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Abstract

For second order elliptic boundary value problems a maximum principle holds true
and as a consequence one finds a priori estimates for the solutions or a useful com-
parison principle. For higher order elliptic boundary value problems no direct gen-
eralization of the maximum principle is valid and therefore, questions that can be
answered for second order problems remain open for higher order problems. In this
thesis we investigate whether results such as a comparison principle or the existence
of classical solutions to nonlinear problems hold for some elliptic Dirichlet problems
of order 2m.

We consider a weighted polyharmonic problem (−∆)mu−λwu = f in a bounded
domain Ω with smooth boundary and ( ∂

∂ν
)ku = 0 on ∂Ω for k ∈ {0, 1, . . . ,m − 1}.

One of the main results is the following: One assumes that there is a function u0 that
can be estimated from below by d(·)m and which fulfills (−∆)mu0 > 0 in classical
sense. Here d(·) is the distance to the boundary. Then one finds a strictly positive
weight function w and an interval I ⊂ R, such that for λ ∈ I the following holds for
the Dirichlet problem described above: f positive implies that u is positive. Such a
result is called a positivity preserving property.

The proof is based on the construction of an appropriate weight function w
and a corresponding strongly positive eigenfunction for the weighted polyharmonic
eigenvalue problem. Then, applying a converse of the Krein-Rutman theorem for the
weighted polyharmonic Dirichlet problem, one obtains the main result concerning
positivity of solutions. As a special case it is shown that one finds for all smooth
domains an appropriate weight function, such that the weighted bilaplace problem
is positivity preserving for λ in some small interval. Also some examples and special
cases for higher order problems (m > 2) are described.

Moreover, further consequences of known estimates for the polyharmonic Green
function are presented. Using these estimates and regularity results, we investigate
the classical solvability of a higher order semilinear Dirichlet problem. We consider
the differential equation (−∆)mu+ g(·, u) = f with zero Dirichlet boundary condi-
tions, where g fulfills a sign condition g(x, t)t ≥ 0 for all (x, t) ∈ Ω×R and satisfies
a growth condition. One may improve known results about classical solvability and
prove that there exists a solution u ∈ C2m,γ(Ω) ∩ Cm−1

0 (Ω).
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Zusammenfassung

Für elliptische Randwertprobleme zweiter Ordnung gilt ein Maximumprinzip,
woraus Abschätzungen für die Lösungen oder ein nützliches Vergleichsprinzip folgen.
Für elliptische Probleme höherer Ordnung existiert keine direkte Verallgemeinerung
des Maximumprinzips, weshalb einige Fragen noch offen sind, die im Falle zweiter
Ordnung beantwortet wurden. In dieser Dissertation untersuchen wir, ob Ergebnisse
wie ein Vergleichsprinzip oder die Existenz klassischer Lösungen von semilinearen
Problemen für einige elliptische Randwertprobleme der Ordnung 2m erfüllt sind.

Wir betrachten das gewichtete polyharmonische Problem (−∆)mu − λwu = f
in einem beschränkten Gebiet Ω mit glattem Rand ∂Ω und ( ∂

∂ν
)ku = 0 auf ∂Ω für

k ∈ {0, 1, . . . ,m− 1}. Eines der Hauptergebnisse ist das Folgende: Es wird die Ex-
istenz einer genügend glatten Funktion u0 angenommen, die von unten durch d(·)m
abzuschätzen ist und (−∆)mu0 > 0 im klassischen Sinne erfüllt. Hier ist d(·) die
Distanz zum Rand des Gebietes. Dann existiert eine strikt positive Gewichtsfunk-
tion w und ein Intervall I ⊂ R, sodass für alle λ ∈ I folgt: f positiv impliziert u
positiv. Dies nennt man eine positivitätserhaltende Eigenschaft.

Der Beweis basiert auf der Konstruktion einer geeigneten Gewichtsfunktion und
einer zugehörigen positiven Eigenfunktion für das gewichtete Eigenwertproblem.
Wendet man anschließend eine Umkehrung des Theorems von Krein-Rutman für das
gewichtete polyharmonische Dirichlet Problem auf glatten Gebieten an, findet man
das genannte Ergebnis über die Positivität von Lösungen. Als Spezialfall erhält man
für alle glatten Gebiete die Existenz einer Gewichtsfunktion, sodass das gewichtete
biharmonische Problem für ein kleines Intervall für λ positivitätserhaltend ist. Es
werden zudem Beispiele und Spezialfälle für Probleme höherer Ordnung (m > 2)
dargestellt.

Darüber hinaus werden weitere Folgerungen aus einer bekannten Abschätzung
für die Greensche Funktion des polyharmonische Problems erläutert. Es werden
dieses Resultat und Regularitätsergebnisse verwendet, um die klassische Lösbarkeit
eines semilinearen Dirichlet Problems höherer Ordnung zu untersuchen. Dabei wird
die Differentialgleichung (−∆)mu + g(·, u) = f mit Dirichlet Randdaten betra-
chtet, wobei g die Bedingung g(x, t)t ≥ 0 für alle (x, t) ∈ Ω × R und zusätzliche
Wachstumsbedingungen erfüllt. Man kann bekannte Ergebnisse über die klassische
Lösbarkeit des semilinearen Problems verbessern, indem die Existenz einer Lösung
u ∈ C2m,γ(Ω) ∩ Cm−1

0 (Ω) bewiesen wird.
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Chapter 1

Introduction

1.1 Overview of the problem

For second order elliptic boundary value problems, a maximum principle or re-
sults concerning classical solvability of semilinear boundary value problems are well
known. It is surprising that these are important features of second order prob-
lems that distinguish them from higher order problems or systems of differential
equations. So, the following question may arise:

Do similar results regarding the positivity of solution operators or exis-
tence of classical solutions for nonlinear Dirichlet problems also hold in
the case of higher order elliptic differential operators?

One can consider the problem Lu = f on some bounded domain Ω ⊂ Rn with
smooth boundary ∂Ω. For L = −∆ and Dirichlet boundary conditions u = 0 on
∂Ω one finds that a nonnegative right-hand side f implies a nonnegative solution u.
This result is often called maximum principle, but when we refer to this property
we call it a positivity preserving property (PPP) to make a distinction between the
positivity result and the local maximum principle. Moreover, using the maximum
principle, one may find a priori estimates and with Hopf’s boundary point lemma
one obtains informations about the behavior of the solution near the boundary. In
addition, since the solution operator of L = −∆ with Dirichlet boundary conditions
is positive, the Krein-Rutman theorem provides results concerning simplicity of the
first eigenvalue or positivity of the corresponding eigenfunction. In this thesis, we
will investigate the validity of similar results for higher order problems.

For fourth or higher order elliptic Dirichlet problems a positivity preserving
property does not hold in general. There are a lot of counterexamples for the
clamped plate problem, that is{

∆2u = f in Ω,

u = ∂
∂ν
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ R2 is a bounded domain and ν is the outer normal unit vector on ∂Ω.
The model in (1.1) describes the deviation of a thin plate due to a force density
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CHAPTER 1. INTRODUCTION

f . The plate is clamped at its boundary. One might suppose that if one considers
sufficiently smooth and simply connected domains, then positivity preserving holds
true, since this is the case in one dimension or if Ω is a ball.

Hadamard also conjectured in 1908 after a discussion with Boggio, see [36], that
for convex domains a positivity preserving property holds for (1.1). The first well
known counterexample was proven by Duffin in 1949, see [17]. He considered the
biharmonic Dirichlet problem on an infinitely long strip and found a nonnegative
right-hand side f with sign-changing solution u for problem (1.1). Only two years
later, Garabedian constructed a counterexample in the case where the underlying
domain is a sufficiently eccentric ellipse, see [20]. An elementary proof that the
biharmonic Green function of an eccentric ellipse changes sign can be found in [64].
In [69, 70], a counterexample for the bi- and trilaplacian in an ellipse is shown. More
examples can be found in Section 1.3. So, no positivity preserving property holds
even if one considers bounded, smooth and convex domains. Therefore, it is not
obvious under which assumptions a positivity result is fulfilled.

There are only a few domains where positivity preserving for (1.1) can be proven.
Boggio constructed in [5] an explicit Green function for the ball in every dimension
and since this function is positive, there is a positivity preserving property on balls.
Moreover, in [28] a positivity result was shown for small perturbations of balls in
two dimensions.

It is frustrating that for a lot of results in the case of second order problems
one presupposes the maximum principle, so that there are no obvious extensions
for higher order problems. In general, there is no replacement for a comparison
principle. For higher order elliptic operators that are not a product of second order
operators, the fundamental solution does not even have to be positive, see [27].
However, if we consider the special case of the polyharmonic operator with Dirichlet
boundary conditions, then we will find a replacement for a comparison principle.
So we get a better understanding of the behavior of solutions to some higher order
problems. Instead of a maximum or comparison principle our estimates and proofs
of a positivity preserving property, and the existence of classical solutions to some
semilinear problems are based on sharp two-sided estimates for the polyharmonic
Green function:

For every bounded and sufficiently smooth domain Ω ⊂ Rn, that is
∂Ω ∈ C2m,γ, there is a constant cΩ,m > 0 such that

GΩ,m(x, y) + cΩ,md(x, ∂Ω)md(y, ∂Ω)m ≥ 0 for all (x, y) ∈ Ω2 with x 6= y.

The function GΩ,m is the Green function for the polyharmonic Dirichlet
problem {

(−∆)mu = f in Ω,

u = ∂
∂ν
u = · · · =

(
∂
∂ν

)m−1
u = 0 on ∂Ω,

(1.2)

that is u(x) =
∫

Ω
GΩ,m(x, y)f(y)dy solves (1.2) and d(·, ∂Ω) is the dis-

tance to the boundary ∂Ω. More precisely, there exists a positive function
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1.1. OVERVIEW OF THE PROBLEM

HΩ,m(·, ·) that contains the singularity of GΩ,m(·, ·) in the sense that we
find two constants c̃Ω,m, ĉΩ,m > 0 such that

c̃Ω,mHΩ,m(x, y) ≤ GΩ,m(x, y) + cΩ,md(x, ∂Ω)md(y, ∂Ω)m ≤ ĉΩ,mHΩ,m(x, y)
(1.3)

for all (x, y) ∈ Ω2 with x 6= y.

For the fourth order problem the two-sided estimate can be found in [26] and for
m > 2 Pulst proved the estimate in his dissertation [53, Theorem 0.1]. Pulst even
included lower order derivatives in the differential equation, but the leading order
term has to be (−∆)m.

Using results from Krein-Rutman, one finds that if the higher order elliptic
boundary value problem{

(−∆)mu− λu = f in Ω,

u = ∂
∂ν
u = · · · =

(
∂
∂ν

)m−1
u = 0 on ∂Ω

(1.4)

for λ = 0 is positivity preserving, then the first eigenvalue λ1 of the polyharmonic
eigenvalue problem {

(−∆)mϕ = λϕ in Ω,

ϕ = ∂
∂ν
ϕ = · · · =

(
∂
∂ν

)m−1
ϕ = 0 on ∂Ω

(1.5)

is positive, simple and the eigenfunction ϕ1 is positive in Ω. Moreover, by a Neumann
series expansion it was shown in [31, Proposition 4.1] that if problem (1.4) satisfies
a positivity preserving property for λ = 0, then this property holds true for all
λ ∈ [0, λ1). Furthermore, it was proven that ϕ1 is positive in the sense that there is
a constant c > 0 such that ϕ1(x) ≥ c d(x, ∂Ω)m, where d(x, ∂Ω) := infy∈∂Ω |x− y| is
the distance to the boundary.

This raises the question whether the positivity of the solution operator is related
to the existence of a positive eigenfunction. Indeed, one may show that the existence
of a positive eigenfunction for (1.5) with simple eigenvalue leads to the positivity of
the solution operator to (1.4) for a small interval for λ. This result can be understood
as a reverse of the Krein-Rutman theorem and is published in [57] for a fourth order
problem. Obviously, it would be a stronger result if we could apply this to problem
(1.4) for all domains. However, the existence of a positive eigenfunction with simple
eigenvalue cannot be guaranteed and is also difficult to examine for general domains.
But for some smooth and bounded domains a weight function can be added so that
the inverse to Krein-Rutman can be applied, see [58] for m = 2.

Therefore, we will search for a weighted eigenvalue problem such that one gets
a simple eigenvalue with corresponding positive eigenfunction. Then, using an ex-
tended version of the two-sided Green function estimate in (1.3) for the weighted
differential operator (−∆)m−λw with weight function w and parameter λ, we derive
a positivity preserving property for λ in some interval. This is possible since the
singularity of the Green function, respectively the function HΩ,m in (1.3), is positive
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CHAPTER 1. INTRODUCTION

and the negative part can be canceled out.

So, we add a positive weight function w to problem (1.4) and consider the fol-
lowing Dirichlet problem for 2 ≤ m ∈ N in some smooth and bounded domain
Ω ⊂ Rn: {

(−∆)m u− λwu = f in Ω,

u = ∂
∂ν
u = · · · =

(
∂
∂ν

)m−1
u = 0 on ∂Ω.

(1.6)

As a special case we will show that for m = 2 and every bounded and sufficiently
smooth domain Ω there is a Hölder continuous and positive weight function w such
that positivity preserving holds for λ in some interval. This result can be found in
[58] and is accepted for publication in Pure and Applied Analysis.

Remark 1.1.1 The following biharmonic problem for the deviation of a thin plate
is known, see for example [73, Chapters 3, 4]:{

∆(s∆u) = f in Ω,

u = ∂
∂ν
u = 0 on ∂Ω,

(1.7)

where Ω ⊂ R2, s could be seen as the varying thickness assuming the thickness and
the stiffness have a linear relation, u is the deviation of the plate and f a force
density. We assume that the stiffness may depend on x but neglect the second and
third order terms in (1.7) and consider s∆2u = f instead. If we set s = w−1, we
find {

w−1∆2u = f in Ω,

u = ∂
∂ν
u = 0 on ∂Ω.

So, when asked about a physical meaning of the weighted problem, we would under-
stand w as a measure of stiffness or thickness of the plate, even if we assume that
the weight function w may depend on x.

If problem (1.1) is not positivity preserving in Ω, one expects some negativity
close to the boundary since this is the same phenomenon that appears for limaçons
which are close to the cardioid or some ellipses, see Section 1.3. In order to maintain
a positivity preserving property for (1.6), one suspects that one has to consider plates
which are stiff in a neighborhood of the boundary and rather flexible away from the
boundary of Ω. Accordingly, we expect to find a weight function w that takes on
larger values near the boundary compared to the interior.

In the second part of this thesis, we will consider another 2m-order Dirichlet
problem. We show existence of classical solutions to some nonlinear problems. This
is a longstanding problem that has already been considered by Tomi in 1976, von
Wahl in 1978, Luckhaus in 1979 or Grunau in his dissertation in 1990. Instead of
adding a term with a weight function to problem (1.4), we add a semilinear term
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1.1. OVERVIEW OF THE PROBLEM

and investigate (−∆)mu+ g(·, u) = f in Ω,

u = ∂
∂ν
u = · · · =

(
∂
∂ν

)m−1
u = 0 on ∂Ω,

(1.8)

where f is Hölder continuous in Ω and g is Hölder continuous in Ω×R and satisfies
the sign condition

g(x, t) · t ≥ 0 for all x ∈ Ω, t ∈ R. (1.9)

To this end, we will present the results of [59], accepted for publication in Nonlinear
Analysis. The following summary of known results about classical solvability of
(1.8) can also be found in [59, Introduction]:

If g is some monotone nonlinearity, then it is well known that there exists a
distributional solution to (1.8), see [7], [9], [37]. We are interested in the following
question: Under which additional conditions on function g does problem (1.8) have
a classical solution u ∈ C2m,γ(Ω) ∩ Cm−1

0 (Ω)?

For m = 1 one finds a classical solution independently of the growth of the
nonlinear term. Indeed, one just needs the maximum principle for second order linear
elliptic problems, or more precisely a comparison principle, and the property that
one may split problem (1.8) into two Dirichlet problems on Ω+ := {x ∈ Ω, u(x) > 0}
and Ω− := {x ∈ Ω, u(x) < 0} to get a priori estimates for u+ := max{u, 0} and
u− := max{−u, 0}. With ‖u‖∞ bounded, one uses some iteration steps: first, known
regularity results imply u ∈ W 2,p(Ω) for all p ∈ (1,∞) and then, using Sobolev
imbeddings and regularity results again, u ∈ C2,γ(Ω) ∩ C0(Ω) follows. For m ≥ 2
there is no direct generalization of these properties, so some additional assumptions
seem necessary.

In the literature there are results that include classical solvability of higher order
problems. Tomi in [74] proved that with some additional monotonicity assumptions
for g and m = 2, one finds a solution u ∈ C4,γ(Ω) ∩W 2,2

0 (Ω) to (1.8). Using the
growth condition |g(·, u)| ≤ C(1 + |u|q) with 1 ≤ q ≤ n+2m

n−2m
for n > 2m, von Wahl

[76] and Luckhaus [44] proved that there is a classical solution u ∈ C2m,γ(Ω) ∩
Cm−1

0 (Ω). In [29] and [23] the growth condition for g was weakened. Applying [29,
Theorem 1], one finds that with some growth condition for g(x, t) with t ≤ 0 and
arbitrarily strong growth of g(x, t) with t ≥ 0, or vice versa, there is a solution
u ∈ C2m,γ(Ω) ∩ Wm,2

0 (Ω). It is well known and can be proven using the Sobolev
imbedding Wm,2

0 (Ω) ↪→ L∞(Ω) that for n < 2m the sufficiently monotone function
g may have an arbitrary power type growth, and one still finds a classical solution
u ∈ C2m,γ(Ω)∩Cm−1

0 (Ω). So, in the last part of this thesis, we assume that n ≥ 2m
and using the same assumptions for the semilinear term g as in [29], we want to
improve the result in [29] and [24] to find solutions which take on the boundary
values in classical sense. To prove this result we use the Green function estimates
described in (1.3). So, surprisingly the replacement of the maximum principle by
the Green function estimates leads to an improved result for a nonlinear problem as
well.
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CHAPTER 1. INTRODUCTION

In the whole thesis, the known estimate from below and above for the polyhar-
monic Green function in (1.3), see also [26] and [53], will be an important argument.
We use it not only for the proof of the existence of classical solutions to (1.8) but
also for the proof of positivity preserving of the weighted problem in (1.6). So in
this thesis, the Green function estimates will appear in many proofs and therefore
represent a link between the individual topics for higher order problems.

The main theorems of this thesis are generalizations of the results in [58] or
contained in [59] and can be found in the next section. After that, some examples and
known positivity results for the clamped plate problem are presented. In Chapter 2
the preliminaries like the maximum principle, Krein-Rutman’s theorem and Sobolev
imbeddings, and the notation that will be used are presented. In Chapter 3 we prove
the converse to the Krein-Rutman theorem that we mentioned above. This theorem
provides sufficient conditions for the eigenfunctions and eigenvalues of the weighted
boundary value problem so that (1.6) is positivity preserving for λ in some interval.
In joint work with Guido Sweers, this result was first proven for m = 2 without a
weight function and can be found in [57]. We will then construct a problem that
satisfies these conditions, i.e. we find a weight function such that an eigenvalue of the
weighted eigenvalue problem becomes simple and the corresponding eigenfunction
is positive. In Chapter 4 we construct an appropriate weight function such that
we gain a strongly positive eigenfunction. Since we want to apply the results of
Chapter 3, we have to find a small perturbation of this weight function to obtain
simplicity of the eigenvalue which corresponds to the positive eigenfunction. After
that, in Chapter 5 we consider special cases like the weighted biharmonic Dirichlet
problem or the polyharmonic problem on an ellipsoid. In Chapter 6 we investigate a
semilinear Dirichlet problem of higher order. Using estimates for the Green function
of the polyharmonic Dirichlet problem, regularity results and an approximation
with bounded functions for the semilinear term g, we may find uniform bounds for
weak solutions to the changed problem. Then, we can prove classical solvability of
the original semilinear problem and expand known results proven by Grunau and
Sweers in [29], where the authors apply local maximum principles instead of global
estimates.

1.2 Main results

1.2.1 Positivity preserving property of a weighted Dirichlet
problem

We will use the existence of a positive eigenfunction to prove positivity preserving
of a weighted problem. More specifically, in Chapter 3 we consider problem (1.6)
and the corresponding weighted eigenvalue problem{

(−∆)m ϕ = λwϕ in Ω,

ϕ = ∂
∂ν
ϕ = · · · =

(
∂
∂ν

)m−1
ϕ = 0 on ∂Ω,

(1.10)

with m ≥ 2 and show a converse to Krein-Rutman’s result:
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1.2. MAIN RESULTS

If there is a simple eigenvalue with strongly positive eigenfunction, that
is ϕ(x) ≥ c d(x, ∂Ω)m, to the weighted problem (1.10), then there ex-
ists an interval, such that for all λ in that interval (1.6) is positivity
preserving.

In [57] we have shown the result for m = 2 without a weight function, and in [58]
we have presented an alternative proof that includes a weight function.

Remark 1.2.1 We will note the eigenvalues and eigenfunctions of (1.10) as λi,m,w
and ϕi,m,w for i ∈ N+, where the eigenvalues are counted with their multiplicity, that
is 0 < λ1,m,w ≤ λ2,m,w ≤ . . . . If we write λi,m,1 respectively ϕi,m,1, then we refer
to the eigenvalues and eigenfunctions to (1.5), that is the polyharmonic eigenvalue
problem without a weight function.

There are domains where there is no simple eigenvalue with positive eigenfunction
to problem (1.5), or where it is difficult to prove that this holds true. Therefore,
we derive conditions for Ω and a suitable positive weight function w ∈ C0,γ(Ω) with
γ ∈ (0, 1), such that we find a simple eigenvalue with positive eigenfunction to the
weighted eigenvalue problem.

Let m ∈ N with m ≥ 2. Before we introduce sufficient conditions for a positivity
preserving property, we give the following three definitions:

Definition 1.2.2 We call a function u ∈ C2m,γ(Ω) with γ ∈ (0, 1) a m-polyharmonic
Dirichlet supersolution if{

(−∆)mu ≥ 0 in Ω,

u = ∂
∂ν
u = · · · =

(
∂
∂ν

)m−1
u = 0 on ∂Ω.

Definition 1.2.3 1. We call a function u ∈ Ck,γ(Ω) with m ≤ k ∈ N and
γ ∈ (0, 1) strongly positive if there exists a constant CSP > 0 such that

u(x) ≥ CSP d(x, ∂Ω)m for all x ∈ Ω. (1.11)

2. We call a function u ∈ C0,γ(Ω) with γ ∈ (0, 1) strictly positive if

min
x∈Ω

u(x) > 0.

Remark 1.2.4 We say that a function u ∈ Wm,2(Ω) is strongly positive if there is
a constant CSP > 0 for which (1.11) is satisfied for almost every x ∈ Ω.

In the following we consider weak solutions in Wm,2
0 (Ω) := C∞c (Ω)

‖·‖Wm,2(Ω) to
problem (1.6).

Definition 1.2.5 A function u ∈ Wm,2
0 (Ω) is a weak solution to (1.6) if for all

v ∈ Wm,2
0 (Ω)

∫
Ω

(
∆

m
2 u∆

m
2 v − λwuv − fv

)
dx = 0 for even m ∈ N+,∫

Ω

(
∇∆

m−1
2 u · ∇∆

m−1
2 v − λwuv − fv

)
dx = 0 for odd m ∈ N+.

(1.12)
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CHAPTER 1. INTRODUCTION

In the following chapters we assume throughout that Condition A and Condition
B are satisfied:

Condition A Suppose that Ω ⊂ Rn (n ≥ 2) is a bounded domain and such that
∂Ω ∈ C2m,γ for some γ ∈ (0, 1).

Condition B Suppose that there is a function u0 ∈ C2m,γ(Ω) which is a strongly
positive, m-polyharmonic Dirichlet supersolution and such that there is m0 ∈ N with
0 ≤ m0 ≤ m and a strictly positive function f0 ∈ C0,γ(Ω) such that

(−∆)mu0(x) = d(x, ∂Ω)m0f0(x) for all x ∈ Ω. (1.13)

We use Condition A to be able to apply standard results such as regularity results
from Agmon, Douglis and Nirenberg. However, Condition B is a restriction since
it is not known whether it is satisfied for all smooth domains and all m ∈ N with
m > 2.

Remark 1.2.6 Since the distance function d(·, ∂Ω) is Lipschitz-continuous on Ω,
we find that d(·, ∂Ω)m0f0 ∈ C0,γ(Ω).

Remark 1.2.7 For smooth domains and m = 2 one possibility to find a function u0

that satisfies Condition B is to consider a suitable Dirichlet problem for the Poisson
equation. Indeed, Condition B is satisfied if we find a function e ∈ C4,γ(Ω)\{0} with{

−∆e ≥ 0 in Ω,

e = 0 on Ω,
(1.14)

such that e2 is a positive biharmonic Dirichlet supersolution in C4,γ(Ω) with (−∆)2e2

strictly positive. Then using the maximum principle for the Laplacian, it follows that
e > 0 in Ω, and with Hopf’s boundary point lemma [22, Section 3.2] and the mean
value theorem we obtain constants c1, c2 > 0 such that

c1d(x, ∂Ω) ≤ e(x) ≤ c2d(x, ∂Ω) for all x ∈ Ω, (1.15)

so e2(x) ≥ c2
1d(x, ∂Ω)2. We will use this result in Section 5.1 to show a positivity

preserving property for a weighted Dirichlet-bilaplace problem. For m = 2 one may
use −∆e = 1 in (1.14) and one finds the desired result. For m > 2 we do not
necessarily get (−∆)mem ≥ 0 for all smooth domains, see Remark 5.1.1.

The following theorems can be found in [58, Theorem 2, Corollary 4] for m = 2. In
the case m = 2 there is always a function on smooth and bounded domains that
satisfies (1.13), as we will see in Chapter 5. Therefore, the following version differs
from [58] by the additional assumption in Condition B. The proof can be found in
Chapter 4.

Theorem 1.2.8 Suppose that Ω satisfies Condition A. Moreover, let Condition B be
fulfilled. Then, there exists a strictly positive weight function w ∈ C0,γ(Ω) such that
the eigenvalue problem (1.10) has the simple eigenvalue λp,m,w = 1 with a strongly
positive eigenfunction ϕp,m,w ∈ C2m,γ

(
Ω
)
∩ Cm−1

0 (Ω).
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1.2. MAIN RESULTS

Remark 1.2.9 The simple eigenvalue with strongly positive eigenfunctions does not
have to be the first one. In [14], Duffin and coauthors showed that for an annulus
with small inner radius the simple eigenvalue with positive eigenfunction will be the
third one. Therefore, we assume that it is the p-th eigenvalue.

Using Theorem 1.2.8 and the results in Chapter 3 for a converse of the Krein-
Rutman theorem, we find a positivity preserving property:

Theorem 1.2.10 (PPP) Suppose that Conditions A and B are fulfilled. Let w
and λp,m,w = 1 be as in Theorem 1.2.8. Then there is λc < λp,m,w such that for
0 ≤ f ∈ L2 (Ω) with f nontrivial and u the weak solution to (1.6):

1. If λ ∈ [λc, λp,m,w), then u > 0 in Ω.

2. If λ ∈ (λc, λp,m,w), then a Hopf type result holds: There exists cf,λ > 0 such
that

u (x) ≥ cf,λ d (x, ∂Ω)m for almost every x ∈ Ω.

Moreover, if λp,m,w is not the first eigenvalue of (1.10), then it holds

λc ≥ λp−1,m,w +
λp,m,w − λp−1,m,w

2
. (1.16)

Remark 1.2.11 For the unweighted second-order problem, i.e. m = 1 and w ≡ 1,
one gets positivity preserving for all λ ∈ (−∞, λ1,1,1). For higher order problems
(m ≥ 2) there is a lower bound for λc, since for λ� 0 problem (1.4) and (1.6) are
not positivity preserving, see [30, Theorem 6.1, Lemma 6.3].

In one dimension with Ω = (0, 1), it is known that the fourth order problem
u′′′′ − λu = f in (0, 1),

u(0) = u′(0) = 0,

u(1) = u′(1) = 0

is positivity preserving if λ ∈ [λc, λ1,2,1) with λ1,2,1 the principle eigenvalue to the
biharmonic Dirichlet problem and

• λ1,2,1 = (2µ1)4 with µ1 the first positive solution of tan(µ) + tanh(µ) = 0;

• λc = −4µ4
c with µc the first positive solution of tan(µ) = tanh(µ).

This result can be found in [68, Lemma 2.3] and [75, Theorem 1.2].

One notices in Chapter 3 that using similar arguments as in the proof of Theorem
1.2.10, one finds a result for λ in a right neighborhood of a simple eigenvalue with
strongly positive eigenfunction. For sufficiently smooth right-hand side f one can
show a reverse result for the sign of the solution to problem (1.6). The result that
a right-hand side f 	 0 implies u < 0 is called anti-maximum principle (AMP) and
can be found in the next theorem.

9



CHAPTER 1. INTRODUCTION

There are some results in the literature about anti-maximum principles for prob-
lem (1.4), see [10], [11], [12] and [33]. Indeed, if we apply [10] to the second order
problem (1.4), i.e. m = 1, one finds for right-hand sides 0 ≤ f ∈ Lq(Ω) with q > n a
value δf > 0 such that the solution u to the boundary value problem is negative for
λ ∈ (λ1,1,1, λ1,1,1 + δf ). The results in [12] and [33] imply for m = 1 and Ω arbitrary
but smooth or m ≥ 2 with Ω a ball: For 0 ≤ f ∈ Lq(Ω) with q > max

{
1, n

m

}
there exists a small right neighborhood of the first eigenvalue, such that for λ in this
neighborhood, the solution to (1.4) is negative. In [12] and [33] only Ω = BR(0) is
investigated for m ≥ 2 since the existence of a simple first eigenvalue with corre-
sponding positive eigenfunction is used. As in this thesis, the authors in [33] also
make use of estimates for the Green function. So, if we assume that the weighted
problem in (1.6) has a simple eigenvalue with positive eigenfunction, then we find a
supplement of the known results using similar arguments.

Theorem 1.2.12 (AMP) Suppose that Conditions A and B are fulfilled. Let w
and λp,m,w = 1 be as in Theorem 1.2.8. Moreover, let 0 ≤ f ∈ Lq(Ω) with f
nontrivial and q > max{1, n

m
}. Then, there exists δf > 0 such that for all λ ∈

(λp,m,w, λp,m,w + δf ) the following holds: There is a constant cf,λ,q > 0 such that the
solution um,λ,w ∈ W 2m,q(Ω) ∩Wm,q

0 (Ω) of (1.6) satisfies

um,λ,w(x) ≤ −cf,λ,qd(x, ∂Ω)m for all x ∈ Ω.

Remark 1.2.13 We notice that for f ∈ Lq(Ω) with q > max{1, n
m
} and λ ∈

(λp,m,w, λp,m,w + δf ), the weak solution of (1.6) is an element of Cm(Ω). So, the
solution takes on the boundary conditions in classical sense. Moreover we note that
δf depends on the right-hand side f , and we do not get a uniform result as in The-
orem 1.2.10.

Remark 1.2.14 For n > m it is shown in [66] for m = 1 and in [33] for m ≥ 1
that the condition q > n

m
in Theorem 1.2.12 is sharp. It is proven that for q = n

m

with Ω = BR(0) or m = 1 one finds a function 0 < f ∈ Lq(Ω) such that for all
λ > λ1,m,1 the solution to problem (1.4) changes sign.

Fortunately, using the results in Theorem 1.2.10 and 1.2.12, we may find infor-
mations about positivity of solutions to some higher order problems. However, an
open problem is whether Condition B is satisfied for all smooth domains and all
m ∈ N with m > 2.

1.2.2 Classical solutions to some semilinear Dirichlet prob-
lems

For second order problems, such as the Poisson-Dirichlet problem, the positivity
preserving property follows directly from the maximum principle. Moreover, the
existence of a classical solution to (1.8) with m = 1 can be shown using the maximum
principle and other properties that are important features of second order problems.
For higher order problems these results cannot be used.
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An interesting and open problem is whether there is a classical solution to prob-
lem (1.8) for any Hölder continuous function g that satisfies the sign condition (1.9).
Unforunately, we cannot answer this general question, but we can improve some re-
sults proven by Grunau respectively Grunau and Sweers, see [24], [23] and [29].
They showed that with additional growth conditions for g there exists a solution
u ∈ C2m,γ(Ω) ∩Wm,2

0 (Ω) for problem (1.8).
The following theorem and remark about classical solvability of (1.8) are con-

tained in [59].

