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Abstract

Malaria is one of the most serious health problems in the world. The projected climate
change will probably alter the range and transmission potential of malaria in Africa. In
this study, potential changes in the malaria transmission are assessed by forcing three
malaria models with bias-corrected data from ensemble scenario runs of a state-of-the-
art regional climate model.

TheLiverpool Malaria Model(LMM) from the Geography Department of the Uni-
versity of Liverpool is utilised. The LMM simulates the spread of malaria at a daily
resolution using daily mean temperature and 10-day accumulated precipitation. The
simulation of some key processes has been modified in the model, in order to reflect a
more physical relationship. An extensive literature survey with regard to entomologi-
cal and parasitological malaria variables enables the calibration and validation of a new
LMM version. Comparison of this version with the original model exhibits marked
improvements. The new version demonstrates a realistic simulation of entomological
variables and of the malaria season, as well as correctly reproduces the epidemic poten-
tial at fringes of endemic malaria areas. Various sensitivity experiments reveal that the
LMM is fairly sensitive to values of its required parameters. Effects of climatic changes
on the malaria season are additionally verified by theMARA Seasonality Model(MSM).
The Garki model finally enables the completion of the malariapicture in terms of the
immune status and the infectiousness of different population groups, as well as relative
to the age-dependent prevalence structure.

In every case three ensemble runs were performed on a 0.5◦ grid. The LMM was
driven for the present-day climate (1960-2000) by bias-corrected data from theREgional
MOdel (REMO), with a land use and land cover specified by theFood and Agriculture
Organization(FAO). Malaria projections were carried out for 2001-2050 according to
the climate scenarios A1B and B1 as well as FAO land use and land cover changes. Garki
model runs were subsequently forced by theEntomological Inoculation Rate(EIR) from
the LMM. Finally, additional results relative to the malaria season were produced by
MSM.

For the present-day climate (1960-2000), the highest biting rates are simulated for
Equatorial Africa. The malaria runs show a decrease in the malaria spread from Central
Africa towards the Sahel. The length of the malaria season isclosely related to monsoon
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rainfall. The model simulations show a marked influence of mountainous areas causing
a complex pattern of the spread of malaria in East Africa. Themalaria infected popula-
tion reveals the expected peak in children below an age of about five years. Regions of
epidemic malaria occurrence, as defined by the coefficient ofvariation of the annual par-
asite prevalence maximum, are found along a band in the northern Sahel. Farther south,
malaria occurs more regularly and is therefore characterised as endemic. Epidemic-
prone areas are additionally identified at various highlandterritories, as well as in arid
and semi-arid zones of the Greater Horn of Africa. No adequate immune protection of
the population was found for these areas.

Largely due to land surface degradation, REMO simulates a prominent surface warm-
ing and a significant reduction in the annual rainfall amountover most of tropical Africa
in either climate change scenario. Assuming no future human-imposed constraints on
malaria transmission, changes in temperature and precipitation will alter the future ge-
ographic distribution of malaria. In the northern part of sub-Saharan Africa, the preci-
pitation decline will force significant decreases of the malaria transmission in the Sahel.
In addition to the withdrawal of malaria transmission alongthe fringe of the Sahara, the
frequency of malaria occurrence will be reduced for severalgrid boxes of the Sahel. As a
result, epidemics in these more densely populated areas will become more likely, in par-
ticularly as adults lose their immunity. The level of malaria prevalence farther south will
remain stable for most areas. However, the start of the malaria season will be delayed
and the transmission is expected to cease earlier.

Most pronounced changes in Africa are found for East Africa.Significantly higher
temperatures and slightly higher rainfall cause a substantial increase in the season length
and parasite prevalence in formerly epidemic-prone areas.Territories formerly unsuit-
able for malaria will become suitable under the warmer future climate. The simulations
indicate changes in the highland epidemic risk. At most gridboxes malaria transmission
will stabilise below about 2000 m. At these altitudes the population will improve their
immune status. In contrast, malaria will climb to formerly malaria-free zones above
these levels enforcing the probability of malaria epidemics.



Zusammenfassung

Die Malaria stellt eine der gefährlichsten Krankheiten derWelt dar. Höchstwahrschein-
lich werden sich die Ausbreitung und das Übertragungspotenzial der Malaria in Afrika
unter dem Einfluss des projizierten Klimawandels verändern. Aus diesem Grund ver-
sucht die vorliegende Studie potenzielle Veränderungen inder Malariaübertragung abzu-
schätzen. Drei unterschiedliche Malariamodelle werden hierzu mit korrigierten Ensem-
bleläufen eines auf dem Stand der Wissenschaft befindlichenregionalen Klimamodells
betrieben.

Verwendung findet zunächst das sog. „Liverpool Malaria Model (LMM)“ vom Geo-
graphischen Department der Universität Liverpool. Das LMMsimuliert die Verbreitung
der Malaria auf Tagesbasis und wird lediglich durch die Tagesmitteltemperatur und die
10-tägig akkumulierte Niederschlagsmenge angetrieben. Um Vorgänge in der Natur bes-
ser widerzuspiegeln wurde im LMM die Simulierung einiger wichtiger Prozesse ver-
ändert. Eine intensive Literaturrecherche in Bezug auf entomologische und parasitolo-
gische Malariavariablen ermöglicht die Kalibrierung und die Validierung einer neuen
LMM Version. Der Vergleich dieser neuen Version mit dem ursprünglichen Modell of-
fenbart deutliche Verbesserungen. Die neue Modellversionzeigt eine realistische Simu-
lation von entomologischen Variablen, der Malariasaison und reproduziert korrekt das
Epidemiepotenzial am Rande endemischer Malariagebiete. Zahlreiche Sensitivitätsstu-
dien zeigen, dass das LMM sensitiv bzgl. unterschiedlichenModelleinstellungen rea-
giert. Zusätzlich wird der Effekt der Klimaänderung auf dieMalariasaison mit Hilfe
des sog. „MARA Seasonality Models (MSM)“ überprüft. Durch die Berücksichtung des
Immunstatus und der Infektiösität von unterschiedlichen Bevölkerungsgruppen als auch
der altersabhängigen Struktur der Malariaprävalenz durchdas sog. Garki Modell wird
schließlich das Malariabild vervollständigt.

Die Modelle wurden jeweils für drei Ensembleläufe auf einem0.5◦ Gitter betrieben.
Für das heutige Klima (1960-2000) wurde das LMM hierbei mit korrigierten Daten des
REgionalen MOdells (REMO) laufen gelassen, die wiederum auf einer Landnutzung
und Landoberfläche der „Food and Agriculture Organization (FAO)“ beruhen. Malaria-
projektionen wurden anschließend für den Zeitraum 2001-2050 mit REMO-Daten der
Klimaszenarien A1B und B1 berechnet. In diesem Fall sind dieKlimaszenarien durch
FAO-Szenarien der Landnutzung und Landoberflächen entstanden. Danach wurde das
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Garki Modell mit Hilfe der entomologischen Inokulationsrate des LMM betrieben. Zu-
sätzliche Ergebnisse bezüglich der Malariasaison wurden schließlich durch das MSM
produziert.

Für das heutige Klima (1960-2000) werden die höchsten Stechraten für das äqua-
toriale Afrika simuliert. Die Malarialäufe zeigen einen Abfall in der Malariaverbreitung
von Zentralafrika bis zum Sahel. Hierbei steht die Länge derMalariasaison im engen
Zusammenhang mit dem Auftreten des Monsuns. Die ostafrikanischen Hochländer ver-
ursachen außerdem ein komplexes Muster in der Malariaverbreitung. Wie erwartet treten
in den ersten fünf Lebensjahren die höchsten Malariaprävalenzen auf. Epidemieregionen
werden durch den Variationskoeffizienten der maximalen jährlichen Malariaprävalenz
definiert. Solche Gebiete sind entlang eines Streifens im nördlichen Sahel zu finden.
Weiter südlich tritt die Malaria regelmäßiger auf und ist deshalb als endemisch cha-
rakterisiert. Epidemiegebiete werden ebenso für zahlreiche Hochländer sowie für aride
und semi-aride Regionen des Großen Horns von Afrika identifiziert. Für diese Gebiete
konnte kein angemessener Immunschutz in der Bevölkerung gefunden werden.

In den REMO-Simulationen verursacht hauptsächlich die Degradation der Land-
oberfläche in beiden Klimaszenarien einen deutlichen Temperaturanstieg und eine si-
gnifikante Reduzierung der Jahresniederschläge über großen Teilen tropischen Afri-
kas. Falls der Mensch die Malariaverbreitung in der Zukunftnicht merklich beeinflusst
wird der Klimawandel die zukünftige Malariaübertragung stark verändern. Der Nieder-
schlagsrückgang wird eine signifikante Reduzierung der Malariaübertragung im Sahel
verursachen. Zusätzlich zum Rückzug der Malaria entlang der Grenze zur Sahara wird an
einigen Gitterpunkten im Sahel die Häufigkeit des Malariaauftretens herabgesetzt. Diese
bevölkerungsreicheren Gebiete werden somit häufiger mit Epidemien rechnen müssen,
da in diesen Regionen vor allem Erwachsene ihre Immunität verlieren werden. Weiter
südlich bleibt das Malarianiveau für die meisten Gebiete stabil, allerdings wird sich der
Start der Malariasaison verzögern und es wird ein früheres Ende der Malariaübertragung
erwartet.

In Afrika werden die stärksten Veränderungen für Ostafrikaprojiziert. In früheren
Epidemiegebieten verursachen signifikant höhere Temperaturen und leicht erhöhte Nie-
derschläge einen beträchtlichen Anstieg in der Länge der Saison und in der Prävalenz
des Malariaparasiten. In Regionen die zuvor für die Malariaungeeignet waren kann
sich die Malaria in einem wärmeren zukünftigen Klima verbreiten. Die Simulationen
offenbaren deutliche Veränderungen des Epidemierisikos der Hochländer. Für die meis-
ten Gitterboxen stabilisiert sich unterhalb von etwa 2000 mdie Malariaübertragung. In
diesen Höhenbereichen wird die Bevölkerung eine bessere Immunität aufweisen. Das
Risiko für Malariaepidemien steigt jedoch oberhalb diesesNiveaus, da die Malaria in
diese Höhenlagen zukünftig erstmals vordringen kann.
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Projekt für Einen Tragfähigen Umgang mit Süßwasser“

IOD . . . . . . . . . . . . . Indian Ocean Dipole
IPCC . . . . . . . . . . . . Intergovernmental Panel on Climate Change
IPCC-AR4 . . . . . . . Fourth Assessment Report of the IPCC
IRD . . . . . . . . . . . . . ‘Institut de Recherche pour le Développement’
ITCZ . . . . . . . . . . . . InterTropical Convergence Zone
ITF . . . . . . . . . . . . . . InterTropical Front
LMM . . . . . . . . . . . . Liverpool Malaria Model
LMM n . . . . . . . . . . . new Liverpool Malaria Model (see Sec.5.1)
LMM o . . . . . . . . . . . original Liverpool Malaria Model (Hoshen and Morse 2004)
LUC . . . . . . . . . . . . . Land Use and land Cover
MARA . . . . . . . . . . . mapping MAlaria Risk in Africa
MDM . . . . . . . . . . . . MARA Distribution Model
MIASMA . . . . . . . . Modelling framework for the health Impact ASsessment of Man-

induced Atmospheric changes
MIROC3.2 medres Model for Interdisciplinary Research on Climate, medium-resolution

version 3.2
MOZ . . . . . . . . . . . . Malaria potential Occurrence Zone
MRI . . . . . . . . . . . . . Meteorological Research Institute
MRR . . . . . . . . . . . . Mark-Release Recapture
MSM . . . . . . . . . . . . MARA Seasonality Model
N2O . . . . . . . . . . . . . nitrous oxide
NDVI . . . . . . . . . . . . Normalised Difference Vegetation Index
NeA . . . . . . . . . . . . . Northeast Africa
PCR . . . . . . . . . . . . . Polymerase Chain Reaction
PREC/L . . . . . . . . . . Precipitation REConstruction over Land
QT-NASBA . . . . . . QuanTitative-Nucleic Acid Sequence-Based Amplification
RCM . . . . . . . . . . . . Regional Climate Model
REMO . . . . . . . . . . . REgional MOdel
REMO(cor) . . . . . . bias-corrected REMO data
REMO(raw) . . . . . . raw (uncorrected) REMO data
RT-PCR . . . . . . . . . . Reverse Transcriptase-Polymerase Chain Reaction
SOx . . . . . . . . . . . . . . sulphur oxides
SRES . . . . . . . . . . . . Special Report on Emission Scenarios
SST . . . . . . . . . . . . . Sea-Surface Temperature
SYNOP . . . . . . . . . . surface SYNOPtic observation, i.e. the WMO format 12
TEJ . . . . . . . . . . . . . . Tropical Easterly Jet
VC . . . . . . . . . . . . . . Vectorial Capacity
WHO . . . . . . . . . . . . World Health Organization
WMO . . . . . . . . . . . . World Meteorological Organization



Symbols

#Eo . . . . . . . . . . . . . . number of oviposited eggs per female mosquito [eggs]
#Ep . . . . . . . . . . . . . . number of produced eggs per female mosquito[eggs]
#RR≥1,m . . . . . . . . . . monthly number of days with at least 1 mm precipitation
∆x . . . . . . . . . . . . . . . difference with regard to variablex between different periods or

scenarios
ηd,¬RR . . . . . . . . . . . rainfall independent daily survival probability of immature mosquitoes

[%]
ηd . . . . . . . . . . . . . . . daily survival probabilities of immaturemosquitoes (field condi-

tions) [%]
σ(x) . . . . . . . . . . . . . standard deviation in terms of variablex
θ . . . . . . . . . . . . . . . . potential temperature [◦C]
θ850 . . . . . . . . . . . . . . potential temperature at 850 hPa [◦C]
a . . . . . . . . . . . . . . . . Human Blood Index [%]
b . . . . . . . . . . . . . . . . mosquito-to-human transmission efficiency [%]
c . . . . . . . . . . . . . . . . human-to-mosquito transmission efficiency [%]
ca→c . . . . . . . . . . . . . adult-to-child conversion rate
cv(x) . . . . . . . . . . . . . coefficient of variation in terms of variablex
CAP . . . . . . . . . . . . . CAP on the number of fertile mosquitoes
CSPR. . . . . . . . . . . . CircumSporozoite Protein Rate [%]
CSPRa . . . . . . . . . . . annual mean circumsporozoite protein rate [%]
DgH . . . . . . . . . . . . . degree days of the gonotrophic cycle (humid conditions) [◦days]
DgL . . . . . . . . . . . . . . degree days of the gonotrophic cycle (dry conditions) [◦days]
Ds . . . . . . . . . . . . . . . degree days of the sporogonic cycle [◦days]
E2Seas. . . . . . . . . . . End month of the second malaria Season
EIR . . . . . . . . . . . . . . Entomological Inoculation Rate, i.e. the number of infectious mosquito

bites per human per time [infective bites time−1]
EIRa . . . . . . . . . . . . . annual Entomological Inoculation Rate [infective bites year−1]
EIRm . . . . . . . . . . . . monthly Entomological Inoculation Rate [infective bites month−1]
EIRc . . . . . . . . . . . . . Entomological Inoculation Rate for children between 2-10 years

[infective bites time−1]
ESeas. . . . . . . . . . . . End month of the malaria Season
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f . . . . . . . . . . . . . . . . fuzzy suitability (fuzzy distribution model)
GF . . . . . . . . . . . . . . Gametocyte Fraction
HBR . . . . . . . . . . . . . Human Biting Rate, i.e. the number of mosquito bites per human

and per time period [bites time−1]
HBRa . . . . . . . . . . . . annual Human Biting Rate [bites year−1]
HBRc . . . . . . . . . . . . Human Biting Rate for children between 2-10 years [bites time−1]
HIA . . . . . . . . . . . . . Human Infectious Age [days]
I . . . . . . . . . . . . . . . . . proportion of immune individuals
Ia . . . . . . . . . . . . . . . . annual mean proportion of immune individuals
MMA . . . . . . . . . . . . Mosquito Mature Age [days]
MSeas. . . . . . . . . . . length of the Main malaria Season, i.e. the number of months in

which 75% ofEIRa is recorded
n♂♀ . . . . . . . . . . . . . duration of gametocytogenesis [days]
nf . . . . . . . . . . . . . . . number of female mosquitoes
ng . . . . . . . . . . . . . . . duration of the gonotrophic cycle [days]
nm . . . . . . . . . . . . . . . duration of gametocyte maturation
np . . . . . . . . . . . . . . . duration of the prepatent period [days]
ns . . . . . . . . . . . . . . . . duration of the sporogonic cycle [days]
pd↓ . . . . . . . . . . . . . . shift off relative to the dry season mosquito survival probability

[%]
PR . . . . . . . . . . . . . . . asexual Parasite Ratio [%]
PR2−10 . . . . . . . . . . . annual mean asexual parasite ratio of childrenaged 2-10 years [%]
PRa . . . . . . . . . . . . . . annual mean asexual parasite ratio [%]
PRmax,a . . . . . . . . . . annual maximum of the asexual parasite ratio [%]
PRmin,a . . . . . . . . . . . annual minimum of the asexual parasite ratio [%]
R . . . . . . . . . . . . . . . . daily larval development Rate [day−1]
r . . . . . . . . . . . . . . . . daily human recovery rate [day−1]
R0 . . . . . . . . . . . . . . . basic Reproduction rate
RR− . . . . . . . . . . . . . 10-day accumulated rainfall threshold [mm]
RR3m . . . . . . . . . . . . three-month moving averaged monthly precipitation (two preced-

ing and the actual month are used) [mm]
RR• . . . . . . . . . . . . . . rainfall laying multiplier
RRΣ10d . . . . . . . . . . . 10-day accumulated precipitation, i.e. the decadal precipitation amount

[mm]
RRa . . . . . . . . . . . . . . annual precipitation amount [mm]
RRc . . . . . . . . . . . . . . catalyst month of precipitation
RRm . . . . . . . . . . . . . monthly precipitation amount [mm]
S . . . . . . . . . . . . . . . . most suitable rainfall condition in terms of egg deposition and sur-

vival of immature mosquitoes (fuzzy distribution model) [mm]
S2Seas. . . . . . . . . . . Start month of the second malaria Season
SAR . . . . . . . . . . . . . Ratio between the Sexual and Asexual parasite prevalence, i.e. the

proportion of gametocytaemic parasite positive humans [%]
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SARa . . . . . . . . . . . . . annual mean ratio between the sexual and asexual parasite preva-
lence [%]

SC(x) . . . . . . . . . . . . skill score with regard to variablex
Seas. . . . . . . . . . . . . length of the malaria Season, i.e. the numberof months suitable

for malaria transmission
sPR . . . . . . . . . . . . . . sexual parasite ratio, i.e. the gametocyteprevalence, which is the

percentage of humans with gametocytes in their blood [%]
sPRa . . . . . . . . . . . . . annual mean sexual parasite ratio [%]
SSeas. . . . . . . . . . . . Start month of the malaria Season
T . . . . . . . . . . . . . . . . daily mean temperature [◦C]
T3m . . . . . . . . . . . . . . three-month moving average temperature (two preceding and the

actual month are included)[◦C]
Ta . . . . . . . . . . . . . . . annual mean temperature [◦C]
TgH . . . . . . . . . . . . . . temperature threshold of the gonotrophic cycle (humid conditions)

[◦C]
TgL . . . . . . . . . . . . . . temperature threshold of the gonotrophic cycle (dry conditions)

[◦C]
Tmin,m . . . . . . . . . . . . monthly minimum temperature [◦C]
Tm . . . . . . . . . . . . . . . monthly mean temperature [◦C]
Ts . . . . . . . . . . . . . . . . sporogonic temperature threshold [◦C]
Tw . . . . . . . . . . . . . . . water temperature [◦C]
tr im . . . . . . . . . . . . . . trickle of the number of added infectious mosquitoes [infectious

females (ten days)−1]
U1 . . . . . . . . . . . . . . . lower threshold of unsuitable rainfall conditions for egg deposition

and survival of immature mosquitoes (fuzzy distribution model)
[mm]

U2 . . . . . . . . . . . . . . . upper threshold of unsuitable rainfall conditions for egg deposition
and survival of immature mosquitoes (fuzzy distribution model)
[mm]

X2Seas. . . . . . . . . . . second identified month of maximum transmission (only available
for a timeframe)

XSeas. . . . . . . . . . . . month of maXimum transmission, i.e. the monthwith the largest
EIRvalue

y . . . . . . . . . . . . . . . . proportion of malaria positive individuals, i.e. the ‘true’ parasite
prevalence

y1,a . . . . . . . . . . . . . . annual mean proportion of malaria positive, infectious, non-immune
individuals

y1 . . . . . . . . . . . . . . . proportion of malaria positive, infectious, non-immune individuals
ya . . . . . . . . . . . . . . . annual mean proportion of malaria positive individuals
ymax,a . . . . . . . . . . . . annual maximum proportion of malaria positive individuals
z . . . . . . . . . . . . . . . . . altitude [m]





1 Introduction

The climate system of the Earth strongly affects human life and has a wide range of
health impacts. Humans strongly affect the climate byGreenHouse Gas(GHG) emis-
sions leading to anthropogenic global warming. It is well known that a warm and hu-
mid climate triggers several water-associated diseases such as malaria (e.g.,Githeko
et al. 2000). Vector-borne diseases are highly sensitive to global warming and asso-
ciated changes in precipitation (Martens et al. 1997). Malaria is particularly strongly
influenced by warm and moist tropical atmospheric conditions (e.g.,Patz et al. 1998).
Temperatures in Africa lie above the threshold for parasitedevelopment and rainy sea-
sons lead to a rapid increase of themosquitopopulation (e.g.,Hay et al. 2000a). The
International Panel on Climate Change(IPCC) expects thatclimate changewill have a
mixed effect on the spread of malaria (Confalonieri et al. 2007). Like in the Sahel the
geographical range will probably contract, elsewhere likein highlands it will expand,
and the transmission season might be significantly altered.Populations at margins of
current distribution are estimated to be particularly vulnerable to changes (Confalonieri
et al. 2007).

Fig. 1.1: Spatial limits ofP. falciparummalaria risk. Areas are defined as stable (dark grey areas), unstable
(medium grey areas), or malaria-free (light grey). Single dots display standardised community
surveys ofP. falciparumprevalence in children aged 2-10 years between January 1985and July
2008 (for further information cf. Hay et al. 2009).

Malaria (Italian: ‘mal’=bad, ‘aria’=air) is caused by a parasitic protozoaof genus
Plasmodium(P.) and is one of the world’s most serious health problems (e.g., De Sav-
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igny and Binka 2004). The World Health Organization(WHO) estimated that about
two billion people, that is more than 40% of the total world population, are exposed to
this mosquito-borne disease (WHO 1997; cp. Fig.1.1). Estimates revealed that malaria
causes about 273 million clinical cases and 1.12 million deaths annually. At least 90%
of worldwide malaria deaths occur in sub-Saharan Africa (Greenwood and Mutabingwa
2002; Greenwood et al. 2005). This life-threatening disease is mostly restricted to young
children as immunity to severe malaria is later developed (Gupta et al. 1999; Snow et al.
1999a). Pregnant women are especially prone to malaria causing anincreased risk of
infant low birth weight and infantmortality (Menendez 1999; Steketee and Mutabingwa
1999; D’Alessandro 1999).

Anopheles(An.) is a genus of mosquito from the family Culicidae comprisingsev-
eral hundred recognised species. FemaleAnophelesrequire proteins for their egg pro-
duction. Some of these species prefer to blood-feed on humans (anthropophily), while
others preferentially feed on animals (zoophily). A few tens ofAnophelesspecies are
commonly malaria vectors and transmission takes place wheneither the mosquito fe-
male or the humanhostis carrying malaria agents. Primarily responsible for malaria in
Africa is the clinical meaningful and most dangerous pathogenP. falciparum(e.g.,Snow
et al. 1997).

Most important malaria vectors in sub-Saharan Africa are found in theAn. gambiae
complex, also termedAn. gambiae sensu lato(s.l.). Distribution of these vectors like
that ofAn. gambiae sensu stricto(s.s.) andAn. arabiensisis strongly governed by atmo-
spheric conditions (Lindsay and Birley 1996; Lindsay et al. 1998). An. arabiensis, for
example, was predominantly found in dry areas such as the Sahel, whereasAn. gambiae
sensu stricto(s.s.) tends to favour more humid environments such as in the tropical
rainforest zone.

Malaria is a severe human disease with a striking positive correlation to poverty.En-
demicmalaria countries have lower rates of economic growth than non-malaria countries
(Nabarro and Tayle 1998; Sachs and Malaney 2002; Greenwood et al. 2005). Malaria
impedes development, is related to lack of work, and forces income loss. People suffer-
ing from malaria often struggle to earn their living. Secondary damage, in addition, may
have profound effects on quality of life and functioning of the person concerned.

Likewise, non-climatic factors serve as drivers of increased malaria transmission
across the African continent (Small et al. 2003). The increase in highland malaria in
the 20th century is in certain parts attributed to a rise in antimalarial drug resistance, to
breakdowns in health service provision and vector control operations, as well as land use
changes (Shanks et al. 2000). Especially in the Sahelian and Sudanian zone, man-made
alterations of the landscape have caused changes in transmission of malaria. Agriculture
is supposed to ameliorate human nutrition by the growing cultivation of rice via large-
scale irrigation. In arid and semi-arid areas, rice production has more than doubled
during the last three decades (Sissoko et al. 2004) and markedly modified the seasonality
and the transmission intensity of malaria (Dolo et al. 2004).
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In middle of the 20th century, elimination of malaria was considered an achiev-
able goal. Development of highly effective, residual insecticide Dichloro-Diphenyl-
Trichloroethane(DDT) initiated a global eradication programme initially succeeding
in many Asian countries (Greenwood and Mutabingwa 2002). The aspiration of global
eradication was abandoned in 1969. The main reason for failure were technical chal-
lenges of executing the strategy especially in Africa (Tanner and de Savigny 2008). At
present, eradication of malaria still remains elusive due to various reasons. There is,
for instance, lack of adequate funding of control measures and the establishment of
broad-based health systems. Insecticide resistance and development of resistance of
P. falciparumto cheap and effective drugs (Greenwood and Mutabingwa 2002) finally
led to an increase in malaria mortality andmorbidity at the end of the 20th century
(Nabarro and Tayle 1998; Hay et al. 2002b). However, eradication of malaria transmis-
sion is back on the global health agenda (Tanner and de Savigny 2008).

Malaria is an extremely climate-sensitive tropical disease and hence climate exerts
a strong impact upon the distribution of the malaria transmission in space and time.
Assessment of the potential change in malaria risk caused bypresent and projected an-
thropogenic global warming is one of the most important topics in the field of climate
change and health (Patz et al. 2005). For this reason, the present study considers the
malaria risk of the African population for the next few decades. The information pro-
vided here might serve as an important contribution for strategic planning of malaria
control in the future (cp.Thomas et al. 2004).





2 State of research, objectives, and overview

2.1 The Climate of Africa

The climate of most parts of the African continent is tropical or subtropical, with the
central phenomenon being the seasonal migration of the tropical rain belts. The northern
and southern boundaries of the continent are affected by winter rainfall regimes which
are governed by the passage of mid-latitude fronts.
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Fig. 2.1: (a) Köppen climate classification of Africa (Peel et al. 2007, their Fig. 4). A: tropical, B: arid,
C: temperate climate; f: rainforest, m: monsoon, w: savannah; W: desert, S: steppe; h: hot, k:
cold; s: dry summer, w: dry winter, f: without dry season; a: hot summer, b: warm summer. (b)
Orography of Africa as used by REMO (cp.Paeth et al. 2009) including national boundaries and
major lakes.

According to the Köppen climate classification, Africa is dominated by three main
climate types, namely an arid, a tropical, and a temperate climate (Peel et al. 2007). Due
to the subtropical high pressure belts in the Northern and Southern Hemisphere more
than half of the continent (i.e. in the area and vicinity of the Sahara and Namib Deserts),
is characterised by arid conditions (see Fig.2.1a). In contrast, the central part of Africa
exhibits a semi-humid or humid tropical climate. A temperate climate is partially found
in southern Africa and to some extend in the Ethiopian Highlands. Parts of the north of
Africa have a Mediterranean climate.
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Individual rainfall-producing weather systems account for the variability in the cli-
matological precipitation amount in tropical Africa (e.g., Le Barbé and Lebel 1997; Shin-
oda et al. 1999; Le Barbé et al. 2002). During the rainy season there is a high frequency
of rainfall events due to the short duration of the water vapour discharge-loading cycle
(e.g.,Peters and Tetzlaff 1988). Several types of precipitation systems were found to
cause rainfall over tropical Africa (cf.Fink et al. 2006and references therein). These
comprise, for example, organised mesoscale convective systems, monsoon rains, and
local showers or instability storms.

Due to the close relation of malaria with climate and weatherconditions
(cp. Sec.2.6.1) the following sections provide further information on theclimate of West
Africa and the Greater Horn of Africa (see Fig.G.3).

2.1.1 The climate of West Africa

The climate of West Africa transitions between an equatorial tropical climate in the
south and a warm desert climate in the north. During boreal summer the climate is
largely controlled by the West African monsoon circulation, which produces the bulk of
annual precipitation. During boreal winter the dry season is characterised by dry and
dusty northeasterly Harmattan winds that originate from the Sahara Desert (e.g.,Buckle
1996).

The climate of West Africa is affected by both cool and humid monsoon air masses
as well as hot and dry Saharan air masses. TheInterTropical Front(ITF), also termed
monsoon trough in the literature, defines the border betweenthese two air masses (e.g.,
Hamilton and Archbold 1945; see Fig.2.2). In contrast, theInterTropical Convergence
Zone(ITCZ) is defined by the maximum water vapour convergence in atropospheric
column (Fink 2006). The ITCZ is generally located between 6◦ and 10◦ latitude south
of the ITF and is associated with strong precipitation amounts (e.g.,Ermert and Brücher
2008).

Due to the wedge-shaped penetration of the monsoon air underthe Saharan air mass,
the atmospheric layering becomes baroclinic (e.g., Fig. 3 in Pytharoulis and Thorncroft
1999). The result of this temperature contrast is a westward thermal wind, the so-called
African Easterly Jet(AEJ), that maximises at a height of about 650 hPa where the north-
south temperature gradient reverses (e.g.,Burpee 1972, his Fig. 2). The AEJ maximum is
located between about 10-15◦N (e.g.,Parker et al. 2005) at the time of the northernmost
position of the ITF at about 20◦N during August (e.g.,Flohn 1965).

The baroclinic and barotropic instability of the AEJ is leading to westward-
propagating low-levelAfrican Easterly Waves(AEWs; e.g.,Thorncroft and Hoskins
1994), which are the dominant synoptic-scale features of the West African monsoon
during boreal summer (e.g.,Carlson 1969b,a). There is an interaction of AEWs with
rainfall bearing systems (e.g.,Reed et al. 1977; Payne and McGarry 1977). AEWs
primarily trigger cloud clusters ahead of an AEW trough and west of the Greenwich
meridian (Fink and Reiner 2003).
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The atmospheric conditions above West Africa are continuously changing through-
out the year. Between November and March during the dry season, the Sahelian and
Sudanian zone are located north of the ITF (Fig.2.2). The northeasterly trade winds,
known as the Harmattan, prevail. The Harmattan blows acrossthe Sahara Desert and is
therefore dry and dusty (e.g.,Hamilton and Archbold 1945). During the first part of the
dry season between November and January, the Harmattan airflow is cool, causing the
cool dry season. From February to May the Harmattan air mass is increasingly heated
due to the higher sun angles, a longer length of day, and the dominance of sensible heat
fluxes in the heat budget of the near surface layer. During this hot dry season the highest
annual temperatures are observed, with maximum temperatures well above 40◦C. Strong
daytime insolation as well as clear and dry nights lead to a large mean daily temperature
range.

During boreal spring the increasing solar radiation over the Sahel and Sahara re-
gions causes a strengthening and northward progression of the continental heat low
(cp. Pedgley 1972). In its wake, the relatively cool, moist, and convectivelyunstable
monsoon air penetrates farther into the continent (cp.Thorncroft et al. 2003; their Fig. 6).
During the pre-onset of the monsoon the depth of the monsoon layer increases and short-
term northward excursions of the ITCZ cause first substantial rainfalls along the Guinean
coast. Farther north in the Sudanian zone the start of the rainy season is delayed until
May or June (cp.Le Barbé et al. 2002). At the end of June, during the main onset of the
monsoon system, the ITCZ abruptly jumps from 5◦N to approximately 10◦N, resulting
in abundant rainfall and cloudier conditions in the Sahel (cp. Sultan et al. 2003; Sultan
and Janicot 2003). During this time, the coast is affected by the ‘little dry season’, which
is directly related to coastal upwelling, a colderSea-Surface Temperature(SST), and the
resulting drop of rainfall (Vollmert et al. 2003). The swift retreat of the monsoon system
and the ITCZ toward the equator from September to November causes a second and less
intense rainy season in the south (cp.Omotosho 1985). By the end of November, the
ITCZ is situated far from the coast and the dry season is againset in place over West
Africa (e.g.,Le Barbé et al. 2002).

2.1.2 The climate of the Greater Horn of Africa

The dynamics and variability of the climate of the Greater Horn of Africa are quite com-
plex. The large-scale circulation is superimposed upon regional factors associated with
lakes, orography, and maritime influences (see Fig.2.1b). Various spatial and tempo-
ral processes determine the geographical distribution of diverse climatic zones. Climate
ranges from desert to tropical rain forest with a transitionover relative small distances
(cp. Fig.2.1a). Areas with a uni-, bi-, or trimodal annual rainfall are located within
distances of markedly less than 100 km (e.g.,Davies et al. 1985, their Figs. 3 & 4). De-
spite this diversity, large parts of East Africa, such as theequatorial zone, experience a
fairly similar interannual variability of precipitation,primarily linked to large-scale at-
mospheric and oceanic changes (e.g.,Nicholson 1996; see Sec.2.1.3). Due to the great
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latitudinal extension of the Greater Horn of Africa, the following analysis will separate
between climate conditions ofEquatorial East Africa(EEA; southern Ethiopia, Kenya,
western Somalia, Uganda, Rwanda, Burundi, and Tanzania) and Northeast Africa(NeA;
eastern Sudan, Eritrea, Ethiopia, and Djibouti; see Figs.G.1& G.3).

The climate of the Greater Horn of Africa is predominantly affected by three main
air streams and three convergence zones (see Fig.2.2). During high and low sun sea-
sons this area is affected by a southeastern and northeastern monsoon flow, respectively.
These airflows are representing in part the western edge of the Asian monsoon, are par-
allel to the coast, and are strongly meridional. They do not represent a classical monsoon
which moves moist air on- and dry air offshore (Buckle 1996). By contrast to the West
African monsoon, both the southeasterly and the northeasterly monsoon flow are asso-
ciated with relatively dry conditions. The third stream represents a west, southwesterly
flow that transports humid, convergent, and thermally unstable Congo air and is associ-
ated with rainfall. The air streams are separated by the monsoon trough and the Congo
Air Boundary. A third convergence zone in the middle troposphere borders the dry and
stable northerly air from the Sahara and the more humid southerly air mass (Nicholson
1996).

Fig. 2.2: Schematic pattern of general winds (arrows), pressure systems (solid lines), convergence zones
(dashed lines), as well as the monsoon trough (dotted lines)for (a) the January and (b) the
July/August circulation over Africa (afterNicholson 1996).

EEA is affected by two distinct equinoctial rainy seasons. Main rain-bearing sys-
tems commonly occur during transition seasons, when the meridional flow is interrupted
between March and May as well as between October and December(seeGatebe et al.
1999, their Tab. 1). Semiannual precipitation is therefore basically related to the migra-
tion of the ITCZ (e.g.,Behera et al. 2005) corresponding to the movement of the belt
of maximum solar insolation (Marchant et al. 2006). During these periods the flow is
often onshore and is forced to ascend by topography and coastal friction (Nicholson
1996). Maximum rainfall generally lags the position of the overhead sun by approxi-
mately one month (Black et al. 2003). Double peaks in rainfall are usually termed long
and short rains (e.g.,Hastenrath et al. 1993). Between March and May the northward
passage of the ITCZ causes the more abundant long rains. During boreal summer the
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persistent southerly monsoonal flow leads to active coastalupwelling that produces cold
SSTs along the eastern coast of the Greater Horn of Africa (seeBehera et al. 2005, their
Fig. 1). This fact as well as the swift retreat of the monsoon system in boreal autumn (see
Leroux 1983) explains the shorter duration of heavy rainfall and lower intensity of the
short rains in October and November. Although, most precipitation is associated with
the long rains, the short rains experience a larger degree ofinterannual variability (Has-
tenrath et al. 1993). An accurate prediction of the strength of short rains is therefore of
considerable importance for agriculture andepidemicdiseases like malaria (Clark et al.
2003). Outside of the transition seasons, rainfall is mostly linked to the humid Congo air
mass and occurs especially over the Western Rift Valley (Fig.G.1)1. A third rainfall sea-
son is limited to parts of western Kenya and Uganda, is most pronounced in July-August
and contributes significantly to annual precipitation (Davies et al. 1985).

NeA is also affected by the migration of the monsoon system causing uni- and bi-
modal rainfall patterns. During the dry season from Octoberto December/January (lo-
cally known as theBega), rainfall is restricted to tropical-extratropical interactions and
to occasional developments of the Red Sea Convergence Zone at the coastal plains and
eastern escarpment of Eritrea (Seleshi and Zanke 2004). Between February and April
converging northeast and southeast winds produce a brief period of rainfall, known as
theBelg rains (e.g.,Diro et al. 2009). During this time, precipitation falls in southern,
central, and eastern parts of Ethiopia. In May, rainfall decreases due to the strengthening
of the Egyptian High (Conway 2000). The bulk of precipitation (65-95% of total annual
rainfall) in NeA falls in the so-calledKiremt season between June and September, when
the ITCZ moves over the area (Segele and Lamb 2005; see Fig.2.2). The southwesterly
air stream transports moisture from the Atlantic and IndianOcean into the region (e.g.,
Diro et al. 2009). The mean airflow as well as orographic lifting produce abundant pre-
cipitation in the western parts of the Ethiopian Highlands (Segele and Lamb 2005, their
Fig. 1). Precipitation decreases to the north toward Eritrea to about 600 mm of rain in
June-August mainly due to weaker upper level forcings (Segele et al. 2008). In general,
Kiremt rainfall is influenced by the Arabian and Sudan thermal lows,which determine
the position of the ITCZ, as well as upper level features suchas the AEJ and TEJ. More-
over, the strength of Sankt Helena and Mascarene Highs as well as the low-level Somali
jet are affecting the southwesterly flow (Seleshi and Zanke 2004; Diro et al. 2009).

Some local effects play a role in the distribution of rainfall and temperature in
East Africa. For example, elevation differences and other topographical characteris-
tics greatly influence the climate of East Africa. The highlands of the Western Rift
Valley block the moist and unstable westerly airflow from theAtlantic. Likewise, the
Ethiopian Highlands provide leeward rain shadows leading to a complex pattern of rain-
fall and aridity along the Great Rift Valley, down to the AfarDepression, as well as
in the Ogaden (cp.Nicholson 1996; Conway 2000). Highland territories exhibit zones
with relatively low temperatures. During the wet season, temperature decreases by about

1See App.G for the geographical positions of various territories, highlands, mountains, lakes, as well as
towns.
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5.3◦C per 1000 m of elevation in Ethiopia for example. Mean annualtemperatures in the
EthiopianWoina Dega(Dega) climate zone are 16-20◦C at an altitude between 1800 and
2400 m and only 6-16◦C above 2400 m (Conway 2000). In northern Kenya, divergence
in the airflow is associated with the low-level Lake Turkana Jet, which is channelled by
the Ethiopian and East African highlands (Kinuthia 1992; Camberlin 1997, his Fig. 3).
Large water bodies significantly alter the convective activity (cp. Ogallo 1989). The rain-
fall over Lake Victoria, for example, is dramatically enhanced by a nocturnal lake-breeze
circulation (Ba and Nicholson 1998). In contrast, the upwelling of cold water along the
Somali coast suppresses moist convection along the coast (cp. Halpern and Woiceshyn
1999; Hodges 1998).

2.1.3 Interannual variability of precipitation

Africa is known for its variable climate, often exceeding the range of variation of many
other places on Earth. In Africa, climate variability is mainly manifested as changes in
rainfall. One striking feature are the overall drier conditions in the Sahel since the 1970s,
even though the Central Sahel recently exhibits an upward trend (e.g.,Nicholson 2005;
Ali and Lebel 2009; Lebel and Ali 2009). In Africa, rainfall distributions in space and
time have been studied extensively due to their importance for economy, agriculture, and
epidemic diseases. Anomalously low or high rainfall amounts can give rise to drought
or floods, respectively, both with disastrous economic and humanitarian consequences
(Washington et al. 2006). In November-December 1997, for example, unusual high
rainfall gave rise to a major malaria epidemic in northeastern Kenya (Brown et al. 1998).

Oceans markedly influence the characteristics and circulation of the atmosphere.
The atmospheric boundary layer of the tropical Atlantic, for example, is enriched by
moisture from the Atlantic Ocean, feeding the West African summer monsoon (cp.Cadet
and Nnoli 1987). The temperature contrast between oceans and adjacent continental land
masses determines the flow of air (cp.Haarsma et al. 2005). Cold (warm) SSTs suppress
(enhance) the formation of deep convection and hence rainfall (e.g.,Vollmert et al. 2003).
Due to the migration of atmospheric features, the impact of an SST anomaly depends
on season. SST anomalies may enhance rainfall in one season,but reduce it in another
(cp. Balas et al. 2007). On a larger scale, oceans influence the generation of the Walker
circulation. This equatorial feature is able to link local processes to the large-scale.
Ascending and descending branches of the Walker cell directly influence the thermal
static stability of the troposphere. For these reasons, natural or anthropogenic changes
in oceans have a strong influence on Earth’s climate.

West Africa

The Sahel has attracted special interest because of its drought conditions in the 1970s
and 1980s. Research has moved steadily away from explanations for rainfall variations
in this region as primarily due to land use changes and more towards explanations based
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on SST changes (Christensen et al. 2007a). On interannual and interdecadal time scales
Sahel rainfall is largely determined by fluctuations in SSTs. Atmospheric simulations
usingGeneral Circulation Models(GCMs) show that the north-south interhemispheric
SST gradient is most important. Colder oceans in the Northern Hemisphere and warmer
low-latitude SSTs around Africa weaken the continental convergence associated with
the summer monsoon (cp.Giannini et al. 2003; Hoerling et al. 2006). In particular, cold
(warm) SSTs in the Atlantic Ocean in the region south of West Africa favour a strong
(weak) monsoon circulation and lead to wet (dry) conditionsin the Sahel (cp.Lamb
1978; Eltahir and Gong 1996). Warm SSTs in the equatorial Atlantic favour an anoma-
lously southerly ITCZ location (cp.Balas et al. 2007) that leads to increased precipita-
tion along the Guinean coast (cp.Ruiz-Barradas et al. 2000). Bader and Latif(2003)
suggested that the warming trend in the Indian Ocean played acrucial role for the dry-
ing trend over the Sahel (see alsoPalmer 1986; Giannini et al. 2003; Lu and Delworth
2005; Hoerling et al. 2006). A warm Indian Ocean enhances convection over the tropi-
cal Indian Ocean resulting in upper tropospheric divergence. This divergence induces an
unusual east-west circulation and upper level convergenceover West Africa, which ulti-
mately suppresses rainfall. In addition,Rowell (2003) concluded that a warmer Mediter-
ranean Sea tends to moisten the Sahel. In such a situation, a higher moisture content of
the lower troposphere, which is advected southward across the eastern Sahara, produces
additional precipitation. Finally, there seems to be a Pacific-Sahel teleconnection (e.g.,
Janicot et al. 1996). A warmEl Niño/Southern Oscillation(ENSO) might generate inter-
acting stationary equatorial waves enhancing large-scalesubsidence over the Sahel (see
Rowell 2001). Janicot et al.(2001) proposed that moisture advection over West Africa
is reduced during El Niño years through induced changes in pressure gradients.

Atmospheric conditions are also markedly influenced by surface conditions of land
masses. Vegetation partly determines the surface albedo, recycles precipitable water
via transpiration, and affects various other processes (see Christensen et al. 2007a, their
Box 11.4). Charney’s hypothesis, for example, points to a positive albedo-precipitation
feedback (Charney 1975). An increase in surface albedo due to an anthropogenic reduc-
tion in vegetation could cause a decrease in precipitation that, in turn, would lead to a
decrease in vegetation cover and thus a further enhancementof albedo. Indeed,Giannini
et al.(2003) argued that the response of the West African summer monsoonto oceanic
forcing is amplified by land-atmosphere interactions (cp. also Taylor et al. 2002). The
variance of rainfall in the GCM is weaker in absence of a feedback between the atmo-
spheric circulation and land surface processes. However, the sign of rainfall anomalies
in the Sahel is still determined by SST variability.

Recent research indicated that changes in SST have probablythe dominant influence
on Sahel rainfall (cf.Hegerl et al. 2007; Christensen et al. 2007a). A spatially varying,
anthropogenic sulphate aerosol forcing is found to providean important feedback on the
cooling at high latitudes and changes in the interhemispheric SST gradients result in a
southward shift of the ITCZ (Williams et al. 2001; Biasutti and Giannini 2006). Aerosols
seem to have a key role in the determination of lifetime and albedo of clouds (Rotstayn
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and Lohmann 2002). Effects of clouds on Sahel rainfall were further demonstrated by
Haarsma et al.(2005). Their climatescenariosled to an increase in low-level clouds
over oceans contributing to less warming over oceans than over the Sahara. This again
induces a stronger summer monsoon and therefore a wetter Sahel.

Greater Horn of Africa

A strong interannual variability of rainfall in EEA has beenfound for the short rains
and is mainly influenced by the Indian Ocean. In Kenya and Tanzania, for example,
the October-November rainfall is highly correlated to annual rainfall despite its lower
amounts (Nicholson 1996).

EEA rainfall in boreal autumn seems to depend on the strengthof a Walker cell.
In the interval between the northeast and southwest monsoons in boreal autumn, a
closed zonal circulation materialises above the Indian Ocean equator (Hastenrath 2000;
cp. Fig.2.3a). This circulation accelerates equatorial surface westerlies driving the
oceanic Eastward Equatorial Jet (cp.Wyrtki 1973) in the upper part of the Indian Ocean
(Luyten et al. 1980; Hastenrath et al. 1993). The formation of the jet in the tropical
ocean is accompanied by a flattening of the thermocline at itswestern origin (Wyrtki
1973). The regime of a weak atmospheric zonal circulation entails slow westerlies, a de-
creased subsidence, and abundant rainfall in EEA (Hastenrath 2001; see alsoJury et al.
2002). It also seems to be found preferably under El Niño conditions (cp.Hastenrath
2000).

More recently, the atmospheric fluctuation described abovehas been associated with
the so-calledIndian Ocean Dipole(IOD; first described bySaji et al. 1999). IOD events
show large-scale SST anomalies producing enhanced EEA rainfall. SST anomalies in
the Indian Ocean had traditionally been viewed as an outcomeof the ENSO system
(e.g.,Nicholson and Nyenzi 1990; Nicholson 1996) that is forced under El Niño and
suppressed under La Niña conditions, but there is increasing evidence that it is a sepa-
rate and distinct phenomenon (Marchant et al. 2006). Behera et al.(2005) showed that
the IOD influence on short rains in EEA is overwhelming as compared to that of ENSO
(see alsoSaji and Yamagata 2003a, their Fig. 1). In particular, 1961 – the second largest
IOD event of the 20th century – was not an El Niño year (e.g.,Black et al. 2003). More-
over,Saji and Yamagata(2003b) found that the strength of ENSO events might actually
depend on the IOD mode. They noted that ENSO events co-occurring with IOD events
are much stronger compared to unrelated events. However, other studies concluded that
in some occasions ENSO can force IOD events (e.g.,Black et al. 2003; Clark et al.
2003).

During boreal autumn a positive dipole mode of the IOD is associated with a distinct
dipole-like SST pattern in the tropical Indian Ocean (e.g.,Saji and Yamagata 2003b, their
Fig. 2). Such events show cool (warm) SST anomalies in the east (west) Indian Ocean
(e.g.,Webster et al. 1999; Fig.2.3b). The troposphere above the Indian Ocean shows
a strong variability during a positive IOD event, which is characterised by following
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Fig. 2.3: (a) Illustration of the usual Walker circulation along the equator (afterNicholson 1996).
(b) Schematic of the IOD event in 1997 (fromWebster et al. 1999). A cool (warm) SST anomaly
occurred in the eastern (western) Indian Ocean in the secondhalf of 1997. In autumn 1997, the
heating anomaly off the East African coast changed the usually weak climatological equatorial
westerlies to surface easterlies (left panel). The SST anomalies came along with anomalies in the
sea surface height, which was decreased (increased) in the eastern (western) basin of the Indian
Ocean (right panel).

structures: (i) Walker cell anomaly over the equator; (ii) deep modulation of monsoon
westerlies; and (iii) an anomalous Hadley cell over the Bay of Bengal (Saji and Yama-
gata 2003a). A positive dipole mode weakens the westerly flow that normally transports
moisture away from the African continent out over the IndianOcean (Black et al. 2003;
Fig.2.3). The normal convection patterns situated over the easternIndian Ocean warm
pool are shifted westward and bring abundant short rains over EEA as well as drought
conditions causing forest fires over the Indonesian region (Marchant et al. 2006). Posi-
tive IOD events therefore result in significant rain variability in surrounding land masses
(see also Fig.2.3) and unusual high (low) temperatures over countries west (east) of the
Indian Ocean.

The climate of NeA also exhibits a large interannual variability. Much like the Sa-
hel, droughts in the 1970s and 1980s in Ethiopia resulted in low agricultural production
and affected millions of people (e.g.,Seleshi and Zanke 2004). Atmospheric features
significantly influencing rainfall of NeA include ENSO, SSTsin the Indian Ocean, and
pressure systems, which steer moisture advection.

A large-scale teleconnection with ENSO markedly influencesKiremt (June-
September) precipitation in NeA. It was found that El Niño years are typically associated
with lower rainfall amounts and drought years. A late onset and shortKiremt season is
likely to be connected with El Niño conditions. In contrast,La Niña conditions usually
lead to higher precipitation quantities (e.g.,Beltrando and Camberlin 1993; Segele and
Lamb 2003, 2005; Seleshi and Zanke 2004; Block and Rajagopalan 2007; Korecha and
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Barnston 2007; Segele et al. 2008). As previously noted, ENSO events seem to alter
zonal Walker-type circulations. Westerly (easterly) anomalies in lower (upper) levels
cause an increased moisture flow towards the area and hence abundant summer rainfall
years (Camberlin 1995). A different response was detected for theBelg season, when
El Niño can produce excess rainfall (cp.Diro et al. 2009).

InterannualKiremt rainfall variability is also linked to pressure patterns. Anoma-
lously low pressure in India triggers a west-east pressure gradient near the equator inten-
sifying the monsoon flow over the Indian Ocean and Africa. An enhanced Indian mon-
soon leads to a stronger moisture advection from the Congo Basin toward NeA (Cam-
berlin 1995, 1997). Moreover, an intensification of pressure over the Gulf of Guinea in
the Atlantic enhances the westerly/southwesterly monsoonflow across the continent and
produces wetter conditions over the Horn of Africa (Segele and Lamb 2005; Segele et al.
2008).

Rainfall in NeA is also correlated with SSTs near Africa. Warm SSTs in the west-
ern Indian Ocean and the Arabian Sea are associated with a delayedKiremt cessation
and hence prolonged rainfall (Segele and Lamb 2003, 2005). It is interesting to note
that Kiremt rainfall does not seem to depend on IOD conditions (see above). Saji and
Yamagata(2003a) found that in the southern part of Ethiopia (3-7◦N, 32-46◦E) Kiremt
rainfall is significantly correlated with ENSO but not with the IOD.Segele et al.(2008)
established that warm (cool) SSTs in the southern Indian Ocean leads to reduced (en-
hanced) Ethiopian monsoon rainfall. They argued that a warm(cool) southern Indian
Ocean weakens (intensifies) the Mascarene high and hence theflow. Furthermore, the
number of tropical depressions over the southwest Indian Ocean predominantly affects
precipitation of theBelgseason.Shanko and Camberlin(1998) showed that a high (low)
number of tropical depressions is negatively (positively)correlated withBelg rainfall.
During boreal winter the presence of tropical depressions reduces the moisture advec-
tion toward Ethiopia due to an enhanced flow into the systems.

2.2 IPCC SRES scenarios

Greenhouse gases reduce the loss of heat of the Earth’s atmosphere. GHGs include
carbon dioxide(CO2), nitrous oxide(N2O), methane(CH4), sulphur oxides(SOx), and
various other gases such as halocarbons. Increased anthropogenic GHG emissions since
the industrial revolution have changed the natural balanceand led to a rise of global
surface temperatures of 0.74◦C between 1906 and 2005 (Trenberth et al. 2007). For
this reason, impressions of the future evolution of GHG concentrations are essential for
Earth’s climate projections. Already at the start of the 1990s, the IPCC developed six
alternative scenarios (Houghton et al. 1992). These scenarios were finally superseded by
the IPCCSpecial Report on Emissions Scenarios(SRES; seeNakićenovíc et al. 2000).
Some basic information with an emphasis on A1B and B1 climatescenarios is presented
below.
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Fig. 2.4: Schematic illustration of SRES scenarios (afterNakićenovíc et al. 2000). In (a) HS denotes
scenarios with ‘harmonised’ assumptions on global population, gross world product, and finite
energy, whereas OS scenarios explore uncertainties in driving forces beyond those of harmonised
scenarios. Under (b) the four scenario ‘families’ are depicted as branches of a tree. Further
details see text.

Driving forces of GHGs are mainly the demographic and socio-economic develop-
ment as well as changes in technology and the environment.Nakićenovíc et al.(2000)
presented four different narrative storylines (the so-called ‘families’ are A1, A2, B1, and
B2) that estimate future progression of emissions. Six scenario groups are drawn from
the four families (cp. Fig.2.4). One group each in A2, B1, and B2 as well as three groups
within A1 characterised by different energy technology developments: A1FI describes a
fossil fuel (including coal, oil, and gas) intensive, A1B follows a balanced energy supply
mix, and A1T is a predominantly non-fossil fuel scenario.

The level of economic activity by 2100 ranges between ten and26 times the gross
world product values of 2000. By 2100 the A1 scenario family represents the upper
bound of the gross domestic product, whereas the B1 scenariofamily is intermediary.
Alternative pathways are explored to describe a convergentworld. The A1 scenario
family is characterised by capacity building, and increased cultural as well as social
interactions. Alternatively, rapid changes in economic structures towards a service and
information economy take place under B1.

Technology change will strongly impact future GHG emissions of the 21st century.
B1 and to some extent also A1B follow a trend toward an increase of renewable and
nuclear energies in the long term. A1 and B1 scenarios expectsignificant innovations in
energy technologies and drastic reductions in costs for solar, wind, and other renewable
energies. Clean and resource-efficient technologies are introduced in the B1 scenario,
whereas A1B has a balanced emphasis on all energy sources.

The population growth until 2050 as well as dietary changes result in a global ex-
pansion of grassland and pasture at the expense of forest area under the A1 storyline.
An increased productivity largely compensates the growingfood demand under B1. By
2100, B1 and B2 scenario families include a considerable ‘greening’ of the planet, due
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to demographic and dietary shifts. In general, methane and nitrous oxide emissions peak
in the mid-century and decline thereafter.

2.3 Climate change projections

The projection of future conditions of the Earth’s atmosphere is essential for the analysis
of the possible evolution of climate change and its impact onmosquito-borne diseases
such as malaria. Climate projections are based on GCMs, which are dynamically cou-
pled to Ocean Models(OMs), the so-calledAtmospheric Ocean General Circulation
Models(AOGCMs).

Various uncertainties are associated with climate modelling. The horizontal and
vertical resolution of state-of-the-art AOGCMs are limited (cp.Rall et al. 2007, their
Tab. 8.1). Small-scale processes are therefore not explicitly represented in current cli-
mate models and their certainty is limited to continental scales. The parameter setting of
the models are also not perfect due to limitations in scientific understanding or lack of
observations of physical processes. Feedbacks from vegetation are not included in actual
global climate models and future modifications of the land surface were not considered
in theFourth Assessment Report of the IPCC(IPCC-AR4;Solomon et al. 2007). Also
the aerosols forcing, such as the feedback from dust aerosolproduction, are not fully
represented by AOGCMs (e.g.,Christensen et al. 2007a).

A source of confidence in climate models is the ability of models to simulate
most general features of the current atmospheric circulation (see FAQ 8.1 inRall et al.
2007). Nevertheless, difficulties still remain with the simulation of tropical precipitation
amounts in association with monsoon systems (see Sec.2.3.2), ENSO, and the Madden-
Julian Oscillation (cp.Madden and Julian 1971).

Single runs of AOGCMs are not able to produce definitive climate projections be-
cause of the uncertainty of the initial state as well as due tothe simplification of atmo-
spheric physics in model formulations. Climate projections are therefore performed by
means ofensemble runs. Uncertainties and weaknesses of single climate models arepar-
tially overcome by analysing amulti-modeldata set comprising ensemble runs of various
AOGCMs (cp.Palmer et al. 2004a,b; Hagedorn et al. 2005).

2.3.1 Global climate projections

The physical science basis of the IPCC-AR4 consists of future climate scenarios pro-
jected from 23 AOGCMs (Solomon et al. 2007). Continued GHG emissions will prob-
ably cause a further warming of the globe and will induce manychanges in the global
climate system throughout the 21st century. The global meantemperature increase until
2100 for all scenarios ranges from 1.1-6.4◦C (Fig.2.5; e.g., B1: +1.8◦C (1.1-2.9◦C ) and
A1B: +2.8◦C (1.7-4.4◦C)). Note, the feedback of the carbon cycle causes greater un-
certainties with regard to higher temperature increases. Efficiency of the Earth’s system
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to absorb anthropogenic CO2 is reduced under future climate change conditions and a
larger fraction of CO2 will remain airborne (Meehl et al. 2007).
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Fig. 2.5: Multi-model averages (solid lines) and standard deviationranges of individual model annual
averages (shading) for the projected surface warming (∆T; relative to 1980-1999) of A2, A1B,
and B1 scenarios (afterSolomon et al. 2007). Also included is the experiment where GHG
concentrations were held constant at the year 2000 values (orange line). The best estimate (solid
line in the grey bars) and range (grey bars) of the temperature increase is assessed for six SRES
marker scenarios (for details seeMeehl et al. 2007).

The multi-model mean shows a pronounced global warming overland and at high
northern latitudes (cp.Meehl et al. 2007, their Fig. 10.8) and precipitation is projected to
increase in various parts of the world since the global hydrological cycle generally inten-
sifies (seeMeehl et al. 2007, their Fig. 10.12a). A decrease in precipitation is suggested
for the subtropics, in particular around the MediterraneanSea. There is no indication
of discernible changes in ENSO except for model dependent changes in the interannual
variability.

2.3.2 Regional climate projections for Africa

Based on the multi-model data set the IPCC-AR4 provides a regional perspective of the
projected climate change (Christensen et al. 2007a). A closer look onto the African con-
tinent reveals that the whole of Africa is expected to warm (cp. the top row of Fig.2.6)
with a temperature increase exceeding that of the globe’s average. The drier subtropical
regions are projected to warm more strongly than the wetter tropical areas. The median
temperature rises between 3 and 4◦C, about 1.5 times the response of the global mean
temperature increase. The largest temperature intensification is found in the western Sa-
hara (above 4◦C). The projected rise in temperature is smallest in equatorial and coastal
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Fig. 2.6: Changes in temperature (∆T; top row) and precipitation (∆RR; middle row) over Africa between
1980-1999 and 2080-2099 averaged over 21 AOGCMs (fromChristensen et al. 2007a). Also
illustrated is the number (#) of models that project increases in precipitation (bottom row).

areas (lower than 3◦C in some subdomains). Compared to extra-tropical regions there is
only a small amplitude of change relative to the seasonal temperature cycle.

The projection of the hydrological cycle is hampered by significant systematic er-
rors of AOGCMs in the simulation of precipitation.Cook and Vizy(2006) found that six
out of 18 AOGCMs generate no realistic West African monsoon.During boreal summer
(June-September) these models are not moving ITCZ rainfallonto the African conti-
nent. In various climate models such asECHAM5/MPI-OM(European Centre HAm-
burg Model, 5th generation/Max-Planck-Institute-Ocean Model), the ITCZ is displaced
toward the equator and is found over the Atlantic (seeCook and Vizy 2006, their Fig. 5).
Dipolar rainfall variations in the Sahel and the Guinean coast, associated with a fairly
realistic interannual SST variability in the Gulf of Guinea, are only present in four of
18 models. Additionally, AOGCMs generally simulate higherthan observed ocean tem-
peratures in the Gulf of Guinea. Clearly, models underforecast the upwelling leading to
partly 3◦C higher ocean temperatures along the coast.

The global pattern of precipitation decrease in the subtropics is also found for the
African continent (cp. the middle row of Fig.2.6). In comparison with 1980-1999 most
AOGCMs show an annual rainfall reduction for 2080-2099 in much of Mediterranean
Africa, the northern Sahara, as well as southern Africa (seebottom part of Fig.2.6). In
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northern Africa, probability of a rainfall reduction increases with latitude, as part of a
larger-scale drying pattern and to a certain extent due to a poleward shift of storm tracks
bearing winter rains. Similar processes are also found in southern Africa where rainfall
is likely to decline during winter rainfall periods particularly at the west coast of South
Africa.

The great majority of AOGCMs foresee higher rainfall amounts in the equatorial
tropics of Africa, predominantly in East Africa (see alsoChristensen et al. 2007a, their
Fig. S11.13). East of the Great Lakes rainfall projection ismost robust and 18 out of
21 models depict positive rainfall signals. These higher rainfall amounts are part of the
large-scale picture with drying in much of the subtropics and an increase in precipitation
in most parts of the tropics.Christensen et al.(2007a) argued that this is a plausible
hydrological response to a warmer atmosphere. Higher temperatures increase the water
vapour content of the atmosphere resulting in an enhanced water vapour transport.

Evolution of rainfall in the 21st century for West Africa andespecially that for the
Sahel is fairly uncertain. About half (8-13) of the 21 modelsshow either higher or
lower annual amounts of precipitation. Four climate modelspredict an overall drier
West Africa; six AOGCMs simulated a dipole rainfall patternfor West Africa with a
drier Sahel and a wetter Guinean coast; eight models projecthigher amounts of rain-
fall for the Sahel and three of which reveal a reversed dipolepattern; and three models
show some mixed rainfall patterns (Christensen et al. 2007a, their Fig. S11.13).Hoerling
et al. (2006) found a wet signal over the Sahel for 2000-2049. They attributed this in-
crease to the projected warming of the North Atlantic compared with the South Atlantic
(cp. Sec.2.1.3). Moreover,Cook and Vizy(2006) analysed the 21st century integration
of three AOGCMs, showing the simulations of the 20th centuryover West Africa of the
best quality. Theversion 2.0 of the Geophysical Fluid Dynamics Laboratory Climate
Model (GFDL-CM2.0) projects a very strong drying in the Sahel and throughout the
Sahara in the second half of the century. By contrast, themedium-resolution version 3.2
of the Model for Interdisciplinary Research on Climate(MIROC3.2(medres)) simulates
fairly wet conditions during the 21st century. A doubling ofthe number of anomalously
dry years by the end of the century causes a modest drying in the Sahel in theJapanese
Meteorological Research Institute(MRI) model. Cook and Vizy(2006) concluded that
the third model provides the most reasonable scenario of Sahelian precipitation through-
out the 21st century.

A major limitation of state-of-the-art AOGCMs is their coarse horizontal resolution.
Regional details of climate are not detectable by AOGCMs. However, information of lo-
cal scales is required to impact on political measures and practical planning in terms of
food security, water supply, and health (e.g.,Paeth et al. 2009). Finer resolutions are usu-
ally achieved by applying so-calledRegional Climate Models(RCMs). RCMs are em-
bedded into AOGCMs and in principle such a dynamical downscaling is more consistent
than empirical downscaling (e.g.,Hewitson and Crane 2006). Nevertheless, this model-
into-model approach can be problematic. Firstly, potential model errors in AOGCMs
and RCMs are superimposed. Secondly, a RCM depends stronglyon AOGCM runs
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since the simulation largely depends on lateral boundary conditions. Thirdly, grid points
close to the border of the model domain are not representative due to lateral boundary
effects.

Several regional climate simulations were performed for various parts of the African
continent. For example, RCMs were used for the simulation ofthe short rains in East
Africa (e.g.,Sun et al. 1999; Song et al. 2004). Such RCMs are able to simulate large-
scale circulation characteristics as well as local features such as the Lake Turkana Jet and
the diurnal reversal of the lake/land breeze circulation over Lake Victoria (cp. Sec.2.1.2).
More recently, climate change scenarios for Africa were performed by time slice sim-
ulations of RCMs. Most of these models, focusing on tropicalAfrica, are accurately
simulating the seasonality of rainfall. Several RCM time slice experiments project a
wetter Sudan-Sahel region for the late 21st century (e.g.,Oouchi et al. 2006; Coppola
and Giorgi 2005; Kamga et al. 2005; Kunstmann and Jung 2005; Caminade et al. 2006;
Jung 2006). Moreover, an increase in the interannual variability of rainfall is detected
either due to land-atmosphere feedbacks (Coppola and Giorgi 2005) or induced by shifts
in Atlantic SST gradients (Caminade et al. 2006).

Land use change is a potential contributor to climate changein the 21st century
(Christensen et al. 2007a). For example,Taylor et al.(2002) found a drying over the
Sahel of 4% from 1996-2015 due to a change in land use. They also suggested that
climatic impacts of land use change are likely to increase rapidly in future. By contrast,
Maynard and Royer(2004) projected that land use changes only have a small regional
effect on future climate.Paeth et al.(2009) presented several ensemble experiments with
the REgional MOdel(REMO) forced with increasing GHG concentrations as well as
land use changes until 2050. REMO predicts a significant weakening of the hydrological
cycle over most parts of tropical Africa. It was found that land use changes are primarily
responsible for the simulated climate response.

Empirical downscaling was used to provide projections for daily precipitation on
the basis of six AOGCM simulations for the SRES A2 scenario. By means of various
meteorological variables, the technique fromHewitson and Crane(2006) defined atmo-
spheric states which are associated with certain rainfall probabilities. The downscaling
version shows more common features in projected changes of precipitation than raw
data from AOGCMs (cp.Christensen et al. 2007a, their Fig. 11.3). The ensemble mean
of the downscaling reveals increased precipitation in EastAfrica and a strong drying
in the core of the Sahel during boreal summer. Additionally,the downscaling results
in local-scale variation of projected changes. For example, by contrast to the Sahel an
increase in rainfall is indicated for stations along the Guinean coast.

In summary, the above-mentioned statements underline thatrainfall projections for
West Africa, in particular for the Sahel, are fairly uncertain. Various studies predict
higher rainfall amounts for the Sahelian region mainly due to enhanced warming of the
northern Atlantic. However, regional climate modelling aswell as empirical downscal-
ing suggests that the modest increase in Sahel rainfall in the multi-model data set should
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be viewed with caution. A rainfall surplus, however, in the area of East Africa is pre-
dicted with some confidence.

2.4 Malaria biology

Malaria is one of the most dangerousinfectiousand widespread diseases found in trop-
ical and subtropical regions. Every year this vector-bornedisease causes worldwide
about 273 million clinical cases and more than one million deaths (Touré and Oduola
2004). Particularly in sub-Saharan Africa whereP. falciparumcauses high morbidity
and mortality rates (e.g.,Snow et al. 1999a,b). Malaria is caused by protozoan parasites
of the genusPlasmodium. The two most serious forms of this genus areP. falciparum
andP. vivax. People suffering from malaria may experience fever, headache, malaise,
severe anaemia, coma, impaired consciousness, convulsions, hypoglycaemia, and high
parasitaemia (Colwell and Patz 1998; Gay-Andrieu et al. 2005). Deaths predominantly
occur in young children and may result from neurological damage and progressive coma,
pulmonary edema, kidney failure, or shock caused by the collapse of the vascular system
(Colwell and Patz 1998).

2.4.1 The parasite cycle

The cycle of the malaria parasite starts when the parasite within the insect is transmitted
by a female mosquito to the human host whilst feeding (e.g.,Price et al. 1996; Phillips
2001; see Fig.2.7). A blood meal is required by the insect to produce eggs whichare
laid and then develop in standing water. During the blood-meal of a femaleAnophe-
lesmosquitosporozoites, the infective form of the malaria parasite within mosquitoes,
are injected into the human host. Sporozoites then invade hepatocytes (liver cells) where
they increase in numbers. In liver, sporozoites subsequently mature into schizonts, which
rupture and release numerousmerozoitesafter 5-6 days (Price et al. 1996). When these
merozoites enter the bloodstream the so-called erythrocyte stage starts, the beginning of
an asexual cycle. In the erythrocyte stage merozoites attach themselves to specific red
blood cell receptors where the asexual reproduction of the parasite (schizogony) leads
to the development of immaturetrophozoites. This stage is the so-called ring stage as
parasitised red blood cells of an infected host are identifiable under the microscope. Ma-
ture trophozoites finally evolve again into schizonts. The erythrocytic cycle takes about
48 hours to complete (Rosenberg et al. 1990a) and results in the rupture of schizonts,
which liberate on average 16 merozoites (Eichner et al. 2001). The malaria parasite
therefore cannot be identified before schizonts have ruptured after about 7 days (e.g.,
Schneider et al. 2005; see Tab.D.15).

The blood stage of the parasite is responsible for clinical manifestations of the dis-
ease (Talman et al. 2004). Mature, asexual stages ofP. falciparumare mostly absent
from the peripheral circulation and are detectable under microscope. This is due to the
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Fig. 2.7: Cycle of the malaria parasite in the human and mosquito host (afterGreenwood et al. 2005and
Phillips 2001).

sequestrationof asexual parasites, that is the adherence of infected erythrocytes to the
microvascular endothelia of many organs and tissues such asheart, lung, liver, skin, and
brain (MacPherson et al. 1985). The process often leads to a severe affection of the body
(e.g., cerebral malaria). On the other hand bursting erythrocytes cause malaise and fever.
Prolongedinfectionsometimes leads to severe anaemia.

Sexual stages of the parasite play a minor role in terms of morbidity, but are essential
for the transmission of the parasite. Production of the sexual form of the parasites also
begins in the erythrocyte stage when merozoites either go into another round of schizo-
gony or develop male and femalegametocytes. Maturing gametocytes are preferentially
sequestered in the bone marrow and spleen (Thomson and Robertson 1935; Smalley
et al. 1981). Gametocyte maturation lasts about 8-11 days and after initial infection this
form is detectable after approximately 11-28 days in blood (see Sec.5.1.10). Male and
female gametocytes are finally released into the bloodstream and might be picked up by
anAnophelinevector.
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The development of the malaria parasite within the mosquitodenotes the so-
calledsporogonic cycleor extrinsic incubation period (see, e.g.,Price et al. 1996; see
Sec.5.1.7). This cycle starts when gametocytes are ingested by the biting mosquito vec-
tor. Male and female gametocytes first fuse to form a zygote. These become mobile and
transform into elongated ookinetes, which invade the mid-gut wall and turn into oocysts.
Those oocysts increase in size, rupture, and finally releasesporozoites. In the end, these
sporozoites reach the salivary glands of mosquitoes and thelife cycle of the malaria
parasite is perpetuated.

2.4.2 Immunity

Various biological processes influence the transmission ofthe malaria parasite and the
malariaprevalence. In areas where malaria isendemic, humans usually go through var-
ious states of immunity. At birth, infants are partially protected from infection due to
the transfer of antibodies from mother (Wernsdorfer and McGregor 1988). This passive
maternal immunity is lost after few months. Young children lack functional immunity,
but can quickly develop protection against non-cerebral severe malaria infections (see
Gupta et al. 1999). The asexual Parasite Ratio(PR) rises quickly to almost 100% in
early childhood and declines slowly on the way to adulthood due to progressive immu-
nisation (Aron 1988). This partial host immunity does not completely prevent infection
(Aron 1988), but reduces asexual parasite densities (e.g.,Buckling and Read 2001).
Adolescents between 12 and 15 years of age or older usually acquire an immune status
that prevents disease outbreak (Kun et al. 2002).

Acquisition and loss of immunity

Sexual reproduction (i.e., genetic recombination) through female and male gametocytes
assures the genetic diversity of the malaria parasite (e.g., Nassir et al. 2005). As the
human host can develop immunity against a strain, continuous generation of new strains
is essential to the transmission success of malaria. Malaria infections usually involve
more than one parasitic genotype (De Roode et al. 2004). Individuals living in endemic
malaria areas are mostly infected with multiple parasite clones (Cole-Tobian et al. 2007).
Repeated exposure to malaria infections can produce semi-immunity against for instance
P. falciparum. A clinical case of malaria typically arises from infectionby a novel strain
to which the host has not yet mounted an efficient protective immune response or to
a strain with greater virulence (Kun et al. 2002). Strain-specific immunity increases
prevalence ofasymptomaticparasite carriers with age (Kun et al. 2002). For this reason,
development and loss of functional immunity is a key determinant for frequency and
severity of clinical symptoms (e.g.,Brinkmann and Brinkmann 1991).

Vulnerability of a population with regard to the malaria pathogen also depends on its
ethnic affiliation. A different response to the malaria parasite was found in sympatric eth-
nic groups, which reside in a Sudanese savanna area northeast of Ouagadougou (Burkina
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Faso).Modiano et al.(1996) detected interethnic differences in infection rates, malaria
morbidity, prevalence, and levels of antibodies to variousP. falciparumantigens. The
ethnic group Fulani was, for example, less parasitised and affected by the disease than
the Mossi and Rimaibé groups.

Most deaths from malaria are infants and children under five,as well as pregnant
women (e.g.,Martin and Lefebvre 1995). Immunity is generally found in malaria-
endemic areas with high and stable transmission rates (cp.Sutherst 2004). Areas which
are prone to epidemic malaria do not necessarily have stabletransmission rates leading
to lower immunity in the population and increasing the risk of sudden malaria outbreaks
of epidemic proportions (cp.Kiszewski and Teklehaimanot 2004). Any increase in ir-
rigation can, for example, lead to a dramatic increase in malaria (Lindsay and Birley
2004). Highland populations generally lack a functional immunity and are in particu-
lar vulnerable to this mosquito-borne disease (e.g.,Minakawa et al. 2002a). The effect
of topography on the reduced risk of malaria infection was, for example, shown in the
Usambara Mountains (seeBalls et al. 2004). Due to a non-immune response death can
occur in all age groups and is not restricted to young children in this region.

When individuals do not receive repeatedinoculationsof various parasite clones,
for example, during the dry season, they lose at least parts of their immunity. Hence in
endemically unstable areas, several years of drought may lead to a population with low
levels of malaria immunity (Connor et al. 1998). By contrast, during the course of the
rainy season humans usually acquire or increase an effective protective immunity. Such
a situation was reported from a typical savannah village in Burkina Faso byBoudin et al.
(1991a). It was shown that from the mid to the end of the malaria transmission season
the parasite prevalence and density decreased in children,probably due to an immune
response.

Infectiousness

Immunity significantly affects the infectiousness of humanhosts (see also Sec.5.1.13).
Partial host immunity reduces infectivity of human blood tomosquitoes during the blood
meal. Infectiousness decreases in general with age, but also highly immune hosts can in-
fect Anophelesfemales (Ross et al. 2006). Firstly, immunised hosts show lower asexual
parasite and gametocyte densities than non-immune individuals (cp.Buckling and Read
2001), influencing transmission success (cp.Day et al. 1998). Secondly, the so-called
transmission-blocking immunityreduces the infectivity of gametocytes to mosquitoes. In
this case, gametocyte infectivity is reduced through inactivation of gametocytes and/or
of resulting gametes in the mosquito mid-gut (Buckling et al. 1999; Boudin et al. 2005).
This mechanism seems to be a strain-specific infectivity-reducing immunity that does
not affect the density of gametocytes circulating in peripheral blood (Buckling and Read
2001). Thirdly, immunity decreases the infectivity from mosquitoes to humans by clear-
ing an infection before red blood cells are infected (cp.Smith et al. 2007).
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2.4.3 Superinfection

Superinfectionis an important component of malariaepidemiology. It denotes the exis-
tence of two or more broods of parasite strains that flourish simultaneously in the blood
stream (e.g.,Smith et al. 2005). This condition is reached by multiple infectious bites
that result in several infective inoculations (Anderson and May 1991). An existing in-
fection is no barrier to superinfection (e.g.,Dietz et al. 1974). It was, for instance,
found that many children in some hyperendemic communities are continuously infected
(Rosenberg et al. 1990a). It is generally assumed that an infection by one strain is not
changed by the fact that other strains may infect the same host at the same time. Dif-
ferent parasite broods are cleared by the immune system independently of one another
(e.g.,Struchiner et al. 1989). The duration of disease of superinfected individuals, bat-
tling more than one strain, is therefore likely to be longer.Superinfection might also play
an important role for the development of immunity (cp.Struchiner et al. 1989). Without
exposure to repeated infection with different parasite clones immunity is not maintained
(cp. Boudin et al. 1991a; see Sec.2.4.2).

