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ABSTRACT 

   

Abstract 

Fibrotic processes in chronic kidney diseases are the leading cause of renal failure. 

Hepatocyte growth factor (HGF), effecting organ restructuring by its mitogenic, motogenic, 

morphogenic and anti-apoptotic activities, is one of the central mediators involved in tubular 

repair and regeneration after acute renal injury. In addition, HGF acts as an anti-inflammatory 

and anti-fibrotic factor antagonizing pro-fibrotic actions of transforming growth factor β 

(TGFβ). However, the molecular and cellular mechanisms underlying the anti-fibrotic function 

of HGF in chronic kidney disease are not well understood. Therefore, in the present study 

HGF signaling and HGF induced expression profiles were studied in renal interstitial 

fibroblasts that represent a central cell type in tubulointerstitial fibrosis due to their prominent 

production of extracellular matrix proteins. Furthermore, gene therapeutical HGF application 

using different serotypes of the adeno-associated viral vector (AAV), namely AAV2, AAV8 

and AAV9, was tested in order to treat tubulointerstitial fibrosis in a COL4A3 knockout mouse 

model. 

Analyses of HGF signaling demonstrated that in agreement to signaling in epithelial cells 

HGF stimulation results in the activation of the Erk1/2 and the Akt pathway. However, the 

Stat3 signal transducer was not phosphorylated. Smad2/3 phosphorylation in response to 

Erk1/2 activation in HGF stimulated fibroblasts supports previous data showing the 

antagonistic interaction of the HGF- and TGFβ-signaling. A comprehensive expression 

profiling of HGF-stimulated renal fibroblasts by microarray hybridisation could further define 

the anti-fibrotic signals mediated by HGF. Functional cluster analyses and quantitative PCR 

assays indicated that the HGF-stimulated pathways transfer the anti-fibrotic effects in renal 

interstitial fibroblasts by reducing expression of extracellular matrix proteins, various 

chemokines, and members of the CCN family. Interruption of the HGF signaling via the Akt 

pathway or support of the HGF signaling via the Erk1/2 pathway by RNA interference, using 

Akt-siRNA or Smad4-siRNA, proved that not only Erk1/2 activation but also Akt activation is 

responsible for  anti-fibrotic signal transduction by HGF. These data clearly point out that the 

Akt signaling upon HGF stimulation acts as an auxiliary pathway in the anti-fibrotic function of 

HGF. 

In order to apply the anti-fibrotic effect of HGF to chronic kidney diseases, a gene 

therapeutical system was established, intended to reduce renal interstitial fibrosis by the use 

of HGF as transgene and the adeno-associated viral vector (AAV) as gene vehicle. 

COL4A3 knockout mice mimicking the human Alport syndrome served as model system for 

renal tubulointerstitial fibrosis. Different natural occurring AAV serotypes, namely AAV2, 

AAV8 and AAV9, were studied with regard to their capability to target renal epithelial cells 

compared to liver parenchyma. Furthermore, a mammalian promoter construct was 



ABSTRACT 

generated that restricted transgene expression to the kidney and the liver for a combined 

endocrine and paracrine expression of HGF. 

Systemic application of AAV8 and AAV9 carrying HGF as transgene resulted in high serum 

levels of HGF in COL4A3 knockout mice, however, AAV9 achieved the highest HGF 

expression in both the liver and the kidney. HGF serum levels were associated with 

pronounced repression of fibrotic markers such as collagen1A1, PDGF receptor β, and  

α-smooth-muscle actin. In addition, AAV mediated HGF expression resulted a remarkable 

reduction in the severity of fibrosis. 

In conclusion, HGF is a promising anti-fibrotic agent for the treatment of chronic kidney 

diseases. Additionally, this study established a proof-of-concept of AAV-based therapy as a 

promising vector platform to treat chronic kidney diseases. 
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Zusammenfassung 

Fibrotische Prozesse spielen bei chronischen Nierenerkrankungen eine entscheidende Rolle, 

da sie die Hauptursache für das terminale Nierenversagen darstellen. Ein wichtiger 

Wachstumsfaktor in diesem Prozess ist HGF (hepatocyte growth factor). HGF beeinflußt die 

Organ-Umstrukturierung sowohl durch seine mitogenen, motogenen, morphogenen sowie 

anti-apoptotischen Eigenschaften. Er ist ein zentraler Regenerationsfaktor des 

Tubulusepithels nach akuter Nierenschädigung. Darüber hinaus weist HGF auch anti-

inflammatorische sowie anti-fibrogene Eigenschaften auf, indem er dem pro-fibrogenen 

Faktor transforming growth factor beta (TGFβ) entgegenwirkt. Allerdings sind die 

molekularen und zellulären Mechanismen, die den anti-fibrogenen Eigenschaften von HGF 

zu Grunde liegen, noch nicht vollständig untersucht. Aufgrund dessen wurden in dieser 

Arbeit die Signaltransduktion von HGF sowie die durch HGF induzierten Expressionsprofile 

in interstitiellen Nierenfibroblasten analysiert. Dieser Zelltyp spielt in der interstitiellen Fibrose 

eine entscheidende Rolle, da er für die ausgeprägte Produktion von extrazellulären 

Matrixproteinen hauptverantwortlich ist. Des Weiteren stellt diese Arbeit einen 

gentherapeutischen Ansatz für die Applikation von HGF mittels adeno-assoziierter viraler 

Vektoren (AAV) dar. Dafür wurden verschiedene Serotypen des AAV (AAV2, AAV8 und 

AAV9) hinsichtlich ihrer Fähigkeit untersucht, als Genvehikel für die Behandlung von 

tubulointerstitieller Fibrose in einem Mausmodell (COL4A3) eingesetzt zu werden. 

Die Analysen auf Ebene der Signaltransduktion von HGF in interstitiellen Nierenfibroblasten 

zeigten in Übereinstimmung mit Untersuchungen in epithelialen Zellen eine Aktivierung des 

Erk1/2 und des Akt Signalweges, wohingegen Stat3 unbeeinflußt von HGF blieb. Die durch 

Erk1/2 hervorgerufene Phosphorylierung von Smad2/3 in HGF stimulierten Fibroblasten 

bestätigt frühere Daten, welche die antagonistische Wirkung von HGF auf die Interaktion mit 

dem TGFβ Signalweg zurückführen. Umfassende Expressionsanalysen der HGF stimulierten 

Nierenfibroblasten mittels Microarray Hybridisierung konnten darüber hinaus die anti-

fibrogenen Signale von HGF weiter verifizieren. Funktionelle Cluster-Analysen sowie 

quantitative PCR Assays deuten darauf hin, daß in interstitiellen Nierenfibroblasten die anti-

fibrogenen Effekte von HGF auf einer verminderten Expression von extrazellulären 

Matrixproteinen, Chemokinen und extrazellulärer Matrix-assoziierten Proteinen (CCN-

Familie) beruht. Die Blockade der HGF Signaltransduktion über den Akt-Weg bzw. die 

Verstärkung der HGF Signaltransduktion über den Erk1/2 Weg mittels RNA Interferenz (Akt-

siRNA bzw. Smad4-siRNA) konnte darüber hinaus zeigen, daß die anti-fibrogenen Signale 

von HGF nicht nur über den Erk1/2 Weg und der damit einhergehenden Interaktion mit 

Smad2/3 vermittelt werden. Auch die Signaltranduktion über den Akt-Weg spielt eine 

entscheidende Rolle, womit diese Daten deutlich zeigen, daß die HGF-stimulierte Akt-

Signalkaskade einen zusätzlichen Weg in der anti-fibrogenen Antwort von HGF einnimmt. 



ZUSAMMENFASSUNG 

Um die anti-fibrogenen Eigenschaften von HGF ebenfalls in vivo auf chronische 

Nierenerkrankungen zu übertragen, wurde ein gentherapeutisches System etabliert, welches 

die interstitielle Nierenfibrose vermindern sollte. Hierfür wurden verschiedene Serotypen des 

adeno-assoziierten viralen Vektors (AAV) als Vehikel für den Gentransfer von HGF 

eingesetzt. Das COL4A3 knockout Mausmodell diente hierfür als in vivo Modell, welches das 

humane Alportsyndrom widerspiegelt und eine interstitielle Nierenfibrose entwickelt. Drei 

natürlich vorkommende Serotypen des AAV, AAV2, AAV8 und AAV9, wurden hinsichtlich 

ihrer Transduzierbarkeit von Nierenepithelzellen sowie Leberparenchymzellen untersucht. 

Des Weiteren wurde ein Promotorkonstrukt generiert, welches die Expression des 

Transgens auf die Niere und die Leber begrenzt um eine endokrine sowie parakrine 

Expression von HGF zu gewährleisten. 

Sowohl der Gentransfer von HGF mittels AAV8 als auch AAV9 führte zu einem starken 

Anstieg der HGF Serumlevel in COL4A3 knockout Mäusen, wobei die Transduktion mit 

AAV9 die höchste HGF Expression erzielte. Die erhöhten HGF Serumlevel korrelierten mit 

einer verringerten Expression fibrotischer Marker wie Collagen1A1, PDGF Rezeptor beta 

sowie alpha smooth muscle actin. Darüber hinaus zeigten Mäuse mit erhöhter HGF 

Expression auch histologisch eine deutlich verringerte Ablagerung extrazellulärer Matrix und 

somit eine deutlich verminderte Fibrose. 

Zuammenfassend zeigt diese Studie, daß HGF ein vielversprechender anti-fibrogener 

Wachstumsfaktor für die Behandlung chronischer Nierenerkrankungen darstellt. Des 

Weiteren scheint der AAV9 Vektor ein vielversprechender viraler Vektor für den intravenösen 

Gentransfer zu sein, der eine stabile Langzeit-Expression ermöglicht. 
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1.  Introduction 

1.1 Renal failure 
Terminal renal failure is a life-threatening disease pattern only controllable by chronic dialysis 

or renal transplantation. The incidence is the result of acute or chronic disease processes 

and based on hereditary dysplasia or dysfunction of the kidney, respectively. In the last 

decade prevalence and incidence of chronic renal failure in Western Europe and USA 

continuously accelerated with more than 150.000 new cases per year in USA, predominantly 

driven by the rise of obesity, hypertension and diabetes in ageing Western populations [1, 2]. 

The overall rate of new cases due to diabetes was 50 % higher than a decade ago. Also the 

cases due to hypertension increased about 48 % compared to 1996. The incidence rate for 

dialysis in the USA accounted for 352 people per million populations (USRDS, 2008). 

Patients suffering chronic renal failure thereby require the highest expense per capita health 

care costs at all. 

Among different renal lesions, linked to proteinuria due to dysfunction in glomerular filtration, 

diabetic nephropathy is the major reason of renal failure. Hyperfiltration and proteinuria lead 

to thickening of the glomerular basement membrane and inflammatory alterations, followed 

by tubulointerstitial fibrosis, which in turn is associated with extracellular matrix accumulation, 

inflammatory cell infiltration and myofibroblastic precursor transdifferentiation and 

proliferation in the tubulointerstitium [3-5]. 
 
 

1.1.2 Interstitial fibrosis 

The progressive loss of renal function is both associated with development of 

glomerulosclerosis and interstitial fibrosis [6]. In general, fibrosis is the end result of chronic 

inflammation induced by a variety of stimuli including persistent infections, autoimmune 

reactions, toxins, allergic responses, radiation, and tissue injury [7]. The formation of renal 

interstitial fibrosis is basically a multifunctional event that can be separated in four phases [8-

10]: (1) cellular activation and injury, (2) transmission of fibrogenic signals, (3) formation of 

fibrosis, and finally (4) destruction of the kidney. In the first step renal tubules become 

activated and an interstitial infiltration of monocytes/macrophages and T-cells occurs. In the 

second step these cells release soluble factors like several growth factors and cytokines with 

pro-fibrotic effects (e.g. transforming growth factor beta (TGFβ), connective tissue growth 

factor (CTGF), angiotensin II and endothelin-1). The third step includes the fibrogenic phase. 

Histological this incident is characterized by an accumulation of extracellular matrix in the 

interstitium. In the fourth and last phase the tubules and peritubular capillaries are destructed 

and the glomerular filtration is reduced caused by progressively declining nephrons. 
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The central cell types of fibrosis are the myofibroblastic cells that are regarded as contractile 

intermediates of fibroblasts and smooth muscle cells. Their origin, however, can vary 

between various cell types in different organs [7, 11]. Thus, during renal tubulointerstitial 

fibrosis myofibroblasts originate mainly from interstitial fibroblasts and even from tubular 

epithelial cells, although to a much lesser extent. The transformation of epithelial cells into 

myofibroblasts is characterized by the gradual loss of the morphological and functional 

integrity of the tubular epithelium, cytoskeletal alterations and the deposition of extracellular 

matrix (ECM) and is summarized as epithelial-to-mesenchymal transition (EMT) [12]. 

On molecular level the process of renal fibrosis is based on the accumulation of extracellular 

matrix proteins. These accumulation can be attributed to [13]: 

 

1. increased production of extracellular matrix proteins (e.g. fibronectin, 

proteoglycanes, collagen I, III, IV, laminin, vitronectin and tenascin) 

2. reduced degradation of extracellular matrix by dint of diminished synthesis of 

proteases (e.g. metalloproteases like MMP-1, collagenase I, gelatinase A and B) 

3. overexpression of matrix-binding receptors (e.g. integrins) 

 

 

1.1.3 Mouse models of interstitial fibrosis in the kidney 

While there is a diversity of primary pathomechanisms that lead to renal failure, all chronic 

kidney diseases finally result in the development of interstitial fibrosis. To date there is a 

variety of genetic and inducible animal models mimicking renal diseases, however only few 

of them progress consistently to interstitial fibrosis [14]. For example the model of unilateral 

ureter obstruction (UUO) represents an inducible model of tubulointerstitial fibrosis. In this 

model the ureter of one kidney becomes ligated, while the contra-lateral kidney serves as 

control. This ligature results in severe fibrosis, however the progression of disease is very 

unphysiological as it develops within 2 weeks. In contrast, a physiological mouse model 

which is similar to the human disease of Alport syndrome is the COL4A3 knockout mouse 

model. 
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1.1.3.1 COL4A3 knockout mouse 

One cause of chronic kidney disease is the Alport syndrome were type IV collagen, one 

compound of the glomerular basement membrane (GBM), is absent or abnormal. The GBM 

is a key component of the blood filtration apparatus in the kidney, formed by assembly of 

type IV collagen with nidogen, laminins, and proteoglycans [15]. In the Alport syndrome the 

glomeruli become inflamed and scarred, and slowly lose their ability to remove waste and 

excess water from the blood. The COL4A3 knockout mouse model, developed by Cosgrove 

et al., is one of several animal models of the Alport syndrome and represents the autosomal 

form. These mice lack expression of the collagen chains α3(IV), α4(IV), and α5(IV) [16]. The 

disease-progression is very similar to that reported in studies of humans and include hearing 

defects, microhematuria, proteinuria, and irregular thickening and splitting of the glomerular 

basement membrane (GBM) [16]. Microhematuria starts with the age of two weeks and 

progresses until the death of the animals. With the age of five weeks proteinuria is detectable 

and the protein content raises rapidly until 6 - 6.5 weeks (10 – 15 mg/ml) to remain constant 

until the end. Mice suffering from the Alport syndrome finally develop an interstitial fibrosis 

and based on the genetic background (129/SvJ) these mice develop endstage renal failure 

within 14 weeks [16]. The morphology of the kidney is characterized by thickening and 

splitting of the GBM. The thickening starts with the age of four weeks in the external capillary 

loops and spreads out in the whole kidney with the age of eight weeks. With fourteen weeks 

half of the glomeruli are fibrotic, the capillaries are collapsed and the kidney is 30 – 50 % 

smaller compared to the wildtype [16]. 

To date, Alport syndrome is treated by ACE-inhibitors, dialysis and renal transplantation. In 

general, the ultimate therapy for end-stage renal failure is dialysis or transplantation. 

However, these treatments implicate medical and social disadvantages. Furthermore, they 

are not always successful. Therefore, novel therapeutical strategies are still hiughly required. 

 
 
1.2 TGF β: The key mediator of matrix accumulation 

Transforming growth factor beta (TGFβ) plays a decisive role in wound-healing and tissue 

repair and is currently viewed as the main mediator of fibrotic processes and responsible for 

enhanced synthesis of extracellular matrix proteins by mesenchymal cell types. It is a 

multifunctional cytokine exhibiting diverse biological effects in cellular processes including 

proliferation, migration, differentiation, and apoptosis [17]. TGFβ takes the key role by the 

expansion of extracellular renal matrix by its influence on the three molecular mechanisms 

already mentioned: an increased production of extracellular matrix that is accompanied by a 

decreased degradation of the renal matrix, based on down-regulated gene expression of 

matrix-degrading enzymes [18].  
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The TGFβ superfamily consists of more than 60 distinct ligands that include TGFβ, activins 

and bone morphogenic proteins (BMPs) [17]. Three isoforms of TGFβ have been identified 

(TGFβ1, -2 and -3) whereas TGFβ1 is the most extensive investigated [10] and considered to 

be the major or predominant isoform involved in renal fibrosis [19]. The roles of TGFβ2 and 

TGFβ3 are considerably more unclear, however, all three TGFβ isoforms are known to be 

involved in matrix synthesis and degradation [19]. Most TGFβ that is isolated from plasma, 

urine or renal tissue exists in an inactive form, the latent precursor (LTGFβ) [20]. This 

precursor consists of the N-terminal pro-domain with the latency associated peptide (LAP) 

and the C-terminal potentially bioactive region, the mature TGFβ [20, 21]. The activation into 

the mature form for receptor binding is mediated either by proteolytic cleavage, interaction of 

the LAP region with other proteins, reactive oxygen species or low pH [20, 22]. The receptors 

for TGFβ are the receptors type I, II, and III. The type III receptor is a membrane anchored 

proteoglycan that is also called betaglycan. This receptor has no signaling structure, does 

not bind the ligand and is assumed to play an indirect role in TGFβ signaling [17]. On the 

contrary, type I and type II receptors are transmembrane serine-threonin kinases that 

mediate the TGFβ signaling [20]. In the absence of TGFβ, both are present as homodimers. 

Upon ligand binding to the type II receptor, this receptor phosphorylates and activates the 

type I receptor, resulting in a heteromeric ligand-receptor complex [20]. 

 

 

1.2.1 Signal transduction by TGFβ  

Various pathways are involved in TGFβ signaling, including signal transduction by the 

TAK1/p38/JNK and MAPK pathways, the PI3 Kinase/Akt-mTor, or the Rho pathways, but 

most importantly the Smad pathway [23]. The activation of MAPK, TAK1/p38/JNK and PI3K 

play a major role in the regulation of EMT [23] while the onset of TAK1/p38/JNK is also linked 

to apoptosis [24, 25]. Furthermore, proliferation of fibroblasts and morphological 

transformation can be attributed to the activation of PI3K via TGFβ [26], whereas the 

induction of stress fiber formation and mesenchymal characteristics in epithelial cells are 

reported to be mediated via RhoA [23]. These pathways, although they can act in conjunction 

with the Smad-pathway, are Smad-independent.  

However, the best-known pathway for TGFβ signaling, also in connection with fibrosis, is the 

Smad-dependent pathway. TGFβ signaling via this cascade involves membrane receptors 

and Smad-transcription factors. The existing eight different Smad proteins can be divided 

into three functional groups: (1) receptor-regulated Smads (R-Smads), (2) co-mediator 

Smads (co-Smads), and (3) the inhibitory Smads (I-Smads) [27].  

Smad 1, 2, 3, 5 and 8 belong to the R-Smads. While Smad1, 5, and 8 are mediators of 

activin and BMP signals, Smad2 and 3 are responsible for TGFβ signaling. After TGFβ 
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binding to its TGFβ type II receptor, this serine/threonine kinase subsequently recruits and 

phosphorylates the TGFβ type I receptor (Fig. 1.1). The arising ligand-heterodimeric receptor 

complex in turn phosphorylates the receptor-associated cytoplasmic mediators Smad2 or 

Smad3 on a C-terminal SSXS motif [28, 29]. Once activated, they interact with the common 

Smad4 and translocate as a heteromeric complex into the nucleus where they activate target 

genes by either direct DNA binding or in association with other transcription factors [18]. In 

contrast, members of the third functional group, the inhibitory Smads (Smad6 and Smad7), 

negatively regulate TGFβ signaling by inhibition of phosphorylation and/or nuclear 

translocation of R-Smads [30, 31]. 

 

 

 

 

Fig. 1.1: TGFβ signaling. Upon TGFβ binding to its TGFβ type II receptor this 
serine/threonine kinase becomes activated and subsequently recruits and phosphorylates 
the TGFβ type I receptor. The arising ligand-heterodimeric receptor complex in turn 
phosphorylates the receptor-associated cytoplasmic mediators Smad2 or Smad3. Once 
activated, they form complexes with Smad4 and translocate into the nucleus where they 
activate target genes by either direct DNA binding or in association with other transcription 
factors. 
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1.2.2 Smad proteins and their assembly 

The Smad transcription factors activated by TGFβ are Smad2 and Smad3 (R-Smads), 

Smad4 (co-Smad) and the inhibitory Smad7 [32]. The signaling of Smad2, Smad3 and 

Smad4 is carried out as already mentioned. The inhibitory Smad7 has been reported to 

mediate its negative effects via two mechanisms. On the one hand, it inhibits TGFβ signaling 

by stable binding to the activated type I receptor resulting in a suppressed phosphorylation of 

Smad2 and Smad3 [33, 34]. On the other hand, Smad7 is able to recruit ubiquitin ligases to 

the TGFβ receptor complex, leading to the degradation of the type I receptor [35].  

Smads are made up of two highly conserved domains, the Mad Homology domains MH1 and 

MH2 that are connected via a linker region [36], [37]. While the N-terminal MH1 domain 

interacts with the DNA [38], the C-terminal MH2 domain is equipped with transcriptional 

activation properties [37] and is responsible for the binding of receptors, partner Smads and 

co-activators for transcription [29, 39].  

 

 

1.3 Hepatocyte growth factor (HGF) 
Numerous studies reveal that in contrast to the pro-fibrotic TGFβ, hepatocyte growth factor 

(HGF) can act as an anti-fibrotic factor by directly antagonizing the pro-fibrotic actions of 

TGFβ [40], [41]. 

The hepatocyte growth factor (HGF) was discovered in the late 1980s as a unique protein 

that promotes hepatocyte proliferation and liver regeneration [40-42]. It is a heterodimeric 

protein that consists of a heavy (54-64 kDA) α-chain and a light (31.5-34.5 kDa) β-chain 

linked together by a disulfide bond [43]. Both chains are produced from the native inactive 

single chain precursor HGF (pro-HGF) that becomes activated after extracellular proteolysis 

by several activators [44-46]. 

HGF is a multifunctional polypeptide that exhibits mitogenic, motogenic, morphogenic and 

anti-apoptotic activities [47]. Furthermore, HGF is known to play a decisive role in organ 

protection and regeneration [47, 48]. With regard to renal diseases an abrupt rise of HGF 

mRNA and/or protein levels in the kidney were detected in various types of acute renal injury 

[49-52] indicating that the kidney is one source of HGF. But also in distinct organs like liver, 

spleen and lung HGF levels increased in case of a renal injury [53-55].  

Recent studies have shown that in addition to the role of HGF in organ regeneration, HGF is 

an anti-inflammatory and anti-fibrotic factor. The anti-fibrotic action of HGF was first observed 

in experimental liver fibrosis of chronically intoxicated rats [56]. Subsequently, the anti-fibrotic 

function of locally or systemically applied HGF was demonstrated in a variety of experimental 

systems including models of murine and porcine renal failure. HGF application resulted in 

deceleration of histological fibrotic changes and less extracellular matrix deposition [57-59]. 
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The biological activities of HGF are mediated via the specific receptor c-met, a receptor that 

belongs to the receptor tyrosine kinase superfamily and is the product of the c-met 

protooncogene [60, 61]. This receptor is composed of an N-terminal α-chain located outside 

the membrane and a C-terminal β-chain containing an intracellular tyrosine kinase domain 

[41, 62]. 

 

 

1.3.1 HGF signaling  

The pleiotropic effects of HGF are mediated by the c-met receptor through different signaling 

pathways (Fig. 1.2). Upon HGF binding to the receptor kinase c-met, the receptor becomes 

autophosphorylated at specific tyrosine residues (Tyr-1349 and Tyr 1356) that function in the 

phosphorylated form as docking sites for multiple signal-transducers and adaptor molecules 

such as Gab1, Grb2, SOS, PI3K, and Stat [63-67]. These molecules in turn induce the 

activation of the signal transduction cascades of PI3K/Akt, Ras-Raf-MAPK, and Stat3. 