Theorem 1.2.15 Let n ≥ 2m, Condition A be satisfied, f ∈ C0,γ(Ω) and g ∈
C0,γ(Ω× R) satisfies (1.9) and one of the following growth conditions:

• n ∈ [2m, 6m) and σ ∈ [0,∞) exists with (n− 2m)σ < 4m such that for some
c1 ∈ R+, it holds that

g(x, t) ≤ c1(1 + tσ) for all x ∈ Ω, t > 0; (1.17)

• or n ≥ 6m and for some constant c1 ∈ R+ it holds that

g(x, t) ≤ c1(1 + t) for all x ∈ Ω, t > 0; (1.18)

• or n > 2m and σ, τ ∈ [0,∞) exist with τ ≥ n+2m
n−2m

and σ < 4m
n−2m

+ 1
τ
n+2m
n−2m

such
that for some c1, c2 ∈ R+ it holds

−c2(1 + |t|τ ) ≤ g(x, t) ≤ c1(1 + |t|σ), for all x ∈ Ω, t ∈ R.

Then, the semilinear Dirichlet problem in (1.8) has a classical solution u ∈ C2m,γ(Ω)∩
Cm−1

0 (Ω).

In Theorem 1.2.15, the value of σ determines the growth condition from above
and τ determines the growth from below. However, they are interchangeable. So,
instead of a growth condition from above in (1.17) and (1.18), we could have re-
stricted the growth of g from below. The permissible growth conditions are displayed
in Figure 1.1.

Remark 1.2.16 To prove the main result, we use regularity estimates that follow
from known estimates for the Green operator of the polyharmonic Dirichlet problem,
that is problem (1.4) with λ = 0, approximation of the nonlinear term g with bounded
functions and Sobolev imbeddings. However, these results may also be applied to a
more general differential operator than (−∆)m with additional lower order terms,
see also [53, Theorem 0.1]. For the Green function estimates the leading term has
to be (−∆)m. So, we may consider the following problem and find a similar result:

(−∆)mu(x) +
m−1∑̀

=0

∑
|α|=|β|=`

Dβ
(
a`α,β(x)Dαu(x)

)
+ g(x, u(x)) = f(x) for x ∈ Ω,

u(x) = ∂
∂ν
u(x) = · · · =

(
∂
∂ν

)m−1
u(x) = 0 for x ∈ ∂Ω,

(1.19)
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0
0

σ → ∞

τ ↑

∞

n+2m
n−2m

4m
n−2m

n+2m
n−2m

4m
n−2m

0
0

σ → ∞

τ ↑

∞

1 n+2m
n−2m

1

n+2m
n−2m

Figure 1.1: Range of admissable growth rates for some n ∈ (2m, 6m] (left) and some
n > 6m (right); a similar picture, that was created by Guido Sweers, appears in [59].

where a`α,β are sufficiently smooth, for example a`α,β ∈ Cm−1,γ(Ω) and symmetric,

that is a`α,β = a`β,α. Moreover, we assume that there is a constant K > 0 such that

‖a`α,β‖Cm−1,γ(Ω) ≤ K

and that the differential operator is coercive, that is

∫
Ω

(−∆)mu(x) +
m−1∑
`=0

∑
|α|=|β|=`

Dβ
(
a`α,β(x)Dαu(x)

)u(x)dx ≥ C‖u‖2
Wm,2(Ω)

for all u ∈ C2m(Ω) ∩Wm,2
0 (Ω).

The proof of this theorem can be found in Chapter 6 and in Sections 4 and 5 of
[59].

1.3 Some examples for the clamped plate problem

In this section we recall some known counterexamples for positivity preserving of the
clamped plate problem, that is problem (1.1). Some paragraphs of this summary
can also be found in [57, Section 3], and the content serves as a motivation why we
have to look at a changed fourth-order problem or more explicitly, why we have to
add a weight function to problem (1.4) to get a positivity preserving property.

There are several ways to prove that positivity preserving does not hold. One can
show that the first eigenfunction is sign-changing, see also [67] for some examples.
Then it follows by the Krein-Rutman theorem that the problem is not positivity
preserving. Another way is to show that the Green function is not positive, or to
construct an explicit positive right-hand side with sign-changing solution.
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1.3. SOME EXAMPLES FOR THE CLAMPED PLATE PROBLEM

Annulus The annulus with inner radius ε > 0 is defined as follows:

Aε := {x ∈ R2; ε < |x| < 1}.

Around 1907, Hadamard considered problem (1.1) on Ω = Aε, see [36]. He men-
tioned that positivity preserving cannot be true for the annulus, but he did not
provide a detailed proof. Nakai and Sario proved in [45] that the Green function
for the clamped plate problem is sign-changing for small inner radii. Moreover,

0.001 0.002

480

490

500

510

520

0.05 0.10 0.15 0.20

600

800

1000

1200

ε→

λ ↑

ε→

λ ↑

ε
∗

=
0.00131...

Q
QQk

Figure 1.2: Graphs of the first eigenvalues for the annulus Aε =
{
x ∈ R2; ε < |x| < 1

}
as

a function of ε. In blue ε 7→ λp,2,1 and in dashed red ε 7→ min{λ is eigenvalue of (1.10);λ 6=
λp,2,1}. At ε∗ the eigenvalues cross. The section around the crossing is enlarged in the
rectangle (first published in [57] and created by Guido Sweers).

Coffman, Duffin and Shaffer [14, 18] showed that for small inner radii the positive
eigenfunction is not the first one. Numerically, they found the value ε∗ = 0.00131...
such that for ε > ε∗ the positive eigenfunction corresponds to the first eigenvalue.
For ε < ε∗ it corresponds to the third one. An explicit computation of the eigenval-
ues can be found in [71]. Moreover, Englǐs and Peetre [19] proved in 1996 that the
Green function for Aε is sign-changing, even if for large inner radii the first eigen-
function is positive and the corresponding eigenvalue is simple. Hence, a positivity
preserving property does not hold true for problem (1.1). Using the information
that one finds an eigenvalue with positive eigenfunction, the question arises whether
one may prove a positivity preserving property for a weighted problem.

Let λ1,2,1 be the smallest eigenvalue to the eigenvalue problem (1.5) for Ω = Aε,
λ2,2,1 the second and λ3,2,1 the third one. We will see that there exists λε > 0 with

• λε ∈ (0, λ1,2,1) such that (1.4) is positivity preserving for λ ∈ [λε, λ1,2,1) and
ε ∈ (ε∗, 1),

• λε ∈ (λ1,2,1, λ3,2,1) = (λ2,2,1, λ3,2,1) such that (1.4) is positivity preserving for
λ ∈ [λε, λ3,2,1) and ε ∈ (0, ε∗),

• λε ∈ (0, 1) such that (1.6) is positivity preserving for λ ∈ [λε, 1), ε = ε∗ and a
sufficiently chosen positive weight function.
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CHAPTER 1. INTRODUCTION

For the three dimensional variant of the annulus, the spherical shell, numerical
approximations of the first eigenfunctions and the assumption that the second one
can be written as x 7→ x1 ϕ(|x|) show that the first one is positive for all inner radii.
So in that case, an additional weight function is not needed, see [57, Appendix].

Limaçon of Pascal One may identify R2 with C and define the set

Ωa = fa(B1(0)) with fa : C→ C, fa(z) = z + az2

for a ∈
[
0, 1

2

]
, where Ω0 is the unit ball and Ω 1

2
is a cardioid, see Figure 1.3.

Hadamard constructed an explicit Green function for the Limaçon of Pascal Ga

[35, Supplement]. However, he conjectured that it is positive for all limaçons.
Dall’Acqua and Sweers proved in [15] that this conjecture is not true. They showed
that Ga(x, y) ≥ 0 for all (x, y) ∈ Ωa×Ωa if and only if a ∈

[
0, 1

6

√
6
]
, that is if Ga is

not far from a ball. In addition, no eigenvalues or eigenfunctions are known. But we
will still find that Condition B is satisfied, and thus a suitable fourth order Dirichlet
problem with a positivity preserving property in Ωa can be found for all a ∈

[
0, 1

2

)
.

The case where a = 1
2

has to be excluded since Ω 1
2

does not fulfill Condition A.

Figure 1.3: Limaçons for a = 1
4 ,

1
3 ,
√

6
6 ,

1
2 .

Ellipse For the bilaplace and trilaplace Dirichlet problem one can consider some
eccentric ellipse, see [69, 70]

Ω = {(x, y) ∈ Ω;x2 + 144y2 < 1} (1.20)

and find with

u(x, y) = (1− x2 − 144y2)m(1− x+ 200(1− x)2 − 21y2 − ε) (1.21)

and small ε > 0 a sign-changing solution to (1.4) with λ = 0 and (−∆)mu ≥ 0 for
m ∈ {2, 3}, see Figure 1.3 for m = 3 and ε = 0.0001. So even if we investigate
convex and smooth domains, we do not obtain a positivity preserving property. In
Chapter 5 we prove that we can find a weight function w ∈ C0,γ(Ω) for any ellipsoid,
even in higher dimensions, and any m ∈ N+ such that positivity is preserved for
problem (1.6).

There are more examples for problem (1.1) such that positivity is not preserved.
It is also surprising that it is not known which conditions the domain or the differ-
ential operator have to fulfill such that a positivity preserving property for (1.1) on
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1.3. SOME EXAMPLES FOR THE CLAMPED PLATE PROBLEM

Figure 1.4: Left: u as defined in (1.21) with m = 3 and ε = 0.0001; right: enlarged
graph of u for (x, y) in a neighborhood of (1, 0) with positive values of u in green and
negative values in red. A similar picture can be found in [69].

Ω is valid. For this reason, it is interesting to investigate how we can change the
problem to be able to make more precise statements.
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Chapter 2

Preliminaries

In this chapter we present some notations and recall important results such as the
existence of a Green function for problem (1.6), the maximum principle, Hopf’s
boundary point lemma or Sobolev imbeddings. We rely on these results throughout
the following chapters. In addition, the content serves for a better understanding of
the thesis and as background information.

2.1 Basic notations

In this section we list some notations that are used throughout the thesis. Let
N = {0, 1, 2, . . . } be the set of natural numbers including 0 and N+ = N\{0}.

By Ω ⊂ Rn we denote a bounded domain as mentioned in Condition A. A set in
Rn is a domain whenever it is open and connected. For short notation we use

d(x) := d(x, ∂Ω) = inf
y∈∂Ω
|x− y|

for the distance to the boundary and

diam(Ω) := sup
x,y∈Ω

|x− y|

for the diameter of Ω.

The space Ck,γ(Ω) is the space of all k-th times continuously differentiable func-
tions such that all k-th partial derivatives are Hölder continuous with Hölder expo-
nent γ ∈ (0, 1). The space (Ck,γ(Ω), ‖ · ‖Ck,γ(Ω)) is a Banach space, where

‖u‖Ck,γ(Ω) =
∑
|α|≤k

sup
x∈Ω

|Dαu(x)|+
∑
|α|=k

sup
x6=y∈Ω

|Dαu(x)−Dαu(y)|
|x− y|γ

.

When we write Ck
0 (Ω), we mean all functions u ∈ Ck(Ω) such that Dαu = 0 on ∂Ω

for all α ∈ Nn with |α| ∈ {0, . . . , k}. One finds that (Ck
0 (Ω), ‖ · ‖Ck(Ω)) is a Banach

space since it is a closed subspace of (Ck(Ω), ‖ · ‖Ck(Ω)).

The space Lp(Ω) for p ≥ 1 denotes the space of measurable functions such
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that the p-th power of the absolute value is Lebesgue integrable. Functions which
agree almost everywhere are identified. By W k,p(Ω) we denote the Sobolev space
of functions in Lp(Ω) such that all weak derivatives up to order k exist and are
elements of Lp(Ω). The space (W k,p(Ω), ‖ · ‖Wk,p(Ω)) is a Banach space with norm

‖u‖Wk,p(Ω) =

∑
|α|≤k

‖Dαu‖pLp(Ω)

 1
p

.

Also, we will use the Sobolev space W k,p
0 (Ω) which is defined as the closure of C∞c (Ω),

that is the space of all smooth functions with compact support, in W k,p(Ω). For
functions u ∈ Ck(Ω) or u ∈ W k,p(Ω) with k ∈ N+ we write for (weak) derivatives of
u

Dαu =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn
u for α ∈ Nn with |α| ≤ k

and

Dlu =

{
∂

∂xi1

∂

∂xi2
· · · ∂

∂xil
u

}
i1,i2,...,il∈{1,...,n}

for l ∈ N+ with l ≤ k.

A special case is the gradient ∇u := ( ∂
∂x1
u, . . . , ∂

∂xn
u)> = D1u and the Laplace

operator ∆u :=

((
∂
∂x1

)2

+
(

∂
∂x2

)2

+ · · ·+
(

∂
∂xn

)2
)
u =

∑n
i=1 D

2eiu, where ei are

the standard unit vectors in Rn.

Moreover, for normed vector spaces X, Y we write BL(X, Y ) for the set of all
linear and bounded operators from X into Y . The space (BL(X, Y ), ‖ · ‖BL(X,Y )) is
a normed space where ‖ · ‖BL(X,Y ) is defined by

‖T‖BL(X,Y ) = sup {‖Tv‖Y ; v ∈ X with ‖v‖X ≤ 1} .

Also, we use BL(X) := BL(X,X) for short notation, and X∗ := BL(X, (R, | · |)) is
the dual space of X.

In the following chapters we will use estimates for operators and for kernels of
integral operators. Therefore, we use the following notation, see also [58, Notation
12]: If an operator is defined through a kernel function, we use capital letters for the
kernel function and script letters for the integral operator, unless otherwise stated.
For example, let A : L2(Ω) → L2(Ω) be an integral operator defined through a
kernel function, that is

(Af) (x) =

∫
Ω

A (x, y) f(y)dy. (2.1)

For A,B : L2 (Ω)→ L2 (Ω) we define A ≥ B whenever for all f ∈ L2 (Ω) with f ≥ 0
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almost everywhere it holds that

(Af) (x) ≥ (Bf) (x) for almost every x ∈ Ω.

Obviously, if A,B are defined through kernels A(·, ·) and B(·, ·) as in (2.1), and
A(x, y) ≥ B(x, y) holds for all x, y ∈ Ω, then one also gets A ≥ B. In this thesis,
we only consider kernels that are continuous or continuous except for singularities
on the diagonal {(x, x);x ∈ Ω}. Therefore, we may also use that A ≥ B implies
A(x, y) ≥ B(x, y) for all x, y ∈ Ω with x 6= y.

2.2 Green function for the polyharmonic Dirich-

let problem

In this section we recall some definitions of the polyharmonic Green function and
the Green function for the weighted problem.

One uses the fundamental solution for the polyharmonic operator (−∆)m, [21,
p. 48]:

Fn,m(x) =


2Γ(n/2−m)

nbn4mΓ(n/2)(m−1)!
|x|2m−n if n > 2m or n is odd,

(−1)m−n/2

nbn4m−1Γ(n/2)(m−n/2)!(m−1)!
|x|2m−n(− log(|x|)) if n ≤ 2m is even,

where

bn =
π
n
2

Γ
(
n
2

+ 1
) (2.2)

is the volume of the n-dimensional unit ball. For bounded and smooth domains
Ω ⊂ Rn and f in a suitable functional space one finds the solution to (1.4) with
λ = 0 through a Green function. Therefore, we recall the following definition [21,
Definition 2.26]:

Definition 2.2.1 A Green function for the polyharmonic Dirichlet problem in (1.4)
with λ = 0 is a function (x, y) 7→ Gm,0,1(x, y) : Ω× Ω→ R ∪ {∞} such that

1. x 7→ Gm,0,1(x, y) − Fm,n(x − y) ∈ C2m(Ω) ∩ Cm−1(Ω) for all y ∈ Ω if defined
suitably for x = y,

2. (−∆x)
m(Gm,0,1(x, y) − Fm,n(x − y)) = 0 for all (x, y) ∈ Ω2 if defined suitably

for x = y,

3. Dα
xGm,0,1(x, y) = 0 for all (x, y) ∈ ∂Ω× Ω and |α| ≤ m− 1.

The weak solution to (1.4) with λ = 0 and f ∈ L2(Ω) can then be written as

u(x) =

∫
Ω

Gm,0,1(x, y)f(y)dy.
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Remark 2.2.2 As mentioned in the introduction, the polyharmonic Green function
for the ball Ω = B1(0) is known, see [21, Lemma 2.27]:

Gm,0,1(x, y) = `n,m|x− y|2m−n
∫ ||x|y− x

|x| |/|x−y|

1

(s2 − 1)m−1s1−nds,

where the positive constant `n,m is defined by

`m,n =
1

nbn4m−1((m− 1)!)2
.

This function is positive, so the polyharmonic problem in (1.4) is positivity preserv-
ing.

Remark 2.2.3 The positivity of the fundamental solution plays an important role
in the entire thesis. If the leading order part of the differential operator is not a
product of second order operators, then it is possible that the associated fundamental
solution changes sign, see [27]. Therefore, there exists no direct generalization of
the results in this thesis to any 2m-order Dirichlet problem.

Let λ1,m,w be the first eigenvalue of (1.10). In his PhD Thesis, Pulst showed
the existence and described the construction of a Green function for (1.6) with
λ < λ1,m,w and strictly positive Hölder continuous weight function w which has the
following properties [53, Proposition 2.1]:

1. x 7→ Gm,λ,w(x, y) ∈ L1(Ω) ∩ C2m,γ(Ω\{y});

2.
(
∂
∂ν

)j
x
Gm,λ,w(x, y)|∂Ω = 0 for j = 0, . . . ,m− 1;

3. Gm,λ,w(x, y) = Gm,λ,w(y, x) for x 6= y;

4. For all ϕ ∈ C2m(Ω) with
(
∂
∂ν

)j
ϕ|∂Ω = 0 for j = 0, . . . ,m − 1 one has the

representation formula

ϕ(x) =

∫
Ω

((−∆)mϕ(y)− λw(y)ϕ(y))Gm,λ,w(x, y)dy

=:
(
G̃m,λ,w ((−∆)mϕ− λwϕ)

)
(x). (2.3)

Hence, for λ < λ1,m,w we find that for f ∈ C0,γ(Ω) there is a pointwise defined
kernel function, and the solution um,λ,w to (1.6) is well-defined through

um,λ,w(x) =
(
G̃m,λ,wf

)
(x) =

∫
Ω

Gm,λ,w(x, y)f(y)dy. (2.4)

The operator G̃m,λ,w can be extended on f ∈ L2(Ω), and one notices that the integral
operator in (2.4) is well-defined for all f ∈ L2(Ω). For λ > λ1,m,w not a weighted
eigenvalue, similar arguments as in [21, Section 4.4] and [53, Section 2.2] yield a
pointwise defined Green function for problem (1.6).

19



CHAPTER 2. PRELIMINARIES

In this thesis we will use the following slightly modified definition of the Green
operator:

Definition 2.2.4 For w ∈ C0,γ(Ω) and strictly positive, we use the notation

fw = f
w
. (2.5)

Let Gm,λ,w denote the Green function and Gm,λ,w the Green operator for{
((−∆)m − λw)u = f in Ω,

u = ∂
∂ν
u = · · · =

(
∂
∂ν

)m−1
u = 0 on ∂Ω,

(2.6)

in the sense that

um,λ,w(x) =

∫
Ω

Gm,λ,w(x, y)f(y)dy = (Gm,λ,wfw)(x) (2.7)

solves (2.6) if defined. By Gm,λ,1 we mean the Green function for (2.6) without a
weight function, i.e. w ≡ 1.

Remark 2.2.5 We notice that for λ = 0 we find Gm,0,w = Gm,0,1(w·), where Gm,0,1 is
the polyharmonic Green operator. Also, this definition corresponds to the definition
of Pulst in (2.3) if w ≡ 1. If w 6≡ 1, then Gm,λ,wf = G̃m,λ,w(wf) for all f ∈ L2(Ω). In
the following we will derive estimates for the Green function Gm,λ,w using estimates
for the corresponding Green operator Gm,λ,w. Since the functions f and fw differ
only by the additional weight function, which is positive and bounded, the estimates
for Gm,λ,w that we prove in the next chapter can be transferred to the Green function
Gm,λ,w.

Remark 2.2.6 The reason why we apply Gm,λ,w to fw instead of f is that in Section
2.6, we draw conclusions about the eigenvalues and eigenfunctions of the operator
1
w

(−∆)m and derive these results with standard arguments. Actually, the operator
Gm,λ,w is the solution operator to problem{

1
w

(−∆)m u− λu = fw in Ω,

u = ∂
∂ν
u = · · · =

(
∂
∂ν

)m−1
u = 0 on ∂Ω.

Problem (1.6) is positivity preserving if and only if the corresponding Green
function is nonnegative. Hence, estimates for the Green function and Green operator
play a major role in the proof of Theorem 1.2.10 and Theorem 1.2.12. Using some
estimates for the polyharmonic Green function which can be found in [21, Theorem
4.6] for the ball and in [53, Theorem 4.1] for general smooth domains, we obtain
estimates for Gm,λ,w in Chapter 3.
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2.3. MAXIMUM PRINCIPLE AND HOPF’S BOUNDARY POINT LEMMA

2.3 The maximum principle and Hopf’s boundary

point lemma

When working with elliptic partial differential equations of second order, for example
the Poisson-Dirichlet problem, one finds a maximum principle. For{

−∆u = f in Ω,

u = ψ on ∂Ω,
(2.8)

that is [22, Theorems 2.2, 2.3]:

Theorem 2.3.1 (Strong maximum principle) Let Ω ⊂ Rn be a bounded do-
main. Suppose that u ∈ C2(Ω) ∩ C(Ω) is the solution to (2.8). Then one finds:

• If f ≤ 0 and there exists a point y ∈ Ω with u(y) = supx∈Ω u(x), then u is
constant.

• If f ≥ 0 and there exists a point y ∈ Ω with u(y) = infx∈Ω u(x), then u is
constant.

Theorem 2.3.2 (Weak maximum principle) Let Ω ⊂ Rn be a bounded domain.
Suppose that u ∈ C2(Ω) ∩ C(Ω) is the solution to (2.8). Then one finds:

• If f ≤ 0, then maxx∈Ω u(x) = maxx∈∂Ω u(x).

• If f ≥ 0, then minx∈Ω u(x) = minx∈∂Ω u(x).

So one finds for ψ ≡ 0 that a nonnegative and nontrivial right-hand side provides
a positive solution. Furthermore, we recall Hopf’s boundary point lemma which was
proven by Hopf in 1952 and can be found in [52, Theorem 2.7]:

Lemma 2.3.3 (Hopf’s boundary point lemma) Let Ω ⊂ Rn be a bounded do-
main. Let 0 ≤ u ∈ C2(Ω) satisfy (−∆)u ≥ 0 in Ω. Moreover, let u(x0) = 0 for some
x0 ∈ ∂Ω. Assume that x0 lies on the boundary of a ball B ⊂ Ω. If u is continuous
on Ω ∪ {x0} and if the outward directional derivative ∂

∂ν
u exists in x0, then u ≡ 0

or ∂
∂ν
u(x0) < 0.

One implication is that for a nonnegative and nontrivial right-hand side f and
zero Dirichlet boundary conditions the solution u to (2.8) is strongly positive, so
there exists a constant cf > 0, dependent on f , such that

u(x) ≥ cfd(x) for all x ∈ Ω. (2.9)

The inequality (2.9) can be made more precisely. Zhao proved in 1986 estimates for
the Green function for (2.8) with ψ ≡ 0, see [79] and [80]. These results imply

G1,0,1(x, y) ≥ c d(x)d(y),
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where c depends only on the domain. Therefore, we find for the solution to (2.8)
with ψ ≡ 0

u(x) =

∫
Ω

G1,0,1(x, y)f(y)dy ≥ c

(∫
Ω

f(y)d(y)dy

)
d(x).

This estimate can also be found in [8, Lemma 3.2] for smooth domains and f ∈
L∞(Ω). We already mentioned that the property about sign-preserving is often
called the maximum principle. Since we want to distinguish between this property
and Theorem 2.3.2, we introduce the following formal definition:

Definition 2.3.4 If problem (1.6) for m ∈ N+, w ∈ C0,γ(Ω) strictly positive and
λ ∈ R not a weighted eigenvalue fulfills the property that f ≥ 0 implies u ≥ 0, then
one says that it has the positivity preserving property.

Using the maximum principle for the Dirichlet-Poisson problem, one finds that
(1.6) has the positivity preserving property for m = 1, λ = 0 and w ≡ 1. For fourth
or higher order problems there is no maximum principle or positivity preserving
property for most domains.

2.4 The Krein-Rutman theorem

In Jentzsch’s article [38] one finds one of the first results that link positivity pre-
serving in one dimension of some integral operator with the simplicity of the first
eigenvalue and positivity of the corresponding eigenfunction. A generalized version
is the result from Krein and Rutman, see [42]. If one can prove a positivity preserv-
ing property for (1.6) with λ = 0, one can use the Krein-Rutman theorem to obtain
the existence of a simple first eigenvalue with positive eigenfunction. In order to
recall the result, we need the following two definitions, see [21, p. 63]:

Definition 2.4.1 Let (X, ‖ · ‖,≥) be an ordered Banach space. Then the set K =
{u ∈ X;u ≥ 0} is called the positive cone in X.

Definition 2.4.2 Let (X, ‖ · ‖,≥) be an ordered Banach space and set

|f | := inf{h ∈ X;h ≥ f and h ≥ −f}.

• (X, ‖ · ‖,≥) is called a Banach lattice if

f, g ∈ X implies inf{h ∈ X;h ≥ f and h ≥ g} ∈ X (2.10)

and

f, g ∈ X with |f | ≤ |g| implies ‖f‖ ≤ ‖g‖.

• A linear subspace A ⊂ X is called lattice ideal if

|f | ≤ |g| and g ∈ A implies f ∈ A.
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Remark 2.4.3 For the Banach spaces (C(Ω), ‖ · ‖C(Ω)) and (L2(Ω), ‖ · ‖L2(Ω)) with
the pointwise order f ≥ g iff f(x) ≥ g(x) for (almost) every x ∈ Ω, we may read
(2.10) as

f, g ∈ X implies max{f, g} ∈ X

and |f | = max{f, 0}+ max{−f, 0}.

There are many different versions of the Krein-Rutman theorem. Here, we want
to recall a generalized version which is a combination of the Krein-Rutman theorem
and a result of De Pagter, see [21, p. 63].

Theorem 2.4.4 (Krein-Rutman) Let X be a Banach lattice with dim(X) > 1
and let T : X → X be a linear operator satisfying the following three properties:

1. T is compact,

2. T is positive, which means that for the positive cone K ⊂ X we find T (K) ⊂ K,

3. T is irreducible, which means that {0} and X are the only closed lattice ideals
invariant under T .

Then, the spectral radius r(T ) of T is strictly positive and there exists an element
u ∈ K\{0} with Tu = r(T )u. Furthermore, the algebraic multiplicity of r(T ) is one,
all other eigenvalues λ satisfy |λ| < r(T ) and no other eigenfunction is positive.

Example 2.4.5 We can apply this theorem to problem (1.6) if the corresponding
Green function is positive in Ω× Ω\{(x, x);x ∈ Ω}. For X = L2(Ω) or X = C0(Ω)
we find that the solution operator, which can be expressed by the Green function as
the kernel function, is compact and irreducible, see [21, p. 61]. The irreducibility
follows from the assumption that the Green function is positive. For the Poisson-
Dirichlet problem we find a positive Green function on smooth domains. Therefore,
we get a positive first eigenvalue with corresponding positive eigenfunction in the
case of the second-order problem.

2.5 Sobolev imbedding

In the next chapter, we consider operators defined on Sobolev spaces and therefore
weak solutions of the weighted 2m-th order problem (1.6). However, we also want to
apply results for continuously differentiable functions like the mean value theorem.
So we have to be able to infer results in Sobolev spaces from results in Hölder spaces.
To this end, we will use the following Sobolev imbeddings [1, Theorem 4.12]:
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Theorem 2.5.1 Let Ω ⊂ Rn with n ∈ N+ be a bounded domain and ∂Ω ∈ C2m,γ.
Then there exist the following imbeddings for p ∈ [1,∞) and m ∈ N+:

i. for (m− 1)p < n < mp : W 2m,p(Ω) ↪→ Cm,µ(Ω) with 0 < µ ≤ m− n
p
,

ii. for n ≤ (m− 1)p : W 2m,p(Ω) ↪→ Cm,µ(Ω) with 0 < µ < 1,
iii. for n < 2mp : W 2m,p(Ω) ↪→ Lq(Ω) with p ≤ q ≤ p∗n :=∞,
iv. for n = 2mp : W 2m,p(Ω) ↪→ Lq(Ω) with p ≤ q < p∗n :=∞,
v. for n > 2mp : W 2m,p(Ω) ↪→ Lq(Ω) with p ≤ q ≤ p∗n := np

n−2mp
.

(2.11)

The imbeddings in (2.11) are implications of the well known Morrey and Gagliardo-
Sobolev-Nirenberg inequalities.

If we replace the inequality 0 < µ ≤ m − n
p

in i. by 0 < µ < m − n
p

and the
inequalities p ≤ q ≤ p∗n in iii. and v. by p ≤ q < p∗n, we get that the imbeddings in
(2.11) are even compact, see [1, Theorem 6.3].

When we use the imbedding X ↪→ Y with X, Y Hölder- or Sobolev spaces, then
we write it as

I : X ↪→ Y.

Which spaces X and Y are meant, when only I is written, is mentioned in each case
or is clear from the context.

2.6 The weighted setting

In this section we will present the weighted setting for problem (1.6). Therefore,
we describe some standard arguments for the existence of weak solutions and some
properties of the eigenfunctions and corresponding eigenvalues. To this end, we
follow the steps presented in [58] for m = 2 and adapt the setting to the general case.
We use the Hilbert space L2

w(Ω) := (L2(Ω), 〈·, ·〉L2
w(Ω)), where the scalar product is

defined by

〈u, v〉L2
w(Ω) :=

∫
Ω

u(x)v(x)w(x)dx for u, v ∈ L2(Ω).

This is equivalent to the standard inner product because w ∈ C0,γ(Ω) is bounded
from below and from above by positive constants. Since for all u ∈ C∞c (Ω) and
m ∈ N+ we find with partial integration∫

Ω

n∑
j1,j2,...,jm=1

(
∂

∂xj1

∂

∂xj2
. . .

∂

∂xjm
u(x)

)2

dx =

{ ∫
Ω

(∆
m
2 u(x))2dx for even m,∫

Ω
|∇∆

m−1
2 u(x)|2dx for odd m,

and C∞c (Ω) is dense in Wm,2
0 (Ω), it holds true for all u ∈ Wm,2

0 (Ω). Using this
calculation and the Poincaré-Friedrichs inequality, we obtain that the standard norm
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on Wm,2
0 (Ω), that is

‖u‖Wm,2(Ω) :=

∑
|α|≤m

‖Dαu‖2
L2(Ω)

 1
2

,

is equivalent to the norm

‖u‖m,λ :=


√
‖∆m

2 u‖2
L2(Ω) − λ〈u, u〉L2

w(Ω) for even m ∈ N+,√
‖|∇∆

m−1
2 u|‖2

L2(Ω) − λ〈u, u〉L2
w(Ω) for odd m ∈ N+,

for all λ ≤ 0. So, for λ ≤ 0 one gets that Wm,2
0 (Ω) is a Hilbert space with scalar

product

〈u, v〉λ,Wm,2
0 (Ω) :=


∫

Ω

(
∆

m
2 u∆

m
2 v − λwuv

)
dx for even m ∈ N+,∫

Ω

(
∇∆

m−1
2 u · ∇∆

m−1
2 v − λwuv

)
dx for odd m ∈ N+.

Using Riesz’ Representation Theorem, we find for every f ∈ L2(Ω) a weak solution
um,λ,w to (1.6). Applying results by Agmon-Douglis-Nirenberg, see [21, Theorems
2.19, 2.10], we find that um,λ,w ∈ W 2m,2(Ω) ∩Wm,2

0 (Ω).

