on P that induéesdapted Heegaard
diagram.
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Observe thagy, . . ., a, to be a cut system of a pagreessentially means to be a basis
of H1(P,0P): Suppose the curves are not linearly independent. In tss eve are
able to identify a surfacé C P, F # P, bounding a linear combination of some of the
curvesy;. But this means the cut system disconnects the Paigecontradiction to the
definition. Conversely, suppose the curves in the cut syaterhomologically linearly
independent. In this case the curves cannot disconnecatie |if they disconnected,
we could identify a surfac& in P with boundary a linear combination of some of the
a. But this contradicts their linear independence. The faatE\{as,...,a.} is a
disc shows that every elementlity (P, 9P) can be written as a linear combination of
the curvesay, ..., a,.

Proof. Without loss of generality, we assume tiRahas connected boundary: Suppose
the boundary oP has two components. Choose a properly embedded arc commecti
both components ofP. Define this curve to be the first cunag in a cut system.
Cutting out this curveag, we obtain a surface with connected boundary. The curve
ap determines two segmeng& and S, in the connected boundary. We can continue
using the construction process for connected binding we bilow. We just have to
check the boundary points of the curves to remain outsideeoségments; andS,.
Given thatP has more than two boundary components, we can, with thigitigg
inductively decrease the number of boundary components.

The map¢ is an element of the mapping class grougPofThus, if {as,...,a.} isa
cut system, theq¢(az), - . ., ¢(an)} is a cut system, too. It suffices to show that there
is a cut system{ay, . .., ay} such thaty intersectsa; once if and only ifi = 1.

gl

Figure 2.11: Possible choice of curye

We start by taking a band sum &fwith a small arcy as shown in Figure 2.11. We are
free to choose the arg. Denote the result of the band sum &y. The arca, indeed
bounds a compressing disc in the respective handlebodyibeds boundary lies on
OP. Because of our prior observation it suffices to show #ais a primitive class in
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H1(P, 0P). SinceH1(P, OP) is torsion free the primitiveness ap implies that we can
extenda, to a basis oH1(P, 9P). The curves defining this basis can easily be chosen
to be not closed, with their boundary lying .

Writing down the long exact sequence of the p&irdP)
Ha(P) —= Ha(P, OP) > H1(9P) — Hy(P) > Hy(P,0P) — 0
I 2l Al

0 Z([P]) —% Z([OP]) — Hy(P) - Hy(P,0P) —— 0

we see thab, is surjective since),[P] = [0P]. Hence, exactness of the sequence
implies that the inclusion: P — (P, dP) induces an isomorphism on homology.
Note that the zero at the end of the sequence appears begBuseassumed to be
connected. Leg denote the genus &f. Of courseH(P; Z) is Z29, which can be seen
by a Mayer-Vietoris argument or from handle decompositimfigirfaces (compute the
homology using a handle decompaosition). Siaceas embedded it follows from the
lemma below that it is a primitive class id1(P;Z). The isomorphism, obviously
sendss to ap, i.e. 14 [0] = [y]. Thus,ay is primitive in Hy(P, 0P).

Cut open the surface alon§y We obtain two new boundary componen, and
C, say, which we can connect with the boundaryPiwith two arcs. These two
arcs, inP, determine a properly embedded cureg, say, whose boundary lies on
OP. Furthermorea; intersectss in one single point, transversely. The curagis
primitve, too. To see, that we can extend to a cut system $ath tis disjoint from
ag,...,an, cut open the surfacP alongd anda;. We obtain a surfac® with one
boundary component. The curvésand a; determine 4 segment§, ..., & say, in
this boundary. We extenab to a cut systenay, . .., a, of P’ and arrange the boundary
points of the curvess, ..., a, to be disjoint fromS,,...,S. The setay,...,a, isa
cut system of with the desired properties. O

As a consequence of the proof we may arrafige be a push-off ok, outside a small
neighborhood where the band sum is performed. Geomeirisptiken, we cut open
¢ at one point, and move the boundarieso® to geta,. Given a positive Giroux
stabilization, we can find a special cut system which is asthfui the curvey. Itis not
hard to see that there is only one homotopy class of triartglgsconnect the old with
the new contact element and that the associated moduli &paame-point space.

Lemma 2.7.20. An embedded circlé in an orientable, compact surfaceé which is
homologically essential is a primitive class of(®l,Z).
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Proof. Cut open the surfac& alongd. We obtain a connected surfaawith two
boundary components sin@eis homologically essential i.. We can recover the
surfaceX by connecting both boundary componentsSoWvith a 1-handle and then
capping off with a disc. There is a knét ¢ SuU h' intersecting the co-core df*
only once and intersecting only once, too. To construct this knot take a union of
two arcs inSuU h? in the following way: Namely, defina as the core oh?, i.e. as
D! x {0} c D! x D! = h! and letb be a curve inS, connecting the two components
of the attaching spherie* in 9S. We defineK to beau b. Obviously,

+1 = #(K, 8) = (PD[K], [5]).

SinceH1(X; Z) is torsion, freeH(X; Z) = HomH1(Z; Z), Z). Thus, P] is primitive.
O

Recall that a positive/negative Giroux stabilization ofcguen book P, ¢) is defined
as the open bookP(, D$ o ¢) whereP’ is defined by attaching a 1-handle foand
~ is a embedded, simple closed curvePnthat intersects the co-core bt once (see
Definition 2.7.10). Using the proofs of Lemma 2.7.11 and Leari¥.12, we see that
there is a cut systerfiay, . .., a,1} of the stabilized open book such thaintersects
only ay,1 which is the co-core oft. Denote bya = {as,...,an} the associated
attaching circles. We define a map

! a:(zv «, /87 Z) I a:(E#Tzv oy {an-i-l}v /8 U {ﬁn-l—l}v Z)

by assigning tox € T, N T the element®(x) = (x,q) where q is the unique
intersection pointy N a,11. This is an isomorphism by reasons similar to those given
in Example 2.3.1.

With our preparations done, we can easily prove one of the asigsificant properties
of the contact element: Its functoriality underX)-contact surgeries. We will outline
the proof since it can be regarded as a model proof.

Theorem 2.7.21([41]). Let (Y’,&’) be obtained fron(Y, &) by (+1)-contact surgery
along a Legendrian knot L. Denote by W the associated cofmordiThen the map

F_w: HF(-Y) — HF(-Y)
preserves the contact element, Fe.w(c(Y, €)) = (Y, ).

Proof. Let an open bookR, ¢) adapted to Y, &, L) be given. By Lemma 2.7.14, a
(4+1)-contact surgery acts on the monodromy as a compositidthawegative Dehn
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Domain of a holomorphic triangle

Figure 2.12: Significant part of the Heegaard triple diagram

twist. Without loss of generality, the kndt just intersectsg; once, transversely
and is disjoint from the othef-circles. Moreover, we can arrange the associated
Heegaard triple to look as indicated in Figure 2.12. The acneélementc(Y, §) is
represented by the poirtxi,...,X,}. Obviously, there is only one domain which
carries a holomorphic triangle. It is the small holomorpiniangle connectingg and

X; (cf. §2.3.4). Thus, there is only one domain with positive coedfits, withn, = 0,
connecting the pointgxy, ..., %} with {x},...,x,}. By considerations similar to
those given at the end of the proof of Lemma 2.3.9, we seehlibadsociated moduli
space is a one-point space. Hence, the result follows. O

2.7.5 The Invariant £

Ideas very similar to those used to define the contact eleocanbe utilized to define
an invariant of Legendrian knots we will briefly call LOSS.iSlnvariant is due to
Lisca,Ozs\ath, Stipsicz andSzalb and was defined in [27]. It is basically the contact
element but now it is interpreted as sitting in a filtered Head Floer complex. The
filtration is constructed with respect to a fixed Legendriantk

Let (Y, &) be a contact manifold and C Y a Legendrian knot. There is an open
book decomposition o¥, subordinate tg, such that_ sits on the pag® x {1/2} of

the open book (cf§2.7.3). Choose a cut system that induced aadapted Heegaard
diagram (cf.§3.2.1, Definition 2.7.18 and Lemma 2.7.19). Figure 2.13iHates the
positioning of a pointv in the Heegaard diagram induced by the open book. Similar to
the case of the contact element those intersection paints5; who sit onP x {1/2}
determine one specific generator 6\F(—Y). This element may be interpreted as
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PageP x {1/2} of the open book

1 v

*w 4

Figure 2.13: Positioning of the poimt depending on the knot orientation.

sitting in (ﬁ:\K(—Y, L), and it is a cycle there, too. The induced element in the knot
Floer homology is denoted hg(L).

Remark. Since this is an important issue we would like to recall tHatien between
the pair (v,2) and the knot orientation. In homology we connecwvith w in the
complement of thex-curves andv with z in the complement of thg-curves (oriented
as is obvious from the definition). lcohomologywe orient in the opposite manner,
i.e. we move fromz to w in the complement of thg-curves and fronw to z in the
complement of thex-curves.
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Chapter 3

Dehn Twists in HF Homology

3.1 Algebraic Preliminaries

We outline some algebraic tools used in the next sectionsprédgent this material for
the sake of completeness.

Lemma 3.1.1. Suppose we are given two complex€soc) and (D, dp) and a mor-
phism f. D — C of complexes. ThefC @ D,d") is a chain complex where

0 = e +f—0p,ie.
¢ [(Oc f
g _<O —0p/

Proof. For (p,q) € C & D we calculate
@) = & (9cp+ (@), ~dpa)

= (0Bp+act(p) +f(~op), 9p)
= 0,

where the last equality holds, sinég and dp are differentials and is a chain
map. O

A nice, immediate consequence of this construction is theviong Lemma.

Lemma 3.1.2. There is a long exact sequence

Fl FZ

H.(D, —dp) —> ...,

. —% H.(C,00) H.(C®D,d")
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wheref, is the map in homology induced Wby andI'; andT'; are given as follows:

e I'; isinduced by the map
m: (C,dc) — (C®D,d), Xr— XD O;

e I'; isinduced by the map
y2: (C®D,d") — (D, ~dp), XBY+— —.

Proof. We first have to see that; and, are chain maps. Given an element C,
observe that
1(0ce) = dcc = d'c = I 71(c).
Furthermore, we see that
72(9' (¢ ® 0)) = 72(9cc) = 0 = 72(c © 0) = ~Ip(72(c © 0)).
We continue with an elemert e D:
72(0" (0 & d)) = 72(f(d) — Ip(d)) = Ip(d) = —b(12(0 & d)).
Thus, bothy; and~, are chain maps. Finallyy; and~, obviously fit into the short
exact sequence
0 — (C,dc) —*— (C®D,d) —=— (D, ~dp) — 0
of chain complexes. Hence, by standard results in Algelrapology (see [1]) this
short exact sequence induces a long exact sequence
2 HUC,00) — e H(C @D, o) — 2+ HL(D, —8p) P~ ...
It remains to show that the connecting homomorph&nequals—f,. Recall that for
d € ker(@p) the morphisnmo, is defined by
O.[d] = [, 10" (2 H@D)].
Of course,y1 and~, are not necessarily invertible. However, we take the prgeaa
as given in the equation, and, by standard algebraic togoldbthe elements in the
preimage will belong to the same equivalence class. Observe
o.0dl = [0 ()]
= [ (@0 —d)]
= [ -]
—[f(d)]
= —f[d]
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Of course, the whole construction works igoes the other way, i.é.. C — D. In
this case we form the compleX @ D with the differential

_ (0c 0
ao(® )

In an analogous manner we obtain a long exact sequence

Iy 12

..~ H.(D, —db) H.(C,dc) == ...

H*(C S D> 6f)

3.2 Two New Exact Sequences in Heegaard Floer Homology

3.2.1 Positive Dehn Twists

Let an open bookK, ¢) and a homologically essential closed cudven P be given.

We first ask how a Dehn twist alon§jwould change the associated Heegaard Floer
homology. There is a specific choice of attaching circlesdha— in a sense — adapted
to the closed curvé. Figure 3.1 depicts a small neighborhood of the péint 5, in

the Heegaard diagram induced by the open book decomposittmpage at the right
side of the boundary pictured in Figure 3.1Rsx {1/2}. The dotted line indicates
the neighborhood ofP where the monodromy is the identity. The proof of Lemma
2.7.19 shows that we can arrange a neighborhoatlof; to look like in Figure 3.1,

i.e. itis possible to arrange the curéveand the attaching circles like indicated in Figure
3.1 due to the arguments given in the proof of Lemma 2.7.19.

With respect to the surface orientation given in Figure 3i$ ts the appropriate
setup for performing a positive Dehn twist along Denote by’ the 3-curves after
performing the Dehn twist. Obviously’ = {37, (2, ... B2g}. Observe that

ToNTy = To NTgUT,NTs, (3.2.1)

whereT; is given by the seb = {4, 3», ..., F2g} (by abuse of notation sincé also
denotes the curve oR but what is meant will be clear from the context). The set of
curvesé may be interpreted as a set of attaching circles. In theviatig we will call

the arc3; N 51 the g-part of 3; and the arc3; N ¢ the d-part of B;. Figure 3.2
depicts the situation before and after the Dehn twist.

The main observation is that there can be no holomorphic idis¢:, o, 3') that
connects ', N T-intersection ofl, N T with a T, N Ts-intersection ofT, N Tg.

77



boundary ofP

T 6

-- QZ/DZ
T o

i LQ/ o

Figure 3.1: A small neighborhood i 3 in the Heegaard surface = P x {1/2} U
(—P) x {0}.
boundary ofP boundary ofP
B2 | [

BN X IR, %)

! W D,,

Figure 3.2: Before and after the positive Dehn twist.

Suppose there is a disg starting atx € T, N Tg and going toy € T, N Ts along

its a-boundary. Then, at thg-boundary, the disg has to run fromy to x along

the 3’ -curves. Since) N 31 contains only one point, namely the intersection that can
be seen in Figures 3.1 and 3.2, the disc has to run througér dith or D, (since
n,(¢) = 0 we cannot use th®,-region). But since we are moving from thepart

of /3] to the 3-part of 3], we see thah,(¢) < 0 or n,.(¢) < 0, in contradiction to
holomorphicity. So, there are just three choices forghboundary of a holomorphic
disc.

1. It starts at thé-part of 5] and stays there.

2. It starts at the3-part of 3; and stays there.
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3. It starts at the3-part of 3; and runs to thé-part of 3; and stays there.

This immediately shows that

|:|T:(Y6) - H*(a:(av /8) ©® a:(Oé, 5)’ a)’

A C

0 B/’
If we perform a negative Dehn twist aloragn the situation indicated in Figure 3.1, we
would connectD, with D,, and keep separatB,, and D,. Observe that we would
have, a priori, no control of holomorphic discs like in theseaf positive Dehn twists.

