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Abstract

The Radio Science technique enables to estimate the mass and other gravitational

parameters of a solar system body from spacecraft observations very precisely. It uses

the radio link between ground station and spacecraft. The frequency shift of the radio

signal is proportional to the relative velocity change between spacecraft and ground

station. If a spacecraft performs a close flyby at a solar system body, the velocity

of the spacecraft is changed by the gravitational attraction of the body. If all other

contributions on the radio signal are known, the remaining frequency change is solely

due to the gravitational attraction. A least square fit can be performed on the frequency

residuals to derive from it gravitational parameters.

Within this thesis models were developed and merged into a software package with

which it is possible to determine the orbit of a spacecraft precisely and to predict

accurately the frequency to be observed at a ground station. Models for extracting the

frequency shift caused by the propagation of the radio signal through the ionosphere and

troposphere of the Earth were incorporated. The accuracy of the predicted frequency,

i.e. the difference between measurement and predict, is in the same order as the total

Doppler velocity error in X-band from the thermal noise of the ground station and the

transponder phase noise.

Filtering techniques were established improving the signal to noise ratio at least by a

factor of three. A numerical stable least square fitting procedure was introduced to fit

the frequency change due to the gravitational attraction of a body onto the measured

frequency residuals.

Measurements from the close flyby of the Rosetta spacecraft at the asteroid Steins

were analyzed with the developed method. Due to the large flyby distance no mass

estimate was possible. A feasibility study was carried out for the upcoming flyby of

Rosetta in July 2010 at the asteroid Lutetia. It is possible to estimate from this flyby

the mass of Lutetia with an error of 1 %.

Moreover, the developed method was applied to measurements of the Mars Express

Radio Science Experiment (MaRS) onboard Mars Express (MEX) from two close flybys

at the Mars moon Phobos in March 2006 and July 2008. The mass of Phobos was

estimated from these flybys. The solution provides the most accurate value currently

available for the mass of Phobos from close flybys. Information about the interior were

derived from the precise mass estimate. Phobos has a high porosity which is discussed

with respect to its origin. It seems to be unlikely that Phobos is a captured asteroid

as suggested from first spectral measurements. It seems to be more likely that Phobos

is the remnant of the collision between a body originating from the asteroid belt and a

body remaining from the formation process of Mars.

Mars Express will perform another flyby in March 2010 with a closest distance of

62 km. A feasibility study was performed from which it was derived that the C2, 0 term

of the gravity field of Phobos can be estimated with an error of 1 % with the developed

method.
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Kurzzusammenfassung

Das Radio Science Verfahren ermöglicht aus Raumsondenmessungen die sehr genaue

Bestimmung der Gravitationsparameter von Körpern des Sonnensystems. Dazu wird

das Radio Signal zwischen Raumsonde und Bodenstation verwendet. Die Frequenz-

änderung des Radio Signals ist proportional zur relativen Geschwindigkeitsänderung

zwischen Raumsonde und Bodenstation. Fliegt eine Raumsonde nahe an einem Körper

vorbei, so wird ihre Geschwindigkeit durch das Schwerefeld verändert. Sind alle Einflüße

bezüglich der Frequenz des Radio Signals außer dem Schwerefeld des Körpers bekannt,

so ist die verbleibende Frequenzänderung allein auf das Schwerefeld zurückzuführen.

Mit einer Least Square Anpassung können die Gravitationsparameter bestimmt werden.

In dieser Arbeit wurden Modelle entworfen und innerhalb eines Software-Pakets

zusammengefasst, mit dem der Orbit einer Raumsonde und die Frequenz, die an der

Bodenstation zu erwarten wäre, sehr genau vorhergesagt werden kann. Außerdem wur-

den Modelle verwendet, um die Frequenzänderungen, die entstehen, wenn das Sig-

nal die Erdatmosphäre durchläuft, aus den Messdaten zu entfernen. Die Genauigkeit

der Frequenzvorhersage, die in der Arbeit erreicht wurde, liegt dabei im Bereich des

Doppler-Geschwindigkeitsfehlers im X-Band auf Grund des thermischen Rauschens der

Bodenstation und dem Transponderphasenrauschens des Radio Science Verfahrens.

Das Signal-zu-Rausch-Verhältnis der Messung wurde durch verschiedene Filtertech-

niken mindestens um den Faktor 3 verbessert. Ein numerisch stabiles Verfahren zur

Least Square Anpassung wurde verwendet, um die modellierte Frequenzänderung auf

Grund des Schwerefeldes an die gemessene Frequenzänderung anzupassen.

Die Messungen des nahen Vorbeiflugs von Rosetta am Asteroiden Steins wurde mit

der entwickelten Methode analysiert. Auf Grund der großen Vorbeiflugs-Entfernung war

keine Massenbestimmung möglich. Es wurde eine Machbarkeitsstudie für den Vorbeiflug

von Rosetta im Juni 2010 am Asteroiden Lutetia durchgeführt. Es ist möglich mit der

entwickelten Methode die Masse von Lutetia auf 1 % genau zu bestimmen.

Die in dieser Arbeit entwickelte Methode wurde bei Messungen des Mars Express

Radio Science Experiments auf Mars Express zweier naher Vorbeiflüge am Marsmond

Phobos angewandt. Die Masse von Phobos wurde aus den Messungen der Vorbeiflüge

mit einer Genauigkeit bestimmt, die bis jetzt bei nahen Vorbeiflügen noch nicht erreicht

wurde. Mit der Massenbestimmung konnten weitere Informationen über den inneren

Aufbau von Phobos abgeleitet werden. Die dabei bestimmte hohe Porosität von Pho-

bos wurde im Zusammenhang mit seiner Herkunft diskutiert. Es ist unwahrscheinlich,

dass Phobos ein eingefangener Asteroid ist, wie es auf Grund der ersten spektralen

Messungen vorgeschlagen wurde. Möglicherweise ist Phobos der Überrest eines Zusam-

menstoßes zwischen einem Körper, der aus dem Asteroiden-Gürtel stammt, und eines

Körpers, der bei der Entstehung des Mars gebildet wurde.

Mars Express wird im März 2010 in einer Entfernung von 62 km an Phobos vorbei-

fliegen. Es wurde eine Machbarkeitsstudie für den Vorbeiflug durchgeführt. Daraus

folgt, dass mithilfe der entwickelten Methode der C2, 0 Term des Schwerefeldes von

Phobos mit einer Genauigkeit von 1 % bestimmt werden kann.
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CHAPTER 1

Introduction, Motivation and Goal

The Mars Express (MEX) spacecraft was successfully launched on 2 June 2003 and

injected into orbit around Mars on 25 December 2003. It was maneuvered into a highly

elliptical capture orbit from which transited into its operational near polar orbit later in

January 2004. The elliptical polar orbit (radius of periapsis rp = 250, radius of apoapsis

ra = 10142 km, inclination i = 86.35 ∘ , period T = 6.75 h) of Mars Express allows close

flybys at the Mars moon Phobos which have been the first close flybys since Viking and

Phobos 2 twenty years ago. Phobos is a scientifically very interesting body. Different

scenarios for its origin exist but none of them explains its origin entirely.

This PhD-thesis was motivated by the opportunity of having close flybys at Phobos

from which new scientific results of Phobos can be achieved. The Mars Express Radio

Science Experiment (MaRS) (Pätzold et al. [2004]) obtains tracking data from these

flybys. The Radio Science experiment technique enables the precise estimation of the

mass and additional gravitational parameters of Phobos. It uses the radio link between

ground station and spacecraft. The tracking data contain the frequency of the radio

signal observed at the ground station. The observed frequency is proportional to the

relative velocity between the spacecraft and the ground station.

The Radio Science measurement principle is based on the detection of a change in

frequency of the radio signal. This frequency shift can be caused by the propagation of

the radio wave through a medium and/or the change of the relative velocity between the

spacecraft and the ground station by an unknown force like the gravitational attraction

of a perturbing body (Häusler [2002]). For close flybys the latter frequency shift is used

for estimating the gravitational parameter of a perturbing body from the trajectory of

a spacecraft.
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The orbit of MEX around Mars is perturbed by the gravitational attraction of the co-

orbiting moon Phobos. The orbit perturbations caused by the gravitational attraction

of Phobos on the spacecraft can be measured by:

∙ long-term observation of the spacecraft orbit at large distances from that moon,

or by

∙ short-term observation of the changes in the spacecraft velocity during close flybys.

Each flyby has its own characteristics. The shape of the Doppler frequency shift

curve caused by the gravitational attraction of Phobos on the spacecraft depends on

the relative flyby velocity, the angle between the Line of Sight (LOS) and the velocity

vector of the spacecraft, the closest distance, and the mass of the perturbing body

(Pätzold et al. [2001]). In this thesis the analysis of close flybys is focused on fitting

gravitational parameters to the individual shape of the frequency curve instead of using

large datasets as for long-term observations (see Konopliv et al. [2006], Rosenblatt et al.

[2008]) for computing the mass of the perturbing body. The shape of the curve is

obtained from the recorded frequency if all other effects except for the gravitational

attraction of the perturbing body are known. Based on this knowledge a predicted

frequency is computed and subtracted from the recorded data.

The goal of this thesis is to develop a software tool which allows on the one hand

the precise orbit computation from which the predicted frequency can be determined.

On the other hand, obtaining gravitational parameters from the measured frequency

residuals from short-term observations after calibration and filtering by fitting the pre-

dicted frequency shift of the perturbing body on the measured frequency residuals.

From the estimated gravitational parameters, additional information about the interior

of the perturbing body can be derived. Figure 1.1 summarizes the steps needed to be

performed for this goal.

The first part contains the precise estimate of the predicted frequency expected to be

received at the ground station. This includes appropriate time and coordinate systems

for Radio Science experiments defined in section 2.1. A method for solving the equation

of motion is described in section 2.2.

A spacecraft orbiting a central body can be perturbed by many forces. These forces

have to be taken into account for a precise orbit determination which is one of the

most essential parts in order to extract gravitational parameters from Radio Science

data. The gravitational and non-gravitational forces acting on a spacecraft are de-

scribed in section 2.3 and 2.4, respectively. This includes the acceleration caused by a

non-spherical shaped body with nonuniform density distribution for which a novel re-

cursion algorithm for normalized gravity coefficients is developed based on an algorithm

from Cunningham [1970]. The gravitational attractions from third or more bodies are

also defined. Detailed models for the solar radiation pressure depending on the opti-

cal parameter of the spacecraft and the direction of the normal of each plane of the

spacecraft to the Sun and other perturbing forces are specified in detail.
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Figure 1.1: Flow chart describing the major steps of the developed software tool. The

uppert part describes the computation of the predicted frequency and the lower part the sub-

traction of the gravitational parameter including calibration and noise reduction by filtering.



4 Introduction, Motivation and Goal

The method in this thesis was primarily developed to analyze flybys at the Mars moon

Phobos. The Rosetta spacecraft has performed on its way to the comet 67P/Churyumov-

Gerasimenko one flyby at the asteroid 2867 Steins in 2008 and will perform another

flyby at the asteroid 21 Lutetia in 2010. Therefore, the method of analyzing close flybys

was extended to the flybys of Rosetta.

Force models appropriate for Mars Express and Rosetta are described. Their accuracy

is estimated by comparing the state vector from the orbit integration with the state

vector from precise orbit determination of other investigators.

Based on the precise orbit determination the predicted frequency which is expected

to be received at the ground station is computed from the relativistic Doppler effect.

This requires the knowledge of the very accurate position at centimeter level of the

transmitting and receiving ground station, i.e. site displacement effects like tectonic

plate motion must be taken into account. Numerical methods for modeling this effects

and the relativistic Doppler effect are presented in section 2.6.

The radio signal transmitted from the ground station to the spacecraft and the way

back passes the troposphere and ionosphere of the Earth. The frequency of the signal is

changed due to the propagation through these media. Numerical methods for predicting

and removing this effect from the recorded data are described in section 2.7.

After applying all corrections, the frequency shift caused by the gravitational at-

traction of the perturbing body is obtained from the recorded data by subtracting the

predicted frequency (all forces are included except the gravitational attraction of the

perturbing body) from the recorded frequency.

In section 2.8 a numerical stable formalism for fitting the gravitational parameter

of the body onto the frequency residuals is described. The error of the estimated

gravitational parameter is reduced by applying appropriate filter techniques (see section

2.9). Observations from MaRS at which no perturbing body is included were used in

section 3 to estimate the accuracy of the predicted frequency expected to be received

at the ground station. Moreover, the fitting procedure for close flyby observations is

defined in this section. The current knowledge of the physical properties of the Mars

moon Phobos, the asteroids Steins and Lutetia is briefly summarized in section 4.

The mass estimate results from the MEX flybys at the Martian moon Phobos in

March 2006 and July 2008 are given in section 5. From this estimates conclusions

about the interior are drawn and interpretations with respect to its origin are drawn.

Furthermore, the results of a feasibility study for an upcoming flyby in March 2010 of

MEX at Phobos at a distance of 62 km are shown. The results from the flyby of ROS

at Steins in September 2008 and a feasibility study for the future flyby at Lutetia in

July 2010 are presented in section 5. Finally, section 6 summaries and discusses the

results of this thesis.
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1.1 Analyzing flybys from Radio Science data

Radio Science techniques are applied to the study of planetary and cometary atmo-

spheres, planetary rings and surfaces, gravity and the solar corona. The radio carrier

links of the spacecraft Telemetry, Tracking and Command subsystem between the Or-

biter and Earth are used for Radio Science observations. Simultaneous and coherent

dual-frequency downlinks at X-band (8.4 GHz) and S-band (2.3 GHz) via the High

Gain Antenna permits separation of contributions from the classical Doppler shift and

the dispersive media effects caused by the motion of the spacecraft with respect to the

Earth and the propagation of the signals through the dispersive media, respectively.

The investigation relies on the observation of the phase, amplitude, polarization and

propagation times of radio signals transmitted from the spacecraft and received with

antennas on Earth. The radio signals are affected by the medium through which they

propagate (atmospheres, ionospheres, interplanetary medium, solar corona), by the

gravitational influence of the planet or moon on the spacecraft and, finally, by the per-

formances of the various systems aboard the spacecraft and on Earth. Radio Science

investigations fall into three broad categories: propagation of the radio signal through

the ionosphere and neutral atmosphere of the occulted planet (occultation measure-

ments), oblique incidence scattering investigations using propagation paths between

spacecraft, planetary surface and a ground station on Earth (bistatic radar measure-

ments), and gravity measurements (Pätzold et al. [2004], Häusler [2002]).

In this thesis only gravity observations are used which are usually performed in the

two way mode (Fig. 1.2), i.e. a ground station is transmitting a radio signal (uplink) at

X-band which is received by the spacecraft, converted by the spacecraft’s transponder

to downlink transmission frequency at S-band and X-band, and sent back to the ground

station (Pätzold et al. [2004]).

Figure 1.2: One-way and two-way radio link configuration (Source: Pätzold et al. [2004]).



6 Introduction, Motivation and Goal

If the radio path is well clear of occulting material and a spacecraft is approaching a

solar system body the gravitational attraction of the body is changing the velocity and

trajectory of the spacecraft. When neglecting relativistic effects, the change in velocity

is detected in the transmitted radio signal from a frequency shift caused by the classical

Doppler effect. This frequency shift can be expressed by

Δf = ±f
Δṙ

c
. (1.1)

Here, Δṙ is the velocity change of the spacecraft projected into the Line of Sight

(LOS), c the speed of light, Δf the frequency shift and f the transmitted frequency

(Pätzold et al. [2001]).

If a spacecraft performs a close flyby at a solar system body, the velocity of the

spacecraft is changed by the gravitational attraction of the body. If all other contri-

butions on the radio signal are known the remaining frequency change is solely due

to the gravitational attraction. This frequency shift allows to gain information about

the gravitational parameter of the perturbing body. The amplitude and shape of this

frequency shift curve depends on different parameters:

∙ the mass of the perturbing body (the change in velocity increases with the mass

of the body for a given distance),

∙ the distance between the spacecraft and the perturbing body (the change in ve-

locity increases with closer distance for a given mass, obviously),

∙ the relative flyby velocity between spacecraft and body (small relative velocities

causing larger velocity changes than larger relative velocities, see Figure 1.3), and

∙ the angle � between the LOS, i.e. the direction of the line connecting the space-

craft at transmitting time and the ground station at receiving time (in the down-

link case), and the direction of the velocity of the spacecraft relative to the per-

turbing body.

The velocity change caused by the gravitational attraction of the perturbing body is

separated into two components v∥ and v⊥, along the direction of motion of the space-

craft and perpendicular to it (Pätzold et al. [2001]), respectively. The two components

are projected into the LOS by

vLOS = v⊥ sin (�) + v∥ cos (�) . (1.2)

The shape of the resulting frequency change in the recorded data from a close flyby

contains not only the information on the gravitational parameter of the perturbing

body, but depends also on the characteristics of the flyby. The geometry of the flyby

determines these characteristics, i.e. the flyby velocity (Fig. 1.3), the distance between

the spacecraft and the perturbing body, and the angle between LOS and direction of
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motion (Fig. 1.4(a) and 1.4(b)). The geometry is well known for every flyby. The un-

known parameter are the gravitational parameter of the perturbing body. If a predicted

frequency is subtracted from the observed data in that way that a curve as shown in Fig-

ure 1.4(a) and 1.4(b) remains, this curve can be used to extract gravitational parameter

from it by a least square fit. Thus it is possible to estimate from short-term observa-

tions including the explicit shape of the frequency shift the gravitational parameter of

the perturbing body.

-1000 -750 -500 -250 0 250 500 750 1000

Time relative to closest approach [s]

0

5

10

15

20

25

V
el

o
ci

ty
 c

h
an

g
e 

[m
m

/s
]

18 km/s
15 km/s
12 km/s
9 km/s
6 km/s
3 km/s

Figure 1.3: Comparison of the resulting velocity change at different flyby velocities with

constant mass and flyby distance. The velocity is not projected into the Line of Sight (LOS).

The resulting velocity change increases with decreasing relative velocity between spacecraft and

ground station.

A method is developed in this thesis which focuses on the shape of the resulting

frequency changes, i.e. the gravitational parameter are the variables which are fit to the

frequency change. It is assumed that the frequency change is solely due to the attraction

of the perturbing body. This requires a very precise prediction and assessment of all

other forces acting on the spacecraft (see section 3). For Mars Express and Rosetta

the total Doppler velocity error caused by thermal noise at the ground station and

transponder phase noise is 0.26 mm/s at X-band (Pätzold et al. [2004]). Therefore, the

precision of the predicted frequency change should be in the order of the total Doppler

velocity for a precise estimate of the gravitational parameters of the perturbing body.
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(a) � = 0o - 90o

(b) � = 90o - 180o

Figure 1.4: Velocity changes in the direction of the Line of Sight for different angles �

between the Line of Sight (LOS) and the direction of motion of the spacecraft with the same

body mass, flyby distance and relative flyby velocity.
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1.2 Missions

1.2.1 Mars Express

The Mars Express spacecraft (Fig. 1.5) was launched on a Soyuz/Fregat, built by

Starsem, the European/Russian launcher consortium on 2 June 2003 with a launch

mass of 1120 kg (including 113 kg orbiter payload and 60 kg lander) and arrived in

December 2003 Mars. The scientific payload consists of the High Resolution Stereo

Camera (HRSC), the Energetic Neutral Atoms Analyzer (ASPERA), the Planetary

Fourier Spectrometer (PFS), the Visible and Infrared Mineralogical Mapping Spec-

trometer (OMEGA), the Sub-Surface Sounding Radar Altimeter (MARSIS), the Ultra-

violet and Infrared Atmospheric Spectrometer (SPICAM) and the Mars Express Radio

Science Experiment (MaRS) (ESA [2009a]).

Figure 1.5: Artist view of the Mars Express spacecraft in front of Mars (source ESA

[2009a]).
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The Mars Express Orbiter will:

∙ image the entire surface at high resolution (10 meters/pixel) and selected areas

at super resolution (2 meters/pixel);

∙ produce a map of the mineral composition of the surface at 100 meter resolution;

∙ map the composition of the atmosphere and determine its global circulation;

∙ determine the structure of the sub-surface to a depth of a few kilometers;

∙ determine the effect of the atmosphere on the surface;

∙ determine the interaction of the atmosphere with the solar wind.

Detailed information about the MEX mission are given by Chicarro et al. [2004] and

ESA [2009a].

The Mars Express Radio Science Experiment (MaRS) will use the radio signals that

convey data and instructions between the spacecraft and Earth to probe the planet’s

ionosphere, atmosphere, surface and even the interior. Information on the interior will

be gleaned from the planet’s gravity field, which will be calculated from changes in the

velocity of the spacecraft relative to Earth. Surface roughness will be deduced from

the way in which the radio waves are reflected from the Martian surface (Pätzold et al.

[2004]).
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1.2.2 Rosetta

The Rosetta spacecraft (Fig. 1.6) was launched on 2 March 2004 by an Ariane-5G

rocket from Kourou, French Guiana. After burn-out of the lower stage, the spacecraft

and upper stage remained in Earth parking orbit (4000 × 200 kilometers) for about

two hours. Ariane’s upper stage then ignited to boost Rosetta into its interplanetary

trajectory, before separating from the spacecraft (ESA [2009b]).

After a ten-year voyage, the final target of the Rosetta mission is comet 67P/Churyumov-

Gerasimenko. The journey contains 3 Earth swing-by manoeuvres (4 March 2005, 13

November 2007, 13 November 2009), one Mars swing-by manoeuvre on 25 February

2007, two Asteroid flybys at Steins (5 September 2008) and Lutetia (10 June 2010) be-

fore the Comet rendezvous manoeuvres (22 May 2014) and Lander delivery (10 Novem-

ber 2014) will take place. The comet will be escorted around the Sun from November

2014 - December 2015 and end of the nominal mission will be in December 2015.

Figure 1.6: Artist view of the Rosetta spacecraft as it flies by asteroid Steins (source ESA

[2009b]).
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The Rosetta orbiter is equipped with eleven scientific instruments: the Ultravio-

let Imaging Spectrometer (ALICE), the Comet Nucleus Sounding (CONSERT), the

Cometary Secondary Ion Mass Analyser (COSIMA), the Grain Impact Analyser and

Dust Accumulator (GIADA), the Micro-Imaging Analysis System (MIDAS), the Mi-

crowave Instrument for the Rosetta Orbiter (MIRO), the Rosetta Orbiter Imaging

System (OSIRIS), the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis

(ROSINA), the Rosetta Plasma Consortium (RPC), the Visible and Infrared Thermal

Imaging Spectrometer (VIRTIS) and the Radio Science Investigation (RSI).



CHAPTER 2

Theory

2.1 Time and reference frames

Analyzing data from Radio Science measurements requires a definition of various time

systems and reference frames which are suitable for this specific application. Important

is, for example, the reference time when the signal transmitted by the spacecraft is

received at the ground station.

The software package SPICE (NAIF [2009]) used in this thesis provides various built-

in time and reference frames and the corresponding transformations between them.

The time and reference frames used for the computations are briefly explained in the

following.

More information about time and reference frames can be found in Häusler et al.

[2003], Selle [2005], Montenbruck and Gill [2000], Dehant and Mathews [2007] and Val-

lado [2001].

2.1.1 Time

The position of the spacecraft and the receiving ground station has to be known very

precisely in different time systems. E.g. the position of a planet is based on the

Ephemeris Time (ET) and the data recorded at the ground station are referenced to

the Coordinated Universal Time (UTC). There are four time scales: sidereal time, solar

(universal time), dynamical time, and atomic time. Sidereal time and solar time are

based on the rotation of the Earth and are related together by mathematical transfor-

mations. Atomic and Dynamical time are not depending on other time scales.



14 Theory

Universal times UT and UT1 are sub timescales of the mean solar time, ET, Terres-

trial Time (TT), Barycentric Dynamic Time (TDB), Terrestrial Dynamic Time (TDT),

Barycentric Coordinate Time (TCB) and Geocentric Coordinate Time (TCG) of the

dynamical time, and International Atomic Time (TAI) and Global Positioning System

Time (GPS) of the atomic time (see Figure 2.1). In this thesis UTC and ET is used.

Figure 2.1: Difference between Barycentric Coordinate Time (TCB), Barycentric Dy-

namic Time (TDB), Geocentric Coordinate Time (TCG), Terrestrial Time (TT) or former

Terrestrial Dynamic Time (TDT), International Atomic Time (TAI), Universal Time (UT1),

Global Positioning System Time (GPS) and Coordinated Universal Time (UTC) between 1950

and 2020. The periodic terms of TCB and TDB are magnified by 100 to make them visible

(Source: Seidelmann and Fukushima [1992]).

2.1.1.1 Coordinated Universal Time

The Coordinated Universal Time (UTC) has a nonuniform time scale and is obtained

from atomic clocks which are running at the same rate as TT or former TDT and TAI.

TT and TAI have uniform time scales based on atomic clocks which are located at the

surface of Earth. UTC is referenced to TAI which has an uniform time scale but due

to the introduction of leap seconds the UTC has a nonuniform time scale. This ensures

that the UTC time scale is always within 0.7 seconds of UT1. The UT1 represents the

time scale of mean solar time with an average length of solar day of 24 hours with UT1

= UT. UT1 takes into account the actual rotation of the Earth. Therefore the length

of one second of UT1 is not constant due to the apparent motion of the Sun and the

rotation of the Earth (see figure 2.1).
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2.1.1.2 Ephemeris Time

The Ephemeris Time (ET) is the uniform time scale that is represented by the inde-

pendent variable in the differential equations that describe the motions of the planets,

Sun and Moon and is defined as TDB seconds past the Greenwich noon on 1 January

2000 Barycentric Dynamic Time (TDB), below referred to as the J2000 epoch. ET

can be expressed in form of TDB or TDT, but in this thesis the TDB representation is

used. It is defined as the basic time system for all computations.

The difference between the UTC and TDB representation is computed from

tTDB = tUTC + tLeap + 32.184 [s] + ΔtTDB,TT . (2.1)

Here tLeap are the leap seconds and ΔtTDB,TT the difference between TT and TDB.

2.1.2 Coordinate systems

A coordinate system is usually defined by its origin, fundamental plane, the preferred

direction and additionally the sense, or the positive direction. Different coordinate

systems are used in the present thesis. Their definition and utilization are below. The

names of the coordinate systems are according to the nomenclature from the SPICE

software package.

