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FROSCH PRECONDITIONERS FOR LAND ICE SIMULATIONS OF
GREENLAND AND ANTARCTICA*

ALEXANDER HEINLEINT, MAURO PERECO?¥, AND SIVASANKARAN RAJAMANICKAM?

Abstract. Numerical simulations of Greenland and Antarctic ice sheets involve the solution of
large-scale highly nonlinear systems of equations on complex shallow geometries. This work is con-
cerned with the construction of Schwarz preconditioners for the solution of the associated tangent
problems, which are challenging for solvers mainly because of the strong anisotropy of the meshes and
wildly changing boundary conditions that can lead to poorly constrained problems on large portions
of the domain. Here, two-level GDSW (Generalized Dryja—Smith—-Widlund) type Schwarz precondi-
tioners are applied to different land ice problems, i.e., a velocity problem, a temperature problem,
as well as the coupling of the former two problems. We employ the MPI-parallel implementation
of multi-level Schwarz preconditioners provided by the package FROSch (Fast and Robust Schwarz)
from the Trilinos library. The strength of the proposed preconditioner is that it yields out-of-the-box
scalable and robust preconditioners for the single physics problems.

To our knowledge, this is the first time two-level Schwarz preconditioners are applied to the
ice sheet problem and a scalable preconditioner has been used for the coupled problem. The pre-
conditioner for the coupled problem differs from previous monolithic GDSW preconditioners in the
sense that decoupled extension operators are used to compute the values in the interior of the sub-
domains. Several approaches for improving the performance, such as reuse strategies and shared
memory OpenMP parallelization, are explored as well.

In our numerical study we target both uniform meshes of varying resolution for the Antarctic ice
sheet as well as non uniform meshes for the Greenland ice sheet are considered. We present several
weak and strong scaling studies confirming the robustness of the approach and the parallel scalability
of the FROSch implementation. Among the highlights of the numerical results are a weak scaling
study for up to 32K processor cores (8 K MPI-ranks and 4 OpenMP threads) and 566 M degrees of
freedom for the velocity problem as well as a strong scaling study for up to 4 K processor cores (and
MPI-ranks) and 68 M degrees of freedom for the coupled problem.

Key words. domain decomposition methods, monolithic Schwarz preconditioners, GDSW
coarse spaces, multiphysics simulations, parallel computing

AMS subject classifications. 65F08, 65Y05, 65M55, 65N55

1. Introduction. Greenland and Antarctic ice sheets store most of the fresh
water on earth and mass loss from these ice sheets significantly contributes to sea-
level rise (see, e.g. [11]). In this work, we propose overlapping Schwarz domain
decomposition preconditioners for efficiently solving the linear systems arising in the
context of ice sheet modeling.

We first consider the solution of the ice sheet momentum equations for com-
puting the ice velocity. This problem is at the core of ice sheet modeling and
has been largely addressed in literature and several solvers have been considered
[40, 6, 18, 35, 50, 19, 10, 9]. Most solvers from the literature rely on Newton-
Krylov methods, using, e.g., the conjugate gradient (CG) [31] or the generalized
minimal residual (GMRES) [44] method as the linear solver, and either one-level
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2 A. HEINLEIN, M. PEREGO, AND S. RAJAMANICKAM

Schwarz preconditioners, hierarchical low-rank methods, or multigrid preconditioners
to accelerate the convergence. In particular, the ones that have been demonstrated
on problems with hundreds of millions of unknowns [6, 35, 50, 19, 10] use tailored
multigrid preconditioners or hierarchical low-rank methods. Multigrid precondition-
ers [6, 35, 50, 19] require careful design of the grid transfer operators for properly
handling the anisotropy of the mesh and the basal boundary conditions that range
from no-slip to free-slip. Hierarchical low-rank approaches have also been used for the
velocity problem [10, 9]. Chen et al. [10] developed a parallel hiearchical low-rank
preconditioner that is aysmptotically scalable, but it has a large constant overhead
and the trade-off between memory usage and solver convergence does not make it
an ideal choice for the large problems considered here. The hierarchical low-rank
approach that showed the most promise in terms of solver scalability is a sequential
implementation limiting its usage to small problems [9].

In addition to the velocity problem, we also consider the problem of finding the
temperature of an ice sheet using an enthalpy formulation ([1, 46, 32]) and the steady-
state thermo-mechanical problem coupling the velocity and the temperature problems.
58 The robust solution of this coupled problem is crucial for finding the initial thermo-
59 mechanical state of the ice sheet under the assumption that the problem is almost
60 at thermodynamic equilibrium. In fact, the initial state is estimated solving a PDE-
61 constrained optimization problem where the loss function is the mismatch with ob-
62 servations and the constraint is the coupled velocity-temperature problem considered
63 here. To our knowledge, while there are works in the literature targeting the solution
64 of unsteady versions of the coupled problem ([5, 39, 43]), none of them targets the
65 steady thermo-mechanical problem at the ice sheet scale.

66 Both the velocity problem and the coupled velocity-temperature problem are
67 characterized by strong nonlinearities and anisotropic meshes (due to the shallow
68 mnature of ice sheets). The coupled problem presents additional complexities due to the
69 different nature of the velocity and temperature equations, the former being a purely
70 diffusive elliptic problem, whereas the second is an advection dominated problem. In
71 our experience, the naive use of multigrid methods leads to convergence failure for
72 the coupled problem.

73 Our approach is to employ a preconditioning framework based on two-level Schwarz}i
74 methods with GDSW (Generalized Dryja—Smith-Wildund) [12, 13, 22, 23] type coarse
75 spaces. To our knowledge, scalable domain decomposition methods such as the GDSW
76 preconditioner used in this work have not been shown to work on the ice sheet prob-
77 lems. The main contributions of this work are:
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78 e We demonstrate that two-level Schwarz preconditioners such as GDSW (Gen-
79 eralized Dryja—Smith-Widlund) type preconditioners work out-of-the-box to
80 solve two single physics problems (the velocity problem and the temperature
81 problem) on land ice simulations.

82 e We introduce a scalable two-level preconditioner for the coupled problem that
83 is tailored for the coupled problem by decoupling the extension operators to
84 compute the values in the interior of the subdomains.

85 e We present results using an MPI-parallel implementation of multi-level SchwarzJi
86 preconditioners provided by the package FROSch (Fast and Robust Schwarz)
87 from the Trilinos software framework.

88 e Finally, we demonstrate the scalability of the approach with several weak
89 and strong scaling studies confirming the robustness of the approach and

90 the parallel scalability of the FROSch implementation. We conduct a weak
91 scaling study for up to 32 K processor cores and 566 M degrees of freedom for
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FROSCH PRECONDITIONERS FOR LAND ICE SIMULATIONS 3

the velocity problem as well as a strong scaling study for up to 4 K processor

cores and 68 M degrees of freedom for the coupled problem. We compare

against the multigrid method in [48, 50] for the velocity problem.
The remainder of the paper is organized as follows. Sections 2 and 3 introduces the ice
sheet problems and the finite element discretization used in this study. We describe
the Schwarz precondtioners, the reuse strategies for better performance and the way
we tailor the preconditioner for the coupled problem in Section 4. Our software
framework, which is based on Albany and FROSch, is briefly described in Section
5. Finally, the scalability and the performance of the proposed preconditioners are
shown in Section 6.

2. Mathematical model. At the scale of glaciers and ice sheets, ice can be
modeled as a very viscous shear-thinning fluid with a rheology that depends on the
ice temperature. Complex phenomena like the formation of crevasses and ice calving
would require more complex damage mechanics models, however the fluid descrip-
tion accounts for most of the large scale dynamics of ice sheets and it is adopted
by all ice sheet computational models. The ice temperature depends on ice flow
(velocity /deformation). Given the large characteristic time scale of the temperature
evolution, it is reasonable to assume the temperature to be relatively constant over
a few decades and solve the flow problem uncoupled from the temperature problem.
However, when finding the initial state of an ice sheet (by solving an inverse problem)
it is important to consider the coupled flow/temperature model, to find a self con-
sistent initial thermo-mechanical state. In this case, we assume the ice temperature
to be almost in steady-state. Therefore, in this paper, we consider a steady-state
temperature solver. In this section, we first introduce separately the flow model and
the temperature model and then the coupled model.

2.1. Flow model. We model the ice as a very viscous shear-thinning fluid with
velocity u and pressure p satisfying the Stokes equations:

-V.o(u,p) =pig,
V-u 0,

where g is the gravity acceleration, p; the ice density and o the stress tensor. In what
follows, we use the so called first-order (FO) or Blatter-Pattyn approximation of the
Stokes equations derived using scaling arguments based on the fact that ice sheets are
shallow. Following [42] and [47], we have

(2 1) -V (2/~L 61) —Pi gaassa
' =V (2ué) = —pigdys,

where = and y are the horizontal coordinate vectors in a Cartesian reference frame,
s(x,y) is the ice surface elevation, g = |g|, and é; and é; are given by

) . . . ) T ) . . . ) T
(2.2) & :( 200 +éyy, €xy, € ) and €&y = ( €rys  €xx + 264y, €y ) .