To get back into business, in case of negative Dehn twistdjave to first isotope
inside the page of the open book appropriately §&2.2).

where? is of the form

Proposition 3.2.1.Let (X, o, 3) be ad-adapted Heegaard diagram of Y and denote by
Y? the manifold obtained from Y by composing the gluing magrgby the attaching
curvesa, G, with a positive Dehn twist along as indicated in Figure 3.2. Then the
following holds:

HF(Y’) = H.(CF(, §) @ CF(, ), "),

whered' is of the form
W
0 ad

with f a chain map betweefCF(a, 6),0%) and (CF(a, 5), 8\"5).

Proof. There is a natural identification of intersection points
To N Ty = To NTsUT,NT;,
i.e. we get an isomorphism
e: CF(, 8) — CF(a, 8) & CF(a, )

of modules. Pick an intersection poirte T, N T such thate(x) € T, N Tg.
Looking at the boundary

Px= "> "#M,-y (3.2.2)
y ¢

we want to see that the moduli space of holomorphic discs eximg x with an
intersectiony € e (T, N T5) is empty: Assume this were not the case. This means
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there were a holomorphic disg connectingx with an elementy = (y1,...,¥n) €

¢ (T, N Ts). Observe thay, is a point ind N ay. Hence,D(¢) includesD, or D,
since these are the only domains giving a connection betigen Tz and T, N Ts.
Boundary orientations force the coefficient ¢fat D, or D,, to be negative. Since
holomorphic maps are orientation preserving, this canedhb case. So, the poirt
can be connected to points in*(T, N Ts) only.

Next observe that discg appearing in the sum (22) all have the property, (¢) =
n..(¢) = 0. Indeed, suppose there were a diswith nonnegative intersection, or
N... The G-boundary of¢ starts atx and runs througtéD, or 0D,.,. The disc¢ is
holomorphic, so, thgg-boundary runs from thg-part to thes -part of T 3. At the end
of the 3-boundary ofp the disc converges to a pointT, NTs. Thus, the3-boundary
of ¢ has to come back through eithér, or D,,. The boundary orientation would
force ¢ to negatively intersecf+} x SymP=1(2) or {xx} x SynP~1(¥). This cannot
happen.

D
oZ oZ
b a b1 b
w D** .W D**

a1 §

[ ]
d
o1 g L
Figure 3.3: Picture of the three different boundary coodgiarising in our discussion.

Denote by §,c] the small arc ing; running through Figure 3.3 and definb, (]
analogously. All discs arising in the sum have boundary itmmg in T,, and

Te\{{[a,c] U[b,d]} x B2 x ... x fg}.

Observe thall 5\ {{[a, c]LU[b,d] } x 52 x...x 34} has two components, one lyingTiy
and one lying inTs. Since the3-boundary of the dis@ starts inTjg, it remains there
all the time. Moreover, looking at dises in (X, «, 8,z w) with n,(¢) = ny(¢) = 0,
an analogous line of arguments as above shows thattheundary of these discs
stays away from

[a,b] x B2 x ... x B,
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where B, b] is the arc ing pictured in the right of Figure 3.3. Thus, the boundary
conditions for discs connecting intersectidfis N Tz are the same in¥{, «, ', 2) and
(2, a, 8,z,w). Thus, we have

8x = Jlsx.

Now suppose that € e (T, N T5). Then
56X = Z Z#M\¢ -y
y ¢
= Z Z#ﬂ/l\d,~y+ Z Z#/\//\ld,-z.

yeTanTs ¢ 2ToaNTs ¢

With an analogous line of arguments as above we see that shedim counts discs
with n, = n.. = n, = 0 only. The triviality of these intersection numbers and
holomorphicity implies that the discs have boundary cooddt in T, and

Ta\{{[a,c] Ub,d]} x B2 x ... x Gy}

As mentioned above this set has two components, where ohemwflies inTs. The
(B-boundary of¢ starts inTs and therefore remains there all the time. Again, we see
that discs connecting intersection poirits N Ts in (X,a,4,2) and €, «, d,z W)
have to fulfill identical boundary conditions. Thus, the mbdpaces are isomorphic.
This shows the equality

Px=0x+ > Y #My-z

zeToNTg ¢

In the right sum we only count discs whemg # 0 or n,, % 0. We will denote this
right sum withf(x). We have to see thdtdefines a chain map

f: (CF(,0),8%) — (CF(x, ), 3%5).

This can be proved in two ways: We know that = Onp + Ons + 1. Hencef is
a sum of three boundaries. The equality=0(9°)? implies thatf is a chain map
(cf. Lemma 3.1.1). The second way is to test the chain mapeptypirectly. To do
so, pick a generatoy € T, N Ty lying in the preimage off, N Ts undere. Observe
that @ o f —f 0 9%)(x) equals

> (X MMy — Y. #MeEM(S) -2

z€TaNTs  (Y,42,61) v, ¢5,47)

- Y ez

z€ToNTs
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where the first sum in the definition afx, z2) goes over elementy,(¢», ¢1) in the set
To NTg x m2(Y, 2) x 72X, y) With 1(¢2) = p(¢1) = 1, and the second sum goes over
Y, ¢5, #) € To N'Ts x may,2) x m2(x,y) with p(dh) = pu(¢;) = 1. Furthermore,
look at the boundary of a moduli spa(z%l\(gb) connecting a point irff, N Ty with

a point in T, N Tg with p(¢) = 2. Observe that we do not have to take care of
boundary degenerations or spheres bubbling off since wéakéing for maps with

n, = 0 (cf. [40]). The only phenomenon appearing at the boundalyeaking. The
boundary of/\7(¢) is modelled on

|| Ms1) x M(@2).
P1xp2=0

There are two cases. Eithey(¢p1) = n.(¢) or n.(¢2) = n.(¢) (the discussion fon,.,
is analogous):

Intersection points i, N T

_— /\
(=
o — -
~— N

Intersection points iff, N Tg

Figure 3.4: Here we figure a moduli space with= 2 and its possible ends.

To prove this, we have to show that a given family of diggsin /ﬂ((b) cannot
converge to a broken disg; x ¢2 with n = n,(¢1) # 0 andm = n,(¢2) # O.
Figure 3.4 represents a moduli space of discs with 2 andn,(¢n) = k. We know
that n + m = k, since intersection numbers behave additively under ¢enaton.
Assume thah, m were both non-zero: Sinagis non-zero, we know that; connects
a point in T, N Ts with one inT, N Tg. The bottom intersection is &, N Tg-
intersection, since, connectsT,, N Ts with anT, N Tg-intersection by assumption.
Hence,$, connects a point off, N Tz with a point inT,, N Tz and runs through the
domainD,. This is simply not possible because of orientation reasadisis, either
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n.(¢1) = k andn,(¢2) = 0 or n,(¢1) = 0 andn.(¢2) = k. This means the ends of
M(¢) precisely look like

(L Mo x M@)o ([ Migo) x Mign)").
baxdp1=¢ DLy =6
where * means that the associated discs have non-trivial intéosentumbern, or

n... Now consider the union of moduli spaces of discs connedtiegoointx and z
with Maslov index 2. According to our discussion, the endsklbke

L] Moo x Mgy ) u ([ Mg x Meh).
(v, $2,01) v, 95,91)
where the first union goes ovey, (2, ¢1) € T, NTg x m2(Y, 2) x T2(X, y) With pi(¢2) =
p(¢1) = 1 and the second union goes over, ¢, ¢;) € T, N Ts x w2y, 2) X m2(X, Y)
with p(¢5) = w(¢y) = 1. Hence, the coefficients(x,2) all vanish, proving the
theorem. n

An immediate, simple algebraic consequence §8f1) of this description is the fol-
lowing Corollary.

Corollary 3.2.2. Let K C Y be the knot determined By Then there is a long exact
sequence

" I

AF(Y_1(K)) HFK(Yo(K), 1) 2 ...

with 9, = —f, where f is the map defined in the proof of Proposition 3.2.1e Kot
1 denotes a meridian of K.

. %% AFK(Y, K)

Proof. With Proposition 3.2.1 we see thEI\IF(Y5) fulfills the assumptions of Lemma
3.1.1 and therefore Lemma3.1.2 applies. Finally, we apppésition 2.4.4 to identify
H*(a:, 5‘”) with the respective knot Floer homology. It is easy to obsdhat with
respect to the framing induced by the open book the maniildequalsY_1(K),
i.e. the result of {1)-surgery along the knd€. We obtain the sequence

HF(Y_1(K))

where s, K2) is the pair given by the data( o, 6, z,w). Itis easy to see that the pair
(w, 2) in the diagram X, «, 6) determines3; up to orientation, i.e. the attaching circle
01 interpreted as a knot iiY,s. This attaching circle3; is a meridian for a tubular
neighborhood. of K in Y. Finally, we have to see that,; equals the 0-surgery along
K with respect to the framing induced by the open book. Thigr&@ghtforward. [

Iy I

.. % AFK(Y, K) HFK (Y5, K2) 2 ..
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Corollary 3.2.3. In the situation of Proposition 3.2.1 we define a map
f: CTF\K(Z,a,é, ZW) — (ﬁ:\K(Z,a,ﬁ, Z W)

by sending an element T, N Ty to

= > > #Myey.

2T NTg peH(XY,1)

where Hx,y, 1) are classes inrg‘ﬁ'(x, y) with i = 1 and with the pair of intersection
numbers(n,(¢), n..(¢)) # (0,0). We denote byrg”ﬁ/(x, y) the homotopy classes of
Whitney discs associated to the diagréd o, 3, 2). The defined f is a chain map and
its induced map on homology satisfigs=f 0, whered, is the connecting morphism
in the sequence given in Corollary 3.2.2. O

A few words about admissibility: The reader may have notittet we did not say
anything about admissibility of the Heegaard diagramd, 9, z, w), but nonetheless
talk about the knot Floer homology/F\K(Yag, K2) induced by this diagram. We could
restrict to just saying we take the homology induced by thi@a.darhe respective
boundary operator is well defined (finite sum) sireis. However, we would like
to remark that the diagrant( «, d,z w) is always admissiblen a relaxed senseWe
may relax the weak-admissibility condition imposed by Gibv and Szab for the
definition of knot Floer homology to the extreme weak-adihily condition givenin
Definition 2.4.5. The diagran®], «, 4,z w) is always extremely weakly-admissible:
Let D be a non-trivial periodic domain with,,(D) = 0 (see§2.4) and lets be an
arbitrary Spifi-structure such thatcs(s), H(D)) = 0. By definition of the boundary,
0D can be written as

oD = Z)\iai + k16 + Zﬁjﬁj.

i>1 i>2

Assuming that\; # 0 for ai > 2 or x; # 0 for aj > 2, we see tha® has both
positive and negative coefficients due to the fact ##truns through a configuration
like given in Figure 2.10. Thus, let us assume thatand x; would vanish, for all
i,j > 2. The boundary oD could be written as

0D = M\ja1 + K19.

However, 1 has to vanish, sincé runs throughoD,, N 9D, (see Figure 3.3). Finally,
we get thatdD = \ja1. Examining the middle part of Figure 3.3 we see that the part
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of a1 which is at the right ofy is surrounded by the regidR,. Thus,A; = 0.

With help of the geometric realization of th&*(H;/Tor)-module structure given in
[40] we can easily prove the following proposition.

Proposition 3.2.4. The mapd™; and I', from the exact sequence of Corollary 3.2.2
respect the/\*(H1/Tor)-module structure of the Heegaard Floer groups in the foifayv
sense. Lety C X be a curve. Then the following identities hold:

AL T100) = Ta(AY;, ()

)
T2(A, ) = Al (T2(9)
Proof. Recall the geometric realization of th€(H1/Tor)-module structure. Given a
pointx € T, NTg C T, NTs (cf. the proof of Proposition 3.2.1 for the appropriate
identification), by definition

A[Y’j]\((')' () = Z Z a(y, é) - Y,

Y ¢eH(xy,1)

where H(x,y, 1) C ma(X,y) is the set of Whitney discs witm, = 0 andpu = 1.
Furthermore,

a(y, ¢) = #My - #U({—1} x R,y x SynP"Y())r, .

where the right factor denotes the intersection numbeu($f1} x R) and v x
SymP~1(X) inside T,. Fixing another pointy € T, N Tg, recall that these points
are connected b@gﬁ if and only if they are connected by’ . Moreover, there is an
identification of the respective moduli spaces. Thus, fiardjsc¢ connecting these
points (ina,3’), we know — sincen,(¢) = 0 —that¢ connects these intersection points
in the a5-diagram, too. Denoting by its class inm,, we see that

B _ pnqal

Mgy = #Mig) -

Moreover, the intersection number T, used to definea(~,[¢]) coincides for both
diagrams since is a common representative. Thus, we see that

2"’ (7, [4]) = ¥ (v, [¢)).

Recall that there are no connections frdify, N Tg-intersections to &l, N Ts-
intersection in then, 3’ -diagram. Hence, the first equality given in the proposition
follows.
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To show the second, fix a point € T, N Ts C T, N Ty . Use the same line of
arguments as above to show that the following identity holds

A[YW(S]W 0 = Z Z aY6 (v,9)-y + Z Z aY5 (v,%) -z

Y ¢eH(xy,1) Z yeH(xz1) s
_ Yo A
= A[’Y](\S(a s ) + E E a (v,v)-z
Z yeH(xz1)

The second sum is an eIement(?IF(E,a,ﬂ,z, w). Recall thatl', is induced by the
projection ontdCF(2, «, 4, Z w). Hence, the second sum cancels when projected under
the mapl',. The second equality of the proposition follows. O

In §3.3 we will derive suitable naturality properties of the seqce to show that the
maps involved in the sequences are indeed topological. Wébevinterested in the
maps denoted b¥'; since these are directly related to the surgery represdytéiae
Dehn twist.

3.2.2 Negative Dehn Twists

The approach for negative Dehn twists is pretty much the sasrfer positive Dehn
twists. In§3.2.1 we already mentioned that the situation indicatedguare 3.1 is not
suitable for performing negative Dehn twists. Performingegative twist, we could
not make an a priori statement about what generators caminecied by holomorphic
discs like we did irg3.2.1. To get back into business we just need to isotope tive cu
¢ inside the page a bit (or equivalently isotope some of trechihg circles). Figure
3.5 indicates a possible perturbation suitable for our gsep. Comparing Figures 3.2
and 3.5 we see that we isotoped the cusve bit. Observe that with this perturbation
done, we again can read off the behavior of holomorphic dilkesn §3.2.1 (carry over
the discussion 0f3.2.1 to this situation). As a consequence, the followirgppsition
can be proved. The proof of Proposition 3.2.1 carries ovebaten to a proof of
Proposition 3.2.5.

