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SUMMARY  

Cuticle, the outermost layer covering all primary aerial surfaces of vascular land 

plants, is essential for the protection and normal development of the plant and has as 

main components cutin and wax. Although numerous genes are involved in the 

biosynthesis and regulation of cuticular components, only few have a known 

function.  

To contribute to the understanding of regulatory mechanisms involved in cuticle 

development, two approaches have been taken in this project. These involved on the 

one hand mapping and characterizing a locus involved in wax regulation and 

metabolism and on the other hand, identifying putative interactors for three proteins 

involved in cuticular pathways. The first approach concerns the mapping and 

characterization of eceriferum13 (cer13) mutant Arabidopsis thaliana. Obtained in 

Ler-0 background by fast neutron treatment, the cer13 mutant has less epicuticular 

wax and its semi-dwarf phenotype, as well as its responsiveness to photoperiod 

indicate a possible implication in regulatory mechanisms. After fine mapping to a 

region of 46 candidate genes, RESURRECTION1 (RST1, AT3G27670) was selected 

as candidate for CER13, due to the fact that its mutation causes altered epicuticular 

wax phenotype. Sequence analysis of RST1, encoding a putative transmembrane 

protein of unknown function, revealed a 950 bp deletion resulting in a frame shift 

and a premature STOP codon in CER13 cDNA. The allelism test performed by 

crossing cer13 to rst1-3 was positive, indicating a single locus. To investigate the 

mechanism responsible for the reduced wax levels in cer13, we performed a whole-

genome ATH1 microarray analysis. Previously, the biochemical pattern of wax 

composition was found to be highly similar between cer13, cer3 and cer7. 

Interestingly, CER3 is down-regulated in both cer13 and cer7 transcriptomes, 

indicating that the three genes could be involved in the same pathway. We also 

compared cer13-misregulated genes to a MASTA (MicroArray overlap Search Tool 

and Analysis) database of more than 600 microarray datasets. This analysis 

suggested that CER13 provides a link between wax biosynthesis and salicylic acid-

mediated signaling, as well as similar expression patterns to cold and drought stress. 
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The second approach undertaken in this study consists in using three cuticular genes 

as baits in a Y2H cDNA library screening. All three genes that were selected for this 

screening are involved in the cuticle development in an unusual manner. The 

putative interactors found for the subtilisin-like serine protease ALE1, which is 

required for the proper formation of epidermis and cuticle around the embryo 

(Tanaka et al., 2001), are subunits a and b of the CSN5, a component of the COP9 

signalosome. The putative acyl transferase CER2 is particular in that it localizes to 

the nucleus. A porin and two immunophilins were identified as putative interactors.  

The PALMITOYL PROTEIN THIOESTERASE (PPT) is a gene up-regulated in three 

independent cuticular mutants and an ATP-dependent helicase as well as an ADP-

ribosilation factor were isolated as putative interactors.  

These results highlight the complexity of the regulatory mechanisms behind the 

formation and the function of the cuticle and contribute to the understanding of plant 

defenses. 
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ZUSAMMENFASSUNG 

Die Kutikula, die äußerste, alle primären oberirdischen Organe von Gefäßpflanzen 

bedeckende Schicht, ist unerläßlich zum Schutz und für die normale Entwicklung 

der Pflanze und besteht hauptsächlich aus Cutin und Wachsen. 

Wenngleich zahlreiche Gene in Biosynthese und Regulation von cuticulären 

Bestandteilen involviert sind, ist doch nur für wenige eine genaue Funktion bekannt. 

Um zu einem besseren Verständnis regulatorischer Mechanismen, die an der 

Kutikula-Entwicklung beteiligt sind, beizutragen, wurden im Rahmen dieses 

Projektes 2 Strategien verfolgt. Dazu gehörte auf der einen Seite die Kartierung und 

Charakterisierung eines an Wachs-Metabolismus und –Regulation beteiligten Gen-

Locus und auf der anderen Seite die Identifizierung putativer Interaktoren dreier 

Proteine, die in kutikuläre Entwicklungswege involviert sind. 

Im Rahmen der ersten Strategie wurde die Arabidopsis thaliana eceriferum13 

(cer13) Mutante kartiert und charakterisiert. Die cer13 Mutante - durch 

Bombardierung mit schnellen Neutronen im Ler-0 Hintergrund erhalten - besitzt 

weniger epicuticuläres Wachs und sowohl ihr halb-zwergenwüchsiger Phänotyp als 

auch ihre photoperiodische Sensitivität, geben einen Hinweis auf eine mögliche 

Beteiligung an regulatorischen Mechanismen. 

Nachdem durch Fein-Kartierung eine Eingrenzung auf eine Region mit 46 putativen 

Kandidaten-Genen erreicht werden konnte, wurde RESURRECTION1 (RST1, 

AT3G27670) als Kandidat for CER13 ausgewählt, da eine Mutation dieses Gens 

einen veränderten epicuticulären Wachs-Phänotyp verursacht. 

Sequenz-Analyse von RST1, das für ein putatives Transmembran-Protein 

unbekannter Funktion codiert, offenbarte das Vorhandensein eine 950 bp 

umfassenden Deletion in der CER13 cDNA, die eine Verschiebung des 

Leserahmens und ein vorzeitiges STOP-Codon zur Folge hat.  

Durch Kreuzung von cer13 mit rst1-3 konnte der allelische Charakter der 

Mutationen bestätigt werden, was für die Verantworlichkeit eines einzelnen Locus 

spricht. 

Um die Mechanismen zu untersuchen, die für den reduzierten Wachsgehalt in cer13 

verantwortlich sind, wurde eine ATH1 Microarray Analyse durchgeführt. Zuvor war 
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die große Ähnlichkeit des biochemischen Musters der Wachs-Zusammensetzung in 

cer13, cer3 und cer7 beschrieben worden. 

Interessanterweise ist CER3 sowohl in cer13 also auch im cer7 Transkriptome 

herunterreguliert, was darauf hindeutet, dass die drei Gene in einen gemeinsamen 

Entwicklungsweg involviert sind. 

Ein Vergleich der in cer13 missregulierten Gene mit einer MASTA (MicroArray 

overlap Search Tool and Analysis) Datenbank von über 600 Microarray-

Experimenten legte nahe, dass CER13 eine Verbindung zwischen Wachs-

Biosynthese und Salicylsäure-vermittelten Signalwegen herstellt, und zeigte 

Ähnlichkeit des Transkriptmuster der Mutante mit Kälte- und Trockenstreß-

Bedingungen. 

Die zweite hier verfolgte Strategie bestand im Durchmustern einer Yeast-2-Hybrid-

Bibliothek, zur Identifizierung der Interaktoren dreier für die Kutikula-Entwicklung 

relevanter Proteine.  

Putative Interaktoren für die Subtilisin-ähnliche Serine-Protease ALE1, die für 

korrekte Ausbildung von Epidermis und Kutikula des Embryos (Tanaka et al., 

2001), benötigt wird, sind die Untereiheiten a und b von CSN5, einer Komponente 

des COP9 Signalosoms.  

Die putative Acyl-Transferase CER2 ist besonders in ihrer nukleären Lokalisierung. 

Ein Porin und 2 Immunophiline wurden als putative Interaktoren identifiziert.  

Für PALMITOYL PROTEIN THIOESTERASE (PPT), ein in drei unabhängigen 

Kutikula-Mutanten hochreguliertes Gen, wurden eine ATP-abhängige Helicase und 

ein ADP-Ribosilierungsfaktor als putative Interaktoren identifiziert.  

Diese Ergebnisse betonen die Komplexität regulatorische Mechanismen, die der 

Bildung und Funktion der Kutikula  zugrundeliegen und tragen zum Verständnis der 

pflanzlichen Abwehr bei.  
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INTRODUCTION 

STRUCTURE OF THE PLANT CUTICLE  

A distinctive characteristic of all epidermal cell types is the presence of cuticle 

covering their outer surface as a continuous lipophilic layer, which forms a barrier 

over the aerial organs of land plants during their primary stages of development 

(Holloway, 1982; Kunst et al., 2005). Although the features of the plant cuticle vary 

considerably between species, organs and developmental stages, its main 

components are cutin, and wax (Jeffree, 1986; Riederer and Schreiber, 2001; Jeffree, 

2006). Cutin is a polyester mainly comprising hydroxy and hydroxy-epoxy C16 and 

C18 fatty acids, as well as glycerol (Kolattukudy, 2001). Waxes are both 

intracuticular (embedded in the cuticular matrix) as well as epicuticular (deposited 

on the outer surface of the cell wall), as depicted in the schematic representation 

below. 

 

Figure 1. Schematic representation of the plant cuticle structure (adapted from Jeffree, 1986). H.C., 
hydrolysable compounds; I.W., intracuticular wax.  

 

Waxes consist of a heterogeneous mixture of very long-chain fatty acids (VLCFAs) 

and their monomeric derivatives, wax esters, as well as secondary metabolites such 

as triterpenoids, phenylpropanoids, and flavonoids (Shepherd et al., 1995; Kunst et 
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al., 2005). As they are physically very closely associated, it is difficult to distinguish 

between the relative contribution of the cutin matrix and that of cuticular waxes to 

the physical properties and the biological roles of the cuticle. However, in 

biochemical experiments, the cutin and cuticular waxes are usually analyzed 

separately, due to the soluble properties of the waxes versus the cutin polymer, 

which remains insoluble.  

THE ROLES OF PLANT CUTICLE 

The chemical structure described above gives the cuticle a set of highly protective 

features and these were studied initially as to limiting nonstomatal water loss and 

gaseous exchanges, controlling the absorption of lipophilic compounds, and 

providing mechanical strength and viscoelastic properties (Baker et al., 1982; 

Riederer and Schreiber, 2001).  

The plant cuticle is considered to be the first physical barrier to protect the plant 

against biotic and non-biotoc stress factors. As far as the biotic stress factors are 

concerned, the cuticle can be penetrated by fungal pathogens either through the 

natural openings in the epidermis (such as stomata) or by active cutinase-secretion. 

In addition to its barrier function, the plant cuticle was proposed to be a signaling 

source for potential pathogens (Lin and Kolattukudy, 1978), by means of its 

breakdown products. Thus, fungi would sense the presence of cutin monomers on 

the plant surface and would induce the formation of cutinase, required for invasion 

(Kolattukudy, 1985). Cutin monomers have been shown to induce the production of 

cutinase in Fusarium solani f.sp. pisi (Lin and Kolattukudy, 1978; Woloshuk and 

Kolattukudy, 1986) as well as the formation of appresoria in fungi such as Erysiphe 

graminis f.sp. hordei (Francis et al., 1996), the rice blast fungus Magnaporthe grisea 

(Gilbert et al., 1996), Puccinia graminis f.sp. tritici and the anthracnose fungus 

Colletotrichum gloeosporioides. In their turn, plans also sense molecules released 

during pathogen interactions. For example, products resulting from a breakdown of 

the plant cell wall were reported to act as elicitors of defense mechanisms (Boller, 

1995). Botritis cinerea is a ubiquitous fungal pathogen that causes significant 

damage to many crop plants and perturbations of the cuticular layer rendered 

Arabidopsis plants fully immune to the fungus (Chassot et al., 2007). 
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Abiotic factors such as light and water deficit have been shown to stimulate wax 

biosynthesis in vascular plants (Thomas and Barber, 1974; Bengtson et al., 1978; 

von Wettstein-Knowles et al., 1979). Furthermore, light was shown to be essential 

for CER6 transcription, and osmotic stress as well as the presence of abscisic acid 

enhanced CER6 transcript accumulation (Hooker et al., 2002). 

 

Other than protecting the plant from biotic and non-biotic environmental stress 

factors (Schweizer et al., 1996), the cuticle was also reported to have a 

developmental role. Transgenic Arabidopsis plants expressing a cutinase from 

Fusarium solani f sp pisi display an altered ultrastructure of the cuticle, enhanced 

permeability to solutes and strong postgenital organ fusion. Furthermore, pollen 

could germinate on fully differentiated leaves of cutinase-expressing plants (Sieber 

et al., 2000). From this experiment, as well as from the numerous mutants 

characterized up to date it is clear that an intact, functional cuticular layer is needed 

for normal epidermal differentiation and organ formation. It was suggested that 

cuticle permeability also influences cell-to-cell communication by enhancing or 

attenuating the passage of signal molecules (Pruitt et al., 2000). For example, such 

signals could be required for organ adhesion, when they would be moving across the 

cuticle, or for mediating signaling between trichomes and stomata, when moving 

within the developing epidermis (Lolle et al., 1997; Krolikowski et al., 2003).  



 14

CUTICULAR AND WAX-RELATED MUTANTS 

In Arabidopsis, as well as in other species, several mutants have been identified to 

be defective in wax and/or cutin formation, thus facilitating the identification of 

enzymes associated with the cutin and wax pathways.  