2.4.4 Parasite clearance

Production of mosquito-infective gametocytes is important for the transmission of
malaria. In areas with limited seasonal transmission, long-lasting sub-patent malaria
infections are needed to sustain transmission. This mechanism is guaranteed by slow
recovery rates of malaria infections. Such a situation was observed in Asar (Sudan;
13◦30’N, 35◦30’E), where malaria transmission is limited to a short rainy season and
pauses for 7-9 months during subsequent dry seasons (Hamad et al. 2002). Most con-
trolled patients retained asexual infection for at least seven months. Genetic multiplicity
of P. falciparumincreased the longevity of asexual infection and related production of
gametocytes (cp. Secs.2.4.2& 2.4.3). Gametocyte infections from mixed clones per-
sisted three times longer than those from single clones (Nassir et al. 2005). Note that the
rate of recovery from a malaria infection is also a function of exposure history reflecting
effects of immunity (e.g.,Gu et al. 2003b; see Sec.2.4.2). Parasite clearance is therefore
closely related to the age of individuals as well as to the intensity of transmission. In fact,
immune individuals who control their peripheral parasitaemia clear infections faster by
a factor of up to ten (Bekessy et al. 1976).

2.4.5 Detectability of malaria parasites

Malaria parasites are usually detected by means of blood films and microscopes. How-
ever, the probability of detecting parasites depends on thedensity of trophozoites. Par-
asite densities below the detection level of microscopy (1-20 parasites perµl of blood)
might play an important role inPlasmodiumpopulation dynamics and epidemiology of
malaria. In adults, parasite densities are usually comparatively low and are often reduced
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to sub-microscopic levels (Ouédraogo et al. 2007). These individuals are hence more
likely to return false negative microscopy reports (Smith et al. 2005). This fact is also
valid for the detection of gametocytes. There is a problem ofenumerating gametocytes
patterns, gametocytes are prone to be missed by microscopy examination (Nedelman
1989; Drakeley et al. 2006). Studies have shown that thePolymerase Chain Reaction
(PCR) as well as theReverse Transcriptase-Polymerase Chain Reaction(RT-PCR) are
efficiently detecting sub-microscopic levels ofP. falciparumgametocytes (seeBabiker
et al. 1999; Menegon et al. 2000; Nwakanma et al. 2008; Sec.5.1.12).

2.4.6 Heterogeneous biting

Some individuals are more likely to be bitten than others. Such a heterogeneous biting
pattern was found in a village close to Brazzaville (Congo).Nightly captures ofAnophe-
lineswere performed directly on legs of volunteers sleeping in their houses. The number
of bites increased regularly in infants (age: < 2 years), children (2-10 years), adolescents
(10-20 years), and adults, in proportions of 1:1.93:2.53:3.00 (Carnevale et al. 1978) im-
plying a child-to-adult conversion factor of 1.432. Similar observations were made in
two villages in The Gambia.Port et al.(1980) found that proportions of feeds upon an
individual are associated with the body surface of the host.Results from The Gambia re-
vealed a child-to-adult conversion factor of 3.57 (cf.Hay et al. 2000b). On this account,
adults experience a greater risk factor of infection due to an increased biting exposure
(cp. Smith et al. 2006a). Proximity to larval habitats (Trape et al. 1992), differential at-
tractiveness to mosquitoes (Lindsay et al. 1993a), and other reasons furthermore lead to
inhomogeneous biting behaviours of malaria vectors.

2.5 Distribution of malaria transmission

In sub-Saharan Africa, the spread of malaria disease is predominantly influenced by
environmental and meteorological conditions. Of great importance is the impact of
weather and climate on the transmission and distribution ofmalaria (e.g.,Craig et al.
1999). Global environmental changes are therefore expected to affect transmission of
parasites causing malaria (Guerra et al. 2006).

Biological parameters of malaria are directly influenced bymeteorological variables
such as rainfall, temperature, and humidity (Thomson et al. 1997), thus cause an un-
evenly distributed burden of malaria around the globe. Malaria is mainly centred in
the tropics, reaching into subtropical regions on five continents (cp. Fig.1.1). Warm
and moist conditions in the tropics lead to a stable transmission of the malaria parasite.
The malaria belt in Africa is bounded by the dry Sahara as wellas the colder temper-
ate zone of South Africa. In Africa, malaria endemicity is classified as (Connor et al.
1999): (i) rainfall-limited seasonal transmission, as found inthe Sahel (e.g.,Babiker

2Note that averaged proportions of adolescents and adults were used (1.93·1.43≈ 2.765= 2.53+3.00
2 ).
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Fig. 2.8: (a) Distribution of endemic malaria, (b) length, (c) onset month, and (d) end month of the malaria
transmission season in Africa (for more details cp.Craig et al. 1999; Tanser et al. 2003; source:
MARA, http://www.mara.org.za). In the regions with two seasons each year, the maps in (c) and
(d) refer to the first season in the year.

et al. 1998); (ii) temperature-limited seasonal malaria, as seen in East African highlands
(e.g.,Balls et al. 2004); and (iii) unconstrained perennial transmission, as observed in
parts of Central and Coastal Africa (e.g.,Trape and Zoulani 1987; Bockarie et al. 1995).

In West Africa, transmission of malaria is mainly limited byrainfall. In most ar-
eas, suitable mosquito breeding sites are only sustained during the rainy season and
therefore annual transmission follows seasonal rains (Kovats et al. 2001). The length of
the malaria season is often determined by the length of the rainy season (cp. Fig.2.8).
In Niger, for example, malaria is not transmitted in the northern part of the Sahel.
Only valleys of the Aïr Massif provide favourable cooler conditions for malaria vec-
tors (Stafford Smith 1981). A definite malaria season is observed south from Agadez
(Niger; 16◦58’N, 7◦59’E) corresponding approximately with the wet season. In Ndiop
(Senegal; 13◦41’N, 16◦23’W), transmission starts between July and September and ends
between September and October (Fontenille et al. 1997a). To some extend presence
of permanent streams causes year-round malaria transmission, for instance, in Dielmo
(Senegal; 13◦43’N, 16◦25’W), which is situated on a marshy bank of the Nema stream
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(cp. Konaté et al. 1994; Trape et al. 1994; Fontenille et al. 1997b). In the Sudanian zone,
in Karangasso (Burkina Faso; 11◦13’N, 4◦38’W) as well as in the Kassena Nankana dis-
trict (Ghana; 10◦30’-11◦00’N, 1◦-1◦30’W), malaria transmission starts approximately at
June and the length of the season adds up to almost six months.Observations closer to
the Gulf of Guinea reveal even earlier onsets and longer transmission seasons. In the
area of Bouaké (Côte d’Ivoire; 7◦41’N, 5◦02’W), transmission starts between March
and May and ends in October or November (Dossou-Yovo et al. 1998). Malaria trans-
mission is often year-round for the African equatorial zonedue to abundant rainfall and
the presence of permanent rivers and/or marshes (e.g.,Quakyi et al. 2000). In contrast
to degraded forests, ancient forest blocks, however, mightbe even malaria-free during
certain years (cp.Manga et al. 1997a).

Malaria epidemic events were frequently found in East African highlands. For ex-
ample, in 1958 in Ethiopia an epidemic was responsible for estimated 150,000 deaths
amongst a largely non-immune population (Cox et al. 2007). In the Sahel, in Sudan, and
northern Mali, dramatic malaria outbreaks were recorded in1986 after prolonged periods
of drought (Brinkmann and Brinkmann 1991). Risk of epidemics has been associated
with short malaria seasons at geographical margins of stable malaria transmission. More
than 124 million Africans live in such areas and experience epidemics causing about
12 million malaria episodes and partially 310,000 deaths annually (Worrall et al. 2004).

2.6 Malaria factors

2.6.1 Climatic factors

Principal climatic factors influencing malaria transmission are temperature and rainfall
(Mouchet et al. 1998). Temperature affects malaria through various biologicalmecha-
nisms. Firstly, egg production of female mosquitoes, that is the so-calledgonotrophic
cycle, only takes place when temperature exceeds about 10◦C (cp. Fig.5.2). Moreover,
speed of egg development is steered by temperature conditions (Detinova 1962). Sec-
ondly, there is a direct relationship between environmental temperatures and the duration
of parasite development within vectors (Detinova 1962). Completion of the sporogonic
cycle is only possible above the minimum temperature for malaria parasite development
(about 16◦C) that is the so-calledsporogonic temperature threshold(Ts). In Africa, the
extrinsicincubation periodof P. falciparumtypically lasts 9-14 days (Garrett-Jones and
Grab 1964). Thirdly, the ambient air temperature affects the survival of mosquitoes. For
example, temperatures in excess of 40◦C markedly reduce the duration of survival (e.g.,
Kirby and Lindsay 2004). Note, that malaria is only transmitted, when theAnophe-
les vector outlives the sporogonic cycle. Fourthly, larval development of mosquitoes
depends on water temperatures. For instance,An. gambiae s.s.emerge as adults only
between water temperatures of 18 and 34◦C and most larvae develop between 22 and
26◦C (Bayoh and Lindsay 2003). For all these reasons, there is a remarkable influence
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of temperature on vector densities (Minakawa et al. 2002a). Small temperature changes
can trigger severe malaria epidemics in areas such as highlands.

The second principal climatic factor regarding the spread of malaria is precipitation.
Rainfall alters the abundance of aquatic habitats available to mosquitoes for oviposition.
Open water surfaces are created after rainfall events and persist for approximately ten
days (Shaman and Day 2007). Mosquitoes deposit their eggs in ponds, puddles, or even
hoof prints (e.g.,Fontenille et al. 1997a). However, excessive rainfall can negatively
influence mosquito breeding.Paaijmans et al.(2007) noted unexpected high losses of
An. gambiaelarvae due to rainfall. Heavy rainfall can therefore lead toa paradoxical
decrease in malaria transmission (Drakeley et al. 2005) because of flushing of breeding
sites, which has a detrimental effect on larval numbers (e.g., Charlwood et al. 1995)
and decreases the nutrient availability. Provided that appropriate breeding places persist,
mosquito numbers rapidly increase short after the beginning of the rainy season (Lind-
say and Birley 1996; Omer and Cloudsley-Thompson 1970). In a West African Sudanian
savanna village, the mosquito population size, for example, represented about 150,000-
350,000An. gambiae s.l.females at the end of the summer monsoon (Costantini et al.
1996). During the following dry season mosquito populations commonly drop to such
low levels that malaria transmission cannot be sustained (e.g., MARA 1998). For this
reason, malaria is mostly seasonal in Africa. Malaria occurs outside of rainy seasons
only along riverbeds, oases, and other man-made surface water sites (Hay et al. 2000a).
However, drought malaria is a common feature in many parts ofthe world. In such situa-
tions, malaria arises when streams and ponds dry up (cp.Charlwood and Alecrim 1989;
Shaman and Day 2007; Reiter 2000). For example, in 1934 in Sri Lanka drought was
leading to pool formation in dried-out riverbeds (Wijesundera 1988). To sum up, liter-
ature suggests that moderate rainfall events stimulate growth of mosquito populations,
whereas strong rainfall leads to the flushing of breeding habitats. Except for highland
areas precipitation plays a more important role for the spread of malaria in Africa than
temperature (Morse et al. 2005).

Atmospheric humidity likewise affects behaviour and biological processes of
Anophelesvectors. Firstly, increased near-surface humidity directly enhances the flight
activity and host seeking behaviour of mosquitoes (Shaman and Day 2007). Secondly,
longevity of vector species seems to be influenced by humidity conditions. According
to Wernsdorfer and McGregor(1988) relative humidities of at least 60% are most com-
fortable for mosquitoes. Also laboratory data ofAn. gambiae s.s.suggests that humidity
at least slightly impacts mosquito survival (Bayoh 2001; cp. Fig.5.5). Thirdly, the range
and relative abundance of certain mosquito species dependson rainfall and humidity con-
ditions. For example,An. gambiae s.s.had the highest prevalence in humid domains and
An. arabiensispredominated in sites subject to desiccation (Lindsay et al. 1998; Léong
Pock Tsy et al. 2003). Fourthly, data fromAn. maculipennisshowed that higher relative
humidities resulted in shorter gonotrophic cycles and therefore a greater frequency of
feeding (Detinova 1962). Fifthly, onset and termination of aestivation (cp. Sec.5.1.6)
are probably controlled by humidity conditions (Wernsdorfer and McGregor 1988). In
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summary, lack of rainfall and associated reduced near-surface humidity are important
limiting factors for malaria in many arid and semi-arid areas (cp.Kovats et al. 2001).

2.6.2 Other factors

Human activities are crucial for the transmission and prevention of malaria across Africa.
For example, humans are strongly changing the earth’s environment, leading to an al-
tered abundance and species composition of the mosquito population. Environmental
conditions can promote vector-borne disease transmission. Deforestation as well as cul-
tivation of natural swamps increase solar insolation, which usually elevates local tem-
peratures by several degrees (e.g.,Githeko et al. 2000). Future land cover change in the
tropics may increase the diurnal temperature range by decreasing evaporative cooling
during the day (Defries et al. 2002; Paeth et al. 2009, their Fig. 7). Forest replacements
provide open sunlit pools that are preferred by important vectors (e.g.,Lindsay and Bir-
ley 1996). In Western Kenyan highlands, land cover, for example, strongly impacted
the survival of mosquito larvae. Different land cover typesaffected the duration of lar-
val development through its effects on water temperature (Munga et al. 2006; see also
Sec.2.6.1). For these reasons, larvae ofAn. gambiae s.l.were more frequent in pools of
cultivated areas than in forested areas and natural swamps (Minakawa et al. 2005).

The development of crop irrigation in Africa has a great prospect for economic de-
velopment and self-sufficiency in food production (Ijumba and Lindsay 2001). Agri-
cultural practices strongly influence mosquito breeding via an increase in surface water
availability (cp.Haines and Fuchs 1991). In Africa, irrigated rice cultivation is associ-
ated with higher densities of main vectors of malaria and with an extension of the breed-
ing season (e.g.,Briët et al. 2003). The malaria situation might be worsened by irrigation
schemes in unstable malaria areas (e.g.,Carnevale et al. 1999; Keiser et al. 2005). For
example, development of irrigation systems in the Sahel created favourable conditions
for the reestablishment ofAn. funestusin Senegal (Konaté et al. 2001). However, for
most areas of sub-Saharan Africa, where malaria is endemic,introduction of irrigation
has only a minor impact on transmission rates. In Tanzania, irrigated crop production
can, for instance, be associated with less malaria than traditional agricultural practices
(Ijumba et al. 2002). Reasons for this include improvement of the living standard that
results, for example, in a greater use of bed nets and a betteraccess to health. Such a
reduced burden of malaria might also be caused by an improvedimmune protection due
to more frequent mosquito bites or by reduced mosquito longevities (Klinkenberg et al.
2002).

Africa is the most rapidly urbanising region of the world (McMichael 2000) and by
2030 more than 50% of the population is expected to live in urban settlements (cp.Hay
et al. 2005). A shift in human populations from rural to urban areas willchange global
patterns of disease and mortality (e.g.,Phillips 1993). It is generally assumed that urban
areas reduce frequency and transmission dynamics of malaria. An urban environment
usually exhibits a great variation of malaria risk. City centres usually experience lower
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levels of malaria transmission and severe disease than surrounding locations (e.g.,Hay
et al. 2005; Kelly-Hope and McKenzie 2009). For example, longitudinal entomological
and parasitological malaria surveys from 1984 revealed remarkably lower biting and
transmission rates in urban Ouagadougou (Burkina Faso; 12◦21’N, 1◦31’W) than in
nearby rural villages (Rossi et al. 1986; Sabatinelli et al. 1986). However, urbanisation is
also a main source of poverty and inequality. Poor housing aswell as a lack of sanitation
and drainage of surface water can increase vector breeding (Keiser et al. 2004). Dense
populations in satellite settlements of cities often promote conditions that are ideal for
transmission (Reiter 2001). In highlands, urban heat islands are able to amplify heat
waves. Urban populations furthermore increase the pressure on the natural environment
leading to a rise in land clearing (McMichael 2000).

Species composition of the mosquito population is also crucial for the level of
malaria transmission. For instance,An. funestuscan extend malaria transmission at
the end of the rainy season and at the beginning of the following dry season. This
may explain why malaria transmission was about twice as highin locations where both
An. gambiae s.l.andAn. funestuswere present, compared with locations which only com-
prisedAn. gambiae s.l.(Kelly-Hope and McKenzie 2009). Such a situation was observed
in the 1990s in Senegal.An. funestuswas abundant in Dielmo, whereas this species was
rarely identified in the neighbouring Ndiop. At the same timemalaria transmission was
about four times higher in Dielmo than in Ndiop (Fontenille et al. 1997b,a; see Tab.D.3;
cp. Sec.2.5).

The incidenceand geographic distribution of malaria is further influenced by many
socio-economic and political factors. These factors comprise the socio-economic sta-
tus, cultural inflexibility, political rigidity, available resources, technical infrastructure,
availability of efficient malaria drugs, preventive measures, and vector control programs.
Of great importance for the malaria distribution is the socio-economic development of
a community (e.g.,Epstein 1998). An analysis between per capita income and malaria
incidence indicated a cut-off limit of about $3100 above which a population is no more
vulnerable to malaria (Tol and Dowlatabadi 2001). Gallup and Sachs(2001) showed
that income grows more slowly in countries where malaria is present. In the 1950s
and 1960s, economic development played an enormous role in eradicating malaria from
many areas of the world (e.g.,Grover-Kopec et al. 2006). However, attempts to eradicate
disease failed in sub-Saharan Africa (e.g.,Connor et al. 1998) and this is partly due to
the low economic development. Vulnerability of a population is furthermore determined
by the nutritional condition (McMichael and Haines 1997). Poor countries or those suf-
fering from natural disasters, conflicts, and civil wars often lack an adequate food supply
and public health infrastructure. Factors responsible forthe emergence or resurgence of
malaria therefore include deterioration or even breakdownof the public health service as
well as reduced training programs for medical staff (e.g.,Gubler 1998). Moreover, drug
and insecticide resistance are driving forces behind malaria resurgences, for example,
chloroquine resistance emerged in Senegal in the late 1980sand early 1990s (Breman
et al. 2001) and resistance to DDT slowly appeared in the 1960s in response to intensive
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agricultural use (Roberts et al. 2000). Prevention and vector control operations are re-
liant on financial support and therefore depend on politicaldecisions. However, preven-
tive measures such as impregnated bed net usage are able to diminish malaria morbidity
(cp. Lindsay et al. 1993c,b; Akogbéto and Nahum 1996; Cuzin-Ouattara et al. 1999). For
instance, a trial with insecticide treated bed nets in Mbébé(Cameroon; 4◦09’N, 11◦00’E)
exhibited a noteworthy reduction of both transmission and parasitaemia (Le Goff et al.
1992).

Various other factors like the construction of roads (seeStafford Smith 1981), mi-
gration (e.g.,Martens 1999), international trade (cp.van Lieshout et al. 2004), and in-
creased global mobility (cp.Mouchet 2000) are able to change the geographical range of
malaria by carrying the pathogen outside the current limit of transmission. For instance,
the Trans-Sahara Highway enables a carriage of malaria vectors into northern Niger and
hence a seasonal colonisation from the south (Stafford Smith 1981).

2.7 Malaria modelling

2.7.1 Classic malaria models and successors

At the beginning of the 20th century Ross was the pioneer who developed the first math-
ematical model of malaria transmission.Ross(1911) formulated two differential equa-
tions describing the transmission of malaria from mosquitovectors to human hosts and
vice versa. This model is based on calculation of transitionrates between compartments
within the host population and describes the temporal relationship between theEntomo-
logical Inoculation Rate(EIR; i.e., the number of infective bites per person per time
period) andPR (Ross 1911). Ross(1928) led to the conclusion that malaria would be
eradicated, when numbers ofAnophelesare reduced below a certain figure.

Since Ross’ work numerous mathematical malaria models weredeveloped. Reviews
of such biological or process-based models can be found for instance inAron and May
(1982), Nedelman(1985), andDietz (1988). Relevant biological processes usually have
been arranged in a set of differential equations. For example, in the 1950s, Macdonald
improved the basic model of Ross (e.g.,Macdonald 1957). Several factors involved in
the transmission of malaria were added to the equations, forexample, factorb, that is
the proportion of bitingAnophelineswith sporozoites in their glands which are actually
infective (cp.Macdonald 1955). The model was, for instance, criticised in terms of
ignoring immunity.

One of the most accepted models of malaria transmission dynamics and immunity
to date is that of the Garki project (Dietz et al. 1974) and variants of it (Nedelman 1985;
Struchiner et al. 1989). The Garki model includes acquisition of immunity as well as
presence of superinfection (for details see Sec.5.2). Struchiner et al.(1989) further
modified the Garki model for areas of unstable malaria transmission. One of the major
changes in this version is that immune individuals can lose their immunity and mainte-
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nance of immunity depends on boosting.Cancré et al.(2000) further refined Struchiners’
version by means of a Bayesian calibration using parasitological data (Senegal). Ac-
cording to their simulations, during the course of the dry season about 60% of immune
subjects lose their immunity in Ndiop (Senegal).

A major disadvantage of classic differential-equation malaria models is the unreal-
istic assumption of quasi-static vector numbers and constant parasite development rates
(Hoshen and Morse 2004). These mathematical systems are constructed without any dy-
namical equations for the number of mosquitoes (Nedelman 1985). These models are,
for example, driven byEIR observations. Some of the models were calibrated to spe-
cific field sites and might therefore not be transferable to other areas. The development
of malaria models is hampered where key parameter values areuncertain. For example,
so far no general value or satisfying functional relation has been found for the mosquito
survival probability in nature.

2.7.2 Malaria models related to environmental variables

Numerous studies were conducted relating the distributionof malaria andAnopheles
vectors to various kinds of environmental data. Even simpleanalysis of proxy ecologi-
cal variables derived from satellite measurements can indicate variation in environmental
factors affecting indices of malaria transmission (Thomson et al. 1996). These environ-
mental variables are often climatic variables or they are closely related to climate condi-
tions. Climate factors generally include temperature, rainfall, and humidity data. Related
to rainfall is, for example, the cold-cloud duration as wellas theNormalised Differenced
Vegetation Index(NDVI). Information from environmental covariates is usedas predic-
tors for the malaria distribution. Various analysis techniques like logistic regression, the
maximum likelihood method, or geo-statistical tools are applied for malaria mapping.

Fig. 2.9: (a) Satellite-derived predictions of the annualEIR in Africa (Rogers et al. 2002, their Fig. 3)
and (b) predicted logarithmic transmission intensity for West and Central Africa (Gemperli et al.
2006b, their Fig. 6).

Geostationary and polar orbiting meteorological satellites collect meaningful eco-
logical information where surveillance of arthropod vectors are inferable (reviews are
provided byWashino and Wood 1994; Hay et al. 1996, 1997; Thomson et al. 1996,
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1997; Hay 2000; Goetz et al. 2000). Multitemporal meteorological satellite sensor data,
for example, is able to predict the malaria seasonality in Kenya (Hay et al. 1998). In The
Gambia, environmental greenness measured by NDVI can forecast seasonal changes of
PRamong children (Thomson et al. 1999; Diggle et al. 2002). Rogers et al.(2002) ap-
plied satellite data to predict values ofEIR (cp. Fig.2.9) as well as presence and absence
of five mosquito species in theAn. gambiaecomplex.

Vector-based approaches are used for the construction of distribution maps
for malaria vector species. Lindsay et al. (1998) related known occurrences of
An. gambiae s.s.andAn. arabiensisto annual precipitation, as well as annual and wet
season temperature.Moffett et al. (2007) constructed ecological niche models for ten
malaria vectors, which produce relative malaria risk maps.A global malaria risk map
was computed by the distribution of dominantAnophelinevectors (Kiszewski et al.
2004).

Fig. 2.10:Predicted malaria prevalence of (a) 2-10 years (cp.Kleinschmidt et al. 2001; source: MARA,
http://www.mara.org.za) and (b) 1-10 years old children (Gemperli et al. 2006b, their Fig. 10).

Statistical approaches are applied for empirical malaria mapping purposes.Rogers
and Randolph(2000) constructed a multivariate empirical-statistical model, established
current multivariate climatic constraints of the present-day global distribution of malaria,
and finally predicted malaria transmission under future climate scenarios.Hay et al.
(2001) and Thomson et al.(2006) exploited a simple quadratic relationship between
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malaria incidence and precipitation to obtain predictionsin epidemic-prone areas.Klein-
schmidt et al.(2000) used logistic regression modelling in combination with geo-
statistical (‘kriging’) methods for the distribution ofPR in Mali. For West Africa, a
similar approach was presented byKleinschmidt et al.(2001) and was based on bio-
physical environmental factors.Gemperli et al.(2006a,b) used the Garki model to stan-
dardise heterogeneous agePRdata by means of a single estimate of transmission inten-
sity. The final Bayesian geo-statistical model calculates the two-dimensional parasite
transmission intensity on basis of various environmental variables (cp. Fig.2.10). More
recently, the Malaria Atlas Project used a large set of nationally reported case-incidence
data, medical intelligence, and biological temperature- and rainfall-dependent rules of
transmission exclusion for the generation of a global spatial distribution ofP. falciparum
malaria (Guerra et al. 2008; cp. Fig.1.1).

Common to allPRmaps is the implicit assumption that malaria endemicity remains
stable over the data survey period. The consequence is that interannual variability is
not taken into account (cp.Gemperli et al. 2006b). Seasonal variation ofPR is also not
considered in most studies (cp.Kleinschmidt et al. 2001).

2.7.3 Climate- and weather-driven malaria models

Meteorological variables turn out to be useful explicativevariables for the simulation
of malaria (e.g.,Chalvet-Monfray et al. 2007). Various biological processes depend on
temperature, rainfall, and humidity conditions (see Sec.2.6.1). Climate- or weather-
driven malaria models therefore allow for a better understanding of dynamics of malaria
transmission.

Already,Sutherst and Maywald(1985) related climatic variables with the abundance
and distribution of animals in the computerised CLIMEX (CLIMatic indEX) system
(also cp.Sutherst 1993, 1998). TheMalaria potential Occurrence Zone(MOZ) model
of Martin and Lefebvre(1995) was one of the first climate-driven malaria models.Lind-
say and Birley(1996) applied a simple mathematical model to examine the effect of
temperature on the ability ofAn. maculipennisto transmitP. vivax. Vectorial Capacity
(VC; see Glossary) was found sensitive to small increases in temperature in relatively
cold climates.

Martens et al.(1995a,b, 1997, 1999), Jetten et al.(1996), Martens(1997), as well
asLindsay and Martens(1998) linked climate data with a module simulating the rela-
tionship between climate variables and thebasic Reproduction rate(R0; cp. Glossary)
of malaria. The MIASMA (Modelling framework for the health Impact ASsessment of
Man-induced Atmospheric changes) model computed the ‘transmission’ or ‘epidemic
potential’ of the vector population. However, this model does not have a dynamical size
of the mosquito population (see alsoJetten et al. 1996). The results of the MIASMA
model are integrated into a dynamic integrated assessment model, which quantifies the
role of economic and social development in limiting malariaoccurrence (cp.Tol and
Dowlatabadi 2001).
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The Mapping Malaria Risk in Africa(MARA) project (cp.MARA 1998) offered
a simple climate-based distribution model of malaria transmission (hereafter referred
as MDM: MARA Distribution Model) for sub-Saharan Africa (Craig et al. 1999). The
MDM is based on rainfall and temperature determinants of theparasite development and
mosquito survival. On basis of monthly temperature and precipitation data the MDM
assesses the likelihood that stable transmission could occur (Fig.2.8a). The MARA
project (especiallyTanser et al. 2003) additionally provided a model for the malaria
seasonality (after this termed MSM:MARA Seasonality Model). Different monthly and
yearly temperature and precipitation criteria are used to discriminate between suitable
and unsuitable months for malaria transmission (Fig.2.8b-d; for details cf. Sec.5.3).

More recently, the development of dynamic vector models enabled the simulation of
a time-dependent mosquito population.Depinay et al.(2004) designed a complex sim-
ulation model of AfricanAnophelesecology and population dynamics that incorporates
basic biological requirements forAnophelesdevelopment and is using local environmen-
tal input data.Pascual et al.(2006) introduced a mosquito population model, which is
run by daily temperature and rainfall time series. In this dynamical model, temperature
controls the development and mortality of larvae as well as mosquito survival. Increase
in larval mortality is simulated as a function of accumulated days with no rain to repre-
sent desiccation of breeding sites.

Hoshen and Morse(2004) introduced a weather-driven, mathematical-biological
model of malaria parasite dynamics, the so-calledLiverpool Malaria Model(LMM).
The LMM comprises weather-dependent within-vector stagesas well as weather-
independent within-host stages (for more details see Sec.5.1). On a daily basis, size and
behaviour of the total mosquito population and malaria prevalence within human hosts
are simulated.Morse et al.(2005) described the integration of the LMM into a prob-
abilistic multi-model seasonal forecast system (also cp.Thomson et al. 2000; Palmer
et al. 2004a,b), which was used in the national malaria control programme in Botswana
and surrounding countries (Hagedorn et al. 2006).

Outputs of the above described climate- and weather-drivenmalaria models are very
sensitive and depend heavily on a complex range of assumptions. These models are
difficult to quantify because of many uncertainties (Lindsay and Birley 1996). Because
of limitations some of the models are not able to give accurate descriptions of the current
situation of global malaria, so they have a limited value forassessing the impact of long-
term climate change (Rogers and Randolph 2000; Reiter 2001).
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2.8 Changes in malaria occurrence

2.8.1 Observed malaria changes

Changes in malaria distribution in Africa were observed during the second half of the
20th century. Particularly vulnerable to such changes is the Sahel which is the northern
limit of malaria transmission in Africa. In this area, precipitation limits the spread of
mosquitoes and consequently that of malaria (e.g.,Ndiaye et al. 2001). Since the 1970s
the Sahel experienced a marked decrease in annual rainfall amounts. Drought condi-
tions occurred particularly in 1983 and 1984 and at the beginning of the 1990s. These
drought conditions deeply altered the health situation in the Sahel (Besancenot et al.
2004). A decrease in malaria transmission was, for example, observed in Senegal and
Niger (Mouchet et al. 1996; Julvez et al. 1997b). Faye et al.(1995c) compared ento-
mological and parasitological surveys from the Niayes region (Senegal; about 30 km to
the northeast of Dakar) before 1970 with that from 1991-1993. The predominant vector
An. funestusdisappeared and the seasonal presence of remaining vectorswas reduced.
As a result, theHuman Biting Rate(HBR; i.e., the number of mosquito bites per hu-
man per time) and theCircumSporozoite Protein Rate(CSPR; i.e., the proportion of
malaria infected mosquitoes) fell significantly. This faded into a strong decrease ofPR
in children (2-9 years) from 40-80% to about 10%. The reasonsfor these shifts were
the dryness as well as human activities (e.g.,Faye et al. 1995c; Julvez et al. 1997a,b).
Kovats et al.(2001) concluded that in this area malaria transmission used to beendemic
seasonally and was expanded to an epidemic risk in a ‘desert fringe’ malaria zone. How-
ever, development of irrigation systems and probably also the return of near-normal rain-
fall conditions created favourable conditions for the reestablishment of malaria vector
An. funestusin Sahelian Senegal (cp.Konaté et al. 2001).

In the East African highlands, a significant increase in malaria cases was recorded
in the second half of the 20th century. Ethiopia experiencedhistorically the most inten-
sive and widespread recurrent malaria epidemics. Densely populated highland fringes
and semi-arid lowlands of the Afar and Somali regions are particularly prone to seasonal
and unstable malaria transmission. Occasional massive outbreaks affected most of the
country and localised malaria epidemics occur almost everyyear. Besides the aforemen-
tioned catastrophic malaria outbreak in 1958 another countrywide epidemic of similar
intensity affected Ethiopia in 1998 (Kiszewski and Teklehaimanot 2004).

In Gikonko (Rwanda), between 1976 and 1990 annual malaria incidence grew from
160 to 260 cases per 1,000 per year and was linked to warmer temperatures (Loevin-
sohn 1994). In Muhanga (northern Burundi), an unusual increase in malaria cases was
observed in March 1991. This epidemic likely resulted from hydro-agricultural envi-
ronmental changes or from a light rise in temperature at highaltitudes (cp.Marimbu
et al. 1993). Between altitudes of 1200-1800 m a fourfold increase in microscopic diag-
nosis of malaria was recorded at Kiremba (Burundi).Bonora et al.(2001) argued that
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higher temperatures above 1450 m were responsible for the introduction of the disease
into previously malaria-free areas.

In Kabale (southwestern Uganda), an epidemic of malaria wasobserved in 1998
and was associated with altered rainfall conditions duringan El Niño event (Kilian et al.
1999; Lindblade et al. 1999). Also Mouchet et al.(1998) argued that abnormally heavy
rainfall in Uganda favoured the severe epidemic of 1994. Conversely,Lindsay et al.
(2000) found strikingly less malaria cases in the Usambara Mountains (Tanzania) though
El Niño led to 2.4 times more precipitation than normal, suggesting a negative influence
of heavy rainfall on mosquito breeding.

In Tanzania, the Eastern Arc Mountains and particularly theUsambara Mountains
are usually considered the most significant areas of epidemic risk (seeCox et al. 1999).
Already,Matola et al.(1987) recognised a changed pattern of malaria endemicity and
transmission at the Amani hills in the eastern Usambara Mountains. In this area temper-
ature is not always the only significant transmission factor. Spread of malaria is often
limited by the availability of breeding sites due to the aridity of the highland zone (e.g.,
Cox et al. 1999; cp. Figs.2.1a & 4.3a). The mean altitude at which epidemics occur
in Tanzania is significantly lower than corresponding altitudes in other countries.Cox
et al.(1999) attributed this to the heterogeneity of the environment inthe Tanzanian high-
lands. Malaria epidemics have also been reported outside ofthe Eastern Arc Mountains.
Epidemic-prone districts in Tanzania are additionally clustered in the Kagera district
near the Rwanda border (cp.Jones et al. 2007).

An upsurge in epidemic outbreaks was reported for Western Kenyan highlands in the
1980s and 1990s (Hay et al. 2002d). Tea estates of Kericho (Kenya; 0◦22’S, 35◦17’E),
for example, encountered between 1986 and 1998 a rose of severe malaria cases from 16
to 120 cases per 1,000 per year (Malakooti et al. 1998; Shanks et al. 2000). In Kenya,
also arid areas in the lowland experienced occasional malaria outbreaks. In the re-
gion of Wajir (northeastern Kenya; 1◦45’N, 40◦04’E), abnormal rainfall and floods in
November-December 1997 caused a major epidemic (Brown et al. 1998). A tenfold
increase in daily death rates was recorded during the start of 1998 (Brown et al. 1998).

Various researchers argued that climate warming appears not to be responsible for
an increase in malaria suitability over Africa (e.g.,Hay et al. 2002a,c; Shanks et al.
2002; Small et al. 2003). However, this statement remains controversial.Pascual et al.
(2006) raised the point that mosquito population dynamics might have been significantly
amplified by observed temperature changes. The debate on therole of climate on malaria
epidemics might was resolved byPascual et al.(2008). Both hypotheses, endogenous
disease dynamics and exogenous environmental factors, might play complementary and
interacting roles at different temporal scales.

2.8.2 Projected malaria changes

In Africa, malaria is currently only restricted by climate factors in specific arid and
highland regions. Climate change is expected to alter transmission rates in this part
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of the world. Transmission might become unsustainable in previously endemic areas,
sustainable in former epidemic zones, or disease might firstoccur in antecedent non-
malaria areas (Haines et al. 2006). Areas vulnerable to malaria epidemics and future
changes are found in regions of fringe transmission (e.g.,McMichael and Haines 1997).
Communities are and will be particularly vulnerable in usually malaria-free areas or
those with unstable malaria (Lindsay and Birley 1996). Areas bordering malaria endemic
regions are, for instance, found in the Sahel as well as in East African highlands. By
contrast, transmission rates in most malaria endemic zonesare so high that a changed
climate is expected to have only minor effects on the spread of malaria (e.g.,Jetten et al.
1996; Reiter 2001).

Possible changes in the distribution of malaria were provided by various studies.
Climate change was projected to be associated with geographical expansions of ar-
eas suitable for stable malaria in some regions and with contractions in other regions
(e.g.,Tanser et al. 2003; Thomas et al. 2004; van Lieshout et al. 2004; Ebi et al. 2005;
cp. Tab. 8.2 inConfalonieri et al. 2007). In general, performed malaria projections
strongly depended on the applied GCM as well as GHG emission scenarios (e.g.,Ebi
et al. 2005). Unlike, Rogers and Randolph(2000) found no significant net change by
2050 in the estimated world population living in malaria-transmission zones.

The Sahel

In the Sahel, disease changes are particularly sensitive toan increase in the interan-
nual precipitation variability and extreme events (Thomas 2004; Thomas et al. 2004).
However, rainfall is one of the most complex climate variables to project under climate
change (Kovats et al. 2001). In arid and semi-arid areas such as the Sahel, prolonged
drought conditions may cause malaria to decline (Reiter 2001) and some formerly en-
demic zones might turn into epidemic-prone areas with a largely non-immune popula-
tion (cp.Kovats et al. 2001). Such a malaria scenario is simulated for 2100 by the MSM
(Tanser et al. 2003). Based on various drier SRES scenarios the MSM predicted a fall in
malaria exposure for a host of countries in West Africa. According to MDM runs, higher
daily maximum temperatures increasingly reduce mosquito survival and hence malaria
transmission during the middle of the 21st century (Thomas et al. 2004).

Highlands

Most malaria projections lead to the conclusion that climate change will increase the
spread of malaria in highlands of Africa, where people have some partial or even no
malaria immunity (e.g.,Martens 1999). Already,Lindsay and Birley(1996) allude to the
fact that climate change will increase the likelihood of malaria epidemics in highlands.
This argument is followed by various other studies (e.g.,Jetten et al. 1996; Lindsay and
Martens 1998). Global warming probably results in an increase in altitudes (Kovats and
Haines 1995; Reiter 2001; Patz and Olson 2006). An increase in temperature of several
degrees might change a normally non-malaria area in one subject to seasonal epidemics
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(Jetten et al. 1996). The MDM projected for 2100 an increase in malaria suitability of
Zimbabwe highlands using data from 16 climate change projections (Ebi et al. 2005).
During the 2050s modest changes from previously malaria-free to stable malaria were
projected for highland areas in Ethiopia, Kenya, Rwanda, and Burundi. Thirty years later
in the 2080s malaria transmission will become highly suitable in these regions. MSM
runs for 2100 predicted a large increase in malaria exposureparticularly in highlands
of Ethiopia, Kenya, and Zimbabwe (Tanser et al. 2003). An increase in the suitability
of malaria in East African highlands by 2050 was also found byRogers and Randolph
(2000). Human populations in highlands might adapt to these changes. Malaria could
gradually become stable in parts of African highlands, which would lead to a reduction
in epidemic risk (Githeko et al. 2000).

Malaria seasonality

Climate change is projected to alter malaria seasonality. Changes in malaria epidemi-
ology are expected in areas where immunity against malaria is partly lost in the non-
transmission season (Jetten et al. 1996). For this reason, lengthening or shortening of
vector breeding would affect malaria prevalence (Cook 1992). Small changes in season-
ality might be important since transmission rates tend to increase non-linearly through
the transmission season (Kovats et al. 2001). Based on data from five atmospheric GCMs
the MOZ model predicted an increase in seasonal (unstable) malaria transmission at the
expense of perennial (stable) transmission (Martin and Lefebvre 1995). The MIASMA
model projected a decrease in suitable malaria months for some African regions (Martens
et al. 1999). The MSM simulated, by contrast, 28-42% of new person-months of expo-
sure towards the end of the 21st century in areas of existing transmission (Tanser et al.
2003).

Uncertainties

The currently available malaria projections are criticised in various directions. For ex-
ample,Martens(1999) stated that climatic effects on public health are mired in agreat
deal of uncertainty. The dynamic non-linear nature in the biophysical systems, inter-
actions between them, as well as climate scenarios all contribute to this uncertainty
(McMichael 1997). A more regional analysis is inevitable necessary (Githeko et al.
2000) since the horizontal resolution of the underlying climateprojection is mostly in-
adequate and neglects local features (McMichael 1997). Models therefore have to be
validated on a regional scale, using historical or contemporary data sets (Lindsay and
Birley 1996). Setting of parameters in malaria models might entail unverifiable assump-
tions (cp.McMichael 1997). Models suffer from incomplete parameterisations of key
factors that influence the geographical range and intensityof malaria transmission (Con-
falonieri et al. 2007).

Most studies focused on possible effects of increasing temperatures on disease trans-
mission patterns. However, in future hydrologic changes are also likely to significantly
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contribute to rates and efficiency with which mosquito populations grow and transmit
pathogens (Shaman and Day 2007). Mosquito breeding must be adequately simulated
in relation to hydrological processes instead of precipitation (cp.Sutherst 2004). State-
of-the-art malaria projections miss a realistic linkage between environmental conditions
and the survival of aquatic mosquito stages (cp. Sec.2.7.3).

Projections often do not considered the fact that mosquitoes may survive outside
their supposed climatic range by exploiting microhabitatswith more amenable condi-
tions. Houses are usually more climatically stable than theoutside environment (Kovats
et al. 2001). Biological processes might be altered under changed climate conditions.
Faster desiccation of the mosquito body due to higher temperatures might increase the
frequency of blood meals (Kovats and Haines 1995).

Confidence is greater for projected changes in the geographical range of vectors
than in changes in malaria incidence because of uncertainties about trends in factors
other than climate (Confalonieri et al. 2007). It has to be taken into account that climate
is rarely the principal determinant of disease prevalence (cp. Sec.2.6.2). Human activ-
ities and their impact on the spread of malaria are often moresignificant than climate
conditions (Reiter 2001). Global change studies are missing an adequate inclusion of
non-climatic variables (Sutherst 2004).

2.9 Objectives and Overview

Strong evidence suggests that human activities alter the earth’s climate. Transmission
and distribution of various climate- and weather-dependent infectious diseases will prob-
ably be changed in the next decades. The main aim of the present study is therefore to
assess the risk of malaria in Africa under the influence of thepresent and modified future
climate. Malaria risk is estimated in relation to future climatic-environmental scenar-
ios. Various models are used to dissect uncertainty in malaria models (Sec.5). Malaria
simulations enable the analysis of the influence of atmospheric changes on the malaria
distribution up to the years 2050 (Sec.7).

Firstly, meteorological data is gathered from synoptic weather stations in West Africa
and Cameroon for 1973-2006 (Sec.3). Due to the fact that meteorological data in Africa
suffers from numerous data gaps and flawed data, complete andquality checked temper-
ature and precipitation time series are reconstructed by means of monthly and climato-
logical information (App.C.2). Reconstruction of realistic time series is a prerequisite
for subsequent malaria simulations. REMO ensemble runs with a horizontal resolu-
tion of 0.5◦ are taken into account for two-dimensional simulations across large parts of
Africa. The degree of uncertainty due to emission scenariosof future climate is spec-
ified by two different climate projections that are based on the A1B and B1 emission
scenarios including land use and land cover changes (Sec.7.1). Verification of REMO
simulations is performed by a gridded observed precipitation data set as well as reanal-
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ysed temperatures (Sec.4). Realistic simulations of the malaria distribution in space and
time are assured by the bias correction of REMO data (App.C.3& C.4).

EIREIR

LMM tuning

& validation

Meteorological data &

malaria observations

Malaria simulations

MSMMSM

LMMnLMMn

Garki

model

Garki

model

Garki

model

Present-day climate

Scenarios: A1B & B1

IRD/ERA40

Present-day & projections

seasonality

EIR          σ(PR)

Malaria modelling

Station time series &

malaria field studies

validation &

bias-correction

CRUCRU
RRRR

ERA40ERA40
TT

∆EIR           ∆PR

malaria

risk

immunity y1,a

age     &  altitude

Fig. 2.11:Principle conception of the present malaria study.

Malaria simulations are initially carried out by the LMM. The LMM simulates trans-
mission within the human population on basis of gathered precipitation and temperature
data. This dynamical model holds several parameters significantly influencing results of
malaria runs (cp. Sec.6.2). An important step for malaria projections is a realistic setting
of the LMM (Sec.5.1). To ensure a realistic LMM performance the model is validated
by means of data from field studies in West Africa and Cameroon. On this account as
well as for adjustment of the LMM structure numerous information is extracted from
literature (Sec.5.1and App.D). The LMM is calibrated by means of observations from
eight entomological as well as three parasitological variables (Sec.6.1). Comparison
between the new and the original LMM version finally clarifiesthe improvement of the
model performance (Sec.6.3).

Scenario-based predictive modelling is applied for the projection of the future malaria
distribution. Long-term malaria simulations are performed by the validated LMM ver-
sion as well as the Garki model (Sec.7). Malaria projections (2001-2050) are compared
to the baseline period of the present-day climate (1960-2000). In a first step, the LMM
is driven by means of bias-corrected precipitation and temperature data. Transmission
rates of the LMM subsequently serve as data input of the Garkimodel. These simula-
tions enable consideration of immunity as well as the age-distribution ofPRand of the
immune status.
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Identification of malaria-prone areas is of primary importance (Kovats et al. 2001).
By means of the interannual variability ofPR epidemic-prone areas are detected at
fringes of malaria transmission. Changes in the epidemic risk are finally discovered
by changes in the year-to-year variability ofPR leading to a risk assessment of malaria.

In Africa, malaria transmission generally follows seasonal rains (e.g.,Kovats et al.
2001). Seasonality of malaria is analysed by simulations from the LMM and MSM
(Sec.5.3). Possible changes in the start, end, and length of the malaria season as well as
in the maximum transmission month are detected for various parts of Africa.

The study is organised as follows (cp. Fig.2.11): Details regarding data sources as
well as data processing are given in Sec.3 and in App.C. In Sec.4, the applied temper-
ature and precipitation data sets are validated against observations and reanalyses. The
used malaria models are described in Sec.5 and additionally the parameterisation and
development of a new LMM version is justified (Sec.5.1). The calibration, final setting,
and validation of the LMM is delineated in Sec.6 and further details are provided in
App.E. Sec.7 describes results of present-day malaria simulations as well as malaria
projections of the LMM, Garki model, and MSM. A summary and discussions of main
findings follows (Sec.8). Finally, open questions are raised and information is given
for possible future refinements of the LMM. Numerous entomological and parasitolog-
ical data from literature and supplementary figures are allocated in App.D and App.F,
respectively.





3 Data

This section presents detailed information regarding the available data for the purpose of
the present study. The LMM is run on a daily time step by two meteorological variables.
For this reason, utilised data mainly includes observed, reanalysis-based, and simulated
daily average temperatures as well as daily precipitation amounts from various sources.
For the construction of a complete time series (App.C.2) also monthly mean tempera-
tures and monthly precipitation data was incorporated. Where and when those values
were not available climatological information was used. Two-dimensional meteorologi-
cal data was gathered for projected malaria changes simulated by the LMM and MSM.
Regarding the improved LMM development and validation, malaria data were taken
from entomological and parasitological field studies in West Africa.

3.1 DMN precipitation data

Daily precipitation amounts were extracted from a data set allocated by the National
Weather Service (DMN; French: ’Direction de la Météorologie Nationale’) of Benin.
The original data source covers 69 stations in Benin, including six synoptic weather
stations, ten climate, and four agricultural meteorological stations. Precipitation values
are available beginning with the year of 1921.

In the present study, data was taken from six synoptic stations for 1960-2005. One
advantage in comparison with other sources is the direct access by the DMN to note-
books (French: ‘carnet’) of observing stations. The DMN performs these observations
leading to an almost full data availability.

3.2 Synoptic station data

Meteorological observations permit to study atmospheric weather conditions. Data from
observing weather stations can be used for various purposes, for example, for real-time
weather warnings at airports, climatological studies, reanalyses, model verifications, or
as model input. In the present study, temperature and precipitation measurements were
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used as LMM data input. In addition, temperature messages were applied for the verifi-
cation of two-dimensional temperature data sets.
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Fig. 3.1: Map showing locations of used synoptic weather stations (Tab.G.1) as well as that from ento-
mological and parasitological field studies (purple dots; cp. Tab.D.3).

The main part of synoptic station data was gathered from the archive of the German
Weather Service (DWD; German: „Deutscher WetterDienst“).Since 2000 such data
was taken from an archive at the Institute of Geophysics und Meteorology (University of
Cologne). The data set comprises ten locations in Benin, Niger, and Mali along a north-
south transect at about 2◦E (cp. Tab.G.1, Fig.3.1) and covers a 27 year long time period
(1980-2006). Messages include data at main synoptic hours taken at 00, 06, 12, and
18 UTC. For few stations and certain time periods also intermediate messages (03, 09,
15, and 21 UTC) are available. The time step between different messages hence varies
between three and six hours.

Unfortunately,surface SYNOPtic observations(SYNOPs; World Meteorological
Organization(WMO) format 12) show numerous data gaps (cp. Fig.3.2) and also suffer
from erroneous messages. Both facts are typical for SYNOP messages coming from
West Africa. A time consuming data quality check was carriedout for the correction
and separation of suspicious values, for example, unrealistic high (low) temperatures
or precipitation amounts. To this end SYNOPs were in part compared to theFed-
eral climate complex Global Surface Summary of Day version 7(GSOD) data set (see
Sec.3.3). Unrealistic high precipitation values were partially detected by monthly pre-
cipitation amounts as provided by theGlobal Historical Climatology Network version 2
(GHCN; cp. Sec.3.5) data set andmonthly CLIMATological data(CLIMATs; WMO
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formate 71) from land stations furnished by the Monthly Climatic Data of the World
(http://www7.ncdc.noaa.gov/IPS/mcdw/mcdw.html).

3.3 GSOD

In terms of the LMM validation at various locations the above-mentioned synoptic
messages represent an insufficient model input. For this reason, GSOD (for fur-
ther information see http://www.ncdc.noaa.gov/cgi-bin/res40.pl) is used as an addi-
tional data source. Daily summaries of synoptic messages from all around the world
are gathered in GSOD and are administered by the United States National Climatic
Data Center. More than 9,000 observing stations are available (accessible through
ftp://ftp.ncdc.noaa.gov/pub/data/globalsod) that are mainly located in the Northern
Hemisphere in North America and Europe. In contrast, the distribution of measurement
sites in Africa is much lower (cp. Fig.F.1a).

GSOD comprises 18 meteorological surface variables (e.g.,daily mean temperatures
and precipitation amounts) taken from synoptic, hourly observations, as exchanged un-
der the WMO World Weather Watch Program. Historical data generally dates back to
1973, for some stations data even starts in 1929. Note that because of the beginning of
current synoptic coding in 1982, the data from 1982 to present is the most complete.
Because of data restrictions and communication problems, for some stations data gaps
occur during certain periods. The quality check as well as configuration of daily temper-
ature and precipitation time series of GSOD data is presented in detail in App.C.1.
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Fig. 3.2: Box-and-whisker plotof yearly availability of (a) daily temperature observations as well as (b)
daily precipitation reports from 1973-2006 relative to 34 synoptic stations of West Africa and
Cameroon. Availability refers to synoptic messages (Sec.3.2), GSOD records (Sec.3.3), as
well as additional resources (Sec.3.1). Stations are grouped for the West Sahel, Central Sahel,
Guinean coast, and Cameroon as well as relative to the medianof 34 annual rainfall values.

3.4 CLImatological NOrmals (CLINO)

Climatological information from various weather stationsis used for construction of a
complete time series of 24-hour precipitation (cp. App.C.2). The utilisedclimate in-
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formation is based on WMOCLImatological NOrmals(CLINO) for the 30-year aver-
age of 1961-1990. For about 4,000 stations in 130 countries climatological data was
made available to the WMO by national weather services (WMO 1996). For the
present study, monthly mean precipitation amounts and the monthly average number
of days with precipitation of at least 1 mm were used for reconstruction of time se-
ries of West African synoptic stations (cp. Tab.G.1). For some stations climatologi-
cal information was taken from the Hong Kong Observatory (http://www.hko.gov.hk/-
wxinfo/climat/world/eng/world_climat_e.htm) or the World Weather Information Ser-
vice (http://www.worldweather.org).

3.5 GHCN

Partially large data gaps occur in SYNOP and GSOD data (see Fig.3.2) that impede
malaria modelling. Those data gaps were partly filled and adjusted by means of monthly
information from different sources (App.C.2). GHCN data provides monthly surface
observations from several thousand stations around the globe since 1701 (Peterson and
Vose 1997; see also http://www.ncdc.noaa.gov/oa/climate/ghcn-monthly). This century-
scaled data base includes mean temperatures, maximum-minimum temperatures, pre-
cipitation amounts, as well as sea level pressures. Most stations are distributed in
the Northern Hemisphere in North America, Europe, and partsof Asia. However,
there are few gauges over central and northern Africa, central Asia, and the Ama-
zon basin (cp.Chen et al. 2002, their Fig. 4). The data set is managed and used op-
erationally by the United States National Climatic Data Center (available online via
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v2). GHCN data storage is updated each month
via CLIMAT reports and was applied in several internationalclimate assessments, in-
cluding the IPCC-AR4 (cp.Trenberth et al. 2007).

The quality of temperature data is ensured by a specialised suite of procedures that
incorporate checks for outliers from both a time series and spatial perspective (Peterson
et al. 1998). Methods for the quality check for precipitation data is generally compa-
rable to those used in developing temperature data (for details cf. the above-mentioned
web page). A major problem of these data sets is that monthly time series for weather
stations frequently are obtained from different sources. For this reason, various stations
reveal duplicate time series. Regarding the present study in case of temperature dupli-
cates the longest time series were chosen and missing pointswere filled with duplicates
(cp. Peterson and Vose 1997). Duplicates of monthly rainfall were not considered.

Unfortunately, not for every used meteorological station and every required month
GHCN data is available. Most used stations show large data gaps during more recent
years (e.g., 2000 onward; cf.Chen et al. 2002, their Fig. 3). Comparison with reliable
daily precipitation values from the DMN/Benin furthermoreshows that some errors re-
main. Errors for stations in Benin are partly corrected by the DMN precipitation. In
terms of 2006 (January-July), digital photos from originalCLIMAT messages are avail-
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Fig. 3.3: Same as Fig.3.2, but for yearly availability of monthly GHCN data. Additionally illustrated is
the fraction of years with more than six monthly data values (blue and red dots, respectively) as
well as the overall proportion of available monthly reports(green diamonds).

able for Parakou and Natitingou (not shown). In addition, some data gaps and doubtful
values (as compared to SYNOP messages and GSOD) were replaced by a supplemen-
tary data source (A. Niang, personal communication, 2008).However, some data gaps
and errors still exist (see Fig.3.3).
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Fig. 3.4: Mean number of daily IRD precipitation observations per grid box for 1968-1990.

3.6 The ‘Institut de Recherche pour le Développement’
data set (IRD)

Evaluation in terms of precipitation is conducted by rainfall observations from the‘Insti-
tut de Recherche pour le Développement’ data set(hereafter simply referred to as IRD).
Large parts of West Africa are covered by IRD (0-23◦N and 20◦W-26◦E) for the 24 year
period from 1968-1991. Precipitation data has a daily resolution and is available on a
1◦ x 1◦ grid. Included in the data set are 24-hour precipitation measurements (mostly
taken at 06 UTC; cp.Allard 2000), which were interpolated on the aforementioned reg-
ular grid. Additionally, the total number of observations available for the particular grid
points is given.
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Due to the sparse distribution of synoptic weather stationsand political reasons the
IRD is not available for all grid boxes. No or few data is archived for Guinea, Sierra
Leone, Liberia, Ghana, Nigeria, and Cameroon as well as for most parts north of about
15◦N (Fig.3.4). Numerous measurements are only available for large partsof Senegal,
Burkina Faso, Togo, and Benin. The number of observations range between zero and
28 observations per day and per grid box. About 72% of all gridpoints do not show
any data. Regarding grid boxes with precipitation measurements (18.2%) mostly only
1-5 observations are available (ratio: 85.1%; cf. Fig.3.4). In these cases, only a small
fraction of grid points shows more than ten observations (3.0%). A lot of grid points do
not reveal any data in 1991 (not shown), therefore the data base for malaria modelling is
limited to 1968-1990.
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Fig. 3.5: Box-and-whisker plots with regard to monthly precipitation values relative to 1973-2006 and in
terms of 34 synoptic stations of West Africa and Cameroon. Displayed are box plots of PREC/L
(green), GHCN (blue), and that of reconstructed time series(red box plots), respectively. Note
that various monthly values are not available for GHCN (cp. Fig.3.3b) and that numerous maxi-
mum values fall out of the scale of the figure.

3.7 PREC/L

As stated in the previous subsection monthly precipitationis not available for some
months and few weather stations. In such cases, adjustment of daily precipitation time
series to monthly precipitation is not possible. For this reason, gridded precipitation was
taken from thePrecipitation REConstruction over Land(PREC/L; Chen et al. 2002)
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data set. This data is derived from gauge observations from over 17,000 stations that
are collected by GHCN (Peterson and Vose 1997) and monthly precipitation reports
from the Climate Anomaly Monitoring System. An optimal interpolation method (Gin
1965) is used for creation of monthly gridded analyses of precipitation over global land
areas and is available online since 1948 (updated on a quasi-real-time basis on ftp://-
ftp.cpc.ncep.noaa.gov/precip/50yr). Data relative to a regular high resolution latitude-
longitude grid of 0.5◦ was requested for 1960-2006 (M. Chen, personal communication,
2007). The mean distribution and annual cycle of PREC/L agrees well with several pub-
lished gauge-based data sets (Chen et al. 2002; cp. also Fig.3.5). PREC/L was hence
also utilised for the IPCC-AR4 (seeTrenberth et al. 2007).

3.8 The Climatic Research Unit data set (CRU)

Information regarding the monthly variability of various meteorological variables is pro-
vided by theClimatic Research Unit data set(hereafter named by CRU) and is of par-
ticular relevance to a number of applications, for instance, for evaluation of regional
climate models (New et al. 2000). CRU has been widely used for different research
objectives, for example, the IPCC-AR4 (Trenberth et al. 2007) or evolution of malaria
transmission in Great Britain (Kuhn et al. 2002). Various data sets are publicly avail-
able (http://www.cru.uea.ac.uk) on a regular high-resolution (0.5◦ or even 10’) latitude-
longitude grid and are representing century-long time series.

CRU represents monthly climate observations from meteorological stations from all
around the world and therefore covers the terrestrial surface including oceanic islands but
excluding Antarctica. The 1961-1990 mean monthly climatology has been computed as
a reference (New et al. 1999). Relative to this climatology monthly climate anomalies
are calculated from surface climate data using angular distance-weighted interpolation
(New et al. 2000). Anomaly grids of primary variables, these are precipitation, mean
temperature, and diurnal temperature range are finally combined with climatology for
construction of time series.

The main problem of these data sets is the inadequate spatio-temporal distribution
of surface observations. The anomaly interpolation methodology leads to a relaxation
of monthly fields towards the 1961-1990 mean in areas of low station coverage. Inter-
polation errors are increased where the station network is sparsest over cold, dry, and
mountainous regions, especially in tropical regions (New et al. 2002). Mountain areas
are particularly prone to interpolation errors due to a detailed structured topography.

New et al. (2000) were the first to develop time series for 1901-1995 (termed
CRU TS 1.0), which were later extended to 1998 for monthly mean temperatures and
precipitation (CRU TS 1.1). However, the data was superseded by CRU TS 2.1 (Mitchell
and Jones 2005) that comprises nine climate elements for the period 1901-2002. In the
updated version, the existing data base was expanded and improved by refining previous
methods.
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The present study shows that simulated REMO precipitation is biased against ob-
servations (cp. Sec.4.1). As a consequence, corrected REMO precipitation data has
been allocated for the present study (H. Paeth and R. Girmes,personal communication,
2006). At the time of the data correction only CRU TS 1.1 was available and therefore the
bias correction is based on 1960-1998 (see App.C.3). However, the raw data and bias-
corrected values of REMO precipitation are compared with the more recent CRU TS 2.1
version (cf. Sec.4.2).

3.9 The ECMWF 40-year ReAnalysis data set (ERA40)

Historical reanalyses such as theECMWF 40-year ReAnalysis data set(ERA40) are
essential for climate and atmospheric research (Christensen et al. 2007b). ERA40 tem-
peratures are used here for correction of simulated REMO temperatures (cf. App.C.4).
The entire ERA40 archive spans 45 years from September 1957 to August 2002 and
comprises various atmospheric variables on 60 model levels. The ERA40 model pro-
duced data for the main synoptic hours at 00, 06, 12, and 18 UTCand used a spectral
T159 model resolution (‘T’ indicates triangular truncation of spherical harmonics), cor-
responding to about 125 km horizontal resolution in the tropics (Cherubini et al. 2006).
One additional ERA40 product is a set of analyses such as temperature on screen level
(at a height of 2 m) amongst others available on a N80 full Gaussian grid (‘N’ is, e.g., the
number of grid points between the equator and pole), that is equivalent to a 1.125◦ grid.
This analysis was produced as part of the data assimilation and includes observations
from weather stations all around the world (Uppala et al. 2005).

The analysis strategy of 2 m temperature is as follows: A primary three-dimensional
variational analysis of atmospheric fields is performed on model levels at each particular
time step. The 2 m temperature analysis is carried out every six hours, independent of
this atmospheric analysis. Analysis of measurements at screen-level is based on a two-
dimensional univariate statistical interpolation between a background field and observa-
tions (Simmons et al. 2004). This optimum interpolation explicitly includes information
on statistics of forecast and observation errors (Douville et al. 2000). The background
field used for the optimum interpolation is derived from the six-hour background fore-
cast of the main data assimilation by interpolating betweenskin temperatures and those
at the lowest model level (at a height of about 10 m).

The 2 m temperature analysis is not used to modify atmospheric fields at the model
level from which the background forecast for the next analysis in the assimilation se-
quence is initiated. Instead, temperature analysis at a height of 2 m is used as input to an
optimal interpolation analysis of soil temperature for usein the background model (Mah-
fouf et al. 2000; Douville et al. 2000). Screen-level temperature therefore influences the
background forecast through the resulting adjustments to the model’s soil temperature
fields (Simmons et al. 2004).
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ERA40 temperatures are used for the bias-correction of REMOdata. Note that a
detailed description of the bias correction is provided in App.C.4.

3.10 Present-day runs and climate projections from
REMO

At present, climate projections performed by REMO represent the highest atmospheric
resolution available for tropical Africa. In this study, REMO simulations are therefore
utilised as data input for the LMM and MSM. However, model errors are found with
regard to simulated REMO rainfall and temperatures (Sec.4). For this reason the REMO
data is bias-corrected (App.C.3& C.4). Note that no bias correction was performed for
minimum temperatures, which is used for the simulation of the malaria season by the
MSM (cp. Secs.5.3& 7.3.3). Note that minimum temperatures are except for some high
altitudes regions not a limiting factor of malaria transmission in the considered part of
Africa.

3.10.1 REMO simulations

REMO originated from the Europa-Modell (Walter et al. 2006) that is the former nu-
merical weather prediction model of the DWD (Majewski 1991). The model was further
developed at the Max Planck Institute for Meteorology. Changes of dynamical pro-
cesses and other physical parameterisations from the4th generation of the European
Centre HAmburg Model(ECHAM4; Roeckner et al. 1996) were finally introduced into
the model (e.g.,Jacob 2001). The data used in this study is produced by REMO in
version 5.7 that includes a fractional land-sea mask.

REMO is a hydrostatic, limited-area atmospheric model and is designed for applica-
tions at the synoptic scale (e.g.,Paeth et al. 2009). The space-time resolution of REMO
data is 0.5◦ (i.e., about 55 km at the equator) and 5 minutes (i.e., the integration step), re-
spectively. By means of primitive equations prognostic variables are solved on 20 hybrid
atmospheric levels (Jacob et al. 2001). The needed atmospheric forcing data of REMO
at lateral and lower boundaries can be either global observations or global climate mod-
els. Here, REMO simulations were nested into ECHAM5/MPI-OMglobal coupled cli-
mate model simulations that were forced with different enhanced greenhouse conditions.
Each scenario and the twentieth-century simulations are represented by three ensemble
members in order to obtain a measure of uncertainty (Paeth et al. 2009; cp. Sec.2.3). En-
semble members are based on different initial conditions taken from distinct conditions
of related ECHAM5/MPI-OMcontrol runs(H. Paeth, personal communication, 2006).
For the present-day climate (1960-2000) REMO was driven by an observed GHG in-
crease (seeRoeckner 2004a; Roeckner et al. 2006a,b). By contrast, the 50 year period
(2001-2050) of future climate was forced by enhanced GHGs (seeRoeckner 2004b,c;
Roeckner et al. 2006c,d,e,f) related to the IPCC SRES A1B and B1 scenarios (Nakićen-



54 3 DATA

ović et al. 2000; see Sec.2.2). Additionally, spatially detailed patterns of futureLand
Use and land Cover(LUC) changes are prescribed (see Sec.3.10.2).

Atmospheric processes at the subgrid-scale such as deep convection and associated
convective rainfall are parameterised in REMO. Moist convection is described by the
mass flux scheme ofTiedtke(1989). In the used model runs, the moist convection is
adapted to tropical Africa, where the atmospheric instability of the monsoon air mass
must be adequately considered. On that account, the lower threshold of cloud thickness
for the generation of rainfall is set to 1500 instead of 3000 m(Paeth 2005).

The REMO domain covers a limited area of the globe and is set inwest-east direc-
tion from 30◦W-60◦E and in south-north direction from 15◦S-45◦N. The area contains
the Mediterranean Sea, the whole subcontinent of West Africa, tropical Africa, and the
Arabic Peninsula (see Fig.2.1b). However, due to the nesting approach errors were intro-
duced by lateral boundary effects. For this reason, data from grid points at the boundary
of the REMO domain (e.g., six rows; cp.Paeth et al. 2009) is not interpreted.

3.10.2 Land use and land cover changes

The surface condition of the land area significantly influences atmospheric processes,
for instance, the generation of precipitation. Variables with regard to the land surface
therefore have to be realistically represented in atmospheric models. REMO contains
seasonal-dependent land surface parameters such as the total surface roughness length
as well as those induced by vegetation, the fractional vegetation cover, the leaf area
index, and the background surface albedo. For the 20th century simulations (1960-
2000) these parameters were held constant and were derived from global topographic
data with a horizontal grid spacing of 30 arc seconds and National Oceanic & Atmo-
spheric Administration data sets that represent the surface condition for the late 20th
century (cp.Hagemann et al. 1999). The data for the late 20th century is the reference
for the introduction of a LUC scenario, which is in line with FAO. A detailed description
of the applied stochastic land-use change model is given byPaeth et al.(2009). Some
basic information with regard to LUC changes is summarised below.

In addition to changing GHGs, REMO is at the lower boundary also forced by LUC
changes.Paeth et al.(2009) developed a stochastic land-use change model for Africa
that takes into account future population growth as projected by the United Nations
report (UN 2006) as well as scattered patterns of urbanisation. The model considers in
particular the loss of vegetation due to land degradation processes such as deforestation
and uncontrolled settlement. The deforestation projection is taken from a FAO scenario
(FAO 2006) and deforestation sums to about 30% until 2050. Changes in the LUC
pattern are mainly caused by a population growth of 2% per year and are primarily
prescribed in the surrounding area of cities, existing agricultural areas, and traffic axes.
It is assumed that the prescribed changes will lead to a plausible structure of LUC in
future.

LUC projections were realised in two general steps. Firstly, the stochastic land-use
change model is applied to land cover data in 11 km2 grid resolution from the United
States Geological Survey/Global Land Cover Characteristics classification. The de-
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velopment of the stochastic model implicates a random LUC change under three con-
straints: (i) The projected population prospect of theUN (2006) is valid. (ii) Deforesta-
tion is in line with the FAO estimate (FAO 2006). (iii) LUC grid boxes are only affected,
when a neighbouring grid box has already been anthropogenically manipulated. In the
area of the rain forest, the last constraint ensures that a transformation takes place along
boundaries of woodlands. By contrast, natural vegetation is preserved in the central
part of rain forests (cp.Paeth et al. 2009, their Fig. 1). Regarding the southern zone of
the Sahel, desertification, due to improper agricultural practices and overgrazing, leads
to transformation of grassland to bare soil. Secondly, the higher-resolution LUC grid
(11 km2) is adjusted to the REMO grid resolution (0.5◦). Furthermore, the different
LUC categories are transformed to the five above-mentioned land surface parameters of
REMO.

A linear LUC change is assumed for the transient LUC scenariofrom 2001-2050.
Changes are superimposed on the seasonal cycle of vegetation. Compared to the IPCC
SRES B1 scenario a stronger LUC scenario is defined under A1B.It is assumed that
technological progress under B1 leads to a more efficient agriculture. For this reason,
the agricultural area is not as much expanding under the B1 LUC scenario. However,
both scenarios do not lead to considerably different LUC projections since population
growth is the same under A1B and B1. The spatial mean of forestchanges under the
A1B scenario is identical to a FAO scenario (Food and Agriculture Organization 2006),
which reduces the forest area for about 30% until 2050.

3.11 Entomological and parasitological data

In public literature numerous information with regard to the malaria disease can be
found. A lot of published information, which only represents a fragment of all avail-
able literature, has been extracted from various articles.The large amount of publica-
tions complicated the analysis. For the purpose of the studyit was therefore adjuvant
to archive and summarise relevant data in different tables (see App.D). With regard to
malaria modelling entomological and parasitological datais of particular interest since
a malaria model has to undergo a certain validation procedure (see Sec.6). On account
of the availability of meteorological data and because of the limitation of time the anal-
ysis is restricted to West Africa and Cameroon. When possible the following variables
were archived (for details of the procedure and informationregarding some variables
see App.D). Included in the meta-analysis are the literature references as well as some
basic features like the name, geographical position, land-use of the study site, and the
time period of the study. Annual averages are provided forCSPRandPR, annual min-
ima and maxima are indicated forPR as well as accumulated annual values are given
for HBRandEIR. Thestart, end, andlength of the malaria season(SSeas, ESeas, and
Seas, respectively), as well as thelength of the main transmission season(MSeas; i.e.,
the number of months in which 75% ofEIR is recorded) and themonth of the maximum
transmission(XSeas; i.e., the month with the highestEIR value) are included in the
analysis (see Tab.D.3).
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Additional information regarding different malaria variables is required for the LMM
setting. Data was gathered for the gametocyte prevalence, that is the percentage of hu-
mans with gametocytes in their blood (see Sec.5.1.12and Tab.D.11). Moreover, ar-
ticles were reviewed in terms of the mosquito survival probability (see Sec.5.1.5and
Tab.D.10). Horizontal (controlled conditions) and vertical (field conditions) life ta-
bles from various studies furnish data for the daily survival probability of the aquatic
stages of mosquitoes (see Sec.5.1.4and Tabs.D.8& D.9). Furthermore, data is provided
for the gonotrophic cycle (see Sec.5.1.1and Tab.D.6), the number of eggs per female
mosquito (see Sec.5.1.2and Tab.D.7), the duration of the immature mosquito stages
(see Sec.5.1.3and Tabs.D.8& D.9), the duration until asexual and sexual parasites ap-
pear in the blood circulation (see Sec.5.1.10and Tab.D.15), and preference of humans
by Anophelesfemales (see Sec.5.1.8and Tab.D.14). In addition, values for transmission
efficiencies of the malaria parasite between human and mosquito hosts are given (see
Sec.5.1.9& 5.1.13as well as Tabs.D.13& D.12).

3.12 Data overview

As previously described various data sets were allocated for the present study. On this
account, an overview of the most important data sets might behelpful (see Tab.3.1). Fur-
ther details with regard to the generation of time series, the bias correction of REMO pre-
cipitation and temperatures, the analysis and conversion of data as well as the Wilcoxon-
Mann-Whitney rank-sum test are provided in App.C.

id name period var resS resT note

DMN Direction de la Météorologie
Nationale

1921(1960)-2005 RR stations daily synoptic stations: Kandi,
Natitingou, Parakou, Savé,

Bohicon, and Cotonou
SYNOPS surface SYNOPtic observations 1980-2006 T, RR stations 3-6 hourly ten synoptic stations along about

2◦E
GSOD Federal climate complex Global

Surface Summary of Day version 7
1929(1960)-

U(2006)
T, RR stations daily synoptic stations

GHCN Global Historical Climatology
Network version 2

1701(1960)-
U(2006)

T, RR stations monthly synoptic stations

CLINO CLImatological NOrmals 1961-1990 RR, #RR≥1 stations monthly climate values at synoptic stations
IRD ‘Institut de Recherche pour le

Développement’ data set
1968-1991(1990) RR 1.0◦ daily gridded (number of) rainfall

observations
PREC/L Precipitation REConstruction over

Land
1948(1960)-

U(2006)
RR 0.5◦ monthly gridded observed rainfall

CRU Climatic Research Unit data set 1901(1960)-
2002(2000)

RR 0.5◦ monthly gridded observed rainfall

ERA40 ECMWF 40-year ReAnalysis data set 1958(1960)-
2002(2000)

T, ps T159 6 hourly (daily) -

REMO(raw) REMO 1960-2000 T, RR, ps 0.5◦ daily increasing greenhouse gases;
constant LUC; three ensemble runs

REMO(cor) bias-corrected REMO 1960-2000 T, RR 0.5◦ daily increasing greenhouse gases;
constant LUC; three ensemble

runs; cp. App.C.3& C.4
A1B: REMO(cor) A1B: bias-corrected REMO 2001-2050 T, RR 0.5◦ daily SRES: A1B scenario; stochastic

LUC changes in line with FAO;
three ensemble runs

B1: REMO(cor) B1: bias-corrected REMO 2001-2050 T, RR 0.5◦ daily SRES: B1 scenario; weaker
stochastic LUC changes; three

ensemble runs

Tab. 3.1: Overview with regard to used data sets. Columns: id: identifier; name: name of the data set;
period: period; var: used variables; resS: spatial resolution; resT: time resolution; note: notes.
The ‘U’ stands for a regular update of the data. Numbers in brackets stand either for the applied
time period or for the time resolution.T: temperature;RR: precipitation; #RR≥1: number of
days with at least 1 mm of precipitation;ps: surface pressure.



4 Validation of meteorological model data

Data from REMO will be used continually throughout the thesis for initiating rainfall and
temperatures in malaria runs. In this section, theuncorrected REMO(hereafter referred
to as REMO(raw)) and thebias-corrected REMO data set(hereafter termed REMO(cor))
are validated against observations and reanalyses. First,the simulated REMO precipi-
tation is compared to IRD in West Africa (Sec.4.1). REMO precipitation is further
verified for other parts of Africa with respect to CRU (Sec.4.2). Temperatures from re-
constructed time series (App.C.2) are compared to those of ERA40 (Sec.4.3). Finally,
REMO temperatures are validated against these reconstructed time series (Sec.4.4) and
ERA40 (Sec.4.5).

4.1 REMO precipitation versus IRD

4.1.1 Monthly and annual rainfall

Here, the performance of REMO with regard to the simulation of the West African mon-
soon system is analysed in terms of the spatial distributionas well as the monthly timing
of rainfall. Furthermore, the year-to-year variability ofprecipitation is compared be-
tween REMO and IRD.

Observed rainfall is generally decreasing from the Guineancoast toward the Sahara.
The annual precipitation amount(RRa) declines from more than 1500 mm in certain
parts along the Guinean coast to less than 200 mm in the northern Sahel (seeRRa in
Fig.4.1). The analysis of the seasonal precipitation cycle demonstrates the migration of
the West African monsoon system towards the Sahara up till August (see left column in
Fig.4.1). IRD also shows the swift retreat of the monsoon system during October and
November.

The comparison of REMO(raw) with IRD reveals major shortcomings in the REMO
data. Principally, simulatedRRa is displaced southward. ExcessiveRRa is simulated for
the Guinean coast and is mostly lower than observed in the Sahel. The further analy-
sis of the seasonal cycle exhibits a delay in the onset of the monsoon in REMO(raw).
The first rainfall deficits are found in February at the coastal zone of the Gulf of Guinea
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(cp. middle column in Fig.4.1). During the first half of the rainy season themonthly
precipitation amount(RRm) is too low for a strip of about 5◦ latitudes. The largest
differences occur between February and April as well as in July (Fig. 4.1). During
those months rainfall at some locations is underestimated in REMO(raw) by more than
100 mm.

