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Summary 
Kelps are large brown algae in the order Laminariales. Kelp species have different 

distribution ranges along temperate to Polar rocky coastal lines. We sequenced DNA from 

three Laminaria species namely Laminaria digitata, Laminaria solidungula and Laminaria 

rodriguezii. Laminaria digitata is found in the Northern Atlantic region with a southern 

boundary in Brittany (France) or Massachusetts (USA) and a northern boundary in the 

Artic. Laminaria solidungula is endemic to the Artic and Laminaria rodriguezii is restricted 

to deep waters of Mediterranean Sea. Currently, not much is known about the nuclear and 

organellar genomes of kelp species. To initiate the analysis of sequencing data in kelp 

species the organellar genomes of Laminaria species were generated. The mitochondrial 

and chloroplast genomes of Laminaria rodriguezii and Laminaria solidungula, and 

chloroplast genome of Laminaria digitata were analysed and compared with phylogenetic 

trees derived from publicly available complete mitochondrial and chloroplast kelp 

genomes. All analysed kelp organellar genomes were found collinear, where large 

insertion, deletion (indels) or rearrangements were rare with some essential exceptions. 

Laminaria rodriguezii is very closely related to the North Atlantic temperate to Arctic 

Laminaria digitata according to the chloroplast and mitochondrial phylogeny. In the 

mitochondrial genome of Laminaria rodriguezii a stretch of more than 700 base pairs was 

found, which was not present in any other kelp sequenced so far. The translated Open 

Reading Frame (ORF) matches a protein coding region in the mitochondrial genome from 

Desmarestia viridis, a brown seaweed with a cold-temperate to Arctic distribution in the 

order Desmarestiales, which is closely related to the Laminariales. The high similarity of 

overlapping parts of two ORFs suggests that it originated through independent 

introduction, potentially by infection with similar mitoviruses, which is currently known in 

fungi and plants only. In the chloroplast genomes of Laminaria solidungula a small 

rearrangement at the inverted repeat regions was found. These rearrangements led to the 

pseudogenisation of ycf37 gene in Laminaria solidungula, a gene possibly required under 

high light conditions. This defunct gene might be one of the reasons why the habitat ranges 

of Laminaria solidungula is restricted to lowlight sublittoral sites in the incomplete lineage 

sorting of chloroplast genomes in kelp species. This work laid the foundation for analysis 

of nuclear genome (ca. 400Mb) of Laminaria digitata. The Single nucleotide polymorphism 

analysis yielded a first glimpse into the population diversity of this species. The draft 

genome analysis of Laminaria digitata will be part of the comprehensive analysis of brown 

algal genomes in the framework of the international Phaeoexplorer project led by the 

Biologigue de Roscoff in France. 
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Zusammenfassung 
Braunalgen sind große Seetange in der Ordnung der Laminariales. Die Arten der 

Seetange haben verschiedene Verbreitungsgebiete von gemäßigten Zonen zu polaren 

felsigen Küstenlinien. Wir sequenzierten DNA von drei Braunalgenarten, nämlich 

Laminaria digitata, Laminaria solidungula und Laminaria rodriguezii. Laminaria digitata 

findet sich in einer Region im nördlichen Atlantik mit der Bretagne (Frankreich) oder 

Massachusetts (USA) als südlichen Grenze und der Arktis als nördlichen Grenze. 

Laminaria solidungula ist endemisch in der Arktis und Laminaria rodriguezii ist beschränkt 

auf die Tiefenwasser des Mittelmeers. Derzeit ist wenig über das Kern- und 

Organellengenom bekannt. Um die Sequenzierungsdaten in Braunalgenarten initial 

zugänglich zu machen und erste Resultate zu generieren, wurden Organellengenome von 

Laminaria-Arten erzeugt. Mitochondriale Genome und Chloroplastengenome von 

Laminaria rodriguezii, Laminaria solidungula und Chloroplastengenom von Laminaria 

digitata wurden analysiert und mit vollständigen Genomen der Mitochondrien und 

Chloroplasten von Seetangen, die öffentlich verfügbar sind verglichen. Dazu wurden 

phylogenetische Bäume berechnet. Es stellte sich heraus, dass alle analysierten 

Organellengenome der Braunalgen kollinear waren, wo große Insertionen, Deletionen 

(Indels) oder Rearrangements sind selten mit einigen wichtigen Ausanahmen. Laminaria 

rodriguezii steht in enger Beziehung zu der im gemäßigten bis arktischen nördlichen 

Atlantik vorkommenden Laminaria digitata gemäß der Chloroplasten- und 

Mitochondrienphylogenie. Im mitochondrialen Genom von Laminaria rodriguezii wurde ein 

Abschnitt von mehr als 700 Basenpaaren gefunden, der nicht in den anderen bisher 

sequenzierten Braunalgen vorhanden ist. Der übersetze offene Leserahmen (OLR) stimmt 

mit einer Proteinkodierenden Region im Mitochondriengenom von Desmarestia viridis 

überein, eine Braunalge mit einem kalt-gemäßigten bis arktischen Verbreitungsgebiet in 

der Ordnung der Desmarestiales, die eng verwandt mit den Laminariales ist. Die hohe 

Ähnlichkeit der sich überschneidenden Abschnitte der zwei OLR legt nahe, dass es durch 

unabhängige Insertionen hervorgebracht wurde, möglicherweise durch die Infektion mit 

ähnlichen Mitoviren, die gegenwärtig nur in Pilzen und Pflanzen bekannt ist. Im 

Chloroplastengenom von Laminaria solidungula wurde ein kleines Rearrangement in der 

inverted Repeats-Region gefunden. Dieses Rearrangement führte zur Pseudogenisierung 

des ycf37-Gens in Laminaria solidungula, einem Gen das möglicherweise unter besonders 

hellen Lichtbedingungen benötigt wird. Dieses nicht mehr bestehende Gen könnte einer 

der Gründe sein, weshalb der Lebensraum der Laminaria solidungula auf sublitorale 

Zonen mit schwachen Lichtverhältnissen im unvollständige lineage sorting beschränkt ist. 
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Diese Arbeit legt die Grundlage für die Analyse von Kerngenomen (ca. 400Mb) von 

Laminaria digitata. Die Einzelnukleotide-Polymorphismus Analyse ergab einen ersten 

Eindruck der Populationsdiversität dieser Arten. Die Genomanalysis von Laminaria 

digitata wird im Rahmen des internalen Projekts Phaeoexplorer Teil einer umfassenden 

Analyse von Braunlagengenomen sein, welches von Biologigue de Roscoff in Frankreich 

geführt wird. 
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1 Introduction 

1.1 The key organism Algae 

Algae are one of most common living organismal groups on the earth. They are eukaryotic, 

heterogeneous and photosynthetic organism, which contain chlorophyll and produce 

oxygen, like plants (Singh and Sharma 2012). Algae can be both single-celled and 

complex multicellular organism. They can differ in habitat, size, reproduction, physiology, 

organization, and biochemistry. The morphology and size of algae are very different to 

each other, unicellular species of algae are measuring 3-10 µm, and large water algae can 

grow up to 70 meter in length (El Gamal 2010). Algae are autotrophic in nature and acquire 

their food and energy from the environment, specifically from the sunlight. They play a 

crucial role in many ecosystems and help maintaining oxygen supply in the world. Algae 

are found everywhere on the earth, for example in sea, in lake, in river, in ponds, on trees, 

walls and soils, and also have symbiotic relationship with fungi. They have a wide range 

of habitats from fresh water, marine and brackish to the soils and rocks (Wehr, Sheath, 

and Kociolek 2015). Generally, they are found in saturated environment, and attached to 

the surface or sometimes at the air water interface. Marine algae are like plants, which 

play an important role in marine community, helping to improve marine primary productivity 

and also controlling the climate of marine system with processes like biogenic calcification, 

oceanic sequestration of carbon di-oxide, and release of dimethyl sulfide (Das and 

Mangwani 2015). Reproduction process in algae can be through asexual (vegetative) and 

sexual means. Algae produce large range of bioactive secondary metabolites, and 

important bioactive substances, such as proteins, carbohydrates, lipids, polyunsaturated 

fatty acids, polysaccharides, polyphenols, and sterols (Borowitzka and Moheimani 2013). 

The quality of proteins obtained from algae is better than the other plants sources for 

example- wheat, rice and beans, but not as good as animal proteins such as, milk and 

meat (Mendes, Lopes da Silva, and Reis 2007). Algae are used in several commercial 

activities (Figure 1-1), they are useful in the chemical & cosmetic industry, and are a good 

source of bactericidal substances. Algae are used to remove the organic compound, heavy 

metals and pathogens from the environment (Muñoz and Guieysse 2006). They are also 

used in animal feed and fertilizers industry, for example brown algae Ecklonia radiate 

(Charoensiddhi et al. 2018) playing an important role in production of functional food and 

dietary supplements (Borowitzka and Moheimani 2013). According to size algae are 

divided into two categories: microalgae and macroalgae.  
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 Figure 1- 1: Applications of algae. Taken from Algae in food: a general review (Ścieszka and Klewicka 

2019) 

1.2 Microalgae 

Microalgae are small, microscopic and unicellular photosynthetic organism, for example 

diatoms, phytoplankton, and zooxanthellae which live in coral tissue, and need a 

microscope to be observed (Great Barrier Reef Marine Park Authority 2003). They are 

found in fresh water and in marine systems. Microalgae have no true roots, leaves and 

stems, they are present individually and also contain symbiotic relationship with bacteria 

(Barsanti and Gualtieri 2014). Microalgae are capable of producing biomass, and 

absorbing significant amount of carbon dioxide, because of these properties microalgae 

can be used as renewable source of energy (Francisco et al. 2010). Different variety of 

biofuel can be obtained from the different components of the algal cell wall, for example 

anaerobic fermentation of microalgae biomass allows production of biodiesel (Brennan 

and Owende 2010; Chisti 2007). Production of fuel from microalgae is not a new idea 

(Nagle and Lemke 1990), today it is one of the seriously considered solution for biofuel 

production because of the increasing price of oil, climate change and global warming, 

which are associated with combustion of fossil fuels (El Arroussi et al. 2017; Le Quéré et 

al. 2017). Microalgae can be divided into different categories according to their cytological 

and morphological properties, reserve metabolites, cell wall components and pigments 

such as marine diatoms, which are golden brown color because of xanthophyll pigments 

and blue green algae, which contain chlorophyll a and blue phycocyanins pigments 
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(Levasseur, Perré, and Pozzobon 2020). The microalgae such as Chlorella species, 

Dunaliella species, and Scenedesmus species are used as nutrient rich foods and are also 

sources of some chemicals.  

 

1.3 Macroalgae (Seaweeds) 

Macroalgae are multicellular, eukaryotes and photosynthetic organism with a great 

diversity of forms, sizes, varying pigmentation and morphology (Littler and Littler 2011) 

(example in Figure 1-2 and Table 1-1). Macroalgae are also known as Seaweeds, they 

are mostly benthic plants, and are attached to the seabed or to the reef substrate, as 

exception, two species of Sargassum (S. natans and S. fluitans) are free floating 

(planktonic) (Smetacek and Zingone 2013). Macroalgae can grow intertidally and 

subtidally. Similar to plants they execute photosynthesis process- producing Oxygen and 

taking carbon dioxide from the water (Littler and Littler 2011). Macroalgae being aquatic 

organism play an important role in marine ecosystem, where they are primary producers 

and provide shelter to other marine organisms for example fish, plankton, invertebrates 

and microorganism. Macroalgae are one of the most important organism in the world 

because they are the largest oxygen producer, consuming huge amount of CO2 from the 

environment, and have an important range of applications in different industries all over 

the world (Gomez-Zavaglia et al. 2019). Macroalgae are commonly part of one of three 

major branches of algal evolution: Rhodophyta (red algae), Chlorophyta (green algae) and 

Phaeophyta (brown algae). These three categories of macroalgae differ from each other 

in various manners, for example the composition of cell walls, the chloroplast structure and 

they all have different ultrastructural, biochemical features with different photosynthetic 

pigments. They are an important and valuable food source, rich in proteins, 

polysaccharides, vitamins and minerals (Anantharaman et al. 2010; Wong and Cheung 

2000), and also have antibacterial, antiviral, anti-inflammatory and antioxidant activity, 

which are particularly useful in medical and pharma industry to make different type of 

drugs. Protein content are different in each species of macroalgae such as, brown algae 

have low protein content in comparison of red and green algae (Mamatha et al. 2007). 

Some red algae for instance, Palmaria palmate (dulse) and Porphyra tenera (nori) have 

protein level around 37% to 47% (w/w) (Patarra et al. 2011), and green algae such as Ulva 

species around 7% to 33% (Fleurence et al. 2012), and brown algae are known to contain 

maximum 15% protein content, with exceptions of Undaria pinnatifida (wakame) and Alaria 

esculenta which have 11% to 24% and 9% to 20% (w/w) protein, respectively (Burtin 2003; 

Fleurence 1999; Fleurence, Morançais, and Dumay 2018). Additionally, these days 
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seaweed based food additives are used in the preparation of fast food (Dhargalkar and 

Verlecar 2009).  

	

	
	

Figure 1- 2: Example of red, green and brown macroalgae, Taken from (de.wikipedia.org and seaweed.ie) 

Table 1- 1: Different features of red, green and brown macroalgae, modified from (peddia.com) 

Features Red algae Green algae Brown algae 

Habitat Mainly marine Mainly fresh water Mainly marine 

Phylum Rhodophyta  Chlorophyta  Phaeophyta  

Photosynthesis 
Pigments  

Chlorophyll a, d, 
and phycobilins 

Chlorophyll a, b, 
and xanthophylls 

Chlorophyll a, c, 
fucoxanthin and 
xanthophylls 

Organisation of 
cells 

Unicellular forms 
very few 

Unicellular forms 
abundant 

Unicellular forms 
absent 
 

Thylakoids  Unstacked  Stacks of 2-20 
thylakoids 

Three of them 
stacked 

Motility Sessile  Mainly motile and 
contain flagella 

Sessile  

Reproduction  Not produce 
motile stages 
during their life 
cycle  

Produce motile 
sperms with 
multiple flagella 

Produce motile 
sperms 

Cell wall 
components 

Cellulose and 
sulphated 
phycocolloids 

Cellulose  Cellulose and non-
sulphated 
phycocolloids 
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1.3.1 Rhodophyta (red algae) 

Red algae or Rhodophyta are unicellular and multicellular aquatic photoautotrophic algae. 

Rhodophytes are red in colour, because of the r- phycoerythrin and r- phycocyanin 

pigments, hidden in the chlorophyll a and chlorophyll d. These pigments absorb blue light 

and reflect red light which makes them appear red (Cole and Sheath 1990). Red algae are 

mostly marine although few fresh water (for example- Compsopogon caeruleus, Kumanoa 

mahlacensis, and Batrachospermum turfosum), (Sheath and Vis 2015) and terrestrial red 

algae are also known (Guiry 2012). Red algae are found in the lower littoral and sublittoral 

zone, and sometimes at great depths in tropical seas. They have eukaryotic cells, lacking 

in flagella and centrioles, and their chloroplast are without endoplasmic reticulum and 

contain unstacked thylakoid (Stiller and Hall 1997). Over 7000 species of red algae are 

present in the world. Many economically important species of red algae are found in 

different genera for example – Chondrus, Eucheuma, Gelidium, Gigartina, Gracilaria, 

Porphyra and Pterocladia. Red algae can reproduce themselves both sexually and 

asexually. Asexual reproduction occurs through spore formation and also through 

vegetative like fragmentation and cell division (Norall, Mathieson, and Kilar 1981). 