 

 

 

Fig. 1.2: Schematic signal-transduction of HGF via its c-met receptor. C-met is composed of 
an alpha-chain and a transmembrane beta-chain which are linked by a disulfide bond. Two 
tyrosine residues in the beta-chain, Tyr1349 and Tyr1356, are necessary for the signal 
transduction. They constitute docking sites which recruit various signaling and adaptor 
proteins including Gab1, Grb2, SOS, PI3K and Stat3. These molecules then elicit the 
activation of the signal transduction pathways MAP/Erk, Stat3 and Akt. 
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However, the molecular and cellular mechanisms underlying these activities are not well 

understood. Recently, Yang et al. reported that HGF mediates its anti-fibrotic effects by 

antagonizing the pro-fibrotic function of TGFβ [57]. Further studies of this group could show 

that stimulation with HGF inhibited TGFβ signal transduction by ERK1/2 initiated 

phosphorylation and blockade of the Smad2/3 transducers in fibroblasts, mesangial cells and 

epithelial cells [29, 68, 69].  

 

 
 
Fig. 1.3: HGF antagonizes TGFβ signaling in various types of kidney cells through the activation of 
Erk1/2. TGFβ binding to its TGFβ type II receptor (R-II) activates this serine/threonine kinase and 
subsequently recruits and phosphorylates the TGFβ type I receptor (R-I). The arising ligand-
heterodimeric receptor complex in turn phosphorylates the receptor-associated cytoplasmic mediators 
Smad2 or Smad3. Once activated, they form complexes with Smad4 and translocate into the nucleus 
where they activate target genes by either direct DNA binding or in association with other transcription 
factors. 
(A) in interstitial fibroblasts, HGF signaling can inhibit TGFβ signal transduction by ERK1/2 initiated 
phosphorylation that results in the blockade of phosphorylated Smad2/3 nuclear translocation. (B) in 
mesangial cells, HGF signaling rapidly induces expression of the Smad transcriptional co-repressor 
TGIF and stabilizes it from degradation. Accumulated TGIF binds to Smads thereby suppressing 
transcription of TGFβ target genes. (C) in tubular epithelial cells, HGF signaling induces expression of 
another Smad transcriptional co-repressor, SnoN. As TGIF, SnoN binds to phosphorylated Smads and 
intercept Smad2/3-mediated gene expression. (Liu, 2004 [74])  

 

In fibroblasts, activation of Erk1/2 results in the phosphorylation of Smad2/3 in the linker 

region thereby inhibiting their nuclear translocation and the onset of Smad target gene 

expression (Fig. 1.3 A). On the contrary, in mesangial cells and epithelial cells Erk1/2 

activation initiates the transcription of two Smad co-repressors (TGIF or SnoN) that do not 

block nuclear translocation of activated Smad2/3 but block transcription of Smad-target 

genes (Fig. 1.3 C, D). 
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1.4 HGF and TGFβ in renal fibrosis 

The anti-fibrotic role of HGF seems to be in close connection to the pro-fibrotic TGFβ. In vitro 

and in vivo studies could already show that HGF antagonizes many pro-fibrotic actions of 

TGFβ and it is assumed that the balance between TGFβ and HGF plays an essential role in 

the pathogenesis of chronic renal fibrosis [70, 71]. While TGFβ supports renal fibrosis by 

cellular processes that include (1) apoptosis of podocytes, endothelial- and tubuloepithelial-

cells, (2) activation of mesangial cells and interstitial fibroblasts to produce huge amounts of 

matrix components and (3) initiation of epithelial to mesenchymal transition (EMT), HGF 

targets these cellular processes that are decisive for renal fibrogenesis. Both growth factors 

are initially induced after tissue injury and are expected to be necessary and important for the 

initial wound-healing response and tissue repair [72, 73]. Whereas a transient injurious 

stimulus will result in a predominant HGF signaling, yielding tissue repair and regeneration, a 

chronic injury leads to a progressively increasing TGFβ expression that finally will prevail. In 

case of the latter HGF initially increases but gradually declines [74]. 

The beneficial effect of exogenous HGF has been shown in different experimental models of 

chronic kidney diseases [47, 59, 75-77]. For example the onset of tubulointerstitial fibrosis 

has been shown to be inhibited by the application of recombinant HGF [75]. Also systemic 

administration of naked plasmid DNA encoding human HGF has been reported to attenuate 

renal interstitial fibrosis and reduce TGFβ and its type I receptor expression in a mouse 

model of UUO (unilateral ureteral obstruction) [78]. To date, most of the pre-clinical studies in 

mice and porcine models of renal failure report of a systemic or local HGF application by 

recombinant protein or plasmid DNA [57-59, 78-80]. But there is also the possibility to use 

other systems for the delivery to the organ or tissue of interest. 

 

 

1.5 Gene delivery systems to target chronic kidney diseases 
The idea of gene therapy is the introduction of genetic material into an organism to improve 

or even cure a disease. In general, there are two different delivery systems that can be used 

for gene transfer, viral and non-viral vectors. The non-viral vector strategy uses naked DNA 

or DNA complexed with cationic lipids, polymers or peptides [81] whereas the viral systems 

include adeno-, retro-, pox-, herpex simplex-, and adeno-associated viral vectors [82, 83]. 

However, all of these gene transfer systems offer potential advantages and disadvantages. 

The argue for non-viral vectors is a broad tropism, limited immunogenicity, easy and cost-

saving preparation, applicability for multiple treatment and the lack of limitation of the infused 

DNA [82-84]. The disadvantages of the non-viral delivery systems include an inefficient 

intracellular processing and a transient gene expression in proliferating tissue due to the lack 

of genome integration [82].  
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Retroviruses, in contrast, stably integrate their genome into the host DNA thereby stably 

expressing the therapeutic gene [82]. Though, an important negative aspect of these viral 

vectors is the need of actively dividing cells for efficient transduction [82, 85]. 

On the contrary, adenoviral vectors allow for a transduction of dividing and non-dividing cells. 

In addition, they are easy to produce at high titers and they offer a large packaging capacity 

[84]. The disadvantages in case of adenoviral vectors, however, include a transient 

expression and also a cellular immune response [82, 84]. In addition, a humoral response to 

the injected vector is often generated, preventing the use of such vectors for repeated 

administration [86] or the necessity of an additional co-application of immunosuppressive 

agents or cytokines [86]. A viral vector that might overcome most of the mentioned 

disadvantages is the recombinant adeno-associated virus (AAV). 

 

 

1.5.1 Recombinant AAV as a gene delivery vector 

In the recent years the adeno-associated viral vectors (AAV) have attracted interest for gene 

therapy of various genetic disorders [87-90], representing a multiplicity of features that 

characterize them as an ideal gene vehicle. The main reason is the safety of this vector. No 

real alterations in the pathology have been observed by AAV infection. In addition, AAV 

vectors are replication deficient and fail to initiate an immune response. Another advantage 

of AAV is the capability to transduce both, proliferating and quiescent cells [91, 92]. 

Moreover, AAV allows for a long-term expression of the transgene by site-specific integration 

into the genome or episomal persistence [93]. However, a disadvantage is the limited 

packaging capacity of approximately 4.5 kb [94] and the need for second-strand synthesis 

which exhibits a rate limiting step for primary cell transduction and in vivo application [83].  

 
 

1.5.2. Characteristic properties of AAV 

AAV belongs to the Dependovirus genus of the Parvoviridae family and is one of the smallest 

and structurally most uncomplex viruses. The first human adeno-associated virus (AAV) was 

discovered in 1965, as a contaminant of adenovirus preparations [95]. The linear single-

stranded DNA (ssDNA) genome of approximately 4.7-kilobases (kb) can be divided into three 

functional regions: (1) the terminal inverted repeats (ITRs), (2) the 5’ located rep open 

reading frame (ORF) and (3) the 3’ located cap ORF. The ITR’s comprise 145 nt and are the 

only cis elements that are required for replication, packaging, and insertion into the host 

genome [91]. The two ORFs that are flanked by the ITRs, rep and cap, encode non-structural 

and structural proteins, respectively. Rep encodes four proteins that are necessary for 
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replication of the viral genome (Rep78, Rep68, Rep52 and Rep40) whereas cap encodes the 

three capsid proteins (VP-1, VP-2 and VP-3) (Fig. 1.4). The replication of AAV is dependent 

on a helper virus such as adenovirus or herpes simplex virus [82, 96, 97]. In the absence of a 

helper, AAV persists in a latent form, either by site-specific integration into the human 

genome at a specific region on chromosome 19 or as episomal form (double stranded 

circular or linear) [98].  
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polyA
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VP3  

Fig. 1.4: Organisation of the AAV genome and gene products. Shown are the inverted 
terminal repeats (ITRs), the three viral promoters positioned at units 5, 19 and 40 (p5, p19, 
p40) and the polyadenylation signal at unit position 96 (poly A). Cylinders represent open 
reading frames. Untranslated regions are indicated as solid lines and introns as kinks. 
Expression of the four Rep proteins is regulated by p5 and p19, whereas the p40 promoter 
controls expression of the three different capsid proteins VP1, VP2 and VP3. (Figure was 
kindly provided by N. Huttner). 

 
 

1.5.3 Production of recombinant AAV vectors 

Recombinant AAV vectors possess a coding capacity of 4.5 kb [94]. For the generation of 

recombinant AAV vectors all viral genes (rep and cap) can be completely deleted. This is due 

to the fact that only AAV ITRs contain all cis acting elements essential for viral replication, 

packaging and integration. The deleted rep/cap sequences of the parental virus can be 

replaced by a marker or therapeutic gene thereby generating vectors that are replication 

deficient even in the presence of a helper virus [99]. In general, the vector production is 

performed in a helper virus-free manner to avoid helper virus contaminations of vector 

preparations. The rep and cap gene products as well as the essential adenoviral genes VA, 

E2A and E4 are supplied by a helper plasmid in trans [97, 100]. Therefore, the production 

requires co-transfection of three plasmids into HEK239 cells that already contain another 

essential protein, namely the E1A/E1b gene: (1) an AAV-plasmid with the transgene 
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expression cassette flanked by the ITRs, (2) a helper plasmid in trans that carries rep and 

cap and (3) a plasmid that provides the adenoviral helper genes [101] (Fig. 1.5). 
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Figure 1.5: Production of recombinant AAV in HEK293 cells. The vector plasmid encodes for the 
vector genome that is flanked by the inverted terminal repeats (ITR’s). Both viral ORFs can be 
replaced by the transgene. The helper plasmid is responsible for providing the rep and cap 
genes. Helper virus functions are encoded on a third plasmid (adenoviral helper plasmid). AAV 
virions can be harvested 48 h after triple transfection, and are purified by density gradient and/or 
chromatography. (Figure was kindly provided by H. Büning) 

 
The AAV particles can be harvested 48 h p.i. out of the lysates of the transfected cells and 

purified to high titers (up to 1014 particles/ml) using one of several described protocols [87, 

89, 102, 103]. 

 

 

1.5.4 Different AAV serotypes 

In addition to the most commonly used rAAV2 numerous new serotypes and variants have 

been isolated [95, 104-107]. AAV1 to AAV4 and AAV6 were isolated as contaminants in 

different laboratory adenovirus type stocks [95], [105], [108] whereas AAV5 was isolated 

from a human penile condylomatous lesion [109]. Serotypes AAV7 and AAV8 were cloned 

from rhesus monkey tissues [104], while AAV9 was found in human tissue [107]. Further 

isolates are AAV10 and AAV11 that were isolated from cynomolgus monkeys [110]. 
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It could already be shown in vitro and in vivo that the various natural AAV serotypes display 

different tropisms for tissues or cells (Table 1.1).  

 
  Table 1.1 Tissue tropism of different AAV serotypes. 

tropism AAV serotype publication 

muscle AAV1, AAV6-9 [104, 107, 111-113] 
megakaryocytes AAV3 [114] 
retina AAV1, AAV4, AAV5 [115, 116] 
apical airway cells AAV5, AAV6 [117, 118] 
central nervous system AAV2, AAV4, AAV5 [119] 
heart AAV9 [120] 
liver AAV8, AAV9 [104, 107, 121, 122] 
kidney AAV2, AAV9 [120, 123-125] 

 
 

The differences in the tropism might be due to their binding to alternate receptors [126]. 

AAV2, for example, is known to bind various receptors like heparin sulfate proteoglycans 

(HSPG), αVβ1 integrin, αVβ5 integrin, fibroblast growth factor receptor (FGF-R), and 

hepatocyte growth factor receptor (c-met) [127-130]. The attachment to the HSPG and FGF 

receptor is also reported for AAV3 [131, 132], whereas AAV5 preferentially bind to sialic acid 

and plateled derived growth factor receptor (PDGF-R) [133, 134]. A common receptor for 

AAV2, 3, 8, and 9 is the laminin receptor (LamR) [126]. However, not only the binding to 

different cell surface receptors seems to determine vector tropism but also the intracellular 

processes like trafficking, endosomal escape, nuclear delivery and second strand synthesis 

[101]. 
 
 

1.5.5 Pseudo-packaging 

To improve the AAV transduction efficiency for specific tissues, there is the possibility of the 

so called transcapsidation [135]. This process implies the feasibility of pseudotyping 

recombinant AAV genomes, typically derived from AAV serotype 2, with capsids from any of 

the other serotypes [126]. Even though AAV2 shows low transduction efficiency, the AAV 

tropism can be altered by packaging recombinant AAV2 genomes into capsids derived from 

other AAV serotypes, yielding hybrid vectors. The advantage is a modification of the 

targeting to cell types that express other receptors than AAV2. Several groups already cross-

packaged transgenes with AAV2 ITRs into other serotype capsids. Hildinger and colleagues, 

for example, cross-packaged an AAV2 ITR genome containing the lacZ gene into three 

different AAV capsids (AAV1, 2, and 5), respectively, and compared the transduction 

efficiency in the muscle [136], yielding improved transduction efficiency with the 
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transcapsidated vectors compared to the wildtype. A similar approach was performed by 

another group with GFP as reporter, but for the retina [102]. 

 

1.5.6 Gene delivery to the kidney 

Gene delivery to the kidney in vivo has already been shown by different gene vehicles. A 

non-viral gene transfer to the kidney was e.g. achieved by intrarenal-pelvic or intrarenal-

arterial injections of liposomes [137], and with oligonucleotides that were intravenously 

injected [138]. Renal gene transfer using viral vectors are shown by Bosch and colleagues 

who revealed a successful gene delivery to the rat kidney via retroviral vectors [139]. In 

addition, an adenoviral vector mediated gene delivery into the kidney is reported by Mouillier 

et al. [140]. But there are also studies for the adeno-associated virus and its capability to 

infect the kidney. Lipkowitz and colleagues could show that an intraparenchymal injection of 

AAV successfully transduced renal tubular epithelial cells [141]. Also local delivery of AAV2 

via the renal artery was reported to efficiently transduce tubular epithelial cells, while neither 

of the serotypes rAAV-1, -3, -4, or -5 showed any transduction [123]. There are also recent 

data of systemic transduction of the kidney by AAV9. Although this serotype is preferentially 

known to be a suitable vector for cardiac transduction [120], Bostick et al. reported an 

efficient transduction of the kidney of adult mice by AAV9 [125]. Likewise the group of Nakai 

demonstrated a transduction of the kidney by rAAV9 following systemic administration [142].  

 

 

1.5.7 Clinical trials/therapeutical approaches of AAV 

The first gene therapeutic clinical trial using a viral vector was performed 1989.  

Since then, at least 1471 more studies have been initiated worldwide 

(http://www.wiley.co.uk/genmed/clinical/). Most of the trials are addressed to cancer diseases 

(65.2 %), followed by cardiovascular (9.3 %), monogenic (8.2 %), and infectious diseases 

(7.6 %). The most commonly used viral vectors are adeno- (24.9 %) and retroviruses  

(21.7 %), while until now AAV vectors are used in only 4.1 % of the clinical approaches, 

mainly for the treatment of inherited disease and cancer. For example clinical trials using 

AAV as vector are reported for the treatment of the monogenic diseases cystic fibrosis and 

hemophilia B. For cystic fibrosis the administration of CFTR (cystic fibrosis transmembrane 

conductance regulator) as transgene in the nasal sinus and bronchial epithelium showed 

improved pulmonary function as well as partial correction of hyperinflammatory responses 

and electrophysical defects [143-145]. The clinical trials for hemophilia B were carried out by 

intramuscular [146, 147] or intrahepatic [148] administration of the vector. The muscle-

directed study revealed evidence for transduction in all patients, however long-term 
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expression of the therapeutic gene, coagulation factor IX (FIX) could only be detected at low 

levels. Intrahepatic administration of high vector amounts resulted in therapeutic, but 

transient (< 8 weeks) transgene expression levels. As no vector related adverse events were 

reported, this vector system proved to exhibit an excellent safety profile.  
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1.6 Aim of the study 
The aim of this study is to analyze the anti-fibrotic effect of HGF in vitro and in vivo with 

regard to renal interstitial fibrosis. Still, little is known about the underlying molecular and 

cellular mechanisms of the anti-fibrotic actions of HGF. Therefore, the first part of this study 

focusses on the signal transduction of HGF and the molecular implications of the HGF-

initiated signal cascades in renal interstitial fibroblasts. Furthermore, candidates selected by 

their pronounced divergent expression profile and their potential association with pro-fibrotic 

processes will be subjected to detailed analyses of the underlying regulatory mechanisms. 

A further question that will be addressed in the present study is the anti-fibrotic effect of HGF 

in vivo. The aim is to establish a gene therapeutical system for the treatment of renal 

interstitial fibrosis, using HGF as transgene and the adeno-associated viral vector (AAV) as 

gene vehicle. Therefore, three different AAV serotypes shall be analyzed due to their ability 

to transfer efficiently HGF to the kidney. For this purpose, a promoter construct has to be 

generated that mediates an efficient expression of HGF in the kidney and finally, the anti-

fibrotic effect of HGF has to be determined in the COL4A3 knockout mouse model that 

closely simulates the Alport syndrome, a disease that results in interstitial fibrosis. Fibrosis 

will then be evaluated and the therapeutic effect on fibrotic markers be determined.   
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Abbreviations  

SMA    alpha smooth muscle actin 

ACE    angiotensin-converting enzyme 

bp      basepairs 

°C     degrees celsius 

cDNA    complementary DNA  

DAB    3,3’- Diaminobenzidine 

DABKO    (1,4-Diazabicyclo 2,2,2) octan) 

DAPI    4, 6-diamidino-2-phenylindole  

dd     double distilled 

DMEM    Dulbecco’s Modified Eagle Medium 

DMSO    dimethyl sulfoxide 

DNA     desoxyribonucleic acid 

EDTA    ethylenediaminetetraacetic acid 

ELISA    enzyme-linked immunosorbent assay 

FCS    fetal calf serum 

FITC    fluorescein-5-isothiocyanat 

g      gram 

GER    germany 

GFP    green fluorescence protein 

h      hour 

HE     hematoxyline eosin  

hHGF    human hepatocyte growth factor 

H2O    water 

HRP    horseradish peroxidase 

KCl    potassium chloride 

kDa    kilodalton 

LB     Luria Bertani 
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mg     milligram 

MgCl2    magnesium chloride 

MgSO4    magnesium sulfate 

ml     milliliter 

mM    millimolar 

µg     microgram 

µl      microliter 

µM     micromolar 

µm     micrometer 

NaCl    sodium chloride 

NaH2PO4    sodium dihydrogen phosphate 

Na2HPO4    disodium hydrogen phosphate 

ng     nanogram 

nm     nanometer 

nt     nucleotides 

NTC    no-template control 

OD     optical density 

PBS    phosphate buffered saline 

PEG    polyethylene glycol 

PCR    polymerase chain reaction 

RNA    ribonucleic acid  

rpm    revolutions per minute 

RT     room temperature 

SDS    sodium dodecyl sulfate 

SOB    super optimal broth 

TAE    Tris acetate EDTA buffer 

TBS    Tris buffered saline 

TBST    Tris buffered saline tween-20 
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2. Materials and methods 

2.1 Materials 

2.1.1 Chemicals, plastic ware and other materials 

Chemicals and solutions were purchased from Roth (Karlsruhe, GER), Sigma-Aldrich 

(Taufkirchen, GER) and Merck (Darmstadt, GER) in pro analysi quality if not described 

elsewise. Pipet tips, 0.5, 1.5, or 2 ml tubes were obtained from Biozym (Oldendorf, GER), 

Labomedic (Bonn, GER), or Eppendorf (Hamburg, GER). The plastic ware was autoclaved at 

121 °C and 1.2 bar for 20 minutes (Varioklav, H+P Labortechnik). Glass ware was sterilized 

with dry heat by baking at 180 °C for 5 hours. All plastic ware used in cell culture was 

purchased from TPP (Hörstel, GER), Nunc (Wiesbaden, GER) and Becton-Dickinson 

(Lincoln Park, NJ, USA).  

 
 

2.1.2  Software 

The following software was used in this thesis: DNASIS®MAX (Hitachi Software Engineering 

Co., Ltd, Japan), Redasoft Plasmid 1.1 (REBASE Version 908), Premier Biosoft 

(http://www.premierbiosoft.com/netprimer/netprlaunch/netprlaunch.html), Olympus Soft 

Imaging System (Olympus, Hamburg, GER), Geldock, Stratagene MxPro 3000P V4.00 (La 

Jolla, USA), Ascent Software 2.6 (Thermo Scientific, GER), and BioRad IQ5 (BioRad, 

München, GER). 

 

 

2.1.3 Enzymes and antibodies 

2.1.3.1 Enzymes 

Benzonase     (Merck Chemicals Ltd., Darmstadt, GER) 

DNAse (deoxyribonuclease), RNAse free (Macherey & Nagel, Düren, GER) 

Pfu UltraTM High-Fidelity    (Stratagene, Waldbronn, GER) 

Proteinase k [20mg/ml]    (Fermentas, St. Leon-Rot, GER) 
Phusion-DNA-polymerase   (Biozym, Hess. Oldendorf, GER) 

REDTaq®-DNA polymerase    (Sigma-Aldrich, Taufkirchen) 

Restriction endonucleases    (NEB, Frankfurt, GER) 

RNAse A      (Macherey & Nagel, Düren, GER) 

Vent® polymerase    (Sigma-Aldrich, Taufkirchen, GER) 
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2.1.3.2 Antibodies 

The antibodies used for Western blotting, immunohisto- or immunocytochemistry are listed in 

table 1 (primary antibodies) and table 2 (secondary antibodies). 

