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Summary 

The following master’s thesis provides an approach to introducing machine learning to 

students using the block-based programming language NEPO in combination with edu-

cational robotics. The target group of the research study are students from primary to 

high school, representing beginners without any previous knowledge of machine learn-

ing. 

After analysing the guidelines and methods for the introduction of machine learning 

in schools, as well as concrete proposals for artificial intelligence (AI) school curricula 

with a particular emphasis on machine learning, the author identified a large discrepancy 

between the requirements for introducing the topics of supervised, unsupervised, and 

reinforcement learning in schools and the solutions currently available on the educational 

landscape to do so. Most of the approaches which are currently available either remain 

a black box or are inaccessible to young students. Only a few approaches focus on mak-

ing the underlying technical processes of machine learning tangible, which is crucial for 

enabling students to create the proper mental models and avoid misconceptions. 

In order to close this discrepancy, and following the ideas of constructionism, the au-

thor developed three approaches to introduce machine learning using robots. (1) The 

Neural Network Playground allows the user to experiment with simple neural networks. 

The student can train the neural network by modifying the weights and directly observing 

the effects on the simulated robot. (2) The Q-learning Playground enables the student to 

tinker with the Q-learning algorithm by creating unique learning environments for the 

robot and playing with the parameters of the algorithm. Step by step, the student can 

debug the algorithm and explore how it is learning from the agent’s perspective. (3) An 

unplugged activity introducing the k-means algorithm makes the unsupervised learning 

tangible. 

The author accompanied all approaches with a curriculum and a series of learning 

materials. She then conducted and evaluated a user study with 24 children from primary, 

middle, and high school. The results underline the practical feasibility of the approaches: 

the children of all age groups perceived the topics as interesting and ranging from very 

easy to moderately hard to grasp. Thus, the research study proposes a solid concept for 

the introduction of machine learning to beginners which fundamentally differs from the 

currently available approaches and enriches the educational landscape. Future research 

can focus deeper on measuring the understanding of children, the increase in their 

knowledge or the effectiveness of the approaches and materials developed. 
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1 Introduction 

Machine learning is becoming ubiquitous, not only in industry, society, and business, but 

also in the educational context. Scientists around the globe advocate that people of all 

ages, including children, should be familiarised with its basic concepts (Hitron, Wald, 

Erel, & Zuckerman, 2018). People interact with intelligent technologies even in childhood 

and are increasingly influenced by these technologies as they grow older. If they are not 

educated about smart devices and technologies, they often trust them too much and can 

be easily manipulated by them (Williams, Park, Oh, & Breazeal, 2019). However, how 

can a novice such as a child be introduced to machine learning, and how can the under-

lying principles of machine learning algorithms be made tangible to someone without 

prior knowledge of linear algebra and statistics? 

Using the benefits of educational robotics and inspired by explanations of machine 

learning in children’s books, the following master’s thesis aims to examine these ques-

tions in a practical case study with the focus placed on school students as novice repre-

sentatives.1 The author’s motivation stems from her extensive work educating young 

people in programming and exploring how to make digital technologies understandable 

to everyone from university students to primary school children. 

The theoretical framework builds upon the guidelines and methods for the introduction 

of artificial intelligence (AI) and machine learning in schools, which date back to 1971 

(Papert & Solomon, 1971). Recent advances in machine learning technologies have led 

to the increasing development of concrete proposals for AI school curricula with a par-

ticular emphasis on the technical aspect of machine learning (Clarke, 2019; Long & 

Magerko, 2020; Sloman, 2009; Touretzky, Gardner-McCune, Martin, & Seehorn, 2019; 

Wong, Ma, Dillenbourg, & Huan, 2020). These provide the basis for this research study. 

There is a large discrepancy between the requirements for instruction in machine 

learning and the solutions currently available on the educational landscape to do so: 

While children at all school levels from primary to high school are expected to be able to 

cope with the central paradigms of machine learning – supervised, unsupervised, and 

reinforcement learning (Jatzlau, Michaeli, Seegerer, & Romeike, 2019; Kahn, Megasari, 

Piantari, & Junaeti, 2018; Michaeli, Seegerer, & Romeike, 2020; Williams, Park, Oh, et 

al., 2019) – most of the currently available learning materials and guidelines focus on 

 

1 Introducing a technical topic with the focus on a child helps educators consider reducing ideas to under-
standable and straightforward terms – an approach forwarded by physician Richard Feynman in his treat-
ment of quantum physics (Feynman, Leighton, & Sands, 2011). 
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ethical content or the social impacts of machine learning (Blakeley & Breazeal, 2019; 

Kleeberger, Prost, & Sternkopf, 2019; Universität Paderborn, 2019). Only a few ap-

proaches focus on making the underlying technical processes of machine learning tan-

gible for students (Lin, Brummelen, Lukin, Williams, & Breazeal, 2020; Williams, Park, & 

Breazeal, 2019; Williams, Park, Oh, et al., 2019). Most available approaches either re-

main a black box2 or are technically so complex that they are largely unsuitable for school 

students (Jatzlau et al., 2019). 

However, in order for students to create the proper mental models and avoid miscon-

ceptions, it is crucial that they understand the concrete processes (Hitron et al., 2019; 

Lin et al., 2020). If the children grasp the processes, they can understand that difficult 

moral dilemmas can arise through the use of machine learning technologies or, for ex-

ample, that AI can increase the harmful power of authoritarian regimes as shown by 

Molnar (2020). 

1.1 Research Questions and Methodology Overview 
This research study aims to close this discrepancy between requirements and solutions 

for teaching by examining how the principles underlying machine learning can be made 

accessible to novices, such as young students. 

First, the author analysed school curricula and recommendations regarding machine 

learning to determine the requirements for instruction in machine learning and identify 

the status quo. Furthermore, the author investigated existing possibilities for introducing 

machine learning topics to beginners. Based on the results and the gaps identified, the 

author developed proposals for how to meet the requirements. The first research ques-

tion is thus as follows: 

What are the specific curricular needs concerning machine learning in schools? 
What possibilities can be identified to meet these curricular needs? Where are 

the limits? 

Second, the author established a theoretical framework for the proposals and imple-

mented them in Open Roberta Lab, a visual block-based open-source programming plat-

form. The author chose this platform because of its focus on teaching programming with 

robots to beginners and its advanced ecosystem, which includes a robot simulation. The 

author then designed the machine learning curriculum and developed the learning 

 

2 In this master’s thesis, the author refers to the “black box” according to Jatzlau et al. (2019) as a metaphor 
for a process underlying a machine learning algorithm which remains hidden to the student. The reason for 
this is that the actual computing is performed by external services that do not provide access to the under-
lying machine learning models and algorithms. 
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materials. The second research question relates to the implementation and documenta-

tion of machine learning extensions and learning materials. It is as follows: 

How can the previously defined proposals be anchored pedagogically and 
concretely implemented in Open Roberta Lab? 

Third, to determine how the developed concepts appeal to the focus group, the author 

evaluated the results in a user study. Specifically, the author tested her developments 

with students from primary, middle, and high school. In the evaluation, she examined 

how children of different ages perceived the topics and whether they had difficulty un-

derstanding them. For this purpose, she developed a computer-based questionnaire 

based on a 5-point semantic differential scale and analysed the results and the oral feed-

back given by the students at the end of each session. Finally, she evaluated the obser-

vations of an observer during the sessions. The third research question is thus as follows: 

How do the developed concepts appeal to students of different school 
grades? What help do students need in order to understand the machine learn-

ing concepts proposed? 

1.2 Thesis Structure 
Chapter 2 details the relevance of teaching children about machine learning and sum-

marises previous studies on establishing machine learning in education. To this end, the 

author conducts a requirements analysis based on school curricula, guidelines and case 

studies. She discusses related work and learning approaches to meet curricular needs. 

The chapter concludes by highlighting the limitations and shortcomings of current efforts, 

which forms the basis for the design and development of new approaches in the course 

of this study. 

Chapter 3 provides the theoretical background to the paradigms of machine learning 

and develops three approaches to close the gaps identified in Chapter 2 using robots 

and Open Roberta Lab. It introduces the idea of direct supervision as a representative 

of supervised learning, the Q-learning algorithm as a representative of reinforcement 

learning, and the k-means algorithm as a representative of unsupervised learning. 

Chapter 4 presents the methodology from two perspectives. First, the pedagogical 

design principles are outlined. These, together with the evidence from Chapters 2 and 

3, constitute a methodological framework. The chapter summarises the framework and 

presents concrete implications for designing machine learning extensions, curricula, and 

learning materials. Second, the chapter presents the framework for user study and eval-

uation as well as potential limitations. Finally, the chapter gives insights into the tools 

used and the management of the research project. 
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Chapter 5 outlines the design and technical implementation of machine learning ex-

tensions in Open Roberta Lab. The author first reviews Open Roberta Lab, including its 

initial project structure and system architecture. Second, she presents new block cate-

gories and blocks that she has implemented in Open Roberta Lab to enable the user to 

interact with machine learning extensions. Third, the author describes the actual exten-

sions – the Neural Network Playground and the Q-learning Playground – their system 

architecture, user interface, and central workflows. The chapter concludes with reflec-

tions on technical challenges. 

Chapter 6 covers the machine learning curriculum and the learning materials that ac-

company the extensions introduced in the previous chapter. The author also presents 

an unplugged activity designed to introduce the k-means algorithm as a third approach 

to introduce beginners to machine learning. 

Chapter 7 reveals the evaluation results for machine learning extensions and materi-

als gained in the user study with 24 children from primary, middle, and high school. The 

author describes the setup, participants, procedure, results of the questionnaire on chil-

dren’s perception of the machine learning topics covered, and overall feedback from 

students and the observer. 

In Chapter 8, the results of the master’s thesis are discussed. First, the overall course 

of the user study is reflected upon, and then special attention is paid to reflecting on the 

machine learning extensions and teaching approaches that were developed. In addition, 

the chapter critically discusses the user experience observed during the user study, the 

approaches of using simulated robots and visual programming languages, and the de-

sign of learning activities concerning the methodological framework outlined in Chapter 

4. Second, the chapter summarises limitations and proposes recommendations for future 

research. 

Chapter 9 lists the main findings as answers to three research questions posed in 

Section 1.1. Finally, it reviews and reflects on the entire research study in terms of the 

approaches selected and summarises the author’s main contributions and their role for 

future research. 

 

 



 

 

2 Background and Related Work 

The introduction of machine learning into the educational context is increasingly becom-

ing the focus of research and numerous case studies. This chapter first outlines the cur-

rent curriculum needs with regards to machine learning in schools. It then discusses 

previous attempts to establish machine learning in education from two perspectives: (1) 

related work and learning approaches to meet curricular needs and (2) the limitations 

and shortcomings of current efforts. 

2.1 Curricular Needs for Teaching Artificial Intelligence and Machine Learning 
Researchers around the globe have invested considerable effort into the development 

of curricula and guidelines for AI education in schools. In their meta-study, Long and 

Magerko (2020) conclude that the requirements that children must fulfil in the future can 

be summarised by the term “AI literacy” (p. 2). They define AI literacy as “a set of com-

petencies that enables individuals to critically evaluate AI technologies; communicate 

and collaborate effectively with AI; and use AI as a tool online, at home, and in the work-

place” (p. 2). Although this definition emphasises the importance of social and ethical 

aspects of AI, concrete proposals for AI curricula devote special attention to the techno-

logical aspects of AI, especially to machine learning. Figure 1 illustrates learning as the 

third “Big Idea” of AI (Touretzky et al., 2019, What are the “Big Ideas” in AI?) which should 

be taught across all school levels. 

 

Figure 1: “Big Ideas” of AI (Touretzky, 2019). 
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The structure and precision of the individual topics vary across curricula. The following 

are several examples of teaching content and competencies that the children are ex-

pected to master.  

Even young learners should understand the basic mechanics of AI systems, including 

such terms as “dataset”, “learning algorithm”, and “prediction” (Blakeley & Breazeal, 

2019). Williams, Park, Oh, et al. (2019) suppose that students also need to be able to 

recognise how the computer learns patterns (supervised machine learning), how it uses 

previous knowledge for future decisions (knowledge-based systems), and how it can 

create things (generative music AI). They should explain simple chatbots and program 

applications enriched with AI mechanisms (Sloman, 2009). They should know what a 

neural network is and how it is trained (Burgsteiner, Kandlhfer, & Steinbauer, 2016; Slo-

man, 2009). By the end of primary school, students should be able to examine represen-

tations created by intelligent agents, modify simple perception-based applications that 

include simple AI elements, adapt object recognition applications and should have some 

experience with machine vision (Touretzky et al., 2019). 

Children in middle and early high school must be competent enough to create AI pro-

grams using text- and block-based programming languages and even apply acquired AI 

concepts as potential solutions to real-world problems (Wong et al., 2020). They should 

comprehend intelligent agents, automata, decision trees, and program applications im-

plementing simple reinforcement learning algorithms (Burgsteiner et al., 2016; Jatzlau et 

al., 2019). In addition, forwards and backwards propagation (Clarke, 2019) is as much a 

part of the agenda as basic knowledge in computer linguistics (Touretzky et al., 2019). 

Kahn, Lu, Zhang, Winters, and Gao (2020) expect students in high school to under-

stand technical terms and be able to program complex deep neural networks. Michaeli 

et al. (2020) suppose that children should be able to create programs based on unsu-

pervised learning algorithms such as linear vector quantisation and reinforcement learn-

ing algorithms such as Q-learning (Jatzlau et al., 2019). 

2.2 Meeting the Requirements: The Introduction of Machine Learning in the 
Educational Context 

The brief extracts from the currently proposed curricula indicate that children in schools 

are expected to cope with multiple areas of machine learning. The following section pre-

sents the work related to helping teachers and students meet such curriculum require-

ments. Since the curricula involve the three paradigms of machine learning, the chapter 

is structured according supervised, unsupervised, and reinforcement learning. 
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 Supervised Learning 
Supervised learning is a machine learning paradigm which frequently occurs in the pro-

posed curricula and case studies (Jatzlau et al., 2019; Michaeli et al., 2020). The spec-

trum of approaches developed for the introduction of supervised learning is accordingly 

extensive. 

Touretzky et al. (2019) summarise various easy-to-use applications that are repeat-

edly considered by teachers. Through descriptive examples, the applications offer be-

ginners and non-programmers the opportunity to experiment with areas of supervised 

learning such as image or text classification. In Teachable Machine (Google, 2020), for 

example, children can train a model to classify images, audio files, or body positions. 

Machine Learning for Kids (Lane, 2020) introduces children to the training of machine 

learning models to recognise text, numbers, images, or sounds. Recently, code.org, an 

online coding platform for beginners, launched tutorials to train a neural network to rec-

ognise images (code.org, 2020). 

Although these examples are excellent resources for introducing machine learning to 

children, they all have one alarming aspect in common: The training of the model is 

hidden from the user, which can lead to oversimplified or inaccurate mental models of 

machine learning (Hitron et al., 2019; Michaeli et al., 2020). Hitron et al. (2019) and Lin 

et al. (2020) argue that in particular, the understanding of the concrete processes is cru-

cial in order to create the proper mental models and avoid misconceptions. 

Attempts are thus being made to open the black box and to look behind the scenes 

of supervised learning. Hitron et al. (2018) and Hitron et al. (2019) implemented a visual 

application for supervised learning to classify movements and examined children’s un-

derstanding of it. They found that even 10-year-olds can understand the basic concepts 

behind the system. 

Kahn and Winters (2017) and Kahn, Lu, Zhang, Winters, et al. (2020) developed ex-

tensions for the visual block-based programming language Snap! (University of 

California at Berkeley, 2020). The children look behind the scenes by programming deep 

neural networks to discover real-world data relationships. Figure 2 shows one of the 

examples for the programming of deep neural networks with blocks. The user can con-

figure a model and training parameters using blocks prepared in advance. For instance, 

they can set the number of layers, choose the loss function and optimiser, and determine 

the learning rate. 
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Figure 2: Blocks for creating a model and initiating the training proposed by Kahn, Lu, Zhang, Winters, et 
al. (2020, pp. 5–6). 

Kahn et al. (2018) indicate that it is also possible to use a block-based approach for 

image recognition and speech synthesis. Based on a study with 40 high school and vo-

cational students in Indonesia, Kahn and Winters (2017) and Kahn et al. (2018) claim 

that using blocks is a successful way to understand what happens inside the black box 

of supervised machine learning. Similar results were reported by Queiroz, Sampaio, 

Lima, and Lima (2020), who combined visual programming and a WiSARD neural net-

work model to enable beginners to learn training and classification. 

 Unsupervised Learning 
In contrast to supervised learning, little research on introducing school students to unsu-

pervised learning has been conducted. Michaeli et al. (2020) presented an approach to 

introduce children to linear vector quantisation (LVQ), an algorithm that finds clusters in 

data sets. The target group are high school students. First, learners immersed them-

selves in unsupervised learning through an “unplugged” activity. Afterwards, they deep-

ened their knowledge through the use of the block-based programming language Snap!. 

Since the authors have not yet evaluated the approach, there is no evidence of how 

children would react to it. 

Currently, there are no studies that examine the teaching of unsupervised learning to 

primary or secondary school students. However, there is an approach originally devel-

oped for university students that the teacher might consider when introducing unsuper-

vised learning in middle and high school. EduClust (Universität Konstanz, 2020) is a 

platform that provides a visual categorisation based on the clustering behaviour of the 

chosen clustering algorithm. The platform covers the most prominent clustering algo-

rithms and can be used by students without time-consuming implementation efforts. 

Fuchs et al. (2020) considered a case in which this platform had been used for two years 

in computer science classes and report positive feedback from the students, who were 

willing to use EduClust in their learning routine. 
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 Reinforcement Learning 
Similar to unsupervised learning, the paradigm of reinforcement learning remains almost 

untouched in the school context (Michaeli et al., 2020). However, attempts have increas-

ingly been made to introduce reinforcement learning into the classroom to meet curricu-

lum requirements. 

Kandlhofer, Steinbauer, Hirschmugl-Gaisch, and Huber (2016) carried out a proof-of-

concept study focusing on children from kindergarten to university. Although the topics 

of machine learning appeared only briefly, the findings suggest that the researchers ad-

dressed the learning agents with high school children. The preliminary results indicate 

that the pilot implementations of the proposed concept succeeded, and the students 

gained a solid understanding of fundamental issues. A detailed evaluation is still pend-

ing. 

Jatzlau et al. (2019) focused on Q-learning – a reinforcement learning algorithm that 

is fast and therefore well suited to use in a school setting. Similar to Kahn et al. (2018), 

they used the block-based programming language Snap! to program the agent and the 

algorithm itself. When analysing the blocks and structuring the programs, it is striking 

that the approach of Jatzlau et al. (2019) was able to reproduce the Q-learning algorithm 

exactly without having to adapt technical terms for the prospective audience. Figure 3 

shows the programming of the model on the left side and a fragment for programming 

the Q-learning algorithm on the right side.  

 

Figure 3: Programming of the Q-learning algorithm, an extract from Jatzlau et al. (2019, Chapter 4. A). 

The researchers conducted a subsequent case study with a tenth-grade class, and 

their findings suggest that the children were able to look behind the scenes and inspect 

every programming block, thus tracking the program flow. During the learning process, 

the children observed how the Q-values changed in the Q-learning table. The entire pro-

cess of reinforcement learning became visible and tangible. However, the researchers 

point out that the speed of the Q-learning algorithm can become a potential problem if 
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the teacher decides to use it in the classroom. If the children create complicated learning 

environments, it will take too long for the agent to learn, which would exceed the time of 

the classroom lesson.  

Toivonen, Jormanainen, and Tukiainen (2017) also used Q-learning to introduce the 

machine learning paradigms, whereby the researchers combined the Q-learning with 

neural networks and educational robots. Although the target group was young adults, 

they found the reinforcement learning questions in the preliminary questionnaire chal-

lenging. The results of the post-test show that the participants’ knowledge increased, 

and they achieved a deep practical understanding of reinforcement learning. 

2.3 Learning Approaches for Introducing Machine Learning 
This section discusses current learning approaches to introduce machine learning in the 

school context. Since it is common practice to introduce computer science topics in an 

unplugged and plugged manner, the chapter is divided into unplugged and plugged ac-

tivities.3 Finally, related work on the use of robots for teaching AI in schools, which in-

volves both physical and computer-based interaction, is presented. 

 Unplugged Activities 
Unplugged activities are popular in schools (Romero et al., 2019). These do not require 

any special preparations and can be carried out in almost any classroom. Teachers re-

main independent of the hardware and can utilise common learning materials including 

paper, scissors, coloured pens, glue, thread, and handicraft tools. 

Educators often use unplugged activities in the context of machine learning a) to ex-

plain complex algorithms or mechanisms, for instance, before the students start the pro-

gramming part, or b) to initiate a reflection or discussion on ethical or social issues. In 

the former, the teacher designs an intervention in which the learner can put themselves 

“in the agent’s shoes” in order to give meaning to the agent’s4 argumentation process 

(Long & Magerko, 2020, p. 6). The students can then be involved in embodied simula-

tions of the algorithm or hand-on physical experiments with the technology. In b), stu-

dents are actively encouraged to take diverse perspectives and then debate them with 

their classmates. 

 

3 Plugged activities require the use of a computer with specific software, connected objects, or robots to 
teach the computer science subjects. Teaching topics unplugged is a paradigm which requires neither hard-
ware nor software (Romero, Duflot-Kremer, & Viéville, 2019). 
4 An intelligent agent is a system that is able to act independently and autonomously to pursue and achieve 
individually relevant goals (Šalamon, 2011; Wieners, 2014). It perceives its environment through sensors 
and acts upon that environment through actuators (Russell & Norvig, 2016). 
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School children of all ages can participate in such activities. As Kandlhofer et al. 

(2016) note, even kindergarten children remember well how they traversed graphs in the 

role of the robot or found their way out of labyrinths a few days after the project day. 

The number of instructional materials that is available for the unplugged teaching of 

concepts of machine learning is gradually increasing. Clarke (2019); Kandlhofer et al. 

(2016); Kleeberger et al. (2019); Lindner and Seegerer (2019); Seegerer, Lindner, and 

Romeike (2019) and Universität Paderborn (2019) are only some of the authors propos-

ing diverse activities. From backwards propagation and deep learning to image classifi-

cation, reinforcement learning algorithms, clustering mechanism, Turing tests, and offline 

games, there are virtually no limits to creativity when it comes to concepts that can be 

taught unplugged; even face recognition is feasible (Krueger, 2020).  

Most unplugged activities are intended for use in a classroom with several students, 

and they are not suitable for young children to explore machine learning on their own. At 

this point, children’s books provide an attractive way for learners aged 2 years and older 

to be introduced to machine learning independently (Dhoot, 2019a, 2019b, 2019c; Ferrie 

& Kaiser, 2019; Liukas, 2019; RocketBabyClub, 2018a, 2018b, 2019a, 2019b, 2019c). 

Such books, written and designed for young learners, present complex matters playfully, 

and they can also equally enhance adult learners’ experience and contribute to their 

understanding of course content (Freeman, Feeney, & Moravcik, 2011). 

 Plugged Activities 
The introduction of machine learning with plugged activities is often realised using visual 

programming languages (VPLs), which allow the user to create programs via graphical 

manipulation (Druga, 2018). Although some VPLs use flow diagrams for programming, 

many still use text framed in blocks or a visual in combination with text.  

Figure 4 shows examples of various VPL types. 

  

 

 

Node-Red using VPL as a flow diagram Text framed in blocks Visual in combination with text 
 

Figure 4: Examples of visual programming languages. 
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Visual block-based languages are user-friendly, and due to the following factors, ed-

ucators increasingly adopt them in the school context (Kahn, Lu, Zhang, Winde, & Gao, 

2020; Kahn & Winters, 2017): 

(1) The description of the blocks in natural language makes the program easy to read. 

(2) Using predefined blocks saves debugging time by eliminating typing and syntax 

errors. 

(3) Browsing the language is easy, because the commands are already pre-sorted 

by category. 

(4) The user assembles the program via drag and drop, which is fun. 

(5) The students are motivated because they create applications intuitively.  

The following platforms provide features for working on machine learning projects with 

blocks: Machine Learning for Kids (Lane, 2020), Teachable Machine (Google, 2020), 

TensorFlow Playground (Smilkov & Carter, 2020), Cognimate (Druga, Qiu, T.VU, Likhith, 

& Dale, 2020), Calypso for Cozmo (Visionary Machines LLC, 2020), Snap! (University of 

California at Berkeley, 2020), makeBlock (Makeblock Co., 2020), code.org (code.org, 

2020), and eCraft2Learn (University of Oxford, 2020).5 All these platforms are free, and 

web based. 

Machine Learning for Kids and Teachable Machine introduce newcomers to training 

machine models to analyse pictures, poses, sounds, text, and numbers without writing 

any code. No previous knowledge of machine learning is required. Machine Learning for 

Kids uses APIs to access IBM Watson (IBM, 2020) and Teachable Machine the Tensor-

Flow.js, a library for machine learning in JavaScript (TensorFlow, 2020). Once the model 

is trained, the user can employ it in educational coding platforms such as Scratch 

(Scratch, 2020a),6 App Inventor (Massachusetts Institute of Technology, 2020),7 or even 

their own Python integrated development environment (IDE). 

A TensorFlow Playground invites users to tinker with a neural network by observing 

the training process. The user can add or remove additional neurons and layers and 

change the weights of individual links and biases of nodes. He or she can also 

 

5 The eCraft2Learn platform differs from other platforms as it only offers learners a single gateway to soft-
ware, tools, coding platforms, and worksheets. 
6 Scratch is the most popular online coding platforms, which is being developed by MIT Media Lab. Scratch 
publishes monthly statistics which point out that in the month July 11 713 380 unique visitors from all over 
the world has programmed in Scratch (Scratch, 2020b). 
7 App Inventor is a platform for building mobile apps quickly using blocks. 
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experiment with parameters such as learning rate, activation function, regularisation, 

regularisation rate, and problem type. 

The remaining platforms are block-based coding platforms that provide high-end APIs 

to various AI cloud services. Cognimate implements a collection of dedicated extensions 

that enable tinkering at home with AI devices and services such as Jibo, Alexa, Muse, 

Smart Lights and Plugs, Color Tracking, and Image Recognition (Druga, 2018). Code.org 

hosts tutorials for image classification. 

Calypso for Cozmo and makeBlock provide a simple graphical interface on which to 

program the educational AI robots Cozmo and Codey Rocky. The AI functionalities of 

these robots are limited to recognising colours and images, showing some emotions on 

display, and moving and shifting objects. 

Snap! is block-based programming for advanced learners. It stands out from the other 

examples because the user not only has access to potent APIs, but can also work with 

blocks to program machine learning algorithms without having to rely on complex APIs 

or cloud services. (Jatzlau et al., 2019; Kahn, Lu, Zhang, Winters, et al., 2020). Sections 

2.2.1 and 2.2.3 describe some examples of the use of Snap! in more detail. 

Most of the introduced platforms offer tutorials and instructional materials that the 

teacher can consult as a guide. Touretzky (2020) has compiled a list of publishers and 

initiatives that have already implemented the platforms in school education and provide 

lessons plans. 

 Using Robots and Robotic Simulators 
Extensive empirical evidence indicates that children are excited when working with ro-

bots (Barker, Nugent, Grandgenett, & Adamchuk, 2012). Sklar, Eguchi, and Johnson 

(2002) and Sjödén, Lind, and Silvervarg (2017) suggest that the use of robots as teach-

able agents – robots that the students can teach – has strong motivational effects, be-

cause the robot is treated as a social character. These findings apply to children of all 

age groups, from kindergarten to university (Druga, 2018; Druga, Williams, Park, & 

Breazeal, 2018; Klassner, 2002; Klassner & Anderson, 2003; Parsons & Sklar, 2004; 

Williams, Park, Oh, et al., 2019). 

Cooper, Keating, Harwin, and Dautenhahn (1999) and Li, Chang, and Chen (2009) 

mention Seymour Papert as the first person to teach AI concepts to school children and 

apply robots in education. Figure 5 presents the first educational robot, the Turtle, con-

structed by Papert and his team at MIT and evaluated with children over succeeding 

decades. 
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Figure 5: The first educational robot, constructed by Seymour Papert and his team at MIT 
(Papert & Solomon, 1971, p. 3). 

The Turtle can obey simple commands from a computer and send signals back to the 

computer. It is extendable by “any sense organs one is clever enough to make” (Papert 

& Solomon, 1971, p. 3) – for instance, touch sensors, light-sensitive cells, and sound 

detectors. Papert (1993b) commented on the experience that he gained with the Turtle 

for educating in science and technology subjects: “The idea is that early experience with 

Turtles is a good way to ‘get to know’ what it is like to learn a formal subject by ‘getting 

to know’ its powerful ideas” (p. 138). The children thus learn by gaining experience. While 

playing with the Turtle, students learn thought interaction, creating and understanding 

an artefact (Michaeli et al., 2020; Wang, 2016).  

While studies since the 1990s have confirmed the positive effects of the introduction 

of robots in education (Chin, Hong, & Chen, 2014; Sklar et al., 2002),8 there is insufficient 

evidence regarding the use of robots to introduce AI and machine learning. Kumar (2004) 

conducted a three-year study with junior/senior level students who attended a course in 

AI, in which he used LEGO Mindstorms robots to teach blind searches, informed 

searches, expert systems, and game playing. The results suggest that students believe 

that robot projects were reasonable and helped them learn the underlying AI concepts. 

However, they rated such projects as much more time consuming than traditional pro-

jects. Klassner (2002) and Klassner and Anderson (2003) reported similar experiences 

with LEGO Mindstorms in the context of AI courses to teach the topic of intelligent sys-

tems. 

 

8 Discussing robots in education can have different meanings. Li et al. (2009) differentiate among using 
robots as learning materials, learning companions, and teaching assistants. In this research, robots are 
utilized as learning materials and as something that the children can teach (see Section 2.3.3). 
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Recently, Druga (2018); Druga et al. (2018) and Druga, T.Vu, Likhith, and Qiu (2019) 

conducted studies with children between 7 and 14 years of age on teaching AI with ro-

bots. The findings suggest that after interacting with smart agents through programming 

and teaching, the children changed their perception of smart toys and developed a better 

understanding of AI concepts. Williams, Park, Oh, et al. (2019) designed LEGO-built and 

virtual robots to teach kindergarten students basic AI concepts: knowledge-based sys-

tems, supervised machine learning, and generative music AI. The results indicate that 

even kindergarten and pre-school children can successfully gain an understanding of AI 

algorithms with the help of robots (Williams, Park, & Breazeal, 2019; Williams, Park, Oh, 

et al., 2019). 

There is also evidence that robot simulators are as beneficial for the learning process 

as operating the real robot. Papert (1993b) asserted that “the Turtle in all its forms (floor 

Turtles, screen Turtles, and Dynaturtles) … is both an engaging anthropomorphizable 

object and a powerful mathematical idea” (p. 137). The simulators even have a decisive 

advantage: The time required for code-test-debug loops is considerably less than it is 

when working with real robot (Dodds, Greenwald, Howard, Tejada, & Weinberg, 2006), 

meaning that the simulation saves time during testing. However, simulations can also 

have disadvantages. Dodds et al. (2006) indicate that the use of simulation can lead to 

(1) the loss of the physical embodiment that attracts many students to learn AI with robots 

and (2) the loss of the unpredictability of physical interaction in the real world. They 

therefore propose using a simulator in combination with a robot hardware setup identical 

to that of the simulated robot. 

2.4 Analysis and Summary of Shortcomings  
Against the background of the curriculum and findings on the introduction of machine 

learning topics in the school context using robots, this section analyses the limitations 

and summarises the shortcomings of current efforts and learning approaches. 

(1) There is a wide range of activities for supervised learning, but most of them 
follow the black-box approach. 

The findings in Sections 2.2.1 and 2.3.2 indicate that there is a wealth of easy-to-use 

services that introduce beginners to supervised machine learning. Usually, these 

make use of a limited number of descriptive examples, such as image or sound clas-

sification. The main disadvantage of such applications is that the mechanisms un-

derlying the training and classification remain hidden from the user. Increasingly, 

there are efforts to open the black box of supervised learning using VPLs. However, 

even then, they often only provide an interface to powerful high-end APIs. The 
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children play only with high-end robot systems and ready-trained models and have 

no opportunity to learn how the training is performed and what algorithms are working 

behind the scenes and how. When the learner uses the trained model, he or she 

does not discover why the model came to a given decision. 

(2) Translating the underlying concepts into a block-based language opens the 
black box, but only for those who can understand this complexity. 

Sections 2.2.1, 2.2.3, and 2.3.2 presented several examples of attempts to break 

through the black box of currently available machine learning applications. The idea 

of these approaches is to transfer the underlying concepts of machine learning, such 

as artificial neural networks and Q-learning, into the VPL Snap!. Although the authors 

argued that these approaches are child friendly (Kahn & Winters, 2017), intuitive, 

and straightforward (Jatzlau et al., 2019), such a representation of the algorithm is 

not suitable for young children due to its complexity and numerous technical details. 

Using a block-based programming language, therefore, does not necessarily mean 

reducing the complexity of the topic or making the topic more accessible. 

(3) Introductory activities revolving around reinforcement and unsupervised 
learning are rare. 

Section 2.2.2 presented a case study for the introduction of unsupervised machine 

learning with the LVQ clustering algorithm. However, the block-based approach used 

in this study is complex, focuses on high school students, and there are no studies 

on the introduction of unsupervised machine learning with the target group of young 

learners. Section 2.2.3 presented several case studies which focus on reinforcement 

learning. They all refer to the Q-learning algorithm as one that is well suited to an 

introduction to reinforcement learning. Again, the studies focus on undergraduate 

and high school students and do not apply to younger children. The authors discuss 

one of the main problems of introducing Q-learning in schools: the time the algorithm 

takes to calculate complex problems. Therefore, it appears challenging to teach com-

plex problems in the classroom using Q-learning. 

(4) Thematically, the approaches to introducing machine learning are sparse and 
do not reflect the complexity and breadth of the field. 

In summary, the topics presented in Sections 2.2 and 2.3 that are suitable for young 

learners can be reduced to the following areas of machine learning: image, text, and 

sound classification; speech synthesis; the programming of intelligent toys; ethics 

and the social impact of machine learning on everyday life; offline activities for learn-

ing about AI; and some aspects of human–machine interaction. The concepts 
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underlying machine learning, such as deep neural networks or concrete algorithms 

(e.g., Q-learning and LVQ), are not sufficiently covered. These can be omitted, as 

the case studies in which they occur are oriented more towards high school than 

towards primary and middle school children. 

(5) The use of blocks is promising. 

Nonetheless, Section 2.3.2 indicates that the use of blocks provides the user with 

easy access and low entry barriers to programming. It motivates learners to create 

applications intuitively. However, using the advantages of visually based program-

ming languages on the one hand and conveying the complexity of the topic on the 

other is a challenge. Long and Magerko (2020) also point out that it is crucial for 

designers to bear in mind that coding skills can be an entry barrier, especially for 

children who are still learning to read. 

(6) The teaching materials focus on older children. 

Although the number of instructional materials for young learners is growing, the vast 

majority of case studies mentioned in Sections 2.2 and 2.3 focus on high school or 

undergraduate students. However, Section 2.3.1 found that unplugged activities are 

often used in the context of teaching children complex or abstract topics and are 

successfully applied to children of all ages. 

(7) Teaching materials are often not suitable for children to learn alone.  

The teaching materials for introducing machine learning are suitable for use in 

schools, and are less so for self-directed learning. In addition, the design of the ma-

terials and applications is sometimes unintuitive. Therefore, the materials are not 

suitable for children without prior knowledge. In Section 2.3.1, it was suggested that 

children’s books offer opportunities for young learners to reflect and experiment un-

plugged on machine learning topics. 

(8) The use of real or simulated educational robots is useful for teaching AI topics. 

Section 2.3.3 illustrates that there have been very few attempts to implement robots 

in the teaching of AI and machine learning, and even less research has been carried 

out with robots for teaching machine learning to young children. The results so far 

show that the use of robots for educational purposes is effective. The success has 

been demonstrated in a small number of case studies with kindergarten students and 

multiple studies with high school and university students.



 

 

3 Machine Learning Paradigms 

Building on the requirements outlined for teaching machine learning paradigms in 

schools (Section 2.1) and the summary of the deficits (Section 2.4), this chapter answers 

the second part of the first research question and partly addresses the second research 

question: What possibilities can be identified to meet the curricular needs? How can the 

previously defined proposals be anchored in Open Roberta Lab? 

