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1 Introduction

The physical properties of condensed matter are ruled by the behavior of the
valence electrons of the building atoms. In the conventional picture, bands are
formed in a crystal and the compound can have metallic or insulating proper-
ties depending on the band �lling. However, if the electron-electron interactions
are strong, band theory can fail and a compound with a half-�lled band can be
a strong insulator. In such strongly correlated systems, the complex interplay
between charge, spin, lattice and orbital degrees of freedom produces many in-
teresting e�ects. The most prominent examples are high-transition temperature
superconductivity (HTSC) and colossal magneto-resistance (CMR) in the transi-
tion metal oxides.
In these materials, many competing ground states exist that lead to complicated

phase diagrams. Much experimental and theoretical e�ort has been spent in the
�eld of transition metal oxides to understand their behavior and has often led to
more questions. One interesting �nding is that these materials are not homoge-
neous on the nanoscale which leads to the idea that many of these investigations
have to be considered in a broader range of complexity [1].
In the 2D cuprate superconductors it is discussed that the stripe-ordered phase

competes with superconductivity [2�4]. Similarly, in the hole-doped spin ladders
investigated here, a competition between superconductivity [5, 6] and an insulating
charge-ordered state or hole crystal has been predicted [5, 7, 8]. The spin ladders
belong to the cuprate family and can be regarded as low-dimensional relatives of
the high-TC materials. The ladders are formed by one-dimensional copper-oxide
chains that couple via oxygen ions to neighboring chains. They build a bridge
between 1D and 2D. The e�ect of dimensionality on the electronic excitation
spectrum is crucial in correlated electron systems as discussed in chapter two.
Until today, the complex material Sr14−xCaxCu24O41 that has been investigated

within the scope of this thesis, is the only spin-ladder compound in which hole
doping could be achieved. This compound shows many interesting phases that
have not yet fully been understood despite numerous experimental and theoreti-
cal e�orts. In the hole-doped spin ladders an insulator to metal transition with
Ca substitution is reported [9�11]. For the compound x = 13.6 superconductivity
under hydrostatic pressure of 3 GPa was reported [12]. However, without Ca the
material shows all signatures of charge ordering, i.e. a charge-carrier density mod-
ulation in real space [13�16]. A recent RIXS study [17, 18] found evidence that
this charge ordering is not of a Peierls type [19], i.e. not driven by electron-phonon
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1 Introduction

coupling but by many body interactions that also lead to a periodic modulation
of the charge density and thus should show similar signatures in experiment. As
a matter of fact, calling SCCO a spin ladder is an oversimpli�cation. This com-
pound is a complicated layer structure that in addition to the spin-ladder layers
also contains layers of one-dimensional chains. The six hole carriers per unit cell
are distributed among the chain and the ladder subsystem and even today the dis-
cussion about where the holes are located and how they are redistributed with Ca
content or temperature is heavily debated. In addition, there are still unexplained
low energy absorptions for x≥ 8 observed in the far infrared optical conductivity
[11, 20]. Trying to shed new light onto the open discussion, this thesis focuses on a
systematic investigation of the electronic structure of the spin-ladder compounds
by means of optical spectroscopy as a function of doping and temperature. In
addition, the one-dimensional zig-zag chain SrCuO2 for which spin-charge sepa-
ration has been reported [21, 22] is investigated. In this compound, an excitonic
resonance was observed closely above the gap [23]. We address the temperature
dependence of the electronic excitation spectrum in searching for a uni�ed de-
scription of the electron-hole excitations in 1D and 2D.
Optical spectroscopy is a powerful experimental technique of studying the elec-

trodynamic response of correlated electron systems. The optical conductivity
contains contributions of lattice vibrations, electronic intra-band and interband
transitions, magnetic excitations or collective modes. Regarding the intra-band
excitations, free charge-carrier excitations or plasmons lead to prominent features
in the spectra and concerning interband transitions, bound electron-hole pairs or
excitons can drastically change the absorption spectra. All these features deliver
valuable microscopic information about the electronic structure of solids. The op-
tical spectra were acquired by Fourier transform spectroscopy in the energy region
from 10meV to 2 eV and by ellipsometry in the interband region between 0.8 -
5 eV. This thesis is organized as follows: The second chapter gives an overview
of the physics of correlated electron systems with focus on the interband excita-
tions and excitonic e�ects in one-dimensional and two-dimensional cuprates. The
third chapter is dedicated to some fundamentals of optical spectroscopy with fo-
cus on the newly implemented measurement technique of spectroscopic ellipsom-
etry. Chapter four addresses the experimental techniques of Fourier transform
spectroscopy and ellipsometry and focuses on the spectroscopic ellipsometer put
into operation by my colleague Alexander Göÿling and myself. In chapter �ve
the properties of the spin ladder compounds (La,Sr,Ca)14Cu24O41 are summarized
before the results of the low-temperature ellipsometry and Fourier transform spec-
troscopy are presented for the undoped spin-ladder compound La5.2Ca8.8Cu24O41

(LCO) and the hole doped spin ladders Sr14−xCaxCu24O41 for x = 0 (SCO), x = 5
and 8 (SCCO). An interpretation of the electronic structure, taking into account
other experimental and theoretical results, follows. In addition to that, a spectral
weight analysis is carried out for x = 0, 5, and 8 from the far infrared region to
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the energy range of interband transitions (10meV to 5 eV). Chapter six shows the
results of the undoped one-dimensional zig-zag chain SrCuO2 where an excitonic
resonance is discovered [23]. The temperature dependence of the electron-hole
excitations is investigated. All our results are summarized in chapter seven. Some
more details about ellipsometry are found in the appendix.
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2 Physics of Transition-Metal
Compounds

2.1 The Hubbard model

In the most simple approach, correlated electron systems are described by the
single-band Hubbard model [24] which captures the competition between on-site
Coulomb repulsion U on the transition-metal sites and the inter-site transfer prob-
ability t representing the kinetic energy. For U larger than the bandwidth W , the
band splits into a lower and an upper Hubbard band (LHB and UHB). At exactly
half �lling, the system becomes a Mott-Hubbard insulator with one localized elec-
tron or hole per site. Often, the ground state is antiferromagnetic (AF) allowing
for virtual hopping processes where kinetic energy is partly recovered. Such an
AF insulator is described by the following Hamiltonian:

H = −t
∑
〈i,j〉,σ

(c†i,σcj,σ +H.c.) + U
∑
i

ni,↑ni,↓ (2.1)

where c†i,σ(ci,σ) represent the creator (annihilator) operators on site i with spin
σ = (↑ ↓), and ni,σ = c†i,σcj,σ stands for the number operator. In the cuprates, the
Hubbard U lies in the range of 7-10 eV.

t-J model and Heisenberg model

The t-J model was derived to describe the low-energy physics of Mott-Hubbard
systems, i.e. double occupancy is explicitly excluded. In case of hole doping, it
captures the metallic properties of those systems. For U >> W , the t-J model is
described by the following Hamiltonian:

H = −t
∑
〈i,j〉,σ

(c̃†i,σ c̃j,σ +H.c.) + J
∑
〈i,j〉

(SiSj −
1

4
ninj) (2.2)

where ni =
∑

α c̃
†
i,αc̃i,α and c̃

†
i,σ = (1−c†i,−σci,−σ)c†i,σ are the corresponding operators

in case of a projection onto the Hilbert space without double occupancy and
J = 4t2/U is the exchange coupling constant. Si de�nes the spin-operator on site
i. The sum 〈i, j〉 is carried out over nearest neighbors. The �rst term in equation
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2 Physics of Transition-Metal Compounds

2.2 represents charge carrier hopping from a singly occupied site to an empty site.
The second term represents the exchange part. The three-site hopping term has
been omitted for simplicity. In case of a small number of correlated holes in a
doped Mott-insulator, it can come to hole localization and as described later in
this section, in case of quasi-1D spin ladders a hole-pairing mechanism leading to
superconductivity was proprosed by Dagotto [5]. In case of exactly half �lling, i.
e. one spin on each site, charge transport is suppressed and for the elementary
excitations there remain, apart from phononic excitations, only spin degrees of
freedom for energies much smaller than U . Then the �rst term in equation 2.2
vanishes and the t-J model reduces to the Heisenberg model which describes
quantum magnets:

H = J
∑
〈i,j〉

(SiSj −
1

4
ninj) (2.3)

This means, the energy scales can be separated into a low-energy (spin only) and
high-energy (charge �uctuations) region.

2.2 Magnetic Properties of Low-Dimensional

Quantum Spin Systems

It has already been shown by Bethe [25] that a one-dimensional S=1/2 quantum
Heisenberg antiferromagnet does not show long-range order, even at T=0K due
to strong quantum �uctuations. Such a quantum disordered state is called a
spin liquid [26, 27]. For the 2D S=1/2 square lattice, one expects long-range
order only at T=0K. The excitations from a spin-liquid ground state di�er from
those of a long-range ordered state. In the following, the properties of those new
excitations in 1D Heisenberg spin chains and quasi-1D spin 1/2 two-leg ladders
shall be described brie�y.

1D S=1/2 Chains

The 1D Heisenberg chain is described by the Hamiltonian of equation (2.3) with
isotropic exchange coupling J where only spin degrees of freedom remain for low-
energy excitations. The elementary excitations of this spin liquid are called spinons
and carry spin S = 1/2. Therefore, always two spinons are created with one spin
�ip to ful�ll ∆S = 1. This is shown in Fig. 2.1 (a) for a Néel-type ground
state. The spinons are visualized by the blue bars and might be identi�ed with
the domain wall between two antiferromagnetic domains. In case of the excitation
of two spinons, e.g. in neutron scattering, only the total momentum k = k1 +k2 is
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2.2 Magnetic Properties of Low-Dimensional Quantum Spin Systems

de�ned, 1 leading to a gapless two-spinon excitation continuum E(k) as depicted
in Fig. 2.1(b).

Figure 2.1: (a) Sketch of an AF 1D Heisenberg chain where one spin has been �ipped
(∆S = 1, green arrow) creating two spinons (blue bars) with S = 1/2 each.
The blue bar on the left represents a domain wall, i.e. a further spinon. (b)
Dispersion relation of the two spinon continnuum [25, 28�30].

Quasi-1D S=1/2 Ladders

The model of a two-leg S=1/2 ladder was �rst examined by Dagotto [5, 31], origi-
nally for the compound (VO)2P2O7. The ladder structure is formed by transition-
metal sites connected to each other by superexchange interaction of the transition-
metal spin-1/2 moments over oxygen ions. So called legs and rungs can be estab-
lished and di�erent scenarios can be developed by varying the relative strength of
the coupling constants between rungs and legs. The ladders are an interesting ob-
ject of studies because they can be regarded as crossover from 1D to 2D. Ladders
with an even number of legs are expected to be gapped spin liquids and ladders
with an odd number of legs should be gapless for the lowest magnetic excitations
[5, 32]. The Hamiltonian of a S = 1/2 two-leg ladder can be written as:

H =
∑
i

J‖(S1,iS1,i+1 + S2,iS2,i+1) + J⊥S1,iS2,i (2.4)

The �rst index of the spin operators denotes the legs and the second index counts
the rungs. In the so called strong-coupling limit, J⊥ is much stronger than the
coupling J‖ along the legs. Then the ground state consists of a direct product
of spin singlets, one on each rung. The elementary excitation from a singlet to
a triplet (also called triplon) will cost the energy of the exchange coupling J⊥.

1In neutron scattering the measured change in neutron spin is ∆S = 1, i.e. two spinons are
created by this scattering process. The total momentum transfer k is randomly divided
among the two spinons.
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2 Physics of Transition-Metal Compounds

Figure 2.2: (a) Sketch of a two-leg S=1/2 ladder showing the elementary excitations.
These elementary triplet states are called triplons. The exchange couplings
along rungs and legs can lead to bound states of triplons. (b) The elemen-
tary triplet branch, the two-triplet continuum and lower lying bands for
bound states with S = 0 and S = 1 for J‖=J⊥ [33].

For �nite values of J‖, these excitations can propagate along the ladder, i.e. they
acquire a dispersion as shown in Fig. 2.2 (b). Moreover, the two-triplon continuum
as well as the S = 0 and S = 1 two-triplon bound states are shown. In the limit
J⊥ = 0 the legs decouple and the spin gap of such isolated 1D chains vanishes.
This means, a spin excitation will cost no energy. However, it was found that a
spin gap opens immediately as soon as a nonzero J⊥ is introduced [34]. The S = 0
two-triplet bound state has been experimentally observed in (La,Sr,Ca)14Cu24O41

by optical spectroscopy [35, 36].
The undoped two-leg ladder is experimentally realized in the compound SrCu2O3

[37] and the existence of a �nite spin gap was proved by magnetic susceptibility
measurements.
In 1988, the �rst hole-doped spin ladder Sr14−xCaxCu24O41 (SCCO) was re-

ported by McCarron et al. [38]. The system is inherently doped with six holes
per formula unit. As a matter of fact, they represent up to today the only ladder
material where hole doping has been achieved at all. As described in more detail
in the next chapter, superconductivity has been predicted for hole-doped ladders
by Dagotto et al. [5] and experimentally found in SCCO for x>13.6 under high
pressure [12].

2.3 Cuprates

After the discovery of high-TC superconductivity (HTSC) in La1.85Ba0.15CuO4 [39]
the family of quasi two-dimensional cuprates became one of the most intensively
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2.3 Cuprates

studied class of materials in solid state physics. Their physical properties are ruled
by the behavior of the electrons within two-dimensional copper-oxide layers. The

La2CuO4
Sr2CuO2Cl2

1D 
edge- sharing

chain

1D 
corner- sharing

chain

1D
zig-zag
chain

quasi 1D 
two-leg ladder

2D plane

Li2CuO2                   Sr2CuO3                                SrCuO2                           (LaSrCa)14Cu24O41 

Figure 2.3: Sketch of di�erent Cu-O networks that are the main structural units in
low-dimensional cuprates. The connection of CuO4 plaquettes over cor-
ners (180◦ Cu-O-Cu superexchange interaction) or edges (90◦ Cu-O-Cu
superexchange) rules the nature of the ground state.

cuprates combine two aspects that lead to fascinating physical behavior, namely
low dimensionality and strong correlation. Many structures were synthesized after
the discovery of high-TC superconductivity in order to understand the underlying
mechanism.
Examples of the insulating 2D cuprates or parent compounds are Sr2CuO2Cl2,

La2CuO4, and YBa2Cu3O6 that crystallize in tetragonal or orthorhombic symme-
try. As shown in Fig. 2.3, they share the 2D copper-oxide planes allowing for
carrier hopping via oxygen orbitals. The electronic behavior from insulating to
superconducting can be controlled by charge-carrier doping, e.g. by substituting
La3+ by Sr2+ in La2CuO4 or by changing the oxygen content in YBa2Cu3O6+y.
In addition to compounds with 2D copper-oxide layers, there also exist 1D and
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2 Physics of Transition-Metal Compounds

quasi-1D structures. These can be realized by connecting CuO4 units by their
corners, edges, or both as depicted in Fig. 2.3, leading to di�erent behavior due
to the di�erent exchange interaction. The two-leg spin ladders shown in Fig. 2.3
build a bridge between 1D and 2D.

2.4 Electron-Hole Excitations

We focus here on the investigations on electron-hole excitations in the cuprates
because their nature is still an important question in the understanding of high-TC
superconductivity and in general in correlated electron systems.
The undoped compounds have in common that the formal valence of Cu is

+2 which means the electron con�guration is 3d9. Due to the crystal �eld, the
degeneracy of the 5 Cu 3d orbitals is lifted, as shown schematically in Fig. 2.4
for the case of four surrounding oxygen ligands. It follows that the dx2−y2 orbital
is only half �lled, and since the band width is small, electron-electron interaction
is important. It is widely accepted that in the cuprates the Cu-O hybridization
plays an important role and that the lowest-lying charge �uctuations are not of
d-d type as described in the one-band Hubbard model of equation 2.1 but of
charge-transfer (CT) or p-d type [40]. This means, the lowest-lying electron-hole
excitations correspond to the transfer of electrons from oxygen ions to copper ions.
The CT gap involves the charge-�uctuation energy ∆ which directly depends on
the electronegativity of the anion, in this case oxygen, and the Madelung potential
[40]. In other words, the nature of the conductivity gap depends on the relative
size of U and ∆, yielding Mott-Hubbard and charge-transfer type insulators (see
Fig. 2.5). The most simple model then is the three-band Hubbard model as
proposed by Emery [41]

H = εd
∑
i,σ

ndi,σ + εp
∑
j,σ

npj,σ +
∑
〈i,j〉σ

tijpd(d
†
i,σpj,σ +H.c.)

+
∑
〈j,j′〉,σ

tjj
′

pp (p†j,σpj′,σ +H.c.) + Ud
∑
i

ndi,↑n
d
i,↓

+Up
∑
j

npj,↑n
p
j,↓ + Upd

∑
〈ij〉,σ,σ′

ndi,σn
p
j,σ′

The index i(j) denotes Cu (O) sites, and d†i,σ (di,σ), p†j,σ (pj,σ) create (annihi-
late) a hole with spin σ in the Cu dx2−y2 and O px,y orbitals, respectively. The
ndi,σ = d†i,σdi,σ and npj,σ = p†j,σpj,σ are the hole number operators. The Cu onsite
energy is given by εd, and the oxygen onsite energy by εp, and ∆ = εp− εd is pos-
itive in hole notation. Upd takes the intersite Coulomb interaction into account,
and Ud (Up) counts the double occupancy on Cu (O) orbitals. In this picture, the
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2.4 Electron-Hole Excitations

3d

dx2-y2

dxy

dz2

dxz dyz

xy

z

Figure 2.4: Schematic picture of the crystal-�eld splitting in copper-oxide systems
with Cu2+ square-planar geometry leading to a half-�lled dx2−y2 orbital .

exchange interaction JCu−Cu between Cu sites is mediated via the oxygen orbitals
and therefore becomes a superexchange constant [42]. The case of hole doping of
a CT insulator was investigated by Zhang and Rice in 1988 [43]. The so-called
Zhang-Rice singlet state (ZRS) [43] was introduced, in which the hole doped into
the O orbitals forms a singlet with the hole on a Cu site, as depicted in Fig. 2.6.
In La2CuO4 and other corner-sharing two-dimensional members of the high-TC
family, the ZRS can propagate to neighboring CuO4 plaquettes along the Cu-O
bond direction and along the diagonal [43�46]. In the copper-oxide compounds,
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2 Physics of Transition-Metal Compounds

Figure 2.5: Schematic representation of the level splitting into a lower Hubbard band
(LHB) and an upper Hubbard band (UHB), separated by the Coulomb
repulsion U in case of (a) a Mott-Hubbard (MH) insulator and (b) a charge-
transfer (CT) insulator.

+ +
-

-
++ --

+

+

-

-

x2-y2d

px

py

Figure 2.6:

Schematic description of a Zhang-Rice singlet with
Cu-O hybridization between Cu 3dx2−y2 and O
2px,y orbitals. A hole is doped into the surround-
ing oxygen atoms (O 2p5) and forms a spin singlet
with the hole on the Cu site (3d9). The + and -
signs denote the phase of the wave function.

the CT gap lies in an energy range of the order of 1.5 - 2.0 eV showing variations in
gap size and line shape of the optical conductivity with oxygen coordination and
dimensionality as shown in Fig. 2.7 [47, 48]. Extensive experimental and theoret-
ical work has been done to understand the character of electron-hole excitations
in insulating parent compounds as well as in the hole-doped cuprates but the pre-
cise nature of these excitations is still controversial. A short summary is given in
the following section with focus on the low-energy excitation spectrum which is
believed to be of fundamental importance for the physics of high-TC compounds.
The common optical techniques to investigate the excitations of correlated elec-

trons are optical re�ectance measurements followed by a Kramers-Kronig trans-
formation, ellipsometry, and Raman spectroscopy. The dependence of dipole-
allowed and dipole-forbidden excitations on the momentum k is studied by angle-
resolved electron energy loss spectroscopy (EELS). Single-particle excitations of
occupied states are probed by angle-resolved photoemission (ARPES); x-ray ab-

18



2.4 Electron-Hole Excitations

Figure 2.7:

Optical conductivity spectra for 1D and
2D cuprates with changing Cu-O networks
[47]. The optical conductivity was derived
by a Kramers-Kronig transformation on
re�ectance data. The re�ectance was mea-
sured on the (001) surface with polariza-
tion of the electrical �eld parallel to the
Cu-O basal planes.

sorption spectroscopy (XAS) investigates the unoccupied states, and more recently
momentum-resolved resonant inelastic x-ray scattering (RIXS) is used to investi-
gate momentum-dependent excitations into unoccupied states. Due to immense
progress especially in this technique (higher resolution), new data and new insights
on some already investigated compounds such as La2CuO4 are available today. As
a consequence, some interpretations may have to be revised.

2.4.1 Excitons and excitonic resonances

The spectrum of the charge-transfer excitations in 2D cuprates above the gap
shows a prominent peak near the band edge (see Fig. 2.7), and despite many
theoretical and experimental investigations it is still discussed if this represents
an excitonic resonance or not. What this means and why this question is di�cult
to answer will be described in this section.
In an optical absorption process in conventional band insulators, photons can
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2 Physics of Transition-Metal Compounds

excite an electron from the valence band into the conduction band, leaving behind
a hole in the valence band. The e�ect of electron-electron interaction, i.e. the
Coulomb interaction between the excited electron in the conduction band and
those left behind in the almost �lled valence band is described in a picture of
electron-hole interaction. The resulting attraction between electron and hole can
cause their motion to be correlated. Such a bound electron-hole pair is called
exciton. Two cases can be distinguished. In one, the electron-hole attraction
is strong and the excitons are bound tightly together, i.e. the exciton radius is
comparable to the size of a unit cell. These so-called Frenkel excitons often exist
in ionic crystals. However, if the Coulomb interaction is strongly screened by
the valence electrons, the electron-hole pair is only weakly bound. In that case,
the radius of the exciton is much larger than the lattice spacing and the binding
energy is small. These bound states are called Wannier-Mott excitons. Excitons
can be identi�ed as absorption peaks in the optical conductivity just below the
band gap (see Fig. 2.8) At the same time, excitonic e�ects can drastically change
the shape of absorption edges and the line shape in the continuum above the gap
in optical spectra. While a true excitonic bound state is found as a sharp peak
below the onset of the optical gap, a so-called excitonic resonance is represented
by a prominent peak found within the continuum of states above the gap. An
excitonic resonance is sometimes called scattering state of electron-hole pairs. In
other words, the bound states of the electron-hole pairs have much shorter lifetime.

Figure 2.8: Optical absorption coe�cient of GaAs [49] from 1.41 to 1,56 eV for 4 dif-
ferent temperatures showing sharp peaks at the fundamental absorption
edge due to the formation of excitons. With increasing temperature, the
band edge shifts and the exciton peak broadens
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2.4 Electron-Hole Excitations

Figure 2.9: Left panel: Simpli�ed picture of the movement of a single hole (green
dot) in a 2D AF Mott-Hubbard insulator. Cu spins are represented by
red arrows, and the blue bars represent unfavorable bonds where the AF
order is destroyed and leading to an increase in energy. The order can
be restored by a spin wave. Right panel: A hole followed by a doubly
occupied site (red circle) which restores the AF order. Coherent motion
of double and empty site gives rise to a gain in kinetic energy. A very
similar pairing mechanism is also discussed as a possible mechanism for
Cooper-pair formation in high-TC superconductors [50�53].

Excitons in Mott-Hubbard insulators

In Mott-Hubbard insulators the lowest optical interband transition creates an
empty site and a doubly occupied site, i.e., a hole in the LHB and a particle
in the UHB. In this picture, an exciton can be regarded as a bound state of an
empty site (hole) and a doubly occupied site (double), moving in a background of
singly occupied sites. While in the above described conventional band insulators,
the creation of an electron-hole pair is driven by a reduction in Coulomb energy,
theoretical studies of excitons in 1D and 2D Mott-Hubbard systems have shown
that the exciton binding can either be driven by a gain in Coulomb or kinetic
energy.
In 2D, strong magnetic interaction was found to be the origin of the exciton
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2 Physics of Transition-Metal Compounds

binding energy in contrast to the conventional mechanism via long-range Coulomb
interaction [50, 54�64]. This means the gain in kinetic energy rules the exciton

method, which yields spectra with an accuracy comparable
to exact diagonalizations but for much larger systems.11,13,21

All DMRG methods have a truncation error which is re-
duced by increasing the numberm of density-matrix eigen-
states kept~for more details, see Refs. 19 and 20!. Varyingm
allows one to compute physical quantities~including spectra!
for different truncation errors and thus to obtain error esti-
mates on these quantities. I have systematically used this
procedure to estimate the precision of my numerical calcula-
tions and adjusted the maximal numberm of density-matrix
states to reach a desired accuracy. The largest number of
density-matrix eigenstates used in this work ism51000. For
all numerical results presented in this paper DMRG trunca-
tion errors are negligible.

All numerical calculations have been performed on lat-
tices with an even numberN of sites using open boundary
conditions. As we are interested in the properties of the
Hamiltonian~1! in the thermodynamic limit, numerical cal-
culations have always been carried out for several system
sizesN in order to investigate finite-size effects. The largest
system size used here isN5512. If necessary, the results
have been extrapolated to the infinite system limitN→`. To
evaluate finite-size effects in a continuous spectrum one has
to compute it for different sizes while keepinghN 5 const.21

In this work hN512.8t is used. For all numerical results
presented in this paper finite-size effects~including chain-
end effects! are negligible unless discussed explicitly. For
spectra this means that finite-size effects are completely hid-
den by the broadeningh. More precisely, DDMRG results
for finite N512.8t/h are not distinguishable from the corre-
sponding infinite-system spectra convolved with a Lorentz-
ian distribution of widthh ~see the discussion in Ref. 21!.

IV. RESULTS

To facilitate the comparison with analytical results, the
discussion of optical excitations in the Mott insulating phase
is divided in three subsections: the limit of a large Mott gap,
the regime of finite Mott gaps, and the limit of a small Mott
gap. Note, however, that the Mott gapEM just fixes the en-
ergy scale; the minimal energy required to create a charge
excitation isEM/2 but optical excitations do not differ quali-
tatively asEM varies if everything else is kept constant. In all
cases, there is spin-charge separation and the spin sector is
gapless. Elementary excitations in the charge sector are spin-
less bosons in the lower and upper Hubbard bands. Optical
excitations are always made of an even number (>2) of
elementary excitations with opposite charges~to preserve
charge neutrality!. The different types of optical excitations
and optical spectra found in the model~1! result from the
residual interactions~essentially the nonlocal part of the
Coulomb repulsion, hereV) between the elementary charge
excitations.

A. Limit of a large Mott gap

In the strong-coupling limitU@t, the properties of the
model ~1! in the Mott insulating phase can be described us-
ing simple concepts. In the ground state double occupation is

prohibited and there is exactly one electron on each site.
Elementary charge excitations can be represented as an
empty site~holon in the lower Hubbard band! or a doubly
occupied site~doublon in the upper Hubbard band!. The
minimal energy required to create a holon or a doublon is
EM/25U/22O(t)@t. Optical excitations always consist of
an equal number of holons and doublons to conserve the
total charge. The ionicity of excited states is defined as the
change in the number of doubly occupied sites with respect
to the ground state

I n5^nuN̂dun&2^0uN̂du0&, ~6!

whereN̂d5( l n̂l ,↑n̂l ,↓ and u0&,un& denote the ground state and
excited states, respectively. Thus,I n is a measure of the num-
ber of doublons~or equivalently of holons! created by an
excitation. Depending on the strength of the nearest-neighbor
interaction parameterV, the low-energy optical excitations
are made of a single doublon-holon pair (I n51) or are col-
lective excitations of several such pairs (I n.1). Note thatI n
is also equal to the derivative of the excitation energyEn
2E0 with respect toU because the derivative of an eigenen-
ergy En5^nuĤun& is equal to ^nuN̂dun& according to the
Hellmann-Feynman theorem.