 
Table 2.1: Primary antibodies. 

antibody raised in manufacturer 

beta-actin mouse Sigma,Taufkirchen, GER 

collagen IαI rabbit Abcam,,Cambridge, UK 

phospho-Akt (Thr308) rabbit Cell Signaling, Frankfurt, GER 

phospho-p44/42MAPK 

(Thr202/Tyr204) 
rabbit Cell Signaling, Frankfurt, GER 

phospho-Smad2 (Ser245/250/255) rabbit Cell Signaling, Frankfurt, GER 

phospho-Smad2 (Ser465/467) rabbit Cell Signaling, Frankfurt, GER 

phospo-Stat3 rabbit Cell Signaling, Frankfurt, GER 

GFP rabbit Abcam, Cambridge, UK 

 

 

 
Table 2.2: Secondary antibodies. 

antibody raised in against manufacturer 

alkaline phosphatase labeled goat rabbit 
Santa Cruz Biotechnology, 

Heidelberg, GER 

peroxidase labeled goat rabbit Dianova, Hamburg, GER 

peroxidase labeled rabbit mouse Dako, Hamburg, GER 

 

 

2.1.3.3 Consumables 

26-gauge needle      BD, Heidelberg, GER  

Photographic film  Amersham Biosciences, Freiburg, 

GER  

ReadyGel (SDS-polyacrylamide gel)    BioRad, München, GER 

UV-Plastic cuvette      Eppendorf, Hamburg, GER 
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2.1.3.4 Devices 

Microscope Eclipse TE 300     Nikon, Düsseldorf, GER 

MJ Research PTC-200 Peltier Thermal PCR Cycler  GMI, Minnesota, USA 

Multiscan Ascent (photometer)    Thermo Scientific, Bonn, GER 

Olympus Vanos-S AH2 (Fluorescence microscope) Olympus, Hamburg, GER 

Precellys 24 Homogenisator     Peqlab, Erlangen, GER 

Real-time PCR Cycler Mx3000P    Stratagene, Waldbronn, GER 

Eppendorf BioPhotometer     Eppendorf, Hamburg, GER 

Water bath       Dr. Hirtz & Co, Cologne, GER 

 

 

2.1.3.5 Cell culture 

Dulbecco’s Modified Eagle Medium Sigma-Aldrich, Taufkirchen, GER 

FCS        Sigma-Aldrich, Taufkirchen, GER 

Trypan blue solution (0.5 %)     Biochrom AG, Berlin, GER 

Trypsin       GibcoBRL, Karlsruhe, GER 

 

 

2.1.3.6 Reagents 

Developer       Kodak, Stuttgart, GER 

Fixing solution       Kodak, Stuttgart, GER 

NuPAGE Reducing Agent (10 x)    Invitrogen, Karlsruhe, GER 

NuPAGE MOPS SDS Running Buffer   Invitrogen, Karlsruhe, GER 

NuPAGE LDS Sample Buffer (4 x)    Invitrogen, Karlsruhe, GER 

NuPAGE Transfer Buffer     Invitrogen, Karlsruhe, GER 

 

 

2.1.3.7 Cytokines 

Table 2.3: Cytokines used in this study. 

cytokine species source 

recombinant HGF human Dianova, Hamburg, GER 
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2.1.4 Kits and assays 

All the kits used in the experiments and the manufacturing companies are indicated below: 

 

BCA Protein Assay      PerbioScience, Bonn, GER 

BigDye terminator sequencing kit v.3.1   Applied Biosystems, Darmstadt, GER 

Chemi-luminescence substrate CDP Star kit Invitrogen, Karlsruhe, GER 

DNeasy blood and tissue kit    Qiagen, Hilden, GER 

Dual-Glo™ luciferase reporter assay  Promega, Mannheim, GER 

Fast-Plasmid mini kit     Eppendorf, Hamburg, GER 

High capacity cDNA RT kit    Applied Biosystems, Darmstadt, GER 

human HGF Quantikine ELISA kit   R&D, Wiesbaden-Nordenstadt, GER 

Lipofectamine 2000     Invitrogen, Karlsruhe, GER 

Nucleobond PC-100     Macherey & Nagel, Düren, GER 

Nucleospin RNA II     Macherey & Nagel, Düren, GER 

Nucleospin RNA/Protein    Macherey & Nagel, Düren, GER 

Perfectprep Gel Cleanup kit    Eppendorf, Hamburg, GER 

Plasmid-Mega-kit     Qiagen, Hilden, GER 

Puregene DNA isolation kit     Biozym, Hess. Oldendorf, GER 

 
 

2.1.5 Oligonucleotides 

All oligonucleotides used in this thesis were ordered from Eurofins MWG Operon (Ebersberg, 

GER) and are listed in Table 2.4. 
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Table 2.4: Oligonucleotides 

oligonucleotide species* sequence length (nt) 

Ksp-Cad-F m TAT ACT CGA GAG CTT GCT CTG CCA TG 26 

Ksp-Cad-R m TAT TAA GCT TCT TCA GGG AGC TCT GGC 27 

Ksp-Cad-Seq1 m CTA GGC TTC TGT CCC ACC CAC 21 

Ksp-Cad-Seq2 m GTA TTA GCT TCG GAG TTC CTC TG 23 

Ksp-Cad-Seq3 m GGC ACA AGG AAC AA TAT CTG 20 

Ksp-Cad-R-Mut m CAA GTG GCC CGT GGA GCT AAG G 22 

ß-globin-min-F m 
AGC TTC TGG GCA TAA AAG TCA GGG CAG 
AGC CAT CTA TTG CTT ACA TTT GCT TCT 
GGA ATT CA 

62 

ß-globin-min-R m 
AGA CCC GTA TTT TCA GTC CCG TCT CGG 
TAG ATA ACG AAT GTA AACtGAA GAC CTT 
AAG TTC GA 

62 

CMV-enhancer-F m ATT ACG GGG TCA TTA GTT CAT AGC 24 

CMV-enhancer-R m ACA TTT TGG AAA GTC CCG TTG 21 

hHGF-F h 
TCT AAT AAG CTT GCC AAC ATG TGG GTG 

ACC AAA CTC 
36 

hHGF-R h 
CTC TAC GTC GAC CTG GCC TTT TGC TCA 

CAT GTT C 
34 

COL4A3-1 m CCA GGC TTA AAG GGA AAT CC 20 

COL4A3-2 m TCT GCT AAT ATA GGG TTC GAG A 22 

COL4A3-3 m GCT ATC AGG ACA TAG CGT TGG 21 

Actin-F r CTA GAC TTC GAG CAG GAG ATG GC 23 

Actin-R r GAA TGT AGT TTC ATG GAT GCC AC 23 

mCRP-F m ACC CAC ATT GAT TTC TCT GTT CTA 24 

mCRP-R m AAT GAT TTC CTA ACA CTG CCT CTT 24 

COL1A1-F m CAT GTT CAG CTT TGT GGA CCT 21 

COL1A1-R m GCA GCT GAC TTC AGG GAT GT 20 

HPRT-F m TCC TCC TCA GAC CGC TTT T 19 

HPRT-R m CCT GGT TCA TCA TCG CTA ATC 21 

CTGF-F r GCT GAC CTA GAG GAA AAC ATT AAG A 25 

CTGF-R r CCG GTA GGT CTT CAC ACT GG 20 

CTGF-F m TGA CCT GGA GGA AAA CAT TAA GA 23 

CTGF-R m AGC CCT GTA TGT CTT CAC ACT G 22 

HPRT-F r GAC CGG TTC TGT CAT GTC G 19 

HPRT-R r ACC TGG TTC ATC ATC ACT AAT CAC 24 

mCRP-F m ACC CAC ATT GAT TTC TCT GTT CTA 24 

mCRP-R m AAT GAT TTC CTA ACA CTG CCT CTT 24 

mCRP probe m TCC CTT TCT CCC AGT GGT CTG ACG T 25 

COL1A1-F r CAT GTT CAG CTT TGT GGA CCT 21 

COL1A1-R r GCA GCT GAC TTC AGG GAT GT 20 
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TGFβ-F r CCT GGA AAG GGC TCA ACA C 19 

TGFβ-R r CAG TTC TTC TCT GTG GAG CTG 22 

α-SMA-F m ACT CTC TTC CAG CCA TCT TTC A 22 

α-SMA-R m ATA GGT GGT TTC GTG GAT GC 20 

α-SMA-F r TGC CAT GTA TGT GGC TAT TCA 21 

α-SMA-R r ACC AGT TGT ACG TCC AGA AGC 21 

Smad2-F r CAG GAC GAT TAG ATG AGC TTG A 22 

Smad2-R r CCC CAA ATT TCA GAG CAA GT 20 

Smad3-F r CCT GCC ACT GTC TGC AAG 18 

Smad3-R r GCA GCA AAT TCC TGG TGG TT 20 

Smad4-F r GAA CAC TGG ATG GAC GAC TG 20 

Smad4-R r ACA GAC GGG CAT AGA TCA CA 20 

Wisp-2-F m,r CAG GGC CTG GTT TGT CAG 18 

Wisp-2-R m,r AGC TAC CGT CAT CCT CAT CC 20 

FIGF-F m,r TGT TTT ACA AGA TGA GAA TCC ACT G 25 

FIGF-R m,r GGG TTC CTG GAG GTA AGA GTG 21 

Nov-F m,r ATG GTT CGG CCT TGT GAG 18 

Nov-R m,r TTG GTC CGG AGA CAC TTT TT 20 

PDGFRβ-F m,r TCT CTC ATC ATC CTC ATC ATG C 22 

PDGFRβ-R m,r CCT TCC ATC GGA TCT CAT AGC 21 

Bambi-F m,r TCA TCT GGC TGC AGT TGG 18 

Bambi-R m,r CAT CAC AGT AGC ATC TGA TCT CG 23 

GFP-F  ATG GTG AGC AAG GGC GAG GA 20 

GFP-R  GGA CAC GCT GAA CTT GTG GC 20 

GFP-probe  TTA CGT CGC CGT CCA GCT CGA CCA G 25 

* m = mouse, r = rat h = human 
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2.1.6 Plasmids 

Table 2.5: Plasmids used in this thesis. 

 
vector 

 
specification/characteristic 

 
source/reference 

pGL3-Basic Firefly luciferase vector Promega 

pGL3-Ksp Ksp-cadherin promoter, firefly luciferase this thesis 

pGL3-CMV-Ksp CMV-Enhancer, Ksp-cadherin, firefly 
luciferase this thesis 

pGL3-Ksp-β-globin Ksp-cadherin promoter, β-globin minimal 
promoter, firefly luciferase this thesis 

pGL3-CMV-Ksp-
hHGF 

CMV-Enhancer, Ksp-cadherin promoter, 
hHGF 

 
this thesis 

 
pSUB201-plus 

 
AAV-packaging plasmid AG Büning 

pSUB-CMV-Ksp-
hHGF 

CMV-Enhancer, Ksp-cadherin promoter, 
hHGF flanked by ITR’s 

 
this thesis 

 
pEGFP-C1 

 
CMV promoter, EGFP Clontech 

 
psc-GFP 

 

CMV promoter, EGFP  
(self complementary) AG Büning 

 
pXX6 

 
adenoviral genes (E2A, VA, E4) 

J. Samulski, 
University of North 

Carolina 
 

pRC 
 

Rep (AAV2), Cap (AAV2) A. Girod,  
Universität München 

 
pXR8 

 
Rep (AAV2), Cap (AAV8) 

J. Wilson,  
University of 
Pensylvania 

 
pXR9 

 
Rep (AAV2), Cap (AAV9) 

J. Wilson, 
University of 
Pensylvania 

 



MATERIALS AND METHODS 

 26

2.1.7 Buffers and solutions 

All buffers and solutions were prepared using completely desalted millipore purified water 

(Millipore-Q Plus, Millipore, (Molsheim, GER)).  

 

LB medium:    1.0 % [w/v]   tryptone (Fluka, GER)  
    0.5 % [w/v]   bacto-yeast extract (Difco, USA) 
    0.8 % [w/v]   NaCl 
    NaOH   (adjust pH value to 7.6) 
 
SOB medium:            2.0 % [w/v]  tryptone  
    0.5 % [w/v]  bacto-yeast extract 
    10.0 mM  NaCl  
                               2.5 mM  KCl     
        10.0 mM    MgSO4    

   20.0 mM  glucose  
 

LB agar:      15 g /l   LB medium Bacto-Agar (Difco) 

 

2 x TSS:     20 % [w/v]  PEG 8000 (Sigma, GER) 
       10 % [v/v]  DMSO (Sigma, GER)  
      70.0 mM  MgCl2 in LB   
      pH 6,5  

 

Lysis buffer for DNA extraction  50 mM  TRIS-HCl, pH 8.0 
      100 mM EDTA 
      0.125 % [w/v] SDS 
      0.8 mg/ml  proteinase K (Fermentas, GER) 
 

Phosphate-buffered saline (PBS) 10 x 74 g   NaCl 
      14.2 g   Na2HPO4 x H2O 
      3.62 g  NaH2PO4 x 2H2O 

ad 1000 ml  dH2O 
      pH  7.4 
 

Tris-buffered saline (TBS) 10 x  150 mM NaCl 
      20 mM  TRIS-HCl 

ad 1000 ml  dH2O 
      pH  7.6 
 

SDS-protein lysis buffer   15 mM  TRIS-HCl (pH 6.8) 
      2.5 % [v/v] glycerol 
      0.5 % [w/v] SDS 

1 mM complete (proteinase inhibitor mix) 
(Roche, GER) 

 

NuPAGE SDS sample buffer (4 x)  Invitrogen, Karlsruhe, GER 

 

NuPAGE SDS running buffer (20 x)  Invitrogen, Karlsruhe, GER 
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NuPAGE SDS transfer buffer (20 x)  Invitrogen, Karlsruhe, GER 

 

Ponceau staining solution   0.5 % [w/v] Ponceau S 
1 % [v/v] acetic acid 

 

Destaining solution     10 % [v/v] methanol 
10 % [v/v] acetic acid 

 

TAE buffer     40 mM   Tris-acetate, pH 7.8 
5 mM   Na-acetate 
1 mM   EDTA, pH 8.0 

 

 

2.1.8 Cell lines  

Cell lines are shown in table 2.6. 

 
Table 2.6: Cell lines. 

cell line origin characteristics reference source 

HUH7 human 
hepato cellular carcinoma cell 

line 
LGC Promochem P. Schirmacher 

HeLa human 
Human cervix carcinoma cell 

line 

DSMZ-No.: 

ACC 57 
DSMZ 

HEK293 human embryonic kidney cell line 
DSMZ-No.: 

ACC 305 
DSMZ 

NRK52E rat kidney epithelial-like cells 
DSMZ-No.: 

ACC 199 
DSMZ 

NRK49F rat kidney fibroblasts 
DSMZ-No.: 

ACC 172 
DSMZ 
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2.2 Methods 

2.2.1 DNA preparation 

2.2.1.1 DNA preparation of E. coli 

All centrifugation steps of the procedure were performed in an Eppendorf centrifuge Type 

5417R (Eppendorf, Hamburg, GER). 5 ml LB medium were inoculated and the E. coli 

cultures were grown overnight. 1.5 ml of the bacteria culture were centrifuged at 14000 rpm 

for 1 min, cells were then resuspended in 150 µl buffer S1 (Midiprep kit Nucleobond® 100, 

Macherey & Nagel, GER) and the DNA was extracted according to the manufacturer’s 

instructions. Briefly, 150 µl buffer S2 were added. After incubation for 5 min at RT, lysis was 

stopped via addition of 150 µl S3 and incubation on ice for 5 min. To remove denatured 

proteins and cell debris, a further centrifugation at 14000 rpm for 5 min was done and the 

plasmid DNA in the supernatant was precipitated by addition of 500 µl 100 % isopropanol 

and centrifugation at 14000 rpm for 5 min. The pellet was washed with 70 % ethanol, air 

dried and re-dissolved in 20 µl deionized water. 

 

For the preparation of a larger quantity of plasmid DNA, a 100 ml or 500 ml culture was 

inoculated and grown overnight. The plasmid DNA was extracted by using the Nucleobond 

PC-100 kit (Macherey & Nagel, GER) or the Plasmid-Mega-kit (Qiagen, GER), respectively, 

according to manufacturer’s instructions. The eluted, purified plasmid DNA was precipitated 

with isopropanol, washed with 70 % ethanol, air dried and re-dissolved in deionized water. 

 
 

2.2.1.2 DNA extraction by phenol chloroform extraction 

All centrifugation steps of the procedure were performed in an Eppendorf centrifuge Type 

5417R (Eppendorf, GER). 

To purify DNA from a solution that also contains proteins, the DNA was extracted by 

standard phenol chloroform extraction. An equal volume of phenol-chloroform-isoamylalcohol 

(Roth, GER) was added to proteinase k-lysed cells or tissue, well mixed and centrifuged at  

14000 rpm for 5 min. The aqueous top layer was transferred to a new tube and extracted for 

a second time with an equal volume of phenol-chloroform-isoamylalcohol. To avoid phenol 

contamination of the samples, the aqueous top layer was extracted twice with an equal 

volume of chloroform-isoamylalcohol. Finally, the aqueous top layer was transferred to a new 

tube and precipitated with 1:10 vol. 3M sodium acetate pH 5.2 and 2 vol. ice cold 100 % 

ethanol. The pellet was washed with 70% ethanol, air-dried and re-dissolved in an 

appropriate volume of deionized water. 
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2.2.1.3 DNA extraction from mouse tails 

The genomic DNA extraction from mouse tail was performed according to manufacturer’s 

instructions using the PureGene DNA isolation kit (Biozym, GER).  

 
 

2.2.2 RNA preparation 

2.2.2.1 RNA isolation 

The isolation of total RNA from cells or tissues was performed using the Nucleospin total  

RNA II kit (Macherey & Nagel, GER). The isolation was carried out according to the 

manufacturer’s instructions. After cell lysis and filtration of the lysate, the RNA was bound to 

a silica membrane. The DNA was digested by a DNase step and the RNA was eluted with 60 

µl RNase-free water and stored at -70 °C until further usage. 

 

 

2.2.3 DNA modification 

2.2.3.1 Restriction analysis 

All restriction enzymes were purchased from NEB (Frankfurt, GER), Fermentas (St. Leon- 

Rot, GER) and Roche (Mannheim, GER). Cleavage of DNA with restriction enzymes was 

done using standard methods according to the instructions of the manufacturer. For a double 

digestion, if no common buffer specific to both enzymes was available, the plasmid DNA was 

ethanol-precipitated following the first digestion and re-dissolved in the appropriate buffer of 

the second enzyme. 

 

 

2.2.3.2 Dephosphorylation by alkaline phosphatase 

Alkaline phosphatase catalyzes the removal of the 5’ phosphate groups from DNA, RNA and 

ribo- and deoxyribonucleotide triphosphates. DNA was dephosphorylated using the Shrimp 

alkaline phosphatase (SAP, Roche, GER) according to the instructions of the manufacturer. 

After the reaction, the SAP was heat-inactivated (15 min, 65 °C). 
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2.2.3.4 Generation of blunt ends 

For the removal of 3’ overhang of double-strand DNA, the T4 polymerase (Fermentas, GER) 

with a 3’ 5’ exonuclease activity was used. The reaction was incubated at 11 °C for 30 min 

and then heat-inactivated for 10 min at 75 °C. 

 

 

2.2.3.5 Dimerisation and phosphorylation of oligonucleotides  

Dimerisation of complementary oligonucleotides was initiated by heating the dimerisation mix 

to 95 °C for 10 min followed by slowly cooling down. The dimerisation was done according to 

the following protocol: 

 
Dimerisation mix:   oligo-nucleotide 1 [100 μM]  20 μl 

     oligo-nucleotide 2 [100 μM]  20 μl 

     hybridization solution   40 μl 

 

hybridisation solution:   TRIS         50 mM  

     NaCl        300 mM  

     EDTA            2 mM  

 
Phosphorylation of the 5´-ends of the dimers was carried out using the T4-

Polynucleotidkinase (PNK) of Fermentas (St. Leon-Rot, GER). 

 
Phosphorylation mix:   oligo-nucleotide dimer [25 μM]  1.0 μl 

     ATP [625 mM]    0.4 μl 

     T4 DNA polymerase buffer  1.0 μl 

 

 

2.2.3.6 Ligation of DNA fragments 

The ligation reactions using T4 DNA ligase (Fermentas, GER) were prepared according to 

the manufacturer’s instructions and incubated at room temperature for 2 hours or at 14.5 °C 

overnight.  

 

 

2.2.4 Transformation 

The ligation reaction (2.3.5) was added to 100 µl of competent cells (DH5α) and incubated 

on ice for 30 min. Transformation efficiency was enhanced by a subsequent heat shock (2 
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min, 42 °C), followed by chilling bacteria on ice for a further 5 min. For regeneration and 

development of antibiotic resistance, the bacteria were incubated with 600 µl SOC-medium 

at 37 °C for 45-60 min. The cells were plated on LB-agar/ampicillin (100 µg/ml) or LB-

agar/kanamycin (100 µg/ml) plates, inverted and incubated overnight at 37 °C.  

 

 

2.2.4.1 Preparation of competent bacteria 

Competent bacteria were prepared by the TSS method described by Chung et al. (1989). 

100 ml LB medium were inoculated with 200 µl of a E. coli DH5α overnight pre-culture and 

cultivated until the early log-phase (OD600 = 0.4). Cells were harvested by centrifugation 

(5000 rpm for 15 min) and resuspended in 5 ml LB medium. An equal volume of TSS (2x) 

was added, carefully mixed and directly shock-frozen as 150 µl aliquots in liquid nitrogen. 

Cells were stored at -70 °C until further usage. 

 

TSS (2x):   20 %  PEG8000 
10 %   DMSO 
70 mM   MgCl2 
dissolve in LB and adjust pH to 6.5  

 

 

2.2.5 Polymerase chain reaction (PCR) 

The polymerase chain reaction is a method to amplify a certain region of DNA in an 

exponential manner using a thermostable DNA polymerase. The DNA polymerase normally 

used in this reaction, originates from the bacterium Thermus aquaticus. The heat resistance 

enables the polymerase to endure the steps of high temperature during the PCR. 

Furthermore, two primers are required for the PCR. The nucleotides for the newly 

synthesized DNA strands are supplied as nucleotide triphosphates. A PCR is normally 

characterized by three steps of different temperatures (denaturation, annealing and 

elongation). These three steps are repeated several times resulting in an exponential 

amplification of the target DNA strand. The exact temperatures for a PCR depend on the 

template as well as the composition of the primers. Thus, the conditions were different in 

each PCR application.  
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2.2.5.1 Qualitative PCR 

For the detection of the presence of a defined DNA sequence in a sample or for preparative 

approaches, qualitative PCR was used. PCR was performed in a total volume of 25 µl. The 

components of the reaction (dNTP’s, buffer, primer, polymerase and template) were applied 

to the mix according to the manufacturer’s instructions. The Taq-DNA-polymerases that were 

used in the assays are listed in table 2.7. 
 
 
Table 2.7: DNA polymerases. 

DNA polymerase proof-reading activity company 

Triple-MasterTM 3’ 5’ Eppendorf, GER 

Pfu UltraTM High-Fidelity 3’ 5’ Stratagene, GER 

Vent® 3’ 5’ NEB, GER 

REDTaq® -- Sigma, GER 

 

 

The PCR were performed according to the manufacturer’s instructions unless otherwise 

noted. An example for cycling conditions is: 

 
  1. 94 °C  5 min 
  2.  94 °C  1 min  denaturation 
  3. 54 – 65 °C 30 sec  annealing 
  4. 72 °C  30 sec  elongation 
  5. 72 °C  10 min  
 

The steps 2 to 4 were repeated 34 times.  
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2.2.5.2 Genotyping of mice 

Genotyping of mice was performed by PCR. The PCR was carried out on 0.5 µl tail lysate 

with REDTaq polymerase (Sigma, GER) in a reaction mixture as follows: 

 
PCR reaction mixture:  

DNA:  0.5 µl 
COL4A3-1: 2 µl 
COL4A3-2: 2 µl 
COL4A3-3: 0.25 µl 
DMSO:  1 µl 
Red-Taq: 12.5 µl 
water:  ad 25 µl 

 

 

PCR conditions for genotyping of COL4A3 mice were: 94 °C for 2 min; 45 cycles of 94 °C for 

30 sec, 56 °C for 60 sec, 72 °C for 2 min; and 72 °C for 2 min. 

The resulting PCR fragments supplied information about the genotype: a single fragment of 

900 bp indicated a wildtype mouse, two fragments of 280 bp and 900 bp a heterozygous 

one, and two fragments (280 bp+1900 bp) a knockout mouse. 

 
 

2.2.5.3 Real-time PCR 

Real-time PCR is a quantitative PCR method for the determination of the copy number of 

PCR templates such as DNA or cDNA in a PCR. It monitors the increase of DNA as it is 

amplified via fluorescence emitted during the reaction as an indicator. There are two types of 

real-time PCR: probe-based and intercalator-based. Probe-based real-time PCR requires, in 

addition to PCR primers, a fluorochrom-labeled probe which is an oligonucleotide with both, 

a fluorescent reporter at one end, and a quencher of fluorescence, at the opposite end. The 

5’ 3’ activity of the Taq polymerase breaks down the probe resulting in the breakdown of 

the reporter-quencher proximity allowing unquenched emission of fluorescence. 

An increase in the product targeted by the reporter probe at each PCR cycle therefore 

causes a proportional increase in fluorescence due to the breakdown of the probe and 

release of the reporter. The used alternative, the intercalator-based method, is also known as 

SYBR Green method. It requires a dye, named SYBR Green, in the PCR which binds to 

newly synthesized double-stranded DNA and gives fluorescence, thus determining the 

amplicon production. SYBR Green is a minor groove binding dye that does not bind to 

ssDNA and whose fluorescence is greatly enhanced by binding. During the stages of PCR, 

different intensities of fluorescence signals can be detected, depending on the amount of 

dsDNA that is present. 
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For the reaction with unspecific dyes, 10 µl SyBr Green I PCR Master Mix (ABI, Darmstadt, 

GER) were mixed with 0.8 µl forward and reverse primer (both 10 µM), 7.4 µl deionized H2O 

and 1 µl DNA or cDNA (10-50 ng). The standard curve was made either by a DNA dilution 

series (108 to 101 molecules) of a plasmid containing the coding sequence of interest or by a 

cDNA dilution series (50 ng – 3.12 ng). The PCR was performed at the following conditions. 