Rhodophytes are important source of food (Nori) in Asia, because they contain high 

amounts of vitamins and proteins (Shibata, Jin, and Morita 1990). Many species are widely 

used for commercial applications since they are an important source of colloids. These 

colloids are used for culturing bacteria, and as suspending agents, stabilizers and moisture 

retainer in food industry (ice cream, chocolates and milk). Some red algae are coralline 

and make calcium carbonate structures which play a crucial role in formation of coral reefs 

(Chaudhury, Sanghvi, and Jain 2018).  

 

1.3.2 Chlorophyta (green algae) 

Green algae are photosynthetic and eukaryotic organism. They share common ancestry 

as plants. Green algae have carotenoid, chlorophyll a and b pigments and produced same 

carbohydrate in photosynthesis process like higher plants do (Rasala and Mayfield 2015). 

Starch is their major storage product, situated in chloroplast. There are around 9000 to 

12000 types of green algae species present (Guiry 2012). Most of them (90%) are found 

Examples  Irish moss, 
coralline algae, 
dulse (Palmaria 
palmate), etc. 

Sea lettuce (Ulva 
species), Codium 
species, etc. 

Kelp, Fucus, 
Sargassum, etc. 
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in fresh water and are attached to submerged rocks and wood or scum on stagnant water, 

and others are found in terrestrial and marine systems. They can differ in size and shape, 

for example single-celled, colonial, filamentous, and tubular form (Alves, Sousa, and Reis 

2013). They can have sexual and asexual reproduction, sexual reproduction with gametes 

that have two or four flagella and asexual reproduction through cell division, fragmentation 

and with motile and non-motile spores (Sekimoto 2017). They are important food source 

for herbivorous in marine ecosystem for example fish, gastropods and sea snail. Green 

algae are also substantial for human being, used as food because it contains high amount 

of minerals like calcium, iodine, copper, magnesium, potassium and zinc (Wells et al. 

2017). Economically, green algae are sustainable biomass feedstocks for the biotech 

industries, also including bioremediation integrated aquaculture systems and biofuel 

production (Neori et al. 1996, 2004; Nisizawa et al. 1987). Additionally, green algae’s 

pigment beta- carotene is also used in food colouring. 

	

1.3.3 Phaeophyta (brown algae)  

Brown algae are multicellular, photosynthetic and large complex organism. No unicellular 

brown algae species is known so far. They are one of the six eukaryotes lineages that 

have developed true multicellularity and in terms of cell biology, they have typical features 

of both animals (centrosomes) and green plants (centrifugal cell formation) (Arun et al. 

2019).  Brown algae have secondary plastids, and they are mainly brown, yellowish-brown 

and olive colored due to the presence of fucoxanthin pigment (Andersen 2004). This 

pigment is only present in brown algae, for this reason they differ from another algae and 

plants, hence, they come into different kingdom called Chromist. Together with oomycetes 

and diatoms, they establish the eukaryotic lineage of Heterokonta or Stramenopiles (Yoon 

HS et al. 2008). This class of macroalgae (Phaeophytes) differ from most other heterokont 

groups, as they are comprised of- cell walls made of cellulose, alginic acid and 

polysaccharides, cellular inclusion of polyphenolic polymers, chloroplasts with thylakoids 

in stacks of three, which are enclosed by a girdle lamella and main storage product in 

Laminarin, a ß- 1, 3-glucan (Pueschel and Stein, 1983). Brown algae are very useful for 

animal and human being, as they are major source of iodine and potash. An important 

substrate from brown algae (cell wall) is Alginate (Barnes 1988; Draget and Taylor 2011), 

a colloidal gel used as stabilizer in commercial produced ice cream, beer, salad dressing, 

textile, paper and toothpaste  industries (Gómez-Dıáz and Navaza 2003; Podkorytova et 

al. 2007). Most brown algae are marine algae living in cold water, and shallow ocean water, 

very few are present in freshwater (for example- Ectocarpus siliculosus, Pleurocladia, 
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Heribaudiella fluviatilis, Porterinema fluviatile). Many are attached to the substrata. Brown 

algae are organized in thalli (bodies) which range from filamentous to sophisticated body 

plans in kelps with blades, stipes and holdfast. Since, the thallus of brown algae lacks 

vascular tissues, they have no true root, stem and leaves by definition (Kawai and Henry 

2017). Brown algae reproduces both sexually and asexually (example in Figure 1-3). 

Asexual reproduction is by fragmentation and by spores. Spores are attached to rocky 

bottom and start to grow into haploid gametophyte plants, which undergo sexual 

reproduction. Sexual reproduction in brown algae are of three types- isogamous, 

anisogamous and oogamous (Fu et al. 2014). They are largest and fastest growing algae 

in the world and have lengths ranging from 1 meter (Ectocarpus) to 100 meters (kelps). 

They are dominant organism in the marine ecosystem, in terms of biomass and they often 

form kelp forests, that host a high level of diversity (Charrier et al. 2008). 

 

 

Figure 1- 3: The life cycle of brown algae is complex. The life cycle of Laminaria as example, a brown 

alga, which involves alternation of generations. In Laminaria, the sporophyte is a large seaweed with several 

leaf like blades. The gametophytes are short, branched filaments. Taken from (biological science by freeman, 

© 2008 Pearsons education) 
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1.4 Model organism Kelp 

Kelps are large and complex brown seaweed in the order Laminariales, they are found in 

cold water. Habitat of kelps are shallow subtidal and intertidal rocks (Dayton 1985). Kelps 

use sunlight for photosynthesis and change carbohydrate into sugar (Bruhn et al. 2019). 

Kelps extract important nutrients from the surrounding water (Gerard 1982). They have 

the most differentiated thalli of all brown algae: they have hold fast, although it functions 

in a way like a root, stipe grow upward from the holdfast and blade (fronds), which are 

attached to the stipe (Schmid and Stengel 2015). Kelp have a biphasic life cycle, with 

alteration of generations among microscopic haploid gametophytes to broad diploid 

sporophytes (Figure 1-3) (Oppliger et al. 2014). Kelps can grow up to 60 centimeters per 

day and can reach up to 50 meters in length (Jackson 1987). Kelps are of great use, they 

are important source of iodine and potash (Cameron 1913). Commercially, kelps are used 

in cosmetics, food, paints, paper and skin care product industries (Hasselström et al. 

2020). Numerous kelp species hold major economic importance as an essential food 

product in Asian countries (Cherry et al. 2019). Most of the kelp species are perennial, but 

some are annuals (Wernberg, Kendrick, and Toohey 2005). Many different species of kelp 

make up huge coastal forest, broad underwater habitats of large seaweed, which can form 

large canopies over the seafloor and provide food, shelter, nutrients and essential habitat 

to large communities of marine organisms like animals, microbes, algae and terrestrial 

food web (STENECK et al. 2002; Teagle et al. 2017). Kelp forest manifest an interface 

between ocean, environment and land masses and dominate along one-quarter of the 

world’s coastlines, in Arctic and temperate latitudes in both hemispheres (Krumhansl et al. 

2016). Kelp forest ecosystem are biogenic structure, found in the benthic marine system, 

their great diversity of plant and animal species support many fisheries all over the world. 

At each part of the kelp forest (present at ocean floor, middle part, upper part) the canopy 

formed by blades provide residence to many marine species of fish and mammals such 

as sea lion and whales (Dayton 1985). Order Laminariales are main kelp, which make kelp 

forest, currently 112 species of Laminarian kelp in 33 genera are present (Bolton 2010), 

one of the most important kelp is Macrocystis pyrifera (Macaya and Zuccarello 2010) 

commonly known as giant kelp, found in rocky and shallow seafloor, they grow up to 65-

meter long, whereas Laminaria species only grow up to 1 to 3-meter long and growth 

mainly occurs from meristem region to the stipes and then blade. Laminarian kelp species 

have heteromorphic diplohaplontic life cycle, one is a microscopic haploid gametophyte 

generation and another one is a macroscopic diploid sporophyte generation, which form 

the kelp forests (Schiel and Foster 2006). Reproduction process starts with the formation 
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of reproductive tissue sporangia in reproductive blades sporophylls (Macrocystic pyrifera, 

Alaria esculenta), and flagellated zoospores are formed. The zoospores are released, 

scatter and settle to develop into male and female gametophytes, later, produce gametes. 

The sperm leave the male gametophyte and fertilize the female egg attached to the female 

gametophytes, and then juvenile sporophyte produce. Reproduction in kelp species 

depend on environment conditions, such as light, nutrients and water motion and some 

kelp species show seasonality in reproduction (Bartsch et al. 2013). Kelps help in 

purification of marine water and remove waste product which are produced by animals and 

living organism in the kelp forest (Smale et al. 2013).  

 

1.4.1 Laminaria digitata 

Laminaria digitata (Hudson) J.V. Lamouroux  is a large brown alga, belongs to the order 

Laminariales, found at low water shore area, and in the sublittoral zone (Lüning and tom 

Dieck 1989) of the Atlantic Ocean (Dankworth et al. 2020). Laminaria digitata grows in the 

Northern Atlantic with a southern distribution boundary in France and USA (Schaffelke and 

Lüning 1994). They can be found growing up to 10-meter in depth, 3-meter long and 60 

cm across the frond. Frond is split into 3-8 blades and Laminaria digitata is firmly attached 

to bedrock by a holdfast, and has flexible and smooth stipes (Figure 1-4). Laminaria 

digitata has haplodiplophasic life cycle, which is alternating between microscopic stages 

such as meiospores, filamentous gametophyte, and microscopic sporophytes, and 

macroscopic sporophytes (Liu et al. 2017), which can grow several meters in length. The 

sporophyte phase of Laminaria digitata grows finest at 10°C to 15° C (Dieck (Bartsch) 

1992) although it reproduces at 5°C to 10°C (Bartsch et al. 2013). Laminaria digitata 

produces alginate, which acts as thickener (Vauchel et al. 2008), widely used in food, 

pharmaceutical, medical and paper industries. Blade of Laminaria can be used as salad 

and eaten directly, for example in Asian countries it is widely used as soup and food called 

Dashi (Kolb et al. 2004). It is also an important source of iodine, in 19th century it was 

commonly used as a supplement of iodine  (Gall, Küpper, and Kloareg 2004) which in turn 

was used in goiter treatment, later used as an organic fertilizer and also in glass industries 

(Verhaeghe et al. 2008). 
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Figure 1- 4: Laminaria digitata with holdfast, stipes and blades.  Laminaria digitata (Hudson) J.V. 

Lamouroux, 1813. Taken from (aphotomarine.com) 

1.4.2 Laminaria solidungula 

Laminaria solidungula is heterotrophic brown algae, found in lower depths of Arctic region. 

Laminaria solidungula is very important brown algae in Arctic community (Figure 1-5), it 

provides food and shelter to many marine faunas (Chapman and Lindley 1980). The thallus 

of Laminaria solidungula is medium brown to dark brown in color, stipes are 1-meter, 

holdfast is like suction cup and blades are split. Reproduction is the same as in Laminaria 

digitata such as alteration in generation, they release spores which get attached to the 

rocky bottom and germinate into male and female gametophytes. Oogamous and oogania 

are the sexual ways of reproduction where male gametophytes produce male gametes 

(antherozoids), and female gametophytes produce female egg. When favorable conditions 

occur male and female gametes fertilize and form zygote to produce sporophytes (Roleda 

2016).  
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Figure 1- 5: Laminaria solidungula Arctic region kelp. Taken from (commons.wikimedia.org) 

 

1.4.3 Laminaria rodriguezii 

Laminaria rodriguezii is deep water Mediterranean kelp. They are found in warm deep 

water, down to 260-meter deep (Lüning 1990) at 13-14°C constant temperature. The 

knowledge of the distribution of Laminaria rodriguezii was reported during the Hvar 

fisheries biology expedition (1948-1949) (Ercegović 1960).  They have a branched holdfast 

which are strictly attached to the rocky surface, stipes and united blades (Figure 1-6). They 

are closely related to Laminaria species in the Atlantic. They are endemic species with a 

reproduction same as in other kelp species (Žuljević et al. 2016). 

 

 
 

Figure 1- 6: Laminaria rodriguezii. The Mediterranean deep-water kelp Laminaria rodriguezii is an 

endangered species in the Adriatic Sea. Taken from (ocena4future.org, Ante Žuljević et. al 2016). 
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1.5 Organelle genomes in kelp 

1.5.1 Mitochondria genomes  

Mitochondria are an important cellular structure, often called as cellular power factory. Few 

of the key functions of mitochondria include generating energy for various cell-functions, 

metabolic pathways, cell ageing and cell death. Origin of mitochondria has variations on 

two different theories of endosymbiosis, which are referred as the “archezoan scenario” 

and the “symbiogenesis scenario” (Koonin 2010). In the archezoan scenario the host of 

the proto-mitochondria endosymbiont was a hypothetical primitive amitochondrioal 

eukaryote and in the symbiogenesis scenario, a single endosymbiotic event involving the 

uptake of an alphaproteobacterium by an archaeal host cell which lead to the generation 

of mitochondria. It is clear that mitochondria came from the endosymbiosis between an 

archaeon and an alphaproteobacterium (Ku et al. 2015) and it is widely accepted that the 

origin of mitochondria was a single event that happened between 1.5 and 1.8 billion years 

ago, according to fossil record (Javaux and Lepot 2018) (Figure 1-7). Apart from the 

nucleus and chloroplast, mitochondria also contain its own genome- mitochondria DNA 

(mtDNA), to be found inside mitochondrial matrix. Mitochondrial DNA are only transmitted 

by female germ line. Mitochondria have circular and linear genome structure. Eukaryotic 

cells have more than hundred copies of mitochondria. These mitochondria copies have 

their own replication, transcription and translation (Zheng et al. 2019). Nuclear encoded 

gene products contribute the majority of functions in mitochondria. These gene products 

are produced from the nuclear genes, translated in the cytosol and later transferred into 

the mitochondria. The evolutionary course of mitochondria genomes among different 

groups of eukaryotes vary substantially and results in a large diversity of genome sizes 

and gene contents, which is the striking difference between mitochondria genome of plants 

and animals. Mitochondrial genome of animals (Wolstenholme 1992) are well organized 

and have compact gene content and very limited intergenic regions, in contrast plants 

mitochondrial genomes (Barraclough and Savolainen 2001) contain more genes and large 

proportion of noncoding DNA. Evolutionary rates of plants and animal mitochondrial 

sequences differ as much as 100-fold (Cole et al. 2018). The genome of mitochondria 

varies in size in different species, in human it contains 16,600 base pairs which encode 37 

genes (Anderson et al. 1981), and in kelp it is circular and contain 37,000 base pairs to 

38,000 base pairs. Mitochondria genome have one non coding region, which can be very 

useful for studying genetic variation and population structure in the control region. 