Single holon-doublon pair. For V,U/31O(t), optical
excitations consist of a single holon-doublon pair and the
optical properties, which can be calculated exactly,14,15 de-
pend only on the parametersV and t. For 0<V<2t, holon
and doublon are independent. A schematic representation of
this state is shown in Fig. 1. This pair of free charge excita-
tions gives rise to a continuous band in the optical spectrum
s1(v). The band starts at the Mott gapEM5U24t and has
a width of 8t. As there is no optical excitation with a lower
energy thanEM , the Mott gap is also the optical gapEopt.
The optical spectra forV50 andV52t are shown in Fig. 2
with a broadeningh/t50.1. At the conductivity threshold
s1(v) vanishes asAv2EM for V,2t but diverges as
1/Av2EM in the special caseV52t. The optical conductiv-
ity also has a small peak atv5U2V with 1 % of thespec-
tral weight.13 This peak is visible inside the band forV50
andV52t in Fig. 2. It corresponds to a bound state made of

FIG. 1. Schematic representation of~a! an unbound holon-
doublon pair,~b! an exciton, and~c! a biexciton in the strong-
coupling limit U22V@t.

OPTICAL EXCITAITONS IN A ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 67, 075106 ~2003!

075106-3

Figure 2.10: Possible electron-hole excitations in 1D Mott insulators at half �lling and
in the limit of a large Mott gap (U � t). Elementary charge excitations
are represented by moving one electron from one site to another, creating
an empty site and a doubly occupied site. Depending on the size of V ,
the following excitations are created: (a) an unbound holon-doublon pair
(see explanation in text); (b) a bound pair (exciton), or (c) a biexciton in
the strong coupling limit U − 2V � t [65].

binding. In this picture, hopping processes are suppressed for well separated single
holes or single doubles because of the AF (short-range) order. However, if a hole
and a double form a singlet, then the hopping of this singlet is not suppressed by
the magnetic background, giving rise to an e�ective gain of kinetic energy (see
Fig. 2.9).
In many theoretical studies it has been found that in 1D Mott-Hubbard in-

sulators the Coulomb-driven exciton binding is dominant [23, 65�72]. Here, the
extended Hubbard model at half �lling is used to describe excitons. It takes into
account the intersite repulsion V between electrons on neighboring transition-
metal sites [66, 68]. It turns out that excitons are only formed below the gap if V
exceeds a critical value [66, 69]. As mentioned before, in Wannier-Mott theory of
conventional band insulators, the exciton formation is ruled by Coulomb attrac-
tion. Properties as size, binding energy, etc. exhibit a monotonic dependence on
the strength of the Coulomb repulsion. Excitons in 1D Mott-Hubbard insulators
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2.4 Electron-Hole Excitations

however, show a much more complex nature since in a Mott-Hubbard insulator
the Coulomb interaction determines at the same time the size of the Mott gap, the
exciton properties, and the coupling of the exciton to the other electrons in the
system. In particular, the binding energy of a Mott-Hubbard exciton does not give
a good estimate of the Coulomb interaction strength [65, 69]. The one-dimensional

Fig. 1 in Ref. 13! is the absence of the weak peak associated
with a localized exciton atv5U2V. Nevertheless, this
weak peak is not an artifact of the strong-coupling limit be-
cause its existence has been confirmed in the Hubbard model
(V50) down toU54t ~Ref. 11!. The finite spectral weight
carried by the localized exciton originates from a ground-
state dimer-dimer correlation of the spin degrees of
freedom.14 In the strong-coupling limit (U22V@t) of the
extended Hubbard model~1!, the effective exchange cou-
pling between nearest-neighbor spins depends on the occu-
pation of the neighboring sites ifVÞ0. Thus the effective
spin Hamiltonian is not the one-dimensional Heisenberg
model, in general. Only forV50 or in the limit U@V, the
effective spin Hamiltonian reduces to the Heisenberg model
with a constant exchange couplingJ54t2/U. In this case,
the ground state has the relevant spin dimer-dimer correla-
tions and the localized exciton carried a finite optical weight
as explained in detail in Ref. 14. For finiteU andV, however,
the spin dimer-dimer correlation is presumably destroyed by
the fluctuations of the spin exchange coupling and thus the
optical weight of the localized exciton vanishes.

For V516t the conditionV*U/3 is satisfied and exci-
tonic strings appear in the optical spectrum below or around
the Mott gap EM535.58t. As seen in Fig. 6, most of
the spectral weight is concentrated in the exciton of sizej
51.0 at vexc5Eopt523.53t'U2V. The biexciton atv
532.35t'2U23V is barely visible in Fig. 6. The optical
conductivity s1(v) is again shown in Fig. 7~a! on a loga-
rithmic scale. The isolated peaks associated with both exci-
tations are now clearly visible. The measured ionicity~6! is
I 51.1 andI 52.2 for the exciton and the biexciton, respec-
tively. In Fig. 7~a! the remnant of the continuous band of free
charge excitations and the triexciton~at v'3U25V540t)
are also visible in the intervalv536244t above the Mott
gap.

For V519.97t'U/2 the optical conductivity spectrum is
radically different. The excitonic strings collapse into a band
of CDW droplets with varying sizes. For instance, the 1Bu

2

state is a droplet of sizer CDW58.9 with an energyEopt
'15.5t. These CDW droplets give rise to a broad band in
the optical conductivity spectrum shown in Fig. 6. The onset
of this band is well below the Mott gapEM530.83t. On the
logarithmic scale of Fig. 7~b!, one sees that, in this particular
case, the entire optical weight seems to be belowEM ~for
h→0). The appearance of a band below the Mott gap is also
visible in the current-current correlations forU512t andV

56t presented in Ref. 27 but the optical spectrum in the
regimeU'2V is not interpreted correctly in that work.

As a second example and to illustrate the finite-size-
scaling analysis I have carried out for dynamical spectra, I
discuss the optical conductivitys1(v) for U58t. Figure 8
shows the evolution of the optical conductivity for increasing
nearest-neighbor repulsionV. For V5t andV52t, the spec-
trum contains a single continuous band due to free charge
excitations starting atEopt5EM54.67t and 4.53t, respec-
tively. For V53t the spectrum consists of a strong peak
corresponding to an exciton of sizej53.2 and energyvexc

5Eopt53.86t, and of a weak band above the Mott gapEM

54.10t. This band is visible in Fig. 8 as the high-frequency
tail of the excitonic peak. ForV54t, CDW droplets of vary-
ing sizes dominate the optical spectrum. For instance, the
1Bu

2 state is a droplet of sizer CDW55.6 with an excitation
energy Eopt51.55t lower than the Mott gapEM52.29t.
There is no intermediate regime with well-defined excitonic
strings for this value ofU.

The precise shape ofs1(v) cannot be determined from
the sole results shown in Fig. 8 because of the finite resolu-
tion and system size used,h/t512.8/N50.1. To determine
the properties ofs1(v) with maximal resolution (h→0) in
the thermodynamic limit (N→`), one can perform a scaling
analysis withhN5const. as explained in Ref. 21.~Here I
have usedhN512.8t.! The scaling analysis of the optical
conductivity s1(v) calculated with DDMRG always yields
results which are qualitatively and quantitatively consistent
with the properties of low-lying optical excitations deter-
mined using the ground state and symmetrized DMRG meth-

FIG. 7. Reduced optical con-
ductivity vs1(v) for U540t and
~a! V516t and~b! V519.97t cal-
culated using DDMRG withh/t
50.4 (N532 sites!. Vertical lines
indicate the Mott gapEM .

FIG. 8. Optical conductivitys1(v) for U58t and four different
values of V calculated with DDMRG usingh/t50.1 (N5128
sites!.
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Figure 2.11: Optical conductivity σ1(ω) in a one-dimensional Mott chain in the regime
of �nite Mott gap (U = 8t) for four di�erent values of V1 (nearest-neighbor
repulsion) calculated with DDMRG (N=128 sites) [65]. The energy state
is given in units of t. The next-nearest neighbor repulsion V2 is set to
zero. Several excitations are found in the low-energy spectrum for di�erent
regions of parameter space (U,V). In 1D the band width is given by W =
4t. For U = 8t and V = 0, one expects that the LHB-UHB excitation
peaks at 8t, and the band gap is located a U − W = 4t. At V = t
and V = 2t the spectrum shows one continuous band belonging to free
charge-carrier excitations above the optical gap (dashed and dotted lines).
In comparison to V = 0, a �nite V pulls down the spectral weight to lower
frequencies forming an excitonic resonance. However, a true bound state
is only found for V > 2t. For V = 3t a strong peak corresponding to an
exciton below the Mott gap and a continuous band above the Mott gap
are observed. The exciton takes a large part of the spectral weight. For
V = 4t, CDW droplets below the gap dominate the spectrum [65].
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2 Physics of Transition-Metal Compounds

extended Hubbard Hamiltonian is given by [24]

H = −t
∑
l;σ

(ĉ†l,σ ĉl+1,σ + ĉ†l+1,σ ĉl,σ)

+U
∑
l

(n̂l,↑ −
1

2
)(n̂l,↓ −

1

2
)

+V1

∑
l

(n̂l − 1)(n̂l+1 − 1)

+V2

∑
l

(n̂l − 1)(n̂l+2 − 1)

It describes electrons with spin σ =↑, ↓ that can hop between neighboring sites.
ĉ†l,σ and ĉl,σ are creation and annihilation operators for electrons with spin σ at
site l. n̂l,σ = ĉ†l,σ ĉl,σ are the number operators, and n̂l = n̂l,↑ + n̂l,↓. Here, t is
the hopping amplitude, U the onsite Coulomb interaction, and V1 nearest and V2

next-nearest-neighbor repulsion. Essler et al. [69] use dynamical density-matrix
renormalization group (DDMRG) calculations and a �eld-theoretical approach on
the basis of the one-dimensional extended Hubbard model to calculate the optical
conductivity in the limit of large Mott gap (U � t, V1, V2) to small Mott gap
(t � U, V1, V2). In the limit of small Mott gap, the Hamiltonian shows spin-
charge separation [69]. In this case the system shows collective excitations of
decoupled charge and spin degrees of freedom [73] called holons (charge e+ and
no spin) and spinons (no charge, spin = 1/2), respectively. The phenomenon is
known in one-dimensional metals, where the low-energy excitations are described
in the frame of the so-called Tomonaga-Luttinger liquid model [74, 75]. In the
small gap limit of 1D Mott insulators the doubly occupied site and hole become
antiholons and holons, respectively (spinless excitations of opposite charge) which
in certain parameter regimes can build bound pairs [69]. Figure 2.11 shows σ1(ω)
for intermediate Mott gap (U = 8t) in the parameter regime V2 = 0 and t ≤ V1 ≤
4t [65].

2.5 Experimental overview

Next, an overview on the experimental an theoretical �ndings on the electron-
hole excitations in 2D and 1D cuprates is given. We start with the 2D compound
Sr2CuO2Cl2 which is maybe the most ideal realization of a 2D antiferromagnetic
(AF) Mott insulator.
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2.5.1 Excitations in 2D copper oxide planes

Sr2CuO2Cl2 is isostructural to La2CuO4. However, the apex Cl ions have a larger
distance to the copper-oxide planes and hence a reduced in�uence on their ex-
citation spectrum. We discuss results of EELS and optical spectroscopy on the
2D compound in order to understand the nature of the lowest-lying electron-hole
excitations.

The ZN model

In 1998, Zhang and Ng [56] developed a local model to explain the excitation
spectrum in the 2D compound Sr2CuO2Cl2 measured by EELS [55]. The spectrum
showed an optically allowed excitation at 2.8 eV in the [110] direction for k = 0
with large dispersion2 of ∼ 1.5 eV.
The model of Zhang and Ng delivers four exciton modes corresponding to

d−, s−, and px,y-wave symmetry, where the lowest excitation is represented by
the d-wave mode. It is described by an empty site (or, regarding electrons, a dou-
bly occupied site, namely Cu+) and a Zhang-Rice singlet state on a neighboring
site as depicted in Fig. 2.12 [56]. This bound pair (empty site - double) is often
referred to as ZN exciton. This spin-singlet electron-hole pair may move freely
through the 2D lattice without disturbing the spin background as depicted in Fig.
2.9, explaining the large dispersion in EELS.3

However, the strong dispersion of the ZN exciton has been questioned recently
on the basis of high-resolution EELS data [60, 76�78] and RIXS investigations on
La2CuO4 which show the same excitation in the copper-oxide planes but much
smaller dispersion (0.3-0.5 eV) [63, 64]. In addition, the high-resolution EELS
measurements and RIXS data show a multi peak structure of the spectrum in both
compounds. The data reveal a new feature at 2.2 eV and k=0 that was not resolved
before and does not show a dependence on momentum transfer. The excitation
at 2.6 eV that was already reported by Wang et al.(ZN-exciton) is observed too.
Then evidence was found for more dispersionless narrow bands at higher energies
near 4.2, 5.4, and 7.2 eV that cannot be explained by the simple ZN model.

Cluster model

Moskvin et.al. [60, 71, 78] have generalized the ZN model into a new cluster
theory to explain the multi-peak structure in EELS data of Sr2CuO2Cl2 [76] and
also explaining excitations in the 1D corner-sharing chain Sr2CuO3 [71, 78].

2This means the excitation shifts to higher energy with rising momentum transfer.
3In conventional semiconductors, EELS can probe excitations of the electron-hole continuum
as well as the excitonic spectrum. The latter lies below the electron-hole continuum and its
bandwidth is narrower than that of an electron or hole, respectively.
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Cu+

Figure 2.12: Schematic description of an exciton in a CuO2 plane (ZN-exciton)[55].
The open circles represent oxygen ions (O) and the solid circles represent
copper ions (Cu). The arrows represent spins of the holes. The quasipar-
ticle is at site ~R (Cu+) and the quasihole is located on the neighboring
square of O atoms and forms a spin singlet with the central Cu hole
(Zhang-Rice singlet).

In their approach, two new aspects are introduced. First, they do not only
consider O2pσ orbitals but O2pπ and O2pz orbitals as well, and second, they
argue that the O-Cu charge-transfer process generates two types of excitons (see
�gure 2.14): one-center excitons (OCE) on one CuO4 plaquette, and two-center
excitons (TCE) extending over two plaquettes [60, 71, 78]4.
In their local picture, two neighboring CuO4 plaquettes, embedded into the insu-

lating cuprate, are considered. Beginning from 5 Cu 3d and 12 O 2p atomic orbitals
for a CuO4 cluster with D4h symmetry, 17 symmetrized even (a1g, a2g, b1g, b2g, eg)
or odd (a2u, b2u, eu(σ), eu(π)) orbitals are constructed. The even Cu 3d orbitals
a1g(3dz2), b1g(3dx2−y2), b2g(3dxy), and eg(3dxz, 3dyz) hybridize with even combina-
tions of O 2p orbitals of the same symmetry, forming bonding γb and antibonding
γa states. Among the odd orbitals, only eu(σ) and eu(π) hybridize, forming bond-
ing ebu and antibonding eau oxygen states. The oxygen orbitals a2g, a2u, and b2u are
nonbonding states. The model predicts a large number of excitons or excitonic
resonances at the Γ-point (k=0).
The two lowest dipole-allowed excitations are a one-center exciton (b1g → eu(π))

and the two-center exciton with a Zhang-Rice singlet as �nal state (ZN exciton,
b1g → b1g ) as depicted in Fig. 2.14.
Moskvin et al. interpret the seemingly large dispersion of the ZN exciton (at

4It should be noted that in optical spectroscopy, �xed to the k= 0 region, it is in principle
not possible to distinguish between one-center (dispersionless) and two-center excitons with
a noticeable dispersion.
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Figure 2.13: Electron (hole) density distribution for planar copper and oxygen molec-
ular orbitals on one CuO4 plaquette [71]

Figure 2.14: Left panel: example of a one-center exciton formed by an electron in the
Cu 3dx2−y2 hybridized state (even symmetry b1g) and a hole in the purely
oxygen hybridized states (odd symmetry eu(π)). Right panel: The two-
center exciton corresponding to the ZN exciton between a b1g electron and
a b1g hole. The b1g hole is a Zhang-Rice singlet.

2.6 eV) in the EELS spectra of Sr2CuO2Cl2 [55, 76, 77] in terms of an exciton-
exciton interaction. It is argued that the dipole-allowed exciton vanishes with
rising momentum transfer while the intensity of a dipole-forbidden exciton at
3.8 eV near the BZ boundary rises. They propose that this e�ect might be misin-
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terpreted in terms of a large dispersion of one peak. It is stressed by the authors
that the model prediction for the OCE absorption spectrum for one CuO4 pla-
quette shows an interplay of forbidden d − d transitions (b1g → b2g, a1g, eg) and
forbidden (b1g → a2g) as well as allowed (b1g → eu(π)) CT transitions which are
close in energy. Moskvin et al. point out that a separation of optical transitions
into crystal-�eld d− d and CT d− p transitions is questionable in the cuprates or
other strongly covalent systems since the forbidden d − d transitions are accom-
panied by a strong p− d and p− p charge transfer.
The (b1g → eu(π)) exciton is expected to be small with large e�ective mass due

to coupling to the lattice.5 It is emphasized that this cluster model cannot prove
whether the low-lying particle-hole pairs are bound (lying below the gap) or not
(forming resonances within the continuum), i.e. the question of lifetime is not
answered. Thus, in this model all electron-hole excitations are called excitons.
Moskvin et al. stress that a peak assignment in 2D is very di�cult due to the
superposition of OCEs and TCEs. 6

Choi et al. [81] have measured the transmittance and re�ectance of Sr2CuO2Cl2
near the gap as a function of temperature (293 - 523 K) and identi�ed three major
excitations which show di�erent behavior with rising temperature (see Fig. 2.15).
This can give insight into the nature of the electron-hole excitations. In general,
one expects a slight shift of the excitations to lower energy with increasing tem-
perature due to lattice expansion. In the cuprates, the Cu-O distance will change
and correspondingly the band energies since crystal-�eld splitting and Madelung
potentials change with Cu-O distance. In addition to that, spin-ordering, electron-
phonon or electron-electron interaction are temperature dependent and may in�u-
ence the gap energy. The observed peaks (see Fig.2.15) assigned in the following
way [81]: small peak at 1.4 eV which is only observed in transmittance measure-
ments (see Fig.2.15 (c)) is assigned to a local d− d transition, i.e., a crystal-�eld
excitation. Since this excitation is not dipole-allowed it is very weak in inten-
sity. Peak B (see Fig. 2.15 (b)) at 2.0 eV is assigned to the ZN-exciton and C
at 2.6 eV is identi�ed with an excitation from non bonding oxygen bands NBB to
the UHB. This interpretation is in contradiction to the interpretation of Wang et

al.[55], Zhang and Ng[56] and Moskvin et al.[78] where the excitation at 2.6 eV C

is assigned to the ZN-exciton.
Choi et al. support their assignment with the temperature dependence of the

peaks. While peak B shows a strong redshift (- 121 meV) within the measured
temperature range, peak C does not shift as much in energy (-59 meV). It is
argued [81] that the strong shift of B is not only due to lattice expansion but also
due to a change in the AF spin ordering. They propose that the excitation B is

5The eu(π) and eu(σ) excitations are doubly degenerate leading to a strong electron-lattice
coupling and self trapping [78].

6Additional information by ARPES data [79, 80] was used for interpretation of EELS data at
the Γ-point.
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due to peakB, which suggests that theT dependence of peak
A is weaker than that of peakB.

B. Strong absorption structures in the visible region

To investigate peakB and higher-energy transitions in
detail, we measuredR(v) in visible and UV regions, shown
in Fig. 2 ~a!. Note that the peak around 2.0 eV inR(v),
related to peakB, is changed more significantly than others.
As the temperature increases, theR value at the peak is
reduced, and the peak as well as the edge shift toward lower
energy.

Figure 2~b! shows aT-dependents(v), derived from
R(v) through KK analysis with the one-point anchoring
technique. Using this analysis, we can obtains(v)’s which
were consistent with the optical conductivity obtained from
T(v), as shown in Fig. 2~c!. Note that they axis in this
figure has a logarithmic scale. Below 3.0 eV,s(v) consists
of a narrow strong peak near 2.0 eV~peakB) and a broad
peak near 2.5 eV~peakC). In other undoped cuprates with

CuO2 planes, similar absorption structures appear only when
the electric fieldE is parallel to the CuO2 plane, but not
whenE is perpendicular to the CuO2 plane.15–18So peaksB
andC can be considered excitations within the CuO2 plane.
A point kept in mind in Fig. 2~b! is that peaksB andC are
well separated from higher-energy absorption features which
start to increase near 3.0 eV. Therefore, both structures be-
low 3.0 eV can be attributed to the Cu 3d–O 2p charge-
transfer excitations in the CuO2 plane.

Now let us focus ons(v) in the spectral region below 3.0
eV, where the error due to the extrapolation is small. The
change ins(v) with T is dominated by a strong redshift of
peakB, while peakC is lessT dependent. To demonstrate the
T-dependent shifts of these two peaks, the positions of both
peaks at 293 and 523 K are marked with line bars in Fig.
2~b!. By employing thef-sum rule of spectral weight, we can
estimate the effective carrier number per one Cu atom which
is involved in optical excitations up to the given frequency
v,

ne f f~v!5
2m

pe2NCu
E

0

v

s~v8!dv8, ~4!

where m is the free-electron mass andNCu is the number
density of the Cu atom. Froms(v) in Fig. 2~b!, ne f f(v) at
3.0 eV is approximated at about 0.28. Also, a significant
change inne f f occurs only below 2.5 eV, suggesting that the
charge carriers contributing to peaksB andC are rather iso-
lated from carriers in other electronic bands.

C. Temperature dependences of three structures

Figure 3 showsT dependences of the peak energies (EA
peak

and EB
peak) and edge energies (EA

edge and EB
edge) of peaksA

and B, and the peak energy of peakC (EC
peak). The edge

energies were determined by fitting edges of the two absorp-
tion structures with straight lines, shown by dotted lines in
the inset of Fig. 1~b!. To findEA

peak , the contribution of peak
B was subtracted. Owing to the strong redshift of peakB, it
was not possible for us to extract peakA at temperatures
higher than 300 K.EB

peak andEC
peak were obtained by fitting

s(v) with two Gaussian functions and aT-independent
background for the contribution from higher-energy excita-
tions, as shown in the inset of Fig. 2~c!.

TheT-dependent change ofEA
edgeis less than that ofEB

edge.
The relative changes of peaksA andB from 10 to 293 K, i.e.,
DEi

edge/Ei
edge(10 K) (i 5A andB), are 1.6% and 2.8%, re-

spectively. As a reference, the data previously reported by
Zibold et al.19 are overlaid with cross symbols. It appears
that their data correspond to the edge of peakA in our data.
Temperature dependences ofEB

peakandEC
peakare also shown.

While temperature is raised from 293 to 523 K,DEB
peak

52121 meV and DEC
peak5259 meV. @DEB

peak/EB
peak

(293 K) and DEC
peak/EC

peak(293 K) are 6.2% and 2.4%.#
Moreover, peakB seems to be broadened as the temperature
increases, as shown in Fig. 2~b!.

FIG. 2. ~a! Temperature dependences of reflectance spectra of
Sr2CuO2Cl2. ~b! Temperature dependences of the optical conduc-
tivity derived by the Kramers-Kronig analysis, and the effective
carrier density at 293 K~solid line! and 523 K~double-dash-dotted
line!. The same optical conductivity is drawn in~c! with a logarithm
scale to compare with the results from the transmittance measure-
ments, shown in Fig. 1~b!. Inset: The dotted lines represent contri-
butions of peaksB and C and background due to higher-energy
absorption. The solid line represents the sum of the three contribu-
tions.

4648 PRB 60CHOI, LEE, NOH, CHOI, BANG, AND KIM

Figure 2.15:

Temperature dependence of re-
�ectance data of Sr2CuO2Cl2 (a).
Panel (b) shows optical conduc-
tivity data from re�ectance mea-
surements followed by Kramers-
Kronig transformation [81]. c)
shows optical conductivity data
on a logarithmic scale to com-
pare with optical conductivity
derived from transmittance mea-
surements. Three peaks are iden-
ti�ed. Peak A (around 1,4 eV)
which is very weak in intensity
and only observed in transmit-
tance measurements is assigned
to an intra-atomic (one-center)
dipole-forbidden d− d-excitation
Cu3dx2−y2 → 3dxy. Peak B (at
2,0 eV) is assigned to the charge
transfer from O2p → Cu 3d form-
ing a Zhang-Rice singlet. Peak C
(2,5 eV) is assigned to the excita-
tion from a nonbonding oxygen
band to Cu 3d. Peak B shows
a strong redshift with rising tem-
perature.

more a�ected by spin order since the hole in the oxygen orbitals of the Zhang-Rice
band is strongly coupled to the Cu spins due to the strong hybridization. It is
proposed that the weakening of the AF order leads to a shift of the ZRS to the
UHB [81]. The nonbonding oxygen bands of peakC do not hybridize strongly with
the Cu orbitals and thus are not much a�ected by spin ordering. Its temperature
dependence is explained by the expected lattice expansion [81].

Falck et al. [82] have measured the temperature dependence of the re�ectance
spectrum of La2CuO4 in the range between 0.5 and 3.1 eV and calculated ε2

by Kramers-Kronig transformation. The spectra show the same excitations as
those in Sr2CuO2Cl2 [81]. Falck et al. also identify the �rst weak excitation at
1.75 eV with a crystal-�eld excitation. This is supported by photoconductivity
measurements that do not show a photocurrent in this energy range. The peak at
2.0 eV is classi�ed as charge-transfer excitation without giving more details. Here,
a photocurrent is detected (i.e. free electrons and holes are created).
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IV. DISCUSSION

A. Peak assignments

The intensity of peakA is much weaker by more than two
orders of magnitude than intensities of the higher-energy
peaks, suggesting it is not due to an electric-dipole-allowed
process but due to a higher-order optical process, such as the
Cu d-d transition. In Raman spectroscopy, a peak withA2g
symmetry was observed around the position of peakA. It
was assigned to the transition of Cu 3dx22y2˜3dxy ~from
the viewpoint of the hole! for satisfying the A2g
symmetry.20,21 Therefore, peakA was attributed to the intra-
atomic Cu 3dx22y2˜3dxy transition in the previous study.22

This assignment is also consistent with the recent resonant
x-ray Raman scattering study by Kuiperet al.23 Our result
that peakA shows littleT dependence, compared to the other
peaks, is another feature supporting the assignment of peakA
as the intra-atomic transition. This is different from the peak
assignment of Ziboldet al.19: they claimed that the cross
symbols in Fig. 3 correspond to an edge of a charge-transfer
transition.

PeakB corresponds to a charge-transfer excitation where
an electron moves from an O 2p orbital to a Cu 3d orbital.
Such an excitation will simultaneously create a pair of an
electron and a hole in the Cu 3d and O 2p orbitals, respec-
tively. Let us take a close look at the hole and electron cre-
ation processes, separately. The hole creation in the O 2p
band is exactly what occurs in the photoemission spectros-

copy~PES! measurement. The hole created at the 2ps orbital
of the O22 ion, through strong hybridization with thedx22y2

orbital of the neighboring Cu21 ion, spreads over O22 ions
surrounding the Cu site. The combined state of four oxygen
hole states with thedx22y2 phase coherence forms a spin-
singlet state with the central Cu21 ion, called the Zhang-Rice
singlet~ZRS!,24 which corresponds to the lowest-energy con-
figuration for an undoped cuprate with a photoexcited hole.
Angle-resolved PES~ARPES! found the lowest-binding-
energy band whose energy has a maximum at (p/2,p/2) in k
space about 1 eV belowEF ,3,25 which is attributed to the
ZRS. In this study, we call this the Zhang-Rice band~ZRB!.
As for the electron creation process, an electron created at
the Cu site is under a strong on-site Coulomb interaction
with otherd electrons. Its energy band will be located above
EF , which is called the upper Hubbard band~UHB!. There-
fore, we assign peakB to a transition from the ZRB to the
UHB, as indicated by an arrow in Fig. 4~a!.

As for peakC, the ARPES experiment by Pothuizenet al.
showed that an oxygen main band appears at about 1.5 eV
below the ZRB.25 This band was attributed to a nonbonding
band ~NBB! mainly from O 2pp orbitals which have little
hybridization with the Cu 3d orbitals. Considering the en-
ergy difference between the ZRB and the NBB in the PES
result, the optical transition from the NBB to the UHB
should occur about 1.5 eV higher than the peakB, instead of
the observed value of 0.5 eV. However, in the optical-
absorption process, a pair of hole and electron created simul-
taneously undergoes an excitonic effect, or attractive Cou-
lomb interaction.