∙ Geocentric Celestial Reference Frame J2000:

This frame has the Earth mean equator of the J2000 epoch, which is the epoch of

Greenwich noon on 1 January 2000 TDB as its principal plane and has no rotation

in space. The first axis of this frame is in the direction of the vernal equinox and

the second is in the direction of the increasing obliquity. This is the fundamental

inertial coordinate system in which the equation of motion of the spacecraft is

solved.

∙ International Terrestrial Reference Frame ITRF93:

This frame is fixed to the Earth, with the center of mass being defined for the

entire Earth, including oceans and atmosphere. It is defined through coordinates

assigned to a number of sites for which the various effects of site displacement are

taken into account. Consequently, the motion of these sites reflects the rotation

of the Earth entirely. ITRF93 has the plane of the true equator as its principal

plane and its first axis fixed on the Greenwich meridian. In this frame the precise

position of the transmitting and receiving ground stations are calculated (see

section 2.6.2).

∙ Body fixed frame IAU_MARS of Mars:

This frame is fixed to and does not move with respect to surface features of Mars,

but it does move with respect to inertial frames as Mars rotates. The origin is

the center of mass of Mars. The principal plane is the plane of Mars’s equator
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as defined by Seidelmann et al. [2001]. This frame is used for computation of the

acceleration felt by a spacecraft orbiting Mars from the gravitational field.

∙ The solar array frames MEX_SA+Y and MEX_SA-Y of MEX:

The orientation of the solar panels of MEX with respect to the direction to Sun are

needed for a precise computation of the acceleration caused by the solar radiation

pressure. This can be realized using the following solar array frames of the left

and right solar array MEX_SA+Y and MEX_SA-Y, respectively. It is defined such

as (see figure 2.2)

– the origin of the frame is located at the geometric center of the yoke,

– +Y is parallel to the longest side of the solar array, positively oriented from

the yoke to the end of the wing,

– +Z is normal to the solar array plane and the solar cells are facing +Z, and

– +X is defined such that (X , Y , Z) is right handed.

Figure 2.2: The MEX spacecraft reference system.

∙ The solar array frames ROS_SA+Y and ROS_SA-Y of ROS:

The orientation of the solar panels of ROS can be computed using the solar array

frames. ROS_SA+Y and ROS_SA-Y defined similar to that of MEX (Fig. 2.2):

– the origin of the frame is located at the geometric center of the gimbal,

– +Y axis is parallel to the longest side of the array and array rotation axis,

and is positively oriented from the end of the wing toward the gimbal,

– +Z axis is normal to the solar array plane, the solar cells on the +Z side,

and

– +X axis is defined such that (X , Y , Z) is right handed.
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2.1.3 Transformation from celestial to terrestrial coordinates

Orbit determination from Doppler data requires both celestial reference frames defin-

ing a Newtonian-inertial frame, in which the equation of motion can be solved and

terrestrial reference frames in which the position of a ground station is defined. The

Earth Orientation Parameters (EOPs) establish a connection between these two frames.

The EOPs required for a precise transformation between the celestial reference frame

and the terrestrial reference frame are provided by IERS [2009] and used in form of

SPICE kernels. The necessary equations for the transformations are incorporated into

the SPICE software package according to McCarthy and Petit [2003]. Therefore only a

short description of the above mentioned transformation is given below.

Variations in the orientation in space of an Earth-fixed reference frame are driven by

variations in the Earth rotation, i.e., in the angular velocity vector of Earth rotation.

The rotation of the solid Earth changes as a result of external torques, internal mass

redistributions, and the transfer of angular momentum between the solid Earth and the

fluid regions. This manifests in variations in direction of Earth-related axes in space

(precession and nutation) as well as relative to a terrestrial reference frame (offset

of the direction of the rotation axis with the figure axis, polar motion), and also as

variation in the angular speed of rotation which translates into variations in the Length

of Day (LOD) (see Figure 2.3). Taking into account these effects, the transformation of

a position vector rITRF93 in the terrestrial coordinate system ITRF93 into the celestial

coordinate system J2000 can be carried out via the following transformation rule

rJ2000 = Π (t)N (t)Φ (t)P (t) rITRF93. (2.2)

Here, Π(t), N(t), Φ(t) and P (t) are the rotation matrices describing the coordinate

changes due to precession, nutation, Earth rotation, and polar motion, respectively. In

detail

∙ Precession Π(t):

The orbital plane of the Earth is perturbed from the masses of solar system bodies,

this effect is called the planetary precession. The axis of rotation of the Earth is

also influenced by the torque which acts on the equatorial wobble from Sun and

moon. This is called the lunisolar precession.

∙ Nutation N(t):

The orientation of the axis of rotation of the Earth is also perturbed by small

periodic perturbations that are known as nutation (see Figure 2.3). They are

caused by monthly and annual variations of the lunar and solar torques which

have been averaged in the consideration of precession.

∙ Earth rotation about the Celestial Ephemeris Pole (CEP) Φ(t):

The precession and nutation mentioned above is derived using the CEP, which

differs slightly from the instantaneous rotation axis. The rotation about the

CEP axis itself is described by the Greenwich Mean Sidereal Time (GMST) that
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measures the angle between the mean vernal equinox and the Greenwich Meridian.

The GMST can be computed from the difference between UT1 and UTC or UT1

and TAI which is published by IERS [2009] and is the instantaneous rate of change

of UT1 in seconds, i.e. LOD with respect to a uniform time scale (UTC or TAI).

Similar the Greenwich Apparent Sidereal Time (GAST) measures the hour angle

of the true equinox. Both values differ by the nutation in right ascension and

are related by the equation of the equinoxes. The transformation matrix Φ(t)

yields the transformation between the true-of-date coordinate system and a sys-

tem aligned with the Earth equator and Greenwich meridian from the apparent

sidereal time.

∙ Polar motion P (t):

The Celestial Ephemeris Pole is not fixed with respect to the surface of the Earth

and performs a periodic motion around its mean position from which it differs at

most 10 m. The polar motion is actually a superposition of mostly two compo-

nents. Firstly the free precession with a period of about 435 days, the so called

Chandler period, and secondly an annual motion that is influenced by seasonal

changes of the mass distribution of the Earth caused by water and air flows (Fig.

2.3).

Figure 2.3: Variations of the Earth Orientation Parameters (EOPs) (Source: Dehant

and Mathews [2007]).
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2.2 Integration of the equation of motion

The accurate computation of a satellite’s orbit accounting for several forces (see sec-

tion 2.3 and 2.4) can only be obtained by using appropriate numerical methods. A

wide range of methods for numerical integration of ordinary differential equations exits.

Detailed information is given in Montenbruck and Gill [2000], Vallado [2001], Gan-

der [1985] and Guthmann [1994]. In the following the method used in this thesis is

described.

The classical Runge-Kutta method, firstly formulated from Carl Runge in 1895 and

later from Heun and Kutta improved, is probably the most widely-used method for

integration of ordinary differential equations. For the computation of xi+1 only the

previous computed solution xi is needed. This is achieved for a step size ℎi by an

approximation with weighted means. The general Runge-Kutta formula can be written

in the form

Φ (x, ℎ) =
s∑

j=1

bjkj (2.3)

with

kj = f

(

x+ ℎ

j−1
∑

l=1

ajlkl

)

, 1 ≤ j ≤ s , (2.4)

where f describes the equation of motion and s is the stage of the method. Each method

is fully described by its coefficients ajl, bj , which can be written in the following manner

c1 0 0 0 0

c2 a21 0 0 0
...

...
. . . 0 0

cs as1 ⋅ ⋅ ⋅ as,s−1 0

b1 b2 ⋅ ⋅ ⋅ bs

The coefficients are determined such that they satisfy the relations

s∑

i=1

bi = 1 cj =

j−1
∑

l=1

ajl with c1 = 0. (2.5)

The accuracy of the method depends on the step size and the computation time on

the number of steps to be carried out for computation. Therefore an optimal step size

ℎi needs to be found for accurate computations with less computation effort.

In order to estimate the error at every step two approximations with the step size ℎ

and ℎ
2
can be computed and the error according to Guthmann [1994] estimated via

�i =

∥
∥
∥x

(1)
i+1 − x

(2)
i+1

∥
∥
∥
∞

ℎi (1− 2−p)
+O

(
ℎp+1
i

)
. (2.6)
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The disadvantage of this kind of step size control is the large number of function eval-

uations. A method with stage s has to evaluate the function f on s+ 2s− 1 = 3s− 1

points and this can lead to an extensive computing time. In order to avoid this disad-

vantage the embedded methods can be used, which use two approximations x
(1)
i+1 and

x
(2)
i+1 of order p and p + 1, respectively. The essential feature of embedded methods is,

that both approximations are obtained by using the same stages kj , thereby decreasing

the computational cost for error estimation dramatically. As approximation for the

solution at xi+1 typically x
(1)
i+1 is used for this method while x

(2)
i+1 is only used for error

estimation. The local error for step size control is

�i =

∥
∥
∥x

(1)
i+1 − x

(2)
i+1

∥
∥
∥
∞

ℎi

+O
(
ℎp+1
i

)
. (2.7)

These embedded methods are called Runge-Kutta-Fehlberg pair with order p and p+1,

abbreviated RKFp(p+1) (Guthmann [1994]).

The previously presented methods are using the result of the higher order only for

error estimation whereas x
(1)
i+1 is used as approximation of x (ti+1). Dormand and Prince

[1981] have developed embedded methods which resolve this disadvantage. As before

two approximations x
(1)
i+1, x

(2)
i+1 are computed with methods of order p and q, where

usually q = p+ 1. The computation is now continued with x
(2)
i+1 instead of x

(1)
i+1 which

leads to a higher accuracy. These method is named RKp(q) method. One of the most

popular method is the RK5(4) method with the tableau defined in table A.5 in the

appendix (Dormand and Prince [1980]).

The local error estimation via equation (2.7) provides

x
(1)
i+1 − x

(2)
i+1

ℎ
= − 71

57600
k1 +

71

16695
k3 −

71

1920
k4 +

17253

339200
k5 −

22

525
k6 +

1

40
k7. (2.8)

This method of order 5 and stage 7 needs less computing time than conventional Runge-

Kutta methods. It is established in practice and often used in celestial mechanics. In

this thesis a numerical integration method is needed which provides a high accuracy at

small time steps of one second. Schwinger [2001] tested different methods for integrating

the equation of motion of a spacecraft orbiting a comet with testing scenarios from Hull

et al. [1972] and found that the RK5(4) method provides also high accuracy by using

comparably small step sizes. As the prescribed time step in this work is one second,

methods with higher order (see Dormand and Prince [1981]) would lose their advantages

of high accuracy at large step sizes due to the given small step size of one second.

There are more than the above mentioned methods (see Montenbruck and Gill [2000],

Vallado [2001], Gander [1985] and Guthmann [1994]), but implementing such a method

would go beyond the scope of the thesis. It is shown in section 2.5 that the selected and

implemented integration method RK5(4) provides sufficient accuracy and is adequate

for solving the equations of motion for Mars Express (MEX) and Rosetta (ROS).
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2.3 Gravitational forces acting on a spacecraft

The motion of a spacecraft is changed by the gravitational attraction of the central

body the spacecraft is orbiting. The central body can be treated as a point mass or if

it is irregular shaped and / or has nonuniform mass distribution the deviation from a

point mass has also be taken into account for a precise orbit determination. In addition

the gravitational attraction of other bodies needs be incorporated into the force model

if the gravitational force of these bodies are significant. The relevant mathematical

representations and their numerical realization are summarized in this section.

2.3.1 The two-body equation

In order to change the velocity v of body with constant mass m in an inertial frame a

force F is necessary according to Newton’s second law

F = m
dv

dt
= ma , (2.9)

where a is the acceleration due to the force F acting on the body, assuming an ideal

inertial reference frame I, J , K that is fixed in inertial space or has an origin moving

with constant velocity. The system of two bodies comprises the central body and a

spacecraft with the respective masses mc and mSC . The bodycentric X, Y , Z-system

is displaced from the ideal inertial reference frame I, J , K, but does not rotate or

accelerate with respect to I, J , K (see Figure 2.4). The force acting on the spacecraft

in the bodycentric frame can be written according to Newton’s law of gravitation as

F g = −GmcmSC
r

∣r∣3
. (2.10)

Here G is the gravitational constant and r the vector from the central body to the

spacecraft. This equation is valid only if the central body and the spacecraft can be

treated as a point mass and no other force acts on the inertial system. Using the

position vector of the central body rc and the spacecraft rSC with respect to the origin

of the I, J , K reference system a vector from the central body to the spacecraft can

be expressed as

r = rSC − rc. (2.11)

This equation can be differentiated without considering the derivatives of each axis

of the coordinate system due to the fact that the reference system is an inertial system.

The acceleration of the spacecraft relative to the center of the central body is then

r̈ = r̈SC − r̈c . (2.12)
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Figure 2.4: Geometry for two bodies in an inertial reference frame. I, J , K is assumed

to be an inertial coordinate system. X, Y , Z is displaced from I, J , K, but does not rotate

or accelerate with respect to I, J , K.

Newton’s second law and his law of gravitation leads to the following expression for

the inertial forces:

FSC = mSC r̈SC = −GmcmSC
r

∣r∣3
(2.13)

Fc = mcr̈c = GmcmSC
r

∣r∣3
. (2.14)

The different signs of the gravitational force on the right side of equations (2.13) and

(2.14) originate from the opposite direction of the force of the central body and the

force of the spacecraft. The relative acceleration r̈ can now be written by solving for

the individual forces and using equation (2.12).

r̈ = −G (mc +mSC)
r

∣r∣3
. (2.15)

Assuming that the mass mSC of the spacecraft is very small compared to the mass of

the central body mc and can be neglected, then the two-body equation can be written

as

r̈ = −Gmc
r

∣r∣3
. (2.16)

This is the basic two-body equation which is an idealized approximation and describes

the gravitational forces acting on a satellite precisely if the central body can be treated

as a point mass. If the central body is orbited also by a moon like the Earth the

perturbation of the orbit by the moon has also be taken into account.
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2.3.2 The n-body equation

In the case of a spacecraft orbiting a solar system body the gravitational attraction

of the Sun and other bodies must also be taken into account. Therefore an equation

which comprises more than one body the so called n-body equation is derived based

the two-body equation.

Assuming the same requirements as used in section 2.3.1 for the two-body equation

but introducing a third body as shown in Figure 2.5. The mass of the central body is

denoted by mc, the mass of the third body by m3, the vector from the central body to

the spacecraft by r, and the vector from the central body to the third body by r3 (see

Figure 2.5). The inertial forces on the spacecraft and the central body are then

FSC = mSC r̈SC = −GmcmSC
r

∣r∣3
−Gm3mSC

r − r3

∣r − r3∣3
(2.17)

Fc = mcr̈c = GmcmSC
r

∣r∣3
+Gmcm3

r3

∣r3∣3
. (2.18)

The acceleration felt by the spacecraft relative to the mass center of the central body

is according to equation (2.11)

r̈ = −Gmc
r

∣r∣3
−Gm3

r − r3

∣r − r3∣3
+GmSC

r

∣r∣3
+Gm3

r3

∣r3∣3
, (2.19)

Reordering the terms and the assumption that the mass mSC of the spacecraft is

negligible produces

r̈3 = −Gmc
r

∣r∣3
−Gm3

(
r − r3

∣r − r3∣3
+

r3

∣r3∣3
)

. (2.20)

The first term the two-body acceleration of the spacecraft due to the central body.

The left-hand term in the bracket is called the direct effect and represents the accelera-

tion of the third body directly on the satellite. The right-hand term is the acceleration

of the third body on the central body and is named consequentially the indirect term.

Expanding equation (2.20) to n bodies and leads to the n-body equation

r̈ = −Gmc
r

∣r∣3
−

n∑

i=1

Gmi

(
r − ri

∣r − ri∣3
+

ri

∣ri∣3
)

. (2.21)
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Figure 2.5: Geometry of the three-body problem in an inertial reference frame I, J , K.

2.3.3 Sphere of influence

In equation (2.21) the central body represents the body with the highest gravitational

attraction on the spacecraft. Sometimes it is not clear which is the body with the

highest gravitational attraction regarding the mass of the bodies and distance from

each other. But wrong selection of the central body would lead to inaccurate orbit

determination.

This problem can be solved with the concept of the sphere of influence. The sphere

of influence for a central body is an imaginary sphere within the gravity of the object is

primarily responsible for all orbital motion. Outside this sphere, other bodies influence

most of the spacecrafts motion.

Assuming three bodies with masses m1, m2 and m3 (Fig. 2.6), m1 is the central

body, m2 the spacecraft, and m3 the perturbing body, the equation of motion can be

written according to equation (2.21)

r̈12 +G (m1 +m2)
r12

r312
= −Gm3

(
r13

r313
+

r32

r332

)

. (2.22)
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If the central body is m3 and m1 the perturbing body the equation of motion is

accordingly

r̈32 +G (m3 +m2)
r32

r332
= −Gm1

(
r12

r312
− r13

r313

)

. (2.23)

From this equations it can be distinguished, by the ratio of the disturbing force

(right hand side of the equations) to the corresponding central attraction (left hand

side), which of the equations has to be used. Whichever provides the smaller ratio is

the one to be preferred.

The surface boundary over which these two ratios are equal is almost spherical if

r12 ≪ r13. Equating both ratios and assuming that m3 ≪ m1 and m1 ≫ m2 the sphere

of influence about m1 is approximately

r12
r13

=

(
m1

m3

) 2
5

. (2.24)

This equation describes a sphere about m1 on the boundary of which the ratio of

disturbing to primary accelerations is the same for both equations (2.22) and (2.23).

Inside the sphere the motion of m2 relative to m1 should be computed and outside m3

should be treated as the central body. A table of the sphere of influence for the planets

with respect to the Sun can be found in Battin [1987], page 397 or in Häusler [2008c].

Figure 2.6: Sphere of influence (Source: Häusler [2008c], changed).
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2.3.4 The gravity potential of a body

In the previous sections the equation of motion for a satellite orbiting a central body

was developed based on the assumption that all bodies can be treated as point masses.

However this is in most cases not true for practical purposes. Mars for instance consists

of large volcanoes but also of valleys and this leads to a gravity field strongly deviating

from a point mass representation. In the following the gravity potential of a body

with non-spherical shape and a nonuniform density distribution is derived. In addition,

a numerical implementation is developed with which the acceleration felt by satellite

orbiting around such a body can be computed precisely.

The acceleration of a body according to equation (2.16) can also be written using a

potential U in the form

r̈ = −grad (U) with U = Gmc
1

r
. (2.25)

The mass of a body can be expressed by the sum of a large but finite number of very

small mass elements dm. The summation of each mass element over the entire body

results in the potential of a body with arbitrary shape and density distribution

U(r) = G

∫∫∫

Vol

�(s)

∣r − s∣dV , (2.26)

where r is the position vector of the point in which the potential is determined and

s the position vector of the infinitesimal mass dm of the body (Fig. 2.7), which are

expressed using the individual density and volume of the specific mass element

dm = �(s)dV (2.27)

Figure 2.7: Contribution of a small mass element to the gravity potential of a body.
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2.3.4.1 Expansion of the gravity potential in spherical harmonics

In order to determine the gravity potential of an irregular shaped body using equa-

tion (2.26) the inverse of the distance ∣r − s∣ can be expanded in a series of Legen-

dre polynomials. For this purpose the origin of the coordinate system has to align

with the center of mass and a reference radius is selected which fulfills the condition

R̄ := max{∣s∣ ∣s ∈ V ol}. R̄ describes a sphere enclosing the body and r lies outside of

the body if ∣r∣ > R̄ for all points, so that

1

∣r − s∣ =
1

r

∞∑

n=0

(s

r

)n

Pn(cos 
) with cos 
 =
r ⋅ s
r s

, (2.28)

where 
 is the angle between r and s, and

Pn(x) =
1

2nn!

dn

dxn

(
x2 − 1

)n
(2.29)

is the Legendre polynomial or zonal spherical harmonics of degree n. Introducing

spherical coordinates, i.e. radius r, latitude � and longitude � of the point r and

analogue r′, �′, �′ of s, the addition theorem of Legendre polynomials (Kautzleben

[1965])

Pn(cos 
) =

n∑

m=0

(2− �0,m)
(n−m)!

(n+m)!
Pn, m(cos �) Pn, m(cos�

′) cosm(�− �′) (2.30)

can be used, where �0,m is the Kronecker delta symbol and Pn, m (x) are the associated

Legendre polynomials of degree n and order m which are defined by

Pn, m (x) = (1− x2)(m/2) d
m Pn(x)

d xm
. (2.31)

This formulation is inefficient for practical computation. A more efficient way to

calculate these functions can be accomplished by recursion. This method is described

in detail in Press et al. [1986] or Vallado [2001].

Inserting the associated Legendre polynomial and equation (2.28) into equation (2.26)

the gravity potential of non-spherical body can be written as

U =
Gmc

r

∞∑

n=0

n∑

m=0

(
R̄

r

)n

Pn, m(cos�) (Cn, m cosm� + Sn, m sinm�) (2.32)

=
Gmc

r

∞∑

n=0

n∑

m=0

(
R̄

r

)n

(Cm
n (�, �) Cn, m + Sm

n (�, �) Sn, m) , (2.33)
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where the Cn, m and Sn, m are the gravitational coefficients defined as

Cn, m =
2− �0,m

mc

(n−m)!

(n+m)!

∫∫∫

Vol

( s

R̄

)n

Pn, m(cos�
′) cos(m�′)� (r′, �′, �′) dV (2.34a)

Sn, m =
2− �0,m

mc

(n−m)!

(n+m)!

∫∫∫

Vol

( s

R̄

)n

Pn, m(cos�
′) sin(m�′)� (r′, �′, �′) dV . (2.34b)

These coefficients describe the dependence of internal mass distributions within the

body and are used for precise orbit determination around a non-spherical body.

The Cm
n (�, �) and Sm

n (�, �) in equation (2.33) are called spherical harmonics and

determine lines on a sphere by the indices n and m along which the functions vanish.

The spherical harmonics can be divided into three different types (see Figure 2.8):

zonal, sectorial and tesseral harmonics.

Zonal harmonics are characterized by the fact that the indexm equals zero. Therefore

the potential is no longer depending on the longitude �. The potential is symmetric

along the pole axis. The sphere is divided in n + 1 bands of latitude, in which the

potential is alternately increasing (+) and decreasing (-), i.e. every root of the zonal

harmonics indicates a transition between negative and positive values (Fig. 2.8(a)).

Sectorial harmonics are defined by n = m. and displaying bands of longitude on

the sphere as it can be seen in figure 2.8(b). The Legendre polynomials Pn, n are only

zero at the poles in this case. In addition the term (sin (n�) + cos (n�)) vanishes also

for 2n different values of �. Therefore, the line along which the spherical harmonics

Cm
n (�, �) and Sm

n (�, �) equal zero indicates meridians which divide the sphere in 2n

sectors. Every sector indicates n positive (+) and n negative mass concentrations.

If n ∕= 0 and m ∕= 0 then specific regions of the body are represented and these func-

tions are called tesseral harmonics. The sphere is divided into the form of a checkerboard

as shown in Figure 2.8(c) (Vallado [2001]).

2.3.4.2 Gravitational coefficients

The gravitational coefficients from equations (2.34a) and (2.34b) serve as weighting

factors in the expansion of the potential of a body with nonuniform mass distribution.

As the origin of the coordinate system is aligned with the center of mass, some of the

low-degree and order coefficients can be simplified in the following form.

∙ If m = 0 and n = 0 then from equation (2.34a) it can be derived that

C0, 0 =
1

mc

∫∫∫

Vol

� (s) dV = 1. (2.35)

∙ If m = 0 then the term sin (m�′) equals zero and therefore

Sn, 0 = 0 for all n. (2.36)
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∙ The following gravity coefficients are vanishing.

C1, 0 =
1

mcR̄

∫∫∫

Vol

s cos �′�(s)dV (2.37)

=
1

mcR̄

∫∫∫

Vol

z′�(s)dV

=
z̄

R̄

C1, 1 =
x̄

R̄
(2.38)

S1, 1 =
ȳ

R̄
, (2.39)

where x̄, ȳ, z̄ are the coordinates of the center of mass defined by

r̄ =

⎛

⎝

x̄

ȳ

z̄

⎞

⎠
1

mc

∫

s� (s) d3s. (2.40)

∙ If the axis of the coordinate system are selected in the way that they are aligned

with the main axis of inertia, i.e. the off-diagonal elements of the inertia tensor

Ixy, Iyz and Ixz vanish then

C2, 1 =
2

6mcR̄2

∫∫∫

Vol

3 cos �′ sin �′ cos�′�(s)dV (2.41)

=
1

mcR̄2

∫∫∫

Vol

xz �(s)dV

= − Ixz
mcR̄2

= 0

and accordingly:

S2, 1 = − Iyz
MR̄2

= 0 (2.42)

S2, 2 = − Ixy
2MR̄2

= 0 . (2.43)

Therefore the lowest order gravitational coefficients, which are not vanishing, are C2, 0

and C2, 2, if the coordinate system is well selected. The coefficient C2, 0 represents the

flattening of the body, i.e. the difference between the polar and the equatorial diameter

and is for example the largest coefficient for the Earth’s gravity potential, being three

orders of magnitude larger than C3, 0, which accounts for bulb-like shape of the Earth.



30 Theory

(a) Zonal harmonics

(b) Sectorial harmonics

(c) Tesseral harmonics

Figure 2.8: Spherical harmonics (Source: Vallado [2001], changed)
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2.3.4.3 Normalization

The gravitational coefficients may differ over a range of ten or more orders of magnitude.

Therefore, normalized coefficients are used in practice which are much more uniform

and provide higher accuracy for gravity potential computation. The normalization is

defined as

Πn,m =

√

(n +m)!

(2− �0,m) (n−m)! (2n+ 1)
. (2.44)

Thus the normalized coefficients of the expansion are

{
Cn, m

Sn, m

}

= Πn,m

{
Cn, m

Sn, m

}

. (2.45)

And the normalized associated Legendre polynomials are

Pn, m =
Pn, m

Πn,m

. (2.46)

Obviously, the product of the unnormalized Legendre polynomials and the unnormalized

coefficients is equal to the product of the normalized Legendre polynomials and the

normalized coefficients, i.e.