This chapter presents the theoretical backgrounds of three paradigms of machine 

learning, which together form the essential framework for closing the gaps identified in 

Section 2.4. The paradigms are supervised learning, reinforcement, and unsupervised 

learning. Although Russell and Norvig (2016) suggest that the distinction among the par-

adigms is not always clear and Mohri, Rostamizadeh, and Talwalkar (2018) present 

other learning scenarios, this chapter adheres to this distinction, as it is widely accepted 

(Ertel & Black, 2018).  

The chapter applies the theoretical framework and successively extends it to three 

concrete approaches to address gaps and curriculum needs using robots and Open 

Roberta Lab: direct supervised learning, Q-learning, and k-means algorithms. The prac-

tical implementation of the approaches is described in Chapters 5 and 6. 

3.1 Supervised Learning and Neural Networks 
This section provides a brief overview of supervised machine learning and supervised 

neural networks, before discussing how these concepts can be realised in Open Roberta 

Lab. 

 Overview 
Supervised learning is a machine learning paradigm in which the agent learns from a 

labelled set of examples and can then generalise to unseen points in the future (Mohri 

et al., 2018). The engineer thus provides the data and defines the loss function on which 

the model is trained (Nguyen & Zeigermann, 2018). 

Formally, the goal of supervised learning is to learn the mapping function 𝑓, which 

entails understanding how the input 𝑥 should be matched with output 𝑦 using available 

data. Russell and Norvig (2016) formalise the task of supervised learning as follows: 

Given a training set of 𝑁 example input–output pairs 
(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑁, 𝑦𝑁), 

where each 𝑦! was generated by an unknown function 𝑦 = 𝑓(𝑥), 

learn a function ℎ (hypothesis function) that approximates the true function 𝑓,  
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where	𝑥 and 𝑦 do not need to be the numbers but can be any values.  

When the output 𝑦 is a number, then the learning problem is called regression. If the 

output 𝑦 is one of the values in a finite set, then the learning problem is called classifica-

tion. Learning involves a search through the space of possible hypotheses for a hypoth-

esis that performs well with new examples beyond the training set. 

Supervised learning does not imply the use of neural networks, for instance, in super-

vised tasks in which simple linear regression is possible. However, neural networks and 

supervised training are used for applications with supervised problems involving a large 

amount of input data or building models for classification (Brabazon, O’Neill, & McGar-

raghy, 2015). 

A neural network consists of layers of simple processing units called nodes or neu-

rons. There are three types of layers: input, output, and hidden layers (Khishe & Parvizi, 

2020). The nodes are connected by weights or signals (edges; Brabazon et al. (2015)). 

There are several types of weight gain. For instance, feedforward weight gain means 

that the signals move in one direction – from input to output. The output of each layer 

does not affect that layer (Khishe & Parvizi, 2020). 

In supervised training, neural networks receive data in the form of inputs and esti-

mated outputs. Outputs or targets are a specification of how the neural network should 

respond to the input (MacKay, 2003). As the network is trained, the weights are changed 

until the difference between the network output and the desired output is acceptable 

(Khishe & Parvizi, 2020). 

Exemplary problems for supervised learning include pattern detection; text, speech, 

and object recognition; recommendation systems; and machine translations (Khishe & 

Parvizi, 2020; Nguyen & Zeigermann, 2018). 

 Supervised Learning in Open Roberta Lab: Direct Supervision and Simple 
Neural Networks 

A barely explored but promising possibility for introducing supervised learning and neural 

networks for young students is to limit the neural network to its essentials. By using the 

sensors and actuators of a robot as input and output nodes, one can demonstrate the 

components of a neural network and their functionality. 

This idea is derived from Braitenberg (1986) and briefly discussed by Leimbach and 

Breuer (2012) in the context of introduction to the basics of AI using components of sim-

ple robotic systems such as various sensors and simple actuators. Braitenberg (1986) 

advocates that to simulate intelligent behaviour, it is sufficient to connect a simple sensor 

directly to a motor. The resulting behaviour is the result of the connection: The sensor 
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values are the input values for the motors. Different types of connections between the 

sensors and motors lead to different behaviours – fear, love, anger, or rage. 

Figure 6 demonstrates a simple connection between a motor and a light sensor. The 

higher the value of the light sensor, the faster the motor rotates. The behaviour of the 

vehicle allows the observer to suspect that the vehicle seems to like the light, because it 

continually moves towards the light source. 

 

Figure 6: The value of the light sensor serves as the input and is transmitted directly to the motor 
(Leimbach and Breuer (2012, p. 14). 

Such straightforward examples illustrate well the idea of an input–output connection, 

which Braitenberg (1986) expands by introducing the concept of a threshold device. Alt-

hough Braitenberg never called the threshold device a neuron, a threshold device re-

sembles a neuron in its functionality – it models a connection between input and output 

and has a threshold value. If the sum of all values applied to the inputs exceeds this 

threshold value, a value of 1 is output; otherwise, the value 0 is output. 

In Open Roberta Lab, Braitenberg experiments can be adapted and extended. The 

sensors of the simulated LEGO EV3 robot,9 such as light, ultrasonic, or colour sensors, 

can be used as input nodes, and LED, motor, display, and sound can be used as output 

nodes. A similar approach was followed by Toivonen et al. (2017), who used sensor 

values as inputs for a machine learning algorithm, while the behaviour of the robot rep-

resented the output.  

When compiling the program, the neural network can be created by directly linking 

the input and output nodes to each other. The user should then be allowed to regulate 

the strength of the connection – that is, the weight. By modifying the weights and observ-

ing the results directly from the robot’s behaviour, the students can experience a training 

 

9 Although there are multiple other robots which work well in the simulation, LEGO EV3 is the only driving 
robot in Open Roberta Lab that can be used for experiments after Braitenberg at the time of writhing this 
master’s thesis. 
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process of the neural network via direct supervision.10 Figure 7 shows a prototype of a 

simple neural network on the left side and the behaviour of a robot on the right side. 

 

Figure 7: Mock-up of a trained simple neural network and the behaviour of the robot 
(author’s representation). 

The adaption of Braitenberg experiments and their extension with additional input and 

output sensors should make it possible to explain supervised learning problems even to 

young students. While the students receive immediate feedback from the network con-

figuration, they should understand how the robot learns. At the same time, the students 

should be able to discover practical components of neural networks such as nodes, lay-

ers, links, and weights. Immersion in the training process should enable the children to 

focus on the underlying processes of supervised learning and thus help open the black 

box discussed in Sections 2.3.2 and 2.4. The findings of Toivonen et al. (2017) suggest 

that students without previous knowledge can understand the basics of neural networks 

through such an approach and can transfer the theory-based knowledge about neural 

networks into a more practical form. 

3.2 Reinforcement Learning 
This section defines a brief theoretical framework for reinforcement learning and then 

discusses the possibilities of introducing reinforcement learning to young students with 

Open Roberta. 

 Overview 
In reinforcement learning, the agent learns by feedback or the reinforcement it receives 

after each step or a sequence of steps. Reinforcement can be both positive and negative 

(Russell & Norvig, 2016). The agent is a learner and decision-maker facing an unknown 

Markov decision process.11 It has an explicit goal, can perceive the environment and can 

 

10 The process of adjusting the weights until the robot behaves as desired is in this work called “direct su-
pervision”, in which the students are involved in the training process of the neural network and imitate it by 
adjusting the weights manually.   
11 For the Markov decision process, see, e.g., Feinberg and Shwartz (2012); Russell and Norvig (2016). 



3 Machine Learning Paradigms  22 
 

 

choose actions to explore the environment or to exploit it with the help of available 

knowledge. The agent can also influence the environment (Sutton & Barto, 2018). 

Reinforcement learning problems involve learning how to map situations to actions so 

that the agent can maximise a numerical reward for a situation or sequence of situations. 

The main elements of reinforcement learning are, besides the agent and the environ-

ment, a policy, a reward signal, a value function, and an optional model of the environ-

ment. A policy defines the agent’s behaviour at a certain point in time (Sutton & Barto, 

2018). A reward signal – a number – is sent to the agent after each time step. The ob-

jective of the agent is to use observed rewards to learn and develop an optimal policy 

for the environment, one that maximises the expected reward (Kober & Peters, 2014). 

While a reward is immediate and has an effect for a single step, a value function specifies 

the long-term desirability of environment states (Sutton & Barto, 2018). Figure 8 shows 

an interaction process between an agent and the environment in reinforcement learning. 

 

Figure 8: Interaction between an agent and the environment (after Sutton and Barto (2018, p. 54). 

At each time step 𝑡, an agent receives a representation of the environment 𝑠𝑡𝑎𝑡𝑒, 

where 𝑆! ∈ 𝑆 and performs an 𝑎𝑐𝑡𝑖𝑜𝑛, where 𝐴! ∈ 𝐴(𝑆!). 𝑆 is a set of possible states, and 

𝐴(𝑆!) is a set of actions available in state 𝑆!. Thereafter, the agent receives a 𝑟𝑒𝑤𝑎𝑟𝑑, 

where 𝑅! ∈ ℛ	 ⊂ 	ℝ, and the learning process starts from the beginning, with 𝑆!"#.12 

In practice, reinforcement learning is used in environments in which the agent is sup-

posed to learn how to behave successfully and in which it is almost impossible to provide 

all the rules. For instance, in a game context, the agent learns while playing. If it loses 

the game, it receives penalty points; if it wins, it receives a reward (Russell & Norvig, 

2016). 

 Reinforcement Learning in Open Roberta: The Q-learning Algorithm 
Section 2.2.3 indicated that Q-learning is a reinforcement learning algorithm that can be 

successfully applied in the educational context because of its high speed and small prob-

lem spaces (Jatzlau et al., 2019). Since its introduction by Watkins (1989), the algorithm 

 

12 The algorithm is reproduced after Sutton and Barto (2018). 
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has been intensively investigated and has become popular (Wieners, 2014). Based on 

these insights, the Q-learning algorithm is introduced and adapted in this work in Open 

Roberta. 

Q-learning is a model-free algorithm (Watkins & Dayan, 1992), which means that the 

agent does not attempt to create a model of how the world works (Millington & Funge, 

2018). Compared to model-based algorithms, the effort needed to implement a model-

free algorithm is moderate. 

The agent learns in several steps. According to the policy available 𝜋(𝑠), the agent 

starts in a new state 𝑠 and attempts an action 𝑎 in order to progress to the next state. 

Depending on whether the agent is exploring or exploiting, the next state 𝑠′ is either 

taken randomly or based on the highest Q-value from the following step. The agent then 

evaluates the consequences in terms of the reward it receives, and in terms of the value 

𝑞 of the state taken. By trying out all the actions in all the states, the agent learns which 

steps are best overall, as judged by the long-term discounted reward (Watkins & Dayan, 

1992), and updates the Q-table, which holds the Q-values. The rule for Q-learning is as 

follows: 

𝑄(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑚𝑎𝑥$!∈&((!)E𝑄(𝑠*, 𝑎*)F), 

where 𝑄(𝑠, 𝑎) is a current Q-value for action 𝑎 from state	𝑠, and 𝑚𝑎𝑥$!∈&((!)E𝑄(𝑠*, 𝑎*)F 

refers to the maximum reward from the next state 𝑠′ as a result of action 𝑎 that the agent 

expects based on its knowledge of its current environment. 𝑟 is a reward for action 𝑎 

from state 𝑠. 𝛼 is a learning rate, and 𝛾 is a discount rate in the interval 0 ≤ 𝛾 ≤ 1. 𝛼 

determines how much older Q-values are included in the update process, and 𝛾 reduces 

the impact of the subsequent environmental reward compared to the previous reward 

(Wieners, 2014). 𝛼 and 𝛾 are set only once and remain constant throughout the learning 

process. 

In Open Roberta Lab, the Q-learning algorithm can be implemented for a simulated 

LEGO EV3 robot. The robot can learn to find an optimal path from a start to a finish state 

in a given environment. By using blocks, the children can be given the opportunity to 

independently program applications based on the Q-learning algorithm. In contrast to the 

solution proposed by Jatzlau et al. (2019), the terminology and parameters of the algo-

rithm should be simplified to be accessible to young students. To open the black box and 

understand how exactly the learning takes place, the learning process can be visualised 

sequentially. This requires a learning environment that the children can understand, in 

which the robot can represent the agent that is learning. After the learning process is 
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completed, the agent calculates the optimal path based on the best Q-values from the 

start to the finish state and then follows the path in the environment. 

Algorithm 1 shows a simplified Q-learning algorithm (adapted from Wieners (2014); 

Xu, Wu, and Zhao (2015) that can be implemented in Open Roberta Lab. 

 

3.3 Unsupervised Learning 
This section provides a brief introduction to unsupervised learning and examines the k-

means clustering as an algorithm that can be introduced in Open Roberta. 

 Overview 
In unsupervised learning, the agent learns patterns in the input data, even though no 

explicit feedback is provided (Russell & Norvig, 2016). In contrast to supervised learning, 

 
Algorithm 1: Q-learning 

 
1: !	table of values for states → actions. 
2: $, &, ' the previous state, action, and reward, initially null. 
3: (, ), *	time, episode, q-value. 
4: trade-off exploration-exploitation by possibility of +,-. 
5: trade-off continue-change state by possibility of /0. 
6: 1, 2 learning rate, discount rate from 0 to 1. 
7: while ( > 0 and ) > 0 do 
8:     randomly choose a float number 'ℎ6 from 0 to 1. 
9:     randomly choose a float number 78 from 0 to 1. 
10:     if 78 < /0 then  
11:         $ ← choose random state. 
12:     end if 
13:     if 'ℎ6 < +,- then 
14:         r, s′	 ←	explore another action &. 
15:     else 
16:         r, s′	 ←	exploit current optimum action &. 
17:     end if 
18:     q ← get !($, &) 
19:     &′ ←	get best action for $′ 
20:     A&B!	 ←	get !($′, &′) 
21:     q ← (1 − 1) × * + 	1 × (' + 	2 × A&B!) 
22:     !($, &) ← * 
23:     $	 ← 	$′ 
24:     decrease (	by time elapsed since the beginning of this iteration. 
25:     decrease total number of episodes ) by one. 
26: end while 
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in unsupervised learning, the agent receives inputs 𝑥#,𝑥,… , 𝑥- – that is, unlabelled train-

ing data only (Mohri et al., 2018). The task of the machine is then to find structures in 

collections of data or groups and to categorise the data (Michaeli et al., 2020). 

A classic example of an unsupervised learning problem is clustering (Ghahramani, 

2004), in which a set of data points must be partitioned into similar homogenous subsets 

(Aggarwal & Reddy, 2013; Mohri et al., 2018). 

Unsupervised learning problems can be approached using a variety of methods. 

Ghahramani (2004) points out that almost all work in unsupervised learning can be con-

sidered in terms of learning a probabilistic model of the data. The machine estimates a 

model that represents the probability distribution for a new input 𝑥- given previous inputs. 

The learner model is then 𝑃(𝑥-|𝑥#… , 𝑥-.#). If the order of inputs is irrelevant or unknown, 

the machine can build a model of data with 𝑥#,𝑥,… , 𝑥- as independent points. The central 

idea in probabilistic models is to model data from a generative process. Generative mod-

els are fundamental because they try to understand the underlying process through 

which a cluster is generated (Aggarwal & Reddy, 2013). 

The problems of unsupervised learning include classification, outlier detection, col-

laborative filtering and recommendation systems, dynamic trend detection, monitoring, 

social network analysis, communication, and efficient data compression. 

 Unsupervised Learning in Open Roberta: K-means Algorithm 
This section presents the k-means algorithm as a possibility for introducing unsupervised 

learning in Open Roberta. This algorithm is chosen because it is one of the most popular 

clustering algorithms that is easy to understand and to implement (Hamerly & Elkan, 

2002). 

K-means uses an iterative refinement technique: The algorithm operates alternately 

with assignment and update steps, whereby an initial set of 𝑘 centres  𝑚#, … ,𝑚/ (Mirkes, 

2011) is given. First, the representative points are selected as the initial cluster centres. 

Each point in the data set is then assigned to the nearest cluster centre based on a 

selected proximity measure.13 Once all points are assigned to centroids, so that the clus-

ters are formed, the centroids are updated. The last two steps of the algorithm are re-

peated until the centroids do not change.  

 

13 There is a wide range of proximity measures for computing the closest point centroids that can be used 
with the k-means clustering algorithm, including the Manhattan distance, the Euclidian distance, and Cosine 
similarity. The Euclidian distance is the most popular choice. For more information about proximity measures 
and objective functions, see Aggarwal and Reddy (2013). 
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Algorithm 2 provides an outline of the basic steps of the k-means algorithm according 

to Aggarwal and Reddy (2013), which can be anchored in Open Roberta. 

 

An implementation of the k-means algorithm in the robot simulation environment of 

Open Roberta Lab is barely possible, since there are scarcely any use cases within the 

given ecosystem. However, the k-means algorithm can easily be adopted in Open Rob-

erta as an unplugged activity. For this purpose, teaching materials should be developed 

to help the children understand how to group a set of items according to the k-means 

algorithm described in Algorithm 2.

Algorithm 2: k-means clustering 
 

1: Select ! points "!, … ,"" as initial centroids. 
2: repeat 
3:     Form ! clusters by assigning each point to its closest centroid. 
4:     Recompute the centroid of each cluster. 
5: until convergence criterion is met. 

 
 



 

 

4 Methodology 

This chapter completes the answer to the second research question from a methodolog-

ical perspective by suggesting how the proposals should be anchored pedagogically and 

concretely implemented in Open Roberta Lab. First, the design principles that underly 

the machine learning extensions and learning materials developed in the practical part 

of this work are presented. Second, the user study design and the methods used to 

evaluate the extensions and materials that are developed are explained. Third, the pro-

ject management framework and tools used in this research are outlined. 

4.1 Design Principles 
Educational research has shown that hands-on experience positively impacts learning 

(Kandlhofer et al., 2016). Hence, to encourage children to tinker with machine learning 

from a technical perspective, the design of the extensions and learning materials is ped-

agogically oriented towards constructivist and constructionist theories and connectivist 

framework. The following provides a brief overview of the fundamental principles of these 

frameworks. 

 Constructivism, Constructionism and Connectivism 
Multiple research studies about teaching with robots and VPLs are grounded in construc-

tivism and constructionism (Cooper et al., 1999; Kandlhofer et al., 2016; Lister, 2011; 

Moro, Arlegui, Pina, & Frangou, 2007; Wang, 2016). The teaching of AI and machine 

learning is also often geared towards constructionist and constructivist principles (Druga, 

2018; Druga et al., 2018; Hitron et al., 2019; Jatzlau et al., 2019; Michaeli et al., 2020; 

Queiroz et al., 2020; Williams, Park, Oh, et al., 2019). 

Constructivism is a theory of learning developed by Jean Piaget. At its core, it sees 

children as active builders of their knowledge (Piaget, Fatke, & Kober, 2016): Instead of 

receiving information passively, children learn about the world by actively interacting with 

it. Resnick and Robinson (2017) summarised the critical principle of constructivism as 

“Children don’t get ideas, they make ideas” (p. 37). 

Papert (1993a, 1993b) and Papert and Solomon (1971) expanded Piaget’s cognitive 

theory and developed a constructionist approach based on the theory of constructivism. 

The main idea of this theory is that children construct their knowledge most effectively 

when they are actively involved constructing things in the world (Papert & Harel, 1991). 

As children construct things in the world, they construct new ideas in their heads, which 

motivates them to construct new things in the world (Resnick & Robinson, 2017). When 

learners participate in constructing an artefact and interacting with it, the construction of 



4 Methodology  28 
 

 

knowledge is more effective (Michaeli et al., 2020; Queiroz et al., 2020). Engagement 

with the design of artefacts and modelling enhances the learning of complex systems 

through systematic exploration (Hitron et al., 2019). 

Siemens (2005, 2014) outlined the limits of constructivism, describing it as a learning 

theory that focuses only on the individual, and suggested a new learning theory of con-

nectivism to describe how learning happens in the digital age (Siemens, 2005, 2014). 

Although there is criticism and debate as to whether connectivism is a learning theory or 

merely a pedagogical view (van Pløn Verhagen, 2006), the connectivist idea of 

knowledge and learning is enriching in the context of this research. Connectivism postu-

lates that knowledge must be accurate and up to date, emphasising the role of the cur-

rency of knowledge in today’s world. It also stresses that one of the core skills of the 

modern learner is the ability to recognise connections among domains, ideas, and con-

cepts, whereby learning and knowing are constant, ongoing processes (Siemens, 2005). 

 Four P’s of Creative Learning 
The Four P’s of Creative Learning (Resnick & Robinson, 2017) is a modern framework 

that engages young students in creative learning experiences. The framework is based 

on constructivist ideas and focuses on the intersection of emerging technologies, activi-

ties and strategies (Sakulkueakulsuk et al., 2018). The core values of the framework and 

its guiding principles are the four P’s: projects, passion, peers, and play.  

Learning through making and working on projects that matter is a key idea of the first 

P – projects. Here, children create things and tinker with what they are interested in. By 

continuously going through the Creative Learning Spiral of imagining, creating, playing, 

sharing, and reflecting, they develop their ability to think, organise, refine, and reflect on 

their ideas (Fuste, 2018; Resnick & Robinson, 2017). As children work on projects that 

grab their attention, they build on their interests and are willing to work harder and longer. 

This is the central idea of the second P – passion. 

Resnick and Robinson (2017) also took up the idea of working with peers – the third 

P – as an effective didactic approach. Peer learning is an evidence-based instructional 

method that is theoretically well founded. The effectiveness of working with peers in the 

form of peer tutoring, peer mentoring, peer mediation, peer counselling, and other forms 

have been proven in several research studies (Büttner, Warwas, & Adl-Amini, 2012; 

Hattie, 2008; Lebedynska, 2017; Zeneli & Tymms, 2015).  

The concept of play, the fourth P, is centred on creativity. Resnick and Robinson 

(2017) emphasised that playing is not just about laughing or having fun, but is much 

more about “being a mischief maker” (p. 128) – about experimenting, taking risks, and 
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testing boundaries. Resnick and Robinson (2017) also made a crucial distinction be-

tween two types of playful environment: playpen and playground. The first is a restrictive 

environment in which the children have limited space to experiment, whereas the second 

is designed to allow them to move, explore, and collaborate. If the aim of play is to edu-

cate creative thinkers, the instructional playpen environments should remain a stepping-

stone, not a final destination. Instead, the learning environment should be more oriented 

towards a playground style, with metaphorically low floors and wide walls, so that the 

children can make decisions about what to make and how to make it (Resnick, Martin, 

Sargent, & Silverman, 1996; Resnick & Silverman, 2005). 

 Derivation of Guidelines for Machine Learning Extensions and Curriculum 
Design 

All three approaches described in Section 4.1.1 can be adopted to develop creative 

learning experiences with machine learning for young students in the practical part of 

this work. The extensions and learning materials should promote the idea of an active 

learner who gains knowledge by making and constructing things. The extensions and 

materials should also encourage learners to investigate the currency of machine learning 

paradigms and help establish connections between machine learning ideas and con-

cepts and other fields such as robotics. 

Teaching materials and extensions should be developed based on the Four P’s of 

Creative Learning outlined in Section 4.1.2 as a practical guide for designing curricula 

oriented towards constructionist ideas. The approach developed in the practical part of 

this work should encourage creativity, while at the same time supporting students in 

working on projects based on their passions, in collaboration with peers and in a play-

ground-style atmosphere. 

The ideas of play and playful learning described in Section 4.1.2 should be incorpo-

rated in the extensions wherever possible. Some structured activities for learners should 

be designed to help students to get started with exploring of machine learning exten-

sions. However, the aim should be for these structured activities to serve as a stepping-

stone, not a final destination. The students should be empowered to play with machine 

learning technologies and create something that interests them, following the ideas of 

constructivism and constructionism presented in Section 4.1.1. 

Two extensions for Open Roberta Lab are planned based on the evidence and short-

comings summarised in Section 2.4, the technical considerations described in Sections 

3.1.2 and 3.2.2, and the educational reflections presented in Sections 4.1.1 and 4.1.2: 

the Neural Network Playground and the Q-learning Playground. The playgrounds should 
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build upon the needs described in Section 2.1 and should be mainly oriented towards 

two “Big Ideas” of AI – perception and learning (Touretzky et al., 2019) – as practical 

guidance for designing AI curricula. According to Touretzky (2019), perception is one of 

the most significant achievements of AI which enables computers to perceive the envi-

ronment by interpreting sensory signals. Learning is another machine learning technol-

ogy that stimulates significant advances in many areas of AI. By playing with machine 

learning algorithms, the children should learn how machine learning algorithms enable a 

robot to create its own representations of the world using data that is either provided by 

students or acquired by the robot itself. 

Students should be able to work with simulated robots in Open Robert Lab, following 

the demonstration of the motivational characteristics and effectiveness of using robots 

for educational purposes in Section 2.3.3. The involvement of robots should help children 

understand perception as a process in which sensors are used to observe the environ-

ment. At the same time, even the youngest students should be able to immerse them-

selves in the challenges of supervised, unsupervised, and reinforcement learning 

through interaction with the underlying algorithms and processes of machine learning. In 

this way, robotic systems should help establish a link between seemingly abstract learn-

ing content and reality, in which the robot either does or does not behave as expected. 

The Neural Network Playground should allow the user to experiment with simple neu-

ral networks. The learner should be able to train the neural network by modifying the 

weights and directly observing the effects on the simulated robot, thereby grasping the 

concept of “direct supervision” outlined in Section 3.1.2. 

In the Q-learning Playground, the student should be able to tinker with the Q-learning 

algorithm described in Section 3.2.2 by creating unique learning environments for the 

robot and playing with the parameters of the algorithm. Step by step, the student is ex-

pected to debug the algorithm and explore how the learning takes place from the agent’s 

perspective. 

To make the unsupervised learning tangible for young students, the k-means algo-

rithm described in Section 3.3.2 is adapted as an unplugged activity. Access to unsuper-

vised learning unplugged is designed first to test a different type of hands-on activity and 

second as a control instance. The intention is to determine whether children perceive 

this topic of machine learning differently in terms of interest and difficulty if it is introduced 

unplugged instead of plugged. 
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All three approaches should be accompanied by a curriculum that introduces young 

learners to the various machine learning paradigms. Such an approach will reflect the 

complexity and breadth of the field addressed in Section 2.4. 

By transferring the design principle of embodied interaction, described in Section 

2.3.1, to digital space, students can be virtually put in the agent’s shoes. The students 

should then immerse themselves in the behaviour of the simulated robot and put algo-

rithms into practice in order to understand them and take a look behind the scenes. Such 

an approach should promote transparency towards the explainable AI (Long & Magerko, 

2020), which is problematised in Section 2.4. 

In order to accommodate children across school levels, approaches should be based 

on the “low floors and wide walls” principle described in Section 4.1.2. The examples 

should vary in their level of difficulty. Concerning the usability of and storytelling in ma-

terials and extensions, inspiration can be drawn from the graphic design and storytelling 

of children’s books, mentioned in Section 2.3.1. Castella (2018) also proposes concrete 

principles for designing materials for children. In order to spark and maintain children's 

interest, learning materials should be colourful, have a similar logic, contain exciting task 

descriptions, and relate to a child's life. The extensions and materials should be appeal-

ing and straightforward: Design for children must be for everyone and allow room for 

exploration. 

With all these possibilities, it is expected that children will be able to construct 

knowledge through the interaction between creating an artefact and understanding it. 

The use of blocks and robots should assist children in gaining a deep understanding of 

the technical aspects of different machine learning paradigms problematised in Section 

2.4. This should make the underlying principles of machine learning transparent for stu-

dents of all school levels, from primary to high school. The currency of knowledge as a 

key principle of connectivism described in Section 4.1.1 should be fostered.  

4.2 User Study Design 
In order to answer the third research question, the extensions and materials that are 

developed were tested with children. The sampling should include representatives 

across school levels – primary, secondary, and high school. 

The user study was conducted in a three-day block with one session per day. On the 

first day, the approaches were evaluated with the high school children, grades 7–9, on 

the second day with the primary school children, grades 3–4, and on the third day with 

the middle school children, grades 5–6. All children had prior knowledge of working in 

Open Roberta Lab with LEGO EV3 robots, as they had participated in the introductory 
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session the day before. All three sessions took place as part of the summer holiday 

programme of the school administration office and the ZDI network MINT Düsseldorf, 

organised in cooperation with the non-profit coding initiative Codingschule junior (Cod-

ingschule gGmbH, 2020). All interested children were able to register for a session 

online. There were no requirements for participation. The first come, first served principle 

was used if there were more registrations than places. As this work was carried out in 

Germany, thus, all materials and extensions were developed in German. 

At the beginning of each session, the children’s knowledge of machine learning and 

AI was informally pre-assessed. The modules were then completed in the order de-

scribed in Section 6.1. Finally, the children filled out short questionaries. 

Due to regional measures implemented in response to COVID-19, restrictions were 

in effect when testing the extensions and materials. The children were not allowed to 

work in tandem or in groups. The limitations of all activities to individual work made it 

impossible to follow the peer learning approach, described in Section 4.1.2, as an edu-

cation strategy. 

The Q-learning Playground, introduced in detail in Section 5.4, was restricted to three 

maps, and the students were allowed to set as many obstacles as they wished. Although 

the extension was technically designed to allow students to create and upload environ-

ments on their own under certain conditions, it was necessary to restrict the activity in 

order to eventually achieve comparable results. 

4.3 Evaluation Methods 
A computer-based questionnaire with six items based on a 5-point semantic differential 

scale was developed to measure the children’s perception of the machine learning top-

ics. The goal of this was to understand how the children felt about the approaches and 

whether they experienced difficulties understanding them. The questions were formu-

lated so as to allow the children to give personalised feedback on the difficulty of and 

their interest in the topics. 

The semantic differential scale was chosen because it allows the rapid measurement 

of attitudes and performs well with few items (Salkind, 2006). The questions were as 

follows: 

1. How interesting did you find the topic “Supervised Learning and Neural Net-

works”? 

2. Was the topic “Supervised Learning and Neural Networks” difficult to under-

stand?  
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3. How interesting did you find the topic “Unsupervised Learning”?  

4. Was the topic “Unsupervised Learning” difficult to understand? 

5. How interesting did you find the topic “Reinforcement Learning”?  

6. Was the topic “Reinforcement Learning” difficult to understand? 

To answer, the children indicated a number on a scale from 1 to 5 between two pairs 

of adjectives: “Very Uninteresting” (1) to “Very Interesting” (5) for questions 1, 3, and 5 

and “Very Difficult” (1) to “Very Easy” (5) for questions 2, 4, and 6. In the evaluation, the 

responses to individual items were summed and then averaged to provide an overall 

score. A higher number thus reflects a more positive evaluation (Salkind, 2006). 

In the questionnaire, the children were also asked about their general attitude towards 

further involvement with the topic AI and machine learning. The children could respond 

“Yes”, “Maybe”, or “No” and provide brief written feedback (one sentence) about what 

they took with them from the project day. 

Figure 9 demonstrates an example of the question from the questionnaire. Before the 

student was asked to answer the question, she or he could view the image used in the 

presentation of a particular machine learning topic during the session to help the student 

recall the topic. All individual topics in the questionnaire were illustrated in this way. 

 

Figure 9: An item from the computer-based questionnaire developed to measure the children’s perception 
of the topic “Supervised Learning”. 
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The sessions were videorecorded, and an observer logged the activities of all three 

days. Parts of the videos – the introduction with the children’s oral pre-assessment and 

the final feedback from the children about the session and what they learned about AI 

and machine learning – were transcribed for evaluation purposes. In order to take into 

account the ethical and legal aspects, all data collected was kept confidential and per-

sonal information made anonymous. 

4.4 Tools and Project Management 
A variety of tools were used to manage this work. In the following, these and the work-

flows pursued in this project are presented. 

Source code version control with GitHub, IDEs IntelliJ and WebStorms, and 
Chrome DevTools 

The Open Roberta Lab project’s source code is distributed across several repositories 

on GitHub. For this work, two of them – openroberta-lab (Open Roberta, 2020c) and 

blockly (Open Roberta, 2020a) – were required and forked in the public account of the 

author (Olari, 2020b). 

Extension development was managed through the GitHub platform using the Git ver-

sion control system. The extensions were developed iteratively according to the idea of 

agile software development (Schmidt, 2015). In order to improve the traceability of addi-

tions made in the course of this work, new feature branches were created in each of the 

forked repositories: feature/aineuralnetworks in openroberta-lab and fea-

ture/ai in blockly (Olari, 2020a, 2020e). 

In order to provide transparency about the development progress, code changes were 

commited daily. The changelog can be found in Appendix A.3, and the concrete code 

changes can be viewed in the git history of the projects. 

GitHub issues and project management tools were used to manage various tasks. In 

vlebedynska/openroberta-lab (Olari, 2020e), two projects were created to manage 

the development of the extensions: “AI Extension: Reinforcement Learning” and “AI Ex-

tension: Neural Networks”. In vlebedynska/blockly (Olari, 2020a), an “AI Extension” 

project was created to organise the UI design of the blocks. 

Figure 10 shows the exemplary structure of the project “AI Extensions: Reinforcement 

Learning”. It is divided into three stages: “To do”, “In progress”, and “Done”. Depending 

on their status, the issues are stacked in the corresponding columns. Each issue includes 

a brief description. Some of issues contain subtasks. An exemplary description is shown 
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for Issue #19 on the right side of Figure 10. Each time a change is committed, it is tagged 

and assigned to the related issue. 

 

Figure 10: GitHub project “AI Extension: Reinforcement Learning” shows an example of the project struc-
ture and individual issues. 

Two IDEs were utilised for the development: IntelliJ IDEA (JetBrains, 2020a) and 

WebStorm (JetBrains, 2020b). Although it was also possible to use IntelliJ alone, a Web-

Storm provided a better environment for developing and debugging TypeScript code. 

The author also used the development tools provided by the Chrome browser for de-

bugging, structure analysis of HTML, JavaScript and CSS sources, and performance 

testing.  

Adobe InDesign, Illustrator, and Fresco 

Adobe InDesign (Adobe, 2020c) is used for the design of learning materials. For drawing 

illustrations, Adobe Illustrator (Adobe, 2020b) and Adobe Fresco (Adobe, 2020a) are 

applied. Adobe Illustrator is also used to prepare the environments for the Q-learning 

Playground. It offers the possibility of drawing illustrations and saving them in SVG for-

mat, which is then implemented and processed in the Q-learning extension. The work-

flow of implementing and processing an SVG file in Q-learning extension is discussed in 

detail in Section 5.4.4. 



 

 

5 Machine Learning Extensions: System Design and 

Implementation 

Based on the approaches proposed in Sections 3.1.2 and 3.2.2, as well as the method-

ological framework outlined in Section 4.1.3, this chapter presents the design and tech-

nical implementation of new blocks and two machine learning extensions in Open Rob-

erta Lab. 

First, to enable the reader to understand the integration of new blocks and machine 

learning extensions into the existing Open Roberta Lab ecosystem, the author provides 

an overview of Open Roberta Lab and its initial project structure and system architecture. 

The overview focuses on processes relevant to the simulation environment of the LEGO 

EV3 robot, which the author has extended with new blocks and machine learning fea-

tures. Although simulation environments are also offered for other robot systems, LEGO 

EV3 was chosen because it was the only driving robot and could be extended with ex-

amples of the simple neural networks based on ideas of the Braitenberg experiments 

described in Section 3.1.2. 

Second, the author presents new block categories and blocks that she has imple-

mented in Open Roberta Lab to enable the user to program simple neural networks and 

applications based on the Q-learning algorithm. In order to fill each block with function-

alities, for instance, to enable the Neural Network block to create a neural network, the 

author has made several additions in the Open Roberta Lab project. Since there is lim-

ited documentation for the execution workflows in Open Roberta Lab, the author makes 

the execution process transparent for the reader by describing the simplified workflow 

using the lifecycle of a block implemented by the author as an example. In this way, the 

author demonstrates the central points in which she has made additions to Open Roberta 

Lab project while implementing functionalities for each of the blocks.  

Third, the author describes machine learning extensions that she has developed to 

allow the user to experiment with machine learning technologies, as described in Sec-

tions 3.1.2, 3.2.2, and 4.1.3: the Neural Network Playground for training simple neural 

networks and the Q-learning Playground for visualisation of and interaction with the Q-

learning algorithm. The author describes the system architecture, user interface, and 

central workflows of these extensions. Reflections on technical challenges close the 

chapter. 
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Before reading this chapter, the reader should note three remarks: (1) The reader will 

find that most figures and screenshots depict blocks and extensions in German. This is 

because the user study was conducted in German. If the reader would like to observe 

the blocks and extensions in English and view the demo of the blocks and extensions in 

use, he or she can follow this link: 

www.figshare.com/s/9bf7608f9408ea2f8da8, accessed on 09.09.2020. 

