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1 Introduction 

1.1 Obesity as an increasing socio-economic health problem 

During the last decades the prevalence of obesity has increased drastically 

worldwide to a proportion of a global epidemic with serious health and 

economic consequences. Global studies in obesity use the body mass index 

(BMI), which is a measurement of body weight in relation to the body height 

(body weight/height2), as a parameter to analyze the differences in an entire 

population in a time dependent manner. The world health organisation (WHO) 

considers overweight a BMI of 25 to 29.9, and obesity a BMI of 30 or higher. 

According to this classification, 51 % of the adults in Germany are currently 

considered overweight, whereas 16 % of the population is classified as obese 

[1]. This trend of a dramatic increase in the rate of obesity in an entire 

population has been described in many countries and, particularly for the USA, 

it has been monitored in detail over the last decades. Thus, whereas in 1990 

less than 15% of the US population had a BMI higher than 30, today this value 

has increased severely to more than 30% of the people in most states of the 

country being obese [2, 3]. 

Overweight and obesity lead to serious health problems and the risk of 

developing associated diseases, such as type 2 diabetes mellitus, high blood 

pressure, high cholesterol, asthma or arthritis, becomes progressively higher as 

the BMI increases [4]. Consequently, at least 6% of the total health costs of 

industrial countries are associated with overweight and obesity according to the 

WHO, with cardiovascular diseases being the world’s primary cause of death 

[5]. Also type 2 diabetes, a combination of hyperglycemia going along with 

hyperinsulinemia that is reflected by an increasing insulin resistance, is rapidly 

evolving into a global epidemic [6-8]. The WHO has predicted 360 million 

people to be suffering from type 2 diabetes by the year 2030, which would 

mean a two-fold increase in comparison to the figures today [9]. 
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1.2 Energy Homeostasis: insulin and leptin action 

Bodyweight is dependent on age, ethnicity and gender and is determined by a 

combination of environmental and genetic factors. Moreover, body mass and 

composition are determined by the balance between calorie intake and energy 

expenditure. Thus, a positive energy balance results in an increased body 

weight arising from a high calorie intake that is not balanced by increased 

energy expenditure [10]; whereas a negative energy balance is the 

consequence of low energy intake and/or high physical activity resulting in a 

reduction of body weight (reviewed in [11, 12]). Importantly, the lifestyle in 

industrialised countries allows unlimited access to calories and a reduction in 

physical activity, favouring a positive balance. 

Importantly, a certain body weight is defended in healthy humans and animal 

models, which react to artificial overfeeding with a subsequent reduction in food 

intake and an increase in energy expenditure [13]. Thus, most people are able 

to keep their body weight steady even in an “obesogenic” environment, while an 

increasing proportion of the population suffer from chronic positive energy 

homeostasis, pointing to a genetic contribution in weight gain. Research of the 

underlying mechanisms in control of energy homeostasis and its defects in 

obese patients has revealed that multiple hormones such as insulin, leptin and 

metabolites, e.g. glucose, act in the central nervous system (CNS) regulating 

food intake, energy expenditure, and glucose homeostasis (reviewed in [14, 

15]). 

 

1.2.1 The role of insulin in energy homeostasis 

The 51 amino acid hormone insulin is secreted by β-cells of the pancreatic 

islets of Langerhans in response to rising blood glucose levels. Insulin release 

from secretory granules into the circulation allows the hormone to reach its 

targets tissues, where it binds to its receptor and induces a cascade of 

intracellular signalling. Insulin controls a diversity of processes in the periphery 

through its action on muscle, liver and adipose tissue, promoting glucose 

uptake and anabolic processes, such as the stimulation of amino acid uptake 
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and gluconeogenesis, and inhibiting catabolic processes, such as 

glycogenolysis and hepatic glucose production (reviewed in [16, 17]). 

In addition to its role in the periphery, insulin also reaches the CNS by crossing 

the blood-brain barrier in a receptor–mediated mechanism [18, 19]. It has been 

shown that insulin signalling in the CNS is crucial for the maintenance of the 

energy balance. This is reflected by the observation that the neuronal insulin 

receptor deficient mice exhibit a diet-sensitive obesity and insulin resistance 

[13]. Moreover, insulin infusion into the brain decreases food intake and body 

weight, and it has been proposed that insulin action in the CNS acts as an 

adiposity signal, transferring information about the amount of body fat stores 

and causing a tendency towards a negative energy balance [20]. 

Molecular mechanisms of insulin receptor signalling 

Insulin mediates its pleiotropic effects by binding to and activating its 

membrane-bound tyrosine kinase receptor. Insulin binding to the insulin 

receptor (IR) results in conformational changes that activate the intrinsic 

tyrosine kinase activity going along with a receptor autophosphorylation of 

multiple tyrosine residues [21, 22]. This enables the intracellular insulin receptor 

substrate (IRS) proteins to bind via a phosphotyrosine-binding (PTB) domain 

[23] (fig. 1).  Moreover, the tyrosine kinase activity of the receptor 

phosphorylates specific tyrosines of the IRS, which allow src-homology-2 (SH2) 

domain containing proteins to bind to the receptor bound IRS molecule [24, 25]. 

The IRS proteins can, thereby, serve as central nodes regulating different 

signalling pathways as a docking platform for SH2 containing proteins.  

Two important pathways, involving the mitogen-activated protein kinase 

(MAPK) [26] or the phosphatidyl inositol 3-kinase (PI3K), induce a variety of 

biological effects of insulin signalling in different tissues (for review see [27]). In 

the case of the MAPK pathway, the growth factor receptor binding (Grb)2 

protein binds through its SH2 domain to phosphorylated IRS proteins, 

eventually leading to activation of MAPK pathway, which mediates insulin’s 

effect on proliferation [26]. In the case of the PI3K pathway, phosphorylated IRS 

activates the PI3K by the interaction with the SH domain-containing p85-

regulatory subunit, leading to release of the catalytic PI3K subunit (p110), and 

generation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) from 
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phosphatidylinositol (4,5)-bisphosphate (PIP2) [28]. Subsequently, the 

pleckstrin homology (PH) domain of the phosphoinositide dependent protein 

kinase-1 (PDK1) binds to PIP3, recruiting PDK1 to the membrane, which is 

crucial for the phosphorylation and activation of another kinase, AKT (also 

called protein kinases B /PKB) [29]. Finally, the effect of insulin signalling 

through this pathway can be inhibited by the PTEN phosphatase (phosphatase 

and tensin homolog), which generates PIP2 from PIP3. The PI3K-AKT 

signalling pathway mediates several effects of insulin, including the glucose 

transporter translocation and the regulation of gene transcription by 

phosphorylation of transcription factors, such as FOXO proteins. (for review see 

[27, 30]) 

 

 

Figure 1: Insulin receptor signal transduction (Adapted from [27]) 

Upon insulin binding to the extracellular subunits of the insulin receptor, the receptor undergoes 
a conformational change, activating the intracellular tyrosine kinase activity, resulting in receptor 
autophosphorylation and subsequently in the phosphorylation of intracellular insulin receptor 
substrate (IRS) 1 proteins on tyrosine residues. These phosphorylation sites are located in 
domains that characterize them as binding sites for src-homology 2 (SH2) domain-containing 
proteins such as the p85-regulatory subunit of phosphatidylinositol 3 kinase (PI3 kinase) and 
the growth factor receptor binding protein-2 (Grb-2). Binding of these proteins to tyrosine 
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phosphorylated IRS 1 proteins results in their activation, initiating downstream signals as the 
activation of the Ras-MAPK cascade or the activation of serine/threonine kinases downstream 
of PIP3. These signals finally result in the diverse biological effects of insulin signaling. 
Abbreviations: MAPK, mitogen-activated protein kinase; mSOS, son of sevenless; Ras, Ras 
small GTPase; p110, catalytic subunit of PI3 kinase; PIP2,phosphatidylinositol (4,5) 
bisphosphate; PIP3, phosphatidylinositol (3,4,5) trisphosphate; PTEN, phosphatase and tensin 
homolog; PDK1, protein-dependent kinase 1; Akt, protein kinase B 
 

1.2.2 The role of leptin in energy homeostasis 

The hormone leptin, secreted by adipose tissue, has been only recently 

identified as a main regulator in energy homeostasis [31]. In mice, leptin 

deficiency (ob/ob mice) results in hyperphagia, obesity and insulin resistance 

[31, 32]. In addition, mice with the loss-of-function mutation of the leptin 

receptor have been characterised as diabetic mice (db/db) [33]. In humans, a 

leptin mutation resulting in hyperphagia and obesity could be rescued by the 

treatment with the leptin hormone [34, 35]. Importantly, leptin is released from 

adipose tissue into the circulation in correlation to fat mass and is therefore 

considered as an adiposity signal, especially for the brain. However, increased 

circulating levels of leptin in obese patients go along with a reduced sensitivity 

to its appetite-reducing effect [36].  

 

1.3 The hypothalamic control of energy homeostasis 

Since an important role for the CNS in energy homeostasis had been 

recognized more than 100 years ago, the specific brain nuclei in the CNS 

regulating food intake and energy expenditure were defined. These studies led 

to the finding that the hypothalamus integrates both appetite and energy 

expenditure by sensing the input from nutrients and peripheral hormones, such 

as insulin and leptin, and coordinating the adequate responses [37]. The 

hypothalamus is situated below the thalamus and includes a complex network 

of neurons that are involved in feeding and glucose metabolism. Distinct 

regions and neuron subpopulations within the hypothalamus have been 

identified by lesion and electrical stimulation studies as key nuclei for the control 

of feeding and satiety. Major sites of this network are the ventromedial 

hypothalamus (VMH), the paraventricular nucleus (PVN), the dorsomedial 

hypothalamic nucleus (DMH) and the arcuate nucleus (ARC) [38] (fig.2). 
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Figure 2: Distinct nuclei within the hypothalamus in the regulation of energy homeostasis 

Populations of 1st order neurons in the arcuate nucleus (ARC) are regulated by leptin/insulin 
and project to 2nd order neurons; coronal sections of the brain at two levels (indicated by 
vertical lines in sagittal brain from “The Mouse Brain” [39]) are shown at the left and right. 
ant.PVN: anterior paraventricular nucleus; post.PVN: posterior paraventricular nucleus LH: 
lateral hypothalamus; VMH: ventromedial nucleus of the hypothalamus; DMH: dorsomedial 
hypothalamic nucleus 
 

1.3.1 The arcuate nucleus of the hypothalamus 

Studies on the hypothalamic effects on energy homeostasis have been focused 

on the mediobasal hypothalamus. Particularly, in the arcuate nucleus (ARC) 

two neuron populations, expressing insulin and leptin receptors, exert potent 

effects on food intake, energy expenditure and glucose homeostasis. The 

anorexigenic Proopiomelanocortin (POMC) expressing neurons and the 

orexigenic agouti-related peptide/ neuropeptide Y (AgRP/NPY) expressing 

neurons are essential for regulation of energy homeostasis by the arcuate 

nucleus [40-42].  
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POMC is a 241 amino acid peptide that is further processed to several small 

peptides: the melanocyte stimulating hormones (MSHs), adrenocorticotropin 

(ACTH) and β-endorphin [43]. This process is dependent on the cell type-

specific expression pattern of prohormone convertases [44]. Alpha-MSH, one of 

the active products of POMC processing, inhibits food intake and thus is seen 

as an anorexigenic neuropeptide [45]. Alpha-MSH is released at the nerve 

terminals of POMC neurons, where it stimulates the melanocortin receptors 

type 3 and 4 (MC3R/MC4R) on postsynaptic cells [46, 47]. Opposite to the 

POMC function, NPY and AgRP stimulate food intake and reduce energy 

expenditure [48]. AgRP functions as an antagonist and/or inverse agonist of the 

neuronal melanocortin receptors MC3R and MC4R, whereas NPY activates its 

own receptor on downstream neurons [49, 50]. 

The anorexigenic or orexigenic nature of these neuropeptides is reflected by the 

mRNA expression patterns upon fasting. While POMC levels are significantly 

reduced, AgRP mRNA levels are increased upon fasting [51]. Supporting 

evidence for the orexigenic role AgRP/NPY neurons was generated by the 

selective toxin-mediated neuron ablation in adult mice, which results in a drastic 

reduction of food intake along with a decrease in body weight [52, 53]. 

Importantly, insulin and leptin affect the energy homeostasis by an alteration of 

neuropeptide expression levels in the arcuate nucleus, as shown by central 

insulin and leptin administration. Whereas insulin induces POMC and inhibits 

NPY expression in the respective populations [54, 55] an administration of 

leptin stimulates expression of POMC [41, 56] and inhibits expression of AgRP 

and NPY [57].  

Taken together, POMC and AgRP/NPY neurons are considered first order 

sensors of the energy status of the organism with clearly distinct and opposing 

effects on energy metabolism. Importantly, these neurons project to second 

order neurons, including the neurons of the paraventricular nucleus (PVN) of 

the hypothalamus (fig2) [58-60]. 

 

1.3.2 The paraventricular nucleus of the hypothalamus 

The paraventricular nucleus (PVN) of the hypothalamus is located in the 

anterior-medial region of the hypothalamus and it has been proposed to have a 
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critical role in the regulation of food intake, behaviour and neuroendocrine 

functions. Classical neuropeptides expressed in the PVN are the corticotropin 

releasing hormone (CRH), thyrotropin releasing hormone (TRH), arginine 

vasopressin (AVP) and oxytocin [61].  

The diversity of PVN functions is also reflected by the presence of different 

populations of neurons (magnocellular and parvocellular neurons) within this 

region, which can be either distinguished by electrophysiological properties [62] 

or by genetic expression patterns [63]. On one hand, the magnocellular 

neurosecretory neurons at the posterior magnocellular subdivision of the PVN 

synthesize and release AVP and oxytocin from their nerve terminals at the 

posterior pituitary [64]. Magnocellular AVP regulates the organism’s water 

balance enabling the kidneys to conserve water in the case of dehydration [65], 

whereas oxytocin has originally been known to be released in large amounts at 

the end of pregnancy and thereafter, to facilitate birth and breastfeeding (see 

[61] for review). On the other hand, the parvocellular neurons project to the 

external lamina of the median eminence, where the released peptides are 

transported via the hypothalamic pituitary portal system to the anterior pituitary 

[64]. Parvocellular neurons of the PVN either express TRH or coexpress CRH 

and AVP to initiate the stress response. CRH, originally named corticotropin 

releasing factor (CRF), is primarily involved in the organisms stress response 

(see below). Thyrotropin-releasing hormone (TRH), also named thyrotropin 

releasing factor (TRF), stimulates the release of thyroid-stimulating hormone 

and prolactin by the anterior pituitary. Both CRH and TRH are anorexigenic 

neuropeptides (see [61, 66] for review). Interestingly, hypothalamic CRH and 

TRH are mediators of the anorexigenic effect of leptin and activated by the 

melanocortin system in the PVN [67, 68]. 

In summary, the PVN has been implicated in regulating a diversity of 

processes, such as the stress response and energy homeostasis. However, it 

remains unclear how the different inputs from other neurons or hormones are 

integrated to mediate the effects on neuropeptides, as CRH and AVP that are 

involved in several pathways. For instance, CRH has been characterized as an 

anorexigenic neuropeptide, but it is also involved in the initiation of the stress 

response.  
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1.3.2.1 The transcription factor Sim1 and the melanocortin system 

Within the few forms of monogenetic disorders known to result in obesity in 

humans, two of these, Sim1 (mammalian homologue to the drosophila single 

minded1 gene) [69] and the MC4R [70, 71] are characteristically expressed in 

the paraventricular nucleus among other regions that have been described as 

second order neurons.  

Sim1, belonging to the Per-Arnt-Sim (PAS) family of basic helix-loop-helix 

(bHLH) transcription factors, is essential for the formation of the paraventricular 

and supraoptic nuclei in the hypothalamus in a dosage dependent manner. 

Homozygous Sim1 knockout (Sim1-/-) mice die shortly after birth [72]. However, 

Sim1 haploinsufficient (Sim1+/-) mice are viable and develop early onset 

obesity resulting from hyperphagia. This is accompanied with an increased 

linear growth, hyperinsulinemia and hyperleptinemia [73]. Along this line, the 

overexpression of Sim1 via an adenovirus or a transgene leads to the opposite 

effects: The calorie consumption is reduced and the mice are resistant to diet-

induced obesity [74, 75]. Interestingly, administration of leptin leads to a higher 

expression of the Sim1 protein [73], but the underlying mechanism is unknown. 

Recently, it has been shown, that the MC4R, Sim1 and oxytocin are 

coexpressed in the PVN and that oxytocin might be a mediator of Sim1 

signalling, as it partially rescues Sim1 haploinsufficiency [76].  

The MC4R is a 7-transmembrane, G-protein-coupled receptor [77] that has an 

essential role in the regulation of the energy balance. Aforementioned, POMC 

neurons project to the PVN, where they release α-MSH, which binds to the 

MC4R and decreases food intake. Moreover, the disruption of the gene leads to 

severe obesity both in mice and humans [78, 79]. The obesity of MC4R 

deficient mice is caused by a massive hyperphagia going along with a decrease 

in energy expenditure [80]. MC4R deficient mice are unresponsive to 

anorexigenic stimuli, like leptin or the MC4R agonist melanotan II (MTII), while 

NPY can still stimulate food intake in MC4R deficient mice [81]. The 

downstream signalling of the MC4R in response to metabolic stimuli is only 

poorly understood, nevertheless CRH seems to be activated by MTII induced 

MC4R signalling linking the metabolic pathways with the initiation of the stress 
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response (see below) [68]. Interestingly, restoration of the MC4R selectively in 

Sim1 neurons of MC4R deficient mice leads to a 60% reduction of the obesity. 

This partial rescue of the obese phenotype is due to a reduction in caloric intake 

while the reduced energy expenditure as seen in MC4R disrupted animals 

remains unaffected [82]. This suggests that separate populations of neurons 

receiving input from POMC or AgRP neurons determine food intake and energy 

expenditure.  

 

Besides their function as second order neurons, getting input from the arcuate 

nucleus, neurons of the PVN are also capable in directly sensing of metabolic 

parameters, as leptin and insulin receptors are expressed on PVN neurons [73, 

83]. Taken together, the paraventricular nucleus is an important site of second 

order neurons in response to metabolic signals. However, it is still unclear 

which precise mechanisms act in response to signals like α-MSH, originating in 

the arcuate nucleus, and how these mechanisms interact with direct signals, as 

insulin or metabolites as glucose. 

 

1.3.2.2 The regulation of stress response by the PVN 

The mammalian stress response has evolved under conditions that necessitate 

a sudden change from regular feeding behaviour to an effective escape from 

natural enemies. In situation of danger, the body has to use its energy in the 

most effective way and prioritise. This involves a rapid energy use, which is 

achieved by stimulating gluconeogenesis, glycogenolysis, lipolysis and hepatic 

glucose secretion to elevate blood glucose levels. Along with this, increased 

heart rate and blood pressure enables the lungs and muscles to take up more 

oxygen. Most importantly, the secretion of stress hormones, such as adrenaline 

and corticosterone, along with endorphins to reduce pain, initiates pathways 

that are responsible for the effects of stress response (reviewed in [84]). 