Cn, mPn, m = Cn, mPn, m and Sn, mPn, m = Sn, mPn, m (2.47)

Equation (2.44) defines the normalization coefficients most commonly used in geo-

physical science. Most published gravitational coefficients are based on this normal-

ization, although other definitions of normalization factors do exist (see Kautzleben

[1965]).

2.3.4.4 Time varying gravitational coefficients

In the previous section the central body was treated as a point mass or as a rigid body

with an irregular shape and therefore a nonuniform gravity potential. However, no solar

system body is perfectly rigid and thus subjected to time varying deformations due to

tidal forces.

These forces are caused by the difference in gravitational attraction and centrifugal

forces, i.e. the difference in the attraction at points inside and outside the central

body experiencing by the gravitational attraction of an orbiting body. The impact

of the relative small difference forces is significant. The major part of the attraction

is compensated by the centrifugal force arising by orbiting around the barycenter of

the two bodies. But the centrifugal force has the same amplitude and direction at

all locations because all points of the central body are describing congruent orbits.

Therefore it only compensates the gravitational force at the center of mass of the
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central body and all other points experience a differential force, which is called tidal

force (Kertz [1995], Agnew [2007]).

In the case of the Earth, the tidal forces of the Moon and the Sun acting on the

Earth result in a small time varying deformation of the solid body of the Earth. The

oceans also respond to the gravitational attraction of the Moon and the Sun and the

effect is called ocean tides. Therefore the Earth’s gravity field is not constant in time

but shows small periodic changes. These small variations in the gravity field also effect

the motion of a spacecraft. In the case of Mars only the gravity field of the Sun distorts

the shape of Mars.

The change in the gravity coefficients of a central body due to solid tides of can be

written according to McCarthy and Petit [2003]:

{
ΔCn, m

ΔSn, m

}

=
kn, m
2n+ 1

l∑

i=1

mj

mc

(
R

ri

)n+1

Pn, m (sin (�i))

{
cos (m�i)

sin (m�i)

}

(2.48)

where kn, m are the nominal Love numbers of degree n and order m, mi is the mass

of the disturbing body like moon or sun in the case of the Earth, mc the mass of the

central body, R the equatorial radius of the central body, ri the distance from the

center of the central body to the disturbing one, �i is the body-fixed latitude and �

the body-fixed longitude of the disturbing body and Pn, m the normalized associated

Legendre polynomials. The variation of the largest gravity coefficients C2, 0 and C3, 0

can than be computed via

ΔC2, 0 =
k2, 0

2
√
5

l∑

i=1

mj

mc

(
R

ri

)3
(
3 sin (�i)

2 − 1
)

(2.49)

ΔC3, 0 =
k3, 0

2
√
7

l∑

i=1

mj

mc

(
R

ri

)4
(
5 sin (�i)

3 − 3 sin (�i)
)

(2.50)

Another effect resulting from the tidal deformations is a change in position of a

ground station located on the surface of the Earth. Detailed information on this effect

will be given in section 2.6.2.

2.3.5 Numerical computation of the gravitational acceleration

of an irregular shaped body

Computing the gradient of the gravity potential of an irregular shaped body according to

equation (2.32) is quite time consuming. Therefore an optimized algorithm is useful to

save time in repetitive calculation. Cunningham [1970] formulated a recursion algorithm

and Montenbruck and Gill [2000] adopted it (a detailed description can be found in

appendix A.4). This algorithm is suitable for a direct computation of the acceleration

felt by spacecraft in a body-fixed frame. It uses unnormalized gravitational coefficients
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Cn, m and Sn, m, which makes the algorithm numerical inaccurate due to the small

size of the unnormalized gravitational coefficients of high degree n and order m. This

algorithm is modified in this thesis for use with normalized gravitational coefficients

Cn, m and Sn, m ensuring high accuracy of the computed acceleration. The modification

of the algorithm is explained in the following.

The gravity potential of a irregular shaped body using normalized gravitational co-

efficients Cn, m and Sn, m is analogue defined to the definition in Montenbruck and Gill

[2000]

U =
GM

R̄

∞∑

n=0

n∑

m=0

(
Cn, mVn, m + Sn, mWn, m

)
, (2.51)

with the normalized recursion coefficients

Vn, m =

(
R̄

r

)n+1

Pn, m (sin�) cos (m�) (2.52a)

Wn, m =

(
R̄

r

)n+1

Pn, m (sin�) sin (m�) , (2.52b)

and the radius r, the latitude �, the longitude � of the point r, and the reference radius

R as defined in section 2.3.4.1.

The relation between normalized and unnormalized gravity coefficients and Legendre

polynomials is

Cn, m Pn, m = Cn, m Pn, m and Sn, m Pn, m = Sn, m Pn, m . (2.53)

In order to normalize the Legendre polynomials the following normalization factor

(see section 2.3.4.3) is used

Πn, m =

√

(2− �0,m) (n−m)! (2n+ 1)

(n +m)!
. (2.54)

In recursion algorithms the current result is computed from previous ones like

Pn, m = Pn−i, m−j (...) with i, j ∈ N . (2.55)

Therefore, the normalized recurrence coefficients can be computed based on the algo-

rithm in Montenbruck and Gill [2000] using a compensation factor X(i, j)
n, m which satisfies

the following relation using the normalization factor defined in equation (2.44) and the

relation between normalized and unnormalized gravitational coefficients and Legendre

polynomials from equation (2.47)

Πn, m Pn, m = X(i, j)
n, m Πn+i, m+j Pn+i, m+j (...) . (2.56)



34 Theory

This yields for the compensation factor

X(i, j)
n, m =

Πn, m

Πn+i, m+j
. (2.57)

Initial conditions for the recurrence coefficients are according to Montenbruck and

Gill [2000]

V0, 0 =
R

r
and W0, 0 = 0 (2.58)

In order to compute the recurrence coefficients Vm, n and Wn, m the following com-

pensation factors are needed.

X(−1, −1)
m, m

m>0
=

Πm, m

Πm−1, m−1
=

1

2m− 1

√

(2m+ 1)

(2− �0,m−1)m
(2.59)

X(−1, 0)
n, m =

Πn, m

Πn−1, m

=

√

(2n+ 1) (n−m)

(n +m) (2n− 1)
(2.60)

X(−2, 0)
n, m =

Πn, m

Πn−2, m
=

√

(2n+ 1) (n−m) (n−m− 1)

(n+m) (n +m− 1) (2n− 3)
(2.61)

With these compensation factors X(i, j)
n, m the normalized recurrence coefficients are

Vm, m
m>0
=

R

r2
X(−1, −1)

m, m (2m− 1)
(
x Vm−1, m−1 − y Wm−1, m−1

)

=
R

r2

√

2m+ 1

(2− �0,m−1)m

(
x Vm−1, m−1 − y Wm−1, m−1

)
(2.62a)

Wm, m
m>0
=

R

r2
X(−1, −1)

m, m (2m− 1)
(
x Wm−1, m−1 + y Vm−1, m−1

)

=
R

r2

√

2m+ 1

(2− �0,m−1)m

(
x Wm−1, m−1 + y Vm−1, m−1

)
(2.62b)

Vn, m =
R

r2
1

(n−m)

(

X(−1, 0)
n, m (2n− 1) z Vn−1, m

− X(−2, 0)
n, m (n+m− 1)R Vn−2, m

)

=
R

r2

√

2n + 1

(n+m) (n−m)

(√
2n− 1z Vn−1, m

−
√

(n+m− 1) (n−m− 1)

2n− 3
R Vn−2, m

)

(2.62c)
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Wn, m =
R

r2
1

(n−m)

(

X(−1, 0)
n, m (2n− 1) z Wn−1, m

− X(−2, 0)
n, m (n+m− 1)R Wn−2, m

)

=
R

r2

√

2n+ 1

(n +m) (n−m)

(√
2n− 1z Wn−1, m

−
√

(n+m− 1) (n−m− 1)

2n− 3
R Wn−2, m

)

(2.62d)

In order to compute the acceleration from normalized gravitational coefficients a

compensation factor must be implemented as a moderator between the normalized

gravity coefficients Cn, m, Sn, m and the normalized recurrence coefficients Vn, m, Wn, m,

because they are multiplied with different degree and order. Therefore the following

condition has to be complied with

Cn, m Pn+i, m+j =
1

Πn, m

Cn, m X(i, j)
n, m Πn+i, m+j Pn+i, m+j

= Cn, m X(i, j)
n, m Pn+i, m+j (2.63)

Hence, the compensation factor for the acceleration is equally defined as for the

recursion coefficients in equation (2.57).

The specific compensation factors necessary for further computations can be derived

as follows

X
(1, 1)
n, 0 =

Πn, 0

Πn+1, 1
=

√

(2n+ 1) (n + 1) (n+ 2)

2 (2n+ 3)
(2.64)

X
(1, 0)
n, 0 =

Πn, 0

Πn+1, 0

=

√

2n+ 1

2n+ 3
(2.65)

X(1, 1)
n, m

m>0
=

Πn, m

Πn+1, m+1
=

√

(2n+ 1) (n +m+ 2) (n +m+ 1)

2n+ 3
(2.66)

X(1, −1)
n, m

m>0
=

Πn, m

Πn+1, m−1
=

√

2 (2n+ 1)

(n−m+ 2) (n−m+ 1) (2− �0,m−1) (2n+ 3)
(2.67)

X(1, 0)
n, m

m>0
=

Πn, m

Πn+1, m
=

√

(2n+ 1) (n+m+ 1)

(n−m+ 1) (2n+ 3)
. (2.68)

The partial accelerations calculated with normalized coefficients are then given by

ẍn, 0 = − GM

R
2 Cn, 0 X

(1, 1)
n, 0 Vn+1, 1

= − GM

R
2

√

(2n+ 1) (n + 1) (n+ 2)

2 (2n+ 3)

(
Cn, 0Vn+1, 1

)
(2.69a)
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ẍn, m
m>0
= − 1

2

GM

R
2

(

Cn, m X(1, 1)
n, m Vn+1, m+1 + Sn, m X(1, 1)

n, m Wn+1, m+1

− (n−m+ 2) (n−m+ 1)
(

Cn, m X(1, −1)
n, m Vn+1, m−1

+ Sn, m X(1, −1)
n, m Wn+1, m−1

))

= −1

2

GM

R
2

√

2n+ 1

2n+ 3

(√

(n+m+ 2) (n+m+ 1)
(

Cn, m Vn+1, m+1

+ Sn, m Wn+1, m+1

)

−
√

2 (n−m+ 2) (n−m+ 1)

2− �0,m−1

(
Cn, m Vn+1, m−1 + Sn, m Wn+1, m−1

) )

(2.69b)

ÿn, 0 = − GM

R
2 Cn, 0 X

(1, 1)
n, 0 Wn+1, 1 =

= − GM

R
2

√

(2n + 1) (n+ 1) (n + 2)

2 (2n+ 3)

(
Cn, 0 Wn+1, 1

)
(2.70a)

ÿn, m
m>0
= − 1

2

GM

R
2

(

Cn, m X(1, 1)
n, m Wn+1, m+1 − Sn, m X(1, 1)

n, m Vn+1, m+1

+ (n−m+ 2) (n−m+ 1)
(

Cn, m X(1, −1)
n, m Wn+1, m−1

− Sn, m X(1, −1)
n, m Vn+1, m−1

))

= −1

2

GM

R
2

√

2n+ 1

2n+ 3

(√

(n +m+ 2) (n +m+ 1)
(

Cn, m Wn+1, m+1

− Sn, m Vn+1, m+1

)

+

√

2 (n−m+ 2) (n−m+ 1)

2− �0,m−1

(
Cn, m Wn+1, m−1 − Sn, m Vn+1, m−1

) )

(2.70b)

z̈n, 0 = − GM

R
2 (n + 1) Cn, 0 X

(1, 0)
n, 0 Vn+1, 0 =

= − GM

R
2 (n + 1)

√

(2n+ 1)

(2n+ 3)
Cn, 0 Vn+1, 0 (2.71a)

z̈n, m
m>0
= − GM

R
2 (n−m+ 1) X(1, 0)

n, m

(

Cn, m Vn+1, m + Sn, m Wn+1, m

)

= − GM

R
2

√

(2n + 1) (n+m+ 1) (n−m+ 1)

(2n+ 3)

(

Cn, m Vn+1, m

+ Sn, m Wn+1, m

)

(2.71b)

The acceleration r̈ can be computed in Cartesian coordinates by adding the partial

accelerations.

ẍ =
∞∑

n=0

n∑

m=0

ẍn,m , ÿ =
∞∑

n=0

n∑

m=0

ÿn,m , z̈ =
∞∑

n=0

n∑

m=0

z̈n,m . (2.72)
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2.4 Non-gravitational forces acting on a spacecraft

The orbit of a spacecraft is not only driven by gravitational forces but modified also

by solar radiation pressure, atmospheric drag and other effects acting on a spacecraft.

These forces will be described in detail in the following without claiming to be complete.

2.4.1 Solar radiation pressure

The Sun emits light energy (photons) depending on solar activity. During periods of

intense solar storms the radiation is very strong and the force caused by the radiation at

times of low activity very small. The body of a spacecraft absorbs and reflects photons

which causes small forces changing the orbit of the spacecraft. The magnitude of the

acceleration is inversely proportional to the squared distance of the spacecraft from the

Sun.

The solar radiation pressure depends on the number of incoming photons and on

their energy. The energy of a photon is given by ℎ ⋅ f , where ℎ is Plank’s constant and

f the frequency of the photon. The solar flux qs is defined as solar energy ΔEf per time

unit Δt which passes through the area A. Hence, the force acting on the spacecraft can

be written:

F R =
Δp

Δt
=

qs
c
A , (2.73)

where c is the speed of light and Δp the impulse of the photon. The resulting radiation

pressure is

P R =
qs
c
. (2.74)

The solar flux at a distance of r0 = 1 Astronomical Unit (AU) is approximately

1367 W/m2 (Montenbruck and Gill [2000]). The solar radiation pressure is PR =

4.56×10−6 N
m2 . However, this is only the case if the surface absorbs all incoming photons

and the incident radiation is perpendicular to the surface.

In Figure 2.9 a more general case is shown. Here Aexp is the exposed surface which is

inclined to the incoming radiation by the incident angle �inc. Fractions of the incoming

radiation are absorbed and reflected. Reflection can take place specular, i.e. the incident

angle �inc equals the reflection angle �ref , or diffuse, if this is not the case (see Figure

2.9). The fraction of specular or diffuse reflected radiation depends on the roughness

of the surface, i.e. the optical properties of the spacecraft.The resulting accelerations

caused by absorption, specular and diffuse reflection are according to Milani et al.

[1987]:
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r̈abs = −qs
c
cos (�inc)

Aexp

mSC

e⊙ (2.75a)

r̈spec = −2
qs
c
cos2 (�inc)

Aexp

mSC

eN (2.75b)

r̈dif = −qs
c
cos (�inc)

Aexp

mSC

(

e⊙ +
2

3
eN

)

. (2.75c)

Here, vector e⊙ is the unit vector in the direction of the sun and eN the vector normal

to the surface. Introducing coefficients �, � and " describing the fraction of absorbed,

diffuse and specular reflected radiation (�+ �+ " = 1) and combining equation (2.75a),

(2.75b) and (2.75c), the acceleration due to the solar radiation pressure felt by a satellite

with mass mSC at a distance r⊙ from the Sun can be written as

r̈ = −k
qs
c

r20
r2⊙

cos (�inc)
Aexp

mSC

(

(�+ �) e⊙ + 2

(

" cos (�inc) + �
1

3

)

eN

)

. (2.76)

Here r0 is 1 AU. The activity of the Sun, i.e. the solar flux is not constant over time,

which is accounted for by introducing a scaling factor k. This scaling factor is usually

treated as a free parameter in the orbit determination process.

Equation (2.76) can be simplified if it is assumed that the surface normal eN always

points in the direction of the Sun and if no detailed information about the optical

properties of the spacecraft is available:

r̈ = −k
qs
c

r20
r2⊙

Aexp

mSC

e⊙ (2.77)

This expression can also be used if no high precision is acquired.

Figure 2.9: The incident radiation results in accelerations r̈abs, r̈spec and r̈dif caused by

absorption, specular and diffuse reflection
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2.4.2 Shadow function

The acceleration given by equation (2.76) assumes full illumination of the satellite by

the Sun. In a realistic scenario it is possible that the satellite disappears behind the

planet as seen from the Sun and therefore is not or only partially exposed to the solar

radiation pressure. This problem can be solved by introducing a shadow function �,

which is defined as follows

� = 0 , if the satellite is behind the planet and entirely in the shadow,

� = 1 , if the satellite is fully illuminated by the Sun, and

0 < � < 1 partially illuminated by the Sun.

Montenbruck and Gill [2000] developed analytical expressions for illumination condi-

tions from a conical shadow model. The apparent radius of the occulted body (the Sun)

a, the apparent radius of the occulting body (the planet) b and the apparent separation

of the centers of both bodies c can be obtained via the following equations.

a = arcsin
R⊙

∣r⊙ − r∣ (2.78)

b = arcsin
RB

s
(2.79)

c = arccos
−sT (r⊙ − r)

s ∣r⊙ − r∣ (2.80)

Here, R⊙ is the Radius of the Sun (696000 km), r⊙ the coordinates of the Sun, r

the coordinates of the spacecraft, RB the radius of the occulted body, and s the vector

from spacecraft to occulted body. The occulted array is then

A = a2 ⋅ arccos
(x

a

)

+ b2 ⋅ arccos
(
c− x

b

)

− c ⋅ y, (2.81)

with

x =
a2 + c2 − b2

2c
(2.82)

y =
√
a2 − x2. (2.83)

Hence, the remaining fraction of the radiation on the spacecraft is

� = 1− A

�a2
. (2.84)

Accordingly, the resulting acceleration from the solar radiation pressure (see equation

(2.76)) felt by the spacecraft is

r̈ = −�k
qs
c

r20
r2⊙

cos (�)
Aexp

mSC

(

(� + �) e⊙ + 2

(

" cos (�) + �
1

3

)

eN

)

. (2.85)
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2.4.3 Atmospheric drag

A spacecraft orbiting a planet encounters air molecules from the planet’s atmosphere.

The change in the molecules’ momentum due to collision with the spacecraft leads to

a force acting on the spacecraft, called atmospheric drag. This force depends on the

local density of the atmosphere and the surface area of the spacecraft exposed in the

direction of motion (Montenbruck and Gill [2000])

r̈D = −1

2
CD

Aexp

mSC

�v2rev , (2.86)

where � is the atmospheric density, v is the velocity of the spacecraft relative to the

atmosphere and CD is the drag coefficient, a dimensionless quantity, which describes the

interaction between the surface material of the spacecraft and the atmosphere. Usually

CD or the ballistic coefficient CD
Aexp

mSC
is estimated in the orbit determination process as

a free parameter. The unit vector ev =
vr

vr
allows for the fact that the direction of the

drag acceleration is always anti-parallel to the relative velocity vector vr. The relative

velocity of the spacecraft can be computed under the assumption that the atmosphere

co-rotates with the planet

vr = v − ! × r , (2.87)

with the inertial velocity vector of the spacecraft v, the position vector r and the

angular velocity of the planet !. The atmospheric density can be computed either

from standard atmospheric models or from dynamic models. It is also necessary to use

a precise model for the spacecraft as it is used for the solar radiation pressure modeling.

2.4.4 Albedo and infrared radiation

The incoming solar radiation reflected and scattered from a body is called albedo radia-

tion. The optical albedo indicates the ability of reflection and scattering of the incident

solar radiation, i.e. the ratio of reflected and incoming radiation, and is usually given

in percent of the reflected radiation from the body. In addition, planetary surfaces and

atmospheres emit infrared radiation, which also contributes to the radiation pressure

felt by an orbiting spacecraft.

Montenbruck and Gill [2000] gives a formulation which accounts for the acceleration

acting on a spacecraft due to optical and infrared radiation summing up individual

terms, corresponding to different area elements dAj of the planet

r̈rad =

N∑

j=1

CR

(

�jaj cos �
E
j +

1

4
�j

)
qs
c

Aexp

mSC

cos �Sj
dAj

�r2j
ej . (2.88)

Here, CR is the radiation pressure coefficient of the spacecraft, �j the shadow function

for the planets area element dAj, aj the albedo, �j the emissivity, �Ej and �Sj the angles
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of the planet surface or spacecraft surface normals to the incident radiation, qs
c

the

radiation pressure, rj the distance between planet and spacecraft, and ej the unit

vector from the surface to the spacecraft.

2.4.5 Thrust forces

In order to control the orbit and the attitude of spacecraft the thruster-system on

board a spacecraft has to applied. For a detailed orbit determination this effect has to

be accounted for. Thrusters are burned best in pairs to produce a pure momentum-free

torque. Thrusters are acting primarily in the along-track and cross-track direction.

Maneuvers can be treated as instantaneous velocity increments taking place at time tm

v
(
t+m
)
= v

(
t−m
)
+Δv (tm) . (2.89)

Dealing with extend maneuvers needs a complex thrust model but in the following

only a simple model based on constant thrust is shown (Montenbruck and Gill [2000]).

A spacecraft of mass m experiencing a thrust acceleration assuming a one dimensional

motion

a =
F

m
=

∣ṁ∣ ce
m

, (2.90)

with propellant mass ∣dm∣ = ∣ṁ∣ dt ejected from the propulsion system per time dt

at velocity ce.

The entire velocity increment can be computed by integration over the burn time Δt

Δv =

t0+Δt∫

t0

a(t)dt = −ce

m(t0+Δt)∫

m(t0)

1

m
dm (2.91)

= −ce ln
m (t0 +Δt)

m (t0)
,

which is the Ziolkowski equation. Assuming a constant mass-flow rate ∣ṁ∣, the entire
velocity increment is

Δv = − F

[ṁ]
ln

(

1− ∣ṁ∣Δt

m (t0)

)

. (2.92)

Using equation (2.90) and (2.92) the resulting acceleration is then

a(t) =
∣ṁ∣
m (t)

1

−ln
(

1− ∣ṁ∣Δt
m(t0)

)Δv. (2.93)
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Introducing a time-dependent set of orthogonal unit vectors e1, e2, e3 with constant

projected thrust vector components F1, F2 and F3 the resulting acceleration in the

inertial reference frame is given by

a(t) =
∣ṁ∣
m (t)

1

−ln
(

1− ∣ṁ∣Δt
m(t0)

)EΔv (t) , (2.94)

where Δv (t) are the velocity increments in the thrust reference frame and the rotation

matrix E (t) = (e1, e2, e3) transforms the acceleration from the thrust reference frame

into the inertial frame.

In the case of a negligible mass flow ∣ṁ∣Δt ≪ m (t0) the resulting acceleration can

be simplified to

a(t) =
1

m
E (t)

⎛

⎝

F1

F2

F3

⎞

⎠ . (2.95)
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2.5 Force model

In the following section the force model used for Mars Express (MEX) and Rosetta

(ROS) is defined and the accuracy of the force model is tested. There are no syn-

thetically generated orbit data available which would allow to compare the orbit re-

sulting from the force model. The flight dynamics team at European Space Operation

Center (ESOC) however provides reconstructed orbit data for MEX based on Doppler

and ranging measurements (del Rio [2006]). Rosenblatt et al. [2008] provides also a

reconstructed orbit for MEX with a slightly higher precision which can be used as a

reference orbit for comparison. In the case of ROS no reconstructed orbit data are

available but ESOC provides predicted orbit data appropriate for comparison.

The position of the Sun and the planets of the solar system are computed according to

the latest released ephemeris file DE421 from Jet Propulsion Laboratory (JPL) (Folkner

et al. [2008]). The values of the according body masses are listed in Table A.1.

2.5.1 Mars Express

In order to test the accuracy of the MEX orbit by integrating the equation of motion, a

reference orbit is needed for comparison. Rosenblatt et al. [2008] determined an accurate

orbit of MEX and published the data in form of SPICE-kernels. The orbit determi-

nation was computed with the software package Geodesie par Integrations Numeriques

Simultanees (GINS) originally developed at Centre National d’Etudes Spatiales (CNES)

to compute precise orbits of satellites around the Earth as well as its gravity fields

(Marty et al. [2007]). Therefore the force model used in GINS and for the determina-

tion of the reference orbit of MEX is adequate for testing the force model developed in

this thesis.

The MEX orbit provided by Rosenblatt et al. [2008] is compared with the results

from the integration of the following equation of motion:

aSC = ac + aPh + aDe + a⊙ + aP l + aSR. (2.96)

Here, Mars is treated as the central body in the equation of motion (see section 2.3.3

for more details) and ac is the acceleration caused by the gravity field of Mars. The

latest gravity model MGS95J to degree and order 95 (Konopliv et al. [2006]) is used.

The accelerations from the gravity field model of Mars are computed according to the

recursion formalism developed in section 2.3.5. The seasonal changes of the gravity

coefficients caused by the mass exchange between the polar ice caps and atmosphere

are neglected in the gravity model for Mars because their contributions are small at

distances from Mars where flybys are usually performed.

aPh and aDe are the accelerations by the point mass representation of the Martian

moons Phobos and Deimos. a⊙ and aP l are the point mass representations of the Sun

and the planets, respectively.
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Figure 2.10: Comparison of the position and velocity obtained from the integration of the

equation of motion based on the force model (equation 2.96) with a reference orbit for Mars

Express provided by Rosenblatt et al. [2008]. The difference between the reference orbit and the

integrated orbit is in position and velocity for all three time periods (February 26, 2005 from

09:00 am - 1:00 pm (k = 1.11), January 15, 2006 from 6:00 pm - 10:00 pm and September

21 (k = 1.18), 2007 from 7:00 pm - 11:00 pm (k = 1.23)) smaller than 9 cm and 0.02 mm/s,

respectively. This difference is very small compared to the total Doppler velocity error of 0.26

mm/s at X-band due to transponder noise at the ground station and transponder phase noise

(see section 2.9)
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Figure 2.11: Forces acting on MEX ± 1 hour around closest approach of the flyby in

July, 2008 (see section 5.1.1.2)

The acceleration caused by the solar radiation pressure is aSR. A detailed model

for the optical parameter of each surface of MEX has been provided by Morley [2004]

and can be found in Table A.2. The direction of the Sun with respect to orientation

of the bus and the solar panels of MEX are determined and incorporated into the

computation as well as a shadow function representing the illumination of the spacecraft.