Mutants in the wax biosynthesis pathway 

Some of the enzymes catalyzing various steps in the wax pathway have been 

characterized or their function has been proposed based on the phenotype of the 

corresponding mutants. The identification of eceriferum (cer) mutant lines 

(Koornneef et al., 1989) has led to the isolation and characterization of various 

genes associated with cuticular wax metabolism in Arabidopsis. CER1 has been 

proposed to encode an aldehyde decarbonylase (Aarts et al., 1995). Several genes 

playing a role in the fatty acid elongation pathway that generates very long chain 

fatty acid (VLCFA) wax precursors have also been characterized. They include the 

FATTY ACID ELONGATION1 (FAE1) homologs (James et al., 1995), 

FIDDLEHEAD (FDH) (Yephremov et al., 1999; Pruitt et al., 2000), 3-KETOACYL-

CoA SYNTHASE1 (KCS1) (Todd et al., 1999), CUT1/CER6, and CER60 (Millar et 

al., 1999; Fiebig et al., 2000). CER6 was suggested to be the key condensing 

enzyme for wax biosynthesis in Arabidopsis, due to its expression throughout all 

stages of the stem and leaf development, as well as in the inflorescence (Hooker et 

al., 2002). CER2 encodes a putative CoA-dependent acyltransferase, apparently 

located in the nucleus (Xia et al., 1996; Kunst and Samuels, 2003). Although the 

precise function of the gene is still unknown, cer2 stems have more fatty acids with 

C24 but less with C26, C28 and C30, less C29 secondary alcohols and more C26 

and C28 primary alcohols (Rashotte et al., 2001). Furthermore, its nuclear 

localization is intriguing for an acyl transferase. Many of the cer mutants remain 

still to be characterized and the isolation of their corresponding genes might bring 

valuable information into the mechanisms of wax metabolism.  
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Mutants involved in cutin metabolism 

Several reports have also provided insights into the biosynthesis of cutin monomers 

in plants and this subject has been extensively reviewed (Yephremov and Schreiber, 

2005; Nawrath, 2006; Pollard et al., 2008; Samuels et al., 2008). For example, the 

identification of the WAX2 gene (Chen et al., 2003) showed that the protein it 

encodes has 32% similarity to CER1 and contains certain regions with homology to 

sterol desaturases and short-chain dehydrogenases/reductases. It was suggested 

therefore that WAX2 plays a metabolic role in both wax and cutin synthesis, thus 

indicating a link between wax and cutin metabolism. ADHESION OF CALYX 

EDGES/HOTHEAD (ACE/HTH) is proposed to be an oxidase catalyzing the 

formation of dioic acids from ω-hydroxy acyl-CoAs (Krolikowski et al., 2003; 

Kurdyukov et al., 2006). The Arabidopsis LACERATA (LCR) gene (Wellesen et al., 

2001) encodes a cytochrome P450; enzyme activity assays using the recombinant 

LCR protein showed that it could efficiently catalyze the formation of ω-hydroxy 

fatty acids (ranging from C12 to C18:1). Expression of the LCR gene is predominant 

in inflorescence and siliques, as well as in roots and young seedling tissue and it is 

the first cytochrome P450 fatty acid ω-hydroxylase for which a mutant has been 

isolated.  

Cuticle metabolism and the regulation of cuticular pathways 

Results of microarray analysis conducted in our group (Voisin, 2008) on three 

independent cuticular mutants revealed that a palmitoyl-protein thioesterase (PPT, 

AT5G47330) is almost ten fold up-regulated in three mutants, as compared to wild 

type. In humans, PPT is a lysosomal long-chain fatty acyl hydrolase that removes 

fatty acyl groups from modified cysteine residues in proteins, and the defective 

enzyme causes infantile neuronal ceroid lipofuscinosis, a recessive hereditary neuro-

degenerative disorder (Vesa et al., 2002).  

The mutation in a subtilisin-like serine protease led to impaired cuticle formation 

and consequently adhesion between the endosperm and embryo, as well as fusion of 

cotyledons and leaves. The mutant is called abnormal leaf shape1 (ale1) and the 

corresponding ALE1 gene is preferentially expressed during seed development, 

showing a weak transcript expression in young embryo and a strong one within the 

endosperm cells closely surrounding the developing embryo (Tanaka et al., 2001). 
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Although many members of this family of proteases were reported in plants (Siezen, 

1997; Schaller, 2004), little is known about their precise role. 

When overexpressed in Arabidopsis, the SHINE clade of AP2 domain-containing 

transcription factors have been reported to activate wax biosynthesis, to alter cuticle 

properties, and to confer tolerance to drought stress (Aharoni et al., 2004). 

Mutants characterized so far have led to the identification of genes involved in the 

metabolic pathways leading to the cuticle formation, though only few of these genes 

have a precise function assigned. Furthermore, the high variety as to the nature of 

the proteins implicated in cuticle development, whether they have a known or 

unknown function, is an indicator of a regulatory network behind cuticular 

metabolism. However, the nature of such a network is yet elusive.  
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AIM OF THE THESIS 

To contribute to the understanding of regulatory mechanisms involved in cuticle 

development, two approaches have been taken in this project. The first approach 

concerns the mapping and characterization of a wax mutant of Arabidopsis thaliana 

and the second approach aims at finding interactors for proteins known to be 

involved in cuticle development. 

The collection of eceriferum mutants is a valuable tool in understanding the 

metabolic as well as the regulatory pathways involved in cuticle development. One 

of the CER genes that had not been cloned is CER13. The cer13 mutant shows a 

glossy phenotype on stem and siliques and together with cer10 and cer3, it was also 

reported to exhibit organ fusions (Jenks et al., 2002), an indicator of substantial 

disturbance in the cutin metabolism (Lolle et al., 1992; Lolle et al., 1998). As our 

group is interested in a possible link between wax and cutin biosynthesis, the cer13 

mutant was previously selected for further characterization and positional cloning 

(Faust, 2006). The aim of this project was to clone the gene and to further 

characterize the cer13 mutant. 

Numerous genes are involved in cuticle development and/or its regulation (Pollard 

et al., 2008; Samuels et al., 2008). The high diversity as to the nature of the proteins 

involved in these processes indicates that a broad regulatory network, still far from 

being elucidated, governs the regulation of cuticle development and that such a 

network is present at all key developmental stages of the plant. To contribute to the 

understanding of the mechanisms behind the regulation of cuticle development and 

in the attempt to have an integrative approach, three genes were chosen for further 

investigation, by screening a cDNA library using the Y2H sistem. All three genes 

are involved in the cuticle development in an intriguing manner. ALE1 encodes a 

subtilisin-like serine protease and it is expressed in the endosperm surrounding the 

developing embryo. It was proposed that the ALE1 protein causes a signal from the 

endosperm that is required for the proper formation of the epidermis and cuticle 

around the embryo (Tanaka et al., 2001). Finding the molecular nature of such a 

signal would give more insight as to the regulation of cuticle development at the 

very beginning of a plant’s life. The acyl transferase CER2 is the second gene 
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chosen for further investigation, due to the fact that it is localized in the nucleus, 

which is surprising for a protein with such a function. PPT is a third gene, which 

might provide valuable insight into the mechanisms that a plant commonly uses to 

compensate for a deficient cuticle formation, due to its up-regulation in three 

independent cuticular mutants. To investigate the molecular function of ALE1, 

CER2 and PPT, the three genes were used as baits in three yeast two-hybrid cDNA 

library screenings.  
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RESULTS 

CHARACTERIZATION OF CER13 AND MOLECULAR 

IDENTIFICATION OF THE GENE 

The cer13 mutant has a pleiotropic phenotype 

 

Obtained in Landsberg erecta (Ler-0) background by fast-neutron treatment, the 

cer13 mutant has a glossy appearance on stems and siliques (Koornneef et al., 

1989). Together with cer10 and cer3, cer13 was also reported to exhibit organ 

fusions (Jenks et al., 2002), an indicator of substantial disturbance in cutin 

biosynthesis, transport or assembly (Lolle et al., 1992; Lolle et al., 1998; Sieber et 

al., 2000; Nawrath, 2006). Although the organ fusion phenotype was not observed 

throughout this project, it is known that the strength of the allele, as well as 

variations in growth conditions, especially humidity, can prevent the adhesion of 

organs (Lolle et al., 1997). The cer13 mutant has a semi-dwarf phenotype compared 

to the wild-type, indicating a possible role in signaling mechanisms involved in the 

regulation of cuticle development. Since our group is interested in regulatory aspects 

of cuticle development, the cer13 mutant was selected for further characterization 

and positional cloning. The chemical composition of leaf and stem cuticular wax in 

cer13 was analysed by Rashote et al. (2001) and was reported to be decreased, as 

compared to the wild type. Chemical composition analysis of cutin, as well as seed 

coat polymeric lipids were previously performed in our group by Dr. Andrea Faust 

and the seed coat phenotype was observed by scanning electron microscopy. While 

several cutin components were reported to be reduced in the cer13 mutant as 

compared to Ler-0, the seed coat analysis did not indicate any difference in the lipid 

polyester composition and the size of cer13 seeds was reported to be smaller, with a 

modified seed surface (Faust, 2006).  

During the map based cloning performed in this project, it was notable that plants 

from the F2 generation that were homozygous for the cer13 locus were easier to 
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screen when grown only in long day conditions. Therefore, to further characterize 

cer13, the mutant was simultaneously grown with the wild-type (WT) in short day 

(SD, 8 hours light) and long day (LD, 16 hours light) conditions, with the purpose of 

observing whether there is any change in the wax crystal morphology. At 

fructification stage, cer13 plants are shorter than wild-type plants, when grown in 

both SD and LD conditions (figure 2, graph 1). Due to the presence of wax crystals, 

WT Ler-0 shoots and siliques have a light, opaque appearance, as compared to those 

of cer13, which have a more intense green color and a glossy surface.  

 

 

Figure 2. General morphology, epicuticular wax phenotype and shoot height of cer13 as compared to 
Ler-0, in long day (18h) and short day (8h) conditions. a, b – general morphology of cer13 (left) and 
Ler-0 (right); a, plants grown in SD for two weeks and subsequently transferred to LD (adapted, from 
Faust, 2006); c, d, g, h – LD; b, e, f, i, j – SD; c, d, e, f – cer13; g, h, i, j – Ler-0; c, g, e, i – 
epicuticular wax on shoots; d, h, f, j – epicuticular wax on siliques; Scale bars: a, b: 5 cm; c – j: 10 
µm.   

 

Electron micrographs show less wax crystals, predominantly formed as plates on the 

stems and siliques of cer13, as compared to the Ler-0 wild type (WT), which 

exhibits homogeneously spread and very numerous wax crystals formed as blocks, 

as well as plates. Block crystals on stems and siliques of cer13 are very few and they 

cluster, instead of being homogeneously distributed on the organ surface (figure 2, c, 

d, e). When grown in short day conditions, as compared to long day conditions 



 21

(figure 2, f), there are more wax crystals on shoots but not on siliques of cer13, 

although they are still less numerous than on the shoots of Ler-0 WT.  

Although the height of cer13 mutant plants can vary, the extent of the variation is 

yet unclear. Plants grown initially in SD for two weeks and subsequently transferred 

to LD exhibit a higher difference in height as compared to the wild type (figure 2, 

a). However, plants grown simultaneously in the late winter season did not show a 

higher variation in LD conditions as compared to SD conditions (Graph 1). 

 

 

Graph 1. Shoot height of cer13 versus Ler-0, in 16h and respectively 8h light. The measurements 
were made on 30 plants for each case. Error bars represent standard deviation. 

 

Such phenotypes indicate that the CER13 protein might have a regulatory function 

in wax metabolism. 

 

The CER13 gene maps to a region of 46 genes on chromosome III 

The cer13 mutant, obtained by fast neutrons in Landsberg erecta (Ler-0) 

background, was previously mapped on chromosome III, at 47,3cM on the Lister 

and Dean RI map, relatively to the SSLP marker AthGAPab (Rashotte et al., 2004). 

For the map based cloning approach, an F2 generation of cer13 crossed to Colombia 

(Col-0) was obtained as a mapping population. Rough mapping lead to a genetic 

region of 3,1 Mbp that was thus established between two single nucleotide 

polymorphism (SNP) markers located on BAC clones F20C19 (left border) and 
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respectively F21A17 (right border) (Faust, 2006). The fine mapping carried out in 

this project revealed an area of 140 kb in chromosome III, containing 46 genes, on 

BAC clones MGF10 and K16N12 (figure 3). 

  

 

Figure 3. Fine mapping of cer13. Chr III, chromosome III; Green block arrows, BACs; Mbp, mega 
base-pairs; recombination is given in percentage, at the respective location.  

 

A candidate gene approach led to the selection of At3G27670 as CER13 candidate, 

due to the fact that its mutation was previously described to cause decreased 

epicuticular wax load as well as altered morphology and viability of seeds. The 

selected candidate was previously characterized as RESURRECTION1 (RST1) 

(figure 4). The gene is unique in the Arabidopsis genome, has an annotated size of 

8160 nucleotides (nt) in the genomic DNA and encodes a predicted protein of 1841 

amino acids (aa) (Chen et al., 2005).  

Due to its large size, we decided to further amplify the selected candidate gene in 

two fragments, as described in methods. The PCR amplification of the first fragment 

resulted in a product of the expected size when using both WT and cer13 genomic 

DNA as template. However, in the case of the second fragment, the size was the 

expected 4918 nt when using Ler-0 WT DNA as template, whereas the fragment 

amplified from cer13 genomic DNA template was shorter (figure 4, c).  

Sequencing of the first fragment revealed identity between the Ler-0 and cer13 

genomic DNA, whereas the second PCR fragment revealed a deletion of 950 

nucleotides in the region between nucleotides 7770 – 8720 of the gene, 

corresponding to part of the 18th exon, the entire 18th intron and 19th exon, as well as 

part of the 19th intron (Figure 4, b). 
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Figure 4. Identification of CER13. a, Genetic map of chromosome three region with distances in Mb 
above. BAC clones are marked with black, block arrows. The fraction of recombinant plants detected 
in the mapping population is indicated above the back clone, as well as the SNP polymorphism Col-
0/Ler-0, with its position on the BAC. b, Schematic representation of CER13 gene. Black arrow: 
5’UTR; grey boxes: exons; spaces: introns; black box: 3’UTR; deletion is marked with lined box; 
size of the gene is marked in kb (K). c, PCR amplification of candidate gene using cer13 and as 
compared to Ler-0 WT DNA. 1kb DNA ladder is used as marker.  

 

The cer13 locus is allelic to rst1 

To have a biological confirmation of the identity of CER13, an allelism test was 

perfomed by crossing cer13 to rst1, using cer13 as female parent, fertilized with 

rst1-3 pollen. Considering that cer13 is a mutant obtained in Ler-0 background, and 

since the erecta phenotype is recessive, an F1 generation of a successful cross is 

expected to have the general morphology of Col-0 ecotype for the ERECTA 

phenotype and to lack wax if the two mutants are allelic. Indeed, the F1 generation 

of cer13 x rst1-3 had the the ERECTA phenotype, and the shoots and siliques had 

the glossy appearance typical to the cer13 and the rst1-3 mutants. Figure 5, c shows 

less wax crystals on stems of an F1 generation plant, proving that indeed cer13 is 

allelic to rst1.  
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Figure 5. Epicuticular wax phenotype on stems of lines used for the allelism test. a – e, stem 
fragments analysed by SEM; f, shoot fragments observed under the binocular; a, WT Ler-0; b, cer13; 
c, F1: cer13 x rst1-3; d, rst1-3; e, WT Col-0; f , from up to down: WT Ler-0, cer13, F1: cer13 x rst1-
3, rst1-3 and WT Col-0. 

