

University of Cologne
Faculty of Arts and Humanities

Department for Digital Humanities

Introducing Machine Learning Using Robots –
Design and Integration of Simple Neural Networks and the Q-learning Algorithm in the

Robot Simulation Environment of Open Roberta Lab, Accompanied by the

Development, Testing, and Evaluation of Complementary Teaching Materials

by
Viktoriya Olari

Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of
Master of Arts in Information Processing

Thesis Supervisor: Prof. Dr Øyvind Eide
October 13, 2020

Cologne

Summary i

Summary

The following master’s thesis provides an approach to introducing machine learning to

students using the block-based programming language NEPO in combination with edu-

cational robotics. The target group of the research study are students from primary to

high school, representing beginners without any previous knowledge of machine learn-

ing.

After analysing the guidelines and methods for the introduction of machine learning

in schools, as well as concrete proposals for artificial intelligence (AI) school curricula

with a particular emphasis on machine learning, the author identified a large discrepancy

between the requirements for introducing the topics of supervised, unsupervised, and

reinforcement learning in schools and the solutions currently available on the educational

landscape to do so. Most of the approaches which are currently available either remain

a black box or are inaccessible to young students. Only a few approaches focus on mak-

ing the underlying technical processes of machine learning tangible, which is crucial for

enabling students to create the proper mental models and avoid misconceptions.

In order to close this discrepancy, and following the ideas of constructionism, the au-

thor developed three approaches to introduce machine learning using robots. (1) The

Neural Network Playground allows the user to experiment with simple neural networks.

The student can train the neural network by modifying the weights and directly observing

the effects on the simulated robot. (2) The Q-learning Playground enables the student to

tinker with the Q-learning algorithm by creating unique learning environments for the

robot and playing with the parameters of the algorithm. Step by step, the student can

debug the algorithm and explore how it is learning from the agent’s perspective. (3) An

unplugged activity introducing the k-means algorithm makes the unsupervised learning

tangible.

The author accompanied all approaches with a curriculum and a series of learning

materials. She then conducted and evaluated a user study with 24 children from primary,

middle, and high school. The results underline the practical feasibility of the approaches:

the children of all age groups perceived the topics as interesting and ranging from very

easy to moderately hard to grasp. Thus, the research study proposes a solid concept for

the introduction of machine learning to beginners which fundamentally differs from the

currently available approaches and enriches the educational landscape. Future research

can focus deeper on measuring the understanding of children, the increase in their

knowledge or the effectiveness of the approaches and materials developed.

Acknowledgements ii

Acknowledgements

I am very grateful for my thesis supervisor, Prof. Dr Øyvind Eide, who supported me

through the entirety of this research project with his expertise, regular discussions, and

valuable feedback. I thank you for your commitment to my ideas, for sharpening my

thinking, and for your constant help and advice. I would also like to thank Dr Jan Wieners,

who supported me by sharing his expertise on gamification in the context of artificial

intelligence and gave me feedback throughout the genesis of this master’s thesis. The

presentation of the Q-learning algorithm in your dissertation on SpoookyJS inspired me

to develop the Q-learning playground and served as a basis for my implementations.

Special thanks to Kostadin Cvejoski, my colleague at the Fraunhofer Institute for In-

telligent Analysis and Information Systems, who helped me assess the feasibility of my

research project and constantly supported me in opening the black box of machine learn-

ing by sharing his expertise. I thank you for your valuable advice throughout the study

and your belief in the success of the project, and for proofreading this thesis. I would like

to acknowledge my colleagues at the Roberta-Initiative – Thorsten Leimbach, PhD Rein-

hard Budde, and Beate Jost – for supporting me with advice on Open Roberta Lab and

discussing my methodology and the interim results of the study.

I would like to thank Güncem Campagna and Marc Bertram from the Codingschule

junior, who made it possible to conduct the user study during COVID-19. Thank you for

your willingness to test new approaches in digital education. I highly appreciate your

open mindset and your constant support. I would also like to thank all 24 students who

took part in the evaluation. You have motivated me to think about machine learning from

a beginner’s perspective. I would like to thank my friend, Tobias Hübner, for inspiring me

with his approaches to teaching young students in technical subjects and for proofread-

ing the final thesis.

Finally, special thanks go to my family. I would like to thank my husband, Iuri Olari,

for his constant support at all times and at all levels. Thank you for sharing with me your

critical views on my research, your infinite patience, and your technical advice. I could

not have completed this master’s thesis without your stimulating discussions and your

support. I would also especially like to thank my uncle, Alexander Elfantel, who critically

reflected on the graphic design of the machine learning extensions and the learning ma-

terials and supported me with advice and feedback from the designer’s perspective. I am

very grateful for my parents, Viktoriya and Oleg Lebedynski. Thank you for your love,

understanding, and lifelong trust in me, which has encouraged me throughout my life to

dare the impossible.

Table of Contents iii

Table of Contents

Summary .. i

Acknowledgements .. ii

List of Figures ... vii

List of Tables .. x

List of Abbreviations ... xi

1 Introduction .. 1

1.1 Research Questions and Methodology Overview .. 2

1.2 Thesis Structure ... 3

2 Background and Related Work ... 5

2.1 Curricular Needs for Teaching Artificial Intelligence and Machine Learning 5

2.2 Meeting the Requirements: The Introduction of Machine Learning in the

Educational Context ... 6

Supervised Learning ... 7

Unsupervised Learning ... 8

Reinforcement Learning .. 9

2.3 Learning Approaches for Introducing Machine Learning 10

Unplugged Activities ... 10

Plugged Activities .. 11

Using Robots and Robotic Simulators .. 13

2.4 Analysis and Summary of Shortcomings .. 15

3 Machine Learning Paradigms ... 18

3.1 Supervised Learning and Neural Networks .. 18

Overview ... 18

Supervised Learning in Open Roberta Lab: Direct Supervision and Simple

Neural Networks ... 19

3.2 Reinforcement Learning ... 21

Overview ... 21

Reinforcement Learning in Open Roberta: The Q-learning Algorithm 22

Table of Contents iv

3.3 Unsupervised Learning ... 24

 Overview ... 24

 Unsupervised Learning in Open Roberta: K-means Algorithm 25

4 Methodology ... 27

4.1 Design Principles .. 27

 Constructivism, Constructionism and Connectivism 27

 Four P’s of Creative Learning ... 28

 Derivation of Guidelines for Machine Learning Extensions and Curriculum

Design ... 29

4.2 User Study Design .. 31

4.3 Evaluation Methods .. 32

4.4 Tools and Project Management .. 34

5 Machine Learning Extensions: System Design and Implementation 36

5.1 Investigating Open Roberta Lab: System Overview ... 37

 User Interface ... 37

 Project Structure ... 39

 System Architecture .. 39

5.2 New Blocks and Categories for Machine Learning Playgrounds 42

 Considerations for Designing of New Blocks .. 42

 AI Blocks ... 43

 Lifecycle of One Block .. 46

5.3 Neural Network Playground .. 50

 Considerations for Feature Design ... 50

 Workflow ... 54

 User interface .. 54

 System Architecture and Selected Implementation Details 56

5.4 Q-learning Playground .. 60

 Considerations for Feature Design ... 60

 Workflow ... 64

Table of Contents v

 User interface .. 64

 System Architecture and Selected Implementation Details 67

5.5 Technical Challenges ... 74

5.6 Summary .. 76

6 Conception of the Machine Learning Materials .. 78

6.1 Machine Learning Curriculum ... 78

6.2 The Neural Network Cards ... 81

6.3 The Q-learning Cards and Supporting Worksheets .. 83

6.4 Unplugged Activity Introducing the K-means Algorithm 87

7 Evaluation ... 89

7.1 Setup .. 89

7.2 Participants ... 90

7.3 Insights in the Procedure .. 91

7.4 Feedback and Questionnaire ... 96

 Perception of Supervised Learning ... 97

 Perception of Reinforcement Learning ... 97

 Perception of Unsupervised Learning ... 98

 Student Motivation and Feedback .. 98

7.5 Summary .. 99

8 Discussion .. 101

8.1 Reflections on the User Study .. 102

8.2 Reflections on Extensions and Teaching Approaches 103

 Implementation of Extensions and Development Process 104

 Using Simulated Robots ... 105

 Using a Visual Programming Language ... 105

 Plugged vs. Unplugged Activities .. 106

 User Experience in Playgrounds and Materials .. 106

8.3 Limitations and Recommendations .. 106

 Peer Learning ... 106

Table of Contents vi

 Playfulness in Extensions and Materials for Machine Learning 107

 Questionnaire Limitations ... 107

 Recommendations for Future Research ... 108

9 Conclusion ... 110

10 Bibliography ... 115

A Appendix ... 125

A.1 processNeuralNetwork function .. 125

A.2 AiNeuralNetwork.java ... 127

A.3 Changelog .. 129

A.4 Machine Learning Curriculum ... 153

A.5 Presentation ... 159

A.6 Neural Network Cards .. 175

A.7 Q-learning Materials ... 184

 A.7.1 Q-learning Cards ... 184

 A.7.2 Q&A: Reinforcement Learning .. 187

 A.7.3 Q-learning Map ... 188

 A.7.4 Q-learning Program .. 189

 A.7.5 Q-Learning Algorithm Flow Diagram ... 190

 A.7.6 Q-learning Observation Card .. 191

Statement of Independent Work ... 192

List of Figures vii

List of Figures

Figure 1: “Big Ideas” of AI (Touretzky, 2019). .. 5

Figure 2: Blocks for creating a model and initiating the training proposed by Kahn, Lu,

Zhang, Winters, et al. (2020, pp. 5–6). .. 8
Figure 3: Programming of the Q-learning algorithm, an extract from Jatzlau et al. (2019,

Chapter 4. A). .. 9

Figure 4: Examples of visual programming languages. .. 11
Figure 5: The first educational robot, constructed by Seymour Papert and his team at

MIT (Papert & Solomon, 1971). ... 14

Figure 6: The value of the light sensor serves as the input and is transmitted directly to

the motor (Leimbach and Breuer (2012, p. 14). .. 20

Figure 7: Mock-up of a trained simple neural network and the behaviour of the robot

(author’s representation). .. 21

Figure 8: Interaction between an agent and the environment (after Sutton and Barto

(2018, p. 54). ... 22
Figure 9: An item from the computer-based questionnaire developed to measure the

children’s perception of the topic “Supervised Learning”. 33

Figure 10: GitHub project “AI Extension: Reinforcement Learning” shows an example

of the project structure and individual issues. ... 35
Figure 11: The user interface of Open Roberta Lab (Open Roberta Lab, 2020). 38

Figure 12: Simplified system overview of the Open Roberta Lab project involving the

simulation environment. .. 40
Figure 13: Traditional presentation of the List block in Open Roberta Lab and its

simplified version. .. 42

Figure 14: The extended user interface of Open Roberta Lab. 43

Figure 15: Code snippet for defining the ai_neural_network block in Blockly (top)

and its visual representation (bottom). .. 47
Figure 16: Representation of the Blockly program in XML format. 48

Figure 17: Configuration snippet for mapping the block type ai_neural_network to

the Java class AiNeuralNetwork .. 49

Figure 18: Code snippet of visitAiNeuralNetwork method. 49

Figure 19: Code snippet for PROCESS_NEURAL_NETWORK operation in

interpreter.interpreter.js. ... 50

Figure 20: First mock-ups for the Neural Network Playground. 51

List of Figures viii

Figure 21: TensorFlow Playground as an idea to be implemented in Open Roberta Lab.

 .. 52

Figure 22: Process workflow for training the neural networks in the Neural Network

Playground. ... 54
Figure 23: User interface of the Neural Network Playground. 55

Figure 24: Adjusting the weights in the neural network. ... 56

Figure 26: Simplified sequence diagram for creating the Neural Network Playground. 58
Figure 26: Mock-ups of the Q-learning Playground. ... 61

Figure 27: First implemented prototype for experimenting with the Q-learning algorithm.

 .. 63
Figure 28: Workflow for starting the Q-learning Playground. .. 64

Figure 29: Three environments in the Q-learning Playground. 65

Figure 30: Q-learning environment "Railway". .. 66
Figure 31: Code snippet showing the creation of problem actions by parsing the path

ids extracted from the SVG element. .. 68

Figure 32: Main components of the qLearningModule (simplified presentation). 70

Figure 33: Code snippet showing the structure of the data stored after each

qLearnerStep. ... 71

Figure 35: Simplified sequence diagram of the Q-learning Playground. 73
Figure 35: Simple illustration showing the basic functionality of the neural network on

the AI-robot. ... 79

Figure 36: Slide that explains filling out the Q-learning card. 80
Figure 37: Overview on the Neural Network Cards (front sides only). 81

Figure 38: Front and back side of the Neural Network Card "Friendship". 83
Figure 39: Instructional materials for the Q-learning Playground. 85

Figure 40: Q-learning Cards. .. 86

Figure 41: The back of the Q-learning Card "Railway". .. 86
Figure 42: Clustering – the introductory slide. .. 87

Figure 43: The k-means algorithm, step by step. ... 88

Figure 44: Classroom and hardware setup for all three sessions. 89
Figure 45: Classroom setting for grades 7–9, 3–4, and 5–6. 90

Figure 46: Author conducting the third experiment after Braitenberg (1986) with a

Calli:bot robot. ... 91
Figure 47: Documentation of the impressions from the second module and creations of

the children. ... 93

Figure 48: “Let your robot learn from experience”: Documentation of the third module.

 .. 95

List of Figures ix

Figure 49: Exploring k-means clustering in an unplugged activity: Documentation of the

fourth module. ... 96

Figure 50: Participants' attitudes towards the topics supervised, reinforcement, and

unsupervised learning. .. 97

List of Tables x

List of Tables

Table 1: New blocks developed for the subcategory "Neural Networks". 44

Table 2: New blocks developed for the subcategory "Reinforcement Learning". 45

Table 3: Overview of the structure of the learning cards and the corresponding input

and output nodes. .. 82

List of Abbreviations xi

List of Abbreviations

AI Artificial intelligence

API Application programming interface

AST Abstract syntax tree

COVID-19 Coronavirus disease 2019

Fraunhofer IAIS
Fraunhofer Institute for Intelligent Analysis and Information

Systems IAIS

ICT Information and communication technology

IDE Integrated development environment

LVQ Linear vector quantisation

npm Node package manager

STEM Science, technology, engineering, and mathematics

UI User interface

VPL Visual programming language

ZDI Zukunft durch Innovation

1 Introduction

Machine learning is becoming ubiquitous, not only in industry, society, and business, but

also in the educational context. Scientists around the globe advocate that people of all

ages, including children, should be familiarised with its basic concepts (Hitron, Wald,

Erel, & Zuckerman, 2018). People interact with intelligent technologies even in childhood

and are increasingly influenced by these technologies as they grow older. If they are not

educated about smart devices and technologies, they often trust them too much and can

be easily manipulated by them (Williams, Park, Oh, & Breazeal, 2019). However, how

can a novice such as a child be introduced to machine learning, and how can the under-

lying principles of machine learning algorithms be made tangible to someone without

prior knowledge of linear algebra and statistics?

Using the benefits of educational robotics and inspired by explanations of machine

learning in children’s books, the following master’s thesis aims to examine these ques-

tions in a practical case study with the focus placed on school students as novice repre-

sentatives.1 The author’s motivation stems from her extensive work educating young

people in programming and exploring how to make digital technologies understandable

to everyone from university students to primary school children.

The theoretical framework builds upon the guidelines and methods for the introduction

of artificial intelligence (AI) and machine learning in schools, which date back to 1971

(Papert & Solomon, 1971). Recent advances in machine learning technologies have led

to the increasing development of concrete proposals for AI school curricula with a par-

ticular emphasis on the technical aspect of machine learning (Clarke, 2019; Long &

Magerko, 2020; Sloman, 2009; Touretzky, Gardner-McCune, Martin, & Seehorn, 2019;

Wong, Ma, Dillenbourg, & Huan, 2020). These provide the basis for this research study.

There is a large discrepancy between the requirements for instruction in machine

learning and the solutions currently available on the educational landscape to do so:

While children at all school levels from primary to high school are expected to be able to

cope with the central paradigms of machine learning – supervised, unsupervised, and

reinforcement learning (Jatzlau, Michaeli, Seegerer, & Romeike, 2019; Kahn, Megasari,

Piantari, & Junaeti, 2018; Michaeli, Seegerer, & Romeike, 2020; Williams, Park, Oh, et

al., 2019) – most of the currently available learning materials and guidelines focus on

1 Introducing a technical topic with the focus on a child helps educators consider reducing ideas to under-
standable and straightforward terms – an approach forwarded by physician Richard Feynman in his treat-
ment of quantum physics (Feynman, Leighton, & Sands, 2011).

1 Introduction 2

ethical content or the social impacts of machine learning (Blakeley & Breazeal, 2019;

Kleeberger, Prost, & Sternkopf, 2019; Universität Paderborn, 2019). Only a few ap-

proaches focus on making the underlying technical processes of machine learning tan-

gible for students (Lin, Brummelen, Lukin, Williams, & Breazeal, 2020; Williams, Park, &

Breazeal, 2019; Williams, Park, Oh, et al., 2019). Most available approaches either re-

main a black box2 or are technically so complex that they are largely unsuitable for school

students (Jatzlau et al., 2019).

However, in order for students to create the proper mental models and avoid miscon-

ceptions, it is crucial that they understand the concrete processes (Hitron et al., 2019;

Lin et al., 2020). If the children grasp the processes, they can understand that difficult

moral dilemmas can arise through the use of machine learning technologies or, for ex-

ample, that AI can increase the harmful power of authoritarian regimes as shown by

Molnar (2020).

1.1 Research Questions and Methodology Overview
This research study aims to close this discrepancy between requirements and solutions

for teaching by examining how the principles underlying machine learning can be made

accessible to novices, such as young students.

First, the author analysed school curricula and recommendations regarding machine

learning to determine the requirements for instruction in machine learning and identify

the status quo. Furthermore, the author investigated existing possibilities for introducing

machine learning topics to beginners. Based on the results and the gaps identified, the

author developed proposals for how to meet the requirements. The first research ques-

tion is thus as follows:

What are the specific curricular needs concerning machine learning in schools?
What possibilities can be identified to meet these curricular needs? Where are

the limits?

Second, the author established a theoretical framework for the proposals and imple-

mented them in Open Roberta Lab, a visual block-based open-source programming plat-

form. The author chose this platform because of its focus on teaching programming with

robots to beginners and its advanced ecosystem, which includes a robot simulation. The

author then designed the machine learning curriculum and developed the learning

2 In this master’s thesis, the author refers to the “black box” according to Jatzlau et al. (2019) as a metaphor
for a process underlying a machine learning algorithm which remains hidden to the student. The reason for
this is that the actual computing is performed by external services that do not provide access to the under-
lying machine learning models and algorithms.

1 Introduction 3

materials. The second research question relates to the implementation and documenta-

tion of machine learning extensions and learning materials. It is as follows:

How can the previously defined proposals be anchored pedagogically and
concretely implemented in Open Roberta Lab?

Third, to determine how the developed concepts appeal to the focus group, the author

evaluated the results in a user study. Specifically, the author tested her developments

with students from primary, middle, and high school. In the evaluation, she examined

how children of different ages perceived the topics and whether they had difficulty un-

derstanding them. For this purpose, she developed a computer-based questionnaire

based on a 5-point semantic differential scale and analysed the results and the oral feed-

back given by the students at the end of each session. Finally, she evaluated the obser-

vations of an observer during the sessions. The third research question is thus as follows:

How do the developed concepts appeal to students of different school
grades? What help do students need in order to understand the machine learn-

ing concepts proposed?

1.2 Thesis Structure
Chapter 2 details the relevance of teaching children about machine learning and sum-

marises previous studies on establishing machine learning in education. To this end, the

author conducts a requirements analysis based on school curricula, guidelines and case

studies. She discusses related work and learning approaches to meet curricular needs.

The chapter concludes by highlighting the limitations and shortcomings of current efforts,

which forms the basis for the design and development of new approaches in the course

of this study.

Chapter 3 provides the theoretical background to the paradigms of machine learning

and develops three approaches to close the gaps identified in Chapter 2 using robots

and Open Roberta Lab. It introduces the idea of direct supervision as a representative

of supervised learning, the Q-learning algorithm as a representative of reinforcement

learning, and the k-means algorithm as a representative of unsupervised learning.

Chapter 4 presents the methodology from two perspectives. First, the pedagogical

design principles are outlined. These, together with the evidence from Chapters 2 and

3, constitute a methodological framework. The chapter summarises the framework and

presents concrete implications for designing machine learning extensions, curricula, and

learning materials. Second, the chapter presents the framework for user study and eval-

uation as well as potential limitations. Finally, the chapter gives insights into the tools

used and the management of the research project.

1 Introduction 4

Chapter 5 outlines the design and technical implementation of machine learning ex-

tensions in Open Roberta Lab. The author first reviews Open Roberta Lab, including its

initial project structure and system architecture. Second, she presents new block cate-

gories and blocks that she has implemented in Open Roberta Lab to enable the user to

interact with machine learning extensions. Third, the author describes the actual exten-

sions – the Neural Network Playground and the Q-learning Playground – their system

architecture, user interface, and central workflows. The chapter concludes with reflec-

tions on technical challenges.

Chapter 6 covers the machine learning curriculum and the learning materials that ac-

company the extensions introduced in the previous chapter. The author also presents

an unplugged activity designed to introduce the k-means algorithm as a third approach

to introduce beginners to machine learning.

Chapter 7 reveals the evaluation results for machine learning extensions and materi-

als gained in the user study with 24 children from primary, middle, and high school. The

author describes the setup, participants, procedure, results of the questionnaire on chil-

dren’s perception of the machine learning topics covered, and overall feedback from

students and the observer.

In Chapter 8, the results of the master’s thesis are discussed. First, the overall course

of the user study is reflected upon, and then special attention is paid to reflecting on the

machine learning extensions and teaching approaches that were developed. In addition,

the chapter critically discusses the user experience observed during the user study, the

approaches of using simulated robots and visual programming languages, and the de-

sign of learning activities concerning the methodological framework outlined in Chapter

4. Second, the chapter summarises limitations and proposes recommendations for future

research.

Chapter 9 lists the main findings as answers to three research questions posed in

Section 1.1. Finally, it reviews and reflects on the entire research study in terms of the

approaches selected and summarises the author’s main contributions and their role for

future research.

2 Background and Related Work

The introduction of machine learning into the educational context is increasingly becom-

ing the focus of research and numerous case studies. This chapter first outlines the cur-

rent curriculum needs with regards to machine learning in schools. It then discusses

previous attempts to establish machine learning in education from two perspectives: (1)

related work and learning approaches to meet curricular needs and (2) the limitations

and shortcomings of current efforts.

2.1 Curricular Needs for Teaching Artificial Intelligence and Machine Learning
Researchers around the globe have invested considerable effort into the development

of curricula and guidelines for AI education in schools. In their meta-study, Long and

Magerko (2020) conclude that the requirements that children must fulfil in the future can

be summarised by the term “AI literacy” (p. 2). They define AI literacy as “a set of com-

petencies that enables individuals to critically evaluate AI technologies; communicate

and collaborate effectively with AI; and use AI as a tool online, at home, and in the work-

place” (p. 2). Although this definition emphasises the importance of social and ethical

aspects of AI, concrete proposals for AI curricula devote special attention to the techno-

logical aspects of AI, especially to machine learning. Figure 1 illustrates learning as the

third “Big Idea” of AI (Touretzky et al., 2019, What are the “Big Ideas” in AI?) which should

be taught across all school levels.

Figure 1: “Big Ideas” of AI (Touretzky, 2019).

2 Background and Related Work 6

The structure and precision of the individual topics vary across curricula. The following

are several examples of teaching content and competencies that the children are ex-

pected to master.

Even young learners should understand the basic mechanics of AI systems, including

such terms as “dataset”, “learning algorithm”, and “prediction” (Blakeley & Breazeal,

2019). Williams, Park, Oh, et al. (2019) suppose that students also need to be able to

recognise how the computer learns patterns (supervised machine learning), how it uses

previous knowledge for future decisions (knowledge-based systems), and how it can

create things (generative music AI). They should explain simple chatbots and program

applications enriched with AI mechanisms (Sloman, 2009). They should know what a

neural network is and how it is trained (Burgsteiner, Kandlhfer, & Steinbauer, 2016; Slo-

man, 2009). By the end of primary school, students should be able to examine represen-

tations created by intelligent agents, modify simple perception-based applications that

include simple AI elements, adapt object recognition applications and should have some

experience with machine vision (Touretzky et al., 2019).

Children in middle and early high school must be competent enough to create AI pro-

grams using text- and block-based programming languages and even apply acquired AI

concepts as potential solutions to real-world problems (Wong et al., 2020). They should

comprehend intelligent agents, automata, decision trees, and program applications im-

plementing simple reinforcement learning algorithms (Burgsteiner et al., 2016; Jatzlau et

al., 2019). In addition, forwards and backwards propagation (Clarke, 2019) is as much a

part of the agenda as basic knowledge in computer linguistics (Touretzky et al., 2019).

Kahn, Lu, Zhang, Winters, and Gao (2020) expect students in high school to under-

stand technical terms and be able to program complex deep neural networks. Michaeli

et al. (2020) suppose that children should be able to create programs based on unsu-

pervised learning algorithms such as linear vector quantisation and reinforcement learn-

ing algorithms such as Q-learning (Jatzlau et al., 2019).

2.2 Meeting the Requirements: The Introduction of Machine Learning in the
Educational Context

The brief extracts from the currently proposed curricula indicate that children in schools

are expected to cope with multiple areas of machine learning. The following section pre-

sents the work related to helping teachers and students meet such curriculum require-

ments. Since the curricula involve the three paradigms of machine learning, the chapter

is structured according supervised, unsupervised, and reinforcement learning.

2 Background and Related Work 7

 Supervised Learning
Supervised learning is a machine learning paradigm which frequently occurs in the pro-

posed curricula and case studies (Jatzlau et al., 2019; Michaeli et al., 2020). The spec-

trum of approaches developed for the introduction of supervised learning is accordingly

extensive.

Touretzky et al. (2019) summarise various easy-to-use applications that are repeat-

edly considered by teachers. Through descriptive examples, the applications offer be-

ginners and non-programmers the opportunity to experiment with areas of supervised

learning such as image or text classification. In Teachable Machine (Google, 2020), for

example, children can train a model to classify images, audio files, or body positions.

Machine Learning for Kids (Lane, 2020) introduces children to the training of machine

learning models to recognise text, numbers, images, or sounds. Recently, code.org, an

online coding platform for beginners, launched tutorials to train a neural network to rec-

ognise images (code.org, 2020).

Although these examples are excellent resources for introducing machine learning to

children, they all have one alarming aspect in common: The training of the model is

hidden from the user, which can lead to oversimplified or inaccurate mental models of

machine learning (Hitron et al., 2019; Michaeli et al., 2020). Hitron et al. (2019) and Lin

et al. (2020) argue that in particular, the understanding of the concrete processes is cru-

cial in order to create the proper mental models and avoid misconceptions.

Attempts are thus being made to open the black box and to look behind the scenes

of supervised learning. Hitron et al. (2018) and Hitron et al. (2019) implemented a visual

application for supervised learning to classify movements and examined children’s un-

derstanding of it. They found that even 10-year-olds can understand the basic concepts

behind the system.

Kahn and Winters (2017) and Kahn, Lu, Zhang, Winters, et al. (2020) developed ex-

tensions for the visual block-based programming language Snap! (University of

California at Berkeley, 2020). The children look behind the scenes by programming deep

neural networks to discover real-world data relationships. Figure 2 shows one of the

examples for the programming of deep neural networks with blocks. The user can con-

figure a model and training parameters using blocks prepared in advance. For instance,

they can set the number of layers, choose the loss function and optimiser, and determine

the learning rate.

2 Background and Related Work 8

Figure 2: Blocks for creating a model and initiating the training proposed by Kahn, Lu, Zhang, Winters, et
al. (2020, pp. 5–6).

Kahn et al. (2018) indicate that it is also possible to use a block-based approach for

image recognition and speech synthesis. Based on a study with 40 high school and vo-

cational students in Indonesia, Kahn and Winters (2017) and Kahn et al. (2018) claim

that using blocks is a successful way to understand what happens inside the black box

of supervised machine learning. Similar results were reported by Queiroz, Sampaio,

Lima, and Lima (2020), who combined visual programming and a WiSARD neural net-

work model to enable beginners to learn training and classification.

 Unsupervised Learning
In contrast to supervised learning, little research on introducing school students to unsu-

pervised learning has been conducted. Michaeli et al. (2020) presented an approach to

introduce children to linear vector quantisation (LVQ), an algorithm that finds clusters in

data sets. The target group are high school students. First, learners immersed them-

selves in unsupervised learning through an “unplugged” activity. Afterwards, they deep-

ened their knowledge through the use of the block-based programming language Snap!.

Since the authors have not yet evaluated the approach, there is no evidence of how

children would react to it.

Currently, there are no studies that examine the teaching of unsupervised learning to

primary or secondary school students. However, there is an approach originally devel-

oped for university students that the teacher might consider when introducing unsuper-

vised learning in middle and high school. EduClust (Universität Konstanz, 2020) is a

platform that provides a visual categorisation based on the clustering behaviour of the

chosen clustering algorithm. The platform covers the most prominent clustering algo-

rithms and can be used by students without time-consuming implementation efforts.

Fuchs et al. (2020) considered a case in which this platform had been used for two years

in computer science classes and report positive feedback from the students, who were

willing to use EduClust in their learning routine.

2 Background and Related Work 9

 Reinforcement Learning
Similar to unsupervised learning, the paradigm of reinforcement learning remains almost

untouched in the school context (Michaeli et al., 2020). However, attempts have increas-

ingly been made to introduce reinforcement learning into the classroom to meet curricu-

lum requirements.

Kandlhofer, Steinbauer, Hirschmugl-Gaisch, and Huber (2016) carried out a proof-of-

concept study focusing on children from kindergarten to university. Although the topics

of machine learning appeared only briefly, the findings suggest that the researchers ad-

dressed the learning agents with high school children. The preliminary results indicate

that the pilot implementations of the proposed concept succeeded, and the students

gained a solid understanding of fundamental issues. A detailed evaluation is still pend-

ing.

Jatzlau et al. (2019) focused on Q-learning – a reinforcement learning algorithm that

is fast and therefore well suited to use in a school setting. Similar to Kahn et al. (2018),

they used the block-based programming language Snap! to program the agent and the

algorithm itself. When analysing the blocks and structuring the programs, it is striking

that the approach of Jatzlau et al. (2019) was able to reproduce the Q-learning algorithm

exactly without having to adapt technical terms for the prospective audience. Figure 3

shows the programming of the model on the left side and a fragment for programming

the Q-learning algorithm on the right side.

Figure 3: Programming of the Q-learning algorithm, an extract from Jatzlau et al. (2019, Chapter 4. A).

The researchers conducted a subsequent case study with a tenth-grade class, and

their findings suggest that the children were able to look behind the scenes and inspect

every programming block, thus tracking the program flow. During the learning process,

the children observed how the Q-values changed in the Q-learning table. The entire pro-

cess of reinforcement learning became visible and tangible. However, the researchers

point out that the speed of the Q-learning algorithm can become a potential problem if

2 Background and Related Work 10

the teacher decides to use it in the classroom. If the children create complicated learning

environments, it will take too long for the agent to learn, which would exceed the time of

the classroom lesson.

Toivonen, Jormanainen, and Tukiainen (2017) also used Q-learning to introduce the

machine learning paradigms, whereby the researchers combined the Q-learning with

neural networks and educational robots. Although the target group was young adults,

they found the reinforcement learning questions in the preliminary questionnaire chal-

lenging. The results of the post-test show that the participants’ knowledge increased,

and they achieved a deep practical understanding of reinforcement learning.

2.3 Learning Approaches for Introducing Machine Learning
This section discusses current learning approaches to introduce machine learning in the

school context. Since it is common practice to introduce computer science topics in an

unplugged and plugged manner, the chapter is divided into unplugged and plugged ac-

tivities.3 Finally, related work on the use of robots for teaching AI in schools, which in-

volves both physical and computer-based interaction, is presented.

 Unplugged Activities
Unplugged activities are popular in schools (Romero et al., 2019). These do not require

any special preparations and can be carried out in almost any classroom. Teachers re-

main independent of the hardware and can utilise common learning materials including

paper, scissors, coloured pens, glue, thread, and handicraft tools.

Educators often use unplugged activities in the context of machine learning a) to ex-

plain complex algorithms or mechanisms, for instance, before the students start the pro-

gramming part, or b) to initiate a reflection or discussion on ethical or social issues. In

the former, the teacher designs an intervention in which the learner can put themselves

“in the agent’s shoes” in order to give meaning to the agent’s4 argumentation process

(Long & Magerko, 2020, p. 6). The students can then be involved in embodied simula-

tions of the algorithm or hand-on physical experiments with the technology. In b), stu-

dents are actively encouraged to take diverse perspectives and then debate them with

their classmates.

3 Plugged activities require the use of a computer with specific software, connected objects, or robots to
teach the computer science subjects. Teaching topics unplugged is a paradigm which requires neither hard-
ware nor software (Romero, Duflot-Kremer, & Viéville, 2019).
4 An intelligent agent is a system that is able to act independently and autonomously to pursue and achieve
individually relevant goals (Šalamon, 2011; Wieners, 2014). It perceives its environment through sensors
and acts upon that environment through actuators (Russell & Norvig, 2016).

2 Background and Related Work 11

School children of all ages can participate in such activities. As Kandlhofer et al.

(2016) note, even kindergarten children remember well how they traversed graphs in the

role of the robot or found their way out of labyrinths a few days after the project day.

The number of instructional materials that is available for the unplugged teaching of

concepts of machine learning is gradually increasing. Clarke (2019); Kandlhofer et al.

(2016); Kleeberger et al. (2019); Lindner and Seegerer (2019); Seegerer, Lindner, and

Romeike (2019) and Universität Paderborn (2019) are only some of the authors propos-

ing diverse activities. From backwards propagation and deep learning to image classifi-

cation, reinforcement learning algorithms, clustering mechanism, Turing tests, and offline

games, there are virtually no limits to creativity when it comes to concepts that can be

taught unplugged; even face recognition is feasible (Krueger, 2020).

Most unplugged activities are intended for use in a classroom with several students,

and they are not suitable for young children to explore machine learning on their own. At

this point, children’s books provide an attractive way for learners aged 2 years and older

to be introduced to machine learning independently (Dhoot, 2019a, 2019b, 2019c; Ferrie

& Kaiser, 2019; Liukas, 2019; RocketBabyClub, 2018a, 2018b, 2019a, 2019b, 2019c).

Such books, written and designed for young learners, present complex matters playfully,

and they can also equally enhance adult learners’ experience and contribute to their

understanding of course content (Freeman, Feeney, & Moravcik, 2011).

 Plugged Activities
The introduction of machine learning with plugged activities is often realised using visual

programming languages (VPLs), which allow the user to create programs via graphical

manipulation (Druga, 2018). Although some VPLs use flow diagrams for programming,

many still use text framed in blocks or a visual in combination with text.

Figure 4 shows examples of various VPL types.

Node-Red using VPL as a flow diagram Text framed in blocks Visual in combination with text

Figure 4: Examples of visual programming languages.

2 Background and Related Work 12

Visual block-based languages are user-friendly, and due to the following factors, ed-

ucators increasingly adopt them in the school context (Kahn, Lu, Zhang, Winde, & Gao,

2020; Kahn & Winters, 2017):

(1) The description of the blocks in natural language makes the program easy to read.

(2) Using predefined blocks saves debugging time by eliminating typing and syntax

errors.

(3) Browsing the language is easy, because the commands are already pre-sorted

by category.

(4) The user assembles the program via drag and drop, which is fun.

(5) The students are motivated because they create applications intuitively.

The following platforms provide features for working on machine learning projects with

blocks: Machine Learning for Kids (Lane, 2020), Teachable Machine (Google, 2020),

TensorFlow Playground (Smilkov & Carter, 2020), Cognimate (Druga, Qiu, T.VU, Likhith,

& Dale, 2020), Calypso for Cozmo (Visionary Machines LLC, 2020), Snap! (University of

California at Berkeley, 2020), makeBlock (Makeblock Co., 2020), code.org (code.org,

2020), and eCraft2Learn (University of Oxford, 2020).5 All these platforms are free, and

web based.

Machine Learning for Kids and Teachable Machine introduce newcomers to training

machine models to analyse pictures, poses, sounds, text, and numbers without writing

any code. No previous knowledge of machine learning is required. Machine Learning for

Kids uses APIs to access IBM Watson (IBM, 2020) and Teachable Machine the Tensor-

Flow.js, a library for machine learning in JavaScript (TensorFlow, 2020). Once the model

is trained, the user can employ it in educational coding platforms such as Scratch

(Scratch, 2020a),6 App Inventor (Massachusetts Institute of Technology, 2020),7 or even

their own Python integrated development environment (IDE).

A TensorFlow Playground invites users to tinker with a neural network by observing

the training process. The user can add or remove additional neurons and layers and

change the weights of individual links and biases of nodes. He or she can also

5 The eCraft2Learn platform differs from other platforms as it only offers learners a single gateway to soft-
ware, tools, coding platforms, and worksheets.
6 Scratch is the most popular online coding platforms, which is being developed by MIT Media Lab. Scratch
publishes monthly statistics which point out that in the month July 11 713 380 unique visitors from all over
the world has programmed in Scratch (Scratch, 2020b).
7 App Inventor is a platform for building mobile apps quickly using blocks.

2 Background and Related Work 13

experiment with parameters such as learning rate, activation function, regularisation,

regularisation rate, and problem type.

The remaining platforms are block-based coding platforms that provide high-end APIs

to various AI cloud services. Cognimate implements a collection of dedicated extensions

that enable tinkering at home with AI devices and services such as Jibo, Alexa, Muse,

Smart Lights and Plugs, Color Tracking, and Image Recognition (Druga, 2018). Code.org

hosts tutorials for image classification.

Calypso for Cozmo and makeBlock provide a simple graphical interface on which to

program the educational AI robots Cozmo and Codey Rocky. The AI functionalities of

these robots are limited to recognising colours and images, showing some emotions on

display, and moving and shifting objects.

Snap! is block-based programming for advanced learners. It stands out from the other

examples because the user not only has access to potent APIs, but can also work with

blocks to program machine learning algorithms without having to rely on complex APIs

or cloud services. (Jatzlau et al., 2019; Kahn, Lu, Zhang, Winters, et al., 2020). Sections

2.2.1 and 2.2.3 describe some examples of the use of Snap! in more detail.

Most of the introduced platforms offer tutorials and instructional materials that the

teacher can consult as a guide. Touretzky (2020) has compiled a list of publishers and

initiatives that have already implemented the platforms in school education and provide

lessons plans.

 Using Robots and Robotic Simulators
Extensive empirical evidence indicates that children are excited when working with ro-

bots (Barker, Nugent, Grandgenett, & Adamchuk, 2012). Sklar, Eguchi, and Johnson

(2002) and Sjödén, Lind, and Silvervarg (2017) suggest that the use of robots as teach-

able agents – robots that the students can teach – has strong motivational effects, be-

cause the robot is treated as a social character. These findings apply to children of all

age groups, from kindergarten to university (Druga, 2018; Druga, Williams, Park, &

Breazeal, 2018; Klassner, 2002; Klassner & Anderson, 2003; Parsons & Sklar, 2004;

Williams, Park, Oh, et al., 2019).

Cooper, Keating, Harwin, and Dautenhahn (1999) and Li, Chang, and Chen (2009)

mention Seymour Papert as the first person to teach AI concepts to school children and

apply robots in education. Figure 5 presents the first educational robot, the Turtle, con-

structed by Papert and his team at MIT and evaluated with children over succeeding

decades.

2 Background and Related Work 14

Figure 5: The first educational robot, constructed by Seymour Papert and his team at MIT
(Papert & Solomon, 1971, p. 3).

The Turtle can obey simple commands from a computer and send signals back to the

computer. It is extendable by “any sense organs one is clever enough to make” (Papert

& Solomon, 1971, p. 3) – for instance, touch sensors, light-sensitive cells, and sound

detectors. Papert (1993b) commented on the experience that he gained with the Turtle

for educating in science and technology subjects: “The idea is that early experience with

Turtles is a good way to ‘get to know’ what it is like to learn a formal subject by ‘getting

to know’ its powerful ideas” (p. 138). The children thus learn by gaining experience. While

playing with the Turtle, students learn thought interaction, creating and understanding

an artefact (Michaeli et al., 2020; Wang, 2016).

While studies since the 1990s have confirmed the positive effects of the introduction

of robots in education (Chin, Hong, & Chen, 2014; Sklar et al., 2002),8 there is insufficient

evidence regarding the use of robots to introduce AI and machine learning. Kumar (2004)

conducted a three-year study with junior/senior level students who attended a course in

AI, in which he used LEGO Mindstorms robots to teach blind searches, informed

searches, expert systems, and game playing. The results suggest that students believe

that robot projects were reasonable and helped them learn the underlying AI concepts.

However, they rated such projects as much more time consuming than traditional pro-

jects. Klassner (2002) and Klassner and Anderson (2003) reported similar experiences

with LEGO Mindstorms in the context of AI courses to teach the topic of intelligent sys-

tems.

8 Discussing robots in education can have different meanings. Li et al. (2009) differentiate among using
robots as learning materials, learning companions, and teaching assistants. In this research, robots are
utilized as learning materials and as something that the children can teach (see Section 2.3.3).

2 Background and Related Work 15

Recently, Druga (2018); Druga et al. (2018) and Druga, T.Vu, Likhith, and Qiu (2019)

conducted studies with children between 7 and 14 years of age on teaching AI with ro-

bots. The findings suggest that after interacting with smart agents through programming

and teaching, the children changed their perception of smart toys and developed a better

understanding of AI concepts. Williams, Park, Oh, et al. (2019) designed LEGO-built and

virtual robots to teach kindergarten students basic AI concepts: knowledge-based sys-

tems, supervised machine learning, and generative music AI. The results indicate that

even kindergarten and pre-school children can successfully gain an understanding of AI

algorithms with the help of robots (Williams, Park, & Breazeal, 2019; Williams, Park, Oh,

et al., 2019).

There is also evidence that robot simulators are as beneficial for the learning process

as operating the real robot. Papert (1993b) asserted that “the Turtle in all its forms (floor

Turtles, screen Turtles, and Dynaturtles) … is both an engaging anthropomorphizable

object and a powerful mathematical idea” (p. 137). The simulators even have a decisive

advantage: The time required for code-test-debug loops is considerably less than it is

when working with real robot (Dodds, Greenwald, Howard, Tejada, & Weinberg, 2006),

meaning that the simulation saves time during testing. However, simulations can also

have disadvantages. Dodds et al. (2006) indicate that the use of simulation can lead to

(1) the loss of the physical embodiment that attracts many students to learn AI with robots

and (2) the loss of the unpredictability of physical interaction in the real world. They

therefore propose using a simulator in combination with a robot hardware setup identical

to that of the simulated robot.

2.4 Analysis and Summary of Shortcomings
Against the background of the curriculum and findings on the introduction of machine

learning topics in the school context using robots, this section analyses the limitations

and summarises the shortcomings of current efforts and learning approaches.

(1) There is a wide range of activities for supervised learning, but most of them
follow the black-box approach.

The findings in Sections 2.2.1 and 2.3.2 indicate that there is a wealth of easy-to-use

services that introduce beginners to supervised machine learning. Usually, these

make use of a limited number of descriptive examples, such as image or sound clas-

sification. The main disadvantage of such applications is that the mechanisms un-

derlying the training and classification remain hidden from the user. Increasingly,

there are efforts to open the black box of supervised learning using VPLs. However,

even then, they often only provide an interface to powerful high-end APIs. The

2 Background and Related Work 16

children play only with high-end robot systems and ready-trained models and have

no opportunity to learn how the training is performed and what algorithms are working

behind the scenes and how. When the learner uses the trained model, he or she

does not discover why the model came to a given decision.

(2) Translating the underlying concepts into a block-based language opens the
black box, but only for those who can understand this complexity.

Sections 2.2.1, 2.2.3, and 2.3.2 presented several examples of attempts to break

through the black box of currently available machine learning applications. The idea

of these approaches is to transfer the underlying concepts of machine learning, such

as artificial neural networks and Q-learning, into the VPL Snap!. Although the authors

argued that these approaches are child friendly (Kahn & Winters, 2017), intuitive,

and straightforward (Jatzlau et al., 2019), such a representation of the algorithm is

not suitable for young children due to its complexity and numerous technical details.

