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1 Introduction 
 

1.1 Obesity and type 2 diabetes mellitus 

Obesity is a steadily growing worldwide health problem. Even though initially most 

abundant in the United States and Western Europe, obesity is now dramatically rising in 

low- and middle-income countries such as China and Latin America [1, 2]. The most 

frequently used method to diagnose obesity is the calculation of the body mass index  

(BMI = body weight in kg/size in meters2) [3]. The World Health Organization (WHO) 

defines a BMI ≥ 25 as overweight and a BMI ≥ 30 as obesity. Moreover, the WHO estimated 

at least 400 million adults globally as obese in 2005 and predicts that in 2015 more than 

700 million will be obese [4]. Furthermore, there is an alarming rise in childhood obesity, as 

at least 20 million children younger than 5 years were overweight worldwide in 2005 [4]. 

Obesity represents a serious threat to health as it increases the risk of developing 

various chronic diseases, including type 2 diabetes mellitus (T2DM), cardiovascular diseases, 

musculoskeletal disorders, certain types of cancer, depression, and sleep apnea [5-7]. For this, 

obese people have an increased mortality, which rises progressively with increasing BMI 

within the BMI range above 30 [8, 9]. The cumulative economic costs of obesity are immense 

and a substantial portion is attributed to T2DM. For instance, it is estimated that 20% of the 

US health care budget are spent on patients with diabetes mellitus and that the expense will 

escalate [10]. Recent assessments have indicated 171 million people worldwide with T2DM 

in 2000 and project an ascent to 366 million by 2030 [11]. T2DM is a progressive disease 

characterised by chronic hyperglycemia caused by absolute and relative insulin deficiency due 

to insulin insensitivity in muscle and fat cells, hepatic glucose production during ingestion, 

and over time regressive β-cell effectiveness [12, 13]. The chronic hyperglycemia leads to 

severe tissue damage ranging from microvascular disorders such as retinopathy, nephropathy, 

and neuropathy to macrovascular complications as angina pectoris, myocardial infarction, 

stroke, and peripheral arterial disease [14, 15]. Therefore, T2DM patients have a reduced 

quality of life and finally a diminished life expectancy. Diabetes mellitus belongs to the 

10 leading causes of death and is responsible for 5% of all deaths globally each year [16, 17].  

Various genetic factors have been identified accounting for the development of obesity 

as mutations in leptin, leptin receptor (LEPR), proopiomelanocortin (POMC), and 

melanocortin 4 receptor (MC4R) [18]. In addition, a recent genome-wide search has 
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discovered that common variants of the fat mass and obesity associated (FTO) gene are 

implicated in a higher BMI and the risk of obesity [19, 20]. Due to the fact that single gene 

mutations have been found in only 5% of all obese patients (BMI ≥ 40) [18], the worldwide 

prevalence of obesity is more likely caused by environmental and behavioural factors such as 

high caloric diet and lack of physical activity and is only partially accompanied by genetic 

predisposition [21].  

 

1.2 Central regulation of energy homeostasis 

The continuous increase of body weight and fat mass is caused by a chronic 

modification of energy balance: energy intake by ingestion versus energy expenditure by 

exercise, basal metabolism, and thermogenesis. Such an imbalance gives rise to elevated body 

mass when energy assimilation is in excess of energy utilisation or conversely results in 

reduced body weight when dissimilation of energy outbalances absorbed energy. 

Accordingly, elucidating the regulation of energy homeostasis is fundamental to understand 

the mechanisms of obesity and the development of therapeutic strategies [22, 23]. 

The central nervous system (CNS) plays an important role in the regulation of energy 

homeostasis; several brain regions from cortex to brainstem are responsible for controlling 

energy balance as shown by the effect of factors such as smell and sight of food, and 

conviviality on food intake in humans [23, 24]. Despite this, most attention has focussed on 

the hypothalamus, which has already been identified in the 1940s and 1950s to be involved in 

maintaining energy balance by classical lesion experiments in rodents [25, 26].  

 

1.2.1 The hypothalamus 

The hypothalamus marks the ventral part of the diencephalon in vertebrates and is 

located below the thalamus, just above the brainstem. Neuron populations located in the 

hypothalamus regulate energy homeostasis, drinking behaviour, body temperature, stress 

response, reproduction, and the autonomous nervous systems. The hypothalamus is a complex 

region containing more than 40 anatomically defined neuronal clusters and nuclei including 

the arcuate nucleus (ARC), the paraventricular nucleus (PVN), the ventromedial nucleus of 

the hypothalamus (VMH), the dorsomedial hypothalamic nucleus (DMH), and the lateral 

hypothalamic area (LHA) (Figure 1) [27, 28]. Diverse lesion and electrical studies have 

shown that destruction of the VMH, DMH or PVN causes severe hyperphagia and obesity in 
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rats, whereas destruction of the LHA leads to hypophagia. Based on these findings the VMH 

was identified as the “satiety centre” and the LHA as “hunger centre” [25, 26]. This model 

was accepted for several decades. Nowadays it is known that the PVN, VMH, DMH, and 

LHA contain second order neurons which process information regarding energy homeostasis 

by receiving neuronal projections from the ARC [29].  

 
Figure 1: Anatomical structure of the hypothalamic nuclei. 
Schematic coronal section of the hypothalamus including main regions involved in the regulation of food intake 
and energy expenditure. ARC, arcuate nucleus; DMH, dorsomedial hypothalamic nucleus; LHA, lateral 
hypothalamic area; ME, median eminence; PVN, paraventricular nucleus; VMH, ventromedial nucleus of the 
hypothalamus; 3V, third ventricle. 
 

1.2.2 The arcuate nucleus of the hypothalamus 

 The ARC is located in the mediobasal hypothalamus adjacent to the base of the third 

ventricle directly above the median eminence (ME) (Figure 1) and plays a pivotal role in 

regulation of energy homeostasis by sensing and integrating signals mediated by nutrients, 

cytokines, and hormones. Since the ME area is not protected by the blood brain barrier, the 

entry of circulating peripheral peptides and hormones such as leptin and insulin via saturable 

mechanisms is permitted [30-32]. Two primary populations of functionally opposing neurons 

located in the ARC have been studied in detail: the anorexigenic POMC-expressing and the 

orexigenic agouti-related peptide/neuropeptide Y (AgRP/NPY)-expressing neurons. Whereas 

the catabolic neuropeptide POMC suppresses food intake and increases energy expenditure, 

the anabolic neuropeptides AgRP and NPY stimulate food intake and reduce energy 

expenditure [33-35].  
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Besides in the ARC, POMC is also expressed in the pituitary, nucleus tractus solitaries 

of the brainstem, and at low levels in several peripheral tissues such as skin, pancreas, and 

testis [36-38]. The POMC precursor protein is cleaved posttranslationally in a tissue-specific 

manner by various prohormone convertases into mature peptide hormones including 

adrenocorticotropic hormone (ACTH), melanocyte-stimulating hormone (α-MSH, β-MSH, 

γ-MSH), and β-endorphin [39]. α-MSH is generated by cleavage in POMC neurons as an 

important participant for regulating energy homeostasis [40]. After its secretion, α-MSH 

binds to the melanocortin receptors MC3R and MC4R. These G-protein-coupled receptors are 

expressed in multiple nuclei including PVN, DMH, and VMH and activate the adenylate 

cyclase [41-43]. Consistently, both POMC-deficiency in humans caused by mutation in the 

pomc gene and POMC-null mutant mice develop severe obesity due to hyperphagia, 

combined with defective adrenal development and altered pigmentation [44, 45]. 

Furthermore, expression levels of the anorexigenic POMC reflect the energy state of the 

body: in fasted animals POMC mRNA is significantly reduced, but is restored with refeeding 

[46]. In addition, mice lacking MC3R and/or MC4R develop obesity due to a modified energy 

balance: MC4R-deficient mice show an increased food intake and MC3R-deficiency results in 

reduced energy expenditure due to hypoactivity without elevated food intake [47-49].  

The neuropeptide AgRP is primarily expressed in a distinct neuronal population of the 

ARC, where it colocalises with NPY. The orexigenic AgRP acts as an inverse agonist of 

MC3R and MC4R and inhibits the anorectic effect of α-MSH [50]. Accordingly, fasting 

increases the expression of AgRP mRNA in the ARC and reduction of hypothalamic 

AgRP mRNA by RNA interference causes an elevated metabolic rate and reduced body 

weight without affecting feeding [46, 51]. NPY is widely distributed in the brain, but mainly 

expressed in the ARC [52]. Five G-protein-coupled NPY receptors (Y1, Y2, Y4, Y5, and Y6) 

with individual distribution patterns have been identified to mediate the diverse effects of this 

abundant neurotransmitter [53, 54]. The most potent orexigenic factor discovered to date is 

NPY. Central administration of this peptide causes obesity due to hyperphagia and decreased 

energy expenditure [55, 56]. Consistently, fasting increases and refeeding decreases 

NPY mRNA expression [46, 57]. However, disruption of neither NPY nor AgRP or both 

results in hypophagia [58, 59]. But in contrast, ablation of AgRP/NPY neurons in adult mice 

causes starvation leading to dramatic reduction in body weight [60, 61]. In addition to 

orexigenic peptides, AgRP/NPY neurons also release the neurotransmitter γ-aminobutyric 

acid (GABA) causing inhibitory GABAergic innervation on POMC neurons [62, 63].  
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Both POMC and AgRP/NPY neurons are located in the ARC and project primarily to 

the PVN, but also to other MC3R- and MC4R-expressing brain regions [42, 64]. These 

second order neurons are involved in the regulation of energy expenditure, food intake, and 

hepatic glucose metabolism (Figure 2) [65].  

 

1.2.3 Regulation of neurons located in the arcuate nucleus 

For the regulation of energy homeostasis, the brain senses and integrates peripheral 

signals of the body energy status by monitoring the levels of hormones such as insulin and 

leptin as well as of cytokines and nutrients such as glucose and free fatty acids (Figure 2) 

[66].  

 
Figure 2: Central regulation of energy homeostasis. 
The ARC of the hypothalamus is a critical region that senses and integrates signals regarding the body energy 
status by monitoring the levels of hormones such as pancreas-derived insulin and adipocyte-secreted leptin, as 
well as cytokines and nutrients such as glucose and free fatty acids. In the ARC, AgRP/NPY and POMC neurons 
receive peripheral signals through the unlocked blood brain barrier and regulate energy homeostasis by 
projecting to second order neurons primarily in the PVN. α-MSH, a cleaved product of POMC binds to MC4R 
in the PVN and suppresses food intake. In contrast, AgRP as an inverse agonist of MC4R counteracts α-MSH. 
Furthermore, AgRP/NPY neurons inhibit POMC neurons by synaptic release of GABA. Thus, interplay between 
POMC and AgRP/NPY neurons is crucial for the regulation of energy homeostasis by monitoring food intake, 
energy expenditure, and hepatic glucose production. α-MSH, α-melanocyte-stimulating hormone; AgRP, 
agouti-related peptide; ARC, arcuate nucleus; GABA, γ-aminobutyric acid; MC4R, melanocortin 4 receptor; 
NPY, neuropeptide Y; POMC, proopiomelanocortin; PVN, paraventricular nucleus; 3V, third ventricle (adapted 
from [22]). 



Introduction 
  

 6 

In the ARC, both POMC and AgRP/NPY neuron populations coexpress the insulin 

and leptin receptor and are regulated by these hormones in an opposing manner [67, 68]. 

While the anorexigenic POMC-expressing neurons are activated, the orexigenic 

AgRP/NPY-expressing neurons are inhibited by insulin [69-71]. Similarly to insulin, leptin 

activates POMC neurons and inhibits AgRP/NPY neurons [62, 72]. Thus, central leptin 

administration increases POMC and decreases AgRP and NPY expression. Consistently, 

central insulin administration activates POMC and inhibits NPY production, without affecting 

AgRP expression [73-75]. In addition, the administration of a MC4R antagonist inhibits the 

anorexigenic effect of leptin [62, 76]. Consistently, leptin-deficient (ob/ob) and leptin 

receptor-deficient (db/db) mice exhibit decreased levels of POMC and elevated levels of 

AgRP and NPY mRNA [77, 78].   

 

1.3 Leptin 

The peptide hormone leptin was originally identified as the product of the obese (ob) 

gene by J. Friedman in 1994 [79]. Besides its role in controlling energy homeostasis by 

reflecting the body energy status to the brain [80], leptin is also involved in the regulation of 

pancreatic β-cells, reproduction, growth, immune system, sympathetic nervous system, 

thyroid axis, and adrenal corticosteroids [81-86]. 

Leptin is predominantly expressed in adipocytes and at lower levels in the gastric 

epithelium, placenta, and testis [79, 87-89]. Adipocytes serve as energy stores of the body and 

produce leptin in proportion to adipose tissue mass, dependent on number and size of adipose 

cells [90, 91]. Leptin expression in adipocytes is stimulated by glucose and insulin, but 

inhibited by fatty acids and by an increased rate of lipolysis in adipocytes [92-95]. Therefore, 

fasting decreases and refeeding restores leptin level in humans [90, 93]. Secreted leptin 

circulates in the blood and enters the brain across the blood brain barrier via a saturable 

mechanism [31]. Binding of leptin to its receptor leads to body weight loss as a consequence 

of decreased food intake and increased energy expenditure due to enhanced thermogenesis 

[96, 97]. Consistently, both ob/ob and db/db mice develop extreme obesity due to 

hyperphagia and reduced energy expenditure [98, 99]. Analogue, humans carrying 

loss-of-function mutations in leptin or lepr genes exhibit hyperphagia resulting in severe 

obesity [100, 101]. Peripheral and central administration of leptin to ob/ob mice reverses the 

obese phenotype [98, 102, 103]. Moreover, wild-type rodents under long-term treatment with 

leptin show a decreased food intake, loss of body weight and fat mass [98, 102, 103]. In line 
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with these findings, a recombinant leptin therapy of leptin-deficient patients can ameliorate 

the early-onset morbid obesity in both children and adults and emphasises the role of leptin as 

key molecule in maintaining energy balance [104, 105]. 

Only a minority of obese patients suffers from relative leptin deficiency, whereas the 

majority of obese humans and rodents exhibit proportionally high circulating leptin levels, 

pointing to leptin resistance in these cases: the body is not able to respond adequately to high 

leptin levels by reducing food intake and increasing energy expenditure [90, 106, 107]. 

Therefore, recombinant leptin therapy leads only to a modest reduction of body weight in 

most obese patients [108, 109]. Accordingly, centrally administered leptin has a reduced 

capacity to inhibit food intake in diet-induced obese mice, while peripheral leptin 

administration exhibit no influence on feeding behaviour to those mice [110]. The 

development of leptin resistance is likely caused by different mechanisms including defects in 

leptin transport into the brain and leptin signalling in hypothalamic neurons [107].  

 

1.3.1 Leptin receptor signalling 

Leptin exerts its effect by binding to the cell-surface LEPR, which belongs to the 

type 1 cytokine receptor family [111]. Alternative splicing of the single lepr gene and/or 

proteolytic processing generate multiple isoforms of the LEPR with an identical 

ligand-binding-domain, but variations in transmembrane and cytoplasmic domains [112, 113]. 

Among the different isoforms, intracellular signalling is mediated only by the long form of 

the LEPR (ObRb), which contains the full-length intracellular domain comprising several 

docking sites for proteins critical for signal transduction [111, 113]. The ObRb is expressed at 

basal levels in multiple tissues including lung, kidney, liver, adipose tissue, and pancreatic 

β-cells, but is most abundant in the brain, especially in the hypothalamus where it influences 

the control of energy balance [114, 115]. 

Binding of leptin to ObRb leads to the homodimerisation of the receptor and 

subsequently results in the activation of the Janus kinase/signal transducer and activator of 

transcription (JAK/STAT) signalling pathway (Figure 3) [116-118]. The dimerised ObRb 

causes activation and autophosphorylation of the constitutively associated JAK2. This 

tyrosine kinase in turn phosphorylates the ObRb within the cytoplasmic domain at the 

residues Tyr985, Tyr1077, and Tyr1138, which act as docking sites for downstream signalling 

molecules [116, 119, 120]. Each phosphorylated tyrosine site of the ObRb is recognised by 

specific proteins containing a specialised phosphotyrosine-binding-domain, the SH2-domain 
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[121]. Phosphorylated Tyr985 leads to recruitment and phosphorylation of the 

SH2-domain-containing phosphatase (SHP) 2 and thereby mediates the activation of the 

extracellular signal-regulated kinase (ERK) pathway, which is known to be involved in 

energy homeostasis and metabolism [122, 123]. Recently, it has been demonstrated that upon 

phosphorylation of Tyr1077, STAT5 is activated, translocates in the nucleus, and regulates 

gene expression [120, 124]. Tyr1138 of the ObRb lies within a consensus YXXQ-binding site 

for STAT3. Leptin-induced binding to phosphorylated Tyr1138 causes STAT3 phosphorylation 

and activation by JAK2 [125, 126].  

 
Figure 3: Leptin receptor signalling. 
Binding of leptin to the ObRb results in activation of JAK2 and subsequently leads to JAK2-mediated 
phosphorylation of the intracellular residues Tyr985, Tyr1077, and Tyr1138 of the receptor. Phosphorylated Tyr985 

activates the ERK pathway via SHP2, phosphorylation of Tyr1077 leads to activation of STAT5, and 
phosphorylated Tyr1138 causes phosphorylation and activation of STAT3. Activated STAT3 dimerises, 
translocates into the nucleus and regulates transcription of target genes such as SOCS3, which acts as negative 
regulator of JAK/STAT signalling. Additionally, phosphorylated JAK2 directly activates PI3K signalling by 
IRS1. AKT, protein kinase B; ERK, extracellular signal-regulated kinase; IRS1, insulin receptor substrate 1; 
JAK2, Janus kinase 2; ObRb, long form of leptin receptor; P, phosphorylation; Raf, ras-activated factor; Ras, rat 
sarcoma virus protein; SHP2, SH2-domain-containing phosphatase; STAT3, signal transducer and activator of 
transcription 3; SOCS3, suppressor of cytokine signalling 3; Tyr, tyrosine; PI3K, phosphatidylinositol 3 kinase.  

 

Phosphorylated STAT3 dimerises, translocates from the cytoplasm into the nucleus, 

and regulates transcription of target genes contributing to the regulation of energy 

homeostasis [127, 128]. Furthermore, STAT3 activates the transcription of suppressor of 
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cytokine signalling (SOCS) 3, which acts as a negative feedback regulator of JAK/STAT 

signalling [129, 130]. Disruption of the STAT3-binding site in ObRb as well as neuronal 

deletion of STAT3 causes severe hyperphagia and morbid obesity indicating that the 

ObRb/JAK/STAT pathway in the brain is essential to transmit leptin’s capacity to reduce food 

intake and increase energy expenditure [131-134].  