The deletion in cer13 results in a truncated version of the protein 

The predicted amino acid sequence encoded by the allele carrying the 950 bp 

deletion diverges from the RST1 sequence after the amino acid 1420 and terminates 

prematurely at amino acid 1425 (figure 6). Thus, in the mutant, the 950 bp deletion 

causes a frame shift and a premature STOP codon, leading to a truncated version of 

CER13. The resulting protein is 421 amino acids shorter than the wild-type protein.  
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Figure 6. ClustalW alignment of CER13 amino-acid sequence in WT and mutant (MT). Identical 
amino-acids are underlined. The STOP codon is indicated by “*”.  
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CER13/RST has nine predicted trans-membrane domains 

The ARAMEMNON database enables direct comparison of the predictions of seven 

different TM span computation programs and the predictions of subcellular 

localization by eight signal peptide recognition programs. The proteins related to the 

query are displayed and dynamically generated as a protein family structure 

(Schwacke et al., 2003). This on-line tool (http://aramemnon.botanik.uni-koeln.de.) 

was used in the present study with the CER13/RST1 rice homolog OS01G07490. 

The outcome of the analysis indicates that CER13/RST1 could have up to 9 trans-

membrane domains when aligned with its rice homolog (figure 7). This indicates 

that the protein may function as a receptor or transporter in the regulation of wax 

biosynthesis. 

 

 

Figure 7. Transmembrane span alignment using the ARAMEMNON database. First line: sequence of 
the CER13/RST1 rice homolog OS01G07490. Second line: sequence of CER13/RST1. Bottom line: 
trans-membrane domains predicted for CER13/RST1  

There is no fluorescence signal when DsRED is fused to the C-terminus part of 

the full length CER13 

 

The RST1 protein was reported to have a predicted localization in the mitochondria 

(Chen et al., 2005). To verify this experimentally, a full-length genomic clone was 

obtained as described in methods. As in the construct used, the expression of the 

CER13 gene is driven by the native promoter, a successful transgene would also 

indicate the localization of the protein in specific plant tissues. No signal was found 

for the fluorochrome fused to the C-terminal part of the CER13 protein after 

checking various organs of several lines, at different developmental stages of 

Arabidopsis transformants by confocal laser scanning microscopy (CLSM). Reasons 

for this result might include the large size of the protein, as well as the fact that it is 

predicted to have several trans-membrane domains (Chen et al., 2005). Constructs of 

http://aramemnon.botanik.uni-koeln.de/
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truncated versions of the gene expressed under the native promoter or under the 35S 

promoter might still elucidate the sub-cellular localization of CER13 fused to a 

fluorochrome.   

CER13 is expressed in ovules and in the epidermis of young organs close to the 

apical meristem 

According to the Arabidopsis eFP browser (http://bbc.botany.utoronto.ca/efp) 

(Winter et al., 2007), CER13 is ubiquitously expressed; however, previously 

perfomed RT-PCR indicated higher transcripts in leaves and flowers (Chen et al., 

2005). To locate the expression of CER13 in plant tissues, we prepared two probes 

for in situ hybridization. The in situ experiment including the hybridization 

procedure and the immunohistochemical detection was conducted by Dr. Nadia 

Efremova as described in methods. In this experiment, transverse sections through 

flowers and longitudinal sections through the shoot apex have shown a positive 

signal. In the case of transverse sections through flowers (figure 8, a), a signal was 

detected in the tapetum cells of the anthers as well as in ovules. A signal was also 

detected in epidermal cells of developing leaves, in the proximity of the apical 

meristem (figure 8, b).  

 

 
 

Figure 8. In situ hybridization. a, transverse section through flower; b, longitudinal section through 
shoot apex. Scale bars: 200µm  

 

http://bbc.botany.utoronto.ca/efp
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Genes involved in various metabolic pathways are miss-regulated in cer13 

The CER13 protein shows no sequence similarity to any known protein that would 

suggest a putative function. To gain insight into the metabolic or regulatory pathway 

involving CER13, or into the mechanisms that could regulate its function, a 

transcriptome analysis was conducted using the Arabidopsis ATH1 gene-chip 

(Affymetrix). The resulting data was statistically analyzed as described in methods. 

Miss-regulated genes with a pfp value of less than 0.003 and a fold-change of at 

least 1.9 were further investigated. The total number of genes meeting both criteria 

was eighty-one, out of which thirteen were down-regulated and sixty-eight were up-

regulated. Out of sixty-eight up-regulated genes, eleven encode proteins of unknown 

function, which were excluded from further investigation. The remaining fifty-seven 

up-regulated genes as well as all thirteen down-regulated genes were analysed using 

various tools from the Genevestigator V3 program (Zimmermann et al., 2004) 

(www.genevestigator.com). A clustering analysis in the “development” profile of 

the Genevestigator V3 program is shown in figure 9, as a heat map, indicating the 

predicted expression of each gene in the respective developmental stage.  

 

 

Figure 9. Clustering analysis in heat map format of up-regulated and down-regulated genes in cer13 
transcriptome, using the Genevestigator V3 program. First row images represent the following 
developmental stages: germinated seed, seedling, young rosette, developed rosette, boulting, young 
flower, developed flower, flowers and siliques and mature siliques. Numbers below developmental 
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stage images represent the number of arrays scored. The first row in each heatmap represents the 
expression of probe 258238_at, corresponding to CER13. The other probes have the corresponding 
AT number in the column to the right and correspond to up- and down-regulated genes as indicated 
in Table1. 

 

Several of the top up- and down-regulated genes are presented in table 1. The 

MAPKKK14 gene (AT2G30040) is up-regulated in several stress response 

mechanisms like light (Khanna et al., 2006) and cold (Lee et al., 2005), as well as 

hormone treatment with indole-3-acetic acid (IAA) and brassinolide (BL) (Goda et 

al., 2004). qRT-PCR was conducted as described in methods for the confirmation of 

the microarray experiment and it indicated a 3,85 fold up-regulation of MAPKKK14.  

The JAZ genes are widely expressed throughout plant development and are 

implicated in jasmonic acid signaling. The JAZ proteins were reported to function as 

repressors of jasmonate signaling and to be degraded through the SCFCOI1-dependent 

26S proteasome pathway (Chini et al., 2007). At least ten of the JAZ genes are 

rapidly induced by jasmonate treatment (Staswick, 2008) and three of them (JAZ1, 

JAZ5 and JAZ9) are up-regulated in the cer13 transcriptome, compared to wild-type.  

Several transcription factors are miss-regulated in cer13 and three of them contain 

an AP2 domain. Although all three accessions presented in table 1 (At5g61590, 

At1g21910 and At1g64380) encode members of various subfamilies of the ERF 

(ethylene response factor), overexpression of AP2 domain-containing transcription 

factors was reported to activate wax biosynthesis, to alter cuticle properties, and to 

confer drought tolerance in Arabidopsis (Aharoni et al., 2004). However, the 

transcription factors miss-regulated in cer13 are involved mainly in pathogen - 

response mechanisms.  
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Table 1. Top miss-regulated genes in cer13 transcriptome, as compared to WT Ler-0. FC1- fold 
change according to microarray analysis; FC2 – fold change according to qRT-PCR. 

 FC1 Gene Accession FC2 
up

-r
eg

ul
at

ed
  

18.9 MAPKKK14__MAPKKK14 (Mitogen-activated protein 
kinase kinase kinase 14); kinase 
 

At2G30040 3.85 

5.3 ATGSTF3_GST16__ATGSTF3 (GLUTATHIONE S-
TRANSFERASE 16); glutathione transferase 
 

At2G02930 - 

5.3 AP2 domain-containing transcription factor family protein 
 

At5g61590 - 

3.7 GDSL-motif lipase/hydrolase family protein 
 

At2g03980 - 

3.2 JAZ1_TIFY10A__JAZ1/TIFY10A (JASMONATE-ZIM-
DOMAIN PROTEIN 1) 

At1g19180 2.64 

3.1 BT2__BT2 (BTB AND TAZ DOMAIN PROTEIN 2); protein 
binding / transcription factor/ transcription regulator 

At3g48360 - 

2.6 ATMYBL2__ATMYBL2 (Arabidopsis myb-like 2); DNA 
binding / transcription factor 

At1g71030 - 

2.5 JAZ5_TIFY11A__JAZ5/TIFY11A (JASMONATE-ZIM-
DOMAIN PROTEIN 5) 

At1g17380 1.90 

2.3 JAZ9_TIFY7__JAZ9/TIFY7 (JASMONATE-ZIM-DOMAIN 
PROTEIN 9) 

At1g70700 - 

2.2 WRKY70__WRKY70 (WRKY DNA-binding protein 70); 
transcription factor 

At3g56400 - 

2.1 RD20__RD20 (RESPONSIVE TO DESSICATION 20); 
calcium ion binding 

At2g33380 - 

2.1 AP2 domain-containing transcription factor family protein 
 

At1g21910 - 

do
w

n-
re

gu
la

te
d 

11.5 ATGSTU20__ATGSTU20 (Arabidopsis thaliana Glutathione 
S-transferase (class tau) 20); glutathione transferase 

At1g78370 - 

3.0 CER3_FLP1_WAX2_YRE__CER3/FLP1/WAX2/YRE 
(ECERIFERUM 3); catalytic 

At5g57800 2.74 

2.2 DIN10__DIN10 (DARK INDUCIBLE 10); hydrolase, 
hydrolyzing O-glycosyl compounds 

At5g20250 1.61 

2.2 CGA1__CGA1 (CYTOKININ-RESPONSIVE GATA 
FACTOR 1); transcription factor 

At4g26150 - 

2.0 PRODH_ERD5_ATPDH_ATPOX_AT-POX_PRO1__ERD5 
(EARLY RESPONSIVE TO DEHYDRATION 5); proline 
dehydrogenase 

At3g30775 - 

 1.9 AP2 domain-containing transcription factor, putative 
 

At1g64380 - 

 

CER3/WAX2/YRE/FLP1 is a wax gene three-fold down-regulated in cer13 

The ECERIFERUM3 (CER3/WAX2/YRE/FLP1) gene was reported to be required 

for wax biosynthesis and the CER3 protein was proposed to be implicated in cutin 

production, due to the fact that strong cer3 alleles display organ fusions. However, 

leaf cutin analysis of two cer3 alleles did not reveal significant differences in cutin 

load or composition, indicating that CER3 has no major role in leaf cutin formation. 
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(Rowland et al., 2007). The CER3 gene expression is down-regulated in the cer7 

mutant, the latter corresponding to a putative 3'-5' exoribonuclease and a core 

subunit of the RNA processing and degrading exosome (Hooker et al., 2007). In the 

cer13 transcriptome, CER3 is the only gene known to be involved in wax 

biosynthesis and it is three fold down-regulated. This result suggests that the CER13 

protein indirectly regulates wax biosynthesis via CER3. 

In silico meta-analysis of microarrays reveals overlap between the cer13 

transcriptome and other stress-response pathways.  

To find out whether the expression pattern of the cer13 transcriptome has any 

similarity to other mutants or treatments, we performed an in silico analysis using 

MASTA (MicroArray overlap Search Tool and Analysis), as described in methods. 

This analysis revealed overlaps between the microarray experiment involving the 

contrast cer13 compared to wild type and microarray experiments involving several 

types of stress-related contrasts. There are numerous coupling-phase (up-regulated 

genes overlapping with up-regulated genes; down-regulated genes overlapping with 

down-regulated genes) and repulsion-phase overlaps (up-regulated genes 

overlapping with down-regulated genes) with the up-regulated genes in the cer13 

transcriptome and only few overlaps with the down-regulated genes. The most 

prominent overlaps occurred with factors such as cold/heat stress, drought stress, 

wounding and salicylic acid (SA)-related mutants and treatments. 

Overlaps with cold and heat stress 

The sfr (sensitive to freezing) mutants of Arabidopsis are impaired in freezing 

tolerance after cold acclimation (McKown et al., 1996; Byeong et al., 2002). Up-

regulated genes in the cer13 transcriptome showed repulsion phase overlaps with 

genes in cold-treated sfr mutants as well as in heat-stressed wild-type plants, but 

coupling-phase overlaps with genes induced in cold-treated wild-type plants.  

Overlaps with drought stress 

Up-regulated genes in cer13 showed coupling-phase overlaps with genes induced in 

eight drought-stress contrasts. Only with two contrasts there were five overlapping 
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genes, whereas with the remaining six contrasts the number of overlapping genes 

was between nine and fifteen.  

Overlaps with wounding 

Genes up-regulated in the cer13 transcriptome overlapped with up-regulated genes 

in three wounding contrasts (coupling-phase overlaps). The numbers of overlapping 

genes were eight (contrast one hour after wounding versus non-wounded plants), 

seven (three hours after wounding versus non-wounded) and nine (six hours after 

wounding versus non-wounded). Up-regulated genes in cer13 showed repulsion-

phase overlaps with wounding contrasts of fifteen (nine overlapping genes) and 

thirty minutes (thirteen overlapping genes) after wounding compared to non-

wounded plants.  

Overlaps with pathogen-related pathways 

Systemic acquired resistance (SAR) is a plant defense response induced by pathogen 

attack. The accumulation of salicylic acid (SA) in Arabidopsis precedes the onset of 

SAR. The signaling molecule SA induces nuclear translocation of the transcription 

cofactor NPR1 (NONEXPRESSER OF PR GENES) to activate many genes 

required for disease resistance (Kinkema et al., 2000). WRKY transcription factors 

have also been implicated in regulating the response against pathogen infection. 

Many WRKY genes are rapidly induced after treatment with elicitors associated 

with infection (Chen and Chen, 2000; Yoda et al., 2002; Dong et al., 2003). WRKY 

transcription factors are also known to regulate the expression of NPR1 (Yu et al., 

2001). 

Benzothiadiazole (BTH) is a synthetic functional analog of SA and it induces SAR 

(Gorlach et al., 1996). The npr1 mutants cannot express pathogenesis-related (PR) 

genes and are unable to develop SAR in response to SA treatment. Thus, they have 

an enhanced susceptibility to pathogens. 