The Green operator Gm,0,w : L2
w(Ω)→ W 2m,2(Ω) ∩Wm,2

0 (Ω) is a linear operator,
since we investigate a linear boundary value problem. Using the compact Sobolev
imbedding I : W 2m,2(Ω) ↪→ L2

w(Ω), one finds that I ◦ Gm,0,w : L2
w(Ω) → L2

w(Ω) is
compact and since Gm,0,w is an isomorphism, we obtain the inverse operator

Am,w : D(Am,w) ⊂ L2
w(Ω)→ L2

w(Ω)

defined by

D(Am,w) = W 2m,2(Ω) ∩Wm,2
0 (Ω) with Am,w =

1

w
(−∆)m.

Since I ◦ Gm,0,w is compact, the spectrum of Am,w is discrete, see [4, Theorem
9.9]. We also find that Am,w is selfadjoint since for m ∈ N+ even and u, v ∈
W 2m,2(Ω) ∩Wm,2

0 (Ω) we obtain

〈Am,wu, v〉L2
w(Ω) = 〈Am,1u, v〉L2(Ω) = (−1)m

∫
Ω

(∆mu(x)) v(x)dx

=

∫
Ω

(∆
m
2 u(x))(∆

m
2 v(x))dx = 〈u,Am,wv〉L2

w(Ω)

and analogously for m ∈ N+ odd. Since Am,w is also positive in L2
w(Ω), that is

〈Am,wu, u〉L2
w(Ω) = 〈Am,1u, u〉L2(Ω) > 0 for u 6≡ 0,
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and using the spectral theorem for self-adjoint operators with compact resolvent, see
[4, Theorem 10.12], one finds that the spectrum consists of countably many positive
real eigenvalues {λi,m,w}i∈N+ with

0 < λ1,m,w ≤ λ2,m,w ≤ · · · → ∞

and corresponding eigenfunctions {ϕi,m,w}i∈N+ ⊂ W 2m,2(Ω) ∩Wm,2
0 (Ω).

Remark 2.6.1 Using the Rayleigh quotient and applying the Poincaré-Friedrichs
inequality several times, one also sees that the first eigenvalue is positive.

Remark 2.6.2 Still assuming λ ≤ 0 and using Agmon-Douglis-Nirenberg results,
see [21, Theorems 2.19, 2.20], one finds that the restriction of Gm,λ,w to C0,γ(Ω) with
γ ∈ (0, 1) or Lq(Ω) with q ∈ (1,∞) are isomorphisms in the following way:

Gm,λ,w : C0,γ(Ω)→ C2m,γ(Ω) ∩ Cm−1
0 (Ω),

Gm,λ,w : Lq(Ω)→ W 2m,q(Ω) ∩Wm,q
0 (Ω).

Then one obtains with a bootstrapping argument and Sobolev imbeddings (2.11) that
for ∂Ω ∈ C2m,γ, the Wm,2

0 (Ω)-eigenfunctions are in C2m,γ(Ω) ∩ Cm−1
0 (Ω).

The eigenfunctions can be chosen such that they are normalised by

〈ϕi,m,w, ϕj,m,w〉L2
w(Ω) = δij, (2.12)

where δij is the Kronecker delta. By the Riesz-Schauder theorem, see [4, pp. 395,
409–410], we get that {ϕi,m,w}i∈N+ is a complete orthonormal system of eigenfunc-
tions in L2

w(Ω), such that for f ∈ L2
w(Ω) it holds that

f =
∞∑
i=1

ϕi,m,w〈ϕi,m,w, f〉L2
w(Ω), (2.13)

and for λ 6∈ {λi,m,w}i∈N+ we find

Gm,λ,wf =
∞∑
i=1

1

λi,m,w − λ
ϕi,m,w〈ϕi,m,w, f〉L2

w(Ω). (2.14)

This series converges when applied to some f ∈ L2(Ω) since (2.13) converges by
Bessel’s inequality, see [6, p. 87], and |λi,m,w − λ|−1 is bounded from above.

In the following chapter we will use the integral operators with kernel functions
d(x)md(y)m and ϕi,m,w(x)ϕi,m,w(y)w(y) to find estimates for Gm,λ,w.

Definition 2.6.3 1. The orthogonal projections Pi,m,w,Pj∗,m,w : L2(Ω)→ L2(Ω)
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onto the eigenspaces in L2
w(Ω) are defined by

(Pi,m,wv)(x) := ϕi,m,w(x)

∫
Ω

ϕi,m,w(y) v(y)w(y)dy for i ∈ N+, x ∈ Ω, (2.15)

Pj∗,m,w := I −
j∑
i=1

Pi,m,w for j ∈ N+. (2.16)

2. The operator Dm : L2(Ω)→ L2(Ω) is defined by

(Dmv)(x) := d(x)m
∫

Ω

d(y)mv(y)dy for x ∈ Ω. (2.17)

Remark 2.6.4 We note that for all i ∈ N+

‖Pi,m,w‖BL(L2
w(Ω)) = sup

{∣∣∣∣∫
Ω

ϕi,m,w(y)w(y)v(y)dy

∣∣∣∣ ; ‖v‖L2
w(Ω) ≤ 1

}
= 1.

Using this definition, we may also write instead of (2.13) and (2.14) the following
representation formulas:

f =
∞∑
i=1

Pi,m,wf and Gm,λ,wf =
∞∑
i=1

1

λi,m,w − λ
Pi,m,wf.
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Chapter 3

A converse to Krein-Rutman

For the proof of Theorem 1.2.8 we need an estimate for the polyharmonic Green
function Gm,λ,w and Green operator Gm,λ,w defined in (2.7). In [57] we have proven
such estimates for the special case m = 2 and w ≡ 1 and in [58] for m = 2 and
some strictly positive and Hölder continuous weight function w. We follow similar
steps with the only difference that we consider the Dirichlet problem of order 2m
instead of the special case m = 2. First, we show the converse of Krein-Rutman’s
theorem using regularity results as in [58]. This result is stated in Section 3.1 and
is proven in Sections 3.2, 3.3 and 3.4. In Section 3.5 we use arguments from [57]
and show an asymptotic behavior of the eigenvalues and eigenfunctions and thus
derive an alternative proof of the main theorem. In Section 3.6 we note that similar
arguments can also be used to prove an anti-maximum principle.

Remark 3.0.1 The results are consequences of estimates for the polyharmonic
Green function and since for a strictly positive weight function w ∈ C0,γ(Ω) there
exist two constants cw,1, cw,2 > 0 such that

cw,1 ≤ w(x) ≤ cw,2 for all x ∈ Ω, (3.1)

we can follow analogous steps as in [57] with adjusted constants and replace 2 with
m or we follow the steps in [58] with small changes.

By extending the results for fourth order problems, Pulst proved in his disser-
tation [26] the following inequality for the Green function of (1.6) with λ = 0 in
bounded C2m,γ-smooth domains, see [53, Theorem 3.1]:

c−1
2 Hn,m(x, y) ≤ Gm,0,1(x, y) + c1d(x)md(y)m ≤ c2Hn,m(x, y) (3.2)

for all (x, y) ∈ Ω×Ω\{(x, x);x ∈ Ω}, where c1, c2 > 0 are dependent on the domain
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and m, and Hn,m : Ω× Ω\{(x, x);x ∈ Ω} → R is defined by

Hn,m(x, y) :=


|x− y|2m−n min

{
1, d(x)md(y)m

|x−y|2m

}
if n > 2m,

log
(

1 + d(x)md(y)m

|x−y|2m

)
if n = 2m,

d(x)m−n/2d(y)m−n/2 min
{

1, d(x)n/2d(y)n/2

|x−y|n

}
if n < 2m.

(3.3)

We will use the calligraphicHn,m for the integral operator with kernel function Hn,m:

Hn,m : L2(Ω)→ L2(Ω), (Hn,mf)(x) =

∫
Ω

Hn,m(x, y)f(y)dy. (3.4)

Remark 3.0.2 Some useful result, Pulst proved in his doctoral thesis is, that there
is a constant c > 0 such that

c d(x)md(y)m ≤ Hn,m(x, y) for all (x, y) ∈ Ω× Ω\{(x, x);x ∈ Ω}.

One finds this result using (3.3), |x − y| ≤ diam(Ω) and estimates in [21, Lemma
4.5]. Moreover, it is included in Corollary 3.4.2 in Section 3.4.

Remark 3.0.3 If Ω is a ball, we find the estimate in (3.2) with c1 = 0, see [30].
Two-sided estimates for the second order problem (m = 1) were proven by Zhao, see
[79] and [80].

We will extend this result to the Green function of (1.6) with λ in some bounded
interval and with some Hölder continuous, strictly positive weight function. First, we
present the extension of (3.2) to the Green function Gm,λ,w and then, the asymptotic
behavior of the constants for λ ↑ λp,m,w is shown.

3.1 Pointwise estimates for the Green function

and idea of the proof

Using (2.14), we note that formally the Green function Gm,λ,w can be written as

Gm,λ,w(x, y) =
∞∑
i=1

1

λi,m,w − λ
ϕi,m,w(x)ϕi,m,w(y). (3.5)

But even if (2.14) converges in L2
w(Ω) for λ not an eigenvalue, the series in (3.5)

does not have to converge as a function in Ω× Ω, especially for higher dimensions.
For n < 4m we can show a convergence in L2

w(Ω× Ω) =
(
L2(Ω× Ω), 〈·, ·〉L2

w(Ω×Ω)

)
,

where we define

〈u, v〉L2
w(Ω×Ω) :=

∫
Ω

∫
Ω

u(x, y)v(x, y)w(x)w(y)dx dy for u, v ∈ L2(Ω× Ω).
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Indeed, we find for a fixed λ, which is not an eigenvalue, that
λ2
i,m,w

(λi,m,w−λ)2 ≤ C for

some constant C > 0, independent of i ∈ N+ and

〈Gm,λ,w, Gm,λ,w〉L2
w(Ω×Ω) =

∞∑
i=1

1

(λi,m,w − λ)2
≤ C

∞∑
i=1

λ−2
i,m,w.

We will see in Chapter 3.5 that λi,m,w ≥ c i
2m
n for all i ∈ N+ with c > 0 independent

of i, so the series on the right-hand side converges for n < 4m. Even if we cannot
write the Green function as in (3.5) for large dimensions, one gets the intuition that
it becomes positive for λ in a small left neighborhood of a simple eigenvalue with
corresponding positive eigenfunction. In the same way, one expects that it becomes
negative for λ in a small right neighborhood of this eigenvalue.

If we do not choose λ close to an eigenvalue, we obtain a result similar to (3.2):

Theorem 3.1.1 Suppose that Condition A is fulfilled. Moreover, let 0 < w ∈
C0,γ(Ω) and {λi,m,w}i∈N+ ⊂ (0,∞) denote the eigenvalues for (1.10) and take M, δ1 ∈
R+. Set

IM,δ1 = [−M,M ] \
⋃∞

i=1
(λi,m,w − δ1, λi,m,w + δ1) . (3.6)

Let Gm,λ,w be the Green function for (2.6). Then there are c1, c2, c3 > 0, depending
on the domain, M, δ1,m and w, such that for all λ ∈ IM,δ1 it holds:

c1 Hn,m(x, y) ≤ Gm,λ,w(x, y) + c2 d(x)m d(y)m ≤ c3 Hn,m(x, y) for all x, y ∈ Ω.
(3.7)

Remark 3.1.2 For m = 2 this result can be found in [58, Theorem 14]. For w ≡ 1,
λ = 0 and m = 2 it is proven in [26, Theorem 1].

We want to find positivity of the Green function. So, as mentioned above, we
will choose λ in a left neighborhood of the simple eigenvalue with corresponding
positive eigenfunction. More precisely, we find the following estimate, see also [58,
Theorem 16] or [57, Theorem 2] for m = 2:

Theorem 3.1.3 Suppose that Condition A is satisfied and let δ2 > 0. Suppose
0 < w ∈ C0,γ(Ω) and that λp,m,w is a simple eigenvalue of (1.10) with the cor-
responding eigenfunction ϕp,m,w strongly positive as in (1.11). Moreover, suppose
the interval

Iδ2 = [λp,m,w − δ2, λp,m,w) (3.8)

contains no eigenvalue. Let Gm,λ,w be the Green function for (2.6). Then there exist
constants C1, C2, C3 > 0, depending on the domain, m, δ2 and w, such that for all
λ ∈ Iδ2 and x, y ∈ Ω:

Gm,λ,w(x, y) ≥ C1Hn,m(x, y) +

(
C2

λp,m,w − λ
− C3

)
ϕp,m,w(x) ϕp,m,w(y). (3.9)
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These theorems can be proven using Lemma 3.2.2, Corollary 3.3.3 and Proposi-
tion 3.4.5 in the following sections.

Corollary 3.1.4 If there exists a strictly positive weight function w ∈ C0,γ(Ω) such
that there is a simple eigenvalue λp,m,w of (1.10) with corresponding strongly pos-
itive eigenfunction ϕp,m,w in the sense of (1.11), then problem (1.6) is positivity
preserving for λ in a small left neighborhood of λp,m,w.

Remark 3.1.5 We will see in Chapter 4 that Condition B is sufficient for our
construction and the existence of a weight function that satisfies the requirements of
Corollary 3.1.4.

Remark 3.1.6 If we assume that there exists a strongly positive eigenfunction
ϕp,m,w with corresponding eigenvalue λp,m,w which has multiplicity M ≥ 2, then
there are M − 1 sign-changing orthogonal eigenfunctions ϕp+1,m,w, . . . , ϕp+M−1,m,w

in the sense of (2.12) with eigenvalues λp,m,w = λp+1,m,w = · · · = λp+M−1,m,w. So,
if we restrict ourselves to the following space for the right-hand side f in (1.6), we
obtain a positive solution for λ in a small left neighborhood of λp,m,w even if λp,m,w

is not simple:{
f ∈ L2(Ω); f ≥ 0 and 〈f, ϕp+k,m,w〉L2(Ω) = 0 for all k ∈ {1, . . . ,M − 1}

}
.

If the assumptions in Corollary 3.1.4 are fulfilled, (1.6) is positivity preserving
for some λ < λp,m,w and λp,m,w is not the first eigenvalue of (1.10), then we can
calculate a lower bound for λ. This also proves inequality (1.16).

Lemma 3.1.7 Suppose that Conditions A is satisfied. Moreover, assume that there
exists a strictly positive weight function w ∈ C0,γ(Ω) such that there is a simple
eigenvalue λp,m,w with p > 1 and corresponding strongly positive eigenfunction ϕp,m,w

for (1.10). Let λ ∈ (λp−1,m,w, λp,m,w) be such that (1.6) is positivity preserving.
Then, we find

λ ≥ λp−1,m,w +
λp,m,w − λp−1,m,w

2
. (3.10)

Proof. Let λ ∈ (λp−1,m,w, λp,m,w) be such that (1.6) is positivity preserving and
define

c1 :=

(
sup
x∈Ω

ϕp−1,m,w(x)

ϕp,m,w(x)

)−1

> 0 and c2 :=

(
inf
x∈Ω

ϕp−1,m,w(x)

ϕp,m,w(x)

)−1

< 0.

It holds that c = c1 is the largest and c = c2 the smallest value such that ϕp,m,w −
c ϕp−1,m,w is nonnegative in Ω. We choose

f = wϕp,m,w − cwϕp−1,m,w with c =

{
c1 if c1 ≥ −c2,

c2 if c1 < −c2.
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Then we find f ≥ 0. Considering problem (1.6) with right-hand side f , one obtains
the solution

u =
1

λp,m,w − λ

(
ϕp,m,w − c

λp,m,w − λ
λp−1,m,w − λ

ϕp−1,m,w

)
.

Using the assumption that (1.6) is positivity preserving, we find u ≥ 0. Hence∣∣∣∣c λp,m,w − λ
λp−1,m,w − λ

∣∣∣∣ ≤ max{c1, |c2|}

which is equivalent to ∣∣∣∣ λp,m,w − λ
λp−1,m,w − λ

∣∣∣∣ ≤ 1.

So, we get (3.10).

Before we provide the technical details for the proof of Theorem 3.1.1 and 3.1.3
and the necessary lemmata in the next sections, a first idea of the proof is given, see
also [58, Section 3]. We note that instead of (3.7) we may show the inequalities for
the corresponding integral operators, i.e. that there are three constants c1, c2, c3 > 0
such that

c1 Hn,m ≤ Gm,λ,w + c2 Dm ≤ c3 Hn,m for all λ ∈ IM,δ1

and instead of (3.9) we prove that there are constants C1, C2, C3 > 0 such that

Gm,λ,w ≥ C1 Hn,m +

(
C2

λp,m,w − λ
− C3

)
Pp,m,w for all λ ∈ Iδ2

with Hn,m, Dm and Pp,m,w as defined in (3.4), (2.17) and (2.15). First, we recall the
asymptotic formula for Gm,λ,w using Neumann series which contains Gm,0,w, respec-
tively Gm,0,1(w·), and powers of this operator. The idea is similar to the steps in [58,
Section 3]:

Suppose that |λ| < λ1,m,w and um,λ,w = Gm,λ,wfw, where fw is defined as in (2.5).
We can also write

um,λ,w = Gm,0,w (λum,λ,w + fw) .

This is equivalent to

(I − λGm,0,1(w·))um,λ,w = Gm,0,1(wfw).

The spectral radius of Gm,0,w is λ−1
1,m,w, so we can invert the operator (I − λGm,0,1(w·))
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and using Neumann series, we find

um,λ,w =
∞∑
k=0

λk (Gm,0,1(w·))k+1 fw.

We also want to get a representation formula for um,λ,w if |λ| > λ1,m,w and λ 6= λi,m,w
for all i ∈ N+. Therefore, let M ∈ R+ be as in Theorem 3.1.1 and set

λj,m,w = min{λ ∈ {λi,m,w}i∈N+ ; λ > M}. (3.11)

Without restriction we assume in the whole chapter that

λj,m,w ≥ λp,m,w. (3.12)

Then we find for

λ ∈ (−λj+1,m,w, λj+1,m,w)\{λi,m,w}i≤j (3.13)

the solution for (1.6)

um,λ,w = Gm,λ,wfw =

j∑
i=1

Gm,λ,wPi,m,wfw + Gm,λ,wPj∗,m,wfw

=

j∑
i=1

1

λi,m,w − λ
Pi,m,wfw︸ ︷︷ ︸

I

+
∞∑
k=0

λk (Gm,0,1(w·))k+1Pj∗,m,wfw.

(3.14)

We split the series on the right in a finite part and an infinite remainder. For λ as
in (3.13) we then find

∞∑
k=0

λk (Gm,0,1(w·))k+1Pj∗,m,wfw

=
∞∑

k=2kn,m

λk (Gm,0,1(w·))k+1Pj∗,m,wfw︸ ︷︷ ︸
II

+

2kn,m−1∑
k=0

λk (Gm,0,1(w·))k+1Pj∗,m,wfw︸ ︷︷ ︸
III

, (3.15)

where kn,m ∈ N+ is defined by

kn,m =

[
n+ 2m

4m

]
+ 1. (3.16)

We will describe in the next section how to derive the value in (3.16) and we
show that I and II can be estimated by c̃1Dmfw and III can be estimated by
c̃2Hn,mfw − c̃3Dmfw for some constants c̃1, c̃2, c̃3 > 0 and all 0 ≤ fw ∈ L2(Ω).
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The regularity results and pointwise estimates in the following three sections imply
these three estimates.

Remark 3.1.8 The restriction for kn,m in (3.16) is sufficient to apply some regu-

larity properties for Gkn,mm,0,w. We need this regularity result to estimate II. For III,
the value of kn,m does not matter. It is only important that we consider a finite sum.

3.2 Estimates for the orthogonal projections

First, we present some elementary results to make sure that all series converge which
appear in the following arguments. Therefore, we have to consider powers of the
operator Gm,0,w and compositions of this operator with orthogonal projections onto
the eigenspaces. We obtain the following result which can be found for m = 2 in
[57, Lemma 7]:

Lemma 3.2.1 Let Gm,λ,w, Pi,m,w and Pj∗,m,w be as defined in (2.7), (2.15) and
(2.16) with j ∈ N+ as in (3.11). Moreover, let IM,δ1 and Iδ2 be as in (3.6) and (3.8).
Then, we find for λ ∈ IM,δ1 ∪ Iδ2

Gm,λ,wPi,m,w = Pi,m,wGm,λ,w =
1

λi,m,w − λ
Pi,m,w for all i ∈ N+, (3.17)

Gkm,0,w =
∞∑
i=1

1

λki,m,w
Pi,m,w for all k ∈ N+, (3.18)

Gkm,0,wPj∗,m,w =
∞∑

i=j+1

1

λki,m,w
Pi,m,w for all k ∈ N+. (3.19)

The series in (3.18) and (3.19) converge when applied to some f ∈ L2
w(Ω).

Proof. It holds that {ϕi,m,w}i∈N+ is a complete orthonormal system in L2
w(Ω), so

we recall that the series
∑∞

i=1〈ϕi,m,w, f〉L2
w(Ω)ϕi,m,w(·) converges in L2

w(Ω) to f . Also
we find

‖f‖2
L2
w(Ω) =

∞∑
i=1

〈ϕi,m,w, f〉2L2
w(Ω). (3.20)

Since ϕi,m,w are eigenfunctions of Gm,0,w, we obtain that

Gm,λ,w ϕi,m,w =
ϕi,m,w

λi,m,w − λ
.
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This implies (3.17). Since Gm,0,w is linear and continuous on L2
w(Ω), we find that

Gkm,0,wf =
∞∑
i=1

〈ϕi,m,w, f〉L2
w(Ω)Gkm,0,wϕi,m,w

=
∞∑
i=1

1

λki,m,w
〈ϕi,m,w, f〉L2

w(Ω)ϕi,m,w =
∞∑
i=1

1

λki,m,w
Pi,m,wf

for all f ∈ L2
w(Ω). The series converges since (3.20) converges and λi,m,w → ∞ for

i→∞. This implies (3.18). Since the eigenfunctions are orthonormal in L2
w(Ω), we

find that

Gkm,0,wPi,m,w =
1

λki,m,w
Pi,m,w. (3.21)

Hence, we get

Gkm,0,wPj∗,m,w = Gkm,0,w −
j∑
i=1

Gkm,0,wPi,m,w. (3.22)

and using (3.18), (3.21) and (3.22), we obtain (3.19).

To find an estimate for I in (3.14), we only make use of the regularity of the
eigenfunctions and the mean value theorem:

Lemma 3.2.2 Suppose that Condition A is satisfied. Let Dm, Pi,m,w and Pj∗,m,w
be as defined in (2.17), (2.15) and (2.16) with j ∈ N+ as in (3.11) and (3.12).
Moreover, let IM,δ1 and Iδ2 be as in (3.6) and (3.8). Then, we find three constants
cj, c̃j, ĉj > 0, depending also on the domain, m, w, M , δ1 and δ2, such that

1. − cjDm ≤
j∑
i=1

1

λi,m,w − λ
Pi,m,w ≤ cjDm for all λ ∈ IM,δ1 and

2.

j∑
i=1

1

λi,m,w − λ
Pi,m,w ≥

1

λp,m,w − λ
Pp,m,w − c̃jDm ≥

(
1

λp,m,w − λ
− ĉj

)
Pp,m,w

for all λ ∈ Iδ2 .

Proof.

1. Using the mean value theorem, we find for ϕ ∈ Cm(Ω) ∩ Cm−1
0 (Ω) and all

x ∈ Ω

|ϕ(x)| ≤ ‖ϕ‖Cm(Ω)d(x)m. (3.23)

In Remark 2.6.2 we mentioned that the eigenfunctions are elements of
C2m,γ(Ω) ∩ Cm−1

0 (Ω), so (3.23) holds for every eigenfunction ϕi,m,w. With
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Definition 2.6.3 and (3.1) we obtain that for 0 ≤ f ∈ L2(Ω) and 1 ≤ i ≤ j

|(Pi,m,wf)(x)| =
∣∣∣∣ϕi,m,w(x)

∫
Ω

ϕi,m,w(y)f(y)w(y)dy

∣∣∣∣
≤ cw,2‖ϕi,m,w‖2

Cm(Ω)
d(x)m

∫
Ω

d(y)mf(y)dy

= ci(Dmf)(x), (3.24)

where ci = cw,2‖ϕi,m,w‖2
Cm(Ω)

. Using the constant

c∗j = max
i≤j

sup
λ∈IM,δ1

|λi,m,w − λ|−1,

we find ∣∣∣∣∣
j∑
i=1

1

λi,m,w − λ
Pi,m,w

∣∣∣∣∣ ≤
(
jc∗j max

i≤j
ci

)
Dm

for all λ ∈ IM,δ1 .

2. For λ ∈ Iδ2 we single out Pp,m,w, use the estimates in (3.24), the assumption
that ϕp,m,w is strongly positive and that the corresponding eigenvalue is simple.

3.3 Regularity results and dual estimates

In this section we derive estimates for II in (3.15). Therefore, we use regularity
results of the Green operator and make use of dual spaces and maps. To this end,
we adapt the proof of Theorem 14 and 16 for m = 2 in [58] to the general case and
divide it into partial results. Some steps and paragraphs of the proofs are identical
to the proof in [58] except that we replace 2 by m. Some arguments are described
and proven in more detail.

In the proof of the following lemma it becomes clear why we chose kn,m as in
(3.16).

Lemma 3.3.1 Suppose that Condition A is satisfied. Let kn,m be defined as in

(3.16). Then (Gm,0,1(w·))kn,m f ∈ Cm(Ω) for f ∈ L2(Ω) and there exists a constant
C > 0, depending on the domain, m and w, such that∣∣∣((Gm,0,1(w·))kn,m f

)
(x)
∣∣∣ ≤ C‖f‖L2

w(Ω)d(x)m for all f ∈ L2(Ω) and every x ∈ Ω.

Proof. For ∂Ω ∈ C2m,γ we find by Agmon-Douglis-Nirenberg results that for all
p ∈ (1,∞)

Gm,0,w : Lp(Ω)→ W 2m,p(Ω) ∩Wm,p
0 (Ω)

36



3.3. REGULARITY RESULTS AND DUAL ESTIMATES

is a bounded operator. Let I : W 2m,p(Ω) ↪→ Lq(Ω) be the Sobolev imbedding in
(2.11) with sufficiently chosen q. Then we find that

I ◦ Gm,0,w : Lp(Ω)→ Lq(Ω)

is a bounded operator. Hence, applying Gm,0,1(w·) kn,m-times and using Sobolev
imbeddings after each step, we obtain that

(Gm,0,1(w·))kn,m : L2
w(Ω)→ W 2m,q(Ω) ∩Wm,q

0 (Ω)

is a bounded operator for some q > n
m

. Indeed, we find with analogous arguments
as in [57, Lemma 13]:

• For n ∈ {2, . . . , 2m − 1} it holds that 2 > n
m

and Agmon-Douglis-Nirenberg
results imply that Gm,0,1(w·) is a bounded operator from L2

w(Ω) to W 2m,2(Ω)∩
Wm,2

0 (Ω).

• For n ∈ {2m, . . . , 6m − 1} we may use Agmon-Douglis-Nirenberg results and
Sobolev imbeddings as in (2.11). We find with{

2∗n =∞ for 2m ≤ n ≤ 4m,

2∗n = 2n
n−4m

≥ 2n
2m−1

for 4m+ 1 ≤ n ≤ 6m− 1,

and q = 4n
4m−1

∈ ( n
m
, 2∗n) that

(Gm,0,1(w·))2 : L2
w(Ω)

Gm,0,w−−−−→ W 2m,2(Ω) ∩Wm,2
0 (Ω)

↪→ Lq(Ω)
Gm,0,w−−−−→ W 2m,q(Ω) ∩Wm,q

0 (Ω)

is a bounded operator.

• For n ≥ 6m we set ` :=
[
n−2m

4m

]
and for k ≤ `

p0 = 2 and pk+1 := (pk)
∗
n,

with (pk)
∗
n as in (2.11). Then we find

pk =
2n

n− 4mk
for k ≤ `

and

2 = p0 < p1 < · · · < p` ≤
n

m
< p`+1 ≤ ∞. (3.25)

Moreover, it holds that

p`+1 =

{
(p`)

∗
n =∞ for 6m ≤ n ≤ 4m(`+ 1),

(p`)
∗
n = 2n

n−4m(`+1)
≥ 2n

2m−1
for 4m(`+ 1) + 1 ≤ n.

(3.26)
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The inequality in (3.26) follows from the fact that ` ≥ n−2m
4m
− 1 + 1

4m
. Hence,

setting

q =
4n

4m− 1
∈
( n
m
, (p`)

∗
n

)
and using the imbedding I : W 2m,pk(Ω) ∩ Wm,pk

0 (Ω) ↪→ Lpk+1(Ω) for k ∈
{0, . . . , `− 1} and I : W 2m,p`(Ω) ∩Wm,p`

0 (Ω) ↪→ Lq(Ω), we obtain for

kn,m =

[
n+ 2m

4m

]
+ 1 = `+ 2

that the operator

(Gm,0,1(w·))kn,m : L2
w(Ω)

Gm,0,w−−−−→ W 2m,2(Ω) ∩Wm,2
0 (Ω)

↪→ Lp1(Ω)
Gm,0,w−−−−→ . . .

Gm,0,w−−−−→ W 2m,p`(Ω) ∩Wm,p`
0 (Ω)

↪→ Lq(Ω)
Gm,0,w−−−−→ W 2m,q(Ω) ∩Wm,q

0 (Ω)

is bounded.

So, there exists a constant c > 0 such that

‖(Gm,0,1(w·))kn,mf‖W 2m,q(Ω)∩Wm,q
0 (Ω) ≤ c‖f‖L2

w(Ω) for all f ∈ L2(Ω). (3.27)

Applying (2.11), one obtains that W 2m,q(Ω)∩Wm,q
0 (Ω) imbeds in Cm(Ω)∩Cm−1

0 (Ω),
so there exists a constant c̃ > 0 such that∣∣∣((Gm,0,1(w·))kn,m f

)
(x)
∣∣∣ ≤ d(x)m‖ (Gm,0,1(w·))kn,m f‖Cm(Ω)

≤ c̃ d(x)m‖ (Gm,0,1(w·))kn,m f‖W 2m,q(Ω)∩Wm,q
0 (Ω).

With (3.27), we find∣∣∣((Gm,0,1(w·))kn,m f
)

(x)
∣∣∣ ≤ c c̃ d(x)m‖f‖L2

w(Ω)

for all f ∈ L2(Ω).

If we use estimates for the norms in the dual spaces of L2
w(Ω) or W 2m,q(Ω) ∩

Wm,q
0 (Ω), we can also estimate Gm,0,1(w·)kn,mf in L2

w(Ω)-norm, as we will see in the
proof of the following lemma.

Lemma 3.3.2 Suppose that Condition A is satisfied. Let kn,m be defined as in
(3.16). Then there exists a constant C > 0, depending on the domain, w and m,
such that

‖(Gm,0,1(w·))kn,mf‖L2
w(Ω) ≤ C

∫
Ω

|f(y)|d(y)mdy for all f ∈ L2(Ω).
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Proof. In the proof of the previous lemma we showed that (Gm,0,1(w·))kn,m is a
linear and bounded operator from L2

w(Ω) to W 2m,q(Ω) ∩Wm,q
0 (Ω) for some q > n

m

and q ≥ 2. So, we find that its adjoint operator

(Gm,0,1(w·)∗)kn,m :
(
W 2m,q(Ω) ∩Wm,q

0 (Ω)
)∗ → (

L2
w(Ω)

)∗
is linear and bounded for kn,m as above. Hence, there is a constant c > 0 such that
for all g ∈ (W 2m,q(Ω) ∩Wm,q

0 (Ω))
∗

‖(Gm,0,1(w·)∗)kn,mg‖L2
w(Ω)∗ ≤ c ‖g‖(W 2m,q(Ω)∩Wm,q

0 (Ω))
∗ . (3.28)

Moreover, we obtain that L2(Ω) ⊂ (W 2m,q(Ω) ∩Wm,q
0 (Ω))

∗
since for q ≥ 2 every

f ∈ L2(Ω) determines a continuous linear mapping on W 2m,q(Ω)∩Wm,q
0 (Ω) through

W 2m,q(Ω) ∩Wm,q
0 (Ω) 3 h 7→ 〈f, h〉L2

w(Ω), (3.29)

see also [1, Paragraph 3.13]. In the following we write f if f ∈ L2(Ω) is meant and
f for the corresponding map f(h) = 〈f, h〉L2

w(Ω) in (3.29).