Denoting with u and v the horizontal components of the velocity u, the stress com-
ponents are defined as €y = O,u, €y = %(ayu + 0,0), €yy = Oyv, €5, = %(‘Lu and
€y= = 30.v. The ice viscosity p in Eq. (2.1) is given by

1
(2:3) p=AD) e,
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4 A. HEINLEIN, M. PEREGO, AND S. RAJAMANICKAM

where A(T) = a1e®” is a temperature-dependent rate factor (see [47] for the defi-
nition of coefficients «; and «as), n = 3 is the power-law exponent, and the effective
strain rate, ¢, is defined as

1
(2.4) be = (2,4 60y + banbyy +E0, T é2, +62.)7,

where ¢;; are the corresponding strain-rate components. Given that the atmospheric
pressure is negligible compared to the pressure in the ice, we prescribe stress-free
conditions at the the upper surface:

(2.5) él-n:ég-nzo,

where n is the outward pointing normal vector at the ice sheet upper surface, z =
s(z,y). The lower surface can slide according to the following Robin-type boundary
condition

2uc€1 - m+ Pu=0, 2ué-n-+ Lv=070,

where [ is a spatially variable friction coefficient and u and v are the horizontal
components of the velocity u. The field 5 is set to zero beneath floating ice. On
lateral boundaries we prescribe the conditions

. 1 . 1
(2.6)  2pér-m = gH (pi = pur®) i and  2pués-m = SgH (pi = pur?®) na,

where n is the outward pointing normal vector to the lateral (i.e., parallel to the (x,y)
plane), p,, is the density of ocean water, ny and ng are the z and y component of n,
and r is the ratio of ice thickness that is submerged. On terrestrial ice margins r = 0,
whereas on floating ice r = p;. Additional details on the momentum balance solver
can be found in [47].

2.2. Temperature model. As apparent from (2.3), the ice rheology depends
on the ice temperature T'. In order to model the ice sheet thermal state, we consider
an enthalpy formulation similar to the one proposed by Aschwanded et al. in [1]. We
assume that, for cold ice, the enthalpy h depends linearly on the temperature, whereas
for temperate ice, the enthalpy grows linearly with the water content ¢

b pic (T —Ty), for cold ice (h < hy,),
" | hm + pwL @, for temperate ice.

Here, the melting enthalpy h,, is defined as h,, := p,,c(T, — To) and Ty is a uniform
reference temperature.
The steady state enthalpy equation reads

(2.7) V-q(h)+u-Vh=4ue.

Here, g(h) is the enthalpy flux, given by

by — pfci Vh, for cold ice (h < hy,),
a(h) = pikci Vhm + pwLj(h), for temperate ice,

w-Vh is the drift term, and 4y €2 is the heat associated to ice deformation. The water

flux term
1

J(h) = n*(ﬂw — pi)kod" g

w
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FROSCH PRECONDITIONERS FOR LAND ICE SIMULATIONS 5

has been introduced by Schoof and Hewitt ([46, 32]), and it describes the percolation
of water driven by gravity. The parameter ¢; is the heat capacity of ice, k its thermal
conductivity, and L is the latent heat of fusion. At the upper surface, the enthalpy is
set to h = p;e(Ts—Tp), where Ty is the temperature of the air at the ice upper surface.
At the bed, the ice is either in contact with a dry bed or with a film of water at the
melting point temperature and, in first approximation, satisfies the Stefan condition:

m=G+BvVul+v2—kVT-n and mT-T,)=0 and T, <O0.

Here, m is the melting rate. Ice at the bed is melting when m > 0 and refreezing
when m < 0. Moreover, G is the geothermal heat flux (positive if entering the ice
domain), Svu? + v? is the frictional heat, and —kVT - n is the temperature heat flux
exiting the domain as n is the outer normal to the ice domain. Depending on whether
the ice is cold at the bed, melting or refreezing, the Stefan condition translates into
natural or essential boundary conditions for the enthalpy equation. Further details
on the enthalpy formulation and its discretization are provided in [41].

2.3. Coupled model. The ice velocity depends on the temperature through
(2.4), and the enthalpy depends on the velocity field through the drift term w - Vh
and the fractional heat term at the ice sheet lower surface. The first order problem
(2.1) only provides the horizontal velocities u and v, but we also need the vertical
velocity w to solve the enthalpy equations. The vertical velocity w is computed using
the incompressibility condition

(2.8) Ozu + Oyv + 0, w = 0,

with the Dirichlet boundary condition at the ice lower surface

__m
L (pl - Pw¢) .

The coupled problem is formed by problems (2.1), (2.8) and (2.7) and their respective
boundary conditions. For further details, see [41]. Figure 1 shows the ice velocity and
temperature computed solving the coupled thermo-mechanical model. For details
about the problem setting and the Greenland data set, see [41].

u-n =

3. Finite element discretization. The ice sheet mesh is generated by extrud-
ing in the vertical direction a two dimensional unstructured mesh of the ice sheet
horizontal extension ([47]) and it is constituted of layers of prisms. The problems
described in section 2 are discretized with continuous piece-wise bi-linear (for trian-
gular prisms) or tri-linear (for hexahedra) finite elements using a standard Galerkin
formulation, for each component of the velocity and for the enthalpy. We use up-
wind stabilization for the enthalpy equation. The nonlinear discrete problems can be
written in the residual form

(3.1) F(z) =0,

where x is the problem unknown (velocity, enthalpy, or both, depending on the prob-
lem). The nonlinear problems are then solved using a Newton-Krylov approach. More
precisely, we linearize the problem using Newton’s method, and solve the resulting
linear tangent problems

(3.2) DF(z*")A 2 = —F(2*)

This manuscript is for review purposes only.
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2428 250 256 260 265 270 273.1

Fic. 1. Solution of a Greenland ice sheet simulation. Left: ice surface speed in [m/yr], Right:
ice temperature in [K] over a vertical section of the ice sheet.

using a Krylov subspace method. The Jacobian DF' is computed through automatic
differentiation. At each nonlinear iteration, we solve a problem of the form

(3.3) Az =,

where A is the tangent matrix DF(z(®), and r is the residual vector —F(z(*)). Using
a block matrix notation, the tangent problem of the velocity problem can be written
as

o =)

where the tangent matrix is symmetric positive definite. When considering also the
vertical velocity w, the tangent problem becomes

(35) Apu Ao Ty | = [To
~——

=:A, =Ty =1y

Note that the matrix is lower block-triangular because in the FO approximation, the
horizontal velocities are independent of the vertical velocity. Similarly, the tempera-
ture equation reads

(36) AT xrT =T1r.

The coupled problem is a multiphysics problem coupling the velocity and the
temperature problem. Hence, the tangent system can be written as

(3.7) [é;u ?Aff ] [Z] N [:;] ’
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FROSCH PRECONDITIONERS FOR LAND ICE SIMULATIONS 7

Fic. 2. Extending two-dimensional nonoverlapping subdomains (left) by layers of elements to
obtain overlapping domain decompositions with an overlap of 6 = 1h (middle) and § = 2h (right).

where the blocks A, and A7 and solution vectors x, x7 are the same as in the single
physics problems; cf. (3.5) and (3.6). The residual vectors 7, and 7r differ from the
single physics residuals r, and rp due to the coupling of velocity and temperature,
which also results in the nonzero coupling blocks coupling blocks C\,r and Cr,, in the
tangent matrix.

4. Preconditioners. In order to solve the tangent problems (3.2) in our Newton
iteration, we apply the generalized minimal residual (GMRES) method [44] and speed
up the convergence using generalized Dryja—Smith-Widlund (GDSW) type domain
decomposition preconditioners. In particular, we will use classical GDSW and reduced
dimension GDSW (RGDSW) preconditioners, as described in subsection 4.1, as well
as corresponding monolithic preconditioners, as introduced in subsection 4.3. In order
to improve the performance of the first level of the Schwarz preconditioners, we will
always apply scaled prolongation operators; cf. subsection 4.2. As we will describe
in subsection 4.4, domain decomposition preconditioners and, in particular, GDSW
type preconditioners are well-suited for the solution of land ice problems because
of the specific structure of the meshes. In order to improve the efficiency of the
preconditioners in our Newton-Krylov algorithm, we will also apply strategies to reuse,
in later Newton iterations, certain components of the preconditioners set up in the
first Newton iteration; see subsection 4.5.

For the sake of clarity, we will restrict ourselves to the case of uniform meshes
with characteristic element size h for the description of the preconditioners. However,
the methods can also be applied to non-uniform meshes as the ones for Greenland;
see Figure 4.

4.1. GDSW type preconditioners. Let us consider the general linear system
(4.1) Az =b

arising from a finite element discretization of an elliptic boundary value problem on
Q. Our aim is then to apply the preconditioners to the tangent problems (3.3) of the
model problems described in section 2.

The GDSW preconditioner was originally introduced by Dohrmann, Klawonn,
and Widlund in [13, 12] for elliptic problems. It is a two-level Schwarz preconditioner
with energy minimizing coarse space and exact solvers. To describe the construction
of the GDSW preconditioner, let €2 be partitioned into N nonoverlapping subdomains
Qq,...,Qn with characteristic size H. We extend these subdomains by adding k layers
of finite elements resulting in overlapping subdomains Q7,...,Q with an overlap

This manuscript is for review purposes only.