Up-regulated genes in cer13 showed coupling-phase overlaps with genes induced in 

four contrasts involving BTH treatment on wrky18, in three contrasts with BTH 

treatment on npr1 and in two contrasts involving SA. Figure 10 shows a fragment of 

a MASTA analysis graphical output, containing the coupling-phase overlaps 
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between the contrast cer13 versus WT and the contrasts involving npr1 (C30, C28 

and C26). 
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Figure 10. Fragment from a graphical output of MASTA analysis, with the contrast “cer13 vs WT” as 
querry (Overlap meta-analysis U5 & cer – wt). EXP, comparison contrast from MASTA database. 
Bars represent the number of overlapping differentially expressed genes (DEGs). Bars on the left side 
of the graph: number of DEGs overlapping with down-regulated genes in querry contrast. Bars on the 
right side of the graph: number of DEGs overlapping with up-regulated genes in querry contrast. 
Black bars: up-regulated genes in the comparison contrast; pink bars: down-regulated genes in the 
comparison contrast. 

 

EMS mutagenesis revealed one dominant supressor of the cer13 phenotype  

Since CER13 might be a regulator of wax biosynthesis, targeting the expression of 

CER3, it became interesting to search for a CER13 suppressors. Potential 
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suppressors of the cer13 phenotype would bring new insight into the biological 

function of the CER13 protein. To find possible suppressors, an EMS mutagenesis 

was performed as described in methods. From five thousand M1 seeds, 

approximately 80% survived, out of which several plants exhibited morphological 

abnormalities. One plant exhibited a suppressed cer13 wax phenotype (figure 11) 

and PCR genotyping revealed the presence of the expected T-DNA insertion. 

Segregation analysis in the M2 generation will be the biological confirmation of 

whether this is indeed a dominant suppressor of cer13. Pollen of this putative 

dominant suppressor was used to backcross it to rst1-3 in order to obtain a mutant 

that can be further characterized and mapped.  

The M2 generation resulting from the M1 EMS-mutagenized population will be 

screened further for recessive suppressors of the cer13 phenotype.  

 

 

Figure 11. Putative suppressor of rst1-3. From left to right: rst1-3, putative suppressor, WT Col-0. 
Scale bar, 2mm.  
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PROTEIN INTERACTIONS INVOLVED IN CUTICLE 

DEVELOPMENT 

ALE1 (ABNORMAL LEAF SHAPE 1) is a putative interactor of CSN5 

Epidermal differentiation and implicitly cuticle formation is essential for the general 

development of the whole plant, starting from the very early embryo stage. This fact 

is supported by the characterization of the abnormal leaf shape 1 (ale1) mutant of 

Arabidopsis, which shows impaired cuticle formation, adhesion of endosperm and 

embryo, as well as fusion of cotyledons and leaves. The corresponding ALE1 gene 

encodes a member of the subtilisin-like serine protease family and it is expressed 

during seed development, showing a weak transcript expression in young embryo 

and a strong one within the endosperm cells closely surrounding the developing 

embryo (Tanaka et al., 2001). Three aminoacid residues (D, H and S) are 

consistently conserved in the catalytic regions of subtilisin-like serin proteases. In 

animals, such proteases activate precursors of hormones, growth factors, or 

receptors involved in the control of various developmental processes, including 

embryonic patterning and proper epidermal differentiation. Although many 

members of this family of proteases were reported in plants (Siezen, 1997; Schaller, 

2004), little is known, with few exceptions, about their precise role. As it was 

implied that ALE1 is an extracellular protein involved in causing a signal from the 

endosperm that is required for the formation of epidermis and cuticle around the 

embryo, finding the molecular nature of such a signal would give more insight as to 

the regulation of cuticle development at the very first stage of a plant’s ontogenesis. 

Thus, ALE1 was selected for a Y2H cDNA library screening, in order to find 

putative interactors.  

The cDNA library Y2H screening, performed with ALE1 H252A as bait revealed a 

total of eight putative interactors. The identity of the eight initial ALE1 interactors 

and their respective LacZ pehnotype is shown in table 2. CSN5A, CSN5B and a 

nodulin-related gene result from the screening as putative interactors of ALE1.  
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Table 2. Putative interactors of ALE1. +, growth of yeast colonies; -, no growth of yeast colonies; 
QDO, quadruple drop-out. 

No Accession No. Predicted protein function LacZ+ Growth after re-
streaking on QDO 

1 AT1G71230.1 CSN5B 
 

+ + 

2 AT1G43170.3 Arabidopsis ribosomal protein 1 
(structural constituent of ribosome) 
 

- - 

3 AT5G25940.1 Early nodulin-related gene 
 

+ + 

4 AT1G71230.1 CSN5B 
 

+ + 

5 AT5G11670.1 Arabidopsis thaliana NADP-ME2 
malate dehydrogenase 
 

- + 

6 AT2G30570.1 Photosystem II reaction centre W 
(PsbW) family protein 
 

- + 

7 AT1G22920.2 CSN5A 
 

+ + 

8 AT3G15340.1 Proton pump interactor 2 (PPI2) 
 

- + 

 

 

To test whether the interactors activate the LacZ reporter gene, each interactor was 

re-transformed in the corresponding yeast strain and mated with the empty bait 

vector and the bait, respectively, as indicated in figure 12 below. This result 

indicates that, although CSN5A, CSN5B and the nodulin-related gene activate the β-

Galactosidase expression in the presence of DBD without bait, this activation is 

visibly stronger in the presence of ALE1-DBD. Thus, the most likely interactors for 

ALE1 are CSN5 and the nodulin-related gene.  
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Figure 12. LacZ phenotype of ALE1 interactions. EBV, empty bait vector; EPV, empty pray vector; 
B, ALE1H252A in bait vector; 1, 4, CSN5b; 2, Arabidopsis ribosomal protein 1; 3, Early nodulin-
related gene; 5,  NADP-ME2 malate dehydrogenase; 6, Photosystem II reaction centre W (PsbW) 
family protein; 7, CSN5A; 8, Proton pump interactor 2 (PPI2) 

Interactors of CER2 (ECERIFERUM 2) and PPT (PALMITOYL PROTEIN 

THIOESTERASE) 

The putative acyl-transferase CER2 is the second gene chosen for Y2H cDNA 

library screening, due to its very peculiar nuclear localization, surprising for a 

protein with such a function. The cDNA library Y2H screening, performed with 

CER2 as bait revealed a total of five putative interactors.  

Table 3. Putative interactors of CER2. Int. Test (colonies), test mating of each interactor – results 
given in number of colonies; EBV, empty bait vector; B, bait: CER2. 

No Accession 
No. Predicted protein function LacZ+ 

Growth after 
re-streaking 

on QDO 

Int. Test 
(colonies) 

EBV B 
1 AT5G15090.1 putative porin / putative 

voltage-dependent anion-
selective channel protein 

+ + 5 10 

2 AT1G20810.1 immunophilin / FKBP-type 
peptidyl-prolyl cis-trans 
isomerase family protein 

+++ + 8 17 

3 AT5G15090.1 putative porin / putative 
voltage-dependent anion-
selective channel protein 

+ + 3 8 

4 AT5G15090.1 putative porin / putative 
voltage-dependent anion-
selective channel protein 

+ + 8 8 

5 AT3G55520.1 immunophilin, putative / 
FKBP-type peptidyl-prolyl 
cis-trans isomerase, putative 

++ + 22 7 
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To test whether the interactors activate the LacZ reporter gene, each interactor was 

re-transformed in the corresponding yeast strain and mated with the empty bait 

vector and the bait, respectively, The identity of the putative interactors as well as 

their LacZ phenotype are listed in table 3 above. 

 

The most probable interactor of CER2 is the immunophilin AT1G208810, due to the 

fact that the test-mating of this putative interactor resulted in a higher number of 

colonies when mated with the bait, as compared to the mating with the empty bait 

vector. 

PPT is a third gene, which might provide valuable insight into the mechanisms that 

a plant uses to compensate for a deficient cuticle formation. It was found to be up-

regulated in three independent cuticular mutants (Voisin, 2008) and putative 

interactors could bring new insight into its implication in cuticle development. 

Two putative interactors were isolated from the cDNA library by Y2H, using PPT as 

bait. After testing each interactor by mating with the empty bait vector and 

respectively with the bait, both interactors seem to be false positives, due to the fact 

that both of them give a higher number of colonies when mated with the empty bait 

vector, as compared to the mating with the bait (table 4).  

 

Table 4. Putative interactors of PPT. Int. Test (colonies), test mating of each interactor – results given 
in number of colonies; EBV, empty bait vector; B, bait: PPT. 

No Accession 
No. Predicted protein function LacZ+ 

Growth after 
re-streaking 

on QDO 

Int. Test 
(colonies) 

EBV B 
1 AT1G20960.1 ATP-dependent helicase 

 
+ + 18 14 

2 AT1G23490.1 ADP – ribosilation factor 
 

+++ + 9 2 

 

The results of the Y2H cDNA library screening require further in vivo confirmation.  
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DISCUSSION  

CER13/RST1 COULD FUNCTION AS A RECEPTOR OR AS A 

TRANSPORTER IN WAX BIOSYNTHESIS 

The present study has shown that cer13 is allelic to rst1. The RST1 gene was 

previously reported to encode a predicted 1,841-amino acid protein with a molecular 

mass of 203.6 kD and a theoretical pI of 6.21. Transcript of RST1 was found in 

leaves, flowers, roots, stems, and siliques, but accumulation levels were not 

correlated with the degree to which different organs appeared affected by the 

mutation (Chen et al., 2005). Furthermore, the same study conducted by Chen et al. 

(2005) indicated that the RST1 protein does not show high identity to any protein of 

known function. However, it was 34% (636/1,841) identical and had 51% 

(964/1,841) positives to the 1,842-amino acid annotated rice protein 

OJ1276_B06.27 (GenBank BAB92518) and no integral membrane domain was 

found in the RST1 protein by the TMHMM program. RST1 was predicted to target 

the mitochondria with TargetP score of 0.550 and probable signal sequence length 

of 78 amino acids (Chen et al., 2005). When using the ARAMEMNON database 

(Schwacke et al., 2003), the present study indicates that CER13/RST1 could have up 

to 9 trans-membrane domains when aligned with its rice homolog (OS01G07490). 

Thus, CER13/RST1 may function as receptor in the regulation of wax biosynthesis. 

CER13/RST1 MODULATES WAX BIOSYNTHESIS THROUGH 

CER3/WAX2/YRE  

Microarray analysis conducted in this study revealed a three-fold down-regulation of 

CER3/WAX2/YRE and this data was confirmed by qRT-PCR. In previous studies, 

the cer13 mutant was reported to have decreased amounts of C28 free fatty acids, 

C28 and C30 aldehydes, C27 and C29 alkanes, C29 secondary alcohols and C29 

ketone on the stem. These decreases were coupled with increased amounts of longer 
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chain length components for both primary alcohols (C30) and alkanes (C31) 

compared to wild-type. Based on this data, it has been proposed that CER13 is 

involved in C30 fatty acid to C30 aldehyde reduction (Rashotte et al., 2001). 

However, the possibility that cer13 could also have defects in a C30 fatty acid 

elongase release mechanism were not ruled out and it was also proposed that this 

would provide fatty acids to the alkane flux of the pathway (Rashotte et al., 2001; 

Jenks et al., 1995). Furthermore, it was noticed that the cer3 and cer7 mutants have 

a highly similar biochemical pattern of stem cuticular wax constituents (Jenks et al., 

1995; Rashotte et al., 2001). CER3 encodes a protein related to the aldehyde 

decarbonylase encoded by CER1 (Aarts et al., 1995). Although it is known that 

CER3 is required for acyl-CoA reduction to aldehydes, its function is still uncertain. 

CER7 encodes the RNase PH-type subunit RRP45B exosome. Interestingly, CER7 

seems to act by degrading the transcript of a transcriptional repressor, since its 

mutation was found to reduce transcript levels of endogenous CER3 and of E. coli β-

glucuronidase (GUS) in pYRE:GUS transgenic lines (Hooker et al., 2007). 

Since the cer13 mutation does not cause a complete loss of C30 aldehyde or 

subsequently derived pathway products, a hypothesis was already formulated that 

more than one gene product is needed for the conversion of C30 fatty acid to C30 

aldehyde in A. thaliana (Rashotte et al., 2001). Due to the highly similar 

biochemical pattern in the components of epicuticular wax on the stems of cer13, 

cer3 and cer7, coupled with the down-regulation of CER3 in cer13 and in cer7, at 

least one of the other gene products mentioned above could be CER3. The data from 

wax analysis is consistent with the expression analysis data and constitute a strong 

indicator that CER3/WAX2/YRE acts in the same pathway as CER13. Thus, CER3 

is a key player in the wax biosynthesis and it is regulated by both CER13 and CER7. 

CER13/RST1 PROVIDES A LINK BETWEEN WAX 

BIOSYNTHESIS, IMMUNITY AND LIGHT SIGNALING 

The cer13 mutant was previously reported to show organ fusion (Jenks et al., 2002), 

a phenotype that varies according to the growth conditions, especially humidity 

(Lolle et al., 1997). Seeds of cer13 were also reported as shrunken and to have 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TH7-42R6PCV-J&_user=5944238&_coverDate=05%2F31%2F2001&_rdoc=1&_fmt=full&_orig=search&_cdi=5275&_sort=d&_docanchor=&view=c&_acct=C000004639&_version=1&_urlVersion=0&_userid=5944238&md5=5f97bf4fd7a02edcab2ec5ebbcd223b7#bib3
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decreased constituents of the seed coat (Faust, 2006). In Ler-0 background, the 

cer13 allele exhibits a pleiotropic phenotype that includes a decreased wax load on 

stems and siliques and stunted stature, both responsive to photoperiod. Such 

phenotypes indicate that CER13 could play a role in regulation. The ressurrection1 

(rst1) mutant alleles were reported to have a decreased wax load on the shoots and 

siliques, coupled with a biochemical pattern of the wax components similar to that 

of cer13 (Chen et al., 2005).  

The microarray results obtained in this study revealed three up-regulated genes that 

are involved in jasmonate (JA) signaling. Several transcription factors involved in 

plant defense against pathogens are also up-regulated in cer13 transcripts. The 

MASTA analysis revealed numerous coupling-phase overlaps between up-regulated 

genes in cer13 and up-regulated genes involving pathogen-related mutants, as well 

as BTH treatments. Although the mechanisms are not yet clear, this data does 

indicate that wax biosynthesis is linked to JA- and SA-mediated defence.  