For f ∈ L2(Ω) the symmetry of the kernel implies that

Gm,0,1(w·)∗f = Gm,0,1(wf) (3.30)

in the sense that Gm,0,1(wf) determines the continuous linear mapping Gm,0,1(w·)∗f
on L2

w(Ω). Indeed, we find for u ∈ L2
w(Ω)

(Gm,0,1(w·)∗f)u =

∫
Ω

f(x)w(x)

(∫
Ω

Gm,0,1(x, y)w(y)u(y)dy

)
dx

=

∫
Ω

w(y)u(y)

(∫
Ω

f(x)w(x)Gm,0,1(x, y)dx

)
dy

= 〈u,Gm,0,1(wf)〉L2
w(Ω).

Furthermore, using the inequality

|ϕ(x)| ≤ ‖ϕ‖Cm(Ω)d(x)m ≤ c̃‖ϕ‖W 2m,q(Ω)∩Wm,q
0 (Ω)d(x)m (3.31)

for all ϕ ∈ W 2m,q(Ω) ∩Wm,q
0 (Ω), we obtain for q > n

m

‖f‖(W 2m,q(Ω)∩Wm,q
0 (Ω))

∗ :=

sup

{∣∣∣∣∫
Ω

f(x)w(x)ϕ(x)dx

∣∣∣∣ ;ϕ ∈ W 2m,q(Ω) ∩Wm,q
0 (Ω) with ‖ϕ‖W 2m,q(Ω) ≤ 1

}
≤

c̃ sup

{∣∣∣∣∫
Ω

f(x)w(x)ϕ(x)dx

∣∣∣∣ ;ϕ ∈ Cm(Ω) ∩ Cm−1
0 (Ω) with ‖ϕ‖Cm(Ω) ≤ 1

}
. (3.32)

With (3.31) and cw,2 as in Remark 3.0.1 we find that for all f ∈ L2(Ω) and
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ϕ ∈ Cm(Ω) ∩ Cm−1
0 (Ω) with ‖ϕ‖Cm(Ω) ≤ 1∣∣∣∣∫

Ω

f(x)w(x)ϕ(x)dx

∣∣∣∣ ≤ ∫
Ω

|f(x)|w(x)|ϕ(x)|dx ≤ cw,2

∫
Ω

|f(x)|d(x)mdx. (3.33)

Inequalities (3.32) and (3.33) imply

‖f‖(W 2m,q(Ω)∩Wm,q
0 (Ω))

∗ ≤ c̃ cw,2

∫
Ω

|f (x)| d (x)m dx. (3.34)

By combining (3.28), (3.30), (3.34) and (L2
w(Ω))

∗
= L2

w(Ω), we find a constant C > 0
such that ∥∥∥(Gm,0,1(w ·))kn,m f

∥∥∥
L2
w(Ω)
≤ C

∫
Ω

|f (x)| d (x)m dx (3.35)

holds for all f ∈ L2(Ω).

We may apply the results of the last two lemmata and find an estimate from
below and above for the infinite sum in (3.15) by the operator Dm. Using the
assumption that the p-th eigenfunction is strongly positive, we can also replace Dm
in (3.36) with the projection onto the p-th eigenspace.

Corollary 3.3.3 Suppose that Condition A is satisfied. Let kn,m, Dm and Pj∗,m,w
be defined as in (3.16), (2.17) and (2.16) with j as in (3.11). Then, there exists a
constant Cj > 0, depending on the domain, m, w, M , δ1 and δ2, such that

−CjDm ≤
∞∑

k=2kn,m

λkGk+1
m,0,wPj∗,m,w ≤ CjDm for all λ ∈ IM,δ1 ∪ Iδ2 , (3.36)

where IM,δ1 , Iδ2 are defined as in (3.6) and (3.8).

Proof. We know that

f 7→
∞∑
k=0

λkGk+1
m,0,wPj∗,m,wf = Gm,λ,wPj∗,m,wf for f ∈ L2(Ω)

is a bounded operator from L2
w(Ω) to L2

w(Ω) for all λ ∈ IM,δ1 ∪ Iδ2 . Moreover, we
can write

∞∑
k=2kn,m

λkGk+1
m,0,wPj∗,m,wf = λ2kn,mGkn,mm,0,w

(
∞∑
k=0

λkGk+1
m,0,wPj∗,m,w

)
Gkn,mm,0,wf.
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Combining Lemma 3.3.1 and 3.3.2, we find constants Cj, C
′
j, C

′′
j > 0 such that∣∣∣∣∣∣

∞∑
k=2kn,m

λk
(
Gk+1
m,0,wPj∗,m,wf

)
(x)

∣∣∣∣∣∣ = |λ|2kn,m
∣∣∣(Gkn,mm,0,wGm,λ,wPj∗,m,wG

kn,m
m,0,wf

)
(x)
∣∣∣

≤ Cj‖Gm,λ,wPj∗,m,wGkn,mm,0,wf‖L2
w(Ω)d(x)m ≤ C ′j‖G

kn,m
m,0,wf‖L2

w(Ω)d(x)m

≤ C ′′j d(x)m
∫

Ω

|f(y)|d(y)mdy = C ′′j (Dm|f |)(x) for all f ∈ L2(Ω).

So, estimates for I and II in (3.14) and (3.15) are proven. At this point only
an estimate for III in (3.15) is missing to complete the proofs of Theorem 3.1.1 and
3.1.3.

3.4 Estimates for the iterated Green operator

In this section we will consider III in (3.15). To this end, we will use known esti-
mates for Gm,0,1 to derive estimates for powers of the polyharmonic Green operator.
Analogous to Lemma 8, Corollary 9 and Lemma 10 in [57], one can prove a simi-
lar estimate as in (3.2) for the corresponding iterated Green operator Gkm,0,w with
k ∈ N+. Therefore, we look at the operator Hn,m defined in (3.4) and its iterates.
For domains with smooth boundary ∂Ω ∈ C2m,γ one may estimate the operator
Hk
n,m through the kernel function Hn,m,k : Ω× Ω\

{
(x, x);x ∈ Ω

}
→ [0,∞), defined

by

Hk
n,mf(x) =

∫
Ω

Hn,m,k(x, y)f(y)dy, (3.37)

and one finds:

Lemma 3.4.1 ([34]) Let k ∈ N+. Then there are constants cΩ,k,m, CΩ,k,m > 0 such
that

cΩ,k,mH̃n,m,k(x, y) ≤ Hn,m,k(x, y) ≤ CΩ,k,mH̃n,m,k(x, y),
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where

H̃n,m,k(x, y)

=



d(x)md(y)m for k > 1 + n
2m
,

d(x)md(y)m log
(

2 + 1
|x−y|2+d(x)d(y)

)
for k = 1 + n

2m
,

(d(x)d(y))mk−n/2 min
{

1, d(x)d(y)
|x−y|2

}m−mk+n/2

for n
2m

< k < 1 + n
2m
,

log
(

1 +
(
d(x)d(y)
|x−y|2

)m)
for k = n

2m
,

|x− y|2mk−n min
{

1, d(x)d(y)
|x−y|2

}m
for k < n

2m
.

(3.38)

In Corollary 9 of [57] we find the following result with analogous proofs for m = 2:

Corollary 3.4.2 Let k∗n,m =
[
n

2m

]
+ 2. Then it holds for k ∈ N+:

1. There exist constants C3.4.2.1,k > 0, depending on the domain and m, such that

Dkm = C3.4.2.1,kDm. (3.39)

2. There exist constants C3.4.2.2,k > 0, depending on the domain and m, such that

Dm ≤ C3.4.2.2,kHk
n,m (3.40)

and no reverse estimate for k < k∗n,m.

3. There exist contants C3.4.2.3,k > 0, depending on the domain and m, such that

Hk+1
n,m ≤ C3.4.2.3,kHk

n,m. (3.41)

4. For k ≥ k∗n,m there exist c3.4.2.4,k, C3.4.2.4,k > 0, depending on the domain and
m, such that

c3.4.2.4,kDm ≤ Hk
n,m ≤ C3.4.2.4,kDm. (3.42)

5. There exist c3.4.2.5,k, C3.4.2.5,k > 0, depending on the domain and m, such that

c3.4.2.5,kDm ≤ DmHn,m ≤ C3.4.2.5,kDm and (3.43)

c3.4.2.5,kDm ≤ Hn,mDm ≤ C3.4.2.5,kDm. (3.44)

Proof.

1. For f ∈ L2(Ω) it holds that

(Dkmf)(x) = (Dmf)(x)

(∫
Ω

d(y)2mdy

)k−1

for k ∈ N+ and x ∈ Ω.
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So we find C3.4.2.1,k =
(∫

Ω
d(y)2mdy

)k−1
.

2. Inequality (3.40) follows from (3.38). Indeed, for k > 1 + n
2m

it follows imme-
diately. For k = 1 + n

2m
it holds for all x, y ∈ Ω with x 6= y

H̃n,m,k(x, y) ≥ log(2)d(x)md(y)m.

All other estimates follow from |x − y|, d(x), d(y) ≤ diam(Ω): For n
2m

< k <
1 + n

2m
one gets for all x, y ∈ Ω with x 6= y

H̃n,m,k(x, y) ≥ (d(x)d(y))mk−n/2
(
d(x)d(y)

diam(Ω)2

)m−mk+n/2

= d(x)md(y)m diam(Ω)−2m+2mk−n.

Using [21, Lemma 4.5] and the last inequality, we find for k = n
2m

a constant
c > 0 such that for all x, y ∈ Ω with x 6= y

H̃n,m,k(x, y) ≥ c log

(
2 +

d(y)

|x− y|

)
min

{
1,
d(x)d(y)

|x− y|2

}m
≥ c log(2) diam(Ω)−2md(x)md(y)m.

For k < n
2m

we obtain with similar arguments

H̃n,m,k(x, y) ≥ diam(Ω)2mk−n
(
d(x)d(y)

diam(Ω)2

)m
= diam(Ω)2m(k−1)−nd(x)md(y)m

for all x, y ∈ Ω with x 6= y.

3. For (3.41) we have to prove that there exists a constant c > 0 such that
H̃n,m,k1(x, y) ≤ c H̃n,m,k2(x, y) for (x, y) ∈ Ω × Ω and k1 > k2. Analogous to
[57, Corollary 9] we show this result for k1, k2 ∈ 1

2m
N+ and k1 = k2 + 1

2m
. To

this end, let s = |x− y|2 and t = d(x)d(y) for a short notation. Then we find:

– For k1 > k2 > 1 + n
2m

it holds H̃n,m,k1 = H̃n,m,k2 .

– For k1 > k2 = 1 + n
2m

the inequality follows with c = 1
log(2)

.

– For k1 = 1 + n
2m

> k2 = 2m−1
2m

+ n
2m

we find

tm log

(
2 +

1

s+ t

)
≤ tm

(
1 + min

{
1

s
,
1

t

} 1
2

)

≤ cΩt
m min

{
1

s
,
1

t

} 1
2

= cΩt
m− 1

2 min

{
1,
t

s

} 1
2

,
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with cΩ = 1 + diam(Ω). We used that y 7→ 1 +
√
y− log(2 + y) is positive

for all y ≥ 0 and 1
s+t
≤ min

{
1
s
, 1
t

}
.

– For n
2m

< k2 < k1 < 1 + n
2m

the estimate is equivalent to

t
1
2 = diam(Ω) min

{
1,

t

diam(Ω)2

} 1
2

≤ diam(Ω) min

{
1,
t

s

} 1
2

. (3.45)

– For k1 = n
2m

+ 1
2m

> k2 = n
2m

we make use of (3.45) and find for t > s

t
1
2 min

{
1,
t

s

}m− 1
2

≤ diam(Ω) min

{
1,
t

s

}m
= diam(Ω)

≤ diam(Ω)

log(2)
log

(
1 +

tm

sm

)
,

and for t ≤ s we use 1
log(2)

log(1 + y)− y ≥ 0 for y ∈ [0, 1] and get

t
1
2 min

{
1,
t

s

}m− 1
2

≤ diam(Ω) min

{
1,
t

s

}m
= diam(Ω)

tm

sm

≤ diam(Ω)

log(2)
log

(
1 +

tm

sm

)
.

– For k1 = n
2m

> k2 = n
2m
− 1

2m
we find for t ≤ s

log

(
1 +

tm

sm

)
≤ tm

sm
= min

{
1,
tm

sm

}
≤ diam(Ω)

s
1
2

min

{
1,
tm

sm

}
and for t > s

log

(
1 +

tm

sm

)
≤ log

(
1 +

diam(Ω)2m

sm

)
≤ 2m

diam(Ω)

s
1
2

= 2m
diam(Ω)

s
1
2

min

{
1,
tm

sm

}
since y 7→ log(1 + y2m) − 2my is negative for y = 1 and decreasing for
y > 1.

– For n
2m

> k1 > k2 we obtain the result since s
1
2 ≤ diam(Ω).

4. Inequality (3.42) follows from (3.38) and (3.40).

5. Inequality (3.42) implies (3.43) since

C−1
3.4.2.4,k∗n,m

c3.4.2.4,k∗n,m+1Dm ≤ C−1
3.4.2.4,k∗n,m

Hk∗n,m+1
n,m = C−1

3.4.2.4,k∗n,m
Hk∗n,m
n,m Hn,m

≤ DmHn,m ≤ c−1
3.4.2.4,k∗n,m

Hk∗n,m+1
n,m

≤ c−1
3.4.2.4,k∗n,m

C3.4.2.4,k∗n,m+1Dm.
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Analogously, we find the inequality in (3.44).

This corollary is helpful to find an inequality similar to (3.2) for the iterated
Green operator. For the special case m = 2 see Lemma 10 in [57]. We recall the
steps of the proof in [57] except that we replace 2 with m and include a weight
function.

Lemma 3.4.3 Suppose that Condition A is satisfied. Let Dm and Hk
n,m be defined as

in (2.17) and (3.37). For k ∈ N+ we find three constants C3.4.3.1,k, C3.4.3.2,k, C3.4.3.3,k >
0, depending also on the domain and w, such that

C3.4.3.1,kHk
n,m ≤ Gkm,0,w + C3.4.3.2,kDm ≤ C3.4.3.3,kHk

n,m. (3.46)

Proof. Using Corollary 3.4.2, we get Dm ≤ C3.4.2.2,kHk
n,m. Moreover, with (3.2) we

find a constant cn,m > 0 such that

|Gm,0,1(x, y)| ≤ cn,mHn,m(x, y),

so using the estimate for the weight function in (3.1), we obtain

Gkm,0,wf = (Gm,0,1(w·))k f ≤ (|Gm,0,1|(w·))k f ≤ ckw,2c
k
n,mHk

n,mf for all 0 ≤ f ∈ L2(Ω),

where |Gm,0,1|(wf)(x) :=
∫

Ω
|Gm,0,1(x, y)|w(y)f(y)dy. These estimates imply the

estimate on the right-hand side of (3.46). For the left-hand side one uses induction.
One finds for k = 1 that the assertion holds by (3.2). Supposing that (3.46) holds
true for some k ∈ N+, we find

C3.4.3.1,kHk+1
n,m ≤ Hn,m

(
Gkm,0,w + C3.4.3.2,kDm

)
≤ C3.4.3.3,kHk+1

n,m

and with (3.46) for k = 1

C3.4.3.1,1C3.4.3.1,kHk+1
n,m ≤ C3.4.3.1,1Hn,m

(
Gkm,0,w + C3.4.3.2,kDm

)
≤ (Gm,0,w + C3.4.3.2,1Dm)

(
Gkm,0,w + C3.4.3.2,kDm

)
= Gk+1

m,0,w + C3.4.3.2,kGm,0,wDm + C3.4.3.2,1Dm
(
Gkm,0,w + C3.4.3.2,kDm

)
≤ Gk+1

m,0,w + C3.4.3.2,kC3.4.3.3,1Hn,mDm + C3.4.3.2,1C3.4.3.3,kDmHk
n,m + C3.4.3.2,1C3.4.3.2,kD2

m

≤ Gk+1
m,0,w + C∗Dm.

The last inequality with C∗ > 0 follows from Corollary 3.4.2.

The following lemma and a similar proof for m = 2 is published in [57, Lemma
11].

Lemma 3.4.4 For all ε > 0 there is a constant Cε,3.4.4 > 0, depending on the
domain and m, such that the following inequality holds:

0 ≤ H2
n,m ≤ εHn,m + Cε,3.4.4Dm,
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where Dm and Hn,m are defined as in (2.17) and (3.4).

Proof. Let ε > 0. We prove that there is a constant Cε,3.4.4 > 0 such that

H̃n,m,2(x, y) ≤ εH̃n,m,1(x, y) + Cε,3.4.4d(x)md(y)m for all x, y ∈ Ω, (3.47)

where H̃n,m,k is defined as in (3.38). As in [57, Lemma 11] we will distinguish five
cases:

• For n ∈ {2, . . . , 2m− 1}, the estimate follows directly from (3.38).

• For n = 2m we use that a ≤ 1
2
b + 1

2
a2

b
holds for all a, b > 0. Setting a =

H̃n,m,2(x, y) and b = εH̃n,m,1(x, y), we get

H̃n,m,2(x, y) ≤ 1

2
εH̃n,m,1(x, y) +

1

2ε

H̃n,m,2(x, y)2

H̃n,m,1(x, y)d(x)md(y)m
d(x)md(y)m.

If we set

s = |x− y|2 and t = d(x)d(y) (3.48)

for short notation, we find

H̃n,m,2(x, y)2

H̃n,m,1(x, y)d(x)md(y)m
= tm

log
(
2 + 1

s+t

)2

log
(
1 + tm

sm

) ≤ tm
log
(
2 + 1

s+t

)2

min
{

1, t
m

sm

}
log(2)

=
max {sm, tm}

log(2)
log

(
2 +

1

t+ s

)2

.

Since this is bounded by a constant C > 0, depending on the domain and m,
we obtain

H̃n,m,2(x, y) ≤ ε

2
H̃n,m,1(x, y) +

1

2ε
Cd(x)md(y)m.

Scaling ε, we find (3.47).

• For n ∈ {2m + 1, 2m + 2, . . . , 4m − 1} we get with s and t as in (3.48) and
−m+ n

2
≥ m− 2m2

n
that

H̃n,m,2(x, y) = t2m−
n
2 min

{
1,
t

s

}−m+n
2

≤ t2m−
n
2 min

{
1,
t

s

}m− 2m2

n
(
t

s

)−2m+ 2m2

n
+n

2

=

(
sm−

n
2 min

{
1,
t

s

}m)1− 2m
n

t
2m2

n

= H̃n,m,1(x, y)1− 2m
n (d(x)md(y)m)

2m
n .

46



3.4. ESTIMATES FOR THE ITERATED GREEN OPERATOR

• For n = 4m it follows with (3.48)

H̃n,m,2(x, y) = log

(
1 +

(
t

s

)m)
≤
(
t

s

)m
2

min

{
1,
t

s

}m
2

= H̃n,m,1(x, y)
1
2 (d(x)md(y)m)

1
2 .

• For n ≥ 4m+ 1 we obtain with (3.48)

H̃n,m,2(x, y) = s2m−n
2 min

{
1,
t

s

}m
≤
(
sm−

n
2 min

{
1,
t

s

}m)1− 2m
n

t
2m2

n

= H̃n,m,1(x, y)1− 2m
n (d(x)md(y)m)

2m
n .

Hence, using Young’s inequality, one gets for n ≥ 2m+1 and all x, y ∈ Ω with x 6= y

H̃n,m,2(x, y) ≤ H̃n,m,1(x, y)1− 2m
n (d(x)md(y)m)

2m
n

≤
(
1− 2m

n

)
εH̃n,m,1(x, y) + 2m

n
ε−

1
2m

(n−2m)d(x)md(y)m.

To complete the proof of Theorem 3.1.1 and 3.1.3 we still have to find estimates
for III in (3.15) from above and below. Using the previous lemmata and corollary,
we get the following proposition:

Proposition 3.4.5 Suppose that Condition A is satisfied. Let Dm, Hn,m and Pj∗,m,w
be as defined in (2.17), (3.4) and (2.16) with j ∈ N+ as in (3.11) and (3.12). There
are constants C3.4.5.1, C3.4.5.2, C3.4.5.3, C3.4.5.4 > 0, depending on the domain, j, m, w,
M , δ1 and δ2, such that

C3.4.5.1Hn,m − C3.4.5.2Dm ≤
2kn,m−1∑
k=0

λkGk+1
m,0,wPj∗,m,w ≤ C3.4.5.3Hn,m − C3.4.5.4Dm

for all λ ∈ IM,δ1 ∪ Iδ2 with IM,δ1 and Iδ2 as in (3.6) and (3.8).

Proof.

• Let λ ≥ 0. Analogous to the proof of Lemma 19 in [57], we can use Lemma
3.4.3, (3.41) and (3.42) to find for k ∈ N+

C−1
3.4.2.2,kC3.4.3.1,kDm ≤ C3.4.3.1,kHk

n,m ≤ Gkm,0,w + C3.4.3.2,kDm ≤ C3.4.3.3,kHk
n,m

≤ C3.4.3.3,kC̃3.4.2.3,kHn,m.

Setting C := max{C3.4.3.2,k; k ∈ {1, . . . , 2kn,m}}, we get

Gkm,0,w + CDm ≥ 0 for all k ∈ {1, . . . , 2kn,m}.
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Then we obtain

2kn,m−1∑
k=0

λkGk+1
m,0,w + C

(
2kn,m−1∑
k=1

λk

)
Dm + C3.4.3.2,1Dm ≥ C3.4.3.1,1Hn,m (3.49)

for all λ ∈ IM,δ1 ∪ Iδ2 with λ ≥ 0.

Analogously, we find for C̃ := min{C3.4.3.2,k; k ∈ {1, . . . , 2kn,m}} a constant

Ĉ > 0 such that

Gkm,0,w + C̃Dm ≤ ĈHn,m for all k ∈ {1, . . . , 2kn,m}.

Hence

2kn,m−1∑
k=0

λkGk+1
m,0,w + C̃

(
2kn,m−1∑
k=0

λk

)
Dm ≤ Ĉ

(
2kn,m−1∑
k=0

λk

)
Hn,m (3.50)

for all λ ∈ IM,δ1 ∪ Iδ2 with λ ≥ 0.

• Let λ < 0. Then, we get

2kn,m−1∑
k=0

λkGk+1
m,0,w =

kn,m−1∑
k=0

|λ|2kG2k+1
m,0,w −

kn,m−1∑
k=0

|λ|2k+1G2k+2
m,0,w.

As is (3.49) and (3.50), we may show that there are constants Ci,m > 0,
depending also on w, with i ∈ {1, 2, 3, 4} such that

C1,mHn,m − C2,mDm ≤
kn,m−1∑
k=0

|λ|2kG2k+1
m,0,w ≤ C3,mHn,m − C4,mDm (3.51)

for all λ ∈ IM,δ1 ∪ Iδ2 with λ < 0. With similar arguments and (3.41), we get
constants C̃i,m > 0, depending on w, with i ∈ {1, 2, 3} such that

−C̃1,mDm ≤
kn,m−1∑
k=0

|λ|2k+1G2k+2
m,0,w ≤ C̃2,mH2

n,m − C̃3,mDm.

Let ε > 0. Using Lemma 3.4.4, we then find

−C̃1,mDm ≤
kn,m−1∑
k=0

|λ|2k+1G2k+2
m,0,w ≤ C̃2,mεHn,m + (C̃2,mCε,3.4.4 − C̃3,m)Dm

(3.52)
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for all λ ∈ IM,δ1 ∪ Iδ2 with λ < 0. The inequalities in (3.51) and (3.52) imply

(C1,m − C̃2,mε)Hn,m − (C2,m + C̃2,mCε,3.4.4 − C̃3,m)Dm

≤
2kn,m−1∑
k=0

λkGk+1
m,0,w ≤ C3,mHn,m − (C4,m − C̃1,m)Dm (3.53)

for all λ ∈ IM,δ1 ∪ Iδ2 with λ < 0, where ε may be chosen sufficiently small
such that C1,m > C̃2,mε.

• Moreover we get

2kn,m−1∑
k=0

λkGk+1
m,0,w

j∑
i=1

Pi,m,w =

j∑
i=1

2kn,m−1∑
k=0

λk

λk+1
i,m,w

Pi,m,w

and therefore

2kn,m−1∑
k=0

λkGk+1
m,0,w

j∑
i=1

Pi,m,w =

j∑
i=1

1−
(

λ
λi,m,w

)2kn,m

λi,m,w − λ
Pi,m,w.

Since
1−

(
λ

λi,m,w

)2kn,m

λi,m,w−λ is bounded for λ ∈ IM,δ1 ∪ Iδ2 and using (3.24), we obtain

two constants cj,m, c̃j,m > 0 such that

−cj,mDm ≤
2kn,m−1∑
k=0

λkGk+1
m,0,w

j∑
i=1

Pi,m,w ≤ c̃j,mDm. (3.54)

Combining (3.49), (3.50), (3.53) and (3.54), we find the result.

3.5 Asymptotic formulas for the weighted eigen-

functions and eigenvalues

In order to prove Corollary 3.3.3, we can also use asymptotic estimates for the
eigenfunctions and eigenvalues. The eigenfunctions can be estimated in the Cm-
norm using the corresponding eigenvalues. So we find an analogous result as in [57,
Lemma 13].

Lemma 3.5.1 Suppose that Condition A is satisfied and let kn,m be defined as in
(3.16). Then there exist constants C̃3.5.1, C3.5.1 > 0, depending on the domain, w and
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m, such that for all i ∈ N+:

‖ϕi,m,w‖Cm(Ω) ≤ C3.5.1λ
kn,m
i,m,w ≤ C̃3.5.1λ

n
4m

+ 3
2

i,m,w , (3.55)

|ϕi,m,w(x)| ≤ C3.5.1λ
kn,m
i,m,wd(x)m ≤ C̃3.5.1λ

n
4m

+ 3
2

i,m,w d(x)m for all x ∈ Ω. (3.56)

Proof. We know that the first eigenvalue of (1.10) is bounded from below by a
constant c > 0. So, we get for α < β

λαi,m,w = λα−βi,m,wλ
β
i,m,w ≤ cα−βλβi,m,w for all i ∈ N+. (3.57)

Using the steps in the proof of Lemma 3.3.1, we find constants c̃, c > 0 such that
for some q > n

m
and all i ∈ N+

1

λ
kn,m
i,m,w

‖ϕi,m,w‖Cm(Ω) = ‖Gkn,mm,0,wϕi,m,w‖Cm(Ω)

≤ c̃‖Gkn,mm,0,wϕi,m,w‖W 2m,q(Ω)∩Wm,q
0 (Ω)

≤ c c̃‖ϕi,m,w‖L2
w(Ω).

Since ‖ϕi,m,w‖L2
w(Ω) = 1 and (3.57) holds, we obtain inequality (3.55). Applying the

mean value theorem m-times to ϕi,m,w, we get inequality (3.56).

Remark 3.5.2 Using Taylor, starting from x∗ ∈ ∂Ω such that d(x) = |x− x∗| and

ϕi,m,w = ∂
∂ν
ϕi,m,w = · · · =

(
∂
∂ν

)m−1
ϕi,m,w = 0 on ∂Ω, we may also find instead of

(3.56) the inequality

|ϕi,m,w(x)| ≤ 1
m!
C3.5.1λ

kn,m
i,m,wd(x)m ≤ 1

m!
C̃3.5.1λ

n
4m

+ 3
2

i,m,w d(x)m for all x ∈ Ω.

Since C3.5.1 is also dependent on m and we do not specify this dependence, we can
even use the weaker estimate in (3.56).

Remark 3.5.3 In [57] we have proven for m = 2 that

‖ϕi,2,1‖C2(Ω) ≤ Cλ
3
4

+n
8

i,2,1 .

We note, that

kn,2


< 3

4
+ n

8
for n = 3 + 8k, k ∈ N,

= 3
4

+ n
8

for n = 2 + 8k, k ∈ N,
> 3

4
+ n

8
for any other n ≥ 2.

Hence, for some dimensions n ∈ N+ we may find a sharper result if in addition to
regularity results by Agmon-Douglis-Nirenberg and Sobolev imbeddings we also use
interpolation theory [1, Theorem 5.8] as described in [57, Lemma 13]. Indeed, one
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finds a constant C > 0, depending on the domain, such that for all i ∈ N+:

‖ϕi,m,w‖Cm(Ω) ≤ Cλ
n

4m
+ 2m−1

2m
i,m,w . (3.58)

In the following, we will use the estimate in Lemma 3.5.1. However, kn,m can be
replaced by n

4m
+ 2m−1

2m
in the remainder of this section. Since many steps in the proof

of this estimate are similar to the proof of Lemma 3.3.1, we skip it here. However,
it can be found in Appendix A.1.

Since the orthogonal projections onto the eigenspaces are defined using the eigen-
functions ϕi,m,w, the following estimates follow from (3.56):

Corollary 3.5.4 Suppose Condition A is satisfied and let Pi,m,w and Dm be defined
as in (2.15) and (2.17). Then there is a constant C3.5.4 > 0, depending on the
domain, m and w, such that for every i ∈ N+ and for all 0 ≤ f ∈ L2(Ω):

|(Pi,m,wf)(x)| ≤ C3.5.4λ
2kn,m
i,m,w(Dmf)(x) for all x ∈ Ω.

Proof. We find with C̃3.5.4 := C2
3.5.1 of Lemma 3.5.1 that for all 0 ≤ f ∈ L2(Ω)

|(Pi,m,wf)(x)| =
∣∣∣∣ϕi,m,w(x)

∫
Ω

ϕi,m,w(y)f(y)w(y)dy

∣∣∣∣
≤ cw,2C̃3.5.4λ

2kn,m
i,m,wd(x)m

∫
Ω

d(y)mf(y)dy

= cw,2C̃3.5.4λ
2kn,m
i,m,w(Dmf)(x)

for all x ∈ Ω.

Since we assumed in Theorem 3.1.3 that there is a simple eigenvalue λp,m,w with
strongly positive eigenfunction ϕp,m,w, we get:

Corollary 3.5.5 Suppose that Condition A is satisfied. Let λp,m,w be a simple eigen-
value with corresponding strongly positive eigenfunction ϕp,m,w and Pi,m,w and Pp,m,w

be defined as in (2.15). Then there are constants C3.5.5.1, C3.5.5.2 > 0, depending on
the domain, m and w and independent of i ∈ N+, such that for all 0 ≤ f ∈ L2(Ω)
and x ∈ Ω

|ϕi,m,w(x)| ≤ C3.5.5.1λ
kn,m
i,m,wϕp,m,w(x),

|(Pi,m,wf)(x)| ≤ C3.5.5.2λ
2kn,m
i,m,w(Pp,m,wf)(x).

Proof. The estimates are implications of the assumption ϕp,m,w(x) ≥ CSP d(x)m,
Lemma 3.5.1 and Corollary 3.5.4.

The asymptotic behavior of the eigenvalues for problem (1.5) has been studied
and known since Weyl’s seminal paper [78] and Agmon’s article [2] on higher-order
problems. However, there is a strong regularity assumption on the boundary of Ω.
Since we will only need an estimate for the eigenvalues from below, we can use an
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inequality proven by Levine and Protter [43] which holds for any domain that fulfills
Condition A. With an adapted constant, we may use this estimate for the weighted
problem.

Lemma 3.5.6 (Levine-Protter [43, Equation (2.5)]) Let Ω ⊂ Rn be a bounded
domain. Then it holds that

λi,m,1 ≥ CLP i
2m
n with CLP =

n

n+ 2m

(
(2π)n

bn|Ω|

) 2m
n

,

where |Ω| is the volume of Ω and bn is the volume of the unit ball as described in
(2.2).

Corollary 3.5.7 Let Ω ⊂ Rn be a bounded domain and cw,2 > 0 be as described in
Remark 3.0.1. Then it holds that

λi,m,w ≥ C ′LP i
2m
n with C ′LP =

nc−1
w,2

n+ 2m

(
(2π)n

bn|Ω|

) 2m
n

, (3.59)

where |Ω| is the volume of Ω and bn is the volume of the unit ball as described in
(2.2).