(2) If the reader would like to test the extensions, he or she can install Open Roberta 

Lab locally on the Raspberry Pi. The author has prepared an image14 that the reader can 

download under this link: 

www.figshare.com/s/e92bb50916b8556eb603, accessed on 12.10.2020. 

(3) The reader should also note that this chapter only documents the most relevant 

processes and additions to the Open Roberta Lab project. However, if the reader desires 

more detailed information about the timing of development, he or she can refer to a com-

prehensive commit history maintained by the author and attached in Appendix A.3. If the 

reader wishes to examine specific code changes, he or she can refer to the respective 

repositories in the author’s public account on GitHub (Olari, 2020a, 2020e). There, the 

additions, deletions, and changes are presented. The reader can also view the commit 

history tagged in individual issues (Olari, 2020c, 2020d). 

5.1 Investigating Open Roberta Lab: System Overview 
The development of new components required extensive additions throughout the entire 

Open Roberta Lab project. In order to achieve the set goal, the structure of the Open 

Roberta Lab project and central workflows had to be examined in detail. At the time of 

writing, Open Roberta Lab did not provide much documentation on processes and work-

flows. Therefore, the following three sections summarise the essential findings and as-

pects relevant to further understanding of the development of new UI blocks and new 

machine learning features. 

 User Interface 
When visiting the Open Roberta Lab environment (Open Roberta Lab, 2020), the user 

is asked to select one of the available robots to continue. Figure 11 illustrates the user 

interface after selecting the LEGO EV3 robot.  

 

14 The image must be copied to an SD card and inserted into the SD card slot of a Raspberry Pi. Open 
Roberta Lab is started at boot time. Now the user can access Open Roberta Lab from any device on the 
same local network by entering the address http://orlab.local in the browser. See Open Roberta (2020b) for 
more detailed instructions. 



5 Machine Learning Extensions: System Design and Implementation   38 
 

 

 

Figure 11: The user interface of Open Roberta Lab (Open Roberta Lab, 2020). 

Via the (1) navigation bar, the user can save, export, and import the program and can 

open a source code editor. Additionally, the user can switch the robot system and con-

nect to the real robot, get help, log in to the personal area, open a gallery of the published 

programs of other users, and change the interface language. 

Under the (3) block categories, the user finds programming commands in the form of 

blocks available for the selected robot. The block categories presented in Figure 11 are 

similar for all implemented robot systems. 

In the (2) working area, the user assembles the program from singular commands 

listed in block categories. The commands to be executed must be appended to the red 

“Start” block. The program that is developed can be executed either on a real robot by 

pressing the “Start” button at the bottom of the working area or in the simulation. The 

commands are executed in the order in which they are connected in the program from 

top to bottom. The commands are executed linearly, so there is no possibility for the 

parallelisation of processes.  

The (4) robot simulation can be opened by pressing the “SIM” button located on the 

right side of the working area. The robot simulation imitates the behaviour of the real 

robot, although not all commands and sensors of the real robot are available. In the 

simulation for the LEGO EV3 robot, the user can run the program on the simulated robot, 

change and load custom backgrounds, interact with the simulated robot brick, access 

the current measurements of the plugged sensors, and return the robot to its initial posi-

tion.  
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 Project Structure 
The source of Open Roberta Lab is stored in the GitHub project Open Roberta (Open 

Roberta, 2020d). For this research, two repositories – openroberta-lab (Open 

Roberta, 2020c) and blockly (Open Roberta, 2020a) – were copied to the author’s pub-

lic repository (Olari, 2020a, 2020e).  

openroberta-lab is the central repository of the Open Roberta Lab project. The in-

stallation description and an overview of the needed libraries can be found in the RE-

ADME.md file of the project. The openroberta-lab project implements back-end func-

tionalities for robot systems and is mainly written in Java, Python, and C++. It also con-

tains front-end functionalities for the web appearance of Open Roberta Lab and the robot 

simulation environment in JavaScript and TypeScript. Apace Maven is used for package 

management. The JavaScript library require.js is used as a file and module loader.  

Blockly is the client-side JavaScript library that provides a web-based visual program-

ming editor (Google Developers, 2020c). The Blockly editor of Open Roberta (Open Rob-

erta, 2020a) allows the defining of command blocks,15 which can be exported as a com-

pressed JavaScript file and used in the local openroberta-lab project. Blocks can be 

accompanied by translations into different languages by adding the corresponding 

meanings to the JSON file of the respective language. 

Currently, for the LEGO EV3, Open Roberta Lab offers eight block categories with 48 

command blocks in beginner mode and 11 block categories with 100 command blocks 

in expert mode. 

 System Architecture 
Only limited documentation is available for architecture and workflows in Open Roberta 

Lab (Open Roberta, 2019a, 2019b, 2020e). However, it was vital to understand the over-

all system architecture and central processes in order to implement the functionalities for 

the individual blocks. For this reason, the author reverse engineered the project. Error! R

eference source not found. shows the result, presenting an excerpt from the sche-

matic overview of the Open Roberta Lab structure relevant for machine learning features. 

Specifically, the figure visualises the system components and their interdependencies 

involving the robot simulation environment.

 

15 Block types, their appearance and the compatibility of the blocks with each other are defined by Google 
Developers (2020a). 
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Client Blockly 

On the client-side, the Blockly library is responsible for the definition and visualisation of 

the programming blocks. When the user starts the simulation in Open Roberta Lab, the 

program composed by the user is transmitted to the server via an HTTP request as JSON 

data for further processing. JSON data contains not only the program itself in XML for-

mat, but also other project data such as the name and configuration of the robot. 

Server 

On the server-side, the Jetty Java library runs the web server and provides the interface 

to the backend of the project. When the JSON data arrives on the server, the block types 

from the XML file are mapped by Transformer to the corresponding Java classes using 

the axillary JAXB16 library. The output of the Transformer step is an abstract syntax tree 

(AST)17 component, which is returned for further processing. 

Among other project data, the AST itself also passes through the workflow pipeline. 

In the case demonstrated in Error! Reference source not found., the workflow is de-

termined by data transmitted via an HTTP request. The pipeline in Error! Reference 
source not found. is composed of three workers: Validator, Hardware, and StackMa-

chine. However, depending on the workflow, the pipeline may defer. A worker performs 

tasks sequentially and can manipulate the project data. 

(1) The Validator worker sends a request to the visitor18 encoding the element class 

to check the validity of the AST component. This step returns an error list if any 

errors are found. In case of an error, the workflow procedure is aborted. 

(2) The Hardware worker verifies that the hardware for the robot to use is correctly 

configured and installed. 

(3) The StackMachine worker then sends the project data to the block visitor, which 

assembles the operations and functions defined in respective AST components 

into a JSON object. 

Simulation Client 

The client extracts the JSON object and processes functions and operations in inter-

preter.interpreter.js. Programs for Open Roberta Lab simulation are conception-

ally implemented as a stack machine. Each program operation is executed depending 

 

16JAXB – allows the mapping of Java classes to XML representations. 
17 The AST is a detailed tree representation of the Java source code (Vogel, Scholz, & Pfaff, 2020). 
18 Gamma, Helm, Johnson, and Vlissides (2019) describe the visitor as a pattern that allows a new operation 
to be defined without changing the classes of the elements on which it operates. 
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on its operation code (opc) and can use the stack to exchange the data with other oper-

ations on the program stack. robotMbedBehaviour.js is the main file in which the func-

tions for the simulation of the robot’s behaviour are defined.  

5.2 New Blocks and Categories for Machine Learning Playgrounds 
With blocks, the user creates programs in Open Roberta Lab. In order to enable the user 

to program neural networks and applications based on the Q-learning algorithm, new 

blocks had to be developed. To this end, Open Roberta Lab was extended with the ad-

dition of a new “AI” category, consisting of two subcategories – “Neural Networks” and 

“Reinforcement Learning”. The general name “AI” was chosen in order to allow new sub-

categories to be added in the future.  

This chapter briefly outlines considerations for creating new blocks for machine learn-

ing features, followed by a description of the functionalities of new blocks and a presen-

tation of the execution workflow on an exemplary lifecycle of a block. The lifecycle illus-

trates the process of how a program written in blocks reaches the simulated robot. 

 Considerations for Designing of New Blocks 
In order to enable children to construct knowledge through the interaction of creating an 

artefact and experimenting with it – one of the design principles defined in Section 4.1.3 

– the author created a set of 16 command blocks. The following considerations guided 

the author: 

(1) The blocks should be easy to grasp, so that even young students do not experi-

ence difficulty understanding them. The complexity of the technical terms thus had 

to be reduced. Instead of using abstract vocabulary, the author simplified the lan-

guage so that even children without previous knowledge could understand the 

blocks. If a term could not be simplified, for instance, the term “Neuron” in Figure 

13, it had to be explained in the learning materials or by the facilitator in the intro-

duction to the topic. The appearance of blocks also had to be simplified. For in-

stance, lists used as layers in neural networks can be simplified, as demonstrated 

in Figure 13. These measures should promote the design principle of “low floors 

and wide walls”, introduced in Section 4.1.3. 

Traditional block presentation Simplified version 

  

Figure 13: Traditional presentation of the List block in Open Roberta Lab and its simplified version. 
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(2) The blocks should allow the students to create unique artefacts. For instance, 

users should be able to program neural networks with different types of input and 

output neurons. To make this possible, the author was able to reuse different 

types of sensors and actuators of the LEGO EV3 robot, enriching the user expe-

rience through a multifaceted approach to the topic. The user should also be able 

to create networks of different levels of complexity. 

While creating applications based on the Q-learning algorithm, the user should be 

able to build learning environments of varying complexity and experiment freely 

with the parameters of the Q-learning algorithm. These opportunities should en-

courage the student’s creativity by giving them room to experiment – another de-

sign principle defined in Section 4.1.3. 

(3) In order to keep implementation costs within limits, if possible, the author should 

reuse the solutions provided by Open Roberta Lab. For instance, she was able to 

adapt the existing sensors and actuators as input and output neurons and reuse 

lists to represent the layers in the neural network. 

 AI Blocks 
Figure 14 shows the user interface extended by the two subcategories – “Neural Net-

works” and “Reinforcement Learning”.  

 

Figure 14: The extended user interface of Open Roberta Lab. 

Ten new blocks were defined and implemented for the block category “Neural Net-

works”. Table 1 presents them and explains their purpose. 
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Since the neural network is a new feature in Open Roberta Lab, the author had to 

define new data types: InputNode and OutputNode. All input neurons are of type In-

putNode and can be recognised on a red connection point. All output neurons are of type 

OutputNode and have a turquoise connection point. In order to implement the input and 

output neurons, existing functionalities of the selected sensors and actuators were 

adapted and modified. In the first versions of blocks, the input and output nodes had an 

additional opening for a threshold value, which the author also implemented in the 

backend. However, it turned out that the threshold value made the appearance of the 

block complex, so the author decided to leave it out for the initial run with students. It is 

possible that in the future, it could be made available again as a block for expert users. 

Table 1: New blocks developed for the subcategory "Neural Networks". 

Block appearance Description 

 

The neural network itself –has two open-

ings. The left opening is for the input layer, 

and the right opening is for the output layer. 

 

The neural network layer – can be used as 

an input or output layer. The user can ad-

just the number of neurons by pressing the 

“+” or “–“ symbol. 

 

Ultrasonic sensor input neuron – uses the 

data supplied by the ultrasonic sensor 

plugged into the robot. It returns the dis-

tance to the next obstacle in cm. 

 

Light input neuron – uses the data provided 

by the robot’s colour sensor. It returns the 

light intensity on a scale of 0 to 100. 

 

Colour input neuron – uses the data from 

the robot’s colour sensor and returns 1 if 

the robot detects the selected colour and 0 

if not. There are 8 colours implemented. 

 
Colour channel input neuron – uses the 

data from the robot’s colour sensor and 



5 Machine Learning Extensions: System Design and Implementation   45 
 

 

returns a value from 0 to 255 for a selected 

channel. The value is then scaled from 0 to 

100 for processing purposes. 

 
LED colour output neuron – uses the LED 

of the robot as output. 

 
Motor output neuron – uses the selected 

motor as output. 

 
Text output neuron – uses the robot’s 

screen as output. 

 

Sound output neuron – represents the 

sound frequency that is sent to the robot’s 

speaker. 

 

Six new blocks were designed and integrated for the category “Reinforcement Learn-

ing”. Table 2 outlines their appearance and functionality. 

Table 2:  New blocks developed for the subcategory "Reinforcement Learning". 

Block appearance Description 

 

Configures the learning environment. The 

user selects a map and defines the start and 

finish station. He or she can also place ob-

stacles between two stations, which means 

that the robot cannot pass this section. 

 

Configures the learning behaviour of the ro-

bot. The user sets up the following: 

- 𝛼 by choosing between different learn-

ing speeds 

- 𝛾 by receiving an additional reward from 

the next step 
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- the NU value by allowing the robot to tel-

eport to the station that is not directly 

connected to the previous station 

- the RHO value by allowing the robot to 
accept the use of its previous experi-

ence 

 

Starts the Q-learning algorithm. The user 

must specify the number of episodes and 

the time in seconds. 

 

Draws the optimal path based on the best 

Q-values on the way from the start to the 

finish station. 

 

 

Sets the robot to the start position in the 

simulation and lets it follow the line of the 

optimal path. This block is defined as a func-

tion, so it also requires a function body to be 

placed in the working area. 

 

 Lifecycle of One Block 
A general overview of the program execution workflow is given in Section 5.1.3. In this 

section, the implementation details of the workflow process are presented with an exam-

ple. The author describes the lifecycle of the block ai_neural_network, which demon-

strates where in the existing ecosystem of Open Roberta Lab the author has inserted 

her additions. The lifecycle presented in the following is simplified, because it would go 

beyond the scope of this section to outline all the additions. However, the process is valid 

for all new blocks implemented by the author. 

The necessary steps in the lifecycle of a block are as follows: (0) create a block in 

Blockly and integrate it into the Open Roberta Lab front-end; (1) create a program in 

Open Roberta Lab by assembling the blocks and starting its processing; (2) map blocks 

to corresponding Java classes; (3) parse blocks to AST components; (4) process the 

blocks to stack machine operations; (5) send the stack machine program to the simula-

tion environment; (6) unpack the stack machine program and execute each operation in 
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the simulation. In the following, each step is described for the block ai_neural_net-
work. 

0) Before the new block ai_neural_network can be used, it must be implemented in 

the Blockly library (Olari, 2020a). The code snippet shown in Figure 15 demonstrates 

the block definition and presents the resulting program block. It should be noted that 

while the code snippet provides insight into the initialisation function of the block, it 

does not outline all the additions associated with the block definition, as they are 

distributed throughout the Blockly project. 

 

Figure 15: Code snippet for defining the ai_neural_network block in Blockly (top) and its visual repre-
sentation (bottom). 

After defining the colour of the block and label text, the setCheck() function sets the 

input type of the block, which can be passed as an inline input field19 INPUT_LAYER. 

The input INPUT_LAYER allows the insertion of only blocks of type Array_InputNode. 

For the input OUTPUT_LAYER, the setCheck() ensures that the second input field 

only accepts blocks of type Array_OutputNode. Other local function calls inside the 

init() method define the appearance and functionality of the ai_neural_network 

block. 

In order to use the defined block in the openroberta-lab project, it must be exported 

to a JavaScript file blocks_compressed.js by executing a Python script provided 

by the Blockly project. The generated file must then be manually moved to the open-

roberta-lab project. 

 

19 If the inline input fields are set to true, the holes in the block are arranged horizontally. Otherwise, they 
are arranged vertically. 

 

/** 
 * This block defines the simple neural network with an input and an output layer. 
 */ 
Blockly.Blocks['ai_neural_network'] = { 
    init : function () { 
        this.setColour(Blockly.CAT_AI_RGB); 
        this.appendDummyInput().appendField( 'Eingabe: '); 
        this.appendValueInput("INPUT_LAYER").setCheck("Array_InputNode"); 
        this.appendDummyInput().appendField( '  '); 
        this.appendDummyInput().appendField( 'Ausgabe: '); 
        this.appendValueInput("OUTPUT_LAYER").setCheck("Array_OutputNode"); 
        this.setInputsInline(true); 
        this.setPreviousStatement(true); 
        this.setNextStatement(true); 
        this.setTooltip(Blockly.Msg.NEURAL_NETWORK_TOOLTIP); 
    } 
} 
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1) When the user creates a program with the ai_neural_network block and compiles 

it by pressing the “Start" button, Blockly creates the representation of the program, 

including all blocks in XML format. This representation is subsequently transmitted 

to the back-end of Open Roberta Lab for further processing. Figure 16 demonstrates 

a simple program containing the ai_neural_network block and its representation in 

XML format. 

 

Figure 16: Representation of the Blockly program in XML format. 

2) In the Open Roberta Lab back-end (the server component in Section 5.1.3), the 

blocks included in the XML program are mapped to the Java classes by their types 

 
<export xmlns="http://de.fhg.iais.roberta.blockly"> 
 <program> 
  <block_set xmlns="http://de.fhg.iais.roberta.blockly" 
             robottype="ev3" xmlversion="2.0" description="" tags=""> 
   <instance x="136" y="60"> 
    <block type="robControls_start" id="3-|B8P@m_T~q/T_Nd|*p" intask="true" 
           deletable="false"> 
     <mutation declare="false"></mutation> 
     <field name="DEBUG">FALSE</field> 
    </block> 
    <block type="robControls_loopForever" 
           id="}faa=TbV.la1Ri3xi:gx" intask="true"> 
     <statement name="DO"> 
      <block type="ai_neural_network" id=",Z,j/{BU1-#Fh@hto.g+" intask="true"> 
       <value name="INPUT_LAYER"> 
        <block type="ai_easy_list" id="WDLKJ?#2,hy=!]q/#vgM" intask="true"> 
         <mutation items="1" list_type="InputNode"></mutation> 
         <value name="ADD0"> 
          <block type="ai_nn_input_node_coloursensor_color" 
                 id=";[@0}b)`K.He`Gb~Y4O!" intask="true"> 
           <field name="COLOUR">#00642e</field> 
           <field name="SENSORPORT">1</field> 
          </block> 
         </value> 
        </block> 
       </value> 
       <value name="OUTPUT_LAYER"> 
        <block type="ai_easy_list" id="Fmf`QA0Gq]vRkdEcPCy(" intask="true"> 
         <mutation items="1" list_type="OutputNode"></mutation> 
         <value name="ADD0"> 
          <block type="ai_nn_output_node_led" id="SG+aSO/dR.-o|j.a5Wv7"        
                 intask="true"> 
           <field name="OUTPUTNODE">#00642E</field> 
          </block> 
         </value> 
        </block> 
       </value> 
      </block> 
     </statement> 
    </block> 
   </instance> 
  </block_set> 
 </program> 
 <config> … </config> 
</export> 
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as defined in the corresponding configuration file in YAML format. The block type 

ai_neural_network is mapped to the Java class de.fhg.iais.roberta.syn-

tax.ai.AiNeuralNetwork. The mapping is shown in Figure 17. 

 

Figure 17: Configuration snippet for mapping the block type ai_neural_network to the Java class Ai-
NeuralNetwork. 

The Java class AiNeuralNetwork.java, attached in Appendix A.2, implements a 

method jaxbToAst() for transforming the block data from an XML source into the 

Java object representing an AST component. Due to the nested structure of the 

block, the transformation takes place recursively. Affected are the child nodes of the 

ai_neural_network block: two blocks of type ai_easy_list. Like any visitable AST 

component, the AiNeuralNetwork.java implements the visit method accep-

tImpl() used by visitor implementation. 

3) Figure 18 demonstrates an example of how EV3StackMachineVisitor assembles 

the stack machine program, which consists of single operations from aiNeuralNet-

work AST component. The stack operations for neural network layers are created by 

calling the accept() method for the AST component of each layer – listNNInput 

and listNNOutput. Finally, PROCESS_NEURAL_NETWORK operation is appended to the 

stack machine program. 

 
@Override 
public V visitAiNeuralNetwork(AiNeuralNetwork<V> aiNeuralNetwork) { 
    aiNeuralNetwork.getListNNInput().accept(this); 
    aiNeuralNetwork.getListNNOutput().accept(this); 
    JSONObject o = mk(C.PROCESS_NEURAL_NETWORK); 
    return app(o); 
} 

 
Figure 18: Code snippet of visitAiNeuralNetwork method. 

4) The result of EV3StackMachineVisitor is a stack machine program in the form of 

a JSON object. The steps of the simulation workflow are completed, and the stack 

machine program is transferred to the simulation requestor. 

5) In the simulation environment, the stack machine program is processed by the stack 

machine interpreter, defined in the file interpreter.interpreter.js. The inter-

preter runs through all operations. In the program section of the neural network, the 

 
AI_NEURAL_NETWORK: 
  category: STMT 
  implementor: de.fhg.iais.roberta.syntax.ai.AiNeuralNetwork 
  type: [ai_neural_network] 
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layers data are prepared before the actual processing of the neural network takes 

place. The data exchange is realised using the stack. When the interpreter reaches 

the stack operation PROCESS_NEURAL_NETWORK, as shown in Figure 19, the output 

and input layer data are on the stack. This data is popped from the stack, and after-

wards, the function processNeuralNetwork is invoked with the loaded layers’ data. 

 

Figure 19: Code snippet for PROCESS_NEURAL_NETWORK operation in 
interpreter.interpreter.js. 

The processNeuralNetwork function is an entry point to the Neural Network Play-

ground and is implemented in the interpreter.robotMbedBehaviour.js file. This 

function is responsible for creation and processing of the neural network that the user 

sees and interacts with in the simulation. As this function is large, it is presented in 

greater detail in Appendix A.1, and the content of this function is described in more 

detail in Section 5.3.4. 

At this point, the program is running in the simulation on the robot, and the lifecycle 

of the block ends here. If the user recompiles the program by pressing the “Start” button, 

the lifecycle starts from Step 1. 

5.3 Neural Network Playground 
Once the neural network, including the user interface (UI) displayed in the pop-up, is 

generated, the user can experiment with the neural network in the Neural Network Play-

ground. This section describes the author’s considerations for the design of the Neural 

Network Playground and presents the solution. It outlines the workflow the user encoun-

ters, describes the user interface, and provides insights into the system design and im-

plementation details. 

 Considerations for Feature Design 
This section presents technical considerations for the design of the Neural Network Play-

ground. In terms of content, the considerations are based on the idea of integrating su-

pervised learning into Open Roberta Lab presented in Section 3.1.2.  

In the course of the development of the Neural Network Playground, the author de-

signed several mock-ups, of which Figure 20 presents several. The underlying idea of 

all mock-ups was to enable the user to train the neural network live: The user should get 

 
case C.PROCESS_NEURAL_NETWORK: { 
    var outputLayer = s.pop(); 
    var inputLayer = s.pop(); 
    n.processNeuralNetwork(inputLayer, outputLayer); 
    break; 
} 
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direct feedback on how the training takes place by observing the behaviour of the robot. 

A direct causal relationship between changing a parameter of the neural network and 

observing the effect on the behaviour of the robot should enable even the youngest user 

to understand how the neural networks are trained and what the problems of supervised 

learning are. 

 

 

Figure 20: First mock-ups for the Neural Network Playground. 

Both mock-ups show on the left side the idea of programming and training the neural 

network in Open Roberta Lab with round blocks, whereby the user can edit the values 

of single blocks and the weights of single connections. These mock-ups had two decisive 

disadvantages. First, the robot was not able to change its behaviour live; the users had 

to compile the program after each change to see how the change influenced the robot’s 

behaviour. Thus, it would be not directly obvious what would happen if the user changed 

the weight. Second, it would not be possible to define round blocks, because the Blockly 

library does not support such serious adaptions in the design of blocks. 
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In order to address the second issue, the author considered adapting an open source 

solution available on the market, for instance, TensorFlow Playground (Smilkov & Carter, 

2020), whose interface is shown in Figure 21. However, adapting the TensorFlow Play-

ground does not solve the first issue and in addition may cause difficulties for young 

students: the input fields above the tensors are small and may be difficult to hit with the 

mouse for young students. Potentially, this could affect the user experience of primary 

school children, who also do not know how to cope with decimal numbers, in which the 

weights should be specified. Finally, and most importantly, the implementation efforts 

were difficult to estimate. 

 

Figure 21: TensorFlow Playground as an idea to be implemented in Open Roberta Lab 
(Smilkov & Carter, 2020). 

  Therefore, the author decided to separate the programming and the training from 

each other. The programming was redesigned to be done with blocks as usual, while the 

training redesigned was to take place in a new simulation extension. The extension 

should be able to dynamically create a neural network from the program that the user 

has compound in blocks and allow the user to train the network and observe the effects 

directly, that is, to change the weights between the single connections and directly ob-

serve the result on the robot. This idea was realised in a grey pop-up on right side of the 

second mock-up in Figure 20. 

In order to enable the students to easily operate the Neural Network Playground, the 

author made a series of decisions which are presented in a following list. It should be 

noted that the author did not formulate all these ideas at the beginning of the research 

study. Instead, the decisions were elaborated through several iterations of the develop-

ment process of the Neural Network Playground: 
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1) The students should focus on the essentials of the neural networks as proposed in 

Section 3.1.2. For this purpose, the hidden layers should initially be left out. The 

students should explore and understand what is happening between two neurons of 

the input and output layer. However, the extensions should have the technical op-

portunity to be extended by the hidden layers. 

2) In order to give the students room to experiment and playfully discover the topic, it 

should be possible to create the networks with any number and different types of 

input and output nodes. 

3) The weight changing should be realised as a slider: activating the link with a click 

and moving the regulator back and forth should allow the user to directly observe the 

result of his or her action – that is, the change in the robot’s behaviour. In the course 

of developments, the author noted that activation of single links may be difficult for 

the user, because the connection lines are thin. Having the slider above the neural 

network, as shown in the second mock-up in Figure 20, is also cumbersome, as the 

user has to switch between the activation of the link on the neural network and the 

slider. Instead, it would be more intuitive for the singular connections to have regula-

tors, enabling the user to change the value of the link by moving the regulator directly 

placed on the link. 

4) Since it can be useful in some cases, the user should have a possibility in the Play-

ground to change weights in the neural network without its immediate execution. This 

could be realised by providing the possibility of pausing and starting the training of 

the network without the need to recompile the whole program. The user should be 

able to pause the simulation, configure the network, and then restart the reconfigured 

network on the robot. 

5) The current value of the link should be expressed by changing the thickness of the 

line – the thicker the line, the stronger the link. This would help the young students 

see at first glance which connections are stronger than others. In addition to the 

thickness of the line, the value of the slider can be shown on the regulator. Being 

able to see the exact value of the link at first glance may be helpful for older students. 

6) When the neural network is created, the initial values of the links should be 0. The 

students should then explore on their own what will happen if they move the slider 

towards 1. 

7) In order to provide more transparency in the underlying processes, the current values 

of the input and output nodes should be shown inside the nodes. The nodes should 

also be labelled, so the user can easily make a connection between the program that 



5 Machine Learning Extensions: System Design and Implementation   54 
 

 

he or she has compounded in blocks and the neural network that is created. Depend-

ing on the sensor or actuator, the nodes can have different colours. For instance, if 

red colour from the colour sensor is used as the input block, then the input node in 

the Playground can be coloured red. Regarding the sliders in the neural network, the 

question arises as to whether to show the value for the active link only or to outline 

the values of all links at the same time. The Playground should be simple and clear 

but at the same time provide enough information to make the processes transparent. 

8) The design of the Playground should be appealing and easy to understand. It should 

be oriented towards the focus group of school students. The dimensions of the Play-

ground should be sufficiently large for easy operation. The design should also match 

with the teaching materials developed. 

9) To keep the dependencies simple and the solution technically feasible, the usage of 

additional source code libraries should be avoided if possible. The author should 

reuse the elements already available in Open Roberta Lab to maintain the design 

consistency. 

 Workflow 
Based on feature design considerations described in Section 5.3.1, the author estab-

lished the workflow demonstrated in Figure 22. 

 

Figure 22: Process workflow for training the neural networks in the Neural Network Playground. 

First, the user must compound the program using blocks. Then, he or she opens the 

simulation and then the Neural Network Playground. The program can then be started 

in the simulation. When the program is compiled, the neural network is (re-)created dy-

namically. The user may train it and observe how the robot’s behaviour changes. 

 User interface 
Taking into account the feature design guidelines from Section 4.1.3 and the considera-

tions outlined in Section 5.3.1, the author developed the Neural Network Playground. 

Figure 23 demonstrates its appearance in Open Roberta Lab. 
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Figure 23: User interface of the Neural Network Playground. 

In (1), a simple program for programming the Neural Network is demonstrated, (2) 

shows the button to open the Neural Network Playground, and (3) displays the Play-

ground itself. 

At the top of the Neural Network Playground, the user finds a brief description as a 

hint for what he or she can do: “Move the red circle to the right to allow more sensor data 

to pass through”. The user also sees the head of the mascot, which is used in the learn-

ing materials and ensures visual recognisability. Below the task description is a control 

bar, which allows the robot simulation to be stopped and started. This enables the user 

to configure the neural network first and then test it on the robot. Changing the weights 

between two nodes directly influences the behaviour of the robot without the need to 

pause the simulation. The current simulation state (paused/playing) is highlighted by the 

yellow background colour of the corresponding button. 

The neural network UI is created dynamically and takes up most of the Neural Net-

work Playground. The nodes of each layer correspond with the blocks set in the program 

and are labelled. Inside each node, the current value of the node is displayed. The value 

range of a node is between 0 and 100. Node colour depends on the node type: the nodes 

based on the colour sensor receive the colour that the user selected in the block. Other 

nodes have the default blue background. 

The link between the nodes changes the thickness when the slider is moved. The 

value range of a link is between 0 and 1. The closer the value of the slider is to 1, the 
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thicker the line and the stronger the connection between two nodes. Unless it is zero, 

the current value of the link is shown above the slider. 

Figure 24 illustrates the program with the colour input nodes. It also shows what the 

neural network pop-up looks like when the link between the first input node from the top 

and the first output node from the top is set to a value of 0.8: The link between these 

nodes is thicker than other links whose values are set to 0. The robot in the simulation is 

on the red square. Therefore, its red input neuron shows a value of 100. The values from 

the green channel node and blue channel nodes are 0, because the red square in the 

robot simulation is a pure colour without the addition of blue and green. The value of the 

input node is transmitted proportionally to the first output node, which means that with 

the current configuration of the neural network, the robot rotates the motor on port b at a 

speed of 80. 

 

 

Figure 24: Adjusting the weights in the neural network. 

 System Architecture and Selected Implementation Details 
This section presents the system architecture of the Neural Network Playground and 

outlines implementation details. The reader should note that only the most important 

implementation details are presented. 

 The Neural Network Playground operates completely client-side. It is written in Type-

Script, which is a syntactical superset of the JavaScript (TypeScript, 2020). In compari-

son to JavaScript, TypeScript provides type safety and modularity, which helps prevent 
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error occurrence at the compile time and the runtime of the Neural Network Playground. 

One drawback of the TypeScript which the author took into account was that TypeScript 

requires compilation step before the application can be executed. 

The Neural Network Playground is designed according the object-oriented approach 

and has a modular structure. The structure orients on the model–view–controller design 

pattern (Osmani, 2012), which leads to the separation of the user interface, the data 

models, and the underlying functionalities of the Neural Network Playground. In order to 

achieve the encapsulation of the components, the author implemented the event lis-

tener/event dispatcher pattern for the data exchange. To draw the UI of the neural net-

work, the author decided to use SVG – vector-based graphics in XML format 

(w3schools.com, 2020). In order to manipulate the SVG objects more easily, the author 

used the SVG.js library (Fierens, 2020). 

The following classes were implemented: 

- AiNeuralNetworkModule acts as an interface between the Open Roberta Lab sim-

ulation and the Neural Network Playground extension. 

- AiNeuralNetworkImpl implements the model of the neural network. 

- AiNeuralNetworkUI implements the UI for the neural network model. 

- LinkImpl implements the model of the link between neuron nodes. 

- LinkUI implements the UI for the link. 

- NodeImpl implements the model of the neuron node. 

- SVGSliderImpl implements the model of the svg slider. 

- Player provides the pause and restart functionality for the robot simulation. 

- Draggable provides the functionality to drag the regulator on the link. 

- SVGUtils includes diverse helper methods for usage by svg components. 

The models of LinkImpl, NodeImpl, AiNeuralNetworkImpl, and SVGSliderImpl 

classes were abstracted in, respectively, Link, Node, AiNeuralNetwork, and SVGSlider 

interfaces. The model of AiNeuralNetwork supports a multi-layer structure. 

Figure 25 shows in simplified form how the Neural Network Playground is initialised. 

The author omitted loops and some event dispatching/listening constructs for clarity pur-

poses. The diagram also shows only calls of the most vital local functions which are 

necessary to understand the process. The diagram design is based on the suggestion 

of Balzert (2011). It shows parameters in the functions only in the most important cases.
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Figure 25: Simplified sequence diagram for creating the Neural Network Playground. 
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AiNeuralNetworkModule is instantiated as a singleton by the processNeuralNet-

work() function, described in Section 5.2.3, and is an entry point into the Neural Network 

Playground. It initialises the Neural Network module UI as the svg object – the instance 

of the svgdotjs module from SVG.js library that the author used to simplify the manip-

ulation of the svg objects. The AiNeuralNetworkModule then pre-processes the input 

and output node values derived from the stack program for simulation by converting them 

to neural network nodes. The values of the input nodes are normalised to the range from 

0 to 100. The instances of the class Node are created. Subsequently, AiNeuralNet-

workModule initialises the neural network by creating an instance of AiNeuralNet-

workImpl and of the corresponding UI object AiNeuralNetworkUI. 

AiNeuralNetworkImpl implements the core functionalities of the neural network. 

Here the functionality for creation of the neural network, including the creation of links 

between the nodes and the calculation of the neural network output, is defined. AiNeu-

ralNetworkUI is responsible for the visual presentation of the neural network and han-

dles user’s activities. On initialising, it creates a module global instance of Draggable, 

draws the Player, and initialises the LinkUIs for each link between two nodes. Drag-

gable implements mosemove, mouseup, and mousedown event handling by dragging the 

regulator on each link. LinkUI contains an instance of SVGSliderImpl. Furthermore, it 

implements functionality for updating the thickness of the link on its weight change and 

the event handling on the link activation and deactivation. SVGSliderImpl is responsible 

for creating a slider, calculating the current slider value, setting the new slider value upon 

external update, and updating the position of the slider regulator and the text above the 

slider regulator upon slider value change. SVGSliderImpl also implements the 

closestPoint() function, defined in the SVGUtils class, which is responsible for keep-

ing the slider regulator on path while dragging. Details on the implementation of the 

Draggable and closestPoint algorithm can be found in Chapter 5.5. 

In order to dynamically customise the Neural Network Playground’s UI size depending 

on the total number of nodes in the input and output layer, the AiNeuralNetworkModule 

adds a CSS class svgViewBoxNNModule and sets the size of the Playground’s HTML 

element to the svg bbox. Bbox is a minimum bounding box that can be drawn to include 

all elements inside the svg. Finally, AiNeuralNetworkModule initialises the instance of 

Player which implements functionalities to control the execution of the simulation. 

Once the Neural Network Playground is created and the simulation is running, which 

means that the stack program is executed and the player running state is set to true, the 

data of the input nodes is permanently actualised. The values of the output nodes are 
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updated respectively. On the dragmove event, that is, if the user moves the regulator of 

one of the links, the sliderValue is recalculated depending on the current position of 

the regulator on the path, and the corresponding output node’s value is updated. Then, 

the sliderValue property setter function that dispatches the sliderValueChanged 

event is called. The event listener implemented in the slider in the LinkUI receives the 

sliderValueChanged event and changes the thickness of the line. 

The processNeuralNetwork() function defines the robot’s behaviour depending on 

the value set for each output node. If the output node is a motor, the motor speed is set 

to the value given in the output node. If the output node is text, the text value of the 

output node is shown on the display of the LEGO EV3. If the output node is sound, the 

frequency based on value of the output node is played. If it is an LED, the LED of a robot 

is switched on or off depending on the value of the output node. 