The detailed description of the models can be found in section 2.4.1.

In Figure 2.11 the accelerations acting on the spacecraft at the time of the closest

approach for the flyby in 2008 at Phobos (see section 5.1.1.2) are shown as an example.

The largest acceleration is caused by Mars as the central body, followed by Phobos,

Sun and the solar radiation pressure. The accelerations caused by the planets are very

small with the contribution by the Earth as the smallest one with aE ≈ 3⋅10−10 mm/s2.

The velocity change after 4 hours is approximately 10−7 mm/s. Accelerations smaller

than that of the Earth from other bodies are not considered in the force model due to

their insignificant contributions. The distance between Mars and MEX ranges during

the close flyby between 5000 km - 10000 km. The acceleration by atmospheric drag

equals zero due the absence of atmosphere particles at this distances. Accelerations

caused by optical and infrared radiation are at this distance smaller than 10−11 mm/s2

according to equation (2.88). They are also neglected. No Wheel off-Loading (WoL)

events or spacecraft manoeuvre occur when the close flyby at Phobos was performed.

Therefore, no such contributions are considered in the force model.
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Figure 2.12: Comparison of the position and velocity from integration of the equation of

motion with a reference orbit for ROS at September 4, 2008 from 12:00 - 20:00. The scaling

factor for the acceleration due to the solar radiation pressure k = 1.32. The difference between

the reference orbit and the integrated orbit is in position and velocity 40 cm and 0.025 mm/s,

respectively. This difference is very small compared to the total Doppler velocity error of 0.26

mm/s at X-band due to transponder noise at the ground station and transponder phase noise

(see section 2.9).
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The position and velocity is compared with the reference orbit for three time periods.

Different values for the scaling factor k of the solar radiation pressure are used for

comparison (see section 2.4.1): On February 26, 2005 from 09:00 am - 1:00 pm (k =

1.11), January 15, 2006 from 6:00 pm - 10:00 pm and September 21 (k = 1.18), 2007

from 7:00 pm - 11:00 pm (k = 1.23). The distance between MEX and Mars is similar

to the distance at close flybys at Phobos at these time periods.

The position and velocity differences shown in Figure 2.10(a) and 2.10(b) are for all

three time periods smaller than 9 cm and 0.02 mm/s, respectively. These differences are

smaller than the accuracy of the measurements stated stated by Rosenblatt et al. [2008]

to be 1.2 mHz or 0.02 mm/s and 3 m at an integration time of 60 seconds (X-band at

8.5 GHz). That proves that the integration of the equation of motion and the selected

force model provides an adequate precision. The used values of the scaling factor k

of the solar radiation pressure are also very close to the values from Rosenblatt et al.

[2008] which demonstrates the precision of the complex model for the solar radiation

pressure.

Rosenblatt et al. [2008] used an older model for the position of the Sun and the planets

of the solar system which explains the small differences between the reference orbit and

the integrated orbit. The high precision of the numerical force model developed in this

thesis has been shown by this comparison.

2.5.2 Rosetta

The flight dynamics team at ESOC provides predicted orbit data for the entire mission.

These orbit data are less precise compared to the data for MEX but accurate enough

for testing the precision of the force model developed for the Rosetta spacecraft in this

thesis.

ROS conducts close flybys at Mars and Earth on its way to 67 P/Churyumov-

Gerasimenko. For the two asteroid flybys at Steins and Lutetia the force model from

MEX is adapted to ROS as follows

aSC = ac + aAs + aP l + aSR. (2.97)

Here ac is the acceleration caused by the central body, the Sun, treated as a point

mass, aAs the acceleration from the gravitational attraction of the asteroids Lutetia or

Steins, and aPl the acceleration due to the point mass representations of the planets.

The acceleration caused by the solar radiation pressure is aSR. A detailed model

for the optical parameter of each of Rosetta surface is provided by Morley [2008] and

listed in Table A.3. The Rosetta spacecrafts bus with the dimensions 2.8 × 2.1 × 2.0

m and the area A = 32.13 m2 of the solar panels are very large. Therefore, a complex

model for aSR is used, i.e. the direction of the Sun with respect to the orientation of

each area of the bus and the solar panels of the spacecraft are determined separately.

A detailed description can be found in section 2.4.1.
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Figure 2.13: Forces acting on Rosetta ± 1 hour around closest approach of the Steins

flyby in September, 2008 (see section 5.2)

Figure 2.13 shows the accelerations felt by ROS at the time of the closest approach

at the asteroid Steins (see section 5.2) according to the force model. The influence of

the outer planets is larger compared to the MEX force model. The acceleration due

to the solar radiation pressure is in the same order of magnitude as for MEX¸ although

the solar panels of ROS having a much larger area which is compensated by the larger

distance to the Sun.

In Figure 5.20(a) and 5.20(b) a comparison between the orbit provided by ESOC

and a orbit based on the force model at September 4, 2008 from 12:00 am - 8:00 pm

is shown with a scaling factor for the solar radiation pressure k = 1.32. The difference

in position and velocity after eight hours integration time is 40 cm and 0.025 mm/s,

respectively. This shows the high precision of the numerical force model for the Rosetta

spacecraft. The time period for comparison is selected because it is close to the flyby

at the asteroids Steins. For other time periods the difference remains in the same order

of magnitude.

2.5.3 Precision of the force model

The high precision of the orbit computed with the integration method (see section 2.2)

for the equation of motion and the force model established for Mars Express and Rosetta

at the time of the flybys has been demonstrated by the comparison with reference orbits.

The difference in velocity is for both spacecrafts 0.02 mm/s. This difference is very small

compared to the total Doppler velocity error of 0.26 mm/s at X-band due to transponder

noise at the ground station and transponder phase noise (see section 2.9).
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2.6 The relativistic Doppler effect

If a spacecraft is transmitting an electromagnetic wave with frequency fT and on Earth

the signal is received via a ground station with frequency fR, the relativistic Doppler

effect taking into account effects if special relativity of order
(
v
c

)2
and effects of the gen-

eral relativity can be computed from the following equation (see Figure 2.14) according

to Häusler [2002]

Δf

fT
= 1− 1− n�R + 1

2
∣�R∣2 − ΦR

c2

1 − n�T + 1
2
∣�T ∣2 − ΦT

c2

. (2.98)

Here,

∙ Δf is the Doppler frequency shift with Δf = fT −fR where fT is the transmitted

frequency and fR is the received frequency,

∙ n is the normalized vector from transmitter at transmission time tT to receiver

at receiving time tR,

∙ �T is the normalized velocity of transmitter with �T = vT

c
, where vT is the

velocity of the transmitter at the time of transmission tT ,

∙ �R is the normalized velocity of receiver with �R = vR

c
, where vR is the velocity

of the receiver at the time of reception tR,

∙ c is the speed of light,

∙ ΦT is the gravity potential of the Sun and the planet in which sphere of influence

the transmitter is located, with ΦT = −�⊙

r⊙
− �p

rp
and r⊙ the distance from the

transmitter to the Sun and rp the distance from the transmitter to the planet,

and

∙ ΦR the gravity potential of the Sun and the planet in which sphere of influence

the receiver is located, with ΦR = −�⊙

r⊙
− �p

rp
and r⊙ the distance from the receiver

to the Sun and rp the distance from the receiver to the planet.

If the receiver or transmitter is located on Earth the centrifugal acceleration from

Earth rotation should also to be taken into account using the following equation

Φc = −1

2
⋅
(

!⊗ sin

(
Π

2
− �

)

r

)2

, (2.99)

whereas

∙ !⊗is the angular velocity of the Earth in radian per second,

∙ � the geographical latitude of the ground station, and

∙ r distance from the center of the earth to the ground station.
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Figure 2.14: Parameter fro the computation of the relativistic Doppler effect in the down-

link case i.e. the spacecraft is transmitting a radio signal to the ground station located on

Earth.

Equation (2.98) requires the knowledge of the travel time of the radio signal from

the instant of transmission to the instant of reception. These light time corrections are

calculated iteratively starting from an initial value (assuming infinite speed of light)

using a Newtonian formulation (Häusler [2002], NAIF [2009]).

In the literature other approximations can be found for the relativistic Doppler effect

(Morabito and Asmar [1995], Schneider [1988], Ashby [2003] or Soffel [1989]). However

the differences between the different expressions for the relativistic Doppler effect is in

the range of a few mHz (Selle [2005]). The precision of the used formulation (2.98) is

tested in section 3.

2.6.1 Relativistic summation

If the normalized velocity in equation 2.98 is computed barycentric and planetocentric

velocities have to be added but it has to be taken care that nothing moves faster than

light. Therefore the velocities have to be summed up in a relativistic way.

Assuming a system S ′ moving relative to system S with the velocity u and an observer

is situated in the system S. A body is assumed to have the velocity v′ in system S ′.

Calculating the velocity v of the body in system S in a non-relativistic way can be done

via

v = v′ + u. (2.100)

However, if ∣u∣ and ∣v′∣ > c
2
this would lead to ∣v∣ > c. This can’t be true, because

the effects of time dilatation and contraction of the length requires the existence of a

limited velocity not depending on the reference frame.
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The time dilatation, i.e. the time interval between two events in the moving system

S ′, seems to be extended for the observer in the resting frame S by the Lorenz term


 =
1

√

1−
(
u

c

)2
(2.101)

and the contraction of the length, i.e. the length of a distance in the moving system

S ′, seems to be for the observer in the resting system S shortened by the factor 1


.

The velocity in the system S is via relativistic summation (see Dorfmüller et al.

[1998])

v =
1


 (1 + �u ⋅ �v′)
(v′ + (
 − 1) (v′ ⋅ ǔ) ǔ+ 
u) , (2.102)

whereas

∙ ǔ is the unit vector of the velocity u of the system S ′ relative to system S,

∙ �u the normalized velocity of the system S’ relative to system S, i.e. u

c
, and

∙ �v′ the normalized velocity of the body in system S’, i.e. v′

c
.

2.6.2 Precise ground station position

The precise modeling of the Doppler effect requires an accurate knowledge at centimeter

level of the position of the ground station on the surface of the Earth. The crust of the

Earth is variable and reference points are displaced by linear effects like the tectonic

plate motion and non-linear effects like the solid Earth tides. Methods to model this

effects are described in the following.

In the celestial reference frame for a precise ground station position effects due to

precession, nutation, Earth rotation, and polar motion have to be taken into account.

In section 2.1.3 the transformation from the celestial to the terrestrial coordinate system

is described in which the effects are considered.

2.6.2.1 Tectonic plate motion

The lithosphere of the Earth is divided laterally into a number of tectonic plates. Twelve

major plates and several minor plates exist. The tectonic plates are moving relative to

each other and a comprehensive model of current plate motions shows rates of separation

at plate boundaries that range from 20 mm/year in the North Atlantic to about 160

mm/year on the East Pacific Rise. The model also gives rates of closure ranging from

about 10 mm/year between Africa and Eurasia to about 80 mm/year between the Naza

plate and South America.

Depending on the location of the ground station the site displacement from tectonic

plate motion has to be considered for a precise ground station position. The NNR-

NUVEL1A model for plate motions (see McCarthy and Petit [2003]) can be used for
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modeling. From the original coordinates r0 = (x0, y0, z0) in the International Terrestrial

Reference Frame (ITRF) (see section 2.1) at time t0 new coordinates r = (x, y, z) at

time t can be computed from the Cartesian rotation vector Ω via

x = x0 + (Ωyz0 − Ωzy0) (t− t0) (2.103)

y = y0 + (Ωzx0 − Ωxz0) (t− t0) (2.104)

z = z0 + (Ωxy0 − Ωyx0) (t− t0) . (2.105)

The values of the rotation vector Ω for each of the major plates can be found in Table

A.4 in the appendix.

2.6.2.2 Site displacement due to solid Earth tides

Tidal forces arise from gravitational attraction of bodies external to the Earth. The

resulting deformation of the shape of the non perfectly rigid Earth causes site displace-

ments. The tidal acceleration at a point on or in the Earth is the difference between the

acceleration caused by the attraction of the external body and the orbital acceleration.

Assuming the Earth being spherical symmetric, the orbital acceleration is the accelera-

tion caused by the attraction of the external body at the Earth’s center of mass, making

the tidal force the difference between the attraction at the center of mass, and that at

the point of observation. The tidal potential can be expressed as (Agnew [2007])

Vtid =
GMex

R (t)

∞∑

n=2

(
a

R (t)

)n
4�

2n+ 1

n∑

m=−n

Y ∗
nm (�′ (t) , �′ (t)) Ynm (�, �) . (2.106)

Here, Mex is the mass of the external body, R (t) the distance between the center of

mass of the Earth and the center of mass of the external body, a the distance of the

observation point on Earth from the center of mass of the Earth, �, � the colatitude and

east longitude of the observation point, and �′ (t), �′ (t) the colatitude and east longitude

of the sub-body point of the center of mass of the external body and Ynm (�, �) the fully

normalized complex spherical harmonics defined by

Ynm (�, �) = Nm
n Pm

n (cos �) eim� . (2.107)

Here,

Nm
n = (−1)m

[
2n+ 1

4�

(n−m)!

(n +m)!

] 1
2

(2.108)

is the normalizing factor and Pm
n is the associated Legendre polynomial of degree n

and order m. The solid tides can be expressed as a sum of sinusoids as

Tnm =
knm∑

k=1

Aknme
i(2�fknmt+'knm) , (2.109)
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where, for each degree n and order m knm sinusoids with specified real amplitudes

A, frequencies f , and phases ' are summed. A table of harmonic amplitudes and

frequencies can be used to model the tidal potential. This method can be used for

Earth tides of any type (Agnew [2007]).

McCarthy and Petit [2003] developed a numerical two-step procedure using the sum

of sinusoids in order to model site displacements caused by solid tides which will be

described only briefly here because of its complexity.

In the first step corrections in the time domain are computed, i.e. the in-phase

correction for degree 2 and 3, the out-of-phase correction for degree 2 only of the

diurnal and semidiurnal tides and the contribution from the latitude dependence of

the diurnal and semidiurnal tides. The second step comprises estimating corrections

in the frequency domain, i.e. the in-phase correction for degree 2 of the diurnal and

semidiurnal tides and the in-phase and out-of-phase correction of degree 2 of the long-

period tides. This model is used in this thesis for computing the site displacement

effects due to solid Earth tides.

2.6.2.3 Other effects

There are additional effects which are changing the position of a ground station. Here,

some of them are briefly described and summarized in Table 2.1 without claiming

completeness.

∙ Ocean loading

The site displacement due to ocean loading is mainly in the horizontal direction.

It is due to temporal variations of the ocean mass distribution and the associated

load on the crust, which produces time-varying deformations of the Earth. Ground

stations close to the coast or on islands are affected strongest. The effect has

periods about 12 hours, 24 hours, 14 days, but also monthly and half year periods

due to Sun and moon. The amplitude is smaller than that of the solid tides and

in the range of a few centimeter.

∙ Atmospheric loading

The surface of the Earth is deformed by temporal variations in the geographic

distribution of atmospheric mass load. The mass load variations can originate

from pressure variations, for example seasonal pressure changes due to air mass

movements between the continents and oceans. Other surface loads caused by

changes in snow and ice cover, soil moisture and groundwater, as well as ocean

bottom pressure also contribute to surface displacements, but for the latter ones

no sufficient models are available. The atmospheric load from pressure variations

can be modeled via two basic methods. Firstly, computing the corrections based

on geophysical models or simple approximations or, secondly, using empirical



54 Theory

models based on site dependent data like meteorological data measured at the

ground station. The order of magnitude of the effect due to atmospheric loading

on the location of a ground station is approximately a few millimeter.

∙ Thermal deformation of the antenna

The structure of an antenna can be deformed depending on the temperature and

can therefore cause errors in the position of the antenna. These errors are in the

range of a few millimeter.

∙ Postglacial rebound

This is due to the slowly raising of the crust of the Earth since the polar caps are

melt and the maximum is in the range of millimeter per year.

The order of magnitude of these effects are all in the range of centimeter or smaller

(Table 2.1). With the complexity of the models, the effort of modeling this effects

can not be justified with the higher accuracy and would go beyond the scope of this

work. In this thesis plate tectonic and solid Earth tides effects are implemented in the

computation of the ground station position which serves an accuracy at the centimeter

level. A detailed description of the effects of site displacements and their accurate

numeric modeling is given in McCarthy and Petit [2003].

Effect Order of magnitude

Tectonic plate motion cm/year

Solid Tides dm

Ocean Tide Loading cm

Pole Tides mm - cm

Atmospheric Loading mm

Thermal deformation of the antenna mm

Postglacial rebound mm/year

Table 2.1: Summary of the order of magnitude for site displacement effects (Hennig

[2008]).
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2.7 Data calibration

2.7.1 Introduction

An electromagnetic wave emitted from the spacecraft in order to be received at ground

station and vice versa passes the atmosphere of the Earth. Thereby the wave inter-

acts with electrons, ions, atoms and molecules contained in the Earth atmosphere and

plasma environment. Thus the direction and velocity of propagation and also the po-

larization and the field strength of the signal is changed.

The velocity and the wavelength of an electromagnetic wave depends on the refractive

index n of the surrounding media and is related by the following equation

n =
c

cn
=

�

�n

, (2.110)

where c is the speed of light, � the vacuum wavelength, and cn, �n are the corresponding

values in media with refractive index n. The refractive index depends mainly on the

dielectric constant, the permeability, and the conductivity of the medium.

Assuming a simplified model of a plane atmosphere with a constant refractivity the

basic effect of the atmospheric refraction can be described by Snellius’s law

n sin (z) = sin (z0) . (2.111)

Here z0 is the zenith angle, i.e. the angle of the incoming ray and z the angle in the

medium with refractive index n. The signal traversing the atmosphere is bended and

due to the reduced velocity inside the atmosphere, if n > 1, a signal is delayed in time.

Neglecting the small bending angle at Earth the path delay Δ� caused in a layer with

height ℎ and refractive index n of the atmosphere is then

Δ� = ℎ (n− 1)
1

sin �
, (2.112)

where � = 90 ∘ − z0 is the elevation angle (Montenbruck and Gill [2000]). The

troposphere of the Earth is a non-dispersive media for radio waves, i.e. the refractive

index is independent from frequency, but for the ionospheric correction it must be

distinguished between the refractive index of a single electromagnetic wave (e.g. the

carrier phase) and wave groups (e.g. ranging signals).

The changes in signal path, i.e. frequency changes of the radio signal by the contri-

butions of the troposphere and ionosphere of the Earth have to be removed accurately

from the data in order to obtain the frequency, i.e. the Doppler velocity, due to the

motion of a spacecraft. Different models for these corrections are shown in the following.
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2.7.2 Modeling tropospheric delays

The troposphere of the Earth ranging from the sea surface level to approximately 8

km at the pole and 16 at the equator consists almost completely of neutral gas. The

propagation of electromagnetic waves is mainly affected by the temperature T , the

atmospheric pressure P and the partial pressure of water vapour e. The tropospheric

refractive index is always larger than one. The tropospheric refraction consists of the

refraction caused by the nonwater-vapor components of the atmosphere (N2, O2, CO2,

and Ar), the dry component, and the contribution of the highly variable water vapour

content of the atmosphere, the wet component. Both have to be modeled separately.

The tropospheric delay can be computed in general from

�tropo = �dmd (�) + �wmw (�) . (2.113)

In the following models for the path delay �d and �w in the zenith direction and the

mapping functionsmd (�) andmw (�) projecting the delay into the direction of the signal

path for both components are shown.

The tropospheric correction models using the temperature T in Kelvin, the pressure

P in hPa, the partial water vapour pressure e at ground station in hPa, the latitude � of

the ground station and the height ℎ of the ground station above the reference ellipsoid

in km.

2.7.2.1 Zenith delay

Dry component:

∙ Model from Janes et al. [1991]

�d = 1.552× 10−5
[

m

hPa

] P

T
(40136 [K] + 148.72 (T − 273.15 [K])) (2.114)

∙ Model from Saastamoinen [1972]

�d =
2.2767× 10−3

[ m
hPa

]
P

1− 2.66× 10−3
[

1
km

]

cos (2�)− 2.8× 10−4 ⋅ ℎ
(2.115)

Wet component

∙ Model from Mendes and Langely [1998]

�w = 0.122 [m] + 9.45× 10−3
[

m

hPa

]

e (2.116)
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∙ Model from Ifadis [1986]

�w = 5.54× 10−3 [m]− 8.8× 10−5
[

m

hPa

]

(P − 1000 [hPa])

+2.72× 10−5
[

m

hPa

]

e + 2.771
[
m K

hPa

] e

T
(2.117)

2.7.2.2 Mapping functions

The mapping function projects the path delay in zenith direction into the direction of

the signal path according to the elevation angle �.

Dry component:

∙ Mapping function from Chao [1972]

md (�) =
1

sin �+ 0.00143
tan �+0.00035

(2.118)

Wet component:

∙ Mapping function from Chao [1972]

mw (�) =
1

sin �+ 0.00035
tan �+0.0017

(2.119)

2.7.2.3 Comparison

Janes et al. [1991] compared the results from the ray-tracing method with different

models for tropospheric delay prediction using a standard atmosphere. The ray-tracing

technique divides the atmosphere into small layers with respective refraction index

and computes the ray path of the signal separately for each layer using Snellius’s law.

Therefore results from this method can be used for testing the accuracy of tropospheric

delay predictions from the different models. Janes et al. [1991] found that the zenith

delay model for the dry component from Saastamoinen [1972] agrees well within a

few millimeters, but models for the wet component show differences in the centimeter

level with the ray-tracing results. A comparison of ray-tracing results with several

mapping functions performed by Mendes and Langely [1994] show agreements for all

tested mapping functions in the sub-centimeter level.

This agreement can also be confirmed comparing the above defined models as it can

be seen in Figure 2.15(a) for the dry component and in Figure 2.15(b) for the wet

component. The path delay of the models are projected into the direction of the signal

using the mapping functions according to equations 2.118 and 2.119.

For data analysis the model from Saastamoinen [1972] for the dry component and

from Ifadis [1986] for the wet component, and the straightforward mapping functions

from Chao [1972] are used.
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(a) Dry component

(b) Wet component

Figure 2.15: Comparison of different models for the dry and wet component of the signal

path delay caused by the troposphere of the Earth. Used for modeling are temperature T =

295.5 K, pressure P = 978.0 hPa and humidity H = 66 %. The mapping functions are

according to equation (2.118) and (2.119)



2.7 Data calibration 59

2.7.3 Ionospheric correction

The ionosphere of the Earth ranges from 50 km to 1000 km. The source of the iono-

spheric refraction, the ions and free electrons are mainly generated by the absorption

of ultra violet radiation from the Sun. Different regions can be distinguished by the

electron density: the D region (60 - 90 km), the E region (105 - 160 km) and the F

region (160 - 500 km), which can be subdivided into the F1 region (160 - 180 km) and

the F2 region (200 - 500 km). The D and F1 region vanish at night, while the E region

becomes considerably weaker and the F2 region is also reduced. At an altitude of 300

km a maximum electron density of about 1012 electrons/m3 can be found.

The ionosphere is a dispersive medium, i.e. the refractive index is a function of the

frequency of the signal. Neglecting the perturbations due to ions, the contributions

from the magnetic field of the Earth, and absorption effects, the ionospheric refractive

index is (Häusler [2008b])

n = 1− 1

2

f 2
p

f 2
. (2.120)

Here, fp denotes the plasma frequency varying from 10 MHz at day to 3 MHz at night

fp =
1

2�

√

dee20
me�0

, (2.121)

with the electron number density de, the electron charge e0, the vacuum dielectric

constant �0, and the electron mass me. The ionospheric refraction leads to a reduction

of the group velocity and an increase of the phase velocity. Both corrections for range

and carrier phase measurements Δ� and Δ� are

Δ� =

S∫

0

(n− 1) ds =
40.31

[
m3

s2

]

f 2
TEC (2.122)

Δ��0 = 2�

S∫

0

(n− 1) ds = −2�
40.31

[
m3

s2

]

f 2
TEC. (2.123)

Here is TEC the total electron content along the path length S. The electron density

of the ionosphere varies with altitude, Sun activity and with local time. This makes

it difficult to construct global ionospheric models that predict the electron density

accurately. But the electron density can be measured and used for correction of the

contributions of the ionosphere on an electromagnetic wave. For Deep Space Network

(DSN) ground stations the ionospheric correction can be reconstructed from auxiliary

files provided by the Tracking System Analytic Calibration (TSAC) group of JPL.

For measurements recorded at European Space Agency (ESA) ground stations another

method has to be used because no information is provided by ESA about ionospheric

corrections. Both methods are explained and compared below.
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2.7.3.1 Correction provided by TSAC

The TSAC group of JPL provides the path delay signature in form of a polynomial

which can be computed from the polynomial coefficients ai via (see Morabito and Asmar

[1995])

Δ�ion (tj) =

9∑

i=0

aix
i(tj) , (2.124)

with

x (tj) = 2
tj − ts
te − ts

. (2.125)

Here tj is the time stamp at which the correction have to be computed, ts the start time

te the stop time of the interval for which the polynomial is defined. Using the speed of

light c the ionospheric correction fS
ion scaled to a 2.3 GHz fS frequency at time tj can

be computed from

fS
ion (tj) =

fS
c

⋅ Δ�ion (tj +Δt)−Δ�ion (tj −Δt)

Δt
. (2.126)

This is only true for one-way S-band downlink. Appendix A.5.1 contains formulations

from which the correction can be computed for other up- and downlink configurations.

2.7.3.2 The Klobuchar model

Klobuchar [1975] developed a model by representing the average monthly diurnal be-

havior of time delay at a location on Earth as a simple positive cosine wave dependence

with a constant offset term (see also Parkinson and Spilker [1996]):

Δtiono =

{

C if (t−�)2�
P

> 90 ∘

C + A cos 2�(t−�)
P

else.
(2.127)

Here, C is the constant offset, A the amplitude, P the period, � the phase of the

function and t the local time at the ionospheric point. Using the first two terms of the

Taylor expansion of the cosine function:

Δtiono = C + A

(

1− x2

2
− x4

24

)

with x =
2� (t− �)

P
. (2.128)

At the mean ionospheric height of 350 km the zenith angle z = sin−1 (0.94798 cos �),

where � is the unrefracted auxiliary elevation angle and the numerical 0.94798 =

ae/ (ae + 350km) with ae = 6378.136 km as the mean equatorial radius of the Earth.