245
246

281
282
283
284

285

286

8 A. HEINLEIN, M. PEREGO, AND S. RAJAMANICKAM

0 = kh; cf. Figure 2 for a two-dimensional example. In general, two-level Schwarz
preconditioners for (4.1) with exact solvers are of the form

N
(4.2) Mos—z = ®A;'®" +Y "RTAT'R; .
N——

i=1
coarse level

first level

Here, Ag = ®TA® is the coarse matrix corresponding to a Galerkin projection onto
the coarse space, which is spanned by the columns of matrix ®. The local matrices A;
are submatrices of A corresponding to the overlapping subdomains Qf, ..., . They
can be written as A; = RZ—AR;TF7 where R; : VI — Vih is the restriction operator from
the global finite element space V" to the local finite element space V;* on Qf; the RT
is the corresponding prolongation.

We first present the framework enabling the construction of energy-minimizing
coarse spaces for elliptic problems based on a partition of unity on the interface

(4.3) I={zec(@nQ)\obli#j1<ij<N)}

of the nonoverlapping domain decomposition, where 9€Qp is the Dirichlet boundary.
This will allow us to construct classical GDSW coarse spaces [13, 12] and reduced
dimension GDSW coarse spaces [16] as used in our simulations. Note that other
types of coarse spaces can be constructed using this framework as well, e.g., coarse
spaces based on the MSFEM (Multiscale Finite Element Method) [34]; see also [7].
However, in our experiments, we restrict ourselves to the use of GDSW type coarse
spaces.

Let us first decompose I' into connected components I'q,...,I"y;. This decom-
position of I' may be overlapping or nonoverlapping. Furthermore, let Rr, be the
restriction from all interface degrees of freedom to the degrees of freedom of the in-
terface component I';. In order to account for overlapping decompositions of the
interface, we introduce diagonal scaling matrices Dr,, such that

M
(4.4) > R{.Dr,Rr, =Ir,
i=1

where It is the identity matrix on I'. This means that the scaling matrices correspond
to a partition of unity on the interface I'.

Using the scaling matrices Dr,, we can now build a space which can represent the
restriction of the null space of our problem to the interface. Therefore, let the columns
of the matrix Z form a basis of the null space of the operator A, which is the global
matrix corresponding to A but with homogeneous Neumann boundary conditions on
the full boundary, and let the Zr be restriction of Z to the interface I'. Because of
(4.4), we have

M
> R{. Dr,Rr,Zr = Zr.

i=1

Now, for each I';, we construct a matrix ®r, such that its columns are a basis of
the space spanned by the columns of Dr,Rr,Zr. Then, the interface values of our
coarse space are given by the matrix

(4.5) or=[ R ®p, .. RL @r, ].

This manuscript is for review purposes only.
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Based on these interface values, the coarse basis functions are finally computed
as energy-minimizing extensions to the interior of the nonoverlapping subdomains.
Therefore, we partition all degrees of freedom into interface (I') and interior (I') degrees
of freedom. Then, the system matrix can written as

A= Arir A
Arr  Arr
and the energy-minimizing extensions are computed as ®; = —A;IIAIF@F, resulting

in the coarse basis

(4.6) = { o ] - { _Afz;ifr‘ﬁr ] .

As mentioned earlier, this construction allows for a whole family of coarse spaces,
depending on decomposition of the interface into components I'; and the choice of
scaling matrices Dr,.

GDSW coarse spaces. We obtain the interface components of the GDSW coarse
space I‘EGDSW) by decomposing the interface I' into the largest connected components
7 belonging to the same sets of subdomains N, i.e., into vertices, edges, and faces;
cf., e.g., [38]. More precisely,

Ny={i:zeQ Vrenr}.

Because these components are disjoint by construction, the scaling matrices D apsw)
have to be chosen as identity matrices I|epsw) in order to satisfy (4.4). Using this

choice, we obtain the classical GDSW coarse space as introduced by Dohrmann, Kla-
wonn, and Widlund in [13, 12]. If the boundaries of the subdomains are uniformly
Lipschitz, the condition number estimate for the resulting two-level GDSW precondi-
tioner,

(4.7) K (MgpswA) < C (1 + ?) (1 + log (I}f)) ;

holds for scalar elliptic and compressible linear elasticity model problems; the constant
C is then independent of the geometrical parameters H, h, and d. For the general case
of Q € R? being decomposed into John domains, we can obtain a condition number
estimate with a second power logarithmic term, i.e., with (1 + log (%))2 instead of
(14 1log (£)); cf. [12, 13]. Please also refer to [14, 15] for other variants with linear
logarithmic term.

RGDSW coarse spaces. Another choice of the I'; leads to reduced dimension
GDSW (RGDSW) coarse spaces; cf. [16]. In order to construct the interface com-

(RGDSW) . . (GDSW)

ponents I'; , we first define a hierarchy of the previously defined I'; . In
particular, we call an interface component 7 ancestor of another interface compo-
nent 7' if Ny C N,; conversely, we call v offspring of o/ if Ny D N,. Now, let
{fEGDSW)}izl arrepswy be the set of all GDSW interface components which have
no ancestors; we call these coarse components. Now, we define the RGDSW interface
components as

(4.8) PREPSW =) g, W=, MREDSW),
Ny CNfEGDSW)

This manuscript is for review purposes only.
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10 A. HEINLEIN, M. PEREGO, AND S. RAJAMANICKAM
The FERGDSW) may overlap in nodes which do not belong to the coarse components.
Hence, we have to introduce scaling operators D apsw) # I.mepsw) to obtain a

partition of unity on the interface; cf. (4.4). Different scaling operators Dr, lead to
different variants of RGDSW coarse spaces, e.g., Options 1, 2.1, and 2.2, introduced
in [16] and another variant introduced in [25]. Here, we will only consider the algebraic
variant, Option 1, where an inverse multiplicity scaling

M (RGDSW) -1

§ : T T
DF(_RGDSW) - RF(_RGDSW) RF(RGDSW) RF(_RGDSW) RF(RGDSW) .
i i - J J i

Jj=1

is employed. Under the condition that all subdomains are Lipschitz domains, we then
obtain the same condition number estimate as previously for GDSW coarse spaces

(4.9) H(MQéDSWA) <C <1 + I;) <1 + log (g)) ;

for scalar elliptic and compressible linear elasticity model problems; cf. [16].

The only missing ingredient to construct the GDSW and RGDSW coarse spaces
is the respective the null space Z of the global Neumann matrix corresponding to A.
For the velocity and the temperature problem, the preconditioners can be directly
constructed and applied using the corresponding null spaces spanned by

1 0
Tyl i= { 0 } JTu,2 i= [ 1 ] and ry, 3 1= [ —yx }

or

respectively, on each finite element node. Here, 7, 1 and r,, 5 correspond to the transla-
tions and r,, 3 to the linearized rotation building the null space of the velocity problem.
The rp is the constant null space element of the temperature problem.

Remark 4.1. Sometimes it may be beneficial to only consider a subspace Z of the
full space Z. This results in a smaller coarse space, at the cost of slower convergence of
the linear solver. In particular, in theory, numerical scalability is not provided in this
case. However, since the coarse solve is typically a parallel scaling bottleneck, it may
still be faster to neglect a part of the coarse space for a large number of subdomains.
In our numerical results, we will actually observe that neglecting rotational rigid body
modes improves the parallel performance of our solver; see also [28, 24] for similar
experiments for elasticity problems.

Note that, if rotations are neglected, the GDSW and RGDSW coarse spaces
are actually constructed in an algebraic way because the translational coarse basis
functions can be computed without geometric information; see also the discussion
in [24].

For the coupled problem described in subsection 2.3, we will describe an mono-
lithic preconditioner in subsection 4.3, where we use the same construction but with
decoupled extensions operators. Before that, however, we will describe the scaled
prolongation operators used in the first level in our numerical experiments.
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4.2. Scaled prolongation operators. As first shown in [8], the convergence
of additive Schwarz preconditioners can often be improved using restricted or scaled
variants of the prolongation operators R} in (4.2); see also [17, 23]. For the sake of
brevity, we will not compare the performance of the standard, the restricted, and the
scaled variants for the different model problems considered in this paper. We only
show results using the scaled variant because it performed best in preliminary tests.

We construct the scaled prolongation operator RY such that Zivzl RIR; =1

-1

N
pT . _ T T
Rl :=|Y R/R;| Rl
j=1

Note that the matrix Zfil RTR; is just a diagonal scaling matrix, and its inverse
can therefore be specified directly. The two-level Schwarz preconditioner with scaled
prolongations then reads

N
Mos—> = ®A;'®" +> "RTAT'R;.

i=1

4.3. Monolithic preconditioning the coupled problem. For the coupled
problem, A is structured as follows

A Ayt
4.10 A= | " “
(4.10) [ATu ATT}
where the off-diagonal blocks formally account for the coupling of the different vari-
ables; cf. section 3. We will construct monolithic two-level Schwarz preconditioners as
introduced in [36, 37] and extended to monothic GDSW preconditioners in [22, 23].
Formally, the monolithic preconditioners for the coupled problem can again be written
as

N
(4.11) Mos—2 = ®A;'®" +> R A'R;.

i=1
However, all matrices are now 2 x 2 block-matrices. In particular, the monolithic
restriction and prolongation matrices are of the form

Rin 0 = [Ri. O
R, = [ 0 Ri,T] and R; = [ 0 Ri,T],

where R; ,, and R,  are the restriction operators to the overlapping subdomain €2} on
the velocity and temperature degrees of freedom, and ]-:L’m and RLT are the respective
prolongations operators.