Mitochondria genome sequences play vital role in phylogenetic study of closely related 

species. Maternal lineages can be determining by mtDNA, as most of them are passed by 
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mother to offspring and show maternal genetics. Mitochondrial DNA structure and 

organization are highly conserved in mammals (Tineo et al. 2019) .  

 

1.5.1 Chloroplast genomes  

Chloroplast is semi-autonomous, intracellular eukaryotic cell organelle. It is a chlorophyll 

containing plastid, found in plant cells and algae, which convert sunlight into oxygen and 

carbohydrates in the process called photosynthesis, additionally, chloroplast is involved in 

the biosynthesis of fatty acids, vitamins, pigments and amino acids (Prabhudas et al. 

2016). Chloroplasts came later between 1.5 and 1.2 billion years ago, but they developed 

through very same process like mitochondria symbiotic event (Dyall, Brown, and Johnson 

2004) (Figure 1-7). In case of chloroplast, the endosymbiotic relationship was between a 

heterotrophic protist and a cyanobacterium. This single event emerged the eukaryotic 

photosynthesis and the monophyletic lineage Archaeoplastida (Gould, Waller, and 

McFadden 2008). It has been proven that, all plastid (chloroplast) came from primary 

endosymbiotic relationship, where cyanobacteria were engulfed by heterotrophic 

eukaryotes (Figure 1-7). They are called primary plastid and this kind of chloroplast is 

mainly found in red and green algae, but exceptions do exist (Paulinella chromatophora). 

In case of brown algae, the chloroplast is secondary since it is derived from the uptake of 

a photosynthetic red alga (Keeling 2010). Consequently, kelp have very composite 

chloroplasts, and they are surrounded by four membranes. Due to their origin from 

bacteria, chloroplasts have their own distinct genome, which is made up of single and 

circular DNA molecules. Plastid DNA is compact and has fast evolutionary rate. 

Chloroplast genome is totally different from nuclear genome in aspect of replication and 

mode of inheritance (Birky 2001). Chloroplast genomes mainly have a quadripartite 

structure and contain protein coding sequences, intergenic spacers and two inverted 

repeat regions, which can divide chloroplast’s circular genome into long single copy region 

and short single copy region (Glöckner, Rosenthal, and Valentin 2000).  Chloroplast 

genome of kelp mostly contain two copies of ribosomal RNA (rRNA) genes, tRNA genes, 

some prokaryotic RNA polymerase, and protein coding genes, for example Rubisco 

subunit, ribosomal proteins and thylakoids. The chloroplast gene content is highly 

conserved among the kelp, and most of them are involved in photosynthesis, transcription 

and translation (Wang et al. 2013). Nucleotide substitution rate in plastid genome provide 

the information about phylogeny in kelp at evolutionary level. These characteristics make 

the chloroplast genome an attractive tool for phylogeny studies. So far, only for some kelps 

species the analyzed and annotated chloroplast genome are available, such as 



INTRODUCTION 

    17 

Saccharina japonica, Undaria pinnatifida, Laminaria digitata and Laminaria solidungula. 

The size of chloroplast genome in kelp are around 120 kbp to 150 kbp (Rana et al. 2019).  

 

	

	
 

Figure 1- 7: Endosymbiotic theory: origin of mitochondria and chloroplast in eukaryotic cells. Taken from 

(en.wikipedia.org) 
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1.6 Organelle genome sequencing 

In eukaryotes, the genome comprises all heritable traits of an organism. It provides 

essential information which are required to determine morphological and physiological 

traits. Sequencing of organelle genome was once a long and difficult task. Now it is 

commonplace with the arrival of next-generation sequencing (NGS) technologies (Bahassi 

and Stambrook 2014) and user-friendly bioinformatics software have made it possible to 

gather mitochondrial and chloroplast DNA sequences and can be used in organelle 

genome evolution (Gan, Schultz, and Austin 2014). Genome sequencing reveal the 

presence of DNA nucleotides or  bases in the entire genome of organism (Sanger, Nicklen, 

and Coulson 1977), and this knowledge can be used in study of genomes and proteins 

which they encode, detection of genetic variants, which are associated with the complex 

molecular disease in human, mutation detection, carrier screening, detection of inherited 

disorders and can identified possible drug targets (Berglund, Kiialainen, and Syvänen 

2011). These days, when it comes to the field of human and animal genomic research, 

next generation sequencing is the most efficient sequencing method. With the help of this 

technology 100 times more data can be produced in comparison of Sanger method based 

capillary sequencer. NGS technology has revolutionized the analysis of genome, 

transcriptomes and epigenome (Schuster 2008). In next generation Illumina sequencing 

process, first step is library preparation or genomics template preparation, where 

ultrasonic fragmentation divides genomic DNA into fragments of 200-500bp long. Adapters 

are added to the both 5’ and 3’ ends of these segments, the process called tagmentation 

joins both fragmentation and ligation steps in one thus, increases the efficiency of library 

preparation process (Figure 1-8). These adapter-ligated fragments are then amplified 

using PCR and purified with gel, resulting in a sequencing library. Next, is cluster 

generation, where flow cell acts as a channel for adsorbing mobile DNA fragments as they 

pass through the lanes. There are eight lanes in every flow cell and these lanes have many 

adapters linked to the surface, which then match to the adapters added at the ends of the 

DNA fragment in the building process. This is how flow cell absorbs the DNA and supports 

the amplification of the bridge PCR on DNA surface. Afterwards, bridge PCR  is performed 

using the adaptors on the surface flow cell as template, as a result of continuous 

amplification and mutation cycles, DNA fragments are clustered at their respective 

locations, where each cluster holds multiple copies of a single DNA template, making them 

ready for next step sequencing (Shendure and Ji 2008). The sequencing method is based 

on sequencing-by-synthesis (SBS), where DNA polymerase, connector primers and four 

dNTP with base–specific fluorescent markers are added to reaction system. At the end of 
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the reaction all unused DNA polymerase and dNTP are eluted. Then, fluorescence 

excitation buffer is added, signal is excited by laser and consequently recorded by optical 

equipment. This optical signal is converted into sequencing base by computer analysis. 

For the next round of sequencing reaction the fluorescence signal is quenched by adding 

a chemical reagents. Next is alignment and data analysis (Figure 1-8), where all newly 

identified sequences are mapped to a reference genome (Carver et al. 2010). With the 

help of information’s system the sequencing differences are identified such as single 

nucleotide polymorphism (SNPs), or insertion-deletion (indel) (Li, Ruan, and Durbin 2008), 

phylogenetic and metagenomics (Medvedev, Stanciu, and Brudno 2009). Sequencing 

output for genome sequencing is limited to short reads of up to several hundred base pairs. 

Thus, genome assembly requires further computational processing (Ariyaratne and Sung 

2011). The assembly of short reads into contiguous sequences depends on an overlapping 

read design and high single nucleotide coverage. Computational approaches are used to 

create long sequences by connecting overlapping reads. Next generation Illumina 

sequencing gives information about gene structure, normalized coverage of all genes, 

information about regulatory genes, genome organization and coding sequences which 

determine the protein produced by each gene and deliver high accuracy, high yield of error 

free reads, high percentage of base calls and allows unlimited ranges for reads counting 

methods such as gene expression analysis (Marguerat, Wilhelm, and Bähler 2008). 

Genome analysis of more kelp species is a promising approach for further understanding 

the evolutionary history of this eukaryotic lineage. 
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Figure 1- 8: Next-Generation Sequencing Steps—Main steps of Illumina NGS (A) library preparation, (B) 
cluster generation, (C) sequencing, and (D) alignment and data analysis. Taken from (Illumina.com) 
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1.7 Key aim of this work 

The key aim of this study was to interpret the analysed sequencing data, elucidate the 

organellar genome architecture, phylogeny and evolutionary study in kelp species as part 

of the MARFOR (Functional variability and dynamics of responses of marine forests to 

global change) project. 

 

The specific objectives were: 

1. Detection of single nucleotide polymorphism (SNP) differences between organellar 

genomes of kelp species. 

2. Defining the population level single nucleotide polymorphism (SNP) density in 

Laminaria digitata (together with Alfred Wagner Institute) 

3. And contributing to Laminaria digitata genome sequencing (in the frame work of 

Phaeoexplorer project) 

 

1.8 Publications 

Significant part of this work has been published as research article and another is currently 

in pipeline to be published as listed below- 

	
Rana, S., Riehl, J., Valentine, K., Blanfuné, A., Reynes, L., Thibaut, T., Bartsch, I., 

Eichinger, L., Glöckner, G., 2020. Analysis of Organellar genomes in brown algae reveals 

an independent introduction of similar foreign sequences into the mitochondrial genome. 

Genomics journal, accepted 19.01.2021. 

 
Rana, S., Valentine, K., Bartsch, I., Glöckner, G. 2019. Loss of chloroplast encoded 

function could influence species range in kelp. Ecology and Evolution.2019;9:8759-8770. 
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2 Materials and methods 

2.1 Materials 

2.1.1 Kelp strains 

Laminaria digitata 

Clonal male gametophytes of Laminaria digitata were maintained at the laboratory of Alfred 

Wegener Institute (AWI seaweed culture number 3157), these gametophytes were 

originally isolated from Helgoland (North Sea). Gametophytes were cultivated at 8 - 15°C 

in sterilized filtered sea water in the presence of red light, which avoids differentiation and 

helps generate sufficient vegetative biomass for DNA extraction. Another isolates of 

Laminaria digitata were used for the analysis of population difference, which came from 

Connecticuts, USA (AWI culture number 3380), and Halifax, Canada (AWI culture number 

3259), and non-clonal vegetative gametophyte material (mixture from both sexes), which 

had been derived from spores collected in September 2018 at Roscoff and Quiberon 

(France) were used for DNA extraction. Additional, gametophytes of Laminaria digitata (for 

transcriptomics data, AWI) were also obtained from Helgoland, Germany (AWI seaweed 

culture: ♀ 3436, ♂ 3435) and Kongsfjorden, Spitsbergen, Norway (AWI seaweed culture 

collection: ♀ 3472, ♂ 3471). 

 

Laminaria solidungula 

Laminaria solidungula sporophytes produced from gametophytes cultures, were 

maintained at the key laboratory of Alfred Wegener Institute (culture number 3130), which 

were isolated from Kongsfjorden, Spitsbergen. Fertilization of the gametophytes occurred 

in short day lengths 5:19 hour LD at 0°C. For further cultivation, gametophytes were 

transferred into 16:8 hour LD conditions at 5°C, and at a 40 µmol m-2 s-1 photon fluence 

rate. After reaching a size of 5 cm, sporophytes were sampled for DNA extraction. 

 

Laminaria rodriguezii 

Laminaria rodriguezii was taken from the Mediterranean Sea. Silica dried, In-situ 

sporophytes of Laminaria rodriguezii were used for DNA extraction.  
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2.1.2 Chemicals 

1 kb Plus DNA Ladder      Promega GmbH 

Agarose (Electrophoresis Grade)     Life Technologies™Corp. 

β-Mercaptoethanol       Sigma-Aldrich Corp. 

Cetyl trimethylammonium bromide (CTAB)    Sigma-Aldrich Crop. 

Deoxyribonucleotide triphosphates (dNTPs)   Sigma-Aldrich Corp.  

Ethanol (98-100 %)       Sigma-Aldrich Corp. 

Ethidium bromide       Sigma-Aldrich Corp. 

Ethylenediaminetetraacetic acid (EDTA)    Merck KGaA 

Hydrochloric acid (37 %)      Sigma-Aldrich Corp. 

Isopropanol         Sigma-Aldrich Corp. 

Phenol: Chloroform: Isoamyl alcohol    Thermo Scientific Inc. 

Sodium acetate       Merck KGaA 

Sodium chloride       Sigma-Aldrich Corp. 

2.1.3 Enzymes 

Proteinase K                                       Merck KGaA 

Ribonuclease A (RNase A)                                     Sigma-Aldrich Corp.                                    

2.1.4 Kit 

DNeasy PowerSoil kit                                                                Qiagen N.V. 

RNeasy® Mini Kit               Qiagen N.V. 
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2.1.5 Media and buffers  

2.1.5.1 Media for Laminaria digitata gametophytes, Laminaria solidungula and 
Laminaria rodriguezii sporophytes culture 

Provasoli Enriched Seawater Medium (PES)                       (Andersen and America 2005) 

Enrichment Stock Solution 

Tris base      5.0 g 

NaNO3      3.5 g 

Na2 ß-glycerophosphate • H2O   0.5 g 

Iron-EDTA solution     250 ml 

Trace Metal Solution     25 ml 

Thiamine • HCl (vitamin B1)    0.500 mg 

Biotin (vitamin H)     1 ml 

Cyanocobalamin (vitamin B12)   1 ml 

 

Iron- EDTA Solution 

The below mentioned compounds were dissolved in 900 ml distilled water and solution 

was made to 1 liter by adding more distilled water. Later, it was autoclaved and stored at 

4°C 

Na2EDTA • 2H2O     0.841 g 

Fe(NH4)2(SO4)2 • 6H2O    0.702 g 

 

Trace Metals Solution (from Provasoli 1968) 

Na2EDTA • 2H2O      12.74 g 

FeCl3 • 6H2O      0.484 g  

H3BO3      11.439 g   

MnSO4 • 4H2O     1.624 g  

 ZnSO4 • 7H2O     0.220 g  

CoSO4 • 7H2O     0.048 g 
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2.2 Methods 

2.2.1 Genomic DNA isolation of Laminaria digitata gametophytes, Laminaria 

solidungula and Laminaria rodriguezii sporophytes 

The CTAB (cetyl trimethylammonium bromide) method for isolating algal DNA (Doyle 

1991) was applied. Before DNA isolation, the gametophytes were washed three to six 

times with sterilized filtered seawater every second day to reduce the amount of bacteria 

in the culture. Algae samples (gametophytes and sporophytes) were prepared by 

cryogenically grinding the tissues in a motor pestle, then made into fine powder. 1 ml of 

lysis buffer was added to the homogenized sample, mixed and thoroughly vortexed and 

then was incubated at 70°C for 1 hour. After incubation, the homogenate was centrifuged 

for 10 minutes at 20000 x g at room temperature to pellet the cell debris. Supernatant was 

transferred into a new tube, 1 volume of Phenol: Chloroform: Isoamyl alcohol (25: 24:1) 

was added to it and again vortexed for 5 seconds. The sample was then centrifuged for 

10 minutes at 20000 x g at 4°C. The aqueous phase was transferred into a fresh tube and 

DNA was precipitated with 1/10 volume of 3 M sodium acetate (pH 4.8) and 2/3 volume of 

isopropanol, followed by 20 minutes of centrifugation at 20000 x g at 4°C. Afterwards, 

pellet was washed with 70% ethanol. Consequently, the pellet was dried and alcohol was 

removed without completely drying the DNA. The pellet was then re-suspended in 25µl TE 

buffer (10mM Tris, pH 8.1, 1 mM EDTA) or in nuclease free water. 

