Positivity and regularity of
solutions to higher order Dirichlet
problems on smooth domains

INAUGURAL-DISSERTATION
Zur
Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultat

der Universitat zu Koln

vorgelegt von
Inka Schnieders

aus Leverkusen

Koln, 2021



Berichterstatter: Prof. Dr. Guido Sweers

apl. Prof. Dr. Dirk Horstmann

Tag der miindlichen Priifung: 12.01.2021



Abstract

For second order elliptic boundary value problems a maximum principle holds true
and as a consequence one finds a priori estimates for the solutions or a useful com-
parison principle. For higher order elliptic boundary value problems no direct gen-
eralization of the maximum principle is valid and therefore, questions that can be
answered for second order problems remain open for higher order problems. In this
thesis we investigate whether results such as a comparison principle or the existence
of classical solutions to nonlinear problems hold for some elliptic Dirichlet problems
of order 2m.

We consider a weighted polyharmonic problem (—A)™u— Awu = f in a bounded
domain 2 with smooth boundary and (%)ku =0on 09 for k € {0,1,...,m — 1}.
One of the main results is the following: One assumes that there is a function ug that
can be estimated from below by d(-)™ and which fulfills (—A)™uy > 0 in classical
sense. Here d(-) is the distance to the boundary. Then one finds a strictly positive
weight function w and an interval I C R, such that for A € I the following holds for
the Dirichlet problem described above: f positive implies that u is positive. Such a
result is called a positivity preserving property.

The proof is based on the construction of an appropriate weight function w
and a corresponding strongly positive eigenfunction for the weighted polyharmonic
eigenvalue problem. Then, applying a converse of the Krein-Rutman theorem for the
weighted polyharmonic Dirichlet problem, one obtains the main result concerning
positivity of solutions. As a special case it is shown that one finds for all smooth
domains an appropriate weight function, such that the weighted bilaplace problem
is positivity preserving for A in some small interval. Also some examples and special
cases for higher order problems (m > 2) are described.

Moreover, further consequences of known estimates for the polyharmonic Green
function are presented. Using these estimates and regularity results, we investigate
the classical solvability of a higher order semilinear Dirichlet problem. We consider
the differential equation (—A)™u + g(-,u) = f with zero Dirichlet boundary condi-
tions, where ¢ fulfills a sign condition g(z,t)t > 0 for all (x,t) € Q x R and satisfies
a growth condition. One may improve known results about classical solvability and
prove that there exists a solution u € C?™7(Q) N CF(Q).



Zusammenfassung

Fiir elliptische Randwertprobleme zweiter Ordnung gilt ein Maximumprinzip,
woraus Abschatzungen fiir die Losungen oder ein niitzliches Vergleichsprinzip folgen.
Fiir elliptische Probleme héherer Ordnung existiert keine direkte Verallgemeinerung
des Maximumprinzips, weshalb einige Fragen noch offen sind, die im Falle zweiter
Ordnung beantwortet wurden. In dieser Dissertation untersuchen wir, ob Ergebnisse
wie ein Vergleichsprinzip oder die Existenz klassischer Losungen von semilinearen
Problemen fiir einige elliptische Randwertprobleme der Ordnung 2m erfiillt sind.

Wir betrachten das gewichtete polyharmonische Problem (—A)"u — Awu = f
in einem beschrinkten Gebiet 2 mit glattem Rand 9Q und (£)Fu = 0 auf 09 fiir
ke {0,1,...,m — 1}. Eines der Hauptergebnisse ist das Folgende: Es wird die Ex-
istenz einer geniigend glatten Funktion uy angenommen, die von unten durch d(-)™
abzuschétzen ist und (—A)™uy > 0 im klassischen Sinne erfiillt. Hier ist d(-) die
Distanz zum Rand des Gebietes. Dann existiert eine strikt positive Gewichtsfunk-
tion w und ein Intervall I C R, sodass fiir alle A € [ folgt: f positiv impliziert u
positiv. Dies nennt man eine positivitatserhaltende Figenschaft.

Der Beweis basiert auf der Konstruktion einer geeigneten Gewichtsfunktion und
einer zugehorigen positiven Eigenfunktion fiir das gewichtete Eigenwertproblem.
Wendet man anschlieend eine Umkehrung des Theorems von Krein-Rutman fiir das
gewichtete polyharmonische Dirichlet Problem auf glatten Gebieten an, findet man
das genannte Ergebnis tiber die Positivitat von Losungen. Als Spezialfall erhalt man
fiir alle glatten Gebiete die Existenz einer Gewichtsfunktion, sodass das gewichtete
biharmonische Problem fiir ein kleines Intervall fiir A positivitatserhaltend ist. Es
werden zudem Beispiele und Spezialfille fiir Probleme hoherer Ordnung (m > 2)
dargestellt.

Dartiber hinaus werden weitere Folgerungen aus einer bekannten Abschéatzung
fiir die Greensche Funktion des polyharmonische Problems erlautert. Es werden
dieses Resultat und Regularitatsergebnisse verwendet, um die klassische Losbarkeit
eines semilinearen Dirichlet Problems hoherer Ordnung zu untersuchen. Dabei wird
die Differentialgleichung (—A)™u + g(-,u) = f mit Dirichlet Randdaten betra-
chtet, wobei g die Bedingung g(x,t)t > 0 fir alle (x,t) € Q x R und zusétzliche
Wachstumsbedingungen erfiillt. Man kann bekannte Ergebnisse iiber die klassische

Losbarkeit des semilinearen Problems verbessern, indem die Existenz einer Losung
u € C?™7(Q) N C(Q) bewiesen wird.
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Chapter 1

Introduction

1.1 Overview of the problem

For second order elliptic boundary value problems, a maximum principle or re-
sults concerning classical solvability of semilinear boundary value problems are well
known. It is surprising that these are important features of second order prob-
lems that distinguish them from higher order problems or systems of differential
equations. So, the following question may arise:

Do similar results regarding the positivity of solution operators or exis-
tence of classical solutions for nonlinear Dirichlet problems also hold in
the case of higher order elliptic differential operators?

One can consider the problem Lu = f on some bounded domain 2 C R" with
smooth boundary 0f). For L = —A and Dirichlet boundary conditions v = 0 on
0%) one finds that a nonnegative right-hand side f implies a nonnegative solution wu.
This result is often called maximum principle, but when we refer to this property
we call it a positivity preserving property (PPP) to make a distinction between the
positivity result and the local maximum principle. Moreover, using the maximum
principle, one may find a priori estimates and with Hopf’s boundary point lemma
one obtains informations about the behavior of the solution near the boundary. In
addition, since the solution operator of L = —A with Dirichlet boundary conditions
is positive, the Krein-Rutman theorem provides results concerning simplicity of the
first eigenvalue or positivity of the corresponding eigenfunction. In this thesis, we
will investigate the validity of similar results for higher order problems.

For fourth or higher order elliptic Dirichlet problems a positivity preserving
property does not hold in general. There are a lot of counterexamples for the
clamped plate problem, that is

9 :
{A u g f in , (L1)
u=gu=0 on d,
where  C R? is a bounded domain and v is the outer normal unit vector on 9.
The model in describes the deviation of a thin plate due to a force density

1



CHAPTER 1. INTRODUCTION

f. The plate is clamped at its boundary. One might suppose that if one considers
sufficiently smooth and simply connected domains, then positivity preserving holds
true, since this is the case in one dimension or if €} is a ball.

Hadamard also conjectured in 1908 after a discussion with Boggio, see [36], that
for convex domains a positivity preserving property holds for . The first well
known counterexample was proven by Duffin in 1949, see [I7]. He considered the
biharmonic Dirichlet problem on an infinitely long strip and found a nonnegative
right-hand side f with sign-changing solution u for problem (L.I). Only two years
later, Garabedian constructed a counterexample in the case where the underlying
domain is a sufficiently eccentric ellipse, see [20]. An elementary proof that the
biharmonic Green function of an eccentric ellipse changes sign can be found in [64].
In [69, [70], a counterexample for the bi- and trilaplacian in an ellipse is shown. More
examples can be found in Section [I.3] So, no positivity preserving property holds
even if one considers bounded, smooth and convex domains. Therefore, it is not
obvious under which assumptions a positivity result is fulfilled.

There are only a few domains where positivity preserving for can be proven.
Boggio constructed in [5] an explicit Green function for the ball in every dimension
and since this function is positive, there is a positivity preserving property on balls.
Moreover, in [28] a positivity result was shown for small perturbations of balls in
two dimensions.

It is frustrating that for a lot of results in the case of second order problems
one presupposes the maximum principle, so that there are no obvious extensions
for higher order problems. In general, there is no replacement for a comparison
principle. For higher order elliptic operators that are not a product of second order
operators, the fundamental solution does not even have to be positive, see [27].
However, if we consider the special case of the polyharmonic operator with Dirichlet
boundary conditions, then we will find a replacement for a comparison principle.
So we get a better understanding of the behavior of solutions to some higher order
problems. Instead of a maximum or comparison principle our estimates and proofs
of a positivity preserving property, and the existence of classical solutions to some
semilinear problems are based on sharp two-sided estimates for the polyharmonic
Green function:

For every bounded and sufficiently smooth domain £ C R"™, that is
o0 € C?™7 | there is a constant com > 0 such that

Gam(T,y) + camd(z, 00)™d(y, 00)™ > 0 for all (z,y) € O with x # y.

The function Gq,, is the Green function for the polyharmonic Dirichlet
problem

m

. 1.2
{u:%u = (2) ‘u=0 onoQ, (12)

~—

v

that is u(z) = [, Gam(x, y)f(y)dy solves and d(-,00) is the dis-

tance to the boundary 0S2. More precisely, there exists a positive function



1.1. OVERVIEW OF THE PROBLEM

Hq (-, +) that contains the singularity of Gom(+,-) in the sense that we
find two constants cq m, Com > 0 such that

ComHaom(z,y) < Gam(x,y) + comd(z, 0Q)"d(y, 0™ < éamHam(T,y)
(1.3)

for all (z,y) € QO with x # y.

For the fourth order problem the two-sided estimate can be found in [26] and for
m > 2 Pulst proved the estimate in his dissertation [53, Theorem 0.1]. Pulst even
included lower order derivatives in the differential equation, but the leading order
term has to be (—A)™.

Using results from Krein-Rutman, one finds that if the higher order elliptic
boundary value problem

{

for A = 0 is positivity preserving, then the first eigenvalue A\; of the polyharmonic
eigenvalue problem

{(—A)% = g in Q,

m

—A

—~
~—

Au=f in ,

U —
aﬁu:---:(a)m_lu:o on 0f)

% £

(1.4)

S
I

g0:%g0:---:(a%)m_lcp:0 on 09 (15)
is positive, simple and the eigenfunction ¢, is positive in {2. Moreover, by a Neumann
series expansion it was shown in [31, Proposition 4.1] that if problem satisfies
a positivity preserving property for A = 0, then this property holds true for all
A € [0, \). Furthermore, it was proven that ; is positive in the sense that there is
a constant ¢ > 0 such that ¢q(z) > cd(z,0Q)™, where d(z,0Q) = inf oo |x — y| is
the distance to the boundary.

This raises the question whether the positivity of the solution operator is related
to the existence of a positive eigenfunction. Indeed, one may show that the existence
of a positive eigenfunction for ((1.5)) with simple eigenvalue leads to the positivity of
the solution operator to for a small interval for A. This result can be understood
as a reverse of the Krein-Rutman theorem and is published in [57] for a fourth order
problem. Obviously, it would be a stronger result if we could apply this to problem
for all domains. However, the existence of a positive eigenfunction with simple
eigenvalue cannot be guaranteed and is also difficult to examine for general domains.
But for some smooth and bounded domains a weight function can be added so that
the inverse to Krein-Rutman can be applied, see [58] for m = 2.

Therefore, we will search for a weighted eigenvalue problem such that one gets
a simple eigenvalue with corresponding positive eigenfunction. Then, using an ex-
tended version of the two-sided Green function estimate in for the weighted
differential operator (—A)™ — Aw with weight function w and parameter A, we derive
a positivity preserving property for A in some interval. This is possible since the
singularity of the Green function, respectively the function Hg ,, in , is positive

3



CHAPTER 1. INTRODUCTION

and the negative part can be canceled out.

So, we add a positive weight function w to problem (1.4)) and consider the fol-
lowing Dirichlet problem for 2 < m € N in some smooth and bounded domain
QCR™

—A)"u—dwu = f in Q,
9 b} m—1 (16)
u:%u:--~:($) u=0 on 9.

As a special case we will show that for m = 2 and every bounded and sufficiently
smooth domain €2 there is a Hélder continuous and positive weight function w such
that positivity preserving holds for A\ in some interval. This result can be found in
[58] and is accepted for publication in Pure and Applied Analysis.

Remark 1.1.1 The following biharmonic problem for the deviation of a thin plate
is known, see for example [73, Chapters 3, 4]:

{ (s a> foms (1.7)
u=gu=0 ondQ,

where  C R?, s could be seen as the varying thickness assuming the thickness and
the stiffness have a linear relation, u s the deviation of the plate and f a force
density. We assume that the stiffness may depend on x but neglect the second and
third order terms in and consider sA*u = f instead. If we set s = w™t, we

find
{wlAzu =f inQ,

u:a%u:() on Of).

So, when asked about a physical meaning of the weighted problem, we would under-
stand w as a measure of stiffness or thickness of the plate, even if we assume that
the weight function w may depend on x.

If problem is not positivity preserving in €1, one expects some negativity
close to the boundary since this is the same phenomenon that appears for limacons
which are close to the cardioid or some ellipses, see Section[1.3. In order to maintain
a positivity preserving property for , one suspects that one has to consider plates
which are stiff in a neighborhood of the boundary and rather flexible away from the
boundary of Q). Accordingly, we expect to find a weight function w that takes on
larger values near the boundary compared to the interior.

In the second part of this thesis, we will consider another 2m-order Dirichlet
problem. We show existence of classical solutions to some nonlinear problems. This
is a longstanding problem that has already been considered by Tomi in 1976, von
Wahl in 1978, Luckhaus in 1979 or Grunau in his dissertation in 1990. Instead of
adding a term with a weight function to problem (|1.4), we add a semilinear term

4



1.1. OVERVIEW OF THE PROBLEM

and investigate

—A)™ + ) = ] Qu
A= .
u:%u:---:(c%) u=0 on 0,

where f is Holder continuous in  and ¢ is Holder continuous in Q x R and satisfies
the sign condition

g(z,t)-t >0 forall x € Q,t € R. (1.9)

To this end, we will present the results of [59], accepted for publication in Nonlinear
Analysis. The following summary of known results about classical solvability of
(1.8)) can also be found in [59, Introduction]:

If g is some monotone nonlinearity, then it is well known that there exists a
distributional solution to (1.8), see [7], [9], [37]. We are interested in the following
question: Under which additional conditions on function g does problem have
a classical solution u € C*™(Q)NCP1(Q)?

For m = 1 one finds a classical solution independently of the growth of the
nonlinear term. Indeed, one just needs the maximum principle for second order linear
elliptic problems, or more precisely a comparison principle, and the property that
one may split problem ([1.8)) into two Dirichlet problems on QF := {x € Q,u(x) > 0}
and Q= = {z € Q,u(r) < 0} to get a priori estimates for u™ := max{u,0} and
u” := max{—wu,0}. With |lu||» bounded, one uses some iteration steps: first, known
regularity results imply v € W?P(Q) for all p € (1,00) and then, using Sobolev
imbeddings and regularity results again, u € C%7(Q2) N Cy(Q) follows. For m > 2
there is no direct generalization of these properties, so some additional assumptions
seem necessary.

In the literature there are results that include classical solvability of higher order
problems. Tomi in [74] proved that with some additional monotonicity assumptions
for g and m = 2, one finds a solution u € C*7(Q) N W*(Q) to (1.8). Using the
growth condition |g(-,u)| < C(1 + |u|?) with 1 < ¢ < %2 for n > 2m, von Wahl
[76] and Luckhaus [44] proved that there is a classical solution u € C?*™7(Q2) N
CiH(Q). In [29] and [23] the growth condition for g was weakened. Applying [29,
Theorem 1], one finds that with some growth condition for g(z,t) with ¢ < 0 and
arbitrarily strong growth of g(z,t) with ¢ > 0, or vice versa, there is a solution
w e CP™(Q) N W(Q). Tt is well known and can be proven using the Sobolev
imbedding Wg™*(Q) < L>(Q) that for n < 2m the sufficiently monotone function
g may have an arbitrary power type growth, and one still finds a classical solution
u € C?m(Q)NC(Q). So, in the last part of this thesis, we assume that n > 2m
and using the same assumptions for the semilinear term ¢ as in [29], we want to
improve the result in [29] and [24] to find solutions which take on the boundary
values in classical sense. To prove this result we use the Green function estimates
described in . So, surprisingly the replacement of the maximum principle by
the Green function estimates leads to an improved result for a nonlinear problem as
well.



CHAPTER 1. INTRODUCTION

In the whole thesis, the known estimate from below and above for the polyhar-
monic Green function in (1.3)), see also [26] and [53], will be an important argument.
We use it not only for the proof of the existence of classical solutions to but
also for the proof of positivity preserving of the weighted problem in (L.6). So in
this thesis, the Green function estimates will appear in many proofs and therefore
represent a link between the individual topics for higher order problems.

The main theorems of this thesis are generalizations of the results in [58] or
contained in [59] and can be found in the next section. After that, some examples and
known positivity results for the clamped plate problem are presented. In Chapter
the preliminaries like the maximum principle, Krein-Rutman’s theorem and Sobolev
imbeddings, and the notation that will be used are presented. In Chapter [3|we prove
the converse to the Krein-Rutman theorem that we mentioned above. This theorem
provides sufficient conditions for the eigenfunctions and eigenvalues of the weighted
boundary value problem so that is positivity preserving for A in some interval.
In joint work with Guido Sweers, this result was first proven for m = 2 without a
weight function and can be found in [57]. We will then construct a problem that
satisfies these conditions, i.e. we find a weight function such that an eigenvalue of the
weighted eigenvalue problem becomes simple and the corresponding eigenfunction
is positive. In Chapter |4] we construct an appropriate weight function such that
we gain a strongly positive eigenfunction. Since we want to apply the results of
Chapter [3, we have to find a small perturbation of this weight function to obtain
simplicity of the eigenvalue which corresponds to the positive eigenfunction. After
that, in Chapter [5| we consider special cases like the weighted biharmonic Dirichlet
problem or the polyharmonic problem on an ellipsoid. In Chapter [6] we investigate a
semilinear Dirichlet problem of higher order. Using estimates for the Green function
of the polyharmonic Dirichlet problem, regularity results and an approximation
with bounded functions for the semilinear term g, we may find uniform bounds for
weak solutions to the changed problem. Then, we can prove classical solvability of
the original semilinear problem and expand known results proven by Grunau and
Sweers in [29], where the authors apply local maximum principles instead of global
estimates.

1.2 Main results

1.2.1 Positivity preserving property of a weighted Dirichlet
problem

We will use the existence of a positive eigenfunction to prove positivity preserving
of a weighted problem. More specifically, in Chapter 3| we consider problem (|1.6])
and the corresponding weighted eigenvalue problem

, (1.10)

{(—A)m © = Awyp in Q,
m—1
@:%@:---:($> ('0:0 OD@Q,

with m > 2 and show a converse to Krein-Rutman’s result:



1.2. MAIN RESULTS

If there is a simple eigenvalue with strongly positive eigenfunction, that
is p(x) > cd(z,00)™, to the weighted problem (1.10]), then there ex-
ists an interval, such that for all X in that interval (1.6) is positivity

preserving.

In [57] we have shown the result for m = 2 without a weight function, and in [5§]
we have presented an alternative proof that includes a weight function.

Remark 1.2.1 We will note the eigenvalues and eigenfunctions of as Nimw
and @i m.w fori € NT, where the eigenvalues are counted with their multiplicity, that
150 < Mmw < Aomw < ... If we write \; 1 respectively @i, 1, then we refer
to the eigenvalues and eigenfunctions to , that is the polyharmonic eigenvalue
problem without a weight function.

There are domains where there is no simple eigenvalue with positive eigenfunction
to problem ((1.5)), or where it is difficult to prove that this holds true. Therefore,
we derive conditions for © and a suitable positive weight function w € C%7(Q) with
v € (0,1), such that we find a simple eigenvalue with positive eigenfunction to the
weighted eigenvalue problem.

Let m € N with m > 2. Before we introduce sufficient conditions for a positivity
preserving property, we give the following three definitions:

Definition 1.2.2 We call a function u € C*™(Q) withy € (0,1) a m-polyharmonic
Dirichlet supersolution if

v

0 in €,

(—4A)
U= a%u cee= (%)m_lu:o on 0.

Definition 1.2.3 1. We call a function uw € C*'(Q) with m < k € N and
v € (0,1) strongly positive if there exists a constant Csp > 0 such that

u(z) > Csp d(xz,0)™ for all x € Q. (1.11)

2. We call a function u € C*(Q) with v € (0,1) strictly positive if
min u(z) > 0.
€S
Remark 1.2.4 We say that a function u € W™2(Q) is strongly positive if there is
a constant Csp > 0 for which (1.11)) is satisfied for almost every x € ).

In the following we consider weak solutions in Wy™*(Q) := CgO(Q)H'”WmQ(Q) to
problem ({1.6]).

Definition 1.2.5 A function u € WS”Q(Q) is a weak solution to (1.6]) if for all
v e W)

/ (A%uA%v — Awuv — fv) der =0 for even m € N7,
“ (1.12)
/ (VAmT_lu-VAmT_lv—)\wuv—fv> dx =0 for odd m € N*.
Q
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CHAPTER 1. INTRODUCTION

In the following chapters we assume throughout that Condition[A]and Condition
Bl are satisfied:

Condition A Suppose that Q C R™ (n > 2) is a bounded domain and such that
o0 € C*™7 for some v € (0,1).

Condition B Suppose that there is a function ug € C?™(Q) which is a strongly
positive, m-polyharmonic Dirichlet supersolution and such that there is mo € N with
0 <mo <m and a strictly positive function fo € C%(Q) such that

(—A)"up(x) = d(x,002)™ fo(x) for all x € Q. (1.13)

We use Condition [A]to be able to apply standard results such as regularity results
from Agmon, Douglis and Nirenberg. However, Condition [B]is a restriction since
it is not known whether it is satisfied for all smooth domains and all m € N with
m > 2.

Remark 1.2.6 Since the distance function d(-,0Q) is Lipschitz-continuous on €,
we find that d(-,0Q)™ fo € C*(Q).

Remark 1.2.7 For smooth domains and m = 2 one possibility to find a function ug
that satisfies Condition[Bis to consider a suitable Dirichlet problem for the Poisson
equation. Indeed, C’onditz’on@ is satisfied if we find a function e € C*7(Q)\{0} with
—Ae>0 inQ,
- (1.14)
e=0 on ),

such that €% is a positive biharmonic Dirichlet supersolution in C*7(Q) with (—A)?e?
strictly positive. Then using the mazximum principle for the Laplacian, it follows that
e > 0 in Q, and with Hopf’s boundary point lemma [22, Section 3.2] and the mean

value theorem we obtain constants ci,co > 0 such that

c1d(z,00) < e(x) < cod(x,00) for all x € Q, (1.15)

so €*(z) > cid(xz,00)?. We will use this result in Section to show a positivity
preserving property for a weighted Dirichlet-bilaplace problem. For m = 2 one may
use —Ae =1 in and one finds the desired result. For m > 2 we do not
necessarily get (—A)me™ > 0 for all smooth domains, see Remark .

The following theorems can be found in [58, Theorem 2, Corollary 4] for m = 2. In
the case m = 2 there is always a function on smooth and bounded domains that
satisfies , as we will see in Chapter |5 Therefore, the following version differs
from [58] by the additional assumption in Condition [B] The proof can be found in
Chapter

Theorem 1.2.8 Suppose that Q satisfies Condition[Al Moreover, let Condition[B be
fulfilled. Then, there exists a strictly positive weight function w € C%7(Q) such that
the eigenvalue problem has the simple eigenvalue A\, ., = 1 with a strongly
positive eigenfunction Py, € C*™7 (ﬁ) NCr—(Q).

8



1.2. MAIN RESULTS

Remark 1.2.9 The simple eigenvalue with strongly positive eigenfunctions does not
have to be the first one. In [T]], Duffin and coauthors showed that for an annulus
with small inner radius the simple eigenvalue with positive eigenfunction will be the
third one. Therefore, we assume that it is the p-th eigenvalue.

Using Theorem [1.2.8 and the results in Chapter |3 for a converse of the Krein-
Rutman theorem, we find a positivity preserving property:

Theorem 1.2.10 (PPP) Suppose that Conditions |A| and @ are fulfilled. Let w
and Apmw = 1 be as in Theorem [1.2.8  Then there is Ao < Apmaw such that for
0 < f € L*(Q) with f nontrivial and u the weak solution to (1.6)):

1. If XN € [Ae, Apmw), then uw >0 in Q.

2. If X € (Ae, A\pmw), then a Hopf type result holds: There exists csy > 0 such
that
u(z) > cpx d(x, Q)™ for almost every x € €.