FIG. 3. Temperature dependences of the edge~open circle! and
peak~filled circle! energies of peakA, the edge~open triangle! and
peak~filled triangle! energies of peakB, and the peak energy~filled
box! of peakC. The data points denoted by the cross (3) are from
Ref. 19. The dashed line represents the variation of peakC expected
from a thermal lattice expansion based on Eq.~7!.

FIG. 4. ~a! A schematic diagram of effective electronic band
considered in this study~ZRB: Zhang-Rice band; NBB: nonbonding
oxygen band; LHB: lower Hubbard band; UHB: upper Hubbard
band!. Local-excitation pictures for~b! peaksB and~c! C. Solid and
open circles represent copper and oxygen ions, respectively. The
electron resides on the Cu at the left. Darkness of the O 2p orbitals
means the occupation probability of the photoexcited hole. The or-
bital and phase geometries for the NBB were suggested by Pothui-
zenet al. ~Ref. 25! and Simonet al. ~Ref. 27!.
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Figure 2.16: Schematic description of the density of states (or better: photoemission
and inverse photoemission spectra) in a Mott-Hubbard insulator includ-
ing nonbonding oxygen bands. In this picture, the in-plane Cu-O hy-
bridization is considered between Cu 3dx2−y2 orbitals and O 2pσ forming
Zhang-Rice bands (ZRB). The nonbonding bands (NBB) with predomi-
nantly oxygen character and small overlap with Cu orbitals are situated
below the ZRB [81], i.e. an excitation to the UHB lies higher in energy
than from the ZRB.

The temperature dependence of the spectrum of the 2D planes in La2CuO4 has
also been observed by Ellis et al. [64] in RIXS measurements. They con�rm a
low-energy excitation at 1.8 eV also assigned to a local d − d transition and an
excitation at 2.2 eV which is identi�ed with the ZN exciton [56] (showing small
dispersion). The edge of the CT excitation shifts to lower energy with increased
temperature as also reported by Falck et al.[82] This shift with temperature is
interpreted in terms of strong electron-phonon coupling by Ellis et al.[64]. The
coupling to phonons in this picture also explains the small exciton dispersion since
the e�ective mass of the excitations is enhanced [64].

2.5.2 1D corner-sharing and edge-sharing chains

In 1D, the one-center excitations can be separated in EELS by choosing a momen-
tum transfer perpendicular to the chain direction because in polarization perpen-
dicular to the chains only one-center excitations (OCE) are expected. Therefore,
Moskvin et al. investigated the electronic excitations of the 1D corner-sharing
compound Sr2CuO3 in both polarization directions to con�rm their model pre-
dictions. Figure 2.17 shows momentum-resolved EELS data of Sr2CuO3 [71, 78].
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2.5 Experimental overview

In the spectrum with k perpendicular to the chain (right panel in Fig. 2.17) one
dispersionless peak at around 2.0 eV and another dispersionless peak at 5.5 eV are
visible. Moskvin et al. associate them with the dipole allowed one-center charge-
transfer excitations (OCE) eu(π) and eu(σ), respectively. In the response with k
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A comparative analysis of electron energy-loss spectroscopy (EELS) spectra for the 1D insulating
cuprate Sr2CuO3 with transferred momentum ~qq k and ? to the chain axis allows one to elucidate the
structure of the charge transfer gap in in-chain response. It is determined by the superposition of two
types of excitations with different magnitudes of dispersion. The low-energy response with ~qq ? to the
chain direction, but yet within the plane of CuO4 plaquettes, exhibits also a dispersionless peak near
2 eV. The theoretical simulation of the EELS data using exact diagonalizations of an appropriate
extended Hubbard Hamiltonian for relevant clusters requires the explicit consideration of low-lying
oxygen 2p� states within the CuO4 plaquette plane beyond the standard pd� extended Hubbard model
widely used for cuprates with corner-shared CuO4 plaquettes.

DOI: 10.1103/PhysRevLett.91.037001 PACS numbers: 74.72.Jt, 71.35.–y, 79.20.Uv

Low-energy ( � 2 to 3 eV) electron-hole (el-h) excita-
tions in cuprates studied by electron energy-loss spectros-
copy (EELS) provide insight into the involved orbitals.
This knowledge is important for a proper description of
these compounds in the framework of multiband Hubbard
models. In particular, excitation spectra are of interest
since they involve states which may affect also ground
state properties of doped cuprates. Huge nonlinear optical
(NLO) effects observed recently in Sr2CuO3 point to
promising optoelectronic applications [1–4]. A thorough
understanding of these nonlinearities demands a detailed
knowledge of the excitation spectrum. El-h excitations in
cuprates as pronounced charge transfer (CT) insulators
are also interesting from a basic point of view, since they
might considerably differ from excitons in standard
Mott-Hubbard systems, conjugated polymers, molecular
crystals, as well as in conventional band insulators [5].

To describe earlier EELS data of Sr2CuO2Cl2 [5]
Zhang and Ng (ZN) [6] proposed a model of CT excitons
(CTE). The ZN-CTE is thought of as the CTof a hole with
b1g symmetry from one CuO4 plaquette to a neighbor one
forming a Zhang-Rice (ZR) singlet state there [5,6]. To
explain also dispersionless, low-energy features in re-
fined EELS data of this 2D cuprate, the ZN model was
generalized in Ref. [7], where it was argued that a process
generates one- and two-center excitons (OCE, TCE).
Therefore the el-h pair is localized predominantly on one
or two CuO4 plaquettes, respectively (see Fig. 1). On the
basis of this modified model incorporating all Cu 3d and
O 2p orbitals the energies of a large number of CTE were
predicted and a preliminary assignment of main features
in the EELS spectra was achieved in a wide (2� 13 eV)
energy range. However, in such 2D cuprates with spectra

being a hardly resolved superposition of both types of
CTE there remains still some ambiguity concerning the
reliable assignment of two OCE and seven TCE.

Before discussing our results, we shortly overview the
simple OCE model (see also Ref. [7]). With respect to
symmetry aspects and the orbitals involved, the

FIG. 1 (color online). EELS spectra in Sr2CuO3 for longitu-
dinal ( ~qq k ~aa, left panel) and transversal ( ~qq k ~bb, right panel)
responses with an illustration of one- and two-center excitons.
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Figure 2.17: k-resolved EELS spectra of the 1D corner-sharing chain Sr2CuO3 for k‖
chain(left panel) and k⊥ chain (right panel) [71, 78]. The measurement
was carried out in two directions to identify one-center (OCE) and two-
center excitons (TCE).

parallel to the chains (left panel in Fig.2.17), the dispersionless OCE at 2.0 eV is
observed, too but less pronounced since it is sitting on the tail of a strong exci-
tation around 2.5 eV. This second excitation at 2.5 eV shows a clear dependence
on k and is therefore associated with the two-center ZN exciton [71]. The overall
assignment is very similar to the 2D case.
Next, the experimental observations in the 1D edge-sharing chains are reported,

starting with Li2CuO2 (see Fig. 2.3). Mizuno et al. have calculated the optical
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2 Physics of Transition-Metal Compounds

Figure 2.18: Optical conductivity σ(ω) along b axis (chain direction) of Li2CuO2 from
re�ectance measurements between 0.01 - 40 eV at near normal incidence
and Kramers-Kronig transformation by Mizuno et al. [83]. The excita-
tion spectrum shows one main absorption around 4 eV and not the ZN-
excitation expected in theory [83] at 2.2 eV.

conductivity σ(ω) for polarization along the chain direction using the three-band
Hubbard model [83] for Li2CuO2, the chain part in La6Ca8Cu24O41 and CuGeO3.
The calculations were compared with optical conductivity data of Li2CuO2, shown
in Fig. 2.18 (E ‖ chains). The main excitation is observed around 4 eV and is
assigned to a one-center excitation from O 2p non-bonding (NB) bands to the
upper Hubbard. For La6Ca8Cu24O41 such an excitation is found at 4.0 eV and for
CuGeO3 at 5.0 eV. From theory another excitation around 2.2 eV is expected for
all compounds [83] with much weaker intensity and which is ascribed to the ZN
exciton. However, in the experimental optical conductivity spectra of Li2CuO2

this excitation is not observed [83]. The non-observation was explained with poor
resolution or insensitivity of re�ectance data to such weak features [83]. The peak
was also not observed in EELS measurements [84]. Here, it should be noted that
in the edge sharing chains charge carrier hopping is suppressed due to the 90◦

Cu-O-Cu bonds.

Magnetic ground state and optical conductivity

A recent theoretical study of Màlek et al. [85] addresses the temperature depen-
dence σ(ω, T ) and magnetic �eld dependence σ(ω, T,H) of the optical conductivity
of Li2CuO2 in the range of low-energy electronic excitations. In this work, a sce-
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nario is depicted where the observation of the peak is strongly correlated to the
magnetic ground state. It could be suppressed at room temperature and might be
observed at low temperatures depending on the GS. This discussion is included
here because the authors encourage low-temperature measurements to verify their
theory. The undoped parent compound of the spin ladders Sr6Ca8Cu24O41 is
proposed as a candidate and since we investigated the quasi undoped compound
La5.2Ca8.8Cu24O41) at low temperature in this thesis and will come back to this
discussion in chapter5.

Figure 2.19: Calculated [85] and experimental [83] optical conductivity of Li2CuO2 for
the two magnetic ground states M1 (AFM) and M2 (FM) at T=0K and
T=300K for a Cu6O14 cluster.

Málek et al. present two di�erent scenarios depending on the magnetic ground
state adopted. AFM ground state for M1 and FM ground state for M2. The T
dependence is very di�erent for M1 and M2. The calculated optical conductivity
σ(ω) at T=0K shows a multi-peak structure in both scenarios. Di�erences exist
mainly between 2 and 4 eV. Here the result for di�erent cluster sizes from 1 up to
6 edge-sharing CuO4 plaquettes are shown. Already one unit shows a double-peak
structure between 4 and 5.5 eV that which corresponds to one-center excitations
from non-bonding O states to Cu-O hybridized states that of Mizuno et al. for
Li2CuO4 [83]. This one-center excitation remain basically within that energy range
for larger cluster sizes.
From n = 2 on, intersite transitions are possible. However, the �nal states

depend on the ground state. The reason is that in optical spectroscopy the total
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spin S and Sz are conserved. Therefore, for a GS with S = 0 (AFM), the lowest-
lying excited state with S=0 corresponds to the Zhang-Rice singlet excitation
(ZRS). This peak appears between 2 and 3 eV depending on cluster size. This
transition is forbidden if the ground state is FM. In that case, the �nal state can
be a Zhang-Rice triplet state (ZRT) which appears as a small shoulder below the
strongest peak at 4 eV. For M1, the exact diagonalization provides ωZRS = 2.25 eV
and ωZRT = 3.7 eV, and for M2 ωZRS = 2.7 eV, ωZRT = 4 eV.
The temperature dependence of the optical conductivity σ(ω, T ) for both models

M1 (AFM) and M2 (FM) is shown in Fig. 2.19 in comparison with experimental
300K data. In the FM ground state, the ZRS excitation is forbidden, however,
at �nite temperatures the spectral weight becomes �nite due to magnetic �uctua-
tions. In the AFM ground state it is allowed at T=0 but it loses weight with rising
temperature. This means it is allowed for both cases at room temperature but
due to its weak intensity it is not easy to resolve. Therefore, it is hardly possible
to make a decision on the GS. At low temperatures, the ZRS excitation is not
suppressed for the AFM state and expected at ωZRS = 2.25.

2.5.3 1D spin ladders and spin chains

Now we turn to the spin-ladder system (La,Sr,Ca)14Cu24O41 investigated within
the scope of this thesis. The compounds show a mixture of electron-hole exci-
tations of corner-sharing and edge-sharing 1D systems. It is obvious that with
the di�culties already encountered in the pure 2D or 1D systems, it is not an
easy task to identify the excitations and separate them into the subsystems. An-
other striking e�ect is the observed spectral-weight (SW) transfer by isovalent
substitution of Sr by Ca. The spin-ladders have been investigated by means of
optical spectroscopy by several groups [86�88]. We focus on the work of Osa-
fune et al. who have carried out room temperature optical re�ectance measure-
ments on various samples with di�erent Ca contents. Fig. 2.20 and 2.21 show
room-temperature re�ectance and optical conductivity data respectively along
the ladder/chain direction by Osafune et al. [86]. They have investigated the
spectral-weight transfer for di�erent Ca contents by a sum-rule analysis and come
to the conclusion that holes are redistributed from chains to ladders upon Ca sub-
stitution. The compound Sr11Y3Cu24O41 (doped with 3 holes per f.u.) and the
compounds Sr14−xCaxCu24O41, x = 0, 3, 6, and 11 (each compound doped with 6
holes) were investigated. The re�ectance of Sr11Y3Cu24O41 shows insulating be-
havior and the compounds x = 0, 3, 6, and 11 show a metallic behavior mirrored
by a plasma edge that shifts to higher energies with higher Ca content (see Fig.
2.20). To make a quantitative analysis on the SW transfer, the optical conduc-
tivity was calculated by Kramers-Kronig transformation of the re�ectance data
(see Fig. 2.21). Osafune et al. ascribe the low-energy excitations below 1.2 eV
in the strongly hole-doped compounds to charge-carrier excitations in the ladders
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because the holes are more itinerant there. The statement follows that the rise of
the low-energy spectral weight with Ca substitution is a consequence of increased
hole density by redistribution from chains to ladders and not a consequence of
localized holes becoming more itinerant. The peak at 2.0 eV observed in all com-
pounds is identi�ed as a CT excitation between O2p and Cu3d orbitals. From the
spectral-weight analysis Osafune et al. conclude that the spectral weight of the
charge-transfer excitation at 2.0 eV is only transferred to the low-energy ladder ex-
citations below 1.2 eV similar to the SW transfer into a 2D CT insulator upon hole
doping [48, 89]. The strong peak above 2.5 eV is ascribed to an excitation in the
chain subsystem where the holes are reported to remain localized. The intensity
of this peak rises strongly from the CT insulator Sr11Y3Cu24O41 to Sr14Cu24O41

(6 holes most of which probably in the chains) and then decreases again with x
standing for a redistribution from chains to ladders. The SW analysis of Osafune
et al. was carried out up to 2.5 eV with the argument that the spectral weight
above 2.5 eV is not strongly dependent on x. As we will see later in our analysis,
we �nd an alternative interpretation of the double peak structure above the gap
and also �nd evidence for a spectral weight transfer to the energy region above

2.0 eV with Ca doping.VOLUME 78, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 10 MARCH 1997

FIG. 1. Reflectivity spectra below 3.5 eV for various compo-
sitions of Sr142xAxCu24O41 measured at room temperature with
polarization Ejjc. The low-energy spectra below 0.2 eV are
shown in the inset.

to those of the two-dimensional (2D) cuprates such as
La22xSrxCuO4 [14]. However, such a large shift in the
plasma edge is not observed in the 2D case.

For quantitative discussions, the Kramers-Kronig trans-
formation is made on the reflectivity spectrum. In Fig. 2,
we show the evolution of the optical conductivity spec-
trum with Ca contentx for polarizationEjjc. The op-
tical conductivity spectrum of Sr11Y3Cu24O41 is typical
of insulators. The spectrum is characterized by a peak
at 2.0 eV. The most possible origin for the peak is the
charge-transfer (CT) excitation between Cu 3d and O 2p
states which is commonly observed in the parent insula-
tors of high-Tc cuprates. On moving to Sr14Cu24O41 and
further Sr142xCaxCu24O41, the conductivity in the low-
energy region (below 1.2 eV) increases, whereas the CT
spectral weight decreases.

It turns out from the sum-rule analysis described below
that the CT spectral weight (SW) is transferred only
to the low-energy excitations below 1.2 eV. Such SW
transfer is essentially the same as that seen in the 2D
cuprates when a parent CT insulator is doped with carriers
[14]. Then, it follows that carriers, certainly holes, are
doped into a structural unit, which is a CT insulator in
Sr11Y3Cu24O41 with a CT energy gap of,2 eV and
that the doped hole density increases with Ca content.
As the substitution of isovalent Ca does not change the
average Cu valence in the system, a redistribution of
holes between chains and ladders should be induced by
the Ca substitution. Therefore, the shift of the plasma
edge shown in Fig. 1 is a consequence of increased
carrier density, not a consequence that the originally
localized carriers become itinerant with Ca substitution.
Theoretically, the spectral weight transfer is a general

FIG. 2. c-axis optical conductivity spectrumscsvd obtained
from the Kramers-Kronig transformation of the reflectivity
spectra for various compositions of Sr142xAxCu24O41. The
anisotropic spectra witha- and c-axis polarization are shown
for Sr3Ca11Cu24O41 in the inset.

feature induced by carrier doping into a Mott or CT
insulator, irrespective of its dimensionality [15,16].

Based on the conductivity data, we estimate the spectral
weight in terms of the effective electron number;

Neffsvd ­
2m0V
pe2

Z v

0
scsv0d dv0 ,

where m0 is taken as the free electron mass, andV
is the volume containing one Cu atom.Neffsvd is
proportional to the number of electrons involved in the
optical excitations up tōhv. In Fig. 3 we plot the result
of Neffsvd. It is important thatNeff is not strongly
dependent onx at h̄v , 2.5 eV. This provides evidence
that the SW transfer is taking place within the energy
range below,2.5 eV and thus most of the CT spectral
weight is transferred to the low-energy region.

Another point in Fig. 3 is the magnitude ofNeff. Neff
at 1.2 eV represents the spectral weight of the low-energy
excitations transferred from the high-energy CT excitation
with “doping" which is a consequence of charge transfer
between chains and ladders. Note that the values of
Neff(1.2 eV) for the “doped" materials are comparable
to those (N2D

eff ) for the 2D high-Tc cuprates near optimal
doping [14]. When the value ofNeff per Cu is converted
into the value per ladder Cu,NL

eff ­ Neff ? 24y14, NL
eff is

even larger thanN2D
eff [14]. According to the theoretical

calculations based on the Hubbard ort-J model [15] the
low-energy SW is the order of the Cu 3d-O 2p transfer
integral t. In the present system,t in the Cu2O3 ladder

1981

Figure 2.20: Room temperature re�ectance data for di�erent doping levels. The spec-
tra show a plasma edge for x ≥ 0 and a shift in plasma edge to higher
energy with rising x . The only insulating compound (no plasma edge
at optical frequencies) is the reference compound Sr11Y3Cu24O41 (3 holes
per f.u.) [86].

Mizuno et al. [90] have carried out cluster calculations in order to explain
room-temperature data of Osafune et al. [86]. The exact diagonalization method
was used to calculate excitations on Cu6O17 clusters simulating the ladders and
Cu4O10 clusters representing edge-sharing chains. In compounds without holes
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FIG. 1. Reflectivity spectra below 3.5 eV for various compo-
sitions of Sr142xAxCu24O41 measured at room temperature with
polarization Ejjc. The low-energy spectra below 0.2 eV are
shown in the inset.

to those of the two-dimensional (2D) cuprates such as
La22xSrxCuO4 [14]. However, such a large shift in the
plasma edge is not observed in the 2D case.

For quantitative discussions, the Kramers-Kronig trans-
formation is made on the reflectivity spectrum. In Fig. 2,
we show the evolution of the optical conductivity spec-
trum with Ca contentx for polarizationEjjc. The op-
tical conductivity spectrum of Sr11Y3Cu24O41 is typical
of insulators. The spectrum is characterized by a peak
at 2.0 eV. The most possible origin for the peak is the
charge-transfer (CT) excitation between Cu 3d and O 2p
states which is commonly observed in the parent insula-
tors of high-Tc cuprates. On moving to Sr14Cu24O41 and
further Sr142xCaxCu24O41, the conductivity in the low-
energy region (below 1.2 eV) increases, whereas the CT
spectral weight decreases.

It turns out from the sum-rule analysis described below
that the CT spectral weight (SW) is transferred only
to the low-energy excitations below 1.2 eV. Such SW
transfer is essentially the same as that seen in the 2D
cuprates when a parent CT insulator is doped with carriers
[14]. Then, it follows that carriers, certainly holes, are
doped into a structural unit, which is a CT insulator in
Sr11Y3Cu24O41 with a CT energy gap of,2 eV and
that the doped hole density increases with Ca content.
As the substitution of isovalent Ca does not change the
average Cu valence in the system, a redistribution of
holes between chains and ladders should be induced by
the Ca substitution. Therefore, the shift of the plasma
edge shown in Fig. 1 is a consequence of increased
carrier density, not a consequence that the originally
localized carriers become itinerant with Ca substitution.
Theoretically, the spectral weight transfer is a general

FIG. 2. c-axis optical conductivity spectrumscsvd obtained
from the Kramers-Kronig transformation of the reflectivity
spectra for various compositions of Sr142xAxCu24O41. The
anisotropic spectra witha- and c-axis polarization are shown
for Sr3Ca11Cu24O41 in the inset.

feature induced by carrier doping into a Mott or CT
insulator, irrespective of its dimensionality [15,16].

Based on the conductivity data, we estimate the spectral
weight in terms of the effective electron number;

Neffsvd ­
2m0V
pe2

Z v

0
scsv0d dv0 ,

where m0 is taken as the free electron mass, andV
is the volume containing one Cu atom.Neffsvd is
proportional to the number of electrons involved in the
optical excitations up tōhv. In Fig. 3 we plot the result
of Neffsvd. It is important thatNeff is not strongly
dependent onx at h̄v , 2.5 eV. This provides evidence
that the SW transfer is taking place within the energy
range below,2.5 eV and thus most of the CT spectral
weight is transferred to the low-energy region.

Another point in Fig. 3 is the magnitude ofNeff. Neff
at 1.2 eV represents the spectral weight of the low-energy
excitations transferred from the high-energy CT excitation
with “doping" which is a consequence of charge transfer
between chains and ladders. Note that the values of
Neff(1.2 eV) for the “doped" materials are comparable
to those (N2D

eff ) for the 2D high-Tc cuprates near optimal
doping [14]. When the value ofNeff per Cu is converted
into the value per ladder Cu,NL

eff ­ Neff ? 24y14, NL
eff is

even larger thanN2D
eff [14]. According to the theoretical

calculations based on the Hubbard ort-J model [15] the
low-energy SW is the order of the Cu 3d-O 2p transfer
integral t. In the present system,t in the Cu2O3 ladder

1981

Figure 2.21: Room temperature optical conductivity data from re�ectance measure-
ments for di�erent doping levels. The spectra show a shift of spectral
weight with hole-doping and Ca-doping [86].

Figure 2.22: Schematic representation of charge-transfer type excitations in (a) un-
doped and (b) holed-doped spin ladders as discussed by Mizuno et al.
[90].

two major optical interband excitations are expected in the ladder subunit as
shown in Fig. 2.22 (a). One at 1.7 eV (A) is assigned to an excitation from one
Zhang-Rice singlet (ZR) to the upper Hubbard band (UHB) (corresponding to
the ZN exciton or b1g → b1g) and the second around 4.5 eV (B) assigned to an
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2.5 Experimental overview

Figure 2.23: Results of cluster calculations for a undoped (a) and hole doped (b) ladder
cluster by Mizuno et al. [90].

Figure 2.24: Results of cluster calculations for undoped (a) and two-hole doped (b)
chain cluster calculation by Mizuno et al. [90].

excitation from non-bonding oxygen (NB) to the UHB. The two-center excitation
or ZN exciton (A) is not expected in the chains due to 90◦ Cu-O-Cu bonds that
make overlap small. In the hole-doped case, an additional Drude weight builds up
in chains and ladders. In the chains a strong excitation C builds up that arises
due to electron hopping from non-bonding oxygen to Zhang-Rice singlets (see Fig.
2.22 (b)).
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2 Physics of Transition-Metal Compounds

2D planes peak energy [eV] assignment character
Sr2CuO2Cl2

EELS 2.2 b1g → eu(π) OCE
[55, 60, 76, 77] 2.7 b1g → b1g (ZN-exciton) TCE

4.2 b1g → ebu(π − character) TCE
6.0 b1g → eu(σ) OCE
7.1 b1g → eau(σ) TCE

optics 1.4 d− d excitation OCE
[81] 2.0 ZN exciton TCE

2.6 non-bonding O to UHB OCE
La2CuO4

optical spectroscopy 1.75 d− d excitation OCE
[82] 2.0 CT excitation
RIXS 1.8 d− d excitation OCE
[64] 2.2 ZN exciton TCE

Table 2.1: Experimentally observed peaks in Sr2CuO2Cl2 and La2CuO4 and assign-
ment due to model predictions [64, 71, 78, 81, 82]. The upper part summa-
rizes EELS data followed by results of optical spectroscopy and RIXS. It is
striking that the assignment of the lowest lying charge-transfer excitation is
not unambiguous.

Summary

In this overview the electron-hole excitations in 1D and 2D compounds observed by
di�erent spectroscopic techniques are compared to help identify the peaks observed
in our optical spectra.
All authors agree upon the identi�cation of the excitation around 1.4-1.8 eV

with a local d − d or crystal-�eld excitation. When it comes to the lowest-lying
charge-transfer excitation, there is a variation between three-band Hubbard model
to cluster model. In the cluster model of Moskvin et al.[78] the lowest lying CT
excitation (around 2.0 eV) is a one-center excitation as depicted in Fig. 2.14 (left
side). The higher-lying excitation at 2.6 eV is assigned to the two-center excitation
which corresponds to the ZN exciton and is in accordance with the interpretation
of Zhang and Ng [56]. Choi et al., Falck et al., and Ellis et al.[64, 81, 82] identify
the absorption at 2.0 eV with the ZN exciton and the one at 2.6 eV with a one-
center excitation.
This point will be discussed in more detail in chapter 5 where the electron-hole

excitations of the undoped spin-ladder compound La5.2Ca8.8Cu24O41 (LCO) with
0.2 holes per formula unit (f.u.) and the hole-doped compounds (6 holes per f.u.)
Sr14−xCaxCu24O41 with x = 0 (SCO) and x = 5, and 8 (SCCO) are investigated
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2.5 Experimental overview

along all three crystallographic directions. Here too, multipeak structures are
found. Moreover, the excitations show a strong dependence on hole-doping, Ca
doping and temperature.
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2 Physics of Transition-Metal Compounds

1D chains observed peaks [eV] assignment character
Sr2CuO3 corner sharing

EELS k ⊥ to chains
[78] 2.0 b1g → eu(π) OCE

5.5 b1g → eu(σ) OCE
k ‖ to chains
2.0 b1g → eu(π) OCE
2.5 b1g → b1g (ZN-exciton) TCE
4.2 b1g → ebu(π − character) TCE

Li2CuO2 edge sharing

optical spectroscopy E ‖ to chains
[83] 4.0 (theory + exp.) non-bonding O to UHB OCE
[85] 4.0-4.5 eV (theory) non-bonding

to Cu-O hybridized [85] OCE
Sr14−xCaxCu24O41 E ‖ to chains /legs
optical spectroscopy
[86] 2.0 eV CT excitation (ladders)

2.5 eV excitation in chains
clusters[90]
undoped ladders 1.7 eV ZN exciton TCE

4.5 eV non bonding O to UHB OCE
hole doped ladders 1.7 eV ZN exciton

4.5 eV nonbonding O to UHB OCE
undoped chains 4 - 4.5 eV non-bonding O to UHB
hole doped chains 2.5 eV non-bonding O to ZRS OCE

4.5 eV non-bonding O to UHB OCE

Table 2.2: Summary of experimentally observed and theoretically predicted electron-
hole excitations in Sr2CuO3 (corner-sharing chain) and Li2CuO2 edge-
sharing chain), and the chain and ladders in LCO and SCCO. [64, 71, 78, 81�
83, 86, 90].
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3 Optical Spectroscopy

Optical spectroscopy is a powerful experimental technique of studying the elec-
trodynamic response of correlated electron systems. The interaction of electro-
magnetic radiation with matter delivers information on optical constants in a
frequency-region where elementary excitations and collective modes are located.
The optical conductivity contains contributions of lattice vibrations, electronic
intra-band and interband transitions, magnetic excitations or collective modes.
Regarding the intra-band excitations, free charge-carrier excitations lead to promi-
nent features in the spectra and concerning interband transitions, bound electron-
hole pairs or excitons can drastically change the absorption spectra. All these
features deliver valuable microscopic information about the electronic structure of
solids.
In optical spectroscopy the typical unit is the wavenumber:

1 cm−1 = 1.2K = 0.12398meV = 29.979GHz (3.1)

3.1 Electrodynamics in Matter

3.1.1 Linear Response Functions

The interaction of light with matter leads to phenomena like dispersion, refrac-
tion, absorption and re�ection and for non-magnetic matter, all information on
those interactions is described by the dielectric function ε(k, ω) where k is the
momentum and ω the frequency.
In solid state physics we deal with many body systems with up to 1023 particles.