 

Lysis buffer  

Tris/HCl, pH 8.0  100mM 

NaCl    1.4 M 

Na2EDTA   20 mM 

ß- Mercaptoethanol   0.2% (v/v) 

CTAB    1%(w/v) 
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2.2.2 Sequencing 

Extracted DNA of Laminaria digitata, Laminaria solidungula and Laminaria rodriguezii 

were sequenced through Illumina next generation sequencing by an Illumina HiSeq run. 

This technology has the advantage of using a terminator-based method which can 

recognize single bases incorporated into DNA template strand resulting in an accurate 

base-by-base sequencing without sequence context-specific errors. Approximately, 5µg of 

total DNA was converted to an Illumina sequencing library and analyzed on an Illumina 

HiSeq machine. The next step was library preparation- where all three genomic DNA of 

Laminaria species were first fragmented and later adaptors were attached to both 5´and 

3´ end. Further, sequencing was performed, which amplified the DNA fragments by PCR 

process. Both, library preparation and sequencing were performed by the Cologne Center 

for Genomics (CCG). Furthermore, trimming and alternative clipping strategies were used 

to remove the lower quality bases and also to get rid of adapters with Illumina software 

suit.  

 

2.2.3 Assembly and Organellar genome extraction 

The raw reads were assembled by ABySS-pe (assembly by short sequences) (Simpson 

et al. 2009) using k-mer 40, 45 and 55. The Abyss algorithm contains two stages. First, all 

possible sub-strings of length k-mer are developed from sequence reads. The k-mer 

dataset removes the read errors and builds initial contigs. Secondly, mate pair information 

is used to enlarge contigs by determining the uncertainty in contig overlaps. The reads of 

Laminaria digitata, Laminaria solidungula and Laminaria rodriguezii contain non-plastid 

DNA, which are further encountered by Basic Local Alignment Search Tool (BLAST) with 

known plastid genome sequences of Saccharina japonica (JQ405663). Following that, 

contigs were used to generate complete circular chloroplast genomes of Laminaria digitata 

and Laminaria solidungula. In case of Laminaria rodriguezii, the known coding sequences 

of chloroplast (NC_044689) (Rana et al. 2019) and mitochondria (NC_004024) (Secq, 

Kloareg, and Goër 2002) genome of Laminaria digitata were used. Gaps between the 

contigs were filled by Gapfiller (Boetzer and Pirovano 2012). Gapfiller has satisfactory high 

short-reads coverage, and it produces high coverage of sufficient longer sequences. For 

population differences study in Laminaria digitata, PCR was done with forward primer 

TTCATCAATAAATAAAAGACCACCATTGC AT POSITION 75,636 to 75,665 and reverse 

primer TTCATCAATAAATAAAAGACCACCCATTGC at position 76,426 to 76,455. The 

resulting PCR products were ligated into pGem-T Easy vectors. To be able to discern 
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between polymerase errors and true SNPs, these clones from each ligation were 

sequenced. 

 

2.2.4 Phylogenetic Analysis  

The chloroplast coding sequences of Laminaria digitata and Laminaria solidungula were 

obtained from coding sequences of Saccharina japonica chloroplast genome, using 

BLAST algorithm. And, chloroplast and mitochondria coding sequences of Laminaria 

rodriguezii were obtained from coding sequences of organelle genome of Laminaria 

digitata (Rana et al. 2019; Secq et al. 2002).  Mitochondrial and chloroplast nucleotide 

sequences were derived, and aligned gene-wise, using muscle tool (Edgar 2004). For the 

second publication whole organellar genomes were aligned and checked manually. The 

single alignment was checked manually and edited, wherever necessary. Single 

alignments were concatenated by SCaFoS (Roure, Rodriguez-Ezpeleta, and Philippe 

2007). Afterwards, the data set was used in Molecular Evolutionary Genetics Analysis 

(MEGAX) software (Tamura et al. 2013) using maximum-likelihood approach and the 

General Time Reversible model (Nei and Kumar 2000) and 500 bootstrap repetitions were 

performed on the data sets. MEGAX program is useful for determining the spacing and 

ordering of sequence diversity in species and gene family tree. Further,  MrBayes was 

used to evaluate the outcome of the maximum likelihood analysis (Ronquist et al. 2012a), 

in which evolutionary model was set to GTR with gamma distributed rate variation and a 

proportion of invariable sites, and used 80000 generations to get the standard deviation of 

split frequencies below 0.01 and a burn-in of 1000 was used. 

 

2.2.5  Organellar genome analyses 

Assembled genome of Laminaria digitata, Laminaria solidungula and Laminaria rodriguezii 

were tested with the help of nucmer tool of MUMmer (Kurtz et al. 2004), which could rapidly 

align the entire genomes. Further, alignment was done with the help of MAFFT multiple 

sequence alignment tool (Katoh and Standley 2013). The annotation of assembled 

genomes of all Laminaria species was done by using available kelp chloroplast genomes 

in BLAST tool. t-RNA were detected via t-RNA-scan-SE (Lowe and Eddy 1997) using 

organelle t-RNA detection method. Single nucleotide polymorphism (SNPs), which are the 

basic form of sequence variations, originated by single base substitutions, and insertion 

deletion polymorphism (indels), where one or more nucleotides were inserted and deleted 
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in the genome sequences, this way both SNPs and small insertions-deletions were defined 

for the analysis of allelic differences in diploid eukaryote genomes. 

The raw sequence reads from both Laminaria digitata and Laminaria solidungula were 

mapped to the Saccharina japonica genome as a reference. Another chloroplast genome 

of kelp species were taken from NCBI data base (Table 2-1), and artificial reads were 

produced through ArtificialFastqGenerator (Frampton and Houlston 2012). The reads from 

all chloroplast genomes were mapped to the reference genome (Saccharina japonica) with 

the help of Bowtie2 tool (Langmead and Salzberg 2012) and sorted bam file was 

generated. Bowtie 2 is very efficient tool, which can align sequence reads to the long 

reference sequences. Furthermore, sequence variations were analyzed using The 

Genome Analysis Toolkit (Auwera et al. 2013) and obtained SNP library was further 

examined manually. Afterwards, the sequences portion of Laminaria rodriguezii, which 

were larger than 100 bases were examined for presence of additional open reading frames 

(ORFs) without any annotation. The entire annotated organellar genomes were converted 

to a GenBank file and later checked with OGDRAW (Greiner, Lehwark, and Bock 2019). 

Subsequently, all sequences were edited to start at the same position and afterwards, all 

were aligned by Clustal Omega (McWilliam et al. 2013; Sievers et al. 2011). 

 

2.2.6 Physiology and Single nucleotide polymorphisms (SNPs) analyses of 
transcript data on the draft Laminaria digitata nuclear genome 

2.2.6.1 Physiological Experiment 

Laminaria digitata gametophytes, which were isolated from Spitsbergen and Helgoland 

were used for physiological experiments (performed at Alfred-Wegener-Institute, 

Bremerhaven). Prior to the start of the experiment, cultures were maintained vegetatively 

under red light (approx. 3 µmol photons m-2 s-1; ProfiLux 3 with LED Mitras daylight 150, 

GHL Advanced Technology, Kaiserslautern, Germany) in a 16:8 h L:D cycle at 15°C in a 

temperature-controlled cooling chamber (error ± 1°C) in sterile Provasoli-enriched 

seawater (PES; Provasoli, 1968; modifications: HEPES-buffer instead of TRIS, double 

concentration of disodium glycerol phosphate; iodine enrichment following Tatewaki 

1966). To perform fertilization of selfings and crosses, stock suspensions of each 

gametophyte culture were prepared by gently fragmenting gametophyte material using 

mortar and pestle. Gametophytes were added to petri dishes (Ø 5 cm) containing four 

glass cover slips and filled with 12 ml half-strength PES to a desired density of each 250 

male and female gametophyte filaments cm-2 in all combinations. This created the “parent” 

treatments of HfHm, Helgoland female x Helgoland male; HfSm, Helgoland female x 
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Spitsbergen male; SfHm, Spitsbergen female x Helgoland male; SfSm, Spitsbergen 

female x Spitsbergen male (n = 4). Gametogenesis was induced at 10°C and 15–18 µmol 

photons m-2 s-1 white light in a temperature-controlled cooling chamber. Macroscopic 

sporophytes were subsequently cultivated in 1-litre glass beakers and 5-litre bottles with 

gentle aeration at 10°C under increased irradiance of 30–35 µmol photons m-2 s-1 with 

weekly changes of half-strength PES medium. In the main experiment, 4–7 cm long 

sporophytes were subjected to temperatures of 10°C (control), 19°C and 20.5°C to assess 

heat stress responses between crosses. Seven sporophytes were assigned to one 

replicate plastic container (Wide neck containers series 310 PETG, 2000 ml, Kautex 

GmbH & Co. KG, Bonn-Holzlar, Germany) filled with 1.8 litre of half-strength PES (n = 4). 

Samples were acclimated for one day at 13.5°C and one day at 17°C before reaching the 

experimental temperatures of 19°C and 20.5°C on day 0 of the experiment, while the 

control treatments remained at 10°C. Two sporophytes per replicate were marked to be 

used for growth and fluorometry measurements throughout the experiment by punching 

small holes in the distal thallus with a Pasteur pipette. Of the unmarked five sporophytes 

per replicate, three were frozen in liquid nitrogen throughout the experiment (before 

acclimation, day 1 of temperature treatment, day 18 of temperature treatment). Samples 

frozen before acclimation and after 18 days of temperature treatment were used for 

transcriptomic analysis, and stored at -80°C and processed within three weeks. The 

remaining two sporophytes served as backup. 

 

2.2.6.2 RNA isolation  

Frozen sporophytes (500mg) were grounded in liquid nitrogen with pre cooled mortar and 

pestle, and homogenized was transferred to 2.0 ml Eppendorf tubes. 1 ml of extraction 

buffer and 20 µl ß-Mercaptoethanol were added and mixed well. The mixture was 

incubated for 10 min at 45°C in a thermoblock, then 1 ml of Chloroform:Isoamyl alcohol 

(24:1 v/v) was added, and vortexed vigorously for 10 min followed by centrifugation of 

sample at 12,000g for 20 min at 20°C (Heinrich et al, 2012). Later, aqueous phase was 

collected (maximal 750 µl) into a cleaned 2 ml microcentrifuge tube. Afterwards, 0.3 

volume of ethanol (96-100%) was added and mixed gently. Once again, 1 ml 

Chloroform:Isoamyl alcohol (24:1 v/v) was mixed, and vortexed for 10 min and later 

centrifuged at 12,000g for 20 min at 20°C (Mundt, Heinrich, and Hanelt 2019). Supernatant 

was collected (maximal 500 µl) into a cleaned 2 ml microcentifuge tube and then, total 

RNA extraction was carried out using the Qiagen RNeasy® Mini Kit according to the 

manufacturer’s instructions. RNA was eluted from the spin columns with 50 µl of 
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RNase-free water, and the quantity and purity of the extracted RNA were determined by 

absorbance analysis of the samples using NanoDrop ND-100 spectrometer and the quality 

of RNA were checked by Bioanalyzer. 

  
Lysis buffer  

 

CTAB    2% (w/v)	
Tris/HCl, pH 8.0  100mM 

NaCl    1.0 M 

Na2EDTA   50mM 

ß- Mercaptoethanol   0.2% (v/v) 

 

2.2.6.3 RNA sequencing 

For measurement of gene expression changes, to reveal a snapshot of the whole 

transcriptome at a particular time period, Illumina next generation sequencing was 

performed by an Illumina HiSeq run. Both RNA library preparation and sequencing were 

performed by the Cologne Center for Genomics. 

 

2.2.6.4 Data analysis with DESeq2  

Bioinformatic transcriptomics and data processing were carried out by Daniel (AWI) and 

principal component analysis was generated in the statistical environment software R 

(v.2.15.0, R Development Core Team, 2012) and RStudio (v.0.99.465, RStudio Team, 

2015). Further data visualisation was done with CorelDRAW® 2017 (in collaboration with 

AWI). 

 

2.2.6.5 Mapping and SNPs detection 

RNA sequencing reads were aligned to the reference genomic sequences with the help of 

Bowtie2 tool (implemented in tophat2). Single nucleotide polymorphisms (SNPs) were 

detected using Genome Analysis Toolkit (GATK), and all potential variation of allele 

expression was analysed. Furthermore, the analyses of SNPs in different crosses were 

done in excel. 
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3 Results 

DNA isolation in kelp species is very difficult due to the presence of high level of lipids, 

polysaccharides or phenolic compound. After a number of unsuccessful attempts, we 

finally produced enough DNA for genomic assembly of Laminaria species and also high 

molecular weight DNA (Figure 2-1) for nanopore sequencing (this chapter is a compilation 

of the corresponding part of reference (Rana et al. 2019)). 

   

                                
 

Figure 2- 1: Genomic DNA, gel picture of Laminaria species A: Laminaria digitata B:  Laminaria 

solidungula C:  Laminaria rodriguezii 

3.1 The organellar genomes of Laminaria digitata, Laminaria solidungula 
and Laminaria rodriguezii  

The sequencing of total DNA generated 179 million reads for Laminaria digitata and 150 

million reads for Laminaria solidungula and 134 million reads for Laminaria rodriguezii. 

Which were amounting to around 12.3, 11.3 and 9.8 gigabases, respectively. The 

mitochondrial genomes of L. solidungula and L. rodriguezii and chloroplast genome of L. 

digitata, L. solidungula and L. rodriguezii were completely reconstructed from short read 

sequencing (Figure 2-2 A, B, C, D and E) using the draft assembly of all reads and 

extracting the organellar parts with BLAST tool (Method 2.2.3) 
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Figure 2- 2: Newly sequenced organellar genomes. A: Laminaria digitata chloroplast genome B: 
Laminaria solidungula chloroplast genome C:  Laminaria solidungula mitochondrial genome D: Laminaria 

rodriguezii chloroplast genome E: Laminaria rodriguezii mitochondrial genome & the arrow indicates the 

position of the ORF as discussed in the text. The figures were made with OGdraw (Greiner et al. 2019) from 

the annotated sequences files in GenBank. 
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After the assembly of all reads, we extracted the chloroplast contigs from the total 

assembly using the Ectocarpus siliculosus chloroplast coding sequences as a bait, and 

mitochondria contigs of Laminaria rodriguezii and Laminaria solidungula were retrieved 

from the known mitochondrial sequences of Laminaria digitata. The coverage of the 

organelle genome is much higher than the nuclear genomes, which were estimated around 

~3000x each for Laminaria digitata, Laminaria solidungula and Laminaria rodriguezii, the 

assembly of large amount of reads results in a very fragmented organellar genome. 

Consequently, the extracted chloroplast and mitochondria contigs were extended, and 

scaffolded and the gaps between them were filled by using the original raw reads 

information with the help of Gapfiller  (Boetzer and Pirovano 2012). We annotated 

organellar genomes using the other kelp genomes (Table 2-1). All these genomes had 

similar lengths as their related counterparts (Table 2-1).  

Table 2- 1: The organellar genomes used in this study. The IDs are to the NCBI accession numbers. 