In addition to the JAK/STAT and the ERK pathways, leptin also activates 

phosphatidylinositol 3 kinase (PI3K) signalling due to direct tyrosine phosphorylation of 

insulin receptor substrate (IRS) 1 by JAK2 (Figure 3). However, this activation is independent 

of phosphorylated immunoreceptor tyrosine-based activation motifs (ITAM) in the ObRb 

[116, 135]. These findings support the assumption of synergism and convergence of leptin 

and insulin signalling pathways [136]. 

 

1.3.2 STAT transcription factors 

The first two STAT transcription factors (TFs) were discovered in the early 1990s as 

DNA-binding proteins that mediate interferon (IFN) signalling [137]. Seven mammalian 

STAT proteins (STAT1, 2, 3, 4, 5a, 5b and 6) encoded by individual genes have been 

identified [127]. All STATs are activated by cytokines and share characteristic domains:  

a coiled-coil-domain for interaction with other proteins, a DNA-binding-domain (DBD),  

a SH2-domain for dimerisation, a tyrosine activation-domain, and a C-terminal transcriptional 

activation-domain (TAD) [138].  

“Knock-out” mice lacking an individual stat gene gave new insights of STATs in a 

variety of biological processes [139]. In short, STAT1 participates in anti-viral and 

anti-bacterial responses, growth inhibition, apoptosis, and tumour suppression [140, 141], 

while STAT4 and STAT6 are essential for T-helper 1 and 2 development [142, 143]. STAT5a 

and STAT5b regulate proliferation, cell cycle progression, and prolactin response [144, 145] 

and STAT3 is essential for early development as evidenced by embryonic lethality of 

STAT3-deficient mice [146]. However, tissue-specific disruption of STAT3 revealed its 

various functions including wound healing, mammary involution, anti-inflammatory 

responses in macrophages and neutrophils, and survival of different cell types [147-150]. In 

general, STAT3 activation has been associated with the prevention of apoptosis and 

promotion of survival, proliferation, and cellular transformation including oncogenesis [151]. 

STAT3 also regulates energy homeostasis, as ablation of STAT3 in the CNS causes obesity 

combined with decreased POMC expression [133]. Moreover, STAT3 directly mediates the 
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feeding repressing effects of leptin by transcriptional regulation of orexigenic AgRP and 

anorexigenic POMC. The effect of STAT3 to increase POMC and decrease AgRP expression 

is counter-regulated by forkhead box-containing protein class O 1 (FOXO1) through 

transcriptional squelching [73, 152, 153].  

 

1.3.2.1 Negative regulation of STAT signalling 

The latent cytoplasmic STAT TFs are activated by a multitude of cytokines including 

IFN and interleukins (IL) as well as growth factors and hormones such as leptin and insulin. 

While STAT2, STAT4, and STAT6 are activated by a limited number of cytokines, STAT1, 

STAT3, STAT5a, and STAT5b are mobilised by diverse distinct and in part overlapping 

ligands [154, 155]. Four different mechanisms have been identified to activate STAT proteins 

via tyrosine phosphorylation. First, STATs become activated by the classical JAK tyrosine 

phosphorylation (1.3.1), which is initiated by receptor-binding of cytokines such as IL6, IFN, 

leukemia inhibitory factor (LIF), or ciliary neurotrophic factor (CNTF) [156]. Second, 

receptors containing intrinsic tyrosine kinase activity such as epidermal growth factor (EGF), 

platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF) receptor directly 

activate STAT proteins [155]. Third, G-protein-coupled receptors including chemokine 

receptors for mitogen-activated protein (MAP) 1 and RANTES cause JAK activation leading 

to STAT phosphorylation [157]. Fourth, non-receptor tyrosine kinases such as the viral 

oncoproteins v-src, v-Sis, v-Fps, v-abl and polyoma virus middle T antigen lead to persistent 

STAT activation [158]. Phosphorylation of STATs leads to formation of homodimers or 

heterodimers by reciprocal binding of the SH2-domain of one monomer to the crucial 

phosphotyrosine of the partner molecule. In case of STAT3, the dimerisation is initiated by 

phosphorylation of Tyr705, while Ser727 phosphorylation by kinases including ERK and 

c-jun-N-terminal kinase (JNK) negatively modulates Tyr705 phosphorylation [159, 160]. The 

resulting STAT dimers translocate via importin into the nucleus [161], where they bind to 

specific DNA sequences and activate transcription of target genes [138, 155]. 

The negative regulation of STATs is controlled by constitutively expressed and 

cytokine-induced proteins including SOCS, cytokine-inducible SH2-containing proteins 

(CIS), protein inhibitor of activated STAT (PIAS), and phosphatases (Figure 4) [162, 163].  
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Figure 4: Negative regulation of STAT signalling. 
The phosphorylation and dimerisation of STAT causes translocation to the nucleus and transcriptional activation 
of target genes including SOCS acting as a negative regulator of STAT activation. SOCS suppresses JAK 
activity by interacting with both phosphorylated receptor and JAK. CIS competes with STAT proteins for the 
same docking sites at the phosphorylated receptor. PIAS binds to dimerised STAT and blocks the DNA-binding 
and transcriptional activity of the TF. Phosphatases such as SHP2 inactivate STAT by dephosphorylation of 
receptor, JAK, and STAT. CIS, cytokine-inducible SH2-containing proteins; JAK2, Janus kinase 2; ObRb, long 
form of leptin receptor; P, phosphorylation; PIAS, protein inhibitor of activated STAT; SHP2, 
SH2-domain-containing phosphatase; STAT, signal transducer and activator of transcription; SOCS, suppressor 
of cytokine signalling. 

 

SOCS and CIS proteins belong to the family of STAT target genes, which directly 

antagonise STAT activation. STAT3-activated SOCS3 interacts with phosphorylated 

receptors as well as with JAK proteins as a classical feedback loop of cytokine signalling 

[164, 165]. Moreover, CIS blocks STAT receptor recruitment by competing for the same  

 

docking site on phosphorylated receptors [166]. By contrast, PIAS proteins are constitutively 

expressed and directly interact with STATs in the nucleus. PIAS3 binds to STAT3 dimers and 

thereby blocks DNA-binding and transcriptional activity of the TF [167]. In addition, 

phosphatases such as SHP2 and protein tyrosine phosphatase (PTP) 1B permanently 

dephosphorylate the receptor, JAK, and STAT [168, 169]. 
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1.3.2.2 Constitutively active STAT3 mutant 

Constitutively active STATs are associated with oncogenesis. Persistently activated 

STAT3 and STAT5 proteins - potentially evoked by viral oncoproteins - were identified in a 

variety of clinical samples such as lymphoma, leukemia, multiple myeloma, or cancer of 

brain, prostate, breast, lung, and neck, respectively [151]. Consistently, it was shown that 

STAT3 proteins regulate the transcription of proto-oncogenes such as c-myc and interact with 

c-jun [170, 171]. 

A constitutively active version of STAT3 (STAT3-C) was created by substitution of 

the residues Ala661 and Asn663 to cysteins in the SH2-domain, thereby producing a mutant 

which dimerises spontaneously via disulfide bonds, thus activating transcription independent 

of signal-dependent Tyr705 phosphorylation [172]. The functionality of this STAT3-C mutant 

to constitutively activate target genes was demonstrated in several studies [173-176], as 

STAT3-C expression in cultured fibroblasts leads to transformed cells, which are capable of 

forming tumours in nude mice [172].  

 

1.4 Insulin 

Insulin is a peptide hormone that plays a key role in the regulation of glucose 

metabolism and energy homeostasis [177]. The anabolic insulin is produced by the β-cells of 

the pancreatic islets of Langerhans; it is synthesised as the inactive precursor proinsulin and 

then cleaved by peptidases giving rise to the native insulin capable to interact with the insulin 

receptor (IR) [178-180]. Insulin secretion is increased rapidly after ingestion due to rises in 

blood glucose levels, whereas the circulating insulin level is directly correlated to the body fat 

mass [181, 182].  

Circulating insulin promotes the influx of nutrients and simultaneously blocks the 

release of stored energy forms by binding to the IR, which is expressed in the primary insulin 

target tissues: fat, muscle, and liver [183]. In particular, insulin increases the glucose uptake  

 

in muscle cells and adipocytes by translocation of the glucose transporter to the cell 

membrane [183-185]. Furthermore, insulin promotes anabolic processes such as amino acid 

uptake and protein synthesis in muscle, glycogen synthesis in liver and muscle, as well as 

lipogenesis in adipocytes. In contrast, catabolic processes such as gluconeogenesis, 

glycogenolysis, lipolysis, and proteolysis are suppressed by insulin [186, 187]. Besides the 

effect of insulin on peripheral tissues, circulating insulin passes the blood brain barrier via a 
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saturable mechanism, binds to the IR, which is centrally widely expressed and regulates 

energy homeostasis [188-191].  

Central administration of insulin causes reduction of body weight by decreasing food 

intake and increasing energy expenditure [69]. Consequently, neuron-specific IR-deficient 

mice show diet-sensitive obesity and mild insulin resistance [192]. Moreover, it was shown 

that insulin action in AgRP neurons is required to suppress hepatic glucose production, further 

supporting the important role of insulin signalling in the CNS to regulate energy  

homeostasis [193]. 

 

1.4.1 Insulin receptor signalling 

Insulin mediates its pleiotropic effects by binding to the IR, which is predominantly 

expressed in the primary insulin target tissues, but also in other tissues such as the CNS, 

pancreas, kidney and lymphatic cells [188, 192, 194-197]. The heterotetrameric IR belongs to 

the family of ligand-activated receptor tyrosine kinases and forms a bifunctional complex 

consisting of two extracellular α-subunits and two transmembrane β-subunits [198-200].  

 After binding of insulin to the α-subunits, a conformational change is induced thereby 

activating the intrinsic tyrosine kinase activity of the β-subunits, which leads to 

autophosphorylation of the receptor [201, 202]. Subsequently, IRS1-4 are recruited via 

phosphotyrosine-binding (PTB)-domains and in turn tyrosine phosphorylated to serve as 

docking platforms for further downstream signalling events [203-205]. Recruitment of growth 

factor receptor-binding protein (GRB) 2, SHP2, and the regulatory subunit of PI3K activates 

two important branches of the IRS pathway [206-208]: on one hand the mitogen-activated 

protein kinase (MAPK) pathway enhances growth and differentiation [209, 210], while on the 

other hand the PI3K pathway mediates the majority of insulin's metabolic actions (Figure 5) 

[208, 211, 212]. 

The PI3K is a heterodimer, which comprises a catalytic subunit p110 and a regulatory 

subunit p55 or p85, whereas p85 is the most highly expressed regulatory subunit [213]. The 

binding of p85 or p55 to phosphorylated tyrosine residues of IRS leads to conformational 

changes and activation of p110 by translocating p110 to the plasma membrane [208, 211]. At 

the membrane, PI3K catalyses the conversion of phosphatidylinositiol-4,5-bisphosphate 

(PIP2) to phosphatidylinositol-3,4,5-trisphosphate (PIP3) [214, 215]. However, PI3K is 

counter-regulated by the phosphatase and tensin homolog (PTEN) [216]. Accumulation of 

PIP3 at the plasma membrane recruits phosphoinositide-dependent protein kinase (PDK) 1, 
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which in turn phosphorylates and activates protein kinase B (AKT) [217]. Activated AKT 

phosphorylates downstream targets such as AKT substrate (AS) 160, glycogen synthase 

kinase (GSK) 3, mammalian target of rapamycin (mTOR), and FOXO proteins to mediate the 

diverse effects of insulin including stimulation of glucose uptake, glycogen and protein 

synthesis, and the regulation of transcription (Figure 5) [218, 219]. 

 
Figure 5: Insulin receptor signalling. 
Binding of insulin causes a conformational change of the IR, resulting in activation of the intrinsic tyrosine 
kinase and autophosphorylation of the intracellular subunits of the IR. Subsequently, IRS proteins are tyrosine 
phosphorylated to serve as docking platforms for SH2-domain-containing proteins such as GRB2 and the 
regulatory subunit of the PI3K. Binding and activation of these proteins elicit activation of signalling cascades 
such as the Ras-Raf-MAPK and the PI3K pathway. The activation of PI3K catalyses formation of PIP3 leading 
to PDK-mediated phosphorylation and activation of AKT. These signals result in the diverse effects of insulin 
signalling including glucose transport, glycogen and protein synthesis, and gene transcription. AKT, protein 
kinase B; IR, insulin receptor; IRS, insulin receptor substrate; GRB2, growth factor-binding protein 2; mSOS, 
son of sevenless; Raf, ras-activated factor; Ras, rat sarcoma virus protein; MAPK, mitogen-activated protein 
kinase; p55, regulatory subunit of PI3K; p85, regulatory subunit of PI3K; p110, catalytic subunit of PI3K; 
PDK1, phosphoinositide-dependent kinase 1; PI3K, phosphatidylinositol 3 kinase; PIP2, phosphatidyl-
inositol-4,5-bisphosphate; PIP3, phosphatidylinositol-3,4,5-trisphosphate; PTEN, phosphatase and tensin 
homolog; SH2, src-homology 2.  
 

1.4.2 FOXO transcription factors 

The forkhead box-containing (FOX) proteins are a group of TFs characterised by a 

highly conserved monomeric DBD, the forkhead-domain, which displays a variation of the 

helix-turn-helix motif [220, 221]. The TFs were named after the first in 1989 identified FOX 

protein, the forkhead gene of Drosophila melanogaster [222]. Up to the present, more than 

100 FOXs have been identified in species ranging from yeast to human. After the introduction 

of a standard nomenclature in 2000 they were divided in 19 subclasses [223].  
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The subclass O, the FOXO proteins, contains four members in mammals: FOXO1 

(FKHR), FOXO3a (FKHRL1), FOXO4 (AFX), and FOXO6 that act as transcriptional 

activators or repressors dependent on the target gene [224-227]. FOXO1, FOXO3a, and 

FOXO4 are ubiquitously expressed at varying levels depending on the cell type. FOXO1 and 

FOXO4 are highly expressed in adipocytes and muscle cells, respectively; FOXO3a is 

expressed at abundant levels in liver, brain, heart, kidney, and spleen. By contrast, FOXO6 

expression is restricted to the developing and adult brain [227-230]. All FOXOs consist of a 

N-terminal forkhead-domain and a C-terminal TAD, as well as a nuclear localisation signal 

(NLS) and a nuclear export signal (NES) facilitating nucleocytoplasmic shuttling [231, 232]. 

Based on the shared DBD, FOXOs bind to similar DNA sequences, identified as consensus 

FOXO recognition element (FRE) 5´(G/C)(T/A)AA(C/T)AA3´ [228, 231, 233]. The FRE can 

be detected in promoters of FOXO target genes such as insulin growth factor-binding protein 

(IGFBP) 1, Fas ligand (FasL), and Bcl-2 interacting mediator of cell death (Bim) [234, 235]. 

In principle, due to the ability to bind to similar DNA sequences, all FOXOs could regulate 

the same set of target genes. Nevertheless, they act with specificity, which is likely mediated 

by posttranscriptional modifications and interactions with coregulators and binding partners 

[236, 237]. The individual function of the FOXO proteins has been demonstrated in mouse 

models: FOXO1 deficiency causes embryonic lethality due to an impaired angiogenesis, mice 

lacking FOXO3a are viable, but females have an abnormal ovarian follicular development 

leading to age-dependent infertility, and FOXO4-deficient mice exhibit no consistent 

abnormalities [238].   

By now, it is shown that the FOXOs are involved in a multitude of biological 

processes including cell cycle, differentiation, apoptosis, repair of damaged DNA, 

detoxification of ROS, immune system, aging, and cancer [234, 239-242]. In addition, FOXO 

proteins have a crucial role in the regulation of energy metabolism and glucose homeostasis. 

Under fasting conditions, FOXO1 promotes hepatic gluconeogenesis by transcriptional 

activation of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase 

(G6Pase) [243]. Consistently, the loss of insulin sensitivity in IR-haploinsufficient mice can 

be rescued by FOXO1 haploinsufficiency-mediated reduced expression of gluconeogenic 

enzymes [244]. Furthermore, it was reported that FOXO1 mediates hepatic expression of 

genes involved in lipid/sterol synthesis. Consequently, adenoviral delivery of a constitutively 

active FOXO1 (FOXO1AAA) variant to the liver causes lipogenesis, liver steatosis, and 

reduced fatty acid oxidation [245]. Additionally, it was demonstrated that FOXO1 inhibits 

β-cell proliferation by negatively regulated expression of the TF pancreatic and duodenal 
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homeobox factor (PDX) 1, which plays an important role in pancreas development [246]. The 

diabetic phenotype of IRS2-deficient mice caused by combined peripheral insulin resistance 

and β-cell failure is restored by FOXO1 haploinsufficiency-mediated proliferation of β-cells 

[246, 247]. Moreover FOXO1 has a crucial role in both muscle differentiation by regulating 

myotube formation and in muscle atrophy by breaking down muscle fibers. Expression of a 

constitutively active version of FOXO1 (FOXO1ADA) in myoblasts completely inhibits 

muscle differentiation [248]. In contrast, skeletal muscle-specific expression of a dominant 

negative FOXO1 mutant (FOXO1DN) inhibits starvation-mediated muscle atrophy by 

upregulating atrogin 1 expression in mice [249-251]. Likewise, FOXO1 is involved in 

adipocyte differentiation through transcriptional activation of cyclin-dependent kinase 

inhibitors such as p27 and p21, and repression of G1-phase cyclins D1 and D2, and 

G2-M-phase cyclin B [252, 253]. Consistently, expression of FOXO1ADA leads to an 

increase of p21 and suppression of adipocyte differentiation, whereas FOXO1DN causes 

adipogenesis [254]. As mentioned above (1.3.2), FOXO1 directly influences food intake by 

regulating expression of anorexigenic POMC and orexigenic AgRP. Controlled by insulin, 

FOXO1 inhibits POMC, but promotes AgRP transcription and interferes with STAT3 due to 

overlapping binding sites in the pomc and agrp promoter [73, 152]. Furthermore, it was 

recently shown that FOXO1 controls expression of carboxypeptidase E (CPE), mediating 

post-transcriptional cleavage of POMC and generation of α-MSH and β-endorphin [255]. 

 

1.4.2.1 Posttranslational modifications of FOXO proteins 

The FOXO TFs are regulated by various stimuli including insulin, insulin growth 

factor-1 (IGF-1), growth factors, cytokines, nutrients, neurotrophins, and oxidative stress. 

These stimuli change the posttranslational modifications at the TFs such as phosphorylation, 

acetylation, and ubiquitination, thus altering cellular localisation, DNA-binding, 

transcriptional activity, and protein level of the FOXO proteins (Figure 6) [256, 257].  