Using a block-based programming language, therefore, does not necessarily mean

reducing the complexity of the topic or making the topic more accessible.

(3) Introductory activities revolving around reinforcement and unsupervised
learning are rare.

Section 2.2.2 presented a case study for the introduction of unsupervised machine

learning with the LVQ clustering algorithm. However, the block-based approach used

in this study is complex, focuses on high school students, and there are no studies

on the introduction of unsupervised machine learning with the target group of young

learners. Section 2.2.3 presented several case studies which focus on reinforcement

learning. They all refer to the Q-learning algorithm as one that is well suited to an

introduction to reinforcement learning. Again, the studies focus on undergraduate

and high school students and do not apply to younger children. The authors discuss

one of the main problems of introducing Q-learning in schools: the time the algorithm

takes to calculate complex problems. Therefore, it appears challenging to teach com-

plex problems in the classroom using Q-learning.

(4) Thematically, the approaches to introducing machine learning are sparse and
do not reflect the complexity and breadth of the field.

In summary, the topics presented in Sections 2.2 and 2.3 that are suitable for young

learners can be reduced to the following areas of machine learning: image, text, and

sound classification; speech synthesis; the programming of intelligent toys; ethics

and the social impact of machine learning on everyday life; offline activities for learn-

ing about AI; and some aspects of human–machine interaction. The concepts

2 Background and Related Work 17

underlying machine learning, such as deep neural networks or concrete algorithms

(e.g., Q-learning and LVQ), are not sufficiently covered. These can be omitted, as

the case studies in which they occur are oriented more towards high school than

towards primary and middle school children.

(5) The use of blocks is promising.

Nonetheless, Section 2.3.2 indicates that the use of blocks provides the user with

easy access and low entry barriers to programming. It motivates learners to create

applications intuitively. However, using the advantages of visually based program-

ming languages on the one hand and conveying the complexity of the topic on the

other is a challenge. Long and Magerko (2020) also point out that it is crucial for

designers to bear in mind that coding skills can be an entry barrier, especially for

children who are still learning to read.

(6) The teaching materials focus on older children.

Although the number of instructional materials for young learners is growing, the vast

majority of case studies mentioned in Sections 2.2 and 2.3 focus on high school or

undergraduate students. However, Section 2.3.1 found that unplugged activities are

often used in the context of teaching children complex or abstract topics and are

successfully applied to children of all ages.

(7) Teaching materials are often not suitable for children to learn alone.

The teaching materials for introducing machine learning are suitable for use in

schools, and are less so for self-directed learning. In addition, the design of the ma-

terials and applications is sometimes unintuitive. Therefore, the materials are not

suitable for children without prior knowledge. In Section 2.3.1, it was suggested that

children’s books offer opportunities for young learners to reflect and experiment un-

plugged on machine learning topics.

(8) The use of real or simulated educational robots is useful for teaching AI topics.

Section 2.3.3 illustrates that there have been very few attempts to implement robots

in the teaching of AI and machine learning, and even less research has been carried

out with robots for teaching machine learning to young children. The results so far

show that the use of robots for educational purposes is effective. The success has

been demonstrated in a small number of case studies with kindergarten students and

multiple studies with high school and university students.

3 Machine Learning Paradigms

Building on the requirements outlined for teaching machine learning paradigms in

schools (Section 2.1) and the summary of the deficits (Section 2.4), this chapter answers

the second part of the first research question and partly addresses the second research

question: What possibilities can be identified to meet the curricular needs? How can the

previously defined proposals be anchored in Open Roberta Lab?

This chapter presents the theoretical backgrounds of three paradigms of machine

learning, which together form the essential framework for closing the gaps identified in

Section 2.4. The paradigms are supervised learning, reinforcement, and unsupervised

learning. Although Russell and Norvig (2016) suggest that the distinction among the par-

adigms is not always clear and Mohri, Rostamizadeh, and Talwalkar (2018) present

other learning scenarios, this chapter adheres to this distinction, as it is widely accepted

(Ertel & Black, 2018).

The chapter applies the theoretical framework and successively extends it to three

concrete approaches to address gaps and curriculum needs using robots and Open

Roberta Lab: direct supervised learning, Q-learning, and k-means algorithms. The prac-

tical implementation of the approaches is described in Chapters 5 and 6.

3.1 Supervised Learning and Neural Networks
This section provides a brief overview of supervised machine learning and supervised

neural networks, before discussing how these concepts can be realised in Open Roberta

Lab.

 Overview
Supervised learning is a machine learning paradigm in which the agent learns from a

labelled set of examples and can then generalise to unseen points in the future (Mohri

et al., 2018). The engineer thus provides the data and defines the loss function on which

the model is trained (Nguyen & Zeigermann, 2018).

Formally, the goal of supervised learning is to learn the mapping function 𝑓, which

entails understanding how the input 𝑥 should be matched with output 𝑦 using available

data. Russell and Norvig (2016) formalise the task of supervised learning as follows:

Given a training set of 𝑁 example input–output pairs
(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑁, 𝑦𝑁),

where each 𝑦! was generated by an unknown function 𝑦 = 𝑓(𝑥),

learn a function ℎ (hypothesis function) that approximates the true function 𝑓,

3 Machine Learning Paradigms 19

where	𝑥 and 𝑦 do not need to be the numbers but can be any values.

When the output 𝑦 is a number, then the learning problem is called regression. If the

output 𝑦 is one of the values in a finite set, then the learning problem is called classifica-

tion. Learning involves a search through the space of possible hypotheses for a hypoth-

esis that performs well with new examples beyond the training set.

Supervised learning does not imply the use of neural networks, for instance, in super-

vised tasks in which simple linear regression is possible. However, neural networks and

supervised training are used for applications with supervised problems involving a large

amount of input data or building models for classification (Brabazon, O’Neill, & McGar-

raghy, 2015).

A neural network consists of layers of simple processing units called nodes or neu-

rons. There are three types of layers: input, output, and hidden layers (Khishe & Parvizi,

2020). The nodes are connected by weights or signals (edges; Brabazon et al. (2015)).

There are several types of weight gain. For instance, feedforward weight gain means

that the signals move in one direction – from input to output. The output of each layer

does not affect that layer (Khishe & Parvizi, 2020).

In supervised training, neural networks receive data in the form of inputs and esti-

mated outputs. Outputs or targets are a specification of how the neural network should

respond to the input (MacKay, 2003). As the network is trained, the weights are changed

until the difference between the network output and the desired output is acceptable

(Khishe & Parvizi, 2020).

Exemplary problems for supervised learning include pattern detection; text, speech,

and object recognition; recommendation systems; and machine translations (Khishe &

Parvizi, 2020; Nguyen & Zeigermann, 2018).

 Supervised Learning in Open Roberta Lab: Direct Supervision and Simple
Neural Networks

A barely explored but promising possibility for introducing supervised learning and neural

networks for young students is to limit the neural network to its essentials. By using the

sensors and actuators of a robot as input and output nodes, one can demonstrate the

components of a neural network and their functionality.

This idea is derived from Braitenberg (1986) and briefly discussed by Leimbach and

Breuer (2012) in the context of introduction to the basics of AI using components of sim-

ple robotic systems such as various sensors and simple actuators. Braitenberg (1986)

advocates that to simulate intelligent behaviour, it is sufficient to connect a simple sensor

directly to a motor. The resulting behaviour is the result of the connection: The sensor

3 Machine Learning Paradigms 20

values are the input values for the motors. Different types of connections between the

sensors and motors lead to different behaviours – fear, love, anger, or rage.

Figure 6 demonstrates a simple connection between a motor and a light sensor. The

higher the value of the light sensor, the faster the motor rotates. The behaviour of the

vehicle allows the observer to suspect that the vehicle seems to like the light, because it

continually moves towards the light source.

Figure 6: The value of the light sensor serves as the input and is transmitted directly to the motor
(Leimbach and Breuer (2012, p. 14).

Such straightforward examples illustrate well the idea of an input–output connection,

which Braitenberg (1986) expands by introducing the concept of a threshold device. Alt-

hough Braitenberg never called the threshold device a neuron, a threshold device re-

sembles a neuron in its functionality – it models a connection between input and output

and has a threshold value. If the sum of all values applied to the inputs exceeds this

threshold value, a value of 1 is output; otherwise, the value 0 is output.

In Open Roberta Lab, Braitenberg experiments can be adapted and extended. The

sensors of the simulated LEGO EV3 robot,9 such as light, ultrasonic, or colour sensors,

can be used as input nodes, and LED, motor, display, and sound can be used as output

nodes. A similar approach was followed by Toivonen et al. (2017), who used sensor

values as inputs for a machine learning algorithm, while the behaviour of the robot rep-

resented the output.

When compiling the program, the neural network can be created by directly linking

the input and output nodes to each other. The user should then be allowed to regulate

the strength of the connection – that is, the weight. By modifying the weights and observ-

ing the results directly from the robot’s behaviour, the students can experience a training

9 Although there are multiple other robots which work well in the simulation, LEGO EV3 is the only driving
robot in Open Roberta Lab that can be used for experiments after Braitenberg at the time of writhing this
master’s thesis.

3 Machine Learning Paradigms 21

process of the neural network via direct supervision.10 Figure 7 shows a prototype of a

simple neural network on the left side and the behaviour of a robot on the right side.

Figure 7: Mock-up of a trained simple neural network and the behaviour of the robot
(author’s representation).

The adaption of Braitenberg experiments and their extension with additional input and

output sensors should make it possible to explain supervised learning problems even to

young students. While the students receive immediate feedback from the network con-

figuration, they should understand how the robot learns. At the same time, the students

should be able to discover practical components of neural networks such as nodes, lay-

ers, links, and weights. Immersion in the training process should enable the children to

focus on the underlying processes of supervised learning and thus help open the black

box discussed in Sections 2.3.2 and 2.4. The findings of Toivonen et al. (2017) suggest

that students without previous knowledge can understand the basics of neural networks

through such an approach and can transfer the theory-based knowledge about neural

networks into a more practical form.

3.2 Reinforcement Learning
This section defines a brief theoretical framework for reinforcement learning and then

discusses the possibilities of introducing reinforcement learning to young students with

Open Roberta.

 Overview
In reinforcement learning, the agent learns by feedback or the reinforcement it receives

after each step or a sequence of steps. Reinforcement can be both positive and negative

(Russell & Norvig, 2016). The agent is a learner and decision-maker facing an unknown

Markov decision process.11 It has an explicit goal, can perceive the environment and can

10 The process of adjusting the weights until the robot behaves as desired is in this work called “direct su-
pervision”, in which the students are involved in the training process of the neural network and imitate it by
adjusting the weights manually.
11 For the Markov decision process, see, e.g., Feinberg and Shwartz (2012); Russell and Norvig (2016).

3 Machine Learning Paradigms 22

choose actions to explore the environment or to exploit it with the help of available

knowledge. The agent can also influence the environment (Sutton & Barto, 2018).

Reinforcement learning problems involve learning how to map situations to actions so

that the agent can maximise a numerical reward for a situation or sequence of situations.

The main elements of reinforcement learning are, besides the agent and the environ-

ment, a policy, a reward signal, a value function, and an optional model of the environ-

ment. A policy defines the agent’s behaviour at a certain point in time (Sutton & Barto,

2018). A reward signal – a number – is sent to the agent after each time step. The ob-

jective of the agent is to use observed rewards to learn and develop an optimal policy

for the environment, one that maximises the expected reward (Kober & Peters, 2014).

While a reward is immediate and has an effect for a single step, a value function specifies

the long-term desirability of environment states (Sutton & Barto, 2018). Figure 8 shows

an interaction process between an agent and the environment in reinforcement learning.

Figure 8: Interaction between an agent and the environment (after Sutton and Barto (2018, p. 54).

At each time step 𝑡, an agent receives a representation of the environment 𝑠𝑡𝑎𝑡𝑒,

where 𝑆! ∈ 𝑆 and performs an 𝑎𝑐𝑡𝑖𝑜𝑛, where 𝐴! ∈ 𝐴(𝑆!). 𝑆 is a set of possible states, and

𝐴(𝑆!) is a set of actions available in state 𝑆!. Thereafter, the agent receives a 𝑟𝑒𝑤𝑎𝑟𝑑,

where 𝑅! ∈ ℛ	 ⊂ 	ℝ, and the learning process starts from the beginning, with 𝑆!"#.12

In practice, reinforcement learning is used in environments in which the agent is sup-

posed to learn how to behave successfully and in which it is almost impossible to provide

all the rules. For instance, in a game context, the agent learns while playing. If it loses

the game, it receives penalty points; if it wins, it receives a reward (Russell & Norvig,

2016).

 Reinforcement Learning in Open Roberta: The Q-learning Algorithm
Section 2.2.3 indicated that Q-learning is a reinforcement learning algorithm that can be

successfully applied in the educational context because of its high speed and small prob-

lem spaces (Jatzlau et al., 2019). Since its introduction by Watkins (1989), the algorithm

12 The algorithm is reproduced after Sutton and Barto (2018).

3 Machine Learning Paradigms 23

has been intensively investigated and has become popular (Wieners, 2014). Based on

these insights, the Q-learning algorithm is introduced and adapted in this work in Open

Roberta.

Q-learning is a model-free algorithm (Watkins & Dayan, 1992), which means that the

agent does not attempt to create a model of how the world works (Millington & Funge,

2018). Compared to model-based algorithms, the effort needed to implement a model-

free algorithm is moderate.

The agent learns in several steps. According to the policy available 𝜋(𝑠), the agent

starts in a new state 𝑠 and attempts an action 𝑎 in order to progress to the next state.

Depending on whether the agent is exploring or exploiting, the next state 𝑠′ is either

taken randomly or based on the highest Q-value from the following step. The agent then

evaluates the consequences in terms of the reward it receives, and in terms of the value

𝑞 of the state taken. By trying out all the actions in all the states, the agent learns which

steps are best overall, as judged by the long-term discounted reward (Watkins & Dayan,

1992), and updates the Q-table, which holds the Q-values. The rule for Q-learning is as

follows:

𝑄(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑚𝑎𝑥$!∈&((!)E𝑄(𝑠*, 𝑎*)F),

where 𝑄(𝑠, 𝑎) is a current Q-value for action 𝑎 from state	𝑠, and 𝑚𝑎𝑥$!∈&((!)E𝑄(𝑠*, 𝑎*)F

refers to the maximum reward from the next state 𝑠′ as a result of action 𝑎 that the agent

expects based on its knowledge of its current environment. 𝑟 is a reward for action 𝑎

from state 𝑠. 𝛼 is a learning rate, and 𝛾 is a discount rate in the interval 0 ≤ 𝛾 ≤ 1. 𝛼

determines how much older Q-values are included in the update process, and 𝛾 reduces

the impact of the subsequent environmental reward compared to the previous reward

(Wieners, 2014). 𝛼 and 𝛾 are set only once and remain constant throughout the learning

process.

In Open Roberta Lab, the Q-learning algorithm can be implemented for a simulated

LEGO EV3 robot. The robot can learn to find an optimal path from a start to a finish state

in a given environment. By using blocks, the children can be given the opportunity to

independently program applications based on the Q-learning algorithm. In contrast to the

solution proposed by Jatzlau et al. (2019), the terminology and parameters of the algo-

rithm should be simplified to be accessible to young students. To open the black box and

understand how exactly the learning takes place, the learning process can be visualised

sequentially. This requires a learning environment that the children can understand, in

which the robot can represent the agent that is learning. After the learning process is

3 Machine Learning Paradigms 24

completed, the agent calculates the optimal path based on the best Q-values from the

start to the finish state and then follows the path in the environment.

Algorithm 1 shows a simplified Q-learning algorithm (adapted from Wieners (2014);

Xu, Wu, and Zhao (2015) that can be implemented in Open Roberta Lab.

3.3 Unsupervised Learning
This section provides a brief introduction to unsupervised learning and examines the k-

means clustering as an algorithm that can be introduced in Open Roberta.

 Overview
In unsupervised learning, the agent learns patterns in the input data, even though no

explicit feedback is provided (Russell & Norvig, 2016). In contrast to supervised learning,

Algorithm 1: Q-learning

1: !	table of values for states → actions.
2: $, &, ' the previous state, action, and reward, initially null.
3: (,), *	time, episode, q-value.
4: trade-off exploration-exploitation by possibility of +,-.
5: trade-off continue-change state by possibility of /0.
6: 1, 2 learning rate, discount rate from 0 to 1.
7: while (> 0 and) > 0 do
8: randomly choose a float number 'ℎ6 from 0 to 1.
9: randomly choose a float number 78 from 0 to 1.
10: if 78 < /0 then
11: $ ← choose random state.
12: end if
13: if 'ℎ6 < +,- then
14: r, s′	 ←	explore another action &.
15: else
16: r, s′	 ←	exploit current optimum action &.
17: end if
18: q ← get !($, &)
19: &′ ←	get best action for $′
20: A&B!	 ←	get !($′, &′)
21: q ← (1 − 1) × * + 	1 × (' + 	2 × A&B!)
22: !($, &) ← *
23: $	 ← 	$′
24: decrease (by time elapsed since the beginning of this iteration.
25: decrease total number of episodes) by one.
26: end while

3 Machine Learning Paradigms 25

in unsupervised learning, the agent receives inputs 𝑥#,𝑥,… , 𝑥- – that is, unlabelled train-

ing data only (Mohri et al., 2018). The task of the machine is then to find structures in

collections of data or groups and to categorise the data (Michaeli et al., 2020).

A classic example of an unsupervised learning problem is clustering (Ghahramani,

2004), in which a set of data points must be partitioned into similar homogenous subsets

(Aggarwal & Reddy, 2013; Mohri et al., 2018).

Unsupervised learning problems can be approached using a variety of methods.

Ghahramani (2004) points out that almost all work in unsupervised learning can be con-

sidered in terms of learning a probabilistic model of the data. The machine estimates a

model that represents the probability distribution for a new input 𝑥- given previous inputs.

The learner model is then 𝑃(𝑥-|𝑥#… , 𝑥-.#). If the order of inputs is irrelevant or unknown,

the machine can build a model of data with 𝑥#,𝑥,… , 𝑥- as independent points. The central

idea in probabilistic models is to model data from a generative process. Generative mod-

els are fundamental because they try to understand the underlying process through

which a cluster is generated (Aggarwal & Reddy, 2013).

The problems of unsupervised learning include classification, outlier detection, col-

laborative filtering and recommendation systems, dynamic trend detection, monitoring,

social network analysis, communication, and efficient data compression.

 Unsupervised Learning in Open Roberta: K-means Algorithm
This section presents the k-means algorithm as a possibility for introducing unsupervised

learning in Open Roberta. This algorithm is chosen because it is one of the most popular

clustering algorithms that is easy to understand and to implement (Hamerly & Elkan,

2002).

K-means uses an iterative refinement technique: The algorithm operates alternately

with assignment and update steps, whereby an initial set of 𝑘 centres 𝑚#, … ,𝑚/ (Mirkes,

2011) is given. First, the representative points are selected as the initial cluster centres.

Each point in the data set is then assigned to the nearest cluster centre based on a

selected proximity measure.13 Once all points are assigned to centroids, so that the clus-

ters are formed, the centroids are updated. The last two steps of the algorithm are re-

peated until the centroids do not change.

13 There is a wide range of proximity measures for computing the closest point centroids that can be used
with the k-means clustering algorithm, including the Manhattan distance, the Euclidian distance, and Cosine
similarity. The Euclidian distance is the most popular choice. For more information about proximity measures
and objective functions, see Aggarwal and Reddy (2013).

3 Machine Learning Paradigms 26

Algorithm 2 provides an outline of the basic steps of the k-means algorithm according

to Aggarwal and Reddy (2013), which can be anchored in Open Roberta.

An implementation of the k-means algorithm in the robot simulation environment of

Open Roberta Lab is barely possible, since there are scarcely any use cases within the

given ecosystem. However, the k-means algorithm can easily be adopted in Open Rob-

erta as an unplugged activity. For this purpose, teaching materials should be developed

to help the children understand how to group a set of items according to the k-means

algorithm described in Algorithm 2.

Algorithm 2: k-means clustering

1: Select ! points "!, … ,"" as initial centroids.
2: repeat
3: Form ! clusters by assigning each point to its closest centroid.
4: Recompute the centroid of each cluster.
5: until convergence criterion is met.

4 Methodology

This chapter completes the answer to the second research question from a methodolog-

ical perspective by suggesting how the proposals should be anchored pedagogically and

concretely implemented in Open Roberta Lab. First, the design principles that underly

the machine learning extensions and learning materials developed in the practical part

of this work are presented. Second, the user study design and the methods used to

evaluate the extensions and materials that are developed are explained. Third, the pro-

ject management framework and tools used in this research are outlined.

4.1 Design Principles
Educational research has shown that hands-on experience positively impacts learning

(Kandlhofer et al., 2016). Hence, to encourage children to tinker with machine learning

from a technical perspective, the design of the extensions and learning materials is ped-

agogically oriented towards constructivist and constructionist theories and connectivist

framework. The following provides a brief overview of the fundamental principles of these

frameworks.

 Constructivism, Constructionism and Connectivism
Multiple research studies about teaching with robots and VPLs are grounded in construc-

tivism and constructionism (Cooper et al., 1999; Kandlhofer et al., 2016; Lister, 2011;

Moro, Arlegui, Pina, & Frangou, 2007; Wang, 2016). The teaching of AI and machine

learning is also often geared towards constructionist and constructivist principles (Druga,

2018; Druga et al., 2018; Hitron et al., 2019; Jatzlau et al., 2019; Michaeli et al., 2020;

Queiroz et al., 2020; Williams, Park, Oh, et al., 2019).

Constructivism is a theory of learning developed by Jean Piaget. At its core, it sees

children as active builders of their knowledge (Piaget, Fatke, & Kober, 2016): Instead of

receiving information passively, children learn about the world by actively interacting with

it. Resnick and Robinson (2017) summarised the critical principle of constructivism as

“Children don’t get ideas, they make ideas” (p. 37).

Papert (1993a, 1993b) and Papert and Solomon (1971) expanded Piaget’s cognitive

theory and developed a constructionist approach based on the theory of constructivism.

The main idea of this theory is that children construct their knowledge most effectively

when they are actively involved constructing things in the world (Papert & Harel, 1991).

As children construct things in the world, they construct new ideas in their heads, which

motivates them to construct new things in the world (Resnick & Robinson, 2017). When

learners participate in constructing an artefact and interacting with it, the construction of

4 Methodology 28

knowledge is more effective (Michaeli et al., 2020; Queiroz et al., 2020). Engagement

with the design of artefacts and modelling enhances the learning of complex systems

through systematic exploration (Hitron et al., 2019).

Siemens (2005, 2014) outlined the limits of constructivism, describing it as a learning

theory that focuses only on the individual, and suggested a new learning theory of con-

nectivism to describe how learning happens in the digital age (Siemens, 2005, 2014).

Although there is criticism and debate as to whether connectivism is a learning theory or

merely a pedagogical view (van Pløn Verhagen, 2006), the connectivist idea of

knowledge and learning is enriching in the context of this research. Connectivism postu-

lates that knowledge must be accurate and up to date, emphasising the role of the cur-

rency of knowledge in today’s world. It also stresses that one of the core skills of the

modern learner is the ability to recognise connections among domains, ideas, and con-

cepts, whereby learning and knowing are constant, ongoing processes (Siemens, 2005).

 Four P’s of Creative Learning
The Four P’s of Creative Learning (Resnick & Robinson, 2017) is a modern framework

that engages young students in creative learning experiences. The framework is based

on constructivist ideas and focuses on the intersection of emerging technologies, activi-

ties and strategies (Sakulkueakulsuk et al., 2018). The core values of the framework and

its guiding principles are the four P’s: projects, passion, peers, and play.

Learning through making and working on projects that matter is a key idea of the first

P – projects. Here, children create things and tinker with what they are interested in. By

continuously going through the Creative Learning Spiral of imagining, creating, playing,

sharing, and reflecting, they develop their ability to think, organise, refine, and reflect on

their ideas (Fuste, 2018; Resnick & Robinson, 2017). As children work on projects that

grab their attention, they build on their interests and are willing to work harder and longer.

This is the central idea of the second P – passion.

Resnick and Robinson (2017) also took up the idea of working with peers – the third

P – as an effective didactic approach. Peer learning is an evidence-based instructional

method that is theoretically well founded. The effectiveness of working with peers in the

form of peer tutoring, peer mentoring, peer mediation, peer counselling, and other forms

have been proven in several research studies (Büttner, Warwas, & Adl-Amini, 2012;

Hattie, 2008; Lebedynska, 2017; Zeneli & Tymms, 2015).

The concept of play, the fourth P, is centred on creativity. Resnick and Robinson

(2017) emphasised that playing is not just about laughing or having fun, but is much

more about “being a mischief maker” (p. 128) – about experimenting, taking risks, and

4 Methodology 29

testing boundaries. Resnick and Robinson (2017) also made a crucial distinction be-

tween two types of playful environment: playpen and playground. The first is a restrictive

environment in which the children have limited space to experiment, whereas the second

is designed to allow them to move, explore, and collaborate. If the aim of play is to edu-

cate creative thinkers, the instructional playpen environments should remain a stepping-

stone, not a final destination. Instead, the learning environment should be more oriented

towards a playground style, with metaphorically low floors and wide walls, so that the

children can make decisions about what to make and how to make it (Resnick, Martin,

Sargent, & Silverman, 1996; Resnick & Silverman, 2005).

 Derivation of Guidelines for Machine Learning Extensions and Curriculum
Design

All three approaches described in Section 4.1.1 can be adopted to develop creative

learning experiences with machine learning for young students in the practical part of

this work. The extensions and learning materials should promote the idea of an active

learner who gains knowledge by making and constructing things. The extensions and

materials should also encourage learners to investigate the currency of machine learning

paradigms and help establish connections between machine learning ideas and con-

cepts and other fields such as robotics.

Teaching materials and extensions should be developed based on the Four P’s of

Creative Learning outlined in Section 4.1.2 as a practical guide for designing curricula

oriented towards constructionist ideas. The approach developed in the practical part of

this work should encourage creativity, while at the same time supporting students in

working on projects based on their passions, in collaboration with peers and in a play-

ground-style atmosphere.

The ideas of play and playful learning described in Section 4.1.2 should be incorpo-

rated in the extensions wherever possible. Some structured activities for learners should

be designed to help students to get started with exploring of machine learning exten-

sions. However, the aim should be for these structured activities to serve as a stepping-

stone, not a final destination. The students should be empowered to play with machine

learning technologies and create something that interests them, following the ideas of

constructivism and constructionism presented in Section 4.1.1.

Two extensions for Open Roberta Lab are planned based on the evidence and short-

comings summarised in Section 2.4, the technical considerations described in Sections

3.1.2 and 3.2.2, and the educational reflections presented in Sections 4.1.1 and 4.1.2:

the Neural Network Playground and the Q-learning Playground. The playgrounds should

4 Methodology 30

build upon the needs described in Section 2.1 and should be mainly oriented towards

two “Big Ideas” of AI – perception and learning (Touretzky et al., 2019) – as practical

guidance for designing AI curricula. According to Touretzky (2019), perception is one of

the most significant achievements of AI which enables computers to perceive the envi-

ronment by interpreting sensory signals. Learning is another machine learning technol-

ogy that stimulates significant advances in many areas of AI. By playing with machine

learning algorithms, the children should learn how machine learning algorithms enable a

robot to create its own representations of the world using data that is either provided by

students or acquired by the robot itself.

Students should be able to work with simulated robots in Open Robert Lab, following

the demonstration of the motivational characteristics and effectiveness of using robots

for educational purposes in Section 2.3.3. The involvement of robots should help children

understand perception as a process in which sensors are used to observe the environ-

ment. At the same time, even the youngest students should be able to immerse them-

selves in the challenges of supervised, unsupervised, and reinforcement learning

through interaction with the underlying algorithms and processes of machine learning. In

this way, robotic systems should help establish a link between seemingly abstract learn-

ing content and reality, in which the robot either does or does not behave as expected.

The Neural Network Playground should allow the user to experiment with simple neu-

ral networks. The learner should be able to train the neural network by modifying the

weights and directly observing the effects on the simulated robot, thereby grasping the

concept of “direct supervision” outlined in Section 3.1.2.

In the Q-learning Playground, the student should be able to tinker with the Q-learning

algorithm described in Section 3.2.2 by creating unique learning environments for the

robot and playing with the parameters of the algorithm. Step by step, the student is ex-

pected to debug the algorithm and explore how the learning takes place from the agent’s

perspective.

To make the unsupervised learning tangible for young students, the k-means algo-

rithm described in Section 3.3.2 is adapted as an unplugged activity. Access to unsuper-

vised learning unplugged is designed first to test a different type of hands-on activity and

second as a control instance. The intention is to determine whether children perceive

this topic of machine learning differently in terms of interest and difficulty if it is introduced

unplugged instead of plugged.

4 Methodology 31

All three approaches should be accompanied by a curriculum that introduces young

learners to the various machine learning paradigms. Such an approach will reflect the

complexity and breadth of the field addressed in Section 2.4.

By transferring the design principle of embodied interaction, described in Section

2.3.1, to digital space, students can be virtually put in the agent’s shoes. The students

should then immerse themselves in the behaviour of the simulated robot and put algo-

rithms into practice in order to understand them and take a look behind the scenes. Such

an approach should promote transparency towards the explainable AI (Long & Magerko,

2020), which is problematised in Section 2.4.

In order to accommodate children across school levels, approaches should be based

on the “low floors and wide walls” principle described in Section 4.1.2. The examples

should vary in their level of difficulty. Concerning the usability of and storytelling in ma-

terials and extensions, inspiration can be drawn from the graphic design and storytelling

of children’s books, mentioned in Section 2.3.1. Castella (2018) also proposes concrete

principles for designing materials for children. In order to spark and maintain children's

interest, learning materials should be colourful, have a similar logic, contain exciting task

descriptions, and relate to a child's life. The extensions and materials should be appeal-

ing and straightforward: Design for children must be for everyone and allow room for

exploration.

With all these possibilities, it is expected that children will be able to construct

knowledge through the interaction between creating an artefact and understanding it.

The use of blocks and robots should assist children in gaining a deep understanding of

the technical aspects of different machine learning paradigms problematised in Section

2.4. This should make the underlying principles of machine learning transparent for stu-

dents of all school levels, from primary to high school. The currency of knowledge as a

key principle of connectivism described in Section 4.1.1 should be fostered.

4.2 User Study Design
In order to answer the third research question, the extensions and materials that are

developed were tested with children. The sampling should include representatives

across school levels – primary, secondary, and high school.

The user study was conducted in a three-day block with one session per day. On the

first day, the approaches were evaluated with the high school children, grades 7–9, on

the second day with the primary school children, grades 3–4, and on the third day with

the middle school children, grades 5–6. All children had prior knowledge of working in

Open Roberta Lab with LEGO EV3 robots, as they had participated in the introductory

4 Methodology 32

session the day before. All three sessions took place as part of the summer holiday

programme of the school administration office and the ZDI network MINT Düsseldorf,

organised in cooperation with the non-profit coding initiative Codingschule junior (Cod-

ingschule gGmbH, 2020). All interested children were able to register for a session

online. There were no requirements for participation. The first come, first served principle

was used if there were more registrations than places. As this work was carried out in

Germany, thus, all materials and extensions were developed in German.

At the beginning of each session, the children’s knowledge of machine learning and

AI was informally pre-assessed. The modules were then completed in the order de-

scribed in Section 6.1. Finally, the children filled out short questionaries.

Due to regional measures implemented in response to COVID-19, restrictions were

in effect when testing the extensions and materials. The children were not allowed to

work in tandem or in groups. The limitations of all activities to individual work made it

impossible to follow the peer learning approach, described in Section 4.1.2, as an edu-

cation strategy.

The Q-learning Playground, introduced in detail in Section 5.4, was restricted to three

maps, and the students were allowed to set as many obstacles as they wished. Although

the extension was technically designed to allow students to create and upload environ-

ments on their own under certain conditions, it was necessary to restrict the activity in

order to eventually achieve comparable results.

4.3 Evaluation Methods
A computer-based questionnaire with six items based on a 5-point semantic differential

scale was developed to measure the children’s perception of the machine learning top-

ics. The goal of this was to understand how the children felt about the approaches and

whether they experienced difficulties understanding them. The questions were formu-

lated so as to allow the children to give personalised feedback on the difficulty of and

their interest in the topics.

The semantic differential scale was chosen because it allows the rapid measurement

of attitudes and performs well with few items (Salkind, 2006). The questions were as

follows:

1. How interesting did you find the topic “Supervised Learning and Neural Net-

works”?

2. Was the topic “Supervised Learning and Neural Networks” difficult to under-

stand?

4 Methodology 33

3. How interesting did you find the topic “Unsupervised Learning”?

4. Was the topic “Unsupervised Learning” difficult to understand?

5. How interesting did you find the topic “Reinforcement Learning”?

6. Was the topic “Reinforcement Learning” difficult to understand?

To answer, the children indicated a number on a scale from 1 to 5 between two pairs

of adjectives: “Very Uninteresting” (1) to “Very Interesting” (5) for questions 1, 3, and 5

and “Very Difficult” (1) to “Very Easy” (5) for questions 2, 4, and 6. In the evaluation, the

responses to individual items were summed and then averaged to provide an overall

score. A higher number thus reflects a more positive evaluation (Salkind, 2006).

In the questionnaire, the children were also asked about their general attitude towards

further involvement with the topic AI and machine learning. The children could respond

“Yes”, “Maybe”, or “No” and provide brief written feedback (one sentence) about what

they took with them from the project day.

Figure 9 demonstrates an example of the question from the questionnaire. Before the

student was asked to answer the question, she or he could view the image used in the

presentation of a particular machine learning topic during the session to help the student

recall the topic. All individual topics in the questionnaire were illustrated in this way.

Figure 9: An item from the computer-based questionnaire developed to measure the children’s perception
of the topic “Supervised Learning”.

4 Methodology 34

The sessions were videorecorded, and an observer logged the activities of all three

days. Parts of the videos – the introduction with the children’s oral pre-assessment and

the final feedback from the children about the session and what they learned about AI

and machine learning – were transcribed for evaluation purposes. In order to take into

account the ethical and legal aspects, all data collected was kept confidential and per-

sonal information made anonymous.

4.4 Tools and Project Management
A variety of tools were used to manage this work. In the following, these and the work-

flows pursued in this project are presented.

Source code version control with GitHub, IDEs IntelliJ and WebStorms, and
Chrome DevTools

The Open Roberta Lab project’s source code is distributed across several repositories

on GitHub. For this work, two of them – openroberta-lab (Open Roberta, 2020c) and

blockly (Open Roberta, 2020a) – were required and forked in the public account of the

author (Olari, 2020b).

Extension development was managed through the GitHub platform using the Git ver-

sion control system. The extensions were developed iteratively according to the idea of

agile software development (Schmidt, 2015). In order to improve the traceability of addi-

tions made in the course of this work, new feature branches were created in each of the

forked repositories: feature/aineuralnetworks in openroberta-lab and fea-

ture/ai in blockly (Olari, 2020a, 2020e).

In order to provide transparency about the development progress, code changes were

commited daily. The changelog can be found in Appendix A.3, and the concrete code

changes can be viewed in the git history of the projects.

GitHub issues and project management tools were used to manage various tasks. In

vlebedynska/openroberta-lab (Olari, 2020e), two projects were created to manage

the development of the extensions: “AI Extension: Reinforcement Learning” and “AI Ex-

tension: Neural Networks”. In vlebedynska/blockly (Olari, 2020a), an “AI Extension”

project was created to organise the UI design of the blocks.

Figure 10 shows the exemplary structure of the project “AI Extensions: Reinforcement

Learning”. It is divided into three stages: “To do”, “In progress”, and “Done”. Depending

on their status, the issues are stacked in the corresponding columns. Each issue includes

a brief description. Some of issues contain subtasks. An exemplary description is shown

4 Methodology 35

for Issue #19 on the right side of Figure 10. Each time a change is committed, it is tagged

and assigned to the related issue.

Figure 10: GitHub project “AI Extension: Reinforcement Learning” shows an example of the project struc-
ture and individual issues.

Two IDEs were utilised for the development: IntelliJ IDEA (JetBrains, 2020a) and

WebStorm (JetBrains, 2020b). Although it was also possible to use IntelliJ alone, a Web-

Storm provided a better environment for developing and debugging TypeScript code.

The author also used the development tools provided by the Chrome browser for de-

bugging, structure analysis of HTML, JavaScript and CSS sources, and performance

testing.

Adobe InDesign, Illustrator, and Fresco

Adobe InDesign (Adobe, 2020c) is used for the design of learning materials. For drawing

illustrations, Adobe Illustrator (Adobe, 2020b) and Adobe Fresco (Adobe, 2020a) are

applied. Adobe Illustrator is also used to prepare the environments for the Q-learning

Playground. It offers the possibility of drawing illustrations and saving them in SVG for-

mat, which is then implemented and processed in the Q-learning extension. The work-

flow of implementing and processing an SVG file in Q-learning extension is discussed in

detail in Section 5.4.4.

5 Machine Learning Extensions: System Design and

Implementation

Based on the approaches proposed in Sections 3.1.2 and 3.2.2, as well as the method-

ological framework outlined in Section 4.1.3, this chapter presents the design and tech-

nical implementation of new blocks and two machine learning extensions in Open Rob-

erta Lab.

First, to enable the reader to understand the integration of new blocks and machine

learning extensions into the existing Open Roberta Lab ecosystem, the author provides

an overview of Open Roberta Lab and its initial project structure and system architecture.

The overview focuses on processes relevant to the simulation environment of the LEGO

EV3 robot, which the author has extended with new blocks and machine learning fea-

tures. Although simulation environments are also offered for other robot systems, LEGO

EV3 was chosen because it was the only driving robot and could be extended with ex-

amples of the simple neural networks based on ideas of the Braitenberg experiments

described in Section 3.1.2.

Second, the author presents new block categories and blocks that she has imple-

mented in Open Roberta Lab to enable the user to program simple neural networks and

applications based on the Q-learning algorithm. In order to fill each block with function-

alities, for instance, to enable the Neural Network block to create a neural network, the

author has made several additions in the Open Roberta Lab project. Since there is lim-

ited documentation for the execution workflows in Open Roberta Lab, the author makes

the execution process transparent for the reader by describing the simplified workflow

using the lifecycle of a block implemented by the author as an example. In this way, the

author demonstrates the central points in which she has made additions to Open Roberta

Lab project while implementing functionalities for each of the blocks.

Third, the author describes machine learning extensions that she has developed to

allow the user to experiment with machine learning technologies, as described in Sec-

tions 3.1.2, 3.2.2, and 4.1.3: the Neural Network Playground for training simple neural

networks and the Q-learning Playground for visualisation of and interaction with the Q-

learning algorithm. The author describes the system architecture, user interface, and

central workflows of these extensions. Reflections on technical challenges close the

chapter.

5 Machine Learning Extensions: System Design and Implementation 37

Before reading this chapter, the reader should note three remarks: (1) The reader will

find that most figures and screenshots depict blocks and extensions in German. This is

because the user study was conducted in German. If the reader would like to observe

the blocks and extensions in English and view the demo of the blocks and extensions in

use, he or she can follow this link:

www.figshare.com/s/9bf7608f9408ea2f8da8, accessed on 09.09.2020.

(2) If the reader would like to test the extensions, he or she can install Open Roberta

Lab locally on the Raspberry Pi. The author has prepared an image14 that the reader can

download under this link:

www.figshare.com/s/e92bb50916b8556eb603, accessed on 12.10.2020.

(3) The reader should also note that this chapter only documents the most relevant

processes and additions to the Open Roberta Lab project. However, if the reader desires

more detailed information about the timing of development, he or she can refer to a com-

prehensive commit history maintained by the author and attached in Appendix A.3. If the

reader wishes to examine specific code changes, he or she can refer to the respective

repositories in the author’s public account on GitHub (Olari, 2020a, 2020e). There, the

additions, deletions, and changes are presented. The reader can also view the commit

history tagged in individual issues (Olari, 2020c, 2020d).

5.1 Investigating Open Roberta Lab: System Overview
The development of new components required extensive additions throughout the entire

Open Roberta Lab project. In order to achieve the set goal, the structure of the Open

Roberta Lab project and central workflows had to be examined in detail. At the time of

writing, Open Roberta Lab did not provide much documentation on processes and work-

flows. Therefore, the following three sections summarise the essential findings and as-

pects relevant to further understanding of the development of new UI blocks and new

machine learning features.

 User Interface
When visiting the Open Roberta Lab environment (Open Roberta Lab, 2020), the user

is asked to select one of the available robots to continue. Figure 11 illustrates the user

interface after selecting the LEGO EV3 robot.

14 The image must be copied to an SD card and inserted into the SD card slot of a Raspberry Pi. Open
Roberta Lab is started at boot time. Now the user can access Open Roberta Lab from any device on the
same local network by entering the address http://orlab.local in the browser. See Open Roberta (2020b) for
more detailed instructions.

5 Machine Learning Extensions: System Design and Implementation 38

Figure 11: The user interface of Open Roberta Lab (Open Roberta Lab, 2020).

Via the (1) navigation bar, the user can save, export, and import the program and can

open a source code editor. Additionally, the user can switch the robot system and con-

nect to the real robot, get help, log in to the personal area, open a gallery of the published

programs of other users, and change the interface language.

Under the (3) block categories, the user finds programming commands in the form of

blocks available for the selected robot. The block categories presented in Figure 11 are

similar for all implemented robot systems.

In the (2) working area, the user assembles the program from singular commands

listed in block categories. The commands to be executed must be appended to the red

“Start” block. The program that is developed can be executed either on a real robot by

pressing the “Start” button at the bottom of the working area or in the simulation. The

commands are executed in the order in which they are connected in the program from

top to bottom. The commands are executed linearly, so there is no possibility for the

parallelisation of processes.

The (4) robot simulation can be opened by pressing the “SIM” button located on the

right side of the working area. The robot simulation imitates the behaviour of the real

robot, although not all commands and sensors of the real robot are available. In the

simulation for the LEGO EV3 robot, the user can run the program on the simulated robot,

change and load custom backgrounds, interact with the simulated robot brick, access

the current measurements of the plugged sensors, and return the robot to its initial posi-

tion.

5 Machine Learning Extensions: System Design and Implementation 39

 Project Structure
The source of Open Roberta Lab is stored in the GitHub project Open Roberta (Open

Roberta, 2020d). For this research, two repositories – openroberta-lab (Open

Roberta, 2020c) and blockly (Open Roberta, 2020a) – were copied to the author’s pub-

lic repository (Olari, 2020a, 2020e).

openroberta-lab is the central repository of the Open Roberta Lab project. The in-

stallation description and an overview of the needed libraries can be found in the RE-

ADME.md file of the project. The openroberta-lab project implements back-end func-

tionalities for robot systems and is mainly written in Java, Python, and C++. It also con-

tains front-end functionalities for the web appearance of Open Roberta Lab and the robot

simulation environment in JavaScript and TypeScript. Apace Maven is used for package

management. The JavaScript library require.js is used as a file and module loader.

Blockly is the client-side JavaScript library that provides a web-based visual program-

ming editor (Google Developers, 2020c). The Blockly editor of Open Roberta (Open Rob-

erta, 2020a) allows the defining of command blocks,15 which can be exported as a com-

pressed JavaScript file and used in the local openroberta-lab project. Blocks can be

accompanied by translations into different languages by adding the corresponding

meanings to the JSON file of the respective language.

Currently, for the LEGO EV3, Open Roberta Lab offers eight block categories with 48

command blocks in beginner mode and 11 block categories with 100 command blocks

in expert mode.

 System Architecture
Only limited documentation is available for architecture and workflows in Open Roberta

Lab (Open Roberta, 2019a, 2019b, 2020e). However, it was vital to understand the over-

all system architecture and central processes in order to implement the functionalities for

the individual blocks. For this reason, the author reverse engineered the project. Error! R

eference source not found. shows the result, presenting an excerpt from the sche-

matic overview of the Open Roberta Lab structure relevant for machine learning features.

Specifically, the figure visualises the system components and their interdependencies

involving the robot simulation environment.

15 Block types, their appearance and the compatibility of the blocks with each other are defined by Google
Developers (2020a).