Moreover, if Apmw 5 not the first eigenvalue of (1.10]), then it holds

Ae > Ap 1w + Ay ;p‘l’m’”. (1.16)
Remark 1.2.11 For the unweighted second-order problem, i.e. m =1 and w =1,
one gets positivity preserving for all X\ € (—o00,A\111). For higher order problems
(m > 2) there is a lower bound for A., since for A < 0 problem and are
not positivity preserving, see [30, Theorem 6.1, Lemma 6.35].
In one dimension with Q = (0, 1), it is known that the fourth order problem

" — M= f in (0,1),
u(0) = u'(0) =0,
u(l) =u'(1) =0

is positivity preserving if X € [Ae, M21) with A1 the principle eigenvalue to the
btharmonic Dirichlet problem and

4

o N2y = (2u1)* with py the first positive solution of tan(u) + tanh(u) = 0;

4
c

o \. = —4u: with p. the first positive solution of tan(p) = tanh(u).

This result can be found in [68, Lemma 2.3] and [75, Theorem 1.2].

One notices in Chapter |3[that using similar arguments as in the proof of Theorem
1.2.10], one finds a result for A in a right neighborhood of a simple eigenvalue with
strongly positive eigenfunction. For sufficiently smooth right-hand side f one can
show a reverse result for the sign of the solution to problem . The result that
a right-hand side f = 0 implies u < 0 is called anti-mazimum principle (AMP) and
can be found in the next theorem.
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There are some results in the literature about anti-maximum principles for prob-
lem (1.4)), see [10], [I1], [12] and [33]. Indeed, if we apply [10] to the second order
problem , i.e. m = 1, one finds for right-hand sides 0 < f € L%(Q2) with ¢ > n a
value 0y > 0 such that the solution u to the boundary value problem is negative for
A€ (M1, Aa1+0f). The results in [12] and [33] imply for m = 1 and 2 arbitrary
but smooth or m > 2 with Q a ball: For 0 < f € L4(Q) with ¢ > max{l, %}
there exists a small right neighborhood of the first eigenvalue, such that for A in this
neighborhood, the solution to is negative. In [12] and [33] only Q2 = Bg(0) is
investigated for m > 2 since the existence of a simple first eigenvalue with corre-
sponding positive eigenfunction is used. As in this thesis, the authors in [33] also
make use of estimates for the Green function. So, if we assume that the weighted
problem in has a simple eigenvalue with positive eigenfunction, then we find a
supplement of the known results using similar arguments.

Theorem 1.2.12 (AMP) Suppose that Conditions |A| and @ are fulfilled. Let w
and Npmw = 1 be as in Theorem [1.2.8 Moreover, let 0 < f € L) with f
nontrivial and q > max{1,>}. Then, there exists 6y > 0 such that for all A\ €
(Apmaws Apmaw + 0f) the following holds: There is a constant ¢y, > 0 such that the
solution U,y € W2™4(Q) N W"(Q) of satisfies

U () < —Cprqd(x,00)™  for all x € Q.

Remark 1.2.13 We notice that for f € L(Q) with ¢ > max{l,*} and \ €
(Apmaos Apimow + 05), the weak solution of (L.6)) is an element of C™(Q). So, the
solution takes on the boundary conditions in classical sense. Moreover we note that

ds depends on the right-hand side f, and we do not get a uniform result as in The-
orem L2 10,

Remark 1.2.14 For n > m it is shown in [66] for m = 1 and in [33] for m > 1
that the condition q > % in Theorem is sharp. It is proven that for ¢ = =
with Q = Bgr(0) or m = 1 one finds a function 0 < f € L) such that for all
A > A1 the solution to problem changes sign.

Fortunately, using the results in Theorem [1.2.10f and [1.2.12] we may find infor-
mations about positivity of solutions to some higher order problems. However, an
open problem is whether Condition |B| is satisfied for all smooth domains and all
m € N with m > 2.

1.2.2 Classical solutions to some semilinear Dirichlet prob-
lems

For second order problems, such as the Poisson-Dirichlet problem, the positivity
preserving property follows directly from the maximum principle. Moreover, the
existence of a classical solution to with m = 1 can be shown using the maximum
principle and other properties that are important features of second order problems.
For higher order problems these results cannot be used.

10



1.2. MAIN RESULTS

An interesting and open problem is whether there is a classical solution to prob-
lem for any Holder continuous function g that satisfies the sign condition .
Unforunately, we cannot answer this general question, but we can improve some re-
sults proven by Grunau respectively Grunau and Sweers, see [24], [23] and [29)].
They showed that with additional growth conditions for g there exists a solution
u € C?m(Q) N WE*(Q) for problem (T.8).

The following theorem and remark about classical solvability of are con-
tained in [59).

Theorem 1.2.15 Let n > 2m, Condition |A| be satisfied, [ € C%(Q) and g €
C%(Q x R) satisfies (1.9) and one of the following growth conditions:

e n € [2m,6m) and o € [0,00) exists with (n —2m)o < 4m such that for some
c1 € RT, it holds that

g(x,t) <1 (141t7) for all x € Q,t > 0; (1.17)

e orn > 6m and for some constant ¢; € R™ it holds that

g(x,t) < ci(1+1t) forallxz € Q,t > 0; (1.18)

e orn>2m and 0,7 € [0,00) exist with 7 > "2 gnd g < A2 4 Lnd2m gy 0p
. n m n m TN m
that for some cy,co € RT it holds

—co(1+ ") < g(x,t) < er(1+1t7), forallz € Q,t € R.

Then, the semilinear Dirichlet problem in (1.8) has a classical solutionu € C?™(Q)N
Gy Q).

In Theorem [1.2.15] the value of o determines the growth condition from above
and 7 determines the growth from below. However, they are interchangeable. So,
instead of a growth condition from above in and , we could have re-
stricted the growth of g from below. The permissible growth conditions are displayed
in Figure [L.1]

Remark 1.2.16 To prove the main result, we use reqularity estimates that follow
from known estimates for the Green operator of the polyharmonic Dirichlet problem,
that s problem with A = 0, approximation of the nonlinear term g with bounded
functions and Sobolev imbeddings. However, these results may also be applied to a
more general differential operator than (—A)™ with additional lower order terms,
see also [53, Theorem 0.1]. For the Green function estimates the leading term has
to be (—A)™. So, we may consider the following problem and find a similar result:

(—A)™u(z) + z;)ll |:Z‘g|:£ DA (aiﬁ(x)Do‘u(x)) +g(z,u(z)) = f(x) forx e,
u(z) = Lu(z) == (%)m_l u(z) =0 for x € 09,
(1.19)

11
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Figure 1.1: Range of admissable growth rates for some n € (2m,6m] (left) and some
n > 6m (right); a similar picture, that was created by Guido Sweers, appears in [59)].

where aﬁéﬁ are sufficiently smooth, for example aﬁéﬁ € C™Y(Q) and symmetric,
that s aﬁlﬁ = ag’a. Moreover, we assume that there is a constant K > 0 such that

||ag,5||cm—1w(§) <K

and that the differential operator is coercive, that is

/Q (—A)mU(l’HZ_ Y DP(agp(x)Du()) | ulz)dz > Cllullfymz)

(=0 |af=|8|=¢

for all w € C*™(Q) N W2(Q).

The proof of this theorem can be found in Chapter [6] and in Sections 4 and 5 of
59).

1.3 Some examples for the clamped plate problem

In this section we recall some known counterexamples for positivity preserving of the
clamped plate problem, that is problem . Some paragraphs of this summary
can also be found in [57, Section 3], and the content serves as a motivation why we
have to look at a changed fourth-order problem or more explicitly, why we have to
add a weight function to problem to get a positivity preserving property.

There are several ways to prove that positivity preserving does not hold. One can
show that the first eigenfunction is sign-changing, see also [67] for some examples.
Then it follows by the Krein-Rutman theorem that the problem is not positivity
preserving. Another way is to show that the Green function is not positive, or to
construct an explicit positive right-hand side with sign-changing solution.

12



1.3. SOME EXAMPLES FOR THE CLAMPED PLATE PROBLEM

Annulus The annulus with inner radius € > 0 is defined as follows:
A i={z eR%e < |z| < 1}

Around 1907, Hadamard considered problem on 2 = A, see [36]. He men-
tioned that positivity preserving cannot be true for the annulus, but he did not
provide a detailed proof. Nakai and Sario proved in [45] that the Green function
for the clamped plate problem is sign-changing for small inner radii. Moreover,

AT

1200 -

1000 -

I

800

"1ET00°0

600

-

g —

Figure 1.2: Graphs of the first eigenvalues for the annulus A. = {z € R%je < |z| < 1} as
a function of . In blue € — Ap 2.1 and in dashed red € — min{\ is eigenvalue of ; A #£
Ap2,1}. At e, the eigenvalues cross. The section around the crossing is enlarged in the
rectangle (first published in [57] and created by Guido Sweers).

Coffman, Duffin and Shaffer [14], 18] showed that for small inner radii the positive
eigenfunction is not the first one. Numerically, they found the value ¢* = 0.00131...
such that for ¢ > ¢* the positive eigenfunction corresponds to the first eigenvalue.
For ¢ < €* it corresponds to the third one. An explicit computation of the eigenval-
ues can be found in [7I]. Moreover, Englis and Peetre [I9] proved in 1996 that the
Green function for A. is sign-changing, even if for large inner radii the first eigen-
function is positive and the corresponding eigenvalue is simple. Hence, a positivity
preserving property does not hold true for problem ([1.1)). Using the information
that one finds an eigenvalue with positive eigenfunction, the question arises whether
one may prove a positivity preserving property for a weighted problem.

Let A1 21 be the smallest eigenvalue to the eigenvalue problem for Q = A,,
X221 the second and A3 2, the third one. We will see that there exists A\. > 0 with

o \. € (0,A121) such that (1.4]) is positivity preserving for A € [A;, A\121) and
e € (e1),

® )\5 € ()\17271,>\37271) = ()\27271,)\37271) such that " is pOSlthIty preserving for
A€ [N, A321) and € € (0,e%),

e ). € (0,1) such that (1.6)) is positivity preserving for A € [A;, 1), ¢ = ¢* and a
sufficiently chosen positive weight function.

13
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For the three dimensional variant of the annulus, the spherical shell, numerical
approximations of the first eigenfunctions and the assumption that the second one
can be written as x — x1 ¢(|z|) show that the first one is positive for all inner radii.
So in that case, an additional weight function is not needed, see [57, Appendix].

Limacon of Pascal One may identify R? with C and define the set
Q= f.(B1(0)) with f, : C — C, fu(2) = z + az?

for a € [O, 2] where () is the unit ball and Ql is a cardioid, see Figure
Hadamard constructed an explicit Green function for the Limagon of Pascal

[35, Supplement|. However, he conjectured that it is positive for all hma(;ons.
Dall’Acqua and Sweers proved in [15] that this conjecture is not true. They showed
that G4(z,y) > 0 for all (z,y) € Q, x , if and only if a € [O,% 6], that is if G, is
not far from a ball. In addition, no eigenvalues or eigenfunctions are known. But we
will still find that Condition [B]is satisfied, and thus a suitable fourth order Dirichlet
problem with a positivity preserving property in €2, can be found for all a € |0, %)
The case where a = % has to be excluded since (2 1 does not fulfill Condition

0000

Figure 1.3: Limacons for a = % % i,

M\H

Ellipse For the bilaplace and trilaplace Dirichlet problem one can consider some
eccentric ellipse, see [69, [70]

Q= {(z,y) € Y a*+ 1449* < 1} (1.20)
and find with
u(z,y) = (1 — 2* — 144y*)"™(1 — x + 200(1 — z)? — 21y* — ¢) (1.21)

and small € > 0 a sign-changing solution to (1.4) with A = 0 and (—A)™u > 0 for
m € {2,3}, see Figure for m = 3 and € = 0.0001. So even if we investigate
convex and smooth domains, we do not obtain a positivity preserving property. In
Chapter we prove that we can find a weight function w € C%7(Q) for any ellipsoid,
even in higher dimensions, and any m € N7 such that positivity is preserved for
problem .

There are more examples for problem such that positivity is not preserved.
It is also surprising that it is not known which conditions the domain or the differ-
ential operator have to fulfill such that a positivity preserving property for ([1.1) on

14
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.00z

1

Figure 1.4: Left: u as defined in (1.21) with m = 3 and ¢ = 0.0001; right: enlarged
graph of u for (z,y) in a neighborhood of (1,0) with positive values of u in green and
negative values in red. A similar picture can be found in [69].

Q) is valid. For this reason, it is interesting to investigate how we can change the
problem to be able to make more precise statements.

15



Chapter 2

Preliminaries

In this chapter we present some notations and recall important results such as the
existence of a Green function for problem (1.6), the maximum principle, Hopf’s
boundary point lemma or Sobolev imbeddings. We rely on these results throughout
the following chapters. In addition, the content serves for a better understanding of
the thesis and as background information.

2.1 Basic notations

In this section we list some notations that are used throughout the thesis. Let
N =1{0,1,2,...} be the set of natural numbers including 0 and N* = N\{0}.

By 2 € R™ we denote a bounded domain as mentioned in Condition[A] A set in
R™ is a domain whenever it is open and connected. For short notation we use

d(z) :==d(z,00) = yie%fg |z — y|

for the distance to the boundary and

diam(Q2) := sup |z — y|
z,yeN
for the diameter of (2.
The space C*7(Q) is the space of all k-th times continuously differentiable func-
tions such that all k-th partial derivatives are Holder continuous with Holder expo-
nent v € (0,1). The space (C*7(Q), || - |ox(qy) is a Banach space, where

(z) — Du(y)|
|z —y| '

. D
lullowri = 3 sup|Du(a) + 3 sup

|| <k € o=k x;«éyeﬁ

When we write CF(Q), we mean all functions u € C*¥(Q) such that D = 0 on 99

for all & € N with |a| € {0,...,k}. One finds that (C§(Q), || - [|c#g) is a Banach

space since it is a closed subspace of (C*(€), || - lor@))-
The space LP(Q2) for p > 1 denotes the space of measurable functions such

16
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that the p-th power of the absolute value is Lebesgue integrable. Functions which
agree almost everywhere are identified. By W*?(Q) we denote the Sobolev space
of functions in LP(2) such that all weak derivatives up to order k exist and are
elements of LP(Q2). The space (W*?(Q), || - |lwrnr@)) is a Banach space with norm

B =

lullwer@) = | S 1Dl 0,

lof<k

Also, we will use the Sobolev space W, () which is defined as the closure of C2°(Q),
that is the space of all smooth functions with compact support, in WHkP(Q). For
functions u € C*(Q) or u € W*P(Q) with k € NT we write for (weak) derivatives of

u
a\™" a\"
Du=(-—] ---{=—] u foraeN"with|a| <k
81’1 8:%
and
g 0 0
Dlu:{ u} for [ € Nt with [ < k.
axil axiQ aIil 11,82,..,5€{1,...,n}

A special case is the gradient Vu := (a%lu, ceey agnu)T = D% and the Laplace

2 2 2
operator Au := ((dim) + <a%2> +-+ (%) ) u = Y1 D*iu, where ¢; are

the standard unit vectors in R”.

Moreover, for normed vector spaces X,Y we write BL(X,Y") for the set of all
linear and bounded operators from X into Y. The space (BL(X,Y), | - ||sr(x,y)) is
a normed space where || - || pr(x,y) is defined by

1Tl BLexy) = sup {[[Tv]ly;v € X with [ofx <1}.

Also, we use BL(X) := BL(X, X) for short notation, and X* := BL(X, (R, |-])) is
the dual space of X.

In the following chapters we will use estimates for operators and for kernels of
integral operators. Therefore, we use the following notation, see also [58, Notation
12]: If an operator is defined through a kernel function, we use capital letters for the
kernel function and script letters for the integral operator, unless otherwise stated.
For example, let A : L*(Q) — L?*(Q) be an integral operator defined through a
kernel function, that is

(AN () = [ Alw) S 2.)
Q
For A, B : L?(Q) — L? () we define A > B whenever for all f € L*(Q) with f >0

17
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almost everywhere it holds that
(Af) (z) > (Bf) (z) for almost every z € (.

Obviously, if A, B are defined through kernels A(-,-) and B(-,-) as in (2.1]), and
A(z,y) > B(z,y) holds for all 2,y € €, then one also gets A > B. In this thesis,
we only consider kernels that are continuous or continuous except for singularities
on the diagonal {(z,7);x € Q}. Therefore, we may also use that A > B implies
A(z,y) > B(x,y) for all 2,y € Q with x # y.

2.2 Green function for the polyharmonic Dirich-
let problem

In this section we recall some definitions of the polyharmonic Green function and
the Green function for the weighted problem.

One uses the fundamental solution for the polyharmonic operator (—A)™, [21]
p. 48]:

Fy (o) nbnﬁnré?ﬁ;)y(nn)l_l)! || if n > 2m or n is odd,
€T =
n,m _1)ym—n/2 —n . )
nbn4m—1F((n/2))(mfn/2)!(mfl)! |z (—log(|z])) if n < 2m is even,
where
T2
n= Fn 9 2.2
r(z+1) (2:2)

is the volume of the n-dimensional unit ball. For bounded and smooth domains
2 C R” and f in a suitable functional space one finds the solution to with
A = 0 through a Green function. Therefore, we recall the following definition [21]
Definition 2.26]:

Definition 2.2.1 A Green function for the polyharmonic Dirichlet problem in (1.4)
with A =0 is a function (z,y) — Gpoi(x,y) : 2 x Q@ = RU{oco} such that

1 2= Groi(r,y) — Fpale —y) € C*(Q) N C™Y(Q) for all y € Q if defined
suitably for x =y,

2. (—A)™(Gmoa(z,y) — Epp(z —y)) =0 for all (z,y) € Q% if defined suitably
forz =1y,

3. DYGmoa(z,y) =0 for all (z,y) € 02 x Q and |a] < m — 1.
The weak solution to (1.4) with A =0 and f € L?(2) can then be written as

u(x) = / G (. 9) £ () dy.

18



2.2. GREEN FUNCTION FOR POLYHARMONIC PROBLEM

Remark 2.2.2 As mentioned in the introduction, the polyharmonic Green function
for the ball Q@ = B1(0) is known, see [21, Lemma 2.27]:

2m—n ||x|y—‘%‘|/|»’c—y| 2 m—1_1-n
Gm,O,l(ﬁa y) = gn,mlx - yl / (S — ].) S dS,
1

where the positive constant £, ,,, is defined by

P 1
" b dm=t((m — 1)1)2°

This function is positive, so the polyharmonic problem in (1.4)) is positivity preserv-
mng.

Remark 2.2.3 The positivity of the fundamental solution plays an important role
in the entire thesis. If the leading order part of the differential operator is not a
product of second order operators, then it is possible that the associated fundamental
solution changes sign, see [27]. Therefore, there exists no direct generalization of
the results in this thesis to any 2m-order Dirichlet problem.

Let Ai ., be the first eigenvalue of . In his PhD Thesis, Pulst showed
the existence and described the construction of a Green function for with
A < Aimw and strictly positive Holder continuous weight function w which has the
following properties [53, Proposition 2.1]:

1. 2 Grawl(z,y) € LHQ) N C2Y(Q\{y});

ro

(8 )iGm,A,w(l‘,y)\ag =0forj=0,...,m—1,;

ov
3. Gmy)\,w(iﬁ, y) = Gm,)\,w(y,x) for x 7£ Y;
4. For all ¢ € CQm(ﬁ) with (%)j oo = 0 for j = 0,...,m — 1 one has the

representation formula

o) = / (—A)o(y) = Xo(y)e (1)) Conro(,y)dy

=t (G (=2)"0 = M) ) (@), (23

Hence, for A < Ay, we find that for f € C%7(Q) there is a pointwise defined
kernel function, and the solution ,, »., to (1.6]) is well-defined through

@) = (Gosnf ) @) = [ Gonsulan) F0)dy (2.4

Q

The operator Qm Aw can be extended on f € L?(2), and one notices that the integral
operator in is well-defined for all f € L*(Q)). For A > Ay, not a weighted
eigenvalue, similar arguments as in [2I, Section 4.4] and [53, Section 2.2] yield a
pointwise defined Green function for problem (|1.6]).
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In this thesis we will use the following slightly modified definition of the Green
operator:

Definition 2.2.4 For w € C%(Q) and strictly positive, we use the notation

fo=1. (2.5)

Let Gz denote the Green function and Gy, . the Green operator for

(A" = dw)u=f in Q,
{u:%u:---: %)m_lu:O on 092, (2:6)
in the sense that
Um,)\,uJ(l’) = /QGm,)\,UI(x?y)f(y)dy = (gm,)\,wfw)<x> (27)

solves (2.6)) if defined. By G, a1 we mean the Green function for (2.6 without a

weight function, i.e. w = 1.

Remark 2.2.5 We notice that for A\ = 0 we find Gy 0.0 = Gmo.1(w-), where G, 01 is
the polyharmonic Green operator. Also, this definition corresponds to the definition
of Pulst in ifw=1. Ifw#1, then Guawf = Gmaw(wf) forall f € L*(Q). In
the following we will derive estimates for the Green function Gy, . using estimates
for the corresponding Green operator Gy x.. Since the functions f and f, differ
only by the additional weight function, which is positive and bounded, the estimates
for G xw that we prove in the next chapter can be transferred to the Green function
Gm,)\,w-

Remark 2.2.6 The reason why we apply G, xw to fi, instead of f is that in Section

2.0, we draw conclusions about the eigenvalues and eigenfunctions of the operator
1

=(=A)™ and derive these results with standard arguments. Actually, the operator

Omaw 18 the solution operator to problem

L(=A)"u—u=f, in Q,
u:%u:~~:(%)mfluzo on Of).

Problem (1.6]) is positivity preserving if and only if the corresponding Green
function is nonnegative. Hence, estimates for the Green function and Green operator
play a major role in the proof of Theorem [1.2.10[ and Theorem [1.2.12] Using some
estimates for the polyharmonic Green function which can be found in [2I, Theorem
4.6] for the ball and in [53 Theorem 4.1] for general smooth domains, we obtain
estimates for Gy, »,, in Chapter .
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2.3. MAXIMUM PRINCIPLE AND HOPF’S BOUNDARY POINT LEMMA

2.3 The maximum principle and Hopf’s boundary
point lemma

When working with elliptic partial differential equations of second order, for example
the Poisson-Dirichlet problem, one finds a maximum principle. For

{—Au —f inQ,

u=1 on 0, (28)

that is [22], Theorems 2.2, 2.3]:

Theorem 2.3.1 (Strong maximum principle) Let @ C R" be a bounded do-
main. Suppose that u € C*(Q) N C(Q) is the solution to (2.8). Then one finds:

o If f < 0 and there exists a point y € Q with u(y) = sup,cq u(z), then u is
constant.

o If f > 0 and there exists a point y € Q with u(y) = inf,equ(x), then u is
constant.

Theorem 2.3.2 (Weak maximum principle) Let 2 C R" be a bounded domain.
Suppose that u € C*(Q) N C(Q) is the solution to (2.8). Then one finds:

o If f <0, then max, g u(x) = maxecpn u(x).
o If f >0, then min, g u(zr) = mingepo u(x).

So one finds for ¢ = 0 that a nonnegative and nontrivial right-hand side provides
a positive solution. Furthermore, we recall Hopf’s boundary point lemma which was
proven by Hopf in 1952 and can be found in [52, Theorem 2.7]:

Lemma 2.3.3 (Hopf’s boundary point lemma) Let Q C R" be a bounded do-
main. Let 0 < u € C?*(Q) satisfy (—A)u > 0 in Q. Moreover, let u(xy) = 0 for some
o € 0N). Assume that xq lies on the boundary of a ball B C . If u is continuous
on QU {xo} and if the outward directional derivative Zu exists in xq, then u = 0

P ov
or s-u(xo) < 0.

One implication is that for a nonnegative and nontrivial right-hand side f and
zero Dirichlet boundary conditions the solution u to (2.8) is strongly positive, so
there exists a constant ¢y > 0, dependent on f, such that

u(x) > cpd(x) for all x € Q. (2.9)

The inequality (2.9) can be made more precisely. Zhao proved in 1986 estimates for
the Green function for (2.8) with ) = 0, see [79] and [80]. These results imply

G, (z,y) > cd(x)d(y),
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where ¢ depends only on the domain. Therefore, we find for the solution to (2.8])
with ¢y =0

) = [ Groalo0) o)y = ¢ ( / f<y>d<y>dy) (x).

This estimate can also be found in [8 Lemma 3.2] for smooth domains and f €
L>(Q). We already mentioned that the property about sign-preserving is often
called the maximum principle. Since we want to distinguish between this property
and Theorem we introduce the following formal definition:

Definition 2.3.4 If problem (1.6) for m € N, w € C%(Q) strictly positive and
A € R not a weighted eigenvalue fulfills the property that f > 0 implies u > 0, then
one says that it has the positivity preserving property.

Using the maximum principle for the Dirichlet-Poisson problem, one finds that
has the positivity preserving property for m =1, A = 0 and w = 1. For fourth
or higher order problems there is no maximum principle or positivity preserving
property for most domains.

2.4 The Krein-Rutman theorem

In Jentzsch’s article [38] one finds one of the first results that link positivity pre-
serving in one dimension of some integral operator with the simplicity of the first
eigenvalue and positivity of the corresponding eigenfunction. A generalized version
is the result from Krein and Rutman, see [42]. If one can prove a positivity preserv-
ing property for with A = 0, one can use the Krein-Rutman theorem to obtain
the existence of a simple first eigenvalue with positive eigenfunction. In order to
recall the result, we need the following two definitions, see [21] p. 63]:

Definition 2.4.1 Let (X,| - ||,>) be an ordered Banach space. Then the set KK =
{u € X;u >0} is called the positive cone in X.