The coarse space can be constructed in a similar way as in the single physics
case. In particular, the interface components I'; and the scaling matrices Dr, are
constructed in the same way, and the null space Z of the multi physics problem
is composed of the null spaces of the individual single physics problems. However,
as we will observe in the numerical results, it is necessary to remove the coupling
blocks between the velocity and the temperature problem before computing the ex-
tensions (4.6). Hence, instead of A, the matrix

~ Aw 0
wn i 0]
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12 A. HEINLEIN, M. PEREGO, AND S. RAJAMANICKAM

is used in the computation of the harmonic extensions, i.e., ®; = —fl;]lfl]pép. This
can be viewed as applying a block Jacobi preconditioner with two blocks corresponding
to the single physics problems instead of solving the systems corresponding to Afll
monolithically. Consequently, the coarse basis functions corresponding to the velocity
and the temperature problem can be computed independently. Then, the matrix ®
is of the form

| Puug 0
s o=[tm 0],
where the row indices u and T indicate the finite element functions of the original
problem, and column indices ug and T correspond to the basis functions of the coarse
space. A similar decoupling approach for the coarse basis functions was performed
in [22, 23] for a monolithic preconditioner for fluid problems. However, it was neces-
sary to first compute the fully coupled extensions (4.6) and to drop the off diagonal

blocks in the matrix ® afterwards. This was due to the fact that the system matrix
T

was of the form g BO , such that the decoupled matrix would become singular.

Here, the decoupled matrix (4.12) remains invertible since the individual blocks corre-
spond to the single physics velocity and temperature problems. Therefore, our coarse
basis matrix is also of the same structure for Lagrangian coarse spaces in [36, 37].

It is important to note that, even though the coarse basis functions do not contain
any coupling blocks, the coarse problem is still a coupled problem with a coarse matrix
of the form

Ay = (I)%uo 0 r Auu AuT (I)u,uo 0
°= 1 0 O7 7, Ary At 0 O7 7,

T T
(I)u,ug Auu(bu,uo ) AuT(I)T,Tg

— U,uo

a {q)%ToATuq)u,uo (I)%TOATT(I)T,TO:| '

Because we use equal order discretizations for the velocity and temperature vari-
ables in the coupled problem, we can formally apply a node wise ordering to our
degrees of freedom. Then, the monolithic preconditioner can be constructed exactly
as in the elliptic case (see section 4), however, using the previously described decou-
pled matrix (4.12) to compute the extension.

We then obtain all three velocity degrees of freedom and one temperature degree
of freedom for each finite element node. Therefore, the full null space is spanned by
the null space corresponding to the three velocity degrees of freedom

1 0 0 Y
0 1 0 —x
Tt =g [ w2 =g [ Tus = | and 7,4 = 0
0 0 0 0

as well as the null space on the temperature degree of freedom

— o O O

Here, 7,4 corresponds to a linearized rotation, which will be neglected in some of our
numerical experiments to reduce the computing time on the coarse level.
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Fic. 3. Uniform hexahedral mesh for the Antarctica ice sheet with a horizontal resolution
of 16 km decomposed into nine subdomains. The domain decomposition is performed on the two-
dimensional top surface mesh, and the subdomains are extruded in vertical direction to obtain three-
dimensional subdomains with 10 layers height.

Fi1Gc. 4. Non-uniform triangulation of the top surface mesh for the Greenland ice sheet with
a horizontal resolution of 3 km to 30 km decomposed into nine subdomains. The three-dimensional
mesh is then obtained by extrusion in vertical direction.

4.4. Remarks on domain decomposition methods for land ice problems.
The geometries for the ice sheets in Antarctica and Greenland are visualized in Fig-
ures 3 and 4. Generally, the horizontal extensions of the ice sheets are in the order of
hundreds or thousands of kilometers, whereas their thickness is at maximum only a
few kilometers. Therefore, the geometries and the corresponding meshes used in our
simulations are clearly anisotropic; cf. section 3 for a description of the mesh gener-
ation procedure and Figure 3 for a visualization of a exemplary mesh of Antarctica
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| reuse strategy | short description \
NR (no reuse) Set up the preconditioner from scratch in each non-
linear iteration.
IS (index sets) Reuse the index sets for the overlapping subdomains

and the interface components
SF1 (symb. fact. Wl 1) | Reuse the symbolic factorization of A;.
SF2 (symb. fact. lvl 2) | Reuse the symbolic factorization of Ag.

CB (coarse basis) Reuse the coarse basis ®.
CM (coarse matriz) Reuse the coarse matrix Ay.
TABLE 1

Reuse strategies for monolithic GDSW preconditioners (4.2) for nonlinear model problems.

with a horizontal mesh resolution of 16 km and 10 layers of elements in z direction.
Due to this specific structure of the meshes, we perform the domain decomposition
into nonoverlapping subdomains as follows: First, we decompose the two-dimensional
mesh of the top surface. We extrude the two-dimensional subdomains in z direction
next resulting in a domain decomposition of the whole three-dimensional domain.
Hence, the domain decomposition is essentially a two-dimensional domain decompo-
sition, and the partition of the domain decomposition interface I" into the components
FZ(-GDSW) only yields edges and faces but no vertices. However, as can be seen in Fig-
ures 3 and 4, the subdomain geometries can be very irregular due to the complex
shape of the boundary of the ice sheets. Hence, the domain decomposition is not well
suited for the use of classical Lagrangian coarse spaces, which would require the con-
struction of a coarse triangulation of the geometry. However, this is not required for
GDSW type coarse spaces which can be constructed without an additional coarse tri-
angulation. Hence they can easily be constructed for the considered land ice problems.

4.5. Reuse strategies for nonlinear problems. The model problems in sec-
tion 2 are highly nonlinear; as can be seen in section 6, the coupled problem requires
a particularly high number of nonlinear iterations. Therefore, we will investigate sev-
eral strategies to reuse information from the first iteration in later Newton iterations,
such that the total time to solution can be improved. Note that other approaches
where the information is updated in certain multiple Newton iterations, e.g. in every
nth iteration, are also possible but out of the scope of this paper.

The different reuse strategies, which are listed in Table 1, are used in different
numerical experiments in section 6. Since neither the topology nor the domain decom-
position of our problem changes during the nonlinear iteration, it is a safe assumption
that the index sets of the overlapping subdomains and the interface components stay
the same. This saves mostly communication, which dominates the time for identify-
ing the index sets; see section 5. If the sparsity pattern of the system matrix is also
constant during the nonlinear iteration, the symbolic factorizations for A; and Ay can
be easily reused as well.

In GDSW type preconditioners, the coarse basis functions ® change with the
tangent matrix, which is used to compute the extensions (4.6) in each nonlinear
iteration. However, in practice, the coarse basis computed with the tangent matrix
in the first Newton iteration can also be used in later iterations. In some cases, the
complete coarse matrix Ag and its factorization can even be reused.

This manuscript is for review purposes only.
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FROSCH PRECONDITIONERS FOR LAND ICE SIMULATIONS 15

5. Software framework. The land ice problems are implemented in Albany
Land Ice (formerly referred to as Albany FELIX) [47, 45], a C++ finite element library
that relies on the Trilinos packages [49] for MPI+X parallelism (Tpetra, Kokkos), lin-
ear (Belos/AztecOO) and nonlinear (NOX) solvers, preconditioners (Ifpack2, Muelu,
ShyLU, FROSch [20, 28, 27, 26]), discretization tools (STK, Intrepid2, Phalanx) and
automatic differentiation (Sacado). Albany Land Ice is part of the land ice code MALI
[33].

The GDSW type preconditioners described in section 4 are implemented in the
FROSch framework [27, 26], which is part of Trilinos [49]. FROSch can use both
distributed-memory parallelism using the Tpetra package of Trilinos and shared-
memory parallelism while using the direct solvers interfaced through Amesos2 package
of Trilinos [2]. With respect to shared-memory parallelism, in this paper, we restrict
ourselves to using CPU threads. Specifically, we use the Pardiso solver provided with
the Intel MKL software, which can also make use of shared-memory parallelism using
OpenMP threads. FROSch is called from Albany Land Ice using the unified Trili-
nos solver interface Stratimikos and directly uses the Tpetra matrices and vectors
which have been assembled in. Moreover, FROSch makes use of the index set of the
nonoverlapping domain decomposition and the null space basis provided by Albany
Land Ice in form of Tpetra map and multivector objects; cf. the discussion in [21].

6. Numerical results. In this section, we will present numerical results for the
flow (subsection 2.1), temperature (subsection 2.2), and coupled (subsection 2.3) prob-
lems. For the flow problem, we will use the uniform meshes for Antarctica, whereas we
will use the non-uniform Greenland meshes for the two other model problems; cf. Fig-
ures 3 and 4. The experiments were performed using the Haswell compute nodes (2
sockets with a 16-core Intel Xeon Processor E5-2698 v3 with 2.3 GHz each) of the Cori
supercomputer at NERSC (National Energy Research Scientific Computing Center);
we always employed one processor core per thread. The code was compiled using
Intel 19.0.3.199 compilers and Intel MKL. The subdomain problems and the coarse
problem are solved on one MPI rank using used Pardiso from the Intel MKL with
OpenMP parallelization if more than one OpenMP thread is used.