5 Machine Learning Extensions: System Design and Implementation 40

1
Pr

oj
ec

t d
at

a
(ro

bo
t's

 n
am

e,
 p

as
sw

or
d,

 la
ng

ua
ge

, X
M

L
pr

og
ra

m
, r

ob
ot

 c
on

fig
ur

at
io

n
XM

L,
 T

ok
en

 e
tc

.)
2

W
or

kf
lo

w
 c

an
 c

ha
ng

e
th

e
pr

oj
ec

t.
Pr

oj
ec

t o
bj

ec
t c

an
 b

e
m

an
ip

ul
at

ed
 in

 w
or

kf
lo

w
 s

te
ps

.

H
TT

P
re

qu
es

t "
/s

ou
rc

eS
im

ul
at

io
n"

JS
O

N
1

H
TT

P
re

sp
on

se
JS

O
N

 w
ith

 p
ro

je
ct

 d
at

a
(i.

a.
 o

pc
s

an
d

fu
nc

tio
ns

)

Se
rv

er

R
ob

ot
er

 D
ev

ic
es

C
lie

nt

Pr
oj

ec
t

Tr
an

sf
or

m
er

XM
L

pr
og

ra
m

W
or

kf
lo

w
2

Pr
oj

ec
t

AS
T

Jetty Webserver

AS
T

W
or

ke
r:

Va
lid

at
or

W
or

ke
r:

H
ar

dw
ar

e

W
or

ke
r:

St
ac

kM
ac

hi
ne

AS
T

JS
O

N
-O

bj
ec

t w
ith

 o
pc

s
an

d
fu

nc
tio

ns

JS
O

N

Simulation

in
te

rp
re

te
r

.js....h
tm

l

.c
ss

bl
oc

k

C
on

ne
ct

or
Pr

og
ra

m

Er
ro

rs

Bl
oc

kl
y

(c
lie

nt
-s

id
e

Ja

va
Sc

rip
t l

ib
ra

ry
)

Vi
st

or

Vi
st

or

Fi
gu

re
 1

2:
 S

im
pl

ifi
ed

 s
ys

te
m

 o
ve

rv
ie

w
 o

f t
he

 O
pe

n
R

ob
er

ta
 L

ab
 p

ro
je

ct
 in

vo
lv

in
g

th
e

si
m

ul
at

io
n

en
vi

ro
nm

en
t.

5 Machine Learning Extensions: System Design and Implementation 41

Client Blockly

On the client-side, the Blockly library is responsible for the definition and visualisation of

the programming blocks. When the user starts the simulation in Open Roberta Lab, the

program composed by the user is transmitted to the server via an HTTP request as JSON

data for further processing. JSON data contains not only the program itself in XML for-

mat, but also other project data such as the name and configuration of the robot.

Server

On the server-side, the Jetty Java library runs the web server and provides the interface

to the backend of the project. When the JSON data arrives on the server, the block types

from the XML file are mapped by Transformer to the corresponding Java classes using

the axillary JAXB16 library. The output of the Transformer step is an abstract syntax tree

(AST)17 component, which is returned for further processing.

Among other project data, the AST itself also passes through the workflow pipeline.

In the case demonstrated in Error! Reference source not found., the workflow is de-

termined by data transmitted via an HTTP request. The pipeline in Error! Reference
source not found. is composed of three workers: Validator, Hardware, and StackMa-

chine. However, depending on the workflow, the pipeline may defer. A worker performs

tasks sequentially and can manipulate the project data.

(1) The Validator worker sends a request to the visitor18 encoding the element class

to check the validity of the AST component. This step returns an error list if any

errors are found. In case of an error, the workflow procedure is aborted.

(2) The Hardware worker verifies that the hardware for the robot to use is correctly

configured and installed.

(3) The StackMachine worker then sends the project data to the block visitor, which

assembles the operations and functions defined in respective AST components

into a JSON object.

Simulation Client

The client extracts the JSON object and processes functions and operations in inter-

preter.interpreter.js. Programs for Open Roberta Lab simulation are conception-

ally implemented as a stack machine. Each program operation is executed depending

16JAXB – allows the mapping of Java classes to XML representations.
17 The AST is a detailed tree representation of the Java source code (Vogel, Scholz, & Pfaff, 2020).
18 Gamma, Helm, Johnson, and Vlissides (2019) describe the visitor as a pattern that allows a new operation
to be defined without changing the classes of the elements on which it operates.

5 Machine Learning Extensions: System Design and Implementation 42

on its operation code (opc) and can use the stack to exchange the data with other oper-

ations on the program stack. robotMbedBehaviour.js is the main file in which the func-

tions for the simulation of the robot’s behaviour are defined.

5.2 New Blocks and Categories for Machine Learning Playgrounds
With blocks, the user creates programs in Open Roberta Lab. In order to enable the user

to program neural networks and applications based on the Q-learning algorithm, new

blocks had to be developed. To this end, Open Roberta Lab was extended with the ad-

dition of a new “AI” category, consisting of two subcategories – “Neural Networks” and

“Reinforcement Learning”. The general name “AI” was chosen in order to allow new sub-

categories to be added in the future.

This chapter briefly outlines considerations for creating new blocks for machine learn-

ing features, followed by a description of the functionalities of new blocks and a presen-

tation of the execution workflow on an exemplary lifecycle of a block. The lifecycle illus-

trates the process of how a program written in blocks reaches the simulated robot.

 Considerations for Designing of New Blocks
In order to enable children to construct knowledge through the interaction of creating an

artefact and experimenting with it – one of the design principles defined in Section 4.1.3

– the author created a set of 16 command blocks. The following considerations guided

the author:

(1) The blocks should be easy to grasp, so that even young students do not experi-

ence difficulty understanding them. The complexity of the technical terms thus had

to be reduced. Instead of using abstract vocabulary, the author simplified the lan-

guage so that even children without previous knowledge could understand the

blocks. If a term could not be simplified, for instance, the term “Neuron” in Figure

13, it had to be explained in the learning materials or by the facilitator in the intro-

duction to the topic. The appearance of blocks also had to be simplified. For in-

stance, lists used as layers in neural networks can be simplified, as demonstrated

in Figure 13. These measures should promote the design principle of “low floors

and wide walls”, introduced in Section 4.1.3.

Traditional block presentation Simplified version

Figure 13: Traditional presentation of the List block in Open Roberta Lab and its simplified version.

5 Machine Learning Extensions: System Design and Implementation 43

(2) The blocks should allow the students to create unique artefacts. For instance,

users should be able to program neural networks with different types of input and

output neurons. To make this possible, the author was able to reuse different

types of sensors and actuators of the LEGO EV3 robot, enriching the user expe-

rience through a multifaceted approach to the topic. The user should also be able

to create networks of different levels of complexity.

While creating applications based on the Q-learning algorithm, the user should be

able to build learning environments of varying complexity and experiment freely

with the parameters of the Q-learning algorithm. These opportunities should en-

courage the student’s creativity by giving them room to experiment – another de-

sign principle defined in Section 4.1.3.

(3) In order to keep implementation costs within limits, if possible, the author should

reuse the solutions provided by Open Roberta Lab. For instance, she was able to

adapt the existing sensors and actuators as input and output neurons and reuse

lists to represent the layers in the neural network.

 AI Blocks
Figure 14 shows the user interface extended by the two subcategories – “Neural Net-

works” and “Reinforcement Learning”.

Figure 14: The extended user interface of Open Roberta Lab.

Ten new blocks were defined and implemented for the block category “Neural Net-

works”. Table 1 presents them and explains their purpose.

5 Machine Learning Extensions: System Design and Implementation 44

Since the neural network is a new feature in Open Roberta Lab, the author had to

define new data types: InputNode and OutputNode. All input neurons are of type In-

putNode and can be recognised on a red connection point. All output neurons are of type

OutputNode and have a turquoise connection point. In order to implement the input and

output neurons, existing functionalities of the selected sensors and actuators were

adapted and modified. In the first versions of blocks, the input and output nodes had an

additional opening for a threshold value, which the author also implemented in the

backend. However, it turned out that the threshold value made the appearance of the

block complex, so the author decided to leave it out for the initial run with students. It is

possible that in the future, it could be made available again as a block for expert users.

Table 1: New blocks developed for the subcategory "Neural Networks".

Block appearance Description

The neural network itself –has two open-

ings. The left opening is for the input layer,

and the right opening is for the output layer.

The neural network layer – can be used as

an input or output layer. The user can ad-

just the number of neurons by pressing the

“+” or “–“ symbol.

Ultrasonic sensor input neuron – uses the

data supplied by the ultrasonic sensor

plugged into the robot. It returns the dis-

tance to the next obstacle in cm.

Light input neuron – uses the data provided

by the robot’s colour sensor. It returns the

light intensity on a scale of 0 to 100.

Colour input neuron – uses the data from

the robot’s colour sensor and returns 1 if

the robot detects the selected colour and 0

if not. There are 8 colours implemented.

Colour channel input neuron – uses the

data from the robot’s colour sensor and

5 Machine Learning Extensions: System Design and Implementation 45

returns a value from 0 to 255 for a selected

channel. The value is then scaled from 0 to

100 for processing purposes.

LED colour output neuron – uses the LED

of the robot as output.

Motor output neuron – uses the selected

motor as output.

Text output neuron – uses the robot’s

screen as output.

Sound output neuron – represents the

sound frequency that is sent to the robot’s

speaker.

Six new blocks were designed and integrated for the category “Reinforcement Learn-

ing”. Table 2 outlines their appearance and functionality.

Table 2: New blocks developed for the subcategory "Reinforcement Learning".

Block appearance Description

Configures the learning environment. The

user selects a map and defines the start and

finish station. He or she can also place ob-

stacles between two stations, which means

that the robot cannot pass this section.

Configures the learning behaviour of the ro-

bot. The user sets up the following:

- 𝛼 by choosing between different learn-

ing speeds

- 𝛾 by receiving an additional reward from

the next step

5 Machine Learning Extensions: System Design and Implementation 46

- the NU value by allowing the robot to tel-

eport to the station that is not directly

connected to the previous station

- the RHO value by allowing the robot to
accept the use of its previous experi-

ence

Starts the Q-learning algorithm. The user

must specify the number of episodes and

the time in seconds.

Draws the optimal path based on the best

Q-values on the way from the start to the

finish station.

Sets the robot to the start position in the

simulation and lets it follow the line of the

optimal path. This block is defined as a func-

tion, so it also requires a function body to be

placed in the working area.

 Lifecycle of One Block
A general overview of the program execution workflow is given in Section 5.1.3. In this

section, the implementation details of the workflow process are presented with an exam-

ple. The author describes the lifecycle of the block ai_neural_network, which demon-

strates where in the existing ecosystem of Open Roberta Lab the author has inserted

her additions. The lifecycle presented in the following is simplified, because it would go

beyond the scope of this section to outline all the additions. However, the process is valid

for all new blocks implemented by the author.

The necessary steps in the lifecycle of a block are as follows: (0) create a block in

Blockly and integrate it into the Open Roberta Lab front-end; (1) create a program in

Open Roberta Lab by assembling the blocks and starting its processing; (2) map blocks

to corresponding Java classes; (3) parse blocks to AST components; (4) process the

blocks to stack machine operations; (5) send the stack machine program to the simula-

tion environment; (6) unpack the stack machine program and execute each operation in

5 Machine Learning Extensions: System Design and Implementation 47

the simulation. In the following, each step is described for the block ai_neural_net-
work.

0) Before the new block ai_neural_network can be used, it must be implemented in

the Blockly library (Olari, 2020a). The code snippet shown in Figure 15 demonstrates

the block definition and presents the resulting program block. It should be noted that

while the code snippet provides insight into the initialisation function of the block, it

does not outline all the additions associated with the block definition, as they are

distributed throughout the Blockly project.

Figure 15: Code snippet for defining the ai_neural_network block in Blockly (top) and its visual repre-
sentation (bottom).

After defining the colour of the block and label text, the setCheck() function sets the

input type of the block, which can be passed as an inline input field19 INPUT_LAYER.

The input INPUT_LAYER allows the insertion of only blocks of type Array_InputNode.

For the input OUTPUT_LAYER, the setCheck() ensures that the second input field

only accepts blocks of type Array_OutputNode. Other local function calls inside the

init() method define the appearance and functionality of the ai_neural_network

block.

In order to use the defined block in the openroberta-lab project, it must be exported

to a JavaScript file blocks_compressed.js by executing a Python script provided

by the Blockly project. The generated file must then be manually moved to the open-

roberta-lab project.

19 If the inline input fields are set to true, the holes in the block are arranged horizontally. Otherwise, they
are arranged vertically.

/**
 * This block defines the simple neural network with an input and an output layer.
 */
Blockly.Blocks['ai_neural_network'] = {
 init : function () {
 this.setColour(Blockly.CAT_AI_RGB);
 this.appendDummyInput().appendField('Eingabe: ');
 this.appendValueInput("INPUT_LAYER").setCheck("Array_InputNode");
 this.appendDummyInput().appendField(' ');
 this.appendDummyInput().appendField('Ausgabe: ');
 this.appendValueInput("OUTPUT_LAYER").setCheck("Array_OutputNode");
 this.setInputsInline(true);
 this.setPreviousStatement(true);
 this.setNextStatement(true);
 this.setTooltip(Blockly.Msg.NEURAL_NETWORK_TOOLTIP);
 }
}

5 Machine Learning Extensions: System Design and Implementation 48

1) When the user creates a program with the ai_neural_network block and compiles

it by pressing the “Start" button, Blockly creates the representation of the program,

including all blocks in XML format. This representation is subsequently transmitted

to the back-end of Open Roberta Lab for further processing. Figure 16 demonstrates

a simple program containing the ai_neural_network block and its representation in

XML format.

Figure 16: Representation of the Blockly program in XML format.

2) In the Open Roberta Lab back-end (the server component in Section 5.1.3), the

blocks included in the XML program are mapped to the Java classes by their types

<export xmlns="http://de.fhg.iais.roberta.blockly">
 <program>
 <block_set xmlns="http://de.fhg.iais.roberta.blockly"
 robottype="ev3" xmlversion="2.0" description="" tags="">
 <instance x="136" y="60">
 <block type="robControls_start" id="3-|B8P@m_T~q/T_Nd|*p" intask="true"
 deletable="false">
 <mutation declare="false"></mutation>
 <field name="DEBUG">FALSE</field>
 </block>
 <block type="robControls_loopForever"
 id="}faa=TbV.la1Ri3xi:gx" intask="true">
 <statement name="DO">
 <block type="ai_neural_network" id=",Z,j/{BU1-#Fh@hto.g+" intask="true">
 <value name="INPUT_LAYER">
 <block type="ai_easy_list" id="WDLKJ?#2,hy=!]q/#vgM" intask="true">
 <mutation items="1" list_type="InputNode"></mutation>
 <value name="ADD0">
 <block type="ai_nn_input_node_coloursensor_color"
 id=";[@0}b)`K.He`Gb~Y4O!" intask="true">
 <field name="COLOUR">#00642e</field>
 <field name="SENSORPORT">1</field>
 </block>
 </value>
 </block>
 </value>
 <value name="OUTPUT_LAYER">
 <block type="ai_easy_list" id="Fmf`QA0Gq]vRkdEcPCy(" intask="true">
 <mutation items="1" list_type="OutputNode"></mutation>
 <value name="ADD0">
 <block type="ai_nn_output_node_led" id="SG+aSO/dR.-o|j.a5Wv7"
 intask="true">
 <field name="OUTPUTNODE">#00642E</field>
 </block>
 </value>
 </block>
 </value>
 </block>
 </statement>
 </block>
 </instance>
 </block_set>
 </program>
 <config> … </config>
</export>

5 Machine Learning Extensions: System Design and Implementation 49

as defined in the corresponding configuration file in YAML format. The block type

ai_neural_network is mapped to the Java class de.fhg.iais.roberta.syn-

tax.ai.AiNeuralNetwork. The mapping is shown in Figure 17.

Figure 17: Configuration snippet for mapping the block type ai_neural_network to the Java class Ai-
NeuralNetwork.

The Java class AiNeuralNetwork.java, attached in Appendix A.2, implements a

method jaxbToAst() for transforming the block data from an XML source into the

Java object representing an AST component. Due to the nested structure of the

block, the transformation takes place recursively. Affected are the child nodes of the

ai_neural_network block: two blocks of type ai_easy_list. Like any visitable AST

component, the AiNeuralNetwork.java implements the visit method accep-

tImpl() used by visitor implementation.

3) Figure 18 demonstrates an example of how EV3StackMachineVisitor assembles

the stack machine program, which consists of single operations from aiNeuralNet-

work AST component. The stack operations for neural network layers are created by

calling the accept() method for the AST component of each layer – listNNInput

and listNNOutput. Finally, PROCESS_NEURAL_NETWORK operation is appended to the

stack machine program.

@Override
public V visitAiNeuralNetwork(AiNeuralNetwork<V> aiNeuralNetwork) {
 aiNeuralNetwork.getListNNInput().accept(this);
 aiNeuralNetwork.getListNNOutput().accept(this);
 JSONObject o = mk(C.PROCESS_NEURAL_NETWORK);
 return app(o);
}

Figure 18: Code snippet of visitAiNeuralNetwork method.

4) The result of EV3StackMachineVisitor is a stack machine program in the form of

a JSON object. The steps of the simulation workflow are completed, and the stack

machine program is transferred to the simulation requestor.

5) In the simulation environment, the stack machine program is processed by the stack

machine interpreter, defined in the file interpreter.interpreter.js. The inter-

preter runs through all operations. In the program section of the neural network, the

AI_NEURAL_NETWORK:
 category: STMT
 implementor: de.fhg.iais.roberta.syntax.ai.AiNeuralNetwork
 type: [ai_neural_network]

5 Machine Learning Extensions: System Design and Implementation 50

layers data are prepared before the actual processing of the neural network takes

place. The data exchange is realised using the stack. When the interpreter reaches

the stack operation PROCESS_NEURAL_NETWORK, as shown in Figure 19, the output

and input layer data are on the stack. This data is popped from the stack, and after-

wards, the function processNeuralNetwork is invoked with the loaded layers’ data.

Figure 19: Code snippet for PROCESS_NEURAL_NETWORK operation in
interpreter.interpreter.js.

The processNeuralNetwork function is an entry point to the Neural Network Play-

ground and is implemented in the interpreter.robotMbedBehaviour.js file. This

function is responsible for creation and processing of the neural network that the user

sees and interacts with in the simulation. As this function is large, it is presented in

greater detail in Appendix A.1, and the content of this function is described in more

detail in Section 5.3.4.

At this point, the program is running in the simulation on the robot, and the lifecycle

of the block ends here. If the user recompiles the program by pressing the “Start” button,

the lifecycle starts from Step 1.

5.3 Neural Network Playground
Once the neural network, including the user interface (UI) displayed in the pop-up, is

generated, the user can experiment with the neural network in the Neural Network Play-

ground. This section describes the author’s considerations for the design of the Neural

Network Playground and presents the solution. It outlines the workflow the user encoun-

ters, describes the user interface, and provides insights into the system design and im-

plementation details.

 Considerations for Feature Design
This section presents technical considerations for the design of the Neural Network Play-

ground. In terms of content, the considerations are based on the idea of integrating su-

pervised learning into Open Roberta Lab presented in Section 3.1.2.

In the course of the development of the Neural Network Playground, the author de-

signed several mock-ups, of which Figure 20 presents several. The underlying idea of

all mock-ups was to enable the user to train the neural network live: The user should get

case C.PROCESS_NEURAL_NETWORK: {
 var outputLayer = s.pop();
 var inputLayer = s.pop();
 n.processNeuralNetwork(inputLayer, outputLayer);
 break;
}

5 Machine Learning Extensions: System Design and Implementation 51

direct feedback on how the training takes place by observing the behaviour of the robot.

A direct causal relationship between changing a parameter of the neural network and

observing the effect on the behaviour of the robot should enable even the youngest user

to understand how the neural networks are trained and what the problems of supervised

learning are.

Figure 20: First mock-ups for the Neural Network Playground.

Both mock-ups show on the left side the idea of programming and training the neural

network in Open Roberta Lab with round blocks, whereby the user can edit the values

of single blocks and the weights of single connections. These mock-ups had two decisive

disadvantages. First, the robot was not able to change its behaviour live; the users had

to compile the program after each change to see how the change influenced the robot’s

behaviour. Thus, it would be not directly obvious what would happen if the user changed

the weight. Second, it would not be possible to define round blocks, because the Blockly

library does not support such serious adaptions in the design of blocks.

5 Machine Learning Extensions: System Design and Implementation 52

In order to address the second issue, the author considered adapting an open source

solution available on the market, for instance, TensorFlow Playground (Smilkov & Carter,

2020), whose interface is shown in Figure 21. However, adapting the TensorFlow Play-

ground does not solve the first issue and in addition may cause difficulties for young

students: the input fields above the tensors are small and may be difficult to hit with the

mouse for young students. Potentially, this could affect the user experience of primary

school children, who also do not know how to cope with decimal numbers, in which the

weights should be specified. Finally, and most importantly, the implementation efforts

were difficult to estimate.

Figure 21: TensorFlow Playground as an idea to be implemented in Open Roberta Lab
(Smilkov & Carter, 2020).

 Therefore, the author decided to separate the programming and the training from

each other. The programming was redesigned to be done with blocks as usual, while the

training redesigned was to take place in a new simulation extension. The extension

should be able to dynamically create a neural network from the program that the user

has compound in blocks and allow the user to train the network and observe the effects

directly, that is, to change the weights between the single connections and directly ob-

serve the result on the robot. This idea was realised in a grey pop-up on right side of the

second mock-up in Figure 20.

In order to enable the students to easily operate the Neural Network Playground, the

author made a series of decisions which are presented in a following list. It should be

noted that the author did not formulate all these ideas at the beginning of the research

study. Instead, the decisions were elaborated through several iterations of the develop-

ment process of the Neural Network Playground:

5 Machine Learning Extensions: System Design and Implementation 53

1) The students should focus on the essentials of the neural networks as proposed in

Section 3.1.2. For this purpose, the hidden layers should initially be left out. The

students should explore and understand what is happening between two neurons of

the input and output layer. However, the extensions should have the technical op-

portunity to be extended by the hidden layers.

2) In order to give the students room to experiment and playfully discover the topic, it

should be possible to create the networks with any number and different types of

input and output nodes.

3) The weight changing should be realised as a slider: activating the link with a click

and moving the regulator back and forth should allow the user to directly observe the

result of his or her action – that is, the change in the robot’s behaviour. In the course

of developments, the author noted that activation of single links may be difficult for

the user, because the connection lines are thin. Having the slider above the neural

network, as shown in the second mock-up in Figure 20, is also cumbersome, as the

user has to switch between the activation of the link on the neural network and the

slider. Instead, it would be more intuitive for the singular connections to have regula-

tors, enabling the user to change the value of the link by moving the regulator directly

placed on the link.

4) Since it can be useful in some cases, the user should have a possibility in the Play-

ground to change weights in the neural network without its immediate execution. This

could be realised by providing the possibility of pausing and starting the training of

the network without the need to recompile the whole program. The user should be

able to pause the simulation, configure the network, and then restart the reconfigured

network on the robot.

5) The current value of the link should be expressed by changing the thickness of the

line – the thicker the line, the stronger the link. This would help the young students

see at first glance which connections are stronger than others. In addition to the

thickness of the line, the value of the slider can be shown on the regulator. Being

able to see the exact value of the link at first glance may be helpful for older students.

6) When the neural network is created, the initial values of the links should be 0. The

students should then explore on their own what will happen if they move the slider

towards 1.

7) In order to provide more transparency in the underlying processes, the current values

of the input and output nodes should be shown inside the nodes. The nodes should

also be labelled, so the user can easily make a connection between the program that

5 Machine Learning Extensions: System Design and Implementation 54

he or she has compounded in blocks and the neural network that is created. Depend-

ing on the sensor or actuator, the nodes can have different colours. For instance, if

red colour from the colour sensor is used as the input block, then the input node in

the Playground can be coloured red. Regarding the sliders in the neural network, the

question arises as to whether to show the value for the active link only or to outline

the values of all links at the same time. The Playground should be simple and clear

but at the same time provide enough information to make the processes transparent.

8) The design of the Playground should be appealing and easy to understand. It should

be oriented towards the focus group of school students. The dimensions of the Play-

ground should be sufficiently large for easy operation. The design should also match

with the teaching materials developed.

9) To keep the dependencies simple and the solution technically feasible, the usage of

additional source code libraries should be avoided if possible. The author should

reuse the elements already available in Open Roberta Lab to maintain the design

consistency.

 Workflow
Based on feature design considerations described in Section 5.3.1, the author estab-

lished the workflow demonstrated in Figure 22.

Figure 22: Process workflow for training the neural networks in the Neural Network Playground.

First, the user must compound the program using blocks. Then, he or she opens the

simulation and then the Neural Network Playground. The program can then be started

in the simulation. When the program is compiled, the neural network is (re-)created dy-

namically. The user may train it and observe how the robot’s behaviour changes.

 User interface
Taking into account the feature design guidelines from Section 4.1.3 and the considera-

tions outlined in Section 5.3.1, the author developed the Neural Network Playground.

Figure 23 demonstrates its appearance in Open Roberta Lab.

compound the
program

compound the
program

open the
simulation

open the
simulation

start the
program

start the
program

train the
network

debug the
Q-learning
algorigthm

step by step

observe

observe

 open the
Neural Network
Playground

 open the
Q-learning
Playground

5 Machine Learning Extensions: System Design and Implementation 55

Figure 23: User interface of the Neural Network Playground.

In (1), a simple program for programming the Neural Network is demonstrated, (2)

shows the button to open the Neural Network Playground, and (3) displays the Play-

ground itself.

At the top of the Neural Network Playground, the user finds a brief description as a

hint for what he or she can do: “Move the red circle to the right to allow more sensor data

to pass through”. The user also sees the head of the mascot, which is used in the learn-

ing materials and ensures visual recognisability. Below the task description is a control

bar, which allows the robot simulation to be stopped and started. This enables the user

to configure the neural network first and then test it on the robot. Changing the weights

between two nodes directly influences the behaviour of the robot without the need to

pause the simulation. The current simulation state (paused/playing) is highlighted by the

yellow background colour of the corresponding button.

The neural network UI is created dynamically and takes up most of the Neural Net-

work Playground. The nodes of each layer correspond with the blocks set in the program

and are labelled. Inside each node, the current value of the node is displayed. The value

range of a node is between 0 and 100. Node colour depends on the node type: the nodes

based on the colour sensor receive the colour that the user selected in the block. Other

nodes have the default blue background.

The link between the nodes changes the thickness when the slider is moved. The

value range of a link is between 0 and 1. The closer the value of the slider is to 1, the

5 Machine Learning Extensions: System Design and Implementation 56

thicker the line and the stronger the connection between two nodes. Unless it is zero,

the current value of the link is shown above the slider.

Figure 24 illustrates the program with the colour input nodes. It also shows what the

neural network pop-up looks like when the link between the first input node from the top

and the first output node from the top is set to a value of 0.8: The link between these

nodes is thicker than other links whose values are set to 0. The robot in the simulation is

on the red square. Therefore, its red input neuron shows a value of 100. The values from

the green channel node and blue channel nodes are 0, because the red square in the

robot simulation is a pure colour without the addition of blue and green. The value of the

input node is transmitted proportionally to the first output node, which means that with

the current configuration of the neural network, the robot rotates the motor on port b at a

speed of 80.

Figure 24: Adjusting the weights in the neural network.

 System Architecture and Selected Implementation Details
This section presents the system architecture of the Neural Network Playground and

outlines implementation details. The reader should note that only the most important

implementation details are presented.

 The Neural Network Playground operates completely client-side. It is written in Type-

Script, which is a syntactical superset of the JavaScript (TypeScript, 2020). In compari-

son to JavaScript, TypeScript provides type safety and modularity, which helps prevent

5 Machine Learning Extensions: System Design and Implementation 57

error occurrence at the compile time and the runtime of the Neural Network Playground.

One drawback of the TypeScript which the author took into account was that TypeScript

requires compilation step before the application can be executed.

The Neural Network Playground is designed according the object-oriented approach

and has a modular structure. The structure orients on the model–view–controller design

pattern (Osmani, 2012), which leads to the separation of the user interface, the data

models, and the underlying functionalities of the Neural Network Playground. In order to

achieve the encapsulation of the components, the author implemented the event lis-

tener/event dispatcher pattern for the data exchange. To draw the UI of the neural net-

work, the author decided to use SVG – vector-based graphics in XML format

(w3schools.com, 2020). In order to manipulate the SVG objects more easily, the author

used the SVG.js library (Fierens, 2020).

The following classes were implemented:

- AiNeuralNetworkModule acts as an interface between the Open Roberta Lab sim-

ulation and the Neural Network Playground extension.

- AiNeuralNetworkImpl implements the model of the neural network.

- AiNeuralNetworkUI implements the UI for the neural network model.

- LinkImpl implements the model of the link between neuron nodes.

- LinkUI implements the UI for the link.

- NodeImpl implements the model of the neuron node.

- SVGSliderImpl implements the model of the svg slider.

- Player provides the pause and restart functionality for the robot simulation.

- Draggable provides the functionality to drag the regulator on the link.

- SVGUtils includes diverse helper methods for usage by svg components.

The models of LinkImpl, NodeImpl, AiNeuralNetworkImpl, and SVGSliderImpl

classes were abstracted in, respectively, Link, Node, AiNeuralNetwork, and SVGSlider

interfaces. The model of AiNeuralNetwork supports a multi-layer structure.

Figure 25 shows in simplified form how the Neural Network Playground is initialised.

The author omitted loops and some event dispatching/listening constructs for clarity pur-

poses. The diagram also shows only calls of the most vital local functions which are

necessary to understand the process. The diagram design is based on the suggestion

of Balzert (2011). It shows parameters in the functions only in the most important cases.

5 Machine Learning Extensions: System Design and Implementation 58

ai
N

eu
ra

lN
et

w
or

kM
od

ul
e

:A
iN

eu
ra

lN
et

w
or

kM
od

ul
e

ne
w

(s
el

ec
to

r,
in

pu
tla

ye
r,

ou
tp

ut
la

ye
r)

sv
g

:S
VG

ad
dT

o(
se

le
ct

or
)

no
rm

al
iz

eN
od

es
(in

pu
tla

ye
r,

ou
tp

ut
la

ye
r)

no
rm

al
iz

eN
od

es
(la

ye
rs

W
ith

N
or

m
al

iz
ed

 N
od

es
)

:A
iN

eu
ra

lN
et

w
or

k

cr
ea

te
N

eu
ra

lN
et

w
or

k
(la

ye
rs

W
ith

N
or

m
al

iz
ed

N
od

es
)

cr
ea

te
N

eu
ra

lN
et

w
or

k
(n

eu
ra

lN
et

w
or

k)

ne
ur

al
N

et
w

or
kU

I
:a

iN
eu

ra
lN

et
w

or
kU

I

ne
w

ai
N

eu
ra

lN
et

w
or

kU
I

pl
ay

er
:P

la
ye

r

ne
w

ad
dT

o(
sv

g)

cr
ea

te
N

eu
ra

lN
et

w
or

k
(la

ye
rs

W
ith

N
or

m
al

iz
ed

N
od

es
)

ne
ur

al
N

et
w

or
k

:n
eu

ra
lN

et
w

or
kI

m
pl

cr
ea

te
Li

nk
s

(la
ye

rs
W

ith
N

or
m

al
iz

ed
N

od
es

,
in

itia
lW

ei
gh

ts
)

cr
ea

te
Li

nk
s(

lin
ks

)
ad

dN
od

es
Po

si
tio

n(
la

ye
rID

, L
ay

er
)

ad
dN

od
es

N
am

es
(la

ye
r)

cr
ea

te
N

eu
ra

lN
et

w
or

k
(n

eu
ra

lN
et

w
or

k)

dr
ag

ga
bl

e
:D

ra
gg

ab
le

cr
ea

te
(s

vg
)

dr
aw

Pl
ay

er
()

dr
aw

N
eu

ra
lN

et
w

or
k(

)

ad
dC

la
ss

(s
vg

Vi
ew

Bo
x

N
N

M
od

ul
e)

vi
ew

bo
x(

th
is

.s
vg

.b
bo

x(
))

in
itia

liz
e(

)

ad
dE

ve
nt

Li
st

en
er

(p
la

ye
rS

ta
rte

d,
 p

la
ye

rP
au

se
d)

ne
w

lin
k

:lin
kI

m
pl

fo
r e

ac
h

lin
k

lin
k

lin
kU

I
:lin

kU
I

dr
aw

Li
nk

s(
)

ne
w

sl
id

er
:S

VG
Sl

id
er

Im
pl

dr
aw

Sl
id

er
()

cr
ea

te
Sl

id
er

()
cr

ea
te

Sl
id

er
(s

lid
er

)

pl
ay

er

no
de

:N
od

eI
m

pl

ne
w

no
de

cr
ea

te
N

eu
ra

lN
et

w
or

k
(n

eu
ra

lN
et

w
or

k)

Figure 25: Simplified sequence diagram for creating the Neural Network Playground.

5 Machine Learning Extensions: System Design and Implementation 59

AiNeuralNetworkModule is instantiated as a singleton by the processNeuralNet-

work() function, described in Section 5.2.3, and is an entry point into the Neural Network

Playground. It initialises the Neural Network module UI as the svg object – the instance

of the svgdotjs module from SVG.js library that the author used to simplify the manip-

ulation of the svg objects. The AiNeuralNetworkModule then pre-processes the input

and output node values derived from the stack program for simulation by converting them

to neural network nodes. The values of the input nodes are normalised to the range from

0 to 100. The instances of the class Node are created. Subsequently, AiNeuralNet-

workModule initialises the neural network by creating an instance of AiNeuralNet-

workImpl and of the corresponding UI object AiNeuralNetworkUI.

AiNeuralNetworkImpl implements the core functionalities of the neural network.

Here the functionality for creation of the neural network, including the creation of links

between the nodes and the calculation of the neural network output, is defined. AiNeu-

ralNetworkUI is responsible for the visual presentation of the neural network and han-

dles user’s activities. On initialising, it creates a module global instance of Draggable,

draws the Player, and initialises the LinkUIs for each link between two nodes. Drag-

gable implements mosemove, mouseup, and mousedown event handling by dragging the

regulator on each link. LinkUI contains an instance of SVGSliderImpl. Furthermore, it

implements functionality for updating the thickness of the link on its weight change and

the event handling on the link activation and deactivation. SVGSliderImpl is responsible

for creating a slider, calculating the current slider value, setting the new slider value upon

external update, and updating the position of the slider regulator and the text above the

slider regulator upon slider value change. SVGSliderImpl also implements the

closestPoint() function, defined in the SVGUtils class, which is responsible for keep-

ing the slider regulator on path while dragging. Details on the implementation of the

Draggable and closestPoint algorithm can be found in Chapter 5.5.

In order to dynamically customise the Neural Network Playground’s UI size depending

on the total number of nodes in the input and output layer, the AiNeuralNetworkModule

adds a CSS class svgViewBoxNNModule and sets the size of the Playground’s HTML

element to the svg bbox. Bbox is a minimum bounding box that can be drawn to include

all elements inside the svg. Finally, AiNeuralNetworkModule initialises the instance of

Player which implements functionalities to control the execution of the simulation.

Once the Neural Network Playground is created and the simulation is running, which

means that the stack program is executed and the player running state is set to true, the

data of the input nodes is permanently actualised. The values of the output nodes are

5 Machine Learning Extensions: System Design and Implementation 60

updated respectively. On the dragmove event, that is, if the user moves the regulator of

one of the links, the sliderValue is recalculated depending on the current position of

the regulator on the path, and the corresponding output node’s value is updated. Then,

the sliderValue property setter function that dispatches the sliderValueChanged

event is called. The event listener implemented in the slider in the LinkUI receives the

sliderValueChanged event and changes the thickness of the line.

The processNeuralNetwork() function defines the robot’s behaviour depending on

the value set for each output node. If the output node is a motor, the motor speed is set

to the value given in the output node. If the output node is text, the text value of the

output node is shown on the display of the LEGO EV3. If the output node is sound, the

frequency based on value of the output node is played. If it is an LED, the LED of a robot

is switched on or off depending on the value of the output node.

5.4 Q-learning Playground
Q-learning Playground is the extension that the author developed in order to foster the

understanding of a novice of reinforcement learning, as described in Section 3.2.2. This

section describes the author’s considerations for the design of the Q-learning Playground

and presents the solution. It outlines the workflow that the user encounters, describes

the user interface, and gives insight into the system design and the implementation de-

tails.

 Considerations for Feature Design
In terms of content, the Q-learning Playground is based on the methodological frame-

work defined in Section 4.1.3 and on considerations about the Q-learning algorithm pre-

sented in Section 3.2.2. This section gives insight into concrete technical design consid-

erations.

In the course of the development of the Q-learning Playground, the author designed

several mock-ups, some of which are shown in Figure 26. The graphic on the top left

shows how the Q-learning algorithm can be configured via blocks. The user may dynam-

ically define the environment by defining the number of rooms that the robot can visit and

setting the start and finish rooms. The user can also determine the policy by defining the

possible directions of movement between rooms for the learning agent. For all rooms

that are directly connected to the finish room, the agent should get a maximum reward.

As shown in the mock-up, learning environments such as a soccer field can be used.

After the user has configured the algorithm and compiled the program, the learning

environment on the right should be dynamically created, and the robot should start

5 Machine Learning Extensions: System Design and Implementation 61

learning by moving from one room to another and actualising its Q-value matrix. While

the robot learns, the user can observe the learning procedure.

Figure 26: Mock-ups of the Q-learning Playground.

Two pictures at the bottom of Figure 26 visualise an alternative to the soccer play-

ground. While the robot learns, it explores the environment, so that an increasing amount

of the environment become visible. The aim of the learning procedure for the robot is to

find the optimal path from start to finish in the created environment by calculating the

highest Q-values on the way from start to finish. When the learning procedure is finished

and the optimal path is calculated, the robot should drive this optimal path.

In order to achieve the objectives, the author considered the following concrete design

suggestions:

1) In order to open the black box of Q-learning, the user should be given the ability

to define all parameters of the algorithm: 𝛼, 𝛾, RHO, NU, number of episodes, and

total amount of time.

2) The user should be able to influence the learning environment structure by defin-

ing rooms through setting the walls and customising the start and finish via blocks.

5 Machine Learning Extensions: System Design and Implementation 62

This should foster beginners’ creativity and inspire their imagination, as indicated

in Section 4.1.3.

3) The transparency of the learning procedure should be provided by visualising how

the robot learns. Insight into the learning procedure can be granted by animating

the paths that the agent is visiting and highlighting the paths that have higher Q-

values.

4) The result of the learning procedure should be visualised. For this, the optimal

path from start to finish should be calculated based on the highest Q-values. The

robot should be able to drive the optimal path.

5) The visualisation of the learning procedure should be separated from using the

robot’s knowledge in the simulation environment. This would help the beginners

separate the learning process from the real world of the robot, in which it uses the

knowledge gained. In order to realise this, the learning visualisation should take

place in a separate window. The result – the optimal path – should then be trans-

ferred in the simulation, enabling the robot to drive the optimal path.

6) The robot should be able to move in the simulation following the calculated optimal

path. For this, a new GPS sensor should be implemented or other solution strat-

egies such as programming the line follower considered.

7) To design the learning environment, the SVG format can be used. At the begin-

ning, the author evaluated several technologies that can be used for the visuali-

sation of the learning process. She decided to use the SVG format because it is

scalable and editable in a simple way and because animations for learning pro-

gress visualisation are straightforward to implement.

Based on these considerations, the author implemented the first prototype, as demon-

strated in Figure 27. For this, she designed first drafts of Q-learning blocks, designed the

Mars landscape by adding the nodes which can be visited, and set the goal for the robot

to find the best way from quadrants A to I.20

20 As the technical implementation remains the same for the final solution, this procedure is discussed in
Section 5.4.4.

5 Machine Learning Extensions: System Design and Implementation 63

Figure 27: First implemented prototype for experimenting with the Q-learning algorithm.

While observing how the robot learns, the author encountered two problems and con-

sidered refinements for designing the final solution.

1) The first issue concerned the visualisation of the learning procedure, shown in the

bottom window in Figure 27. The author decided to visualise the learning proce-

dure by animating the route that was visited by moving the green line from the

start to the finish node – as in the example from F to G. The Q-value of the road

was visualised through the line thickness – the thicker the line, the higher the Q-

value and the more likely the robot is to choose this way at the end. However, with

this solution, the users had no ability to look deeper into the learning process:

They only saw the green line moving fast from one node to another. The lines

gained in thickness over time. The user took up the role of a passive observer

without having the ability to stop the algorithm and show what was happening at

each step.

These issues should be addressed in the final solution; transparency in the learn-

ing procedure can be fostered by providing the user with more possible ways to

control the learning process step by step, for instance, by implementing the control

unit to pause and slowly execute the algorithm. Instead of line thickness, the rep-

resentation of the Q-value can be realised with colour or additional icons such as

stars. Visualisation of walls between the rooms should be improved. In the current

solution from Figure 27, the walls are invisible; in the final solution, they may be

visualised as rocks or stop signs.

5 Machine Learning Extensions: System Design and Implementation 64

2) Experience with the Mars landscape has shown that the learning environment

does not necessarily have to consist of rooms – a quadrat matrix, as it is usually

visualised, for instance, by Wieners (2014). For the Q-learning problem, any graph

would be well suited, as shown by Xu et al. (2015), which opens more possibilities

to design landscapes of several levels of difficulty. This point should be consid-

ered in the final design.

 Workflow
Taking into account the considerations outlined in Section 5.4.1, the workflow presented

in Figure 28 was established.

Figure 28: Workflow for starting the Q-learning Playground.

The user first compounds the program, configuring the learning environment and the

parameters of the Q-learning algorithm. He or she then opens the robot’s simulation and

launches the Q-learning Playground. After pressing the “Start” button, the learning envi-

ronment is loaded with the dynamic content based on the program data entered by the

user. The user can then observe the agent’s learning and debug the algorithm step by

step.

 User interface
The final version of the Q-learning Playground visualises, aside from the learning pro-

cess, the parameters previously defined by the user in corresponding blocks. It also gives

the user an opportunity to control the algorithm progress step by step.

Three versions of the Q-learning environment were developed: “Railway”, “In the for-

est labyrinth”, and “In the city”. Figure 29 presents these.

compound the
program

compound the
program

open the
simulation

open the
simulation

start the
program

start the
program

train the
network

debug the
Q-learning
algorigthm

step by step

observe

observe

 open the
Neural Network
Playground

 open the
Q-learning
Playground

5 Machine Learning Extensions: System Design and Implementation 65

Figure 29: Three environments in the Q-learning Playground.

The environments have similar optics, with the same statistics and control panel

above the map; the main distinction is the appearance of the map. Based on the number

of nodes, the “Railway” is the easiest map, with only six nodes, “In the forest labyrinth”

is a map of medium difficulty, with eight nodes, and “In the city” is the most difficult map,

with twenty nodes. Visualisation of the Q-value also varies among the maps. Although

the Q-value is visualised on every map in the statistic panel through stars – the higher

the Q-value, the more stars the section receives – the “In the forest labyrinth” and “In the

city” environments provide additional visual feedback. In the map “In the forest labyrinth”,

the paths are initially hidden and are revealed slowly – the higher the Q-value, the more

visible the path. In the map “In the city”, all streets are dirty first, and the higher the Q-

value, the cleaner the street becomes.

Figure 30 represents the Q-learning Playground “Railway” in more detail.

5 Machine Learning Extensions: System Design and Implementation 66

Figure 30: Q-learning environment "Railway".

At the top of the map, the user finds the dynamic statistic panel that changes sequen-

tially on every Q-learning step. In the middle, the statistic panel visualises how much

time is left, the current episode, and the current start station. Then, the current decision

of the agent is shown - either to find the way to the next station or to exploit the knowledge

and take the best way. The end station and the Q-value of the current segment in the

form of five stars complete the panel. The presentation of the Q-value is always relative

depending on the highest Q-value in the current step. Figure 30 demonstrates exemplary

how the Q-value of the current step changed in comparison to the experience from the

previous time the agent was exploring this way – it grew on one star.

The left side of the statistics panel displays the start and finish nodes, and the right

side of the panel displays the current optimal path based on the segments with the high-

est Q-values on the way from the start to the finish node.

The control panel is located below the statistic panel. It enables the user to control

the execution of the Q-learning algorithm. The user may stop, pause, and play the Q-

learning algorithm at three distinct speeds: normal speed, twice as fast, and three times

as fast. By pressing the second button on the left, the user also has an opportunity to

execute the Q-learning algorithm step by step.