Definition 2.4.2 Let (X, | -||,>) be an ordered Banach space and set
f| = inf{h € X;h > f and h > —f}.
o (X,|l-l,>) is called a Banach lattice if
f,g € X implies inf{h € X;h > f and h > g} € X (2.10)
and

frg € X with | f| < |g| implies [[f]| < [lg]l

o A linear subspace A C X is called lattice ideal if
If| < |g| and g € A implies f € A.
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Remark 2.4.3 For the Banach spaces (C(Q), ]| - lo@) and (L2(), || - |lz2@) with
the pointwise order f > g iff f(x) > g(x) for (almost) every x € Q, we may read
(2.10) as

f,9 € X implies max{f, g} € X

and | f| = max{f,0} + max{—f,0}.

There are many different versions of the Krein-Rutman theorem. Here, we want
to recall a generalized version which is a combination of the Krein-Rutman theorem
and a result of De Pagter, see |21, p. 63].

Theorem 2.4.4 (Krein-Rutman) Let X be a Banach lattice with dim(X) > 1
and let T : X — X be a linear operator satisfying the following three properties:

1. T is compact,
2. T is positive, which means that for the positive cone KK C X we find T(K) C IC,

3. T is irreducible, which means that {0} and X are the only closed lattice ideals
invariant under T

Then, the spectral radius r(T) of T is strictly positive and there exists an element
u € K\{0} with Tu = r(T)u. Furthermore, the algebraic multiplicity of r(T') is one,
all other eigenvalues A satisfy |A| < r(T) and no other eigenfunction is positive.

Example 2.4.5 We can apply this theorem to problem if the corresponding
Green function is positive in Q x Q\{(z,z);x € Q}. For X = L*(Q) or X = Cy(Q)
we find that the solution operator, which can be expressed by the Green function as
the kernel function, is compact and irreducible, see [21, p. 61]. The irreducibility
follows from the assumption that the Green function is positive. For the Poisson-
Dirichlet problem we find a positive Green function on smooth domains. Therefore,
we get a positive first eigenvalue with corresponding positive eigenfunction in the
case of the second-order problem.

2.5 Sobolev imbedding

In the next chapter, we consider operators defined on Sobolev spaces and therefore
weak solutions of the weighted 2m-th order problem . However, we also want to
apply results for continuously differentiable functions like the mean value theorem.
So we have to be able to infer results in Sobolev spaces from results in Holder spaces.
To this end, we will use the following Sobolev imbeddings [Il, Theorem 4.12]:
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Theorem 2.5.1 Let Q C R™ with n € NT be a bounded domain and 0Q € C*™7.
Then there exist the following imbeddings for p € [1,00) and m € N*:

i. for((m—1Dp<n<mp: W?mP(Q)— C™*(Q) with0 < pu<m— =
ii. form <(m—1)p: W2mp(Q) < C™H(Q) with 0 < p < 1,
1. forn < 2mp : W2me(Q) — LI(Q) with p < q < pf = o0,
. forn =2mp: W2me(Q) — LI(Q) with p < q < pt = o0,
v. form >2mp: W2mp(Q) < L9(Q) with p < q < p;, = 2.
(2.11)

The imbeddings in (2.11)) are implications of the well known Morrey and Gagliardo-
Sobolev-Nirenberg inequalities.

n

If we replace the inequality 0 < p < m — > ini. by 0 < p<m-— % and the
inequalities p < ¢ < p; in 2. and v. by p < ¢ < p, we get that the imbeddings in
are even compact, see [I, Theorem 6.3].

When we use the imbedding X — Y with X, Y Holder- or Sobolev spaces, then
we write it as

T:X =Y.

Which spaces X and Y are meant, when only 7 is written, is mentioned in each case
or is clear from the context.

2.6 The weighted setting

In this section we will present the weighted setting for problem . Therefore,
we describe some standard arguments for the existence of weak solutions and some
properties of the eigenfunctions and corresponding eigenvalues. To this end, we
follow the steps presented in [58] for m = 2 and adapt the setting to the general case.
We use the Hilbert space L2 () := (L*(2), (-, )12 («)), where the scalar product is
defined by

(u,v) 12 () = / u(z)v(z)w(z)dr for u,v € L*(Q).
Q
This is equivalent to the standard inner product because w € C%7(Q2) is bounded

from below and from above by positive constants. Since for all u € C2°(2) and
m € NT we find with partial integration

& o 0 0 2 Jo (A% u(x))?dx for even m,
J15J25-+s, Jm=1 J1 J2 Jm Q ‘ 2 u(x)‘ xXr or o m7

and C°(Q) is dense in WJ*(Q), it holds true for all u € Wy*(Q). Using this

calculation and the Poincaré-Friedrichs inequality, we obtain that the standard norm
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on W7*(Q), that is

N

lullwna@y = | D 1Dl |

laj<m

is equivalent to the norm

\/||A 2|35 — AMu, u) 12,0 for even m € N,
[l =

\/|||VA u|||L2(Q Mu,u)ga () for odd m € N*,

for all A < 0. So, for A < 0 one gets that W,*(Q) is a Hilbert space with scalar
product

Jo (A2 uAZ v — Awuw) dz for even m € NT,

U, (% m, = 7n m—
< >’\7W0 (@ o <VA u- VA" v — )\wuv) dx  for odd m € N*.

Using Riesz’ Representation Theorem, we find for every f € L*(2) a weak solution
U\ O . Applying results by Agmon-Douglis-Nirenberg, see |21, Theorems
2.19, 2.10], we find that u, »., € W?™2(Q) N WJ*(Q).

The Green operator Gp, 0. @ L2() — W2™2(Q) N W™*(Q) is a linear operator,
since we investigate a linear boundary value problem. Using the compact Sobolev
imbedding Z : W?™2(Q) < L2 (Q), one finds that Z o G, 0. : L2(Q) — L2(Q) is

compact and since G,, o, is an isomorphism, we obtain the inverse operator
A : D(Apw) C L2(Q) — L2(9Q)
defined by
D(Apw) = W22 (Q) N W2(Q) with Ay, = %(—A)m.

Since Z o Gy is compact, the spectrum of A,,, is discrete, see [4, Theorem
9.9]. We also find that A,,, is selfadjoint since for m € NT even and u,v €
W2m2(Q) N W% (Q) we obtain

(Amwtt, V) 12 @) = (Am1u, V) 12(Q) = (—1)’""/Q (A™u(z)) v(z)dz
_ /Q (A% u(2)) (A% v(2))dz = (i, Amut) 12 @)

and analogously for m € N* odd. Since A,,,, is also positive in L2 (), that is

(At w) 12 ) = (Amiu, u)p2(q) > 0 for u # 0,
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and using the spectral theorem for self-adjoint operators with compact resolvent, see
[4, Theorem 10.12], one finds that the spectrum consists of countably many positive
real eigenvalues {\; j.w }ien+ with

0< )\l,m,w S )\Z,m,w S crr =2 00

and corresponding eigenfunctions {;m.w fient C W2™2(Q) N WJ*(Q).

Remark 2.6.1 Using the Rayleigh quotient and applying the Poincaré-Friedrichs
inequality several times, one also sees that the first eigenvalue is positive.

Remark 2.6.2 Still assuming A < 0 and using Agmon-Douglis-Nirenberg results,
see [21, Theorems 2.19, 2.20], one finds that the restriction of G s to C%7(Q) with
v € (0,1) or LU(Q) with q € (1,00) are isomorphisms in the following way:

Grrw : C¥(Q) = C*™ Q) N O (),
Gmaw + L1(Q) = WH9(Q) 0 W5™(Q).

Then one obtains with a bootstrapping argument and Sobolev imbeddings (2.11) that
for 0 € C*™7 | the Wi"*(Q)-eigenfunctions are in C?™7(Q) N C1(Q).

The eigenfunctions can be chosen such that they are normalised by

<90i,m,w7 %’,m,wﬂgu(g) = 5z'j7 (2-12)

where ¢;; is the Kronecker delta. By the Riesz-Schauder theorem, see [4, pp. 395,
409-410], we get that {®;mw fien+ is a complete orthonormal system of eigenfunc-
tions in L2 (), such that for f € L2 (Q) it holds that

f - Z ¢i7m,w<§0i,m,w7 f)L?U(Q)a (213)
i=1
and for A & {\; ym.w }ien+ we find
- 1
Gmawf = Z ﬁ@i,m,w@i,m,w, iz @) (2.14)
=1 J\hmuw

This series converges when applied to some f € L*(Q) since (2.13)) converges by
Bessel’s inequality, see [6, p. 87], and |\, — A|™! is bounded from above.

In the following chapter we will use the integral operators with kernel functions
d(z)™d(y)™ and ©; m.w(T)Yimw(y)w(y) to find estimates for Gy, x .-

Definition 2.6.3 1. The orthogonal projections Pi s Pjemaw : L*(Q) = L*(Q)
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onto the eigenspaces in L2 () are defined by

(Pimw?) () = Pimw(T) /Q Gimw(y)v(y)w(y)dy fori e Ntz €Q, (2.15)

J
Pieanaw =L =Y Pimuw forj €N, (2.16)
i=1
2. The operator D,, : L*(2) — L*(QY) is defined by
(Do) (@) 1= d(z)™ / d(y)™o(y)dy for z € Q. (2.17)
Q
Remark 2.6.4 We note that for all i € N*

ol < 1} 1

/ Pimaw(Y)w(y)v(y)dy
Q

| Pim,wll BL(z2,()) = Sup {

Using this definition, we may also write instead of (2.13)) and (2.14}) the following
representation formulas:

f = Z Pi,m,wf and gm,/\,wf = Z ﬁtpi,m,wf'
i=1 i—1 (\maw
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Chapter 3

A converse to Krein-Rutman

For the proof of Theorem we need an estimate for the polyharmonic Green
function G,y 5, and Green operator Gy, » ., defined in (2.7). In [57] we have proven
such estimates for the special case m = 2 and w = 1 and in [58] for m = 2 and
some strictly positive and Holder continuous weight function w. We follow similar
steps with the only difference that we consider the Dirichlet problem of order 2m
instead of the special case m = 2. First, we show the converse of Krein-Rutman’s
theorem using regularity results as in [58]. This result is stated in Section and
is proven in Sections [3.2] and [3.4] In Section [3.5 we use arguments from [57]
and show an asymptotic behavior of the eigenvalues and eigenfunctions and thus
derive an alternative proof of the main theorem. In Section |3.6| we note that similar
arguments can also be used to prove an anti-maximum principle.

Remark 3.0.1 The resulls are consequences of estimates for the polyharmonic
Green function and since for a strictly positive weight function w € C%7(Q) there
exist two constants ¢y 1, Cy2 > 0 such that

Cw1 S w() < ey for all x € Q, (3.1)

we can follow analogous steps as in [57] with adjusted constants and replace 2 with
m or we follow the steps in [58] with small changes.

By extending the results for fourth order problems, Pulst proved in his disser-
tation [26] the following inequality for the Green function of (1.6) with A = 0 in
bounded C?"7-smooth domains, see [53, Theorem 3.1]:

CQ_IHn,m(l‘a y) S Gm,O,l(xa y) + C1d($)md(y)m S CQHn,m(xa y) (32)
for all (z,y) € Q x Q\{(z,2);x € Q}, where ¢;, c; > 0 are dependent on the domain
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and m, and H,,, : Q@ x Q\{(z,7);z € Q} — R is defined by

|x—y|2m—nmin{l,%} if n > 2m,
Hym(x,y) == log <1 + %) if n = 2m, (3.3)

lz—y[™

We will use the calligraphic H,, ,, for the integral operator with kernel function H,, ,,:
Mo s L) = T2Q), (Mo f)(x /Hnm L) fdy. (3.4)

Remark 3.0.2 Some useful result, Pulst proved in his doctoral thesis is, that there
s a constant ¢ > 0 such that

cd(z)"d(y)™ < Hym(x,y) for all (x,y) € Q x Q\{(z,2);z € Q}.

One finds this result using (3.3)), | — y| < diam(Q) and estimates in [21, Lemma
4.5]. Moreover, it is included in C’omllary in Section .

Remark 3.0.3 If Q is a ball, we find the estimate in (3.2]) with ¢; = 0, see [30].
Two-sided estimates for the second order problem (m = 1) were proven by Zhao, see
[79] and [80)].

We will extend this result to the Green function of with A in some bounded
interval and with some Holder continuous, strictly positive weight function. First, we
present the extension of to the Green function G, ., and then, the asymptotic
behavior of the constants for A T Ay, is shown.

3.1 Pointwise estimates for the Green function
and idea of the proof

Using (12.14)), we note that formally the Green function G, ., can be written as

m)\wxy ;A

But even if converges in L2(Q) for A not an eigenvalue, the series in
does not have to converge as a function in € x €2, especially for higher dimensions.
For n < 4m we can show a convergence in L% (Q x Q) = (L*(Q x Q), (-, )12 (axa) )
where we define

— )\szmw< L) Pimw(Y)- (3.5)

7, m,w

(u,v) 12 (xQ) = A[)u(z,y)v(x,y)w(m)w(y)dw dy for u,v € L*(Q x Q).
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2
Indeed, we find for a fixed A\, which is not an eigenvalue, that (/\’% < C for

)\i,m,wf
some constant C' > 0, independent of ¢ € N and
oo 1 o0
-2
<Gm,)\,w> Gm,A,w>L%,(Q><Q) = Z m < C Z )‘i,m,w'
i=1 \HTHW i=1

We will see in Chapter that ;0 > ci* for all i € N* with ¢ > 0 independent
of 7, so the series on the right-hand side converges for n < 4m. Even if we cannot
write the Green function as in for large dimensions, one gets the intuition that
it becomes positive for A in a small left neighborhood of a simple eigenvalue with
corresponding positive eigenfunction. In the same way, one expects that it becomes
negative for A in a small right neighborhood of this eigenvalue.

If we do not choose A close to an eigenvalue, we obtain a result similar to (3.2)):

Theorem 3.1.1 Suppose that Condition [A] is fulfilled. Moreover, let 0 < w €
C%1(Q) and {Nimw}iens C (0,00) denote the eigenvalues for and take M, 6, €
R*. Set

Iy, = [=M, M]\ Ui:l (Aiymaw — 01, Niimaw + 01) - (3.6)

Let G aw be the Green function for (2.6). Then there are cy,ca,c3 > 0, depending
on the domain, M, o1, m and w, such that for all X € Ipss, it holds:

€1 Hn,m(l‘,y> < Gm)\’w(l’,y) + C2 d(x)m d(y)m <c3 Hmm(xay) f07” all T,y € Q.
(3.7)

Remark 3.1.2 Form = 2 this result can be found in [58, Theorem 14]. Forw =1,
A =0 and m = 2 it is proven in [26, Theorem 1].

We want to find positivity of the Green function. So, as mentioned above, we
will choose A in a left neighborhood of the simple eigenvalue with corresponding
positive eigenfunction. More precisely, we find the following estimate, see also [58]
Theorem 16] or [57, Theorem 2] for m = 2:

Theorem 3.1.3 Suppose that Condition [4] is satisfied and let 0 > 0. Suppose
0 < w € C®(Q) and that N\, is a simple eigenvalue of with the cor-
responding eigenfunction @y m . strongly positive as in . Moreover, suppose
the interval

]52 = [)\p,m,w - 527 Ap,m,w) (38)

contains no eigenvalue. Let Gy, » ., be the Green function for (2.6). Then there exist
constants Cy,Cy, C3 > 0, depending on the domain, m,ds and w, such that for all
A€ ls, and x,y € Q:

C
—2_)\ - 03) Cpmaw(T) Cpmw(y).  (3.9)

AI)7/rrl7’u}

Gm,)\,w(xu y) 2 Ol Hn’m(l’, y) + <
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These theorems can be proven using Lemma [3.2.2] Corollary [3.3.3] and Proposi-
tion in the following sections.

Corollary 3.1.4 If there exists a strictly positive weight function w € C®(Q) such
that there is a simple eigenvalue A\, .0 Of ) with eorrespondmg strongly pos-

itive eigenfunction @pm. 0 the sense of , then problem 18 positivity

preserving for X in a small left neighborhood of Apmow-

[AAAS)

Remark 3.1.5 We will see in Chapter [{| that Condition [B is sufficient for our
construction and the existence of a weight function that satisfies the requirements of

Corollary[3.1.4)

Remark 3.1.6 If we assume that there exists a strongly positive eigenfunction
Cpmaw With corresponding eigenvalue A, . which has multiplicity M > 2, then

there are M — 1 sign-changing orthogonal eigenfunctions ©pi1maw, - - - > PptM—1mw
in the sense of (2.12) with eigenvalues Apmw = Aptimmw = =+ = AptM—1muw- S0,

if we restrict ourselves to the following space for the right-hand side f in (1.6)), we
obtain a positive solution for X in a small left neighborhood of Ay mw even if Apm
1s not simple:

{f€L2 ); [ >0 and (f, ptkmuw) 2@ = 0 for all k € {1, .. —1}}.

If the assumptions in Corollary are fulfilled, (1.6]) is positivity preserving
for some A < Ap . and A, is not the first eigenvalue of ((1.10), then we can
calculate a lower bound for A. This also proves inequality (|1.16]).

Lemma 3.1.7 Suppose that Conditions[A| is satisfied. Moreover, assume that there
exists a strictly positive weight function w € C%Y(Q) such that there is a simple
eigenvalue Apmaw With p > 1 and corresponding strongly positive eigenfunction @p m v

for (1.10). Let A € (Ap—1muw> Apmw) be such that (L.6) is positivity preserving.
T hen we ﬁnd

)\ mw_)\ —1,m,w
N> Apt g + P L, (3.10)

Proof. Let A € (Ap_1mw: Apmw) be such that (1.6 is positivity preserving and
define

-1 -1

c = (sup —@p—l,m,w(ﬂf)) >0 and ¢y := (inf —SOp—l,m,w(«T)) < 0.
z€Q  Ppmw (I’) Sy ¥p,m,w (l’)

It holds that ¢ = ¢; is the largest and ¢ = ¢, the smallest value such that ¢p ;0 —

CPp—1,mw 15 nONNegative in 2. We choose

1 ifep > —ey,

f = Wpmuw — CWPp—1,m,w with c= .
cy  if ¢ < —eo.
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Then we find f > 0. Considering problem ([1.6)) with right-hand side f, one obtains
the solution

1 )\p,m,w — A
U= """+ mw —CT ¢ —1maw | -
)\p,m,w - )\ SOP? ' )\p—l,m,w - )\SOP b

Using the assumption that ((1.6)) is positivity preserving, we find u > 0. Hence

Apmaw — A ‘
¢ | < max{ey, ||}
‘ )\p_lzmzw - )\
which is equivalent to
Ap?”’l’fuj A ' S 1
/\p—l,m,w - /\

So, we get (3.10)). [ |

Before we provide the technical details for the proof of Theorem [3.1.1] and |3.1.3]
and the necessary lemmata in the next sections, a first idea of the proof is given, see
also [58, Section 3]. We note that instead of we may show the inequalities for
the corresponding integral operators, i.e. that there are three constants ¢y, cy,c3 > 0
such that

&1 Hn,m < gm,)\,w + Co Dm < cj Hn,m for all A € IM751
and instead of (3.9) we prove that there are constants C, Cy, C5 > 0 such that

L}\ — Cg) Pp,m,w for all A € [52

Ap/rrL?'ll) -

gm,)\,w > Cl Hn,m + (

with Hy, m, Dy, and Py 0 as defined in (3.4), (2.17) and (2.15)). First, we recall the

asymptotic formula for G,, ., using Neumann series which contains G,, ¢ ., respec-
tively Gy, 01(w-), and powers of this operator. The idea is similar to the steps in [58|
Section 3:

Suppose that [A| < Xm0 and wm xw = Gmawfw, Where f, is defined as in (2.5)).
We can also write

Um \w = gm,O,w ()\um)\,w + fw) .
This is equivalent to

(I - /\gm,O,l(w')) Um A \w = gm,(),l(wfw>-

-1

Lm.w> S0 We can invert the operator (Z — MGy, 0.1 (w-))

The spectral radius of G, 0, is A
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and using Neumann series, we find
o
k k+1
Umw = Z A (Gmo1 (W)™ fu
k=0

We also want to get a representation formula for w, ., if [A| > A and X # A, 50
for all i € N*. Therefore, let M € R be as in Theorem and set
Njmaw = Min{A € {0 ien+; A > M} (3.11)
Without restriction we assume in the whole chapter that
Njmaw = Apmow- (3.12)
Then we find for
A € (= Njttmaws Aj1,mw) \{ Aimaw Figj (3.13)

the solution for (/1.6))

J
Um A\ w = gm,)\,wfw - Z gm,A,wPi,m,wfw + gm,)\,ij*,m,wfw

7, m,w

— Z )\ _ i,m,wfw + Z )\k (gm,0,1<w'))k+1 Pj*,m,wfw-
k=0

' (3.14)

We split the series on the right in a finite part and an infinite remainder. For \ as
in (3.13) we then find

[e.9]

Z gm() 1 k+1 Pj*,m,wfw
k=
00 2knm—1
Z )‘k (gm,(),l(w'))k+1 j*mwfw Z /\ ng 1 ))k+1 j* mwfwy (315)
k=2kpn m )
}; [H
where k,,,, € N is defined by
n 4+ 2m
e 22 3,10

We will describe in the next section how to derive the value in (3.16) and we
show that I and II can be estimated by ¢ D,,f, and III can be estimated by
CoHnmfuw — 3D fu for some constants ¢y,¢éz,¢3 > 0 and all 0 < f,, € L*(Q).
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The regularity results and pointwise estimates in the following three sections imply
these three estimates.

Remark 3.1.8 The restriction for kym, in (3.16) is sufficient to apply some regu-
larity properties for g,’j;jgjw. We need this reqularity result to estimate 11. For III,

the value of ky, ,, does not matter. It is only important that we consider a finite sum.

3.2 Estimates for the orthogonal projections

First, we present some elementary results to make sure that all series converge which
appear in the following arguments. Therefore, we have to consider powers of the
operator G, 0., and compositions of this operator with orthogonal projections onto
the eigenspaces. We obtain the following result which can be found for m = 2 in
[57, Lemma 7]:

Lemma 3.2.1 Let Gyyw: Pimw and Piomw be as defined in (2.7), (2.15) and

(2.16) with j € NT as in (3.11)). Moreover, let I, and Is, be as in (3.6) and (3.8).
Then, we find for X\ € Inrs, U L5,

1
gm,/\,wpiﬂn,w = Pi,m,wgm,)\,w - ﬁpim%w fO?" all i € N+, (317)
=1
mow =D 5 Pimw for all k € N, (3.18)
i=1 2,M,W
=1
GmoaPiwmw = D, 57— Pimw for all k € N*. (3.19)

i=j+1 7,0, W

The series in (3.18)) and (3.19) converge when applied to some f € L%(Q).

Proof. Tt holds that {(; .. }ien+ is a complete orthonormal system in L2 (Q), so
we recall that the series 2 (0im,w, )12 () @imow(-) converges in L2 (Q) to f. Also
we find

[e.9]

||f||%gj(g) = Z(%‘,m,w, f)%gu(g). (3.20)

i=1
Since @; m . are eigenfunctions of G, ¢, we obtain that

Qpi,m,w

)\i,m,w - )\

gm)\,w Limw =
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This implies (3.17). Since G,y 0. is linear and continuous on L2 (£2), we find that

gﬁz,o,w.f = Z(‘pi,m,wa f)L%)(Q)g'r]jz,O,wgpi,m,w
=1

= Z )\k spz,m,un f)L%,(Q)QOi,m,w = Z )\kl i,m,wf

1, m,w 7, m,w

for all f € L2 (). The series converges since ([3.20)) converges and \;,, ., — oo for
i — oo. This implies (3.18)). Since the eigenfunctions are orthonormal in L2 (Q), we
find that

1
g’r’jz,o,wpi,m,w = /\k Pi,m,uw (321)
Hence, we get
ngw Jxmaw gﬁz()w ngOw 1,mw: (322)

and using (3.18)), (3.21)) and (3.22), we obtain (3.19)). [ |

To find an estimate for [ in (3.14), we only make use of the regularity of the
eigenfunctions and the mean value theorem:

Lemma 3.2.2 Suppose that Condition |A| is satisfied. Let D,,, lew and Pjsmw

be as defined in (2.17), (2.15) and (2.16) with j € N as in and (3.12).

Moreover, let Iy s, and Is, be as in (3.6) and (3.8). Then, we ﬁnd three constants
¢cj, Cj,¢; > 0, depending also on the domain, m, w, M, 6; and 62, such that

J
1
1. — Cij S i:E 1 W—_)\Pi,m,w S Cij fO?" all X € ]M,(Sl and
L 1 1
2. E T Pimw = mw_~'DmZ G m,w
2:1 A'1.71/)/1/71"} - AP’ 7 Ap?m?w - APP’ 7 CJ (Ap m,w - A CJ> ,Pp7 7

for all X € Is,.

Proof.

1. Using the mean value theorem, we find for ¢ € C™(Q) N C"*(Q) and all
ARY)

o(@)] < llellom@d(z)™. (3.23)

In Remark [2.6.2] we mentioned that the eigenfunctions are elements of
C?m(Q) N CP(), so (3.23) holds for every eigenfunction ;.. With
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Definition and ([3.1]) we obtain that for 0 < f € L*(Q) and 1 <i < j

’ (Pi,m,wf) (1‘) ‘ =

pumal) [ wi,m,w@)f(y)w(y)dy\

< cuallgimaln @)™ [ d) 1)y
— (D f)(@), (3.24)

where ¢; = cw72||go,;,m,w||20m @ Using the constant

max sup | Aimw — A7
iS] Nl

*_
¢ =

we find

J
1
P,

7,1, W
1)\i,m,w_)\ Y

< (j6§ max Ci) D,

for all A € Ip,.