Proof. Using the Rayleigh Min-Max Principle, see [77, Chapter 2] or [16, Theorem
4.5.1], the sharp estimate in Lemma 3.5.6 and the upper bound for w in Remark
3.0.1, we find for m ∈ N+ even and all i ∈ N+

λi,m,w = min
E⊂Wm,2

0 (Ω)
dim(E)=i

max
u∈E
u6≡0

∫
Ω

(
∆

m
2 u
)2
dx∫

Ω
wu2dx

≥ 1

supy∈Ω |w(y)|
min

E⊂Wm,2
0 (Ω)

dim(E)=i

max
u∈E
u6≡0

∫
Ω

(
∆

m
2 u
)2
dx∫

Ω
u2dx

≥ c−1
w,2λi,m,1 ≥ c−1

w,2CLP i
2m
n .

Analogously, we find for m ∈ N+ odd

λi,m,w = min
E⊂Wm,2

0 (Ω)
dim(E)=i

max
u∈E
u6≡0

∫
Ω
|∇∆

m−1
2 u|2dx∫

Ω
wu2dx

≥ c−1
w,2CLP i

2m
n .

If we use this estimate, we can also find a growth rate of the Cm(Ω)-norm of
the eigenfunctions and hence prove the convergence of the series considered in II of
(3.15) and in Corollary 3.3.3.

Remark 3.5.8 With the asymptotic formula in (3.59), we can show the convergence

52



3.5. ASYMPTOTIC FORMULAS

in operatornorm of the series

∞∑
k=N

(λGm,0,w)kGm,0,wPj∗,m,w (3.60)

for N ∈ N+ with N > n
2m
− 1 and λ ∈ (−λj+1,m,w, λj+1,m,w), where λj,m,w is defined

as in (3.11). Indeed, using Lemma 3.2.1, we find with ‖Pi,m,w‖BL(L2
w(Ω)) = 1

∥∥Gk+1
m,0,wPj∗,m,w

∥∥
BL(L2

w(Ω))
=

∥∥∥∥∥
∞∑

i=j+1

1

λk+1
i,m,w

Pi,m,w

∥∥∥∥∥
BL(L2

w(Ω))

≤
∞∑

i=j+1

1

λk+1
i,m,w

‖Pi,m,w‖BL(L2
w(Ω)) =

∞∑
i=j+1

1

λk+1
i,m,w

.

Hence, it holds that

∞∑
k=N

∥∥(λGm,0,w)kGm,0,wPj∗,m,w
∥∥
BL(L2

w(Ω))
=

∞∑
k=N

|λ|k
∥∥Gk+1

m,0,wPj∗,m,w
∥∥
BL(L2

w(Ω))

≤
∞∑
k=N

|λ|k
∞∑

i=j+1

1

λk+1
i,m,w

.

All entries are nonnegative, so we may change the order of summation and obtain

∞∑
k=N

|λ|k
∞∑

i=j+1

1

λk+1
i,m,w

=
∞∑

i=j+1

1

λi,m,w

(
|λ|

λi,m,w

)N ∞∑
k=0

(
|λ|

λi,m,w

)k
=

∞∑
i=j+1

(
|λ|

λi,m,w

)N
1

λi,m,w − |λ|
.

One finds that
λi,m,w

λi,m,w−|λ| is bounded by some constant cj > 0, independent of

i ∈ N with j + 1 ≤ i. We note that the constant depends on λ and cj → ∞ for
λ → λj+1,m,w. However, since we consider the convergence of the series in (3.60)
for fixed λ with |λ| < λj+1,m,w, this is not a problem. Using Corollary 3.5.7 we get

∞∑
k=N

∥∥(λGm,0,w)kGm,0,wPj∗,m,w
∥∥
BL(L2

w(Ω))
≤ cj|λ|N

∞∑
i=j+1

λ−N−1
i,m,w

≤ (C ′LP )−N−1cj|λ|N
∞∑

i=j+1

i−
2m
n
N− 2m

n .

This series converges for N > n
2m
− 1. Since 2kn,m > n

2m
− 1, the series in II

converges in operator norm.

Using the asymptotic formula for the eigenvalues and eigenfunctions, we find a
similar result as Corollary 3.3.3. The only difference is that we have to adjust the
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starting value of the series.

Lemma 3.5.9 Let Nn,m = 2
[
n+4m

2m

]
and Condition A be satisfied. Moreover, let

Dm and Pj∗,m,w be defined as in (2.17) and (2.16) with j as in (3.11). Then, there
exists a constant Cj > 0, also depending on the domain, m, w, M , δ1 and δ2, such
that

−CjDm ≤
∞∑

k=Nn,m

λkGk+1
m,0,wPj∗,m,w ≤ CjDm (3.61)

for all λ ∈ IM,δ1 ∪ Iδ2, where IM,δ1 , Iδ2 are defined as in (3.6) and (3.8).

Proof. Using Lemma 3.2.1 and Corollary 3.5.4, we find for 0 ≤ f ∈ L2(Ω)∣∣∣∣∣∣
∞∑

k=Nn,m

λkGk+1
m,0,wPj∗,m,wf

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

k=Nn,m

λk
∞∑

i=j+1

1

λk+1
i,m,w

Pi,m,wf

∣∣∣∣∣∣
≤

∞∑
k=Nn,m

|λ|k
∞∑

i=j+1

1

λk+1
i,m,w

|Pi,m,wf |

≤ C3.5.4

 ∞∑
k=Nn,m

|λ|k
∞∑

i=j+1

1

λk+1
i,m,w

λ
2kn,m
i,m,w

Dmf.
The series in brackets converges, so we can change the order of the summation and
get ∣∣∣∣∣∣

∞∑
k=Nn,m

λkGk+1
m,0,wPj∗,m,wf

∣∣∣∣∣∣ ≤ C3.5.4

∞∑
i=j+1

(
|λ|

λi,m,w

)Nn,m λ
2kn,m
i,m,w

λi,m,w − |λ|
Dmf.

Since
λi,m,w

λi,m,w−|λ| is bounded from above by some constant Cδ1,δ2,M > 0, independent

of i and λ ∈ IM,δ1 ∪ Iδ2 , we obtain with Corollary 3.5.7∣∣∣∣∣∣
∞∑

k=Nn,m

λkGk+1
m,0,wPj∗,m,wf

∣∣∣∣∣∣ ≤ Cδ1,δ2,MC3.5.4λ
Nn,m
j,m,w

∞∑
i=j+1

λ
2kn,m−Nn,m−1
i,m,w Dmf

≤ Cδ1,δ2,MC3.5.4C
′′
LPλ

Nn,m
j,m,w

∞∑
i=j+1

i
2m
n

(2kn,m−Nn,m−1)Dmf,

where C ′′LP = (C ′LP )2kn,m−Nn,m−1. The series converges for

Nn,m >
n

2m
+ 2kn,m − 1 =

n

2m
+ 1 + 2

[
n+ 2m

4m

]
.

Since Nn,m = 2
[
n+4m

2m

]
this is fulfilled.
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Using Lemma 3.5.9 and replacing 2kn,m by Nn,m in Proposition 3.4.5, we find an
alternative proof for Theorem 3.1.1 and 3.1.3.

Remark 3.5.10 If we use the estimate in (3.58), we find the condition Nn,m >
n−1
m

+ 1, so we may also use Nn,m =
[
n−1
m

]
+ 2 in Lemma 3.5.9.

3.6 An anti-maximum principle

Using analogous estimates and arguments as in the last four sections, we find for λ
in a small right neighborhood of λp,m,w a similar result as (3.9) for an upper bound
of the Green function Gm,λ,w. This implies an anti-maximumm principle, i.e. a
sign-reversing property exists: f ≥ 0 implies u ≤ 0 for λ in some interval.

First, we prove an estimate from below for the Green function to problem (1.6)
if λ is contained in a right neighborhood of a simple eigenvalue with corresponding
strongly positive eigenfunction.

Theorem 3.6.1 Suppose that Condition A is satisfied and let δ3 > 0. Suppose 0 <
w ∈ C0,γ(Ω) and that λp,m,w is a simple eigenvalue of (1.10) with the corresponding
eigenfunction ϕp,m,w strongly positive in the sense of (1.11). Moreover, suppose

Iδ3 = (λp,m,w, λp,m,w + δ3] (3.62)

contains no eigenvalue. Let Gm,λ,w be the Green function for (2.6). Then there exist
constants C1, C2, C3 > 0, depending on the domain, m, δ3 and w, such that for all
λ ∈ Iδ3 and x, y ∈ Ω:

Gm,λ,w(x, y) ≤ C1 Hn,m(x, y) +

(
C2

λp,m,w − λ
+ C3

)
ϕp,m,w(x) ϕp,m,w(y). (3.63)

Proof. We have to estimate I, II and III, described in (3.14) and (3.15), from above.
Let Hn,m and Pj∗,m,w be as defined in (3.4) and (2.16) with j ∈ N+ as in (3.11). To
find appropriate estimates, we can use results from the previous sections. Using the
proof of Lemma 3.2.2, we get a constant cj,1 > 0 such that

j∑
i=1

1

λi,m,w − λ
Pi,m,w ≤

(
1

λp,m,w − λ
+ cj,1

)
Pp,m,w for all λ ∈ Iδ3 .

We find analogous to Corollary 3.3.3 a constant cj,2 > 0 such that

∞∑
k=2kn,m

λk (Gm,0,1(w·))k+1Pj∗,m,w ≤ cj,2Pp,m,w for all λ ∈ Iδ3 .

Similar to Proposition 3.4.5 we also obtain constants cj,3, cj,4 > 0 such that

2kn,m−1∑
k=0

λk (Gm,0,1(w·))k+1Pj∗,m,w ≤ cj,3Hn,m − cj,4Pp,m,w for all λ ∈ Iδ3 .
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Using (3.14) and (3.15), the result in (3.63) follows.

Using some known estimates for the integral operator Hn,m and Theorem 3.6.1,
we obtain an anti-maximum principle:

Theorem 3.6.2 Suppose that Condition A is satisfied. Suppose 0 < w ∈ C0,γ(Ω)
and λp,m,w is a simple eigenvalue of (1.10) with the corresponding eigenfunction
ϕp,m,w strongly positive as in (1.11). Let 0 ≤ f ∈ Lq(Ω) with f nontrivial and
q > max{1, n

m
}. Then, there exists δf > 0, such that for all λ ∈ (λp,m,w, λp,m,w + δf )

the following holds: There is a constant cf,λ,q > 0 such that the solution um,λ,w ∈
W 2m,q(Ω) ∩Wm,q

0 (Ω) of (1.6) satisfies

um,λ,w(x) ≤ −cf,λ,q d(x)m for all x ∈ Ω.

Proof. We may consider Hn,m, Dm or Pi,m,w as operators on Lq(Ω) with q >
max{1, n

m
} instead of L2(Ω). Since the Green operator Gm,λ,w : Lq(Ω)→ W 2m,q(Ω)∩

Wm,q
0 (Ω) is defined through the kernel function Gm,λ,w which does not depend on q,

we may use inequality (3.63).
In the proof of Lemma 2 in [33] it is shown that for all f ∈ Lq(Ω) with q >

max{1, n
m
}, one finds a constant cq > 0, depending also on the domain and m, such

that

|(Hn,mf)(x)| ≤ cq‖f‖Lq(Ω)d(x)m for all x ∈ Ω. (3.64)

Indeed, this result can be proven using the definition of the kernel function Hn,m in
(3.3), the estimates in [21, Lemma 4.5] and the Hölder inequality. Since ϕp,m,w is
strongly positive in the sense of (1.11), the inequality in (3.64) implies that there
exists cf,q > 0 such that

|(Hn,mf)(x)| ≤ cf,qϕp,m,w(x) for all x ∈ Ω.

Then, one finds the following estimate for the solution um,λ,w of (1.6):

um,λ,w(x) ≤ ϕp,m,w(x)

[
C1cf,q +

(
C2

λp,m,w − λ
+ C3

)∫
Ω

f(y)ϕp,m,w(y)dy

]
,

where C1, C2, C3 are chosen as in Theorem 3.6.1. Since ϕp,m,w is strongly positive
and f ≥ 0 with f 6≡ 0, it holds that

∫
Ω
f(y)ϕp,m,w(y)dy > 0, so the constant in

square brackets becomes negative if λp,m,w − λ < 0 and λ is close enough to λp,m,w.
Accordingly, there exists a δf > 0 such that the value in square brackets is less than
zero for λ ∈ (λp,m,w, λp,m,w + δf ).

Remark 3.6.3 We notice that in this result the positivity of the kernel function
Hn,m, respectively the singularity of the Green function, is not used. We only need an
estimate as in (3.64) and the strong positivity of an eigenfunction with corresponding
simple eigenvalue.
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Chapter 4

Construction of a weighted
problem with simple eigenvalue
and positive eigenfunction

In this chapter we make use of Condition B to find a positive and Hölder continuous
weight function such that a strongly positive eigenfunction of the weighted eigenvalue
problem with corresponding simple eigenvalue exists. In [58] we found an explicit
weight function for the weighted biharmonic problem. The idea and the steps in the
following proofs are similar to [58, Sections 2, 4] with small changes concerning the
additional assumptions in Condition B.

4.1 Idea of the construction

Let Condition A be satisfied. Moreover, let u0 ∈ C2m,γ(Ω)∩Cm−1
0 (Ω) be as described

in Condition B and

(−∆)mu0 = f0 d(·)m0 , (4.1)

with m0 ∈ N, m0 ≤ m and f0 ∈ C0,γ(Ω) strictly positive. If u0 is an eigenfunction
to problem (1.10) with w ≡ 1 and eigenvalue λp,m,1 > 0, we are done and can choose
w ≡ λp,m,1 as a weight function. Then, u0 is an eigenfunction to the weighted
eigenvalue problem (1.10) with weight w and eigenvalue λp,m,w = 1. If u0 is not an
eigenfunction, then the idea is to take

w =
f0d(·)m0

u0

(4.2)

as the weight function. Then u0 satisfies{
(−∆)mu0 = λwu0 in Ω,

u0 = ∂
∂ν
u0 = · · · =

(
∂
∂ν

)m−1
u0 = 0 on ∂Ω

(4.3)
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with λ = 1, so it would be a strongly positive eigenfunction to a weighted eigen-
value problem. However, the problem is that the weight function has to be Hölder
continuous and bounded so that we can apply the converse to Krein-Rutman. For
m0 < m, the quotient of f0d(·)m0 and u0 would be unbounded near the boundary
∂Ω. Therefore, the idea is to change d(·)m0f0 in a way that it behaves like the dis-
tance function d(·)m in a small neighborhood of the boundary Ω(ε), which is defined
by

Ω(ε) := {x ∈ Ω; d(x) < ε}. (4.4)

Then, we use a similar idea as in (4.2) and (4.3) to achieve an appropriate weight
function. After we have found a weighted problem with positive eigenfunction,
we use small perturbations of this function so that the corresponding eigenvalue
becomes simple.

4.2 Construction of the weight function

In this section we follow the steps in [58, Section 2], except that, instead of m = 2
and f0, we consider m ≥ 2 and f0d(·)m0 from (1.13) in Condition B. In the following,
we investigate the function f0,ε : Ω→ R defined by

f0,ε(x) = χε(d(x))m−m0d(x)m0f0(x) (4.5)

for ε > 0 but small. We choose χε ∈ C∞(R) such that it is an ε-sized mollification
of the sign-function, see Figure 4.1.

Remark 4.2.1 ([58, Remark 8]) The function χε is constructed with the molli-
fiers from Friedrichs ϕε : R → R with support in [−ε, ε] and defined by ϕε(t) =
1
ε
ϕ
(
t
ε

)
, where

ϕ(t) =

{
c−1 exp

( −1
1−t2

)
for |t| < 1,

0 for |t| ≥ 1,
and c =

∫ 1

−1

exp
( −1

1−s2
)
ds.

With sign (t) = t/ |t| for t 6= 0 we define the function

χε (t) = (ϕε ∗ sign) (t) = −
∫ 0

−∞
ϕε(t− y)dy +

∫ ∞
0

ϕε(t− y)dy for t ∈ R.

Note that χε ∈ C∞ (R) satisfies χε (0) = 0 and χε (t) = 1 for t > ε, see Figure 4.1.
Moreover, we find χ′ε(t) = 2ϕε(t), so χ′ε (0) = 2

c e
ε−1 and

min
{
t
ε
, 1
}
≤ χε (t) ≤ min

{
2
c e

t
ε
, 1
}

for t ≥ 0. (4.6)

Remark 4.2.2 In [22, Lemma 14.16] one finds that for the distance function it
holds d ∈ C2m,γ near ∂Ω follows from ∂Ω ∈ C2m,γ. Also one finds ∂

∂ν
d = −1 on ∂Ω.
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Figure 4.1: Sketch of χε as mollified sign-function with the estimates from (4.6).

So, χε(d(·))m ∈ C2m,γ(Ω) for sufficiently small ε > 0. Moreover, it holds that

χε(d(·))m =
∂

∂ν
χε(d(·))m = · · · =

(
∂

∂ν

)m−1

χε(d(·))m = 0 and (4.7)(
∂

∂ν

)m
χε(d(·))m 6= 0 (4.8)

on ∂Ω. In addition one gets that d(·)m0χε(d(·))m−m0 ∈ C2m,γ(Ω(ε)) and that (4.7)
and (4.8) hold when we replace χε(d(·))m by d(·)m0χε(d(·))m−m0.

Furthermore, instead of u0, we consider the solution u0,ε to the polyharmonic
Dirichlet problem{

(−∆)mu0,ε = f0,ε in Ω,

u0,ε = ∂
∂ν
u0,ε = · · · =

(
∂
∂ν

)m−1
u0,ε = 0 on ∂Ω.

Then, we can construct a weight function such that u0,ε is a strongly positive eigen-
function to the corresponding weighted eigenvalue problem. To this end we will use
the following lemma:

Lemma 4.2.3 Suppose that Condition A is satisfied. Let u ∈ C2m,γ(Ω) satisfy
Condition B. Then we find that(

∂

∂ν

)m
u(x) 6= 0 for all x ∈ ∂Ω.

Proof. If
(
∂
∂ν

)m
u(x0) = 0 for some x0 ∈ ∂Ω, then we find a contradiction: Since

we assume that (1.11) holds, there is a constant CSP > 0 such that

u(x)

d(x)m
≥ CSP for all x ∈ Ω.

Let yx ∈ ∂Ω be such that d(x) = |x − yx|. Using the mean value theorem and the
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fact that u is m-times continuously differentiable, one obtains

|u(x)| ≤ sup
ξx∈[x,yx]

‖Dmu(ξx)‖d(x)m,

where [x, yx] = {θx+ (1− θ)yx; θ ∈ (0, 1)}. Then one gets

0 < CSP ≤ lim inf
x→x0

|u(x)|
d(x)m

≤ lim inf
x→x0

sup
ξx∈[x,yx]

‖Dmu(ξx)‖ = 0,

a contradiction.

In addition, we will use the following auxiliary lemma concerning the Hölder
continuity of some function in one dimension. It provides an idea why the subsequent
construction of the weight function yields a Hölder continuous function.

Lemma 4.2.4 Let f ∈ Cm,γ([0, 1]) with f(0) = ∂
∂ν
f(0) = · · · =

(
∂
∂ν

)m−1
f(0) = 0.

Then g : [0, 1]→ R defined by

g(t) :=

{
f(t)
tm

for t ∈ (0, 1],
1
m!
f (m)(0) for t = 0,

is Hölder continuous, i.e. g ∈ C0,γ([0, 1]).

Proof. Using Taylor’s formula with Lagrange form of the remainder, one finds that
limt↓0

f(t)
tm

= 1
m!
f (m)(0), so g ∈ C([0, 1]). Hence, it remains to show that

[g]γ := sup
0≤t<s≤1

|g(t)− g(s)|
|t− s|γ

<∞.

Let 0 < t < s ≤ 1. Using Taylor’s formula again, we find

f(s) =
m−1∑
k=0

(s− t)kf (k)(t)

k!
+

(s− t)m

m!
f (m)(ξt,s)

for some ξt,s ∈ (t, s). So we obtain∣∣∣f(t)
tm
− f(s)

sm

∣∣∣
|t− s|γ

=
1

|s− t|γsm

∣∣∣∣∣f(t)sm

tm
−

m−1∑
k=0

(s− t)kf (k)(t)

k!
− (s− t)m

m!
f (m)(ξt,s)

∣∣∣∣∣ .
(4.9)

We may also rewrite f (k)(t) for k ∈ {0, . . . ,m − 1} using Taylor’s formula and get

with the assumption f(0) = · · · =
(
∂
∂ν

)m−1
f(0) = 0 that

f (k)(t) =
tm−k

(m− k)!
f (m)(ξt,k) (4.10)
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for some ξt,k ∈ (0, t). Then, (4.9) and (4.10) imply∣∣∣f(t)
tm
− f(s)

sm

∣∣∣
|t− s|γ

=
1

|s− t|γsm

∣∣∣∣∣f (m)(ξt,0)sm

m!
−

m−1∑
k=0

(s− t)ktm−kf (m)(ξt,k)

(m− k)!k!
− (s− t)m

m!
f (m)(ξt,s)

∣∣∣∣∣ .
Applying the binomial theorem, we find

(s− t)m

m!
=
sm

m!
−

m−1∑
k=0

(s− t)ktm−k

(m− k)!k!
. (4.11)

Hence using the triangle inequality it follows∣∣∣f(t)
tm
− f(s)

sm

∣∣∣
|t− s|γ

≤ sm − tm

m!|s− t|γsm
∣∣f (m)(ξt,0)− f (m)(ξt,s)

∣∣ (4.12)

+
m−1∑
k=1

(s− t)ktm−k

(m− k)!k!|s− t|γsm
∣∣f (m)(ξt,k)− f (m)(ξt,s)

∣∣ . (4.13)

Since s ≥ |ξt,k− ξt,s| for all k ∈ {0, . . . ,m− 1}, s ≥ t and s ≥ |s− t|, we obtain with
(4.12), (4.13) and (4.11) ∣∣∣f(t)

tm
− f(s)

sm

∣∣∣
|t− s|γ

≤
m∑
k=1

1

(m− k)!k!

∣∣f (m)(ξt,0)− f (m)(ξt,s)
∣∣

|ξt,0 − ξt,s|γ
+

m−1∑
k=1

1

(m− k)!k!

∣∣f (m)(ξt,k)− f (m)(ξt,s)
∣∣

|ξt,k − ξt,s|γ

≤ 2
m∑
k=1

1

(m− k)!k!

[
f (m)

]
γ
. (4.14)

For 0 = t < s ≤ 1, we find a value ξ0,s ∈ (0, s) such that∣∣∣f (m)(0)
m!
− f(s)

sm

∣∣∣
|0− s|γ

=

∣∣∣f (m)(0)
m!
− f (m)(ξs,0)

m!

∣∣∣
sγ

≤ 1

m!

∣∣f (m)(0)− f (m)(ξs,0)
∣∣

ξγ0,s
≤ 1

m!
[f (m)]γ. (4.15)

With (4.14) and (4.15), we obtain an upper bound for [g]γ and thus g is Hölder
continuous.
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Similar to [58, Proposition 9] we find a strictly positive weight function wε with
strongly positive eigenfunction. The following proof is similar to the one in [58],
however we consider the regularity of the weight function in more detail.

Proposition 4.2.5 Suppose that Condition A and B are satisfied. Let f0, f0,ε and
u0,ε be as defined in (1.14), (4.1) and (4.5). Then, there exists a value ε0 > 0 such
that for all ε ∈ (0, ε0) it holds:

1. wε := f0,ε

u0,ε
∈ C0,γ(Ω) and min{wε(x);x ∈ Ω} > 0.

2. ϕ := u0,ε is a strongly positive eigenfunction with eigenvalue λ = 1 for the
weighted eigenvalue problem{

(−∆)mϕ = λwεϕ in Ω,

ϕ = ∂
∂ν
ϕ = · · · =

(
∂
∂ν

)m−1
ϕ = 0 on ∂Ω.

(4.16)

Proof. For simplicity, we assume that m0 = 0. Because of the arguments in Remark
4.2.2, we may follow the steps analogously for 0 < m0 ≤ m. First, we show estimates
for u0,ε, then the existence of a positive lower bound for wε, and after that we prove
the Hölder continuity of wε by using Taylor expansions.

• Let Ω(ε) be defined as in (4.4). Then, we see that for all q ∈ [1,∞)

‖f0,ε − f0‖Lq(Ω) ≤ ‖f0‖L∞(Ω)|Ω(ε)|1/q → 0 for ε ↓ 0,

where |Ω(ε)| is the volume of Ω(ε). Using Agmon-Douglis-Nirenberg results,
see [21, Theorem 2.20], we also find for q ∈ (1,∞) a constant CADN,q > 0 such
that

‖u0,ε − u0‖W 2m,q(Ω) ≤ CADN,q‖f0,ε − f0‖Lq(Ω) → 0 for ε ↓ 0.

By Sobolev imbeddings in (2.11), one gets that W 2m,q(Ω) imbeds in Cm(Ω)
for q > n

m
. This implies

‖u0,ε − u0‖Cm(Ω) → 0 for ε ↓ 0.

Hence, using the mean value theorem, we obtain

u0(x)− u0,ε(x) ≤ ‖u0,ε − u0‖Cm(Ω)d(x)m for all x ∈ Ω.

Then we can use that u0 is strongly positive, so there is a constant c1 > 0 such
that u0(x) ≥ c1d(x)m for all x ∈ Ω. One finds

u0,ε(x) ≥ u0(x)− ‖u0,ε − u0‖Cm(Ω)d(x)m ≥
(
c1 − ‖u0,ε − u0‖Cm(Ω)

)
d(x)m.

So, there exists ε0 > 0 and a constant c̃1 > 0 such that for all ε ∈ (0, ε0)

u0,ε(x) ≥ c̃1d(x)m in Ω.
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x1→

x2 ↑

x1→

t ↑

(x1, x2)→ (x1, t)-

Figure 4.2: The coordinate transformation with ψ as in (4.18) “flattens out” the bound-
ary: Ω is displayed in blue, and in green you can see Bδ(0) ⊂ R2 on the left and U on
the right. The boundary of Ω is shown in the left figure in dark blue. The “flattened”
boundary can be seen in the right figure.

Applying the mean value theorem, we find a constant c̃2 > 0 such that

c̃1d(x)m ≤ u0,ε(x) ≤ c̃2d(x)m in Ω. (4.17)

Hence u0,ε is a strongly positive eigenfunction to (4.16) for ε ∈ (0, ε0).

• Using (4.17) and (4.6), we find an upper and lower bound for the weight
function wε. It holds that

0 <
min{f0(x);x ∈ Ω}
c̃2 max{diam(Ω), ε}m

≤ f0,ε

u0,ε

= wε ≤
2m max{f0(x);x ∈ Ω}

c̃1cmemεm
<∞.

So, it remains to prove that wε ∈ C0,γ(Ω).

• Next, we show that wε ∈ C(Ω). Since for sufficiently small ε > 0 it holds
that u0,ε, χε(d(·))m ∈ C2m,γ(Ω), f0 ∈ C0,γ(Ω) and u0,ε > 0 in Ω, we find that
f0,ε

u0,ε
∈ C(Ω). Let x0 ∈ ∂Ω. For simplicity, we may assume that x0 = 0.

Now, we prove that wε is continuous in x0. Since ∂Ω ∈ C2m,γ we find δ > 0
and ψ ∈ C2m,γ(Rn−1) (after relabeling and reorientating the coordinate axes
if necessary) such that

Ω ∩Bδ(0) = {x ∈ Bδ(0);xn > ψ(x1, . . . , xn−1)}.

Then, we can “flatten out” the boundary near x0 = 0 and define the new
coordinates (x1, . . . , xn−1, t), where

t = xn − ψ(x1, . . . , xn−1), (4.18)

see Figure 4.2. In the following we use the short notation x = (x1, . . . , xn) =

63



CHAPTER 4. CONSTRUCTION OF A WEIGHTED PROBLEM WITH
SIMPLE EIGENVALUE AND POSITIVE EIGENFUNCTION

(x′, xn) and (x1, . . . , xn−1, t) = (x′, t). We set

f̃0(x′, t) := f0(x′, t+ ψ(x′)),

χε(d̃(x′, t))m := χε(d(x′, t+ ψ(x′)))m,

ũ0,ε(x
′, t) := u0,ε(x

′, t+ ψ(x′)).

Then

ũ0,ε, χε(d̃(·))m ∈ C2m,γ(U ∩ ((R)n−1 × R+)) and f̃0 ∈ C0,γ(U ∩ ((R)n−1 × R+))

for some neighborhood U of 0 ∈ Rn, and we can extend the functions to neg-
ative values for t by symmetric or antisymmetric extension:

û0,ε(x
′, t) :=

{
ũ0,ε(x

′, t) for t ≥ 0,

(−1)mũ0,ε(x
′,−t) for t < 0

and analogous we find χε(d̂(·))m and f̂0. Then û0,ε, χε(d̂(·)) ∈ Cm(V ) and

f̂0 ∈ C(V ), where V ⊂ Rn is some neighborhood of 0. We may assume that
V is some small ball with center 0. Using Taylor’s theorem in (x′, 0) ∈ V with
respect to t, we find

χε(d̂(x′, t))m

=
m−1∑
k=0

tk

k!

((
∂

∂s

)k
χε(d̂(x′, s))m

)
|s=0

+
tm

m!

((
∂

∂s

)m
χε(d̂(x′, s))m

)
|s=ξ(x′,t)t

=
tm

m!

((
∂

∂s

)m
χε(d̂(x′, s))m

)
|s=ξ(x′,t)t

for some ξ(x′,t) ∈ (0, 1) and a similar formula for û0,ε and some η(x′,t) ∈ (0, 1).
Then, we obtain that

lim
x→0

f0,ε(x)

u0,ε(x)
= lim

(x′,t)→(0,0)

f̂0(x′, t)χε(d̂(x′, t))m

û0,ε(x′, t)

= lim
(x′,t)→(0,0)

f̂0(x′, t)
((

∂
∂s

)m
χε(d̂(x′, s))m

)
|s=ξ(x′,t)t((

∂
∂s

)m
û0,ε(x′, s)

)
|s=η(x′,t)t

=
f̂0(0, 0)

((
∂
∂s

)m
χε(d̂(0, s))m

)
|s=0((

∂
∂s

)m
û0,ε(0, s)

)
|s=0

and the right-hand side exists because f0,
(
∂
∂ν

)m
χε(d(·))m,

(
∂
∂ν

)m
u0,ε 6= 0 on

∂Ω, see Lemma 4.2.3. So, wε ∈ C(Ω). We could also have used Taylor’s
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formula with integral form of the remainder to find

χε(d̂(x′, t))m

û0,ε(x′, t)
=

∫ t
0
(t− s)m−1 ∂m

∂sm
χε(d̂(x′, s))mds∫ t

0
(t− s)m−1 ∂m

∂sm
û0,ε(x′, s)ds

in V.

This expression also implies the continuity of the weight function.

• To show the Hölder continuity of wε one notices that wε ∈ C0,γ(K) for all
compact K ⊂ Ω. So, it remains to examine the behavior of wε near the
boundary ∂Ω. Therefore, one can proceed similar to the proof of wε ∈ C(Ω)
and again use a transformation to “flatten out” the boundary. Then one may
use Hölder continuity of u0,ε, χε(d(·))m and f0 to show Hölder continuity of the
weight function. The main idea of the proof leads back to the one-dimensional
result in Lemma 4.2.4.

Remark 4.2.6 One may suspect that generically all eigenvalues are simple for ε ∈
(0, ε0), see for example some similar investigations in [3]. We do not want a generic
result and we only need the simplicity of the eigenvalue λ = 1. To this end, we may
fix ε = 1

2
ε0 and proceed by an appropriate perturbation of f0,ε for this fixed ε. This

is done in Section 4.4 and yields a simple eigenvalue λ = 1.

4.3 Unique continuation

We will construct an appropriate weight function to find a weighted polyharmonic
eigenvalue problem with strongly positive eigenfunction and corresponding simple
eigenvalue. To prove simplicity of the eigenvalue with corresponding positive eigen-
function, we need the unique continuation principle. There are many results of this
kind, see for example [51, 48, 65] and references therin. We recall some result proven
by Protter in 1960:

Lemma 4.3.1 (Protter [51, p. 90]) Let x0 ∈ Ω ⊂ Rn and u ∈ C2m(Ω) satisfy
the inequality

|∆mu| ≤ g(x, u,Du, . . . , Dku) in Ω, (4.19)

where k =
[

3m
2

]
and (x, u, p1, . . . , pk) 7→ g(x, u, p1, . . . , pk) is Lipschitzian in

(u, p1, . . . , pk) ∈ Rn × R× Rn × Rn
2 × · · · × Rnk ,

i.e. there is a constant L > 0 such that

|g(x, u, p1, . . . , pk)− g(x, v, q1, . . . , qk)| ≤ L|(u, p1, . . . , pk)− (v, q1, . . . , qk)|
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for all x ∈ Ω and (u, p1 . . . , pk), (v, q1, . . . , qk) ∈ R×Rn ×Rn
2 × · · · ×Rnk . Suppose

that

e2|x−x0|−βu(x)→ 0 as x→ x0 (4.20)

for every positive β. Then, u vanishes identically in Ω.