5.4 Q-learning Playground 
Q-learning Playground is the extension that the author developed in order to foster the 

understanding of a novice of reinforcement learning, as described in Section 3.2.2. This 

section describes the author’s considerations for the design of the Q-learning Playground 

and presents the solution. It outlines the workflow that the user encounters, describes 

the user interface, and gives insight into the system design and the implementation de-

tails. 

 Considerations for Feature Design 
In terms of content, the Q-learning Playground is based on the methodological frame-

work defined in Section 4.1.3 and on considerations about the Q-learning algorithm pre-

sented in Section 3.2.2. This section gives insight into concrete technical design consid-

erations. 

In the course of the development of the Q-learning Playground, the author designed 

several mock-ups, some of which are shown in Figure 26. The graphic on the top left 

shows how the Q-learning algorithm can be configured via blocks. The user may dynam-

ically define the environment by defining the number of rooms that the robot can visit and 

setting the start and finish rooms. The user can also determine the policy by defining the 

possible directions of movement between rooms for the learning agent. For all rooms 

that are directly connected to the finish room, the agent should get a maximum reward. 

As shown in the mock-up, learning environments such as a soccer field can be used. 

After the user has configured the algorithm and compiled the program, the learning 

environment on the right should be dynamically created, and the robot should start 
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learning by moving from one room to another and actualising its Q-value matrix. While 

the robot learns, the user can observe the learning procedure. 

 

 

Figure 26: Mock-ups of the Q-learning Playground. 

Two pictures at the bottom of Figure 26 visualise an alternative to the soccer play-

ground. While the robot learns, it explores the environment, so that an increasing amount 

of the environment become visible. The aim of the learning procedure for the robot is to 

find the optimal path from start to finish in the created environment by calculating the 

highest Q-values on the way from start to finish. When the learning procedure is finished 

and the optimal path is calculated, the robot should drive this optimal path. 

In order to achieve the objectives, the author considered the following concrete design 

suggestions:  

1) In order to open the black box of Q-learning, the user should be given the ability 

to define all parameters of the algorithm: 𝛼, 𝛾, RHO, NU, number of episodes, and 

total amount of time. 

2) The user should be able to influence the learning environment structure by defin-

ing rooms through setting the walls and customising the start and finish via blocks. 
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This should foster beginners’ creativity and inspire their imagination, as indicated 

in Section 4.1.3. 

3) The transparency of the learning procedure should be provided by visualising how 

the robot learns. Insight into the learning procedure can be granted by animating 

the paths that the agent is visiting and highlighting the paths that have higher Q-

values.  

4) The result of the learning procedure should be visualised. For this, the optimal 

path from start to finish should be calculated based on the highest Q-values. The 

robot should be able to drive the optimal path. 

5) The visualisation of the learning procedure should be separated from using the 

robot’s knowledge in the simulation environment. This would help the beginners 

separate the learning process from the real world of the robot, in which it uses the 

knowledge gained. In order to realise this, the learning visualisation should take 

place in a separate window. The result – the optimal path – should then be trans-

ferred in the simulation, enabling the robot to drive the optimal path. 

6) The robot should be able to move in the simulation following the calculated optimal 

path. For this, a new GPS sensor should be implemented or other solution strat-

egies such as programming the line follower considered. 

7) To design the learning environment, the SVG format can be used. At the begin-

ning, the author evaluated several technologies that can be used for the visuali-

sation of the learning process. She decided to use the SVG format because it is 

scalable and editable in a simple way and because animations for learning pro-

gress visualisation are straightforward to implement. 

Based on these considerations, the author implemented the first prototype, as demon-

strated in Figure 27. For this, she designed first drafts of Q-learning blocks, designed the 

Mars landscape by adding the nodes which can be visited, and set the goal for the robot 

to find the best way from quadrants A to I.20 

 

20 As the technical implementation remains the same for the final solution, this procedure is discussed in 
Section 5.4.4. 
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Figure 27: First implemented prototype for experimenting with the Q-learning algorithm. 

While observing how the robot learns, the author encountered two problems and con-

sidered refinements for designing the final solution. 

1) The first issue concerned the visualisation of the learning procedure, shown in the 

bottom window in Figure 27. The author decided to visualise the learning proce-

dure by animating the route that was visited by moving the green line from the 

start to the finish node – as in the example from F to G. The Q-value of the road 

was visualised through the line thickness – the thicker the line, the higher the Q-

value and the more likely the robot is to choose this way at the end. However, with 

this solution, the users had no ability to look deeper into the learning process: 

They only saw the green line moving fast from one node to another. The lines 

gained in thickness over time. The user took up the role of a passive observer 

without having the ability to stop the algorithm and show what was happening at 

each step. 

These issues should be addressed in the final solution; transparency in the learn-

ing procedure can be fostered by providing the user with more possible ways to 

control the learning process step by step, for instance, by implementing the control 

unit to pause and slowly execute the algorithm. Instead of line thickness, the rep-

resentation of the Q-value can be realised with colour or additional icons such as 

stars. Visualisation of walls between the rooms should be improved. In the current 

solution from Figure 27, the walls are invisible; in the final solution, they may be 

visualised as rocks or stop signs. 
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2) Experience with the Mars landscape has shown that the learning environment 

does not necessarily have to consist of rooms – a quadrat matrix, as it is usually 

visualised, for instance, by Wieners (2014). For the Q-learning problem, any graph 

would be well suited, as shown by Xu et al. (2015), which opens more possibilities 

to design landscapes of several levels of difficulty. This point should be consid-

ered in the final design. 

 Workflow 
Taking into account the considerations outlined in Section 5.4.1, the workflow presented 

in Figure 28 was established.  

 

Figure 28: Workflow for starting the Q-learning Playground. 

The user first compounds the program, configuring the learning environment and the 

parameters of the Q-learning algorithm. He or she then opens the robot’s simulation and 

launches the Q-learning Playground. After pressing the “Start” button, the learning envi-

ronment is loaded with the dynamic content based on the program data entered by the 

user. The user can then observe the agent’s learning and debug the algorithm step by 

step. 

 User interface 
The final version of the Q-learning Playground visualises, aside from the learning pro-

cess, the parameters previously defined by the user in corresponding blocks. It also gives 

the user an opportunity to control the algorithm progress step by step. 

Three versions of the Q-learning environment were developed: “Railway”, “In the for-

est labyrinth”, and “In the city”. Figure 29 presents these. 
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Figure 29: Three environments in the Q-learning Playground. 

The environments have similar optics, with the same statistics and control panel 

above the map; the main distinction is the appearance of the map. Based on the number 

of nodes, the “Railway” is the easiest map, with only six nodes, “In the forest labyrinth” 

is a map of medium difficulty, with eight nodes, and “In the city” is the most difficult map, 

with twenty nodes. Visualisation of the Q-value also varies among the maps. Although 

the Q-value is visualised on every map in the statistic panel through stars – the higher 

the Q-value, the more stars the section receives – the “In the forest labyrinth” and “In the 

city” environments provide additional visual feedback. In the map “In the forest labyrinth”, 

the paths are initially hidden and are revealed slowly – the higher the Q-value, the more 

visible the path. In the map “In the city”, all streets are dirty first, and the higher the Q-

value, the cleaner the street becomes. 

Figure 30 represents the Q-learning Playground “Railway” in more detail. 
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Figure 30: Q-learning environment "Railway". 

At the top of the map, the user finds the dynamic statistic panel that changes sequen-

tially on every Q-learning step. In the middle, the statistic panel visualises how much 

time is left, the current episode, and the current start station. Then, the current decision 

of the agent is shown - either to find the way to the next station or to exploit the knowledge 

and take the best way. The end station and the Q-value of the current segment in the 

form of five stars complete the panel. The presentation of the Q-value is always relative 

depending on the highest Q-value in the current step. Figure 30 demonstrates exemplary 

how the Q-value of the current step changed in comparison to the experience from the 

previous time the agent was exploring this way – it grew on one star. 

The left side of the statistics panel displays the start and finish nodes, and the right 

side of the panel displays the current optimal path based on the segments with the high-

est Q-values on the way from the start to the finish node. 

The control panel is located below the statistic panel. It enables the user to control 

the execution of the Q-learning algorithm. The user may stop, pause, and play the Q-

learning algorithm at three distinct speeds: normal speed, twice as fast, and three times 

as fast. By pressing the second button on the left, the user also has an opportunity to 

execute the Q-learning algorithm step by step. 
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The nodes on the map have three states: not visited (red), visited (green), and cur-

rently active (blue). If the user has set obstacles in the program, they are drawn dynam-

ically between the two nodes. In the map presented in Figure 30, one obstacle is set: 

between the second and the third node. 

The current active segment between two nodes is animated: the active nodes are 

highlighted and the active segment from the start to the finish station is dynamically 

drawn as a yellow dashed line. 

 System Architecture and Selected Implementation Details 
This section presents the system architecture of the Q-learning Playground and outlines 

the implementation details. The reader should note that only the most important imple-

mentation details are presented. 

 The Q-learning Playground operates completely client-side within a web browser and 

is written in TypeScript. It is designed according the object-oriented approach and has a 

module structure which orients on the model–view–controller design pattern and leads 

to the separation of the user interface, the data models, and the underlying functionalities 

(Osmani, 2012). In order to guarantee the encapsulation, the event listener/dispatcher 

pattern is implemented for the data exchange. It uses the SVG format to design the user 

interface and the SVG.js library to manipulate objects on the Playground. The CSS tech-

nology is used, for instance, to design the elements of the control panel such as Q-value 

stars or to manage the change of colours in nodes. Furthermore, the Q-learning Play-

ground uses the async execution concept in order to implement workflows in a non-

blocking way. 

Generation of the Q-learning Problem 

Before the author presents the classes and the implementation details, the reader should 

note the procedure for the preparation of the learning environments introduced in Section 

5.4.3. It is vital for the reader to understand this process, because it outlines the basics 

for creating the Q-learning problem. 

In order to create the Q-learning problem dynamically from the learning environment, 

the appropriate SVG files were prepared by the author. While designing the environ-

ments graphically in Adobe Illustrator (Adobe, 2020b), the author drew invisible paths in 

places in which an action between one node and another was possible. For instance, on 

the map shown in Figure 30, the author drew invisible paths on the railway between the 

following nodes: 0–1, 1–0, 1–2, 2–1, 2–3, 3–2, 3–5, 5–3, 3–4, 4–3, 4–5, 5–4, 5–0, and 

0–5. Every single path was named according the schema path-startnode-finish-

node, for example, path-0-1 for the first path. Adobe Illustrator added this name as the 
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id attribute to the respective path. While implementing the Q-learning algorithm, the ids 

fitting to the x-path expression [id^="path-"] were filtered out and pre-processed to 

dynamically create a list of possible actions and states. The code snippet in Figure 31 

outlines the function responsible for this. 

 

Figure 31: Code snippet showing the creation of problem actions by parsing the path ids extracted from 
the SVG element. 

With this, the author had everything needed to generate the Q-learning problem. 

Overview over the Classes Implemented 

The Q-learning Playground is realised within the QLearningAlgorithmModule created 

in the interpreter.robotMbedBehaviour.js as soon as the Q-learning block for de-

fining the Q-learning environment is used in a Blockly program. 

The following classes were implemented: 

- QlearningAlgorithmModule acts as an interface between the Open Roberta Lab 

simulation and the Q-learning Playground extension. 

- ReinforcementProblem defines the Q-learning problem, including the functionalities 

to access the states and execute actions. 

- QValueStore implements functionalities to store, query, and update the values in the 

Q-table. It also includes the functions for the creation of the optimal path. 

- QLearningAlgorithm implements the Q-learning algorithm. 

 
public getActions(): Array<Action> { 
    let listOfPaths: Array<Action> = new Array<Action>(); 
 
    let allPaths: List<Element> = this._svg.find('[id^="path-"]'); 
    allPaths.each(function (item) { 
        let idName: string = item.attr("id"); 
        let tokens: string[] = idName.split("-"); 
        listOfPaths.push({ 
            startState: { 
                id: parseInt(tokens[1]) 
            }, 
            finishState: { 
                id: parseInt(tokens[2]) 
            } 
        }); 
    }); 
    return listOfPaths; 
} 
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- qValueLookup implements the qValue interface and is a helper class to cache the 

section’s previous Q-value. 

- Key is a helper class for the qValueLookup class. Its aim is to generate a unique key 

consisting of a source and a target state for a section. 

- Visualizer implements the visualisation of the Q-learning process. It takes actions 

from the user and dispatches events for further processing. It also implements the 

ProblemSource interface, because the visualizer can provide states and actions of 

a Q-learning problem based on paths of the SVG element stored in a visualizer, as 

shown in Figure 31. 

- Svglookup is a class helping reduce performance when searching the element in the 

corresponding document for a section by mapping the path SVG element to its sec-

tion key. 

- PlayerImpl implements the Player model. 

- TimerImpl implements the Timer model. 

- RlUtils implements the helping function for generating the rewards and problem. 

- Utils implements various help functions, for instance, for different convert and nor-

malise functions. 

- HyperparameterTuning is a test class implementing the execution of the Q-learning 

algorithm without user interface in order to test the Q-learning algorithm using all 

possible parameter combinations. The test input values are created by permutating 

all possible parameter values for each test run. 

To provide type safety, anonymous objects were avoided by defining interfaces such 

as QLearningStep, ProblemState, and ProblemState. 

Architecture of the QLearningAlgorithmModule 

As soon as the Q-learning block for defining the Q-learning environment is used in a 

program, it undergoes the lifecycle described in Section 5.2.3. In the sixth step of the 

lifecycle, the stack machine interpreter processes the CREATE_Q_LEARNING_ENVIRON-

MENT, operation which calls the createQLearningEnvironment() function defined in 

interpreter.robotMbedBehaviour.js. The qLearningAlgorithmModule is then ini-

tialised. 

Serving as the interface to the qLearnigModule, robotMbedBehaviour defines three 

further methods that correspond to the Q-learning blocks described in Section 5.2.2: 

setUpQLearningBehaviour(), runQLearner(), and drawOptimalPath().  



5 Machine Learning Extensions: System Design and Implementation   70 
 

 

Figure 32 demonstrates the interface between robotMbedBehaviour and qLearn-

ingModule. It also gives insights into the main components of the qLearnigModule and 

their interdependencies. 

 

Figure 32: Main components of the qLearningModule (simplified presentation). 

  In order to understand how exactly the components interact with each other, the 

author designed a sequence diagram of the Q-learning Playground presented in Figure 

34. The notation of the diagram is based on Balzert (2011). The reader should note that 

the author simplified the sequence diagram for clarity purposes: loops are omitted or an 

alternative presentation chosen, and the event listener/event dispatcher concept as well 

as functions parameters are only depicted if they contribute to understanding. The dia-

gram shows only calls of the most vital local functions necessary to understand the pro-

cess. 

The instance of the QLearningAlgorithmModule is created in the interpreter.ro-

botMbedBehaviour.js as soon as the Q-learning block for defining the Q-learning en-

vironment is used. Depending on the map selected by the user, the function create-

QLearningEnvironment() loads one of three maps, previously prepared in SVG format 

by the author. Then, the QLearningAlgorithmModule is initialised. To avoid blocking 

code, the Q-learning environment is created asynchronously using the implementation 

of the promise concept. 

During the creation of the Q-learning environment, qLearningModule instantiates the 

visualizer, which creates svglookup and qValueLookup objects. They serve as cach-

ing mechanism in order to optimise performance at runtime. Then, the qLearningModule 

qLearningModule

robotMbedBehaviour

visualizerproblem

qLearner player

timer

Webbrowser
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converts the obstacles defined by the user in his or her program to notAllowedActions. 

The path-ids are converted to actions as described at the beginning of this chapter. Sub-

sequently, not allowed actions are filtered out from all the possible actions and the matrix 

of all possible states and actions holding rewards as the matrix values is created. The 

qLearningModule initialises the Q-learning problem with previously defined 

statesAndActions. With this, the processing of the Q-learning environment block fin-

ishes. 

If the user used the block to set up the learning behaviour and the block that starts 

the learning process, the processing continues. An instance of the QLearningAlgorithm 

is created based on the already defined problem and 𝛼, 𝛾, RHO, and NU values. The 

qLearningModule subsequently starts the learning process until the episodes are used 

up and the learning is finished. The data of every qLearnerStep as shown in Figure 33 

is stored along with the corresponding optimal path in an array named qLearningSteps. 

With this, the data for all steps is already given before the user is presented with a graph-

ical visualisation of the learning process. 

 

Figure 33: Code snippet showing the structure of the data stored after each qLearnerStep. 

Then, the qLearningModule initialises the player as an instance of the PlayerImpl 

class, which in turn initialises the timer as an instance of TimerImpl class. Upon initial-

isation, the player passes the initial values such as the start and finish node, total 

amount of time, and number of episodes to the visualizer for visualisation of these 

values in the Q-learning Playground. The player registers itself to the visualizer as 

the event listener in order to be notified if the visualizer dispatches events (play-

erStrated, playerStopped, playerPaused, playerStartedForOneStep) that come 

from the user interaction with the control bar on the Q-learning Playground. When the 

player receives events from the visualizer, it delegates them to the timer; this pro-

cess is omitted in the sequence diagram for clarity purposes. While timer is running, the 

 
let qLearningStep: QLearningStep = { 
    newState: newState, 
    nu: nu, 
    qValueNew: qValueNew, 
    qValueOld: qValueOld, 
    rho: rho, 
    state: state, 
    duration: duration, 
    stepNumber: this.stepNumber, 
    highestQValue: this.qValueStore.highestQValue 
} 
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visualizer visualises all entries from the qLearningSteps array, one entry each timer 

tick. 

If the program that the user compounded contains the draw optimal path block, the 

drawOptimalPath() function is called. In this function, the qLearningModule creates a 

binding to the timer’s stop event, and as soon as the stop event occurs, the function 

drawOptimalFinalPath() is executed. This function draws the optimal path as a white–

black line on the Playground. After the line drawing process is completed, the SVG file 

containing the drawn optimal path is transmitted to the scene and put as the scene back-

ground. The robot is set on the start of the optimal path, and if the user added the block 

to drive the optimal path, then the robots starts moving. 

 



5 Machine Learning Extensions: System Design and Implementation   73 
 

 

qL
ea

rn
in

gM
od

ul
e

:Q
Le

ar
ni

ng
Al

go
rit

hm
M

od
ul

e

ne
w

cr
ea

te
Q

Le
ar

ni
ng

En
vi

ro
nm

en
t

(o
bs

ta
cl

es
Li

st
, s

ta
rtN

od
e,

fin
is

hN
od

e)

qL
ea

rn
in

gM
od

ul
e

vi
su

al
iz

er
:V

is
ua

liz
er

cr
ea

te
Vi

su
al

iz
er

()
co

ns
tru

ct
or

vi
su

al
iz

er
Pr

om
is

e

:U
tils

co
nv

er
tO

bs
ta

cl
eL

is
tT

oA
ct

io
nL

is
t(o

bs
ta

cl
es

Li
st

)
co

nv
er

tO
bs

ta
cl

eL
is

tT
oA

ct
io

nL
is

t( n
ot

Al
lo

w
ed

Ac
tio

ns
)

co
nv

er
tS

ta
rtF

in
is

hN
od

eT
oA

ct
io

n 
(s

ta
rtN

od
e,

 fi
ni

sh
N

od
e)

co
nv

er
tS

ta
rtF

in
is

hN
od

eT
oA

ct
io

n(
st

ar
tF

in
is

hS
ta

te
s)

ge
tA

ct
io

ns
()

al
lA

ct
io

ns

filt
er

O
ut

N
ot

Al
lo

w
ed

Ac
tio

ns
(a

llA
ct

io
ns

, n
ot

Al
lo

w
ed

Ac
tio

ns
)

filt
er

O
ut

N
ot

Al
lo

w
ed

Ac
tio

ns
( fi

lte
re

d)

:R
LU

tils

ge
ne

ra
te

R
ew

ar
ds

An
dP

ro
bl

em
(a

llA
ct

io
ns

, s
ta

rtF
in

is
hS

ta
te

s)

ge
ne

ra
te

R
ew

ar
ds

An
dP

ro
bl

em
(s

ta
te

sA
nd

Ac
tio

ns
)

pr
ob

le
m

:R
ei

nf
or

ce
m

en
tP

ro
bl

em

ne
w

(s
ta

te
sA

nd
Ac

tio
ns

)

:ro
bo

tM
be

dB
eh

av
io

ur

se
tU

pQ
Le

ar
ni

ng
Be

ha
vi

ou
r

(a
lp

ha
, g

am
m

a,
 n

u,
 rh

o)
ru

nQ
Le

ar
ne

r(e
pi

so
de

s,
 ti

m
e)

qL
ea

rn
er

:Q
Le

ar
ni

ng
Al

go
rit

hm

ne
w

(p
ro

bl
em

,a
lp

ha
, g

am
m

a,
 rh

o,
 n

u)

qL
ea

rn
er

fo
r e

ac
h

ep
is

od
e

pl
ay

er
:P

la
ye

rIm
pl

ne
w

(q
Le

ar
ni

ng
St

ep
s,

 to
ta

lT
im

e,
 e

pi
so

de
s,

 s
ta

rtF
in

is
hS

ta
te

s)
pl

ay
er

in
itia

liz
e(

vi
zu

al
iz

er
)

tim
er

:T
im

er
Im

pl

ne
w tim

er
ad

dE
ve

nt
Li

st
en

er
()

se
tIn

itia
lV

al
ue

sO
nM

ap
(s

ta
rtS

ta
te

.id
, f

in
is

hS
ta

te
.id

, t
ot

al
Ti

m
e,

qL
ea

rn
in

gS
te

ps
.le

ng
th

)
ad

dE
ve

nt
Li

st
en

er
(p

la
ye

rS
ta

rte
d)

, p
la

ye
rS

to
pp

ed
, p

la
ye

rP
au

se
d,

 p
la

ye
rS

ta
rte

dF
or

O
ne

St
ep

dr
aw

O
pt

im
al

Pa
th

()

sv
gl

oo
ku

p
:S

vg
lo

ok
up

ne
w

sv
gl

oo
ku

p

qV
al

ue
Lo

ok
up

:q
Va

lu
eL

oo
ku

p

ne
w

qV
al

ue
Lo

ok
up qL

ea
rn

er
St

ep
()

fin
dO

pt
im

al
Pa

th

ad
dE

ve
nt

Li
st

en
er

(s
to

p)

dr
aw

Fi
na

l
O

pt
im

al
Pa

th
()

up
da

te
Ba

ck
gr

ou
nd

()

:S
ce

ne

on
Ti

m
er

Ti
ck

()

pr
ob

le
m

fin
dO

pt
im

al
Pa

th
(o

pt
im

al
Pa

th
)

qL
ea

rn
er

St
ep

(q
Le

ar
ne

rS
te

pD
at

a)

qL
ea

rn
er

St
ep

s

on
Q

Le
ar

ni
ng

St
ep

( n
ew

Q
le

ar
ne

rS
te

p,
 c

ur
re

nt
Ti

m
e,

 e
xe

cu
tio

nD
ur

at
io

n)

di
sp

at
ch

Ev
en

t(s
to

p)

Figure 34: Simplified sequence diagram of the Q-learning Playground. 
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5.5 Technical Challenges 
This section presents some reflections on the development process, selected technical 

difficulties, and solutions to these. 

Initially, the author invested much time into understanding the concepts used in the 

source code of Open Roberta Lab, such as the API between front-end and back-end or 

visitor pattern for individual workflow workers. Although the wiki for the Open Roberta 

Lab project on GitHub platform offers some information on Blocky and the system archi-

tecture, overall, the documentation is patchy. With very few exceptions, neither the in-

ternal structure of the project source code nor the general concepts are documented. 

The source code documentation such as JavaDoc is missing. The only way for the author 

to get familiar with the source code and to be able to extend it was to explore it for herself, 

which was very time-consuming. 

While defining new blocks as briefly described in Section 5.2.3, the author had to deal 

with the generation of Blockly blocks using the python script provided by the Blockly 

project in Open Roberta Lab. Although the script worked stably over the entire period of 

the research, the generator script execution aborted with an error one week before the 

user study. After very time-consuming research conducted after the error, the author 

found that the error occurred because the executed python script used the online com-

piler of the closure library (Google Developers, 2020b), which no longer supported the 

older closure library source code used by the Blockly project in Open Roberta Lab. The 

author solved this problem by manually adding changes to the last successfully gener-

ated source code file, which is not an optimal solution if the Playgrounds will be devel-

oped further in the future. 

One of the most time-consuming tasks while implementing the Neural Network and 

the Q-learning Playgrounds was the proper binding of the SVG.js and react.js libraries 

considered for use for the Playground’s implementation. Based on considerations out-

lined in Sections 5.3.4 and 5.4.4, the author used TypeScript and developed her code in 

JetBrains IDEs with native support from the node package manager (npm; npm (2020) 

to manage the TypeScript sources. However, in order to integrate the author’s imple-

mentations into the Open Roberta Lab project, the RequireJS (require.js, 2020) frame-

work as the JavaScript module loader was required. The porting of sources provided by 

the npm to the RequireJS framework was a demanding task: The author had to manually 

search for automatically downloaded library sources and then copy them manually inside 

the Open Roberta Lab project. The dependency declarations within the JavaScript 

sources compiled by the TypeScript compiler also needed to be adapted manually. 
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One of the most challenging implementations was the visualisation of the neural net-

work link. To achieve the functionality described in the third and fifth considerations in 

Section 5.3.1 and 5.3.4, the link should be implemented as a slider showing the current 

value of the link weight and allowing the user to change the weight value by moving the 

slider regulator back and forth. During the implementation, the author encountered mul-

tiple issues. In the following, two of them are presented: 

1) As JavaScript does not provide the native implementation of a drag-and-drop fea-

ture and the usage of external libraries was challenging and should be minimised, 

as mentioned in Section 5.3.15.3.4, the author had to implement this feature for 

the link slider herself, which was challenging. The author encountered problems 

in which the slider regulator did not move properly, with the user having to position 

the mouse exactly in the middle of the regulator in order to move it. To solve this 

problem, the author implemented a class Draggable. As outlined in Section 5.3.4, 

the AiNeuralNetworkUI object contains an instance of the class Draggable in 

which each LinkUI instance is registered. The Draggable fires on the mousedown, 

mousemove, and mouseup events the dragstart, dragmove and dragend events, 

respectively, with the corresponding LinkUI instance as the event source. In the 

first implementation, the drop action was not fired consistently, because the 

mouseup event was only fired if the mouse was inside the regulator. To ensure the 

proper functionality and to get the mouseup event in any case, the Draggable 

instance had to listen the mouseup event globally. Therefore, its mouseup events 

listener was expanded from the regulator element to the root document instance. 

2) The next challenge was to keep the regulator while dragging at the correct position 

on the slider element to which it belongs. In order to find out the best matching 

point on the path depending on the mouse position, the author implemented the 

closest point algorithm. This algorithm distributes points on the path at equal dis-

tances and identifies the one with the shortest distance to the current mouse po-

sition as the result. 

Another issue concerned the entire user interface of the Neural Network Playground. 

As the user can program the neural network to contain many nodes within one layer, the 

Neural Network Playground UI component can grow vertically. For this, the author con-

sidered either scaling the entire UI component to fit the screen dimensions or providing 

scroll options. The author decided to provide the scroll option, because only the vertical 

direction is affected. However, the issue of how to deal with the neural networks that are 

much larger than the screen remains, because the scaling will make the components 

small and therefore unsuitable for children. 
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While implementing the Q-learning Playground, the author encountered several diffi-

culties. 

1) Previously in this chapter, the author described difficulties importing the sources 

provided by the npm into the RequireJS framework used by Open Roberta Lab. 

This issue tremendously affected the choice of technologies used in the devel-

opment of the Q-learning Playground. To provide performance implementation of 

the Q-learning Playground, the author considered using the react.js framework 

(react.js, 2020b) instead of the SVG.js library. The learning environment realised 

in the SVG format could be processed by the JSX (react.js, 2020a) parser offered 

by the ReactJS library. However, it turned out that the ReactJS library including 

JSX sources cannot be integrated into the RequireJS framework with reasonable 

effort. Thus, the author had to abandon the intention to use react.js in the Q-

learning Playground implementation and proceed with the usage of the SVG.js 

library. 

2) As described in Section 5.4.4, the simulated robot drives the optimal path com-

puted by the Q-learning algorithm. In order to provide the correct behaviour, the 

robot must be positioned at the correct 𝑥, 𝑦 coordinates and rotated to the correct 

orientation (Θ angle based on east-orientation). The calculation of the Θ angle 

implied trigonometrical calculations, which turned out to be a challenging task: In 

some cases, the robot was given the orientation mismatch of 180 degrees. The 

solution was to add π in certain ranges, depending on the start orientation of the 

optimal path. 

3) After the implementation of the Q-learning Playground, the author conducted the 

manual tests via UI in order to gain the information of how the single parameters 

influence the optimal path. However, the test did not show any clear results. 

Therefore, the author decided to develop parameter tuning tests, which could be 

executed automatically by permutating all possible parameter values without UI. 

The test data was saved and analysed. The author found that the 𝛼 and 𝛾 pa-

rameters have no clear effect on the results individually, but an effect of the pa-

rameters in combination with each other is clear. Indeed, both parameters seem 

to compensate for each other. 

5.6 Summary 
In this chapter, the author outlined how she addressed the limits of existing approaches 

to introducing machine learning for novice identified in Section 2.4. To this end, she pre-

sented solutions that she has developed for Open Roberta Lab, thereby partially 
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answering the second research question of how the approaches proposed in Sections 

3.1.2 and 3.2.2 can be concretely implemented in Open Roberta Lab. 

In order to enable the reader to follow the additions the author made to Open Roberta 

Lab, she demonstrated how the Open Roberta Lab project is structured. The author then 

described the main workflows relevant to the simulation environment of the LEGO EV3 

robot, which she extended with new blocks and machine learning features. 

The author presented 16 new command blocks that she defined and implemented in 

Open Roberta Lab. With these blocks, students can create simple neural networks and 

applications based on the Q-learning algorithm. In order to help the reader understand 

how the blocks are implemented in the ecosystem of the Open Roberta Lab project, the 

author described implementation details using the example of the ai_neural_network 

block. 

The author then introduced her major developments: The Neural Network Play-

ground, which enables students to tinker with neural networks and supervised learning, 

and the Q-learning Playground, which allows students to experiment with the Q-learning 

algorithm. For both the Neural Network Playground and Q-learning Playground, she out-

lined what technical considerations underlying these features. She then demonstrated 

the user interface for each and presented an overview of the new classes. With the help 

of the sequence diagram for each feature, the author clarified her implementations in 

detail. 

Finally, the author presented the reflections on the development process. She pre-

sented selected technical challenges in the implementation of the Neural Network Play-

ground, especially the implementation of the visualisation of a link. Then, she outlined 

the difficulties in implementing the Q-learning Playground, including the integration of 

external libraries, the calculation of the robot position and testing of all possible param-

eter combinations of Q-learning algorithm, in order to understand, how single parameters 

influence the optimal path. 

 



 

 

6 Conception of the Machine Learning Materials 

Based on the design guidelines in Section 4.1, the author developed a series of teaching 

and learning materials to accompany the machine learning extensions presented in 

Chapter 5 to help both educators and children grasp the machine learning paradigms 

that underly the extensions.  

In total, the author designed a machine learning curriculum which serves as a guide-

line for teachers, a set of the Neural Network Cards for the introduction to the Neural 

Network Playground and the topic of supervised learning, and a set of worksheets and 

learning cards for the Q-learning Playground to introduce students to the topics of rein-

forcement learning. An unplugged activity to introduce unsupervised learning with the k-

means algorithm closes the series. 

Although the Neural Network Cards and Q-learning Cards are structed activities which 

help the young students get started, the aim was for them to serve as a steppingstone, 

not a final destination. The materials should enable the participants to play with machine 

learning technologies and make something that interests them, in accordance with the 

ideas of constructionism (Michaeli et al., 2020; Papert & Harel, 1991; Queiroz et al., 

2020). 

This chapter introduces the materials which the reader finds in their original size in 

Appendices A.6 and A.7. It should be noted, that the materials were developed in Ger-

man, as they are to be used with German-speaking children. For the graphic design of 

the materials, the author took inspiration from explanations of machine learning topics in 

children’s books, as described in Section 4.1.3 and based on Castella (2018) and the 

D4CR Association (2020).  

6.1 Machine Learning Curriculum 
A machine learning curriculum consists of a lesson plan based on four modules and a 

presentation. The lesson plan, which is attached to Appendix A.4, is tailored to six school 

lessons of 45 minutes, from which the teacher can shorten or widen it if required. The 

aim of the machine learning curriculum is formulated as follows (Appendix A.4): 

Students investigate how robots learn, think, and feel. They investigate what is 

meant by the term “artificial intelligence (AI)” and learn about three main areas of 

AI – supervised, unsupervised, and reinforcing learning – in a practical way. They 

explore when people describe a machine as intelligent and strengthen their newly 

acquired knowledge by dealing with the development and configuration of simple, 

descriptive AI applications in Open Roberta Lab. 
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Module 1 “How does your robot learn?” – Introduction to Artificial Intelligence and 
Machine Learning 

The lesson starts with getting to know each other and a discussion in plenum. The 

teacher questions the students about the how the machines learn: “Do the machines 

learn at all?”; “If you have already written a program, does that mean that the com-

puter/your robot has become smarter?” 

After the discussion, the teacher performs a Braitenberg experiment using a Calli:bot 

robot as described in Section 3.1.2 and asks the children again “Is this behaviour of the 

robot intelligent?” After the discussion, the teacher holds a short input lecture introducing 

artificial intelligence and machine learning. The teacher pays particular attention to illus-

trating the topic with examples that have a connection to the children’s everyday lives. 

He or she then briefly introduces the three areas of machine learning – supervised, un-

supervised, and reinforcement learning – and starts deepening the supervised learning 

topic. 

Module 2 “Teaching your robot” – Introduction to Supervised Learning and Neural 
Networks 

The educator explains that in order to teach the robot something, the children have to 

train its neural network. He or she then explains what the neural networks are and how 

they can be trained. For this, the educator can use examples provided in the presentation 

(Appendix A.5). Figure 35 shows one such example. 

     

Figure 35: Simple illustration showing the basic functionality of the neural network on the AI-robot. 

In Figure 35, the author reduced a neural network to the essentials – an input neuron, 

a link, and an output neuron. The idea is to show the causal relationship of how the input 

neuron influences the output neuron by moving the regulator back and forth. The robot 

in Figure 35 is placed on the green surface, and its colour sensor recognises the green 

colour. However, as shown in the left-hand illustration, the LED does not light up. The 

reason for this is that the value of the link is 0. If the regulator is moved to the right, as 
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shown in the right-hand illustration, the value of the link changes to 1 and the LED lights 

up. 

After this brief introduction, the students are supposed to take up the role of teacher 

for the simulated robot. The children receive the Neural Network Cards and can work 

with them alone or in groups. The teacher goes around and helps where necessary. 

Module 3 “Let your robot learn from experience” – Introduction to Reinforcement 
Learning 

After the lunch break, the children are introduced to reinforcement learning. In order to 

maximally retain students’ attention, they are asked to keep their laptops closed during 

the introduction, as it is crucial for them to understand how the Q-learning algorithm 

works and what the task is before beginning to program the Q-learning algorithm. The 

teacher distributes the information and worksheets and lets the children read them. Be-

fore the children open their laptops, the teacher conducts the first trial in plenary, so the 

children have an example of how to document the first experiment in the Q-learning Card. 

The teacher may use the slide from Figure 36 for this. The description of the exercise 

can be found in Section 6.3. 

 

Figure 36: Slide that explains filling out the Q-learning card. 

 The children then have time to play with the parameters of the algorithm on the Q-

learning Playground and to conduct the experiments. The results are discussed after the 

children have finished the trials. 

Module 4 “Can robots learn autonomously?” – Introduction to Unsupervised 
Learning 

In the last 40 minutes, the teacher introduces clustering and the k-means algorithm, 

showing an experiment and letting the children actively take part. The curriculum also 
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includes links to further instructional materials. If time remains, the teacher can use ex-

ternal instructional materials to further explore machine learning topics.  

6.2 The Neural Network Cards 
While designing the learning materials accompanying the Neural Network Playground, 

special attention was paid to the high consistency among the Neural Network Play-

ground, learning materials and the teacher’s presentation, so that the children can easily 

recall and transfer their knowledge. 

Following the constructionistic ideas for designing the task as a problem-solving ac-

tivity (Kandlhofer et al., 2016), the author developed a set of nine double-sided learning 

cards in the DIN-A5 format. Figure 37 shows an overview of the result. The complete set 

showing the Neural Network Cards from their front and back side is attached in their 

original size to Appendix A.6. 