Proposition 3.2.5.Let (3, «, 5) be ad-adapted Heegaard diagram of Y and denote by
Y? the manifold obtained from Y by composing the gluing magrgby the attaching
curvesa, 3, with a negative Dehn twist alongjas hinted in Figure 3.5. Then we have

HF(Y’) = H.(CF(, ) ® CF(@, 6),0"),
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Figure 3.5: Before and after a negative Dehn twist aléng

oo

with f a chain map betweef€F(a, 6),9%) and (CF(a, 3), 8Y";). O

whered' is of the form

Corollary 3.2.6. Let K C Y be the knot determined By Then there is a long exact
sequence

(o r = T ™ Ox
.. — HFK(Yo(K), ) 2+ HF(Y;1(K)) L HFK(Y,K) = ...

with 0, = —f, where f is the map defined in the proof of Proposition 3.2.5e Th
knot 1 denotes a meridian of K. Moreover, identities hold similarthiose given in
Proposition 3.2.4. O

3.3 Invariance

Our goal in this paragraph is to show that the nigpin the sequences introduced are
topological, i.e. just depend on the cobordism associatdiget surgery represented by
the Dehn twist. To do that, we have to generalize our appraalit and try to see
that everything we have done, especially the proof of Pritipas3.2.1, works without
using a Heegaard diagram that is necessarily induced byemtmgpk. Obviously, the
geometric situation given in Figure 3.3 builds the founalatdf the proof. To clarify
the situation, look at Figure 3.6.
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Figure 3.6: The important geometric configuration.

We, for the moment, stick to the notation§#.2. We need the curvé to intersects;
once, transversly and to be disjoint from the otpecircles. In addition, the top right
domain at the poinf N 31 € 3 has to contain the base poin{cf. Figure 3.6). Given
this configuration, the proof of Proposition 3.2.1 applid$e situation figured, does
not occur exclusively when the Heegaard diagram is indugeghtbpen book.

K

B

B2 (0) 7 B2 ©
Figure 3.7: Preparation of the Heegaard diagram.

Given a Heegaard diagram subordinate to a khotve can isotope the knét onto the
Heegaard surface. The isotoped knot intersects justioicle once, transversely.
Without loss of generalitK intersects3?;. To generate a geometric configuration like
indicated in Figure 3.6, we may isotope the knot again to niloeentersections; N K

to lie next to aD,-region: Cutting thex-circles out of the Heegaard surface, we obtain
a sphere with holes. The regidp, is a region in this sphere. Eithé&?, is the whole
sphere with holes or not. In case it is the whole sphere allgharcles touch the
regionD, and we are done. In cagd®, is not the whole sphere, there has to be at least
one (-circle touching the boundary db,. If (; touches the boundary @, we are
done. If5; does not touch the boundary D%, we obtain a configuration like indicated
in part @) of Figure 3.7. Without loss of generality we assume thatouchesD,.
Note that it not possible fof, to separateD, from (1, since the complement of the
(3-circles inY. is connected. We are allowed to slide over thiss-circle (cf. part b)
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of Figure 3.7). After the handle slide there is a smallaioside (3, touchingD,. By
a small isotopy of the kndk we can move the intersection poidtn 31 along the new
(B1-circle until it enters the ara (cf. part €) of Figure 3.7).

Care has to be taken of the surgery framing. Here, we stickrgesies or to framed
knotsK such that there exists a subordinate Heegaard diagramheittetming induced
by the Heegaard surface coinciding with the framing of thetkrEvidence indicate
that every framing can be realized in this way.

We saw that our discussion from the last paragraph can b&daver to a more
general situation. We, indeed, do not need the Heegaardadiatp be induced by

an open book. So far, we restricted the discussion to Hegghiagrams induced by
open books, since we are interested in applications to theacbgeometric parts of
the theory, which makes a discussion of this class of diaglagvitable.

Given two Heegaard diagrams subordinate to a pdi), we transform the one
diagram into the other by the moves introduced in Lemma 2Bh&se moves respect
the knot complement of. The goal is to show that each move preserves the exact
sequence and the maps inherited. In the following we will El@egaard diagrams,
realizing a geometric situation as given in Figure 3.3 fonatkd, ¢-suitable.

Figure 3.8: Triangles that have to be counted for handleslaimong thex-curves.

We begin showing invariance under handle slides amongotizairves. Although
used in some papers it was never explicitly mentioned whiehgles are counted for
handle slides among the-curves (cf.§2.3.4). Given a Heegaard diagram, ¢, (3),
denote by’ the attaching circles obtained by a handle slide amongticarves. The
associated map between the respective homologies countadmphic triangles with
boundary conditions ia, o’ and 3. Figure 3.8 pictures a Whitney triangle connecting
a pointx € T, N Tg with a pointy € T, N Tg. Observe that in this situatio®

is a top-dimensional generator b/ﬁ:(a’, «) (note the order of the attaching circles).
To not confuse the maps induced by handle slides among itiecles with the maps
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induced by handle slides among tfiecircles, we introduce the following notation:
let us denote by, .3 the map induced by a handle slide among theircles (like
indicated above) and by,,.3 g the map induced by a handle slide amongtheircles
(like indicated in§2.3.4).

Proposition 3.3.1.Let (X, «, 3, 2) be ad-suitable Heegaard diagram an@&, o/, 3, 2)
be obtained by a handle slide of one of tse Denote by

g,a’;,ﬁ’ : @((E,a,ﬁ,z, W) - G-F\K(Z)O/aﬁaza W)
.5 @ CFK(Z,a,6,zw) — CFK(Z, o, 8,2 W)
Fa,a’;ﬂ/ : a:(E,a,ﬁ’,z) - a:(zvalaﬁlaz)

the induced maps. These maps induce a commutative diagranexeict rows
2 AFK(, o, 8,2 W) - AR, o, 3,2 2 AFK(S, o, 6,2 W) -2 .
F::tﬂ;ﬂ F:«,a/;ﬂ/l Ft,z’;&l
NT= / T Y Iy = / o,
.. — HFK(Z, o', B,zzw) — HF (X, o, 3',2) — HFK(Z, o', 0,z W) — ...

Proof. The proof of this proposition is quite similar to the proofRroposition 3.2.1.
To keep the exposition efficient, we do not point out all dethere. Start looking at
the mapI', ;5 . Itis defined by counting triangles with boundary condison T, ,
To/ y Tﬁ’ .

D,
oZ oZ
b a b b
———————————e—
oW D oW D
d o
]

Figure 3.9: Picture of the three different boundary cood#iarising in our discussion.

Figure 3.9 illustrates the boundary conditions and how thel like near the region
where the Dehn twist is performed. Analogous to the disoussi the proof of
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Proposition 3.2.1 the picture shows that
v . T
Poaip = | %7 ,
o < 0 _F\g,a’;5>

whereT is a map defined by counting triangles that conriggt N T -intersections
with T, N Tg-intersections. This immediately shows commutativity fué first two
boxes, i.e.

/ W,
PZ,O/;Q/ ol = 1° Fa,a’;ﬁ
/ W,
2° Pz,a’;ﬁ’ = _Pa,o/;é ol

It remains to show that
FW,* 5 o a* — @i o _FW,*

a,al; a,ali0"
Recall thatd, equals the mag in the definition of the boundar@. These were
defined by counting discs with, # 0 or n,, # 0. Look at the following expression

W, % / W, *
r of. + f* © 1101,0/;5'

a,a;B

The strategy to show its vanishing is analogous to the disonsof the chain map-
property off in the proof of Proposition 3.2.1. There are two ways to see Recall
thatT', . is a chain map. Hence, with the representatioﬁ‘bgiven in Proposition
3.2.1, this means that

f/OF\AV’a/;é‘i‘F\g’a/;ﬁof :é\xlv/ﬁof—i-foé\g/& (331)
Thus,

0 = (f,OF\&\I’a/;a—i‘F\g’a/;ﬁOf)*
W, w,
= flol) /;5+Fa,2';ﬁof*

,Q

since all maps involved are chain maps. Hence, the third baxwutes, too. Alter-
natively, look at the ends of the moduli spaces of Whitnegnigies with boundary
conditions inT,, T/, Tz with Maslov index 1 and non-trivial intersection number
n. or n... The ends look like given in Figure 3.10. There are threeiplesends. But
observe that the top end (cf. Figure 3.10) correspond¥{x® 00+ ), which vanishes
since by definitiond®+ = 0. Hence, for our situation there are just two possible
types of ends to consider (the both at the bottom of Figur@)3Recall that breaking

is the only phenomenon that appears here (cf. proof of Priipos8.2.1 or see [40]).
Proceeding as in the proof of Proposition 3.2.1, the comiwitiaof the third box
follows. O
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Figure 3.10: The rAnoduIi space has three possible ends. Bytwa of them count
non-trivially, sinced®+ = 0.

Proposition 3.3.2. Isotopies of thex-circles induce isomorphisms on the homologies
such that all squares commute. Isotopies of fheurves that miss the points w and z
induce isomorphisms such that all squares commute.

Proof. We realize isotopies of the attaching circles by Hamiltangotopies. Hence,
the induced ma@ on homology is defined by counting discs with dynamic bouypdar
conditions in thea-curves. Thes-side remains untouched. Hence, by an analogous
argument as in the proofs of Theorems 3.2.1 and 3.3.1 the mhaproology splits into
three components. The commutativity with andI';, is then obviously true, and the
only thing to show is the commutativity with the connectingnfomorphismo, and

d,. But this again can be done by counting appropriate ends diinspaces or by
looking into the chain map equation &f with respect to the representation@f. O

Consider the following situation: Le®) «, 3,2) be ad-suitable Heegaard diagram.
With the discussion i§3.2.1 we obtain a long exact sequence

P ARK(E, o, 8,2W) S5 AR, a, 4, 2) 23 HFK(S, o, 8,2 W) 2
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where we define the attaching circles

ﬂ, = {ﬂiuﬂZ?"' 7&9}
5 = {57ﬂ27”’7ﬂg}

as it was done i§3.2.1. Define3” by performing a handle slide among the i > 2,

or by a handle slide ofi; over ;. Perform the same operation on the set of attaching
circles 8 to obtain B . Finally, take an isotopic push-off @, ¢’ say, that intersects

in a cancelling pair of intersection points. Do the same wWithg;, i > 2, to get/,

i > 2. In this way we define another set of attaching cirdfewhich is given by

§ =1d,0,... ,ﬁé}.
Using these data we have the following result.

Proposition 3.3.3.Let (%, o, 3, 2) be ad-suitable Heegaard diagram an&, «, 3", 2)
be obtained by a handle slide among the i > 2 or by a handle slide oB; over g;.
Denote by

F:;Vﬁg : éF\K(E,Oé,ﬂ,Z,W) — (:/I:\K(E,Oé7§,Z,W)
W5 © CFK(Z,a,d82zw) — CFK(,a,d,2zw)
Fa;ﬁ/,ﬁ” : é\F(E,a,ﬁ’,z) B a:(E,Oé,ﬁ”,Z)

the induced maps. These maps induce a commutative diagianexict rows
% HFK(S, 0, 8,2 W) 2 AF(S, 0, §,2) 2 HFK(S, 0,6,2W) 2~ ..

W, * * W, *
Laiss D67 l Loiser l

2 ARG, o, B, W) — AR, o, 87,2) % AFK(S, o, ', W) 2o .

Before goingin medias reswe would like to explain our strategy. The idea behind
all main proofs concerning the exact sequences was to shaiveehtain holomorphic
discs cannot exist. Up to this point we always used the baséspe andz in the sense
that we tried to see what implications can be made from théitons n, = n, = 0.

In addition, keeping in mind that holomorphic maps betweemifolds of the same
dimension are orientation preserving, we were able to pevegything we needed.
Here, however, it is not so easy. First we would like to to se¢the magd’,,.5/ g~ can

be written as _
rB r
Lo m = (o F2> :
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This means we would like to show that there are no trianglesectinga S-intersections
of T, N Ty with ad’-intersections ofl, N T (cf. Figure 3.11). This part is very
similar to the proofs already given. We could try to continmghe same spirit and
identify moduli spaces as we did before, but this is quiteayés this situation. The
reason is that we are counting triangles, and being forcethie an intermediate stop
at the point©, we are able tewitch our directiorthere. So, comparing the boundary
conditions given in the three triple diagrams is not veryvement. Unfortunately
we were not able to avoid these inconveniences completafy;duld minimize them.
After proving the splitting, we stick t@',.5: 5~ and show that the magd,, I',, T are
chain maps and that all boxes in the diagram commute. Theaili&zed by counting
ends of appropriate moduli spaces of holomorphic trianghes squares. Finally, to
minimize the messy task of comparing triangles in threerdiag, we just stick td';
and show that this map essentially equELé;ﬁﬁ on the chain level. The 5-Lemma

then ends the proof.

a1 Ze
Y1 / a
[ J

Y2
We D.x

m -

1"/
1 |

Figure 3.11: The important part of the Heegaard diagrant héadle slide.

Proof. Firstobserve that; and 3] meetin two pairs of cancelling intersection points.
Thus

Fa;,ﬁ”,ﬁ” = Tf\a,ﬁ”,ﬁ'”( R é)
= /f\a,g/,g//( R {al, 02, ce ,99}) +?a,3’,3”( BN {az, 92, Ce ,Hg}).
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So, we are looking for triangles with intermediate intetsec {ay, 6>, ...,60y} and
triangles with intermediate intersectiday, 6>, . . . , g} .

Step 1- Splitting. Letxe T, NTg andy € T, N TB be fixed. Let
?ag/ﬁ//(X(EQ {al, 92, - ,99}) y

be the coefficient o?aﬁ/gn(x- ®{a1,02,...,04}) at the generatoy. Suppose were is
a triangle starting ax and going toy along thea-boundary and then running
along its 5’-boundary. From that point we have to go backtagain, following the
red curve pictured in Figure 3.11. A we have two choices: we go upwards along
the red curve, or we go downwards. Observe that going upwtrigswould lead us
to entering theD,-region at some point and foreg to be non-zero in contradiction to
our assumptions. Going downwards, we again entefjweegion and the boundary
conditions forcen, to be non-zero, again. Thus, there is no holomorphic treangl
connectingx with y alonga; . Thus

/f\a/g/ﬁ//(x® {al, 02, e ,99})‘)/ = 0
The next step is to compute
?a/g//g//(x & {a.z, 0s,..., 09})‘)/ .
Suppose there were a triangle that contributes. Going aleadghoundary of that
triangle we would start at and go toy along thea-boundary of the triangle and then
try to go to a, following the pink curve in Figure 3.11. At some point we enf2,

forcing n, to be non-trivial. Hence, we have

?aﬁ/ﬁ,/(X(EQ {a2,02, ... ,Hg})‘y =0.

R, T
Pappr = (o r2>'

Step 2 -1, = F‘;"_ ~. First of all it is easy to see that holomorphic triangles,
contributing inr‘gﬂ 5 fulfill the property thatn,, = 0. Hence, together with, =

This shows that
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n, = 0 the triangles have to stay away from the regions surrogndin §. Hence, we
have

W
Fl_ra;g,g+R‘

The mapR counts all holomorphic triangles not contributing]ft‘z. 5 Conversely,

all holomorphic discs contributing tB; should be shown to fulfiln, = n,, = Ny, =
ny, = 0. Inthis caseR = 0 angl both maps coincide on the chain level. Look at Figure
3.12: The situation for thex33-diagram is pictured.