In July and August (i.e., the height of the summer monsoon), the largest rainfall
deficits are found south of Lake Chad as well as in southern Senegal and The Gambia.
In these regions, in REMO(raw)RRm is in most places more than 100 mm lower than
observed. By contrast, between July and OctoberRRm is often higher (by more than
200 mm) for the Guinean coast as well as the Sudanian zone. Clearly, a bias correction
of REMO precipitation was needed (see App.C.3).

In the following analysis, REMO(cor) precipitation is compared to IRD (right col-
umn in Fig.4.1). The correction of REMO precipitation shows major improvements.
The deficit ofRRa completely disappears for the Sahel. By contrast, several grid points
reveal even higher rainfall amounts. The monthly values arein certain parts more than
100 mm above that of IRD. These differences are expected since REMO(raw) has been
bias-corrected for 1960-1998 and not for 1968-1990. Duringthe longer period several
wet years are recorded in the 1960s (e.g., Fig. 2 inFink et al. 2008). A drier period like
the one between 1968 and 1990 would therefore result in lowerbias-corrected rainfall
amounts (cp. App.C.3).

Bias-corrected precipitation at the coast of Senegal and the Gulf of Guinea is consid-
erably reduced. Some grid points exhibit more than 200 mm lower rainfall amounts than
IRD. As already stated, the bias correction was not possiblefor months with no simu-
lated rainfall events (cp. App.C.3). For this reason, the onset of the monsoon still comes
a little too late in February and March at the Guinean coast. The deficit ofRRm exceeds
50 mm at some locations. However, the rainfall difference inthose months is remark-
ably reduced by the bias correction. Most significant is the improvement of REMO(raw)
between May and August. The aforementioned latitudinal strip vanishes in REMO(cor),
which means that rainfall conditions during the main monsoon onset are now compara-
ble to observations. The correction procedure also resultsin more realistic precipitation
amounts during the height of the monsoon. During November and December, however,
corrected REMO precipitation is still lower at the coastal area than observed.

In summary, deficiencies in annual precipitation as well as relative to its seasonal
distribution are considerably reduced by the bias correction of the REMO data set.
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Fig. 4.1: Observed rainfall (in mm) from IRD as well as the difference between IRD and REMO(raw)
(REMO(raw)-IRD) as well as REMO(cor) (REMO(cor)-IRD) rainfall (continued on the next
page). The first twelve rows depict data with regard to the monthly precipitation amount (RRm).
The penultimate row shows values of the annual precipitation amount (RRa) and the last row
illustrates the standard deviation ofRRa.
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Fig. 4.1: (continued)

4.1.2 Frequency distribution of 10-day accumulated precipitation

In the present study, the LMM is applied for the simulation ofmalaria transmission. In
addition to the temperature input, the model is driven by daily values of the10-day accu-
mulated precipitation(RRΣ10d). For this reason, the frequency distribution of simulated
RRΣ10d values is compared with IRD. It will be shown here for West Africa that the
frequency distribution ofRRΣ10d values in REMO(cor) compare favourably well with
observations.

In principle, it is also possible to check the frequency distribution of daily rainfall.
However, this comparison suffers from the fact that simulated REMO precipitation rep-
resents average values of a grid box, whereas IRD is based on point measurements. The
convective nature of tropical rainfall (see Sec.2.1) causes a strong mesoscale rainfall
variability. For example,Balme et al.(2006) found strong convective scale variability
for an area in the region of Niamey. Their rainfall estimation error increases form 3-16%
at the annual scale and from 21% to 113% at the event scale, when the number of stations
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over a 100 km2 area decreases from twelve to one. This is a consequence of the high spa-
tial variability of rainfall leading to a single station having behaviour significantly and
randomly different from the regional pattern. Another effect of localised convection is
an increase in the number of rain events for a grid box when more measuring sites are
considered. Hence, the number of rainy days per IRD grid box is expected to increase
with the number of available observations. The inclusion ofmore observations per grid
box or by the consideration of longer time periods (e.g., a month) will provide more
robust results. In the following, it is assumed that for a period of 10-days the frequency
distributions of REMO and IRD are comparable.
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Fig. 4.2: Frequency distribution of daily values of 10-day accumulated precipitation (RRΣ10d) for IRD
(black line and grey bars) as well as REMO(raw) (red lines andbars) and REMO(cor) (green
lines and bars) precipitation with regard to 1968-1990. Note that the frequency distribution is
based on 10 mm intervals. Illustrated is also the cumulativepercentage (curves; see right scale).
In addition, the 90th, 95th, and 98th percentile of dailyRRΣ10d values are indicated (small vertical
lines). Moreover, to the right of the vertical black line at 300 mm the ratio of 10-day episodes
with no rainfall (RRΣ10d = 0mm) is given (see right scale).

REMO seems to simulate a correct frequency of dry episodes. The percentage of
days with zeroRRΣ10d is comparable for all three data sets (right bars in Fig.4.2 and
cp. Fig.4.1). West Africa is affected by dry conditions for about 45% of the year, which
is mainly due to the prominent dry season between October/November and March-May.
By contrast, due to the regular occurrence of rain events during the boreal summer mon-
soon season (e.g.,Fink et al. 2006) RRΣ10d is always expected to exceed zero.

Regarding 10-day episodes, REMO(raw) shows a higher frequency of small and
excessive rainfall amounts. In contrast, more moderate accumulations are underrepre-
sented in REMO simulations (Fig.4.2). Between 10 and 90 mm, REMO(raw) values are
less frequent than that of IRD. However, excessive rainfallepisodes are overrepresented
in REMO simulations. Regarding REMO(cor), slightly disproportionate values are only
found between 20 and 70 mm.
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As a result, cumulative percentages of accumulated frequencies are closer to IRD
in REMO(cor) than in REMO(raw). With regard to REMO(raw) below (above) about
50 mm cumulative percentages are higher (lower) than that ofIRD and REMO(cor). By
contrast, the cumulative percentage of REMO(raw) runs fairly close to that of IRD. This
fact is also shown by the 90th, 95th, and 98th percentile of daily RRΣ10d values.

4.2 REMO precipitation versus CRU

In this section, REMO precipitation is validated against CRU for most parts of Africa.
CRU provides valuable information with regard to the year-to-year variability and spatial
distribution of precipitation. The observed and simulatedseasonal cycle of rainfall and
its interannual variability are compared for the Sahel, NeA, and EEA.

Due to the long persistence of the ITCZ near the equator, the highest rainfall amounts
are in general found at equatorial Africa (Fig.4.3a). According to CRU, between 1960
and 2000 three rainfall maxima are found. The highest rainfall values are found in the
Guinean and Adamawa mountains as well as in the Ethiopian Highlands. Much like IRD
(see Fig.4.1), RRa strongly decreases towards the Sahara. CRU furthermore shows the
presence of the Dahomey Gap between Nigeria and Ghana (Vollmert et al. 2003). Note
also that CRU mainly suffers from a shortage of data in Angola, Zaire, Eastern Somali,
Saudi Arabia, as well as the Sahara (Fig.F.1a). For this reason, the bias correction of
REMO is not as reliable in these areas as in other regions. Fortunately, sufficient data
is available for the Sahel as well as for most parts of the Greater Horn of Africa, where
major changes in the malaria exposure are expected (cp. Sec.2.8).

REMO(raw) reveals major differences in comparison with CRU(Fig.4.3b). REMO
simulates much higher precipitation amounts in the Congo Basin. In parts of this area,
RRa is 1000 mm higher in REMO(raw) than in CRU. Again in agreementwith IRD
(Fig.4.1), rainfall is often higher for the Guinean cost. However, REMO seems to un-
derestimateRRa at the windward side of the Guinean mountains as well as in south-
western Nigeria. The comparison with CRU also shows that REMO generally simulates
too low RRa in the Sudanian and Sahelian zones, which is due to the lowerRRm un-
til August (Fig.4.4a). In contrast, bias-corrected REMO precipitation exhibits realistic
RRa for the Sahel, but reduced amounts of more than 150 mm for certain parts of the
area around about 5-10◦N (Fig.4.3c), due to the fixed lower limit of the applied quotient
(cp. App.C.3).

A somewhat mixed picture is found for the Greater Horn of Africa. Values for
REMO(raw) are too high along the coast of Somalia, Kenya, andparts of Tanzania.
Strong rainfall differences are found in Ethiopian Highlands. However, in such regions
REMO simulations might represent more realistically elevation effects. As noted in
Sec.3.8, CRU mainly suffers from interpolation errors, particularly in mountainous re-
gions. Unfortunately, this fact also results in a smoothingof bias-corrected precipita-
tion in areas such as the Ethiopian Highlands. In NeA, REMO simulates lower than
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Fig. 4.3: Observed CRU rainfall (in mm) as well as the difference between CRU and REMO(raw)
(REMO(raw)-CRU) as well as REMO(cor) (REMO(cor)-CRU) precipitation. (a-c) Annual pre-
cipitation amount (RRa) and (d-f) its standard deviation.

observedRRm from January-September (Fig.4.4b). Conversely, rainfall is underrepre-
sented for various parts of East Africa. Here it is interesting to note that for the EEA re-
gion REMO simulates only about half of the observed rainfallof the long rains (Fig.4.4c
and cp. Sec.2.1.2). In fact, the short rains are more abundant in REMO than the long
rains, which is the opposite of what is observed. These shortcomings are all overcome
by the bias correction.

As expected, CRU exhibits a highinterannual variability(σ) of annual rainfall in
areas of highRRa (see Fig.4.3a & d). σ(RRa) is particularly strong along coastal areas,
for example, at the Guinean coast. However, in these areasσ(RRa) reaches often less
than 20% ofRRa. Remarkable is the strong year-to-year variability in large parts of the
Greater Horn of Africa (cp. Sec.2.1.3), which reaches in certain parts nearly 50% ofRRa

(Fig.F.1b).

REMO simulates a higher than observed interannual variability of rainfall for the
Congo Basin as well as for West Africa, which is reduced by thebias correction
(Fig.4.3e & f). Note that the result for West Africa contradicts the finding ofPaeth et al.
(2009), who showed that the year-to-year variability of monthly precipitation is clearly
underestimated during the summer monsoon. It is speculatedthat Paeth et al.(2009)
erroneously computed the ensemble mean ofσ(RRm) (e.g., the average value of three
ensemble runs for single years would result in a much lower value ofσ(RRm) rather than
the standard deviation with regard to every simulated year of the ensemble runs; see also
App.C.5). However, an investigation of time series ofRRa reveals a fairly strong inter-
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(a-c) Monthly precipitation (RRm) and (d-f) its standard deviation (σ(RRm)). Note that only data
from land grid points is used and for the areas see the inserted boxes in Fig.4.3c.

annual variability for each single ensemble run (Fig.F.2). Obviously, simulated rainfall
is not correlated with observed Sahel rainfall since REMO was not driven by observed
SSTs (cp. Sec.7.1). Also the interannual variability of the seasonal cycle ofthe REMO
simulation is comparable to CRU.

In the area of NeA, REMO simulations reveal both higher and lower interannual
variability of rainfall in comparison with CRU (Fig.4.3e). σ(RRa) is partly higher in
REMO(raw) than in CRU, which might again be better captured by REMO simulations
(cp. above). Seasonality ofσ(RRm) compares fairly well with observed values for the
area as a whole (Fig.4.4e).

REMO is clearly not reproducing the strength of the year-to-year variability in the
central part of Kenya and in northwestern Kenya. For EEA as a whole, REMO(raw)
mostly underestimatesσ(RRm) during the course of the year. Moreover, the timing of
the year-to-year variability for the short rains is incorrectly reproduced by REMO(raw)
(Fig.4.4f). The strongest value ofσ(RRm) is simulated in October rather than in Novem-
ber. By contrast, the bias correction markedly reduces the interannual variability of the
short rains.

4.3 ERA40 temperatures vs. station data

In this section, it will be shown that ERA40 (Sec.3.9) as well as reconstructed time series
(App.C.2) reveal approximately the same seasonal cycle and interannual variability of
daily mean screen-level temperatures. On this account, it is concluded that ERA40 as
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well as generated station time series form an useful basis for the correction of the REMO
temperature bias and the modelling of malaria, respectively.

In contrast to REMO (see Sec.4.4), the ERA40 temperature analysis correlates well
with weather station observations in West Africa (Fig.4.5a). This is expected since sta-
tion observations are included in the ERA40 two-dimensional univariate statistical inter-
polation of screen-level temperatures (Simmons et al. 2004; cp. Sec.3.9). The seasonal
cycle is well captured by ERA40 temperatures. The strength of the two maxima, one
during boreal spring and another during boreal autumn, is realistically reflected in the
analysis. Also the secondary minimum during the relative cool and humid conditions
of the summer monsoon season is well represented by ERA40. Inaddition, the primary
minimum caused by the drop in solar radiation during the colddry season is reproduced
by ERA40 (Ermert and Brücher 2008).
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Fig. 4.5: Composite of the annual cycle of (a) daily mean temperatures(T) and (b) their standard deviation
(σ(T)) for 1973-2000 (except for Magaria: 1980-2000 and Po: 1983-2000) of observations at
32 West African synoptic stations (black line; Tab.G.1, but without Douala and Koundja Foum-
ban) as well as related grid point data from REMO (red(dish) lines; including three ensemble
runs and their average) and ERA40 (green line).

For the interior of West Africa, ERA40 temperatures are particularly comparable to
reported values of synoptic stations. However, ERA40 temperatures are often somewhat
lower (often 0-0.5◦C) than corresponding observed temperatures (not shown). Differ-
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ences between ERA40 and station measurements become largerfor stations that are
closer to the Atlantic Ocean. The largest differences occuralong the coast of Senegal
and The Gambia. Between February and June, ERA40 temperatures are up to 8◦C higher
than recorded measurements at Saint-Louis, Dakar, and Banjul. During this period of
the year low observed temperatures might originate from thecold Canaries current (Fall
et al. 2006). Such small-scale oceanic factors are probably not well captured in ERA40
simulations.

Also the interannual variability of temperatures from the ERA40 model is compa-
rable to that of observations (Fig.4.5b). However, ERA40 slightly underestimates the
year-to-year variability of temperatures. Compared to observations various locations
show particularly high standard deviations during spring time between March and May
(not shown).

Hoshen and Morse(2004) state that daily mean temperatures from ERA40 compare
poorly with observations. They therefore applied daily maximum temperatures with an
offset by -5◦C to roughly represent daily mean temperatures. At least forWest Africa
this statement cannot be verified. As shown here, reanalysis-based temperatures corre-
late well with station data and seem to be a useful tool for verification and modelling
purposes. Note finally that statements are based on data fromreconstructed temperature
time series, which not necessarily represent real atmospheric conditions. However, the
agreement between ERA40 and time series also suggests that the generation of a realistic
station data base was successful.

4.4 REMO temperatures vs. station data

The validation of atmospheric models is usually performed by the comparison with ob-
servations or atmospheric reanalyses such as ERA40. In thissection, REMO tempera-
tures are compared for 1973-2000 with reconstructed time series of 34 synoptic stations
(Tab.G.1; cp. App.C.2) as well as ERA40. In the following section, REMO(raw) tem-
peratures are additionally verified two-dimensionally by means of ERA40.

The analysis of the mean seasonal cycle of daily mean temperatures shows large
differences between REMO temperatures and observed data (Fig.4.5a). REMO over-
estimates in general the amplitude of the seasonal cycle, which Paeth et al.(2009) re-
late to an incorrect simulated cloudiness. The observed seasonal cycle ranges between
about 24 and 31◦C for the average of the considered stations. However, REMO simu-
lates daily mean temperatures between about 21 and 33◦C. During boreal winter, REMO
temperatures are about 3◦C lower than observed. The negative deviation is the highest
in December and January in the interior of West Africa (e.g.,6◦C at Natitingou).

REMO simulates the first annual temperature maximum in boreal spring about one
month later and its value is about 2-3◦C higher in REMO than at the stations. The
high temperature excess of up to 3◦C at Cotonou and Yaoundé during February-April is
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particularly remarkable (not shown). This is probably related to the delay in the onset of
the West African summer monsoon in REMO (see Sec.4.1).

During the summer monsoon temperatures in REMO are up to 3◦C higher than
measurements in the Sudanian and Sahelian zones. This is linked to underrepresented
rainfall amounts (cp. Sec.4.1), which lead to a reduced evapotranspiration and hence to
a diminished evaporative heat loss during the rainy season.By contrast, the second and
minor annual temperature maximum is simulated at about the right strength and time
of the year. At the end of the rainy season (October/November) the difference between
REMO and observations becomes increasingly negative untilthe turn of the year.

In summary, REMO overestimates the amplitude of the seasonal temperature cycle.
Temperatures are too low (high) during the dry (rainy) season.

4.5 REMO temperatures vs. ERA40

In this section, REMO temperatures are validated against ERA40 for the whole REMO
domain. As described (App.C.4), the comparison is carried out by thepotential temper-
ature at 850 hPa(θ850).
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As already noted, REMO overestimates the amplitude of the seasonal cycle in West
Africa. The same holds for other parts of Africa, such as EastAfrica and Central Africa
(Fig.4.6). The most pronounced negativeθ850 deviations (up to 4◦C) occur during bo-
real winter and are located above the West African subcontinent (Fig.4.6a). By con-
trast, higher temperatures are simulated in an expanded zonal strip. Until August this
strip covers the whole continent in east-west direction andis pushed towards the Sa-
hara (Fig.4.6b & c). Again, θ850 values are 4◦C higher in certain parts in REMO than
in ERA40, and the temperature excess is pronounced along theSudanian and Sahelian
zone. About the same is true for the Ethiopian Highlands. Also highland areas of Eastern
Kenya reveal higherθ850 (Fig.4.6b & c).

This analysis confirms the findings from station time series (Sec.4.4). Also the
ERA40 data reveals an overrepresented amplitude of the REMOseasonal temperature
cycle. REMO temperatures have therefore been bias-corrected (App.C.4) to ensure a
realistic data input for malaria simulations.



5 Malaria modelling

The modelling of malaria transmission is a prerequisite forrisk assessment of malaria
in Africa. In this study, three different malaria models areused to dissect the uncer-
tainty of malaria models. In the first step, the LMM is appliedto precipitation and tem-
perature data from REMO (Sec.5.1). This model produces realistic transmission rates
(cp. Sec.6). However, the LMM suffers, for example, from the fact that it does not ac-
count for the immunity status of humans. On this account, theLMM data is subsequently
used to run the Garki model (Sec.5.2), which includes malaria immunity as well as the
age-distribution ofPR. Fully independent of this model chain are results of the MSM
(Sec.5.3), which enable the analysis of the malaria seasonality under climate conditions.
Common to all these models is the fact that they do not accountfor non-climatic malaria
factors. This means that besides LUC changes, which are included in REMO data, the
present study only accounts for climatic factors affectingthe spread of malaria.

5.1 Liverpool Malaria Model (LMM)

The LMM is a weather-driven, mathematical-biological model of malaria parasite dy-
namics and was originally formulated byHoshen and Morse(2004). In the present
study, this dynamical malaria model is applied for the projection of the spread of malaria
under future climate conditions. The LMM is based on full dynamics of the host-vector-
parasite triangle (Hoshen and Morse 2004). Different developments of the malaria par-
asite in the mosquito vector as well as the human host are included in independent sub-
models. The LMM simulates the spread of malaria at a daily resolution usingdaily mean
temperature(T) and10-day accumulated precipitation(RRΣ10d). For a detailed mathe-
matical formulation of theoriginal LMM (LMM o) version it is referred toHoshen and
Morse(2004). However, a detailed justification of the setting of various model parame-
ters is missing in their study. For this reason, the results of an extensive literature survey
with regard to entomological and parasitological malaria data is presented here. As a
consequence of this review, certain parameter ranges are specified for various model
variables (cp. Tab.5.1). The possible range of values provide valuable information for
the development of anew LMM (LMM n) setting (this Sec. and Sec.6). Moreover, the
validation of the LMM at locations in West Africa and Cameroon reveals some basic
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Fig. 5.1: Illustration of various components of the new LMM version. Blue and red arrows depict the
rainfall and temperature dependence of various parts of themodel, respectively. The fuzzification
of the egg deposition as well as the immature mosquito survival is displayed by pink arrows. Note
that abbreviations of model parameters are explained in Tab.5.1.

inadequacies of the original formulation of the model (cf. Sec.6). On that account, the
simulation of some key processes is changed in the LMMn in order to reflect a more
physical relationship. Furthermore, future improvementsof the model are proposed,
provided that additional knowledge is available.

5.1.1 Gonotrophic cycle
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Fig. 5.2: The effect of temperature on the duration of the gonotrophiccycle (ng) with regard to dry and
humid weather conditions. Also illustrated is the impact oftemperature on the sporogonic cycle
length (ns) relative to temperature thresholds of 16 and 18◦C.
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Tab. 5.1: LMM model parameters and their original (Hoshen and Morse 2004) and new settings. Columns: sym: symbol of the model parameter; parameter: name
of the parameter; unit: unit; valo: LMM o value; refo: LMM o reference; valn: LMM n value; refn: LMM n reference; Rsens: range of values used for the
sensitivity analysis; Rlit : literature values. Abbreviations: NU: not used; NA: not available.

sym parameter unit valo refo valn refn Rsens Rlit

DgH humid degree days of the gonotrophic
cycle

◦days 37.1 Detinova 1962 37.1 Detinova 1962 37.1 37.1

DgL dry degree days of the gonotrophic cy-
cle

◦days 65.4 Detinova 1962 65.4 Detinova 1962 65.4 65.4

TgH humidTg
◦C 7.7 Detinova 1962 7.7 Detinova 1962 7.7 7.7

TgL dry Tg
◦C 4.5 Detinova 1962 4.5 Detinova 1962 4.5 4.5

RR− 10-day accumulated precipitation
threshold

mm 10 NA 10 NA 10 NA

RR• rainfall laying multiplier - 1.0 NA NU NA NA NA
#Ep number of produced eggs per female

mosquito
- NU NU 120 Tab.D.7 50-200 5-290

#Eo number of oviposited eggs per female
mosquito

- NU NU Eq.5.3 NA see S/U2 NA

U1 lower threshold of unsuitable rainfall
conditions (fuzzy distribution model)

mm NU NU 0 Craig et al. 1999 0 0

S most suitable rainfall condition (fuzzy
distribution model)

mm NU NU 10 NA 5-50 NA

U2 upper threshold of unsuitable rainfall
conditions (fuzzy distribution model)

mm NU NU 500 NA 50-1000 NA

CAP cap on the number of fertile mosquitoes - 10,000 NA 400 NA 0-1000 NA
MMA mosquito mature age days 15 Jepson et al. 1947 12 Tabs.D.8& D.9 10-20 11.2-30
ηd,¬RR rainfall independent daily immature

mosquito survival
% NU NU 82.5 Tab.D.8 50.0-100.0 52.7-99.9

ηd daily immature mosquito survival % Eq.5.5 NA Eq.5.6 NA - 52.7-89.9
to be continued
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Tab. 5.1 – continued
sym parameter unit valo refo valn refn Rsens Rlit

pd daily mosquito survival % Martens I Martens 1997 Martens II Martens 1997 Martens II Sec.5.1.5,
Tab.D.10

pd↓ dry season mosquito survival probabil-
ity shift off

% NU NU -10 NA -20-0 Sec.5.1.5,
Tab.D.10

Ds degree-days of the sporogonic cycle ◦days 111.0 Detinova 1962 111.0 Nikolaev 1935 111.0 111.0-204.4
Ts sporogonic temperature threshold ◦C 18 Detinova 1962 16 Detinova 1962 18 14.2-19.0
a human blood index % 50 NA 80 Tabs.5.2& D.14 80 0-100
b mosquito-to-human transmission effi-

ciency
% 50 NA 30 Tab.D.13 30 1-50

ca→c adult-to-child conversion rate - NU NU 0.5 Carnevale et al.
1978; Port et al.

1980

0.5 0.28-0.70

HIA human infectious age days 14 NA 20 Tab.D.15 20 12-30
r daily human recovery rate day−1 0.0284 NA 0.0050 e.g.Macdonald

and Göckel 1964
0.0010-0.0400 0.0015-

0.0385
GF fraction of gametocyte carriers % NU NU 50 Tab.D.11 50 10-70
c human-to-mosquito transmission effi-

ciency
% 50 NA 20 Tab.D.12 20 0-37.9

tr im trickle of the number of added infec-
tious mosquitoes

- 1.01 NA 1.01 NA 1.01 NA



5.1 LIVERPOOL MALARIA MODEL (LMM) 73

The model first simulates the gonotrophic cycle, that is the egg development within
female mosquitoes (cp. Sec.2.6.1). Theduration of the gonotrophic cycle(ng) is temper-
ature dependent and starts at thegonotrophic temperature threshold(Tg), which relies on
humidity conditions (Detinova 1962). Since humidity is mostly reliant on precipitation
the10-day accumulated precipitation threshold(RR−) distinguishes between dry and hu-
mid weather conditions (variablesTgL andTgH in Tab.5.1for dry and humid conditions,
respectively). The LMM uses thedegree-dayconcept (cp. Glossary) and calculates the
daily progress of egg development within female mosquitoes. The gonotrophic cycle
ends in the model when the daily sum of the temperature difference (T −Tg) reaches the
degree-days of the gonotrophic cycle(Dg; variablesDgL andDgH for dry and humid con-
ditions, respectively).Shlenova(1938) performed experiments on the duration of blood
digestion and ovarian development inAn. maculipennis. Various temperature and hu-
midity combinations were used under controlled conditions. Detinova(1962) analysed
this data set and found a threshold temperature of 4.5, 9.9, and 7.7◦C with regard to rela-
tive humidities of 30-40, 70-80, and 90-100%, respectively. The data also reveals values
for Dg of 65.4, 36.5, and 37.1◦days at the aforementioned humidities. Due to the model
construction and sinceAnophelesmosquitoes prefer to feed during night time (e.g.,Boyd
1949) one day is added tong (Eq.5.1). For reproduction ofAnopheles, atmospheric con-
ditions with temperatures above 20◦C are ideal. At relatively low temperatures a small
rise in temperature shortens the gonotrophic cycle significantly (cp. Fig5.2). At the end
of the gonotrophic cycle mosquitoes finally oviposit at suitable breeding sites and start a
new gonotrophic cycle.

ng = 1+
Dg

T −Tg
(5.1)

5.1.2 Egg deposition

Realistic simulations of the size of the mosquito population are a prerequisite for the
simulation of malaria transmission between mosquitoes andhumans. Egg deposition is
dependent on open water bodies that are mostly filled by precipitation events. However,
an accurate simulation of open water bodies is infeasible inthe present study. In the
LMM o version, the process of egg deposition has been simplified. The oviposition rate
is roughly assumed to be proportional to both the number of ovipositing mosquitoes and
to RRΣ10d. The proportionality is the so-calledrainfall laying multiplier (RR•), which
couplesRRΣ10d with the oviposition of female mosquitoes. It therefore ultimately deter-
mines the size of the mosquito population. As a result, the simulations of the LMMo are
too sensitive to rainfall conditions in comparison with field observations (cp. Sec.6.3).
Note also that in constant mosquito habitats such as permanent ponds and rice-fields
(cp. Dolo et al. 2004; Koudou et al. 2005) rainfall is not a limiting factor of malaria
(Hoshen and Morse 2004).
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Measurements show that thenumber of produced eggs per female mosquito(#Ep;
i.e., the number of eggs/mature oocytes that are found by dissection and/or oviposition
of females) depends on the body size of female mosquitoes (Takken et al. 1998b) as well
as on the age of females (Lyimo and Takken 1993). In general, #Ep ranges between 5 and
290 eggs (Lyimo and Takken 1993; Hogg et al. 1996; Takken et al. 1998b; see Tab.D.7).
However, due to environmental conditions, not all producedeggs will be (successfully)
oviposited. Note that only the last fact is included in the LMMo version since thenumber
of oviposited eggs per female mosquito(#Eo) depends only onRRΣ10d. By contrast, the
LMM n version also takes into account a realistic number of eggs per Anophelesfemale
(i.e., accounted by #Ep).

The availability of suitable mosquito habitats is not a simple linear function of rain-
fall (Shaman and Day 2005). Certain rainfall regimes will be most suitable and prob-
ably no more breeding sites are provided with increasing rainfall amounts. Various
studies have noted that breeding places are washed out by strong rainfall events (e.g.,
Gimnig et al. 2001; Drakeley et al. 2005; Shaman and Day 2005). In fact, rainfall sig-
nificantly affects larvae by flushing them out of their aquatic habitat and killing them
(Paaijmans et al. 2007). For these reasons, the LMMn uses a simple fuzzy distribution
model (cp.Craig et al. 1999), which hasRRΣ10d as input. The general concept is the fol-
lowing: (i) no or a small amount of eggs are oviposited duringdry conditions; (ii) more
moist conditions lead to a higher proportion of deposited eggs; and (iii) breeding places
are washed out by excessive rainfall. The fuzzification therefore differentiates between
dry unsuitable conditions(thresholdU1), amost suitable condition(S), and againunsuit-
able conditions for very high rainfall(thresholdU2). Obviously,U1 is set to zero since
female mosquitoes are not able to produce offspring withoutwater supply. In contrast,
even the occurrence of low precipitation values might causestanding water enabling
breeding. This fuzzy distribution model might reflect a morephysical relationship of the
egg laying process than the construction withRR• of the LMMo.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fu
z
z
y
 s

u
it
a

b
ili

ty

0 2 4 6 8 10 100 200 300 400 500 600 700 800 900 1000

10-day accumulated precipitation (RRΣ10d) [mm]

Fig. 5.3: Illustration of the fuzzy function with regard of the influence of RRΣ10d on #Eo as well asηd

(cp. Sec.5.1.4). The green vertical line at 10 mm (=S) depicts the most suitable rainfall con-
ditions and separates different scales of the abscissa. Pink and blue lines depict two different
settings of the fuzzy distribution model. According to these adjustments rainfall conditions are
unsuitable forRRΣ10d values of 0 mm (=U1) and above of 500 or 1000 mm (=U2), respectively.
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The fuzzy distribution model computes fractions between zero (conditions unsuit-
able,U1 andU2) and one (condition most suitable,S). Thefuzzy suitability( f ) of RRΣ10d

is computed by means of a sigmoidal fuzzy membership curve (see also Fig.5.3):

f (RRΣ10d) =



























1−cos2(RRΣ10d−U1
S−U1

π
2), if U1 < RRΣ10d < S

cos2(RRΣ10d−S
U2−S

π
2), if S< RRΣ10d < U2

0, else

(5.2)

The final #Eo, which are included in the immature mosquito population in the model,
is simply determined by multiplication of #Ep with the respective value of the fuzzy
function (Eq.5.2), that is:

#Eo = #Ep · f (RRΣ10d) (5.3)

Due to the protective effect of houses or usage of mosquito nets only a limited num-
ber of mosquitoes are able to contact humans. Humans therefore can only be exposed
to a certain amount of biting mosquitoes. The availability of natural resources also has
an impact on the growth of the mosquito population. Due to thelimited flight range of
mosquitoes (e.g.,Gillies 1961) only a limited number of breeding sites are available for
Anophelesfemales. Also, under optimal hydrological conditions for mosquito breeding,
places with standing water will be confined. Provided that there are a large number of
fertile mosquitoes larval densities will increase under such circumstances and will hence
produce higher larval mortalities (cp.Lyimo et al. 1992; Schneider et al. 2000; Gimnig
et al. 2002; Munga et al. 2006). Takken et al.(1998b) showed that high larval densities
lead to higher mortality and slower gonotrophic development of adult mosquitoes due to
reduced body sizes and therefore small energy resources.

All aforementioned environmental and physical causes are comprised in another
model variable limiting the number of fertile mosquitoes. The cap on the number of
fertile mosquitoes(CAP) simply restricts the size of the mosquito population to a certain
level. Without the application ofCAP the growth of the mosquito population is often
unrealistically strong (cp. Sec.6.2). Under favourable rainfall conditions thenumber of
female mosquitoes(nf ) increases almost exponentially in time (nf (t) = exp(α t); α =

const., time: t). A long time period of suitable weather conditions (α > 1) therefore
leads in some cases to very high mosquito numbers. Note that the size of the number
of fertile mosquitoes is also limited in the LMMo, whereCAP has been set to 10,000.
However,CAPwill be adjusted to a much lower value in the LMMn (see Sec.6).
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5.1.3 Mosquito Mature Age (MMA)

Immature mosquitoes undergo egg, larval, and pupal stages until they mature to adult
mosquitoes. In the LMMo, theMosquito Mature Age(MMA; i.e., the time between the
egg stage and adult emergence) is fixed at 15 days. However, field studies in Kenya and
Mali showed that on average the time between egg deposition and eclosion is about
12 days (cp.Service 1971, 1973, 1977b; Edillo et al. 2004; Mwangangi et al. 2006;
Tab.D.9). On this accountMMA is reduced from 15 to 12 days in the LMMn.

Development of these aquatic stages, however, depends onwater temperature(Tw).
In Kenya,Munga et al.(2006) found that the larval-to-pupal development time depends
on the land cover type, which affectsTw. The mosquito pupation rate in farmland habi-
tats is significantly greater than in swamp and forest habitats, and development times
are significantly shorter (see Tab.D.8). Also An. sergentiishowed a faster development
with increasedTw in laboratory. Development from larvae to adults shortens from about
29 days at 17◦C to about 11 days at 34◦C (Beier et al. 1987, their Tab. 2). This tem-
perature dependence was confirmed in maturation chambers under laboratory conditions
(Bayoh and Lindsay 2003). No An. gambiae s.s.adults emerged below (above)Tw of
18 (32)◦C. Between 18 and 32◦C MMA was the shortest (longest) with 9.8 (23.3) days
at aTw of 28 (18)◦C. Based on the obtained data,Bayoh and Lindsay(2003) computed a
larval development rate(R) againstTw:

R(Tw) = −0.050+0.005Tw−2.139 10−16exp(Tw)−281,357.656exp(−Tw) (5.4)

Similar to the advance in the gonotrophic/sporogonic cycle(Secs.5.1.1& 5.1.7) the
simulation of immature mosquitoes could be based onTw. However, this would require
information onTw, which generally depends on the solar insolation as well as shading of
water bodies (cp.Depinay et al. 2004). Based on such knowledge a future LMM version
could account for the temperature dependence ofMMA.

5.1.4 Survival of immature mosquitoes

The life cycle of mosquitoes comprises the egg, larval, pupal, and adult stages. The egg,
larval, and pupal stages are entirely aquatic and thereforemostly depend on weather
conditions. Besides climatic conditions, competition dueto overcrowding, water qual-
ity, food supply, cannibalism, predators, parasites, as well as pathogens are limiting fac-
tors for aquatic stages of mosquitoes (e.g.,Service 1973; Koenraadt and Takken 2003;
Bayoh and Lindsay 2004; Munga et al. 2006; Paaijmans et al. 2007). In the LMMo, the
daily survival probability of immature mosquitoes(ηd) is only subject toRRΣ10d and is
calculated as follows:



5.1 LIVERPOOL MALARIA MODEL (LMM) 77

ηd =
1+RRΣ10d

2+RRΣ10d
(5.5)

This leads to the fact that even under small precipitation amounts a large fraction of
larvae outlives the maturation period of 15 days (i.e.,MMA of the LMMo). For exam-
ple, 27.1 (49.8)% outlive the aquatic stages at a constant value RRΣ10d of 10 (20) mm.
However, age distributions from so-calledvertical life tablesreveal that a much smaller
fraction (2-15%) of deposited eggs emerge to adults (cp.Service 1971, 1973, 1977b;
Weidhaas et al. 1974; Aniedu et al. 1993; Mwangangi et al. 2006; Tab.D.9). By con-
trast, most laboratory studies prove by means of so-calledhorizontal life tablesthat under
controlled conditions more than 90% of eggs, larvae, and pupae survive one day (e.g.,
Lyimo et al. 1992; Schneider et al. 2000; Gimnig et al. 2002; Edillo et al. 2004; Munga
et al. 2006; Tab.D.8). The higher laboratory survival is because under controlled condi-
tions various natural factors are eliminated. In such experiments, immature mosquitoes
are generally only exposed to different temperatures, larval densities, food supply, and
water qualities (see Tab.D.8). Note, these studies usually do not account for effects of
predation, parasites, and pathogens, but cannibalism is included.

In the LMMn, the calculation of the survival of immature mosquitoes is separated
into two parts. In a first step, it is assumed that survival is independent of hydro-
logical conditions. Therainfall independent rainfall survival probability of immature
mosquitoes(ηd,¬RR) is set to 82.5%. This is due to the fact that in general less than
10% of immature mosquitoes reach the adult stage under field conditions (Tab.D.9) and
becauseMMA is fixed to twelve days (0.82512 ≈ 0.099). In a second step, the depen-
dence to the hydrological stage is included. Under fully dryconditions most breeding
habitats will dry up. More humid conditions lead to more suitable breeding places and
ηd will therefore increase. However, precipitation events aswell as wind gusts result in
the flushing of larvae out of, for example, puddles (Paaijmans et al. 2007). Moreover,
excessive rainfall destroys larval habitats (cp.Haines and Fuchs 1991; Hay et al. 2000a;
Drakeley et al. 2005). For example,Charlwood et al.(1995) observed a detrimental ef-
fect on mosquito numbers due to daily heavy rainfall. Flash flooding resulted in a fall
of new recruits as the water table rose. These facts are againconsidered by means of
the fuzzy distribution model (Eq.5.2). Note that, for simplicity, the same parameters are
used as for the fuzzification of the egg deposition (U1, S, andU2; Tab.5.1). Finally, the
survival probability of immature mosquitoes is realised bymultiplication ofηd,¬RRwith
the fuzzy value:

ηd = ηd,¬RR· f (RRΣ10d) (5.6)

As a consequence, in the LMMn ηd can only reach 82.5% and no more than 10% of
oviposited eggs emerge to adults (i.e., about 5.4% and 0.7% for f = 0.95 and f = 0.8,
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respectively). This modelling again reflects a more physical relationship than the original
ηd equation (see Eq.5.5). However, not considered is the fact that mosquito larvae can
benefit from drought conditions such as when streams dry up (e.g., Wijesundera 1988;
Reiter 2000; Shaman and Day 2007).

The survival of immature mosquitoes is also temperature dependent, which has
been shown by laboratory experiments forAn. sergentiiand An. gambiae s.s.(Beier
et al. 1987; Bayoh and Lindsay 2003, 2004). No egg hatching has been observed
for An. sergentiiat 34◦C (Beier et al. 1987). For An. gambiae s.s.survival is with
72.7 (20.7)% the highest (lowest) atTw of 30 (24)◦C. However, as already mentioned
(Sec.5.1.3) at present the dependence ofηd on Tw cannot be considered in the LMMn
version.

5.1.5 Survival probability of adult mosquitoes (pd)

The age structure ofAnophelesfemales and survival rate exerts a strong influence on
the reproduction rate of the mosquito population and the spread of the malaria para-
site. Hence, vector survivorship is of paramount ecological importance for the distri-
bution of malaria (e.g.,Service 1976; Clements and Paterson 1981; Lee et al. 2001;
McKenzie et al. 2002; Scholte et al. 2003). The daily survival probability of female
mosquitoes(pd) depends on characteristics of mosquito species, activities of individu-
als, climate, the incidence of parasites, predators (Boyd 1949), and the age of mosquitoes
(e.g.,Samarawickrema 1967). Most of these factors are elusive and are only indirectly
taken into account in malaria models. The LMM only considersthe weather impact on
vector survivorship. With regard to climate the survival isaffected by temperature and
the relative humidity (e.g.,Macdonald 1956; Hay et al. 1996). At temperatures of about
5◦C or even lower mosquitoes seem to disappear (Craig et al. 1999). The entomologi-
cal study ofKirby and Lindsay(2004) clearly showed that extremely high temperatures
above 40◦C are often fatal to mosquitoes. The LMM and most other malaria models
act on the assumption that in nature few individuals die of senescence and therefore use
an exponential model of mortality. This is justifiable when most mosquitoes are killed
before they reach old ages (Clements and Paterson 1981). However, entomological stud-
ies showed that the mortality rate increases with age (e.g.,Nájera 1974; Clements and
Paterson 1981; Styler et al. 2007).

An accurate determination of the vector survivorship and its temperature depen-
dence in the field is a matter of great difficulty (Garrett-Jones and Shidrawi 1969).
Mosquito survival probabilities are usually estimated by field studies at selected loca-
tions (cp. Fig.5.4; Tab.D.10). In some cases, meteorological data is presented with
regard to the study period, at best in terms of mean temperatures or distinguishing be-
tween dry and rainy periods. Estimates are determined by inaccurate techniques, these
are: captures during a cessation of recruitment (Charlwood et al. 1995), Mark-Release
Recaptures(MRR), the ratio of different stages of ovarioles, rates of increase in infec-
tion, parousrates, and the observation of mortality in mosquitoes maintained in labora-
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daily mosquito survival probabilty (pd)
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Fig. 5.4: Number of references with regard topd values fragmented into intervals of 5% (bars). Observa-
tions are partially allocated to humid and dry weather conditions as well as keeping in cages or
laboratories. For three ways ofpd determination, the number of references is displayed addition-
ally (lines), these include parous rates (magenta), MRR (turquoise), and immediate and delayed
sporozoite rates (light green). Further data and further information are presented in Tab.D.10.

tory (Kiszewski et al. 2004). For example, the proportion parous depends not only onpd

but also on output of breeding places. At start of rainy seasons parous rates and thuspd

values drop due to the great abundance of youngnulliparousfemales. By contrast, dur-
ing dry seasons thepd estimate increases as a consequence of low ‘birth rates’ (Nájera
1974). Moreover,Kiszewski et al.(2004) found that mark-recaptures reveal the highest
mortalities, probably due to damages of mosquitoes when they are first captured. By
contrast, the survival of laboratory-reared mosquitoes exceeds those derived in natural
settings. This is not surprising since predators and other hazards of the wild take a toll
of mosquito life (Clements and Paterson 1981). As previously discussed, the data sug-
gests a higher survival in rainy than in dry seasons (Fig.5.4). Only few studies reveal
probabilities lower than 60%. Most studies derived mosquito survival probabilities of
80-90%. This finding is in agreement with the study ofKiszewski et al.(2004); they
applied a median daily survival value of 84.6%.

Various mosquito survival probability schemes (pd-scheme) were developed with
regard to the modelling of malaria. In the LMM, four different pd-schemes are im-
plemented, these are: the so-calledLindsay-Birley, the Martens I, the Martens II, and
theBayoh scheme(Fig.5.5). Initially, the LMM was set by the Lindsay-Birley scheme
(Hoshen and Morse 2004, 2005). Despite the fact that it is not clear if vector survival
per gonotrophic cycle is constant (Hoshen and Morse 2004), Lindsay and Birley(1996)
assume a constant mosquito survival of 50%, which furthermore separates for humid
and dry weather conditions. However, thispd-scheme is unrealistic at very high tem-
peratures. Experiments performed byKirby and Lindsay(2004) showed that 50% of
An. arabiensisand An. gambiae s.s.are killed at 40◦C within at least two hours. In
contrast, above 40◦C the Lindsay-Birley scheme shows unrealistic high survivorships
(cp. Fig.5.5).
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There is only limited information available in terms of the dependence of mosquito
survival on temperatures. Literature (e.g.,Craig et al. 1999; Hay et al. 2000a) hence
refers to studies published by Martens (Martens et al. 1995a,b; Martens 1997). Martens
(1997) states (see alsoMartens et al. 1995a,b): ‘Relying on data reported byBoyd
(1949), Horsfall (1955), and Clements and Paterson(1981), we assume a daily sur-
vival probability of 0.82, 0.90, and 0.04 at temperatures of9, 20, and 40◦C, respectively,
expressed as:

pd = exp(
−1

−4.4+1.31T −0.03T2).′ (5.7)

The so-called Martens I scheme was obviously generated as a polynomial connecting
the quoted three data points in theT-pd-diagram (Fig.5.5) and is based on the following
equation:

pd = −0.0016T2 +0.054T +0.45 (5.8)

The formula (Eq.5.7) provided byMartens(1997) is not considered in the LMMo.
However, in the LMMn this formula is introduced and forms the so-called Martens II
scheme. The main difference between the Martens I and II schemes is the more smoothly
decrease ofpd at temperatures above 25◦C in the Martens I scheme.
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Fig. 5.5: Illustration of different schemes regarding the daily mosquito survival (pd) against daily mean
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Taking into account the uncertainty of the so far introducedpd-schemes, further data
is needed.Bayoh (2001) observed survival and mortality rates ofAn. gambiae s.s.in
environmental chambers at combinations of temperatures from 0-45◦C at 5◦C inter-
vals and relative humidity’s of 40%, 60%, 80%, and 100%. Using data of these ex-
periments and assuming an exponential model of mortality (cp. the discussion above)
it is possible to derivepd-values. The identified probabilities did not vary consider-
ably with regard to different humidities. For this reason, the probabilities were aver-
aged at each temperature. Finally, the average was used to define a polynom regarding
An. gambiae s.s.survivorship in laboratory, the so-called Bayoh scheme (Fig.5.5):

pd = −2.123 10−7 T5 +1.951 10−5 T4−6.394 10−4 T3

+8.21710−3 T2−1.865 10−2 T +7.238 10−1 (5.9)

As previously discussed, vector survival is higher in captivity than in the wild and
hencepd is generally higher in the Bayoh scheme than in both Martens schemes. It is
interesting to note that the Bayoh scheme reveals only a slight decrease ofpd between 25
and 35◦C. For this reason, the Bayoh scheme agrees better with the Martens II than with
the Martens I scheme. On account of these facts the Martens IIscheme is utilised for the
LMM n version. However, all presentedpd-schemes are not fully satisfying. Therefore,
the incorporation of upcoming new information is essentialfor future refinements of the
LMM.

Various studies point out the importance of the atmospherichumidity on the
longevity of adult vectors (e.g.,Kovats and Haines 1995; Martens et al. 1995b; Lind-
say and Birley 1996; Reiter 2001; Sachs and Malaney 2002; van Lieshout et al. 2004;
see Sec.2.6.1). Relative humidities above 60% seem to be preferred by mostvector
species. However, it is noted that the crucial factor for thephysiology ofAnopheles
females might be the absolute saturation deficit rather thanrelative humidity (Werns-
dorfer and McGregor 1988). The usual dryness of the atmosphere in arid or semi-arid
areas such as the Sahel militates against longevity of mosquitoes and so against malaria
transmission (cp.Macdonald 1957). In Niger, for example,Anophelespopulations seem
to drop steeply around October, when shifts in prevailing winds drastically reduce hu-
midity. Favourable microclimates become gradually scarcer as the Harmattan condi-
tions establish and the dry season progresses (A. Kiszewsky, personal communication,
2006). In El Salvador,Weidhaas et al.(1974) calculated lower adult survival rates for
An. albimanusduring the dry than during the rainy season. Daily survival was 65-70%
and 73-91%, respectively. However, the authors note that occurrence of breeding out-
side the study area might be in part responsible for the high rainy season survival. On
account of the possible influence of humidity on vector survival ashift off of the dry sea-
son mosquito survival probability(pd↓) is introduced in the LMMn version. To simplify
matters, the dry season survival (i.e., the application ofpd↓) is again steered viaRR−
(cp. Sec5.1.1).
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5.1.6 Dry season survival of the mosquito population

Existing pd-schemes (Sec.5.1.5) would lead to an extinction of theAnophelespopula-
tion in the LMM and thus to the eradication of malaria. However, observations showed
that even in the Sahelian zone a sizeable mosquito population survives through the dry
season (e.g.,Touré et al. 1998). Various processes allow mosquitoes to survive through
the long dry season. At several West African villages a rapidrecolonisation by few immi-
grants from dry season refugia was observed (Taylor et al. 1993; Fontenille et al. 1997a;
Lindsay et al. 1998). Breeding sites in arid regions are highly localised at permanent
springs, open wells, along rivers, or at irrigation sites (Binka et al. 1994; Julvez et al.
1997a; Charlwood et al. 2000; Coetzee 2004). In absence of suitable water for breed-
ing, mosquitoes can survive several months in a state of lowered physiological activity
(Omer and Cloudsley-Thompson 1970), or they go into hibernation/aestivation (Garrett-
Jones and Shidrawi 1969; Lindsay et al. 1998; Boyd 1949; Lindsay and Birley 1996).
At rural sites in eastern Sudan vector numbers increased rapidly shortly after the onset
of rains (Hamad et al. 2002) probably due to a retardation of the ovarian cycle (Omer
and Cloudsley-Thompson 1970; Boyd 1949). In some circumstances, eggs can survive
for weeks without water (Beier et al. 1990). Mosquitoes often also feed during the dry
season (Omer and Cloudsley-Thompson 1970; Hamad et al. 2002; Diuk-Wasser et al.
2005). In many cases, the presence of a complementary vector is important. For exam-
ple, at the coast of Benin and NigeriaAn. melasandAn. mouchetimaintain transmission
during the dry season, when the density of the wet season vector An. gambiae s.s.drops
(Velema et al. 1991; Awolola et al. 2002).

In the LMM, such processes are represented in a simple way. Inthe numerical set-
ting, the mosquito population and malaria infection survive by a continuous influx of
new infected mosquitoes. Every ten days an infected individual, that is the so-called
trickle of the number of added infectious mosquitoes(tr im), is added to the mosquito
population. This trickle therefore represents breeding during the dry season, the hiber-
nation/aestivation status, or the recolonisation of immigrant individuals from elsewhere.
Note, that such a small infected mosquito population is not able to sustain a considerable
level of malaria. Substantial malaria transmission is onlypossible when there is suffi-
cient rain and when temperatures are favourable. However, in case ofEIR, HBR, as well
asnf the trickle alone leads to comparatively high values in relatively dry regions. For
some areas these levels are as high as measurements in areas of low malaria transmission,
even if breeding is not taken into account (i.e., when #Ep is set to 0.0). In order to get
only ‘truly’ simulated figures, the LMM performs two runs every time. Firstly, the model
is run by the standard setting of the LMMn version (cp. Tab.5.1). Subsequently, #Ep is
set to 0.0 and breeding due to rainfall is therefore suppressed in the second run. Finally,
values ofEIR, HBR, andnf of the second run are subtracted from that of the standard
run. In this way, artificial bites and mosquito numbers, which are introduced bytr im are
fully eliminated and LMM simulations are comparable to fieldobservations. It is hence
possible to divide between malaria and non-malaria areas and to define malaria seasons.
Due to the non-linearity of the malaria prevalencePRvalues cannot be corrected.
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5.1.7 Sporogonic cycle

The sporogonic cycle or extrinsic incubation denotes the development of the malaria
parasite within the mosquito vector. The cycle starts when gametocytes are ingested by
biting Anophelesand ends when sporozoites reach the salivary glands. Development
of sporozoites is temperature dependent (e.g.,Detinova 1962; Snow et al. 1997). The
minimum temperature for development of malaria parasites varies experimentally and
also among mosquito species (Molineaux 1988), which is mainly due to the applied
line-fitting methods (Ikemoto and Takai 2000). For this reason, there is an uncertainty
about the value of thesporogonic temperature threshold(Ts). Lindsay and Birley(1996)
concluded that parasite development ceases below temperatures between 14.5 and 16◦C
for P. vivaxand between 16 and 19◦C for P. falciparum. On that account it is not sur-
prising thatTs data given in literature is inconsistent. Various publications agree thatTs

is located within a certain range (e.g.,Kovats and Haines 1995; Martens et al. 1995a,b;
Lindsay and Birley 1996; Epstein et al. 1998). On the other hand an accurate tempera-
ture threshold of 18◦C is referred to in various publications (e.g.,Bouma et al. 1994; Patz
and Lindsay 1999; Githeko et al. 2000; Patz and Reisen 2001; Hoshen and Morse 2004),
whereas others quote a value of 16◦C or even lower (e.g.,Patz et al. 1996; Charlwood
et al. 1997; Martens 1997; Craig et al. 1999; Martens 1999; Martens et al. 1999; Snow
et al. 1999a; Hay et al. 2000a; Ikemoto and Takai 2000; Reiter 2000; Sachs and Malaney
2002; Hay et al. 2004; Kiszewski et al. 2004).

The course of infection in the mosquito vector is again modelled via the degree-day
concept. Nikolaev (1935) showed that the degree-days required for the maturation of
sporozoites in anAn. maculipennispopulation from Russia are 105 forP. vivax, 111 for
P. falciparumand 144 forP. malariae. Note that the duration of sporogony is dependent
fundamentally on enzyme kinetics (Sharpe and DeMichele 1977) and thus it is widely
assumed to be relatively independent of vector species (cp.Guerra et al. 2008). However,
due to an erroneous line-fitting method (seeIkemoto and Takai 2000) the real value of
thedegree days of the sporogonic cycle(Ds) might significantly differ. Theduration of
the sporogonic cycle(ns) is computed as:

ns =
Ds

T −Ts
(5.10)

The setting of the threshold is particularly important whenmalaria is modelled in
areas with temperatures in the range ofTs (e.g., in highlands of East Africa). For tem-
peratures well aboveTs the length of the sporogonic cycle much less depends upon the
setting of the minimum temperature (cp. Fig.5.2). Regarding the sporogonic cycle the
LMM o was set by a threshold of 18◦C (Hoshen and Morse 2004). However, modelled
temperatures or data from weather station are unlikely to record conditions in microhab-
itats where vectors spend most of their time (Hay et al. 1996; Kovats et al. 2001). For ex-
ample, indoor temperatures in the Usambara mountains (northeast Tanzania) have found
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to be 2.6◦C higher than atmospheric temperatures (Bôdker 2000; Balls et al. 2004). By
resting in more climatically stable and warmer houses, vectors may avoid cold tempera-
tures and thus restrictions concerning the progress of parasite development (e.g.,Epstein
et al. 1998; Reiter 2001; Koenraadt et al. 2006). Therefore, altitude effects might be
partly compensated when mosquitoes stay in heated houses (Malakooti et al. 1998). For
this reason, the use of 16◦C as a temperature threshold for parasite development is de-
cided for the LMMn. Based on this setting the duration of the sporogonic cycle lasts
about 57, 12, and less than 10 days at temperatures of 18, 25, and 28◦C, respectively
(cp. Eq.5.10and Fig.5.2). This is comparable with field observations from Tanzania,
where the extrinsic period lasts 9-11 days at mean temperatures of 25-26◦C (Lines et al.
1991).

5.1.8 Human blood index (a)

The rate of malaria transmission directly depends on the degree of the host-vector-
pathogen contact.Anophelesmosquitoes with a high preference for human blood are
considered important vectors of malaria (e.g.,Muriu et al. 2008). This fact is expressed
in the so-calledhuman blood index(a) that is the proportion of blood meals of a mosquito
population obtained from man.

Assessment ofa is a difficult task as it depends on the feeding preference of each
species, accessibility of different potential hosts, as well as on the mosquito sampling
technique. The calculation ofa is most often performed by captures of indoor rest-
ing mosquitoes (endophilic females) excludingexophilic mosquitoes feeding on hu-
mans (Diatta et al. 1998). By contrast,a is best estimated by applying the unweighted
mean of a part-sample collected from human dwellings and onefrom other types of
resting-place (Garrett-Jones 1964). Most studies reveal that the most importantAnophe-
les species areanthropophilicthat is they prefer to take blood meals on humans (e.g.,
for a review cp.Garrett-Jones 1964; Kiszewski et al. 2004; Moffett et al. 2007). How-
ever, some species likeAn. arabiensistend to be morezoophilic than otherAnopheles
species. The preferred occurrence ofAn. arabiensisin drier areas such as the Sahel and
stronger abundance of cattle in such areas seems to lead to a higher zoophilic behaviour
of An. arabiensis. Anophelesare therefore adaptable to different environments and are
not likely to show the same behaviour throughout Africa (Diatta et al. 1998). There
are, for example, significant differences between values ofa of An. arabiensisbetween
East and West Africa (cp.Killeen et al. 2001). These facts underline the importance of
the availability of alternative hosts and environmental conditions on the influence ofa
(Martens 1997).

Kiszewski et al.(2004) andMoffett et al. (2007) presented median and mean val-
ues ofa from four and ten AfricanAnophelesvectors (cp. Tab.5.2; further data is pro-
vided in Tab.D.14), respectively. Major malaria vectors in Africa such asAn. arabiensis,
An. gambiae s.s., andAn. funestusshow fairly high values ofa. Except for the mean
value ofa of An. arabiensisall median and mean values of these vectors are consistently
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Tab. 5.2: Review of values ofa from ten AfricanAnophelesvectors as provided byKiszewski et al.
(2004) (superscript: k) andMoffett et al.(2007) (superscript: m). Columns: species: name of
the mosquito specie; med: median ofa; #k

obs: number of observations;a: meana; σ: standard
deviation ofa; #m

re f : number of references. Columns (ii)-(iii) are taken fromKiszewski et al.
(2004) and columns (iv)-(vi) are extracted fromMoffett et al.(2007).

species medk [%] #k
obs am [%] σm [%] #m

re f

An. arabiensis 87.1 32 52.6 24.1 21
An. coustani - - 15.7 1.9 2
An. funestus 98.0 30 84.4 19.1 12
An. gambiae s.s. 93.9 36 81.5 15.9 16
An. melas 69.0 6 57.6 26.9 3
An. merus - - 100.0 - 1
An. moucheti - - 93.1 8.0 3
An. nili - - 94.9 5.5 3
An. paludis - - - - 0
An. quadriannulatus - - 1.1 - 1

higher than 80% for these three vectors. For this reason, theLMM o value ofa of 50%
seems to be an underestimation. Due to the fact that theendophilyof major African
vectors probably was overestimated (cp.Vercruysse et al. 1983; Diatta et al. 1998) the
value for LMMn is approximated by 80%.

5.1.9 Mosquito-to-human transmission efficiency (b)

Not every biting infectious mosquito is able to pass malariainfection to humans. Un-
fortunately, themosquito-to-human transmission efficiency(b; i.e., the proportion of
sporozoite-positive mosquito bites infecting susceptible people; Tab.D.13) is a largely
undefined variable (Nájera 1974). For this reason, this factor was commonly ignored in
most malaria models (cp.Nedelman 1984). However, the proportion of actually infec-
tive Anophelinesis a crucial parameter in the epidemiology and simulation ofmalaria.

One infectious bite is generally thought to infect about half of immunologically
naive people and this level seems to decrease with the level of endemicity and is age
dependent (Filion et al. 2006). This transmission efficiency is a function of exposure
history, reflecting effects of immunity (Gu et al. 2003b). The study ofRickman et al.
(1990) showed that three (two) out of five non-immune subjects developed malaria par-
asitaemia after exposure to one (two) infected mosquito(es) (that meansb=33%). In
addition, a total of 44.1% of 68 experimentally infectedAn. gambiaeand 49.2% of 63
infectiousAn. stephensitransmitted sporozoites in vitro into a sucrose solution (Beier
et al. 1991). By contrast, entomological observations from infants revealed fairly lowb
values. For example,Pull and Grab(1974) estimated the value ofb as between 1.5 and
2.6%. Indeed, such studies generally ignore superinfection (Sec.2.4.3) and the fact that
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adults are bitten more often than children or infants (seePort et al. 1980; Sec.2.4.6).
Superinfection also explains the strong variation ofb in children in an urban area of
Senegal, where age-correctedHBR values were used for the analysis ofb (Vercruysse
et al. 1983). Low EIRvalues in March led to comparatively highb values of about 46%.
By contrast, stronger transmission in June resulted in a value ofb of only about 8%. In
conclusion, the value ofb seems to be generally lower than 50% - the original value of
the LMM - for most African populations. For this reason,b is approximated as 30% in
the LMMn version.

5.1.10 Human Infectious Age (HIA)

Transmission of the malaria parasite from humans to mosquitoes is made possible by
male and female gametocytes. The duration after infection until mature gametocytes
appear in blood is termed here as theHuman Infectious Age(HIA). The period in days
after that a human becomes infectious starting from the mosquito bite is longer than the
so-calledprepatent period(np; i.e., the time needed for the detection of asexual parasites
in blood after infection of humans). This is due to thetime needed for gametocytogenesis
(n♂♀; i.e., the time needed for production of male and female gametocytes), which is
also calledsequestration time(cp. Sec.2.4.1), as well as the finalmaturation period of
gametocytes(nm; meaning thatHIA = np+n♂♀ +nm).

Asexual parasites are usually detected by blood slides, which are examined under
microscopes. According to microscope detectionnp lasts one week or slightly longer
(e.g.,Collins and Jeffery 1999: eight days).Schneider et al. 2005compared the micro-
scope with theQuanTitative-Nucleic Acid Sequence-Based Amplification(QT-NASBA)
detection method. They found that microscope detection is delayed by one to two days
(np: 8.3 versus 6.0-7.0 days). This is in agreement with findingsof Murphy et al.(1989),
who cultured asexual parasites from blood taken 6.5-7.0 days after exposure. By con-
trast,Rickman et al. 1990found a prolongednp of 14.0-16.5 days from patients without
antimalarial immunity. Moreover, a study comparing the Panama, McLendon, and San-
tee Cooper strains ofP. falciparumrevealed meannp values of 10.3, 13.0 and 9.8 days,
respectively (Jeffery et al. 1959).

The duration for gametocytogenesis is derived in vitro or from the delay in vivo be-
tween the onset of symptoms (e.g., fever) or detection of asexual parasites and detection
of male and female gametocytes (Eichner et al. 2001). Values reported in literature gen-
erally (see cp. Tab.D.15) range between 7 and 15 days (Shute and Maryon 1951: about
ten days for non-immune subjects;Miller 1958: about twelve days for immune adults;
Hawking et al. 1971: nine to twelve days;Day et al. 1998: 7-15 days).Diebner et al.
(2000) andEichner et al.(2001) more recently estimated the sequestration time from
fitting a model to malaria therapy data. According to their studies the time needed for
transition of asexual blood stages ofP. falciparumto mature gametocytes amounts to
four to twelve days (mean 7.4 days). It is also shown that sequestration time depends on
presence of the parasite strain (geometric mean: 4.9 days for Santee Cooper strain (South
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Carolina, 1946); 6.2 days for El Limon strain (Panama, 1948); 8.7 days for McLendon
strain (South Carolina, 1940)).Eichner et al.(2001) concluded that in former literature
the time for sequestration was probably overestimated by the time needed to reach a cer-
tain level ofgametocytaemiathat can be detected by microscopy. However, gametocytes
of P. falciparumdo not infect mosquitoes, when mature forms first appear in blood. The
time needed fornm is about one to four days, when these forms of the malaria parasite
finally become capacitated (cp.Macdonald 1957; Sinden 1983; Nedelman 1989).

In summary, due to the length ofnp (about six to ten days),n♂♀ (four to twelve
days), andnm (one to four days)HIA lasts altogether about 11-28 days. For this reason,
HIA is approximated as 20 days in the LMMn version, which is five days longer than the
LMM o value of 15 days (cp. Tab.5.1).

5.1.11 Recovery rate (r)

A slow recovery rate(r) of malaria infection is a crucial factor for transmission of
malaria (cp. Sec.2.4.4). Recovery is affected by the genetic multiplicity of the malaria
parasite (cp. Sec.2.4.3) and is a function of exposure history, reflecting effects ofim-
munity (see Sec.2.4.2). Parasite clearance is therefore closely related to the age of an
individual as well as to transmission intensity. The formerfact was found in longitudi-
nal data from 16 villages in the West African savannah (e.g.,Molineaux and Gramiccia
1980, their Fig. 31). Daily recovery rates were 0.0045 in infants(<1 year), fell to a mini-
mum of 0.0016 in young children (1-4 years), and increased again to 0.0194 in the oldest
adult age group (≥43 years). Dependence ofr on transmission intensity was found at
30 sites along coastal Kenya.Gu et al.(2003b) showed that the daily parasite clear-
ance was lower than 0.005 day−1 at one or less infectious bites per year and higher at
intensities of ten or more.

The LMM structure does not account for an individual immune status. As a result,
r is independent from transmission intensity or age of an individual in the model, only
one single setting of the recovery rate is possible (cp. Sec.5.2). For this reason, the
applied clearance rate represents an age or transmission intensity average. Due to the
fact that the LMMo does not include superinfection (Sec.2.4.3) parasite clearance is
related to the elimination of single parasite clones (seeHoshen and Morse 2004). The
recovery rate was originally set to 0.0284 day−1 enabling about 90% of the infected
population to clear their infection after 80 days ((1− r)80 ≈ 0.10). However, estimates
from simple infections ofP. falciparuminduced in immunologically naive patients for
malaria therapy revealed often longer persistence. Patterns of recrudescence survived
partly longer than 150 days (seeCollins and Jeffery 1999, their Fig. 3). In order to further
include superinfection, the parasite clearance is significantly decreased in the LMMn and
is now set to 0.005 day−1. In fact, the value of 0.005 day−1 was previously assessed by
Macdonald and Göckel(1964) and was also applied in various malaria models (e.g.,
Macdonald et al. 1968; Gu et al. 2003b).
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5.1.12 Gametocyte prevalence (sPR)

The presence of male and female gametocytes in the blood of human hosts, that is the
so-calledsexual parasite ratio(sPR; i.e., gametocytaemia), is a necessary condition for
malaria transmission. Gametocytaemia is generally lower thanPR(Fig.5.6a). Only one
annual mean sexual Parasite Ratio(sPRa) was found to be higher than 40%, which has
been detected by RT-PCR (see Tab.D.11). In most studies using microscopy less than
15% of the population were detected as gametocyte carriers.In contrast, the majority
of studies revealed parasite prevalence higher than 30%. The annual averaged ratio
between the asexual and sexual parasite prevalence(SARa; i.e., the proportion of malaria
parasite positive humans that are gametocytaemic) mainly ranges between 10 and 35%
(Fig.5.6b; Tab.D.11).

There is a problem of enumerating gametocytes patterns; gametocytes are prone to
be missed by standard microscopy examination (Nedelman 1989; Drakeley et al. 2006;
Sec.2.4.5). For example, RT-PCR revealed in comparison with microscopy a 40% higher
sPR(Ali et al. 2006). Ouédraogo et al.(2007) recently found that the QT-NASBA tech-
nique provided about 3.3 fold higher estimates ofsPR than microscopy. This clearly
demonstrates that studies based on the detection of gametocytes by microscopy are rather
insensitive and inaccurate in the quantification of gametocytes in blood smears.
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Fig. 5.6: Parasitological observations with regard toPRa andsPRa (Tab.D.11). Frequency distribution
of (a) PRa andsPRa as well as (b)SARa. Particular observations have been grouped into 5%
intervals. Note thatPRvalues were calculated byPR= sPR

SAR.

Sexual and asexual parasite ratios are generally higher in children than in adults
(Tab.D.11). That is due to the fact that adults better control asexual and sexual parasite
densities, and are therefore more likely to carry gametocytes at the borderline level of
detection (Drakeley et al. 2006). Young children are least likely to be able to control
malaria infections, and likely more parasites turn into gametocytes. In Kenya,Bousema
et al.(2004) found a decrease in the mean duration of gametocyte carriage with increas-
ing age for asymptomatic children.

The fact that not all infected humans actually carry male andfemale gametocytes is
accounted for in the LMMn version. Afraction of gametocyte carriers(GF) is intro-
duced into the model. This fraction stands for the proportion of the population that: (i)
is infected by the malaria parasite; (ii) has already passedthe length ofHIA; and (iii) is
exhibiting a reasonable amount of gametocytes. These humans are therefore the infec-
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tors of the human population. Due to the problem of enumerating gametocytes patterns,
GF is set in the LMMn to the comparatively high value of 0.5 (cp. Fig.5.6).

5.1.13 Human-to-mosquito transmission efficiency (c)

Not all Anophelesfemales feeding on gametocyte-infected hosts get infected. Most
malaria transmission models have not used direct field estimates of thehuman-to-
mosquito transmission efficiency(i.e., the proportion of mosquito bites on infectious
humans, which infect susceptible mosquitoes) that is usually termed parameterc in lit-
erature (e.g.,Nedelman 1985). Because of practical difficulties of obtaining parameter
c most studies rely on the assumption that infectiousness is directly related to the preva-
lence of blood-stage parasites or gametocytes (Killeen et al. 2006).

One factor reducing infectivity of gametocytes to mosquitoes is transmission block-
ing immunity that is a specific immunity acquired in humans. Immune factors, ingested
with the blood meal, inhibit or block the development of freesexual stages: gamete,
zygote, and ookinete, which have common antigens with gametocytes (Boudin et al.
2005).

The infectiousness of mosquitoes can be determined by usingblood from game-
tocyte carriers. It is either measured by direct skin feeding or by membrane feeding
(Bonnet et al. 2002). However, the best method for estimating infectiousness of a hu-
man population is to feed laboratory-rearedAnopheleson a representative population
sample without regard to the presence of gametocytes (Boudin et al. 1991a). Obviously,
not all Anophelinesfeeding on gametocyte-infected hosts become infected. Human-to-
mosquito transmission efficiencies are generally lower than 40%, and for the majority
of trials infectiousness is higher than 20% (Tab.D.12). Muirhead-Thomson(1954) ob-
served that the ‘best infectors’ infected only about 30% of mosquitoes feeding on them.
On the other hand cryptic gametocytaemia can result in mosquito infections (Ross et al.
2006). In the LMMn version,c is approximated as 20%, which is located amidst ob-
served measurements. This means, in combination with the value of GF, that in the
model a fraction of 10% of females feeding potentially malaria-infectious hosts becomes
infected with the parasite.

5.1.14 Issues regarding the age-dependence of malaria

Entomological and parasitological studies clearly identified the age-dependence of
malaria in areas of year-round and seasonal malaria transmission. The increase of func-
tional immunity from child- to adulthood leads to an age-dependence ofPR, sPR, r, b,
as well asc. Values are comparatively much higher in children than in adults. Children
therefore were found to be most likely to infect mosquitoes (e.g.,Bonnet et al. 2003).
There is a general decrease with age in the infectiousness but even highly immune hosts
contribute to the infectious reservoir (Ross et al. 2006). A large proportion of infections
results from feeding on adults since the host-vector contact is higher in adults than in
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children (Carnevale et al. 1978; Port et al. 1980). That is due to their greater attractive-
ness (Sec.2.4.6) and therefore most blood meals to vector mosquitoes are provided by
this age group (Killeen et al. 2006).

Due to the lack of an age-dependence of the LMM it is assumed that children be-
tween 2-10 years(groupC) and therest of the population(groupR; these are infants,
adolescents, and adults) equally contribute to the infectious reservoir of malaria. On
that condition an isolated simulation of the malaria transmission based ongroupC,
groupR, or that of the whole population always results in the same infection level of
the mosquito population and after age-adjustment also in the sameHBRandEIRvalues.
The LMM simulation is therefore henceforth orientated ongroupC. For this reason,
the host-vector contact is lowered in the LMMn version by theadult-to-child conversion
rate (ca→c). Due to findings ofCarnevale et al.(1978) andPort et al.(1980) ca→c is
approximated as 0.5 (see Sec.2.4.6), which means thatHBR and EIR for children be-
tween 2-10 years(HBRcandEIRc, respectively) is two times lower than that for adults
(HBRc= ca→c ·HBR; EIRc= ca→c ·EIR). This in turn implies that simulatedHBRand
EIRvalues have to be doubled when they are compared to field observations.

In conclusion, most model variables are set by means of data taken from literature.
However, some newly inserted (these areS, U2, #Ep, and pd↓) and one old variable
(i.e., CAP) of the LMMn could not be defined by the literature survey. These values
are calibrated by means of entomological and parasitological data from West Africa and
Cameroon (cp. Sec.6). Due to the calibration of model parameters the aforementioned
assumption relative to the contribution of different age-groups might not be of particular
relevance. The calibration finally enables the LMMn to simulate realistic entomological
data, which will serve as input for the Garki model (cp. Sec.5.2).

5.2 Garki model

Probably the most widely known and accepted integrated models of malaria transmis-
sion dynamics and immunity to date are those of the Garki project (Dietz et al. 1974;
Gemperli et al. 2006a,b; for a review cf.Nedelman 1984) and variants of it (Nedelman
1985; Struchiner et al. 1989). The original version of this model was primarily developed
for endemic malaria transmission in the Nigerian African savannah (cf.Molineaux and
Gramiccia 1980). The Garki model was further modified for areas of unstable malaria
transmission (Struchiner et al. 1989). Various other studies utilised the Garki model and
its variants. For example, Struchiners’ version of the Garki model was refined byCancré
et al. (2000) using a Bayesian calibration of longitudinal parasitological data gathered
from Ndiop (Senegal; 13◦41’N, 16◦23’W). In addition,Gemperli et al.(2006a,b) ap-
plied the original Garki model for standardisation of heterogeneous agePR data from
field observations.

The Garki model was developed byDietz et al.(1974). This model is a complex
mass action model including the acquisition of immunity as well as the presence of su-
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perinfection (cp. Fig.5.7). It is formulated in seven non-linear difference equations that
are iteratively solved by a computer (see Eq.5.11). In a first step, this model divides the
human population, which is set to one, into individuals thathave parasites in their blood,
the so-calledpositives(y1, y2, andy3), and humans not carrying the malaria pathogen,
the so-callednegatives(x1 andx2). Those individuals with parasites in the liver are called
incubating (x2 andx4). The duration of the incubation stage is set toN days.

Fig. 5.7: States and transitions of the Garki model (according toDietz et al. 1974). Included are also
model parameters (see text and Eq.5.11).

Parasitological data from eight villages in the Kano State,Northern Nigeria, revealed
that the gametocyte prevalence and density decreases more rapidly with age thanPRand
the density of trophozoites. For this reason,Dietz et al.(1974) concluded that immu-
nity reduces infectivity of humans before recovery is increased and/or detectability is
reduced. In the model it is assumed that individuals with a certain parasite load are not
able to infect mosquitoes to such an extent that their sporozoites can produce successful
infections in humans. On this account, positives are divided into infectious (y1) as well
as non-infectious (y2 andy3) individuals. The loss of infectivity is acquired first at a rate
α1, when humans reach categoryy2. The status of immunity and increase in recovery
(they3 category) might be later acquired at the rateα2.

Longitudinal data from the Kano State showed that parasite clearance of
P. falciparumdepends on age (e.g.,Molineaux and Gramiccia 1980, their Fig. 31). In
fact, immunity increased the rate of recovery from patent parasitaemia by a factor of up
to ten (Bekessy et al. 1976). For this reason, the Garki model further adopts that the
acquisition of immunity (individualsx3, x4, andy3) is directly associated with quickly
recovering infection rates. Non-infectious positives aretherefore further separated iny2
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with low recovery rates (r1) andy3 with high clearance rates (r2) of individual malaria
clones.

Malaria parasites are usually detected by means of blood films. However, the prob-
ability of detecting parasites depends on the density of trophozoites. In adults, parasite
densities are usually comparatively low and are reduced to submicroscopic levels (Oué-
draogo et al. 2007). Hence, positive immune individuals (y3) have the lowest probability
(q3) of being detected in the model. Other classes of positives (y1 andy2) are assigned to
detection probabilitiesq1 andq2, respectively (it is assumedq1 = q2). There is further-
more no loss of immunity with respect to the higher recovery rate and lower detectability.
However, the whole population loses immunity since dying immune individuals are re-
placed by non-immune newborn infants. The size of the human population is constant
in the model,birth and death rates(δ) are equalised. Death rates are independent of age
so that the age-distribution of the human population is exponential.

The Garki model is driven by the observedVC, which depends only on entomolog-
ical variables. It follows directly from the definition ofVC that each mosquito bite on
an infectious individual will result inVC new inoculationsndays later (heren is the du-
ration of the sporogonic cycle). In fact,Dietz et al.(1974) assumed that these mosquito
bites happen on dayt. Based on this assumption it is possible to computeEIRby means
of EIR(t) = VC(t − n)y1(t − n) (cp. Gemperli et al. 2006a). For this reason, a more
direct approach would be to run the Garki model byEIR instead ofVC data. In the
following, the model defines theinoculation rate(h) as the rate at which negatives are
transferred to positives. The following relationship is assumed byDietz et al.(1974)
for the inoculation rate:h(t) = λmax[1−exp(−EIR(t))]. The expression in the square
brackets is the probability, assuming a Poisson distribution for the number of contacts,
that at least one contact is made. The parameterλmax represents themaximum rate of
acquiring infections1 (Dietz 1988).

The presence of superinfection (for details cf.Dietz et al. 1974) and acquired im-
munity are considered by means of two recovery rates (R1 andR2). These two rates are
related to the inoculation rate (h) and the recovery rate from single clone infections (r1

and r2): Ri = h
exp( h

ri
−1)

(i=1,2). Hence, non-immune individuals recover slower than

immune individuals (R1 < R2).

The assumptions listed above lead to a set of differential equations (Eq.5.11), which
are written here for an iteration interval of 1 day. Note thatthe model operates with a
time interval of five days. The∆ symbol refers to the difference operator, for example,

1Note that this parameter was originally denoted inDietz et al.(1974) by the misleading term ‘suscepti-
bility (g)’.
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∆x1 = x1(t +1)−x1(t). The following equations omit the time variable except in those
cases, where reference is made to a time different fromt:

∆x1 = δ+R1(h) y2− [h+δ]x1

∆x2 = hx1− [1−δ]Nh(t −N) x1(t−N)−δ ·x2

∆x3 = R2(h) y3− [h+δ]x3

∆x4 = hx3− [1−δ]Nh(t −N) x3(t−N)−δ ·x4 (5.11)

∆y1 = [1−δ]Nh(t−N) x1(t −N)− [α1+δ]y1

∆y2 = α1y1− [α2+R1(h)+δ]y2

∆y3 = α2y2 +[1−δ]Nh(t−N) x3(t −N)− [R2(h)+δ]y3

One drawback of the Garki model is the assumption that all individuals are equally
exposed to vector feeding. It would be more adequate to include age-dependent factors to
accurately describe and predict dynamics of pathogen transmission (Styler et al. 2007).
The model also ignores the naturally acquired immunity against pre-erythrocytic stages
of the parasite. However, the Garki model was not designed for the assessment of the
likely impact of malaria vaccination (cp.Smith et al. 2006b). Another handicap of the
Garki model is the constant duration of the sporogonic cycle. In fact, the length of
this cycle depends on temperature (Sec.2.6.1) meaning that this model version does not
properly work in highland areas.

Tab. 5.3: Parameters of the Garki model and their setting (cp. Dietz etal. 1974). Columns: sym: symbol
of the model parameter; parameter: parameter name; val: value; unit: unit.

sym parameter val unit
α1 daily rate of losing infectivity 0.002 day−1

α2 daily rate of acquiring high recovery rate 0.00019 day−1

δ birth and death rates of the human population 36.5 1000−1 year−1

N incubation period in humans 15 day−1

n incubation period in vectors 10 day−1

r1 low daily recovery rate 0.0023 day−1

r2 high daily recovery rate 0.023 day−1

λmax maximum rate of acquiring infections 0.097 (5 days)−1

h inoculation rate, i.e.h(t) = λmax[1−exp(−EIR(t))] - day−1

R1(h) recovery rate of non-immune individuals (function of
h)

- -

R2(h) recovery rate of immune individuals (function ofh) - -
x1 proportion of malaria negative, non-immune

individuals
- -

x2 proportion of incubating, non-immune individuals - -
x3 proportion of malaria negative, immune individuals - -
x4 proportion of incubating, immune individuals - -

to be continued
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Tab. 5.3 – continued
sym parameter val unit
y1 proportion of malaria positive, infectious, non-immune

individuals
- -

y2 proportion of malaria positive, non-infectious, slowly
recovering, non-immune individuals

- -

y3 proportion of malaria positive, non-infectious, fast
recovering, immune individuals

- -

q1 detectability ofy1 1 -
q2 detectability ofy2 1 -
q3 detectability ofy3 0.7 -
y true malaria positive proportion, i.e.y = y1 +y2+y3 - -
I proportion of immune individuals, i.e.y = x3 +x4 +y3 - -
z̃ observed malaria positive proportion, i.e.

z̃ = q1y1 +q2y2 +q3y3

- -

Originally the Garki model assumes that the input data repeats itself year after year.
For this reason, the Garki model primarily does not account for the interannual variabil-
ity of malaria transmission. However, the above described setting enables the simulation
of malaria transmission in a particular population for a certain time period, although
no age-specific values are extractable. During model spin-up (i.e., the period during
which equilibrium is reached) the different population categories (see Fig.5.7) are ad-
justed to the seasonal distribution ofEIR(t) of the first year of the simulation period.
After reaching the state of equilibrium the model can be driven byEIR data from the
remaining period. During this period seasonal and interannual changes of any output
variable can be studied. For example, the daily inoculationrate (h), the proportion of
infectious individuals (y1), the observed positive proportion (˜z; z̃= q1y1 +q2y2 +q3y3),
the true positive proportion (y; y= y1+y2+y3), or the proportion of immune individuals
(I = x3 + x4 + y3). By contrast, age-specific data can only be simulated underconstant
entomological conditions that is whenEIR(t) is the same year after year. This assump-
tion might be valid for endemic malaria areas such as that forwhich the Garki model was
developed. Age-specific values are produced when running the model withx1 initialised
as one,δ set to zero, andEIR(t) only varies seasonally. The result of this model run is
the life history of a cohort of individuals born into the non-immune negative category
and in this case the modelled time is interpreted as the age ofthe cohort.

In the present study the Garki model is driven byEIR instead ofVC data. As men-
tioned before this is a more direct modelling approach sinceone intrinsic assumption is
omitted. Moreover, by usingEIR it is possible to run the model in highland areas. This
is due to the fact that the sporogonic cycle is no more relevant for the simulation since in
the original version of the model onlyEIR is a function ofn. In addition, the interannual
variability of malaria has been taken in account. Similar tothe procedure ofMolineaux
et al.(1978), after the production of a steady state, the Garki model wasrun for a longer
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time period (e.g., 1961-2000) with variableEIR conditions. Note here thatEIR values
are taken from LMM simulations. This model chain enables thesimulation of realis-
tic transmission rates between humans and mosquitoes (via the LMM) and provides a
reasonable pattern of malaria epidemiology (by means of theGarki model).

5.3 MARA Seasonality Model (MSM)

One important aspect of malaria is its seasonality. A correct assessment of the effect of
changes in transmission patterns therefore also have to include an analysis of changes in
the transmission period of malaria exposure. A prolonged transmission season might be
as important as a geographical expansion of the disease spread.Tanser et al.(2003) pre-
sented the so-called MARA Seasonality Model (MSM) that was exclusively developed
for the simulation of the seasonality of malaria.

The basis of the MSM is mean long-term monthly precipitationand temperature
data. The MSM is using a Boolean logic approach, defining the monthly occurrence of
malaria.Tanser et al.(2003) defined different temperature and precipitation criteriathat
account for the suitability of this vector-borne disease (cp. Tab.5.4). The model uses two
monthly and three yearly variables. On a monthly basis thethree-month moving average
temperature(T3m) and thethree-month moving average monthly precipitation(RR3m) is
applied (e.g., for July, months May, June, and July are used). That is because a sporadic
month is not adequate for the occurrence of malaria. Yearly variables are themonthly
minimum temperature(Tmin,m), thestandard deviation of the monthly mean temperature
(σ(Tm)), and existence of acatalyst month of precipitation(RRc).

According to the model everyTmin,m must exceed 5◦C since mosquito populations
are reduced at very low temperatures.Tanser et al.(2003) further assumed that vector
and parasite populations have to be fully regenerated afterrelatively cool periods. They
analysed stable and seasonal malaria profiles and showed that in stable malaria areas
monthly mean temperatures(Tm) reveal only small variations during the course of the
year. In contrast,Tm is stronger fluctuating in seasonal malaria areas such as regions in
higher latitudes and altitudes. It is additionally demonstrated thatT3m has only slightly
to exceed 19.5◦ in stable malaria areas, whereas temperatures have clearlyto exceed this
threshold in seasonal transmission areas. On this account,malaria transmission in the
model is only simulated whenT3m is higher than the total of 19.5◦C andσ(Tm).

Rainfall also limits malaria transmission in the MSM. The MSM assumes that vector
breeding sites depend on preceding precipitation events and that a certain moisture status
has to be reached for an increase of the survival probabilityof mosquitoes. For all these
reasons, also for the precipitation criteria a three-monthmoving average of 60 mm is
used.Tanser et al.(2003) also called for a catalyst month of 80 mm in order to provide
adequate vector breeding and the ability for the regeneration of the mosquito population.

A certain month is assigned transmission when the four abovedescribed criteria are
fulfilled (see Tab.5.4). However, it is further expected that, despite a predictedone-
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month interruption, malaria transmission is maintained. This is justified by the strength
of the climatic suitability of bordering months and the persistent parasite reservoir.

Tab. 5.4: Criteria of the MSM to calculate months suitable for malariatransmission in Africa (Tanser et al.
2003). Columns: #: criteria number; sym: symbol of the applied parameter; parameter: name
of the parameter; criteria: criteria used to calculate months suitable.

# sym parameter criteria
1 Tmin,m monthly minimum temperature every month:Tmin,m ≥ 5◦C
2 T3m three-month moving average

temperature
T3m ≥ 19.5◦C+ σ(Tm)

3 RR3m three-month moving averaged monthly
precipitation

RR3m ≥ 60 mm

4 RRc catalyst month of precipitation one month:RRc ≥ 80 mm
5 - assigned transmission status criteria 1-4 (one month

interruption is allowed)

The MSM was spatiotemporally validated against parasite surveys ofP. falciparum
malaria transmission in Africa between 1929 and 1994. The validation of the model
showed a sensitivity (i.e., the ability to predict areas of transmission to within a month) of
63% and a temporal sensitivity (i.e., the ability to accurately predict malaria occurrence
in any month) of 90%. Moreover, specificity within one-monthtemporal accuracy of
96% was obtained (Tanser et al. 2003).

The basis of the model is climatic and thus has some limitations. Non-climatic
factors are hence not considered by the MSM (cp. Sec.2.6.2). Another disadvantage of
the model is the fact that it cannot account for the interannual variability of the malaria
season. Hence, epidemic-prone areas are not detectable viathis modelling approach.



6 Calibration, validation, and sensitivity tests
of the LMM

6.1 LMM calibration and validation

The LMM entails the combination of many separate sub-models, each with its own pa-
rameterisation. Numerous parameters could potentially create larger variations than the
weather driving force and indeed the output from this malaria model is largely dependent
on the choice of the models’ parameters (Sec.6.2). A prerequisite for malaria simula-
tions is ideally an optimal setting of the LMM. The development of such an ideal param-
eter setting is only possible by means of the validation of every sub-model. So far the
validation of the LMM has focused on malaria prevalence as well as incidence data. The
LMM o was validated for a comparatively small area in Botswana (Hoshen and Morse
2004; Jones 2007). The so far most-sophisticated validation procedure was performed
by Jones(2007). This study compared the simulated mosquito population size as well
as the modelled incidence with a 20 year time series of standardised malaria anomalies.
However, the validation of transmission rates such asEIR or malaria seasonality are
missing. Because of the saturation of malaria prevalence athigh transmission rates the
modelling of realistic biting rates should be more challenging than the reproduction of
reasonable parasite ratios. The model validation for various climate conditions is also
absolutely essential. The LMM has to be verified against a large set of precipitation and
temperature conditions.

The present study aims to determine a LMM setting that compares well to field ob-
servations. Note that an ‘optimum’ LMM setting is hampered by the huge degree of free-
dom in the setting of model parameters as well as uncertainties in meteorological time
series and malaria observations. However, the model calibration produces numerous
adapted parameter settings. Various versions of the LMM were forced by temperature
and rainfall conditions of 34 synoptic stations in West Africa and Cameroon for 1973-
2006 (Tab.G.1). The model is hence subject to different climate conditions (Fig.6.1).
The climate of this data set ranges from an arid hot desert to atropical monsoon climate
(see Fig.2.1a) and therefore evokes various malaria transmission levels. Fairly dry con-
ditions in the Sahel, for example, resulted in no malaria transmission at Diomandou Dieri
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Fig. 6.1: Box-and-whisker plot of annual rainfall (RRa; blue box plots & left scale) and annual mean
temperatures (Ta; red box plots & right scale) between 1973 and 2006 relative to 34 synoptic
stations of West Africa and Cameroon. Stations are grouped for the West Sahel, Central Sahel,
Guinean coast, and Cameroon as well as relative to the medianof 34RRa values.

(Senegal; 16◦31’N; 14◦39’W; Faye et al. 1993). In contrast, a continuous rainfall supply
caused year-round transmission in Cameroon at Etoa (3◦46’N; 11◦29’E; Quakyi et al.
2000). However, temperatures of this data set lie usually well above 20◦C (cp. Fig.7.1a)
inhibiting the model validation for the lower malaria temperature limit (e.g., Fig.5.2).

Numerous model simulations are validated against eleven observed entomological
and parasitological variables (App.D). The validation primarily focuses on the perfor-
mance of the model with regard to entomological field measurements (i.e.,HBRa and
EIRa). For every single LMM parameter setting askill score(SC(x)) is assigned by
means of five criteria (Tab.E.1). The reader is referred to App.E.1 for a detailed de-
scription of the validation procedure.

6.1.1 Calibration of the LMM

The majority of model parameters has already been fixed (Sec.5.1). Indeed, some pa-
rameters are not allocatable due to different specifications in literature or due to the lack
of data (these are:S, U2, #Ep, CAP, andpd↓). Note that some false estimation of prede-
fined parameters might be undertaken. However, the calibration will largely compensate
such inaccurate assessments. A too high human biting index (a), for example, can be
compensated by a lower value of #Ep (Fig.6.7). In the same way it is found that #Ep and
CAPcompensate each other at more humid stations (e.g., in Cameroon; Fig.6.7a & b).
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Fig. 6.2: Box-and-whisker plots of five different LMM settings with regard to 34EIRa values between
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ulated values outrange the scale of figures. LMM setting: cp.valn in Tab.5.1, but: (a)pd↓=0%,
CAP=500 fertile females, #Ep=50, 75, 100, 125, and 150 eggs; (b)pd↓=0%, #Ep=75 eggs,
CAP=250, 500, 750, 1000, and 2000 fertile females. Red dots depict availableEIRa field mea-
surements (cp. Tab.D.3). In addition toEIRa, the statistic relative toRRa is illustrated for each
station (dark blue box plots; right scale).
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The LMM calibration includes two general steps. The initialexperiment enables a
rough estimate of realistic parameter values. The second set of model runs permits a
final adjustment of model settings. In order to simplify the calibration procedure,pd↓

is initially set to zero. Altogether three different settings are tried out forU2. Ahu-
mada et al.(2004) defined extreme rainfall as more than 255 mm of cumulative rainfall
throughout a period of three days. Their model markedly reduces the mosquito popula-
tion under excessive rainfall. According to a 10-day periodthis suggests aU2 value of
about 500-1000 mm. In fact,U2 is either set to 500, 750, or 1000 mm.

For the isolation of particular settings the remaining parameters (S, U2, #Ep, and
CAP) are varied simultaneously (S: 5-30 mm;U2: 500-1000 mm; #Ep: 50-150 mm;
CAP: 250-2000 fertile females). The first 300 different LMM settings are ranked with
regard to the skill score of all eleven malaria variables (SC(all)) and in terms ofHRBa

andEIRa (see also Tab.6.1).

The ranking with regard toSC(HBRa,EIRa) shows thatSaffects mainly the spread
of malaria in the northern part of the Sahel, for example, at various stations in Senegal
(Tab.E.2& Fig. E.1). In these dry areas the growth opportunity of the mosquito pop-
ulation is strongly suppressed by the fuzzy distribution model whenS is set to high
values (cp. Fig.5.3). Obviously,Shas to be calibrated to relatively low values in order
to keep malaria going in the northern Sahelian zone. However, too lowSvalues seem to
be unrealistic since thepotential evaporationin tropical Africa usually exceeds several
millimetres per day.S is finally fixed to 10 mm as this value still enables the simulation
of malaria in the northern part of the Sahel. This analysis shows the clear need for the
validation of the model under different rainfall conditions. Only stations in the northern
Sahel enable a proper estimation ofS.

exp variable area criteria result

Exp. 1 pd↓ = 0 - - -
Exp. 1.1 S∈ [5,30] northern

Sahel
SC(HBRa,EIRa) ⇒ S:=10 mm

Exp. 1.2 U2 ∈ [500,1000] West Africa SC(all) ⇒U2 := 500mm
Exp. 1.3 #Ep ∈ [50,150] Sahel SC(HBRa,EIRa) ⇒ #Ep ∈ [75,125]
Exp. 1.4 CAP∈ [250,2000] West Africa SC(all) ⇒CAP∈ [300,900]

Exp. 2 CAP∈ [300,900]
#Ep ∈ [70,130]
pd↓ ∈ [0,10]

West Africa SC(HBRa,EIRa) ⇒CAP:=400 fertile
females,
#Ep :=120 eggs,
pd↓ :=-10%

Tab. 6.1: Overview in terms of the evaluation of performed calibration experiments (Exp.). Columns:
exp: number of the experiment; variable: particular settings of model variables; area: area of
interest; criteria: applied criteria; result: result of the experiment.
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The evaluation of the 300 model settings also enables a final setting ofU2 since the
highest skill scores are exclusively generated by a value of500 mm (see Tabs.E.2& E.3).
The lowest skill scores are attained by settings with high values ofCAP, #Ep, andU2 as
well as low values ofS, which apparently evoke large mosquito populations (Tab.E.2).

A closer analysis of data reveals that malaria transmissionrates in the Sahel are
fairly sensitive to the #Ep setting (Figs.6.2a & E.2a). The medianHRBa value rises, for
example, at Linguère, Mopti, and Diourbel from less than 100to several thousand bites
per year, when #Ep increases from 50 to 150 eggs (Fig.E.2a). Unfortunately, only nine
field observations ofHRBa andEIRa are available north of 14◦30’N. This fact impedes a
proper determination or further confinement of #Ep. However, the LMM underestimates
(overestimates)EIRa, when #Ep is set to 50 (150) eggs (cp. Fig.6.2a).

After isolating #Ep (75-125 eggs) also the value ofCAPcan be more precisely deter-
mined.CAPis only of importance for comparatively large annual rainfall amounts.CAP
markedly reduces the number of deposited eggs and hence biting rates under wet con-
ditions. In fact, the reduction is markedly pronounced in the Sudanian zone, along the
Guinean coast, and in Cameroon for lowCAPvalues (≤750 fertile females). In contrast,
large values ofCAP(≥ 1000) cause fairly high numbers of non-infectious and infectious
mosquito bites (cp. Figs.6.2b & E.2b). The ranking relative toSC(all) shows that LMM
settings come off badly whenCAP is set to 250 fertile females (not shown).

Basis of the second iteration of the LMM calibration are conclusions from the initial
experiment. Only the setting ofCAP, #Ep and pd↓ remain undetermined. #Ep values
are now varied between 70 and 130 eggs andCAP is set between 300 and 900 fertile
mosquitoes. Five different values forpd↓ are in addition utilised (0.0, -2.5, -5.0, -7.5,
and -10.0%). The second set of model runs includes altogether 455 different model sets.

The highest skill score in terms of all eleven malaria variables obtain runs with
comparatively low (high) #Ep and high (low)CAPvalues (App.E, Tab.E.5). Particularly
notable is that various model settings exhibit comparatively high skill scores. This fact
and the considerable inherent uncertainties in the used data impede a final objective
fixation of remaining parameters. For simplicity, the modelsetting with the highest
skill score in terms ofHBRa and EIRa is finally chosen (App.E, Tab.E.4). A total
of 78 points from 106 possible points (73.6%) is gained by a setting with #Ep=120 eggs,
CAP=400 fertile females, andpd↓=-10% (SC(all)= 279(440); numbers in brackets refer
to points that could be theoretically achieved). The value of 120 produced eggs is in the
middle of observations (Tab.D.7) and forces a reasonable level of malaria transmission
in the northern Sahel. Due to the high #Ep valueCAP is fixed to the relatively low value
of 400 fertile females limiting the number of mosquito bitesin more humid areas such as
Cameroon. Thepd↓ value of -10% enables the simulation of a realistic season end. The
application ofpd↓ allows a one to two months earlier end of transmission (cp. Fig.6.3).
Correspondence with respect to modelled seasons from the MARA project is improved
by the earlier break in transmission (Fig.2.8c & d).
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Fig. 6.3: Validation of LMM simulations in terms ofESeasin the area of 34 synoptic stations in West
Africa and Cameroon. The simulated data (filled rectangles)is compared to observed values
(inserted as a digit). The frequency distribution (in numbers) with regard to simulated 34 values
for 1973-2006 is given for each month. The frequency of yearswith no (‘no’) and year-round
(‘C’) transmission are also illustrated. In (a) results of the LMMn simulation (pd↓=-10%) are
presented. (b) Same as (a) but forpd↓=0%. SC(ESeas) is denoted for every station as blue
digits. Stations are grouped for the West Sahel, Central Sahel, Guinean cast, and Cameroon as
well as relative to the median value ofRRa.
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Fig. 6.4: Validation of the LMMn simulation in terms ofEIRa in the area of 34 synoptic stations of West
Africa and Cameroon. Simulated 34 annualEIRa values between 1973 and 2006 are illustrated
as grey box-and-whisker plots (maximum values outranging the figure are inserted above). Field
observations ofEIRa (green lines and box plots) are either displayed as a vertical line (two
available measurements), a vertical line with the median (three or four values), or as a box-and-
whisker plot (≥ five data points). Each observation is furthermore insertedas a red circle and the
number of observations is given above entered observations(red digits). SC(EIRa) is denoted
for every station as blue digits. Stations are grouped for the West Sahel, Central Sahel, Guinean
coast, and Cameroon as well as relative to the median of 34RRa values.

6.1.2 Validation of the final LMM n setting

Simulations of the final model setting are comparable to all entomological variables. The
new model setting leads to the simulation of about the sameEIRa values as observed
(Fig.6.4; SC(EIRa) = 41(54)). Low EIRa values are modelled under dry conditions in
the Sahel.EIRa values are much higher for annual rainfall of about 1000 mm and again
decrease as observed when the model is subject to higher annual rainfall (cp. Fig.6.1).
The LMMn simulation encompasses observed values in various cases. For some sta-
tions with numerous observations even median values are comparable, for example, in
the vicinity of Bobo-Dioulasso (13 observations) or in the area of Kaolack (six observa-
tions). However, there are also some exceptions, for example, in the vicinity of Barkedji
the simulatedEIRa is much lower than two observations (Le Masson et al. 1997). High
biting rates in this area are probably a result of special local environmental conditions.
Le Masson et al.(1997) andMolez et al.(2006) conjectured that the presence of clay
hollows, which collect water as soon as the rains start, caused a long persistence of tem-
porary ponds and hence of malaria transmission. With regardto HBRa and consequently
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also forCSPRa values about same statements are valid. There is a fair correspondence
between the LMMn simulations ofHBRa as well asCSPRa and observations from ento-
mological studies (Figs.E.4a & E.4b; SC(HBRa) = 37(52); SC(CSPRa) = 33(55)).

Another result of the calibration is that the simulations are able to capture the vari-
ability of malaria transmission. The interannual variability of EIRa, for example, is
fairly large. For most stations the number of infectious mosquito bites fluctuates be-
tween values of less than 100 and several hundred. Such differences are also typical
for field observations.Burkot et al. 1988, for instance, found large variations inCSPRa

andEIRa among villages in Papua New Guinea, despite their close geographic proxim-
ity. EIRa values range from 68-526 infectious mosquito bites within aradius of 20 km.
Malaria transmission not only varies in space but also from year to year. Unfortunately,
long-term studies are rare and continuous observations from rural sites are only avail-
able from Ndiop for four years (Senegal; 13◦41’N, 16◦23’W). In this Sahelian village
malaria transmission varied in the middle of the 1990s between 7 and 63 infective bites
(seeFontenille et al. 1997a; Tab.D.3). For this area simulatedEIRa values range from
almost zero to about 158 infectious bites. Note that the LMM simulation refers to me-
teorological data from Kaolack, which is located about 55 kmto the northeast of Ndiop
(Figs.3.1& G.2).

The simulation of malaria seasonality by the LMMn is fairly consistent with
field observations. The length of the season agrees with observations (Fig.E.3a;
SC(Seas) = 31(42)). In general, the season length shortens with decreasing annual
rainfall (cp. Fig.6.1). Short malaria seasons and no malaria transmission are simulated
for the Sahel and year-round transmission is found, for instance, in Cameroon. Also
the length of the main transmission season often agrees withobservations (Fig.E.3b;
SC(MSeas) = 28(37)). Interestingly, the timing of maximum transmission is well cap-
tured by the LMMn version (Fig.E.3d; SC(XSeas) = 23(41)). The simulated month
with maximum transmission often coincide with that of observations, especially in the
Sahel. However, model simulations seem to disagree for areas with year-round trans-
mission. Naturally, the match probability decreases the longer the season lasts. Both
the start as well as the end of the malaria season seem to be realistically reproduced
by the LMMn version (Figs.E.3c & 6.3a; SC(SSeas) = 28(41); SC(ESeas) = 18(37)).
At various locations the maximum number of observations andsimulations are found
in the same month or they either reveal most frequently no or year-round transmission.
Observations that fall outside of simulations hardly differ more than one month. Also
note that the simulated malaria seasonality might not be directly comparable to field
measurements (cp. App.D.5). The comparison is strongly influenced by the definition
of the malaria season. The chosen threshold might be too small in comparison with field
studies. As previously noted byMorse et al.(2005) andJones(2007), it is therefore still
possible that the onset of the malaria season is a little lagged.
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Fig. 6.5: Same as Fig.6.4, but forPRmin,a.

The performance of the LMMn with regard to parasitological variables is some-
what mixed. The main reason for relatively low skill scores are fairly heterogeneous
parasitological observations that cannot be reproduced bythe LMM. Measurements of
PRmin,a, for example, exhibit a remarkable spread. Nine observations reveal higher val-
ues than 50% whereas 23 values are lower than this threshold.These differences sug-
gest that some special factors are strongly affectingPR values. As a consequence, the
LMM n reaches only eight from 27 possible points (Fig.6.5; SC(PRmin,a)). However, the
LMM n performs somewhat better with regard to the other two parasitological variables
(Figs.E.4c & E.4d; SC(PRa)=16 (29);SC(PRmax,a)=16 (25)).

In summary, the collected entomological and parasitological data from various loca-
tions enabled the calibration of a realistic LMM version. The LMMn compares reason-
able well with entomological observations such asEIRa. Also, features of the malaria
season seem to be captured satisfactorily. The performancewith regard to parasitological
values is somewhat weaker due to limitations of the LMM as well as the heterogeneous
distribution of parasite observations.

6.2 LMM sensitivity tests

Numerous issues are still contestable either in the original or in the new LMM version.
This is mainly due to the fact that most LMM parameters lack a final definite setting.
Some sub-models are not created with full evidence. On this account, a sensitivity anal-
ysis is needed for the LMMn version. Diversity of model behaviour over the parameter
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range will reflect levels of uncertainty in these parametersand reveals areas that should
be measured more accurately. The sensitivity of LMMn is therefore analysed when
model parameters are varied within and around empirical ranges of literature.

The response of the LMM to various model settings and an altered data input was
investigated for the original model version (Hoshen and Morse 2005; Jones 2007). For
this reason, the present study focuses on the model sensitivity with regard to new inserted
and most newly set model parameters. Note thatb andGF are not used since they exert
the same effects asa andc, respectively.

Jones(2007) found that LMM simulations strongly depend on the setting of various
model parameters. The model is most sensitive to changes in the pd-scheme,MMA,
ns, RR−, andRR•. In certain situations the modification of single parameters changes
the malaria spread from epidemic to endemic or vice versa. Unfortunately, most results
focus on changes inPRas well as in the malaria incidence.
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Fig. 6.6: Probability of mosquitoes surviving to the infectious age obtained by combining the daily
mosquito survival probability (pd) of the Martens I (red lines) and Martens II (green lines)
schemes with the sporogonic cycle length (ns). Solid and dashed lines refer to a sporogonic
temperature threshold (Ts) of 16 and 18◦C, respectively. Note thatpd andns both depend on
temperature conditions (see Secs.5.1.5& 5.1.7).

One important aspect of the model behaviour is the response to different tempera-
ture conditions. Variouspd-schemes (Fig.5.5) reveal a partially strong disparity of the
simulations. The comparatively high mortality above 25◦C of the Martens I scheme, for
example, results only in few mosquitoes surviving to the infectious stage. In contrast,
when the LMM is set by Martens II more than 35% of vectors outlive the sporogonic
cycle at about 30◦C (Fig.6.6). Running the LMMn version with a differentpd-scheme
makes little sense since various model settings are adjusted to the Martens II scheme
(cp. Fig.6.7g).

Also the setting ofTs largely impacts simulations of the LMM. Malaria transmission
already starts at about 18◦C for a Ts of 16◦C, whereas it is shifted to about 20◦C for a
threshold of 18◦C. Fewer mosquitoes survive to the infectious stage due to the longer
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duration of the sporogonic cycle (cp. Fig.6.6& Eq.5.10). These differences are most
important for highland areas such as that of East Africa.

The probably most important driver of malaria transmissionfor most parts of Africa
is rainfall. As previously discussed,RR• mainly steers the generation of the mosquito
population in the LMMo version. Changing the value ofRR• therefore has a large effect
on the modelledPR. Jones(2007) furthermore alludes to the influence ofRR−, which is
used as a proxy for varying the degree-days and temperature threshold of the gonotrophic
cycle (Dg andTg). An increase inRR− therefore generates longer gonotrophic cycles (ng

increases) as parameters for dry conditions are more often utilised. As a result, under
certain conditions fewer mosquitoes are produced causing asignificant lower malaria
prevalence.

The following analysis, examines the sensitivity of the LMMn version by means of
34 station time series (Tab.G.1) including various rainfall and temperature conditions
(Fig.6.1). As previously pointed out, the consideration of the lowertemperature limit of
malaria transmission is again not possible.

Compared to the original model version various components and parameter settings
have been changed in the LMMn. Dynamics of the mosquito population, for example,
are completely revised (Sec.5.1). The default setting for the following experiment is that
of the LMMn (valn in Tab.5.1). A single parameter is then varied at a time to establish
the specific response of the model.

Various model settings markedly influence the simulation ofmalaria transmission in
fairly dry areas such as the Sahel (Fig.6.7). In areas with less than 500 mm of annual
rainfall the spread of malaria in the model is only enabled via a proper setting of various
parameters. The strongest influence on the spread of malariain such regions is found for
S, r, MMA, ηd,¬RR and #Ep. A somewhat weaker effect is exhibited bypd↓, c (GF)1,
anda (b). For example, only lowS and high #Ep values enable an ongoing malaria
transmission in the northern part of the Sahel.

Higher transmission rates are simulated whenηd,¬RR, #Ep, U2, CAP, c (GF), and
a (b) are increased and when the setting ofMMA, S, HIA, r, as well aspd↓ values are
reduced. The weakest influences onEIRa is found forHIA andpd↓. In particular,HIA
shows a comparatively small influence on the transmission level (Fig.6.7i). Of course,
low HIA values increase the number of mosquitoes becoming infected. pd↓ reduces the
number of mosquitoes during the start of the rainy season. High absolutepd↓ values
therefore lead to a smaller size of the mosquito population and reduced level of malaria
transmission (Fig.6.7h).

1Variables in brackets similar influences the LMM performance.
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Fig. 6.7: LMM n sensitivity tests between 1973 and 2006 relative to data from 34 synoptic stations
(Tab.G.1) in West Africa and Cameroon (continued on the next page). SimulatedEIRa val-
ues are inserted in segments of variable size and are arranged relative to annual rainfall (RRa).
Different settings are indicated via horizontal grid linesand refer to (a) the number of produced
eggs per female mosquito (#Ep), (b) the cap on the number of fertile mosquitoes (CAP), param-
eters (c)Sand (d)U2 of the fuzzy distribution model, (e) the mosquito mature age(MMA), (f)
the rainfall independent daily survival probability of immature mosquitoes (ηd,¬RR), (g) five dif-
ferentpd-schemes (cp. Fig.5.5), (h) the shift off of the dry season mosquito survival probability
(pd↓), (i) the human infectious age (HIA), (j) the daily human recovery rate (r), (k) the human-
to-mosquito transmission efficiency (c), as well as (l) the human blood index (a). Note that (g)
includes the Bayoh scheme with an offset of 12.5% that corresponds well to the medianpd value
of 84.6% fromKiszewski et al.(2004).
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Fig. 6.7: (continued)

The variation of the mosquito population is investigated under different model
settings. The growth of the mosquito population basically depends on three factors:
mosquito survival (pd), the length of the gonotrophic cycle (ng), as well as breeding
conditions. The first two factorspd andng have already been considered (see above).
The following analysis therefore focuses on effects of the egg deposition as well as
aquatic stages on simulations ofEIRa. Various model parameters determine mosquito
breeding (Secs.5.1.2, 5.1.3& 5.1.4), these are #Ep, CAP, ηd,¬RR, MMA, as well as the
fuzzy distribution model (expressed viaU1, S, andU2).

The strongest impact on the simulation ofEIRa is exerted byMMA and ηd,¬RR

(Fig.6.7e & f). The performance of the LMMn version is adjusted to theMMA value
of 12 days. The combination with theηd,¬RR value of 82.5% ensures that usually less
than 10% of immature mosquitoes survive to the adult stage (Sec.5.1.4). A smaller
MMA value therefore markedly increases the size of the vector population. Malaria
transmission is even interrupted for various years under humid conditions whenMMA
is set to values higher than 15 days. The reason for this behaviour is that a much smaller
number of immature mosquitoes reaches the adult mosquito stage whenMMA is fixed
to such high values. Exactly the opposite holds for the influence ofηd,¬RR. Malaria dies
out completely in the model whenηd,¬RR is set under about 65%. On the other hand
values above about 85% lead to unrealistic high transmission rates.

Also various other malaria variables are sensitive to the setting of the LMM. For
example, the duration of the malaria season is strongly influenced by the setting ofpd↓

(cp. Fig.6.3). A low absolute value ofpd↓ markedly increases the frequency of year-
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Fig. 6.8: Same as Fig.6.7, but here for a different setting of (a)pd↓ and (b)r. Illustrated are simulated
values of (a)Seasand (b)PRa.

round malaria transmission (Fig.6.8a). pd↓ furthermore determines the length of malaria
seasonality in the Sahel.

The value of the recovery rate of the malaria parasite significantly affects the simu-
lation of the malaria prevalence (Fig.6.8b). As expected lowr values lead to highPRa

values. Under such settings the model simulates even for fairly dry areas a holoendemic
malaria (PRa>75%). For the lowestr settings an abrupt rise inPRa is found for annual
rainfall amounts of about 200 mm. This suggests that even very small transmission rates
are able to sustain highPRa levels. In such situations reductions of the malaria preva-
lence might not be possible. In contrast, fast recovery rates (r > 0.03) result in very low
PRa values. The strong impact ofr reveals the importance of a correct determination of
r in terms of realistic simulations of the proportion of the population that is carrier of the
malaria parasite.

The previous results furthermore show that the simulation of the LMMn is not only
sensitive to rainfall amounts but also strongly depends on its seasonal distribution and
intensity. The simulations reveal that large precipitation amounts can lead to a fairly
low malaria transmission. Important is not only the amount but also the time period in
which precipitation falls. Moderate rainfall amounts support mosquito breeding in the
LMM n, whereas excessive rainfall significantly reduce the number of immatures. Re-
duced transmission due to high rainfall is, for instance, found for Cotonou, Ziguinchor,
Kondja Foumban, and Douala (Fig.6.4).

Various effects of rainfall in the model can be nicely studied at Cotonou for 1993 and
2005 (Fig.6.9). In 1993, the LMMn simulates very low transmission (EIRa=0.5 infective
bites) despites high rainfall amounts (RRa=1727.5 mm). By contrast, a highEIRa value
(229.5 infective bites) is found for 2005 (RRa=1191.1 mm). Regarding 2005, the data
reveals favourable breeding conditions between the end of February and May. During
this period moderate rainfall amounts (RRΣ10d<70 mm) lead to highηd values (≃80%)
and a strong increase in the number of female mosquitoes (nf >250 females in May).
Strong rainfall amounts at the start of June (RRΣ10d>200 mm) subsequently forceηd and
hencenf to decrease (ηd<60%). The rainfall decline at the end of June produces again
favourable breeding conditions increasing the vector population until the start of the little
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Fig. 6.9: Illustration of daily values of (a) 10-day accumulated precipitation (RRΣ10d), (b) the daily sur-
vival probabilities of immature mosquitoes (ηd) and (c) the number of female mosquitoes per
human (nf ) with regard to the LMMn simulation of 1993 (blue lines) and 2005 (dashed green
lines). In (c) also the monthly entomological inoculation rates (EIRm) are inserted for 2005 (red
bars; right scale). Part (c) additionally indicates the months of the malaria season (lines in the
bottom part;EIRm>0.01 infective bites; cp. Sec.D.5) as well as the frequency of occurrence of
XSeasfor each month relative to 1973-2006 (one year shows no transmission).

dry season in August. In contrast, breeding in 1993 is inhibited by several dry spells at
the start of the rainy season in March and April (ηd decreases to zero). The subsequent
excessive rainfall between May and July further reducesηd and impedes malaria trans-
mission. Therefore, only a fairly small mosquito population is established at the end of
June. Also note that in both years the second rainy season in boreal autumn supports
development of a comparatively small vector population in November/December. For
various other years the maximum of malaria transmission is simulated for the second
rainy season. In eleven years out of the 34 yearsXSeasalready occurs in July, butEIRm

peaks in ten years not until November (Fig.6.9)2. In summary, malaria transmission at
Cotonou is in the model frequently steered by the more abundant rainy season in bo-
real spring. During this time, vector breeding is suppressed during dry spells and under
excessive rainfall conditions.

In 1993,Akogbéto(1995) conducted entomological measurements at Ganvié (Benin;
6.47N, 2.42E), which is about 40 km to the north of the weatherstation. At this loca-
tion HBRalready peaked in April one month before the rainfall peak inMay. The peak

2Note that due to the duration of the development of gametocytes in humans and due to the length of the
sporogonic cycle theEIR maximum lags the peak of the mosquito population.



112 6 CALIBRATION , VALIDATION , AND SENSITIVITY TESTS OF THELMM

in April suggests that at Ganvié a larger mosquito population outlived the dry season
(e.g., around the lagoon; see also Sec.5.1.6). In such a situation the population growth is
faster in nature than in the model. During the following rain-laden months between May
and July (RRm>250 mm)HBRdecreased from more than 25 bites in May to about seven
mosquito bites per human and per night in July (Fig. 1 inAkogbéto 1995). Similar fea-
tures were observed byAkogbéto(2000) in a traditional village and in a peri-urban area
near Cotonou (cp. Tab.D.3). Here, monthlyHBR values markedly increased between
April and May (comparable to the simulation of 2005), peakedin June, and declined
subsequently (Fig. 7 inAkogbéto 2000). In contrast, two less pronouncedHBR peaks
were observed for June and October at the beach of Cotonou. Atthe Cotonou city cen-
tre a primary (secondary) peak was detected for October (July). The observed variety
indicates that the LMMn reproduces a realistic malaria appearance at Benin’s coast.

To sum up, in addition to the original version also the LMMn is fairly sensitive to
its parameter settings. Various settings of model parameters result in a markedly altered
performance of the model. The mosquito survival scheme, forinstance, causes strongly
different human biting rates. The level of the parasite prevalence is significantly steered
by the recovery rate of humans. It is also found that model simulations are not only
sensitive to rainfall amounts but rather depend on its seasonal distribution and intensity.

6.3 LMM n versus LMMo

At this point, only the new version of the LMM is validated by entomological and para-
sitological data from West Africa as well as Cameroon. In this section, also the perfor-
mance of the LMMo is analysed. The key feature of this evaluation is that the original
version of the model exhibits considerable deficiencies in terms of entomological as
well as parasitological observations (see, e.g., Tab.6.2). The LMMn represents there-
fore a significant step forward in the modelling of a weather-driven malaria transmission
cycle. The most striking results of the LMMo simulations at station locations in West
Africa and Cameroon as well as from two-dimensional runs arepresented.

The comparison of the LMMo data with field observations reveals two general fea-
tures. Firstly, the LMMo fails to simulate malaria transmission in various malarious
semi-arid regions and this model version significantly overestimates malaria transmis-
sion in humid areas. This feature is the result of the simplified linear relationship be-
tween rainfall and the deposition of eggs by female mosquitoes (cp. Sec.5.1.2). In pre-
dominantly dry areas the model is unable to produce reasonable sizes of the mosquito
population due to only few simulated deposited eggs. This also leads to a fairly slow in-
crease in numbers of mosquitoes during the onset of the rainyseason. Additionally, the
mosquito survival of the Martens I scheme is comparatively low at temperatures around
30◦C (see Fig.5.5), which impedes malaria transmission. In contrast, a tremendous
number of mosquitoes are generated in humid areas such as Cameroon. The growth
of the mosquito population is almost exponential during thecourse of the rainy sea-
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son. Another cause of the increase of the population is the relatively highCAP value
(LMM o (LMM n): 10,000 (400) fertile females). Secondly, values of the parasite preva-
lence are flawed in the original model version. Almost the whole population clears the
malaria parasite during the dry season due to the high recovery rate (r; LMM o (LMM n):
0.0284 (0.005) day−1). Such a characteristic is, however, not found in parasitological
surveys. The strong recovery from infection, moreover, underestimates the maximum
level of PR. No more than about 75% of the population are able to be infected in the
LMM o version3.

set SC(HBRa) SC(CSPRa) SC(EIRa) SC(Seas) SC(MSeas) SC(XSeas) SC(SSeas) SC(ESeas) SC(PRa) SC(PRmax,a) SC(PRmin,a) SC(all )

LMM o -43 (52) 9 (55) -20 (54) 27 (42) 18 (41) 22 (37) 16 (41) 22 (37) 8 (29) 12 (25) 4 (27) 75
(440)

LMM n 37 (52) 33 (55) 41 (54) 31 (42) 23 (41) 28 (37) 28 (41) 18 (37) 16 (29) 16 (25) 8 (27) 279
(440)

Tab. 6.2: Performance of LMMo and LMMn relative to entomological and parasitological field studies
in West Africa and Cameroon. Numbers in brackets refer to points that could be theoretically
achieved. Columns: set: LMM setting;SC(x) denotes the skill score with regard to variablex.

Both features are unveiled by the comparison of LMMo simulations with entomolog-
ical and parasitological observations from West Africa andCameroon. The model com-
pletely fails to simulate malaria transmission at the four northernmost locations in the
Sahel (Gao, Podor, Rosso, and Saint Louis; e.g., Fig.E.6c; see also Fig.3.1). BothHBRa

andEIRa values are clearly lower than observed values in the Sahel (Fig. E.5a & b). In
contrast, aboveRRa values of about 800 mm the number of mosquito bites increasesto
unrealistic high values. At Douala,HBRa partly exceeds 2,000,000 bites per annum.
Even in areas with numerous mosquitoes such as irrigated territories,HBRa is usually
limited to values below 50,000 bites. Realistic transmission rates are only found for
some medial rainfall conditions between about 400 and 700 mm. These facts clearly
demonstrate weaknesses of the linear approximation relative to decadal rainfall of the
oviposition process.CSPRa reveals in general lower values than 1%, likely result-
ing from the comparatively low mosquito survival of the Martens I scheme (cp. also
Fig.6.6). For this reason, the infectiousness of the mosquito population is underrepre-
sented in the LMMo. However, this fact is not able to produce realisticEIRa values
at the more humid localities. BesidesHBRa values also values ofEIRa are markedly
overestimated by the model at more humid locations (Fig.E.5b). For example, even the
lower EIRa quartile is higher than 4000 infective bites at Yaoundé. In contrast,EIRa

only rarely exceeds 1000 infective bites in entomological field studies (see Tab. S2 in
Hay et al. 2005).

3Due to the fact that(1− r)10≈ 0.75 (see also the first footnote in Sec.7.2.1).
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Fig. 6.10:LMM o and LMMn simulated present-day (1960-2000) malaria distribution and season length
based on REMO(cor) precipitation and temperatures. Displayed are (a & b)EIRa (in infective
bites year−1), (c & d) Seas(in months), (e & f)PRa, and (g & h)PRmax,a.

In comparison to observations the malaria season is notablydelayed in LMMo simu-
lations (Fig.E.6). The start of the season occurs about one to two months laterunder the
original than under the new LMM setting (cp. Fig.E.3a). In the West Sahel, for exam-
ple, transmission starts not until August, whereas transmission begins for various years
already in July in the LMMn runs. In contrast, the simulated end of malaria transmission
is somewhat closer to reality. However, due to the large mosquito population at com-
paratively humid sites, transmission persists frequentlylonger than observed during the
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dry season. The delayed start and somewhat later end of malaria transmission results in
a fairly realistic duration of the malaria season. Nevertheless,Seasis underestimated in
dry areas. The strong growth of the mosquito population causes shorter main transmis-
sion seasons in the LMMo runs. MSeasis frequently not as long as in the LMMn runs
(cp. Fig.E.3b). The late onset of the malaria season as well as the slow initial growth
of the mosquito population in the LMMo causes a fairly late occurrence ofXSeasin
the West Sahel. Also for other locationsXSeasis frequently found later than observed
(Fig.E.7a).

The LMMo simulated parasite prevalence is predominantly influencedby a high
recovery rate of humans. For this reason, malaria infectionis frequently lower in the
LMM o runs than values from parasitological studies (see Fig.E.7b-d). This is particu-
larly true for thePRmin,a value. During the course of the dry season, almost the whole
population clears the malaria parasite. In contrast, most observed dry seasonPR data
reveals values above 20%. As a direct consequence, also values ofPRa are generally
lower than observed. As noted above, the LMMo is in contrast to the LMMn not able to
reproduce the highest measuredPRmax,a values.

Also two-dimensional LMMo simulations confirm the aforementioned statements
(Figs.6.10& 6.11). The LMMo simulates much higher transmission rates than ob-
served in endemic malaria areas of Africa. These territories exhibit values higher than
1000 infective bites. The simulations furthermore show that malaria does not penetrate
far enough toward the Sahara. The malaria spread stops about2-4◦ farther to the south
as compared to the distribution of the LMMn. These facts show that the simulation of
the LMMo is leading to an unrealistic spread of malaria transmission.

The length of the malaria season under the LMMo simulation is except for areas
of Central Africa mostly shorter than in the data of the LMMn (Fig.6.10c & d). As
aforementioned, the parasite prevalence is comparable lowin the LMMn simulation.
The PRa value barely reaches 60% in Equatorial Africa andPRmax,a does not exceed
about 75%.

Also results obtained from synoptic stations relative to the malaria season are con-
firmed by two-dimensional ensemble runs (Fig.6.11). MSeasis somewhat shorter in
LMM o simulations due to extraordinary high transmission rates towards the end of the
season. North of about 5◦N and 5◦S MSeasis one to two months shorter than under
LMM n runs. XSeasoccurs in general later than under LMMn simulations. In West
Africa, XSeasis frequently simulated for October than for September. In contrast, for
parts of the Guinean coast,XSeasis already frequently simulated for July/August. In
this zone, the mosquito population is able to grow faster during the first more intense
rainy season than in LMMn simulations. Such a behaviour is not possible in LMMn runs
due to the decreasing pupal and larval survival under high rainfall amounts (cp. Fig.6.9).
As previously mentioned,SSeasandESeasoccur in general later in LMMo simulations.
Most notable, however, is the strong retardation of the malaria season in highland areas.
Strong differences are in particular found forESeassouth of the equator and along the
Horn of Africa.
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Fig. 6.11:LMM o and LMMn simulated malaria seasonality (in months) for 1960-2000 based on
REMO(cor) precipitation and temperatures. Illustrated are (a & b)MSeas, (c & d) XSeas, (e & f)
SSeas, and (g & h)ESeas. ‘U’ signs areas of unfrequent malaria transmission; ‘V’ denotes grid
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malaria transmission (for details see Sec.D.5).

In summary, the LMMo shows a markedly too strong (weak) malaria transmission in
humid (dry) areas and leads to an unrealistic distribution of malaria. The seasonality is
predominantly shifted toward later months. Additionally,the reduced spread of malaria
in a couple of highland territories is caused by the comparatively highTs value of 18◦C.
It is therefore concluded that the LMMn version represents a marked improvement of the
LMM o in terms of the simulation of entomological and parasitological malaria variables.
Due to the fact that the LMMn exhibits realistic transmission rates it is possible to pass
EIR data to the Garki model. The LMMn hence enables more robust projections of the
present-day as well as future spread of malaria.



7 Malaria simulations for the present-day and
future climate

7.1 REMO climate projections for Africa

The following malaria projections are forced by changes in the bias-corrected REMO
temperature and precipitation data. The expected malaria changes therefore can only
be understood in connection with altered atmospheric conditions. Knowledge is hence
required in terms of future temperatures and rainfall patterns. The REMO ensemble
projections were forced by the A1B and B1 emission scenarios(Sec.2.2) in combination
with LUC changes (Sec.3.10.2). The uncorrected REMO projections were in detail
described byPaeth et al.(2009). They further quantified the relative contribution of
LUC changes to the total climate change signal. At this point, therefore, only the most
important findings are briefly summarised.

Temperatures generally increase in the climate projections within the model domain.
The strongest warming signal occurs for the A1B scenario, when LUC changes are con-
sidered. The warming is mostly pronounced at the end of the simulation period and is the
strongest in tropical Africa, in particular along about 10◦N (Fig.7.1c). This is contrary
to the multi-model ensemble of the IPCC-AR4, where the strongest increase is located
farther to the north in the western part of the Sahara (cp. Fig.2.6). Paeth et al.(2009)
explained this difference by means of introduced LUC changes which alter the bowen
ratio. Note that LUC changes were largely not included in theAOGCMs of the IPCC-
AR4. The B1 scenario exhibits similar changes, although, amplitudes are generally 1◦C
lower than under A1B (Fig.7.1). In contrast,Paeth et al.(2009) showed that the heating
rate is more homogeneous in space and lower when LUC changes are not taken into
account. Land degradation accounts for about 35% of the warming signal in tropical
Africa (Paeth et al. 2009, their Fig. 7).

Because REMO is not driven by observed SSTs, the model is not able to reproduce
the observed drought tendency during the present-day climate (1960-2000). For A1B as
well as B1, REMO projects a prominent decrease in rainfall inmost parts of West and
Central Africa (Fig.7.2). Annual rainfall decreases by about 100 mm in the southern
Sahel and up to 300 mm in the Congo Basin in certain parts reaching more than 20% of
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Fig. 7.1: Illustration of the annual mean temperature (Ta in ◦C) of REMO(cor) for (a) 1960-2000 and for
(b-e) differences inTa (∆Ta) relative to 1960-2000 for 2021-2030 and 2041-2050 of the A1B and
B1 scenarios. Note that all displayed grid boxes show statistical significant temperature changes
at the 5% level.

the present-day total. In contrast, a positive rainfall trend occurs at the windward side of
the Guinean mountains as well as over the Horn of Africa (e.g., Fig.7.2c). A completely
different picture is provided by the A1B scenario without induced LUC changes (Paeth
et al. 2009, their Fig. 6). Here, the trend pattern is rather incoherentin space and reveals a
lower amplitude. In fact, this pattern is coherent with the projected precipitation trend of
the ECHAM5/MPI-OM.Paeth et al.(2009) linked the role of LUC changes to reduced
local water recycling due to decreases in evapotranspiration. Except for West Africa,
where the GHG forcing contributes up to one-third of the drying, LUC changes are
responsible for almost the entire drying signal. The reduced annual precipitation amount
leads to longer dry spells reducing water availability.

One result of the warming in tropical Africa is an intensification of the summer mon-
soon flow. This increases the moisture advection over sub-Saharan Africa and probably
causes the rainfall increase in the area of the Guinean mountains. However, in most parts
of West and Central Africa this growth is not able to balance the drying trend induced
by the reduced local water recycling.
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Fig. 7.2: Same as Fig.7.1, but for the annual precipitation amount (RRa in mm). Values statistical signifi-
cant at the 5% level are marked by dots.

7.2 Present-day malaria distribution

7.2.1 LMMn runs based on IRD/ERA40 (1968-1990)

A realistic simulation of the present-day malaria distribution in Africa is a prerequisite
for the projection of the future malaria spread. The skill ofthe LMMn in terms of the
simulation of various entomological and parasitological variables was shown for single
observed rainfall and temperature time series in West Africa and Cameroon (Sec.6.1).
The following two-dimensional malaria runs provide further evidence that the LMMn
version is able to reproduce a realistic malaria distribution.

In order to reduce inherent uncertainties, the LMMn is first driven on a 1◦ latitude-
longitude grid by IRD rainfall observations and ERA40 temperatures (Secs.3.6& 3.9).
These runs are restricted to West Africa for the period 1968-1990 and might serve as a
reference for subsequent simulations driven by modelled data from REMO.

Apart from the good performance at station locations (Sec.6.1) the LMMn also
provides realistic entomological data for the West Africansubcontinent (cp.7.3). The
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Fig. 7.3: LMM n simulated present-day (1960-2000) malaria distribution and season length based on IRD
precipitation and ERA40 temperatures. Depicted are (a)EIRa (in infective bites year−1), (b)
σ(EIRa) (in infective bites year−1), (c) Seas(in months), (d)σ(Seas) (in months), (e)PRa, (f)
σ(PRa), (g) PRmax,a, and (h)σ(PRmax,a).

largestEIRa values and the longest malaria seasons are simulated for thesouthern part of
the domain. As expected, transmission is most intense and shows the strongest year-to-
year variability along the Guinean coast, the Sudanian zone, and in the southern part of
the Sahel. The longest malaria persistence is found for the Guinean coast (Fig.7.3a-d).
South of about 15◦N EIRa usually ranges between 100 and 500 infective bites. A sharp
decrease in malaria transmission and in the interannual variability is modelled north of
about 15◦N. These are areas where the annual rainfall supply falls below 400 mm (av-
erage of 1968-1990). Only a marginal malaria transmission is simulated for the fringe
of the Sahara desert. Comparatively low are transmission rates at the coast of Togo and
Benin. As previously noted, dry spells and excessive rainfall during boreal spring as
well as the little dry season can significantly reduce the modelled mosquito population
in this area (cp. Sec.6.2 and Fig.6.9). In comparison with transmission rates further to
the west, southern Chad shows relatively lowEIRa values but reveals an extraordinary
year-to-year variability. This might be to a certain extentexplained by somewhat lower
amounts of precipitation (cp.RRa in Figs.4.1& 4.3a). Excessive rainfall in the frontier
border area of Guinea and Guinea-Bissau lead to low simulated EIRa values (see, e.g.
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August in Fig.4.1). A substantial interannual variability ofEIRa is also simulated. At
certain grid points,σ(EIRa) reaches about half or more of theEIRa value of 1968-1990
(Fig.7.3b).

The length of the malaria season is closely related to the presence of the monsoon.
Seasgradually decreases from about eleven months along the Guinean coast toward
less than one month in northern Sahel (Fig.7.3c). At the coastal area, the season starts
around March/April and continues until November/December. Due to the later monsoon
onsetSSeasis retarded farther in the North. In the Sahel, the transmission is delayed
until June to September and the season already ends between September and Novem-
ber (Fig.F.7e & g). In Benin, for example, the average value ofSeasdecreases in the
south-north direction from about ten to six months.MSeasusually adds up to one to
five months causing about half of the months of the transmission season to exhibit low
transmission rates (Fig.F.7a). North of about 9◦N the maximum transmission occurs in
general between September and October. However, south of this latitudeXSeasis highly
variable along the Guinean coastal region. Various years reveal a maximummonthly En-
tomological Inoculation Rate(EIRm) during boreal spring, whereas for other years the
highestEIRm values occur in boreal autumn (see Figs.F.7c & F.8c). During certain years
the presence of the little dry season causes an interruptionin the malaria season between
August and October/November for various grid points at the coast. This explains the
comparatively high value ofσ(Seas) (Fig.7.3b).

In agreement with the simulated duration of the malaria season, LMMn simulations
show a decrease inPRa from the Guinean coast towards the Sahel (Fig.7.3e). The high-
estPRa values of more than 70% are found in the Guinean coastal region. At various
grid points south of about 14◦N the upper model limit ofPRmax,a is reached every year
(Fig.7.3g)1. As observed,PRa andPRmax,a increase strongly in the Sahel from less than
10% to values above 50% (cp. Fig.E.4c)2. In this area,PRmax,a declines within about
three degrees of latitude from values above 90% to values less than 10%. However, the
previous validation of the LMMn already showed (Sec.6.1) that the simulation of para-
sitological variables is not as realistic as that of entomological variables (see Sec.8 for a
detailed discussion).

The low and variable transmission intensity and length of the malaria season leads to
a strong year-to-year variability ofPR in parts of the Sahel. The highestσ(PRmax,a) val-
ues are simulated along a latitude band between about 14 and 16◦N. Various grid points
in the Sahel exhibit a standard deviation above 25%. For the same reasons,PRmax,a

1Due to the design of the LMMn the value ofPRmax,a is not able to exceed about 95.1%. Under high
transmission rates an equilibrium condition is reached in the model, when humans are either in the latent or
infectious stage. A fraction of these humans continuously clears their infection. Due to the fixed recovery
rate (r) of 0.005 the prepatent period (np) of about 10 days is only passed by about 95.1% (np=10 days
⇒ (1− r)np = (1−0.005)10≃ 0.951).
2Note that due to the trickle of the number of added infectiousmosquitoes (tr im) PRcannot fall to zero in
the model (see Sec.5.1.6). A certain level ofPR(usually less than 3-4%) is reached by this constant influx
even in absence of ‘truly’ simulated transmission. This level is primarily determined by the recovery
rate (r) but also depends on atmospheric conditions since mosquitosurvival in the LMM depends on
temperatures and rainfall.
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varies significantly at the border area of Guinea and Guinea-Bissau. For most other parts
of West Africa the computed standard deviation is fairly low.

7.2.2 Evaluation of LMMn runs based on REMO (1960-2000)

Subsequent to the modelling of malaria in West Africa forcedby observed data, the
LMM n was driven by REMO ensemble runs of the present-day climate of 1960-2000
(see Sec.3.10). In addition to the presentation of the data, the performance of the model
is evaluated using a variety of published malaria maps and additional entomological and
parasitological surveys. The modelled spatial and seasonal distribution of the malaria
transmission as well as the simulated epidemic risk is also validated.

Present-day malaria runs cover large parts of the African malaria belt (Fig.7.4). The
simulated malaria distribution is comparable to various other published malaria maps
(e.g., Fig.2.8). The spread of malaria is restricted by both, desert areas as well as high-
land regions. The pattern of the simulated malaria variables is closely related to runs
driven by IRD rainfall and ERA40 temperatures (cp. Figs.7.3, 7.4, F.7& F.9). However,
malaria transmission reaches higher latitudes in REMO(cor) based LMMn simulations.
This feature is probably related to higher rainfall amountsin the Sahel in REMO(cor)
than in IRD (see Sec.4.1).

The seasonality of malaria in the new simulations also corresponds well to former
runs. The largest differences are seen at the Guinean coast.In certain parts, simulations
driven by REMO(cor) reveal smallerSeasandMSeasvalues. The influence of the little
dry season seems to be more pronounced in runs driven by IRD and ERA40. In these
runs, malaria transmission is either the strongest betweenMay and July or exhibits a
maximum in October-December (Figs.F.7c & F.8a). Such a progression is less frequent
in REMO(cor) forced simulations andXSeasis only found for September and October
(see Figs.F.9c & F.10a). However, the year-to-year variability ofXSeasis still the largest
for certain coastal territories. Large standard deviations are found in particular for the
Mount Cameroon region as well as for the coastal zone betweenGuinea Bissau and
Sierra Leone.

The actual runs lead to several new insights into the spread of malaria of West Africa.
The additional grid points and the higher spatial resolution show a marked influence of
mountainous areas. Compared to nearby plains, temperatures below or around 20◦C
in the Adamawa and the Jos Plateau (see Fig.7.1a) lead to lower transmission, shorter
and delayed malaria seasons, as well as diminished parasiterates (cp. Figs.7.4& F.9).
In contrast, the reduced transmission in the Guinean mountains results not from low
temperatures but from excessive rainfall. Annual average temperatures in REMO(cor)
are above 22◦C; however, this region receives large amounts of rainfall (Fig.7.2a).

The highestEIRa values in the whole model domain are simulated for equatorial
Africa and the southwest of Cameroon. These are areas with high annual rainfall but not
excessive precipitation like that of the Mount Cameroon (Cameroon; 4◦13’N, 9◦10’E)
area. For the Congo Basin, the LMMn simulates year-round transmission and the highest
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MSeasvalues, consistent with observations (cp.Carnevale et al. 1992; Bonnet et al.
2002). Additionally, high transmission rates are simulated forgrid boxes of the Guinean
coast (in particular that of the Dahomey Gap), the southwestern flank of the Ethiopian
Highlands, as well as the coast of Tanzania.
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Fig. 7.4: LMM n simulated present-day (1960-2000) malaria distribution and season length based on
REMO(cor) precipitation and temperatures. Displayed are (a) EIRa (in infective bites year−1),
(b) σ(EIRa) (in infective bites year−1), (c) Seas(in months), (d)σ(Seas) (in months), (e)PRa,
(f) σ(PRa), (g) PRmax,a, and (h)σ(PRmax,a).

South of the equator, the onset of transmission is between September and January
and malaria usually pauses between April and July, correlating well with MARA maps
(cp. Figs.2.8c & d andF.9e & g). In these territories, the malaria transmission maximises
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in the model runs in March or April, which is exactly the opposite of XSeasof September
or October for areas north of the equator.

The long and short rains in East Africa result in interruptedmalaria transmis-
sion in certain areas. The LMMn therefore frequently simulates two malaria seasons
(cp. Figs.F.9& F.10). The first season usually starts in April or May and ends be-
tween June and August. The second, shorter malaria season normally starts between
November and December with transmission ceasing in December or January (further
see App.D.5). The longest malaria season and in parts a year-round transmission is
found for the Kenyan and northern Tanzanian coast.

In East Africa, the presence of highlands causes a complex pattern of the malaria
distribution. Parts of Ethiopia, Kenya, Tanzania, Rwanda,Burundi, Congo, Zambia, and
Angola are covered by highlands (Fig.2.1b). Atmospheric temperatures (around 20◦C
or lower; see Fig.7.1a) in these regions reduce or disrupt the malaria transmission and
dry conditions along the Horn of Africa even prohibit the spread of malaria in the model
(cp. Fig.7.2a).
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Fig. 7.5: Comparison of (a) the LMMn simulation with (b) historical Kenyan and Tanzanian malaria
maps in terms of the length of the malaria season (Seas). The historical analysis of Kenya
and Tanzania was performed byWilson (1956) andNelson(1959), respectively (seeCraig et al.
1999, their Fig. 3b). In (a) black crosses mark grid boxes at whichsimulated malaria occurs
(EIRa>0.01 infective bites) in less than 5% of the years between 1960 and 2000. In contrast,
white (black) dots refer a frequency of occurrence of 5-50 (50-95)%.

Comparison with historical Kenyan and Tanzanian malaria maps enables the veri-
fication of model simulations relative to East Africa (see Fig.7.5). There is a striking
resemblance of the simulation with the historical analysis(see alsoOmumbo et al. 2005,
their Fig. 3b). Naturally, some regional details are not captured by the 0.5◦ latitude-
longitude grid. High transmission and parasite rates are both simulated and observed
for the northern vicinity of Lake Victoria. In opposition tothe model ofOmumbo et al.
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(2005), the LMMn simulates a reasonable parasite prevalence and season length south
of Lake Victoria. Also, the aforementioned transmission along the coast of Tanzania
and southeastern Kenya is included in the historical malaria maps. However, the model
seems to overestimate the malaria spread at the coastal zoneof Kenya, in particular in
the north-eastward direction. The LMMn exhibits the historically recorded malarious
region southeast of Mount Kenya (Kenya; 0◦9’S, 37◦18’E), which is largely disregarded
in the MARA maps (see Fig. 3a inCraig et al. 1999). Here,PRa ranges between 10 and
40% (Fig.7.4e) andSeasadds up to 1-5 months in LMMn runs. There is a close corre-
spondence between modelled and historically recorded malaria free or epidemic-prone
areas (see crosses and dots in Fig.7.5a). As a result of low annual rainfall or low tem-
peratures, the model and historical maps (frequently) lackthe malaria transmission in
the vicinity of Lake Turkana, in northeastern Kenya, and in Western Kenyan highlands.
Also, transmission gaps in the Eastern Arc Mountains of central Tanzania are reflected
in the model. However, the LMMn is, as expected, not able to simulate accurately the
malaria spread in the Tana and Pangani river valleys.
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Fig. 7.6: Risk assessment of malaria epidemics with regard to LMMn runs of the present-day climate
(1960-2000) based on REMO(cor). Illustrated is the coefficient of variation (cv) of PRmax,a

indicating epidemic risk. Black crosses mark grid boxes at which the simulated malaria occurs
(EIRa>0.01 infective bites) in less than 5% of the years between 1960 and 2000. In contrast,
white (black) dots refer to a frequency of occurrence of 5-50(50-95)%.

Assessment of epidemic malaria risk

The year-to-year variability of the malaria prevalence (Fig.7.4f & h) is to a certain extent
determined by the number of bites humans receive during a certain period. However,
once transmission exceeds a certain level no further increase inPR is expected. In fact,
the prevalence has been shown to correspond to the logarithmof EIRa (Beier et al. 1999;
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Hay et al. 2005). The approximate saturation level is reached at about 30 infective bites
per annum (Smith et al. 1993). On this account,Smith et al.(1993) observed in Kenya
no differences in the malaria prevalence despite a tenfold variation inEIRa. Another
factor that determines disease prevalence is its seasonality. Longer transmission seasons
likely result in a higher value ofPRa.

Malaria epidemics might be simply defined as an increase in disease prevalence
beyond that normally experienced (Macdonald 1957; Connor et al. 1999). Epidemics
occur either in usual malaria-free areas or are a result of a significant change in the
normally experienced intraseasonal variation of the disease prevalence (cp.Kiszewski
and Teklehaimanot 2004). Such events are forced by unusual high seasonal transmission
levels and lead to a sharp increase inPR during short time periods. In either case,
epidemics lead to a marked increase inPRmax,a and are likely to cause a high year-to-
year variability ofPRmax,a. Endemic malaria areas with largePRa values, however, can
also reveal high values ofσ(PRmax,a). In fact, the interannual variability ofPRmax,a must
be understood in the context of its average value. Thecoefficient of variation(cv)3 of
PRmax,a is therefore better suited for the risk assessment of malaria epidemics (Fig.7.6).

High values ofcv(PRmax,a) andσ(PRmax,a) are found along a strip within the Sa-
helian zone between 13 and 18◦N (Fig.7.6), a region well-known for instable malaria
transmission. Malaria epidemics have been regularly reported in the arid and semi-arid
regions of Senegal, Mauritania, Mali, Niger, Chad, and Sudan (Kiszewski and Tekle-
haimanot 2004). The band of highcv(PRmax,a) values (e.g., >50%) is located about one
to two degrees farther to the north than the strip ofσ(PRmax,a). Note that transmission
rates within thecv(PRmax,a) strip are fairly low. During several years the malaria trans-
mission is absent in LMMn simulations in the northern part of this zone (see the black
and white dots in Fig.7.6). The unstable malaria zone of the LMMn is about one degree
displaced to the south of epidemic malaria areas defined by the climate-suitability of the
MDM (cp. Fig. 3 inSnow et al. 1999a).

Various grid points in the Jos Plateau and Adamawa mountainsexhibit large coeffi-
cients of variation and therefore reveal a potential epidemic risk. However, the malaria
transmission seems to be endemic throughout Nigeria, even in the area of the Jos Plateau
(e.g.,Uneke et al. 2005). Recently,Atangana et al.(2009) performed across-sectional
surveyin the Western Cameroon highlands in the area of Mangoum (Cameroon; 5◦28’N,
10◦33’E) at analtitude (z) of about 1100 m with average temperatures of about 22◦C.
This surveillance showed that the Western Cameroon highlands are characterised by a
high malaria transmission intensity (EIRa=101 infectious bites). AlsoWanji et al.(2003)
found a highEIRa of 161 infective bites in the Mount Cameroon region. However, no
single mosquito was collected and therefore no malaria transmission was observed at

3The coefficient of variation is defined as the ratio of the standard deviation (σ) to the mean (µ): cv = σ
µ .

This statistical variable relates the standard deviation of the data to its mean value. The usefulness ofcv

is limited when the mean is near zero. In this case,cv is sensitive to small changes in the mean value.
However, due to the structure of the LMMn the parasite prevalence in sub-Saharan Africa does not fall
below 1%.
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Vasingi (Cameroon; 4◦17’N, 9◦15’E) at an altitude of 1200 m. The authors explained
the absence of mosquitoes by low temperatures (usually <15◦C) and by the lack of ap-
propriate breeding sites due to fast-flowing streams. This finding confirms the unstable
or absent malaria transmission in the present-day malaria runs. Due to the orography of
REMO (z reaches in parts >1400 m; cp. Fig.2.1) various grid points of the REMO(cor)
data exhibit temperatures below 20◦C (Fig.7.1a).
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Fig. 7.7: Comparison of (a)cv(PRmax,a) as simulated by the LMMn with (b) epidemic localities and pre-
dicted epidemic risk in East African highland areas above 1000 m. The map in (b) has been
extracted from Fig. 8.2 inCox et al.(1999). Crosses and dots in (a) render the same information
as in Fig.7.6.

Also, the southwestern coast of West Africa shows a strong year-to-year variabil-
ity of the parasite prevalence. These areas might be characterised as epidemic since
they also show large values ofcv(PRmax,a) (>80%). Unfortunately, no malaria data was
published for the coast of Guinea-Bissau, Guinea, and Sierra Leone (seeHay et al.
2005, their Tab. S2). Data exists only for the area of Bo in the Southern Province
of Sierra Leone (cp. Fig.G.2). An average prevalence of 61% was found byBarnish
et al.(1993) for eight villages in 1990 (LMMn: 50%≤ PRmax,a<60%). During the same
time Bockarie et al.(1994) conducted an entomological study.EIRa ranged from 21.5-
36.5 infective bites (LMMn: 10≤ EIRa<100). Additionally, measures of the seasonal
variation of indoor-restingAnophelesfemales are provided (their Fig. 1). High monthly
rainfall from July to September (RRm ≃500 mm) is remarkable and the concurrent rapid
decline in catches of female mosquitoes. These measurements once again suggest a
marked influence of excessive precipitation on the vector population size. It is interest-
ing to note that for this area LMMn simulations exhibit a secondary maximum ofXSeas
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for July/August (cp. Figs.F.9c & F.10a). Other field studies in the same region detected
much higher transmission rates (Bockarie et al. 1993, 1995; Magbity et al. 1997). The
highestEIRa value of 1,235 infective bites was found in the village of Bayama (Sierra
Leone; 8◦00’N, 11◦77’E). However, such values are not simulated by the LMMn in this
region.

The distribution of potential epidemic risk in the Greater Horn of Africa is complex
and warrants further investigation. For the present-day climate various areas at high al-
titudes are unsuitable for the simulated malaria distribution (see Figs.2.1b, 7.4& 7.17).
A high orography in REMO is found along the East African Rift.Malaria-free areas
are simulated for the Eastern Rift Valley comprising the Ethiopian Highlands as well
as the Western Kenyan highlands. Malaria is also absent in the Western Rift Valley
in the area of southwestern Uganda, Rwanda, and Burundi. Themalaria spread is fre-
quently limited along the Udzungwa Mountains to the northeast of Lake Malawi. Also
no malaria is modelled for the northern part of Somalia resulting from arid climate con-
ditions (cp. Figs.2.1b & 7.4).

Marginal malaria areas are either found in arid climates or are located in regions
exhibiting temperatures only slightly above the sporogonic temperature threshold. The
typology of these areas therefore varies according to whether the transmission is permit-
ted due to exceptional rainfall or whether small temperature increases enable parasite
development (Snow et al. 1999a). East African highlands are well known for malaria
epidemics. As previously described (Sec.2.8), various locations in East African high-
lands experienced a rise in frequencies of epidemics duringthe 20th century. Unstable
highland malaria transmission is concentrated in large parts of Ethiopia, western Kenya,
southwestern Uganda, much of Rwanda and Burundi, as well as the northern part of the
Eastern Arc Mountains and the Kagera district in Tanzania (Fig.7.7b).

The LMMn identifies large parts of East Africa as epidemic-prone areas. The
LMM n simulates a considerable parasite prevalence up to an altitude of about 1900 m
(cp. Fig.7.17), close to the generally considered upper limit of transmission of approx-
imately 2000 m (Kiszewski and Teklehaimanot 2004). The model accurately represents
the epidemic risk of various known epidemic highland territories (see Fig.7.7). How-
ever, the results suffer from the horizontal resolution of the model runs. The grid points
are not able to represent the variable altitudes at highlands sites. Epidemic risk is under-
estimated for Western Kenyan highlands4. Only few grid points reveal highcv(PRmax,a)

values. Epidemic-risk in the Eastern Arc Mountains of Tanzania cannot only be ex-
plained by altitude. Temperature is not always the significant factor of transmission in
this region, which is often limited by the availability of breeding sites for malaria vectors.

4Malakooti et al.(1998), for example, described the study site of the tea estate in Kericho (Kenya; 0◦22’S,
35◦17’E) in Western Kenyan highlands. The altitude of this arearanges from 1,780-2,225m. By contrast,
the REMO background orography abruptly jumps within 1◦ longitude from Lake Victoria (z≃1150 m)
to altitudes above about 2000 m. As a result, simulated temperatures in Western Kenyan highlands do
not fully reproduce the observed temperature range and hence reduce the likelihood of epidemics in the
model. The simulated transmission abruptly decreases fromhighEIRa values at the shore of Lake Victoria
to almost zero at high altitudes.
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This fact likely causes the comparatively low altitude of 1455 m of Tanzania at which
epidemic localities were recorded (Cox et al. 1999). Additionally, localised malaria epi-
demics were monitored at Angola and Zambia (Kiszewski and Teklehaimanot 2004) and
the LMMn simulates a considerable potential epidemic risk for thesecountries.

Unstable malaria transmission is also found at the Horn of Africa. The MARA
project identified arid deserts at the juncture of Kenya, Ethiopia, and Somalia as epidemic-
prone areas (seeSnow et al. 1999a, their Fig. 3) and the LMMn identified potential epi-
demic localities for most parts of these territories (Fig.7.7a). Unstable malaria transmis-
sion areas are both discovered by MARA and the LMMn for the arid and semi-arid plain
areas of Kenya, southeastern Ethiopia, as well as parts of the Afar depression. This is
different for almost the whole country of Somalia, which is subject to epidemic risk in
the MARA map, whereas only about half of Somalia shows unstable malaria transmis-
sion in LMMn runs (Fig.7.6). Only a small risk is indicated by the LMMn for northern
Somalia and the southern coast of South Central Somalia.
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Fig. 7.8: Comparison of parasite prevalence (PRa) for Somalia between (a) the LMMn simulation and (b)
predicted values fromNoor et al.(2008a). Crosses and dots in (a) render the same information
as in Fig.7.6.

Noor et al.(2008a) recently analysed parasitological surveillances from Somalia.
According to data from 2005-2007 the parasite prevalence islow in the north (2.8%)
and somewhat larger in the south. It is interesting that various observations in northern
Somalia reveal no malaria parasites (see Fig. 4 inGuerra et al. 2008). Noor et al.(2008a)
additionally performed a spatial prediction ofPR for the entire country (Fig.7.8b). This
map shows the largest prevalence (at certain sites >40%) in parts of South Central So-
malia with reduced infection rates at coastal regions. In the same area northwest of
Mogadishu,Noor et al.(2008b) dissected theP. falciparuminfection from four cross-
sectional surveys in 2007. The prevalence was significantlylower in bed net users and
exceeded 20% only in pastoralist communities and in children aged 5-14 years. In the
late 1980’s,Warsame et al.(1989) additionally found an infection prevalence of 18%
among children aged 1-9 years.
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Values of the simulated and estimated infection rates in South Central Somalia are
comparable to modelledPRa values (Fig.7.8). However, the highest prevalence in the
model runs is shifted toward the coast underestimating the epidemic risk of this zone.
SimulatedPR values are hence too low farther inland, which conversely results in an
overestimated variability of the malaria transmission (Fig.7.6). The LMMn furthermore
underestimates the malaria spread in northern Somalia. In contrast to various surveys
between 2005 and 2007, almost no transmission is found in model runs for the present-
day climate (see crosses in Fig.7.8a).

In summary, the LMMn demonstrates a fairly realistic simulation of the malaria
spread in Africa. The model correctly reproduces the epidemic potential at fringes of
endemic malaria areas. Epidemic-prone areas are found along a band in the northern
Sahel, for various highland areas, as well as in arid and semi-arid zones of East Africa.
Significant discrepancies are mainly a result of the crude horizontal resolution and likely
originate from specific environmental conditions.



7.2 PRESENT-DAY MALARIA DISTRIBUTION 131

7.2.3 Garki model simulations based on LMMn runs (1960-2000)

The analysis of the present-day malaria situation is supplemented with simulations from
the Garki model. This model is driven by 5-day accumulatedEIR values taken from
the LMMn ensemble runs. Unlike the LMM, the Garki model considers various malaria
key features such as immunity (see Sec.5.2). The application of the Garki model allows
an assessment of the age dependence of parasite prevalence and an estimation of the
proportion of infectious and immune hosts. The model therefore permits an analysis
of changes in the population structure of malaria under future climate conditions. The
Garki model furthermore facilitates an assessment of the performance of the LMMn with
regard to simulated parasite prevalence.

The infectious individuals in the Garki model are in the early stages of disease. For
this reason, this population group is probably suffering from malaria outbreaks. This
group of the human population is therefore likely to be responsible for the largest con-
tribution to morbidity and mortality numbers. The largest annual mean proportions
of infectious individuals (y1,a) are, for example, found for short seasonal and intense
malaria transmission occurring in the Sudanian or southernSahelian zone (Fig.7.9a).
These regions are characterised by a comparatively slow attainment of immunity in the
model. More than one fifth of the human population is infectious in these territories.
In fact, these are also areas with a comparatively low proportion of immune individuals
(Fig.7.9g). By contrast, year-round and high transmission rates in the Congo Basin re-
sult in fairly low y1 values due to a rapid immunisation of the population (cp. Fig. 7.20d).
Naturally, infectivity is fairly low at fringe malaria areas. In these regions, however, the
interannual variability ofy1,a is large (Fig.7.9b). Thus certain atmospheric conditions
during particular years lead to a marked increase in infectivity. There is a close corre-
spondence between the standard deviation ofy1,a and that ofPRmax,a from the LMMn

(see Fig.7.4h). Of courseσ(y1,a) values are much lower than that ofσ(PRmax,a) due to
the higher level ofPRmax,a.

The Garki model simulates a fairly uniform parasite prevalence in endemic malaria
areas. In such regions, the annual mean and maximum malaria positive proportion
(ya & ymax,a) usually ranges between 50-70% and 60-80%, respectively (Fig. 7.9c & e).
Theya values are more uniform and lower than corresponding LMMn PRa values (cp.
Fig.7.4e). Clearly, the considered immunity decreases disease prevalence in the Garki
model. Such a condition is found for the Congo Basin leading to a secondary minimum
of ymax,a (Fig.7.9e). Due to the design of the model such a feature cannot be simulated
by the LMMn.

It should be noted that malaria transmission in the LMMn is adjusted to children
(see Sec.5.1.14). For this reason, it is not surprising that the modelled prevalence differs
between the two models. The comparison might be more reasonable in terms of child
parasite ratios. According to the Garki model, child prevalence in most malaria areas
are higher than 70% except for fringe transmission areas (Fig.7.19a). Theannual mean
parasite ratio of children aged 2-10 years(PR2−10) is larger and again more uniform
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than the corresponding LMMn PRa value (Fig.7.9e). In endemic malaria areas,PR2−10

ranges between about 70 and 90% whereasPRa values of the LMMn fluctuate between
about 50 and 90%. This behaviour is not startling since the LMMn exhibits an about
twice as large recovery rate (LMMn: r = 0.005 day−1; Garki model:r = 0.0023 day−1

for non-immune individuals; cp. Sec.5). Due to highya values the transition to non-
malaria areas is more abrupt in Garki model simulations. TheGarki model also shows
strong influences of highlands on malaria prevalence in children.
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One expected result are congruent malaria areas between theGarki model and LMMn

(cp. Figs.7.6& 7.9b5). However, this is more or less obvious since the Garki modelis
driven byEIR data from the LMMn. More interesting is the fact that both models iden-
tify about the same areas with a strong year-to-year variability of the malaria prevalence
(Fig.7.9b, d & f). Nevertheless, values of standard deviations are clearly smaller than
the ones of the LMMn (Fig.7.9f & h). The reason for this behaviour is likely the fast
recovery of infected immune individuals prohibiting a higher number of infections.

The proportion of immune hosts is as expected the largest in the equatorial tropics in
the area of year-round malaria transmission (Fig.7.9g). In the Congo Basin, theannual
mean proportion of immune individuals(Ia) amounts to about 60-70%. This value is
somewhat lower for endemic malaria areas with seasonal transmission.Ia ranges usually
from 40-60%. The Garki model simulates a sharpIa decrease for the northern part of
the Sahel as well as for other fringe malaria territories such as highlands. This feature
is realistic since unstable malaria transmission does not support development of an ade-
quate immune protection. Note also thatIa only varies from year-to-year in these fringe
malaria areas (Fig.7.9h).

The pattern of patent malaria positives reveals the expected peak in children below
an age of about five years (ya in Fig.7.20). The transmission level determines whether
this peak is attained at an earlier or later age of each child.At very high transmission
rates such as in the Congo Basin theya maximum is already found at the second year of
age (Fig.7.20d). In epidemic-prone areas no such maximum is found (cp. Fig.7.20a).
The age at which the peak occurs seems not to vary as much with the transmission
intensity as is observed in field studies. Additionally, thedecline with age in prevalence
is not as pronounced as in many field data sets (e.g., Figs. 3 & 4in Molineaux et al.
1978).

One characteristic of the model for a given overall force of infection is a steeper
decline in prevalence with age when transmission is seasonal than when it is not (not
shown). Parasite prevalence is reduced when inoculations are delivered seasonally, than
when they are evenly distributed throughout the year. This model feature is a result of
the way in which superinfections are treated in the model. New infections make less
contribution to the prevalence when the host already has a risk of infection. In fact, at
certain transmission levels the risk of being infected doesnot raise anymore.

The simulated age pattern of infectivity seems to correspond reasonably well to ga-
metocyte prevalence data (e.g., Fig. 1 inDietz et al. 1974). The infectious proportion
is again the highest for young children (y1,a in Fig.7.20). At low transmission levels
infectivity declines much slower than at high transmissionrates. However, direct feed-
ing or membrane feeding experiments did not revealed as striking age dependencies as
is seen in patent gametocytaemia.Muirhead-Thomson(1957), for example, found that
adolescents and adults constitute at least 30% of the total reservoir of malaria infection

5The coefficient of variation forymax,a was not calculated since various values ofymax,a are near to zero.
Note also that the model design does not support a computation of the interannual variability of child
parasite ratios (cp. Sec.5.2).
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in Liberia. The very steep decline in the Congo Basin hence might be overemphasised
in the model.

Another expected result is the rise in the number of immune individuals with age (Ia
in Fig.7.20). Note that hosts do not loose their immunity status in the original version
of the Garki model. The increase of the fraction of immune hosts follows in principle a
more or less steep saturation curve depending on the transmission level. In the equatorial
tropics, already more than 50% of all 15 years olds are immune. Low transmission levels
in the northern Sahel and in East African highlands are an example for an almost linear
increase with only about 20% of the population are immune at an age of 75 years.

To sum up, the Garki model reproduces fairly realistic features of malaria preva-
lence. The highest infectivity and prevalence is usually found within the first five years
of life due to their low immune status. Children therefore are likely to suffer most from
disease outbreaks. A short seasonal and intense malaria transmission causes the largest
infectious proportions. The highest immune proportions are found in the oldest age
groups. The most rapid immunisation is simulated in areas ofyear-round and intense
malaria transmission.

7.2.4 Malaria seasonality from the MSM (1960-2000)

The malaria seasonality is additionally analysed by MSM simulations (Sec.5.3). Present-
day REMO ensemble runs for 1960-2000 (see Sec.3.10) were used for calculation of
the present-day climate conditions of required two monthlyand three yearly climate
variables.

The distribution of rainfall and temperatures in space and time determine the simu-
lated malaria seasonality of the MSM. Only a small area in theheart of the African con-
tinent exhibits no malaria constraints. For other grid boxes the MSM criteria (Tab.5.4)
are not satisfied at least during parts of the year (see Figs.7.10& F.34). The regions
north and south of the equator are affected by low precipitation amounts during boreal
winter and summer, respectively. Farther north and south also atmospheric temperatures
are a crucial factor. During boreal winter (summer) temperatures fall to such low values
that the malaria transmission would break north (south) of about 15◦N (10◦S) under the
presence of the parasite. Temperatures further limit the spread of malaria in East African
highlands. At few grid points in Ethiopia even the frost criterion impedes malaria trans-
mission in the model.

In Africa, precipitation limits the spread of malaria in various areas. No transmission
is hence predicted for regions with low annual precipitation amounts, for example, in the
Sahara desert, along the Horn of Africa, and in the vicinity of Lake Turkana (Fig.7.11a).
The catalyst month and the monthly moving precipitation criteria are leading to a vari-
able malaria season length in the simulations. In agreementwith the RRa distribution
and LMMn runs, the MSM reveals a decrease in season length from Equatorial Africa
towards the Sahel. Malaria transmission is year-round in the equatorial tropics in the area
of the largest precipitation amounts in southern Cameroon,Equatorial Guinea, Gabon,
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large parts of Congo, and Uganda, as well as in certain parts of western Kenya and
northern Tanzania. Noticeable is the comparatively short malaria transmission in the
Eastern Arc Mountains of Tanzania. This feature is again related to low temperatures
and rainfall.
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Fig. 7.10:Constraints of malaria transmission for the present-day climate (1960-2000) with regard to
MSM criteria (cp. Tab5.4). Included are criteria that at least once impede malaria transmission
during the course of the year. Constraints: T:T3m; P:RR3m or RRc; T+P:T3m & (RR3m or RRc);
T+F: T3m & Tmin,m; A: Tmin,m & T3m & (RR3m or RRc); and N: no constraint.

The MSM also correctly reproduces the gap in the malaria spread in East African
highlands. The MSM simulates malaria-free areas along the Great Rift Valley, for ex-
ample, in the Ethiopian Highlands. Also the Fouta Djallon inGuinea, as well as the Jos
and Adamawa Plateau in Nigeria and Cameroon markedly reducethe season length or
even cause no malaria transmission in the MSM.

Results of MSM simulations compare well with maps provided by MARA
(Fig.2.8b) as well as to results of the LMMn (see Figs.F.7& F.9). However, differences
relative to MARA maps occur in parts of West Africa as well as in the Greater Horn of
Africa. MSM simulations driven by REMO(cor) exhibit a shorter transmission season
along the Guinean coast and in the northern Sahel. The MARA map reveals various non-
malaria areas in southeastern Ethiopia, the centre of Kenya, and in western Somalia that
are not malaria-free in the present MSM simulations. Differences are also found south
of the equator in Zambia and Angola. Note that these disagreements are often related to
different orographies and an unequal resolution of data sets.

In West Africa, the start of malaria transmission is simulated short after the onset
of the rainy season. Comparable to LMMn simulations the malaria season sets in be-
tween March and April and finally ends in November or Decemberat the Guinean coast
(Fig.7.11b & c). Also the MSM reproduces delayed malaria seasonality toward the Sa-
hara. The MSM furthermore depicts two distinct malaria seasons in various parts of East
Africa. Two seasons of several grid boxes of the Adamawa Plateau are a result of low
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monthly temperatures during boreal summer. It is interesting to note that the LMMn
lacks this feature for most years between 1960 and 2000 (cp. Fig. F.10).
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Fig. 7.11:MSM simulations of (a) the length of the malaria season (Seas; in months), (b) the start (SSeas),
and (c) the end month (ESeas) of the malaria transmission (C: year-round transmission)for the
present-day climate (1960-2000). RegardingSSeasandESeasfor areas with two seasons only
the first malaria season is shown.

For most regions south of the equatorial tropics, malaria transmission is simulated
between boreal autumn and early boreal summer. However, dueto low temperatures at
some grid points in Angola and Zambia seasonality is restricted between November and
January. For other parts of this area the malaria season breaks between February and
March, which is also detectable in MARA maps (Fig.2.8b & c). The LMMn simulates,
however, a somewhat reversed pattern (see Fig.F.9). These differences likely result from
a different response to comparatively low temperatures of this area (cp. Fig.7.2a).

In summary, in various African areas precipitation limits the spread of malaria in
the MSM. For the equatorial tropics temperature constraints are only found in highland
areas. Only a small area in the heart of the African continentexhibits no limitations
for malaria transmission. Simulations of the MSM are comparable to MARA maps and
reveal only small differences to the LMMn predicted seasonality.
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7.3 Malaria projections for 2001-2050

7.3.1 LMMn projections based on REMO

Subsequent to the detailed analysis of the present-day malaria distribution the projected
future spread of the disease is presented. The analysis of simulated malaria changes
focuses on the 2020s and 2040s. These decades are located in the middle and at the end
of the future period (2001-2050), respectively. The first time period allows identification
of risk areas for improved public health planning in the nearfuture. In contrast, the
second decade enables an evaluation of the impact of climatechange on malaria in the
long run. As previously described (Sec.7.1), future climate projections foresee in both
scenarios a prominent surface warming and a significant reduction of rainfall over several
parts of tropical Africa. As a consequence, the simulated spread of malaria and epidemic
risk is markedly altered under these future atmospheric conditions.

The Sahel

In the northern part of sub-Saharan Africa, the precipitation decline forces a signifi-
cant decrease of malaria transmission in the Sahel (Fig.7.12; see Figs.F.15-F.18 for
the projected absolute values). In both scenarios,EIRa decreases north of about 13◦N
(Fig.7.12a & b). The transmission decline is most pronounced in the southern part of the
Sahel, that is south of about 15◦N. TheEIRa decrease is projected to be the strongest
in the northern part of Burkina Faso. In this territory, the simulated transmission ap-
proximately halves in comparison to present-day values at the end of the future period
(cp. Fig.7.14b). Also the transmission season markedly shortens in the malaria scenar-
ios. At various grid boxes north of about 10◦N Seasdecreases by more than 0.5 months
(Figs.7.12c, d &7.14e). The reduced transmission further translates into a small de-
crease in the average prevalence (Fig.7.12e & f). However, south of about 15◦N the
maximum seasonal parasite prevalence remains on the level of the present-day climate
(Fig.7.12g & h) sinceEIRa ranks still above the aforementioned saturation level of about
30 infective bites (cp. Sec.7.2.2). The slight decrease inPRa is therefore primarily a re-
sult of the shortened malaria season.

In other parts of the Sahel, that is north of about 15◦N, the spread of malaria within
the human population either fully vanishes (e.g., Fig.7.16e) or is reduced under the
modified future climate. Around of about 16◦N, the malaria season is shortened by more
than one month (Fig.7.12c & d). In the 2040s, the malaria transmission is lacking for
various grid boxes north of this latitude (see Figs.7.16c, e &7.14h). By contrast, south
of this latitude transmission is still present but is reduced below the saturation level. This
in turn causes the strongly reduced annual maximum ofPRbetween about 14 and 16◦N
(Fig.7.12g & h). For example, at about 15◦N certain grid boxes reveal a reducedPRmax,a

from above 80% to values of about 40%.
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Fig. 7.12:LMM n projected changes inEIRa (a & b; in infective bites year−1), Seas(c & d), PRa (e & f),
andPRmax,a (g & h) relative to the present-day climate (1960-2000). Illustrated values refer
to the A1B scenario (see Fig.F.13 for scenario B1) as well as to 2021-2030 (a, c, e & g) and
2041-2050 (b, d, f & h). Values statistically significant at the 5% level are marked by dots.

Besides the withdrawal of the malaria transmission along the Sahara fringe the
change in the year-to-year variability of parasite prevalence is of primary impor-
tance. Between about 15-18◦N the frequency of the malaria occurrence is reduced (see
Fig.7.16). In comparison to 1960-2000 highcv(PRmax,a) values are shifted toward the
south by about 1-2◦ under future climate conditions. North of about 16◦N the transmis-
sion decline results in lower standard deviations ofPRa andPRmax,a (Fig.7.13c-f). In
this zone, malaria epidemics are hence projected to become less likely.
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Fig. 7.13:LMM n projected changes in the standard deviation ofEIRa (a & b; in infective bites year−1),
PRa (c & d), PRmax,a (e & f), as well as forcv(PRmax,a) (g & h) relative to the present-day climate
(1960-2000). Illustrated values refer to the A1B scenario (see Fig.F.14for scenario B1) as well
as to 2021-2030 (a, c, e & g) and 2041-2050 (b, d, f & h). Framed areas in (c) depict the northern
and southern Sahel as well as the region of East African highlands.

There is an increase in the interannual variability ofPRa andPRmax,a south of about
16◦N. The frequency of epidemics therefore is expected to increase in actually denser
populated territories. The populous area along the Atlantic coast of Senegal, for exam-
ple, is projected to become epidemic-prone. More densely populated areas in Mauri-
tania, Mali, Niger, Chad, and Sudan are furthermore projected to extend into a zone of
increased epidemic risk (Fig.7.16). However, the intensity of the year-to-year variability
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decreases in general due to the reduced transmission level.In Mali, for example, values
of thecv(PRmax,a) strip decrease by about 50%. Some large cities like Agadez (Niger)
seem to loose their epidemic status. Under the A1B scenario,but not for B1, parts of the
dense populated region north of the Sénégal show a markedly reduced epidemic risk in
particular in the 2040s.
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Fig. 7.14:LMM n simulated time series of entomological and parasitological malaria variables regarding
1960-2050 for the northern Sahel (16.5-18◦N, 10◦W-5◦E; a, d & g; see Fig.7.13c), southern
Sahel (14.5-16◦N, 10◦W-5◦E; b, e & h), and highlands of East Africa (areas≥1500m; c, f & i).
Displayed are yearly anomalies of the ensemble mean (grey bars) relative to 1960-2000 and in
terms ofEIRa (a-c; in infective bites year−1), Seas(d-f), andPRmax,a (g-i). Further illustrated
are 11-year running mean anomalies of three ensemble runs (reddish lines) and the ensemble
mean (black line). The data for 2001-2050 refers to the A1B scenario (see Fig.F.24for scenario
B1).

Further parts of West Africa

Farther to the south of West Africa, the decline in precipitation and increase in tempera-
ture is beneficial for the growth of the mosquito population.Under these modified atmo-
spheric conditions the flushing of breeding habitats is reduced and the gonotrophic cycle
is shortened in the model. Both factors result in a larger number of female mosquitoes
under the climate scenarios resulting in a significant increase inEIRa and its standard
deviation (Figs.7.12a, b &7.13a, b). For certain parts of the Guinean coastal areaEIRa

increases by more than 200 infective bites.

The start of the malaria season is retarded and the transmission ceases earlier un-
der the malaria projections except for areas between Liberia and Ghana (see Figs.F.19-
F.22). The slightly shortened malaria season is caused by lower precipitation amounts
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at the start and end of the rainy season (see Figs.F.5& F.6). The shorter transmission
period and higher biting rates hence lead to an intensified malaria season. Addition-
ally, maximum transmission occurs somewhat earlier in the year. The longer simulated
malaria season for areas around the Ivory Coast is caused by an earlier transmission start
in March instead of April resulting from more abundant rainfall in January and Febru-
ary. Higher precipitation amounts reduce biting rates, thelength of the malaria season,
as well as parasite prevalence at southwestern Sierra Leone.
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Fig. 7.15:Disappeared and new malaria areas relative to (a) 2021-2030and (b) 2030-2040 (see Fig.F.26
for scenario B1) projected by LMMn. Illustrated are areas that either reveal a malaria occur-
rence of less than 5% for the present-day climate (1960-2000) or during the depicted future
decades (cp. Fig.7.6). Downward arrows indicate a decline in the malaria occurrence from
above the specified digit to a value below 5%. In contrast, upward arrows show an increase in
the malaria presence from values of less than 5%.

The strongest prevalence increases in West Africa are simulated for the Adamawa
and Jos Plateau (see Fig.7.12e-h) resulting from the marked temperature increase in
parts beyond 20◦C (see Fig.7.1). Certain grid boxes in the Adamawa reveal more
than 60% higherPRmax,a values in the 2040s than between 1960-2000. The compar-
atively low lying eastern part of the Adamawa is particularly affected. In this terri-
tory, the malaria occurrence stabilises due to a sinking interannual variability ofPRmax,a

(Fig.7.13e-h). A different situation is detected for parts of the Western Cameroon high-
lands. Formerly malaria-free areas disappear (Fig.7.15) andσ(PRmax,a) strongly rises
at some grid boxes causing a high epidemic potential (cp. Fig. 7.16). Also mountainous
areas of Guinea show a relatively strong increase inPR.

Greater Horn of Africa

The most pronounced changes in Africa are found in East Africa particularly at highland
areas. Significantly higher temperatures and slightly higher rainfall lead to a small or
moderate increase in malaria transmission (rarely exceeding 50 infective bites per an-
num; cp. Fig.7.12a & b). However, such an increase in transmission rates leadsto a
substantial increase in parasite prevalence in formerly epidemic-prone areas. As a re-
sult, the spread of malaria is markedly increased in variousparts of East Africa. In cer-
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tain partsPRa andPRmax,a exhibit 30 and 60% higher values in the 2040s, respectively
(Fig.7.12f & h).

As previously found in other studies (e.g.,Lindsay and Martens 1998), the strongest
prevalence increase is simulated for highland areas (e.g.,Fig.7.14). Higher temperatures
especially affect large parts of the Great Rift Valley (Fig.7.12e-h). Strongly modified is
the spread of malaria transmission at Ethiopian Highlands,the Eastern Arc Mountains,
and parts of the Western Rift Valley. In Ethiopia, for example, highland malaria is sig-
nificantly increased especially westward of the main ridge of the Great Rift Valley. Even
some grid boxes of the Western Kenyan highlands are newly affected, despite the fact
that these territories are higher than 2000 m in REMO (cp. Fig.7.16). Also most parts
of the Eastern Arc Mountains reveal higher disease frequencies. Changes in this terri-
tory not only originate from elevated temperatures but alsolikely arise from 50-100 mm
higher annual rainfall (Fig.7.2). Atmospheric changes come along with a notable pro-
longation of the malaria transmission and an earlier (later) start (end) of the season. For
example, in certain parts of the Eastern Arc MountainsSSeasalready begins in Decem-
ber instead of January/February (Figs.7.12c-e &F.19-F.22).

In East Africa, also the interannual variability of diseaseprevalence is markedly
modified under the future climate (Fig.7.13). Whereas the year-to-year variability of
EIRa rises uniformly, there is an irregular change ofσ(PRa) and σ(PRmax,a). Areas
where the malaria transmission is becoming more stable or instable are often side by side.
Such a feature is also valid for changes in the epidemic potential (Fig.7.16). Various
areas show decreasing values ofcv(PRmax,a), whereas some other grid boxes exhibit
a higher coefficient of variation. Highland areas formerly unsuitable for malaria are
becoming suitable under the warmer future climate. The simulations clearly indicate
changes in the epidemic risk.

The large difference in changes of the year-to-year variability of PRmax,a in high-
lands is a result of elevation. Analysis of disease transmission against height levels il-
lustrates this fact (cp. Fig.7.17). As expected, the rise in temperatures increases malaria
transmission and disease prevalence at all altitudes. Bothbiting rates as well as the dura-
tion of the malaria season increase below 2500 m. This in turnaffects parasite prevalence
throughout all levels. However, this does not necessarily enhance the epidemic poten-
tial. Quite the contrary, at most grid boxes malaria transmission stabilises below about
1900 m, for example, in most parts of the Eastern Arc Mountains. At these altitudes the
regular transmission likely improves the partial immunityof the population reducing the
mortality of malaria. In contrast, malaria climbs to formerly malaria-free zones above
about 2000 m enforcing the probability of malaria epidemics. A comparable situation
already took place in Burundi at the end of the 1990s when malaria was first introduced
above 1450 m (Bonora et al. 2001). Under both scenarios, various grid boxes in Western
Kenyan highlands as well as in the region around the UdzungwaMountains, for example,
are projected to turn into epidemic-prone areas (see Fig.7.16). The infrequent disease
occurrence likely results in higher mortalities above about 2000 m.
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Fig. 7.16:Same as Fig.7.6, but for malaria projections ofcv(PRmax,a) for (a) 2021-2030 and (b) 2041-
2050 relative to the A1B scenario (see Fig.F.23for scenario B1).

Changes in malaria transmission are not only restricted to highland territories but
are also valid for arid and semi-arid epidemic-prone areas of the Horn of Africa. In such
regions, the slightly higher though not significantly rainfall increase results in a small
increase inEIRa values. The malaria transmission in southeastern Ethiopia, southern
Somalia, and northeastern Kenya seems to be most prevalent during the 2020s under the
A1B scenario (see Fig.7.16). Changes in the duration of the malaria transmission are
the strongest in northern Kenya lengthening by one to two months (Fig.7.12c-d). Some
grid boxes in Ethiopia and Somalia reveal a complete relocation of the malaria season
from boreal spring to late boreal autumn (cp. Fig.F.21f). Coastal areas of Kenya and
that of southern Somalia reveal lower annual precipitationleading to a decline in the
transmission and parasite prevalence. Also the Afar depression exhibits a lower malaria
transmission and proportion of infections despite higher rainfall. This modification is



144 7 MALARIA SIMULATIONS FOR THE PRESENT-DAY AND FUTURE CLIMATE

probably a result of temperatures exceeding 35◦C around June (see Figs.F.3& F.4). At
such temperatures the mosquito survival probability of theMartens II scheme is slightly
reduced (cp. Fig.5.5).
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Fig. 7.17:Effect of altitude on LMMn simulated values ofSeas(a & b), PRmax,a (c & d), as well as
cv(PRmax,a) (e & f) in the Ethiopian Highlands (cp. the framed area north of 4◦N in Fig.7.13c;
a, c & e) and EEA (10◦S-4◦N, 27-38◦E; see Fig.7.13c; b, d & f) relative to the past period and
the A1B scenario (see Fig.F.25for scenario B1). Data from various grid points between height
levels of 1000 and 2600 m is grouped within 100 m altitude segments. Box-and-whisker plots
represent ensemble average values of included grid points relative to 1960-2000 (green box
plots), 2021-2030 (light blue box plots), and 2041-2050 (red box plots). Blue numbers above
(e) and (f) indicate the number of grid points from which the statistic is computed.

Central Africa, Angola, Zambia, and Malawi

The strongest increase in biting rates for the whole model domain is projected for Equa-
torial Africa. The precipitation decline leads to a pronounced rise in absolute values and
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the standard deviation ofEIRa (Figs.7.12& 7.13). At the end of the future period in the
Congo Basin the modelledEIRa clearly exceeds 1000 infective bites (Figs.F.15-F.18).
However, despite this fact disease prevalence is nearly unchanged. Due to already ex-
tremely high transmission levels for the present-day climate nearly no change in parasite
prevalence is simulated. Besides a reduction in the length of the main transmission sea-
son (cp. Figs.F.19-F.22)6, the seasonality is not markedly altered during future decades.

In the southern part of the model domain higher temperaturesand unchanged or
higher precipitation amounts cause a stronger malaria transmission and an increase in
parasite prevalence (Fig.7.12). Particularly struck are again highland territories like
that of the Bié Plateau in Angola, the Muchinga Mountain range of Zambia, as well
as elevated locations in southern Congo and west of Lake Malawi. In these regions,
particularly in Angola’s central highlands, the transmission period is extended by two
to four months in the 2040s. At the Bié Plateau and in highlands of southern Congo,
SSeasfrequently already occurs in November/December instead ofJanuary/February
(Figs.F.15-F.18). Disease transmission begins about one month earlier in January in-
stead of February at the Muchinga Mountains. For various grid points,ESeasis retarded
from April to May. Again some mixed changes are projected forthe epidemic poten-
tial (Fig.7.16). The malaria transmission stabilises considerably at various grid boxes,
but the epidemic-potential is enhanced for some areas. However, at the end of the fu-
ture period the malaria spread becomes regular in all of these highland territories since
transmission takes place every year.

In summary, according to LMMn projections the risk of malaria epidemics is becom-
ing lower in the northern Sahelian zone and by contrast a higher risk is projected for the
more densely populated areas of the southern Sahelian zone.The malaria transmission
in general intensifies along the Greater Horn of Africa. Under the warmer future cli-
mate formerly unsuitable highlands turn into epidemic-prone areas. At somewhat lower
altitude levels disease transmission stabilises and people likely improve their partial im-
munity against malaria.

6There seems to be an abrupt modification ofXSeasin the northern part of Congo. In fact,XSeasjumps
from boreal spring to boreal autumn or vice versa. However, in these cases the analysis procedure misses
the secondary maximum (cp. App.D.5). About the same is true for coastal areas of Guinea, Sierra Leone,
Liberia, Ghana, Nigeria, and Cameroon. The identified pronounced changes are therefore not always
statistical significant.
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7.3.2 Garki model projections based on LMMn

So far it has only been speculated that the modified malaria situation induces changes in
the immunisation of the human population. The Garki model explicitly enables the anal-
ysis of such altered malaria conditions. Additionally, theGarki model provides valuable
data in terms of changes in the infectiousness of human hosts. The application of the
Garki model is furthermore a way to reduce the uncertainty ofthe malaria risk assess-
ment. A second set of malaria scenarios is supplied by the Garki model. However, this
data set is not fully independent since these projections base on simulated transmission
rates from the LMMn and hence also refer to REMO climate scenarios.

The Garki model provides about the same general picture of the future malaria sit-
uation as the LMMn. Garki model projections indicate fairly similar difference pattern
for patent positives (cp. Fig.F.28with Figs.7.12& 7.13), albeit the corresponding am-
plitude is somewhat lower than that of the LMMn. Parasite prevalence decreases in the
Sahel and is increasing in numerous parts of East Africa. Various grid boxes in endemic
areas even reveal a slight decline inya andymax,a, a feature which is not included in the
LMM n data. Despite the higher transmission both prevalence as well as Ia are slightly
reduced in certain areas such as the Congo Basin. This is probably result of the proce-
dure in which superinfection is modelled (cp. Sec.7.2.3). There is a small disagreement
between the data from the Garki model and LMMn runs around Lake Turkana (in the
2020s), for parts of the Afar depression, as well as coastal areas of Kenya and southern
Somalia. For various grid boxes at Guinea, the Garki model predicts decreases in the
parasite prevalence, which are not simulated by the LMMn.

Comparisons of the projected year-to-year variability from the Garki model with that
simulated by the LMMn provide approximately the same change patterns. The interan-
nual variability ofya andymax,a decreases (increases) in the northern (southern) Sahel
and a somewhat mixed picture is found in East Africa. However, a stronger signal is
found for some highland territories such as the Ethiopian Highlands and parts of the
Adamawa Plateau. These areas therefore reveal a higher epidemic risk in the simula-
tions of the Garki model. By contrast, other areas such as thenorthern Sahel show a
weaker decline in the standard deviation. This is likely a result of the lower base levels
of parasite prevalence.

LMM n simulations enable no statements relative to the proportion of infectious and
immune individuals. Runs of the Garki model therefore complete the picture of the fu-
ture spread of malaria (see Fig.7.18). The transmission decline in the Sahel considerably
reduces the proportion of infectious and immunes in the Sahel. In contrast, intensifica-
tion of disease transmission leads to a significantly rise iny1,a andIa for most aforemen-
tioned highland areas. Different changes are found for endemic malaria areas. Regions
with an increasing immunisation lead to a decline of infectivity and vice versa. That
is because immune individuals are not infectious in the Garki model. For example, the
extended malaria season (Fig.7.12c & d) in the southwestern part of West Africa causes
higher Ia and lowery1,a values. About the same is true for large parts of the southern
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part of the model domain. In contrast, the reduced length of the malaria season leads to
a rise in infectivity and a lower immunisation of the population east of the Ivory Coast
as well as for the coastal zone of Tanzania and Kenya.
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Fig. 7.18:Garki model projected changes iny1,a (a & b), σ(y1,a) (c & d), Ia (e & f), and σ(Ia) (g & h)
relative to the present-day climate (1960-2000). Illustrated values refer to the A1B scenario
(see Fig.F.27for scenario B1) as well as to 2021-2030 (a, c, e & g) and 2041-2050 (b, d, f & h).
Mean changes statistically significant at the 5% level are marked by dots.

Modification of the interannual variability ofy1,a andIa exhibits again the already
noted patterns (Fig.7.18). The standard deviation decreases (increases) in generalin the
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northern (southern) part of the Sahel. Mixed changes are again detected for highland
territories. However, it is interesting to note for the Sahel that the changes forσ(Ia) are
the strongest in the 2020s (Fig.7.18g) and are particularly pronounced for scenario B1
(Fig.F.27g). This is a result of still comparatively highIa values in the 2020s and under
scenario B1 (not shown).
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Fig. 7.19:Garki model simulated prevalence in children 2-10 years (PR2−10; in %) for (a) the present-
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scenario. Changed parasite ratios are presented for (b & d) 2021-2030 and (c & e) 2041-2050.

Also the projected change in child prevalence reveals the aforementioned pattern
(Fig.7.19). However, the amplitude of change is considerably stronger than that of the
whole population. This is clear since the proportion of infections is usually much higher
in children than in adults due to the attainment of immune protection during the course
of life. Climate change hence affects mostly the spread of malaria in children.
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Fig. 7.20:Garki model simulated age distribution ofya (thick solid lines),y1,a (thin solid lines), andIa
(thin dashed lines) for the present-day climate (1960-2000; green lines) as well as 2021-2030
(blue lines) and 2041-2050 (red lines) of the A1B scenario (see Fig.F.30for scenario B1). The
data shows averaged age dependencies for (a) the northern Sahel (16.5-18◦N, 10◦W-5◦E), (b)
the southern Sahel (14.5-16◦N, 10◦W-5◦E), (c) highlands of East Africa (areas≥1500m), and
(d) the Congo Basin (5◦S-5◦N; 15-28◦E; note, the change of present-day values is fairly small).
Utilised areas are inserted in Fig.7.13c.

The projected decline for patent positives in the Sahel concerns all age groups
(Fig.7.20). At the end of the future period less than 1% of the population are infected
in the northern Sahel. About the same is true for the immune status of the population.
The number of immune hosts is significantly reduced even for the oldest age groups.
In this situation a malaria epidemic would not only be restricted to young children and
death would occur at every age. The malaria infection and theimmune protection also
markedly fall in the southern part of the Sahel. Values ofya andy1,a halve for young
children. Only small differences are found for adults. However, in the 2040s the im-
munisation of adults is reduced by more than 20%. Exact the opposite is true for the
East African highlands, where more people are infected in the future scenarios. In these
territories proportions of the infected, infectious, and immune human hosts increase in
all age groups. The value ofya, for example, rises from less than 20% to more than 40%
for young children. The proportion of the immune populationdoubles approximately.
No markedly change in age-prevalence curves are expected for the Congo Basin.
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Fig. 7.21:Same as Fig.7.17, but for the effect of altitude on Garki model simulated values ofy1,a (a & b)
andIa (c & d). See Fig.F.31for scenario B1.

An immune status increase has already been detected for highland areas. Neverthe-
less, changes strongly depend on altitude in these territories. For this reason, the past
and future impact of altitude on the infectiousness and immunity is further analysed for
the Ethiopian Highlands as well as elevated locations in EEA. Between levels of about
1300 and 2500 m the infectiousness is generally higher in thefuture than during the past
period. As previously speculated, the higher transmissionrates in fact result in a greater
immune status of the population below heights of about 2000 m. Most pronounced is the
increase ofIa above about 1700 m. In highlands of EEA this level is located much lower
at about 1400 m. However, particularly vulnerable future populations are still found. The
epidemic risk is significantly raised between approximately 1800 and 2500 m. These are
height levels which are at least in parts malaria-free underthe present-day climate. In
this zone, the pattern for patent positives increases but a marked immune response is
lacking in the Garki model.

In summary, the Garki model simulates about the same generalpatterns of malaria
changes than the LMMn. The Garki model additionally indicates that children willprob-
ably be the most affected population group. As expected the transmission decline in the
Sahel will cause a reduction in the immune status of all ages.In contrast, highland ter-
ritories will show an increase in the immunisation of the population. However, changes
will strongly depend on altitude.
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7.3.3 MSM projection of the malaria seasonality

The impact of climate change on the malaria seasonality is finally additionally analysed
by data from the MSM. MSM simulations base on the projected atmospheric conditions
of five decades between 2001 and 2050 (cp. App.C.5). MSM projections are further-
more compared with the simulated seasonality of the LMMn.
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Fig. 7.22:MSM projected changes inSeas(a & b),SSeas(c & d), andESeas(e & f) relative to the present-
day climate (1960-2000). Illustrated values refer to the A1B scenario (see Fig.F.35for scenario
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monthly categories prevent an uniform decrease in the length of the malaria season. Due to the
predominantly zonal distribution, changes in the malaria season are usually ordered in small
broken strips. Changes therefore only occur at fringes of zonal bands.

Reduced precipitation amounts in REMO climate projectionsare leading to a de-
crease in the length of the malaria season in most parts of tropical Africa (Fig.7.22a & b;
see also Fig.F.32for projected absolute values). In contrast, higher temperatures cause
an extended transmission period in East Africa as well as in the southern part of the
model domain. The comparison with the projected LMMn seasonality demonstrates a
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simpler change pattern (cp. Fig.7.12). For most parts north of about 16◦N a malaria
retreat is detected, which is consistent with LMMn results. MSM and LMMn sim-
ulations also largely agree in the later onset and earlier end of malaria transmission
(cp. Figs.7.22c-f, F.19& F.21). At central Burkina Faso and along the coast of Benin,
for example, the start of transmission is retarded from Julyto August and from April to
May, respectively. In contrast, malaria transmission ceases about one month earlier.

An extended period of malaria transmission is also found in the MSM for the Fouta
Djallon as well as the Adamawa and Jos Plateau. At the AdamawaPlateau, for example,
for certain grid boxes a five months longer transmission is found (Fig.7.22a & b) due to
the temperature rise of about 2◦C (Fig.7.1c & e).

Higher temperatures and nearly unchanged precipitation amounts likewise cause an
increase in the season length for the Greater Horn of Africa as well as for Angola and
Zambia. Also in MSM runs the presence of highlands causes a fairly complex change
pattern. The MSM projects a reduction of unsuitable malariaareas. The onset (end) of
the malaria transmission is projected to be earlier (later)in comparison with the present-
day climate. Outstanding is the strong increase in the season length of up to six months
at about 12◦S, in the Ethiopian Highlands, along the Western Rift Valley, the Western
Kenyan highlands, in the Eastern Arc Mountains, on the Bié Plateau, and along the
Muchinga Mountains.

To sum up, also in MSM projections the decline in precipitation causes a decrease
in season lengths in most parts of tropical Africa. Higher temperatures in highland ar-
eas significantly expand the transmission season. Projections from the MSM are fairly
consistent with that of the LMMn.

7.3.4 A1B versus B1

Results regarding runs for scenarios A1B and B1 are similar to each other. However, as
expected changes are generally stronger in scenario A1B than in B1 and the amplitude of
change is most pronounced at the end of the simulation periodin the 2040s. Comparison
of change signals with regard to individual decades revealsthat scenario B1 lags A1B
partly by one to two decades. The reduction or enhancement ofthe risk of malaria
epidemics under the B1 scenario is therefore for most areas somewhat lower. The reader
is referred to supplementary figures in App.F for a detailed analysis of projected malaria
changes under scenario B1.



8 Summary, discussion, and future prospects

8.1 Summary

Malaria is one of the most serious health problems in the world. The projected climate
change will probably alter the range and transmission potential of malaria in Africa.
In this study, potential changes in the malaria transmission were assessed by forcing
three malaria models with data from ensemble scenario runs of a state-of-the-art regional
climate model.

TheLiverpool Malaria Model(LMM) from the Geography Department of the Uni-
versity of Liverpool was utilised. The LMM simulates the spread of malaria at a daily
resolution using daily mean temperature and 10-day accumulated precipitation. Effects
of climatic changes on the malaria season were additionallyverified by theMARA Sea-
sonality Model(MSM). The Garki model finally enabled the completion of the malaria
picture in terms of the immune status and the infectiousnessof different population
groups, as well as relative to the age-dependent prevalencestructure.

An extensive literature survey with regard to entomological and parasitological
malaria variables provided valuable information for a new parameter setting of the
LMM. The simulation of some key processes was changed in order to reflect a more
physical relationship. For example, the egg deposition as well as the survival of imma-
ture mosquitoes was steered by a fuzzy distribution model. In this sub model mosquito
breeding was hampered by dry conditions as well as excessiverainfall. In terms of adult
mosquito survival a different survival scheme was applied resulting in a higher malaria
risk at temperatures above about 30◦C. The recovery rate of humans was furthermore
significantly reduced to capture observed values and superinfection.

Calibration of the LMM was performed in West Africa and Cameroon at different
atmospheric conditions. Realistic temperature and precipitation time series were recon-
structed from various synoptic weather stations. The comparison with observations from
eleven entomological and parasitological variables finally defined the new setting of the
LMM. Validation of the new model version in the same area revealed that the simulations
and defined malaria seasonality compared well with entomological field observations.
However, due to limitations of the model and heterogeneous prevalence observations the
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performance of the LMMn was somewhat weaker with regard to parasitological vari-
ables. Simulations furthermore captured the spatial and temporal variability of malaria
transmission. The LMMn also demonstrated a fairly realistic two-dimensional simu-
lation of the malaria spread in Africa. The model correctly reproduced the epidemic
potential at fringes of endemic malaria areas.

Various sensitivity experiments revealed that the LMMn is fairly sensitive to values
of its internal parameters. For example,EIRa values strongly depended on the mosquito
survival scheme. The recovery rate of humans significantly influenced the size of par-
asite prevalence. Comparison of LMMn results with the performance of the original
model version exhibited marked improvements. For instance, the distribution of malaria
in dry zones as well as transmission rates in humid areas weremuch more realistic in
LMM n runs.

In every case, three ensemble runs were performed on a 0.5◦ grid. The LMM was
driven for the present-day climate (1960-2000) by bias-corrected data from theREgional
MOdel (REMO), with land use and land cover according to theFood and Agriculture
Organization(FAO). Malaria projections were carried out for 2001-2050 according to
climate scenarios A1B and B1 as well as FAO land use and land cover changes. Garki
model runs were subsequently forced by theEntomological Inoculation Rate(EIR) from
the LMM. Finally, additional results relative to the malaria season were produced by the
MSM.

Comparison of REMO data with gridded rainfall observations, temperature reanal-
yses, and station time series exhibited considerable deficiencies of the model runs. For
example, rainfall was too low at the Sahel and was overrepresented along the Guinean
coast. REMO showed a comparatively high frequency of small and excessive rainfall
amounts. Also, the amplitude of the seasonal temperature cycle was in general overesti-
mated. REMO temperatures were too low (high) during boreal winter (summer). These
deficiencies were markedly reduced by the bias correction ofthe data set.

For the present climate (1960-2000), the highest biting rates were simulated for
Equatorial Africa. The year-round and high transmission rates in the Congo Basin re-
sulted in fairly low infectious proportions due to a rapid immunisation of the population.
Malaria simulations showed a decrease in the spread of malaria from Central Africa to-
wards the Sahel. The largest proportions of infectious individuals were found for the
short seasonal and intense malaria transmission. These regions were furthermore char-
acterised by a comparatively slow attainment of immunity. The length of the malaria
season was closely related to the presence of the monsoon, about half of the months of
the transmission season exhibited low transmission rates,and maximum transmission
was frequently simulated toward the end of the rainy season.The spread of malaria
was limited by extreme dry areas of the Sahara desert and along the Horn of Africa, as
well as by low temperatures in highland territories. Model runs showed a marked influ-
ence of mountainous areas causing a complex pattern of the spread of malaria in East
Africa. Temperatures below or around 20◦C led to lower transmission rates, a shorter
and delayed malaria season, as well as diminished parasite rates. The pattern of malaria
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positives revealed the expected peak in children below an age of about five years. The
infectious and immune proportion was the highest for young children and for the oldest
age groups, respectively.

Regions of epidemic malaria occurrence, as defined by the coefficient of variation
of the annual prevalence maximum, were found along a band in the northern Sahel. Far-
ther south, malaria occurred more regularly and was therefore characterised as endemic.
Epidemic-prone areas were additionally identified at various highland territories, as well
as in arid and semi-arid zones of the Greater Horn of Africa. No adequate immune
protection of the population was found for these areas.

Largely due to land surface degradation, REMO simulated a prominent surface
warming and significant reduction in the annual rainfall amount over most of tropical
Africa in either scenario. Assuming no future human imposedconstraints on malaria
transmission, changes in temperature and precipitation will alter the future geographic
distribution of malaria. In the northern part of sub-Saharan Africa, the precipitation de-
cline will force a significant decrease of malaria transmission in the Sahel. In addition to
the withdrawal of malaria transmission along the Sahara fringe the frequency of malaria
occurrence will be reduced for various grid boxes of the Sahel. As a result, epidemics in
these more densely populated areas will become more likely,in particular as adults lose
their immunity against malaria. Except for highlands of West Africa the level of malaria
prevalence farther south will remain stable. However, the start of the malaria season will
be delayed and the transmission is expected to cease earlierunder malaria projections
except for areas between Liberia and Ghana.

The most pronounced changes in Africa were found in both scenarios for East
Africa. Significantly higher temperatures and slightly higher rainfall will lead to a small
or moderate increase in malaria transmission. However, such an increase in transmis-
sion rates will cause a substantial increase in the season length and parasite prevalence
in formerly epidemic-prone areas. As a result, the spread ofmalaria will be markedly
increased in various parts of East Africa. Highland areas formerly unsuitable for malaria
will become suitable under the warmer future climate. The simulations clearly indi-
cated changes in the highland epidemic risk. At most grid boxes malaria transmission
will stabilise below about 2000 m, for example, in most partsof the Eastern Arc Moun-
tains. At these altitudes the more regular transmission will improve the immune status
of the population reducing malaria mortality. In contrast,malaria will climb to formerly
malaria-free zones above these levels, enhancing the probability of malaria epidemics.

8.2 Discussion and future prospects

The main aim of the present study was to assess the risk of malaria in Africa under the
influence of the present and a modified future climate. Ideally a multidisciplinary re-
search program is required for this task. A more complete understanding of the complex
ecology of malaria will require integration of research efforts across diverse areas (Col-



156 8 SUMMARY, DISCUSSION, AND FUTURE PROSPECTS

well and Patz 1998). At least three basic disciplines (i.e., meteorology, medicine, and
entomology) are included in this analysis. Only the combination of meteorological data
with the knowledge gathered by entomological and parasitological field research enables
the simulation of malaria transmission. A model chain further allowed estimation of dif-
ferent aspects of malaria distribution such as biting ratesor the immune status of the
population. Despite the known causal links between climateand malaria transmission
dynamics, there is still much uncertainty about the potential impact of climate change on
malaria (Confalonieri et al. 2007). This study was naturally not able to account for all
processes involved in the spread of malaria. Some of these factors might be included in
a future extension of the LMM. This section provides a detailed discussion with regard
to various aspects of the present study. The used atmospheric data sets and the model
calibration are evaluated, as well as the present-day performance and malaria projections
of three malaria models are discussed relative to results offormer studies.

8.2.1 Calibration and sensitivity of the LMMn

The data basis for the LMM calibration is far from being optimal. There is a mis-
match between scales at which a disease vector responds to hydrologic variability and
scales at which hydrological variability is actually observed. Systems must be developed
that monitor hydrologic variability at scales corresponding to disease system ecologies
(Shaman and Day 2007). More than that, meteorological data from synoptic stations
reveals large data gaps in temperature and precipitation reports. However, by means
of additional monthly data sets the generation of realistictime series finally succeeded
(see Fig.3.5& Sec.4.3). In fact, for certain stations and during various time periods the
resulting time series represent realistic atmospheric conditions but do not constitute of
real observations. However, the generation of realistic weather conditions was of greater
importance since malaria field studies were not conducted directly at the weather sta-
tions. These sites therefore in any case exhibit a differenttemporal variability of rainfall
and temperatures. This might be one reason, amongst other factors such as environmen-
tal conditions, why year-to-year comparisons between observation and simulation were
weakly correlated at single validation locations (not shown).

The required historical entomological and parasitological data is rarely available
with sufficient coverage. Most locations show only one, two,or even no field measure-
ments. It is therefore likely that a larger set of observations would have a strong impact
on the result of the model calibration. Ideally, model simulations and malaria observa-
tions should be compared from year-to-year. However, this would require the simulta-
neous monitoring of long-term malaria data and meteorological measurements. Such
long time series are available for the area of Ndiop (S. Louvet, personal communication,
2007), but these data sets are at present not publicly available.

The close ranking of diverse model runs as well as the lack of sufficient validation
data further restricted an objective formal fitting of the model to field data. In fact, var-
ious steps of the calibration procedure were subjective. Due to computational demands
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it was furthermore not possible to fit all remaining model parameters simultaneously.
However, because various settings compensate each other itis likely that the final model
formulation conforms as much as possible to reality (cp.Smith et al. 2006b).

Calibration and validation of the model should also be ideally not only restricted to
West Africa and Cameroon. However, such an extension to, forexample, East Africa
would be a time consuming undertaking. The Malaria Atlas Project intends to provide
access to various malaria studies (Guerra et al. 2007). This might provide an efficient
access to malaria data beyond that of West Africa. Due to the pronounced projected
changes such an extension would ideally include East African highlands and an estima-
tion of the sporogonic temperature threshold. However, dueto the effect of altitude on
malaria it might not be an easy task to find proper malaria and meteorological data.

The diversity of sensitivity tests over the range of adjustable parameter values re-
flects high levels of uncertainty in the formulation of a finalmodel setting. Those model
parameters with a significant impact on simulations are the areas of the model that need
to be refined as knowledge of the underlying processes improves (Jones 2007). Until
such achievements, a range of model settings could be used. The most thorough way to
investigate the considerable uncertainty in the formulation of the model is to run a mas-
sive ensemble experiment in which each relevant parameter combination is investigated.
This might end up in a set of models that could be used for seasonal ensemble forecasts
of malaria (cp.Morse et al. 2005; Hagedorn et al. 2006; Thomson et al. 2006). Due to
the computational demand, it was not possible to use different model formulations of the
LMM n in the present study.

8.2.2 Performance of the malaria models

The simulated spread of malaria, the transmission level, and the seasonality seem to
be realistically reproduced by the LMMn. Validation in West Africa and Cameroon
clearly showed that modelled features from the new model version compare well with
entomological observations. Field studies, for example, also contain the strong decline
in EIRa in the Sahelian zone. Various other published malaria distribution maps (e.g.,
Figs.2.8& 2.9) also correspond well with the simulated spread of malaria by the LMMn.
However, in certain parts the simulated intensity of malaria transmission differs consid-
erably. Rogers et al.(2002), for example, predicted bands of low annual biting rates
in West Africa. Such feature are not identifiable inEIRa values of the LMMn. The
LMM n in general seems to predict higher transmission rates than the satellite-derived
predictions ofEIRa of Rogers et al.(2002) (cp. Figs.2.9& 7.4a). Maps of transmission
intensity provided byGemperli et al.(2006b) are fairly spotted. In their analysis the
highest transmission intensities in West Africa are found for the southern part of the Sa-
hel. In fact, their prediction likely significantly suffersfrom the neglected interannual
variability of malaria (see also Sec.2.7.2). Based on availableEIRa observations it is
difficult to judge which estimates are closer to reality. However, validation of the LMMn
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under different climatic conditions provides evidence that the present study generated
realistic biting rates.

The simulated seasonality corresponds well with observations (cp. Figs.6.3& E.3)
and with seasonality maps from the MSM (Fig.2.8b-d). In particular, the patterns of
SSeasare almost the same for MSM and LMMn simulations. LMMn runs exhibit about
a half month laterESeasthan modelled by the MSM (cp. Fig.F.32). However, it must
be pointed out that MARA results refer to average climate conditions whereas values of
the LMMn are based on single years.

There are many factors that modify transmission that are notaccounted for by the
used malaria models (see Sec.8.2.5). The simulation of parasitological malaria variables
by the LMMn is a simplification of real processes. Validation of the LMMn by means of
PRa, PRmax,a, andPRmin,a measurements in West Africa and Cameroon already revealed
major shortcomings of the model (Sec.6.1). The lowest skill scores were achieved by
these parasitological variables.

In addition to the lack of immunity, the LMMn is not able to account for other
malaria factors such as chemoprophylaxis and human activities (see Sec.2.6.2). Ob-
servations suggest a stronger variability in parasite prevalence. At Bobo-Dioulasso, for
example, ten observedPRa values range between 29.1 and 77.5%. In contrast, 34 annual
values of the LMMn only span between 50 and 70% (Fig.E.4c). Unfortunately, for West
Africa there seems to be available only one location with twosubsequentPRa observa-
tions from different years.Carnevale et al.(1988) provided parasite ratios from a trial
of impregnated bed nets at Karangasso (Burkina Faso; 11◦13’N, 4◦39’W). In the un-
treated control area (Koko suburb)PRa in children (1-14 years) decreased from 54.1%
in 1985/86 to 39.6% in the second year. This also hints towarda stronger year-to-year
variability.

Due to the lack of long-term observations,Kleinschmidt et al.(2001) andGemperli
et al.(2006b) were forced to neglect the interannual variability ofPR. This fact might
again partly be responsible for the irregularPR pattern in West Africa (cp. Fig.2.10).
Their maps also show a sharp decrease ofPRa north of about 15◦N (see also Fig.6.4).
However, in contrast to LMMn and Garki model simulations,PRa is frequently lower
than 50% south of 15◦N. Only few regions exhibit higherPRa values than 70% as such
from the LMMn and Garki model (Figs.7.4e & 7.19a). With regard toPRmax,a the LMMn

simulated values are often higher than observed. OnlySabatinelli et al.(1986) published
a value comparable to the upper limit ofPRmax,a. In 1984 at Koubri (Burkina Faso;
12◦09’N, 1◦23’W), children between two and five years exhibited aPRvalue of 94.9%
at the peak of the transmission season in August-September.However, as previously
mentioned (Sec.2.4.5) individuals often return a false negative microscopy report when
parasite densities fall below sub-microscopic levels.

Different simulated parasite prevalence of the LMMn and Garki model result in parts
from different used recovery rates (r). The value ofr for the non-immune population is
lower than that used by the LMMn (r: 0.0023 vs. 0.005 day−1). In fact, the Garki
model was only calibrated for one single area in northern Nigeria. Note thatGu et al.
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(2003a) found in Kenya a dependence ofr on transmission intensity (see Sec.5.1.11). For
this reason, it would be more suitable to use recovery rates depending on the exposure
history of individuals. However, this would require a different structure of models since
individuals must be tracked. Due to the uncertain setting ofr the two different usedr
values can better estimate the uncertainty of the malaria projection. In fact, both models
exhibited about the same projected prevalence changes, theinfluence of different usedr
values is hence comparatively small.

8.2.3 Uncertainty of the applied climate projections

The atmospheric basis of malaria projections covers only two different climate scenarios
from one single regional climate model. Importance of usingseveral climate scenarios
to illustrate the range of possible future geographical malaria distributions was, for ex-
ample, found byHartman et al.(2002). Ideally, assessment of the malaria risk should
therefore be based on projections from different climate models. The applied model
chain could be driven by data from the 21 AOGCMs of the IPCC-AR4. However, these
data sets suffer from their coarse resolution. Regional climate projections provide a more
detailed picture of atmospheric conditions. Unfortunately, for the present study only re-
gional climate projections for large parts of Africa were available from REMO. In the
near future, various other regional climate projections will be allocated for the Fifth As-
sessment Report of the IPCC and will also allow malaria projections beyond 2050. This
data basis will enable more robust malaria projections and can provide the basis for a
detailed uncertainty analysis of the future spread of malaria.

Of particular interest is, for example, an estimation of precipitation changes in the
Sahel. REMO projects a marked reduction of rainfall over most parts of tropical Africa,
which are mainly induced by LUC changes. However, as aforementioned (Sec.2.3.2), it
is difficult to identify robust signals in precipitation patterns for West Africa. AOGCMs
of the IPCC showed diverse evolutions of the hydrological cycle. In fact,Cook and Vizy
(2006) found only four different models exhibiting realistic features of the West African
monsoon. Among the six models not reproducing a realistic rainfall pattern was also
the ECHAM5/MPI-OM, in which REMO was nested. This might havepartially caused
systematic errors of the REMO precipitation. Only the bias-correction of rainfall finally
enabled the generation of a realistic distribution of precipitation amounts.

The key feature of the REMO scenarios is the induced LUC change. Such changes
are at present largely not included in state-of-the-art AOGCMs. REMO simulations
strongly indicate that such changes are of particular relevance. In addition to global
changes of atmospheric patterns, regional factors like deforestation are also of particular
importance for the hydrological cycle. Nevertheless, other climate models have to verify
this large impact of land degradation. Results fromPaeth et al.(2009) must be confirmed
in the light of various other model physics. Inclusion of LUCchanges is only a next step
towards incorporation of a dynamic vegetation model (e.g.,Brücher 2008). Addition-
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ally, other physical components of the climate system such as the effect of atmospheric
aerosols on the hydrological cycle must be considered (cp.Paeth and Feichter 2006).

A different situation is found for East Africa. In this area,the great majority of
AOGCMs agree in the positive sign of the precipitation signal. An increase in the trop-
ics is a plausible hydrological response to a warmer troposphere. However, atmospheric
features such as ENSO or IOD might exert a greater influence onfuture rainfall con-
ditions than presently expected. The IPCC-AR4 found only model dependent changes
in the interannual variability of ENSO but no indication of discernible changes. In this
context, it should be noted that difficulties still remain inthe simulation of ENSO and
associated tropical precipitation. Additionally, climate and regional climate models are
also not able to simulate all complex features of observed climate dynamics and variabil-
ity of the Greater Horn of Africa (see Sec.2.1.2) due to their coarse horizontal resolution.

8.2.4 Evaluation of the malaria projections

In case that humans do not significantly alter malaria transmission, a modified future
climate will change the geographic distribution of malaria. The general expectations
of the climate change impact on the spread of malaria are confirmed by the present
study. The IPCC-AR4 already concluded that climate change will be associated with
both geographical expansions and with contractions (Confalonieri et al. 2007). Areas
particular vulnerable to future changes were identified as regions of fringe transmission
(e.g.,McMichael and Haines 1997). Lindsay and Birley(1996) pointed out that usually
malaria-free areas and those with an unstable malaria occurrence will be touched. These
statements fully apply for projected malaria changes of this analysis. Areas most proba-
bly affected are those bordering malaria endemic regions such as parts of the Sahel, the
Horn of Africa, or various highland territories. Malaria areas are predicted to disappear
in the Sahel and the disease distribution will expand in highlands (Figs.7.15& F.26).
Jetten et al.(1996) andReiter(2001) further argued that climate change will have only
minor effects on the malaria distribution in endemic areas.This fact is also confirmed by
actual malaria runs. Fringe endemic territories are affected and for other endemic areas
only changes in the seasonality are expected.

Projected transmission changes in the Sahel are fairly uncertain due to the fact that
these mainly depend on changes in rainfall. A pronounced precipitation decline is only
one of the plausible scenarios for the Sahel.Martens(1999), for example, predicted a
spread of malaria beyond current limits due to a wetter Sahel. Nevertheless,Thomas
et al.(2004) also projected a reduction in malaria transmission, although, due to higher
daily maximum temperatures. It is interesting to note thatCook and Vizy(2006) con-
cluded that the MRI model provides the most reasonable scenario of Sahelian precipi-
tation throughout the 21st century. This model projected a doubling of the number of
anomalously dry years by the end of the century causing a modest drying in the Sahel.

As previously mentioned, LUC changes are largely not included in AOGCMs. Dif-
ferent REMO scenarios showed that such changes likely causefurther drying conditions.
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For these reasons, it is concluded that the reduction of transmission in scenarios A1B and
B1 is one plausible picture of the future spread of malaria inthe Sahel. AsKovats et al.
(2001) already argued, these decreasing rainfall amounts have beneficial effects by re-
ducing malaria in the northern part of the Sahel. Although, further to the south endemic
zones are projected to turn into epidemic-prone areas with adecreasing immune status
of the population. As a result, epidemics in these more densely populated areas will
become more likely. However, people are compelled to residewhere water is available
and therefore might be forced to migrate toward south.

In contrast, that climate change may facilitate the spread of malaria further up some
highland areas in Africa is incontestable. Previously,Lindsay and Birley(1996) con-
cluded that climate change probably increases the epidemicrisk in highland territories.
Lindsay and Martens(1998) andEbi et al.(2005), for example, projected an increase in
malaria suitability of Zimbabwe highlands. Also,Rogers and Randolph(2000) predicted
an increase in malaria suitability of East African highlands by 2050. Solely, the timing
of changes is somewhat uncertain.Thomas et al.(2004) computed, for instance, only
small changes for highland territories in the next 30-40 years. In their scenario, high-
lands become highly suitable not before 2080. This fact is also shown by the A1B and
B1 scenarios of the present study. Changes in scenario A1B ingeneral lead that of B1
by one to two decades. One key result of the actual study is thedifferent response of the
population at different height levels under both scenarios. As indicated byGitheko et al.
(2000), malaria is projected to become stable below certain elevation levels. In contrast,
formerly unsuitable heights lack an immunisation and turn into epidemic-prone areas.

Less certain than the temperature increase in highlands is the expected small rise
in annual precipitation. Although, most AOGCMs as well as REMO project somewhat
higher rainfall amounts, the influence of ENSO or IOD might begreater than projected.
Malaria projections for rather dry areas such as parts of theEastern Arc Mountains or
areas of the Horn of Africa therefore might not be as certain as indicated.

The horizontal resolution of model runs of 0.5 degrees further limits the useful-
ness of malaria projections, in particular, in East Africanhighlands. The used model
orography is not everywhere representative for particularlocations. For this reason, the
effect of altitude was illustrated (Figs.7.17& 7.21). However, such an analysis naturally
misses diverse temperature and rainfall conditions at highland territories. Because of
dry conditions the Eastern Arc Mountains, for example, showlower parasite prevalence
than corresponding height levels of the Ethiopian Highlands. Nevertheless, the provided
data might render helpful information for decision makers in terms of malaria control of
highland territories.

Projections of the malaria seasonality were provided by theLMM n and MSM. Both
models revealed about the same scenarios of malaria seasonality. Due to decreasing
precipitation amounts the length of the malaria season is reduced in most parts of trop-
ical Africa (cp.Martens et al. 1999). In contrast, the temperature increase in highlands
causes a marked extension of the malaria season (cp.Martin and Lefebvre 1995). As
Kovats et al.(2001) stated, small changes in the seasonality in the Sahel or highland
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areas cause strong changes in parasite prevalence. The present results differ from that of
Tanser et al.(2003), who predicted an increase in the length of the transmission season.
The largest temperature rise and a moderate rainfall reduction under A1FI caused the
highest increase in person-months of exposure by 2100.

8.2.5 Neglected factors and future extensions of the LMM

The actual study did not account for various malaria factors(cp. Sec.2.6.2). Statements
from the present analysis are only related to future climatic and land use and land cover
scenarios. It should be pointed out here, that climate is rarely the only important driver
of malaria. Numerous other studies showed (e.g.,Epstein 1998; van Lieshout et al. 2004;
Hay et al. 2005; Kelly-Hope and McKenzie 2009) that in particular human activities are
crucial for the transmission and prevention of malaria across Africa. For example, modi-
fication of the landscape by irrigation (e.g.,Briët 2002), forest clearing (e.g.,Munga et al.
2006), or urbanisation (e.g.,Keiser et al. 2004) can significantly alter malaria transmis-
sion. Due to the lack of time and data, the present study assessed only the malaria risk
for rural areas without the influence of permanent breeding places. Usefulness of this
analysis is therefore limited when permanent streams or urban centres are present.

The collected entomological and parasitological data alsoprovides information for
irrigated areas and locations with permanent streams, as well as urban territories. Cal-
ibration of the LMMn therefore could also be performed for such areas. However, this
undertaking might be hampered by the lower number of available observations. A sys-
tematic, time-consuming screening of literature might provide additional data. In case
of permanent streams (e.g.,Robert et al. 2003) or seasonal irrigation (e.g.,Briët 2002),
the LMMn could be further driven by artificial rainfall amounts representing additional
breeding opportunities. Urban areas would rather require adifferent model setting in
order to achieve reduced transmission intensities. In principle, risk assessment is hence
also possible for other areas than rural sites.

Species composition of mosquitoes is another neglected factor of malaria transmis-
sion. An. funestusis, for example, specialised for the extension of the malaria season at
the end of the rainy season and at the beginning of the following dry season (cp.Kelly-
Hope and McKenzie 2009). Also the degree of the host-vector-pathogen contact depends
on the involved vector species. Here, information in terms of anthropophily as well as
the presence of animals such as cattle would be needed. In fact, the LMM simply uses
only one single setting of the human blood index (a). Such factors require a precise
knowledge of the distribution of mosquito species as well asin terms of their behaviour.
Kiszewski et al.(2004) as well asMoffett et al.(2007) used such information and con-
structed risk maps for various mosquito species. Consideration of different mosquito
species is, however, beyond the scope of this study and wouldresult in an extensive
change of the LMM structure.

The simulation of the development of immature mosquitoes was significantly altered
in the LMMn. Application of a hydrological model might be more appropriate than the



8.2 DISCUSSION AND FUTURE PROSPECTS 163

fuzzification of this process. However, hydrological models need detailed information in
terms of ground conditions. Such knowledge might only be available for limited areas.
Shaman et al.(2002), for example, used a dynamic hydrology model to predict mosquito
abundances in flood and swamp water in New Jersey (USA).Gerbaux and Bicout(2008)
also applied hydrological features for the impact of rainfall on mosquito production in
the Sahel.

The fuzzy distribution model was also applied with regard toimmature larvae sur-
vival. However, the mosquito mature age (MMA) was fixed to 12 days. A necessity
for future improvement of the LMM concerns dependence of immature development on
water temperatures (seeBayoh and Lindsay 2003). This would require incorporation
of new meteorological variables such as potential evaporation, cloud cover, or sunshine
duration (cp.Depinay et al. 2004).

One basic feature of malaria projections is the increase inEIRa for large parts of
tropical Africa, despite a decreasing rainfall supply. This phenomenon is clearly as-
sociated with the fuzzy distribution model of egg deposition and immature mosquito
survival. It is difficult to judge whether these predicted changes are realistic. In order to
answer this question further case studies as such fromPaaijmans et al.(2007) should be
performed under different rainfall conditions.

A further possible future extension of the LMM includes factors such as immunity,
superinfection, and the simulation of age- and transmission-dependent malaria factors.
Such factors are essential for state-of-the-art malaria models. The Garki model was used
in this study for consideration of superinfection, immunity, as well as the age-structure
of parasite prevalence. A suitable approach would be individual-based stochastic malaria
modelling. McKenzie et al.(1998, 1999, 2001, 2002) developed discrete-event models
of malaria transmission dynamics. In these models, malariatransmission is heteroge-
neous and characteristic states of humans as well as adult mosquitoes are tracked indi-
vidually. McKenzie and Bossert(2005) used this discrete-event model and simulated
pathogen dynamics within individual hosts and those withininteracting host and vector
populations. AlsoKilleen et al.(2000) introduced a malaria model based on life histo-
ries of individual mosquitoes.Gu et al.(2003a) considered in addition the life history
of human hosts and adult female mosquitoes individually. Intheir model, immunity is
simulated as a function of exposure history representing a reduced susceptibility and an
increased recovery rate. Such modelling procedure would have additional benefits for
the LMM such as the loss of discretisation effects and would allow for a probabilistic
approach in terms of temperature and rainfall thresholds.

The present study also not considers any socio-economic factors. However, eco-
nomic development of a community is of great importance for the spread of malaria (e.g.,
Epstein 1998). Villages with irrigation, for example, are sometimes associated with less
malaria (Ijumba et al. 2002), probably due to improvement of their living standards. The
health impacts will be greatest in low-income countries. Those at greater risk include
the urban poor, the elderly and children, traditional societies, farmers, and coastal pop-
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ulations (Confalonieri et al. 2007). Socio-economic factors might be integrated into an
extended model such as that fromTol and Dowlatabadi(2001).

Studies such as that fromRobert and Carnevale(1991) demonstrated that malaria
control can significantly reduce malaria transmission. After usage of deltamethrin-
treated bed netsEIRa was reduced by about 94% in an irrigated zone of Burkina Faso.
The inclusion of such a factor into the LMMn would only require a simple reduction of
the human blood index (a), the mosquito-to-human (b) as well as the human-to-mosquito
transmission efficiency (c). Productivity of breeding habitats under larval control such as
environment-friendly biopesticides (e.g., via neem (Azadirachta indica) extracts) might
also be included in a future extension of the LMM (cp.Gianotti et al. 2008). Such model
experiments could illustrate effects of control measures under present-day and future cli-
mate conditions.

8.2.6 Final remarks

The present study provides several plausible pictures of the future spread of malaria
under the influence of a modified climate. Due to similar atmospheric features of climate
scenarios the A1B and B1 malaria scenarios of three different models point into the same
direction. Incontestable seem to be expected changes in highland zones. Less uncertain
is the change of the malaria situation in the Sahel. Admittedly, the presented scenario is
only one realistic picture of the future spread of malaria inthe Sahel. However, health
planners must be prepared for any possible change.

This study might provide helpful information for decision makers in terms of al-
location of resources for malaria control. A clear estimation is provided for policy
makers relative to possible consequences of climate changeon the disease distribution.
Malaria scenarios identified risk areas and may lead to improved public health planning
to combat changing malaria risk (Tatem and Hay 2004). Findings of this study might
be suitable for strategic planning for malaria control or might form a platform to help
target planning tools for long-term control measures. Thisinformation can allow inter-
national priority setting of malaria control. Disease programs should not only continue
their current focus, but should also consider where and whento implement additional
surveillance to identify and prevent epidemics if mosquitoes change their geographical
range (Confalonieri et al. 2007). High priority should be assigned to improving the pub-
lic health infrastructure and developing and implementingeffective adaptation measures
(McCarthy et al. 2001).

This work has further furnished data from various entomological and parasitological
field studies. In App.D, the reader has full access to numerous published data that might
serve for individual research purposes. Provided references might assist in identifying
relevant articles. Note also that all information is available in a digital format in the
information systemMalaRis(‘The impact of climate change on Malaria Risk in Africa’;
see http://www.impetus.uni-koeln.de/malaris) which wasdeveloped for IMPETUS (In-
tegrated Approach to the Efficient Management of Scarce Water Resources in West
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Africa; German: „Integratives Management Projekt für einen tragfähigen Umgang mit
Süßwasser“).

For the risk assessment of possible future malaria occurrence different malaria mod-
els were forced by two plausible regional climate projections. This approach focused
solely on temperatures and precipitation data and hence assumed no future human im-
posed constraints on the disease. Under this assumption climate change will cause both
increases and decreases in areas suitable for this vector-borne disease. The strongest
changes are projected for unstable malaria areas at fringesof endemic disease transmis-
sion. However, many other factors such as environmental changes or standards of living
will determine vulnerability of individuals in the future.Strategies should be developed
to combat projected changes of malaria distribution. Various available resources are
urgently required to control malaria under the modified future climate.





Appendices

C Data processing

C.1 Configuration of GSOD time series

The application of temperatures and rainfall from GSOD is hampered by two main prob-
lems. Firstly, various entries exhibit erroneous values. Aquality check of the data is
therefore needed. Secondly, precipitation reports partlyoverlap requiring a special data
processing.

Regarding data quality, the original data undergoes automated quality controls. By
means of this control random errors are sorted out from the data input. However, the
comparison with, for example, monthly values (cp. Sec.3.5) showed that errors remain
in the summary of day data. Due to remaining errors a time consuming data check was
carried out for the period of 1960-2006. Exceptionally highor low temperature values
were eliminated (e.g., a temperature drop of more than 10 K from one day to the next).

Due to the more or less random distribution of precipitationin time the correction of
precipitation data was complicated:

Precipitation values were principally compared to separately reported monthly pre-
cipitation amounts (cp. Sec.3.5). Regarding months with precipitation, the data is cor-
rected when the monthly GSOD sum exceeds reported monthly precipitation by at least
10 mm. In such cases, precipitation values are eliminated (e.g., unrealistic high 24 hour
precipitation) that come up to or exceed the difference between GSOD and reported
monthly precipitation. The last case makes sense since rarely all precipitation reports
are available. For months without any precipitation (according to monthly reports) all
precipitation events were deleted. Sometimes even the correction of transposed digits
was possible (e.g., as a result of errors of the SYNOP code, for instance, 31.8 mm were
coded as ‘318’ instead of ‘032’ or mixed digits such as ‘097’ instead of ‘997’, which
results in 97 mm instead of 0.7 mm). It is also possible that the monthly precipitation
data is incorrect (Sec.3.5). For this reason, the data is not adjusted when several correc-
tions would have been necessary and when there were indications of precipitation (with
regard to present and past weather observations). When monthly precipitation data was
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not available the monthly GSOD precipitation was compared to PREC/L (cp. Sec.3.7).
Here, only unusual high precipitation amounts (e.g., more than 200 mm) were elimi-
nated in the GSOD data since gridded monthly precipitation is not directly comparable
to station observations.

Fig. C.1: Examples in terms of processing of GSOD precipitation data.Blue, green, and red colours
indicate 6-, 12-, and 24-hour precipitation, respectively. Dots mark times of SYNOP messages
at main synoptic hours. The ‘X’ characters represent missing reports and ‘/’ symbols stand for
messages with no observed precipitation.

The correction of precipitation is exacerbated by the fact that GSOD precipitation
does not always refer to 24 hours between 06 UTC of the previous day (day 1) to 06 UTC
of the actual day (day 2). Included are also multiple reportsof six and twelve-hour
periods of precipitation (Fig.C.1). Note that West African weather stations usually report
six-hour precipitation at 00 and 12 UTC, twelve-hour precipitation messages are left at
18 UTC, and 24-hour precipitation reports are transmitted at 06 UTC. There is a problem,
when 24-hour precipitation is not indicated at day 1. The observation periods of GSOD
might partially or completely overlap with the 24-hour precipitation of day 2. This is,
for example, true (see Fig.C.1a), when GSOD data indicates 5 mm of precipitation at
day 1 (e.g., from the report on 18 UTC) and again 5 mm of rain at 06 UTC day 2 (24-
hour rainfall). Except for the six-hour precipitation report at 00 UTC of day 1 all six-
and twelve-hour precipitation reports of day 1 are assignedto 24-hour rainfall of day 2
(06 UTC day 1 to 06 UTC day 2). For this reason, incomplete precipitation data of day 1
(i.e., when no 24-hour report is left in GSOD) was transferred to day 2. Of course, only
when no 24-hour precipitation report exists for day 2 (cp. Fig.C.1b). However, in such
cases some precipitation amounts of day 1 can be omitted, namely that of the 00 UTC
day 1 report. For this reason, it was checked if the precipitation value from day 1 was
higher than 24-hour precipitation of day 2. In this case, thedifference between these
two amounts must belong to 24-hour rainfall of day 1 and is therefore added to day 1
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precipitation (Fig.C.1c). However, it is obviously still possible that some precipitation
is lost (see, e.g., Fig.C.1d).

For some parts of the particular time series the redistribution of the data might lead
to a wrong timing of precipitation (one day too late). The precipitation shift causes
another problem, when the monthly precipitation sum is compared to monthly reports.
Precipitation amounts from a particular month might are assigned to the subsequent
month. In this case, the comparison with reported monthly precipitation was performed
manually. As a consequence the particular rainfall amount was sometimes set back to
the previous day. Note, some doubtful GSOD data after 2000 was additionally checked
by SYNOP messages that were archived at the Institute for Geophysics and Meteorology
(University of Cologne).

The correction of GSOD precipitation is inevitable since the LMM is fairly sensitive
to the data input of precipitation. The raw GSOD precipitation data often includes unre-
alistically high precipitation values (e.g., Dakar/Yoff:406.9 mm (04.08.1998) versus an
August rainfall of 191 mm). Without this subjective qualitycheck meaningful malaria
model runs would have not been possible.

Finally, note that daily mean temperatures from GSOD are only used when they
were calculated by at least four observations. That is due tothe fact that some synoptic
stations only report four observations per day.

C.2 Generation of time series at synoptic stations

The LMM enables the simulation of the spread of malaria only with complete daily tem-
perature and precipitation time series. As previously described, African weather station
data suffers from numerous gaps (see Secs.3.2& 3.3; cp. Fig.3.2). The challenge there-
fore was the reproduction of realistic meteorological timeseries for 1973-2006. The
implemented procedure combines different sources of dailytemperature and precipita-
tion time series. Incomplete monthly data sets were, in addition, adjusted by means of
monthly and climatic values. The detailed procedure is specified as follows:

Firstly, a complete temperature time series is constructed. Initially, daily mean tem-
peratures are computed from three- or six-hourly SYNOP messages and the number of
available hourly reports is noted for a particular day. Daily mean temperatures from
SYNOP and GSOD messages are combined to one and a more complete time series. In
case of coexistent SYNOP and GSOD data, the value with the higher number of hourly
measurements is chosen (in case of equal numbers SYNOPs are preferred). Data gaps or
daily mean temperatures based on less than four hourly messages are filled using three
iterations. (i) Temperature values are calculated by at least five daily mean temperatures
of surrounding days (stepwise iteration from 5-15 days before and after). (ii) If there are
not enough values available, monthly mean temperature is instead inserted from GHCN.
(iii) If there is no GHCN value available, the averaged temperature of that day of the year
is used (i.e., the mean of at least five original temperature values regarding 1973-2006).
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As a consequence, the complete reconstructed temperature time series are according to
(average) weather conditions of the given space of time.

Secondly, daily precipitation time series are adjusted to monthly precipitation
amounts. Initially, various data sources are combined and are chosen in the following
order (relative to their assessed reliability): (i) DMN precipitation (Sec.3.1), (ii) supple-
mentary data source (A. Niang, personal communication, 2008; Sec.3.1), (iii) SYNOP
precipitation reports (Sec.3.2), and (iv) GSOD data (Sec.3.3).

In spite of different data sources partially large gaps remain in the data. For the
final construction of a realistic daily precipitation time series the available rainfall from
SYNOPs are accumulated to monthly precipitation amounts. These values are compared
with monthly precipitation provided by the GHCN (Sec.3.5). When reported values are
lower than GHCN monthly rainfall (at least 10 mm), artificialrain events are introduced
at days when no or incomplete precipitation reports are available. When there is no
GHCN value available monthly precipitation is compared to the gridded PREC/L data
set (Sec.3.7). Artificial precipitation values are by chance firstly fitted into days with
missing reports and finally into days with incomplete messages.

The number of introduced monthly precipitation events conforms with themonthly
number of days with at least 1 mm precipitation(#RR≥1,m). Principally, #RR≥1,m is re-
ported in CLIMATE messages. However, CLIMATE messages are often not available
for West African weather stations. For these reasons, when possible #RR≥1,m is deter-
mined by CLINO data (Sec.3.4). Unfortunately, such values are not allocated for a lot
of stations by the WMO or other sources. In these cases, #RR≥1,m is determined by
average values of #RR≥1,m with regard to 1973-2006. #RR≥1,m is itself derived from re-
ported data. However, only those months are used when at least 85% of 24-hour rainfall
messages are available or when the amounts of the precipitation messages almost sum
up to the GHCN value (maximum difference: 10 mm). After determination of #RR≥1,m

missed monthly precipitation is equally distributed onto added rainfall days (e.g.: 40 mm
are missing; #RR≥1,m=12; eight rainy days are available in the time series composite;
four artificial precipitation events of 10 mm are hence introduced).

As noted above (Sec.3.1) a complete daily precipitation data set was allocated by
the DMN. The precipitation time series of six Benin weather stations hence represent
real observations. For all the other stations the implementation of artificial precipita-
tion events produces realistic time series. For a particular month when no precipitation
messages are available the distribution of precipitation is random and each precipitation
event receives the same rainfall. Unknown monthly precipitation amounts (no GHCN
data) further introduce uncertainties.

C.3 Bias-correction of REMO precipitation

The simulated REMO precipitation reveals discrepancies relative to IRD (cp. Sec.4.1).
The REMO precipitation therefore was bias-corrected by H. Paeth and R. Girmes (per-
sonal communication, 2006). Because the correction procedure was not published and
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even no document exists in the grey literature, the bias correction is briefly described at
this place:

In order to minimise the REMO model bias with regard to precipitation the rainfall
data is corrected relative to CRU (CRU TS 1.1) precipitation(cp. Sec.3.8). The adjust-
ment is performed relative to the period 1960-1998 representing the maximal intersec-
tion between REMO and CRU TS 1.1. Since CRU is only available for land areas the
bias correction is only available for REMO land grid points.

Monthly precipitation amounts of REMO and CRU are averaged and compared with
each other. In case that averaged REMO precipitation of a month is lower than corre-
sponding CRU values, monthly precipitation is adjusted upwards by the monthly clima-
tological difference. For each concerned month between 1960 and 2000 the particular
climatological difference is equally distributed on simulated precipitation events. For
this reason, a correction of the precipitation amount of a particular month is not possible
when no precipitation event is simulated by REMO. In fact, the introduction of artificial
rainfall events is not intended. Furthermore, the correction of only few simulated preci-
pitation events might lead to unusual high precipitation amounts. In order to keep rain
events realistic, extreme events in the dry season are artificially limited to 50 mm. Also
note that the equal distribution of precipitation is not realistic. However, for the malaria
simulation it apparently does not play an important role since the LMM and MSM use
10-day accumulated and monthly rainfall, respectively (see also Fig.4.2).

In case of higher averaged monthly REMO precipitation in comparison with CRU
precipitation, the use of the climatological difference isnot possible. This is because the
difference might be higher than simulated REMO precipitation of an individual month.
An analogue correction as in the first case would therefore lead to undesirable negative
precipitation values. As a consequence, a quotient (q) is applied and is defined by the
ratio of averaged CRU and REMO precipitation. However, due to the fact that some
rainfall amounts are still missing for the monsoon onset thesimple usage ofq results in
too low annual precipitation amounts in the Sahel. On account of this,q was artificially
limited to values above or equal to 0.2 (therefore: 0.2 ≤ q < 1). As a result, some too
high precipitation amounts are retained after the bias correction during the monsoon
retreat, which is somewhat delayed and reveals higher rainfall in the uncorrected data
(cp. Sec.4.1).

The described correction procedure was applied to 1960-2000 and to the whole
REMO land area. The same climatological differences and quotients were used for the
precipitation bias correction of REMO climate scenarios. It is assumed that the model
bias of REMO or rather differences between simulations and reality is still the same un-
der the modified future climate. However, this assumption might not be valid under a
strongly changed precipitation regime, for example, a substantial decrease or increase of
annual precipitation due to a changed climate.
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C.4 Bias-correction of REMO temperatures

The REMO ensemble experiments overestimate the seasonal temperature cycle. REMO
temperatures are too low (high) during the dry (rainy) season (Secs.4.4& 4.5). A bias
correction of REMO temperatures is hence needed. Due to the altitudinal dependence of
temperature and different background orographies CRU cannot be used for the rectifica-
tion of the REMO bias. The bias correction is instead performed by ERA40 (Sec.3.9).
The procedure is the following:

Due to a different horizontal resolution the REMO and ERA40 model are based on
different orographies. Since temperatures in general decrease with height, REMO and
ERA40 temperatures will differ at locations where there aredifferences in orographies.
Modelled screen level temperatures therefore differ at mountainous areas such as the
East African highlands. In order to cope this problem, thepotential temperature(θ) is
computed for a reference level by the modelled surface pressure and the temperature at
a height of 2 m. REMO and ERA40 temperatures are taken dry adiabatically to 850 hPa
and are compared at this particular level. Note, this procedure is purely a mathematical
proceeding and does not mirror a real atmospheric layering.

For comparison of the two data sets the ERA40 data was interpolated to the REMO
grid (see App.C.7). The REMO temperature data is compared to ERA40 temperatures
by means ofθ at 850 hPa(θ850). θ850 values are computed by the Poisson equation
requiring 2 m temperatures and surface pressure as input variables. The correction of
REMO temperatures uses theθ850 difference between REMO and ERA40(∆θ850) with
regard to the average of 1960-2000. In order to avoid unrealistic jumps in the correc-
tion from one day to the other, the∆θ850 data is smoothed by means of the eleven-day
running mean. Firstly, the correction with smoothed∆θ850 is performed on a daily time
step and new REMOθ850 values are computed. Secondly, the corrected 2 m REMO
temperatures are again calculated by the Poisson equation using the newθ850 values and
the unchanged surface pressure. The result is a REMO temperature that is adjusted to
ERA40. With regard to future scenarios it is assumed that thetemperature bias of REMO
is the same under the changed future climate.

C.5 The ensemble mean

The REMO data consists of twentieth-century simulations (1960-2000) and two climate
scenarios (2001-2050). Each period and scenario is represented by three ensemble mem-
bers in order to obtain a measure of uncertainty. The analysis of data is therefore usually
performed by the ensemble mean of a particular variable. Theensemble mean of an-
nual precipitation of the present-day climate (1960-2000), for instance, is computed by
means of 123 annual values of three particular simulations (three times 41 annual values).
In fact, the ensemble mean of a decade is therefore always theaverage of 30 values. The
standard deviation is also calculated by the correspondingvalues of three ensemble runs.
Daily or monthly values of the seasonal cycle are computed ina comparable way. How-
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ever, for certain time series values from every ensemble runare separately presented.
That is because the ensemble average of, for instance, single years would considerably
reduce the year-to-year variability of time series.

C.6 The 360-day year

The model structure of the LMM is based on a simplification to a360-day year, con-
sisting of 12 months of 30 days each. The model ‘reality’ utilises a reduced calendar in
order to simplify simulations and the data analysis. The input data comprising calendar
days must therefore be converted into 30-day months:

A simple method is used for the transformation of data. In case of leap years and
non-leap years, five and six days are omitted, respectively.Due to the variable weather
conditions during the year the omission of days is quite evenly distributed throughout
the year. The 31-day months are simply reduced to 30-day months via the omission of
the last day. Since calendar years consist of six 31-day months in case of non-leap years
the 31st March is retained. Overall the slightly modified meteorological conditions, for
example, the omission of some rainfall amounts, should haveonly a small effect on the
results.

C.7 Grid transformation

Various meteorological data sets exhibit different horizontal resolutions. For example,
REMO operates on a 0.5◦ latitude/longitude grid, whereas IRD precipitation is only
available for 1◦ grid boxes. The comparison of such data sets requires the transformation
of one of the data sets.

Due to the fragmentary IRD grid (Fig.3.4) the REMO data was transformed to the
1◦ latitude/longitude IRD grid. Only IRD grid boxes with continuous observations be-
tween 1968 and 1990 were utilised. The interpolation from the 0.5 to the 1◦ grid boxes
ideally only requires four REMO grid boxes. However, the REMO and IRD grids are
displaced to each other. For this reason, eight values from the REMO grid are needed
for the calculation of values of the IRD grid. The rainfall field was hence smoothed and
the number of rainy days is increased. Note also that only land grid boxes were used for
the interpolation.

CRU and REMO exhibit the same horizontal resolution but these data sets are dis-
placed to each other by 0.25◦. For this reason, CRU values were interpolated to the
REMO grid. When possible the four surrounding land grid boxes of CRU were aver-
aged. As a consequence, CRU values were smoothed.

The varying resolution of REMO and ERA40 represents an issuefor the bias correc-
tion of REMO temperatures. The resolution of REMO is 0.5◦ and ERA40 temperatures
at screen level are archived on a N80 full Gaussian grid (equivalent to a 1.125◦ grid).
ERA40 temperatures and surface pressures were hence interpolated to the REMO grid
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(0.5◦ x 0.5◦) using a distance-weighted average of the four nearest neighbour values on
the Gaussian grid. Another problem arises from the fact thatERA40 sea grid points were
utilised for the interpolation of the REMO land grid point data. The initial masking out
of ERA40 sea grid points largely prevents this problem.

REMO and ERA40 were compared with data from synoptic stations in West Africa
and Cameroon (Sec.4.5). Values of observation sites were interpolated from the 0.5◦

REMO/ERA40 grid using bilinear interpolation. At this steponly land grid points were
included. Due to the altitudinal dependence of temperaturealso the difference between
altitude of the observation site and that of ERA40 orographywas calculated. Sites were
not used for composites whose heights differ by more than 300m from the ERA40 orog-
raphy (cp.Simmons et al. 2004).

C.8 The Wilcoxon-Mann-Whitney rank-sum test

In this study a test of significance is performed by theWilcoxon-Mann-Whitney(WMW)
rank-sum test (also called Mann-Whitney U test, Wilcoxon rank-sum test, etc.). The
WMW rank-sum test is a non-parametric test for assessing whether two independent
samples of observations come from the same distribution. This test was initially pro-
posed byWilcoxon (1945), for equal sample sizes, and was later extended to arbitrary
sample sizes byMann and Whitney(1947). It is constructed for changes of obtaining
greater values in one sample versus the other. The WMW rank-sum test only requires
the two samples to be independent. In fact, no assumptions are made about how the data
is distributed in either group. They may be normal, lognormal, exponential, or any other
distribution. In contrast, the student t-test can only be applied under special conditions.
The data within each group has to be normally distributed andthe difference between the
groups must be additive. This test strongly depends on the assumption that the mean is
a good measure of central tendency for skewed data. These often overlooked problems
make the t-test less applicable for general use than the non-parametric rank-sum test
(cp. Helsel and Hirsch 2002). However, the student t-test is more powerful at detecting
differences between two populations through their means, but the loss of power of the
WMW rank-sum test is usually quite small (e.g.,Wild and Seber 2000).

The null hypothesis (H0) of the rank-sum test is that the two samples are drawn from
a single population, and therefore that their probability (p) distributions are equal. The
alternative hypothesis distinguishes (H1, H2, andH3) between one-side and two-sided
tests and states that one sample is stochastically greater.

H0 : Prob[x > y] = 0.5

H1 : Prob[x > y] 6= 0.5 (two-sided test -x might be larger or smaller thany)

H2 : Prob[x > y] > 0.5 (one-sided test -x is expected to be larger thany)

H3 : Prob[x > y] < 0.5 (one-sided test -x is expected to be smaller thany)
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Computation of the exact test

The test involves calculation of a statistic, usually called the test statistic(U ), whose
distribution under the null hypothesis is known. In case of small samples, the distribu-
tion is tabulated, but for larger sample sizes the test statistic approximates the normal
distribution. The exact form of the WMW rank-sum test is the only way appropriate to
compare groups with small sample sizes (ten or lower). In case that the sample sizes are
greater than ten the large-sample approximation (see below) can be utilised.

The WMW rank-sum test is based solely on the order in which twosample groups
fall. Sample A and B containn andm values (xi , i = 1, ...,n; y j , j = 1, ...,m), respec-
tively. The null hypothesis tests if the distribution in sample A is the same as that in
sample B (H0: A=B). The alternatives are that sample A is shifted either to the right or
left of sample B. The WMW rank-sum test initially ranks(n+ m) values of the com-
bined sample. Thetest statistic(W) is the sum of ranks for the group having the smaller
sample size1. The corresponding random variable is designated asW̃ (Gaussian sum
formula⇒ W̃ ∈ [

n(n+1)
2 ,

(n+m)(n+m+1)
2 −

n(n+1)
2 ]). The exact test includes the following

steps:

1. Thejoint ranks(Rk; Rk = 1, ...,(n+m)) of single ranked series are computed. All
values are ranked without regard to which sample they belong. A median value is
used in case of ties.

2. The test statistic (W) is computed for the group having the smaller sample size
(e.g.,W = ∑n

k=1 Ri). Either group is used when the sizes are equal (n=m).

3. Critical test statistic values (C) for the rank-sum test are specified and thesignifi-
cance level(α, e.g., 1%, 5%, or 10%) is chosen.C∗

α
2 ,n,m andCα

2 ,n,m are determined

from a table of critical values ofW2.

4. H0 is rejected, if:

H1 : W ≤C∗
α
2 ,n,m or W ≥Cα

2 ,n,m

H2 : W ≥Cα,n,m

H3 : W ≤C∗
α,n,m

1Variants of the rank-sum test, for example, that proposed byMann and Whitney(1947), use a different
test statistic (U). Note thatU is somewhat more clear and accessible (U = W−

n(n+1)
2 ). In this case,

for eachxi , theyi ’s are counted that are smaller thanxi (a half is counted ifxi = yi). The total of these
counts representsU . The minimum value ofU is zero (all values of sample A are smaller than those of
sample B). Here, the correspondingU value for sample B is the product of sample sizes (Umax = nm).
Tables for the WMW rank-sum test therefore also differ in tabulated critical values of the test statistic.
Either data forU or W is provided.
2C∗ andC are critical values for the lower and upper tail of the distribution of the random variable of the
test statisticW̃, respectively.



X APPENDICES

Large Sample Approximation

The large sample approximation of the WMW rank-sum test was applied in the present
study. The distribution of the test statistic (W) of the rank-sum test is closely approx-
imating a normal distribution when the sample size for each group is ten or more (see
Helsel and Hirsch 2002, their Fig. 5.3). The large sample approximation again doesnot
imply that the data sets are normally distributed. It is rather based on the near normality
of the test statistic at large sample sizes. WhenH0 is true and if there are no ties, the
average of the test statistic(µW) and thestandard deviation of the test statistic(σW) can
be computed by (ifn≤ m, otherwise exchangen andm in theµW equation):

µW =
n(n+m+1)

2

σW =

√

nm(n+m+1)

12

TheσW value must be reduced in the presence of tied ranks.Conover(2006) pro-
vides such a formula (∑Ri refers to the sum of squares of all (n+m) ranks or median
ranks actually used in both samples):

σW =

√

nm
(n+m)(n+m−1)

n+m

∑
k=1

R2
k −

nm(n+m+1)2

4(n+m−1)

The test statistic for the large sample approximation(Z) is computed by standard-
ising the test statistic of the exact test. Due to the fact that the random variablẽW is
discrete a further continuity correction must be applied. The probability of occurrence
is adjusted to the normal curve by either adding or subtracting 0.5 (cp. Fig. 5.3 inHelsel
and Hirsch 2002), as the test statistic changes by units of one.Z is calculated as follows:

Z =











W+0.5−µW
σW

if W < µW

0 if W = µW
W−0.5−µW

σW
if W > µW

The significance ofZ is checked in a table of the standard normal distribution for
the final evaluation of the test results. For example, aZ value of -1.96 results in ap-
value of about 2.5% for the lower tail of the distribution. For the two-sided rank-sum
test (p = 2 ·0.025) the null hypothesis is hence rejected at the 10% and 5% significance
level (α), but not at a level of 1%.

In the present study, the two-sided WMW rank-sum test identifies areas with sig-
nificant differences at a 5% significance level. Sample A includes 123 annual values
(n = 3 ·41= 123) of three ensemble runs of the present-day climate (1960-2000). Val-
ues for projected future conditions of a decade (e.g., 2041-2050) are represented under
sample B (m= 3 ·10= 30).
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D Entomological and parasitological malaria variables

All across Africa the studies ofHay et al.(2000b, 2005) as well as that ofKeiser et al.
(2004) already compiled information regarding entomological and parasitological stud-
ies undertaken in Africa from 1980 onwards. These articles presented results from vari-
ous malaria field studies that revealed information regarding different malaria variables.
However, not all desirable data is given by review articles of Hay et al.(2000b, 2005)
andKeiser et al.(2004), for example, some data with regard to the malaria season isnot
provided. For this reason and for extension of data, a time-consuming literature research
was carried out.

The analysis included references from the three above-mentioned review articles as
well as some more recent publications. Due to the availability of meteorological data
as well as limitation of time the analysis was restricted to the area of West Africa and
Cameroon (cp. Tab.G.1). Moreover, only malaria information from malaria studieswith
nearby meteorological data (cp. Sec.3.1-3.5) was used in the present study (cp. Fig.3.1).

Transmission of malaria depends on environmental conditions (e.g.,Hay et al.
2000b). For this reason, it is necessary to divide between rural and urban sites. Ad-
ditionally, it was checked if permanent streams (e.g., rivers) or irrigation (e.g., rice cul-
tivation) played an important role (see also Sec.2.6.2). This is of importance since the
used malaria models do not include the modelling of, for example, rivers or lakes. How-
ever, it was found that most field sites in Cameroon are influenced by the presence of
permanent rivers, which is mainly caused by the high annual rainfall amount. More-
over, no significant difference was found in terms of entomological and parasitological
data between rural sites and such locations. On this account, also sites with permanent
streams were included in the validation procedure of the LMM(Sec.6). Please also note
that it could not be avoided that these analyses rely on subjective definitions by authors
of original studies (cp.Hay et al. 2005) as well as the subjective categorisation of the
present analysis.

The location of study sites was geo-referenced by four different methods. When
possible the geographical position was taken from the particular reference. Oth-
erwise the position was extracted fromHay et al. (2000b, 2005). The remain-
ing positions were deduced from the Heavens-Above web page (http://www.heavens-
above.com/countries.aspx). When the identification was still impossible the position
was graphically derived from published maps. However, for some study sites the deter-
mination of the geographical position was not possible. Also note that the exact position
was not needed. Only information in terms of the rough distance between the particu-
lar location and the next meteorological station was required (e.g., 50 km northwest of
Ouagadougou).

A differentiation between the four species of the malaria parasites is not intended
by the applied malaria models. As a consequence and against other studies (e.g.,Hay
et al. 2005) the data collection does not divide between transmission of different malaria
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parasites, for example,P. falciparum. However, the bulk of malaria transmission is due
to P. falciparum.

In the following, information is provided for some malaria variables:

D.1 Human biting ratio (HBR)

The human bait catch represents a direct sample of human-biting mosquitoes (Le Goff
et al. 1997). This involves one or several adults waiting at a given location, mostly
indoors or outdoors during night time, and collecting mosquitoes that try to feed on ex-
posed humans. Other sampling techniques are also used such as pyrethrum spray collec-
tions (cp.Service 1977a) as well as light (e.g.,Lindsay et al. 1993c) and exit traps (e.g.,
Lindsay et al. 1989). However, these methods depend on the behaviour of mosquitoes
and are less directly associated with feeding on humans (e.g., Service 1976). The sam-
pling bias between mainly used human bait catches and light traps was analysed (Lines
et al. 1991; Faye et al. 1993; Mbogo et al. 1993; Davis et al. 1995; Smith 1995). There is
also a variation in the attractiveness of individuals to mosquitoes (Lindsay et al. 1993a).
Due to the difference in body size adults are more attractiveto Anophelinesthan children
(e.g.,Muirhead-Thomson 1951; Port et al. 1980). Some field studies used bait catches
performed by children. As proposed byHay et al.(2000b), in such cases the childHBR
values were converted to adultHBRvalues via multiplication of 3.57 (Port et al. 1980).

D.2 Circumsporozoite protein rate (CSPR)

Only female mosquitoes with sporozoites in their salivary glands are able to infect hu-
mans. For this reason, the traditionalCSPRmethod is the dissection of salivary glands
of caught mosquitoes by microscope. Usually malaria field studies dissect all or at least
a representative part of collected mosquitoes. A newer method represents the enzyme-
linked immunosorbent assay (ELISA) technique (e.g.,Burkot et al. 1984a; Habluetzel
et al. 1989; Goldsby et al. 2002), detecting circumsporozoite antigens from mosquito
head and/or thorax samples (Hay et al. 2000b). Burkot et al.(1984b) showed that ELISA
has a greater sensitivity and species specificity than microscope observations. However,
the reliability of microscopy and ELISA varies between studies (Hay et al. 2000b). For
this reason, ELISA derived measures ofCSPRwere not adjusted to observations per-
formed by microscopy.

D.3 Entomological inoculation rate (EIR)

EIR is a comprehensive indicator and direct measure of the malaria transmission level
of a given location (Awolola et al. 2002). This variable is an estimation of the passage
of malaria parasites from infectious mosquitoes to humans (Robert et al. 2003). EIR is
a measurable direct determinant of malaria prevalence, parasite density, incidence, and
mortality and therefore represents a testable variable formalaria models (Shililu et al.
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2003). EIR cannot be measured directly but it can be easily calculated via the above-
mentioned standard measures ofHBR andCSPR(EIR= HBR·CSPR; cp. Macdonald
1957). However, uncertainty exists whenEIR is estimated in areas of low mosquito
densities (Hay 2000). In such regions, malaria transmission might fall below the limit of
detection. Please note,EIR is not an exact measure of transmission since not every bite
from infectiousAnophelinesresults in a human infection (Robert et al. 2003). Above-
mentioned diverse entomological methods complicate the comparability ofEIR values.

D.4 Asexual parasite ratio (PR)

The malaria prevalence or asexual parasite ratio is the proportion of the survey popu-
lation confirmed positive for the malaria parasite. Due to the slow parasite recovery in
humans the measure ofPRis a less suitable indicator of the duration and level of malaria
transmission thanEIR (Reiter et al. 2004; Hay and Snow 2006). AsEIRrisesPRrapidly
becomes saturated (Kiszewski et al. 2004). However,PR is much more easy to access
thanEIRand is therefore a widely available measure of malaria endemicity (e.g.,Smith
et al. 2005).

In seasonal malaria transmission areas,PRvalues vary considerably (e.g.,Sissoko
et al. 2004) since they are usually high (low) at the end (start) of the transmission season
(e.g.,Gazin et al. 1988b). For this reason, when possible minimum and maximum values
of PR were extracted from literature. However, this is only possible when a sufficient
number of surveys were taken place. When monthly data is not available the allocation
of data from the temporary survey depends on the related transmission level (e.g.,PR
taken during the end of the low (high) transmission season were assigned to minimum
(maximum)PRvalues). Due to the age dependence ofPRwherever applicable onlyPR
from children (usually≤15 years) was extracted.

D.5 Malaria seasonality

Climate change is expected to affect the distribution and seasonality of malaria (e.g.,
Epstein et al. 1998; WHO 2003; Confalonieri et al. 2007). The detection of the modifi-
cation of the malaria season is therefore of great importance (Kovats et al. 2001). The
malaria transmission in West Africa is usually seasonal andreaches a maximum between
the middle of the rainy season and the beginning of the dry season (e.g.,Robert et al.
1985).

The analysis of malaria seasonality changes is only possible when the applied
malaria models are simulating realistic transmission seasons. A quality check of models
in terms of the start, end, and length of the malaria season ishence required by observed
data. The definition of the malaria season is usually based onthemonthly Entomological
Inoculation Rate(EIRm), which is observed by field studies.

The introduction of the malaria disease into the LMM is assured by a constant influx
of new infected mosquitoes. As previously discussed, artificial infectious mosquito bites
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are excluded by means of two LMM runs (cp. Sec.5.1.6). The malaria season starts
by definition in the first month with anEIRm value of at least 0.01 infectious bites per
human. According to the model structure a value of 0.01 meansthat during the 30-day
month at least one out of the 100 humans is bitten by an infectious mosquito. Conse-
quently, the last month during the transmission period defines the end of the malaria sea-
son. Various years also reveal year-round or even no malariatransmission. The length
of the malaria season is therefore the number of months withEIRm reaching at least
0.01 infectious bites. For each site or grid box additionally the length of the main trans-
mission season (MSeas) is defined as the number of months in which 75% ofEIRa is
transmitted (cp.Hay et al. 2000b)3. Moreover, when possible the month with maximum
malaria transmission (XSeas) is identified as the month with the highestEIRm value.

The above chosen threshold ensures attainment of a reasonable transmission level.
However, the definition of the malaria season in the model might not be directly compa-
rable to field studies since observations are subject to a certain detection limit. That is
due to the fact that field experiments do not continuously measure biting rates (at best,
e.g., two times a week) and that these studies do not account for every human of the
population.

Analysis J F M A M J J A S O N D

Number of events:f r(m) 24 0 0 0 3 10 26 14 1 1 2 72
Criteria A: f r(m−1)+ f r(m) 96 24 0 0 0 13 36 40 15 2 3 74
Criteria B: f r(m)+ f r(m+1) 24 0 0 0 13 36 40 15 2 3 74 96
Threshold 25 25 25 25 25 25 25 25 25 25 25 25
Fulfilled criteria (A or B) 1 0 0 0 0 1 1 1 0 0 1 1

Tab. D.1: Artificial example relative to the determination of the season start for a period of 100 years.
Within the time frame 153 season starts are identifiable. Criteria A and B require at least
26 events for the considered month and the preceding as well as subsequent month, respec-
tively. In this example, obviously two malaria seasons are present. The first season begins
between July and August and the second season starts most frequently in December, but also
takes place in January. The periods June-August as well as November-January are selected by
the aforementioned procedure (indicated by ‘1’). The average of the first season is hence 7.1
and that for the second season is 12.2.

The definition of the malaria season relative to a long time series is more complex,
especially in case of two distinct malaria seasons. The start of malaria transmission usu-
ally takes place within a certain period of time. In the Sahel, transmission typically sets
in between June and August. However, variable atmospheric conditions might cause un-
usual transmission seasons. Such events complicate the determination of typical charac-
teristics of the malaria season. In areas of two malaria seasons it is, for instance, possible
that the two monthly maxima are not separated. For this reason, only typical periods of

3Note that the computation ofMSeasincludes only months of the malaria season.
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the year are considered. The definition of the start of the malaria season is explained in
the following. The determination ofESeasas well asXSeasis fully analogue:

In a first step, thefrequency( f r) of the season start within a certain month is com-
puted. A month (m) is only considered when it either shows or when the preceding
or subsequent month reveal a frequent start of the malaria season. The frequency of
such events must exceed 25% (criterion A:f r(m) + f r(m+ 1) > 0.25 ny; criterion B:
f r(m−1)+ f r(m) > 0.25 ny; ny: number of years of the period). For the calculation
of the mean or standard deviation of the season start only those months are retained that
fulfil either criterion A or B (see also the example in Tab.D.1). Note that several periods
during the year might have to be considered. These times spans are simply separated
by months that do not accomplish criteria A and B. Due to the chosen procedure it is
possible that a different number of periods are found forSSeas, ESeas, andXSeas. For
example, for some grid boxes in East Africa two malaria seasons are merged or only one
season start (end) is found despite most frequently two season ends (starts). Numerous
cases exist when transmission occurs infrequently (∑ f r(m) ≤ 0.25 ny; denoted as ‘U’
in the figures). In other casesSSeas, ESeas, or XSeasis simulated more often but are
not sufficiently clustered. Such a situation might be characterised as a variable malaria
season (denoted as ‘V’). Also noSSeasandESeasvalues are found when transmission
is often year-round (denoted as ‘C’).

D.6 Data table convention

Tab. D.2: Summary of abbreviations and indices that are generally used in Tabs.D.3- D.15.

abbreviation explanation
country country where the study was undertaken
place location of the study site
long longitude of the study site (-999.00: position is either unknown or was not

seeked out)
lat latitude of the study site (-99.00: position is either unknown or was not

seeked out)
M1 month, when the study started
YYY1 year of the start of the study
M2 month, when the study ended
YYY2 year of the end of the study
specie involved mosquito specie(s)
note notes
ref reference
Ua land use classification afterHay et al.(2005): PU=peri-urban (population

densities of 250-1,000 persons per km2), R1=rural 1 (population densities of
100-250 persons per km2), R2=rural 2 (population densities of <100 persons
per km2), U=urban (population densities of >1,000 persons per km2).

to be continued
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Tab. D.2 – continued
abbreviation explanation
Ub as Ua, but as defined byHay et al.(2000b): R=rural, I=irrigated rice, U=

urban area
Up as Ua, but as taken from the particular reference: R=rural area,

I=irrigation/permanent stream or river, U=urban area (seealso Sec.D)
z altitude of the study site (in m)
-8 special value: data was not available in literature
-9 special value: data has not been checked due to limited access. In such cases

some data was taken fromHay et al.(2000b).
a The position of the study site was taken fromHay et al. 2005.
b The position of the study site was extracted fromHay et al. 2000b.
c This value was calculated by using the relationshipEIR= HBR·CSPR.
d This value either was already considered or was observed before 1973.
e time to adult emergence
ẽ CSPRwas determined by the dissection of salivary glands of caught

mosquitoes by microscope.
f CSPRwas determined by the enzyme-linked immunosorbent assay (ELISA)

technique.
g HBRwas measured by human bait catches.
h HBRwas measured by pyrethrum spray collections.
ĩ HBRwas measured by using light traps.
i The position of the study site was taken from

http://www.heavens-above.com/countries.aspx.
j HBRwas measured by using exit traps.
k This value was converted by using a multiplication factor of3.57 (cp.Port

et al. 1980).
m The position of the study site was derived from a published map.
n In addition, no malaria transmission was observed during atleast one malaria

season.
p time to pupation
r The position of the study site was found in the reference.
r̃ This value is probably not representative (not all field sites could be

considered).
s This value is similar to another value from a different reference regarding the

same field site and for about the same period.
y In addition, a year-round malaria transmission was observed during at least

one malaria season.
⋆ children (the following numbers indicate age classes in years)
⋆ adults (the following numbers indicate age classes in years)
� all ages (the following numbers indicate age classes in years)
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D.7 Entomological and parasitological data

Tab. D.3: Data with regard to entomological and parasitological datafrom malaria field studies. Columns:CSPRa: annual mean circumsporozoite protein rate;
HBRa: annual human biting rate ;EIRa: annual entomological inoculation rate ;PRa: annual mean asexual parasite ratio;PRmin,a: annual minimum
asexual parasite ratio;PRmax,a: annual maximum asexual parasite ratio;Seas: length of the malaria season (in months);MSeas: length of the main malaria
season (in months), that is the number of months in which 75% of EIRa is recorded;XSeas: month of maximum transmission;SSeas: start month of the
malaria season;ESeas: end month of the malaria season; WMO#: WMO station number, which indicates the associated weather station (see Tab.G.1and
Sec.6; -9999: no WMO station was allocated to the data); for further information see Tab.D.2.

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 CSPRa HBRa EIRa PRa PRmin,a PRmax,a Seas MSeas XSeas SSeas ESeasUb Ua Up note ref WMO#

Benin Cotonou-
Agabalilamè,

Djègbadji,
Kétonou

2.43 6.35i -8 -8 -8 -8 0.27̃ef 4502gh 12.10 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 -8 -8 R rural area in vicinityof a lagoon Akogbéto 2000 65344

Benin Cotonou-
Centre

2.43 6.35a -8 -8 -8 -8 1.05̃ef 2768gh 29.06 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 -8 U U becomes swampy during the
rainy season

Akogbéto 2000 65344

Benin Cotonou-
Fiyégnon
Donaten

2.43 6.35i -8 -8 -8 -8 0.48̃ef 1064gh 5.10 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 -8 -8 U at the Atlantic coast Akogbéto 2000 65344

Benin Cotonou,
Gbégamé
quarter

2.45 6.36b 1 1987 12 1987 2.80ẽ 1179gc 33.00 -8.0 -8.0 -8.0 2 1 11 11 12 U U U in the heart of Cotonou Akogbéto et al. 1992 65344

Benin Cotonou-Ladji,
Abomey-

Calavi

2.35 6.45i -8 -8 -8 -8 0.80̃ef 5870gh 47.00 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 -8 -8 R peri-urban area in vicinity of a
lagoon

Akogbéto 2000 65344

Benin Cotonou, Ladji
quarter

2.43 6.38b 1 1987 12 1987 1.60ẽ 3625gc 58.00 -8.0 -8.0 -8.0 8 4 10 06 13 R U R in the north of Cotonou quarter
with lagoons

Akogbéto et al. 1992 65344

Benin Cotonou,
Sainte-Rita

Norde quarter

2.42 6.37b 1 1987 12 1987 1.40ẽ 3357gc 47.00 -8.0 -8.0 -8.0 6 3 08 07 13 R U R - Akogbéto et al. 1992 65344

Benin Ganvié 2.42 6.47b 1 1993 12 1993 0.43ẽ 2555h 11.00 -8.0 -8.0 -8.0 6 -8 -8 03 08 R PU R built on a salt lake Akogbéto 1995;
Akogbéto and Nahum

1996

65344

Benin Ganvié, near
lake Nokoué

2.42 6.42b 1 1994 12 1994 0.36f 2656g 10.60 -8.0 -8.0 -8.0 7 -8 -8 -8 -8 R U R built on a salt lake; reduced
EIRafter bed net usage

Akogbéto and Nahum
1996

65344

Benin Ganvié, near
lake Nokoué

2.42 6.42b 1 1995 12 1995 0.33f 3540g 11.70 -8.0 -8.0 -8.0 7 -8 -8 -8 -8 R U R Ganvié is built on a salt lake;
malaria transmission is reduced

in the area with treated
mosquito nets

Akogbéto and Nahum
1996

65344

Burkina
Faso

Bama -4.42 11.38b 1 1981 12 1981 -9.00 -9 175.20 -9.0 -9.0 -9.0 -9 3 -9 -9 -9 R R2 R - Carnevale and Robert
1987

65510

Burkina
Faso

Baré -4.10 11.08b 1 1981 12 1981 -9.00 -9 91.24 -9.0 -9.0 -9.0 -9 3 -9 -9 -9 R R1 R - Carnevale and Robert
1987

65510

Burkina
Faso

Baré -4.10 11.08b -8 -8 -8 -8 -8.00 -8 -8.00 77.5 -8.0 -8.0 -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(5-14) Boudin et al. 1993 65510

Burkina
Faso

Barkoumbilen
and

Barkoundouba

-1.23 12.67b 3 1995 10 1995 -8.00f -8h >41.00 70.0 56.0 85.0 -8 3 09 -8 -8 R R2 R PR: ⋆(0-20); graphically
derived

Modiano et al. 1996 65503

to be continued
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Tab. D.3 – continued
country place long

[◦E]
lat

[◦N]
M1 YYY1 M2 YYY2 CSPRa HBRa EIRa PRa PRmin,a PRmax,a Seas MSeas XSeas SSeas ESeasUb Ua Up note ref WMO#

Burkina
Faso

Barkoumbilen
and

Barkoundouba

-1.23 12.67b 8 1994 11 1994 -8.00f -8h >102.00 -8.0 -8.0 86.0 -8 3 09 -8 -8 R R2 R PR: ⋆(0-20); graphically
derived

Modiano et al. 1996 65503

Burkina
Faso

Bella and Peul
Djelgobé

camps

-999.00 -99.00 6 1985 3 1986 0.64ẽ -8g -8.00 50.7 37.7 71.5 -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(0.5-15) Gazin et al. 1988b 65501

Burkina
Faso

Bobo-
Dioulasso

-4.30 11.20b 11 1991 1 1993 0.11ẽ 2150g 2.37 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 U R1 U - Lochouarn and Gazin
1993

65510

Burkina
Faso

Bobo-
Dioulasso,

Colma-Nord
quarter

-4.30 11.21b 1 1985 12 1985 0.19ẽ 2421g 4.60 29.1 18.0 47.6 2 2 -8 09 10 U/R R1 R PR: ⋆(0-15) Robert et al. 1986, 1989;
Gazin et al. 1987

65510

Burkina
Faso

Bobo-
Dioulasso,

Diaradougou
quarter

-4.29 11.18b 1 1985 12 1985 0.19ẽd 74g 0.14 6.8 4.6 10.3 1 1 09 09 09 U R1 U PR: ⋆(0-15) Robert et al. 1986, 1989;
Gazin et al. 1987

65510

Burkina
Faso

Bobo-
Dioulasso,

Dioulassoba
quarter

-4.30 11.19b 1 1985 12 1985 0.19ẽd 289g 0.55 10.9 5.4 13.9 1 1 09 09 09 U R1 U PR: ⋆(0-15) Robert et al. 1986, 1989;
Gazin et al. 1987

65510

Burkina
Faso

Bobo-
Dioulasso,
Sarfalao
quarter

-4.30 11.20b 6 1993 9 1993 0.46̃e 870gc 4.00 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 U -8 U - Gazin et al. 1996 65510

Burkina
Faso

Bouloy -0.42 14.70i 6 1985 3 1986 0.64̃ed -8g -8.00 50.7d 37.7d 71.5d -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(0.5-15) Gazin et al. 1988b 65501

Burkina
Faso

Dandé -4.57 11.58i 1 1983 12 1983 -8.00 -8 -8.00 -8.0 -8.0 -8.0 4 3 09 07 10 R R2 R - Robert et al. 1985 65510

Burkina
Faso

Dandé -4.57 11.58i 1 1984 12 1984 -8.00 -8 -8.00 -8.0 -8.0 -8.0 4 2 10 07 10 R R2 R - Robert et al. 1985 65510

Burkina
Faso

Dandé and
Tago

-4.55 11.59b 1 1983 12 1984 4.78ẽc 1380g 55.00 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 R R2 R - Robert et al. 1985 65510

Burkina
Faso

Déou -0.72 14.60i 6 1985 3 1986 0.64̃ed -8g -8.00 26.6 16.9 45.5 -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(6-15) Gazin et al. 1988b 65501

Burkina
Faso

Desso -4.28 11.35b 1 1981 12 1981 -9.00 -9 208.04 -9.0 -9.0 -9.0 -9 3 -9 -9 -9 R R2 R - Carnevale and Robert
1987

65510

Burkina
Faso

Gounghin
Nord

-1.55 12.37b 3 1984 12 1984 0.00ẽ -8h 0.00 -8.0 -8.0 11.8 0 0 -5 -5 -5 U U U PR: ⋆(2-5) Rossi et al. 1986;
Sabatinelli et al. 1986

65503

Burkina
Faso

Karangasso -4.63 11.22b 1 1985 2 1986 4.08̃e 6441gc 262.80 63.0 35.4 82.5 6 3 09 06 11 R R2 R PR: ⋆(0-4) Boudin et al. 1991b,
1992

65510

Burkina
Faso

Karangasso -4.63 11.22b 1 1985 2 1986 4.08̃ed 6441gdc 262.80d 59.5 47.0 75.0 6d 3d 09d 06d 11d R R2 R PR: ⋆(6-9) Boudin et al. 1991b,
1992

65510

Burkina
Faso

Karangasso -4.63 11.22b 1 1985 2 1986 4.08̃ed 6441gdc 262.80d 65.3 53.3 78.9 6d 3d 09d 06d 11d R R2 R PR: ⋆(10-14) Boudin et al. 1991b,
1992

65510

Burkina
Faso

Karangasso,
Koko suburb

-4.65 11.22b 2 1985 2 1986 2.41̃e 4805gc 116.00 62.0 45.0 75.0 7 4 09 06 12 R R2 R PR: ⋆; graphically derived Robert et al. 1988;
Boudin et al. 1991a

65510

Burkina
Faso

Karangasso,
Koko suburb

-4.65 11.22b 5 1985 4 1986 2.55̃es 4548ghs 116.07s 54.1 -8.0 -8.0 5s 3s 10 06d 10s R R2 R - Carnevale et al. 1988 65510

Burkina
Faso

Karangasso,
Koko suburb

-4.65 11.22b 5 1986 4 1987 4.56̃e 4913gh 223.75 39.6 -8.0 -8.0 7 5 10 06 12 R R2 R - Carnevale et al. 1988 65510

Burkina
Faso

Karangasso,
Massasso

suburb

-4.64 11.21b 2 1985 2 1986 5.19̃e 7123gc 370.00 62.0d 45.0d 75.0d 7 4 09 06 12 R R2 R PR: graphically derived Robert et al. 1988;
Boudin et al. 1991a

65510

to be continued
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Tab. D.3 – continued

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 CSPRa HBRa EIRa PRa PRmin,a PRmax,a Seas MSeas XSeas SSeas ESeasUb Ua Up note ref WMO#

Burkina
Faso

Karangasso,
Massasso

suburb

-4.64 11.21b 5 1985 4 1986 5.75̃es 7012ghs 403.33s 54.1d -8.0 -8.0 8s 3s 10s 05s 12d R R2 R reducedEIRafter impregnated
bed net usage

Carnevale et al. 1988 65510

Burkina
Faso

Kolel -0.43 14.55i 6 1985 3 1986 0.64̃ed -8g -8.00 50.7d 37.7d 71.5d -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(0.5-15) Gazin et al. 1988b 65501

Burkina
Faso

Kongodjan -4.45 11.58b 1 1983 12 1983 -8.00 -8 -8.00 59.9 40.5 69.2 7d 3d 08d 06d 12d R R2 S PR: ⋆(0.5-15); area: clay
hollows/permanent pond

Gazin et al. 1988a 65510

Burkina
Faso

Kongodjan -4.45 11.58b 1 1983 12 1983 -8.00 -8 -8.00 -8.0 -8.0 -8.0 7 3 08 06 12 R R2 S area: clay hollows/permanent
pond

Robert et al. 1985 65510

Burkina
Faso

Kongodjan -4.45 11.58b 1 1983 12 1984 1.78ẽc 7480g 133.00 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 R R2 S area: clay hollows/permanent
pond

Robert et al. 1985 65510

Burkina
Faso

Kongodjan -4.45 11.58b 1 1984 12 1984 -8.00 -8 -8.00 -8.0 -8.0 -8.0 7 5 10 06 12 R R2 S area: clay hollows/permanent Robert et al. 1985 65510

Burkina
Faso

Kongodjan -4.45 11.58b 1 1984 12 1984 -8.00 -8 -8.00 -8.0 9.1 -8.0 7d 5d 10d 06d 12d R R2 S PR: ⋆(0.5-15); area: clay
hollows/permanent pond

Gazin et al. 1988a 65510

Burkina
Faso

Koro -4.20 11.15b 1 1981 12 1981 -9.00 -9 171.60 -9.0 -9.0 -9.0 -9 3 -9 -9 -9 R R1 R - Carnevale and Robert
1987

65510

Burkina
Faso

Koubri -1.38 12.15b 7 1984 12 1984 7.10ẽ 6082hc 431.83 -8.0 -8.0 94.9 -8 3 08 -8 -8 R R2 R PR: ⋆(2-5) Rossi et al. 1986;
Sabatinelli et al. 1986

65503

Burkina
Faso

Ouagadougou,
Kologh Naba

suburb

-1.54 12.39b 3 1984 12 1984 1.47ẽ 1359hc 19.98 -8.0 -8.0 22.1 6 3 10 05 10 U U U PR: ⋆(2-5) Rossi et al. 1986;
Sabatinelli et al. 1986

65503

Burkina
Faso

Ouagadougou,
Nongremassm

suburb

-1.51 12.40b 3 1984 12 1984 0.83ẽ 920hc 7.64 -8.0 -8.0 31.5 5 3 10 05 12 U U U PR: ⋆(2-5) Rossi et al. 1986;
Sabatinelli et al. 1986

65503

Burkina
Faso

Ouagadougou,
Saint Camille

suburb

-1.52 12.36b 3 1984 12 1984 1.14ẽ 399hc 5.58 -8.0 -8.0 19.7 2 1 08 08 10 U U U PR: ⋆(2-5) Rossi et al. 1986;
Sabatinelli et al. 1986

65503

Burkina
Faso

Ouagadougou,
Saint Léon

suburb

-1.52 12.37b 6 1984 12 1984 0.00ẽ -8h 0.00 -8.0 -8.0 2.9 0 0 -5 -5 -5 U U U PR: ⋆(2-5) Rossi et al. 1986;
Sabatinelli et al. 1986

65503

Burkina
Faso

Ouagadougou,
Tanghin
suburb

-1.53 12.40m 8 1984 9 1984 -8.00 -8 -8.00 -8.0 -8.0 23.6 -8 -8 -8 -8 -8 -8 -8 U PR: ⋆(2-5) Sabatinelli et al. 1986 65503

Burkina
Faso

Oursi -0.45 14.68i 6 1985 3 1986 0.64̃ed -8g -8.00 26.6d 16.9d 45.5d -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(6-15) Gazin et al. 1988b 65501

Burkina
Faso

Pabré -1.58 12.50b 7 1984 12 1984 6.07ẽ 1673hc 101.58 -8.0 -8.0 79.6 -8 3 10 -8 -8 R PU R PR: ⋆(2-5) Rossi et al. 1986;
Sabatinelli et al. 1986

65503

Burkina
Faso

six villages,
30 km N/NW

of
Ouagadougou

-999.00 -99.00 4 2003 10 2003 -8.00 -8 -8.00 -8.0 -8.0 -8.0 -8 -8 -8 04 -8 -8 -8 R PR: ⋆(1-14) Ouédraogo et al. 2008 65503

Burkina
Faso

six villages,
30 km N/NW

of
Ouagadougou

-999.00 -99.00 6 2002 11 2002 -8.00 -8 -8.00 73.4 63.5 85.0 6 3 09 06 11 -8 -8 R PR: ⋆(1-14) Ouédraogo et al. 2008 65503

Burkina
Faso

Soumosso -4.05 11.02b 1 1981 12 1981 -9.00 -9 200.75 -9.0 -9.0 -9.0 -9 3 -9 -9 -9 R R2 R - Carnevale and Robert
1987

65510

Burkina
Faso

Tago -4.38 11.67b 1 1983 12 1983 -8.00 -8 -8.00 -8.0 -8.0 -8.0 6 3 08d 06 10 R R2 R - Robert et al. 1985 65510

Burkina
Faso

Tago -4.38 11.67b 1 1983 12 1983 -8.00ẽ -8g 82.00 50.7 30.4 71.1 6d 3d 08 06d 10d R R2 R PR: ⋆(0.5-15) Gazin et al. 1988a 65510

to be continued
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Tab. D.3 – continued
country place long

[◦E]
lat

[◦N]
M1 YYY1 M2 YYY2 CSPRa HBRa EIRa PRa PRmin,a PRmax,a Seas MSeas XSeas SSeas ESeasUb Ua Up note ref WMO#

Burkina
Faso

Tago -4.38 11.67b 1 1984 12 1984 -8.00 -8 -8.00 47.6 14.3 77.6 6 3 08 06 10 R R2 R PR: ⋆(0.5-15) Gazin et al. 1988a 65510

Burkina
Faso

Tin Edjar -0.68 14.69m 6 1985 3 1986 0.64̃ed -8g -8.00 33.2 15.0 50.0 -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(0.5-15) Gazin et al. 1988b 65501

Burkina
Faso

Toukoro -4.25 11.43b 1 1981 12 1981 -9.00 -9 76.65 -9.0 -9.0 -9.0 -9 3 -9 -9 -9 R R2 R - Carnevale and Robert
1987

65510

Burkina
Faso

VK1 -4.41 11.35b 1 1981 12 1981 -9.00 -9 0.00 -9.0 -9.0 -9.0 -9 3 -9 -9 -9 I R2 I - Carnevale and Robert
1987

65510

Burkina
Faso

VK2 -4.41 11.37b 1 1981 12 1981 -9.00 -9 21.90 -9.0 -9.0 -9.0 -9 3 -9 -9 -9 I R2 I - Carnevale and Robert
1987

65510

Burkina
Faso

VK3 -4.41 11.38b 1 1981 12 1981 -9.00 -9 62.10 -9.0 -9.0 -9.0 -9 3 -9 -9 -9 I R2 I - Carnevale and Robert
1987

65510

Burkina
Faso

VK4 -4.42 11.37b 1 1981 12 1981 -9.00 -9 20.10 -9.0 -9.0 -9.0 -9 3 -9 -9 -9 I R2 I - Carnevale and Robert
1987

65510

Burkina
Faso

VK4 -4.42 11.37b 1 1985 2 1986 -8.00 -8 -8.00 27.4 16.0 35.7 6d 4 11 05d 12d I R2 I PR: ⋆(0-4) Boudin et al. 1991b,
1992

65510

Burkina
Faso

VK4 -4.42 11.37b 1 1985 2 1986 -8.00 -8 -8.00 33.7 23.9 46.1 6d 4d 11d 05d 12d I R2 I PR: ⋆(10-14) Boudin et al. 1991b,
1992

65510

Burkina
Faso

VK4 -4.42 11.37b 1 1985 2 1986 -8.00 -8 -8.00 41.1 29.4 58.0 6d 4d 11d 05d 12d I R2 I PR: ⋆(5-9) Boudin et al. 1991b,
1992

65510

Burkina
Faso

VK4 -4.42 11.37b 2 1984 12 1984 0.39c 14000 50.00 34.0 25.0 45.0 6 4 10 06 11 I R2 I PR: ⋆, graphically derived Robert et al. 1985;
Boudin et al. 1991a

65510

Burkina
Faso

VK4 -4.42 11.37b 5 1985 4 1986 0.22̃ec 25490g 54.90 -8.0 -8.0 -8.0 6 -8 -8 05 12 I R2 I reducedEIRafter bed net usage Robert and Carnevale
1991

65510

Burkina
Faso

VK5 -4.43 11.38b 1 1981 12 1981 -9.00 -9 36.50 -9.0 -9.0 -9.0 -9 3 -9 -9 -9 I R2 I - Carnevale and Robert
1987

65510

Burkina
Faso

VK6 -4.44 11.37b 1 1981 12 1981 -9.00 -9 54.80 -9.0 -9.0 -9.0 -9 3 -9 -9 -9 I R2 I - Carnevale and Robert
1987

65510

Burkina
Faso

VK6 -4.44 11.37b 1 1983 12 1983 -8.00 -8 -8.00 -8.0 -8.0 -8.0 4 3 06 06 09 I R2 I - Robert et al. 1985 65510

Burkina
Faso

VK6 -4.44 11.37b 1 1983 12 1984 0.43ẽc 13900g 60.00 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 I R2 I - Robert et al. 1985 65510

Burkina
Faso

VK6 -4.44 11.37b 1 1984 12 1984 -8.00 -8 -8.00 -8.0 -8.0 -8.0 7 2 07 05 11 I R2 I - Robert et al. 1985 65510

Burkina
Faso

Zagtouli -1.63 12.33b 7 1984 12 1984 8.14ẽ 1009hc 82.11 -8.0 -8.0 57.6 -8 2 08 -8 -8 R/I U R PR: ⋆(2-5) Rossi et al. 1986;
Sabatinelli et al. 1986

65503

Cameroon Bondi 12.19 3.86m -8 1998 -8 2000 -8.00 -8 -8.00 50.0 49.3 50.7 -8 -8 -8 -8 -8 -8 -8 R area: degraded forest;PR:
�(0.8-77); position from

Meunier et al. 1999

Bonnet et al. 2003 64950

Cameroon Ebogo 11.47 3.40b 4 1991 3 1992 0.84̃e 38189g 355.00 -8.0 -8.0 -8.0 12 8 03 -1 -1 R R2 R/S area: water drainage Njan Nloga et al. 1993 64950
Cameroon Ebolakounou 12.13 3.93a 6 1997 5 1998 4.40̃ec 402g 17.70 61.8 -8.0 -8.0 2 2 05 05 06 -8 R2 R area: forested; Seas: perennial

transmission, but partly below
the detection limit;PR: ⋆(0-15)

Meunier et al. 1999;
Bonnet et al. 2002

64950

Cameroon Edea, Bilalang
suburb

10.13 3.80b 1 1990 12 1990 1.20ẽ 317gc 3.80 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 U R2 R Seas: few mosquito catches Robert et al. 1993 64910

Cameroon Edea, Pongo
suburb

10.13 3.80b 1 1990 12 1990 8.24ẽc 368g 30.20 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 U R2 R area: river presence;HBR:
large spatial differences; Seas:

few mosquito catches

Robert et al. 1993;
Manga et al. 1993a

64910

Cameroon Etoa 11.48 3.77b 2 1996 5 1996 4.10̃ec 11571g 474.50 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 R R2 R/S area: river irrigation; too short
study

Manga et al. 1997b 64950

to be continued
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Tab. D.3 – continued
country place long

[◦E]
lat

[◦N]
M1 YYY1 M2 YYY2 CSPRa HBRa EIRa PRa PRmin,a PRmax,a Seas MSeas XSeas SSeas ESeasUb Ua Up note ref WMO#

Cameroon Etoa 11.48 3.77b 9 1994 2 1995 4.00̃e 12775gc 511.00 54.7 -8.0 -8.0 12 -8 -8 -1 -1 R R2 R/S area: river irrigation, rainforest
belt; too short study;PR:

⋆(1-15)

Quakyi et al. 2000 64950

Cameroon Koundou 12.12 3.90a 6 1997 5 1998 3.80̃ec 4636g 176.10 69.5 -8.0 -8.0 6 3 05 03 08 -8 R2 R area: degraded forest;Seas:
perennial transmission, but

partly the below detection limit;
PR: ⋆(0-15)

Meunier et al. 1999;
Bonnet et al. 2002

64950

Cameroon Mbalmayo 11.43 3.50r 2 2000 6 2001 3.60f 3588ghc 129.00 -8.0 -8.0 -8.0 12 -8 -8 -1 -1 -8 -8 U area: river presence Antonio-Nkondjio et al.
2005

64950

Cameroon Mbébé 11.00 4.15b 4 1989 3 1990 1.94c 10330g 200.00 72.0 -8.0 -8.0 12 4 02 -1 -1 R R2 R/S area: river breeding; reduced
EIRafter impregnated bed net

usage

Le Goff et al. 1992 64950

Cameroon Mbébé 11.00 4.15b 4 1989 12 1989 1.23s >5041gs >62.00s -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 R R2 R/S area: river breeding Le Goff et al. 1992 64950
Cameroon Mengang 12.05 3.88i -8 1998 -8 2000 -8.00 -8 -8.00 70.0 51.2 81.8 -8 -8 -8 -8 -8 -8 -8 R area: degraded forest;PR:

�(0.8-77)
Bonnet et al. 2003 64950

Cameroon Mutengene,
Molyko,
Likoko,
Vasingi

9.30 4.08a 06/11 1998/
1999

09/02 1998/
2000

6.97̃ef 2310ghc 161.00 71.4 -8.0 -8.0 -8 -8 -8 -8 -8 -8 R1 R area: Mount Cameroon, RRa:
up to 11,000 mm; no

transmission at 1200 m

Wanji et al. 2003 64910

Cameroon Nditam 11.26 5.36b 5 1995 3 1996 9.40̃e 876g 82.34c -8.0 -8.0 -8.0 12 2 09 -1 -1 R R2 R area: in secondary forest/near
savannah

Manga et al. 1997a 64893

Cameroon Ngoumé 11.40 5.48i 5 1995 3 1996 -8.00̃e 0g 0.00 -8.0 -8.0 -8.0 0 0 -5 -5 -5 -8 -8 R area: in ancient forest Manga et al. 1997a 64893
Cameroon Nsimalen,

Ekoko
12.12 3.82b 4 1991 3 1992 1.16̃e 8724g 106.00 -8.0 -8.0 -8.0 11 6 15 07 17 R R2 R/S area: river breeding, deforested

due to airport construction
Manga et al. 1995 64950

Cameroon Nsimalen,
Nkol Mefou

11.57 3.70b 4 1991 3 1992 2.35̃e 2920g 68.00 -8.0 -8.0 -8.0 8 6 13 08 15 R R2 R/S area: river breeding, forest Manga et al. 1995 64950

Cameroon Olama 11.30 3.40r 2 2000 6 2001 2.18f 14773ghc 322.00 -8.0 -8.0 -8.0 12 -8 -8 -1 -1 -8 -8 R/S area: river presence Antonio-Nkondjio et al.
2005

64950

Cameroon Sanaga river
villages

11.00 4.15b 4 1989 3 1990 1.86̃e 10303g 182.10 -8.0 -8.0 -8.0 12 6 03 -1 -1 R -8 R/S area: forested, river breeding
(December-June)

Carnevale et al. 1992 64950

Cameroon Simbock 11.48 3.82a 2 1999 4 1999 4.80̃ef -8 -8.00 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 -8 -8 R/S area: forested Fontenille et al. 2001 64950
Cameroon Simbock,

block 6
11.50 3.83a 10 1998 9 1999 2.71f 10214gc 276.80 -8.0 -8.0 -8.0 12 6 01 -1 -1 -8 R1 R/S area: permanent swamp Antonio-Nkondjio et al.

2002
64950

Cameroon Simbock,
block 6

11.50 3.83a 10 1999 9 2000 2.71fd 13576gc 367.90 -8.0 -8.0 -8.0 12 7 05 -1 -1 -8 R1 R/S area: permanent swamp Antonio-Nkondjio et al.
2002

64950

Cameroon Simbok 11.47 3.82a 9 1994 2 1995 2.92̃ec 19345g 565.75 60.6 -8.0 -8.0 12 -8 -8 -1 -1 -8 R1 R/S area: irrigated fields, rainforest;
too short study;PR: ⋆(1-15)

Quakyi et al. 2000 64950

Cameroon Yaoundé,
Dakar quarter

11.52 3.87i 1 2000 12 2000 2.50ẽ 1360gc 34.00 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 -8 -8 U area: breeding along river van der Kolk et al. 2003 64950

Cameroon Yaoundé,
Dakar quarter

11.52 3.87i 7 1999 5 2000 -8.00 -8 -8.00 34.0 25.0 40.0 -8 -8 -8 -8 -8 -8 -8 U area: breeding along river van der Kolk et al. 2003 64950

Cameroon Yaoundé,
Essos

11.00 3.00b 6 1989 2 1990 -8.00 -8 -8.00 37.5 14.3 50.5 -8 -8 -8 -8 -8 -9 -9 U area: near marshy shallows;
PR: ⋆(0-15)

Manga et al. 1993b 64950

Cameroon Yaoundé,
Essos suburb

11.00 3.00b 3 1989 2 1990 20.31ẽc 64g 13.00 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 U R2 U area: marsh breeding;HBR
value in the text is different to

that given in Tab. 1

Manga et al. 1993a 64950

Cameroon Yaoundé,
Messa quarter

11.52 3.87i 10 1990 1 1993 -8.00 -8 -8.00 37.1 -8.0 -8.0 8 -8 -8 -8 -8 -8 -8 U - Tchuinkam et al. 1993 64950

Cameroon Yaoundé, Nkol
Bikok quarter

11.52 3.87b 3 1989 2 1990 5.00̃e 285g 14.24 -8.0 -8.0 -8.0 1 1 05 05 05 U -8 U few mosquito catches Fondjo et al. 1992 64950

Cameroon Yaoundé, Nkol
Bisson

11.52 3.87i 3 1989 2 1990 6.78̃ec 484g 32.80 -8.0 -8.0 -8.0 -8 -8 01 -8 -8 -8 -8 R/S area: lake breeding; HBR in
text differs from Tab. 1

Manga et al. 1993a 64950

to be continued
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Tab. D.3 – continued
country place long

[◦E]
lat

[◦N]
M1 YYY1 M2 YYY2 CSPRa HBRa EIRa PRa PRmin,a PRmax,a Seas MSeas XSeas SSeas ESeasUb Ua Up note ref WMO#

Cameroon Yaoundé, Nkol
Bisson

11.52 3.87i 3 1989 3 1990 1.67̃e 1814g 30.30 -8.0 -8.0 -8.0 4 3 -8 01/06 02/08 R -8 R/S area: near pool;few mosquito
catches

Fondjo et al. 1992 64950

Cameroon Yaoundé, Obili
district

11.52 3.87i 10 1989 7 1990 -8.00 -8 -8.00 27.8 21.1 45.5 -8 -8 -8 -8 -8 -8 U U area: fish breeding ponds;PR:
⋆(0-15)

Manga et al. 1993b 64950

Cameroon Yaoundé, Obili
district

11.52 3.87i -9 -9 -9 -9 -9.00 -9 3.00 -9.0 -9.0 -9.0 -9 -9 -9 -9 -9 -8 U U - Manga et al. 1992 64950

Congo Linzolo 15.11 -4.41b 10 1981 1 1984 2.20ẽ 11204gc 246.10 -8.0 -8.0 -8.0 12 -8 -8 -1 -1 R R1 R - Trape and Zoulani 1987 -9999
Congo Linzolo 15.11 -4.41b 11 1981 5 1985 -8.00 -8 -8.00 79.1 78.8 80.9 -8 -8 -8 -8 -8 R R1 R - Trape 1987 -9999
Côte
d’Ivoire

Alloukoukro -5.08 7.80b 1 1991 12 1991 3.15ẽ 8469gc 266.50 -8.0 -8.0 -8.0 12 5 09 -1 -1 R PU S - Dossou-Yovo et al. 1995 65555

Côte
d’Ivoire

Alloukoukro -5.08 7.80b 1 1992 12 1992 3.50ẽ 5612gc 196.50 -8.0 -8.0 -8.0 12 5 09 -1 -1 R PU S - Dossou-Yovo et al. 1995 65555

Côte
d’Ivoire

Bouaké,
Dar-és-Salam

-5.03 7.68i 1 1991 12 1991 0.90ẽ 4889gc 44.00 -8.0 -8.0 -8.0 7 5 05 04 11 -8 -8 I no transmission in August Dossou-Yovo et al. 1998 65555

Côte
d’Ivoire

Bouaké,
Dar-és-Salam

-5.03 7.68i 1 1992 12 1992 1.10ẽ 4727gc 52.00 -8.0 -8.0 -8.0 8 4 05 04 13 -8 -8 I no transmission in August and
November

Dossou-Yovo et al. 1998 65555

Côte
d’Ivoire

Bouaké,
Kennedy

-5.03 7.68i 1 1991 12 1991 2.00ẽ 6700gc 134.00 -8.0 -8.0 -8.0 8 4 07 03 11 -8 -8 R - Dossou-Yovo et al. 1998 65555

Côte
d’Ivoire

Bouaké,
Kennedy

-5.03 7.68i 1 1992 12 1992 1.80ẽ 5878gc 105.80 -8.0 -8.0 -8.0 7 5 09 04 11 -8 -8 R - Dossou-Yovo et al. 1998 65555

Côte
d’Ivoire

Bouaké,
market garden

districts

-5.03 7.68i 1 1992 12 1992 2.70ẽ 4380g 88.00 -8.0 -8.0 -8.0 8 -8 -8 04 11 R -8 R - Dossou-Yovo et al. 1994 65555

Côte
d’Ivoire

Bouaké, rice
field district

-5.03 7.68i 1 1992 12 1992 0.90ẽ 19467g 126.00 -8.0 -8.0 -8.0 9 -8 -8 04 12 I -8 I - Dossou-Yovo et al. 1994 65555

Côte
d’Ivoire

Bouaké,
Sokoura

-5.03 7.68i 1 1991 12 1991 1.80ẽ 3739gc 67.30 -8.0 -8.0 -8.0 8 3 05 03 10 -8 -8 R - Dossou-Yovo et al. 1998 65555

Côte
d’Ivoire

Bouaké,
Sokoura

-5.03 7.68i 1 1992 12 1992 2.40ẽ 3708gc 89.00 -8.0 -8.0 -8.0 8 5 09 04 11 -8 -8 R - Dossou-Yovo et al. 1998 65555

Côte
d’Ivoire

Bouaké, Tolak-
ouadiokro

-5.03 7.68i 1 1991 12 1991 0.80ẽ 13000gc 104.00 -8.0 -8.0 -8.0 11 5 08 03 13 -8 -8 I no transmission in December Dossou-Yovo et al. 1998 65555

Côte
d’Ivoire

Bouaké, Tolak-
ouadiokro

-5.03 7.68i 1 1992 12 1992 0.70ẽ 22143gc 155.00 -8.0 -8.0 -8.0 -8 8 08 02 -8 -8 -8 I - Dossou-Yovo et al. 1998 65555

Côte
d’Ivoire

Bouaké, Zone -5.03 7.68i 1 1991 12 1991 1.10ẽ 9364gc 103.00 -8.0 -8.0 -8.0 11 5 10 03 13 -8 -8 I no transmission in December Dossou-Yovo et al. 1998 65555

Côte
d’Ivoire

Bouaké, Zone -5.03 7.68i 1 1992 12 1992 0.90ẽ 7000gc 63.00 -8.0 -8.0 -8.0 8 5 08 04 11 -8 -8 I - Dossou-Yovo et al. 1998 65555

Côte
d’Ivoire

Katiola
district,

8 villages (no
rice

cultivation)

-999.00 -99.00 3 1997 1 1998 -8.00 -8 -8.00 87.0 83.0 90.0 8 5 0504 11 -8 -8 R PR: ⋆(0-9); villages are
Angolokaha, Doussoulokaha,

Folofonkaha, Kabolo,
Ounadiékaha, Petionara,

Sérigobokaha, and Timorokaha

Henry et al. 2003 65555

Côte
d’Ivoire

Korhogo
district,

8 villages (rice
cultivation

during the dry
season)

-999.00 -99.00 3 1997 1 1998 -8.00 -8 -8.00 79.0 75.0 81.0 7 -8 05 06 12 -8 -8 I PR: ⋆(0-9); villages are
Gbahaouakaha, Kohotieri,
Koumbolikaha, Lamékaha,

Nambékaha, Nombolo,
Nongotchénékaha, and

Zémongokaha

Henry et al. 2003 65536

to be continued
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Tab. D.3 – continued
country place long

[◦E]
lat

[◦N]
M1 YYY1 M2 YYY2 CSPRa HBRa EIRa PRa PRmin,a PRmax,a Seas MSeas XSeas SSeas ESeasUb Ua Up note ref WMO#

Côte
d’Ivoire

Korhogo
district,

8 villages (rice
cultivation
during the

rainy season)

-999.00 -99.00 3 1997 1 1998 -8.00 -8 -8.00 84.0 80.0 86.0 8 -8 08 04 11 -8 -8 R PR: ⋆(0-9); villages are
Binguebougou, Fapaha,
Kombolokoura, Kaforo,
Karakpo, Kassoumbarga,

Katiorkpo, and Tioro

Henry et al. 2003 65536

Côte
d’Ivoire

Tiémélékro -4.17 6.50r 2 2002 8 2002 3.25f 7662gc 249.00 -8.0 -8.0 -8.0 -8 -8 07 04 -8 -8 -8 R - Koudou et al. 2005 65562

Côte
d’Ivoire

Tiémélékro -4.17 6.50r 2 2003 8 2003 7.36f 6264gc 461.00 -8.0 -8.0 -8.0 -8 -8 08 04 -8 -8 -8 R - Koudou et al. 2005 65562

Côte
d’Ivoire

Zatta -5.39 6.88r 2 2002 8 2002 4.58f 17227gc 789.00 -8.0 -8.0 -8.0 12 -8 02 -1 -1 -8 -8 I - Koudou et al. 2005 65562

Côte
d’Ivoire

Zatta -5.39 6.88r 2 2003 8 2003 1.39f 3453gc 48.00 -8.0 -8.0 -8.0 -8 -8 07 06 -8 -8 -8 R interruption of rice irrigation in
2003

Koudou et al. 2005 65562

Dominican
Republic

Calle Duarte,
Colonia

Japonesa, La
Bomba

-999.00 -99.00 7 1987 10 1988 0.03 5731 1.72 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 -8 -8 -8 - Mekuria et al. 1991 -9999

Gambia,
The

5 villages
around

Farafenni

-16.57 13.47r 4 2003 5 2003 -8.00f -8 -8.00 -8.0 19.9 -8.0 -8 -8 -8 -8 -8 -8 -8 R 950 subjects from 5-45 Nwakanma et al. 2008 61701

Gambia,
The

Bakau -16.68 13.48b 6 1988 5 1989 0.98f 104ghc 1.02k 2.0 -8.0 -8.0 -8 -8 -8 -8 -8 U U U PR: ⋆(0-9) Lindsay et al. 1990 61701

Gambia,
The

Barokanda -15.32 13.65b 8 1988 11 1988 2.97fc 3701ĩ 110.00 -8.0 -8.0 -8.0 5d -8 09d 08d 12d R R2 R reducedEIRafter impregnated
bed net usage

Lindsay et al. 1993c,b 61701

Gambia,
The

Biran Giddo
Ya

-999.00 -99.00 6 1986 12 1986 4.10ẽ 412ĩ 16.87c -8.0 -8.0 -8.0 4 2 09 08 11 -8 -8 R - Lindsay et al. 1989 61701

Gambia,
The

Bwiam -16.09 13.23b 7 1991 1 1992 2.47f 37hj 0.92 39.5 -8.0 -8.0 -8 -8 -8 -8 -8 R R2 R PR: ⋆(1-4) Thomson et al. 1994,
1995

61701

Gambia,
The

Dasilami -15.23 13.48b 8 1988 11 1988 1.29fc 1160ĩ 15.00 -8.0 -8.0 -8.0 5d -8 09d 08d 12d R R2 R reducedEIRafter impregnated
bed net usage

Lindsay et al. 1993c,b 61701

Gambia,
The

Dasilami -14.27 13.41b 7 1991 1 1992 2.23f 54hj 1.21 57.3d -8.0 -8.0 -8 -8 -8 -8 -8 R R2 R PR: ⋆(1-4) Thomson et al. 1994 61687

Gambia,
The

Dongoro Ba -15.28 13.38b 8 1988 11 1988 17.86fc 448ĩ 80.00 -8.0 -8.0 -8.0 5d -8 09d 08d 12d R R2 R reducedEIRafter impregnated
bed net usage

Lindsay et al. 1993c,b 61701

Gambia,
The

4 villages west
of Farafenni

-999.00 -99.00 5 2001 6 2001 -8.00 -8 -8.00 -8.0 54.3 -8.0 3 -8 -8 09 11 -8 -8 R PR: ⋆(0.5-15) Dunyo et al. 2006 61701

Gambia,
The

Jahally -14.97 13.55b 7 1991 1 1992 0.95f 443hj 4.17 34.2d -8.0 -8.0 -8 -8 -8 -8 -8 R R2 R PR: ⋆(1-4) Thomson et al. 1994,
1995

-9999

Gambia,
The

Jalangbereh -15.40 13.38b 8 1988 11 1988 9.10fc 769ĩ 70.00 -8.0 -8.0 -8.0 5d -8 09d 08d 12d R R2 R reducedEIRafter impregnated
bed net usage

Lindsay et al. 1993c,b 61701

Gambia,
The

Jessadi -15.30 13.63b 8 1988 11 1988 2.68fc 2380ĩ 64.00 -8.0 -8.0 -8.0 5 -8 09 08 12 R R2 R reducedEIRafter impregnated
bed net usage

Lindsay et al. 1993c,b 61701

Gambia,
The

Katamina -15.28 13.55b 8 1988 11 1988 0.37fc 1076ĩ 4.00 -8.0 -8.0 -8.0 5d -8 09d 08d 12d R R2 R reducedEIRafter impregnated
bed net usage

Lindsay et al. 1993c,b 61701

Gambia,
The

Kerewan -16.09 13.49b 6 1992 11 1992 0.36 217c 0.78 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 R R1 R - Thomson et al. 1995 61701

Gambia,
The

Kerewan -16.09 13.49b 7 1991 1 1992 0.23f 211hj 0.44 28.7d -8.0 -8.0 -8 -8 -8 -8 -8 R R1 R PR: ⋆(1-4) Thomson et al. 1994,
1995

61701

Gambia,
The

Kulari -14.08 13.40b 7 1991 1 1992 7.65f 102hj 7.75 71.2 -8.0 -8.0 -8 -8 -8 -8 -8 R R1 R PR: ⋆(1-4) Thomson et al. 1994,
1995

61687

to be continued
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Tab. D.3 – continued
country place long

[◦E]
lat

[◦N]
M1 YYY1 M2 YYY2 CSPRa HBRa EIRa PRa PRmin,a PRmax,a Seas MSeas XSeas SSeas ESeasUb Ua Up note ref WMO#

Gambia,
The

Madina -15.25 13.52b 8 1988 11 1988 7.45fc 2376ĩ 177.00 -8.0 -8.0 -8.0 5d -8 09d 08d 12d R R2 R reducedEIRafter impregnated
bed net usage

Lindsay et al. 1993c,b 61701

Gambia,
The

Male Kunda -15.30 13.55b 8 1988 11 1988 2.60fc 2692ĩ 70.00 -8.0 -8.0 -8.0 5d -8 09d 08d 12d R R2 R reducedEIRafter impregnated
bed net usage

Lindsay et al. 1993c,b 61701

Gambia,
The

Niawodurulung -15.22 13.46b 8 1988 11 1988 0.00fc 1481ĩ 0.00 -8.0 -8.0 -8.0 5d -8 09d 08d 12d R R2 R reducedEIRafter impregnated
bed net usage

Lindsay et al. 1993c,b 61701

Gambia,
The

Nyrimba Koyo
Ya

-999.00 -99.00 6 1986 12 1986 1.61ẽ 155ĩ 2.49c -8.0 -8.0 -8.0 4 2 09d 08 11 -8 -8 R untreated bed net usage Lindsay et al. 1989 -9999

Gambia,
The

Pakali Ba -15.25 13.50b 8 1988 11 1988 3.04fc 3253ĩ 99.00 -8.0 -8.0 -8.0 5d -8 09d 08d 12d R R2 R reducedEIRafter impregnated
bed net usage

Lindsay et al. 1993c,b 61701

Gambia,
The

Salikene -15.97 13.48b 7 1991 1 1992 0.55f 360hj 1.94 28.7 -8.0 -8.0 -8 -8 -8 -8 -8 R R2 R PR: ⋆(1-4) Thomson et al. 1994,
1995

61701

Gambia,
The

Sare Alpha -13.98 13.37b 6 1992 11 1992 4.25f -8hj -8.00 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 R R1 R - Thomson et al. 1995 61687

Gambia,
The

Sare Alpha -13.98 13.37b 7 1991 1 1992 6.07f 187hj 11.15 71.2d -8.0 -8.0 -8 -8 -8 -8 -8 R R1 R PR: ⋆(1-4) Thomson et al. 1994,
1995

61687

Gambia,
The

Saruja -14.90 13.55b 6 1992 11 1992 0.73f 38hjc 2.79 -8.0 -8.0 -8.0 -8 -8 -8 -8 -8 I R2 R - Thomson et al. 1995 -9999

Gambia,
The

Saruja -14.90 13.55b 7 1991 1 1992 2.17f 231hj 5.00 34.2 -8.0 -8.0 -8 -8 -8 -8 -8 I R2 R PR: ⋆(1-4) Thomson et al. 1994,
1995

-9999

Gambia,
The

Sibanor -16.20 13.21b 7 1991 1 1992 2.88f 113hj 3.24 39.5d -8.0 -8.0 -8 -8 -8 -8 -8 R R2 R PR: ⋆(1-4) Thomson et al. 1994,
1995

61701

Gambia,
The

Sitahuma -15.40 13.43b 8 1988 11 1988 2.23fc 3366ĩ 75.00 -8.0 -8.0 -8.0 5d -8 09d 08d 12d R R2 R reducedEIRafter impregnated
bed net usage

Lindsay et al. 1993c,b 61701

Gambia,
The

Sutukoba -14.02 13.50b 7 1991 1 1992 2.94f 34hj 0.99 57.3 -8.0 -8.0 -8 -8 -8 -8 -8 R R2 R PR: ⋆(1-4) Thomson et al. 1994,
1995

61687

Gambia,
The

Tally Ya -15.72 13.58i 6 1986 12 1986 2.31ẽ 682ĩ 15.75c -8.0 -8.0 -8.0 5 3 09d 07 11 -8 -8 R untreated bed net usage Lindsay et al. 1989 -9999

Gambia,
The

Turan -15.72 13.58i 6 1986 12 1986 2.70ẽ 890ĩ 24.04c -8.0 -8.0 -8.0 5 3 09 07 11 -8 -8 R - Lindsay et al. 1989 61701

Gambia,
The

Wellingara Ba -15.26 13.41b 8 1988 11 1988 2.19fc 1553ĩ 34.00 -8.0 -8.0 -8.0 5d -8 09d 08d 12d R R2 R reducedEIRafter impregnated
bed net usage

Lindsay et al. 1993c,b 61701

Ghana Kassena
Nankana
district

-1.44 10.76r 5 2001 11 2001 -8.00 -8 -8.00 59.2c 43.6 76.4 -8 -8 -8 -8 -8 -8 R2 I PR: ⋆(0.5-15) Koram et al. 2003 65518

Ghana Kassena
Nankana
district

(irrigated)

-1.44 10.76r 6 2001 5 2002 4.70f 13404gc 630.00 -8.0 -8.0 -8.0 8 3 09 06 13 -8 R2 I - Appawu et al. 2004 65518

Ghana Kassena
Nankana
district

(lowland)

-1.44 10.76r 6 2001 5 2002 19.00f 1895gc 360.00 -8.0 -8.0 -8.0 5 2 09 07 11 -8 R2 R - Appawu et al. 2004 65518

Ghana Kassena
Nankana
district

(morbidity
study)

-1.44 10.76r 10 1990 9 1991 -8.00 -8 -8.00 74.2 53.3 84.5 -8 -8 -8 -8 -8 -8 R2 I PR: ⋆(0 to 7) Binka et al. 1994 65518

to be continued
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Tab. D.3 – continued
country place long

[◦E]
lat

[◦N]
M1 YYY1 M2 YYY2 CSPRa HBRa EIRa PRa PRmin,a PRmax,a Seas MSeas XSeas SSeas ESeasUb Ua Up note ref WMO#

Ghana Kassena
Nankana
district

(mortality
study)

-1.44 10.76r 10 1990 9 1991 -8.00 -8 -8.00 87.1 76.5 94.2 -8 -8 -8 -8 -8 -8 R2 I PR: ⋆(0 to 7) Binka et al. 1994 65518

Ghana Kassena
Nankana

district (rocky
highland)

-1.44 10.76r 6 2001 5 2002 10.60f 2151gc 228.00 -8.0 -8.0 -8.0 4 3 08 07 10 -8 R2 R - Appawu et al. 2004 65518

Kenya Mumias 0.18 34.49b 5 1995 3 1996 6.79f 700g 47.50 52.3 43.8 60.4 11 7 -8 -8 -8 R PU R PR: ⋆ Shililu et al. 1998 -9999
Liberia Yekepa -8.53 7.58a 11 -8 11 -8 -8.00 -8 -8.00 -8.0 -8.0 13.0 -8 -8 -8 -8 -8 -8 R2 R PR: ⋆(2-9) Björkman et al. 1985 61849
Liberia Yekepa, close

(<3 km)
-8.55 7.56a 11 -8 11 -8 -8.00 -8 -8.00 -8.0 -8.0 22.0 -8 -8 -8 -8 -8 -8 R2 R PR: ⋆(2-9); vector control &

drug usage
Björkman et al. 1985 61849

Liberia Yekepa,
middle

(5-15 km)

-8.63 7.58a 11 -8 11 -8 -8.00 -8 -8.00 -8.0 -8.0 68.0 -8 -8 -8 -8 -8 -8 R2 R PR: ⋆(2-9); vector control &
sporadic treatment

Björkman et al. 1985 61849

Liberia Yekepa, far
(>15 km)

-8.54 7.58i 11 -8 11 -8 -8.00 -8 -8.00 -8.0 -8.0 92.0 -8 -8 -8 -8 -8 -8 R2 R PR: ⋆(2-9); vector control &
drug usage

Björkman et al. 1985 61849

Mali Bamako,
Sotuba suburb

-7.93 12.65a 6 1998 12 1998 -8.00f -8g 3.49 -8.0 -8.0 -8.0 7 3 10 06 12 -8 R2 R - Sagara et al. 2002 61291

Mali Dokobougou -6.13 14.17i 8 1995 3 1998 0.59f -8gh -8.00 48.0 18.0 77.0 -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(1-4), partially
graphically derived

Dolo et al. 2004;
Sissoko et al. 2004

61265

Mali Kalanampala -6.87 14.15m 8 1995 3 1998 1.49f -8gh -8.00 46.0 32.0 57.0 -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(1-4), partially
graphically derived

Dolo et al. 2004;
Sissoko et al. 2004

61265

Mali Niessoumana -5.97 14.31m 8 1995 3 1998 0.28f -8gh -8.00 51.1 24.0 78.0 -8 -8 -8 -8 -8 -8 -8 I PR: ⋆(1-4), partially
graphically derived

Dolo et al. 2004;
Sissoko et al. 2004

61265

Mali Ténégué -5.95 14.33m 8 1995 3 1998 0.15f -8gh -8.00 32.7 18.0 49.0 -8 -8 -8 -8 -8 -8 -8 I PR: ⋆(1-4), partially
graphically derived

Dolo et al. 2004;
Sissoko et al. 2004

61265

Mali Tissana -5.92 14.35m 8 1995 3 1998 0.29f -8gh -8.00 36.7 12.0 52.0 -8 -8 -8 -8 -8 -8 -8 I PR: ⋆(1-4), partially
graphically derived

Dolo et al. 2004;
Sissoko et al. 2004

61265

Mali Toumakoro -6.18 14.07i 8 1995 3 1998 0.69f -8gh -8.00 52.3 31.0 71.0 -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(1-4), partially
graphically derived

Dolo et al. 2004;
Sissoko et al. 2004

61265

Nigeria Garki district,
16 villages

-999.00 -99.00 2 1971 5 1972 -8.00 -8 -8.00 49.0 59.0 42.0 -8 -8 -8 -8 -8 -8 -8 R graphically derived;� Molineaux et al. 1980 -9999

Nigeria Lagos, Lemu
suburb

3.37 6.47a 1 2000 12 2000 2.54f 1891ghc 48.00 -8.0 -8.0 -8.0 12 -8 -8 -1 -1 -8 U U Anopheles melasand
Anopheles mouchetimaintain

transmission in dry season

Awolola et al. 2002 65344

Sao and
Tomé
and
Príncipe

Príncipe 7.42 1.53r 5 1999 8 1999 -8.00 -8 -8.00 19.8 -8.0 -8.0 -8 -8 -8 -8 -8 -8 -8 R PR: � Hagmann et al. 2003 61934

Senegal Aéré Lao -14.30 16.40b 5 1982 8 1983 0.24̃e 1600g 6.40 -8.0 12.0d 17.0d 4 2 11 09 12 R R2 R PR: unknown age classes;
presence of Senegal river

Vercruysse 1985b 61612

Senegal Affiniam -16.37 12.65i 1 1985 11 1985 0.03ẽ 66667gc 20.00 -8.0 -8.0 -8.0 5 3 09 07 11 R R2 I - Faye et al. 1994 61695
Senegal Affiniam -16.37 12.65i 1 1986 11 1986 0.30ẽ 13000gc 39.00 -8.0 -8.0 -8.0 4 3 09 08d 11d R R2 I - Faye et al. 1994 61695
Senegal Barkedji -14.88 15.28r 6 1994 12 1994 2.19f 5870ghc 128.55 -8.0 -8.0 -8.0 4 2 10 09 12 R R2 R clay hollows→ highHBRa &

EIRa

Le Masson et al. 1997 61627

Senegal Barkedji -14.88 15.28r 7 1995 3 1996 1.52f 6684ghc 101.60 -8.0 -8.0 -8.0 6 2 09 08 14 R R2 R clay hollows→ highHBRa &
EIRa

Le Masson et al. 1997 61627

Senegal Boké Diallobé -14.00 16.10b 5 1982 8 1983 1.20̃e 200g 0.80 -8.0 12.0 17.0 3 2 09 09 11 R R2 R PR: unknown age classes Vercruysse 1985b 61612
Senegal Boundoum -16.47 16.38m 7 1994 11 1994 -8.00 -8 -8.00 0.0 0.0 0.0 0 0 -5 -5 -5 -8 -8 I PR: ⋆(0-9) Faye et al. 1995d 61489
Senegal Dakar, district

Centre
-17.44 14.70a 3 1996 2 1997 0.00̃e 110h 0.00 1.4 0.4 1.9 0 0 -5 -5 -5 -8 U U PR: ⋆(0-14)� Diallo et al. 2000 61641

to be continued
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Tab. D.3 – continued
country place long

[◦E]
lat

[◦N]
M1 YYY1 M2 YYY2 CSPRa HBRa EIRa PRa PRmin,a PRmax,a Seas MSeas XSeas SSeas ESeasUb Ua Up note ref WMO#

Senegal Dakar, Grande
Niaye Mrash

-17.42 14.75r 5 1987 9 1988 0.55̃e 22ghc 0.12 3.7 3.4 4.0 -8 -8 -8 -8 -8 -8 U U PR: � Trape et al. 1992 61641

Senegal Dakar, Grande
Niaye Mrash

-17.42 14.75r 6 1987 6 1988 -8.00 -8 -8.00 5.6 3.6 7.5 -8 -8 -8 -8 -8 -8 U U PR: ⋆ Trape et al. 1993 61641

Senegal Diagobel -16.33 12.70i 1 1985 11 1985 0.00ẽ -8g 0.00 -8.0 -8.0 -8.0 0 0 -5 -5 -5 R R2 I - Faye et al. 1994 61695
Senegal Diagobel -16.33 12.70i 1 1986 11 1986 0.30ẽ 41000gc 123.00 -8.0 -8.0 -8.0 4 3 09d 08d 11d R R2 I - Faye et al. 1994 61695
Senegal Diakhanor -16.77 13.98i 6 1995 12 1997 -8.00 -8 -8.00 8.5d 1.9d 15.3d 2 -8 09 08 09 -8 -8 R PR: unknown age classes Diop et al. 2002 61679
Senegal Diakhanor -16.77 13.98i 6 1996 11 1996 -8.00 -8 -8.00 6.5 0.0 14.4 -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(0-9) Diop et al. 2006 61679
Senegal Diamballo -16.95 15.02i -8 1967 -8 1968 -8.00 -8 -8.00 -8.0 32.0d 50.0d 8d -8 -8 07d 16d R -8 R - Faye et al. 1995c 61641
Senegal Dielmo -16.42 13.72b 1 1990 12 1990 -8.00 -8 -8.00 85.0 -8.0 -8.0 -8 -8 -8 -8 -8 R R2 S PR: ⋆(2-9) Rogier and Trape 1995 61679
Senegal Dielmo -16.42 13.72b 4 1990 3 1991 1.24f 9533gc 118.00 -8.0 -8.0 -8.0 12 5 07 -1 -1 R R2 S - Konaté et al. 1994 61679
Senegal Dielmo -16.42 13.72b 4 1991 3 1992 1.59f 18462gc 294.00 -8.0 -8.0 -8.0 12 5 07 -1 -1 R R2 S - Konaté et al. 1994 61679
Senegal Dielmo -16.42 13.72b 4 1992 3 1993 2.77f 8581ghc 237.80 -8.0 -8.0 -8.0 12 6 07 -1 -1 R R2 S - Fontenille et al. 1997b 61679
Senegal Dielmo -16.42 13.72b 4 1993 3 1994 0.91f 9795ghc 88.70 -8.0 -8.0 -8.0 11 4 10 -1 -1 R R2 S - Fontenille et al. 1997b 61679
Senegal Dielmo -16.42 13.72b 4 1994 3 1995 0.87f 17322ghc 150.10 -8.0 -8.0 -8.0 10 4 14 06 -8 R R2 S - Fontenille et al. 1997b 61679
Senegal Dielmo -16.42 13.72b 6 1990 5 1991 1.04̃e 12500gc 130.00 89.3 -8.0 -8.0 12 4 07 -1 -1 R R2 S PR: ⋆(0-14) Trape et al. 1994 61679
Senegal Dielmo -16.42 13.72b 6 1991 5 1992 1.57̃e 22299gc 350.10 -8.0 -8.0 -8.0 12 6 09 -1 -1 R R2 S - Trape et al. 1994 61679
Senegal Diohine -16.52 14.50b 1 1995 12 1995 1.95f 680gh 13.26c 56.7d 41.0d 82.0d 5 -8 09 07 11 R R1 R PR: ⋆(0-9) Robert et al. 1998 61666
Senegal Diomandou

Dieri
-14.65 16.52r 6 1990 11 1991 0.00ẽ 3139g 0.00 -8.0 -8.0 -8.0 0 0 -5 -5 -5 -8 -8 I - Faye et al. 1993 61612

Senegal Diomandou
Toulde Galle

-14.71 16.56m 6 1990 11 1991 0.00ẽ 438g 0.00 -8.0 -8.0 -8.0 0 0 -5 -5 -5 -8 -8 R - Faye et al. 1993 61612

Senegal Diomandou
Walo

-14.62 16.56m 6 1990 11 1991 0.05ẽ 7483g 1.00 -8.0 -8.0 -8.0 1 1 08 08 08 -8 -8 I - Faye et al. 1993 61612

Senegal Djifère -16.77 13.93i 6 1995 12 1997 2.08f 789ghc 16.40 8.5 1.9 15.3 5 -8 11 11 15 -8 -8 S PR: unknown age classes Diop et al. 2002 61679
Senegal Djifère -16.77 13.93i 6 1996 11 1996 -8.00 -8 -8.00 4.9 0.0 14.4 -8 -8 -8 -8 -8 -8 -8 S PR: ⋆(0-9) Diop et al. 2006 61679
Senegal Djilor -16.33 14.07i 6 1995 12 1997 0.39f 2615ghc 10.20 12.9 1.1 31.4 6 -8 07 07 12 -8 -8 R PR: unknown age classes Diop et al. 2002 61679
Senegal Kassack-Nord -16.03 16.40b 9 1992 11 1994 0.00f -8g 0.00 0.2 0.0 0.4 0 0 -5 -5 -5 R R2 I PR: ⋆(0-9) Faye et al. 1995d 61489
Senegal Kotiokh -16.58 14.48b 1 1995 12 1995 1.75f 1558gh 26.50 56.7 41.0 82.0 8 -8 09 06 13 R R1 R PR: ⋆(0-9); near permanent

breeding
Robert et al. 1998 61666

Senegal Maka-Diama -16.40 16.20b 9 1992 11 1994 0.00f -8g 0.00 0.5 0.0 1.0 0 0 -5 -5 -5 R R2 S PR: ⋆(0-9) Faye et al. 1995d 61600
Senegal Ndiop -16.42 13.75b 1 1993 12 1993 4.47f 1411gc 63.00 -8.0 -8.0 -8.0 4 2 09 07 10 R R2 R - Fontenille et al. 1997a 61679
Senegal Ndiop -16.42 13.75b 1 1993 12 1993 -8.00 -8 -8.00 18.0 -8.0 -8.0 -8 -8 -8 -8 -8 R R2 R PR: ⋆(2-9) Rogier and Trape 1995 61679
Senegal Ndiop -16.42 13.75b 1 1994 12 1994 3.61f 471gc 17.00 -8.0 -8.0 -8.0 3 2 09 08 10 R R2 R - Fontenille et al. 1997a 61679
Senegal Ndiop -16.42 13.75b 1 1995 12 1995 4.05f 914gc 37.00 -8.0 -8.0 -8.0 3 2 09 08 10 R R2 R - Fontenille et al. 1997a 61679
Senegal Ndiop -16.42 13.75b 1 1996 12 1996 4.71f 149gc 7.00 -8.0 -8.0 -8.0 1 1 09 09 09 R R2 R - Fontenille et al. 1997a 61679
Senegal Ngadiaga -16.95 15.02m 3 1991 11 1991 -8.00 -8 -8.00 6.2 2.0 10.6 -8 -8 -8 -8 -8 R -8 R PR: ⋆(0-10) Faye et al. 1995c 61641
Senegal Ngadiaga -16.95 15.02m 8 1993 8 1993 -8.00 -8 -8.00 -8.0 0.0 -8.0 -8 -8 -8 -8 -8 R -8 R PR: ⋆(0-10) Faye et al. 1995c 61641
Senegal Ngayokhème -16.43 14.53b 1 1995 12 1995 1.80f 512gh 8.96c 56.7d 41.0d 82.0d 5 -8 09 07 11 R R1 R PR: ⋆(0-9) Robert et al. 1998 61666
Senegal Niakhar -16.40 14.47r 2 1995 11 1995 -8.00 -8 -8.00 57.0d 41.0d 83.0d -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(0-9) Ndiaye et al. 2001 61666
Senegal Ousseuk -16.18 12.84m 1 1985 11 1985 0.36ẽ 3611gc 13.00 -8.0 -8.0 -8.0 4 3 09d 07d 10d -8 R2 I - Faye et al. 1994 61695
Senegal Ousseuk -16.18 12.84m 1 1986 11 1986 0.46ẽ 3487gc 16.00 -8.0 -8.0 -8.0 3 2 09d 08d 10d -8 R2 I - Faye et al. 1994 61695
Senegal Pikine -17.40 14.75b 11 1979 1 1981 -8.00 -8 -8.00 8.8d 2.2d 13.5d -8 -8 -8 -8 -8 U -8 U - Vercruysse et al. 1983 61641
Senegal Pikine -17.40 14.75b 12 1979 12 1980 0.55de 9145sgc 50.30sk -8.0 -8.0 -8.0 12 4 10 -1 -1 U -8 U - Vercruysse et al. 1983 61641
Senegal Pikine -17.40 14.75b 12 1979 12 1980 0.55ẽ 7818gc 43.00 8.8 2.2 13.5 -9 4 -9 -9 -9 U -8 U - Vercruysse and Jancloes

1981
61641

Senegal Simal -16.65 14.15i 6 1995 12 1997 2.20f 596ghc 13.10 12.9d 1.1d 31.4d 7d -8 10 06d 12d -8 -8 R PR: unknown age classes Diop et al. 2002 61679
Senegal Takème -16.20 12.82i 1 1985 11 1985 0.36ẽ 3056gc 11.00 -8.0 -8.0 -8.0 4 3 09 07 10 -8 R2 I - Faye et al. 1994 61695
Senegal Takème -16.20 12.82i 1 1986 11 1986 0.46ẽ 4783gc 22.00 -8.0 -8.0 -8.0 3 2 09 08 10 -8 R2 I - Faye et al. 1994 61695
Senegal Tendimane -16.30 12.77i 1 1985 11 1985 0.00ẽ -8g 0.00 -8.0 -8.0 -8.0 0 0 -5 -5 -5 R R2 I - Faye et al. 1994 61695
Senegal Tendimane -16.30 12.77i 1 1986 11 1986 0.30ẽ 11667gc 35.00 -8.0 -8.0 -8.0 4 3 09 08 11 R R2 I - Faye et al. 1994 61695

to be continued
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Tab. D.3 – continued

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 CSPRa HBRa EIRa PRa PRmin,a PRmax,a Seas MSeas XSeas SSeas ESeasUb Ua Up note ref WMO#

Senegal Thiaye -16.96 14.99m 1 1992 12 1992 0.00f 4540gh 0.00 -8.0 3.2 -8.0 0 0 10 -5 -5 R -8 R PR: ⋆(0-10); wet depressions
→ highHBRa

Faye et al. 1995c 61641

Senegal Thiaye -16.96 14.99m 3 1991 12 1991 0.48f 2290gh 11.00 -8.0 2.9 5.7 2 2 -5 09 10 R -8 R PR: ⋆(0-10); wet depressions
→ highHBRa

Faye et al. 1995c 61641

Senegal Thiaye -16.96 14.99m 8 1993 8 1993 -8.00 -8 -8.00 -8.0 0.0 -8.0 -8 -8 -8 -8 -8 R -8 R PR: ⋆(0-10) Faye et al. 1995c 61641
Senegal Thiaye -17.07 14.92r 9 1992 10 1993 0.00f 1241gh 0.00 -8.0 -8.0 -8.0 0 0 -5 -5 -5 -8 -8 R PR: ⋆(0-10); wet depressions

→ highHBRa

Faye et al. 1995c,b 61641

Senegal Thies -16.93 14.80i -8 -8 -8 -8 -8.00 -8 -8.00 17.5 -8.0 -8.0 -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(0-14) Boudin et al. 2005 61641
Senegal Wassdou -13.33 13.35r 9 1992 11 1993 2.75f 7884gh 220.00 -8.0 -8.0 -8.0 7 3 09 07 13 -8 -8 R - Faye et al. 1995b,a 61687
Sierra
Leone

8 villages near
Bo

-999.00 -99.00 3 1990 12 1990 -8.00 -8 -8.00 61.0 -8.0 -8.0 -8 -8 -8 -8 -8 -8 -8 R PR: ⋆(0-7); data exits for single
villages

Barnish et al. 1993 -9999

Sierra
Leone

Mendewa -11.48 8.16b 1 1990 4 1991 9.60f 228hc 21.90 -8.0 -8.0 -8.0 11d 4d 06d 01d 11d R R2 R - Bockarie et al. 1994 -9999

Sierra
Leone

Nengbema -11.68 8.13b 1 1990 4 1991 5.25f 410hc 21.54 -8.0 -8.0 -8.0 11 4 06 01 11 R R2 R - Bockarie et al. 1994 -9999

Sierra
Leone

Njala-
Komboya

-11.54 8.20b 1 1990 4 1991 7.63f 349hc 26.64 -8.0 -8.0 -8.0 11d 4d 06d 01d 11d R R2 R - Bockarie et al. 1994 -9999

Sierra
Leone

Nyandeyama -11.66 8.12b 1 1990 4 1991 8.11f 450hc 36.50 -8.0 -8.0 -8.0 11d 4d 06d 01d 11d R R2 R - Bockarie et al. 1994 -9999

Sudan Asar 13.75 35.25a 10 1998 8 1999 -8.00 -8 -8.00 26.5 1.8 53.2 -8 -8 -8 -8 -8 -8 R2 R - Abdel-Wahab et al. 2002 -9999
Uganda Kampala

Mulago III
parish

32.58 0.32i 11 2004 4 2005 -8.00 -8 -8.00 19.0 -8.0 -8.0 -8 -8 -8 -8 -8 -8 -8 U PR: ⋆(1-10) Davis et al. 2006 63608
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D.8 Parasitological data assigned to synoptic stations

Tab. D.4: Parasitological data since 1979 assigned to synoptic stations. Columns: WMO#: WMO station number; num: number of included study sites; YYYYs:
concerned years. Various meanings of other column titles are the same as that of Tab.D.3. Leading ’l’ and ’u’ characters indicate thelower andupper
range of observed values, respectively. Numbers in brackets represent the number of available observations. For further information see Tab.D.2.

country place WMO# long
[◦E]

lat
[◦N]

z Up num YYYYs lPRa uPRa lPRmin,a uPRmin,a lPRmax,a lPRmax,a

Mali Mopti Barbe 61265 4◦06’W 14◦31’N 272 R 3 1995-1998 46.0(3) 52.3 18.0(3) 32.0 57.0(3) 77.0
Mali Mopti Barbe 61265 4◦06’W 14◦31’N 272 I 3 1995-1998 32.7(3) 51.1 12.0(3) 24.0 49.0(3) 78.0
Senegal Rosso 61489 15◦49’W 16◦30’N 6 I 2 1992-1994 0.0(2) 0.2 0.0(2) 0.0 0.0(2) 0.4
Senegal Saint Louis 61600 16◦27’W 16◦03’N 4 S 1 1992-1994 0.5(1) 0.5 0.0(1) 0.0 1.0(1) 1.0
Senegal Podor 61612 14◦58’W 16◦39’N 7 R 1 1982-1983 -8.0(-8) -8.0 12.0(1) 12.0 17.0(1) 17.0
Senegal Dakar Yoff 61641 17◦30’W 14◦44’N 24 U 3 1979-1981 1987-1988 1996-1997 1.4(4) 8.8 0.4(4) 3.6 1.9(4) 13.5
Senegal Dakar Yoff 61641 17◦30’W 14◦44’N 24 R 1 1991-1993 6.2(2) 17.5 0.0(5) 3.2 5.7(2) 10.6
Senegal Diourbel 61666 16◦14’W 14◦39’N 9 R 4 1995 56.7(1) 56.7 41.0(1) 41.0 82.0(1) 82.0
Senegal Kaolack 61679 16◦04’W 14◦08’N 7 R 3 1993 1995-1997 6.5(4) 18.0 0.0(3) 1.9 14.4(3) 31.4
Senegal Kaolack 61679 16◦04’W 14◦08’N 7 S 2 1990-1991 1995-1997 4.9(4) 89.3 0.0r̃(2) 1.9̃r 14.4̃r(2) 15.3̃r

Senegal Tambacounda 61687 13◦41’W 13◦46’N 50 R 5 1991-1992 57.3(2) 71.2 -8.0(-8) -8.0 -8.0(-8) -8.0
Gambia, The Banjul Yundum Intl 61701 16◦48’W 13◦21’N 33 U 1 1988-1989 2.0(1) 2.0 -8.0(-8) -8.0 -8.0(-8) -8.0
Gambia, The Banjul Yundum Intl 61701 16◦48’W 13◦21’N 33 R 7 1991-1992 2001 2003 28.7(2) 39.5 19.9(2) 54.3 -8.0(-8) -8.0
Liberia N’Zerekore Konia 61849 8◦50’W 7◦44’N 470 R 4 -8 -8.0(-8) -8.0 -8.0(-8) -8.0 13.0(4) 92.0
Cameroon Douala 64910 9◦44’E 4◦00’N 9 R 1 1998-1999 71.4(1) 71.4 -8.0(-8) -8.0 -8.0(-8) -8.0
Cameroon Yaounde 64950 11◦31’E 3◦50’N 760 R/S 17 1989-1990 1994-1995 1997-2000 50.0(6) 72.0 49.3̃r (2) 51.2̃r 50.7̃r(2) 81.8̃r

Cameroon Yaounde 64950 11◦31’E 3◦50’N 760 U 4 1989-1993 1999-2000 27.8(4) 37.5 14.3(3) 25.0 40.0(3) 50.5
Burkina Faso Dori 65501 0◦02’W 14◦02’N 277 R 6 1985-1986 26.6(3) 50.7 15.0(3) 37.7 45.5(3) 71.5
Burkina Faso Ouagadougou 65503 1◦31’W 12◦21’N 306 R 5 1984 1994-1995 2002-2003 70.0(2) 73.4 56.0(2) 63.5 57.6(6) 94.9
Burkina Faso Ouagadougou 65503 1◦31’W 12◦21’N 306 U 6 1984 -8.0(-8) -8.0 -8.0(-8) -8.0 2.9(6) 31.5
Burkina Faso Bobo-Dioulasso 65510 4◦19’W 11◦10’N 460 R 6 1983-1987 29.1(10) 77.5 14.3(7) 53.3 47.6(7) 82.5
Burkina Faso Bobo-Dioulasso 65510 4◦19’W 11◦10’N 460 I 2 1983-1986 33.7(5) 59.9 9.1(6) 40.5 35.7(5) 69.2
Burkina Faso Bobo-Dioulasso 65510 4◦19’W 11◦10’N 460 U 4 1985 1991-1993 6.8(2) 10.9 4.6(2) 5.4 10.3(2) 13.9
Burkina Faso Po 65518 1◦09’W 11◦09’N 322 I 1 1991 2001 59.2(3) 87.1 43.6(3) 76.5 76.4(3) 94.2
Côte d’Ivoire Korhogo 65536 5◦37’W 9◦25’N 381 R 1 1997-1998 84.0(1) 84.0 80.0(2) 80.0 86.0(1) 86.0
Côte d’Ivoire Korhogo 65536 5◦37’W 9◦25’N 381 I 1 1997-1998 79.0(1) 79.0 75.0(1) 75.0 81.0(1) 81.0
Côte d’Ivoire Bouaké 65555 5◦04’W 7◦44’N 376 R 1 1997-1998 87.0(1) 87.0 83.0(1) 83.0 90.0(1) 90.0
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D.9 Entomological data assigned to synoptic stations

Tab. D.5: Entomological data since 1979 assigned to synoptic stations. Columns: WMO#: WMO station number; num: number of included study sites; YYYYs:
years that are concerned. Various meanings of other column titles are the same as that of Tab.D.3. Leading ’l’ and ’u’ characters indicate thelower and
upper range of the observed values, respectively. Numbers inbrackets represent the number of available observations. Note that with regard to the start
and end of the malaria season a transmission break of one month is allowed; values greater than 12 stand for months in the following year (e.g., 13:
January); -5: no malaria transmission, -1: year around malaria transmission. For further information see Tab.D.2.

country place WMO# Up num YYYYs lRSPRa uRSPRa lHBRa uHBRa lEIRa uEIRa lSeas uSeas lMSeas uMSeas lXSeas uXSeas lSSeas uSSeas lESeas uESeas
Mali Mopti Barbe 61265 R 3 1995-1998 0.59(3) 1.49 -8(-8) -8 -8.00(-8) -8.00 -8(-8) -8 -8(-8) -8 -8(-8) -8 -8(-8) -8 -8(-8) -8
Mali Mopti Barbe 61265 I 3 1995-1998 0.15(3) 0.29 -8(-8) -8 -8.00(-8) -8.00 -8(-8) -8 -8(-8) -8 -8(-8) -8 -8(-8) -8 -8(-8) -8
Mali Bamako Senou 61291 R 1 1998 -8.00(-8) -8.00 -8(-8) -8 3.49(1) 3.49 7(1) 7 3(1) 3 10(1) 10 06(1) 06 12(1) 12
Senegal Rosso 61489 I 1 1992-1994 0.00(2) 0.00 -8(-8) -8 0.00(2) 0.00 0(2) 0 0(2) 0 -5(2) -5 -5(2) -5 -5(2) -5
Senegal Saint Louis 61600 S 1 1992-1994 0.00(1) 0.00 -8(-8) -8 0.00(1) 0.00 0(1) 0 0(1) 0 -5(1) -5 -5(1) -5 -5(1) -5
Senegal Podor 61612 R 3 1982-1983

1990-1991
0.00(3) 1.20 200(3) 1600 0.00(3) 6.40 0(3) 4 0(3) 2 09n(3) 11 09n(3) 09 11n (3) 12n

Senegal Podor 61612 I 1 1982-1983
1990-1991

0.00(2) 0.05 3139(2) 7483 0.00(2) 1.00 0(2) 1 0(2) 1 -5(2) 08 -5(2) 08 -5(2) 08

Senegal Linguere 61627 R 2 1994-1996 1.52(2) 2.19 5870(2) 6684 101.60(2) 128.55 4(2) 6 2(2) 2 09(2) 10 08(2) 09 12(2) 14
Senegal Dakar Yoff 61641 U 3 1979-1981

1987-1988
1996-1997

0.00(2) 0.55 22(3) 7818 0.00(3) 43.00 0(2) 12 0(2) 4 -5(2) 10 -5(2) -1 -5(2) -1

Senegal Dakar Yoff 61641 R 3 1991-1993 0.00(3) 0.48 1241(3) 4540 0.00(3) 11.00 0(3) 2 0(3) 2 -5(3) 10 -5(3) 09 -5(3) 10
Senegal Diourbel 61666 R 3 1995 1.75(3) 1.95 512(3) 1558 8.96(1) 26.50 5(3) 8 -8(-8) -8 09(3) 09 06(3) 07 11(3) 13
Senegal Kaolack 61679 R 3 1993-1997 0.39(6) 4.71 149(6) 2615 7.00(6) 63.00 1(7) 7 1(4) 2 07(7) 10 06(7) 09 09(7) 12
Senegal Kaolack 61679 S 2 1990-1997 0.87(8) 2.77 8581(8) 22299 16.40(8) 350.10 5(8) 12 4(7) 6 07(8) 14 06y(8) 11y 15(7) -1
Senegal Tambacounda 61687 R 5 1991-1993 2.23(6) 7.65 34(5) 7884 0.99(5) 220.00 7(1) 7 3(1) 3 09(1) 09 07(1) 07 13(1) 13
Senegal Ziguinchor 61695 I 5 1985-1986 0.00(10) 0.46 3056(10) 66667 0.00(10) 123.00 0(10) 5 0(10) 3 -5(7) 09 07n(6) 08n 10n(6) 11n

Gambia, The Banjul Yundum
Intl

61701 U 1 1988-1989 0.98(1) 0.98 104(1) 104 1.02(1) 1.02 -8(-8) -8 -8(-8) -8 -8(-8) -8 -8(-8) -8 -8(-8) -8

Gambia, The Banjul Yundum
Intl

61701 R 21 1986 1988-1989
1991-1992 2001

2003

0.23(19) 17.86 37(19) 3701 0.00(19) 177.00 3(4) 5 2(2) 3 09(3) 09 07(4) 09 11(4) 12

Cameroon Koundja
Foumban

64893 R 2 1995-1996 9.40(1) 9.40 0(2) 876 0.00(2) 82.34 0(2) 12 0(2) 2 -5(2) 09 -5(2) -1 -5(2) -1

Cameroon Douala 64910 R 3 1990 1998-1999 1.20(3) 8.24 317(3)2310 3.80(3) 161.00 -8(-8) -8 -8(-8) -8 -8(-8) -8 -8(-8) -8 -8(-8) -8
Cameroon Yaounde 64950 R/S 15 1989-1992

1994-2001
0.84(16) 6.78 402(15) 38189 17.70(15) 565.75 2(13) 12 2(10) 8 01(10) 05 01y(13) 08y 06y(13) 17y

Cameroon Yaounde 64950 U 5 1989-1990
2000-2001

2.50(3) 20.31 64(3) 3588 3.00(4) 129.00 1(1) 12 1r̃(1) 1 05(1) 05 05̃r(2) -1 5̃r(2) -1

Benin Cotonou
Cadjehoun

65344 R 6 1987 1993-1995 0.33(6) 1.60 2555(6) 5870 10.60(6) 58.00 6(5) 8 3(2) 4 08(2) 10 03(3) 07 08(3) 13

Benin Cotonou
Cadjehoun

65344 U 4 1987 2000 0.48(4) 2.80 1064(4) 2768 5.10(4) 48.00 2(2) 12 11(1) 11 1̃r(1) 1̃r 11(2) -1̃r 12(2) -1

Burkina Faso Dori 65501 R 6 1985-1986 0.64(1) 0.64 -8(-8) -8 -8.00(-8) -8.00 -8(-8) -8 -8(-8) -8 -8(-8) -8 -8(-8) -8 -8(-8) -8
Burkina Faso Ouagadougou 65503 R 5 1984 1994-1995

2002-2003
6.07(3) 8.14 1009(3) 6082 82.11(3) 431.83 6(1) 6 2(6) 3 08(6) 10 04(2) 06 11(1) 11

Burkina Faso Ouagadougou 65503 U 6 1984 0.00(5) 1.47 399(3) 1359 0.00(5) 19.98 0(5) 6 0(5) 3 08n(4) 10 05n(5) 08n 10n(5) 12n

Burkina Faso Bobo-Dioulasso 65510 R 11 1981 1983-1987 0.19(6) 5.75 1380(6) 7123 4.60(13) 370.00 2(9) 7 2(15) 5 08(9) 10 06(9) 09 10(9) 12
to be continued
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Tab. D.5 – continued
country place WMO# Up num YYYYs lRSPRa uRSPRa lHBRa uHBRa lEIRa uEIRa lSeas uSeas lMSeas uMSeas lXSeas uXSeas lSSeas uSSeas lESeas uESeas
Burkina Faso Bobo-Dioulasso 65510 I 7 1981 1983-1986 0.22(4) 1.78 7480(4) 25490 0.00(10) 133.00 4(6) 7 2(12) 5 06(4) 11 05(6) 06 09(6) 12
Burkina Faso Bobo-Dioulasso 65510 U 5 1985 1991-1993 0.11(3) 0.46 74(4) 2150 0.14(4) 4.00 1(2) 1 1(2) 1 09(2) 09 09(2) 09 09(2) 09
Burkina Faso Po 65518 R 2 2001-2002 10.60(2) 19.00 1895(2) 2151 228.00(2) 360.00 4(2) 5 2(2) 3 08(2) 09 07(2) 07 10(2) 11
Burkina Faso Po 65518 I 1 2001-2002 4.70(1) 4.70 13404(1) 13404 630.00(1) 630.00 8(1) 8 3(1) 3 09(1) 09 06(1) 06 13(1) 13
Côte d’Ivoire Korhogo 65536 R 1 1997-1998 -8.00(-8) -8.00 -8(-8) -8 -8.00(-8) -8.00 8(2) 8 -8(-8) -8 08(1) 08 04(1) 04 11(1) 11
Côte d’Ivoire Korhogo 65536 I 1 1997-1998 -8.00(-8) -8.00 -8(-8) -8 -8.00(-8) -8.00 7(1) 7 -8(-8) -8 05(1) 05 06(1) 06 12(1) 12
Côte d’Ivoire Bouaké 65555 R 4 1991-1992

1997-1998
1.80(5) 2.70 3708(5) 6700 67.30(5) 134.00 7(6) 8 3(5) 5 05(5) 09 03(6) 04 10(6) 11

Côte d’Ivoire Bouakeé 65555 I/S 5 1991-1992 0.70(9) 3.50 4727(9) 22143 44.00(9) 266.50 7(8) 12 4(8) 8 05(6) 10 02y(9) 04y 11y(8) 13y

Côte d’Ivoire Dimbokro 65562 R 2 2002-2003 1.39(3) 7.36 3453(3) 7662 48.00(3) 461.00 -8(-8) -8 -8(-8) -8 07(3) 08 04(3) 06 -8(-8) -8
Côte d’Ivoire Dimbokro 65562 I 1 2002-2003 4.58(1) 4.58 17227(1) 17227 789.00(1) 789.00 12(1) 12 -8(-8) -8 02(1) 02 -1(1) -1 -1(1) -1

D.10 Duration of the gonotrophic cycle (ng)

Tab. D.6: Information with regard to the duration of the gonotrophic cycle that is the egg development within female mosquitoes. For further information see
Tab.D.2.

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 ng [days] specie note ref

Ceylon Peliyagoda -999.00 -99.00 -8 1962 -8 1964 3.0-4.0 Culex pipiens fatigans MRR experiments Samarawickrema 1967
Dominican Republic Calle Duarte, Colonia

Japonesa, La Bomba
-999.00 -99.00 07 1987 10 1988 2.6 An. albimanus - Mekuria et al. 1991

Dominican Republic Calle Duarte, Colonia
Japonesa, La Bomba

-999.00 -99.00 07 1987 10 1988 3.2 An. vestitipennis - Mekuria et al. 1991

Egypt Faiyum -999.00 -99.00 10 1983 -8 -8 2.3-11.8 An. sergentii laboratory;T: 17-34◦C; data for 1st, 2nd, and 3rd cycles Beier et al. 1987
Egypt Tersa -999.00 -99.00 -8 -8 -8 -8 6.1 An. pharoensis first cycle; observation in laboratory Kenawy 1991
Egypt Tersa -999.00 -99.00 -8 -8 -8 -8 7.4 An. multicolor first cycle; observation in laboratory Kenawy 1991
Iran Zeineddini -999.00 -99.00 05 1991 05 1991 2.0-3.0 An. culicifacies, An. pulcherrimus direct observations Zaim et al. 1993
Mexico Cosalapa -92.28 14.63p 06 1993 07 1993 2.0-3.0 An. vestitipennis autocorrelation time-series analysis Arredondo-Jimenez et al. 1998
Mexico Benemérito -90.65 16.31p 08 1993 09 1993 2.0 An. vestitipennis autocorrelation time-series analysis Arredondo-Jimenez et al. 1998
Mexico Tapachula -999.00 -99.00 11 1992 12 1992 3.8 An. vestipennis cage observations Arredondo-Jimenez et al. 1998
Mexico Tapachula foothills -999.00 -99.00 04 1991 01 1991 3.0 An. pseudopunctopennis wild-caught females; MRR experiments Fernandez-Salas et al. 1994
Mexico Tapachula foothills -999.00 -99.00 04 1991 04 1991 4.0 An. pseudopunctopennis insectary-reared females; MRR experiments Fernandez-Salas et al. 1994
Senegal Barkedji -999.00 -99.00 -8 -8 -8 -8 2.2-3.2 Aedes vexans arabiensis derived from formulas Kenawy 1991
Sierra Leone Bayama -999.00 -99.00 11 1990 10 1991 3.0 An. gambiae s.s. technique fromBirley and Rajagopalan 1981 Bockarie et al. 1995
Tanzania Namawala 36.40 -8.15p -8 -8 -8 -8 2.7 An. gambiae s.l., An. funestus,

An. gambiae, An. arabiensis
unpublished data Charlwood et al. 1995

Tanzania Muheza -999.00 -99.00 -8 -8 -8 -8 3.0 An. funestus different behaviour between cool and hot seasons Gillies and Wilkes 1963
Tanzania Muheza -999.00 -99.00 -8 1963 -8 1964 3.0-5.0 An. gambiae first cycle; MRR experiments Gillies and Wilkes 1965
Tanzania Muheza -999.00 -99.00 -8 1963 -8 1964 3.0 An. gambiae second and subsequent cycles; MRR experiments Gillies and Wilkes 1965
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D.11 Produced eggs per female mosquito (#Ep)

Tab. D.7: Data with regard to the number of produced eggs perAnophelesfemale. Columns: #Ep,ave: average number of produced eggs per female mosquito;
#Ep,min: minimum observed number of produced eggs; #Ep,max: as #Ep,min, but for the maximum; further information see Tab.D.2. The ’#’ stands for
’number’.y denotes the number of produced eggs andx stands for the wing length (in mm). Minimum and maximum values refer to individual analysed
mosquito females.

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 #Ep,ave #Ep,min #Ep,max specie note ref

Egypt Faiyum -999.00 -99.00 10 1983 -8 -8 -8.0 11.0 141.0 An. sergentii laboratory Beier et al. 1987
Egypt Tersa -999.00 -99.00 10 1990 11 1990 73.3 -8.0 -8.0 An. pharoensis laboratory; # of eggs per female; constant temperatures

(25±2◦C); y = 73.3±16.9
Kenawy 1991

Egypt Tersa -999.00 -99.00 10 1990 11 1990 209.2 -8.0 -8.0 An. pharoensis laboratory; # of eggs per female; cycling temperatures;
y = 209.2±36.8

Kenawy 1991

Egypt Tersa -999.00 -99.00 10 1990 11 1990 75.0 -8.0 -8.0 An. multicolor laboratory; # of eggs per female; constant temperatures
(25±2◦C); y = 75.0±15.8

Kenawy 1991

Egypt Tersa -999.00 -99.00 10 1990 11 1990 164.8 -8.0 -8.0 An. multicolor laboratory; # of eggs per female; cycling temperatures;
y = 164.8±61.5

Kenawy 1991

El Salvador around Lake
Apastepeque

-999.00 -99.00 06 1971 09 1972 120.0 -8.0 -8.0 An. albimanus - Weidhaas et al. 1974

Gambia, The Kaba Kamma -999.00 -99.00 07 1993 08 1993 -8 20.0 180.0 An. gambiae s.s. laboratory; # of laid and retained eggs; indoor resting
females;y = 46.67x−56.7,x range: 2.5-3.3 mm

Hogg et al. 1996

Gambia, The Kaba Kamma -999.00 -99.00 07 1993 08 1993 -8 5.0 160.0 An. arabiensis laboratory; # of laid and retained eggs; indoor resting
females;y = 66.72x−125.68;x range:. 2.7-3.3 mm

Hogg et al. 1996

Tanzania Kilimanjaro region -999.00 -99.00 -8 -8 -8 -8 12.6 -8.0 -8.0 An. gambiae s.s. laboratory; # of mature oocytes; small females; blood meal
size: 1.0µl

Takken et al. 1998b

Tanzania Kilimanjaro region -999.00 -99.00 -8 -8 -8 -8 108.6 -8.0 -8.0 An. gambiae s.s. laboratory; # of mature oocytes; large females; blood meal:
rat once

Takken et al. 1998b

Tanzania Michenga 36.63 8.17r -8 1991 -8 1991 150.0 66.0 290.0 An. gambiae s.l. laboratory; # of laid and retained eggs; indoor resting
females;y = 133.93x−187.00 (note: the value of the

y-intercept disagrees with the inserted line in Fig. 3 in the
reference);x range: 2.5-3.3 mm

Lyimo and Takken
1993

Tanzania Michenga 36.63 8.17r -8 1991 -8 1991 111.0 48.0 178.0 An. gambiae s.l. laboratory; # of laid and retained eggs; newly emerged
females;y = 89.13x−152.96

Lyimo and Takken
1993
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D.12 Development of immature mosquitoes

Life tables of developing immature mosquitoes are constructed using either horizontal or vertical methods. Horizontal life table methods
are appropriate for distinct cohorts following through time (e.g., in laboratories). By contrast, vertical life tablemethods are commonly
applied for populations with overlapping generations and age distributions remaining stationary during sampling. Inthis case, larval
sampling is usually done in the field using standard dipping techniques. Collected larvae per dip are counted and scored according to
their life stage (Mwangangi et al. 2006).

Tab. D.8: Information of immature mosquitoes taken from horizontal life tables as derived under controlled conditions. Columns: pMMA,ave: averaged immature
survival probability from egg to adult emergence, that is the proportion of immature mosquitoes reaching MMA;pMMA,min: as pMMA,ave, but for the
minimum;pMMA,max: aspMMA,ave, but for the maximum;MMAave: average Mosquito Mature Age;MMAmin: minimum Mosquito Mature Age;MMAmax:
maximum Mosquito Mature Age;ηdc,ave: average daily immature mosquito survival probability in protected habitats;ηdc,min: asηdc,ave, but for the
minimum;ηdc,max: asηdc,ave, but for the maximum; further information see Tab.D.2. Note that minimum and maximum values refer to average values
obtained by different experimental settings (T: different temperatures;ρ: different larval densities; Dl: different day lengths; Ñ:with additional nutrients;
¬Ñ: without added nutrients). Particular applied experimental settings are specified under the ’note’ column.

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 pMMA,ave pMMA,min pMMA,max MMAave MMAmin MMAmax ηdc,ave ηdc,min ηdc,max specie note ref

Egypt Faiyum -999.00 -99.00 10 1983 -8 -8 -8.0 55.8e 72.3e -8.0 14.2 33.2 -8.0 97.7 98.2 An. sergentii laboratory;T:
17/(22)/27◦C;

mud slurry, lower
survival in
tab/distilled

water

Beier et al. 1987

Egypt Tersa -999.00 -99.00 10 1990 11 1990 13.0 -8.0 -8.0 16.5p/18.5e -8.0 -8.0 89.6 -8.0 -8.0 An. pharoensis laboratory Kenawy 1991
Egypt Tersa -999.00 -99.00 10 1990 11 1990 22.0 -8.0 -8.0 20.0p/21.0e -8.0 -8.0 93.0 -8.0 -8.0 An. multicolor laboratory Kenawy 1991
Kenya Western Kenyan

highland area
-999.00 -99.00 09 2003 09 2003 -8.0 24.0 48.0 -8.0 11.2e 16.5e -8.0 91.7 94.9 An. gambiaes.l. farmland;ρ ¬Ñ;

z= 1420-1580
Munga et al.

2006
Kenya Western Kenyan

highland area
-999.00 -99.00 09 2003 09 2003 0.0 0.0 0.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0 An. gambiaes.l. forest;ρ ¬Ñ;

z= 1420-1580
Munga et al.

2006
Kenya Western Kenyan

highland area
-999.00 -99.00 09 2003 09 2003 0.0 0.0 0.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0 An. gambiaes.l. swamp;ρ ¬Ñ;

z= 1420-1580
Munga et al.

2006
Kenya Western Kenyan

highland area
-999.00 -99.00 06 2004 06 2004 -8.0 49.0 65.0 -8.0 12.0e 16.7e -8.0 95.3 96.5 An. gambiaes.l. farmland;ρ ¬Ñ;

z= 1420-1580
Munga et al.

2006
Kenya Western Kenyan

highland area
-999.00 -99.00 06 2004 06 2004 -8.0 0.0 2.0 -8.0 20.1e 27.6e -8.0 82.3 86.8 An. gambiaes.l. forest;ρ ¬Ñ;

z= 1420-1580
Munga et al.

2006
Kenya Western Kenyan

highland area
-999.00 -99.00 06 2004 06 2004 -8.0 6.0 33.0 -8.0 20.1e 27.6e -8.0 88.7 94.5 An. gambiaes.l. swamp;ρ ¬Ñ;

z= 1420-1580
Munga et al.

2006
Kenya Western Kenyan

highland area
-999.00 -99.00 06 2004 06 2004 -8.0 61.0 70.0 -8.0 9.0e 12.1e -8.0 95.8 96.1 An. gambiaes.l. farmland;ρ Ñ;

z= 1420-1580
Munga et al.

2006
Kenya Western Kenyan

highland area
-999.00 -99.00 06 2004 06 2004 -8.0 10.0 23.0 -8.0 18.4e 24.2e -8.0 90.8 93.0 An. gambiaes.l. forest;ρ Ñ;

z= 1420-1580
Munga et al.

2006
to be continued
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Tab. D.8 – continued

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 pMMA,ave pMMA,min pMMA,max MMAave MMAmin MMAmax ηdc,ave ηdc,min ηdc,max specie note ref

Kenya Western Kenyan
highland area

-999.00 -99.00 06 2004 06 2004 -8.0 24.0 43.0 -8.0 19.3e 23.7e -8.0 94.2 96.2 An. gambiaes.l. swamp;ρ Ñ;
z= 1420-1580

Munga et al.
2006

Kenya near Kisumu -999.00 -99.00 -8 -8 -8 -8 -8.0 53.5 60.6 -8.0 8.5p 9.9p -8.0 93.9 94.3 An. gambiae ρ ¬Ñ; Gimnig et al.
2002

Kenya near Kisumu -999.00 -99.00 -8 -8 -8 -8 -8.0 49.4 60.0 -8.0 8.1p 10.3p -8.0 91.6 95.2 An. gambiae ρ Ñ; Gimnig et al.
2002

Kenya Fort Ternan 35.35 -0.20r 06 2001 08 2001 0.4 -8.0 -8.0 16.5p -8.0 -8.0 71.6 -8.0 -8.0 An. gambiaes.s.,
An. arabiensis

z= 1550-1650 Koenraadt et al.
2006

Liberia Sua -999.00 -99.00 -8 -8 -8 -8 -8.0 55.0 80.0 -8.0 10.6p 11.6p -8.0 94.5 98.1 An. gambiae s.s. laboratory;ρ Schneider et al.
2000

Liberia - -999.00 -99.00 -8 -8 -8 -8 83.4 72.0 99.0 9.8p 8.0p 13.0 98.2 95.8 99.9 An. gambiae s.s. laboratory;T ρ Lyimo et al. 1992
Nigeria Lagos -999.00 -99.00 -8 -8 -8 -8 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0 88.9 98.9 An. gambiae s.s. laboratory;T; no

maturation at
T < 18◦C and

T > 32◦C

Bayoh and
Lindsay 2004

Mali Banambani -8.05 12.80r 07 2000 08 2000 68.5 -8.0 -8.0 11.8e -8.0 -8.0 96.8 -8.0 -8.0 An. gambiaes.l. laboratory Edillo et al. 2004
Zimbabwe Zambezi valley -999.00 -99.00 -8 -8 -8 -8 -8.0 37.0 65.0 -8.0 9.9p 10.4p -8.0 90.4 96.0 An. arabiensis laboratory;ρ Schneider et al.

2000
- - -999.00 -99.00 -8 -8 -8 -8 -8.0 35.0 85.0 -8.0 5.4e 30.0e -8.0 94.8 98.9 Culex pipiens

complex
laboratory;T Dl Mogi 1992

Tab. D.9: Information of immature mosquitoes taken from vertical life tables as derived under field conditions. Columns:pMMA,ave: averaged survival probability of
immature mosquitoes from egg to adult emergence, that is theproportion of eggs reachingMMA; pMMA,min: aspMMA,ave, but for the minimum;pMMA,max:
as pMMA,ave, but for the maximum;MMA: Mosquito Mature Age, that is the duration between egg laying and adult emergence;ηd,ave: average daily
survival probability of immature mosquitoes;ηd,ave: asηd,min, but for the minimum;ηd,max; asηd,ave, but for the maximum; further information see
Tab.D.2.

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 pMMA,ave
[%]

pMMA,min
[%]

pMMA,max
[%]

MMA
[days]

ηd,ave
[%]

ηd,min
[%]

ηd,max
[%]

specie note ref

El Salvador Lake Apastepeque -999.00 -99.00 06 1971 09 1972 4.8 2.0 15.0 -8.0 -8.0 -8.0 -8.0 An. albimanus - Weidhaas et al. 1974
Kenya Chiga -999.00 -99.00 -8 -8 -8 -8 -8.0 3.8 4.8 12.5 -8.0 77.0 78.4 An. gambiae marsh and pool collections Service 1971
Kenya Ahero, Rabour, Nduru 34.75 -0.1p 07 1974 07 1974 -8.0 6.6 7.4 11.8 -8.0 79.4 80.2 An. gambiae rice field, pond, and pool

collections;z= 1000
Service 1977b

Kenya Ahero 34.75 -0.1p 07 1974 08 1974 16.5 -8.0 -8.0 11.8 85.8 -8.0 -8.0 An. gambiae sprayed rice field collections;
z= 1000

Service 1977b

Kenya Chiga, Rabour,
Kanyamedha,
Warthorego

-999.00 -99.00 11 1971 12 1971 -8.0 2.9 3.4 11.8 -8.0 74.0 75.0 An. gambiae pond collections;z= 1150 Service 1973

Kenya Chiga -999.00 -99.00 11 1971 12 1971 0.0 -8.0 -8.0 11.8 -8.0 -8.0 -8.0 An. gambiae ditch collections;z= 1150 Service 1973
Kenya Mwea -999.00 -99.00 08 2005 04 2006 1.7 0.1 3.4 11.9 69.4 52.7 75.2 An. arabiensis rice field collections; different

rice stages (land preparation,
transplanting, and tillering)

Mwangangi et al. 2006

Mali Banambani -8.05 12.80p 07 2000 08 2000 17.6 8.0 28.5 11.8 86.3 80.7 89.9 An. gambiae s.l. rock pool, swamp, and puddle
collections

Edillo et al. 2004

Kenya Baringo -999.00 -99.00 -9 -9 -9 -9 -9.0 -9.0 -9.0 -9.0 91.9 -9.0 -9.0 An. gambiae - Aniedu et al. 1993
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D.13 Daily survival probability of adult mosquitoes (pd)

Tab. D.10: Data with regard to the daily survival probability of adult mosquitoes (pd) as derived from entomological field studies. Columns:pd,ave: average value
of pd; pd,min: minimum ofpd; pd,max: maximum ofpd; way: determination way ofpd (C: calculated/estimation, see corresponding paper; K: keeping in
cages/laboratory; A: age-grading (cp.Gillies 1958); P: parous rate; S: immediate and delayed sporozoite rates(Draper and Davidson 1953); L: ampulla
measurements; M: mark-release-recapture method; I: population decline during the dry period (Charlwood et al. 1995); wea: weather conditions during
the experiment (R: rainy season; D: dry season; T: transition season between either dry and rainy or rainy and dry season;E: dry and rainy season). For
further information see Tab.D.2. Minimum and maximum values refer to annual variations.

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 pd,ave pd,min pd,max way species wea note ref

Brasil Pariquera-Açu county -47.83 -24.50 01 2000 02 2000 61.0 -8.0 -8.0 M An. albitarsis R - Dos Santos et al. 2004
Burkina Faso Bobo-Dioulasso -999.00 -99.00 06 1959 12 1960 88.3 -8.0 -8.0 P An. gambiae - - Garrett-Jones and Grab

1964
Burkina Faso Bobo-Dioulasso -999.00 -99.00 06 1959 12 1960 90.7 -8.0 -8.0 P An. funestus - - Garrett-Jones and Grab

1964
Burkina Faso Bobo-Dioulasso -999.00 -99.00 06 1959 12 1960 84.2 -8.0 -8.0 P An. nili - - Garrett-Jones and Grab

1964
Burkina Faso Bobo-Dioulasso -999.00 -99.00 06 1959 12 1960 88.9 -8.0 -8.0 P An. coustani - - Garrett-Jones and Grab

1964
Burkina Faso Bobo-Dioulasso, urban -999.00 -99.00 01 1985 12 1985 71.0 -8.0 -8.0 P An. gambiae R - Robert et al. 1989
Burkina Faso Bobo-Dioulasso, rural -999.00 -99.00 -8 -8 -8 -8 91.0 -8.0 -8.0 P An. gambiae R - Robert et al. 1989
Burkina Faso Goundri -1.33 12.50r 09 1991 09 1991 73.6 -8.0 -8.0 M mixture of

Anopheles
R other estimates provide higher values Costantini et al. 1996

Burkina Faso Goundri -1.33 12.50r 09 1992 09 1992 74.3 -8.0 -8.0 M An. gambiae s.l. R other estimates provide higher values Costantini et al. 1996
Cameroon Gounougou -999.00 -99.00 07 1990 09 1990 68.0 -8.0 -8.0 P An. gambiae s.l. R - Robert et al. 1992
Cameroon Gounougou -999.00 -99.00 07 1990 09 1990 79.0 -8.0 -8.0 P An. funestus R - Robert et al. 1992
Cameroon Gounougou -999.00 -99.00 07 1990 09 1990 62.0 -8.0 -8.0 P An. pharoensis R - Robert et al. 1992
Côte d’Ivoire Alloukoukro -5.08 7.80b 01 1991 12 1991 87.0 80.0 97.0 P An. gambiae s.l. E - Dossou-Yovo et al. 1995
Côte d’Ivoire Alloukoukro -5.08 7.80b 01 1992 12 1992 89.0 82.0 95.0 P An. gambiae s.l. E - Dossou-Yovo et al. 1995
Côte d’Ivoire Alloukoukro -5.08 7.80b 01 1992 12 1992 90.0 84.0 100.0 P An. funestus E - Dossou-Yovo et al. 1995
Côte d’Ivoire Alloukoukro -5.08 7.80b 01 1992 12 1992 91.0 87.0 100.0 P An. funestus E - Dossou-Yovo et al. 1995
Dominican Republic Calle Duarte, Colonia

Japonesa, La Bomba
-999.00 -99.00 07 1987 10 1988 68.4 -8.0 -8.0 P An. albimanus - - Mekuria et al. 1991

Dominican Republic Calle Duarte, Colonia
Japonesa, La Bomba

-999.00 -99.00 07 1987 10 1988 61.1 -8.0 -8.0 P An. vestitipennis - - Mekuria et al. 1991

Egypt Faiyum -999.00 -99.00 -9 -9 -9 -9 95.0 -8.0 -8.0 K An. pharoensis - - Kenawy 1991
Egypt Faiyum -999.00 -99.00 -9 -9 -9 -9 93.0 -8.0 -8.0 K An. multicolor - - Kenawy 1991
Egypt Faiyum -999.00 -99.00 -9 -9 -9 -9 89.0 -8.0 -8.0 P An. pharoensis - - Kenawy 1991
Egypt Faiyum -999.00 -99.00 -9 -9 -9 -9 80.0 -8.0 -8.0 P An. multicolor - - Kenawy 1991
Egypt Faiyum -999.00 -99.00 10 1983 -8 -8 95.0 -8.0 -8.0 K An. sergentii - laboratory;T: 27±2◦C Beier et al. 1987
El Salvador around Lake

Apastepeque
-999.00 -99.00 01 1972 04 1972 67.5 65.0 70.0 M An. albimanus D MRR/release of sterile females Weidhaas et al. 1974

to be continued
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Tab. D.10 – continued

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 pd,ave pd,min pd,max way species wea note ref

El Salvador around Lake
Apastepeque

-999.00 -99.00 06 1971 08 1972 82.4 73.0 91.0 M An. albimanus R MRR/release of sterile females; data for
May-September

Weidhaas et al. 1974

El Salvador around Lake
Apastepeque

-999.00 -99.00 06 1971 08 1972 77.7 65.0 91.0 M An. albimanus R/D MRR/release of sterile females Weidhaas et al. 1974

Iran Arso -999.00 -99.00 -8 -8 -8 -8 85.5 -8.0 -8.0 P An. koliensis - reduced under DDT Garrett-Jones and Grab
1964

Iran Arso -999.00 -99.00 -8 -8 -8 -8 89.5 -8.0 -8.0 P An. farauti - reduced under DDT Garrett-Jones and Grab
1964

Iran Arso -999.00 -99.00 -8 -8 -8 -8 84.5 -8.0 -8.0 P An. punctulatus - - Garrett-Jones and Grab
1964

Iran Baluchistan -999.00 -99.00 05 1991 10 1991 -8.0 84.0 89.0 -9 An. culicifacies s.l. - pd is lower in sprayed villages Zaim et al. 1993
Iran Baluchistan -999.00 -99.00 05 1991 10 1991 -8.0 80.0 83.0 -9 An. pulcherrimus - pd is lower in sprayed villages Zaim et al. 1993
Kenya Mgandini -999.00 -99.00 10 1972 11 1972 89.0 -8.0 -8.0 M Aedes aegypti R - McDonald 1977
Kenya Msihu 39.28 -4.53r 03 1984 04 1984 80.9 -8.0 -8.0 C An. gambiae s.l. D - Mutero and Birley 1987
Kenya Msihu 39.28 -4.53r 05 1982 06 1982 71.4 -8.0 -8.0 C An. gambiae s.l. R - Mutero and Birley 1987
Kenya Jimbo 39.23 -4.67r 11 1982 12 1982 74.1 -8.0 -8.0 C An. merus R - Mutero and Birley 1987
Kenya Mwea -999.00 -99.00 08 1983 09 1983 81.0 -8.0 -8.0 C An. arabiensis R - Mutero and Birley 1987
Korea Paju -999.00 -99.00 06 2000 08 2000 78.7 70.6 87.2 P An. sinensis - - Lee et al. 2001
Korea Kyonggi-do, malarious

area
-999.00 -99.00 06 2000 08 2000 86.4 80.4 90.0 P An. sinensis - - Ree and Hwang 2000

Korea Kyonggi-do,
non-malarious area

-999.00 -99.00 06 2000 08 2000 83.3 80.7 86.6 P An. sinensis - - Ree and Hwang 2000

Korea Gyonggi-do -999.00 -99.00 06 1999 10 1999 89.0 84.3 92.2 P An. sinensis - large variation Ree et al. 2001
Korea Gyeonggi Province 126.83 37.93r 04 1999 10 1999 85.9 80.4 89.5 P An. sinensis - - Shin et al. 2005
Mexico Chiapas, coastal plain -999.00 -99.00 -9 -9 -9 -9 -9.0 45.0 58.0 -9 An. vestitipennis - - Arredondo-Jimenez et al.

1998
Mexico Chiapas, Lacandon

Forest
-999.00 -99.00 -9 -9 -9 -9 68.0 -9.0 -9.0 -9 - - An. vestitipennis Arredondo-Jimenez et al.

1998
Mexico Tapachula foothills -999.00 -99.00 -9 -9 -9 -9 -9.0 87.5 88.4 P An. pseudopunctipennis D - Fernandez-Salas et al. 1994
Nigeria Kankiya 7.83 12.55 06 1967 10 1967 93.8 -8.0 -8.0 P An. gambiae

species B
R reduced under DDT Garrett-Jones and Shidrawi

1969
Nigeria Kaduna area -999.00 -99.00 05 1963 08 1963 90.0 -8.0 -8.0 S An. gambiae R - Service 1965
Nigeria Kaduna area -999.00 -99.00 05 1963 08 1963 89.0 -8.0 -8.0 S An. funestus R - Service 1965
Pakistan 12 villages around

Khagrachberi
-999.00 -99.00 07 1966 06 1967 90.0 -8.0 -8.0 P An. minimus - - Khan and Talibi 1972

Pakistan 12 villages around
Khagrachberi

-999.00 -99.00 07 1966 06 1967 86.0 -8.0 -8.0 P An. vagus - - Khan and Talibi 1972

Pakistan 12 villages around
Khagrachberi

-999.00 -99.00 07 1966 06 1967 81.0 -8.0 -8.0 P An. jeyporiensis - - Khan and Talibi 1972

Pakistan 12 villages around
Khagrachberi

-999.00 -99.00 07 1966 06 1967 72.0 -8.0 -8.0 P An. philippinensis - - Khan and Talibi 1972

Pakistan Sattoki -999.00 -99.00 05 1977 05 1977 80.8 -8.0 -8.0 M An. stephensi R - Reisen and Aslamkhan
1979

Papua New Guinea Butelgut -999.00 -99.00 -8 -8 -8 -8 86.0 -8.0 -8.0 -9 An. punctulatus - calculated via a method fromGraves et al. 1990 Killeen et al. 2000
Senegal Aéré Lao -14.30 16.40b 09 1982 12 1982 -8.0 93.0 97.0 P An. gambiae s.l. - - Vercruysse 1985b
Senegal Barkedji -14.87 15.28b -8 1993 -8 1993 86.8 -8.0 -8.0 C Aedes vexans

arabiensis
R - Ndiaye et al. 2006

Senegal Boké Diallobé -14.00 16.10b 09 1982 11 1983 -8.0 90.0 94.0 P An. gambiae s.l. - - Vercruysse 1985b
Senegal Pikine -17.40 14.75b 12 1979 12 1980 82.2 73.8 90.5 P An. arabiensis - pd (rainy season) >pd (dry season) Vercruysse et al. 1983
Senegal Pikine -17.40 14.75b 10 1979 12 1980 85.8 -8.0 -8.0 C - - - Vercruysse 1985a
Senegal Pikine -17.40 14.75b 12 1981 12 1982 82.0 77.0 84.0 C An. arabiensis - pd (rainy season) >pd (dry season) Vercruysse 1985a
Sierra Leone Bayama -11.77 8.00a -9 -9 -9 -9 85.0 -9.0 -9.0 -9 An. gambiae - - Bockarie et al. 1995
Sri Lanka - -999.00 -99.00 06 1983 05 1984 93.8 -8.0 -8.0 K An. culicifacies - - De Zoysa et al. 1988

to be continued
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Tab. D.10 – continued
country place long

[◦E]
lat

[◦N]
M1 YYY1 M2 YYY2 pd,ave pd,min pd,max way species wea note ref

Sudan Ed dekeinat -999.00 -99.00 10 1995 12 1996 -8.0 70.7 84.9 P An. arabiensis R/T - El Sayed et al. 2000
Sudan El manshial -999.00 -99.00 10 1995 12 1996 -8.0 69.3 80.6 P An. arabiensis R/T - El Sayed et al. 2000
Sudan Ed dekeinat -999.00 -99.00 10 1995 12 1996 57.4 -8.0 -8.0 P An. arabiensis D - El Sayed et al. 2000
Sudan El manshial -999.00 -99.00 10 1995 12 1996 61.6 -8.0 -8.0 P An. arabiensis D - El Sayed et al. 2000
Tanzania Muheza -999.00 -99.00 02 1963 12 1963 87.6 85.8 90.6 P An. gambiae

species A
- - Gillies and Wilkes 1965;

Garrett-Jones and Shidrawi
1969

Tanzania Muheza -999.00 -99.00 05 1963 08 1963 85.1 82.5 89.4 P An. gambiae
species A

- - Gillies and Wilkes 1965;
Garrett-Jones and Shidrawi

1969
Tanzania Muheza -999.00 -99.00 01 1963 12 1963 86.1 83.9 88.2 P An. gambiae

species A
- - Gillies and Wilkes 1965;

Garrett-Jones and Shidrawi
1969

Tanzania Muheza -999.00 -99.00 11 1962 12 1963 89.4 85.0 92.0 P An. funestus - - Gillies and Wilkes 1965;
Garrett-Jones and Shidrawi

1969
Tanzania Gonja -999.00 -99.00 12 1962 01 1964 82.6 77.9 87.3 P An. gambiae s.l. - - Gillies and Wilkes 1965;

Garrett-Jones and Shidrawi
1969

Tanzania - -999.00 -99.00 -8 1952 -8 1952 91.0 -8.0 -8.0 P An. gambiae - - Davidson 1954
Tanzania - -999.00 -99.00 -8 1952 -8 1952 93.0 -8.0 -8.0 S An. gambiae - - Davidson 1954
Tanzania - -999.00 -99.00 -8 1952 -8 1952 94.0 -8.0 -8.0 L An. gambiae - - Davidson 1954
Tanzania - -999.00 -99.00 -8 1953 -8 1953 91.0 -8.0 -8.0 P An. gambiae - - Davidson 1954
Tanzania - -999.00 -99.00 -8 1953 -8 1953 90.0 -8.0 -8.0 L An. gambiae - - Davidson 1954
Tanzania Namawala 36.40 -8.15r 02 1991 03 1991 82.7 -8.0 -8.0 I An. arabiensis D - Charlwood et al. 1995
Tanzania Namawala 36.40 -8.15r -8 -8 -8 -8 81.3 -8.0 -8.0 M An. gambiae s.l. R - Charlwood et al. 1997
Tanzania Namawala 36.40 -8.15r 04 1991 05 1991 83.9 -8.0 -8.0 P An. gambiae s.l. R - Charlwood et al. 1997
Tanzania Namawala 36.40 -8.15r -8 -8 -8 -8 -8.0 64.5 73.0 M An. gambiae s.l. R - Charlwood et al. 1997
Tanzania Namawala 36.40 -8.15r -8 1990 -8 1992 81.3 -8.0 -8.0 P An. gambiae s.l. R - Charlwood et al. 1997
Tanzania Michenga 36.65 -8.12r -8 1989 -8 1991 77.0 -8.0 -8.0 P An. gambiae s.l. R - Charlwood et al. 1997
Tanzania foothills of the Eastern

Usambara Mountains
-999.00 -99.00 03 1956 06 1959 84.1 -8.0 -8.0 M An. gambiae - - Gillies 1961

Tanzania Muheza -999.00 -99.00 11 1962 01 1964 85.4 -8.0 -8.0 M An. gambiae - - Gillies and Wilkes 1965
Tanzania Muheza -999.00 -99.00 11 1962 01 1964 85.0 -8.0 -8.0 M An. funestus - - Gillies and Wilkes 1965
Tanzania Gonja -999.00 -99.00 11 1962 01 1964 79.1 -8.0 -8.0 M An. gambiae - - Gillies and Wilkes 1965
Tanzania Ifakara -999.00 -99.00 -9 -9 -9 -9 78.0 -9.0 -9.0 M An. gambiae - - Takken et al. 1998a
Tanzania 40 miles west of Tanga -999.00 -99.00 09 1952 12 1952-8.0 88.0 93.0 S An. funestus R - Davidson and Draper 1953
Tanzania 40 miles west of Tanga -999.00 -99.00 09 1952 12 1952-8.0 89.0 93.0 S An. gambiae R - Davidson and Draper 1953
Tanzania 40 miles west of Tanga -999.00 -99.00 09 1952 12 195293.7 83.0 98.5 K An. funestus R kept in cages Davidson and Draper 1953
Tanzania 40 miles west of Tanga -999.00 -99.00 09 1952 12 195296.3 92.0 99.1 K An. gambiae R kept in cages Davidson and Draper 1953
Tanzania coastal region -999.00 -99.00 -8 -8 -8 -8 -8.0 92.0 93.0 A An. gambiae - - Gillies 1958
Tanzania South Pare district -999.00 -99.00 -8 -8 -8 -8 -8.0 85.0 87.0 A An. gambiae - - Gillies 1958
Tanzania Muheza area, 5 villages -999.00 -99.00 -8 -8 -8 -8 81.9 -8.0 -8.0 A An. gambiae - - Lines et al. 1991
Thailand Ban Phluang -999.00 -99.00 06 1983 05 1984 89.0 -8.0 -8.0 P An. dirus D - Rosenberg et al. 1990b,b
Thailand Ban Phluang -999.00 -99.00 06 1984 05 1985 83.0 -8.0 -8.0 P An. dirus D - Rosenberg et al. 1990b,b
Thailand Ban Phluang -999.00 -99.00 06 1984 05 1985 -8.0 59.0 84.0 P An. dirus R/T - Rosenberg et al. 1990b
Uganda - -999.00 -99.00 -8 -8 -8 -8 93.0 -8.0 -8.0 P An. gambiae - - Davidson 1954
Uganda - -999.00 -99.00 -8 -8 -8 -8 95.0 -8.0 -8.0 L An. gambiae - - Davidson 1954
Uganda - -999.00 -99.00 -8 -8 -8 -8 97.0 -8.0 -8.0 S An. gambiae - - Davidson 1954
Uganda Lira -999.00 -99.00 09 1953 12 1953 95.0 -8.0 -8.0 P An. gambiae R - Davidson 1955
Uganda Lira -999.00 -99.00 09 1953 12 1953 94.0 -8.0 -8.0 P An. funestus R - Davidson 1955
Uganda Lira -999.00 -99.00 09 1953 12 1953 94.5 -8.0 -8.0 K An. gambiae R - Davidson 1955
Uganda Lira -999.00 -99.00 09 1953 12 1953 94.6 -8.0 -8.0 K An. funestus R - Davidson 1955

to be continued
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Tab. D.10 – continued
country place long

[◦E]
lat

[◦N]
M1 YYY1 M2 YYY2 pd,ave pd,min pd,max way species wea note ref

Uganda Lira -999.00 -99.00 09 1953 12 1953 97.0 94.0 99.0 S An. gambiae R - Davidson 1955
Uganda Lira -999.00 -99.00 09 1953 12 1953 93.0 88.0 94.0 S An. gambiae R - Davidson 1955
USA Sheridan -999.00 -99.00 08 1984 09 1984 72.0 -9.0 -9.0 -9 An. freeborni - unfed McHugh 1989
USA Sheridan -999.00 -99.00 08 1984 09 1984 74.0 -9.0 -9.0 -9 An. freeborni - blood-fed McHugh 1989
USA Sheridan -999.00 -99.00 08 1984 09 1984 75.0 -9.0 -9.0 K An. freeborni - - McHugh 1989

D.14 Sexual Parasite Ratio (sPR)

Tab. D.11: Data with regard to the sexual Parasite Ratio (sPR), that is the percentage of humans with gametocytes in theirblood as well as the Ratio between Sexual
and Asexual parasite prevalence (SAR), which is the proportion of malaria parasite positive humans that are gametocytaemic. Note that particular values
of the asexual Parasite Ratio (PR) can be calculated viaPR= sPR

SAR. Columns:sPRa: annual meansPR; sPRmin,a: annual minimumsPR; sPRmax,a: annual
maximumsPR; SARa: annual meanSAR; SARmin,a: annual minimumSAR; SARmax,a: annual maximumSAR. For further information see Tab.D.2.