In the plant’s interaction with non-biotic factors, the cuticle acts as a protective 

layer, shielding the plant so that these factors would not become stressors. However, 

when the shield itself is dysfunctional, the plant perceives certain environmental 

factors as stressors and responds accordingly. Interestingly, according to the 

MASTA analysis, the incomplete epicuticular wax layer present on cer13 seems to 

mimic transcriptionally the cold and drought stresses. Additionally, the variability in 

the stunted stature of cer13 as well as the variation in wax load as responses to day 

length are indicators that light is a factor that contributes actively to the regulation of 

wax biosynthesis.  

Thus, one can propose that CER13 integrates signals from light and defense 

responses with those involved in wax biosynthesis and regulation. 

CUTICLE DEVELOPMENT IS GOVERNED BY A COMPLEX 

REGULATORY NETWORK 

Transgenic Arabidopsis plants that expressed and secreted a cutinase from Fusarium 

solani f. sp. pisi resulted in altered ultrastructure of the cuticle, enhanced 

permeability to solutes and strong postgenital organ fusions. In addition, pollen can 
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germinate on fully differentiated leaves of the cutinase-expressing plants (Sieber et 

al., 2000). From such an extreme reaction, as well as from the numerous mutants 

characterized up to date it was inferred that an intact cutin layer is needed for normal 

epidermal differentiation and organ formation (Nelson, 2004; Yephremov and 

Schreiber, 2005; Nawrath, 2006).  

The ABNORMAL LEAF SHAPE1 (ALE1) gene of Arabidopsis is expressed during 

the very first developmental stage of the plant (Tanaka et al., 2001) and was used in 

the present study as bait in a Y2H cDNA library screening. The results obtained 

with the screening indicate subunit 5 of the constitutively photomorphogenic 9 

(COP9) signalosome (CSN) as main ineractor of ALE1. CSN is a multisubunit 

protein complex located in the nucleus and is highly conserved throughout 

evolution. Initially defined as a repressor of photomorphogenesis in Arabidopsis, it 

has now been found to participate in the regulation of a variety of signaling and 

developmental processes, including embryogenesis, cell cycle, circadian rhythms, 

DNA repair, and plant responses to light and hormones (Wei and Deng, 2003). CSN 

is highly homologous to the lid sub-complex of the 26S proteasome and it is 

composed of eight distinct subunits called CSN1 to CSN8; six contain the PCI 

domain (proteasome, COP9 signalosome, initiation factor3) and two the MPN 

domain (Mpr1-Pad1-N-terminal). CSN5 contains an MPN domain and it has over 

60% identity between its animal and plant counterparts. In Arabidopsis, two 

conserved genes, named CSN5A and CSN5B encode two isoforms of CSN5. The 

two genes (At1g22920 and At1g71230) are located on the opposite arms of 

chromosome one and sequence analyses indicated that CSN5A and CSN5B share 86 

and 88% identity at the nucleotide (cDNA) and protein levels, respectively (Wei and 

Deng, 2003). Mutations in the Arabidopsis CSN5A but not CSN5B have resulted in 

multifaceted developmental defects at vegetative and reproductive stages 

(Gusmaroli et al., 2007). In plants and mammals, several CSN subunits are unstable 

in an unbound form (Wei and Deng, 2003). Furthermore, Gusmaroli et al., (2007) 

showed that the MPN subunits are essential for the CSN holocmplex assembly and 

stability and they are inactive in an unbound form. It is possible therefore that ALE1 

would hydrolyze the unbound CSN5, preventing thus the formation of the CSN 

holocomplex. The interaction of CSN5A and CSN5B with ALE1 would thus indicate 
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that the differentiation of epidermal cells at embryo stage might require the 

repression of all processes that are mediated by the COP9 signalosome.  

The high diversity of the proteins involved in cuticle development, many with 

unknown function, indicates that a broad regulatory network governs the formation 

of this active protective layer. Although still far from being elucidated, such a 

network is present at all key developmental stages of the plant. 
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CONCLUSION  

The plant cuticle is no longer considered only an inert physical barrier that protects 

the plant against biotic and non-biotic stress factors. Instead, it is required for 

normal development of organs and constitutes an active signaling interface 

throughout all developmental stages of the plant in its constant interaction with the 

environment (Martin, 1964; Chassot et al., 2008; Reina-Pinto and Yephremov, 

2009). In plant-biotic interactions, the cuticle is involved in a cross talk signaling 

between the plant and the potential pathogen, in both directions. Thus, when sensing 

breakdown producs of the cuticle, fungi would secrete cutinase and form appresoria 

(Lin and Kolattukudy, 1978; Kolattukudy, 1985; Woloshuk and Kolattukudy, 1986). 

In turn, plans would sense products resulting from a breakdown of the plant cell wall 

and these would act as elicitors of defense mechanisms (Boller, 1995).  

From the results available this far, one could infer that a highly complex metabolic 

network is involved in cuticle development. CER13 modulates wax synthesis via 

CER3 and when the protective shield is disrupted or does not function properly, the 

plant recurs to defense mechanisms that are normally used in response to biotic and 

abiotic stress factors. Thus, the plant uses a chemical barrier to compensate for the 

lack of its mechanical barrier. 
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MATERIALS AND METHODS 

MATERIALS  

Plant material and growth conditions 

Arabidopsis thaliana ecotypes Columbia (Col-0) and Landsberg erecta (Ler-0) were 

used as wild types (WT). Seeds of the following lines were ordered from the 

Nottingham Arabidopsis Stock Centre (NASC): Col-0 (N1093); Ler-0 (N8581); T-

DNA insertion lines rst1-2 (SALK_070359) and rst1-3 (SALK_129280) (Chen et 

al., 2005). Seeds of eceriferum13 (cer13-1, CS95) mutant were ordered from the 

Arabidopsis Biological Research Center (ABRC).  

A. thaliana plants were grown in the greenhouse or in growth chambers, under 

standard conditions (120 µmol⋅m-2⋅s-1 light, 60% relative humidity, 21°C), 16 hours 

light (long day, LD) or 8 hours light (short day, SD), on commercially available soil.  

The cultivation on plates was done on medium, containing ½ MS salt (2.21 g/l), 

Bacto agar (8 g/l), and cysteine (400 mg/l) for 1 l distilled H2O, pH 5,7 (adjusted 

with KOH) and sterilized by autoclaving before use. In the case of selective growth, 

the medium was supplemented with the appropriate antibiotic. 

Bacterial strains and cultivation conditions 

Cultivation of E. coli DH10B (Invitrogen) was usually performed in LB medium 

(Luria-Bertani Medium) as described by Sambrook et al., (1989). LB medium 

contains: Bacto-tryptone (20 g/l), Bacto-yeast-extract (5 g/l) and NaCl (0.5 g/l) 

added to 950 ml H2O. The pH was adjusted to 7.0 with 5N NaOH and the volume 

was subsequently brought to 1l (in the case of solid medium, 15 g/l Bacto Agar was 

added). The medium was sterilized by autoclaving for 20 minutes at 120°C. 

Agrobacterium tumefaciens strain GV3101 (pMP90) cells (Koncz and Schell, 1986) 

were grown in YEB medium (Yeast Extract Broth) containing: Bacto-tryptone (5 

g/l); Bacto-yeast-extract (1 g/l); Bacto-peptone (1 g/l); sucrose (5 g/l), in 950 ml 

H2O. The pH was adjusted to 7.0 with 5 M NaOH and the volume was brought to 1l 
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(in the case of solid medium, Bacto Agar (15 g/l) was added). The medium was 

sterilized by autoclaving for 20 minutes at 120°C. 

Antibiotics and selection solutions  

The solvent used for the stock solutions is sterilized double distilled H2O, unless 
otherwise stated. 
 

Solution Final concentration 

Ampicillin  100 µg / ml 

Kanamicin 50 µg / ml 

Chloramphenicol 34 µg / ml 

Gentamycin 50 µg / ml 

X-Gal, in dimethylformide (DMFA) 80 µg / ml 

Rifampicin, in DMFA 100 µg / ml 

IPTG 0,5 mM 

Enzymes and reaction kits 

Enzymes 

RedTaq Genomic DNA polymerase, Sigma-Aldrich (Germany) 

PrimeSTARTM HS DNA Polymerase, TaKaRa BIO INC. (Japan) 

Phusion High-Fidelity DNA Polymerase, Finnzymes (Finland) 

KOD XL DNA Polymerase, Novagen (Germany)  

T4 DNA ligase: Promega (Germany) 

One-step RT PCR kit, Qiagen, (Germany) 

IQ™ SYBR Green Supermix, Bio-Rad Laboratories (Germany) 

Restriction endonucleases: New England Biolabs (Germany) 

Reaction kits 

DNeasy® Plant Mini Kit, Qiagen (Germany) 

QIAprep® Spin Miniprep Kit, Qiagen (Germany) 

RNeasy® Plant Mini Kit, Qiagen (Germany) 

GenEluteTM mRNA Miniprep Kit, Sigma-Aldrich (Germany) 

QIAquick PCR purification kit Qiagen, Hilden, Germany 
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YeastmakerTM Yeast Plasmid Isolation Kit, Clontech (Germany) 

Phusion® Site-Directed Mutagenesis Kit, Finnzymes (Finland) 

Synthetic oligonucleotides 

Primers for the genetic markers used in the cer13 mapping process 

Lists of polymorphisms between the ecotypes Col-0 and Ler-0 were downloaded 

from “Monsanto Arabidopsis Polymorphysm and Ler Sequence Collections” in 

“The Arabidopsis Information Resource” (TAIR) database: 

http://www.arabidopsis.org/browse/Cereon/index.jsp. Single nucleotide 

polymorphisms (SNPs) and small insertions/deletion (InDel) DNA polymorphisms 

between the Columbia and Landsberg erecta ecotypes were selected for primers 

design. Primers for InDel markers were designed manually, whereas primers for 

SNP markers were designed using the SNAPER program (Drenkard et al., 2000): 

http://ausubellab.mgh.harvard.edu/. 

Primers used for T-DNA insertion lines analysis 

The sequences of oligonucleotides for T-DNA insertion lines analysis were obtained 

by using the “T-DNA Primer Design” tool: 

http://signal.salk.edu/tdnaprimers.2.html. 

Oligonucleotides used to amplify genes, for cloning 

The primers used for the amplification of genes with the purpose of cloning were 

designed containing cleavage sites for restriction enzymes that are non-cutters of the 

respective fragment.  

Oligonucleotides for qRT-PCR 

All the synthetic oligonucleotides used for qRT-PCR were designed with the 

Primer-BLAST program (http://www.ncbi.nlm.nih.gov/tools/primer-blast), 

developed from Primer3 (Rozen and Skaletsky, 2000). Full length CDS of the 

selected gene was inserted as template and the following conditions were different 

from the default settings: PCR product size of minimum 80 and maximum 105 

nucleotides; Tm: minimum 61°C, optimum 62°C, maximum 63°C; GC content: 
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minimum 45%, maximum 55%; primer pair specificity was set for the organism 

Arabidopsis thaliana (taxid: 3702).  

Equipment 

Standard equipment for molecular biology laboratory was used throughout this 

project. All non-standard equipment is indicated in the description of the respective 

method.  
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METHODS 

Observation of plant material 

The assessment of the wax phenotype was made by direct observation and by using 

light binoculars or scanning electron microscopy. Transgenic plants expressing 

fluorochrome markers were observed by confocal microscopy.  

Scanning electron microscopy (SEM) 

Fragments of the main shoot, from 2 cm above the rosette level as well as siliques 

with pedicel, of Ler-0, cer13, rst1-3, F1:cer13 x rst1-3 and Col-0 were used as 

observation material. The samples were deep-frozen and sputtered with palladium 

using the K1250X cryogenic preparation system (Emitech, Ashford Kent, England). 

The observation of the samples was carried out with a Zeiss SUPRA™ 40VP 

scanning electron microscope.  

Confocal microscopy  

Leaves of five weeks old Arabidopsis plants as well as transverse sections of shoots 

from eight weeks old plants expressing CER13-DsRED were placed in water, 

between microscope slide and cover glass. A Zeiss LSM 510 META confocal laser 

scanning microscope (Zeiss, Germany) was used for the analysis, with the settings 

as recommended by the manufacturer, according to the sample requirements.  

Isolation of nucleic acids 

Nucleic acids were mostly isolated with QIAGEN kits. Genomic DNA for map-

based cloning was isolated from leaf tissue (approximately 0,25 cm2 leaf material) 

by 15 minutes boiling in extraction buffer (0,2M Tris-HCl ph9; 0,4M LiCl; 25mM 

EDTA; 1% SDS) followed by precipitation with 2-propan-diol (v/v), 10 minutes 

centrifugation at maximum speed and re-suspension of the resulting DNA pellet in 

TE buffer (10mM Tris pH 8; 1mM EDTA). The concentration of nucleic acids was 

determined using the NanoDrop® ND-1000 spectrophotometer (PeqLab, Germany); 

RNA quality was also assessed by electrophoresis on 1% agarose gel.  
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Amplification of DNA fragments via polymerase chain reaction (PCR) 

For mapping and checking the presence of inserts in specific vectors, a standard 

PCR reaction was performed, using the RedTaq® DNA Polymerase (Sigma), 

according to the producer’s instructions.  

 

Standard PCR mixture: 

Component Volume (µl) 

10 µM Forward Primer 1 

10 µM Reverse Primer 1 

2mM dNTP mix (Fermentas) 2 

10x Buffer with MgCl2 (Sigma) 2,5 

RedTaq® Genomic DNA Polymerase (Sigma) (1U) 1 

Sterilized, ddH2O Until a total of 25 µl 

DNA template 10-20 ng  

 

Standard programme for a PCR reaction: 

Step Temperature (°C) Time Number of 

repetitions 

Denaturation 95 3 min 1 

Denaturation  95 30 sec  

Annealing 581 30 sec 35 

Extension 72 30 sec2  

Final extension 72 10 min 1 

Store 4 ∞ - 

 

PCR amplifications of DNA fragments to be subsequently used for cloning were 

performed using either KOD XL DNA Polymerase (Novagen) or PrimeSTARTM HS 

DNA Polymerase (TaKaRa), using the conditions specified by the respective 

producer.  