The nonlinear problems are solved using the inexact Newton method with back-
tracking implemented in the Trilinos package NOX up to a relative reduction of the
residual of 107°. As the linear solver we employ the GMRES (generalized minimal
residual) method [44] from Trilinos AztecOO preconditioned by two-level overlapping
Schwarz domain decomposition preconditioners from Trilinos FROSch (part of the
package ShyLU) as described in section 4; cf. [28, 27, 22, 23, 26]. We iterate the
GMRES method up to a relative reduction of the residual of 10~7 for the flow and
temperature problems or 10~° for the coupled problem. Since the number of nonlin-
ear iterations is not influenced by our preconditioners, we always report the number
of linear iterations averaged over the number of Newton iterations.

With respect to the Schwarz preconditioners, if not stated otherwise, we will
always use one layer of overlap as determined from the sparsity pattern of the matrix.
On the first level, we apply scaled prolongation operators; cf. subsection 4.2. As
already discussed in [28], we will use two communication steps in order to transfer
information from the first to the second level (scatter and gather); only during the
discussion in subsection 6.1.3, we will also present results using only one or three
communication steps.

6.1. Flow problem for Antarctica. In this section, we will present an exten-
sive numerical study of GDSW type preconditioners for the land ice flow problem
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Without rotational coarse basis functions (2 rigid body modes)

GDSW (IS & SF1 & SF2 & CB) RGDSW (IS & SF1 & SF2 & CB)
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dimVp (nl its) setup solve | dimVp (nl its) setup solve
512 4598 40.8 (11) 15.36s 12.38s 1834 426 (11) 14.99s 12.50s
1024 9306 43.3 (11) 5.80s 6.27s 3740 44.5 (11) 5.65s 6.08s
2048 18634 41.7 (11) 3.27s 291s 7586  42.7 (11) 3.11s 2.79s
4096 37184 41.4 (11) 2.59s 2.07s 15324  42.5 (11) 1.07s 1.54s
8192 | 72964 39.5 (11) 1.51s  1.84s | 30620 42.0 (11) 1.20s 1.16s

With rotational coarse basis functions (3 rigid body modes)

GDSW (IS & SF1 & SF2 & CB) RGDSW (IS & SF1 & SF2 & CB)
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dimVp (nl its) setup solve | dimVjp (nl its setup solve

512 6897 35.5 (11 15.77s 11.21s 2751  40.7
1024 13959 35.6 (11 6.16s 5.78s 5610 42.9

) (11) 15.28s 12.22s

) (11
2048 | 27951 83.5 (11) 3.78s  3.45s | 11379 42.2 (11

) (11

) (11

)
)
) 5.65s 6.04s
) 3.17s 2.81s
4096 55776 31.8 (11 2.21s 3.80s | 22986 44.3 )
8192 | 109446 29.3 (11 2.49s 5.33s | 45930 40.8 )
TABLE 2
Comparison of different coarse spaces for the flow problem on the Antarctica mesh with 4 km
horizontal resolution and 20 layers of elements in vertical direction and a total of 85.3m degrees
of freedom. The linear iteration counts (avg. its), setup times (avg. setup), and solve times (avg.
solve) are averaged over the number of Newton iterations (nl its). Lowest average iterations counts,
setup times, and solve times in each row are marked in bold.

1.95s 2.70s
1.19s 3.13s

# subdomains 512 1024 2048 4096 8192

GDSW 2299 4653 9317 18592 36482

RGDSW 917 1870 3793 7662 15310
TABLE 3

Number of coarse components I'; for the Antarctica mesh with 4km horizontal resolution. The
dimension of the coarse space is the number of coarse components multiplied by the dimension of
the null space.

for Antarctica. Most of the simulations are performed on a medium size mesh with
4 km horizontal resolution and 20 layers of elements in vertical direction. We compare
one level Schwarz methods and different GDSW type coarse spaces (subsection 6.1.1)
and investigate several reuse strategies (subsection 6.1.2) as well as certain paral-
lelization aspects (subsection 6.1.3). Moreover, we investigate the robustness with
respect to an increasing number of mesh layers of elements in vertical direction (sub-
section 6.1.4), and compare our results using FROSch against the algebraic multigrid
package MueLu [4, 3] (subsection 6.1.6).

Finally, we provide weak scaling results ranging from the coarsest mesh with
16 km horizontal resolution to the finest mesh with 1km horizontal resolution. The
largest computation in this weak scaling study was performed on 32768 processor
cores using 8192 MPI ranks and 4 OpenMP threads per MPI rank solving a problem
with more than 566 m degrees of freedom.

6.1.1. Comparison of different Schwarz preconditioners. First, we com-
pare the classical GDSW and the reduced dimension GDSW (RGDSW) coarse spaces
in a strong scaling study using both the full three-dimensional null space and a two-
dimensional null space where the rotation has been omitted; cf. the discussion in sub-
section 4.1. In this study, we reuse the index sets (IS), the symbolic factorizations
(SF1 & SF2), and the coarse basis (CB) from the first nonlinear iteration. As can
be seen in Table 2, all preconditioners scale numerically, but the iteration counts are
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One-level Schwarz

one layer of algebraic overlap two layers of algebraic overlap
MPI avg. its avg. avg. avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve
512 67.7 (11) 13.80s 19.55s 56.2 (11) 17.95s 18.40s
1024 79.1 (11) 5.00s 10.60s 66.5 (11) 6.74s 10.56s
2048 96.1 (11) 1.74s 6.09s 80.8 (11) 2.58s 6.31s
4096 | 113.3 (11) 0.81s 3.59s 94.8 (11) 1.21s 3.99s
8192 | 132.0 (11) 0.47s 2.15s | 109.5 (11) 0.65s 2.35s

RGDSW (IS & SF1 & SF2 & CB & CM)

one layer of algebraic overlap two layers of algebraic overlap
MPI avg. its avg. avg. avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve
512 46.7 (11) 14.94s 13.81s 42.1 (11) 18.89s 14.13s
1024 49.2 (11) 5.75s 6.78s 44.3 (11) 6.95s 7.21s
2048 47.7 (11) 2.92s 3.10s 44.3 (11) 2.66s 3.56s
4096 48.9 (11) 0.95s 1.75s 45.5 (11) 1.28s 2.15s
8192 50.1 (11) 0.63s 1.35s 46.0 (11) 0.76s 1.66s

TABLE 4

Comparison of one-level and RGDSW Schwarz preconditioners for the flow problem on the
Antarctica mesh with 4 km horizontal resolution and 20 layers of elements in vertical direction and
a total of 35.3m degrees of freedom. The linear iteration counts (avg. its), setup times (avg. setup),
and solve times (avg. solve) are averaged over the number of Newton iterations (nl its). Lowest
average iterations counts, setup times, and solve times in each row are marked in bold.

better for the classical GDSW coarse spaces compared to the respective RGDSW
coarse spaces. In particular, the best iteration counts are obtained using the classical
GDSW coarse space with the full null space. However, the parallel performance is
clearly better when reducing the dimension of the coarse space by either omitting the
rotational rigid body mode or by using the RGDSW coarse space; see also Table 3 for
the number coarse components used in the GDSW and the RGDSW coarse spaces,
which, together with the dimension of the employed subspace of the null space, deter-
mines the size of the coarse space. In total, the variant with the smallest coarse space,
i.e., RGDSW without rotation, yields both the highest iteration counts but the best
parallel performance. Hence, we will concentrate on this coarse space in the following
experiments.

Moreover, we compare one-level and two-level Schwarz methods in Table 4. We
observe that the one-level methods do not scale numerically. However, due to the
geometry of the ice sheet, the increase in the iteration count of the one-level precon-
ditioners is lower compared to usual fully three-dimensional domain decompositions.
Due to the reuse strategies for the two-level methods used in this comparison, the
setup cost for the one-level preconditioners is only slightly lower; even the coarse ma-
trix is reused. However, due to numerical scalability, the two level methods perform
clearly better in the solve phase.

6.1.2. Reuse strategies. In Table 5, we investigate the performance improve-
ments due to the use of reuse strategies on the coarse level. As the baseline, we
consider reusing the index sets (IS) and the symbolic factorization for the first level
(SF1). We then consider reusing only the symbolic factorization of the coarse matrix
(SF2) and coarse basis functions (CB) as well as also reusing the coarse matrix itself
(CM). As can be observed, the iteration counts increase and, at the same time, the
setup cost reduces if parts of the second level are reused. In particular, for lower
numbers of MPI ranks and large subdomain problems, the setup cost is significantly
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IS & SF1 IS & SF1 & SF2 & CB IS & SF1 & SF2 & CB & CM
MPI avg. its avg. avg. avg. its avg. avg. its avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve (nl its) setup solve
512 41.9 (11) 25.10s 12.29s | 42.6 (11) 14.99s 12.50s | 46.7 (11) 14.94s 13.81s
1024 | 43.3 (11) 9.18s  5.85s | 445 (11) 5.65s  6.08s | 49.2 (11)  5.756s  6.78s
2048 | 41.4 (11)  4.15s  2.63s | 427 (11)  3.1s  2.79s | 47.7 (11)  2.92s  3.10s
4096 41.2 (11) 1.66s 1.49s | 42.5 (11) 1.07s 1.54s | 48.9 (11) 0.95s 1.75s
8192 | 40.2 (11)  1.26s  1.06s | 42.0 (11) 1.20s  1.16s | 50.1 (11)  0.63s  1.35s

TABLE 5
Comparison of different reuse strategies for the two-level RGDSW Schwarz preconditioner for
the flow problem on the Antarctica mesh with 4 km horizontal resolution and 20 layers of elements
in vertical direction and a total of 35.3m degrees of freedom. The linear iteration counts (avg. its),
setup times (avg. setup), and solve times (avg. solve) are averaged over the number of Newton
iterations (nl its). Lowest average iterations counts, setup times, and solve times in each row are
marked in bold.