2. For X € I, we single out Py, ., use the estimates in ([3.24), the assumption
that @y, . is strongly positive and that the corresponding eigenvalue is simple.

3.3 Regularity results and dual estimates

In this section we derive estimates for II in (3.15). Therefore, we use regularity
results of the Green operator and make use of dual spaces and maps. To this end,
we adapt the proof of Theorem 14 and 16 for m = 2 in [58] to the general case and
divide it into partial results. Some steps and paragraphs of the proofs are identical
to the proof in [58] except that we replace 2 by m. Some arguments are described
and proven in more detail.

In the proof of the following lemma it becomes clear why we chose £, ,, as in
(13.16]).

Lemma 3.3.1 Suppose that Condition @ s satisfied. Let k., be defined as in
B16). Then (Gmoi(w-)) ™ f e C™Q) for f € L2(Q) and there exists a constant
C > 0, depending on the domain, m and w, such that

’((gmm(w-))’“m f> (x)’ < Ol fll 2, d(z)™ for all f € L*(Q) and every z € Q.

Proof. For Q) € C?*™ we find by Agmon-Douglis-Nirenberg results that for all
p € (1,00

G0 @ LP(2) — W22(Q) N W™P(Q)
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is a bounded operator. Let Z : W?™P(Q) — L%(Q) be the Sobolev imbedding in
(2.11)) with sufficiently chosen ¢q. Then we find that

Zo gm,O,w . LP(Q> — LQ(Q)

is a bounded operator. Hence, applying G, 01(w-) kyn-times and using Sobolev
imbeddings after each step, we obtain that

(G0 (w-))" o L, (Q) — W2m9(Q) N W™ (Q)

is a bounded operator for some ¢ > . Indeed, we find with analogous arguments
as in [57, Lemma 13]:

For n € {2,...,2m — 1} it holds that 2 > ™ and Agmon-Douglis-Nirenberg
results imply that G,, 01 (w-) is a bounded operator from L2 () to W?™2(Q)N
We™* ().

For n € {2m,...,6m — 1} we may use Agmon-Douglis-Nirenberg results and
Sobolev imbeddings as in (2.11). We find with

{Z:lzoo for 2m <n < 4m,

* 2 2
2, == 2> 5o fordm+1<n<6m-—1,

and ¢ = 2~ € (£,2) that

(G (w))? + L3() 2% W2m2(Q) 0 We™*()
> 19(Q) 0 WEma(0) 0 Wy (9)
is a bounded operator.

For n > 6m we set £ := [%] and for k </

po = 2 and Pk+1 = (sz)fw

with (pg)% as in (2.11]). Then we find

2n
= for k < ¢
Pr n —4mk orR=
and
2=pp<p < << — < pr < 00 (3.25)
m
Moreover, it holds that
(pe)i = o0 for 6m < n < 4m(f + 1),
D1 = * 2n 2n (326)
(pé)n = n—4m(0+1) Z 2m—1 for 4m(€ + 1) +1 S n.
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The inequality in ((3.26]) follows from the fact that ¢ > % -1+ ﬁ. Hence,
setting

= 4n (n (pe)” >

4m — 1

and using the imbedding Z : W™ (Q) N WP (Q) — LPe+1(Q) for k €
{0,...,0—1} and Z : W?m™Pe(Q) N Wy (Q) — L(£2), we obtain for

n—+ 2m
knm:
[ 4m

]+1:€+2
that the operator

ngw m, m,
(G0, (we))Frm L2 (Q) =25 W2™2(Q) N Wg™*(Q)
o [P (Q) Ty Embe, gm0y A Q)
< Lo(Q) o, W?M’q(sz) N WI(Q)

is bounded.

So, there exists a constant ¢ > 0 such that
1(Gim0.1 (@) flwema@yrwga@) < cll flliz, @ for all f € L*(€). (3.27)

Applying (2.11)), one obtains that W?2™4(Q)NW;™"(Q) imbeds in C™(Q)NCF (),
so there exists a constant ¢ > 0 such that

[(Gmoalw))™ 1) @)] < d@)™ [ Gmoa (@)™ Fllemy
< &d(2)™[| (G (w-)) Fllwzma@awmaq)-
With , we find

(Gmoslw))™ 1) @) < cea@)™If 2.0

for all f € L*(9). u

If we use estimates for the norms in the dual spaces of L% (Q) or W?™4(Q) N
W™(Q), we can also estimate G, 1(w-)*™ f in L2 (Q)-norm, as we will see in the
proof of the following lemma.

Lemma 3.3.2 Suppose that Condition @ is satisfied. Let k., be defined as in

(3.16). Then there exists a constant C' > 0, depending on the domain, w and m,
such that

(G0 (w )™ fll 2, ) < C/Q |f()ld(y)"dy for all f € L*(Q).
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Proof. In the proof of the previous lemma we showed that (G, o(w-))*m is a
linear and bounded operator from L2,(Q) to W?*™4(Q2) N Wy™"*(Q) for some ¢ > L
and ¢ > 2. So, we find that its adjoint operator

(Gmoa () ") (W2m1(Q) N W™(Q))" — (L3,(9))"

is linear and bounded for &, ,, as above. Hence, there is a constant ¢ > 0 such that

for all g € (W2ma(Q) N W™ (Q))"
1Gmo1 ()Y gllz @) < €9l wama@amy o) (3.28)

Moreover, we obtain that L2(2) C (W?2™4(Q) N Wy™(2))" since for ¢ > 2 every
[ € L*(Q) determines a continuous linear mapping on W2™4(Q) N W;"*(Q2) through

WH(Q) VWG () 3 he> (f, h) 13,0, (3.29)

see also [I, Paragraph 3.13]. In the following we write f if f € L?(2) is meant and
f for the corresponding map f(h) = (f, h) 12 () in (3.29).

For f € L*(2) the symmetry of the kernel implies that

gm,O,l(w')*f = gm,O,l(wf> (3-30)

in the sense that G,,01(wf) determines the continuous linear mapping G, 0.1 (w-)*f
on L2 (Q). Indeed, we find for u € L2 ()

Gmantwy D= [ ) ( / mo,1<x,y>w<y>u<y>dy)dx
= [wtutn / 0@ Gonan ) ) dy

<u gm ,0, l(wf

Furthermore, using the inequality

lp(z)] < ||90H0m(ﬁ)d(x>m < 6”SOHWQ’"»‘Z(Q)OWO’“"I(Q)d(x)m (3.31)

for all ¢ € W?™4(Q) N W3"4(Q), we obtain for ¢ > 2

sup {
csup {

With (3.31) and ¢,9 as in Remark we find that for all f € L?(Q) and

”fH(Wzm q )QWOm’q(Q))* =

x)dx|;

x)dx

Lo € C™() NG Q) with (@]l gmy < 1}. (3.32)

39



CHAPTER 3. A CONVERSE TO KREIN-RUTMAN

p € C™(Q) N CF Q) with [[@llom) < 1

x)dx

/|f Jw(@) o )Id:v<cwz/|f )"z, (3.33)
Inequalities (3.32) and - 3.33]) imply

81 e oy < ECu / f @) d(2)" do. (3.34)

By combining (3.28)), (3.30), (3.34) and (L2(Q))" = L2 (), we find a constant C' > 0
such that

| Gmontw )" <[ wlie (3.3)

holds for all f € L*(Q). n

We may apply the results of the last two lemmata and find an estimate from
below and above for the infinite sum in by the operator D,,. Using the
assumption that the p-th eigenfunction is strongly positive, we can also replace D,,
in with the projection onto the p-th eigenspace.

Corollary 3.3.3 Suppose that Condition [A] is satisfied. Let Ky, Dp and Pjsmw

be defined as in (3.16), (2.17) and (2.16) with j as in (3.11). Then, there exists a

constant C; > 0, depending on the domain, m, w, M, 61 and s, such that

—CiDm < > NGE  Pruma < CjDp for all N € Ings, Uls,,  (3.36)

m,0,w
k=2knm

where Iy s,, 15, are defined as in and (| -

Proof. We know that
f = Z Akgfn—t_()l’ij*,m,wf = gm,)\,ij*,m,wf for f c LQ(Q>

is a bounded operator from L2 (Q) to L2 (Q) for all A € I5 U I5,. Moreover, we
can write

o0 o0
kok+1 _ \2knm knm kpok+1 knm
Z A gm70,ij*7m7Wf = AT gm,O,w (ZA gm,O,w,Pj*m%w) gm,O,wf‘
k=0

k=2knm
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Combining Lemma [3.3.1] and [3.3.2} we find constants Cj, C}, C7 > 0 such that

> NG Premat) (@) = W | (4G PremnGiiiinf ) (@)

k=2knm

k‘n,m m kn,m m
< CillGmawPjmawGim o f122,@d(@)™ < CjllG 5w f Il 2, d(2)

< Cjd(z)™ /Q |f()|d(y)"dy = CY (D f|)(z) for all f € L*(Q).

So, estimates for I and II in (3.14)) and (3.15) are proven. At this point only
an estimate for II7in (3.15]) is missing to complete the proofs of Theorem and
0. 1.0l

3.4 Estimates for the iterated Green operator

In this section we will consider II] in . To this end, we will use known esti-
mates for G, 0.1 to derive estimates for powers of the polyharmonic Green operator.
Analogous to Lemma 8, Corollary 9 and Lemma 10 in [57], one can prove a simi-
lar estimate as in for the corresponding iterated Green operator G, with
k € N*t. Therefore, we look at the operator H,,,, defined in and its iterates.
For domains with smooth boundary 99 € C?™7 one may estimate the operator
HE . through the kernel function H, . x 0 Q x Q\ {(z,2);2 € Q} — [0, 00), defined
by

Hfz,mf(aj) = /QHn,m,k(xﬂ y)f(y)dya (337)

and one finds:

Lemma 3.4.1 ([34]) Let k € N*. Then there are constants cq gm, Carm > 0 such
that

CQ,k,mﬁn,m,k(xu y) S Hn,m,k(x7y) S CQ,k,m-Eln,m,k(x7y)7
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where
ﬁn,m,k(xa y)
)
d(x)™d(y)™ fork > 14 5=,
d(z)™d(y)™ log (2 + m) for k=143,
m—mk+n/2
= ¢ (d(z)d(y))™ "? min {1, ‘ﬁfﬂiﬁg)} for 5= <k <1+ 5=,
log <1 + (—ﬂfﬂiﬁ?) ) for k=3,
|z — y|?*™*~" min {1, —d(xzd(é’) }m for k < 2.
\ |z—yl 2m

(3.38)

In Corollary 9 of [57] we find the following result with analogous proofs for m = 2:
Corollary 3.4.2 Let k},,, = [5=] +2. Then it holds for k € N*:

1. There exist constants Cgzgix > 0, depending on the domain and m, such that
Dy, = Cgag16Dim. (3.39)
2. There exist constants Cgzger > 0, depending on the domain and m, such that
D < Gz He (3.40)

and no reverse estimate for k <k, .

3. There exist contants Ggzgsx > 0, depending on the domain and m, such that
Htn < CaxzsiHo - (3.41)

4. For k >k, there exist agar, Cgagar > 0, depending on the domain and
m, such that

@Gag4kDm < MY 1w < Gz Din. (3.42)

5. There exist qgzgsk, (gagse > 0, depending on the domain and m, such that

5,kDm S DmHn,m S 5,kDm and (343)
@5,k’pm < Hn,mpm < q@&kpm- (344)

Proof.
1. For f € L*(Q) it holds that

(D )(z) = (Do f)(2) ( /Q d(y)zmdy>k_1 for k € N* and z € Q.
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So we find Gz = ([, d(y)*"dy) i

. Inequality (3.40)) follows from (3.38). Indeed, for k& > 1+ 3 it follows imme-
diately. For k =1+ 5= it holds for all x,y € 2 with x # y

Hyy (2, ) > log(2)d(z)™d(y)™.

All other estimates follow from |z — y|,d(z),d(y) < diam(Q2): For = < k <

2m
1 + 5= one gets for all x,y € 2 with = # y
~ - d(l’)d(y) m—mk+n/2
Hnm > (d d mk—n/2
i) = ()™ (G
= d(z)™d(y)™ diam(Q) 2 F2mk—n,
Using [21, Lemma 4.5] and the last inequality, we find for k¥ = 7> a constant

¢ > 0 such that for all =,y € Q2 with x £y

ﬁn,m,k(x,y) > clog (2 + M) min {1 M}m

[z =y e =yl
> clog(2) diam(2) > d(x)™d(y)™.

For k < 5~ we obtain with similar arguments

~ d(z)d "
fﬂwmk@xy);zdnunan2mb41<aé§%é%%> = diam(Q)*"* D ""d(z)"d(y)™
for all x,y € Q with x # y.
. For (3.41) we have to prove that there exists a constant ¢ > 0 such that
Hymgy (2,y) < ¢Hpymp, (2,y) for (z,y) € Q x Q and k; > ke. Analogous to
[57, Corollary 9] we show this result for &y, ko € #N* and &y = ko + ﬁ To
this end, let s = |x — y|* and ¢t = d(x)d(y) for a short notation. Then we find:
— For ky > ky > 1+ 5 it holds Hy sy = Hopnks-
— For ky > ky = 1+ 7 the inequality follows with ¢ = m.

—Fork1:1+%>k2:2m*1+%weﬁnd

2m

1
1 1 1)2

t"™1 24+ —— ) <t"|1 inq—,—
og( +s+t)_ ( +mm{s’t} >

(1 1)?
< cot"minq —, —
st

1
+) 2
= Cth*% min {1, —} ,
s
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with cq = 14 diam(€2). We used that y — 1+ ,/y —log(2+y) is positive
for all y > 0 and SLH < min{%,%

— For - < ky < k; <1+ 5 the estimate is equivalent to

1

> 2
t2 = diam(2) min {1, m} < diam(€2) min {1, 2} . (3.45)

—Fork:l:%—l— > ko = —Wemakeuseof-andﬁndfort>s

m_% m
£2 min {1, E} < diam(2) min {1, E} = diam(2)
s s

diam(£2) tm
< —7 1 1+ —
= Tlog2) Og( +sm)’

and for ¢ < s we use o2 )log(1+y)—y>0fory€ [0,1] and get
7'7'L—l m

1, t 2 t . tm

2 min {1, —} < diam(€2) min {1, —} = diam(Q)—

S S m

s
< diam(€) dlam(Q) g(l—i-t—).
Sm

log(2)
— For ky =3 > ke = ——Tweﬁndfort<s
m m m 3 Q m
log (1+t—> §t—:min{1,t—} §dl&(>mm{1 t—}
sm sm sm s3 sm

and for ¢t > s

m : QZm : 0
log (1+z—m> < log (1—1— m) < delﬂl()

s S2

= Qm—dlani(Q> min {1, t—}
Sm

S2

since y — log(1 + y*™) — 2my is negative for y =

1 and decreasing for
y > 1.

— For 5= > ki > ky we obtain the result since sz < diam(€).
4. Inequality (3.42)) follows from ({3.38]) and (3.40)).
5. Inequality (3.42)) implies ((3.43)) since

+1 _1 k;ﬁm
3434,k ,, BPAZ4E;, m41Dm < C'-4 K}y = “BAZ4k; o o m
Kim +1

S D’mHn,m S C-4 k:*
< 4,k;7mq@4,k;’m+lpm-
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Analogously, we find the inequality in ([3.44]).

This corollary is helpful to find an inequality similar to for the iterated
Green operator. For the special case m = 2 see Lemma 10 in [57]. We recall the
steps of the proof in [57] except that we replace 2 with m and include a weight
function.

Lemma 3.4.3 Suppose that Condz'tz'on is satisfied. Let Dy, and HE , be defined as
n (2.17) and (3.37). Fork € Nt we find three constants Gszz1 .k, CGsazi2.k, Gsamis.6 >

0, depending also on the domain and w, such that

Ceam iy < Geow + C5x320Pm < G i - (3.46)

Proof. Using Corollary [3.4.2, we get D,,, < (gzgoiH,,,,,- Moreover, with (3.2)) we
find a constant ¢, ,,, > 0 such that

|Gm,0,1(x7 y)' S Cn,mHn,m(xa y)7

so using the estimate for the weight function in ({3.1]), we obtain

moaf = (Gmoa (W) < (Gmoal(w)* f < ¢ ach M f for all 0 < f € L),

where |G o1l(wf)(z) == [, |Gmo1(z, y)|lw(y)f(y)dy. These estimates imply the
estimate on the rlght hand side of ([3.46 - For the left-hand side one uses induction.
One finds for & = 1 that the assertion holds by (3.2). Supposing that (3.46]) holds

true for some k € N*, we find

CrmmaHity < Hom (GF 0. + Goam24Dm) < CragaanHet,
and with (3.46|) for £ =1

0@1,10@11,ﬁﬁf1 < CgzzaHom (Qm 0w T GB132, kDm)
< gm0w+0@212> (G 0.0 + G524 D)
,}ffolw + Oga32.49m,00Pm + Ggaz121Pm (gﬁl 0w T me,kDm)
< ,’?Lolw + Oga32.40 053331 Hnm P + Oa32,1 052334 Pm H m + Oga32,.0sa32.6 D

< Gnlow +CD
The last inequality with C* > 0 follows from Corollary n

The following lemma and a similar proof for m = 2 is published in [57, Lemma
11].

Lemma 3.4.4 For all € > 0 there is a constant C.gzz > 0, depending on the
domain and m, such that the following inequality holds:

0< H?@,m < EHn,m + Camprrw
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where D, and H,, ., are defined as in (2.17)) and ([3.4)).
Proof. Let £ > 0. We prove that there is a constant C.gzz > 0 such that
I:_fn7m72(x,y) < sfrlmml(x, y) + Cegzad(x)™d(y)™ for all z,y € Q, (3.47)

where M, is defined as in (3.38). As in [57, Lemma 11] we will distinguish five

cases:
e Forn €{2,...,2m — 1}, the estimate follows directly from (3.38)).

e For n = 2m we use that a < %b + %% holds for all a,b > 0. Setting a =
f‘{n’myg(l',y) and b = alzln,m,l(x, y), we get
1 gnm?(x7y)2

~ 1 =~
Hn,m,Q(xvy) S _an,m,l(xvy) + ——= — d(‘r>md<y)m
2 2¢ Hp 1 (z, y)d(z)™d(y)™

If we set
s=lr—y* and t=d(z)d(y) (3.48)

for short notation, we find

. 2 2
Hnm,2<xay)2 _ tmlog (2_'_ SL—H) m IOg (2+ SL-H)
Hy 1 (2, y)d()md(y)™ log (1+22) = min{1,2 }log(2)
log(2) t+s
Since this is bounded by a constant C' > 0, depending on the domain and m,
we obtain
~ € ~ 1 m "
Hn,m,Q(I7 y) S éHn,mJ(xa y) + %Cd(x) d(y) .

Scaling ¢, we find (3.47)).
e Forn e {2m+1,2m+2,...,4m — 1} we get with s and ¢ as in (3.48)) and

—m+§2m—%tha‘c

. AR
Hy o, y) = 2™ 2 min {1, —}
s
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e For n = 4m it follows with (3.48|)

Homate) =tog (14 (£) ) < (1)

= Hypor ()2 (d(x)"™d(y)™)

m m
2 2

t
min{l,—}
s

N

e For n > 4m + 1 we obtain with (3.48])

N n "
Hy o7, y) = s*™ 2 min {1, —}
s

n t m " 2m?2
< (3m2 min{l,—} ) tn
5

~ 2 2m

= n,m,l(x> y)l_Tm (d(x)md(y)m)T .
Hence, using Young’s inequality, one gets for n > 2m+1 and all x,y € Q with x # y

gn,m,?(xay) S ﬁn,m,l(x7y)1_27m (d(x)md(y)m)Tm
< (1= 22) eHyp (0, y) + 2Z2e 20 2 ()" d ()™

To complete the proof of Theorem [3.1.1] and [3.1.3| we still have to find estimates

for 11T in (3.15)) from above and below. Using the previous lemmata and corollary,
we get the following proposition:

Proposition 3.4.5 Suppose that Condz'tion@ is satisfied. Let Dy, Him and Pjwm.w

be as defined in (2.17), (3.4) and (2.16) with j € NT asin (3.11) and (3.12)). There
are constants Cgzm1, Ugam2, Ugaas, Ugama > 0, depending on the domain, 7, m, w,
M, 61 and do, such that

i —1

Gz Hnm — Cazm2Pm < Y NG Piema < CizmsHnm — CGazmaDim
k=0

for all X\ € Ins, Uls, with Ins, and Is, as in (3.6) and (3.8]).
Proof.

e Let A > 0. Analogous to the proof of Lemma 19 in [57], we can use Lemma
13.4.3, (3.41) and (3.42) to find for k € NT

0@27k1,k73m < Ggagi M m < Grow + GBamewDm < GeagsHe
< q@&k@&k%mm-

Setting C' := max{(szgor b €{1,...,2kyn}}, we get

Q,’;’Oﬂu +CD,, > 0forall ke {1,...,2k,m}
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Then we obtain

2knm—1 knm—1
Z Akgﬁf[}lw < Z >\k> Dm + me,le Z q@l,lHH,m (349)

for all A € Iyzs U Is, with A > 0.

Analogously, we find for C' := min{Gsagor b € {1,...,2kym}} a constant
C > 0 such that

+CDyy < CHpn for all k € {1,..., 2k}

mOw
Hence
2k —1 2k —1 2 —1
Z NFGRT  + < > Ak> D,, <C ( > A’f) Hom (3.50)
k=0 k=0
for all A € Ipz5, U Is, with A > 0.
e Let A < 0. Then, we get
nm_]- kn,m_l k’n,m—l
Z NG =D PG, = > PG
k=0 k=0

As is (3.49) and (3.50), we may show that there are constants Cj;,, > 0,
depending also on w, with ¢ € {1,2, 3,4} such that

knm—1
Cl,mHn,m - CQ,mDm S Z |)\|2kg»,27ﬁ8:qlu S C3,mHn,m - C4,mDm (351)
k=0

for all A € Ipzs, U I5, with A < 0. With similar arguments and (3.41]), we get
constants C;,, > 0, depending on w, with i € {1,2, 3} such that

kn,m_l
~ 2 : 2k+1 ~2k+2 ~ 2 ~
_Cl,mDm S |/\| gm,O,w S CQ,mHn’m - C3,mDm
k=0

Let € > 0. Using Lemma [3.4.4] we then find

knm—1
_él,mDm < Z |)\|2k+1g31k78:i; < éQ,man,m + (GQ,mosm - éB,m)D
k=0

(3.52)
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for all A € Iy, U I5, with A < 0. The inequalities in (3.51]) and (3.52)) imply

(Cl,m - é2,m5)Hn,m - (C2,m + éZ,mCzsm - C~’3,m),D

2knm—1

< Z )\kgyl:l—i—olw < C3m n,m (04,m - él7m)Dm (353)

for all A € Ipg, U~L;2 with A < 0, where € may be chosen sufficiently small
such that C ,, > Cope.

Moreover we get

Z AeGH wZme Zl Z )\kH Pimw

7, m,w

and therefore

2knm
irm —1 ; 1_( A )
A.
kok+1 _ i,m,w
E : A gm,()w E szw - E A\ 2\ 7)i,m,w-
k=0 i,moaw

=1

2kn,m
. 1= (M‘ :\n w) . . .
Since —————— 1is bounded for A € I}, UIs, and using (3.24)), we obtain

)\i,m,w7>\
two constants c;m, ¢, > 0 such that

e m—1

J
—CimDPm < Y NGELY  Pima < & D (3.54)
= =1

Combining (3.49)), (3.50), (3.53)) and (3.54)), we find the result.

3.5 Asymptotic formulas for the weighted eigen-

functions and eigenvalues

In order to prove Corollary [3.3.3 we can also use asymptotic estimates for the
eigenfunctions and eigenvalues. The eigenfunctions can be estimated in the C™-
norm using the corresponding eigenvalues. So we find an analogous result as in [57,
Lemma 13].

Lemma 3.5.1 Suppose that Condition @ is satisfied and let ky,,, be defined as in

. Then there exist constants Ggz1, Cgzm > 0, depending on the domain, w and
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m, such that for all i € NT:

knm A Tmts
[pim,wllom@ < GEEmNimw < Gaat\imw s (3.55)
~ n 43
|Pimw(t)] < G, d(@)™ < G\ 2 d(x)™ for allz € Q. (3.56)

Proof. We know that the first eigenvalue of (1.10)) is bounded from below by a
constant ¢ > 0. So, we get for a < 3

A= AB N <P for all i € N (3.57)

7,1, W i,m,aw i maw — 2,m,w

Using the steps in the proof of Lemma [3.3.1] we find constants ¢, ¢ > 0 such that
for some ¢ > = and all i € N*™

1 k
o 104,20 HCM@) = Hgmrt’g)?wgpi,m,w “Cm(ﬁ)
i,m,w

~11 ~k
S CHngibT:Lw(Pi,m,wHW2m,q(Q)mW6n»q(Q)

< cellimuwllrz@)-

Since || mwll 22 @) = 1 and (3.57) holds, we obtain inequality (3.55). Applying the
mean value theorem m-times to ¢; ., we get inequality (3.56]). ]

Remark 3.5.2 Using Taylor, starting from x* € 0 such that d(x) = |x — x*| and
o o \m—1
Limuw = gwi,m,w - = (5)

(3.56) the inequality

~ n .3
i (@)] < 4G d(z)™ < L Camp\in 2 d(x)™ for all z € Q.