In response to stress, the parvocellular PVN initiates the hypothalamic pituitary 

adrenal (HPA) axis, which results in the release of corticosterone (in mice) and 

cortisol (in humans) from the adrenal glands. It has been shown that 

calcium/calmodulin and cAMP/CREB dependent pathways in the parvocellular 



Introduction 

 11 

subset of the PVN induce CRH and AVP [85]. These neuropeptides are 

released at the nerve terminals of the median eminence into the hypothalamic 

pituitary portal system to be transported to the anterior pituitary, where the 

specific receptors (CRHR1/AVPR1B) are expressed on pituitary corticotropes 

(fig. 3). These G protein-coupled receptors induce the release of ACTH in a 

calcium/calmodulin and cAMP/CREB dependent manner. Subsequently, ACTH, 

transported via the blood stream, initiates the corticosterone release in the 

adrenal cortex. Corticosterone, along with other stress mediators as adrenaline, 

acts on different brain areas to mediate the effects of acute stress. The target 

areas include the executive, cognitive, the fear/anger and reward systems as 

well as the wake sleep centres of the brain (see [84, 86] for review). 
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Figure 3: The hypothalamic pituitary adrenal axis (HPA) 

Calcium/calmodulin and cAMP/CREB dependent pathways in the parvocellular PVN induce 
CRH and AVP, which are released into the hypothalamic pituitary portal system to be 
transported to the anterior pituitary, where the specific receptors (CRHR1/AVPR1B) are 
expressed on pituitary corticotropes that induce the release of adrenocorticotropin (ACTH). 
ACTH initiates the corticosterone release in the adrenal cortex. Corticosterone mediates a 
negative feedback mechanism on CRH, AVP and ACTH. The body reacts to stress by different 
adjustments as increasing heartbeats, high blood pressure, high glucose-levels and muscle 
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activity. Ca2+, Calcium; cAMP, cyclic adenosine monophosphate; CRH, corticotropin releasing 
hormone; AVP, arginine vasopressin  
Corticosterone binds to its nuclear receptors, whereby high affinity type I 

mineralocorticoid receptors expressed in the brain maintain a diurnal rhythm of 

corticosterone [87]. Otherwise, the low affinity glucocorticoid type II receptor 

(GR) in the hypothalamus mediates a negative feedback mechanism on CRH 

and AVP. This enables the organism to reduce the HPA response after an 

acute stress phase [88, 89]. The balance between CRH and AVP expression is 

dependent on the kind of stress that is administered to the organism, as 

restraint stress results in a different response than osmotic or immune stress 

[90]. Interestingly, acute and chronic stress have been shown to differ in their 

response, favouring an AVP induction in the case of chronic stress [90-93]. 

Typical symptoms of acute stress are asthma, eczema or migraines, whereas 

chronic stress may go along with anxiety, depression or metabolic disorders, 

such as obesity and type II diabetes [84].  

An additional activator of CRH and AVP expression in the parvocellular PVN is 

estrogen, which reflects the different response of females and males to stress 

[94-98]. The role for estrogen in stress response is supported by the finding that 

estrogen can impair the glucocorticoid-mediated feedback on the HPA axis [97]. 

 

1.4 KATP channels as neuronal glucose and insulin sensors 

Insulin is able to regulate neuronal activity by the modulation of ATP-sensitive 

potassium (KATP) channels [99]. KATP channels are expressed in tissues like 

skeletal and smooth muscle, heart, pancreatic β-cells, pituitary and brain 

including the substantia nigra, neocortex, hippocampus and hypothalamus 

[100]. The octameric KATP channel is constituted of different subunits that are 

expressed in a tissue-specific manner. Four inward rectifying potassium 

channel subunits (Kir6.1 or Kir 6.2) form a pore and are regulated by four 

sulfonylurea receptor subunits (SUR1 or SUR2) [101].  

The activity of the KATP channel is linked to the energy status of the cell so that 

a high intracellular ADP-level activates and opens the channel, while a high 

level of ATP reduces its activity and initiates depolarisation [101]. Hence, 

increasing glucose concentrations lead to elevated intracellular ATP 



Introduction 

 

14 

concentrations, closure of KATP channels and enhanced neuronal firing. The 

finding that intracellular ATP controls firing of several neuronal populations led 

to the discovery that KATP channel expression enables neurons to act as 

glucose sensors, although the relative importance of glucose sensing in 

different neuronal populations with regards to energy homeostasis is still 

unknown [102]. 

Insulin is able to regulate neuronal activity and the phosphatidyl inositol 3-

kinase (PI3K) pathway has, recently, been associated with the modulation of 

KATP channels by insulin [99]. Especially, the analysis of the POMC-neuron 

specific PTEN deficient mice revealed the newly discovered link between PIP3 

levels, which increase upon insulin stimulation, and the KATP channel. PTEN 

converts PIP3 into PIP2, thus inhibiting PI3K signalling. POMC-specific PTEN 

deficient mice exhibit hyperpolarized POMC neurons due to an increased KATP 

channel activity that goes along with a reduction of basal firing frequency [99, 

103].  

To analyse KATP channel signalling in more detail, a constitutive active variant of 

the KATP channel subunit Kir6.2 (KATP∆N) was generated. The KATP∆N variant 

has a N-terminal deletion of 30 aminoacids and an overexpression of the 

variant leads to an ion channel that is 250 times less sensitive to ATP mediated 

closure and is therefore constitutively opened. An open KATP channel results in 

a constant outflow of the positively charged potassium, which can reduce the 

firing frequency and hyperpolarize the cell [104, 105]. In pancreatic β-islets, 

where the KATP-dependent depolarization leads to insulin secretion, this variant 

has been shown to cause impaired glucose induced insulin secretion and 

diabetes [106].  

These findings indicate that KATP channel function in POMC neurons is crucial 

for the physiological regulation of food intake and body weight [107] and that 

the constitutive active KATP∆N variant of the KATP channel is a good model to 

study the function of this channel in the regulation of membrane excitability. 

 



Introduction 

 15 

1.5 FOXO1 as a transcription factor in insulin signalling  

Insulin signalling regulates systemic gene expression by acting on several 

important transcription factors. One of them, FOXO1 was cloned from a human 

rhabdomysarcoma and used to be named forkhead found in human 

rhabdomyosarcoma (FKHR). In the year 2000, the nomenclature of the large 

family of transcription factors was standardized and the term forkheadbox 

(FOX) proteins was established. The FOX gene family can be subdivided in 15 

classes and until now about 100 FOX proteins have been identified in humans. 

All FOX proteins have a characteristic forkhead box domain of 100 amino acids, 

which enables the proteins to bind to the DNA by a helix-turn-helix motive 

consisting of three α helices and two characteristic large loops (see [108] for 

review). 

One Subclass, the FOXO family, consists of four members: FOXO1, FOXO3A, 

FOXO4 and FOXO6. FOXO1, FOXO3A and FOXO4 are negatively regulated 

by the AKT phosphorylation and bind to the same DNA consensus sequence, 

possibly regulating a similar set of target genes [109]. 

 

1.5.1 The regulation of FOXO1 by posttranslational modification 

By binding to its tyrosin kinase receptors, insulin, IGF and other growth factors 

activate AKT by phosphorylation via the IRS/PI3 kinase pathway (see section 

4). In absence of signals from AKT or other inactivating kinases, FOXO1 is 

located in the nucleus, where it activates or suppresses transcription by binding 

to its consensus sequence on promoters. Upon growth factor stimulation, 

activated AKT phosphorylates FOXO1 on serine 253, threonine 24 and 

serine 316, leading to nuclear export of FOXO1 and its ubiquitination-mediated 

degradation. This export is supported by the chaperone 14-3-3, which masks 

the nuclear localization sequence (NLS), and a nuclear export sequence (NES), 

which interacts with the Exportin/Crm1 system. Other kinases as SGK, the 

Casein kinase 1 (CK1) and dual tyrosine phosphorylated regulated kinase 1 

(DYRK1) have also been described to negatively regulate the activity of FOXO1 

(for review see [110]). 
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Figure 4: FOXO1 shuttling between the nucleus and the cytosol 

Insulin binding to the insulin receptor (IR) results in receptor autophosphorylation, which 
enables insulin receptor substrate (IRS) proteins to bind. The tyrosine kinase activity of the 
receptor phosphorylates specific tyrosines of IRS. Phosphorylated IRS activates phosphatidyl 
inositol 3-kinase (PI3K). Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) is generated from 
phosphatidylinositol (4,5)-bisphosphate (PIP2). This can be reversed by the PTEN 
phosphatase. The pleckstrin homology (PH) domain of the phosphoinositide dependent protein 
kinase-1 (PDK1) binds to PIP3, which activates PDK1 to phosphorylate AKT (protein kinase B). 
AKT inactivates the transcription factor FOXO1 by phosphorylation. In absence of signals from 
AKT or other inactivating kinases, FOXO1 is located in the nucleus, where it activates or 
suppresses transcription by binding to its consensus sequence on promoters. Upon growth 
factor stimulation and AKT-phosphorylation, FOXO1 is exported out of the nucleus resulting in 
an ubiquitination-mediated degradation, supported by the chaperone 14-3-3. FOXO1 can be 
activated by Sirt-deacetylation (sirtuin) and suppressed by CBP-acetylation (CREB binding 
protein) 
 

So far, only few FOXO1 activating kinases have been described. For instance 

in Drosophila, oxidative stress induces the FOXO1 phosphorylation by c-Jun N-

terminal kinase (JNK). This has been shown to play a role in aging regulation, 

as JNK requires FOXO to extend life span of flies [111]. Besides 

phosphorylation, also the acetylation status of FOXO1 has an effect on its 

activity. Whereas Sirt1 (sirtuin), involved in insulin secretion and oxidative 

stress in pancreatic β-cells, has been shown to activate FOXO1 by 
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deacetylation [112], an acetylation by CBP (CREB binding protein) can 

suppress the activity of FOXO proteins. [110, 112] 

1.5.2 The genetic modifications of FOXO genes in mice 

Complete conventional knockout mice of FOXO1, 3A and 4 have been 

generated. The FOXO1 knockout mice die on embryonic day 10.5, whereas the 

mice deficient for FOXO3a and 4 are viable but have a diversity of defects 

including tumors in different tissues of the body (table1). Moreover, the analysis 

of FOXO1 haploinsufficient mice revealed some important functions of FOXO1 

in the adult liver, as insulin receptor haploinsufficient mice are insulin insensitive 

and this can be rescued by FOXO1 haploinsufficiency [113]. The FOXO genes 

are expressed in an overlapping manner in different tissues and FOXO1, 

FOXO3A and FOXO4 have been shown to bind to the same consensus 

sequence. Hence, different FOXO proteins could regulate the same target 

genes (reviewed in [109]). 
 

Table 1: Phenotypes of FOXO knockout mice [110] 

Knockout mice Phenotypes References 

FOXO1 -/- Embryonic lethal day 10.5; defects of vascular development 

in embryo and yolk sac 

[114, 115] 

FOXO3a -/- Viable; abnormal ovarian development; haematological 

abnormalities; pituitary adenoma 

[114, 116, 

117] 

FOXO4 -/- Viable; Impaired neointima formation lung adenoma; 

adenocarcinoma; pituitary adenoma 

[117, 118] 

The conventional FOXO knockout mice have specific defects in the indicated organs. 
 
To circumvent the problem of redundancy, alternative strategies have been 

developed by the generation of FOXO1 constitutive active and dominant 

negative variants. In the case of the constitutive active FOXO1, two or three 

phosphorylation sites important for inactivation where mutated, so that AKT and 

other kinases cannot phosphorylate the resulting protein. As a result, 

unphosphorylated FOXO1 variant remains in the nucleus and the target genes 

are activated independently of a stimulation of the cell by factors, such as 

insulin [119, 120].  

For the generation of the dominant negative form of FOXO1, the C-terminal 

region of the protein was eliminated, which results in a truncated protein 
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consisting only of the N-terminal 253 amino acids (FOXO1DN). Thus, the AKT 

phosphorylation sites at serine residues 253 and 319, the nuclear export 

sequence (NES) and the transactivation domain are absent. Similar to the 

constitutive active FOXO1 variant, this truncated protein can neither be 

phosphorylated nor exported from the nucleus so that it stays bound to FOXO 

target sequences via its forkhead domain. Importantly, the lack of the 

transactivation domain, results in a dominant negative function of the protein 

[121, 122]. Finally, FOXO1DN can block the DNA binding of endogenous 

FOXO1, FOXO3a and FOXO4, since the known consensus sequences are 

identical for all them [123]. 

 

1.5.3 The role of FOXO1 in the periphery and the CNS 

FOXO proteins are vital integrators of a diversity of pathways and are essential 

for different tissues and processes, as metabolism, tumor suppression, cell 

cycle arrest, cellular differentiation, apoptosis and protection from oxidative 

stress. The overexpression of the constitutive active or dominant negative 

variant of FOXO1 via adenoviral administration has helped to elucidate the role 

of FOXO1 in different tissues, such as liver, adipose tissue and the 

hypothalamus [119, 120, 122, 124]. 

Hepatic FOXO1 is a positive regulator of glucose production, since FOXO1 

positively regulates expression of gluconeogenic enzymes such as G6Pase and 

PEPCK, and inhibition of hepatic FOXO1 can ameliorate the diabetic phenotype 

of obese mice [113]. FOXO proteins are also known to be intimately involved in 

cell cycle control and development. Hence, in adipose tissue, a constitutive 

active FOXO1 variant increases the cell cycle inhibitor p21 resulting in 

adipocyte differentiation [113, 125]. Furthermore, FOXO1 action increases 

expression of pro-apoptotic proteins, in line with FOXO1 activation and growth 

factor stimulation being inversely linked [126]. 

Hypothalamic FOXO1 has been shown to be an important player in the 

metabolic control. FOXO1 competes with the leptin-stimulated transcription 

factor STAT3 for binding to the promoters of POMC and AgRP, as analysed by 

the injection of a constitutive active FOXO1 expressing adenovirus into the ARC 
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[120, 124]. This was further underscored by the use of mice deficient for 

FOXO1 specifically in POMC expressing neurons. These mice show a 

decreased food intake but normal energy expenditure. In line with this, POMC-

expressing neuron specific FOXO1 deficient mice produce increased levels of 

the POMC processing products α-MSH and β-endorphin. The latter is a 

consequence of the upregulation of the Carboxypeptidase E (Cpe), an enzyme 

involved in POMC processing [127]. 

Aforementioned, FOXO1 has first been cloned from a human 

rhabdomyosarcoma. To date, FOXO1, as a central signalling molecule, links 

the balance between cell cycle and differentiation with the stabilisation of the 

energy balance of the organism [128], thereby being associated with diseases 

like cancer and diabetes. The role in peripheral organs has intensively been 

studied. Nonetheless, in the hypothalamus, where a high FOXO1 expression 

can be monitored in different areas including the PVN, the role of FOXO1 has 

only been analysed in the arcuate nucleus [124]. 

 

1.6 Objectives 

Nutrient and hormone signals, such as insulin, leptin and glucose reflect the 

nutritional status of the organism and modulate energy homeostasis. How these 

signals are integrated in the hypothalamus and how the distinct hypothalamic 

nuclei translate these signals is only started to be elucidated on the molecular 

level. Research has been mainly focused on the response of first order neurons 

in the arcuate nucleus of the hypothalamus. However, The integrative function 

of the paraventricular nucleus (PVN) in stress response and the regulation of 

energy homeostasis is only poorly understood. The transcription factor FOXO1 

and the ATP sensitive potassium (KATP) channel are involved in several 

important metabolic pathways in different tissues including the arcuate nucleus. 

Thus, the aim of this thesis was to elucidate if these central molecules are also 

involved in the diversity of pathways regulated by the PVN. 
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2 Materials and methods 

2.1 Chemicals 

Table 2: List of chemicals 

Chemicals Supplier, orgin 

Agarose   Peqlab, Erlangen, Germany   

Agarose Ultra Pure  Invitrogen, Karlsruhe, Germany   

Ampicillin Applichem, Darmstadt, Germany 

Bromphenol-blue Merck, Darmstadt,Germany 

Calcium chloride   Merck, Darmstadt, Germany 

Chloroform   Applichem, Darmstadt, Germany 

DAPI Vector Laboratories, Burlingham, USA 

Diethylpyrocarbonat (DEPC) Applichem, Darmstadt, Germany 

Dimethylsulfoxide (DMSO)   Sigma, Steinheim, Germany    

Di-sodium hydrogen phosphate   Merck, Darmstadt, Germany   

Deoxyribonucleotide triphosphate (dNTPs) Amersham, Freiburg, Germany   

Dulbecco’s Modified Eagle Medium (DMEM) Gibco, Paisley, UK  

Developer G 153 Agfa, Mortsel, Belgium 

Ethanol, absolute  Roth, Karlsruhe, Germany   

Ethidium bromide    Applichem, Darmstadt, Germany    

Ethylendiamine tetraacetate (EDTA)    Applichem, Darmstadt, Germany    

Fetal calf serum (FCS)   Invitrogen, Karlsruhe, Germany    

Fixing solution G 354 Agfa, Mortsel, Belgium 

Formaldehyde  Merck, Darmstadt, Germany   

Formamide  Applichem, Darmstadt, Germany   

Gene Ruler DNA Ladder Mix   Fermentas, St. Leon-Rot, Germany   

Glucose, 20 % DeltaSelect, Dreieich, Germany   

Glycerol  Applichem, Darmstadt, Germany   

Hydrochloric acid (37 %)   KMF Laborchemie, Lohmar, Germany   

Hydrogen peroxide   Sigma, Steinheim, Germany    

Isopropanol (2-Propanol)    Roth, Karlsruhe, Germany    

Isopropyl-b-D-thiogalactopyranosid (IPTG) Sigma, Deisenhofen  

Kanamycin Applichem, Darmstadt  

Lipofectamin 2000 Invitrogen, Karlsruhe  

Luria-Bertani (LB) Agar Sigma, Steinheim, Germany    

Luria-Bertani (LB) Media  Applichem, Darmstadt, Germany   

Methanol Roth, Karlsruhe, Germany 
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Chemicals Supplier, orgin 

Morpholinopropansulfonsäure (MOPS) Applichem, Darmstadt, Germany 

N,N,N’,N’- Tetramethylethylendiamin (TEMED) Sigma, Deisenhofen, Germany 

Nitrogen (liquid)  Linde, Pullach, Germany   

NuSieve (low-melt) Agarose Biozym, Hess Oldendorf, Germany 

Opti-MEM Gibco, Paisley, UK 

Paraformaldehyde (PFA)   Sigma, Steinheim, Germany  

1x PBS   Gibco, Karlsruhe, Germany   

Penicillin/Streptomycin Gibco, Paisley, UK 

Phenol Sigma, Deisenhofen, Germany 

Phenol/Chloroform/Isoamylalkohol Applichem, Darmstadt, Germany 

Potassium chloride   Merck, Darmstadt, Germany  

Bovine serum albumin (BSA) Applichem, Darmstadt, Germany 

Sodium chloride   Applichem, Darmstadt, Germany   

Sodium cholide solution, 0.9 %   Berlin-Chemie, Berlin, Germany   

Sodium citrate   Merck, Darmstadt, Germany   

Sodium di-hydrogen phosphate   Merck, Darmstadt, Germany   

Sodiumdodecylsulfate (SDS)   Applichem, Darmstadt, Germany  

Sucrose   Sigma, Steinheim, Germany    

TRIfast PeqLab, Erlangen, Germany 

Trishydroxymethylaminomethan (Tris)   Applichem, Darmstadt, Germany  

Triton X-100   Sigma, Steinheim, Germany    

Trypsin Gibco, Paisley, UK 

Tween  Applichem, Darmstadt, Germany 

X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-

galactopyranoside) 

Sigma, Deisenhofen, Germany 

 

2.2 Mouse experiments 

2.2.1 Animal care 

Care of all animals was within institutional animal care committee guidelines. All 

animal procedures were conducted in compliance with protocols, approved by 

local government authorities (Bezirksregierung Köln, Cologne, Germany) and 

were in accordance with NIH guidelines. Mice were housed in groups of 3–5 at 

22–24°C using a 12-hour light / 12-hour dark cycle. Animals were either fed 

normal chow diet (Teklad Global Rodent 2018; Harlan) containing 53.5% 

carbohydrates, 18.5% protein, and 5.5% fat (12% of calories from fat) or a high 
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fat diet  (HFD; C1057; Altromin) containing 32.7% carbohydrates, 20% protein, 

and 35.5% fat (55.2% of calories from fat). Animals had ad libitum access to 

water at all times, and food was only withdrawn if required for an experiment. 