A weaker formulation of this principle and a special case is the following result:

Corollary 4.3.2 Let u and g be as defined in Lemma 4.3.1 such that u satisfies
(4.19). Suppose that there exists an open subset U ⊂ Ω, such that u vanishes iden-
tically in U . Then u vanishes identically in Ω.

Proof. Choose some x0 ∈ U . Then (4.20) is fulfilled and we can apply Lemma
4.3.1.

To show the simplicity of a weighted eigenvalue in the next section, we will use
the unique continuation principle as well as the following lemma:

Lemma 4.3.3 Suppose that f, g ∈ C(Ω) satisfy

f(x)g(x) = 0 for all x ∈ Ω.

Moreover, let

{x ∈ Ω; f(x) 6= 0} ∩Bδ(x0) 6= ∅ for all x0 ∈ Ω, δ > 0. (4.21)

Then, it holds that g vanishes identically in Ω.

Proof. This follows directly from the continuity of f and g. Assume that g(x1) 6= 0
for some x1 ∈ Ω. Because g is continuous, there exists a value δ1 > 0 such that
g(x) 6= 0 for all x ∈ Bδ1(x1)∩Ω. Since f(x)g(x) = 0 for x ∈ Ω, we find that f(x) = 0
for all x ∈ Bδ1(x1) ∩ Ω. This is a contradiction to (4.21).

4.4 Simplicity of the weighted eigenvalue

We can prove the simplicity of the eigenvalue λ = 1 of (4.16) analogously to the case
m = 2 in [58]. The only difference is that in [58] we used the unique continuation
theorem of Shirota [65]. Since this is a result only for fourth order equations, we
cannot apply it in the following investigation. If we use Corollary 4.3.2 and Lemma
4.3.3 instead, we find the result in [58] for higher order problems (m ≥ 2) with
a similar proof. We recall the following definition of a small perturbation of the
weight function wε and some results and properties for the perturbated eigenvalues
and eigenfunctions, see [58, Section 4]:

Definition 4.4.1 Let f0,ε and u0,ε be as in Proposition 4.2.5 for a sufficiently small
and fixed ε > 0. For q ∈ C∞c (Ω) and t ∈ R with |t| small set

wtq,ε =
f0,ε + tq

u0,ε + tGm,0,1(q)
, (4.22)
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where Gm,0,1 is the solution operator for (1.6) with w ≡ 1 and λ = 0, and define
A(tq) : W 2m,2(Ω) ∩Wm,2

0 (Ω)→ L2(Ω) by

A(tq) = (−∆)m − wtq,ε. (4.23)

Remark 4.4.2 For small t the weight function wtq,ε can be expressed using the
following series:

wtq,ε = w0,ε +
∞∑
k=1

tk(−1)k
(
Gm,0,1q
u0,ε

)k−1
1

u0,ε

(w0,εGm,0,1q − q) ,

where w0,ε = wε = f0,ε

u0,ε
.

Remark 4.4.3 Generic simplicity of the spectrum for the biharmonic eigenvalue
problem was proven in [46, 47, 49]. The difference to our method is that the au-
thors used perturbations of the underlying domain instead of perturbations of the
differential operator.

In the following we investigate the eigenvalue problem

A (tq) :

{
((−∆)m − wtq,ε)ϕ = λϕ in Ω,

ϕ = ∂
∂ν
ϕ = · · · =

(
∂
∂ν

)m−1
ϕ = 0 on ∂Ω.

(4.24)

If one compares (4.16) with (4.24), one notices that the multiplicity of λ = 1 in
problem (4.16) coincides with the multiplicity of λ = 0 in problem (4.24). So, since
we consider the changed eigenvalue problem, we have to reduce the multiplicity of
the eigenvalue λ = 0.

The following description can be found in [58, Section 4] for m = 2. Assuming
that λ = 0 is an eigenvalue of multiplicity M ≥ 2 for (4.24) with t = 0, one finds by
Kato [39, Theorem 3.9, Chapter 7] or Rellich [55, pp. 76–100] the existence of an
interval (−t0, t0) ⊂ R and M real analytic functions

t 7→
(
λ̃i,t,q, ϕ̃i,t,q

)
: (−t0, t0)→ R× Cm−1

0 (Ω) ∩ C2m,γ(Ω) for i ∈ {1, . . . ,M} ,

with:

1.
(
λ̃i,t,q, ϕ̃i,t,q

)
are eigenvalue and eigenfunction for A (tq) for all i ∈ {1, . . . ,M};

2. {ϕ̃i,t,q}Mi=1 is an orthogonal system in L2(Ω) and so {ϕ̃i,t,q}Mi=1 is independent
for |t| small;

3. λ̃i,0,q = 0 for all i ∈ {1, . . . ,M};

4. For every open interval (a, b) ⊂ R such that 0 ∈ (a, b) is the only eigenvalue
of A(0) in [a, b], there exist exactly M eigenvalues λ̃1,t,q, . . . , λ̃M,t,q of A(tq) in
(a, b), assuming |t| is small enough.
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Remark 4.4.4 We use the notation with an additionl tilde in λ̃i,t,q and ϕ̃i,t,q to
make a distinction between the eigenvalues and eigenfunctions of (1.10) and to avoid
more indices.

Remark 4.4.5 One calls a function t 7→ λ̃i,t,q real analytic in t = 0, if there are

λ̃
(j)
i,q ∈ R for j ∈ N such that

λ̃i,t,q =
∞∑
j=0

tj λ̃
(j)
i,q

converges for t in a neighborhood of 0. And analogously t 7→ ϕ̃i,t,q is real analytic in

t = 0, if there are ϕ̃
(j)
i,q ∈ L2(Ω) such that

ϕ̃i,t,q =
∞∑
j=0

tj ϕ̃
(j)
i,q

converges in L2(Ω). Since ϕ̃i,t,q are eigenfunctions to (4.24), we find that ϕ̃i,t,q, ϕ̃
(j)
i,q ∈

C2m,γ(Ω) ∩ Cm−1
0 (Ω) for every j ∈ N.

The following explanation of the idea of the proof can be found in [58, p. 12]:
We may set

ϕ̃1,t,q = u0,ε + tGm,0,1(q) (4.25)

for the first eigenfunction to problem (4.24). This function is analytic in t and the
other M − 1 eigenfunctions can be chosen orthogonally to this function in L2(Ω)-
sense. Then, we find

λ̃1,t,q = 0 for all t ∈ (−t0, t0) .

We will prove the existence of a smooth function q1 such that

λ̃′k,0,q1 :=

(
∂

∂t
λ̃k,t,q1

)
|t=0

6= 0

for at least one k ∈ {2, . . . ,M}. If this holds true, one finds a small interval (0, t∗) ⊂
(0,∞), such that for t1 ∈ (0, t∗) we obtain λ̃k,t1,q1 6= 0 and hence that 0 is an
eigenvalue of multiplicity at most M − 1 for A (t1q1). If the multiplicity of the
eigenvalue 0 for A (t1q1) is 1, we have found a suitable weight function, a simple
eigenvalue and a strongly positive eigenfunction. Otherwise we repeat our arguments
for A (t1q1 + tq). After k ≤ M − 1 steps we have found an eigenvalue problem
A (t1q1 + · · ·+ tkqk) having 0 as a simple eigenvalue. The idea of the proof was
inspired by Albert [3] and Teytel [72] and the following lemma can be found in [58,
Lemma 19] for m = 2.

Lemma 4.4.6 Suppose that 0 is an eigenvalue of multiplicity M ≥ 2 for problem
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(4.24) with t = 0. Then there exist k ∈ {2, . . . ,M} and q1 ∈ C∞c (Ω) such that(
∂

∂t
λ̃k,t,q1

)
|t=0

6= 0.

Proof. For the first step, we can proceed as in the case m = 2 and therefore repeat

the first part of the proof in [58, Lemma 19]. We assume that
(
∂
∂t
λ̃k,t,q

)
|t=0

= 0

for all k ∈ {1, . . . ,M} and q ∈ C∞c (Ω) and show in two steps that this leads to a
contradiction.

1. Differentiation with respect to t of

A(tq)ϕ̃k,t,q = λ̃k,t,q ϕ̃k,t,q for all k ∈ {1, . . . ,M}

yields (
A(tq)− λ̃k,t,q

)
∂
∂t
ϕ̃k,t,q =

(
∂
∂t
wtq,ε + ∂

∂t
λ̃k,t,q

)
ϕ̃k,t,q.

Setting t = 0 and using (4.22), (4.23) and
(
∂
∂t
λ̃k,t,q

)
|t=0

= 0, we find

A(0)
(
∂
∂t
ϕ̃k,t,q

)
|t=0

=
1

u0,ε

(q − w0,εGm,0,1(q)) ϕ̃k,0,q.

Hence, we obtain that 1
u0,ε

(q − w0,εGm,0,1(q)) ϕ̃k,0,q is in the range of A(0) for

all q ∈ C∞c (Ω). Since every eigenfunction in ker(A(0)) can be written in the
form

∑m
k=1 ck ϕ̃k,0,q with ck ∈ R and A(0) is self-adjoint, it follows that

1

u0,ε

(q − w0,εGm,0,1(q))φ1 ⊥ ker(A(0)) for all φ1 ∈ ker(A(0)),

or in other words∫
Ω

1

u0,ε

(q − w0,εGm,0,1(q))φ1 φ2 dx = 0 for all φ1, φ2 ∈ ker(A(0)).

Using the symmetry of the Green function Gm,0,1(x, y) = Gm,0,1(y, x), we ob-
tain

0 =

∫
Ω

1

u0,ε

(q − w0,εGm,0,1(q))φ1 φ2 dx

=

∫
Ω

(
q(x)− w0,ε(x)

∫
Ω

Gm,0,1(x, y)q (y) dy

)
φ1(x)φ2(x)

u0,ε(x)
dx

=

∫
Ω

q(x)

(
φ1(x)φ2(x)

u0,ε(x)
− Gm,0,1

(
w0,ε

φ1 φ2

u0,ε

)
(x)

)
dx

and we can apply the fundamental lemma of calculus of variation to find for
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all φ1, φ2 ∈ ker(A(0)) that

φ1(x) φ2(x)

u0,ε(x)
− Gm,0,1

(
w0,ε

φ1 φ2

u0,ε

)
(x) = 0 for all x ∈ Ω.

So if φ1 and φ2 are eigenfunctions of A (0) with λ = 0 in (4.24), then also

φ̃1,2 :=
φ1 φ2

u0,ε

(4.26)

is an eigenfunction for A (0) with λ = 0. If we set φ1 = u0,ε, then φ̃1,2 =

φ2, so in this case it is obvious that φ̃1,2 is an eigenfunction. For arbitrary
φ1, φ2 ∈ ker(A(0)) this is not to be expected. Let ψ ∈ C2m(Ω) ∩ Cm−1

0 (Ω) be
an eigenfunction for A(0) and orthogonal to u0,ε in L2(Ω)-sense. If we now set

φ1 and φ2 equal to ψ, we find that ψ2

u0,ε
is an eigenfunction to the eigenvalue

λ = 0. After setting φ1 = ψ2

u0,ε
and φ2 = ψ and repeating this step, we find the

eigenfunctions

ψn(x) :=

(
ψ(x)

u0,ε(x)

)n
ψ(x) for all n ∈ N. (4.27)

2. Using unique continuation, we show that this cannot be true. So, we find the
same result as in [58, Lemma 19] for the polyharmonic eigenvalue problem.
The only difference is that we apply the results in Section 4.3 instead of the
unique continuation result proven by Shirota. Hence, the second part of the
proof deviates from the proof in [58].

By induction we find infinite multiplicity of the eigenvalue λ = 0 for A(0):
Let ψn be defined as in (4.27). It holds true that ψ0 and ψ1 are linearly
independent eigenfunctions. Indeed, using (4.27), we obtain that if

ψ(x) = ψ0(x) = cψ1(x) = c
ψ(x)2

u0,ε(x)
for all x ∈ Ω

and some c ∈ R, then ψ(x)(u0,ε(x)− cψ(x)) = 0 for all x ∈ Ω. If ψ(x) = 0 for
x in some ball Bδ(x0) ⊂ Ω with δ > 0, then ψ ≡ 0 by unique continuation, see
Corollary 4.3.2. Since the function ψ is a nontrivial eigenfunction, this cannot
be true. If there exists no open set where ψ vanishes, then it follows from
Lemma 4.3.3 that u0,ε − cψ ≡ 0. Since ψ has a nodal line and u0,ε > 0 this
cannot be true for any c ∈ R. Therefore, ψ0 and ψ1 are linearly independent.

By induction, we find that {ψn}Nn=0 is a set of linearly independent eigenfunc-
tions with corresponding eigenvalue λ = 0 for every N ∈ N+. Indeed, when
rewriting

c0ψ0(x) + c1ψ1(x) + · · ·+ cN−1ψN−1(x) = ψN(x) for all x ∈ Ω,
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we find

ψ(x)

u0,ε(x)
(c0u0,ε(x) + c1ψ0(x) + · · ·+ cN−1ψN−2(x)− ψN−1(x)) = 0

for all x ∈ Ω. Again, either ψ ≡ 0, or

c0u0,ε(x) + c1ψ0(x) + · · ·+ cN−1ψN−2(x)− ψN−1(x) = 0 for all x ∈ Ω.

Since c1ψ0 + · · · + cN−1ψN−2 − ψN−1 has a nodal line and u0,ε > 0, one finds
c0 = 0, so

c1ψ0(x) + · · ·+ cN−1ψN−2(x) = ψN−1(x) for all x ∈ Ω.

Using the induction hypothesis, we obtain the result. Hence λ = 0 has infinite
multiplicity, a contradiction.

As mentioned above, using Lemma 4.4.6, we can find a perturbation of the weight
function wε such that the eigenvalue λ = 0 becomes simple. The next corollary can
be stated and proven analogously to the case m = 2 and can be found in [58,
Corollary 20].

Corollary 4.4.7 Suppose that Condition A and B are satisfied. Let ε be fixed as
described in Remark 4.2.6 and f0,ε, u0,ε be defined as in Proposition 4.2.5. Then
there is q∗ ∈ C∞c (Ω) such that

1. w∗ =
f0,ε + q∗

u0,ε + Gm,0,1(q∗)
∈ C0,γ(Ω) is strictly positive on Ω, and

2. ϕ = u0,ε + Gm,0,1(q∗) is a strongly positive eigenfunction in the sense of (1.11)
for {

((−∆)m − w∗)ϕ = λϕ in Ω,

ϕ = ∂
∂ν
ϕ = · · · =

(
∂
∂ν

)m−1
ϕ = 0 on ∂Ω,

(4.28)

with simple eigenvalue λ = 0.

Proof. If the multiplicity of the eigenfunction ϕ = u0,ε for the weight function
w = f0,ε/u0,ε is M ≥ 2, we may proceed as in Lemma 4.4.6 and find q1 such that
for t1 > 0 but small enough, problem A (t1q1) contains a positive weight function
and has a positive eigenfunction ϕ̃1,t1,q1 with eigenvalue 0 of multiplicity at most
M − 1. Then, repeating the argument now starting with A (t1q1) as in (4.23) and
considering A1 (tq) = A (t1q1 + tq) we may again reduce the multiplicity. After at
most K ≤M − 1 steps the multiplicity for A (q∗) with

q∗ = t1q1 + t2q2 + · · ·+ tKqK

and t1 � t2 � · · · � tK > 0 has reduced to 1.
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If we transfer the result to our original eigenvalue problem, we have found that{
(−∆)m ϕ = λw∗ϕ in Ω,

ϕ = ∂
∂ν
ϕ = · · · =

(
∂
∂ν

)m−1
ϕ = 0 on ∂Ω,

(4.29)

is an eigenvalue problem with simple eigenvalue λp,m,w∗ = 1 and corresponding pos-
itive eigenfunction ϕp,m,w∗ = u0,ε + Gm,0,1(q∗). This completes the proof of Theorem
1.2.8.

Using Lemma 3.1.7, Theorem 3.1.3 and Theorem 3.6.2, we also find the positiv-
ity preserving property and an anti-maximum principle for the weighted Dirichlet
problem with weight function w∗ and therefore the results in Theorem 1.2.10 and
Theorem 1.2.12:

Corollary 4.4.8 Let Ω, w∗ and λp,m,w∗ = 1 be as in Corollary 4.4.7. Then there is
λc < λp,m,w∗ such that for 0 ≤ f ∈ L2 (Ω) with f nontrivial and u the weak solution
to {

(−∆)m u− λw∗u = f in Ω,

u = ∂
∂ν
u = · · · =

(
∂
∂ν

)m−1
u = 0 on ∂Ω,

(4.30)

a Hopf type result holds if λ ∈ (λc, λp,m,w∗): There exists cf,λ > 0 such that

u (x) ≥ cf,λ d (x)m for almost every x ∈ Ω.

Moreover, if λp,m,w∗ is not the first eigenvalue of (4.29), then it holds

λc ≥ λp−1,m,w∗ +
λp,m,w∗ − λp−1,m,w∗

2
.

Corollary 4.4.9 Let Ω, w∗ and λp,m,w∗ = 1 be as in Corollary 4.4.7. Let 0 ≤ f ∈
Lq(Ω) with f nontrivial and q > max{1, n

m
}. Then, there exists δf > 0, such that

for all λ ∈ (λp,m,w∗ , λp,m,w∗ + δf ) the following holds: There is a constant c̃f,λ > 0
such that the weak solution u of (4.30) satisfies

u (x) ≤ −c̃f,λ d (x)m for every x ∈ Ω.

72



Chapter 5

Some special cases and examples

In this chapter, we consider some examples and special cases and apply Theorem
1.2.10. For some domains one can calculate explicit functions that fulfill Condition
B, see Example 5.0.1, and therefore one obtains a positivity preserving property for
a weighted problem.

Example 5.0.1 Let Ωc be defined as follows:

Ωc = {(x1, x2) ∈ R2;x8
1 + cx2

2 < 1} with c ≥ 12 (5.1)

and let v0 : Ωc → R be v0(x1, x2) = 1− x8
1 − cx2

2. Then, v0 solves{
−∆v0 = 2c+ 56x6

1 ≥ 24 in Ωc,

v0(x1, x2) = 0 on ∂Ωc.

Using Hopf’s boundary point lemma, we find v0(x1, x2) ≥ cd d(x1, x2) for some con-
stant cd > 0 and all (x1, x2) ∈ Ωc. So, the function

u0(x1, x2) = v0(x1, x2)2 = (1− x8
1 − cx2

2)2 (5.2)

satisfies u0(x1, x2) ≥ c2
dd(x1, x2)2 for all (x1, x2) ∈ Ωc, see Figure 5.1. Moreover, we

calculate

(−∆)2u0(x1, x2) = 8
(
3c2 − 420x4

1 + 5460x12
1 + 56cx6

1 + 420cx4
1x

2
2

)
≥ 24(c2 − 140),

and this expression is greater than zero for c ≥ 12. Therefore, we have found a
function that satisfies Condition B in the biharmonic case.

Analogously, we find that for c ≥ 30 the function ũ0 = v3
0 fulfills Condition B for

m = 3 in Ωc.

For general domains it is rather difficult to construct an explicit function u0

that is a strongly positive m-polyharmonic Dirichlet supersolution in the sense of
Condition B. In the following sections we will show the validity of the condition
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Figure 5.1: top: Ωc as defined in (5.1) with c = 15; bottom: u0 as defined in (5.2) with
c = 15.

described in Remark 1.2.7 for some smooth domains and some values for m ∈ N+.
First, we consider the case of the weighted biharmonic Dirichlet problem.

5.1 Biharmonic Dirichlet problem on smooth do-

mains

Using Theorem 1.2.10, we can prove the validity of the positivity preserving property
of a weighted fourth order problem. With additional assumptions, we can also show
properties of λc in Theorem 1.2.10.

5.1.1 Positivity preserving property

In joint work with Guido Sweers, I have recently proven that in every smooth do-
main the positivity preserving property is valid for a weighted fourth order Dirichlet
problem. In this subsection we present the content of [58], published in Pure and
Applied Analysis by Mathematical Sciences Publishers.

We assume that Condition A is fulfilled. Then we may prove that for m = 2 one
can find a function u0 ∈ C4,γ(Ω) which satisfies Condition B using the solution e to
the Dirichlet problem as described in Remark 1.2.7:{

−∆e = 1 in Ω,

e = 0 on ∂Ω.
(5.3)

Using the maximum principle, we find that e is positive and we obtain
e ∈ C4,γ(Ω)∩C0(Ω), see [22, Theorem 6.19]. When applying the bilaplace operator
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to e2, we get

∆2e2 = 2 (−∆)

(
(−∆e) e−

n∑
i=1

(
∂e

∂xi

)2
)

= 2 (−∆)

(
e−

n∑
i=1

(
∂e

∂xi

)2
)

= 2 + 4
n∑
i=1

(
∂e

∂xi

∂∆e

∂xi

)
+ 4

n∑
i,j=1

(
∂2e

∂xi∂xj

)2

= 2 + 4
n∑

i,j=1

(
∂2e

∂xi∂xj

)2

. (5.4)

So, (−∆)2 e2 > 0 and (−∆)2 e2 ∈ C2,γ(Ω). Using Theorem 1.2.8, we obtain
for every smooth domain a weighted biharmonic problem, such that the positivity
preserving property holds.

Remark 5.1.1 In general, for m > 2 one cannot choose u0 = em with e as in
(5.3). For example one finds for the annulus Ω = B1(0)\Bδ(0) ⊂ Rn with n > 2 and
δ ∈ (0, 1) the radial symmetric solution ẽ(r) := ẽ(|x|) = e(x) as follows:

ẽ(r) =
r2(−δn + δ2) + (δn+2 − δ2) + r2−n(−δn+2 + δn)

2n (δn − δ2)
for r ∈ (δ, 1). (5.5)

For n = 2 one finds

ẽ(r) =
1

4
− r2

4
− (1− δ2) log(r)

4 log(δ)
for r ∈ (δ, 1). (5.6)

Since the maximum principle holds, the functions are positive in Ω, but in general
(−∆)3e(x)3 is not positive for all x ∈ Ω. Indeed, applying the trilaplacian to (5.6),
we obtain

(−∆)3e3(x) =

(
−1

r

∂

∂r
r
∂

∂r

)3

ẽ3(r)

= 3
6(−1 + δ2)3 − 4(−1 + δ2)3 log(r) + (−4 + r2)(−1 + δ2)2 log(δ) + 24r6 log(δ)3

2r6 log(δ)3

and this is not strictly positive for small δ, see Fig. 5.2 for δ = 1
20

.
So the construction in [58] is not necessarily possible for m > 2. Even if the

approach u0 = em cannot be used for all higher order problems and every domain,
one can find exceptions as in Example 5.1.2.

Example 5.1.2 We have seen that the solution e to (5.3) does not fulfill
(−∆)3e3 > 0 for all annuli. Let Ω = B1(0)\Bδ(0) ⊂ R2 be the annulus with inner ra-
dius δ ∈ (0, 1) as in Remark 5.1.1 and e be the radial symmetric solution to problem
(5.3) with ẽ(r) := ẽ(|x|) = e(x) and ẽ : (δ, 1)→ R. We define gδ(r) := (−∆)3ẽ3(r)
and find for r ∈ (δ, 1)

gδ(r) :=

3
6(−1 + δ2)3 − 4(−1 + δ2)3 log(r) + (−4 + r2)(−1 + δ2)2 log(δ) + 24r6 log(δ)3

2r6 log(δ)3
.
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Figure 5.2: Left: ẽ as defined in (5.6) with δ = 1
20 ; right: (−∆)3ẽ3.

Then

g′δ(r) =

6(−1 + δ2)2 (−10(−1 + δ2) + 6(−1 + δ2) log(r)− (−6 + r2) log(δ))

r7 log(δ)3
for r ∈ (δ, 1)

is negative for sufficiently large δ < 1. So we find a value δ1 ∈ (0, 1) such that for
δ ∈ (δ1, 1)

gδ(r) ≥ gδ(1) =
9 (2(−1 + δ2)3 − (−1 + δ2)2 log(δ) + 8 log(δ)3)

2 log(δ)3
for all r ∈ (δ, 1)

and

lim
δ↑1

gδ(1) = 90.

Since gδ(1) is continuous in δ ∈ (δ1, 1), there is a value δ2 ∈ (δ1, 1) such that
gδ(r) ≥ gδ(1) > 0 for δ ∈ (δ2, 1) and all r ∈ (δ, 1), so (−∆)3e3 > 0 on B1(0)\Bδ(0)
for δ ∈ (δ2, 1).

5.1.2 Anti-eigenvalue problem

As mentioned in Remark 1.2.11, it is known that the one-dimensional fourth order
problem 

u′′′′ − λu = f in (0, 1),

u(0) = u′(0) = 0,

u(1) = u′(1) = 0

(5.7)

is positivity preserving iff λ ∈ [λc, λ1,2,1), where λ1,2,1 is the principle eigenvalue to
the biharmonic Dirichlet problem in Ω = (0, 1) and λc = −4µ4

c with µc the first
positive solution of tan(µ) = tanh(µ).

76



5.1. BIHARMONIC DIRICHLET PROBLEM ON SMOOTH DOMAINS

For λ = 0, problem (5.7) is positivity preserving. Using methods proven by
Schröder in [61, 62, 63] for the clamped bar, one finds that by decreasing λ one
reaches a value λc < 0 such that the Green function is sign-changing for λ < λc,
and that the negative part comes in through the boundary. Then, one obtains that
λc is the first negative eigenvalue for the ‘switched’ eigenvalue problem, see also [68,
Lemma 2.3] 

ϕ′′′′ = λϕ in (0, 1) ,

ϕ (0) = 0,

ϕ (1) = ϕ′ (1) = ϕ′′ (1) = 0.

(5.8)

One calls this problem a ‘switched’ eigenvalue problem, since the highest order
boundary condition on one side is replaced by the next available lowest order bound-
ary condition on the other side. The number λc is also called an ‘anti’-eigenvalue
for (5.7), see for example [40, p. 1025].

Remark 5.1.3 One notices, that an eigenfunction to (5.8) with corresponding eigen-
value λc is

ϕ(x) = lim
y↓0

G2,λc,1(x, y)

y2
= 1

2

(
∂
∂y

)2

G2,λc,1(x, 0), (5.9)

where G2,λc,1 is the Green function for (5.7) with λ = λc.

In higher dimensions and higher order problems no such result is known, but if we
assume that for decreasing λ the sign-change of the Green function for (1.6) comes
in through the boundary, we expect a similar result.

So, in this subsection, we suppose that Condition A is satisfied and the Green
function G2,λ,w for (1.6) with m = 2 is nonnegative iff λ ∈ [λc, λp,2,w). Moreover,
we suppose that the sign-change of the Green function G2,λ,w comes in through the
boundary for decreasing λ. Let (x0, y0) ∈ ∂Ω × ∂Ω\{(x, x);x ∈ ∂Ω} be such that
an additional zero for the Green function G2,λ,w with λ ↓ λc occurs in (x0, y0). More
precisely, analogous to the description in [25] this means that for some sequence
{λk}k∈N+ ⊂ (λp−1,2,w, λc) if p > 1 or {λk}k∈N+ ⊂ (−∞, λc) if p = 1 such that
λk ↑ λc, there exists a sequence {(xk, yk)}k∈N+ ⊂ Ω× Ω with

G2,λk,w(xk, yk) = 0 for all k ∈ N+,

and xk → x0 ∈ ∂Ω, yk → y0 ∈ ∂Ω.

Similar to (5.9), we consider the function gλ : Ω→ R for λ ∈ [λc, λp,2,w) defined
by

gλ(x) = lim
Ω3y→y0

G2,λ,w(x, y)

d(y)2
. (5.10)
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Using Taylor’s formula, we find that for x ∈ Ω\{y0}

gλ(x) = 1
2

(
∂
∂νy

)2

G2,λ,w(x, y0)

and gλ(x) ≥ 0 for all x ∈ Ω, since G2,λ,w(x, y), d(y) ≥ 0 for all x, y ∈ Ω with x 6= y.
Moreover, with G2,λ,w(x, y0) = ∂

∂νy
G2,λ,w(x, y0) = 0 for all x ∈ Ω, we get

gλ(x) = 1
2

(
∂
∂νy

)2

G2,λ,w(x, y0) = 1
2
∆yG2,λ,w(x, y0).

Using [25, Proposition 3], one finds gλ ∈ C4(Ω\{y0}) and gλ satisfies
∆2gλ − λw gλ = 0 in Ω,

gλ = 0 on ∂Ω,
∂
∂ν
gλ = 0 on ∂Ω\{y0}.

Using [25, Theorem 3], we also find(
∂
∂ν

)2
gλc(x0) = ∆xgλc(x0) = 1

2
∆x∆yG2,λc,w(x0, y0) = 0.

Therefore, gλc ∈ C4(Ω\{y0}) is nonzero and fulfills
∆2gλc − λcw gλc = 0 in Ω,

gλc = 0 on ∂Ω,
∂
∂ν
gλc = 0 on ∂Ω\{y0},(
∂
∂ν

)2
gλc(x0) = 0.

(5.11)

One should notice that this is not an obviously well-defined eigenvalue problem,
i.e. it is not clear in which space one should search for pairs of solutions (λ, ϕ).

Example 5.1.4 Let Ω = B1(0) ⊂ Rn. Then, we may derive informations about the
regularity of the function gλc, since we know an explicit formula for the polyharmonic
Green function. We obtain with w ≡ 1 that the Green function G2,λc,1 can be written
using the biharmonic Green function G2,0,1, see [25, Proof of Proposition 2]:

G2,λc,1(x, y) = G2,0,1(x, y) +
∑̀
j=1

Γλc,j(x, y) + vλc,x(y), (5.12)

where we choose ` > 1 + n
4

and Γλc,j can be defined inductively

Γλc,1(x, y) = λc

∫
B1(0)

G2,0,1(x, z)G2,0,1(z, y)dz,

Γλc,j+1(x, y) = λc

∫
B1(0)

Γλc,j(x, z)G2,0,1(z, y)dz.

78



5.1. BIHARMONIC DIRICHLET PROBLEM ON SMOOTH DOMAINS

We find

|Γλc,`|, |∇Γλc,`| ≤ C (5.13)

for some C > 0, dependent on λc and n see [25, Equation (31)]. Furthermore,
vλc,x ∈ C4,γ(B1(0)) is the solution to{

∆2vλc,x(y)− λcvλc,x(y) = λcΓλc,`(x, y) in B1(0),

vλc,x(y) = ∂
∂ν
vλc,x(y) = 0 on ∂B1(0).

(5.14)

Using (5.13), differentiating (5.14) with respect to x, applying regularity theory and
Sobolev imbeddings, one finds two constants C1, C2 > 0, independent of x, such that

|∆yvλc,x(y0)| < C1, |∇x∆yvλc,x(y0)| < C2.

With (5.12), we obtain for x ∈ Ω

gλc(x) = 1
2
∆yG2,0,1(x, y0) + 1

2

∑̀
j=1

∆yΓλc,j(x, y0) + 1
2
∆yvλc,x(y0),

where ∆yG2,0,1(x, y) is the Poisson kernel for the biharmonic problem and using
Remark 2.2.2, one may calculate

1
2
∆yG2,0,1(x, y0) =

1

nbn4

(1− |x|2)2

|x− y0|n

with bn as in (2.2). It follows that gλc ∈ L∞(B1(0)) if n = 2 and gλc ∈ Lq1(Ω) for
all q1 ∈

[
1, n

n−2

)
if n ≥ 3. Moreover, we find gλc ∈ W 1,q2(B1(0)) for all q2 ∈

[
1, n

n−1

)
and n ≥ 2, but gλc 6∈ W 2,q3(B1(0)) and gλc ∈ W 2,q3(K) for all q3 ∈ [1,∞) and
compact subsets K ⊂ B1(0).

Remark 5.1.5 Let Condition A be satisfied. By Green function estimates of
Krasovskĭı or Pulst, see [41], [53, Theorem 2.4], one finds for α ∈ Nn with
0 ≤ |α| ≤ 2

|Dα
x∆yG2,λc,w(x, y0)| ≤ cα,λc,w|x− y0|2−n−|α|

if 2− n < |α| and using [21, Theorem 4.29] one obtains

|∆yG2,λc,w(x, y0)| ≤ cα,λc,w

if n = 2. So, we find similar regularity results as in Example 5.1.4 for arbitrary
bounded domains Ω ⊂ Rn with ∂Ω ∈ C4,γ:

• gλc ∈ L∞(Ω) if n = 2 and gλc ∈ Lq1(Ω) for all q1 ∈
[
1, n

n−2

)
if n ≥ 3,

• gλc ∈ W 1,q2(Ω) for all q2 ∈
[
1, n

n−1

)
and n ≥ 2,
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• gλc ∈ W 2,q3(K) for all compact subsets K ⊂ Ω, q3 ∈ [1,∞) and n ≥ 2.

Moreover, we may prove that λ = λc is the largest value smaller than λp,2,w,
such that gλ ∈ C4,γ(Ω\{y0}) fulfills (5.11). Indeed, we find for µ ∈ (λc, λp,2,w) that
( ∂
∂νx

)2( ∂
∂νy

)2G2,µ,w(x, y) = ∆x∆yG2,µ,w(x, y) 6= 0 for all x, y ∈ ∂Ω with x 6= y. The

following proof is inspired by [32, Lemma 2].

Lemma 5.1.6 Suppose that G2,λc,w(x, y) ≥ 0 for all x, y ∈ Ω with x 6= y. Then, for
all µ ∈ R with λc < µ < λp,2,w one finds(

∂
∂νx

)2 (
∂
∂νy

)2

G2,µ,w(x, y) > 0 for all x, y ∈ ∂Ω with x 6= y. (5.15)

Proof. We fix some y∗ ∈ ∂Ω. Using [32, Lemma 2] one finds(
∂
∂νy

)2

G2,µ,w(x, y∗) > 0 for all x ∈ Ω. (5.16)

Since
(

∂
∂νy

)2

G2,µ,w(x, y∗) = ∂
∂νx

(
∂
∂νy

)2

G2,µ,w(x, y∗) = 0 for x ∈ ∂Ω\{y∗}, one gets

(
∂
∂νx

)2 (
∂
∂νy

)2

G2,µ,w(x, y∗) ≥ 0 for all x ∈ ∂Ω\{y∗}.

Analogously, one obtains(
∂
∂νx

)2 (
∂
∂νy

)2

G2,λc,w(x, y∗) ≥ 0 for all x ∈ ∂Ω\{y∗}. (5.17)

With the resolvent formula G2,µ,w = G2,λc,w(I + (µ− λc)G2,µ,w) one gets

G2,µ,w(x, y) = G2,λc,w(x, y) + (µ− λc)
∫

Ω

G2,λc,w(x, z)G2,µ,w(z, y)w(z)dz.

Then, we find for arbitrary x∗ ∈ ∂Ω with x∗ 6= y∗(
∂
∂νx

)2 (
∂
∂νy

)2

G2,µ,w(x∗, y∗) =
(

∂
∂νx

)2 (
∂
∂νy

)2

G2,λc,w(x∗, y∗)

+(µ− λc)
∫

Ω

(
∂
∂νx

)2

G2,λc,w(x∗, z)
(

∂
∂νy

)2

G2,µ,w(z, y∗)w(z)dz. (5.18)

Using (5.18), (5.16), (5.17) and
(

∂
∂νx

)2

G2,λc,w(x∗, z) ≥ 0 for all z ∈ Ω, we obtain

the result in (5.15) if we prove that(
∂
∂νx

)2

G2,λc,w(x∗, z) > 0 for some z ∈ Ω.

Suppose that
(

∂
∂νx

)2

G2,λc,w(x∗, z) = 0 for all z ∈ Ω. Then, it holds for every
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f ∈ C(Ω) that the solution uf of{
∆2uf − λcw uf = f in Ω,

uf = ∂
∂ν
uf = 0 on Ω

(5.19)

fulfills
(
∂
∂ν

)2
uf (x

∗) = 0, see also [32, Equation (10)]. Using the arguments of the
proof in [32, Lemma 2], one finds that this leads to a contradiction. Indeed, since
∂Ω ∈ C4,γ we obtain that there exists some ε > 0 such that d(·) ∈ C4,γ(Ω(ε)), see
[22, Lemma 14.16], where Ω(ε) is defined as in (4.4). Let h ∈ C∞(Ω) be such that
h = 1 in Ω(1

2
ε) and h = 0 in Ω\Ω(ε). Moreover, let

u∗(x) := d(x)2h(x),

f ∗(x) := ∆2u∗(x)− λcw(x)u∗(x).

Then u∗ solves (5.19) with right-hand side f ∗ and using Remark 4.2.2 we find(
∂
∂ν

)2
u∗(x∗) = 2

(
∂
∂ν
d(x∗)

)2 6= 0,

a contradiction.

Corollary 5.1.7 Suppose that Condition A is satisfied. Let w, λc and λp,2,w be as
in Theorem 1.2.10 such that G2,λ,w ≥ 0 iff λ ∈ [λc, λp,2,w). Assume that the sign-
change of the Green function for decreasing λ comes in through (x0, y0) ∈ ∂Ω ×
∂Ω\{(x, x);x ∈ ∂Ω}. Then λ = λc is the largest real value with λ < λp,2,w such that
gλ ∈ C4(Ω\{y0}) in (5.10) is a nontrivial solution of

∆2ϕ = λ w ϕ in Ω,

ϕ = 0 on ∂Ω,
∂
∂ν
ϕ = 0 on ∂Ω\{y0},(
∂
∂ν

)2
ϕ(x0) = 0.

(5.20)

Remark 5.1.8 Analogous to the one-dimensional case, (5.20) can be understood as

a ‘switched’ eigenvalue problem, since ∂
∂ν
ϕ(y0) = 0 is replaced by

(
∂
∂ν

)2
ϕ(x0) = 0.

Remark 5.1.9 There are still some unanswered questions about the ‘anti’-
eigenvalue problem for dimensions n ≥ 2. It is not known whether the additional
zero of the Green function, respectively the sign-change, comes through the bound-
ary of the domain. Grunau and Robert proved in [25] that if the transition from
positivity to sign-change occurs for (x0, y0) ∈ ∂Ω × ∂Ω and λp,2,w = λ1,2,w, then it
holds x0 6= y0 for n ≥ 3. In addition, since the eigenfunction gλc is not necessarily
an element of W 2,2(Ω), one cannot use the theory of weak solutions. So, it is not
obvious in which function space the eigenfunctions of problem (5.20) would be well
defined.
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5.2 Positivity preserving on an ellipsoid

In two dimensions it is known that the polyharmonic problem in (1.4) with λ = 0
is not positivity preserving on some eccentric ellipses, see [69, 70] for m = 2, 3, 4.
Since there is no positive eigenfunction for problem (1.5) with m = 2 on domains
with corners, see for example [13], it is possible that ellipses with a large ratio
do not have a positive eigenfunction either. This is an open problem. But even
if it is true and we cannot apply Theorem 3.1.3 directly, we find positivity for a
weighted bilaplace Dirichlet problem. This result is a special case of the result in
Section 5.1. Moreover, we can show a positivity preserving property for the weighted
polyharmonic problem on an ellipsoid in every dimension since there is a function
u0 ∈ C2m,γ(Ω) that satisfies Condition B.

Definition 5.2.1 Let a ∈ (0,∞)n. An ellipsoid Ea ⊂ Rn is defined as

Ea =

{
x ∈ Rn;

n∑
i=1

x2
i

a2
i

< 1

}
. (5.21)

To find a positivity preserving property for a weighted polyharmonic problem on
Ea, we have to show that Condition B is fulfilled. Therefore, fix a ∈ (0,∞)n and
consider the function

e(x) =

(
1−

n∑
i=1

x2
i

a2
i

)(
n∑
i=1

2

a2
i

)−1

. (5.22)

We find that u0 := em satisfies Condition B:

Figure 5.3: An ellipse with a1 = 1 and a2 =
√

2
2 and the corresponding function e as

defined in (5.22).

Lemma 5.2.2 Let e be defined as in (5.22). Then, e is the strongly positive solution
to {

−∆e = 1 in Ea,

e = 0 on ∂Ea,
(5.23)
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so there exists a constant ca > 0 such that e(x) ≥ ca d(x) for all x ∈ Ea. Moreover,
there is a constant Ca > 0 such that (−∆)m em = Ca in Ea.

Proof. A direct computation shows that e satisfies problem (5.23). Furthermore,
we find that em is a polynomial of order 2m. So, there exists a constant Ca ∈ R
such that (−∆)m em = Ca. If Ca = 0, then em satisfies{

(−∆)m em = 0 in Ea,

em = ∂
∂ν

em = · · · =
(
∂
∂ν

)m−1
em = 0 on ∂Ea.

Since the problem has a unique solution, it holds that em ≡ 0, which is a contra-
diction. Hence Ca ∈ R\{0}. Since a 7→ Ca : (0,∞)n → R is a continuous function,
we find that either Ca > 0 for all a ∈ (0,∞)n or Ca < 0 for all a ∈ (0,∞)n. For
arbitrary a1 ∈ (0,∞) we obtain

lim
a2,...,an→∞

Ca = lim
a2,...,an→∞

((−∆)m em(0)) =
(2m)!

a2m
1

(
2

a2
1

)−m
=

(2m)!

2m
> 0.

So Ca > 0 for all a ∈ (0,∞)n.

We proved that Condition B is fulfilled, so we find a strictly positive weight
function w ∈ C0,γ(Ea) and an interval I ⊂ R for λ such that problem (1.6) is
positivity preserving for all λ ∈ I on Ω = Ea.

Example 5.2.3 For an ellipse Ea ⊂ R2 with a ∈ (0,∞)2 we find

(−∆)2e2 = 2 +
(

1
a2

1
+ 1

a2
2

)−2 (
4
a4

1
+ 4

a4
2

)
> 2;

(−∆)3e3 = 90− 216
a2

1a
2
2

(
1
a2

1
+ 1

a2
2

)−2

= 90− 216(
a2

a1

)2
+
(
a1

a2

)2
+2

> 18.

5.3 Small perturbations of ellipses in two dimen-

sions

Let e be the solution to (5.3). For the polylaplacian, we cannot use the function
u0 = em in Condition B for all domains as we mentioned in Remark 5.1.1. But
for some domains in two dimensions this approach works. We cannot compute e
for a general domain Ω, so it is difficult to predicate informations about the sign of
(−∆)mem. However, we can use the results from the previous section and consider
small perturbations of ellipses Ea ⊂ R2, where Ea for a ∈ (0,∞)2 is defined as in
(5.21). Indeed, using the positivity of e on Ea and biholomorphic mappings, we
obtain positivity results for sufficiently small perturbations of these ellipses. The
following result and proof is inspired by [28].

Lemma 5.3.1 Let Ea ⊂ R2 be defined as in (5.21). Then there exists ε0 > 0 such
that the following result holds for all ε ∈ (0, ε0): Let Ω ⊂ R2 be a simply connected,
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bounded domain that satisfies Condition A. Let h : Ω → Ea be a biholomorphic
mapping such that h ∈ C2m,γ(Ω;R2) and h−1 ∈ C2m,γ(Ea;R2). Let e be the solution
to (5.3) on Ea and Id : Ω→ Ω the identical map. If

‖h− Id ‖Cm(Ω;R2) ≤ ε,

then em ◦ h ∈ C2m,γ(Ω) fulfills the following properties:

1. It holds that (−∆)m(em ◦ h)(x) > 0 for all x ∈ Ω.

2. There exists a constant C > 0 such that (em ◦ h)(x) ≥ C d(x, ∂Ω)m for all
x ∈ Ω.

Remark 5.3.2 A biholomorphic function h : Ω→ Ea is a conformal mapping and
the Cauchy-Riemann equations hold:

∂

∂x1

h1(x1, x2) =
∂

∂x2

h2(x1, x2) and
∂

∂x1

h2(x1, x2) = − ∂

∂x2

h1(x1, x2)

and therefore

|∇h1|2 =

(
∂h1

∂x1

)2

+

(
∂h1

∂x2

)2

=
∂h1

∂x1

∂h2

∂x2

− ∂h1

∂x2

∂h2

∂x1

,

|∇h2|2 =

(
∂h2

∂x1

)2

+

(
∂h2

∂x2

)2

=
∂h1

∂x1

∂h2

∂x2

− ∂h1

∂x2

∂h2

∂x1

,

∂h1

∂x1

∂h2

∂x1

+
∂h1

∂x2

∂h2

∂x2

= 0,

∆h1 = ∆h2 = 0.

The existence of biholomorphic functions with regularity properties as described in
Lemma 5.3.1 was proven by Kellogg and Warschawski, see [50, p. 4, Theorem 3.6].

Proof. Since e ∈ C2m,γ(Ea) and h ∈ C2m,γ(Ω;R2), we find em ◦ h ∈ C2m,γ(Ω).

1. Using Lemma (5.2.2) we obtain

e(y) =

(
1− y2

1

a2
1

− y2
2

a2
2

)(
2

a2
1

+
2

a2
2

)−1

and a constant Ca > 0 such that

(−∆y)
mem(y) = Ca > 0 for all y ∈ Ea. (5.24)

Hence ∂
∂yi

∂
∂yj

∂
∂yk

e(y) = 0 for all y ∈ Ea and i, j, k ∈ {1, 2}. Since

‖h− Id ‖Cm(Ω,R2) ≤ ε,
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we find

‖hj − Idj‖C(Ω) ≤ ε, ‖ ∂
∂xi
hj − δij‖C(Ω) ≤ ε, ‖ ∂

∂xk1

∂
∂xk2

. . . ∂
∂xk`

hj‖C(Ω) ≤ ε

(5.25)

for all ` ∈ {2, . . . ,m} and i, j, k1, . . . , k` ∈ {1, 2}, where δij is the Kronecker
delta. Using the properties of the biholomorphic mapping h in Remark 5.3.2,
we can calculate

(−∆x)(e
m ◦ h)(x) =

((
∂
∂x1
h1(x)

)2

+
(

∂
∂x2
h1(x)

)2
)

(−∆ye
m)(h(x))

= |∇h1|2(−∆ye
m)(h(x)).

After m steps, we find

(−∆x)
m(em ◦ h)(x) = |∇h1(x)|2m((−∆y)

mem)(h(x)) +R(x), (5.26)

where R : Ω → R is a sum of products of partial derivatives of h1, h2 and e.
One notices that (−∆x)

m(em ◦h)(x) contains no derivative of h1 or h2 of order
larger than m. This can be shown analogously to [56, Lemma 1]. Indeed, for
m = 1 or m = 2 it follows from direct calculation. Using ∆h1 = ∆h2 = 0 and
induction, it can be proven for all m ∈ N+.

Moreover, using | ∂
∂x1
h1(x)| ≥ 1− ε and | ∂

∂x2
h1(x)| ≥ 0 for all x ∈ Ω, we obtain

|∇h1(x)|2m =

((
∂
∂x1
h1(x)

)2

+
(

∂
∂x2
h1(x)

)2
)m
≥ (1− ε)2m. (5.27)

Therefore (5.24), (5.26) and (5.27) imply

(−∆x)
m(em ◦ h)(x) ≥ Ca(1− ε)2m +R(x) for all x ∈ Ω.

Since each summand in R contains a factor ∂
∂xk1

∂
∂xk2

. . . ∂
∂xk`

h1 or
∂

∂xk1

∂
∂xk2

. . . ∂
∂xk`

h2 with k1, k2, . . . k` ∈ {1, 2} and ` ∈ {2, . . . ,m} and (5.25)

holds, we find a value ε0 ∈ (0, 1) such that R becomes so small that

(−∆x)
m(em ◦ h)(x) > 0 for all x ∈ Ω

if ‖h− Id ‖Cm(Ω) ≤ ε and ε ∈ (0, ε0).

2. Using Lemma 5.2.2, we obtain that there exists a constant C̃ > 0 such that

em(h(x)) ≥ C̃ d(h(x), ∂Ea)
m for all x ∈ Ω.

Since h−1 ∈ C2m,γ(Ea;R2), h−1 is Lipschitz continuous. So, there is a constant
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L > 0 such that for all x, x̃ ∈ Ω

|x− x̃| = |h−1(h(x))− h−1(h(x̃))| ≤ L|h(x)− h(x̃)|.

Therefore, we get for all x ∈ Ω

d(h(x), ∂Ea)
m =

(
inf

y∈∂Ea
|h(x)− y|

)m
=

(
inf
x̃∈∂Ω
|h(x)− h(x̃)|

)m
≥ L−m

(
inf
x̃∈∂Ω
|x− x̃|

)m
= L−md(x, ∂Ω)m.

So, we find

(em ◦ h)(x) ≥ C̃L−md(x, ∂Ω)m for all x ∈ Ω.

Remark 5.3.3 In [28, Theorem 1.5, Lemma 2.1] and [30, Section 5] an analogous
result is shown. The authors prove that if one considers small perturbations of the
unit disk, then the Green function to the polyharmonic Dirichlet problem (1.4) with
λ = 0 is positive, so the problem is positivity preserving. The difference to the result
in Lemma 5.3.1 is that in [28, Lemma 2.1] the authors used closeness in C2m−1-
sense with respect to biholomorphic mappings. Sassone improved this result in [56]
and he showed that closeness in Cm,γ-sense is sufficient.

We proved that Condition B is fulfilled, so we can apply Theorem 1.2.8 and again
find a positivity preserving property for a weighted polyharmonic Dirichlet problem
on small perturbations of ellipses with respect to biholomorphic mappings.
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Chapter 6

Classical solutions to some higher
order semilinear Dirichlet
problems

In this chapter, we consider classical solvability of some semilinear Dirichlet problem,
where the principle part of the differential operator is of the form (−∆)m. In the
following, we closely follow [59]. As mentioned in the introduction, we investigate
the problem (−∆)mu(x) + g(x, u(x)) = f(x) for x ∈ Ω,

u(x) = ∂
∂ν
u(x) = · · · =

(
∂
∂ν

)m−1
u(x) = 0 for x ∈ ∂Ω,

(6.1)

where f ∈ C0,γ(Ω) and g ∈ C0,γ(Ω× R) satisfies the sign condition

g(x, t) · t ≥ 0 for all x ∈ Ω, t ∈ R. (6.2)

One may include lower order derivatives in the partial differential equation. How-
ever, the differential operator L has to be coercive in the sense that there is a constant
c > 0 such that∫

Ω

Lu(x)u(x)dx ≥ c ‖u‖2
Wm,2(Ω) for all u ∈ C2m(Ω) ∩ Cm−1

0 (Ω),

and the principle part has to be the polylaplace operator (−∆)m, see Remark 1.2.16.
Otherwise, we cannot use Pulst’s results concerning the Green function estimates,
and one doubts if such estimates hold true if the principle part is not a product
of second order operators, see [27]. We proved in the previous chapters that if we
consider the operator (−∆)m−λw for appropriately chosen λ ∈ R and w ∈ C0,γ(Ω)
instead of (−∆)m, we find a positivity preserving property for the corresponding
Dirichlet problem. In the following sections, we will only use the estimates for the
Green operator Gm,0,1 in (3.2) and regularity results instead of a maximum or com-
parison principle, so the Green operator does not have to be positivity preserving.
Accordingly, no weight function is necessary and we will only examine problem (6.1).
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CHAPTER 6. CLASSICAL SOLUTIONS TO SOME HIGHER ORDER
SEMILINEAR DIRICHLET PROBLEMS

The objective of this chapter is to prove the result in Theorem 1.2.15. First, we
recall regularity results for the linear polyharmonic Dirichlet problem in Section 6.1.
Then we describe an approximation with bounded functions for the nonlinear term
g and prove the existence of a weak solution to the changed problem with bounded
nonlinear part. Then we use regularity results to find uniform bounds for these weak
solutions. The existence of a classical solution to (6.1) follows using a bootstrapping
argument. In Sections 6.3 and 6.4, we prove Theorem 1.2.15. We devide it into
two parts. First, we show the special cases of Theorem 1.2.15, where g satisfies a
one-sided growth condition. Then, we prove the remaining case of Theorem 1.2.15.
The proof can be done iteratively using similar arguments as in the first and second
case, where g fulfills a one-sided growth condition.

6.1 Linear regularity

First, we recall a regularity result for the linear polyharmonic Dirichlet problem. We
assume that Condition A is satisfied. It is known that if f ∈ Lp(Ω) with p ∈ (1,∞),
then there exists a unique solution u ∈ W 2m,p(Ω) for problem (1.4) with λ = 0.
Moreover it holds, see [21, Theorem 2.20], that there is a constant CΩ,m,p > 0,
independent of f , such that

‖u‖W 2m,p(Ω) ≤ CΩ,m,p‖f‖Lp(Ω).

As mentioned and described in [59] and [60], when investigating the polyharmonic
Dirichlet problem, one may consider separately the solutions u+ and u− of{

(−∆)m u±(x) = f±(x) for x ∈ Ω,

u±(x) = ∂
∂ν
u±(x) = · · · =

(
∂
∂ν

)m−1
u±(x) = 0 for x ∈ ∂Ω,

(6.3)

where f+ := max{0, f} and f− = max{0,−f}. One notices that u+ and u− do not
have to be nonnegative. Then, using estimates for the polyharmonic Green function
as in (3.2), one finds functions u�, u� ≥ 0 such that u = u� − u�, and one may
prove the following sign-dependent regularity estimates, see [60, Theorem 1]:

Theorem 6.1.1 Let Condition A be fulfilled, p± ∈ (1,∞) and p = min{p+, p−}.
Suppose that f = f+ − f− with f+ ∈ Lp+ (Ω) and f− ∈ Lp− (Ω). Then there are
constants cΩ,p+,m, cΩ,p−,m > 0, independent of f+ and f−, such that the following
holds: There is a unique solution u ∈ W 2m,p(Ω) ∩Wm,p

0 (Ω) of{
(−∆)mu = f in Ω,

u = ∂
∂ν
u = · · · =

(
∂
∂ν

)m−1
u = 0 on ∂Ω,

(6.4)

with u = u� − u�, u�, u� ≥ 0, and such that u� ∈ W 2m,p+ (Ω) ∩Wm,p+

0 (Ω) and
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6.1. LINEAR REGULARITY

u� ∈ W 2m,p− (Ω) ∩Wm,p−
0 (Ω) with∥∥u�

∥∥
W 2m,p+ (Ω)

≤ cΩ,p+,m

(∥∥f+
∥∥
Lp+ (Ω)

+
∥∥f−∥∥

L1(Ω)

)
, (6.5)∥∥u�

∥∥
W 2m,p− (Ω)

≤ cΩ,p−,m

(∥∥f−∥∥
Lp− (Ω)

+
∥∥f+

∥∥
L1(Ω)

)
. (6.6)

Indeed, using the Green function estimates in (3.2) and the solution 0 ≤ e ∈
C2m,γ(Ω) ∩ C0(Ω) of the Dirichlet Laplace problem (5.3), one finds the integral
operator

(D̃mf)(x) = em(x)

∫
Ω

em(y)f(y)dy

and a constant cΩ,m > 0 such that

Gm,0,1 + cΩ,mD̃m ≥ 0,

where Gm,0,1 is the polyharmonic Green operator. Moreover, the operator H̃n,m

defined by

H̃n,m := Gm,0,1 + cΩ,mD̃m

fulfills for some c̃1,Ω,m, c̃2,Ω,m > 0 the inequality

c̃1,Ω,mHn,m ≤ H̃n,m ≤ c̃2,Ω,mHn,m,

where Hn,m is defined as in (3.4). Since em is bounded and H̃n,m satisfies a Riesz
potential estimate, see [60, Lemma 4], the operators D̃m and H̃n,m are defined for
all f ∈ Lp(Ω) with p ∈ (1,∞).

Hence, the solutions u+ and u− of (6.3) can be written as

u+(x) = (H̃n,mf
+)(x)− cΩ,m(D̃mf+)(x), u−(x) = (H̃n,mf

−)(x)− cΩ,m(D̃mf−)(x),

and one may choose

u�(x) = (H̃n,mf
+)(x) + cΩ,m(D̃mf−)(x), u�(x) = (H̃n,mf

−)(x) + cΩ,m(D̃mf+)(x).

Then, the estimates in (6.5) and (6.6) follow, see [60, Section 3].

Note that in general u� 6= u+, but

u+ ≤ (u� − u�)+ ≤ u� and u− ≤ (u� − u�)− ≤ u�,

where u+ = max{0, u} and u− = max{0,−u}.

Using Sobolev imbeddings, (6.5) and (6.6) imply norm estimates for u+ and u−.
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SEMILINEAR DIRICHLET PROBLEMS

6.2 Approximation and weak solutions

The content and some paragraphs of this section can be found in [59, Section 3].
The paragraphs that are adopted from [59] are formulated by me.

Let f and g be as described in Theorem 1.2.8. We define for M ∈ R+ the
function gM : Ω× R→ R by cutting off g as follows:

gM (x, t) =

{
min {g (x, t) ,M} for t ≥ 0,

max {g (x, t) ,−M} for t < 0.
(6.7)

Then, the function gM is bounded. We consider the nonlinear Dirichlet problem{
(−∆)m u(x) + gM (x, u(x)) = f(x) for x ∈ Ω,

u(x) = ∂
∂ν
u(x) = · · · =

(
∂
∂ν

)m−1
u(x) = 0 for x ∈ ∂Ω.

(6.8)

gM

g

-M

M

Figure 6.1: Cut-off of some Hölder continuous function u 7→ g(u) as described in (6.7);
this figure appears in [59] and was created by Guido Sweers.

In the following we prove the existence of a weak solution to (6.8) as well as
some norm estimates independent of M . Here a weak solution to (6.8) is defined by
u ∈ Wm,2

0 (Ω) satisfying

〈u, ϕ〉Wm,2
0 (Ω) +

∫
Ω

gM(x, u(x))ϕ(x)dx =

∫
Ω

f(x)ϕ(x)dx for all ϕ ∈ Wm,2
0 (Ω),

with

〈u, ϕ〉Wm,2
0 (Ω) :=


∫

Ω

(
∆m/2u(x)

) (
∆m/2ϕ(x)

)
dx for m ∈ N+ even,∫

Ω

∇∆(m−1)/2u(x) · ∇∆(m−1)/2ϕ(x) dx for m ∈ N+ odd.

Since the function gM is bounded, the existence of a weak solution uM to (6.8)
for each M directly follows from minimizing a variational problem. Each such uM is
also a classical solution. Even if we consider problem (1.19) in Remark 1.2.16 with
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6.2. APPROXIMATION AND WEAK SOLUTIONS

gM instead of g, one finds with [44] that a classical solution exists. We will show
a priori estimates for uM , that do not depend on M . Then, we are able to obtain
uniform bounds for ‖uM‖∞. Hence for M large enough the function uM will not
depend on M and therefore it will be a classical solution to (6.1).

The following lemma can be found in [59, Lemma 4].

Lemma 6.2.1 There exist constants CΩ,m, C
′
Ω,m > 0, such that for each M > 0 and

f ∈ L2(Ω) there exists a weak solution uM of (6.8) with

‖uM‖Wm,2
0 (Ω) ≤ CΩ,m ‖f‖L2(Ω) and ‖gM(·, uM)uM‖L1(Ω) ≤ C ′Ω,m ‖f‖

2
L2(Ω) ,

where ‖uM‖Wm,2
0 (Ω) := 〈uM , uM〉1/2Wm,2

0 (Ω)
.

Proof. Let JM : Wm,2
0 (Ω)→ R be defined by

JM (u) :=
1

2
‖u‖2

Wm,2
0 (Ω) +

∫
Ω

(∫ u(x)

0

gM (x, t) dt− f(x)u(x)

)
dx.

Since gM is bounded, one finds that the operator JM is well defined. Moreover,
JM is coercive on Wm,2

0 (Ω). Indeed, using the Poincaré-Friedrichs inequality, one
finds a constant CPF > 0 such that

‖u‖L2(Ω) ≤ CPF‖u‖Wm,2
0 (Ω) for all u ∈ Wm,2

0 (Ω). (6.9)

Applying Cauchy-Schwarz and using the sign condition gM(x, t)t ≥ 0 for all x ∈ Ω
and t ∈ R, one gets

JM(u) ≥ 1

2
‖u‖2

Wm,2
0 (Ω)

− ‖f‖L2(Ω)‖u‖L2(Ω) ≥
1

2
‖u‖2

Wm,2
0 (Ω)

− CPF‖f‖L2(Ω)‖u‖Wm,2
0 (Ω).

Hence JM(u)→∞ for ‖u‖Wm,2
0 (Ω) →∞ and JM is bounded from below. Therefore,

there is a minimizing sequence {uk}k∈N ⊂ Wm,2
0 (Ω) that is bounded since JM is

coercive. Since Wm,2
0 (Ω) is a Hilbert space and therefore a reflexive Banach space,

we get with Kakutani’s theorem a weakly convergent subsequence {ukj}j∈N with

weak limit uM ∈ Wm,2
0 (Ω):

ukj ⇀ uM in Wm,2
0 (Ω) for j →∞. (6.10)

Using that {ukj}j∈N is bounded and the compactness of the Sobolev imbedding
Wm,2(Ω) ↪→ L2(Ω), we find that this subsequence again has a subsequence {ukj`}`∈N
such that

ukj` → uM in L2(Ω) for `→∞. (6.11)

Using (6.10) we obtain

lim inf
`→∞

‖ukj`‖Wm,2
0 (Ω) ≥ ‖uM‖Wm,2

0 (Ω)
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and the convergence in (6.11) as well as |gM(x, u(x))| ≤ M for all x ∈ Ω and
u ∈ Wm,2

0 (Ω) imply

lim
`→∞

∫
Ω

f(x)ukj` (x)dx =

∫
Ω

f(x)uM(x)dx,

lim
`→∞

∫
Ω

∫ ukj`
(x)

0

gM(x, t)dtdx =

∫
Ω

∫ uM (x)

0

gM(x, t)dtdx.

Hence

inf
u∈Wm,2

0 (Ω)
JM(u) = lim

`→∞
JM(ukj` ) ≥ JM(uM) ≥ inf

u∈Wm,2
0 (Ω)

JM(u),

which implies that uM ∈ Wm,2
0 (Ω) is a minimizer of JM .

This minimizer satisfies the weak Euler-Lagrange equation

〈uM , ϕ〉Wm,2
0 (Ω) +

∫
Ω

(gM (x, uM(x))− f (x))ϕ(x)dx = 0 for all ϕ ∈ Wm,2
0 (Ω).

(6.12)

By the sign condition for g in (6.2) we find that for all u ∈ Wm,2
0 (Ω)∫

Ω

gM (x, u(x))u(x)dx ≥ 0.

Taking ϕ = uM in (6.12), we get

‖uM‖2
Wm,2

0 (Ω) +

∫
Ω

gM (x, uM(x))uM(x)dx =

∫
Ω

f(x)uM(x)dx.

One notices that on the left-hand side two positive terms appear. Hence each of
them can be estimated from above by

max

{
‖uM‖2

Wm,2
0 (Ω) ,

∫
Ω

gM (x, uM(x))uM(x)dx

}
≤
∫

Ω

f(x)uM(x)dx ≤ ‖f‖L2(Ω) ‖uM‖L2(Ω) .

Since (6.9) holds true, we find a constant CΩ,m > 0, independent of M , such that

‖uM‖Wm,2
0 (Ω) ≤ CΩ,m ‖f‖L2(Ω) .

We also get with (6.9) that

‖gM(·, uM)uM‖L1(Ω) ≤ ‖f‖L2(Ω) ‖uM‖L2(Ω) ≤ CPFCΩ,m ‖f‖2
L2(Ω) .

Using the results in Lemma 6.2.1, we obtain additional norm estimates which we
use in the following two sections.
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The following corollary can be found in [59, Corollary 6].

Corollary 6.2.2 Let M > 0, f ∈ L2(Ω), gM as defined in (6.7) and uM ∈ Wm,2
0 (Ω)

be a weak solution to (6.8) as described in Lemma 6.2.1. Then the following esti-
mates hold:

1. There is a constant CΩ,m,g,f > 0, independent of M , such that

‖gM(·, uM)‖L1(Ω) ≤ CΩ,m,g,f . (6.13)

2. There exists a constant CΩ,m,p > 0, independent of M , such that

‖uM‖Lp(Ω) ≤ CΩ,m,p ‖f‖L2(Ω) for all

{
p ∈

[
1, 2n

n−2m

]
if n > 2m,

p ∈ [1,∞) if n = 2m.

(6.14)

3. Let g fulfill

g (x, t) ≤ c1(1 + |t|σ) for t ≥ 0. (6.15)

If n > 2m and σ ∈
[
1, 2n

n−2m

]
, then one finds CΩ,m,σ > 0, independent of M ,

such that ∥∥gM(·, u+
M)
∥∥
L

2n
n−2m

1
σ (Ω)
≤ CΩ,m,σ

(
1 + ‖f‖σL2(Ω)

)
, (6.16)

and if n = 2m, q ∈ [1,∞) and σ ∈ [1,∞), there exists CΩ,m,σ,q > 0 such that∥∥gM(·, u+
M)
∥∥
Lq(Ω)

≤ CΩ,m,σ,q

(
1 + ‖f‖σL2(Ω)

)
. (6.17)

4. Let g fulfill

g (x, t) ≥ −c2(1 + |t|τ ) for t ≤ 0. (6.18)

If n > 2m and τ ∈
[
1, 2n

n−2m

]
, then one finds CΩ,m,τ > 0, independent of M ,

such that ∥∥gM(·,−u−M)
∥∥
L

2n
n−2m

1
τ (Ω)
≤ CΩ,m,τ

(
1 + ‖f‖τL2(Ω)

)
(6.19)

and if n = 2m, q ∈ [1,∞) and τ ∈ [1,∞), there exists CΩ,m,τ,q > 0 such that∥∥gM(·,−u−M)
∥∥
Lq(Ω)

≤ CΩ,m,τ,q

(
1 + ‖f‖τL2(Ω)

)
. (6.20)

Proof. All estimates are consequences of Lemma 6.2.1:
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1. Using the results in Lemma 6.2.1, one obtains that

‖gM(·, uM)‖L1(Ω) ≤ |Ω| max
x∈Ω,t∈[−1,1]

|g(x, t)|+ ‖gM(·, uM)uM‖L1(Ω)

≤ |Ω| max
x∈Ω,t∈[−1,1]

|g(x, t)|+ C ′Ω,m‖f‖2
L2(Ω),

where |Ω| =
∫

Ω
1dx is the Lebesgue-measure of Ω.

2. Since we have proven that ‖uM‖Wm,2
0 (Ω) ≤ CΩ,m ‖f‖L2(Ω) with CΩ,m indepen-

dent of M in Lemma 6.2.1, inequality (6.14) follows by Sobolev imbeddings.

3. Using |gM(x, t)| ≤ |g(x, t)| for all (x, t) ∈ Ω × R, one gets, if g fulfills (6.15),
n > 2m and σ ≤ 2n

n−2m
, that∥∥gM(·, u+

M)
∥∥
L

2n
n−2m

1
σ (Ω)
≤ c1‖1 + |u+

M |
σ‖

L
2n

n−2m
1
σ (Ω)

≤ c1|Ω|σ
n−2m

2n + c1‖|u+
M |

σ‖
L

2n
n−2m

1
σ (Ω)

= c1|Ω|σ
n−2m

2n + c1‖u+
M‖

σ

L
2n

n−2m (Ω)
.

Using (6.14), one finds a constant C ′Ω,m,σ > 0 independent of M such that∥∥gM(·, u+
M)
∥∥
L

2n
n−2m

1
σ (Ω)
≤ c1|Ω|σ

n−2m
2n + c1C

′
Ω,m,σ‖f‖σL2(Ω).

Similar arguments for n = 2m, σ ∈ [1,∞), (6.15) and q ∈ [1,∞) provide the
inequality∥∥gM(·, u+

M)
∥∥
Lq(Ω)

≤ c1‖1 + |u+
M |

σ‖Lq(Ω) ≤ c1|Ω|
1
q + c1C

′
Ω,m,σ,q‖f‖σL2(Ω)

for some C ′Ω,m,σ,q > 0 indendent of M .

4. Analogously, one obtains, if g fulfills (6.18), n > 2m and τ ≤ 2n
n−2m

, that∥∥gM(·,−u−M)
∥∥
L

2n
n−2m

1
τ (Ω)
≤ c2‖1 + |u−M |

τ‖
L

2n
n−2m

1
τ (Ω)

≤ c2|Ω|τ
n−2m

2n + c2C
′
Ω,m,τ‖f‖τL2(Ω),

for some C ′Ω,m,τ > 0 independent of M . For n = 2m, τ ∈ [1,∞), (6.18) and
q ∈ [1,∞) we find with (6.14) a constant C ′Ω,m,τ,q > 0 such that∥∥gM(·,−u−M)

∥∥
Lq(Ω)

≤ c2‖1 + |u−M |
τ‖Lq(Ω) ≤ c2|Ω|

1
q + c2C

′
Ω,m,τ,q‖f‖τL2(Ω).
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6.3. CLASSICAL SOLUTION WITH ONE-SIDED GROWTH CONDITION

6.3 Classical solution with one-sided growth con-

dition

The content and some paragraphs of this section can be found in [59, Section 4].
The result and proof are the same as in [59], except that the notation has been
adjusted. The paragraphs that are adopted from [59] are formulated by me.

In the following, we assume that g fulfills the growth condition from above, that
is, there exists a constant c1 > 0 such that

g(x, t) ≤ c1(1 + tσ) for all t > 0, x ∈ Ω, with


σ = 1 if n ≥ 6m,

σ ∈
[
1, 4m

n−2m

)
if n ∈ (2m, 6m),

σ ∈ [1,∞) if n = 2m,

(6.21)

which combines the first and second case in Theorem 1.2.15. Then we obtain that
the semilinear Dirichlet problem has a classical solution. The following result can
be found in [59, Theorem 7].

0
0

σ → ∞

τ ↑

∞

1

4m
n−2m

1 4m
n−2m

0
0

σ → ∞

τ ↑

∞

14m
n−2m

1

4m
n−2m

Figure 6.2: Range of admissable growth rates proven in Theorem 6.3.1 for some n ∈
(2m, 6m) (left) and some n > 6m (right), when g(x, t) ≤ c1(1+ tσ) or −c2(1+ tτ ) ≤ g(x, t)
and σ, respectively τ , as in (6.21). The missing sections compared to Figure 1.1 are
displayed in light green.

Theorem 6.3.1 Let n ≥ 2m and Condition A be fulfilled. Suppose that g ∈
C0,γ(Ω × R) satisfies the sign condition (6.2) and the growth condition (6.21).
Then for any f ∈ C0,γ(Ω) the Dirichlet problem in (6.1) has a classical solution
u ∈ C2m,γ(Ω) ∩ Cm−1

0 (Ω).

Proof. Let uM be a weak solution to (6.8) as described in Lemma 6.2.1.

Case 1, n ∈ [2m,6m): By Theorem 6.1.1 with right-hand side −gM(·, uM) + f
instead of f in (6.4), we find that there exist u�

M , u
�
M ≥ 0 such that uM = u�

M − u
�
M
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and using Sobolev imbeddings and (6.6), we get for n > 2m

‖u−M‖L∞(Ω) ≤ ‖u�
M‖L∞(Ω) ≤ Cm,n,σ‖u�

M‖W 2m, 2n
n−2m

1
σ (Ω)

≤ C ′m,n,σ

(
‖f‖L∞(Ω) + ‖gM(·, u+

M)‖
L

2n
n−2m

1
σ (Ω)

+ ‖gM(·,−u−M)‖L1(Ω)

)
.

For n = 2m we find

‖u−M‖L∞(Ω) ≤ ‖u�
M‖L∞(Ω) ≤ Cm,n,σ‖u�

M‖W 2m,2(Ω)

≤ C ′m,n,σ
(
‖f‖L∞(Ω) + ‖gM(·, u+

M)‖L2(Ω) + ‖gM(·,−u−M)‖L1(Ω)

)
.

With the inequalities (6.16), (6.17) and (6.13) it follows for n ≥ 2m

‖u−M‖L∞(Ω) ≤ C ′m,n,σ

(
‖f‖L∞(Ω) + CΩ,m,σ

(
1 + ‖f‖σL2(Ω)

)
+ CΩ,m,g,f

)
,

where the right-hand side does not depend on M . Then, using Sobolev imbeddings,
(6.5) and

‖gM(·,−u−M)‖L∞(Ω) ≤ max
−‖u−M‖L∞(Ω)≤t≤0;x∈Ω

|g(x, t)|,

we also find an upper bound for ‖u+
M‖L∞(Ω) which is independent of M . Hence, for

a sufficiently large M1 ∈ R+ it holds that ‖g(·, uM1)‖L∞(Ω) ≤ M1, so gM1(·, uM1) =
g(·, uM1). Therefore, uM1 is a weak solution of (6.1). Since −g(·, uM1)+f is bounded,
we obtain by Agmon-Douglis-Nirenberg results, see [21, Theorems 2.19, 2.20], and
Sobolev imbeddings that uM1 ∈ C2m,γ(Ω) ∩ Cm−1

0 (Ω) is a classical solution of (6.1).

Case 2 n ≥ 6m: We rewrite problem (6.8) with c1 > 0 such that

g(x, t) ≤ c1(1 + t) for t > 0

and investigate (−∆)mu+ c1u = −gM(·, u) + f + c1u in Ω,

u = ∂
∂ν
u = · · · =

(
∂
∂ν

)m−1
u = 0 on ∂Ω.

(6.22)

Then, we find for the right-hand side in (6.22) for suitable functions u that

−gM(x, u(x)) + f(x) + c1u(x) ≥ −gM(x, u+(x))− f−(x) + c1u(x)

≥ −c1(1 + u+(x))− f−(x) + c1u
+(x)− c1u

−(x)

= −c1 − f−(x)− c1u
−(x) for x ∈ Ω

and

−gM(x, u(x)) + f(x) + c1u(x) ≤ −gM(x,−u−(x)) + f+(x) + c1u
+(x) for x ∈ Ω.
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So we get

(−gM(·, u) + f + c1u)− ≤ f− + c1u
− + c1, (6.23)

(−gM(·, u) + f + c1u)+ ≤ f+ − gM(·,−u−) + c1u
+. (6.24)

One finds a similar result as in Theorem 6.1.1 for the linear Dirichlet problem(−∆)mu(x) + c1u(x) = h(x) for x ∈ Ω,

u(x) = ∂
∂ν
u(x) = · · · =

(
∂
∂ν

)m−1
u(x) = 0 for x ∈ ∂Ω,

with h = h+ − h− and h+ ∈ Lp+(Ω), h− ∈ Lp−(Ω) for some p± ∈ (1,∞). Therefore,

one obtains with u−M ∈ L
2n

n−2m (Ω), (6.23), (6.24) and Sobolev imbeddings that there
exists a constant Cm,n,q1 > 0 such that

‖u−M‖Lq1 (Ω)

≤ Cm,n,q1

(
‖f‖L∞(Ω) + ‖u−M‖L 2n

n−2m (Ω)
+ ‖u+

M‖L1(Ω) + 1 + ‖gM(·,−u−M)‖L1(Ω)

)
(6.25)

holds for all {
q1 ∈

[
1, 2n

n−6m

]
if n > 6m,

q1 ∈ [1,∞) if n = 6m.

With (6.14) and (6.13) one gets an upper bound for ‖u−M‖Lq1 (Ω) independent of M :

‖u−M‖Lq1 (Ω)

≤ Cm,n,q1

(
‖f‖L∞(Ω) + CΩ,m, 2n

n−2m
‖f‖L2(Ω) + CΩ,m,1‖f‖L2(Ω) + 1 + CΩ,m,g,f

)
.

Using a bootstrapping argument for u−M through (6.23) and analogous arguments
as in (6.25), regularity results and Sobolev imbeddings, we find after k steps that
there exists an upper bound independent of M for ‖u−M‖Lqk (Ω) with{

qk ∈
[
1, 2n

n−2m(1+2k)

]
if n > 2m(1 + 2k),

qk ∈ [1,∞) if n ∈ [6m, 2m(1 + 2k)].

Hence, after finitely many steps we find k ≥ n−2m
4m

and therefore u−M lies in Lq(Ω)
for any q ∈ [1,∞) with ‖u−M‖Lq(Ω) bounded independently of M .

One more iteration leads to u−M ∈ L∞(Ω) with ‖u−M‖L∞(Ω) bounded by a constant
independent of M .

With the norm estimates for u−M ∈ L∞(Ω), similar arguments as in (6.25) for the
positive part u+

M , (6.24) and bootstrapping again, we also find u+
M ∈ L∞(Ω) and a

uniform upper bound for ‖u+
M‖L∞(Ω). Analogous to the case n ∈ [2m, 6m) it follows

for a sufficiently large M2 ∈ R+ that the function uM2 fulfills ‖g(·, uM2)‖L∞(Ω) ≤M2,
so gM2(·, uM2) = g(·, uM2). Therefore, uM2 is a classical solution of (6.1).
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One notices that the growth condition from above for g(·, t) with t ≥ 0 may also
be changed to a condition from below for g(·, t) with t ≤ 0 and we obtain the same
result, see Figure 6.2.

6.4 Classical solution with two-sided growth con-

dition

Similar to the last section, the content of this section can be found in [59, Section 5].
The notation has been adjusted and some paragraphs have been adopted. However
the steps of the following proof have been formulated by me.

As remarked in [24, Section 3], one may improve the growth condition from above
by adding a constraint from below. We assume that n > 2m, since the case n = 2m
is contained in the previous section. It is known, see [24], that if g ∈ C0,γ(Ω × R)
satisfies the sign condition (6.2) and there are two constants c1, c2 > 0 such that

−c2(1 + |t|τ ) ≤ g(x, t) ≤ c1(1 + |t|σ) for t ∈ R, x ∈ Ω, (6.26)

with

n+ 2m

n− 2m
≤ τ <∞ and 1 ≤ σ <

4m

n− 2m
+

1

τ

n+ 2m

n− 2m
,

then there exists a solution u ∈ C2m,γ(Ω) ∩ Wm,2
0 (Ω) to (6.1). Using Theorem

6.1.1 and Lemma 6.2.1, we may show that there exists a classical solution. So the
boundary conditions are satisfied in classical sense. The following result can be
found in [59, Theorem 8].

0
0

σ → ∞

τ ↑

∞

n+2m
n−2m

4m
n−2m

n+2m
n−2m

4m
n−2m

0
0

σ → ∞

τ ↑

∞

n+2m
n−2m

4m
n−2m

n+2m
n−2m

4m
n−2m

Figure 6.3: Range of admissable growth rates proven in Theorem 6.4.1 for some n ∈
(2m, 6m] (left) and some n > 6m (right). The missing section compared to Figure 1.1 is
shown in light green.

Theorem 6.4.1 Let n > 2m, Condition A be fulfilled, f ∈ C0,γ(Ω) and g ∈
C0,γ(Ω × R) satisfies (6.2) and (6.26). Then, the semilinear Dirichlet problem in
(6.1) has a classical solution u ∈ C2m,γ(Ω) ∩ Cm−1

0 (Ω).
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Proof. We assume that

max

{
1,

4m

n− 2m

}
≤ σ <

4m

n− 2m
+

1

τ

n+ 2m

n− 2m
.

Indeed, the case that 0 ≤ σ < max
{

1, 4m
n−2m

}
is contained in Theorem 6.3.1.

Let uM be a weak solution to (6.8) as described in Lemma 6.2.1. Using similar
arguments as in the proof of Theorem 6.3.1, we note that it is sufficient to show that
there are upper bounds for ‖u+

M‖L∞(Ω) and ‖u+
M‖L∞(Ω) independent of M . Then, for

a sufficiently large M3 ∈ R+ the function uM3 would be a classical solution to (6.1).

As mentioned in (6.14), it holds that uM ∈ Lp0(Ω) with

p0 =
2n

n− 2m

and ‖uM‖Lp0 (Ω) ≤ C ′Ω,m,p0
‖f‖L2(Ω). By Theorem 6.1.1 we find that there are func-

tions u�
M , u

�
M ≥ 0 with uM = u�

M − u�
M and such that the regularity estimates in

(6.5) and (6.6) hold for suitable p± ∈ (1,∞). Next, we will show iteratively that
‖uM‖L∞(Ω) is bounded by a constant independent of M :

Step 1. Using Sobolev imbeddings and (6.6), we obtain

‖u−M‖Lp�
1 (Ω)
≤ ‖u�

M‖Lp�
1 (Ω)
≤ Cm,n,σ,p�

1
‖u�

M‖W 2m, 2n
n−2m

1
σ (Ω)

≤ C ′
m,n,σ,p�

1

(
‖f‖L∞(Ω) + ‖gM(·, u+

M)‖
L

2n
n−2m

1
σ (Ω)

+ ‖gM(·,−u−M)‖L1(Ω)

)
(6.27)

for all {
p�

1 ∈
[
1, 2n

σ(n−2m)−4m

]
if 4m

n−2m
< σ < 4m

n−2m
+ 1

τ
n+2m
n−2m

,

p�
1 ∈ [1,∞) if σ = 4m

n−2m
.

(6.28)

Since σ < 2n
n−2m

, inequalities (6.27), (6.13) and (6.16) imply

‖u−M‖Lp�
1 (Ω)
≤ C ′

m,n,σ,p�
1

(
‖f‖L∞(Ω) + CΩ,m,σ

(
1 + ‖f‖σL2(Ω)

)
+ CΩ,m,g,f

)
and the right-hand side does not depend on M . Analogous to (6.19), we then find
for p�

1 ≥ τ a constant CΩ,m,τ,p�
1
> 0 independent of M such that

‖gM(·,−u−M)‖
Lp

�
1

1
τ (Ω)
≤ CΩ,m,τ,p�

1

(
1 + ‖f‖τL2(Ω)

)
. (6.29)

Step 2. We may choose p�
1 > τ . Similarly as in Step 1 we obtain with Sobolev

imbeddings and (6.5)

‖u+
M‖Lp�

1 (Ω)
≤ ‖u�

M‖Lp�
1 (Ω)
≤ Cm,n,τ,p�

1 ,p
�
1
‖u�

M‖W 2m,p�
1

1
τ (Ω)

≤ C ′
m,n,τ,p�

1 ,p
�
1

(
‖f‖L∞(Ω) + ‖gM(·,−u−M)‖

Lp
�
1

1
τ (Ω)

+ ‖gM(·, u+
M)‖L1(Ω)

)
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for {
p�

1 ∈
[
1,

np�
1 /τ

n−2mp�
1 /τ

]
if n > 2mp�

1 /τ,

p�
1 ∈ [1,∞) if n ≤ 2mp�

1 /τ.

Hence, using (6.13), (6.29) and (6.28), we find for all{
p�

1 ∈
[
1, 2n

τ(σ(n−2m)−4m)−4m

]
if τ (σ(n− 2m)− 4m) > 4m,

p�
1 ∈ [1,∞) if τ (σ(n− 2m)− 4m) ≤ 4m,

(6.30)

an upper bound for ‖u+
M‖Lp�

1 (Ω)
independent of M . Since

σ <
4m

n− 2m
+

1

τ

n+ 2m

n− 2m

is equivalent to
τ(σ(n− 2m)− 4m)− 4m < n− 2m,

we found an upper bound independent of M for ‖u+
M‖Lq(Ω) for all q ∈ [1,∞) or

have gained some regularity: From a uniform bound for ‖u+
M‖L 2n

n−2m (Ω)
we derived a

uniform bound for ‖u+
M‖

L
2n

τ(σ(n−2m)−4m)−4m (Ω)
.

Let ε > 0 be such that

σ =
4m

n− 2m
+

1

τ

n+ 2m

n− 2m
− ε. (6.31)

We note that (6.30) can be rewritten inp�
1 ∈

[
1, 2n

(n−2m)(1−ετ)

]
if 1 > ετ,

p�
1 ∈ [1,∞) if 1 ≤ ετ.

In the following, we repeat the arguments in Step 1 and Step 2 and attain after
k-times that ‖u�

M‖Lp�
k (Ω)

is bounded by a constant independent of M , where

Lp
�
k (Ω) ⊂ Lpk(Ω) (6.32)

with k ∈ N+ and {
pk = 2n

(n−2m)(1−ετ)k
if 1 > ετ,

pk ∈ [1,∞) if 1 ≤ ετ.
(6.33)

Indeed, one finds (6.32) with induction. For k = 1 it holds true. So let (6.32) be
satisfied for a k ∈ N+ and ‖u+

M‖Lp�
k (Ω)

be bounded by a constant independent of M .

Then, either
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• ετ ≥ 1 and for all q ∈ [1,∞) the norm ‖u+
M‖Lq(Ω) is bounded independently

of M ,

• or ετ < 1 and for q = 2n
(n−2m)(1−εσ)k

the norm ‖u+
M‖Lq(Ω) is bounded indepen-

dently of M .

Using Step 1 and Step 2 again, we then find for all q ∈ [1,∞) an upper bound for
‖u+

M‖Lq(Ω) independent of M or an upper bound for ‖u+
M‖

L
p�
k+1 (Ω)

with

p�
k+1 =

2n

τ(σ(n− 2m)(1− ετ)k − 4m)− 4m
.

Since for ετ < 1 one finds with (6.31)

τ(σ(n− 2m)(1− ετ)k − 4m)− 4m

= 4mτ
(
(1− ετ)k − 1

)
− 4m+ (n+ 2m)(1− ετ)k − ετ(n− 2m)(1− ετ)k

≤ (n− 2m)(1− ετ)k − ετ(n− 2m)(1− ετ)k

= (n− 2m)(1− ετ)k+1,

one obtains Lp
�
k+1(Ω) ⊂ Lpk+1(Ω) with pk+1 as in (6.33).

Hence, for k ∈ N+ sufficiently large, we find pk >
nσ
2m

. Then, using Step 1 and
Step two again, one obtains for all q ∈ [1,∞) an upper bound for ‖uM‖Lq(Ω) indepen-
dent of M . One more iteration leads to the existence of a constant CΩ,m,f,g,σ,τ > 0
independent of M such that

‖uM‖L∞(Ω) ≤ CΩ,m,f,g,σ,τ .

It follows for M sufficiently large that uM is a classical solution to (6.1).

So if, instead of applying local maximum principles as in [29] and [24], we use the
Green function and regularity estimate for the polyharmonic Dirichlet problem in
(3.2) and Theorem 6.1.1, we can improve the results in [29]. If we combine Theorem
6.3.1 and 6.4.1, we find the result stated in Theorem 1.2.15. This is also shown
in Figures 1.1, 6.2 and 6.3. The parts in Figure 6.2 that are missing compared to
Figure 1.1 (displayed in light green) are contained in Figure 6.3 and vice versa. So,
the range of admissable growth rates can be represented as in Figure 1.1.

Remark 6.4.2 The condition σ < 4m
n−2m

+ 1
τ
n+2m
n−2m

is necessary so that p�
1 in (6.30)

fulfills p�
1 > 2n

n−2m
. Otherwise we would not obtain an increasing sequence

p�
1 , p

�
2 , . . . , p

�
k . For τ = n+2m

n−2m
we find a classical solution if 0 ≤ σ < n+2m

n−2m
. This

is the known result which has already been proven by von Wahl [76] and Luckhaus
[44]. As already noted in [24], the result in Theorem 6.4.1 can be understood as an
interpolation between this standard case and the result in Theorem 6.3.1.

Remark 6.4.3 We have shown that under some growth and sign conditions there
is a classical solution to problem (6.1). An open problem is the question whether
one can assume arbitrary growth of g and still achieve the same result. We note
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that one has to assume at least monotonicity or a sign condition as in (6.2). Indeed,
Luckhaus constructed in [44] an example in which g fulfills the condition

|g(x, t)| ≤ C
(

1 + |t|
n+2m
n−2m

+ε
)

for some ε > 0,

but not necessarily (6.2). He has found a function that solves problem (6.1) in weak
but not in classical sense. Moreover, Reichel and Weth constructed a semilinear term
that does not fulfill the sign condition, such that there is no solution u ∈ C2m,γ(Ω),
see [54, Theorem 3].
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Appendix

A.1 Upper bound for the Cm-norm of the weighted

eigenfunctions

In this section we prove the estimate in (3.58). The result and proof are an adapted
version of Lemma 13 in [57], so it coincides with the proof in [57] in some paragraphs
except that we replace 2 with m.

Lemma A.1.1 Suppose that Condition A is satisfied and let {λi,m,w}i∈N+ be the
eigenvalues to problem (1.10) and {ϕi,m,w}i∈N+ the corresponding eigenfunctions with
‖ϕi,m,w‖L2

w(Ω) = 1. Then there exists a constant CA.1.1 > 0, depending on the domain,
w and m, such that for all i ∈ N+:

‖ϕi,m,w‖Cm(Ω) ≤ CA.1.1λ
n

4m
+ 2m−1

2m
i,m,w , (A.1)

|ϕi,m,w(x)| ≤ CA.1.1λ
n

4m
+ 2m−1

2m
i,m,w d(x)m for all x ∈ Ω.

Proof. All constants that we use in this proof depend on the domain and on m. We
have assumed that the eigenfunctions are normalized in L2

w(Ω), so ‖ϕi,m,w‖L2
w(Ω) = 1.

As in [57, Lemma 13] we recall the three main arguments:

1. Regularity: Using Agmon-Douglis-Nirenberg for (1.10) we find some constant
CADN,w,p > 0 such that

‖ϕi,m,w‖W 2m,p(Ω) ≤

{
CADN,w,p λi,m,w‖ϕi,m,w‖Lp(Ω) for p ∈ (2,∞),

CADN,w,2 λi,m,w‖ϕi,m,w‖L2
w(Ω) for p = 2.

(A.2)

So, for p = 2 we find ‖ϕi,m,w‖W 2m,2(Ω) ≤ CADN,w,2λi,m,w.

2. Imbeddings: With the Sobolev imbeddings in (2.11)i. and (2.11)ii., we get
constants CI,p > 0 such that

‖u‖Cm(Ω) ≤ CI,p‖u‖W 2m,p(Ω) for all u ∈ W 2m,p(Ω) (A.3)

and with (2.11)iii.-v. we find CI,p,q > 0 such that

‖u‖Lq(Ω) ≤ CI,p,q‖u‖W 2m,p(Ω) for all u ∈ W 2m,p(Ω) (A.4)

with p, q as in Theorem 2.5.1.
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3. Interpolation: By Theorem 5.8 of [1] we find for q ∈ [p, p∗n] ∩ R and θ =
n

2m

(
1
p
− 1

q

)
, with p∗n as in (2.11), that there exist constants Cp,q > 0 such that

‖u‖Lq(Ω) ≤ Cp,q‖u‖θW 2m,p(Ω)‖u‖1−θ
Lp(Ω) for all u ∈ W 2m,p(Ω). (A.5)

We distinguish several cases depending on the dimension n.

• n ∈ {2, . . . , 2m− 1}: Using (A.3) and (A.2), we find constants such that

‖ϕi,m,w‖Cm(Ω) ≤ CI,2‖ϕi,m,w‖W 2m,2(Ω) ≤ C ′I,2λi,m,w. (A.6)

• n ∈ {2m, . . . , 6m− 1}: As mentioned in the proof of Lemma 3.3.1, we get{
2∗n =∞ for 2m ≤ n ≤ 4m,

2∗n = 2n
n−4m

≥ 2n
2m−1

for 4m+ 1 ≤ n ≤ 6m− 1.

We want to proceed with q ∈
(
n
m
, 2∗n
)

and since 2∗n ≤ n
m

for n ≥ 6m, we need
the restriction n ≤ 6m− 1. Setting q = 4n

4m−1
∈
(
n
m
, 2∗n
)

and p = 2, we obtain

θ =
n

2m

(
1

2
− 4m− 1

4n

)
=

n

4m
− 4m− 1

8m

and using (A.5) and (A.2), we find

‖ϕi,m,w‖Lq(Ω) ≤ C2,q‖ϕi,m,w‖θW 2m,2(Ω)‖ϕi,m,w‖1−θ
L2(Ω) ≤ C ′2,qλ

θ
i,m,w

= C ′2,qλ
n

4m
− 4m−1

8m
i,m,w .

So, applying (A.3) and (A.2), we get

‖ϕi,m,w‖Cm(Ω) ≤ CI,q‖ϕi,m,w‖W 2m,q(Ω) ≤ C ′I,qC
′
2,qλ

n
4m

+ 4m+1
8m

i,m,w . (A.7)

• n ≥ 6m: Here we follow analogous steps as in the proof of Lemma 3.3.1.
Again, we set ` :=

[
n−2m

4m

]
and for k ≤ ` we define iteratively p0 = 2 and

pk+1 = (pk)
∗
n. Then we find for k ≤ `

pk =
2n

n− 4mk
.

Using (3.25) and (A.4), we get that W 2m,pk(Ω) imbeds in Lpk+1(Ω) for k < `,
so

‖u‖Lpk+1 (Ω) ≤ CI,pk,pk+1
‖u‖W 2m,pk (Ω) for all u ∈ W 2m,pk(Ω).

With u = ϕi,m,w and (A.2) it holds that

‖ϕi,m,w‖Lpk+1 (Ω) ≤ CI,pk,pk+1
‖ϕi,m,w‖W 2m,pk (Ω) ≤ C ′I,pk,pk+1

λi,m,w‖ϕi,m,w‖Lpk (Ω).
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A.1. UPPER BOUND FOR THE CM -NORM OF THE WEIGHTED
EIGENFUNCTIONS

We can set C` :=
∏`−1

k=0 C
′
I,pk,pk+1

and find

‖ϕi,m,w‖Lp` (Ω) ≤ C`λ
`
i,m,w‖ϕi,m,w‖L2

w(Ω) ≤ C`λ
`
i,m,w. (A.8)

If we take p = p` and q = n
m−δ with δ > 0 so small that q < p∗n, we get

θ =
n

2m

(
1

p`
− 1

q

)
=
n− 2m

4m
−
[
n− 2m

4m

]
+

δ

2m

and therefore (A.5) and (A.2) imply

‖ϕi,m,w‖Lq(Ω) ≤ Cp`,q‖ϕi,m,w‖θW 2m,p` (Ω)‖ϕi,m,w‖
1−θ
Lp` (Ω) ≤ C ′p`,qλ

θ
i ‖ϕi,m,w‖Lp` (Ω).

Combining this inequality with (A.8), we find

‖ϕi,m,w‖Lq(Ω) ≤ C ′p`,qC`λ
θ+`
i,m,w = C ′p`,qC`λ

n−2m
4m

+ δ
2m

i,m,w .

Using (A.3) and (A.2), one gets

‖ϕi,m,w‖Cm(Ω) ≤ CI,q‖ϕi,m,w‖W 2m,q(Ω) ≤ C ′I,qλi,m,w‖ϕi,m,w‖Lq(Ω)

≤ C ′I,qC
′
p`,q
C`λ

n
4m

+m+δ
2m

i,m,w . (A.9)

In (A.6), (A.7) and (A.9) we have shown that there is a constant Cn > 0 and
αn ∈

(
0, n

4m
+ 2m−1

2m

]
such that

‖ϕi,m,w‖Cm(Ω) ≤ Cnλ
αn
i,m,w for all i ∈ N+.

With (3.57) the result in (A.1) follows. As in the proof of Lemma 3.5.1, the mean
value theorem implies

|ϕi,m,w(x)| ≤ ‖ϕi,m,w‖Cm(Ω)d(x)m ≤ CA.1.1λ
n

4m
+ 2m−1

2m
i,m,w d(x)m for all x ∈ Ω.
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[19] M. Englǐs, J. Peetre, A Green’s function for the annulus, Ann. Mat. Pura Appl.
(4) 171 (1996), 313–377.

[20] P.R. Garabedian, A partial differential equation arising in conformal mapping,
Pacific J. Math. 1 (1951), 485–524.

[21] F. Gazzola, H.-Ch. Grunau, G. Sweers, Polyharmonic boundary value problems,
Springer Lecture Notes Series 1991, 2010.

[22] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second
order, Second edition, Grundlehren der Mathematischen Wissenschaften 224,
Springer-Verlag, Berlin, 1983.

[23] H.-Ch. Grunau, Das Dirichletproblem für semilineare elliptische Differential-
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