Name ID Length Comments 
Mitochondrial genomes    
Desmarestia viridis AY500367.1 39049  
Lessonia spicata NC_044181.1 37097  
Nereocystisluetkeana NC_042395.1 37399  
Macrocystis integrifolia NC_042669.1 37366  
Laminaria solidungula MT732098 37862 Included in PhD work 
Laminaria rodriguezii MT732097 38047 Included in PhD work 
Laminaria hyperborea JN099683.1 37976  
Laminaria digitata AJ344328.1 38007  
Saccharina latissima KM675818.1 37659  
Saccharina longissima JN099684.1 37628  
Saccharina japonica MG712776.1 37657  
Saccharina japonica AP011493 37657  
Saccharina religiosa AP011494.1 37657  
Saccharina longipedalis AP011497.1 37657  
Saccharina diabolica AP011496.1 37657  
Saccharina ochotensis AP011495.1 37656  
Saccharina coriacea AP011499.1 37500  
Saccharina angustata AP011498.1 37605  
Saccharina sculpera KR350664.1 37627  
Costaria costata KF384641.1 37461  
Undaria pinnatifida KF319031.1 37402  
Chloroplast genomes    
Lessonia spicata NC_044182.1 130305  
Laminaria solidungula MH784528.1 130784  
Costaria costata NC_028502.1 129947  
Undaria pinnatifida NC_028503.1 130383  
Laminaria digitata MH784527 130376 Included in PhD work 
Saccharina japonica JQ405663.1 130584  
Laminaria rodriguezii MT732096 131092 Included in PhD work 
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Annotation revealed that the slightly longer Laminaria rodriguezii mitochondrial genome 

contain an additional open reading frame, which are not yet known from any other kelp. 

We also included de novo detection of tRNAs in chloroplast genome. With this approach, 

we defined 139 coding sequences each in the genomes and 29 (L. digitata and L. 

rodriguezii) and 30 (L. solidungula) tRNAs together with three rRNA species (16S, 23S, 

and 5S) located in the inverted repeats. Because of the difference in tRNAs number in 

chloroplast genomes of kelp species, we further analysed, which tRNA were affected by 

potential evolutionary processes. In total, we defined 36 tRNA locations on the chloroplast 

genomes of which 27 are located on the same position in five chloroplast genomes, which 

we used for chloroplast analyses (Undaria pinnatifida, Costaria costata, Saccharina 

japonica, Laminaria digitata and Laminaria solidungula) (Table 2-2). Out of the nine tRNAs, 

seven are present in only one species, one can be found in two species, and the remaining 

one is missing in Costaria costata only. Interestingly, six or seven orphan tRNA occurring 

in two genomes are predicted to contain type II introns. 

Table 2- 2: tRNAs and their positions in the kelp genomes. LD= Laminaria digitata, LS= L. solidungula, 
SJ= Saccharina japonica, CC= Costaria costata, UP= Undaria pinnatifida 

Number 
of 
tRNAs 

31  28  31  29  30  

Species UP  CC  SJ  LD  LS  
tRNA start stop start stop start stop start stop start stop 
Met     5832 5899     
Phe 7288 7360 7293 7365 7148 7220 7126 7198 7143 7215 
Tyr 27354 27434 27433 27513 27249 27329 27279 27359 27236 27316 
Sup 
(intron) 

34028 34266       33945 34190 

Asp 38590 38664 38727 38801 38498 38572 38600 38674 38529 38603 
Ile 
(intron) 

50988 51192         

Arg 51998 52070 52161 52233 51870 51942 51929 52001 51872 51944 
Glu 52127 52199 52290 52362 51999 52071 52058 52130 52001 52073 
Ile 
(intron) 

59171 59416         

Leu 81865 81946 81703 81784 81909 81990 81785 81866 81854 81935 
Ile 83943 84016 83860 83933 84124 84197 83915 83988 84195 84268 
Ala 84020 84092 83937 84009 84201 84273 83992 84064 84272 84344 
Gly 
(intron) 

  96734 96976       

His 116468 116540 116392 116463 116650 116722 116377 116449 116776 116848 
Thr 116618 116690 116545 116617 116804 116876 116531 116603 116930 117002 
Val 117062 117133 116874 116945 117160 117231 116914 116985 117317 117388 
Arg 117156 117228   117254 117326 117008 117080 117411 117483 
Phe 
(intron) 

    117852 117957     

Asn 120522 120593 120233 120304 120563 120634 120381 120452 120789 120860 
Arg 128196 128269 127843 127916 128307 128380 128066 128139 128471 128544 
Gln 128311 128382 127951 128022 128414 128485 128181 128252 128591 128662 
Leu 
(intron) 

      116823 116617   

Trp 109963 109891 109885 109813 110141 110069 109912 109840 110272 110200 
Gly 78187 78117 78029 77959 78220 78150 78094 78024 78169 78099 
Lys 72723 72652 72767 72696 72690 72619 72778 72707 72697 72626 



RESULTS 

    39 

Cys 49214 49144 49362 49292 49084 49014 49174 49104 49106 49036 
Lys 
(intron) 

    43701 43498   43708 43505 

Met 43556 43471 43710 43625 43453 43368 43562 43477 43461 43376 
Met 38427 38355 38569 38497 38339 38267 38441 38369 38371 38299 
Ser 38347 38258 38489 38400 38259 38170 38361 38272 38291 38202 
Gly 35888 35817 35999 35928 35770 35699 35865 35794 35798 35727 
Pro 25512 25439 25613 25540 25430 25357 25458 25385 25416 25343 
Met 25383 25310 25492 25419 25309 25236 25337 25264 25295 25222 
Ser 24675 24588 24754 24667 24564 24477 24588 24501 24575 24488 
Ile 3464 3391 3466 3393 3286 3213 3288 3215 3287 3214 
Ala 3387 3315 3389 3317 3209 3137 3211 3139 3210 3138 

 
 
3.2 The phylogeny of kelp species using complete mitochondria and 

chloroplast genomes 

To be able to trace back the evolution of kelp species we needed a robust phylogeny of 

the analysed species. Hence, we checked the sequences for collinearity and retrieved all 

kelp species organellar genome from NCBI database to our reconstructed organellar 

genomes (Table 2-1). Additionally, the mitochondrial genome of the brown alga 

Desmarestia viridis (Secq et al., 2006), which is not a kelp species, but turned out to be 

collinear to kelp mitochondrial genome, was providing a suitable outgroup for the 

phylogenetic analyses. The collinearity of organellar genomes in brown algal species was 

used to employ complete organellar genome alignments directly for a phylogenetic 

analysis irrespective of their coding potential, thus also including tRNAs, rRNAs, and 

intergenic regions. We used 18 complete mitochondrial genomes of kelps for the 

calculation of the mitochondrial tree together with the newly sequenced mitochondrial 

genomes from L. solidungula and L. rodriguezii and D. viridis as an outgroup. We found 

no differences in species placements between the organellar trees (Fig 2-3 A, B and C). 

For the chloroplast tree, we used chloroplast genomes from Saccharina japonica (Wang 

et al. 2013), Undaria pinnatifida (Zhang, Wang, Liu, G. Wang, et al. 2015a), Costaria 

costata (Zhang, Wang, Liu, H. Wang, et al. 2015), Lessonia spiculata (Tineo et al. 2019) 

and some of the Laminaria species analysed here (Figure 2-3 A). The mitochondrial 

maximum likelihood tree is not well resolved in the Saccharina species complex due to 

inadequate phylogenetic signal. We also used MrBayes (Method 2.2.4) to compare its 

outcome with the maximum likelihood tree. This returned the same tree topology as with 

the maximum likelihood method, with even higher support at the deeper branches with 

cumulative probability of 100 % at all nodes (Figure 2-3 C). MrBayes also yielded two 

alternative topologies with lower cumulative probability affecting the placement of S. 

diabolica and S. cochotenis. It is clear from the phylogeny tree that the Laminaria species 

group together, and the bootstrap values of the kelp trees indicate that the phylogenetic 
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relationships of the species are well resolved. Sequence variations not following the 

species tree were also observed, but the phylogenetic signal over the whole plastid 

genome seems to be strong enough to be not influenced by them. This phylogeny was 

then the basis for further analysis of the noticeable trends in kelp chloroplast genome 

evolution. 

A. 
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B. 
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						C.	

	
	

Figure 2- 3:  Phylogenetic analysis of kelp species with complete chloroplast and  mitochondrial 
genomes. A: Maximun likelihood tree of aligned chloroplast genomes B: Maximum likelihood tree of aligned 

mitochondrial genomes. The evolutionary history was inferred by using the Maximum Likelihood method and 

General Time Reversible model (Nei and Kumar 2000). The tree with the highest log likelihood (-306179.15) 

is shown. The percentage of trees in which the associated taxa clustered together is shown next to the 

branches calculated from 500 bootstrap repetitions. Initial trees for the heuristic search were obtained 

automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated 

using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log 

likelihood value. Evolutionary analyses were conducted in MEGA X (Kumar et al. 2018) C: Topology of the 

kelp mitochondrial tree calculated with MrBayes (Ronquist et al. 2012) using 80000 generations and a burn 

in of 1000. All splits have a posterior probability of 100 %. The branch lengths are shown even if they are 0 

in case of the Saccharina species cluster. 
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3.3 Alignment and special feature in organelle genomes  

3.3.1 Mitochondrial genome  

All kelp species organelles contain the same genes, that means, no gene was missing or 

additionally present in any species with one exception: only in Laminaria rodriguezii we 

found an additional open reading frame (ORF) in the mitochondrial genome. This ORF is 

embedded in a ca. 700 base-pairs stretch of DNA not represented in any of the analysed 

mitochondrial kelp genomes so far (Table 2-1). The ORF in Laminaria rodriguezii is 456 

bases or 152 amino acids long and, according to InterProScan (Jones et al. 2014), 

contains no recognizable domain. We found, however, significant similarity to a 

mitochondrial ORF in Desmarestia viridis (Secq et al. 2006), where the similarity covers 

the 3’ end of the L. rodriguezii ORF and at the 5’ end of the D. viridis ORF over a length of 

234 bases or 78 amino acids (Figure 2-4 B). Also a short stretch of 45 bases upstream of 

orf211 in D.viridis is similar to ORF 2 in L. rodriguezii (Figure 2-4 A, C). Despite overall 

collinearity of the two mitochondrial genomes the two ORFs do not share the same relative 

position within the mitochondrial genome. While the D. viridis ORF is located between 

tRNA-K and tRNA-V adjacent to the 23S rRNA gene replacing tRNA-A, the L. rodriguezii 

ORF is placed between the 16S rRNA gene and rpl31 (Figure 2-4 B). The foreign 

sequences in both, L. rodriguezii and D. viridis, show no detectable similarity to any known 

sequences including brown algal or kelp nuclear genomes, bacteria associated with brown 

algae, or viruses. We also did not find any evidence for transcriptional activity of the foreign 

sequences as no similar sequences are present in any brown algal transcriptome datasets. 

 

A. 
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B.	
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C. 

 
 

Figure 2- 4 Alignment of the gene product of ORF2 of L. rodriguezii with its partial counterpart from D. 

viridis (orf211 in NC_007684). A:  A sketch of the two ORFs. ORFs are drawn as open rectangles, the 

unique regions of both species are represented by red lines. the two overlaps are depicted as grey boxes. B: 
The alignment of the translated protein sequences of the two ORFs. Asterisks denote conserved residues, 

colons conserved substitutions, and dots semi conserved substitutions. C: The section comprising the two 

overlaps aligned on nucleotide level. The overlapping parts from A are framed with red lines, the start codon 

of orf211 is highlighted by a green open box. Asterisks denote conserved residues in the consensus. Identical 

bases in D. viridis are represented by dots. The alignments were done with clustalw (Larkin et al. 2007).  
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3.3.2 Chloroplast genome  

Collinearity of chloroplast genome were tested with the help of nucmer tool (NUCleotide 

MUMer, part of MUMmer tool) (Kurtz et al. 2004) alignment, using Undaria pinnatifida 

genome as reference, which showed that the large segments of all chloroplast genomes 

could indeed be aligned (Figure 2-5). Hence, only a few regions appear to be rearranged 

or contain larger insertions and deletions, as a result similarity dropped below the 90% 

threshold. 

 

 

Figure 2- 5: Synteny of the four kelp chloroplast genomes. The assembled genomes were mapped against 

the Undaria pinnatifida genome using nucmer (Kurtz et al. 2004) and visualized with Bio:: Graphics 

(https://metacpan.org/release/LDS/Bio-Graphics-2.37). Colours for the different chloroplast genomes were 

chosen arbitrarily. The identity threshold for each segment was 90 % and small hits contained within a larger 

one were removed including the matches of the second repeat region. The scale represents the U. pinnatifida 

base positions in kb. The breaks indicate nucmer alignment breaks Table 2-3. When gaps between 

alignments are small the graphics software shifted the next alignment block to a lower position to emphasize 

the alignment gap positions. 

Missing or additional tRNAs are very small to cause such similarity breakpoints as the 

comparison of tRNA positions (Table 2-2) and nucmer similarity breakpoint positions show 

(Table 2-3). 

Table 2- 3: nucmer segments of kelp genomes mapped to the U. pinnitafida genome (corresponds to Figure 
2-5) 

CC	 Costaria	 segments	 9	 13403	 .	 +	 1	 	

CC	 Costaria	 segments	 13533	 24692	 .	 +	 1	 	
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CC	 Costaria	 segments	 24859	 42156	 .	 +	 1	 	

CC	 Costaria	 segments	 42290	 48198	 .	 +	 1	 	

CC	 Costaria	 segments	 48384	 72508	 .	 +	 1	 	

CC	 Costaria	 segments	 72648	 73200	 .	 +	 1	 	

CC	 Costaria	 segments	 73336	 74800	 .	 +	 1	 	

CC	 Costaria	 segments	 75314	 116698	.	 +	 1	 	

CC	 Costaria	 segments	 116987	120312	.	 +	 1	 	

CC	 Costaria	 segments	 120439	120642	.	 +	 1	 	

CC	 Costaria	 segments	 120746	128507	.	 +	 1	 	

CC	 Costaria	 segments	 128991	130383	.	 +	 1	 	

SJ	 Saccharina	 segments	 1	 177	 .	 +	 1	

SJ	 Saccharina	 segments	 178	 24745	 .	 +	 1	

SJ	 Saccharina	 segments	 24854	 42083	 .	 +	 1	

SJ	 Saccharina	 segments	 42946	 48206	 .	 +	 1	

SJ	 Saccharina	 segments	 48778	 52199	 .	 +	 1	

SJ	 Saccharina	 segments	 52297	 57837	 .	 +	 1	

SJ	 Saccharina	 segments	 58025	 62661	 .	 +	 1	

SJ	 Saccharina	 segments	 62748	 72506	 .	 +	 1	

SJ	 Saccharina	 segments	 72643	 73187	 .	 +	 1	

SJ	 Saccharina	 segments	 73341	 74776	 .	 +	 1	

SJ	 Saccharina	 segments	 75310	 81960	 .	 +	 1	

SJ	 Saccharina	 segments	 82003	 116698	.	 +	 1	

SJ	 Saccharina	 segments	 116995	120286	.	 +	 1	

SJ	 Saccharina	 segments	 120474	124772	.	 +	 1	

SJ	 Saccharina	 segments	 124883	128515	.	 +	 1	

SJ	 Saccharina	 segments	 128991	130383	.	 +	 1	

LD	 L_digitata	 segments	 1	 177	 .	 +	 1	

LD	 L_digitata	 segments	 178	 24331	 .	 +	 1	

LD	 L_digitata	 segments	 24575	 24692	 .	 +	 1	

LD	 L_digitata	 segments	 24853	 34190	 .	 +	 1	
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LD	 L_digitata	 segments	 34292	 48199	 .	 +	 1	

LD	 L_digitata	 segments	 48416	 73211	 .	 +	 1	

LD	 L_digitata	 segments	 73341	 74756	 .	 +	 1	

LD	 L_digitata	 segments	 75313	 116698	.	 +	 1	

LD	 L_digitata	 segments	 116971	130383	.	 +	 1	

LS	 L_solidungula	 segments	 5639	 24692	 .	 +	 1	

LS	 L_solidungula	 segments	 5669	 1	 .	 +	 1	

LS	 L_solidungula	 segments	 24853	 72534	 .	 +	 1	

LS	 L_solidungula	 segments	 72644	 73206	 .	 +	 1	

LS	 L_solidungula	 segments	 73336	 74760	 .	 +	 1	

LS	 L_solidungula	 segments	 75313	 81953	 .	 +	 1	

LS	 L_solidungula	 segments	 82003	 116697	.	 +	 1	

LS	 L_solidungula	 segments	 116971	120642	.	 +	 1	

LS	 L_solidungula	 segments	 120746	130383	.	 +	 1	

 

Furthermore, we aligned the chloroplast genomes with MAFFT (multiple sequence 

alignment program), which proved that the nucmer segments are aligned in the same order 

in all chloroplast genomes and that therefore all kelp chloroplast genomes are collinear. 