Since it is almost impossible to conceive the microscopic states of so many par-
ticles, usually the macroscopic observable behavior is looked at. One example is
the macroscopic electrical susceptibility χ(k, ω) that is a measure of the response
of a net polarization P to an applied electrical �eld E. Other examples are the
dielectric function ε(k, ω) or the optical conductivity σ(k, ω). The displacement
�eld D, the polarization P and the current J are connected to the electrical �eld
E by the the following relations formulated in Fourier space:

D(k, ω) = ε0 ε(k, ω)E(k, ω) (3.2)

P(k, ω) = ε0 χ(k, ω)E(k, ω) (3.3)
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3 Optical Spectroscopy

J(k, ω) = σ(k, ω)E(k, ω) (3.4)

The response functions ε(k, ω), χ(k, ω), and σ(k, ω) in general are second rank
tensors. Since the electric �eld of the electromagnetic wave is transverse to the
photon momentum, the elements of the dielectric tensor and the optical conduc-
tivity are transverse to the direction of propagation. In solids with orthorhombic
symmetry the tensors are diagonal. This will be discussed in more detail later. In
isotropic media, the response functions reduce to scalar functions. In the energy
range of optical absorptions, the wavelengths of the electromagnetic wave is much
larger than the atomic length scale and therefore, the wavevector k is assumed to
be zero. The dielectric function is then written as ε(ω).

3.1.2 Kramers-Kronig-Relations

From the causality principle follows that real and imaginary part of a response
function are not independent from each other. This shall be illustrated �rst by
Fig. 3.1 [91]. In the upper graph of �gure 3.1 we see a wave packet A at the time
t=0. It is a sum of all Fourier components cos (ωi, t) which are all de�ned from
−∞ < t < ∞. Next, it is assumed that one frequency cos (ω0, t), denoted with
component B, is absorbed. If absorption and dispersion were independent from
each other, the output simply was the di�erence A-B = A - cos (ω0, t) for all t.
If we look at �gure 3.1, the problem is obvious. The answer of the system exists
already at t < 0, before the question was posed. This is in contradiction to the
causality principle and therefore must be wrong. The solution to the problem is
that the other components of the wave packet undergo a phase shift such that
the answer at t < 0 vanishes. The Kramers-Kronig relations are derived with
complex analysis. If a general complex valued response function

β(ω) = β1(ω) + β2(ω) (3.5)

satis�es the conditions that β(ω) does not have singularities in the plane of com-
plex frequencies for Im(ω) > 0 and β(ω)/ω goes faster to zero for |ω| → ∞ than
1/|ω|, the integral

I(ω) =

∫
C

β(ω′)

ω′ − ωdω
′ (3.6)

over the complex half space vanishes because it is equal to the sum of residues
which was de�ned to be zero by the condition that β(ω) is not allowed to have
singularities in the upper half space of the complex plane, i.e. β(ω) is analytic.
Therefore: ∮

c

=

∫
C1

+

∫
C2

+

∫
C3

+

∫
C4

= 0. (3.7)

The integral over C4 vanishes due to the the asymptotic behavior of β(ω). The
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3.1 Electrodynamics in Matter

Figure 3.1: Correlation between absorption and dispersion, reproduced from [91]

maximum value of the integral over a semi-circle for ω′ →∞ approaches the value
of the path length which is πω′. Since the function β(ω) goes faster to zero than
1/|ω|, the integral vanishes in the limit of ρ → 0. Then the integral over C2

becomes:

limρ→0

∫
C2

β(ω′)

ω′ − ωdω
′ = −iπα(ω), (3.8)

where ρ denotes the radius of the semi-circle around the singularity at frequency
ω. It follows

limρ→0

[∫
C1

β(ω′)

ω′ − ωdω
′ +

∫
C3

β(ω′)

ω′ − ωdω
′
]
− iπα(ω) = 0 (3.9)

and

α(ω) =
1

i π
P
∫ ∞
−∞

β(ω′)

ω′ − ωdω
′ (3.10)
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c1

c2
c3

c4

Im ω`

Re ω`

Figure 3.2: Path of integration in the plane of complex frequencies ω′.

where P is the principal value of the Cauchy-integral in equation 3.9. Splitting
the integral into real and imaginary part leads to the Kramers-Kronig relations.
Using the symmetry conditions for a real valued function β1(−ω) = β1(ω) and
β2(−ω) = −β2(ω), the above equations read

β1(ω) =
2

π
P
∫ ∞

0

ω′ β2(ω′)

ω′2 − ω2
dω′ (3.11)

and

β2(ω) = −2ω

π
P
∫ ∞

0

β1(ω′)

ω′2 − ω2
dω′. (3.12)

It can be shown that the dielectric function shows the same symmetry features
and ful�lls the the analytic properties and asymptotic behavior as β. Thus the
Kramers-Kronig relations for the dielectric function follow:

ε1(ω)− 1 =
2

π
P
∫ ∞

0

ω′ ε2(ω′)

ω′2 − ω2
dω′ (3.13)

and

ε2(ω) = −2ω

π
P
∫ ∞

0

ε1(ω′)

ω′2 − ω2
dω′. (3.14)

In general, the dielectric function cannot be addressed directly by experimental
methods. At optical frequencies, the experimental observables for the electromag-
netic response of a solid are the re�ectance R, transmittance T and ellipsometric
angles Ψ and ∆ which are all frequency dependent. The real and imaginary parts
of the complex dielectric function ε(ω) = ε1(ω) + iε2(ω), the complex refrac-
tive index N(ω) = n(ω) + i k(ω) =

√
ε(ω) and the complex optical conductivity

σ(ω) = σ1(ω) + iσ2(ω) can be determined by several approaches. Those can be
a combination of re�ectance and transmittance measurements, a Kramers-Kronig
analysis of either re�ectance or transmittance or through determination of ellip-
sometric coe�cients.
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The refractive index is related to the real and imaginary part of the dielectric
function by:

N(ω) = n(ω) + ik(ω) =
√
ε(ω) =

√
ε1 + i(

4πσ1

ω
) (3.15)

where σ1 is the real part of the optical conductivity that represents losses due to
dissipation. For the real and imaginary part of the dielectric function follows

ε1(ω) = n(ω)2 − k(ω)2 (3.16)

ε2(ω) = 2n(ω)k(ω). (3.17)

In the case of normal incidence, the complex re�ectivity is de�ned as

r(ω) =
N(ω)− 1

N(ω) + 1
(3.18)

and the measured intensity re�ectance is

R(ω) = |r(ω)|2 =
(n− 1)2 + k2

(n+ 1)2 + k2
, (3.19)

r(ω) = |r(ω)|eiφr =
√
R(ω) eiφr , (3.20)

where R(ω) is the measured intensity re�ectance and φr the phase shift. It follows

ln r(ω) = ln|r(ω)|+ iφr(ω). (3.21)

Thus from equation 3.14 φr can be calculated if the re�ectance is known over
a broad range of frequencies and adequate extrapolations to zero and high fre-
quencies are made. For insulators, R = const. for ω → 0 and for metals, a
Hagen-Rubens behavior R ∝ √ω for ω → 0 is assumed. If the DC-conductivity
is known, it is used as a reference value. At high frequencies, a decay of R ∝ ω−4

is assumed.

φr(ω) = −2ω

π
P
∫ ∞

0

ln |r(ω)|
ω2 − ω′2

dω′. (3.22)

A detailed description about the numerical evaluation of this integral can be found
in [92]. Measurements of the the re�ectance R(ω) determines n(ω) and k(ω) by
the equations:

n(ω) =
1−R(ω)

1 +R(ω)− 2
√
R(ω)cos(φr(ω))

(3.23)

and

k(ω) =
2
√
R(ω)sin(φr(ω))

1 +R(ω)− 2
√
R(ω)cos(φr(ω))

. (3.24)
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If in addition the transmittance is measured, the equations

T =
(1−R)2Φ

1− (RΦ)2
(3.25)

and
Φ = e−(4πkdω)/104

(3.26)

can be used. Here d denotes the sample thickness in µm and ω the frequency
in cm−1. The optical conductivity in SI units can be calculated directly if a
combination of re�ectance and transmittance measurements is done [93]:

σ1 = 2ε0ω̃n k. (3.27)

Here, ω̃ = 2πν is the angular frequency which translates into wave numbers by
ω̃[s−1] = 29.97 · 109ω[cm−1]. In case of very small samples, a re�ectance measure-
ment might be inaccurate or impossible to do at all. In that case, the following
approximation can be used[94] for regions where absorptions are small, i. e. above
the phonon region and well below the band-gap transitions

T ≈ (1−R)2e−α(ω)d. (3.28)

In this region, the re�ectance R is small and nearly constant. Here, α = 2ωk
c
is

the linear absorption coe�cient and d is the sample thickness given in µm. Then
the following approximation for the absorption can be made:

α(ω) ≈ −lnT/d+ 2 ln(1−R)/d ≈ −lnT/d+ const. (3.29)

From the relations above, n and k read inverted:

n =
1 +R +

√
4R− k2(R− 1)2

1−R (3.30)

k =
104

4πdω
ln

−2R2T

(1−R)2 −
√

(1−R)4 + 4R2 T 2
. (3.31)

Finally, the optical conductivity σ = σ1 + iσ2 reads

σ1 = ε0 ω̃ ε2 (3.32)

σ2 = ε0 ω̃ (1− ε1). (3.33)

The equations are given in SI units where [σ] = Ω−1 cm−1, ε0 = 8.85 · 10−14sΩ−1

cm−1. A very nice conversion table can be found in [95].
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3.2 Fundamentals of Ellipsometry

In ellipsometry, the change of the polarization state of a light beam after inter-
action with a sample is measured. Two independent parameters are obtained in
one measurement and both, real and imaginary parts of the dielectric function
can be calculated. The principles of ellipsometry go back to Paul Drude and his
concept is now referred to as standard ellipsometry. This chapter shall give an
insight into the fundamentals of ellipsometry. It starts with the description of the
Stokes parameters and the Mueller and Jones matrix formulation, followed by the
introduction of the ellipsometric parameters Ψ and ∆. Finally, an example of a
measurement setup is given and the Euler angles are introduced.

3.2.1 Polarized Light

The polarization state of a monochromatic light wave is in general elliptic. This
means the endpoint of the electric �eld vector E moves periodically around an
ellipse at each point in space in a �xed plane perpendicular to the propagation
vector k. In other words, the electric �eld vector rotates and changes its magnitude
as well. In special cases it moves on a circle (circularly polarized) or a straight line
(linearly polarized) [96]. In all cases we speak of fully polarized light. The behavior
of the electric �eld vector depends on the intensities of two of its components
which are arbitrary but orthogonal and the correlation between them. In case
of unpolarized light the endpoint moves irregularly and the E vector shows no
preferential direction.

Stokes Vector and Mueller Matrix

In 1852, G.G. Stokes [97] proposed that the most general description of the po-
larization state of a light beam can be achieved by introducing four parameters
s0, s1, s2, and s3 which all have the dimension of intensity. These parameters
were called Stokes parameters and they can be used to describe partially and
fully polarized light. They may be de�ned either operational [98, 99] or in terms
of electromagnetic theory [100�102]. For a better understanding, it is helpful to
look at the operational approach �rst. In this case, the parameters can be de-
�ned by a set of four optical �lters. Each will transmit half the incident light
and will be interposed one after the other into the beam. For example, let the
�rst be isotropic, the second linearly horizontally polarizing, the third linearly
+45◦ polarizing and the last one right-circularly polarizing. Then a polarization-
independent, intensity-calibrated detector is put into the beam. The four signals
at the detector may be called I0, I1, I2 and I3. The operational de�nition of the
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Stokes parameters is then
s0 = 2I0

s1 = 2I1 − 2I0

s2 = 2I2 − 2I0

s3 = 2I3 − 2I0

(3.34)

where s0 gives the total intensity, s1 the di�erence between intensities between
the x and y component. The value of s1 can be positive (preference for horizontal
polarization), negative (tendency for vertical polarization) or zero (e.g. elliptically,
circularly polarized or unpolarized). Similar arguments are valid for s3 (+45◦ or
-45◦ linear polarization). If s3 > 0, the beam shows a preference toward right-
handedness, and if negative, towards left-handedness [98, 99]. In a completely
polarized beam s2

0 = s2
1+s2

2+s2
3 applies, i. e. the �rst Stokes parameter is redundant.

In a partially polarized beam s2
0 > s2

1 +s2
2 +s2

3 is true. In that case, s0 is no longer
redundant since it contains information on the unpolarized light.

Derivation of the Stokes parameters from the polarization ellipse

b

a

ψχ
E0x

γ

x

y

u

v

E0y

2 E0y

2 E0x

Figure 3.3: Sketch of a polarization ellipse that is drawn into a Cartesian coordinate
system. The angle χ describes the rotation of the ellipse around the origin.
The new coordinates are denoted by u and v.

In the following the relation between the Stokes parameters and the polariza-
tion ellipse is described. A monochromatic light wave with frequency ω which
propagates along the z direction can be described by the following equations
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Ex(t) = E0x(t) cos (ωt+ δx)
Ey(t) = E0y(t) cos (ωt+ δy)

(3.35)

where Ex(t) and Ey(t) represent the orthogonal components of the electric �eld
vector at a certain point in space. By combining both expressions, the general
equation of the polarization ellipse [99] at a given instant of time follows

E2
x(t)

E2
0x

+
E2
y(t)

E2
0y

− 2Ex(t)Ey(t)

E0xE0y

cos∆ = sin2 ∆ (3.36)

where ∆ = δy − δx. The observables of the electromagnetic �eld are obtained by
taking the time averages

〈E2
x(t)〉
E2

0x

+
〈E2

y(t)〉
E2

0y

− 〈2Ex(t)Ey(t)〉
E0xE0y

cos∆ = sin2 ∆. (3.37)

This is the equation of an ellipse drawn into a rectangle with sides 2E0x and 2E0y

and rotated in the coordinate system x,y by an angle χ as shown in �gure 3.3.
The ellipse touches the sides at (± E0x, ± E0y cos ∆) and (± E0x cos ∆, ± E0y).
After taking the time average over an in�nite interval of time1 and using some
substitutions, the equation of the ellipse will look as follows [102]:

(E2
0x + E2

0y)
2 − (E2

0x − E2
0y)

2 − (2E0xE0y cos∆)2 = (2E0xE0y sin∆)2. (3.39)

By substituting the expressions in parentheses with

s0 = E2
0x + E2

0y

s1 = E2
0x − E2

0y

s2 = 2E0xE0y cos∆
s3 = 2E0xE0y sin∆

(3.40)

equation 3.39 reads

s2
0 = s2

1 + s2
2 + s2

3. (3.41)

This de�nition is not as straightforward as the operational approach and especially
for s2 and s3 it is not directly obvious that they correspond to the parameters
de�ned before. This equivalence is shown very instructively in [100]. As shown
above, the Stokes parameters represent the observables of the polarization ellipse.
The ellipticity of the ellipse is de�ned by

1 Here we have used

〈Ei(t)Ej(t)〉 =
1
T

∫ T

0

Ei(t)Ej(t) dt (3.38)

.
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tan γ =
b

a
(3.42)

and

tanΨ =
E0y

E0x

. (3.43)

Stokes Vector

As mentioned above, the Stokes parameters represent the most general description
of partially polarized and unpolarized light. The following calculus is a powerful
tool to describe the polarization state of light and the e�ect of optical devices on
the incident beam. Mueller [103] has shown that the Stokes parameters can be
regarded as the components of a 4-vector. Inserting the results of equation 3.40
will lead to:

S =


s0

s1

s2

s3

 =


E2
ox + E2

oy

E2
ox − E2

oy

2EoxEoycos∆
2EoxEoysin∆

 . (3.44)

The degree of polarization is de�ned as:

P =
Ipol
Iunpol

=

√
s2

1 + s2
2 + s2

3

s0

. (3.45)

The Stokes vector for horizontal polarization (∆ = 0 or π and E0y = 0) will be for
example S = {E2

0x, E
2
0x, 0, 0} or in the normalized form S = {1, 1, 0, 0} [98, 101].

Example: Mueller Matrix of a Polarizer and a Retarder

A polarizer is an optical device that can turn an unpolarized light beam into one
with a well de�ned polarization state. There are di�erent classes of polarizers as to
their function like linear, circular or elliptical polarizers. They can be spectrally
selective or achromatic, i. e. wavelength independent [98]. In this section, we
�rst cite some examples taken from Shurcli� [98]. The Mueller matrix of a linear
polarizer whose transmission axis is horizontal can be written in the form:

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 (3.46)

Retarders are optical elements that, without changing the intensity or degree
of polarization of a polarized monochromatic beam, resolve the beam into two
components, retards the phase of one relative to the other, and reunites the two
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3.2 Fundamentals of Ellipsometry

components forming a single beam. Most retarders are of birefringence type like
quartz or calcite which were cut parallel to the optical or fast axis. The Mueller
matrix of an ideal 180◦ retarder with the optical or fast axis is at 45◦ is de�ned
as follows [98]: 

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 (3.47)

The following example shows a horizontally polarized beam with the Stokes vec-
tor2 (1,1,0,0) hitting the above mentioned retarder. As we will see, the transmitted
beam turns out to be vertically polarized. The corresponding matrix multiplica-
tion looks as follows: 

1
1
0
0

 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




1
−1
0
0

 (3.48)

The �rst element of the transmitted beam represents the intensity and the second
term is negative indicating a preference for vertical polarization.

3.2.2 Jones Vector and Jones Matrix

Another formalism widely used in ellipsometry is the Jones calculus that was
�rst introduced by R.C. Jones in 1940 [104]. The light beam is described by a
2 component vector representing the components of the electric �eld vector. In
analogy to the Stokes- and Mueller matrix calculus, the action of an optical device
on the incoming beam is described by a matrix, the so-called Jones matrix J which
is a 2 x 2 matrix with, in general, complex entries. However, the Jones formalism
is only applicable to polarized light and can therefore not handle depolarizing
optical devices or samples.
The Jones vector can be written as follows:

E =

[
Ex
Ey

]
=

[
|Ex|eiδx
|Ey|eiδy

]
(3.49)

Where Ex Ey represent the components of the electrical �eld vector and δx and
δy the phases. The e�ect on an optical device will change the Jones vector of
the incident beam. This change is described by the Jones matrix J of an optical
device which relates the Jones vector of the incoming light wave with the one of
the outgoing wave.

2For simplicity the column vector is here written as a row vector
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Eo = JEi (3.50)

or [
Exo
Eyo

]
=

[
J11 J12

J21 J22

] [
Exi
Eyi

]
, (3.51)

where Eo represents the outgoing wave and Ei the incoming wave. In the next
section we introduce the ellipsometric parameters Ψ and ∆ and transform the
Jones vector and Jones matrix into the coordinate system for re�ection.

3.2.3 Ellipsometric Parameters Ψ and ∆

Figure 3.4 shows a typical ellipsometric setup. The two independent parameters
Ψ and ∆ are obtained via a measurement of the complex ratio ρ that relates
the two linearly independent �eld components of the polarized light beam before
and after interaction with the sample. As we will see, those parameters can be
constructed from the polarization ellipse and are consequently also related to the
Stokes parameters.
In this notation, the electric �eld vector E of the electromagnetic plane wave is

split into the two linearly independent components Es and Ep where s (p) denotes
the direction perpendicular (parallel) to the plane of incidence (see �gure 3.4).

Ep

Es
Ep

Es

Ep

Es

Es

εxx
εzz

εyy

Θ Θ

Ep

Figure 3.4: Ellipsometric re�ection setup. Ep is the component of the �eld vector
parallel to the plane of incidence and Es the component perpendicular to
the plane of incidence. The incoming beam is linearly polarized and the
re�ected beam in general elliptically polarized. The sketches on the upper
left and upper right represent the polarization states when looking into the
beam

.
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3.2.4 Fresnel equations and Brewster angle

Snells law connects the refractive indices of ambient medium ni and sample nt
with the angles of incidence θi and refraction θt

nisinθi = ntsinθt (3.52)

and the Fresnel equations relate the re�ected and transmitted �eld amplitudes of
the electric �eld vector E0r, E0t to the incident amplitude E0i by the angles of
incidence θi and transmission θt. They can be deduced from the electromagnetic
theory of light by taking into account the boundary conditions of the electric and
magnetic �eld amplitudes. The re�ection coe�cients are de�ned as follows

rp = (Erp

Eip
) = nt cos θi−ni cos θt

ni cos θt +nt cos θi
,

rs = (Ers

Eis
) = ni cos θi− nt cos θt

ni cos θi + nt cos θt
.

(3.53)

Here, rp, rs, ni and nt are in general complex quantities. The index of refraction
is related to the dielectric function by

√
ε = n.

2-40 •••• A Short Course in Ellipsometry ©J. A. Woollam Co., Inc.  Do not copy or distribute. 

 To further understand the dependance of Ψ on angle of incidence, recall 
that tan(Ψ) equals the square root of the ratio of the p- to s- intensity reflectances. 

The p-reflectance is defined as the intensity reflectance (intensity of reflected beam 
divided by the intensity of the incident beam) measured with the incident beam 
linearly polarized in the p-plane, and an analogous definition holds for the s-
reflectance.  The p- and s- reflectances may be calculated from the Fresnel reflection 
coefficients of the sample as follows, with an asterisk superscript denoting complex 
conjugation. 

 R r r rp p p p= = ⋅~ ~ ~ *
2

,     (2.53) 

 R r r rs s s s= = ⋅~ ~ ~ *2
.     (2.54) 

Rp  and Rs  for bare glass. 
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Figure 2.26.  The p- and s- polarized intensity reflectance calculated versus angle of 
incidence for a transparent substrate with n = 1.5. 

 Note the p- and s-reflectances are identical at normal incidence, due again 
to the indistinguishibility of the p- and s- directions at normal incidence.  The s-
reflectance increases monotonically from normal to grazing incidence, where it 
approaches unity.  The p-polarized reflectance, however, decreases to zero at the 
Brewster angle and then increases to unity at grazing incidence. 

 The addition of absorption in the substrate modifies the above behaviour 
somewhat.  Let us know look at silicon, at a wavelength of 633 nm.  At this 
wavelength, the index of refraction of crystalline silicon is 3.875 and the extinction 
coefficient for crystalline silicon is 0.023.  We first calculate the p- and s-polarized 
intensity reflectance for crystalline silicon at 633 nm. 

Figure 3.5: The p and s polarized intensity re�ectance versus angle of incidence for
an isotropic non-absorbing media with ni = 1 and nt = 1.5. The p and s
re�ectance are calculated from the Fresnel re�ection coe�cients as follows:
Rp = rp∗r∗p where r∗p denotes complex conjugation. Rp and Rs are identical
at normal incidence. The s re�ectance increases monotonically from normal
to grazing incidence where it approaches unity. The p polarized re�ectance,
however decreases to zero at the Brewster angle and then increases to unity
at grazing incidence [105]

In the coordinate (s, p) coordinate system, the Jones vector of the re�ected and
incoming wave reads
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Ei =

[
Eip
Eis

]
=

[
|Eip|eiδis
|Eis|eiδip

]
and Er =

[
Erp
Ers

]
=

[
|Erp|eiδrs

|Ers|eiδrp

]
. (3.54)

With the Fresnel re�ection coe�cient for p-polarization

rp =
Erp
Eip

=
|Erp|ei(δrp)

|Eip|ei(δip)
=
|Erp|
|Eip|

ei(δrp−δip) (3.55)

and s-polarization

rs =
Ers
Eis

=
|Ers|
|Eis|

ei(δrs−δis) (3.56)

, the complex ellipsometric parameter ρ is de�ned as

ρ =
rp
rs

=
|Erp|
|Eip|

|Eis|
|Ers|

ei∆ = tanΨ ei∆. (3.57)

Here,

∆ = (δrp − δrs)− (δip − δis) (3.58)

and

tanΨ =
|Erp|
|Eip|

|Eis|
|Ers|

. (3.59)

ρ is the quantity that is actually measured in ellipsometry, i. e. the ratio of
�eld amplitudes is measured, making ellipsometry a very accurate technique. ρ
is directly related to the Fresnel re�ection coe�cients. Since in the experimental
setup, the incoming light beam is linearly polarized and then (δip − δis) is zero or
180◦.

Jones matrix of a Re�ecting sample

The e�ect of the Jones matrix of a re�ecting sample will be

Er = REi, (3.60)

R =

[
rp rps
rsp rs

]
=

[
Erp

Eip

Ers

Eip
Erp

Eis

Ers

Eis

]
(3.61)

where Ei (Er) are the component of the incident (re�ected) wave. The ellipso-
metric parameters are de�ned as

ρ =
rp
rs

= tan(Ψp)e
i∆ (3.62)
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ρps =
rps
rp

= tan(Ψps)e
i∆ps (3.63)

ρsp =
rsp
rs

= tan(Ψsp)e
i∆sp (3.64)

In case of orthorhombic samples or higher symmetries, the anisotropy in the mea-
sured Mueller matrix elements vanishes and the Jones matrix is diagonal:

R =

[
rs 0
0 rp

]
. (3.65)

If the incoming light beam is linearly 45◦ polarized, |Eis|
|Eip| = 1. In this case tanΨpp

= |Erp|
|Ers| . The transformation of the Jones matrix of equation 3.65 into a Mueller

matrix normalized to the total intensity m11 reads

M =


1 m12 0 0
m21 0 0 0

0 0 m33 m34

0 0 m43 m44

 , (3.66)

with

m11 =
|rp|2 + |rs|2

2
, (3.67)

m12 = m21 =
|rp|2 − |rs|2
|rp|2 + |rs|2

, (3.68)

m33 = m44 = 2
Re(rp)Re(rs) + Im(rp) Im(rs)

|rp|2 + |rs|2
, (3.69)

and

m34 = −m43 = 2
Re(rp) Im(rs)− Im(rp)Re(rs)

|rp|2 + |rs|2
. (3.70)

From equation 3.57 the following equations can be derived

Re
|rp|
|rs|

= tanΨp, (3.71)

Re
rp
rs

= tanΨp cos∆p, (3.72)

Im
rp
rs

= tanΨp sin∆p. (3.73)

Finally, the Mueller matrix of an orthorhombic or higher symmetry sample with
optical axes aligned along the laboratory system reads
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M =
|rp|2 + |rs|2

2


1 −cos 2Ψ 0 0

−cos 2Ψ 1 0 0
0 0 sin 2Ψcos∆ sin 2Ψsin∆
0 0 −sin 2Ψsin∆ sin 2Ψcos∆

 . (3.74)

3.2.5 Dielectric Function of Anisotropic Bulk Samples

We restrict our considerations to homogeneous, non-magnetic materials. The
dielectric tensor describes the most general response of the material. In non-
absorbing materials the tensor elements εij are real. Energy conservation requires
that εij = εji, i. e. the tensor is symmetric. This means also that it is always
possible to �nd a cartesian coordinate system (x, y, z) such that the dielectric
tensor is diagonal. The (x, y, z) directions for this selection de�ne the principal
dielectric axes

εij(ω) =

 εxx(ω) 0 0
0 εyy(ω) 0
0 0 εzz(ω)

 . (3.75)

In case of uniaxial materials to which trigonal, tetragonal and hexagonal sym-
metries belong, εxx = εyy 6= εzz. For so-called biaxial systems εxx 6= εyy 6= εzz.
Those are orthorhombic structures. In case of orthorhombic and higher symme-
tries, the main dielectric axes coincide with the symmetry axes of the crystal.
This means as soon as the orientations of the crystal are known, the dielectric
tensor will be diagonal in this crystal coordinate system. The orientation of the
main dielectric axes does not change with ω or T . They will always lie along the
crystallographic axes, but the length of the principal axes can change, i.e. nx,
ny and nz. In the orthorhombic case, three independent quantities namely the
diagonal elements of the upper tensor must be speci�ed in order to de�ne the
full dielectric tensor. In monoclinic systems however, only one principal dielectric
axis lies along a crystallographic axis and in triclinic crystals all three orthogonal
principal axes are unspeci�ed even if the crystal axes are known. In addition to
that, the variation with ω is unspeci�ed too. This has the consequence that a di-
agonalization of the dielectric tensor is only possible for orthorhombic structures
and higher symmetries. Lower symmetries will produce o�-diagonal elements.