Mice were sacrificed using CO2 or cervical dislocation. 

 

2.2.2 Generation of FOXO1DNSim1 and FOXO1DN/DNSim1 mice 

FOXO1DNstoplox/lox mice were previously generated as described in Belgardt 

et.al. [129]. FOXO1DNstoplox/lox mice were backcrossed six times onto a C57BL/6 

background before crossing to Sim1-Cre animals [82]. Sim1-Cre mice were 

crossed to FOXO1DNstoplox/lox for the generation of heterozygous FOXO1DNSim1 

mice, whereas to generate homozygous FOXO1DN/DNSim1 mice 

FOXO1DNstoplox/lox mice were first bred to heterozygous FOXO1DNSim1 and then 

to homozygous FOXO1DN/DNSim1. The background was unchanged throughout 

all experiments. Littermates were used for analysis at all times. Mice were 

genotyped by PCR using genomic DNA isolated from tail tips as described in 

section 2.6. 

 

2.2.3 Generation of KATP∆NSim1 mice and KATP∆N/∆NSim1 

KATP∆Nstoplox/lox mice were previously generated [130] and a C57BL/6 

background was ensured by backcrossing KATP∆Nstoplox/lox mice six times 

before crossing them to Sim1-Cre animals [82]. First, heterozygous 

KATP∆NSim1 mice were generated by crossing Sim1-Cre mice to 

KATP∆Nstoplox/lox, and in a second step KATP∆Nstoplox/lox mice were first bred to 

heterozygous KATP∆NSim1 and then to homozygous KATP∆N/∆NSim1 to 

establish littermate groups that consist of homozygous KATP∆N/∆NSim1 mice 

and KATP∆Nstoplox/lox mice as controls. The background was unchanged 

throughout all experiments. Littermates were used for analysis at all times. Mice 

were genotyped by PCR using genomic DNA isolated from tail tips as described 

in section 2.6. 
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2.2.4 Generation of DsRed-KATP∆NSim1 mice and Z/EG-KATP∆NSim1 

To generate Z/EG-KATP∆NSim1 mice or DsRed-KATP∆NSim1 for 

electrophysiological experiments “lacZ/EGFP” (Z/EG) [131] or “B6.Cg-Tg(CAG-

DsRed*MST)1Nagy/J” (DsRed) [132] mice were bred to heterozygous 

KATP∆NSim1. The background was unchanged throughout all experiments. 

Littermates with the genotype Z/EGSim1 or DsRedSim1 were used for analysis as 

controls at all times.  

 

2.2.5 Determination of the mouse genotype  

For isolation of genomic DNA, mouse tail biopsies were incubated in lysis buffer 

(10 mM Tris/HCl [pH 8]; 10 mM EDTA; 150 mM NaCl; 0.2 % (w/v) SDS; 

400 mg/ml proteinase K) at 55 °C for 3-12 hours. DNA was precipitated by 

adding an equal volume of isopropanol, mixed and pelleted by centrifugation. 

After washing with 70 % (v/v) Ethanol, the pellet was dried at room temperature 

and resuspended in TEbuffer (10 mM Tris/HCl [pH 8]; 1 mM EDTA)[133]. 

The polymerase chain reaction was performed to amplify a DNA fragment 

in vitro to detect targeted alleles or transgenes by size of amplified fragment for 

genotyping of mice[134, 135]. This was performed with 500 ng DNA isolated 

from tail biopsies in a total volume of 25 µl containing 25 pmol of each primer 

(listed in table 3), 25 µmol dNTPs, 2 to 6 % (v/v) DMSO, 1 to 1.2 U REDTaq ® 

DNA Polymerase and 1 x REDTaq ® PCR Reaction Buffer (Sigma, Steinheim, 

Germany). Thereby, the different PCRs started with an initial denaturation step 

at 95°C for 5 min, followed by 34 to 45 cycles of denaturation at 95°C for 

30 sec, annealing at 54 to 62°C for 30 to 45 sec and elongation at 72°C for 30 

to 90 sec. The elongation was finished with a final extension step at 72°C for 10 

min. All PCR reactions were carried out either in an iCycler Thermocycler (Bio-

Rad, Hercules, CA, USA) or in a PTC-200 Peltier Thermal Cycler (MJ 

Research, Waltham, MA, USA). Amplified DNA fragments were separated by 

size using agarose gel electrophoresis (1 to 3 % (w/v) agarose (depending on 

fragment size); 1 x TAE; 0.5 mg/ml ethidiumbromide; 1 x TAE electrophoresis 

buffer). 
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Table 3: Oligonucleotides for the analysis of mouse genotypes. 

Name Sequence 

CAGS _forw AAAGTCGCTCTGAGTTGTTATC 

CAGS _rev_wt GATATGAAGTACTGGGCTCTT 

CAGS _rev TGTCGCAAATTAACTGTGAATC 

SIM1-Cre 1 CACGACCGGCAAACGGACAGAA 

SIM1-Cre 2 TTTTGGTTTTGGATGAGTCTGTGGAG 

SIM1-Cre 3 TGGGATTAGCGTGTTTCAACTGAGC 

lacZ 1 ATC CTC TGC ATG GTC AGG TC 
lacZ 2 CGT GGC CTG ATT CAT TCC 

DsRed 1 CCC ATG GTC TTC TTC TGC A 

DsRed 2 AAG GTG TAC GTG AAG CAC CC 

DsRed 3 CTA GGC CAC AGA ATT GAA AGA TCT  

DsRed 4 GTA GGT GGA AAT TCT AGC ATC ATC C 

 

2.2.6 Body weight, fat composition and body length 

Body weight was measured once a week. Body fat content was measured in 

vivo by nuclear magnetic resonance using the minispec mq 7.5 (Bruker). At the 

end of the study period of 18 weeks, the animals were sacrificed using CO2 or 

cervical dislocation, body length (naso-anal length) was determined, relevant 

organs were extracted and stored at -80°C until further preparation.  

 

2.2.7 Food intake, melanotan II sensitivity and indirect calorimetry 

Mice were acclimated to the food intake settings for at least three days. Food 

intake was measured over a two-week period, during which mice were housed 

individually in accustomed cages using food racks. To minimize handling of 

animals, food racks were weighed weekly and daily food intake was calculated 

as the average daily intake of chow within the time stated. 

To measure the melanotan II (MTII) sensitivtiy the mice were adjusted to the 

food intake handling and to a daily injection for four days of 1 x PBS just before 

the initiation of the dark phase. On the day of the experiment the food was 

removed for four hours and MTII or 1 x PBS was injected immediately before 

the beginning of the dark phase. The food intake was measured 2, 4, 14 and 24 

hours after injection. The experiment was repeated after a two day washout 
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period, so that every animal was injected with MTII on one day and 1 x PBS on 

the other. 

Indirect calorimetry was automatically determined by a calorimetry module 

(Phenomaster). Mice were housed individually for one week in training cages 

that mimic the conditions during the experiment and the first two hours after 

initiating the Phenomaster evaluation were used for acclimatization before the 

parameters were measured twice per hour for at least 48 hours, while food and 

water were provided ad libitum. 

 

2.2.8 Blood glucose and serum protein concentrations 

Tail bleeding of mice at an age of 8 or 18 weeks was performed according to 

Hogan[136] and Silver[137] in the morning to avoid variations by the circadian 

rhythm. Serum was separated from blood cells and platelets by 30 minutes of 

centrifugation at a speed of 13000 rpm and stored at -20°C. Blood glucose 

values were determined from tail whole venous blood using an automatic 

glucose monitor (GlucoMenR GlycO; A. Menarini Diagnostics). 

Mice were handled at least weekly after weaning. Before the restraint of 8 week 

old mice, blood was taken from the tail vein for determination of basal serum 

corticosterone levels, which was followed by 60 minutes of restraint stress of 

the mice in a 50 ml plastic tube with openings for air supply. Immediately after 

the restraint period, blood was collected from the tail vein to determine stress 

serum corticosterone levels. 

Serum insulin, leptin and corticosterone levels were measured by Enzyme-

linked Immunosorbent Assay (ELISA) using mouse standards according to 

manufacturer’s guidelines (Mouse Leptin ELISA, Mouse/Rat Insulin ELISA, 

Crystal Chem; Corticosterone Enzyme Immunoassay Kit, Assay Designs Inc.). 

 

2.2.9 Glucose and Insulin Tolerance Tests 

Glucose tolerance tests (GTT) were performed with 16-17 hours fasted animals 

in the age of 12 weeks. After determination of fasted blood glucose levels each 

animal received an intraperitoneal injection of 20% glucose (10 ml/kg body 
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weight) (DeltaSelect). Blood glucose levels were detected 15, 30, 60 and 120 

minutes after the glucose injection.  

Whereas, Insulin tolerance tests (ITT) were performed with random fed 13 week 

old mice. The determination of basal blood glucose levels was followed by an 

injection of 0.75 U per kilogram body weight of human regular insulin (Novo 

Nordisk) into the peritoneal cavity. Blood glucose levels were detected 15, 30 

and 60 minutes following the insulin injection. 

 

2.2.10 Ovariectomy 

Ovariectomy (OVX) was performed as previously described [138]. Animals were 

anaesthetised by an i.p. injection of a mixture of ketamine/xylazine and OVX or 

sham operations were performed by bilateral dorsal abdominal incisions so that 

the ovary and the oviduct could be rapidly removed. In the sham surgery group, 

the ovary and oviduct were visualized before incisions were sutured. 

 

2.3 Immunocytochemistry 

All immunocytochemical procedures were performed as previously described in 

[103, 129, 139, 140]. Briefly, Sim1-cre mice were mated with RosaArte1 

reporter mice [141]. FOXODN/DNSim1 (GFP detection) and LacZSim1 mice (LacZ 

detection) (Rosa-Arte.X-gal) were anesthetized intraperitoneally with Avertin 

(240 mg/kg) (2,2,2-tribromoethanol, Sigma, Steinheim, Germany) and 

transcardially perfused with saline, for GFP stainings followed by 4 % (w/v) 

paraformaldehyde (PFA) in 0.1 M phosphate buffered saline (PBS [pH 7.4]). 

The brains were dissected and frozen in tissue freezing medium (Jung Tissue 

Freezing Medium; Leica Microsystems, Wetzlar, Germany) after post-fixation in 

4 % (w/v) PFA at 4 °C over night (in the case of GFP) and soaking in 20 % (w/v) 

sucrose for 6 h (in the case of GFP). 25 µm thick free-floating coronal sections 

were cut through the ARC using a freezing microtome (Leica Microsystems, 

Wetzlar, Germany).  

For GFP stainings, the sections were washed, pretreated with 0.3% H2O2, 

blocked with PBT/azide containing 3% donkey serum, and incubated overnight 

with primary antibody (anti-GFP rabbit serum, 1:10.000 in blocking solution; 
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A6455 from Invitrogen/Molecular Probes). Incubation with secondary antibody 

(anti-rabbit IgG biotin, 1:500; 711-065-152 from Jackson ImmunoResearch) 

was followed by an additional incubation with the VECTASTAIN Elite ABC kit 

(Vector Laboratories) for 1 h and visualization with 0.4% DAB/0.01% H2O2. 

Afterwards the sections were mounted onto gelatin-coated slides and covered 

with glycerin and processed as previously described [139]. 

For lacZ stainings, the sections were washed extensively in PBS to remove 

cryoprotectant. Afterwards, the sections were treated with 0.3 % (v/v) H2O2 in 

PBS for 20 minutes to quench endogenous peroxidase activity. Following 

pretreatments, the sections were stained using the Renaissance ® TSATM 

Fluorescence Systems Tyramide Signal Amplification Kit (PerkinElmerTM, 

Waltham, MA, USA) according to manufacturer’s guidelines (primary antibody: 

rabbit anti-lacZ; secondary antibody: goat anti-rabbit peroxidase labeled. The 

stained sections were embedded in Vectashield Mounting Medium containing 

DAPI (Vector Laboratories Burlingame, CA, USA). 

 

2.4 Electrophysiology 

All electrophysiolgical procedures were performed as previously described in 

[103, 129]. Briefly, coronal brain slices (250 - 300 µm) containing the ARC were 

prepared from 6-week old Z/EGSim1 and KATP∆N-Z/EGSim1 mice. Brain slices 

remained at least 15 min at 35°C in artificial cerebrospinal fluid (aCSF; in mM: 

125 NaCl, 21 NaHCO3, 2.5 KCl, 1.2 NaH2PO4, 2 CaCl2, 2 MgCl2, 10 HEPES 

(pH 7.4), and 5 glucose.) and were gassed with 95% O2 and 5% CO2. 

Moreover, a Zeiss Axioskop fitted with fluorescence and infrared differential 

interference contrast (IR-DIC) videomicroscopy was used and fluorescent Sim1-

GFP neurons were identified by epifluorescence and patched under IR-DIC 

optics. For whole-cell current-clamp and voltage-clamp recordings an EPC-9 

patch-clamp amplifier was used, as previously described [103]. Patch pipettes 

had resistances of 3-5 MΩ when filled with internal solution (in mM: 128 K-

gluconate, 10 KCl, 10 HEPES, pH 7.3, 0.1 EGTA, 2 MgCl2, 0.3 Na-GTP, and 3 

K2-ATP). Externally the slices were continuously perfused at 2 - 4 ml/min with 

gassed aCSF in all experiments. Experiments were carried out at 22 -25°C. 

Data were filtered, sampled with Pulse/Pulsefit and software (Heka, Elektronik, 
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Germany, version 8.67) and analyzed with Pulsefit and Origin (Microcal, 

Northhampton, MA) software (version 6.0). 

 

2.5 Molecular biology 

Standard methods of molecular biology were performed according to protocols  

described by J. Sambrook[142], if not stated otherwise. 

2.5.1 RNA isolation and expression studies 

Measurements of mRNA levels were carried out by quantitative RT-PCR on 

RNA extracted from dissected tissues. Hypothalamus and amygdala were 

dissected with the aid of a mouse brain atlas (Franklin and Paxinos, 1997) 

using a coronal acrylic brain matrix (Braintree Scientific) to identify the 

hypothalamus and amygdala 0 to 2 mm posterior relative to bregma. The brain 

areas were then dissected from the coronal sections using a scalpel. Brain and 

brown adipose tissue were homogenized in TriFast reagent (peqLab) using the 

Ultra Turrax homogenizer (IKA). Phenol-chloroform extraction and precipitation 

with Isopropanol were performed according to the manufacturers instruction of 

the TriFast reagent. This was followed by an DNAse digestion (PeqLab) in 1 x 

buffer and with 3 U DNase and the spectrophotometry quantification of the RNA 

concentration (NanoDrop; peqLab). An optical density of 1 at a wavelength of 

260 nm (OD260 of 1) corresponds to 40 µg/ml RNA and a high purity is 

reflected by the Quotient of OD260/OD280 at a level of 1.8 to 2.0. Each total RNA 

(200ng) was reversely transcribed by EuroScript Reverse Transcriptase 

(Eurogentec) according to the manufactures instructions in a 10 µl reaction 

including 1 µl 10x buffer, 2 µl 25 mM MgCl2, 2 µl 2.5 mM dNTP, 0.5 µl random 

nonamer, 0.2 µl RNase inhibitor and 0.25 µl reverse transcriptase. The reverse 

transcription was mediated by an initial 10 minutes incubation at 25°C, which 

was followed by 30 minutes of elongation at 45°C and a 5 minutes reverse 

transcriptase inactivation step at 95°C. The cDNA was amplified using TaqMan® 

Universal PCR-Master Mix, NO AmpErase UNG with TaqManR Assay on 

demand kits (Applied Biosystems). Quantitative PCR was performed on an ABI-

PRISM 7700 Sequence Detector (Applied Biosystems) measuring corticotropin 
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releasing hormone (CRH), arginine vasopressin (AVP) with intronic probes 

statet in table 4. (Applied Biosystems, Foster City, CA, USA). Samples were 

adjusted for relative RNA content by glucuronidase beta (Gusb) and 

hypoxanthine guanine phosphoribosyl transferase (Hprt) (Applied Biosystems, 

Foster City, CA, USA). Calculations were performed by a comparative method 

(2-ddCT). Assays were linear over 4 orders of magnitude. 

 

Table 4: Realtime probes 

Probe Sequence 
CRH_i3 

 

GCG GTG ACC CTT CTT TGG AGA 
CRH_i5 

_ 

GAT TAG GGT GTG CGA CAG CTT AAA CC 
CRH_probe GAC GTT TGG GAG GTC CTT AGG AAG 
AVP_i3 CTA ACT TCG CTT TTT CAA ATC GCC A 
AVP_i5 GTA GGC AGC GCC TAG ACG GG 
AVP_probe CTA TGC ATG TAT GTG TGT CGC TAA CTG 
 

2.5.2 Cloning of promoter fragments or genes 

Total RNA (200ng) isolated by phenol chloroform extraction using TriFast 

reagent (PeqLab) was reversely transcribed by EuroScript Reverse 

Transcriptase (Eurogentec) according to the manufactures instructions. The 

generated cDNA was used to amplify DNA fragments by the High Fidelity PCR 

Master Kit (Roche). 

To minimize PCR mistakes for molecular cloning strategies, the High Fidelity 

PCR Master Kit (Roche), a mixture of a regular Taq- and the proofreading Tgo 

DNA-Polymerase, was used according to the manufactures instructions with 

500 ng template cDNA and 25 pmol of each primer (table 5). After an initial 

denaturation step at 94 °C for 3 min, 14 cycles of denaturation at 94 °C for 45 

sec, annealing at 54 °C for 45 sec and elongation at 68 °C for 1 to 3 min were 

followed by another 24 cycles of denaturation at 94 °C for 45 sec,  annealing at 

54 °C for 45 sec and elongation at 72 °C for 2 to 5 min. The PCR was 

completed with a final extension step at 72 °C for 10 min. 

Amplified or digested DNA fragments were separated by size using agarose gel 

electrophoresis (1 to 3 % (w/v) agarose (depending on fragment size); 1 x TAE; 

0.5 mg/ml ethidiumbromide; 1 x TAE electrophoresis buffer). To Isolate DNA 
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fragments from a PCR or restriction digest the QIAEX II Gel Extraction Kit 

(Quiagen) was used according to the manufactures instructions after the 

separation of the DNA fragments on a 1% agarose gel (Invitrogen). PCR 

products were subcloned into the pGEM-T Easy Vector (Promega) using 5 µl 

ligation buffer, 1 µl pGEM-T Easy vector, 3 µl gel extracted PCR product and 

1 µl T4 DNA ligase. The ligation was incubated for 1h or over night at room 

temperature followed by the transformation into chemically competent 

Escherichia coli by the blue and white selection method on ampicillin containing 

LB agar plates. Competent Escherichia coli (E. coli) DH5α cells were prepared 

according to a standard protocol (Inoue et al., 1990) and used in heat shock 

transformation of plasmid DNA (30 min on ice; 30 sec at 42°C; 1h at 37°C in 

600 µl Luria-Bertani (LB) media). 

 

Table 5: Oligonucleotides for cloning of promoter fragments 

Name Sequence 

5XhoCRH1.0kb CTCGAGTTCC CACTTAGACA TAATCTCC 

5XhoCRH300bp CTCGAGCCGT ATCTGGCCTA TCATAGT 

3HindCRH AAGCTTCACACCAGAG CCTGGAGTG 

5XhoAVP1.3 CTCGAGCATAGGCCAACTAATCTGGG 

3BglIIAVP AGATCTGCCTTGGCGGGCTGGGC 

 

2.5.3 Preparation of plasmid-DNA and ligation into expression 
vectors 

The preparation of plasmid DNA from transformed E.coli colonies was 

performed using Maxiprep-Kit (Qiagen) if high concentrations were desired and 

the Plasmid Miniprep Kit I (PeqLab) for small concentrations of plasmid DNA 

according to the manufactures instructions. For the isolation of the plasmid DNA 

a bacteria suspension of 200 ml LB-Media (Maxiprep-Kit) or 3 ml LB-Media 

(Miniprep Kit) was incubated at 37°C overnight. 

The concentration and purity of plasmid DNA was determined by the NanoDrop 

(PeqLab). An optical density of 1 at a wavelength of 260 nm (OD260 of 1) 

corresponds to 50 µg/ml of dsDNA and a high purity is reflected by the quotient 

OD260/OD280 at a level of 1.8 to 2.0.  
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To analyse the correct insertion into vectors or to isolate fragments for ligation 

into the expression vectors, 0.5 to 10 µg plasmid DNA were digested with 

appropriate restriction enzymes (EcoRI, XhoI, BglII, HindIII; Fermentas). 

Therefore 10 to 20 units were used in 1 X Buffer of the corresponding enzyme 

according to the manufactures instructions.  

The ligation of purified DNA into the expression vectors was mediated by 400 U 

T4-DNA-Ligase (NEB) at 20°C for 4 hours with a 1:3 to 1:7 relation of insert to 

vector and the transformation of bacteria was performed as described in 

section 2.5.2. 

 

2.5.4 Sequencing 

DNA-sequencing was performed using Big Dye Termination v3.1 Cycle 

Sequencing Kits (Applied Biosystems). Therefore 0.5 µl Ready Reaction Premix 

(2.5x), 1.5 µl BigDye Sequencing Buffer (5x), 1.6 pmol Primer and 150-300 ng 

dsDNA were adjusted to a final volume of 10 µl and submitted to 90 cycles of 

the following temperature program: 30 sec at 94°C; 15 sec at 50°C; 4 min at 

60°C. 

The sequence was automatically determined with the ABI373A und ABI377 

Systems. 

 

2.6 Cell culture 

2.6.1 Preparation of collagen-coated plates 

Plates/wells were covered with 30 µg/ml Collagen G (Biochrom) diluted in PBS 

and incubated at 4°C overnight. To avoid drying out of the collagen, plates were 

stored up to 2 months at 4°C. 

 

2.6.2 Maintenance of PC12 and SK-N-SH cells 

On uncoated plates PC12 cells grew unattached in growth media [D-MEM 

GlutaMAX (low Glucose), Gibco/Invitrogen; 1% Penicillin / Streptomycin, PAA; 

10% Horse Serum, Invitrogen; 5% FCS, Invitrogen] and media was changed 
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every 2-3 days by centrifuging the cells down and resuspending in fresh media. 

Cells were split 1:5 or 1:10 after centrifugation. 

SK-N-SH cells grew attached in growth media (E-MEM (low Glucose), PAA; 1% 

Penicillin / Streptomycin, PAA; 1% glutamine, Invitrogen; 1% non-essential 

amino acids, PAA; 1% sodium pyruvate, PAA 10% FCS, Invitrogen) and media 

was changed every 2-3 days by trypsin treatment, centrifugation of the cells and 

resuspending in fresh media. Cells were split 1:5 or 1:10 after centrifugation. 

For experiments involving the estrogen receptor, SK-N-SH cells were kept in 

phenol red free media supplemented with charcoal stripped fetal calf serum (D-

MEM (low Glucose), Gibco/Invitrogen; 10% charcoal stripped FCS, Sigma; 1% 

Glutamine, Invitrogen; 1% non-essential amino acids, PAA; 1% sodium 

pyruvate, PAA). 

 

2.6.3 Transfection of PC12 and SK-N-SH cells 

To acheive a confluency of 90% on the day of transfection, at the day before 

transfection, the cells were counted (Neubauer Zählkammer) and plated on 

collagen-coated 24-well plates at 2.5 x 105 cells per well for PC-12 cells and n 

regular plates at 0,5 x 105 cells for SK-N-SH cells. Cells were plated in 0.5 ml of 

their normal growth medium containing serum and without antibiotics.  

On the day of transfection, 0.8 µg DNA per well were diluted into 50 µl of OPTI-
MEM® I Reduced Serum Medium (Gibco/Invitrogen). This was combined with 

the dilution of 1.5 µl lipofectamine 2000™ reagent (Invitrogen) (PC12) or 1.0 µl 

lipofectamine LTX™ reagent (Invitrogen) (SK-N-SH) in 50 µl OPTI-MEM I 

Medium per well. After 20 minutes of incubation at room temperature to allow 

DNA-lipofectamine liposome mediated complexes to form, the DNA-

lipofectamine reagent complexes were added directly to each well containing 

400 µl fresh media. 

 

2.6.4 Luciferase assay 

Estrogen (10 nM-1 µM) or Forskolin (100 nM) stimulation was initiated for 15 

hours 24 hours after the termination of transfection or six hours 16-18 hours 
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after the termination of transfection, respectively. To lyse the cells, the media 

was removed, the cells were washed with PBS and incubated at RT for 15 

minutes in 100 µl 1 x Lysis Buffer (Promega). To evaluate luciferase activity, 

20 µl of the samples were measured automatically (Luminoskan Ascent Type 

392, Thermo Labsystems) with 50 µl LAR II (Promega) to determine the firefly 

luciferase activity and subsequently with 50 µl Stop & Glo (Promega) to stop the 

firefly luminescence and initiate the renilla luciferase reaction. 

 

2.6.5 Electromobility shift assay (EMSA) 

The EMSA was performed as previously described in [143]. Briefly, SK-N-SH 

cells were homogenized in hypotonic solution (10 mM HEPES  [pH 7.6]; 10 mM 

KCl; 2 mM MgCl2; 0.1 mM EDTA; protease inhibitor cocktail (Roche, Basel, 

Switzerland)) and, after 10 min incubation on ice, NP-40 was added to 1 % 

(v/v). After centrifugation, the nuclear pellet was washed in hypotonic buffer, 

centrifugated again and, subsequently, resuspended in extraction buffer (50 

mM HEPES [pH 7.8]; 50 mM KCl; 300 mM NaCl; 0.1 mM EDTA; 10 % (v/v) 

glycerol). Protein concentration was determined with the Nanodrop (PeqLab) 

and the “Christian Warburg formula”. Hypothalamic nuclear extracts (4 µg) were 

incubated at room temperature for 30 min with 2 µg poly(dI-dC) (Amersham 

Pharmacia Biotec, Uppsala, Sweden) and 0.5 ng of  32P-labeled probe (table 

6). Samples were fractionated on a 5 % (w/v) PAGE over night and visualized 

by autoradiography. 
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Table 6: Sequences of EMSA probes 

Position on 

promoter 

Forward sequence Reverse sequence 

-182 bp CRH CAAGGAGGCGATAAATATC

TGTTGATATAA 

TTATATCAACAGATATTTATC

GCCTCCTTG 

-975 bp AVP AAAGCTCTTTCCTCTTTACG

GCTGTGGGTCT 

AGACCCACAGCCGTAAAGA

GGAAAGAGCTTT 

-1090 bp AVP TCAGACTGGCTCTGTTTAGC

TGGGTCTCCTC 

GAGGAGACCCAGCTAAACA

GAGCCAGTCTGA 

-1148 bp AVP CTGCCTTAGAAACAAACAAC

TGACTTACAG 

CTGTAAGTCAGTTGTTTGTT

TCTAAGGCAG 

-1329 bp AVP TGGGCCCCAAACCATAAAG

TTTTTCTGGTGC 

GCACCAGAAAAACTTTATGG

TTTGGGGCCCA 

FOXO consensus 

[144] 

GGGATAAATACTGTGCTCG

GGCAG 

CTGCCCGAGCACAGTATTT

ATCCC 

SP1 [144] 

 (pos. control) 

ATTCGATCGGGGCGGGGC

GAG 

CTCGCCCCGCCCCGATCGT

AA 

 

2.7 Statistical methods 

Data was analyzed for statistical significance using a two-tailed unpaired 

student’s T-Test. All data were normally distributed. Data were analyzed for 

statistical significance using a two-tailed unpaired student’s t-Test. All displayed 

values are means ± SEM. * p ≤  0.05 ; ** p ≤ 0.01 ; *** p ≤ 0.001 versus control. 
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3 Results 
The paraventricular nucleus of the hypothalamus (PVN) has been shown to be 

involved in a diversity of processes including the role as a site of second order 

neurons in the hypothalamic response to metabolic signals [15]. Moreover, 

specific neurons within the PVN initiate the stress response of the organism. 

The transcription factor forkhead box O1 (FOXO1), inhibited by insulin 

signalling, and the ATP-sensitive potassium (KATP) channel are widely 

expressed throughout the brain and one area of high expression is the PVN 

[124, 145, 146]. However, it is unclear, in which of the diverse mechanisms, 

controlled by the PVN, FOXO1 transcriptional control and KATP channel-

dependent membrane excitability are involved. Therefore, the aim of this thesis 

was to compare, contrast and integrate the electrophysiological properties with 

insulin signalling mediated transcriptional control of Sim1 neurons within the 

PVN. To this extent, the role of the KATP channel and the transcription factor 

FOXO1 was investigated. 

 

3.1 The KATP channel in the Sim1 neuron dependent 
regulation of energy metabolism 

The PVN has been implicated in a diversity of pathways including energy 

metabolism. In this context, the PVN mediates insulin’s effects on food intake 

by responding to signals originating in the arcuate nucleus [73, 80, 82]. 

However, it remains unclear if the PVN, besides its role as second order neuron 

population, also directly responds to hormone and metabolite input. Since 

hormones such as insulin and metabolites as glucose regulate neuronal 

function by opening or closing KATP channels, the physiologic effect of chronic 

KATP channel opening specifically in Sim1-positive PVN neurons on energy 

homeostasis control was assessed [103]. 

 

3.1.1 KATP channel expression in Sim1 neurons 

To analyse whether KATP channels are expressed on Sim1 neurons within the 

PVN we analysed the electrophysiological properties of Sim1 expressing 
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neurons after treatment with tolbutamide, a KATP channel inverse agonist that 

leads to depolarization of the neuron. Sim1 expressing neurons were marked 

by crossing Sim1-cre mice with Z/EG reporter mice, in which transcription of a 

green fluorescent protein (GFP) gene under control of the ubiquitously 

expressed Rosa26 promoter is prevented by a floxed β-

galactosidase/neomycin-resistance gene. [131]. 

As seen in figure 5, treatment of a subset of Sim1 expressing neurons with 

tolbutamide indeed resulted in a clear depolarization after a couple of minutes 

time lag and the reaction was reversible by washing out the tolbutamide. 

Approximately two out of three (61.9%; n=21) Sim1 expressing neurons 

responded to tolbutamide, indicating that at least a subset of the Sim1 

expressing neurons co-express the KATP channel. 

 

 

Figure 5: A subset of Sim1-cre neurons of the PVN were tolbutamide responsive 

Representative membrane potential recordings of identified Sim1 neurons in PVN slices from 
Z/EGSim1 mice before and after addition of 200µM tolbutamide. A: tolbutamide response of a 
Sim1-cre PVN neuron; B: tolbutamide induction of firing rate of a Sim1-cre PVN neuron and 
wash out to basal levels; kindly provided by Moritz Paehler (AG Kloppenburg, Institute for 
Zoology, University of Cologne) 
 

3.1.2 Generation and functionality of the KATP∆N overexpression in 
Sim1 neurons 

It has been demonstrated that an N-terminal deletion of 14 amino acids in the 

kir6.2 subunit of the KATP channel (KATP∆N) results in a higher probability of the 

open confirmation and lower ATP sensitivity of the channel [106]. Since KATP 

channels consist of four Kir6.2 subunits, overexpression of this constitutive 
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active variant of the KATP channel leads to a competition with the endogenous 

kir6.2 subunit to form the pore of the KATP channel. Consequently, KATP∆N 

overexpressing cells were shown previously to hyperpolarize by a constant 

potassium outflow [105, 147].  

To investigate the effect of overexpression of this constitutive active KATP 

channel in Sim1 neurons, the previously generated KATP∆N mice were used, 

which have been generated by Dr. Thomas Wunderlich in the laboratory of 

Professor Jens C. Brüning [130]. In these mice, the expression of the transgene 

is targeted to the Rosa26 locus and is dependent on the CAGGs promoter, 

which consists of a cytomegalovirus (CMV) enhancer and a chicken beta actin 

promoter. A locus of X-over P1 (loxP) flanked neomycin resistance followed by 

a Westphal stop sequence is located upstream of the start codon (fig. 6A). 

Upon expression of the cre-recombinase, the loxP flanked stop sequence can 

be removed by recombination, leading to expression of the transgene (fig. 6C). 

Downstream of the KATP∆N sequence is a flip-recombinase target (FRT) site 

flanked green fluorescent protein (GFP), which is preceded by an internal 

ribosomal entry site (IRES). As such, a bicistronic mRNA mediates protein 

expression of both KATP∆N as well as GFP (fig. 6A&C). 

 

 

Figure 6: The constitutive active KATP∆N targeted to the Rosa26 locus and Sim1-cre mice 

A: A constitutive active KATP∆N construct is homologously recombinated into the Rosa26 locus 
and the transcriptional activation is enhanced by the CAGGs promoter; B: randomly integrated 
Sim1-cre construct; C: the Rosa26 locus targeted constructs after cre-mediated excision of the 
neomycin/stop-cassette; exons (vertical bar), splice acceptor (SA), CMV enhancer, chicken beta 
actin promoter (CAGGs), locus of X-over P1 (loxP/arrow heads), neomycin resistance cassette 
(NeoR), Westphal stop sequence (stop), internal ribosomal entry site (IRES), green fluorencent 
protein (GFP), flip-recombinase targets (FRT/oval) 
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To generate a mouse line expressing KATP∆N specifically in Sim1 neurons, 

KATP∆N mice were crossed to Sim1-cre mice (heterozygous: KATP∆NSim1 mice; 

homozygous: KATP∆N/∆NSim1 mice) (fig. 6B). Sim1-cre transgenic mice have 

been previously generated [82] and were shown to express the cre 

recombinase in areas as the PVN, the supraoptic nucleus (SON), the nucleus of 

the lateral olfactory tract (NLOT) of the amygdala and the posterior 

hypothalamic nucleus (PH). This Sim1 expression pattern was confirmed by 

immunohistochemical analysis of the brain areas in KATP∆N/∆NSim1 mice. As 

these mice express an mRNA that contains the gene of interest followed by an 

IRES and the GFP sequence, expression of GFP is a measure for the KATP∆N 

expression at these sites (fig 7C; strategy). In line with the previously described 

expression pattern of Sim1 in the hypothalamus, KATP∆N/∆NSim1 mice expressed 

GFP in the classical Sim1 sites in the PVN and SON, whereas no expression 

was detected in the arcuate nucleus, the brain area where KATP channels have 

been described to play a crucial role in insulin signalling in POMC neurons [120, 

124]. Taken together, these data indicate that the KATP∆N/IRES-GFP bicistronic 

cDNA is expressed in Sim1-expressing neurons in KATP∆N/∆NSim1 mice. 
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Figure 7: The KATP∆N/IRES-GFP construct expressed in the hypothalamic Sim1 sites 

Homozygous KATP∆N/∆NSim1 mice express the KATP∆N/IRES-GFP transgene in Sim1 areas. 
GFP staining of brain slides from mice that are heterozygous for Sim1-cre and homozygous for 
KATP∆N/IRES-GFP; A: paraventricular nucleus (PVN); B: supraoptic nucleus (SON); C: anterior 
region of the PVN (ant.PVN); D: arcuate nucleus (ARC) 
 

To analyse whether overexpression of constitutive active KATP channels affects 

the electrophysiological properties of Sim1 neurons, KATP∆NSim1 and Sim1-cre 

control mice were inter-crossed with Z/EG mice (KATP∆N-Z/EGSim1, Z/EGSim1 

mice, respectively). A comparable amount of Sim1-cre neurons reacted to 

tolbutamide in KATP∆N-Z/EGSim1 mice (59.26 %; n=27) and control Z/EGSim1 

(61.9%; n=21). In the subset of tolbutamide responsive neurons, additional 

electrophysiological properties were determined. Identified Sim1 neurons of 

KATP∆N-Z/EGSim1 mice showed increased input resistance, reduced mean 

membrane potential, whereas the cell capacitance and KATP conductance 

appeared to be unaltered in these neurons. Conclusively, the closure of KATP 

channels in response to tolbutamide was impaired in GFP and thereby Sim1 

positive neurons of KATP∆N-Z/EGSim1 mice, which designated these mice as 

functional models to study the role of the KATP channel dependent alteration of 
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the membrane potential in Sim1 expressing neurons of the PVN. However, as 

this effect in heterozygous KATP∆NSim1 mice was not as pronounced as 

expected, the homozygous KATP∆N/∆NSim1 mice with their respective control 

groups were included in the further analysis. 

 

 

Figure 8: Enhanced change in membrane resistance and reduction of mean membrane 

potential in the PVN of KATP∆NSim1 mice 

From the subset of tolbutamide responsive neurons the change in membrane resistance, the 
mean membrane potential, the KATP conductance and the cell capacitance were determined. 
The number of neurons analysed and the p values are indicated on each diagram. Displayed 
values are means ± S.E.M.; *, p<0.05. Kindly provided by Moritz Paehler (AG Kloppenburg, 
Institute for Zoology, University of Cologne) 
 

3.1.3 Unaltered energy metabolism in KATP∆NSim1 and KATP∆N/∆NSim1 

mice  

As KATP channels were shown to be involved in the insulin and leptin mediated 

effect on food intake and energy metabolism in the arcuate nucleus, a similar 

function in Sim1 neurons was addressed. Therefore, the body parameters of 
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KATP∆NSim1 and KATP∆N/∆Nsim1 mice were analysed and compared to control 

mice (KATP∆Nstoplox/+ and KATP∆Nstoplox/lox mice that do not express Sim1-cre). 

 

 

Figure 9: Unaltered body weight and body length of KATP∆NSim1 and KATP∆N/∆NSim1 males 

KATP∆NSim1 (A) and KATP∆N/∆NSim1 (C) males displayed increased body weight during the 
analysed period of 18 weeks but this was unaltered in comparison to the respective control 
groups. HFD feeding of the mice resulted in significantly increased body weights from the age of 
8 weeks (A) or 12 weeks (C); ttest; p< 0.001; The body length of KATP∆NSim1 (B) and 
KATP∆N/∆NSim1 (D) males was similar to control groups. A (NCD): CO, n=13; KATP∆N, n=13; A 
(HFD): CO, n=34-35; KATP∆N, n=17-21; B (NCD): CO, n=12; KATP∆N, n=13; B (HFD): CO, n=32; 
KATP∆N, n=16; C (NCD): CO, n=8-13; KATP∆N/∆N, n=8-13; C (HFD): CO, n=15-16; KATP∆N/∆N, 
n=20-27; D (NCD): CO, n=6; KATP∆N/∆N, n=5; D (HFD): CO, n=8; KATP∆N/∆N, n=15 
 

The body weight of both KATP∆NSim1 and KATP∆N/∆NSim1 mice increased with the 

age during the analysed period of 18 weeks and was unaltered compared to 

sex- and age-matched control animals. To study the Sim1 neuron specific 

expression of a constitutive open KATP channel in an insulin resistant state, a 

subset of the mice were fed a high fat diet (HFD), which results in diet induced 
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obesity (DIO). The expected enhanced body weight gain by the feeding of HFD 

in comparison to a normal chow diet (NCD) was significant in relation to NCD 

groups from week 8 (KATP∆NSim1) or week 12 (KATP∆N/∆NSim1). However, 

KATP∆NSim1 and KATP∆N/∆NSim1 mice did not differ from their respective control 

littermates regarding their body weight gain. Moreover, this age-dependent 

weight gain was similar in males (fig. 9A&C) and females (fig. 10A&C). 

 

 

Figure 10: Unaltered body weight and body length of KATP∆NSim1 and KATP∆N/∆NSim1 females 

KATP∆NSim1 (A) and KATP∆N/∆NSim1 (C) females displayed increased body weight during the 
analysed period of 18 weeks but this was unaltered in comparison to respective control groups. 
HFD feeding of the mice resulted in significantly increased body weights from the age of 8 
weeks (A) or 12 weeks (C); ttest; p< 0.001; The body length of KATP∆NSim1 (B) and 
KATP∆N/∆NSim1 (D) females was similar to control groups. A (NCD): CO, n=15; KATP∆N, n=8-10; 
A (HFD): CO, n=20-21; KATP∆N, n=23; B (NCD): CO, n=12; KATP∆N, n=8; B (HFD): CO, n=19; 
KATP∆N, n=20; C (NCD): CO, n=8-17; KATP∆N/∆N, n=9-26; C (HFD): CO, n=10; KATP∆N/∆N, 
n=11; D (NCD): CO, n=5; KATP∆N/∆N, n=5; D (HFD): CO, n=7; KATP∆N/∆N, n=6 
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As the PVN has been associated with an alteration of the body length, somatic 

growth of KATP∆NSim1, KATP∆N/∆NSim1 and control mice was determined [82, 

148]. Going along with the unaltered body weight, the body length of both 

KATP∆NSim1 and KATP∆N/∆NSim1 mice was unaltered in relation to respective 

control littermates. As female and male mice showed similar results regarding 

body parameters, further analysis will only address the role of the KATP channel 

in Sim1 neurons in male mice. 

The unaltered body weight gain in KATP∆NSim1 and KATP∆N/∆NSim1 compared to 

control mice was further confirmed by measuring the epigonadal fat pad weight 

or the whole body fat percentage via nuclear magnetic resonance spectroscopy 

(NMR) (fig. 11). In line with the aforementioned results, KATP∆NSim1 and 

KATP∆N/∆NSim1 mice and their respective control groups had similar fat 

percentages and epigonadal fat pad weights (fig x). 

 

 

Figure 11: Unaltered body composition of KATP∆NSim1 and KATP∆N/∆NSim1 males 

The fat deposition of KATP∆NSim1 and KATP∆N/∆NSim1 males was unaltered. A: epigonadal fat pad 
weight of KATP∆NSim1 males and controls; B: epigonadal fat pad weight of KATP∆N/∆NSim1 males 
and controls; C: NMR determined fat content (%) of KATP∆NSim1 males and controls; D: NMR 
determined fat content (%) of KATP∆N/∆NSim1 males and controls; A/C (NCD): CO, n=12; KATP∆N, 
n=8; A/C (HFD): CO, n=19; KATP∆N, n=20; B/D (NCD): CO, n=5; KATP∆N/∆N, n=5; B/D (HFD): 
CO, n=7; KATP∆N/∆N, n=6 
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As mentioned before, genetic modifications of key PVN molecules as 

melanocortin receptor 4 (MC4R) and Sim1 leads to hyperphagia, indicating the 

association of this specific neuronal population with the control of food intake. 

However, a possible contribution of KATP channel mediated changes to 

membrane excitability of Sim1 neurons in the control of food intake has not 

been analysed yet. The absolute random food intake of all mice was measured 

under conditions of ad libitum food accessibility. Absolute food intake levels of 

KATP∆NSim1 and KATP∆N/∆NSim1 mice were unaltered in comparison to control 

groups, independent of the consumed diet (fig. 12). Together these results 

indicate that overexpression of a constitutive active KATP channel on Sim1 

neurons does not affect the basic energy metabolism of these mice, as is 

reflected on their normal body weight gain and food intake. 

 

 

Figure 12: No difference in food intake of KATP∆NSim1 and KATP∆N/∆NSim1 males  

A: The average daily food intake of homozygous KATP∆N/∆NSim1 males at the age of 9-10 
weeks; B: The average daily food intake of homozygous KATP∆N/∆NSim1 males at the age of 9-
10 weeks; A (NCD): CO, n=12; KATP∆N, n=17; A (HFD): CO, n=10; KATP∆N, n=11; B (N CD) 
KATP∆N/∆N, n=17 
 

One processing product of POMC, alpha melanocyte stimulating hormone (α–

MSH), binds to the MC4R on PVN neurons to inhibit food intake. Melanotan II 

(MTII), a MC4R agonist, mimics α–MSH induction and reduces food intake 

temporarily [73, 80, 82, 149]. However, the exact signalling mechanism of the 

MC4R has not been unravelled yet. To evaluate if a KATP channel dependent 

change in membrane potential is crucial for MC4R signalling, the response to 

MTII was analysed for KATP∆NSim1 and KATP∆N/∆NSim1 mice. This can only be 

detected, if the mice receive a strong stimulus for the initiation of food intake. 
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Therefore, the food was removed 4 hours before the onset of the dark phase. In 

this context, the short period of absence of the food and the onset of the dark 

phase induced the food intake, which is normally highest in the first hours of 

night. Subsequently, mice were injected with 5 mg/kg MTII just before the onset 

of the dark phase. As seen in figure 13, MTII significantly reduced the food 

intake in control animals two to four hours after injection, whereas food intake 

returned to normal levels after 14 hours, supporting the temporal effect of MTII. 

However, this MTII mediated response was comparable in KATP∆N/∆NSim1 mice 

and control mice, indicating that the MTII response was not affected by a 

constitutive opening of the KATP channel (fig. 13&14). 
 

 
Figure 13: Melanotan II (MTII) sensitivity of KATP∆N/∆NSim1 mice (NCD) 

After a 4 hours fasting period, NCD males (11 weeks of age) were injected 5 mg/kg melanotan 
II (MTII) or PBS at the onset of the dark phase. A: Food intake 2 hours post MTII/PBS injection; 
B: food intake 4 hours post MTII/PBS injection; C: food intake 14 hours post MTII/PBS injection; 
D: food intake 24 hours post MTII/PBS injection; CO, n=7; KATP∆N/∆N, n=7 
 

Similarly, the reduction of food intake by MTII injection was also observed in 

mice fed a HFD. Interestingly, the reduced food intake of HFD fed animals by 

MTII administration seemed to be more prolonged than in NCD males, as the 

reduction was still significant after the whole night phase (fig. 14C). 
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Nevertheless, HFD-fed KATP∆NSim1 and KATP∆N/∆NSim1 mice were as sensitive to 

MTII as their respective control groups. 

 

Figure 14: Melanotan II (MTII) sensitivity of KATP∆N/∆NSim1 mice (HFD) 

After a 4 hours fasting period, HFD males (11 weeks of age) were injected 5 mg/kg melanotan II 
(MTII) or PBS at the onset of the dark phase. A: Food intake 2 hours post MTII/PBS injection; B: 
food intake 4 hours post MTII/PBS injection; C: food intake 14 hours post MTII/PBS injection; D: 
food intake 24 hours post MTII/PBS injection; CO, n=9; KATP∆N/∆N, n=10 
 

In summary, KATP∆NSim1 and KATP∆N/∆NSim1 males fed a NCD or a HFD 

consumed a similar amount of calories as their respective control littermates, 

which was also reflected by their sensitivity to MTII. In addition, KATP∆NSim1 and 

KATP∆N/∆NSim1 mice on both diets gained weight as expected over the 18 weeks 

of experimental period. Moreover, body parameters, as body fat levels and 

body length, of the analysed groups of mice were unaltered in comparison to 

their respective control littermates. To conclude, KATP∆NSim1 and KATP∆N/∆NSim1 

animals fed a NCD or a HFD exhibited an unaltered energy metabolism. Hence, 

the KATP channel dependent regulation of the membrane potential in Sim1 
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expressing neurons is not essential for the regulation of the energy 

homeostasis. 

 

3.1.4 Glucose tolerance and insulin sensitivity of KATP∆NSim1 and 
KATP∆N/∆NSim1 mice 

Hypothalamic insulin signalling has been shown to be involved in peripheral 

glucose metabolism, as neuronal insulin receptor deficient mice are insulin 

resistant and AgRP-neuron specific insulin receptor deficient mice display a 

reduced hepatic glucose production despite of an unaltered body weight [13, 

140]. Interestingly, Insulin stimulates the KATP channel opening in POMC 

neurons by increasing PIP3 levels, which bind and activate the KATP channel 

opening [103] and several hypothalamic neuron populations have been 

implicated to react directly on rising glucose levels in the brain by glucose 

sensing via KATP channels [150, 151]. However, the effect on insulin signalling 

and glucose-sensing on Sim1 neurons has not been studied with respect to the 

KATP channel. Thus, the glucose responsiveness and the insulin tolerance of 

KATP∆NSim1 and KATP∆N/∆NSim1 mice were analysed. 

The blood glucose levels of ad libitum fed KATP∆NSim1 and KATP∆N/∆NSim1 mice 

as well as of control littermates were between 130 and 150 mg/dl (fig. 15A&C) 

whereas the levels of fasted mice varied between 70 and 90 mg/dl (fig. 15B&D). 

The exposure to HFD resulted in increased blood glucose levels in both the 

fasted and fed state. Nevertheless, blood glucose levels of KATP∆NSim1 and 

KATP∆N/∆NSim1 were similar to the respective control mice, independent of the 

diet or the nutritional status of the animal. 
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Figure 15: Unaltered blood glucose levels of KATP∆NSim1 and KATP∆N/∆NSim1 mice 

Blood glucose levels of KATP∆NSim1 and KATP∆N/∆NSim1 mice and controls (12-13 weeks) were 
determined 2 to 3 hours after the onset of the light phase, in the random fed state and after 16 
hours of fasting. A: random fed blood glucose levels of KATP∆NSim1 males and controls; B: 
random fed blood glucose levels of KATP∆N/∆NSim1 males and controls; C: 16 hours fasted blood 
glucose levels of KATP∆NSim1 males and controls; D: 16 hours fasted blood glucose levels of 
KATP∆N/∆NSim1 males and controls; NCD: CO, n=13/ KATP∆N, n=13; CO, n=10/ KATP∆N/∆N, 
n=10; HFD: CO, n=46/ KATP∆N, n=27; CO, n=15/ KATP∆N/∆N, n=20 
 

To further investigate whether Sim1-specific KATP∆N overexpressing mice have 

an altered glucose metabolism, glucose tolerance tests (GTT) were performed. 

Fasting induced a state of low blood glucose resulting in decreased blood 

insulin levels. After overnight fasting, mice were injected with 20% glucose (10 

ml/kg body weight) and subsequently blood glucose levels were determined 15, 

30, 60 and 120 minutes after the injection. This experiment mimics the 

organism’s response to a meal, as blood glucose levels rise shortly after a 

meal. The glucose injection is sensed by pancreatic β-cells, which release 

insulin in proportion to rising blood glucose levels. Insulin subsequently 

stimulates different tissues, as muscles, to take up glucose from the blood 

stream. As seen in figure 16 A&B, blood glucose levels rose shortly after the 
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injection followed by a stage, in which the blood glucose levels started to fall 

again until they returned to resting values over the 120 minutes experimental 

period. The GTT response of KATP∆NSim1 and KATP∆N/∆NSim1 mice was 

unaltered to control animals. In accordance to the expected glucose intolerance 

of HFD fed animals, blood glucose levels of mice fed a HFD were elevated 

during the course of the experiment compared to the NCD fed mice, but no 

difference could be observed among the different genotypes. 

 

 

Figure 16: Glucose tolerance and insulin sensitivity of KATP∆NSim1 and KATP∆N/∆NSim1 mice 

Mice were submitted to glucose tolerance tests (GTT) at an age of 12 weeks after 16 hours of 
fasting and to insulin tolereance tests (ITT) at an age of 13 weeks. A: GTT of KATP∆NSim1 males 
and controls; B: GTT of KATP∆N/∆NSim1 males and controls; C: ITT of KATP∆NSim1 males and 
controls; D: ITT of KATP∆N/∆NSim1 males and controls; NCD: CO, n=13/ KATP∆N, n=13; CO, 
n=10/ KATP∆N/∆N, n=10; HFD: CO, n=46/ KATP∆N, n=27; CO, n=15/ KATP∆N/∆N, n=20 
 

To directly address the insulin sensitivity, insulin tolerance tests were 

performed. To this extent, mice were injected 0.75 units insulin per kilogram 
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body weight and the blood glucose levels were measured 15, 30 and 60 

minutes after the injection. As mentioned before, rising insulin levels stimulate 

different tissues to take up glucose leading to decreased blood glucose levels. 

The observation of blood glucose levels after injection of insulin relative to 

random fed levels before injection, give an idea of the sensitivity of the 

peripheral organs to insulin. As seen in figure 16, KATP∆NSim1 and 

KATP∆N/∆NSim1 mice fed a NCD were as responsive to insulin as control groups. 

Mice fed a HFD were insulin resistant, which was reflected by a delayed 

response to insulin in comparison to NCD (fig. 16C&D). However, no difference 

could be observed among the different genotypes analysed. 

Taken together, the energy and glucose homeostasis of KATP∆NSim1 and 

KATP∆N/∆NSim1 mice were analysed both under normal conditions as well as 

under the insulin resistant state of diet-induced obesity. These mice displayed 

an unaltered energy metabolism and were sensitive to stimuli as the α-MSH 

agonist MTII, glucose and insulin. This leads to the conclusion that a KATP 

channel dependent hyperpolarization or depolarization of Sim1 neurons is not 

essential for the control of energy and glucose homeostasis. 

 

3.2 FOXO1 in the Sim1 neuron dependent regulation of 

energy homeostasis 

The PI3K-Akt-FOXO1 pathway contributes to the actions of insulin and leptin in 

several cell types, including neurons in the central nervous system [103, 124, 

129]. More precise, hypothalamic expression of a constitutive active FOXO1 

variant has been shown to affect body weight, food intake and energy 

expenditure of mice [120]. Although two neuronal cell types of the arcuate 

nucleus of the hypothalamus, the AgRP and POMC neurons, have been shown 

to contribute to these FOXO1 mediated effects, it remains to be investigated 

whether other neuronal populations of the hypothalamus are dependent on 

FOXO1 signalling in the control of energy homeostasis, as well. Given the fact 

that the PVN has been shown to be involved in the regulation of energy 

homeostasis and that insulin receptors as well aw downstream insulin receptor 

signalling molecules such as FOXO1 are expressed in this brain area, an 
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possible contribution of Sim1 neuron specific FOXO1 signalling in energy 

metabolism was addressed. 

 

3.2.1 Generation of the FOXO1DN overexpression in Sim1 neurons 

Under basal conditions, the transcription factor FOXO1 resides in the nucleus 

and is bound to specific elements in the promoter of its target genes. Upon 

phosphorylation, for example by the insulin activated kinase AKT, FOXO1 is 

exported from the nucleus and degraded. It has been shown that a dominant 

negative variant of FOXO1 can be attained by a C-terminal deletion of the 

transactivation domain [122]. This leads to a truncated variant of FOXO1 

(FOXO1DN) that can no longer be exported from the nucleus as this C-terminal 

deletion abrogates the phosphorylation sites that are necessary for the protein’s 

inactivation. Consequently, the FOXO1DN variant still contains the DNA binding 

forkhead domain, constitutively binds the DNA and blocks the endogenous 

FOXO1 [152].  

To analyse the dominant negative effect FOXO1DN on metabolic signalling in 

Sim1 neurons, the previously generated FOXO1DN overexpressing mice were 

used [129]. Briefly, these mice were generated by targeting the FOXO1DN 

sequence into the ubiquitously expressed Rosa26 locus. Expression of this 

transgene is dependent on cre-mediated excision of the loxP flanked neomycin 

and Westphal stop cassette located upstream of the start codon. The transgene 

sequence is followed by an IRES and GFP sequence. As such, a bicistronic 

mRNA is transcribed upon cre-mediated recombination, leading to the 

consequent expression of both FOXO1DN as well as GFP.  

As a role of FOXO1DN overexpression in the PVN, and more precisely in Sim1 

expressing neurons, was addressed, FOXO1DN overexpressing mice were 

crossed with mice that express the cre-recombinase in a Sim1 promoter 

dependent way (homozygous FOXO1DN/DNSim1). To analyse whether these 

mice expressed the transgene specifically in previously described Sim1 

expressing neurons, GFP expression was analysed by immunohistochemistry. 

In line with what has previously been described [82], FOXO1DN/DNSim1 mice 

expressed GFP in the PVN, SON and amygdala NLOT region, whereas no 

expression was detected in the arcuate nucleus lateral hypothalamic areas 
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(LHA) or cortex (fig. 17). Importantly, as an expression in the arcuate nucleus 

could be excluded, the phenotype of FOXO1DN/DNSim1 mice was not influenced 

by FOXO1’s well-characterized functions in neurons of the arcuate nucleus. In 

summary, a correct expression of the FOXO1DN gene in Sim1 neurons could 

be confirmed for FOXO1DN/DNSim1 mice, which allows the further 

characterization of FOXO1 signalling in distinct hypothalamic areas as mainly 

the PVN and SON. 
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Figure 17: Expression of the FOXO1DN/IRES-GFP construct in the hypothalamic Sim1 sites 

Homozygous FOXO1DN/DNSim1 mice express the FOXO1DN/IRES-GFP transgene in Sim1 
areas. GFP staining of brain slides from mice that are heterozygous for Sim1-cre and 
homozygous for FOXO1DN/IRES-GFP; A: paraventricular nucleus (PVN); B: supraoptic nucleus 
(SON); C: amygdala (AMY); D: arcuate nucleus (ARC); E: lateral hypothalamic areas (LHA); F: 
cortex 
 

3.2.2 Unaltered energy metabolism in FOXO1DN/DNSim1 mice 

To address an involvement of FOXO1 signalling in Sim1 neurons in energy 

metabolism, the body weight of homozygous FOXO1DN/DNSim1 and control 
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mice (FOXO1DNstoplox/lox mice that do not express the Sim1-cre) was measured 

weekly. Both female and male mice increased their body weight steadily during 

the study period of 18 weeks starting from week 4, whereby male mice reached 

a maximum weight of about 40 and female mice of about 35 grams. However, 

the expression of the dominant negative FOXO1 in Sim1 cells did not result in 

an alteration of body weight in relation to control animals (fig 18). 