The geodetic latitude �I and longitude �I of the sub-ionospheric point is computed us-

ing the auxiliary azimuth angle � and the longitude �0 of the receiving ground station

�I = sin−1 (sin�0 sin (�+ z) + cos�0 cos (�+ z) cos�) (2.129)

�I = �0 + sin−1

(
cos (�+ z) sin �

cos�I

)

. (2.130)
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As ionospheric properties are aligned with geomagnetic latitude rather than geo-

graphic latitude, the Klobuchar model is formulated in geomagnetic coordinates. The

transformation from geodetic to geomagnetic latitude, assuming that the Earth’s mag-

netic field can be represented by an Earth centered dipole, can be achieved by the

following approximation (Klobuchar [1975]):

ΦI = �I + 11.6o cos (�I − 291o) . (2.131)

The amplitude A and the period P can be computed from

A = A0 + A1ΦI + A2Φ
2
I + A3Φ

3
I (2.132)

P = P0 + P1ΦI + P2Φ
2
I + P3Φ

3
I (2.133)

The slant factor is used to convert into slant time and can be approximated by

�sl = 1 + 2

(
96− �

90

)3

. (2.134)

Thus, the ionospheric path delay in time is (Klobuchar [1975])

Δtiono = �sl

(

C + A

(

1− x2

2
− x4

24

))

. (2.135)

The ranging delay is then

Δ�iono (t) = Δtiono ⋅ c . (2.136)

The coefficients A0, A1, A2, A3 of the amplitude A and P0, P1, P2, P3 of the

period P are available from ftp://ftp.unibe.ch/aiub/CODE/ and are computed from

daily measured global ionosphere maps (Schaer S. [1997]).

2.7.3.3 Comparison
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Figure 2.16: Comparison of the frequency

shift for a two-way X-band downlink com-

puted based on Klobuchar coefficients and iono-

spheric calibration files provided by TSAC for

1 March 2006

In Figure 2.16 the frequency shifts for a

two-way X-band downlink computed from

the polynomial representation of the path

delay provided by the TSAC group and

from the Klobuchar model based on an

ionospheric map for 1 March 2006 are

shown. Obviously both corrections are in

good agreement and can be used equiva-

lently.
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2.7.4 Frequency shift caused by the atmosphere of the Earth

The total frequency shift depending on the uplink frequency fup and the transponder

ratio k for a two-way recording can be computed according to Pätzold [2004] via:

Δfcal (t) = fup (t) ⋅
1 + k

c
⋅ (Δ�trop (t) + Δ�iono (t)) (2.137)

where

Δ�trop (t) =
�trop (t+Δt)− �trop (t−Δt)

Δt
(2.138)

Δ�iono (t) =
�iono (t+Δt)− �iono (t−Δt)

Δt
(2.139)

In this equation it is assumed that the elevation angle at the time, when the signal is

transmitted from the ground station and when the signal is received at ground station

equals. This is only true when the spacecraft is close to the ground station. However, for

spacecraft like Rosetta (ROS) this is not true because of the large round trip light time

t� . Therefore, a formulation should be used in which the elevation angle at transmission

and reception is treated separately

Δfcal (t) = fup (t)
k

c
(Δ�trop (t) + Δ�trop (t− t� )

+Δ�iono (t) + Δ�iono (t− t� )) . (2.140)
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Figure 2.17: Comparison of the frequency

correction for the atmosphere of the Earth in

X-band (8.4 GHz) for the Rosetta spacecraft on

5 September 2009. The red line indicates the

correction based on the more precise formula-

tion according to equation (2.140) and the black

line the correction based on a simplified model

according to equation (2.137)

In Figure 2.17 a comparison of the to-

tal frequency shift caused by the atmo-

sphere of the Earth is shown firstly based

on equation 2.137 and secondly on equa-

tion 2.140 for a measurement in X-band

(8.4 GHz) for the ROS spacecraft on 5

September 2009. At the beginning of the

recording (small elevation angles) a large

difference between the corrections accord-

ing to equations (2.137) and (2.140) can

be seen. It decreases during the record-

ing due to larger elevation angles which

reduces the tropospheric correction. For

higher accuracy equation (2.140) is used

for the computation of the atmospheric

correction in this thesis.
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2.8 Orbit determination and parameter estimation

The equation of motion of a spacecraft contains parameter which need to be estimated

from the measured data. For example, the initial state vector of the spacecraft, the scale

factor for the solar radiation pressure or the core parameter of this thesis, the mass,

and if possible other parameter of the gravity field of a body. This can be realized by

a weighted least square estimation method. Applying this method means dealing with

the inverse of matrix which may be ill-posed or contain unimportant parameter. The

least square fitting method and numerical solutions for the problems are described in

the following.

2.8.1 Weighted least squares estimation

The basic idea of least square estimation is to find the model parameter for which the

square of the difference between the model data and the measured data becomes as

small as possible. Assuming a vector consisting of m recorded data

d = (d1, d2, ..., dm)
T

and a vector

x = (x1, x2, ..., xn)
T

containing n free model parameters like the mass of the body. The model g provides a

link between the model parameters and observations:

g (x) = (g1 (x) , g2 (x) , ..., gm (x))T .

Here, gi(x) is the value predicted by the model for observation di. The difference

between the model data and the observation is then

� = d− g. (2.141)

In order to compute values of x such that g(x) matches d, the partial derivatives of

the model g is expanded around x in a Taylor series

g (x+ �x) = g (x) + J�x+R (g, �x) . (2.142)

If the model function g is linear it can be written as

g (x+ �x) = g (x) + J�x . (2.143)
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J is the (m× n) Jacobian matrix also referred to as sensitivity matrix containing

the partial derivatives of the model function

J =

⎛

⎜
⎜
⎝

∂g1
∂x1

⋅ ⋅ ⋅ ∂gm
∂x1

...
. . .

...
∂g1
∂xn

⋅ ⋅ ⋅ ∂gm
∂xn

⎞

⎟
⎟
⎠

(1 ≤ i ≤ m, 1 ≤ j ≤ n)

The partial derivatives in J can be derived analytically for each parameter if an appro-

priate analytical function is available. The analytical expression of the partial deriva-

tives can become very complex and the numerical implementation of the corresponding

formulas is quite laborious and error prone. The rigorous computation can be replaced

by a simple difference quotient approximation. With a symmetric differential quotient

approximation
∂gi
∂xj

=
g (xj +Δxj)− g (xj −Δxj)

2Δxj
. (2.144)

the partial derivatives are obtained which are correct up to second order in xj (Mon-

tenbruck and Gill [2000]).

So far, all observations are treated equally, but the noise of measurements usually

varies, i.e. the standard deviation �i is different. This difference can be accounted for

by introducing an (m×m) weight matrix (Juup and Vozoff [1975])

W = diag
(
�−2
1 , �−2

2 , ..., �−2
m

)
=

⎛

⎜
⎜
⎝

�−2
1 0

. . .

0 �−2
m

⎞

⎟
⎟
⎠

. (2.145)

Agreement between the measured data and the model data with respect to the model

parameter can be found by minimizing

q(x) = ∣∣�− J�x∣∣
W

=

=
(

(d− g(x)− J�x)T W (d− g(x)− J�x)
) 1

2
(2.146)

⇒ q2(x) = �TW�− 2JTW��x+ JTWJ�2x . (2.147)

Differentiation with respect to x leads to

�x =
(
JTWJ

)−1
JTW�. (2.148)

This formulation can be used to estimate in an iterative process a new model with new

parameter from the change �x in order to minimize the difference between measured

data and model data (Juup and Vozoff [1975], Aster et al. [2005]).
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2.8.2 Singular value decomposition

The inverse of the matrix
(
JTWJ

)
in equation 2.148 can be computed numerically

using Singular Value Decomposition (SVD). The SVD for an (m× n) matrix A with

rank p ≤ min(m,n) is denoted by

A = USV T =
n∑

i=1

siuiv
T
i , (2.149)

where U is an (m×m) and V an (n× n) matrix. U and V are orthogonal matrices

UTU = Im (2.150)

V TV = In . (2.151)

S is an (m× n) diagonal matrix where each diagonal element si is the non-negative

square root of an eigenvalue of ATA. The pseudo inverse of A can now be computed

via

A−1 = V S−1UT =

n∑

i=1

viu
T
i

si
, (2.152)

with the so called singular values si

s−1
i =

{
1
si

if si > 0

0 if si = 0.
(2.153)

For numerical purposes this formulation is not appropriate because si will not be ex-

actly zero and therefore the inversion will be instable. Additionally very small values of

si would produce very large values of s−1
i . For this reason the change of the respective

parameter would be overestimated and result in wrong parameter estimation or diver-

gence of the iteration process. A method to solve this problem will be explained in the

next section.

2.8.3 Damping factor

The numerical values of si can lead to ill-posedness through irrelevant parameter (zero

singular values of A), and unimportant parameters (small singular values of A). One

way would be to omit terms with small singular values. This would stabilize the solution

in the sense that it would make the result less sensitive to data noise. But this would

also reduce the resolution and the model estimation would no longer be unbiased.

The problem can be solved by introducing a damping factor �. Equation 2.148

becomes then

�x =
(
JTWJ + �2I

)−1
JTW�. (2.154)
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The damping factor � can be obtained from the Eigenvalues of the Jacobian matrix

J according to Aster et al. [2005] via

� = max
(

eig
((

JTW
)−1
))

.

This numerical method provides a stable weighted least square estimation algorithm

which can be used to determine the parameter of a model to be fitted to recorded data

within an iterative process.

2.8.4 Error estimation

The recordings from Radio Science measurements are affected by measurement errors.

These errors influence the uncertainty of the estimated parameter. The covariance

matrix P contains the estimates for the closeness of the model with the measurement

data and is defined as (Vallado [2001])

P =
(
JTWJ

)−1
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�2
11 ⋅ ⋅ ⋅ �1 i�1�i ⋅ ⋅ ⋅ �1n�1�n

...
. . .

...

�i 1�i�1 �2
ii �i n�i�n

...
. . .

...

�n 1�n�1 ⋅ ⋅ ⋅ �n i�n�i ⋅ ⋅ ⋅ �2
nn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.155)

with the Jacobian matrix J and the weight matrix W as defined above. The diagonal

terms are the variances �2
ii of the estimate and the square root of the variances are

the sample standard deviations �ii of each estimated parameter. The 95% confidence

interval, i.e. 1 � of the parameter xi is (Aster et al. [2005])

Δxi = ±1.96 ⋅
√

P ii (2.156)

The factor 1.96 results from

1

�
√
2�

1.96�∫

−1.96�

e−
x2

2�2 dx ≈ 0.95 . (2.157)

The off-diagonal elements of P are called covariance terms. They contain the correlation

coefficients �i j representing the degree of correlation among the estimated parameter.

Zero indicates no correlation, positive signs a direct correlation, while negative signs

imply an inverse relationship. The correlation should be zero or, at least, very small

(Brandt [1998], Montenbruck and Gill [2000]).
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2.9 Noise reduction filter

The uncertainty in the parameter estimated from the recored data increases with the

noise of the data. Applying digital filters can be used to reduce the noise. In the

following only a brief introduction into digital filter is given, a detailed description

would go beyond the scope of this work. In addition, the filters which are used in this

work and the method for selection of the filter are explained.

2.9.1 Noise sources

The noise of the data recorded at the ground station is generated mostly by the following

sources (Pätzold et al. [2004]):

∙ Thermal noise essentially by the receiver of the ground station, but also from the

transponder onboard the spacecraft.

∙ Instrumentation errors like quantization errors or reference instability.

∙ The troposphere and ionosphere of the Earth, and the interplanetary plasma.

These contributions are modeled and subtracted from the recorded data, but not

all contributions can be removed entirely (see section 2.7).

The velocity error �v due to the thermal noise of the receiver at the ground station

is given by

�v =
c

4�fΔt

√

2BN0

C
(2.158)

and the phase noise �� of the transponder by (Pätzold et al. [2004])

�� =
c
√
2

4�ft
�v . (2.159)

c is the speed of light, f the frequency, Δt the sample time, B the receiver bandwidth,

C and N the received carrier power and the noise power density, respectively. The

transponder phase noise �� was experimentally determined by Remus et al. [2001] for

Mars Express and Rosetta with a transponder electrical qualification model on ground.

A summary of the Doppler velocity errors at different distances is given in Table 2.2.

The total error in X-band in two-way coherent mode of 0.26 mm/s corresponds to an

error of 14.6 mHz referring to a downlink frequency of 8.4 GHz.

More information about noise sources during Radio Science measurements is given in

Yuen [1983] and more detailed information for MEX and ROS can be found in Pätzold

[2003], and Pätzold [2006], respectively.
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at 0.8 AU at 2.5 AU

S-Band X-Band S-Band X-Band

Thermal noise (ground station) [mm/s] 0.90 0.01 2.00 0.03

Transponder phase noise [mm/s] 0.42 0.26 0.42 0.26

Total error [mm/s] 0.99 0.26 2.04 0.26

Table 2.2: The Doppler velocity error in two-way coherent mode at different distances for

Mars Express and Rosetta at 1 sec integration time (Pätzold et al. [2004]).

2.9.2 Digital filters

The noise of a measurement can be reduced by applying filter. In general, a filter can

be considered as a transfer function between any input function x(t) and the according

output function y(t). Here, digital filters are used, i.e. filtering is applied numerically.

The discrete input sequence

x(t) = xn = x (nΔt) n = 0, 1, 2, ..., N − 1 , (2.160)

with a time interval Δt and N samples is related to the output sequence yn in the time

domain via the discrete convolution

y(t) = yn =

N−1∑

j=0

ℎjxn−j . (2.161)

In the time domain, digital filters are characterized by the discrete impulse response

function ℎn and in the frequency domain by its discrete Fourier transformation, the

discrete frequency response function Hk. The input to output relation is according to

the convolution theorem in the frequency domain

Yk = HkXk . (2.162)

The discrete input function x(t) is in the frequency domain using the discrete Fourier

transformation

X(f) = X(Δfk) = Xk = Δt
N−1∑

n=0

xne
−i2�kΔfnΔt , (2.163)

were the frequency f = kΔf and the sample frequency Δf = 1
T
= 1

NΔt
. Replacing f

with the new variable (Häusler [2008a])

z = e−i2�kΔfΔt (2.164)

results in the z-transform of the discrete input function

Z (xn) = X(z) = Δt
N−1∑

n=0

xnz
n . (2.165)
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The sum on the right side is the z-transform of x(t). The discrete convolution of

two sequences can be realized by the product of their z-transforms (Buttkus [2000]).

Therefore equation (2.162) reads then in the z domain

Y (z) = H(z)X(z) . (2.166)

The most important class of digital filters are filters where the transfer function H(z)

can be written as the ratio of two polynomials in z:

H(z) =

M∑

k=k0

akz
k

L∑

k=0

bkzk
, with b0 = 1 . (2.167)

It follows from the input to output relation (2.166) in the z domain

(
1 + b1z + b2z

2 + ... + bLz
L
)
Y (z) =

(
ak0z

k0 + ak0+1z
k0+1 + ...+ aMzM

)
X(z) . (2.168)

Using that X(z)zk is the z transform of the time series (xj−k) it can be transformed to

(yn) + b1(yn−1) + ... + bL(yn−L) =

ak0 (xn−k0) + ak0+1 (xn−k0−1) + ... + aM (xn−M) . (2.169)

Therefore the following recursive filter equation is fulfilled at any time n

yn = ak0 (xn−k0) + ak0+1 (xn−k0−1) + ... + aM (xn−M )

−b1(yn−1)− ...− bL(yn−L). (2.170)

The filter can be classified with regard to the coefficients bk in equation (2.167). For

nonrecursive filters of finite length all bk are all equal to zero for k ≥ 1. H(z) is then a

polynomial with zeroes, but without poles. If one of the coefficients bk is not equal to

zero for k ∕= 0, the filter is recursive (Buttkus [2000]).

Filters can also be distinguished by their phase response into Zero phase filters having

a frequency response that has a phase which is composed entirely of zeroes, and the

frequency response of linear phase filters and nonlinear phase filters having linear and

nonlinear phases, respectively. Zero phase can be achieved by combining forward and

reverse filtering, i.e after filtering in the forward direction, then filtering again in the

reverse direction. The result has then a frequency response with zero phase (Smith

[1998]).
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(a) Kaiser window filtering with cut-off frequency fc = 15 mHz

(b) Kaiser window filtering with cut-off frequency fc = 47 mHz

Figure 2.18: Comparison of applied filters. The used data are from the Phobos flyby in

July, 2008. Here different cut-off frequencies for the Kaiser window are used. In the figure

above the filter reduces not only the noise but also the frequency shift caused by the gravity

field of Phobos, indicated by the blue line, i.e. the difference between fn and the filtered noise

f̌n. In the figure below only the noise is reduced because
∣
∣fn − f̌n

∣
∣ is approximately zero.
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2.9.3 Appropriate filter

Not all digital filters are useful for every type of measurement. The filter with its

specific configuration parameter should reduce only the noise of the data and leave the

frequency change caused by the gravity field of the perturbing body unmodified. This

frequency change is different for every measurement. For this reason the parameter of

the selected filter has to be defined for each measurement separately.

Stiffel [2008] tested different filters in order to find the best filter with specific con-

figuration parameters for each performed flyby. Hence predicted frequency changes fp
are generated and real noise fn from a measurement is added. The filter is then applied

to the noisy predicted frequency changes fpn = fp + fn and in addition to the noise

fn only. Subtracting from the filtered noisy predicted frequency changes the predicted

frequency changes only filtered noise fn remains. The difference between fn and the

filtered noise f̌n indicates the quality of the filter. Defining a limit fl according to the

measurement accuracy, the filter reduces only the noise if
∣
∣fn − f̌n

∣
∣ is smaller than fl.

If
∣
∣fn − f̌n

∣
∣ is larger than fl, the filter reduces the noise but changes also the frequency

shift caused by the gravitational attraction of the perturbing body, i.e.

∣
∣ filt (fpn)− fp
︸ ︷︷ ︸

fn

− filt (fn)
︸ ︷︷ ︸

f̌n

∣
∣

{

< fl ⇒ only noise reduced

≥ fl ⇒ fp also modified.
(2.171)

Figure 2.18 shows two examples for the result of the above described method. The

applied filter was a Kaiser window with two different cut-off frequencies fc. The cut-off

frequency defines the bandwidth of the filter. In Figure 2.18(a) the selected cut-off

frequency of 15 mHz seems to be too small and not only noise is reduced but also

the frequency change caused by the perturbing body is modified. The resulting mass

estimate would be falsified. In Figure 2.18(b) the ideal cut-off frequency is selected

which can be seen by the nearly zero difference (indicated by the blue line) between f̌n
and fn.

Stiffel [2008] found out with this method that a Kaiser window filter and a moving

average filter applied consecutively reducing most of the measurement noise.

The Kaiser window filter is defined (Buttkus [2000])

w(k) =

⎧

⎨

⎩

I0

(

�
√

1− 2k

(N−1)2

)

I0(�)
if ∣k∣ ≤ N−1

2

0 if ∣k∣ > N−1
2

,

(2.172)

with N the number of data points, k = 1, 2 ... N , and the Bessel function I0 (�) of

zeroth order

I0 (�) = 1 +

∞∑

k=1

((
�
2

)2

k!

)2

. (2.173)

The parameter � changes the amplitude of the side lobes and the transition bandwidth.
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The moving average filter is defined by

y(n) =
1

M

M−1∑

k=0

x(n− k), (2.174)

with n the current time at which the value should be calculated and M the length of

the time interval used for averaging (Buttkus [2000]).

For the analysis of the measured data from close flybys only these two filters are used.

Both filters are applied consecutively in forward and reverse direction ensuring a zero

phase.

The limit fl needed to define the cut-off frequency fc of the Kaiser window filter and

the time interval M of the moving average filter is computed from the sensitivity GMs.

The sensitivity is estimated from an upper and lower limit of the mass value and the

resulting upper and lower limit of the amplitude of the frequency change caused by the

gravitational attraction of the mass, i.e.

GMs =
GMup −GMlow

fup − flow
=

ΔGM

Δf
(2.175)

This method ensures that the used filter technique only reduces the noise level and

does not eliminate any information about the mass of the body in the measured data.

Applying these filters with a priori estimated configuration parameters decreases the

standard deviation of the measurement noise at least by a factor of 3 (Stiffel [2008]).
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Doppler accuracy and curve fitting

As described in the previous sections the method in this thesis for estimating gravita-

tional parameter of a solar system body from Radio Science measurements is based on

the difference between the received frequency at the ground station fmes and a predicted

frequency fpre. This frequency is based on the hypothetical unperturbed orbit of the

spacecraft, all necessary forces are taken into account except the force which perturbs

due to the gravitational attraction of the body. When subtracting the frequency shift

fatm if the signal propagates through the Earth atmosphere, only the residual frequency

shift fres due to the perturbing body remains

fres = fmes − fpre − fatm . (3.1)

Radio Science observations without any perturbation due the gravitational attraction

of Phobos are used to determine fres, i.e. the accuracy of the used models. The

frequency residuals are not equaling zero, but all used observations having small offsets

in the order of a few tenth of mHz typically between 10 mHz and 20 mHz at X-band

(8.4 Ghz). This is in the order of the Doppler velocity error due to thermal noise at

the ground station and transponder phase noise of 0.26 mHz ≡ 14.6 mHz at X-band in

two way mode. In Figure 3.1 typical frequency residuals fres from three measurements

illustrating these offsets. These measurements have mean offset values of 15.2 mHz,

-8.9 mHz and-6.7 mHz, respectively. It can be seen that the frequency residuals are not

constant offsets, i.e. they are having change rates or slopes. The three measurements in

Figure 3.1 showing slope values of 1.8 mHz/h, 0.6 mHz/h and 4.9 mHz/h, respectively.

The same is true for close flybys, i.e. fres contains usually not only the frequency shift

due to the perturbing body but also uncertainties due to the choice of the initial state

vector, the scale factor of the solar radiation pressure and measurement noise caused

by thermal noise or systematic errors. In Figure 3.2 the theoretical frequency shift ftℎe
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Figure 3.1: Difference between predicted and measured frequency for three measurements.

(blue line) and the true frequency shift of the first guess for the Phobos flyby in 2008 is

shown. The initial state vector is taken from the orbit SPICE kernels of MEX provided

by ESOC, the scale factor for the solar radiation pressure is k = 1.3 and the mass of

Phobos was assumed GM = 0.712 ×10−3 km3/s2.

Obviously, both measured and predicted frequency shift are not aligned. But for a

precise estimate of the gravitational parameter of the perturbing body it must be en-

sured that the constant offset and the linear trend at the beginning of the measurement

when the gravity field of Phobos does not significantly effect the frequency equals zero

as it is for the predicted frequency shift in this time range.
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Figure 3.2: First guess frequency residuals

of the Phobos flyby in 2008. The blue line in-

dicates the predicted frequency shift due to the

gravity field of Phobos (GM = 0.712 ×10−3

km3/s2.) and the gray line the frequency resid-

uals fres.

Therefore the constant offset is intro-

duced as a fitting parameter to ensure

that the first data points of fres and of ftℎe
are aligning. The constant offset accounts

for the uncertainty in the initial position

of the spacecraft because only informa-

tion about the velocity can be obtained

from Doppler data. The initial velocity of

the spacecraft taken from the orbit SPICE

kernels as a first guess is therefore consid-

ered as a fitting parameter and estimated

during the fitting process. The same is

done for the scale factor of the solar ra-

diation pressure. Both fitting parameter

ensure that the linear drift caused by the

uncertainty in the initial values will van-

ish.



CHAPTER 4

Physical properties of the target bodies

The ESA Rosetta (ROS) spacecraft performs during the journey to its main target 67P

Churyumov-Gerasimenko the flyby of two main belt asteroids: 2867 Steins, visited in

September 2008, and 21 Lutetia, whose flyby is scheduled for July 2010. The flyby at

Steins is analyzed and for the Lutetia flyby feasibility studies are done and shown in the

next chapter. The Mars Express spacecraft has also performed flybys at the Martian

moon Phobos which are also analyzed and the results are shown and interpreted in the

next chapter. Therefore in the following the physical parameter of the bodies are given.

4.1 The asteroid 2867 Steins

The asteroid 2867 Steins was discovered in 1969 by N. S. Chernykh. It is classified as

a member of the main asteroid belt and is orbiting the Sun in a perihelion distance of

about 2.018 AU, a semi major axis of about 2.363 AU and with inclination of 0.146 in

3.63 years (JPL [2009]).

The size of Steins was estimated using images (see Figure 4.1) from the imaging

instrument OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System)

onboard ROS. The mean radius of Steins is 2.7 ± 0.3 km, the volume is 78 ± 30 km3

by constructing a 3-dimensional shape model from the images taken at the flyby in

September 2008 (Besse et al. [2009]). The dimension of Steins have been determined

to be 5.73 ± 0.52, 4.95 ±0.45, and 4.58 ± 0.41 km from ground based measurements

(Lamy et al. [2008]).

Three different types of craters were observed on the surface of Steins (Fig. 4.1).

Small craters are randomly distributed. A chain of craters at the top of the asteroid
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and one large crater of 2.5 km diameter are approximately 43% of the largest axis of

Steins (Burchell and Leliwa-Kopystynski [2009]).

The spectra of Steins obtained from a ground based observational campaign shows the

typical behavior of E-type asteroids, in particular of the E[II] subgroup. The spectrum

is usually attributed to sulfides like troilite and oldhamite. It was also concluded from

the observations that Steins has a quite homogeneous surface composition (Dotto et al.

[2009]).

Figure 4.1: Asteroid Steins seen from a distance of 800 km, taken by the OSIRIS imag-

ing system on board ROS from two different perspectives (Source: http://www.esa.int/

esa-mmg/mmg.pl?b=b&type=I&mission=Rosetta&start=1.

4.2 The asteroid 21 Lutetia

The main belt asteroid 21 Lutetia was discovered on November 15, 1852 by Herman

Mayer Salomon Goldschmidt at the observatory of Paris. The spectral classification of

Lutetia ranges from M-type to C-type (Birlan et al. [2004]) and all available information

about Lutetia suggests a primitive composition. Some of the physical parameters of

Lutetia are summarized in the following Table.