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 sPRa sPRmin,a sPRmax,a SARa SARmin,a SARmax,a Ub Ua Up note ref

Burkina Faso Bobo-Dioulasso,
Colma-Nord quarter

-4.30 11.21b 01 1985 12 1985 10.5 5.6 21.1 36.1 26.7 44.3 U/R R1 R ⋆(0-15) Gazin et al. 1987

Burkina Faso Bobo-Dioulasso,
Diaradougou quarter

-4.29 11.18b 01 1985 12 1985 2.3 0.6 4.7 33.3 12.5 45.5 U R1 U ⋆(0-15) Gazin et al. 1987

Burkina Faso Bobo-Dioulasso,
Dioulassoba quarter

-4.30 11.19b 01 1985 12 1985 3.1 2.6 3.4 28.0 19.0 57.1 U R1 U ⋆(0-15) Gazin et al. 1987

Burkina Faso Bouloy, Kolel, Bella and Peul
Djelgobé camps

-999.00 -99.00 06 1985 03 1986 1.7 0.0 5.0 12.9 0.0 16.7 -8 -8 R ⋆ Gazin et al. 1988b

Burkina Faso Bouloy, Kolel, Bella and Peul
Djelgobé camps

-999.00 -99.00 06 1985 03 1986 8.6 7.5 9.1 17.0 12.0 24.1 -8 -8 R ⋆(0.5-15) Gazin et al. 1988b

Burkina Faso Karangasso -4.63 11.22b 02 1985 02 1986 21.3 4.5 30.0 38.3 6.0 52.7 R R2 R ⋆(5-9) Boudin et al. 1991b,
1992

Burkina Faso Karangasso -4.63 11.22b 02 1985 02 1986 25.5 9.2 37.3 40.8 24.2 63.9 R R2 R ⋆(0-4) Boudin et al. 1991b,
1992

Burkina Faso Karangasso -4.63 11.22b 02 1985 02 1986 29.4 8.5 39.7 47.8 11.8 65.1 R R2 R ⋆(10-14) Boudin et al. 1991b,
1992

Burkina Faso near Bobo-Dioulasso -999.00 -99.00 -8 1985 -8 1987 10.9 -8.0 -8.0 -8.0 -8.0 -8.0 R R2 R � Boudin et al. 1991a
Burkina Faso Ouagadougou -999.00 -99.00 08 1984 09 1984 -8.0 -8.0 7.6 25.9 -8.0 -8.0 -8 -8 U ⋆(0-5); more detailed information is

available
Sabatinelli et al. 1986

Burkina Faso Oursi and Déou -999.00 -99.00 06 1985 03 1986 4.4 0.0 15.2 16.5 0.0 33.3 -8 -8 R ⋆(0.5-15) Gazin et al. 1988b
Burkina Faso 6 villages north of

Ouagadougou
-999.00 -99.00 12 2003 12 2003 -8.0 21.4 -8.0 -8.0 28.5 -8.0 -8-8 R �; microscope detection Ouédraogo et al. 2007

Burkina Faso 6 villages north of
Ouagadougou

-999.00 -99.00 12 2003 12 2003 -8.0 70.1 -8.0 -8.0 73.6 -8.0 -8-8 R �; QT-NASBA detection Ouédraogo et al. 2007

Burkina Faso Tin Edjar -0.68 14.69m 06 1985 03 1986 0.0 0.0 0.0 0.0 0.0 0.0 -8 -8 R ⋆ Gazin et al. 1988b
Burkina Faso Tin Edjar -0.68 14.69m 06 1985 03 1986 4.2 2.6 5.4 12.5 8.0 26.7 -8 -8 R ⋆(0.5-15) Gazin et al. 1988b

to be continued
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Tab. D.11 – continued
country place long

[◦E]
lat

[◦N]
M1 YYY1 M2 YYY2 sPRa sPRmin,a sPRmax,a SARa SARmin,a SARmax,a Ub Ua Up note ref

Burkina Faso VK4 -4.42 11.37b 01 1985 02 1986 12.0 3.2 16.2 37.2 18.0 56.7 I R2 I ⋆(0-4) Boudin et al. 1992
Burkina Faso VK4 -4.42 11.37b 01 1985 02 1986 13.9 7.2 23.8 32.2 22.6 48.4 I R2 I ⋆(5-9) Boudin et al. 1992
Burkina Faso VK4 -4.42 11.37b 01 1985 02 1986 6.2 0.0 19.1 17.0 0.0 56.2 I R2 I ⋆(10-14) Boudin et al. 1992
Cameroon Bondi 12.19 3.86m -8 1998 -8 2000 11.8 8.7 15.0 23.7 17.2 30.3 -8 -8 R �(0.8-77); area: degraded forest; position

derived fromMeunier et al. 1999
Bonnet et al. 2003

Cameroon Ebolakounou 12.13 3.93a 05 1996 05 1998 4.7 -8.0 -8.0 13.7 -8.0 -8.0 -8 R2 R ⋆(>15); forest area Bonnet et al. 2002
Cameroon Ebolakounou 12.13 3.93a 05 1996 05 1998 9.1 -8.0 -8.0 14.7 -8.0 -8.0 -8 R2 R ⋆(0-15); forest area Bonnet et al. 2002
Cameroon Koundou 12.12 3.90a 05 1996 05 1998 10.3 -8.0 -8.0 14.8 -8.0 -8.0 -8 R2 R ⋆(0-15); degraded forest Bonnet et al. 2002
Cameroon Koundou 12.12 3.90a 05 1996 05 1998 3.8 -8.0 -8.0 9.6 -8.0 -8.0 -8 R2 R ⋆(>15); degraded forest Bonnet et al. 2002
Cameroon Mengang 12.05 3.88i -8 1998 -8 2000 23.6 12.9 34.3 33.7 22.1 42.0 -8 -8 R �(0.8-77); area: degraded forest Bonnet et al. 2003
Cameroon Mengang and Yaounde -999.00 -99.00 -8 -8 -8 -8 10.4 -8.0 -8.0 15.6 -8.0 -8.0 -8 -8 R&U ⋆(0-14) Boudin et al. 2005
Cameroon Mengang and Yaounde -999.00 -99.00 -8 -8 -8 -8 4.8 -8.0 -8.0 11.5 -8.0 -8.0 -8 -8 R&U ⋆(>14) Boudin et al. 2005
Cameroon Mengang district, 2 villages -999.00 -99.00 -8 -8 -8 -8 15.7 -8.0 -8.0 27.7 -8.0 -8.0 -8 -8 R - Paul et al. 2007
Cameroon Yaoundé, Messa quarter -999.00 -99.00 10 1990 01 1993 5.4 -8.0 -8.0 14.6 -8.0 -8.0 -8 -8 U �(4-60) Tchuinkam et al. 1993
Cameroon Yaoundé and Mengang -999.00 -99.00 -8 -8 -8 -8 19.1 -8.0 -8.0 40.2 -8.0 -8.0 -8 -8 -8 detected by quantitative buffy coat tests;

patients presenting clinical malaria and
⋆(3-15)

Mulder et al. 1998

Cameroon Yaoundé and Mengang -999.00 -99.00 -8 -8 -8 -8 20.0 -8.0 -8.0 39.8 -8.0 -8.0 -8 -8 -8 detected by thick blood films and
quantitative buffy coat tests; patients

presenting clinical malaria and⋆(3-15)

Mulder et al. 1998

Cameroon Yaoundé and Mengang -999.00 -99.00 -8 -8 -8 -8 4.6 -8.0 -8.0 10.1 -8.0 -8.0 -8 -8 -8 detected by thick blood films; patients
presenting clinical malaria and⋆(3-15)

Mulder et al. 1998

Cameroon Yaoundé, Dakar quarter 11.52 3.87i 07 1999 05 2000 4.3 0.0 7.0 12.6 0.0 21.9 -8 -8 U �; microscope; drug influenced van der Kolk et al. 2003
Cameroon Yaoundé, Essos 11.00 3.00b 06 1989 02 1990 3.2 2.4 7.4 8.5 0.0 16.7 -8 -8 U ⋆(0-15) Manga et al. 1993b
Cameroon Yaoundé, Obili district 11.52 3.87i 10 1989 07 1990 1.1 0.0 3.0 4.0 0.0 7.7 -8 U U ⋆(0-15) Manga et al. 1993b
Côte d’Ivoire Katiola district, 8 villages (no

rice cultivation)
-999.00 -99.00 03 1997 01 1998 13.0 11.0 14.0 14.9 13.3 15.6 -8-8 R ⋆(0-9); villages are Angolokaha,

Doussoulokaha, Folofonkaha, Kabolo,
Ounadiékaha, Petionara, Sérigobokaha,

and Timorokaha

Henry et al. 2003

Côte d’Ivoire Katiola district, 8 villages (no
rice cultivation)

-999.00 -99.00 03 1997 01 1998 4.0 3.0 5.0 6.5 5.4 7.6 -8 -8 R PR:⋆(≥10); see above Henry et al. 2003

Côte d’Ivoire Korhogo district, 8 villages
(rice cultivation during the

dry season)

-999.00 -99.00 03 1997 01 1998 11.0 10.0 11.0 13.9 13.3 13.6 -8-8 I ⋆(0-9); villages are Gbahaouakaha,
Kohotieri, Koumbolikaha, Lamékaha,

Nambékaha, Nombolo, Nongotchénékaha,
and Zémongokaha

Henry et al. 2003

Côte d’Ivoire Korhogo district, 8 villages
(rice cultivation during the

dry season)

-999.00 -99.00 03 1997 01 1998 4.0 4.0 5.0 9.2 10.0 10.3 -8 -8 I subjects (≥10); see above Henry et al. 2003

Côte d’Ivoire Korhogo district, 8 villages
(rice cultivation during the

rainy season)

-999.00 -99.00 03 1997 01 1998 12.0 12.0 12.0 14.3 14.0 15.0 -8-8 R ⋆(0-9); villages are Binguebougou,
Fapaha, Kombolokoura, Kaforo, Karakpo,

Kassoumbarga, Katiorkpo, and Tioro

Henry et al. 2003

Côte d’Ivoire Korhogo district, 8 villages
(rice cultivation during the

rainy season)

-999.00 -99.00 03 1997 01 1998 4.0 3.0 5.0 6.1 4.9 7.2 -8 -8 R ⋆(≥10); see above Henry et al. 2003

Congo Linzolo 15.11 -4.41b 11 1981 05 1985 22.5 21.8 27.7 28.5 27.6 34.2 R R1 R ⋆(0-14); microscope Trape 1987
Congo 6 villages near Brazzaville -999.00 -99.00 11 1981 05 1985 28.4 -8.0 -8.0 34.0 -8.0 -8.0 -8 -8 R ⋆(5-15) (from school); microscope Trape 1987
Gambia 4 villages west of Farafenni -999.00 -99.00 05 2001 062001 -8.0 13.5 -8.0 -8.0 24.9 -8.0 -8 -8 R ⋆(0.5-15) Dunyo et al. 2006
Gambia, The 5 villages around Farafenni -16.57 13.47r 04 2003 05 2003 -8.0 -8.0 3.1 -8.0 -8.0 15.3 -8 -8 R �(5-45); detected by microscopy Nwakanma et al. 2008
Gambia, The 5 villages around Farafenni -16.57 13.47r 04 2003 05 2003 -8.0 -8.0 3.1 -8.0 -8.0 15.3 -8 -8 R �(5-45); detected by microscopy Nwakanma et al. 2008
Gambia, The 5 villages around Farafenni -16.57 13.47r 05 2003 10 2003 24.2 -8.0 -8.0 44.9 -8.0 -8.0 -8 -8 R �(5-45); detected by microscopy Nwakanma et al. 2008
Gambia, The 5 villages around Farafenni -16.57 13.47r 05 2003 10 2003 51.6 -8.0 -8.0 62.7 -8.0 -8.0 -8 -8 R �(5-45); PCR/RT-PCR detection Nwakanma et al. 2008
Gambia, The near Farafenni, north bank

villages
-999.00 -99.00 06/11 1990

1991
06/11 1990

1991
12.3 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 ⋆(1-19) Drakeley et al. 2000

to be continued
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Tab. D.11 – continued

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 sPRa sPRmin,a sPRmax,a SARa SARmin,a SARmax,a Ub Ua Up note ref

Gambia, The near Farafenni, north bank
villages

-999.00 -99.00 06/11 1990
1991

06/11 1990
1991

6.1 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 ⋆(>20) Drakeley et al. 2000

Gambia, The near Farafenni, north bank
villages

-999.00 -99.00 -8 -8 -8 -8 -8.0 -8.0 -8.0 -8.0 11.7 31.0 -8 -8 -8 ⋆(>14); graphically derived Drakeley et al. 2006

Gambia, The near Farafenni, north bank
villages

-999.00 -99.00 -8 -8 -8 -8 -8.0 -8.0 -8.0 -8.0 18.8 43.5 -8 -8 -8 ⋆(0-14); graphically derived Drakeley et al. 2006

Gambia, The near Farafenni, south bank
villages

-999.00 -99.00 -8 -8 -8 -8 -8.0 -8.0 -8.0 -8.0 15.3 26.0 -8 -8 -8 ⋆(>14); graphically derived Drakeley et al. 2006

Gambia, The near Farafenni, south bank
villages

-999.00 -99.00 -8 -8 -8 -8 -8.0 -8.0 -8.0 -8.0 16.5 27.0 -8 -8 -8 ⋆(0-14); graphically derived Drakeley et al. 2006

Ghana -9 -999.00 -99.00 01 1952 10 1952 20.0 -9.0 -9.0 -9.0 -9.0 -9.0 -8 -8 -9 ⋆(0-14) Muirhead-Thomson
1954

Ghana -9 -999.00 -99.00 01 1952 10 1952 6.0 -9.0 -9.0 -9.0 -9.0 -9.0 -8 -8 -9 ⋆(>14) Muirhead-Thomson
1954

Ghana Weija -999.00 -99.00 01 1952 10 1952 20.0 -8.0 -8.0 22.9 -8.0 -8.0 -8 -8 R ⋆(0.8-10) Muirhead-Thomson
1954

Kenya Ahero -999.00 -99.00 -8 1935 -8 1936 51.6 -8.0 -8.0 61.5 -8.0 -8.0 -8 -8 -8 ⋆(0-4); microscope detection Garnham 1949
Kenya Chonyi -999.00 -99.00 -8 -8 -8 -8 -8.0 -8.0 -8.0 17.3 -8.0 -8.0 -8 -8 -8 ⋆(0-14); graphically derived Drakeley et al. 2006
Kenya Chonyi -999.00 -99.00 -8 -8 -8 -8 -8.0 -8.0 -8.0 3.7 -8.0 -8.0 -8 -8 -8 ⋆(>14); graphically derived Drakeley et al. 2006
Kenya Kanyamedha -999.00 -99.00 -8 1935 -8 1936 24.2 -8.0 -8.0 29.1 -8.0 -8.0 -8 -8 -8 ⋆(0-4); microscope detection Garnham 1949
Kenya Kasagam -999.00 -99.00 -8 1935 -8 1936 9.3 -8.0 -8.0 10.7 -8.0 -8.0 -8 -8 -8 ⋆(0-4); microscope detection Garnham 1949
Kenya Kisumu -999.00 -99.00 -8 1935 -8 1936 17.9 -8.0 -8.0 25.2 -8.0 -8.0 -8 -8 -8 ⋆(0-4); microscope detection Garnham 1949
Kenya Ngerenya -999.00 -99.00 -8 -8 -8 -8 -8.0 -8.0 -8.0 23.8 -8.0 -8.0 -8 -8 -8 ⋆(0-14); graphically derived Drakeley et al. 2006
Kenya Ngerenya -999.00 -99.00 -8 -8 -8 -8 -8.0 -8.0 -8.0 7.3 -8.0 -8.0 -8 -8 -8 ⋆(>14); graphically derived Drakeley et al. 2006
Kenya Nyakatch -999.00 -99.00 -8 1935 -8 1936 37.7 -8.0 -8.0 49.1 -8.0 -8.0 -8 -8 -8 ⋆(0-4); microscope detection Garnham 1949
Liberia -9 -999.00 -99.00 -9 -9 -9 -9 15.6 -9.0 -9.0 -9.0 -9.0 -9.0 -8 -8 -9 ⋆(0-14) Muirhead-Thomson

1957
Liberia -9 -999.00 -99.00 -9 -9 -9 -9 5.5 -9.0 -9.0 -9.0 -9.0 -9.0 -8 -8 -9 ⋆(>14) Muirhead-Thomson

1957
Liberia Marshall Territory -999.00 -99.00 01 195? 12 195? 6.0 -8.0 -8.0 31.4 -8.0 -8.0 -8 -8 -8 - Miller 1958
Nigeria Garki, village 154 -999.00 -99.00 -9 -9 -9 -9 36.5 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -9 ⋆(1-8) Nedelman 1989
Nigeria Garki, village 154 -999.00 -99.00 -9 -9 -9 -9 9.8 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -9 �(>9) Nedelman 1989
Nigeria Garki, village 202 -999.00 -99.00 -9 -9 -9 -9 27.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 ⋆(1-8) Nedelman 1989
Nigeria Garki, village 202 -999.00 -99.00 -9 -9 -9 -9 5.5 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 �(>9) Nedelman 1989
Nigeria Garki, village 218 -999.00 -99.00 -9 -9 -9 -9 30.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 ⋆(1-8) Nedelman 1989
Nigeria Garki, village 218 -999.00 -99.00 -9 -9 -9 -9 7.8 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 �(>9) Nedelman 1989
Nigeria Garki, village 304 -999.00 -99.00 -9 -9 -9 -9 22.5 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 ⋆(1-8) Nedelman 1989
Nigeria Garki, village 304 -999.00 -99.00 -9 -9 -9 -9 7.3 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 �(>9) Nedelman 1989
Nigeria Garki, village 408 -999.00 -99.00 -9 -9 -9 -9 30.5 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 ⋆(1-8) Nedelman 1989
Nigeria Garki, village 408 -999.00 -99.00 -9 -9 -9 -9 6.3 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 �(>9) Nedelman 1989
Nigeria Garki, village 553 -999.00 -99.00 -9 -9 -9 -9 26.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 ⋆(1-8) Nedelman 1989
Nigeria Garki, village 553 -999.00 -99.00 -9 -9 -9 -9 4.5 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 �(>9) Nedelman 1989
Nigeria Garki, village 55 -999.00 -99.00 -9 -9 -9 -9 29.5 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 �(>9) Nedelman 1989
Nigeria Garki, village 55 -999.00 -99.00 -9 -9 -9 -9 8.8 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 �(>9) Nedelman 1989
Nigeria Garki, village 802 -999.00 -99.00 -9 -9 -9 -9 27.5 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 ⋆(1-8) Nedelman 1989
Nigeria Garki, village 802 -999.00 -99.00 -9 -9 -9 -9 8.3 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 �(>9) Nedelman 1989
Nigeria Kaduna area -999.00 -99.00 05 1963 08 1963 26.5 -8.0 -8.0 -8.0 -8.0 8.0 -8 -8 R - Service 1965
Nigeria Lagos 3.40 6.45i -8 1949 -8 1949 11.8 -8.0 -8.0 44.8 -8.0 -8.0 -8 -8 U ⋆(0-1) Bruce-Chwatt 1951
Nigeria Lagos 3.40 6.45i -8 -8 -8 -8 30.2 -8.0 -8.0 38.8 -8.0 -8.0 -8 -8 U ⋆(1-2) Bruce-Chwatt 1951
Nigeria village in Yoruba country -999.00 -99.00 11 1951 12 1951 -8.0 -8.0 9.8 -8.0 -8.0 14.3 -8 -8 R ⋆(0-15); microscope detection Draper 1953
Papua New Guinea 72 villages around Madang -999.00 -99.00 071981 01 1983 6.3 5.5 7.0 15.3 14.6 16.0 -8 -8 R ⋆(0-14) Cattani et al. 1986
Papua New Guinea Butelgut 145.75 -5.15i 06 1983 09 1985 14.7 -8.0 -8.0 23.3 -8.0 -8.0 -8 -8 R ⋆(0-20) Graves et al. 1988
Papua New Guinea Mebat 145.78 -5.083 06 1983 09 1985 14.3 -8.0-8.0 25.6 -8.0 -8.0 -8 -8 R ⋆(0-20) Graves et al. 1988

to be continued
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Tab. D.11 – continued
country place long

[◦E]
lat

[◦N]
M1 YYY1 M2 YYY2 sPRa sPRmin,a sPRmax,a SARa SARmin,a SARmax,a Ub Ua Up note ref

Papua New Guinea Mebat 145.78 -5.083 06 1983 09 1985 7.9 -8.0 -8.0 15.9 -8.0 -8.0 -8 -8 R ⋆(0-20) Graves et al. 1988
Senegal Aéré Lao and Boké Diallobé -14.30 16.40b 05 1982 08 1983 -8.0 0.0 4.8 -8.0 0.0 28.2 R R2 R - Vercruysse 1985b
Senegal Dakar, Grande Niaye Mrash -17.42 14.75r 05 1987 09 1988 1.3 -8.0 -8.0 34.4 -8.0 -8.0 -8 U U � Trape et al. 1992
Senegal Diohine -16.51 14.48a 10 1996 11 1996 16.7 -8.0 -8.0 25.8 -8.0 -8.0 -8 R1 R ⋆(19-66) Sokhna et al. 2001
Senegal Diohine, Kotiokh and

Ngayokhème
-999.00 -99.00 02 1995 11 1995 26.0 15.0 45.0 45.9 36.6 54.9 R R1 R ⋆(0-9) Robert et al. 1998

Senegal Diohine, Kotiokh and
Ngayokhème

-999.00 -99.00 02 1995 11 1995 9.0 3.0 20.0 26.8 18.2 30.8 R R1 R ⋆ Robert et al. 1998

Senegal Thies -16.93 14.80i -8 -8 -8 -8 4.8 -8.0 -8.0 53.2 -8.0 -8.0 -8 -8 R ⋆(>14) Boudin et al. 2005
Senegal Thies -16.93 14.80i -8 -8 -8 -8 7.5 -8.0 -8.0 42.9 -8.0 -8.0 -8 -8 R ⋆(0-14) Boudin et al. 2005
Sierra Leone 8 villages near Bo -999.00 -99.00 03 1990 12 199010.9 -8.0 -8.0 17.9 -8.0 -8.0 -8 -8 R ⋆(0.3-7) Barnish et al. 1993
Sudan Asar 13.75 35.25a 10 1998 08 1999 29.8 12.2 52.3 -8.0 -8.0 -8.0 -8 R2 R �; RT-PCR detection Abdel-Wahab et al. 2002
Sudan Asar 13.75 35.25a 10 1998 08 1999 3.5 0.0 6.2 13.2 0.0 -8.0 -8 R2 R �; microscope detection Abdel-Wahab et al. 2002
Sudan Asar -999.00 -99.00 10 1999 10 1999 -8.0 -8.0 -8.0 62.0 -8.0 -8.0 -8 R2 R �(6-50); RT-PCR detection Ali et al. 2006
Sudan Asar -999.00 -99.00 10 1999 10 1999 -8.0 -8.0 -8.0 6.5 -8.0 -8.0 -8 R2 R �(6-50); detection by microscopy Ali et al. 2006
Tanzania 40 miles west of Tanga -999.00 -99.00 09 1952 12 19527.7 -8.0 -8.0 14.0 -8.0 -8.0 -8 -8 S � Davidson and Draper

1953
Tanzania Kisegese -999.00 -99.00 -8 1992 -8 1994 11.6 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 ⋆(1-19) Drakeley et al. 2000
Tanzania Kisegese -999.00 -99.00 -8 1992 -8 1994 7.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8 -8 -8 ⋆(>19) Drakeley et al. 2000
Tanzania Northeastern Tanzania -999.00 -99.00 -8 -8 -8 -8 13.5 -8.0 -8.0 28.0 -8.0 -8.0 -8 -8 -8 ⋆(0-14); graphically derived Drakeley et al. 2006
Tanzania Northeastern Tanzania -999.00 -99.00 -8 -8 -8 -8 3.7 -8.0 -8.0 11.2 -8.0 -8.0 -8 -8 -8 ⋆(>14); graphically derived Drakeley et al. 2006
Thailand Ban Phluang -999.00 -99.00 06 1983 05 1985 4.6 1.1 7.7 -8.0 -8.0 -8.0 -8 -8 R ⋆(>13) Rosenberg et al. 1990b
Thailand Ban Phluang -999.00 -99.00 06 1983 05 1985 6.4 3.2 9.4 -8.0 -8.0 -8.0 -8 -8 R ⋆(1-14) Rosenberg et al. 1990b
Uganda Lira -999.00 -99.00 09 1953 12 1953 16.9 -8.0 -8.0 28.6 -8.0 -8.0 -8 -8 S �; East African plateau Davidson 1955



D
E

N
T

O
M

O
L

O
G

IC
A

L
A

N
D

P
A

R
A

S
IT

O
L

O
G

IC
A

L
M

A
L

A
R

IA
V

A
R

IA
B

L
E

S
X

LI

D.15 Human-to-mosquito transmission efficiency (c)

Tab. D.12: Data with regard to the human-to-mosquito transmission efficiency (c) that is the proportion of mosquito bites on infectious humans which infect
susceptible mosquitoes. For further information see Tab.D.2.

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 c U b Ua Up note ref

Burkina Faso near Bobo-Dioulasso -999.00 -99.00 -8 1985 -8 1987 37.2 R R2 R �; experimental feeding on heavy carriers of gametocytes Boudin et al. 1991a
Cameroon Bondi 12.19 3.86m -8 1998 -8 2000 11.8 -8 -8 R ⋆(>14); area: degraded forest Bonnet et al. 2003
Cameroon Bondi 12.19 3.86m -8 1998 -8 2000 36.9 -8 -8 R ⋆(0-14); area: degraded forest Bonnet et al. 2003
Cameroon district of Mengang -999.00 -99.00 -8 -8 -8 -8 12.1 -8 -8 R �(>5); membrane feeding Bonnet et al. 2002
Cameroon district of Mengang -999.00 -99.00 -8 -8 -8 -8 19.4 -8 -8 R �(>5); direct skin feeding Bonnet et al. 2002
Cameroon Mengang 12.05 3.88i -8 1998 -8 2000 15.5 -8 -8 R ⋆(0-14); area: degraded forest Bonnet et al. 2003
Cameroon Mengang 12.05 3.88i -8 1998 -8 2000 7.7 -8 -8 R ⋆(>14); area: degraded forest Bonnet et al. 2003
Cameroon Mengang district -999.00 -99.00 -8 -8 -8 -8 33.0 -8 -8 R �(>4) Boudin et al. 2005
Cameroon Yaoundé, Messa quarter -999.00 -99.00 10 1990 01 1993 18.6 -8 -8 U �(4-60) Tchuinkam et al. 1993
Cameroon Yaoundé, Messa quarter -999.00 -99.00 -8 -8 -8 -8 12.8 -8 -8 U membrane feeding with blood from 65 gametocyte carriers;

�(6-36)
Mulder et al. 1994

Cameroon Yaoundé, Messa quarter -999.00 -99.00 -8 -8 -8 -8 12.8 -8 -8 U membrane feeding with blood from 65 gametocyte carriers;
�(6-36)

Mulder et al. 1994

Cameroon Yaounde, urban district -999.00 -99.00 -8 -8 -8 -8 20.0 -8 -8 U �(>4) Boudin et al. 2005
Gambia, The 5 villages around Farafenni -16.57 13.47r 05 2003 10 2003 43.0 -8 -8 R membrane feedings on blood following drug treatment Nwakanma et al. 2008
Gambia, The 5 villages around Farafenni -16.57 13.47r 05 2003 10 2003 6.4 -8 -8 R 47 trials of membrane feeding on gametocyte carriers;�(5-45) Nwakanma et al. 2008
Gambia, The near Farafenni, north bank villages -999.00 -99.00 -8 -8 -8 -8 56.5 -8 -8 -8 ⋆(1-19) Drakeley et al. 2000
Gambia, The near Farafenni, north bank villages -999.00 -99.00 -8 -8 -8 -8 80.0 -8 -8 -8 ⋆(>19) Drakeley et al. 2000
Ghana -9 -999.00 -99.00 01 1952 10 1952 0.0 -8 -8 -9 ⋆(>14) (two) Muirhead-Thomson 1954
Ghana -9 -999.00 -99.00 01 1952 10 1952 30.0 -8 -8 -9 ⋆(0-14) (40) Muirhead-Thomson 1954
Ghana Accra -999.00 -99.00 -8 -8 -8 -8 50.9 -8 -8 U � Draper 1953
Ghana Weija -999.00 -99.00 01 1952 10 1952 26.6 -8 -8 R ⋆(0.8-10) Muirhead-Thomson 1954
Liberia -9 -999.00 -99.00 -9 -9 -9 -9 20.1 -8 -8 -9 ⋆(>14) Muirhead-Thomson 1957
Liberia -9 -999.00 -99.00 -9 -9 -9 -9 21.6 -8 -8 -9 ⋆(0-14) Muirhead-Thomson 1957
Liberia village -999.00 -99.00 12 1955 11 1956 19.1 -8 -8 R ⋆(0-4) Muirhead-Thomson 1957
Liberia village -999.00 -99.00 12 1955 11 1956 20.1 -8 -8 R ⋆(>14) Muirhead-Thomson 1957
Liberia village -999.00 -99.00 12 1955 11 1956 23.3 -8 -8 R ⋆(5-14) Muirhead-Thomson 1957
Nigeria Kaduna area -999.00 -99.00 05 1963 08 1963 20.0 -8 -8 R low gametocyte density Service 1965
Nigeria Kaduna area -999.00 -99.00 05 1963 08 1963 50.0 -8 -8 R high gametocyte density Service 1965
Nigeria Lagos -999.00 -99.00 -8 -8 -8 -8 46.6 -8 -8 U ⋆ Draper 1953
Nigeria village in Yoruba country -999.00 -99.00 11 1951 12 1951 9.0 -8 -8 R ⋆(0-10) Draper 1953
Papua New Guinea Buksak -999.00 -99.00 02 1986 12 1986 48.1 -8-8 R - Burkot et al. 1990
Papua New Guinea Butelgut, Mebat, Sah, Buksak -999.00 -99.00 -8 1985 -8 1985 37.9 -8 -8 R � Graves et al. 1988
Senegal Thies -16.93 14.80i -8 -8 -8 -8 25.0 -8 -8 R �(>4) Boudin et al. 2005
Tanzania Kisegese -999.00 -99.00 -8 -8 -8 -8 26.7 -8 -8 -8 ⋆(>19) Drakeley et al. 2000
Tanzania Kisegese -999.00 -99.00 -8 -8 -8 -8 44.1 -8 -8 -8 ⋆(1-19) Drakeley et al. 2000
Thailand Phra Phutthabat 100.8 14.72i 06 1965 10 1967 23.2 -8 -8 -8 �(12-60); rainy season Rutledge et al. 1969
Thailand Phra Phutthabat 100.8 14.72i 06 1965 10 1967 37.9 -8 -8 -8 �(12-60); cool season Rutledge et al. 1969
Thailand Phra Phutthabat 100.8 14.72i 06 1965 10 1967 9.7 -8 -8 -8 �(12-60); hot season Rutledge et al. 1969
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D.16 Mosquito-to-human transmission efficiency (b)

Tab. D.13: Data regarding the mosquito-to-human transmission efficiency (b). Columns:bave: average mosquito-to-human transmission efficiency;bmin: asbave,
but for the minimum;bmax: asbave, but for the maximum; further information see Tab.D.2. Note that minimum and maximum values ofb refer to
monthly data.

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 bave [%] bmin [%] bmax [%] specie note ref

- - -999.00 -99.00 -8 -8 -8 -8 44.1 -8.0 -8.0 An. gambiae in vitro transmitted sporozoites Beier et al. 1991
- - -999.00 -99.00 -8 -8 -8 -8 49.2 -8.0 -8.0 An. stephensi in vitro transmitted sporozoites Beier et al. 1991
Kenya Nyanza Province -999.00 -99.00 08 1972 07 1973 1.5-2.6 -8.0 -8.0 An. gambiae,

An. funestus
infants; neglected HBR age-dependence; ignored

superinfection
Pull and Grab 1974

Kenya Nyanza Province -999.00 -99.00 08 1972 07 1973 5.4-9.3 -8.0 -8.0 An. gambiae,
An. funestus

infants; ignored superinfection Port et al. 1980

- - -999.00 -99.00 -8 -8 -8 -8 33.0 -8.0 -8.0 An. stephensi ⋆(25-39); without antimalarial immunity Rickman et al. 1990
Kenya Saradidi -999.00 -99.00 02 1986 10 1987 7.5 1.0 28.0 An. gambiae,

An. arabiensis,
An. funestus

⋆(0.5-6); neglected HBR age-dependence; ignored
superinfection

Beier et al. 1994

Uganda Lira -999.00 -99.00 -8 -8 -8 -8 5.0 -8.0 -8.0 An. gambiae,
An. funestus

infants; neglected HBR age-dependence; ignored
superinfection

Macdonald 1955, 1956

Tanzania Mngeza -999.00 -99.00 -8 -8 -8 -8 1.0 -8.0 -8.0 An. gambiae,
An. funestus

infants; neglected HBR age-dependence; ignored
superinfection

Macdonald 1955, 1956

Ethiopia Gambela -999.00 -99.00 12 1967 02 1969 -8.0 6.6 27.3 An. arabiensis,
An. funestus, An. nili

⋆(<15); neglected HBR age-dependence; ignored
superinfection; assumption:r = 0.005

Krafsur and Armstrong 1978

Ethiopia Gambela -999.00 -99.00 12 1967 02 1969 -8.0 4.8 13.3 An. arabiensis,
An. funestus, An. nili

⋆(≥15); neglected HBR age-dependence; ignored
superinfection; assumption:r = 0.005

Krafsur and Armstrong 1978

Senegal Pikine -17.40 14.75b 01 1980 01 1981 -8.0 8.0 46.1 An. arabiensis ⋆(0.5-6); ignored superinfection Vercruysse et al. 1983
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D.17 Human Blood Index (a)

Tab. D.14: Data with regard to the human blood index (a). For further information see Tab.D.2.

country place long
[◦E]

lat
[◦N]

M1 YYY1 M2 YYY2 a [%] specie ref

Burkina Faso Karangasso -4.65 11.22b 02 1985 02 1986 99.5 An. gambiae Robert et al. 1988
Burkina Faso Karangasso -4.65 11.22b 02 1985 02 1986 98.5 An. funestus Robert et al. 1988
Burkina Faso Karangasso -4.65 11.22b 02 1985 02 1986 0.0 An. rufipes Robert et al. 1988
Dominican Republic Calle Duarte,

Colonia
Japonesa,
La Bomba

-999.00 -99.00 07 1987 10 1988 8.0 An. albimanus Mekuria et al. 1991

Dominican Republic Calle Duarte,
Colonia

Japonesa,
La Bomba

-999.00 -99.00 07 1987 10 1988 12.0 An. albimanus Mekuria et al. 1991

Gambia, The 12 villages -999.00 -99.00 -9 -9 -9 -9 38.3 An. gambiae s.l. Killeen et al. 2001
Kenya 4 villages in

Mumias
-999.00 -99.00 -8 1995 -8 1996 95.9 An. gambiaes.l.,

An. funestus
Shililu et al. 1998

Kenya Nyanza Province -999.00 -99.00 08 1972 07 1973 95.0 An. gambiae Pull and Grab 1974
Kenya Nyanza Province -999.00 -99.00 08 1972 07 1973 99.0 An. funestus Pull and Grab 1974
Korea Baekyeon-ri and

Paju
-999.00 -99.00 06 2000 08 2000 0.8 An. sininsis Lee et al. 2001

Nigeria Jirima, village -999.00 -99.00 08 1972 09 1972 100.0 An. gambiae s.s. Garrett-Jones et al. 1980
Nigeria Jirima, camp -999.00 -99.00 08 1972 09 1972 78.6 An. gambiae s.s. Garrett-Jones et al. 1980
Nigeria Jirima, village -999.00 -99.00 08 1972 09 1972 82.9 An. arabiensis Garrett-Jones et al. 1980
Nigeria Jirima, camp -999.00 -99.00 08 1972 09 1972 30.4 An. arabiensis Garrett-Jones et al. 1980
Nigeria Lagos, Lemu

suburb
3.37 6.47a 01 2000 12 2000 77.6 An. gambiae s.s. Awolola et al. 2002

Nigeria Kankiya, sprayed
area

-999.00 -99.00 -9 1963 -9 1964 63.0 An. gambiae Garrett-Jones and Shidrawi
1969

Nigeria Kankiya,
unsprayed area

-999.00 -99.00 -9 1963 -9 1964 75.0 An. gambiae Garrett-Jones and Shidrawi
1969

Sierra Leone Njala-Komboya -11.54 8.20b 01 1990 04 1991 100.0 An. gambiae s.s. Bockarie et al. 1994
Sierra Leone Nyandeyama -11.66 8.12b 01 1990 04 1991 99.0 An. gambiae s.s. Bockarie et al. 1994
Sierra Leone Mendewa -11.48 8.16b 01 1990 04 1991 97.0 An. gambiae s.s. Bockarie et al. 1994
Sierra Leone Nengbema -11.68 8.13b 01 1990 04 1991 100.0 An. gambiae s.s. Bockarie et al. 1994
Senegal Dielmo -16.42 13.72b 07 1997 09 1997 29.6 An. arabiensis Diatta et al. 1998
Senegal Dielmo -16.42 13.72b 07 1997 09 1997 30.3 An. gambiae Diatta et al. 1998
Senegal Pikine -17.40 14.75b 12 1979 12 1980 90.0 An. arabiensis Vercruysse et al. 1983
Tanzania Segera -999.00 -99.00 -8 -8 -8 -8 38.3 An. arabiensis Killeen et al. 2001
Tanzania Segera -999.00 -99.00 -8 -8 -8 -8 99.0 An. funestus Killeen et al. 2001
Tanzania Segera -999.00 -99.00 -8 -8 -8 -8 97.9 An. gambiae s.s. Killeen et al. 2001
Tanzania southern slopes

of Eastern
Usambara
Mountains

-999.00 -99.00 09 1952 12 1952 100.0 An. funestus Davidson and Draper 1953

Tanzania southern slopes
of Eastern
Usambara
Mountains

-999.00 -99.00 09 1952 12 1952 100.0 An. gambiae Davidson and Draper 1953

Tanzania southern slopes
of Eastern
Usambara
Mountains

-999.00 -99.00 09 1952 12 1952 93.3 An. marshalli Davidson and Draper 1953
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D.18 Human Infectious Age (HIA)

Tab. D.15: Data with regard to the Human Infectious Age (HIA). Columns: PMA: asexual malaria par-
asite mature age; Pmethod: method of asexual malaria parasite detection; GMA: gametocyte
mature age, that is the duration of gametocytogenesis; Gmethod: method of gametocyte de-
tection; further information see Tab.D.2.

PMA [days] Pmethod GMA [days] Gmethod note ref
8 (median) microscope -8.0 -8 malaria therapy patients Collins and Jeffery

1999

-9 -9 10.0-14.0 microscope - Day et al. 1998

-9 -9 11.0 microscope GMA: duration between first day of
symptoms and gametocyte appearance

Garnham 1949

9.8/10.3/13.0 -9 11.5 (large
majority: 10-13)

microscope PMA:
Santee-Cooper/Panama/McLendon strain

of P. falciparum; GMA: duration
between the first occurrence of asexual
parasites and gametocyte appearance

Jeffery et al. 1959

-9 -9 11.7 (range:
6.0-30.0)

microscope GMA: duration between first day of
symptoms and gametocyte appearance

Miller 1958

9.0-11.0 QBC tube and
microscope

-9 -9 PMA: days after infection when tests
showed positive results

Rickman et al. 1989

6.5-7.0 presence established in
culture

-9 -9 vaccinated and non-vaccinated
volunteers

Murphy et al. 1989

14.0-16.5 microscope -9 -9 patients without antimalarial immunity Rickman et al. 1990

6.0-7.0 QT-NASBA -9 -9 experimental infection Schneider et al. 2005

8.3 microscope -9 -9 experimental infection Schneider et al. 2005

-9 -9 10.0 microscope GMA: duration between first day of fever
and gametocyte appearance

Shute and Maryon
1951
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E LMM validation and settings

E.1 Definition of the validation

The LMM is validated under weather conditions of meteorological stations in West
Africa and Cameroon (Tab.G.1). Malaria simulations are checked against observations
of eleven different entomological and parasitological variables. A skill score with re-
gard to every variable as well as to their ensemble (SC(x) andSC(all), respectively) is
assigned to every parameter setting of the model.

These comprise the following entomological variables: thehuman biting ratio
(HBRa), the annual average circumsporozoite protein rate (CSPRa), the annual ento-
mological inoculation rate (EIRa), and five variables of the malaria season (SSeas: sea-
son start;ESeas: end month;Seas: duration of the malaria season;MSeas: number of
months in which 75% ofEIRa is transmitted;XSeas: month of maximum transmission;
see App.D.5 for the definition of the simulated malaria seasonality). Also three parasito-
logical variables are included: the annual mean (PRa), the annual minimum (PRmin,a),
as well as the annual maximum (PRmax,a) of the asexual parasite ratio.

The evaluation of single model runs is only performed at stations featuring data
from malaria field studies. Each simulation at a particular station produces 34 annual
values for every considered variable (e.g.,EIRa). On the other hand, entomological data
are never measured continuously because of the amount of work required in practice
(Chalvet-Monfray et al. 2007). Due to the lack of long time series observations only few
data values (if any at all) are available for considered stations (Tabs.D.5, D.4& D.3).
Only data from rural field sites are used for the LMM validation (cp. App.D). Note that
field measurements are not performed at the weather stations’ location. However, data
in the area of the station or from about the same climatic zoneis available (Fig.3.1;
see also App.D). In this context, it must be noted that precipitation ratescan differ
greatly between locations just few kilometres apart, but meteorological stations are much
more sparsely distributed (Shaman and Day 2005; Balme et al. 2006; Sec.4.1.2). Also
partially different environmental conditions (e.g., state of ground) make a year-to-year
comparison between simulations and field observations impossible.Gerbaux and Bicout
(2008), for instance, showed that taking precipitation at some kilometres off the study
site can lead to an important error in mosquito production prevision. Shaman and Day
(2005) allude to the mismatch between scales at which disease vectors response to hy-
drologic variability and scales at which hydrologic variability is actually monitored. For
all these reasons, a reproduction of the year-to-year variability is not expected. However,
the evaluation procedure claims that LMM simulations are comparable to field observa-
tions. The following five criteria are applied:

The evaluation of model runs takes the number of available observations into ac-
count. Stations with many observations contribute more to the calculated skill score
than stations with fewer field measurements (cp. Tab.E.1). The method also makes al-
lowances for the uncertainty of the year-to-year variability. A proper analysis would only
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# name description nobs points

1 overlap any observation is included in the simulated
range

≥ 1 +1

2 enclosure every observation is included in the simulated
range

≥ 2 +1

3a median enclosure the observed median is included in the simulated
range

≥ 3 +1

4a median quartile
enclosure

the observed median is located within the lower
and upper quartile of the simulations

≥ 5 +1

5a penalty the simulations exceed the one and a half time
maximum of all field observations

≥ 1 -5

3b frequency the maximum number of observations and
simulations is found in the same month or the

observations and simulations reveal most
frequently no (year-round) transmission,

respectively

≥ 3 +1

Tab. E.1: Criteria in terms of the evaluation of LMM simulations whichare based on field observations in
the area of synoptic stations. Malaria runs are rated separately for each station. Every fulfilled
criterion increases the score of such a model run by one point. The sum of achieved points at
all stations and from eleven entomological and parasitological variables finally add to the skill
score of a particular LMM setting (SC(all)). Note, criteria 1, 2, and 3b are valid forSSeas,
ESeas, andXSeas, whereas criteria 1, 2, 3a, and 4a are applied for the rest of the variables.
Criterion 5a is only used for the computation ofSC(HBRa) andSC(EIRa). Columns: #: criteria
number; name: short term; description: criteria description; nobs: the lowest number of available
observations needed to fulfil the criterion; points: assigned number of points.

be possible for numerous available observations. In fact, an estimate of the frequency
distribution is not feasible by few records.

The computed skill score is based on the probability that observations fall into cer-
tain ranges of simulations. It is expected that any observation is included in the range of
model simulations (1st criterion: overlap). Of course, themodel setting performs better
when every observation is enclosed in the simulated range (2nd criterion: enclosure). For
at least three available records also the observed median iscalculated. The confidence
in the model setting increases when the observed median is contained in the span of
model simulations (criterion 3a: median enclosure). Reliability of the median estimate
increases the more field measurements exist. Only for at least five available records
the condition is called that the observed median falls within the lower (25th percentile)
and upper quartile (75th percentile) of 34 simulated values(criterion 4a: median quartile
enclosure).

The hitherto rating system might favour model settings generating unrealistic high
values and a strong interannual variation. This fact is inhibited by another criterion that
eliminates unrealistic high entomological values (criterion 5a: penalty). Five penalty
points are applied to the skill score ofHBRa andEIRa, when any simulated value ex-
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ceeds the one and a half time maximum of all available field measurements. This thresh-
old seems to be a reasonable measure for the restriction of simulated values. Model
settings with unrealistic high biting rates (HBRa andEIRa values) are rejected.

Due to the possibility of no and year-round transmission the3rd, 4th, and 5th criteria
are not applied for the evaluation of the start (SSeas) and end of the malaria season
(ESeas), as well as the month with maximum transmission (XSeas). For these variables,
the maximum of the frequency distribution is compared (criterion 3b: frequency). A
point is assigned to the model setting when observations andsimulations show mostly
no (year-round) transmission. In case that the majority of observations exhibits neither a
year-round nor no transmission, it was checked if the month with the maximum number
of observations agrees with that of the simulation (e.g.,XSeasis mostly observed and
simulated for August).

E.2 Figures and tables with regard to the LMM calibration

First experiment

rank CAP #Ep S U2 SC(HBRa) SC(EIRa) SC(HBRa,EIRa) SC(all)

1 750 50 5 500 34 (52) 39 (54) 73 (106) 251 (440)
2 750 50 10 500 31 (52) 41 (54) 72 (106) 256 (440)
3 500 75 15 500 31 (52) 38 (54) 69 (106) 256 (440)
4 500 100 15 500 36 (52) 32 (54) 68 (106) 246 (440)
5 500 75 10 500 34 (52) 33 (54) 67 (106) 245 (440)
6 250 150 15 500 32 (52) 34 (54) 66 (106) 240 (440)

250 125 15 500 29 (52) 37 (54) 66 (106) 243 (440)
8 750 75 20 500 31 (52) 34 (54) 65 (106) 255 (440)

1000 50 10 500 35 (52) 30 (54) 65 (106) 251 (440)
10 500 100 20 500 30 (52) 34 (54) 64 (106) 255 (440)
296 2000 150 5 500 -15 (52) -57 (54) -72 (106) 74 (440)
297 2000 125 5 1000 -17 (52) -56 (54) -73 (106) 64 (440)
298 2000 150 10 1000 -21 (52) -53 (54) -74 (106) 78 (440)
299 2000 150 5 750 -22 (52) -61 (54) -83 (106) 54 (440)
300 2000 150 5 1000 -23 (52) -62 (54) -85 (106) 50 (440)

Tab. E.2: Top 10 and last 5 of 300 malaria runs from the first calibrationexperiment according to the skill
score relative toHBRa andEIRa. Numbers in brackets refer to points that could be theoretically
achieved. Note thatpd↓ is set to zero in initial runs. Columns: rank: ranking with regard to
SC(HBRa,EIRa); CAP: setting ofCAP (in the number of fertile females); #Ep: setting of #Ep

(in the number of eggs);S: setting ofS (in mm);U2: setting ofU2 (in mm). SC(x) denotes the
skill score with regard to variablex.
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rank CAP #Ep S U2 SC(HBRa) SC(CSPRa)SC(EIRa) SC(Seas) SC(XSeas) SC(MSeas) SC(SSeas) SC(ESeas) SC(PRa) SC(PRmax,a)SC(PRmin,a) SC(all)

1 750 75 30 500 27
(52)

27
(55)

34
(54)

33
(42)

19
(41)

33
(37)

26
(41)

24
(37)

13
(29)

16 (25) 7 (27) 259
(440)

2 1000 50 15 500 29
(52)

32
(55)

32
(54)

32
(42)

18
(41)

29
(37)

28
(41)

21
(37)

14
(29)

15 (25) 8 (27) 258
(440)

3 250 150 30 500 23
(52)

32
(55)

35
(54)

30
(42)

21
(41)

30
(37)

29
(41)

21
(37)

13
(29)

15 (25) 8 (27) 257
(440)

4 750 50 10 500 31
(52)

28
(55)

41
(54)

31
(42)

19
(41)

29
(37)

26
(41)

17
(37)

13
(29)

13 (25) 8 (27) 256
(440)

500 75 15 500 31
(52)

31
(55)

38
(54)

25
(42)

20
(41)

30
(37)

27
(41)

17
(37)

15
(29)

14 (25) 8 (27) 256
(440)

6 750 75 20 500 31
(52)

30
(55)

34
(54)

29
(42)

20
(41)

30
(37)

28
(41)

19
(37)

13
(29)

13 (25) 8 (27) 255
(440)

750 50 15 500 24
(52)

30
(55)

36
(54)

32
(42)

18
(41)

29
(37)

28
(41)

21
(37)

14
(29)

15 (25) 8 (27) 255
(440)

500 150 30 500 32
(52)

33
(55)

29
(54)

29
(42)

21
(41)

27
(37)

29
(41)

21
(37)

12
(29)

14 (25) 8 (27) 255
(440)

500 100 20 500 30
(52)

31
(55)

34
(54)

29
(42)

20
(41)

30
(37)

29
(41)

18
(37)

13
(29)

13 (25) 8 (27) 255
(440)

10 1000 75 30 500 29
(52)

23
(55)

29
(54)

33
(42)

19
(41)

33
(37)

26
(41)

24
(37)

14
(29)

17 (25) 7 (27) 254
(440)

Tab. E.3: As Tab.E.2, but for the skill score of all variables.
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Fig. E.1: Box-and-whisker plots of (a)HBRa and (b)EIRa values of five different LMM settings with
regard to 34EIRa values between 1973 and 2006 relative to eight synoptic stations of the Sahel
(north of 14◦30’N; cp. Tab.G.1). Different settings ofS are represented by varying colours
(brown to light blue box plots). Note that various simulatedvalues outrange the scale of the
figures. LMM setting: cp. valn in Tab.5.1, but: pd↓=0%; CAP=1000 fertile females;S=5, 10,
15, 20, and 30 mm. Red dots depict available field measurements (cp. Tab.D.3). In addition, the
statistic relative toRRa is illustrated for each station (dark blue; right scale).
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Fig. E.2: Same as Fig.6.2, but for simulated and observedHBRa values.



E LMM VALIDATION AND SETTINGS LI

Second experiment

rank CAP pd↓ #Ep SC(HBRa) SC(EIRa) SC(HBRa,EIRa) SC(all)

1 400 -10 120 37 (52) 41 (54) 78 (106) 279 (440)
2 700 -7.5 70 34 (52) 41 (54) 75 (106) 270 (440)

650 -10 80 34 (52) 41 (54) 75 (106) 268 (440)
550 -10 90 35 (52) 40 (54) 75 (106) 274 (440)
500 -10 90 35 (52) 40 (54) 75 (106) 272 (440)
500 -10 100 35 (52) 40 (54) 75 (106) 272 (440)
500 -7.5 90 35 (52) 40 (54) 75 (106) 277 (440)
350 -10 130 35 (52) 40 (54) 75 (106) 281 (440)

9 750 -10 70 34 (52) 40 (54) 74 (106) 266 (440)
700 -10 70 34 (52) 40 (54) 74 (106) 266 (440)

Tab. E.4: As Tab.E.2, but only for the top 10 of 455 malaria runs from the second calibration experiment.
Note that in the second set of runsSandU2 are set to 10 and 500 mm, respectively. Columns:
pd↓: setting ofpd↓ (in %) and see Tab.E.2.

rank CAP pd↓ #Ep SC(HBRa) SC(CSPRa)SC(EIRa) SC(Seas) SC(XSeas) SC(MSeas) SC(SSeas) SC(ESeas) SC(PRa) SC(PRmax,a)SC(PRmin,a) SC(all)

1 350 -7.5 120 34
(52)

32
(55)

40
(54)

32
(42)

22
(41)

30
(37)

30
(41)

22
(37)

16
(29)

16 (25) 8 (27) 282
(440)

300 -7.5 130 33
(52)

33
(55)

40
(54)

32
(42)

23
(41)

30
(37)

30
(41)

22
(37)

16
(29)

15 (25) 8 (27) 282
(440)

3 350 -10 130 35
(52)

33
(55)

40
(54)

31
(42)

23
(41)

29
(37)

30
(41)

20
(37)

16
(29)

16 (25) 8 (27) 281
(440)

4 450 -7.5 100 34
(52)

32
(55)

40
(54)

32
(42)

21
(41)

28
(37)

31
(41)

22
(37)

16
(29)

15 (25) 8 (27) 279
(440)

400 -10 120 37
(52)

33
(55)

41
(54)

31
(42)

23
(41)

28
(37)

28
(41)

18
(37)

16
(29)

16 (25) 8 (27) 279
(440)

400 -7.5 110 34
(52)

30
(55)

40
(54)

32
(42)

22
(41)

29
(37)

30
(41)

22
(37)

16
(29)

16 (25) 8 (27) 279
(440)

7 800 -7.5 80 35
(52)

32
(55)

36
(54)

34
(42)

20
(41)

27
(37)

31
(41)

22
(37)

17
(29)

16 (25) 8 (27) 278
(440)

400 -7.5 120 34
(52)

32
(55)

35
(54)

33
(42)

22
(41)

29
(37)

30
(41)

23
(37)

16
(29)

16 (25) 8 (27) 278
(440)

350 -7.5 130 34
(52)

33
(55)

35
(54)

33
(42)

22
(41)

30
(37)

30
(41)

23
(37)

16
(29)

14 (25) 8 (27) 278
(440)

350 -5 110 32
(52)

34
(55)

40
(54)

28
(42)

23
(41)

31
(37)

31
(41)

21
(37)

16
(29)

14 (25) 8 (27) 278
(440)

Tab. E.5: As Tab.E.3, but for the top 10 of 455 malaria runs from the second calibration experiment. Note
that in the second set of runsSandU2 are set to 10 and 500 mm, respectively. Columns:pd↓:
setting ofpd↓ (in %) and see Tab.E.3
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Fig. E.3: Validation of LMMn simulations in terms of (a)Seas, (b) MSeas, (c) SSeas, and (d)XSeasin West Africa and Cameroon. See Figs.6.3& 6.4 for further

details.
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Fig. E.4: Validation of LMMn simulations in terms of (a)HBRa, (b)CSPRa, (c) PRa, and (d)PRmax,a. See Fig.6.4for further details.
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Fig. E.5: Validation of LMMo simulations in terms of (a)HBRa, (b) EIRa, and (c)CSPRa in West Africa and Cameroon. Note that forHBRa the box plots of
Yaoundé (range: 379,174-1,008,218), Koundja (range: 749,544-1,454,845), and Douala (range: 678395-2,122,510) completely outrange the scale of the
figure. See Fig.6.4for further details.
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Fig. E.6: Validation of LMMo simulations in terms of (a)Seas, (b) MSeas, (c) SSeas, and (d)ESeas. See Figs.6.3& 6.4for further details.
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Fig. E.7: Validation of LMMo simulations in terms of (a)XSeas, (b) PRa, (c) PRmax,a, and (d)PRmin,a. See Figs.6.3& 6.4for further details.
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E.5 Spin-up period of the LMM

The modelling of malaria requires realistic initial conditions. At the beginning of each
simulation most state array elements of the LMM are initially empty. For this reason,
it is necessary to spin up the model for a simulation period.Jones(2007) found that
a running-in period of one to two years achieved suitable starting conditions for the
LMM o. However, the length of the required spin-up depends primarily on the setting
of the recovery rate (r). Due to the comparatively large value ofr in the original model
version almost the entire population clears the malaria parasite during the dry season
(Fig.E.7d). This implies that malaria transmission in the followingrainy season is ba-
sically independent from the history of malaria. Nevertheless,r is significantly reduced
in the LMMn version causing a much higher prevalence at the end of the dryseason
(cp. Fig.6.5). The spread of malaria in this model version hence stronglydepends on the
intensity of former transmission seasons. As a consequence, a longer running-in period
is required for the LMMn version.
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∆=0.01
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∆=0.001
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Fig. E.8: Results of the LMMn spin-up test as driven 30 times by the IRD precipitation and ERA40 tem-
perature data from 1968. Illustrated is the number of years relative toEIR (first row; in infective
bites day−1) andPRa (second row; in %) when the yearly difference falls below 0.1, 0.01, or
0.001 for every day of the year.

The length of the proper LMMn spin-up period was determined via rainfall and tem-
perature data from IRD and ERA40. A LMMn run was performed using the same daily
values of 1968 for 30 years. The suitable running-in period is found when equilibrium
is reached in the model. This status is achieved when a yearlypattern repeats itself year
after year. The simulated data was evaluated forEIRa andPRa values. The experiment
shows that south of about 10◦N stable oscillation with regard toEIRa andPRa is at least
reached after three years (Fig.E.8). However, in terms ofEIRa the atmospheric con-
ditions between about 10-16◦N require a much longer spin-up. Equilibrium is reached
within 15 years for every grid box relative to a threshold of 0.01 infective bites. A nu-
merical oscillation was found around the lowest threshold of 0.001 infective bites day−1.
An initial running-in period of 20 years seems hence sufficient for LMMn simulations4.

4Note that for the setting and sensitivity tests of the LMMn a different spin-up period of 13 years was
used. In this case, reconstructed time series for 1960-1972served as running-in data.
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F Supplementary figures

F.1 Data from CRU
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Fig. F.1: (a) Number of stations within the range of grid boxes with regard to CRU precipitation averaged
for 1960-2000. The ‘term’ range refers to the correlation decay distance of 450 km assumed for
rainfall (New et al. 2000). Note that values do not record the number of stations contributing
information to a grid-box, they rather show the number of stations with information upon which
the value of the grid box may has been computed, if necessary.(b) Coefficient of variation of
RRa with regard to CRU for 1960-2000.

F.2 Standardised rainfall anomalies

The standardised annual rainfall anomaly (index(i)) for a given yeari is calculated by
dividing the annual rainfall anomaly with respect to the mean of the base period 1960-
2000 (RR1960−2000

a ) by the standard deviation of the base period (σ(RRa)
1960−2000):

index(i) =
RRa(i)−RR1960−2000

a

σ(RRa)1960−2000 (8.1)
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Sahel (12-18°N, 10°W-5°E): CRU vs. REMO(raw)

Fig. F.2: Standardised annual precipitation anomalies (Eq.8.1) with regard to 1960-2000 for CRU (thick
black bars) as well as REMO(raw) or REMO(cor) (thin red, green, and blue bars) for the Sahel.
For each time series also the 11-year running mean of standardised anomalies is illustrated.
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F.3 Monthly REMO temperature and precipitation data

The following two figures provide information that is helpful for the analysis of LMMn

and MSM simulations. The monthly temperature and precipitation data illustrates vari-
able atmospheric conditions in Africa during the course of the year. Additionally, pro-
jected atmospheric changes are presented for two decades ofthe future period. These
images enable the understanding of the altered spread of malaria.
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Fig. F.3: Monthly REMO(cor) temperatures (Tm) of the present-day climate (1960-2000) as well as for
the difference (∆Tm) between present-day temperatures and that of 2021-2030 from the A1B as
well as B1 scenario (continued on the next page).
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Fig. F.3: (continued)
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Fig. F.4: Same as Fig.F.3, but for 2041-2050.
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Fig. F.4: (continued)
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Fig. F.5: Same as Fig.F.3, but for monthly REMO(cor) precipitation (RRm).
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Fig. F.5: (continued)
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Fig. F.6: Same as Fig.F.5, but for 2041-2050.
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Fig. F.6: (continued)
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F.4 Present-day malaria seasonality
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Fig. F.7: LMM n simulated malaria seasonality (in months) for 1968-1990 based on IRD precipitation
and ERA40 temperatures. Depicted are (a)MSeas, (b) σ(MSeas), (c) XSeas, (d) σ(XSeas),
(e) SSeas, (f) σ(SSeas), (g) ESeas, and (h)σ(ESeas). ‘U’ signs areas of unfrequent malaria
transmission; ‘V‘ denotes grid boxes with either a rare malaria occurrence or a variable season-
ality; ‘C’ identifies year-round malaria transmission (fordetails see App.D.5).
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Fig. F.8: Same as Fig.F.7c-h, but for the second identified month of maximum transmission (X2Seas) and
values of the second malaria season (S2SeasandE2Seas; see also App.D.5).
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Fig. F.9: Same as Fig.F.7, but for 1960-2000 and for the LMMn simulation.
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Fig. F.10: Same as Fig.F.8, but based on the present-day climate (1960-2000) from
REMO(cor).



F SUPPLEMENTARY FIGURES LXIX

F.5 Malaria projections

LMM n projections

The following figures provide a detailed picture of simulated monthlyEIRvalues. Note
that the 5-day accumulatedEIR served as data input for the Garki model. The present-
day distribution ofEIRm and projected changes hence supply valuable information for
the analysis of the Garki model performance.
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Fig. F.11: Monthly LMMn entomological inoculation rate (EIRm) of the present-day climate (1960-2000)
as well as for the difference (∆EIRm) between the present-dayEIRm and that of 2021-2030
from the A1B as well as B1 scenario (continued on next page).
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Fig. F.11: (continued)
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Fig. F.12: Same as Fig.F.11, but for 2041-2050.
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Fig. F.12: (continued)
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Fig. F.13: Same as Fig.7.12, but for the B1 scenario.
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Fig. F.14: Same as Fig.7.13, but for the B1 scenario.
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Fig. F.15: Same as Fig.7.4, but for 2021-2030 and the A1B scenario.
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Fig. F.16: Same as Fig.7.4, but for 2021-2030 and the B1 scenario.
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Fig. F.17: Same as Fig.7.4, but for 2041-2050 and the A1B scenario.
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Fig. F.18: Same as Fig.7.4, but for 2041-2050 and the B1 scenario.
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Fig. F.19: LMM n projected malaria seasonality (in months) for 2021-2030 based on the A1B scenario
and REMO(cor). Illustrated are absolute values as well as changes relative to the present-
day climate (1960-2000). Depicted are (a)MSeas, (b) ∆(MSeas), (c) XSeas, (d) ∆(XSeas),
(e) SSeas, (f) ∆(SSeas), (g)ESeas, and (h)∆(ESeas). Note that in case ofXSeas, SSeas, ESeas
positive (negative) values stand for a later (earlier) occurrence. ‘U’ signs areas of unfrequent
malaria transmission, ‘V‘ denotes grid boxes with either a rare malaria occurrence or a variable
seasonality, and ‘C’ identifies year-round malaria transmission (for details see App.D.5). White
areas in (d), (f), and (h) refer to areas assigned either for the present-day or future climate to
‘U’ or ‘V’. In the right column, values statistically significant at the 5% level are marked by
dots.
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Fig. F.20: Same as Fig.F.19, but for the B1 scenario.
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Fig. F.21: Same as Fig.F.19, but for 2041-2050.
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Fig. F.22: Same as Fig.F.19, but for the B1 scenario and for 2041-2050.



F SUPPLEMENTARY FIGURES LXXIX

0 20 30 40 50 60 70 80 100 120
[%]

350˚ 0˚ 10˚ 20˚ 30˚ 40˚ 50˚

-10˚ -10˚

0˚ 0˚

10˚ 10˚

20˚ 20˚

-10˚ -10˚

0˚ 0˚

10˚ 10˚

20˚ 20˚

a) cv(PRmax,a)

b) cv(PRmax,a)

2021-2030

2041-2050

B1

Fig. F.23: Same as Fig.7.16, but for the B1 scenario.
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Fig. F.24: Same as Fig.7.14, but for the B1 scenario.
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Fig. F.25: Same as Fig.7.17, but for the B1 scenario.
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Fig. F.26: Same as Fig.7.15, but for the B1 scenario.
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Fig. F.27: Same as Fig.7.18, but for the B1 scenario.
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Fig. F.28: Same as Fig.7.18, but for model variablesya andymax,a instead ofy1,a

andIa.
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Fig. F.29: Same as Fig.F.28, but for the B1 scenario.
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Fig. F.30: Same as Fig.7.20, but for the B1 scenario.
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Fig. F.31: Same as Fig.7.21, but for the B1 scenario.
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MSM projections

First malaria season
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Fig. F.32: MSM simulations of (a, d & g) the length of the malaria season (Seas; in months), (b, e & h)
the start (SSeas), and (c, f & i) the end month (ESeas) of malaria transmission (C: year-round
transmission). Illustrated are values for (a-c) the present-day climate (1960-2000) as well as for
(d-f) 2021-2030 and (g-i) 2041-2050 of the A1B scenario. RegardingSSeasandESeasonly
the first season is shown for areas with two malaria seasons.
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Fig. F.33: Same as Fig.F.32, but here for the B1 scenario.
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Fig. F.35: Same as Fig.7.22, but for the B1 scenario.
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Fig. F.36: MSM simulations of the second malaria season in terms of the present-day climate as well as
the A1B scenario. Graphics in (a, c & e) exhibit the start (S2Seas) and in (b, d & f) the end
month (E2Seas) of the second malaria season. (a & b) represent the period 1960-2000, (c & d)
2021-2030, and (e & f) 2041-2050. Note, only areas with two malaria seasons are considered.
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Fig. F.37: Same as Fig.F.36, but here for the B1 emission scenario.
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G Geographical information

Tab. G.1: Information relative to synoptic weather stations from West Africa and Cameroon. The country,
name, identifier, latitude and longitude positions, as wellas the elevation of meteorological
stations are given. The LMM was driven by reconstructed temperature and precipitation time
series (1973-2006) from these meteorological stations.

country name identifier longitude latitude elevation
[m]

Niger Tillabéry 61036 1◦27’E 14◦12’N 210
Niger Niamey 61052 2◦10’E 13◦29’N 227
Niger Maradi 61080 7◦05’E 13◦28’N 373
Niger Magaria 61091 8◦56’E 12◦59’N 403
Niger Gaya 61099 3◦27’E 11◦53’N 203
Mali Gao 61226 0◦03’W 16◦16’N 260
Mali Mopti Barbe 61265 4◦06’W 14◦31’N 272
Mali Bamako Senou 61291 7◦57’W 12◦32’N 381
Mauritania Rosso 61489 15◦49’W 16◦30’N 6
Senegal Saint-Louis 61600 16◦27’W 16◦03’N 4
Senegal Podor 61612 14◦58’W 16◦39’N 7
Senegal Linguère 61627 15◦07’W 15◦23’N 21
Senegal Dakar Yoff 61641 17◦30’W 14◦44’N 24
Senegal Diourbel 61666 16◦14’W 14◦39’N 9
Senegal Kaolack 61679 16◦04’W 14◦08’N 7
Senegal Tambacounda 61687 13◦41’W 13◦46’N 50
Senegal Ziguinchor 61695 16◦16’W 12◦33’N 23
Gambia, The Banjul Yundum 61701 16◦48’W 13◦21’N 33
Cameroon Koundja Foumban 64893 10◦45’E 5◦39’N 1210
Cameroon Douala 64910 9◦44’E 4◦00’N 9
Cameroon Yaoundé 64950 11◦31’E 3◦50’N 760
Benin Kandi 65306 2◦56’E 11◦08’N 292
Benin Natitingou 65319 1◦23’E 10◦19’N 461
Benin Parakou 65330 2◦37’E 9◦21’N 393
Benin Savé 65335 2◦29’E 8◦02’N 200
Benin Bohicon 65338 2◦04’E 7◦10’N 166
Benin Cotonou 65344 2◦23’E 6◦21’N 9
Burkina Faso Dori 65501 0◦02’W 14◦02’N 277
Burkina Faso Ouagadougou 65503 1◦31’W 12◦21’N 306
Burkina Faso Bobo-Dioulasso 65510 4◦19’W 11◦10’N 460
Burkina Faso Po 65518 1◦09’W 11◦09’N 322
Burkina Faso Korhogo 65536 5◦37’W 9◦25’N 381
Côte d’Ivoire Bouaké 65555 5◦04’W 7◦44’N 376
Côte d’Ivoire Dimbokro 65562 4◦42’W 6◦39’N 92
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Fig. G.1: Map of East Africa depicting various mentioned highland ter-
ritories, mountains, lakes, as well as towns. Label: 1: Lake
Malawi; 2: Udzungwa Mountains; 3: Usambara Mountains;
4: Kagera; 5: Lake Victoria; 6: Western Kenyan highlands;
7: Lake Turkana.
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Fig. G.2: Map of West Africa displaying various referenced highland territories,
lakes, rivers, areas, as well as towns.
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An. gambiae s.l.

The termAnopheles gambiae sensu latocomprises six morphologically hardly
distinguishableAnophelesspecies:Anopheles gambiae sensu strictoGiles (1902),
Anopheles arabiensisPatton (1905),Anopheles quadriannulatusTheobald (1911),
Anopheles bwambaeWhite (1985),Anopheles merusDönitz (1902), andAnophe-
les melasTheobald (1903). 2

Anopheles

Anophelesis a genus of mosquito from the family Culicidae. Several hundred
Anophelesspecies are recognised. About 100 of these species are able to transmit
human malaria, while commonly only a few tens are vectors of malaria. 2

aestivation

Aestivation is a physical state of adult mosquitoes, when mosquitoes remain in-
active, except for sporadic journeys to obtain blood-mealsto sustain themselves.
Aestivating females can be distinguished because they become gonotrophically
discordant and do not develop eggs after taking a blood meal (Charlwood et al.
2000). 29

anthropophilic

Preferring human beings to other animals, such as a mosquito. An anthropophilic
mosquito hence predominantly takes blood meals on humans. 84

anthropophily

Anthropophily describes mosquitoes that areanthropophilic. 2

asexual parasite ratio

The asexual parasite ratio is the proportion of the survey population that is con-
firmed positive for the malaria parasite. Naturally, it is determined by taking stan-
dard thick and thin blood smears from volunteers, staining slides with Giemsa,
and examining slides by a microscope (Beier et al. 1999). Malaria parasites are
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identified and counted canonically by immature ring stage trophozoites (Hay and
Snow 2006). 23

asymptomatic

In medicine, a disease is asymptomatic while the patient does not experience
symptoms. Asymptomatic diseases may not be discovered until the patient un-
dergoes medical tests. 23

box-and-whisker plot

A box-and-whisker plot (sometimes called simply box plot) is a histogram-like
method of displaying data. Box-and-whisker plots provide information relative to
lower and upper extremes, lower and upper quartiles, as wellas the median of the
considered data. 47

climate

Climate represents an averaged weather, which is observed over a long lasting
period. In meteorology, climate is defined via the 30 year climate normal period
(e.g., 1961-1990). 47

climate change

The term climate change refers to a statistically significant variation of the mean
state of climate or of its variability. This variation must hold on for an extended
period (e.g., 30 years). 1

control run

During a control run it is tested if a model is able to produce arealistic statistic.
53

cross-sectional survey

A cross-sectional survey provides a ‘snapshot’ of the frequency and characteristics
of a disease in a population at a particular point in time. 126

degree-day

The time needed to complete a temperature dependent processcan be expressed in
the term dd

T−T−
. Here the degree-day (dd) represents accumulation of temperature

units (T −T−) over time (e.g., ifdd=110 K andT −T−=10 K, the process would
last 11 days). At temperatures below the temperature threshold (T−) the process is
not accomplished. 73

endemic

Malaria transmission is endemic, when the disease can persist/survive in a region
for any length of time. 23
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endophilic

Mosquitoes are endophilic when they prefer to rest indoors after feeding on hu-
mans (endophilic). 84

endophily

Endophily describes mosquitoes that areendophilic. 85

ensemble runs

Climate projections are in general performed by ensemble runs. Every run of
an atmospheric model can only produce a certain statistic ofweather conditions
that determines the model climate. Confidence is therefore improved in a larger
universal set that is when several runs are performed by using the same forcing
but different starting conditions. The output from severalsimulations therefore
samples uncertainty in the initial state. Such a group of runs is termed ‘ensemble’
and represents a more robust statistical set than the outputfrom any ensemble
member. 16

epidemic

A disease is epidemic, when occasional disease outbreaks occur in normally disease-
free areas. Studies might also relate the term epidemic to unusual high seasonal
transmission levels. 9

epidemiology

Epidemiology is the investigation of factors affecting thehealth and illness of pop-
ulations. 25

exophilic

An exophilic mosquito tends to inhabit/rest outdoors. An exophilic animal is eco-
logically independent of humans and their domestic environment. 84

gametocytaemia

Presence of gametocytes in the peripheral blood is called gametocytaemia. 87

gametocyte

A gametocyte, either male or female, is a cell that is specialised in the transmission
of the malaria parasite between humans and mosquitoes. Fivedifferent maturation
stages ofP. falciparumgametocytes are known (Talman et al. 2004). 22

gametocytogenesis

Production of mature male and female gametocytes is termed gametocytogenesis.
86
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gonotrophic cycle

The gonotrophic cycle denotes the time for preparation of a brood in femaleAnophe-
les. It includes development of eggs within the mosquito femaleas well as the time
between the egg deposition and the blood meal of the mosquitofemale. 28

greenhouse gas

Greenhouse gases absorb and emit infrared terrestrial radiation at special given
wavelengths. Primary greenhouse gases of the atmosphere are carbon dioxide,
water vapour, nitrous oxide, methane, and ozone. 1

horizontal life table

Horizontal life tables provide information of distinct cohorts following through
time. 77

host

A host is a human, animal, or plant on which or in which anotherorganism lives.
2

incidence

Incidence is usually a measure of risk of developing some newcondition within a
specified period of time. However, incidence often loosely expresses simply the
number of new cases during a particular time period. 31

incubation period

The incubation period is the time between infection and appearance of symptoms
of disease. 28

infection

Infection is the detrimental colonization of a host organism by foreign species. In
the present study, malaria infected hosts are not infectious. 22

infectious

A necessary condition for disease transmission from one host to another is the
presence of pathogenic microbial agents. Regarding malaria the term infectious
relates either to humans harbouring mature gametocytes or to mosquitoes carrying
sporozoites in their salivary glands. 21

inoculation

Inoculation is the placement of something to where it will grow or reproduce.
It is, for example, used in respect of the communication of a disease to a living
organism by transferring its causative agent into an organism. In case of malaria,
the malaria parasite is introduced into the human host. 24
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merozoite

A merozoite is a daughter cell of a protozoan parasite. Merozoites are result of
asexual reproduction (e.g., schizogony). In malaria, merozoites infect red blood
cells and rapidly reproduce asexually. They break and destroy red blood cells and
subsequently infect others. 21

morbidity

Morbidity is defined as the rate of occurrence of disease within a population and
given time period. 3

mortality

Mortality is the rate of occurrence of death due to a disease within a population
and time period. 2

mosquito

A mosquito is an insect of the family Culicidae and order Diptera (two-winged
flies) population. About 3,500 mosquito species are known. Mosquito females
deposit their eggs into or in the vicinity of standing water.Egg, larvae, and pupal
stages are entirely aquatic. 1

multi-model

Data from several models is the basis for multi-model data sets. Uncertainties
and weaknesses of single models are partially overcome by analysing data from
the multi-model. Assuming that simulation errors in different models are inde-
pendent, the average of the multi-model is expected to outperform individual en-
semble members. Such a multi-model ensemble is, for example, instrumental in
analysing probabilistic projections of the future climate. 16

nulliparous

In entomology, nulliparous refers to the parity of females.A female mosquito that
never produced eggs is termed nulliparous. 79

ovariole

An ovariole is one of the tubes of which ovaries of most insects are composed. 78

parous

In entomology, parous refers to the parity of females. A female mosquito already
producing eggs is termed parous. 78

potential evaporation

Potential evaporation is a measure of the degree to which theweather or climate of
a region is favourable to the process of evaporation (Glickman 2000). It is defined
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as the amount of evaporation that would occur if a sufficient water source would
be available. 100

prepatent period

The so-called prepatent period is the time needed for the detection of asexual par-
asites in blood after infection of a human via a female mosquito. 86

prevalence

In epidemiology, the prevalence of a disease in a populationis defined as the total
number of cases of disease in the population, divided by the number of individuals
in the population. In case of malaria the term prevalence denotes the proportion of
the population that is carrier of the malaria parasite. 23

protozoa

The protozoa are one-celled animals, they breathe, move, and reproduce like multi-
celled animals. Some protozoans are harmful to man as they cause serious dis-
eases. However, others are helpful because they eat, for example, harmful bacteria.
1

scenario

Scenarios are descriptions of the future state of, for example, climate or land
cover. Scenarios are based upon observations of the past andthey extrapolate
actual trends into the future. 12

sequestration

During sequestration a fraction of asexual parasites develops into gametocytes (ga-
mete precursors) while sequestered in deep tissues (Eichner et al. 2001). 22

sporogonic cycle

The sporogonic cycle denotes the development of the malariaparasite in female
mosquitoes. The cycle starts when mosquitoes receive gametocytes from human
blood and is terminating when sporozoites reach the salivary glands. The sporo-
gonic cycle is governed by temperature and requires temperatures above a certain
minimum temperature, the so-called sporogonic temperature threshold. 23

sporogonic temperature threshold

The sporogonic temperature threshold is the minimum temperature needed to start
the sporogonic cycle. 28

sporozoite

In case of malaria, sporozoites are cells that develop in themosquito’s salivary
glands, leave the mosquito during a blood meal, and enter theliver where they
multiply. Sporozoites are formed by sporogony, a type of sexual or asexual repro-
duction. 21
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superinfection

Superinfection is the process by which a cell, that has previously been infected,
gets coinfected with a different parasite strain. An individual can receive more
than one infective inoculation of parasites via multiple infectious bites. 25

transmission blocking immunity

Transmission-blocking immunity is a form of immunity, which is largely anti-
body mediated and operates in the mosquito midgut to block either fertilization of
female gametes by male gametes or subsequent zygote development (Wizel and
Kumar 1991). 24

trophozoite

A trophozoite is the activated, feeding stage in the life cycle of protozoan parasites
such as the malaria-causingP. falciparum. The trophozoite undergoes schizogony
(asexual reproduction) and develops into a schizont containing merozoites. 21

vector

In biology, the term vector denotes an organism transmitting disease, infections,
or foreign living material. Vector control is hence a methodlimiting or eradicating
vectors. 1

vectorial capacity

Vectorial Capacity (VC) is the number of potentially contacts an individual human
makes, through the vector population, per unit time (Dietz et al. 1974). VC is
computed by means of the following equation (cp.Garrett-Jones 1964), where
nf is the number of female mosquitoes per human,a is the human blood index,
ns is the duration of the extrinsic incubation period, andpd is the daily survival

probability of mosquitoes:VC=
nf a2pns

d
−ln(pd) . 35

vertical life table

Vertical life tables provide information for populations with overlapping genera-
tions and age distributions remaining stationary during a sampling period. 77

zoophilic

Zoophilic mosquitoes tend to feed on animals. 84

zoophily

Zoophily describes mosquitoes that arezoophilic. 2
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