 

Figure 37: Overview on the Neural Network Cards (front sides only). 

The cards are designed in comic style, for as Castella (2018) points out, characters 

and stories in comic style give kids a starting point for their imagination and motivate 

them to be creative. This is noticeable in the colours, selected fonts, and character de-

signs. The colours are bright, optimistic, and playful: The background varies from soft 

white to mellow beige, and block colours are cosy and warm, yet vibrant. Adding the 

hand drawn illustrations and sketching the neural networks as shown, for example, in 

Motor B

Speaker
gibt Töne aus

Bildschirm
zeigt Text

Ultraschalsensor 2
misst Abstand vorne links

Ultraschalsensor 3
misst Abstand vorne rechts

Farbsensor 1
kann Farben und Licht messenLED Lampe

leuchtet grün, orange
und rot

Motor C

Hallo

DDDDDeeeeeinnnnn KKKKKII---RRRRRoobbbboottteerrrr
© Viktoriya Olari | Juli 2020 | Aufwachsen mit Künstlicher Intelligenz

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

CCCCCCChhhhhhaaaaaammmmmmmmeeeellleeeeoooonnn
Auch Roboter können lernen, sich der Umgebung anzupassen

Bringe das deinem Roboter bei! Schiebst du deinen Roboter auf
das grüne Blatt, soll seine LED-Lampe grün aufleuchten.

Du brauchst:

Mein neues Outfit passt
ganz gut zu den Blöcken

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

IInnnnnnnnkkkkkkkooooooggggggggnnnnniiittttttoooo
Lass deinen Roboter nicht erwischen!

Bringe dem Roboter bei, helle Orte zu meiden. Je heller die
Umgebung, desto schneller muss dein Roboter fahren.

Du brauchst:

0 bedeutet beim Lichtsensor 

sehr dunkel und 100

 sehr hell.

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

VVVooorrsiiiccchhtttiiigggkkeeeiittttt
Bringe deinem Roboter die Verkehrsregeln bei

Auf “Grün” darf der Roboter mit voller Geschwindigkeit fahren,
auf “Gelb” soll er langsamer werden und auf “Rot” muss er stehen
bleiben.

Neue Blöcke, die du brauchst:

+ die Blöcke, die du schon kennst:

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

LLLaauuutttteeerr AAAbbbbssttttaaannnnd
Lass den Roboter den Abstand zum Hindernis laut messen

Bringe dem dem Roboter bei, dass je näher er zu einem Hindernis
ist, desto tiefer soll der Ton sein, den er ausgibt.

Neue Blöcke, die du brauchst:

+ die Blöcke, die du schon kennst:

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Frreeeeunnndddsscccchhhhhhhhaaaaaaffffftttt
Auch Roboter können freundlich sein

Bringe deinem Roboter bei, sich freundlich zu verhalten!
Sobald der Roboter ein Objekt in seiner Umgebung erkennt, soll er
dem Objekt näherkommen.

Freunde!

Du brauchst: 

2x

+ die Blöcke, die du schon kennst:

- für Port 2 und für Port 3

- für Port B und für Port C2x

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

AAAAnnnnggggggssstttttt
Lass deinen Roboter «Angst» vor Hindernissen haben

Bringe deinem Roboter bei, den Hindernissen auszuweichen.
Sobald der Roboter ein Objekt in seiner Umgebung erkennt, soll er 
von diesem Objekt fliehen.

Du brauchst: 

2x

+ die Blöcke, die du schon kennst:

- für Port 2 und für Port 3

- für Port B und für Port C2x
Ein Roboter 

muss auf 

verschiedene 

Situationen 

vorbereitet 

sein!

© Viktoriya Olari | Juli 2020 | Aufwachsen mit Künstlicher Intelligenz

IIIInnnnntttttteeerrrrrreeeesssssseee
Lass deinen Roboter die Landschaft explorieren!

Bringe deinem Roboter bei, korrekte Begri!e zu den Gegenständen zu
zeigen. Fährt er auf “Grün” - sollt der Text “Wiese” angezeigt werden.
Fährt er auf die Farbe “Gelb” - soll er das Wort “Sand” anzeigen. Bei der 
Farbe “Blau” - soll der Text “Wasser” ausgeben.

hier wird 
das Ergebniss 
ausgegebenNeue Blöcke, die du brauchst:

Wiese

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

RRRRRRRRRRRRRRRRRaaaaaaaaaaaaaallllllllllyyyyyyyy
Lass deinen Roboter selbständig die farbigen Kurven meistern!

Auf Grün dreht sich der linke Motor langsamer als der rechte,
bei Rot dreht sich der rechte Motor langsamer als der linke,
bei Blau drehen sich die Motoren gleich schnell.

Neue Blöcke, die du brauchst:

Wusstest du, dass diese Farben

zusammen die Farbe “weiß” ergeben?
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Figure 38, evokes whimsical humour and emotions. Following the storytelling approach, 

the tasks and hints in the learning cards are problem based and written as short stories 

in order to be appealing to the student. 

The cards adapt the principle of “low floors and wide walls” introduced in Section 4.1.3 

by enabling the student to start in a straightforward manner. However, the level of diffi-

culty increases with each card. With the first learning card, which is introductory, the child 

meets the central figures of the learning cards: the AI robot and its helping friend – a 

robot that is always there to lighten the atmosphere and give hints. On the front page, 

the AI robot presents itself and its current setup. On the back, the helping friend refers 

to the configurations of Open Roberta Lab, which are necessary for the further work with 

the learning cards. 

 Eight subsequent cards each deal with one topic. Table 3 gives an overview of the 

structure of the learning cards and the variety of input and output neurons used in each 

card. 

Table 3: Overview of the structure of the learning cards and the corresponding input and output nodes. 

Learning Card Input  Output  

Chameleon 1 x colour, colour sensor 1 x LED 

Incognito 1 x light, colour sensor 2 x Motor 

Caution 3 x colour, colour sensor 2 x Motor 

Loud Distance 1 x distance, ultrasonic sensor 1 x Sound 

Friendship 2 x distance, ultrasonic sensor 2 x Motor 

Fear 2 x distance, ultrasonic sensor 2 x Motor 

Interest 3 x colour, colour sensor 3 x Text 

Rally 

1 x R channel, colour sensor 

1 x G channel, colour sensor 

1 x B channel, colour sensor 

2 x Motor 

 

Each card is similarly structured. Figure 38 shows the front and back of the Neural 

Network Card “Friendship”. 
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Figure 38: Front and back side of the Neural Network Card "Friendship". 

 On the front, the student finds a simple task description and a quick preview of the 

desired behaviour. For instance, in the learning card “Friendship”, the robot should move 

towards the blue square. The front side also contains the blocks that the student should 

use to fulfil the task, with their number decreasing on every next learning card in order 

to achieve increasing difficulty. The back of the card presents the solution – the final 

program and the correctly configured neural network, supported by a short comment. 

The back side of some cards contains additional tasks.  

6.3 The Q-learning Cards and Supporting Worksheets  
The Q-learning Playground is accompanied by a series of learning materials, including 

information sheets and worksheets. If the children work each for themselves or have 

questions, they can consult the information sheets. Worksheets help them get started 

with the Q-learning Playground and provide them with a straightforward structure for 

conducting the first experiments. 

The aim of instructional materials is to support students understanding of how the Q-

learning algorithm works by making it comprehensible and tangible. The instructions and 

problem-based tasks help students to gain the practical understanding that changing the 

parameters of the algorithm influences the learning environment and learning behaviour 

of the robot. With this, the students also gain theoretical knowledge of the functioning of 

the algorithm and understand what the optimal path is and on which criteria it is drawn. 

While playing with the algorithm and observing and evaluating the learning procedure, 

the students put themselves in the agent’s shoes. They immerse themselves in the be-

haviour of the simulated robot, and in doing so, they gain insights and look behind the 

scenes. They discover how the robots are trainable and that they are not perfect. 

The information in worksheets has been formulated as short stories whenever possi-

ble and was adapted with young students in mind. The tasks are based on the problem-

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz 

Auch Roboter können freundlich sein

Bringe deinem Roboter bei, sich freundlich zu verhalten!
Sobald der Roboter ein Objekt in seiner Umgebung erkennt, soll er
dem Objekt näherkommen.

Freunde!

Du brauchst: 

2x

+ die Blöcke, die du schon kennst:

- für Port 2 und für Port 3

- für Port B und für Port C2x

Lösung

Damit dein Roboter sich freundlich 
verhält, sollst du dein neuronales 
Netz wie folgt konfigurieren:

So steckst du dein Programm zusammen:
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solving methods. Figure 39 shows the information sheets and worksheets, and the fol-

lowing overview explains the individual materials in more detail. 

1) Program: Let your robot learn (Appendix A.7.4) – explains how to program ap-

plications based on the Q-learning algorithm with blocks and gives some hints 

that the user can experiment with. 

2) Flow diagram: This is how your AI-robot learns (Appendix A.7.5) – introduces 

the Q-learning algorithm step by step. 

3) Q&A: Reinforcement learning (Appendix A.7.2) – summarises possible ques-

tions and answers that the student may have about the operation of the Q-learn-

ing algorithm and reinforcement learning. The explanations in the Q&A are writ-

ten in short, simple language, taking into account possible difficulties of the stu-

dent. 

4) Observation card (Appendix A.7.6) – is a worksheet that the students fill out. It 

serves as a basis for reflections on how the Q-learning algorithm works and 

whether the child believes that there are optimal parameters. 

5) Map (Appendix A.7.3) – illustrates the Q-learning environment and all elements 

that the user sees and can interact with. The statistics and navigation bar are 

explained in detail. 
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Figure 39: Instructional materials for the Q-learning Playground. 

Furthermore, the author developed three Q-learning Cards (Appendix A.7.1) corre-

sponding to the respective environments described in Section 5.4.3. The Q-learning 

Cards support students in conducting the experiments with the Q-learning algorithm. The 

students document the parameters they set in the Q-learning algorithm for each iteration 

and describe their observations of the optimal way that the robot found. The idea of 

experiments is based on a concept called hyperparameter tuning or optimisation, which 

refers to the selection of the best values to minimise or maximise the given function (Das 

& Cakmak, 2018). In the first learning card, the students are asked to complete three 

trials, and in the second and third, five trials. Figure 40 illustrates the cards. 
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Wie lernt dein KI-Roboter mit dem 
Q-Learning Algorithmus?

Schaue dir dazu das Bild auf der Rückseite des 
Blattes an.

Kann ich den Start oder das Ziel
ändern?

Klar! Probier aus, wie schnell dein Algorithmus 
die optimale Strecke findet.

Was ist eine Episode?

Es ist ein Durchlauf des Algorithmus von einer 
Station zu der anderen.

Was bedeuten die Sterne?
Die Sterne zeigen, wie attraktiv die Strecke für 
deinen Roboter ist.
sehr attraktiv nicht attraktiv

Was hat diese gelbe Linie zwischen 
zwischen zwei Pins zu bedeuten?
Es ist die Strecke, die dein Roboter aktuell 
durchläuft.

43

Warum beginnt mein Roboter immer an 
einer anderen Stelle?

Weil du wahrscheinlich die Teleportation erlaubt 
hast.

Wie berechnet der Roboter, ob die 
Strecke attraktiv ist?

Der Roboter berechnet aufgrund der Einstellun-
gen, die du in diesem Block ausgewählt hast, ob 
die Strecke attraktiv ist oder nicht.

Darf der Roboter seine Vorerfahrung 
nutzen,

dann greift er bei jedem Schritt auf sein vorheri-
ges Wissen zurück.

Ist lerne „langsam“ eingestellt,
dann lernt der Roboter langsamer, dafür merkt 
er besser, was er gelernt hat. Schnelles Lerntem-
po ist nicht immer gut, denn dann vergisst dein 
Roboter auch schneller. 

Ist extra Belohnung auf
„ja“ eingestellt,
dann schaut der Roboter zwei Schitte im Vor-
aus, ob die Strecke danach auch eine attraktive 
ist.  Extra Belohnung ist auch nicht immer gut, 
denn es kann den Roboter in die Irre führen. Die 
Strecke im übernächsten Schritt ist vielleicht gar 
nicht so gut.

Ist Teleportation erlaubt,

dann springt der Roboter beim nächsten Schritt 
zu einer beliebigen Station und startet von da 
aus.

Q & A : Bestarkendes Lernen

so steckst du den Q-Algorithmus zusammen
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Figure 40: Q-learning Cards. 

Each of three Q-learning Cards has a similar front and back. The front illustrates the 

Q-learning environment, accompanied by the start state, finish state, and obstacles that 

the child can use for the trials. The back includes a table, in which the students take 

observation records. The students can also record their guesses for the optimal path 

before they begin conducting the trials. 

Figure 41 shows the back of the Q-learning Card for the first learning environment 

“Railway”. 

 

Figure 41: The back of the Q-learning Card "Railway". 

In the table, the student can note following values: 𝛼, 𝛾, NU, RHO, episodes, and time. 

After the learning process is finished and the robot drives the optimal path, the students 

can record this path in the last column. 

Although the Q-learning materials are characterised by their uniform design with soft 

colours, colourful pictures, and hand-drawn illustrations, the design of the instructional 

materials for the Q-learning Playground differs from the design of the materials for the 
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Neural Network Playground: Both the fonts and the colours and characters are different. 

This is intentional, because the materials cover distinct topics.  

6.4 Unplugged Activity Introducing the K-means Algorithm 
Introducing the topic of unsupervised learning with the k-means algorithm is designed as 

an experiment and an analogous exercise. The unplugged activities are recommended 

by several studies (Seegerer et al., 2019; Wong et al., 2020), and unplugged activities 

to teach machine learning concepts are not uncommon (Jatzlau et al., 2019; Michaeli et 

al., 2020). This section describes the activity procedure based on the k-means algorithm 

outlined in Section 3.3.2. 

The facilitator first displays a set of items and asks students how they would group 

the objects. Figure 42 shows the first illustration.  

 

Figure 42: Clustering – the introductory slide. 

After a brief plenary discussion, it becomes apparent that there are numerous possi-

ble criteria for grouping items: for example, by colour, material, content, or form. The 

facilitator poses the next questions to the students: “Where do your criteria come from?”, 

“Why did you choose this grouping?” 

After the questions have been discussed in small peer groups and then in plenary, 

the educator suggests putting him- or herself in the role of a robot and sorting the items 

as the robot would do it. The children should pay particular attention to what criteria the 

facilitator used to sort the objects and for the sorting method – how exactly did the 

teacher sort the objects?  
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The facilitator sorts the objects according to the k-means algorithm. He or she first 

sticks a few post-it notes on random objects to form cluster centres. The items remaining 

in the set are then compared with each cluster centre according to a criterion known only 

to the facilitator. After comparing each item with the cluster centres, the facilitator places 

the items behind the cluster centre that he or she believes fits best. 

When all items from the set have been sorted into the cluster centres, the teacher 

discusses with the children what they think the criterion for the sorting process was. The 

clustering procedure is then reviewed in plenary, and the teacher explains the k-means 

algorithm in detail. He or she presents Figure 43, which depicts the k-means algorithm 

step by step. 

 

Figure 43: The k-means algorithm, step by step. 

The children are then invited to select a criterion on their own and to sort the items 

according to the k-means algorithm in peer groups or in the front of the class. 

 

 



 

 

7 Evaluation 

This chapter outlines the results of the user study conducted from 5 to 7 August 2020 at 

the Heinrich-Hertz-Berufskolleg in Düsseldorf. It first presents the setup and participants, 

then provides insight into the procedure and presents the results of the questionnaire 

and the students’ feedback. 

7.1 Setup 
The following preparations for the testing of the Playgrounds and teaching material were 

undertaken: 

1. All extensions were successfully finished by the time of the test days. Open Rob-

erta Lab was installed on a Raspberry Pi so that the Lab could be operated in a 

local network. A WiFi-router was installed and used as the WiFi-hotspot to provide 

access for the students’ laptop clients to the Open Roberta Lab webserver. The 

second photo from Figure 44 shows this setup. 

 

Figure 44: Classroom and hardware setup for all three sessions. 

2. It was agreed that ZDI would provide all participants with the necessary hardware. 

Each participant had access to a laptop. The classroom had all the essential tech-

nical equipment, such as a projector, a sufficient number of sockets, and WLAN 

access. The first photo in Figure 44 depicts the classroom and hardware setting. 

3. The day before the first session, all laptops were checked and set up for testing. 

For a smoother session, the web link to Open Roberta Lab and the link to the final 

questionnaire were saved in the favourites bar of each client’s web browser. A 

folder with the backgrounds required for experimenting with the Neural Network 

Playground was downloaded to the desktop of each laptop. A short last test was 

performed to check that the Open Roberta Lab application remained stable even 
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if all laptops accessed it simultaneously during the compilation of their pro-

grammes. 

4. Due to measures implemented in response to COVID-19, the materials used by 

the children in one session could not be reused in another session. They therefore 

had to be printed out individually for each child in each session. 

5. The documentation equipment – two cameras with tripods and a clip-microphone 

– was borrowed privately. 

7.2 Participants 
A total of 24 children participated in the user study. On the first day, the extensions were 

tested by the high school children – seven boys in grades 7–9. On the second day, the 

primary school children – five girls and four boys in grades 3–4 – examined the exten-

sions and materials. On the third day, the middle school children – one girl and six boys 

in grades 5–6 – participated in the study. Figure 45 shows the individual classroom set-

tings. 

 

Figure 45: Classroom setting for grades 7–9, 3–4, and 5–6. 

 All children had previous knowledge of working with Open Roberta Lab and real 

LEGO EV3 robots, as they had participated in the introductory session the day before. 

The pre-assessment showed that some of the children had a vague idea of what AI 

is. Most of the primary school children could not define AI at all. One of the primary 

school students said, “Artificial intelligence are robots”21. In comparison, the answers of 

the middle and high school children were more differentiated:  

- “AI – a being that can have its own personality and can make its own decisions” 
(high school student) 

- “AI is when the machines themselves solve problems” (high school student) 
- “Artificial intelligence is a new method of programming new machines” (middle 

school student) 
- “AI is as intelligent as humans are intelligent, only for computers and robots” (mid-

dle school student) 
- “AI is how the robot thinks” (middle school student) 

 

21 All citations of children were originally in German and were translated by the author for the purposes of 
this work. 
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Only one student associated AI with learning: “AI is a program that learns from its own 

mistakes and becomes smarter by itself” (high school student). 

7.3 Insights in the Procedure 
Each session lasted six school hours (one school hour = 45 minutes) and was conducted 

in a block with short breaks. The author led all three sessions. On the second and third 

days, four trainees observed the sessions. They were allowed to support children if they 

wished. Due to limitations described in Section 4.2, the children were not allowed to work 

in tandem or in groups. Therefore, all activities were limited to individual work.  

The children’s knowledge of machine learning and AI was pre-assessed. Then, a 

Braitenberg experiment was conducted and discussed with the children. Figure 46 

shows the author conducting the third experiment after Braitenberg (1986) that is called 

“Love” or “Friendship”. Calli:bot, the robot used by the author, is attracted by the objects 

the author presents on the table. The greater the stimulus, that is, the closer the object 

is, the lower the speed of the robot. 

 

Figure 46: Author conducting the third experiment after Braitenberg (1986) with a Calli:bot robot. 

Most children of all grades were confident that the robot did not behave like an intel-

ligent creature. One of the middle school children said, “I don’t think it is an intelligence, 

because it only drives because you have programmed it to do so”. Another middle school 

student remarked that the robot was not intelligent because of his previous experience 

with the robot: “I don’t believe it is an artificial intelligence either, because we did some-

thing similar yesterday”. Both primary and high school children were also critical. One 

child said, “It’s not intelligent by not crashing into the box!” (primary school student), 

another explained his point at length: 

The robot has the equipment for it [autonomously driving], but it was just too stu-

pid to know what to do with the sensors etc. Intelligent beings have to learn first, 
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learning is the keyword, but they already have eyes, nose, mouth, everything – 

and they know roughly what to do with them. It [the robot] did not know how to 

use them” (high school student).  

However, there were also doubtful voices: “So [ . . . ] it depends [ . . . ] If you have 

programmed it, it is not really intelligent. If you programmed only a part of it, then it is 

intelligent” (primary school student) and “Yes, it is intelligent enough to stop in front of 

something before it collides with it” (secondary school student). 

After the discussion about the experiment, the modules were completed in order. In 

the first module, “How does your robot learn?”, the author held a short input lecture that 

introduced AI and machine learning. Directly after the first module, the second module, 

“Teaching your robot”, was undertaken. As planned, the children taught the robot various 

behaviours via direct supervision. In all three grades categories, everything went accord-

ing to the plan described in Section 6.1. The children discovered hands-on components 

of neural networks such as nodes, layers, connections, and weights. All children in all 

age groups started with Neural Network Cards but were then encouraged to contribute 

and test the limits of what they could teach the robot. 

Children from primary school coped well with the topic but had to be supported much 

more intensively than children from other school grades. During the session, the author 

had the impression that the children did not fully understand how direct supervision 

works. Although the idea of a sensor directly connected to an actuator is simple and was 

quickly understood by the students, the author had to explain in detail several times the 

whole process from the blocks to the effects of changing weights in the neural network 

on the behaviour of the robot. Some of primary school students also had motor difficulties 

using a mouse, and it was thus not easy for them to manage all of the workflow process 

outlined in Sections 5.3.2 and 5.4.2. Most of the middle school children and all high 

school children coped well with the topic on their own, and some criticised the compli-

cated workflow process. The boys in the middle and high school grades were very com-

petitive and were impatient. They wanted to complete the tasks on the cards as quickly 

as possible. This sometimes led to restlessness and a charged learning atmosphere. 

The author had to refer them several times to additional tasks that they had failed to 

complete due to inattention. 

The vast majority of children stumbled over the two neural network cards “Fear” and 

“Friendship”. Although these cards had completely different task descriptions, they de-

picted the same blocks that were necessary to solve the task. The students wondered 

how the same blocks could lead to opposite behaviour. When they turned the cards over, 
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they found that it was the configuration of the neural network that led to completely dif-

ferent behaviour in the robot. 

The Neural Network Card “Rally” was an immensely enriching experience for all of 

the children. The author erred in the illustration of the neural network configuration, which 

led to a situation in which the children could not look for the right solution on the back of 

the card, and they had to master the correct training entirely on their own. The children 

of all grades spent much more time on this task than expected and were very excited 

when they were able to train their network accurately. 

Overall, the children did not have much time to tinker with personal projects, as the 

task with the Neural Network Cards occupied all their time. Two children from primary 

and middle school created projects that went beyond the Neural Network Cards. Figure 

47 shows some impressions from the second module and the children’s creations. The 

first picture on the right illustrates an example of the project, in which one student from 

the middle school group went beyond the tasks from Neural Network Cards and experi-

mented on his own. The idea of his project was for the robot to drive autonomously 

through the area while simultaneously turning its LED to the colour detected by the colour 

sensor. He further developed his project so that the robot could display additional text 

while driving. Two photos in the bottom right corner show some insights in the brief input 

lecture to neural networks and training the networks via direct supervision. The remain-

ing photos show children working with Neural Network Cards. 

 

Figure 47: Documentation of the impressions from the second module and creations of the children. 

In the third module, “Let your robot learn from experience”, the children were intro-

duced to reinforcement learning and the Q-learning algorithm. After the students in the 
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first session were distracted by the opened laptops with Open Roberta Lab during the 

introductory phase, the students in the second and third sessions were asked to keep 

their laptops closed. On the second and third days, the author also changed the order of 

the modules because the experience from the first day indicated that reinforcement 

learning was too difficult to be introduced in the afternoon. Reinforcement learning was 

then carried out directly in the morning. These measures worked well, and children from 

the second and third session were attentive. 

Before the children had started with the practical part, the result of the Q-learning 

algorithm – the optimal path – was problematised. The children’s opinion of what the 

optimal path for humans is and what the optimal path for the robot would be was dis-

cussed. All three groups of students came to a similar conclusion: The optimal path for 

the robot from point A to B is the path that the robot can travel in the minimum amount 

of time. However, the optimal path for a person may vary depending on various factors 

such as whether there is an ice cream parlour on the way or the beauty of the path. 

As planned, the children explored the Q-learning algorithm using Open Roberta Lab 

and analysed how a robot learns through rewards. The children from all school levels 

were able to create unique learning environments for the robot and experiment with the 

parameters of the algorithm. They all observed and analysed the learning and reasoning 

process on the Q-learning Playground step by step. The primary and middle school chil-

dren were very diligent in experimenting and documenting their experiences with rein-

forcement learning on the observation cards. In contrast, the older students had hardly 

used the materials. Most quickly changed the parameters, wanting to observe the result 

and readjust the program as quickly as possible, if necessary. The author also had the 

impression that the children sometimes focused on less important things, such as how 

the learning agent moves in the Q-learning Playground, rather than looking at the navi-

gation bar and observing how it really learns and how the statistics change step by step. 

 Figure 48 shows how the children explored and experimented with the Q-learning. In 

the top-right photo, the child creates a unique Q-learning environment and explores how 

the algorithm operates. The first photo on the left shows the introductory phase. The 

other pictures demonstrate the work in progress. 
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Figure 48: “Let your robot learn from experience”: Documentation of the third module. 

The author did not have to provide much support for any group of children. The stu-

dents’ questions related to clarifying the task or the process flow. Primary school children 

coped just as well with the exploration of the Q-learning algorithm as middle school and 

high school children. Sometimes, the students experienced cases in which the robot 

failed in learning and could not find a way to the target. Then, they were visibly disap-

pointed and tried to correct the algorithm in the next iteration. Overall, the students of all 

school grades were inquisitive and motivated to explore. 

In the last module, “Can robots learn autonomously?”, the children were introduced 

to the k-means algorithm through the unplugged activity. The author prepared a set of 

several vessels and presented them on the table. As planned, she discussed how the 

robot would group the objects presented on the table without any previous knowledge. 

She then sorted the vessels according to the k-means algorithm without explaining what 

criterion she used for grouping.  

The children made assumptions about the grouping criterion. After discussing the 

grouping criterion and explaining the sorting principles, the students grouped the items 

themselves and let others guess the grouping criteria. Overall, all children of all school 

ages participated very actively in the discussion. Regardless of the school grade, they 

could cope with the topic without any particular difficulties. 

Figure 49 shows the unplugged activity. In the first photo, the vessels are not yet 

grouped. The second photo shows the grouping process that was conducted in the ple-

nary, and the third photo shows the result of the clustering. 
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Figure 49: Exploring k-means clustering in an unplugged activity: Documentation of the fourth module. 

At the end of each session, the children filled out short questionaries and gave oral 

feedback on the session. 

7.4 Feedback and Questionnaire 
Overall, children of all school grades were motivated during the sessions and used their 

time until the end of the sessions and even beyond to tinker with the tasks. The observer 

noticed that the children’s attention was high during the entirety of the sessions and that 

they were all firmly committed to their projects. Several students praised the illustrations 

in the presentation and the design of learning materials. Many asked if it would be pos-

sible to continue working on their projects from home. 

The questionnaire examined whether the learning experience with the extensions de-

veloped for machine learning promotes children’s understanding of the underlying con-

cepts of machine learning. The students could answer how interesting and how difficult 

they found the particular topics. At the end of the questionnaire, the children were also 

asked what they thought AI and machine learning are and whether they were motivated 

to continue working on machine learning. Insights into the results are given below. 

Figure 50 shows the distribution of the questionnaire results. The x-axis illustrates the 

total number of responses. The y-axis shows three topics divided by the class grades. 

The first topic, from module 1, is not considered, because it was only an introductory 

unit. The graph displays the absolute number of the answers, with 0 representing the 

middle of the scale, that is, the value number 3. 

In the descriptions that follow directly after the graph, the scores are averaged for 

each school grade and topic. The scores reflect the tendency of the answers for each 

topic per group of children: the higher the number, the more positive the children’s eval-

uation (see Section 4.3). The descriptions also provide insights into the observations that 

the observer had made on the respective topics. 
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Figure 50: Participants' attitudes towards the topics supervised, reinforcement, and unsupervised learning. 

 Perception of Supervised Learning 
The topic of supervised learning from Module 2 was the most difficult one for the primary 

school children, with an average score of 3.3. Children from middle school perceived it 

to be easier, with an average score of 4.28, followed by the high school students, at 4.0. 

The middle school children also found the topic of supervised learning to be the most 

interesting compared to other groups. The average score here for grades 5–6 was 4.57, 

followed by grades 3–4 at 4.3 and grades 7–9 at 4.0. 

The observations suggest that the children of all grades were engaged and motivated 

by tinkering with neural networks and teaching the robot through direct supervision. Most 

of the children completed only the task with the Neural Network Cards. Only a few chil-

dren then had time to tinker with applications based on their ideas. The feedback from 

the students in middle and high school was that the explanations were easy to follow. 

They also recommended improving some points in the user experience, such as the 

design of the simulation backgrounds and button locations. 

 Perception of Reinforcement Learning 
The participants of all age groups found the topic reinforcement learning as they pro-

grammed the Q-learning algorithm to be interesting to very interesting. The average 

score of participants from grades 3–4 was 4.4 and those from high school 4.14. The 

middle school children found the topic to be the most interesting, with an average score 

of 4.42. However, at the same time, they found reinforcement learning to be the most 

challenging, with an average score of 3.42 for difficulty. High school children perceived 

the topic with 4.0 points more difficult than the primary school children with 4.2 points. 
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The observer stated that the children of all age groups spent very different amounts 

of time creating learning environments. Some children spent much time creating increas-

ingly difficult environments, while others were interested in testing. The older children 

had less motivation to carry out the experiments and were often more distracted than the 

middle and primary school students. 

 Perception of Unsupervised Learning 
The greatest level of interest in the topic of unsupervised learning, introduced by the 

unplugged activity, was shown by middle school children, with an average score of 4.14. 

The lowest level of interest was shown by high school children, at 3.71, followed by pri-

mary school children, at 4.0. The average score for difficulty varied from easy to very 

easy in all three groups: 4.4 for primary school, 4.14 for middle school, and 4.28 for high 

school children. 

The observer noticed that the children were attentive while the facilitator conducted 

the experiment. They also actively participated in the discussion about the experiment 

afterward. 

 Student Motivation and Feedback 
On average, 75% of the participants indicated that they would continue to work on the 

topics, and 25% indicated that they might want to continue working on the topics. None 

of the children gave negative feedback by indicating that they did not want to continue 

working on the topics. The distribution of responses varied considerably across age 

groups. While 100% of high school students responded that they would like to continue 

working on machine learning, only 60% of the primary school children indicated this, with 

40% indicating that they might want to continue working on AI and machine learning. 

The middle school children were between these groups: 71.4% answered that they 

would like to continue working on the topic, and 28.6% answered “maybe”.  

Overall, the feedback from the participants at the end of the sessions was highly pos-

itive. In the feedback round, almost all children reported that they had an enriching ses-

sion and had fun. When asked which topic the children liked best, the children’s answers 

were divided between supervised and reinforcement learning. Only one student, from 

the high school group, indicated that unsupervised learning was the most exciting topic: 

“I liked unsupervised learning best because you could observe how AI solved problems 

on its own”. 

One participant explained his experiences with reinforcement learning: “I found rein-

forcement learning to be very interesting, mainly because it improves by checking which 

way is the better one. [ . . . ] AI is a bit more complicated than I thought, is really something 
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that big . . . can be tricky”. Another participant reflected on his experiences with the su-

pervised and reinforcement learning and referred to the moment when the robot could 

not find its way out despite its knowledge: “So, I take it from this day . . . I take all these 

ways with me [ . . . ] I still can’t describe [ . . . ], but it’s in any case, it’s independence 

and that it [robot] can do something by itself without help, yes and also as an example it 

can say ‘no’, which everybody is afraid of”. There was also some critical feedback. One 

high school participant remarked, “I didn’t like the topic with supervised learning so much 

because I have the feeling that the tasks could also be solved with ‘if-then’ queries”.  

In the open question of what the children took from the session and what AI and ma-

chine learning are, the answers were more differentiated than in the pre-assessment. 

Although there were general answers such as “It is a very extensive and interesting area” 

(high school student), “AI is what humans program in robots” (primary school student), 

“The brain of the robot” (middle school student), “Things that are invisible” (middle school 

student), and “I have learned a lot about AI, for example, that you can even find it in the 

online shop” (middle school student), there were also more answers associating AI with 

learning, including the following: 

- “Artificial intelligence is artificial learning” (primary school student). 

- “AI is not smart until you start it, then it gets smarter” (high school student). 

- “A programme that learns independently and makes independent decisions” 

(high school student). 

- “AI is a programme that solves problems and accomplishes tasks inde-
pendently” (high school student). 

- “It is fake intelligence” (primary school student). 

7.5 Summary 
In this chapter, the author presented the user study that she conducted with 24 children 

from primary, middle, and high school in order to test the machine learning extensions 

presented in Chapter 5 and the teaching materials proposed in Chapter 6. With this, she 

addressed the third research question on how the developed concepts appeal to stu-

dents of different school grades and whether they need help in understanding the pro-

posed concepts. 

The author gave insights into the setup, the groups of participants and the procedure. 

Then, she presented the results of the evaluation, in which she examined how the chil-

dren of different ages perceived the topics and whether they had difficulties in under-

standing them. 
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Overall, the children of all age groups perceived the topics very easy to moderately 

hard to grasp. Younger students noticed the direct supervision challenging, whereas Q-

learning and k-means algorithms were much more accessible. The vast majority of high 

school children could cope with all topics without particular difficulties. 

The author also presented oral feedback from students on the sessions. Overall, the 

students perceived the sessions positively, and the majority of the students would like to 

continue work on the topics. Compared to the beginning, many more students associated 

the term learning with the term AI at the end of the sessions. 

The observer noticed the high motivation of the students to train the neural networks 

and less motivation to document the experiments with the Q-learning algorithm. During 

the module on unsupervised learning, all groups of students actively participated in the 

unplugged activity on the k-means algorithm. 

 



 

 

8 Discussion 

Based on the curricular requirements for the introduction of machine learning in schools 

presented in Section 2.1 and the gaps summarised in Section 2.4, this thesis aimed to 

propose, implement, and evaluate new possibilities to open the black box of machine 

learning from a technical perspective for students of different ages. These approaches 

should reflect the thematic complexity and breadth of the field. 

Overall, it can be concluded that the author has succeeded in this endeavour. The 

author developed, realised, and evaluated three possibilities for the introduction of ma-

chine learning: the Neural Network Playground, presented in Section 5.3; the Q-learning 

Playground, introduced in Section 5.4; and an unplugged introduction to clustering, pre-

sented in Section 6.4. 

To open the black box even for young students, the author used the benefits of edu-

cational robotics outlined in Section 2.3.3 and the visual block-based programming lan-

guage presented in Section 2.3.2. In developing the extensions and the curriculum for 

machine learning, she derived design principles from constructivism, constructionism, 

connectivism, child-oriented graphic design, and playful learning presented in Section 

4.1. The proposed approaches reflect the currency and thematic complexity of the field, 

which comprises three main areas of machine learning (Russell & Norvig, 2016): super-

vised, unsupervised, and reinforcement learning. 

The author addressed not only the black-box approaches to supervised learning cur-

rently used for education purposes and discussed in Section 2.4, but also the sparse 

activities for reinforcement and unsupervised learning. The positive feedback from stu-

dents on the learning materials presented in Chapter 6 indicated that the author could fill 

the gap in the lack of materials for young students to learn about machine learning, 

providing children resources to learn even on their own.  

The results of this research provide new insights into a barely explored approach on 

how machine learning can be introduced to a novice. They have shown that children 

from primary to high school could successfully experience the technical part of machine 

learning in practice by experimenting on Playgrounds and completing four accompanying 

modules of machine learning. The students taught the robot by training simple neural 

networks and explored how the robot can learn with rewards by experimenting with the 

Q-learning algorithm. They also familiarised themselves with unsupervised learning by 

exploring the k-means algorithm in an unplugged manner. The results of the question-

naire, presented in Chapter 7, demonstrate that the approaches chosen to introduce 
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supervised, unsupervised, and reinforcement learning could raise the interest of students 

and be accessible even to young children in primary school. 

In the following, the results are reflected against the background on research ques-

tions, related studies, developed extensions, and selected teaching approaches. The 

author places results in the broader research context and discusses limitations and con-

siderations for future approaches to the introduction of machine learning with robots. 

8.1 Reflections on the User Study 
This section reflects on the third research question: how the implemented concepts ap-

pealed to the students and what help they needed to understand the concepts offered. 