3.2.6 Experimental Coordinate System and Euler Angles

The Euler angles describe any rotation needed to match the experimental coordi-
nate system with the the optical axes of the sample. The rotations are de�ned as
follows: ϕ rotates the laboratory system about the z-axis, ϑ about the new x-axis
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Figure 3.6: De�nition of the laboratory system with Euler angles. (Sketch taken from
[105].

and ψ about the new z-axis. Assuming normal incidence helps to visualize the ex-
perimental coordinate system. The z-axis points along the beam direction normal
to the sample plane and into the sample surface. The x-direction lies in the plane
of incidence (p-polarization) and the y-direction lies perpendicular to the other
two (s-direction). They build a right-handed coordinate system as shown in �gure
3.6. If such a rotation is possible, the dielectric tensor can be diagonalized. This
is valid for orthorhombic symmetry and higher. If a crystal is oriented in such

Figure 3.7: Example of measurement con�guration of a crystal where two perpendic-
ular surfaces have been prepared. For clarity, the polarization states of the
light wave are not shown.

a way that one principal axis is oriented perpendicular to the plane of incidence
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and the other one is normal to the surface, the measured dielectric response comes
from the tensor projection onto the intersecting line between surface and plane
of incidence [106]. The other two components contribute only a little. In �gure
3.7 for example, the component εc is the principal component measured. This
approximation is valid if |ε| is moderately large of the order of 10 and for typical
angles of incidence of θ = 70. For the above mentioned setup in �gure 3.4 the
complex pseudodielectric function can be calculated from the matrix elements by
using the Fresnel equations

ρpp =
rpp
rss

=

(√
εzz − sin2 θ −√εxxεzzcos θ√
εzz − sin2 θ +

√
εxxεzzcos θ

)(
cos θ +

√
εyy − sin2 θ

cos θ −
√
εyy − sin2 θ

)
(3.76)

where θ is the angle of incidence. The dielectric function can thus be determined
by ellipsometric measurement of the complex re�ection ratio ρ

ε = εxx = εyy = εzz = sin2 θ + sin2 θ tan2 θ (
1− ρ
1 + ρ

)2 (3.77)

In the next chapter, the experimental setups of Fourier transform spectroscopy
and ellipsometry are described with focus on the ellipsometric setup.
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4.1 Spectroscopic Methods

There are several approaches to measure the linear response of a material. These
can be divided into three fundamental methods. The �rst uses monochromatic
radiation and the electrodynamic response is measured as a function of frequency.
Measured quantities are amplitude and phase of the response as for example is
done in ellipsometry. The other two techniques use white light sources tha. The
methods can be separated into time-domain and Fourier-spectroscopy. Time do-
main spectroscopy uses short pulses with de�ned rising time and measures the
time-dependent response of the system. The upper limit of this technique is �xed
by the inverse rising time and thus the main working region lies between 10−6 up
to 109 Hz, i.e. rising times of nano-seconds.
Within the frame of this thesis, Fourier transform spectroscopy and ellipsometry

were used to investigate the optical properties of transition metal oxides. Since
the focus of this work was to set up the new experimental technique of ellipsom-
etry in our group, the following description will concentrate on fundamentals of
ellipsometry and only a short presentation of Fourier transform spectroscopy is
given.

4.2 Fourier Transform Infrared Spectroscopy

(FT-IR)

FT-IR spectroscopy has gained much importance in optical spectroscopy with
the development of fast processing computers. Compared to conventional grating
spectrometers where the spectrum S(ω) is measured at each frequency ω one after
the other, 1 in FT-IR spectroscopy all frequencies are measured simultaneously.
This involves a lot of mathematical operations such as Fourier transformation
and phase corrections. Apart from the data processing computer, the most im-
portant device in FT-IR spectrometers is the interferometer, usually a Michelson
interferometer.

1Here we use the wavenumber ω = 1/λ in cm−1 which is commonly used in optical spectroscopy.
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Figure 4.1: Examples of spectra (left) and corresponding interferograms (right) (a)
one monochromatic line, (b) two monochromatic lines and (c) broadband
spectrum of polychromatic source, taken from [35] and [107]

.

Michelson Interferometer

The radiation of a white-light source is separated by a beam splitter into two
interfering rays. Those two beams are re�ected by two mirrors one of which is
movable, producing variable path di�erences δ = 2 x where x is the distance
of the movable mirror with respect to the �xed mirror. For δ = 0, λ, 2λ this
yields constructive interference of the two beams and for δ = λ/2, 3/2λ... this
leads to destructive interference. An intensity pattern as seen in �gure 4.1 (a) is
measured in case of monochromatic light. The response of the system is measured
as a function of the path di�erence which means the interferometer changes the
frequency dependence S(ω) into a space-dependence of the measured intensity
I(x). Those quantities are related to each other by a Fourier transformation. The
task is to measure the intensity of the detector signal I(x) against the position
x of the movable mirror. The main problem exists in the determination of the
actual position of the �xed mirror. For this reason, an additional monochromatic
light source (He-Ne Laser) is used. The laser beam passes the interferometer and
produces an interferogram as shown in �gure 4.1 (a)
The intensity I(x) then is given by the following relation I(x) = S(ω) cos(2πx/λ0)

and this equation leads to the position x if λ0 is known. S(ω) is the intensity of
the spectral line at wave number ω0. In the case of a polychromatic light source,
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4.2 Fourier Transform Infrared Spectroscopy (FT-IR)

the intensity can be expressed by an integral over all frequencies:

I(x) =

∫ ∞
0

S(ω)cos(2πωx)dω. (4.1)

However, the interferogram I(x) of the polychromatic light source is digitalized
by switching on the detector each time the interferogram of the monochromatic
reference laser passes through zero, leading to an interferogram that is only known
at N discrete, equidistant points, xn = n∆x. This yields to S(ω) given only at
discrete ωk = k∆ω. Then, I(n∆x) and S(k∆ω) are connected by a discrete
Fourier [107] and equation4.1 becomes a sum over the sampling points N:

I(n∆x) =
N−1∑
k=0

S(k∆ω)e−(2πnk/N). (4.2)

For n = 0 the exponential function in the equation 4.2 is 1 and the intensity at the
so-called white-light-position, I(0) is the sum over all N spectral intensities, divided
by N. In other words, the maximum of the interferogram represents the average
intensity of the spectrum. As depicted in �gure 4.1 (b) it is necessary to measure
a path di�erence of at least x = 1/∆ω to resolve two discrete frequencies with
distance ∆ω since the interferogram of two adjacent spectral lines shows a periodic
modulation that is repeated after a distance 1/∆ω. The smaller the distance ∆ω,
the larger the path di�erence. For example to reach a resolution of ∆ω = 0.1 cm−1

the movable mirror has to move 6 cm. Other aspects of data processing like
zero-�lling and aliasing are described in detail in [35, 107]. A big advantage of
Fourier spectroscopy is the fast working speed. All frequencies can be measured
within seconds (Fellget-advantage). A good signal to noise ratio is achieved by
averaging many scans. The Fourier spectrometer in our group works best in the
infrared region due to intensity lack of available sources in the low-frequency region
(Planck´s law) and strong in�uence of mechanical instabilities on the beam path
in the short wavelength region. The following table lists the spectral range covered
by optical spectroscopy. There is a smooth crossover between neighboring regions.

spectral region wavenumbers wavelength frequency Energy
FIR 10 - 500 1 mm - 20 µm 0.3 - 15 THz 1.2 - 60 meV
MIR 500-5 000 20 - 2 µm 15 - 150 THz 60 - 600 meV
NIR 5 000-12 500 2 µm - 800 nm 150 - 375 THz 0.6 - 1.5 eV
VIS 12 500-25 000 800-400 nm 375-775 THz 1.5 - 3.1 eV
UV 25 000-100 000 400- 1 nm 775 - 3 000 THz 3.1 - 12 eV

Table 4.1: Spectral ranges in optical spectroscopy with typical units.
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Figure 4.2: Schematic picture of the Fourier transform spectrometers used in our
group.

.

4.2.1 Experimental Setup

A typical FT-IR setup is depicted in �gure 4.2 Two Bruker IFS 66v/S Fourier
transform spectrometers are available in our group. Both spectrometers are equipped
with exchangeable light sources, detectors and beam splitters covering an energy
range from 10 meV to 3 eV. In addition to that, the spectrometers are equipped
with liquid He-�ow cryostats that enable measurements in a temperature range
from 10 - 800K. The setup can be used for transmittance or re�ectance measure-
ments by inserting or taking out the so-called re�ection unit, see �gure 4.2.

Re�ectance and Transmittance Measurements

To get information on the electrodynamic properties of a sample, each measure-
ment has to include a reference measurement containing information on the char-
acteristic spectral distribution of the light source, beam-splitter, detector, etc. In
transmittance setup, an empty aperture is used and in re�ectance, the reference
is a gold or aluminium mirror. The transmittance T (ω) and re�ectance R(ω) of
the sample is calculated as follows

T (ω) = S(ω)sam
S(ω)ref

R(ω) = S(ω)sam
S(ω)ref

R(ω)ref,

(4.3)

where R(ω)ref is the known re�ectance of the reference material (Au, Al) and
S(ω)sam and S(ω)ref are the sample and reference spectra.
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Figure 4.3: Woollam VASE Ellipsometer with liquid He-�ow UHV cryostat on the
sample stage connected to liquid He-Dewar.

4.3 Ellipsometry

Within the frame of this thesis, the Woollam Ellipsometer WVASE (Woollam
Variable Angle Spectroscopic Ellipsometry ) setup with rotating analyzer (RAE)
con�guration has been used. It is equipped with exchangeable setups for room-
temperature measurements and low-temperature measurements with a liquid-
Helium �ow cryostat(KONTI cryostat, Cryovac). The complete setup includes
a broad band light source (Xe-lamp, 190 nm - 2000 nm, USHIO, Hamamatsu),
double-grating monochromator, an optical �ber, a sample stage, an analyzing po-
larizer and a twin-detector. The setup with cryostat is shown schematically in
�gure 4.3. Several optical �bers with di�erent diameters are available. We usually
worked with the 200 µm UV �ber. Since the �ber shows an optical absorption
in the range of 0.86-0.92 eV, the experimental data of this region are skipped au-
tomatically and a straight line is generated. At the exit of the monochromator
right before entering the �ber, a chopper wheel is placed to �lter out room light
at the detector. After the polarizer, a MgF2 Berek waveplate is placed working as
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a)

b)

180° 360°

c)

Figure 4.4: Detector signal of a) linearly, b)circularly and c) elliptically polarized light
after passing a continuously rotating analyzer.

a retarder. It induces a well de�ned phase shift ∆r between 0◦ and 90◦. It is rec-
ommended to impose a retardation of 90◦ as will be described in the next section.
Several angles of incidence can be measured between 20◦ to 90◦ with the room
temperature setup. With the cryostat most measurements were carried out at an
angle of incidence of 70◦±5◦. In the following, the principal data acquisition proce-
dure is described in the Jones and later in the Mueller matrix formalism, followed
by a description of low-temperature measurements with a cryostat. Moreover, an
exemplary data acquisition and modeling examples is given.

4.3.1 Rotating analyzer

In the rotating analyzer con�guration, a modulated intensity is measured at the
detector as shown in �gure 4.4. The Fourier coe�cients of the signal which are
related to the ellipsometric angles Ψ and ∆ are calculated. The signal at the de-
tector for di�erent polarization states after passing a rotating analyzer is described
by:

V(t) = V0 + a cos (2ω t) + b sin (2ω t) (4.4)

where V(t) is the signal at the detector measured by the voltage. The measured
quantities are the normalized Fourier coe�cients of the signal α = a

V0
and β = b

V0
.
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In Jones formalism the action of a re�ecting sample and optical devices on the
light beam can be formulated as a multiplication of Jones matrices. The state of
polarization at the detector is:

ED =

[
1 0
0 1

]
×
[

cosA sinA
−sinA cosA

]
×
[
rpp 0
0 rss

]
×
[
cosP −sinP
sinP cosP

]
×
[

1
0

]
Ei,

(4.5)
and after multiplication follows:

ED =

[
rpp cosP cosA+ rss sinP sinA

0

]
. (4.6)

The measured quantity at the detector is proportional to the squared component
of the electrical �eld vector. After some substitutions using cosine functions the
intensity will be

ID ∝ 1
2
|rpp|2 cos2 P + 1

2
|rss|2 sin2 P

+ 1
2

( |rpp|2 cos2 P − |rpp|2 sin2 P ) cos 2A
+ 1

2
2Re (rpp r

∗
ss) cosP sinP sin 2A,

(4.7)

and by comparing with equation 4.4 we can identify α and β

ID = V0 (1 + α cos 2A+ β sin 2A). (4.8)

It follows

α =
|rp/rs|2 − tan2 P

|rp/rs|2 + tan2 P
, (4.9)

β =
2Re(rp/rs)tanP
|rp/rs|2 + tan2 P

, (4.10)

and using the substitution ρ = rpp

rss
= tanΨ ei∆ α and β will become

α =
tan2 Ψ − tan2 P

tan2 Ψ + tan2 P
, (4.11)

β =
2 tanΨ cos∆ tanP
tan2 Ψ + tan2 P

. (4.12)

This relates the ellipsometric parameters Ψ and ∆ to the measured Fourier-
coe�cients α and β. Inversion leads to

tanΨ =

√
1 + α

1− α |tanP | (4.13)

and
cos∆ =

β√
1− α2

tanP
|tanP | . (4.14)
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To achieve a good signal to noise ratio, a high number of rotations of the analyzer
have to be used and the average intensity at the detector should be as high as
possible which is the case for circularly polarized light. For circularly polarized
light α and β go to zero. If we consider equations 4.11 and 4.12, it follows that
for α = 0 the polarizer angle P must be equal to Ψ, and for β = 0 the phase
di�erence must be ∆ = π

2
which corresponds to circularly polarized light. ∆ may

be varied by changing the angle of incidence. Near the Brewster angle where rpp
is almost zero, ∆ is near π

2
. Therefore it is advisable to measure several angles

of incidence around the Brewster angle such that ∆ ≈ π
2
can be measured for all

di�erent wavelengths. In any case it may be useful to measure di�erent angles
of incidence in order to discern possible surface layers because the optical path
changes with angle of incidence.

Accuracy and Calibration Procedure

much attention has to be paid to the calibration procedure and accuracy of the
ellipsometric system to ensure accurate optical constants or layer thicknesses of
investigated samples. The latter can be veri�ed by measuring a reference sample
like SiO2 on Si wafers. However, the precision of ellipsometer systems is often
better than the tolerance of the supplied reference standards. Therefore it is a
good idea to check the ellipsometer in straight through position in air for which the
ellipsometric parameters are by de�nition Ψ = 45◦ and ∆ = 0◦. This accuracy test
however does not guarantee accurate ellipsometric data on general samples, but a
good starting point to check the ellipsometric system. Before the the ellipsometer
can acquire data, a calibration script supplied by the J.A. Woollam company is
run in our group. The aim is to determine the true values, i.e. the absolute
position of the polarizer and analyzer axes denoted with PS and AS representing
the angular di�erence between the dial reading P for polarizer and analyzer A
and plane of incidence. Moreover, the relative attenuation η of the A.C. signal
to the D.C. component due to signal processing electronics must be quanti�ed.
The Woollam RAE Ellipsometer uses a regression calibration method described
in detail in [108].

4.4 Data Acquisition and Modeling

It is recommended to determine the unknown optical properties of bulk samples
outside a cryostat �rst, because the e�ect of cryostat windows on the polarization
state mix with the sample ∆-o�set which makes a special calibration procedure
necessary (see next section). Moreover, data can be acquired over a large range
of angles of incidence and orientations by using a rotation unit, allowing for the
measurement of well de�ned sample orientations by rotating about the surface
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normal. To account for surface e�ects, those measurements were carried out re-
peatedly after re-polishing the surface. Since most of the samples are opaque in
the spectral range investigated, intensity re�ection measurements with p-polarized
or s-polarized light were accomplished. Moreover, re�ectance measurements from
FT-spectroscopy were used as a reference.

4.4.1 Cryostat Measurements

Within the frame of this thesis a liquid-Helium �ow cryostat was put into opera-
tion which enables measurements at temperatures between 15K to 600K. Due to
the extreme surface sensitivity of the ellipsometric technique, ultra high vacuum
(UHV) is recommended. Our setup reaches con�guration reaches a vacuum of
10−8 mbar after one day. It turned out however, that this vacuum is not good
enough to avoid the creation of thin ice layers during low-temperature measure-
ments due to remaining H2O vapor in the cryostat [95]. Therefore a bake-out
procedure was chosen. For this purpose, heating wires are wrapped around the
cryostat �anges. The temperature for bake-out is 400K. The sample mounted on
the cold �nger inside the cryostat is heated up, too to avoid depositions of dirt
from the inner cryostat surface on the sample surface. It turned out that after
two days bake out and one day cool down, it is possible to reach a vacuum of
10−10 mbar. The samples are cooled down to 10K �rst and then heated up slowly.
If the heating current is too high the sample and the cold �nger will issue vapor
while being heated which could lead to the breakdown of the vacuum.

Window-E�ects

If a cryostat is used, special care has to be taken of the e�ects of the entrance
and exit windows on the measurement results. Strain can a�ect the polarization
state of the light beam which should not be mixed with the e�ects of the sample.
One way to deal with the problem is to use strain-free windows. However, we
used WVASE script supplied by the J.A. Woollam company that accounts for
the polarizer and analyzer azimuths as described before and the window e�ects,
separating them into in-plane and out-of-plane e�ects. The out-of-plane e�ects or
Ψ o�set will be determined during the calibration process. The in-plane e�ects
however, mix with the sample´s ellipsometric ∆ parameter. Therefore, a refer-
ence sample (in our case a silicon wafer) has to be measured without windows to
determine surface layers and an adequate model has to be built. The measured
data are then �tted to the model, only varying the surface thickness. This can be
checked afterwards for accuracy. The window-�tting procedure has to be carried
out each time the windows have been changed and in our case every time after
bake out.
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This section shall give an insight into the data analysis procedure in ellipsome-
try. It is arranged to lead through the dispersion-model based multi-sample data
analysis of generalized ellipsometry data measured within the frame of this thesis.

4.4.2 Extracting the Complex Dielectric Function

For ideal isotropic bulk samples it would in principle be possible to directly invert
n and k from the measured Ψ and ∆ values with equation 3.57 and the Fresnel
equations. However, this is an idealization that is di�cult to achieve for bulk
samples unless they are cleaved in-situ. Otherwise there will always be native
oxide-layers, surface roughness or adsorption of dirt due to processing. For more
complicated bulk structures with unknown and/or multiple surface layers or gra-
dients in optical constants, a more advanced data analysis is necessary. As it
turns out, it can be a quite di�cult task to �nd a unique solution for the optical
constants if there are so many unknowns. Unique means that only one combina-
tion of �t parameters will lead to the best solution (smallest Mean Squared Error
(MSE)). One problem here is that parameter correlations occur, e.g. optical con-
stants and �lm thickness are not independent from each other. It is, for example,
not possible to de�ne the �lm thickness of a thin �lm �lm on a glass substrate
by one VASE measurement only. Additional information from transmittance data
must be added for de-correlation of the �t parameters. Another possibility is to
simultaneously �t repeated measurements of one sample. In general, a paramet-
ric dispersion model is used to calculate n and k or ε1 and ε2 as a function of
wavelength. The most famous examples is the Lorentz oscillator model that has
the advantage of being Kramers-Kronig consistent. Another dispersion model is
the Cauchy model which, however, is valid only for transparent materials. The
WVASE o�ers many more models to account for any special case like Tauc-Lorentz
which is used for oscillators in the gap region. It is also possible to use a sum of
Gauss functions to describe the dataset.
Another, however not Kramers-Kronig consistent �t procedure is to de�ne the

optical constants of a bulk sample in the transparent region with a Cauchy model,
by set k = 0 and then �t for n. Then with this starting value, a point by point �t
is started.

Anisotropic data acquisition

The samples investigated within the frame of this thesis are of orthorhombic sym-
metry and therefore the dielectric function along all three crystallographic direc-
tions has a di�erent complex value. In this case, attention has to be paid to the
correct orientation in the measurement process. In principle, it is possible to use
the isotropic measurement technique if the samples are aligned correctly along the
ellipsometric system since the Jones Matrix then becomes diagonal as described
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in the previous chapter. In our group however, we used the general Mueller ma-
trix formalism in order to check for depolarization e�ects or misalignment which
would be signaled by non-zero o� diagonal elements. In the general Mueller matrix
measurement procedure of the J.A. Woollam company, all single Mueller matrix
elements are measured by using di�erent polarizer and retarder positions for each
wavelength. For uniaxial samples (e.g. tetragonal or hexagonal symmetry) two
independent Mueller matrices have to be measured, i.e. two orthogonal crystal-
lographic directions and optically biaxial crystals (e.g.orthorhombic symmetry)
require 3 independent measurements. In our case only the �rst three rows of the
Mueller Matrix are accessible since our system is not equipped with a compen-
sator. The full calculation is derived in the appendix.

How to build a biaxial model

The biaxial model of the WVASE software was designed to model the optical con-
stants of a biaxial crystal and allows to �t two of the Euler angles at the same time.
Fitting for all three angles leads to parameter correlation. If the unknown optical

Figure 4.5: Biaxial layer to build a multi-model �t

constants of a biaxial bulk sample shall be determined, we need three material
�les, as depicted in �gure 4.5 denoted with Mat.#1, Mat.#2 and Mat.#3. We
used Kramers Kronig consistent Lorentz oscillator models as dispersion-functions
for n and k (see �gure 4.6). For determining start values for the �t parameters
we make use of the above mentioned approximation, that in certain measurement
con�gurations, only one element of the diagonal dielectric tensor contributes most,
as was already described by Drude (cite) and later by Aspnes [106]. In a setup
like in �gure 3.7 the main contribution of the dielectric tensor comes from εc. This
means we have to measure at least 2 perpendicular surfaces to get information on
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Figure 4.6: Dispersion model based material �le. In this case, a Lorentz oscillator
model.

all three axes. The idea is to measure the Mueller matrix of the re�ectance setup
in �gure 3.7 and then invert the measured data following equation 3.74 as if we
would measure an isotropic sample. The ellipsometric parameters can be inverted
with equation 3.57. This leads to a tabulated set of n and k values that can be
used as a reference �le in the general oscillator layer. We now have an estimate
of the optical constants along the one axis. The same is done for the other two
material �les. One problem with the starting point is that surface layers are ne-
glected in the reference �les. The next step is to build up a multi-model �t. In
this, all ellipsometric measurement con�gurations and sample orientations can be
�t simultaneously. In our case we used up to 10 data sets including ellipsometric
and intensity re�ectance types. For each data set a biaxial layer has to be created,
taking into account the measurement con�guration by adapting the Euler angles.
The Material �les#1,#2 and#3 are coupled to all those layers. The goal is to
�nd a unique solution to all data sets with the simplest possible model.

4.5 Sample Preparation

Single crystals of the spin-ladder compounds were prepared and characterized by
X-ray di�raction by U. Ammerahl and P. Ribeiro. Before sample polishing the ori-
entation was checked in the Laue camera 2. In case of Sr14Cu24O41 the single crys-
tal was investigated with a single-crystal di�ractometer. The samples have been

2The Laue pictures were were analyzed by orientexpress
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5000 A

2500 A
Figure 4.7: STM pictures of Sr9Ca5Cu24O41. The left panel shows the polished surface

before Xe-ion sputtering and the right panel after sputtering. The surface
roughness is of the order of 100Å.

lapped with a 3 micron Al2O3 water suspension (Logitech) and thereafter polished
to optical grade with 0.5 micron SiO2 polishing suspension SF1 (Logitech). The
surface was checked in a polarization microscope. For low-temperature measure-
ments, the samples were cleaned in several ultrasonic baths with acetone (3 min.),
ultrapure water (3 min.), methanol (3 min.), and again ultrapure water (3 min.).
After the last ultrasonic bath, the sample is put on the Cu cold �nger of the cryo-
stat and �xed with silver paint. When dealing with bulk samples, one is confronted
with the problem of unde�ned surface layers from oxidation or contamination. If
the optical properties of the bulk sample and the surface layer (and its thickness)
are unknown, then it is not possible to �nd out the true optical constants with
one VASE measurement due to parameter correlation as described before. It is
necessary to prepare the same surface several times, or measure other samples
with the same optical constants, and to take into account intensity transmittance
or re�ectance spectra. Another in�uence on the optical properties of the sample
is strain put on the sample during the polishing process. The surface might then
show other optical properties compared to natural unpolished surfaces. However,
in most cases, polishing is needed to ensure high intensity of the re�ected beam.
In case of rough surfaces, the light is re�ected in di�erent directions leading to
deviations from the supposed angle of incidence.

4.5.1 Polishing

Figures 4.10 and 4.9 show VASE data of repeated measurements outside the cryo-
stat after repeated sample preparation. The �rst measurement was done with
standard lapping + polishing procedure as described above. The ellipsometric
measurements were carried out directly after cleaning and preparation. In order
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Figure 4.8:

Optical constants of the Cauchy model describing
the surface layer. The red lines are n and k values
that follow from the Cauchy dispersion model (as-
suming k = 0) and the green and blue data show
the values after �tting for n and k.

Figure 4.9:

Microscope picture (32x) of Sr9Ca5Cu24O41. It
shows the ab plane after Xe-ion sputtering.

to learn about the in�uence of surface preparation, in one case the sample was
only re-polished. The details of preparation are listed in table 4.2. It is clearly
observable that the repeated measurements do not fall together. In case of the
ac-plane the variation is only moderate, whereas strong discrepancies are observed
in the case of the ab surface. It is not easy to �nd out about the origin of these
e�ects but we assume that unknown surface layers exist that vary in thickness
with each sample preparation. Moreover, the ab surface was much smaller than
the ac surface which makes alignment di�cult. In one case we did a measurement
of the sample surface that was cleaned by Xe-ion sputtering and used this surface
as a reference. To identify the bulk properties of the material all repeated mea-
surements were �tted in one multi-model analysis with up to 10 data sets. Then
room-temperature data inside and outside the cryostat were �tted in one model.
The surface layers were simulated by a Cauchy model assuming a non-absorbing
material (see Fig. 4.8). We found layer thicknesses of 1.6 to 1.8 nm inside the
cryostat and 3 nm outside the cryostat. The following �gure shows the n and k
values of the Cauchy model.

4.5.2 Cleaving

In the case of Sr6Ca8Cu24O41 and SrCuO2 we used the technique of cleaving to
measure a sample without any further polishing or cleaning. The spin ladders
cleave perpendicular to the b axis. However, the resulting surface can show steps
and only small re�ecting parts. Therefore the intensity at the detector may become
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Figure 4.10: Repeated ellipsometric measurements of the ac surface of Sr9Ca5Cu24O41

for two di�erent orientations and after repeated sample preparation. The
data were acquired without cryostat.