With exception of FOXO6, subcellular localisation of FOXOs is achieved by 

phosphorylation resulting in nucleocytoplasmic shuttling [227, 258]. The activation of the 

PI3K/AKT pathway causes negative regulation of FOXO´s transcriptional activity by 

cytoplasmic sequestration. AKT, as well as serum and glucocorticoid-inducible kinase (SGK) 

phosphorylate FOXO at three conserved sites (e.g. murine FOXO1 Thr24, Ser256, Ser319) 

allowing recruitment of two 14-3-3 proteins, thus inhibiting binding to DNA consensus 

sequences [231, 259-261]. The accompanied conformational change of FOXO facilitates the 
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interaction of NES with exportin/Crm1 and ultimately leads to rapid relocalisation from the 

nucleus to the cytoplasm [260, 262]. Moreover, phosphorylation of Ser319 in FOXO1 triggers 

Ser322 and Ser325 phosphorylation by casein kinase (CK) 1 followed by phosphorylation of 

Ser329 through dual tyrosine phosphorylated regulated kinase (DYRK) 1A [263, 264]. The 

simultaneous phosphorylation of these four adjacent residues forms a negatively charged 

patch interacting with exportin/Crm1 and supporting AKT-mediated translocation of FOXOs 

to the cytoplasm [263]. In contrast to growth factors, stress triggers the relocalisation of 

FOXOs from the cytoplasm to the nucleus, thus overriding the sequestration of FOXO by 

growth factors [265]. Stress-activated protein kinases such as JNK and mammalian sterile 

20-like protein kinase (MST) 1 phosphorylate FOXOs as well as FOXO-interacting protein 

14-3-3, ultimately leading to dissociation of FOXO and 14-3-3 proteins thus allowing FOXO 

entry into the nucleus [266-268]. Additionally, the JNK-mediated phosphorylation of residues 

located in the TAD of FOXO seems to increase transcriptional activity of the TFs [266].  

Moreover, it was shown that in response to oxidative stress the transcriptional 

coactivators cAMP responsive element-binding protein (CREB)-binding protein (CBP), p300 

and p300/CREB associated factor (PCAF) bind and acetylate FOXO proteins at several lysine 

residues in the DBD and TAD [265, 269]. In contrast, protein acetylases such as silent mating 

type information regulation 2 homolog (SIRT) 1 reverse this process by deacetylation of 

FOXO factors [265, 270]. However, the acetylation-mediated effect on transcriptional activity 

of FOXOs is controversially debated, however the majority of studies indicate that acetylation 

paradoxically inhibits the transcriptional activity [271, 272]. 

Furthermore, oxidative stress triggers monoubiquitination of lysine residues in the 

C-terminus of FOXOs resulting in relocalisation into the nucleus and acceleration of their 

transcriptional activity. The detailed mechanisms are still unclear, but the ubiquitin-specific 

protease (USP) 7 binds and deubiquitinates FOXO proteins and thereby inhibits the 

stress-enhanced transcriptional activity of FOXOs [273]. In contrast, the polyubiquitination of 

FOXOs subsequently leads to the proteosomal degradation of the TFs [274]. Both the SKP2,  

a subunit of the E3 ubiquitin ligase complex and the IκB kinase (IKK) β were identified  

to initiate polyubiquitination-mediated degradation [275-277]. While AKT-mediated 

phosphorylation and cytoplasmic localisation are required for the direct ubiquitination of 

FOXOs by SKP2 [276, 278], IKKβ causes C-terminal phosphorylation of FOXO TFs 

ultimately leading to polyubiquitination and degradation [275]. 
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Figure 6: Posttranslational modifications of FOXO proteins. 
After binding to the DNA, FOXO proteins act predominantly as transcriptional activators than repressors. Insulin 
signalling negatively regulates FOXO by AKT-mediated phosphorylation leading to translocation from the 
nucleus to the cytoplasm. In contrast, stress-activated JNK and MST1 phosphorylate FOXO, trigger 
relocalisation to the nucleus and enhance transcriptional activity. In addition, oxidative stress-mediated 
monoubiquitination of FOXO forces nucleus relocalisation. However, stress-mediated acetylation of FOXO by 
CREB or p300 mainly causes transcriptional inhibition and deacetylation by SIRT transcriptional activation of 
FOXOs. After cytoplasmic sequestration, FOXO proteins are polyubiquitinated by E3 ubiquitin ligase or 
phosphorylated by IKKβ and proteosomally degraded. Ac, acetylation; AKT, protein kinase B; CBP, cAMP 
responsive element-binding protein (CREB)-binding protein; FOXO, forkhead box-containing protein class O; 
IKKβ, IκB kinase β; IR, insulin receptor; JNK, c-jun-N-terminal kinase; MST1, mammalian sterile 20-like 
protein kinase 1; P, phosphorylation; SIRT, silent mating type information regulation 2 homolog; Ub, 
ubiquitination. 
 

1.4.2.2 Dominant negative and constitutively active FOXO1 mutants 

To analyse the biological function of FOXO1 in detail, various FOXO1 mutants have 

been generated including a gain- and loss-of-function version. FOXO1DN is a C-terminal 

truncated variant of FOXO1, which lacks the TAD (Δ256) including residues essential for 

nuclear export and acts as a dominant negative inhibitor of transcription. Independent of 

PI3K/AKT signalling, FOXO1DN binds to FRE and blocks the endogenous FOXO1 and 

presumably other FOXO proteins to bind to DNA consensus sequences [279].  

In contrast, FOXO1ADA is an AKT/SGK phosphorylation-defective mutant, which 

functions as constitutive activator of transcription independent of insulin or other growth 
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factor signals. Due to the replacement of the three AKT/SGK phosphorylation sites to 

nonphosphorylatable amino acids (T24A, S256D, S319A), FOXO1ADA is unable to shuttle 

between the nucleus and the cytoplasm thereby constitutively activating the transcription of 

FRE-containing genes [280]. Recent studies have demonstrated the functionality of 

FOXO1DN and FOXO1ADA constructs in vitro as well as in vivo [244, 248, 254, 279-281].  

 

1.5 Objectives 

Obesity and type 2 diabetes are intimately connected diseases and their incidences are 

steadily increasing worldwide. Thus, there is an urgent need for the development of new 

therapeutic strategies to prevent and treat the obesity epidemic. Several studies over the last 

decade have demonstrated the crucial role of central leptin and insulin signalling to control 

body weight and glucose homeostasis. Therefore, this study aimed at investigating the central 

function of leptin- and insulin-regulated transcription factors STAT3 and FOXO1 by cell 

type-specific transgenesis in conditional mouse mutants.  

First, POMC neuron-specific overactivation of STAT3 as present during obesity 

should be achieved by crossing POMC-Cre mice with mouse mutants carrying a 

Cre-inducible constitutively active stat3 transgene (STAT3-C) in the ROSA26 locus. These 

STAT3-CPOMC mice should be physiologically characterised with regard to energy and 

glucose homeostasis. Although, the STAT3-C mouse strain was generated by Sergei Koralov 

and Klaus Rajewsky, and the STAT3-C mutant was extensively used for constitutive STAT3 

signalling in vivo and in vitro, the STAT3-C construct should also be functionally validated in 

ES cells and mice.  

Second, two novel mouse mutants should be generated allowing cell type-specific 

expression of a dominant negative FOXO1 (FOXO1DN) and a constitutively active FOXO1 

(FOXO1ADA) construct. To this end, FOXO1DN and FOXO1ADA cDNAs will be inserted 

into the STOP-eGFP-ROSA-CAGGS targeting vector to create Cre-inducible 

ROSA26 FOXO1DN and FOXO1ADA mouse strains. After functional verification of the 

FOXO1DN and FOXO1ADA constructs in MEFs, the FOXO1DN and FOXO1ADA mice 

should be subsequently crossed with mice expressing the Cre recombinase in neurons of the 

central nervous system to determine the impact of a central transcriptional block and 

overactivation of FOXO1 on the regulation of energy and glucose homeostasis.  
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2 Material and Methods 

2.1 Chemicals and Biological Material 

 Size markers for agarose gel electrophoresis (Gene RulerTM DNA Ladder Mix, 

Lambda DNA/HindIII) and for SDS-PAGE (Page RulerTM Prestained Protein Ladder Mix) 

were obtained from MBI Fermentas, St. Leon-Rot, Germany. All chemicals used in this work 

are listed in table 1 and all enzymes used in this work are listed in table 2. Solutions were 

prepared with double distilled water. Bacterial media were autoclaved prior to use. 

 
Table 1: Chemicals 

Chemical Supplier 
α32P-Desoxy Cytosine Triphosphates (dCTPs) Amersham, Freiburg, Germany 

γ32P-Desoxy Adenosine Triphosphates (dATPs) Amersham, Freiburg, Germany 

β-Mercaptoethanol  AppliChem, Darmstadt, Germany 

β-Mercaptoethanol  Gibco, Karlsruhe, Germany 

0.9% saline (sterile) Delta Select, Pfullingen, Germany 

1,4-Dithio-DL-threitol (DTT) Sigma-Aldrich, Seelze, Germany 

2,2,2-Tibromethanol (Avertin) Sigma-Aldrich, Seelze, Germany 

2-Propanol (Isopropanol) Roth, Karlsruhe, Germany 

Acetic acid Merck, Darmstadt, Germany 

Acetone KMF Laborchemie, Lohmar, Germany 

Acrylamide Rotiphorese Gel 30 Roth, Karlsruhe, Germany 

Agarose, Ultra Pure Invitrogen, Karlsruhe, Germany 

Ammonium persulfate (APS) Sigma-Aldrich, Seelze, Germany 

Amphotericin B  Sigma-Aldrich, Seelze, Germany 

Bacillol® Bode Chemie, Hamburg, Germany 

Bovine serum albumin (BSA) Sigma-Aldrich, Seelze, Germany 

Bromphenol blue Merck, Darmstadt, Germany 

Calcium chloride (CaCl2) Merck, Darmstadt, Germany 

Chloroform Merck, Darmstadt, Germany 

Complete mini protease inhibitor cocktail tablets Roche, Basel, Switzerland 

Count offTM NEN® Research Products, Boston, USA 

Desoxy Ribonucleotid Triphosphates (dNTPs) Amersham, Freiburg, Germany 

Dextran sulfate Sigma-Aldrich, Seelze, Germany 

Dimethylsulfoxide (DMSO) Merck, Darmstadt, Germany 

di-Sodiumhydrogenphosphate Merck, Darmstadt, Germany 

DMEM with stable Glutamin (Glutamax) Invitrogen, Karlsruhe, Germany 
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Chemical Supplier 
Dulbecco’s modified Eagle Medium (DMEM) Invitrogen, Karlsruhe, Germany 

Enhanced chemiluminescence (ECL) Kit Perbio Science, Bonn, Germany 

Eosin Sigma, Steinheim, Germany 

Ethanol (EtOH), absolute AppliChem, Darmstadt, Germany 

Ethidium bromide  Sigma-Aldrich, Seelze, Germany 

Ethylendiamine tetraacetate (EDTA) AppliChem, Darmstadt, Germany 

Ethylene glycol tetraacetic acid (EGTA) Sigma-Aldrich, Seelze, Germany 

Fetal calf serum (FCS) for EF cells Invitrogen, Karlsruhe, Deutschland 

FCS for ES cells PAA, Pasching, Austria 

Gelatine, type B Sigma, Steinheim, Germany 

Geneticin (G418) Gibco, Karlsruhe, Germany 

Glucose 20% DeltaSelect, Pfullingen, Germany 

Glycerol Serva, Heidelberg, Germany 

Glycine AppliChem, Darmstadt, Germany 

Halothane Sigma-Aldrich, Seelze, Germany 

Hematoxylin Sigma, Steinheim, Germany 

Hydrochloric acid (37%) KMF Laborchemie, Lohmar, Germany 

Hydrogen peroxide Sigma-Aldrich, Seelze, Germany 

Insulin, human Novo Nordisk, Bagsværd, Denmark 

Insulin, human Sigma-Aldrich, Seelze, Germany 

Isopropyl-β-D-Thiogalacto-Pyranoside (IPTG) Biomol, Hamburg, Germany 

Kaisers Glycerol Gelatine Merck, Darmstadt, Germany 

Leptin Sigma-Aldrich, Seelze, Germany 

Leukemia inhibiting factor (LIF) homemade 

L-Glutamine Invitrogen, Karlsruhe, Germany 

LIF ESGRO® Millipore, Billeria, USA 

Luria Bertani agar Sigma, Steinheim, Germany 

Luria Bertani medium AppliChem, Darmstadt, Germany 

Magnesium chloride (MgCl2) Merck, Darmstadt, Germany 

Methanol (MeOH) Roth, Karlsruhe, Germany 

Mitomycin-C from Streptomyces caespitosus Sigma, Steinheim, Germany 

Monosodium phosphate (NaH2PO4) AppliChem, Darmstadt, Germany 

N-2-hydroxyethylpiperazine-N’-2-ethansulfonic acid (HEPES) AppliChem, Darmstadt, Germany 

Nitrogen (liquid) Linde, Pullach, Germany 

Non essential amino acids Invitrogen, Karlsruhe, Germany 

Nonidet P-40 (NP-40) Roche, Basel, Switzerland 

Paraformaldehyde (PFA) Fluka, Sigma-Aldrich, Seelze, Germany 

Phenol AppliChem, Darmstadt, Germany 

Phenylmethylsulfonylfluoride (PMSF) Sigma-Aldrich, Seelze, Germany 
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Chemical Supplier 
Phosphate buffered saline (PBS) Gibco BRL, Eggenstein, Germany 

Poly(deoxyinosinic-deoxycytidylic) acid sodium (poly(dI-dC)) Pharmacia, Freiburg, Germany 

Potassium chloride (KCl) Merck, Darmstadt, Germany 

Potassium gluconate (K-gluconate) Sigma-Aldrich, Seelze, Germany 

Potassium hydroxide (KOH) Merck, Darmstadt, Germany 

Ready SafeTM, Liquid Scintillation Cocktail Beckman Coulter, Fullerton, USA 

Roswell Park Memorial Institute Medium (RPMI) w/o phenol red Gibco, Karlsruhe, Germany 

Sodium acetate AppliChem, Darmstadt, Germany 

Sodium bicarbonate (NaHCO3) AppliChem, Darmstadt, Germany 

Sodium chloride (NaCl) AppliChem, Darmstadt, Germany 

Sodium citrate Merck, Darmstadt, Germany 

Sodium dodecyl sulfate (SDS) AppliChem, Darmstadt, Germany 

Sodium fluoride Merck, Darmstadt, Germany 

Sodium hydroxide (NaOH) AppliChem, Darmstadt, Germany 

Sodium orthovanadate (Na3VO4) Sigma-Aldrich, Seelze, Germany 

Sodium pyrophosphate (Na4P2O7) Sigma-Aldrich, Seelze, Germany 

Sodium pyruvate Invitrogen, Karlsruhe, Germany 

Spermidine Sigma, Steinheim, Germany 

Sucrose AppliChem, Darmstadt, Germany 

Tetramethylethylenediamine (TEMED) Sigma-Aldrich, Seelze, Germany 

Tissue Freezing Medium Jung, Heidelberg, Germany 

Tolbutamide Sigma-Aldrich, Seelze, Germany 

Trishydroxymethylaminomethane (Tris) AppliChem, Darmstadt, Germany 

Triton X-100 AppliChem, Darmstadt, Germany 

Trypsin/EDTA Gibco, Karlsruhe, Germany 

Tween 20 AppliChem, Darmstadt, Germany 

Denhardt´s solution AppliChem, Darmstadt, Germany 

Western Blocking Reagent Roche, Basel, Switzerland 
 
 
 
Table 2: Enzymes 

Enzym Supplier 
AscI New England Biolabs, Schwalbach, Germany 

BamHI Fermentas, St. Leon-Rot, Germany 

Bca DNA polymerase Takara, Otsu, Japan 

BsgI New England Biolabs, Schwalbach, Germany 

BsmI New England Biolabs, Schwalbach, Germany 

DNase, RNase-free Promega, Madison, USA 

DpnI New England Biolabs, Schwalbach, Germany 
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Enzym Supplier 
Dream TaqTM DNA polymerase Fermentas, St. Leon-Rot, Germany 

EcoRI New England Biolabs, Schwalbach, Germany 

EcoRV Fermentas, St. Leon-Rot, Germany 

EuroScript reverse transcriptase Eurogentec, Seraing, Belgium 

NsiI New England Biolabs, Schwalbach, Germany 

Pfu Turbo polymerase Stratagene, Cedar Creek, USA 

Proteinase K Roche, Basel, Switzerland 

Red Taq® DNA polymerase Roche, Sigma-Aldrich, Seelze, Germany 

RNase A, DNase-free Fermentas, St. Leon-Rot, Germany 

RNase inbibtor Eurogentec, Seraing, Belgium 

SacII Fermentas, St. Leon-Rot, Germany 

T4 DNA ligase New England Biolabs, Schwalbach, Germany 

T4 polynucleotide kinase New England Biolabs, Schwalbach, Germany 

T7 polymerase  Roche, Basel, Switzerland 

XbaI Fermentas, St. Leon-Rot, Germany 

 

2.2 Molecular biology 

Standard methods of molecular biology were performed according to protocols 

described by Sambrook and Russell [282], unless otherwise stated.  

2.2.1 Competent E. coli and isolation of plasmid DNA 

Competent Escherichia coli (E. coli) DH5α cells were prepared according to a 

standard protocol [283] and used in heat shock transformation of plasmid DNA. Isolation of 

plasmid DNA was performed using an alkaline lysis method [284] (E.Z.N.A.® Plasmid 

Miniprep Kit 1, Peqlab, Erlangen, Germany) according to the protocol of Zhou et al. [285]. 

Plasmid DNA of higher purity was obtained using Qiagen columns (Qiagen, Hilden, 

Germany) following the supplier’s instructions. DNA ligation was performed with T4 DNA 

ligase according to manufacturer’s instructions. 

2.2.2 Cloning of targeting vectors 

Oligonucleotides used for cloning of FOXO1DN and FOXO1ADA targeting vectors 

and SOCS3 and POMC in situ hybridisation probe synthesis vectors are listed in table 3. All 

constructs used for plasmid generation were confirmed by sequencing (2.2.8).  
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Table 3: Oligonucleotides used in cloning procedures.  