Since Cgxy s also dependent on m and we do not specify this dependence, we can
even use the weaker estimate in (3.50)).

Cimw = 0 on 02, we may also find instead of

Remark 3.5.3 In [57] we have proven for m = 2 that

§+£
”901',2,1HCQ(§) < O)\i42718‘

We note, that

<342 forn=3+8kkeN,
kna =3+2  forn=2+8kkeN,
> %—I—% for any other n > 2.

Hence, for some dimensions n € NT we may find a sharper result if in addition to
reqularity results by Agmon-Douglis-Nirenberg and Sobolev imbeddings we also use
interpolation theory [1, Theorem 5.8] as described in [57, Lemma 13]. Indeed, one
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finds a constant C > 0, depending on the domain, such that for all i € N*:

n 2m—1

=+
1@imwllom@ < O ™™ - (3.58)

In the following, we will use the estimate in Lemma [3.5.1 However, ky, can be

replaced by 5+ % in the remainder of this section. Since many steps in the proof

of this estimate are similar to the proof of Lemma|3.3.1], we skip it here. However,

it can be found in Appendiz[A.1]

Since the orthogonal projections onto the eigenspaces are defined using the eigen-
functions ¢; , », the following estimates follow from ((3.56}):

Corollary 3.5.4 Suppose Condition@ is satisfied and let Py and D, be defined
as in (2.15) and (2.17). Then there is a constant Cgzg > 0, depending on the

domain, m and w, such that for every i € N* and for all 0 < f € L*(Q):
[(Pim)(@)] < Gz (Dn ) () for all z € Q.

Proof. We find with Cgzg := Gz of Lemma that for all 0 < f € L*(Q)

|(Pimof) ()] =

Pim,uw(T) /Q sﬁi,m,w(y)f(y)w(y)dy‘

< oGl 2 d ()™ /Q Ay)™ £ (y)dy
= oo (Do f) (@)

for all z € Q. ]

Since we assumed in Theorem that there is a simple eigenvalue A, ,, ., with
strongly positive eigenfunction ¢y, ., We get:

Corollary 3.5.5 Suppose that Condition[A]is satisfied. Let A, p . be a simple eigen-
value with corresponding strongly positive eigenfunction @y m . and Pjmw and Pp m w
be defined as in (2.15)). Then there are constants Cgzgi, Cgrme > 0, depending on
the domain, m and w and independent of i € N*, such that for all 0 < f € L*(Q)
and x € ()

knm
"Pi,m,w(x)‘ < qmlAi,ﬁ,w¢p,m,w(x)a
2k m
|(Pimwf) ()] < CgmaXi e (Pom,w f) (@)
Proof. The estimates are implications of the assumption ¢y, .(z) > Cop d(2)™,
Lemma [3.5.1] and Corollary [3.5.4] [

The asymptotic behavior of the eigenvalues for problem has been studied
and known since Weyl’s seminal paper [78] and Agmon’s article [2] on higher-order
problems. However, there is a strong regularity assumption on the boundary of €.
Since we will only need an estimate for the eigenvalues from below, we can use an
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inequality proven by Levine and Protter [43] which holds for any domain that fulfills
Condition [A] With an adapted constant, we may use this estimate for the weighted
problem.

Lemma 3.5.6 (Levine-Protter [43, Equation (2.5)]) LetQ C R™ be a bounded
domain. Then it holds that

m 2m)™\
Nt > Copi® with  Cpp = —— (|
;m,1 = CLpt wt LP = o (bn\Q\ )

where |Q| is the volume of Q0 and b, is the volume of the unit ball as described in

2.

Corollary 3.5.7 Let Q0 C R" be a bounded domain and c,,2 > 0 be as described in
Remark[3.0.1. Then it holds that

-1 2m

2m , ne (2m)™\ ~
Nimaw > Clpi th O, = w2 3.59
maw = Lppl wi LP = T om bn|Q’ ) ( )

where Q] is the volume of Q0 and b, is the volume of the unit ball as described in

22).

Proof. Using the Rayleigh Min-Max Principle, see [77, Chapter 2| or [16, Theorem
4.5.1], the sharp estimate in Lemma and the upper bound for w in Remark
[3.0.1] we find for m € N* even and all i € N*

m 2
LT
Aimw = in  max s
ECwm’Q(Q) uek f wudx
.0 - uZ0 Q
dim(E)=1

1 Jo (A% )" da

min max

~ sup,cqg [w(y)| Bew 29 ucs Jo u?dx
dim(E)=i
> -1 )\ > -1 C .2m
- Cw,2 i,m,l — cw,? Lptn
Analogously, we find for m € Nt odd
m—1
VA7 ul?dx -
Nimw = MMin  max fQ | 5 | > 0;12CLP2~7.
Bew@) el [ wulde ’

dim(E)=i “#0

If we use this estimate, we can also find a growth rate of the C™(2)-norm of
the eigenfunctions and hence prove the convergence of the series considered in II of

(3.15)) and in Corollary |3.3.3}

Remark 3.5.8 With the asymptotic formula in (3.59)), we can show the convergence

D2



3.5. ASYMPTOTIC FORMULAS

in operatornorm of the series

Z(Agm,o,w)kgm,o,ij*,m,w (360)
k=N

for N € N* with N > 5~ —1 and X\ € (=X ji1.muw, Ajt1muw), Where Xj . is defined
as in (3.11). Indeed, using Lemma we find with || P;m.wl| Lz ) = 1

= 1
Hgﬁl—t_ol,wp m, (L2,() = Z )\kTPi,m,w

AR BL(L3,(%))
= 1
= Z N Pl s, ) = ) N+
i=j+1 me i=j+1 T tmaw
Hence, it holds that
Z | (AGrm,0.)" 2 () Z ([ Ghlo. P *mvaBL(L%(Q))
k=N k=N

< Z |)\|k Z )\k-i-l :

i=j+1 Ti;maw
All entries are nonnegative, so we may change the order of summation and obtain

S S gt S () S ()

i=j+1 Viymaw i J_H)\zmw m,w e i,m,w

~ Z AN
_. - Ai,m,w )\z}m,w - |)‘|

i=7+1

One finds that % is bounded by some constant c; > 0, independent of
€ N with j +1 < i. We note that the constant depends on X\ and c¢; — oo for
A = Njy1mw- However, since we consider the convergence of the series in (3.60))

for fized X with |X| < Xji1,mw, this is not a problem. Using Corollary[3.5.7 we get

Z H )\ngw ngw J*meBLLQ Q) <C]|)\|N Z Azmw

k=N i=7+1
o
N _2m a7 2m
< (Crp) VTGN D> N
i=j+1
This series converges for N > 2 — Since 2k > 2 — 1 the series in 11
2m n,m 2m ’

converges in operator norm.

Using the asymptotic formula for the eigenvalues and eigenfunctions, we find a
similar result as Corollary [3.3.3] The only difference is that we have to adjust the
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starting value of the series.

Lemma 3.5.9 Let N, ,,, = 2 [”*ém} and Condition |A| be satz’sﬁed Moreover, let
D,,, and Pjsmw be defined as in and - with j as in . Then, there

exists a constant C; > 0, also dependmg on the domain, m, w, M 01 and 09, such
that

~CiDm < Y NGE  Piemaw < CjD, (3.61)

m,0,w
k:Nn,m
for all X € Iprs, U Is,, where Ins,, 15, are defined as in and -

Proof. Using Lemma and Corollary [3.5.4] we find for 0 < f € L?()

o0 o0
Z Akg’rﬁz—’—olwp*m,wf = Z )‘k Z )\k,’—i—l i,m,wf
k:Nn,m k= Nnm 1= ]-‘rl 1,m,w
oo o0 1
k
< Y NEY Pl
k=Nnm i=j+1 Timw
o0 oo 1
k 2kn,m
<lmm| Y WY | D
k=Npm i=j+1 Timaw

The series in brackets converges, so we can change the order of the summation and
get

e’} Npm Azkn,m
Z )\kgrkn+01w7) . mwf < qu Z ( ) S ,m,w |/\|,Dmf

k=Npnm i=j+1 LW

A 7,1, W

Since P— is bounded from above by some constant Cs, 5, s > 0, independent
of i and \ € Ips5, U Is,, we obtain with Corollary

00
kok+1 Nn,m 2kn,m—Nnm— 1
Z A gm,OwPJ*mwf < 051 02, MGBEI)\]mw Z )‘zmw mf

k=Nnm i=j+1

[o¢]
1 Nnm .2m anm*Nnmfl
< Coy0 G Clp Ay > i Hnm = Nom=UD, f,

i=j+1

where CYp = (C, p)*nm=Nnm=1_The series converges for

Noos op = g2
’ 2m ' 2m 4m
Since Ny, = 2 [”*’4’”} this is fulfilled. [ |
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3.6. AN ANTI-MAXIMUM PRINCIPLE

Using Lemma and replacing 2k, ,, by N, in Proposition [3.4.5] we find an
alternative proof for Theorem [3.1.1] and [3.1.3]

Remark 3.5.10 If we use the estimate in (3.58)), we find the condition N, ,, >
"T_l + 1, so we may also use Ny, = [”7_1} + 2 in Lemma .

3.6 An anti-maximum principle

Using analogous estimates and arguments as in the last four sections, we find for A
in a small right neighborhood of A, ,, ., a similar result as for an upper bound
of the Green function G,, .. This implies an anti-maximumm principle, i.e. a
sign-reversing property exists: f > 0 implies u < 0 for A in some interval.

First, we prove an estimate from below for the Green function to problem (|1.6])
if \ is contained in a right neighborhood of a simple eigenvalue with corresponding
strongly positive eigenfunction.

Theorem 3.6.1 Suppose that Condition [A] is satisfied and let 65 > 0. Suppose 0 <
w € C™(Q) and that Ay m.w is a simple eigenvalue of (1.10) with the corresponding
ergenfunction ©p m . strongly positive in the sense of . Moreover, suppose

Isy = (Apmows Apmow + 03] (3.62)

contains no eigenvalue. Let Gy, x . be the Green function for (2.6). Then there exist
constants Cy,Cy, C3 > 0, depending on the domain, m,d3 and w, such that for all
A€ ls, and x,y € Q)

C.
Gl 1) < O Ho) + (5 4 ) o) ). (369

AI)/rrl/?'l‘u -

Proof. We have to estimate [, IT and I11, described in (3.14)) and (3.15]), from above.
Let Hy, m and Pj, . be as defined in (3.4)) and with j € Nt as in (3.11]). To
find appropriate estimates, we can use results from the previous sections. Using the
proof of Lemma [3.2.2, we get a constant ¢;; > 0 such that

J
1 1
—>\'P7;7m,w < <ﬁ -+ Cj71> Pp,m,w for all \ € [53.
p?m?w

i—1 )\i,m,w -

We find analogous to Corollary a constant c;» > 0 such that
o0
k k+1
Z A (G0, (W)™ Pismaw < ¢ 2Ppmw  forall A € Is,.
k=2kn,m
Similar to Proposition we also obtain constants c; 3, c;4 > 0 such that

e m—1

Z )\k (gm,O,l (w'))kJrl Pj*,m,w S Cj,?)%n,m - cj,47)p,m,u) fOI’ all A € [53.
k=0
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Using ((3.14) and (3.15]), the result in (3.63]) follows. [ |

Using some known estimates for the integral operator H,, ,, and Theorem [3.6.1]
we obtain an anti-maximum principle:

Theorem 3.6.2 Suppose that Condition |A] is satisfied. Suppose 0 < w € C%7(Q)
and A\pmw 15 a simple eigenvalue of @ with the corresponding eigenfunction
Comaw strongly positive as in (1.11). Let 0 < f € LU(Q) with f nontrivial and
q > max{1, 2}. Then, there exists 0y > 0, such that for all X € (Aymw, Apm.w +05)
the following holds: There is a constant cg g, > 0 such that the solution Up x. €

W2ma(Q) N Wy (Q) of (1.6) satisfies

Unaw(T) < —cprgd(@)™  for all x € Q.

Proof. We may consider H,, ., Dy Or P as operators on L9(Q2) with ¢ >
max{1, 2} instead of L?(€2). Since the Green operator G, »., : L4(2) — W?™(Q)N
Wy "%(€2) is defined through the kernel function G, »,, which does not depend on g,
we may use inequality .

In the proof of Lemma 2 in [33] it is shown that for all f € L(Q) with ¢ >
max{1, -}, one finds a constant ¢, > 0, depending also on the domain and m, such
that

|(Hpmf)(@)] < cgllfllza@yd(z)™  for all z € Q. (3.64)

Indeed, this result can be proven using the definition of the kernel function H,, ,, in
(3-3), the estimates in [2I, Lemma 4.5] and the Hélder inequality. Since ¢p gm0 is
strongly positive in the sense of , the inequality in implies that there
exists cg4 > 0 such that

|(Hnmf)(@)] < cfoppmw(z) forall z € Q.
Then, one finds the following estimate for the solution w,, x,, of (L.6]):

C
um,/\w(x) < @pym,w(x) {Clcf,q + (ﬁ + 03) / f(y)Sopm,w(y)dy} )
p7m7w - Q

where C1, Cy, Cs are chosen as in Theorem [3.6.1} Since @y, .0 is strongly positive
and f > 0 with f # 0, it holds that [, f(y)¢pmw(y)dy > 0, so the constant in
square brackets becomes negative if A, ., — A < 0 and A is close enough to A, -
Accordingly, there exists a ; > 0 such that the value in square brackets is less than
zero for A € (Apmws Apmaw + 05)- u

Remark 3.6.3 We notice that in this result the positivity of the kernel function
H,, , respectively the singularity of the Green function, is not used. We only need an
estimate as in and the strong positivity of an eigenfunction with corresponding
simple eigenvalue.
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Chapter 4

Construction of a weighted
problem with simple eigenvalue
and positive eigenfunction

In this chapter we make use of Condition |B|to find a positive and Holder continuous
weight function such that a strongly positive eigenfunction of the weighted eigenvalue
problem with corresponding simple eigenvalue exists. In [58] we found an explicit
weight function for the weighted biharmonic problem. The idea and the steps in the
following proofs are similar to [58, Sections 2, 4] with small changes concerning the
additional assumptions in Condition [B]

4.1 Idea of the construction

Let Conditionbe satisfied. Moreover, let ug € C?™7(Q)NC 1 (2) be as described
in Condition [B] and

(=A)"ug = fod(-)™, (4.1)

with my € N, mg < m and f, € C%7(Q) strictly positive. If ug is an eigenfunction
to problem (1.10]) with w = 1 and eigenvalue A, ,,, 1 > 0, we are done and can choose
w = Apm,1 as a weight function. Then, v is an eigenfunction to the weighted
eigenvalue problem ([L.10) with weight w and eigenvalue Ap ., = 1. If g is not an
eigenfunction, then the idea is to take

d(-)mo
w = 1040) (4.2)
Uo
as the weight function. Then ug satisfies
(—A)"uy = Awug in Q,
o o \m—1 (43)
uOIEUOIZ(E) 'LLOIO on 0f)



CHAPTER 4. CONSTRUCTION OF A WEIGHTED PROBLEM WITH
SIMPLE EIGENVALUE AND POSITIVE EIGENFUNCTION

with A = 1, so it would be a strongly positive eigenfunction to a weighted eigen-
value problem. However, the problem is that the weight function has to be Holder
continuous and bounded so that we can apply the converse to Krein-Rutman. For
mo < m, the quotient of fod(-)™ and ug would be unbounded near the boundary
0. Therefore, the idea is to change d(-)™ fy in a way that it behaves like the dis-
tance function d(-)™ in a small neighborhood of the boundary €2(¢), which is defined
by

Q) ={z € Q; d(z) < e}. (4.4)

Then, we use a similar idea as in and to achieve an appropriate weight
function. After we have found a weighted problem with positive eigenfunction,
we use small perturbations of this function so that the corresponding eigenvalue
becomes simple.

4.2 Construction of the weight function

In this section we follow the steps in [58, Section 2], except that, instead of m = 2

and fo, we consider m > 2 and fod(-)™ from (1.13)) in Condition [B] In the following,

we investigate the function fo. : 2 — R defined by

Joelw) = xe(d(x))™ ™0 d ()™ fo(x) (4.5)

for e > 0 but small. We choose x. € C*°(R) such that it is an e-sized mollification
of the sign-function, see Figure 4.1}

Remark 4.2.1 ([58, Remark 8]) The function x. is constructed with the molli-
fiers from Friedrichs ¢. : R — R with support in [—e,¢] and defined by ¢.(t) =
%cp (ﬁ), where

clexp (=) for |t <1 !
t) = 1-¢2 ’ and c:/ exp (—=%) ds.
w04, T, [ exp (=2

With sign (t) =t/ |t| for t # 0 we define the function

Yo (8) = (. sign) (t) = — / oelt —y)dy + / " gt — y)dy fort € R.

Note that x. € C* (R) satisfies x. (0) =0 and x. (t) =1 fort > e, see Figure[{.1]
Moreover, we find x.(t) = 2¢.(t), so x.(0) = 2! and

C

min {{,1} < x. (¢) <min{ZL,1} fort > 0. (4.6)

Remark 4.2.2 In [22, Lemma 14.16] one finds that for the distance function it
holds d € C*™7 near O follows from 9 € C*™7. Also one finds %d = —1 on 09.

o8



4.2. CONSTRUCTION OF THE WEIGHT FUNCTION

1/ 'll
(A0

Figure 4.1: Sketch of . as mollified sign-function with the estimates from 1D

So, x:(d(-))™ € C*™(Q) for sufficiently small ¢ > 0. Moreover, it holds that

)" = o) == () ) =0 ()

<§)mmeW#0 (43)

on 9Q. In addition one gets that d(-)™ x.(d(-))™ ™ € C*™7(Q(e)) and that (4.7)
and (4.8)) hold when we replace x(d(-))™ by d(-)™ x.(d(-))™ 0.

Furthermore, instead of ug, we consider the solution uy. to the polyharmonic
Dirichlet problem

(=A)™upe = for in Q,
-1
Uoe = %UO,a == (E)m upe =0 on 9.
Then, we can construct a weight function such that . is a strongly positive eigen-

function to the corresponding weighted eigenvalue problem. To this end we will use
the following lemma:

Lemma 4.2.3 Suppose that Condition |A| is satisfied. Let u € C?*™7(Q) satisfy
Condition [B. Then we find that

(%)mu(:p) # 0 for all v € 0N).

Proof. If (£)" u(zo) = 0 for some z € €, then we find a contradiction: Since
we assume that (1.11)) holds, there is a constant C'gp > 0 such that

> (Cgp for all z € Q.

Let y, € 002 be such that d(z) = |z — y,|. Using the mean value theorem and the
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fact that u is m-times continuously differentiable, one obtains

u(z)l < sup |[D™u(&)]|d(x)™,

gze[xvyz]

where [z, y,] = {0z + (1 — 0)y,;0 € (0,1)}. Then one gets

0 < Csp < liminf lu(@)| <liminf sup [[D"™u(&)| =0,
a=z0 d(Z)™ T a5 gelny,]

a contradiction. ]

In addition, we will use the following auxiliary lemma concerning the Holder
continuity of some function in one dimension. It provides an idea why the subsequent
construction of the weight function yields a Hoélder continuous function.

Lemma 4.2.4 Let f € C™7([0,1]) with f(0) = 2 f(0) = --- = (Z)"" f(0) = 0.
Then g : [0,1] — R defined by

@)
s fort € (0,1],

is Holder continuous, i.e. g € C*([0,1]).

Proof. Using Taylor’s formula with Lagrange form of the remainder, one finds that
limy o % O = L fm(0), so g € C([0,1]). Hence, it remains to show that

l9(t) — g(s)|
= sup ———— < o00.
4, 0§t<£)§1 it — s

Let 0 <t < s < 1. Using Taylor’s formula again, we find

Sk k><>+<s—t>m
m!

f(m) (gt,s)

k=0

for some & 5 € (t,s). So we obtain

10 _ fls) g T (s ) (s — )
tm sm _ S — . S — (m)
|t _ S|7 |S _ tl,ysm ; m) f (gt,s) .
(4.9)
We may also rewrite f*)(¢) for k € {0,...,m — 1} using Taylor’s formula and get
with the assumption f(0) =--- = (%)m_l f(0) =0 that
) tm—k
FO) = ! ™ ) (4.10)
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for some & € (0,t). Then, (4.9) and (4.10)) imply

£ _ f(s)
g am
|t — s
m m— 1 m— m m
_ 1 S )§t0 Z Ftmh (1) (s—1) Fme)
|s —t[rsm r (m — k)!k! m! bl

Applying the binomial theorem, we find

(s—t)m  s™ ’”Zl (s — t)ktm*

= — — _— 4.11
m! m! (m — k)lk! (4.11)
k=0
Hence using the triangle inequality it follows
@) f(s)
tm s
|t — 8|7
s —tm (m)
[FO (o) = F™ ()] (4.12)

- m'|s — t[rsm

+mzl t)ktm k ’f(m)<ft k) — f(m)<§t s)| ) (4.13)
(m — k ! : ,

— VK s — t|rsm

Since s > [ p —&.s| forall k € {0,...,m—1}, s >t and s > |s — |, we obtain with

(1. (E13) and (11)
@ _ fls)

tm s

!t— 8\”

S | F(E0) — FO (Es)] 1 | F (Ek) — FM (&)
1;:; (m — k k! €0 — &t.sl” " Z (m — k)!k! e — &s

< 2;m [Fm] (4.14)

For 0 =t < s <1, we find a value & 4 € (0, s) such that

‘f(m)(o) O] ‘f“n)(o) AR (XY
ml sm m! m)!
|0 — s|”f B s7
< = A S g AC OIS 4.15
S m‘ é_os — m| [f ]'Y ( )

With (4.14) and (4.15), we obtain an upper bound for [g], and thus g is Hélder

continuous. ]
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Similar to [58, Proposition 9] we find a strictly positive weight function w. with
strongly positive eigenfunction. The following proof is similar to the one in [58],
however we consider the regularity of the weight function in more detail.

Proposition 4.2.5 Suppose that Condition [A| and[B are satisfied. Let fy, fo- and

up. be as defined in (1.14), (4.1) and (4.5). Then, there exists a value €y > 0 such
that for all € € (0,e0) it holds:
1. w. = L2 € ¢*(Q) and min{w.(z);z € O} > 0.

Uuo,e

2. ¢ 1= ug. 15 a strongly positive eigenfunction with eigenvalue X\ = 1 for the
weighted eigenvalue problem

{(—A)mgo = \w:p in €, (4.16)

@:%gp:...:(i)m*@:o on 0S).

Proof. For simplicity, we assume that mo = 0. Because of the arguments in Remark
4.2.2| we may follow the steps analogously for 0 < my < m. First, we show estimates
for ug ., then the existence of a positive lower bound for w,, and after that we prove
the Holder continuity of w. by using Taylor expansions.

e Let Q(e) be defined as in (4.4)). Then, we see that for all ¢ € [1, 00)

1 foe = folla) < |l follpee(oy|Q(e)[? — 0 for € L 0,

where |2(¢)] is the volume of (g). Using Agmon-Douglis-Nirenberg results,
see [21, Theorem 2.20], we also find for ¢ € (1, 00) a constant Capn,, > 0 such
that

|uo,e — uollwzm.ay < Capngllfoe — follLag) — 0 for € | 0.

By Sobolev imbeddings in (2.11]), one gets that W?2™¢(Q) imbeds in C™(Q)
for ¢ > . This implies

[to,e — to||cm @) — 0 for € ] 0.
Hence, using the mean value theorem, we obtain
uo(z) — g, () < [[uoe — uollom@d(x)™ for all z € Q.

Then we can use that ug is strongly positive, so there is a constant ¢; > 0 such
that ug(z) > e1d(z)™ for all z € Q. One finds

m

o (2) 2 o(2) — [Juo.e = tollemd(@)™ = (e1 = |l = wollema) ) (@)
So, there exists €9 > 0 and a constant ¢; > 0 such that for all £ € (0, ¢q)

up () > E1d(x)™ in .
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Ty 1) t 1

/\ /::_) (w1, m2) = (21,1 o

Figure 4.2: The coordinate transformation with v as in “flattens out” the bound-
ary: €2 is displayed in blue, and in green you can see Bs(0) C R? on the left and U on
the right. The boundary of €2 is shown in the left figure in dark blue. The “flattened”
boundary can be seen in the right figure.

Applying the mean value theorem, we find a constant ¢; > 0 such that
Gd(x)™ < wpe(z) < éd(x)™ in €. (4.17)

Hence g is a strongly positive eigenfunction to (4.16)) for € € (0, ).

e Using (4.17) and (4.6), we find an upper and lower bound for the weight
function w,. It holds that

Joe 2™ max{ fo(x); x € Q} “ o

min{fo(z);z €Q} _ for

¢ max{diam(Q),e}™ = g, - ¢rcmemem

0<

So, it remains to prove that w. € C%7(Q).

e Next, we show that w. € C(Q). Since for sufficiently small ¢ > 0 it holds

that ug., xe(d(-))™ € C?™7(Q), fo € C*(Q) and ug. > 0 in , we find that
% € C(Q). Let zg € 0. For simplicity, we may assume that zy = 0.
Né)w, we prove that w. is continuous in xy. Since 99 € C?™7 we find § > 0

and ¢ € C?™7(R"!) (after relabeling and reorientating the coordinate axes
if necessary) such that

QN Bs(0) ={z € Bs(0); 2, > (x1,...,T0-1)}

Then, we can “flatten out” the boundary near zy; = 0 and define the new
coordinates (z1,...,T,_1,t), where

t=x, —U(x1,...,Tp 1), (4.18)

see Figure [1.2] In the following we use the short notation z = (z1,...,x,) =
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(@', ) and (xq,...,2,-1,1) = (2/,1). We set

fo(@' 1) = fola' t + ¥ (")),
XE(CZ(.T/,t)) = Xs( (x f+¢( /)>>
Gpe(a',t) =g (', t +(z')).