The user study is discussed as a test phase for the approaches and materials developed. 

The reaction of students from different school grades to the extensions and the de-

veloped materials was overall highly positive. As explained in Section 7.4, the vast ma-

jority of the children perceived the topics to be both very interesting and easy to under-

stand. Even the primary school children were able to delve into the topics of machine 

learning. The students’ feedback at the end of the sessions indicates that they gained 

extensive insights into machine learning and AI, and the vast majority indicated a desire 

to continue working on the topics. 

These results are consistent with the evidence presented by  Lin et al. (2020); 

Williams, Park, and Breazeal (2019); Williams, Park, Oh, et al. (2019), who also focused 

on the introduction of machine learning to young students by putting the student in the 

agent’s shoes, using robots as teachable agents, and designing activities that were 

based on constructivist theories. 

In contrast to Jatzlau et al. (2019); Kahn, Lu, Zhang, Winters, et al. (2020); Kahn et 

al. (2018); Kahn and Winters (2017), who used the VPL Snap! to teach children machine 

learning, it was shown that with simplified technical vocabulary, a block-based program-

ming language can be used not only by high school children, but even by children in 

primary school. The results of the questionnaire indicate that the children perceived the 

topics similarly, regardless of their age. 

As can be deduced from Section 7.3, the level of support provided by the author to 

the children while working on the topics was moderate and varied according to the age 

of the children. On the topic of supervised learning and neural networks, the youngest 

students needed more intensive support than the middle and high school children. For 

other topics, the level of support was comparatively low. 

Although it was not the aim of this study to measure the increase in children’s 

knowledge, the author briefly pre-assessed what the children knew about AI and 
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machine learning at the beginning of the session. At the end of the session, she inter-

viewed the children again. The results shown in Section 7.4.4 suggest that children’s 

knowledge about AI and machine learning increased. Considerably more children asso-

ciated learning with AI, and the answers were more differentiated than during the pre-

assessment. 

Despite the vibrant sessions and the learning atmosphere during the user study, the 

author notes ambiguities in the process and results. One remaining question is whether 

the children could grasp the machine learning concepts in such a way that they were 

able to build correct mental models of underlying machine learning principles, as claimed 

by Hitron et al. (2019) and discussed in Sections 2.2.1 and 4.1.3. Young students in 

particular did not find supervised learning intuitive, giving an average score of 3.3 for the 

difficulty of the topic in the questionnaire. 

As described in Section 7.3, many children stumbled with the Neural Network Cards 

“Fear” and “Friendship”. This can be a sign that children misunderstood direct supervi-

sion and neural networks. The children had not directly recognised that not only the 

blocks, but also the configuration of the neural network, were decisive for the behaviour 

of the robot. Perhaps the children were simply confused about the card with the same 

blocks on the front but different task descriptions. 

With the Q-learning, the children did not have any particular difficulties, nor did they 

seek extensive support from the author, as indicated in Section 7.3. However, the chil-

dren sometimes focused on less critical issues, which could be interpreted as meaning 

that their cognitive load was high, and they were overwhelmed by what was happening 

on the Q-learning Playground. 

Similar to Kandlhofer et al. (2016), it is unclear whether the children would be able to 

transfer their knowledge of the machine learning concepts they explored to similar prob-

lems since they were occupied with a pre-selected set of algorithms and machine learn-

ing problems. The question also remains of whether they could retain their knowledge 

over time. 

8.2 Reflections on Extensions and Teaching Approaches 
Based on the results and the analysis of the user study, this section discusses the ex-

tensions that were developed – the Neural Network Playground and Q-learning Play-

ground – and the teaching approaches that were selected, with a focus on the learning 

activities and materials. Thus, the section reflects on the possibilities identified by the 

author and the process of establishing and implementing the approaches in Open Rob-

erta Lab, as posed in the first and second research questions. 
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 Implementation of Extensions and Development Process 
Technical implementations were reflected in detail in Section 5.5. In this section, the 

author adds general considerations to the extensions and the development process.  

The extensions developed by the author show a significant difference to the applica-

tions that currently exist for teaching machine learning. While previous approaches used 

blocks as high-end APIs to access AI cloud services (Druga, 2018; Kahn & Winters, 

2017; Lane, 2020) or to reproduce the machine learning algorithms (Kahn, Lu, Zhang, 

Winde, et al., 2020; Kahn, Lu, Zhang, Winters, et al., 2020; Kahn et al., 2018), the author 

developed a completely different approach. The extensions developed by the author (1) 

break the technology down to the essentials while maintaining the technical correctness 

of the underlying principles and their accuracy, (2) provide a direct interface to the algo-

rithms of machine learning via blocks, (3) reduce the complexity of the algorithms by 

adapting the technical vocabulary and by visualising underlying principles graphically 

and (4) open the black box problematised in Section 2.4 by offering the possibility of 

experimenting with underlying technologies of machine learning in Playgrounds with ro-

bots. The ideas for future implementations are proposed in Section 8.3.4. 

Overall, the development process was intensive. By using tools and methods pre-

sented in Section 4.4, the ideas elaborated in Sections 3.1.2 and 3.2.2 could be suc-

cessfully implemented. The author’s proposals concerned the extensions of the major 

processing steps in Open Roberta Lab – including the definition of blocks, the integration 

of the blocks’ functionalities in the back-end, the implementation of the Q-learning algo-

rithm and simple neural networks, the design of the Playgrounds both server- and client-

side, and graphical adjustments of the simulated robot’s behaviour. For this purpose, the 

author intensively dealt with the central processes and workflows of Open Roberta Lab, 

a complicated undertaking, since Open Roberta Lab is poorly documented. 

Nevertheless, the development process was successful, and extensions work 

smoothly. There were no particular technical difficulties during the tests. As mentioned 

in Section 7.4.4, one of the students of grades 7–9 criticised the implementation of neural 

networks – the student opposed the concept of weighting and solving neural networks 

with if-then queries. Although the author finds the criticism partly justified and it would be 

possible to represent simple networks with if-then statements,22 it would not be possible 

to represent completely the graph connections realised in more complex neural net-

works.  

 

22 If-then statements can be used for Boolean weight values, not for non-Boolean values, e.g., for ranges 
between 0 and 1. 
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 Using Simulated Robots 
The user study suggests that the students could gain insights into how the simulated 

robot perceives the environment and how it learns. By teaching the robot and experienc-

ing the environment from the agent’s perspective, the students could also deepen their 

mental models of the capabilities and limitations of different machine learning ap-

proaches. 

The experience with the “Rally” card described in Section 7.3 indicates that the chil-

dren were engaged in investigating why the robot did not behave correctly. With the Q-

learning algorithm, the robot’s failure to learn how to find the best way out of the labyrinth 

made the students curious to find out why the robot did not learn properly and why it 

could not find its way out of the labyrinth. These observations are consistent with the 

findings of Lin et al. (2020); Williams, Park, and Breazeal (2019), who found that children 

were particularly curious when the robot did not behave as expected. The children’s de-

termination to correct the robot can be used by instructors to convey how agents can be 

trained and that they are not perfect. Letting the robot learn and allowing it to make mis-

takes might be a successful strategy that could be used in the future to teach machine 

learning topics. 

 Using a Visual Programming Language 
Although the children could successfully use blocks to write machine learning applica-

tions, the children noticed the complicated workflow and usability difficulties associated 

with blocks, which were problematised in Section 7.3. 

These remarks agree with the findings, which the author determined in the course of 

the developments. Blockly blocks are bulky, and their possibilities are limited. First, they 

are barely suitable for displaying graphs, as with a neural network. Second, Blockly also 

offers hardly any design possibilities for the blocks. In the case of the Q-learning Play-

ground, it was barely possible to adapt the configuration blocks for the algorithm so that 

the children could design the Q-learning map interactively. The only way to create a 

unique environment was to prepare a long list of obstacles, which allowed the manipu-

lation of the maps on the Q-learning Playground. However, the lists were so extensive 

that the children quickly lost track of where they had set an obstacle and where they had 

not. 

In the future, frameworks such as the Neural Network Playground (Smilkov & Carter, 

2020) can be explored to help children make the transition from blocks to Playgrounds.  
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 Plugged vs. Unplugged Activities 
Feedback from students on the unplugged activity that introduced the unsupervised 

learning indicates declining interest. Students at all school grades found the k-means 

algorithm less interesting than the two plugged activities with direct supervision and Q-

learning, whereby the questionnaire results indicate that the difference was not signifi-

cant for primary and middle school students. These results are consistent with the find-

ings of Erümit and Sahin (2020), which found students to be enthusiastic about both 

plugged and unplugged activities. Following the approaches of Jatzlau et al. (2019); 

Michaeli et al. (2020), it would be interesting in future studies to experiment with intro-

ducing the machine learning topics first with the unplugged activity, followed by the 

plugged activity, and to measure whether children’s understanding varies depending on 

whether the topic was introduced plugged or unplugged.  

 User Experience in Playgrounds and Materials 
In contrast to Kahn, Lu, Zhang, Winters, et al. (2020); Kahn et al. (2018); Kahn and 

Winters (2017), the materials and Playgrounds were designed with the young students 

in mind. Inspired by children’s books covering machine learning topics, the themes were 

adapted by reformulating the technical descriptions in story-like narratives and revising 

the technical terminology. In visual communication, a comic style, hand drawings, and 

colourful illustrations were used. Primary, middle, and high school students found the 

design of the extensions and the material appealing. This means of presenting compli-

cated content can be used in the future. 

In observing how the children used the learning cards, the author noticed that the 

children sometimes did not read the task descriptions thoroughly despite short, child-

friendly texts. As noted in Section 7.3, the children were impatient and wanted to turn the 

card over and look for the solution as quickly as possible. The possible solution for future 

studies could be to use the learning cards only as a medium for the students to get 

started. At the same time, there may be rules that allow the card to be turned over, or 

the solution may only be partially presented on the backside of the card.  

8.3 Limitations and Recommendations 
The following chapter summarises the limitations of the study and proposes recommen-

dations for future research and approach design. 

 Peer Learning 
As mentioned in Section 4.2, it was not possible to apply the methods of peer learning 

when evaluating the extensions and materials. Although it could be observed that the 

children of all school grades were curious about how their classmates solved the tasks 
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and wanted to help each other if possible, they were not allowed to work in tandem or in 

groups on shared projects. However, working on projects with peers is a promising meth-

odology (Resnick & Robinson, 2017) that is well-founded (Büttner et al., 2012; Hattie, 

2008; Lebedynska, 2017; Zeneli & Tymms, 2015) and should be included in future re-

search if possible. 

 Playfulness in Extensions and Materials for Machine Learning 
Although one of the objectives proposed in Section 4.1.3 was to give children more room 

for experimentation, this was only partly achieved. Most students experimented with the 

underlying processes and algorithms based on the material provided. Only some stu-

dents who were faster than others and had time continued to work on their projects, 

creating more complicated learning environments or more complex neural network ar-

chitectures, as shown in Section 7.3. This casts doubt on the extent to which the children 

were allowed to live out their creativity and playful tinkering as a critical principle of con-

structivism and constructionism and the Four P’s framework of Creative Learning. 

The reason that the project work was neglected was due partly to a tight schedule, 

but also to the COVID-19 measures, which prohibited teamwork. As explained in Chapter 

6, the learning activities and materials were designed for children to get started and work 

individually. In the future, tinkering with the projects should be further enabled and em-

phasised to a much greater degree. 

 Questionnaire Limitations  
The questionnaire used in this study imposes several limitations. By problematising how 

interesting something is or how difficult, the questionnaire did not measure the under-

standing of children, the increase in their knowledge or the effectiveness of the ap-

proaches and materials developed. Nor was it intended to measure the long-term impact 

on how much the children retain from the sessions.  

In the future studies, the problem of a deeper understanding of machine learning con-

cepts can be addressed by asking children to describe the process of how they under-

stand the learning process of the robot, for instance, in semi-structured interviews. The 

effectiveness of the approaches and the increase in knowledge can be examined by 

asking what the students think, how the robot arrives at the solution. In the future, the 

use of more age-specific formats for the design of questionnaire might be considered. 

The long-term effects on how much of the content the children retain after a certain pe-

riod could be measured by post-assessing the children’s knowledge in a given period. 
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 Recommendations for Future Research 
This study focused on using simulated robots as teachable agents to introduce a novice 

to the technical aspect of machine learning. The results and the discussion of the findings 

suggest that this approach could arouse the interest of the children and at the same time 

limit the difficulties that they experience. Future research may take into account that the 

use of simulated robots for introduction to machine learning is promising, especially if 

the robot is used to teach how agents are trainable and that they are not perfect. Trans-

ferring the approaches investigated here to real robots and measuring whether there are 

differences in the introduction of machine learning with simulated versus real robots 

could also be considered. 

Future research may investigate how the Playgrounds can be improved and extended 

to help young students experiment and open the black box of machine learning algo-

rithms. For example, the Q-learning Playground could be extended through the addition 

of a Q-learning table, as suggested by Jatzlau et al. (2019). The Neural Network Play-

ground could be enriched graphically through the addition of animating tensors that vis-

ualise the data flow. Future research could also investigate how playful visualisation 

used in this study and by Lin et al. (2020) to communicate the underlying system models 

could be extended to other machine learning algorithms. Furthermore, it can be exam-

ined how the black box of complex machine learning algorithms and processes can be 

opened with other block-based programming languages.  

This study proved that the materials and extensions designed with young learners in 

mind were also positively perceived by older students. As mentioned in Section 2.3.1, 

there are children’s book authors who follow this approach, designing books with children 

in mind but that also address adults. Therefore, in order to promote understanding of 

machine learning among young students, future research may consider designing appli-

cations and materials that focus on the youngest students and pick up the older children 

at the same time. It can also be questioned whether children from high school are less 

attracted to materials oriented towards primary school students due to the different en-

vironments that surround the students. 

The applications designed to explore machine learning paradigms should be open for 

experimentation, creativity, and play. As Resnick and Robinson (2017) remarked, learn-

ing environments should be more like Playgrounds, providing room to experiment, move, 

and collaborate. This work was a step in this direction, although this approach may often 

be incompatible with institutionalised forms of learning, especially in schools. After prob-

lematising the shortcomings of this work in terms of playfulness in Section 8.3.2, future 

research should focus on exploring more deeply how applications for introducing 
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machine learning to young students can be designed to resemble Playgrounds that fos-

ter creativity rather than Playpens that restrict and limit opportunities.  

 

 

 



 

 

9 Conclusion 

In this work, the author presented a new approach to introducing machine learning using 

robots, playful learning, and child-oriented design. In the following, the author’s main 

contributions are summarised as answers to the three research questions posed in the 

introduction. The chapter reflects the entire research study and its role for future re-

search. 

In order to meet the requirements and to anchor the topic in the current context of 

educational research, the author analysed the specific curricular needs concerning the 

topic of machine learning in schools. It was found that there are high expectations for 

what children should know about AI, which are summarised under the term AI literacy 

(Long & Magerko, 2020). Special attention is devoted to machine learning, which is pre-

sented as one of the five Big Ideas of AI in the proposal for international guidelines for 

the development of AI curricula in schools (Touretzky et al., 2019). To demonstrate its 

relevance, the author also collected several case studies that show that students are 

expected to be able to cope with the different areas of machine learning – supervised, 

unsupervised, and reinforcement learning. 

After outlining curricular needs, the author analysed the current efforts and ap-

proaches to introducing machine learning in schools. It was found that approaches are 

sparse and do not reflect the complexity and breadth of the field. Supervised learning is 

the topic for which the most approaches are currently available; however, they all share 

a common trait: The principles underlying the applications remain hidden from the user. 

Even if some approaches open the black box using VPLs, they often only provide an 

interface to a powerful high-end API. It remains unclear for the students how the models 

are trained and why they make the concrete decision. The topics of reinforcement and 

unsupervised learning are underrepresented. Although some approaches use a block-

based programming language, they are only suitable for students at high schools due to 

high technical complexity and numerous details. 

While summarising the didactic methods of current approaches, it was found that the 

use of a VPL to teach the topics of AI and machine learning is common and promising. 

The available teaching material is sparse, focuses on older children, and is not suitable 

for children to learn on their own. The use of robots and robot simulators in the classroom 

is overall effective. However, only a few studies have focused on the use of robots to 

teach children machine learning. All these studies found that the efforts were successful, 

and even kindergarten students could cope with machine learning topics using robots. 
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Based on these findings and using the benefits of visual block-based programming 

languages and educational robots, the author established the theoretical framework on 

supervised, unsupervised, and reinforcement learning. She elaborated three ap-

proaches that could meet the requirements and close the identified gaps: introducing 

direct supervision with neural networks, Q-learning, and k-means algorithms in Open 

Roberta Lab.  

The answer to the first research question was thus complete: The author analysed 

specific needs with regards to the topics of machine learning in schools, examined the 

available possibilities for introducing machine learning, identified the limits of current 

concepts, and worked out three approaches to meet the identified requirements. 

The author then turned to the second research question, which how previously de-

fined proposals can be pedagogically anchored and concretely implemented in Open 

Roberta Lab in order to promote the transparency of the underlying machine learning 

algorithms and make them accessible to all interested parties. 

In the course of working to answer this question, the author developed two machine 

learning extensions and elaborated a series of learning materials and activities. The fol-

lowing overview summarises the contributions: 

(1) New blocks for neural networks allow the user to program applications with 

neural networks. The Neural Network Playground allows the user to experiment 

with simple neural networks in Open Roberta Lab. The student can program sim-

ple neural networks with blocks and then train them by modifying the weights and 

directly observing the effects on the simulated robot, grasping the concept of “di-

rect supervision”. 

(2) New blocks for Q-learning allow the user to program applications based on the 

Q-learning algorithm. On the Q-learning Playground, the student can tinker with 

the Q-learning algorithm by creating unique learning environments for the robot 

and playing with the parameters of the algorithm in Open Roberta Lab. Step by 

step, the student can debug the algorithm and explore how the robot is learning 

from the agent’s perspective. 

(3) An image for the local installation of Open Roberta Lab with extensions for 
machine learning on a Raspberry Pi enables any interested party to easily install 

and use Open Roberta with machine learning features. 

(4) The learning activities that the author has developed to introduce students to su-

pervised, reinforcement, and unsupervised learning are summarised in a Ma-
chine Learning Curriculum, which educators may use as a guide. The 
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curriculum suggests learning activities for approximately six school hours of 45 

minutes each. Every educator may decide whether individual activities should 

take more or less time. 

(5) A set of nine Neural Network Cards helps the beginners get started with neural 

networks and supervised learning in Open Roberta Lab. With simple tasks, intui-

tive descriptions and appealing illustrations of expected robot behaviour, students 

can explore the essential elements of neural networks and learn how the neural 

networks are programmed and trained. 

(6) A set of four Q-learning Observation Cards helps the novice start with reinforce-

ment learning in Open Roberta Lab. The cards focus on the essentials of the Q-

learning algorithm needed to conduct the experiments and provide a space for 

the documentation of experiments and reflections. 

(7) A set of auxiliary learning materials to help the beginner get started with Q-learn-

ing on their own was created: 

a. The Q-learning map explains the navigation bar and central features of 

the Q-learning Playground. 

b. The flow diagram adapted for children, which introduces the Q-learning 

algorithm step by step. 

c. The programme code, which explains how to program applications based 

on Q-learning with blocks. 

d. The Q&A: Reinforcement Learning, which summarises possible ques-

tions and answers from children on Q-learning. 

(8) An unplugged activity that introduces unsupervised learning with the k-

means algorithm as an experiment that can be conducted by a teacher or as a 

game that can be played in tandem by two or more students. 

With these contributions, the author has anchored her proposed approaches peda-

gogically and implemented them practically in Open Roberta Lab, thereby answering the 

second research question. 

In order to evaluate how beginners perceive the approaches and thus answer the 

third research question, the author conducted a user study with 24 children from primary, 

middle, and high school. In total, the author led three sessions, with each session lasting 

six school hours. 
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The results of the questionnaire, the oral feedback from the students, and the com-

ments of the observer indicate that the vast majority of the children in all three age groups 

perceived the topics as exciting and easy to follow and expressed the intention to learn 

more about AI and machine learning in the future. The children reported overall positive 

experiences with the machine learning extensions and repeatedly emphasised the ac-

companying learning materials as appealing. The feedback from the students on the 

unplugged activity introducing unsupervised learning with the k-means algorithm showed 

a slight decrease in interest among all tested groups of children. The author briefly as-

sessed what the children knew about AI and machine learning at the beginning and the 

end of the session. The result indicated that children’s answers were more differentiated 

at the end compared to the beginning, and many more children associated AI with learn-

ing. 

Programming simulated robots with the visual block-based programming language 

NEPO and experimenting with them on Playgrounds proved to be a successful approach 

that excited the students in all sessions. In particular, when the robot did not behave as 

expected, the students were curious to find out why. They tried to retrain the neural net-

work or reconfigure the Q-learning algorithm, and if the efforts were successful, the stu-

dents were excited. By putting themselves in the robot’s shoes, the students experienced 

hands-on the underlying principles of machine learning. They understood how agents 

can be taught and that they are not perfect. Overall, the practical robot simulation made 

learning more playful but did not require compromising content or reducing the technical 

scope. In the future, training an AI robot could be extended by developing challenges for 

students such as building the fastest robot. 

Despite the primary school children who needed help with supervised learning and 

training of the neural networks, the students did not require any exceptional help. The 

author’s support was moderate. If the students were able to work together with peers, 

the support provided by the author would be probably much less. 

The author also identified further limitations to the machine learning extensions and 

the pedagogical activities that were developed: The aspect of playfulness should be pro-

moted much more in future sessions and in the development of the extensions. The 

questionnaire can be extended or redesigned to measure the increase in knowledge of 

machine learning concepts and the children’s in-depth understanding. Future research 

can also consider integrating clustering into the robot simulation environment of Open 

Roberta Lab and mirroring all extensions from simulated to real robots.  
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With the successful user study, the feedback of students, and the reflections in the 

discussion, the author answered the third research question and showed the significant 

potential of the developed extensions and materials for future research. 

The author’s contributions include a solid basis for the introduction of machine learn-

ing among novice learners and close the gap identified at the beginning of this research 

study. The developed approaches reflect the breadth of the field of machine learning and 

offer a contrasting alternative to the black box approaches currently available in the ed-

ucational landscape. The successful evaluation study with students from different school 

grades underlines the practical feasibility of the concept. 

The author regards the overall course of this research project as a very intensive but 

enriching process. The development of machine learning extensions was challenging, 

as Open Roberta Lab is a large project and is poorly documented. Although the user 

study was considered optional due to the closure of schools because of COVID-19, the 

opportunity arose to test the extensions that were developed, and the author succeeded 

in conducting the evaluation with school children in live sessions. From the author's per-

spective, this was the most enriching part of the project. If the author were to lead the 

sessions again, she would allow much more time for the individual topics, so that the 

children have time to live out their creativity. A hackathon is an exciting possibility. Over-

all, the author intends to continue working on this topic and hopes that this research 

study will inspire other people to make machine learning tangible for young students and 

at the same time appeal to beginners of all ages. 
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A Appendix 

A.1 processNeuralNetwork function
public processNeuralNetwork(inputLayer, outputLayer) { 

   if ($.isEmptyObject(this.neuralNetworkModule)) { 
      this.neuralNetworkModule = new AiNeuralNetworkModule("#simConfigNeuralNetworkSVG", 
inputLayer, outputLayer); 

      this.neuralNetworkModule.player.isPlaying = true; 

      let that = this; 
      this.neuralNetworkModule.player.addEventListener("pause", function () { 

that.setBlocking(true); 
that.simSetPause(true); 
that.neuralNetworkModule.player.isPlaying = false; 

      }) 
      this.neuralNetworkModule.player.addEventListener("play", function () { 

that.setBlocking(false); 
that.simSetPause(false); 
that.neuralNetworkModule.player.isPlaying = true; 

      }); 
   } 
   //set new Values in InputLayer 
   if (!this.neuralNetworkModule.player.isPlaying) { 
      return; 
   } 

   let aiNeuralNetworkInputLayer = this.neuralNetworkModule.aiNeuralNetwork.getInputLayer(); 
   for (let nodeID in inputLayer) { 
      let node: Node = inputLayer[nodeID]; 
      if (aiNeuralNetworkInputLayer[nodeID].value !== node.value) { 

aiNeuralNetworkInputLayer[nodeID].value = node.value; 
      } 
   } 

   //calculates new network nodes values 
   this.neuralNetworkModule.calculateNeuralNetworkOutput(); 

   //set motor speed according to the new values 
   this.clearDisplay(); 

   let value = 0; 
   let textLines: Array<string> = new Array<string>(); 
   let textLinesPrepared: Array<string> = new Array<string>(); 
   let ledPrepared: string = ""; 
   for (let node2 of this.neuralNetworkModule.aiNeuralNetwork.getOutputLayer() ) { 

      switch (node2.type) { 
case "motorport": 

if ( node2.value > 100) { 
value = 100; 

} else { 
value = node2.value; 

} 
this.setMotorSpeed("ev3", node2.port, value); 
console.log("Motorspeed" + value); 
break; 

case "text" : 
let textOutput = node2.value > 0 ? node2.name : "leer"; 
textLines.push(textOutput); 
textLinesPrepared.push("<tspan x='1' dy='" + (node2.positionY*16+1) + 

"'>"+textOutput + "</tspan>"); 
break; 
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         case "sound": 
            if (node2.value > 0) { 
               this.toneAction("outputNodeTon", node2.value*5, node2.duration); 
            } 
            break; 
         case "LED": 
            this.statusLightOffAction("ev3", 0); 
            if (node2.value > 0) { 
               ledPrepared = node2.color; 
            } 
            break; 
      } 
 
   } 
   if (textLinesPrepared.length > 0) { 
         this.showTextActionPosition( textLinesPrepared.join(""), 0, 0, true); 
   } 
   if (ledPrepared != "") { 
      this.lightAction("on", ledPrepared); 
   } 
 
} 
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A.2 AiNeuralNetwork.java 

 

package de.fhg.iais.roberta.syntax.ai; 
 
import java.util.ArrayList; 
import java.util.List; 
 
import de.fhg.iais.roberta.blockly.generated.Block; 
import de.fhg.iais.roberta.blockly.generated.Value; 
import de.fhg.iais.roberta.syntax.*; 
import de.fhg.iais.roberta.syntax.lang.expr.Expr; 
import de.fhg.iais.roberta.syntax.lang.expr.ListCreate; 
import de.fhg.iais.roberta.syntax.lang.stmt.Stmt; 
import de.fhg.iais.roberta.transformer.AbstractJaxb2Ast; 
import de.fhg.iais.roberta.transformer.Ast2JaxbHelper; 
import de.fhg.iais.roberta.transformer.ExprParam; 
import de.fhg.iais.roberta.typecheck.BlocklyType; 
import de.fhg.iais.roberta.visitor.IVisitor; 
import de.fhg.iais.roberta.visitor.ai.IAiVisitor; 
 
/** 
 * This class represents <b>ai_neural_network</b> block from Blockly into the AST (abstract 
syntax tree). Object from this 
 * class will generate neural network including input and output layers.<br/> 
 * <br> 
 * To create an instance from this class use the method {@link #make(ListCreate, ListCreate, 
List, BlocklyBlockProperties, BlocklyComment)}.<br> 
 */ 
public class AiNeuralNetwork<V> extends Stmt<V> { 
 
    private final ListCreate<V> listNNInput; 
    private final ListCreate<V> listNNOutput; 
    private final List<AiLink<V>> listNNLinks; 
 
    public ListCreate<V> getListNNInput() { 
        return listNNInput; 
    } 
 
    public ListCreate<V> getListNNOutput() { 
        return listNNOutput; 
    } 
 
    public List<AiLink<V>> getListNNLinks() { 
        return listNNLinks; 
    } 
 
    /** 
     * This constructor set the kind of the object used in the AST (abstract syntax tree). 
All possible kinds can be found in {@link BlockType}. 
     * @param kind 
     * @param listNNInput 
     * @param listNNOutput 
     * @param listNNLinks 
     * @param property 
     * @param comment 
     */ 
    private AiNeuralNetwork( 
        BlockType kind, 
        ListCreate<V> listNNInput, 
        ListCreate<V> listNNOutput, 
        List<AiLink<V>> listNNLinks, 
        BlocklyBlockProperties property, 
        BlocklyComment comment) { 
        super(kind, property, comment); 
        this.listNNInput = listNNInput; 
        this.listNNOutput = listNNOutput; 
        this.listNNLinks = listNNLinks; 
        setReadOnly(); 
    } 
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/** 
     * creates a new {@link #AiNeuralNetwork} instance; 
     * @param listNNInput 
     * @param listNNOutput 
     * @param listNNLinks 
     * @param properties 
     * @param comment 
     * @param <V> 
     * @return 
     */ 
    public static <V> AiNeuralNetwork<V> make( 
        ListCreate<V> listNNInput, 
        ListCreate<V> listNNOutput, 
        List<AiLink<V>> listNNLinks, 
        BlocklyBlockProperties properties, 
        BlocklyComment comment) { 
        return new AiNeuralNetwork<V>(BlockTypeContainer.getByName("AI_NEURAL_NETWORK"), 
listNNInput, listNNOutput, listNNLinks, properties, comment); 
    } 
 
    /** 
     * implements 
     * @param visitor 
     * @return 
     */ 
    @Override 
    protected V acceptImpl(IVisitor<V> visitor) { 
        return ((IAiVisitor<V>) visitor).visitAiNeuralNetwork(this); 
    } 
 
    @Override 
    public String toString() { 
        return this.getClass().getSimpleName() + " [" + " Input-Layer: " + listNNInput + " 
Output-Layer: " + listNNOutput + " ]"; 
    } 
 
 
    public static <V> Phrase<V> jaxbToAst(Block block, AbstractJaxb2Ast<V> helper) { 
        List<Value> values = helper.extractValues(block, (short) 2); 
        ListCreate<V> inputLayer = 
            (ListCreate<V>) helper.extractValue(values, new 
             ExprParam(BlocklyConstants.INPUT_LAYER, BlocklyType.STRING)); 
        ListCreate<V> outputLayer = 
            (ListCreate<V>) helper.extractValue(values, new  
             ExprParam(BlocklyConstants.OUTPUT_LAYER, BlocklyType.STRING)); 
 
        List<AiLink<V>> listNNLinks = new ArrayList<>(); 
        for ( Expr<V> inputNode : inputLayer.getExprList().getEl() ) { 
            for ( Expr<V> outputNode : outputLayer.getExprList().getEl() ) { 
                AiLink<V> oneInputOutputLink = new AiLink<V>(inputNode, outputNode, 0); 
                listNNLinks.add(oneInputOutputLink); 
            } 
        } 
        return AiNeuralNetwork.make(inputLayer, outputLayer, listNNLinks,  
               helper.extractBlockProperties(block), helper.extractComment(block)); 
    } 
 
    @Override 
    public Block astToBlock() { 
        Block jaxbDestination = new Block(); 
        Ast2JaxbHelper.setBasicProperties(this, jaxbDestination); 
        Ast2JaxbHelper.addValue(jaxbDestination, BlocklyConstants.INPUT_LAYER,   
           getListNNInput()); 
        Ast2JaxbHelper.addValue(jaxbDestination, BlocklyConstants.OUTPUT_LAYER,  
           getListNNOutput()); 
        return  jaxbDestination; 
    } 
 
} 
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A.3 Changelog 
   
commit: cc7bcdbc7, author: vlebedynska, date: 2020-08-05 00:22:12  
   
  #24 - various bugfixes 
   
   
  commit: 37e710841, author: vlebedynska, date: 2020-08-03 00:36:36  
   
  #24 - various bugfixes: 
  - modified cursor behaviour on rl q learning modal header, modal 

dialog and hovering over player buttons 
  - changed the display of the node description in neural network 

popup if a node has no port defined 
  - fixed calculation of theta angle for the correct robot rotation 

after drawing the optimal path 
  - added more transparency value for path visited 
  - fixed server error that caused an empty configuration toolbox to 

load 
   
   
  commit: 43ccf7f68, author: vlebedynska, date: 2020-08-02 11:15:41  
   
  #24 - preparing of the test environment for testing rl and neural 

network feature. Added libraries needed for the offline 
installation of the Open Roberta Lab. 

   
   
  commit: 5d2608f2c, author: vlebedynska, date: 2020-08-02 11:09:54  
   
  #22 - minor bugfixes for RGB channel values and color parameters of 

the color sensor block 
  - minor design adjustments in the NN popup - added a background 

image, changed font, disabled dragging of the background image 
  - minor changes in program toolboxes for beginner and expert 
  
  #21 - updated RL Eisenbahn map 
  - commended out unnecessary console logging 
  - execution queue of rl blocks adjusted 
  
  #23 - implemented new class hyperparameterTuning and 

qLearnerParameterOptions, ProblemParams, TestInputData, 
TestResultfor interfaces for testing of the results of q-learning 
algorithm. 

  - added hyperparametherTuningTest.ts for result handling 
   
   
  commit: d7fa41cf3, author: vlebedynska, date: 2020-08-01 00:58:02  
   
  #22 - minor bugfixes for RGB channel values and color parameters of 

the color sensor block 
  - minor design adjustments in the NN popup - added a background 

image, changed font, disabled dragging of the background image 
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  #21 - added new RL map: stadt_End and updated Wald_Labyrinth and 
Eisenbahn_Design_End.svg 

  - implemented dynamic consideration of episodes and time entered by 
user 

  - minor refactorings for path finding from the svg map 
  - added a new class hyperparametherTuning.ts, which is a parameter 

test class for the Q-Learning-Algorithm. 
   
   
  commit: ad4253d4e, author: vlebedynska, date: 2020-07-29 23:56:49  
   
  #22 - extracted Color enum into class AiColorUtils 
  - added TODOs for future code improvements 
  - implemented new output node type: "led" in class AiOutput, added 

it to robotCommon.yml, new functionalities implemented in 
interpreter.robotMbedBehaviour.ts 

  - first draft of NNAlgorithm added to git - will be deleted in the 
next commit 

  - added new popup header to the neural network modal 
  - added duration and frequency as optional parameters to the node 

model in models.ts, implemented new properties in NodeImpl 
constructor in aiNeuralNetworkModule.ts 

  - added new colors to colorsMap map in aiNeuralNetworkUI.ts for 
coloring nodes in neural network 

   
   
  commit: 9609a8f77, author: vlebedynska, date: 2020-07-28 23:58:51  
   
  #22 - added new constants for the EV3 color sensor and added them to 

the enum Colour 
  - implemented the distinction between different types of colour 

sensor input: light, rgb and base colors in AiInputNodeColourSensor 
  - two additional output node types added and implemented : 

ai_nn_output_node_text and ai_nn_output_node_sound in AiOutput 
  - new blocks added to robotCommon.yml 
  - changed type of the ai_nn_output_node_text to OUTPUTNODE in 

blocks_compressed.js 
  - implemented two new input node types in 

interpreter.interpreter.ts, robotWeDo- and robotMbedbehaviour.ts 
  - for using EV3 as a display for displaying output results, a 

workaround for clearing display implemented, because the display 
actions are not syncronized 

  - bugfix for displaying text on the ev3 brick: in the simulation for 
robot.ev3.js, display.clear was moved to be the first statement 
that has to be executed 

   
   
  commit: 2d6eb3c47, author: vlebedynska, date: 2020-07-27 23:58:14  
   
  #10 - updated RlEnvironment class: changed the type of start and 

finishNodes to Phrase, added a new property map, changed the class 
constructor and the jaxbToAst method 

  - added two new properties to RlGainExperience qLearningEpisodes and 
qLearningTime, used them in the constructor and in the visitor 
method in Ev3StackMachineVisitor 
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  - updated RlObstacle class: changed the type of start and 
finishNodes to Phrase 

  - added new Blockly constants - MAP, QLEARNING_EPISODES, 
QLEARNING_TIME 

  - added rl_obstacles_easy_list to robotCommon.yml 
  
  #21 - implemented rl map selection functionality to 

createQlearningEnvironment method in 
interpreter.robotMbedBehaviour.ts 

  - moved creating module from robotMbedbehaviour constructor to the 
createQLearningEnvironment method 

  - in interpreter.interpreter.ts 
  - modified collecting of finish and start nodes in 

CREATE_Q_LEARNING_ENVIRONMENT via stack 
  - added episodes and time properties to RUN_Q_LEARNER opc 
   
   
  commit: c492066c4, author: vlebedynska, date: 2020-07-26 21:52:23  
   
  #10 - added and implemented new block ai_easy_list, which allows to 

easily add neurons to the layers of the neural network. To make the 
block compatible as a block of a list type, some minor adjustments 
have been made to the ListCreate class (added default list type); 

  - removed function for placing threshold on stack from 
Ev3StackMachineVisitor, as it's not longer needed 

  - added new blocks_compressed.js file with updated and new neural 
network blocks and updated reinforcement learning blocks 

  - updated ev3.program.toolbox.beginner.xml & 
ev3.program.toolbox.expert.xml with new blocks 

  - added default threshhold value to CREATE_INPUT_NODE opc, because 
no threshold value is transferred from the backend side 

  - added new property to the Player class of the Neural Network 
Module: isPlaying, created getter and setter for it 

  
  #21 - new background for reinforcement learning added - forest 

labyrinth 
  - adjusted the behaviour of the robot after releasing the pause 

button in processNeuralNetwork function 
   
   
  commit: 10a3eec64, author: vlebedynska, date: 2020-07-25 00:42:02  
   
  #10 - Improvement of the module for neural networks (in progress) 
  - added additional information to AiInputNodeColourSensor > now it 

transfers the name of the colour sensor displayed on the neural 
network playground 

  - removed some class definitions from roberta.css that defined the 
styles for aiNeuralNetworkPopup because they influenced the dynamic 
creation of the neural network 

  - added some class definitions that define the behaviour of the 
mouse, the modal-header background and the buttons on the neural 
network playground 

  - in simulation.js added a new function to the constructor of 
RobotMbedBehaviour - setPause. This function is now passed to 
RobotMbedBehaviour and is used to pause program execution and robot 
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activity when the pause button in the neural network modal is 
pressed. 