Name Sequence (5´-3´) Application 

3foxoDN_Asc 
 

TTT GGC GCG CCT AGT CCA TGG ACG CAG CTC TTC 
TCC G 

 
amplification of 

FOXO1DN 

5Sphfoxo 

 
GCA TGC GGC GCG CCA CCA TGG CCG AAG CGC 
CCC AGG TGG TGG AGA CCG ACC CGG ACT TCG 

AGC CGC TGC CCC GGC AGC GCT CCT GTG CCT GG 
 

site-directed mutagenesis 
of pCMV5-FOXO1ADA 

ADA_Mut_anti 
 

CCA GGG CTG TCT CCA GGA CCC TCT TGC 
 

site-directed mutagenesis 
of pCMV5-FOXO1ADA 

 

ADA_Mut_sense 
 

GCA AGA GGG TCC TGG AGA CAG CCC TGG 
 

site-directed mutagenesis 
of pCMV5-FOXO1ADA 

 
foxo1m_Asc3 

 
AAG GCG CGC CTT AGC CTG ACA CCC AGC TGT 

 
amplification of FOXO1 

 

foxo1m_Asc5 
 

AAG GCG CGC CAC CAT GGC CGA AGC GCC CCA 
GGT 

 

amplification of 
FOXO1and FOXO1DN 

 
 

2.2.2.1 Generation of FOXO1DN targeting vector 

In order to generate a FOXO1DN targeting vector, the open reading frame of FOXO1 

was amplified by PCR from mouse macrophage cDNA using primer foxo1m_Asc5 and 

foxo1m_Asc3. The 1.9 kb PCR fragment was cloned into a pGEM®-T Vector using the 

pGEM®-T Vector System (Promega, Madison, USA) according to manufacturer’s 

instructions. The resulting pGEM-FOXO1wt plasmid served as template to create the 

0.75 kb FOXO1DN PCR fragment by means of primer foxo1m_Asc5 and 3 foxoDN_Asc 

containing AscI restriction sites. After subcloning into a pGEM®-T Vector (Promega, 

Madison, USA), FOXO1DN was inserted into the AscI restriction site of the 

STOP-eGFP-ROSA-CAGGS targeting vector [286] (Figure 7). This plasmid is a variant of 

the targeting vector STOP-eGFP-ROSA [287], which contains an additional CAGGS 

promoter [288]. 

 
Figure 7: Map of STOP-eGFP-ROSA-CAGGS targeting vector.   
Scheme of the ROSA26 targeting vector STOP-eGFP-ROSA-CAGGS. CAGGS, chicken β actin promoter; 
DTA, diphtheria toxin A gene driven by pGK promoter; eGFP, enhanced green fluorescent protein gene; IRES, 
internal ribosome entry site; LAH, 4.2 kb long arm of homology; NeoR, neomycine resistance gene driven by 
TK promoter; PolyA, polyadenylation signal; SA, adenoviral splice acceptor; SAH, 1.0 kb short arm of 
homology; WSS, Westphal stop sequence; filled triangles, loxP; closed ellipses, FRT sites.  
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2.2.2.2 Generation of FOXO1ADA targeting vector 

To create a FOXO1ADA targeting vector, the plasmid pCMV5-FOXO1ADA [289], 

containing a mutated version of FOXO1ADA was used to generate FOXO1ADA, which 

harbours the pointmutations T24A, S256D, and S319A. The point mutation G282R was 

eliminated by the usage of QuikChange® Site-Directed Mutagenesis Kit (Stratagene, Cedar 

Creek, USA) and primers ADA_Mut_anti and ADA_Mut_sense as described in 2.2.10. After 

BsgI and BsmI digestion of the resulting plasmid pCMV5-FOXO1ADA_R282G, a 

330 bp fragment of FOXO1ADA including S256D and S319A was exchanged with the 

equivalent fragment of the plasmid pGEM-FOXO1wt (2.2.2.1) to generate 

pGEM-FOXO1DA. The third point mutation T24A was introduced by PCR using primers 

5Sphfoxo containing nucleotide exchange T24A and foxo1m_Asc3. After subcloning of the 

1.9 kb fragment into a pGEM®-T Vector (Promega, Madison, USA), FOXO1ADA was 

inserted into the AscI restriction site of the STOP-eGFP-ROSA-CAGGS targeting vector 

(2.2.2.1). 

2.2.3 Construction of in situ hybridisation probes  

Oligonucleotides used for generation of SOCS3 or POMC in situ hybridisation probes 

are listed in table 4. 

 
Table 4: Oligonucleotides used in construction of in situ hybridisation probes.  

Name Sequence (5´-3´) 

SOCS-5’ GGC GCG CCA CCA TGG TCA CCC ACA GCA AGT TTC C 

SOCS-3’ ATT TAA ATT AAA GTG GAG CAT CAT ACT G 

POMC-5’ ATG CCG AGA TTC TGC TAC AG 

POMC-3’ TGC TGC TGT TCC TGG GGC 

 

2.2.3.1 Generation of SOCS3 in situ hybridisation probe synthesis vector 

To generate a plasmid for SOCS3 in situ hybridisation probe synthesis, a 678 bp PCR 

fragment was amplified from mouse hypothalamic cDNA using respective primer SOCS-3’ 

and SOCS-5’. The PCR fragment was cloned into the T7 promoter containing 

pGEM®-T Vector using the pGEM®-T Vector System (Promega, Madison, USA) according 

to manufacturer’s instructions.  
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2.2.3.2 Generation of POMC in situ hybridisation probe synthesis vector 

To generate a plasmid for POMC in situ hybridisation probe synthesis, a 280 bp PCR 

fragment was amplified from mouse hypothalamic cDNA using respective primers POMC-3’ 

and POMC-5’ and cloned into pGEM®-T Vector by the use of the pGEM®-T Vector System 

(Promega, Madison, USA) according to manufacturer’s instructions.  

2.2.4 Isolation of genomic DNA 

For preparation of DNA from mouse liver or tail biopsies, the tissue was incubated in 

lysis buffer (10 mM Tris-HCl [pH 8], 10 mM EDTA, 150 mM NaCl, 0.2% (w/v) SDS, 

400 mg/ml proteinase K) at 56°C for several hours. The debris was pelleted, the supernatant 

mixed with an equal volume of isopropanol and the DNA was precipitated by centrifugation. 

After washing with 70% (v/v) EtOH, the pellet was dried at room temperature (RT) and 

resuspended in TE buffer (10 mM Tris-HCl [pH 8], 1 mM EDTA).  

DNA from ES cell clones grown in 96-well tissue culture dishes was extracted and 

prepared as described previously [290]. 

2.2.5 Agarose gel electrophoresis and DNA gel extraction 

PCR-amplified and digested DNA fragments were separated by size using agarose gel 

electrophoresis (0.8 to 2% (w/v) agarose (dependent on fragment size), 1x TAE, 

0.5 mg/ml EtBr, 1x TAE electrophoresis buffer). The fragments were excised and the DNA 

was eluted using the QIAEX II or the QIAquick Gel Extraction Kit (Qiagen, Hilden, 

Germany) according to manufacturer’s instructions.  

2.2.6 Phenol chlorophorm extraction 

DNA in solution was purified for transfection or Southern blot analysis using phenol 

chloroform extraction. The aqueous solution was mixed with an equal volume of phenol and 

centrifuged to separate the phases. To guarantee a high degree of purity, nucleic acids were 

extracted once more from the aqueous phase by chloroform addition. DNA was precipitated 

from the aqueous phase by adding an equal volume of 100% (v/v) EtOH, washed with 

70% (v/v) ethanol and resuspended in RPMI w/o phenol red for transfection or in TE buffer 

(10 mM Tris-HCl [pH 8], 1 mM EDTA). 
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2.2.7 Quantification of nucleic acids 

The concentration of DNA and RNA was determined by measuring the sample 

absorption at 260 nm with a NanoDrop® ND-1000 UV-Vis Spectrophotometer (Peqlab, 

Erlangen, Germany). An OD260 of 1 corresponds to approximately 50 µg/ml of double 

stranded DNA and to 38 µg/ml of RNA. To assess purity of nucleic acids, the ratio of 

absorption at 260 nm versus 280 nm was calculated, as proteins absorb maximum at 280 nm. 

An OD260/OD280 ratio of 2 refers to pure nucleic acids, lower values display protein 

contaminations.  

Alternatively, the DNA was electrophoresed in an agarose gel, and the concentration 

was approximated from the band intensity in comparison with a standard.  

2.2.8 DNA sequencing 

DNA was sequenced with the ABI Big Dye Terminator Sequencing Kit (Applied 

Biosystems, Foster City, USA) according to Sanger et al. [291]. The fluorescently labelled 

DNA fragments were analysed with an ABI Prism 3730 DNA analyser (Applied Biosystems, 

Foster City, USA). 

2.2.9 Polymerase chain reaction (PCR) 

The polymerase chain reaction [292, 293] was performed to amplify cDNA fragments 

for cloning and to detect targeted alleles or transgenes for genotyping of mice and cells. 

Reactions were performed in a Triothermocycler (Biometra, Göttingen, Germany), 

Thermocycler iCycler PCR machine (Bio-Rad, München, Germany) or Peltier Thermal 

Cycler PTC-200 (MJ Reasearch, Waltham, USA) and all primers were purchased from 

Eurogentec, Cologne, Germany. 

Genotyping of mice, ES cells, and MEFs or synthesis of the neo probe were performed 

in a total reaction volume of 25 µl, containing a minimum of 50 ng template DNA, 25 pM of 

each primer (Table 5, 6), 25 µM dNTPs mix, 3 to 6% (v/v) DMSO, either 10x RedTaq® 

reaction buffer and 1 unit of RedTaq® DNA Polymerase (Sigma, Steinheim, Germany) or 

10x Dream TaqTM Green Buffer and 1 unit of DreamTaqTM DNA Polymerase (Fermentas, St. 

Leon-Rot, Germany). Standard PCR programs started with 4 min of denaturation at 95°C, 

followed by 30 to 35 cycles consisting of denaturation at 95°C for 45 sec, annealing at 54 to 

60°C for 30 sec and elongation at 72°C for 30 sec. The PCR was finished with a final 

extension step at 72°C for 10 min.  
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Table 5: Oligonucleotides used for genotyping. 

Transgene Name  Sequence (5´-3´) 

Typ_forward AAA GTC GCT CTG AGT TGT TAT C 

Typ_reverse GAT ATG AAG TAC TGG GCT CTT stat3-c 

NeoRT CGG ACC GCT ATC AGG ACA TA 

N16R TGG CTC AAT GTC CTT CCT GG 

N57R CAC ATA AGC TGC ATC GTT AAG pomc cre 

AA03 GAG ATA TCT TTA ACC CTG ATC 

Typ_forward AAA GTC GCT CTG AGT TGT TAT C 

Typ_reverse GAT ATG AAG TAC TGG GCT CTT foxo1dn 
foxo1ada 

Typ_rev_CAGS TGT CGC AAA TTA ACT GTG AAT C 

ROSA1 AG GGT TTC CTT GAT GAT GTC A 

3 NeoStat CAT CAG GGG CTC GCG CC Δfoxo1dn 
Δfoxo1ada 

3FOXORT4 CTG GGG CGC TTC GGC CAT 

NestinCre5 TGC TGG AGT TCT CCG CTT CCG 
nestin cre 

NestinCre3 ATG TTT AGC TGG CCC AAA TGT 

 
Table 6: Oligonucleotides used for synthesis of neo probe. 

probe Name  Sequence (5´-3´) 

neo5pPNT TGA ATG AAC TGC AGG ACG AGG CA 
Neo 

neo3pPNT GCC GCC AAG CTC TTC AGC AAT AT 

 

For cloning procedures, DNA fragments were amplified from cDNA or plasmid DNA 

using the High Fidelity PCR Master Kit (Roche, Basel, Switzerland) containing a Tgo DNA 

polymerase with proofreading activity according to manufacturer’s guidelines with 

500 ng template cDNA, 25 pM of each primer (Table 3, 4) and 3 to 9% (v/v) DMSO. After an 

initial denaturation step at 94°C for 4 min, 15 cycles of denaturation at 94°C for 30 sec, 

annealing at 54 to 60°C for 30 sec and elongation at 68°C for 90 sec were followed by another 

25 cycles of denaturation at 94°C for 45 sec, annealing at 54 to 60°C for 45 sec and 

elongation at 68°C for 3 min. The PCR was finished with a final extension step at 68°C for 

10 min. 

2.2.10  Site-directed mutagenesis 

To exchange one nucleotide of a plasmid, site-directed mutagenesis was performed by 

usage of QuikChange® Site-Directed Mutagenesis Kit (Stratagene, Cedar Creek, USA) 

according to manufacturer’s instructions. 
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2.2.11  RNA extraction and reverse transcriptase-PCR (RT-PCR) 

Hypothalamic tissue and MEFs were homogenised using an Ultra Turrax homogeniser 

(IKA, Staufen, Germany) or QIAshredder spin columns (Qiagen, Hilden, Germany), 

respectively. Total RNA was extracted using the RNeasy system (Qiagen, Hilden, Germany) 

according to manufacturer’s guidelines. After treatment with RNase-free DNase, 200 ng of 

each RNA sample were reversely transcribed with EuroScript Reverse Transcriptase 

(Eurogentec, Cologne, Germany) according to manufacturer’s instructions. Fragments of 

STAT3-C, endogenous STAT3, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

were amplified using specific primers (Table 7). 

 
Table 7: Oligonucleotides used for amplification of cDNA fragments. 

amplified cDNA fragment Name  Sequence (5´-3´) 

Rosa512 GCC GTT CTG TGA GAC AG 
STAT3-C 

3StatRT AGG ACA TTG GAC TCT TGC AG 

5StatRT CAG TCG GGC CTC AGC CC 
endogenous STAT 

3StatRT AGG ACA TTG GAC TCT TGC AG 

GAPDH5´ ACC ACA GTC CAT GCC ATC AC 
GAPDH 

GAPDH3´ TCC ACC ACC CTG TTG CTG TA 

 

2.2.12 Analysis of RNA expression 

Expression of mRNA was analysed using quantitative realtime PCR. cDNA was 

obtained from hypothalamic tissue as described above (2.2.11) and amplified using TaqMan 

Universal PCR-Master Mix, NO AmpErase UNG with TaqMan Assay on demand kits for 

AgRP (agouti-related protein), Gusb (glucuronidase beta), Hprt-1 (hypoxanthine guanine 

phosphoribosyl transferase 1), NPY (neuropeptide Y), PIAS (protein inhibitor of activated 

STAT), and SOCS3 (suppressor of cytokine signalling 3) (Applied Biosystems, Foster City, 

USA). Analysis of POMC mRNA expression was performed with customised primers 

(Table 8). Relative expression of samples was adjusted for total RNA content by Gusb and 

Hprt-1 RNA quantitative realtime PCR. Calculations were performed by a comparative 

method (2-ddCT). Quantitative PCR was performed on an ABI-PRISM 7700 Sequence 

Detector (Applied Biosystems, Foster City, USA). Assays were linear over 4 orders of 

magnitude. 
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Table 8: Oligonucleotides used for analysis of POMC mRNA expression. 

Name  Sequence (5´-3´) 
POMC sense GAC ACG TGG AAG ATG CCG AG 

POMC anti-sense CAG CGA GAG GTC GAG TTT GC 

probe sequence FAM-CAA CCT GCT GGC TTG CAT CCG G-TAMRA 

 

2.2.13  Southern blot analysis 

Digestion of 5 - 15 µg genomic DNA isolated from ES cells was performed overnight 

with 100 U of the appropriate restriction enzyme (Table 9). Subsequently, DNA fragments 

were separated by agarose gel electrophoresis and transferred onto HybondTM-N+ 

(Amersham, Braunschweig, Germany) nylon membranes by alkaline capillary transfer [294]. 

Membranes were incubated at 80°C for 40 min to fix the DNA, equilibrated in 2x SSC [282] 

and then prehybridised at 65°C for 4 h in hybridisation solution (1 M NaCl, 1% (w/v) SDS, 

10% (w/v) dextran sulfate, 50 mM Tris-HCl [pH 7.5], 250 µg/ml sonicated salmon sperm 

DNA). 50 ng of probe DNA (Table 9) were radioactively labelled with 2.5 µCi α32P-dCTP 

using the LaddermanTM Labelling Kit (Takara, Otsu, Japan) based on the principle of random 

primed oligolabelling [295].  

 
Table 9: Probes used for Southern blot analysis.  

Name Description of probe genomic DNA 
digestion 

Rosa26 probe 1200 bp EcoRI/BamHI fragment from A-04 plasmid [296] EcoRI 

Neo probe 500 bp PCR fragment (2.2.9) NsiI 

 

Non-incorporated radiolabelled nucleotides were removed with MicroSpinTM S-200HR 

columns (GE Healthcare, Munich, Germany). Probes were denatured for 5 min in a boiling 

waterbath and then cooled on ice, before addition to the hybridisation solution. Hybridisation 

was performed at 65°C overnight in a rotation cylinder (Hybaid, Thermo Fisher Scientific, 

Waltham, USA). After hybridisation, stringency washes were initially performed twice in 

2x SSC/0.1% (w/v) SDS followed by washes in 1x SSC/0.1% (w/v) SDS, 

0.5x˘SSC/0.1% (w/v) SDS and 0.1x SSC/0.1% SDS at 65°C under gentle shaking. 

Radioactivity on the membranes was monitored with a Geiger counter until specific signals 

reached 20 to 100 cps. Afterwards, membranes were sealed in a plastic bag and exposed to 

X-ray films (BioMAX MS, Eastman Kodak, Rochester, USA) at -80°C. Films were 

developed in an automatic developer (Agfa, Mortsel, Belgium). Alternatively, the membranes 
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were exposed to PhosphoImager screens (Fujifilm, Tokyo, Japan) at RT and analysed on 

BAS1000 PhosphoImager (Fujifilm, Tokyo, Japan).  

 

2.3 Cell biology 

2.3.1 Embryonic fibroblast cell cultur  

Murine embryonic fibroblasts (MEF) were isolated from E14.5 embryos [297]. After 

setting up matings, the females were checked for the presence of vaginal plug every morning. 

14.5 days after copulation, mice were sacrificed by cervical dislocation and disinfected with 

Bacillol®. After dissection of the uterus, embryos were washed in PBS. Liver, heart, and brain 

of every embryo were removed and used for genotyping. The remaining part of the embryo 

was washed in PBS, homogenised by a 70 µm nylon cell strainer (Falcon, Belford, USA), and 

washed with EF medium (DMEM supplemented with 10% FCS, stable Glutamin (Glutamax) 

and 1 mM sodium pyruvate). MEFs were expanded in EF medium in tissue culture dishes 

(Falcon, Belford, USA) at 37°C under humid atmosphere with 10% CO2. 

For immortalisation, 2x105 MEFs were transfected with 1 µg SV40 genomic DNA 

[298] using LipofectamineTM 2000 transfection reagent (Invitrogen, Karlsruhe, Germany) 

according to manufacturer’s protocol. Next day, MEFs were trypsinised and serial diluted to 

reach single colonies, starting from 12.5, 25, 50, 100 to 200 cells per well of a 96-well tissue 

culture dish (Falcon, Belford, USA). After changing EF medium every fourth day for the next 

14 days, MEF clones were expanded.  