1. Observe that there is exactly one holomorphic trianglh wi,. # 0. This
triangle contributes td'.

2. There is no holomorphic triangle contributinglfe with n, # 0.

3. Inasimilar vein observe that these triangles in additiave trivial intersection
with y; andys.

Thus, we see tha® = 0.

D ) j
o |

Figure 3.12: What happens.

Step 3 — Chain map properties and commutativity. Given pointsx € T, NTs and
yeTyN "]I‘g, look at the moduli space of holomorphic triangles conmeck with vy,
with Maslov index 1. There are, a priori, eight ends from vahize just write down
four. The four ends missing in Figure 3.13 are those cortirigtto I'( - ® 90), which
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vanishes sinc@© = 0. We know thafl,. 5 4~ is a chain map, i.e.

0 = dolap g+ Tap 00
= 8LVBOF1+F10825
—i—E)Z[VBOT—Ff/on—i-Flof—i-fo s
+825/OF2+F206(\;V§

The first two terms vanish since we identifi€d with FW ~, whichis a aﬁ, 8""~)

chain map. The next four terms vanish since these correstpdhd ends |IIustrated in
Figure 3.13. Finally, since the whole equation is zero. #st two terms cancel each
other. Thus['; is a chain map as desired. By construction, two of three boxtse
diagram commute. We have to see that on the level of homology

I1of =f'oTy.
Recall we showed that on the chain level

a ~oF+f’oF2+Flof+Fo W =0.

Hence,I is a chain homotopy betwedhn o f andf’ o I'. O

LY E

Figure 3.13: The ends of the moduli space providing comnwitiat

In [27] the authors give an alternative proof for the indegesrce of the contact element
of the choice of cut system. We are especially interestetientéchnique they used
to prove Proposition 3.3 of [27]. Recall, that given an openlb (P, ¢), a positive
Giroux stabilization of (P,¢) is the open book R U ht, ¢ o Dj) where v is a
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Figure 3.14: lllustration of what happens while Giroux dtaimg.

closed curve irP U h! that intersects the co-core bt once, transversely. Fixing a
homologically essential, simple closed curvén P we call the Giroux stabilization
d-elementary if, after a suitable isotopyy intersectsy transversely in at most one
point (cf. Definition 2.5. of [27]). Their invariance procélies on the fact that, given
a positive Giroux stabilization, one can choose a cut system . , a, of (P, ¢) such
that the curvey does not intersect any of tteg. Observe that, given such a cut system
for (P, ¢) and defininga,..1 to be the co-core of the handi, thenay, ... a1 isa
cut system for the Giroux stabilized open book. Furthermobserve that for < n

¢ o DI (&) = ¢(a).

Figure 3.14 illustrates how o D:YL(anH) looks like. Thus, all intersections between
aj and g for i,j < n remain unchanged, where,,, intersects only3,,1 once,
transversely. FurthermoreDj(anJrl) is disjoint from alla, i < n. And, hence,
Bny1 is disjoint from all o, i < n. Thus, the induced Heegaard diagram looks
like a stabilized Heegaard diagram induced by the open bBok)(with cut system
ai,...,an. Denote byq the unique intersection point ef,; and 5,.1. Then the
map

P: é\F(P,Qb,{al,...,an}) —>a:(PUhlvD'tqua{alv"'van-i-l})v

given by sending a generatarof a:(P, o, {aa,...,an}) to &(X) = (x,q), is clearly
an isomorphism of chain complexes preserving the conteateht.

We will, however, focus our attention on a special versiorpasitive Giroux stabi-
lization. Recall, that we call>{#T?, o/, ') a stabilization of the Heegaard diagram
(2, «, B) where we define’ = a U {u} and 3’ = g U {A} with 1 a meridian and\

a longitude ofT?.
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BB

Figure 3.15: The choice of for a topological stabilization.

Definition 3.3.4. Let (P, ¢) be an open book decomposition and [Et, ¢ o Dj;) be
a positive Giroux stabilization. We say that the Giroux #izdttion represents a
topological stabilization if there is a cut system{ay, ..., a,, an1} of P* with the
following properties:

(1) Theset{as,...,an} is acut system foP.

(2) Denote by L, «, 5) the Heegaard diagram induced W, ¢, {as, ... ,an}) and
let (X', o/, #') be the Heegaard diagram induced By, D7, {as, . . ., any1}).
The diagram X'/, o/, 3') is a stabilization of X, a, 3) up to isotopy of the
attaching circles.

Look into Figure 3.15. In this picture we present how to cleopsuch that the positive
Giroux stabilization represents a topological stabil@at Indeed, the following lemma
holds.

Lemma 3.3.5. Let (P, ¢) be an open book decomposition and (t, ¢ o Dj) be

a positive Giroux stabilization. The Giroux stabilizatisepresents a topological
stabilization up to isotopy of the attaching circles if andlyoif ~ is isotopic to the
black curve pictured in Figure 3.15.

Proof. Given an open book decompositioR, () and a positive Giroux stabilization
(P,¢o Dj) with ~ like indicated in Figure 3.15, this stabilization cleargpresents a
topological stabilization up to isotopy: Recall tH{t= P U h'. Choose a cut system
{a1,...,an} of P such thatda;, i = 1,...,n, is disjoint from the region where the
handleh' is attached on. Define, 1 as the co-core of the handté. Picturing the

resulting Heegaard diagrams we see that the positive Gstabilization represents a
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topological stabilization up to isotopy.

Conversely, suppose we are given a Giroux stabilizatiomesgmting a topolgical
stabilization up to isotopy, then we have to show thas isotopic to the black curve,
~s say, indicated in Figure 3.15. First note that the handl&téhed on one boundary
component ofP. If h! connects two different boundary componentsPofthe genus
of the resulting Heegaard surface would increase by 2. Bynagton there is a cut
system{ay, ..., a,1} for P’ fulfilling properties (1) and (2), given in Definition 3.3.4.
As in Definition 3.3.4, denote by}, a, 3) and ¢, o/, 3’) the respective Heegaard
diagrams. By assumptiolt; = S#T2 and, after applying suitable isotopies, = o/
andg; = g/ foralli=1,...,n. We have, that

a|/1+1 = ant1Uann
Bhi1 ~ @ny1U ¢ oD (ant1)
with
04;1-1-1 ~ /.LTZ (332)
Bhrr ~ A2 (3.3.3)

By (3.3.2), we see that,.1 is isotopic to the co-core di'. This can be read off from
Figure 3.16. Hence, we have

anr1Ugo D'Jyr(an+1) =Onyr~ Az~ a1 Ugo Djyrs(an-yl)-

So, ¢ o D (an11) is isotopic to$ o DI (any1), Which is equivalent to saying that
D, (ant+1) is isotopic toD~(an+1). But this finally implies thaty is isotopic toys. [

Proposition 3.3.6. Let (P, ¢) be an open book decomposition of Y &/ ¢ o Dj)
a positive §-elementary Giroux stabilization representing a topotagistabilization
(cf. Definition 3.3.4 and look at Figure 3.15). Then thereigmmorphismsb1, ¢, and
¢3 on homology such that the following diagram commutes

% . HFK(P, ¢,0) —*—— AF(P,D} 0 ¢) — 2 HFK(P,d) — 2~ ...
¢1l% $2 | = ¢3| =

% AFK(P, ¢ o DY, 5) —> HF(P, D} 0 o DF,2) —% HFK(P, $o D) Lv ..

Remark. General positive Giroux stabilizations do not preserveekact sequence.
The reason is that in the general situatipn P and ¢—%(5) might intersect and cannot
be separated. In the topological situation, however, tieeiabchoice ofy makes it
possible to separaten P from ¢—1(9).
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ant1

Figure 3.16: The left portion pictures’ and the right portion the pad® and how it
is obtained fromP.

Proof. Denote by~; the part ofy that runs throughP. Since we are just doing a
topological stabilization, we can attach the hariufién such a way that; and ¢ ()
are disjoint. Just choose like indicated in Figure 3.15. Even i~1(5) intersects
~v1, we can separate them with help of a small isotopy. By chgoairtut system
{a1,...,an} for (P, ¢) appropriately, we can extend this cut system to a cut system
for the stabilized open book by choosireg, 1 like indicated in Figure 3.15. For
all Heegaard diagrams in the following, we will use this cystem. Sincep—1(5)
and v are disjoint, the associated Heegaard diagranPaflyy o ¢ o D7) will look
like a stabilization of the Heegaard diagram induced by thendbook P, Dg o ).
The same holds for<{P’, ) and (-P',¢ o D). Using the isomorphism induced
by stabilizations as discussed above we can define¢, and ¢z as indicated in
Proposition 3.3.6. These maps are all isomorphisms anduoslyi commute on the
chain level. O

Theorem 3.3.7. The mapI'; is topological, i.e. it just depends on the cobordism
induced by the surgery.

Proof. The cobordism induced by the Dehn twist depends only on theaBifold Y

and the framed knot typlé which the curvey, together with its page framing, represents
inside Y. This pair, on the other hand, is described by an open bootndgasition
adapted toy and ad-adapted cut system. These data determine a Heegaardndiagra
subordinate to the paify(K) (cf. §2.4). Given another adapted open book together
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with an adapted cut system, the associated Heegaard diggeaquivalent to the first
after a sequence of moves which are described in Lemma A4 & these moves are
recovered via Proposition 3.3.1, Proposition 3.3.2, Psdjom 3.3.3 and Proposition
3.3.6. Of course, after some point, we might leave the classeegaard diagrams
induced by open books. But the propositions cited do nothiseopen book structure
as discussed at the beginning of the section. O

3.4 Implications to Contact Geometry

In this section we will focus our attention on contact malcifo(Y, &). Let (P, ¢) be an
open book decomposition that is adapted to the contacttsteug (cf. §2.7.3). Recall
that the contact element and the invariant defined in [27inhsthe Heegaard Floer
cohomology (cf§2.7.4 and Lemma 2.7.15). Because of the well-known equicale

HF*(Y) = HF.(-Y)

we will be interested in the behavior efY rather thanY (cf. Lemma 2.7.15). Recall
from §2.7.4 that we have two choices to extract the Heegaard Flmaology of —Y
from data given by a Heegaard diagramYaf We can either switch the orientation of
the Heegaard surface or switch the boundary conditions.

Let L C Y be a Legendrian knot (c§2.7.1) and denote by," the manifold obtained
by doing a (1)-contact surgery alondt. There is an open book decomposition
(P, ¢) adapted tc such thatlL sits on the pag® x {1/2} of the open book and the
page framing coincides with the contact framing. -Al{-contact surgery acts on the
open book like a negative Dehn twist alohgi.e. (P, ¢ o D[’P) is an adapted open
book decomposition ofY(", &) where D[’P denotes a negative Dehn twist alohg
with respect to the orientation d&?. Observe that sits on the wrong page for our
construction of the exact sequence. Fortunately, theitglent

¢poD =Dy 00 (3.4.1)

holds. Thus, a surgery alorig can be interpreted as a left-hand composition of the
monodromy with a Dehn twist. In additiorP(Dd_)(’LP) o ¢) is an adapted open book

decomposition of X", &"). To see the effect on the Heegaard Floer conomology, we
have to change the surface orientation. We see that

—Y = (=P,D,{ 0 6) = (-P.D;;" 0 9). (3.4.2)
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One very important ingredient for our construction is thet that we may choose an
L-adapted Heegaard diagram whéresits onP x {1/2}. Because of the identity
(3.4.1) we need a Heegaard diagram with attaching circles adaptedlL) in the
following sense: the curve(L) intersectss; once, transversely and is disjoint from
all other 3-circles. This condition is satisfied far-adapted Heegaard diagrams since
¢(a) = by. This means we are able to simultaneously match all comditfor setting

up the exact sequence and seeing the invaﬁAz(xh). Recall that the sequence requires
the pointw defining L to be in a specific domain of the Heegaard diagram. This
positioning ofw induces an orientation dn. On the other hand, a fixed orientation of
L determines wherg has to be placed. These two orientations, the one coming from
the sequence and the one from the khatself, have to be observed carefully. We
have to see whether every possible choice of orientatidniofluces a positioning of

w inside the Heegaard diagram that is compatible with theireouents coming from
the exact sequence.

Proposition 3.4.1.Let (Y, &) be a contact manifold and £ Y an oriented Legendrian
knot.

(i) Let W be the cobordism induced Ify1)-contact surgery along L. Then the
cobordism—W induces a map

I'_w: HFK(-Y,L) — HF(-Y;"),
such thatl _w(L(L)) = c(Y;", &).

(ii) If L carries a specific orientation and W denotes the coliem induced by a
(—1)-contact surgery along L. Then the cobordismV induces a map

I'_w: AF(=Y) — HFK(-Y,L)

such thatl'_w(c(Y_,&)) =0.

Proof. Recall that

—P

_YE_ = (_ P, D;_(’L) © (b)
- ——P

_YL = (_ P, D¢(’|_) © (b)

We choose a cut system whichlisadapted. This means thhatintersectsa; trans-
versely, in a single point and is disjoint from the otheicircles. Henceg(L) (sitting
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on the other side of the Heegaard surface) intersécts a single point and is disjoint
from the otherg-circles. We first try to prove the results concerning thé Y-contact
surgery. After possibly isotoping the knbtslightly, we can achieve a neighborhood
of ¢(L) N B to look like the left or right part of Figure 3.17.

LW
N Ze - : Ze
- T ) e AN
ﬁ(' J , 1 ﬁLJ , M
,,,ﬁL }J ) }J
w

! binding of the open book ! binding of the open book
Figure 3.17: Setting things up for a contagtl()-surgery.

In each part of the picture the knbatand the pointw are placed in such a way that
the Dehn twist associated to the X)-contact surgery connects the regions where the
points w and z lie. Thus, each picture shows a situation in which we may yappl
the proof technique used for Proposition 3.2.1 (resp. Fitipa 3.2.5). Observe that
Figure 3.17 shows the situation for each orientatioh oSince we are doing aH1)-
contact surgery, we perform a positive Dehn twist aldngith respect to the surface
orientation given in Figure 3.17 (cf. Equality (3.4.2) arfiddiscussion at the beginning
of this paragraph). Thus, we are able to define a map

I't: HFK(-Y,L) — HF(=Y{).

The situations in both pictures are designed to apply thefpeahnique of Proposition
3.2.1. The induced paiw 2) determines an orientation dn To match the induced
orientation with the one of the knatwe either use the left or the right picture of Figure
3.17. By definition ofl't we see that

L) = (Y, &)

To cover (1)-contact surgeries, look at Figure 3.18.

The same line of arguments as above applies to define a map

I'™: HF(=Y) — HFK(-Y, L).
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Legendrian invariant :
! conta\\ct element

\
L i ﬂl\ R 51\ )
B X ] \WQ

LJ\W }Jz‘” ) * J

: binding of the open book : binding of the open book

Figure 3.18: Setting things up for a contaetl()-surgery.