  - new file bound to main.js - the player for the neural network 
module 

  - added some test files to test the behaviour of -webkit-filter- 
properties in chrome: detected -webkit-filter- doesn't work with 
svg elements 

  
 - added a new object to the aiNeuralNetworkModule.ts - Player 

responsible for event handling when the play or pause button is 
pressed in the neural network module 

 - added a css class to the svg - svgViewBoxNNModule and defined the 
viewbox. Now the size of the viewbox is set dynamically depending 
on the bbox of the svg. Bbox takes the minimum square around all 
svg elements and defines x, y coordinates and width and height 

  
 - on the aiNeuralNetworkUI.ts: 
  - the class aiNeuralNetworkUI.ts extended by EventTarget 
  - added new colorsMap, which maps colors from the color sensor to 

colors on the UI (they are needed to map colors from the color 
sensor to the corresponding nodes in the neural network) 

  - minor refactorings in the drawLayer function: UI of the nodes is 
moved to the function addNodeColor; text anchor added for the 
descriptions of the input layer nodes 

  - added new function to the constructor - drawPlayer, which is 
responsible for drawing all player elements (play and pause button) 
and for event handling from the UI 

  
 - in the linkUI.ts: 
  - added css classes to the slider shape depending on mousedown and 

mouseup events 
  
 - in models.ts added additional optional property color for the 

interface node 
 - implemented the new property color in the NodeImpl class 
  
 - created and implemented the new class Player (player.ts), which is 

responsible for event handling when the play or pause buttons are 
pressed 

  
 - adapted create_input_node_colour_sensor opc, so that it now creates 

a node directly with stmt data; 
 - added new function in the robotMbedBehaviour to the constructor 

simSetPause, which is transferred from simulation.js. 
 - bound event listeners for "play" and "pause" events to the function 

processNeuralNetwork. For the corresponding event setBlocking and 
simSetPause are set to true and false respectively. This causes 
program execution and robot activity to be (un)paused. 

 - implemented additional functionality: the sensor values in the 
input and output nodes are only updated if the value of the sensor 
in the input layer has changed. If not, the output layer is not 
updated. 

   
   
  commit: 081435ded, author: vlebedynska, date: 2020-07-24 00:45:35  
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  #10 - Improvement of the module for neural networks (in progress) 
  - Refactoring of the ai.neuralNetwork.ts module > Restructuring of 

the ai.neuralNetwork.ts > Outsourcing of all classes into different 
files, refactoring and extraction of properties into interfaces (in 
models.ts) and implementation in impl classes 

  - added new files in main.js, generated new js files and added them 
to OpenRobertaServer staticResources 

  - added a new function in the aiNeuralNetworkModule to normalize 
nodes that the Neural Network Module receives from the stack in 
robotMbedBehaviour. These nodes are transferred to the nodes that 
the Neural Network Module needs. 

  - added new feature to the aiNeuralNetworkUI > now the value of each 
node is displayed inside the node itself The drawLayer function 
implements an event listener - every time the value of the node is 
changed, the text inside the node is updated. 

  - corrected calculation of the slider value considering the start 
and end point 

  - improved display of the slider value above the slider shape: for 
integer values the superfluous decimal places are hidden 

   
   
  commit: d3e5bf4cf, author: vlebedynska, date: 2020-07-23 16:21:33  
   
  #10 - improving neural network module (work in progress) 
  - added new property nodeData as JSON object to AiInput.java, 

AiInputNodeColourSensor.java, AiOutput.java > now the additional 
information like the name of the input / output node is transferred 
to the Neural Network Module, so that it can be displayed as a 
description for each input and outputNode 

  - the function create_input_node in interpreter.interpreter.ts has 
been updated: it no longer creates an additional node object, but 
adds the properties directly the node. 

  - added nodeData to the input- and output nodes visitor functions in 
Ev3StackMachineVisitor 

  - added a new functionality in the ai.neuralNetwork.ts 
createNeuralNetwork - addNodesName. 

  - implemented a new function addNodesName - each node in the layer 
now gets an additional parameter node.name 

  - to the drawLayer function added the functionality to set node's 
name / node's description dynamically 

  
  - implemented a functionality to display a current slider value 

above the slider shape while the slider shape is moved 
  - for this the LinkUI class is extended by the property 

sliderValueText. When creating a new SVGSlider, this property is 
passed to the SVGSlider. 

  - updated sliderValue function -> added new functionality 
updateSliderValueText which updates the text field in the svg 

  - added functionality for positioning each sliderValueText above the 
current slider shape 

  
  - minor changes in the layout of the neural network module 
  - popup size changed 
  - modified roberta.css > class simConfigNeuralNetworkModal modal-

dialog updated and the duplicate removed 
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  - added to the styles.css new classes inputNodeName, outputNodeName 
to display the names of input and output nodes; added a new class 
inputNode, which is responsible for the design of the inputNodes in 
general 

   
   
  commit: a85c93bc9, author: vlebedynska, date: 2020-07-22 23:47:48  
   
  #10 - improving neural network window (work in progress) 
  - started implementing the ability to see the description for each 

node in the popup. For this reason, a new property nodeData was 
added to all nodes, which transports information such as the name 
of the input/output sensor and its port 

  - extended visitAiInputNode with a new property - ultrasonic 
  - implemented the function addNodesName in the ai.neuralNetwork 

module, which now extends the parameters node.name by sensor value 
name and port 

  - extended the interpreter.interpreter.ts and updated an extended 
input node function with the new data parameter. 

  - minor refactorings 
  
  Neural network - slider - status update. Added correct initial 

position of the slider shape. 
   
   
  commit: 580fd9e1d, author: vlebedynska, date: 2020-07-21 23:53:04  
   
  #8 - integration of the RL popup 2.0 in Open Roberta Lab (finished) 
  - completed implementation of setting the robot position to the 

beginning of the optimal path: 
  - extended resetPose function in robot.js with additional optional 

parameter - pose; 
  - extended updateBackground and setBackground functions by the 

optional parameter poses. If the poses array is not empty, 
resetPose function is called from robot.js. 

 - extended aiReinforcementLearningModule.ts by the functionality to 
calculate the pose parameters for the robot (x-point, y-point and 
theta); These are scaled depending on the viewbox-size which passed 
to the simulation and adapted to the canvas coordinate system. 

 - extended models.ts by an interface Pose 
 - added functionality to drawOptimalPath to scale the scene to be 

transmitted. 
 - added qValueLookup.js - this file is automatically generated from 

qValueLookup.ts when compiling. 
  
  #10 - started to improve neural network window (work in progress) 
  - implemented the consideration of startPoint and endPoint 

parameters when dragging the slider shape; 
   
   
  commit: fa5fe8110, author: vlebedynska, date: 2020-07-20 00:18:03  
   
  #8 - integration of the RL popup 2.0 in Open Roberta Lab (work in 

progress) 
  - completed the implementation of the functionality that pauses the 

rl algorithm when someone hides the popup 
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(addEventListenerToRLPopup, added new property to the 
QLearningAlgorithmModule constructor - jQuery popup selector), 
changed the visibility of the pause() function - now it can be 
called by closing the popup. 

  
  - Bugfix: svg with the final path could not be copied to the robot 

simulation for some reason - it got broken during the transfer 
process: 

  - added Eisenbahn_broken.svg for testing purposes, added correct svg 
file (svg_ok) and broken svg file for comparison purposes 

  - configured the test environment in index_2.js - created and 
implemented async function loadSVG() and bound all rl learning 
functionalities 

  - reason for this behaviour: 
  (1) When transferring svg via URI, the svg playground broke because 

of plaintext elements > added default text values 
  (2) When transferring svg via URI tspan elements could not be 

processed - this is now fixed in the drawOptimalPath function of 
the aiReinforcementLearningModule 

  (3) The svg transmitted via URI was also broken because the 
namespace of svgjs - xmlns:svgjs="http://svgjs.com/svgjs"- and its 
references in certain elements - like this one: 
svgjs:data="{"leading":"1.3"} - were unknown. For this reason, they 
were removed from svg by two regular expressions. 

  - Start of positioning the robot to the optimal path start 
  
  #21 - improved function pause: now if the state is already STOP, it 

is no longer possible to change to the PAUSE state 
   
   
  commit: 860f643ed, author: vlebedynska, date: 2020-07-18 23:48:21  
   
  #8 - integration of the RL popup 2.0 in Open Roberta Lab (work in 

progress) 
  - started implementing a functionality that pauses the rl algorithm 

when someone hides the popup (in aiReinforcementLearningModule.ts, 
in progSim.controller.js and in interpreter.robotMbedBehaviour.ts) 

  
  #21 - update svg Eisenbahn_Design_End.svg due to minor design 

changes 
  - new class qValueLookup created, implemented qValueLookup.ts in 

main.js and referenced it in require.js 
  - added new css styles for rho, rho-active, rho-text-active and for 

stars representing the current qValue: star, newStar, oldStar 
  - added new interface QValue to models.ts and a new property 

highestQValue to the interface QLearningStep 
  - in the class QValueStore added a new private local variable - 

highestQValue and a new functionality to check and update the 
current highest qValue. 

  - added new functionalities in the class qValueLookup 
(getOldNumberOfStars, getNewNumberOfStars, 
getAndUpdateNumberOfStars). The aim of this class is to calculate 
the current number of stars based on the current qValue and the 
current highest qValue. 

  - implemented class Key, which is a helper class for qValueLookup 
  - in the class Visualizer: 



A.3 Changelog  136 
 

 

  - added new functionalities to visualize the current and previous 
qValue for the current action (showCurrentQValue, bound 
qValueLookup class) and modified the presentation of rho values 

  - bug fix in onQLearningStep - changed newQLearnerStepData from 
global to local variable because it caused problems with styling 
elements of the current qLearner step (it was overwritten by the 
new qLearningStepDate before the animation of the previous step was 
finished) 

  - minor bug fixes for finding elements in the svg playground 
   
   
  commit: ae0ae9f38, author: vlebedynska, date: 2020-07-17 00:12:01  
   
  #8 - integration of the RL popup 2.0 in Open Roberta Lab (work in 

progress) 
  - added new simBackground - Eisenbahn_Design_End.svg and updated 

styles.css with classes for visualizing of rho values 
  - redesigned function updateBackground in simulation.js. Now it 

creates a new canvas element and converts the svg loaded from the 
popup into the png format. The reason for this change is that the 
robot created artifacts on the background when rendering. 

  
  #21 - improved workflow for sending the final svg to the simulation 

in aiReinforcementLearningModule.ts: 
  - changed execution of the updatebackground function to async; 
  - added viewbox and size property to svg that is sent > background 

is cropped and sent to the simulation without the navigation panel 
  - change of the svg structure led to minor refactorings for finding 

elements in visualizer.ts 
  - added showCurrentQValue function, which displays a q-value of each 

step in visualizer.ts 
  - improved display of the rho value: now not only the text is 

changed in each step, but also the colour of the background 
rectangle 

  - added some test parameters to index.html and index_2.js for 
testing purposes 

   
   
  commit: 4f15b7374, author: vlebedynska, date: 2020-07-16 00:46:51  
   
  #8 - integration of the RL popup 2.0 in Open Roberta Lab 
  - workflow adapted for asynchronous execution of 

setUpQLearningBehaviour(), runQLearner(), drawOptimalPath() (work 
in progress) 

  - refactored rl method signatures in interpreter.aRobotBehaviour.ts 
and sub-classes 

  - added uptdateBackground function to QLearningAlgorithmModule 
constructor 

  
  #19 - moved QlearningAlgorithmParameters, ResultState, 

OptimalPathResult, Obstacle and TakeActionResult interfaces from 
aiReinforcementLearningModule.ts to models.ts 

  - moved RlUtils from aiReinforcementLearningModule.ts to qLearner.ts 
  - minor refactorings in qLearner.ts 
  - in the visualizer.ts: 
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  - added new class properties, added get method for _svg, extracted 
newQLearnerStepData as member variable fromQLearningStep function 

  - refactored drawOptimal method: split in separate methods - 
checkAndUpdateOptimalPath(), getCombinedPath() and 
drawFinalOptimalPath() 

  - minor refactorings and bug fix in getCombinedPath() method because 
the currentPathArray changed the original array and not the local 
one 

  - added new function drawCurrentOptimalPathOneMap, which now draws 
the current optimal path on the map from the start to the finish 
node 

  - added path animations to drawFinalOptimalPath() and 
drawCurrentOptimalPathOnMap() 

  - added new style in style.css for the current optimal path on the 
map 

   
   
  commit: a91e7719e, author: vlebedynska, date: 2020-07-15 23:59:26  
   
  #8 - integration of the RL popup 2.0 in Open Roberta Lab 
  - workflow addapted for async execution of runQLearner() and 

drawOptimalPath() 
  - minor changes in interpreter.interpreter.ts 
  - added svglookup.js to main.js 
   
   
  commit: 676206db2, author: vlebedynska, date: 2020-07-13 22:53:28  
   
  #20 - finished implementing caching mechanism for elements 

(elements, texts, paths) that have already been found and used: 
  - refactored and improved svglookup.ts (better encapsulation of 

functions) 
  - implemented using of new caching functionality in visualizer.ts 
   
   
  commit: 5d668121f, author: vlebedynska, date: 2020-07-12 23:59:08  
   
  #8 - integration of the RL popup 2.0 in Open Roberta Lab 
  - added style.css to staticResources, added the svg background 
  - added new configurations and files to tsconfig2Server 
  - generated files from ts to js using tsconfig2Server 
  - connected new files from Reinforcement Learning Module to the 

global project via require.config in main.js 
  - bug fixes after the implementation of the new module in Open 

Roberta Lab (in particular in interpreter.robotMbedBehaviour.ts) + 
some minor refactorings in aiReinforcementLearningModule.ts (e.g. 
changing the names of the modules for a better export from ts to 
js) 

  - cleaned up svgPlayground in WedoInterpreter - all files no longer 
needed deleted 

  
  #19 - started the optimization of qLearner steps visualization: 

created a new class svglookup.ts to optimize performance by caching 
svg elements 

  - implemented the lookup algorithm for text elements 
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  commit: 764bd5a66, author: vlebedynska, date: 2020-07-11 00:04:58  
   
  #19 - updated the test svg -> all lines and polylines changed to 

paths 
  - in index_2.ts (interface to the RobotMbedBehaviour) added a call 

of the function drawOptimalPath 
  - minor refactorings to adapt the interface to the 

RobotMbedBehaviour: modified obstacleList from Array to Array 
  - in the runQLearner function extended value stored by the 

qLearningSteps array: besides the information about the 
qLearnerStep itself, the optimal path is calculated and passed to 
the instance of the PlayerImpl 

  - added an event listener to the drawOptimalPath function, which now 
reacts to a "stop" event, finds the optimal path and passes the 
result to the visualizer for drawing 

  - minor additions in the Player interface: timer added as a new 
property and the values of qLearnerSteps property changed according 
to the changes in runQLearner -> this led to minor refactorings in 
playerImpl.ts 

  - fixed a bug in filterOutNotAllowedActions, because the previous 
output of the function was null. 

  - in the visualizer, Shape was changed to Path, because there are no 
more lines or polilines on the svg 

  - adjusted the setMarker function, because the markers were too big 
for this map 

  - refactored onQLearningStep function as newQLearnerstep now comes 
as one object consisting of two parts 

  - added showCurrentOptimal function to show the current optimal path 
on svg playground 

  - two bug fixes in the function resetAllValues 
  
  - 
   
   
  commit: 8c008f0a1, author: vlebedynska, date: 2020-07-10 00:29:57  
   
  #19 added two new classes for line follower - inner and outer paths 
  - made qLearnerAlgorithm in aiReinforcementLearningModule.ts global 

to be able to access the instance in different functions 
  - outsourced search and creation of optimal paths in the qLearner 

and visualizer 
  - started to connect drawOptimalPath to the interface of 

RobotMbedBehaviour 
  - added second parameter in function onTimerClick: 

executionDuration. Depending on the total execution duration all 
animations are now calculated. Therefore the function 
createAndDispatchEvent was changed: it now also transfers the 
executionDuration as detail parameter. 

  - new button - startForOneStep - added and it's functionality 
implemented in visualizer and timer (function playOneTick). 

  - added a help function in qLearner to find the optimal path 
  - refactored the function callTick in timerImpl.ts : (1) added 

isRunning flag to prevent a tick being called by different 
threads/twice, (2) changed setInterval to setTimeout to allow 
robust control of the timer running state 
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  - added new properties to the Visualizer to store values centrally, 
the functions that implement these values have been refactored 

  - extracted actions from visualizeActionOnMap into the smaller 
single functions (e.g. showCurrentRho, showCurrentStartNode, 
resetAllValues etc.) 

  - added a function for resetting of values after each step 
  - added animation sequence to the onQLearningStep function 
  - implemented new function delay Visualizer 
  - refactored function drawOptimalPath to drawPath and moved it from 

aiReinforcementLearningModule.ts to the Visualizer 
  - moved findPathWithIds from RLUtils to the Visualiser class 
  - further minor refactorings in aiReinforcementLearningModule.ts 
   
   
  commit: 6e3a11d0a, author: vlebedynska, date: 2020-07-08 23:59:19  
   
  #19 - new extended test svg added 
  - changed the qLearningParams to optimize the output of the 

algorithm 
  - added new class in style.css - node-not-visited, minor style 

changes 
  - changed the test number of episodes and the total time 
  - implemented a new function in utils.ts to convert seconds to the 

common time format: hh:mm:ss 
  - in the class Visualizer added new properties to store animation 

elements from the initial and previous state 
  - animation functionality implemented to each step 
  - added a new function setInitialValuesOnMap to initialize initial 

algorithm values setup before starting the algorithm and 
implemented it in initialize function of playerImpl.ts 

  - outsourced functionality to set start and finish state, set total 
time and set total number of episodes from setInitialValuesOnMap 
function 

  - added functions to visualize the start node of the algorithm and 
the finish node in the navi bar 

  - added animation to the active stroke, added parameters for easier 
understanding of the animation direction 

  - started developing animation timeline based on TS promises 
  - implemented help delay function 
   
   
  commit: 00d5f2e51, author: vlebedynska, date: 2020-07-07 23:55:12  
   
  #19 - added function to visualise an action on the map 
  - added stroke animation within one step 
  - help function implemented in Utils to calculate the length of the 

current shape 
   
   
  commit: 26cada53b, author: vlebedynska, date: 2020-07-06 23:50:59  
   
  #19 - added styles.css and defined classes for active, inactive, 

visited nodes, paths and lines 
  - values added for the enum Rho for its string representation in UI 
  - function onQLearningStep updated: now another parameter is passed 

to the visualizer: the length of the array qlearningSteps 
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  - Visualizer class extended with the parameters nodeStartOnMap, 
nodeFinishOnMap, path and line to store UI elements from the 
previous qLearningStep 

  - functionalities for visualisation of QLearningStep added: view 
changes of UI components in svg map 

  - minor refactorings in aiReinforcementLearningModule.ts and in 
qLearner.ts: e.g. startStateQlearner renamed to startFinishState 

   
   
  commit: 419144c6d, author: vlebedynska, date: 2020-07-05 23:59:19  
   
  #19 - Added external react.js libraries (react.development.js & 

react-dom.development.js) to the project and configured the 
required dependencies 

  - returned to svgdotjs library and started implementing animations 
  - visualizer directly connected to the player (changes of the 

initialize function in the Player interface) 
  - default speed value added in the playerImpl.ts, added visualiser 

via initialize function and implemented event listeners for 
playerStarted, playerStopped and playerPaused. 

  - bugfixes: changed this > that for correct event handling 
  - removed qLearnerView - react implementation of the module, because 

of strategy changes - it's not needed for now anymore. 
  - in timerImpl.ts changed callTick, so it clears interval every time 

the function is called, added variable speed for dynamic speed 
changes 

  - implemented event logging for stop, play, pause states, tick and 
state changing 

  - enhanced functions for timer stop, pause and play. The function 
play is getting new parameter now - speed, which regulates the 
speed of the algorithm. 

  - added error handling for the case if the button is pressed more 
then once (function updateRunningState) 

  - extended visualizer.ts to EventTarget 
  - implemented addEventListeners function in visualizer.ts, which 

catches all click events the user has made on UI elements 
  - implemented startPlayer, stopPlayer and pausePlayer functions that 

dispatch events if the buttons are pressed 
  - cleaned tsconfig.json from react libraries 
  - renamed utils and visualiser 
   
   
  commit: a048afef0, author: vlebedynska, date: 2020-07-03 23:43:06  
   
  #19 - Connection of require.js and react framework to RL module (in 

progress) 
  - added test react project 
  - downloaded and connected react libraries for TypeScript 
   
   
  commit: 015c1c359, author: vlebedynska, date: 2020-07-02 21:35:03  
   
  #19 - Connection of require.js and react framework to RL module (in 

progress) 
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  - playerImpl: implemented play function and onTimerTick, bound event 
handling, added qLearningSteps, timer and view properties to 
constructor 

  - added qLearningSteps property to Player interface 
  - added some test files (index.html, index.js, test.jsx, 

qLearnerview.js, map.js) 
  - added problem, alpha, gamma, rho and nu properties to the 

constructor of QLearningAlgorithm 
  - refactored runQLerarner function in 

aiReinforcementLearningModule.ts 
  - minor refactoring of variable names 
   
   
  commit: 0ca215d96, author: vlebedynska, date: 2020-07-01 19:49:26  
   
  #19 - Connection of require.js and react framework to RL module (in 

progress) 
  - svgdotjs library connected via require.js 
  - added the require.config-function to main.js 
  - Changes to tsconfig.json (changed attribute "paths", added new 

compiler option "sourceMap" and changed the option "target" from 
es5 to es2017) 

   
   
  commit: c0b32d2a1, author: vlebedynska, date: 2020-06-30 23:58:52  
   
  #19 - added some test svg backgrounds 
  - implemented some functions with dummy values to investigate how 

react and svg proxy selector exactly works with 
PopUPDesign_Minimal.svg 

  - index_1.js implemented as interface to RobotMbedBehaviour 
  - created and implemented functions for initializing q-learning 

environment (separated visualization of data, from data processing 
and data storage) 

  - moved the components responsible for the UI from 
aiReinforcementLearningModule.ts to Visualizer.ts and connected 
them ( e.g. getActions(), processNotAllowedActions) with 
aiReinforcementLearningModule.ts 

  - new property - time - added to interface Clock, changed properties 
of QLearningStep to readonly 

  - started to implement the playerView.jsx 
  - extracted one single step of the qlearning algorithm into function 

qLearnerStep, bound event handling every time the value of the 
qlearning step changes 

  - moved components of qlearning algorithm from 
aiReinforcementLearningModule.ts to qLearner.ts 

  - implemented the Timer class which is responsible for time counting 
and management and which will be connected to player control 
buttons in the qlearning popup 

  - added three new functions to Utils.ts to convert data received 
from RobotMbedBehaviour to the data required by the RLModule and a 
helper function to filter out not allowed from the allowed actions 

  - implemented functions for visualising of not allowed actions in 
the Visualizer.ts 
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  commit: 6ffdd0763, author: vlebedynska, date: 2020-06-28 23:59:07  
   
  #19 - defined data models as interfaces for ProblemSource, Player, 

StateStatus, SectionState, QLearningStep, QLearnerConfiguration, 
QValueStore, Action, ProblemState, Clock in models.ts 

  - defined enums for Rho, Nu, RunningState 
  - renamed Clock to ClockImpl class and extended it by Clock 

interface 
  - renamed Player to PlayerImpl class and extended it by Player 

interface 
  - tsconfig.js updated: added new files to compile, added 

es2015.promise lib, changed module to amd from commonjs 
  - created class Utils and implemented file_get_contents function 

using Promise concept 
  - class Visualiser extends ProblemSource interface 
  - in the class Visualiser implemented new functions using Promise 

concept: preload, loadSvg, which now allows asynchronous Visualiser 
instance initialisation 

  - implemented functions getSections for getting all available 
actions for a given problem, scaleSVGtoSize for scaling the given 
svg to size needed, help function fitInNewSize 

  - Size interface implemented 
   
   
  commit: 398d36d7d, author: vlebedynska, date: 2020-06-28 00:33:13  
   
  #19 - created classes Player, Visualizer, Clock 
  - added test svg to the project 
  - created new tsconfig for compiling typescript files to JavaScript 
  - created index.ts with dummy data for testing and bound the 

aiReinforcementLearningModule.ts & svgdotjs library to it 
  - started to implement the Promise concept in the Visualizer.ts 
   
   
  commit: b38f991db, author: vlebedynska, date: 2020-06-27 15:05:21  
   
  #8 - added svgdojs library 
   
   
  commit: 598ccbc8c, author: vlebedynska, date: 2020-06-27 11:56:30  
   
  #19 - exploring the reactjs technology for optimal value changes in 

the RL popup 
  - imported reactjs and react-svgmt libraries for dynamic value 

changes and comfortable manipulation of svg 
  - created the test project and implemented the timer that changes 

the text value in the svg using reactjs 
  - added the svg with minimal design to be used prospectively in the 

RL module and implemented the test timer there 
   
   
  commit: 98831eb99, author: vlebedynska, date: 2020-06-25 18:13:30  
   
  #11 - Refactoring of the NN module (finished) 
  - aiNeuralNetworkModule added to main.js and tsconfig2server.json & 

tsconfig.json 
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  - connected new neural network module to processNeuralNetwork 
function in interpreter.robotMbedBehaviour.ts 

  - generated new js files from ts files 
  - added methods from aiReinforcementLearningModule to 

interpreter.aRobotBehaviour.ts (#8) 
  - various bux fixes after the implementation of 

aiNeuralNetworkModule into robotMbedBehaviour 
  - property externalSensor changed to more abstract "value" for 

create_input_node_colour_sensor opc (#8) 
  - opcs for processing the blocks create_q_learning_environment, 

setup_q_learning_behaviour, run_q_learner, 
q_learning_draw_optimal_path in interpreter.interpreter.ts added 
(#8) 

   
   
  commit: 85de23cda, author: vlebedynska, date: 2020-06-24 19:41:12  
   
  #11 - Refactoring of the NN module (work-in-progress) 
  - property "externalSensor" in interpreter.interpreter.ts changed to 

more abstract "value" 
  - aiNeuralNetwork and AiNeuralNetworkUI connected to 

AiNeuralNetworkModule 
  - created two properties in AiNeuralNetwork: layers and links and 

generated getters for them 
  - new functionality for calculating the values of the nodes of the 

neural network implemented 
  - implemented new functionality for getting input and output layers 

of the neural network 
  - created the new class Ev3MotorOutputNode, which extends the class 

Node. The new class has all properties that current 
Ev3MotorOutputNodes need: port and type. In the future the output 
node types shall be better differentiated. 

  - added drawing neural network to the constructor of 
AiNeuralNetworkUI 

  - integration of aiNeuralNetworkModule into 
interpreter.robotMbedBehaviour.ts 

  - deleted old code for processing of aiNeuralNetwork in 
interpreter.robotMbedBehaviour.ts 

  - bound aiNeuralNetworkModule to processNeuralNetwork function in 
interpreter.robotMbedBehaviour.ts 

   
   
  commit: 777b37142, author: vlebedynska, date: 2020-06-23 23:28:04  
   
  #11 - Refactoring of the NN module (work-in-progress) 
  - new property added to the class Node: position Y 
  - created getters and setters for class Node 
  - event handling added to LinkUI class 
  - extracted LinkUI slider values in constants 
  - added functionality to create path for link from link 
  - added activate and deactivate link functionalities 
  - added functionality to identify x an y coordinates of a node 
  - added readonly property for all properties of SVGSlider 
  - created getters for sliderShape and path members in SVGSlider 
  - created get method and implemented set method for sliderValue 

(responsible for event handling when the slider value changes) 
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  - extended createSlider method in SVGSlider for the event handling 
  - SVGUtils created and implemented: e.g. path/point calculations 
   
   
  commit: 095f6f5cc, author: vlebedynska, date: 2020-06-22 23:32:40  
   
  #11 - Refactoring of the NN module (work-in-progress) 
  - moved design/draw methods to LinkUI class. 
  - implemented event handling fot he class LinkUI 
  - extended setSliderValue 
  - implemented class Link 
   
   
  commit: 930c6cf95, author: vlebedynska, date: 2020-06-22 01:18:59  
   
  #11 - Refactoring of the NN module started 
  - started adding data types to class members, parameters of the 

methods 
  - moved functionality from RobotMbedBehaviour.ts & 

RobotMbedBehaviour.js to aiNeuralNetworkModule > 
ai.neuralNetwork.ts 

  - better encapsulation - new classes created and filled with 
functionalities: 

  - Draggable (responsible for dragging objects) 
  - SVGSlider (responsible for the slider to adjust the link weights) 
  - AINeuralNetworkUI (responsible for drawing links and nodes) 
  - AiNeuralNetworkModule (responsible for central data storage and 

initialization the main SVG.SVG()) 
  - removed old test files from the aiNeuralNetworkModule 
   
   
  commit: cd26847f6, author: vlebedynska, date: 2020-06-14 23:45:56  
   
  #18 - extracted QLearning from the interpreter.robotMbedBehaviour 

into a module aiReinforcementLearningModule 
  - connected the new module with the robotMbedBehaviour 
  - added ai.qlearning as a module in main.js 
  - moved all functionalities from js to ts 
  - comprehensive refactoring in aiReinforcementLearningModule 

including data typing and migration of variables into interfaces 
  - added aiReinforcementLearningModule to tsconfig.json and 

tsconfig2server.json 
  - generated .js files for aiReinforcementLearningModule from .ts 
  - cleaned up progSim.controller.js from temporarily added QLearning 

functionalities 
  - #11 started to refactor aiNeuralNetworkModule 
   
   
  commit: d91157155, author: vlebedynska, date: 2020-06-13 15:45:57  
   
  #8 - client-side implementation of RL blocks 

(ai_q_apply_learning_rule, ai_q_barrier_mountain, 
ai_q_draw_best_path, ai_q_learner_config, 
ai_q_learning_states_and_actions_map) 

  - implemented the processing of new blocks in the stack machine 
(interpreter.interpreter.js) 
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  - implemented the q-learning algorithm in robotMbedbehaviour 
(migrated RL functionalities from simConfigRLQLearningModal) and 
linked it to the RL processing functions (temporary version in js) 

  - created a new js class QLearningAlgorithmModule to centrally 
store, process and visualize the data required for the Qlearning 
algorithm 

  - updateBackground function passed from the SIM module to the 
QLearningAlgorithmModule and called in the QLearningAlgorithmModule 
in the drawOptimalPath() function 

  - temporarily commented out .ts files in tsconfig.json - and 
generated a new interpreter.constants.js 

   
   
  commit: 523a3f51c, author: vlebedynska, date: 2020-06-11 12:20:25  
   
  #14 - implemented visitor methods of Ev3StackMachineVisitor, 

Ev3SimValidatorVisitor and Ev3UsedHardwareCollectorVisitor for 
classes: RlEnvironment, RlGainExperience, 
RlObstacle(Ev3StackMachineVisitor only) and 
RlSetUpQLearningBehaviour 

  - created new class for RlDrawOptimalPath block 
  - implemented make method, JaxbToAst and astToBlock methods for 

RlDrawOptimalPath (#6) 
  - added new astTest for RlDrawOptimalPath block 
  - added test resources for RlDrawOptimalPath block 
  - added new constants to constantsSource.txt 
   
   
  commit: 383ae1f1f, author: vlebedynska, date: 2020-06-10 22:28:23  
   
  #6 implemented astToBlock methods for RlGainExperience, RlObstacle 

and RlSetUpQLearningBehaviour 
   
   
  commit: c8772c0df, author: vlebedynska, date: 2020-06-10 22:05:57  
   
  #6 refactoring of RlEnvironment, RlGainExperience, RlObstacle and 

RlSetUpQLearningBehaviour classes 
  - Utils methods moved to a new class RlUtils.java 
   
   
  commit: 87bd20e97, author: vlebedynska, date: 2020-06-10 02:29:19  
   
  #6 - new classes created for RlEnvironment, RlGainExperience, 

RlObstacle and RlSetUpQLearningBehaviour 
  - implemented jaxbToAst and "make" methods for all of them 
  - astToBlock method implemented for RlEnvironment 
  - added new Blockly type Obstacle 
  - new Blockly constants added 
  - added new blocks to robotCommon.yml 
  - created Ast tests for new reinforcement learning blocks 
  - changed test resources for RL blocks 
  - updated the ev3 toolbox for beginners 
  - updated blockly resources with changes to reinforcement learning 

blocks 
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  commit: 3e2424e9b, author: vlebedynska, date: 2020-06-08 09:52:47  
   
  #16 - QLearning algorithm integrated into the simulation: 
  - transferred the algorithm from the test environment to the 

simulation 
  - created a new button to open the qlearning popup 
  - created a new popup for the visualisation of the learning process 
  - added style definitions for the new popup in roberta.css 
  - integrated event handling for hidden and displayed popup: if the 

popup is switched to the hidden mode, the content of the html is 
deleted, if the popup is switched to display, the q learning 
algorithm starts 

  - defined an updateBackground function in simulation.js that is 
called when the learning process has been completed and the optimal 
path has been created and drawn. It creates a new image from the 
source (string with ..-content) and calls the setBackground 
function on the onload event. -> the background is thus dynamically 
loaded as soon as the qlearning algorithm and the calculation of 
the best path and its drawing are completed. 