                                                 
1 Annealing temperature was calculated for each primer pair as Tm minus 5°C 
2 Extension time was 1 minute per 1kb DNA 
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DNA cloning methods 

Standard cloning methods were performed as described by Sambrook and Russell 

(2001). The presence of the desired insert was checked in the isolated plasmid DNA 

by restriction analysis as well as sequencing. 

Site-directed mutagenesis (SDM) 

As ALE1 encodes a protein with hydrolytic function, I mutagenized the H aminoacid 

of the catalytic triad from position 252 into alanine (A), by site directed mutagenesis 

(Finnzymes), in order to avoid the hydrolysis of a putative interactor. After 

sequencing analysis, four out of 12 separate mutagenized clones (ALE1H252A) 

could be used further for cloning into the pGBKT-T vector containing the DNA 

binding domain (DBD), for the Y2H cDNA library screening. 

Transformation of electro-competent bacteria by electroporation  

Electrocompetent Escherichia coli cells were prepared according to Sambrook et al., 

(1989) and Agrobacterium tumefaciens cells were prepared as described by Nagel et 

al. (1990). Transformation of electro-competent bacteria E. coli was performed 

according to Dower (1988) and of A. tumefaciens strain GV3101 (pMP90RK) was 

carried out as described by Mersereau et al., (1990). An amount of 50 – 100 ng 

DNA (in less than 10% of the cells volume) was mixed with a 50µl aliquot of 

electro-competent cells on ice and the mixture was transferred to a cold 1 mm 

electroporation cuvette. The electroporation was carried out at 1.6 kV for E.coli and 

1.8 kV for A. tumefaciens, with 5 msec pulse length, in the electroporator 

(Electroporator 2510, Eppendorf). After electroporation, the cells were suspended in 

950 µl of YEB medium (with no antibiotic), transferred to 15 ml falcon tubes and 

incubated one hour at 37°C in the case of E.coli and at 28°C for 2 – 3 hours in the 

case of A. tumefaciens, with 250 rpm shaking (Shaker Innova 44, New Brunswick 

Scientific). Subsequently, all the transformed cells were plated using 100 µl per LB 

plate with selective antibiotics (in the case of E.coli transformed cells) or per YEB 

plate with selective antibiotics (Rifampicin, Gentamicin and the selection antibiotic 

carried by the respective vector in the case of A. tumefaciens transformed cells). 
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Plates with E.coli transformed cells were incubated for 16 hours at 37°C and plates 

with A. tumefaciens cells were incubated for 48 hours at 28°C.  

Transformation of Saccharomyces cerevisiae yeast cells 

S. cerevisiae competent yeast cells (strains AH109 and Y187) were prepared and 

transformed according to “MatchmakerTM Library Construction & Screening Kits 

User Manual”, protocol number PT3955-1, version number PR742237.  

Y2H cDNA library screening 

The bait plasmid was transformed into Saccharomices cerevisiae yeast strain Y187, 

whereas the empty activating domain (AD) vector, as well as a mixed Arabidopsis 

cDNA library of polyA-tailed cDNAs from total plant tissues harvested at different 

developmental stages, cloned into the AD vector, were transformed into the yeast 

strain AH109. Prior to the cDNA library screening, a test mating between the yeast 

strain containing the bait and the one containing the empty AD vector proved that 

the bait is not toxic for the yeast cells and that it does not interact with the AD of the 

library vector. The same mating test was performed to establish the most suitable 

selection medium, which proved to be the quadruple drop-out (QDO). The identity 

of the putative interactors was established by sequence analysis on PCR products 

obtained according to the “Matchmaker™ Library Construction & Screening Kit 

User Manual”, protocol PT3955-1, version PR742237. β-Galactosidase expression 

tests were performed as described by (Gusmaroli et al., 2007). 

To check whether the putative interactors bind to the DBD, as compared to the bait, 

each of the possible interactors, as well as the empty prey vector, were transformed 

into the yeast strain AH109 and mated with the Y189 strain containing empty DBD 

vector (pGBKT7) and the bait vector, respectively.  

Agrobacterium-mediated transformation of Arabidopsis thaliana  

Agrobacterium tumefaciens strain GV3101 (MP90) was used for transformation of 

Arabidopsis thaliana (Clough and Bent, 1998), following the protocol described by 

(Logemann et al., 2006). Plants resistant to glufosinate (commercially known as 

Basta® - Bayer CropScience, Germany) were grown on soil and selected by 
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spraying 0,01% Basta® at eight days after germination. Kanamicin-resistant 

transformants of T1 generation were selected by the non-sterile method described by 

(Hadi et al., 2002) as well as on MS plates containing 37,5 µg/ml Kanamicin. 

Generation of transgenic plants for fluorescence expression studies  

 A region containing the 5’UTR as well as the ORF of CER13, excluding the stop 

codon was amplified by PCR using primers FP_T175_XhoI 

(TTTTTTCTCGAGGTGATCGGCGTGTGCATGTAGA) and RP_T201_ScaI 

(AAAAAAAGTACTGCAGCAAGACATGTCCATAGAAGCAAGTCTAAGC) (XhoI and ScaI 

sites are underlined in the primer sequences). The XhoI/ScaI fragment was cloned 

into the pBHSGFP62 and respectively pBctDsRED binary vectors (Efremova et al., 

2004). Arabidopsis thaliana WT Col-0 and Ler-0, mutants cer13 and rst1-3, as well 

as marker lines expressing YFP and GFP fluorochromes were transformed with the 

resulting plasmid containing CER13-DsRED (Logemann et al., 2006). Transgenic 

plants were selected using 0,01% Basta® and analyzed by confocal laser-scanning 

microscopy.  

In situ hybridization  

Two PCR fragments were generated with the following primers containing SP6 or 

T7 regions, as indicated in the respective primer name. FP_T202_CER131-SP6 

(CTCGAGTTTAGGTGACACTATAGAACTGGAGGGATTCCGCTTTCAGATT

CGTC) was used with the RP_T203_CER132-T7 

(CTCGAGTAATACGACTCACTATAGGGAGCGCACCAGGTAGTTCTCCAGT

C), to generate one PCR fragment. The second PCR fragment was generated using 

primers FP_T204_CER133-SP6 

(CTCGAGTTTAGGTGACACTATAGAACTGGAGCACTCTTGTAAAAGGAGC

CTGTGG) and primer RP_T205_CER134-T7 

(CTCGAGTAATACGACTCACTATAGGGAGTTCCAATGAAGTCCATAGAAA

CGAG). Using these PCR fragments, the probe preparation, the hybridization 

procedure and the immunohistochemical detection were conducted by Dr. Nadia 

Efremova, as described previously (Zachgo et al., 2000; Efremova et al., 2004). 
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Seed surface sterilization 

The seeds were washed with 70% ethanol (v/v) for approximately 40 seconds and 

after a brief centrifugation step, the supernatant was removed by pipetting. Two 

consecutive washing steps were subsequently performed with sterilized ddH2O. The 

seeds were re-suspended in distilled water and were thus ready for cultivation on 

sterile agar plates, using a P20 pipette with the tip cut off (allowing the seeds to 

pass). 

Positional cloning and identification of CER13 

For the identification of cer13 locus, a map-based cloning approach was used 

(Lukowitz et al., 2000). An F2 generation of cer13 crossed to Colombia (Col-0) was 

generated and used as mapping population. Single nucleotide polymorphisms 

(SNPs) and small insertions/deletion (InDel) DNA polymorphisms between the 

Columbia and Landsberg erecta ecotypes were used as markers for mapping the 

cer13 locus. InDel markers were used to set an initial border for fine-mapping, 

whereas SNP markers were used for further positional cloning. A candidate gene 

approach was subsequently used, followed by the sequencing of the candidate gene 

using cer13 genomic DNA, compared to Ler-0 genomic DNA. For PCR 

amplification and sequencing, a genomic-DNA region of the candidate gene 

AT3G27670.1 was considered as follows: 5’ UTR: nucleotides (nt) 1 – 1471; ORF: 

1472 – 9292; 3’ UTR: 9293 – 9797. Due to the large size of the candidate gene, it 

was amplified in two fragments using KOD XL DNA polymerase (Novagen), for 

sequencing purpose. The first fragment consisted of the 5’UTR and 1472-4990 nt 

from the ORF and it was amplified using primers FP: T175 (5’-

TTTTTTCTCGAGGTGATCGGCGTGTGCATGTAGA-3’) and RP: T178 (5’-

TTTTTTAGTACTGATTACAAGCTCTATACCTGTGCTCGTGAA-3’), with an 

expected size of 5014 base pairs (bp) PCR product. The second PCR fragment 

consisted of a region from nucleotides 4903 – 9292 of the ORF, plus the 504 bp 

region of 3’ UTR and was amplified using the primers FP: T177 (5’-

TTTTTTCTCGAGCGGAGACAAATGCGGAAATTCTGAA-3’) and RP: T176 

(5’-TTTTTTAGTACTTCATAATAATAGCATCAACAAAAATAATCAGAAC-

3’) with an expected size of 4918 nt.  The PCR fragments were cleaned by 
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MICROCON (Milipore) and were sequenced. For the biological confirmation of 

CER13 identity, an allelism test was performed by crossing cer13 to rst1-3.  

Ethyl methanesulfonate (EMS) mutagenesis on rst1-3 

EMS mutagenesis was performed as previously described (Kim et al., 2006), on 

2,05 g (approximately 75 000) seeds of rst1-3. Approximately 5100 freshly 

mutagenized seeds were sown on soil. The resulting M1 population was screened for 

supressors of the rst1-3 wax phenotype.  

Transcriptome analysis 

Total RNA was extracted from pieces of stems of approximately 1,5 cm length, 

located immediately below the inflorescence of 4 weeks old plants, using the 

RNeasy Plant Minikit (QIAGEN). Three biological replicates for each genotype 

(cer13 and Ler-0) were sent to the Integrated Functional Genomics (IFG, Muenster, 

Germany), platform of the Westfalian-Wilhelms-University (Muenster, Germany; 

http://ifg-izkf.uni-muenster.de/Genomik/) for a further quality checking, 

concentration optimisation, preparation of biotin-labeled cRNA probes, 

hybridization to GeneChip Arabidopsis ATH1 Genome Arrays (Affymetrix, 

900385), washes and scanning of the slides. There were no technical replicates. Data 

from CEL files was analyzed using a script based on the rank-prod method and 

written to run in the R-environment (http://www.r-project.org/). Two lists of 

differentially expressed genes (DEGs) ranked according to false discovery rate 

(FDR) were generated, containing the top five thousand up- and respectively down-

regulated genes. To estimate FDR, pfp (prediction of false positive) values have 

been calculated from 100 permutations and the predicted differentially expressed 

genes (DEGs) have been ordered by increasing pfp value. A 5% (0.05) pfp cutoff 

has been applied to define DEGs in the cer13 mutant.  

The top-DEGs with a fold-change of at least 1.9 and a p-value smaller than 0.003 

were considered for confirmation with qRT-PCR, excluding the genes encoding 

putative proteins of unknown function. The two lists of DEGs were used for in silico 

suppressor/enhancer screen. 
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In silico suppressor/enhancer screen by MicroArray overlap Search Tool and 

Analysis (MASTA) 

The script for the meta-analytic software MASTA (MicroArray overlap Search Tool 

and Analysis) was written by Dr. Alexander Yephremov to run in R (http://www.r-

project.org) and its purpose is to find similarities between a certain number of top 

DEGs from a query contrast (cer13 versus WT) and the same number of top DEGs 

from contrasts (mutant vs. wild type or treatment vs. control) of a database. 

To date, the MASTA database comprises DEGs for over 600 contrasts calculated 

from CEL files that were downloaded from the publicly available databases Gene 

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo), ArrayExpress 

(http://www.ebi.ac.uk/microarray-as/ae/), TAIR AtGenExpress (http://www. 

arabidopsis.org/index.jsp) and Integrated Microarray Database System 

(http://ausubellab.mgh.harvard.edu/imds) or via the NASC Affywatch subscription 

service (http://nasc.nott.ac.uk/). Several CEL files in the MASTA database have 

been obtained from authors’ websites or directly from authors. The top one hundred 

of the RankProd-selected DEG lists containing up- and down-regulated genes were 

taken for the overlap analysis in this report. PDF files obtained as an output of the 

MASTA analysis were imported to Adobe Illustrator (Adobe Systems, San Jose, 

CA) for assembly. The statistical significance of the overlap between two DEG lists 

was determined using the online program available at 

http://elegans.uky.edu/MA/progs/overlap_stats.html. 

When two contrasts are considered (query contrast and compared contrast), there are 

four possibilities of overlaps: two “coupling-phase” overlaps (up-regulated genes in 

the query contrast overlap with up-regulated genes in the compared contrast, down-

regulated genes in the query contrast overlap with down-regulated genes in the 

compared contrast) and two “repulsion-phase” overlaps (up-regulated genes in one 

contrast overlap with down-regulated genes in the other contrast and the other way 

around).  

qRT-PCR 

Total RNA from one of the biological replicates in the microarray experiment was 

used for qRT-PCR. First strand cDNA was generated with Superscript II 

(Invitrogen) reverse transcriptase, from 3µg of total RNA. IQ SYBR® Green 

http://www.r-project.org/
http://www.r-project.org/
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Supermix (Bio-Rad), containing SYBR Green I dye, hot-start iTaq DNA 

polymerase, optimized buffer and dNTPs qualified for quantitative PCR. The real-

time PCR detection was carried out using a MyIQ detection system (Bio-Rad). The 

reaction was carried out with the parameters listed below.  