 

 

Figure 18: Unaltered body weight and body length of FOXO1DN/DNSim1 mice 

FOXO1DN/DNSim1 females (A) and males (C) increased the body weight during the analysed 
period of 18 weeks but this was unaltered in comparison to control groups. The body length of 
female (B) and male (D) mice was similar to control groups. A: CO, n=18-38, FOXO1DN/DN, 
n=22-32; B: CO, n=21; FOXO1DN/DN, n=32; C: CO, n=17-26, FOXO1DN/DN, n=28-36; D: CO, 
n=16; FOXO1DN/DN, n=28 
 

As MC4R and Sim1 knockout studies [73, 82] demonstrated that the PVN plays 

a role in the determination of the somatic growth, the total body length of 

FOXO1DN/DNSim1 mice was compared to control animals. Nevertheless, the 



Results 

 55 

unaltered body weight of FOXO1DN/DNSim1 mice went along with a normal 

body length (fig 18) of the animals. 

A relatively high proportion of the body composition is fat. The amount can 

either be determined measuring the weight of the epigonadal fat pad or by 

nuclear magnetic resonance spectroscopy (NMR). In line with the unaltered 

total body weight, the relative body fat content as well as the absolute fat pat 

weight of FOXO1DN/DNSim1 mice did not differ from levels seen in control mice 

(fig 19). 

 

 

Figure 19: Unaltered body composition of FOXO1DNSim1 mice 

The body composition was determined at 18 weeks of age for FOXO1DN/DNSim1 mice and 
controls. A: epigonadal fat pad; B: nuclear magnetic resonance spectroscopy (NMR); 
FOXO1DNstoplox/lox mice A: CO, n=21; FOXO1DN/DN, n=32; B: CO, n=16; FOXO1DN/DN, n=28 
 

Taken together, over the analysed period of study FOXO1DN/DNSim1 mice 

increased body weight and fat mass normally. Conclusively, signalling via 

FOXO1 in Sim1 neurons is not essential for keeping the body weight in 

balance.  

 

3.2.3 Unaltered food intake and MTII sensitivity of FOXO1DN/DNSim1 
mice  

Aforementioned, genetic modifications of key PVN molecules as MC4R and 

Sim1 lead to a condition of hyperphagia, indicating an important role of this 

specific neuronal population in the control of food intake [73, 82]. However, a 

Sim1 neuron-specific role of FOXO1 in the control of food intake has not been 
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analysed, thus far. Insulin induces α-MSH release from neurons of the arcuate 

nucleus to stimulate the MC4R on PVN neurons. In a state of fasting, insulin 

levels in the body are low, resulting in low levels of α-MSH release and MC4R 

signalling [51]. To compare the conditions of low with regular levels of α-MSH, 

the food intake of FOXO1DN/DNSim1 mice was measured under random fed and 

fasting conditions. 

 

 

Figure 20: Unaltered random fed and fasted induced food intake of FOXO1DN/DNSim1 females  

A: The average daily food intake of homozygous FOXO1DN/DNSim1 females at the age of 9-10 
weeks; B: The food intake of 24 hours fasted FOXO1DN/DNSim1 females (11 weeks old) was 
determined after 4 hours and 24 hours of feeding following the fasting; FOXO1DNstoplox/lox mice; 
CO, n=10; FOXO1DN/DN, n=19 
 

For the measurement of daily random food intake, mice were provided ad 

libitum with food. This was compared to the food intake of mice that were fasted 

for 24 hours, before the addition of standard diet. The food intake of fasted mice 

was determined 4 and 24 hours after the onset of feeding. Mice exhibited 

increased food intake following a fasting period, as the 24 hours food intake 

after a fasting period reached 5 grams in comparison to 3 grams under regular 

conditions (fig 20). As seen in figure 21, the food intakes of fasted or randomly 

fed FOXO1DN/DNSim1 mice were unaltered in comparison to the respective 

littermate control groups, which was independent of gender.  
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Figure 21: Unaltered random fed and fasted induced food intake of FOXO1DN/DNSim1 males  

A: The average daily food intake of homozygous FOXO1DN/DNSim1 males at the age of 9-10 
weeks; B: The food intake of 24 hours fasted FOXO1DN/DNSim1 males (11 weeks old) was 
determined after 4 hours and 24 hours of feeding following the fasting FOXO1DNstoplox/lox mice 
CO, n=14; FOXO1DN/DN, n=17 
 

To further evaluate the full functionality of the MC4R signalling in 

FOXO1DN/DNSim1 mice, the opposite condition of the fasted state was analysed 

by mimicking high levels of α-MSH release. Melanotan II (MTII) has been 

shown to act as MC4R agonist, which has the ability to activate MC4R 

signalling thereby mimicking the α-MSH-dependent reduction of food intake in 

vivo [153]. Notably, the MTII induced food intake reduction has been described 

as being a temporary effect that can only be monitored in the first hours of the 

dark phase, when the induction of food intake is highest [82]. 

For this reason, the food was first removed 4 hours before the onset of the dark 

phase. Then, just before the onset of the dark phase the mice were injected 

with MTII (5 mg/kg body weight) or PBS and presented to fresh standard diet. 

Therefore, the mice were eventually induced to begin feeding. Finally, the food 

intake was measured after 2, 4, 14 and 24 hours after the injection. 
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Figure 22: Melanotan II (MTII) sensitivity of FOXO1DN/DNSim1 females  

After a 4 hours fasting period, females (11 weeks of age) were injected 5 mg/kg melanotan II 
(MTII) or PBS at the onset of the dark phase. A: Food intake 2 hours post MTII/PBS injection; B: 
food intake 4 hours post MTII/PBS injection; C: food intake 14 hours post MTII/PBS injection; D: 
food intake 24 hours post MTII/PBS injection; FOXO1DNstoplox/lox females (CO/ n=7); 
FOXO1DN/DNSim1 females (FOXO1DN/DN/ n=7) 
 

All mice clearly consumed less calories 2 and 4 hours after MTII injection 

compared to PBS injection (fig. 22A&B). The transient effect of MTII injection 

was reflected by the fact that 14 hours after injection food intake levels returned 

to the levels seen for PBS injected control mice (fig. 22C&D). However, 

FOXO1DN/DNSim1 mice responded similar to the injection of MTII as control 

littermates, independent of their gender (compare fig. 22 to fig. 23). 
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Figure 23: Melanotan II (MTII) sensitivity of FOXO1DN/DNSim1 males  

After a 4 hours fasting period, males (11 weeks of age) were injected 5 mg/kg melanotan II 
(MTII) or PBS at the onset of the dark phase. A: Food intake 2 hours post MTII/PBS injection; B: 
food intake 4 hours post MTII/PBS injection; C: food intake 14 hours post MTII/PBS injection; D: 
food intake 24 hours post MTII/PBS injection; FOXO1DNstoplox/lox males (CO/ n=13); 
FOXO1DN/DNSim1 males (FOXO1DN/DN/ n=9) 
 

Taken together, the Sim1 neurons in FOXO1DN/DNSim1 mice were sensitive to 

α-MSH, as these mice responded normally to low, random and high levels of α-

MSH/MTII, which were represented by fasted, random fed and MTII injected 

mice, respectively. This suggests that overexpression of FOXO1DN in Sim1 

neurons of the PVN does not affect MC4R mediated signalling in these 

neurons. 

 

3.2.4 Glucose tolerance and insulin sensitivity of FOXO1DN/DNSim1 
mice  

FOXO1 has been shown to be a central node of various signalling pathways. In 

the hypothalamus FOXO1 plays an important role in the regulation of POMC 
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and AgRP expression by insulin and leptin leading to increased POMC and 

decreased AgRP levels [120, 124]. Moreover, hypothalamic insulin signalling 

has also been shown to be involved in peripheral glucose metabolism [13, 140]. 

To investigate whether FOXO1 signalling in Sim1 neurons similarly affects 

peripheral glucose and insulin metabolism, the response of FOXO1DN/DNSim1 

mice to peripheral glucose or insulin injection was analysed. After a 16 hours 

fasting period, blood glucose levels decreased dramatically from values 

between 130 and 150 mg/dl for ad libitum fed mice (fig. 24A&C) to values from 

70 to 90 mg/dl for fasted mice (fig. 24B&D). Blood glucose levels of 

FOXO1DN/DNSim1 mice were comparable to the respective control littermates, 

independent on the nutritional status of the animal. 

 

 
Figure 24: Unaltered blood glucose levels of FOXO1DN/DNSim1 mice 

Blood glucose levels of FOXO1DN/DNSim1 mice and controls (12-13 weeks) were determined 2 
to 3 hours after the onset of the light phase, in the random fed state and after 16 hours of 
fasting. A: random fed blood glucose levels of females; B: 16 hours fasted blood glucose levels 
of females; C: random fed blood glucose levels of males; D: 16 hours fasted blood glucose 
levels of males; females: CO, n=14; FOXO1DN/DN, n=19-22; males: CO, n=12-19; 
FOXO1DN/DN, n=20-22 
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To further analyse the ability of FOXO1DN/DNSim1 and control mice to 

metabolise glucose, glucose tolerance tests were performed. In brief, overnight 

fasted mice were injected with 20% glucose (10 ml/kg body weight) and the 

blood glucose was determined 15, 30, 60 and 120 minutes after the injection. 

FOXO1DN/DNSim1 mice responded similar to intraperitoneal glucose injection as 

control animals (fig. 25). 

 

 

Figure 25: Unaltered glucose tolerance and insulin sensitivity of FOXO1DN/DNSim1 mice 

Mice were subjected to glucose tolerance tests (GTT) at an age of 12 weeks after 16 hours of 
fasting and to insulin tolerance tests (ITT) at an age of 13 weeks in the random fed state. 
A: GTT of females; B: GTT of males; C: ITT of females; D: ITT of males;  females: CO, n=14; 
FOXO1DN/DN, n=19-22; males: CO, n=12-19; FOXO1DN/DN, n=20-22 
 
To directly address the insulin sensitivity in these mice, insulin tolerance tests 

were performed. The insulin tolerance was determined by the injection of 

0.75 units insulin per kilogram body weight and the blood glucose levels were 

measured 15, 30 and 60 minutes after the injection. Notably, rising insulin levels 
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leads to glucose uptake of different tissues and thereby a decrease in blood 

glucose levels directly after injection. As seen in figure 25 C-D, insulin injection 

led to a drop in the relative glucose levels after 15 and 30 minutes after which 

the glucose levels were restored to pre-injection levels. However, the insulin 

sensitivity was indistinguishable between control mice and FOXO1DN/DNSim1 

mice, irrespective of the gender. 

 

In summary, body weight of FOXO1DN/DNSim1 male and female mice increased 

normally over the 18 weeks of the experimental period and body parameters, as 

body fat levels and body length were unaltered in comparison to respective 

control littermates. This went along with an unchanged food intake and α-

MSH/MTII sensitivity of FOXO1DN/DNSim1 female and male mice. In addition, 

FOXO1DN/DNSim1 mice were glucose tolerant and insulin sensitive. To 

conclude, FOXO1 shuttling in Sim1 expressing neurons is not essential for the 

overall energy metabolism studied in this experimental setup. 

 

3.3 FOXO1 in the Sim1 neuron dependent regulation of the 
stress response 

The parts of the hypothalamus that constitutes the PVN and SON are not only 

indispensable for the regulation of metabolic processes such as food intake and 

energy expenditure, but they also play a major role in the body’s stress 

response [154]. Two neuropeptides expressed in PVN/SON neurons, the 

corticotropin releasing hormone (CRH) and arginine vasopressin (AVP), are the 

initiators of the so-called hypothalamic pituitary adrenal (HPA) axis of stress 

response (see [84, 86] for review). Importantly, whereas CRH is more involved 

in the response to an acute stressor, AVP plays a more important role in a state 

of chronic stress [90, 92, 93]. 
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3.3.1 Impaired HPA axis by Sim1 neuron specific FOXO1DN 
expression  

Although the importance of CRH and AVP in the regulation of stress responses 

is well established, their transcriptional regulation is largely unknown. Both 

neuropeptides are known to be activated in a cAMP/ cAMP response element 

binding protein (CREB) dependent manner and several CREB binding sites 

(cAMP response elements; CRE) have been experimentally validated [85, 155]. 

To gain further insight into how these important mediators of stress responses 

are regulated at the transcriptional level, we performed an in silico analysis of 

the promoter of both genes, using the Genomatix MatInspector software. This 

software program mathematically predicts the presence of potential 

transcription factor binding sites based on their consensus sequence. Amongst 

many potential transcription factor binding sites, both AVP and CRH promoter 

sequences had several putative binding sites for forkhead transcription factors 

(fig. 26). 

 

 

Figure 26: Putative forkhead binding sites encoded by the CRH promoter 

The CRH promoter contains several cAMP response elements (CRE), and putative FOXO 
binding sites (FOXO). 
 

In case of the CRH promoter, two putative forkhead binding sites, which have 

not been experimentally validated so far, were identified within 1000 base pairs 

upstream of the transcriptional start site. One site is located in close proximity to 

known and experimentally validated binding sites for CREB, CRE (fig 26) [85, 

156]. 

Similarly, the AVP promoter contains four putative forkhead binding elements, 

which are encoded about 1000 base pairs upstream of the transcriptional 

initiation. Moreover, the AVP promoter contains three estrogen response 

elements (ERE), which are encoded about 150 bp more proximal than the 

putative forkhead binding sites to the transcriptional start (fig. 27) [157].  
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Figure 27: Putative forkhead binding sites encoded by the AVP promoter 

The AVP promoter contains several cAMP response elements (CRE), estrogen response 
elements (ERE) and putative FOXO binding sites (FOXO). 
 

The presence of putative FOXO binding sites in the promoters of CRH and AVP 

suggests a potential involvement of FOXO proteins in the regulation of the 

hypothalamic stress response. To this extend, we evaluated the effect of Sim1 

neuron specific FOXO1DN overexpression on the hypothalamic expression of 

CRH and AVP. In this regard, Aguilera et al. have stated: “The use of intronic 

probes for the analysis of the nascent transcript of heteronuclear RNA (hnRNA) 

has facilitated studies on the effects of acute stress on CRH and AVP 

transcription. The level of hnRNA reflects the direct change of transcription in 

response to stress stimuli and is independent on mRNA stability [154].” Animals 

were subjected to one hour of restraint stress before decapitation to induce the 

CRH/AVP transcription. The analysis did not reveal any differences in CRH 

hnRNA expression levels between FOXO1DN/DNSim1 mice and control mice 

(fig. 28&29A). However, it has to be noted that CRH levels exhibited a high 

variation among the groups analysed. In contrast, FOXO1DN/DNSim1 female but 

not male mice, showed a strong tendency towards decreased AVP levels in the 

hypothalamus (fig. 28B). Although we observed a 40% reduction in AVP 

expression levels in the FOXO1DN overexpressing female mice, this inhibition 

did not reach statistical significance, probably due to the high variability of AVP 

expression levels between animals. 
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Figure 28: Neuropeptide levels in the hypothalamus of FOXO1DN/DNSim1 females 

The hypothalamic and pituitary neuropeptide hnRNA levels of females that were subjected to 1 
hour of restraint stress at an age of 10 weeks; A: hypothalamic corticotropin releasing hormone 
(CRH) levels normalized on contol levels; B: hypothalamic arginine vasopressin (AVP) levels 
levels normalized on contol levels; CO, n=8-9; FOXO1DN/DN, n=9-11 
 

 

 
Figure 29: Neuropeptide levels in the hypothalamus of FOXO1DN/DNSim1 males  

The hypothalamic and pituitary neuropeptide hnRNA levels of males that were subjected to 1 
hour of restraint stress at an age of 10 weeks; A: hypothalamic corticotropin releasing hormone 
(CRH) levels normalized on contol levels; B: hypothalamic arginine vasopressin (AVP) levels 
normalized on contol levels CO, n=8-9; FOXO1DN/DN, n=9-11 
 

AVP expressed in the magnocellular PVN has a role in the control of the kidney 

water balance, which is independent of the stress response. Otherwise, AVP is 

one of the initiators of the stress response from the parvocellular PVN, which is 

a subset of Sim1 neurons [86]. Therefore, it is not unlikely that small but 

significant differences in gene expression in these neurons were masked by the 

unchanged levels in the surrounding areas. To circumvent this problem with 

regard to the AVP expression in FOXO1DN/DNSim1 and control mice, more 
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downstream targets of AVP were analysed. Upon stress induction, AVP is 

released from the PVN and in turn induces the release of ACTH in the pituitary, 

which is transported via the blood stream to the adrenal glands to initiate the 

corticosterone release. Hence, the potentially altered AVP expression in the 

hypothalamus of stressed FOXO1DN/DNSim1 mice was indirectly analysed by 

measuring the stress induced serum corticosterone levels released from the 

adrenal glands. Both female and male control groups significantly increased the 

serum corticosterone levels upon stress induction. FOXO1DN/DNSim1 female 

mice, however, failed to increase their serum corticosterone levels under 

stressed conditions. Interestingly, this blunted stress response in 

FOXO1DN/DNSim1 mice was a gender specific effect, since stress induced 

serum corticosterone levels of FOXO1DN/DNSim1 male mice were comparable 

to wildtype littermate controls (fig. 30). 

 

 

Figure 30: Blunted corticosterone response to restraint stress of FOXO1DN/DNSim1 females 

Serum corticosterone levels before and after 1 hour of restraint stress of 9 week old mice; 
females: CO, n=7; FOXO1DN/DN, n=7; males: CO, n=7; FOXO1DN/DN, n=7; statistically 
significant difference from basal levels (***, p<0.001; *****, p<0.00001); statistically significant 
difference between stressed FOXO1DN/DNSim1 and stressed control females (**,p<0.01) 
 

To exclude that the observed effect on the corticosterone levels of 

FOXO1DN/DNSim1 female mice was mediated by an ectopic expression of the 
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Sim1-cre and thereby FOXO1DN expression in the adrenal gland or pituitary, 

the beta-galactosidase activity of lacZSim1 mice was analysed in these organs 

(fig. 31). LacZSim1 mice express β-galactosidase only upon cre-mediated 

recombination in Sim1 expressing cells. The β-galacosidase expression can 

either be detected by its enzymatic activity on its substrate, bromo-chloro-

indolyl-galactopyranoside (X-Gal), resulting in a blue staining, or 

immunohistochemically by antibody detection for the β-galacosidase protein. 