ZielStart

3 - 4 - 3

Optimaler Wegvon nach

von 45
bester Weg

zufälliger Weg3 4

50100 : 03: 00

13

0 1

2

3

4

5

besuchte Stationen
sind grün

Hindernis

Strecke, wo der Roboter
gerade Erfahrung sammelt

Start & Ziel

Steuerungaktuelle Episode

Episoden

Karte

Bi
ld

: i
St

oc
k.c

om
/ i

lya
lir

en
;

©
 V

ik
to

riy
a

Ol
ar

i |
 0

8’
 2

02
0

| A
uf

wa
ch

se
n

m
it

Kü
ns

tli
ch

er
 In

te
lli

ge
nz

Auf der Karte siehst du Schritt für Schritt, wie dein Roboter lernt.

Startstation Endstation

aktuelle
Entscheidung

Wie gut ist die
gewählte Strecke? aktueller

optimaler WegZeit

5 Machine Learning Extensions: System Design and Implementation 67

The nodes on the map have three states: not visited (red), visited (green), and cur-

rently active (blue). If the user has set obstacles in the program, they are drawn dynam-

ically between the two nodes. In the map presented in Figure 30, one obstacle is set:

between the second and the third node.

The current active segment between two nodes is animated: the active nodes are

highlighted and the active segment from the start to the finish station is dynamically

drawn as a yellow dashed line.

 System Architecture and Selected Implementation Details
This section presents the system architecture of the Q-learning Playground and outlines

the implementation details. The reader should note that only the most important imple-

mentation details are presented.

 The Q-learning Playground operates completely client-side within a web browser and

is written in TypeScript. It is designed according the object-oriented approach and has a

module structure which orients on the model–view–controller design pattern and leads

to the separation of the user interface, the data models, and the underlying functionalities

(Osmani, 2012). In order to guarantee the encapsulation, the event listener/dispatcher

pattern is implemented for the data exchange. It uses the SVG format to design the user

interface and the SVG.js library to manipulate objects on the Playground. The CSS tech-

nology is used, for instance, to design the elements of the control panel such as Q-value

stars or to manage the change of colours in nodes. Furthermore, the Q-learning Play-

ground uses the async execution concept in order to implement workflows in a non-

blocking way.

Generation of the Q-learning Problem

Before the author presents the classes and the implementation details, the reader should

note the procedure for the preparation of the learning environments introduced in Section

5.4.3. It is vital for the reader to understand this process, because it outlines the basics

for creating the Q-learning problem.

In order to create the Q-learning problem dynamically from the learning environment,

the appropriate SVG files were prepared by the author. While designing the environ-

ments graphically in Adobe Illustrator (Adobe, 2020b), the author drew invisible paths in

places in which an action between one node and another was possible. For instance, on

the map shown in Figure 30, the author drew invisible paths on the railway between the

following nodes: 0–1, 1–0, 1–2, 2–1, 2–3, 3–2, 3–5, 5–3, 3–4, 4–3, 4–5, 5–4, 5–0, and

0–5. Every single path was named according the schema path-startnode-finish-

node, for example, path-0-1 for the first path. Adobe Illustrator added this name as the

5 Machine Learning Extensions: System Design and Implementation 68

id attribute to the respective path. While implementing the Q-learning algorithm, the ids

fitting to the x-path expression [id^="path-"] were filtered out and pre-processed to

dynamically create a list of possible actions and states. The code snippet in Figure 31

outlines the function responsible for this.

Figure 31: Code snippet showing the creation of problem actions by parsing the path ids extracted from
the SVG element.

With this, the author had everything needed to generate the Q-learning problem.

Overview over the Classes Implemented

The Q-learning Playground is realised within the QLearningAlgorithmModule created

in the interpreter.robotMbedBehaviour.js as soon as the Q-learning block for de-

fining the Q-learning environment is used in a Blockly program.

The following classes were implemented:

- QlearningAlgorithmModule acts as an interface between the Open Roberta Lab

simulation and the Q-learning Playground extension.

- ReinforcementProblem defines the Q-learning problem, including the functionalities

to access the states and execute actions.

- QValueStore implements functionalities to store, query, and update the values in the

Q-table. It also includes the functions for the creation of the optimal path.

- QLearningAlgorithm implements the Q-learning algorithm.

public getActions(): Array<Action> {
 let listOfPaths: Array<Action> = new Array<Action>();

 let allPaths: List<Element> = this._svg.find('[id^="path-"]');
 allPaths.each(function (item) {
 let idName: string = item.attr("id");
 let tokens: string[] = idName.split("-");
 listOfPaths.push({
 startState: {
 id: parseInt(tokens[1])
 },
 finishState: {
 id: parseInt(tokens[2])
 }
 });
 });
 return listOfPaths;
}

5 Machine Learning Extensions: System Design and Implementation 69

- qValueLookup implements the qValue interface and is a helper class to cache the

section’s previous Q-value.

- Key is a helper class for the qValueLookup class. Its aim is to generate a unique key

consisting of a source and a target state for a section.

- Visualizer implements the visualisation of the Q-learning process. It takes actions

from the user and dispatches events for further processing. It also implements the

ProblemSource interface, because the visualizer can provide states and actions of

a Q-learning problem based on paths of the SVG element stored in a visualizer, as

shown in Figure 31.

- Svglookup is a class helping reduce performance when searching the element in the

corresponding document for a section by mapping the path SVG element to its sec-

tion key.

- PlayerImpl implements the Player model.

- TimerImpl implements the Timer model.

- RlUtils implements the helping function for generating the rewards and problem.

- Utils implements various help functions, for instance, for different convert and nor-

malise functions.

- HyperparameterTuning is a test class implementing the execution of the Q-learning

algorithm without user interface in order to test the Q-learning algorithm using all

possible parameter combinations. The test input values are created by permutating

all possible parameter values for each test run.

To provide type safety, anonymous objects were avoided by defining interfaces such

as QLearningStep, ProblemState, and ProblemState.

Architecture of the QLearningAlgorithmModule

As soon as the Q-learning block for defining the Q-learning environment is used in a

program, it undergoes the lifecycle described in Section 5.2.3. In the sixth step of the

lifecycle, the stack machine interpreter processes the CREATE_Q_LEARNING_ENVIRON-

MENT, operation which calls the createQLearningEnvironment() function defined in

interpreter.robotMbedBehaviour.js. The qLearningAlgorithmModule is then ini-

tialised.

Serving as the interface to the qLearnigModule, robotMbedBehaviour defines three

further methods that correspond to the Q-learning blocks described in Section 5.2.2:

setUpQLearningBehaviour(), runQLearner(), and drawOptimalPath().

5 Machine Learning Extensions: System Design and Implementation 70

Figure 32 demonstrates the interface between robotMbedBehaviour and qLearn-

ingModule. It also gives insights into the main components of the qLearnigModule and

their interdependencies.

Figure 32: Main components of the qLearningModule (simplified presentation).

 In order to understand how exactly the components interact with each other, the

author designed a sequence diagram of the Q-learning Playground presented in Figure

34. The notation of the diagram is based on Balzert (2011). The reader should note that

the author simplified the sequence diagram for clarity purposes: loops are omitted or an

alternative presentation chosen, and the event listener/event dispatcher concept as well

as functions parameters are only depicted if they contribute to understanding. The dia-

gram shows only calls of the most vital local functions necessary to understand the pro-

cess.

The instance of the QLearningAlgorithmModule is created in the interpreter.ro-

botMbedBehaviour.js as soon as the Q-learning block for defining the Q-learning en-

vironment is used. Depending on the map selected by the user, the function create-

QLearningEnvironment() loads one of three maps, previously prepared in SVG format

by the author. Then, the QLearningAlgorithmModule is initialised. To avoid blocking

code, the Q-learning environment is created asynchronously using the implementation

of the promise concept.

During the creation of the Q-learning environment, qLearningModule instantiates the

visualizer, which creates svglookup and qValueLookup objects. They serve as cach-

ing mechanism in order to optimise performance at runtime. Then, the qLearningModule

qLearningModule

robotMbedBehaviour

visualizerproblem

qLearner player

timer

Webbrowser

5 Machine Learning Extensions: System Design and Implementation 71

converts the obstacles defined by the user in his or her program to notAllowedActions.

The path-ids are converted to actions as described at the beginning of this chapter. Sub-

sequently, not allowed actions are filtered out from all the possible actions and the matrix

of all possible states and actions holding rewards as the matrix values is created. The

qLearningModule initialises the Q-learning problem with previously defined

statesAndActions. With this, the processing of the Q-learning environment block fin-

ishes.

If the user used the block to set up the learning behaviour and the block that starts

the learning process, the processing continues. An instance of the QLearningAlgorithm

is created based on the already defined problem and 𝛼, 𝛾, RHO, and NU values. The

qLearningModule subsequently starts the learning process until the episodes are used

up and the learning is finished. The data of every qLearnerStep as shown in Figure 33

is stored along with the corresponding optimal path in an array named qLearningSteps.

With this, the data for all steps is already given before the user is presented with a graph-

ical visualisation of the learning process.

Figure 33: Code snippet showing the structure of the data stored after each qLearnerStep.

Then, the qLearningModule initialises the player as an instance of the PlayerImpl

class, which in turn initialises the timer as an instance of TimerImpl class. Upon initial-

isation, the player passes the initial values such as the start and finish node, total

amount of time, and number of episodes to the visualizer for visualisation of these

values in the Q-learning Playground. The player registers itself to the visualizer as

the event listener in order to be notified if the visualizer dispatches events (play-

erStrated, playerStopped, playerPaused, playerStartedForOneStep) that come

from the user interaction with the control bar on the Q-learning Playground. When the

player receives events from the visualizer, it delegates them to the timer; this pro-

cess is omitted in the sequence diagram for clarity purposes. While timer is running, the

let qLearningStep: QLearningStep = {
 newState: newState,
 nu: nu,
 qValueNew: qValueNew,
 qValueOld: qValueOld,
 rho: rho,
 state: state,
 duration: duration,
 stepNumber: this.stepNumber,
 highestQValue: this.qValueStore.highestQValue
}

5 Machine Learning Extensions: System Design and Implementation 72

visualizer visualises all entries from the qLearningSteps array, one entry each timer

tick.

If the program that the user compounded contains the draw optimal path block, the

drawOptimalPath() function is called. In this function, the qLearningModule creates a

binding to the timer’s stop event, and as soon as the stop event occurs, the function

drawOptimalFinalPath() is executed. This function draws the optimal path as a white–

black line on the Playground. After the line drawing process is completed, the SVG file

containing the drawn optimal path is transmitted to the scene and put as the scene back-

ground. The robot is set on the start of the optimal path, and if the user added the block

to drive the optimal path, then the robots starts moving.

5 Machine Learning Extensions: System Design and Implementation 73

qL
ea

rn
in

gM
od

ul
e

:Q
Le

ar
ni

ng
Al

go
rit

hm
M

od
ul

e

ne
w

cr
ea

te
Q

Le
ar

ni
ng

En
vi

ro
nm

en
t

(o
bs

ta
cl

es
Li

st
, s

ta
rtN

od
e,

fin
is

hN
od

e)

qL
ea

rn
in

gM
od

ul
e

vi
su

al
iz

er
:V

is
ua

liz
er

cr
ea

te
Vi

su
al

iz
er

()
co

ns
tru

ct
or

vi
su

al
iz

er
Pr

om
is

e

:U
tils

co
nv

er
tO

bs
ta

cl
eL

is
tT

oA
ct

io
nL

is
t(o

bs
ta

cl
es

Li
st

)
co

nv
er

tO
bs

ta
cl

eL
is

tT
oA

ct
io

nL
is

t(n
ot

Al
lo

w
ed

Ac
tio

ns
)

co
nv

er
tS

ta
rtF

in
is

hN
od

eT
oA

ct
io

n
(s

ta
rtN

od
e,

 fi
ni

sh
N

od
e)

co
nv

er
tS

ta
rtF

in
is

hN
od

eT
oA

ct
io

n(
st

ar
tF

in
is

hS
ta

te
s)

ge
tA

ct
io

ns
()

al
lA

ct
io

ns

filt
er

O
ut

N
ot

Al
lo

w
ed

Ac
tio

ns
(a

llA
ct

io
ns

, n
ot

Al
lo

w
ed

Ac
tio

ns
)

filt
er

O
ut

N
ot

Al
lo

w
ed

Ac
tio

ns
(fi

lte
re

d)

:R
LU

tils

ge
ne

ra
te

R
ew

ar
ds

An
dP

ro
bl

em
(a

llA
ct

io
ns

, s
ta

rtF
in

is
hS

ta
te

s)

ge
ne

ra
te

R
ew

ar
ds

An
dP

ro
bl

em
(s

ta
te

sA
nd

Ac
tio

ns
)

pr
ob

le
m

:R
ei

nf
or

ce
m

en
tP

ro
bl

em

ne
w

(s
ta

te
sA

nd
Ac

tio
ns

)

:ro
bo

tM
be

dB
eh

av
io

ur

se
tU

pQ
Le

ar
ni

ng
Be

ha
vi

ou
r

(a
lp

ha
, g

am
m

a,
 n

u,
 rh

o)
ru

nQ
Le

ar
ne

r(e
pi

so
de

s,
 ti

m
e)

qL
ea

rn
er

:Q
Le

ar
ni

ng
Al

go
rit

hm

ne
w

(p
ro

bl
em

,a
lp

ha
, g

am
m

a,
 rh

o,
 n

u)

qL
ea

rn
er

fo
r e

ac
h

ep
is

od
e

pl
ay

er
:P

la
ye

rIm
pl

ne
w

(q
Le

ar
ni

ng
St

ep
s,

 to
ta

lT
im

e,
 e

pi
so

de
s,

 s
ta

rtF
in

is
hS

ta
te

s)
pl

ay
er

in
itia

liz
e(

vi
zu

al
iz

er
)

tim
er

:T
im

er
Im

pl

ne
w tim

er
ad

dE
ve

nt
Li

st
en

er
()

se
tIn

itia
lV

al
ue

sO
nM

ap
(s

ta
rtS

ta
te

.id
, f

in
is

hS
ta

te
.id

, t
ot

al
Ti

m
e,

qL
ea

rn
in

gS
te

ps
.le

ng
th

)
ad

dE
ve

nt
Li

st
en

er
(p

la
ye

rS
ta

rte
d)

, p
la

ye
rS

to
pp

ed
, p

la
ye

rP
au

se
d,

 p
la

ye
rS

ta
rte

dF
or

O
ne

St
ep

dr
aw

O
pt

im
al

Pa
th

()

sv
gl

oo
ku

p
:S

vg
lo

ok
up

ne
w

sv
gl

oo
ku

p

qV
al

ue
Lo

ok
up

:q
Va

lu
eL

oo
ku

p

ne
w

qV
al

ue
Lo

ok
up qL

ea
rn

er
St

ep
()

fin
dO

pt
im

al
Pa

th

ad
dE

ve
nt

Li
st

en
er

(s
to

p)

dr
aw

Fi
na

l
O

pt
im

al
Pa

th
()

up
da

te
Ba

ck
gr

ou
nd

()

:S
ce

ne

on
Ti

m
er

Ti
ck

()

pr
ob

le
m

fin
dO

pt
im

al
Pa

th
(o

pt
im

al
Pa

th
)

qL
ea

rn
er

St
ep

(q
Le

ar
ne

rS
te

pD
at

a)

qL
ea

rn
er

St
ep

s

on
Q

Le
ar

ni
ng

St
ep

(n
ew

Q
le

ar
ne

rS
te

p,
 c

ur
re

nt
Ti

m
e,

 e
xe

cu
tio

nD
ur

at
io

n)

di
sp

at
ch

Ev
en

t(s
to

p)

Figure 34: Simplified sequence diagram of the Q-learning Playground.

3q

5 Machine Learning Extensions: System Design and Implementation 74

5.5 Technical Challenges
This section presents some reflections on the development process, selected technical

difficulties, and solutions to these.

Initially, the author invested much time into understanding the concepts used in the

source code of Open Roberta Lab, such as the API between front-end and back-end or

visitor pattern for individual workflow workers. Although the wiki for the Open Roberta

Lab project on GitHub platform offers some information on Blocky and the system archi-

tecture, overall, the documentation is patchy. With very few exceptions, neither the in-

ternal structure of the project source code nor the general concepts are documented.

The source code documentation such as JavaDoc is missing. The only way for the author

to get familiar with the source code and to be able to extend it was to explore it for herself,

which was very time-consuming.

While defining new blocks as briefly described in Section 5.2.3, the author had to deal

with the generation of Blockly blocks using the python script provided by the Blockly

project in Open Roberta Lab. Although the script worked stably over the entire period of

the research, the generator script execution aborted with an error one week before the

user study. After very time-consuming research conducted after the error, the author

found that the error occurred because the executed python script used the online com-

piler of the closure library (Google Developers, 2020b), which no longer supported the

older closure library source code used by the Blockly project in Open Roberta Lab. The

author solved this problem by manually adding changes to the last successfully gener-

ated source code file, which is not an optimal solution if the Playgrounds will be devel-

oped further in the future.

One of the most time-consuming tasks while implementing the Neural Network and

the Q-learning Playgrounds was the proper binding of the SVG.js and react.js libraries

considered for use for the Playground’s implementation. Based on considerations out-

lined in Sections 5.3.4 and 5.4.4, the author used TypeScript and developed her code in

JetBrains IDEs with native support from the node package manager (npm; npm (2020)

to manage the TypeScript sources. However, in order to integrate the author’s imple-

mentations into the Open Roberta Lab project, the RequireJS (require.js, 2020) frame-

work as the JavaScript module loader was required. The porting of sources provided by

the npm to the RequireJS framework was a demanding task: The author had to manually

search for automatically downloaded library sources and then copy them manually inside

the Open Roberta Lab project. The dependency declarations within the JavaScript

sources compiled by the TypeScript compiler also needed to be adapted manually.

5 Machine Learning Extensions: System Design and Implementation 75

One of the most challenging implementations was the visualisation of the neural net-

work link. To achieve the functionality described in the third and fifth considerations in

Section 5.3.1 and 5.3.4, the link should be implemented as a slider showing the current

value of the link weight and allowing the user to change the weight value by moving the

slider regulator back and forth. During the implementation, the author encountered mul-

tiple issues. In the following, two of them are presented:

1) As JavaScript does not provide the native implementation of a drag-and-drop fea-

ture and the usage of external libraries was challenging and should be minimised,

as mentioned in Section 5.3.15.3.4, the author had to implement this feature for

the link slider herself, which was challenging. The author encountered problems

in which the slider regulator did not move properly, with the user having to position

the mouse exactly in the middle of the regulator in order to move it. To solve this

problem, the author implemented a class Draggable. As outlined in Section 5.3.4,

the AiNeuralNetworkUI object contains an instance of the class Draggable in

which each LinkUI instance is registered. The Draggable fires on the mousedown,

mousemove, and mouseup events the dragstart, dragmove and dragend events,

respectively, with the corresponding LinkUI instance as the event source. In the

first implementation, the drop action was not fired consistently, because the

mouseup event was only fired if the mouse was inside the regulator. To ensure the

proper functionality and to get the mouseup event in any case, the Draggable

instance had to listen the mouseup event globally. Therefore, its mouseup events

listener was expanded from the regulator element to the root document instance.

2) The next challenge was to keep the regulator while dragging at the correct position

on the slider element to which it belongs. In order to find out the best matching

point on the path depending on the mouse position, the author implemented the

closest point algorithm. This algorithm distributes points on the path at equal dis-

tances and identifies the one with the shortest distance to the current mouse po-

sition as the result.

Another issue concerned the entire user interface of the Neural Network Playground.

As the user can program the neural network to contain many nodes within one layer, the

Neural Network Playground UI component can grow vertically. For this, the author con-

sidered either scaling the entire UI component to fit the screen dimensions or providing

scroll options. The author decided to provide the scroll option, because only the vertical

direction is affected. However, the issue of how to deal with the neural networks that are

much larger than the screen remains, because the scaling will make the components

small and therefore unsuitable for children.

5 Machine Learning Extensions: System Design and Implementation 76

While implementing the Q-learning Playground, the author encountered several diffi-

culties.

1) Previously in this chapter, the author described difficulties importing the sources

provided by the npm into the RequireJS framework used by Open Roberta Lab.

This issue tremendously affected the choice of technologies used in the devel-

opment of the Q-learning Playground. To provide performance implementation of

the Q-learning Playground, the author considered using the react.js framework

(react.js, 2020b) instead of the SVG.js library. The learning environment realised

in the SVG format could be processed by the JSX (react.js, 2020a) parser offered

by the ReactJS library. However, it turned out that the ReactJS library including

JSX sources cannot be integrated into the RequireJS framework with reasonable

effort. Thus, the author had to abandon the intention to use react.js in the Q-

learning Playground implementation and proceed with the usage of the SVG.js

library.

2) As described in Section 5.4.4, the simulated robot drives the optimal path com-

puted by the Q-learning algorithm. In order to provide the correct behaviour, the

robot must be positioned at the correct 𝑥, 𝑦 coordinates and rotated to the correct

orientation (Θ angle based on east-orientation). The calculation of the Θ angle

implied trigonometrical calculations, which turned out to be a challenging task: In

some cases, the robot was given the orientation mismatch of 180 degrees. The

solution was to add π in certain ranges, depending on the start orientation of the

optimal path.

3) After the implementation of the Q-learning Playground, the author conducted the

manual tests via UI in order to gain the information of how the single parameters

influence the optimal path. However, the test did not show any clear results.

Therefore, the author decided to develop parameter tuning tests, which could be

executed automatically by permutating all possible parameter values without UI.

The test data was saved and analysed. The author found that the 𝛼 and 𝛾 pa-

rameters have no clear effect on the results individually, but an effect of the pa-

rameters in combination with each other is clear. Indeed, both parameters seem

to compensate for each other.

5.6 Summary
In this chapter, the author outlined how she addressed the limits of existing approaches

to introducing machine learning for novice identified in Section 2.4. To this end, she pre-

sented solutions that she has developed for Open Roberta Lab, thereby partially

5 Machine Learning Extensions: System Design and Implementation 77

answering the second research question of how the approaches proposed in Sections

3.1.2 and 3.2.2 can be concretely implemented in Open Roberta Lab.

In order to enable the reader to follow the additions the author made to Open Roberta

Lab, she demonstrated how the Open Roberta Lab project is structured. The author then

described the main workflows relevant to the simulation environment of the LEGO EV3

robot, which she extended with new blocks and machine learning features.

The author presented 16 new command blocks that she defined and implemented in

Open Roberta Lab. With these blocks, students can create simple neural networks and

applications based on the Q-learning algorithm. In order to help the reader understand

how the blocks are implemented in the ecosystem of the Open Roberta Lab project, the

author described implementation details using the example of the ai_neural_network

block.

The author then introduced her major developments: The Neural Network Play-

ground, which enables students to tinker with neural networks and supervised learning,

and the Q-learning Playground, which allows students to experiment with the Q-learning

algorithm. For both the Neural Network Playground and Q-learning Playground, she out-

lined what technical considerations underlying these features. She then demonstrated

the user interface for each and presented an overview of the new classes. With the help

of the sequence diagram for each feature, the author clarified her implementations in

detail.

Finally, the author presented the reflections on the development process. She pre-

sented selected technical challenges in the implementation of the Neural Network Play-

ground, especially the implementation of the visualisation of a link. Then, she outlined

the difficulties in implementing the Q-learning Playground, including the integration of

external libraries, the calculation of the robot position and testing of all possible param-

eter combinations of Q-learning algorithm, in order to understand, how single parameters

influence the optimal path.

6 Conception of the Machine Learning Materials

Based on the design guidelines in Section 4.1, the author developed a series of teaching

and learning materials to accompany the machine learning extensions presented in

Chapter 5 to help both educators and children grasp the machine learning paradigms

that underly the extensions.

In total, the author designed a machine learning curriculum which serves as a guide-

line for teachers, a set of the Neural Network Cards for the introduction to the Neural

Network Playground and the topic of supervised learning, and a set of worksheets and

learning cards for the Q-learning Playground to introduce students to the topics of rein-

forcement learning. An unplugged activity to introduce unsupervised learning with the k-

means algorithm closes the series.

Although the Neural Network Cards and Q-learning Cards are structed activities which

help the young students get started, the aim was for them to serve as a steppingstone,

not a final destination. The materials should enable the participants to play with machine

learning technologies and make something that interests them, in accordance with the

ideas of constructionism (Michaeli et al., 2020; Papert & Harel, 1991; Queiroz et al.,

2020).

This chapter introduces the materials which the reader finds in their original size in

Appendices A.6 and A.7. It should be noted, that the materials were developed in Ger-

man, as they are to be used with German-speaking children. For the graphic design of

the materials, the author took inspiration from explanations of machine learning topics in

children’s books, as described in Section 4.1.3 and based on Castella (2018) and the

D4CR Association (2020).

6.1 Machine Learning Curriculum
A machine learning curriculum consists of a lesson plan based on four modules and a

presentation. The lesson plan, which is attached to Appendix A.4, is tailored to six school

lessons of 45 minutes, from which the teacher can shorten or widen it if required. The

aim of the machine learning curriculum is formulated as follows (Appendix A.4):

Students investigate how robots learn, think, and feel. They investigate what is

meant by the term “artificial intelligence (AI)” and learn about three main areas of

AI – supervised, unsupervised, and reinforcing learning – in a practical way. They

explore when people describe a machine as intelligent and strengthen their newly

acquired knowledge by dealing with the development and configuration of simple,

descriptive AI applications in Open Roberta Lab.

6 Conception of the Machine Learning Materials 79

Module 1 “How does your robot learn?” – Introduction to Artificial Intelligence and
Machine Learning

The lesson starts with getting to know each other and a discussion in plenum. The

teacher questions the students about the how the machines learn: “Do the machines

learn at all?”; “If you have already written a program, does that mean that the com-

puter/your robot has become smarter?”

After the discussion, the teacher performs a Braitenberg experiment using a Calli:bot

robot as described in Section 3.1.2 and asks the children again “Is this behaviour of the

robot intelligent?” After the discussion, the teacher holds a short input lecture introducing

artificial intelligence and machine learning. The teacher pays particular attention to illus-

trating the topic with examples that have a connection to the children’s everyday lives.

He or she then briefly introduces the three areas of machine learning – supervised, un-

supervised, and reinforcement learning – and starts deepening the supervised learning

topic.

Module 2 “Teaching your robot” – Introduction to Supervised Learning and Neural
Networks

The educator explains that in order to teach the robot something, the children have to

train its neural network. He or she then explains what the neural networks are and how

they can be trained. For this, the educator can use examples provided in the presentation

(Appendix A.5). Figure 35 shows one such example.

Figure 35: Simple illustration showing the basic functionality of the neural network on the AI-robot.

In Figure 35, the author reduced a neural network to the essentials – an input neuron,

a link, and an output neuron. The idea is to show the causal relationship of how the input

neuron influences the output neuron by moving the regulator back and forth. The robot

in Figure 35 is placed on the green surface, and its colour sensor recognises the green

colour. However, as shown in the left-hand illustration, the LED does not light up. The

reason for this is that the value of the link is 0. If the regulator is moved to the right, as

6 Conception of the Machine Learning Materials 80

shown in the right-hand illustration, the value of the link changes to 1 and the LED lights

up.

After this brief introduction, the students are supposed to take up the role of teacher

for the simulated robot. The children receive the Neural Network Cards and can work

with them alone or in groups. The teacher goes around and helps where necessary.

Module 3 “Let your robot learn from experience” – Introduction to Reinforcement
Learning

After the lunch break, the children are introduced to reinforcement learning. In order to

maximally retain students’ attention, they are asked to keep their laptops closed during

the introduction, as it is crucial for them to understand how the Q-learning algorithm

works and what the task is before beginning to program the Q-learning algorithm. The

teacher distributes the information and worksheets and lets the children read them. Be-

fore the children open their laptops, the teacher conducts the first trial in plenary, so the

children have an example of how to document the first experiment in the Q-learning Card.

The teacher may use the slide from Figure 36 for this. The description of the exercise

can be found in Section 6.3.

Figure 36: Slide that explains filling out the Q-learning card.

 The children then have time to play with the parameters of the algorithm on the Q-

learning Playground and to conduct the experiments. The results are discussed after the

children have finished the trials.

Module 4 “Can robots learn autonomously?” – Introduction to Unsupervised
Learning

In the last 40 minutes, the teacher introduces clustering and the k-means algorithm,

showing an experiment and letting the children actively take part. The curriculum also

6 Conception of the Machine Learning Materials 81

includes links to further instructional materials. If time remains, the teacher can use ex-

ternal instructional materials to further explore machine learning topics.

6.2 The Neural Network Cards
While designing the learning materials accompanying the Neural Network Playground,

special attention was paid to the high consistency among the Neural Network Play-

ground, learning materials and the teacher’s presentation, so that the children can easily

recall and transfer their knowledge.

Following the constructionistic ideas for designing the task as a problem-solving ac-

tivity (Kandlhofer et al., 2016), the author developed a set of nine double-sided learning

cards in the DIN-A5 format. Figure 37 shows an overview of the result. The complete set

showing the Neural Network Cards from their front and back side is attached in their

original size to Appendix A.6.

Figure 37: Overview on the Neural Network Cards (front sides only).

The cards are designed in comic style, for as Castella (2018) points out, characters

and stories in comic style give kids a starting point for their imagination and motivate

them to be creative. This is noticeable in the colours, selected fonts, and character de-

signs. The colours are bright, optimistic, and playful: The background varies from soft

white to mellow beige, and block colours are cosy and warm, yet vibrant. Adding the

hand drawn illustrations and sketching the neural networks as shown, for example, in

Motor B

Speaker
gibt Töne aus

Bildschirm
zeigt Text

Ultraschalsensor 2
misst Abstand vorne links

Ultraschalsensor 3
misst Abstand vorne rechts

Farbsensor 1
kann Farben und Licht messenLED Lampe

leuchtet grün, orange
und rot

Motor C

Hallo

DDDDDeeeeeinnnnn KKKKKII---RRRRRoobbbboottteerrrr
© Viktoriya Olari | Juli 2020 | Aufwachsen mit Künstlicher Intelligenz

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

CCCCCCChhhhhhaaaaaammmmmmmmeeeellleeeeoooonnn
Auch Roboter können lernen, sich der Umgebung anzupassen

Bringe das deinem Roboter bei! Schiebst du deinen Roboter auf
das grüne Blatt, soll seine LED-Lampe grün aufleuchten.

Du brauchst:

Mein neues Outfit passt
ganz gut zu den Blöcken

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

IInnnnnnnnkkkkkkkooooooggggggggnnnnniiittttttoooo
Lass deinen Roboter nicht erwischen!

Bringe dem Roboter bei, helle Orte zu meiden. Je heller die
Umgebung, desto schneller muss dein Roboter fahren.

Du brauchst:

0 bedeutet beim Lichtsensor

sehr dunkel und 100

 sehr hell.

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

VVVooorrsiiiccchhtttiiigggkkeeeiittttt
Bringe deinem Roboter die Verkehrsregeln bei

Auf “Grün” darf der Roboter mit voller Geschwindigkeit fahren,
auf “Gelb” soll er langsamer werden und auf “Rot” muss er stehen
bleiben.

Neue Blöcke, die du brauchst:

+ die Blöcke, die du schon kennst:

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

LLLaauuutttteeerr AAAbbbbssttttaaannnnd
Lass den Roboter den Abstand zum Hindernis laut messen

Bringe dem dem Roboter bei, dass je näher er zu einem Hindernis
ist, desto tiefer soll der Ton sein, den er ausgibt.

Neue Blöcke, die du brauchst:

+ die Blöcke, die du schon kennst:

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Frreeeeunnndddsscccchhhhhhhhaaaaaaffffftttt
Auch Roboter können freundlich sein

Bringe deinem Roboter bei, sich freundlich zu verhalten!
Sobald der Roboter ein Objekt in seiner Umgebung erkennt, soll er
dem Objekt näherkommen.

Freunde!

Du brauchst:

2x

+ die Blöcke, die du schon kennst:

- für Port 2 und für Port 3

- für Port B und für Port C2x

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

AAAAnnnnggggggssstttttt
Lass deinen Roboter «Angst» vor Hindernissen haben

Bringe deinem Roboter bei, den Hindernissen auszuweichen.
Sobald der Roboter ein Objekt in seiner Umgebung erkennt, soll er
von diesem Objekt fliehen.

Du brauchst:

2x

+ die Blöcke, die du schon kennst:

- für Port 2 und für Port 3

- für Port B und für Port C2x
Ein Roboter

muss auf

verschiedene

Situationen

vorbereitet

sein!

© Viktoriya Olari | Juli 2020 | Aufwachsen mit Künstlicher Intelligenz

IIIInnnnntttttteeerrrrrreeeesssssseee
Lass deinen Roboter die Landschaft explorieren!

Bringe deinem Roboter bei, korrekte Begri!e zu den Gegenständen zu
zeigen. Fährt er auf “Grün” - sollt der Text “Wiese” angezeigt werden.
Fährt er auf die Farbe “Gelb” - soll er das Wort “Sand” anzeigen. Bei der
Farbe “Blau” - soll der Text “Wasser” ausgeben.

hier wird
das Ergebniss
ausgegebenNeue Blöcke, die du brauchst:

Wiese

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

RRRRRRRRRRRRRRRRRaaaaaaaaaaaaaallllllllllyyyyyyyy
Lass deinen Roboter selbständig die farbigen Kurven meistern!

Auf Grün dreht sich der linke Motor langsamer als der rechte,
bei Rot dreht sich der rechte Motor langsamer als der linke,
bei Blau drehen sich die Motoren gleich schnell.

Neue Blöcke, die du brauchst:

Wusstest du, dass diese Farben

zusammen die Farbe “weiß” ergeben?

6 Conception of the Machine Learning Materials 82

Figure 38, evokes whimsical humour and emotions. Following the storytelling approach,

the tasks and hints in the learning cards are problem based and written as short stories

in order to be appealing to the student.

The cards adapt the principle of “low floors and wide walls” introduced in Section 4.1.3

by enabling the student to start in a straightforward manner. However, the level of diffi-

culty increases with each card. With the first learning card, which is introductory, the child

meets the central figures of the learning cards: the AI robot and its helping friend – a

robot that is always there to lighten the atmosphere and give hints. On the front page,

the AI robot presents itself and its current setup. On the back, the helping friend refers

to the configurations of Open Roberta Lab, which are necessary for the further work with

the learning cards.

 Eight subsequent cards each deal with one topic. Table 3 gives an overview of the

structure of the learning cards and the variety of input and output neurons used in each

card.

Table 3: Overview of the structure of the learning cards and the corresponding input and output nodes.

Learning Card Input Output

Chameleon 1 x colour, colour sensor 1 x LED

Incognito 1 x light, colour sensor 2 x Motor

Caution 3 x colour, colour sensor 2 x Motor

Loud Distance 1 x distance, ultrasonic sensor 1 x Sound

Friendship 2 x distance, ultrasonic sensor 2 x Motor

Fear 2 x distance, ultrasonic sensor 2 x Motor

Interest 3 x colour, colour sensor 3 x Text

Rally

1 x R channel, colour sensor

1 x G channel, colour sensor

1 x B channel, colour sensor

2 x Motor

Each card is similarly structured. Figure 38 shows the front and back of the Neural

Network Card “Friendship”.

6 Conception of the Machine Learning Materials 83

Figure 38: Front and back side of the Neural Network Card "Friendship".

 On the front, the student finds a simple task description and a quick preview of the

desired behaviour. For instance, in the learning card “Friendship”, the robot should move

towards the blue square. The front side also contains the blocks that the student should

use to fulfil the task, with their number decreasing on every next learning card in order

to achieve increasing difficulty. The back of the card presents the solution – the final

program and the correctly configured neural network, supported by a short comment.

The back side of some cards contains additional tasks.

6.3 The Q-learning Cards and Supporting Worksheets
The Q-learning Playground is accompanied by a series of learning materials, including

information sheets and worksheets. If the children work each for themselves or have

questions, they can consult the information sheets. Worksheets help them get started

with the Q-learning Playground and provide them with a straightforward structure for

conducting the first experiments.

The aim of instructional materials is to support students understanding of how the Q-

learning algorithm works by making it comprehensible and tangible. The instructions and

problem-based tasks help students to gain the practical understanding that changing the

parameters of the algorithm influences the learning environment and learning behaviour

of the robot. With this, the students also gain theoretical knowledge of the functioning of

the algorithm and understand what the optimal path is and on which criteria it is drawn.

While playing with the algorithm and observing and evaluating the learning procedure,

the students put themselves in the agent’s shoes. They immerse themselves in the be-

haviour of the simulated robot, and in doing so, they gain insights and look behind the

scenes. They discover how the robots are trainable and that they are not perfect.

The information in worksheets has been formulated as short stories whenever possi-

ble and was adapted with young students in mind. The tasks are based on the problem-

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Auch Roboter können freundlich sein

Bringe deinem Roboter bei, sich freundlich zu verhalten!
Sobald der Roboter ein Objekt in seiner Umgebung erkennt, soll er
dem Objekt näherkommen.

Freunde!

Du brauchst:

2x

+ die Blöcke, die du schon kennst:

- für Port 2 und für Port 3

- für Port B und für Port C2x

Lösung

Damit dein Roboter sich freundlich
verhält, sollst du dein neuronales
Netz wie folgt konfigurieren:

So steckst du dein Programm zusammen:

6 Conception of the Machine Learning Materials 84

solving methods. Figure 39 shows the information sheets and worksheets, and the fol-

lowing overview explains the individual materials in more detail.

1) Program: Let your robot learn (Appendix A.7.4) – explains how to program ap-

plications based on the Q-learning algorithm with blocks and gives some hints

that the user can experiment with.

2) Flow diagram: This is how your AI-robot learns (Appendix A.7.5) – introduces

the Q-learning algorithm step by step.

3) Q&A: Reinforcement learning (Appendix A.7.2) – summarises possible ques-

tions and answers that the student may have about the operation of the Q-learn-

ing algorithm and reinforcement learning. The explanations in the Q&A are writ-

ten in short, simple language, taking into account possible difficulties of the stu-

dent.

4) Observation card (Appendix A.7.6) – is a worksheet that the students fill out. It

serves as a basis for reflections on how the Q-learning algorithm works and

whether the child believes that there are optimal parameters.

5) Map (Appendix A.7.3) – illustrates the Q-learning environment and all elements

that the user sees and can interact with. The statistics and navigation bar are

explained in detail.

6 Conception of the Machine Learning Materials 85

Figure 39: Instructional materials for the Q-learning Playground.

Furthermore, the author developed three Q-learning Cards (Appendix A.7.1) corre-

sponding to the respective environments described in Section 5.4.3. The Q-learning

Cards support students in conducting the experiments with the Q-learning algorithm. The

students document the parameters they set in the Q-learning algorithm for each iteration

and describe their observations of the optimal way that the robot found. The idea of

experiments is based on a concept called hyperparameter tuning or optimisation, which

refers to the selection of the best values to minimise or maximise the given function (Das

& Cakmak, 2018). In the first learning card, the students are asked to complete three

trials, and in the second and third, five trials. Figure 40 illustrates the cards.

ZielStart

3 - 4 - 3

Optimaler Wegvon nach

von 45
bester Weg

zufälliger Weg3 4

50100 : 03: 00

13

0 1

2

3

4

5

besuchte Stationen
sind grün

Hindernis

Strecke, wo der Roboter
gerade Erfahrung sammelt

Start & Ziel

Steuerungaktuelle Episode

Episoden

Karte

Bi
ld

: i
St

oc
k.c

om
/ i

lya
lir

en
; ©

 V
ik

to
riy

a
Ol

ar
i |

 0
8’

 2
02

0
| A

uf
wa

ch
se

n
m

it
Kü

ns
tli

ch
er

 In
te

lli
ge

nz

Auf der Karte siehst du Schritt für Schritt, wie dein Roboter lernt.

Startstation Endstation

aktuelle
Entscheidung

Wie gut ist die
gewählte Strecke? aktueller

optimaler WegZeit

©
 V

ik
to

riy
a

Ol
ar

i |
 0

8’
 2

02
0

| A
uf

wa
ch

se
n

m
it

Kü
ns

tli
ch

er
 In

te
lli

ge
nz

Lasse deinen KI-Roboter lernen

+

Ϧə<¶ĐĐ�ö¶ñ�
zeigen, was du
gelernt hast!

ϦəqáÍ�Đýññ�
deine Karte
aussehen?

hier geht’s
nicht lang!

ϦəqáÍ�ñ¶÷ÙÍ�
soll dein KI-
Rober
lernen?

Teste verschie-
dene Anzahl von
Episoden aus

so steckst du den Q-Algorithmus zusammen

ϦəqáÍ�Đýññ�
dein KI-Robo-
ter lernen?

©
 V

ik
to

riy
a

Ol
ar

i |
 0

8’
 2

02
0

| A
uf

wa
ch

se
n

m
it

Kü
ns

tli
ch

er
 In

te
lli

ge
nz

Wie lernt dein KI-Roboter mit dem
Q-Learning Algorithmus?

Schaue dir dazu das Bild auf der Rückseite des
Blattes an.

Kann ich den Start oder das Ziel
ändern?

Klar! Probier aus, wie schnell dein Algorithmus
die optimale Strecke findet.

Was ist eine Episode?

Es ist ein Durchlauf des Algorithmus von einer
Station zu der anderen.

Was bedeuten die Sterne?
Die Sterne zeigen, wie attraktiv die Strecke für
deinen Roboter ist.
sehr attraktiv nicht attraktiv

Was hat diese gelbe Linie zwischen
zwischen zwei Pins zu bedeuten?
Es ist die Strecke, die dein Roboter aktuell
durchläuft.

43

Warum beginnt mein Roboter immer an
einer anderen Stelle?

Weil du wahrscheinlich die Teleportation erlaubt
hast.

Wie berechnet der Roboter, ob die
Strecke attraktiv ist?

Der Roboter berechnet aufgrund der Einstellun-
gen, die du in diesem Block ausgewählt hast, ob
die Strecke attraktiv ist oder nicht.

Darf der Roboter seine Vorerfahrung
nutzen,

dann greift er bei jedem Schritt auf sein vorheri-
ges Wissen zurück.

Ist lerne „langsam“ eingestellt,
dann lernt der Roboter langsamer, dafür merkt
er besser, was er gelernt hat. Schnelles Lerntem-
po ist nicht immer gut, denn dann vergisst dein
Roboter auch schneller.

Ist extra Belohnung auf
„ja“ eingestellt,
dann schaut der Roboter zwei Schitte im Vor-
aus, ob die Strecke danach auch eine attraktive
ist. Extra Belohnung ist auch nicht immer gut,
denn es kann den Roboter in die Irre führen. Die
Strecke im übernächsten Schritt ist vielleicht gar
nicht so gut.

Ist Teleportation erlaubt,

dann springt der Roboter beim nächsten Schritt
zu einer beliebigen Station und startet von da
aus.

Q & A : Bestarkendes Lernen

so steckst du den Q-Algorithmus zusammen

©
 V

ik
to

riy
a

Ol
ar

i |
 0

8’
 2

02
0

| A
uf

wa
ch

se
n

m
it

Kü
ns

tli
ch

er
 In

te
lli

ge
nz

starte an
irgendeiner

Station

wähle die nächste
Station aus

(zufällige ODER
die attraktivste)

bekomme für
diese Strecke 50
Punkte Belohnung

aktualisiere die
Anzahl der Sterne
für diese Strecke

bekomme keine
Belohnung für
diese Strecke

fahre zur
nächsten Station

berechne die
Qualität der

Strecke

Wurde
Ziel-
station
erreicht?

nein

ja

ja nein
wird eine

der nächsten
Strecken mit
Sternen be-

lohnt?

So lernt dein KI-Roboter

©
 V

ik
to

riy
a

Ol
ar

i |
 0

8’
 2

02
0

| A
uf

wa
ch

se
n

m
it

Kü
ns

tli
ch

er
 In

te
lli

ge
nz

Beobachtungskarte

Eisenbahn

Minimale Zeit für
den optimalen Weg

Maximale Zeit für
den optimalen Weg

Maximale Episode-
nanzahl, um zum Ziel
zu kommen

Minimale Episode-
nanzahl, um zum Ziel
zu kommen

Lerne Extra Belohnung Teleportation Vorerfahrung

Wald-
labyrinth In der Stadt

Was denkst du, was ist die beste Einstellung für deinen KI-Roboter?