 

Standard qRT-PCR mixture: 

Component Volume (µl) 

10 µM Forward Primer 1,25 

10 µM Reverse Primer 1,25 

SYBR® Green  12,5 

cDNA 10 

Total volume 25 

 

Standard programme for a qPCR reaction: 

Step Temperature 

(°C) 

Time Number of 

repetitions 

Data 

acquisition 

Denaturation 95 3 min - - 

Denaturation  95 30 sec  - 

Annealing 583 30 sec 50 X PCR 

Extension 72 30 sec4  RT 

Denaturation 95 1 min - - 

Annealing 55 1 min  - 

Annealing 55 10 sec 81 X Melting curve 

Store 4 ∞ - - 

 

 
 

                                                 
3 Annealing temperature was calculated for each primer pair as Tm minus 5°C 
4 Extension time was used as 30 seconds for all reactions 



 58

 REFERENCES 

Aarts, M.G.M., Keijzer, C.J., Stiekema, W.J., and Pereira, A. (1995). Molecular 
Characterization of the CER1 Gene of Arabidopsis Involved in Epicuticular 
Wax Biosynthesis and Pollen Fertility. The Plant Cell Online 7, 2115-2127. 

Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., van Arkel, G., and Pereira, A. 
(2004). The SHINE clade of AP2 domain transcription factors activates wax 
biosynthesis, alters cuticle properties, and confers drought tolerance when 
overexpressed in Arabidopsis. The Plant Cell Online 16, 2463-2480. 

Baker, C.J., McCormick, S.L., and Bateman, D.F. (1982). Effects of Purified 
Cutin Esterase Upon the Permeability and Mechanical Strength of Cutin 
Membranes. Phytopathology 72, 420-423. 

Bengtson, C., Larsson, S., and Liljenberg, C. (1978). Effects of water stress on 
cuticular transpiration rate and amount and composition of epicuticular wax 
in seedlings of six oat varieties. Physiologia Plantarum 44, 319-324. 

Boller, T. (1995). Chemoperception of microbial signals in plant cells. Annual 
Review of Plant Biology 46, 189-214. 

Byeong, L., Kim, Y.S., and Jian, K.Z. (2002). MOLECULAR GENETICS OF 
PLANT RESPONSES TO LOW TEMPERATURES. Plant Cold Hardiness: 
Gene Regulation and Genetic Engineering, 3. 

Chassot, C., Nawrath, C., and Metraux, J.P. (2007). Cuticular defects lead to full 
immunity to a major plant pathogen. Plant Journal 49, 972. 

Chassot, C., Nawrath, C., and Metraux, J.-P. (2008). The cuticle: not only a 
barrier for plant defense, a novel defense syndrome in plants with cuticular 
defects. Plant Signaling & Behavior 3, 142 - 144. 

Chen, C., and Chen, Z. (2000). Isolation and characterization of two pathogen-and 
salicylic acid-induced genes encoding WRKY DNA-binding proteins from 
tobacco. Plant Molecular Biology 42, 387-396. 

Chen, X., Goodwin, S.M., Boroff, V.L., Liu, X., and Jenks, M.A. (2003). Cloning 
and Characterization of the WAX2 Gene of Arabidopsis Involved in Cuticle 
Membrane and Wax Production Article, publication date, and citation 
information can be found at www. plantcell. org/cgi/doi/10.1105/tpc. 
010926. The Plant Cell Online 15, 1170-1185. 

Chen, X., Goodwin, S.M., Liu, X., Chen, X., Bressan, R.A., and Jenks, M.A. 
(2005). Mutation of the RESURRECTION1 Locus of Arabidopsis Reveals 
an Association of Cuticular Wax with Embryo Development1. Plant 
Physiology 139, 909-919. 

Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., 
Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., and Ponce, M.R. 
(2007). The JAZ family of repressors is the missing link in jasmonate 
signalling. Nature 448, 666-671. 

Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for 
Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant 
Journal 16, 735-743. 



 59

Dong, J., Chen, C., and Chen, Z. (2003). Expression profiles of the Arabidopsis 
WRKY gene superfamily during plant defense response. Plant Molecular 
Biology 51, 21-37. 

Drenkard, E., Richter, B.G., Rozen, S., Stutius, L.M., Angell, N.A., Mindrinos, 
M., Cho, R.J., Oefner, P.J., Davis, R.W., and Ausubel, F.M. (2000). A 
Simple Procedure for the Analysis of Single Nucleotide Polymorphisms 
Facilitates Map-Based Cloning in Arabidopsis. Plant Physiology 124, 1483. 

Efremova, N., Schreiber, L., Bär, S., Heidmann, I., Huijser, P., Wellesen, K., 
Schwarz-Sommer, Z., Saedler, H., and Yephremov, A. (2004). Functional 
conservation and maintenance of expression pattern of FIDDLEHEAD-like 
genes in Arabidopsis and Antirrhinum. Plant Molecular Biology 56, 821-
837. 

Faust, A. (2006). Characterization of cuticular mutants in Arabidopsis thaliana. 
Ph.D. thesis, University of Cologne, Germany. 

Fiebig, A., Mayfield, J.A., Miley, N.L., Chau, S., Fischer, R.L., and Preuss, D. 
(2000). Alterations in CER6, a Gene Identical to CUT1, Differentially Affect 
Long-Chain Lipid Content on the Surface of Pollen and Stems. The Plant 
Cell Online 12, 2001-2008. 

Francis, S.A., Dewey, F.M., and Gurr, S.J. (1996). The role of cutinase in 
germling development and infection byErysiphe graminisf. sp. hordei. 
Physiological and Molecular Plant Pathology 49, 201-211. 

Gilbert, R.D., Johnson, A.M., and Dean, R.A. (1996). Chemical signals 
responsible for appressorium formation in the rice blast fungusMagnaporthe 
grisea. Physiological and Molecular Plant Pathology 48, 335-346. 

Goda, H., Sawa, S., Asami, T., Fujioka, S., Shimada, Y., and Yoshida, S. (2004). 
Comprehensive Comparison of Auxin-Regulated and Brassinosteroid-
Regulated Genes in Arabidopsis [w]. Plant Physiology 134, 1555-1573. 

Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, 
K.H., Oostendorp, M., Staub, T., Ward, E., and Kessmann, H. (1996). 
Benzothiadiazole, a novel class of inducers of systemic acquired resistance, 
activates gene expression and disease resistance in wheat. The Plant Cell 
Online 8, 629-643. 

Gusmaroli, G., Figueroa, P., Serino, G., and Deng, X.W. (2007). Role of the 
MPN Subunits in COP9 Signalosome Assembly and Activity, and Their 
Regulatory Interaction with Arabidopsis Cullin3-Based E3 Ligases. The 
Plant Cell Online 19, 564. 

Hadi, M., Kemper, E., Wendeler, E., and Reiss, B. (2002). Simple and versatile 
selection of Arabidopsis transformants. Plant Cell Reports 21, 130-135. 

Holloway, P.J. (1982). Structure and histochemistry of plant cuticular membranes: 
an overview. 

Hooker, T.S., Millar, A.A., and Kunst, L. (2002). Significance of the Expression 
of the CER6 Condensing Enzyme for Cuticular Wax Production in 
Arabidopsis. Plant Physiology 129, 1568-1580. 

Hooker, T.S., Lam, P., Zheng, H., and Kunst, L. (2007). A Core Subunit of the 
RNA-Processing/Degrading Exosome Specifically Influences Cuticular Wax 
Biosynthesis in Arabidopsis. The Plant Cell Online 19, 904. 

James, D.W.J., Lim, E., Keller, J., Plooy, I., Ralston, E., and Dooner, H.K. 
(1995). Directed Tagging of the Arabidopsis FATTY ACID 



 60

ELONGATION1 (FAE1) Gene with the Maize Transposon Activator. The 
Plant Cell Online 7, 309-319. 

Jeffree, C.E. (1986). The cuticle, epicuticular waxes and trichomes of plants, with 
reference to their structure, functions and evolution. 

Jeffree, C.E. (2006). The fine structure of the plant cuticle. (Blackwell Publishing 
Ltd.). 

Jenks, M.A., Eigenbrode, S.D., and Lemieux, B. (2002). Cuticular waxes of 
Arabidopsis. The Arabidopsis Book, 1-22. 

Jenks, M.A., Tuttle, H.A., Eigenbrode, S.D., and Feldmann, K.A. (1995). Leaf 
epicuticular waxes of the eceriferum mutants in Arabidopsis (Am Soc Plant 
Biol), pp. 369-377. 

Khanna, R., Shen, Y., Toledo-Ortiz, G., Kikis, E.A., Johannesson, H., Hwang, 
Y.S., and Quail, P.H. (2006). Functional profiling reveals that only a small 
number of phytochrome-regulated early-response genes in Arabidopsis are 
necessary for optimal deetiolation. The Plant Cell Online 18, 2157. 

Kim, Y., Schumaker, K.S., and Zhu, J. (2006). EMS mutagenesis of Arabidopsis. 
METHODS IN MOLECULAR BIOLOGY-CLIFTON THEN TOTOWA- 
323, 101. 

Kinkema, M., Fan, W., and Dong, X. (2000). Nuclear localization of NPR1 is 
required for activation of PR gene expression. The Plant Cell Online 12, 
2339-2350. 

Kolattukudy, P.E. (1985). Enzymatic penetration of the plant cuticle by fungal 
pathogens. Annual Review of Phytopathology 23, 223-250. 

Kolattukudy, P.E. (2001). Polyesters in higher plants. Advances in biochemical 
engineering, biotechnology 71, 1-49. 

Koornneef, M., Hanhart, C.J., and Thiel, F. (1989). A Genetic and Phenotypic 
Description of Eceriferum (cer) Mutants in Arabidopsis thaliana. Journal of 
Heredity 80, 118. 

Krolikowski, K.A., Victor, J.L., Wagler, T.N., Lolle, S.J., and Pruitt, R.E. 
(2003). Isolation and characterization of the Arabidopsis organ fusion gene 
HOTHEAD. The Plant Journal 35, 501-511. 

Kunst, L., and Samuels, A.L. (2003). Biosynthesis and secretion of plant cuticular 
wax. Prog. Lipid Res 42, 51-80. 

Kunst, L., Samuels, A.L., and Jetter, R. (2005). The plant cuticle: formation and 
structure of epidermal surfaces. (Oxford,UK: Blackwell). 

Kurdyukov, S., Faust, A., Trenkamp, S., Bär, S., Franke, R., Efremova, N., 
Tietjen, K., Schreiber, L., Saedler, H., and Yephremov, A. (2006). 
Genetic and biochemical evidence for involvement of HOTHEAD in the 
biosynthesis of long-chain α-,ω-dicarboxylic fatty acids and formation of 
extracellular matrix. Planta 224, 315 - 329. 

Lee, B., Henderson, D.A., and Zhu, J.K. (2005). The Arabidopsis cold-responsive 
transcriptome and its regulation by ICE1. The Plant Cell Online 17, 3155-
3175. 

Lin, T.S., and Kolattukudy, P.E. (1978). Induction of a Biopolyester Hydrolase 
(Cutinase) by Low Levels of Cutin Monomers in Fusarium solani f. sp. pisi. 
Journal of Bacteriology 133, 942. 

Logemann, E., Birkenbihl, R.P., Ülker, B., and Somssich, I.E. (2006). An 
improved method for preparing Agrobacterium cells that simplifies the 
Arabidopsis transformation protocol. Plant Methods 2, 16. 



 61

Lolle, S.J., Cheung, A.Y., and Sussex, I.M. (1992). Fiddlehead: an Arabidopsis 
mutant constitutively expressing an organ fusion program that involves 
interactions between epidermal cells. Dev Biol 152, 383-392. 

Lolle, S.J., Hsu, W., and Pruitt, R.E. (1998). Genetic analysis of organ fusion in 
Arabidopsis thaliana. Genetics 149, 607-619. 

Lolle, S.J., Berlyn, G.P., Engstrom, E.M., Krolikowski, K.A., Reiter, W.D., and 
Pruitt, R.E. (1997). Developmental regulation of cell interactions in the 
Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and 
cuticle. Dev. Biol 189, 311–321. 

Lukowitz, W., Gillmor, C.S., and Scheibe, W.R. (2000). Positional cloning in 
Arabidopsis: why it feels good to have a genome initiative working for you. 
Plant Physiology 123, 795 – 805. 

Martin, J.T. (1964). Role of cuticle in the defense against plant disease. Annual 
Review of Phytopathology 2, 81-100. 

McKown, R., Kuroki, G., and Warren, G. (1996). Cold responses of Arabidopsis 
mutants impaired in freezing tolerance. Journal of Experimental Botany 47, 
1919-1925. 

Millar, A.A., Clemens, S., Zachgo, S., Giblin, E.M., Taylor, D.C., and Kunst, L. 
(1999). CUT1, an Arabidopsis Gene Required for Cuticular Wax 
Biosynthesis and Pollen Fertility, Encodes a Very-Long-Chain Fatty Acid 
Condensing Enzyme. The Plant Cell Online 11, 825-838. 

Nawrath, C. (2006). Unraveling the complex network of cuticular structure and 
function. Curr Opin Plant Biol 9, 281-287. 

Nelson, T. (2004). Plant Signaling: Notes from the Underground. Current Biology 
14, 929-930. 

Pollard, M., Beisson, F., Li, Y., and Ohlrogge, J.B. (2008). Building lipid barriers: 
biosynthesis of cutin and suberin. Trends in Plant Science 13, 236-246. 

Pruitt, R.E., Vielle-Calzada, J.P., Ploense, S.E., Grossniklaus, U., and Lolle, S.J. 
(2000). FIDDLEHEAD, a gene required to suppress epidermal cell 
interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme 97, 
1311-1316. 

Rashotte, A.M., Jenks, M.A., and Feldmann, K.A. (2001). Cuticular waxes on 
eceriferum mutants of Arabidopsis thaliana. Phytochemistry 57, 115-123. 

Rashotte, A.M., Jenks, M.A., Ross, A.S., and Feldmann, K.A. (2004). Novel 
eceriferum mutants in Arabidopsis thaliana. Planta 219, 5-13. 

Reina-Pinto, J.J., and Yephremov, A. (2009). Surface lipids and plant defenses. 
Plant Physiology et Biochemistry. 

Riederer, M., and Schreiber, L. (2001). Protecting against water loss: analysis of 
the barrier properties of plant cuticles. Journal of Experimental Botany 52, 
2023. 

Rowland, O., Lee, R., Franke, R., Schreiber, L., and Kunst, L. (2007). The 
CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to 
WAX2/YRE/FLP1. Febs Letters 581, 3538-3544. 

Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and 
for biologist programmers. Methods Mol Biol 132, 365-386. 