The steps 2 and 3 were repeated in 55 cycles: 

 
  1. 95 °C  10 min 
  2. 95 °C  30 sec 
  3. 60 °C  1 min 
  4. 95 °C  1 min 
  5. 55 °C  30 sec  dissociation curve 
  6. 95 °C  30 sec 

 

 

The GFP probe (Sequence: TTACGTCGCCGTCCAGCTCGACCAG) was used as specific 

probe. 8 µl RealMasterMix Probe were mixed with 0.6 µl forward and reverse primer (both 10 

µM), 0.2 µl probe (10 µM), 9.6 µl deionized H2O and 1 µl DNA or cDNA (50 ng). A dilution 

series (108 to 102 molecules) of a plasmid containing the GFP coding sequence was used as 

standard curve. The PCR was performed at the following conditions.  

 

The steps 2 and 3 were repeated in 55 cycles: 

 
  1. 95 °C  2 min 
  2. 95 °C  30 sec 
  3. 60 °C  1 min 
 

 

For both methods the real-time PCR was run on a Mx3000P Cycler (Stratagene, GER). In 

order to determine the number of copies that are contained in a sample, a standard curve 

was prepared by plotting the copy number versus the Cycle Threshold. 

 

 

2.2.5.4 Determination of the titer of AAV preparations or the AAV infection rate by 
 quantitative PCR 

In order to evaluate the titer rate of virus preparations or the infection rate of AAV, a dilution 

series of the respective mother plasmid was used as a calibration series with defined copy 

numbers. 
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2.2.5.5 Sequencing of DNA  

The sequencing reactions were all performed using the chain termination method developed 

by Frederick Sanger (Sanger et al., 1977). The sequencing was done according to the “cycle 

sequencing” technique using the BigDye terminator sequencing kit v.3.1 (Applied 

Biosystems, GER). The resulting DNA fragments of varying length were separated by 

capillary gel electrophoresis and analysed by an automated sequencer (ABI 3730) in the 

service laboratory of the Institute of Genetics (University of Cologne).  

 
Sequencing mix:    BigDye terminator mix  2 μl 

buffer    4 μl 
primer    5 pmol 
DNA    150 – 300 ng 
H2O    ad 20 μl  

Cycling:    

PCR conditions for sequencing were: 

1. 96 °C   1 min 
2. 96 °C    15 sec 
3. 50 °C   10 sec 
4. 60 °C   4 min 
5. 60 °C   10 min 

 

The steps 2 to 4 were repeated 30 times. 

 

 

2.2.5.6 Reverse transcriptase reaction 

For real-time PCR, mRNA was reverse transcribed into cDNA using the High Capacity cDNA 

RT Kit. As primers, random hexamer oligonucleotides were added. Annealing of the random 

primers took place at 25 °C for 10 minutes followed by 2 hours cDNA synthesis at 37 °C. The 

cDNA reaction mixture was according to manufacturer’s instructions. 

 

 

2.2.6 Biochemical methods 

2.2.6.1 Preparation of protein extracts and determination of protein concentration 

Cell monolayers were rinsed twice with 1x PBS and scraped in SDS protein lysis buffer. After 

three freeze and thaw cycles, the protein extracts were centrifuged for 15 min at 14.000 rpm 

at 4 °C in an Eppendorf centrifuge Type 5417R (Eppendorf, Hamburg, GER). Protein 

concentrations of the supernatants ("protein extracts") were determined using the BCA 

Protein Assay (PerbioScience, Bonn, GER) with a dilution series of BSA for calibration 



MATERIALS AND METHODS 

 36

according to the recommendations of the supplier. Colour change of the samples were read 

out at 570 nm wavelength in a Multiscan Ascent photometer (Thermo Scientific, Bonn, GER).  

 

 

2.2.6.2 Western blot analysis 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using the Bio-Rad Mini 

protein gel system. Gradient gels (4-12 %) were obtained from Bio-Rad (München, GER). 

Protein samples were mixed with NuPAGE SDS sample buffer (4 x), denatured at 70 °C for 

10 min and directly loaded onto the gels. Electrophoresis was carried out at 100 V for about 

1 h. The molecular weight of proteins was estimated by running pre-stained (See blue 

marker, Invitrogen, Karlsruhe, GER) marker proteins. After separation, the proteins were 

transferred to a nitrocellulose membrane (Amersham-Bioscience, Freiburg, GER) using the 

semi-dry NuPAGE-blotting system from Invitrogen for 90 min at 30 V. After transfer, the 

immobilized proteins were visualized by Ponceau staining (Sigma-Aldrich, Taufkirchen, GER) 

according manufacturer´s instructions. The membranes were then incubated in blocking 

solution (1 x TBS 5 % [w/v] dry milk, 0.2 % [v/v] Tween-20) for 1 h at RT. Primary antibodies 

were either diluted in blocking solution or 5 % BSA in 1 x TBS and 0.1 % Tween-20 (table 

2.1) and incubated at 4 °C overnight with gentle shaking. 

Membranes were washed with TBST (10 mM TRIS-HCl, 100 mM NaCl, 0.05 % Tween, pH 

7.4) four times for 15 min, each, followed by two additional washes with 1 x TBS. Membranes 

were then incubated for 1 h at RT with the appropriate secondary antibody alkaline 

phosphatase conjugates (table 2.2), diluted in blocking solution. Membranes were washed 

four times for 15 min with TBST and twice with 1 x TBS. Western blots were developed using 

chemiluminescence substrate (CDP Star, Invitrogen, GER) according to the manufacturer’s 

instructions. 

Blots could be stripped by incubation in stripping buffer (1 x TBS with 2 % SDS and 7 µl  

β-mercaptoethanol / ml) for 30 min with gentle agitation. After extensive washing in 1 x TBS 

membranes could be re-probed. 

 

 

2.2.7 Cell culture 

2.2.7.1 Cell culture medium 

HEK293, HeLa, NRK52E and NRK49F cells were grown in Dulbecco’s modified Eagle’s 

medium with 4.5 g/l glucose (DMEM) (Sigma, St. Louis, MO, USA) supplemented with heat-

inactivated 10 % (v/v) fetal calf serum (FCS) (Sigma, St. Louis, MO, USA), 100 U/ml 
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penicillin and 100 µg/ml streptomycin at 37 ºC, 5 % CO2. Cells were regularly passaged 

when 80 % confluency was reached. 

 

 

2.2.7.2 Passage of cells 

Adherent cells were washed with 1 x PBS to remove traces of serum which inhibits trypsin. 

The medium was aspirated from the monolayers, 1 x PBS was added and directly aspirated 

again. The cells were covered with trypsin (0.25 % trypsin / 0.02 % (w/v) EDTA in 1 x PBS) 

and after 10 seconds, most of the trypsin was aspirated. The cells were incubated at 37°C for 

1-5 min until the adherence was abolished. Trypsin was stopped by adding fresh medium 

and cell clumps were broken up by pipetting vigorously. The cells were split and further 

cultivated in DMEM. 

 

2.2.7.3 Cryopreservation of cells 

Monolayers of 80-90 % confluency were washed with 1 x PBS, trypsinized, assimilated in 

fresh medium and centrifuged at 800 rpm / 4 °C for 5 min in a Beckman GPR centrifuge 

(Beckman, Krefeld, GER). The pellet was resuspended in 500 μl fresh medium and mixed 

with DMSO to a final concentration of 10 %. The cells were slowly cooled down at -70 °C 

over 24 h and finally stored in liquid nitrogen.  

In order to culture cryopreserved cells, they were rapidly thawed and incubated in a culture 

dish in 9 ml fresh medium. The removal of DMSO leftovers was ensured by a medium 

change 12 h later.  

 

 

2.2.7.4 Stimulation of cells 

Cells were trypsinized and seeded in an appropriate density to gain 70-75 % confluency 12 h 

later. For the following 24 hours, the cells were serum starved by medium change to DMEM 

with 0.5 % FCS. The stimulation was done by adding the relevant cytokine (hHGF  

[40 ng ml-1]). 

 

 

2.2.7.5 Transfection of plasmid DNA 

Plasmid transfections were performed using Lipofectamine 2000 (Invitrogen) according to 

manufacturer's instructions. Cells used for transfection were freshly passaged one day 

before transfection and cultivated in antibiotic-free medium. At time of transfection, the cells 
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had a confluency of 90 %. Alternatively, the calcium precipitation method was used. This 

technique relies on precipitates of plasmid DNA formed by its interaction with calcium ions 

finally absorbed endocytotically by the cell. The cells were plated one day prior to 

transfection. After 24 h and a confluency of 80 %, the medium was replaced and after a 

further two hours the cells were transfected. For each 150-mm-diameter cell culture dish an 

equal molar ratio of DNA was mixed with 1 ml of 250 mM CaCl2 and 1 ml HBS buffer was 

slowly added and briefly vortexed. The mix was incubated at RT for 2 min and then added to 

the cells.  

 

Transfection buffer (HBS) 2x:   Hepes   50 mM 
      NaCl   280 mM 
      Na2HPO4  1.5 mM 
      pH 7.2 
 

 

2.2.7.6 HGF ELISA 

Determination of human HGF levels in cell culture medium or sera of mice were performed 

using the commercial Quantikine Human HGF Immunoassay of R&D (Wiesbaden, GER) 

according to manufacturer’s instructions.  

 
 

2.2.8 Functional Analysis 

2.2.8.1 Luciferase Assay 

The luciferase assays in the experiments were performed using the Dual-Glo™ luciferase 

reporter assay system of Promega (Mannheim, GER) according to manufacturer’s 

instructions. The assay was performed on a plate reading luminometer with integrated 

dispenser. The co-transfected cells were washed with 1 x PBS, lysed in an appropriate 

volume of lysis-buffer and 20 µl of each sample was measured in duplets. 

 

. 

2.2.9 AAV production 

2.2.9.1 Preparation of AAV  

7.5 x 106 HEK293 cells (passage <30) were plated one day prior to transfection on a 150-

mm-diameter cell culture dish, 30 dishes for each virus preparation. The cells were 

transfected by the calcium phosphate precipitation method (2.7.5). For each 150-mm-

diameter cell culture dish an equal molar ratio of adenoviral helper plasmid (22.5 µg), 
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transgene plasmid (7.5 µg) and helper plasmid (7.5 µg) were added. 24 h after transfection 

and incubation at 37 °C and 5 % CO2, the medium was changed to DMEM supplemented 

with 2 % FCS and 100 U/ml penicillin and 100 µg/ml streptomycin and incubated for a further 

24 hours. The HEK293 cells were harvested by scraping and centrifugation in a Beckman 

GPR centrifuge at 1200 rpm for 15 min and the cell pellet was resuspended in 7 ml lysis 

buffer. 

 

 
Lysis buffer:   50 mM  TRIS-HCl 

    150 mM NaCl 
    pH 8.5 
 

 

2.2.9.2  AAV extraction and purification 

Virus particles were released by three freeze-and-thaw cycles. A subsequent Benzonase 

digestion (50 U/ml) for 30 min at 37 °C resulted in the removal of cellular DNA and RNA. The 

digestion was followed by a centrifugation at 3220 x g / 60 min / 4 °C and the virus-containing 

supernatant was purified via density gradient centrifugation.   

To set up the gradient the supernatant was transferred to an ultracentrifuge tube (Thermo 

Scientific, Bonn, GER) and underlayed with 15 % (9 ml), 25 % (6 ml), 40 % (5 ml) and 60 % 

iodixanol solution (5 ml). Finally the gradient was filled up with PBS/Mg (1 mM) / KCl (2.5 

mM). The centrifugation was carried out for 2 hours at 63000 rpm and 4 °C in a Sorvall 

Ultracentrifuge OTD Combi (Thermo Scientific, Bonn, GER). Subsequently, the 40 % 

iodixanol gradient layers, containing AAV vector, were harvested. The AAV preparations 

were stored at -70 °C and thawed on ice until further usage. 
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Table 2.8: Iodixanol solutions.   

 15 % 25 % 40 % 
 

60 % 
 

10 x PBS 5 ml 5 ml 5 ml / 

1 M MgCl2 50 µl 50 µl 50 µl 50 µl 

2.5 M KCl 50 µl 50 µl 50 µl 50 µl 

5 M NaCl 10 ml 10 ml / / 

Optiprep 12.5 ml 20 ml 33.3 ml 50 ml 

0.5 % 
phenolred 

75 µl 75 µl / 25 µl 

H2O ad 50 ml ad 50 ml ad 50 ml ad 50 ml 

   
 
 

2.2.10 The COL4A3 knockout mouse model 

The mouse model used in the experiments was the COL4A3 knockout mouse [16], a mouse 

model of autosomal-recessive Alport syndrome. COL4A3 knockout 129/Sv mice (Jackson 

Immunoresearch Laboratories, Westgrove, PA, USA) were kindly provided by O. Gross [149] 

and had free access to regular chow and water. Only heterozygous COL4A3 knockout 

129/Sv mice were crossbred. All experiments were conducted in accordance with National 

Health and Medical Research Committee Guidelines for Animal Experimentation.  

 

 

2.2.10.1 Transduction of mice with AAV 

4 week old homozygous COL4A3 mice were systemically transduced with 5 x 1011 iodixanol 

purified AAV particles via the tail vein and were sacrificed either 2 weeks later for reporter 

gene analyses or at the age of 9.5 weeks for the gene therapeutical approach. The control 

mice were transduced with the same quantity of AAV particles, containing empty capsids 

instead of a transgene. 

 

 

2.2.10.2 Preparation of organs from adult mice 

Adult mice were sacrificed by cervical dislocation or decapitation (in case of blood extraction 

for serum) and the abdomen was opened. The organs (kidney, liver, heart and spleen) were 
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removed and shock frozen for cryosections and DNA- and RNA isolation and fixed for 

paraffin embedding. 

 

 

2.2.10.3 Fixation, paraffin embedding and microtoming of mouse organs 

Organs, fixed in 10 % phosphate-buffered formalin overnight at RT followed by 9 hours 

automated processing with series of dehydration steps and were embedded in paraffin wax. 

Paraffin blocks were sectioned with a microtome and 5 µm sections were floated on a water 

bath at 50 °C, took up on glass slides, dried overnight at 37 °C and stored at room 

temperature until staining. 

 

 

2.2.10.4 Morphological and immunohistochemical studies 

All stainings for histological evaluation were kindly performed by the routine laboratory of the 

Institute for Pathology, University Hospital Cologne. 

 

 

2.2.10.5 Classification of the fibrosis grade in transversal kidney sections 

For the evaluation of the fibrosis grade, transversal kidney sections were examined by 

gomori staining. Interstitial fibrosis, predominantly visible by ECM deposition, and the 

severity of fibrosis was graded as follows: grade 1: normal; grade 2: ECM accumulation in 

less than 5 % of the section; grade 3: ECM accumulation in less than 10 % of the section; 

grade 4: ECM accumulation in less than 20 % of the section; grade 5: ECM accumulation in 

more than 20 % of the section. 

 

 

2.2.10.6 Immunohistochemical staining for α-SMA 

Paraffin-embedded sections were deparaffinized by two rinses with xylene and three rinses 

with alcohol (100 %, 96 %, and 75 %). Endogenous peroxidase activity was quenched by an 

incubation of the sections in 0.3 % H2O2 in methanol for 30 min. Afterwards, the sections 

were incubated for 30 min in blocking solution (10 % milk powder in PBS 1 x) followed by an 

overnight incubation with the ready to use smooth muscle actin HRP conjugated primary 

antibody. As substrate for the peroxidase, the DAB solution, was applied to the sections and 

enzymatic reaction was monitored by colour development. The reaction was stopped by 
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diving the slides in PBS. Finally the sections were counterstained with haematoxylin, washed 

in tap water and covered with pertex.  

 
DAB solution:  10 mg   DAB tablet 

   15 ml   PBS (1 x) 
 

The solution was filtered and 12 µl of 0.3 % H2O2 were added. 

 

 

2.2.10.7 Immunohistochemical staining for GFP 

Paraffin-embedded sections were stained with anti-GFP antibody. After deparaffinization 

steps (see 2.2.10.6), sections were pre-treated in a microwave oven at 350 watt for 10 

minutes in citrate buffer (pH 6.0). This treatment was followed by a blocking reaction with 

avidin in goat normal serum (diluted 1:100 in 10 % milk powder in PBS) for 30 min at RT 

going along with a biotin blocking (1:100 in 10 % milk powder in PBS) for 15 minutes at RT. 

The primary antibody, recognizing GFP (1:200), was incubated overnight at 4 °C. GFP 

antibody binding was detected using the ABC method from Vector Laboratories (Burlingame, 

CA, USA) following the instructions of the manufacturer. Finally, the sections were 

counterstained with haematoxylin. After washing for 10 minutes in tap water the slides were 

covered with glycerine gelatine mounting medium. 
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3.  Results 

HGF was demonstrated to act as an anti-fibrotic agent [74]. However, the molecular and 

cellular mechanisms underlying the anti-fibrotic activities of HGF are not well understood. In 

the present study anti-fibrotic signaling of HGF was analyzed and the resulting transcript 

profiles affected by HGF were studied. In order to apply the anti-fibrotic actions as 

therapeutical tool to renal fibrosis, a mouse model for renal interstitial fibrosis, the COL4A3 

knockout mice, was used. To enable a most efficient delivery of HGF to the renal 

tubulointerstitium, different serotypes of the adeno-associated virus (AAV) were chosen as 

gene vehicle and analyzed. 

 

 

3.1  HGF acting as an anti-fibrotic agent  
An important cell type in tubulointerstitial fibrosis is represented by the renal interstitial 

fibroblasts. These cells play a decisive role in the accumulation of extracellular matrix and 

therefore the effect of hHGF on this cell type was studied by in vitro analyses. 

To allow an accurate stimulation of renal fibroblasts by hHGF, the cell line NRK49F used in 

this study was examined with regard to the expression of the HGF receptor c-met. Real-time 

PCR using c-met specific primers designed to hybridise to the c-met coding region revealed 

expression of this receptor (data not shown).  

 

 

3.1.1 HGF stimulates the Erk1/2 pathway and the Akt pathway in renal fibroblasts 

For in vitro studies, FCS is used to activate HGF by proteolytic processing. However, FCS 

also contains growth factors, such as HGF and many others, which could interfere with the 

experiment [150, 151]. Therefore the minimal concentration of FCS, necessary to activate 

hHGF, was determined first. NRK49F cells were incubated in growth medium containing only 

5 %, 2 %, 1 % and 0.5 % FCS, 24 h before stimulation. Commercially available hHGF was 

added in a concentration of 40 ng ml-1 for 15 minutes. As shown in figure 3.1.1, Erk 1/2 

(p42/p44), a transducer of HGF signaling, was phosphorylated after hHGF treatment, while 

the non-stimulated cells cultured with 5 %, 2 % and 1 % FCS showed only faint 

phosphorylation. As the presence of 0.5 % FCS was sufficient to activate hHGF, subsequent 

analyses were performed in medium supplemented with 0.5 % FCS if not otherwise 

indicated. 

Beside the FCS concentration also the concentration of hHGF for a sufficient stimulation of 

the cells had to be determined. Therefore NRK49F cells were incubated in medium 

containing 0.5 % FCS and were stimulated with hHGF concentrations ranging from 5 to 80 
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ng ml –1 for 15 minutes (Fig. 3.1.1 B). Phosphorylation of Erk1/2 in samples treated with 5 ng 

ml-1 was nearly as low as in controls but raised with increasing hHGF concentration and was 

most obvious at a concentration of 40 ng ml-1 (Fig. 3.1.1 B).  

Taken together, 0.5 % FCS was sufficient to activate hHGF and a concentration of 40 ng ml-1 

hHGF appeared to be most efficient for stimulation. Therefore, subsequent analyses were 

performed under these conditions. 

 

 

 

Fig. 3.1.1: Immunological detection of phosphorylated Erk1/2 (p42/p44) separated by 
SDS-gelelectrophoresis for the determination of (A) the necessary FCS concentration 
to activate hHGF and (B) the hHGF concentration to sufficiently stimulate NRK49F 
cells. 
(A) NRK49F cells were incubated with DMEM supplemented with 5, 2, 1 and 0.5 % 
FCS. Cells stimulated with 40 ng ml-1 hHGF are indicated by (+), non-stimulated cells 
by (-). The protein bands for Erk1/2 (p42/44) with an apparent molecular weight of 42 
and 44 kDa are shown. β-actin was used as loading control.  
(B) NRK49F cells were stimulated with different hHGF concentrations ranging from 5-
80 ng ml-1 hHGF for 15 minutes. Non-stimulated cells are shown as (--). The protein 
bands for Erk1/2 (p42/44) with an apparent molecular weight of 42 and 44 kDa are 
shown. β-actin was used as loading control.  

 
 

Up to date, the anti-fibrotic effect of HGF is only reported to be mediated by counteracting 

the pro-fibrotic TGFβ [68, 69, 152]. But to clarify which signaling cascades are responsible 

for hHGF effects in renal interstitial fibroblasts, the phosphorylation statuses of Erk1/2 

(p42/p44), Smad2, Stat3, and Akt (Fig. 3.1.2) after hHGF stimulation were analyzed. 

NRK49F cells were incubated in medium containing 0.5 % FCS. They were stimulated with 

40 ng ml-1 hHGF for 5 and 15 min, as well as 1 and 6h. 
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Fig 3.1.2 NRK49F cells were stimulated with hHGF [40 ng ml-1 for the indicated times. Cells 
stimulated with hHGF are marked by (+), non-stimulated cells by (-). The phosphorylation of (A) 
Erk1/2 (p42/44), (B) Smad2 (p-Smad2), (C) Stat3 (p-Stat3), and (D) Akt (p-Akt) were detected 
using phospho-specific antibodies. HUH7 cells stimulated with IL-6 served as positive control for 
Stat3-phosphorylation (C). β-actin (A, C, D) and Smad2 (B) were used as loading controls. The 
displayed analyses are representative for two independent experiments. 
 

As illustrated in figure 3.1.2, hHGF treatment resulted in the phosphorylation of Erk1/2 

(p42/44) already after 5 min, reached a peak between 15 and 60 min and then declined. 

Phosphorylation of Smad2 at the linker region was observable shortly later at 15 min after 

hHGF addition. The activation of Smad2 was still detectable 1 h after stimulation and 

returned to baseline 6 h after hHGF treatment (Fig. 3.1.2 B). Due to the fact that two other 

signaling cascades are reported to be turned on by HGF in epithelial cells, the Stat3 as well 

as the Akt pathway, the phosphorylation status of both was also checked. While Stat3 

showed no phosphorylation by hHGF in renal fibroblasts (Fig. 3.1.2 C), the Akt protein was 

phoshorylated after hHGF treatment (Fig. 3.1.2 D). The onset of this pathway was 

simultaneous to the activation of the MAP/Erk cascade, demonstrating phosphorylation 

already 5 min after stimulation, which remained constant till 15 min, and then decreased.  

 

 

3.1.2 Expression profiles induced by hHGF stimulation in renal fibroblasts 

After identification of the signaling cascades that become turned on by HGF in renal 

fibroblasts, microarray analyses were performed to comprehensively identify the spectrum of 

genes that are affected by hHGF treatment. NRK49F cells were stimulated with a 

concentration of 40 ng ml-1 hHGF for 24 h. In contrast to the experiments concerning HGF 

signal transduction, examination of the mRNA levels of stimulated NRK49F cells was 

monitored in growth medium supplemented with 10 % FCS [153]. In the preceded 



RESULTS 

 46

experiments, the minimal amount of FCS was determined to detect only protein modification 

induced by exogenous hHGF. However, in this experiment the high amount of FCS was 

important to ensure proper metabolism and protein synthesis by the cells even over a long 

period of stimulation. Total RNA was isolated; the quality of the RNA preparations were 

verified by capillary electrophoresis on Bioanalyzer 2000 (Agilent) and subjected to an 

Affimetrix Chip for gene expression analyses. Un-stimulated NRK49F cells served as control. 

As shown in figure 3.1.3, gene expression profiling identified more than 1600 genes that 

were either up- or down-regulated by HGF. 58 up-regulated genes displayed a fold change 

higher than 3, however, most of the more than 3-fold differentially expressed genes were 

down-regulated (n = 202) (Fig. 3.1.3 A).  