2.3.2 Embryonic stem cell culture 

All gene targetings were performed in V6.5 (129SV x C57BL/6, F1 Hybrid) 

embryonic stem (ES) cells [299]. Culturing and transfection of ES cells were performed 

according to published protocols [290, 300]. ES cells were grown in ES cell medium (DMEM 

supplemented with 15% FCS, 1 mM sodium pyruvate, 2 mM L-glutamine, 1x non essential 

amino acids, 10 U/ml LIF, 0.1 mM 2-β-mercaptoethanol) and kept at 37°C under humid 

atmosphere with 10% CO2. ES cells were cultured on a layer of embryonic fibroblast (EF) 

cells, which were never passaged more than three times and mitotically inactivated by 

mitomycin-C treatment (10 µg/ml for 2 to 4 h) before seeding with ES cells. ES cell colony 

growth was stopped before they became confluent by washing the colonies twice with PBS 

and short treatment with trypsin at 37°C. ES cell suspension was then used for passaging, 
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freezing or transfection. ES cells were frozen in 90% FCS, 10% DMSO at -80°C and later 

transferred into liquid nitrogen for long-term storage.  

For transfection, 1x107 ES cells were mixed with 40 µg DNA in 800 µL RPMI 

w/o phenol red and electroporated at RT (500 mF, 240 V). After 5 min incubation, ES cells 

were transferred onto an EF layer and after 48 h placed under selection with 250 µg/ml G418. 

On day 9 after transfection, resistant colonies were picked and split into EF-containing 

96-well tissue culture dishes for expansion. After 3 days, ES cells were frozen and parallel 

further expanded for genomic DNA extraction and Southern blot analysis of each clone.  

Microinjection and transfer of 3.5 day-old embryos were performed in the Centre for 

Mouse Genetics, University of Cologne.  

2.3.3 His-TAT-NLS-Cre (HTNC) treatment 

ES cells were treated with HTNC [301] to delete loxP-flanked gene segments. 

2x105 ES cells or 3x105 MEFs were plated into a well of a 6-well tissue culture dish. After 

5 h, cells were washed twice with PBS and then incubated in 4 to 10 µM HTNC in DMEM 

w/o FCS/PBS (1:1) for 20 h. Thereafter the cells were washed with PBS and cultured as 

described before.  

2.3.4 Dual luciferase assay 

STAT3-C and control ES cells were transiently transfected with 

30 µg pSTAT3-TA-Luc (Clontech Laboratories, Mountain View, USA) and 10 µg pRLnull 

vector (Promega, Madison, USA) by electroporation as described in 2.3.2. After transfection, 

ES cells were suspended in growth medium and plated onto 24-well culture plates. 24 h after 

transfection, ES cells were washed with PBS and incubated for 24 h with DMEM w/o FCS or 

ES cell medium supplemented with 30 U/ml LIF ESGRO. ES cells were then washed in PBS 

and lysed in 100 µl passive lysis buffer (Promega, Madison, USA) and centrifuged at 4°C. 

Supernatant was assayed for FLuc activities using the Dual Luciferase Assay (Promega, 

Madison, USA) according to the manufacturer´s protocol. Each experiment was performed in 

triplicate and each transfection was repeated four times.  

2.3.5 Flow cytometry 

ES cells and MEF were analysed on a FACS Calibur and data were evaluated using 

CellQuest software (Becton Dickinson, Mountain View, USA).  
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2.3.6 Electrophysiology 

All electrophysiology experiments were performed in the Institute of Zoology and 

Physiology, Group Peter Kloppenburg, University of Cologne, CECAD, Germany. 

2.3.6.1 Animals and brain slice preparation  

Experiments were performed on brain slices from 18 - 28 day old POMC-EGFP and 

STAT3-CPOMCPOMC-EGFP mice that express enhanced green fluorescent protein (eGFP) 

selectively in POMC neurons [62]. The animals were anaesthetised with halothane and 

subsequently decapitated. The brains were rapidly removed and a block of tissue containing 

the hypothalamus was immediately cut out. Coronal slices (250 – 300 µm) containing the 

ARC were cut with a vibration microtome (HM-650 V; Thermo Scientific, Karlsruhe, 

Germany) under cold (4°C), carbogenated (95% O2 and 5% CO2), glycerol-based modified 

artificial cerebrospinal fluid (GaCSF) to enhance the viability of neurons. GaCSF contained: 

250 mM glycerol, 2.5 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 1.2 mM NaH2PO4, 

10 mM HEPES, 21 mM NaHCO3, 5 mM glucose adjusted to pH 7.2 (with NaOH) resulting in 

an osmolarity of ~310 mOsm. Brain slices were transferred into carbogenated artificial 

cerebrospinal fluid (aCSF). First, they were kept for 20 min in a 35°C 'recovery bath' and then 

stored at RT for at least 30 min prior to recording. aCSF contained: 125 mM NaCl, 

2.5 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 1.2 mM NaH2PO4, 21 mM NaHCO3, 

10 mM HEPES, and 5 mM glucose adjusted to pH 7.2 (with NaOH) resulting in an osmolarity 

of ~310 mOsm. Slices were transferred to a recording chamber (~3 ml volume) and 

continuously superfused with carbogenated aCSF at a flow rate of ~2 ml·min-1. 

200 nM insulin and 200 µM of the KATP channel blocker tolbutamide were bath-applied via 

the superfusion system. The tolbutamide was dissolved in DMSO and added to aCSF with a 

final DMSO concentration of 0.25%. The DMSO concentration had no obvious effect on the 

investigated neurons. 

2.3.6.2 Perforated patch recordings 

Perforated patch recordings were performed using protocols modified from Horn and 

Marty [302] and Akaike and Harata [303]. Electrodes with tip resistances between 3 and 

5 MW were fashioned from borosilicate glass (0.86 mm inner diameter; 1.5 mm outer 

diameter; GB150-8P; Science Products, Hofheim, Germany) with a vertical pipette puller 

(PP-830; Narishige, Tokyo, Japan). Perforated patch recordings were performed with ATP 

and GTP free pipette solution containing: 128 mM K-gluconate, 10 mM KCl, 10 mM HEPES, 
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0.1 mM EGTA, 2 mM MgCl2 and adjusted to pH 7.3 (with KOH) resulting in an osmolarity 

of ~300 mOsm. ATP and GTP were omitted from the intracellular solution to prevent 

uncontrolled permeabilisation of the cell membrane [304]. The patch pipette was tip filled 

with internal solution and back filled with amphotericin B-containing internal solution 

(~200 µg·ml-1) to achieve perforated patch recordings. Amphotericin B was dissolved in 

DMSO (final concentration: 0.4 - 0.5%) and added to the modified pipette solution shortly 

before use [305]. Experiments were carried out at approximately 31°C using an inline solution 

heater (Warner Instruments, Hamden, USA) operated by a temperature controller (Warner 

Instruments, Hamden, USA). During the perforation process access resistance (Ra) was 

constantly monitored and experiments were started after Ra had reached steady state 

(~15 - 20 min) and the action potential (AP) amplitude was stable. By the use of an ATP-free 

pipette solution, a change to the whole-cell configuration would be obvious by a spontaneous 

hyperpolarisation of the neuron due to KATP activation. Such experiments were rejected. 

Neurons in the ARC were visualised with a fixed-stage upright microscope (Olympus, 

Hamburg, Germany), using a 60× water immersion objective (LUMplan FI/IR; 60×; 

0.9 numerical aperture; 2 mm working distance; Olympus, Hamburg, Germany) with 

infrared-differential interference contrast [306] and fluorescence optics. POMC neurons were 

identified by their eGFP fluorescence that was visualised using a Chroma 41001 filter set 

(EX: HQ480/40x, BS: Q505LP, EM: HQ535/50m, Chroma, Bellow Falls, USA). 

Current-clamp recordings were performed with an EPC10 patch-clamp amplifier (HEKA, 

Lambrecht, Germany) controlled by the PatchMaster software (version 2.32, HEKA, 

Bellmore, USA). Data were sampled at intervals of 100 µs (10 kHz) and low-pass filtered at 

2 kHz with a four-pole Bessel filter. The liquid junction potential between intracellular and 

extracellular solution was not compensated (14.6 mV, calculated with Patcher's Power Tools 

plug-in for Igor Pro 6 (Wavemetrics, Lake Oswego, USA)). 

2.3.6.3 Data analysis 

In agreement with previous studies it was found that the basic electrophysiological 

properties of POMC neurons and their insulin responsiveness [307, 308] were not 

homogeneous. Therefore, a 3 standard deviation (SD) criterion was used and considered a 

neuron insulin responsive when the change in membrane potential before and during insulin 

application was > 3 SD [309, 310]. For each neuron, the membrane potential averaged from 

60 s intervals was taken as one data point. To determine the mean membrane potential with 

SD 5 data points at stable membrane potentials before and during insulin application were 
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averaged. Data analysis was performed with Igor Pro 6 (Wavemetrics, Lake Oswego, USA) 

and Sigma Stat (version 3.1, Systat Software, Chicago, USA). 

2.3.7 Histological analysis and immunohistochemistry 

2.3.7.1 Immunohistochemistry 

For visualisation of eGFP expression after Cre-mediated recombination, 

STAT3-CPOMC mice at the age of 12 weeks were anaesthetised and perfused transcardially 

with physiologic saline solution followed by 4% (w/v) PFA (in 0.1 M PBS [pH 7.4]). The 

brains were dissected, postfixed in 4% (w/v) PFA at 4°C for 24 h, transferred to 20% sucrose 

for 6 h, and frozen in tissue-freezing medium. Subsequently, 25 µm thick free-floating 

coronal sections were dissected through the ARC using a freezing microtome (Leica, Solms, 

Germany). The sections were collected in PBS/azide (pH 7.4) and washed extensively to 

remove cryoprotectant. The sections were stained as described previously [311], using 

anti-GFP antibody (#A6455; Invitrogen/Molecular Probes, Karlsruhe, Germany).  

For X-Gal stainings STAT3-CPOMC were mated with ROSAArte26 reporter mice 

[312]. At the age of 12 weeks animals fasted for 16 h were anaesthetised and perfused 

transcardially with physiologic saline solution followed by 4% (w/v) PFA. The brains were 

dissected, postfixed in 4% (w/v) PFA for 4 h, soaked in 20% (w/v) sucrose for 24 h at 4°C 

and frozen in tissue-freezing medium. 8 µm coronal sections containing the ARC were fixed 

for 10 min in cold 4% (w/v) PFA, washed three times with PBS, rinsed in distilled water and 

subjected to X-Gal-staining overnight at 37°C (X-Gal solution: 5 mM K3Fe(CN)6, 

5 mM K4Fe(CN)6, 2 mM MgCl2, 1 mg/ml X-Gal in PBS [pH 7.4]) [313]. 

For the staining of pSTAT3 in POMC neurons, STAT3-CPOMC mice were crossed with 

ROSAArte26 reporter mice [312]. At the age of 10 to 12 weeks animals fasted for 16 h were 

anaesthetised and injected intraperitoneally with either saline or 1 mg/kg leptin for 30 min. 

Mice were perfused transcardially with physiologic saline solution and the dissected brains 

were frozen in tissue-freezing medium. The 7 µm coronal sections containing the ARC were 

stained with β-galactosidase (#9361; Abcam, Cambridge, United Kingdom) and pSTAT3 

antibodies (#9145; Cell Signaling, Danvers, USA). Double fluorescence immunostainings 

were performed as described before [314]. For quantitative analysis of pSTAT3-positive 

POMC neurons, a total of 2103 β-galactosidase-positive neurons were counted and digitally 

marked to prevent multiple counts. pSTAT3-positive POMC neurons were expressed as 

percentage of total POMC neurons.  



Material and Methods  

 36 

For the staining of pAKT in POMC neurons, STAT3-CPOMC mice were crossed with 

ROSAArte26 reporter mice [312]. At the age of 10 to 14 weeks animals fasted for 48 h were 

anaesthetised and injected intravenously with either physiologic saline solution or 5 U of 

insulin for 10 min. Mice were transcardially perfused with physiologic saline solution and the 

dissected brains were postfixed in 4% (w/v) PFA at 4°C for 24 h, transferred to 

20% (w/v) sucrose for 6 h, and frozen in tissue-freezing medium. The 25 µm coronal sections 

containing the ARC were stained with β-galactosidase (#9361; Abcam, Cambridge, United 

Kingdom) and pAKT antibodies (#4060; Cell Signaling, Danvers, USA). Double fluorescence 

immunostainings were performed as described before [314]. For quantitative analysis of 

pAKT-positive POMC neurons, a total of 2351 β-galactosidase-positive neurons were 

counted and digitally marked to prevent multiple counts. pAKT-positive POMC neurons were 

expressed as percentage of total POMC neurons.  

Slides were viewed through a Zeiss Axioskop equipped with a Zeiss AxioCam 

(Göttingen, Germany) for acquisition of digital images using Zeiss AxioVision version 

4.2 imaging software (Göttingen, Germany). 

2.3.7.2 Analysis of in situ PIP3 formation  

For the quantitative analysis of PIP3 levels in POMC neurons, STAT3-CPOMC mice 

were crossed with ROSAArte26 reporter mice [312]. At the age of 12 weeks animals fasted 

for 16 h were anaesthetised and injected intravenously with 5 U of insulin for 10 min. Mice 

were perfused transcardially with physiologic saline solution and the dissected brains were 

frozen in tissue-freezing medium. The 7 µm coronal sections containing the ARC were 

stained with β-Galactosidase (#555976; Cappel/Cosmobio, Cologne, Germany) and PIP3 

antibodies (#Z-G345; Echelon, Salt Lake City, USA). Double fluorescence immunostainings 

were performed as described before [314].  

For quantitative analysis of PIP3-levels in POMC neurons, a total of 

1866 β-galactosidase-positive neurons were counted in ARC slices of control (n = 5; 

842 POMC neurons) and STAT3-CPOMCROSAArte26 (n = 5; 824 POMC neurons) mice and 

the amount of PIP3 was classified as described previously [315] as low (less than 5 

immunoreactive PIP3-dots), moderate (5 to 10 immunoreactive PIP3-dots) or high (more than 

10 immunoreactive PIP3-dots). Neurons positive for β-galactosidase were counted and 

marked digitally to prevent multiple counts, and PIP3-immunoreactivity was rated as 

described above. Results were expressed as percentage of POMC neurons, showing the 

respective PIP3-levels. 
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Slides were viewed through a Zeiss Axioskop equipped with a Zeiss AxioCam 

(Göttingen, Germany) for acquisition of digital images using Zeiss AxioVision version 

4.2 imaging software (Göttingen, Germany). 

2.3.7.3 Combined in situ hybridisation and immunohistochemistry 

For SOCS3 and POMC probe synthesis, the plasmids pGEM-T SOCS3 and 

pGEM-T POMC described in paragraph 2.2.3.1 and 2.2.3.2 were transcribed in vitro into 

digoxigenin (DIG)-labelled RNA using 200 ng of T7 promoter-containing plasmid 

pGEM-T SOCS3 or pGEM-T POMC and DIG RNA Labelling Kit (Roche, Basel, 

Switzerland) according to manufacturer´s guidelines. After incubation at 37°C for 2 h, the 

transcribed RNA was DNaseI-digested, ethanol-precipitated and the quality of RNA was 

assessed by electrophoresis on an agarose gel after quantification of RNA concentration 

(2.2.7).  

For SOCS3 and POMC in situ hybridisation STAT3-CPOMC mice were mated with 

ROSAArte26 reporter mice [312] to generate STAT3-CPOMCROSAArte26 and 

ROSAArte26POMC mice. At the age of 10 to 14 weeks animals fasted for 16 h (for SOCS3 

in situ hybridisation) or randomly fed animals (for POMC in situ hybridisation) were 

anaesthetised and perfused transcardially with saline followed by 4% (w/v) PFA. The brains 

were dissected, postfixed in 4% (w/v) PFA for 4 h, soaked in 20% (w/v) sucrose at 4°C for 

24 h and frozen in tissue-freezing medium. For X-gal-combined SOCS3 or POMC in situ 

hybridisation, 8 µm thick coronal sections containing the ARC were X-gal-stained (2.3.7.1), 

washed with PBS, and treated with 0.25 µg/ml proteinase K for 10 min at 37°C. The sections 

were rinsed with 2 mg/ml glycine, placed into 4% (w/v) PFA, washed with PBS, and then 

washed with 2x SSC. Prehybridisation was carried out for 5 h at 56°C in prehybridisation 

buffer containing 50% (v/v) formamide, 5x SSC, 1x Denhardt´s solution, and 0.1% (v/v) 

Tween 20. Hybridisation was performed at 56°C overnight with 2 ng/µl digoxigenin-labelled 

RNA probe and 360 ng/µl competitor tRNA. After washing with 2x SSC, the sections were 

RNase digested for 1 h at 37°C and afterwards washed with 0.1x SSC for 1 h at 55°C, then 

cooled to RT. The sections were blocked for 1 h in Roti®-ImmunoBlock (Roth, Karlsruhe, 

Germany) and incubated with anti-DIG antibody coupled to alkaline phosphatase (Roche, 

Basel, Switzerland) for 1 h. After washing, SOCS3 and POMC in situ hybridisation were 

detected using Liquid Permanent Red (Dako North America, Carpinteria, USA) or BM Purple 

(Roche, Basel, Switzerland), respectively. After staining, the sections were embedded in 

Vectashield Mounting Medium containing DAPI (Vector Laboratories, Burlingame, USA). 
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For quantitative analysis of SOCS3-positive POMC neurons, a total of 

3069 X-Gal-positive neurons were counted in ARC slides of control (n = 3; 1486 POMC 

neurons) and STAT3-CPOMCROSAArte26 (n = 3; 1583 POMC neurons) mice and marked 

digitally to prevent multiple counts. SOCS3-positive POMC neurons were expressed as 

percentage of total POMC neurons.  

For quantitative analysis of X-Gal-positive/POMC-mRNA-positive neurons, a total of 

2214 POMC-mRNA-positive neurons were counted in ARC slides of control (n = 4; 

1155 POMC-mRNA-positive neurons) and STAT3-CPOMCROSAArte26 (n = 4; 1059 POMC-

mRNA-positive neurons) mice and marked digitally to prevent multiple counts. 

X-Gal-positive/POMC-mRNA-positive neurons were expressed as percentage of total 

POMC-mRNA-positive neurons. 

Slides were viewed through a Zeiss Axioskop equipped with a Zeiss AxioCam 

(Göttingen, Germany) for acquisition of digital images using Zeiss AxioVision version 4.6 

imaging software (Göttingen, Germany).  

2.3.7.4 Histomorphology 

For general histology of embryonic brains, the complete head of E19.5 days old 

FOXO1ADACNS and control embryos were snap-frozen in tissue-freezing medium, and cut in 

7 µm thick coronal sections using a freezing microtome (Leica, Solms, Germany). Specimens 

were collected on poly-L-lysine-coated glass slides (Menzel, Braunschweig, Germany), dried 

at RT overnight and used for hematoxylin and eosin (H&E). H&E (Sigma-Aldrich, Seelze, 

Germany) stainings was performed according to standard protocols [316, 317]. Slides were 

viewed through a Zeiss Axioskop equipped with a Zeiss AxioCam (Göttingen, Germany) for 

acquisition of digital images using Zeiss AxioVision version 4.6 imaging software 

(Göttingen, Germany).  