Parameter Lutetia

Taxonomic type C (M)

Albedo 0.221 ± 0.20

Diameter [km] 95.5± 4.1

Density [ g
cm3 ] 2.0 ± 1.0

Semimajor axis [AU] 2.435

Eccentricity 0.164

Inclination [deg] 3.064

Synodical rotation period [h] 8.17 ± 0.01

Table 4.1: Summary of the physical parameters of the asteroid Lutetia. Values are taken

from Barucci et al. [2005] and Müller et al. [2006] except for the density values which are

assumed values based on the taxonomic type.
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4.3 The Martian moon Phobos

Asaph Hall discovered 1877 the two moons of Mars, Phobos and Deimos. Phobos is

the larger of the two Martian moons. The first pictures from Phobos were taken from

Mariner 9 in 1971. Subsequent missions expanded the knowledge of Phobos but there

are still some questions remaining unsolved. In the following the current knowledge is

summarized for later interpretation based on the results obtained from close flybys of

Mars Express (MEX).

4.3.1 Shape, topography and volume

Figure 4.2: Grooves on the surface of

Phobos (Source: http://www.esa.int/

esa-mmg/mmg.pl?topic=&subtopic=

&subm1=GO&keyword=Phobos)

Phobos is irregularly shaped and be-

cause of its small size not able to form an

uniform sphere by its self gravity. The

shape of Phobos can be described as an

ellipsoid with principal axis a = 13.4 ±
0.5 km, b = 11.2 ± 0.5 km and c = 9.2 ±
0.5 km (Seidelmann et al. [2001]). The

surface is covered by a large number of

impact craters. The largest feature on

the surface is the Stickney crater (Fig.

4.3) with a diameter of approximately

10 km.

The surface shows some grooves (Fig.

4.2) with a width of 100 - 200 m, a max-

imum depth of 30 m and a maximum

length 20 km (Thomas et al. [1992]).

The grooves can be grouped into 12

families of different ages. The grooves

seem to be chains of secondary impacts

formed from Mars impact ejecta (Murray et al. [2006]).

Duxbury [1989] and Duxbury and Callahan [1989] developed a model for the shape of

Phobos based on a spherical harmonic expansion to degree and order six using a control

network of surface features. This model was later expanded by Duxbury [1991] using

a spherical harmonic expansion to degree and order eight. Corrections by analytical

expressions for the Stickney crater and additional craters have been applied. The

resulting volume is computed to 5680 ± 250 km3 (Duxbury [1991]).

Thomas [1993] developed a numerical shape model of Phobos using both limb and

stereogrammetric data from Mariner 9 and Viking Orbiter achieving a volume of 5748

± 190 km3.

A new control point network for Phobos was recently established by Willner et al.

[2009] from image data obtained by the Super Resolution Channel (SRC) of MEX. It
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includes 665 surface control points and a spherical harmonic function model to degree

and order 17 was derived. The volume was computed from the model to 5689.8 ± 60

km3. This volume estimate shows a considerable small error compared to the previ-

ous volume estimates from Duxbury [1991] and Thomas [1993] and is used for density

estimations in section 5.1.2.

Figure 4.3: The Stickney crater and other surface features of Phobos (Source: http:

//www.esa.int/esa-mmg/mmg.pl?topic=&subtopic=&subm1=GO&keyword=

Phobos)

4.3.2 Mass

There is a long history of the mass estimation of Phobos. In February 1977 the Viking

Orbiter I (VOI) performed 17 close flybys with closest approach distances from 80

km to 350 km. Different mass estimates have been achieved using this tracking data

(Christensen et al. [1977], Tolson et al. [1977], Tolson et al. [1978], Williams et al.

[1988]). The results from this estimates vary over a broad range (see Table 4.2).

The Phobos 2 mission was inserted into a quasi-satellite orbit around Phobos on 21

March 1989 and rendezvoused with Phobos, flying within 500 km to Phobos for 22 orbits

until 27 March 1989. The tracking data sets from these flybys were analyzed by Kolyuka

et al. [1990] and resulted in a mass estimate with a very small error bar (see Table 4.2).

No information is available about how the formal error has been estimated. It is not

clear in which way the data have been analyzed. MEX is the first spacecraft since the

flybys from the Phobos 2 mission which is able to perform close flybys (distances below

500 km) at Phobos.
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The reanalysis of the VOI and Mariner 9 (M9) tracking data are done by Smith et al.

[1995] using distant encounters only. The derived value seems to be vary low compared

to results from the close flybys.

On November 7, 1996, Mars Global Surveyor (MGS) was launched from Cape Cana-

veral and inserted into its orbit around Mars in September 1997. The orbit of MGS

was nearly circular with an periapsis altitude of 380 km (Yuan et al. [2001]). A new

gravity model for Mars was derived using VOI, Viking Orbiter II (VOII), M9 and MGS

radiometric tracking data to degree and order 85. The mass of Phobos and Deimos

were adjusted simultaneously with the gravity coefficients of Mars (Yuan et al. [2001]).

Based on the larger database of tracking data, i. e. 6 years of MGS and 3 years

of Mars Odyssey (ODY), a higher degree and order Mars gravity field was estimated

by Konopliv et al. [2006] (see section 2.5) and the mass of Phobos and Deimos are

estimated in the global solution of the gravity field of Mars. The flyby data from VOI

were reprocessed with this latest model for the orientation and gravity of Mars.

The latest estimate of the mass of Phobos was derived by Rosenblatt et al. [2008]

using radio tracking data from MEX over the period of 2004 to 2006. In this work the

tracking data were used to fit a model of the MEX motion. The mass of Phobos and

Deimos were also estimated based on an improved model of the ephemerides of both

moons.

The results of all mass estimates are summarized scaled to the formal error of one

standard deviation in Table 4.2. The latest mass estimates of Phobos are all based on

distant encounters. All estimates from distant encounters show extremely small errors

which are driven statistically by the number of used tracking data.

GM [10−3 km
3

s2
] Data Referenz

0.66±0.08 4 VOI flybys in 90 - 220 km Christensen et al. [1977]

0.73±0.07 11 VOI flybys in 90 -220 km Tolson et al. [1977]

0.66±0.04 17 VOI flybys in 80 - 300 km Tolson et al. [1978]

0.85±0.07 8 VOI flybys in 100 - 209 km Williams et al. [1988]

0.722±0.005 Phobos 2 orbiting Kolyuka et al. [1990]

within 500 km, 22 orbits

0.587±0.033 M9, VOI and VOII Smith et al. [1995]

distant encounters

0.7138±0.0005 M9, VOI, VOII and MGS Yuan et al. [2001]

0.716±0.00005 MGS and ODY, Konopliv et al. [2006]

VOI flybys (90 - 200 km)

0.711±0.0002 MEX tracking data Rosenblatt et al. [2008]

Table 4.2: Previous mass estimates of Phobos. The formal uncertainties correspond to

one standard deviation. No information about the formal error is available for Kolyuka et al.

[1990], Williams et al. [1988], Tolson et al. [1977] and Christensen et al. [1977].
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4.3.3 The Orbit of Phobos

Phobos is located at a distance of ∼2.8 Mars radii (RM) from the center of Mars and

within the synchronous orbit of ∼ 5.9 RM , along which the mean motion n of a satellite

is equal to the planetary spin period Ω. The orbit of Deimos is beyond the synchronous

position at a distance of about ∼ 6.9 (RM). The tidal bulge caused by the tidal forces

raised on Mars by Phobos (n > Ω) lags the inner satellites position. It exerts thereby a

retarding torque on the satellite and causes Phobos spiraling towards Mars. The tidal

force in case of Deimos (n < Ω) pulls it forward and therefore Deimos is spiraling away.

Phobos and Deimos are on nearly circular equatorial orbits. The rotation has been

synchronized with their orbits by tidal forces (Veverka and Burns [1980], Peale [2007]).

The accuracy of the ephemerides has increased in the last years due to a lots of

tracking data from spacecrafts orbiting Mars. It was found from SRC measurement

onboard MEX that there are inconsistencies in the orbit predictions of Phobos which

resulted in offsets of 12 km and -2 km in along track direction and ±1 km and ±8 km in

across track direction in the models provided by JPL and ESOC, respectively (Oberst

et al. [2006]).

New ephemerides have been computed based on new observations. Lainey et al. [2007]

used earth-based and spacecraft observations from 1877 to 2005 with an accuracy of

roughly 1 km. This error seems to be small compared to other solutions. It is not

explained in detail how this error was estimated. Willner et al. [2008] used astrometric

measurements on the basis of 69 SRC images obtained from 28 close flybys from MEX

preformed between 2004 and 2007. It was reported that Phobos is ahead of its predicted

position along track of 1.5 - 2.6 km. The latest ephemeris provided by Jacobson [2008]

includes also recent Earth-based and MEX observations and the one sigma ephemeris

error is computed to be ± 2 km in the radial and out-of-plane directions and ± 5 km

in the in-orbit direction.

Figure 4.4 shows a comparison between the ephemerides from Lainey et al. [2007] and

Jacobson [2008] based on SPICE kernels lainey_pho_dei.bsp and MAR080S.BSP

both available from NAIF [2009]. There is no SPICE kernel available referring to

Willner et al. [2008]. The SPICE kernel (MAR033_HRSC_V03.BSP) refers to Oberst

et al. [2006] and is less accurate (± 3 km in radial and out-of-plane direction and ± 15

km in-orbit direction). The comparison between the latest models are shown in Figure

4.4 and it is obviously that both models are in agreement within their errors.
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Figure 4.4: Comparison of Phobos ephemerides from Lainey et al. [2007] and Jacobson

[2008] for a time period of 3.5 days around the flyby in July 2008.

4.3.4 Spectral properties

Figure 4.5: Comparison of the two spec-

tral units of Phobos with the main belt aster-

oids 1867 Deiphobus and 336 Lacadiera of type

D and 233 Asterope of type T (Source: Rivkin

et al. [2002])

Although there are numerous surface

spectra of Phobos obtained from differ-

ent spacecrafts and from ground based

measurements with different wavelengths,

it was not possible to draw a consis-

tent picture of the surface composition.

A summary of most spectral measure-

ments of Phobos is given in Table 4.4.

Early measurements from Mariner 9 (M9)

and the Viking Lander 2 (VL2) compared

the spectra with the C-type asteroids

Ceres and Pallas but also with laboratory

spectra of carbonaceous chondrites and

basalts. Similarities between the spectra

of carbonaceous chondrites and with the

C-type asteroids were found. From this

comparison it was concluded that Pho-

bos is a captured C-type asteroid (Pang

et al. [1978], Pollack et al. [1978]). But

this measurements were limited by the spectral range and by incomplete coverage of

the surface of Phobos.

From later ground based and spacecrafts measurements it was inferred that the sur-

face of Phobos shows spectral heterogeneity, i.e. the surface of Phobos can be divided
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into two fundamental spectral units. The Phobos bluer unit (PBU) (Fig. 4.5) which is

associated with the Stickney crater corresponds roughly to the leading hemisphere (lon-

gitudes from 0 ∘ to 180 ∘ ) of Phobos with a typical visible-wavelength albedo of 6 - 7 %.

The Phobos redder unit (PRU) (Fig. 4.5) corresponds mainly to the trailing hemisphere

(longitudes from 180 ∘ to 360 ∘ ) and has also a low visible-wavelength albedo of 5 - 6 %

(Murchie and Erard [1996]).

Figure 4.6: Comparison of the bluer unit

of Phobos to thermally metamorphosed CM

meteorites (Source: Rivkin et al. [2002])

Later measurements show also that the

spectra of Phobos can not be matched by

C-type asteroids as is was suggest primar-

ily. Both spectral units of Phobos are

bracket by D-type asteroids but the PBU

provides also a good match with T-type

asteroids (Rivkin et al. [2002]). The com-

parison with the main belt asteroids 1867

Deiphobus and 336 Lacadiera of type D

and the 233 Asterope of type T with both

spectral units can be seen in Figure 4.5.

From this follows that Phobos originate

from the outer part of the asteroid belt if

it is a captured asteroid .

Asteroids are considered as parent bod-

ies or the source of meteorites therefore

meteorite analogues of asteroids can be

used to identify some physical properties like grain size due to the availability of labo-

ratory analysis of the according material. Comparison with meteorite analogues shows

that the best match to the PBU seems to come from strongly heated carbonaceous

chondrites. In Figure 4.6 the comparison of the PBU to a sample of a CM chondrite

heated to 700 C is shown. But the good analogy can only be achieved for the PBU and

is not true for the PRU (Rivkin et al. [2002]).

Carbonaceous meteorites can be classified into two main groups. Firstly the low

grade chondrites, characterized by significant water content and low Fe and secondly

the most dry high grade chondrites. The low grade chondrites consists of CI and

CM chondrites having a visible wavelength albedo ranging from 3 - 5 % (Britt and

Consolmagno [2000]). The high grade chondrites can additionally be distinguished be

their Fe-content. CO, CV having low Fe-content and CR carbonaceous chondrites are

Fe-rich (Britt et al. [2002]). High grade chondrites having a visible wavelength albedo

of 8 - 20 % (Britt and Consolmagno [2000]). Usually CI chondrites have 10 - 20 % water

and CM chondrites 5 - 10 % water and this results in 3 �m band depths upward 50 %

(Rivkin et al. [2002]). But in the spectra of Phobos only weak or no absorption due to

H2O at 3 �m can be found. In addition only weak mafic mineral absorbtion was found

which indicates low Fe-content (Table 4.4). The according bulk and grain density of

the above carbonaceous chondrites are shown in Table 4.3.
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There is only one meteorite as an analogue for D- and P-class asteroid, the Tagish

Lake carbonaceous chondrite. As mentioned above the spectra of the PBU and PRU are

bracket by D-class asteroids and the Tagish Lake carbonaceous chondrite representing

these outer belt asteroids. Its bulk density is low compared to its grain density (Table

4.3) which suggests a porosity of 40 % (Hildebrand et al. [2006]).

Bulk density Grain density Porosity
Meteorite analogue

[g/cm3] [g/cm3] [%]

CI (Ivuna group) 2.12 2.27 11

CM (Mighei group) 2.21 2.71 12

CO (Ornans group) 3.11 3.69 16

CR (Renazzo group) 3.15 3.11 6

CV (Vigarano group) 3.10 3.51 11

Tagish Lake 1.64 ± 0.02 2.72+0.19
−0.16 -

Table 4.3: Bulk density, grain density and average porosity of meteorite analogues (Britt

et al. [2002], Hildebrand et al. [2006]). No value for the average porosity of the Tagish Lake

meteorite is available.

Although no meteorite analogue can be found for Phobos which entirely fits the

spectra of Phobos, due to the absence of the H2O absorption band at 3 �m and the

weak mafic mineral absorption band Phobos seems to be a high grade CO or CV

chondrite in sense of its meteorite analogues. But the visible wavelength albedo of

Phobos and low grade chondrites are in agreement whereas the high grade chondrites

having a significant higher albedo. Hence low grade chondrites seems to be better

suited as a meteorite analogue of Phobos than high grade chondrites because changing

the albedo is more difficult than surface dehydration by space weathering effects (Moroz

et al. [2004]). In addition, the Tagish Lake carbonaceous chondrite can also be used as

a meteorite analogue because it represents the outer belt D- and P-class asteroids. But

its representation is limited by the fact that it is the only sample meteorite available so

far for these asteroids.

Observation Wavelength Conclusions

M9 (1) 0.255 - 345 �m

VL2 (2) 0.4 -1.1 �m
∙ Spectra similar to C-type asteroids

Phobos 2 (3) 0.716 - 3.14 �m ∙ Spectral heterogeneity at km scale

and a weak hydration signature

HST (4) (5) 0.21 - 0.80 �m ∙ Spectra similar to D-type asteroids

Phobos 2 (6) 0.33 - 3.16 �m ∙ Spectral heterogeneity with two fundamental

units (the Phobos bluer unit (PBU) and

the Phobos redder unit (PRU))

∙ Little or no absorption due to H2O at 3 �m

and weak mafic mineral absorption at 1 �m

∙ Surface material may be rich in mafic

continued on next page
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Observation Wavelength Conclusions

minerals and affected to different degrees by

space weathering or surface could consist

of a mixture of mafic-poor material

(possibly resembling D-type asteroids)

and mafic-rich material

IMP (7) 0.2 - 1.0 �m ∙ Possible broad, shallow absorption-like

0.7 �m feature

∙ Comparable red to D-type asteroids

∙ Comparable to lowest albedo

space-weathered mafic assemblages,

such as some lunar mare soils

IRTF (8) 1.65 - 3.5�m ∙ Two different spectral units

∙ No evidence for hydration band at 3 �m

within 5-8%

∙ No evidence for 2 �m pyroxene within 4-5%

∙ D-type asteroids span the range of spectra

from the PBU to the PRU

∙ T-type asteroids provide a good

match for the PBU

∙ Strongly heated carbonaceous chondrites

provide the best match for the PBU

Phobos 2 (9) 0.33 - 3.16 �m ∙ Two bands in lower albedo areas at 1.04 �m

and 1.9 �m detected

∙ Both features could correspond to a mixture

of olivine (1.04 �m) and low-calcium

pyroxene (1.9 �m)

∙ Possible shallow hydration band in small

areas with a depth of about 10%

CRISM (10) 0.362 - 3.92 �m ∙ No evidence for 1 �m or 2 �m mafic

onboard MRO mineral absorptions

∙ No evidence for 3 �m absorption due to

bound water due to organics

OMEGA (11) 0.35 - 5.10 �m ∙ No evidence for hydration band or

onboard MEX of organic material

Table 4.4: Summary of results from spectral measurements of Phobos. The according

references are indicated by footnotes ((1)Pollack et al. [1978], (2)Pang et al. [1978], (3)Bibring

et al. [1989], (4)Zellner and Wells [1994], (5)Murchie and Zellner [1994], (6)Murchie and Erard

[1996], (7)Murchie [1999], (8)Rivkin et al. [2002], (9)Gendrin et al. [2005], (10)Murchie et al.

[2008] and (11)Gondet et al. [2008])
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4.3.5 Origin

The origin of both Martian moons presents an inconsistency which is not solved so

far. Explanations for the origin of Phobos seems to be connected with the origin of

Deimos. Therefore, the origin of both moons are discussed here. There exist two main

theories, one that argues for accretion in orbit and the other that the Martian moons

were formed in the outer part of the asteroid belt and captured later by Mars. Both

main theories are explained in the following.

4.3.5.1 Capturing

∙ Separately capturing: Based on the spectral similarities of Phobos (see section

4.3.4) it was suggested that Phobos could be formed in the outer part of the

asteroid belt and then captured by the gravitational attraction of Mars. But this

suggestion raises some problems. Assuming Phobos is a captured asteroid the

hyperbolic orbit of an asteroid must be transformed into a bound planetocentric

orbit. This process must compensate the energy dissipation necessary for this

orbit change somehow. But the energy dissipation can not be raised only by tidal

friction.

One explanation accounting for the necessary energy dissipation could be aero-

dynamic drag. The drag usually take place in a nebula surrounding Mars shortly

after its formation. But the capturing process at many planetary radii requires

a fairly substantial nebula and in this nebula the rapid evolution would cause

the captured body to fall quickly to the surface of Mars (Burns [1992]). At large

distances the orbit would not evolve rapidly but it is unlikely that the body to be

captured can be decelerated enough to go into a bound orbit around Mars.

Another energy dissipation mechanism could be the collision between the asteroid

to be captured and another small body already orbiting Mars in between its Hill

sphere or from the collision of two unbound small bodies leaving one with signif-

icant energy loss to be captured (Peale [2007], Jewitt and Haghighipour [2007]).

But captured bodies usually have non-circular orbits not aligning with the orbital

plane of the central body, i.e. having significant eccentricity and inclination as it

is the case like for the irregular satellites of Saturn (Gladman et al. [2001]), but

the orbit of Phobos and Deimos are nearly circular and close to the equatorial

plane of Mars.

In addition, Szeto [1983] raised problems besides the unexplained energy dissipa-

tion needed in the capturing processes. Collision probabilities between Phobos

and Deimos based on orbital evolution models show that Phobos and Deimos

would most probably have collided at some stage of their evolution if they are

captured asteroids.

∙ Capturing of a large body: Another suggestion is that Phobos and Deimos could

also be formed from one single large body which is also captured. Capturing of a

large body is dynamically easier due to the larger tidal friction which is able to
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account for parts of the energy dissipation needed to change from hyperbolic orbit

to circular orbit (Burns [1992], Singer [2007]). But if Phobos and Deimos originate

from the same parent body both should have the same spectral properties but

Deimos is spectral homogeneously in contrast to the heterogeneously spectra of

Phobos (see section 4.3.4).

The capturing theory raises problems which are not solved so far despite which cap-

turing scenario is selected. Therefore it seems unlikely but not impossible that Phobos

is a captured asteroid.

4.3.5.2 Accretion in orbit

∙ Originating in the vicinity of Mars: Another possible explanation for the origin of

Phobos and Deimos is that they are build from a debris disk remaining from the

formation process of Mars. This forming process is the usual one observed for the

regular satellites of the giant planets (Peale [2007]) and the process responsible

for the agglomeration of the Martian moons might be similar to it, although in

the first one gas-dominated accretion was more probable. Phobos and Deimos

satisfy the orbital criteria for regular satellites by their nearly coplanar, circular

orbit (see section 4.3.3). But Phobos and Deimos should also be composed of

similar material like Mars if they were final remnants of the nebula from which

Mars itself grew. But this is not the case which can be seen by comparing the

spectra of Phobos with locations on Mars (Bibring et al. [1989]). Mars has also

a significant higher mean bulk density of 3.9335 ± 0.0004 g/cm3 (Kieffer et al.

[1992]) than Phobos and Deimos.

A possibility to solve this inconsistency can be that a body formed in the debris

disk remaining from the formation process of Mars could be collided with a plan-

etesimal formed in the asteroid belt region and a new debris disk was formed from

the shattering of this bodies. But in order to build a debris disk the remaining

pieces of the collision should be very small and of large number (Peale [2007]).

∙ Debris disc remaining from a collision: Alternatively, Phobos and Deimos could

be formed from a debris disk remaining from the collision of a larger body with

a diameter of about 1800 km with Mars itself (Craddock [1994]). The impact of

this large body could account for the relative high rotation rate of Mars which

is difficult to explain without an impact. A possible impact location could be

the 7700 km Borealis basin but the are existing other impact basin on Mars from

which enough debris could have been placed into the orbit around Mars. If the

impacting body would consist of carbonaceous chondrite some of the orbiting

material could also be of this type (Craddock [1994], Peale [2007]).

Both theories seems to be possible, but the spectral difference between Mars and its

both moons can not be explained entirely with both theories.



CHAPTER 5

Results

5.1 Phobos

Mars Express (MEX) has performed two close flybys at the Mars moon Phobos in

March 2006 and July 2008. In the following the flyby parameter of each flyby and the

resulting mass estimate is shown. Based on the mass estimate the origin of Phobos is

discussed.

5.1.1 Results from close flybys

Figure 5.1: Usual geometry for flybys of MEX at Pho-

bos.

MEX is in a nearly polar or-

bit about Mars and Phobos in a

nearly equatorial orbit (see sec-

tion 4.3.3). The configuration

for a close flyby is that MEX

is approaching Phobos from the

North pole direction, entering

the equator of Mars where the

closest distance between MEX

and Phobos is achieved and

leaving Phobos in the direction

toward the South pole (figure

5.1).
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5.1.1.1 The flyby on 23

March 2006

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cut off frequency of Kaiser filter [Hz]

D
if

fe
re

n
z 

b
et

w
ee

n
 f

ilt
er

ed
 a

n
d

 u
n

fi
lt

er
ed

 p
re

d
ci

ct
 [

m
H

z]

 

 

Minimum Condition
Maximum Condition

Figure 5.2: Difference between the fre-

quency change of the filtered and unfiltered

measurement data for the minimum (0.70

×10−3 km3/s2) and maximum condition (0.73

×10−3 km3/s2) for different cut of frequencies

fc of the Kaiser filter for the Phobos flyby in

2006.
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Figure 5.3: Difference between the fre-

quency change of the filtered and unfiltered

model data for the minimum (0.70 ×10−3

km3/s2) and maximum condition (0.73 ×10−3

km3/s2) or different sample times Δtmov of the

moving average filter for the Phobos flyby in

2006.

MEX performed one close flyby at Pho-

bos at a distance of 459 km on 23 March

2006. The data were recorded at the 70 m

ground station of the Deep Space Network

(DSN) near Madrid (DSS-63). The rela-

tive flyby velocity between MEX and Pho-

bos was 2.8 km/s and the angle between

the Line of Sight (LOS) and the veloc-

ity component of MEX relative to Pho-

bos increased from 96 ∘ (1 h before Closest

Approach) to 105 ∘ at CA and decreased

again after CA.

In figure 5.4 the frequency residuals fres
according to equation (3.1) indicated by

the gray line, i.e. the frequency recorded

at ground station after subtracting the

predicted frequency fpre and the contri-

bution of the Earth’s atmosphere fatm is

shown. The residuals are referred to an

uplink frequency of 7.167317664 GHz.

The noise of the frequency residuals

is reduced by applying consecutively a

kaiser window filter and a moving average

filter (see section 2.9). The appropriate

parameter of both filters, the cut-off fre-

quency fc of 57 mHz and the sample time

Δt of 40 seconds, are estimated using a

lower and upper limit of the GM of Pho-

bos. As it can be seen from Table 4.2 in

section 4.3.2 the GM of Phobos from the

past measurements lies well within 0.70

and 0.73 ×10−3 km3/s2 which is used for

estimating the above mentioned filter pa-

rameter in figure 5.2 and 5.3. The result-

ing filtered data are indicated in figure 5.4

with the red line.

If the amplitude of the frequency residuals changes for this flyby by 0.1 mHz, the

GM would change by 0.01 ⋅ 10−3 km3/s2. However, the selected upper limit of 0.1 mHz

for the change of the frequency residuals by the applied filter can not be achieved due

to the selected cut-off frequency and time interval. Therefore, the effect of the applied
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filter on the GM estimate of Phobos is lower than 0.01⋅10−3 km3/s2. This value is based

on the sensitivity of 1.02 ⋅ 10−4 km3/s2 mHz. It is deduced from two frequency shift

estimates with different GM values and the resulting maximum in amplitude difference.