6 Conception of the Machine Learning Materials 86

Figure 40: Q-learning Cards.

Each of three Q-learning Cards has a similar front and back. The front illustrates the

Q-learning environment, accompanied by the start state, finish state, and obstacles that

the child can use for the trials. The back includes a table, in which the students take

observation records. The students can also record their guesses for the optimal path

before they begin conducting the trials.

Figure 41 shows the back of the Q-learning Card for the first learning environment

“Railway”.

Figure 41: The back of the Q-learning Card "Railway".

In the table, the student can note following values: 𝛼, 𝛾, NU, RHO, episodes, and time.

After the learning process is finished and the robot drives the optimal path, the students

can record this path in the last column.

Although the Q-learning materials are characterised by their uniform design with soft

colours, colourful pictures, and hand-drawn illustrations, the design of the instructional

materials for the Q-learning Playground differs from the design of the materials for the

01

2

3

4

5

Start:3 Ziel:1 Hindernisse:3-2, 2-3 Eisenbahn

Lerne, bis du den besten
Weg fahren kannst.

©
 V

ik
to

riy
a

Ol
ar

i |
 0

8’
 2

02
0

Au
fw

ac
hs

en
 m

it

Kü
ns

tli
ch

er
 In

te
lli

ge
nz

 |
Bi

ld
: i

St
oc

k.c
om

/ i
lya

lir
en

Waldlabyrinth

Lerne, bis du zum Zelt
wiederfindest.

Bi
ld

: i
St

oc
k.c

om
/ I

va
n

Tu
po

no
go

v
©

 V
ik

to
riy

a
Ol

ar
i |

 0
8’

 2
02

0
 A

uf
wa

ch
se

n
m

it
Kü

ns
tli

ch
er

 In
te

lli
ge

nz
 |

Start:0 Ziel:7 Hindernisse:4-6 In der Stadt

Lerne, bis die Route
frei ist.

©
 V

ik
to

riy
a

Ol
ar

i |
 0

8’
 2

02
0

 A
uf

wa
ch

se
n

m
it

Kü
ns

tli
ch

er
 In

te
lli

ge
nz

 |
Bi

ld
: i

St
oc

k.c
om

/ g
riv

in
a

Start:0 Ziel:15 Hindernisse:16-15

Was denkst du, welcher Weg ist der schnellste?

Start:3 Ziel:1 Hindernisse:3-2, 2-3

lerne...

Test 1

Test 2

Test 3

extra
Belohnung

Tele-
portation

Vor-
erfahrung Episoden Zeit Bester Weg

Probiere verschiedene Einstellungen aus!
Spiele mit Episoden: 10, 100 oder 1000?
Gibt’s da einen Unterschied?

Mit welchen Paramtern findet dein
Roboter den optimalen Weg? Markiere
die Zeile mit einem Marker.

6 Conception of the Machine Learning Materials 87

Neural Network Playground: Both the fonts and the colours and characters are different.

This is intentional, because the materials cover distinct topics.

6.4 Unplugged Activity Introducing the K-means Algorithm
Introducing the topic of unsupervised learning with the k-means algorithm is designed as

an experiment and an analogous exercise. The unplugged activities are recommended

by several studies (Seegerer et al., 2019; Wong et al., 2020), and unplugged activities

to teach machine learning concepts are not uncommon (Jatzlau et al., 2019; Michaeli et

al., 2020). This section describes the activity procedure based on the k-means algorithm

outlined in Section 3.3.2.

The facilitator first displays a set of items and asks students how they would group

the objects. Figure 42 shows the first illustration.

Figure 42: Clustering – the introductory slide.

After a brief plenary discussion, it becomes apparent that there are numerous possi-

ble criteria for grouping items: for example, by colour, material, content, or form. The

facilitator poses the next questions to the students: “Where do your criteria come from?”,

“Why did you choose this grouping?”

After the questions have been discussed in small peer groups and then in plenary,

the educator suggests putting him- or herself in the role of a robot and sorting the items

as the robot would do it. The children should pay particular attention to what criteria the

facilitator used to sort the objects and for the sorting method – how exactly did the

teacher sort the objects?

6 Conception of the Machine Learning Materials 88

The facilitator sorts the objects according to the k-means algorithm. He or she first

sticks a few post-it notes on random objects to form cluster centres. The items remaining

in the set are then compared with each cluster centre according to a criterion known only

to the facilitator. After comparing each item with the cluster centres, the facilitator places

the items behind the cluster centre that he or she believes fits best.

When all items from the set have been sorted into the cluster centres, the teacher

discusses with the children what they think the criterion for the sorting process was. The

clustering procedure is then reviewed in plenary, and the teacher explains the k-means

algorithm in detail. He or she presents Figure 43, which depicts the k-means algorithm

step by step.

Figure 43: The k-means algorithm, step by step.

The children are then invited to select a criterion on their own and to sort the items

according to the k-means algorithm in peer groups or in the front of the class.

7 Evaluation

This chapter outlines the results of the user study conducted from 5 to 7 August 2020 at

the Heinrich-Hertz-Berufskolleg in Düsseldorf. It first presents the setup and participants,

then provides insight into the procedure and presents the results of the questionnaire

and the students’ feedback.

7.1 Setup
The following preparations for the testing of the Playgrounds and teaching material were

undertaken:

1. All extensions were successfully finished by the time of the test days. Open Rob-

erta Lab was installed on a Raspberry Pi so that the Lab could be operated in a

local network. A WiFi-router was installed and used as the WiFi-hotspot to provide

access for the students’ laptop clients to the Open Roberta Lab webserver. The

second photo from Figure 44 shows this setup.

Figure 44: Classroom and hardware setup for all three sessions.

2. It was agreed that ZDI would provide all participants with the necessary hardware.

Each participant had access to a laptop. The classroom had all the essential tech-

nical equipment, such as a projector, a sufficient number of sockets, and WLAN

access. The first photo in Figure 44 depicts the classroom and hardware setting.

3. The day before the first session, all laptops were checked and set up for testing.

For a smoother session, the web link to Open Roberta Lab and the link to the final

questionnaire were saved in the favourites bar of each client’s web browser. A

folder with the backgrounds required for experimenting with the Neural Network

Playground was downloaded to the desktop of each laptop. A short last test was

performed to check that the Open Roberta Lab application remained stable even

7 Evaluation 90

if all laptops accessed it simultaneously during the compilation of their pro-

grammes.

4. Due to measures implemented in response to COVID-19, the materials used by

the children in one session could not be reused in another session. They therefore

had to be printed out individually for each child in each session.

5. The documentation equipment – two cameras with tripods and a clip-microphone

– was borrowed privately.

7.2 Participants
A total of 24 children participated in the user study. On the first day, the extensions were

tested by the high school children – seven boys in grades 7–9. On the second day, the

primary school children – five girls and four boys in grades 3–4 – examined the exten-

sions and materials. On the third day, the middle school children – one girl and six boys

in grades 5–6 – participated in the study. Figure 45 shows the individual classroom set-

tings.

Figure 45: Classroom setting for grades 7–9, 3–4, and 5–6.

 All children had previous knowledge of working with Open Roberta Lab and real

LEGO EV3 robots, as they had participated in the introductory session the day before.

The pre-assessment showed that some of the children had a vague idea of what AI

is. Most of the primary school children could not define AI at all. One of the primary

school students said, “Artificial intelligence are robots”21. In comparison, the answers of

the middle and high school children were more differentiated:

- “AI – a being that can have its own personality and can make its own decisions”
(high school student)

- “AI is when the machines themselves solve problems” (high school student)
- “Artificial intelligence is a new method of programming new machines” (middle

school student)
- “AI is as intelligent as humans are intelligent, only for computers and robots” (mid-

dle school student)
- “AI is how the robot thinks” (middle school student)

21 All citations of children were originally in German and were translated by the author for the purposes of
this work.

7 Evaluation 91

Only one student associated AI with learning: “AI is a program that learns from its own

mistakes and becomes smarter by itself” (high school student).

7.3 Insights in the Procedure
Each session lasted six school hours (one school hour = 45 minutes) and was conducted

in a block with short breaks. The author led all three sessions. On the second and third

days, four trainees observed the sessions. They were allowed to support children if they

wished. Due to limitations described in Section 4.2, the children were not allowed to work

in tandem or in groups. Therefore, all activities were limited to individual work.

The children’s knowledge of machine learning and AI was pre-assessed. Then, a

Braitenberg experiment was conducted and discussed with the children. Figure 46

shows the author conducting the third experiment after Braitenberg (1986) that is called

“Love” or “Friendship”. Calli:bot, the robot used by the author, is attracted by the objects

the author presents on the table. The greater the stimulus, that is, the closer the object

is, the lower the speed of the robot.

Figure 46: Author conducting the third experiment after Braitenberg (1986) with a Calli:bot robot.

Most children of all grades were confident that the robot did not behave like an intel-

ligent creature. One of the middle school children said, “I don’t think it is an intelligence,

because it only drives because you have programmed it to do so”. Another middle school

student remarked that the robot was not intelligent because of his previous experience

with the robot: “I don’t believe it is an artificial intelligence either, because we did some-

thing similar yesterday”. Both primary and high school children were also critical. One

child said, “It’s not intelligent by not crashing into the box!” (primary school student),

another explained his point at length:

The robot has the equipment for it [autonomously driving], but it was just too stu-

pid to know what to do with the sensors etc. Intelligent beings have to learn first,

7 Evaluation 92

learning is the keyword, but they already have eyes, nose, mouth, everything –

and they know roughly what to do with them. It [the robot] did not know how to

use them” (high school student).

However, there were also doubtful voices: “So [. . .] it depends [. . .] If you have

programmed it, it is not really intelligent. If you programmed only a part of it, then it is

intelligent” (primary school student) and “Yes, it is intelligent enough to stop in front of

something before it collides with it” (secondary school student).

After the discussion about the experiment, the modules were completed in order. In

the first module, “How does your robot learn?”, the author held a short input lecture that

introduced AI and machine learning. Directly after the first module, the second module,

“Teaching your robot”, was undertaken. As planned, the children taught the robot various

behaviours via direct supervision. In all three grades categories, everything went accord-

ing to the plan described in Section 6.1. The children discovered hands-on components

of neural networks such as nodes, layers, connections, and weights. All children in all

age groups started with Neural Network Cards but were then encouraged to contribute

and test the limits of what they could teach the robot.

Children from primary school coped well with the topic but had to be supported much

more intensively than children from other school grades. During the session, the author

had the impression that the children did not fully understand how direct supervision

works. Although the idea of a sensor directly connected to an actuator is simple and was

quickly understood by the students, the author had to explain in detail several times the

whole process from the blocks to the effects of changing weights in the neural network

on the behaviour of the robot. Some of primary school students also had motor difficulties

using a mouse, and it was thus not easy for them to manage all of the workflow process

outlined in Sections 5.3.2 and 5.4.2. Most of the middle school children and all high

school children coped well with the topic on their own, and some criticised the compli-

cated workflow process. The boys in the middle and high school grades were very com-

petitive and were impatient. They wanted to complete the tasks on the cards as quickly

as possible. This sometimes led to restlessness and a charged learning atmosphere.

The author had to refer them several times to additional tasks that they had failed to

complete due to inattention.

The vast majority of children stumbled over the two neural network cards “Fear” and

“Friendship”. Although these cards had completely different task descriptions, they de-

picted the same blocks that were necessary to solve the task. The students wondered

how the same blocks could lead to opposite behaviour. When they turned the cards over,

7 Evaluation 93

they found that it was the configuration of the neural network that led to completely dif-

ferent behaviour in the robot.

The Neural Network Card “Rally” was an immensely enriching experience for all of

the children. The author erred in the illustration of the neural network configuration, which

led to a situation in which the children could not look for the right solution on the back of

the card, and they had to master the correct training entirely on their own. The children

of all grades spent much more time on this task than expected and were very excited

when they were able to train their network accurately.

Overall, the children did not have much time to tinker with personal projects, as the

task with the Neural Network Cards occupied all their time. Two children from primary

and middle school created projects that went beyond the Neural Network Cards. Figure

47 shows some impressions from the second module and the children’s creations. The

first picture on the right illustrates an example of the project, in which one student from

the middle school group went beyond the tasks from Neural Network Cards and experi-

mented on his own. The idea of his project was for the robot to drive autonomously

through the area while simultaneously turning its LED to the colour detected by the colour

sensor. He further developed his project so that the robot could display additional text

while driving. Two photos in the bottom right corner show some insights in the brief input

lecture to neural networks and training the networks via direct supervision. The remain-

ing photos show children working with Neural Network Cards.

Figure 47: Documentation of the impressions from the second module and creations of the children.

In the third module, “Let your robot learn from experience”, the children were intro-

duced to reinforcement learning and the Q-learning algorithm. After the students in the

7 Evaluation 94

first session were distracted by the opened laptops with Open Roberta Lab during the

introductory phase, the students in the second and third sessions were asked to keep

their laptops closed. On the second and third days, the author also changed the order of

the modules because the experience from the first day indicated that reinforcement

learning was too difficult to be introduced in the afternoon. Reinforcement learning was

then carried out directly in the morning. These measures worked well, and children from

the second and third session were attentive.

Before the children had started with the practical part, the result of the Q-learning

algorithm – the optimal path – was problematised. The children’s opinion of what the

optimal path for humans is and what the optimal path for the robot would be was dis-

cussed. All three groups of students came to a similar conclusion: The optimal path for

the robot from point A to B is the path that the robot can travel in the minimum amount

of time. However, the optimal path for a person may vary depending on various factors

such as whether there is an ice cream parlour on the way or the beauty of the path.

As planned, the children explored the Q-learning algorithm using Open Roberta Lab

and analysed how a robot learns through rewards. The children from all school levels

were able to create unique learning environments for the robot and experiment with the

parameters of the algorithm. They all observed and analysed the learning and reasoning

process on the Q-learning Playground step by step. The primary and middle school chil-

dren were very diligent in experimenting and documenting their experiences with rein-

forcement learning on the observation cards. In contrast, the older students had hardly

used the materials. Most quickly changed the parameters, wanting to observe the result

and readjust the program as quickly as possible, if necessary. The author also had the

impression that the children sometimes focused on less important things, such as how

the learning agent moves in the Q-learning Playground, rather than looking at the navi-

gation bar and observing how it really learns and how the statistics change step by step.

 Figure 48 shows how the children explored and experimented with the Q-learning. In

the top-right photo, the child creates a unique Q-learning environment and explores how

the algorithm operates. The first photo on the left shows the introductory phase. The

other pictures demonstrate the work in progress.

7 Evaluation 95

Figure 48: “Let your robot learn from experience”: Documentation of the third module.

The author did not have to provide much support for any group of children. The stu-

dents’ questions related to clarifying the task or the process flow. Primary school children

coped just as well with the exploration of the Q-learning algorithm as middle school and

high school children. Sometimes, the students experienced cases in which the robot

failed in learning and could not find a way to the target. Then, they were visibly disap-

pointed and tried to correct the algorithm in the next iteration. Overall, the students of all

school grades were inquisitive and motivated to explore.

In the last module, “Can robots learn autonomously?”, the children were introduced

to the k-means algorithm through the unplugged activity. The author prepared a set of

several vessels and presented them on the table. As planned, she discussed how the

robot would group the objects presented on the table without any previous knowledge.

She then sorted the vessels according to the k-means algorithm without explaining what

criterion she used for grouping.

The children made assumptions about the grouping criterion. After discussing the

grouping criterion and explaining the sorting principles, the students grouped the items

themselves and let others guess the grouping criteria. Overall, all children of all school

ages participated very actively in the discussion. Regardless of the school grade, they

could cope with the topic without any particular difficulties.

Figure 49 shows the unplugged activity. In the first photo, the vessels are not yet

grouped. The second photo shows the grouping process that was conducted in the ple-

nary, and the third photo shows the result of the clustering.

7 Evaluation 96

Figure 49: Exploring k-means clustering in an unplugged activity: Documentation of the fourth module.

At the end of each session, the children filled out short questionaries and gave oral

feedback on the session.

7.4 Feedback and Questionnaire
Overall, children of all school grades were motivated during the sessions and used their

time until the end of the sessions and even beyond to tinker with the tasks. The observer

noticed that the children’s attention was high during the entirety of the sessions and that

they were all firmly committed to their projects. Several students praised the illustrations

in the presentation and the design of learning materials. Many asked if it would be pos-

sible to continue working on their projects from home.

The questionnaire examined whether the learning experience with the extensions de-

veloped for machine learning promotes children’s understanding of the underlying con-

cepts of machine learning. The students could answer how interesting and how difficult

they found the particular topics. At the end of the questionnaire, the children were also

asked what they thought AI and machine learning are and whether they were motivated

to continue working on machine learning. Insights into the results are given below.

Figure 50 shows the distribution of the questionnaire results. The x-axis illustrates the

total number of responses. The y-axis shows three topics divided by the class grades.

The first topic, from module 1, is not considered, because it was only an introductory

unit. The graph displays the absolute number of the answers, with 0 representing the

middle of the scale, that is, the value number 3.

In the descriptions that follow directly after the graph, the scores are averaged for

each school grade and topic. The scores reflect the tendency of the answers for each

topic per group of children: the higher the number, the more positive the children’s eval-

uation (see Section 4.3). The descriptions also provide insights into the observations that

the observer had made on the respective topics.

7 Evaluation 97

Figure 50: Participants' attitudes towards the topics supervised, reinforcement, and unsupervised learning.

 Perception of Supervised Learning
The topic of supervised learning from Module 2 was the most difficult one for the primary

school children, with an average score of 3.3. Children from middle school perceived it

to be easier, with an average score of 4.28, followed by the high school students, at 4.0.

The middle school children also found the topic of supervised learning to be the most

interesting compared to other groups. The average score here for grades 5–6 was 4.57,

followed by grades 3–4 at 4.3 and grades 7–9 at 4.0.

The observations suggest that the children of all grades were engaged and motivated

by tinkering with neural networks and teaching the robot through direct supervision. Most

of the children completed only the task with the Neural Network Cards. Only a few chil-

dren then had time to tinker with applications based on their ideas. The feedback from

the students in middle and high school was that the explanations were easy to follow.

They also recommended improving some points in the user experience, such as the

design of the simulation backgrounds and button locations.

 Perception of Reinforcement Learning
The participants of all age groups found the topic reinforcement learning as they pro-

grammed the Q-learning algorithm to be interesting to very interesting. The average

score of participants from grades 3–4 was 4.4 and those from high school 4.14. The

middle school children found the topic to be the most interesting, with an average score

of 4.42. However, at the same time, they found reinforcement learning to be the most

challenging, with an average score of 3.42 for difficulty. High school children perceived

the topic with 4.0 points more difficult than the primary school children with 4.2 points.

7 Evaluation 98

The observer stated that the children of all age groups spent very different amounts

of time creating learning environments. Some children spent much time creating increas-

ingly difficult environments, while others were interested in testing. The older children

had less motivation to carry out the experiments and were often more distracted than the

middle and primary school students.

 Perception of Unsupervised Learning
The greatest level of interest in the topic of unsupervised learning, introduced by the

unplugged activity, was shown by middle school children, with an average score of 4.14.

The lowest level of interest was shown by high school children, at 3.71, followed by pri-

mary school children, at 4.0. The average score for difficulty varied from easy to very

easy in all three groups: 4.4 for primary school, 4.14 for middle school, and 4.28 for high

school children.

The observer noticed that the children were attentive while the facilitator conducted

the experiment. They also actively participated in the discussion about the experiment

afterward.

 Student Motivation and Feedback
On average, 75% of the participants indicated that they would continue to work on the

topics, and 25% indicated that they might want to continue working on the topics. None

of the children gave negative feedback by indicating that they did not want to continue

working on the topics. The distribution of responses varied considerably across age

groups. While 100% of high school students responded that they would like to continue

working on machine learning, only 60% of the primary school children indicated this, with

40% indicating that they might want to continue working on AI and machine learning.

The middle school children were between these groups: 71.4% answered that they

would like to continue working on the topic, and 28.6% answered “maybe”.

Overall, the feedback from the participants at the end of the sessions was highly pos-

itive. In the feedback round, almost all children reported that they had an enriching ses-

sion and had fun. When asked which topic the children liked best, the children’s answers

were divided between supervised and reinforcement learning. Only one student, from

the high school group, indicated that unsupervised learning was the most exciting topic:

“I liked unsupervised learning best because you could observe how AI solved problems

on its own”.

One participant explained his experiences with reinforcement learning: “I found rein-

forcement learning to be very interesting, mainly because it improves by checking which

way is the better one. [. . .] AI is a bit more complicated than I thought, is really something

7 Evaluation 99

that big . . . can be tricky”. Another participant reflected on his experiences with the su-

pervised and reinforcement learning and referred to the moment when the robot could

not find its way out despite its knowledge: “So, I take it from this day . . . I take all these

ways with me [. . .] I still can’t describe [. . .], but it’s in any case, it’s independence

and that it [robot] can do something by itself without help, yes and also as an example it

can say ‘no’, which everybody is afraid of”. There was also some critical feedback. One

high school participant remarked, “I didn’t like the topic with supervised learning so much

because I have the feeling that the tasks could also be solved with ‘if-then’ queries”.

In the open question of what the children took from the session and what AI and ma-

chine learning are, the answers were more differentiated than in the pre-assessment.

Although there were general answers such as “It is a very extensive and interesting area”

(high school student), “AI is what humans program in robots” (primary school student),

“The brain of the robot” (middle school student), “Things that are invisible” (middle school

student), and “I have learned a lot about AI, for example, that you can even find it in the

online shop” (middle school student), there were also more answers associating AI with

learning, including the following:

- “Artificial intelligence is artificial learning” (primary school student).

- “AI is not smart until you start it, then it gets smarter” (high school student).

- “A programme that learns independently and makes independent decisions”

(high school student).

- “AI is a programme that solves problems and accomplishes tasks inde-
pendently” (high school student).

- “It is fake intelligence” (primary school student).

7.5 Summary
In this chapter, the author presented the user study that she conducted with 24 children

from primary, middle, and high school in order to test the machine learning extensions

presented in Chapter 5 and the teaching materials proposed in Chapter 6. With this, she

addressed the third research question on how the developed concepts appeal to stu-

dents of different school grades and whether they need help in understanding the pro-

posed concepts.

The author gave insights into the setup, the groups of participants and the procedure.

Then, she presented the results of the evaluation, in which she examined how the chil-

dren of different ages perceived the topics and whether they had difficulties in under-

standing them.

7 Evaluation 100

Overall, the children of all age groups perceived the topics very easy to moderately

hard to grasp. Younger students noticed the direct supervision challenging, whereas Q-

learning and k-means algorithms were much more accessible. The vast majority of high

school children could cope with all topics without particular difficulties.

The author also presented oral feedback from students on the sessions. Overall, the

students perceived the sessions positively, and the majority of the students would like to

continue work on the topics. Compared to the beginning, many more students associated

the term learning with the term AI at the end of the sessions.

The observer noticed the high motivation of the students to train the neural networks

and less motivation to document the experiments with the Q-learning algorithm. During

the module on unsupervised learning, all groups of students actively participated in the

unplugged activity on the k-means algorithm.

8 Discussion

Based on the curricular requirements for the introduction of machine learning in schools

presented in Section 2.1 and the gaps summarised in Section 2.4, this thesis aimed to

propose, implement, and evaluate new possibilities to open the black box of machine

learning from a technical perspective for students of different ages. These approaches

should reflect the thematic complexity and breadth of the field.

Overall, it can be concluded that the author has succeeded in this endeavour. The

author developed, realised, and evaluated three possibilities for the introduction of ma-

chine learning: the Neural Network Playground, presented in Section 5.3; the Q-learning

Playground, introduced in Section 5.4; and an unplugged introduction to clustering, pre-

sented in Section 6.4.

To open the black box even for young students, the author used the benefits of edu-

cational robotics outlined in Section 2.3.3 and the visual block-based programming lan-

guage presented in Section 2.3.2. In developing the extensions and the curriculum for

machine learning, she derived design principles from constructivism, constructionism,

connectivism, child-oriented graphic design, and playful learning presented in Section

4.1. The proposed approaches reflect the currency and thematic complexity of the field,

which comprises three main areas of machine learning (Russell & Norvig, 2016): super-

vised, unsupervised, and reinforcement learning.

The author addressed not only the black-box approaches to supervised learning cur-

rently used for education purposes and discussed in Section 2.4, but also the sparse

activities for reinforcement and unsupervised learning. The positive feedback from stu-

dents on the learning materials presented in Chapter 6 indicated that the author could fill

the gap in the lack of materials for young students to learn about machine learning,

providing children resources to learn even on their own.

The results of this research provide new insights into a barely explored approach on

how machine learning can be introduced to a novice. They have shown that children

from primary to high school could successfully experience the technical part of machine

learning in practice by experimenting on Playgrounds and completing four accompanying

modules of machine learning. The students taught the robot by training simple neural

networks and explored how the robot can learn with rewards by experimenting with the

Q-learning algorithm. They also familiarised themselves with unsupervised learning by

exploring the k-means algorithm in an unplugged manner. The results of the question-

naire, presented in Chapter 7, demonstrate that the approaches chosen to introduce

8 Discussion 102

supervised, unsupervised, and reinforcement learning could raise the interest of students

and be accessible even to young children in primary school.

In the following, the results are reflected against the background on research ques-

tions, related studies, developed extensions, and selected teaching approaches. The

author places results in the broader research context and discusses limitations and con-

siderations for future approaches to the introduction of machine learning with robots.

8.1 Reflections on the User Study
This section reflects on the third research question: how the implemented concepts ap-

pealed to the students and what help they needed to understand the concepts offered.

The user study is discussed as a test phase for the approaches and materials developed.

The reaction of students from different school grades to the extensions and the de-

veloped materials was overall highly positive. As explained in Section 7.4, the vast ma-

jority of the children perceived the topics to be both very interesting and easy to under-

stand. Even the primary school children were able to delve into the topics of machine

learning. The students’ feedback at the end of the sessions indicates that they gained

extensive insights into machine learning and AI, and the vast majority indicated a desire

to continue working on the topics.

These results are consistent with the evidence presented by Lin et al. (2020);

Williams, Park, and Breazeal (2019); Williams, Park, Oh, et al. (2019), who also focused

on the introduction of machine learning to young students by putting the student in the

agent’s shoes, using robots as teachable agents, and designing activities that were

based on constructivist theories.

In contrast to Jatzlau et al. (2019); Kahn, Lu, Zhang, Winters, et al. (2020); Kahn et

al. (2018); Kahn and Winters (2017), who used the VPL Snap! to teach children machine

learning, it was shown that with simplified technical vocabulary, a block-based program-

ming language can be used not only by high school children, but even by children in

primary school. The results of the questionnaire indicate that the children perceived the

topics similarly, regardless of their age.

As can be deduced from Section 7.3, the level of support provided by the author to

the children while working on the topics was moderate and varied according to the age

of the children. On the topic of supervised learning and neural networks, the youngest

students needed more intensive support than the middle and high school children. For

other topics, the level of support was comparatively low.

Although it was not the aim of this study to measure the increase in children’s

knowledge, the author briefly pre-assessed what the children knew about AI and

8 Discussion 103

machine learning at the beginning of the session. At the end of the session, she inter-

viewed the children again. The results shown in Section 7.4.4 suggest that children’s

knowledge about AI and machine learning increased. Considerably more children asso-

ciated learning with AI, and the answers were more differentiated than during the pre-

assessment.

Despite the vibrant sessions and the learning atmosphere during the user study, the

author notes ambiguities in the process and results. One remaining question is whether

the children could grasp the machine learning concepts in such a way that they were

able to build correct mental models of underlying machine learning principles, as claimed

by Hitron et al. (2019) and discussed in Sections 2.2.1 and 4.1.3. Young students in

particular did not find supervised learning intuitive, giving an average score of 3.3 for the

difficulty of the topic in the questionnaire.

As described in Section 7.3, many children stumbled with the Neural Network Cards

“Fear” and “Friendship”. This can be a sign that children misunderstood direct supervi-

sion and neural networks. The children had not directly recognised that not only the

blocks, but also the configuration of the neural network, were decisive for the behaviour

of the robot. Perhaps the children were simply confused about the card with the same

blocks on the front but different task descriptions.

With the Q-learning, the children did not have any particular difficulties, nor did they

seek extensive support from the author, as indicated in Section 7.3. However, the chil-

dren sometimes focused on less critical issues, which could be interpreted as meaning

that their cognitive load was high, and they were overwhelmed by what was happening

on the Q-learning Playground.

Similar to Kandlhofer et al. (2016), it is unclear whether the children would be able to

transfer their knowledge of the machine learning concepts they explored to similar prob-

lems since they were occupied with a pre-selected set of algorithms and machine learn-

ing problems. The question also remains of whether they could retain their knowledge

over time.

8.2 Reflections on Extensions and Teaching Approaches
Based on the results and the analysis of the user study, this section discusses the ex-

tensions that were developed – the Neural Network Playground and Q-learning Play-

ground – and the teaching approaches that were selected, with a focus on the learning

activities and materials. Thus, the section reflects on the possibilities identified by the

author and the process of establishing and implementing the approaches in Open Rob-

erta Lab, as posed in the first and second research questions.

8 Discussion 104

 Implementation of Extensions and Development Process
Technical implementations were reflected in detail in Section 5.5. In this section, the

author adds general considerations to the extensions and the development process.

The extensions developed by the author show a significant difference to the applica-

tions that currently exist for teaching machine learning. While previous approaches used

blocks as high-end APIs to access AI cloud services (Druga, 2018; Kahn & Winters,

2017; Lane, 2020) or to reproduce the machine learning algorithms (Kahn, Lu, Zhang,

Winde, et al., 2020; Kahn, Lu, Zhang, Winters, et al., 2020; Kahn et al., 2018), the author

developed a completely different approach. The extensions developed by the author (1)

break the technology down to the essentials while maintaining the technical correctness

of the underlying principles and their accuracy, (2) provide a direct interface to the algo-

rithms of machine learning via blocks, (3) reduce the complexity of the algorithms by

adapting the technical vocabulary and by visualising underlying principles graphically

and (4) open the black box problematised in Section 2.4 by offering the possibility of

experimenting with underlying technologies of machine learning in Playgrounds with ro-

bots. The ideas for future implementations are proposed in Section 8.3.4.

Overall, the development process was intensive. By using tools and methods pre-

sented in Section 4.4, the ideas elaborated in Sections 3.1.2 and 3.2.2 could be suc-

cessfully implemented. The author’s proposals concerned the extensions of the major

processing steps in Open Roberta Lab – including the definition of blocks, the integration

of the blocks’ functionalities in the back-end, the implementation of the Q-learning algo-

rithm and simple neural networks, the design of the Playgrounds both server- and client-

side, and graphical adjustments of the simulated robot’s behaviour. For this purpose, the

author intensively dealt with the central processes and workflows of Open Roberta Lab,

a complicated undertaking, since Open Roberta Lab is poorly documented.

Nevertheless, the development process was successful, and extensions work

smoothly. There were no particular technical difficulties during the tests. As mentioned

in Section 7.4.4, one of the students of grades 7–9 criticised the implementation of neural

networks – the student opposed the concept of weighting and solving neural networks

with if-then queries. Although the author finds the criticism partly justified and it would be

possible to represent simple networks with if-then statements,22 it would not be possible

to represent completely the graph connections realised in more complex neural net-

works.

22 If-then statements can be used for Boolean weight values, not for non-Boolean values, e.g., for ranges
between 0 and 1.

8 Discussion 105

 Using Simulated Robots
The user study suggests that the students could gain insights into how the simulated

robot perceives the environment and how it learns. By teaching the robot and experienc-

ing the environment from the agent’s perspective, the students could also deepen their

mental models of the capabilities and limitations of different machine learning ap-

proaches.

The experience with the “Rally” card described in Section 7.3 indicates that the chil-

dren were engaged in investigating why the robot did not behave correctly. With the Q-

learning algorithm, the robot’s failure to learn how to find the best way out of the labyrinth

made the students curious to find out why the robot did not learn properly and why it

could not find its way out of the labyrinth. These observations are consistent with the

findings of Lin et al. (2020); Williams, Park, and Breazeal (2019), who found that children

were particularly curious when the robot did not behave as expected. The children’s de-

termination to correct the robot can be used by instructors to convey how agents can be

trained and that they are not perfect. Letting the robot learn and allowing it to make mis-

takes might be a successful strategy that could be used in the future to teach machine

learning topics.

 Using a Visual Programming Language
Although the children could successfully use blocks to write machine learning applica-

tions, the children noticed the complicated workflow and usability difficulties associated

with blocks, which were problematised in Section 7.3.

These remarks agree with the findings, which the author determined in the course of

the developments. Blockly blocks are bulky, and their possibilities are limited. First, they

are barely suitable for displaying graphs, as with a neural network. Second, Blockly also

offers hardly any design possibilities for the blocks. In the case of the Q-learning Play-

ground, it was barely possible to adapt the configuration blocks for the algorithm so that

the children could design the Q-learning map interactively. The only way to create a

unique environment was to prepare a long list of obstacles, which allowed the manipu-

lation of the maps on the Q-learning Playground. However, the lists were so extensive

that the children quickly lost track of where they had set an obstacle and where they had

not.

In the future, frameworks such as the Neural Network Playground (Smilkov & Carter,

2020) can be explored to help children make the transition from blocks to Playgrounds.

8 Discussion 106

 Plugged vs. Unplugged Activities
Feedback from students on the unplugged activity that introduced the unsupervised

learning indicates declining interest. Students at all school grades found the k-means

algorithm less interesting than the two plugged activities with direct supervision and Q-

learning, whereby the questionnaire results indicate that the difference was not signifi-

cant for primary and middle school students. These results are consistent with the find-

ings of Erümit and Sahin (2020), which found students to be enthusiastic about both

plugged and unplugged activities. Following the approaches of Jatzlau et al. (2019);

Michaeli et al. (2020), it would be interesting in future studies to experiment with intro-

ducing the machine learning topics first with the unplugged activity, followed by the

plugged activity, and to measure whether children’s understanding varies depending on

whether the topic was introduced plugged or unplugged.

 User Experience in Playgrounds and Materials
In contrast to Kahn, Lu, Zhang, Winters, et al. (2020); Kahn et al. (2018); Kahn and

Winters (2017), the materials and Playgrounds were designed with the young students

in mind. Inspired by children’s books covering machine learning topics, the themes were

adapted by reformulating the technical descriptions in story-like narratives and revising

the technical terminology. In visual communication, a comic style, hand drawings, and

colourful illustrations were used. Primary, middle, and high school students found the

design of the extensions and the material appealing. This means of presenting compli-

cated content can be used in the future.

In observing how the children used the learning cards, the author noticed that the

children sometimes did not read the task descriptions thoroughly despite short, child-

friendly texts. As noted in Section 7.3, the children were impatient and wanted to turn the

card over and look for the solution as quickly as possible. The possible solution for future

studies could be to use the learning cards only as a medium for the students to get

started. At the same time, there may be rules that allow the card to be turned over, or

the solution may only be partially presented on the backside of the card.

8.3 Limitations and Recommendations
The following chapter summarises the limitations of the study and proposes recommen-

dations for future research and approach design.

 Peer Learning
As mentioned in Section 4.2, it was not possible to apply the methods of peer learning

when evaluating the extensions and materials. Although it could be observed that the

children of all school grades were curious about how their classmates solved the tasks

8 Discussion 107

and wanted to help each other if possible, they were not allowed to work in tandem or in

groups on shared projects. However, working on projects with peers is a promising meth-

odology (Resnick & Robinson, 2017) that is well-founded (Büttner et al., 2012; Hattie,

2008; Lebedynska, 2017; Zeneli & Tymms, 2015) and should be included in future re-

search if possible.

 Playfulness in Extensions and Materials for Machine Learning
Although one of the objectives proposed in Section 4.1.3 was to give children more room

for experimentation, this was only partly achieved. Most students experimented with the

underlying processes and algorithms based on the material provided. Only some stu-

dents who were faster than others and had time continued to work on their projects,

creating more complicated learning environments or more complex neural network ar-

chitectures, as shown in Section 7.3. This casts doubt on the extent to which the children

were allowed to live out their creativity and playful tinkering as a critical principle of con-

structivism and constructionism and the Four P’s framework of Creative Learning.

The reason that the project work was neglected was due partly to a tight schedule,

but also to the COVID-19 measures, which prohibited teamwork. As explained in Chapter

6, the learning activities and materials were designed for children to get started and work

individually. In the future, tinkering with the projects should be further enabled and em-

phasised to a much greater degree.

 Questionnaire Limitations
The questionnaire used in this study imposes several limitations. By problematising how

interesting something is or how difficult, the questionnaire did not measure the under-

standing of children, the increase in their knowledge or the effectiveness of the ap-

proaches and materials developed. Nor was it intended to measure the long-term impact

on how much the children retain from the sessions.

In the future studies, the problem of a deeper understanding of machine learning con-

cepts can be addressed by asking children to describe the process of how they under-

stand the learning process of the robot, for instance, in semi-structured interviews. The

effectiveness of the approaches and the increase in knowledge can be examined by

asking what the students think, how the robot arrives at the solution. In the future, the

use of more age-specific formats for the design of questionnaire might be considered.

The long-term effects on how much of the content the children retain after a certain pe-

riod could be measured by post-assessing the children’s knowledge in a given period.

8 Discussion 108

 Recommendations for Future Research
This study focused on using simulated robots as teachable agents to introduce a novice

to the technical aspect of machine learning. The results and the discussion of the findings

suggest that this approach could arouse the interest of the children and at the same time

limit the difficulties that they experience. Future research may take into account that the

use of simulated robots for introduction to machine learning is promising, especially if

the robot is used to teach how agents are trainable and that they are not perfect. Trans-

ferring the approaches investigated here to real robots and measuring whether there are

differences in the introduction of machine learning with simulated versus real robots

could also be considered.

Future research may investigate how the Playgrounds can be improved and extended

to help young students experiment and open the black box of machine learning algo-

rithms. For example, the Q-learning Playground could be extended through the addition

of a Q-learning table, as suggested by Jatzlau et al. (2019). The Neural Network Play-

ground could be enriched graphically through the addition of animating tensors that vis-

ualise the data flow. Future research could also investigate how playful visualisation

used in this study and by Lin et al. (2020) to communicate the underlying system models

could be extended to other machine learning algorithms. Furthermore, it can be exam-

ined how the black box of complex machine learning algorithms and processes can be

opened with other block-based programming languages.

This study proved that the materials and extensions designed with young learners in

mind were also positively perceived by older students. As mentioned in Section 2.3.1,

there are children’s book authors who follow this approach, designing books with children

in mind but that also address adults. Therefore, in order to promote understanding of

machine learning among young students, future research may consider designing appli-

cations and materials that focus on the youngest students and pick up the older children

at the same time. It can also be questioned whether children from high school are less

attracted to materials oriented towards primary school students due to the different en-

vironments that surround the students.

The applications designed to explore machine learning paradigms should be open for

experimentation, creativity, and play. As Resnick and Robinson (2017) remarked, learn-

ing environments should be more like Playgrounds, providing room to experiment, move,

and collaborate. This work was a step in this direction, although this approach may often

be incompatible with institutionalised forms of learning, especially in schools. After prob-

lematising the shortcomings of this work in terms of playfulness in Section 8.3.2, future

research should focus on exploring more deeply how applications for introducing

8 Discussion 109

machine learning to young students can be designed to resemble Playgrounds that fos-

ter creativity rather than Playpens that restrict and limit opportunities.

9 Conclusion

In this work, the author presented a new approach to introducing machine learning using

robots, playful learning, and child-oriented design. In the following, the author’s main

contributions are summarised as answers to the three research questions posed in the

introduction. The chapter reflects the entire research study and its role for future re-

search.

In order to meet the requirements and to anchor the topic in the current context of

educational research, the author analysed the specific curricular needs concerning the

topic of machine learning in schools. It was found that there are high expectations for

what children should know about AI, which are summarised under the term AI literacy

(Long & Magerko, 2020). Special attention is devoted to machine learning, which is pre-

sented as one of the five Big Ideas of AI in the proposal for international guidelines for

the development of AI curricula in schools (Touretzky et al., 2019). To demonstrate its

relevance, the author also collected several case studies that show that students are

expected to be able to cope with the different areas of machine learning – supervised,

unsupervised, and reinforcement learning.

After outlining curricular needs, the author analysed the current efforts and ap-

proaches to introducing machine learning in schools. It was found that approaches are

sparse and do not reflect the complexity and breadth of the field. Supervised learning is

the topic for which the most approaches are currently available; however, they all share

a common trait: The principles underlying the applications remain hidden from the user.

Even if some approaches open the black box using VPLs, they often only provide an

interface to a powerful high-end API. It remains unclear for the students how the models

are trained and why they make the concrete decision. The topics of reinforcement and

unsupervised learning are underrepresented. Although some approaches use a block-

based programming language, they are only suitable for students at high schools due to

high technical complexity and numerous details.

While summarising the didactic methods of current approaches, it was found that the

use of a VPL to teach the topics of AI and machine learning is common and promising.

The available teaching material is sparse, focuses on older children, and is not suitable

for children to learn on their own. The use of robots and robot simulators in the classroom

is overall effective. However, only a few studies have focused on the use of robots to

teach children machine learning. All these studies found that the efforts were successful,

and even kindergarten students could cope with machine learning topics using robots.

9 Conclusion 111

Based on these findings and using the benefits of visual block-based programming

languages and educational robots, the author established the theoretical framework on

supervised, unsupervised, and reinforcement learning. She elaborated three ap-

proaches that could meet the requirements and close the identified gaps: introducing

direct supervision with neural networks, Q-learning, and k-means algorithms in Open

Roberta Lab.

The answer to the first research question was thus complete: The author analysed

specific needs with regards to the topics of machine learning in schools, examined the

available possibilities for introducing machine learning, identified the limits of current

concepts, and worked out three approaches to meet the identified requirements.

The author then turned to the second research question, which how previously de-

fined proposals can be pedagogically anchored and concretely implemented in Open

Roberta Lab in order to promote the transparency of the underlying machine learning

algorithms and make them accessible to all interested parties.

In the course of working to answer this question, the author developed two machine

learning extensions and elaborated a series of learning materials and activities. The fol-

lowing overview summarises the contributions:

(1) New blocks for neural networks allow the user to program applications with

neural networks. The Neural Network Playground allows the user to experiment

with simple neural networks in Open Roberta Lab. The student can program sim-

ple neural networks with blocks and then train them by modifying the weights and

directly observing the effects on the simulated robot, grasping the concept of “di-

rect supervision”.

(2) New blocks for Q-learning allow the user to program applications based on the

Q-learning algorithm. On the Q-learning Playground, the student can tinker with

the Q-learning algorithm by creating unique learning environments for the robot

and playing with the parameters of the algorithm in Open Roberta Lab. Step by

step, the student can debug the algorithm and explore how the robot is learning

from the agent’s perspective.

(3) An image for the local installation of Open Roberta Lab with extensions for
machine learning on a Raspberry Pi enables any interested party to easily install

and use Open Roberta with machine learning features.

(4) The learning activities that the author has developed to introduce students to su-

pervised, reinforcement, and unsupervised learning are summarised in a Ma-
chine Learning Curriculum, which educators may use as a guide. The

9 Conclusion 112

curriculum suggests learning activities for approximately six school hours of 45

minutes each. Every educator may decide whether individual activities should

take more or less time.

(5) A set of nine Neural Network Cards helps the beginners get started with neural

networks and supervised learning in Open Roberta Lab. With simple tasks, intui-

tive descriptions and appealing illustrations of expected robot behaviour, students

can explore the essential elements of neural networks and learn how the neural

networks are programmed and trained.

(6) A set of four Q-learning Observation Cards helps the novice start with reinforce-

ment learning in Open Roberta Lab. The cards focus on the essentials of the Q-

learning algorithm needed to conduct the experiments and provide a space for

the documentation of experiments and reflections.

(7) A set of auxiliary learning materials to help the beginner get started with Q-learn-

ing on their own was created:

a. The Q-learning map explains the navigation bar and central features of

the Q-learning Playground.

b. The flow diagram adapted for children, which introduces the Q-learning

algorithm step by step.

c. The programme code, which explains how to program applications based

on Q-learning with blocks.

d. The Q&A: Reinforcement Learning, which summarises possible ques-

tions and answers from children on Q-learning.

(8) An unplugged activity that introduces unsupervised learning with the k-

means algorithm as an experiment that can be conducted by a teacher or as a

game that can be played in tandem by two or more students.