Then

fo.e, Xe(d(-))™ € C*™ (U N ((R)*1 x R)) and fo € C%7(U N ((R)*1 x R+))

for some neighborhood U of 0 € R”, and we can extend the functions to neg-
ative values for ¢ by symmetric or antisymmetric extension:

(2t for t > 0,
aO,E(x/7t) = u07 (:U ~) ot
(—=D)™ug (2, —t) fort <0

and analogous we find x.(d(-))™ and fo. Then g, x-(d(-)) € C™(V) and
fo € C(V), where V C R” is some neighborhood of 0. We may assume that
V' is some small ball with center 0. Using Taylor’s theorem in (2/,0) € V' with
respect to t, we find

" d " 700 m
S () i)
=S(2,t)

for some &, 4y € (0,1) and a similar formula for @y, and some 14 € (0,1).
Then, we obtain that

L fole) L ol e o)

=0 U () (,)—(0,0) Uo (2!, 1)
ol 1) ()" xelda’ o))
= lim RN —(alt)
(27.8)=(0,0) ((%) u078(x/’8))|s=n(zlz)t
fo0,0) ()" xeld(0.))")

()" 0.(0,5)) .

and the right-hand side exists because fo, ()" x-(d(-))™, (Z)" uo- # 0 on
062, see Lemma m So, w. € C(Q). We could also have used Taylor’s
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formula with integral form of the remainder to find

~

xe(d(a ) fot = o) e (d( )mds
G (2, t) fot(t — )" 1240 (2, 5)ds .

This expression also implies the continuity of the weight function.

e To show the Holder continuity of w. one notices that w. € C%7(K) for all
compact K C 2. So, it remains to examine the behavior of w. near the
boundary 9. Therefore, one can proceed similar to the proof of w. € C(Q)
and again use a transformation to “flatten out” the boundary. Then one may
use Holder continuity of ug ., x<(d(:))™ and fy to show Holder continuity of the
weight function. The main idea of the proof leads back to the one-dimensional

result in Lemma [4.2.4]

Remark 4.2.6 One may suspect that generically all eigenvalues are simple for € €
(0,e0), see for example some similar investigations in [3]. We do not want a generic
result and we only need the simplicity of the eigenvalue A = 1. To this end, we may
fire = %50 and proceed by an appropriate perturbation of fo. for this fized €. This
is done in Section [{.4] and yields a simple eigenvalue A = 1.

4.3 Unique continuation

We will construct an appropriate weight function to find a weighted polyharmonic
eigenvalue problem with strongly positive eigenfunction and corresponding simple
eigenvalue. To prove simplicity of the eigenvalue with corresponding positive eigen-
function, we need the unique continuation principle. There are many results of this
kind, see for example [511, 48] [65] and references therin. We recall some result proven
by Protter in 1960:

Lemma 4.3.1 (Protter [51, p. 90]) Let o € Q C R® and u € C*™(Q) satisfy
the inequality

|A™u| < g(x,u, Du, ..., D*u) in Q, (4.19)
where k = [377”] and (x,u,p1,...,px) — g(T,u,p1,...,pr) i Lipschitzian in
(U, p1s.. . pp) ER* X R x R" x R™ x -+ x R™,

1.e. there is a constant L > 0 such that

|g('rﬂu7p17"'apk) _9<w71’7€71a~--»q1<:)| S L|(U,p1,...,pk) - (v7q17"'7q/€)|
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orallz € Q) and (u,py...,pL), (v, q, ... kERXR”XR”ZX--~XR”k. Suppose
f (w,p1 -5 Pr)s (VG155 Gr) pp
that

e2e=wol ™y (2) = 0 as ¥ — g (4.20)

for every positive 5. Then, u vanishes identically in 2.

A weaker formulation of this principle and a special case is the following result:

Corollary 4.3.2 Let u and g be as defined in Lemma such that u satisfies
(4.19). Suppose that there exists an open subset U C ), such that u vanishes iden-
tically in U. Then u vanishes identically in €.

Proof. Choose some zy € U. Then (4.20) is fulfilled and we can apply Lemma
431 u

To show the simplicity of a weighted eigenvalue in the next section, we will use
the unique continuation principle as well as the following lemma:

Lemma 4.3.3 Suppose that f,g € C(Q2) satisfy
f(z)g(z) =0 for all x € Q.
Moreover, let
{z € Q; f(x) £ 0} N Bs(xg) # 0 for all z9 € 2,6 > 0. (4.21)

Then, it holds that g vanishes identically in €.

Proof. This follows directly from the continuity of f and g. Assume that g(x;) # 0
for some z; € (). Because ¢ is continuous, there exists a value 9; > 0 such that
g(x) # 0 for all x € Bs, (x1)NE2. Since f(z)g(z) = 0 for x € Q, we find that f(z) =0
for all x € By, (x1) N Q. This is a contradiction to (4.21). ]

4.4 Simplicity of the weighted eigenvalue

We can prove the simplicity of the eigenvalue A = 1 of analogously to the case
m =2 in [58]. The only difference is that in [58] we used the unique continuation
theorem of Shirota [65]. Since this is a result only for fourth order equations, we
cannot apply it in the following investigation. If we use Corollary and Lemma
instead, we find the result in [58] for higher order problems (m > 2) with
a similar proof. We recall the following definition of a small perturbation of the
weight function w. and some results and properties for the perturbated eigenvalues
and eigenfunctions, see [58] Section 4]:

Definition 4.4.1 Let fy. and ug. be as in Proposition[{.2.5 for a sufficiently small
and fized e > 0. For g € C°(2) and t € R with |t| small set

/
g = — S0 T (4.22)

Upe + tGm01(q)’
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where G4 is the solution operator for (1.6) with w = 1 and X = 0, and define

A(tq) - W2(Q) n W (Q) — L2(Q) by
Altg) = (—A)"™ — wig,e. (4.23)

Remark 4.4.2 For small t the weight function wy,. can be expressed using the
following series:

= Gmoaq)" ™" 1
wtq,s = wO,z—: + Z tk(_1>k < ol U (wo,sgm,o,lq - Q) )

k=1 Up,e 0,e

where wy . = w, = —£3 .
JE

Remark 4.4.3 Generic simplicity of the spectrum for the biharmonic eigenvalue
problem was proven in [{0, [{7, [49]. The difference to our method is that the au-
thors used perturbations of the underlying domain instead of perturbations of the
differential operator.

In the following we investigate the eigenvalue problem

Ap in €2,

- 4.24
@Z%(p:...:(ﬁ)m_lgpzo on 0f). ( )

If one compares with , one notices that the multiplicity of A = 1 in
problem (4.16|) coincides with the multiplicity of A = 0 in problem . So, since
we consider the changed eigenvalue problem, we have to reduce the multiplicity of
the eigenvalue A = 0.

The following description can be found in [58, Section 4] for m = 2. Assuming
that A = 0 is an eigenvalue of multiplicity M > 2 for (4.24) with ¢ = 0, one finds by
Kato [39, Theorem 3.9, Chapter 7] or Rellich [55, pp. 76-100] the existence of an
interval (—to,to) C R and M real analytic functions

tios (Xi,t,q, @,t,q> (—to,to) — R x G Y(Q) N C2™ (@) fori € {1,..., M},
with:
L. (Xim, @Lt,q) are eigenvalue and eigenfunction for A (tq) for alli € {1,..., M };

2. {@z‘,t,q}?; is an orthogonal system in L?(£2) and so {¢i,t7q}iﬂi1 is independent
for |¢| small;

3. hipg=0forallie{1,...,M};

4. For every open interval (a,b) C R such that 0 € (a,b) is the only eigenvalue
of A(0) in [a, b], there exist exactly M eigenvalues Aj g, ..., Ameq Of A(tg) in
(a,b), assuming |¢| is small enough.
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Remark 4.4.4 We use the notation with an additionl tilde in S\i,mq and Pirq to
make a distinction between the eigenvalues and eigenfunctions of (1.10)) and to avoid
more indices.

Remark 4.4.5 One calls a function t — S\im real analytic in t = 0, if there are
S\Z(Jq) € R for j € N such that

5\i,t,q = Z t! S‘E,jq)
=0

converges for t in a neighborhood of 0. And analogously t — ¢; 4 is real analytic in
U) e L2(Q) such that

t =0, if there are ¢;;
fua =3t )
=0

(4)
i,q €

converges in L*(Q). Since ¢; 4, are eigenfunctions to (4.24), we find that @; 4 4, ¢
C?m(Q) N CP—(Q) for every j € N.

The following explanation of the idea of the proof can be found in [58 p. 12]:
We may set
Prtg = Uoe + tGm0,1(q) (4.25)

for the first eigenfunction to problem (4.24]). This function is analytic in ¢ and the
other M — 1 eigenfunctions can be chosen orthogonally to this function in L*()-

sense. Then, we find .
Atg =0 for all t € (—to, o) .

We will prove the existence of a smooth function ¢; such that

- o -
kO (a)\kml) |t=0 #0

for at least one k € {2,..., M }. If this holds true, one finds a small interval (0,t*) C
(0,00), such that for t; € (0,t*) we obtain A, # 0 and hence that 0 is an
eigenvalue of multiplicity at most M — 1 for A (t1q1). If the multiplicity of the
eigenvalue 0 for A (t1q1) is 1, we have found a suitable weight function, a simple
eigenvalue and a strongly positive eigenfunction. Otherwise we repeat our arguments
for A(tiq1 +tq). After k < M — 1 steps we have found an eigenvalue problem
A (tiqp + -+ - + trqr) having 0 as a simple eigenvalue. The idea of the proof was
inspired by Albert [3] and Teytel [72] and the following lemma can be found in [58]
Lemma 19] for m = 2.

Lemma 4.4.6 Suppose that 0 is an eigenvalue of multiplicity M > 2 for problem
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(4.24) with t = 0. Then there exist k € {2,..., M} and ¢ € C(Q) such that
0 ~
9 e ) 40
<8t ") =0

Proof. For the first step, we can proceed as in the case m = 2 and therefore repeat

the first part of the proof in [58, Lemma 19]. We assume that <%5\k7t,q>| =0
=0

for all k € {1,...,M} and ¢ € C°(Q) and show in two steps that this leads to a
contradiction.

1. Differentiation with respect to t of
A(tq)@ki,q = :\k,t,q @k7t7q for all k& € {1, e M}

yields
A(tq) — N 9 Grta = | Lwig. + 2 Dke.t.q-
q kta ) 5:Pkta ot Wtge T 95 \kit,q | Phita

Setting ¢ = 0 and using (4.22)), (4.23)) and (gi"*@

=0, we find
0

1=

1

A(O) (%@k,t,q)‘tzo = E (q - wO,an,O,l(Q)) Pk,0,q-

Hence, we obtain that t (¢ — w0 :Gm01(q)) Pro,q is in the range of A(0) for
all ¢ € C°(€2). Since every eigenfunction in ker(A(0)) can be written in the
form > 7" | ¢k @ro,4 With ¢ € R and A(0) is self-adjoint, it follows that

1

Uo,e

(g — w0.Gm01(q)) $1 L ker(A(0)) for all ¢; € ker(A(0)),

or in other words

[ 0 0. Gna (@) 61 62 e =0 for all 6,61 € ker(A(0).
Q

uO,E

Using the symmetry of the Green function G, 01(z,y) = Gmoa1(y, x), we ob-
tain

0= / L (¢ — w0,eGm01(q)) 1 P2 dx
Q

-/ (q<x>wo,EZ); [ Gunstena an) 0D gy
= /Q q(x) (% — Gmo1 (’wo%) (x)> dax

and we can apply the fundamental lemma of calculus of variation to find for
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all ¢1, ¢ € ker(A(0)) that
¢1(x) Pa(7)

Up ()

$1 ¢2

uO,z—:

— Gm,01 <w0,s ) (x) =0 forall z € Q.

So if ¢; and ¢ are eigenfunctions of A (0) with A = 0 in (4.24)), then also

51,2 = 91 92 (4.26)

Uo,e

is an eigenfunction for A (0) with A = 0. If we set ¢; = ug., then (5172 =
¢2, so in this case it is obvious that ¢, is an eigenfunction. For arbitrary

¢1, 2 € ker(A(0)) this is not to be expected. Let 1 € C?™(Q) N C*~1(Q) be
an eigenfunction for A(0) and orthogonal to ug. in L*(Q)-sense. If we now set

¢1 and ¢, equal to v, we find that % is an eigenfunction to the eigenvalue

A = 0. After setting ¢; = ’/’26 and ¢ = ¥ and repeating this step, we find the

U
eigenfunctions

p(x) == ( Y(z) )nw(x) for all n € N. (4.27)

up ()

2. Using unique continuation, we show that this cannot be true. So, we find the
same result as in [58, Lemma 19] for the polyharmonic eigenvalue problem.
The only difference is that we apply the results in Section [4.3| instead of the
unique continuation result proven by Shirota. Hence, the second part of the
proof deviates from the proof in [5§].

By induction we find infinite multiplicity of the eigenvalue A = 0 for A(0):
Let v, be defined as in (4.27). It holds true that vy and ; are linearly
independent eigenfunctions. Indeed, using (4.27)), we obtain that if

Y (x)’®

for all z €
Up ()

W(x) =o(z) = chr(z) = ¢

and some ¢ € R, then ¢(x)(uo(x) — cp(z)) = 0 for all x € Q. If ¢(x) =0 for
x in some ball Bs(xg) C Q with § > 0, then 1) = 0 by unique continuation, see
Corollary Since the function 1 is a nontrivial eigenfunction, this cannot
be true. If there exists no open set where ¢ vanishes, then it follows from
Lemma that up. — cp = 0. Since 9 has a nodal line and ug. > 0 this
cannot be true for any ¢ € R. Therefore, 1)y and 1/, are linearly independent.
By induction, we find that {t,}_, is a set of linearly independent eigenfunc-
tions with corresponding eigenvalue A = 0 for every N € N*. Indeed, when
rewriting

coto(z) + 11 (x) + -+ en-1hn-1(z) = Yy (z) for all z € €,
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(couoe(w) +ervbo(x) + -+ + enahy—2(x) — n_1(x)) =0

for all x € €). Again, either ¢» =0, or
Couo’s(l') -+ Cﬂﬂo(l’) 4+ -+ CN,le,Q(:r;) — iﬂN,l(l') =0 fOI‘ all z € Q.

Since ¢19 + - -+ + cy—1¥n—2 — Yn_1 has a nodal line and wy,. > 0, one finds
co =0, so

cbo(z) + -+ en_1¥n_o(x) = Yn_1(z) for all x € Q.

Using the induction hypothesis, we obtain the result. Hence A = 0 has infinite
multiplicity, a contradiction.

As mentioned above, using Lemmal4.4.6, we can find a perturbation of the weight
function w, such that the eigenvalue A = 0 becomes simple. The next corollary can
be stated and proven analogously to the case m = 2 and can be found in [58|
Corollary 20].

Corollary 4.4.7 Suppose that Condition [4] and [B are satisfied. Let ¢ be fived as

described in Remark and fo.,uo. be defined as in Proposition [{.2.5 Then
there is ¢* € C°(QY) such that

1. w* = foe+4 € 0%(Q) is strictly positive on Q, and

Up,e + gm,O,l ((]*)

2. ¢ =uUpe+ Gmo1(q") is a strongly positive eigenfunction in the sense of
for

(mA)™ —w*)p = Ap in €,
{ ) o \m—1 (428)
802530:.'.:(5 QOIO OHaQ,

with simple eigenvalue A = 0.

Proof. If the multiplicity of the eigenfunction ¢ = wug. for the weight function
w = foe/uoe is M > 2, we may proceed as in Lemma and find ¢; such that
for t; > 0 but small enough, problem A (t1¢;) contains a positive weight function
and has a positive eigenfunction ¢4, , with eigenvalue 0 of multiplicity at most
M — 1. Then, repeating the argument now starting with A (¢1¢;) as in and
considering A, (tq) = A (t1q1 + tq) we may again reduce the multiplicity. After at
most K < M — 1 steps the multiplicity for A4 (¢*) with

¢ =tiq1 +togo + - +trqx

and t; > te > -+ - > tx > 0 has reduced to 1. ]
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If we transfer the result to our original eigenvalue problem, we have found that

{(—A)m © = dwp in €,

m—1 (429)

is an eigenvalue problem with simple eigenvalue A ,,, ,» = 1 and corresponding pos-
itive eigenfunction ¢y ;mw+ = Uoe + Gmo0.1(q*). This completes the proof of Theorem
238

Using Lemma [3.1.7], Theorem [3.1.3] and Theorem |3.6.2, we also find the positiv-
ity preserving property and an anti-maximum principle for the weighted Dirichlet
problem with weight function w* and therefore the results in Theorem [1.2.10| and

Theorem [1.2.12}

Corollary 4.4.8 Let Q, w* and A, = 1 be as in Corollary[{.4.7]. Then there is
Ae < Apma~ such that for 0 < f € L? (Q) with f nontrivial and u the weak solution
to

{ —A)"u = wru=f in Q, (4.30)

u=2Zu=--= (%)m_lu:O on 05,
a Hopf type result holds if X € (A, Apmw+): There exists cypn > 0 such that
u(z) > cpx d(x)™ for almost every x € SQ.

Moreover, if Ay = 1s not the first eigenvalue of (4.29), then it holds

)\p’m’w* B )\pilﬂn»u}*

)\c Z /\p—l,m,w* + 2

Corollary 4.4.9 Let Q, w* and A, o+ = 1 be as in Corollary[{.4.7. Let 0 < f €
L) with f nontrivial and q > max{1l, >}. Then, there exists 0y > 0, such that
for all X € (Apmw, Apmaw= + 95) the following holds: There is a constant ¢py > 0
such that the weak solution u of satisfies

u(z) < —=¢pp d(x)™ for every x € Q.
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Chapter 5

Some special cases and examples

In this chapter, we consider some examples and special cases and apply Theorem
1.2.10] For some domains one can calculate explicit functions that fulfill Condition
[B], see Example [5.0.1], and therefore one obtains a positivity preserving property for
a weighted problem.

Example 5.0.1 Let Q. be defined as follows:
Qe = {(71,72) € R%; 2% + ca < 1} with ¢ > 12 (5.1)
and let vy : Q. — R be vo(wy,22) = 1 — 2§ — ca3d. Then, vy solves

{—Avo = 2c+5628 > 24  in Q.

vo(z1,22) =0 on 0S..

Using Hopf’s boundary point lemma, we find vo(z1,22) > cad(x1,72) for some con-
stant cq > 0 and all (x1,x5) € Q.. So, the function

uop (1, x2) = vo(x1, I2>2 =(1- a:? — cx§)2 (5.2)

satisfies uo(x1, 1) > c2d(xy, 12)? for all (v1,75) € Q,, see Figure . Moreover, we
calculate

(—A)?ug(z1, 72) = 8 (3c* — 42021 + 5460x1” + 56¢25 + 420cx|z3)
> 24(c* — 140),

and this expression is greater than zero for ¢ > 12. Therefore, we have found a
function that satisfies Condition [B in the biharmonic case.

Analogously, we find that for ¢ > 30 the function Gy = v fulfills Condz’tion@far
m =3 in ..

For general domains it is rather difficult to construct an explicit function ug
that is a strongly positive m-polyharmonic Dirichlet supersolution in the sense of

Condition B} In the following sections we will show the validity of the condition
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Figure 5.1: top: €2 as defined in (5.1)) with ¢ = 15; bottom: ug as defined in (5.2]) with
c=15.

described in Remark for some smooth domains and some values for m € NT.
First, we consider the case of the weighted biharmonic Dirichlet problem.

5.1 Biharmonic Dirichlet problem on smooth do-
mains

Using Theorem [1.2.10, we can prove the validity of the positivity preserving property
of a weighted fourth order problem. With additional assumptions, we can also show
properties of A. in Theorem [1.2.10]

5.1.1 Positivity preserving property

In joint work with Guido Sweers, I have recently proven that in every smooth do-
main the positivity preserving property is valid for a weighted fourth order Dirichlet
problem. In this subsection we present the content of [58], published in Pure and
Applied Analysis by Mathematical Sciences Publishers.

We assume that Condition [A]is fulfilled. Then we may prove that for m = 2 one
can find a function uy € C*7(Q2) which satisfies Condition [Bf using the solution e to
the Dirichlet problem as described in Remark

(5.3)

—Ae=1 in €,
e=0 ondN.

Using the maximum principle, we find that e is positive and we obtain
e € C*(Q)NCy(Q), see [22, Theorem 6.19]. When applying the bilaplace operator
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to e2, we get

A% = 2(-A) ((—Ae>e - : (§§)> —2A) (e ) Z (3‘:))

de e "L/ D% - 2
=2+ 42 (81’2 Ox; ) 4@,;1 (8:649@-) =2+ Z (8@81’]) ' (5.4)

So, (~A)*e? > 0 and (—A)*e?* € C>7(Q). Using Theorem [1.2.8] we obtain
for every smooth domain a weighted biharmonic problem, such that the positivity
preserving property holds.

Remark 5.1.1 In general, for m > 2 one cannot choose uy = €™ with e as in
(5.3). For example one finds for the annulus 2 = B1(0)\Bs(0) C R™ with n > 2 and
d € (0,1) the radial symmetric solution é(r) := &(|x|) = e(x) as follows:

7,2(_571 + 52) + <5n+2 _ 52) + 7,2—71(_571-1—2 + (5n)

é(r) = 20 07— 5% forre (5,1). (5.5)
Forn =2 one finds
é(r) = i — TZ — (1 ;foé(lgsg(r) forr e (4,1). (5.6)

Since the maximum principle holds, the functions are positive in ), but in general
(—A)3e(x)? is not positive for all x € Q. Indeed, applying the trilaplacian to (5.6)),
we obtain

-8 = (<1 g ) &0
6(—1+46%)% —4(—1+ 62> log(r) + (=4 + r?)(—1 + §2)*log(d) + 24r%log(d)?

=9 2r61og(9)3

and this is not strictly positive for small 9, see Fig. for o = %
So the construction in [58] is not necessarily possible for m > 2. Even if the
approach ug = €™ cannot be used for all higher order problems and every domain,

one can find exceptions as in Example[5.1.9

Example 5.1.2 We have seen that the solution e to does not  fulfill
(—A)3*e > 0 for all annuli. Let Q = B1(0)\Bs(0) C R? be the annulus with inner ra-
dius 0 € (0,1) as in Remark and e be the radial symmetric solution to problem
with &(r) := é(|z|) = e(x) and & : (5,1) — R. We define gs(r) := (=A)3e3(r)
and find forr € (0,1)

9s(r) =
6(—1+06%)3 —4(—=1+6%)3log(r) + (—4 4+ r*)(—1 + 6*)?log () + 24r° 10g(5)3.

k 2r61og()3
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Figure 5.2: Left: € as defined in (5.6) with § = %; right: (—A)3&3.

Then
95(r) =
6(—1+6%)*(=10(=1+¢ )+r§§;g1<6-;35 ) log(r) — (=6 +r?)log(9)) forr € (5.1)

is negative for sufficiently large § < 1. So we find a value §; € (0,1) such that for
de (6,1)

o) got) = HELEEL = CLt B onlO) SO0V o e 5.1y

lgrllg(;(l) = 90.
Since gs(1) is continuous in § € (d1,1), there is a value 9y € (61,1) such that
gs(r) > g5(1) > 0 for § € (02,1) and all r € (5,1), so (—A)3e* > 0 on B1(0)\Bs(0)
for 6 € (02,1).

5.1.2 Anti-eigenvalue problem

As mentioned in Remark [1.2.11] it is known that the one-dimensional fourth order
problem

u" —du=f in (0,1),
u(0) = u/(0) =0, (5.7)
u(l) =u'(1) =0

is positivity preserving iff A € [A;, A\121), where A\; 2, is the principle eigenvalue to

the biharmonic Dirichlet problem in = (0,1) and A\. = —4u? with g, the first
positive solution of tan(u) = tanh(u).

76



5.1. BIHARMONIC DIRICHLET PROBLEM ON SMOOTH DOMAINS

For A\ = 0, problem is positivity preserving. Using methods proven by
Schroder in [61) [62) 63] for the clamped bar, one finds that by decreasing A one
reaches a value A\, < 0 such that the Green function is sign-changing for A < A,
and that the negative part comes in through the boundary. Then, one obtains that
Ac is the first negative eigenvalue for the ‘switched’ eigenvalue problem, see also [68],
Lemma 2.3]

¢ =Xp in (0,1),
¢ (0) =0, (5.8)
p(1)=¢ (1) =¢"(1)=0.

One calls this problem a ‘switched’ eigenvalue problem, since the highest order
boundary condition on one side is replaced by the next available lowest order bound-
ary condition on the other side. The number A. is also called an ‘anti’-eigenvalue
for (5.7), see for example [40, p. 1025].

Remark 5.1.3 One notices, that an eigenfunction to (5.8|) with corresponding eigen-
value A, is

- Gop1(T,y) 1 (02
p(x) = Bﬂ)lT =3 (@) Ga1(z,0), (5.9)

where Gz, 1 is the Green function for (5.7) with A = A..

In higher dimensions and higher order problems no such result is known, but if we
assume that for decreasing A\ the sign-change of the Green function for comes
in through the boundary, we expect a similar result.