However, closer inspection revealed that small rearrangements occurred involving the 

inverted repeat (IR) regions (Table 2-4). In comparison to C. costata, S. japonica and U. 

pinnatifida both Laminaria species L. digitata and L. solidungula have a gene directly 

adjacent of the IRs translocated to the other copy of the IR (Table 2-4). In L. digitata rpl21 

is affected and in L. solidungula ycf37. Interestingly, ycf37 was presumably pseudogenized 

during this process in L. solidungula, since the N terminal part of the protein is no longer 

encoded in this gene (Table 2-5). 
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Table 2- 4: Chloroplast genome features of kelp species. The inverted repeat (IR) consists of the genes 

in the order 16S ribosomal RNA, tRNA-Ile, tRNA-Ala, 23S ribosomal RNA, 5S ribosomal RNA. The first row 

shows the vicinity of the forward repeat and the second row the reverse repeat for each species row. 

Species Length Inverted 
repeat 
length 
(bp) 

Gene order found at 
boundaries of two IR 
regions  

Rearrangements 

Costaria costata 129947 5409 rpl32-tRNALeu-IR-rpl21-
rpl3 
ycf17-IR-ycf37-psaM 

 

Laminaria 
digitata 

130376 5294 rpl32-tRNALeu-IR- rpl3 
ycf17-rpl21-IR-ycf37-
psaM 

rpl21 at other IR 

Laminaria 
solidungula 

130398 5493 rpl32-tRNALeu-ycf37-
IR-rpl21-rpl3 
ycf17-IR-psaM 

ycf37 at other IR; 
pseudogene 

Saccharina 
japonica 

130584 5496 rpl32-tRNALeu-IR-rpl21-
rpl3 
ycf17-IR-ycf37-psaM 

 

Undaria 
pinnatifida 

130383 5404 rpl32-tRNALeu-IR-rpl21-
rpl3 
ycf17-IR-ycf37-psaM 
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Table 2- 5: Alignment of chloroplast gene ycf37 from different brown algae. The non-homologous sequence part of Laminaria solidungula is colored in red. The amino 

acid translation was made from the 70% consensus sequence, where a nucleotide was taken if at least seventy percent of the aligned sequences have the same letter. n 

in consensus denotes any nucleotide at that alignment position, u stands for purine bases at that position. 

  
1 Fucus_vesiculosus                        ATGAATTCTTTATTCCCTTTATTATACTCAGCTCTTTTATTTTGTTTGCTTCTTTTAATTAGCTTTTTTATTGTGAAACA     
2 Ectocarpus_siliculosus                   ATGAATTCTATATTTCCATTATTTTATTCTATTGCTTTATTTTTTTTTCTTTTTTTTATAAGTTTTTATATTTTAAAACA     
3 Laminaria_solidungula                    ------------------------------TTTAGGTTCTAGTAAGGTTTCTTGTGAGAGTTCAAGTCTCTCCGTTCGTA     
4 Undaria_pinnatifida                      ATGAATTCTTTATTTCCCTTAATTTACTCAATTGCTTTATTTGTTTTCCTTTTTATAATTAGTTTTTATATCTTAAAACA     
5 Saccharina_japonica                      ATGAATTCTTTATTTCCGTTAGTTTACTCAATTGCTTTATTTGTTTTTCTTTTTATAATTAGTTTTTATATCTTAAAACA     
6 Costaria_costata                         ATGAATTCTTTATTTCCGTTAGTTTACTCAATTGCTTTATTTGTTTTTCTTTTTGTAATTAGTTTTTATATCTTAAAACA     
7 Laminaria_digitata                       ATGAATTCTTTATTTCCGTTAGTTTACTCAATTGCTTTATTCGTTTTTCTTTTTATAATTAGTTTTTATATATTAAAACA     
  consensus/100%                           ..............................nnTnnnTTnTnnnnnnnnnTnnTnnnnunnnnnnnnTnTnTnnnnnnunA     
  consensus/70%                            ATGAATTCTTTATTTCCnTTAnTTTACTCAATTGCTTTATTTnTTTTTCTTTTTnTAATTAGTTTTTATATnTTAAAACA     
  consensus amino acids                    M  N  S  L  F  P  L  X  Y  S  I  A  L  F  X  F  L  F  X  I  S  F  Y  X  L  K  Q  
 
1 Fucus_vesiculosus                        AATACTTAATACTCAAGGCTTAGAAAGAAAAATGTTTGAATTACAGATAATGATAAAAAAAAATGATGGATCCCATGAAT     
2 Ectocarpus_siliculosus                   AATAATTAATACTCAAAAGTTAGAAAAAAAAATATTTTATTTACAGGAGCTTGTTAAAAAAGATGATCTTTACCATGAAG     
3 Laminaria_solidungula                    AAATTTTAAATATCTTTCTTGACCAACCATTATTTCTAAAAAATAATGGTTGGTTAAGAAAGATAATGTTTCTTATGAAA     
4 Undaria_pinnatifida                      AATAATTAATACTCAAAAATTAGAAAAAAAGATATTTAGATTACAAGAAAGTATTAAGAAAGATGACGTTTCTTATGAGA     
5 Saccharina_japonica                      AATAACTAATACCCAAAAATTAGAAAAAAAGATATTTAGGTTACAAGAATCTGTTAAGAAAGATAATGTTTCTTATGAAA     
6 Costaria_costata                         AATAACTAATACTCAGAAATTAGAAAAAAAGATATTTAAATTACAGGAAAGTATTAAGAAAGATAATGTTTCTTACGAAA     
7 Laminaria_digitata                       AATAACTAATACTCAAAAATTAGAAAAAAAGATATTTAAATTACAAGAAAGTGTTAAAAAAGATAATGTTTCTTATGAAA     
  consensus/100%                           AAnnnnTAAnnnnCnnnnnTnAnnAAnnAnnATnTnTnunnnAnAunnunnnuTnAAuAAAuATuAnnnnTnnnAnGAun     
  consensus/70%                            AATAAnTAATACTCAAAAuTTAGAAAAAAAuATATTTAAATTACAuGAAnnTuTTAAuAAAGATuATGTTTCTTATGAAA     
                                            I  X  N  T  Q  N  L  E  K  N  I  F  K  L  H  E  X  F  N  K  D  Y  V  S  Y  E  T 
 
1 Fucus_vesiculosus                        TATATTATAAATTAGGTCAATTATATTTAAAAAAAAAGCTTTTTTCTAAATCAATTTTATTATTTCGTGAAGCGATAAAG     
2 Ectocarpus_siliculosus                   ATTGTTATCAATTAGGACAATTATATTTAAGAAAAAAACTTTTTTTAAAGGCTATTGTAGTATTTAGAAAGGCTTTAAAA     
3 Laminaria_solidungula                    CTTTCTATAAATTAGGTCAATTATATTTAAAAAAAAAATTGTTTTATAAAGCTATTTTATTATTTAGACAAGCTTTAAAG     
4 Undaria_pinnatifida                      CTTTCTATAAACTAGGTCAATTGTATTTAAAAAAAAAATTATTTTATAAAGCTATCTTATTATTTAGACAAGCTTTAAAG     
5 Saccharina_japonica                      CTTTCTACAAATTAGGTCAATTATATTTAAAAAAAAAATTATTTTATAAAGCTATTTTATTGTTTAGACAAGCTTTAAAA     
6 Costaria_costata                         CTTTTTATAAATTAGGTCAATTGTATTTAAAAAAAAAATTATTTTATAAAGCGATTTTATTATTTAGACAAGCTTTAAAG     
7 Laminaria_digitata                       CTTTTTATAAATTAGGTCAATTATATTTAAAAAAAAAATTGTTTTATAAAGCTATTTTATTATTTAGACAAGCTTTAAAG     
  consensus/100%                           nnTnnTAnnAAnTAGGnCAATTuTATTTAAuAAAAAAunTnTTTTnnAAunCnATnnTAnTuTTTnGnnAuGCnnTAAAu     
  consensus/70%                            CTTTnTATAAATTAGGTCAATTATATTTAAAAAAAAAATTuTTTTATAAAGCTATTTTATTATTTAGACAAGCTTTAAAG     
                                             X  Y  K  L  G  Q  L  Y  L  K  K  K  F  F  Y  K  A  I  L  L  F  R  Q  A  L  K   
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1 Fucus_vesiculosus                        AACTGGGATATAAATGATAATATTGGACTTGCAAGTTTATATAATAGTATAGGCTTTACTTATTTTACTCTAAAAGAATA     
2 Ectocarpus_siliculosus                   TTATGGGACCCTAATGATATAATTGGGCTTGGTAACTTATATAATGCTATAGGGTTTACATTTTTTAATTTAGAAGAATA     
3 Laminaria_solidungula                    GCTTGGAACCCTAATGATAAAATTGGACTTGGAAGTTTATATAATACAATAGGATTTACATATTTTACTCTAAAACAATA     
4 Undaria_pinnatifida                      GCTTGGAACCCTAATGATAAAATTGGACTTGGTAGTCTATATAATACAATAGGATTTACATATTTTACTTTAAAGCAGTA     
5 Saccharina_japonica                      GCTTGGAATCCTAATGATAAAATTGGACTTGGAAGTTTATACAATACAATAGGGTTTACCTATTTTACTTTAAAACAATA     
6 Costaria_costata                         GCTTGGAACCCTAATGATAAAATTGGACTTGGAAGTTTATATAACACAATAGGATTTACATATTTTACTTTAAAGCAATA     
7 Laminaria_digitata                       GCTTGGAACCCTAATGATAAAATTGGACTTGGAAGTTTATATAATACAATAGGGTTTACATATTTTACTTTAAAACAATA     
  consensus/100%                           nnnTGGuAnnnnAATGATAnnATTGGuCTTGnnAunnTATAnAAnunnATAGGnTTTACnTnTTTTAnTnTAuAunAuTA     
  consensus/70%                            GCTTGGAACCCTAATGATAAAATTGGACTTGGAAGTTTATATAATACAATAGGuTTTACATATTTTACTTTAAAACAATA     
                                           A  W  N  P  N  D  K  I  G  L  G  S  L  Y  N  T  I  G  F  T  Y  F  T  L  K  Q  X  
 
1 Fucus_vesiculosus                        TAATTTAGCAATTTATTATTACAAAATTGCCCTTAAAATTATTCCCGATTATATTGTAGCTTTAATTAATATTGGGTATG     
2 Ectocarpus_siliculosus                   TGAGTATGCGATCTATTATTATAAAATAGCAGTACAAATTATTCCAGATCATACATTAGCTTTAATAAATCTTGGGTATG     
3 Laminaria_solidungula                    CAATTTAGCTAATTATTATTATAGTATTGCCATTGAAATTATCCCTGATTATACATTAGCTTTAACCAACCTTGGTTATA     
4 Undaria_pinnatifida                      CAATTTAGCTAATTATTATTATAGTATCGCTATTGAAATTATACCTGATTATACATTAGCTTTAACAAATCTTGGATATA     
5 Saccharina_japonica                      CAATTTGGCGAATTATTACTACAGTATTGCTATTGAAATTATCCCTGATTATACATTAGCTTTAACAAATCTTGGTTATA     
6 Costaria_costata                         TAGTTTAGCTAATTATTATTACAGTATTGCGATTGAAATTATCCCTGATTATACATTAGCTTTAACCAATCTTGGTTATA     
7 Laminaria_digitata                       CAATTTAGCTAATTATTATTATAGTATTGCCATTGAAATTATCCCTGATTATACATTAGCTTTAACCAATCTTGGTTATA     
  consensus/100%                           nuunTnnGCnAnnTATTAnTAnAunATnGCnnTnnAAATTATnCCnGATnATAnnnTAGCTTTAAnnAAnnTTGGnTATu     
  consensus/70%                            nAATTTAGCnAATTATTATTAnAGTATTGCnATTGAAATTATnCCTGATTATACATTAGCTTTAACnAATCTTGGnTATA     
                                            N  L  A  N  Y  Y  X  S  I  A  I  E  I  X  P  D  Y  T  L  A  L  T  N  L  G  Y  S 
 
1 Fucus_vesiculosus                        CATATGAAAAACAAAATTTATTACTCGAATCTTATAACTCATATAATAAAGTTTTATTTTATAATGCTTATAATAGTTTA     
2 Ectocarpus_siliculosus                   CCTTTGAAAAAATTAATTCATTTGTAATAGGGTATAATTGTTATAGAGCTGCATTATTTTGGGATACTACTAACGATTTA     
3 Laminaria_solidungula                    GTTATGAAAAGCTTAACTTATCGGTAGAGTCTTATAATTGTTATAAAAATGCTTTAGCATGGGACCCCAAGAATAGATTA     
4 Undaria_pinnatifida                      GTTATGAAAAACTTAACTTATCAGTAGAATCTTATAATTGTTATAAGAATGCTTTAGTTTGGGATCCCGAGAATAGATTA     
5 Saccharina_japonica                      GTTATGAAAAGCTTAACTTATCGGTAGAATCTTATAATTGTTATAAAAATGCTTTAGTATGGGACCCGAAGAATAGATTA     
6 Costaria_costata                         GTTATGAAAAACTTAACTTATCTGTAGAGTCTTATAATTGTTATAAGAATGCTTTGGTATGGGATCCTCAAAATAAATTA     
7 Laminaria_digitata                       GTTATGAAAAACTTAATTTATCGGTAGAGTCTTATAATTGTTATAAAAATGCTTTAGTATGGGACCCTGAGAATAGATTA     
  consensus/100%                           nnTnTGAAAAunnnAAnTnATnnnTnununnnTATAAnTnnTATAununnGnnTTunnnTunuAnnCnnnnAAnuunTTA     
  consensus/70%                            GTTATGAAAAACTTAAnTTATCuGTAGAuTCTTATAATTGTTATAAuAATGCTTTAGTnTGGGAnCCnuAuAATAGATTA     
                                             Y  E  K  L  X  L  S  V  D  S  Y  N  C  Y  N  N  A  L  V  W  X  P  Y  N  R  L   
 