2.3.7.5 TUNEL staining 

The terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling 

(TUNEL) method [318] was used to identify apoptotic cells in the embryonic brains by 

labelling fragmented DNA. The complete head of E19.5 days old FOXO1ADACNS and 

control embryos were snap-frozen in tissue-freezing medium, cut in 7 µm thick coronal 

sections using a freezing microtome (Leica, Solms, Germany) and stained by using the 

DeadEndTM Fluorometric TUNEL System (Promega, Madison, USA) according to 

manufacturer´s protocol. 
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2.4 Biochemistry 

2.4.1 Enzyme-linked immunosorbent assay (ELISA) 

Serum insulin, leptin, and corticosterone concentrations were measured by ELISA 

according to manufacturer’s guidelines (Mouse Leptin ELISA, #90030, Crystal Chem, 

Downers Grove, USA; Mouse/Rat Insulin ELISA, #INSKR020, Crystal Chem, Downers 

Grove, USA; Corticosterone Enzyme Immunoassay Kit, #900-097, Assay Designs, Ann 

Arbor, USA).  

2.4.2 Protein extraction 

To prepare ES cell or MEF lysates, 1x106 cells were dissolved in 20 µl RIPA buffer 

(1x PBS, 1% NP-40, supplemented with complete mini protease inhibitor cocktail tablets). 

After centrifugation at 4°C, the supernatant was transferred into a new vial. 

To prepare cytoplasmic and nuclear protein extracts, hypothalamic tissue, ES cells or 

MEFs were homogenised or suspended in hypotonic solution (10 mM HEPES [pH 7.6], 

10 mM KCl, 2 mM MgCl2, 0.1 mM EDTA, supplemented with complete mini protease 

inhibitor cocktail tablets) and incubated on ice for 10 min. 1% (v/v) NP-40 was added, 

incubated for 5 min and centrifuged 4°C. After removing the cytoplasmic fraction, the nuclear 

pellet was washed in hypotonic buffer and resuspended in high salt buffer (20 mM Hepes 

[pH 7.9], 420 mM NaCl, 1.5 mM MgCl2, 0.5 mM DTT, 0.2 mM EDTA, 10 % (v/v) glycerol, 

completed with protease inhibitor cocktail). After incubation on ice and centrifugation at 4°C, 

the nuclear protein fraction was transferred into a new vial.  

To generate hypothalamic lysates, snap-frozen tissues were thawed and homogenised 

in lysis buffer (20 mM Tris-HCl [pH 8.0], 1% (v/v) NP-40, 150 mM NaCl, 10 mM NaF, 

1 mM Na3VO4, 1 mM Na4P2O7, supplemented with 1x complete mini protease inhibitor 

cocktail) using 70 µm nylon cell strainers (Falcon, Belford, USA). After incubation on ice for 

10 min and centrifugation at 4°C, protein lysates were transferred into new vials. 

If necessary, mice, ES cells, or MEFs were fasted overnight and treated with leptin 

(5 mg/kg body weight), 30 U/ml LIF ESGRO® or 100 nM insulin, respectively, before protein 

extraction. 

Protein concentrations were determined by measuring the sample absorption at 

280 nm with a NanoDrop ND-1000 UV-Vis Spectrophotometer (Peqlab, Erlangen, 

Germany). For electrophoretic mobility shift assay (EMSA), nuclear extracts were diluted to 

4 µg/µl and stored at -80°C. For Western blot analysis, protein extracts were diluted to 
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10 mg/µl with lysis buffer and 4x SDS sample buffer (125 mM Tris-HCl [pH 6.8], 

5% (w/v) SDS, 43.5% (v/v) glycerol, 100 mM DTT, and 0.02% (w/v) bromphenol blue), 

incubated at 95°C for 5 min and stored at -80°C.  

2.4.3 Western blot analysis 

Frozen protein extracts were thawed at 95°C for 5 min, separated on 10% to 12% (v/v) 

SDS polyacrylamide gels [319] and blotted onto polyvinylidene fluoride (PVDF) membranes 

(Bio-Rad, Munich, Germany). Membranes were incubated with 1% blocking reagent (Roche, 

Mannheim, Germany) for 1 h at RT or overnight at 4°C. Subsequently, primary antibodies 

(Table 10) diluted in 0.5% (v/v) blocking solution were applied for 1 h at RT or overnight at 

4°C. PVDF membranes were then washed twice for 10 min with 1x TBS/Tween and 

incubated twice for 10 min with 0.5% (v/v) blocking solution. After 1 h incubation at RT with 

the respective secondary antibodies, membranes were washed 4 times for 5 min with 

1x TBS/Tween, incubated for 1 min in Pierce ECL Western Blotting Substrate (Perbio 

Science, Bonn, Germany), sealed in a plastic bag and exposed to chemiluminescence films 

(Amersham, Braunschweig, Germany). Films were developed in an automatic developer 

(Agfa, Mortsel, Belgium). 

 
Table 10: Primary antibodies used for Western blot analysis. 

Antibody Catalogue N° Distributor Dilution 

α-Tubulin #T6074 Sigma Aldrich, Seelze, Germany 1:5000 

Bim #2933 Cell Signaling, Danvers, USA 1:1000 

Cleaved Caspase-3 #9661 Cell Signaling, Danvers, USA 1:1000 

FKHR(N-18) #sc-9809 Santa Cruz, Heidelberg, Germany 1:200 

FOXO1 #2880 Cell Signaling, Danvers, USA 1:1000 

LaminA/C #sc-6215 Santa Cruz, Heidelberg, Germany 1:1000 

pSTAT3 #9145 Cell Signaling, Danvers, USA 1:1000 

STAT3 #4904 Cell Signaling, Danvers, USA 1:1000 

 

2.4.4 Electrophoretic mobility shift assay (EMSA) 

Mice were injected intraperitoneally with either saline or leptin (5 mg/kg body weight) 

after over night fasting and sacrificed 30 min after injection. Starved ES cells were stimulated 

with 30 U/ml LIF for 2 h. After isolation of nuclear extracts of hypothalamic tissue or 

ES cells (2.4.2), 4 µg of nuclear extracts were incubated at RT for 30 min with 

2 µg poly(dI-dC) and 0.5 ng of 32P-labelled probe (Table 11). The FOXO1 probe was 
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dimerised by boiling and cooling overnight of forward and reverse complimentary 

oligonucleotides. 100 ng of probe DNA (Table 11) were radioactively end-labelled in a 

25 µl reaction mix containing 2.5 µCi γ32P dATP and 25 U T4 polynucleotide kinase. 

Following 10 min incubation at 37°C the probe was purified from nonincorporated 

nucleotides with MicroSpinTM G-20 columns (GE Healthcare, Munich, Germany) according 

to manufacturer’s guidelines. For supershifting FOXO1, 1 µl of high-concentrated antibody 

(FKHR(N-18)X, #sc9809, Santa Cruz, Heidelberg, Germany or FOXO1, #2880, Cell 

Signaling) was added and incubated for 15 min at RT following by incubation on ice for 

15 min. Samples were fractionated on a 5% (v/v) polyacrylamide gel overnight using 

0.5x TBE as running buffer. The gel was incubated for 15 to 30 min in gelfix (20% MeOH, 

10% acetic acid) and dried in a gel dryer (Bio-Rad, Munich, Germany). Dried gels were 

exposed to X-ray films (BioMAX MS, Eastman Kodak, Rochester, USA) at -80°C and films 

developed in an automatic developer (Agfa, Mortsel, Belgium).  

 
Table 11: Probes used for EMSA. 

Probe       Sequence (5´-3´) Catalogue N° Distributor                        

STAT3 GAT CCT TCT GGG AAT TCC TAG 
ATC #sc-2571 Santa Cruz, Heidelberg, 

Germany 
STAT3 
mutant GAT CCT TCT GGG CCG TCC TAG #sc-2572 Santa Cruz, Heidelberg, 

Germany 

SP1 ATT CGA TCG GGG CGG GGC GAG C #sc-2502 Santa Cruz, Heidelberg, 
Germany 

FOXO1 CTA TAA GTA GGG CCC TGT GAC 
TAG T - Eurogentec, Seraing, Belgium 

 

2.5 Mouse experiments 

General animal handling was performed as described by Hogan [297] and  

Silver [320]. 

2.5.1 Animal care 

Care of animals was within institutional animal care committee guidelines and all 

animal procedures were conducted in compliance with protocols and approved by local 

government authorities (Bezirksregierung Köln) and were in accordance with National 

Institutes of Health guidelines. Mice were housed in groups of 3 to 5 or individually if 

required for an experiment as indicated. Mice were housed in a virus-free facility at 22 to 

24°C on a 12 h light / 12 h dark cycle with the light on at 7 a.m. and were either fed a normal 
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chow diet (Teklad Global Rodent # T.2018.R12; Harlan, Borchen, Germany) containing 

53.5% of carbohydrates, 18.5% of protein, and 5.5% of fat (12% of calories from fat) or a 

high fat diet (# C1057; Altromin, Lage, Germany) containing 32.7% of carbohydrates, 20% of 

protein, and 35.5% of fat (55.2% of calories from fat), respectively. All animals had access to 

water ad libitum. Food was only withdrawn if required for an experiment. Body weight was 

measured once a week. At the end of the study period, animals were sacrificed by lethal CO2 

anaesthesia. Body length (naso-anal length) was measured directly after sacrifice, and relevant 

organs were dissected and stored at -80°C until further preparation. 

2.5.2 Mice 

STAT3-Cfloxstop/floxstop mice [321] were mated with mice carrying the pomc cre 

transgene [322]. Breeding colonies were maintained by mating STAT3-Cfloxstop/floxstop with 

POMC-Cre, STAT3-Cfloxstop/floxstopPOMC-Cre (STAT3-C/CPOMC), and FOXO1DNfloxstop/+ mice 

[279, 281] to analyse STAT3-Cfloxstop/+POMC-Cre (STAT3-CPOMC), STAT3-C/CPOMC, and 

STAT3-Cfloxstop/FOXO1DNfloxstopPOMC-Cre (STAT3-C/FOXO1DNPOMC) animals. Only 

animals from the same mixed background strain generation were compared. Mice were 

genotyped by PCR using genomic DNA isolated from tail tips (2.2.9). Germline deletion by 

the POMC-Cre was excluded using the NeoRT primer hybridising in the loxP-flanked stop 

cassette in tail biopsies (Table 5).  

FOXO1ADAfloxstop/+ [280] were mated with mice carrying the nestin cre transgene 

[323] to analyse FOXO1ADAfloxstop/+Nestin-Cre (FOXO1ADACNS) animals. Only animals 

from the same mixed background strain generation were compared. Mice were genotyped by 

PCR using genomic DNA isolated from tail tips or liver (2.2.9). Germline deletion by the 

Nestin-Cre was excluded using primers (ΔFOXO1ADA) to detect deleted alleles in the liver 

(Table 5).  

2.5.3 Collection of blood samples and determination of blood glucose levels 

Tail bleeding of mice was performed according to Hogan [297] and Silver [320]. 

Blood glucose values were determined from whole venous blood using an automatic glucose 

monitor (GlucoMen® GlycÓ; A. Menarini Diagnostics, Florence, Italy). Determination of 

blood glucose levels and collection of blood samples were performed in the morning to avoid 

deviations due to circadian variations.  
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2.5.4 Food intake  

Food intake was measured over a two-week period, during which mice were housed 

individually in regular cages using food racks. To minimise handling of the animals, food 

racks were weighed every second day and daily food intake was calculated as the average 

daily intake of chow within the time stated.  

2.5.5 Analysis of body composition 

Nuclear magnetic resonance (NMR) was employed to determine whole body 

composition of live animals using the NMR Analyzer minispec mq7.5 (Bruker Optik, 

Ettlingen, Germany).  

2.5.6 Glucose and insulin tolerance test 

Glucose tolerance tests (GTT) were performed on animals that had been fasted 

overnight for 16 h. Insulin tolerance tests (ITT) were performed on random fed mice. Animals 

were injected intraperitoneally with glucose (2 g/kg body weight) or with human regular 

insulin (0.75 U/kg body weight), respectively. Glucose levels were determined in blood 

collected from the tail tip immediately before and 15, 30, and 60 min after the injection, with 

an additional value determined after 120 min for the GTT. 

2.5.7 Restraint stress 

Mice were familiarised with gentle handling for approximately 8 weeks prior to the 

experiment. For determination of basal serum corticosterone levels, blood was drawn from the 

tail vein during the first 3 h of the light phase. Directly after that, mice were subjected to 1 h 

of restraint stress by enclosing the animals in a plastic tube with a diameter of 3 cm and 

openings for air supply. At the end of the experiment, blood samples were collected from the 

tail vein for determination of stressed plasma corticosterone levels. 

2.5.8 Intraperitoneal leptin sensitivity test 

 Leptin sensitivity was examined by intraperitoneal injection of mice at the age of 

15 weeks with saline twice a day for three consecutive days and subsequently with 

2 mg/kg leptin twice a day for three consecutive days. Body weight and food intake were 

determined daily. 
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2.6 Computer analysis 

2.6.1 Densitometrical analysis 

Nuclear localisation of transcription factors was assessed by EMSA and protein 

expression by Western blot analysis. Bands were measured in intensity per mm2 using the 

Quantity One Software (Bio-Rad, Munich, Germany). After background subtraction, each 

sample was normalised to an internal loading control. Average protein expression of control 

mice was set to 100% and compared to protein expression of transgenic animals unless stated 

otherwise. 

2.6.2 Statistical methods 

Data sets were analysed for statistical significance using a two-tailed unpaired 

student’s t test. All p values below 0.05 were considered significant. All displayed values are 

means ± SEM. * p ≤ 0.05 ; ** p ≤ 0.01 ; *** p ≤ 0.001 versus control. 
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3  Results 
 

In the present study, the central role of the transcription factors STAT3 and FOXO1 

has been elucidated by transgenic expression of mutant versions of these proteins. To this end, 

a constitutively active version of STAT3 (STAT3-C) that was inserted into the ubiquitously 

expressed ROSA26 locus [324] preceded by a loxP-flanked stop cassette, was first 

characterised in ES cells and subsequently in proopiomelanocortin (POMC)-expressing 

neurons with respect to energy homeostasis and metabolism. Similarly, a dominant negative 

FOXO1 (FOXO1DN) as well as a constitutively active FOXO1 (FOXO1ADA) mutant was 

inserted into the ROSA26 locus of ES cells, respectively. These constructs contained the 

strong chicken β actin promoter that was separated from the transgenic FOXO1 constructs by 

a loxP-flanked stop cassette, thus preventing its expression. The functionality of the 

FOXO1DN and FOXO1ADA constructs was first investigated in vitro and subsequently in 

POMC neurons and the whole brain of transgenic mice. 

 

3.1 STAT3-C expression in POMC neurons provokes a negative 

feedback inhibition of leptin and insulin signalling in obesity 

 

3.1.1 Verification of the constitutively active STAT3 construct in ES cells 

The constitutively active variant of STAT3 dimerises spontaneously via disulfide 

bonds due to substitution of two residues to cysteins in the SH2-domain and activates 

transcription stimulus independent. STAT3-C ES cells contain a targeted STAT3-C cDNA 

preceded by a loxP-flanked transcriptional stop cassette within the ubiquitously expressed 

ROSA26 locus [324]. The transfection of STAT3-C ES cells with a Cre-expressing plasmid 

causes Cre-mediated recombination of the loxP-flanked stop cassette leading to the composed 

expression of the stat3-c transgene and eGFP (Figure 8). 
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Figure 8: Cre-mediated expression of a constitutively active stat3 transgene. 
Scheme of the stat3-c transgene inserted into the ROSA26 locus. Cre-mediated recombination eliminates the 
loxP-flanked NeoR and WSS only in cells expressing Cre thereby allowing transcription of the bicistronic 
STAT3-C eGFP mRNA. IRES, internal ribosome entry site; eGFP, enhanced green fluorescent protein gene; 
NeoR, neomycine resistance gene driven by the TK promoter; STAT3-C, constitutively active mutant of STAT3; 
WSS, Westphal stop sequence; filled triangles, loxP; closed ellipses, FRT sites. 

 

To verify Cre-mediated recombination with accompanied eGFP expression, STAT3-C 

ES cells transfected with a control or Cre-expressing plasmid were analysed by fluorescence 

microscopy. eGFP-positive ES cells were visualised only upon Cre-mediated recombination 

and FACS analysis revealed that 0% of control and 88% of STAT3-C ES cells expressed 

eGFP (Figure 9).  

 
Figure 9: Verification of Cre-mediated expression of STAT3-C and eGFP in ES cells. 
(A) Fluorescence microscopy of control and STAT3-C-expressing ES cell colonies. Magnification: 100x. 
(B)  FACS analysis of control and STAT3-C-expressing ES cells. Blue (DAPI), DNA; green, eGFP. 
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Moreover, Western blot analysis confirmed increased STAT3 expression in ES cells 

after Cre-mediated recombination (Figure 10A). While STAT3 in control cells translocated 

from the cytoplasm to the nucleus only upon stimulation with LIF, the STAT3-C mutant was 

detectable in the nucleus independent of LIF stimulation (Figure 10B, C). 

 
Figure 10: Functional validation of the constitutively active STAT3 construct in ES cells.  
(A) Western blot analysis using STAT3 and α-Tubulin (α-Tub, loading control) antibodies of whole cell lysates 
from control and STAT3-C-expressing ES cells stimulated with leukemia inhibitory factor (LIF) for the 
indicated timepoints. (B) Western blot analysis using STAT3 and LaminA/C antibodies (LamA/C, loading 
control) of nuclear lysates from control and STAT3-C-expressing ES cells stimulated with LIF for the indicated 
timepoints. (C) Western blot analysis using STAT3 and α-Tubulin (loading control) antibodies of cytoplasmic 
lysates from control and STAT3-C-expressing ES cells stimulated with LIF for the indicated timepoints. 
(D) EMSA of nuclear extracts isolated from control and STAT3-C-expressing ES cells upon 2 h LIF stimulation 
using a radioactively labelled consensus sequence for STAT3, a mutant STAT3 consensus sequence and a 
specific protein (SP) 1 consensus sequence (loading control), respectively. (E) Transcriptional activity of STAT3 
and STAT3-C in control and STAT3-C-expressing ES cells transfected with pSTAT3-TA-Luc and pRL-null. 
ES cells were incubated with or without LIF 24 h before measurement of firefly luciferase (Fluc) and renilla 
luciferase (Rluc) activity. Displayed values are means ± SEM. * p ≤ 0.05 and ** p ≤ 0.01 versus control. 

 

To further functionally validate the STAT3-C construct, the DNA-binding capacity 

was assessed by an electrophoretic mobility shift assay (EMSA) using nuclear extracts from 

STAT3-C-expressing and control ES cells. LIF stimulation increased binding of STAT3, in 

contrast to the persistent binding of STAT3-C to its consensus DNA sequence (Figure 10D). 

The specificity of STAT3-C-binding was addressed using a mutated STAT3 consensus 

sequence with the same nuclear extracts demonstrating that mutation of three nucleotides 

within the STAT3 probe abrogates recognition by both endogenous STAT3 and STAT3-C.  
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A probe for specific protein (SP) 1 served as loading control (Figure 10D). Furthermore, 

transfection studies using a luciferase expression vector under the transcriptional control of 

STAT3-responsive elements substantiated LIF-independent activation of luciferase 

expression in STAT3-C-expressing ES cells compared to control ES cells (Figure 10E).  

Taken together, Cre-mediated expression of the stat3-c transgene in ES cells leads to 

constitutive nuclear localisation of STAT3-C and target gene promoter occupancy, which 

implicates specific activation of STAT3 target gene expression.  

 

3.1.2 Generation of POMC neuron-specific STAT3-C-expressing mice 

To analyse the effect of excessive STAT3-dependent signalling in POMC-expressing 

neurons, STAT3-Cfloxstop/floxstop mice were intercrossed with mice carrying the pomc cre 

transgene (Figure 11A) [322] to obtain STAT3-Cfloxstop/+POMC-Cre (STAT3-CPOMC) mice 

expressing STAT3-C selectively in POMC neurons, while Cre-negative mice of this breeding 

served as controls (Figure 11B). Furthermore, to investigate the dose-dependency of 

STAT3-controlled transcriptional regulation in POMC neurons, homozygous 

STAT3-Cfloxstop/floxstopPOMC-Cre (STAT3-C/CPOMC) mice were generated by intercrossing 

STAT3-CPOMC with STAT3-Cfloxstop/floxstop mice (Figure 11C). 

 
Figure 11: POMC neuron-restricted expression of STAT3-C.  
(A) Scheme of pomc cre transgene. Mice expressing Cre recombinase (Cre) under control of the pomc promoter 
were generated by engineering a pomc bacterial artificial chromosome. The Cre translation initiation site (ATG) 
was inserted into the pomc ATG and deleted the first 30 bp of the pomc gene. (B) STAT3-Cfloxstop/floxstop mice 
were intercrossed with mice carrying the pomc cre transgene to obtain STAT3-CPOMC mice expressing STAT3-C 
selectively in POMC neurons. (C) To generate homozygous STAT3-C/CPOMC mice, STAT3-CPOMC mice were 
intercrossed with STAT3-Cfloxstop/floxstop mice.  
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The Cre-mediated recombination and POMC-specific expression of STAT3-C in the 

ARC was elucidated by immunohistochemistry detecting the eGFP expressed from the IRES 

inserted in the stat3-c transgene. eGFP-positive neurons were only detectable in hypothalami 

of mice carrying both the stat3-c and the pomc cre transgene, but not in controls. 

Consistently, the STAT3-CPOMC mice showed a pattern of eGFP immunoreactivity in the ARC 

of the hypothalamus reflecting the described expression pattern of endogenously expressed 

POMC (Figure 12A) [322].  

 
Figure 12: Verification of Cre-mediated recombination in POMC neurons of STAT3-CPOMC mice.  
(A) Immunohistochemistry for eGFP in brains of 12 weeks old control and STAT3-CPOMC mice. 
Magnification: 80x. (B) Map of LacZ transgene for Cre-mediated expression from the ROSA26 locus 
(ROSAArte26). pGK-hyg: hygromycin resistance gene driven by the pGK (phosphoglycerate kinase) promoter. 
In this configuration, Cre-mediated recombination removes the loxP-flanked hygromycin resistance gene only in 
cell types expressing Cre recombinase, resulting in transcription of β-galactosidase. (C) Representative in situ 
hybridisation using a POMC probe in hypothalamic neurons of ROSAArte26POMC and 
STAT3-CPOMCROSAArte26 mice at the age of 10 - 14 weeks. X-Gal-positive neurons before (small upper panel) 
and after in situ hybridisation (small lower panel). Blue, X-Gal; purple, POMC mRNA. Magnification: 50x, 
400x. (D) Quantitation of X-Gal-positive/POMC mRNA-positive neurons in brain sections of ROSAArte26POMC 
and STAT3-CPOMCROSAArte26 mice at the age of 10 - 14 weeks (n = 4 per genotype). A total of 2214 POMC 
mRNA-positive neurons were analysed. 
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Additionally, to confirm POMC-restricted recombination, both STAT3-C/CPOMC and 

POMC-Cre mice were crossed with a reporter mouse strain in which transcription of the 

β-galactosidase gene (LacZ) under control of the ubiquitously expressed ROSA26 promoter is 

prevented by a loxP-flanked hygromycin resistance gene (ROSAArte26 mice) [312], thus 

leading to β-galactosidase expression only in cells expressing the Cre recombinase 

(Figure 12B). Subsequently, a hypothalamic X-Gal staining for Cre-dependent expression of 

β-galactosidase combined with in situ hybridisation for endogenous POMC mRNA was 

performed. In ROSAArte26POMC and STAT3-CPOMCROSAArte26 mice 88% and 85% of cells 

coexpressed POMC mRNA and β-galactosidase, respectively (Figure 12C, D).  

Hypothalamic expression of STAT3-C was confirmed by quantitative RT-PCR using 

oligonucleotides located in exon 1 of the ROSA26 and in the STAT3-C transcript. 

Hypothalamic cDNA from STAT3-C/CPOMC and STAT3-CPOMC mice, but not from control 

mice led to a specific STAT3-C PCR product. Expression of endogenous STAT3 as well as 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as controls (Figure 13A). 

To confirm the functionality of STAT3-C in vivo, the DNA-binding capacity was 

evaluated by EMSA using hypothalamic nuclear extracts from fasted STAT3-C/CPOMC and 

control mice injected with saline or leptin, respectively. In contrast to endogenous STAT3, 

STAT3-C bound constitutively to its consensus sequence without dependence on the 

leptin-signal in mice (Figure 13B).  

Taken together, these results validate the functionality of the ROSA26 stat3-c 

transgene in POMC cells of mice in vivo.  

 
Figure 13: Functional validation of the constitutively active STAT3 construct in STAT3-CPOMC mice.  
(A) Hypothalamic expression of STAT3-C in STAT3-CPOMC mice confirmed by RT-PCR of control, 
STAT3-CPOMC, and STAT3-C/CPOMC mice using oligonucleotides detecting transgenic STAT3-C, endogenous 
STAT3, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). (B) EMSA of nuclear extracts isolated from 
fasted control and STAT3-CPOMC mice after intraperitoneal injection with leptin or saline using a radioactively 
labelled STAT3 probe.  
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3.1.3 Mild obesity in STAT3-CPOMC mice 

To determine the impact of constitutive STAT3 signalling in anorexigenic 

POMC-expressing neurons on the regulation of energy homeostasis, body weight of male 

control, STAT3-CPOMC, and STAT3-C/CPOMC mice was monitored from weaning until 

20 weeks of age. STAT3-CPOMC mice exhibited an approximately 12% elevated body weight 

compared to control mice. This effect was mildly enhanced by expressing STAT3-C from 

two alleles although this effect did not reach statistical significance (Figure 14). 

 
Figure 14: Increased body weight of STAT3-CPOMC mice.  
Average body weight of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice was determined weekly 
(n = 12 - 18 per genotype). Displayed values are means ± SEM. * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001 
versus control.  

 

To examine whether the elevated body weight of STAT3-CPOMC mice was caused by 

an increase in body fat mass, the amount of epigonadal fat in male control, STAT3-CPOMC, 

and STAT3-C/CPOMC mice was analysed. Consistent with the body weight phenotype, 

STAT3-C/CPOMC mice exhibited significantly increased epigonadal fat pad mass at the age of 

20 weeks compared to controls (Figure 15A, B). Moreover, enhanced adiposity in 

STAT3-CPOMC and STAT3-C/CPOMC mice was confirmed by determining body fat 

composition using in vivo magnetic resonance spectrometry. Mean body fat content was 

significantly increased by approximately 2 % in both STAT3-CPOMC and STAT3-C/CPOMC 

mice (Figure 15C). In addition, obesity in STAT3-CPOMC and STAT3-C/CPOMC mice was 

accompanied by significantly elevated plasma leptin concentrations in comparison to control 

mice (Figure 15D). 
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Figure 15: Increased adiposity of STAT3-CPOMC mice.  
(A) Epigonadal fat pad weight of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice at the age of 20 weeks 
(n = 12 – 18 per genotype). (B) In situ photographs of representative epigonadal fat pads of male control and 
STAT3-C/CPOMC mice of the same litter at the age of 20 weeks. Asterisks indicate epigonadal fat pads. 
(C) Whole body fat content of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice at the age of 20 weeks 
was determined using in vivo nuclear magnetic resonance (n = 10 - 12 per genotype). (D) Serum leptin 
concentrations of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice at the age of 8 and 16 weeks were 
investigated by ELISA (n = 12 - 20 per genotype). Displayed values are means ± SEM. * p ≤ 0.05 and 
** p ≤ 0.01 versus control.  

 

Since mice with impaired MC4R function show an increased body length [47], the 

body length of STAT3-CPOMC and STAT3-C/CPOMC mice was determined, revealing a 

significant increase in body length compared to control mice (Figure 16 A, B). 

 
Figure 16: Increased body length of STAT3-CPOMC mice.  
(A) Body length of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice at the age of 20 weeks (n = 10 – 12 
per genotype). (B) Outward appearance of male control and STAT3-C/CPOMC mice of the same litter at the age of 
20 weeks. Displayed values are means ± SEM. ** p ≤ 0.01 and *** p ≤ 0.001 versus control.  
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To investigate whether glucose homeostasis and insulin sensitivity were affected by 

expressing STAT3-C in POMC neurons, glucose and insulin tolerance tests were performed 

and serum insulin concentrations were determined. These analyses revealed no differences in 

whole body glucose homeostasis in STAT3-CPOMC mice compared to controls despite the 

mild obesity of the mutant mice (Figure 17A-C).  

 
Figure 17: Unaltered glucose metabolism of STAT3-CPOMC mice.  
(A) Glucose tolerance test of male control and STAT3-CPOMC mice at the age of 12 weeks (n = 12 - 15 per 
genotype). (B) Insulin tolerance test of male control and STAT3-CPOMC mice at the age of 13 weeks (n = 12 - 15 
per genotype). (C) Serum insulin concentrations of male control and STAT3-CPOMC mice at the age of 8 and 
16 weeks were investigated by ELISA (n = 13 - 15 per genotype). 

 

POMC is not only expressed in the hypothalamus, but also detectable in the pituitary 

of POMC-Cre transgenic mice [281, 311]. Since the pituitary plays an important role in stress 

response, consequently, a stress test was conducted with STAT3-CPOMC mice to clarify the 

effects of STAT3 overactivation on the hypothalamic-pituitary-adrenal axis. However, basal 

as well as restraint-stress-induced corticosterone levels were comparable between controls 

and STAT3-CPOMC mice, thus revealing an unaltered stress response in these mice 

(Figure 18).  

 
Figure 18: Unaltered stress response in STAT3-CPOMC mice.  
Basal and restraint-stress-induced serum corticosterone levels of male control and STAT3-CPOMC mice at the age 
of 18 weeks (n = 12 per genotype). Displayed values are means ± SEM. * p ≤ 0.05 versus control.  
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Taken together, these results demonstrate that constitutive activation of 

STAT3-dependent signalling in POMC-expressing neurons causes mild obesity with 

increases in body weight, fat mass, circulating leptin concentrations, and gain of body length, 

without affecting whole body glucose homeostasis, insulin sensitivity, and the 

hypothalamic-pituitary-adrenal axis.  

 

3.1.4 STAT3-CPOMC mice exhibit increased food intake and decreased 

POMC expression 

An increase in body weight is a consequence of either a reduced energy expenditure, 

an elevated level of food intake, or a combination of both. As previously described, 

STAT3-CPOMC mice exhibit a tendency towards decreased energy expenditure compared to 

controls although this effect did not reach statistical significance [325]. To further investigate 

the mechanisms underlying the mild obesity detected in male STAT3-CPOMC mice, daily food 

intake and compensatory refeeding after a 24 h fasting period were measured in these mice. 

Assessment of food intake revealed a tendency for an increase in daily food intake in 

STAT3-CPOMC mice compared to controls, and a significant increase in STAT3-C/CPOMC mice 

(Figure 19A). Consistently, compensatory refeeding after fasting was significantly elevated in 

both STAT3-CPOMC and STAT3-C/CPOMC mice in comparison to controls (Figure 19B). 

Accordingly, constitutive STAT3 signalling in POMC neurons elevates steady state, as well 

as refeeding-associated food intake.  

 
Figure 19: Increased food intake and compensatory refeeding in STAT3-CPOMC mice. 
(A) Daily food intake of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice at the age of 10 weeks 
(n = 8 - 18 per genotype). (B) Compensatory 4 h and 24 h refeeding after a 24 h fasting period of male control, 
STAT3-CPOMC, and STAT3-C/CPOMC mice at the age of 16 weeks (n = 7 - 9 per genotype). Displayed values are 
means ± SEM. * p ≤ 0.05 versus control.  
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Next, hypothalamic mRNA expression levels of the neuropeptides agouti-related 

protein (AgRP), neuropeptide Y (NPY), and POMC, which are known to be involved in the 

regulation of food intake, were determined by quantitative RT-PCR. Unexpectedly, relative 

hypothalamic expression of anorexigenic POMC was reduced by 50% in both STAT3-CPOMC 

and STAT3-C/CPOMC mice compared to controls, in spite of the fact that STAT3 acts as 

transcriptional activator of POMC expression [73]. However, the hypothalamic expression 

levels of the orexigenic neuropeptides AgRP and NPY were unaltered in STAT3-CPOMC and 

STAT3-C/CPOMC mice (Figure 20).  

 
Figure 20: Hypothalamic neuropeptide expression in STAT3-CPOMC mice.  
Relative hypothalamic expression of proopiomelanocortin (POMC), agouti-related protein (AgRP), and 
neuropeptide Y (NPY) under random fed conditions of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice 
at the age of 20 weeks (n = 8 per genotype) using quantitative RT-PCR. Displayed values are means ± SEM. 
* p ≤ 0.05 versus control. 

 

To investigate whether the decreased hypothalamic POMC mRNA expression in 

STAT3-CPOMC mice is a consequence of a reduced number of POMC-expressing neurons due 

to decreased POMC cell formation or increased POMC cell death, the number of POMC 

neurons in STAT3-CPOMC mice was calculated. To this end, brains of 

STAT3-CPOMCROSAArte26 and ROSAArte26POMC mice (3.1.2) were stained for 

β-galactosidase activity (Figure 21A). 

 

Figure 21: Unaltered number of POMC-expressing neurons in STAT3-CPOMC mice.  
(A) X-Gal staining of brains isolated from ROSAArte26POMC and STAT3-CPOMCROSAArte26 mice at 12 weeks 
of age. Magnification: 100x. (B) Number of X-Gal-positive neurons in brains of ROSAArte26POMC and 
STAT3-CPOMCROSAArte26 mice at 12 weeks of age. X-Gal-positive neurons were counted in 4 coronal sections 
containing the ARC of 5 mice per genotype. 
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Counting X-Gal-positive neurons revealed indistinguishable POMC neuron numbers 

in STAT3-CPOMCROSAArte26 and control mice since on average 495 POMC neurons in 

control and 546 POMC neurons in STAT3-CPOMCROSAArte26 mice were identified in 

4 coronal sections containing the ARC of 5 mice per genotype (Figure 21B). 

Taken together, these results imply that the mild obesity observed in 

STAT3-CPOMC mice is the consequence of increased food intake caused by reduced 

hypothalamic POMC mRNA expression without alterations in hypothalamic POMC cell 

number.  

 

3.1.5 STAT3-CPOMC mice are leptin-resistant and exhibit increased SOCS3 

expression 

To experimentally address whether the mild obesity of STAT3-CPOMC mice is the 

consequence of leptin resistance, leptin sensitivity was assessed by daily intraperitoneal 

injections of leptin over a 3-day-period and determination of food intake. Leptin treatment of 

control mice significantly reduced food intake by 20%, whereas leptin had no significant 

effect on food intake in both STAT3-CPOMC and STAT3-C/CPOMC mice (Figure 22). 

 
Figure 22: Leptin resistance in STAT3-CPOMC mice.  
Leptin sensitivity test of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice at the age of 17 weeks 
(n = 6 -10 per genotype). Mice were injected intraperitoneally for 3 consecutive days with saline twice a day and 
subsequently with leptin for 3 consecutive days twice a day. Food intake of saline-injected mice was set to 
100%. Displayed values are means ± SEM. *** p ≤ 0.001 versus control. 

 

To investigate the cause of diminished leptin sensitivity of STAT3-CPOMC mice, the 

level of leptin-induced phosphorylation of STAT3 in the ARC was assessed by Western blot 

analysis. While leptin induced phosphorylation and thus activation of STAT3 in control mice, 

this response was clearly blunted in STAT3-CPOMC mice (Figure 23A). 
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Furthermore, brains of fasted and leptin- or saline-injected ROSAArte26POMC and 

STAT3-CPOMCROSAArte26 mice (3.1.2) were stained using antibodies specific for 

phosphorylated STAT3 and β-galactosidase to visualise leptin-induced STAT3 

phosphorylation specifically in POMC neurons (Figure 23C). This experiment elucidated that 

27% of POMC cells from control mice demonstrated nuclear accumulation of phosphorylated 

STAT3 after leptin injection, in contrast to only 4% of POMC neurons in 

STAT3-CPOMCROSAArte26 mice (Figure 23B). 