So, in this subsection, we suppose that Condition [A]is satisfied and the Green
function G 5, for (1.6) with m = 2 is nonnegative iff A € [A;, A\p2.4). Moreover,
we suppose that the sign-change of the Green function Gy, comes in through the
boundary for decreasing A. Let (zg,y0) € 0Q x OQ\{(z,z);2z € 00} be such that
an additional zero for the Green function G ., with A | A. occurs in (xg, yo). More
precisely, analogous to the description in [25] this means that for some sequence
{Metkent € (Apo12wsAe) I p > 1 or {Aghren+ C (—00,A.) if p = 1 such that
Ak T Ae, there exists a sequence { (g, Yx) bren+ C 2 X Q with

G27,\k,w($k, yk) =0 for all £ € N+,

and xp — xg € 0, yp — Yo € OL2.

Similar to (5.9)), we consider the function gy : Q — R for A € [\, A\, 2.,) defined
by

(5.10)
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Using Taylor’s formula, we find that for z € Q\{yo}

1 o \?
g,\(x) =3 (a—,,y) Gz,,\,w(%yo)

and gx(z) > 0 for all x € Q, since Ga (2, y),d(y) > 0 for all z,y € Q with x # y.
Moreover, with G (z, yo) = %GQ,A7w(x,y0) =0 for all x € Q, we get

9,\(1’) = % (%) GzAw(fl? yo) A szw(fﬁ yo)
Using [25, Proposition 3], one finds g € C*(Q\{yo}) and g satisfies

A%gy —dwgy =0 in Q,
g =70 on 09,
%g,\ =0 on 0\ {yo}.

Using [25, Theorem 3], we also find

(5)" 9r.(20) = Auga (o) = 384, G, (0, 30) = 0.
Therefore, g, € C*(Q\{yo}) is nonzero and fulfills

A%y, = Adawgy, =0 in Q,

g, =0 on 02,
8%g>\c =0 on 0N\ {yo},
(2)” gr(20) = 0.

(5.11)

One should notice that this is not an obviously well-defined eigenvalue problem,
i.e. it is not clear in which space one should search for pairs of solutions (A, ¢).

Example 5.1.4 Let Q = B1(0) C R™. Then, we may derive informations about the
reqularity of the function g, since we know an explicit formula for the polyharmonic
Green function. We obtain with w = 1 that the Green function Gz, 1 can be written
using the biharmonic Green function Gap 1, see [25, Proof of Proposition 2/:

¢
Gopo (2, y) = Gooa(z,y) + Z Dai(y) +oae (), (5.12)

j=1

where we choose £ > 1+ % and T'y_; can be defined inductively

F,\lxy )\c/ G201$2G201(2 y)d
B1(0)

Ui j+1(z,y) —Ac/ D@, 2)Gaoa(z,y)dz.

B1(0)
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We find
ISWIR\YPWILNE) (5.13)

for some C' > 0, dependent on \. and n see [25, Equation (31)]. Furthermore,
Ur,.x € CY7(B(0)) is the solution to

{AZUACJ(:U) - /\cUAc,x(y_) = /\Crkc,f(xv y) in By (0)’ (514)

Urea(¥) = 250r02(y) =0 on 0B1(0).

Using (5.13)), differentiating (5.14) with respect to x, applying regularity theory and
Sobolev imbeddings, one finds two constants Cy,Cy > 0, independent of x, such that

|Ayur.e(v0)] < C1, [Vl o(v0)| < Co.

With (5.12)), we obtain for x € Q

¢
() = $8,Gapa(x, 90) + 5 Z AT (@, 90) + 3Ay0x.0(10),

j=1
where AyGag1(x,y) is the Poisson kernel for the biharmonic problem and using

Remark|[2.2.3, one may calculate

1 (1— |2]?)?
LA G =
58y G20,1(7, o) nbpd |z — yo|

with by, as in (2.2)). It follows that g\, € L>(B1(0)) if n =2 and g, € L*(Q) for
all g1 € [1, %) if n > 3. Moreover, we find gy, € WH%(By(0)) for all ¢ € [ ,—)
and n > 2, but g, € W>B(B(0)) and gy, € W?B(K) for all g3 € [1,00) a
compact subsets K C B1(0).

Remark 5.1.5 Let Condition [4] be satisfied. By Green function estimates of
Krasovskii or Pulst, see [{1], [53, Theorem 2.4/, one finds for a € N™ with
0<|a] <2

|D(;AyG2,)\c,w(xa y0)| < Coc,)\c,w|x - ?Jo|2_n_|a‘
if 2 —n < |a| and using [21, Theorem 4.29] one obtains

|AyG2,>\c,w(xa y0)| S Cale,w

if n = 2. So, we find similar reqularity results as in Erample for arbitrary
bounded domains Q C R™ with 9Q € C*7:

e g\ € L™(Q) ifn=2 and g\, € L(Q) for all ¢ € [1,-25) if n >3,
e g € WH2(Q) for all g € [1,-25) and n > 2,
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o gy, € W2B(K) for all compact subsets K C Q, q3 € [1,00) and n > 2.

Moreover, we may prove that A = A. is the largest value smaller than Ap 2.,
such that gy € C*(Q\{yo}) fulfills (5.11)). Indeed, we find for u € (A., A\p2.) that
(%)2(%)2632,“@(96,?/) = A A Goyw(,y) # 0 for all z,y € 9Q with @ # y. The

following proof is inspired by [32, Lemma 2].

Lemma 5.1.6 Suppose that Go, w(x,y) > 0 for all x,y € Q with x # y. Then, for
all p € R with Ao < pt < Ap 2, one finds

2 2
<%) (%) Gapw(,y) >0 for all x,y € 0Q with x # y. (5.15)
Proof. We fix some y* € 09Q. Using [32, Lemma 2] one finds

2
<i> Gapw(,y™) > 0 for all z € Q (5.16)

Ovy

2 2
Since (%) Gopw(z,y*) = 8?/90 (%) Gopw(z,y*) =0 for x € 0Q\{y*}, one gets

() ()] Gonulry) > 0 for all « € 90\ (y'}

Analogously, one obtains
el 2 o) 2 * *
(5%) (%) Gonewl@,y’) 2 0 for all w € 90\ {y'}. (5.17)
With the resolvent formula Gs . = Gox, w(Z + (it — Ac)G2,0) ONE gets
Gasnle:) = G ) + (1= 0) [ Gann(:9) G2 9)02)
Q

Then, we find for arbitrary x* € 002 with z* # y*

=) /Q () Connle®2) () Gz y () (5.18)

2
Using (5.18)), (5.16)), (5.17) and (%) Gaaow(x*,2) > 0 for all z € Q, we obtain
the result in (5.15)) if we prove that

2
(%) Gaaow(x™, 2) > 0 for some z € €.

2
Suppose that <%) Gaop.w(x*, z) = 0 for all z € Q. Then, it holds for every
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f € C(Q) that the solution uy of

{Azuf —dwur = f in (5.19)

ufzaa—yuf:() on )

fulfills (%)QU]@(JZ*) = 0, see also [32], Equation (10)]. Using the arguments of the
proof in [32] Lemma 2], one finds that this leads to a contradiction. Indeed, since
0Q € C*7 we obtain that there exists some & > 0 such that d(-) € C*7(Q(¢)), see
[22, Lemma 14.16], where Q(e) is defined as in (£.4). Let h € C*°(Q) be such that
h=11in Q(3¢) and h = 0 in Q\Q(e). Moreover, let

Then u* solves ([5.19)) with right-hand side f* and using Remark we find
2 * * * 2
(5%) u*(z*) =2 (%d(m )" #0,

a contradiction. ]

Corollary 5.1.7 Suppose that Condition@ is satisfied. Let w, Ao and Ap 2, be as
in Theorem such that Gaxw > 0 iff X € [Ae, Apow). Assume that the sign-
change of the Green function for decreasing A comes in through (xo,yo) € 0 X
ON{(z,z); 2 € 0N}, Then A = . is the largest real value with A < A\, 2., such that

gr € CH\{wo}) in (5.10) is a nontrivial solution of

A?p=X\wp in §2,

p=20 on OS2,

5P =0 on 0\ {yo},
(&) ¢lwo) = 0.

(5.20)

Remark 5.1.8 Analogous to the one-dimensional case, can be understood as
a ‘switched’ eigenvalue problem, since %gp(yo) = 0 is replaced by (%)2 o(zg) = 0.

Remark 5.1.9 There are still some unanswered questions about the ‘anti’-
etgenvalue problem for dimensions n > 2. It is not known whether the additional
zero of the Green function, respectively the sign-change, comes through the bound-
ary of the domain. Grunau and Robert proved in [25] that if the transition from
positivity to sign-change occurs for (xo,yo) € 02 X 02 and A\paw = A2, then it
holds xg # yo for n > 3. In addition, since the eigenfunction g, is not necessarily
an element of W22(Q), one cannot use the theory of weak solutions. So, it is not
obvious in which function space the eigenfunctions of problem ([5.20) would be well

defined.
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5.2 Positivity preserving on an ellipsoid

In two dimensions it is known that the polyharmonic problem in with A =0
is not positivity preserving on some eccentric ellipses, see [69] [70] for m = 2,3, 4.
Since there is no positive eigenfunction for problem with m = 2 on domains
with corners, see for example [I3], it is possible that ellipses with a large ratio
do not have a positive eigenfunction either. This is an open problem. But even
if it is true and we cannot apply Theorem directly, we find positivity for a
weighted bilaplace Dirichlet problem. This result is a special case of the result in
Section|5.1} Moreover, we can show a positivity preserving property for the weighted
polyharmonic problem on an ellipsoid in every dimension since there is a function

ug € C?™7(Q) that satisfies Condition .
Definition 5.2.1 Let a € (0,00)". An ellipsoid E, C R™ is defined as

n 2
Ea:{xe]R"; Z%<1} (5.21)
i=1 ¢

(2

To find a positivity preserving property for a weighted polyharmonic problem on
E,, we have to show that Condition [B|is fulfilled. Therefore, fix a € (0,00)" and
consider the function

e(z) = (1 -y z—z> (Z %) : (5.22)

=1

=1

We find that ug := €™ satisfies Condition

05F

0.0

0.10
-05 0.05
10 05 00 05 10 0'00;1_0 05 0.0 05 1.0
Figure 5.3: An ellipse with a; = 1 and ay = @ and the corresponding function e as
defined in (j5.22)).

Lemma 5.2.2 Let e be defined as in (5.22)). Then, e is the strongly positive solution
to

—Ae=1 inkE,,
{ (5.23)

e=0 ondE,,
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so there exists a constant ¢, > 0 such that e(x) > ¢, d(z) for all x € E,. Moreover,
there is a constant Cy, > 0 such that (—A)" e™ = C, in E,.

Proof. A direct computation shows that e satisfies problem ([5.23). Furthermore,
we find that €™ is a polynomial of order 2m. So, there exists a constant C, € R
such that (—A)"e™ = C,. If C, = 0, then e™ satisfies

(—A)"e™ =0 in E,,
em:%em:...:(%)m_lemzo onﬁEa.

Since the problem has a unique solution, it holds that €™ = 0, which is a contra-
diction. Hence C, € R\{0}. Since a — C, : (0,00)" — R is a continuous function,
we find that either C;, > 0 for all a € (0,00)" or C, < 0 for all a € (0,00)". For
arbitrary a; € (0, 00) we obtain

im  Co=  lim (—A)"em(0)) = T ( 2 >_m _@mt

ag,..., ap—>00 ag,...,ap—>00 a%m CL% 2m

So C, > 0 for all a € (0,00)". u

We proved that Condition Bl is fulfilled, so we find a strictly positive weight
function w € C%(F,) and an interval I C R for A such that problem ([1.6) is
positivity preserving for all A € I on 2 = F,.

Example 5.2.3 For an ellipse E, C R? with a € (0,00)? we find

-2
cape e (3ey) " (+4) -2

a. CLl
-2
(-AYe’ =90- 3% (L+3)  =90- U o> 18

(e

5.3 Small perturbations of ellipses in two dimen-
sions

Let e be the solution to . For the polylaplacian, we cannot use the function
up = €™ in Condition [B] for all domains as we mentioned in Remark [5.1.1 But
for some domains in two dimensions this approach works. We cannot compute e
for a general domain €2, so it is difficult to predicate informations about the sign of
(—A)™e™. However, we can use the results from the previous section and consider
small perturbations of ellipses £, C R?, where E, for a € (0,00)? is defined as in
(5.21). Indeed, using the positivity of e on E, and biholomorphic mappings, we
obtain positivity results for sufficiently small perturbations of these ellipses. The
following result and proof is inspired by [28].

Lemma 5.3.1 Let E, C R? be defined as in (5.21)). Then there exists ey > 0 such
that the following result holds for all € € (0,g0): Let Q C R? be a simply connected,
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bounded domain that satisfies Condition [Al Let h : Q@ — E, be a biholomorphic
mapping such that h € C*™7(Q;R?) and h=' € C*™(E,;R?). Let e be the solution
to (5.3) on E, and Id : Q — Q the identical map. If

|h —1d ||Cm(§;R2) <,
then €™ o h € C?™7(Q) fulfills the following properties:
1. It holds that (—A)™(e™ o h)(x) > 0 for all z € Q.

2. There exists a constant C > 0 such that (€™ o h)(z) > Cd(z,00Q)™ for all
x € (L.

Remark 5.3.2 A biholomorphic function h : Q) — E, is a conformal mapping and
the Cauchy-Riemann equations hold:

0 0 0 0
a—xlfh(m,@) = 8_x2h2(x1’x2) and 8—$1h2($1,9€2) = —a—xzh1($17$2)

and therefore

Vi = (%)1 <%)2 _ OhyOhy  Ohy Ohy
Ox, Oy O0x1 Oxy  Ox9 Oxy
Vhyl? (%)1 (@)2 _ Oy Ohy Oy O,
011 0T 0x1 019  Ox90x1

Ohy Ohy  Ohy Ohs ~0

Ox, 0x1  Oxy 019 ’

Ahy = Ahy = 0.

The existence of biholomorphic functions with reqularity properties as described in
Lemma was proven by Kellogg and Warschawski, see [50, p. 4, Theorem 3.6].

Proof. Since e € C?™7(E,) and h € C?™7(Q; R?), we find €™ o h € C*™7(Q).

1. Using Lemma ([5.2.2)) we obtain

and a constant C, > 0 such that
(—A)me™(y) =C, >0 for all y € E,. (5.24)
Hence 2--2- 2 e(y) =0 for all y € E, and 4, j, k € {1,2}. Since

0y; Oy; Oyx

[ =1d ||l cm@pre) < €,
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we find

10 = djllo@ <& lla=hi = dijllom <& Hafkl aka 39?kg hillo@) <€

(5.25)

for all ¢ € {2,...,m} and ¢,7,ky,..., ke € {1,2}, where 0;; is the Kronecker
delta. Using the properties of the biholomorphic mapping A in Remark [5.3.2]
we can calculate

8" o) = ( (o) + () (-aemin)
= [Vha (=A™ (h(r).
After m steps, we find
(=A™ 0 h)(x) = [Vhn(e) P ((~8,)"e™) (b)) + R(x), (520

where R : Q — R is a sum of products of partial derivatives of hy, ho and e.
One notices that (—A,)™(e™oh)(x) contains no derivative of hy or hy of order
larger than m. This can be shown analogously to [56, Lemma 1]. Indeed, for
m =1 or m = 2 it follows from direct calculation. Using Ah; = Ahy = 0 and
induction, it can be proven for all m € N,

Moreover, using |8%1h1(x)| >1—¢and \%hl (z)| > 0 for all x € Q, we obtain

i@ = (@) + (En@)") 200 o)

Therefore (5.24), (5.26) and (5.27) imply
(—=A,)™ (€™ o h)(x) > Co(1 —&)*™ + R(x) for all z € Q.

Since each summand in R contains a factor

9 9 9_p. or

(%ckl (9:vk2 te 6:vk£
) ,,.ajkéhg with ky, k,... ke € {1,2} and ¢ € {2,...,m} and (5.25)

szl aku

holds, we find a value ¢ € (0, 1) such that R becomes so small that

(—=A,)™ (€™ o h)(xz) >0 forall z € Q

. Using Lemma we obtain that there exists a constant C' > 0 such that
e™(h(x)) > Cd(h(z),0E,)™ for all z € Q.
Since h~! € C?™7(E,;R?), h~! is Lipschitz continuous. So, there is a constant
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L > 0 such that for all 2,z € Q
v — | = [h7 (h(x)) = k™ (1(2))] < L|A(z) — W(Z)].

Therefore, we get for all x € Q

d(h(z),0E,)™ = ( inf |h(z) - y|>m - (inf Ih(z) — h(f)])m

yEOE, ZeON

>L" ( inf |z — f|> =L "d(x,00)™.

Feon
So, we find

(e™ o h)(x) > CL™™d(x,d0)™ for all x € Q.

Remark 5.3.3 In [28, Theorem 1.5, Lemma 2.1] and [30, Section 5] an analogous
result is shown. The authors prove that if one considers small perturbations of the
unit disk, then the Green function to the polyharmonic Dirichlet problem with
A = 0 is positive, so the problem is positivity preserving. The difference to the result
in Lemma is that in [28, Lemma 2.1] the authors used closeness in C*™ -
sense with respect to biholomorphic mappings. Sassone improved this result in [56]
and he showed that closeness in C™7-sense is sufficient.

We proved that Condition [B]is fulfilled, so we can apply Theorem and again

find a positivity preserving property for a weighted polyharmonic Dirichlet problem
on small perturbations of ellipses with respect to biholomorphic mappings.
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Chapter 6

Classical solutions to some higher
order semilinear Dirichlet
problems

In this chapter, we consider classical solvability of some semilinear Dirichlet problem,
where the principle part of the differential operator is of the form (—A)™. In the
following, we closely follow [59]. As mentioned in the introduction, we investigate
the problem

(=A)"u(z) + g(z, u(x)) = f(z) for z € , (6.1
u(z) = %u(x) - .= (%)m_l u(z) =0 for z € 09, '
where f € C%7(Q) and g € C%7(Q x R) satisfies the sign condition
g(xz,t)-t>0forall z € Q,t € R. (6.2)

One may include lower order derivatives in the partial differential equation. How-
ever, the differential operator L has to be coercive in the sense that there is a constant
¢ > 0 such that

/ Lu(x)u(z)dz > ¢ ||u||%,Vm,2(Q) for all u € C*™(Q) N C~ (),
Q

and the principle part has to be the polylaplace operator (—A)™, see Remark .
Otherwise, we cannot use Pulst’s results concerning the Green function estimates,
and one doubts if such estimates hold true if the principle part is not a product
of second order operators, see [27]. We proved in the previous chapters that if we
consider the operator (—A)™ — \w for appropriately chosen A € R and w € C%7(Q)
instead of (—A)™, we find a positivity preserving property for the corresponding
Dirichlet problem. In the following sections, we will only use the estimates for the
Green operator Gy, 01 in and regularity results instead of a maximum or com-
parison principle, so the Green operator does not have to be positivity preserving.
Accordingly, no weight function is necessary and we will only examine problem (6.1}).
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The objective of this chapter is to prove the result in Theorem [1.2.15| First, we
recall regularity results for the linear polyharmonic Dirichlet problem in Section[6.1
Then we describe an approximation with bounded functions for the nonlinear term
g and prove the existence of a weak solution to the changed problem with bounded
nonlinear part. Then we use regularity results to find uniform bounds for these weak
solutions. The existence of a classical solution to follows using a bootstrapping
argument. In Sections and [6.4, we prove Theorem [1.2.15 We devide it into
two parts. First, we show the special cases of Theorem [1.2.15] where g satisfies a
one-sided growth condition. Then, we prove the remaining case of Theorem [1.2.15
The proof can be done iteratively using similar arguments as in the first and second
case, where ¢ fulfills a one-sided growth condition.

6.1 Linear regularity

First, we recall a regularity result for the linear polyharmonic Dirichlet problem. We
assume that Condition |A|is satisfied. It is known that if f € LP(Q) with p € (1, 00),
then there exists a unique solution v € W?™P(Q) for problem (1.4) with A = 0.
Moreover it holds, see [2Il Theorem 2.20], that there is a constant Cgq,,, > 0,
independent of f, such that

[ullwena@) < Compll fllrr@)-

As mentioned and described in [59] and [60], when investigating the polyharmonic
Dirichlet problem, one may consider separately the solutions v, and u_ of

{(—A)m us(z) = f*(2) for x € Q, (6.3)

up(r) = Zug(@) == (2)" us(z) =0 for z € IO,

where f*:=max{0, f} and f~ = max{0, —f}. One notices that u; and u_ do not
have to be nonnegative. Then, using estimates for the polyharmonic Green function
as in (3.2), one finds functions u®,u® > 0 such that v = u® — u®, and one may
prove the following sign-dependent regularity estimates, see [60, Theorem 1]:

Theorem 6.1.1 Let Condition [A] be fulfilled, p. € (1,00) and p = min{p,,p_}.
Suppose that f = f* — f~ with fT € LP+(Q) and f~ € LP~ (). Then there are
constants cqp. m,Cop_m > 0, independent of f* and f~, such that the following
holds: There is a unique solution v € W?*™P(Q) N WP (Q) of

—A)"y = n )
{( ru=foo in ©, 6.4
uza_u“:"':(a_u) u=0 on 0f,

with v = u® — u®, u® u® > 0, and such that u® € WP+ (Q) N W™’ (Q) and
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6.1. LINEAR REGULARITY

u® € Wmr= (Q) N Wy~ (Q) with

HuegHWQm7p+(Q) < CQ,pi,m (”erHLer(Q) + HfiHLl(Q)> y (65)

4 oy < et (157 -y + 1 s - (6.6)

Indeed, using the Green function estimates in (3.2) and the solution 0 < e €
C*™7(Q) N Cy(2) of the Dirichlet Laplace problem (5.3)), one finds the integral
operator

D) = e"(@) [ ") (w)dy
Q
and a constant cq,, > 0 such that
gm,O,l + CQ,m,[)m Z 07

where G, 01 is the polyharmonic Green operator. Moreover, the operator 7-ln7m
defined by

ﬁn,m = gm,O,l + CQ,m[)m
fulfills for some ¢; o m, C2,0m > 0 the inequality

61,Q,m;,'[n,m S %n,m S 62,(2,m;"[n,m>

where H,, ., is defined as in (3.4]). Since e™ is boundefi and 7:[1”,1 satisfies a Riesz
potential estimate, see [60, Lemma 4], the operators D,, and H,,,, are defined for
all f e LP(Q2) with p € (1, 00).

Hence, the solutions v, and u_ of can be written as
ur (@) = Homf D) (@) = comDmf) (@), u-(2) = Humf )(@) = com(Dnf ) (),
and one may choose
u2(2) = () (&) + cam(Pf ) (@), 18(2) = Fund 7)) + com(D f)(2).
Then, the estimates in and follow, see [60, Section 3].

Note that in general u® # u™, but

ut < (u® —u®)T <u® and um < (u® —u®)” <,

where ut = max{0,u} and v~ = max{0, —u}.

Using Sobolev imbeddings, (6.5)) and imply norm estimates for «™ and u~.
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6.2 Approximation and weak solutions

The content and some paragraphs of this section can be found in [59, Section 3].
The paragraphs that are adopted from [59] are formulated by me.

Let f and g be as described in Theorem [1.2.8] We define for M € R* the
function gy : © x R — R by cutting off ¢ as follows:

min {g (z,t),M} fort >0,

gur () = { max{g(z,t),—M} fort <O. (6.7)

Then, the function gy, is bounded. We consider the nonlinear Dirichlet problem

(—A)" u(x) + g (x,u(z)) = f(x) for v € Q, (6.8)
u(z) = Lu(z) == (%)mfl u(x) =0 for z € 00, '
g
M- am

Figure 6.1: Cut-off of some Hélder continuous function u — g(u) as described in (6.7));
this figure appears in [59] and was created by Guido Sweers.

In the following we prove the existence of a weak solution to as well as
some norm estimates independent of M. Here a weak solution to is defined by
u € WJ*(Q) satisfying

(s by + | gl u(w)pla)do = / f@)pl)dz  for all g € W*(9),

Q
with
/ (Am/2u(x)) (Am/2gp(l’)) dx for m € NT even,
(u, 90>Wm2(9) = N
/ VAM= D2y () - VAMD20(2) dz for m € N odd.
Q

Since the function g,; is bounded, the existence of a weak solution u,; to
for each M directly follows from minimizing a variational problem. Each such u,; is

also a classical solution. Even if we consider problem (1.19) in Remark |1.2.16| with
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6.2. APPROXIMATION AND WEAK SOLUTIONS

gy instead of g, one finds with [44] that a classical solution exists. We will show
a priori estimates for uys, that do not depend on M. Then, we are able to obtain
uniform bounds for ||ua||,,. Hence for M large enough the function uy will not
depend on M and therefore it will be a classical solution to (6.1).

The following lemma can be found in [59, Lemma 4].

Lemma 6.2.1 There exist constants Cq ,, Cq ,,, > 0, such that for each M > 0 and
f € L*(Q) there exists a weak solution uy; of with

2
HUMHW(;W(Q) < Com ||f||L2(Q) and |lgar (-, unr) uMHLl(Q) < Com ||f||L2(Q) ;

1/2

where ||UM||W(')m,2(Q) = <UM7UM>WOm,2(Q)'

Proof. Let .Jy, : WJ*(Q) — R be defined by

Iy (u) = % ||u||%v5n,2(m +/Q (/0 gy (z,t) dt — f(x)u(x)) dz.