1 Fucus_vesiculosus                        GTTTTAAAAAGAATTAAAATCGT---GAAGAGACTA------TTAATGAGCAAATCGTAA     
2 Ectocarpus_siliculosus                   GCTTCTACGCGTTTTTTATCGATTGAAAAAAAATTAAGGTATATTCTT---------TAA     
3 Laminaria_solidungula                    GCTTCGTCACGTATATTAGTTGTTGAAAAGAAACTAAGATATCTAGTTGGTACTAGATAA     
4 Undaria_pinnatifida                      GCTTCTTCACGTATATTAGTTGTCGAAAAGAAGTTAAGATATTTTGTTGTTACTAAATAA     
5 Saccharina_japonica                      GCTTCTTCAAGAATATTAGTCGTTGAAAAGAAACTAAGATATCTAGTTGGTACTAGATAA     
6 Costaria_costata                         GCTTCTTCACGTATATTAGTGGTTGAAAAGAAGTTAAGATATTTAGTTGGTACTAGATAA     
7 Laminaria_digitata                       GCCTCTTCACGTATATTAGTCGTTGAAAAGAAACTAAGATATTTAGTTGGTACTAGATAA     
  consensus/100%                           GnnTnnnnunGnnTnnnAnnnuT...uAAuAuunTA......nTnnTn.........TAA     
  consensus/70%                            GCTTCTTCACGTATATTAGTnGTTGAAAAGAAAnTAAGATATnTAGTTGGTACTAuATAA  
                                           A  S  S  R  I  L  V  V  E  K  K  X  R  Y  X  V  G  T  I  * 
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3.3.2.1 Sequence variations across the five chloroplast genomes 

The collinearity of the chloroplast genomes allows alignment and definition of sequence 

variation irrespective of coding, non-coding, or intergenic regions. Since, we however 

observed small rearrangements in the Laminaria species we decided not to use the global 

alignment for single nucleotide polymorphism (SNP) and insertion or deletion (indel) 

detection. Instead, we analysed the sequence variations locally using a 100x coverage of 

artificial reads each, which we mapped to the S. japonica genome. In total we found 9,218 

SNPs and 164 indels. We counted all SNPs from all species in windows of 1000 bases to 

examine the SNP distribution over the chloroplast genome (Figure 2-6).  

 

 

Figure 2- 6: Single nucleotide Polymorphism (SNPs) distribution over the kelp chloroplast genome. 
SNPs were detected by aligning short reads to the Saccharina japonica genome as a reference. All SNPs 

(Table 2-6) from the aligned reads of the available four kelp species in windows of 1000 bases were counted 

and plotted. X axis: Base count in the S. japonica reference. Y axis: number of SNPs. 

SNPs are fairly equally distributed over the whole genome sequence, only the inverted 

repeat regions are nearly devoid of sequence variation. This phenomenon was already 

observed in higher plants (Zhu et al. 2016). By far, the highest numbers of unique SNPs 

are present in the genomes of U. pinnatifida and C. costata (Figure 2-7). Conversely, the 

Laminaria species have the largest set of SNPs in common (502) which likely evolved with 

the establishment of this lineage. Not surprisingly, the shared set of both Laminaria species 

with the most distantly related U. pinnatifida chloroplast genome is the smallest with 164 
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(L. digitata) and 136 (L. solidungula). The 583 SNPs shared between C. costata and U. 

pinnatifida likely represent the ancient state of the chloroplast genomes. The overall 

pattern of SNP evolution indicates that lineage and species-specific SNPs accumulate 

over time as expected. However, SNPs were frequently observed to be scattered in the 

phylogeny indicating possible incomplete lineage sorting by, for example recombination of 

heteroplasmic genomes. 

 

 

Figure 2- 7: SNPs unique and shared between species. The upper circles show the unique SNPs in each 

species and the lower row of circles indicates shared SNPs between two species with the numbers in the 

color of the respective species. To facilitate readability circles are connected by lines. LD= Laminaria digitata 
(magenta); LS= L. solidungula (red); SJ= Saccharina japonica (green); CC=Costaria costata (blue); UP= 
Undaria pinnatifida (grey). 

Compared to SNPs, indels are rare. In total, we detected 197 indels compared to the S. 

japonica genome. With 59 and 57, the number of indels in C. costata and U. pinnatifida 

are highest, whereas L. solidungula has only 29 indels and L. digitata 36. Indels can only 

be detected with our method if they are comparably small, that is, in the range of 10 bases. 

Larger indels exist as the similarity breaks indicate (Figure 2-5). We then examined the 

ratio of SNPs between genic and intergenic regions (i.e. coding region including RNA 

genes; Table 2-6). The ratio of genic to intergenic SNPs ranges from 15 to 19 %. The 

number of detectable SNPs per kb is, however, slightly lower in intergenic compared to 

genic regions. Since, most larger indels reside in the intergenic regions, the alignability of 
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these regions is reduced and so the potential to detect SNPs. Overall, the number of SNPs 

per kb is comparable between intergenic and genic regions in all species (Table 2-6) 

Table 2- 6: Number of detected SNPs in genic and intergenic regions. S. japonica was used as a 

reference and artificially generated reads from the other kelp chloroplast genomes were mapped onto this 

reference. 

Total 
SNPs 

Genome 
length 
(bp)  

Genic 
regions 
(bp) 

Intergenic 
regions 
(bp) 

Genic 
SNPs 

Intergenic 
SNPs 

Intergenic/ 
genic 
 

SNP/kb 
genic 

SNP/kb 
intergenic 

S. japonica 130,584 108,847 21,737      

C. costata 129,947 108,550 21,397 3,615 688 0.2 33.3 32.2 

U. 
pinnatifida 

130,383 108,751 21,632 3,633 626 0.2 33.4 28.9 

L. 
solidungula 

130,398 108,730 21,668 2,825 429 0.2 26.0 19.8 

L. digitata 130,376 108,647 21,729 2,961 566 0.2 27.3 26.0 

 

The distribution of synonymous versus non-synonymous SNPs in coding regions is also 

of interest (Table 2-7).  

Table 2- 7: Synonymous and non-synonymous SNPs in coding regions. The table denotes SNPs 

occurring in single species versus all others and shared SNPs between two species. Different codon changes 

denote non synonymous SNPs, which lead to different amino acids in different species.   

SNP occurrence All Synonymous 
(s) 

Non-
synonymous (n) 

n/s% 

S. japonica 714 610 104 17.0 
C. costata 1,596 1,448 148 10.2 
U. pinnatifida 1,602 1,352 250 18.5 
L. solidungula 569 509 60 11.8 
L. digitata 672 600 72 12.0 
S. japonica  and C. costata 224 197 27 13.7 
S. japonica  and U. pinnatifida 404 390 14 3.6 
S. japonica  and L. digitata 159 151 8 5.3 
S. japonica  and  L. solidungula 143 142 1 0.7 
C. costata  and U. pinnatifida 492 448 44 9.8 
C. costata  and L. solidungula 207 204 3 1.5 
C. costata   and L. digitata 177 162 15 9.3 
U. pinnatifida  and L. digitata 141 127 14 11.0 
U. pinnatifida  and L. solidungula 118 100 18 18.0 
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L. digitata and L. solidungula 432 391 41 10.5 
Total 7,650 6,831 819 12.0 
Different codon changes   260  

 

For this analysis, we calculated for each species the number of SNPs in the two categories 

and tested, whether those SNPs also occurred in another species. As expected, non-

synonymous SNPs are much rarer than synonymous SNPs indicating purifying selection 

on the coding sequences. Some codons contain different SNPs in different species, 

resulting sometimes in the encoding of different amino acids. These 260 codons therefore 

seem to be less constrained in terms of exchangeability. The ratio of non-synonymous to 

synonymous SNPs ranges from 10.2% to 18.5% in species, and from 0.7% to 18% in 

species pairs. The somewhat lower values for species pairs might be a result of lower 

likeliness of maintenance of non-synonymous SNPs in two independent species. 

Interestingly, S. japonica and U. pinnatifida have the highest ratio of non-synonymous to 

synonymous SNPs in their species specific SNPs, which could be due to a less efficient 

purifying selection or faster accumulation of mutations than in the other species. By 

calculating the dN/dS ration, we found no evidence for positive selection (i.e., dN/dS > 1) 

in any of the coding genes of the chloroplast genomes. SNP pairs (i.e. mutations adjacent 

to each other or multinucleotide polymorphisms [MNPs]) are thought to be not always 

independent (Prendergast et al. 2019). We analysed such pairs in the kelp chloroplast 

genomes and found that they are generally rare, but are also partly shared between 

species (Table 2-8).  

Table 2- 8: SNP pairs in kelp chloroplast genomes. Shared pairs between different species are also listed.   

Species Genic Intergenic 
S. japonica 7 0 
C. costata 39 42 
U. pinnatifida 31 31 
L. solidungula 10 11 
L. digitata 9 15 
S. japonica  and C. costata 0 0 
S. japonica  and U. pinnatifida 4 3 
S. japonica  and L. digitata 0 3 
S. japonica  and  L. solidungula 2 0 
C. costata  and U. pinnatifida 5 3 
C. costata  and L. solidungula 7 1 
C. costata   and L. digitata 0 2 
U. pinnatifida  and L. digitata 0 0 
U. pinnatifida  and L. solidungula 1 0 
L. digitata and L. solidungula 2 6 
All 117 117  
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Interestingly, these SNPs are equally distributed between genic and intergenic regions. 

Since intergenic regions cover a far smaller area of the chloroplast genome, the propensity 

for this kind of SNPs is to reside in intergenic regions. To exclude the possibility that 

population structure and sequence variation impact the SNP analyses, we retrieved L. 

digitata samples from 6 different locations (North Sea Helgoland, north east Atlantic 

Spitsbergen, north west Atlantic Halifax, western Atlantic Connecticut, eastern Atlantic 

Roscoff and Quiberon). We amplified an 850-bp region containing the cbbx gene and part 

of the adjacent intergenic region from all samples, cloned the PCR products into vectors, 

and sequenced three clones each. We could not detect any variation indicating that 

variation of the chloroplast genome in the whole L. digitata population is rare. We then 

sequenced and assembled the chloroplast plastid genomes from the Helgoland and 

Spitsbergen isolates and counted the differences to the reference sequence, which was 

derived from Helgoland. The chloroplast genome of the Spitsbergen isolate contained 27 

SNPs and seven small indels, respectively. We therefore conclude that population 

variation does not impact our SNP analysis across species.  

 

3.4 Analyses of Transcript data  

Transcript data	analyses	was carried out to examine the differential expression genes of 

the heterologous crosses of Laminaria digitata (Spitzbergen and Helgoland), with the help 

of DESeq2. Corresponding nuclear sequences were extracted from the draft genome, 

using BLAST tool. To examine SNPs, raw sequencing reads were mapped to the genomic 

counterparts and the SNPs occurrence was counted in different sets of crosses. SNPs 

were detected in all 6 crosses (HfHm homozygous Helgoland male and female, HfSm 

Helgoland female and Spitsbergen male, SfHm Spitsbergen female and Helgoland male 

and SfSm homozygous Spitsbergen male and female) including day 0 (T0) to day 18 (T18) 

of Laminaria digitata. Total 16285 SNPs were identified by position and occurrence in each 

sequenced crosses. 911 SNPs were found in Helgoland male and female (HmHf 10°-20°C, 

T0 & T18). 1836 SNPs were found in Spitsbergen (SfSm 10°-20°C, T0 & T18) crosses, 

12435 SNPs in Helgoland and Spitsbergen (HfSm 10°-20°, SfHm 10°-20°C, T0 & T20) 

crosses and 1103 SNPs were found in all crosses (common) (HfHm,HfSm, SfHm, SfSm 

10°-20°C, T0 & T18) (Table 2-9) 

 

 



RESULTS 

    57 

Table 2- 9: SNPs counts between all crosses (Helgoland-Spitsbergen 10°-20°C, with T0 &T18) of Laminaria 

digitata  

Number of 
SNPs present 
in different 
(any) crosses 
/ Crosses 

HfH
m10
°C 
T0 

HfH
m10
°C 
T18 

HfH
m20°
CT18 

HfS
m10
°C 
T0 

HfS
m10°
CT18 

HfS
m20
°C 
T18 

SfH
m10
°C 
T0 

SfH
m10
°C 
T18 

SfH
m20°
CT18 

SfS
m10
°C 
T0 

SfS
m20
°C 
T18 

 91 110 0 95 0 109 74 104 121 123 217 

  20 47 92 60 92 90 31 55 137 84 134 

 27 36 28 21 32 45 24 46 70 48 73 

 2 7 11 8 11 9 14 3 13 13 0 

 8 10 10 10 10 2 0 0 0 0 0 

 31 31 31 31 31 31 0 0 0 0 16 

 5 6 6 18 5 20 18 18 16 16 13 

 16 15 20 24 20 21 21 21 15 7 49 

 165 165 659 660 659 659 660 659 655 502 497 

 142 115 152 138 139 139 152 145 99 134 152 

Total  507 542 1,009 1,06

5 

999 1,12

5 

994 1,05

1 

1,126 927 1,11

5 

 

Hf- Helgoland female 

Hm- Helgoland male 

Sf- Spitsbergen female 

Sm- Spitsbergen male  
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4 Discussion 

Kelp species play a crucial role in marine ecosystem providing essential habitat to other 

marine species and offer valuable economic and ecological resource. Despite of their 

immense importance, presently for most kelp species very limited knowledge of genetic 

architecture and phylogeny is available.  