  - prepared test svg image (marsTopView.svg) with 8 nodes added to 
simBackgrounds 

   
   
  commit: ef22204fb, author: vlebedynska, date: 2020-06-07 16:55:37  
   
  #15 - amended drawing of the optimal path - the best single paths 

are now combined to one single path, 
  - improved function getBestAction - now it can select the best 

action only from the available actions and no longer randomly 
  - added function to hide all paths except the optimal one 
  - finishNode extracted as a constant 
  - added a predefined viewbox to the svg 
   
   
  commit: 74f049227, author: vlebedynska, date: 2020-06-07 12:10:56  
   
  #15 - added a function for dynamic generation of rewards for 

finishNode neighbors 
  - amend comment for the last commit: added an animation to the 

current action that shows the movement of the path to the target 
node (0c72bb6, 0c72bb6f4a69ab0830194b6f6de0b9afa5a2e018) 

   
   
  commit: 0c72bb6f4, author: vlebedynska, date: 2020-06-06 23:48:36  
   
  #15 - refactoring of the best path calculation according to the best 

q-values and its temporary storage 
  - added function to draw the best path 
  - added function to dynamically generate of statesAndActions matrix 

from the .svg file 
  - added function to find path by id 
  - added viewbox to svg2 
  - added new test svg file with Mars landscape and 8 nodes 
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  commit: 2d0eafea3, author: vlebedynska, date: 2020-06-03 10:18:59  
   
  #15 - added the best path calculation according to the best q-values 

and its temporary storage 
   
   
  commit: 7396c3bf6, author: vlebedynska, date: 2020-06-01 23:59:59  
   
  #15 - added the svg test graph - 

Reinforcement_Learning_Playground.svg 
  - connected UI to the q-learning process: sync of stroke-width 

according to its q-value 
   
   
  commit: aa2cc491e, author: vlebedynska, date: 2020-06-01 17:12:07  
   
  #13 created AST test resources for five RL blocks: 

ai_q_apply_learning_rule, ai_q_apply_learning_rule, 
ai_q_apply_learning_rule, ai_q_learner_config, 
ai_q_learning_states_and_actions_matrix_3_x_3 

  - added new test class for RL blocks 
  
  #14 updated blockly_compressed.js & blocks_compressed.js 
  - added language support for RL blocks for English and German 
  - updated toolbox.beginner.xml for EV3 with new RL blocks 
   
   
  commit: 87046449e, author: vlebedynska, date: 2020-05-29 00:23:06  
   
  #12 implemented classes QValueStore, QLearningAlgorithm and Test; 
 various bug fixes in the first draft of QLearning algorithm 
   
   
  commit: eff38853f, author: vlebedynska, date: 2020-05-27 23:15:00  
   
  #12 implemented the ReinforcementProblem class 
   
   
  commit: 13888cea6, author: vlebedynska, date: 2020-05-26 23:10:05  
   
  #11 in progress: extracting ai functionality to a separate TS-Module 
  - created a new aiNeuralNetwork module 
  #12 started implementing the Q-Learning-Algorithm 
  - defined the basic structure 
   
   
  commit: 0eb7b1471, author: vlebedynska, date: 2020-05-26 00:07:18  
   
  #11 started to extract ai functionality to a separate TS-Module 
   
   
  commit: b1b274a05, author: vlebedynska, date: 2020-05-25 18:03:16  
   
  #10 when the slider is selected and moved, the line is visually 

highlighted 
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  commit: 0d984e507, author: vlebedynska, date: 2020-05-24 23:02:17  
   
  #10 added slider-functionality for each link line (temp JS version): 
  - added functionality to create generically sliders for each link-

line 
  - created generic function for svg path length measurement for 

weight calculation based on the position of the slider on the svg 
path 

  - implemented drag-functionality for the slider by using the 
closestPoint algorithm 

  - added event handlers for mousemove, mousedown and mouseup 
  - changes of the slider position along the svg path immediately 

update the link-line stroke width 
   
   
  commit: b5213aab2, author: vlebedynska, date: 2020-05-21 20:29:12  
   
  #10 adding generated JS files for link highlighting functionality 
   
   
  commit: 8f49a3977, author: vlebedynska, date: 2020-05-21 20:21:44  
   
  #10 link between nodes is highlighted and brought to the top when 

it's active 
   
   
  commit: 54d9e0093, author: vlebedynska, date: 2020-05-21 16:48:23  
   
  #9 ai colour sensor input node moved from JS to TS, 
  refactoring in extractColourChannelAndNormalize function 
   
   
  commit: 7e1b46982, author: vlebedynska, date: 2020-05-20 02:18:14  
   
  #9 jaxbToAst implementation of color sensor as ai input node 
  definition of visitor method for color sensor as ai input node 
  client-side implementation of color sensor as ai input node 
  #3 integration of svgdotjs library (completed) 
   
   
  commit: 40a5bd6ae, author: vlebedynska, date: 2020-05-18 00:33:07  
   
  Merge remote-tracking branch 'origin/feature/neuronalnetworks' into 

feature/neuronalnetworks 
   
   
  commit: 072a8bbb0, author: vlebedynska, date: 2020-05-18 00:28:46  
   
  #9 connected colour sensor to aiInputNode in java backend, 
  set up the test environment, 
  started with jaxbToAst implementation 
   
   
  commit: 5f02a8495, author: vlebedynska, date: 2020-05-18 00:28:46  
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  #3 connected colour sensor to aiInputNode in java backend, 
  set up the test environment, 
  started with jaxbToAst implementation 
   
   
  commit: 41a0cfe62, author: vlebedynska, date: 2020-05-16 23:25:36  
   
  #3 bug fix: when you move the slider, the AI pop-up stays in the 

same place. 
   
   
  commit: 4ba249478, author: vlebedynska, date: 2020-05-16 22:41:08  
   
  #3 ai pop-up design changes: the modal is now draggable and has a 

border. 
   
   
  commit: 3a377febd, author: vlebedynska, date: 2020-05-16 21:21:47  
   
  #3 migration from JS to TS (in progress), integration of svgdotjs 

library (in progress) 
   
   
  commit: 77edbc2ee, author: vlebedynska, date: 2020-05-15 22:14:02  
   
  #3 design changes for the ai pop-up, migration from JS to TS (in 

progress) 
   
   
  commit: 2a7b304fe, author: vlebedynska, date: 2020-05-15 01:39:32  
   
  #3 single slider for all weights implemented. Data update in slider 

on link selection (temp JS solution); 
  Depending on the weight change, the stroke width changes live. 
  svg.js dependency added 
   
   
  commit: 3a0a9c2d0, author: vlebedynska, date: 2020-05-11 23:41:28  
   
  #3 function for drawing links in the neural-network-popup 

implemented (temp JS solution) 
   
   
  commit: b78d04cf4, author: vlebedynska, date: 2020-05-11 00:56:13  
   
  #3 implemented draw functions for drawing neural network in the 

neural-network-popup in the simulation 
   
   
  commit: 797e235cc, author: vlebedynska, date: 2020-05-09 21:38:31  
   
  #3 temp design for the neural networks popup 
   
   
  commit: 59d596bc3, author: vlebedynska, date: 2020-05-09 15:49:42  
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  #1 migrated neural network functionality from JS to TS. 
   
   
  commit: 93de936f6, author: vlebedynska, date: 2020-05-07 20:15:38  
   
  #3 added a pop-up for weights configuration in index.html, 
 implemented new function changeWeigth to create sliders for link 

weights and change the weights in this pop-up, 
  updated function processNeuralNetwork - creation of a neural network 

and its connection to UI is executed only once - the first time the 
function processNeuralNetwork is called. Further calls update the 
property externalSensor of the input layer nodes in the already 
existing neural network. 

   
   
  commit: 71dc95713, author: vlebedynska, date: 2020-05-05 00:49:55  
   
  #1 changed the data type for the threshold in AiInput.java to 

Integer because null values are allowed 
   
   
  commit: 35921c2a7, author: vlebedynska, date: 2020-05-05 00:46:21  
   
  #3 added the neural network button into the simulation, added new 

font icon for the neural network pop-up window 
   
   
  commit: 921ed6bcf, author: vlebedynska, date: 2020-05-04 13:00:25  
   
  #1 implemented astToBlock method for AiInput.java and 

AiNeuralNetwork.java 
   
   
  commit: 08b20d71d, author: vlebedynska, date: 2020-05-03 23:49:52  
   
  #1 implemented astToBlock method for AiOutput.java 
  started implementation of astToBlock method for AiInput.java 
   
   
  commit: 35516b30f, author: vlebedynska, date: 2020-05-03 20:14:07  
   
  #1 added function for initial creation of links for the neural 

network, 
  refactored the function processNeuralNetwork 
   
   
  commit: 57e12a1de, author: vlebedynska, date: 2020-05-02 23:42:17  
   
  #1 The processNeuralNetwork function in 

interpreter.robotMbedBehaviour.js has been updated so that the 
algorithm now works for the simulation. However, a refactoring is 
required and the speed calculation for the second motor should be 
fixed as soon as possible. 

  changed the visitorAiOutputNode, so that the return value is now a 
simple JSONObject. 
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  commit: 4b1e50fcd, author: vlebedynska, date: 2020-05-02 17:06:01  
   
  #1 changed ListCreate type from <aiinput>/ to </aiinput 
  implemented visitAiOutputNode in AiOutput.java 
  added CREATE_INPUT_NODE opcode to visitAiInputNode in 

Ev3StackMachineVisitor.java 
  added CREATE_OUTPUT_NODE opcode to visitAiInputNode in 

Ev3StackMachineVisitor.java 
  added PROCESS_NEURAL_NETWORK opcode to visitAiInputNode in 

Ev3StackMachineVisitor.java 
  Exception handling for IAiVisitor 
  added new constants to C.java via constantsSource.txt 
  added new constants to interpreter.constants.js and 

interpreter.constants.ts 
  implemented processNeuralNetwork function in 

interpreter.robotMbedBehaviour.js and 
interpreter.robotMbedBehaviour.ts 

  updated to 3.8.8. DB version in pom.xml in Wedointerpreter 
   
   
  commit: 2ecda45d7, author: vlebedynska, date: 2020-04-29 18:57:43  
   
  #1 implemented JaxB to Ast generation for neural network block 
  added two new blockly constants for input and output layer 
  defined two new data types - InputNode and OutputNode 
  changed robotCommon.yml for ai blocks 
  implemented method visitAiNeuralNetwork in Ev3StackMachineVisitor 

with dummy actions for test purposes 
   
   
  commit: d6c799bb9, author: vlebedynska, date: 2020-04-26 23:50:30  
   
  #1 JaxB to Ast generation for AiOutput block 
   
   
  commit: a6cb80500, author: vlebedynska, date: 2020-04-26 21:55:58  
   
  #1 integrated AI blocks into Open Roberta Lab UI for EV3 (e.g. 

updated robotCommon.yml, added new Blockly constants, added 
language support for English and German), 

  updated pom.xmls with new db version 3.8.8, 
  refactored ai_actors and ai_sensors blocks, 
  updated tests ressources for AI blocks, 
  created AiLink class, 
  started impl of AiOutput block 
   
   
  commit: ca5e634b6, author: vlebedynska, date: 2020-04-23 01:00:34  
   
  #1 added AiInputNode functionality to visitor 

AbstractStackMachineVisitor, 
  threshold and sensor-AST: extracted from Jaxb block and saved as 

members in AiInputNode, 
  extended toString() in validateInputNode from 

NeuralNetworkComponentsTest 
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  explored code generation for simulation 
   
   
  commit: 24a1a3617, author: vlebedynska, date: 2020-04-21 20:51:28  
   
  #1 added Ast-Tests 
   
   
  commit: 9984c0bd5, author: vlebedynska, date: 2020-04-21 20:23:57  
   
  #1 added new AI-Ast objects and registered in the robotCommon 

configuration 
   
   
  commit: 346fede84, author: vlebedynska, date: 2020-04-13 15:09:03  
   
  autogenerated html 
   
   
  commit: 327b82ca5, author: vlebedynska, date: 2020-04-13 14:46:45  
   
  db changes 3.8.7 > 3.8.8 
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A.4 Machine Learning Curriculum 
Unterrichtsplan für 04.08.2020 

„Aufwachsen mit KI: KI erlebbar machen!“ 

Zielgruppe: Schüler*innen in der 7-8 Klasse 

Zeitlicher Aufwand: 6 Unterrichtsstunden à 45 Minuten  

Ziel des Unterrichtsvorhabens: Schüler*innen untersuchen, wie die Roboter lernen, den-

ken und fühlen. Sie gehen der Frage nach, was unter dem Begriff Künstliche Intelligenz 

(KI) zu verstehen ist und lernen drei Hauptbereiche der KI - überwachtes, unüberwach-

tes und bestärkendes Lernen - praxisnah kennen. Sie ergründen, wann die Menschen 

eine Maschine als intelligent bezeichnen und stärken ihr neu erworbenes Wissen, indem 

sie sich mit der Entwicklung und Konfiguration von einfachen anschaulichen KI-Anwen-

dungen im Open Roberta Lab beschäftigen. 

Der Unterricht am 05.08.2020 (mit den Schüler*innen der 5-6 Klassen) und 

06.08.2020 (mit den Schüler*innen der 3-4 Klassen) wird ähnlich aufgebaut sein, nur 

dass die Arbeitsblätter, Aufgabenstellungen und Beispiele entsprechend dem Alter der 

Kinder aufbereitet werden. 

Uhrzeit Plan Arbeitsformen und 
-materialien 

Modul 1: „Wie lernt dein Roboter?“ – Einführung in Künstliche Intelligenz und 
Maschinelles Lernen 
09:00-
09:30 

Kennenlernrunde im Plenum / im Tandem 

In die Vorstellung sollen einige der folgenden Fra-
gen einbezogen werden: 

- Was ist Intelligenz? Was denkst du, was 
macht uns zu intelligenten Wesen? 

- Wie lernen wir, Menschen?  
- Was fällt dir schwer/einfach zu lernen? 
- Wie lernen die Maschinen? Lernen sie 

überhaupt? Wenn du schon ein Pro-
gramm geschrieben hast, bedeutet das, 
dass der Computer/dein Roboter schlauer 
geworden ist? 

- Können die Roboter fühlen? Sind die Ma-
schinen emotional? 

 
Anschließend – Sammlung und Diskussion der 
Eindrücke im Plenum 

Präsentation 
Diskussion im Tan-
dem 
Plenum 
Evtl.: Plakate? 

09:30-
09:45 

Braitenberg Experiment mit einem Calli:bot / EV3 
durchführen: 
Verhaltensweise Angst ODER 
Verhaltensweise Freundschaft 

Calli:bot oder 
EV3, 
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Reflexion und Diskussion: 
- Ist die Verhaltensweise des Calli:bot intelli-

gent? 
- Kennt ihr derartige Verhaltensweise aus der 

Natur? 
 
Evtl. EV3 Roboter-Set mitbringen und mit den Kin-
dern die Funktionsweise von Braitenberg Experi-
mente im Open Roberta Lab nachvollziehen. 

Taschenlampe 
Experiment im Ple-
num 
Open Roberta Lab, 
wenn ein Set von 
EV3 Robotern vor-
handen sein wird  
eventuell Einzelar-
beit oder Tandem 
Beispielvideo mit der 
ähnlichen Verhal-
tensweise aus der 
Natur: Motte fliegt 
zum Licht 

09:45-
10:15 
 

Bezug nehmen auf das Experiment von Braiten-
berg und die Diskussion davor (Was denkt ihr, 
können die Roboter auch intelligent sein?) und in 
das Thema KI einleiten.  
Vortrag über KI: was ist KI? Warum ist es wichtig, 
dass wir heute über KI lernen? Warum ist das für 
euch wichtig zu wissen, was KI ist und womit sie 
sich beschäftigt? Geschichte erzählen, mit Bei-
spielen (siehe als Vorbereitung die Vorlesung von 
Hod Lipson)23 
Ziel der UE nahebringen: Wir lernen heute, wie die 
Roboter denken, lernen, fühlen und wann wir sie 
als intelligent bezeichnen. 

Präsentation 

10:15-
10:30 Pause  

Modul 2: „Bringe deinem Roboter etwas bei“ – Einführung in überwachtes Ler-
nen und Neuronale Netze 
10:30-
10:50 

Mit welcher Art von Problemen haben Computer / 
Maschinen zu kämpfen? 
Mit den gleichen Problemen, wie wir Menschen! 
 
Überblick geben, welche Bereiche der KI wir 
heute kennenlernen werden: 

- Überwachtes Lernen 
- Unüberwachtes Lernen 
- Bestärkendes Lernen 

 
Einführung in das Thema „Überwachtes Lernen“ 
 

Präsentation 
 
Set von Bildern, die 
den Kindern bekannt 
und nicht bekannt 
sind: Tiere / Plane-
ten / Beispiel aus 
dem Mathematikun-
terricht 
Arbeit im Plenum 
 
Interessant sind 
ebenfalls zweideu-
tige Bilder (wie die 

 

23 https://youtu.be/XJP1hJ92g1Q, abgerufen am 12.07.2020. 
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Experiment mit den Bildern (Eine analoge Übung, 
überwachtes Lernen hautnah erleben): 
Ein Bild soll gezeigt werden. Die Kinder sollen er-
kennen, was/wer auf dem Bild zu sehen ist. Was 
weißt du schon in deinem Alter? Was weißt du 
noch nicht? 
Dann soll die Lösung verraten werden, wer/was 
auf dem Bild zu sehen ist. 
Ein zweites, drittes, viertes Bild zeigen -> Effekt 
des Lernens erzeugen, indem die Kinder lernen, 
während der/die LehrerIn als der/die Überwache-
rIn agiert. 
Ein anderes Beispiel könnte man aus der Mathe-
matik nehmen: welche Rechenaufgabe könnt ihr 
bereits in eurem Alter lösen? Was könnt ihr noch 
nicht tun? 
 
Schlussfolgerung: 

Je mehr Erfahrung wir haben, je älter wir sind – 
desto mehr können wir und desto schlauer wer-
den wir. LehrerInnen / Eltern helfen uns, uns zu 
verbessern, sie geben uns Anweisungen, wie wir 
uns verhalten sollen, wie gut wir gelernt haben. 
So ähnlich sieht’s auch bei den Computern aus! 

Täuschungsbilder, 
Bild mit den Hunden 
und Keksen) 

10:50-
11:30 

KI erlebbar machen! Teil 1 
 
Einführung in die Funktionsweise eines sehr ein-
fachen neuronalen Netzes („Gehirn des Robo-
ters“)24 und Übergang zum selbstständigen Pro-
grammieren von überwachtem Lernen im Open 
Roberta Lab. 
 

Viktoriya zeigt das Programmieren und Anwen-
den von Neuronalen Netzen vor und erklärt die 
Aufgabe: „Bringe dem Roboter bei, sich korrekt zu 
verhalten!“ 
Übungen mit KI Lernkarten einleiten 

Open Roberta Lab 
 
KI-Lernkarten 
 

Inspiration: 

Kinderbücher zum 
Überwachten Ler-
nen und Neuronalen 
Netzen 

 

Einzelarbeit oder im 
Tandem 

11:30-
12:15 Mittagspause  

Modul 3: „Lass deinen Roboter aus Erfahrungen lernen“ – Einführung in das 
bestärkende Lernen 
12:15- 
12:35 

KI erlebbar machen! Teil 2 
 

Präsentation 
 

 

24 Hier muss ich mir noch genauer überlegen, wie ich in das Thema einleite. 
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Zunächst: analoge Einführung in das Thema „Be-
stärkendes Lernen“. Ziel: bestärkendes Lernen 
erlebbar machen. 
 
Was lernt/macht ihr gerne allein, ohne Aufforde-
rung? 
Mögliche Antworten: 

- tanzen 
- singen 
- musizieren 
- Computerspiele spielen - Beispiele aus 

aktuellen Computer Games. Wie verbes-
sert man sich als GamerIn mit der Zeit? 

- Etc. 
 
Weitere Beispiele für das bestärkende Lernen? 

- Hundetraining 
 
Wie ist das / was bedeutet das, wenn ein Roboter 
durch das bestärkende Lernen lernt? Eigentlich 
geht es ihm dann ähnlich wie uns! 
 
Beispiele für bestärkendes Lernen im Compu-
ter/Robotik-Welt zeigen:  

- Go/Schach-Spiele 
- Tischtennis-Spiel25 
- Andere Beispiele aus Computerspielen – 

Agent lernt, die Belohnungen zu sam-
meln, anstatt in der Race zu gewinnen. 

- Das Auto konstruiert sich von allein durch 
„Trial and Error“. 

 
Oft fragen wir uns – was ist eigentlich gut? Kön-
nen wir Menschen, Maschinen / Robotern / Com-
putern beibringen, gut zu sein? Und was heißt ei-
gentlich gut im Sinne eines Computerprograms? 

- Beispiel einer Interaktionskette – Ball tref-
fen ist gut, aber was heißt eigentlich, ei-
nen Ball zu treffen? Sich zwei Mal nach 
oben, einmal nach unten zu bewegen, 
bringt den Agenten vielleicht einmal zum 
Erfolg, ein anderes Mal jedoch zum Miss-
erfolg. 
 

Beim bestärkenden Lernen geht es nicht darum, 
Computer etwas beizubringen, sondern, es geht 

Beispiele aus 
gym.openai.com o-
der ähnlichen Platt-
formen 
 
Evtl. Beispielvideo 
Hundetraining 

 

Diskussion im Ple-
num 
 

 

25 https://gym.openai.com/envs/Pong-ram-v0/, abgerufen am 12.07.2020. 
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darum, Computer lernfähig zu machen und Lern-
prozess anzustoßen. 

12:35- 
13:30 

Machen wir nun unseren Roboter lernfähig! 
 
Einführung in die Arbeit mit dem bestärkenden 
Lernen im Open Roberta Lab. 
 
Diskussion: 

- Was bedeutet „gut“ für diese Problemstel-
lung? 

- Was ist ein optimaler Weg für uns, Men-
schen? Beispiel: ein optimaler Weg für 
uns ist, wenn es an einem Eiscafé / Spiel-
platz vorbeiführt. 

- Was ist ein optimaler Weg für einen Stra-
ßenstaubsaugroboter? 

 
Spielregeln erklären und in die Blöcke im Open 
Roberta Lab einführen. Arbeitsblätter verteilen. 
 
In der Zwischenzeit: Diskussion starten – was 
merkt ihr? Wie wirken sich unterschiedliche Ein-
stellungen der Parameter auf die Verhaltensweise 
des Roboters aus? 
 
Experiment: Wer ist schneller / besser? Der Ro-
boter oder wir, Menschen? Wer von uns beiden 
findet den schnelleren/besseren Pfad? 

Open Roberta Lab 
 
Spielregeln 
 
Hintergründe 
(Eisenbahn, 
Labyrinth, 
Stadtkarte) 
 
Aufgaben 
 
Erklärung zu den 
Blöcken 
 
Einzelarbeit oder im 
Tandem, anschlie-
ßend Diskussion im 
Plenum 

13:30- 
13:45 Pause  

Modul 4 „Können Roboter selbstständig lernen?“ – Einführung in unbeaufsich-
tigtes Lernen 
13:45- 
14:30 

KI erlebbar machen! Teil 3 
 
Einführung in das Thema „Clustering“ und un-
überwachtes Lernen. Dieses Thema wird voraus-
sichtlich nur analog behandelt. 
Clustering erlebbar machen – Experiment mit 
verschiedenen Gefäßen. 
 
Clustering: was ist das? Es ist die Kunst von Grup-
penbildungen. Beispiele für verschiedene Grup-
penbildungsprobleme / Zweideutigkeiten mitbrin-
gen und mit Kindern diskutieren. 

- Wie würdest du diese Gegenstände zu-
sammen gruppieren? 

Präsentation – Clus-
tering analog erklä-
ren 
 
Experiment mit ver-
schiedenen Gefä-
ßen: verschiedene 
Flaschen, Trinkglä-
ser 
 
 
Arbeit in Plenum 
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- Wo kommen deine Kriterien her? Warum 
hast du dich für diese Gruppierung ent-
schieden? 

 
Überleiten zum Thema: wie gruppiert ein Roboter 
die Gegenstände? 

Puffer und 
Überlei-
tung zur 
Ab-
schluss-
diskus-
sion 

Was haben wir also heute alles gelernt? Zusam-
menfassung der drei Arten, wie die Roboter lernen 
können + Zusammenfassung zentraler Erkennt-
nisse. 
Damit die Kinder vor der abschließenden Diskus-
sion noch mal in sich gehen und Gedanken dazu 
machen können, wird ein Arbeitsblatt verteilt: Wie 
lernst du? Wie lernen Maschinen? 
 

- Überleitung zur abschließenden Diskus-
sion und Reflexion. 

- Evtl. Position beziehen – Gedanken zu 
ethischen Fragen machen 

- Oder ein weiteres interessantes Thema: 
Jobs, die heutzutage von Menschen erle-
digt werden, Jobs, die zunächst nur von 
Maschinen erledigt werden. 

Arbeitsblatt: Wie 
lernst du? Wie ler-
nen Maschinen?26 
 
Arbeitsblatt: Position 
beziehen zu ML-An-
wendungen27 
 
Oder: Arbeitsblatt für 
die zukünftigen 
Jobs28 
 
Einzelarbeit 

14:40- 
15:00 Uhr 

Diskussion/Reflexion – was hast du heute gelernt, 
wie die Roboter lernen?  
 

- Wie hat es dir gefallen? 
- Welcher Teil hat es am meisten Spaß ge-

macht? 

- Was nimmst du aus diesem Tag mit? 

Diskussion im Ple-
num 
 
Evaluationsbogen? 

 

Evaluationsplakat? 

 

Einzelarbeit und 
dann Diskussion im 
Plenum 

 

 

 

  

 

26 https://www.medien-in-die-schule.de/wp-content/uploads/Arbeitsblatt_MachineLearning_15.pdf, abgeru-
fen am 12.07.2020. 
27 https://www.medien-in-die-schule.de/wp-content/uploads/Materialblatt_MachineLearning_22.pdf, abge-
rufen am 12.07.2020. 
28 https://www.medien-in-die-schule.de/wp-content/uploads/Materialblatt_MachineLearning_25.pdf, abge-
rufen am 12.07.2020. 
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Motor B

Speaker
gibt Töne aus

Bildschirm
zeigt Text

Ultraschalsensor 2
misst Abstand vorne links

Ultraschalsensor 3
misst Abstand vorne rechts

Farbsensor 1
kann Farben und Licht messenLED Lampe

leuchtet grün, orange
und rot

Motor C

Hallo

© Viktoriya Olari | Juli 2020 | Aufwachsen mit Künstlicher Intelligenz

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz 

So stellst du deinen KI-Roboter ein
Überprüfe, ob dein KI-Roboter richtig konfiguriert ist.

Hi! Prüfe die 

Einstellungen. 

Dann kann‘s 
losgehen
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© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Auch Roboter können lernen, sich der Umgebung anzupassen 

Bringe das deinem Roboter bei! Schiebst du deinen Roboter auf 
das grüne Blatt, soll seine LED-Lampe grün aufleuchten.

Du brauchst:

Mein neues Outfit passt
ganz gut zu den Blöcken

Lösung
So steckst du dein Programm zusammen:

Damit dein Roboter seine LED an
die Farbe des Blattes anpasst,
sollst du dein neuronales Netz wie
folgt einstellen:

Bringe deinem Roboter bei, zu jedem Blatt eine andere Farbe anzuzeigen.
Aufgabe
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© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz 

Lass deinen Roboter nicht erwischen! 

Bringe dem Roboter bei, helle Orte zu meiden. Je heller die 
Umgebung, desto schneller muss dein Roboter fahren. 

Du brauchst:

0 bedeutet beim Lichtsensor 

sehr dunkel und 100

 sehr hell.

Lösung
So steckst du dein Programm zusammen:

Damit dein Roboter die hellen
Orte meidet – d.h. an hellen Orten 
schneller vorbeifährt – sollst du
dein neuronales Netz wie folgt
konfigurieren:

je höher der Wert 
- also je heller es ist -
desto schneller drehen sich 
die Motoren
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© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Bringe deinem Roboter die Verkehrsregeln bei 

Auf “Grün” darf der Roboter mit voller Geschwindigkeit fahren, 
auf “Gelb” soll er langsamer werden und auf “Rot” muss er stehen
bleiben.

Neue Blöcke, die du brauchst:

+ die Blöcke, die du schon kennst:

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz 

Lösung

Damit dein Roboter die Verkehrs-
regeln beherrscht, sollst du dein 
neuronales Netz wie folgt einstel-
len:

So steckst du dein Programm zusammen:

fährt dein Roboter auf deem 
gelben Grund, so drehen ssich 
seine Motoren nur mit 
halber Geschwindigkeit.
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© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Lass den Roboter den Abstand zum Hindernis laut messen 

Bringe dem dem Roboter bei, dass je näher er zu einem Hindernis 
ist, desto tiefer soll der Ton sein, den er ausgibt.

Neue Blöcke, die du brauchst:

+ die Blöcke, die du schon kennst:

Lösung
So steckst du dein Programm zusammen:

Damit der Roboter einen tiefen 
Ton ausgibt, je näher er zum Hin-
dernis ist, sollst du dein neurona-
les Net wie folgt einstellen:



A.6 Neural Network Cards  180 
 

 

 

  

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Auch Roboter können freundlich sein 

Bringe deinem Roboter bei, sich freundlich zu verhalten!
Sobald der Roboter ein Objekt in seiner Umgebung erkennt, soll er
dem Objekt näherkommen.

Freunde!

Du brauchst: 

2x

+ die Blöcke, die du schon kennst:

- für Port 2 und für Port 3

- für Port B und für Port C2x

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz 

Lösung

Damit dein Roboter sich freundlich 
verhält, sollst du dein neuronales 
Netz wie folgt konfigurieren:

So steckst du dein Programm zusammen:
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© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz 

Lass deinen Roboter «Angst» vor Hindernissen haben 

Bringe deinem Roboter bei, den Hindernissen auszuweichen. 
Sobald der Roboter ein Objekt in seiner Umgebung erkennt, soll er 
von diesem Objekt fliehen.

Du brauchst: 

2x

+ die Blöcke, die du schon kennst:

- für Port 2 und für Port 3

- für Port B und für Port C2x
Ein Roboter 

muss auf 

verschiedene 

Situationen 

vorbereitet 

sein!

Lösung

Damit dein Roboter die Gegen-
stände meidet, sollst du dein
neuronales Netz wie folgt konfigu-
rieren:

Worin unterscheidet sich das Program 
auf dieser Lernkarte von dem Pro-
gramm auf der Karte “Freundschaft” ?

So steckst du dein Programm zusammen:

? ??
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© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz

Lass deinen Roboter die Landschaft explorieren! 

Bringe deinem Roboter bei, korrekte Begri!e zu den 
Gegenständen auf dem Bildschirm zu zeigen. Fährt der Roboter
auf “Grün” - sollt der Text “Wiese” angezeigt werden. Fährt er auf
die Farbe “Gelb” - soll er das Wort “Sand” anzeigen. Bei der Farbe
“Blau” - soll er den Text “Wasser” ausgeben.

hier wird 
das Ergebniss 
ausgegebenNeue Blöcke, die du brauchst:

Wiese

Bi
ld

: i
St

oc
k.c

om
/ i

lya
lir

en

© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz 

Lösung

Damit dein Roboter die Land-
schaft exploriert und den richtigen 
Begri! zum richtigen Untergrund 
anzeigt, sollst du dein neuronales 
Netz wie folgt konfigurieren:

So steckst du dein Programm zusammen:
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© Viktoriya Olari | 08’ 2020 | Aufwachsen mit Künstlicher Intelligenz 

Lass deinen Roboter selbständig die farbigen Kurven meistern! 

Auf Grün dreht sich der linke Motor langsamer als der rechte,
bei Rot dreht sich der rechte Motor langsamer als der linke,
bei Blau drehen sich die Motoren gleich schnell.

Neue Blöcke, die du brauchst:

Wusstest du, dass diese Farben

zusammen die Farbe “weiß” ergeben?

Lösung

Damit dein Roboter die farbige
Kurve kriegt, sollst du dein neuro-
nales Netz wie folgt konfigurieren:

So steckst du dein Programm zusammen:

Wie verhält sich der Roboter, wenn
er über den weißen Hintegrund fährt?
Warum verhält er sich so?

? ??
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A.7 Q-learning Materials 

A.7.1 Q-learning Cards 

 

01

2

3

4

5

Start:3 Ziel:1 Hindernisse:3-2, 2-3 Eisenbahn

Lerne, bis du den besten 
Weg fahren kannst.
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Was denkst du, welcher Weg ist der schnellste?

Start:3 Ziel:1 Hindernisse:3-2, 2-3 

lerne...

Test 1

Test 2

Test 3

extra 
Belohnung

Tele-
portation

Vor-
erfahrung Episoden Zeit Bester Weg

Probiere verschiedene Einstellungen aus! 
Spiele mit Episoden: 10, 100 oder 1000? 
Gibt’s da einen Unterschied?

Mit welchen Paramtern findet dein
Roboter den optimalen Weg? Markiere 
die Zeile mit einem Marker.
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Waldlabyrinth

Lerne, bis du zum Zelt 
wiederfindest.

Bi
ld

: i
St

oc
k.c

om
/ I

va
n 

Tu
po

no
go

v 
©

 V
ik

to
riy

a 
Ol

ar
i |

 0
8’

 2
02

0 
 A

uf
wa

ch
se

n 
m

it 
Kü

ns
tli

ch
er

 In
te

lli
ge

nz
 | 

Start:0 Ziel:7 Hindernisse:4-6

Was denkst du, welcher Weg ist der schnellste?

Start:0 Ziel:7 Hindernisse:4-6

Test 4

Test 5

Test 2

Test 3

Test 1

Episoden Zeit Bester Weglerne... Tele-
portation

extra 
Belohnung

Vor-
erfahrung
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In der Stadt

Lerne, bis die Route 
frei ist. 
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Start:0 Ziel:15 Hindernisse:16-15

Was denkst du, welcher Weg ist der schnellste?

Start:0 Ziel:15 Hindernisse:16-15

Test 4

Test 5

Test 2

Test 3

Test 1

Episoden Zeit Bester Weglerne... Tele-
portation

extra
Belohnung

Vor-
erfahrung
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A.7.2 Q&A: Reinforcement Learning 
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Wie lernt dein KI-Roboter mit dem
Q-Learning Algorithmus?

Schaue dir dazu das Bild auf der Rückseite des 
Blattes an.

Kann ich den Start oder das Ziel
ändern?

Klar! Probier aus, wie schnell dein Algorithmus 
die optimale Strecke findet.

Was ist eine Episode?

Es ist ein Durchlauf des Algorithmus von einer 
Station zu der anderen.

Was bedeuten die Sterne?
Die Sterne zeigen, wie attraktiv die Strecke für 
deinen Roboter ist.
sehr attraktiv nicht attraktiv

Was hat diese gelbe Linie zwischen 
zwischen zwei Pins zu bedeuten?
Es ist die Strecke, die dein Roboter aktuell 
durchläuft.

43

Warum beginnt mein Roboter immer an 
einer anderen Stelle?

Weil du wahrscheinlich die Teleportation erlaubt
hast.

Wie berechnet der Roboter, ob die
Strecke attraktiv ist?

Der Roboter berechnet aufgrund der Einstellun-
gen, die du in diesem Block ausgewählt hast, ob 
die Strecke attraktiv ist oder nicht.

Darf der Roboter seine Vorerfahrung 
nutzen,

dann greift er bei jedem Schritt auf sein vorheri-
ges Wissen zurück.

Ist lerne „langsam“ eingestellt,
dann lernt der Roboter langsamer, dafür merkt 
er besser, was er gelernt hat. Schnelles Lerntem-
po ist nicht immer gut, denn dann vergisst dein 
Roboter auch schneller. 

Ist extra Belohnung auf
„ja“ eingestellt,
dann schaut der Roboter zwei Schitte im Vor-r
aus, ob die Strecke danach auch eine attraktive 
ist.  Extra Belohnung ist auch nicht immer gut,
denn es kann den Roboter in die Irre führen. Die 
Strecke im übernächsten Schritt ist vielleicht gar 
nicht so gut.

Ist Teleportation erlaubt,

dann springt der Roboter beim nächsten Schritt
zu einer beliebigen Station und startet von da 
aus.

Q & A : Bestarkendes Lernen

so steckst du den Q-Algorithmus zusammen
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A.7.3 Q-learning Map 
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A.7.4 Q-learning Program 
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Lasse deinen KI-Roboter lernen

+

Ϧə<¶ĐĐ�ö¶ñ�
zeigen, was du 
gelernt hast!

ϦəqáÍ�Đýññ�
deine Karte 
aussehen?

hier geht’s 
nicht lang!

ϦəqáÍ�ñ¶÷ÙÍ�
soll dein KI-
Rober
lernen?

Teste verschie-
dene Anzahl von 
Episoden aus

so steckst du den Q-Algorithmus zusammen

ϦəqáÍ�Đýññ�
dein KI-Robo-
ter lernen?
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A.7.5 Q-Learning Algorithm Flow Diagram 
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starte an 
irgendeiner 

Station

wähle die nächste 
Station aus

(zufällige ODER 
die attraktivste)

bekomme für 
diese Strecke 50 
Punkte Belohnung

aktualisiere die 
Anzahl der Sterne 
für diese Strecke

bekomme keine 
Belohnung für 
diese Strecke

fahre zur 
nächsten Station

berechne die 
Qualität der 

Strecke

Wurde
Ziel- 
station 
erreicht?

nein

ja

ja nein
wird eine 

der nächsten 
Strecken mit 
Sternen be-

lohnt?

So lernt dein KI-Roboter
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A.7.6 Q-learning Observation Card 
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Beobachtungskarte

Eisenbahn

Minimale Zeit für 
den optimalen Weg

Maximale Zeit für 
den optimalen Weg

Maximale Episode-
nanzahl, um zum Ziel 
zu kommen

Minimale Episode-
nanzahl, um zum Ziel 
zu kommen

Lerne Extra Belohnung Teleportation Vorerfahrung

Wald- 
labyrinth In der Stadt

Was denkst du, was ist die beste Einstellung für deinen KI-Roboter?
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