Surface Measurement Preparation

ac/ca M1 (blue) lapped + polished
ac/ca M2 (magenta) lapped + polished
ac/ca M3 (green) re-polished
ab/ba M1 (blue) lapped + polished
ab/ba M2 (magenta) re-polished
ab/ba M3 (green) lapped + polished
ab/ba M4 (red) lapped + polished + Xe-ion-sputtering

Table 4.2: Table of repeated sample preparations for Sr9Ca5Cu24O41 (see Figs. 4.10
and 4.11).

a problem. Moreover, it is di�cult to control the size of the parts that break away
and the sample can be destroyed. Our sample broke into two equally sized pieces
and the ac surfaces turned out to show little steps which however were re�ecting
well enough to be used in a VASE measurement. Although the intensity at the
detector was quite low, we achieved satisfying results by doing many measurements
at each wavelength (up to 1000 revolutions per measurement). The data were
acquired at room temperature without cryostat, and also one low-temperature
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Figure 4.11: Ellipsometric measurements of the ab surface of Sr9Ca5Cu24O41 after re-
peated standard sample lapping and polishing and in one case after Xe-ion
sputtering. The data were collected at room temperature.

measurement along the c axis was done to check the temperature dependence.
After that the data were modeled in a multi-model �t with polished samples.
In Fig. 4.12 and ellipsometric parameters of the polished and cleaved surface are

compared. It can be stated that the surface layers or strain e�ects due to polishing
do somewhat a�ect the line shape, e.g. the shoulder at 2.0 eV is better resolved at
low temperatures in the cleaved sample. This comparison however shows that we
indeed observe bulk properties of the sample in both cases. We assumed di�erent
models for the surface like the Cauchy dispersion model and surface roughness
layer. The best �t was reached for a model that assumes no surface layer for the
cleaved samples and 2 to 7 nm Cauchy surface layer on the polished samples. To
check for the temperature dependence, also a model �t without any surface layers
on top was carried out. It turned out that the relative temperature dependence
stays the same. However the total spectral weight can vary.
In Figure 4.13, the optical conductivity data along the c axis (chain/ladder-

direction) is shown for Sr14Cu24O41 as a function of temperature. The upper
panel shows the result of a multi sample analysis of repeated measurements where
the best �t was achieved when assuming a non-absorbing, so-called Cauchy-model
surface layer on top. We assumed 3-5 nm layer thickness. The lower panel shows
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Figure 4.12: Ψ and ∆ values of the ac surface of Sr6Ca8Cu24O41 as a function of
temperature. The left panel shows data of the cleaved surface. The right
panel shows the polished surface.

the result if no surface layer is assumed. Obviously, a surface layer strongly
a�ects the spectral weight of the excitations especially the strong excitation at
3.8 eV. The peak positions are a�ected too but only slightly. They shift to slightly
lower energies by 0.5 eV. The qualitative temperature dependence is not a�ected.
Moreover, we de�nitely observe bulk properties of the samples which has been
proven by comparison of the cleaved sample in case of x=8. In Fig. 4.14 digitalized
optical conductivity data of Sr14Cu24O41 by Osafune et al. [86] are shown which
were derived by Kramers-Kronig transformation of normal-incidence re�ectance
data. Our optical conductivity data from the pseudo-dielectric function from the
anisotropic multi-sample with 3-5 nm Cauchy-layer are plotted into the graph for
comparison. The results of our ellipsometric measurements on the spin ladder
compounds (La,Sr,Ca)14Cu24O41 are presented in chapter 5.
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Optical conductivity
data from ellipsomet-
ric measurements for
Sr14Cu24O41 (x=0)
along the chain or
ladder direction (c).
The upper panel is the
result of a multi-sample
analysis of repeated
measurements leading
to a non-absorbing
surface layer of 3-5
nm on top of. Those
were kept constant at
low temperatures. The
second panel shows
the results for a model
without any surface
layer to show the e�ect
of surface layers on peak
positions and spectral
weight.
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Figure 4.14:

Real part of the op-
tical conductivity of
Sr14Cu24O41 at T =
300K by ellipsometry
and comparison with
digitalized optical con-
ductivity data from
Osafune et al. [86].
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5 Ellipsometry and Fourier
Spectroscopy on
(La,Sr,Ca)14Cu24O41

5.1 Physics of (La,Sr,Ca)14Cu24O41

Ellipsometric measurements were carried out in the energy range between 0.8 and
5 eV in order to investigate the nature of electron-hole excitations as a function
of hole doping, Ca substitution and temperature. The optical conductivity was
calculated from ε1(ω) and ε2(ω) determined by ellipsometry for La5.2Ca8.8Cu24O41

(LCO) with 0.2 holes per formula unit (f.u.) and the hole-doped compounds (6
holes per f.u.) Sr14−xCaxCu24O41 with x = 0 (SCO), 5, and 8 (SCCO).
Optical conductivity data calculated from re�ectance data between 10 meV -

2 eV from Kramers-Kronig transformation were combined with the ellipsometric
data to derive the optical conductivity over the complete energy range comprising
low-energy and high-energy excitations. In addition, the spectral-weight transfer
was analyzed as a function of temperature and Ca substitution. The aim of this
work is to get more insight into the charge-carrier dynamics as a function of
temperature and doping.

Crystal Structure of Sr14−xCaxCu24O41 (SCCO)

The crystal structure of LCO and SCCO is orthorhombic and consists of alternat-
ing layers of CuO2 chains and Cu2O3 ladders that are sandwiched by Sr and Ca
ions which belong to the ladder subunit (see Fig. 5.1). The structure is incom-
mensurate, namely there is a slight mismatch in lattice constants of ladders and
chains along the chain direction [38].
In Sr14Cu24O41 (SCO) for example, the lattice constant cC of the chain subunit

is 2.749 while cL is 3.931 for the Sr2Cu2O3 subcell containing the ladders [38].
However, a large average unit cell can be found with a lattice constant c∗ = 27.501
which is equivalent to 10 × cC and 7 × cL. As illustrated in �gure 5.2, the chains
are formed by edge-sharing CuO4 plaquettes leading to a nearly 90◦ ferromagnetic
(FM) Cu-O superexchange coupling. In this case the O 2pσ orbital hybridizing
with the Cu 3d orbital is almost orthogonal to the neighboring Cu 3d orbital,
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Figure 5.1: Crystal structure of LCO and SCCO. The chain and ladder subsystems are
stacked along the crystallographic b direction. The layers are sandwiched
by Ca, La, and Sr ions.

hence charge-carrier hopping along the chains is suppressed. The ladder legs and
rungs are formed by corner-sharing CuO4 plaquettes with strong antiferromagnetic
(AF) superexchange coupling. Hopping along those directions is favored. Between
two ladders, a weak ferromagnetic coupling due to edge-sharing plaquettes plus
frustration leads to a very weak coupling among two neighboring ladders.

Electronic structure of Sr14−xCaxCu24O41: charge-density waves vs.
superconductivity

Sr14−xCaxCu24O41 is inherently doped with six holes per formula unit. For x
= 0 the system shows semiconducting behavior and upon substitution of Sr by
isovalent Ca the conductivity rises [9�11], see Fig. 5.3. The rise in conductivity
with Ca substitution was interpreted in terms of a redistribution of holes from
chains to ladders [9, 86, 90]. Optical conductivity data as well as DC conductivity
data show a strong anisotropy between a and c direction [11], e. g. charge-carrier
propagation parallel to the legs of the ladder is about 10 times higher than along
the a direction which is parallel to the rungs. This means propagation between
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CuO2 Ketten Cu2O3 Leitern

Figure 5.2: Top view of chain and ladder units. The crystallographic c direction is
de�ned along the legs or chains, respectively. The a direction is de�ned
along the ladder rungs. The corner-sharing or edge-sharing CuO4 building
units are highlighted by black squares.

neighboring ladders is strongly suppressed. In 1992, Dagotto et al. [5] predicted d-
wave superconductivity for the slightly hole-doped two-leg spin ladder emphasizing
the analogy to the 2D cuprates. In the hole-doped case, the physics is described
within the t-J model. In the strong-coupling limit J⊥ � J‖, the ground state at
half �lling consists of a set of spin singlets on each rung of the ladder. A spin gap
of the order of J⊥ is predicted [5]. In case of doping of two holes, it is magnetically
favorable to break only one singlet, placing the two holes close to each other. At
the same time, one has to consider the Coulomb repulsion between the holes and
that the kinetic energy is enhanced for a pair. However, in a certain parameter
range, the pair-binding tendency dominates. The hole-pair binding energy is of
the order of J⊥. The discovery of superconductivity in SCCO for x>13.6 under
high pressure [12] was interpreted as a con�rmation of Dagotto´s theory.
In the high-TC cuprates, it can come to a competition between superconduc-

tivity and charge-ordered phases that are regarded as instabilities of the normal
phase. For example, in the 2D planes of the HTSC materials a stripe-ordered phase
competes with superconductivity [109]. In principle, there are three mechanisms
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Figure 5.3: Temperature and doping dependence of the DC resistivity of
Sr14−xCaxCu24O41. The resistivity is strongly anisotropic, i. e., along the
chain and leg direction c it is an order of a magnitude smaller than along
the a or rung direction. For x = 11, the samples show metallic behavior
at elevated temperatures in both directions.[11].

that stabilize a charge-density wave (CDW). Those are a) long-range Coulomb in-
teraction (or intersite interaction if long-range Coulomb interaction is screened as
in the copper oxides [110]), b) a Peierls instability [19], or c) charge-stripe forma-
tion in the single-band t-J model [5]. Apart from superconductivity, signatures of
charge ordering and charge-density waves have been reported in SCCO by several
experiments that are summarized here. Still, the exact nature of these states is
unresolved. It seems however, that it is directly related to the distribution of holes
in the chain and ladder subsections.

The question where the holes are located is discussed very controversially in the
literature and new investigations [113] are puzzling. On the one hand, an early
investigation of Sr14−xCaxCu24O41 by polarized x-ray absorption spectroscopy
(XAS) reported that most of the 6 holes reside in the chains for x=0 and that there
is only a slight transfer with Ca doping [114]. On the other hand, an analysis of the
spectral-weight transfer in the optical conductivity σ(ω) with Ca substitution by
Osafune et al. [86] found a larger transfer of holes from ladders to chains with Ca
substitution, explaining the decrease in resistivity with rising x. In Sr14Cu24O41
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Figure 5.4: Qualitative phase diagram giving an overview of experimental results in
Sr14−xCaxCu24O41 as a function of Ca substitution. We begin on the left
side with x=0 in the insulating region. In SCO (x = 0) charge ordering
(CO) was reported [10, 111] for the chain subsystem with a charge-ordering
temperature of 220K. Moreover, a charge-density wave has been reported
[15] in the ladders of SCO with comparable transition temperature. The
CO (blue squares) and CDW (red squares) phases are suppressed with
rising Ca content. Recently a RIXS study [17, 18] reported a hole-crystal
(HC) for x = 0 (TC ∼ 200K), and also for high Ca contents at x = 10,
11, and 12 (pink dots). In the "metallic" region, superconductivity (SC)
under pressure was reported [12] (green stars). The green vertical bars
signal the doping levels where a still unresolved broad excitation in the
FIR absorption spectra along the a (rung) direction [11, 20] is observed.
In addition to that, charge density oscillations were reported by [13, 112]
at high temperatures in low and high doping levels (orange triangles).

(x = 0) signatures of charge ordering were reported by inelastic neutron scattering
[115�117] at temperatures below T=200K. This charge ordering was assigned to
the chain. The doped holes were supposed to be in Zhang-Rice singlet states. In
this picture, spin dimers are created by AF coupling of Cu spins via Zhang-Rice
singlets. Evidence for a dimerized state was provided by measurements of the
magnetic susceptibility where a spin gap was reported [10, 111]. This observa-
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Figure 5.5: Intensity of hole-crystal scattering in Sr14−xCaxCu24O41 for x =
0, 1, 2, 3, 4, 5, 11, and 12 [18]

tion is in contrast to the behavior of the 1D S = 1/2 Heisenberg chain where no
spin gap is expected in the undoped case, as described in the previous chapter.
Measurements of the thermal expansion also supported a charge-ordering scenario
[118]. Recently, a re-investigation by XAS spectroscopy [113] depicts a quite dif-
ferent picture. Herein, it is claimed that the number of holes in the ladders is
nL = 2.8 and in the chains nc = 3.2 for x = 0 at room temperature. This is in
strong contrast to the widely accepted assumption that most of the holes reside
in the chains for x = 0. In the new scenario, the holes are distributed nearly
equally among the two subsystems. For x = 11, it is claimed that most of the
holes reside in the ladder subunit with nL = 4.4 and nc = 1.6 [113]. It shall be
noted that the experimental data of [114] and [113] look basically the same, how-
ever, the interpretation is di�erent. If this new result holds, many interpretations
of the system may have to be revised. Moreover, a study by resonant soft x-ray
scattering (RSXS) showed signatures of a hole crystal (HC) in the ladders and
not the chains with commensurate wave vector lL = 1/5 for x = 0 [17]. This
picture is supported by transport measurements [13, 14] and Raman scattering
[13, 112]. A second RSXS study [18] investigated a large number of Ca levels of
Sr14−xCaxCu24O41 with x = 0,1,2,3,4,5,11, and 12. This study shows signatures
of a HC for x = 0, 10, 11, and 12 with a commensurate wave vector lL = 1/5 for
x = 0 and lL = 1/3 for x= 10,11, and 12. The resonance at x = 11 is the strongest
among them, as seen in �gure 5.5. In contrast to Raman scattering results [112],
no hole crystal was found in the intermediate doping region, 1 ≤ x ≤ 5. A quali-
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tative phase diagram of the observed low-energy excitations and ground states is
given in Fig. 5.4.
In the case of SCCO, the CDW is referred to as a hole crystal [18] to stress

that it is driven by the Coulomb interactions on Cu sites only. The observation of
the CDW has inspired Wohlfeld et al. [119] to formulate a d-p multiband charge-
transfer model for the Cu2O3 ladder planes of SCCO. It was solved by using the
Hartree-Fock approximation. The revised hole distribution [113] for the ladders,
nh = 1.20 (number of holes per Cu ion) for x = 0, nh = 1.24 for x = 4, and
nh = 1.31 for x = 11 were con�rmed. The number 1.20 for x = 0 stands for
1 hole (half �lling) + 0.2 holes per Cu ion. The total number of holes in the
ladder part of the unit cell can then be calculated by 14 ∗ 0.2 = 2.8 (14 Cu
ions in the ladders and 10 Cu ions in the chain of the unit cell). The calculated
CDW periodicity agrees with the experimentally observed one and supports the
Coulomb interaction as the driving force [119]. For example, from the measured
hole-crystal wave vector of lL = 1/5 (or λHC = 5 ∗ lL) the number of holes per
ladder amounts to 14/5 = 2.8. It is stressed by Wohlfeld et al. that the t-J model
might not be the appropriate model to explain charge-order in the ladders. It
is pointed out that the multiband charge-transfer model is more appropriate to
describe the physics of the spin ladders because a single Cu2O5 ladder has not the
D4h symmetry of the CuO2 planes. This makes the Zhang-Rice derivation of the
t-J model [43] arguable [119]. In addition, the spin ladders are coupled through
on-site Coulomb interactions between holes in di�erent O(2p) orbitals that could
lead to new phenomena. The Cu2O5 unit cell consists of 2 Cu 3dx2−y2 orbitals

Figure 5.6: Schematic description of a Cu2O5 ladder unit with di�erent states for
bound holes. The red arrows denote spins of doped holes [119].

(denoted with d [119]) on two legs of one ladder, one rung or bridge orbital O 2pσ,
two 2pσ orbitals on the legs, and two O 2pσ orbitals on the outer part of the rungs
(see Fig. 5.6).
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Figure 5.7: Sketch of the ladder and chain subunits in SCCO. In the ladder, three
di�erent oxygen sites are identi�ed [113] whereas the oxygen sites in the
chains are equivalent.

5.2 Optical Conductivity by Ellipsometry

As described before, ellipsometric measurements on the biaxial crystals on 2 per-
pendicular surfaces, (010) and (100) or (001) were carried out. Those surfaces were
rotated about the surface normal by various angles. The samples were lapped
and polished by the described procedure. In one case we measured a cleaved
sample on (010) surface. The data acquisition procedure is the so-called general
Mueller-matrix mode, provided by the J.A. Woollam company. In this acquisition
procedure, several polarizer and retarder positions are measured to determine the
full Mueller matrix. The samples were aligned in such a way that the Mueller
matrix shows only diagonal elements. Non-zero o�-diagonal elements give insight
into depolarization or window e�ects. Those data were analyzed in a multi-model
and multi-sample �t to evaluate the complex dielectric function ε(ω) or optical
conductivity σ(ω) for example.
In this section the optical conductivity σ1(ω) is presented for the compound

La5.2Ca8.8Cu24O41 (LCO) with 0.2 holes per formula unit (f.u.) and the hole-doped
compounds (6 holes per f.u.) Sr14−xCaxCu24O41 with x = 0 (SCO) and x = 5, and
8 (SCCO). The measurements were carried out at temperatures between 10K and
300K along 4 di�erent crystallographic directions to get information on the optical
conductivity of the three principal axes. The change in the absorption spectra of
undoped and hole-doped compounds as well as of the di�erent Ca dopings should
give an insight into the character of the excitations. To further evaluate the
individual excitations within the spectra, we assume that the spectrum can be
described by a sum of Lorentz oscillators [91]:
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ε(ω) = ε∞ +
∑
j

ω2
p,j

ω2
0,j − ω2 − iγjω

(5.1)

where the parameters ω0,j, ωp,j, γj, and ε∞ represent peak frequency, plasma
frequency, damping of the jth oscillator and the dielectric constant at in�nite
frequency, i.e., well above the measured region. The spectral weight of one Lorentz
oscillator is related to the square of the plasma frequency as follows:

Neff =
2mV

πe2

∫ ∞
0

σ1(ω)dω =
mV ω2

p

4πe2
. (5.2)

Here, m is the e�ective mass of the electron (m = me), V is the volume of
the unit cell per Cu 1 ion that contributes to this particular oscillator, e is the
electron charge, ωp the plasma frequency, and

∫∞
0
σ1(ω)dω is the spectral weight.

The advantage of equation 5.1 is its Kramers-Kronig consistency. In our case,
we will see, however, that the optical spectra show band structure and excitonic
e�ects rendering a �t with a pure Lorentz model di�cult. Sometimes a Gauss
function or a Tauc-Lorentz function at the band edge better describe the shape
of the absorption features.
Fig. 5.8 shows the real part of the optical conductivity of the hole-doped com-

pounds along the b direction, σb(ω), perpendicular to the layers of chains and
ladders (compare Fig. 5.1). All spectra look basically the same, there is one
high-energy absorption feature with its center above 5 eV which is more or less
temperature independent. For LCO no absorption is observed in this energy
range.
Figures 5.9 and 5.10 show the optical conductivity σa(ω) along the rung di-

rection, and σc(ω) along the chain and ladder direction, for LCO (upper panel)
followed by the the results for SCO (x = 0) and SCCO (x = 5, 8). At �rst sight,
σa(ω) shows two major absorption peaks between 2 and 5 eV in all four compounds
which do not strongly change with Ca content or hole doping. σc(ω) shows up to
four major absorption peaks between 1 to 5 eV, (labeled A, B, C, and D) this time
with a pronounced dependence on hole doping, temperature and Ca content. In
accordance with DC measurements [9�11] and our own re�ectance measurements,
a Drude weight from free-carrier contribution is observed with rising Ca content
in σa(ω) and more pronounced in σc(ω). Figure 5.11 gives an overview on σa(ω)
and σc(ω) for all di�erent Ca dopings at T = 10K and T = 300K.
The comparison nicely shows that in principle, very similar absorption peaks are

observed in σa(ω) (left panel) or σc(ω) (right panel). A strong change happens
with hole doping (from LCO to SCO). For example, the intensity of peak C

around 2.8 eV in σc(ω) is much lower in the undoped LCO (black line) than in the

1For SCCO V = 1/24 (a * b * c) with a = 11.456, b = 13.361, c = 27.487
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Figure 5.8: Temperature dependence of the optical conductivity of Sr14−xCaxCu24O41

for (x=0, 5, and 8) parallel to the stacking direction b, perpendicular to
the chains and ladders.

SCCO compounds (blue for x = 0, magenta for x = 5, and orange for x = 8). The
high-energy absorption between 4 and 5 eV is sharper in LCO but situated at lower
energy than in the hole-doped regime. Moreover, all hole-doped compounds show a
much more pronounced temperature dependence in σc(ω). Especially the shoulder
peak B around 2.0 eV in σc(ω) is strongly a�ected by changes in temperature or
Ca content.

5.2.1 Drude-Lorentz �t

A quantitative determination of the change in spectral weight of the individual
excitations requires a more detailed investigation. Therefore, a Drude-Lorentz �t
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Figure 5.11: Optical conductivity spectra σ(ω) parallel to a and c of
(La,Sr,Ca)14Cu24O41 at T = 300K and T = 10K are plotted to-
gether to compare the excitation spectra of insulating and hole doped
compounds.

is carried out and the parameters ω2
p (as a measure of the spectral weight), the

peak frequency, ω0, and the broadening γ are listed for the main excitations as
a function of temperature and doping. Fig. 5.12 shows exemplarily the Drude-
Lorentz �t at 10K and 300K for SCO along the a axis. Since no pronounced
temperature dependence is observed, we do not list the �t parameters as a func-
tion of temperature. In Fig. 5.12 we show that at least three Lorentzians centered
at 2.4 eV, 3.6 eV, and 4.5 eV (T = 10K) are needed to describe the spectrum of
SCO along a. Next, the Drude-Lorentz �t for the optical conductivity along c for
all compounds is shown in Fig. 5.13. In our �rst approach, six Lorentz oscillators
were used to fully describe the data. This is shown in Fig. 5.14. A high number
of Lorentz oscillators of course describes the data very well. However, then the
parameters (ω0, γ, and ωp) will be strongly correlated, which renders a clear state-
ment concerning temperature dependence of the parameters di�cult. Therefore, a
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Figure 5.12: Optical conductivity spectra σ(ω) parallel to a (rungs) of Sr14Cu24O41 at
T = 10K and T= 300 K with Lorentz-oscillators �tted to the spectrum.
The panel on the right shows the peak positions of the three absorption
peaks as a function of temperature.

minimal model was assumed for the analysis of σc(ω) with four Lorentz oscillators
(labelled A,B,C, and D) for the main absorption peaks in the spectrum as shown
in Fig. 5.13. Four oscillators describe the spectrum well and parameter correlation
is minimized. Table 5.1 lists the peak frequencies ω0 found by the Drude-Lorentz
�t at T = 10K in σa(ω) and σc(ω) for all compounds. Still, it turns out that
an exact determination of the spectral weight shift of the individual excitations
with a Drude-Lorentz �t is di�cult because of the non-Lorentzian shape of the
peaks. The reason for this are band structure or excitonic e�ects. Moreover, the
parameters are still slightly correlated. Therefore, we additionally integrate over
the conductivity following the partial sum rule to evaluate the shift in spectral
weight with temperature (see below).

Starting with the high-energy excitations, we are now comparing the positions
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Figure 5.13: Optical conductivity σ(ω) parallel to c of all compounds at T = 10K
and T = 300 K with a minimal Lorentz-oscillator model �tted to the
spectrum.

of our observed peaks with the model predictions of Moskvin et al. [60, 71, 78]
and experimental results in the 1D and 2D systems summarized in chapter two.
In both spectra σa(ω) and σc(ω), we observe one high-energy excitation between
4.2 and 4.8 eV in all compounds (see Fig. 5.11). The fact that we see this
excitation in both directions at similar energy suggests the identi�cation with a
one-center exciton. This is supported by the similar �ndings in the 1 D and 2 D
structures as summarized in chapter two. Next, we focus on the much discussed
energy range of the lowest interband excitations between 1.5 to 3.5 eV. As our
summary of experimental and theoretical results in chapter two shows, there is no
consensus if the lowest excitation is a one-center or a two-center excitation or if it
is a p−d or d−d transition. In the cluster model of Moskvin et al. the lowest-lying
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Figure 5.14: Optical conductivity spectra σ(ω) parallel to c of SCO at T = 10K and
T = 300 K with a Lorentz-oscillator model �tted to the spectrum. Six
Lorentz oscillators perfectly describe the spectrum. However parameter
correlation is strong.

excitation is assigned to a one-center p − d excitation b1g → eu(π). Moskvin et

al. calculated the OCE energy for 1D and 2D systems and �nd them between
2.0 - 2.2 eV with only a small spectral weight. In our data, peak B in σc(ω) (see
Fig. 5.13 and table 5.1) could be a candidate for this excitation. However, for
a one-center excitation there should be no di�erence between chains, ladders or
crystallographic directions. Therefore, it should be visible in the spectrum of σa(ω)
as well. However, we do not observe a pronounced peak at 2.0 eV in σa(ω) but only
a broad absorption peak around 2.4 eV (see Fig. 5.9). In addition to that, we do
not observe an absorption feature around 2.0 eV for polarization perpendicular to
the chains in the 1D zigzag chain SrCuO2 (investigated in chapter 6). This leads
us to the statement that peak B cannot be assigned to a one-center excitation.
The d−d transition is also ruled out because of the strong intensity of our peaks2.

2A d− d excitation is optically forbidden but could be observed with small intensity however,
due to symmetry breaking.
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LCO SCO (x = 0) SCCO (x = 5) SCCO (x = 8)
0.2 holes per f.u. 6 holes 6 holes 6 holes

a axis
ω01 [eV] 2.52 2.43 2.43 2.46
ω02 [eV] 3.81 3.61 3.78 4.01
ω03 [eV] - 4.50 4.67 4.84
c axis
ω0A [eV] - 1.26 1.24 -
ω0B [eV] 2.08 2.08 2.14 2.22
ω0C [eV] 2.67 2.79 2.79 2.89
ω0D [eV] 4.19 4.50 4.50 4.54

Table 5.1: Peak positions of the major absorption features in σa and σc for four di�erent
compounds at T=10K.
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Figure 5.15: Fit parameter ω2
p (measure of the spectral weight) from Lorentz-model for

peaks A, B, C, and D in LCO and SCCO (x = 0, 5, and 8) as a function
of temperature.

Another candidate for the lowest interband excitation is the two-center exciton
b1g → b1g or ZN exciton. As shown in chapter two, this exciton was reported
to lie between 1.7 to 2.5 eV. For this excitation, charge-carrier hopping is crucial.
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Figure 5.16: Fit parameter γ (measures the peak broadening) from Lorentz-model for
peaks A, B, C, and D in LCO and SCCO (x = 0, 5, and 8) as a function
of temperature.