With these contributions, the author has anchored her proposed approaches peda-

gogically and implemented them practically in Open Roberta Lab, thereby answering the

second research question.

In order to evaluate how beginners perceive the approaches and thus answer the

third research question, the author conducted a user study with 24 children from primary,

middle, and high school. In total, the author led three sessions, with each session lasting

six school hours.

9 Conclusion 113

The results of the questionnaire, the oral feedback from the students, and the com-

ments of the observer indicate that the vast majority of the children in all three age groups

perceived the topics as exciting and easy to follow and expressed the intention to learn

more about AI and machine learning in the future. The children reported overall positive

experiences with the machine learning extensions and repeatedly emphasised the ac-

companying learning materials as appealing. The feedback from the students on the

unplugged activity introducing unsupervised learning with the k-means algorithm showed

a slight decrease in interest among all tested groups of children. The author briefly as-

sessed what the children knew about AI and machine learning at the beginning and the

end of the session. The result indicated that children’s answers were more differentiated

at the end compared to the beginning, and many more children associated AI with learn-

ing.

Programming simulated robots with the visual block-based programming language

NEPO and experimenting with them on Playgrounds proved to be a successful approach

that excited the students in all sessions. In particular, when the robot did not behave as

expected, the students were curious to find out why. They tried to retrain the neural net-

work or reconfigure the Q-learning algorithm, and if the efforts were successful, the stu-

dents were excited. By putting themselves in the robot’s shoes, the students experienced

hands-on the underlying principles of machine learning. They understood how agents

can be taught and that they are not perfect. Overall, the practical robot simulation made

learning more playful but did not require compromising content or reducing the technical

scope. In the future, training an AI robot could be extended by developing challenges for

students such as building the fastest robot.

Despite the primary school children who needed help with supervised learning and

training of the neural networks, the students did not require any exceptional help. The

author’s support was moderate. If the students were able to work together with peers,

the support provided by the author would be probably much less.

The author also identified further limitations to the machine learning extensions and

the pedagogical activities that were developed: The aspect of playfulness should be pro-

moted much more in future sessions and in the development of the extensions. The

questionnaire can be extended or redesigned to measure the increase in knowledge of

machine learning concepts and the children’s in-depth understanding. Future research

can also consider integrating clustering into the robot simulation environment of Open

Roberta Lab and mirroring all extensions from simulated to real robots.

9 Conclusion 114

With the successful user study, the feedback of students, and the reflections in the

discussion, the author answered the third research question and showed the significant

potential of the developed extensions and materials for future research.

The author’s contributions include a solid basis for the introduction of machine learn-

ing among novice learners and close the gap identified at the beginning of this research

study. The developed approaches reflect the breadth of the field of machine learning and

offer a contrasting alternative to the black box approaches currently available in the ed-

ucational landscape. The successful evaluation study with students from different school

grades underlines the practical feasibility of the concept.

The author regards the overall course of this research project as a very intensive but

enriching process. The development of machine learning extensions was challenging,

as Open Roberta Lab is a large project and is poorly documented. Although the user

study was considered optional due to the closure of schools because of COVID-19, the

opportunity arose to test the extensions that were developed, and the author succeeded

in conducting the evaluation with school children in live sessions. From the author's per-

spective, this was the most enriching part of the project. If the author were to lead the

sessions again, she would allow much more time for the individual topics, so that the

children have time to live out their creativity. A hackathon is an exciting possibility. Over-

all, the author intends to continue working on this topic and hopes that this research

study will inspire other people to make machine learning tangible for young students and

at the same time appeal to beginners of all ages.

10 Bibliography

Adobe. (2020a). Adobe Fresco Website. Retrieved from

https://www.adobe.com/products/fresco.html#. Accessed: 06.10.2020.

Adobe. (2020b). Adobe Illustrator Website. Retrieved from https://adobe.ly/3d4T9As.

Accessed: 06.10.2020.

Adobe. (2020c). Adobe InDesign Website. Retrieved from https://adobe.ly/2Gyy4T4.

Accessed: 06.10.2020.

Aggarwal, C. C., & Reddy, C. K. (2013). Data Clustering : Algorithms and Applications.

Philadelphia, PA, UNITED STATES: CRC Press LLC.

Balzert, H. (2011). Lehrbuch der Objektmodellierung: Analyse und Entwurf mit der UML

2: Spektrum Akademischer Verlag.

Barker, B. S., Nugent, G., Grandgenett, N., & Adamchuk, V. I. (2012). Robots in K-12

Education: A New Technology for Learning.

Blakeley, H. P., & Breazeal, C. (2019). An Ethics of Artificial Intelligence: Curriculum for

Middle School Students: MIT Media Lab.

Brabazon, A., O’Neill, M., & McGarraghy, S. (2015). Neural Networks for Supervised

Learning. In Natural Computing Algorithms (pp. 221-259). Berlin, Heidelberg:

Springer Berlin Heidelberg.

Braitenberg, V. (1986). Vehicles: Experiments in Synthetic Psychology: MIT Press.

Burgsteiner, H., Kandlhfer, M., & Steinbauer, G. (2016). IRobot: Teaching the Basics of

Artificial Intelligence in High Schools. Proceedings of the Sixth Symposium on

Edcuational Advances in Artificial Intelligence (EAAI-16).

Büttner, G., Warwas, J., & Adl-Amini, K. (2012). Kooperatives Lernen und Peer Tutoring

im inklusiven Unterricht. Zeitschrift für Inklusion(1-2), 14. doi:URN:

urn:nbn:de:0111-opus-58778.

Castella, K. (2018). Designing for Kids: Creating for Playing, Learning, and Growing:

Taylor & Francis.

Chin, K., Hong, Z.-W., & Chen, Y. (2014). Impact of Using an Educational Robot-Based

Learning System on Studentì Motivation in Elementary Education. IEEE

Transactions on Learning Technologies, 7, 333-345.

Clarke, B. (2019). Artificial Intelligence - Alternate Curriculum Unit. Accessed.

code.org. (2020). AI for Oceans – Learn how AI and machine learning can be used to

address world problems. Retrieved from https://studio.code.org/s/oceans.

Accessed: 12.10.2020.

10 Bibliography 116

Codingschule gGmbH. (2020). Codingschule junior. Retrieved from

https://www.codingschule-junior.de. Accessed: 03.04.2020.

Cooper, M., Keating, D., Harwin, W., & Dautenhahn, K. (1999). Robots in the classroom-

tools for accessible education. Assistive technology on the threshold of the new

millennium, 6, 448.

D4CR Association. (2020). DESIGNING for CHILDREN’S RIGHTS GUIDE. Retrieved

from https://childrensdesignguide.org/. Accessed: 05.10.2020.

Das, S., & Cakmak, U. M. (2018). Hands-On Automated Machine Learning: A beginner's

guide to building automated machine learning systems using AutoML and

Python: Packt Publishing.

Dhoot, D. (2019a). ABCs of Machine Learning: Tinker Toddlers.

Dhoot, D. (2019b). Machine Learning for Kids: Tinker Toddlers.

Dhoot, D. (2019c). Neural Networks for Kids: Tinker Toddlers.

Dodds, Z., Greenwald, L. G., Howard, A., Tejada, S., & Weinberg, J. B. (2006).

Components, Curriculum, and Community: Robots and Robotics in

Undergraduate AI Education. AI Magazine, 27, 11-22.

Druga, S. (2018). Growing Up with AI: Cognimates : from Coding to Teaching Machines:

Massachusetts Institute of Technology, School of Architecture and Planning,

Program in Media Arts and Sciences.

Druga, S., Qiu, T., T.VU, S., Likhith, E., & Dale, S. (2020). An AI education platform for

building games, programming robots & training AI models. Retrieved from

http://cognimates.me/home/. Accessed: 12.10.2020.

Druga, S., T.Vu, S., Likhith, E., & Qiu, T. (2019). Inclusive AI literacy for kids around the

world. Proceedings of ACM Fablearn conference (Fablearn’ 19).

doi:https://doi.org/10.475/123_4.

Druga, S., Williams, R., Park, H. W., & Breazeal, C. (2018). How smart are the smart

toys?: children and parents' agent interaction and intelligence attribution.

Proceedings of the 17th ACM Conference on Interaction Design and Children.

doi:doi.org/10.1145/3202185.3202741.

Ertel, W., & Black, N. T. (2018). Introduction to Artificial Intelligence: Springer

International Publishing.

Erümit, A. K., & Sahin, G. (2020). Plugged or Unplugged Teaching: A Case Study of

Students’ Preferences for the Teaching of Programming. International Journal of

Computer Science Education in Schools, 4(1), 3 - 32.

doi:10.21585/ijcses.v4i1.82.

Feinberg, E. A., & Shwartz, A. (2012). Handbook of Markov Decision Processes:

Methods and Applications: Springer US.

10 Bibliography 117

Ferrie, C., & Kaiser, S. (2019). Neural Networks for Babies: Sourcebooks, Incorporated.

Feynman, R. P., Leighton, R. B., & Sands, M. (2011). Six Easy Pieces: Essentials of

Physics Explained by Its Most Brilliant Teacher: Basic Books.

Fierens, W. (2020). SVG.js. Retrieved from https://svgjs.com/docs/3.0/. Accessed:

02.10.2020.

Freeman, N. K., Feeney, S., & Moravcik, E. (2011). Enjoying A Good Story: Why We

Use Children’s Literature When Teaching Adults. Early Childhood Education

Journal, 39(1), 1-5. doi:10.1007/s10643-010-0439-4.

Fuchs, J., Isenberg, P., Bezerianos, A., Miller, M., Keim, D., Santos, B., & Alford, G.

(2020). Teaching Clustering Algorithms With EduClust: Experience Report and

Future Directions. IEEE Computer Graphics and Applications, 40, 98-102.

Fuste, A. (2018). Learning computational thinking through embodied spatial

programming in augmented reality.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (2019). Design Patterns: Elements of

Reusable Object-Oriented Software. Uttar Pradesh: Pearson Education.

Ghahramani, Z. (2004). Unsupervised Learning. In O. Bousquet, G. Raetsch, & U. von

Luxburg (Eds.), Advanced Lectures on Machine Learning: Springer-Verlag.

Google. (2020). Teachable Machine. Retrieved from

https://teachablemachine.withgoogle.com/. Accessed: 28.08.2020.

Google Developers. (2020a). Blockly – Custom Blocks. Retrieved from

https://developers.google.com/blockly/guides/create-custom-blocks/overview.

Accessed: 12.10.2020.

Google Developers. (2020b). Closure Library. Retrieved from

https://developers.google.com/closure/library. Accessed: 05.10.2020.

Google Developers. (2020c). Google Blockly. Retrieved from

https://developers.google.com/blockly. Accessed: 29.09.2020.

Hamerly, G., & Elkan, C. (2002). Alternatives to the k-means algorithm that find better

clusterings. Proceedings of the eleventh international conference on Information

and knowledge management, 600–607. doi:10.1145/584792.584890.

Hattie, J. (2008). Visible learning. A synthesis of over 800 meta-analyses relating to

achievement. 1st publ. London u.a.: Routledge.

Hitron, T., Orlev, Y., Wald, I., Shamir, A., Erel, H., & Zuckerman, O. (2019). Can Children

Understand Machine Learning Concepts?: The Effect of Uncovering Black

Boxes. Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems. doi:doi.org/10.1145/3290605.3300645.

10 Bibliography 118

Hitron, T., Wald, I., Erel, H., & Zuckerman, O. (2018). Introducing children to machine

learning concepts through hands-on experience. Proceedings of the 17th ACM

Conference on Interaction Design and Children.

IBM. (2020). IBM Watson. Retrieved from https://www.ibm.com/watson. Accessed:

12.10.2020.

Jatzlau, S., Michaeli, T., Seegerer, S., & Romeike, R. (2019). It s not Magic After All@

Machine Learning in Snap! using Reinforcement Learning. 2019 IEEE Blocks and

Beyond Workshop (B&B), 37-41.

JetBrains. (2020a). IntelliJ IDEA Website. Retrieved from

https://www.jetbrains.com/idea/. Accessed: 06.10.2020.

JetBrains. (2020b). WebStorm Website. Retrieved from

https://www.jetbrains.com/webstorm/. Accessed: 06.10.2020.

Kahn, K., Lu, Y., Zhang, J., Winde, M., & Gao, M. (2020). Programming word

embeddings in Snap!

Kahn, K., Lu, Y., Zhang, J., Winters, N., & Gao, M. (2020). Deep Learning Programming

by All. University of Oxford, Beijing Normal University.

Kahn, K., Megasari, R., Piantari, E., & Junaeti, E. (2018). AI programming by children

using Snap! block programming in a developing country. Accessed.

Kahn, K., & Winters, N. (2017). Child-friendly programming interfaces to AI cloud

services. Accessed.

Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., & Huber, P. (2016). Artificial

intelligence and computer science in education: From kindergarten to university.

2016 IEEE Frontiers in Education Conference (FIE), 1-9.

Khishe, M., & Parvizi, G. R. (2020). Neural Networks: History and Applications. In A.

Doug (Ed.). New York, UNITED STATES: Nova Science Publishers,

Incorporated.

Klassner, F. (2002). A case study of LEGO Mindstorms'™ suitability for artificial

intelligence and robotics courses at the college level (Vol. 34).

Klassner, F., & Anderson, S. D. (2003). LEGO MindStorms: not just for K-12 anymore.

IEEE Robotics & Automation Magazine, 10(2), 12-18.

doi:10.1109/MRA.2003.1213611.

Kleeberger, J., Prost, N., & Sternkopf, H. (2019). Machine Learning. Intelligente

Maschinen im Projekt »Medien in die Schule« – Materialien für den Unterricht –:

Medien in die Schule.

Kober, J., & Peters, J. (2014). Reinforcement Learning in Robotics: A Survey. In Learning

Motor Skills: From Algorithms to Robot Experiments (pp. 9-67). Cham: Springer

International Publishing.

10 Bibliography 119

Krueger, N. (2020). 3 unplugged activities for teaching about AI. Retrieved from

https://www.iste.org/explore/Computer-Science/3-unplugged-activities-for-

teaching-about-AI. Accessed: 31.08.2020.

Kumar, A. N. (2004). Three years of using robots in an artificial intelligence course:

lessons learned. J. Educ. Resour. Comput., 4(3), 2–es.

doi:10.1145/1083310.1083311.

Lane, D. (2020). Machine Learning for Kids. Retrieved from

https://machinelearningforkids.co.uk/. Accessed: 25.09.2020.

Lebedynska, V. (2017). Peer-Tutoring – jetzt digital? Medien + Erziehung, 61(5), 55–61.

Leimbach, T., & Breuer, T. (2012). Roberta-Experiment: Braitenberg-Vehikel. Sankt

Augustin: Fraunhofer-Institut Intelligente Analyse und Informationssysteme IAIS.

Li, L.-Y., Chang, C.-W., & Chen, G.-D. (2009). Researches on Using Robots in

Education, Berlin, Heidelberg.

Lin, P., Brummelen, J. V., Lukin, G., Williams, R., & Breazeal, C. (2020). Zhorai:

Designing a Conversational Agent for Children to Explore Machine Learning

Concepts. Paper presented at the Proceedings of the AAAI Conference on

Artificial Intelligence.

Lindner, A., & Seegerer, S. (2019). AI Unplugged - Unplugging Artificial Intelligence -

Activities and teaching materialon artificial intelligence (Professorship for

Computer Science Education Ed.): Friedrich-Alexander-Universität Erlangen-

Nürnberg.

Lister, R. (2011). Concrete and other neo-Piagetian forms of reasoning in the novice

programmer. Paper presented at the ACE 2011.

Liukas, L. (2019). Hello Ruby: Wenn Roboter zur Schule gehen: Bananenblau - Der

Praxisverlag für Pädagogen.

Long, D., & Magerko, B. (2020). What is AI Literacy? Competencies and Design

Considerations. Proceedings of the 2020 CHI Conference on Human Factors in

Computing Systems. doi:doi.org/10.1145/3313831.3376727.

MacKay, D. J. C. (2003). Information Theory, Inference and Learning Algorithms:

Cambridge University Press.

Makeblock Co. (2020). makeBlock – a global STEAM education solution provider.

Retrieved from https://www.makeblock.com/. Accessed.

Massachusetts Institute of Technology. (2020). MIT App Inventor. Retrieved from

https://appinventor.mit.edu/. Accessed: 12.10.2020.

Michaeli, T., Seegerer, S., & Romeike, R. (2020). Looking Beyond Supervised

Classification and Image Recognition@ Unsupervised Learning with Snap!

Millington, I., & Funge, J. (2018). Artificial Intelligence for Games: CRC Press.

10 Bibliography 120

Mirkes, E. M. (2011). K-means and K-medoids applet. Retrieved from

http://www.math.le.ac.uk/people/ag153/homepage/KmeansKmedoids/Kmeans_

Kmedoids.html. Accessed: 17.09.2020.

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of Machine Learning

(2nd. ed.): MIT Press.

Molnar, C. (2020). Interpretable Machine Learning: Lulu.com.

Moro, M., Arlegui, J., Pina, A., & Frangou, S. (2007). Robotics & Constructivism in

Education : the TERECoP project.

Nguyen, Chi N., & Zeigermann, O. (2018). Machine Learning – kurz & gut : Eine

Einführung mit Python, Pandas und Scikit-Learn. Heidelberg, GERMANY:

o'Reilly.

npm. (2020). npm website. Retrieved from https://www.npmjs.com/. Accessed.

Olari, V. (2020a). blockly repository. Retrieved from

https://github.com/vlebedynska/blockly/tree/feature/ai. Accessed: 20.09.2020.

Olari, V. (2020b). GitHub Account of Viktoriya Olari. Retrieved from

https://github.com/vlebedynska. Accessed: 20.09.2020.

Olari, V. (2020c). Issues overview for defining machine learning blocks. Retrieved from

https://github.com/vlebedynska/blockly/issues. Accessed: 30.09.2020.

Olari, V. (2020d). Issues overview for developing machine learning extensions.

Retrieved from https://github.com/vlebedynska/openroberta-lab/issues.

Accessed: 30.09.2020.

Olari, V. (2020e). openroberta-lab repository. Retrieved from

https://github.com/vlebedynska/openroberta-lab/tree/feature/neuronalnetworks.

Accessed: 20.09.2020.

Open Roberta. (2019a). Connecting blockly block with java backend. Retrieved from

https://github.com/OpenRoberta/openroberta-lab/wiki/Connecting-blockly-block-

with-java-backend. Accessed: 06.10.2020.

Open Roberta. (2019b). From Blockly XML to Code Generation. Retrieved from

https://github.com/OpenRoberta/openroberta-lab/wiki/From-Blockly-XML-to-

Code-Generation. Accessed: 06.10.2020.

Open Roberta. (2020a). blockly repository. Retrieved from

https://github.com/OpenRoberta/blockly. Accessed: 20.09.2020.

Open Roberta. (2020b). Open Roberta Lab Server. Retrieved from https://www.roberta-

home.de/lab/lokale-installation/. Accessed: 12.10.2020.

Open Roberta. (2020c). openroberta-lab repository. Retrieved from

https://github.com/OpenRoberta/openroberta-lab. Accessed: 20.09.2020.

10 Bibliography 121

Open Roberta. (2020d). Overview of the Open Roberta Repositories. Retrieved from

https://github.com/OpenRoberta. Accessed: 29.09.2020.

Open Roberta. (2020e). System Overview. Retrieved from

https://github.com/OpenRoberta/openroberta-lab/wiki/System-Overview.

Accessed: 06.10.2020.

Open Roberta Lab. (2020). The Open Roberta Lab,. Retrieved from https://lab.open-

roberta.org/. Accessed: 29.09.2020.

Osmani, A. (2012). Learning JavaScript Design Patterns: A JavaScript and jQuery

Developer's Guide: O'Reilly Media.

Papert, S. (1993a). The children's machine: Rethinking school in the age of the

computer: ERIC.

Papert, S. (1993b). Mindstorms: Children, Computers, And Powerful Ideas: Basic Books.

Papert, S., & Harel, I. (1991). Constructionism: Research Reports and Essays, 1985-

1990: Ablex Publishing Corporation.

Papert, S., & Solomon, C. (1971). Twenty Things to Do with a Computer: Massachusetts

Institute of Technology, A. I. Laboratory.

Parsons, S., & Sklar, E. (2004). Teaching AI using LEGO Mindstorms.

Piaget, J., Fatke, R., & Kober, H. (2016). Meine Theorie der geistigen Entwicklung: Beltz.

Queiroz, R. L., Sampaio, F. b. F., Lima, C., & Lima, P. (2020). AI from concrete to

abstract: demystifying artificial intelligence to the general public. ArXiv,

abs/2006.04013.

react.js. (2020a). Introducing JSX. Retrieved from https://reactjs.org/docs/introducing-

jsx.html. Accessed: 12.10.2020.

react.js. (2020b). react.js – A JavaScript library for building user interfaces. Retrieved

from https://reactjs.org/. Accessed: 05.10.2020.

require.js. (2020). require.js – JavaScript file and module loader. Retrieved from

https://requirejs.org/. Accessed: 05.10.2020.

Resnick, M., Martin, F., Sargent, R., & Silverman, B. (1996). Programmable Bricks: Toys

to Think With. IBM Syst. J., 35, 443-452.

Resnick, M., & Robinson, K. (2017). Lifelong Kindergarten: Cultivating Creativity

Through Projects, Passion, Peers, and Play: MIT Press.

Resnick, M., & Silverman, B. (2005). Some reflections on designing construction kits for

kids. 117-122. doi:10.1145/1109540.1109556.

RocketBabyClub. (2018a). Mike's Peanuts: Machine Learning For Kids: Linear

Regression: Rocket Baby Club.

RocketBabyClub. (2018b). Party Parrots: Machine Learning For Kids: Feature

Engineering: Rocket Baby Club.

10 Bibliography 122

RocketBabyClub. (2019a). Goldfish Pond School: Machine Learning For Kids:

Clustering: Rocket Baby Club.

RocketBabyClub. (2019b). Toby's Helpful Spirits: Machine Learning For Kids: Neural

Networks. Cambrige, MA, USA: Rocket Baby Club LLC.

RocketBabyClub. (2019c). Toby's Video Game Puzzle: Machine Learning For Kids:

Perceptron: Rocket Baby Club.

Romero, M., Duflot-Kremer, M., & Viéville, T. (2019). Activity for learning computational

thinking in pluggedand unplugged mode. Orig.: Le jeu du robot : analyse d’une

activité d’informatique débranchée sous laperspective de la cognition incarnée.

Review of science, mathematics and ICT education, Laboratory of Didactics of

Sciences, Mathematics and ICT, Department of EducationalSciences and Early

Childhood Education - University of Patras.

Russell, S., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach: Pearson.

Sakulkueakulsuk, B., Witoon, S., Ngarmkajornwiwat, P., Pataranutapom, P.,

Surareungchai, W., Pataranutaporn, P., & Subsoontorn, P. (2018). Kids making

AI: Integrating Machine Learning, Gamification, and Social Context in STEM

Education. 2018 IEEE International Conference on Teaching, Assessment, and

Learning for Engineering (TALE), 1005-1010.

Šalamon, T. (2011). Design of agent-based models. Developing computer simulations

for a better understanding of social processes. Řepín-Živonín: Tomáš Bruckner.

Salkind, D. N. J. J. (2006). Encyclopedia of Measurement and Statistics. Thousand

Oaks: SAGE Publications, Inc.

Schmidt, C. (2015). Agile Software Development Teams: Springer International

Publishing.

Scratch. (2020a). Scratch – Create stories, games, and animations, share with others

around the world. Retrieved from https://scratch.mit.edu/. Accessed: 12.10.2020.

Scratch. (2020b). Scratch – Statistics. Retrieved from https://scratch.mit.edu/statistics/.

Accessed: 24.08.2020.

Seegerer, S., Lindner, A., & Romeike, R. (2019). AI Unplugged -Wir ziehen Künstlicher

Intelligenz den Stecker.

Siemens, G. (2005). Connectivism: a Learning Theory for the Digital Age. International

Journal of Instructional Technology and Distance Learning, 2, 3–10. Retrieved

from http://www.itdl.org/Journal/Jan_05/Jan_05.pdf. Accessed: 03.10.2016.

Siemens, G. (2014). Connectivism: A Learning Theory for the Digital Age. International

Journal of Instructional Technology and Distance Learning, 2(1), 3-10. Retrieved

from http://www.elearnspace.org/Articles/connectivism.htm. Accessed:

19.06.2016.

10 Bibliography 123

Sjödén, B., Lind, M., & Silvervarg, A. (2017). Can a Teachable Agent Influence How

Students Respond to Competition in an Educational Game?, Cham.

Sklar, E., Eguchi, A., & Johnson, J. (2002). RoboCupJunior: Learning with Educational

Robotics. Paper presented at the AI Magazine.

Sloman, A. (2009). Teaching AI and Philosophy at School ?

Smilkov, D., & Carter, S. (2020). The Neural Network Playground. Retrieved from

https://playground.tensorflow.org/. Accessed: 24.09.2020.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction: MIT Press.

TensorFlow. (2020). TensorFlow – An end-to-end open source machine learning

platform. Retrieved from https://www.tensorflow.org/. Accessed: 12.10.2020.

Toivonen, T., Jormanainen, I., & Tukiainen, M. (2017). An Open Robotics Environment

Motivates Students to Learn the Key Concepts of Artificial Neural Networks and

Reinforcement Learning. Paper presented at the Robotics in Education.

Touretzky, D. (2019). Five Big Ideas in Artificial Intelligence: A Poster. Retrieved from

https://raw.githubusercontent.com/touretzkyds/ai4k12/master/documents/AI4K1

2_Five_Big_Ideas_Poster.pdf. Accessed: 10.10.2020.

Touretzky, D. (2020, 10.08.2020). Resource Directory: ai4k12. Retrieved from

https://github.com/touretzkyds/ai4k12/wiki/Resource-Directory. Accessed:

24.08.2020.

Touretzky, D., Gardner-McCune, C., Martin, F., & Seehorn, D. (2019). Envisioning AI for

K-12: What Should Every Child Know about AI? Thirty-Third AAAI Conference

on Artificial Intelligence, 33. doi:doi.org/10.1609/aaai.v33i01.33019795.

TypeScript. (2020). TypeScript Website. Retrieved from https://www.typescriptlang.org/.

Accessed: 01.10.2020.

Universität Konstanz. (2020). EduClust – A Visual Education Platform for Teaching

Clustering Algorithms. Retrieved from https://educlust.dbvis.de/. Accessed:

12.10.2020.

Universität Paderborn. (2019). MENSCH, Maschine! Wer zeigt hier wem den Weg?

Paderborn.

University of California at Berkeley. (2020). Welcome to Snap! Retrieved from

https://snap.berkeley.edu/. Accessed: 12.10.2020.

University of Oxford. (2020). eCraft2Learn – Digital Fabrication and Maker Movement in

Education Retrieved from https://ecraft2learn.github.io/uui/. Accessed:

12.10.2020.

van Pløn Verhagen, B. (2006). Connectivism: a new learning theory? . Retrieved from

https://web.archive.org/web/20081210214143/http://www.surfspace.nl/nl/Redact

10 Bibliography 124

ieomgeving/Publicaties/Documents/Connectivism%20a%20new%20theory.pdf.

Accessed: 18.09.2020.

Visionary Machines LLC. (2020). Calypso for Cozmo. Retrieved from https://calypso-

robotics.com/. Accessed: 12.10.2020.

Vogel, L., Scholz, S., & Pfaff, F. (2020, 18.09.2020). Eclipse JDT - Abstract Syntax Tree

(AST) and the Java Model. Retrieved from

https://www.vogella.com/tutorials/EclipseJDT/article.html. Accessed:

29.09.2020.

w3schools.com. (2020). SVG Tutorial. Retrieved from

https://www.w3schools.com/graphics/svg_intro.asp. Accessed: 02.10.2020.

Wang, W.-h. (2016). A mini experiment of offering STEM education to several age

groups through the use of robots. 2016 IEEE Integrated STEM Education

Conference (ISEC), 120-127.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards: Cambridge University.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3), 279-292.

doi:10.1007/BF00992698.

Wieners, J. G. (2014). SpoookyJS. Ein multiagentenbasiertes JavaScript-Framework zur

flexiblen Implementation digitaler browserbasierter Brettspiele und

spielübergreifender künstlicher Intelligenz(Vol. PhD). Retrieved from

https://kups.ub.uni-koeln.de/5971/. Accessed: 12.10.2020.

Williams, R., Park, H. W., & Breazeal, C. (2019). A is for Artificial Intelligence: The Impact

of Artificial Intelligence Activities on Young Children's Perceptions of Robots.

Proceedings of the 2019 CHI Conference on Human Factors in Computing

Systems. doi:doi.org/10.1145/3290605.3300677.

Williams, R., Park, H. W., Oh, L., & Breazeal, C. (2019). PopBots: Designing an Artificial

Intelligence Curriculum for Early Childhood Education. Personal Robots Group,

MIT Media Lab. doi:doi.org/10.1609/aaai.v33i01.33019729.

Wong, G. K. W., Ma, X., Dillenbourg, P., & Huan, J. (2020). Broadening artificial

intelligence education in K-12. ACM Inroads, 11, 20 - 29.

Xu, K., Wu, F., & Zhao, J. (2015). Simplified online Q-learning for LEGO EV3 robot. 2015

IEEE International Conference on Control System, Computing and Engineering

(ICCSCE), 77-80.

Zeneli, M., & Tymms, P. (2015). A review of peer tutoring interventions and social

interdependence characteristics. International journal for cross-disciplinary

subjects in education., Special Issue Volume 5(2), 2504-2510. Retrieved from

http://dro.dur.ac.uk/18744/. Accessed: 12.10.2020.

A Appendix

A.1 processNeuralNetwork function
public processNeuralNetwork(inputLayer, outputLayer) {

 if ($.isEmptyObject(this.neuralNetworkModule)) {
 this.neuralNetworkModule = new AiNeuralNetworkModule("#simConfigNeuralNetworkSVG",
inputLayer, outputLayer);

 this.neuralNetworkModule.player.isPlaying = true;

 let that = this;
 this.neuralNetworkModule.player.addEventListener("pause", function () {

that.setBlocking(true);
that.simSetPause(true);
that.neuralNetworkModule.player.isPlaying = false;

 })
 this.neuralNetworkModule.player.addEventListener("play", function () {

that.setBlocking(false);
that.simSetPause(false);
that.neuralNetworkModule.player.isPlaying = true;

 });
 }
 //set new Values in InputLayer
 if (!this.neuralNetworkModule.player.isPlaying) {
 return;
 }

 let aiNeuralNetworkInputLayer = this.neuralNetworkModule.aiNeuralNetwork.getInputLayer();
 for (let nodeID in inputLayer) {
 let node: Node = inputLayer[nodeID];
 if (aiNeuralNetworkInputLayer[nodeID].value !== node.value) {

aiNeuralNetworkInputLayer[nodeID].value = node.value;
 }
 }

 //calculates new network nodes values
 this.neuralNetworkModule.calculateNeuralNetworkOutput();

 //set motor speed according to the new values
 this.clearDisplay();

 let value = 0;
 let textLines: Array<string> = new Array<string>();
 let textLinesPrepared: Array<string> = new Array<string>();
 let ledPrepared: string = "";
 for (let node2 of this.neuralNetworkModule.aiNeuralNetwork.getOutputLayer()) {

 switch (node2.type) {
case "motorport":

if (node2.value > 100) {
value = 100;

} else {
value = node2.value;

}
this.setMotorSpeed("ev3", node2.port, value);
console.log("Motorspeed" + value);
break;

case "text" :
let textOutput = node2.value > 0 ? node2.name : "leer";
textLines.push(textOutput);
textLinesPrepared.push("<tspan x='1' dy='" + (node2.positionY*16+1) +

"'>"+textOutput + "</tspan>");
break;

A.1 processNeuralNetwork function 126

 case "sound":
 if (node2.value > 0) {
 this.toneAction("outputNodeTon", node2.value*5, node2.duration);
 }
 break;
 case "LED":
 this.statusLightOffAction("ev3", 0);
 if (node2.value > 0) {
 ledPrepared = node2.color;
 }
 break;
 }

 }
 if (textLinesPrepared.length > 0) {
 this.showTextActionPosition(textLinesPrepared.join(""), 0, 0, true);
 }
 if (ledPrepared != "") {
 this.lightAction("on", ledPrepared);
 }

}

A.2 AiNeuralNetwork.java 127

A.2 AiNeuralNetwork.java

package de.fhg.iais.roberta.syntax.ai;

import java.util.ArrayList;
import java.util.List;

import de.fhg.iais.roberta.blockly.generated.Block;
import de.fhg.iais.roberta.blockly.generated.Value;
import de.fhg.iais.roberta.syntax.*;
import de.fhg.iais.roberta.syntax.lang.expr.Expr;
import de.fhg.iais.roberta.syntax.lang.expr.ListCreate;
import de.fhg.iais.roberta.syntax.lang.stmt.Stmt;
import de.fhg.iais.roberta.transformer.AbstractJaxb2Ast;
import de.fhg.iais.roberta.transformer.Ast2JaxbHelper;
import de.fhg.iais.roberta.transformer.ExprParam;
import de.fhg.iais.roberta.typecheck.BlocklyType;
import de.fhg.iais.roberta.visitor.IVisitor;
import de.fhg.iais.roberta.visitor.ai.IAiVisitor;

/**
 * This class represents ai_neural_network block from Blockly into the AST (abstract
syntax tree). Object from this
 * class will generate neural network including input and output layers.

 *

 * To create an instance from this class use the method {@link #make(ListCreate, ListCreate,
List, BlocklyBlockProperties, BlocklyComment)}.

 */
public class AiNeuralNetwork<V> extends Stmt<V> {

 private final ListCreate<V> listNNInput;
 private final ListCreate<V> listNNOutput;
 private final List<AiLink<V>> listNNLinks;

 public ListCreate<V> getListNNInput() {
 return listNNInput;
 }

 public ListCreate<V> getListNNOutput() {
 return listNNOutput;
 }

 public List<AiLink<V>> getListNNLinks() {
 return listNNLinks;
 }

 /**
 * This constructor set the kind of the object used in the AST (abstract syntax tree).
All possible kinds can be found in {@link BlockType}.
 * @param kind
 * @param listNNInput
 * @param listNNOutput
 * @param listNNLinks
 * @param property
 * @param comment
 */
 private AiNeuralNetwork(
 BlockType kind,
 ListCreate<V> listNNInput,
 ListCreate<V> listNNOutput,
 List<AiLink<V>> listNNLinks,
 BlocklyBlockProperties property,
 BlocklyComment comment) {
 super(kind, property, comment);
 this.listNNInput = listNNInput;
 this.listNNOutput = listNNOutput;
 this.listNNLinks = listNNLinks;
 setReadOnly();
 }

A.2 AiNeuralNetwork.java 128

/**
 * creates a new {@link #AiNeuralNetwork} instance;
 * @param listNNInput
 * @param listNNOutput
 * @param listNNLinks
 * @param properties
 * @param comment
 * @param <V>
 * @return
 */
 public static <V> AiNeuralNetwork<V> make(
 ListCreate<V> listNNInput,
 ListCreate<V> listNNOutput,
 List<AiLink<V>> listNNLinks,
 BlocklyBlockProperties properties,
 BlocklyComment comment) {
 return new AiNeuralNetwork<V>(BlockTypeContainer.getByName("AI_NEURAL_NETWORK"),
listNNInput, listNNOutput, listNNLinks, properties, comment);
 }

 /**
 * implements
 * @param visitor
 * @return
 */
 @Override
 protected V acceptImpl(IVisitor<V> visitor) {
 return ((IAiVisitor<V>) visitor).visitAiNeuralNetwork(this);
 }

 @Override
 public String toString() {
 return this.getClass().getSimpleName() + " [" + " Input-Layer: " + listNNInput + "
Output-Layer: " + listNNOutput + "]";
 }

 public static <V> Phrase<V> jaxbToAst(Block block, AbstractJaxb2Ast<V> helper) {
 List<Value> values = helper.extractValues(block, (short) 2);
 ListCreate<V> inputLayer =
 (ListCreate<V>) helper.extractValue(values, new
 ExprParam(BlocklyConstants.INPUT_LAYER, BlocklyType.STRING));
 ListCreate<V> outputLayer =
 (ListCreate<V>) helper.extractValue(values, new
 ExprParam(BlocklyConstants.OUTPUT_LAYER, BlocklyType.STRING));

 List<AiLink<V>> listNNLinks = new ArrayList<>();
 for (Expr<V> inputNode : inputLayer.getExprList().getEl()) {
 for (Expr<V> outputNode : outputLayer.getExprList().getEl()) {
 AiLink<V> oneInputOutputLink = new AiLink<V>(inputNode, outputNode, 0);
 listNNLinks.add(oneInputOutputLink);
 }
 }
 return AiNeuralNetwork.make(inputLayer, outputLayer, listNNLinks,
 helper.extractBlockProperties(block), helper.extractComment(block));
 }

 @Override
 public Block astToBlock() {
 Block jaxbDestination = new Block();
 Ast2JaxbHelper.setBasicProperties(this, jaxbDestination);
 Ast2JaxbHelper.addValue(jaxbDestination, BlocklyConstants.INPUT_LAYER,
 getListNNInput());
 Ast2JaxbHelper.addValue(jaxbDestination, BlocklyConstants.OUTPUT_LAYER,
 getListNNOutput());
 return jaxbDestination;
 }

}

A.3 Changelog 129

A.3 Changelog

commit: cc7bcdbc7, author: vlebedynska, date: 2020-08-05 00:22:12

 #24 - various bugfixes

 commit: 37e710841, author: vlebedynska, date: 2020-08-03 00:36:36

 #24 - various bugfixes:
 - modified cursor behaviour on rl q learning modal header, modal

dialog and hovering over player buttons
 - changed the display of the node description in neural network

popup if a node has no port defined
 - fixed calculation of theta angle for the correct robot rotation

after drawing the optimal path
 - added more transparency value for path visited
 - fixed server error that caused an empty configuration toolbox to

load

 commit: 43ccf7f68, author: vlebedynska, date: 2020-08-02 11:15:41

 #24 - preparing of the test environment for testing rl and neural

network feature. Added libraries needed for the offline
installation of the Open Roberta Lab.

 commit: 5d2608f2c, author: vlebedynska, date: 2020-08-02 11:09:54

 #22 - minor bugfixes for RGB channel values and color parameters of

the color sensor block
 - minor design adjustments in the NN popup - added a background

image, changed font, disabled dragging of the background image
 - minor changes in program toolboxes for beginner and expert

 #21 - updated RL Eisenbahn map
 - commended out unnecessary console logging
 - execution queue of rl blocks adjusted

 #23 - implemented new class hyperparameterTuning and

qLearnerParameterOptions, ProblemParams, TestInputData,
TestResultfor interfaces for testing of the results of q-learning
algorithm.

 - added hyperparametherTuningTest.ts for result handling

 commit: d7fa41cf3, author: vlebedynska, date: 2020-08-01 00:58:02

 #22 - minor bugfixes for RGB channel values and color parameters of

the color sensor block
 - minor design adjustments in the NN popup - added a background

image, changed font, disabled dragging of the background image

A.3 Changelog 130

 #21 - added new RL map: stadt_End and updated Wald_Labyrinth and
Eisenbahn_Design_End.svg

 - implemented dynamic consideration of episodes and time entered by
user

 - minor refactorings for path finding from the svg map
 - added a new class hyperparametherTuning.ts, which is a parameter

test class for the Q-Learning-Algorithm.

 commit: ad4253d4e, author: vlebedynska, date: 2020-07-29 23:56:49

 #22 - extracted Color enum into class AiColorUtils
 - added TODOs for future code improvements
 - implemented new output node type: "led" in class AiOutput, added

it to robotCommon.yml, new functionalities implemented in
interpreter.robotMbedBehaviour.ts

 - first draft of NNAlgorithm added to git - will be deleted in the
next commit

 - added new popup header to the neural network modal
 - added duration and frequency as optional parameters to the node

model in models.ts, implemented new properties in NodeImpl
constructor in aiNeuralNetworkModule.ts

 - added new colors to colorsMap map in aiNeuralNetworkUI.ts for
coloring nodes in neural network

 commit: 9609a8f77, author: vlebedynska, date: 2020-07-28 23:58:51

 #22 - added new constants for the EV3 color sensor and added them to

the enum Colour
 - implemented the distinction between different types of colour

sensor input: light, rgb and base colors in AiInputNodeColourSensor
 - two additional output node types added and implemented :

ai_nn_output_node_text and ai_nn_output_node_sound in AiOutput
 - new blocks added to robotCommon.yml
 - changed type of the ai_nn_output_node_text to OUTPUTNODE in

blocks_compressed.js
 - implemented two new input node types in

interpreter.interpreter.ts, robotWeDo- and robotMbedbehaviour.ts
 - for using EV3 as a display for displaying output results, a

workaround for clearing display implemented, because the display
actions are not syncronized

 - bugfix for displaying text on the ev3 brick: in the simulation for
robot.ev3.js, display.clear was moved to be the first statement
that has to be executed

 commit: 2d6eb3c47, author: vlebedynska, date: 2020-07-27 23:58:14

 #10 - updated RlEnvironment class: changed the type of start and

finishNodes to Phrase, added a new property map, changed the class
constructor and the jaxbToAst method

 - added two new properties to RlGainExperience qLearningEpisodes and
qLearningTime, used them in the constructor and in the visitor
method in Ev3StackMachineVisitor

A.3 Changelog 131

 - updated RlObstacle class: changed the type of start and
finishNodes to Phrase

 - added new Blockly constants - MAP, QLEARNING_EPISODES,
QLEARNING_TIME

 - added rl_obstacles_easy_list to robotCommon.yml

 #21 - implemented rl map selection functionality to

createQlearningEnvironment method in
interpreter.robotMbedBehaviour.ts

 - moved creating module from robotMbedbehaviour constructor to the
createQLearningEnvironment method

 - in interpreter.interpreter.ts
 - modified collecting of finish and start nodes in

CREATE_Q_LEARNING_ENVIRONMENT via stack
 - added episodes and time properties to RUN_Q_LEARNER opc

 commit: c492066c4, author: vlebedynska, date: 2020-07-26 21:52:23

 #10 - added and implemented new block ai_easy_list, which allows to

easily add neurons to the layers of the neural network. To make the
block compatible as a block of a list type, some minor adjustments
have been made to the ListCreate class (added default list type);

 - removed function for placing threshold on stack from
Ev3StackMachineVisitor, as it's not longer needed

 - added new blocks_compressed.js file with updated and new neural
network blocks and updated reinforcement learning blocks

 - updated ev3.program.toolbox.beginner.xml &
ev3.program.toolbox.expert.xml with new blocks

 - added default threshhold value to CREATE_INPUT_NODE opc, because
no threshold value is transferred from the backend side

 - added new property to the Player class of the Neural Network
Module: isPlaying, created getter and setter for it

 #21 - new background for reinforcement learning added - forest

labyrinth
 - adjusted the behaviour of the robot after releasing the pause

button in processNeuralNetwork function

 commit: 10a3eec64, author: vlebedynska, date: 2020-07-25 00:42:02

 #10 - Improvement of the module for neural networks (in progress)
 - added additional information to AiInputNodeColourSensor > now it

transfers the name of the colour sensor displayed on the neural
network playground

 - removed some class definitions from roberta.css that defined the
styles for aiNeuralNetworkPopup because they influenced the dynamic
creation of the neural network

 - added some class definitions that define the behaviour of the
mouse, the modal-header background and the buttons on the neural
network playground

 - in simulation.js added a new function to the constructor of
RobotMbedBehaviour - setPause. This function is now passed to
RobotMbedBehaviour and is used to pause program execution and robot

A.3 Changelog 132

activity when the pause button in the neural network modal is
pressed.