1 comm. step 2 comm. step 3 comm. step
MPI avg. avg. avg. avg. avg. avg.
ranks setup solve setup solve setup solve

512 15.38s 13.8s | 14.99s 12.50s | 15.75s 13.85s
1024 5.68s 6.25s 5.65s 6.08s | 5.63s 6.10s
2048 2.91s 3.27s 2.94s 2.78s 3.40s 2.75s
4096 1.35s 3.77s 1.07s 1.54s 1.15s 1.56's
8192 2.5s 12.22s 1.29s 1.13s | 1.29s 1.17s
TABLE 6

Variation of the number of communication steps for the scatter and gather operations on the
coarse level for the RGDSW Schwarz preconditioner for the flow problem on the Antarctica mesh
with 4 km horizontal resolution and 20 layers of elements in vertical direction and a total of 35.3m
degrees of freedom. The linear iteration counts (avg. its), setup times (avg. setup), and solve times
(avg. solve) are averaged over the number of Newton iterations (nl its). Lowest average iterations
counts, setup times, and solve times in each row are marked in bold.

reduced. Due to the better overall performance, we will only consider results using IS
& SF1 & SF2 & CB or IS & SF1 & SF2 & CB & CM for the following results using
two-level preconditioners for the flow problem.

6.1.3. Parallelization aspects. Here, we discuss two parallelization aspects.

First, we discuss the communication between all MPI ranks and the single MPI
rank which computes the coarse problem, the coarse rank. In particular, both all-to-
one and one-to-all communication patterns are necessary in our implementation: In
the setup phase, the coarse matrix, which is computed by an RAP product on all MPI
ranks, has to be communicated to the coarse rank. Then, in each linear iteration of the
solve phase, the right hand side of the coarse problem has to be communicated from
all ranks to the coarse rank and the corresponding solution has to be communicated
back. As already discussed in [28, section 4.7], this type of communication does not
perform well for large numbers of MPI ranks using the Trilinos import and export
objects. In [28, section 4.7] Epetra import and export objects were employed, whereas
their Tpetra counterparts are considered here. Therefore, we introduce nested sets
of MPI ranks, beginning with all MPI ranks and ending with the single coarse rank,
and perform the all-to-one and one-to-all communication using multiple steps; cf. [28,
section 4.7] for a more detailed discussion.

In Table 6, we present corresponding results, varying the number of communica-
tion steps between one to three. As can be observed, using two or three communication
steps, we obtain good the parallel scalability. However, if only a singe import/export
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OpenMP parallelization (512 MPI ranks) MPI parallelization

OpenMP avg. its avg. avg. MPI avg. its avg. avg. its
cores || threads (nl its) setup solve || ranks (nl its) setup solve
512 1 42.6 (11) 14.99s 12.50s 512 42.6 (11) 14.99s 12.50s
1024 2 42.6 (11) 9.43s 6.80s 1024 44.5 (11) 5.65s 6.08s
2048 || 4 42.6 (11)  550s  4.02s || 2048 | 427 (11) 3.11s  2.79s
4096 8 42.6 (11) 3.65s 2.71s 4096 42.5 (11) 1.07s 1.54s
8192 || 16 426 (11)  2.56s  2.32s || 8192 | 42.0 (11)  1.20s  1.16s

TABLE 7
Comparison of increasing the numbers of OpenMP threads or MPI ranks for the RGDSW
Schwarz preconditioner for the flow problem on the Antarctica mesh with 4 km horizontal resolution
and 20 layers of elements in vertical direction and a total of 35.3m degrees of freedom. The linear
iteration counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are averaged over
the number of Newton iterations (nl its). Lowest average iterations counts, setup times, and solve
times in each row are marked in bold.

Constant number of MPI ranks 128 MPI ranks per 5 layers
# # MPI avg. its avg. avg. MPI avg. its avg. avg.
layers | dofs ranks (nl its) setup solve || ranks (nl its) setup solve
5 10.1m 39.2 (11) 0.42s 0.58s || 128 38.8 (12) 5.47s 7.79s
10 18.5m 41.0 (11) 0.79s 1.15s || 256 37.8 (11) 8.46s 8.57s
20 35.3m 2048 | 42.7 (11) 2.94s 2.78s || 512 42.6 (11) 14.99s 12.50s
40 69.0m 45.6 (12) 5.77s 6.67s || 1024 | 47.8 (12) 19.00s 15.72s
80 136.3 m 45.3 (15) 14.41s 14.53s || 2048 | 45.3 (15) 14.41s 14.53s

TABLE 8
Performance of the RGDSW Schwarz preconditioner for an increasing number of layers for
the flow problem on the Antarctica mesh with 4 km horizontal resolution and 20 layers of elements
in vertical direction. Left: constant number of MPI ranks and subdomains. Right: increasing the
number of MPI ranks and subdomains proportial to the number of layers. The linear iteration counts
(avg. its), setup times (avg. setup), and solve times (avg. solve) are averaged over the number of
Newton iterations (nl its).

call from Tpetra is performed in each scatter/gather operation, the parallel scalabil-
ity deteriorates due to a significant communication overhead. In particular, the solve
time, where one scatter and one gather operation is performed in each linear iteration,
is increased significantly. Hence, in all other experiments, we use two communication
steps.

In Table 7, we compare OpenMP parallelization and MPI parallelization. Starting
with 512 MPI ranks, we increase the number of processor cores up to 8192 using
either OpenMP threads or a higher number of MPI ranks. As can be observed, MPI
parallelization is clearly superior in this comparison even though the size of the coarse
problem increases with an increasing number of MPI ranks and subdomains, whereas
it stays constant for OpenMP parallelization. Only for large numbers of MPI ranks
and subdomains, it may be reasonable to additionally use OpenMP parallelization
since it does not further increase the coarse problem size. Alternatively, more levels
could be added to the the GDSW type preconditioners; cf. [29, 30]. Hence, we will
restrict ourselves to using MPI parallelization; only in the largest weak scalability
study in subsection 6.1.5, we also show results using OpenMP parallelization in
addition to MPI parallelization.

6.1.4. Increasing the number of layers of elements in vertical direction.
In most of our numerical simulations, we use 20 layers of elements in vertical direction;
this corresponds to a rather fine resolution in vertical direction, which would also be
used in production runs of the land ice simulations. However, we are also interested in
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1 OpenMP thread

IS & SF1 & SF2 & CB IS & SF1 & SF2 & CB & CM
MPI mesh 7# avg. its avg. avg. avg. its avg. avg.
ranks dofs (nl its) setup solve (nl its) setup solve
32 16km | 2.2m 24.1 (11) 11.97s 9.47s | 24.0 (11) 11.18s 9.45s
128 8km 8.8m 32.0 (10) 14.08s 8.71s 32.6 (10) 14.06s 8.93s
512 4km 35.3m 42.6 (11) 14.99s 12.50s | 42.6 (11) 16.14s  14.19s
2048 2km 141.5m 61.0 (11) 22.83s 19.76s 67.1 (11) 22.65s 21.69s
8192 | 1km | 566.1m | 67.1 (14) 17.36s 22.91s | 73.0 (14) 16.80s 28.48s

4 OpenMP threads

IS & SF1 & SF2 & CB IS & SF1 & SF2 & CB & CM
MPI mesh # avg. its avg. avg. avg. its avg. avg.
ranks dofs (nl its setup solve (nl its) setup solve

3.93s 3.28s
4.62s 2.82s

32 16km | 2.2m 23.5 (11 I1bs  B3.25s | 23.8 (11)
)
) 5.2Ts  4.45s
)
)

)
) (
128 8 km 8.8m 32.0 (10) 4.97s 2.85s | 32.6 (
512 | 4km | 35.3m || 42.6 (11) 550s  4.02s | 46.7 (
2048 | 2km | 141.5m | 61.0 (11) 7.36s  6.55s | 67.1(
8192 | 1km 566.1m || 67.1 (14) 6.20s 7.39s | 73.0 (
TABLE 9

Weak scalability studies for the RGDSW Schwarz preconditioner for the flow problem on the
Antarctica mesh with 4 km horizontal resolution and 20 layers of elements in vertical direction. We
consider the cases of 1 OpenMP thread (top) and 4 OpenMP threads (bottom) per MPI rank as well
as IS € SF1 & SF2 & CB (left) and IS & SF1 & SF2 € CB € CM (right) reuse strategies. The
linear iteration counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are averaged
over the number of Newton iterations (nl its). Lowest average iterations counts, setup times, and
solve times in each row are marked in bold.