In conclusion, the applied filters reduce the standard deviation of the frequency residuals

by more than a factor of three from 6.56 mHz to 1.71 mHz.

A problem in fitting the model data indicated in figure 5.4 by the blue line to the

filtered measurement bears the late start of the recording which started approximately

15 minutes before CA. It seems that the contribution from the gravitational attraction

of Phobos was large enough for being visible in the recorded data. No more data before

CA are available which can be used for estimating initial parameter like the state vector

independently from the GM estimate.

In the fitting process the initial velocity vini of the spacecraft, the scale factor k for

the solar radiation pressure and the GM of Phobos are simultaneously estimated from

the filtered frequency residuals. A constant offset fo aligning the model data with the

frequency shift is estimated separately. The difference between the model data and the

frequency residuals is minimal after a few iterations. The parameters are estimated to

vx ini = −8269538.012 ± 0.049 mm/s

vy ini = 2525415.091 ± 0.008 mm/s

vz ini = −2546616.020 ± 0.005 mm/s

GM = 0.7120 ± 0.011 ⋅ 10−3 km3/s2

k = 1.300 ± 0.137

fo = −12.01 ± 0.04 mHz

.

The initial velocity differs in the x, y, and z direction from the orbit provided by

ESOC by -0.032 mm/s, 0.025 mm/s and -0.025 mm/s, respectively. These differences

are in the range of the orbit error from ESOC (del Rio [2006]).

Taking into account the uncertainty of the GM estimate due to the uncertainty of

the constant offset fo of 0.04 mHz ≡ 0.45 ⋅10−5 km3/s2 the final result from the flyby

in 2006 of the GM estimate reads

GM = 0.7120 ± 0.012 ×10−3 km3/s2.

Obviously the error of the estimate is driven by the short recording phase before CA

at Phobos and the large flyby distance.
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Figure 5.4: Measured, filtered and modeled frequency residuals caused by the gravitational

attraction of Phobos from the Phobos flyby in 2006.
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Figure 5.5: Measured, filtered and modeled frequency residuals caused by the gravitational

attraction of Phobos from the Phobos flyby in 2008.
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5.1.1.2 The flyby on 17 July 2008
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Figure 5.6: Difference between the fre-

quency change of the filtered and unfiltered

measurement data for the minimum (0.70

×10−3 km3/s2) and maximum condition (0.73

×10−3 km3/s2) for different cut-off frequencies

fc of the Kaiser filter for the Phobos flyby in

2008.
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Figure 5.7: Difference between the fre-

quency change of the filtered and unfiltered

model data for the minimum (0.70 ×10−3

km3/s2) and maximum condition (0.73 ×10−3

km3/s2) or different sample times Δtmov of the

moving average filter for the Phobos flyby in

2008.

In July 2008 MEX performed three con-

secutive flybys at Phobos. The flyby at a

distance of about 275 km on 17 July 2008

was used by MaRS for a precise mass es-

timate. The data were recorded at the

NASA 34 m tracking station near Madrid

(DSS-65). The relative flyby velocity be-

tween MEX and Phobos was 3.0 km/s and

the angle between the Line of Sight (LOS)

and the velocity component of MEX seen

from Phobos increased from 38 ∘ (1 h be-

fore Closest Approach) to 88 ∘ at CA and

decreased after CA.

The parameters for this flyby are opti-

mal compared to the flyby in 2006 (Fig-

ure 5.5). The maximum frequency shift

caused by the gravitational attraction of

Phobos is 110 mHz, the recorded fre-

quency referring to an uplink frequency

of 7.167131904 GHz.

The same procedure for estimating the

appropriate filter settings is applied as de-

scribed above for the flyby in 2006 with

the same lower and upper limit for the

GM of Phobos. The resulting filter pa-

rameter fc and Δtmov are 30 mHz and

15 seconds, respectively (see figure 5.6

and 5.7). The applied filter reduce the

standard deviation of the measurement

from 7.32 mHz to 1.97 mHz by a fac-

tor of about four. A sensitivity value

of 6.55 ⋅ 10−6 km3/s2 mHz2 is also ob-

tained for this flyby as described above.

With this, the effect of the applied fil-

ter on the GM estimate is lower than

6.55 ⋅10−7 km3/s2, i.e. if the filter reduces

the amplitude of the frequency change, the resulting GM estimate would not differ more

than 6.55 ⋅ 10−7 km3/s2 from the value without filtering, but the noise is perceptible

reduced.
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The recording started for this flyby early enough for obtaining data well before CA,

where the gravitational attraction of Phobos is irrelevant. The initial velocity vini, the

scale factor k and the GM of Phobos are simultaneously and the constant offset fo is

separately estimated. The parameters and the according errors read

vx ini = 2718592.010 ± 0.028 mm/s

vy ini = −0989394.654 ± 0.070 mm/s

vz ini = −2268721.321 ± 0.041 mm/s

GM = 0.7127 ± 0.0020 ⋅ 10−3 km3/s2

k = 1.443 ± 0.142

fo = −21.62 ± 0.07 mHz

.

The initial velocity differs in the x, y, and z direction from the ESOC orbit by -0.2590

mm/s, -0.641 mm/s and 0.016 mm/s, respectively. Taking into account the error due

to fo then the resulting estimate is

GM = 0.7127 ± 0.0021 ×10−3 km3/s2.

This measurement provides a mass estimate with a very small error of 0.3 % (one

standard deviation), compared to previous mass estimates based on close flybys and/or

distant encounters (Figure 5.8). The error of the estimate is mainly driven by the noise

of the recorded data.

The mass estimates from Yuan et al. [2001], Konopliv et al. [2006] and Rosenblatt

et al. [2008] are based on several years of tracking data (Fig. 5.8). The large number of

tracking data reduces the statistical error of the estimate from long term observations,

i.e. the error caused by the noise of the data is compensated by the large number of data.

However, not all tracking data used have to be relevant for changes in the frequency

induced by the gravitational attraction of Phobos on the spacecraft. The difference

between the results from the long term observations from Yuan et al. [2001], Konopliv

et al. [2006] and Rosenblatt et al. [2008] can be caused by systematic error. They have

a strong impact on the resulting mass estimate because of the small changes of the

frequency observed at long term observations and the small statistical error caused by

the large number of data sets.

Figure 5.8 shows a comparison of results for the mass of Phobos derived from this

thesis and from previous works. The blue line indicates the result from the flyby in

2008. It is obviously that the results from the close flybys in 2006 and 2008 are enclosed

by the estimates from the long term observations from Yuan et al. [2001], Konopliv et al.

[2006] and Rosenblatt et al. [2008], i.e. the results of this thesis seems to be mean values

with reasonable error bars of that estimates with the long term solutions spread around

the close flyby solutions from this thesis. This endorses the reliability of the results

from the MEX close flybys at Phobos.
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5.1.2 Interpretation of the results

∙ Density

From the above derived precise mass estimate and using the volume estimate from

Willner et al. [2009] (see section 4.3) the density of Phobos is computed to

� = 1.88± 0.02 g/cm3.

It is obvious, that the error of the density is driven by the error of the volume

estimate.

It was suggested from the first spectral measurements that Phobos is a captured

carbonaceous chondrite asteroid. The bulk density of Phobos is higher than that

of most carbonaceous chondrite, C-type, asteroids, e.g., 253 Mathilde, with a

density of 1.34 ± 0.20 g/m3. The bulk densities of silicate-rich, S-type, asteroids

such as 433 Eros with 2.67 ± 0.03 g/m3, are much larger (Fig. 5.9). Bulk densities

of other asteroidal types vary over wide ranges. For these reasons it is difficult

to conclude on possible connections between the origin of Phobos and asteroidal

types on the basis of the bulk density only.

Comparing the bulk density with different meteorites analogues (Fig. 5.9) which

are suggested to be appropriate candidates for Phobos based on spectral measure-

ments shows that Phobos density is lower than that of low grade carbonaceous

chondrites (CI and CM chondrites) and much lower than that of high grade car-

bonaceous chondrites (CO and CV chondrites). But it is higher than the bulk

density of the Tagish Lake meteorite. The densities of the meteorite analogues

and the Tagish Lake meteorite are shown in Table 4.3.

Phobos bulk density is significant lower than the bulk density of the Martian crust

(�crust = 2.9 ±0.2 g/cm3 , Wieczorek and Zuber [2004]), (Fig. 5.9).

∙ Internal structure

The porosity �p of a object is defined as the ratio of its bulk density �b (the mass

of an object divided by its volume) to its grain density �g (the mass of an object

divided by the volume filled only by mineral grains), i.e.

�p =

(

1− �b
�g

)

100 . (5.1)

It is the percentage of the object which is occupied by empty space. Figure 5.10

shows the porosity of Phobos for different possible material analogues. It was

concluded from the spectral properties of Phobos that it can be composed of

material analog to a dehydrated CM chondrite or to the Tagish Lake meteorite.

The grain density is always equal or larger than the bulk density of the body.

With this a lower limit of the grain density of the Martian crust is given by its

bulk density which is used for the porosity value of Phobos. It is obvious that

Phobos has a large porosity ranging from 32 % - 36 % regardless which analog

material is used (Fig. 5.10).
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Figure 5.9: Comparison of Phobos bulk density (blue line, the gray dashed lines indicat-

ing the uncertainty) with the bulk density of meteorite analogues, selected asteroids and the

Martian crust.

The macroporosity �m of an asteroid is defined as the difference between the bulk

porosity and the mean meteorite analog porosity (Britt et al. [2002]), i.e.

�m =

(

1− �b
�g

)

100− �p = �p − �p . (5.2)

Asteroids can be divided according to Britt et al. [2002] by their macroporosities

into three main groups (Fig. 5.11): asteroids which are mainly solid objects,

asteroids with macroporosities of about 20 % which are probably heavily fractured

and asteroids with macroporosities > 30 %, so called rubble piles. Figure 5.11

shows the macroporosity of 18.6 ± 0.7 % Phobos using CM chondrite (Table

4.3) as a possible meteorite analogue compared with the macroporosity of other

asteroids. If Phobos is a captured asteroid its macroporosity value suggests that it

is a heavily fractured asteroid close to the transition zone to loosely consolidated

asteroids.

The surface of Phobos is heavily cratered, with Stickney as the largest example.

The approximately 10 km diameter of Stickney is in the order of Phobos’ radius.

Craters of large relative sizes can only form in bodies which are able to absorb

the collision energy near the impact site. A solid body would be destroyed by cor-

respondingly high collision energies (Richardsone et al. [2002]). The existence of

the Stickney crater, therefore, also supports the conclusion that Phobos contains

large voids throughout its interior.
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Figure 5.10: Porosity of Phobos (blue line, the gray dashed lines indicating the uncer-

tainty) versus grain density with the grain density of possible material analogues.

∙ The origin of Phobos

The fact that Phobos contains large voids inside leads to the conclusion that re-

accretion is the preferable formation mechanism of Phobos. Besides the problem

of energy loss required in the capturing process (see section 4.3.5) a highly porous

body is expected to be much less resistant to large external gravitational gradients

than a solid body (Richardsone et al. [2002]). It follows that an object with the

porosity of Phobos would have been destroyed by the gravitational forces required

for orbit capture. It seems to be unlikely from Phobos high porosity that it is a

asteroid captured as whole.

Another hypothesis is that Phobos and Deimos are remnants of an early, larger

body that has been destroyed into two or more pieces by gravitational gradient

forces exerted by Mars during capture (Singer [2007]). Self gravity forces acting

before break up would eliminate the voids a priori. This scenario can be true if

the large body would have been destroyed and the small peaces would build an

debris disc from which Phobos could be build by re-accretion.

Phobos also could have formed by re-accretion of impact debris lifted into Mars’

orbit (Craddock [1994]). Large blocks may have been re-accreted first due to

their larger gravitational attraction, thus forming a core of boulders with voids in

between. Smaller debris re-accreted later, but owing to low self-gravity forces did

not fill the voids left by the large pieces (Richardsone et al. [2002]). The debris

disc should be composed of crust material and also of material of the impactor

with crust material being the majority as it is for the Earth moon. But the spectra
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of the Martian crust and of Phobos does not match very well. This inconsistency

could be solved by the collision of a body formed from the debris disc remaining

from the formation process of Mars and a body formed in the asteroid belt region.

This scenario is consistent with a high porosity of Phobos from re-accretion and

also the spectral properties of Phobos could be explained.
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5.1.3 Future flybys in 2010

The Mars Express spacecraft will perform an orbit change in February 2010 into an

interim orbit which will allow three consecutive flybys at Phobos in March 2010. Closest

flyby distances will be 62 km on 3 March, 2010, 120 km on 07 March, 2010 and 488

km on 13 March, 2010. All flybys were analyzed by their feasibility for Radio Science

measurements with the method developed in this thesis. Based on this analysis the

first flyby at a distance of 62 km was assigned to the Radio Science experiment. In the

following this unique scientific opportunity is described in detail.

Figure 5.12 shows the visibility of the four main ground station complexes for the

flyby at 62 km. The ground station in Madrid (DSS-63) will be fully visible during

the entire flyby. The contribution on the radio signal by the Earth atmosphere will

be small due to the large elevation angle. MEX will disappear 1 hour and 20 minutes

before closest approach behind Mars for 36 minutes seen from the ground station.

This flyby will be due to the small distance of 62 km an unique opportunity for

measuring the low order coefficient C2, 0 of Phobos. Assuming a constant density dis-

tribution and an ellipsoid shape (a = 13.4 km, b = 11.2 km, c = 9.2 km) the gravity

coefficients of Phobos read

C2, 0 = −0.0756

C2, 2 = −0.0151

with a reference radius R = 13.4 km.

Figure 5.12: Ground station visibility during the Phobos flyby in March 2010 for the four

main ground station complexes. An elevation angle of more than 10 ∘ indicates full visibility

of the spacecraft from the ground station. Zero time corresponds to 21:02:00 (UTC, SC).
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Figure 5.13: Estimated frequency change at the close flyby at Phobos in March 2010 (GM

= 0.7127 ×10−3 km3/s2 and C2, 0 = -0.0756). Frequency change corresponds to the uplink

frequency of 7167317664 Hz.
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Figure 5.14: The estimated predict for the frequency change due to C2, 0 = -0.0756 with

and without noise from a Radio Science measurement on July, 18 in 2006 and the filtered

noisy frequency change.
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Figure 5.13 shows the estimated frequency change± 1.5 h around the closest approach

for the flyby at a distance of 62 km. The entire frequency change is 0.46 Hz including

the frequency change due to GM of 0.48 Hz and due to C2, 0 of -0.018 Hz. C2, 2 causes

a frequency change which is smaller than 1 mHz and will not be detectable.

Noise from a Radio Science measurement on July, 18 in 2006 with standard deviation

� = 7.7 mHz was added to the predicted frequency change in order to perform a

feasibility study for estimating C2, 0. A least square fit was performed assuming C2, 0

as the only fitting parameter. The resulting C2, 0 is

C2, 0 = −0.0801± 0.0033 .

The resulting C2, 0 estimate has an error of 4.1 % corresponding to one standard

deviation.

Applying consecutively a kaiser window filter and a moving average filter with a cut-

off frequency fc of 77 mHz and the sample time Δt of 2 seconds reduces the standard

deviation � = 4.1 mHz of the noise by a factor of two. The cut-off frequency and the

sample time are computed with the lower and upper limit with the same method as

described in the last section. The lower and upper limit are defined to be ± 50 % of

the nomial value (C2, 0 = -0.0756). Filter leads to a new value

C2, 0 = −0.0758± 0.0005

with a reduced error of 0.7 % which corresponds to one standard deviation. It will

be possible to measure the C2, 0 coefficient with an accuracy which was never obtained

from a close flyby assuming that C2, 0 is the only fitting parameter.

If Phobos has a non-uniform density distribution the value of C2, 0 differs from the

above value. Assuming a two layer model with a core density �c = 2.30 g/cm3 occuping

half of the ellipsoid (a = 6.7 km, b = 5.6 km, c = 4.6 km) and a surface densitiy �s =

1.77 g/cm3 C2, 0 = -0.0736. The difference of 2.6 % between this two values, i.e. between

a two layer model and a model with uniform density distribution, can be detected with

the flyby in March 2010.

The value of C2, 0 depends on the shape model. Andert [2004] used different shape

models for Phobos and computed the gravitational coefficients from it. The values of

C2, 0 differ by more than 10 %. This requires due to the high precison with which the

value of C2, 0 can be estimated with the Radio Science technique precise shape models

for the interpretation of the results from the upcoming flyby in March 2010.

It is desirable to carry out measurements before MEX is occulted by Mars also with

the Madrid (DSS-63) ground station. This measurements would enable the determi-

nation of parameter like the initial velocity, the scaling factor of the solar radiation

pressure and a constant offset independently from the C2, 0. This would guarantee the

small uncertainty in the C2, 0 estimate.
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5.2 Steins

On September 5, 2008 the Rosetta (ROS) spacecraft flew by at asteroid Steins (see

section 5.2). The closest distance between ROS and Steins was 803 km at 18:38:20

(UTC). At the time of the Closest Approach (CA) the angle between the velocity

component of ROS seen from Steins and the position vector from ROS (at transmitting

time) to the ESA ground stations New Norcia and Cebreros (at receiving time) seen

from barycenter of solar system was 164 ∘ and the relative flyby velocity between ROS

and the asteroid Steins was about 8.6 km/s. These parameters are not optimal for a

precise mass estimate. The small size of Steins with a mean radius of 2.7 ± 0.3 km leads

to GM = 1.5614×10−5 km3/s2 (see section 5.2). Assuming a high density of 3.0 g/cm3,

a mass estimate is very unrealistic for Steins at this distance to ROS. In addition,

no continuous recording was performed around CA and different ground stations were

used. Recordings are available for the following time periods:

1. September 4, 2008 from 02:55:11.5 to 05:56:42.5 (GSRT) recorded at the 35 m

ground station in New Norcia, Australia. One WoL manoeuvre was performed

during this recording at 05:05:09.167 (SCEVT UTC), but also between this and

the next recording at 07:27:00.0 (SCEVT UTC). It makes the use of this data

set difficult, because both WoL manoeuvres have to be fitted to the data and

recorded data are available only for one event. This is an additional source of

uncertainty. Therefore this recording is not considered for analysis.

2. September 4, 2008 from 10:03:29.5 to 14:01:33.5 (GSRT) recorded also at New

Norcia with a standard deviation � = 10.7 mHz.

3. September 5, 2008 from 02:52:48.5 to 11:54:02.5 (GSRT) recorded also at New

Norcia with � = 10.1 mHz.

4. September 5, 2008 from 12:59:47.5 to 18:14:03.5 (GSRT) recorded at the 35 m

ground station Cebreros in Avila, Spain with � = 13.0 mHz.

5. September 6, 2008 from 02:50:24.5 to 13:55:03.5 (GSRT) recorded again at New

Norcia with � = 10.1 mHz.

Between the second and third measurement there is a gap of approximately 66 min-

utes and between the third and last measurement there is a gap of approximately 396

minutes. The second measurement terminates approximately 44 minutes before closest

approach (Figure 5.16). The sky frequency was predicted using the initial state vector

from the according SPICE kernel (see section A.1.4 in appendix) and the force model

for ROS described in section 2.5. It remains a constant offset for each of the four used

recordings of -24.94 mHz, -24.83 mHz, -26.66 mHz and -29.12 mHz, respectively.

The largest change in frequency due to the gravity field of Steins (see Figure 5.15)

occurs at the time of the CA. No recording is available at this time. The change with

a high density of 3.0 g/cm3 is computed to be approximately 0.16 mHz. The post-

encounter frequency change f∞ long after the CA is about 0.07 mHz. The noise of the
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recorded data is for all recordings larger than 10 mHz. These are two orders larger than

the expected frequency shift. It is obvious that it is impossible to resolve the mass of

Steins from the recordings.
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Figure 5.15: Frequency change caused by the gravitational attraction of asteroid Steins

for three different bulk density assumptions ± 2 hours around CA. The frequency change

corresponds to the uplink frequency of 7168640599.997583 Hz from the recording at Cebreros.

The noise on the predicted changes is numerical. The predict is barely above the limit of

numerical resolution.
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Figure 5.16: Frequency residuals of the recordings before and after the flyby at the Asteroid

Steins.
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5.3 Lutetia

On July 10 in 2010 the Rosetta (ROS) spacecraft will flyby at the asteroid Lutetia

(see section 4.2 for physical properties of Lutetia). Due to constraints given by the

flight dynamic section of ESOC, no continuous measurement covering the CA will be

possible. High Gain Antenna (HGA) tracking will terminate minutes before CA and

will resume about one hour after CA. This gap will limit the accuracy of the mass

estimate of Lutetia in addition to other factors like flyby geometry and noise of the

data. Simulations are carried out with different ranges of the gap in order to find the

best configuration for the flyby and a prediction of the accuracy which can be obtained

from the close flyby. The following flyby parameter are given by the flyby geometry:

∙ time of CA is 15:49:53 (UTC, Spacecraft event time),

∙ closest distance is 3055 km,

∙ angle between velocity component of ROS seen from Lutetia and position vector

from ROS (at transmitting time) to ground station DSS-63 (at receiving time)

seen from barycenter of solar system is 171 ∘ , and

∙ relative flyby velocity of ROS seen from Lutetia is about 15.0 km/s.

Figure 5.17: Ground station visibility dur-

ing the time of the Lutetia flyby for the four

main ground station complexes. An elevation

angle of more than 10 ∘ indicates full visibility

of the spacecraft from the ground station

The entire range of the measurement

is limited by the availability of continu-

ous tracking of one ground station. Ev-

ery ground station offers different bias

sources of the measurement, for exam-

ple ground station location uncertainty,

but also thermal noise. If more than one

ground station is used for the measure-

ment the bias of each ground station has

to be considered separately. This must

be done carefully. It is difficult to avoid

additional contributions on the measure-

ment which would affect the estimation

of the mass of Lutetia. It is of advan-

tage to use only one ground station for

the entire measurement around CA. In

Figure 5.17 the elevation angle between

the ground station and ROS for four ground station complexes is shown. Full visibil-

ity between ground station and spacecraft is given at an elevation angle larger than

10 ∘ above the horizon. This is the case for DSS-63 for about ± 4 h around Closest

Approach (CA) which defines the time range for the following simulations.
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Figure 5.18: Frequency change caused by the gravitational attraction of asteroid Lute-

tia for three different bulk density assumptions. Frequency change corresponds to the uplink

frequency of 7168398469.009392 Hz
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Figure 5.19: Frequency change caused by the gravitational attraction of asteroid Lutetia

with bulk density of 2 g/cm3. The noise is added from the TWO-WAY measurement of Doy

309, 2008. The frequency change corresponds to an uplink frequency of 7168398469.009392 Hz



5.3 Lutetia 107

The initial state vectors for the simulations are taken from SPICE-kernels (see section

A.1.4) provided by ESOC. Those are containing the predicted position and velocity

values for ROS. The density of Lutetia is not known. Densities ranging from 1 - 3

g/cm3 are presumably possible. In Figure 5.18 the frequency change corresponding to

an uplink frequency of 7168398469.009392 Hz is shown for this bulk density values.

The maximum of the frequency change at CA ranges from -32 mHz to -95 mHz and the

post-encounter frequency change ranges from 10 mHz to 30 mHz for 1 and 3 g/cm3,

respectively.

The above mentioned uplink frequency is selected in order to add ”real” noise to the

simulated data in Figure 5.18 from a conducted measurement of ROS. The noise was

extracted from the TWO-WAY measurement of Doy 309, 2008 (2008-11-04T07:22:10.5

- 2008-11-04T12:09:02.5). The standard deviation of the noise is � = 0.0124 Hz and

has a mean value of zero.

The simulations are computed with a bulk density of �s = 2 g/cm3, the expected

density of an asteroid of this type. Using a diameter of 95.5 ± 4.1 km for Lutetia yields

GML = 6.086×10−2 km3/s2 (product of the mass of Lutetia and the gravitational

constant), which is supposed to be the only parameter in the fitting process. In Figure

5.19 the simulated frequency change with the added noise is shown.

The initial value for fitting GM of Lutetia was selected to be 0.5 GML. In order

to test if the results depend on the initial value, simulations have been done with

randomized initial values. All produced the same result. Therefore the resulting value

of GM is independent of the initial value.

The results from the simulations are summarized in Table 5.1. If no measurements

after CA are available, the error in the GM estimate increases rapidly with increasing

time between the end of the measurement and the time of CA. The error given for

each simulation corresponds to one standard deviation based on the noise of the data

and is computed via the covariance matrix (see section 2.8). Depending on the length

of the measurement gap, the resulting GM value of Lutetia is highly overestimated or

underestimated. Therefore a flyby scenario with measurements before CA only yields

no reasonable estimate for GM and shows large errors due to the noise of the data.

Other flyby scenarios using measurements before and after CA lead to results for

the GM value close to GML. The uncertainty of the estimate depends crucially on

the measurement time available before CA. The difference between the GM value of

Lutetia used for generating the simulated data and the estimated value is within one

standard deviation caused by the noise of the data. It is obvious that the scenarios

with the shortest gap around CA lead to the best estimate of the mass of Lutetia.



108 Results

−4 −3 −2 −1 0 1 2 3 4
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Time relative to closest approach [hours]

F
re

qu
en

cy
 [H

z]

 

 

Measurement
Original Predict
Fit

(a) + 4 h -1 min before CA

−4 −3 −2 −1 0 1 2 3 4
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Time relative to closest approach [hours]

F
re

qu
en

cy
 [H

z]

 

 

Measurement
Original Predict
Fit

(b) + 4 h -5 min before CA
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(c) + 4 h -10 min before CA
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Figure 5.20: Different scenarios for the Lutetia flyby where ”measurement” is the modeled

frequency change with added realistic noise, ”original predict” is the modeled frequency change

without noise and ”fit” is the fit on the noisy frequency resulting in the GM value for Lutetia.
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Figure 5.21: Difference between the fre-

quency change of the filtered and unfiltered

model data for the minimum (�s = 1 g
cm3

) and

maximum condition (�s = 3 g
cm3

) for different

cut-off frequencies fc of the Kaiser filter.

The uncertainty of the mass estimate

can be reduced by appropriate filter tech-

niques (see section 2.9). Filters shall be

applied carefully in order to reduce only

the noise and not the information about

the mass of Lutetia contained in the data.

Therefore, different settings of the filters

are tested. In order to find reliable val-

ues for the filter settings the model data

of the minimum condition (�s = 1 g/cm3)

and maximum condition (�s = 3 g/cm3)

of the frequency change (see Figure 5.18)

was filtered and compared with the unfil-

tered model data. The maximum limit of

difference between filtered and unfiltered

model data was defined to be 0.1 mHz.



5.3 Lutetia 109

Scenario GM [10
−2

km
3

s2
] Figure

± 4 h around CA, no gap 6.120 ± 0.180 (2.9%) 5.19

± 4 h around CA filtered, no gap 6.161 ± 0.048 (0.8%) 5.19

+ 4 h -1 min before CA, no post-encounter obs. 6.488 ± 0.433 (6.7%) 5.20(a)

+ 4 h -5 min before CA, no post-encounter obs. 7.026 ± 0.643 (9.1%) 5.20(b)

+ 4 h -10 min before CA, no post-encounter obs. 7.448 ± 0.909 (12.2%) 5.20(c)

+ 4 h -20 min before CA, no post-encounter obs. 5.364 ± 1.415 (26.4%) 5.20(d)

+ 4 h -1 min before and 1 h gap after CA 6.029 ± 0.203 (3.4%) 5.23(a)

+ 4 h -5 min before and 1 h gap after CA 6.027 ± 0.216 (3.6%) 5.23(b)

+ 4 h -10 min before and 1 h gap after CA 5.992 ± 0.222 (3.8%) 5.23(c)

+ 4 h -10 min before and 30 min gap after CA 6.077 ± 0.212 (3.5%) 5.23(e)

+ 4 h -10 min before and 2 h gap after CA 6.239 ± 0.265 (4.2%) 5.23(f)

+ 4 h -20 min before and 1 h gap after CA 5.887 ± 0.226 (3.9%) 5.23(d)

gap of ± 1.5 h around CA 5.911 ± 0.247 (4.2%) 5.23(g)

gap of ± 1 h around CA 5.911 ± 0.227 (3.8%) 5.23(h)

Table 5.1: Different flyby scenarios for ROS at asteroid Lutetia. Total simulation time

is ± 4 hours (h) around Closest Approach (CA) with sample interval Δt = 10 seconds. The

simulated data are based on GML = 6.086×10−2 km3/s2. The error corresponds to one

standard deviation.
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Figure 5.22: Difference between the fre-

quency change of the filtered and unfiltered

model data for the minimum (�s = 1 g/cm3)

and maximum condition (�s = 3 g/cm3) for

different sample times Δtmov of the moving av-

erage filter.

In Figure 5.21 the maximum difference

for different cut-off frequencies fc of the

Kaiser filter and in Figure 5.22 for dif-

ferent sample times Δtmov of the moving

average filter are shown. The resulting

settings are fc = 0.022 and Δtmov = 20

s, which ensures that no information is

deleted by filtering the data.

Applying both filters consecutively re-

duces the standard deviation of the noise

from � = 12.4 mHz to �filt = 0.3 mHz,

which is a factor of 40. Based on the fil-

tered data, the GM of Lutetia is 6.161 ±
0.048 ×10−2 km3/s2, which represents an

error of 0.8% corresponding to one stan-

dard deviation. The small difference to

the GM value of Lutetia used for generating the model data can be explained by the

fluctuation of the signal caused by the noise. The amplitude of the model data is very

well retraced by the filtered data, but the signal shows also fluctuations before and after

CA which leads to the difference between the fitted GM and GML used for generating

the simulated data.
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(a) gap of 1 min before and 1 h after CA
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(b) gap of 5 min before and 1 h after CA
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(c) gap of 10 min before and 1 h after CA
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(d) gap of 20 min before and 1 h after CA
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(e) gap of 10 min before and 0.5 h after CA
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(f) gap of 10 min before and 2 h after CA
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(g) gap of ± 1 h around CA
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Figure 5.23: Different scenarios of the Lutetia flyby with measurements before and after

CA. ”Measurement” is the modeled frequency change with added noise, ”original predict” the

modeled frequency change without noise and ”fit” is the fit on the noisy frequency resulting in

the GM value for Lutetia.



CHAPTER 6

Discussion and summary

The motivation for this PhD-thesis was to use the Radio Science technique during close

flybys of Mars Express (MEX) at the Martian moon Phobos and of Rosetta (ROS) at

the asteroid Steins and the future flyby at the asteroid Lutetia. The goal was to develop

a strategy and tools for the determination of gravitational parameter of the bodies from

planetary flybys using short-term observations.

A very precise and complex numerical model was developed based on an accurate

force model for both the Mars Express and Rosetta spacecraft. The computed orbit

was compared to very accurate orbit determinations provided by the flight control team

at European Space Operation Center (ESOC) for both spacecrafts. It follows from the

comparison that the accuracy of the computed orbit in this thesis is below 0.02 mm/s.

This is very small compared to the Doppler velocity error of 0.26 mm/s in X-band (8.4

GHz) from the thermal noise of the ground station and the transponder phase noise.

Accurate models for extracting contributions from the Earth atmosphere on the radio

signal were applied to the measured data. This contributions are ranging from 150 mHz

at low elevation angles to 20 mHz at large elevation angles at X-band. With this

calibration, the difference of the predicted frequency based on the relativistic Doppler

to second order with the measured data is in the order of a few tenth of mHz typically

between 10 mHz and 20 mHz at X-band. The ground station position was computed

for this based on accurate models at centimeter level. The difference between model

and observation is in the order of the total Doppler velocity error from the thermal

noise and the transponder noise.

The signal-to-noise ratio of the data was improved by the applied filtering techniques

by a factor of at least three. The uncertainty in the solution of mass estimates decreased

with this filtering technique significantly.
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A numerical stable least square techniques was used to fit not only gravitational pa-

rameter on the frequency residuals, but also the initial velocity of the spacecraft, the

scaling factor of the solar radiation pressure and a constant offset. The latter parameter

ensures that the remaining frequency shift is solely caused by the gravitational attrac-

tion of the perturbing body. It was shown that the models are sufficiently precise to

analyze Radio Science measurements of close flybys. It was also shown that the method

provides very small uncertainties in the mass estimates.

It was not possible to estimate the mass of the asteroid Steins from the flyby in 2008

from Rosetta. This was due to the small mass of Steins combined with a large flyby

distance and non continuous tracking during the flyby. For these reasons other methods

or more accurate models would also fail in estimating the mass of Steins.

The mass of Phobos was estimated from the first close flybys since twenty years at

an accuracy not obtained from close flybys ever. The resulting mass is

GM = 0.7127 ± 0.0021 ×10−3 km3/s2.

The small error of 0.3 % is a consequence of the high radio carrier frequency but also

of the filtering technique and high numerical accuracy of the used models and software.

The mass value is in agreement with solutions from long term observations using several

years of tracking data. Its uncertainty is also comparable to that of long term solutions.

The small error of long term observations is a consequence of the large number of data

arcs included, but the error obtained in this thesis reflects the uncertainty due to the

signal-to-noise ratio of the measurement.

In addition, the mass estimate of Phobos from the close flyby in 2008 improves the

knowledge of the physical structure of Phobos. The bulk density � = 1.88±0.02 g/cm3

was determined based on a volume estimate. Regardless which origin scenario is se-

lected, i.e. which analogue material is used, Phobos shows a high porosity between 32 %

and 36 % for CM chondrite and Martian crust as analogue material, respectively. This

indicates re-accretion as a favorable formation process. Phobos macroporosity of 18.6

± 0.7 % is consistent with a fractured asteroid. An asteroid with this high porosity and

macroporosity would have been destroyed during the capturing process by gravitational

gradients. It appears though highly unlikely that Phobos is a captured asteroid. It fol-

lows from the results of the close flyby at Phobos that it is very likely that Phobos is

formed from the collision of a body remaining from the formation process of Mars and

a body formed in the asteroid belt. This scenario is consistent with the high porosity

of Phobos and with its spectral properties.

The Mars Express spacecraft will perform an orbit change manoeuvre in February

2010. This will allow three consecutive flybys at Phobos. It was found that the closest

flyby of the three on 3 March, 2010 at a distance of 62 km will be a unique scientific

opportunity for estimating the C2, 0 term of the gravity field of Phobos. This flyby was

assigned to the Mars Express Radio Science Experiment based on the feasibility study

carried out with the developed method.
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In order to determine the uncertainty in the C2, 0 estimate, noise from a real mea-

surement was added to the predicted frequency change. These data were treated as

a ”real” observation. Filter were applied in order to reduce the signal-to-noise ratio.

From the least square fit an uncertainty smaller than 1 % was obtained. With this small

error it is possible to find out if Phobos has a layered structure or a uniform density

distribution.

The flyby of Rosetta at the asteroid Lutetia which will be performed in 2010 was

simulated in order to state the feasibility of the flyby for Radio Science measurements.

It is likely to determine the mass of Lutetia from the flyby with an error smaller than 1%.

From spectral measurements Lutetia is classified as a C-type or M-type asteroid. An

accurate mass estimate as it was done for Phobos would help to distinguish between

both asteroid types: C-type asteroids have small bulk densities like 253 Mathilde of

1.34 ± 0.2 g/cm3, whereas M-type asteoids like 16 Psyche of 6.98 ± 0.58 g/cm3 have

large bulk densities. Thus, the bulk density based on the mass estimate and a volume

estimate from the camera onboard Rosetta would help to define the asteroid type of

Lutetia.

The software package developed in this thesis is able to analyze Radio Science data

obtained from short-term observations and estimate gravitational parameters of the

perturbing body very precisely. It is also possible to predict the frequency changes of

planned close flybys and perform feasibility studies serving as a basis of decision at

future observations. The accuracy of the numerical models are accurate enough for

analyzing and predicting Radio Science measurements with a precision close to the

resolution of Radio Science experiments.
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APPENDIXA

Appendix

A.1 Used parameter

A.1.1 Masses of solar system bodies

Body / System GM [km
3

s2
]

Sun 132712440040.944000

Mercury 22032.090000

Venus 324858.592000

Earth 398600.436233

Earth-Moon 403503.236310

Moon 4902.800076

Mars 42828.375214

Jupiter 126712764.800000

Saturn 37940585.200000

Uranus 5794548.600000

Neptune 6836535.000000

Pluto 977.000000

Deimos 0.98×10−4

Table A.1: Masses of Solar System Bodies from Folkner et al. [2008] and of Deimos from

Jacobson [2008]
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A.1.2 MEX

The optical parameter of MEX are listed in the following table based on information

from Morley [2004], whereby ABSC is the absorption coefficient, DIFR the ratio

diffusive/(diffusive + specular) with (diffusive + specular) = 1 - ABSC and the reflection

coefficient ".

Surface � � " Area [m2]

+ X 0.474 0.504 0.022 2.686

- X 0.602 0.383 0.015 2.686

+ Y 0.621 0.371 0.008 2.686

- Y 0.712 0.282 0.006 2.686

+ Z 0.829 0.171 0.000 2.890

- Z 0.566 0.311 0.123 2.890

solar array 0.677 0.130 0.194 6.109

Table A.2: Optical properties of MEX from Morley [2004]

A.1.3 ROS

The optical parameter of ROS are listed in the following table based on information

from Morley [2008], whereby ABSC is the absorption coefficient, DIFR the ratio

diffusive/(diffusive + specular) with (diffusive + specular) = 1 - ABSC and the reflection

coefficient ".

Surface � � " Area [m2]

+ X 0.909 0.091 0.000 5.150

- X 0.853 0.136 0.011 5.150

+ Y 0.795 0.205 0.000 5.408

- Y 0.750 0.250 0.000 5.408

+ Z 0.916 0.084 0.000 4.200

- Z 0.889 0.080 0.031 4.200

HGA 0.930 0.070 0.000 3.800

solar array 0.840 0.313 0.110 32.310

Table A.3: Optical properties of the ROS spacecraft from Morley [2008]
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A.1.4 Used SPICE-kernels

A.1.4.1 General kernels

∙ NAIF0009.TLS

File storing the occurrences of leapseconds

∙ de421.bsp

Contains ephemeris data for planet barycenters, and for the sun, earth and moon

mass centers (see Folkner et al. [2008] for more information).

∙ EARTHSTNS_ITRF93_050714.BSP

Contains ephemeris data for NASA DSN stations relative to the terrestrial refer-

ence frame label ’ITR93’.

∙ EARTH_TOPO_050714.TF

Frame kernel for the topocentric reference frames for the Deep Space Network

(DSN) stations.

∙ NEW_NORCIA.BSP

Contains ephemeris data for the ESA New Norcia station.

∙ NEW_NORCIA_TOPO.TF

Frame kernel for the topocentric reference frame for the ESA 35m tracking an-

tenna at New Norcia.

∙ EARTHFIXEDIAU.TF

This kernel makes the IAU_EARTH frame coincide with the earth fixed reference

frame.

∙ EARTHFIXEDITRF93.TF

This kernel makes the ITRF93 frame coincide with the earth fixed reference

frame.

∙ PCK00008.TPC

PCK file containing the size, shape, radii and orientation constants for planets,

satellites, Sun and some asteroids.

∙ EARTH_000101_081229_081008.BPC

PCK file containing the orientation of the Earth as a function of time for the from

01 January 2000 until 29 December 2008. From 29 December 2008 the information

contained in the file corresponds to predicted data. The rotational effects included

are precession, nutation, rotation through true sidereal time, polar motion and

nutation corrections.
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A.1.4.2 MEX specific kernels

∙ MAR080S.BSP

Contains the ephemeris data from JPL, for Phobos and Deimos (see Jacobson

[2008] for more information).

∙ MEX_V10.TF

Frame kernel containing the complete set of frame definitions for MEX and Beagle-

2 Lander (BEAGLE2) including definitions for the MEX fixed and MEX science

instrument frames and BEAGLE2 fixed, and landing site local frames. This kernel

also contains NAIF ID/name mapping for the MEX and BEAGLE2 instruments.

∙ ORMM__080701000000_00514.BSP

ContainsMEX reconstructed ephemeris for entire July 2008.

∙ ORMC__2010_nigth_side_00001.BSP

Contains MEX spacecraft long term operational Mars centric ephemeris optimized

for Phobos flybys in 2010.

∙ ATNM_PTR00261_050212_001.BC

ATNM_PTR00271_050311_001.BC

ATNM_PTR00381_060115_001.BC

ATNM_PTR00401_060312_001.BC

ATNM_PTR00744_080630_003.BC

ATNM_PTR00756_080727_001.BC

Contains Mars Express predicted attitude information.

A.1.4.3 ROS specific kernels

∙ ORHR_______________00077.BSP

Contains Rosetta spacecraft predicted and reconstructed cruise ephemeris. Spans

the cruise phase, from launch to comet rendezvous maneouver.

∙ ORHS_______________00074.BSP

Contains ephemeris for the asteroid Lutetia

∙ earth_070425_370426_predict.bpc

PCK file containing the orientation of the Earth from 25 April 2007 to 17 July

2037 as predicted data. The rotational effects included are precession, nutation,

rotation through true sidereal time, polar motion and nutation corrections.

∙ ATPR_P080902000000_00067.BC

Contains Rosetta predicted attitude information.
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A.2 Tectonic plate motion

Plate Name Ωx [rad/My.] Ωy [rad/My.] Ωz [rad/My.]

Pacific -0.001510 0.004840 -0.009970

Cocos -0.010425 -0.021605 0.010925

Nazca -0.001532 -0.008577 0.009609

Caribbean -0.000178 -0.003385 0.001581

South America -0.001038 -0.001515 -0.000870

Antarctica -0.000821 -0.001701 0.003706

India 0.006670 0.000040 0.006790

Australia 0.007839 0.005124 0.006282

Africa 0.000891 -0.003099 0.003922

Arabia 0.006685 -0.000521 0.006760

Eurasia -0.000981 -0.002395 0.003153

North America 0.000258 -0.003599 -0.000153

Juan de Fuca 0.005200 0.008610 -0.005820

Philippine 0.010090 -0.007160 -0.009670

Rivera -0.009390 -0.030960 0.012050

Scotia -0.000410 -0.002660 -0.001270

Table A.4: Cartesian rotation vector for each plate using the NNR-NUVEL1A kinematic

plate model (no net rotation) (IERS [2009])

A.3 Coefficient tableau of integration method

0 0 0 0 0 0 0 0
1
5

1
5

0 0 0 0 0 0
3
10

3
40

9
40

0 0 0 0 0
4
5

44
45

−56
15

32
9

0 0 0 0
8
9

19372
6561

−25360
2187

64448
6561

−212
729

0 0 0

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

0 0

1 35
384

0 500
1113

125
192

−2187
6784

11
84

0

0 5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

0 35
384

0 500
1113

125
192

−2187
6784

11
84

0

Table A.5: The coefficient tableau of the RK5(4) integration method

.
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A.4 Acceleration from unnormalized gravity coeffi-

cients

In the following the equations in order to compute the acceleration caused by the gravity

potential of body using unormalized gravity coefficients Cn, m and Sn, m according to

Montenbruck and Gill [2000] are shown.

A.4.1 Recursions

The unnomralized recurence coefficients Vn, m and Wn, m can be computed according

to Montenbruck and Gill [2000]

Vm, m =
R

r2
⋅ (2m− 1) (x ⋅ Vm−1, m−1 − y ⋅Wm−1, m−1) (A.1a)

Wm, m =
R

r2
⋅ (2m− 1) (x ⋅Wm−1, m−1 + y ⋅ Vm−1, m−1) (A.1b)

Vn, m =
R

r2
⋅ 1

n−m

(
(2n− 1) ⋅ z ⋅ Vn−1, m − (n+m− 1) ⋅ R ⋅ Vn−2, m

)
(A.1c)

Wn, m =
R

r2
⋅ 1

n−m

(
(2n− 1) ⋅ z ⋅Wn−1, m − (n+m− 1) ⋅ R ⋅Wn−2, m

)
(A.1d)

with the initial conditions

V0, 0 =
R

r
and W0, 0 = 0 (A.2)

In order to compute the all Vn, m and Wn, m the zonal terms have to be computed

first and all further computations should be done according to the scheme shown in

figure A.1.

A.4.2 Acceleration

With the above shown unnormalized recurrence coefficients the resulting acceleration

can be computed via the following equation using unnormalized gravity coefficients

Cn, m and Sn, m.

ẍ =
∞∑

n=0

n∑

m=0

ẍn,m , ÿ =
∞∑

n=0

n∑

m=0

ÿn,m , z̈ =
∞∑

n=0

n∑

m=0

z̈n,m (A.3)
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V0, 0,W0, 0

↓ ↘
V1, 0,W1, 0 V1, 1,W1, 1

↓ ↓ ↘
V2, 0,W2, 0 V2, 1,W2, 1 V2, 2,W2, 2

↓ ↓ ↓ ↘
...

...
...

. . .

↓ ↓ ↓ ↘
Vl, 0,Wl, 0 Vl, 1,Wl, 1 Vl, 2,Wl, 2 . . . Vl, m,Wl, m

Figure A.1: Execution scheme for recurrence coefficients computation.

The parital accelerations are (see Montenbruck and Gill [2000])

ẍn,m = − GM

R
2 ⋅ Cn, 0 ⋅ Vn+1, 1 (A.4)

ẍn,m
m>0
= − 1

2

GM

R
2

(

Cn, m ⋅ Vn+1, m+1 + Sn, m ⋅Wn+1, m+1

− (n−m+ 2) (n−m+ 1)
(

Cn, m ⋅ Vn+1, m−1 +

+ Sn, m ⋅Wn+1, m−1

))

(A.5)

ÿn,m = − GM

R
2 ⋅ Cn, 0 ⋅Wn+1, 1 (A.6)

ÿn,m
m>0
= − 1

2

GM

R
2

(

Cn, m ⋅Wn+1, m+1 − Sn, m ⋅ Vn+1, m+1

+ (n−m+ 2) (n−m+ 1)
(

Cn, m ⋅Wn+1, m−1 −

− Sn, m ⋅Vn+1, m−1

))

(A.7)

z̈n,0 = − GM

R
2 (n + 1) ⋅ Cn, 0 ⋅ Vn+1, 0 (A.8)

z̈n,m
m>0
= − GM

R
2 (n−m+ 1) ⋅ (Cn, m ⋅ Vn+1, m + Sn, m ⋅Wn+1, m) . (A.9)
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A.5 Media correction

A.5.1 Ionospheric media correction terms

With the following equations the corrected frequency residuals from the ionospheric

correction can be computed for different down- and uplink configurations (Morabito

and Asmar [1995]):

∙ One-way S-band downlink (2.3 GHz):

ΔfS
c (tj) = ΔfS (tj)− fS

ion (tj) (A.10)

∙ One-way S-band downlink (2.3 GHz):

ΔfX
c (tj) = ΔfX (tj)−

3

11
fS
ion (tj) (A.11)

∙ Two-way X-band uplink and X-band downlink:

ΔfX
c (tj) = ΔfX (tj)−

3

11

(

fS
ion (tj)−

840

749
fS
ion (tj − tr)

)

(A.12)

∙ Two-way X-band uplink and S-band downlink:

ΔfX
c (tj) = ΔfX (tj)− fS

ion (tj)−
3

11

840

749
fS
ion (tj − tr) (A.13)

Here tr is the two-way light time. In the equations for the two-way correction the

first term accounts for the downlink and the second one accounts for the uplink and

the effect of the uplink onto the downlink signal.
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A.5.2 Ionospheric correction using the differential Doppler

The correction of the contribution by the ionosphere of the Earth and the interplanetary

plasma can also be computed via the differential Doppler defined as follows:

�f = fS − 3

11
fX . (A.14)

The differential Doppler is also

�f = − 1

2c

1

4�2

e2

me�0

(
1

f 2
S

− 1

f 2
X

)

fs
dI

dt
(A.15)

and therefore the temporal change of the electron content is

dI

dt
= −

(
1

2c

1

4�2

e2

me�0

)−1
�f

fS

(
1

f 2
S

− 1

f 2
X

)−1

(A.16)

.

The plasma correction for S-band and X-band are then according to Pätzold [2004]:

fS,calib = fS +
1

2c

1

4�2

e2

me�0

1

fS

dI

dt
(A.17)

fX,calib = fX +
1

2c

1

4�2

e2

me�0

1

fX

dI

dt
(A.18)

Using equation A.16 and the general relation

fS
fX

=
3

11
(A.19)

the calibration can now be written as

ΔfX, P lasma = −�f
33

112
(A.20)

ΔfS, P lasma = −�f
121

112
. (A.21)
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Ashby, N., Relativity in the Global Positioning System, Living Reviews in Relativity,

2003.

Aster, R. C., B. Borchers and C. Thurber, Parameter Estimation and Inverse

Problems, Elsevier Academic Press, 2005.

Barucci, M. A. et al., Asteroid target selection for the new Rosetta mission baseline,

21 Lutetia and 2867 Steins, Astron. Astrophys., 430, 313–317, 2005.

Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics,

American Institute of Aeronautics and Astronautics, Inc., 3. Auflage, 1987.

Besse, S., O. Groussin, L. Jorda, P. Lamy, M. Kaasalainen, G. Gesquiere,

E. Remy and Osiris Team, 3-Dimensional Reconstruction of Asteroid 2867 Steins,

in Lunar and Planetary Institute Science Conference Abstracts, vol 40 of Lunar and

Planetary Institute Science Conference Abstracts, 1545, 2009.

Bibring, J.-P., Y. Langevin, A. Soufflot, C. Combes and C. Cara, Results from

the ISM experiment, Nature, 341, 591–593, 1989.

Birlan, M. et al., Near-IR spectroscopy of asteroids 21 Lutetia, 89 Julia, 140 Siwa,

2181 Fogelin, and 5480 (1989YK8), potential targets for the Rosetta mission, remote

observations campaign on IRTF, New Astronomy, 9, 343, 2004.



126 Bibliography

Brandt, S., Data Analysis, Springer-Verlag, New York, Berlin, Heidelberg, 3. Auflage,

1998.

Britt, D. T. and G. J. Consolmagno, The Porosity of Dark Meteorites and the

Structure of Low-Albedo Asteroids, Icarus, 146, 213–219, 2000.

Britt, D. T. et al., Asteroid Density, Porosity and Structure, in Asteroids III, edited

by W. F. Bottke JR. and others, 485–500, Univ. of Ariz. Press, 2002.

Burchell, M. J. and J. Leliwa-Kopystynski, The Large Crater on Asteroid Steins:

Is it Abnormally Large?, in Lunar and Planetary Institute Science Conference Ab-

stracts, vol 40 of Lunar and Planetary Institute Science Conference Abstracts, 1525,

2009.

Burns, J. A., Contradictory Clues as to the Origin of the Martian Moons, in Mars,

edited by H. Kiefer et al., 1283–1301, Univ. of Ariz. Press, 1992.

Buttkus, B., Spectral analysis and filter theory in applied geophysics, Springer Verlag,

Berlin, Heidelberg, 1. Auflage, 2000.

Chao, C. C., AModel for Tropospheric Calibration from Daily Surface and Radiosonde

Balloon Measurements, Technical Memorandum 391-350, 1972.

Chicarro, A., P. Martin and R. Trautner, The Mars Express Mission: An

Overview, in Mars Express The Scientific Payload, edited by A. W. E. P. Division,

3–16, ESA, ESA Publ. Division, 2004.

Christensen, E. J., G. H. Born, C. E. Hildebrand and B. G. Williams, The

mass of Phobos from Viking flybys, J. Geophys. Res., 4, 555–557, 1977.

Craddock, R. A., The Origin of PHOBOS and Deimos, in Lunar and Planetary

Institute Science Conference Abstracts, vol 25 of Lunar and Planetary Inst. Technical

Report, 293, 1994.

Cunningham, L. E., On the Computation of the Spherical Harmonic Terms Needed

during the Numerical Integration of the Orbital Motion of an Artificial Satellite,

Celestial Mechanics, 2, 207–216, 1970.

Dehant, V. and P. M. Mathews, Earth rotation variations, in Geodesy, edited by

T. Herring, vol 3 of Treatise on Geophysics, 295–349, Elsevier, Amsterdam, 2007.

del Rio, J. D., Mars Express, Auxiliary Data Conversion into SPICE Kernels and

Distribution , ESA, issue 1, revision 9 Auflage, 2006.

Dorfmüller, T. et al., Lehrbuch der Experimentalphysik, Band 1, Mechanik, Rela-
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