 - new file bound to main.js - the player for the neural network
module

 - added some test files to test the behaviour of -webkit-filter-
properties in chrome: detected -webkit-filter- doesn't work with
svg elements

 - added a new object to the aiNeuralNetworkModule.ts - Player

responsible for event handling when the play or pause button is
pressed in the neural network module

 - added a css class to the svg - svgViewBoxNNModule and defined the
viewbox. Now the size of the viewbox is set dynamically depending
on the bbox of the svg. Bbox takes the minimum square around all
svg elements and defines x, y coordinates and width and height

 - on the aiNeuralNetworkUI.ts:
 - the class aiNeuralNetworkUI.ts extended by EventTarget
 - added new colorsMap, which maps colors from the color sensor to

colors on the UI (they are needed to map colors from the color
sensor to the corresponding nodes in the neural network)

 - minor refactorings in the drawLayer function: UI of the nodes is
moved to the function addNodeColor; text anchor added for the
descriptions of the input layer nodes

 - added new function to the constructor - drawPlayer, which is
responsible for drawing all player elements (play and pause button)
and for event handling from the UI

 - in the linkUI.ts:
 - added css classes to the slider shape depending on mousedown and

mouseup events

 - in models.ts added additional optional property color for the

interface node
 - implemented the new property color in the NodeImpl class

 - created and implemented the new class Player (player.ts), which is

responsible for event handling when the play or pause buttons are
pressed

 - adapted create_input_node_colour_sensor opc, so that it now creates

a node directly with stmt data;
 - added new function in the robotMbedBehaviour to the constructor

simSetPause, which is transferred from simulation.js.
 - bound event listeners for "play" and "pause" events to the function

processNeuralNetwork. For the corresponding event setBlocking and
simSetPause are set to true and false respectively. This causes
program execution and robot activity to be (un)paused.

 - implemented additional functionality: the sensor values in the
input and output nodes are only updated if the value of the sensor
in the input layer has changed. If not, the output layer is not
updated.

 commit: 081435ded, author: vlebedynska, date: 2020-07-24 00:45:35

A.3 Changelog 133

 #10 - Improvement of the module for neural networks (in progress)
 - Refactoring of the ai.neuralNetwork.ts module > Restructuring of

the ai.neuralNetwork.ts > Outsourcing of all classes into different
files, refactoring and extraction of properties into interfaces (in
models.ts) and implementation in impl classes

 - added new files in main.js, generated new js files and added them
to OpenRobertaServer staticResources

 - added a new function in the aiNeuralNetworkModule to normalize
nodes that the Neural Network Module receives from the stack in
robotMbedBehaviour. These nodes are transferred to the nodes that
the Neural Network Module needs.

 - added new feature to the aiNeuralNetworkUI > now the value of each
node is displayed inside the node itself The drawLayer function
implements an event listener - every time the value of the node is
changed, the text inside the node is updated.

 - corrected calculation of the slider value considering the start
and end point

 - improved display of the slider value above the slider shape: for
integer values the superfluous decimal places are hidden

 commit: d3e5bf4cf, author: vlebedynska, date: 2020-07-23 16:21:33

 #10 - improving neural network module (work in progress)
 - added new property nodeData as JSON object to AiInput.java,

AiInputNodeColourSensor.java, AiOutput.java > now the additional
information like the name of the input / output node is transferred
to the Neural Network Module, so that it can be displayed as a
description for each input and outputNode

 - the function create_input_node in interpreter.interpreter.ts has
been updated: it no longer creates an additional node object, but
adds the properties directly the node.

 - added nodeData to the input- and output nodes visitor functions in
Ev3StackMachineVisitor

 - added a new functionality in the ai.neuralNetwork.ts
createNeuralNetwork - addNodesName.

 - implemented a new function addNodesName - each node in the layer
now gets an additional parameter node.name

 - to the drawLayer function added the functionality to set node's
name / node's description dynamically

 - implemented a functionality to display a current slider value

above the slider shape while the slider shape is moved
 - for this the LinkUI class is extended by the property

sliderValueText. When creating a new SVGSlider, this property is
passed to the SVGSlider.

 - updated sliderValue function -> added new functionality
updateSliderValueText which updates the text field in the svg

 - added functionality for positioning each sliderValueText above the
current slider shape

 - minor changes in the layout of the neural network module
 - popup size changed
 - modified roberta.css > class simConfigNeuralNetworkModal modal-

dialog updated and the duplicate removed

A.3 Changelog 134

 - added to the styles.css new classes inputNodeName, outputNodeName
to display the names of input and output nodes; added a new class
inputNode, which is responsible for the design of the inputNodes in
general

 commit: a85c93bc9, author: vlebedynska, date: 2020-07-22 23:47:48

 #10 - improving neural network window (work in progress)
 - started implementing the ability to see the description for each

node in the popup. For this reason, a new property nodeData was
added to all nodes, which transports information such as the name
of the input/output sensor and its port

 - extended visitAiInputNode with a new property - ultrasonic
 - implemented the function addNodesName in the ai.neuralNetwork

module, which now extends the parameters node.name by sensor value
name and port

 - extended the interpreter.interpreter.ts and updated an extended
input node function with the new data parameter.

 - minor refactorings

 Neural network - slider - status update. Added correct initial

position of the slider shape.

 commit: 580fd9e1d, author: vlebedynska, date: 2020-07-21 23:53:04

 #8 - integration of the RL popup 2.0 in Open Roberta Lab (finished)
 - completed implementation of setting the robot position to the

beginning of the optimal path:
 - extended resetPose function in robot.js with additional optional

parameter - pose;
 - extended updateBackground and setBackground functions by the

optional parameter poses. If the poses array is not empty,
resetPose function is called from robot.js.

 - extended aiReinforcementLearningModule.ts by the functionality to
calculate the pose parameters for the robot (x-point, y-point and
theta); These are scaled depending on the viewbox-size which passed
to the simulation and adapted to the canvas coordinate system.

 - extended models.ts by an interface Pose
 - added functionality to drawOptimalPath to scale the scene to be

transmitted.
 - added qValueLookup.js - this file is automatically generated from

qValueLookup.ts when compiling.

 #10 - started to improve neural network window (work in progress)
 - implemented the consideration of startPoint and endPoint

parameters when dragging the slider shape;

 commit: fa5fe8110, author: vlebedynska, date: 2020-07-20 00:18:03

 #8 - integration of the RL popup 2.0 in Open Roberta Lab (work in

progress)
 - completed the implementation of the functionality that pauses the

rl algorithm when someone hides the popup

A.3 Changelog 135

(addEventListenerToRLPopup, added new property to the
QLearningAlgorithmModule constructor - jQuery popup selector),
changed the visibility of the pause() function - now it can be
called by closing the popup.

 - Bugfix: svg with the final path could not be copied to the robot

simulation for some reason - it got broken during the transfer
process:

 - added Eisenbahn_broken.svg for testing purposes, added correct svg
file (svg_ok) and broken svg file for comparison purposes

 - configured the test environment in index_2.js - created and
implemented async function loadSVG() and bound all rl learning
functionalities

 - reason for this behaviour:
 (1) When transferring svg via URI, the svg playground broke because

of plaintext elements > added default text values
 (2) When transferring svg via URI tspan elements could not be

processed - this is now fixed in the drawOptimalPath function of
the aiReinforcementLearningModule

 (3) The svg transmitted via URI was also broken because the
namespace of svgjs - xmlns:svgjs="http://svgjs.com/svgjs"- and its
references in certain elements - like this one:
svgjs:data="{"leading":"1.3"} - were unknown. For this reason, they
were removed from svg by two regular expressions.

 - Start of positioning the robot to the optimal path start

 #21 - improved function pause: now if the state is already STOP, it

is no longer possible to change to the PAUSE state

 commit: 860f643ed, author: vlebedynska, date: 2020-07-18 23:48:21

 #8 - integration of the RL popup 2.0 in Open Roberta Lab (work in

progress)
 - started implementing a functionality that pauses the rl algorithm

when someone hides the popup (in aiReinforcementLearningModule.ts,
in progSim.controller.js and in interpreter.robotMbedBehaviour.ts)

 #21 - update svg Eisenbahn_Design_End.svg due to minor design

changes
 - new class qValueLookup created, implemented qValueLookup.ts in

main.js and referenced it in require.js
 - added new css styles for rho, rho-active, rho-text-active and for

stars representing the current qValue: star, newStar, oldStar
 - added new interface QValue to models.ts and a new property

highestQValue to the interface QLearningStep
 - in the class QValueStore added a new private local variable -

highestQValue and a new functionality to check and update the
current highest qValue.

 - added new functionalities in the class qValueLookup
(getOldNumberOfStars, getNewNumberOfStars,
getAndUpdateNumberOfStars). The aim of this class is to calculate
the current number of stars based on the current qValue and the
current highest qValue.

 - implemented class Key, which is a helper class for qValueLookup
 - in the class Visualizer:

A.3 Changelog 136

 - added new functionalities to visualize the current and previous
qValue for the current action (showCurrentQValue, bound
qValueLookup class) and modified the presentation of rho values

 - bug fix in onQLearningStep - changed newQLearnerStepData from
global to local variable because it caused problems with styling
elements of the current qLearner step (it was overwritten by the
new qLearningStepDate before the animation of the previous step was
finished)

 - minor bug fixes for finding elements in the svg playground

 commit: ae0ae9f38, author: vlebedynska, date: 2020-07-17 00:12:01

 #8 - integration of the RL popup 2.0 in Open Roberta Lab (work in

progress)
 - added new simBackground - Eisenbahn_Design_End.svg and updated

styles.css with classes for visualizing of rho values
 - redesigned function updateBackground in simulation.js. Now it

creates a new canvas element and converts the svg loaded from the
popup into the png format. The reason for this change is that the
robot created artifacts on the background when rendering.

 #21 - improved workflow for sending the final svg to the simulation

in aiReinforcementLearningModule.ts:
 - changed execution of the updatebackground function to async;
 - added viewbox and size property to svg that is sent > background

is cropped and sent to the simulation without the navigation panel
 - change of the svg structure led to minor refactorings for finding

elements in visualizer.ts
 - added showCurrentQValue function, which displays a q-value of each

step in visualizer.ts
 - improved display of the rho value: now not only the text is

changed in each step, but also the colour of the background
rectangle

 - added some test parameters to index.html and index_2.js for
testing purposes

 commit: 4f15b7374, author: vlebedynska, date: 2020-07-16 00:46:51

 #8 - integration of the RL popup 2.0 in Open Roberta Lab
 - workflow adapted for asynchronous execution of

setUpQLearningBehaviour(), runQLearner(), drawOptimalPath() (work
in progress)

 - refactored rl method signatures in interpreter.aRobotBehaviour.ts
and sub-classes

 - added uptdateBackground function to QLearningAlgorithmModule
constructor

 #19 - moved QlearningAlgorithmParameters, ResultState,

OptimalPathResult, Obstacle and TakeActionResult interfaces from
aiReinforcementLearningModule.ts to models.ts

 - moved RlUtils from aiReinforcementLearningModule.ts to qLearner.ts
 - minor refactorings in qLearner.ts
 - in the visualizer.ts:

A.3 Changelog 137

 - added new class properties, added get method for _svg, extracted
newQLearnerStepData as member variable fromQLearningStep function

 - refactored drawOptimal method: split in separate methods -
checkAndUpdateOptimalPath(), getCombinedPath() and
drawFinalOptimalPath()

 - minor refactorings and bug fix in getCombinedPath() method because
the currentPathArray changed the original array and not the local
one

 - added new function drawCurrentOptimalPathOneMap, which now draws
the current optimal path on the map from the start to the finish
node

 - added path animations to drawFinalOptimalPath() and
drawCurrentOptimalPathOnMap()

 - added new style in style.css for the current optimal path on the
map

 commit: a91e7719e, author: vlebedynska, date: 2020-07-15 23:59:26

 #8 - integration of the RL popup 2.0 in Open Roberta Lab
 - workflow addapted for async execution of runQLearner() and

drawOptimalPath()
 - minor changes in interpreter.interpreter.ts
 - added svglookup.js to main.js

 commit: 676206db2, author: vlebedynska, date: 2020-07-13 22:53:28

 #20 - finished implementing caching mechanism for elements

(elements, texts, paths) that have already been found and used:
 - refactored and improved svglookup.ts (better encapsulation of

functions)
 - implemented using of new caching functionality in visualizer.ts

 commit: 5d668121f, author: vlebedynska, date: 2020-07-12 23:59:08

 #8 - integration of the RL popup 2.0 in Open Roberta Lab
 - added style.css to staticResources, added the svg background
 - added new configurations and files to tsconfig2Server
 - generated files from ts to js using tsconfig2Server
 - connected new files from Reinforcement Learning Module to the

global project via require.config in main.js
 - bug fixes after the implementation of the new module in Open

Roberta Lab (in particular in interpreter.robotMbedBehaviour.ts) +
some minor refactorings in aiReinforcementLearningModule.ts (e.g.
changing the names of the modules for a better export from ts to
js)

 - cleaned up svgPlayground in WedoInterpreter - all files no longer
needed deleted

 #19 - started the optimization of qLearner steps visualization:

created a new class svglookup.ts to optimize performance by caching
svg elements

 - implemented the lookup algorithm for text elements

A.3 Changelog 138

 commit: 764bd5a66, author: vlebedynska, date: 2020-07-11 00:04:58

 #19 - updated the test svg -> all lines and polylines changed to

paths
 - in index_2.ts (interface to the RobotMbedBehaviour) added a call

of the function drawOptimalPath
 - minor refactorings to adapt the interface to the

RobotMbedBehaviour: modified obstacleList from Array to Array
 - in the runQLearner function extended value stored by the

qLearningSteps array: besides the information about the
qLearnerStep itself, the optimal path is calculated and passed to
the instance of the PlayerImpl

 - added an event listener to the drawOptimalPath function, which now
reacts to a "stop" event, finds the optimal path and passes the
result to the visualizer for drawing

 - minor additions in the Player interface: timer added as a new
property and the values of qLearnerSteps property changed according
to the changes in runQLearner -> this led to minor refactorings in
playerImpl.ts

 - fixed a bug in filterOutNotAllowedActions, because the previous
output of the function was null.

 - in the visualizer, Shape was changed to Path, because there are no
more lines or polilines on the svg

 - adjusted the setMarker function, because the markers were too big
for this map

 - refactored onQLearningStep function as newQLearnerstep now comes
as one object consisting of two parts

 - added showCurrentOptimal function to show the current optimal path
on svg playground

 - two bug fixes in the function resetAllValues

 -

 commit: 8c008f0a1, author: vlebedynska, date: 2020-07-10 00:29:57

 #19 added two new classes for line follower - inner and outer paths
 - made qLearnerAlgorithm in aiReinforcementLearningModule.ts global

to be able to access the instance in different functions
 - outsourced search and creation of optimal paths in the qLearner

and visualizer
 - started to connect drawOptimalPath to the interface of

RobotMbedBehaviour
 - added second parameter in function onTimerClick:

executionDuration. Depending on the total execution duration all
animations are now calculated. Therefore the function
createAndDispatchEvent was changed: it now also transfers the
executionDuration as detail parameter.

 - new button - startForOneStep - added and it's functionality
implemented in visualizer and timer (function playOneTick).

 - added a help function in qLearner to find the optimal path
 - refactored the function callTick in timerImpl.ts : (1) added

isRunning flag to prevent a tick being called by different
threads/twice, (2) changed setInterval to setTimeout to allow
robust control of the timer running state

A.3 Changelog 139

 - added new properties to the Visualizer to store values centrally,
the functions that implement these values have been refactored

 - extracted actions from visualizeActionOnMap into the smaller
single functions (e.g. showCurrentRho, showCurrentStartNode,
resetAllValues etc.)

 - added a function for resetting of values after each step
 - added animation sequence to the onQLearningStep function
 - implemented new function delay Visualizer
 - refactored function drawOptimalPath to drawPath and moved it from

aiReinforcementLearningModule.ts to the Visualizer
 - moved findPathWithIds from RLUtils to the Visualiser class
 - further minor refactorings in aiReinforcementLearningModule.ts

 commit: 6e3a11d0a, author: vlebedynska, date: 2020-07-08 23:59:19

 #19 - new extended test svg added
 - changed the qLearningParams to optimize the output of the

algorithm
 - added new class in style.css - node-not-visited, minor style

changes
 - changed the test number of episodes and the total time
 - implemented a new function in utils.ts to convert seconds to the

common time format: hh:mm:ss
 - in the class Visualizer added new properties to store animation

elements from the initial and previous state
 - animation functionality implemented to each step
 - added a new function setInitialValuesOnMap to initialize initial

algorithm values setup before starting the algorithm and
implemented it in initialize function of playerImpl.ts

 - outsourced functionality to set start and finish state, set total
time and set total number of episodes from setInitialValuesOnMap
function

 - added functions to visualize the start node of the algorithm and
the finish node in the navi bar

 - added animation to the active stroke, added parameters for easier
understanding of the animation direction

 - started developing animation timeline based on TS promises
 - implemented help delay function

 commit: 00d5f2e51, author: vlebedynska, date: 2020-07-07 23:55:12

 #19 - added function to visualise an action on the map
 - added stroke animation within one step
 - help function implemented in Utils to calculate the length of the

current shape

 commit: 26cada53b, author: vlebedynska, date: 2020-07-06 23:50:59

 #19 - added styles.css and defined classes for active, inactive,

visited nodes, paths and lines
 - values added for the enum Rho for its string representation in UI
 - function onQLearningStep updated: now another parameter is passed

to the visualizer: the length of the array qlearningSteps

A.3 Changelog 140

 - Visualizer class extended with the parameters nodeStartOnMap,
nodeFinishOnMap, path and line to store UI elements from the
previous qLearningStep

 - functionalities for visualisation of QLearningStep added: view
changes of UI components in svg map

 - minor refactorings in aiReinforcementLearningModule.ts and in
qLearner.ts: e.g. startStateQlearner renamed to startFinishState

 commit: 419144c6d, author: vlebedynska, date: 2020-07-05 23:59:19

 #19 - Added external react.js libraries (react.development.js &

react-dom.development.js) to the project and configured the
required dependencies

 - returned to svgdotjs library and started implementing animations
 - visualizer directly connected to the player (changes of the

initialize function in the Player interface)
 - default speed value added in the playerImpl.ts, added visualiser

via initialize function and implemented event listeners for
playerStarted, playerStopped and playerPaused.

 - bugfixes: changed this > that for correct event handling
 - removed qLearnerView - react implementation of the module, because

of strategy changes - it's not needed for now anymore.
 - in timerImpl.ts changed callTick, so it clears interval every time

the function is called, added variable speed for dynamic speed
changes

 - implemented event logging for stop, play, pause states, tick and
state changing

 - enhanced functions for timer stop, pause and play. The function
play is getting new parameter now - speed, which regulates the
speed of the algorithm.

 - added error handling for the case if the button is pressed more
then once (function updateRunningState)

 - extended visualizer.ts to EventTarget
 - implemented addEventListeners function in visualizer.ts, which

catches all click events the user has made on UI elements
 - implemented startPlayer, stopPlayer and pausePlayer functions that

dispatch events if the buttons are pressed
 - cleaned tsconfig.json from react libraries
 - renamed utils and visualiser

 commit: a048afef0, author: vlebedynska, date: 2020-07-03 23:43:06

 #19 - Connection of require.js and react framework to RL module (in

progress)
 - added test react project
 - downloaded and connected react libraries for TypeScript

 commit: 015c1c359, author: vlebedynska, date: 2020-07-02 21:35:03

 #19 - Connection of require.js and react framework to RL module (in

progress)

A.3 Changelog 141

 - playerImpl: implemented play function and onTimerTick, bound event
handling, added qLearningSteps, timer and view properties to
constructor

 - added qLearningSteps property to Player interface
 - added some test files (index.html, index.js, test.jsx,

qLearnerview.js, map.js)
 - added problem, alpha, gamma, rho and nu properties to the

constructor of QLearningAlgorithm
 - refactored runQLerarner function in

aiReinforcementLearningModule.ts
 - minor refactoring of variable names

 commit: 0ca215d96, author: vlebedynska, date: 2020-07-01 19:49:26

 #19 - Connection of require.js and react framework to RL module (in

progress)
 - svgdotjs library connected via require.js
 - added the require.config-function to main.js
 - Changes to tsconfig.json (changed attribute "paths", added new

compiler option "sourceMap" and changed the option "target" from
es5 to es2017)

 commit: c0b32d2a1, author: vlebedynska, date: 2020-06-30 23:58:52

 #19 - added some test svg backgrounds
 - implemented some functions with dummy values to investigate how

react and svg proxy selector exactly works with
PopUPDesign_Minimal.svg

 - index_1.js implemented as interface to RobotMbedBehaviour
 - created and implemented functions for initializing q-learning

environment (separated visualization of data, from data processing
and data storage)

 - moved the components responsible for the UI from
aiReinforcementLearningModule.ts to Visualizer.ts and connected
them (e.g. getActions(), processNotAllowedActions) with
aiReinforcementLearningModule.ts

 - new property - time - added to interface Clock, changed properties
of QLearningStep to readonly

 - started to implement the playerView.jsx
 - extracted one single step of the qlearning algorithm into function

qLearnerStep, bound event handling every time the value of the
qlearning step changes

 - moved components of qlearning algorithm from
aiReinforcementLearningModule.ts to qLearner.ts

 - implemented the Timer class which is responsible for time counting
and management and which will be connected to player control
buttons in the qlearning popup

 - added three new functions to Utils.ts to convert data received
from RobotMbedBehaviour to the data required by the RLModule and a
helper function to filter out not allowed from the allowed actions

 - implemented functions for visualising of not allowed actions in
the Visualizer.ts

A.3 Changelog 142

 commit: 6ffdd0763, author: vlebedynska, date: 2020-06-28 23:59:07

 #19 - defined data models as interfaces for ProblemSource, Player,

StateStatus, SectionState, QLearningStep, QLearnerConfiguration,
QValueStore, Action, ProblemState, Clock in models.ts

 - defined enums for Rho, Nu, RunningState
 - renamed Clock to ClockImpl class and extended it by Clock

interface
 - renamed Player to PlayerImpl class and extended it by Player

interface
 - tsconfig.js updated: added new files to compile, added

es2015.promise lib, changed module to amd from commonjs
 - created class Utils and implemented file_get_contents function

using Promise concept
 - class Visualiser extends ProblemSource interface
 - in the class Visualiser implemented new functions using Promise

concept: preload, loadSvg, which now allows asynchronous Visualiser
instance initialisation

 - implemented functions getSections for getting all available
actions for a given problem, scaleSVGtoSize for scaling the given
svg to size needed, help function fitInNewSize

 - Size interface implemented

 commit: 398d36d7d, author: vlebedynska, date: 2020-06-28 00:33:13

 #19 - created classes Player, Visualizer, Clock
 - added test svg to the project
 - created new tsconfig for compiling typescript files to JavaScript
 - created index.ts with dummy data for testing and bound the

aiReinforcementLearningModule.ts & svgdotjs library to it
 - started to implement the Promise concept in the Visualizer.ts

 commit: b38f991db, author: vlebedynska, date: 2020-06-27 15:05:21

 #8 - added svgdojs library

 commit: 598ccbc8c, author: vlebedynska, date: 2020-06-27 11:56:30

 #19 - exploring the reactjs technology for optimal value changes in

the RL popup
 - imported reactjs and react-svgmt libraries for dynamic value

changes and comfortable manipulation of svg
 - created the test project and implemented the timer that changes

the text value in the svg using reactjs
 - added the svg with minimal design to be used prospectively in the

RL module and implemented the test timer there

 commit: 98831eb99, author: vlebedynska, date: 2020-06-25 18:13:30

 #11 - Refactoring of the NN module (finished)
 - aiNeuralNetworkModule added to main.js and tsconfig2server.json &

tsconfig.json

A.3 Changelog 143

 - connected new neural network module to processNeuralNetwork
function in interpreter.robotMbedBehaviour.ts

 - generated new js files from ts files
 - added methods from aiReinforcementLearningModule to

interpreter.aRobotBehaviour.ts (#8)
 - various bux fixes after the implementation of

aiNeuralNetworkModule into robotMbedBehaviour
 - property externalSensor changed to more abstract "value" for

create_input_node_colour_sensor opc (#8)
 - opcs for processing the blocks create_q_learning_environment,

setup_q_learning_behaviour, run_q_learner,
q_learning_draw_optimal_path in interpreter.interpreter.ts added
(#8)

 commit: 85de23cda, author: vlebedynska, date: 2020-06-24 19:41:12

 #11 - Refactoring of the NN module (work-in-progress)
 - property "externalSensor" in interpreter.interpreter.ts changed to

more abstract "value"
 - aiNeuralNetwork and AiNeuralNetworkUI connected to

AiNeuralNetworkModule
 - created two properties in AiNeuralNetwork: layers and links and

generated getters for them
 - new functionality for calculating the values of the nodes of the

neural network implemented
 - implemented new functionality for getting input and output layers

of the neural network
 - created the new class Ev3MotorOutputNode, which extends the class

Node. The new class has all properties that current
Ev3MotorOutputNodes need: port and type. In the future the output
node types shall be better differentiated.

 - added drawing neural network to the constructor of
AiNeuralNetworkUI

 - integration of aiNeuralNetworkModule into
interpreter.robotMbedBehaviour.ts

 - deleted old code for processing of aiNeuralNetwork in
interpreter.robotMbedBehaviour.ts

 - bound aiNeuralNetworkModule to processNeuralNetwork function in
interpreter.robotMbedBehaviour.ts

 commit: 777b37142, author: vlebedynska, date: 2020-06-23 23:28:04

 #11 - Refactoring of the NN module (work-in-progress)
 - new property added to the class Node: position Y
 - created getters and setters for class Node
 - event handling added to LinkUI class
 - extracted LinkUI slider values in constants
 - added functionality to create path for link from link
 - added activate and deactivate link functionalities
 - added functionality to identify x an y coordinates of a node
 - added readonly property for all properties of SVGSlider
 - created getters for sliderShape and path members in SVGSlider
 - created get method and implemented set method for sliderValue

(responsible for event handling when the slider value changes)

A.3 Changelog 144

 - extended createSlider method in SVGSlider for the event handling
 - SVGUtils created and implemented: e.g. path/point calculations

 commit: 095f6f5cc, author: vlebedynska, date: 2020-06-22 23:32:40

 #11 - Refactoring of the NN module (work-in-progress)
 - moved design/draw methods to LinkUI class.
 - implemented event handling fot he class LinkUI
 - extended setSliderValue
 - implemented class Link

 commit: 930c6cf95, author: vlebedynska, date: 2020-06-22 01:18:59

 #11 - Refactoring of the NN module started
 - started adding data types to class members, parameters of the

methods
 - moved functionality from RobotMbedBehaviour.ts &

RobotMbedBehaviour.js to aiNeuralNetworkModule >
ai.neuralNetwork.ts

 - better encapsulation - new classes created and filled with
functionalities:

 - Draggable (responsible for dragging objects)
 - SVGSlider (responsible for the slider to adjust the link weights)
 - AINeuralNetworkUI (responsible for drawing links and nodes)
 - AiNeuralNetworkModule (responsible for central data storage and

initialization the main SVG.SVG())
 - removed old test files from the aiNeuralNetworkModule

 commit: cd26847f6, author: vlebedynska, date: 2020-06-14 23:45:56

 #18 - extracted QLearning from the interpreter.robotMbedBehaviour

into a module aiReinforcementLearningModule
 - connected the new module with the robotMbedBehaviour
 - added ai.qlearning as a module in main.js
 - moved all functionalities from js to ts
 - comprehensive refactoring in aiReinforcementLearningModule

including data typing and migration of variables into interfaces
 - added aiReinforcementLearningModule to tsconfig.json and

tsconfig2server.json
 - generated .js files for aiReinforcementLearningModule from .ts
 - cleaned up progSim.controller.js from temporarily added QLearning

functionalities
 - #11 started to refactor aiNeuralNetworkModule

 commit: d91157155, author: vlebedynska, date: 2020-06-13 15:45:57

 #8 - client-side implementation of RL blocks

(ai_q_apply_learning_rule, ai_q_barrier_mountain,
ai_q_draw_best_path, ai_q_learner_config,
ai_q_learning_states_and_actions_map)

 - implemented the processing of new blocks in the stack machine
(interpreter.interpreter.js)

A.3 Changelog 145

 - implemented the q-learning algorithm in robotMbedbehaviour
(migrated RL functionalities from simConfigRLQLearningModal) and
linked it to the RL processing functions (temporary version in js)

 - created a new js class QLearningAlgorithmModule to centrally
store, process and visualize the data required for the Qlearning
algorithm

 - updateBackground function passed from the SIM module to the
QLearningAlgorithmModule and called in the QLearningAlgorithmModule
in the drawOptimalPath() function

 - temporarily commented out .ts files in tsconfig.json - and
generated a new interpreter.constants.js

 commit: 523a3f51c, author: vlebedynska, date: 2020-06-11 12:20:25

 #14 - implemented visitor methods of Ev3StackMachineVisitor,

Ev3SimValidatorVisitor and Ev3UsedHardwareCollectorVisitor for
classes: RlEnvironment, RlGainExperience,
RlObstacle(Ev3StackMachineVisitor only) and
RlSetUpQLearningBehaviour

 - created new class for RlDrawOptimalPath block
 - implemented make method, JaxbToAst and astToBlock methods for

RlDrawOptimalPath (#6)
 - added new astTest for RlDrawOptimalPath block
 - added test resources for RlDrawOptimalPath block
 - added new constants to constantsSource.txt

 commit: 383ae1f1f, author: vlebedynska, date: 2020-06-10 22:28:23

 #6 implemented astToBlock methods for RlGainExperience, RlObstacle

and RlSetUpQLearningBehaviour

 commit: c8772c0df, author: vlebedynska, date: 2020-06-10 22:05:57

 #6 refactoring of RlEnvironment, RlGainExperience, RlObstacle and

RlSetUpQLearningBehaviour classes
 - Utils methods moved to a new class RlUtils.java

 commit: 87bd20e97, author: vlebedynska, date: 2020-06-10 02:29:19

 #6 - new classes created for RlEnvironment, RlGainExperience,

RlObstacle and RlSetUpQLearningBehaviour
 - implemented jaxbToAst and "make" methods for all of them
 - astToBlock method implemented for RlEnvironment
 - added new Blockly type Obstacle
 - new Blockly constants added
 - added new blocks to robotCommon.yml
 - created Ast tests for new reinforcement learning blocks
 - changed test resources for RL blocks
 - updated the ev3 toolbox for beginners
 - updated blockly resources with changes to reinforcement learning

blocks

A.3 Changelog 146

 commit: 3e2424e9b, author: vlebedynska, date: 2020-06-08 09:52:47

 #16 - QLearning algorithm integrated into the simulation:
 - transferred the algorithm from the test environment to the

simulation
 - created a new button to open the qlearning popup
 - created a new popup for the visualisation of the learning process
 - added style definitions for the new popup in roberta.css
 - integrated event handling for hidden and displayed popup: if the

popup is switched to the hidden mode, the content of the html is
deleted, if the popup is switched to display, the q learning
algorithm starts

 - defined an updateBackground function in simulation.js that is
called when the learning process has been completed and the optimal
path has been created and drawn. It creates a new image from the
source (string with ..-content) and calls the setBackground
function on the onload event. -> the background is thus dynamically
loaded as soon as the qlearning algorithm and the calculation of
the best path and its drawing are completed.

 - prepared test svg image (marsTopView.svg) with 8 nodes added to
simBackgrounds

 commit: ef22204fb, author: vlebedynska, date: 2020-06-07 16:55:37

 #15 - amended drawing of the optimal path - the best single paths

are now combined to one single path,
 - improved function getBestAction - now it can select the best

action only from the available actions and no longer randomly
 - added function to hide all paths except the optimal one
 - finishNode extracted as a constant
 - added a predefined viewbox to the svg

 commit: 74f049227, author: vlebedynska, date: 2020-06-07 12:10:56

 #15 - added a function for dynamic generation of rewards for

finishNode neighbors
 - amend comment for the last commit: added an animation to the

current action that shows the movement of the path to the target
node (0c72bb6, 0c72bb6f4a69ab0830194b6f6de0b9afa5a2e018)

 commit: 0c72bb6f4, author: vlebedynska, date: 2020-06-06 23:48:36

 #15 - refactoring of the best path calculation according to the best

q-values and its temporary storage
 - added function to draw the best path
 - added function to dynamically generate of statesAndActions matrix

from the .svg file
 - added function to find path by id
 - added viewbox to svg2
 - added new test svg file with Mars landscape and 8 nodes

A.3 Changelog 147

 commit: 2d0eafea3, author: vlebedynska, date: 2020-06-03 10:18:59

 #15 - added the best path calculation according to the best q-values

and its temporary storage

 commit: 7396c3bf6, author: vlebedynska, date: 2020-06-01 23:59:59

 #15 - added the svg test graph -

Reinforcement_Learning_Playground.svg
 - connected UI to the q-learning process: sync of stroke-width

according to its q-value

 commit: aa2cc491e, author: vlebedynska, date: 2020-06-01 17:12:07

 #13 created AST test resources for five RL blocks:

ai_q_apply_learning_rule, ai_q_apply_learning_rule,
ai_q_apply_learning_rule, ai_q_learner_config,
ai_q_learning_states_and_actions_matrix_3_x_3

 - added new test class for RL blocks

 #14 updated blockly_compressed.js & blocks_compressed.js
 - added language support for RL blocks for English and German
 - updated toolbox.beginner.xml for EV3 with new RL blocks

 commit: 87046449e, author: vlebedynska, date: 2020-05-29 00:23:06

 #12 implemented classes QValueStore, QLearningAlgorithm and Test;
 various bug fixes in the first draft of QLearning algorithm

 commit: eff38853f, author: vlebedynska, date: 2020-05-27 23:15:00

 #12 implemented the ReinforcementProblem class

 commit: 13888cea6, author: vlebedynska, date: 2020-05-26 23:10:05

 #11 in progress: extracting ai functionality to a separate TS-Module
 - created a new aiNeuralNetwork module
 #12 started implementing the Q-Learning-Algorithm
 - defined the basic structure

 commit: 0eb7b1471, author: vlebedynska, date: 2020-05-26 00:07:18

 #11 started to extract ai functionality to a separate TS-Module

 commit: b1b274a05, author: vlebedynska, date: 2020-05-25 18:03:16

 #10 when the slider is selected and moved, the line is visually

highlighted

A.3 Changelog 148

 commit: 0d984e507, author: vlebedynska, date: 2020-05-24 23:02:17

 #10 added slider-functionality for each link line (temp JS version):
 - added functionality to create generically sliders for each link-

line
 - created generic function for svg path length measurement for

weight calculation based on the position of the slider on the svg
path

 - implemented drag-functionality for the slider by using the
closestPoint algorithm

 - added event handlers for mousemove, mousedown and mouseup
 - changes of the slider position along the svg path immediately

update the link-line stroke width

 commit: b5213aab2, author: vlebedynska, date: 2020-05-21 20:29:12

 #10 adding generated JS files for link highlighting functionality

 commit: 8f49a3977, author: vlebedynska, date: 2020-05-21 20:21:44

 #10 link between nodes is highlighted and brought to the top when

it's active

 commit: 54d9e0093, author: vlebedynska, date: 2020-05-21 16:48:23

 #9 ai colour sensor input node moved from JS to TS,
 refactoring in extractColourChannelAndNormalize function

 commit: 7e1b46982, author: vlebedynska, date: 2020-05-20 02:18:14

 #9 jaxbToAst implementation of color sensor as ai input node
 definition of visitor method for color sensor as ai input node
 client-side implementation of color sensor as ai input node
 #3 integration of svgdotjs library (completed)

 commit: 40a5bd6ae, author: vlebedynska, date: 2020-05-18 00:33:07

 Merge remote-tracking branch 'origin/feature/neuronalnetworks' into

feature/neuronalnetworks

 commit: 072a8bbb0, author: vlebedynska, date: 2020-05-18 00:28:46

 #9 connected colour sensor to aiInputNode in java backend,
 set up the test environment,
 started with jaxbToAst implementation

 commit: 5f02a8495, author: vlebedynska, date: 2020-05-18 00:28:46

A.3 Changelog 149

 #3 connected colour sensor to aiInputNode in java backend,
 set up the test environment,
 started with jaxbToAst implementation

 commit: 41a0cfe62, author: vlebedynska, date: 2020-05-16 23:25:36

 #3 bug fix: when you move the slider, the AI pop-up stays in the

same place.

 commit: 4ba249478, author: vlebedynska, date: 2020-05-16 22:41:08

 #3 ai pop-up design changes: the modal is now draggable and has a

border.

 commit: 3a377febd, author: vlebedynska, date: 2020-05-16 21:21:47

 #3 migration from JS to TS (in progress), integration of svgdotjs

library (in progress)

 commit: 77edbc2ee, author: vlebedynska, date: 2020-05-15 22:14:02

 #3 design changes for the ai pop-up, migration from JS to TS (in

progress)

 commit: 2a7b304fe, author: vlebedynska, date: 2020-05-15 01:39:32

 #3 single slider for all weights implemented. Data update in slider

on link selection (temp JS solution);
 Depending on the weight change, the stroke width changes live.
 svg.js dependency added

 commit: 3a0a9c2d0, author: vlebedynska, date: 2020-05-11 23:41:28

 #3 function for drawing links in the neural-network-popup

implemented (temp JS solution)

 commit: b78d04cf4, author: vlebedynska, date: 2020-05-11 00:56:13

 #3 implemented draw functions for drawing neural network in the

neural-network-popup in the simulation

 commit: 797e235cc, author: vlebedynska, date: 2020-05-09 21:38:31

 #3 temp design for the neural networks popup

 commit: 59d596bc3, author: vlebedynska, date: 2020-05-09 15:49:42

A.3 Changelog 150

 #1 migrated neural network functionality from JS to TS.

 commit: 93de936f6, author: vlebedynska, date: 2020-05-07 20:15:38

 #3 added a pop-up for weights configuration in index.html,
 implemented new function changeWeigth to create sliders for link

weights and change the weights in this pop-up,
 updated function processNeuralNetwork - creation of a neural network

and its connection to UI is executed only once - the first time the
function processNeuralNetwork is called. Further calls update the
property externalSensor of the input layer nodes in the already
existing neural network.

 commit: 71dc95713, author: vlebedynska, date: 2020-05-05 00:49:55

 #1 changed the data type for the threshold in AiInput.java to

Integer because null values are allowed

 commit: 35921c2a7, author: vlebedynska, date: 2020-05-05 00:46:21

 #3 added the neural network button into the simulation, added new

font icon for the neural network pop-up window

 commit: 921ed6bcf, author: vlebedynska, date: 2020-05-04 13:00:25

 #1 implemented astToBlock method for AiInput.java and

AiNeuralNetwork.java

 commit: 08b20d71d, author: vlebedynska, date: 2020-05-03 23:49:52

 #1 implemented astToBlock method for AiOutput.java
 started implementation of astToBlock method for AiInput.java

 commit: 35516b30f, author: vlebedynska, date: 2020-05-03 20:14:07

 #1 added function for initial creation of links for the neural

network,
 refactored the function processNeuralNetwork

 commit: 57e12a1de, author: vlebedynska, date: 2020-05-02 23:42:17

 #1 The processNeuralNetwork function in

interpreter.robotMbedBehaviour.js has been updated so that the
algorithm now works for the simulation. However, a refactoring is
required and the speed calculation for the second motor should be
fixed as soon as possible.

 changed the visitorAiOutputNode, so that the return value is now a
simple JSONObject.

A.3 Changelog 151

 commit: 4b1e50fcd, author: vlebedynska, date: 2020-05-02 17:06:01

 #1 changed ListCreate type from <aiinput>/ to </aiinput
 implemented visitAiOutputNode in AiOutput.java
 added CREATE_INPUT_NODE opcode to visitAiInputNode in

Ev3StackMachineVisitor.java
 added CREATE_OUTPUT_NODE opcode to visitAiInputNode in

Ev3StackMachineVisitor.java
 added PROCESS_NEURAL_NETWORK opcode to visitAiInputNode in

Ev3StackMachineVisitor.java
 Exception handling for IAiVisitor
 added new constants to C.java via constantsSource.txt
 added new constants to interpreter.constants.js and

interpreter.constants.ts
 implemented processNeuralNetwork function in

interpreter.robotMbedBehaviour.js and
interpreter.robotMbedBehaviour.ts

 updated to 3.8.8. DB version in pom.xml in Wedointerpreter

 commit: 2ecda45d7, author: vlebedynska, date: 2020-04-29 18:57:43

 #1 implemented JaxB to Ast generation for neural network block
 added two new blockly constants for input and output layer
 defined two new data types - InputNode and OutputNode
 changed robotCommon.yml for ai blocks
 implemented method visitAiNeuralNetwork in Ev3StackMachineVisitor

with dummy actions for test purposes

 commit: d6c799bb9, author: vlebedynska, date: 2020-04-26 23:50:30

 #1 JaxB to Ast generation for AiOutput block

 commit: a6cb80500, author: vlebedynska, date: 2020-04-26 21:55:58

 #1 integrated AI blocks into Open Roberta Lab UI for EV3 (e.g.

updated robotCommon.yml, added new Blockly constants, added
language support for English and German),

 updated pom.xmls with new db version 3.8.8,
 refactored ai_actors and ai_sensors blocks,
 updated tests ressources for AI blocks,
 created AiLink class,
 started impl of AiOutput block

 commit: ca5e634b6, author: vlebedynska, date: 2020-04-23 01:00:34

 #1 added AiInputNode functionality to visitor

AbstractStackMachineVisitor,
 threshold and sensor-AST: extracted from Jaxb block and saved as

members in AiInputNode,
 extended toString() in validateInputNode from

NeuralNetworkComponentsTest

A.3 Changelog 152

 explored code generation for simulation

 commit: 24a1a3617, author: vlebedynska, date: 2020-04-21 20:51:28

 #1 added Ast-Tests

 commit: 9984c0bd5, author: vlebedynska, date: 2020-04-21 20:23:57

 #1 added new AI-Ast objects and registered in the robotCommon

configuration

 commit: 346fede84, author: vlebedynska, date: 2020-04-13 15:09:03

 autogenerated html

 commit: 327b82ca5, author: vlebedynska, date: 2020-04-13 14:46:45

 db changes 3.8.7 > 3.8.8

A.4 Machine Learning Curriculum 153

A.4 Machine Learning Curriculum
Unterrichtsplan für 04.08.2020

„Aufwachsen mit KI: KI erlebbar machen!“

Zielgruppe: Schüler*innen in der 7-8 Klasse

Zeitlicher Aufwand: 6 Unterrichtsstunden à 45 Minuten

Ziel des Unterrichtsvorhabens: Schüler*innen untersuchen, wie die Roboter lernen, den-

ken und fühlen. Sie gehen der Frage nach, was unter dem Begriff Künstliche Intelligenz

(KI) zu verstehen ist und lernen drei Hauptbereiche der KI - überwachtes, unüberwach-

tes und bestärkendes Lernen - praxisnah kennen. Sie ergründen, wann die Menschen

eine Maschine als intelligent bezeichnen und stärken ihr neu erworbenes Wissen, indem

sie sich mit der Entwicklung und Konfiguration von einfachen anschaulichen KI-Anwen-

dungen im Open Roberta Lab beschäftigen.

Der Unterricht am 05.08.2020 (mit den Schüler*innen der 5-6 Klassen) und

06.08.2020 (mit den Schüler*innen der 3-4 Klassen) wird ähnlich aufgebaut sein, nur

dass die Arbeitsblätter, Aufgabenstellungen und Beispiele entsprechend dem Alter der

Kinder aufbereitet werden.

Uhrzeit Plan Arbeitsformen und
-materialien

Modul 1: „Wie lernt dein Roboter?“ – Einführung in Künstliche Intelligenz und
Maschinelles Lernen
09:00-
09:30

Kennenlernrunde im Plenum / im Tandem

In die Vorstellung sollen einige der folgenden Fra-
gen einbezogen werden:

- Was ist Intelligenz? Was denkst du, was
macht uns zu intelligenten Wesen?

- Wie lernen wir, Menschen?
- Was fällt dir schwer/einfach zu lernen?
- Wie lernen die Maschinen? Lernen sie

überhaupt? Wenn du schon ein Pro-
gramm geschrieben hast, bedeutet das,
dass der Computer/dein Roboter schlauer
geworden ist?

- Können die Roboter fühlen? Sind die Ma-
schinen emotional?

Anschließend – Sammlung und Diskussion der
Eindrücke im Plenum

Präsentation
Diskussion im Tan-
dem
Plenum
Evtl.: Plakate?

09:30-
09:45

Braitenberg Experiment mit einem Calli:bot / EV3
durchführen:
Verhaltensweise Angst ODER
Verhaltensweise Freundschaft

Calli:bot oder
EV3,

A.4 Machine Learning Curriculum 154

Reflexion und Diskussion:
- Ist die Verhaltensweise des Calli:bot intelli-

gent?
- Kennt ihr derartige Verhaltensweise aus der

Natur?

Evtl. EV3 Roboter-Set mitbringen und mit den Kin-
dern die Funktionsweise von Braitenberg Experi-
mente im Open Roberta Lab nachvollziehen.