	

4.1 Phylogenetic analyses in kelp organellar genome 

Moreover, in the present kelp database, genomic data in particular is very limited, hence, 

our phylogenetic analysis was constrained to that of the organellar genome. Study of an 

organelle genome provides essential knowledge of molecular ecology and evolution, 

furthermore, sequencing technology gives important insight into genome machinery and 

the phylogenetic history of a species. In general, the number of organellar genomes is 

found to be higher than the nuclear genome. Therefore, from whole genome sequences 

the organelle genome can be assembled easily. Here we have determined the complete 

chloroplast genome sequences of three Laminaria species namely- Laminaria digitata, 

Laminaria solidungula and Laminaria rodriguezii. And the mitochondrial genome 

sequences of Laminaria solidungula and Laminaria rodriguezii were determined and 

compared with other available kelp organellar genomes (Table 2-1). All chloroplast 

genomes of kelp species are generally collinear to each other, with some small 

rearrangements at the inverted repeat (IR) regions. Inverted repeats are sequences of 

nucleotides which are repeated without any changes, present throughout the genome and 

as the name suggests have reverse orientation. Mitochondrial genome sequences of all 

available kelp species (Table 2-1) also show the collinearity to each other. Interestingly, 

the mitochondrial genome from D. viridis, which is a rather a distantly related brown alga 

from the sister order Desmarestiales, also used as an outgroup in the phylogenetic 

analysis, was found to contain the same gene order as the kelp species. Owing to that, we 

could deduce that mitochondrial genomic rearrangements in this lineage are rare, and 

might even be completely absent. The individual chloroplast and mitochondrial genome 

sequences of kelp species can be aligned completely, regardless of coding intergenic 

region. Hence, for the phylogenetic analysis we have more data available than previous 

studies (Starko et al. 2019; Žuljević et al. 2016), which helped create more robust 

phylogenetic trees. When compared with previously published comprehensive overview 

on kelp radiation (Starko et al. 2019), we found no variations in the mitochondrial tree. We 

therefore are fairly confident of the correct placement of new species within our tree. As 



DISCUSSION 

    59 

an example, both of the maximum likelihood analyses do place L. rodriguezii at the same 

positions in the phylogenetic tree, and tree topologies of both analyses are also the same 

(Figure 2-3). In another example, the close relationship between L. digitata and L. 

rodriguezii is also reflected in their temperature tolerance profiles. The tree topology within 

the Laminariaceae, a cytochrome c oxidase (mitochondrial) sequence consisting of only 

around 2 kb of data (Žuljević et al. 2016), corresponds to that. Thus, the available number 

of informative sites in organellar genomes, are adequate to determine the kelp 

phylogenetic tree with high degree of assurance. 

 

4.2 Deviations from kelp collinearity in organellar genomes  

4.2.1 Collinearity in mitochondrial genomes 

In the process of overall collinearity study in kelp mitochondrial genomes, we detected a 

long DNA stretch in mitochondrial genome of L. rodriguezii, neighbouring to the 16S rRNA 

gene, with no signs in 17 other kelp counterparts. This DNA stretch comprises of certain 

piece that can be translated into an ORF, yielding a potential 152 amino acids long protein. 

This particular protein overlaps with another protein-part encoded by an ORF present in 

the D. viridis mitochondrial genome (Figure 2-4 B) with % identity as high as 72% and a 

similarity of more than 88%. The underlying nucleotide identity is even higher than the 

amino acid sequence identity, which points towards either fast evolution or degradation of 

mitochondrial genome. The mentioned nucleotide sequence of D. viridis containing 

ORF211 is found similar in the region extending from 5’ to its start codon (Figure 2-4 A, 

C), implying that the annotated start codon of this ORF is not the original one. In addition, 

a 45 bases long stretch in the 5’ region of ORF211 also has 80% similarity to ORF2 of L. 

rodriguezii. These found similarities, extending from the originally defined ORF, suggest 

that the ancient coding gene in D. viridis was longer than the existent one. It would be 

wrong to claim that such similarities on nucleotide level are coincidental rather an outcome 

of independent lateral gene introduction from same unknown source. Also, vertical transfer 

between these two species is very unlikely as apparent in the tree (Figure 2-2) they are 

separated by several other brown algae. Moreover, some remnants of this transfer should 

have existed in at least some of the other kelp mitochondrial genomes. Additionally, the 

varying locations of the ORFs in two species disprove a potential vertical transfer in 

otherwise very strictly collinear genomes. The proposed reason for the nucleotide 

sequence conservation could either be functional conservation, that is purifying selection, 

or latest introductions in both species from a similar source, so that, only a handful 
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mutations could accumulate over time. However, since overlapping stretch showed higher 

nucleotide conservation than the amino acid conservation, this points rather to functional 

constraint loss and rapid degradation. That leaves us with the idea, that relatively recent 

two independent events introduced these similar sequences into the mitochondrial 

genomes of L. rodriguezii and D. viridis, species. The origin of such sequences could 

potentially also be present in the nuclear genome, but we did not find such a conserved 

gene in the published Saccharina species genome (Ye et al. 2015), leaving a horizontal 

gene transfer (HTG) from external sources the only best explanation. Vectors are often 

source for such HTG, including so-called mitoviruses- simple RNA(+) viruses consisting of 

only one reading frame that encodes an RNA dependent RNA polymerase. Until now, 

mitoviruses are only known from fungi (Hillman and Cai 2013) and plants (Nibert et al. 

2018). In fungi generally they are transmitted via spores, mating or cytoplasmatic mixing, 

but there have been some evidences of transmission between distantly related species by 

unknown means (Hillman and Cai 2013). These viral RNA polymerases are usually not 

well preserved (Bartholomäus et al. 2016; Koonin 1991) and therefore, it is not surprising 

that we did not find any match of the brown algal ORF to published mitovirus sequences. 

Our hypothesis is that a mitovirus like vector had infested the mitochondria of the two 

brown algae independently. So, we also sought brown algal genome and transcriptome 

data for similar sequences, but could not find a positive match. This could be explained by 

the fact that mitoviruses usually do not integrate into DNA and that’s why, are mainly 

absent in transcript data. Nonetheless, such data are currently limited for brown algae and 

unfortunately focuses only on polyA+ mRNAs, which limits the likelihood to detect RNA 

viruses marginal. The gene and virus integration assays tell us that such sequences 

favourably integrate into highly transcriptionally active genome portions (Christiansen et 

al. 2015; O’Brien et al. 2018). The mammalian and plant mitochondrial genome analysis 

also have shown that the rRNA genes are normally expressed at a much higher level than 

the tRNAs or coding sequences (Finnegan and Brown 1990; Gustafsson, Falkenberg, and 

Larsson 2016), though sometimes post transcriptional regulation may result in different 

levels of steady state RNA (Giegé et al. 2000). Considering together, it is intriguing to 

speculate that the observed locations of the two similar sequences in the vicinity of rRNA 

genes are due to the higher inclination of DNA pieces to integrate at highly expressed 

sequences.  
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4.2.2 Collinearity in chloroplast genomes 

Novel plastid genome from kelp species provide important understanding of the diversity 

and evolution study in kelp phylogeny (Bolton 2010). The chloroplast genomes of different 

kelp species have almost similar gene contents (Zhang, Wang, Liu, G. Wang, et al. 2015b), 

making them collinear with some minor additions. In the kelp chloroplast genomes two 

tRNA genes are inserted, both of them mainly contain introns (Yoshihisa 2014) and are 

only a second copy of tRNAs species. It might be possible that these tRNAs occur and 

disappear frequently in evolution and would in this case be dispensable without any effect 

on collinearity. We observed translocations of genes in Laminaria near the IRs (inverted 

repeat) regions. Such translocation (Li et al. 2016) might be connected to double strand 

break repair and homologous recombination at IR sites (Raji and Hartsuiker 2006), as it 

was also witnessed in higher plants (Palmer et al. 1987; Zhu et al. 2016). In L. solidungula 

the translocation of ycf37 in probably led to its defunctionalisation, because the N terminal 

part including the start codon of the gene is missing as indicated by the alignment (Table 

2-5). In the 5’ vicinity there was no start codon found, which could have been used as an 

alternative start from the ribosome. Further work will be needed to confirm whether or not 

a protein can be created by this truncated gene locus. In another study on Synechococcus 

the functional analysis of a knockout mutant of ycf37 has revealed, that this mutant gene 

was involved in the specific photosystem I complex formation (Wilde et al. 2001), which 

seems to be vital under high light conditions (Dühring et al. 2006). It is conceivable that 

this protein is dispensable under the relative lower light conditions in higher latitudes, for 

example (Pavlov et al. 2019) the conditions where L. solidungula flourishes exclusively 

(Roleda 2016). 

 

4.2.3 Distribution of single nucleotide polymorphisms (SNPs) across the chloroplast 
genomes 

	
Single nucleotide polymorphism (SNPs) is a variation, where single or more nucleotides 

are altered in the genome sequences. SNPs are very common genetic variation distributed 

throughout the genome. This variation is caused either by a change in single nucleotide or 

removal (deletion) or addition of new single nucleotide in DNA sequences (Dantas et al. 

2009). SNPs can be found in coding region and non-coding region of genes, and also 

intergenic region between the genes. SNPs variation in human genome can be used to 

determine the diseases, medication and vaccines, and diversity and evolution when 

studied in kelp genome (Provan et al. 2013).  
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The probability of same mutation occurring independently at certain location in different 

species is very unlikely by evolutionary means (Wray 2007). Hence, if a SNP is located in 

two species, it should have originated from a single source, that is, one mutation event in 

the course of evolution. As per our SNP occurrence analysis in chloroplast genomes of 

kelp species we did not find the correlation to phylogeny, hence we could not trace back 

the mutation to its source- the first existence of a SNP in the phylogenetic tree. This 

dispersed occurrence of a SNP, for example, presence in Undaria pinnatifida and 

Laminaria solidungula and absence in the other species, does not necessarily point to 

independent loss of SNP in these lineages. Instead, this particular behaviour can be 

justified by the presence of heteroplasmic chloroplast genomes with homologous 

recombination between them (Day and Goldschmidt-Clermont 2011). Consequently, with 

our study for the first time the incomplete lineage sorting in kelp species has come to light, 

as it has been known in higher plants (Jakob and Blattner 2006; Sabir et al. 2014). Due to 

the fact that SNPs are almost equally distributed over the complete chloroplast genomes, 

the SNP amount per kb cannot be used to distinguish between coding and noncoding 

regions. This equal scattering of SNPs over the entire chloroplast genome, excluding the 

inverted repeat regions can be due to the equal constraints on the intergenic and genic 

regions, if we assume saturation with mutations. This would suggest that intergenic regions 

encode the regulatory or other functions. The infidelities of the DNA polymerase often 

leads to the manifestation of multinucleotide mutations, (Schrider, Hourmozdi, and Hahn 

2011). In our study we could additionally show that such substitutions are much rarer in 

coding sequences when compared to intergenic regions. The multinucleotide mutations 

per kb being scarce in genic regions of the chloroplast genomes is probably due to 

purifying selection (Su et al. 2018). In kelp chloroplast genomes, we detected a variation 

of 2.5%-3.3%in pairwise comparisons. For reference, in Gossipium (cotton) species the 

variation was found to be 0.6% (Xu et al., 2012) with roughly 12.5 million years of 

divergence time (Wendel, Brubaker, and Seelanan 2010). In Oryza (rice), the variation is 

0.36% (Wambugu et al. 2015) with an estimated divergence time of around 10 million 

years ago (Kellogg 2009). And, around 22 million years ago in Miocene the first kelp forests 

had found its origin together with grass lands. Thus, evolution of kelp had started much 

easier in comparison to either rice or cotton species. We hence suggest that evolution of 

kelp chloroplast genomes have taken the similar course as land plant families. 
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4.3 Single nucleotide polymorphisms (SNPs) in transcripts of Laminaria 
digitata populations 

Different populations of Laminaria digitata might harbour different sets of single nucleotide 

polymorphisms (SNPs). Daniel Liesner from the Alfred Wegener Institute (Bremerhaven) 

sampled Laminaria digitata from Kongsfjorden, Spitsbergen, Norway and Helgoland, 

Germany, and analysed transcription profiles using DESeq2 to extract the differentially 

expressed genes, which determines the differences in protein performance or inherent 

regulation patterns expressed genes (DEG) (Love, Huber, and Anders 2014). Our lab 

compared the DEGs to draft genome of Laminaria digitata and extracted the corresponding 

genomic regions as a reference. Mapping revealed the allelic differences between the 

original accessions and the crosses. In total, 200 most highly differentially expressed 

genes (DEGs) were used for SNPs analyses, which were extracted from all possible 

parental combinations (HfHm, HfSm, SfHm, SfSm) from each temperature condition (10°C 

and 20°C) at time point T18. Significantly differentially expressed genes in different 

populations, and crosses between them might be potentially interesting in terms of SNP 

distribution across populations and alleles (Avia et al. 2017). SNPs were found across all 

transcripts including day 0 to day 18, a total of 16285 SNPs are counted. 911 exclusive 

SNPs are found in Helgoland crosses (HfHm 10°-20°C) and 1836 SNPs in Spitsbergen 

crosses (SfSm 10°-20°C). Higher Spitsbergen SNPs counts than the Helgoland SNPs 

might be due to the lower temperature range of Spitsbergen (Arctic region and near to 

northern distribution) than the Helgoland (North Sea), where in summer temperature goes 

higher than the other distribution region of Laminaria digitata such as, southern distribution 

in Brittany (Bartsch et al. 2013). 1103 SNPs are found in all crosses (HfHm, HfSm, SfHm 

and SfSM  10°-20°C) and 12435 SNPs are present in Helgoland and Spitsbergen crosses 

(HfSm,SfHm 10°-20°C). Interestingly, no allelic expression differences seem to exist within 

one lineage, which is indicated by 1:1 distribution of all SNPs over all transcripts. This hints 

to a minor role of allele specific expression in physiological responses. This analysis, 

however, is ongoing, and might reveal a pattern of adaptation due to SNP combinations. 

We also counted SNPs individually in different crosses and checked their occurrences 

(Table 9). Interestingly, no allele specific expression could be found. All alleles are 

randomly distributed during meiosis, so there are no purely "female" and "male" alleles 

apart from the sex loci. Therefore, any sex-specific differences in allele expression in 

sporophytes would have to be linked to the gametophyte sex locus.  Physiologically, the 

(surviving) sporophytes, all behaved very similarly, but there are differences in gene 

expression among the crosses and selfings, which might be due to local adaptation.
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6  Abbreviation   

bp     Base-pairs 

°C     Celsius 

Ca     Circa  

cm     Centimeter 

cpDNA    Chloroplast deoxyribonucleic acid 

CTAB     Cetyl trimethyl ammonium bromide 

DNA     Deoxyribonucleic acid 

dNTP     Deoxy ribonucleotide triphosphate 

EDTA     Ethylenediaminetetraacetic acid  

g     Gram 

g     Relative centrifugation force 

HTG     Horizontal gene transfer 

Indel     Insertion-deletion 

IR     Inverted repeat 

kb     Kilo base 

kbp     Kilo basepair 

LD     Light Dark  

MAFFT    Multiple alignment using fast fourier transform 

mg     Milligram    

ml     Millilitre 

mM     Millimolar   

M     Molar (mol/l) 

mRNA     Messenger ribonucleic acid 

MUMmer    Maximal Unique Matches 

NCBI     National Centre for Biotechnology Information 

NGS     Next generation sequencing 

numer     Nucleotide Maximal Unique Matches 

ORFs     Open reading frames 

PES     Provasoli Enriched Seawater medium 

PCR     Polymerase chain reaction 

Poly a     Polyadenylic acid      

rRNA     Ribosomal ribonucleic acid 

RNase     Ribonuclease 
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SBS     Sequencing by synthesis 

SNPs     Single nucleotide polymerase 

TE     Tris-EDTA 

tRNA     Transfer ribonucleic acid 

v/v     Volume per volume 

w/v     Weight per volume 

µg     Micro gram 

µm     Micro molar 
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