 

 

 

Fig. 3.1.3 Expression profiling by microarray analyses of hHGF stimulated NRK49F cells. Up-
regulated (A) and down-regulated genes (B) after treatment with hHGF for 24 h. Total RNA was 
extracted and microarray analyses were performed.  

 

Functional clustering of the genes revealed the up-regulated genes to be preferentially 

involved in motor and intracellular transporter activity (Fig. 3.1.4 A). The down-regulated 

genes, however, were linked to ECM production and degradation, cell proliferation, immune 

response and signal transduction (Fig. 3.1.4 B and supplemental table S1).  
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Fig. 3.1.4: Genes identified by microarray analyses were classified in three groups 
(biological process, molecular function and cellular component) according to the GO-terms. 
(A) genes that were up-regulated by hHGF and (B) genes that were down-regulated.  

 

 

In order to identify genes affected by hHGF that are involved in the mechanisms of 

fibrogenesis, here the main interest was focussed on candidates selected by their 

pronounced divergent expression profile and their potential association with pro-fibrotic 

processes. 16 genes were chosen for further validation by real-time PCR and the selected 

genes were subdivided into 4 groups: 

 

 

 (1) signal transducers linked to specific fibrotic signaling cascades 

(2) intracellular mediators of TGFβ signals, the Smad genes 

(3) members of the CCN family 

(4) fibrotic markers and collagens 
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3.1.2.1 HGF inhibits expression of signal transducers linked to fibrotic processes  

To verify the results obtained by gene chip analyses, real-time PCR was performed on 

expression levels of selected genes. The first analyzed group involved genes that are linked 

to signaling cascades. The fibrotic mediator TGFβ was more than 40 % down-regulated by 

hHGF validated by real-time PCR (Fig. 3.1.5 A). Likewise the BMP and activin membrane-

bound inhibitor (Bambi) displayed a 53 % decreased transcript level (Fig. 3.1.5 A). In 

addition, the expression level of the receptor PDGFRβ (platelet-derived growth factor 

receptor beta) was 70 % reduced. PDGF signaling via this receptor has been implicated in 

several fibrotic conditions and is assumed to play a role in driving proliferation of cells with a 

myofibroblastic phenotype [154]. A dramatic decrease by hHGF was also observable for 

FIGF (c-fos induced growth factor), a gene related to the platelet-derived growth 

factor/vascular endothelial growth factor family [155]. This factor is also known as VEGF-D 

and the presence of hHGF strongly diminished transcript levels up to 92 % (Fig. 3.1.5 A).  
 

 

 

Fig. 3.1.5: Expression analyses of NRK49F cells treated with hHGF for 24 h. Real-time PCR was 
performed with primers specific for (A) TGFβ, Bambi, PDGFRβ and FIGF, (B) Smad2, Smad3, 
Smad4 and Smad7, (C) CTGF, Nov, Wisp-2 and (D) for SMA, COL1A1, COL1A2, COL4A1 and 
COL4A5. NRK49F cells were cultured in the presence of hHGF [40 ng ml-1] for 24 h (grey bars). 
The expression levels were normalized to HPRT and compared to the untreated cells that served 
as control (black bars). Each bar represents the mean and SD of three independent experiments. 
The control value was arbitrarily set 1.  
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3.1.2.2 Effects of HGF on the expression level of Smad genes 

Smad-signaling is one of the crucial pathways involved in renal fibrosis [156]. Therefore the 

effect of hHGF on the expression levels of different Smads was also validated by real-time 

PCR. As demonstrated in figure 3.1.5 B, HGF treatment had only slight effects on the mRNA 

level of Smad2 (10 % reduction) or Smad3 and Smad4 (30 % reduction). The inhibitor 

Smad7, however, known to be induced by a feed-back mechanism of Smad2/3 signaling 

[33], displayed a highly reduced mRNA level of almost 60 % compared to the control level 

(Fig. 3.5.1 B). 

 
 

3.1.2.3 Effects of HGF on the expression level of CCN family members 

A strong down-regulation by hHGF was observable for members of the CCN family, CTGF 

(connective tissue growth factor), Wisp-2 (wnt-induced secreted protein-2) and Nov 

(nephroblastoma overexpressed protein). All of them are extracellular matrix-associated 

proteins that amongst others play critical roles in injury repair, fibrotic diseases and cancer 

[157]. Stimulation of NRK49F cells with hHGF for 24 h resulted in a significant decrease of 

the expression levels of all three CCN genes with the strongest effect on Nov expression 

(Fig. 3.1.5 C). While the transcript levels of CTGF were reduced up to 80 %, the diminished 

Nov expression (96 %) exceeded the 90 % reduced Wisp-2 expression. 

 
 

3.1.2.4 Effects of HGF on the expression level of fibrotic markers and collagens 

The actin isoform of smooth muscle actin (SMA) is a marker protein for myofibroblastic 

differentiation and prominently linked to fibrotic processes [10]. Expression analyses by real-

time PCR demonstrated that the transcript level of SMA was narrowed to 55 % by hHGF 

treatment. Furthermore, subunits of collagen I and IV were also negatively affected by hHGF. 

The main matrix protein accumulated during fibrosis is collagen I. Real-time PCR revealed a 

down-regulation of the mRNA levels of the collagen Iα1 subunit (70 % reduction) as well as 

the collagen Iα2 subunit (57 % reduction). Likewise the mRNA levels of the α1 (34% 

reduction) and α5 subunit (46 % reduction) of collagen IV were highly reduced by hHGF. 

 

Taken together these results demonstrate that HGF resulted in a down-regulation of genes 

that are particularly involved in the synthesis of extracellular matrix (collagenes), extracellular 

matrix-associated genes that amongst others play critical roles in injury repair, fibrotic 

diseases and cancer (CCN genes) as well as genes that are linked to signaling cascades 

that are implicated in several fibrotic conditions. Thus, the results of the microarray analyses 
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could be validated and moreover a more accurate expression profile of selcted candidate 

genes was determined. 

But with regard to the analyses of the signaling cascades that are turned on by hHGF in 

interstitial fibroblasts (3.1.1), it remains still unclear if hHGF regulates the selected genes via 

the onset of the MAP/Erk pathway or the activation of the Akt pathway. Therefore, siRNA 

approaches to block either the Smad pathway or the Akt pathway were performed.  

 

 

3.1.2.5 Smad independent anti-fibrotic effects of HGF  

In order to investigate whether genes were repressed in response to hHGF by inhibited 

Smad signaling due to linker phoshorylation after Erk1/2 activation, or by activation of the Akt 

pathway, NRK49F cells were transfected with siRNA specific for Smad4 and specific for Akt, 

respectively. In both cases, cells were also additionally stimulated with hHGF [40 ng ml-1] for 

24 h. Then, the 16 previously identified hHGF target genes were analyzed by quantitative 

real-time PCR. For control, scrambled siRNA was transfected under the same conditions.  

 

The siRNA transfection for Smad4 reduced the mRNA level of Smad4 to more than 80 % 

while the silencing of Akt resulted in more than 60 % reduced transcript levels (data not 

shown). All of the selected genes validated by real-time PCR (3.1.2.1-3.1.2.4) were also 

analyzed in regard to their mRNA expression levels after knockdown of Smad4 or Akt. 

However, only genes that showed an additional effect by hHGF treatment after down-

regulation via Smad4 silencing are displayed in figure 3.1.6. Correspondent to Smad4 

inhibition these genes are also displayed for the Akt silencing experiments (Fig. 3.1.7). 

With regard to the blockade of the Smad pathway by silencing Smad4 via specific siRNA, the 

expression levels of TGFβ, Smad2 and Smad3 were not affected by the knockdown of 

Smad4 (data not shown). In contrast, Smad7, Bambi, SMA, COL1A1, COL1A2, COL4A5, 

CTGF, Nov, Wisp-2, PDGFRβ, and FIGF displayed highly reduced mRNA expression levels 

after Smad4-blockade by siRNA (shown for Nov, Wisp-2, CTGF, PDGFRβ, FIGF, and 

COL1A1 in Fig. 3.1.6). Furthermore, HGF stimulation of Smad4 silenced cells resulted in an 

additional decrease in the mRNA levels of Nov, Wisp-2, PDGFRβ, FIGF, and CTGF (Fig. 

3.1.6 A-E). The other genes were not further affected by hHGF, as demonstrated for 

COL1A1 (Fig. 3.1.6 F).  
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Figure 3.1.6: Effects of hHGF on the expression levels of different genes in Smad4-inhibited 
NRK49F cells. Expression levels of (A) Nov, (B) Wisp-2, (C) CTGF, (D) PDGFRβ, (E) FIGF, and 
(F) COL1A1 are displayed. Cells were transfected with either Smad4 siRNA (hatched bars) or 
scrambled (scr) control siRNA (black and grey bars), respectively. Twelve hours after 
transfection, medium was exchanged with medium containing 10 % FCS and cultivated for 
additional 12 h. Then the cells were treated with (+) or without hHGF (-) [40 ng ml-1] for another 
24 h. RNA was extracted, reverse transcribed and mRNA expression was determined by real-
time PCR. All expression levels were normalized to HPRT. The graphics are representative for 
three independent experiments. Untreated cells served as control (black bar) and the value of 
the control was arbitrarily set 1. 
 

 

The additive effect of hHGF on Smad4 silenced cells was directly compared to un-stimulated 

Smad4 inhibited cells as shown and summarized in figure 3.1.7. FIGF displayed with 60 % 

down-regulation of the mRNA level the highest reduction by hHGF in comparison to Smad4 

silenced cells. But also the further reduced expression level of Nov (40 %), Wisp-2 (41 %), 
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CTGF (32 %), and PDGFRβ (14 %) suggest an additional Smad independent contribution by 

hHGF.   

 

        
Figure 3.1.7: Additional down-regulation by hHGF in Smad4-silenced NRK49F cells 
compared to un-stimulated Smad4 silenced cells. (A) The expression levels of Nov, 
Wisp-2, CTGF, PDGFRβ, FIGF, and COL1A1 are displayed. Cells were transfected with 
Smad4 siRNA. Twelve hours after transfection, medium was exchanged with medium 
containing 10 % FCS and cultivated for additional 12 h. Then the cells were treated with 
40 ng ml-1 hHGF for another 24 h (hatched bars). RNA was extracted, reverse 
transcribed and mRNA expression was determined by real-time PCR. All expression 
levels were normalized to HPRT. The graphic is representative for three independent 
experiments. Un-stimulated Smad4 silenced cells served as control (black bar) and the 
value of the control was arbitrarily set 1. The additional reduction of the transcript levels 
after hHGF treatment is indicated in percentage. P-values < 0.05 were considered 
significant (B). 

 

 

To clarify whether the additional repression of the mRNA levels could be attributed to a 

regulation via the Akt pathway, real-time PCR of the transcript levels in cells that were 

silenced for Akt were performed (fig. 3.1.8).  

 



RESULTS 

 53

 
Figure 3.1.8: Effects of hHGF on the expression levels of different genes in Akt-inhibited 

NRK49F cells. 
The expression levels of Nov (A), Wisp-2 (B), CTGF (C), PDGFRβ (D), FIGF (E) and COL1A1 are 
displayed. Cells were transfected with either Akt siRNA (Akt) or scrambled (scr) control siRNA 
(black and grey bars), respectively. Twelve hours after transfection, medium was changed to 
medium containing 10 % FCS and cultivated for additional 12 h. Then the cells were treated with 
(+) or without (-) 40 ng ml-1 hHGF for another 24 h. RNA was extracted, reverse transcribed and 
mRNA expression was determined by real-time PCR. All expression levels were normalized to 
HPRT. The graphics are representative for three independent experiments. Untreated cells 
served as control (black bar) and the value of the control was arbitrarily set 1. 
 

 

Repression of Akt signaling resulted in a dramatic increase of Nov, Wisp-2, CTGF, and 

PDGFRβ mRNA levels, indicating that Akt plays a decisive role in the regulation of these 

genes. Furthermore, additional treatment with hHGF demonstrated a high down-regulation 

of the expression levels, which is most likely due to the inhibition of the Smad pathway. 

However, FIGF and COL1A1, showed no altered expression after Akt knockdown, but a 
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strong repression by the additional stimulation with hHGF. The other genes of the 16 

selected candidates showed no alteration in their expression levels after Akt knockdown. 

 

In summary, these data provide evidence that HGF stimulation of renal fibroblasts results in 

activation of both, the Erk1/2 and the Akt pathway. Functional cluster analyses and 

quantitative real-time PCR assays indicate that the HGF-stimulated pathways transfer the 

anti-fibrotic effects in renal interstitial fibroblasts by reducing expression of extracellular 

matrix proteins, various chemokines, and members of the CCN family. Blocking of the Smad 

pathway by RNA interference revealed that not only the interaction with the Smad pathway 

by HGF is involved in the down-regulation of fibrotic mediators but also the HGF stimulated 

Akt pathway. 

 

Thus, HGF has a broad effect on the inhibition of fibrotic markers and mediators in renal 

interstitial fibroblasts. Based on these in vitro results, further analyses were addressed to the 

anti-fibrotic role of hHGF in interstitial renal fibrosis in vivo. Therefore a mouse model for 

interstitial fibrosis was used and hHGF was administered using the adeno-associated virus 

as gene vehicle.  

 
 

3.2 The anti-fibrotic function of HGF in a gene therapeutical approach,  
in vivo  

To examine the anti-fibrotic effect of hHGF also in vivo, the COL4A3 knockout mouse model 

was used. COL4A3 knockout mice are a model for the human Alport syndrome, representing 

the autosomal form. These mice are homozygous for the deletion of the α3 subunit of 

collagen IV [16]. The disease progression is very similar to that reported in studies of 

humans and include hearing defects, microhematuria, proteinuria, and irregular thickening 

and splitting of the glomerular basement membrane [16]. Mice suffering from the Alport 

syndrome finally develop an interstitial fibrosis and based on the genetic background 

(129/Sv) these mice develop endstage renal failure within 14 weeks [16]. The morphology of 

the kidney is characterized by thickening and splitting of the glomerular basement 

membrane. The thickening starts with the age of 4 weeks in the external capillary loops and 

spreads out in the whole kidney. The mice die by renal failure at the age of 11-14 weeks. 

For the application of hHGF the adeno-associated virus (AAV) was chosen as gene vehicle, 

caused by the fact that this vector is non-pathogenic and non-immunogenic and is able to 

transduce both, proliferating and quiescent cells [91, 92]. Furthermore, AAV allows a cell- 

and tissue specific application as well as a long-term expression of the transgene by site-

specific integration into the genome or episomal persistence [93]. 
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3.2.1 Renal transduction efficiency of different AAV serotypes 

The adeno-associated virus (AAV) has become a versatile vector platform due to the 

availability of a wide spectrum of serotypes, mosaic and hybrid vectors as well as tailored 

mutants. In order to investigate the potential of this vector system in the treatment of renal 

interstitial fibrosis, the commonly used serotype rAAV2 was compared with two less 

characterized serotypes, namely rAAV-8 and rAAV-9, in their capability to efficiently 

transduce renal epithelial cells.  

 

 

3.2.1.1 Low in vitro transduction of renal epithelial cells by rAAV2 

To investigate whether rAAV2 is a suitable vector for gene transfer into kidney epithelial cells 

in vitro, a reporter-construct containing the Enhanced-Green-Fluorescence-Protein (EGFP) 

under the control of the ubiquitously active cytomegalovirus (CMV) promoter was packaged 

into rAAV2-capsids (rAAV2-GFP). Rat kidney epithelial cells (NRK52E) and rat kidney 

fibroblasts (NRK49F) were exposed to 1 x 104 particles/cell for 48 h and reporter gene 

expression was examined under a fluorescence microscope (Fig.3.2.1). rAAV2-permissive 

HeLa cells served as positive control.  

 

 

                       
Fig. 3.2.1: In vitro transduction of HeLa, NRK52E and NRK49F cells by rAAV2. Cells were 
transduced with 1 x 104 particles/cell for 48 h and GFP-expression was examined under a 
fluorescence microscope. The results are representative for two independent experiments. 
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While rAAV2-permissive HeLa cells exhibited high GFP expression, transduction of NRK52E 

cells showed a low expression of GFP, indicating low efficiency of rAAV2-mediated gene 

transfer into renal epithelial cells. NRK49F cells, however, showed no GFP-fluorescence at 

all. These findings led to the assumption, that the rAAV2 is able to transduce renal epithelial 

cells but with relatively low efficiency. Renal fibroblasts, however, are not transduced by 

rAAV2 (fig 3.2.1). 

Until now there is no available cell line to determine the transduction efficiency of rAAV8 and 

rAAV9 in vitro. Therefore the experiments with these serotypes were performed exclusively 

in vivo. 

 
 

3.2.1.2 In vivo transduction of liver and kidney by rAAV2, rAAV8 and rAAV9 

In order to identify the best suited AAV serotype that mediates renal expression of HGF in 

vivo following intravenous administration, the three serotypes, rAAV2, rAAV8 and rAAV9, 

were analyzed with regard to their ability to target the kidney. All three serotypes contained 

the GFP reporter controlled by the ubiquitously active cytomegalovirus (CMV) promoter. The 

expression cassettes were flanked by the serotype 2 packaging signals (ITR), thus, rAAV 

serotype 8 and 9 were packaged as pseudo-types. Equivalent numbers of vector genomes  

(5 x 1011 vector genomes) were administered by a single intravenous infusion via the tail vein 

of 6-week old male COL4A3-knockout mice (n = 6 animals per cohort). The mice were 

sacrificed 2 weeks after gene delivery and liver and kidneys were taken for cryo-sections as 

well as paraffin embedding.  

To determine the amount of virus particles which have successfully transduced liver and 

kidney cells, real-time PCR of DNA was performed. In addition, real-time PCR of reverse 

transcribed RNA was used to define the GFP expression rate in both organs. Figure 3.2.2 

represents the quantitative analysis of the vector biodistribution (A, B) and the expression 

level (C, D) in both organs following intravenous administration of rAAV2-GFP, rAAV8-GFP 

and rAAV9-GFP. 
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Fig. 3.2.2: Transduction efficiency (A, B) and GFP expression level (C, D) of rAAV2, rAAV8 and 
rAAV9 in liver and kidney analyzed by real-time PCR after systemic administration of rAAV2-GFP, 
rAAV8-GFP and rAAV9-GFP via the tail vein. 5 x 1011 particles were injected into male COL4A3 
knockout mice (6 mice per group). Mice were sacrificed two weeks post injection and DNA (for 
transduction efficiency) and RNA (for expression analyses) were extracted. The transduction 
efficiency (RU = relative units) was normalized to mCRP (A, B). RNA was transcribed into cDNA 
and the GFP expression rate (RU = relative units) was determined and normalized to HPRT (C, D). 
P < 0.05 were considered statistically significant, indicated by *. B and D are rescaled figures 
derived from A and C, respectively. 
 

 

With regard to the transduction efficiency, all three serotypes showed a preference for liver 

tissue with rAAV8 and rAAV9 being clearly superior in transduction (Fig. 3.2.2 A). rAAV2-

GFP showed the lowest transduction of the liver with around 20 relative units (RU). rAAV8-

GFP exceeded this transduction rate three times with 60 RU. The highest transduction of the 

liver could be observed with 80 RU in rAAV9 injected mice.  

Although targeting the kidney by all three serotypes was less efficient (50-100 times) than 

targeting the liver, a diagram using a smaller scale demonstrated predominant renal 

transduction by rAAV8 and rAAV9 (Fig. 3.2.2 B) with the most efficient transduction of the 

kidney by rAAV9 (Fig. 3.2.2 B). For rAAV2, only low numbers of vector genomes could be 

detected within the kidney.  
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As rAAV9 showed the highest transduction of the liver and the kidney the next intention was 

to determine the expression of GFP in the liver and the kidney. Therefore, both, real-time 

PCR on cDNA (Fig. 3.2.2 C and D) and immunohistochemical stainings for GFP on paraffin 

sections (Fig. 3.2.3), were performed. 

As expected from the above mentioned results, quantitative real-time PCR showed 

considerably higher GFP reporter expression in the livers and the kidneys by rAAV8 and 

rAAV9 (Fig. 3.2.2 C). According to the DNA analyses, demonstrating a predominant 

transduction of the livers, noticeable higher GFP expression was detectable in the livers 

(except rAAV2-GFP) compared to the kidneys (Fig. 3.2.2 C). To allow a closer look at the 

GFP expression level of the different serotypes in the kidneys, figure 3.2.2 D displays the 

reporter gene expression level of the kidneys plotted in a smaller scale. rAAV9 injection 

resulted in the highest reporter gene expression in renal cells, while rAAV2 as well as rAAV8 

achieved only low GFP expression. Also the liver showed the highest GFP expression by 

rAAV9. 

 

 

 

 

Fig. 3.2.3: GFP expression in kidney and liver by rAAV2-GFP (AAV2), rAAV8-GFP (AAV8) and 
rAAV9-GFP (AAV9) were visualized by immunohistochemical GFP staining. Equivalent vector 
genomes (5x1011) of each AAV vector were administered by a single intravenous infusion via the 
tail vein in male COL4A3 knockout mice (6 mice/group). Mice were sacrificed 2 weeks post 
injection and paraffin-sections of kidneys and livers were immunohistochemically stained for GFP 
and counterstained with hematoxyline. Sclae bars are indicated. 
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These differences in the expression levels were also obvious in the histological 

immunostainings for GFP (Fig. 3.2.3).  

In agreement to the quantitative real-time PCR results, GFP immunostaining after rAAV2 

transduction showed only few liver cells GFP-positive whereas no single kidney cell 

expressing GFP could be detected. Histological examination of the livers and kidneys of 

rAAV8-GFP and rAAV9-GFP transduced mice revealed a similar or even slightly higher GFP 

expression by rAAV9 in the liver and a defined GFP-expression of the kidney by rAAV9. 

While the immunohistochemistry of rAAV2 and rAAV8 transduced mice showed no renal 

GFP-expressing cell, the immunohistochemistry of rAAV9 injected mice displayed several 

GFP-positive epithelial cells of the proximal and distal tubuli, predominantly scattered over 

the medulla, which is the inner part of the kidney (Fig. 3.2.3). 

 

Thus, the data represent a high transduction efficiency of the liver by the three serotypes, 

rising from rAAV2 to rAAV9 and a low efficiency of the kidneys by all three serotypes. But 

again, rAAV9 showed the highest transduction rate for renal gene delivery. Moreover, GFP-

expression in the kidney was predominantly observed in the innermost part of the kidney, the 

medulla.  

 

As the reporter gene analyses demonstrated a preference for liver tissue with rAAV8 and 

rAAV9 being clearly superior in transduction (Fig. 3.2.2 A) and transgene expression, in this 

study, the use of a tissue-specific promoter should restrict the expression to the kidney by 

driving specific expression in renal tubular epithelial cells. Therefore, a mammalian promoter 

was used for the expression of HGF that was reported to be kidney-specific in vitro and in 

vivo [158-160].  

 
 

3.2.2 Transgene expression limited to renal tubuloepithelial cells 

To restrict transgene expression to the kidney, two constructs with the kidney-specific 

promoter Ksp-cadherin, including different enhancer elements, were generated. Ksp-

cadherin is a cell-adhesion molecule that is reported to be exclusively expressed in tubular 

epithelial cells in the kidney and in the developing genitourinary tract [158]. Shao and 

colleagues have shown that a 1342-bp fragment of the 5’-region of the Ksp-cadherin gene 

contains all necessary elements driving gene expression in renal tubular epithelial cells [158]. 

Therefore, this Ksp-promoter was used in this study and cloned with two different enhancers 

(CMV-enhancer or beta-globin minimal promoter (beta-globin MM)) in front of a firefly-

luciferase reporter for functional analyses of the promoter activity (Fig. 3.2.4 A). For 
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construction details see supplemental figure S1 (pGL-Ksp-MM-Luc) and supplemental figure 

S2 (pGL-CMV-Ksp-Luc) in the attachment. 

 
 

3.2.2.1 Transgene expression driven by the Ksp-promoter in renal tubuloepithelial  

 cells in vitro 

For functional analyses, the two generated luciferase reporter plasmids, pGL-CMV-Ksp-Luc 

(Fig. 3.2.4 A (2)) and pGL-Ksp-MM-Luc (Fig. 3.2.4 A (3)) were transfected into renal 

epithelial cells (NRK52E) using cationic liposomes (Lipofectamin, Invitrogen, GER). A third 

plasmid containing the firefly-luciferase regulated by the ubiquitously active CMV-promoter 

(CMV-Luc) (Fig. 3.2.4 A (1)) was transfected as positive control. Co-transfection in all three 

cases with 1/10 of the pRL-TK vector (Promega) encoding the Renilla-luciferase were 

performed as control for transfection efficiency. 48 h post transfection the cells were lysed 

and assayed for luciferase-activity.  

Since promoter activity should be kidney-specific, the reporter plasmids as well as the CMV-

Luc plasmid were transfected into human hepatoma cells (HUH7) as control for cell-

specificity. Figure 3.2.4 B represents the relative luciferase-activity in percentage measured 

in NRK52E and HUH7 cells following transfection.  
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Fig. 3.2.4 (A) Luciferase reporter constructs. (1) CMV-Luc: luciferase regulated by the CMV 
promoter, (2) pGL-CMV-Ksp-Luc: luciferase under the control of the Ksp-promoter enhanced 
by the CMV enhancer and (3) pGL-Ksp-MM-Luc: luciferase regulated by the Ksp-promoter 
enhanced by the beta-globin minimal promoter. 
(B) Luciferase activity of different promoter constructs in cultured renal epithelial cells 
(NRK52E) and hepatocytes (HUH7). Cells were transfected with pGL-CMV-Ksp-Luc (pink 
bar), pGL-Ksp-MM-Luc or CMV-Luc (black bars) as positive control. Luciferase activity was 
measured after 48 h. To control transfection efficiency, cells were co-transfected with 1/10 of 
the vector pRL-TK vector and luciferase activity was normalized to renilla-luciferase activity. 
The luciferase activity of the positive control (CMV-Luc) was set on 100 %. Data are 
representatives for three independent experiments. 

 

 

The positive control, expressing luciferase via the ubiquitously active CMV-promoter, 

displayed the highest relative luciferase activity. This activity was set 100 % (black bar). 

Transfection of CMV-Ksp-Luc into NRK52E cells reached one third of the relative luciferase 

activity compared to the highly active positive control. The Ksp-MM-Luc transfected cells 

showed no luciferase activity at all, indicating no activity of the Ksp-promoter enhanced by 

the β-globin minimal promoter. 
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For the hepatoma cells (HUH7) the Ksp-MM-Luc construct showed again no luciferase 

activity, while the CMV-Ksp-Luc reporter construct resulted in a marginal luciferase activity 

(Fig. 3.2.4 B). 

 

These results demonstrate that in vitro the Ksp-cadherin promotor driven by the CMV 

enhancer resulted in a high expression rate in kidney epithelial cells whereas the Ksp-

cadherin promoter enhanced by the β-globin minimal promoter seems to be inactive in vitro. 

 
 

3.2.2.2 Reporter gene expression driven by the kidney-specific Ksp-promoter in vivo 

To analyze the promoter construct of the kidney-specific promoter and the CMV enhancer in 

vivo, reporter gene analyses using GFP were performed. Therefore, an expression cassette 

containing GFP under the control of the Ksp-promoter enforced by the CMV enhancer (CMV-

Ksp-GFP; see supplemental figure S3) was packaged into rAAV9 capsids and six week old 

male COL4A3 knockout mice (6 mice) were injected with 5 x 1011 particles of either rAAV9-

CMV-Ksp-GFP or rAAV9-CMV-GFP (see 3.2.1.2) and sacrificed 2 weeks post injection. 

Organs were taken for DNA, RNA as well as immunohistological analyses.  

Although the same numbers of viral particles were injected, the transduction efficiency of the 

CMV-Ksp-GFP vector was much better (data not shown). 

The immunohistological stainings for GFP showed strong GFP signals in the kidney (Fig. 

3.2.5). But also the liver showed a high expression of GFP. Obviously, in contrast to previous 

reports that demonstrated the Ksp-promoter to be exclusively expressed in tubular epithelial 

cells in the kidney [158] the Ksp-promoter, enforced by the CMV enhancer, did not restrict 

expression to the kidney. But, to verify if this promoter construct would enable a controllable 

expression for combined paracrine and endocrine HGF delivery, further organs were 

analyzed with regard to GFP expression. 

Interestingly, the immunohistochemical stainings for GFP expression could show a tissue 

restriction in transgene expression by the use of the Ksp-promoter construct. Neither in 

spleen and lung, nor in heart GFP expression was detectable (Fig. 3.2.5). 
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Fig. 3.2.5: GFP expression in spleen, lung, heart, kidney and liver by rAAV9-CMV-GFP and rAAV9-
CMV-Ksp-GFP, visualized by immunhistochemical GFP staining. Equivalent vector genomes  
(5 x 1011) of each AAV vector were administered by a single intravenous infusion via the tail vein in 6 
week old male COL4A3 knockout mice (6 mice/group), however, transduction efficiency was less in 
rAAV9-CMV-GFP (data not shown). Mice were sacrificed 2 weeks post injection and paraffin-sections 
of spleen, lung, heart, kidney and liver were immunohistochemically stained for GFP and 
counterstained with hematoxyline. Scale bars are indicated. 

 

 
In summary, the generated kidney-specific reporter-construct indeed resulted in a restricted 

expression of the transgene, however, a complete restriction to the kidney was not achieved. 

Instead, this promoter construct mediated expression in both organs, the kidney and the 
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liver, with a greater extend in the liver. Therefore, the gene therapeutical approach using 

hHGF as transgene was performed by targeting the liver parenchyma and the renal 

tubuloepithelium for combined endocrine and paracrine transgene delivery. 

 
 

3.2.3 AAV-induced recombinant hHGF expression as a gene therapeutical approach 
for the treatment of tubulo-interstitial fibrosis in vivo 

As reporter gene analyses of the chosen promoter construct still revealed an expression in 

the liver and the kidney, the gene therapeutical approach for renal interstitial fibrosis using 

HGF as transgene was performed as a bidirectional approach. Although the intention was to 

restrict transgene expression to the kidney, a possible advantage of such an approach could 

be a local HGF expression at the place of damage that is supported by an additional HGF 

supply via the blood circulation.  

Therefore, the human hepatocyte growth factor (hHGF) was now utilized as transgene in a 

gene therapeutical approach aimed to arrest or improve renal interstitial fibrosis.  

 

 

3.2.3.1 Construction of the hHGF-expression cassette for the generation of AAV8 and 9 
vectors 

To examine the anti-fibrotic effect of HGF in the kidney in vivo, a hHGF-expression cassette 

that restricts expression to the liver and the kidney was generated. Based on the functional 

analyses of the two different promoter constructs in 3.2.2 and the functional analyses of the 

KSp promoter enhanced by the CMV enhancer in vivo (3.2.2.2), the expression of hHGF was 

placed under the control of the Ksp-cadherin promoter, strengthened by the CMV enhancer. 

The already generated Ksp-cadherin promoter construct including the luciferase-gene as 

reporter (CMV-Ksp-Luc; see 3.2.2), was used as backbone. The luciferase-gene with the 

poly(A) was excised and replaced by the hHGF coding region with a poly(A) stretch resulting 

in the plasmid pGL-CMV-Ksp-hHGF (see supplemental figure S4).  

For the construction of the kidney-specific hHGF-expression cassette for AAV packaging, the 

expression cassette was cloned into the pSUB-201 [161]. This vector contains all AAV-2 

wild-type coding regions and the cis acting terminal repeats that are required for recombinant 

virus production. The generated vector was named pSUB201-CMV-Ksp-hHGF (Fig. 3.2.6 

and supplemental Fig. S5). 
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Fig. 3.2.6 hHGF-construct packaged into rAAV-8 and rAAV-9 for injection of COL4A3 knockout 
mice. hHGF expression is driven by the kidney-specific promoter Ksp-Cadherin (Ksp-promoter), 
enhanced by the CMV enhancer. The cassette was cloned into the pSUB-201 backbone, that 
contains the inverted terminal repeats (ITRs), the only cis acting sequences required for 
recombinant virus production. 

 
 

3.2.3.2 In vivo administration of hHGF by rAAV8 and rAAV9 

To evaluate the anti-fibrotic mechanisms of hHGF and the pattern of gene expression after 

hHGF administration in COL4A3 knockout mice developing interstitial kidney fibrosis, the 

kidney-specific hHGF-rAAV vectors serotype 8 and 9 were systemically administered into 

male COL4A3 knockout mice via the tail vein. 4 week old mice were transduced with 5 x 1011 

particles rAAV8-CMV-Ksp-hHGF (n = 8) or rAAV9-CMV-Ksp-hHGF (n = 8) and sacrificed 5.5 

weeks after. Blood was taken for serum analyses, while kidneys and livers were dissected for 

cryo-sections and paraffin embedding. Mice injected with empty capsids (n = 6) served as 

controls. 

For the analyses of the hHGF sera levels of the rAAV8-CMV-Ksp-hHGF and rAAV9-CMV-

Ksp-hHGF transduced mice a hHGF specific ELISA was performed. As demonstrated in 

figure 3.2.7 there was no hHGF detectable in the sera from mice that received empty capsids 

as control. In contrast, serum samples of rAAV8-CMV-Ksp-hHGF transduced mice displayed 

around 100 pg ml-1 hHGF expression that was exceeded by the rAAV9 transduced mice with 
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a mean value of 340 pg ml-1 hHGF (Fig. 3.2.7). Even though, there was a variance in the 

hHGF sera level of the rAAV9-CMV-Ksp-hHGF transduced mice, the sera levels were 

significantly higher compared to the rAAV8-CMV-Ksp-hHGF injected mice. This variance is 

presumably due to an inappropriate application of the vector genomes. 

 

 

 

Fig. 3.2.7 Amount of hHGF determined in sera of COL4A3 knockout mice after rAAV-8 
and rAAV-9 mediated recombinant hHGF expression quantified by hHGF ELISA.  
5 x 1011 viral particles of empty capsids (control, n = 6), rAAV8-CMV-Ksp-hHGF (AAV8, 
n = 8) and rAAV9-CMV-Ksp-hHGF (AAV9, n = 8) were injected into 4 week old male 
COL4A3 knockout mice. Mice were sacrificed 5.5 weeks post injection and blood was 
taken for serum analyses. The hHGF amount was measured in duplicates. Statistical 
significance is indicated by asterisks ( * = p < 0.05 and ** = p < 0.001).  

 
 

3.2.4 Anti-fibrotic function of AAV-mediated hHGF expression 

Since the in vitro experiments in this study have demonstrated that hHGF can act as an anti-

fibrotic cytokine, kidneys of the transduced mice expressing hHGF via the Ksp-cadherin 

promoter enhanced by the CMV enhancer were analyzed with regard to their expression 

pattern of different genes involved in fibrosis.  
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3.2.4.1 Repression of fibrotic markers by recombinant hHGF expression 

For the determination of the therapeutic effect of human HGF on different genes involved in 

fibrosis, the expression of collagen Iα1 (COL1A1), smooth muscle actin (SMA), PDGF 

receptor beta (PDGFRβ), and connective tissue growth factor (CTGF) were analyzed by real-

time PCR. Collagen Iα1 is the main matrix protein accumulated during fibrosis, and a target 

of HGF regulation as already shown in the in vitro experiments. RNA was extracted from 

kidney tissues and cDNA was transcribed in order to quantify the expression of the different 

genes. The mRNA level of collagen Iα1 (COL1A1, Fig. 3.2.8 A) was 40 % reduced in rAAV8-

CMV-Ksp-hHGF injected mice compared to control mice that had received only empty 

capsids. rAAV9 transduced mice showed around 50 % reduced COL1A1 mRNA levels. In 

addition, statistical calculations displayed a significant correlation between serum hHGF 

levels and COL1A1 expression levels with R2 = 0.409 and p < 0.01 (Fig. 3.2.8 B) revealing 

the beneficial activity of iatrogenic expression of the cytokine hHGF. 

Another gene that was analyzed in respect to modified expression mediated via the 

introduced hHGF was alpha-smooth muscle actin (SMA). An early event of tubulointerstitial 

fibrosis is the peritubular accumulation of myofibroblasts that express SMA and contribute to 

abnormal matrix production [10]. Thus, SMA expression conduces to an indicative marker of 

fibrosis initiation and progression. In concordance to collagen Iα1 expression, the expression 

level of SMA was also reduced by 20 % in rAAV8- and 47 % in rAAV9 treated mice 

compared to mice that had received empty capsids (Fig. 3.2.8 C). Again, SMA and hHGF 

expression showed a significant reverse correlation (R2 = 0.923, p = 0.003). 

The third marker assayed was PDGFRβ. This receptor has been associated with fibrotic 

conditions presumably by driving proliferation of interstitial myofibroblasts [154]. As seen for 

collagen Iα1 and SMA, HGF transgene expression also resulted in a down-regulation of the 

mRNA level of PDGFRβ (23 % reduction for rAAV8 and 45 % for rAAV9 injected mice; Fig. 

3.2.8 E). The reduced mRNA levels also correlated with the elevated hHGF sera levels  

(R2 = 0.233; p = 0.031, Fig. 3.2.8 F). 
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Fig. 3.2.8: Transcript levels of (A) COL1A1, (C) SMA and (E) PDGFRβ in kidneys of male COL4A3 
knockout mice transduced with 5 x 1011 particles of empty capsids (control; n = 6), rAAV8-CMV-Ksp-
hHGF (AAV8; n = 8) or rAAV9-CMV-Ksp-hHGF (AAV9; n = 8), respectively. The AAV vectors were 
injected at the age of 4 weeks and the mice were sacrificed 5.5 weeks post injection. The kidneys 
were dissected and RNA was extracted of half a kidney. The RNA was reverse transcribed and  
real-time PCR was performed. The expression levels were normalized to HPRT and were calculated 
as relative units [RU] using a standard curve. The statistic correlation between the hHGF sera level 
and COL1A1 (B), SMA (D) and PDGFRβ (F) is shown by linear regression using SPSS. Significance 
is indicated by asterisks for A, C and E (* = p < 0.05; ** p < 0.01) or given as p-value (for B, D, F). 
 

 

Further, the influence of hHGF on the expression pattern of connective tissue growth factor 

(CTGF) was investigated by real-time PCR. CTGF is a downstream mediator for TGFβ that 
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has been shown to up-regulate the production of extracellular matrix proteins [162, 163] and 

has been linked to chronic tubulointerstitial fibrosis [162]. As displayed in figure 3.2.9, there is 

no difference in the CTGF mRNA levels between the rAAV8 and rAAV9 hHGF treated and 

untreated mice detectable, since they exhibit nearly the same expression levels. 

 
 

 

Fig. 3.2.9: Transcript levels of CTGF in male COL4A3 knockout mice transduced with 
empty capsids (control; n = 6), rAAV8-CMV-Ksp-hHGF (AAV8; n = 8) or rAAV9-CMV-
Ksp-hHGF (AAV9; n = 8). 5 x 1011 viral particles of the AAV vectors were injected at 
the age of 4 weeks and the mice were sacrificed 5.5 weeks post injection. The kidneys 
were dissected and RNA was extracted of half a kidney. The RNA was reverse 
transcribed and real-time PCR was performed. The expression levels were normalized 
to HPRT and were calculated as relative units [RU] using a standard curve. 

 
 

In summary, the results of the experiments demonstrate that the expression levels of the 

three master genes involved in fibrotic processes were highly down-regulated by exogenous 

hHGF expression. The most efficient anti-fibrotic effect was obvious by the delivery of hHGF 

via rAAV9. By the use of this vector as gene vehicle the highest hHGF serum level was 

achieved, which was accompanied by the most efficient down-regulation of the mRNA level 

of COL1A1, SMA and PDGFRβ.  

In addition to the investigations of the effect of hHGF on the mRNA level of fibrotic genes, the 

fibrotic alterations in the kidney were studied by histological monitoring. 
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3.2.3.6 Deceleration of fibrotic remodelling of the kidney architecture 

Renal interstitial fibrosis is characterized by an increase of extracellular matrix (ECM) 

deposition. Therefore, accumulation of ECM was examined by histological gomori staining 

that recognizes reticulin fibers of the connective tissues. The classification of the different 

stages was carried out as described in 2.2.10.5. As shown in figure 3.2.10 A, treatment with 

hHGF significantly attenuated interstitial accumulation of connective tissue. While five out of 

six mice that received empty capsids displayed a fibrosis grade of 4 and 5 (Fig. 3.2.10 B) in 

the kidney, six out of 8 rAAV8-CMV-Ksp-hHGF injected mice revealed with a fibrosis grade 

of 3 and thus a reduced renal extracellular matrix deposition compared to control mice. 

Actually, the rAAV9-CMV-Ksp-hHGF transduced mice showed the strongest effect. Four out 

of eight rAAV9-CMV-Ksp-hHGF injected mice showed a fibrosis grade of 2 in the kidneys. 

Three mice were classified with a grade of 3 and one mouse exhibited renal extracellular 

matrix accumulation with a grade of 4. As shown in figure 3.2.10 C the stage of fibrosis was 

determined visually by light microscopy. In figure 3.2.10. (A) the different stages are shown. 

The interstitial accumulation of connective tissue was mainly detectable in the medulla 

region, apparent as brownish staining. A linear correlation of the fibrotic progress and the 

hHGF sera level displayed significance with p < 0.01.  
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Fig. 3.2.10: Staining and staging of extracellular matrix deposition in transversal kidney sections of 
male COL4A3 knockout mice after rAAV8 and rAAV9 mediated recombinant hHGF expression by 
gomori staining.  
(A) Gomori staining of transversal sections of the kidneys with fibrosis representing stages 1, 3, and 5 
according to scoring described in material and methods (scale bar = 40 µm). 
(B) Boxplott displaying the reduction of connective tissue deposition in the rAAV8-CMV-Ksp-hHGF 
(AAV8; n = 8) and rAAV9-CMV-Ksp-hHGF (AAV9; n = 8) treated mice compared to the control mice 
(control; n = 6) (** = p < 0.01), summarized also in the table. 
(C) Correlation of the gomori stages and the hHGF sera levels. p < 0.05 were considered significant. 
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4. Discussion 

HGF is a central growth factor that mediates not only regeneration but also anti-fibrotic 

processes. However, little is known about the underlying molecular and cellular mechanisms 

of the anti-fibrotic actions by HGF. In the present study, profiling of anti-fibrotic HGF-initiated 

signal transduction of Erk1/2 and Akt revealed for the first time that in addition to the fibrotic 

markers collagen 1A1 and SMA a wide panel of fibrotic mediators are dysregulated. New 

HGF targets of anti-fibrotic action were not only identified in vitro, but also in vivo such as 

PDGF receptor beta (PDGFRβ) and members of the CCN family. Tubulointerstitial fibrosis 

has been shown to be a histological predictor for end stage renal failure. Renal interstitial 

fibroblasts represent an important cell type in this process as they are involved in the 

secretion of extracellular matrix markers and mediators. HGF targeting by various AAV 

vectors demonstrates that rAAV9 combined with the Ksp promoter is ideal to deliver HGF to 

renal fibrotic lesions upon tubular injury and tubulointerstitial fibrosis in a COL4A3 knockout 

model resembling the human Alport disease. 

 

 

4.1 HGF mediates its anti-fibrotic effects by MAP/Erk- and by Akt-signaling 

In order to gain insight into the signal transduction of HGF in interstitial fibrosis, the 

phosphorylation statuses of central transducers of HGF signaling, Erk1/2, Akt and Stat3, 

were analyzed in renal interstitial fibroblasts. These analyses revealed that in agreement to 

data collected in epithelial cells [29, 164], HGF caused not only Erk1/2 but also Akt 

activation. Furthermore, it turned out that in response to HGF induced Erk1/2 activation, 

Smad2 was phosphorylated at the linker region, ten minutes later. These observations are 

consistent with previous data of Yang et al. who demonstrated Smad2/3 phosphorylation in 

dependence of active Erk1/2 [68]. They postulated that activated Erk1/2 is responsible for the 

phosphorylation of the linker region of Smad2, containing three Ser-Pro sequences (Ser-245, 

Ser-250, Ser-255) serving as potential phosphorylation sites for Erk1/2 [29]. This, in turn, 

impedes Smad translocation into the nucleus, thereby abolishing TGFβ mediated responses 

[29, 68]. In epithelial cells, which constitutively present the c-met receptor thereby mediating 

mitogenic and morphogenic HGF signals in terms of homeostasis and regeneration 

processes, interaction of HGF with the Smad transcriptional co-repressor SnoN is also 

described [152]. In contrast to inhibited nuclear translocation of activated Smad2/3 by HGF in 

fibroblasts, SnoN, once up-regulated by HGF in epithelial cells, binds to activated Smads in 

the nucleus thereby blocking gene transcription [152]. A similar mechanism is reported for 

mesangial cells. Instead of SnoN another Smad-corepressor, TGIF, is induced by HGF and 

sequesters the transcriptional activation of TGFβ target genes [69]. 
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Beside activation of the MAP/Erk pathway, already proven by Yang and his colleagues [68], 

this study demonstrates that a second signaling pathway turned on by HGF in renal 

fibroblasts: the Akt pathway. The onset of this signaling cascade is simultaneous to the 

activation of the MAP/Erk pathway and HGF results in a phosphorylation of Akt, visible 

already five minutes after stimulation. Akt (protein kinase B) is one of the major downstream 

targets of phosphoinositol-3 kinase (PI3K) [165] and has been implicated in the regulation of 

multiple cellular functions including cell growth, survival, metabolism, protein synthesis, anti-

apoptosis, tumor growth, and angiogenesis [165, 166]. Especially in human cancer Akt plays 

a decisive role. Since the importance of HGF signaling via Akt in renal fibroblasts is not yet 

known, here the question arose if there is also a function of Akt in regard to fibrotic 

processes. Is the blockade of the Smad signaling via MAP/Erk alone responsible for the anti-

fibrotic effect of HGF in interstitial fibroblasts or is the Akt signaling also involved in the 

mediation of anti-fibrotic effects? The knockdown of both, Smad4 and Akt, respectively, 

revealed that not only the Erk1/2 / Smad2 interaction is involved in down-regulation of fibrotic 

mediators but also the HGF stimulated Akt pathway, which will be discussed later on.  

In contrast to the activation of Erk1/2 and Akt, Stat3 was not phosphorylated by HGF in renal 

fibroblasts. While HGF is reported to induce Stat3 phosphorylation and nuclear translocation 

in MDCK epithelial cells inducing tubulogenesis [167] and in mesangial cells, supporting 

proliferation [168] the Stat3 pathway in interstitial fibroblasts is not turned on by HGF.  