Taschenlampe
Experiment im Ple-
num
Open Roberta Lab,
wenn ein Set von
EV3 Robotern vor-
handen sein wird
eventuell Einzelar-
beit oder Tandem
Beispielvideo mit der
ähnlichen Verhal-
tensweise aus der
Natur: Motte fliegt
zum Licht

09:45-
10:15

Bezug nehmen auf das Experiment von Braiten-
berg und die Diskussion davor (Was denkt ihr,
können die Roboter auch intelligent sein?) und in
das Thema KI einleiten.
Vortrag über KI: was ist KI? Warum ist es wichtig,
dass wir heute über KI lernen? Warum ist das für
euch wichtig zu wissen, was KI ist und womit sie
sich beschäftigt? Geschichte erzählen, mit Bei-
spielen (siehe als Vorbereitung die Vorlesung von
Hod Lipson)23
Ziel der UE nahebringen: Wir lernen heute, wie die
Roboter denken, lernen, fühlen und wann wir sie
als intelligent bezeichnen.

Präsentation

10:15-
10:30 Pause

Modul 2: „Bringe deinem Roboter etwas bei“ – Einführung in überwachtes Ler-
nen und Neuronale Netze
10:30-
10:50

Mit welcher Art von Problemen haben Computer /
Maschinen zu kämpfen?
Mit den gleichen Problemen, wie wir Menschen!

Überblick geben, welche Bereiche der KI wir
heute kennenlernen werden:

- Überwachtes Lernen
- Unüberwachtes Lernen
- Bestärkendes Lernen

Einführung in das Thema „Überwachtes Lernen“

Präsentation

Set von Bildern, die
den Kindern bekannt
und nicht bekannt
sind: Tiere / Plane-
ten / Beispiel aus
dem Mathematikun-
terricht
Arbeit im Plenum

Interessant sind
ebenfalls zweideu-
tige Bilder (wie die

23 https://youtu.be/XJP1hJ92g1Q, abgerufen am 12.07.2020.

A.4 Machine Learning Curriculum 155

Experiment mit den Bildern (Eine analoge Übung,
überwachtes Lernen hautnah erleben):
Ein Bild soll gezeigt werden. Die Kinder sollen er-
kennen, was/wer auf dem Bild zu sehen ist. Was
weißt du schon in deinem Alter? Was weißt du
noch nicht?
Dann soll die Lösung verraten werden, wer/was
auf dem Bild zu sehen ist.
Ein zweites, drittes, viertes Bild zeigen -> Effekt
des Lernens erzeugen, indem die Kinder lernen,
während der/die LehrerIn als der/die Überwache-
rIn agiert.
Ein anderes Beispiel könnte man aus der Mathe-
matik nehmen: welche Rechenaufgabe könnt ihr
bereits in eurem Alter lösen? Was könnt ihr noch
nicht tun?

Schlussfolgerung:

Je mehr Erfahrung wir haben, je älter wir sind –
desto mehr können wir und desto schlauer wer-
den wir. LehrerInnen / Eltern helfen uns, uns zu
verbessern, sie geben uns Anweisungen, wie wir
uns verhalten sollen, wie gut wir gelernt haben.
So ähnlich sieht’s auch bei den Computern aus!

Täuschungsbilder,
Bild mit den Hunden
und Keksen)

10:50-
11:30

KI erlebbar machen! Teil 1

Einführung in die Funktionsweise eines sehr ein-
fachen neuronalen Netzes („Gehirn des Robo-
ters“)24 und Übergang zum selbstständigen Pro-
grammieren von überwachtem Lernen im Open
Roberta Lab.

Viktoriya zeigt das Programmieren und Anwen-
den von Neuronalen Netzen vor und erklärt die
Aufgabe: „Bringe dem Roboter bei, sich korrekt zu
verhalten!“
Übungen mit KI Lernkarten einleiten

Open Roberta Lab

KI-Lernkarten

Inspiration:

Kinderbücher zum
Überwachten Ler-
nen und Neuronalen
Netzen

Einzelarbeit oder im
Tandem

11:30-
12:15 Mittagspause

Modul 3: „Lass deinen Roboter aus Erfahrungen lernen“ – Einführung in das
bestärkende Lernen
12:15-
12:35

KI erlebbar machen! Teil 2

Präsentation

24 Hier muss ich mir noch genauer überlegen, wie ich in das Thema einleite.

A.4 Machine Learning Curriculum 156

Zunächst: analoge Einführung in das Thema „Be-
stärkendes Lernen“. Ziel: bestärkendes Lernen
erlebbar machen.

Was lernt/macht ihr gerne allein, ohne Aufforde-
rung?
Mögliche Antworten:

- tanzen
- singen
- musizieren
- Computerspiele spielen - Beispiele aus

aktuellen Computer Games. Wie verbes-
sert man sich als GamerIn mit der Zeit?

- Etc.

Weitere Beispiele für das bestärkende Lernen?

- Hundetraining

Wie ist das / was bedeutet das, wenn ein Roboter
durch das bestärkende Lernen lernt? Eigentlich
geht es ihm dann ähnlich wie uns!

Beispiele für bestärkendes Lernen im Compu-
ter/Robotik-Welt zeigen:

- Go/Schach-Spiele
- Tischtennis-Spiel25
- Andere Beispiele aus Computerspielen –

Agent lernt, die Belohnungen zu sam-
meln, anstatt in der Race zu gewinnen.

- Das Auto konstruiert sich von allein durch
„Trial and Error“.

Oft fragen wir uns – was ist eigentlich gut? Kön-
nen wir Menschen, Maschinen / Robotern / Com-
putern beibringen, gut zu sein? Und was heißt ei-
gentlich gut im Sinne eines Computerprograms?

- Beispiel einer Interaktionskette – Ball tref-
fen ist gut, aber was heißt eigentlich, ei-
nen Ball zu treffen? Sich zwei Mal nach
oben, einmal nach unten zu bewegen,
bringt den Agenten vielleicht einmal zum
Erfolg, ein anderes Mal jedoch zum Miss-
erfolg.

Beim bestärkenden Lernen geht es nicht darum,
Computer etwas beizubringen, sondern, es geht

Beispiele aus
gym.openai.com o-
der ähnlichen Platt-
formen

Evtl. Beispielvideo
Hundetraining

Diskussion im Ple-
num

25 https://gym.openai.com/envs/Pong-ram-v0/, abgerufen am 12.07.2020.

A.4 Machine Learning Curriculum 157

darum, Computer lernfähig zu machen und Lern-
prozess anzustoßen.

12:35-
13:30

Machen wir nun unseren Roboter lernfähig!

Einführung in die Arbeit mit dem bestärkenden
Lernen im Open Roberta Lab.

Diskussion:

- Was bedeutet „gut“ für diese Problemstel-
lung?

- Was ist ein optimaler Weg für uns, Men-
schen? Beispiel: ein optimaler Weg für
uns ist, wenn es an einem Eiscafé / Spiel-
platz vorbeiführt.

- Was ist ein optimaler Weg für einen Stra-
ßenstaubsaugroboter?

Spielregeln erklären und in die Blöcke im Open
Roberta Lab einführen. Arbeitsblätter verteilen.

In der Zwischenzeit: Diskussion starten – was
merkt ihr? Wie wirken sich unterschiedliche Ein-
stellungen der Parameter auf die Verhaltensweise
des Roboters aus?

Experiment: Wer ist schneller / besser? Der Ro-
boter oder wir, Menschen? Wer von uns beiden
findet den schnelleren/besseren Pfad?

Open Roberta Lab

Spielregeln

Hintergründe
(Eisenbahn,
Labyrinth,
Stadtkarte)

Aufgaben

Erklärung zu den
Blöcken

Einzelarbeit oder im
Tandem, anschlie-
ßend Diskussion im
Plenum

13:30-
13:45 Pause

Modul 4 „Können Roboter selbstständig lernen?“ – Einführung in unbeaufsich-
tigtes Lernen
13:45-
14:30

KI erlebbar machen! Teil 3

Einführung in das Thema „Clustering“ und un-
überwachtes Lernen. Dieses Thema wird voraus-
sichtlich nur analog behandelt.
Clustering erlebbar machen – Experiment mit
verschiedenen Gefäßen.

Clustering: was ist das? Es ist die Kunst von Grup-
penbildungen. Beispiele für verschiedene Grup-
penbildungsprobleme / Zweideutigkeiten mitbrin-
gen und mit Kindern diskutieren.

- Wie würdest du diese Gegenstände zu-
sammen gruppieren?

Präsentation – Clus-
tering analog erklä-
ren

Experiment mit ver-
schiedenen Gefä-
ßen: verschiedene
Flaschen, Trinkglä-
ser

Arbeit in Plenum

A.4 Machine Learning Curriculum 158

- Wo kommen deine Kriterien her? Warum
hast du dich für diese Gruppierung ent-
schieden?

Überleiten zum Thema: wie gruppiert ein Roboter
die Gegenstände?

Puffer und
Überlei-
tung zur
Ab-
schluss-
diskus-
sion

Was haben wir also heute alles gelernt? Zusam-
menfassung der drei Arten, wie die Roboter lernen
können + Zusammenfassung zentraler Erkennt-
nisse.
Damit die Kinder vor der abschließenden Diskus-
sion noch mal in sich gehen und Gedanken dazu
machen können, wird ein Arbeitsblatt verteilt: Wie
lernst du? Wie lernen Maschinen?

- Überleitung zur abschließenden Diskus-
sion und Reflexion.

- Evtl. Position beziehen – Gedanken zu
ethischen Fragen machen

- Oder ein weiteres interessantes Thema:
Jobs, die heutzutage von Menschen erle-
digt werden, Jobs, die zunächst nur von
Maschinen erledigt werden.

Arbeitsblatt: Wie
lernst du? Wie ler-
nen Maschinen?26

Arbeitsblatt: Position
beziehen zu ML-An-
wendungen27

Oder: Arbeitsblatt für
die zukünftigen
Jobs28

Einzelarbeit

14:40-
15:00 Uhr

Diskussion/Reflexion – was hast du heute gelernt,
wie die Roboter lernen?

- Wie hat es dir gefallen?
- Welcher Teil hat es am meisten Spaß ge-

macht?

- Was nimmst du aus diesem Tag mit?

Diskussion im Ple-
num

Evaluationsbogen?

Evaluationsplakat?

Einzelarbeit und
dann Diskussion im
Plenum

26 https://www.medien-in-die-schule.de/wp-content/uploads/Arbeitsblatt_MachineLearning_15.pdf, abgeru-
fen am 12.07.2020.
27 https://www.medien-in-die-schule.de/wp-content/uploads/Materialblatt_MachineLearning_22.pdf, abge-
rufen am 12.07.2020.
28 https://www.medien-in-die-schule.de/wp-content/uploads/Materialblatt_MachineLearning_25.pdf, abge-
rufen am 12.07.2020.

A.5 Presentation 159

A.5 Presentation

	

AU
FW

AC
HS

EN
MI

T
KÜ

NS
TL

IC
HE

R
IN

TE
LL

IG
EN

Z
Vi

kt
or

ia
 O

la
ri

| 0
7.0

8.
20

20

!

Vi
kt
or
iy
a

"

//
 V
or
st
el
lu
ng
sr
un
de

W
ie

 le
rn

st
 d

u
am

 b
es

te
n?

 W
as

 fä
llt

 d
ir

sc
hw

er
/e

in
fa

ch
 zu

le

rn
en

?

W
as

 d
en

ks
t d

u,
 w

ie
 le

rn
en

 d
ie

 M
as

ch
in

en
? L

er
ne

n
si

e
üb

er
ha

up
t?

W
as

 d
en

ks
t d

u,
 w

as
 is

t K
ün

st
lic

he
 In

te
lli

ge
nz

?

#

BR
AI
TE
NB
ER
-

EX
PE
RI
ME
NT

$

A.5 Presentation 160

	

Wa
s
ha
bt
 i
hr
 b
eo
ba
ch
te
t?

Is
t d

ie
 V

er
ha

lte
ns

we
is

e
de

s
Ro

bo
te

rs
 in

te
lli

ge
nt

?ih
r
be
ob
ac
ht
et
?

ei
se

de
s

?

!

W
ie

 „d
en

ke
n“

 d
ie

Ro

bo
te

r?
W

ie
 le

rn
en

 s
ie

?

Es
 ge

ht
 he

ut
e u

m
Kü

ns
tl

ich
e I

nt
el

lig
en

z

"

Sp
ie
lr
eg
el
n

#

//
 P
la
n
fü
r
he
ut
e

Wa
s

is
t

KI
?

Un
üb

er
wa

ch
te

s
Le

rn
en

Üb
er

wa
ch

te
s

Le
rn

en
Be

st
är

ke
nd

es

Le
rn

en

9:
00

–9
:5

0
10

:0
0–

12
:0

0
13

:0
0–

14
:1

5
14

:1
5–

15
:0

0

W
ie

 le
rn

t e
in

 R
ob

ot
er

se

lb
st

än
di

g?

Gr
up

pe
n

bi
ld

en
 u

nd
 w

as

da
s

m
it

de
n

Fl
as

ch
en

 zu

tu
n

ha
t

W
as

 w
är

e,
 w

en
n

de
r

Ro
bo

te
r z

ur
 S

ch
ul

e
ge

he
n

w
ür

de
?

Od
er

 b
ra

uc
ht

 e
in

Ro

bo
te

r e
in

eN

Le
hr

er
In

, u
m

 zu

le
rn

en
?

W
ie

 s
am

m
el

t e
in

Ro

bo
te

r d
ie

Er

fa
hr

un
g?

W
as

 w
är

e,
 w

en
n

de
r

Ro
bo

te
r i

n
de

r S
ch

ul
e

No
te

n
be

ko
m

m
en

w

ür
de

?

$

A.5 Presentation 161

	

!"#$%&"'()*+%&,-./0*()12

!
"#

""
"$

A.5 Presentation 162

	

KI
 p
as
si
er
t
im
 H
in
te
rg
ru
nd

!"
!#

!$
!%

A.5 Presentation 163

	

!"
!#

!$
%&

A.5 Presentation 164

	

KI
 –

Fr
ag
e
de
r
Pe
rs
pe
kt
iv
e

!"

KI
 –

Fr
ag
e
de
r
Pe
rs
pe
kt
iv
e

KI
–
Fr
ag
e
de
r
Pe
rs
pe
kt
iv
e

…,
 C

om
pu

te
r d

az
u

zu
 b

rin
ge

n,
 D

in
ge

 zu
 tu

n,
 b

ei
 d

en
en

 ih
ne

n
m

om
en

ta
n

de
r

M
en

sc
h

no
ch

 ü
be

rle
ge

n
ist

. (
Ri

ch
 u

nd
 K

ni
gh

t,
19

91
)

KI
, ..

. b
es

ch
äf

tig
t s

ich
 m

it
in

te
lli

ge
nt

em
 V

er
ha

lte
n

in
 kü

ns
tli

ch
en

 M
as

ch
in

en
.

(N
ils

so
n,

 19
98

)

!!

Wa
nn
 i
st
 e
in
e
Ma
sc
hi
ne
 i
nt
el
li
ge
nt
?

!#

He
ut
e
ge
ht
’s
 u
ms
 L
er
ne
n

M
as

ch
in

el
le

s
Le

rn
en

Üb
er
wa
ch
te
s
Le
rn
en

Be
st
är
ke
nd
es
 L
er
ne
n

Un
üb
er
wa
ch
te
s
Le
rn
en

n

U
üb

ht
L

!$

A.5 Presentation 165

	

Be
st
är
ke
nd
es
 L
er
ne
n

wi
rd

 e
in

ge
se

tz
t,

we
nn

 d
er

 R
ob

ot
er

 a
us

Er

fa
hr

un
ge

n
le

rn
en

 so
ll.

Fe
ed

ba
ck

Ze
it

Zi
el

Le
rn

ve
rh

al
te

n

!"

Le
rn
en
 a
us
 E
rf
ah
ru
ng
en

Qu
el

le
: h

tt
ps

://
gy

m
.o

pe
na

i.c
om

/

!#

Hu
bs
ch
ra
ub
er
 l
er
nt
 z
u
fl
ie
ge
n

!$

Sp
ie
le
 s
pi
el
en

-S
ch

ac
h

-G
o

-R
ub

ik
’s

Cu
be

handsketched

!%

A.5 Presentation 166

	

Q-
Le
rn
en
:
fi
nd
e
de
n
be
st
en
 W
eg

W
as

 is
t e

in
 b

es
te

r W
eg

 fü
r

un
s

M
en

sc
he

n?
W

as
 is

t e
in

 b
es

te
r W

eg
 fü

r
de

n
Ro

bo
te

r?

in
de
 d
en
 b
es
te
n
We
g

W
eg

 fü
r

W
eg

 fü
r

!"

Ma
ch
en
 w
ir
 n
un
 u
ns
er
en
 R
ob
ot
er
 l
er
nf
äh
ig
!

#$

Zi
el

St
ar

t

3
- 4

 -
3Op

tim
al

er
 W

eg
vo

n
na

ch

vo
n

45
be

st
er

 W
eg

zu
fä

lli
ge

r W
eg

3
4

50
1

00
 :

03
: 0

0

1
3

0
1

2 3

4

5

!"
#$

%&
'"

()
'*

'+
,-

"-
#+

-.
(/

01
-

2+
-.

"0
-+

#

)'
0"

%3
"4

(5
,(

."
0(

6,
!,

'"
0

/"
0*

."
(7

08
*&

0$
-/

(#
*9

9"
:'

(

)'
*0

'(
;(

<+
":

)'
"$

"0
$-

/
*3

'$
":

:"
(7

=+
#,

."

7=
+#

,.
"-

Bild: iStock.com/ ilyaliren; © Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

)'
*0

'#
'*

'+
,-

7-
.#

'*
'+

,-

*3
'$

":
:"

(
7-

'#
%&

"+
.$

-/
>+

"(
/$

'(
+#

'(
.+

"(
/"

5?
&:

'"
()
'0

"%
3"

@
*3

'$
":

:"
0

,=
'+

9*
:"

0(
>"

/
<"

+'

#%

So
 s
ie

ht
 d

as

Pr
og

ra
m

m
 a

us

Un
d

so
 s
ie

ht

de
r

Le
rn

pr
oz

es
s

au
s

#!

A.5 Presentation 167

	

lan
gs

am
ne

in
se
lte

n
se
lte

n
10

30

Au
s d

er

Ka
rt

e

!!

Sp
ie
lr
eg
el
n

De
r R

ob
ot

er
be

we
gt

sic
h

im
m

er
zw

isc
he

n
zw

ei
St

at
io

ne
n.

Di
e

Ab
sc

hn
itt

e,
di

e
zu

rE
nd

st
at

io
n

(zu
m

Zi
el

) f
üh

re
n,

 g
eb

en
di

e
gr

öß
te

Be
lo

hn
un

g.

Je
 n

ac
hd

em
, w

ie
du

 d
ei

ne
n

Al
go

rit
hm

us
ko

nf
ig

ur
ie

rt
ha

st
, s

ta
rte

td
er

Ro

bo
te

re
nt

we
de

ra
n

ei
ne

rz
uf

äl
lig

en
St

el
le

 o
de

rd
a,

wo
 e

ra
uf

ge
hö

rt
ha

t.

Na
ch

je
de

m
Zu

g
be

re
ch

ne
td

er
 R

ob
ot

er
di

e
Qu

al
itä

td
er

 S
ta

ße
au

fs
Ne

ue
: i

st
sie

je
tz

tb
as

ie
re

nd
au

f s
ei

ne
m

W
iss

en
 a

ttr
ak

tiv
er

ge
wo

rd
en

al
sv

or
he

ro
de

r
ni

ch
t?

!"

Lo
s
ge
ht
’s
 i
ns
 L
ab
!

Te
st

et
 v

er
sc

hi
ed

en
e

W
er

te
 fü

r d
ie

 e
rs

te
 K

ar
te

!#

Lo
s
ge
ht
’s
 i
ns
 L
ab
!

Te
st

et
 v

er
sc

hi
ed

en
e

W
er

te
 fü

r d
ie

 le
tz

te
n

zw
ei

 K
ar

te
n.

!$

A.5 Presentation 168

	

Wa
s
ha
bt
 i
hr
 b
eo
ba
ch
te
t?

W
an

n
le

rn
t d

er
 R

ob
ot

er
 a

m
 s

ch
ne

lls
te

n?
W

ie
 v

ie
l Z

ei
t b

ra
uc

ht
 e

r?
W

el
ch

e
Ei

ns
te

llu
ng

en
 s

in
d

di
e

be
st

en
?

!"

MI
TT

AG
SP

AU
SE

!#

Au
fw
ac
hs
en
 m
it
 K
I

Üb
er
wa
ch
te
s
Le
rn
en

Be
st
är
ke
nd
es
 L
er
ne
n

Un
üb
er
wa
ch
te
s
Le
rn
en

U
üb

ht
L

!$

Un
üb
er
wa
ch
te
s
Le
rn
en

W
ird

 e
in

ge
se

tz
t,

we
nn

 d
ie

 g
ew

ün
sc

ht
en

Er

ge
bn

is
se

 n
ic

ht
 im

 V
or

au
s

be
ka

nn
t s

in
d,

de

r C
om

pu
te

r a
be

r n
ac

h
M

us
te

rn
 in

 d
en

Da

te
n

su
ch

t.
er

n
in

 d
en

%&

A.5 Presentation 169

	

Cl
us
te
ri
ng

W
ie

 w
ür

de
t i

hr
 d

ie
se

 G
eg

en
st

än
de

 g
ru

pp
ie

re
n?

!"

Cl
us
te
ri
ng

W
ie

 w
ür

de
t i

hr
 d

ie
se

 G
eg

en
st

än
de

 g
ru

pp
ie

re
n?

W
o

ko
m

m
en

 e
ur

e
Kr

ite
rie

n
he

r?
 W

ar
um

 h
ab

t i
hr

 e
uc

h
fü

r d
ie

se

Gr
up

pi
er

un
g

en
ts

ch
ie

de
n?

!#

Wi
e

gr
up

pi
er

t
ei

ne
 M

as
ch

in
e

di
e

Ge
ge

ns
tä

nd
e?

e
gr

up
pi

er
t

ei
ne

 M
as

ch
in

e
di

e
Ge

ge
ns

tä
nd

e?

!$

k-
Me
an
s-
Al
go
ri
th
mu
s

1.
W

äh
le

 d
ie

 A
nz

ah
l d

er
 G

ru
pp

en
 a

us
, d

ie
 d

u
id

en
tif

izi
er

en

m
öc

ht
es

t.

2.
W

äh
le

 zu
fä

lli
g

dr
ei

 v
er

sc
hi

ed
en

e
Ge

ge
ns

tä
nd

e
au

s.
Si

e
sin

d
un

se
re

 C
lu

st
er

.

3.
 M

es
se

 d
en

 U
nt

er
sc

hi
ed

 zw
isc

he
n

de
m

 e
rs

te
n

Ge
ge

ns
ta

nd
 zu

de

n
dr

ei
 C

lu
st

er
n.

4.
 W

ei
se

 d
en

 e
rs

te
n

Ge
ge

ns
ta

nd
 d

em
 n

äc
hs

tg
el

eg
en

en
 C

lu
st

er

zu
. 5.
 W

ie
de

rh
ol

e
di

e
le

tz
te

n
zw

ei
 S

ch
rit

te
 fü

r a
lle

 G
eg

en
st

än
de

.

K
=
3

Clu
st

er

!!

A.5 Presentation 170

	

k-
Me
an
s-
Al
go
ri
th
mu
s

1.
W

äh
le

 d
ie

 A
nz

ah
l d

er
 G

ru
pp

en
 a

us
, d

ie
 d

u
id

en
tif

izi
er

en

m
öc

ht
es

t.

2.
W

äh
le

 zu
fä

lli
g

dr
ei

 v
er

sc
hi

ed
en

e
Ge

ge
ns

tä
nd

e
au

s.
Si

e
sin

d
un

se
re

 C
lu

st
er

.

3.
 M

es
se

 d
en

 U
nt

er
sc

hi
ed

 zw
isc

he
n

de
m

 e
rs

te
n

Ge
ge

ns
ta

nd
 zu

de

n
dr

ei
 C

lu
st

er
n.

4.
 W

ei
se

 d
en

 e
rs

te
n

Ge
ge

ns
ta

nd
 d

em
 n

äc
hs

tg
el

eg
en

en
 C

lu
st

er

zu
. 5.
 W

ie
de

rh
ol

e
di

e
le

tz
te

n
zw

ei
 S

ch
rit

te
 fü

r a
lle

 G
eg

en
st

än
de

.

K
=
3

Clu
st

er
K

=
3

Clu
st

er

!"

Au
fw
ac
hs
en
 m
it
 K
I

Üb
er
wa
ch
te
s
Le
rn
en

Be
st
är
ke
nd
es
 L
er
ne
n

Un
üb
er
wa
ch
te
s
Le
rn
en

U
üb

ht
L

!#

Üb
er
wa
ch
te
s
Le
rn
en

W
ird

 e
in

ge
se

tz
t,

we
nn

 d
as

ge

wü
ns

ch
te

 E
rg

eb
ni

s i
m

 V
or

au
s

be
ka

nn
t i

st
.

ka
nn

t i
st

.

!$

Br
in

gt
 d

em
 R

ob
ot

er
 d

ie
 S

in
ne

 b
ei

Un
d

wi
e

er
 s

ic
h

in
 b

es
tim

m
te

n
Si

tu
at

io
n

ko
rre

kt
 v

er
ha

lte
n

so
ll

Un
d

wi
e

er
 s

ic
h

in
 b

es
tim

m
te

n
Si

tu
at

io
n

ko
rre

kt
 v

er
ha

lte
n

so
ll

!%

A.5 Presentation 171

	

!"

Wi
e
br
in
gs
t
du
 d
em
 R
ob
ot
er
 e
tw
as
 b
ei
?

In
de

m
 d

u
se

in

Ne
ur

on
al

es

Ne
tz

we
rk

ei

ns
te

lls
t!

#$

Ne
ur

on
Ne

ur
on

Ve
rb

in
du

ng

Ei
ng

ab
e

Au
sg

ab
e

Ka
nn

st
 d

u
re

gu
lie

re
n

#%

Fa
rb

e

Li
ch

t

Ab
st

an
d

LE
D

Mo
to

r

Te
xt

To
n

#&

A.5 Presentation 172

	

Fa
rb

e
LE

D

!"

Fa
rb

e
Mo

to
r

B
+

C

!#

Wi
e
pr
og
ra
mm
ie
rs
t
du
 d
as
?

!!

Lo
s
ge
ht
’s
 i
ns
 L
ab
!

!$

A.5 Presentation 173

	

Ab
la
uf

Pr
og
ra
mm
 z
us
am
me
ns
te
ck
en

Si
mu
la
ti
on
 ö
ff
ne
n

Ne
tz
we
rk
fe
ns
te
r
öf
fn
en

Pr
og
ra
mm
 s
ta
rt
en

Ne
tz
 k
on
fi
gu
ri
er
en

Te
st
en

!"

Bild: iStock.com/Andrii Shyp

!#

KI
-K
ar
te
n

!$

PA
US

E

%&

A.5 Presentation 174

Au
fw
ac
hs
en
 m
it
 K
I

Üb
er
wa
ch
te
s
Le
rn
en

Be
st
är
ke
nd
es
 L
er
ne
n

Un
üb
er
wa
ch
te
s
Le
rn
en

U
üb

ht
L

!"

Fe
ed
ba
ck

!W
ie

 h
at

 e
s

di
r g

ef
al

le
n?

!W
el

ch
er

 T
ei

l h
at

 e
s

am
 m

ei
st

en
 S

pa
ß

ge
m

ac
ht

?
!W

as
 n

im
m

st
 d

u
au

s
di

es
em

 T
ag

 m
it?

!W
as

 n
im

m
st

 d
u

au
s

di
es

em
 T

ag
 m

it,
 w

as
 K

I i
st

?
!W

as
 d

en
ks

t d
u,

 w
as

 K
I i

st
?

ht
tp

s:/
/fo

rm
s.g

le
/v
jQ

Xh
tjP

4V
Jq

KR
Sw

6

!#

Bi
s
zu
m
nä
ch
st
en
 M
al
!

!$

A.6 Neural Network Cards 175

A.6 Neural Network Cards

Motor B

Speaker
gibt Töne aus

Bildschirm
zeigt Text

Ultraschalsensor 2
misst Abstand vorne links

Ultraschalsensor 3
misst Abstand vorne rechts

Farbsensor 1
kann Farben und Licht messenLED Lampe

leuchtet grün, orange
und rot

Motor C

Hallo

© Viktoriya Olari | Juli 2020 | Aufwachsen mit Künstlicher Intelligenz

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

So stellst du deinen KI-Roboter ein
Überprüfe, ob dein KI-Roboter richtig konfiguriert ist.

Hi! Prüfe die

Einstellungen.

Dann kann‘s
losgehen

A.6 Neural Network Cards 176

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Auch Roboter können lernen, sich der Umgebung anzupassen

Bringe das deinem Roboter bei! Schiebst du deinen Roboter auf
das grüne Blatt, soll seine LED-Lampe grün aufleuchten.

Du brauchst:

Mein neues Outfit passt
ganz gut zu den Blöcken

Lösung
So steckst du dein Programm zusammen:

Damit dein Roboter seine LED an
die Farbe des Blattes anpasst,
sollst du dein neuronales Netz wie
folgt einstellen:

Bringe deinem Roboter bei, zu jedem Blatt eine andere Farbe anzuzeigen.
Aufgabe

A.6 Neural Network Cards 177

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Lass deinen Roboter nicht erwischen!

Bringe dem Roboter bei, helle Orte zu meiden. Je heller die
Umgebung, desto schneller muss dein Roboter fahren.

Du brauchst:

0 bedeutet beim Lichtsensor

sehr dunkel und 100

 sehr hell.

Lösung
So steckst du dein Programm zusammen:

Damit dein Roboter die hellen
Orte meidet – d.h. an hellen Orten
schneller vorbeifährt – sollst du
dein neuronales Netz wie folgt
konfigurieren:

je höher der Wert
- also je heller es ist -
desto schneller drehen sich
die Motoren

A.6 Neural Network Cards 178

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Bringe deinem Roboter die Verkehrsregeln bei

Auf “Grün” darf der Roboter mit voller Geschwindigkeit fahren,
auf “Gelb” soll er langsamer werden und auf “Rot” muss er stehen
bleiben.

Neue Blöcke, die du brauchst:

+ die Blöcke, die du schon kennst:

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Lösung

Damit dein Roboter die Verkehrs-
regeln beherrscht, sollst du dein
neuronales Netz wie folgt einstel-
len:

So steckst du dein Programm zusammen:

fährt dein Roboter auf deem
gelben Grund, so drehen ssich
seine Motoren nur mit
halber Geschwindigkeit.

A.6 Neural Network Cards 179

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Lass den Roboter den Abstand zum Hindernis laut messen

Bringe dem dem Roboter bei, dass je näher er zu einem Hindernis
ist, desto tiefer soll der Ton sein, den er ausgibt.

Neue Blöcke, die du brauchst:

+ die Blöcke, die du schon kennst:

Lösung
So steckst du dein Programm zusammen:

Damit der Roboter einen tiefen
Ton ausgibt, je näher er zum Hin-
dernis ist, sollst du dein neurona-
les Net wie folgt einstellen:

A.6 Neural Network Cards 180

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Auch Roboter können freundlich sein

Bringe deinem Roboter bei, sich freundlich zu verhalten!
Sobald der Roboter ein Objekt in seiner Umgebung erkennt, soll er
dem Objekt näherkommen.

Freunde!

Du brauchst:

2x

+ die Blöcke, die du schon kennst:

- für Port 2 und für Port 3

- für Port B und für Port C2x

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Lösung

Damit dein Roboter sich freundlich
verhält, sollst du dein neuronales
Netz wie folgt konfigurieren:

So steckst du dein Programm zusammen:

A.6 Neural Network Cards 181

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Lass deinen Roboter «Angst» vor Hindernissen haben

Bringe deinem Roboter bei, den Hindernissen auszuweichen.
Sobald der Roboter ein Objekt in seiner Umgebung erkennt, soll er
von diesem Objekt fliehen.

Du brauchst:

2x

+ die Blöcke, die du schon kennst:

- für Port 2 und für Port 3

- für Port B und für Port C2x
Ein Roboter

muss auf

verschiedene

Situationen

vorbereitet

sein!

Lösung

Damit dein Roboter die Gegen-
stände meidet, sollst du dein
neuronales Netz wie folgt konfigu-
rieren:

Worin unterscheidet sich das Program
auf dieser Lernkarte von dem Pro-
gramm auf der Karte “Freundschaft” ?

So steckst du dein Programm zusammen:

? ??

A.6 Neural Network Cards 182

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Lass deinen Roboter die Landschaft explorieren!

Bringe deinem Roboter bei, korrekte Begri!e zu den
Gegenständen auf dem Bildschirm zu zeigen. Fährt der Roboter
auf “Grün” - sollt der Text “Wiese” angezeigt werden. Fährt er auf
die Farbe “Gelb” - soll er das Wort “Sand” anzeigen. Bei der Farbe
“Blau” - soll er den Text “Wasser” ausgeben.

hier wird
das Ergebniss
ausgegebenNeue Blöcke, die du brauchst:

Wiese

Bi
ld

: i
St

oc
k.c

om
/ i

lya
lir

en

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Lösung

Damit dein Roboter die Land-
schaft exploriert und den richtigen
Begri! zum richtigen Untergrund
anzeigt, sollst du dein neuronales
Netz wie folgt konfigurieren:

So steckst du dein Programm zusammen:

A.6 Neural Network Cards 183

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Lass deinen Roboter selbständig die farbigen Kurven meistern!

Auf Grün dreht sich der linke Motor langsamer als der rechte,
bei Rot dreht sich der rechte Motor langsamer als der linke,
bei Blau drehen sich die Motoren gleich schnell.

Neue Blöcke, die du brauchst:

Wusstest du, dass diese Farben

zusammen die Farbe “weiß” ergeben?

Lösung

Damit dein Roboter die farbige
Kurve kriegt, sollst du dein neuro-
nales Netz wie folgt konfigurieren:

So steckst du dein Programm zusammen:

Wie verhält sich der Roboter, wenn
er über den weißen Hintegrund fährt?
Warum verhält er sich so?

? ??

A.7 Q-learning Materials 184

A.7 Q-learning Materials

A.7.1 Q-learning Cards

01

2

3

4

5

Start:3 Ziel:1 Hindernisse:3-2, 2-3 Eisenbahn

Lerne, bis du den besten
Weg fahren kannst.

©
 V

ik
to

riy
a

Ol
ar

i |
 0

8’
 2

02
0

Au
fw

ac
hs

en
 m

it

Kü
ns

tli
ch

er
 In

te
lli

ge
nz

 |
Bi

ld
: i

St
oc

k.c
om

/ i
lya

lir
en

Was denkst du, welcher Weg ist der schnellste?

Start:3 Ziel:1 Hindernisse:3-2, 2-3

lerne...

Test 1

Test 2

Test 3

extra
Belohnung

Tele-
portation

Vor-
erfahrung Episoden Zeit Bester Weg

Probiere verschiedene Einstellungen aus!
Spiele mit Episoden: 10, 100 oder 1000?
Gibt’s da einen Unterschied?

Mit welchen Paramtern findet dein
Roboter den optimalen Weg? Markiere
die Zeile mit einem Marker.

A.7 Q-learning Materials 185

Waldlabyrinth

Lerne, bis du zum Zelt
wiederfindest.

Bi
ld

: i
St

oc
k.c

om
/ I

va
n

Tu
po

no
go

v
©

 V
ik

to
riy

a
Ol

ar
i |

 0
8’

 2
02

0
 A

uf
wa

ch
se

n
m

it
Kü

ns
tli

ch
er

 In
te

lli
ge

nz
 |

Start:0 Ziel:7 Hindernisse:4-6

Was denkst du, welcher Weg ist der schnellste?

Start:0 Ziel:7 Hindernisse:4-6

Test 4

Test 5

Test 2

Test 3

Test 1

Episoden Zeit Bester Weglerne... Tele-
portation

extra
Belohnung

Vor-
erfahrung

A.7 Q-learning Materials 186

In der Stadt

Lerne, bis die Route
frei ist.

©
 V

ik
to

riy
a

Ol
ar

i |
 0

8’
 2

02
0

 A
uf

wa
ch

se
n

m
it

Kü
ns

tli
ch

er
 In

te
lli

ge
nz

 |
Bi

ld
: i

St
oc

k.c
om

/ g
riv

in
a

Start:0 Ziel:15 Hindernisse:16-15

Was denkst du, welcher Weg ist der schnellste?

Start:0 Ziel:15 Hindernisse:16-15

Test 4

Test 5

Test 2

Test 3

Test 1

Episoden Zeit Bester Weglerne... Tele-
portation

extra
Belohnung

Vor-
erfahrung

A.7 Q-learning Materials 187

A.7.2 Q&A: Reinforcement Learning

©
 V

ik
to

riy
a

Ol
ar

i |
 0

8’
 2

02
0

| A
uf

wa
ch

se
n

m
it

Kü
ns

tli
ch

er
 In

te
lli

ge
nz

Wie lernt dein KI-Roboter mit dem
Q-Learning Algorithmus?

Schaue dir dazu das Bild auf der Rückseite des
Blattes an.

Kann ich den Start oder das Ziel
ändern?

Klar! Probier aus, wie schnell dein Algorithmus
die optimale Strecke findet.

Was ist eine Episode?

Es ist ein Durchlauf des Algorithmus von einer
Station zu der anderen.

Was bedeuten die Sterne?
Die Sterne zeigen, wie attraktiv die Strecke für
deinen Roboter ist.
sehr attraktiv nicht attraktiv

Was hat diese gelbe Linie zwischen
zwischen zwei Pins zu bedeuten?
Es ist die Strecke, die dein Roboter aktuell
durchläuft.

43

Warum beginnt mein Roboter immer an
einer anderen Stelle?

Weil du wahrscheinlich die Teleportation erlaubt
hast.

Wie berechnet der Roboter, ob die
Strecke attraktiv ist?

Der Roboter berechnet aufgrund der Einstellun-
gen, die du in diesem Block ausgewählt hast, ob
die Strecke attraktiv ist oder nicht.

Darf der Roboter seine Vorerfahrung
nutzen,

dann greift er bei jedem Schritt auf sein vorheri-
ges Wissen zurück.

Ist lerne „langsam“ eingestellt,
dann lernt der Roboter langsamer, dafür merkt
er besser, was er gelernt hat. Schnelles Lerntem-
po ist nicht immer gut, denn dann vergisst dein
Roboter auch schneller.

Ist extra Belohnung auf
„ja“ eingestellt,
dann schaut der Roboter zwei Schitte im Vor-r
aus, ob die Strecke danach auch eine attraktive
ist. Extra Belohnung ist auch nicht immer gut,
denn es kann den Roboter in die Irre führen. Die
Strecke im übernächsten Schritt ist vielleicht gar
nicht so gut.

Ist Teleportation erlaubt,

dann springt der Roboter beim nächsten Schritt
zu einer beliebigen Station und startet von da
aus.

Q & A : Bestarkendes Lernen

so steckst du den Q-Algorithmus zusammen

A.7 Q-learning Materials 188

A.7.3 Q-learning Map

Zi
el

St
ar

t

3
- 4

 -
3Op

tim
al

er
 W

eg
vo

n
na

ch

vo
n

45
be

st
er

 W
eg

zu
fä

lli
ge

r W
eg

3
4

50
1

00
 :

03
: 0

0

1
3

0
1

2 3

4

5

be
su

ch
te

 S
ta

ti
on

en

si
nd

 g
rü

n

Hi
nd

er
ni

s

St
re

ck
e,

 w
o

de
r

Ro
bo

te
r

ge
ra

de
 E

rf
ah

ru
ng

 s
am

me
lt

St
ar

t
&

Zi
el

St
eu

er
un

g
ak

tu
el

le
 E

pi
so

de

Ep
is

od
en

K
a
r
t
e

Bild: iStock.com/ ilyaliren; © Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Au
f
de
r
Ka
rt
e
si
eh
st
 d
u
Sc
hr
it
t
fü
r
Sc
hr
it
t,
 w
ie
 d
ei
n
Ro
bo
te
r
le
rn
t.

St
ar

ts
ta

ti
on

En
ds

ta
ti

on

ak
tu

el
le

En

ts
ch

ei
du

ng
Wi

e
gu

t
is

t
di

e
ge

wä
hl

te
 S
tr

ec
ke

?
ak

tu
el

le
r

op
ti

ma
le

r
We

g
Ze

it

A.7 Q-learning Materials 189

A.7.4 Q-learning Program

©
 V

ik
to

riy
a

Ol
ar

i |
 0

8’
 2

02
0

| A
uf

wa
ch

se
n

m
it

Kü
ns

tli
ch

er
 In

te
lli

ge
nz

Lasse deinen KI-Roboter lernen

+

Ϧə<¶ĐĐ�ö¶ñ�
zeigen, was du
gelernt hast!

ϦəqáÍ�Đýññ�
deine Karte
aussehen?

hier geht’s
nicht lang!

ϦəqáÍ�ñ¶÷ÙÍ�
soll dein KI-
Rober
lernen?

Teste verschie-
dene Anzahl von
Episoden aus

so steckst du den Q-Algorithmus zusammen

ϦəqáÍ�Đýññ�
dein KI-Robo-
ter lernen?

A.7 Q-learning Materials 190

A.7.5 Q-Learning Algorithm Flow Diagram

©
 V

ik
to

riy
a

Ol
ar

i |
 0

8’
 2

02
0

| A
uf

wa
ch

se
n

m
it

Kü
ns

tli
ch

er
 In

te
lli

ge
nz

starte an
irgendeiner

Station

wähle die nächste
Station aus

(zufällige ODER
die attraktivste)

bekomme für
diese Strecke 50
Punkte Belohnung

aktualisiere die
Anzahl der Sterne
für diese Strecke

bekomme keine
Belohnung für
diese Strecke

fahre zur
nächsten Station

berechne die
Qualität der

Strecke

Wurde
Ziel-
station
erreicht?

nein

ja

ja nein
wird eine

der nächsten
Strecken mit
Sternen be-

lohnt?

So lernt dein KI-Roboter

A.7 Q-learning Materials 191

A.7.6 Q-learning Observation Card

©
 V

ik
to

riy
a

Ol
ar

i |
 0

8’
 2

02
0

| A
uf

wa
ch

se
n

m
it

Kü
ns

tli
ch

er
 In

te
lli

ge
nz

Beobachtungskarte

Eisenbahn

Minimale Zeit für
den optimalen Weg

Maximale Zeit für
den optimalen Weg

Maximale Episode-
nanzahl, um zum Ziel
zu kommen

Minimale Episode-
nanzahl, um zum Ziel
zu kommen

Lerne Extra Belohnung Teleportation Vorerfahrung

Wald-
labyrinth In der Stadt

Was denkst du, was ist die beste Einstellung für deinen KI-Roboter?

	Button1:
	Button2:
	Button3:
	Button4:
	Button5:
	Button7:
	Button6:
	Button9:
	Button10:
	Button11:
	Button8:
	Button12:
	Button13:
	Button14:
	Button15:
	Button16:
	Button17:
	Button18:
	Button19:
	Button20:
	Button21:
	Button22:
	Button23:
	Button24:
	Button25:
	Button26:
	Button27:
	Button28:
	Button29:
	Button30:
	Button31:
	Button32:
	Button33:
	Button34:
	Button35:
	Button36:
	Button37:
	Button38:
	Button39:
	Button40:
	Button41:
	Button42:
	Button43:
	Button44:
	Button45:
	Button46:
	Button47:
	Button48:
	Button49:
	Button50:
	Button51:
	Button52:
	Button53:
	Button54:
	Button55:
	Button56:
	Button57:
	Button59:
	Button60:
	Button61:
	Button62:
	Button63:
	Button64:
	Button65:
	Button66:
	Button67:
	Button68:
	Button69:
	Button70:
	Button71:
	Button72:
	Button73:
	Button74:
	Button75:
	Button76:
	Button77:
	Button78:
	Button79:
	Button80:
	Button81:
	Button82:
	Button83:
	Button84:
	Button85:
	Button86:
	Button87:
	Button88:
	Button89:
	Button90:
	Button91:
	Button92:
	Button93:
	Button94:
	Button95:
	Button96:
	Button97:
	Button98:
	Button99:
	Button100:
	Button101:
	Button102:

