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Kurzzusammenfassung

Diese Arbeit beschiftigt sich mit ausgewéhlten Aspekten einer effizienten Implemen-
tierung von Vielelektronen-Methoden, die im Formalismus der zweiten Quantisierung
ausgedriickt werden konnen. Insbesondere wird die Coupled-Cluster-Methode (mit
beliebigem Anregungsgrad) betrachtet. Diese Methode wird heute vielfach angewen-
det, insbesondere fiir genaue Rechnungen an kleinen und mittelgrofien Molekiilen.
Sie beruht auf einer nichtlinearen Parametrisierung der Wellenfunktion, was ihre Im-
plementierung verhéltnisméafiig kompliziert macht.

Da der Rechenaufwand mit der Systemgrofse stark ansteigt, ist es wichtig, die Imple-
mentierung moglichst effizient zu gestalten. Dies gilt insbesondere, wenn hohere An-
regungen berticksichtigt werden sollen als in der Standardmethode CCSD (Coupled-
Cluster mit Ein- und Zweifachanregungen). Das in dieser Arbeit beschriebene Pro-
gramm enthélt keine prinzipielle Einschrankung an den Anregungsgrad und soll zu-
kiinftig auch auf Multireferenzmethoden erweitert werden.

Nach einem Uberblick iiber die relevante Theorie und die Struktur des Programms
werden zwei Programmteile vertieft behandelt. Der erste ist Bestandteil einer automa-
tischen Formelgenerierung und erméglicht es, dquivalente Terme in Formeln zu erken-
nen und diese dadurch zu vereinfachen. Der verwendete Algorithmus beruht auf der
Interpretation algebraischer Ausdriicke als Graphen. Die automatische Formelgene-
rierung kann auf beliebige Operatorausdriicke in zweiter Quantisierung angewendet
werden.

Im Fall von Coupled-Cluster miissen die so erzeugten Gleichungen iterativ gelost
werden, daher ist die Auswertung der darin auftretenden Terme entscheidend fiir die
Effizienz des Programms. Diese Auswertung kann auf eine Folge von Tensorkontrak-
tionen zurtickgefithrt werden. Ein zentraler Teil des Programms und dieser Arbeit
ist die Implementierung einer generischen Tensorkontraktion. Diese wird dadurch
erschwert, dass die auftretenden Tensoren in der Regel eine komplizierte Struktur
haben. Der hier verfolgte Ansatz besteht darin, jede Kontraktion auf eine Reihe von
Matrixmultiplikationen zuriickzufiihren, da diese Operationen auf modernen Rech-
nern besonders schnell ausgefiihrt werden konnen. Dies erfordert aber eine vorherige
Umspeicherung der Tensoreintrdge. Die Optimierung dieses Schrittes wird ausfiihr-
lich diskutiert.

Erste Tests zeigen, dass das hier beschriebene Programm mindestens so schnell ist
wie das effizienteste bisher bekannte allgemeine Coupled-Cluster-Programm, und die
Relation verbessert sich fiir grofiere Systeme zugunsten unseres Programms, da dann
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die Matrixmultiplikation der dominierende Schritt ist.

Am Ende der Arbeit wird ein Ausblick auf mogliche Weiterentwicklungen gegeben.
Optimierungspotential bietet insbesondere die Vorbereitung der Gleichungen (Fak-
torisierung) vor der eigentlichen Auswertung. Dieses wird im Vergleichsprogramm
schon teilweise genutzt.

Vi



Abstract

This thesis deals with selected aspects of a new implementation of many-body meth-
ods which can be formulated in the framework of second quantization, in particu-
lar the coupled-cluster (CC) method with arbitrary excitation level. Coupled-cluster
is one of the most successful and widely used quantum chemical methods for accu-
rate calculations on small to medium-sized molecules. Since it employs a nonlinear
parametrization of the wave function, its implementation is rather difficult, in partic-
ular if higher (i.e. more than double) excitations are to be included. The latter is neces-
sary to obtain highly accurate results and also as a prerequisite for the generalization
to multi-reference cases.

The implementation described here has a twofold focus. One is on generality and
flexibility regarding the method to be implemented, the other is on efficiency. To
achieve flexibility, it is useful to have a machinery which automatically derives work-
ing equations for a given method. We realize this by applying techniques of second
quantization. This work treats in particular the last step of this procedure, namely the
simplification of the resulting equations by the identification of equivalent terms. The
algorithm used here is based on the interpretation of algebraic terms as graphs.

The derived CC equations then have to be solved iteratively. The efficiency of the
program is mainly determined by the evaluation of the occurring expressions, which
has to be done in each iteration step. The evaluation is split up in a sequence of tensor
contractions. Their generic implementation is complicated by the particular structure
of the involved tensors. We reduce each contraction to a sequence of matrix multipli-
cations, which requires a previous data rearranging. But since matrix multiplication
is the most efficient operation on modern computers, this additional effort pays off.
Preliminary tests show that our program is at least as fast as the most efficient gen-
eral coupled-cluster implementation so far, and the relation is expected to improve for
calculations with larger basis sets where the matrix multiplication becomes the time-
determining step.

Finally, we give an outlook to possible further developments. In particular, the
preparation of the equations before the actual evaluation (factorization) offers much
potential for optimizations which we do not exploit at the moment, in contrast to the
program with which we compare, which employs at least a partial optimization at this
point.

vii






1. Introduction

1.1. Motivation

The main objective of nonrelativistic quantum chemistry is to calculate observable
properties of chemical entities, e.g. molecules or solids, by approximately solving
the electronic Schrodinger equation. Although most applications of chemical inter-
est involve rather large systems, it is also desirable to have highly accurate methods
applicable to small or medium-sized molecules only. For obtaining accurate results, it
is in particular necessary to take into account the electron correlation.

We restrict our attention here to wave function-based correlation methods. The
wave function is usually expanded in a set of (many-particle) basis functions. These,
in turn, are (linear combinations of) anti-symmetrized products of one-particle (i.e.
depending on the coordinates of one electron) basis functions (orbitals). While the
one-particle basis set in practical calculations is necessarily finite, and thus incom-
plete, it is in principle possible to calculate the exact many-particle solution within a
given one-particle basis by the so-called full configuration-interaction (FCI) method (see
2.1.3.2). But in practice, FCI calculations are infeasible for all but very small molecules,
since their cost grows exponentially with the size of the system. Therefore, further
approximations are necessary. The quality of an approximation is determined by the
subset of the FCI space (complete many-particle basis) in which the wave function is
expanded, by the number of independent parameters it contains, and by the way these
parameters are optimized.

So far, one of the most successful schemes for applying such approximations in a
systematic way is the hierarchy of coupled-cluster (CC) methods, which employs an
exponential ansatz for the wave function, in contrast to the linear parametrization in
CL For reviews on coupled-cluster theory and applications see e.g. [1-5]. A brief ac-
count will be given in section[2.2]

Coupled-cluster was first developed in the context of nuclear physics [6,7], and later
transferred to quantum chemistry by Cizek and Paldus [8-10] who also applied it to
simple model systems. First practical implementations of coupled-cluster with only
double excitations (CCD) or single and double excitations (CCSD) were reported by
Bartlett and Purvis [11,12] and Pople and coworkers [13].

In order to obtain very accurate results, higher excitations have to be included.
Therefore, successively implementations treating up to five-fold excitations appeared,
e.g. [14-17]. But while CCSD can nowadays be routinely applied to large classes of
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molecules, the steep scaling of the computational cost with the system size limits
the applicability for higher excitations. Therefore, many schemes have been devel-
oped to approximately include higher excitation effects. The most popular one is
CCSD(T) [18], which yields satisfactory results in many cases. However, there are
certain classes of applications where it fails, including excited states, radicals, or the
description of potential energy surfaces for dissociations.

The main problem is that in these cases the reference function (usually a single de-
terminant) which is used as a starting point for coupled-cluster is not a reasonable
approximation any more. The qualitatively correct description of the wave function
then requires a multi-reference ansatz. In principle, this could be compensated by in-
cluding sufficiently high excitations, but this would lead to unreasonably high costs.
One possible solution for this is to take not all, but only the most important higher
excitations, leading to a “multi-reference coupled-cluster method based on the single-
reference formalism” [19]. There are many variants of this method, for a recent review
see [20]. But none of these is fully satisfactory, so it is still desirable to have a genuine
multi-reference CC formalism. Unfortunately, in contrast to the linear configuration
interaction ansatz, the generalization of coupled-cluster to the multi-reference case is
not straightforward. As a consequence, many different MRCC methods have been
developed, and each has its advantages and disadvantages. The basic problems and
some of these approaches will be discussed in chapter[2

There have been other attempts to modify the single-reference CC ansatz in order
to model multi-reference situations. For excited states, linear response (LR) methods
[21-24] or equation-of-motion (EOM) CC (see [25] for a comprehensive description
and [26] for a recent review) can be applied. Another approach is the method of mo-
ments for coupled-cluster (MMCC) [27], of which numerous variants exist. All these
methods have in common that they can be used to calculate corrections to the SRCC
energy or certain properties, e.g. excitation energies, but do not yield wave functions.

The computational costs of real multi-reference methods are rather high and depend
in most cases not only on the size of the one-particle basis and the excitation level,
but also on the number of references and active electrons. Thus their applicability
is usually limited to rather small systems. Nevertheless, it is worthwhile to reduce
these costs as much as possible — in the limits of a given method — by an efficient
implementation.

The practical implementation of many multi-reference methods brings about the
need to deal with (selected) higher excitations, namely if excitations from one reference
are interpreted with respect to another reference. So the treatment of high excitations
can be seen as a prerequisite for the implementation of these multi-reference methods.

While there are many efficient implementations for coupled-cluster with fixed maxi-
mal excitation level, in particular CCSD [28-36], only few attempts have been made so
far to efficiently implement coupled-cluster with arbitrary excitation level or MRCC
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methods. One example is the “Tensor Contraction Engine” (TCE) developed by Hi-
rata and coworkers [37,38] and its successor SMITH (“symbolic manipulation inter-
preter for theoretical chemistry”) [39,40]. Both can be used for various methods. The
most efficient coupled-cluster implementation for arbitrary excitations so far is (to our
knowledge) that by Kéllay and Surjan [41]. They also implemented MRCC based on
the single-reference formalism [42].

The key for an efficient implementation is the optimal use of the available processor
capacity. To reach this is not trivial, since during the last years, the clock frequency
of the processors has increased much faster than the memory bandwidth, so the main
problem is to access the data to be processed. This can be optimized by a consecutive
storage of data and by exploiting the memory hierarchy of registers, processor caches,
and main memory. However, in the case of coupled-cluster the data is not given nat-
urally in a way that it can be easily processed. In particular, the same data sets have
to be used several times in different order, so that there is no optimal way of storing
them.

The time-determining step of any coupled-cluster calculation can be reduced to a
sequence of tensor contractions. In view of the last paragraph, it is beneficial to re-
formulate these as vectorized operations, e.g. matrix multiplications. For these op-
erations highly optimized implementations are available, which are adapted to the
respective processor architecture. Due to cache effects, the most efficient operation is
matrix-matrix multiplication, in particular for larger matrices.

This reformulation requires a previous rearrangement of the data, but this additional
effort is compensated by the gain in efficiency through using matrix multiplications.

1.2. Scope of the Thesis

The goal of this thesis is to describe selected aspects of the coupled-cluster implemen-
tation developed in our group. It is intended to be used primarily for calculations with
the MRexpT method of M. Hanrath [43]. A pilot implementation which can treat this
and other multi-reference methods exists and has been successfully applied to several
test systems [44—49]. Our aim is to have not only a pilot or test implementation, but a
competitive program in the area of general coupled-cluster implementations. So our
main focus — after, of course, correctness of the results — is on efficiency. But we are also
interested in a high degree of flexibility, so that large parts of the program can be used
for different methods. So far, we have implemented SRCC with (in principle) arbitrary
excitation level.

After briefly reviewing theoretical concepts, in particular single- and multi-reference
coupled-cluster methods, in chapter[2] we discuss general issues concerning the imple-
mentation in chapter[3 In particular, the different parts of our program are described.
Roughly, the implementation consists of three steps:
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1. Derivation of working equations
2. Preparation of the equations for evaluation
3. Evaluation and solution of the equation system

The second point is not subject of this thesis and will only be briefly touched. The
other two are explicated in some more detail. In the following, one aspect of each is
discussed at length.

First, in chapter @ we deal with the term simplification used to minimize the num-
ber of terms in the coupled-cluster equations, which is the last step in the first part.
After describing the problem, we discuss two different approaches to its solution: a
purely algebraic one and a graph-based algorithm. The latter one is used in the actual
program, since it is more generally applicable.

The topic of chapter B is the tensor contraction used in the evaluation of the equa-
tions. As indicated in the previous section, this is a central part of the whole imple-
mentation, since it mainly determines the efficiency. We implemented an algorithm
based on matrix-matrix multiplication, at the expense of a rather complex data rear-
ranging step. This is necessary because of the particular structure of the tensors occur-
ring in coupled-cluster calculations. This structure is explained, as well as alternative
approaches to the contraction problem, before we come to our actual implementation
in[5.3 In that section we discuss in particular the addressing structures used to access
tensor entries during the rearranging process. Since this part is particularly critical for
the efficiency of the program, we put much effort into its optimization.

In the last chapter, we summarize our results and give an outlook to possible future
developments.

1.3. Technical Remarks

Our coupled-cluster program is written in C++. Using an object oriented program-
ming language allows for a rather high level of abstraction, and many mathematical
objects (e.g. tensors, matrices, groups, permutations) are directly represented as ob-
jects in the program. Moreover, by using polymorphism (templates, virtual functions)
the program can be made flexible. For example, we make extensive use of data con-
tainers from the STL (Standard Template Library, see e.g. [50]), in particular vect or
and map. (Here and in the following, if class names or other pieces of code are used
in the text, they are written in t ypewri ter font.) On the other hand, C++ offers
enough freedom for writing an efficient program by using e.g. pointers and bit opera-
tions.

For the matrix multiplication, we use the standard routine dgenm(double-precision
general matrix-matrix multiplication) from the BLAS (Basic Linear Algebra Subpro-
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grams) library. This yields the optimal performance, independent of the specific pro-
cessor architecture (if a different processor is used, only the library has to be exchanged).

To illustrate the (static) class relations of important parts of the program, we use
UML diagrams. UML (Unified Modeling Language, see [51]) is a very powerful tool,
not only for depicting class structures, but also for supporting the design process. A
simple example to illustrate the usage of UML is shown in figure [.1]

Example

Vehicle

5T

Car

Bike

Driver
L Wheel

L

Symbol Explanation

Class

Template

Inheritance, "is a"

Aggregation

(no life cycle dependence)
Composition

(life cycle dependence)

“haS au

Figure 1.1.: Usage of UML symbols. The “arrows” are to be read from left to right (in
the legend). Examples: “A car is a vehicle.” “A car has a wheel.” (Which is
an integral part of the car.) “A car has a driver.” (Which exists independent
of the car.)

Other graphics which are used to illustrate program structures or algorithms do not
follow a uniform convention and are explained where needed.






2. Theory

2.1. Foundations
2.1.1. The Electronic Schr 6dinger Equation
Our starting point is the (time-independent) Schrodinger equation
HU = EV (2.1)

which describes stationary states of (nonrelativistic) quantum mechanical systems.
Here H is the Hamiltonian, ¥ the wave function and E the energy. For a molecule,
H has the following form (in atomic units):

B3 (g XA D) LT AL e

i<j Tij I<J

where the indices I and J run over the nuclei, i and j are electron indices, m; is the
mass and Z; the charge of nucleus I, r;; is the distance between electrons i and j, r;;
that between nuclei I and J, and r;; the distance between electron i and nucleus 1.

In the following we assume the Born-Oppenheimer approximation to hold, that
means we treat the nuclei — which are much heavier than the electrons and therefore
move much slower — as fixed and consider only the electronic Schrédinger equation

HyUy = Eg¥y (2.3)

with

Fbm)
Il
|
l\D\»—l
ﬁ‘N

>+Z+ZZIZJ (2.4)

i<j "ij I<J

= Z h ilnuc (25)

The one-electron operator / contains the kinetic energy and the electron-nuclear inter-
action. The last term is treated as a constant, since the electronic Hamiltonian contains
the coordinates of the nuclei only as parameters. The values of the electronic energy
E,; for all possible positions of the nuclei form the potential energy hypersurface (PES)
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of the molecule. In the following we drop the subscript el, since we only deal with the
electronic problem.

The wave function ¥ depends explicitly on the coordinates of all electrons, i.e. their
positions r; and their spins. Besides being a solution of (Z.3), ¥ has to fulfill another
important criterion, namely the Pauli principle. This states that two identical fermions
(in particular two electrons) may not occupy the same quantum state (therefore it is
also known as the exclusion principle). The mathematical formulation of this is that ¥
has to be antisymmetric with respect to permutations of the electrons (so in particular
it vanishes if two of them have the same coordinates).

Other properties of ¥ follow directly from it being a solution of (2.3), i.e. an eigen-
function of [. Since commuting operators have the same eigenfunctions, ¥ also has
to be an eigenfunction of all operators that commute with the Hamiltoniarfl. Since the
nonrelativistic Hamiltonian does not depend on the electron spins, it commutes with
the total spin operator S2, and therefore ¥ is an eigenfunction of S2, too (such a func-
tion is briefly called a spin eigenfunction). If the molecule has a nontrivial symmetry
group (point group), H commutes with all operators contained in this group and ¥ is
also an eigenfunction of them.

Because of the electron-electron interaction (i.e. the two-particle operators §(i, 5))
contained in the Hamiltonian, the Schrodinger equation (Z.3) can not be solved exactly
for many-electron systems. When approximate solutions are constructed, it is desir-
able to conserve as many of the symmetry properties of the exact wave function as
possible, but — except for the Pauli principle — this is often difficult to achieve.

2.1.2. The Hartree—Fock Method

If the Hamiltonian of a system can be written as a sum of one-electron operators, the
corresponding wave function is a product of one-electron functions (orbitals) ¢;:

n

\I[(Xla oo 7Xn) = H ¢i(xi)7 (26)

i=1

where x; is the vector containing the coordinates (position and spin) of electron i. This
motivates the wave function ansatz for the Hartree—Fock (HF) method. To account for
the Pauli principle, the product has to be antisymmetrized, forming a so called Slater

determinant:
n

B(xy, .o X,) = o > sgn(P)P]] ¢i(x) (2.7)

Pes,, =1

*H as defined in (Z5) is obviously invariant under permutations of the electrons, i.e. it commutes
with all permutation operators P € S,,, where n is the number of electrons. It follows that ¥ is an
eigenfunction of all these P. But a priori each eigenvalue could be 1 or —1, so that the Pauli principle
is really an additional requirement.
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where the permutation operator P permutes the electrons and sgn(P) denotes the par-
ity of the permutation. The prefactor ﬁ ensures that ® is normalized, provided that
the orbitals are orthonormal.

The orbitals ¢; are determined by applying the variation principle, i.e. by minimiz-
ing the energy expectation value (®|H|®) (with the full Hamiltonian H) subject to the
constraint of orthonormality. This leads to the Hartree-Fock equation

A~

foi = € (2.8)

The Fock operator f is an effective one-electron operator which contains the one-
electron part of the Hamiltonian, while the two-electron part is replaced by an effective
potential (Fock potential). The eigenvalues ¢; of f are called orbital energies. Since f
depends on the orbitals ¢;, equation (2.8) has to be solved iteratively. There are several
possibilities how to do this. For molecules a common approach is to expand the ¢,,
which are then called molecular orbitals (MOs), in a basis of atomic orbitals (AOs) x;:

¢ = Zcinj (2.9)
J

The expansion coefficients C;; are then the variational parameters and the Hartree—
Fock equation can be transformed into a matrix equation (Roothaan equation).

2.1.3. Electron Correlation

In statistics, correlation (roughly) means the deviation of two random variables from
being independent. The probability distributions of electrons in a molecule are cer-
tainly correlated in this sense, but in quantum chemistry, electron correlation is de-
fined a bit differently. Here, the correlation energy is the difference between the exact
nonrelativistic energy (i.e. FCI in the basis set limit) and the Hartree-Fock energy (also
in a complete basis):

Eecoww = FE — Egp (2.10)

(Since HF is a variational method, the correlation energy is always negative.) This dif-
fers from the mathematical definition, since also in the HF model the electrons are not
completely independent. The HF wave function fulfills the Pauli principle, therefore
electrons with the same spin can never be at the same place (this is sometimes referred
to as Pauli or Fermi correlation). What is neglected in the HF approximation is the
Coulomb correlation, i.e. the coupling of the movements of the electrons due to their
electrostatic interaction. To include this, we have to go beyond HF, e.g. by approxi-
mating the wave function as a linear combination of several Slater determinants.
Here we have to distinguish two cases: For many systems HF is a reasonable ap-
proximation, that means the correlation energy makes up only a small fraction of the
total energy and the other (possibly many) determinants make small contributions to
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the total wave function. This is often referred to as dynamical correlation. In contrast,
there are situations in which two or more determinants are (almost) equally impor-
tant. This is called static correlation, and systems where static correlation is important
are often termed multi-reference systems. To get a good approximate wave function in
this case, both statical and dynamical correlation effects have to be taken into account.

2.1.3.1. Multi-configuration Self-consistent Field Method

One way to treat static correlation is provided by the multi-configuration self-consis-
tent field (MCSCF) method. Instead of a single determinant, the wave function is set
up as a linear combination of several (important) determinants, and the expansion
coefficients are optimized together with the orbitals, which makes this method con-
siderably more complicated than Hartree-Fock. A special case is the complete active
space SCF, where the set of determinants is constructed by distributing electrons in all
possible ways within a (suitably chosen) set of active orbitals.

2.1.3.2. Configuration Interaction

In contrast to MCSCE, the configuration interaction (CI) method is usually used to de-
scribe dynamical correlation effects. The wave function here is also a linear combi-
nation of determinants, which is usually much longer than in MCSCF calculations.
But then only the expansion coefficients are optimized while the orbitals, obtained e.g.
from a HF calculation, are kept fixed.

If |®,) is the HF determinant, the CI wave function is a linear combination of |®)
and determinants which are obtained from |®,) by replacing one or more of the oc-
cupied orbitals by unoccupied orbitals (this process commonly is referred to as ex-
citation, although it does not necessarily correspond to a physical excitation; a more
accurate term would be substitution):

Uep = o ®p) + Y cala) = col o) + D catal®) (2.11)
ac ac@

where () is the chosen set of excited determinants and the 7, are excitation operators.
Usually, the excited determinants are classified by their excitation degree (i.e. the num-
ber of exchanged orbitals) and all excitations up to a given degree are included in the
expansion 2.I1). For example, in the CISD method all single and double excitations
are taken. Let O be the set of orbitals occupied in |®,) and V the set of unoccupied
(virtual) orbitals. If we denote by ®¢ the determinant where the orbital i € O has been
replaced by a € V, and analogously for higher excitations, the CISD wave function
can be written as

Uegp = col®o) + Y @) + > cf|o) (2.12)
€O i,j€O
acV a,beV

10
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If all excitations up to the level which is equal to the number n of electrons are
included, the FCI wave function is obtained. The number of determinants in the ex-
pansion is then ('), where m = |O| + |V is the number of orbitals. Since this binomial
coefficient increases rapidly with growing m and n (i.e. system size), FCI is only feasi-
ble for small systems (up to about ten electrons) and limited basis sets.

The coefficients ¢, are obtained by minimizing the energy expectation value (¥|H|¥)
over all wave functions of the form (2.II). So CI is also a variational method. The CI
energy is then given as
(Vi H[¥er)

(Yearl¥er)

It can be shown that the minimization is equivalent to solving the eigenvalue problem

Ecp = (2.13)

Hc = Eic (2.14)
where the vector c contains the coefficients and H is the Hamilton matrix with entries
H,g = (D,|H|®s), {®,} basis.

The CI ansatz can be rather easily generalized to the multi-reference case by includ-
ing excitations up to a given level not only from one determinant, but from all deter-
minants which are important for the qualitative description of the system (i.e. have a
large coefficient in the wave function expansion). We denote the set of reference deter-
minants by [P and define Q; () as the set of all determinants reached by at most i-fold
excitations from the determinant p. If we set

l
Q= U Qw~P (2.15)

i=1pelP

where [ is the chosen maximal excitation level (e.g. | = 2 for MRCISD), we can write
the multi-reference CI wave function as

Wnmrer = Z culm) + 2 Cala). (2.16)

pelp ac®)

The distinction between reference and excited determinants is somewhat artificial in
this expression, but we want to use the notation later. Note that we do not have a
representation analogous to the last part of 2.I1]) here. Since the union in 2.15) is not
disjoint, there is usually no unique reference determinant from which an excited de-
terminant is generated. This is no serious problem here (because the expansion is lin-
ear), but will be an important point later in the discussion of multi-reference coupled-
cluster.

11
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2.1.4. Size Consistency and Size Extensivity

We briefly discuss these two concepts to establish our terminology, since the terms are
used differently in the literature (e.g. what we call size consistency is referred to as
size extensivity in [52], while in [53] it is the other way round). For a more detailed
discussion, in particular in the context of coupled-cluster , see e.g. [1,43,54,55].

According to the convention we adopt here (following Pople et al. [56]), the notion
of size consistency refers to the treatment of non-interacting systems. For a size consis-
tent method, the energy of a system consisting of non-interacting subsystems is equal
to the sum of the energies of the subsystems. This means if we have two systems A
and B which do not interact (this is equivalent to saying that the Hamiltonian of the
combined system AB can be written as the sum of the Hamiltonians of the two sys-
tems: H,z = H4 + Hp), then for a size consistent method E, 5 = F, + Eg holds
(additive separability of the energy). This property follows if the wave function for
such systems is multiplicatively separable, but this is not a necessary condition. Some
authors [57,58] extend the term consistency to require also the correct description of
the dissociation of a molecule into fragments (asymptotic consistency).

Size extensivity implies the correct scaling of the energy (or other extensive proper-
ties) with the system size and is related to statistical properties of the parameters of the
method (connectivity). For the correlation energy of a system consisting of N identical
subsystems it can be expressed as

llm ECOFF(N)
N—o0

=c>0.

The term size extensivity was introduced by Bartlett [11,59] while the property itself
had been studied earlier in the context of perturbation theory [60,61].

Truncated configuration interaction methods (single- as well as multi-reference) are
neither size consistent nor size extensive. This means in particular that their accu-
racy deteriorates with increasing system size. One of the major advantages of the
(single-reference) coupled-cluster method described in the next section is that it is size
consistent (provided the reference has this property) and size extensive.
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2.2. Coupled-Cluster Theory

2.2. Coupled-Cluster Theory

2.2.1. Second Quantization

We briefly recall some facts and definitions, mainly to introduce the notations. More
details can be found e.g. in references [1,52,53].

2.2.1.1. Basic Definitions

The formalism of second quantization starts from a set of spin orbitals {¢,} and uses
so called annihilation and creation operators which are defined by their effect on de-
terminants built from these orbitals:

p|Opdy .- bs) = |¢g...¢5) (annihilation of an electron)

&£|¢q cng) = |@pdy ... 0s) (creation of an electron)

The creation operator is the adjoint of the corresponding annihilation operator and
vice versa. The operators fulfill the following anticommutation relations:

GGy + Gy, = 0O (2.17)
abab + ahal (2.18)
abay + a0, = 3. (2.19)

A string of annihilation and creation operators is said to be in normal order if all an-
nihilation operators stand to the right of all creation operators. This is useful for the
evaluation of matrix elements, since annihilation operators yield zero when applied to
the vacuum state.

2.2.1.2. Particle-Hole Formalism

For coupled-cluster theory it is useful to redefine the notion of normal order with re-
spect to a reference determinant |®,) which is then also called the Fermi vacuum. The
orbitals occupied in |®,) are called hole or occupied orbitals and denoted by the in-
dices 7, j, k, . . . For them the meaning of annihilation and creation is reversed, i.e. a; is
considered as a creation operator (because when acting on |®) it removes an electron
and therefore creates a hole) while d}L is now an annihilation operator (it annihilates a
hole). For the orbitals not occupied in |®,) we use the indices a,b,c, ... and they are
referred to as particle or virtual orbitals. Like in we denote the sets of these

orbitals by O and V, respectively.

13



2. Theory

We define the substitution operators 7; , = ala; or, more generally,

At oAt A A
= Qg Qg - - - 0;,0;

i 1270

11%9...,4109...
with i, € O and a, € V. They have the property that they commute with each other
as long as © NV = () holds.

If a string of second-quantized operators is normal-ordered according with respect
to |®() we denote this by curly brackets {}. Within these brackets, all operators exactly
anticommute.

2.2.1.3. Wick’s Theorem

With the help of Wick’s theorem we can write an operator string as a sum of normal-
ordered strings more easily than by using only the anticommutator relations. In order
to formulate the theorem we first define the contraction of two second-quantized op-
erators: —

AB = AB — {AB} (2.20)
There are only two possible combinations of annihilation and creation operators for
which this contraction is not zero, namely

and  d,4] = 0g- (2.21)

Now Wick’s theorem states that a string of annihilation and creation operators is
equal to the sum of all contracted normal-ordered products that can be built from
these operators. Schematically, this can be written as:

single
contractions
NN PN
+ Z {ABCD... XYZ}+ ...+ Z (fully contracted terms).
double
contractions
The notation here is taken from [1], for the original formulation and proof see [62].
There is also a version of the theorem for a product of two strings which are already
normal-ordered:

{ABC .. {XYZ..}={ABC...XYZ..}+ Y {ABC..XYZ..}
single
contractions
—f

+ Z {ABC.. XYZ} +... + Z (fully contracted terms).

double
contractions

14



2.2. Coupled-Cluster Theory

The crucial point here is that contractions within a normal-ordered factor do not have
to be considered. This can be generalized to products with more than two factors and
also to products where only some factors are already normal-ordered.

Helgaker et al. [52] and Harris et al. [53,63] use different strategies for the evaluation
of matrix elements in second quantization which do not rely on any kind of normal
order.

2.2.1.4. Hamilton Operator

The molecular electronic Hamiltonian can be written in second quantization as
H=> (plhlg)aha, + 1> vafalaa,. (2.22)
Pq pars
Here,
= (pa|r |rs) = (pa|riz' [ sr) (2.23)
are anti-antisymmetrized two-electron integrals (the antisymmetry holds within the
two pairs of indices, i.e. 121 = —%2 = —¢24 = %) The horizontal bar indicates the

symmetry between the index pairs, since we have 121 = ¢ (for real orbitals).
The normal-ordered form of the Hamiltonian is given by

Hy = H — (Do|H|®o) = Fyy + Viy = Y _ f2laba,} + 1> v {afalasa,}, (2.24)
pq pars

where f£ = (plhlq) + 3, 1% are the matrix elements of the Fock operator. Analogous

to the two-electron integrals, they have the symmetry f2 = fI. H  may be considered
as a “pure” correlation operator and is therefore especially suitable for coupled-cluster
theory.

2.2.2. Single-Reference Coupled-Cluster
2.2.2.1. The Exponential Ansatz
The coupled-cluster wave function is given by
W) = eT| @) (2.25)

where |®,) is a reference determinant (usually the Hartree—Fock wave function) and 7
is the so called cluster operator. This exponential ansatz can be justified by the intro-
duction of cluster functions into the HF wave function which account for the electron
correlation (see [1]). The cluster operator is an excitation operator which replaces occu-
pied by virtual orbitals. It is usually partitioned according to the level of the excitation:

T=T+Ty+...+T, with
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2. Theory

ay--ak o ]L A
Zl 7‘k: a ak

RRRT iy 0,
ay...ap ay...ap

=
||

a1y (2.26)

110 11 gy @Ay

The highest possible excitation level n is the number of (spin) orbitals occupied in D),
i.e. the number of electrons in the system under consideration. The parameters t“l P
are called amplitudes. They have to be determined in a way that the Schrodmger
equation

HN€T|(I)O> = Ecorr|Po) (2.27)

is satisfied. It practice of course not the full equation can be solved, but only its restric-
tion to a proper subspace.

2.2.2.2. Coupled-Cluster Equations

To get equations from which the energy and the amplitudes may be determined, the
Schrodinger equation [@2.27) is projected onto the reference determinant |®() and all de-
terminants |<I>a1 ) which can be generated from [®,) by the application of the cluster
operator. This leads to as many equations as there are unknowns to be determined,
since the number of projections onto excited determinants matches the number of am-
plitudes and the projection onto the reference yields an additional equation for the
energy:

<c1>0 ‘ ﬁ[NeTcI>O> — By <c1>0 ‘ eT<I>O> — B (2.28)

(- Ty (2.29)

9.0

ﬁNeT¢O> = Ecorr <(I)C'L1m‘ak

iy .0

The last equality in[2.28 holds because of the intermediate normalization
<q>0 ‘ eTq>0> ~ 1.

If the full cluster operator is used, coupled-cluster is equivalent to full CI, but with
nonlinear equations for the amplitudes. Since this is intractable, the cluster operator
has to be truncated. Most common is the truncation at a certain excitation level. For
example, the inclusion of only single and double excitations (T' =T, + T») leads to the
CCSD method.

Usually, before the projection the equation is multiplied from the left by e~ T in order
to decouple the energy equation from the amplitude equations. This is the so-called
similarity transformed or linked form of the coupled-cluster equations:

<(I)O ’ e_T}AINeT(I)O> = Ecorr <(I)O ‘ (I)[)) - Ecorr (230)

<(I)a1 Ak

AR 1.0

_TﬁNGT(I)0> = Ecorr <<I>91-~-9k

<1>0> —0. (2.31)
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2.2. Coupled-Cluster Theory

It can be shown that both sets of equations are equivalent under certain conditions
on the excitations included in 7T, e.g. if all excitations up to a given level are included.
Besides the decoupling, the linked form has another advantage in that the evalua-
tion of the left hand side is simplified by employing the so called Baker-Campbell-
Hausdorff (BCH) expansion, which expresses the similarity transformation of an op-
erator by the exponential of another operator in terms of nested commutators:

exp(~B)Aexp(B) =~ —[4.B]"
n=0

— A+ [A,B] +1[[A,B],B] + 4 [[[A.B].B.B] +... (@32)

1
!

A proof of this formula is given in appendix[Al In the case of coupled-cluster , i.e.
A = H and B = T, the series can be truncated after the fourth commutator [1,53].
The reason for this is that the Hamiltonian we are dealing with, being a two-particle
operator, has at most four free indices which can be “shared” with a cluster operator.
If two operators do not have an index in common they commute, and so at latest the
fifth commutator in (2.32) yields zero.

The evaluation of expressions like those on the left hand side of 2.28)-2.31) will be
discussed in the next chapters. Here we give only the result for the simplest case.

2.2.2.3. The CC Energy

The coupled-cluster energy can be expressed explicitly in terms of amplitudes and
integrals:

Ecorr = <CI)O‘ETNT(I>0> + % <(I)O‘ﬁNT2(I)0>
S M IR R @3
ia

ijab ijab

Although it contains only amplitudes of 7} and T, this equation is valid for arbi-
trary excitation levels, since higher than double excitations can not interact with |®)
through H .

2.2.2.4. Spin and the Parametrization of the Cluster Operator

If the cluster operator is defined as in (2.26)), the CC wave function can in general not be
expected to be a spin eigenfunction, since the substitution operators 7 do not commute
with 52, i.e. they may change the total spin. To avoid this problem, it is possible to
define spin averaged substitution operators £, ., ... ,e.g. E, = d;dp—kdgdﬁ, where
p, and g, are spatial orbitals and the bar denotes 3 spin. Then the cluster operators can
be written in terms of these operators, e.g. T} = >, t{E; ,, Th = % > Jab t%’EmEjﬁ

(see for example [36,52,64-66]). This ansatz, however, leads to other problems when
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2. Theory

applied to an open-shell reference function. Either, the substitutions do not span the
space of spin eigenfunctions, or they have to be defined with overlapping orbital sets
for annihilators and creators. The latter leads to a non-commuting set of operators,
which makes their handling much more difficult (in the usual derivation of the CC
working equations, the commutativity of the cluster operators is essential).

2.2.3. Multi-Reference Coupled-Cluster

The generalization of the coupled-cluster ansatz to the multi-reference case is not
straightforward and there are many different approaches to the problem, of which
we discuss a few in the following. Before, we discuss some of the principal difficulties.

2.2.3.1. General Considerations

One of the main problems is the ambiguity in the generation of excited determinants
mentioned already in the discussion of MRCI (see 2.1.3.2). The set union in 2.15)
makes only sense for “global” objects like determinants. In contrast to CI, which can
be formulated in terms of excitation operators as well as in terms of determinants
(compare (211))), CC relies on the representation in terms of excitation operators. This
is due to the exponential ansatz, the argument of the exponential function consists
of excitation operators and their coefficients. But these operators are “local” in the
sense that they are always defined with respect to a particular reference determinant.
Therefore the exponential ansatz can not be readily transferred to the multi-reference
case.

Another major issue in setting up an MRCC ansatz is to retain the property of being
size extensive (connected). Since this is a rather subtle point we do not discuss it
further here.

2.2.3.2. Multi-Reference Ansatz Based on the Single-Reference For  malism
(SRMRCC)

The previous problems are avoided if the single-reference formalism is kept and only
the cluster operator is modified to model a multi-reference situation. This ansatz was
introduced by Oliphant and Adamowicz for the case of two reference determinants
differing by a double excitation [19] and later generalized. It requires the choice of a
formal reference (Fermi vacuum) |1y) from the reference space, with respect to which
all excitations are defined. The cluster operator is then constructed in such a way that
its application to | ) generates all determinants which would appear in a correspond-
ing MRCI wave function, i.e. all excitations (up to a given level) from all references.
This corresponds to doing a “normal” coupled-cluster calculation where the higher
excitations are incomplete (the highest excitation level is the base excitation level plus
the highest excitation between the formal Fermi vacuum and any other reference).

18



2.2. Coupled-Cluster Theory

This method inherits many desirable properties from SRCC, in particular size ex-
tensivity. But it is not a genuine MRCC method. The main problem with it is that the
choice of a formal reference introduces a certain arbitrariness and causes an imbalance
in the wave function. It can also lead to a breaking of spin or spatial symmetry, in
particular if there are two or more references with (almost) equal weight.

2.2.3.3. State-Universal Ansatz

The first genuine multi-reference coupled-cluster methods were the valence-universal
or Fock space ansatz (VUMRCC or FSMRCC) [67-69] and the state-universal or Hilbert
space ansatz (SUMRCC) [70]. We describe here only the latter, since it is the starting
point for the MRexpT ansatz discussed below (section 2.2.3.4).

The SUMRCC ansatz was developed by Jeziorski and Monkhorst. It starts from an
operator €, called wave operator, which maps a model (i.e. reference) space PP to a
set of exact solutions of the Schrodinger equation. This operator is determined by the
equation

HO = QHAQ. (2.34)
Making the ansatz
Q= elluul, (2.35)
nelP

where Tu is a reference-specific cluster operator, leads to the following expression for
the wave function:

T30 = enue’ ). (2.36)
pelP

The reference coefficients c,, can be obtained by diagonalizing the effective Hamilto-
nian PH() in the reference space (here P is the projector onto the reference space). To
determine the amplitudes which define the Tu it is necessary to consider at the same
time as many states |V, ) as there are references (hence the term state-universal), since
the amplitudes for the different references are independent and taking into account
only one state would lead to an underdetermined problem. Explicit equations for the
amplitudes can be derived from equation (2.34) by applying both sides to |¥,) and
projecting onto the orthogonal complement of P.

The original method of Jeziorski and Monkhorst is connected (and therefore size
extensive) only in case of a complete model space. Later the ansatz has been gener-
alized to general (incomplete) model spaces [71,72]. The main problems of SUMRCC
are the occurrence of intruder states and the exceedingly high computational effort
introduced by state-universality. Since usually one is only interested in one particular
state, several attempts have been made to modify the ansatz in a way that it becomes
state-specific.
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2. Theory

2.2.3.4. Multi-Reference Exponential Wave Function Ansatz (MRexp 1)

The key idea of this ansatz [43] is to reduce the number of parameters (compared to
SUMRCC) by introducing a determinant based amplitude indexing (in contrast to the
excitation based indexing usually employed in coupled-cluster theory). The ansatz for
the wave function is

O) = > celv|u) (2.37)
nelP
with
T =6(c) D tefur (2.38)
7,€T,

Here ¢(c,) = e~ arg(cu) is a phase compensation factor and T ,, denotes the set of all ex-
citations to be applied to |u) (e.g. all excitations up to a given level, where excitations
to other references are excluded). So the cluster operators are still reference-specific,
but the amplitudes are not all independent. Since they are labeled by 7,|u), i.e. the
result of an excitation applied to the reference |u), the same amplitude can occur in
several cluster operators, if the corresponding determinant can be reached from differ-
ent references. Since the determinants are only fixed up to sign, the rule t_ 5, = —{5
has to be applied.

The wave function 2.37) is inserted into the Schrédinger equation and projections
onto all determinants from the reference space I” and from the space Q = | ,cp Q(1),
where Q(1) = U- eT, 7,lp) is the set of excited determinants reached from y, are
applied. This yields a system of as many equations as there are amplitudes and refer-
ence coefficients. These equations are nonlinear in the amplitudes, but linear in the c,,.
However, since the energy is also unknown, another equation is needed to match the
number of variables. This can be obtained by fixing the norm of the reference wave
function, e.g.

D e r=1. (2.39)
nelP
MRexpT is size consistent [43], but not rigorously size extensive. However, it has been
shown to be core extensive [73], which means that it scales correctly with the number
of inactive electrons, which usually grows faster than the number of active electrons.

2.2.3.5. Other State-Specific Variants of SUMRCC

Another possibility to solve the redundancy problem is to define the wave function
0) = Q) culn)
"

with © as in (2.35), insert it into the Schrodinger equation and then introduce suffi-
ciency conditions by manipulating the projected equations in an appropriate manner.
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2.2. Coupled-Cluster Theory

This can be done in different ways, leading to different methods. One of these meth-
ods was developed by Mukherjee and coworkers (MkMRCC) [74,75], another one is
Brillouin-Wigner coupled-cluster (BWCC) [76-79]. In contrast to MKMRCC, BWCC is
not size extensive, but a size extensivity correction has been developed [80]. These and
related methods have been recently analyzed by Kong [81]. A numerical comparison,
also with SUMRCC, was carried out by Evangelista et al. [82].
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3. Implementation Overview

The coupled-cluster equations (Z.31) have to be solved numerically, and this requires
the numerical evaluation of the expressions on the left hand side of these equations.
For this task, there are different ways to implement it. Many pilot implementations
which aim at dealing with higher excitations or multi-reference approaches [82-85] use
a technique which is also commonly used in (full) CI programs [86-88]. The cluster
operator is applied recursively to the reference determinant, and then the necessary
matrix elements of the Hamiltonian with these excited determinants are calculated.

This method is, however, not very efficient, in particular its complexity does not
have the correct scaling with the number of orbitals. The main reason for this is that
the evaluation of matrix elements is to a large extent redundant. It can as well be done
in an abstract way, i.e. independent of the specific system and the values of the in-
volved quantities, and therefore does not have to be repeated in each calculation (and
each iteration within one calculation). So for an efficient implementation the equations
are first cast into a more explicit form (like that given in (Z.33) for the energy) which
contains only the amplitudes appearing in the cluster operator (i.e. the unknowns to
be determined), the integrals characterizing the system under consideration, and el-
ementary operations. This transformation requires several steps which are described
briefly in section[3.1]

The main elements of this type of implementation are shown in figure BIl The
crucial step with respect to efficiency is the evaluation of the generated expressions.

These expressions contain terms like 3° f2t¢ or S v2¢t5t9% . Here I,.J, A, B are the
] iab

indices which label the excited determinant on which the equation is projected (see
[2.2.2.2). They are called external indices. In general, all these terms have the form

N
2 1% g s i 3.1)

iy.ip n=1

with i§-") € {iy,...,i} and I](n) € {I,..., Ik} (a given set of external indices). In the
following, summation indices are always lower case letters, while upper case letters
denote external indices.

In principle, the evaluation of such terms is a straightforward task — it requires only
addition and multiplication —, but doing it efficiently is a not trivial at all, in particular
if the involved tensors have a complicated structure. As a first step, the formal scaling
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can be reduced by splitting up multiple summations and defining suitable so called
intermediates, e.g.

Ai,Bgab _ B Aigab BvAB _ ,AB
E vt try = E ti E vty = E ti X1 =217 -
7 ab

iab 7

——
AB
Xtii

While the first expression here has a formal scaling of O(n”), where n is the number
of orbitals (since there are three summed and four external indices), the second one
consists of two steps where each is O(n?). In general, the coupled-cluster equations
are rewritten in a form where in each step only two factors are multiplied (contracted).
This transformation is commonly referred to as factorization (see e.g. [16,41], in [37]
this step is called “strength reduction”). Finding the optimal factorization is a compli-
cated problem which is beyond the scope of this thesis.

The evaluation of the resulting binary contractions is treated in chapter[5] so we will

not explicate it further at this point.
system
(molecule)

(MC/CAS)SCF
calculation

method
(abstract equations,
excitation level)

formula generation

symmetry data
(point group,
number of orbitals

in irreps)
explicit equati07

factorization

operation
list

term evaluation
(contraction)

integrals

program parts

L]

Figure 3.1.: Schematic representation of a coupled-cluster implementation
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3.1. Formula Generation

3.1.1. Overview

Since the procedure is not only applicable to coupled-cluster equations, we consider
here a more general situation. We start with the Fermi vacuum expectation value of
an operator which can be expressed in terms of strings of second quantized operators.
The aim is to generate an expression which contains only operator parameters (e.g.
amplitudes and integrals) and constants and which is as simple (i.e. short) as possible.
To reach this, a number of steps are performed. Figure[3.2lshows an overview together
with an example. Listing[8.J]contains a piece of code which generates the CCSD equa-
tions [89]. In the following, line numbers refer to this.

program part/functions data example

method
(abstract equations,
excitation level)

E = (®g|leTHedy)

algebraic operations

flat expression
(sum of products

E = (Q|(HT, + HT, + 1HT?)®y)
of operators)

translation
expression in E =3 futi(@ol{aag}{alai} Do)
second quantization paea o
1 +1 5 (pallrs)te (ol {abalaas Hala o) + .
pgrsia
“Fast Wick” module
E =73 fogt{0padyi +1 > (Pal175)t570pa0b01i0s;
contracted terms pgia pyrsijab
+% Z <pQ"7‘5>t?ts)‘6pa5qh6riésj
pqrsijab
simplification

explicit equations E= Z fial? +313° (ij||ab>t;-’;’ +1¥ (inab)t;’t?

ijab ijab

Figure 3.2.: Steps of the formula generation procedure
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Listing 3.1: Generation of the CCSD equations

const int clusterlLevel = 2;
const int projectionLevel = 2;

ConmpoundQper at or _Expressi on TT,; /'l cluster operator
for (int i=1; i<=clusterLevel ; ++i )
TT += T(i);
ConpoundOper at or _Expression HN = FN + VN, //Ham | toni an
ConpoundOper at or _Expression | =A(0); /lidentity operator

for (int i=0; i<=projectionLevel ; ++i )

/] Specification of term nethod

ConmpoundQper at or _Expressi on expr (FV(A(-i)*xexp(-TT)*HNcexp(TT)));
/Il CC

/I ConpoundOper at or _Expressi on expr (FV(A(-i)*HN«(I1+TT))); [/ C

ConpoundQper at or _Product _Sum fl at Expr (expr);
Tensor Synbol s_ACOper at or s_SunxSQ ndex,
ACQOper at or _Product NOP_FV<SQ ndex> > nopfs(fl at Expr);
Tensor Synbol s_Kroneckers_Sunm<SQ ndex, true>
expanded( expandFast W ck( nopfs));
Ter nGr aph_Sum t gs( expanded) ;
Tensor Synbol s_SunxSQ ndex, true> sinplified(tgs);
}

In detail, the steps are:

1. High Level Algebra (line 12)

If present, exponential series have to be evaluated (up to a certain degree), ei-
ther directly or by invoking the BCH expansion (2.32). Then products of sums
of operators are distributed to get an expression which is a sum of products of
operators. Rank considerations can be used to reduce the number of terms at an

early stage [89].

2. Translation (line 13)

The “high level” operators have to be transformed into their second quantized

representation, e.g.

H= praTd + 13 afata,a,, 7= "tala;, Ty =1 talalaja;.

pqrs ia ijab

26



3.1. Formula Generation

3. Evaluation of matrix elements in second quantization (line 14)
For this there are several possibilities, which are discussed below (sectionsB.1.2-

B.1A):
e Transformation of the operator string into a sum of normal-ordered ones by
using anticommutator relations or Wick’s theorem

e Diagrams

e Consideration of equivalence classes of permutations

4. Simplification (line 15/16)
In most cases the result of step Bl contains redundant terms, i.e. terms which can
be collected by exploiting index symmetries (compare[3.1.2) B.1.5 and chapter H).

3.1.2. Algebraic Methods for the Evaluation of Matrix Element S

In order to evaluate a matrix element of the form (®|A®,), where A is a string of an-
nihilation and creation operators, A may be transformed into a sum of operators each
of which is normal-ordered with respect to |®,). Then all summands which contain at
least one annihilator produce zero when applied to |®).

In principle this could be achieved by the direct application of the anticommutator
rules @I7)-(2.19), but this is very inefficient. Since every interchange of an annihilator
with a creator produces two new terms, the number of summands grows very rapidly,
while at the end only few of them yield a non-vanishing result.

One possibility to reduce the number of terms is to use Wick’s theorem (see 2.2.1.3).
We only have to keep the fully contracted terms, since all other terms have at least one
operator on their right which yields zero when applied to |®(). But even then there
are still too many terms. For a string of 2n operators there are n! [[;_, (2k — 1) fully
contracted strings which can be produced from it. Of course many of these are zero,
but there are still a lot of terms left with much redundancy among them. That means
that there are terms which are in fact equal, but look different because of the naming
of their indices.

3.1.3. Diagrams

Matrix elements of operators in second quantization can also be evaluated — without
explicit manipulations of creation and annihilation operators — by diagrammatic tech-
niques. Several sorts of diagrams are used in physics and theoretical chemistry, most
of which are some sort of Feynman diagrams. A formalism based on Goldstone dia-
grams [61] which is particularly suitable for coupled-cluster and many-body pertur-
bation theory has been introduced by Kucharski and Bartlett [90]. Here we only want
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to sketch briefly the ideas of this method and give some examples. A more detailed
introduction can be found in [1] or [53].

The starting point is the representation of indices (i.e. orbitals) occurring in opera-
tors or determinants by (vertical) lines where the direction of the line indicates whether
it stands for a hole or a particle index. These lines can then be joined according to cer-
tain rules to form matrix elements. In the last step, the diagrams are translated into
explicit formulas, including the correct coefficient and sign. This requires a rather
complex set of rules, which we do not want to discuss here. Instead, we show some
examples.

The matrix element % (®o| HT2®,) corresponds to the diagram

00

Here the dashed line (“interaction line”) denotes the two-electron part V of the Hamil-
tonian (the one-electron part yields a vanishing matrix element in this case), while the
lower ends of the “loops” correspond to the two 7} operators. The solid lines stand for
hole (downward) and particle (upward) indices, respectively. The analogous diagram
with 77 replaced by T, would look like this:

We now get explicit expressions by assigning appropriate index labels to the hole and
particle lines and writing down the corresponding quantities:

o -
5 (Q|HTT ) = 3 Z veptit;
ijab
o .
(Do|HT D)) = izvﬁt?ﬂ
ijab

Sometimes more than one diagram is needed to represent a matrix element, e.g.

<‘I)o\f‘12‘77;1‘1)0> \/\/ +\/\/ = [ZZ tfv%]A + [Za tgv,%]f\'

The operator A, generates two-fold excited determinants from (®;|. The external in-
dices correspond to the lines with open ends, and the subscript .4 means that the term
is antisymmetrized with respect to the external indices.
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3.1.4. Automatization

While the explicit equations of the standard CCSD method are well known and com-
parably short, the formulas become long and more complex for increasing excitation
level. Therefore it would be very difficult — or even impossible — to derive these by
hand. Moreover, it is desirable to have an automatized equation generation proce-
dure if one is interested in variants or generalizations of the standard coupled-cluster
methods.

Several approaches to this task exist and have been implemented by various groups.
Most of them are based on some sort of diagrams, but there are also purely algebraic
ones. We want to give a brief survey here. Some of the mentioned work has also been
discussed by Hirata in his review [91].

An algebraic approach based on the unitary group formalism has been pursued
by Li and Paldus in the derivation of their spin-adapted open-shell coupled-cluster
method [65]. Hirata and Bartlett [85] as well as Olsen [84] use the formalism of spin
strings and the anti-commutation rules for elementary operators in second quantiza-
tion to derive coupled-cluster equations in an automatized way:.

The first program using Wick’s theorem was SQSYM (“second quantization sym-
bol manipulator”) by Janssen and Schaefer [92]. Later this ansatz was adopted by
Jankowski and Jeziorski [93], Nooijen and Lotrich [94], Berente et al. [95] and by Hi-
rata in the framework of the TCE [37]. The latter two implementations reduce the
number of terms produced when applying Wick’s theorem by erasing unnecessary
terms as early as possible.

Automatic generation of diagrams has first been used in the context of perturbation
theory [96-98]. One of the first diagram generation algorithms for coupled-cluster was
implemented by Harris [99] using the computer algebra system Maple. The coupled-
cluster implementations with arbitrary excitation level by Kallay and Surjan [41] and
by Lyakh, Ivanov, and Adamowicz [100] both use the type of diagrams discussed in the
previous section. To make them accessible for automatic procession, Kallay and Surjan
represent diagrams by strings of 13 integer numbers while Lyakh et al. use matrix-like
structures. A more general approach is pursued by Bochevarov and Sherrill [101],
who developed an algorithm which can handle arbitrary second-quantized expres-
sions. Within their program, diagrams are written as strings of symbols. The symbolic
algebra program SMITH by Shiozaki et al. [39] also uses Goldstone diagrams, which
are in this case treated as objects directly, i.e. without the introduction of an auxiliary
structure. It is also rather general and can treat e.g. CC-R12 methods.
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3.1.5. Exploiting Index Symmetry
3.1.5.1. Term Generation

One reason for the inefficiency of the evaluation procedure using Wick’s theorem is
that it only deals with strings of annihilation and creations operators, ignoring the
prefactors (amplitudes and integrals). Starting from this observation M. Hanrath de-
veloped an algorithm which directly reduces the number of generated terms by taking
into account the index symmetry of the prefactors . This is done by subdividing the
possible index permutations into equivalence classes [102]. The contractions are given
as in (2.21)). That means that the resulting expressions contain Kronecker deltas which
have to be resolved in a subsequent step.

3.1.5.2. Term Simplification

If the coupled-cluster equations (2.3])) are evaluated using the BCH expansion, i.e. the
expressions contain only connected terms, the formulas resulting from the algorithm
sketched in the previous section are completely reduced. But if the unlinked form is
used, or in other, more complicated cases, some (disconnected) terms remain which
are redundant. In these cases a subsequent simplification of the resulting equations is
necessary in order to obtain efficient working equations. This problem is discussed at
length in chapterd Finally, we use a graphical representation of terms which has some
similarities with the diagrams in[B.1.3but is not equivalent. The main difference is that
we use the graphs only for the identification of equivalent terms. The coefficients and
signs are handled separately, which makes the back-translation into formulas much
easier. Another difference shows up if a term contains more than one interaction.
The Feynman-type diagrams respect the order of the operators, but the resulting term
usually does not depend on this order. Our graphs do not distinguish terms which
differ just in the order of the interactions. Finally, our approach is very general, i.e. not
restricted to special term structures. The types of operators we can treat are fixed, but
could easily be extended. In contrast, while the diagrams themselves are also quite
flexible, their computational representations, e.g. those used in [41] and [100], are
much more restrictive.

3.1.6. Examples

In line 14 of listing B.J] we could replace the expression for CC by other expressions.
For example (compare line 15), inserting A(-i)*HN« (1 +TT), where | is the identity
operator, into the Fermi vacuum expectation value FV() yields equations for the CI
method. We can also introduce new operators, like the adjoint of the cluster operators
or interaction operators of higher rank (e.g. three-particle operators). In principle we
can insert arbitrary sums and products of operators which can be expressed in terms
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Table 3.1.: Explicit expressions for one operator product in different projections

i | Explicit expression for FV( A(-i)*VN«T(1)*T(1))

=~ W N = O

Table 3.2.: Explicit expressions for the Fermi vacuum expectation values of different
operators (WNis a three-body potential and T( - 1) is the adjoint of T( 1))

Operator X

Explicit expression for FV( X)

exp- TTxWNxexpTT
HNx HN

VN VINF VN

FNe VNE (T( 1) +T(2))
T(-1)*HNeT( 1)

b, ab —1 ba, ab
[tt5RwiEla + 5 - [t twiiEla

of elementary annihilation and creation operators. Some examples are given in tables
B.Iland B2 for longer expressions see appendix [Cl

3.2. Equation Solving

The coupled-cluster equations in their explicit form constitute a nonlinear (but poly-
nomial) equation system for the amplitudes which has to be solved numerically. Dif-
ferent possibilities to do this are briefly discussed in In any case, an iterative
procedure is necessary which means that the expressions occurring in the equations
have to be evaluated several times. This is the main reason why it is important to do

this evaluation efficiently.
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3.2.1. Preparation

Before we can start to solve the equations, the input data has to be prepared. First,
we have to determine our basis functions (MOs), usually by an SCF calculation (in the
multi-reference case, this would be an MCSCF or CASSCF calculation, but we focus
here on the single-reference case), and the integrals constructed from them. The SCF
calculation also defines the reference determinant, and with it the partitioning of the
orbitals into occupied and unoccupied (virtual) ones. The output of this calculation
further contains information about the symmetry properties of the system, in particu-
lar, which orbitals belong to which irreducible representation. From this data, a table
is constructed in which the orbitals are ordered according to the properties occupa-
tion status, irreducible representation, and spin (o or [3). Our present implementation
is based on spin orbitals. We start with a set of spatial orbitals and the correspond-
ing integrals, then we construct two spin orbitals from each spatial orbital and adapt
the integrals accordingly. In addition, the two-electron integrals are antisymmetrized
according to equation (2.23). Another transformation is necessary because due to the
use of the normal-ordered Hamiltonian (see2.2.1.4) not the plain one-electron integrals
(p|h|q), but the Fock matrix elements f% appear in the explicit equatiomﬂ Finally, the
integrals are arranged in different tensors, each with a fixed pattern of occupied and
virtual indices.

Also the amplitudes have to be prepared, at least memory for them has to be re-
served. In most single-reference calculations it is possible to set all amplitudes to zero
in the beginning, while in more complicated cases a reasonable initial guess (e.g. from
a CI calculation) is useful for the calculation to converge to the desired state.

3.2.2. Numerical Methods

There are several ways to solve the coupled-cluster equations numerically, which differ
in their applicability (e.g. numerical stability) and efficiency (convergence behavior).

If we use the linked form of the CC equations, it is sufficient to consider the ampli-
tude equations (2.3]). If we introduce the amplitude vector t and set

A (t) = <a ‘ e THyel ‘ <1>0>, (3.2)

where o stands for any excited determinant, the equations can be written in vector

form as
A(t) =0. (3.3)

In principle this can be solved iteratively by applying the standard Newton method for
vector-valued functions. But this is not very efficient, since it requires in each iteration

°If matrix elements for two determinants are evaluated using the Slater—Condon rules, an analogous
summation — restricted to the orbitals occupied in both determinants — has to be carried out each
time.
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3.2. Equation Solving

step the inversion of the Jacobian matrix (or at least the solution of a linear equation
system) to calculate the correction At to the amplitudes (see e.g. [52]).

Another approach is to write the equation (3.3) as a fixed point equation by isolating
the amplitude corresponding to the determinant which determines the projection:

Aa(t) =0 & Duty = Aa(t)
koo ko

where for o = @1 "* the coefficient D,, is given as ]21 fi = ]21 chj-' For CCSD, this
is carried out explicitly in [1]. This kind of equations can be solved iteratively by
choosing a starting vector t(?) and then setting in each step £ = A, (t™)/D, un-
til self-consistency is reached. But this would require the evaluation of the modified
expressions A, (t), which is rather inconvenient due to the missing amplitude ¢, in
some summations. Therefore, in practice one rewrites the equations again, leading to
an iteration scheme t(*1) = ™ + At™ with At = A, (t™)/D,, and stops if the
norm of the residual vector A is sufficiently small. This procedure is equivalent to
a quasi-Newton method where the Jacobian matrix is approximated by keeping only
the diagonal elements [52]. In our present implementation we use this method. The
convergence is usually rather slow, but it can be improved by using the DIIS (“direct
inversion in the iterative subspace”) scheme [29,52,103].

3.2.3. Summary

Assuming that explicit equations have been derived, a (single-reference) CC calcula-
tion in our implementation consists of the following steps (the order of stepsBland /5]
is interchangeable):

1. Get reference determinant, orbital properties, and MO integrals from an SCF
calculation and subsequent MO transformation.

2. Construct orbital table.

3. Factorize equations and determine sequence of contractions (orbital table is used
for cost calculation).

4. Construct spin orbital integrals and Fock matrix elements.

5. Choose initial values for amplitudes and construct tensors needed for evaluation
(amplitudes, integrals, residuals).

6. Calculate residuals by evaluating the contractions given by Bl

7. Determine the residual norm and check for convergence (norm less than a given
threshold).
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3. Implementation Overview

8. If the calculation is not converged: Update the amplitudes, set the residuals to
zero and go back to step

9. Else: Calculate the energy (and the final amplitudes, if desired).

The code of an exemplary program which does such a calculation is shown in ap-
pendix[Bl
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4. Term Simplification

4.1. Problem Description

For this section a term is an object that can be written in the form (3.0)), i.e. a sum over
products of certain objects, where all products have the same structure. Each factor
in the products can have several indices, and the summation ranges over all or some
of these indices. We apply the same convention regarding the indices as in chapter 3
If we do not write the sigma sign explicitly summation over all lower case indices is
assumed implicitly. In our cases, each summed index appears twice in a term while an
external index is used only once.

Now, as an additional complication, the indices can have different types and each
factor has a specific index structure. This means that the indices are divided into groups
and have a certain pattern of types. In particular, the factors can have different num-
bers of indices. Moreover, the tensors which the factors represent can have symmetry
properties with respect to certain index operations. In the following sections we will
specify the kinds of objects we consider and their respective symmetries.

We consider two terms as being equivalent if their numerical evaluation yields — po-
tentially up to sign — the same result for all possible values of the involved objects. But
this definition is not very useful, we need criteria for equivalence which refer directly
to the structure of the term.

Examples

Anticipating the specialization in the next section, we use terms containing (coupled-
cluster) amplitudes and two-electron integrals as examples. In some cases the equiva-
lence is rather obvious, like for the terms

iJ yah ij 4bya ij 4 Azab ij 4 A ab
%ti t] and %t_jtl or %tz tI] and %t] t[’i’

in others it is not. Consider the three terms

ik, jlycydyab ik gl ycdyab ik, gl yc diab
Ve Uaptili iy, vepvagtititiy, and vigu gttty

They look very similar at first glance, but it is not easy to decide whether they are
really equivalent (by close inspection it can be seen that the first two are equivalent,
but the third is not equivalent to the others).
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4. Term Simplification

In general, the following operations transform a term into an equivalent one:
T1 Changing the order of the factors
T2 Renaming summation indices

T3 Exploitation of index symmetries within one factor, e.g.
e Symmetry with respect to the exchange of index groups
e (Anti-)symmetry with respect to permutations of indices within one group
At this point it should already be clear that the combination of these different transfor-
mations can lead to a huge number of equivalent terms, which makes the identification

of all redundant terms in a long equation into a (potentially) very difficult task. Thus
it is very desirable to have an automatized procedure for it.

4.2. Algebraic Approach

The main idea of this approach is to define a (arbitrary) total order on the set of terms.
Then there is a unique smallest element in every equivalence class, since the number of
equivalent terms — as large as it may be — is always finite as long as the set of possible
indices is finite. The algorithm checks for each term if it can be transformed into one
which is smaller with respect to this order and this process is iterated until no more
changes are possible.

4.2.1. Term Representation

The factors in the terms we consider here can have the following types

e operator parameters, like the amplitudes of the cluster operators (t) or of the
corresponding deexcitation operators

e one- or two-electron integrals (f2, v£1)
q’ "rs
e strings of second quantized operators, usually in normal order

e permutators containing external (i.e. not summed) indices.

By this we mean a relation that is analogous to the familiar < relation for real numbers, in the sense
that it is transitive (i.e. if a < band b < c then also a < c holds) and for every two elements a, b one
of the relations a < b, b < a or a = b holds. A total order is sometimes also called a linear order, since
the elements of a set with a total order can be arranged in a linear sequence according to relations
between them.
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4.2. Algebraic Approach

Figure 4.1.: Structure visualization for a general term

Permutators (which could also be called partial antisymmetrizators) are used to col-
lect terms with a similar structure in an equation (the coupled-cluster amplitude equa-
tions are antisymmetric with respect to permutations of external indices of the same
type). Consider for example the term ¢/!v2. It is antisymmetric with respect to I and .J
(because the integral v is), but not with respect to A and B. Its antisymmetrized form
is

A > A IJ A 1J B I1J
[ti'vgt] 4 = Po(A|B)t v = oy — t7 ol

The permutator P_(A|B) is just a more explicit way of writing the antisymmetrization.
A general permutator is defined as follows:

Po(Iiy o Do oy Doyl o Ty ) = > sgn(o)o (4.1)
[o]e@Q

where @ is the quotient of the Symmetric Group S,, (n = ny + ... + n,,) by the direct
product of subgroups S,, x...xS,, ~andsgn(o) is the parity of the permutation o € S,,.
This means we sum over all permutations of I, i, ..., I,,, , which do not contain any
permutation within one group, multiplied by the appropriate sign.

P_ does not depend on the order of the groups or the arguments within one group,
i.e. they can be permuted arbitrarily. Two different permutators commute if the sets
of indices which they contain are disjoint (otherwise they do not commute in general).
In our applications this is always the case since in every term there are at most two
permutators, one with particle indices and one with hole indices.

For the naming of indices we employ the same conventions as in chapter 2} p, ¢, r, s
are general indices, while hole indices are denoted by 4, j, ... and particle indices by
a,b,.... The same applies for upper case letters.

The general structure of a term can be represented by a tree as shown in Figure [d.1]
an example is given in Figure d.2]
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4. Term Simplification

Figure 4.2.: Structure of the term P_(C|BA) Y f%t‘f‘ﬁ?. In the visualization, the same
a

symbol is used for one- and two-electron integrals.

Now we can specify the transformations summarized under point (T3) in the previ-
ous section:

(a) Integrals are symmetric (hermitian) with respect to the interchange of bra and
ket (upper and lower) indices.

(b) Amplitudes and two-electron integrals are antisymmetric with respect to permu-
tations within one index group.

(c) Operators within a normal-ordered string anticommute.

(d) Indices within a permutator may be exchanged according to the symmetry prop-
erties described above.

The general structure of the factors can be depicted (in UML style, although this does
not correspond to actual classes in the program) as follows:

Entity

+name
+hermitian2: bool

1

n

IndexGroup
1

Index
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That means, each entity consists of one or more index groups within which we have
antisymmetry with respect to index permutations. The parameter her i ti an2 indi-
cates the symmetry in the case that there are two groups (factors with more than two
groups do not occur here). For example, integrals consist of two groups and are sym-
metric with respect to the interchange of them. An amplitude also has two groups, but
there is no symmetry between them. A normal-ordered string of operators is just one
group (the operators are identified with their indices).

The ambiguities that are due to symmetry properties can be resolved by defining
a standard ordering of indices and terms, which will be explained in detail later (see
B22). Therefore terms which only differ in this way are considered equal and the
canonical representation is the one which is smallest with respect to the ordering.

But there is one more possibility, namely the renaming of indices. Here we have to
distinguish between summed and external indices:

e Summation indices can be renamed arbitrarily as long as they are distinguish-
able.

e External indices may only be renamed if the term contains a permutator. Only
indices already present within the term may be used and the renaming has to be
compatible with the structure of the permutator.

Terms differing only by the naming of indices are called equivalent. (It is easy to see
that this defines an equivalence relation in the mathematical sense.)

Examples
The terms va% t¢ 5% and Eb 15 thtd “ ook quite different at first glance, but they
ija ija

can be transformed into each other through the following steps:

Zabl bcl'ﬂ]zt v%- ZtKJ ﬂ%-zt )

ijab ijab ijab ijab
“—’] ji a=b b, Ju -Z Ca i
> tRitguly =0 Gt i s
ijab ijab ijab

Another example illustrates the number of equivalent terms possible, we have:

ottt {ala,} = — Yt thtfeik{ala,}

ijkabe ijkabc
= )t th gk =Y b il {ala )
ijkabe ijkabc

a 4b e, ij _ a 4b c ik At A
= Y wdel{afa) =— Y it {ala,)}
ijkabc ijkabc
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In contrast, for example the term ) t¢ t;’- tzv% {dld » }» although looking similar, is not
ijkabc
equivalent to the others.

4.2.2. Order Relation
4.2.2.1. Definition

To define a total order on the set of terms we first have to order their building blocks,
starting with the smallest elements, namely the indices. For them the following rules

apply:
1. External indices are smaller than summed indices.

2. Hole indices are smaller than particle indices and these are smaller than general
indices.

3. Within one type the indices are ordered alphabetically.

From now on we assume the indices within one group to be ordered according to these
rules. For symmetric factors (integrals) the groups are ordered lexicographically.

Now we come to the ordering of the factors for which the following criteria are
employed:

1. The different kinds of factors get a priority, e.g. amplitudes are smaller than
integrals and operators.

2. Among factors of the same kind, those with more indices come first.

3. If the total number of indices is equal, the number of external indices is taken
into account.

4. If this is also equal, the further procedure depends on the nature of the factor:

Operator Strings  In this case no special considerations are necessary, the strings
are ordered lexicographically.

Amplitudes The problem when comparing two amplitudes is that on each am-
plitude there are two groups of indices (upper and lower) and one has to
decide which one is to be considered first. This is resolved in the follow-
ing way: If for one argument the upper indices are smaller than the lower
ones, the upper indices are compared first, only in the case that for both
arguments the lower indices are smaller, these are compared first. This pro-
cedure is illustrated in figure
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Integrals In principle the same procedure as for amplitudes is used, with up-
per/lower indices replaced by left/right ones, respectively. But since in
this case the two index groups can be exchanged and we assume them to be
ordered, the second case never applies.

Permutators The order of the permutators is not relevant, so we define it arbi-
trarily. If there are two of them in one term, then one contains only particle
indices and the other only hole indices. If their structure is the same, then
the one with hole indices is defined to be smaller.

Figure 4.3.: Procedure to determine whether for two different amplitudes ¢; = (uq,[;)
and ty = (usg, ly) the relation ¢; < ¢y or ¢ty < t; holds.

Terms are now ordered first by their type, where type includes the number and
structure of the factors as well as the number and distribution of external indices. This
has to be done for the sake of completeness, although terms of different types can
never be equivalent. Moreover, the order is used when equal terms are collected in the
end.

The interesting point for our simplification is the order among terms of the same
type. This is defined by lexicographical comparison of the factors according to the
rules specified under point@above.
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4.2.2.2. Transitivity

For an order relation to be well defined it has to fulfill the transitivity rule, i.e. if a is
smaller than b and b is smaller than ¢, also a has to be smaller than c. For our definitions
this is more or less obvious, except for the amplitude order.

Before starting the formal proof we want to comment briefly on the definition and
illustrate it by an example. Of course things would be much easier if we decided
to take into account primarily one index group (either upper or lower) and look at
the other only if the first groups are equal. But this would introduce an unwanted
arbitrariness. Consider for example the three amplitudes ¢; = t{}B,tQ = tbe and
ts = t9P. Ordering by upper or lower indices only, we would get t; < t3 < t, or
ty < t3 < t, respectively, while our order yields t; < t5 < t3. To see this, look at ¢; and
t first. We have to compare the upper indices, since there are two external indices for
t1. On the other hand, t, has only one external index and therefore we have t; < ¢,.
Next we consider ¢y and t¢3. There is one external index in every group, so we have to
look at the lower indices, and since I < J it follows that ¢y < 5.

The proof that our order is indeed transitive cannot be built on formal arguments
alone, it uses special properties of the coupled cluster amplitudes (in particular the
fact that the lower indices are always holes and the upper ones are particles).

For this we write the amplitudes as pairs consisting of the groups of upper and
lower indices: ¢; = (u;,[;). We assume now that we have three amplitudes ¢, 5, t3 of
the same degree and with the same number of external indices (otherwise transitivity
is obvious) so that t; < ¢y and t, < t3. We want to show ¢; < t3. As a first step we
observe that this is clearly fulfilled if for both comparisons in the assumption the same
indices (upper or lower) are used, because then the same indices are also used for the
comparison of ¢; and ¢3. This is the case if either [; < u; for all i (then always the lower
indices are used) or if u; < [; for at least two amplitudes (then always the upper indices
are used). So the only interesting case is that we have u; < [; for exactly one amplitude
t;. But this implies that u; contains more external indices than [;, since in general hole
indices are smaller than particle indices. Since we assume that the total number of
external indices is the same for all amplitudes, it follows that u; also contains more
external indices than u; for i # j. Therefore we have t; < t; for i # j, which for i # 1
is a contradiction to our assumptions and for i = 1 proves the claim.

4.2.3. Simplification Algorithm

A rough sketch of the procedure is given in algorithm [T, now we want to explain its
steps in some detail (see also figure [4.4).

First we have to distinguish two cases: If the term under consideration contains
one or more permutators, the following applies to all indices. Otherwise, the external
indices are fixed and only summed indices may be changed.
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Algorithm 1: Term simplification

Input: Term
Output: Term in canonical form
foreach index group do
mark group as blocked;
foreach index do

if index not minimal then
check if index can be replaced by smaller one;

if possible then
rename indices;
end
end
end
end

Now we consider a product with several factors, each of which is one of the entities
described above. For the first factor, the indices are set to the smallest values possible,
and if the same indices occur in other factors as well, these are renamed accordingly.
Then the indices of the other factors are optimized successively. More precisely, not
the factors themselves are considered but the index groups. For each index group the
procedure is as follows: For the first index it is checked whether it has the smallest
value within its type. If this is not the case, it is tried out if it can be replaced by this
smallest index. In most cases this index has been used before in other groups, then
the exchange is only possible if it can be compensated within the groups that were
already optimized (by exploiting the antisymmetry properties of amplitudes, integrals
and operator strings or by interchanging amplitudes of the same type). If this is not
the case the test is repeated with next larger index and this is iterated until a valid
index is found or the original index is reached. For the following indices the iteration
is started with the successor of the last used index of the same type.

To one case we have to pay special attention, namely to the permutators. Here we
have not only the antisymmetry property within the index groups, but we may also
interchange different groups. For our purpose now we can restrict to groups of the
same size. The interchange is easy if both groups have only one element, otherwise
several pairs of indices have to be changed. For each of them the same test as before
has to be performed.

Example
We want to demonstrate how the algorithm works with a simple example, namely the

term Y t¢4¢Avi, which is equivalent to 3 tf}’ t?v%?. The successive index changes
ikled ijkab
are shown in the following table:
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i 0r 7
in a blocked
group?
Go to (next)
blocked group.
Group (anti-)
symmetric?

Go to next index
or end.

Group part of
permutator?

i and g in
this permutator?

Exchange of groups

group blocked?

Exchange i < i
not allowed.
Qg —ip+ 1

Exchange 7 and i
Qg — i+ 1

Figure 4.4.: Illustration of the optimization procedure for one index group. Here i de-
notes an arbitrary index, i, the optimal index at the present position. The
case that an index exchange can be compensated by interchanging ampli-
tudes is not shown.
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step group index minimal? operation result

1 Kk k no ko i ol told
ikled

2 l no I j >t tyoid
ijked

3 cd c no ce—a > t?]d t,?v%l
ijkad

4 d no d<b >t tfv%?
ijkab

5 k k yes > t%bt,fv%’
ijkab

6 Ib b no bea >ttt
ijkab

Y i yes >ttt
ijkab

8 i yes > t%’tfv%‘
ijkab

External indices are not listed since there is no permutator present. In the fifth step, the
index k is not the absolute minimum, but it can not be exchanged with i or j because
they are blocked.

4.2.4. Implementation

The representation of terms in the program closely resembles the illustration given in
figure[. Tl An expression, i.e. a linear combination of terms, corresponds to a tree, and
each term is a subtree. There is a general class Node and derived from it are special
classes representing the different objects within a term, the arithmetic operations (ad-
dition and multiplication), and rational numbers (which occur as prefactors of terms).
Each node contains a pointer to the node above it (“parent”), which is zero if the node
is the root node, and a list of its “children”. So it is possible to move within the tree in
different directions: upward, downward, and horizontally among the children of one
parent node. While some functions, which affect the tree as a whole or are indepen-
dent of the node type, are only implemented in the base class, for many operations we
make use of virtual functions. That means that the same operation can have different
effects on different types of nodes. Many functions are called recursively for the chil-
dren, until they reach the point where they take effect. So we do not need to know in
advance which type of node is at which position in the tree.

4.2.5. Discussion

We want to discuss briefly under which conditions this algorithm yields the same
canonical form for all equivalent terms. It is rather clear that each step transforms
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a given term into an equivalent one which is smaller with respect to the order defined
above. So for the algorithm to work, the following statement has to be true: If a term is
not the minimal element in its equivalence class, then there is always an allowed index
renaming which makes it smaller.

There are, however, cases where this condition is not fulfilled, as the following ex-
ample shows. Consider the term

b, ic, jk
i V5 Ve M

which is (internally) ordered since with respect to the lexicographical order described
in £.2.2] the first integral is smaller than the second. This term is not minimal, since it
is equivalent to

3

Juik vl ay)

which is obviously smaller (since £ as a hole index is smaller than the particle
index c). To transform (I) into ([I) we have to interchange ¢ with j and a with b, which
yields t?- t?v,%v%, and then order the factors. But the algorithm in its present form
would not do this, since it does not allow for the interchange of integrals in the index-
renaming step. The interchange of b in vi% (which is the first non-minimal index in (I))
with a is not allowed, since it requires also the interchange of 7 and j and this would
make the first group in the integral — which has already been optimized is is therefore
blocked - larger.

But if we restrict our considerations to standard coupled cluster equations, there are
certain constraints which reduce the number of possible index constellations drasti-
cally:

C1 There is only one integral, and each summation index has to appear in this inte-
gral.

C2 There are at most four summation indices, two of each type.

C3 If there are two summation indices of the same type, they belong to the same
group in the integral.

C4 All equivalent terms which are internally ordered have the same index structure.

Under these conditions we can show that the algorithm yields the desired result. As-
sume that an index p in a given position is not optimal, and denote the optimal index
by po. Because of (4] p and p, have the same type. If p, has not appeared in the term
before, it is clear that p can be replaced by py. The case the py, has been used before
can not occur, since either the current position is on an amplitude, then p, can not be
the optimal index in this position if it already present on another amplitude, or the
current position is on an integral, and p, also has to occur on the integral (CfI) in the
same group as p ((3). In the second case there are two possibilities: If p stands before
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po, the term is not internally ordered. If p, stands before p, py can not be the optimal
index in the position of p. So in any case we get a contradiction.

But we are also interested in more general cases, for example in expressions like the
wave function variance? where two integrals per term occur. Considering the above
example, one could think of modifications solving this problem, e.g. a different order-
ing relying primarily on the index structure and only after that on a lexicographical or-
dering. But there is no guarantee that this would help in all cases, e.g. in those where
deexcitation operators are present, as for example in gradient calculations. It seems
that it is very difficult — or maybe even impossible — to construct an algorithm which
transforms such general terms into a canonical representative. Most implementations
mentioned in [3.1.4 as well as an algorithm similar to ours, which was developed by
Wiladyslawski and Nooijen [105], are also restricted to terms with one integral. In the
formula generation part of the TCE, canonicalization is used as a first step, while for
problematic cases a more elaborate comparison procedure is used [37].

As we wanted to have a program which is as generally applicable as possible, we
decided to take a completely different approach.

4.3. Graph-Based Approach

The key observation from which we start here is that the term equivalence can be
seen as a topological problem. We have seen in the previous section that the main
difficulty in identifying equivalent terms is the arbitrariness in the summation index
labels, since it is very hard — sometimes even impossible — to find a canonical form
for them. Therefore it is natural to ask what the relevant information carried by these
index labels is, and it turns out that it can be reduced to two points:

e Each index has a type, in our case particle or hole.

e Summed indices are distinguished by the fact that they appear twice in a term, in
different factors, and so each summed index defines a connection between two
factors.

The terms we consider here are slightly different from those in the previous section.
We concentrate on the simplification of the final equations (as delivered by our con-
traction routine described in B.15), therefore the terms do not contain operators any
more. We also do not take into account the permutators explicitly. We can assume here
that the external indices are always in the same fixed order. Under this condition the
permutators are not relevant for the equivalence problem, as will become clear later.
So we are left with two types of factors, namely amplitudes and integrals.

PThis is defined as (¥|H?| W) — (V| H| \11)2 and can be used as a criterion for the quality of an approximate
wave function [104].
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4. Term Simplification

4.3.1. Representation of Terms as Graphs
4.3.1.1. General Considerations

In mathematics, a (undirected) graph is defined as a pair (V,E) where V is a set of
vertices (or nodes) and [E a set of edges (or connections). Each edge is given by a
pair of vertices. The second observation above suggests to represent terms as graphs
where (summed) indices correspond to edges, while it is less clear what the nodes of
this graph should be. At first glance, as noted before, summed indices connect factors.
Then the graph corresponding to the term v£2¢/1t% would look like this:

But each factor has two distinct groups of indices, coming from annihilation and cre-
ation operators, respectively. While for amplitudes (at least those of the usual cluster
operator) the group an index belongs to is determined by its type, this is not the case
for integrals. On the other hand, indices within one group are exchangeable due to the
antisymmetry properties of the corresponding tensors, hence it does not make sense
to distinguish between them in the representation of a term. Therefore we decided to
take index groups as nodes (figure [4.5(a)). Finally, the external indices can not be ig-
nored completely. They also form two groups, so we need two additional nodes (figure
B.5(b)). Since we assume the terms to be antisymmetric with respect to the exchange of
external indices of the same type — here the permutators are implicitly present — these
nodes have the same properties as the other ones. To sum up: To represent the kind
of terms we are considering here, we need three types of nodes, namely amplitude in-
dex groups, integral index groups, and external index groups, and two types of edges,
corresponding to particle and hole indices, respectively. Each index is represented by
one edge, the distinction between summed and external indices is given by the types
of nodes the edge connects. This classification makes our problem somewhat differ-
ent from those of classical graph theory, where all vertices and edges are in principle
equal. Therefore we can not apply one of the known standard algorithms to test the
equivalence of graphs.

For the figures in this section showing graphs the following conventions apply: The
factors are depicted as rectangles (amplitudes) or ovals (integrals). The actual nodes
(index groups) are circles connected to the factors they belong to by black lines. Index
groups not connected to a factor are external. The number of the index group is written
in the circle. The edges of the graph are drawn as blue or red lines for hole and particle
indices, respectively.
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(a) (b)

Figure 4.5.: Construction of the graph for the term v%tft%.

4.3.1.2. Realization in the Program

There are several different data structures by which a graph can be represented:

1. A list containing the nodes and for each node a list of nodes with which it is
connected (or, equivalently, a list of the edges ending in this node)

2. The set of edges (for each edge the two end nodes are given)

3. An ordered list of nodes and a connectivity matrix where the entry with indices
1,7 is 1 if node i is connected to node j and 0 otherwise

For our purposes the second possibility is the most appropriate. So for us a graph
is basically a set of connections (edges), where each connection contains the following
data: start node, end node, and type (particle or hole). Although our graphs are not
directed, we have to (formally) distinguish start and end node. The roles are deter-
mined by ordering the nodes. A connection always runs from the smaller to the larger
node. The nodes, called Fact or Socket s here, contain the following information:

e Type of the factor, this can be “hermitian tensor” (e.g. integral), “non-hermitian
tensor” (e.g. amplitude), or “external”

e Identifier (name) of the factor, e.g. ¢ for an amplitude

e Structure of the factor, i.e. number and sizes of index groups
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4. Term Simplification

e Number of the factor, i.e. position among all factors of the same type and
structure

e Number of the index group within the factor
e Position of the index within the group

Since in several places during the graph comparison algorithm described below only
part of this data is needed, we did not put it all into one class. Instead, the informa-
tion is stored in a hierarchy of different classes, which are shown in figure The
last point is not part of the node specification used for the comparison of graphs, but
it is necessary to identify connections uniquely and to determine the sign of the term
represented by the graph. Figure B.7] shows the graph from figure A5 with its fac-
tor labels. These are to be read as follows: First, the Fact or Key is given (in the in-
ner parentheses). The first number codes the Fact or Type (0: Hermi ti anTensor,
1: NonHerm ti anTensor), then the structure is shown (each number within the
square brackets is the size of an index group), and finally the name of the factor. In
addition to the Fact or Key, the number nt h, which is part of Fact or Key2, is printed
to distinguish between different factors with the same key (in the example, there are
two ¢t amplitudes with the same structure).

As another example, we consider the terms v%tf‘t%? and v%tft%’, which are quite
obviously equivalent. The corresponding graphs are shown in Figure[d.8 To illustrate
the correspondence between terms and graphs, we have added labels for the factors
and connections again. If we disregard these labels, the two graphs look exactly the
same. This is because the way the graph is printed does not reflect directly how it was
defined. The algorithm which does the graph layoutﬁ [107] already yields a sort of
canonicalization.

4.3.2. Graph Comparison Algorithm

4.3.2.1. Overview

We start from an expression as delivered by the evaluation procedure described in
3.1.5l The simplification of such an expression with our graph-based algorithm in
principle consists of the following steps, which will be explained in more detail below:

1. Convert each term of the expression into a graph and store it together with the
corresponding coefficient.

2. Determine fingerprints of all graphs.

3. Test graphs with the same fingerprint for equivalence and add coefficients of
equivalent graphs.

4. Convert the reduced set of graphs and coefficients into an expression again.

“We use the tool dot which is part of the Graphviz package [106].
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Figure 4.6.: UML diagram for graph components
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(L, [1, 1],0), nth=0) (1, [1, 11,9), nth=1)

Figure 4.7.: Example graph including factor labels

Figure 4.8.: Graphs for two equivalent terms with index labels
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The second step is necessary since the explicit comparison of graphs (see is
rather time-consuming. The pre-selection by fingerprints avoids explicit comparisons
of graphs which are easily seen to be non-equivalent.

In practice, for efficiency reasons all steps except the last are carried out termwise.
So, after the fingerprint of a term has been determined, it is first checked if this finger-
print has occurred before. If there has been no term with the same fingerprint so far,
the term is just stored, together with this fingerprint and the corresponding coefficient.
Otherwise, it is checked for each term with the same fingerprint if it is equivalent to
the current one in a recursive procedure (see 4.3.2.4). If an equivalent term is found,
the coefficient of the current term — multiplied by —1 where necessary - is added to
the stored coefficient. Otherwise, the term is stored as before. In the end we have
a collection of inequivalent terms with corresponding coefficients, which can then be
converted to a formula again. The whole procedure is summarized in Algorithm 2]

Algorithm 2: Graph-based simplification

Input: Expression

foreach Term do
construct Graph g;

determine Fingerprint;

if new Fingerprint then
store Graph and Coefficient to GraphList

else
foreach Graph /1 in GraphList do

ifrecur si veTest ( gh,start_pos) then
determine sign;

add coefficient times sign to stored coefficient;
end

end
end
end

4.3.2.2. Definition of Equivalence

First we want to discuss briefly how the concept of term equivalence (seed.I) can be
transferred to our graphs. Of course we want the result to be the same in the end,
therefore we start with the following definition:

Definition 4.1. Two graphs are called equivalent if they represent equivalent terms.

But this is not very useful, we need criteria to check graphs for equivalence, similar
to the term transformations listed in section The index renaming (I2) does not
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4. Term Simplification

appear here. Still, we have two different comparison methods for graphs reflecting
different kinds of term transformations, but they are grouped differently: Instead of
distinguishing permutations of the factors and operations on one factor, we consider
the index groups as primary units (since they are the nodes of our graphs).

First, we need a notion for graphs which are “nearly equal”, but not identical.

Definition 4.2. Two Graphs G| and G are called strictly equivalent if there exists a
bijective mapping from the set of connections of ; to the set of connections of Gy
which maps each connection to an equivalent one.

Connections are equivalent if they have the same type and their start and end nodes
are equal if the index position is disregarded.

That means strictly equivalent graphs are identical up to the order of the indices
within the groups and the order of the connections. Since the order of the connections
is only a matter of the internal representation of a graph, this property basically reflects
the antisymmetry of the corresponding tensors. In particular it implies equivalence.
In practice, when checking for strict equivalence it is sufficient to map the connections
representing summed indices, if the total number of connections has been compared
before, which is sensible anyway for efficiency reasons. Terms which only differ in the
naming of their summation indices (operation [T2) or the order of indices within the
groups lead to strictly equivalent graphs by definition. Since the positions of factors
and groups are used to identify nodes, the other operations listed in section 4.1] can
also be seen in the graph representation. Both are realized as permutations of nodes.

Definition 4.3. A permutation of the nodes of a graph is admissible if it interchanges
the index groups of a factor of hermitian tensor type (“Bra-Ket permutation”) or per-
mutes the positions of factors with the same Fact or Key (“factor permutation”).

A general admissible permutation contains both kinds of operations, but in practice
we apply them separately. Using this definition we can state the following

Criterion for Equivalence:
Two Graphs G and G, are equivalent iff there is an admissible permutation of the
nodes of GGy such that the resulting graph is strictly equivalent to Gs.

4.3.2.3. Fingerprints

For the construction of the fingerprint each node is reduced to its Fact or Key contain-
ing the basic data of the factor (type and structure) as shown in Figure Similarly,
a Connect i onKey is defined for each edge. It consists of the Fact or Keys of start
and end node and the type of the connection. The fingerprint now contains a list in
which each Fact or Key appearing in the corresponding graph is stored together with
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a number indicating how often it appears (f act or Count ), and a similar list for the
Connect i onKeys (connect i onCount ). These classes are also shown in figure 4.6
It is obvious that graphs with different fingerprints can not be equivalent.

4.3.2.4. Explicit Comparison

Graphs with the same fingerprint are compared by a recursive algorithm. Since this is
a central part of the whole simplification procedure, we show the code for this function
explicitly in Listing .1l It is a member function of the class Di sti nct Ter nGr aphs
which consists essentially of a list of Ter NG aphs together with their corresponding
coefficients. The graphs in the list represent different equivalence classes with the same
fingerprint.

The recursion parameter (map<FactorKey, int>::const_iterator i) isa
position in the f act or Count of the corresponding fingerprint. If this is maximal,
i.e. there are no entries left, the recursion base is reached (line 3). Then it is checked for
every entry in the list (i t er at or j,line 5) whether the graphs are strictly equivalent.
If a matching graph is found, the coefficients of the current graph (multiplied by the
appropriate sign, see[d.3.2.5) is added to the stored coefficient (line 9). Otherwise, the
function returns f al se (line 12), which means that the tested term belongs to a new
equivalence class. Then the graph and its coefficient are added to the list (not shown
in the code).

If the recursion is not finished, the current graph is modified by permutations which
are admissible in the sense of definition[4.3] First (line 16), a factor permutation is car-
ried out among all factors with the Fact or Key determined by i . The number of these
factors is given by i - >second. If the Fact or Key represents a hermitian tensor, an
additional “Bra-Ket permutation” on the corresponding factors are performed. Since
for each factor there are only two possibilities (interchange or not), the possible combi-
nations of these permutations can be represented by bit patterns (line 18). For j =0, no
Bra-Ket interchange takes place. After the application of the permutation(s), the func-
tion is called again for the next Fact or Key (line 21 or 25). In this way, all possible
combinations of permutations are tried out until a matching graph is found or there is
no possibility left.

4.3.2.5. Sign Determination

The sign with which the coefficient of a term is multiplied before being added to the
“old” coefficient is determined as the signum of the permutation mapping the nodes of
the corresponding graph to those of the reference graph with which it was compared.
Since the connections are ordered based on the ordering of the nodes described above,
differences between the two graphs can only be due to permutations within index
groups, so this sign rule reflects the antisymmetry properties of the involved tensors.
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Another possible sign change is due to the permutation of external indices. This
applies to all terms in an equivalence class and is taken into account when the graph
is converted into an algebraic expression again.

Listing 4.1: Recursive graph comparison

bool DistinctTernG aphs::recursiveFact or Pernut ati ons(const
Ternraph & tg, const map<FactorKey, int> & factorCount,
map<Fact or Key, int>::const_iterator i, const Rational Nunber & rn)

i f(i==factorCount.end()) //recursion base
{
for(iterator j=begin(); j!=end(); ++j)
if(j->first.strictEqv(tg)) ///matching term found
{
/1 determ ne pernutation (lineUp)
j ->second += Rational Nunber (lineUp.parity()) * rn;
return true;

}

return fal se;

}

for(Permutator p(i->second); p.valid(); ++p)
{
Ter m&r aph h(tg.appl yFactorPernutation(i->first, p));
if(i->first.type==Herm tianTensor Type) //bral/ket symetry
for(int j=0; j<(1 << i->second); ++j) //pernutations
{
Ter G aph hh( h. appl yBraKet Pernmutation(i->first, j));
i f(recursiveFactorPernutations(hh, factorCount,
++map<Fact orKey, int>::const _iterator(i), rn))
return true; //matching term found
}
el se
i f(recursiveFactorPernutations(h, factorCount,
++map<Fact orKey, int>::const _iterator(i), rn))
return true; ///mtching term found

}

return fal se;

}

4.3.2.6. Examples

The two graphs in Figure look identical, which means essentially that they are
strictly equivalent in the sense of Definition .2} since they only differ (possibly) in
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the numeration of indices within groups, which is not visible in the figure. Figure
shows an example of two graphs which are equivalent. They are not strictly equivalent
since the two amplitudes have to be interchanged to achieve congruence. Here we
have included the factor labels to make this visible. In the following figures we do not
show them to save space.

(L, [1, 1].t), nth=0) (L, [1, 1].1), nth=1) (L, 12, 20,0, nth=0) | | (L, [1, 1].0), nth=1)

Figure 4.9.: Graphs with the same fingerprint which are equivalent but not strictly
equivalent

The two graphs in Figure.I0lhave the same fingerprint, since they both contain two
T, amplitudes and one two-electron integral and have the same types of connections.
But they are not equivalent, because in the left graph the integral is connected to both
amplitudes, and in the right graph only to one.

NG

P9 QP

Figure 4.10.: Non-equivalent graphs which have the same fingerprint: vL2t8t% and
I atarB
tity
Vit
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In this case the non-equivalence could also be seen easily from the algebraic expres-
sions, since the second term is disconnected. But also in the non-obvious case from [4.1]
the graphs clearly show the different structure of the terms (figure {.11).

Figure 4.11.: Non-equivalent graphs which have the same fingerprint: v%v%titflt%b

ik, Jl e 1drab
and v vttt

4.3.3. Discussion

The simplification procedure described in this section relies on a rather sophisticated
data structure used to represent algebraic terms as graphs. The algorithm itself is in
turn conceptually simpler than the algebraic approach in section Moreover, it is
more generally applicable, since it does not need assumptions on the term structure,
e.g. the number of integrals. Atthe moment, the types of factors that can be treated are
restricted to one- and two-electron integrals (f and v, respectively) and amplitudes of
the cluster operator (t ). But this list could easily be extended, since the algorithm does
not make use of special properties of these tensors, except that there are two groups of
indices on the integrals.

To show the effect of the simplification, we list in table ] the number of terms
before and after the simplification for some expressions containing deexcitation oper-
ators. These are more complicated than the usual CC equations. Some of the resulting
formulas are shown in appendix

The efficiency of our simplification algorithm could certainly be improved, but since
it is not time critical for coupled-cluster calculations, we did not investigate this fur-
ther.
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Table 4.1.: Term numbers before and after simplification for expressions
(®g|exp (T)X exp (T)|®y), where T = T, + T, and the exponential
series is evaluated up to order n.

term numbers
X | n | before simpl. | after simpl.
H |1 28 18
2 1150 319
3 112394 6132
H? |1 650 215
2 98181 9410
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5. Tensor Contraction

The tensor contraction module of our program package is designed to be rather gen-
erally applicable, so it can not only be used to evaluate equations of coupled-cluster
or similar methods. We only assume that we have objects which are described by a set
of indices. These indices can be plain numbers or have additional structure. Our main
purpose, however, is the case where the indices represent orbitals and the tensors are
amplitudes (of the cluster operator or other operators), integrals (which could also be
seen as amplitudes of the Hamilton operator), and objects constructed from them by
contraction (intermediates and residuals as defined in chapter [3). For simplicity we
will refer to this setup as the “coupled-cluster case” in the following, although it is not
limited to that particular method.

The main problem in the (efficient) implementation of a tensor contraction proce-
dure for the evaluation of coupled-cluster equations is the complicated structure of
these tensors. This structure — which will be discussed in more detail in section 5.1]
— leads to a conflict between memory usage and simple access to the tensor entries.
Therefore, when we describe our implementation in section we put special em-
phasis on the structures used to represent tensors, to iterate over them and to address
individual tensor entries. Before we do this, we discuss different approaches to the
contraction problem in general in section 5.2l

5.1. Tensor Structure

If the coupled-cluster equations are derived in terms of spin orbitals, the amplitudes
have the property that they are antisymmetric with respect to the permutation of in-
dices belonging to the same type of operators, i.e. annihilators or creators (in the usual
notation this corresponds to lower and upper indices, e.g. we have tg‘]b = —t%’ =
—t%‘? = t;’-?). To avoid the storage of redundant data, the indices within one such group
are usually restricted to be in ascending order. Similar properties hold for the two-
electron integrals, which are antisymmetrized as described in[2.2.1.4] and the residuals.
The symmetry properties of the intermediates resulting from contractions of the input
tensors depend on the factors from which they are constructed and on the contraction
pattern.
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Besides this “internal” symmetry, additional “external” restrictions can be imposed
on the indices:

1. If the system (e.g. the molecule) under consideration has a nontrivial symmetry
group (in case of molecules this is a point group), also the expression for its
(correlation) energy is invariant under these symmetry operations. To exploit
this property, only symmetry-conserving excitations are included in the cluster
operator. This means that the product of the irreducible representations of the
creation operators must be equal to the product of the irreducible representations
of the annihilation operators:

QT =QRT; (5.1)

2. If spin orbitals are used in coupled-cluster, the resulting wave function can — in
the general open shell case — not be expected to be a spin eigenfunction. But at
least the desired spin projection — i.e. the expectation value of S, — can be en-
forced by including only those excitations where the sum of the spin projections
of all creation operators minus the sum of the spin projections of all annihilation
operators is zero.

The same restrictions apply to the integrals and in principle also to the intermediates.
The latter is not completely obvious and will be discussed in section[5.3]

Both types of restrictions together make a “compressed” representation of tensors
— i.e. one which contains only non-redundant entries — rather difficult. While the
antisymmetry leads to a “triangular” form, the external restrictions cause sparseness
in the sense that certain entries are zero. Or, to avoid storing zeros, certain index
combinations have to be excluded, but there is no simple rule which ones. And to
evaluate a complicated condition (or, in fact, any “if” condition) each time a tensor
entry is accessed is prohibitive for efficient operations.

5.2. Possible Approaches

There are several ways to realize a tensor contraction in a computer program, which
vary in their implementational complexity, efficiency, and applicability.

5.2.1. Explicit Loops

If a contraction is given in the form

E X1 odyig iy Y1y oDy iy i

Upsensly
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(compare equation (B.I), here the product contains only two factors) it is in principle
straightforward to write down the corresponding code. The basic structure is shown
in algorithm [3l The f or each loops there would in fact be replaced by several loops
over the individual indices (summed and non-summed, respectively).

Algorithm 3: Straightforward tensor contraction algorithm

Data: Tensor ¢, Tensor t,, Tensor t5 initialized to 0
Result: Tensor ¢35
foreach entry of t5 do

foreach summed index do

for j=1,2 do
construct index i) from entry and summed index;
end
entry +=t; [1(1)] * t2[i(2)],'
end
end

This approach, however, brings about several problems. First, the loops needed
vary from contraction to contraction. To avoid writing separate code for each type
of contraction (which would severely limit the applicability), there are basically two
possibilities:

1. Use generic loops or an abstract iterator
2. Generate specialized code in an automated way.

The first method is convenient, but inefficient. The main disadvantage is that for each
multiplication three tensor entries (first factor, second factor, and result) are needed
and the addressing for these - which is expensive if the tensors are stored in a com-
pressed form - takes place within the innermost loop. Moreover, it is difficult to exploit
information about the particular structure of the tensors.

While the tensor addressing can be done efficiently in the second approach by using
an incremental addressing scheme, the drawback remains that the contraction is per-
formed as a sequence of single multiplications. Such a code can be rather efficient for
small tensors, but for larger problems a good performance can only be reached with
vectorized operations. Another problem is that for higher excitations the number of
possible contraction types grows rapidly, and also the code for one contraction can
become very long.
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5.2.2. Vectorization

A tensor contraction can be cast into the form of a matrix multiplication by defining
super-indices consisting of all indices that are summed or non-summed, respectively,
like in the following example: The contraction

Zikr =Y X12iYkLij (5.2)
]

can be written as
T T
Zie =) XiVii =) _ XpYigp = XY (5:3)
i i

where I = (I.J), K = (KL), 1 = (ij).

However, this leads to several practical problems. First, for the matrix multiplication
to be efficient, the matrix entries have to be stored in the right order (row-wise or
column-wise, depending on the implementation). In any case, the summed indices
have to be those that vary most rapidly. But the same tensor (e.g. the 7, amplitudes) is
used in different contractions and not always the same indices are contracted, so this
requirement is difficult to fulfill. Basically there are two possibilities:

1. Store each tensor in different ways corresponding to different contraction
patterns.

2. Store each tensor only once and rearrange the entries temporarily for each
contraction.

The first approach is clearly more efficient regarding calculation time, but it is only
practicable under certain limiting conditions. First, of course all occurring contraction
patterns have to be known in advance. Second, the needed storage space has to be
affordable, so there should not be too many tensors and storage forms and the indi-
vidual tensors must not be too large. Since number and size of tensors grow strongly
for higher excitations, this is infeasible for our purposes.

Besides the order of the indices, there is an additional complication. If the tensors are
stored in a compressed way taking into account the restrictions described above, they
can not be interpreted as matrices directly. For in a matrix, row and column (super-)
index have to be independent. In particular there can be no order relation between
them. Hence, if there is an index group where some indices are contracted and some
others are not, the inequality restriction in this group has to be (partly) abandoned.
This increases the size of the matrix compared to the tensor and causes some matrix
entries to be zero.

If we consider the example above (equations (5.2) and (5.3)) and assume that all
tensors are totally antisymmetric (i.e. for instance for X we assume I < J < i < j)and

all indices run from 1 to some number n, then each tensor has the size (Z) (since here
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all tensors have four indices). Now for the matrices we are only left with restrictions
between two indices each, e.g. I < J and ¢ < j, while there is no relation between e.g.
I and i. So the size of the matrices corresponding to X, Y and Z is (72‘)2 which is much
larger than (Z)EI While all entries where a row index is equal to a column index (e.g.
I = i) are zero, each entry where all indices are different appears (up to sign) several
times in the matrix (in this example four times). The sign of an entry is the parity
of the permutation bringing the indices into the correct (ascending) order. We would
like to emphasize that this increase in size affects only the memory requirements. The
number of multiplications needed stays the same as for the “direct” contraction. The
number of zeros due to antisymmetry is in practice not very large. We found e.g.
fractions of 6 — 10% for CCSDT.

For external restrictions, the problem is that the criteria depend on the values of all
indices and thus cannot be evaluated for row or column indices alone. So the indices
run without restrictions on their symmetry properties, and all matrix entries where the
combination of row and column indices does not fulfill the symmetry requirements are
zero. But in contrast to the zero entries caused by antisymmetry, these zeros occur in
blocks, if the entries are arranged in a smart way. This can be exploited to make the
contraction more efficient, as will be discussed later (see[5.3.3).

5.2.2.1. Matrix—Vector Multiplication

In the implementation by Kallay and Surjan [41] amplitudes are treated differently
from integrals and intermediates. While on amplitudes there are only two sorts of
indices, namely summed and external (i.e. those determined by the projection), the
other tensors can have a third sort of indices, namely those that will be summed in a
subsequent contraction. Only the latter and the summed are used as matrix indices,
so each integral or intermediate corresponds to a collection of matrices, labeled by
external indices. All loops over external indices are carried out explicitly. The ampli-
tudes having the right external indices are then arranged into a vector indexed by the
summed indices. The innermost operation hence is a matrix-vector multiplication.

For us, this procedure has two drawbacks. First, the multiplication of a matrix with
a vector (which can of course be seen as a special case of matrix-matrix multiplication)
does not have the optimal efficiency (the best case would be the multiplication of two
square matrices). This is illustrated by table 5.1l In the limit of large matrices, dgenm
is about a factor of 14 faster than dgenv. Second, the assumptions about the index
structure of amplitudes and intermediates are somewhat restrictive. For the sake of
generality we prefer to treat all tensors equally.

“In the limit for large n the factor is six, but for smaller n it is larger (up to 36 for n = 4). Of course other
cases are less dramatic, for example for two indices the factor ranges between two and four. But this
is still not negligible, and if more than one index group is split in this way, the factors become even
larger.
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5. Tensor Contraction

Table 5.1.: Performance (in MFLOPS per second) of matrix-vector (dgenv) and
matrix—matrix (dgenmm multiplication routines from the mkl 10.2 library on
a Core 2 Duo 3 GHz processor (single core used). “size” is the dimension of
the (square) matrices and the vector.

size | dgenv  dgenm
4 369 352

7 952 923

10 1701 1931
14 2688 3145
22 3846 4202
32 5814 6667
45 3906 3623
71 2033 5102
100 2358 5500
141 2890 6584
224 3185 11115
316 3597 8557
447 3356 6380
707 3522 6093
1000 909 8929
1414 745 10097
2236 733 10275
3162 706 10218

5.2.2.2. Matrix Multiplication after Rearranging

In order to perform a matrix-matrix multiplication as the innermost step in the con-
traction process, it is necessary to restore the data contained in the tensors to be con-
tracted in a suitable way, as discussed above. In particular, the tensors, which are
stored in the smallest possible form, are partly “unpacked” by releasing some of the
restrictions. The increase in size is minimized by contracting tensors blockwise, where
the indices in each block have fixed symmetry properties (see[5.3.3| for details).

The rearranging is a rather complicated process, but it scales only as O(N?), where
N is the matrix dimension (square matrices assumed), compared to O(N?) for the
matrix multiplication. So for large tensors the matrix multiplication will eventually
dominate the total contraction time, but it is hard to get to this point because it has
a relatively small prefactor. Moreover, the blockwise processing leads of course to
smaller matrices. The goal of our implementation is to get the prefactor for the rear-
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ranging step as small as possible.

A similar strategy has been pursued by Hirata in the development of the TCE [37].
This program contains a code generator which produces specialized code for each type
of contraction. All tensors are processed in blocks (called tiles there), which can be
defined e.g. by symmetry properties. Each tile is rearranged (if necessary) during the
contraction, and then a matrix-matrix multiplication is performed.

5.3. Actual Implementation

In this section we start from a rather general setup, but in the course of the discus-
sion several details are only given for the coupled-cluster case. We also use this as an
example to illustrate important points.

5.3.1. Tensor Representation

A central idea of the tensor representation in our program is to separate information
needed in different steps as far as possible. In particular, the entries of a tensor are
separated from the structural information. Following this idea, a tensor is constructed
in three steps. The relevant classes and their relations are shown in figure 511

First, there is a so called Synbol i cTensor, which is a quite immediate adap-
tion of the symbols coming from the formula generation part of the program, but is
more general in several respects. The latter consist basically of an identifier — distin-
guishing between amplitudes, one- and two-electron integrals — and two vectors of
indices corresponding to annihilators and creators in the original operators, respec-
tively. The indices carry — besides the operator type — the information whether they
are summed or external and whether they are hole or particle indices, i.e. correspond-
ing to occupied or virtual orbitals, and a number differentiating indices of the same
type. This unique identification is important for the contraction procedure, since the
indices to be contracted are determined as those indices which are common to two
tensors. Within the tensor contraction part of the program the indices are just inte-
ger numbers, the properties mentioned above are coded in this number by a separate
Tensor | ndexl nt er pret ati on class. This is done to have a simple structure and
to make this module usable for different applications. For example, the information
about the operator type is only needed if spin orbitals are used, since it determines the
sign with which the spin projection of this orbital is to be multiplied (see[5.3.2.4). Also,
the index types are not denoted as hole and particle here, but represented by numbers,
so in principle there could be more (or less) than two types.

Another difference to the formula generation module is that now not only ampli-
tudes and integrals have to be represented, but also intermediates, and thus it is not
enough to have two groups of indices. To handle such structures we introduced the
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UML diagram for classes related to tensor representation



5.3. Actual Implementation

class Tensor | ndexSecti ons. It derives from vect or <Tensor | ndexSect i on>.
Each Tensor| ndexSecti on represents an index group and can contain one or
several indices. Usually, the indices in one section are of the same type, but this is not
enforced by the data structure. A Synbol i cTensor object contains an instance of
Tensor | ndexSect i ons and has some additional member functions like addition
and multiplication (contraction). It is assumed that the tensor represented by the
Synbol i cTensor is antisymmetric with respect to permutations of indices within
each section.

While the Synbol i cTensor carries only basic structural information about the ten-
sor, e.g. its dimension and symmetry properties, the class Tensor Fr ane derived
from it, which is constructed in the second step, contains additional data allowing,
among other things, to determine the actual size of the tensor. This data, like the point
group or the number of orbitals in each irreducible representation, is collected in a
Tensor | nf o class.

Finally, the Tensor class derived from Tensor Fr ane contains the actual entries.
For this we use the vect or class from the STL which allows an efficient access to
arbitrary entries by index. For efficiency reasons (to avoid copying), the Tensor class
does not contain this vector itself, but a shared pointer to it. The structures needed to
find a particular entry, defined by a certain index combination, in the tensor are not
part of the tensor itself but are built when they are first needed and then cached (see

B.3.4).

5.3.2. Indices and lterators
5.3.2.1. Index Representation

The indices used to identify particular orbitals and whose combinations identify the
tensor entries — not to be confused with the indices described above which describe
the structure of a tensor — should be simple integers for efficiency reasons, since they
appear in the innermost part of the contraction procedure. On the other hand, each
index has to carry a lot of information, e.g. for coupled-cluster whether the orbital is
occupied or virtual, which irreducible representation it belongs to and — in the case of
spin orbitals — which spin projection it has. Therefore we introduced table classes (e.g.
Spi nSpat i al MOTabl e_I rrepSzl dx for spin orbitals) which can interpret integer
numbers as structured indices. Depending on the context (i.e. which information is
needed) different tables with different numbers of hierarchy levels can be used. In
the case of coupled-cluster there are three or four levels, depending on which type of
orbitals is used. The first one is the occupation status (labeled oav for occupied/ac-
tive/virtual). The next levels are the irreducible representation (abbreviated i r r ep)
and (only in the case of spin orbitals) the spin projection sz. The last one is the position
of the index among all with the same properties (i dx). A small example (ten occupied
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5. Tensor Contraction

and four virtual spin orbitals) is shown in table[5.2]

Table 5.2.: Example for hierarchical index orbital table. Here, f | at | dx numbers all
orbitals, starting with the occupied ones. The value of oav is 0 for occupied
orbitals and 2 for virtual orbitals (active orbitals, which are not present in
the example, would have oav=1).

| evel
flatldx | O 1 2 3
oav irrep sz idx

0 0 0 0 0
1 0 0 0 1
2 0 0 0 2
3 0 0 1 0
4 0 0 1 1
5 0 0 1 2
6 0 1 0 0
7 0 1 1 0
8 0 2 0 0
9 0 2 1 0
10 2 0 0 0
11 2 0 1 0
12 2 2 0 0
13 2 2 1 0

We want to be able to generate all possible index combinations for a tensor, i.e. it-
erate over its entries, in a systematic manner. For example it is reasonable to change
the symmetry classes the indices belong to as seldom as possible, as we will see later.
Therefore we need an iterator which is aware of the particular hierarchical index struc-
ture. At the same time, all information which is related to the current state (i.e. which
changes in the course of the iteration) should be separated from the actual iterator. To
implement this we introduced a class Super | t er at or | ndex (see listing 5.1] for the
declaration). The length of a Super | t er at or | ndex is the original number of indices
times the number of hierarchy levels. So for a tensor with n indices and [ levels we
have n - | entries, where the first n correspond to the outermost level, the next n to the
second, and so on. The last n entries contain the full indices including all levels.

As an example, consider a tensor with four indices 7, j, a, b and the orbitals from table
Then each of the three vectors contained in the Super | t er at or | ndex (lines 9—
11 in listing 5.)) has 16 entries. The i dx vector for the tensor element with flat indices
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1,5, 10, 13 would look like this:

(0022001012 031013 151013]
—_——— —— Y—— V— —

oav irrep sz i dx

The oav level is included here, although at this level no real iteration takes place,
since there is only one allowed value for each index (see below). At the outer levels,
each index is replaced by the first (flat) index with the same values up to this level.
For example, 5 is replaced by 3 in the sz group, since 3 is the smallest index of an
occupied orbital which belongs to the same representation (0) as orbital 5 and has the
same spin projection (1). This way of representing a hierarchical index is more efficient
(for iteration) than storing the actual values for each level as given in the table.

Listing 5.1: Class declaration for Super | t er at or | ndex

cl ass Superlteratorlndex {
publi c:
Superlteratorlndex(unsigned int size);

bool operator < (const Superlteratorlndex & sii) const;
/'l conpares only idx

void set(const Superlteratorlindex & sii); //copy val ues
efficiently

vect or<i nt > i dx; /1 actual index (to be iterated)

vect or <char > val i d;

vect or <char > outerSmaller; // flag if outer level satisfies "<"
restriction

bool vali dO; /1l this is active iff idx.size()==0 (tensors of

rank 0) to guarantee a single iteration step

b

5.3.2.2. lteration Procedure

The incrementation of a Super | t er at or | ndex, i.e. finding the next valid index com-
bination, is quite complicated. Of course it would be simple to write a corresponding
loop structure for a given tensor. But since there are many different possible tensor
structures, we would need many different sets of loops, which is impractical. For a
generic incrementation, and a recursive “trial and error” procedure is necessary.

For each index, i.e. each entry in the Super |t erat or | ndex, there is a separate
iterator (At omi cl t er at or, see listing 5.2), and all these iterators are collected in a
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5. Tensor Contraction

Super |t erat or. The iteration is split up into two functions, which are both mem-
bers of At om cl t er at or. The first, i nc, does the actual incrementation, and r eset
is used to correct the indices following the last incremented one in accordance with all
restrictions. Their code is given in listings 5.3land 5.4 The functions call each other
(lines 12 and 33, respectively), and themselves (lines 18 and 31, respectively) recur-
sively.

We do not want to discuss the procedure in all details here, but explain how it works
in principle and why it is complicated.

We apply the convention that the last index is the fastest running one. Hence, if a
Super | terat or has to increment its corresponding index, it first tries to increment
the last entry. If this does not work, the index before it is incremented, and so on until
the first index is reached. Each time a new index is incremented (after an “overflow” of
the previous) all subsequent indices are reset to appropriate start values. The function
i nc returns the position of the outermost incremented index, which is given by the
element _t hi s of the corresponding At omi cl t er at or (5.2 line 33). If none of the
indices can be incremented any more, the Super | t er at or | ndex index is marked as
invalid (53] line 22, or[5.4] line 3; if the reset is successful, the index is validated again
in line 37). The incrementation itself is done by the index table classes (5.3} line 4, and
B.4 lines 12 and 26), since only they know what the next index at the corresponding
level is.

If there are several hierarchy levels, the current index is not incremented to its max-
imal possible value, but only up to the point where the next higher level would be
affected. In the example above, the combination (1,5) in the occupied indices is not
followed by (1,6), since this would change i r r ep and sz of the second index, but by
(2,3). For further examples see table[5.3and listing[5.5 The different iteration patterns
are also illustrated in figure

Now we have to take into account the antisymmetry properties of our tensors. To
store only non-redundant entries, we require the indices within one index group to be
in ascending order. To implement this property for hierarchically structured indices is
not completely trivial. The strict inequality relation applies only to the complete in-
dices, i.e. at the innermost level. At outer levels, succeeding indices can also be equal.
On the other hand, if the restriction is already strictly fulfilled at some level, all follow-
ing inner levels are completely free, since the index order is dominated by outer levels.
So the possible values for one index entry depend on the values of several other entries,
and this has to be taken into account in the incrementation process (5.3] lines 10/11,
B4 lines 4-11 and 28/29). The basic property whether an index is bound to another
index by an inequality restriction is part of the iterator (element _| ef t, see line 34 in
listing [5.2)), while the information about the fulfillment of this restriction at outer lev-
els — which can change during the iteration — is stored in the Super | t er at or | ndex
(out er Smal | er, line 11 in listing 5.I). Both values together determine whether an
index in a specific situation is restricted or not.
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5.3. Actual Implementation

Listing 5.2: Class declaration for At oni cl t er at or

class Atomiclterator : public Sublterator {
public:
Atom clterator();

/[l returns true if Sublterator is valid
/'l considers this Sublterator only (==> qui ck)
virtual bool valid(const Superlteratorlndex & const;

/'l returns true if Sublterator is valid
[/l starts at inner |oop, runs outwards, stops at "outernost"
(inclusive)

virtual bool deepValid(const Superlteratorlndex & Sublterator =

out ernost) const;

/'l returns position of outernpst changed index, -1 if no further

iteration possible
[/l starts at inner |oop, runs outwards, stops at "outernost”
(inclusive) and "innernost" (inclusive) in case of reset
virtual int inc(Superlteratorlndex & Sublterator * innernost,
Subl terator * outernost);

/1 returns true if Sublterator contains a valid step
/] starts at outer loop, runs inwards, stops at "innernost"
(inclusive)

virtual bool reset(Superlteratorlndex & Sublterator * innernost);

bool boundToCQuter(const Superlteratorlindex & const; //true if

this loop is restricted by value of next outer |oop

I

friend class Superlterator

pr ot ect ed:

int _hLevel; // hierarchy level, (N-1) = innernost

bool _appl yTri angl eRestricti on; [l actually ensure "<" restriction

const RestrictionPredicate » _restriction;

/'l state dependent variables are stored in Superlteratorlndex
/1 variable |ocations are stored as array positions within

Super | teratorl ndex
/[l e.g. _left=3 ==> Superlteratorindex[3].idx is left index
int this; // position of state dep. variables of this iterator
int _left; // left index if triangle restricted, else -1

int _nextlnnerLevel, _nextCQuterlLevel; // correspondi ng index at
next inner/outer level, -1 if no inner/outer |evel exists
const Fl atl ndex2Hi erarchi cal | ndex2 = _hTab;

b
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normal blockwise
J J
g ST 7 ST

Figure 5.2.: Illustration of “normal” and blockwise (i.e. respecting hierarchy levels)
iteration for two indices.

Listing 5.3: Incrementation function of At om cl t er at or

int Atomiclterator::inc(Superlteratorlindex & sii, Sublterator =
i nnernost, Sublterator * outernost)
{
next :
if ( _hTab->inc(sii.idx[_this], _hLevel) ) //increnment current
i ndex
{
if ( _restriction & !(*_restriction)(&sii.idx[_this]) )
got o next;
if ( !_nextlnner )
return _this
if ( left>=0 & _nextlnnerLevel >=0 ) //update outerSnaller if
necessary
sii.outerSmaller[_nextlnnerLevel] = sii.outerSmaller[_this]
[| (sii.idx[_left]<sii.idx[_this]);
if ( _nextlnner->reset(sii, innernost) ) //reset subsequent
i ndi ces
return _this
el se
got o next;
}
int pos = 0;
if ( this!=outernpst &% _nextCQuter && (pos=_next Quter->inc(sii
i nnernopst, outernopst))>=0 ) //increnent next outer index
return pos;
else //increnentation failed, invalidate index
{
sii.valid[_this] = fal se
return -1,
}
}
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Listing 5.4: Reset function of At omi cl t er at or

bool Atomiclterator::reset(Superlteratorlndex & sii, Sublterator =

{

i nner nost)

sii.valid[_this] = fal se
if ( _left>=0 && _applyTriangl eRestriction ) // check if
triangle restriction applies

{
if ( sii.outerSnaller[ _this] )
sii.idx[_this] = sii.idx[_nextQuterLevel]; // ==> no
triangle restriction
el se
{ // no further outer level or "=" at outer level ==> triangle
restriction applies
sii.idx[_this] = sii.idx[_left];
if ( _nextlnnerLevel<0 ) // if innernost level: "<" applies
el se: "<=" applies
if (!_hTab->inc(sii.idx[_this], _hLevel) ) // check if
valid
return fal se;
}
}
el se
{

if ( _nextQuterLevel>=0 ) // check if not outernost
sii.idx[ _this] = sii.idx[_nextQuterLevel];
el se
sii.idx[_this] = _hTab->begin();
}

Next :

}

if ( _restriction)
while ( !'(*_restriction)(&sii.idx[_this]) )
if (!'_hTab->inc(sii.idx[_this], _hLevel) )
return fal se;
if ( _left>=0 && _nextlnnerLevel >=0 )
sii.outerSnaller[_nextlnnerLevel] = sii.outerSnaller[ _this] ||
(sii.idx[_left]<sii.idx[_this]);
if ( _nextlnner )
if (! _nextlnner->reset(sii, innernost) ) // check if inner
iteration possible

{
if ( inc(sii, innernmost, this)>=0)
got o Next;
return fal se
}

sii.valid][ _this] = true
return true;
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In addition to this “internal” antisymmetry constraint there can be “external” re-
strictions. In the coupled-cluster case for example, not all combinations of irreducible
representations or spin projections are admissible. This will be discussed in detail in
sections and 5.3.24 The constraint that some indices run over occupied and
some over virtual orbitals is also treated as an external restriction.

Since our iterators should be rather generally applicable, we implemented a struc-
ture which allows for arbitrary external restrictions: Each iterator can contain a so
called Restri cti onPredi cat e which imposes a constraint on the corresponding
index or on several indices. If an index is changed, the Restri cti onPr edi cat e at
this position (if there is one) is evaluated (5.3] line 6,5.4] lines 24 /25). If this confirms
that the current index combination is valid, the incrementation is successful, otherwise
the next value is tested.

Table 5.3.: Different iteration patterns for two indices i, j € {0,1,2,3}. In the “block
iteration” case there are only two hierarchy levels for simplicity, where the
outer level is defined by assigning the indices 0, 1 to one class and 2,3 to
another. The “symmetry” restriction requires that the classes of i and j are
equal, while “triangle” means that the restriction ¢ < j is applied.

normal iteration blockwise iteration
flat index || unrestricted | triangle || unrestricted | symmetry | sym. + triang.
i j i i j i j i j
0 0 0 0 1 ||0 0 0 0 0 1
1 0 1 0 2 |0 1 0 1 2 3
2 0 2 0 3 |1 0 1 0
3 0 3 1 2 |1 1 1 1
4 1 0 1 3 |0 2 2 2
5 1 1 2 3 |0 3 2 3
6 1 2 1 2 3 2
7 1 3 1 3 3 3
8 2 0 2 0
9 2 1 2 1
10 2 2 3 0
11 2 3 3 1
12 3 0 2 2
13 3 1 2 3
14 3 2 3 2
15 3 3 3 3
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The effects of different restrictions for a simple example (two indices) are shown
in table In the case with four levels described above, each of the indices of the
outermost level carries a Rest ri cti onPr edi cat e defining the occupation status of
the corresponding orbital. These restrictions ensure that the particular index struc-
ture of each tensor is respected while we can use the same type of iterator for all
of them. The other restrictions (regarding irreducible representations and spin pro-
jections, respectively) affect all indices of the corresponding level. The respective
RestrictionPredi cat e islocated at the last index of that level.

The index table as well as the Restricti onPredi cat es are contained in the
Tensor I nfo classes, so that a tensor contains all necessary data to construct an iter-
ator for its entries.

5.3.2.3. Dealing with Point Group Symmetry

In implementations of correlation methods it is common to treat only subgroups of
Dy, ie. the six point groups Cy, Cs,, Cy, Cs,,, Cyp,, and Dy, since for these, the symme-
try condition takes a much simpler form. For all other groups, the additional imple-
mentational effort would be very high, compared to a rather small gain in efficiency.

Since Dy, contains only elements of order two, all irreducible representations of the
groups above are one-dimensional and the characters can only be £1. Under these con-
ditions, the requirement (5.I) is equivalent to saying that the product of the irreducible
representations of all involved orbitals has to be the totally symmetric irreducible rep-
resentation.

This condition applies also to intermediates, which can be seen as follows: Consider
the contraction of two tensors which both fulfill the condition that the product irre-
ducible representation is totally symmetric. Then the product of all irreducible rep-
resentations from both factors is also totally symmetric. Since every summed index
occurs twice and the product of an irreducible representation with itself is (in the con-
sidered case) always totally symmetric, the representations corresponding to summed
indices can be crossed out and the remaining product is still totally symmetric.

Within our program, irreducible representations are identified with integer num-
bers, where 0 corresponds to the totally symmetric one, and the others are numbered
arbitrarily. For each group a precalculated multiplication table is stored, so that the
direct product of two irreducible representations can be evaluated efficiently. For an
index combination to be valid, the total product should yield 0.
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5.3.2.4. Enforcing Spin Projections

For an excitation operator to conserve the expectation value of S, the following condi-
tion has to be fulfilled: . .

Z Sz(al/> - Z SZ(ZV) =0,

v=1 v=1

where a,, are the creator and i, the annihilator indices, or shorter: 32" €,5,(p,) = 0
with €, = £1. We now assume this condition to hold for all amplitudes and integrals
and consider an intermediate tensor constructed from two such quantities by contrac-
tion. We have the two conditions

2n

> &S.p,) =0 (5.4)

v=1

2m

> €.S8.(q,) =0. (5.5)

pn=1
Now we assume that the last s indices are contracted, i.e. we have a bijection
m:{2n—s+1,....,2n} - {2m —s+1,...,2m}

such thatp, = ¢, (,). If we solve (5.4) and (B.5) for the terms belonging to the contracted
indices and combine the two equations, it follows that

2n—s 2m—s
> aS.p) =% > €,5.(q.)
v=1 p=1
or equivalently
2n—s 2m—s
Y aSp)+ D €.8.(q,) =0
v=1 ’u,:l

where
, {—e/L ife, =€) forv=2n—s+1,...,2n

€ ife, = —€rp)forv=2n—-s+1,...,2n

o
So with appropriately defined signs € we can apply the same condition for all tensors.
If there is no contracted index, the sign for the indices of the intermediate are chosen
such that indices of the same type (particle or hole) get the same sign.

In the actual implementation we replace the S, values +1 by 1 and 0, i.e. we shift
them by . Therefore we have to modify the condition slightly, namely

2n 2n

Z eysz(py) = % Z €y-

v=1 v=1
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Listing 5.5: Usage example for tensor classes and iterator

int main()

{

[1... (initializing MOtable etc.)
Tensorl ndexl nterpretation_SE AC tl|

Synbol i cTensor st(Tensorl ndexSections(tll, "i-j-,a+b+"));
cout << "st=" << st << endl
SpinOrbital _QAV Tensorinfo info(table, &pg,
st.tensorl ndexSections());
cout << "Info: " << info << endl

Tensor Frane<Spi nOrbi tal _OAV_TensorInfo> tf(st, info);
Tensor <Spi nOrbi tal _QAV_Tensor | nfo, double> t(tf);

I ndexVi ew i Vi ew,
boost::shared_ptr<Superlterator> slter(tf.getlterator());
for ( Superlteratorlndex sldx(slter->begin()) ;
slter->valid(sldx) ; slter->inc(sldx) )
cout << iView(sldx) << endl

}

/] Qut put :

st={[[S_ 0 0-, S 01-], [S 20+ S 2 1+]]}
I nfo: SpinOrbital OAV _Tensorl nf o,
Restrictions:

AV, val ue=0, pos=0

@AV, val ue=0, pos=1

AV, val ue=2, pos=2

AV, val ue=2, pos=3

Irrep, pos=7

Sz, ac= (-1 -11 1), pos=11

[0O0O 10 10 O O 10 10 O O 10 10 O 1 10 11]
[0O0O 10 10 0 O 10 10 0 O 10 10 O 1 10 12]
[0OO0O 10 10 0 O 10 10 O O 10 10 O 1 10 13]
[0O 10 10 0 0 10 10 0 O 10 10 O 1 11 12]
[0O0O 10 10 0 O 10 10 0 O 10 10 O 1 11 13]
[0OO0O 10 10 0 O 10 10 O O 10 10 O 1 12 13]
[0O0O 10 10 0 O 10 10 O O 10 10 O 2 10 11]
[0O0O 10 10 0 O 10 10 O O 10 10 O 2 10 12]
[0OO0O 10 10 O O 10 10 O O 10 10 O 2 10 13]
[0O0 10 10 0 0 10 10 0 O 10 10 0 2 11 12]
[0O0O 10 10 0 O 10 10 0 O 10 10 O 2 11 13]
[0O0O 10 10 0 O 10 10 O O 10 10 0 2 12 13]
[0O0O 10 10 O O 10 10 O O 10 10 1 2 10 11]
[1... (630 entries)

[0 O 10 10 8 8 20 20 8 9 20 23 8 9 22 23]
[0 O 10 10 8 8 20 20 8 9 20 23 8 9 22 24]
[0 O 10 10 8 8 20 20 8 9 20 23 8 9 22 25]




5. Tensor Contraction

5.3.2.5. Usage Example

Listing 5.5l illustrates the usage of the structures introduced so far. The initialization
of the point group (pg) and orbital table (t abl e) is not shown. Next, we have to
fix a Tensor | ndexl| nt er pret ati on (line 4). The suffix _SE_ACindicates that each
index contains — in addition to its number and type — the information whether it is
summed or external and whether it belongs to an annihilation or creation operator.
The Synbol i cTensor (st, line 6) determines the structure of the considered tensor.
Here we have two hole indices (7, j) coming from annihilator (shown by the minus
sign) and two particle indices (a,b) coming from creators. The comma groups the
indices, so we assume i < j and a < b.

Next, the Tensor | nf o object is constructed from this structure together with pg
and t abl e (line 8). From this data the Restri cti onPredi cat es for the iterator
(line 15) are determined. They are shown in lines 24-29. A sample of the indices
resulting from the iteration (line 16) is given in lines 31-47.

5.3.3. Contraction Procedure

As a first step, the contraction of two tensors is carried out at the symbolic level. That
means the indices which the tensors have in common are identified and the structure
of the resulting tensor is determined. In principle this is given by concatenating the
non-contracted indices of the two factors. But if external indices are present, they
are collected in two groups, one for hole and one for particle indices. This enforces
antisymmetry of the resulting tensor with respect to permutations of external indices,
which is what we want to have at the end. Of course the antisymmetrization could
also be done afterwards, but it is more efficient to do it in each contraction step, since
the intermediates to be stored are smaller. After that, the result tensor is constructed
and initialized with zero entries, and all auxiliary structures needed for the contraction
are created.

As discussed in we want to use matrix multiplications to carry out the con-
traction of two tensors. The straightforward way to do so would be to convert both
tensors into matrices, where the contracted indices form a super-index for the columns
and the non-contracted are used for labeling the rows (for the second factor it should
be the other way round, but we assume this matrix to be transposedﬁ), multiply them,
and then restore the resulting matrix into a tensor. We have already seen some prob-
lems related to this step, in particular the fact that these matrices would contain a lot
of zero entries for two reasons:

This does not only spare the distinction between the two factors, but is also advantageous for the
matrix multiplication. If the second matrix is not given in transposed form, the dgenmroutine does
the transposition itself in many cases for efficiency reasons.
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5.3. Actual Implementation

1. The antisymmetry properties of the original tensors cause matrix entries to be
zero when index groups are split, i.e. some indices of the group are contracted
and some are not.

2. If there are external restrictions, matrix entries whose indices do not fulfill them
are zero. This can be the spin and symmetry restrictions described before, but
also other restrictions affecting more than one index.

While the first problem is inevitable in our situation, the second can be circumvented
in many cases, as indicated in We make the assumption that each external
restriction only takes effect within one index level and that there is no restriction at the
innermost level. This is of course fulfilled in the coupled-cluster case. Because of the
way our tensors and iterators are constructed, the second sort of zeros then occurs in
blocks. So it is a rather obvious idea to also do the contraction blockwise and leave
out the zero blocks. So what we actually do is the following (see algorithm H)): First we
iterate over the blocks of the first tensor, convert each of them into a matrix and store
these matrices. Then we do the block iteration and conversion for the second tensor,
and each block is — directly after the conversion — multiplied with all blocks which
have the same sequence of contracted indices, and the result is written to the result
tensor.

Algorithm 4: Tensor contraction using blockwise matrix multiplication

Data: Tensor ¢, Tensor t,, Tensor t5 initialized to 0
Result: Tensor t3

foreach block of t; do
convert block to matrix and store result;

foreach block of t, do
convert block to matrix;

foreach matching block from t; do
multiply matrices;

write result to ¢3;
end

end
end

Now we want to describe the iteration and conversion process in some more detail.
For the separate iteration over the blocks and the entries in the block we define so-
called | t er at or Sect i ons, that are restrictions of the full iterator. The first section
comprises all index levels except the last, the second one is for the innermost index
level. For the result, there is no iteration over blocks. Instead, the start index for the
block is composed from the non-contracted indices of the factor blocks. The conversion
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5. Tensor Contraction

itself is equal in both directions, expect for the last step, where in the first case the
tensor entry is written to the matrix and in the second case the matrix entry is added
to the corresponding tensor entry. In both cases the transferred value is first multiplied
by the appropriate sign.

If there are split index groups, we do not have a one-to-one correspondence between
tensor and matrix entries. Besides the fact that the matrix contains more zeros, each
tensor entry appears several times in the matrix, partly with altered sign. Now we
have two possibilities. Either we iterate over the tensor and determine all positions in
the matrix where this entry has to be put (or which contribute to this entry), together
with the corresponding sign. Alternatively, we iterate over the matrix and determine
for each entry the corresponding tensor entry and sign. The second approach is easier
to implement, since the index for the tensor entry and the sign are given by just sorting
the indices within each group. If two or more indices are equal, the entry is zero. How
the tensor entry for a given index is found will be discussed in the next subsection.

5.3.4. Tensor Addressing

To access a particular tensor entry, its address, i.e. its position in the vector, has to be
determined from the indices defining the entry. For this purpose the block structure
of the tensor can also be exploited. The address is calculated in two steps as a block
offset (starting address for the block) plus the position of the entry within the block.
The whole procedure is shown schematically in ﬁgure

A block is defined by specifying for each index its value up to the prelast level. That
means within the block the indices are only allowed to vary at the innermost level.
Because of the restrictions discussed above, the set of allowed index combinations
here is “sparse”. In particular the next valid combination can not be easily determined
from a given one. But since there are usually few blocks compared to the number of
entries, all index combinations starting a block can be stored explicitly in a map. This
data structure allows to find an arbitrary index combination efficiently. The address
offset for a block is simply the sum of the sizes of all blocks before it. Together with
the offset additional data needed for addressing within the block is stored.

The remaining part of the addressing takes place in the innermost part of the con-
traction procedure, therefore its efficiency is very important. In particular it is desir-
able to avoid repeating the complete addressing for each index combination. Instead
we would like to have an update function which recalculates only that part of the
address which corresponds to the indices last changed during the iteration.

Within a block, each index runs through a connected range of values, i.e. the index
space does not contain any “holes”, which makes the addressing in principle simple.
If there were no further relations between the indices, the address for a given index
combination could be easily calculated: Given indices iy, ...,i, with i, € {1,...,m;}
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5.3. Actual Implementation

the address is
n n
Z 1 - H m;.
k=1 j=k+1
Now we have the additional complication of antisymmetry in some indices. But

between the different index groups there is no relation and so an analogous formula
applies to them. The index values i, are replaced by “group indices”, and the multipli-
ers m are now group sizes instead of index ranges. These multipliers are determined
together with the block offsets (the block size is the product of the group sizes).

. ( ab ) [addr — offset + n }

Nested Pointer Lists

offset

&
=Y
v

Jé]

map<Super|teratorlndexBl ock, int *>  --—-—---- ’

Figure 5.3.: Schematic overview of the tensor address calculation

The addressing within such a group is more complicated. If we assume the indices
to be in ascending order, the address could still be calculated explicitly, although the
corresponding formulas become increasingly complex when the number of indices
grows. But we want to use the addressing also in the context of matrix—tensor conver-
sion, and there we can not make this assumption. If one part of an index group belongs
to the contracted indices and the other one not, the inequality relation between these
indices is lost. The straightforward solution to this would be to first sort the indices
and then do the addressing, but this is very inefficient. On the one hand, the sorting
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5. Tensor Contraction

becomes rather expensive for larger index groups, since its complexity is O(nlogn) if
n is the group length. On the other hand, the whole procedure has to be repeated for
each matrix entry, although most of the time during the iteration only a small part of
the indices changes.

Another possibility is to precalculate a table where for each possible index combi-
nation the corresponding address and the sign the entry has to be multiplied by are
stored. Such tables can be constructed in a way that the information which indices
have been changed since the last access can be exploited to minimize the access cost.
The interesting point is now to find all index combinations which occur during a spe-
cific matrix—tensor conversion. Starting from a valid index combination for the tensor,
all matrix entries contributing to this tensor entry correspond to index combinations
which are related to the given one by a permutation. But not all permutations are al-
lowed. Firstly, the index groups are of course conserved. Restricting our attention now
to one index group, we start with a sequence i; < iy < ... < i, of indices in ascend-
ing order. Now we divide this into two parts, namely contracted and non-contracted
indices, corresponding to rows and columns of the matrix. Let k be the number of
non-contracted indices. Since within the parts we can still assume the indices to be
ordered, we do not need to perform permutations among iy, ...,%; O iy q,...,%,. SO
the set of permutations we need is given by the quotient S,, /(S x S,,_j.), i.e. the group
of all permutations of n elements modulo the product of the two subgroups corre-
sponding to permutations within the parts. This quotient is not a group in general
and its elements are strictly speaking not permutations but equivalence classes of per-
mutations. But by requiring the indices to be in ascending order within each part we
can define a canonical set of representatives. The number of elements of the quotient
is (1) = ﬁlk),, compared to n! for the full permutation group. But now we have
an additional complication. Since we are within one particular block, each index is
restricted to a certain subset of all indices. Although this restriction does not only con-
sist of the irreducible representation, we refer to it briefly as the symmetry type of the
index. Since the symmetry types are also fixed for the matrix, we have to restrict the
permutations to indices with the same symmetry type. If all indices in the considered
group have the same type, this does of course not change anything. In the other ex-
treme case, where all types are different, we do not need any permutation at all. In all
other cases we have to first determine the permutations for each subset of indices with
the same symmetry type. That means we take the corresponding subgroup of S,, and
form a quotient set as above. This is only nontrivial if there are indices of this type in
both parts, i.e. contracted and non-contracted. The total set of permutations is then the
direct product of the permutation sets for all symmetry types occurring in the given
index group. The direct product here is to be understood in the sense that every factor
acts on a different set of indices, and these sets form a partition of the index group,
so the product is a permutation of all indices in the group. This set of permutations
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determines the structure of the table in which the addresses have to be stored.

Precalculated address tables are only useful if they can be generated and evaluated
efficiently. The initialization of such a table proceeds in two steps. First, a nested struc-
ture of pointers is set up. It consists of several “levels”, where each level corresponds
to an index position and contains as many entries as there are possible index values
at this position (given the values at the positions before). For all but the last index,
each entry is a pointer to the first entry of the next level. At the innermost level, the
addresses have to be stored. For this we have to do two things:

1. Loop over all index combinations (for this group) occurring in the tensor and
increment the address accordingly.

2. Loop over the corresponding set of permutations (determined as described
above), store the current address and the parity of the permutation in the table
entry belonging to the permuted set of indices.

Both could be done by generic iterators, but this would not be efficient. Writing the
loops and the permutations out explicitly requires to have a separate initialization
function for each type of table. The loop parameters (start and end indices) for the
iteration over the tensor can also vary, but they are given as arguments to the function.
Although for small index groups there are not many different table types, their number
grows rapidly with increasing size of the index groups. And since we want to be able
to deal with high excitations, we did not want to restrict the number of indices in
one group from the beginning. Hence it would be impractical to write all necessary
functions by hand, so we decided to use automatic code generation for these functions.
This offers a convenient way of writing a large number of functions with a common
interface, which have the same general structure but differ in some details, like the
number of loops.

The quite complicated step of finding the correct set of permutations is carried out
during the code generation, i.e. before running the actual main program. The problem
which remains at runtime of the latter is to choose the correct function and to call it
with the right arguments.

5.3.5. Further Optimizations

Most of the time during the iteration only the last indices change. Since our generic
iterators are not of optimal efficiency, it is beneficial to code one or several of the in-
nermost loops explicitly. Here we have to differentiate several cases, depending on
which indices are coupled by inequality relations. We decided to take at most three
explicit loops to keep the number of cases manageable. While the index structure is
handled by defining different functions, the index ranges are given to these functions
as arguments.
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Although the generation of the addressing tables and related structures is already
quite efficient, it still takes a non-negligible amount of time. But it is not necessary to
generate new tables for every contraction. Each table depends only on the structure of
one index group, and the same structures usually appear several times in a sequence
of contractions. Therefore it is useful to store all generated tables for later reuse. Al-
though a single table is rather small, the collection of all tables can become large. To
limit the amount of memory it takes, we implemented a cache structure which deletes
entries if a predefined size is exceeded.

Since a coupled-cluster calculation requires an iterative procedure where the same
contractions are performed in each iteration (only with different entries), there are even
more possibilities for reuse. Not only addressing tables, but also other administrative
structures can be stored during the first iteration and reused later.

5.3.6. Performance Analysis

So far we did only some preliminary tests to check the performance of our program. In
table[5.4lwe compare the timings for a single CC iteration published by Kallay with the
time our program needs to carry out all the contractions needed for this iteration on
similar machines. Since we could not use exactly the same ones, we scaled our times
appropriately. We observe that the relative performance of our program is better for

Table 5.4.: Calculation times for a single CC iteration

CPU time/min
system method basis (size) | ours ‘ ref.
H,O CCSDTQ | cc-pVDZ (24) 5 6.8”
Butadiene | CCSDT | cc-pVTZ (204) | 1000 | 3024°

“taken from ref. [42], calculation done on Athlon 800 MHz
btaken from www.mrcc.hu, calculation done on Pentium IV 3.4 GHz

the larger calculation, as can be expected comparing the performance of matrix-matrix
and matrix-vector multiplication (see table [5.1)).

In addition, we did a CCSD calculation on the system 4H,O with a cc-pVDZ basis
(96 basis functions). For this calculation (11 iterations), the MOLPRO program [108]
needs 9.58 s, while the corresponding contractions in our program take 80.46 s. These
figures can not be compared directly, since MOLPRO uses spatial orbitals and spin-
averaged excitation operators (see section2.2.2.4) and thus has a much lower number
of parameters (220288 amplitudes compared to 920248, which gives a ratio of about
4.18). Since the time for a CCSD calculation should scale with the number of ampli-
tudes to the power of 3, we multiplied the time for the MOLPRO calculation by the
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Table 5.5.: Operation statistics for conversions

‘ tensor — matrix | matrix — tensor

number of operations 2.936e+09 1.781e+09
CPU time/s 14.13 8.07
operations per s 2.079e+08 2.208e+08

amplitude ratio to the power of 3 to estimate the time the calculation with spin orbitals
would have taken. The result is 81.56 s, which is of the same order of magnitude as
our observed time.

For this example, we also analyzed the performance of the contraction part in some
more detail. Table shows the CPU time in relation to the number of operations
for the rearranging steps (conversion from tensor to matrix and vice versa). The CPU
time for the matrix multiplication (dgenm) is 42.73 s, which makes up 53.1% of total
CPU time. This is a rather good value, taking into account that in a previous version
of the implementation the total computation time was completely dominated by the
conversions. For larger matrices (i.e. larger molecules or basis sets) the proportion for
the matrix multiplication is expected to increase, since this is an O(N?) step while the
conversion scales only as O(N?).

Considering the performance in terms of floating point operations (FLOPS) per sec-
ond, we have 8515.61 MFLOPS/s for the dgenmpart and 4522.25 MFLOPS/s in total.
This is to be compared to the dgenmpeak performance of 11 GFLOPS/s. Thus we
have reached - for this system — an overall efficiency of 41% of this peak performance.
This is a very reasonable result for the implementation of a generic tensor contraction
for antisymmetric, externally restricted tensors.
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6. Conclusion and Outlook

6.1. Conclusion

We have presented a new implementation of the coupled-cluster method achieving
both flexibility and efficiency. Flexibility here means on the one hand that there is no
conceptual limitation of the excitation level included in the cluster operator, and on
the other hand, that not only standard coupled-cluster expressions can be evaluated
by our machinery. This is achieved by an automatized derivation of working equations
and by a generic tensor contraction procedure. Our program could be immediately ap-
plied to methods like CI or CEPA or variants of CC, and with some modifications also
to other methods which can be formulated in terms of second quantization. The pro-
gram has a modular structure making it relatively easy to exchange method-specific
parts.

The first part — the formula generation — is very general. A combination of an al-
gebraic operator evaluation — using an extension of Wick’s theorem — with a graph-
based simplification algorithm makes it possible to evaluate also complicated second-
quantized expressions in a reasonable time.

The latter part — the tensor contraction — is central for an efficient implementation.
For a program aiming at generality it is of course not possible to optimize the con-
traction procedure for every type of contraction separately, so a generic contraction
function is necessary. Our approach to reduce the contraction step to a sequence of
matrix multiplications has several advantages: First, the (time-critical) multiplication
step is independent of the structure of the involved tensors, all are brought to the
same basic form. Second, for this step we can use a standard library which is highly
optimized and adapted to the actual processor architecture. Finally, by performing
conversion and matrix multiplication blockwise, we can effectively exploit symmetry
properties of the tensors. The price for this is a rather complex rearrangement step,
but by an optimized addressing of tensor entries and several other improvements we
also achieved a high efficiency in this part. For some cases (e.g. calculations with high
excitations and small basis set) it is still the time-determining step, but for larger basis
sets the matrix multiplication dominates, and so the relative performance (compared
to programs which do not use matrix multiplications) is better in the latter case.
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6.2. Outlook

There are several directions in which the present implementation can be extended or
improved. In addition, we want to indicate some interesting possible applications of
our program.

6.2.1. Optimization

While we assume that the optimization potential within the tensor contraction is large-
ly exhausted, the step before — which determines the contractions to be carried out -
offers several possibilities for further improvements. Besides the factorization briefly
mentioned in chapter B} which determines the order of the factors in one term, it is
also possible to factor out common factors from different terms. By such transforma-
tions, many expensive multiplications can be saved, while the cost of possible extra
additions is negligible. The combination of both types of factorizations leads to a very
complicated optimization problem, but even a non-optimal solution could lead to sig-
nificant savings in the computational time for the subsequent calculation.

In addition, when the set of contractions to be performed has been determined,
some further manipulations can be applied. For example, the amount of memory
needed during the calculation may depend on the order in which certain contractions
are done. Moreover, some of the rearrangement steps could be avoided if the indices
which determine the structure of an intermediate (contraction result) are arranged in
a way which is suitable for the next contraction using this as a factor.

In the long term, also a parallelization of the implementation, in particular the tensor
contraction, would be interesting.

6.2.2. Generalizations

Our next goal is of course to implement multi-reference methods, in particular SR-
MRCC and MRexpT, which requires some additional considerations. Being able to
treat high excitations is a necessary prerequisite, but now these excitations (more pre-
cisely: those which are higher than the base excitation level of the respective calcula-
tion) are subject to constraints, which have to be handled appropriately. In the case
of SRMRCC the overall procedure is the same as in the single-reference case, and the
additional excitations appear in the cluster operator as well as in the projections. That
means that constraints have to be taken into account for summed and external indices.
For MRexpT this is a bit different. Since the cluster operators are reference specific,
their maximal excitation level is always equal to the base excitation level. The pro-
jections, however, are global, so here the excitations, when given with respect to one
particular reference, can be higher than the base excitation level.
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For applications to closed-shell systems it would be advantageous to have an im-
plementation based on spin-averaged excitation operators. In this case the symmetry
properties of integrals and amplitudes are different, but the basic machinery of tensor
contractions could be used as before.

6.2.3. Applications

For multi-reference methods there are of course many possible applications. But it is
also interesting to do SRCC calculations with high excitations, for example as bench-
marks for cheaper methods. By combining our program with the implementation
of the incremental scheme developed in our group [109] also calculations on larger
molecules could be made feasible.

Besides the calculation of correlation energies, we plan to apply our program for the
calculation of (approximations to) the variance of single- and multi-reference wave
functions. In particular it would be interesting to investigate to what extent approx-
imate expressions for the variance can serve as a measure for the quality of a wave
function.
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A. Proof of the BCH Formula

The proof below follows [110], but is rewritten in terms of operators (instead of ele-
ments on an arbitrary Lie algebra). First we need some notation: Let Abe an operator,
then we define two new operators L and R as the left and right multiplication with
A, respectively. The commutator of two operators can then be expressed as follows:

[A,B] = AB — BA=RyA L A,
Now we can state the claim:
i . 1 . . .
exp(—B)A exp(B) = Z E(RB — LB) A (A.1)

Proof: We start from the right hand side and invoke the binomial theorem (this is
possible since the operators L 5 and R commute):

S hhytrs S
n! B n! Elln —k)! B B

n=0 n=0 " k=0

= exp(—B)Aexp(B)

The right hand side of equation (A.J) can be written more explicitly in terms of com-
mutators, yielding the last expression in equation (Z.32):

ii )" A = A4 [AB] + L[4 B, B] + &[4, B]. B, B] + ...
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B. Example Program

We show here the code of an example program which does a CCSD calculation for

H,O0.
#i ncl ude " SQConpoundQOper at or s/ ConpoundQper at or _Pr oduct _Sum H'
#i ncl ude " SQConpoundOper at or s/ CCOper at or s. H'
#i ncl ude "SQstaticTerns/ Tensor Synbol s_Sum H"
#i ncl ude "SQSt ati cTer ms/ ACOper at or _Product _NOP_FV. H'
#i ncl ude "SQrernsSi nplification/ Ternzraph_Sum H'
#i ncl ude " SQ ndex/ SQ ndex. H'
#i ncl ude " SQFast W ck/ expandFast W ck. H'
#i ncl ude "Factorization3/ G aph_Setup. H'
#i ncl ude "Factorization3/ G aph_Factorize. H'
#i ncl ude "Contracti onProgram Program H'
#i nclude "I nterfaceStoney/ StoneyFile. H'
#i ncl ude "I nterfaceStoney/
OneEl ectronQper at or Represent ati on_const _iterator. H'
#i ncl ude "I nterfaceStoney/
TwoEl ect r onQper at or Representati on_const _iterator. H'
#i ncl ude " Poi nt G oupSymet ry/ Poi nt G oup. H'
#i ncl ude " Spi nSpati al Mol ecul arOrbital/
Spi nSpat i al MOTabl e_ QAVI rrepSzl dx. H'
#i ncl ude " Spi nSpati al Mol ecul ar Orbi tal / Spi nSpatial MO IrrepSzl dx. H'
#i ncl ude "Obital Product/ Sl at er Det er mi nant . H'
#include "Tensor/Integrallnitializer.H
#i ncl ude "Tensor 2/ Tensor | ndexl nt erpretati on_SE AC H'
#i ncl ude "Tensor 2/ Synbol i cTensor . H'
#i ncl ude "Tensor 2/ Bl ockContraction. H'
#i ncl ude "Tensor 2/ Spi nOrbital _QAV_Tensor | nfo. H'
#i ncl ude "Tensor 2/ d obal Cachi ng. H'
#i ncl ude "Eval uati onDat a3. H'
#i ncl ude "Prograntval uat or. H'
#i ncl ude <i ostreanr
#i ncl ude <sstreane
#i ncl ude <vector>
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B. Example Program

usi ng nanespace
usi ng nanespace
usi ng nanespace
usi ng nanespace
usi ng nanespace

std;
QOL: : SQFast W ck;
QOL: : SQSt ati cTer mrs;
QOL: : SQrerntSi npl i fication;
QOL: : SQCompoundOper at or s;
usi ng namespace QOL:: SQConpoundQOper at or s: : CCQOper at or s;
usi ng nanespace QOL:: Factorization3;
usi ng nanespace QOL:: Tensor2;
usi ng namespace QOL::InterfaceStoney;
usi ng nanespace QOL:: Poi nt G oupSynmetry;
usi ng nanespace QOL:: Spi nSpati al Mol ecul arOrbital;
usi ng nanespace QOL:: ContractionProgram
usi ng nanespace QOL:: SQEquati onDri venFact ori zedContracti on
usi ng nanespace QOL:: SQEquati onDri venFactori zedContracti on3;
usi ng QOL:: Orbital Product:: Sl at er Det er m nant;

typedef QOL:: Tensor 2:: d obal Cachi ng _d obal Cachi ng

int main()
{
[/ basic definitions
typedef QOL::Tensor::TensorStructure H <
Spi nSpat i al MOTabl e_QAVI rrepSzl dx, 4> Tensor Struct ure;
typedef QOL::Tensor::TensorStructure H <
Spi nSpati al MOTabl e I rrepSzl dx, 3> Tensor Structure_Int;
typedef Tensor Structure_CS<Spati al MOTabl e_I rrepl dx, 2>
Tensor Structure_spati al

const int nlter=50; /I max. nunber of iterations

const int clusterLevel = 2;

const int projectionLevel = 2;

const double t_conv=1le-10; //convergence threshold for anplitudes

(2-norm
[l preparation | (equations)

[/ formul a generation
ConpoundQOper at or _Expression TT;
for ( int i=1; i<=clusterlLevel ; ++i )
TT += T(i);
ConpoundQOper at or _Expression HN = FN + VN;
vect or <pai r<Ter mGraph_Sum int> > targets;

for (int i=0; i<=projectionLevel ; ++i )

{

ConpoundQper at or _Expressi on expr (FV(A(-1)*exp(-TT)*HNxexp(TT)));
/1 CC
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ConmpoundQOper at or _Product _Sum fl at Expr (expr);

Tensor Synbol s_ACOper at or s_SunxSQ ndex,

SQ ndex> > nopfs(flatExpr);

Tensor Synmbol s_Kr onecker s_Sun<SQ ndex,

expandFast W ck( nopfs));
Ter nr aph_Sum t gs( expanded) ;

true> expanded(

Tensor Synmbol s_SunxSQ ndex, true> sinplified(tgs);
targets. push_back(make_pair(tgs, i));

}

[l factorization
Tensor | ndexl nterpretati on_SE AC t1|
Graph_Setup gl(targets, tll);
Graph_Factorize g2(gl);
g2.set Signs();
g2.col l ect External ();
g2.optim ze();
/1 generate contracti on program
Program p(g2, tll);

[lpreparation Il (integrals etc.)

StoneyFile stoney("fort.31"); //contains orbita

integrals

Poi nt G oup<abel i an> pg(stoney. poi nt G oup());

//tabl es

ACQper at or _Product NOP_FV<

i nformati on and

Spatial MOTabl e Irrepldx tab_spatial (stoney.orbital sPerlrrep());
Spi nSpat i al MOTabl e_IrrepSzl dx tabO(stoney.orbital sPerlrrep());

string s("(0a- Oa+ la- la+ 2a- 2a+ Ob- Ob+ Oc- Oc+)"); //

ref erence determ nant for H20
i stringstreamiss(s);

MOBasi sl nf o<Spi nSpati al MO I rrepSzl dx> i nfo0O(tab0, pg);
Sl at er Det er m nant <Spi nSpati al MO IrrepSzl dx> ref (iss, info0);

Spi nSpati al MOTabl e_OAVI rrepSzl dx table(tab0, ref.v());
/'l ndexRanges
Tensor Structure_spatial :: |1 ndexRange ir_spatial (tab_spati al

Tensor Structure_Int:: 1 ndexRange ir0O(tab0, pg);

Tensor Structure: : I ndexRange ir(table,
/lread integrals

Pa) ;

pg);

Integral Initializer<OneEl ectronQperatorRepresentati on_const _iterator

> initl(stoney, & ab_spatial );

Integrallnitializer<TwoEl ectronQOperator Representati on_const _iterator

> init2(stoney, & ab_spatial );
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B. Example Program

Tensor Structure_spatial : : Synbol i cTensor stil("a;b",true);
Tensor Structure_spatial : : Synbol i cTensor sti2("ab;cd",true);

QOL: : Tensor: : Tensor <doubl e, Tensor Structure_spatial > oneElInt(stil, &
ir_spatial,initl);

QCL: : Tensor: : Tensor <doubl e, Tensor Structure_spatial > twoEl Int(sti2, &
ir_spatial,init2);

OneEl ect ronl nt egr al s<doubl e, Tensor Structure_Int> oei (& r0, oneEl I nt);

Anti symret ri cTwoEl ectronl nt egral s<doubl e, Tensor Structure_Int> atei (&
ir0,twoEl I nt);

/lold integral containers

OneEl ectronl nt egr al Cont ai ner <doubl e, Tensor St ruct ure> oei c(& r, oei
atei);

TwoEl ect ronl nt egr al Cont ai ner <doubl e, Tensor Structure> teic(&r,atei);

/I new i ntegral container

SpinOrbital QAV Tensorlnfo info(table, &pg, TensorlndexSections());

I nt egr al Cont ai ner <Spi nOrbi tal _OAV_TensorInfo, double> ic(tll, info,
oeic, teic);

/[ Eval uati on
Zerolnitializer<doubl e> zi

Eval uat i onDat a3<Spi nOrbi tal _OAV_Tensor | nfo, double> ed(ic, tll, info
, clusterlLevel, projectionLevel, zi);

const size t nmaxStoragel 300*(1 << 20);

const size_t maxStorage2 = 300+«(1 << 20);

_d obal Caching gl obal Cachi ng(table.table(), _d obal Caching:
Def aul t Cachi ng, maxStoragel, nmaxStorage2);

PerfornmanceStati stics performanceStatistics

Bl ockContracti on<Spi nOrbi tal _OAV_Tensor | nf o> bc(gl obal Cachi ng,
performanceStatistics, true);

Pr ogr anEval uat or <Spi nOr bi t al _QAV_Tensor | nf o, doubl e> pEv(ed, bc);

doubl e residual Nornm2 = O;

for (int n=0 ; n<nlter ; ++n ) //iteration

{
pEv. cal cResi dual s(p);
pEv. updat eAnpl i t udes();

//calc residual norm
resi dual Norm2 = 0;
for ( unsigned int j=1; j<ed.residuals.size() ; ++ )
{

boost::shared_ptr<Superlterator> slter(ed.residual s[j].
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160
161
162
163
164
165 }

}

getlterator());
int n=0;
for ( Superlteratorlndex sldx(slter->begin()) ; slter->valid(
sldx) ; slter->inc(sldx), ++n)
{
double h = ed.residual s[j].p()[n];
resi dual Nor m2 += h=h;
}
}

cout << "E corr: << ed.residual s[0] << " residual norm " <<
sqrt (resi dual Nor n2) << endl
ed. cl ear Resi dual () ;
if ( n>0 && sqrt(residual Nornm2)<t_conv )
br eak;

return O;
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C. Generated Formulas

C.1. CCSDTQ Amplitude Equations

We give here the explicit expressions for the four types of projections (singles to quadru-
ples) onto excited determinants for the CCSDTQ method.

@0‘1‘11 exp(F - T+ = = Ty + = Ty + - Ty)(F + V) exp(Ty + Ty + Ty + Ty)| @)

= [fhla+ 71 l-tiA]A + (At + [FLtffa + v a + 5 - 9084 + 5 - [t vhd) 4

oo A+ T M A+ T i+ 5 - e a4 T eI

+
+ ) é”b]ﬁ%[t?t?f vigla + [t v a

(@] Af exp( (T T+ T+ Ty + 3 T)E + V) exp(Ty + Ty + Ty + 1)) [ @)
= [vxpla+ 73714 + [FEH5la+ [fat15)a + [Eoagla + [Blomla+ 5 - #1505 )

I IJ B
+3 - [0+ 5 - [P0 ]A+2 (452088 4 + 5 - [E950M ) 4 + § - (1005 4

HAH A+ T et a+ 5 5o la+ fvg)a+ 5 - [ vila
—{—[tatA Ia]A+ 3 [ta‘tAB Ia] 4 2 [tAt‘}gv&] 4 71 i [tiBtA IJ] 4 [tBtAa Ia]

+ 5 [P A0S ] 4+ T - [ PO A+ [RGB+ T (AT S szb]AJr o [EPPt A v a
1 - Bl + S [P A+ 5 [ vl a + 5 [t R a

+ 3 [htatAPu] 4 + - [P0 4+ [0t Pu) g + S - [tgt?tfv%?]A

+5 - [P ] 4+ - [P g+ § - [t P 4

(Dol AL exp(5L - Ty + 5Ty + 5Ty + 52 - T) (B + V) exp(Ty + Ty + Ty + Ty)| D)

= PR A+ [t P at [t e at T [tk vES] a+ [tRSvE 4+ 5 - [t1RvBE 4
HE g A+ g - REC A+ 5 - RS A+ 5 [ERG A+ T - FEt5t58 )a

- Ci
+ 3 OB A+ [P 4 + (5 950BE ) 4 + T2 - (157 R00G a + 5 - 157 ET 0] 4
—1
T

I I _
HtGtRT v a5 Gt v A+ (tPe)0ola] g+ 5 - [Pt 4+ 5 [t?tf}?v%h

+3 (R v at Z TG A+ BERS Vil [ Fiv G a5 (736 vk La
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C. Generated Formulas

+3t - [P a + S e A+ 5 - RS e a + 1 5P Ce ] 4

+3 - (Rt 0d ] 4+ - BGPtIRE A+ § - IR vE] 4+ S - [ET Rt P 4

FECH L+ R+ 5 UL+ - G

2 R+ PGl + AL+ 5 SR L
I
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+y - [t GatAB] 4+ L O] 4+ T [t
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+3E - [REHAB VY] o+ 5 [ttt B ] 4+ S [0 4

<<1>o|/11 eXP(_Tl Ty + _Tl Ty + _Tl Ty + _Tl ST (F + V) exp(Ty + Ty + Ty + Ty) | D)
= [FAIREP A + [Pt 550 4 + [E9E5vd5 ) 4 + ERECvEL A + 5 - 11585 vE2] 4
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— — D I 1
+ PR Lok T R0 RL AR BELHEAA ofLat HARGeL
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LB AEC Ve 4+ 5P f;lz; R Mm*l (PP 4+ LGP v 4

1 —
+1 - [EGPEAB VI 4+ S [t ABC o + S (R B o + - [t BCW

Y R R Y e
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+3- [tDtCtI £33, ab]A
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C.2. Expectation Values

C.2. Expectation Values

In expressions of the type (®,|exp (T)X exp (T')|®,) there is no algebraic termination
like for the BCH expansion. Therefore we have to specify up to which order the expo-
nential series is evaluated. We give the results (expanded operator expressions and ex-
plicit formulas) for first and second order with X = H and for first order with X = 2.

(@] exp(T] + T])(V + F) exp(T} +T)| )

— @|(F +V + TV + T F+ 2]V + PLy + VT + V, + TFT, + TFT, + TV,
+T2TVT2 + T{rﬁfl + TITFTQ 4 TITVTl + TJVTZ)’(I)())

= [FE) a+[FEtl) a5 [0 v ) at 3o [ v ) at T Rt a+ 5t [Fotp k] a4 [F2t565) 4
LA+ U5t 5 Lt + 3 L+ 3 5 teitla+ 5 - [hehoidla

1 i 4ab .t 1 Jyab, i 1 b4ij ,ab —1 ik, 1 byij ,id
+5 - [Btievpla+ 5 - [tetiffvoggla+ 5 - [Etqveqla + 7 - [E5atcviila + 5 - [titapvrila
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HFatitala + Fattla+ [Ftitla+ 5 - [Fttda + 3 - [tiola+ T (5605t L
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T e
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C.2. Expectation Values
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CCSD(T)
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EOM

FCI

HF

LR
MCSCF
MKMRCC
MO

MR
MRexpT
PES

Q

SCF

SR
SRMRCC

STL
SUMRCC
T

TCE

UML
VUMRCC

complete active space

Baker-Campbell-Hausdorff (expansion)

Brillouin—-Wigner coupled-cluster (method)

coupled-cluster (method)

coupled-cluster method with singles and doubles
coupled-cluster method with singles and doubles and a perturbative
triples correction

configuration interaction (method)

equation-of-motion

full configuration interaction (method)

Hartree—Fock (method)

linear response

multi-configuration self-consistent field (method)
multi-reference coupled-cluster method of Mukherjee et al.
molecular orbital

multi-reference

multi-reference exponential wave function (ansatz)
potential energy surface

quadruples (quadruple excitations)

self-consistent field (method)

single-reference
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standard template library (for C++)

state-universal multi-reference coupled-cluster (method)
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