Again, recall thatw is placed in the Heegaard diagram in such a way that allows us
to define the mag'~. The pair (v,2) induces an orientation oh. The opposite
orientation will be denoted byb. What can be seen immediately from the picture
is that the Dehn twist separates the contact element andwhgant £(L, ob): The
arguments show that we have the following exact sequence.

0 — CFK(Yo(L), 1) CFY)) CFK(-Y, (L, 0b)) — 0

o | > C

o ~ L(L, ob)
To speak in the language of the proof of Proposition 3.2.&: elementc is an a5-

intersection, whereas the eIemezh(rL ob) is an ad-intersection. By exactness, the
contact element lies in the kernel off'~. O

Definition 3.4.2. The orientatiorob(P, ¢) from the last proof is called thepen book
orientation.

To prove Corollary 3.4.3 we have to recall that Honda, KazezMatic introduced in
[21] aninvariantEH(L) of a Legendrian knalt in the Sutured Floer homology (cf. [22])
of a contact manifold with boundary. To be more precise,glve- (Y, &), they define
an Legendrian isotopy invariant &f, called EH(L), sitting in SFHEY\vL, ') where

I' are suitably chosen sutures. Furthermore, Stipsicz angsidrave shown in [48]
that this invariant is equipped with a morphism SFN(\vL,I") — H/F\K(—Y, L)
that mapsEH(L) to E(L). Composing this morphism with the one coming from
Theorem 3.4.1 we get the following result.

Corollary 3.4.3. There is a map
v: SFHEY\wL,T) — HF(=Y)
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such thaty(EH(L)) = c(Y,", &1). O

Corollary 3.4.4. Let L be a Legendrian knot in a contact manifold, &). Then
EH(L) = 0 implies that ¢Y;", &) = 0. O

It is also possible to derive these corollaries using methomning from [48].

Proposition 3.4.5.Let L be a Legendrian knot in a contact manifgi &) carrying the
open book orientation induced by an adapted open l{&ok). Let(P’, ¢’) be the once-
stabilized open book that carries the Legendrian knofL$ (see Proposition 3.4.11).
The open book orientationb(P’, ¢') coincides with the orientation incuded by the
stabilization.

We will give a proof of Proposition 3.4.5 in the following eyraph.

3.4.1 Stabilizations of Legendrian Knots and Open Books
Stabilizations as Legendrian Band Sums

Recall that stabilization basically means to enter a zignég the front projection
of a Legendrian knot. If we are not in the standard contactespae perform this
operation inside a Darboux chart. Which zigzag is regarded positive/negative
stabilization depends on the knot orientation. PositiXggativity is fixed by the
following equations

th(S: (L)) th(K) -1
rot(Sy(L)) = rot(L) £ 1.

This tells us that
S, (L) =S (L). (3.4.3)

Given two Legendrian knots andL’, we can form theit egendrian band sumL# L’
in the following way: Pick a contact surgery representatibthe contact manifold in
such a way that the surgery liflk stays away fronl. UL’. In this way we can think of
L andL’ as sitting in the standard contact space and, so, can pettierband sum. We
denote byl andL, the oriented Legendrian shark with the orientations aatdd
in Figure 3.19.
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Lo Lo

Figure 3.19: The oriented Legendrian shark and its inverse.

Proposition 3.4.6. Given a Legendrian knot L, we can realize its stabilizatiess
Legendrian band sums, i.e.

Sy (L) = WHplo
S (L) = L#Lo,

where# ,, denotes the Legendrian band-sum.

Proof. We prove the equality for positive stabilizations. The cakaegative stabi-
lizations is proved in a similar fashion. No matter what pt&ion the knot. carries,
we will find at least one right up-cusp or one right down-cudp. case of a right
down-cusp we perform a band-sum involving this right dowsgconL an the left
up-cusp ornLgy. In case we use a right up-cusp we perform the band-sum aatedi
in the left part of Figure 3.20. In Figure 3.20 we indicate tisgendrian isotopy that
illustrates that we have stabilized positively. O

§55s

Figure 3.20: The Legendrian band-sum in case of a right gp-@nd a Legendrian
isotopy.

Open Books and Connected Sums

Suppose we are given open bool, (1) and o, ¢2) for manifolds {Y1,&1) and

(Y2,&2). Let By be the binding of R1, ¢1). Denote byvB; an equivariant tubular
neighborhood ofB;. Fix a pointp on B; and embed a 3-baD? such that it is
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centered ap. Furthermore, the ball should sit insidd3; such that the north and
south pole ofD3 equalB; N S?. Denote byf;: D3 — vB; C Y; the embedding.
Embedg: D — Y5 in the same fashion. Composgewith a right-handed rotation
r that swaps the two hemispheresdt to get another embeddinig = gor. Use
these embeddings to perform the connected sum. By its definibe gluingf, o fl‘l
preserves the open book structure. Note that the rotatineeded to make the pages
of the open book glue together nicely with their given orétioin. Moreover, we are
able to explicitly describe the resulting open book. The pageP equalsP; Uy P2,
whereh! is a 1-handle connecting; and P, and the bindingB equalsB;#B,. To
define the monodromy, first exterd and ¢, as the identity along the handle and the
complementary page. Then defineas the compositio, o ¢1 = ¢1 © ¢2.

Lemma 3.4.7. The open bookP, ¢) is an adapted open book f@l1#Y,, £1#5).

Proof. Observe that the given operation is a special case of theddgraum. The
lemma then follows from [9]. O

Corollary 3.4.8. Let (Y, &) and (Y, ') be contact manifolds and € Y a Legendrian
knot. Then we have

HFK(-Y#Y' L) = HFK(-Y,Ll) ® HF(-Y’
COYHY',L) = LY,L) ® )

Proof. Let (P1,¢1) be an open book decomposition adapted to the knand the
contact structure. Denote by P, ¢,) an open book forY’, £'). We define an open
book (P, ¢) by using the open books for and Y’ as given above. Recall, that the
pageP is given by joining the pageB; and P, with a 1-handleh?, i.e.

P="P; Ut Po.

Denote byf : oh! — 9P L10P; the attaching map. Furthermore, let;, ..., a,} be

a cut system foP; and{aj, ..., ay,} a cut system foP,. Choose isotopic push-offs
bi of thea so thata andb; intersect each other in a padf, X~ of intersection points.
The push-offs are chosen like specifiedsih7.4 (cf. also Figure 2.10). Analogously,
the curvesbj’, j =1,...,m, are defined; denote the points of intersectioryﬁiy Y

j = 1,....m. The names are attached to the intersection points in suciyahat
{xf,...,xt} represents the clas¥Y, L) and that{y; , ..., yi;} represents(¢’). We
additionally fix base pointg € P;, i = 1,2, and a third onew say, inP; determining
the knotL. These choices induce Heegaard diagrams we denote:hyyi(5),

i = 1,2. We require the chosen cut systems to fulfill the followiwg tonditions:
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@) Im@E)n (Uinzlaa U U,-“llaa{) =0

) Im(f) c 9D, UdD,

As a consequence of these two conditions and the fact thaefiyittbn <15|pi = ¢i,
i =1,2 and ¢|,; = idy; we see that

p@)na =0 and a N o&) = 0. (3.4.4)

The set{ay,...,a .} U{a],...,a}} is acut system for the open booR, (). Denote
by (2, «, 3) the induced Heegaard diagram, then wittd(®), we see that

=10, a=a1Uap, f=01UB

and the pointg;, i = 1, 2, lie in the regions unified by the connected sum tube. Choose
a base point € X lying in this unified region. Thus, — with the same reasoniagna
the proof of [39], Proposition 6.1. — we see that

HFK(=Y#Y, L) = HFK(-Y, L) ® HF(-Y). (3.4.5)
By construction, the intersection poir{le, . ,xﬁ,yf, ...,¥m} represents the class

Z(Y#Y/, L). But the isomorphism giving (8.5), ¢ say, has that property that

X,y Ly = X e v YT
i.e. o(L(=Y#Y',L)) = L(-Y,L) ® c(¢). O

Lemma 3.4.9.([9]) If ~ is a non-separating curve on a page of an open baky),
we can isotope the open book slightly such thét Legendrian and the contact framing
agrees with the page framing.

This fact follows from the Legendrian realization prin@plAs a consequence, we get
the following corollary.

Corollary 3.4.10. If the Legendrian knots;LC P; sit on the ages, then, on the page
P of (P,¢), we will find a Legendrian knot L with the following propertythere

is a naturally induced contactomorphisgy such that¢c(L) equals L# L, after
performing a right-handed twist along the Legendrian balhmtleed, we obtain L by a
band sum of L and L, on the page P.
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Proof. Let (P;, ¢i) be open books adapted t% (&, Li), i = 1,2. OnP; there is a set

of embedded, simple closed cume&s. .., ¢ whose associated Dehn twists generate
the mapping class groups &. The associated Dehn twists can be interpreted as
contact surgeries along suitable Legendrian knots (cfofldra 2.7 in [27]). Thus,
using the open book decomposition we are able to find a (magbe imefficient)
contact surgery representation of,;) which is suitable for our purposes to perform
the Legendrian band sum (cf. beginning of this section). eédaer, we can think off

to pass the bindin®; of P, very closely at some point: this means that there is a point
p: in the binding, and a Darboux bal; aroundpz, such that the curve intersects
this Darboux ball. Suppose this is not the case, then we caops the Legendrian
knot L, which sits onPq, as a curve irP, to pass the binding closely (as described
above). The isotopy is not necessarily a Legendrian isotdpyvever, by Theorem 2.7
of [27], we know that the isotoped curve determines a unigdefined Legendrian
knot, which is Legendrian isotopic to; . With a slight isotopy of the open book, we
can think of this new knot as sitting o®,. By abuse of notation, we call the new
knot L;. After possibly isotoping the open book we can thinklaf as sitting in the
complement oD1. We obtain a situation like indicated in the top row of FigGr21.
Since we have the identificatioryy( &) = (S3(L1), &1,), the ballD; can be thought

of as sitting inS3. The complement ob; in S? is again a ball we denote Hy;. We
may make similar arrangements flos: however, we would likd_, and the associated
surgery linkIL, to sit insideD; and f)vl to be the ball in whichL, comes close t®,

(cf. bottom row of Figure 3.21). We can form the connected sum

S3(Ly L Lp) = S3(IL)\D1 Up % x [0, 1] Up S*(IL2)\D1 (3.4.6)
where the gluing is determined by the naturally given embyepd(cf.§4.12 in [16])
11: D1 — S% and 1: Dy — S5

For a detailed discussion of connected sums of contact pidsifve point the reader to
[16]. The induced contact structure is the connected Uy, = &, (cf. §4.12

of [16]). The knotsL; andL, are contained in this connected sum and, here, we can
perform the Legendrian band sum as defined at the beginnitigso$ection; we can
perform a band sum which looks like given in Figure 3.22. Rebat we introduced

a connected sum operation such that the open bd@ks;f glue together to give the
open book P, ¢) whereP = P, Up, P2 and ¢ is given as the composition of the two
monodromiesp; and ¢,. To perform the connected sum operation such that the open
book structures are preserved, we have to modify the cangtruslightly. We modify

the inclusion.; by composing it with a rotation about tiyeaxis with angler. Without
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Figure 3.21: Our specific arrangement for performing thenested sum.

loss of generality we can think; N 9D1 andL; N oD to be identified by the gluing
induced by the inclusion mapsg and:,. We can also assume that the rotatioswaps
the two intersection points; N 9D;. We obtain a new gluing may, say, and get

Y = S3(L1)\D1 Us S3(LL2)\D1

with induced contact structurg. With this identification the knot&,; and L, glue
together to give a knok. This knotL corresponds to a band sum bof and L, on

the pageP (after possibly applying Proposition 3.4.9). Recall thamtact structures
on S? x [0, 1] are uniquely determined, up to isotopy, by the charastierfoliations

on $? x {j},j = 0,1 (cf. Lemma 4.12.1 and Theorem 4.9.4 of [16]). Consider the
connected sum tube used in (3.4.6), and extend it with snodifircneighborhoods

of the boundaries o8%(LL1)\D1 and S3(L,)\D1. The characteristic foliatiosr , ;1,,
induces at the boundary will coincide with the characterifdliation £ induces on a
suitably chosen tubular neighborhood @b = S? x [0,1] in Y. Thus, there is a
contactomorphism betweerD; and this thickened connected sum tube. Moreover,
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Figure 3.22: Performing a band sumlof and L, inside S3(LL; L LLy).

the contactomorphism can be extended to a contactomorphism

gt (Y,€) — (S* (LU L), éyiny)

which just affects the connected sum tube and fixes the rest.on® can derive
with some effort, this contactomorphism basically rotates S2-factor once while
going through the handI§? x [0, 1]. Thus, ¢¢(L) looks like a band sunb1# L5 in
S3(IL1 L LLp) after twisting the band once. Figure 3.23 applies. O

The following statement is due to Etnyre. Since there is mofin the literature, we
include a proof here for the convenience of the reader.

Proposition 3.4.11.([9]) Let (Y, &, L) be a contact manifold with Legendrian knot and
(P, ¢) and open book adapted towith L on its page such that the page framing and
contact framing coincide. By stabilizing the open book oweecan arrange either
the stabilized knot SL) or S_(L) to sit on the page of the stabilized open book as
indicated in Figure 3.24.
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Figure 3.23: Schematic picture of the band bum after idemgfyY, ¢) with (S3(LL1 LI
L2), §Ly0,)-

positive stabilization

Legendrian knot //\

/ L

/
Legendrian knot/
Figure 3.24: The stabilized open book and a positive Ledganditabilization.
The following result concerning the vanishing of the Leg@dinvariant under positive
stabilizations is due to Lisca, Ozsh, Stipsicz and Szaband follows from their

connected sum formula given in [27]. Their proof carriesroxerbatim even for knots
which are homologically non-trivial. Here we reprove a sakcase of Theorem 7.2.
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of [27] using different methods.

Proposition 3.4.12([27], Theorem 7.2) Given any Legendrian knot L in a contact
manifold (Y, &), we havel(S; (L)) = 0.

Proof. Let (P, ¢) be an open book decomposition adaptedvta(L). By Proposition
3.4.11 we know that a stabilized open bod¥, (') carries the stabilized kn@&, (L).
Furthermore, from Figures 3.24 and 3.30 we can see how thed&uHeegaard diagram
(adapted to capturing the contact geometric informatioit)l@ok like near the base
point w. This is done in Figure 3.25. We may use Proposition 3.4.5héxk that the

oy Binding Y

Figure 3.25: Parts of the Heegaard diagram induced by the bpek carrying the
stabilized knot.

positioning of the pointv in Figure 3.25 is correct. First observe ttfé(&(L)) is the
homology class induced by the point

{X17X27X37 .. ,X2g}-

Recall that by definition of the pointg every holomorphic disc emanating framis
constant. Thus, a holomorphic disc emanating fiQm= {p,q,Xs, ..., Xxg} can only
be non-constant gb, q. By orientation reasons and the placementwthe shaded
region is the only region starting at q which can carry a holomorphic disc. Since it
is disc-shaped, it does carry a holomorphic disc. Hence

aWQ = {Xlu X27 X37 e 7ng}

showing thatE(S+(L)) vanishes. O
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The knotL

The curve along which
to perform a Dehn Twist

Figure 3.26: The open book necessary to carry the Legendrnot withtb = —1
androt = 0.