Samuels, L., Kunst, L., and Jetter, R. (2008). Sealing Plant Surfaces: Cuticular 
Wax Formation by Epidermal Cells. Annu. Rev. Plant Biol 59, 683–707. 

Schaller, A. (2004). A cut above the rest: the regulatory function of plant proteases. 
Planta 220, 183-197. 



 62

Schwacke, R., Schneider, A., van der Graaff, E., Fischer, K., Catoni, E., 
Desimone, M., Frommer, W.B., Flugge, U.I., and Kunze, R. (2003). 
ARAMEMNON, a novel database for Arabidopsis integral membrane 
proteins. Plant Physiology 131, 16-26. 

Schweizer, P., Felix, G., Buchala, A., Müller, C., and Métraux, J.P. (1996). 
Perception of free cutin monomers by plant cells. The Plant Journal 10, 331-
341. 

Shepherd, T., Robertson, G.W., and Griffiths, D.W. (1995). Compositional 
analysis of intact alkyl esters in leaf epicuticular wax of swede by capillary 
gas chromatography and electron-impact mass spectrometry. Phytochemical 
Analysis 6. 

Sieber, P., Schordereta, M., Rysera, U., Buchalaa, A., Kolattukudyb, P., 
Métrauxa, J.-P., and Nawrath, C. (2000). Transgenic Arabidopsis Plants 
Expressing a Fungal Cutinase Show Alterations in the Structure and 
Properties of the Cuticle and Postgenital Organ Fusions. Plant Cell 12, 721-
738. 

Siezen, R.J. (1997). Subtilases: The superfamily of subtilisin-like serine proteases. 
Protein Science 6, 501-523. 

Staswick, P.E. (2008). JAZing up jasmonate signaling. Trends in Plant Science 13, 
66-71. 

Tanaka, H., Onouchi, H., Kondo, M., Hara-Nishimura, I., Nishimura, M., 
Machida, C., and Machida, Y. (2001). A subtilisin-like serine protease is 
required for epidermal surface formation in Arabidopsis embryos and 
juvenile plants. Development 128, 4681-4689. 

Thomas, D.A., and Barber, H.N. (1974). Studies on leaf characteristics of a cline 
of Eucalyptus urnigera from Mount Wellington, Tasmania. I. Water 
repellency and the freezing of leaves. Australian Journal of Botany 22, 501-
512. 

Todd, J., Post-Beittenmiller, D., and Jaworski, J.G. (1999). KCS1encodes a fatty 
acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis 
inArabidopsis thaliana. The Plant Journal 17, 119-130. 

Vesa, J., Hellsten, E., Verkruyse, L.A., Camp, L.A., Rapola, J., Santavuori, P., 
Hofmann, S.L., and Peltonen, L. (2002). Mutations in the palmitoyl protein 
thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 
376, 584-587. 

Voisin, D.F. (2008). Biochemical and genetic responses in cuticular mutants. Ph.D. 
thesis, 157. 

von Wettstein-Knowles, P., Avato, P., and Mikkelsen, J.D. (1979). Light 
promotes synthesis of the very long chain fatty acyl chains in maize wax. 
Biogenesis and Function of Plant Lipids. Elsevier/North Holland Biomedical 
Press, New York, 271–274. 

Wei, N., and Deng, X.W. (2003). The COP9 signalosome. Annual Review of Cell 
and Developmental Biology 19, 261-286. 

Wellesen, K., Durst, F., Pinot, F., Benveniste, I., Nettesheim, K., Wisman, E., 
Steiner-Lange, S., Saedler, H., and Yephremov, A. (2001). Functional 
analysis of the LACERATA gene of Arabidopsis provides evidence for 
different roles of fatty acid omega-hydroxylation in development. 
Proceedings of the National Academy of Sciences 98, 9694. 



 63

Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., and Provart, N.J. 
(2007). An “electronic fluorescent pictograph” browser for exploring and 
analyzing large-scale biological data sets. PLoS One 2. 

Woloshuk, C.P., and Kolattukudy, P.E. (1986). Mechanism by which contact with 
plant cuticle triggers cutinase gene expression in the spores of Fusarium 
solani f. sp. pisi. Proceedings of the National Academy of Sciences 83, 1704-
1708. 

Xia, Y., Nikolau, B.J., and Schnable, P.S. (1996). Cloning and Characterization of 
CER2, an Arabidopsis Gene That Affects Cuticular Wax Accumulation. The 
Plant Cell Online 8, 1291-1304. 

Yephremov, A., and Schreiber, L. (2005). The dark side of the cell wall: 
molecular genetics of plant cuticle. Plant Biosystems-An International 
Journal Dealing with all Aspects of Plant Biology 139, 74-79. 

Yephremov, A., Wisman, E., Huijser, P., Huijser, C., Wellesen, K., and Saedler, 
H. (1999). Characterization of the FIDDLEHEAD Gene of Arabidopsis 
Reveals a Link between Adhesion Response and Cell Differentiation in the 
Epidermis. The Plant Cell Online 11, 2187-2202. 

Yoda, H., Ogawa, M., Yamaguchi, Y., Koizumi, N., Kusano, T., and Sano, H. 
(2002). Identification of early-responsive genes associated with the 
hypersensitive response to tobacco mosaic virus and characterization of a 
WRKY-type transcription factor in tobacco plants. Molecular Genetics and 
Genomics 267, 154-161. 

Yu, D., Chen, C., and Chen, Z. (2001). Evidence for an important role of WRKY 
DNA binding proteins in the regulation of NPR1 gene expression. The Plant 
Cell Online 13, 1527-1540. 

Zachgo, S., Perbal, M.C., Saedler, H., and Schwarz-Sommer, Z. (2000). In situ 
analysis of RNA and protein expression in whole mounts facilitates detection 
of floral gene expression dynamics. The Plant journal: for cell and molecular 
biology 23, 697. 

Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. (2004). 
GENEVESTIGATOR. Arabidopsis Microarray Database and Analysis 
Toolbox 1 [w] (Am Soc Plant Biol), pp. 2621-2632. 

 



ACKNOWLEDGEMENTS 

First, I would like to thank Dr. Alexander Yephremov for the project and the kind 

supervision. I would also like to thank Prof. Dr. Heinz Saedler for the scientific 

discussions and for all general advice. I am very grateful to Prof. Dr. Klaus Theres 

for his active participation to all my progress reports and for his very helpful 

feedback.  

 

I would like to thank my group colleagues: Jose for creating a sensible and pleasant 

atmosphere, Derry for our discussions and Isa for her excellent technical support 

and her friendly advice. I thank Dr. Nadia Efremova for the help with in situ 

hybridization. 

 

Thank you, Dr. Ralf Petri and Dr. Olof Persson for the IMPRS training and funding.  

Of course, a big thank you goes to the colleagues in the Molecular Plant Genetics 

Department as well as in the IMPRS for creating a very enjoyable and memorable 

atmosphere during my stay in Cologne.  

 

I want to thank my family: Danut, Mariana, Gabi and of course, Andrei, for all their 

love and support.  



 65

LEBENSLAUF 

 
Studium 
seit 10/2006 Doktorarbeit am Max-Planck-Institut für Züchtungsforschung in Köln in 

der Abteilung Molekulare Pflanzengenetik  
Betreuer: Prof. Dr. Heinz Saedler 
Thema: “Plant cuticle development: insights from molecular cloning of 
CER13 and protein-protein interaction studies” 

2004- 2006 Master-Studium, “Al. I. Cuza” Universität von Iasi, Fakultät Biologie, 
Fachrichtung Molekulargenetik 

2005 - 2006 Forschungsprojekt für die Masterarbeit, Socrates-Erasmus Mobility 
Grant: Rijksuniversiteit Groningen, Niederlande; Abteilung Molekulare 
Pflanzengenetik  
Betreuer: Prof. Dr. Paul P. Dijkwell 
Thema: “Map-based cloning of ONSET OF LEAF DEATH 5 (OLD5) and 
characterization of the mutant” 

2000 - 2004 Bachelor-Studium, “Al. I. Cuza” University of Iasi, Fakultät Biologie, 
Fachrichtung Biochemie  
Betreuer: Prof. Dr. Maria-Magdalena Zamfirache 
Thema: “Chemical composition of essential oils from Pelargonium 
species and their effects upon microorganisms” 

Schulausbildung 
1990 – 1999 Gymnasium: “Octav Bancila Art School”, Bildende Künste, 

Spezialisierung Graphik-Design 
1997 – 1999 Kurse in Japanischer Sprache und Kultur organisiert durch “Childrens’ 

Palace” in Iasi in Zusammenarbeit mit der Japanischen Botschaft in 
Bukarest 

1986 – 1990  Grundschule, Iasi 
 

Zur Person   
   

Name: TEODOR, Roxana - Iuliana 
Geburtsname: APETREI 
Adresse Kolibriweg 4, 50829, Köln 
Geburtsdatum 3.08.1980 
Geburtsort Iasi  
Nationalität rumänisch 
Familienstand verheiratet 



 66

Wissenschaftliche Publikation 
 
 
Schippers, J.H.M., Nunes-Nesi, A., Apetrei, R., Hille, J., Fernie, A.R., and Dijkwel, 
P.P. (2008). The Arabidopsis onset of leaf death5 Mutation of Quinolinate Synthase 
Affects Nicotinamide Adenine Dinucleotide Biosynthesis and Causes Early Ageing. 
The Plant Cell Online 20, 2909 
 
Teodor, R.-I., Yephremov, Al. (2008). Genes of Arabidopsis thaliana involved in 
wax metabolism.  Analele ştiinţifice ale Universităţii “Al. I. Cuza” Iaşi, LIV, fasc. 
2, s.II a. Biologie vegetală, 109 
 
Reina-Pinto, J.-J., Voisin, D., Teodor, R.-I. and Yephremov, Al. (2009). Probing 
differentially expressed genes against a microarray database for in silico 
suppressor/enhancer and inhibitor/activator screens. The Plant Journal 61(1), 166 
 
 
 
 
 



 67

ERKLÄRUNG 

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, 
die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der 
Arbeit – einschliesslich Tabellen, Karten und Abbildungen – , die anderen Werken 
im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als 
Entlehnung kanntlich gemacht habe; dass diese Dissertation noch keiner anderen 
Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie – abgesehen von 
unten angegebenen Teilpublikationen – noch nicht veröffentlicht worden ist sowie, 
dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens 
nicht vornehmen werde. Die von mir vorgelegte Dissertation ist von Prof. Dr. Heinz 
Saedler betreut worden. 
 
 
Roxana-Iuliana Teodor 


	SUMMARY
	ZUSAMMENFASSUNG
	INTRODUCTION
	STRUCTURE OF THE PLANT CUTICLE
	THE ROLES OF PLANT CUTICLE
	CUTICULAR AND WAX-RELATED MUTANTS
	Mutants in the wax biosynthesis pathway
	Mutants involved in cutin metabolism
	Cuticle metabolism and the regulation of cuticular pathways

	AIM OF THE THESIS

	RESULTS
	CHARACTERIZATION OF CER13 AND MOLECULAR IDENTIFICATION OF THE GENE
	The cer13 mutant has a pleiotropic phenotype
	The CER13 gene maps to a region of 46 genes on chromosome III
	The cer13 locus is allelic to rst1
	The deletion in cer13 results in a truncated version of the protein
	CER13/RST has nine predicted trans-membrane domains
	There is no fluorescence signal when DsRED is fused to the C-terminus part of the full length CER13
	CER13 is expressed in ovules and in the epidermis of young organs close to the apical meristem
	Genes involved in various metabolic pathways are miss-regulated in cer13
	CER3/WAX2/YRE/FLP1 is a wax gene three-fold down-regulated in cer13
	In silico meta-analysis of microarrays reveals overlap between the cer13 transcriptome and other stress-response pathways.
	Overlaps with cold and heat stress
	Overlaps with drought stress
	Overlaps with wounding
	Overlaps with pathogen-related pathways

	EMS mutagenesis revealed one dominant supressor of the cer13 phenotype

	PROTEIN INTERACTIONS INVOLVED IN CUTICLE DEVELOPMENT
	ALE1 (ABNORMAL LEAF SHAPE 1) is a putative interactor of CSN5
	Interactors of CER2 (ECERIFERUM 2) and PPT (PALMITOYL PROTEIN THIOESTERASE)


	DISCUSSION
	CER13/RST1 COULD FUNCTION AS A RECEPTOR OR AS A TRANSPORTER IN WAX BIOSYNTHESIS
	CER13/RST1 MODULATES WAX BIOSYNTHESIS THROUGH CER3/WAX2/YRE
	CER13/RST1 PROVIDES A LINK BETWEEN WAX BIOSYNTHESIS, IMMUNITY AND LIGHT SIGNALING
	CUTICLE DEVELOPMENT IS GOVERNED BY A COMPLEX REGULATORY NETWORK

	CONCLUSION
	MATERIALS AND METHODS
	MATERIALS
	Plant material and growth conditions
	Bacterial strains and cultivation conditions
	Antibiotics and selection solutions
	Enzymes and reaction kits
	Enzymes
	Reaction kits

	Synthetic oligonucleotides
	Primers for the genetic markers used in the cer13 mapping process
	Primers used for T-DNA insertion lines analysis
	Oligonucleotides used to amplify genes, for cloning
	Oligonucleotides for qRT-PCR

	Equipment

	METHODS
	Observation of plant material
	Scanning electron microscopy (SEM)
	Confocal microscopy

	Isolation of nucleic acids
	Amplification of DNA fragments via polymerase chain reaction (PCR)
	DNA cloning methods
	Site-directed mutagenesis (SDM)
	Transformation of electro-competent bacteria by electroporation
	Transformation of Saccharomyces cerevisiae yeast cells
	Y2H cDNA library screening
	Agrobacterium-mediated transformation of Arabidopsis thaliana
	Generation of transgenic plants for fluorescence expression studies
	In situ hybridization
	Seed surface sterilization
	Positional cloning and identification of CER13
	Ethyl methanesulfonate (EMS) mutagenesis on rst1-3
	Transcriptome analysis
	In silico suppressor/enhancer screen by MicroArray overlap Search Tool and Analysis (MASTA)
	qRT-PCR


	REFERENCES
	ACKNOWLEDGEMENTS
	LEBENSLAUF
	ERKLÄRUNG