Therefore, it is not expected for the (edge-sharing) chains in our compounds (due
to suppressed charge-carrier hopping in edge-sharing chains) but for the corner-
sharing legs of the ladders in σc(ω) and the corner-sharing rungs in σa(ω). Looking
at our spectra, we identify the above mentioned broad peak at 2.4 eV in σa(ω)
and a double peak structure in σc(ω) between 2.0 and 2.9 eV (B and C). Is it
possible that these peaks all belong to the same excitation? As we found out, the
development of spectral weight with temperature and Ca substitution supports
this idea. The spectral-weight redistribution with temperature and Ca content
is most striking in the double-peak structure (BC) of σc(ω) in the hole-doped
compounds. We know that the hole-doped compounds show a metallic behavior
with rising Ca content (also observed in DC resistivity of SCCO, see Fig. 5.3) and
with rising temperature along the chain direction. This growing metallicity can
also be observed in the far-infrared optical conductivity of SCCO (see Fig. 5.22)
where a Drude contribution from free charge carriers grows in one compound with
rising temperature (see x = 0 in Fig. 5.30) and with rising Ca content (x = 0
to x = 8). This e�ect is more pronounced in c than along a. Interestingly, the
spectral-weight shift within the interband excitation spectrum in σc(ω) is related
to the change in metallic behavior. How can this be understood in an excitonic
picture? The ZN exciton consists of a bound state of a doubly occupied site and
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Figure 5.17: Comparison of oscillator strength ω2
p for peaks A, B, C, and D in all

compounds for T = 300K and T = 10K.

a Zhang-Rice singlet state as depicted in Fig. 2.12 of chapter two. It extends over
two sites and is bound by Coulomb attraction. A rising metallic behavior could
lead to a screening of the Coulomb attraction. This e�ect should be mirrored by
a loss in spectral weight of this particular excitation. As a matter of fact, this
is exactly what we observe for excitation B (most prominent for SCO). Where
does the spectral weight go? The answer is given by the following analysis of the
Drude-Lorentz �t parameters. As we will see, the spectral weight is transferred to
higher energy, namely to peak C. The e�ect is the same for rising temperature in
one compound ( see SCO in Fig. 5.10 ) as well as rising Ca substitution (x = 0
to x = 8). This temperature dependence of the �t parameters of B and C will be
discussed in more detail further below and an interpretation of the double-peak
structure is given. Before doing this, we investigate peak A below the gap at
1.24 eV, that is only observed in σc(ω) of two compounds. We clearly identify it
in the hole-doped compounds for x = 0 and for x = 5 at low temperatures. In the
spectra of the more metallic sample (x=8), we only �nd a Drude contribution in
this energy range at all temperatures. Excitation A shows a strong temperature
dependence. It is suppressed with rising temperature and simultaneously a Drude
weight comes up. In Fig. 5.15 the results for the �t parameter ω2

p are shown as a
function of temperature. ω2

p is a measure of the spectral weight of the individual
oscillators as described above. Peak A clearly loses spectral weight with rising
temperature and this is most pronounced for x = 0. For x = 5 it could not
be observed at T = 300K. The temperature at which peak A is suppressed,
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hints to a correlation between the temperature at which the charge ordering in
the systems breaks up [111]. Peak A could therefore be interpreted in terms
of an excitation of pinned charge carriers in the charge-ordered regime. The
investigation of the �t parameter ω2

p of peak B also shows a correlation to the
charge-ordering temperatures for x = 0 and x = 5. In SCO, a remarkable decrease
sets in above 220K and in x = 5 the noticeable decrease sets already in above
50K . In both compounds signatures of charge ordering have been found in the
chains with transition temperatures around T=200K for SCO and 50K for x = 5
([111] see introduction to this chapter). This also supports the idea that peak B
is a�ected by the growing metallic behavior. In case of excitation C an increase
in spectral weight is observed at the same time, leading us to the conclusion that
the double peak structure B C belongs to the ZN excitonic resonance (peak B)
and the corresponding continuum (peak C). In this context it is important to
mention that the term "ZN exciton" has been derived from cluster calculations.
In these calculations it is not possible to distinguish a truely bound exciton from a
resonance within the continuum. In an extended solid, exciton formation will give
rise to a double-peak structure, the upper peak representing the continuum, and
the lower one the bound state. However, if the attractive interaction is not strong
enough to form a truely bound exciton, one expects an excitonic resonance within
the continuum plus the original continuum peak at higher energy. In σa(ω) we
only observe one broad peak around 2.4 eV which we assign to the ZN continuum,
too. In Fig. 5.17 the dependence of ω2

p as a function of hole doping and Ca content
is shown for excitations B, C, and D at T= 300K. Peak B loses weight with Ca
content, C and D gain weight with rising Ca content.

5.3 Kramers-Kronig transformation

In this section, we combine far- and mid-infrared re�ectance data from previous
Fourier transform spectroscopy measurements [120] with our ellipsometric results
of ε1 and ε2 in order to evaluate the spectral-weight transfer in the c-axis over
the complete energy region between 10meV to 5 eV. The development of spectral
weight could give an insight into the complex interplay between low and high-
energy excitations and the strong temperature dependence of the optical spectra
of the spin ladders. To achieve this, a Kramers-Kronig transformation has to be
performed on the re�ectance R by extrapolation to ω → 0 and to high frequencies
as described in chapter 3. We only discuss the c-axis because σa does not show
a strong temperature dependence. We used a Drude-Lorentz model to simultane-
ously �t FT re�ectance data and ellipsometric ε1 and ε2. However, it turned out
to be di�cult to combine these data in the overlap region around 0.75 eV (6050
cm−1) as shown in Fig. 5.18 (upper left panel). The absolute values of R in the
mid-infrared region are too low to match the ellipsometric result. We suppose that
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Figure 5.18: Left panels: The black curves represent results of FT re�ectance mea-
surements for x = 0 at 10K (upper panel) and 300K (lower panel). The
red curves represent extrapolations of the re�ectance data on the basis
of the simultaneous �t of R and ellipsometric ε1. The right panel shows
ellipsometric ε1(lower panel) and ε2 (upper panel) with the correspond-
ing �t data (red line). ε2 was not included into the �t. The �t perfectly
describes ε1. In case of ε2 the line shape is reproduced by the �t, however
the absolute value shows an o�set.

this o�set has more than one reason. In ellipsometry, we are facing the problem of
unknown surface layers that in�uence the absolute value of ε2 and in re�ectance
measurements we are confronted with possible intensity loss due to stray scatter-
ing. To illustrate this, we show in Fig. 5.19 di�erent results for the re�ectance of
Sr14Cu24O41, measured at room temperature by three di�erent groups. All data
sets have di�erent absolute values. Another reason for this o�set could be a dif-
ferent oxygen stoichiometry of the samples. We do, however, not know the exact
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Figure 5.19: Comparison of three di�erent re�ectance data sets of the same compound
(x = 0) measured at room temperature. The black curve represents our
FT data, the red and pink curves represent digitalized data of Rusicka
et al. [121] and Osafune et al. [86], respectively. The origin of these
o�sets is not clear. A possible explanation could be a variation in oxygen
stoichiometry.

answer. It turned out that a very good result for a Kramers-Kronig consistent
�t was �nally obtained by simultaneously �tting R and ellipsometric ε1 and in
case of x = 0 of transmittance. It delivered a very good description of absolute
values and line shapes of R from far to mid-infrared region and of ellipsometric
ε1 as seen in Fig. 5.18. It also provided a very good description of ε2 concerning
line shape, however the absolute value of ε2 from Kramers-Kronig transformation
0.7 below ε2 from ellipsometry. This di�erence on one hand could be a Kramers-
Kronig problem due to extrapolation of the data above 5 eV, on the other hand the
ellipsometric data may be slightly too high due to e.g. a surface layer. The devia-
tion in ε2 directly translates into a lower σ1 from Kramers-Kronig transformation
compared to ellipsometry as shown in Fig. 5.20 where we included digitalized
σ1 from Eisaki et al. [88] which has an even lower absolute value. The inset
in the upper panel of Fig. 5.20 shows optical conductivity data at 10K that we
derived by FT-transmittance and re�ectance measurements [35] showing that σ1

from Kramers-Kronig transformation is close to this result. Since the combination
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Figure 5.20: Optical conductivity of x = 0 by Kramers-Kronig transformation (black
line) at T = 10K (upper panel) and T = 300K (lower panel). The red
curve represents σ1(ω) from ellipsometry and the pink line shows digi-
talized σ1(ω) of Eisaki et al. [88]. At 10K we used optical conductivity
data from transmittance measurements as a reference (green curve, see
also inset in the upper panel).

of FT transmittance and re�ectance measurements is a very accurate technique,
we come to the conclusion that our �tting procedure leads to the best solution for
our problem. To reach a consistent description, we used the same �tting routine
for all doping levels. Fig. 5.21 shows a combination of the measured re�ectance
data and the above described �t of R for all measured samples at T = 10K and
T = 300K. At low temperatures, only x = 0 shows insulating behavior with the
phonon spectrum clearly visible in the far-infrared region. The other compounds
show already a plasma edge signaling free charge carriers con�rming the growing
metallic behavior with rising Ca substitution. At room temperature even x = 0
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Figure 5.21: Re�ectance data for x = 0, 5, and 8 (black lines) and �tted data for x
= 0 (blue line), x = 5 (pink line), and x = 8 (orange line) at T = 10K
(upper panel) and T = 300K (lower panel) as a result of the combined �t
of measured re�ectance and ellipsometric ε1 and ε2. The measured data
were extrapolated above 2000 - 5000 cm−1 as shown for x = 0 at 300K
in the lower panel.

develops a plasma edge representing metallic behavior although the DC resistivity
shows semiconducting behavior. Osafune et al. [86] interpreted this by localiza-
tion of charge carriers at low frequencies (ω → 0) and a recovering of metallic
behavior at optical frequencies. A shift in plasma edge is observed with growing
Ca content. Fig. 5.22 shows the results for σ1(ω) from Kramers-Kronig transfor-
mation for all compositions (left panel). The right panel shows the spectral weight
transfer that we �nd by integrating over σ1(ω) up to ~ω = 5 eV and calculating
the e�ective electron-number per Cu ion Neff (ω) with equation 5.2. Neff (ω) is
proportional to the number of electrons involved in the optical excitation up to ~ω.
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Lets start with the discussion of the temperature dependence of σ1(ω) and x =
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Figure 5.22: Optical conductivity σc(ω) from Kramers-Kronig transformation for x =
0, 5, and 8 as a function of temperature up to 5 eV (left panels). The
right panels show the e�ective charge carrier number per Cu ion Neff as
a function of energy and temperature.

0 (see left upper panel of Fig. 5.22). In the low-energy region, we observe a broad
peak sometimes referred to as the mid-infrared peak around 0.3 eV or 2500 cm−1

that is very pronounced at T = 300K and suppressed at low temperatures. At the
same time, an excitation of similar shape centered around 1.2 eV or 10000 cm−1
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Figure 5.23: Optical conductivity of x = 0 from ellipsometry at di�erent temperatures
(upper panel) and Neff (lower panel).

shows the opposite temperature dependence. It grows while the low-energy fea-
ture vanishes. This second feature at 1.2 eV corresponds to peak A that we have
already observed in the ellipsometric spectra. The next higher peaks correspond
to peaks B and C where we found a spectral weight shift from B to C with rising
temperature by a parameter �t to the ellipsometry data. From x = 0 over x =
5 to x = 8 we observe that peak A and B are suppressed and a Drude weight
evolves. The right panels show Neff as a function of energy and temperature for
x = 0, 5, and 8. In case of x = 0 we observe a temperature dependence of Neff

below 2 eV. Then, between 2.1 eV and 3 eV Neff does not strongly depend on
temperature. However, above 3 eV, a temperature dependence is observed again
that we do not yet understand. To exclude an error due to the Kramers-Kronig
transformation, we show ellipsometric σ1(ω) for x = 0 with the corresponding
spectral weight integral. It shows a similar temperature behavior at high energy.
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Figure 5.24: O�set correction of ellipsometric Neff for x = 0.

To compare both methods, we have to shift the ellipsometric spectral weight at
0.75 eV by the value acquired below that energy. The result is shown in Fig. 5.24
for x = 0 and in Fig. 5.25 for x = 5 and x = 8. The shifted integrals of el-
lipsometric Neff lie higher than the Kramers-Kronig result as expected but they
show a much smaller temperature dependence at high energy. In principle, one
expects that spectral weight is shifted from the CT region to lower frequencies,
but not to higher frequencies, i.e. one expects that Neff should be independent of
temperature at high frequencies. Above, we have seen that at 10K the absolute
value of ε2 obtained by Kramers-Kronig transformation is in good agreement with
the reliable result obtained by transmission and re�ection. In comparison, the
ellipsometric data was too high, suggesting a systematic error, e.g., in the analysis
of the surface. However, we still expect that accuracy is very high as far as tem-
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Figure 5.25: O�set correction of Neff for x = 5 and x = 8.

perature is concerned. We thus are convinced that the procedure described above
- using Neff from ellipsometry above 0.75 eV and shifting it to the value derived
by Kramers-Kronig transformation at 0.75 is the most reliable one. This way we
�nd that Neff is almost independent of temperature above 3 eV not only for x =
0 but also for x = 8 (see Figures 5.24 and 5.25. In the next step we have a closer
look at the changes in spectral weight with temperature. Therefore, we have cal-
culated the di�erence σ1 (10K) - σ1 (T > 10K) for several temperature intervals
up to room temperature. Fig. 5.26 shows the result for x = 0. This comparison
nicely shows the change of the excitation spectrum. We see the suppression of
peaks A and B with temperature. From ∆ σ we calculate ∆ Neff . Again, we
combine the Kramers-Kronig result with ellipsometry by shifting the ellipsometric
value by the o�set value of the low-energy part. This is shown exemplarily in the
upper panel of Fig. 5.27 for x = 0. We see that∆ Neff crosses zero at 2.1 eV in the
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Figure 5.26: Upper panel: Change of optical conductivity from ellipsometry of x = 0
at di�erent temperatures ∆σ1(4 K) - ∆σ1(300 K), ∆σ1(4 K) - ∆σ1(250
K), ∆σ1(4 K) - ∆σ1(200 K), and ∆σ1(4 K) - ∆σ1(100 K). Lower panel:
∆σ1 from Kramers-Kronig transformation.

Kramers-Kronig spectral-weight curve and at 2.7 eV in the shifted ellipsometric
result, re�ecting the growing low-temperature spectral weight of peak B, and Neff

stays positive and constant above 3 eV. For x = 0, ∆ Neff (10 K - 300 K) at 3 eV
is 0.05. This corresponds to a deviation of Neff about 2%. We think that this is
roughly the accuracy of our approach, i.e., it is very di�cult to say whether this
really corresponds to a shift of some spectral weight to higher energies. In any
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Figure 5.27: ∆ Neff (10 K - 300 K) of x = 0 from Kramers-Kronig transformation
and Neff from ellipsometry shifted by the low-energy o�set (upper panel).
The lower panel shows the shifted ellipsometric Neff for x = 0 at di�erent
temperatures.

case, the dominant e�ects of temperature are observed below 3 eV.

This is evident from the plots of σ1 (4K) - σ1(300K) or from ∆ Neff for x = 0, 5,
and 8 in Figures 5.28 and 5.29. Finally, we address the dependence of Neff on Ca
content x. Fig. 5.30 shows the optical conductivity and Neff for all compositions
x at room temperature and at 10K including the shifted ellipsometric results. If
we look at the spectra at 10K (upper right panel of Fig. 5.30), we see that Neff

grows from x = 0 to x = 8 below around 2 eV. Between 2.1 eV and about 3 eV,
Neff is not strongly dependent on x. However, above 3 eV, Neff of x = 8 lies
above Neff of x = 5 and x = 0 indicating the evolution of a high-energy excitation
with higher Ca-content. We again observe that this high-energy deviation of our
spectra gets smaller in case of the shifted ellipsometric curves but does not vanish.

In summary, it can be stated that the combination of the two measurement
techniques of ellipsometry and FT-spectroscopy provided valuable insight into the
temperature dependence of low- and high energy excitations in the optical con-
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Figure 5.28: Comparison of ∆σ1(4 K) - ∆σ1(300 K) from Kramers-Kronig transfor-
mation and ellipsometry for x = 0, 5, and 8.

ductivity of the spin ladders. It shows that a thorough investigation of all e�ects
on the measurement results like sample quality, stoichiometry, surface layers, and
systematic e�ects is important. In spite of the quite di�cult task and various
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Figure 5.29: ∆ Neff (10 K - 300 K) of all compositions including Kramers-Kronig
result and shifted ∆ Neff from ellipsometry.

problems encountered, we were able to present a systematic overview of optical
conductivity data over a broad energy range as a function of temperature and
Ca substitution and were able to perform a spectral weight analysis. We found
new evidence for the excitonic character of the lowest interband excitation in the
spin ladders and a spectral weight transfer from the CT region to low energy with
rising temperature. The spectral-weight analysis over the complete energy range
by Kramers-Kronig transformation still shows uncertainties making a clear state-
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Figure 5.30: Optical conductivity for all doping levels at T = 10K (upper panel) and
T = 300K and the the spectral weight shift with Ca substitution (right
panels). We included Neff from ellipsometry corrected by the low-energy
o�set.

ment about a possible spectral weight shift to higher energy di�cult. This has to
be investigated further.
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6 Ellipsometry on SrCuO2

6.1 Physics of SrCuO2

Crystal Structure

SrCuO2 is an ideal realization of a 1D S = 1/2 Heisenberg chain. It is build
up by corner-sharing CuO4 plaquettes that are connected via the edges to the
neighboring squares, forming zigzag chains along the c direction as depicted in
Fig. 6.1. It has an orthorhombic unit cell with Cmcm or D17

2h space group. The
lattice constants are a = 3.577, b = 16.335, and c = 3.914

Electronic Structure

The electronic structure of SrCuO2 was �rst investigated by Popovic et al. using
several optical techniques as ellipsometry, (unpolarized) re�ectance measurements,
polarized optical absorption, and photore�ectance [122]. The experimental results
were combined with a tight-binding calculation resulting in an energy gap of 1.42
eV along the chains (c direction) and 1.77 eV perpendicular to the chains (a direc-
tion) at room temperature. Furthermore Popovic et al. state that the system, in

Figure 6.1:

Crystal structure of SrCuO2.
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6 Ellipsometry on SrCuO2

Figure 6.2:

Temperature dependence of the real part
of the optical conductivity σ(ω) calculated
from re�ectance and transmittance data
[123] in our group.

contrast to the 2D cuprates, is no charge-transfer insulator but a Mott-Hubbard
insulator. This would imply that the lowest lying excitations are of Cu-Cu-type.
In [87] the gaps are assigned to indirect (E||c) and direct (E||a) correlation-gap
transitions. The authors claim that this scenario is supported by absorption mea-
surements [122] that do not show a temperature dependence of the gap for E||c.
Such a variation of the gap with temperature would be typical of a charge transfer-
insulator due to changing Cu-O distance. The absorption spectra along the a axis
however, show a temperature dependence and there it is assumed that the Cu-O
hybridization cannot be neglected. Comparing our results with those of Popovic
et al., we conclude that the crystallographic axes were mixed up in their investi-
gation, as will be shown in the following.

In our group, optical transmittance and re�ectance measurements were carried
out on SrCuO2 as a function of temperature [123]. The optical conductivity σ(ω)
was calculated directly from R(ω) and T (ω) as described in chapter 3.

Figure 6.2 shows the spectra along all three crystallographic directions. The
values of the gap along a and c at room temperature, ∆a

opt = 1.72 eV and ∆c
opt =

1.46 eV were determined by the onset of electronic transitions in the transmittance
spectra. Moreover, a distinct temperature dependence is observed along all three
crystallographic directions as shown in Fig.6.2 [123].
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6.1 Physics of SrCuO2

Holon-antiholon continuum in the 1D corner-sharing chain SrCuO2

In the corner-sharing chain compound SrCuO2, spin-charge separation has been
reported [21, 22] by ARPES. In ARPES, a hole is created by removing an electron
completely. The created hole then decays into a spinon and a holon resulting in two
distinct peaks in ARPES spectra. Those results have been con�rmed by inelastic
neutron scattering [124] and RIXS [125]. In optical spectroscopy and EELS, charge
is conserved since one removes one electron from one site and puts it on another.
This creates a hole and a doubly occupied site. In terms of spin-charge separation,
the hole decays into a holon (e+) and a spinon whereas the doubly occupied site
decays into an antiholon (e−) and a spinon. Recently, the energy and momentum
dependence of the low-energy charge excitations in SrCuO2 were investigated in a
combined study of optical spectroscopy, RIXS and DDMRG calculations by Kim
et al. [23] (see Fig. 6.3). In contrast to previous theoretical investigations [126]

Figure 6.3: Optical conductivity data of SrCuO2 by Kim et al. [23] together with
DDMRG results and RIXS data.

where an exciton was proposed at the zone boundary, no exciton formation is
reported by Kim et al.[23] anywhere in the Brillouin zone. As to Kim et al., the
excitation spectrum consists of a holon-antiholon continuum with a pronounced
resonance closely above the gap. [23], see Fig. 6.3 Kim et al. [23] used a DDMRG
approach on the basis of the one-band half-�lled 1D extended Hubbard model
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6 Ellipsometry on SrCuO2

with nearest-neighbor repulsion V .1 Optical conductivity data of SrCuO2 along
the c direction (derived from re�ectance and Kramers-Kronig transformation) were
used to �x the parameters of the model. They found t = 0.435, V/t = 1.3, and
U/t = 7.8. The calculated optical conductivity is in good accordance with the
measured data for the low-energy excitation with onset around 1.7 eV as seen in
Fig.6.3. The model of Kim et al. supplies a value of J = 0.24 that is compared
with the value from neutron scattering [124] of J = 0.226 eV. A very similar value
of J = 0.227 eV has also been found by optical spectroscopy in our group [123].

6.1.1 Experimental Details

Single crystals of SrCuO2 were grown by P. Ribeiro, C. Hess, and B. Büchner2[127]
using the traveling-solvent �oating zone method. The crystal quality was checked
by x-ray di�raction and polarization microscopy. Before measurement, the crystals
were oriented with the Laue-method and then cleaved for ellipsometry. This was
done to avoid polishing since the family of Sr1−xCaxCuO2 strongly reacts with
water and acetone. Although a technique of anhydrous lapping and polishing was
developed in our group [123], the problem could not be solved to full satisfaction.
Since ellipsometry is a very surface sensitive technique and since the samples easily
cleave along (010), we avoided polishing altogether.

Pseudo-Dielectric Function

The pseudo-dielectric function was calculated from ellipsometric Ψ and ∆ values.
When comparing real and imaginary part of our pseudo-dielectric function along
a and c with those of Popovic et al. [122], it turns out that the assignment
of the optical spectra in [122] is di�erent. Our results show basically the same
behavior, however, you must exchange a with c. This is corroborated by x-ray
absorption measurements [128] which states that holes mainly reside in planar Cu
dx2−z2 orbitals. This favors hopping in the (bc)-plane and not along a-direction.
Therefore, one expects a larger gap in a direction than in c direction.

6.2 Optical Conductiviy of SrCuO2

We calculated the optical conductivity from the dielectric function of a biaxial
model �t where we assumed a dummy layer for the b axis because we could not
prepare the bc or ac surface so far. We compare those values with the results

1Of course this is a simpli�ed model. To capture the full theory, a multi-band Hubbard model
including Cu 3d and O 2p orbitals is necessary, which is very challenging.

2Institute for Solid State Research, IFW Dresden, 01171 Dresden, Germany
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6.2 Optical Conductiviy of SrCuO2

Figure 6.4: Pseudo-dielectric function of SrCuO2 from ellipsometry data of Popovic
et al. [122].
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of Kim et al.[23] who have measured the re�ectance along the c direction and
performed a Kramers-Kronig transformation (see Fig. 6.6.
It turns out that our spectrum along c qualitatively and quantitatively matches

the one of [23] quite well considering the problem of the missing data for the b
axis.
Like in the quasi one-dimensional spin ladder compounds, the optical conductiv-

ity σc(ω) along the chain direction shows a multipeak structure and a prominent
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6.2 Optical Conductiviy of SrCuO2

low energy feature with pronounced temperature dependence. This feature close
to the absorption edge at 2.06 eV is identi�ed by Kim et al. [23] with a holon-
antiholon excitonic resonance. The peak frequency ω0 found by a Drude-Lorentz

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0

1000

2000

3000

4000

0

1000

2000

3000

4000

E
gap

= 1.46 eV

T = 300 K

Energy [eV]

2.02

5.18

5.18

4.02

 

 

 

E
gap

= 1.61 eV

T = 10 KSrCuO
2

c-axis
 σ

1(ω
) 

[(Ω
cm

)-1
]

2.06

4.09

  

 

Figure 6.8: Optical conductivity spectra σ(ω) along cofSrCuO2 at T = 5K and T=
300 K with a minimal Tauc-Lorentz-oscillator �tted to the spectrum.

�t shifts slightly to higher energy by - 40meV and broadens slightly. As shown
in Figure 6.9, the spectral weight is is fully recovered at 2.5 eV. As shown in Fig.
6.8, we used an asymmetric Tauc-Lorentz oscillator to �t the resonance feature to
account for the sharp rise of the absorption edge. The values of Egap agree with
the results found in FT spectroscopy in our group [123]. In EELS measurements
and cluster model predictions of Moskvin et al. [60, 78] for the corner-sharing
chain Sr2CuO3 a peak is found at 2.0 eV for k ‖ to the chains which was assigned
to a one-center excitation (see table 2.2 in chapter 2). If the excitation belongs to
a one-center excitonic resonance or a two-center excitonic resonance is not clear.
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Figure 6.9: E�ective charge-carrier number per Cu ion Neff of SrCuO2 at T = 10K
and T = 300K as a function of temperature.

In Fig.6.10 we have plotted together the 10K data of σc(ω) for the undoped spin
ladder LCO, the hole-doped spin ladder SCO and SrCuO2 for comparison. In the
upper panel we show the measured spectra and in the lower panel we have shifted
σc(ω) by 0.5 eV to higher energy to compare the peak shape with the one of ex-
citation C of the spin ladders that could be identi�ed with a two-center exciton.
Regarding the peak energy, the excitonic resonance coincides with the shoulder
peak B. However, the peak shape is not very similar. The shifted peak however,
seems to �t much better to C. The only thing which is contradictory here is the
comparison with LCO. It is the undoped compound only peak B and D but not
C are temperature dependent.
Regarding the peaks at higher energy, we assign the excitation at 4 eV to the

high-energy one-center excitation (see table??. The very sharp high energy exci-
tation at 5.2 eV is not attributed to a charge-transfer excitation but a transition in
Sr because the onset of this excitation is also observed in σa(ω) (see Fig. 6.7) which
is perpendicular to the Cu-O units and therefore no Cu-O transfer is expected.
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7 Conclusions

7.1 Ellipsometry setup

Within the scope of this thesis, a spectroscopic ellipsometer has been put into
operation equipped with a UHV liquid Helium �ow cryostat to enable low tem-
perature optical measurements down to 10K in the energy range between 0.8 to
5 eV. After successful installation of the ellipsometer, a systematic investigation
of the electronic structure of one-dimensional copper-oxide spin ladders and spin
chains was carried out. Ellipsometric optical conductivity data of the biaxial cop-
per oxide compounds La5.2Ca8.8Cu24O41 (LCO) with 0.2 holes per formula unit
and Sr14−xCaxCu24O41 for x = 0 (SCO) and x = 5, 8 (SCCO), doped with 6 holes
per formula unit, were derived in all three crystallographic axes. We are able to
determine the full dielectric tensor of an orthorhombic sample by measuring the
Mueller matrix for at least three di�erent orientations of the sample. When mea-
suring unknown bulk samples, the determination of surface layers is crucial. The
spin-ladder compounds (La,Ca,Sr)14Cu24O41 have a complicated layer structure
and it turned out that they are extremely sensitive to polishing and preparation.
This means, after repolishing the same surface with the same procedure led to dif-
ferent results in ellipsometric data. Especially the ab plane was strongly a�ected
by preparation. However, with many repeated measurements and a multi-sample
�t we were able to solve the problem and achieved very good results.