Proof of Proposition 3.4.11.Given a triple ¥,&,L), there is an open bookP(¢)
adapted to¢ such thatL sits on a page of the open book. By Proposition 3.4.6,
Lemma 3.4.7 and Corollary 3.4.10 we perform a connected SUG)#(S®, £siq) on

the level of open books using the open book $7, €sg) pictured in Figure 3.26. By
construction, the new open book carries the Legendrian kaqgpictured in Figure
3.27. In Figure 3.28 an isotopy is given, showing thatcorresponds to the band sum

Figure 3.27: The knok; in (Y, )#(S3, Esta).

L# pLo and, thus, represeng.(L).

By Figure 3.26 what happens on the level of open books candtered as in Fig-
ure 3.29. O

Proof of Proposition 3.4.5.Using Proposition 3.4.11, we have a tool to compare the
open book orientation before and after the stabilizatiore Stért with an open book
adapted to the tripleY( £, L) and choose ah-adapted cut system. By Proposition
3.4.11 we can generate an open book adapted to the posithibzsttion by stabilizing
the open book. Doing this appropriately, we may extend theystem to an adapted
cut system of the stabilized open book as indicated in FigLB@. Recall the rule with
which the knot orientation is determined by the poimsZ) (see remark i§2.7.5). In
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Figure 3.28: Legendrian isotopy showing thatcorresponds to the Legendrian band
sum ofL with the Legendrian sharkg.

Figure 3.30 we can now compare the open book orientationedstdibilized knot with
the orientation induced by the stabilization. We see thabtientations coincide. [

3.5 Applications — Vanishing Results of the Contact Element

In this paragraph we want to derive some applications of tle®ry developed in
§3.2,63.3 and§3.4. First to mention would be Proposition 3.5.1, which cko de
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\L stabilized knot

Figure 3.29: What happens during stabilization.

open book orientation on its stabilization

open book or}entation |
on the knot

Figure 3.30: Comparing induced with open book orientation.

derived using methods developed in [29]. There, Lisca aipbiSz show that(1)-
contact surgery along stabilized Legendrian knots yiekrvisted contact manifolds,
which implies the vanishing of the contact element. A secapplication would be
Proposition 3.5.3, which is meant as a demonstration tHetlledéing the Legendrian
knot invariant and using Proposition 3.4.1 to get informatabout a contact element
under investigation can be more convenient than using otiethods, since the knot
Floer homologies have additional structures we may useird épplication would be
Theorem 3.5.4 which is a vanishing result of the contact etgmwhich can be easily
read off from a surgery representation. This applicaticgsubke knot Floer homology
for arbitrary knots and makes use of a phenomenon that seeims $pecial about
these, namely that there are knots for which the knot Floerdiogy vanishes. We do
not know any other example with this property.
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Proposition 3.5.1. If (Y, £) is obtained from(Y’, ¢’) by (+1)-contact surgery along a
Legendrian knot L which can be destabilized, the elemé&ptwanishes.

Proof. There are two cases to cover. Give the khan orientationo. Suppose that

(Lyo) = S—(—(Lla 0,)'

Then Proposition 3.4.12 shows the vanishingfc(f_,o). By Proposition 3.4.1 the
elementc(¢) vanishes, too. Now assume that

(Lv 0) = S—(Lla 0,)'
We see that
(L,o) =S (L. 0) = S:(L.9),
hence,Z(L, ) = 0. By Proposition 3.4.1 agaic(¢) = 0. O

There are some immediate consequences we may derive frerthéarem. The first
corollary is well-known but with help of our results we ardeato reprove it.

Corollary 3.5.2 (Ozs\ath and Szat). If (Y, &) is overtwisted, the contact element
vanishes.

Proof. Recall that the surgery diagram given in Figure 3.31 is amtaisted contact
structure¢’ on S3.

-1
+1 +1

Figure 3.31: Surgery diagram for an overtwis&tlin the homotopy class dfs.

This overtwisted contact structure is homotopicttg as 2-plane fields (cf. [4]). By
Eliashberg’s classification theorem (see [7]), a connested of (Y, &) with (S3, &)
does not change the contact manifold, i.e.

(Y. €) = (Y, O#S3,©).
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Denote byK the shark on the left of Figure 3.31. The manifold £) admits a surgery
representatiorS3(L) whereL. = K L LL/. Furthermore,K and L’ are not linked.
Denote by ¥’, £”) the contact manifold with surgery representatfil’). We obtain
(Y,&) out of (Y, ¢") by (+1)-contact surgery alongl, which can be destabilized
inside Y’. Proposition 3.5.1 implies the vanishing «f). O

Remark. For a detailed discussion of the homotopy invariants of twisted contact
structures orf® see [5].

Another consequence is that performing a simple Lutz tidstgaa transverse knot kills

the contact element. The resulting contact structure &Elgl@vertwisted. Thus, by
work of Ozs\ath and Szatthe contact element vanishes. But besides this approach we
can show the vanishing of the contact element without refgto overtwistedness at all.

In [6] a surgical description for simple Lutz twists alongrisverse knots is presented.
This description involves-{1)-contact surgeries along a Legendrian approximation

of the transverse knot and another Legendrian knot whictsialalized version of..
Proposition 3.5.1 then implies the vanishing of the congdmmnent.

When looking at a homologically trivial kndt, to show the vanishing of a contact
element after surgery along it can be convenient to show the vanishing 5@.)
and then apply Proposition 3.4.1, because of the varioudirgga on the knot Floer
homological level. The following proposition is meant aslarstration of this fact.

Proposition 3.5.3. A (+1)-contact surgery along the Legendrian realizationsgdiven
in Figure 3.32 of the Eliashberg-Chekanov twist knotsaith n € —2N all give contact
manifolds with vanishing contact element.

AN (22

n n

Legendrian realizations of the twists

INNNNAG

Figure 3.32: The Eliashberg-Chekanov twist kngtsand Legendrian realizatioris,.
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Proof. Since the invariant(L,) of the Legendrian realizations, of the knotsE,
live in HFK(—S3, E,), and because of the correspondence

H/F\K(—SS, En) = H/F\K(S37E_n)7

whereE, denotes the mirror knot, we have to compute the grdti/E\K(Se',E_n). The
knots are all alternating. Therefore we will stick to Theark.3 of [37] for a convenient
computation of the groups. We compute the Alexander-Corpadynomial using its
skein relation and get

As(T)=(1—n)+ g(Tl LT,

To compute the signature of the kndfg, we use the formula given in Theorem 6.1
of [37] and see that all these knots have signatwf€,) = —n — 2. By Theorem
1.3 of [37], which describes the knot Floer homology grouparoalternating knot
in terms of the coefficients of the associated Alexanderv@ynpolynomial, the knot
Floer homology ofE,, looks like

Z7V2 = 1= -1+ =52
_ _ 711-n i:ojzif2
(<3 _ ’ ) 2
HFK;(S®, En, i) = 72 i—1j-1+ _n2_2
0, otherwise

According to [35], the Legendrian invarianﬁ(Ln) lives in I—|/F\I<M(|_n)(—S3, En, A(Ln))
where A(L,)) is the Alexander gradingof L, and M(L,)) is called Maslov grading
These gradings are computed using the formulas (see [35])

2-AlL,) = tb(Ly) —rot(Lp) +1
d3(§std) = ZA(Ln) - M(Ln)a
whereds denotes the Hopf-invariant (cf. [18]). However, note thahwhe conventions
used in Heegaard Floer theodg(£sig) = 0. With a straightforward computation we

see thatb(L,) = —4 androt(L,) = 1, which give the following Alexander gradings
and Maslov gradings

ALy = -1
MLy = -2

Consequently, we can show, by using the computed AlexanakiMaslov gradings,
that for every knotL,, n # 0, the invariantL(L,) is an element of a vanishing
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ARG

Figure 3.33: The Legendrian isotopy showing thatcan be destabilized.

subgroup oﬂ-l/ﬁ<(S3,E_n). To show the vanishing of (Lo) we observe thako can be
destabilized.

The isotopy is pictured in Figure 3.33. By Proposition 3.5(5{;) vanishes, too.
Using Proposition 3.4.1 the proposition follows. O

The following theorem is a new vanishing result of the coneement, which uses
the knot Floer homology for arbitrary knots. Furthermores make use of the fact
that in S? x S* there are homologically non-trivial knots whose assodi&ieot Floer
homology vanishes.

Theorem 3.5.4.Let (Y, &) be a contact manifold given as a contact surgery along a
Legendrian link in(S®, £siq). If the surgery diagram contains a configuration like given
in Figure 3.34, the contact elemenfYg &) vanishes.

K’ i i +1

K +1

Figure 3.34: Configuration in a surgery diagram ¥f{) killing the contact element.

Proof. We start looking at the knot Floer homology group of the p&ft x S, G)
whereG is a specific knot representing a generatoHa{S? x S1): Figure 3.35 is a
Heegaard diagram adapted to this specific KBo® straightforward calculation gives
HFK(S? x St,G) = 0. In Figure 3.36 we see a surgery diagranSdfx S with the
knot G in it. Returning to Figure 3.34, we can interpi¢t as an ordinary knot and
remove it from the surgery description. We obtain a contaamifold (Y'#S? x S, &)
andK’ is a Legendrian knot in it. A{1)-contact surgery alonff’ will yield (Y, ¢).
Furthermore, as a topological knd€/ can be written a¥&”#G whereK” c Y and
G C (S? x SY) is a knot representing a generator lf(S® x S'). Hence, we have
(cf. [27])

HFEK(Y'#(S? x S1),K’) = HFK(Y’,K”) ® HFK(S? x S%, G) = 0.
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oW
iby
B
Figure 3.35: Heegaard diagram adaptedto
@Y)

0

Figure 3.36: Surgery diagram 6f x S with knot G in it.

The same holds if we reverse the orientation on the manifélg. perform a ¢1)-
contact surgery along’ to obtain {Y, £). Denote byW the induced cobordism. By
Proposition 3.4.1 this induces a map

I_w: HFK(=Y'#S? x SY,K') — HF(-Y)

with c(Y, €) = I_w(£(K')). So, the contact element vanishes, sif¢g’) = 0. [

122



Chapter 4

Holomorphic Discs and Surgery
Exact Triangles

In this chapter we will refer to the sequences given in Car@b 3.2.2 and 3.2.6 as the
Dehn Twist sequencesThe second part of this thesis, i.e. this chapter, mairdy$es
on the relationship between the Dehn Twist sequences arslitgery exact triangle
in knot Floer homology (cf§2.6).

In this chapter we will begin proving that in the situationegi in§3.2 we can set up
an exact sequence by using maps defined by counting holoidrigmgles, i.e. with
the cobordism maps:

9, = Pl = Ry = 0.
=2 HFK(Y, K) —2% HF(Y_1(K)) —2— HFK(Yo(K), ) 2> ... (4.0.1)

Of course, this strongly resembles the surgery exact seguarknot Floer homology.
However, the mapl?{’,‘{,l and ﬁ\‘;vvz are defined slightly different than in the situation of
the knot Floer homology sugery exact sequence: the poitencoding the knot — is
used differently in the definition of these maps. Moreovathhis slight modification
we see, that the Sequence(d) stays in a strong relationship with the Dehn Twist
sequence front3.2: we get the following diagram where all triangles and dsox
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commute (cf. Theorem 4.1.6).

—_— f*
HEK(Yo(K), 1) —— ...

<7 l
o
',:\W /'fw add

2O ARK(Y, K) — AR(Y_1(K)) —2 e AFK(Y(K), 1) 2 .
‘ Ew ~l /
aBp

L AFK(Y, K)
As a consequence, the Dehn Twist sequences can be definezbivittent orientations
and refined with respect to Spistructures. Moreover, the connecting morphism
of the Dehn Twist sequence and the connecting morplisrit into the following
commutative square.

(4.0.2)

L HFK(Yo(K), 1)

lﬁvxl ﬁ‘\?/O(K)xl (403)
HFK(Y, K) —Z—+ HFK(Yo(K), 1)

HFK(Y, K)

By looking at the mapping cone proof of the surgery exact esege of Ozs&th and
Szald we see that (8.1) can be modified to give a surgery exact sequence wheie
replaced byﬁ\‘;vvs. In consequence, the image and kerneﬁa); and 9, coincide. The
composition law will show that this fact implies that the igesand kernel ot?\‘;(,s and

f, coincide. It follows immediately that the rank of the imagel&ernel ofﬁ{’,‘{,3 can
be computed combinatorially. Of cource, a more generalltresalready known by
work of Lipshitz, Manolescu and Wang (see [25]). Howeveg, ithlation we derived
provides a new proof of this fact — at least in the knot Floemblmgy case — and
gives rise to an alternative algorithm for the combinatac@mputation. As a matter
of fact the mapf, is defined by counting holomorphic discs in a suitable Heefjaa
diagram and this map carries information of the rﬁ#@ which is defined by counting
holomorphic triangles in a Heegaard triple diagram. Tottgeems that this fact makes
it interesting to study properties &f. In §4.2.1 we will discuss in what situations the
mapf, can be defined and study properties of them. These maps putfperties very
similar to the properties of the cobordism maps: they fit mtsurgery exact triangle
and preserve contact geometric information when induce@Hiy-contact surgeries.
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4.1 Surgery Exact Triangle and Dehn Twist Sequence

The shape of the Dehn Twist sequence strongly resemblesnthvwenksurgery exact
triangle in knot Floer homology (c§2.6). We will try to investigate and derive their
relationship.

Given an abstract open booR,(p), let & C P be a homologically essential, simple
closed curve. LetX, «, 3,2 be an induced Heegaard diagram such thattersects
(1 once, transversely and is disjoint from the otl¥ecircles. We define the following
sets of attaching circles

g = {8,....0)

5 = {g7ﬂl2luuﬂg}u

where 3] = DJ (1) and D} denotes a positive Dehn Twist alodg The 3/, i > 2,
are isotopic push-offs of thg; such thatg; and 3/ intersect in a cancelling pair of
intersection points. Furthermore, I6f, i > 2, be push-offs of the?/. As above,
the push-offs are chosen such that thé and 3 intersect in a cancelling pair of
intersection points. The cunveis given as a perturbation (cf. Figure 4.1) of the curve
0, like indicated in Figure 4.1.