Neither the adrenal glands nor the pituitary of lacZSim1 mice were positive for β-

galacosidase expression (fig. 31), suggesting that the observed effect on the 

corticosterone levels in FOXO1DN/DNSim1 female mice was due to an alteration 

originated in hypothalamic Sim1 neurons. 
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Figure 31: No ectopic expression of Sim1-cre in the pituitary or adrenal glands 

Sim1-cre did not recombine loxP flanked DNA in the pituitary or in the adrenal glands, since no 
β–galactosidase activity could be detected in lacZSim1 mice in these organs. A,C,E: DsRed mice 
expressing lacZ in all cells were used as positve controls. B,D,F: lacZ mice crossed to Sim1-cre 
mice expressed the β–galactosidase in Sim1-cre positive cells. A,B: X-gal / β–galactosidase 
reaction in the pituitary; C,D, X-gal / β–galactosidase reaction in the adrenal gland; E,F: β–
galactosidase immunohistochemistry from the adrenal gland 
 

As aforementioned, Sim1 is also expressed in the amygdala in addition to the 

classical sites as the PVN. This brain region is involved in the acquisition and 

consolidation of fear, memory and is known to modulate CRH and AVP 

expression in response to stress. Moreover, corticosterone administration to the 
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amygdala modulates anxiety and reinforces CRH/AVP induction in the 

amygdala [158]. To evaluate a contribution of the amygdala to the altered stress 

response in FOXO1DN/DNSim1 and control mice, these mice were exposed to 

one hour of restraint stress, after which CRH and AVP hnRNA levels in the 

amygdala were analysed. Stressed FOXO1DN/DNSim1 female mice showed 

significantly reduced levels of AVP, but not CRH expression in the amygdala 

compared to control animals (fig. 32). In contrast, we could not observe any 

significant changes in CRH or AVP levels in male FOXO1DN/DNSim1 versus 

control mice and FOXO1DN/DNSim1 male mice even had a tendency towards 

increased CRH levels. These results were in line with the observations from the 

hypothalamic AVP levels and blood serum corticosterone levels, pointing 

towards a gender specific effect of FOXO1DN overexpression in Sim1 neurons 

on the body’s stress response.  

 

 

Figure 32: Neuropeptide levels in the amygdala in FOXO1DN/DNSim1 mice 

The amygdala neuropeptide hnRNA levels of mice that were subjected to 1 hour of restraint 
stress at an age of 10 weeks; A: corticotropin releasing hormone (CRH) levels of females 
(normalized on control levels); B: arginine vasopressin (AVP) levels of females  (normalized on 
control levels); C: corticotropin releasing hormone (CRH) levels of males  (normalized on control 
levels); D: arginine vasopressin (AVP) levels of males (normalized on control levels); females: 
CO, n=8-9; FOXO1DN/DN, n=9-11; males: CO, n=7-8; FOXO1DN/DN, n=10-11 
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Taken together, these data demonstrate that FOXO1DN overexpression in 

Sim1 neurons impaired the initiation of the stress response in the PVN and/or 

SON. This was reflected by a massive alteration of corticosterone on the 

peripheral level of the HPA axis. Interestingly, this was a gender specific effect, 

as the reduced stress response in FOXO1DN/DNSim1 mice was only observable 

in female mice. Additionally, AVP levels in the amygdala were reduced in 

FOXO1DN/DNSim1 female mice, suggesting an involvement of FOXO1DN not 

only in the stress response, but also in the regulation of anxiety. Finally, the 

limitation of the phenotype to female mice suggests an involvement of estrogen 

on the HPA axis. 

 

3.3.2 Inhibition of CRH and AVP by FOXO1DN expression in vitro 

The in vivo data of CRH and AVP hnRNA levels in the Sim1 neurons can not 

fully explain the observed blunted corticosterone release in FOXO1DN/DNSim1 

female mice. However, the presence of putative binding sites in CRH and AVP 

promoter sequences suggests a direct involvement of FOXO1 on the 

transcriptional control of the CRH and AVP genes.  

To investigate whether FOXO1DN overexpression directly influences the 

expression of AVP and CRH, an in vitro approach was used. For this purpose, 

firefly luciferase reporter constructs were generated containing promoter 

fragments of the AVP or CRH genes. These were cloned into the regulatory 

area of the luciferase gene in the pGL4.17 vector (Promega). The first promoter 

fragment of CRH of 1000 base pairs contained 2 putative forkhead binding sites 

along with 3 cAMP response elements (CRE). The second CRH promoter 

fragment was truncated to 300 base pairs including one putative forkhead site 

and 3 CRE sites (fig. 33).  
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Figure 33: CRH promoter elements regulating the firefly luciferase reporter 

The CRH promoter regulating the firefly luciferase reporter contained several cAMP response 
elements (CRE), and putative forkhead binding sites (FOXO). 
 

The pGL4.17 vector, generated for the analysis of the AVP promoter, encoded 

1.3 kilobases (-1.3 kb AVP) of the AVP promoter to drive the transcription of the 

firefly luciferase (fig. 27). The promoter fragment included the 4 predicted 

forkhead binding sites, 4 CREs and 3 estrogen response elements (EREs). 

The reporter constructs were transiently transfected along with a FOXO1DN 

overexpressing vector or an empty control vector into the rat neuronal cell line 

PC12. The pGL4.17 empty vector encoded a minimal promoter and was used 

as a control. The drug forskolin results in a cAMP production and therefore has 

been shown to activate the CRH promoter [85]. The minimal promoter of 

pGL4.17 was not sensitive to forskolin induction and a cotransfection of the 

FOXO1DN expression vector did not result in an alteration of the promoter 

activity. As can be expected from the presence of cAMP response elements in 

the promoter fragment, forskolin clearly enhanced luciferase expression from 

both CRH promoter constructs (fig. 34A, white bars). Interestingly, the 300 bp 

promoter fragment was induced to a higher extend than the 1 kb promoter, 

which could be explained by the absence of potential inhibitory elements. 

However, cotransfection of the FOXO1DN expression vector significantly 

reduced luciferase expression in the case of both promoter constructs. This 

clearly indicates that FOXO1DN overexpression had an inhibitory effect on 

CRH promoter activity. However, the FOXO1DN overexpression could mediate 

these effects by a direct transcriptional regulation of the CRH promoter or by 

the regulation of a different gene that acts on the CRH promoter.  

 



Results 

 

72 

 

Figure 34: Reduced forskolin stimulation of the CRH promoter by FOXO1DN overexpression in 

PC12 cells 

PC-12 cells were transfected as described with the indicated promoter constructs and the empty 
pCDNA control vector (open) or the pCDNA FOXO1DN expression vector (solid). Cells were 
treated with vehicle (-) or forskolin (+) to stimulate cAMP signalling. A: Transfected were the 
empty pGL4.17 vector with a minimal promoter (control), pGL4.17 with a 1kb wildtype CRH 
promoter fragment (-1,0 kb CRHwt) or with a 300bp wildtype CRH promoter fragment (-300bp 
CRH) upstream of the firefly luciferase; All transfections were done in triplicates and all assays 
were repeated 3 times. The pRL-0 vector was co-transfected and all firefly expression levels 
were standardized by the renilla values. Statistically significant difference between forskolin 
simulated and unstimulated levels (#, p<0.0001); statistically significant difference between 
FOXO1DN and control pCDNA co-transfected luciferase levels (**, p<0.01); (****, p<0.0001) 
 

Similarly, to the CRH promoter experiment, the AVP promoter luciferase 

reporter was transiently transfected along with the FOXO1DN overexpression 

vector or an empty control vector into the neuronal cell line PC12. The activity 

of the AVP promoter construct was increased by the induction with forskolin 

(fig. 35, white bars), although this induction was not as strong as for the CRH 

promoter. However, the cotransfection of the FOXO1DN expression vector 

significantly reduced the expression of luciferase from the AVP promoter. As 

the luciferase activity was reduced upon FOXO1DN cotransfection at basal and 

forskolin induced conditions, this reduction of the promoter activity seemed to 

be independent of cAMP signalling. 
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Figure 35: Inhibition of AVP transcription by FOXO1DN overexpression in PC12 cells 

PC12 cells were transfected as described with the indicated promoter construct, the empty 
pGL4.17 vector with a minimal promoter (control), pGL4.17 with a 1.3kb wildtype AVP promoter 
fragment upstream of the firefly luciferase (-1,3 kb AVPwt). Co-transfected were the empty 
pCDNA control vector (open) or the pCDNA FOXO1DN expression vector (solid). Cells were 
treated with vehicle (-) or forskolin (+) to stimmulate cAMP signalling. All transfections were 
done in triplicates and all assays were repeated 3 times. The pRL-0 vector was co-transfected 
and all firefly expression levels were standardized by the renilla values. Statistically significant 
difference between forskolin simulated and unstimmulated levels (#, p<0.001); statistically 
significant difference between FOXO1DN and control co-transfected luciferase levels (**, 
p<0.01; *, p<0.05) 
 

The effect of a reduction of the promoter activity by FOXO1DN overexpression 

can arise from a direct binding of FOXO1DN to putative forkhead binding sites 

or from the inhibitory effect of FOXO1DN on other genes or signalling 

molecules that indirectly modulate the AVP or CRH transcription. Therefore, a 

direct binding of FOXO1DN to the putative forkhead binding sites was analysed 

by electro mobility shift assays (EMSA). DNA probes of about 30 base pairs 

were generated encoding the consensus forkhead response element (EMSA 

probe published in [144]) and the predicted forkhead binding sites along with 

surrounding CRH/AVP promoter sequences. SK-N-SH neuroblastoma cells 

were transiently transfected with a wildtype FOXO1 (FOXO1wt) or a FOXO1DN 

expression vector, nuclear extracts were isolated and incubated with the EMSA 

probes. In addition, the FOXO1DN transfected nuclear extracts were incubated 
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with an antibody against the N-terminus of FOXO1 to confirm a specific binding 

of FOXO1 to the promoter. 

 

 

Figure 36: Electro mobility shift assay (EMSA) of FOXO1DN transfected SK-N-SH cells. 

SK-N-SH cells were transfected with a FOXO1wildtype (wt) or FOXO1DN (DN) expression 
vector, as indicated; nulcear extracts were isolated and incubated with the DNA fragments at 
the indicated position of the promoters; To confim the specific binding of FOXO1 to the DNA, 
the samples from the FOXO1DN overexpression were incubated with a FOXO1 specific 
antibody. 
 

The FOXO1 protein bound specifically to the consensus forkhead response 

element, as distinct bands are detectable for the three samples. This was 

supported by a shift in the band arising from the addition of the FOXO1 

antibody (fig. 36 for low exposure; fig. 37 for high exposure). Interestingly, 

proteins from the nuclear extracts bound to all analysed probes of the CRH and 

AVP promoter. However, a supershift by the FOXO1 antibody could only be 

detected in one of the analysed probes, indicating that the other probes were 
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associated with unknown proteins. Importantly, a distinct band was detected for 

the putative forkhead binding site at -1.1 kb distance to the transcriptional start 

of the AVP promoter and a specific binding of FOXO1 to this promoter element 

could be confirmed by the presence of the FOXO1 antibody mediated supershift 

(fig. 37). Conclusively, FOXO1 seems to bind to the putative forkhead binding 

site at -1.1 kb distance to the transcriptional start of the AVP promoter, but not 

to the other putative binding sites of the AVP or the CRH promoter. 

 

 

Figure 37: Specific binding of FOXO1DN to the AVP promoter 

SK-N-SH cells were transfected with a FOXO1DN expression vector, nuclear extracts were 
isolated and incubated with the indicated DNA fragments; To confim the specific binding of 
FOXO1 to the DNA, the samples were incubated with a FOXO1 specific antibody. 
Taken together, FOXO1DN inhibited the cAMP mediated induction of the CRH 

promoter in vitro but this was not dependent on a direct binding to the analysed 

putative binding site. Additionally, the in vitro FOXO1DN overexpression 

reduced the promoter activity of AVP independent of cAMP signalling. This 

effect could be mediated by a direct binding of FOXO1DN to the AVP promoter 

at -1.1 kb distance to the transcriptional start. Finally, the in vitro analysis of the 

CRH and AVP promoter support the in vivo evidence of an altered initiation of 
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the stress response by the overexpression of FOXO1DN in Sim1 neurons in 

female mice, only. 

3.3.3 The estrogen dependent regulation of argenine vasopressin 

The in vivo data of CRH and AVP levels in the Sim1 neurons did not fully 

explain the observed blunted corticosterone release in FOXO1DN/DNSim1 

females. However, the presence of a newly discovered forkhead binding site on 

the AVP promoter and a decreased activation of the AVP promoter in vitro by 

FOXO1DN overexpression are strong indicators of an involvement of FOXO1 

on the transcriptional control of the AVP gene. Importantly, the gender specific 

difference supports the evidence that the AVP mediated initiation of the stress 

response is reduced by FOXO1DN expression in Sim1 neurons through a 

mechanism that is only present in females. One possibility is an estrogen 

dependent process, as estrogen reinforces the AVP induction of transcription 

upon stress, which has been intensively analysed in the past [95, 157]. 

Interestingly, estrogen response elements (EREs) are located within 1.0 

kilobases (kb) of the transcriptional start in the AVP promoter. 

To check this possibility, we decided to use SK-N-SH neuroblastoma cells, 

which are inducible with 17β-estradiol (E2), the major form of estrogen in 

humans. First, the modulation of the AVP promoter activity by FOXO1DN was 

confirmed in these cells. As expected, FOXO1DN transfection in SK-N-SH cells 

resulted in a reduced promoter activity, that was also independent of forskolin 

mediated cAMP signalling (fig. 38). 
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Figure 38: Inhibition of AVP transcription by FOXO1DN overexpression in SK-N-SH cells 

SK-N-SH cells were transfected as described with the indicated promoter constructs: the empty 
pGL4.17 vector with a minimal promoter (control), pGL4.17 with a 1.3kb wildtype AVP promoter 
fragment upstream of the firefly luciferase (-1,3 kb AVPwt). Co-transfected were the empty 
pCDNA control vector (open) or the pCDNA FOXO1DN expression vector (solid). Cells were 
treated with vehicle (-) or forskolin (+) to stimulate cAMP signalling. All transfections were done 
in triplicates and all assays were repeated 3 times. The pRL-0 vector was co-transfected and all 
firefly expression levels were standardized by the renilla values. Statistically significant 
difference between forskolin simulated and unstimmulated levels (#, p<0.0001); statistically 
significant difference between FOXO1DN and control co-transfected luciferase levels (****, 
p<0.0001) 
 

To evaluate the FOXO1DN effect on the AVP promoter induction by 17β-

estradiol (E2), the amount of FOXO1DN overexpression vector cotransfected 

with the reporter construct in SK-N-SH cells was reduced to the minimal level 

that still has an effect to minimize indirect effects. The AVP reporter (-1.3 kb 

AVP) was inducible to a small but statistically significant extent by E2 in a dose 

dependent manner (fig. 39). However, FOXO1DN overexpression significantly 

reduced the promoter activity at already 10 nM of E2 in relation to control levels 

that rise upon E2 treatment. This difference increased with increased E2 

concentrations. 

  



Results 

 

78 

 

Figure 39: Reduced 17β-estradiol stimulation of the AVP promoter by FOXO1DN 

overexpression 

SK-N-SH cells were transfected as described with the indicated promoter construct, pGL4.17 
with a 1.3kb wildtype AVP promoter fragment upstream of the firefly luciferase (-1,3 kb AVP). 
Cotransfected were the empty pCDNA control vector (open) or the pCDNA FOXO1DN 
expression vector (solid). Cells were treated with vehicle (veh.) or 17β-estradiol (E2) in the 
indicated concentrations. All transfections were done in triplicates and all assays were repeated 
3 times. The pRL-0 vector was co-transfected and all firefly expression levels were standardized 
by the renilla values. Statistically significant difference between estradiol simulated and 
unstimmulated levels (#, p<0.05); statistically significant difference between FOXO1DN and 
control co-transfected luciferase levels (*, p<0.05; **, p<0.01) 
 

Consequently, the estrogen dependent upregulation of the AVP promoter was 

blunted by FOXO1DN cotransfection and this inhibition could be mediated by 

an interaction of FOXO1DN with the now confirmed forkhead binding site at  -

1.1 kb of the AVP promoter.  

In summary, the stress dependent AVP induction was altered in 

FOXO1DN/DNSim1 female mice in vivo, which was reflected by a blunted 

corticosterone release upon stress. This was probably due to reduction of AVP 

promoter activity by FOXO1DN binding to a forkhead binding site that is located 

-1.1 kb in relation to the transcriptional start, as shown in vitro. However, the 

gender specificity and the in vitro analysis of the estrogen response implicate, 

that FOXO1DN inhibits specifically the estrogen dependent upregulation of the 

AVP promoter upon stress. 
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4 Discussion 
The paraventricular nucleus (PVN) of the hypothalamus comprises a distinct 

subset of neurons regulating a diversity of processes including energy 

homeostasis and stress response. The pivotal role of the PVN for maintenance 

of the organism’s energy balance is reflected by studies creating lesions 

selectively in the PVN, which lead to hyperphagia and obesity [58, 60]. 

Additionally, AgRP and POMC expressing neurons in the arcuate nucleus, 

which are associated with the regulation of feeding, project to neurons of the 

PVN [40, 159]. In line with this, both AgRP and α-MSH, a processing product of 

POMC, bind to the melanocortin receptor 4 (MC4R) on PVN neurons to induce 

and reduce feeding, respectively [81, 153].  

The PVN is not only involved in the regulation of energy metabolism, but is also 

linked to the stress response. Seen from an evolutionary perspective this link is 

important in the state of “fight or flight”, when the organism has to switch 

priorities from a situation of regular energy intake and storage, to a state of an 

energy supply to organs important for its defence, such as muscle, heart and 

lungs [84]. Especially, CRH and AVP released from the PVN initiate the stress 

response by the activation of the hypothalamic pituitary adrenal (HPA) axis. 

Otherwise, CRH expression in the PVN contributes to the anorexigenic effect of 

leptin, further supporting the link between energy metabolism and stress 

responses [67]. In addition, pharmacological studies have shown a crucial role 

for the central melanocortin system in the regulation of both the stress response 

as well as feeding behaviour [160, 161]. Recently, Lu et al. demonstrated that 

the administration of the α-MSH agonist, MTII, into the PVN induced CRH 

transcription in a MC4R dependent manner. In the periphery, MTII 

administration had an effect on the HPA axis mediated corticosterone release 

as well as on food intake [68]. Thus, melanocortin signalling seems to connect 

both energy metabolism and stress response in the PVN. 

The transcription factor FOXO1 and the ATP sensitive potassium (KATP) 

channel are involved in several important metabolic pathways in different 

tissues including the arcuate nucleus of the hypothalamus. Thus, the aim of this 

thesis was to elucidate if these central molecules in the regulation of energy 
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homeostasis could link energy homeostasis to the stress response in Sim1 

expressing neurons of the PVN. 

 

4.1 Unaltered energy homeostasis by the KATP channel and 

FOXO1 overexpression in Sim1 neurons 

The metabolic parameters of KATP∆NSim1, KATP∆N/∆NSim1 and 

FOXO1DN/DNSim1 mice were fully analysed emphasising the aspects already 

known to be modulated by the PVN, such as food intake and MC4R signalling. 

Notably, mice expressing a transgene in a Sim1 dependent way are useful tools 

to address the role of these neurons in different pathways, as this mouse line 

recombines loxP flanked DNA mainly in the PVN and supraoptic nucleus (SON) 

[82] (section 3.1 & 3.2). Not only the PVN as a site of Sim1-cre expression, but 

also the Sim1 expressing neurons of the SON are of particular interest to study 

the regulation of energy homeostasis, as neuronal activity of these neurons is 

altered upon feeding [162].  

In spite of the known involvement of Sim1 neurons in energy metabolism, the 

analysis of metabolic parameters as body weight, food intake and body 

composition did not reveal a defect in KATP∆NSim1, KATP∆N/∆NSim1 and 

FOXO1DN/DNSim1 transgenic mice. In addition, these mice were sensitive to 

peripherally administered glucose, insulin and the MC4R agonist, MTII. In this 

respect it has to be noted that both mouse lines analysed are based on the 

overexpression of truncated proteins that have to compete with the endogenous 

ones to mediate the effect. In the case of the KATP channel, the pore is 

constituted of 4 subunits, which have to be replaced by the KATP∆N variant 

expressed in a high dose. This could explain the only mild alteration of the 

change in membrane resistance and the mean membrane potential seen in 

KATP∆N-Z/EGSim1 mice. Though both mouse lines were bred to homozygousity 

to deal with this fact, it can still not be excluded that the dominant negative or 

constitutive active effect of these transgenes is too weak to result in a clear 

metabolic phenotype.  