7.2 Investigation of electron hole excitations in

spin ladders and spin chains

7.2.1 (La,Ca,Sr)14Cu24O41

We present the optical conductivity data from ellipsometry and Fourier-transform
spectroscopy on the spin-ladder compound La5.2Ca8.8Cu24O41 (LCO) with 0.2
holes per formula unit, and the hole-doped compounds Sr14−xCaxCu24O41 for x
= 0 (SCO) and x = 5, and 8 (SCCO) that are intrinsically doped with 6 holes
per formula unit. We investigated the dependence of the interband excitations on
temperature and Ca-doping, and we �nd a multipeak structure in the crystallo-
graphic directions a and c. A pronounced temperature dependence in the σc(ω)
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is observed. We used a minimal Drude-Lorentz model to �t the data. The depen-
dence of the individual excitations (i.e. peak frequency, ω0, oscillator strength, ωp,
and broadening, γ) on temperature and Ca content was evaluated in detail. In
σa(ω) at T = 10K, we identify two major absorptions at 2.43 eV and 4.50 eV with
negligible temperature dependence that we assign to a ZN-exciton (a bound pair
of empty site Cu+ and a Zhang-Rice singlet state on a neighboring site) and a one-
center CT excitation respectively. For x = 0 and T = 10K we identify four peaks
in σc(ω) (A = 1.26 eV, B = 2.08 eV, C = 2.79 eV, and D = 4.50 eV) which show
a strong temperature dependence. In σc(ω), the highest excitation D at 4.50 eV
is assigned to a one-center charge-transfer excitation on one CuO4 plaquette. It
is expected in all compounds in chains and ladders and in both crystallographic
directions. This is con�rmed by our data. We assign excitations B (at 2.08 eV)
and C (at 2.79 eV) in σc(ω) with a ZN-excitonic resonance and the corresponding
continuum respectively. This new �nding is supported by the evaluation of the
Drude-Lorentz �t parameter ωp because the evolution of the oscillator strength
ω2
p shows a shift of spectral weight from B to C with rising temperature from T

= 10K to T = 300K in case of x = 0. We interpret this change with rising tem-
perature or x in terms of a suppression of the excitonic resonance B with growing
metallic behavior (x = 0 shows a free charge carrier contribution at room tem-
perature) and a corresponding increase of spectral weight of the ZN continuum.
In accordance with this interpretation, we observe a suppression of the excitonic
resonance B and a rise in spectral weight of C in the compounds with higher Ca
content which are more metallic. Most strongly this is observed in x = 8 where
peak B is strongly suppressed even at T = 10K. Another new excitation not dis-
cussed so far in the literature, is found in x = 0 and at T = 10K at 1.26 eV, in
σc(ω) only. This excitation A is strongly suppressed with rising temperature. It
shows a correlation to charge-ordering temperatures observed in the system [111].
Peak A is most strongly seen in x = 0 at low temperature, much weaker in x =
5 at T = 10K and not detectable in the rising Drude contribution of x = 8. To
investigate the interesting temperature dependence of the optical spectra further
down to low energy, we combined our ellipsometric data with results of far and
mid-infrared FT transmittance and re�ectance data to perform a Kramers-Kronig
transformation over the complete energy range from 10meV up to 3 eV for all
compositions x = 0, 5, and 8 (c axis only). The optical conductivity was derived
from a combined Drude-Lorentz �t of FT and ellipsometric data. The integral
over σc(ω) was evaluated and the e�ective charge-carrier number per Cu ion Neff

was calculated. We observe a strong temperature dependence of the low-energy
spectra, too and �nd a broad low-energy excitation around 0.3 eV, most prominent
in x = 0 that is strongest at room temperature and has the opposite temperature
dependence compared to peak A. The investigation of the change of Neff with
temperature showed a spectral-weight transfer from the CT region to the low en-
ergy region. Moreover, we also observe a spectral weight shift below 2.5 eV as a
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7.2 Investigation of electron hole excitations in spin ladders and spin chains

function of x. Namely CT spectral weight is shifted to the low energy region from
x = 0 to x = 8. In summary, it can be stated that the combination of the two
measurement techniques of ellipsometry and FT-spectroscopy provided valuable
insight into the temperature dependence of low- and high energy excitations in the
optical conductivity of the spin ladders. It shows that a thorough investigation of
all e�ects on the measurement results like sample quality, stoichiometry, surface
layers, and systematic e�ects is important. In spite of the quite di�cult task and
various problems encountered, we were able to present a systematic overview of
optical conductivity data over a broad energy range as a function of temperature
and Ca substitution and were able to perform a spectral weight analysis. We
found new evidence for the excitonic character of the lowest interband excitation
in the spin ladders and a spectral weight transfer from the CT region to low energy
with rising temperature. The spectral-weight analysis over the complete energy
range by Kramers-Kronig transformation still shows uncertainties making a clear
statement about a possible spectral weight shift to higher energy di�cult. This
has to be investigated further.

7.2.2 SrCuO2

The results of the optical conductivity σc(ω) along the zig-zag chains and σa(ω)
perpendicular to the chains are presented. The spectrum shows a prominent
absorption feature at 2 eV that is assigned to a holon-antiholon excitonic resonance
in the literature. Another excitation at 4.2 eV is observed that is assigned to
one-center charge transfer excitation similar to those observed in basically all
low dimensional copper oxides. A sharp absorption at 5.2 eV is identi�ed with
interband transitions in Sr ions because of the sharp feature and the simultaneous
observation in σa(ω) in the stacking where no Cu-O transitions are expected.
The observations in the 1D spin ladders and chains are very similar and on

the basis of our observations of doping and temperature dependence, it might
be possible to draw a uni�ed picture perhaps with the support of theoretical in-
vestigations, especially in the spin ladder compounds. The understanding of the
lowest lying charge transfer excitations in the cuprates is very important for the
understanding of high-TC superconductivity and the physical behavior of corre-
lated electron systems in general. Regarding the spin ladder compounds, it would
be very interesting to measure the undoped compound La6Sr8Cu24O41 (without
Ca) to clarify the e�ect of disorder on the intensity of peak C in σc(ω). In addi-
tion, the determination of the optical conductivity of the edge-sharing compound
Li2CuO2 in all crystallographic directions and at low temperatures would nicely
�t into the systematic investigation started here.
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Figure 8.1: Construction of the polarization ellipse with the ellipsometric Parameters.

The polarization ellipse can be constructed from the following relations [96]:

tan2χ = tan2Ψcos∆ (8.1)

sin2γ = ±sin2Ψsin∆ (8.2)

tan∆ = ±tan2γ

sin2χ
(8.3)

8.1 Calibration Procedure

The Fourier-coe�cients α and beta can be calculated as a function of di�erent
polarizer dial settings P , the ellipsometric parameters of the sample Ψ and ∆ and
three calibration parameters AS, PS and η.
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8 Appendix

α =
1

η
[α′ cos (2AS)− β′ sin (2AS) (8.4)

β =
1

η
[α′ sin (2AS) + β′ cos (2AS) (8.5)

α′ =
tan2 Ψ− tan2 (P − PS)

tan2 Ψ + tan2 (P − PS)
(8.6)

and

β′ =
2 tanΨ cos∆ tan (P − PS)

tan2 Ψ + tan2 (P − PS)
(8.7)

The procedure is as follows: The above mentioned standard sample, in general
a Si- wafer with about 250 Å of SiO2 with known optical constants is mounted
and the Fourier coe�cients αexp(P ) and βexp(P ) are measured for several polarizer
azimuths. From equations ?? αcalc(P,Ψ,∆, PS, AS, η) and βcalc(P,Ψ,∆, PS, AS, η)
are �tted to the experimental data minimizing χ2 [108] with an iterative non-linear
regression method, in our case the Levenberg-Marquardt method.

8.2 Measuring a Mueller-Matrix

The Mueller matrix multiplication and corresponding Stokes vectors of incoming
and outgoing beam for our setup:

SD = [MAnalyzerMSampleMRetarderMPolarizer] S
i (8.8)

The multiplication is carried out in several steps to show which elements are
accessible. On the right the Stokes vector of the light beam coming from the
light source. It is unpolarized. The total intensity is represented by the �rst
component (here normalized to unity). It passes through a polarizer with angle
P letting through half the intensity. The resulting Stokes vector of the polarized
beam on the left side.

1

2


1

cos 2P
sin 2P

0

 =
1

2


1 cos 2P −sinP 0

cos 2P cos2 2P sin 2P cos 2P 0
sin 2P sin 2P cos 2P sin2 2P 0

0 0 0 0

×


1
0
0
0

 (8.9)

The next element is a retarder adding a variable phase shift ∆r to the beam
that we later assume here to be zero.
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1

2


1

cos 2P
sin 2P cos∆r

− sin 2P sin∆r

 =


1 0 0 0
0 1 0 0
0 0 cos∆r sin∆r

0 0 − sin∆r cos∆r

× 1

2


1

cos 2P
sin 2P

0

 (8.10)

The resulting Stokes vector shows a non-vanishing fourth component represent-
ing the tendency for circular polarization. Next the polarized beam is re�ected o�
a sample represented by the Mueller matrix1

1

2


SR0
SR1
SR2
SR3

 =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

× 1

2


1

cos 2P
sin 2P cos∆r

− sin 2P sin∆r

 (8.12)

And �nally the beam passes the analyzer with angle A:

1

2


1 cos 2A −sin 2A 0

cos 2A cos2 2A −sin 2Acos 2A 0
−sin 2A sin 2Acos 2A sin2 2A 0

0 0 0 0

×

SR0
SR1
SR2
SR3

 (8.13)

and reaches the detector where only the �st component, i.e. the full intensity
is measured:

1

2


SR0 + cos 2ASR1 − sin 2ASR2

cos 2ASR0 + cos2 2ASR1 − cos 2A sin 2ASR2
−sin 2ASR0 − cos 2A sin 2ASR1 + sin2 2ASR2

0

 (8.14)

In the following we assume that for p polarized light the Polarizer angle is zero
and that retarder angle ∆r to be zero too. With equation 3.74 the ellipsometric
parameters follow:

SD1 = 1
4
(1− cos 2Ψpp cos 2P (1 + cos 2P−cos 2Ψpp

1−cos 2Ψppcos 2P
cos 2A(t)

+ cos∆pp sin 2Ψpp sin 2P

1−cos 2Ψppcos 2P
sin 2A(t)

(8.15)

1

SR
0 = 1

2 (m11 +m12cos 2P + (m13 cos ∆r −m14 sin∆r) sin 2P )
SR

1 = 1
2 (m21 +m22cos 2P + (m23 cos ∆r −m24 sin∆r) sin 2P )

SR
2 = 1

2 (m31 +m32cos 2P + (m33 cos ∆r −m34 sin∆r) sin 2P )
SR

3 = 1
2 (m41 +m42cos 2P + (m43 cos ∆r −m44 sin∆r) sin 2P )

(8.11)
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In this equation we have already taken into account that the polarizer angle is
rotating continuously and therefore A = A(t). As shown in the previous section,
we can again identify the Fourier-coe�cients of the modulated signal α and β

α = cos 2P−cos 2Ψpp

1−cos 2Ψppcos 2P

β = cos∆pp sin 2Ψppsin 2P

1−cos 2Ψppcos 2P

(8.16)

Inversion leads to:

cos 2Ψpp =
cos 2P − α

1− α cos 2P
(8.17)

and

cos∆pp =
β√

1− α2

sin 2P

|sin 2P | (8.18)

To account for all 12 accessible matrix elements of the Mueller matrix, the
fourier components of at least 6 di�erent con�gurations of P and ∆r have to
be measured. With the Woollam VASE RAE, more than 6 con�gurations are
measured and the components are evaluated via regression.

128



Bibliography

[1] E. Dagotto, Science 309, 257 (2005). 7

[2] J. Zaanen and O. Gunnarson, Phys. Rev. B 40, R7391 (1989). 7

[3] J. M. Tranquada, J. D. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature
375, 561 (1995). 7

[4] U. Löw, V. J. Emery, K. Fabricius, and S. A. Kievelson, Phys. Rev. Lett. 72, 1918
(1994). 7

[5] E. Dagotto, J. Riera, and D. Scalapino, Phys. Rev. B 45, 5744 (1992). 7, 12, 13,
14, 79, 80

[6] M. Sigrist, T. M. Rice, and F. C. Zhang, Phys. Rev. B 49, 12058 (1994). 7

[7] S. R. White and D. J. Scalapino, Phys. Rev. B 65, 165122 (2002). 7

[8] S. T. Carr and A. M. Tsvelik, Phys. Rev. B 65, 195121 (2002). 7

[9] M. Kato, K. Shiota, and Y. Koike, Physica C 258, 284 (1996). 7, 78, 85

[10] S. A. Carter, B. Batlogg, R. J. Cava, J. J. Krajewski, W. F. Peck, Jr., and T. M.
Rice, Phys. Rev. Lett. 77, 1378 (1996). 7, 78, 81, 85

[11] T. Osafune, N. Motoyama, H. Eisaki, S. Uchida, and S. Tajima, Phys. Rev. Lett.
82, 1313 (1999). 7, 8, 78, 80, 81, 85

[12] M. Uehara, T. Nagata, J. Akimitsu, H. Takahashi, N. Môri, and K. Kinoshita, J.
Phys. Soc. Jpn. 65, 2764 (1996). 7, 14, 79, 81

[13] G. Blumberg, P. Littlewood, A. Gozar, B. S. Dennis, N. Motoyama, H. Eisaki, and
S. Uchida, Science 297, 584 (2002). 7, 81, 82

[14] S. Gorshunov, P. Haas, T. Rõõm, M. Dressel, T. Vuleti¢, B. Korin-Hamzi¢,
S. Tomi¢, J. Akimitsu, and T. Nagata, Phys. Rev. B 66, 060508(R) (2002). 7, 82

[15] T. Vuleti¢, B. Korin-Hami¢, S. Tomi¢, B. Gorshunov, P. Haas, T. Rõõm, M. Dres-
sel, J. Akimitsu, T. Sasaki, and T. Nagata, Phys. Rev. Lett. 90, 257002 (2003).
7, 81

[16] H. K. et al., Europhys. Letters 56, 434 (2001). 7

129



Bibliography

[17] P. Abbamonte, G. Blumberg, A. Rusydi, A. Gozar, P. G. Evans, T. Siegrist,
L. Venema, h Eisaki, E. D. Isaacs, and G. A. Sawatzky, Nature 431, 1078 (2004).
7, 81, 82

[18] A. Rusydi, P. Abbamonte, H. Eisaki, Y. Fujimaki, G. Blumberg, and S. U. G. A.
Sawatzky, PRL 97, 016403 (2006). 7, 81, 82, 83

[19] R. E. Peierls, Quantum Theory of Solids, Oxford University, New York/London,
1955. 7, 80

[20] B. Ruzicka, L. Degiorgi, U. Ammerahl, G. Dhalenne, and A. Revcolevschi, Physica
B 259-261, 1036 (1999). 8, 81

[21] C. Kim, A. Y. Matsura, Z. X. S. an N Motoyama, H. Eisaki, S. Uchida, T. To-
hoyma, and S. Maekawa, Phys. Rev. Lett. 77, 4054 (1996). 8, 113

[22] C. Kim, Z. X. S. an N Motoyama, H. Eisaki, S. Uchida, T. Tohoyma, and
S. Maekawa, Phys. Rev. B 56, 15589 (1997). 8, 113

[23] Y. J. Kim, J. P. Hill, H. Benthien, F. H. L. Essler, E. Jeckelmann, H. S. Choi,
T. W. Noh, N. Motoyama, K. M. Kojima, S. Uchida, D. Casa, and T. Gog, Phys.
Rev. Lett. 92, 137402 (2004). 8, 9, 22, 113, 116, 117

[24] J. Hubbard, Proc. Roy. Soc. (London) A 276, 238 (1963). 11, 24

[25] H. Bethe, Z. Phys. 71, 205 (1931). 12, 13

[26] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966). 12

[27] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B 39, 2344 (1989).
12

[28] L. D. Faddeev and L. A. Takhtajan, Phys. Lett. 85A, 375 (1981). 13

[29] M. Karbach, G. Müller, A. H. Bougourzi, A. Fledderjohann, and K.-H. Mütter,
Phys. Rev. B 55, 12510 (1997). 13

[30] J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131 (1962). 13

[31] E. Dagotto and T. M. Rice, Science 271, 618 (1996). 13

[32] E. Dagotto and A. Moreo, Phys. Rev. B 38, 5087 (1988). 13

[33] C. Knetter, K. P. Schmidt, M. Grüninger, and G. S. Uhrig, Phys. Rev. Lett. 87,
167204 (2001). 14

[34] T. Barnes, E. Dagotto, J. Riera, and E. S. Swanson, Phys. Rev. B 47, 3196 (1993).
14

130



Bibliography

[35] M. S. Windt, Optical Spectroscopy of Spin Ladders, Doktorarbeit, Universität
Köln, 2002. 14, 60, 61, 98

[36] M. Windt, M. Grüninger, T. Nunner, C. Knetter, K. P. Schmidt, G. S. Uhrig,
T. Kopp, A. Freimuth, U. Ammerahl, B. Büchner, and A. Revcolevschi, Phys.
Rev. Lett. 87, 127002 (2001). 14

[37] M. Azuma, Z. Hiroi, and M. Takano, Phys. Rev. Lett. 73, 3463 (1994). 14

[38] E. M. McCarron, M. A. Subramanian, J. C. Calabrese, and R. L. Harlow, Mat.
Res. Bull. 23, 1355 (1988). 14, 77

[39] J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986). 14

[40] J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985). 16

[41] V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987). 16

[42] P. W. Anderson, Phys. Rev. 115, 2 (1959). 17

[43] F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988). 17, 83

[44] H. Eskes and G. A. Sawatzky, Phys. Rev. Lett. 61, 1415 (1988). 17

[45] H. Eskes, L. H. Tjeng, and G. A. Sawatzky, Phys. Rev. B 41, 288 (1990). 17

[46] P. Horsch, W. H. Stephan, K. v Szczepanski, and W. von der Linden, Physica C
162, 783 (1989). 17

[47] S. K. Y Tokura and T. Arima, Phys. Rev. B 41, 11657 (1990). 18, 19

[48] S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, and S. Tajima, Phys. Rev. B
43, 7942 (1991). 18, 35

[49] M. D. Sturge, Phys. Rev. 127, 768 (1962). 20

[50] P. Wrobel and R. Eder, Phys. Rev. B 66, 035111 (2002). 21, 22

[51] J. E. Hirsch, Phys. Rev. Lett. 59, 228 (1987). 21

[52] J. E. Hirsch, 295, 2226 (2002). 21

[53] H. J. A. Molegraaf, C. Presura, D. van der Marel, P. H. Kes, and M. Li, 295, 2239
(2002). 21

[54] D. G. Clarke, Phys. Rev. B 48, 7520 (1993). 22

[55] Y. Y. Wang, F. C. Zhang, V. P. Dravid, K. K. Ng, M. V. Klein, S. E. Schnatterly,
and L. L. Miller, Phys. Rev. Lett. 77, 1809 (1996). 22, 25, 26, 27, 28, 38

131



Bibliography

[56] F. C. Zhang and K. K. Ng, Phys. Rev. B 58, 13520 (1998). 22, 25, 28, 30, 38

[57] R. O. Kuzian, R. Hayn, and A. F. Barabanov, Phys. Rev. B 68, 195106 (2003).
22

[58] M. E. Símon, A. A. Aligia, C. D. Batista, E. R. Gagliano, and F. Lema, Phys.
Rev. B 54, R3780 (1996). 22

[59] E. Hanamura, N. T. Dan, and Y. Tanabe, Phys. Rev. B 62, 7033 (2000). 22

[60] A. S. Moskvin, R. Neudert, M. Knupfer, J. Fink, and R. Hayn, Phys. Rev. B 65,
180512 (2002). 22, 25, 26, 38, 91, 117

[61] H. Gomi, A. Takahashi, T. Ueda, H. Ito, and M. Aihara, Phys. Rev. B 71, 045129
(2005). 22

[62] H. Itoh, A. Takahashi, and M. Aihara, Phys. Rev. B 73, 075110 (2006). 22

[63] E. Collart, A. Shukla, J. P. Rue�, P. Leininger, H. Ishii, I. Jarrige, Y. Q. Cai,
S. W. Cheong, and G. Dhalenne, Phys. Rev. Lett. 96, 157004 (2006). 22, 25

[64] D. S. Ellis, J. P. Hill, S. Wakimoto, R. J. Birgeneau, D. Casa, T. Gog, and Y.-J.
Kim, Phys. Rev. B 77, 060501 (2008). 22, 25, 30, 38, 40

[65] E. Jeckelmann, Phys. Rev. B 67, 075106 (2003). 22, 23, 24

[66] J. V. den Brink, M. B. J. Meinders, J. Lorenzana, R. Eder, and G. A. Sawatzky,
Phys. Rev. Lett. 75, 4658 (1995). 22

[67] F. B. Gallagher and S. Mazumdar, Phys. Rev. B 56, 15025 (1997). 22

[68] R. Neudert, M. Knupfer, M. S. Golden, J. Fink, W. Stephan, K. Penc, N. Mo-
toyama, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 81, 657 (1998). 22

[69] F. H. L. Essler, F. Gebhard, and E. Jeckelmann, Phys. Rev. B 64, 125119 (2001).
22, 23, 24

[70] A. Hübsch, J. Richter, C. Waidacher, K. W. Becker, and W. von der Linden, Phys.
Rev. B 63, 205103 (2001). 22

[71] A. S. Moskvin, J. Málek, M. Knupfer, R. Neudert, J. Fink, R. Hayn, S. L. Drech-
sler, N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 91, 037001 (2003).
22, 25, 26, 27, 30, 31, 38, 40, 91

[72] H. Matsueda, T. Tohyama, and S. Maekawa, Phys. Rev. B 71, 153106 (2005). 22

[73] E. L. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968). 24

[74] S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950). 24

132



Bibliography

[75] J. M. Luttinger, J. Math. Phys. 4, 1154 (1963). 24

[76] R. Neudert, T. Boeske, O. Knau�, M. Knupfer, M. s Golden, G. Krabbes, J. Fink,
H. Eisaki, and S. Uchida, Physica B 230-232, 847 (1997). 25, 27, 38

[77] J. Fink, R. Neudert, H. C. Schmelz, T. Boeske, O. Knau�, S. Ha�ner, M. Knupfer,
M. S. Golden, G. Krabbes, H. Eisaki, and S. Uchida, Physica B 237-238, 93
(1997). 25, 27, 38

[78] A. S. Moskvin, S. L. Drechsler, R. Hayn, and J. Málek, Cond-mat , 0507707
(2005). 25, 26, 28, 30, 31, 38, 40, 91, 117

[79] J. J. M. Pothuizen, R. Eder, N. T. Hien, M. Matoba, A. A. Menovsky, and G. A.
Sawatzky, Phys. Rev. Lett. 78, 717 (1997). 28

[80] C. Duerr, S. Legner, R. Hayn, S. V. Borisenko, Z. Hu, A. Theresiak, M. Knupfer,
M. S. Golden, J. Fink, R. Ronning, Z. X. Shen, H. Eisaki, S. Uchida, C. Janowitz,
R. Mueller, R. L. Johnson, K. Rossnagel, L. Kipp, and G. Reichardt, Phys. Rev.
B 63, 014505 (2000). 28

[81] H. S. Choi, Y. S. Lee, T. W. Noh, E. J. Choi, Y. Bandg, and Y. J. Kim, Phys.
Rev. B 4646, 60 (1999). 28, 29, 30, 38, 40

[82] J. P. Falck, A. Levy, M. A. Kastner, and R. J. Birgeneau, Phys. Rev. Lett. 69,
1109 (1992). 29, 30, 38, 40

[83] Y. Mizuno, T. Tohyama, S. Maekawa, T. Osafune, N. Motoyama, H. Eisaki, and
S. Uchida, Phys. Rev. B 57, 5326 (1998). 32, 33, 40

[84] S. Atzkern, M. Knupfer, and e. M Golden, ibid. 62, 7845 (2000). 32

[85] J. Málek, S. L. Drechsler, U. Nitzsche, H. Rosner, and H. Eschrig, Cond. Mat. ,
arXiv:0807.0833 (2008). 32, 33, 40

[86] T. Osafune, N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 78, 1980
(1997). 34, 35, 36, 40, 75, 76, 78, 80, 98, 100

[87] Z. V. Popovi¢, M. J. Konstantinovi¢, V. A. Ivanov, O. P. Khuong, R. Gaji, A. Vi-
etkin, and V. V. Moshchalkov, Phys. Rev. B 62, 4963 (2000). 34, 112

[88] H. Eisaki, N. Motoyama, K. M. Kojima, S. Uchida, N. Takeshita, and N. Mori,
Physica C 341-348, 363 (2000). 34, 98, 99
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Kurzzusammenfassung

Im Rahmen dieser Doktorarbeit wurde ein spektroskopisches Ellipsometer zusam-
men mit einem UHV-Durch�usskryostat in Betrieb genommen. Ziel war die Er-
möglichung optischer Untersuchungen an Übergangsmetalloxiden und Dünnschicht-
systemen bei tiefen Temperaturen in einem Energiebereich zwischen 0,8 und 5 eV.
Nach erfolgreicher Inbetriebnahme des Ellipsometers erfolgte die systematische
Untersuchung von Kuperoxid-Spinleiterverbindungen mit verschiedenen Dotierun-
gen. Hierbei handelt es sich um das mit 0.2 Löchern pro Einheitszelle dotierte
La5.2Ca8.8Cu24O41 und das System Sr14−xCaxCu24O41 (x = 0, 5 und 8), welches
mit 6 Löchern pro Einheitszelle dotiert ist. Die optische Leitfähigkeit der hochko-
rrelierten Elektronensysteme wurde ellipsometrisch bestimmt und mit Daten der
optischen Leitfähigkeit aus Fourierspektroskopiemessungen kombiniert. Die Ab-
hängigkeit der optischen Interbandanregungen von der Temperatur, der Loch-
und der Kalziumdotierung wurde untersucht. Die Interbandanregungen entlang
der drei kristallographischen Achsen sind stark anisotrop und zeigen in zwei Rich-
tungen eine Multipeakstruktur. Anhand eines Drude-Lorentz Modells und durch
Vergleich mit der Literatur konnte eine Zuweisung der Anregungen in der kom-
plizierten Struktur vorgenommen werden Die niedrigste Ladungstransferanregung
in σc(ω) wird als exzitonische Resonanz mit entsprechenden Kontinuum bei höherer
Energie erklärt. Diese Aussage wird durch die Temperaturabhängigkeit des spek-
tralen Gewichts der beiden Anregungen unterstützt. Durch Kombination von
Re�exions- und Transmissionsdaten aus Fourierspektroskopiemessungen mit den
ellipsometrischen Messungen wurde mittels Kramers-Kronig Transformation die
optische Leitfähigkeit σc(ω) von 10meV bis 5 eV ermittelt. Durch eine Analyse
des spektralen Gewichtstransfers konnte die Temperaturabhängigkeit der Inter-
bandanregungen mit einem Ladungstransfer hin zu niedrigeren Energien erklärt
werden. Darüber hinaus zeigte die Untersuchung des spektralen Gewichts eine
Abhängigkeit von der Dotierung x. Neben den Spinleitersystemen wurde die op-
tische Leitfähigkeit der eindimensionalen Spinkette SrCuO2 entlang der Richtung
der Kette und senkrecht dazu bestimmt. Das Elektron-Loch-Anregungsspektrum
zeigt eine starke, sehr steil ansteigende Absorption nahe der Bandlücke, die in der
Literatur im Rahmen einer exzitonischen Resonanz diskutiert wird. Wir vergle-
ichen die Ergebnisse der eindimensionalen Kette mit denen der Spinleitern mit
dem Ziel, der Formulierung einer einheitlichen Beschreibung der Interbandanre-
gungen näher zu kommen.
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Abstract

Within the scope of this thesis, a spectroscopic ellipsometer has been put into
operation and equipped with a UHV liquid Helium �ow cryostat to enable low
temperature optical measurements down to 10K in the energy range between 0.8
to 5 eV. After successful installation of the ellipsometer, a systematic investigation
of the electronic structure of one-dimensional copper-oxide spin ladders and spin
chains was carried out. Ellipsometric optical conductivity data of the biaxial cop-
per oxide compounds La5.2Ca8.8Cu24O41 (LCO) with 0.2 holes per formula unit and
Sr14−xCaxCu24O41 for x = 0 (SCO) and x = 5, 8 (SCCO), doped with 6 holes per
formula unit, were derived in all three crystallographic axes. We investigated the
temperature, hole-doping and Ca-doping dependence of the interband excitations.
We �nd a multipeak structure in the interband region in the two crystallographic
directions a and c. A pronounced temperature dependence in σc(ω) is observed.
We investigated the dependence of those absorptions on temperature and Ca con-
tent and identi�ed them with CT excitations of di�erent character by using a
Drude-Lorentz parameter �t and by comparison with the literature. We �nd a
new interpretation of the lowest interband excitation in σc that we identify with a
ZN excitonic resonance (a ZN exciton is described as a bound pair of empty site
Cu+ and a Zhang-Rice singlet state on a neighboring site) and the corresponding
continuum at higher energy. A new absorption observed in x = 0 shows a strong
dependence on temperature that could be related to charge-ordering tempera-
tures in SCO. To further investigate the temperature dependence of the optical
spectra along c at low energy, we combined the ellipsometric data with far and
mid-infrared re�ectance and transmittance data from FT spectroscopy and per-
formed a Kramers-Kronig transformation followed by a spectral-weight analysis.
This showed a spectral-weight transfer from the CT-region to the low-energy re-
gion with rising temperature in x = 0, 5, and 8. Moreover, a spectral weight shift
with Ca substitution x is observed below 2.5 eV. Another compound investigated
by ellipsometry within the scope of this thesis was the 1D zigzag chain SrCuO2.
We investigated σc(ω) along the chains and σa(ω) perpendicular to the chains as a
function of temperature. The spectrum shows a prominent absorption feature at
2 eV that is assigned to a charge-transfer excitonic resonance and one with lower
intensity at 4.2 eV that is assigned to one-center charge transfer excitation similar
to those observed in basically all low dimensional copper oxides. In summary, the
data show that a uni�ed picture might be found for the electron hole excitations
in low dimensional cuprates.
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