Ze D, Ze D,
5 - -«
We / We /
or | o1
(© f 1, @ | f ty
— - TS 22 D
w0 e | e 7
I e o

Figure 4.1: The relevant attaching circles.
Using the defined attaching circles we may form a sequence

— I’:\W /= /F\W 1y = ~
CFK(Z, o, 8,z W) =25 CF(, o, 3, 2) =223 CFK(Z, v, 6,2, W). (4.1.1)
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In the following we will use the notatiofr for both the map induced by a Heegaard
triple on the homological level and the map induced on théncleael. Which one we
are referring to will always be clear from the context. Thpesscriptw indicates that
the map counts holomorphic triangles witf) = 0. Using the mapping cone proof of
Ozswath and Szab (cf. [42] or cf.§2.6), we can show that these fit into a surgery exact
triangle

HF(Y-1(€)
% % (4.1.2)
HFK(Y, K) = HFK(Yo(K), 1)

where Py, and R}, correspond to the mag&Y,, and ﬁgﬁ,g in sequence (4.1.1).
The mapﬁ{’,‘{,3 is the map on homology induced by the doubly-pointed tripéagyhm

(Z,a,g,ﬁ,w, 2) (cf. §2.6). We will focus our attention on the sequence (4.1.1) and
discuss the behavior of the mapgherein with methods similar to those used&2.

By abuse of notation, we will denote Wythe set of attaching circle§, 35, ..., 54},
too. The work done ir3.2 shows that we have a short exact sequence of chain
complexes

0 —— CFK(Z, o, B,zW) -+ CF(, o, #,2) 23 CFK(Z, a, 8,z W) — 0. (4.1.3)

The sequences (4.1.1) and (4.1.3) are designed to coiricilde middle term, namely
atCF(®, o, 4, 2).

‘ boundary ofP
1 - B2
,042
S m— z2 Dz
| o
e

J -

~—
N :
i -

Figure 4.2: Heegaard triple diagram definiﬁgﬁﬁ,.
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Lemma 4.1.1. The mapsF¥,,, and FY;,; respect the splitting ofF(E, o, 3, 2),
given in Proposition 3.2.1, i.e. given by the sequence3%.1.

Proof. We show that the claim is true for the mf@’ﬁﬁ/. We look at Figure 4.2
and try to show that there is no holomorphic triangle fromeagitintersection to an
ad-intersection (cf§3.2.1) that contributes B aBd -

R— ’2 D, ﬁiiﬁ/ Dz
SALEs| =AU

| gl Al e
D J _ ==

Figure 4.3: Here we can see t@ﬁﬁ, respects the splitting.

Let ¢ be a triangle that connects a pot T, N Tz with a pointy € T, N Ts C
T, NTg. The triangle connectsy with &) along its#’-boundary. In Figure 4.3 we
illustrate the two possible ways to do that. In both casesstHeoundary of¢ follows
the black arrow pictured there. We either cause a non-negatiersection number
ny (cf. left of Figure 4.3) or a non-negative intersection nemb, (cf. right part of
Figure 4.3). Thusny(¢) # 0 or n,(¢) # 0, which shows thap does not contribute to
ﬁ"a"m/. A similar line of arguments can be used to prove the Clain{:\fc;t%(;. O

It is a consequence of the last lemma that
Cw Cw o
Faﬁ/g (0] Fa,@,ﬁ” == 0

Using the given attaching circles, 3, B § andd we may introduce the map?s‘gﬁg

ndFY .
and add

Lemma 4.1.2. The diagram

CFK(E «, B,Z,W) ——— CF(Z a,,2)

ﬁ:ﬂﬁl v
CFK(Z, a, 3,2, W)

commutes where denotes the inclusion induced by a natural identificatiogerier-
ators.
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regions not use
by holomorphic

triangles
N z o 1 D,
T N I

f1

N
@

regions not used
by holomorphic
triangles

Figure 4.4: Comparing the boundary conditionsﬁg‘fﬁﬁ, and ﬁ‘gﬁg.

Let us denote byh the mapﬁgﬂﬁ, and byg the mapﬁ‘gﬁg. There is a canonical

inclusion N
L: CFK(Z,O&,ﬁ,Z,W) I CF(E,Oé,ﬁ,,Z, W)

induced by an identification of intersection points. Namehserve that

TaNTgy = ToNTgUT,NTs
= TaNTzUTaNTs

in caseﬁ isa suitaLbIe perturbation @f we will define ina moment. We defir& =G,
forall i > 2, andg; as indicated in Figure 4.4 (see also Figure 4.1). We woutstlik
show thath = . o g.

Definition 4.1.3. Let (X, a, 8, 2) be a Heegaad diagram and denotefhy. . . , Dy the
components o\ {a U #}. We say that a Whitney disg does not usea domainD;,
i € {1,...,k}, if the domainD; does not appear i?(¢), i.e. writing D(¢) as

k
D(¢) =) d D,
=1

the coefficientd; vanishes. We also say that the dom@aiy) does not useD;.

The main idea is to first prove that given intersectiong € T, N Tg, all positive
domainsD, i.e. all coefficients irD are greater than or equal to 0, connectirgndy,
with ny(D) = n(D) = 0, do not use certain componentsX¥{{aU 3} or X\{aUS}.
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Which domains are expected not to be used is indicated inr&igu4, the left part
illustrating the situation foh, the right part illustrating the situation f@. With this
information, we compare the boundary conditions of holgshar triangles forh and

g. The conclusion will be that, with it§’ -boundary, the holomorphic triangles counted
by h always stay insidel' s N 11‘5. And, with its B-boundary, holomorphic triangles
counted byg stay inside’Eg N Tg . Thus, we are able to identify the moduli spaces of
holomorphic triangles contributing o and g with arguments similar to those used in
the proof of Proposition 3.2.1.

Proof. Figure 4.4 shows the part of the Heegaard triple diagramsenthe boundary
conditions for the holomorphic triangles involved in théidigion of h andg differ. The
picture illustrates which regions are not used by holomiarpiangles that contribute
to h andg. This has to be shown in the following: We start our discussith the map
h and look at Figure 4.5. Each part of Figure 4.5 covers onesof#ises which we will
discuss in the following. The different parts of Figure 4Wew parts of the Heegaard
diagram pictured in the left of Figure 4.4. We focused on ¢éhoarts important to our
arguments. Denote by a holomorphic triangle that contributes o The domains,
which we want to show not to be used by will be denoted byDy , i = 1,2,3. In
each of these regions we fix a poit i = 1,2, 3. If ¢ uses one of the domairBy,,
the associated intersection numlogris non-zero.

B Interesting holomorphic
@ triangles

Figure 4.5: Here we see why,, i = 1,2, 3 have to be trivial.

Suppose the domai®(¢) has non-trivial intersection numbes, (cf. left part of
Figure 4.5). This means we generatg’aboundary pointing insidé®,,, as indicated
by the black arrow in the left part of Figure 4.5. Consequemt|, has to be non-zero.

Suppose the domaif(¢) has non-trivial intersection numbey, (cf. middle part of
Figure 4.5). As we can see from the middle part of Figure 4yS¢bowing the black

129



arrow), this forcesn, to be non-zero, since we generatg’aboundary that has to run
to ©.

Suppose the domai®(¢) has non-trivial intersection numbesx, (cf. right part of
Figure 4.5). This generates#-boundary emanating fro®. Sincen, vanishes, the
boundary has to run once alopy. But thenn,, is non-zero, as indicated by the black
arrow.

This shows that every holomorphic triangle that contributeh has trivial intersection
numberny, i = 1,2, 3.

Interesting holomorphic
Oéi iﬁ’ﬁ triangles
3 ©

A E.Z B C.Z
L |22

oW oW
ey B e, & B e
Figure 4.6: Here we see why, i = 1,2 have to be trivial.

We continue arguing that holomorphic triangles contribgitio g, cannot use the
domains indicated in the right part of Figure 4.4. lgete a holomorphic triangle
contributing tog. Analogous to the discussion done forwe denote the regions not
expected to be used by with Dy, i = 1,2. In each of the domains we fix a poixt
We want to show thaty, to be non-zero implies,, # 0 or n, # 0. The different parts
of Figure 4.6 show parts of the Heegaard diagram pictureldeatight of Figure 4.4.

Suppose the domai®(¢) has non-trivial intersection numbes, (cf. left part of
Figure 4.6). Sincen, = 0, we generate @&-boundary pointing insideD,, as it is
indicated in the left part of Figure 4.6 (the boundary foltotie black arrow). We see
thatn, # 0.

Suppose the domai®(¢) has non-trivial intersection numbes, (cf. right part of
Figure 4.6). Sincen, = 0, we generate &@-boundary pointing insidé,, (cf. right
part of Figure 4.6) forcingy, to be non-zero.

Thus, using arguments that are similar to those applied anptivof of Proposition
3.2.1, we can identify the moduli spaces of holomorphiaglas that contribute th
andg. O
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Lemma 4.1.4. The diagram
CFK(Z, a, 6,2 W)
< ~
/F\W Fa(SS
a:(z> «, ﬁ/a Z) ﬂ' C/F\K(Zv «, g? 27 W)

commutes where is the projection induced by a natural identification of gexters.

Proof. The proof is analogous to the proof of Lemma 4.1.2. Analogouswe can
define the projectionr by identifying

T,.NTg = T,NTgUT,NTs
B B
= TaﬁTﬁuTaﬁTg,

i.e. by identifying T, N T; with T, N T5. This induces a projection between the
respective chain modules.

regions not used by holomorphic triangles

o

- o regions not used "~
by holomorphic
triangles

Figure 4.7: Comparing the boundary conditionsl?(‘g‘fﬁ,g and ﬁ"a"ag.

In the following we will denote byh the mapﬁ"a"ﬁlg and byg the mapﬁ"a"ag. This time,

we would like to show thah = go 7. Figure 4.7 indicates which domains are not used
by holomorphic triangles (in the sense of Definition 4.1t@ttcontribute tag and h.
This has to be shown in the following discussion. Observedheh part of Figure 4.8
shows a part of the Heegaard diagrams pictured in FigureEach of these portions
will be relevant in one of the cases we will have to investgdthere are two domains
not to be used by holomorphic triangles contributinggt¢ct. left part of Figure 4.7).
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In each of these domains we fix a poitand denote the associated domainZy,

i = 1,2 (cf. left and middle part of Figure 4.8). There is one domshto be used
by triangles contributing td (cf. right part of Figure 4.7). We fix a point; in this

domain and denote the associated domairDRy (cf. right of Figure 4.8). Let be a
holomorphic triangle that contributes ¢p

Suppose the domaiP(¢) has non-trivial intersectiony, (cf. left part of Figure 4.8).
This generates & -boundary like indicated by the black arrow in the left pomtiof
Figure 4.8. This boundary cannot be killed, i.e. cannot lerjmeted as sitting in
the interior of D(¢), sincen,, = 0. This 3’ -boundary, thus, has to emanate frén
forcing it to follow the black arrow like indicated. Thus; is non-zero.

Suppose the domaiR(¢) has non-trivial intersectiony, (cf. middle part of Figure 4.8).
We create g3’'-boundary like indicated by the black arrow in the middletjmor of
Figure 4.8. This boundary points towarés But recall that the3’-boundary of¢

has to emanate fror®, as can be seen by looking at the triangle pictured at theftop o
the left and middle part of Figure 4.8. Thus, we have to géaexg’ -boundary going
along 3’ once, completely. But this implies, to be non-zero.

Now suppose that is a holomorphic triangle that contributes ¢p Assume the
domainD(¢) has non-trivial intersectiom, (cf. right part of Figure 4.8). This time
we generatg—boundary like indicated by the black arrow in the right pmrtof Figure
4.8. This boundary cannot be killed, sinog = 0. This boundary has to emanate
from © as can be seen by looking at the triangle pictured at the ttipeafight part of
Figure 4.8. But this is impossible, sinog = 0.

We have seen that holomorphic triangles, that contribute ¢o g, do not use the do-
mains indicated in Figure 4.7. Again, using arguments ttesanilar to those applied
in the proof of Proposition 3.2.1, we can identify the modigaces of holomorphic
triangles that contribute tb andg. This shows thah = go . O

From Lemma 4.1.2 and Lemma 4.1.4 we see that (4.1.1) is a skact sequence of
chain complexes (since (4.1.3) is) and, thus, it inducesi@ éxact sequence

HF(Y_1(K)) _

Y Ay
y X (4.1.4)

HFK(Y, K) HFK(Yo(K), 1)

8*
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Interesting holomorphic

a ﬁf triangles

e T

- i”‘ Ze P iN Ze

x )’ )k
e I e
Yy a1l N a1

;): —; ;): —;

o/ ATy o/ Yy

Figure 4.8: Here we see why, i = 1,2 have to be trivial fof and whyny, has to

be trivial for g.

between the homologies. When comparing with the sequent£2)j4we immediately
see that R
mEY) = im(.)
kerFy,) = ker(@.)
Moreover, putting together both Lemma 4.1.2 and Lemma 4wedderive a strong
relationship between the sequences (4.1.1) and (4.1.3).

(4.1.5)

Theorem 4.1.5. All triangles and boxes in the following diagram commute.

— f*
HFK(Yo(K), 11) —— ...

<%
iy
-~ ~ add
8* T F\‘?’V]_ - \‘?’Vz Ty 8*
2% AFK(Y, K) — AR(Y_1(K)) 2 HFR(Yo(K), 1) 2> .| (4.1.6)

‘ i:\W ~l
aBp
LM ARK(Y, K)

/

Proof. We puttogether Lemma4.1.2and Lemma4.1.4to gettwo shacterquences
of chain complexes that are related like claimed, i.e. weshav

CFK(Z, a, 6,z W) —— 0

"‘ -,
e Ew nggl
0—> (:/F\K(ELO[,ﬂ,Z,W) —QBBL (/:T:(Z,O[,/8/72) ﬂ’ (:/I:\K(E7Oé7g,Z,W) - O
Ew Nl v
afpp

0 —— CFK(Z, o, 3, 2, W)

133



To identify the diagonal sequence, i.e. the sequence
0 —— CFK(Z, o, 3,2zW) — CF(Z, a, 8,2 —— CFK(Z,a,8,ZW) — 0

with the Dehn Twist sequence given in Corollary 3.2.2, wedmisotopeﬁl a bit.
Observe thah; does not match with the situation given in Corollary 3.2.2vith the
situation given in Proposition 3.2.1 (cf. Figure 4.1 andpheof of Proposition 3.2.1).
The isotopy, however, is supported withih U D,,. Furthermore, recall that an isotopy
not generating/cancelling intersection points, acts erttbegaard Floer homology as
a perturbation7s; of the path of almost complex structuregg (cf. §2.3.3) used in
the definition of the Heegaard Floer homologies. We haveddlsa the induced map
7., (cf. §2.3.2 and;2.3.3) is the identity on the chain level: In the definitibn,, we
count 0-dimensional components of holomorphic discs wjtk= n, = 0. The family
Jst coincides with7s o outside of a set, which is contained iBAUDy) x Synf~1(%),
since the isotopy perturbin§1 is supported inD, U Dy,. Thus, forx,y € T, N Tg,
we have an identification

p=0

(/Vljs,t (x y)) :::0 (4.1.7)

= (Maxy)

nz:nW:O’

where the notation should indicate that we are interestetbituli spaces with Maslov
index 0 and whose elements satisfy= n,, = 0. The moduli space on the right of
Equation (4.1.7), in the following denoted by1, is empty unlesx = y: Suppose
there is a holomorphic Whitney dist connectingx with y. Assumingx andy are
not equal, the dis@ is non-constant. So, because of the translation actio§cf.2)
the disc¢ comes in a 1-dimensional family. Thug,cannot be an element o¥1. If

x andy are the same point, the moduli spa¢é contains the constant holomorphic
disc. But it does not contain non-constant holomorphicsilsg the same reasoning
done forx #vy.