Another possible explanation for the absence of any metabolic effects by 

overexpression of KATP∆N could be a process of compensation. As the Sim1-
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cre recombines the DNA in an early stage during the development [163], the 

central nervous system could compensate potential defects arising from the 

alteration of the firing frequency. Notably, the ratio of excitatory to inhibitory 

synapses connected to a neuron determines the cell-autonomous regulation of 

electrical activity and excitability of the cell. The ability of a synapse to change 

in strength has been described as synaptic plasticity [164]. Especially in 

KATP∆N/∆NSim1 mice, compensation could be achieved by the modification of 

synaptic plasticity or other compensatory mechanisms. An expression of the 

KATP∆N gene in adult mice using a different cre-recombinase approach would 

circumvent such a potential compensation. 

Taken together, FOXO1 signalling or the KATP channel dependent membrane 

excitability seem not to play a role in Sim1 neuron mediated control of energy 

homeostasis, although compensatory mechanisms characteristic for the central 

nervous system can not be excluded. Thus, our data suggest that the G-protein 

coupled MC4R in Sim1 neurons mediates its potential effects on transcription 

and membrane excitability to regulate food intake in a FOXO1 and KATP channel 

independent way. Finally, the peripheral insulin or glucose metabolism is not 

influenced by these genetic modifications in Sim1 expressing neurons. 

 

4.2 Reduced stress response by Foxo1DN overexpression in 
Sim1 neurons of female mice 

The PVN has been shown to initiate the stress response releasing CRH and 

AVP from nerve terminals into the hypothalamic pituitary portal system, which 

activates the HPA axis resulting in corticosterone release (reviewed in [86]). In 

FOXO1DN/DNSim1 female mice, the corticosterone release from the adrenal 

glands was abolished upon stress, indicating that FOXO1DN overexpression 

specifically in Sim1 expressing neurons could alter the stress response in these 

mice. The HPA axis of the stress response is initiated by induction of AVP and 

CRH expression in the paraventricular nucleus, where FOXO1DN is expressed 

in FOXO1DN/DNSim1 mice. However, the altered serum concentrations of 

corticosterone could not be fully explained by a differential expression at the 

mRNA level of these hypothalamic neuropeptides in FOXO1DN overexpressing 
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mice compared to control mice: Whereas CRH mRNA expression levels were 

unaltered, a 40% reduction of AVP expression was observed in the 

hypothalamus, but this reduction did not reach statistical significance. 

A potential alteration of the neuropeptide expression could be masked due to 

several reasons: First and foremost, the peak of AVP and/or CRH expression 

could occur earlier after the initiation of the stress response and could be very 

transient due to activation of negative feedback mechanisms. Notably, the brain 

was dissected after one hour of stress for the simultaneous determination of 

hypothalamic neuropeptide expression and serum corticosterone levels, as the 

HPA axis response is known to be high at this time point. Possibly, the analysis 

after one hour of stress induction might not be the ideal time point to investigate 

transcriptional regulation of AVP and CRH. Second, the PVN is a 

heterogeneous nucleus, which consists of so-called magnocellular and 

parvocellular PVN neurons, and both subsets contain Sim1 neurons. Although 

both subsets of neurons were shown to express AVP, the regulation and 

function of AVP differs markedly in the different subsets of neurons [154]. 

Thereby, a significant difference in the AVP expression in the parvocellular 

stress responsive subset could be masked by an unaltered expression in the 

magnocellular PVN, which is known to regulate the kidney water balance. 

Finally, since Sim1 neurons only represent a subpopulation of the PVN [82], it is 

not unlikely that small but significant differences in gene expression in these 

neurons are masked by the unchanged levels in the surrounding areas that do 

not express the Sim1-cre and thereby FOXO1DN. A detailed hypothalamic in 

situ analysis on different timepoints after the initiation of stress could therefore 

further elucidate the regulation of CRH and AVP upon stress. With such an 

approach subsets of neurons expressing AVP for the regulation of the stress 

response could possibly be distinguished from neurons that regulate the kidney 

water balance. 

Further support that FOXO1DN overexpression might directly affect 

neuropeptide expression in Sim1 neurons was collected from in vitro 

experiments. Both predicted promoters of CRH and AVP contain several 

putative FOXO1 binding sites. A luciferase reporter assay with the CRH 

promoter revealed that the overexpression of FOXO1DN decreased the 
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induction of the promoter by forskolin dependent cAMP signalling. However, the 

predicted forkhead binding site seems not to be a functional promoter element 

for FOXO1 binding as indicated by the electromobility shift assay (EMSA). 

Furthermore, CRH levels upon stress were unaltered in vivo between the 

genotypes analysed indicating that the observed in vitro reduction of CRH 

transcription upon FOXO1DN expression might arise from unspecific effects. 

Thus, further in vivo analysis of the CRH expression in FOXO1DN/DNSim1 

female mice, for instance at an earlier time point, is necessary to elucidate, if 

the effect detected in vitro could be extrapolated to an in vivo context.  

In contrast to CRH, the AVP expression had a tendency to be reduced by 

FOXO1DN overexpression in Sim1 neurons in female mice. In line with this, 

FOXO1DN overexpression in vitro, resulted in a reduction of the promoter 

activity of AVP and this in a forskolin independent way. Importantly, a predicted 

binding site for FOXO1, located in 1.1 kb distance from the transcriptional start, 

was confirmed experimentally in this study by EMSA and a subsequent 

supershift with a FOXO1 specific antibody. Together, these results suggest a 

direct binding of FOXO1 (FOXO1DN) to the AVP promoter. However, it cannot 

be excluded that FOXO1DN mediates its dominant negative effect on FOXO3A 

or FOXO4 dependent transcription, as the consensus sites for FOXO1, 

FOXO3A and FOXO4 are identical [123]. Notably, FOXO3A, but not FOXO4, is 

expressed in the central nervous system [165]. However, a hypothalamic 

specific expression and function for FOXO3A has not been described, thus far.  

Conclusively, a direct binding and regulation of the AVP promoter by FOXO 

proteins is likely, which is supported by the in vitro analysis of the AVP 

promoter, the strong tendency towards reduced AVP levels upon stress 

observed in vivo and indirectly by the abolished corticosterone induction upon 

stress in FOXO1DN/DNSim1 female mice. 

In addition to the expression in the PVN, Sim1-cre also mediates the 

recombination and thereby FOXO1DN expression in the SON and the amydala 

of FOXO1DN/DNSim1 mice. The SON is known to upregulate CRH and AVP 

upon stress in a similar manner as in the PVN. How this influences the HPA 

axis, in relation to the PVN, has not been analysed thus far [166, 167] and was 

not addressed in this study. A detailed hypothalamic in situ analysis could also 
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address a potential effect of FOXO1DN expression on the regulation of CRH 

and AVP in these two distinct hypothalamic nuclei. 

In line with the altered AVP expression in the hypothalamus, the AVP but not 

the CRH levels in the amygdala are significantly decreased in 

FOXO1DN/DNSim1 female mice. This reduction in AVP levels could be an 

indirect effect of the reduced peripheral corticosterone levels in these mice. 

Notably, CRH and AVP expression are known to be induced in response to 

corticosterone-glucocorticoid recepetor (GR) activation in the central (CeA) and 

the basolateral (BLA) nucleus of the amygdala, which are the main areas for 

acquisition and consolidation of fear memory [158, 168]. Alternatively, the 

altered AVP expression levels in the amygdala of FOXO1DN/DNSim1 female 

mice could be due to a cell-autonomous effect of FOXO1DN in the amygdala as 

well. In this respect, it is important to note that indeed Sim1 is expressed in the 

NLOT region of the amygdala, as shown by us. As both effects could work in an 

additive or synergistic way, further experiments are needed to analyse to what 

extend the indirect corticosterone effect or the cell-autonomous effect in the 

NLOT contributes the altered expression of AVP in the amygdala of 

FOXO1DN/DNSim1 mice. To conclude, the altered AVP expression in the 

amygdala of FOXO1DN/DNSim1 female mice suggests that the anxiety 

behaviour in response to stress could be altered. Therefore, it would be 

interesting to further analyse the induction of anxiety in response to stress in 

FOXO1DN/DNSim1 female mice by extensive behaviour analyses. 

 

4.3 The gender specific effect of FOXO1DN on the HPA axis  

The data collected in this study clearly show an effect of FOXO1DN 

overexpression on AVP expression both in vitro and in vivo. Importantly, the in 

vivo data clearly indicates a gender specific effect. Selectively in females, Sim1-

specific expression of FOXO1DN induced alterations of the HPA axis on 

different levels, as seen on hypothalamic AVP expression levels, corticosterone 

release by the adrenal glands and AVP expression levels in the amygdala. As 

the female hormone estrogen has been shown to reinforce the HPA axis of 

stress response by the activation of AVP and CRH, the sex-specific effect on 
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AVP expression in FOXO1DN/DNSim1 mice points to a possible involvement of 

this hormone [94, 157]. First evidence supporting an involvement of estrogen on 

the FOXO1DN mediated effect on AVP expression in Sim1 neurons, was 

gathered by an in vitro AVP promoter analysis. This showed an induction of 

AVP promoter dependent luciferase transcription by estrogen administration, 

whereas this effect was impaired by the overexpression of FOXO1DN. To date, 

in vivo data supporting the specific role of estrogen in the FOXO1DN dependent 

downregulation of AVP is still lacking. One way to address the involvement of 

estrogen, would be by ovarectomising FOXO1DN/DNSim1 and control mice, as 

ovarectomie leads to the complete loss of estrogen. If FOXO1DN mediates its 

effect by interfering with the estrogen mediated reinforcement of the HPA axis, 

ovarectomised FOXO1DN/DNSim1 and control mice should have a similar stress 

response that is in general lower than the sham operated control mice. If this is 

the case, estrogen replacement in ovarectomised mice of both genotypes could 

further support the view of an estrogen specific effect. 

An estrogen dependent effect of FOXO1DN in Sim1 neurons would implicate 

that the FOXO1DN protein might interfere with the estrogen receptor (ER) 

binding to the promoter and its activation of transcription. In the canonical 

model of ER signalling, the ERs are primarily located in the cytosol in absence 

of estrogen. Upon estrogen binding, the receptor dimerizes, migrates into the 

nucleus, and subsequently binds to specific estrogen response elements (ERE) 

in the promoter of target genes. Furthermore, the DNA bound ER recruits other 

proteins that are responsible for the transcriptional control of downstream genes 

(reviewed in [169]). Importantly, Zhao et al and others have revealed by a yeast 

two hybrid screening and GST pulldown experiments that FOXO1 can interact 

with the estrogen receptor α (ERα). Hence, estrogen stimulation in the PVN 

could result in a complex of FOXO1 and ERα binding to the AVP promoter, 

although an involvement of FOXO3A or ERβ cannot be excluded. 

Such a complex could bind to the promoter elements by different mechanisms: 

First, the FOXO protein could recognize its newly identified binding site and 

recruit the ER to activate transcription. In this case, FOXO1DN overexpression 

could inhibit this interaction either by the absence of the transactivation domain 

in the FOXO1DN protein (fig. 40A) or by the loss of the ability to interact with 
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the ER (fig. 40B). Second, the FOXO/ER complex could bind to the ERE via the 

ER to activate transcription. In this case, the loss of the transactivation domain 

in the FOXO1DN protein could be responsible for the reduced transcription (fig. 

40C). Finally, both proteins could bind to their own binding sites and activate 

transcription by their interaction via a secondary structure of the DNA (fig. 40D). 

 

 

Figure 40: Models of FOXO and ER dependent promoter interaction 

A,B: The FOXO/ER complex could bind to the forked binding site via FOXO to activate 
transcription. FOXO1DN overexpression could inhibit this interaction either by the absence of 
the transactivation domain in the FOXO1DN protein (A) or by the loss of the ability to interact 
with the ER (B). C: The FOXO/ER complex could bind to the ERE via the ER to activate 
transcription. In this case, the truncated FOXO1DN protein could be responsible for the reduced 
transcription. D: A secondary structure of the DNA could bring both proteins, binding to their 
own binding sites, into close proximity to form the complex. 
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These hypotheses are based on the assumption that a FOXO/ER complex 

leads to the activation of transcription of its target genes such as AVP. 

However, estrogen has also been shown to induce nuclear export and hence 

inactivation of FOXO1, in complex with ERα, in breast cancer cell lines [170, 

171]. The model of estrogen receptor signalling is based on the ability of the ER 

to interact with different transcriptional co-activators or co-repressors, which are 

expressed in a tissue specific manner [172]. Additionally, the same ligand can 

act as an agonist in one tissue and antagonistic in another one. For instance, 

tamoxifen is used as a breast cancer treatment acting antagonistic on the ER, 

but in bone it activates the ER preventing osteoporosis [173]. Conclusively, 

further experiments are needed to unravel the exact molecular mechanism of 

ER and FOXO1 mediated effects on AVP transcription as well as on how they 

interact with each other to mediate their effects. Chromatin immunoprecipitation 

assays using specific antibodies against FOXO1, FOXO3A and ERα, could 

already give first hints to solve these questions. 

Interestingly, the kinetics and relative expression levels of CRH to AVP vary on 

the kind and duration of stress. Whereas CRH is more involved in the response 

to a novel stressor, AVP plays an important role in a state of chronic stress [90, 

92, 93]. Strikingly, our data suggested an important role of AVP expression in 

acute stress of female mice, as acute stress was analysed in this study. 

However, it cannot be excluded that stress response in female mice is 

differently regulated than in male mice, on which the model of acute versus 

chronic stress has been based so far [154]. In female mice, the competition of 

CRH and AVP in the initiation of the HPA axis could be markedly different and 

influenced by estrogen. However, further experiments are needed to support 

this idea. Moreover, it will be interesting to analyse the response of 

FOXO1DN/DNSim1 females exposed to chronic stress, as AVP is known to be 

the principal gene involved. 

In summary, this coherent set of findings indicates that in female mice the 

reinforcement of the stress response is dependent on FOXO transcription factor 

signalling in Sim1 neurons, which might be mediated by an interaction with the 

estrogen-ER pathway and subsequent activation of the AVP promoter. 
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4.4 Perspectives 

The inhibition of FOXO signalling in Sim1 neurons by the overexpression of 

FOXO1DN has revealed, for the first time, that a FOXO transcription factor is 

essential for the effective reinforcement of the HPA axis stress response in 

females. Further studies will be needed to identify and analyse the endogenous 

regulation of the AVP promoter in females. Especially, the hypothesized 

interaction of ERα with FOXO1 on the AVP promoter still has to be confirmed. 

Interestingly, this study suggests an involvement of FOXO1 in the estrogen 

dependent reinforcement of the stress response, whereas previously, the stress 

response has been shown to inhibit the reproductive system (reviewed in [174]). 

The cross-talk between these two systems can be understood from an 

evolutionary perspective: In a state of “fight or flight”, reproduction is not a 

priority. Thus, the female response to stress seems to markedly differ to the 

male response. Finally, intensifying the research of the female stress response 

is pivotal for a better understanding and treatment of chronic stress associated 

diseases such as depression and obesity. 
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5 Summary 
The paraventricular nucleus (PVN) of the hypothalamus comprises a distinct 

subset of neurons regulating a diversity of processes including energy 

homeostasis and stress response. The transcription factor FOXO1 and the ATP 

sensitive potassium (KATP) channel are involved in several important metabolic 

pathways in different tissues including the hypothalamus, one of the key brain 

regions controlling energy homeostasis. In the present study, transgenic knock-

in strategies have been designed to address the function of these central 

players in energy homeostasis and stress response in Sim1 expressing 

neurons, which are present mainly in the PVN and supraoptic nucleus (SON). 

Thus, a constitutive active variant of the KATP channel (KATP∆N), resulting in a 

high potassium outflow of the neuron, or a dominant negative variant of the 

FOXO1 protein (FOXO1DN), which blocks the transcription of FOXO family 

target genes, were expressed in a Sim1-cre dependent manner. The analysis of 

these genetically modified mice revealed no difference in energy and glucose 

metabolism. Hence, FOXO1 signalling or the KATP channel dependent 

membrane excitability seem not to play a role in Sim1 neuron mediated control 

of energy homeostasis. However, FOXO1DN overexpression inhibited the 

transcription of arginine vasopressin (AVP), which is one of the initiating 

neuropeptides of the stress response, both in vitro and in a tendency in vivo, 

possibly by decreasing the estrogen dependent regulation of AVP transcription. 

Importantly, FOXO1DN overexpression could impair the female initiation of the 

stress response in Sim1 neurons resulting in a blunted corticosterone release 

from adrenal glands. Hence, this coherent set of findings indicates that 

transcription factor signalling of the FOXO family in the Sim1 expressing 

neurons can alter the reinforcement of the stress response in female mice. 
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6 Zusammenfassung 
Der Nucleus paraventricularis (PVN) des Hypothalamus besteht aus einer klar 

abgegrenzten Gruppe von Neuronen, die an diversen Prozessen beteiligt ist. Zu 

diesen Prozessen zählen die Regulation der Energiehomöostase und die 

Stressantwort. Der Transkriptionsfaktor FOXO1 und der ATP sensitive Kalium 

(KATP) Kanal regulieren wichtige metabolische Signaltransduktionen in 

verschiedenen Organen. In der hier vorliegenden Studie wurden transgene 

„knock-in“ Strategien entwickelt, um die Funktion dieser zentralen Moleküle 

bezüglich der Energiehomöostase und Stressantwort in Sim1 Neuronen zu 

untersuchen. Die hierzu verwendete Sim1-cre Maus exprimiert die Cre-

Recombinase hauptsächlich im PVN und dem Nucleus supraopticus (SON), 

was die Expression einer konstitutiv aktiven Variante des KATP Kanals (KATP∆N) 

und einer dominant negativen Variante des FOXO1 Proteins (FOXO1DN) in 

diesen Neuronen ermöglicht. Während die KATP∆N Variante zu einem 

vermehrten Kaliumexport führt, verhindert FOXO1DN die Transkription von 

Zielgenen der FOXO Familie. Allerdings konnte keine Veränderung im Energie- 

oder Glucosemetabolismus dieser genetisch modifizierten Mäuse festgestellt 

werden. Somit scheinen die FOXO1 Signaltransduktion sowie ein KATP Kanal 

vermitteltes Membranpotenzial nicht essentiell für die Sim1 Neuronen 

abhängige Kontrolle der Energiehomöostase zu sein. Andererseits inhibierte die 

Überexpression von FOXO1DN, in vitro und tendenziell in vivo, die 

Transkription von Arginine Vasopressin (AVP), einem die Stressantwort 

initiierenden Neuropeptid, was möglicherweise durch die Verringerung der 

Östrogen vermittelten Regulation der AVP Transkription bewerkstelligt wurde. 

Vor allem die Initiation der Stressantwort in weiblichen Mäusen wurde durch 

FOXO1DN Überexpression beeinträchtigt, was die Corticosterone 

Ausschüttung der Nebennieren verhinderte. Diese kohärenten Ergebnisse 

weisen darauf hin, dass die Verstärkung der Stressantwort in weiblichen 

Mäusen durch Transkriptionsfaktoren der FOXO Familie in Sim1 Neuronen 

beeinflusst wird. 
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