7.15s 7.34s
5.75s 7.92s

investigating the influence of an increasing number of layers on the performance of our
preconditioners. In Table 8, we employ the RGDSW preconditioner and fix the top
surface mesh while increasing the number of vertical layers of elements from 5 up to 80.
For both cases, keeping the number of MPI ranks fixed and increasing it proportional
to the number of layers, the iterations counts are very robust. However, the number of
nonlinear iterations increases slightly from 11 to 15. Note that we use 2048 MPI ranks
for all problems in this experiment when we keep constant number of MPI ranks. This
also allows comparing scalability of the solver for different problems to 2048 ranks.
For example, even the 5 layer problem achieves 13.4x speedup in average solve going
from 128 MPI ranks to 2048 MPI ranks demonstrating good parallel scalability.

6.1.5. Weak scaling. In Table 9, we provide four weak scalability studies, where
we increase the number of MPI ranks proportional to the resolution of the top surface
mesh; the number of vertical layers is again fixed to 20. In particular, we consider 1
or 4 OpenMP threads per MPI rank combined with the IS & SF1 & SF2 & CB and
IS & SF1 & SF2 & CB & CM reuse strategies; cf. subsections 4.5 and 6.1.2.

We observe good weak scalability from 32 to 8192 (1 OpenMP thread per MPI
rank) and from 128 to 32768 (4 OpenMP threads per MPI rank) processor cores.
However, there is a moderate increase in the number of iterations, which is most
likely caused by the unstructured domain decomposition, where subdomains with
irregular shape and bad aspect ratio may occur in certain cases, in particular, at the
boundary of the top surface mesh; cf. Figure 3. For all configurations, the setup time
scales very well, whereas the increase in the solve time is more pronouced; however,
except for the case of 1 OpenMP rank and IS & SF1 & SF2 & CB & CM reuse, the
solve times does increase clearly less than the number of iterations.

Generally, we observe a speedup by a factor of approximately 3 when using 4
threads instead of 1 OpenMP thread. However, the former uses 4 times the number
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FROSch MueLu
IS & SF1 IS & SF1 & SF2 & CB & CM Vertical Semi-Coarsening
MPI avg. its avg. avg. avg. its avg. avg. avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve (nl its) setup solve
512 41.9 (11) 25.10s 12.29s | 46.7 (11) 14.94s 13.81s | 31.0 (11) 0.35s 3.00s
1024 43.3 (11) 9.18s 5.85s | 49.2 (11) 5.75s 6.78s. | 30.7 (11) 0.32s 1.66s
2048 41.4 (11) 4.15s 2.63s | 47.7 (11) 2.92s 3.10s | 31.0 (11) 0.36s 1.02s
4096 41.2 (11) 1.66s 1.49s | 48.9 (11) 0.95s 1.75s | 30.9 (11) 0.80s 1.69s
8192 40.2 (11) 1.26s 1.06s | 50.1 (11) 0.63s 1.35s 48.5 (11) 1.05s 2.55s
TABLE 10

Comparison of the RGDSW Schwarz preconditioner with two different reuse strategies against
MueLu algebraic multigrid for the flow problem on the Antarctica mesh with 4 km horizontal reso-
lution and 20 layers of elements in vertical direction and a total of 35.3m degrees of freedom. The
linear iteration counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are averaged
over the number of Newton iterations (nl its). Lowest average iterations counts, setup times, and
solve times in each row are marked in bold.

652 of cores compared to the latter. Hence, OpenMP parallelization has to be carefully
653 considered with respect to the size of the problems and the available parallelism.

654 6.1.6. Comparison against multigrid. As a final result for the velocity prob-
655 lem for Antarctica, we compare the strong scalability for the RGDSW preconditioner
656 in the FROSch package to an algebraic multigrid preconditioner described in [50] and
657 using MueLu. The method uses a vertical semi-coarsening approach designed for the
658 ice sheet problems. As can be observed in Table 10, for small numbers of MPI ranks
659 and subdomains, the total time is clearly higher for FROSch compared to MueLu.
660 This is caused by the superlinear complexity of the direct solvers which are used
661 to solve the problems on the overlapping subdomains. However, when increasing the
662 number of subdomains and therefore reducing the size of the overlapping subdomains,
663 we observe a better speedup compared to MueLLu. We note that MueLu settings were
664 not fine-tuned for this particular problem. However, it is fair to say that FROSch
665 is competitive for large number of sub-domains especially considering the fact that
666  FROSch is used almost as a black box.

667 6.2. Temperature problem for Greenland. As a second problem for land
668 ice simulations, we consider the temperature problem described in subsection 2.2 for
669 Greenland; see also Figure 4. In Table 11, we compare one-level Schwarz precondi-
670 tioners and RGDSW preconditioner using one and two layers of algebraic overlap. As
671 can be observed, already the one-level methods scale well since all subdomains are ad-
672 jacent to the Dirichlet boundary, which is the whole upper surface; cf. subsection 2.2.
673  Due to the lower setup and application cost of the one-level method, both the setup
674 and the solve times are also lower. Therefore, one-level Schwarz methods are very
675  well suited for solving the temperature problem, and hence, it is not necessary to add
676 a second level. Note that the standalone steady-state temperature problem is not
677 physically meaningful because the temperature equilibration is on time scales that
678 are much larger than the velocity ones. For this reason, we focus our attention on the
679 coupled problem.

680 6.3. Coupled problem for Greenland. Finally, we consider the coupled prob-
681 lem for the non-uniform Greenland meshes and present, for the first time, results for
682 scalable monolithic two-level preconditioners for this problem. Note that the nonlin-
683 ear iteration is very sensitive for the coupled problem. In particular, even though a
631 very strict stopping tolerance of 10~ is used for the GMRES iteration, changing the
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One-level Schwarz
one layer of algebraic overlap | two layers of algebraic overlap

MPI avg. avg. avg. avg. avg. avg.
ranks its setup solve its setup solve
512 18.1 (11) 0.42s 0.35s | 17.1 (11) 0.51s 0.40s
1024 | 23.7 (11) 0.25s 0.25s | 22.1 (11) 0.27s 0.27s
2048 | 29.6 (11) 0.16s 0.17s | 27.6 (11) 0.23s 0.20s
4096 | 39.8 (11) 0.15s 0.15s | 35.6 (11) 0.17s 0.17s

RGDSW (IS & SF1 & SF2 & CB)
one layer of algebraic overlap | two layers of algebraic overlap

MPI avg. avg. avg. avg. avg. avg.
ranks avg. its setup solve avg. its setup solve
512 19.5 (11) 0.44s 0.41s | 18.7 (11) 0.55s 0.46s
1024 | 25.2(11) 0.28s  0.29s | 23.9 (11)  0.35s 0.33s
2048 31.5 (11) 0.26s 0.24s | 29.5 (11) 0.25s 0.27s
4096 | 422 (11) 0.25s  0.27s | 38.2 (11) 0.25s 0.29s

TABLE 11
Comparison of one-level and RGDSW Schwarz preconditioners for the temperature problem on
the Greenland mesh with 1-10km horizontal resolution (fine mesh) and 20 layers of elements in
vertical direction and a total of 1.9m degrees of freedom. The linear iteration counts (avg. its),
setup times (avg. setup), and solve times (avg. solve) are averaged over the number of Newton
iterations (nl its). Lowest average iterations counts, setup times, and solve times in each row are
marked in bold.

fully coupled extensions

NR IS & CB
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vp (nl its)  setup solve (nl its setup solve
256 1400 100.1 4.10s 6.40s | 18.5 2.28s 1.07s

(2
512 2852 129.1 (2
1024 6036 191.2 (6
2048 12368 || 237.4 (3

0.66s 0.70s

)
)
) 1.88s  4.20s | 24.6
)
) 0.60s 0.58s

(
(
1.21s 4.76s | 34.2 (
0.96s 4.06s | 37.3 (
decoupled extensions

)
)
) 1.04s 0.70s
)
)

NR IS & CB
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vp (nl its)  setup solve (nl its) setup solve
256 1400 23.6 (29) 3.90s 1.32s | 21.5 (34) 2.23s 1.18s
512 2852 || 27.5(30) 1.83s 0.78s | 26.4 (33) 1.13s 0.78s
1024 6036 30.1 (29) 1.19s 0.60s | 28.6 (43) 0.66s 0.61s
2048 12 368 36.4 (30) 0.69s 0.56s | 31.2 (50) 0.57s 0.55s

TABLE 12

Comparison of monolithic RGDSW Schwarz preconditioners with different coarse spaces ne-
glecting rotational coarse basis functions for the velocity degrees of freedom for the
coupled problem on the Greenland mesh with 3-30km horizontal resolution (coarse mesh) and 20
layers of elements in vertical direction and a total of 7.5m degrees of freedom. The linear iteration
counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are averaged over the
number of Newton iterations (nlits). Lowest average iterations counts, setup times, and solve times
in each row are marked in bold.

preconditioner may result in significant variations in the number of nonlinear itera-
tions; cf. Tables 12, 13, 15, and 16. Note again that, in this work, we report linear
iteration counts averaged over the total number of Newton iterations, so that our
results are not influenced much by the sensitivity of the nonlinear solver.