Consequently, the maﬁj&t is the identity on the chain level. We know frog@.3.2
that the mapd 7, is a chain map, i.e. we have

0=, 0B, — Do 0Dy = Dy — D
Thus, the signed count of holomorphic discs with Maslov in@lén both
(fF\K(Z,a,ﬁ,z,w) and (ﬁ:\K(Z,a,B,z,W)
equals for each homotopy class admitting holomorphic spr&tives. Thus, we may

replace the map with T';. The mapr already equal$’s. O
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Corollary 4.1.6. The following equalities hold

im(Fy,) = im(.)
kerFy,) = ker(.),

where f is the map defined in Corollary 3.2.3.

Proof. Consider the commutative diagram

HFK(Y, K) —— HFK(Yo(K), 12)
l@lxl ﬁ%(K)m (4-1-8)
HFK(Y, K) —%—+ HFK(Yo(K), 1)

which is the square from sequence (4.1.6) and which comnadesrding to Theo-
rem 4.1.5. Note that the vertical maps are induced by thiesrip33 and add, which
can be associated to the trivial cobordisihs | andYp(K) x I. As we have observed
in (4.1.5), the kernel and the image E}f{,s coincide with the kernel and image 6f .
Thus, we may Writelf{’,"\,3 instead ofo, at the lower arrow. Doing so, the box does
not commute anymore but the compositiorl?c\‘%3 with the vertical maps yields a map
whose kernel and image coincides with the kernel and imafie &y the composition
law of the maps induced by cobordisms the composition isegaiap associated to a
cobordism. Denote this cobordism Y. The following square indicates the situation.

HFK(Y, K) —— HFK(Yo(K), )
w
|Fr. o @19
HFK(Y, K) —— HFK(Yo(K), 1)
W3

Using the composition law we get

Fiv = F¥xr o Fs © Fyoaoxi = Fysiowovem)xt = Fig
giving the desired result. O
So, basically, instead of counting holomorphic triangles, can count holomorphic
discs to gain information about the m&},,. Especially, given that>, o, 3',2) is a

nice Heegaard diagram (in the sense of Sarkar and Wang, see [47] Definition
2.1.28). In this case the mdpcan be computed combinatorially. In this way we get
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an algorithm to combinatorially compute the rank of the kekand the image oI/F\\‘;V\,s.
Note that Lipshitz, Manolescu and Wang in [25] determine lgori¢hm to do that
for cobordism maps in the hat-theory in caseZpfcoefficients. Their result is more
general than ours, however, in case of knot Floer homolog&are able to present a
different algorithm.

Corollary 4.1.7 ([25]). The rank of the kernel and image 35(,3 can be computed
combinatorially.

Proof. To compute the ranks it suffices to compute the ranks of theck@nd image
of f, combinatorially. Recall that, is part of the boundar@aﬁ/. It remains to show
that there is a nice Heegaard diagram (cf. Definition 2.1lii@®)ced by an open book
decomposition and which is adapted to the setup used to défngequences given
in Corollaries 3.2.2 and 3.2.6. In [45] Plamenevskaya shihas the Sarkar-Wang
algorithm (see [47]) can be modified to apply for open bookguly using isotopies
of the monodromy. This means that a given open bdekp] can be modified to
an isotopic open bookP( ¢’) such that the associated Heegaard diagram is nice. To
give some more details: Start with an open boBk¢) and choose a cut system to
define an associated Heegaard diagraimo( 5). Use finger moves (see [47]) of the
B-curves inside the page x {1} to obtain a nice Heegaard diagram (cf. Definition
2.1.28). These finger moves add up to give an isotopgf the pageP. This isotopy,
by construction, is the identity near the bound&yThe resulting diagram is adapted
to the curveps(9). O

The following corollary is an immediate consequence of Tapp4.1.5. We will not
outline the proof, since the construction is lengthy buigtitforward. The horizontal
part of the sequence given in Theorem 4.1.5 can be definectalirent orientations,
and it refines with respect to Spistructures (in the sense of [40]). The diagonal part,
i.e. the Dehn Twist sequence, commutes with the horizoragl po, we can use the
refinements and the coherent orientations on the horizpatato generate refinements
and coherent orientations on the Dehn Twist sequence.

Corollary 4.1.8. The Dehn Twist sequences, i.e. the sequences given in &eroll

ies 3.2.2 and 3.2.6, can be defined with coherent orientatioRurthermore, these
sequences refine with respect3pirf-structures. O

136



4.2 Chain Maps and Holomorphic Discs

The last paragraph enlightened a connection between oguméilomorphic triangles

in doubly-pointed Heegaard triple diagrams and countidgrhorphic discs in doubly-
pointed Heegaard diagrams. This connection gave rise tdtemmative algorithm to
compute ranks of cobordism maps combinatorially. We witif® our attention on the
mapsf, as defined in Corollary 3.2.3, and try to answer the foll@\guestions: Is it
possible to give a definition df in general situations? What properties do these maps
have?

4.2.1 General Definition

To give a general definition of the mépsuppose we are given a paif, K) whereY is
a 3-manifold andK C Y a knot. Let &, «, 8, 2) be a subordinate Heegaard diagram,
i.e. we write

T =%
such thatk is the core of the first torus component, i.e.T&f. We apply the notation
from Proposition 3.2.1. Let be a meridian off2 and define3; as A + n- u where
A+ n- pu represents the surgery framing 6t The left part of Figure 4.9 illustrates
the situation:

I B

Figure 4.9: Heegaard diagrams suitable for defirfing

The diagram X, «, 0, W, 2) represents the paily(K) and ¢, «, B, w, 2) represents the
surgered manifoldYy, and in it, a knotuf. These two diagrams fit into an exact
triangle (cf. Corollary 3.2.2)

HFK(S, o, 6,2, W) ——— HFK(Z, o, 3,2, W)

X / (4.2.1)

HF(, o, 4, 2)
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whereg' is defined by applying t@; a positive Dehn Twist alond. With Proposition
3.2.1 the sequence is defined (analogous to the sequencemi@erollary 3.2.2) and
by Corollary 3.2.3 we get a definition défwithin (4.2.1). Namely, forx € T, N Ty

we define .
fa&,W(X) = Z Z #M¢> Y,

YT o rﬂl‘g peH*(X,y,1)

whereH(x,y, 1) C wg‘ﬁ/(x, y) are the homotopy classes with Maslov index 1 and such
that the pair 16.(¢), n.«(¢)) does not equal (@). As defined in Corollary 3.2.3, we
denote bng”ﬁ the Whitney discs associated to the diagramd(, 3’,2). We define

f* = (faé,w)* .

Proposition 4.2.1. Let K’ be a push-off of K (with respect to its framing) in Y. The
knot 1% is the knot K interpreted as sitting in .

Y
HK
n

n
K’ K K’ K K’ K
n n
Slide - W isotopy
H

Hx
Figure 4.10: Determining the kngt}

>

Proof. The manifoldYk is given by

Y« = Y\(StxD? u, S!xD?
N-p+XA  «— o
—H — Ao

where ) is the longitude determining the framing given by the tubuleighborhood
of K, uo is a meridian and\o the standard longitude & x D?. The knot £ is
determined via the paiwy 2) in the diagram X, «, B). By definition of the pair\, 2),
the induced knot, i.q&, intersects the co-core of the 2-handle determinel lonce,
transversely and is disjoint from all other 2-handles. Hgrnn the decomposition
above, the curve:} equals the longitude. The gluing map sends the curyg to a
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meridian of K. Hence, the situation described in the left part of Figud®applies.
Sliding % over the 2-handle determined By(cf. Figure 4.10), we see that Ik the
knot 1% is isotopic to a push-off oK that determines the surgery framing kn [

Thus, we obtain a map
f.: HFK(Y,K) — HFK(Yk, ).

Theorem 4.2.2. The map f does not depend on the choices made in its definition. It
just depends on the cobordism induced by the surgery along K.

Proof. This immediately follows from the invariance propertiesided in§3.3). O

4.2.2 Properties

Given a 3-manifold and a knd€ C Y with framing n, let us do surgery along with
its specified framing and denote B; the induced cobordism. With the discussion
done in paragrapk4.2.1, we can associate to the cobordidima map

fu, 1 HFK(Y, K) — HFK(YR, K’),

whereK’ = 1% is a meridian ofK in Y interpreted as sitting iy . We continue to
form a surgery exact triangle (6f2.6), i.e. we do {1)-surgery along<’, and denote
its induced cobordism bW,. We obtain a map

fw, 1 HFK(YR, K') — HFK(YZ K"),

whereK” = ul@ . Interpreted as sitting ilY, the knotK” is a meridian oK', and it is
not linked withK. Surgery alondK” with framing (—1) yields the manifoldy, again.
Denote the associated cobordism\y.

Theorem 4.2.3.The maps\, i = 1,...,3, fit into the following surgery exact
sequence

T= fwy ET=a VI

HFK(Y, K) HFK(Yk, K’)

% lo (4.2.2)

HFK (Y2, K")
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=]

n+1 n+1

A
A
A

K///

7 Rolfsen twist T handle slide slam dunk
Q K//I—> K//I—> K//I

-1

Figure 4.11: Determining the type &f”.

Proof. First of all we have to see th&t” = ul@fl is isotopic toK in Y. The left part

of Figure 4.11 pictures the kn&t”” in the surgery diagram of induced by the surgery
triangle. With a Rolfsen twist, a handle slide¥f’ over K and a slam dunk we show
that K" is a copy ofK. Thus,fw, is, indeed, a map as indicated in (4.2.2). It remains
to show exactness of the sequence, given in the theoremelprésent situation we
intend to show that the cobordisitg, i = 1,...,3, induce an exact triangle

— FW1

HFK(Y, K) HFK (YR, K')

% % (4.2.3)

HFK (Y2, K")

To do that, we have to see that the cobordisms fit topologidatb a surgery exact
triangle (cf.§2.6). This is done in Figure 4.12. The left portion shows tleves done
to produce sequence.@42). We start with a pairY, K) and topologically do a surgery
alongK with framing n. Comparing this move with the corresponding move pictured
in the right part of Figure 4.12, we see that both are equivaéer a handle slide, as
indicated in the picture. Following the second and the tamww in the left portion
of Figure 4.12, we perform the same recipe, i.e. we compaife thve right portion of
Figure 4.12 and detect equality after a suitable handle skince we are in a suitable
topological situation, with a straightforward adaptiortlud proof of the surgery exact
triangle in knot Floer homology given by Ozth and Szal, we see that (4.2.3) is,
indeed, an exact sequence. Using Corollary 4.1.6 (espebBi@gram (4.1.9)) at each
arrow of the sequence (4.2.3), we can replace the rigpswith fy, i = 1,...,3,
without affecting exactness. Thus, we get (4.2.2). O
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K n K n K’ n
Y —— oKy — oK
n n n
D ke CIDOK D K
1o
|

Figure 4.12: The left portion determines the topologicalvesdone to produce the
triangle, given in (£.2). The right portion those moves done to produce.®.

Theorem 4.2.4.Let (Y, &) be a contact manifold, kZ Y a Legendrian knot and let W
be the cobordism induced by(a1)-contact surgery along L. Then the map

f_w: HFK(-Y,L) — HFK(-Y;", L")

preserves the contact geometric information, f.ay(£(L)) = L(L'). Here U is a
push-off of L in Y interpreted inY.

Proof. The top row and the bottom row of Figure 4.13 illustrate tteagion for both
possible orientations df. Choose an open book decompositiéh ) adapted to the
contact structuré such that_ sits on a page of the open book with the contact framing
coinciding with the page framing. We may choose a cut systesuch a way that
intersects the firsg-circle once and is disjoint from the othgrcircles. Thes-circle,
having a non-trivial intersection with, should be denoted by. We obtain a set of
attaching circles

5:{5755-":69}-

This set of attaching circles can be used to define the Heggliagram £, «, 9, 2).
We include an additional poin such that the pairz(w) determined. as an oriented
knot. The left column of Figure 4.13 illustrates both pos#iés, i.e. the positioning
for both potential orientations oh. We define3; to be the curve, obtained after
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A1

B
Wab a1

.M }JAZ

fbinding of the open book . binding of the open book

|

L
—
—

' binding of the open book ' binding of the open book

Figure 4.13: The top row and bottom row illustrate the sitret for both orientations
on the Legendrian knot.

applying toé a negative Dehn Twist alonlg. We obtain a third set of attaching circles

/8 = {ﬂluﬂZw .. 7&9}'

Observe that the cobordishV given by the triple £, «, 9, ) is induced by a-1)-
contact surgery alond.. Furthermore, observe that the da®, &, 5,w,2) and the
curved C X are suitable for applying Proposition 3.2.1. We get an ezaqtience as
given in Corollaries 3.2.2 and 3.2.6. The induced conngatiorphism is denoted by

f_w: HFK(=Y,L) — HFK(-Y{, L"),

whereL’ is a push-off ofL interpreted as sitting in-Y,". The mapf_ is induced by
the mapf,z . (see Corollary 3.2.3) which is defined ferc T, N Ts by

faﬁ,w(x) = Z Z #M\(i) Y,

YETaNT5 pEH(XY,1)

whereH(x,y, 1) C wg‘ﬁ/ (%, y) are the homotopy classes of Whitney discsindg, 3’, 2)
with 1 = 1 and (.(¢), n.(¢)) # (0,0). Hence, the right column of Figure 4.13 ap-
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plies. There are specific intersectiors € o; N G, i > 2, such that the point
{a,%2,...,%g} represents the Legendrian knot mvanaﬂﬁt) in HFK( Y, L) and such
that {b,xo,...,xg} represents the knot invarianf(L’) in HFK(— Y+,L’) (cf. Fig-
ure 4.13). There is only one holomorphic digcconnecting{a,xz,...,Xy} and
{b,x2,...,%g}. This disc satisfies,(¢) = 1, and ,hence, it appears in the definition
of f,sw. The positions of the points and z circumvent the existence of any other
holomorphic disc emanating frofm, xo, ..., Xg}. Thus, we see that

fa,@,W({av X27 e 7Xg}) - {b7 X27 e 7Xg}

completing the proof. O
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