 

 

4.2 Profiling of anti-fibrotic signals in interstitial fibroblasts  
In order to analyze molecular implications of HGF initiated Erk1/2 and Akt signaling in renal 

fibroblasts, a comprehensive expression profiling was performed. The screening displayed 

numerous genes to be dramatically affected by HGF. The up-regulated genes were 

preferentially involved in cellular motor activity and intracellular transporter activity. Mainly, 

the expression of kinesins and myosins was increased as well as the expression of 

nucleoporins. In order to identify HGF affected genes that might be involved in fibrogenesis, 

the focus was attached to candidates selected by their pronounced divergent expression 

profile and their potential association with pro-fibrotic processes. The expression level of 

collagen type I (COL1A1) and SMA that are strongly linked to fibrosis were highly down-

regulated upon HGF stimulation of renal fibroblasts [58] as shown recently also in dermal 

and lung fibroblasts [169-171]. SMA is an indicative marker for myofibroblastic cells, which 

are primarily responsible for the overproduction and deposition of ECM [10, 58]. The intense 

decrease of SMA transcript levels by HGF support the data of Yang et al., who demonstrated 

a reduction of SMA in interstitial fibroblasts after HGF treatment in vitro [68]. Furthermore, 

TGFβ-induced SMA expression in epithelial cells is also shown to be inhibited by HGF  
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in vitro and in vivo [57-59, 78]. HGF seems to inhibit the activation of interstitial fibroblasts 

into ECM-producing myofibroblasts, thereby mediating a reduced ECM production and 

deposition. In addition to SMA the expression profiling in this study identified various 

collagens that displayed repressed transcript levels after HGF treatment. The validation by 

further expression analysis demonstrated up to 70 % minimized mRNA levels of collagen 

type I and collagen type IV, depending on the collagen type and polypeptide chain. These 

data are concordant to previous reports showing that HGF resulted in a down-regulation of 

COL1A1, the main fibrous collagen, representing approximately 84 % of the collagen 

synthesized by fibroblasts [172] in vitro [68] and in vivo [57, 59, 78, 80]. Type I collagen is 

made up of two polypeptide chains, COL1A1 and COL1A2 [172]. Even though both are 

regulated by TGFβ [19, 173, 174], there is a difference in the induction of expression. While 

COL1A2 is reported to be regulated by TGFβ signaling via the Smad pathway [172] due to a 

SP-1 [172, 175] and an AP-1 [172, 176] binding site in the promoter, COL1A1 can be directly 

activated by TGFβ in a Smad independent manner. This activation can be attributed to an 

additional TGFβ response element in the distal promoter [177]. Upon TGFβ treatment a 

TGFβ activator protein directly binds to the TGFβ element thereby activating COL1A1 gene 

transcription [173, 177] without Smad activation. Verrechia and colleagues, however, 

reported that the COL1A1 promoter is also a Smad target [18]. Interestingly, the siRNA 

Smad4 knockdown resulted in a down-regulation of COL1A1 that was not exceeded by HGF, 

indicating a predominant Smad-dependent regulation in interstitial fibroblasts. Therefore, 

both polypeptide chains, COL1A1 and COL1A2, seem to be down-regulated by HGF via the 

activation of Erk1/2 and the following blockade of the Smad2/3 transducers. Though, another 

possible explanation may be due to an indirect down-regulation by decreased CTGF, the 

connective tissue growth factor. Several studies demonstrate that CTGF is also responsible 

for the induction of collagen synthesis by TGFβ [178, 179] in particular for COL1A1. Here in 

this study, HGF dramatically diminished CTGF expression which would explain a correlation 

with the reduced collagen expression. CTGF is a well accepted fibrotic mediator [180]. It 

belongs to the CCN family and is considered to be a down-stream regulator of the pro-fibrotic 

actions of TGFβ [181]. The biological activities of CTGF include stimulation of cell 

proliferation, DNA synthesis, survival, ECM production, and angiogenesis [163]. In vivo 

studies have shown that CTGF is overexpressed in fibrotic lesions of major organs and 

tissues like liver [182, 183], lung [184, 185], and kidney [186, 187]. Furthermore, its 

overproduction has also been linked to chronic tubulointerstitial fibrosis [162, 188, 189]. The 

promotor region contains multiple potential regulatory elements like AP-1 sites, SP-1 sites 

and a CATbox [190] as well as a functional Smad binding site for Smad3/4 [191]. An 

additional TGFβ response element in the promoter region is postulated to be exclusively 

responsible for a direct induction of CTGF by TGFβ [190]. In vitro approaches demonstrated 



DISCUSSION 

 75

that the induction of CTGF by TGFβ is restricted to fibroblasts and mesangial cells and does 

not occur in epithelial cells [190, 192]. In both cell types the activation of the CTGF promoter 

by TGFβ is reported to be cooperatively mediated via two signaling pathways, the Smad-

signaling and the Ras/MAPK/Erk signaling [32, 193]. Notably, the Smad4 siRNA approach of 

the here presented study lead to the assumption that CTGF in interstitial fibroblasts is almost 

completely regulated via the Smad signaling pathway because the knockdown of Smad4 

resulted in a dramatic decrease of the CTGF mRNA level. Surprisingly, the treatment of 

Smad4 silenced renal fibroblasts with HGF resulted in an additional negative effect that can 

be attributed to the Akt-pathway, as the inhibition of this signaling cascade depicted an 

immense increase of CTGF expression. Therefore, the regulation of CTGF seems to be 

under the control of the Smad-pathway as well as the Akt-pathway and furthermore the 

reduced expression of COL1A1 and COL1A2 by HGF is not only directly mediated but 

probably also due to in an indirect regulation via CTGF.  

 

Likewise to collagen I, data supplied by expression profiling displayed decreased expression 

levels of COL4A1 and COL4A5 by HGF treatment. Collagen IV is a nonfibrillar protein 

representing the most abundant collagen type in the basal membrane of the glomerulus and 

the renal tubules [194]. To date there are only few analyzes with regard to the interaction of 

HGF and collagen IV. A reduced expression of collagen type IV by HGF is already reported 

for human glomeruli [195]. Additionally, glucose treated mesangial cells revealed reduced 

collagen IV protein levels after HGF treatment [72]. In this study, silencing of Smad4 lead to 

a strongly decreased COL4A5 expression, indicating a Smad-dependent regulatory 

mechanism. But the question, if HGF directly reduces collagen IV or indirectly still has to be 

solved. However, the expression of collagen IV could also be under the control of CTGF, 

such as collagen I. A correlation between both is reported by Liu and his coworkers. They 

demonstrated an increased deposition of collagen IV in tubulointerstitial fibrosis and 

glomerulosclerosis associated with an over-expression of CTGF [196]. 

In conclusion, important fibrotic markers, the collagens, are down-regulated by HGF 

predominantly via the blockade of the Smad-pathway. But in addition, there seems to be an 

auxiliary indirect regulation of the collagens by CTGF, the main fibrotic mediator down-

stream of TGFβ. The reduced CTGF expression level after HGF stimulation is probably also 

a cause for the diminished transcript levels of the collagens. 

 

In addition to CTGF, the expression profiling displayed a dramatic down-regulation of two 

other members of the CCN-family by HGF, Wisp2 (wnt-induced secreted protein-2) and Nov 

(nephroblastoma overexpressed protein). Especially, Nov revealed a reduced expression of 

more than 90 %. Like CTGF, both are also extracellular matrix associated proteins [157, 197] 
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that are involved in stimulation of mitosis, adhesion, apoptosis, ECM production, growth 

arrest and migration [198]. Furthermore, they regulate angiogenesis and tumor growth [198]. 

While CTGF is known to play a critical role in injury repair and fibrotic diseases as already 

discussed above, until now little is known about the role of Wisp2 or Nov in fibrotic processes 

and their possible regulation by HGF. An increased expression of Nov in association with 

proceeding liver fibrosis is reported by Lee et al. [199]. In addition, they ascribed the induced 

Nov expression in hepatic stellate cells to TGFβ. While another study revealed Nov as a 

downstream target of PDGF-B and -D signaling via the PDGFRβ (PDGF receptor beta) in 

human mesangial cells [200], the regulation of Nov in interstitial fibroblasts seems to be 

subjected to another regulatory mechanism, because HGF resulted both in a down-

regulation of PDGFRβ and Nov, with a more dramatic effect on the latter. Until now nothing is 

known about the Nov expression in renal interstitial cells. But particularly with regard to the 

intense down-regulation by HGF, a crucial role for Nov in interstitial fibrosis can be assumed. 

Interestingly, the regulation of Nov by HGF can be ascribed to the Smad pathway as well as 

to the Akt pathway. While silencing of Smad4 drastically decreased Nov expression, 

knockdown of Akt resulted in an enormous induction of Nov transcription. 

The same was obvious for PDGFRβ, a receptor strongly connected to fibrosis. HGF 

treatment intensely diminished PDGFRβ expression. Knockdown of Smad4 could attribute 

this effect to the inhibited Smad signaling. However, Akt signaling represented an additional 

negative effect, as the expression of PDGFRβ was markedly raised after Akt knockdown, 

indicating a negative regulation of PDGFRβ by HGF via both cascades, MAP/Erk as well as 

Akt. The PDGF family consists of four different polypeptide chains (PDGF-A, -B, -C and –D) 

and two tyrosine kinase receptors (PDGFRα and β) [201-203]. In the adult kidney, both 

receptors are highly expressed in interstitial cells [204] and their synthesis depends on 

external stimuli such as other cytokines and growth factors [205]. An over-expression of the 

polypeptide chains as well as the receptors is linked to diseases with excessive cell growth 

like fibrotic disorders, malignancies and arteriosclerosis [206]. PDGF signaling has been 

implicated in several fibrotic conditions and is assumed to play a role in driving proliferation 

of cells with a myofibroblastic phenotype [154]. Especially, signaling of PDGF-B and -D plays 

an important role in case of organ fibrosis and only the signaling via PDGFRβ seems to be 

the key mediator of interstitial fibroblast proliferation [207, 208]. Depletion of the receptor by 

HGF intercepts the pro-fibrotic action of PDGF-B and PDGF-D thereby preventing renal 

failure and tubulointerstitial fibrosis. This result can be linked to a study of Bessho et al. 

[209]. They demonstrated that HGF was able to suppress PDGF-induced proliferation of 

mesangial cells in vivo and in vitro, but did not significantly change PDGF expression level in 

glomerular cells. Therefore, the effect of HGF in mesangial cells and interstitial fibroblasts is 



DISCUSSION 

 77

probably mediated not by a reduction of the pro-fibrotic PDGF-B or PDGF-D but by the 

reduction of the receptor for both, thereby suppressing the signaling cascade. 

FIGF, a gene related to the platelet-derived growth factor/vascular endothelial growth factor 

family, was also strongly down-regulated by HGF stimulation. FIGF (c-fos induced growth 

factor) is also termed VEGF-D and is known to be induced by the proto-oncogene c-fos 

[155]. The transcription of c-fos is induced in response to many extracellular signals amongst 

others growth factors. The expression profiling, however, displayed no dysregulated mRNA 

level of c-fos by HGF, indicating a regulation that is independent of c-fos. The knockdown of 

Smad4 revealed a Smad-dependent regulation, whereas the Akt pathway is not involved in 

the regulation. 

With regard to the major or predominant cytokine involved in fibrosis, TGFβ, as well as its 

downstream cytoplasmic mediators Smad2, -3 and -4, only marginal effects on the 

expression levels were detectable after HGF application. This argues for a regulation of 

TGFβ driven neither by the TGFβ signaling itself nor by the Akt signaling. Both would yield in 

a down-regulation of TGFβ upon HGF stimulation. In contrast, the inhibitory Smad7, 

antagonising TGFβ initiated Smad2/3 signaling by competitive receptor type I interaction, is 

more than 50 % reduced after HGF treatment. Although promoter activity of Smad7 was 

shown to depend on Erk1/2 initiated Ap1-binding [210], Smad7 is known to be primarily 

transcriptionally regulated by TGFβ in a feedback loop, due to binding of Smad3 to a TGFβ 

responsive site. Thus, HGF mediated repression of Smad7 is assumed to arise by reason of 

the induced Smad2/3 blockade after HGF-initiated ERK1/2 phosphorylation. 

 

Chronic inflammation is believed to play a critical role in the initiation and prevention of 

chronic kidney diseases [211, 212]. Expression analyses could detect various targeting 

domains of HGF in interstitial fibroblasts, amongst others a set of chemokines that were 

negatively affected by HGF stimulation. The most striking chemokine that was highly down-

regulated by HGF was the CC-chemokine ligand 5 (Ccl5), also known as RANTES. This 

chemokine plays an important role in chronic kidney diseases [213, 214] and is one of the 

best characterized chemokines that is able to recruit many types of immune cells [211]. 

Giannopoulou et al. could already show that HGF suppresses IL-1β or TNF-α-induced 

RANTES expression in tubular epithelial cells [211]. The effect of HGF on RANTES in 

interstitial fibroblasts suggests that HGF exerts its potent inhibitory influence of renal 

inflammation also in mesenchymal cells. It is assumed that chemokines either directly or 

indirectly contribute to interstitial collagen deposition and fibrosis by the recruitment of 

macrophages [212]. Therefore the alteration of the pro-fibrotic cytokine profile in interstitial 

fibroblasts by HGF may also account for the anti-fibrotic effect and especially the reduced 

collagen synthesis.  
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In summary, the presented data lead to the suggestion that not only the down-regulation of 

collagens and CTGF are involved in the anti-fibrotic effect of HGF, but also repression of 

other members of the CCN family and various cytokines by HGF play a decisive role. 

Furthermore, it could be shown that HGF stimulation of renal fibroblasts resulted in the 

activation of both, the Erk1/2 and the Akt pathway and that not only the Erk1/2 / Smad2 

interaction is involved in the down-regulation of fibrotic mediators but also the HGF 

stimulated Akt pathway.  

 

 

4.3 A gene therapeutical approach targeting HGF to renal failure, in vivo 
In order to analyze the anti-fibrotic effect of HGF also in vivo, a gene therapeutical approach 

was carried out using a mouse model for interstitial fibrosis and a systemic application of 

HGF. While earlier studies demonstrated the application of exogenous HGF via protein or its 

gene in chronic kidney diseases, in this study AAV vectors were utilized as gene vehicle for 

HGF. Tracing experiments using GFP as a reporter and three different rAAV serotypes 

(rAAV2, rAAV8 and rAAV9) as gene vehicle revealed an insufficient systemic delivery of 

rAAV2 to the liver and the kidney, whereas the alternate serotypes rAAV8 and rAAV9 

successfully transduced both organs. The HGF targeting by rAAV8 and rAAV9 demonstrated 

that rAAV9 combined with the Ksp promoter was best suited for the delivery of HGF to renal 

fibrotic lesions upon tubular injury and tubulointerstitial fibrosis in the COL4A3 knockout 

model that resembles the human Alport disease. The anti-fibrotic effect of AAV-mediated 

HGF expression in the kidney and the liver resulted not only in a remarkable reduction of the 

expression of fibrotic associated genes but also in a considerable reduction of the severity of 

fibrosis. These data reveal a novel strategy for the treatment of chronic kidney diseases. 

 

 

4.3.1 HGF applied by the adeno-associated virus in vivo  

Previous work has already demonstrated the anti-fibrotic function of locally or systemically 

applied HGF in a variety of experimental systems including models of murine and porcine 

renal failure [57-59, 78, 80, 215]. However, these studies report of a HGF application by 

recombinant protein or plasmid DNA. Systemically applied HGF protein is cleared extremely 

fast from blood circulation (half-life 3-5 minutes) making it costly to reach therapeutic blood 

levels and also the local application needs repeated administration. A solution to this problem 

would be a gene therapeutical approach allowing for a continuous expression of HGF. Thus, 

the intention of this study was a gene therapy for Alport syndrome via systemic application of 

HGF. Since AAV vectors are non-pathogenic and low immunogenic, allow for a stable gene 

transfer and transduce both, dividing and non-dividing cells [124, 216, 217] they were chosen 
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as gene-transfer vehicles. Based on the different tropisms for each serotype, the first 

intention was to identify an AAV vector best suited for gene delivery to the kidney, to reach a 

continuous expression of the anti-fibrotic transgene HGF locally. 

 

 

4.3.2 AAV9 is superior to AAV8 and AAV2 in kidney and liver transduction 

The here reported tracing experiments with GFP as reporter and three different serotypes 

(rAAV2, -8, and -9) as gene vehicles revealed an insufficient systemic delivery for rAAV2. 

Only low numbers of vector genomes could be detected within the kidney, and - in 

accordance - neither by quantitative real-time PCR nor by immunohistochemical analyses 

significant reporter gene expression could be detected. In comparison to the kidney, the liver 

contained a higher level of rAAV2 delivered vector genomes. Transgene expression, 

however, was extremely low despite the use of self-complementary vector genomes. Self-

complementary vector genomes have the advantage to overcome the limiting necessary 

second strand synthesis to obtain a double stranded DNA-template for initiation of gene 

expression, as they are already double-stranded [218]. 

In contrast, the alternate serotypes rAAV8 and rAAV9 were able to transduce the liver and 

the kidney, reaching the highest expression rate mediated by rAAV9. Interestingly, GFP 

expression was primarily visible in the medulla-region, the region where interstitial fibrosis 

and deposition of extracellular matrix is mainly observable, respectively, indicating a local 

expression by AAV at the place of interest, the region of ECM accumulation. These data are 

concordant with other reports even if there are just few reports concerning intraveneously 

injected AAV and the kidney. As reported by Takeda and colleagues, local delivery of AAV2 

into rats via the renal artery by catheterization successfully transduced tubular epithelia cells, 

but not glomerular, blood vessel, or interstitial cells, while neither of the other serotypes 

(rAAV-1, -3 to -5) showed any transduction [123]. Alternative approaches for local kidney 

gene delivery were reported by Lipkowitz and colleagues, who injected rAAV2-GFP 

intraparenchymally into mice kidney, thereby transducing tubular epithelial cells [141]. In 

addition a report of Chen et al. demonstrated successful transduction of renal tubular cells 

via intra-renal arterial delivery of rAAV2-GFP [219]. There are also recent data of systemic 

transduction of the kidney by AAV9. Although this serotype is preferentially known to be a 

suitable vector for cardiac transduction [120], Bostick et al. reported an efficient transduction 

of the kidney of adult mice by AAV9 [125]. Likewise the group of Nakai demonstrated a 

transduction of the kidney by rAAV9 [142].  
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4.3.3 Choice of a specific promoter 

For the tracing experiments, the expression of the reporter GFP, that was used recently in 

connection with AAV in vitro and in vivo [219, 220], was placed under the control of the 

ubiquitously active CMV promoter. This conventional promoter is widely used with a high 

transcription rate without tissue specificity [221]. But beside the ubiquitous activity there is 

the suggestion that such viral promoters may be down-regulated in vivo, thereby preventing 

long-term expression. Moreover, based on the wide tissue distribution of AAV serotypes, the 

transgene expression should be restricted to the kidney. Thus, a mammalian promoter was 

used for the expression of HGF to be more effective and reported to be kidney-specific  

in vitro and in vivo [158-160]. The Ksp-promoter was selected based on the ability to limit 

transgene expression to the kidney, the organ of damage. To intensify the activity of the Ksp-

promoter, two different enhancers were analyzed in vitro. While the construct containing the 

beta globin minimal promoter behind the Ksp-promoter demonstrated no expression in renal 

epithelial cells at all, the construct with the CMV enhancer in front of the Ksp-promoter 

reached more than 30 % activity in renal epithelial cells compared to the CMV promoter. 

Therefore, the Ksp-promoter strengthened by the CMV enhancer was used for further in vivo 

analyses. 

However, in contrast to previous studies who demonstrated the Ksp-promoter to be 

exclusively expressed in tubular epithelial cells in the kidney [158], strong GFP signals in the 

kidney but also in the liver were detectable on transcript and protein level by in vivo  

reporter gene analyses of the Ksp-promoter enforced by the CMV enhancer. Compared to 

the ubiquitously active CMV promoter, the Ksp-promoter construct could demonstrate tissue 

restriction of the transgene expression to the liver and the kidney. While the CMV promoter 

mediated GFP expression in all organs studied (liver, kidney, lung, spleen and heart), the 

tissue specific promoter was not active in spleen, lung and heart.  

 

Based on these in vivo reporter gene analyses of the tissue specific promoter construct, the 

gene therapeutical approach was developed as a bidirectional strategy. The liver was used 

as primary and kidney as secondary gene transfer target for the treatment of renal failure by 

rAAV mediated gene expression of the anti-fibrotic factor hHGF. 

As rAAV8 and rAAV9 clearly exceeded rAAV2 in targeting liver and kidney in reporter gene 

studies, these vectors were used for the in vivo analyses of the anti-fibrotic effect of HGF in 

order to achieve both, endocrine and paracrine HGF delivery. 
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4.3.4 HGF mediates anti-fibrotic effects identified in vitro also in vivo 

Systemic administration of HGF mediated by rAAV8 and rAAV9 revealed a successful 

transduction by both vectors. High levels of HGF were traceable 5.5 weeks after vector 

application in sera of rAAV8 and rAAV9 treated mice, whereas the controls were negative. 

The strongest HGF expression was detectable in mice treated with rAAV9-HGF vectors 

confirming the reporter gene analyses and indicating rAAV9 to be better suited for renal 

treatment. 

With regard to the anti-fibrotic effect of HGF, there was a significant correlation of the HGF 

sera level and the transcript levels of genes associated with fibrosis. The transcript levels of 

the main fibrous collagen, COL1A1, were strongly reduced by HGF treatment. The same was 

obvious for SMA, the indicative marker for myofibroblastic cells. These beneficial effects of 

HGF are concordant with the data of earlier studies that also demonstrated the anti-fibrotic 

potential of HGF. The decrease of SMA and COL1A1 were recently reported in a mouse 

model of renal fibrosis after intravenous injection of naked plasmid encoding HGF [78], in a 

rat model of CsA-induced nephrotoxicity after HGF plasmid DNA electroporation [215], and in 

a UUO mouse model given recombinant HGF subcutaneously [59]. 

However, these reports describe the anti-fibrotic action of HGF in mice and rats that 

represent short-term induced renal scarring and thereby a fibrotic progress that is very un-

physiological. On the contrary, in this study gene-therapeutical benefits were achieved for a 

periode of 5.5 weeks in the COL4A3 knockout mouse model, representing a preclinical 

pathophysiological model that develops interstitial fibrosis with steady progress, similar to the 

human Alport syndrome.  

 

Additionally to diminished COL1A1 and SMA mRNA levels, the present study revealed 

significantly reduced transcript levels of the PDGF receptor β in mice that exhibited HGF in 

their sera. As previously shown (chapter 4.2), this receptor has been associated with fibrotic 

conditions presumably by driving proliferation of cells with a myofibroblastic phenotype [154]. 

Another assumption is reported by Kliem and coworkers who speculate that overproduction 

of the ligand PDGF-B as well as increased expression of its receptor PDGFRβ are 

responsible for attracting fibrotic cells in areas of tubulointerstitial injury [222]. Tang et al. 

reported that administration of exogenous PDGF-B in healthy rats caused stimulated 

tubulointerstitial proliferation and increased tubulointerstitial matrix accumulation [208]. A 

study by Taneda et al. [203] analyzed the role of PDGF-D in a mouse model of UUO. They 

could show that beside an increase of PDGF-B in areas of tubulointerstitial fibrosis also an 

increase of PDGF-D was detectable. While the latter activates preferentially PDGFRβ, 

PDGF-B is able to activate PDGFRα, PDGFRβ or its heterodimer PDGFRαβ [201, 202]. To 

date there is not much known about the interaction of HGF with PDGFRβ. Only one report 
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describes a possible counteraction of PDGF-induced mesangial cell proliferation and a 

negative regulation by HGF [209]. The down-regulation of the receptor in interstitial fibrosis 

via HGF could mediate the delay of further expansion of myofibroblastic cells thereby 

preventing the scarring by deposition of extracellular matrix. The consequence is a reduced 

proliferation of the myofibroblastic cells going along with an inhibited accumulation of 

myofibroblasts in the interstitium. 

 

Unexpectedly, connective tissue growth factor (CTGF) was not affected in a HGF-dependent 

manner. There was neither a significant decrease detectable in mice that received HGF, nor 

a correlation to the HGF sera level. As already discussed above, CTGF is a downstream 

mediator for TGFβ that has been linked to chronic tubulointerstitial fibrosis. HGF is known to 

inhibit Smad signaling in epithelial cells [152], mesangial cells [69] and fibroblasts [68]. 

Moreover, the activation of the CTGF promoter by TGFβ can be mediated via two different 

signaling pathways, either the Smad signaling or the Ras/MAPK/Erk pathway [32, 193]. 

Thus, CTGF repression by AAV mediated, recombinant expressed HGF was assumed. 

Furthermore, reduced CTGF expression after administration of HGF in a mouse model of 5/6 

nephrectomy has already been shown [223]. However, 5/6 nephrectomy is a renal fibrosis 

model combined with prominent regeneration whereas the here addressed Alport model 

represents the human pathophysiology of tubulointerstitial fibrosis after proteinuria [16]. 

Notably, beside the reduced mRNA level of COL1A1, SMA, and PDGFRβ, a strong 

correlation between kidney pathology and HGF sera levels were observed. In dependency to 

high HGF expression levels, the severity of fibrosis was remarkably reduced. Histological 

analyses displayed a declined deposition of extracellular matrix attending to increased HGF 

levels. Again, a considerably stronger anti-fibrotic effect was detectable in mice treated with 

rAAV9-HGF compared to rAAV8-HGF that is due to a higher expression of hHGF by rAAV9. 

 

In summary, the data of the in vitro study of the first part of this thesis could also be 

confirmed in vivo. HGF treatment of mice suffering from the Alport syndrome and finally 

developing an interstitial fibrosis, resulted in the down-regulation of the transcript levels of 

fibrotic markers like collagen 1A1 and SMA as well as the fibrotic mediator PDGFRβ. 

Moreover, the anti-fibrotic effect was also visible histologically by significantly reduced 

interstitial ECM deposition in mice that expressed high levels of HGF. However, CTGF, the 

main downstream mediator of TGFβ, showed no dependency to the HGF expression.  