First, we compare different monolithic coarse spaces for a coarse Greenland mesh
with 3-30 km horizontal resolution, 20 layers of elements in vertical direction, and a
total of more than 7.5 m degrees of freedom. In order to focus only on the coarse basis,
we only consider two following reuse strategies. On the one hand, we do not reuse any
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fully coupled extensions

NR IS & CB
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vp (nl its)  setup solve (nl its) setup solve
256 1750 99.3 4.20s 6.35s | 21.9 (30) 2.35s 1.22s

@
512 3565 || 131.4 (2
1024 | 7545 || 261.7 (3
2048 | 15460 || 325.7 (2

50) 1.09s 0.66s
29) 0.73s 0.61s
2

)
)
) 1.95s  4.40s | 22.8
)
) 5) 0.74s 1.16s

(
(
1.22s 547s | 31.3 (
1.08s 8.53s | 41.7 (
decoupled extensions

NR IS & CB
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vp (nl its)  setup solve (nl its) setup solve
256 1750 22.0 (28) 3.98s 1.23s | 22.8 (27) 2.23s 1.28s
512 3565 24.7 (32) 1.92s 0.72s 23.8 (39) 1.11s 0.69s
1024 7545 31.9 (27) 1.23s 0.62s 33.1 (27) 0.74s 0.76 s
2048 15460 31.2 (38) 0.99s 0.77s | 34.7(34) 0.69s 1.05s

TABLE 13

Comparison of monolithic RGDSW Schwarz preconditioners with different coarse spaces in-
cluding rotational coarse basis functions for the velocity degrees of freedom for the
coupled problem on the Greenland mesh with 3-30km horizontal resolution (coarse mesh) and 20
layers of elements in vertical direction and a total of 7.5m degrees of freedom. The linear iteration
counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are averaged over the
number of Newton iterations (nl its). Lowest average iterations counts, setup times, and solve times
in each row are marked in bold.

# subdomains 256 512 1024 2048 4096

3-30km || 350 713 1509 3092 6245

RGDSW 1-10 km - 721 1536 3230 6615
TABLE 14

Number of coarse components I'; for the two non-uniform Greenland meshes with 3-30 km and
1-10 km horizontal resolution. The dimension of the coarse space is the number of coarse components
multiplied by the dimension of the null space.

information from the first Newton iteration (NR), on the other hand, we only reuse
index sets and the coarse basis (IS & CB); in both cases, we do not reuse symbolic
factorizations because of variations in the sparsity pattern of the system matrix. In
combination with these two reuse strategies, we consider monolithic RGDSW precon-
ditioners (see subsection 4.3) with fully coupled extensions using (4.10) and decoupled
extensions using (4.12), respectively. As in subsection 6.1.1, we consider neglecting the
rotational coarse basis functions and including the rotational coarse basis functions
for the velocity part in Table 12 and Table 13, respectively. We clearly observe that
using the standard monolithic coarse space (without reuse of the coarse basis func-
tions) does not yield a scalable two-level method. Adding the rotational coarse basis
function even yields higher iterations counts compared to neglecting rotational coarse
basis functions. However, using the decoupled extensions described in subsection 4.3
instead, we obtain a scalable monolithic RGDSW preconditioner. Moreover, it seems
that the coupling terms in the first Newton iteration do not deteriorate the scalability.
Hence, reusing the coarse basis from the first Newton iteration even yields a scalable
preconditioner for both cases, the fully coupled and the decoupled extensions.

Moreover, as for the velocity problem (see subsection 6.1.1), the time to solution
is lower when neglecting the rotational coarse basis functions due to the lower coarse
space dimension; see also Table 14 for the numbers of interface components. Conse-
quently, we will only consider the case of neglecting rotational coarse basis functions
for the monolithic RGDSW coarse spaces in the following experiments.
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decoupled (NR) fully coupled (IS & CB) decoupled (IS & SF1 & CB)
MPI avg. avg. avg. avg. avg. avg. avg. avg. avg.
ranks (nl its) setup solve (nl its) setup solve (nl its) setup solve
512 | 41.3 (36) 18.78s 4.99s | 45.3 (32) 11.84s 5.35s | 45.0 (35) 10.53s  5.36s
1024 53.0 (29) 8.68s 4.22s | 47.8 (37) 5.36s 3.82s 54.3 (32) 4.59s 4.31s
2048 | 62.2 (86)  4.47s  4.23s | 66.7 (38)  2.81s  4.53s | 59.1 (38)  2.32s 3.99s
4096 | 68.9 (40) 2.52s 2.86s 79.1 (36) 1.61s 3.30s 78.7 (38) 1.37s 3.30s

TABLE 15

Comparison of monolithic RGDSW Schwarz preconditioners with different reuse strategies for
the coupled problem on the Greenland mesh with 1-10km horizontal resolution (fine mesh) and 20
layers of elements in vertical direction and a total of 68.6 m degrees of freedom. The linear iteration
counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are averaged over the
number of Newton iterations (nlits). Lowest average iterations counts, setup times, and solve times

in each row are marked in bold.
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One-level Schwarz (NR)

0 =1h 0 =2h
MPI avg. its avg. avg. avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup  solve
512 48.7 (35) 11.3s 5.41s 42.6 (33) 15.2s  5.80s
1024 61.9 (40)  5.29s 4.75s | 58.8 (30)  6.92s  5.48s
2048 89.9 (30) 2.52s 5.70s 73.5 (34) 3.83s 6.24s
4096 | 116.1(31) 1.17s 3.68s | 103.1 (33)  1.86s 4.87s

One-level Schwarz (NR & SF1)

0 =1h 0 =2h
MPI avg. its avg. avg. avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup  solve
512 52.2 (32) 10.16s 5.88s | 42.6 (39) 13.80s 5.77s
1024 66.2 (35) 4.32s 4.91s 35.7 (72) 5.98s 3.19s
2048 82.0 (37)  2.07s 5.27s | 68.5(39) 3.20s 581s
4096 | 120.39 (31) 0.92s 3.83s 95.5 (32) 1.48s  4.53s

TABLE 16

Strong scaling study for monolithic one-level Schwarz preconditioners with one or two layers of
algebraic overlap for the coupled problem on the Greenland mesh with 1-10km horizontal resolution
(fine mesh) and 20 layers of elements in vertical direction and a total of 68.6 m degrees of freedom.
The linear iteration counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are
averaged over the number of Newton iterations (nl its). Lowest average iterations counts, setup
times, and solve times in each row are marked in bold.

Next, we investigate different reuse strategies in Table 15 for a fine Greenland
mesh with 1-10km horizontal resolution, 20 layers of elements in vertical direction,
and a total of more than 68 m degrees of freedom. As can be observed, the best
parallel performance can be obtained when reusing the index sets (IS) as well as the
symbolic factorization on the first level (SF1) and the coarse basis (CB) from the first
Newton iteration. Note that reusing the symbolic factorization on the second level,
the iteration counts always deteriorated in our experiments.

Finally, we also provide results for monolithic one-level Schwarz preconditioners in
comparison to the two-level monolithic RGDSW preconditioner. As can be observed
in Table 16, the iteration counts for the one-level preconditioners with one level of
overlap are clearly higher compared to the RGDSW preconditioner with one layer of
overlap in Table 15. Therefore, the solve time is reduced by adding an appropriate
second level. On the other hand, the setup cost for the two-level methods is again
higher; in particular, the additional coarse problem is also a fully coupled multi-
physics problem in this case. The computing time for an overlap of two layers was
higher for both the one-level and the two-level method.
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Note that we observed that the matrix structure of the coupled problem is not
well-suited for OpenMP parallelization of the node-level solver Pardiso. In particular,
the speedup was always lower than a factor of 2 when using 4 OpenMP threads and
one processor core per OpenMP thread. For the case of 4096 MPI ranks, the speedup
was even reduced to a factor of less than 1.2.

7. Conclusions. We have presented a flexible preconditioning framework based
on the GDSW method, which yields scalable and robust preconditioners for all con-
sidered land ice problems. In particular, the implementation of this framework in
FROSch can be applied out-of-the-box; between the different problems, only minor
changes of the input parameters are necessary. Moreover, to the best of our knowl-
edge, we have presented the first scalable two-level method for the coupled problem
for land ice simulations. Compared to the single physics problems, the extension
operators have to be decoupled, which can easily be done be done by changing one
parameter in FROSch. Otherwise, the coarse basis from the first Newton iteration
also resulted in a scalable method.

The parallel results of several strong and weak scaling studies, involving different
coarse space variants and reuse strategies as well as OpenMP parallelization and MPI
communication aspects, prove both the robustness and numerical scalability of the
methods as well as the parallel scalability of the implementation in FROSch.

Furthermore, we have observed that the direct solvers in our two-level method
are the main bottleneck. On one hand, the direct solvers on the first level determine
the computing time for a small number of MPI ranks and large subdomain problems.
On the other hand, the direct solver on the coarse level may become the scaling
bottleneck for very large numbers of MPI ranks and subdomains. The improvement
of the subdomain and coarse solvers for these complex problems will be subject of
future research.
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