Since gy is bounded, one finds that the operator J,; is well defined. Moreover,
Jar is coercive on W(" 2(Q) Indeed, using the Poincaré-Friedrichs inequality, one
finds a constant Cpr > 0 such that

lull c20) < Cprllullymzq, for all u € W™ (€). (6.9)

Applying Cauchy-Schwarz and using the sign condition gy/(z,t)t > 0 for all x € Q
and t € R, one gets

1 2 1 2
Talw) = Sl gy = I lzllellzze) > Sl gy = Corll Azl

Hence Jy(u) — oo for HUHWSn,Q(Q) — oo and Jy; is bounded from below. Therefore,

there is a minimizing sequence {u}ren C W?(Q) that is bounded since Jy; is
coercive. Since W{?() is a Hilbert space and therefore a reflexive Banach space,
we get with Kakutani’s theorem a weakly convergent subsequence {uy;}jen with

wealk limit ups € W*(Q):
up, = upr in W2 (Q) for j — oo. (6.10)

Using that {uy, }jen is bounded and the compactness of the Sobolev imbedding
Wm2(Q) < L*(Q), we find that this subsequence again has a subsequence {us,, }ren
such that

up;, = uy  in L*(Q) for £ — oo. (6.11)

J
Using ((6.10) we obtain

liglgglf Hukjg ||W5”’2(Q) Z HUMHW(;”’Q(Q)
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and the convergence in (6.11)) as well as |gy(z,u(z))] < M for all x € Q and

w e W*(Q) imply
lim / e (@)t = [ fa)un(a)da

uk u]\/[
lim// xtdtdx—// vz, t)dtde.
{—o0

ueWg™?(Q) yass ueW?(Q)

Hence

which implies that uy, € Wg*(Q) is a minimizer of Jy;.
This minimizer satisfies the weak Euler-Lagrange equation

(usrs Do + [ (o () = F () pla)de =0 for all p € W3 2(2).
(6.12)
By the sign condition for g in (6.2)) we find that for all u € W" 2(Q)

/ gy (z,u(z)) u(z)dz > 0.
Q
Taking ¢ = uys in (6.12)), we get

s o + [ ot Gl unlo)ds = [ flajun(ords.

One notices that on the left-hand side two positive terms appear. Hence each of
them can be estimated from above by

max {HUMH%,Q(Q) ,/QgM (2, ung () uM(x)d:c}
< [ 1@hnte)is < 17l lusila
Since holds true, we find a constant Cq,, > 0, independent of M, such that
lun w2y < Com [1fll 220
We also get with that

2
||9M('7“M)“MHL1(Q) < ||fHL2(Q) ||UMHL2(Q) < CprCam ”fHL?(Q)
|

Using the results in Lemma[6.2.1} we obtain additional norm estimates which we
use in the following two sections.
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The following corollary can be found in [59, Corollary 6].

Corollary 6.2.2 Let M > 0, f € L*(Q), gu as defined in (6.7) and uy € WJ(Q)
be a weak solution to (6.8) as described in Lemma m Then the following esti-
mates hold:

1. There is a constant Cq mq ¢ > 0, independent of M, such that

||gM(7uM)HL1(Q) < C1Q,m,g,f~ (613)

2. There exists a constant Cq ,, > 0, independent of M, such that

pe[l, 2] ifn>2m,

uarllroion < Cam or all =2
| M||L Q) = YQmp ”f||L2(Q) J {p e [1,00) ifn = 2m.
(6.14)
3. Let g fulfill
g(z,t) < ci(1+|t°) fort > 0. (6.15)
Ifn > 2m and o € [1, nfgm], then one finds Cqme > 0, independent of M,
such that
ool 253 ) < Como (L4 1£ 172y (6.16)

and if n =2m, g € [1,00) and o € [1,00), there exists Comqq > 0 such that

o680 | gy < Cormma (14 1F12200)) (6.17)
4. Let g fulfill
g(z,t) > —co(1+|t|7) fort <0. (6.18)
If n >2m and 7 € [1, nfﬁ}, then one finds Cq ;- > 0, independent of M,
such that
g =il 28,2 gy < Corme (14 1712 (6.19)

and if n =2m, q € [1,00) and 7 € [1,00), there ezists Cqmrq > 0 such that

H9M<'> _u]T/I>HLq(Q) < Cﬂ,mmq <1 + HfHE%Q)) : (6'20)

Proof. All estimates are consequences of Lemma [6.2.1
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1. Using the results in Lemma [6.2.1} one obtains that

lgnr (s uar) i) < 192 max  |g(@,8)| + [lgm (-5 uar)uar || 11 q)
zeQ,te[—1,1]

<[Q max |g(x, 1)+ szmeHZﬁ(Q)

zete[—1,1]

where |Q| = [, 1dz is the Lebesgue-measure of .

- Since we have proven that [[unr|lym2q) < Com [[fl12q) With Cogm indepen-
dent of M in Lemma inequality (6.14)) follows by Sobolev imbeddings.

. Using |ga(z,t)| < |g(a; t)| for all (z,t) € Q x R, one gets, if g fulfills (6.15)),

HQM(nUL)HLrE"mé(Q) <all+ |“J\+4|g” 4m % (q)
<61‘Q| +Cl|||uM| I Ls8m 7 (Q)
= 1|07

Using ([6.14)), one finds a constant Cg,,, , > 0 independent of M such that

n—=2m

HgM uM ||Ln 2mé(Q) < Cl‘Q‘ I +ClCchr||f||L2

Similar arguments for n = 2m, o € [1,00), (6.15) and ¢ € [1, 00) provide the
inequality

1 ag
lasCo ) |y < xllt+ [y lzay < 12 + A1Ch 113200

for some Cg,, , , > 0 indendent of M.

. Analogously, one obtains, if g fulfills (6.18)),

Ln=2m

lgns (- —uan)] 25 1(9)Sc2||1+|um| )
< C2|Q|T =+ C2CQmT||fHL2(Q)7

for some Cg,, . > 0 independent of M. For n = 2m, 7 € [1,00), (6.18)) and
q € [1,00) we find with (6.14) a constant C, ,,, ., > 0 such that

g (-, —U&)HU,( < el + |up | Loy < |07 + 200 7ol F 2 ()
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6.3. CLASSICAL SOLUTION WITH ONE-SIDED GROWTH CONDITION

6.3 Classical solution with one-sided growth con-
dition

The content and some paragraphs of this section can be found in [59, Section 4].
The result and proof are the same as in [59], except that the notation has been
adjusted. The paragraphs that are adopted from [59] are formulated by me.

In the following, we assume that ¢ fulfills the growth condition from above, that
is, there exists a constant ¢; > 0 such that

c=1 if n > 6m,
g(z,t) < (1+17) forallt > 0,2 € Q, with (o€ [1,-22-) if n € (2m,6m),
o€ [1,00) if n = 2m,
(6.21)

which combines the first and second case in Theorem [[.2.15l Then we obtain that
the semilinear Dirichlet problem has a classical solution. The following result can
be found in [59, Theorem 7].

[e.e] [e.e]
' |
' |
Tt . 71
o
am
n—2m
1 e e 1
am | v N
n—2m
'
0 ] 0 -
0 1 _4m o — oo 0 4m 7 o — oo
n—2m n—2m

Figure 6.2: Range of admissable growth rates proven in Theorem for some n €
(2m, 6m) (left) and some n > 6m (right), when g(z,t) < c1(1+1¢7) or —co(14+t7) < g(x,t)
and o, respectively 7, as in . The missing sections compared to Figure are
displayed in light green.

Theorem 6.3.1 Let n > 2m and Condition [4] be fulfilled. Suppose that g €
Co7(Q x R) satisfies the sign condition and the growth condition .
Then for any f € C°(Q) the Dirichlet problem in has a classical solution
u € C?m(Q)NC Q).

Proof. Let uy; be a weak solution to as described in Lemma [6.2.1}
Case 1, n € [2m,6m): By Theorem with right-hand side —gp (-, ups) + f
instead of f in (6.4)), we find that there exist u$,, u§; > 0 such that uy = u®, — uf,
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and using Sobolev imbeddings and , we get for n > 2m

el < S0 < om0l 282

< Chonr (11220 + lgae ()

o T lgn —u&)\lLl(m) :

HLn 2ma

For n = 2m we find

Jungll= @) < lupllze@) < Conmellugllwamao)
<o Ul + Ngne (w2 + Nlgar( —uap)l i) -

With the inequalities (6.16]), (6.17) and (6.13]) it follows for n > 2m

les ey < Chrnr (1 l22(0) + Como (14117200 ) + Carman )

where the right-hand side does not depend on M. Then, using Sobolev imbeddings,

and

lgar(cs —up)lle@) < max _lg(z, 1)l
_HUMHL‘X’(Q)StSO;mEQ

we also find an upper bound for |[u};||1 ) which is independent of M. Hence, for
a sufficiently large M; € R* it holds that ||g(-, uar, )|l < M, 50 gar, (- unr,) =
g(+,upns, ). Therefore, uyy, is a weak solution of (6 . Since —g( upr, )+ f is bounded,
we obtain by Agmon-Douglis-Nirenberg results, see [21, Theorems 2.19, 2.20], and
Sobolev imbeddings that uy, € C*™7(Q) N Cy () is a classical solution of (6.1).

Case 2 n > 6m: We rewrite problem ([6.8]) with ¢; > 0 such that
g(x,t) <ci(1+1t) fort >0
and investigate

(=A)"u+cu=—gu(,u)+ f+cau inQ,

u:Qu:---:(a%)mfluzo on 0N).

(6.22)

Then, we find for the right-hand side in (6.22)) for suitable functions u that

—gu(@,u(@)) + f(2) + cru(z) = —gu(z,u'(z)) — f~(2) + cru(z)
> —ci(1+u(2) — f7(2) + cut(x) — cqu™ ()
=—c— f(z)—cqu (z) forxel

and
—gu(z,u(x)) + f(2) + cu(z) < —gu(z, —u (2)) + fH(x) + ciut(z)  for z € Q.
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So we get

(—gm(u) + f+au)” <f7+au +a, (6.23)
(—gM(', u) + f + C1U)+ < f+ — gM('; —U_) + clu+. (624)

One finds a similar result as in Theorem for the linear Dirichlet problem

(—A)™u(x) + cqu(z) = h(x) for x € Q,
u(z) = Lu(z) == (%)m_l u(z) =0 for z € 99,

with h = ht —h™ and AT € LP+(Q), h~ € LP~(Q) for some py € (1,00). Therefore,
one obtains with u,, € Lt (), (6.23)), (6.24) and Sobolev imbeddings that there
exists a constant C, , 4, > 0 such that

upslla @)

< Comar (Il + gl 2y g + I llney + 1+ g~ o))
(6.25)

holds for all

¢ € (1, 2] ifn>6m,
¢ € [1,00) if n = 6m.

With (6.14)) and (6.13)) one gets an upper bound for |luy,||La @) independent of M:

[warll o ()

< Covnan (HfHLoo(Q) + Com, 2o [[fllz20) + Camallfll2@) + 1+ Cﬂ,m,g,f) :

Using a bootstrapping argument for u,, through (/6.23)) and analogous arguments
as in (6.25)), regularity results and Sobolev imbeddings, we find after k steps that
there exists an upper bound independent of M for ||uy; || L @) With

qr € [1,00) if n € [6m,2m(1 + 2k)].

Hence, after finitely many steps we find & > % and therefore wu;, lies in L%(£2)
for any ¢ € [1,00) with ||uy,||ze) bounded independently of M.

One more iteration leads to uy, € L>(Q2) with ||u},|| L) bounded by a constant
independent of M.

With the norm estimates for u,, € L*(f2), similar arguments as in for the
positive part u};, and bootstrapping again, we also find u}, € L=(Q2) and a
uniform upper bound for ||u}; || z=(q). Analogous to the case n € [2m,6m) it follows
for a sufficiently large M, € R that the function uag, fulfills ||g(-, uag ) || L) < Mo,
80 g, (s uar,) = g(-, ung, ). Therefore, uyy, is a classical solution of (6.1)). |
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One notices that the growth condition from above for g(-,¢) with ¢ > 0 may also
be changed to a condition from below for g(-,¢) with ¢ < 0 and we obtain the same
result, see Figure [6.2]

6.4 Classical solution with two-sided growth con-
dition

Similar to the last section, the content of this section can be found in [59] Section 5.
The notation has been adjusted and some paragraphs have been adopted. However
the steps of the following proof have been formulated by me.

As remarked in [24] Section 3], one may improve the growth condition from above
by adding a constraint from below. We assume that n > 2m, since the case n = 2m
is contained in the previous section. It is known, see [24], that if ¢ € C%7(Q x R)
satisfies the sign condition and there are two constants ¢q, co > 0 such that

—co(1+[t|") < g(z,t) < (14 |t]7) for t € Rz € Q, (6.26)
with
2 4 1 2
n+m§7'<oo and 1<o0< m +_n+ m)
n—2m n—2m Tn-—2m

then there exists a solution v € C?™7(Q) N W™*(Q) to (6.1). Using Theorem
and Lemma [6.2.1, we may show that there exists a classical solution. So the
boundary conditions are satisfied in classical sense. The following result can be
found in [59, Theorem §].

71

n+2m
n—2m

_____________________________

n—2m

'
'

0 3 0 ; |

0 4m n4+2m o — OO 0 4m n+2m o — o0

n—=2m n—2m n—2m n—2m

Figure 6.3: Range of admissable growth rates proven in Theorem for some n €
(2m,6m] (left) and some n > 6m (right). The missing section compared to Figure is
shown in light green.

Theorem 6.4.1 Let n > 2m, Condition |A| be fulfilled, f € Co(Q) and g €
C%7(Q x R) satisfies (6.2) and (6.26). Then, the semilinear Dirichlet problem in
(6.1) has a classical solution u € C*™7(Q) N CF(Q).
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Proof. We assume that

4dm 4m 1n+2m
max < 1, <o < + - .
n—2m n—2m Tn-—2m

Indeed, the case that 0 < ¢ < max {1 4m } is contained in Theorem
Let uy; be a weak solution to as descrlbed in Lemma Usmg similar

arguments as in the proof of Theorem [6.3.1] we note that it is Sufﬁment to show that
there are upper bounds for |[u},| 1= and |luj,| 1= independent of M. Then, for
a sufficiently large M3 € R the function uy;, would be a classical solution to (6.1]).

As mentioned in (6.14]), it holds that uy, € LP°(Q2) with

2n
n—2m

Po =

and [[uns||zro@) < CHmpollfllz2()- By Theorem [6.1.1) we find that there are func-
tions u¥, u§, > 0 with uy = u$, — u§; and such that the regularity estimates in
(6.5) and hold for suitable py+ € (1,00). Next, we will show iteratively that

||uar|| e () is bounded by a constant independent of M:

Step 1. Using Sobolev imbeddings and , we obtain

3,19 ) < Huaume o1 S O 05283

< O (Il + lgas Gt g g + e =) lac)

(6.27)
for all
=
p§ € [1,00) if o = nglm‘

Since o < nf

n inequalities (6.27), (6.13) and (5.16) imply

13t 2 S Connrge (112200 + Cormer (14 15200y ) + Camas )

and the right-hand side does not depend on M. Analogous to (6.19), we then find
for pf > 7 a constant C, e > 0 independent of M such that

ST TPy

loas (s =l 2 g < Cormmae (1 1152y (629

Step 2. We may choose pf > 7. Similarly as in Step 1 we obtain with Sobolev
imbeddings and (6.5))

570,58 ) < 81,12 ) < Conmr s 1650 Lyt

!/

<Ot (||f||m+||gM< i)l ot g + 9w )
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for

n—2mp19/7'

PP e [1, M} if n > 2mp¥ /7,
pP € [1,00) if n < 2mpf /7.

Hence, using (6.13]), (6.29) and (6.28]), we find for all

{p? € [1 2 ] if 7(o(n —2m) — 4m) > 4m,

’ 7(o(n—2m)—4m)—4m

(6.30)
pf € [1,00) if 7(o(n —2m) —4m) < 4m,

an upper bound for HULHLP? - independent of M. Since

4dm 1n+2m
+

o< -
n—2m Tn-—2m

is equivalent to
T(o(n —2m) —4m) —4m < n — 2m,

we found an upper bound independent of M for ||uf;||zs) for all ¢ € [1,00) or
have gained some regularity: From a uniform bound for ||uL||Ln 20 Ve derived a

uniform bound for ||u},||

2n .
[, 7(c(n—2m)—4m)—4m (Q)

Let € > 0 be such that
4dm 1n+2m

= — . 6.31
7 n—2m Tn-—2m c ( )
We note that (6.30) can be rewritten in
(3} 2n :
D1 € [1, m] if 1> ET,
p? € [1,00) if 1 <er.

In the following, we repeat the arguments in Step 1 and Step 2 and attain after
k-times that Hu%HLP? @ is bounded by a constant independent of M, where

LPE(Q) C LP*(Q) (6.32)
with £ € Nt and
_ 2n :
Pk = (n—2m)(1—er)k lf L >er, (633)
pi € [1,00) if 1 <er.

Indeed, one finds (6.32)) with induction. For & = 1 it holds true. So let (6.32)) be
satisfied for a k € NT and HUJJ\%HLP? @ be bounded by a constant independent of M.

Then, either
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6.4. CLASSICAL SOLUTION WITH TWO-SIDED GROWTH CONDITION

e e > 1 and for all ¢ € [1,00) the norm [|u};||raq) is bounded independently
of M,

o or e7 < 1 and for ¢ = = 3t— the norm |luy| Lse) is bounded indepen-
dently of M.

Using Step 1 and Step 2 again, we then find for all ¢ € [1,00) an upper bound for

|luis |l ) independent of M or an upper bound for HULHLPEJA(Q) with

o 2n
Pl = 7(o(n—2m)(1 —er)k — 4m) — 4m

Since for eT < 1 one finds with (6.31))

7(o(n —2m)(1 — eT)* — 4m) — 4m
=dm7 (L —er)f = 1) —dm + (n+2m)(1 —e7)¥ —er(n — 2m)(1 —e7)*
<(n—-2m)(1—er)* —er(n—2m)(1 —er)k

= (n —2m)(1 —e7)F*,

one obtains LP§+1(Q) C LP++1(Q) with pyy1 as in (6.33)).
Hence, for k € N* sufficiently large, we find p; > $%. Then, using Step 1 and
Step two again, one obtains for all ¢ € [1, c0) an upper bound for |[uas||Le() indepen-

3J 1950

independent of M such that

||UM”L°°(Q) S Oﬂ,m,f,g,aﬂ'-

It follows for M sufficiently large that u,, is a classical solution to (6.1)). ]

So if, instead of applying local maximum principles as in [29] and [24], we use the
Green function and regularity estimate for the polyharmonic Dirichlet problem in
and Theorem we can improve the results in [29]. If we combine Theorem
6.3.1] and [6.4.1) we find the result stated in Theorem [I.2.15] This is also shown
in Figures [1.1] and The parts in Figure [6.2] that are missing compared to
Figure (displayed in light green) are contained in Figure and vice versa. So,
the range of admissable growth rates can be represented as in Figure [1.1]

Remark 6.4.2 The condition o < 22— 4+ L1042% s pecessary so that p¥ in (6.30)

n—2m T n—2m
fulfills p® > -22—.  Otherwise we would not obtain an increasing sequence
n—2m
e, S, .. pE. Form = M2 we find a classical solution if 0 < o < "2 This

is the known result which has already been proven by von Wahl [76] and Luckhaus
4] As already noted in [2]|], the result in Theorem can be understood as an

interpolation between this standard case and the result in Theorem|6.5. 1.

Remark 6.4.3 We have shown that under some growth and sign conditions there
is a classical solution to problem (6.1)). An open problem is the question whether
one can assume arbitrary growth of g and still achieve the same result. We note
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SEMILINEAR DIRICHLET PROBLEMS

that one has to assume at least monotonicity or a sign condition as in (6.2)). Indeed,
Luckhaus constructed in [{4)] an example in which g fulfills the condition

n+2m

lg(z,t)| < C (1 + |t\"*2m+6> for some € > 0,

but not necessarily (6.2). He has found a function that solves problem (6.1)) in weak
but not in classical sense. Moreover, Reichel and Weth constructed a semilinear term

that does not fulfill the sign condition, such that there is no solution u € C*™7(Q),
see [54), Theorem 3].
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Appendix

A.1 Upper bound for the C""-norm of the weighted
eigenfunctions

In this section we prove the estimate in (3.58). The result and proof are an adapted
version of Lemma 13 in [57], so it coincides with the proof in [57] in some paragraphs
except that we replace 2 with m.

Lemma A.1.1 Suppose that Condition |A| is satisfied and let {\;mw}tien+ be the
eigenvalues to problem (1.10)) and {@; mw tien+ the corresponding eigenfunctions with
| @imwll2, ) = 1. Then there exists a constant Czzg > 0, depending on the domain,
w and m, such that for all i € N*:

L_‘_Qm—l
1@imwllem@ < CamaAiw ™ (A1)

m—1

|Qim,w ()] < %Aﬁz o d(x)™ for all x € Q.

Proof. All constants that we use in this proof depend on the domain and on m. We
have assumed that the eigenfunctions are normalized in L2, (), 50 || m.uwll 22 @) = 1.
As in [57, Lemma 13] we recall the three main arguments:

1. Regularity: Using Agmon-Douglis-Nirenberg for we find some constant
Capn,w,p > 0 such that

C'ADN,w,p Az’,m,w”@i,m,w“LP(Q) for pE (2, 00)7

(A2)
CADNw,2 Nimow || Pimwl| 2,0 for p = 2.

||90i,m,w||W2m,p(Q) S {

SO, fOI’ P = 2 we ﬁnd ngi7m7wHW2m,2(Q) S CADN’w’Q)\/L"m’w.
2. Imbeddings: With the Sobolev imbeddings in (2.11)i. and (2.11)ii., we get
constants Cr, > 0 such that

[ullem@y < Crpllullwemsq) for all u € W2mp(Q) (A.3)
and with (2.11)iii.-v. we find Cy,, > 0 such that
ullzag) < Crpqllullwems for all u € W?™P(Q) (A4)

with p, ¢ as in Theorem [2.5.1]
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3. Interpolation: By Theorem 5.8 of [I] we find for ¢ € [p,pi] "R and 6 =
= (l - é), with p? asin (2.11)), that there exist constants C,, > 0 such that

2m \ p

ull o) < Cpgllulliyam oy lull o for all w e Wr(Q). (A.5)
We distinguish several cases depending on the dimension n.

e ne{2...,2m —1}: Using (A.3)) and (A.2)), we find constants such that

Q) < CroXimuw- (A.6)

e n e {2m,...,6m —1}: As mentioned in the proof of Lemma [3.3.1] we get

2, == 4m22n2£1 fordm+1<n<6m—1.

{2* = for 2m < n < 4m,

for n > 6m, we need

We want to proceed with ¢ € (%, 2;‘1) and since 2; <
2*) and p = 2, we obtain

the restriction n < 6m — 1. Setting ¢ = 22— ¢ (”

Am—1 m’

3]

0:

2 4n

n (1 4m—1)_ n 4m — 1

2m “dm 8m

and using (A.5)) and (A.2)), we find

< OQ,q”QOzmw”Wsz ||(pzmw|| < C/ q)\lmw
n _ 4m-—1
— C’, )\4m 8m .

2,9V, m,w

So, applying (A.3)) and (A.2] , we get

< CI,q

4m—+1
+8m 8m

|('0,me||W2mq S C}’qol A4m

2,7\, m,w

(A7)

e n > 6m: Here we follow analogous steps as in the proof of Lemma [3.3.1

Again, we set ( := [%} and for k£ < ¢ we define iteratively py = 2 and

Pk+1 = (pr)r. Then we find for £ < ¢

B 2n
L —
Using (3.25) and (A.4), we get that W?2™Pk(Q)) imbeds in LPr+1(Q) for k < £,

SO
HUHka+1(Q) S C’[dok’m+1 Hun2m,pk Q) for all u € W2m’pk (Q)

With u = ¢; m. and (A.2)) it holds that

HSOi,m,wHL”kH(Q) < Cka,pkHH‘Pi,m,wHW%’Pk(Q) < C},pk,pkﬂ)‘i,m,wH%,m,wHLF’c(Q)'
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EIGENFUNCTIONS

-1
We can set Cy := [[,2, C7,, .., and find

1 mwllLre ) < CMf,m,wH%,m,me < G

2,M,w "

(A.8)

If we take p = py and ¢ = "= with ¢ > 0 so small that ¢ < p;,, we get

g I 1\ n-2m n—2m n )
C2m\p, q)  4m 4m 2m
and therefore (A.5)) and (A.2)) imply

HQOzmeLq(Q <szq||§01mw||w2mpe(n H@zmeLPe(Q <Cj/ng zH‘szwHLW Q-

Combining this inequality with (A.8]), we find

, 9+€ , n42m+ 5
J— m 2m
||90i,m,w||L‘1 < Cpe qC Azmw Cpe qC Azmw :

Using (A.3)) and (A.2)), one gets

[oimaullen@ < Cralleimuwllwemaq) < CF gAimwll@imawllLae)

, +m+6
<0, qu/\f%wQ’" (A.9)
In (A6), (A7) and (A.9) we have shown that there is a constant C), > 0 and
a, € (0, e %} such that

||¢zmw||cm(g) < C /\?mw for all 7 € N+.

With (3.57)) the result in (A.1)) follows. As in the proof of Lemma [3.5.1, the mean

value theorem implies

2m
|§0i,m,w(l‘)| S ||S0i,m,w||Cm(§) ( ) < %j])\zmw ( )m for all z € Q.
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