The best suited serotype for the delivery of HGF seems to be AAV9, as this vector resulted in 

the highest HGF expression and the most efficient anti-fibrotic effect. 
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4.3.5 Paracrinal and endocrinal delivery of hHGF 

As HGF is known to be involved in growth, invasion and metastasis of tumors, the 

bidirectional expression of HGF in the kidney and the liver could be a problem. However, it is 

known, that endogenous HGF levels increase in response to acute injuries and diseases [49, 

51, 224] and that this increase is not restricted to the damaged organ. In case of an acute 

renal injury, there is also an increase of HGF expression detectable in distant non-injured 

organs like lung, liver and spleen [51, 53-55]. The group of Miyazawa postulate that even 

though the HGF production is not specific for the injured organ, the activation of HGF occurs 

exclusively in the injured tissue [55].  

Since HGF is synthesized and secreted in a biologically inactive form, a single-chain 

precursor [43, 46, 225], it has to be activated. This activation is mediated via specific serine 

proteases [55] that also seem to be only activated after injury [226] (Fig. 4.3). 

 

 

 
 

Fig. 4.3: Proteolytic conversion of HGF. HGF is synthesized and secreted in a biologically 
inactive form as a single-chain precursor (pHGF). This single chain precursor becomes 
activated by proteolytical conversion into a heavy chain and a light chain, held together by a 
disulfide bond (aHGF). The activation is mediated via specific serine proteases that also seem 
to be only activated after injury. The figure was modified according to Matsumoto et al., 2000 
[47]. 
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In addition, there are at least two reports concerning a down-regulation of the HGF receptor 

c-met, restricted to injured tissues [227, 228]. Endocytosis of the ligand-receptor complex 

implies that active HGF is only present in the damaged organ.  

For the present study this activation system implicates that HGF in the circulating blood 

remains in an inactive single chain form unless it reaches the fibrotic kidney. Therefore, the 

advantage of this approach is an expression of HGF in two different organs. On one hand 

HGF is locally expressed in the kidney, directly in the region of injury. Notably the expression 

of HGF mediated by AAV occurs in the medulla, representing the highest deposition of 

extracellular matrix in case of interstitial fibrosis. On the other hand the AAV-mediated 

expression of HGF in the liver supports the anti-fibrotic effect by increased HGF levels in the 

circulating blood and there is no expectation of a negative effect of hHGF expressed by the 

liver as hHGF remains inactive until it reaches the kidney (see Fig. 4.2). A further advantage 

compared to earlier studies is the continuous expression of HGF. 

 

  

 

 

Fig. 4.2: Application of rAAV9 results in the biodistribution to a wide panel of organs and transgene 
expression in lung, heart, liver, spleen and kidney using the ubiquitously active CMV promoter (A). 
Replacement of the CMV-promoter by the Ksp-promoter enforced by the CMV enhancer restricts 
transgene expression to the liver and the kidney (B, C). 
The HGF transgene (pHGF) expressed in the liver ameliorates tubulointerstitial fibrosis after endocrine 
delivery and proteolytic activation (aHGF) in the kidney. Finally, application of the rAAV8-CMV-Ksp-
hHGF (B) as well as rAAV9-CMV-Ksp-hHGF (C) vector provides a bidirectional therapeutical 
approach which is highly efficient in amelioration of chronic kidney disease by targeting efficiently 
both, the liver parenchyma for endocrine and the renal tubuloepithelium for paracrine transgene 
delivery. However, rAAV9 demonstrated to be more efficient reaching a higher hHGF expression in 
both organs. pHGF: pro-HGF, the inactive precursor; aHGF: activated HGF. The figure was modified 
according to Matsumoto et al., 2000 [47]. 
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Taken together, this study could demonstrate for the first time a gene therapeutical approach 

for the treatment of interstitial fibrosis using the AAV vector as gene vehicle for the human 

hepatocyte growth factor. The present study took advantage on the activation mechanism at 

the site of injury exploiting the naive liver tropism of the AAV system to obtain an endocrinal 

hHGF delivery by the liver as well as a paracrinal hHGF supply in the kidney. In contrast to 

previous studies also using HGF as anti-fibrotic mediator this approach provides a systemic 

application coupled with a constant expression of HGF.  
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4.4 Perspectives of anti-fibrotic functions by AAV mediated HGF transfer  
 in gene therapeutical approaches 
rAAV vectors carrying HGF as transgene were constructed with the aim to mediate 

expression predominantly in the kidney. This was assumedly hampered by the used 

enhancer, the CMV enhancer, which triggered expression not only in the kidney but also in 

the liver. In addition, the Ksp-cadherin promoter that was reported to be kidney specific in 

vitro and in vivo also revealed to be slightly expressed in the liver (data not shown). 

Therefore, although the beneficial role of HGF in the treatment of interstitial renal fibrosis 

could be demonstrated and the administration via adeno-associated viral vectors revealed a 

novel strategy for the delivery, this system could be further improved. It would be of interest, 

if an expression of HGF that is exclusively restricted to the kidney is sufficient to stop the 

progression of interstitial fibrosis. A tissue-specific HGF expression would demonstrate if the 

anti-fibrotic effect shown in this study can be attributed to an HGF expression via the liver or 

the expression in the kidney, the place of damage. Furthermore, a transduction of only the 

target cell would minimize the risk of potentially negative side-effects of the transgene on 

other tissues. Therefore, an alternative or improved strategy would be a vector that 

exclusively transduces the kidney. To date there is much research on the field of AAV hybrid 

serotypes to enhance the efficiency of gene transfer in various tissues. As the viral capsid is 

responsible for the receptor binding, modifications of the capsids are under comprehensive 

examinations. The recently reported phage display technology [229-231] would be a 

promising approach to sort sequences that are exchanged in the viral capsid and exhibit 

desired biological properties for renal transduction.  
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6. Supplements 

Table S2: GO-Clusteranalyses of genes down-regulated by hHGF in NRK49F cells. Genes were 
subdivided into the three functional clusters: molecular function, cellular component and biological 
process. Repetitions in genes with different fold changes represent splice variants. Only genes with a 
fold change greater than 2.0 were considered.  
 

Gene Title Gene Symbol Fold Change 

A)   molecular function   

1)   extracellular matrix   

tenascin N (predicted) Tnn_predicted 25.06 

chitinase 3-like 1 Chi3l1 24.58 

matrix metallopeptidase 9 Mmp9 5.55 

matrix metallopeptidase 9 Mmp9 5.45 

thrombospondin 2 Thbs2 5.01 

connective tissue growth factor Ctgf 3.60 

tumor necrosis factor receptor superfamily, member 11b   

(osteoprotegerin) 
Tnfrsf11b 3.31 

procollagen, type XII, alpha 1 Col12a1 2.94 

bone morphogenetic protein 4 Bmp4 2.86 

matrix Gla protein Mgp 2.86 

lumican Lum 2.84 

osteomodulin Omd 2.79 

a disintegrin-like and metallopeptidse (reprolysin type) with 

thrombospondin type 1 motif, 1 
Adamts1 2.76 

latent transforming growth factor beta binding protein 2 Ltbp2 2.73 

procollagen, type 1, alpha 1 Col1a1 2.68 

matrix metallopeptidase 2 Mmp2 2.63 

A disintegrin-like and metallopeptidase (reprolysin type) with 

thrombospondin type 1 motif, 5 (aggrecanase-2) 
Adamts5 2.63 

tissue inhibitor of metalloproteinase 2 Timp2 2.61 

ADAMTS-like 4 Adamtsl4 2.48 

A disintegrin-like and metalloprotease (reprolysin type) with 

thrombospondin type 1 motif, 9 (predicted) 
Adamts9_predicted 2.48 

fibulin 5 Fbln5 2.47 

secreted acidic cysteine rich glycoprotein Sparc 2.47 

periostin, osteoblast specific factor (predicted) Postn_predicted 2.44 

cysteine rich protein 61 Cyr61 2.42 

secreted acidic cysteine rich glycoprotein Sparc 2.29 

procollagen, type V, alpha 2 Col5a2 2.27 

ADAMTS-like 5 (predicted) Adamtsl5_predicted 2.24 

matrix metallopeptidase 13 Mmp13 2.22 

procollagen, type XII, alpha 1 Col12a1 2.14 

matrix metallopeptidase 12 Mmp12 2.10 

matrix metallopeptidase 11 Mmp11 2.06 

Matrix metallopeptidase 14 (membrane-inserted) Mmp14 2.05 

Matrix metallopeptidase 3 Mmp 3 1.58 
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B) cellular component   

1)  extracellular space   

procollagen, type IV, alpha 2 (predicted) Col4a2_predicted 2.12 

procollagen, type IV, alpha 1 

 
Col4a1 1.91 

2)  extracellular region part   

sarcoglycan, gamma (dystrophin-associated glycoprotein) Sgcg 5.85 

similar to Beta-sarcoglycan (Beta-SG) (43 kDa dystrophin-

associated glycoprotein) (43DAG) 
LOC680229 /// LOC687025 1.72 

   

C) biological process   

1)  cell proliferation   

CD74 antigen (invariant polypeptide of major histocompatibility 

complex, class II antigen-associated) 
Cd74 9.58 

chemokine (C-X-C motif) ligand 12 Cxcl12 7.33 

c-fos induced growth factor Figf 6.90 

chemokine (C-X-C motif) ligand 12 Cxcl12 6.75 

chemokine (C-X-C motif) ligand 12 Cxcl12 6.28 

colony stimulating factor 2 (granulocyte-macrophage) Csf2 5.46 

growth arrest specific 6 Gas6 4.44 

bone morphogenetic protein 4 Bmp4 2.86 

transforming growth factor, beta 2 Tgfb2 2.78 

Transforming growth factor, beta 2 Tgfb2 2.69 

Transforming growth factor, beta 2 Tgfb2 2.60 

cysteine rich protein 61 Cyr61 2.42 

growth arrest specific 6 Gas6 2.40 

Matrix metallopeptidase 14 (membrane-inserted) Mmp14 2.05 

platelet derived growth factor receptor, alpha polypeptide Pdgfra 2.04 

c-fos induced growth factor Figf 2.01 

2)  immune response   

chemokine (C-C motif) ligand 5 Ccl5 22.76 

complement component 3 C3 19.50 

similar to Small inducible cytokine B13 precursor (CXCL13) (B 

lymphocyte chemoattractant) (CXC chemokine BLC) 
LOC498335 17.90 

RT1 class II, locus Da RT1-Da 17.58 

chemokine (C-X3-C motif) ligand 1 Cx3cl1 10.03 

RT1 class II, locus Ba RT1-Ba 7.75 

complement component factor H Cfh 7.02 

RT1 class II, locus Ba RT1-Ba 6.63 

RT1 class II, locus Bb RT1-Bb 5.86 

colony stimulating factor 3 (granulocyte) Csf3 5.86 

peptidoglycan recognition protein 1 Pglyrp1 5.53 

interleukin 6 Il6 5.31 

RT1 class II, locus Db1 RT1-Db1 4.92 

chemokine (C-C motif) ligand 20 Ccl20 4.88 

chemokine (C-X-C motif) ligand 11 Cxcl11 4.03 

myxovirus (influenza virus) resistance 1 Mx1 3.96 
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major histocompatibility complex, class II, DM beta Hla-dmb 3.92 

RT1 class Ib, locus S3 RT1-S3 3.77 

RT1 class Ib, locus Aw2 /// RT1 class Ia, locus A2 /// RT1 class I, 

A3 
RT1-A2 /// RT1-A3 /// RT1-

Aw2 

3.76 

RT1 class II, locus Db1 RT1-Db1 3.74 

ubiquitin D Ubd 3.71 

mannan-binding lectin serine peptidase 1 Masp1 3.58 

mannan-binding lectin serine peptidase 1 Masp1 3.57 

Fc receptor, IgG, alpha chain transporter Fcgrt 3.28 

RT1 class Ib, locus S3 RT1-S3 3.24 

complement component 1, s subcomponent /// similar to 

complement component 1, s subcomponent (predicted) 
C1s /// 

RGD1561715_predicted 

3.20 

cathepsin C Ctsc 3.16 

RT1 class Ib, locus S3 RT1-S3 3.06 

cathepsin C Ctsc 3.05 

chemokine (C-C motif) ligand 7 Ccl7 2.98 

RT1 class I, CE5 RT1-CE5 2.97 

Beta-2 microglobulin B2m 2.91 

CD69 antigen Cd69 2.68 

chemokine (C-X-C motif) ligand 2 Cxcl2 2.65 

guanylate nucleotide binding protein 2 Gbp2 2.58 

neuraminidase 1 Neu1 2.55 

Tumor necrosis factor receptor superfamily, member 6 Tnfrsf6 2.43 

gene model 1960, (NCBI) Gm1960 2.34 

hemochromatosis Hfe 2.32 

Tumor necrosis factor receptor superfamily, member 6 Tnfrsf6 2.31 

tumor necrosis factor (ligand) superfamily, member 13 Tnfsf13 2.24 

gene model 1960, (NCBI) Gm1960 2.15 

gene model 1960, (NCBI) Gm1960 2.11 

RT1 class Ib, locus M3 RT1-M3 2.10 

major histocompatibility complex, class II, DM alpha Hla-dma 2.02 

RT1 class Ib, locus S3 /// RT1-149 protein RT1-149 /// RT1-S3 2.01 

 
3)  signal transduction 

  

ectonucleotide pyrophosphatase/phosphodiesterase 2 Enpp2 32.52 

tenascin N (predicted) Tnn_predicted 25.06 

Rho family GTPase 3 Rnd3 5.07 

similar to interferon-inducible GTPase RGD1309362 5.02 

similar to Ras-related protein Rab-1B LOC682488 /// MGC105830 4.75 

platelet derived growth factor receptor, beta polypeptide Pdgfrb 4.67 

Gardner-Rasheed feline sarcoma viral (Fgr) oncogene homolog Fgr 4.23 

similar to Ras-related protein Rab-1B LOC682488 /// MGC105830 4.09 

Rho family GTPase 3 Rnd3 3.78 

connective tissue growth factor Ctgf 3.60 

ephrin B1 Efnb1 3.48 

bone morphogenetic protein 6 Bmp6 3.35 

frizzled homolog 1 (Drosophila) Fzd1 3.35 



SUPPLEMENTS 

 101

bone morphogenetic protein 6 Bmp6 3.33 

tumor necrosis factor receptor superfamily, member 11b 

(osteoprotegerin) 
Tnfrsf11b 3.31 

receptor (calcitonin) activity modifying protein 2 Ramp2 3.30 

G protein-coupled receptor 68 (predicted) Gpr68_predicted 3.25 

ras homolog gene family, member J Rhoj 3.13 

similar to Opsin-3 (Encephalopsin) (Panopsin) LOC498289 2.82 

a disintegrin-like and metallopeptidse (reprolysin type) with 

thrombospondin type 1 motif, 1 
Adamts1 2.76 

RAR-related orphan receptor alpha (predicted) Rora_predicted 2.76 

latent transforming growth factor beta binding protein 2 Ltbp2 2.73 

RAR-related orphan receptor alpha (predicted) Rora_predicted 2.71 

similar to integrin, beta-like 1 LOC498564 2.67 

ras homolog gene family, member J Rhoj 2.66 

signal-transducing adaptor protein-2 Stap2 2.62 

tissue inhibitor of metalloproteinase 2 Timp2 2.61 

guanine nucleotide binding protein (G protein), gamma 8 subunit Gng8 2.51 

Down syndrome critical region gene 1-like 1 Dscr1l1 2.49 

secreted acidic cysteine rich glycoprotein Sparc 2.47 

serine/threonine/tyrosine interacting-like 1 Styxl1 2.46 

Phosphodiesterase 4B, cAMP specific Pde4b 2.42 

synaptojanin 2 binding protein Synj2bp 2.39 

chaperone, ABC1 activity of bc1 complex like (S. pombe) Cabc1 2.38 

secreted frizzled-related protein 4 Sfrp4 2.37 

amyloid beta (A4) precursor protein App 2.35 

RAS-like family 11 member B Rasl11b 2.34 

similar to integrin beta-5 (predicted) RGD1563276_predicted 2.34 

G protein-coupled receptor 176 Gpr176 2.32 

Janus kinase 2 Jak2 2.31 

heme oxygenase (decycling) 1 Hmox1 2.31 

protein tyrosine phosphatase, non-receptor type 1 Ptpn1 2.30 

Ras and Rab interactor 2 (predicted) Rin2_predicted 2.29 

secreted acidic cysteine rich glycoprotein Sparc 2.29 

Signal transducer and activator of transcription 2 Stat2 2.26 

BMP and activin membrane-bound inhibitor, homolog (Xenopus 

laevis) 
Bambi 2.20 

carboxypeptidase E Cpe 2.19 

interferon gamma receptor 2 (predicted) Ifngr2_predicted 2.18 

Discoidin domain receptor family, member 2 Ddr2 2.18 

cytokine inducible SH2-containing protein Cish 2.18 

programmed cell death 6 interacting protein Pdcd6ip 2.16 

regulator of G-protein signalling 3 Rgs3 2.12 

Rho-guanine nucleotide exchange factor (predicted) Rgnef_predicted 2.12 

amyloid beta (A4) precursor-like protein 2 Aplp2 2.10 

amyloid beta (A4) precursor protein App 2.10 

chemokine orphan receptor 1 Cmkor1 2.06 

plasminogen activator, tissue Plat 2.05 
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very low density lipoprotein receptor Vldlr 2.05 

phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 1 Pik3r1 2.02 
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MCS
XhoI (33)
HindIII (54)

luciferase

SV40 poly(A) signal

Ampr

f1 origin

Synthetic (upstream) poly(A) signal

pGL3-Basic
4818 bp

 

 

ksp-cadherin-promoter

HindIII (1398)

luciferase

SV40 poly(A) signal

Ampr

f1 origin

Synthetic (upstream) poly(A) signal

pGL-Ksp
6162 bp

 

 

           

Ksp-cadherin-promoter

ß-globin-minimal-prom

luciferase

SV40 PolyA

AmpR

f1 ori

pGL3-Ksp-ß-globin

6233 bp

 

Fig. S1: Ksp-cadherin promoter enhanced by the β-globin-minimalpromotor 
The reporter plasmid pGL-Ksp-MM-Luc containing upstream of the firefly-luciferase the Ksp-cadherin promotor 
followed by a β-globin-minimalpromotor as enhancer was generated by digestion-steps as well as PCR 
amplification and oligonucleotide-dimerisation. The pGL3-Basic vector (Promega, Germany) was digested with 
XhoI and HindIII and used as backbone. The 1342-bp region of the Ksp-cadherin promoter was amplified using 
specific primers (Ksp-Cad-F and Ksp-Cad-R) designed to simultaneously generate a 5’ XhoI- and a 3’ HindIII-
restriction site. The amplification product was ligated into the pGL3-backbone resulting in the vector pGL3-Ksp. 
This vector in turn was opened with HindIII and the β-globin-minimalpromotor, generated by dimerisation was 
inserted. The resulting reporter plasmid was named pGL-Ksp-MM-Luc. The sequences of the plasmid-inserts 
were verified by DNA-sequencing.  

ligation

β-globin-minimal 
promoter 

blunding + ligation 

Ksp-cadherin 

XhoI HindII

pGL-Ksp-MM-Luc 
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MCS
XhoI (33)
HindIII (54)

luciferase

SV40 poly(A) signal

Ampr

f1 origin

Synthetic (upstream) poly(A) signal

pGL3-Basic
4818 bp

 

 
SmaI (29)

ksp-cadherin-promoter

luciferase

SV40 poly(A) signal

Ampr

f1 origin

Synthetic (upstream) poly(A) signal

pGL-Ksp
6162 bp

 
 
 

              

CMV-enhancer

ksp-cadherin-promoter

luciferase

SV40 poly(A) signal

Ampr

f1 origin

Synthetic (upstream) poly(A) signal

pGL3-CMV-Ksp
6700 bp

 

Fig. S2: Ksp-cadherin promoter enforced by a CMV-enhancer 
The construction of the reporter plasmid pGL-CMV-Ksp-Luc, containing the CMV-enhancer instead of the β-
globin-minimalpromoter, was similar to the pGL3-Ksp-β-globin generation. The intermediate step resulting in 
the vector pGL3-Ksp was the same. By dint of PCR amplification the CMV-enhancer was amplified (primer 
CMV-enhancer-F and CMV-enhancer-R, see 2.1.5 table 4) out of the vector pEGFP-C1 (Clontech, Germany). 
The PCR product was cloned into the unique SmaI site upstream of the Ksp-cadherin promoter in the pGL3-
Ksp, resulting in the vector pGL-CMV-Ksp-Luc. The correct sequences of the inserts were verified by DNA-
sequencing. 

XhoI HindIII 

ligation 

CMV-enhancer  

Ksp-cadherin promoter 

ligation 

pGL-CMV-Ksp-Luc 
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CMV-Enhancer
PpuMI (573)

MLC 260

ß-Globin IgG

BamHI (1171)

EGFP

SV40 PolyA

3' ITR

5' ITR

dsAAV-CMV-MLC260-EGFP

6088 bp

        

XhoI (33)
ksp-cadherin-promoter

HindIII (1398)

luciferase

SV40 poly(A) signal

Ampr

f1 origin

Synthetic (upstream) poly(A) signal

pGL3-Cadherin

6162 bp

 
      
 
 
 
 
 
 
 
 
 
 

                                                              

CMV-Enhancer

Ksp-cadherin Promoter

EGFP

SV40-PolyA
3' ITR

5' ITR

dsAAV-CMV-Ksp-EGFP
6857 bp

 
 

Fig. S3: Construction of the CMV-Ksp-GFP reporter construct. The reporter plasmid for the mammalian 
promoter Ksp-Cadherin enforced by the CMV-enhancer was constructed by replacing the region of the 
MLC260-β-globin IgG promoter region in the plasmid dsAAV-CMV-MLC260-EGFP by the Ksp-cadherin 
promoter using the flanking restriction enzymes PpUMI and BamHI. Therefore, the resulting backbone was 
end-filled with T4 polymerase and the also blunded Ksp-promoter, excised out of the pGL3-Ksp via XhoI and 
HindIII, was inserted. The resulting plasmid was named dsAAV-CMV-Ksp-GFP. 

blunding+ligation 

dsAAV-CMV-Ksp-GFP 
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CMV-enhancer

ksp-cadherin-promoter

HindIII (1936)

luciferase

SV40 poly(A) signal

SalI (3893)

Ampr

f1 origin

Synthetic (upstream) poly(A) signal

pGL3-CMV-Ksp
6700 bp

 
   

      

CMV-enhancer

ksp-cadherin-promototr

hHGF+PolyA

Ampr

f1 origin
Synthetic (upstream) poly(A) signal

pGL-CMV-Ksp-hHGF-PolyA

7281 bp

 

Fig. S4: Construction of a kidney specific hHGF-expression cassette 
The hHGF with poly (A) was amplified out of the vector pBlast49F-hHGF (Invivogen, Germany) using primers 
tailed with restriction sites for HindIII and SalI (hHGF-F and hHGF-R, see 2.1.5 table 4). The pGL-Ksp (S…) 
was digested with HindIII and SalI to remove the luciferase and the HindIII and SalI restricted amplicon of 
hHGF+poly(A) was inserted, resulting in the plasmid pGL-CMV-Ksp-hHGF. 

 

 

 

hHGF + poly(A) 

HindIII SalI
ligation 

pGL-CMV-Ksp-hHGF 
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ITR SnaBI (233)

 VP3

VP2

VP1

Rep 52
Rep 78 SnaBI (4569)

ITR

Amp-r

pSUB201 plus
8310 bp

              

CMV-enhancer

ksp-cadherin-promoter

hHGF+PolyA
NotI (4465)

Ampr

f1 origin
NotI (7115)

Synthetic (upstream) poly(A) signal

pGL-CMV-Ksp-hHGF-PolyA

7281 bp

 
 

 

       

ITR

CMV-Ksp-hHGF-PolyA

ITR

Amp-r

pSUB201-CMV-Ksp-hHGF
8415 bp

 
 

Fig. S5: Subcloning of the hHGF-expression cassette for AAV8 and 9 packaging 
Restriction digest with SnaBI causes the removal of the AAV coding region leaving the AAV terminal repeats, 
the only cis acting sequences required for recombinant virus production, intact in the plasmid backbone. For 
the subcloning of the hHGF-cassette (3.3.1) both ORF’s of the pSUB201, rep and cap, were removed by 
digestion with SnaBI. The hHGF expression cassette (CMV-Ksp-hHGF) was excised out of the plasmid 
generated above using NotI, treated with T4-polymerase and cloned into the pSUB201 backbone. The so 
generated transgene-containing AAV-vector was packaged into AAV8 and 9 capsids, respectively. 

 

replacement of  
rep and cap by 
the CMV-Ksp-
hHGF expression 
cassette 
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