 
Figure 23: Inhibition of hypothalamic STAT3 signalling in STAT3-CPOMC mice.  
(A) Western blot analysis of ARC extracts from fasted control and STAT3-CPOMC mice after intraperitoneal 
injection of leptin or saline using antibodies against phosphorylated STAT3 (pSTAT3), STAT3, and α-Tubulin 
(α-Tub, loading control). (B) Quantitation of pSTAT3-positive POMC neurons in hypothalamic sections of 
fasted ROSAArte26POMC and STAT3-CPOMCROSAArte26 mice after intraperitoneal injection of leptin or saline 
at the age of 10 - 12 weeks (n = 3 - 4 per genotype). A total of 2103 POMC neurons were analysed. 
(C) Representative immunohistochemistry of pSTAT3 and β-galactosidase (β-gal) in POMC neurons of fasted 
and saline- or leptin-injected ROSAArte26POMC and STAT3-CPOMCROSAArte26 mice at the age of 10 - 12 
weeks. Blue (DAPI), DNA; green, β-gal (POMC neurons); red, pSTAT3. Magnification: 100x, 400x. Displayed 
values are means ± SEM. ** p ≤ 0.01 versus control. 
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Leptin signalling is controlled by constitutively expressed proteins such as PIAS3, as 

well as by a negative feedback mechanism as the induction of SOCS3 expression; this leads 

to SOCS3-binding to phosphorylated leptin receptors and JAKs with subsequent silencing of 

the leptin signal [164, 165, 167]. To clarify whether chronic STAT3 signalling in POMC 

neurons leads to enhanced SOCS3 and PIAS3 expression, quantitative RT-PCR of 

hypothalamic RNA of control, STAT3-CPOMC, and STAT3-C/CPOMC mice was performed. 

While PIAS expression was unaltered, expression of SOCS3 was significantly increased in 

hypothalami of both STAT3-CPOMC and STAT3-C/CPOMC mice compared to controls 

(Figure 24A) albeit approximately 5% of hypothalamic neurons express POMC and therefore 

also STAT3-C. 

 
Figure 24: Increased hypothalamic SOCS3 expression in STAT3-CPOMC mice.  
(A) Relative hypothalamic expression of suppressor of cytokine signalling (SOCS) 3 and protein inhibitor of 
activated STAT (PIAS) 3 of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice under random fed 
conditions at the age of 20 weeks using a quantitative RT-PCR (n = 8 per genotype). (B) Representative in situ 
hybridisation using a SOCS3 probe in hypothalamic neurons of fasted ROSAArte26POMC and 
STAT3-CPOMCROSAArte26 mice at the age of 12 weeks. Blue, X-Gal (POMC neurons); red, SOCS3 mRNA. 
Magnification: 100x, 400x. (C) Quantitation of SOCS3-positive POMC neurons in hypothalamic sections of 
fasted ROSAArte26POMC and STAT3-CPOMCROSAArte26 mice at the age of 12 weeks (n = 3 per genotype). 
A total of 3069 X-Gal-positive neurons were analysed. Displayed values are means ± SEM. * p ≤ 0.05 and 
** p ≤ 0.01 versus control.  
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To further directly address whether SOCS3 expression is primarily increased in 

POMC neurons, a combined in situ hybridisation/X-Gal staining using a SOCS3 probe on 

brain slices from food-deprived ROSAArte26POMC and STAT3-CPOMCROSAArte26 mice 

(3.1.2) (Figure 24B). This analysis visualised that in the fasted state, approximately 32% of 

POMC neurons from control mice expressed SOCS3, while 86% of STAT3-C-expressing 

POMC neurons were positive for SOCS3 mRNA (Figure 24C).  

In summary, these data imply that chronic STAT3 signalling in POMC neurons 

diminishes whole body leptin sensitivity by an increased expression of the negative feedback 

regulator SOCS3. 

 

3.1.6 Increased SOCS3 expression in POMC neurons leads to central 

insulin resistance 

Since SOCS3 was also shown to inhibit not only leptin but also insulin signalling via 

binding to the IR as well as by ubiquitin-mediated degradation of IRS [326, 327], it was 

investigated whether STAT3-induced SOCS3 expression, besides provoking leptin resistance, 

also affects insulin action in POMC neurons. To this end, fasted ROSAArte26POMC and 

STAT3-CPOMCROSAArte26 mice (3.1.2) were injected with insulin and their brains were 

used for double immunohistochemical analysis for phosphatidylinositol-3,4,5-trisphosphate 

(PIP3) and β-galactosidase. Upon insulin stimulation control mice exhibited ratios of 

low:moderate:high PIP3-immunoreactive POMC neurons comparable to those previously 

described in response to insulin treatment [315]. In contrast, STAT3-CPOMCROSAArte26 

mice showed a significantly increased number of low PIP3-immunoreactive POMC neurons 

accompanied by a significantly decreased number of high PIP3-immunoreactive POMC 

neurons. This analysis implies that STAT3-C expression inhibits insulin-stimulated PI3K 

activation in POMC neurons (Figure 25).  
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Figure 25: Reduced insulin-induced PIP3 formation in STAT3-C-expressing POMC neurons.  
Representative stainings and quantitation of phosphatidylinositol-3,4,5-trisphosphate (PIP3) levels in fasted 
ROSAArte26POMC and STAT3-CPOMCROSAArte26 mice after intravenous injection of insulin (n = 5 per 
genotype). A total of 1866 POMC neurons were analysed. PIP3 immunoreactivity was classified in low (less than 
5 dots), moderate (5 – 10 dots), and high (more than 10 dots). Blue (DAPI), DNA; red, β-gal (POMC neurons); 
green, PIP3. Magnification: 630x. Displayed values are means ± SEM. * p ≤ 0.05 versus control.  

 

To confirm this result, hypothalamic insulin signalling of STAT3-CPOMC mice was 

assessed by double immunohistochemistry for phosphorylated protein kinase B (pAKT) and 

β-galactosidase in fasted and insulin- or saline-injected STAT3-CPOMCROSAArte26 and 

ROSAArte26POMC mice (3.1.2). While no activation of AKT was detectable in POMC 

neurons of fasted animals, 23% of POMC neurons of control mice exhibited 

insulin-stimulated AKT phosphorylation, an effect that was significantly reduced to 10% in 

STAT3-C-expressing POMC neurons (Figure 26).  
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Figure 26: Reduced insulin-induced phosphorylation of AKT in STAT3-C-expressing POMC neurons.  
Representative stainings and quantitation of pAKT-positive POMC neurons in hypothalamic sections of fasted 
ROSAArte26POMC and STAT3-CPOMCROSAArte26 mice after intravenous injection of insulin or saline at the age 
of 10 - 14 weeks (n = 5 per genotype). A total of 2351 POMC neurons were analysed. Blue (DAPI), DNA; 
green, β-gal (POMC neurons); red, pAKT. Magnification: 400x. Displayed values are means ± SEM. ** p ≤ 0.01 
versus control.  

 

Next, control and STAT3-CPOMC mice were intercrossed with POMC-EGFP reporter 

mice [62] and perforated patch clamp recordings of eGFP-expressing POMC neurons were 

performed to analyse their electrophysiological response to insulin. Representative recordings 

of insulin-responsive and noninsulin-responsive POMC neurons as well as the reversion of 

insulin’s effect by application of the KATP channel blocker tolbutamide are shown in 

figure 27. In line with previous experiments, 50% (5 of 10 neurons) of control POMC neurons 

responded to insulin by hyperpolarisation and silencing, whereas this was significantly 

reduced to 15% (2 of 13 neurons) in STAT3-CPOMC mice.  

Taken together, these experiments clearly provide evidence that expression of 

STAT3-C in POMC neurons causes POMC cell-specific insulin resistance in 

STAT3-CPOMC mice.  
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Figure 27: Reduced insulin responsiveness in STAT3-C-expressing POMC neurons.  
(A) Representative perforated patch recordings of an insulin-responsive and a noninsulin-responsive 
POMC-EGFP neuron. The traces represent sections of the recordings before and during bath application of 
200 nM insulin (~35 min after application start). In the insulin-responsive neurons bath application of 
200 µM tolbutamide reversed the insulin effect. The times below the traces indicate the duration after 
establishing the recording. (B) The percentage of POMC-EGFP (5 of 10) and STAT3-CPOMCPOMC-EGFP 
neurons (2 of 13) that responded to bath application of 200 nM insulin with a significant hyperpolarisation. 
A neuron was determined to be insulin-responsive when the magnitude of hyperpolarisation was greater than 
3 times the standard deviation.  

 

3.1.7 Chronic STAT3 signalling in POMC neurons has no effect under 

leptin-resistant conditions 

In order to address whether chronic STAT3 activation affects mice under 

leptin-resistant conditions, STAT3-CPOMC, STAT3-C/CPOMC, and control mice were exposed 

to high fat diet (HFD) upon weaning. However, body weight of STAT3-CPOMC and 

STAT3-C/CPOMC mice was indistinguishable from controls under HFD conditions 

(Figure 28).  

Furthermore, STAT3-CPOMC, STAT3-C/CPOMC, and control mice exhibited similar 

daily food intake (Figure 29A). Consistently, epigonadal fat pad weight and body fat content 

were unaltered in STAT3-CPOMC and STAT3-C/CPOMC mice in comparison to controls 

(Figure 29B, C). 
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Figure 28: Indistinguishable body weight of control and STAT3-CPOMC mice under HFD conditions.  
Average body weight of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice on high fat diet was 
determined weekly (n = 8 - 14 per genotype).  

 

 

 
Figure 29: Indistinguishable food intake, body fat content, leptin level, and body length of control and 
STAT3-CPOMC mice under HFD conditions.  
(A) Daily food intake of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice at the age of 10 weeks under 
high fat diet (HFD) conditions (n = 8 - 14 per genotype). (B) Epigonadal fat pad weight of male control, 
STAT3-CPOMC, and STAT3-C/CPOMC mice on HFD at the age of 20 weeks (n = 10 - 13 per genotype). (C) Body 
fat content of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice on HFD at the age of 20 weeks was 
determined using in vivo nuclear magnetic resonance (n = 10 - 13 per genotype). (D) Serum leptin concentrations 
of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice on HFD at the age of 8 and 16 weeks was determined 
by ELISA (n = 12 - 16 per genotype). (E) Body length of male control, STAT3-CPOMC, and STAT3-C/CPOMC 
mice on HFD at the age of 20 weeks (n = 8 - 13 per genotype).  
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In addition, serum leptin levels were significantly increased under HFD conditions 

compared to mice exposed to normal chow diet (NCD), but remained unchanged in 

STAT3-CPOMC and STAT3-C/CPOMC mice compared to controls, both at 8 and 16 weeks of 

age (Figure 29D). Moreover, no differences in body length were observed between 

STAT3-CPOMC, STAT3-C/CPOMC, and control mice (Figure 29E). 

To analyse the impact of HFD feeding on hypothalamic SOCS3 and POMC 

expression, quantitative RT-PCR was performed using total mRNA isolated from 

hypothalami of control, STAT3-CPOMC, and STAT3-C/CPOMC mice exposed to NCD and 

HFD. This analysis revealed significantly increased mRNA expression of SOCS3 in control 

mice under HFD conditions compared to NCD fed controls, but HFD feeding attenuated the 

effect of STAT3-C on hypothalamic SOCS3 expression. Similarly, POMC expression was 

consistently reduced in all groups of mice when exposed to HFD to an extent similar to that 

observed in mice expressing STAT3-C in POMC neurons under NCD conditions (Figure 30).  

 
Figure 30: Hypothalamic expression of SOCS3 and POMC in STAT3-CPOMC mice under HFD conditions.  
Relative hypothalamic expression of suppressor of cytokine signalling (SOCS) 3 and proopiomelanocortin 
(POMC) of male control, STAT3-CPOMC, and STAT3-C/CPOMC mice under normal chow diet (NCD) (n = 12 per 
genotype) and high fat diet (HFD) (n = 4 per genotype) condition at the age of 20 weeks using quantitative 
RT-PCR. Displayed values are means ± SEM. * p ≤ 0.05versus control.  

 

To investigate whether elevated leptin levels in obesity translates into enhanced basal 

STAT3 activation in the ARC of control mice, EMSA of random fed C57BL/6 mice on NCD 

and HFD was performed (Figure 31A). Strikingly, HFD feeding-induced obesity led to 

significantly enhanced basal STAT3-binding to its consensus sequence in the ARC compared 

to NCD feeding, similarly as observed in STAT3-CPOMC mice (Figure 31B). 
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Figure 31: Increase of nuclear STAT3 under HFD condition in C57BL/6 mice.  
(A) EMSA of nuclear extracts isolated from arcuate nuclei of 4 individual C57BL/6 mice exposed to normal 
chow diet (NCD) and high fat diet (HFD) and from one STAT3-CPOMC mouse on NCD using radioactively 
labelled STAT3 and specific protein 1 (SP1, loading control) probes, respectively. (B) Densitometrical analysis 
of nuclear STAT3 in ARC of 4 individual C57BL/6 mice exposed to NCD and HFD and from one 
STAT3-CPOMC mouse on NCD. Displayed values are means ± SEM. *** p ≤ 0.001 versus control.  

 

These experiments clearly demonstrate that chronic activation of STAT3 signalling in 

POMC neurons has no additional effect on body weight, body fat content, serum leptin 

concentration, body length, and hypothalamic gene expression under conditions of 

hyperleptinemia induced by HFD feeding. Therefore, these results indicate that during the 

course of HFD-induced central leptin and insulin resistance, STAT3 overactivation in POMC 

neurons is a pathophysiologically relevant component.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 
  

 66 

3.2 POMC neuron-specific expression of a dominant negative 

variant of FOXO1 partially attenuates mild obesity of 

STAT3-CPOMC mice 

 

Not only STAT3, but also the transcription factor FOXO1 is known to regulate POMC 

expression. FOXO1, which is negatively regulated by insulin signalling and STAT3 have 

overlapping binding sites within the pomc promoter, thus leading to a competition of binding. 

In contrast to STAT3, FOXO1 acts as transcriptional repressor of POMC [73, 152]. To further 

elucidate the role of FOXO1 in this context, a Cre-inducible FOXO1DN mouse strain was 

generated and intercrossed with STAT3-CPOMC mice. FOXO1DN is a C-terminal truncated 

variant of FOXO1 that blocks binding of endogenous FOXO1 and presumably other FOXO 

proteins by occupying the consensus sequence of the DNA without dependence on insulin or 

other growth factor signals. 

 

3.2.1 Generation of a Cre-inducible FOXO1DN mouse strain 

To analyse the role of FOXO1 in the regulation of energy homeostasis, a transgenic 

mouse strain containing a Cre-inducible FOXO1DN construct in the ROSA26 locus preceded 

by a transcriptional stop cassette was generated. For this a targeting vector was designed that 

contains homology arms to the ROSA26 locus and the CAGGS promoter followed by the 

loxP-flanked WSS stop cassette. Subsequently, the FOXO1DN cDNA was inserted upstream 

of the IRES eGFP cassette (Figure 32A). Afterwards, the FOXO1DN ROSA26 targeting 

vector was electroporated into V6.5 ES cells and selected with G418. 10 days after 

electroporation 96 ES cell clones were isolated as single clones and subjected to Southern blot 

analysis. Homologous recombinant ES cell clones were identified by Southern blot analysis 

using an external ROSA26 probe and an internal Neo probe (Figure 32B, C). Southern blot 

analysis of EcoRI digested genomic DNA using the ROSA26 probe resulted in a 

7.1 kb targeted band besides the 16 kb wild-type band (Figure 32D). To demonstrate single 

integration of the construct, Southern blot analysis of NsiI digested genomic DNA and usage 

of the Neo probe resulted in a single 17.7 kb band (Figure 32E).  

 



                                                                                                              Results 

 67 

 
Figure 32: Targeting of FOXO1DN into the ROSA26 locus.  
(A) Scheme of the FOXO1DN ROSA26 targeting vector with EcoRI and NsiI restriction sites. (B) Scheme of the 
ROSA26 genomic locus with EcoRI, NsiI and XbaI restriction sites. (C) Scheme of the ROSA26 genomic locus 
after homologous recombination with EcoRI and NsiI restriction sites. (D) Southern blot analysis of EcoRI 
digested genomic DNA with external probe ROSA26 resulted in a 7.1 kb targeted band besides the 
16 kb wild-type band. (E) Southern blot analysis of NsiI digested genomic DNA with probe Neo resulted in a 
17.7 kb band indicating single integration of the construct. CAGGS, chicken β actin promoter with upstream 
CMV enhancer; DTA, diphtheria toxin A gene driven by pGK promoter; eGFP, enhanced green fluorescent 
protein gene; FOXO1DN, dominant negative mutant of forkhead box-containing protein class O 1; HR, 
homologous recombinant; IRES, internal ribosome entry site; LAH, 4.2 kb long arm of homology; NeoR, 
neomycine resistance gene driven by TK promoter; SA, adenoviral splice acceptor; SAH, 1.0 kb short arm of 
homology; WSS, Westphal stop sequence; WT, wild-type; filled triangles, loxP; filled rectangles, exons; closed 
ellipses, FRT sites.  

 

Finally, four ES cell clones were identified as homologous recombinants and injected 

into CB20 blastocysts. Chimeric mice from clone G6, G12, and H11 were unable to transmit 

the transgene germline, while the chimeras of clone G9 transmitted the transgene to their 
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offspring. To test the FOXO1DN construct in vivo, FOXO1DNfloxstop/+ mice were intercrossed 

with both C57BL/6 and FOXO1DNfloxstop/+ mice. 

 

3.2.2 Verification of the dominant negative FOXO1 construct in MEFs  

To functionally validate the FOXO1DN construct in vitro, MEFs were isolated from 

FOXO1DNfloxstop/+ and FOXO1DNfloxstop/floxstop embryos. Subsequently, these MEFs were 

treated with His-TAT-NLS-Cre (HTNC) to cause Cre-mediated recombination of the 

loxP-flanked stop cassette leading to composed expression of the foxo1dn transgene and eGFP 

(Figure 33).  

 
Figure 33: Cre-mediated expression of the dominant negative foxo1 transgene. 
Scheme of the foxo1dn transgene inserted into the ROSA26 locus. Cre-mediated recombination eliminates the 
loxP-flanked NeoR and WSS only in cells expressing Cre and thereby allowing transcription of the bicistronic 
FOXO1DN eGFP mRNA. CAGGS, chicken β actin promoter with upstream CMV enhancer; IRES, internal 
ribosome entry site; eGFP, enhanced green fluorescent protein gene; FOXO1DN, dominant negative mutant of 
forkhead box-containing protein class O 1; NeoR, neomycine resistance gene driven by the TK promoter; WSS, 
Westphal stop sequence; filled triangles, loxP; closed ellipses, FRT sites. 

 

To verify Cre-mediated recombination with accompanied eGFP expression, 

FOXO1DNfloxstop/floxstop (control) and HTNC-treated FOXO1DNfloxstop/+ (FOXO1DN/+) and 

FOXO1DNfloxstop/floxstop (FOXO1DN/DN) MEFs were analysed by fluorescence microscopy. 

eGFP-positive MEFs were detectable only after Cre-mediated recombination by 

HTNC-treatment. As expected, eGFP expression from two alleles in FOXO1DN/DN MEFs 

was more intense than in FOXO1DN/+ MEFs (Figure 34A). FACS analysis revealed that 

0% of control, 94% of FOXO1DN/+, and 98% of FOXO1DN/DN MEFs expressed eGFP 

(Figure 34B).  
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Figure 34: Verification of Cre-mediated recombination in FOXO1DN MEFs.  
(A) Fluorescence microscopy of control, FOXO1DN/+-, and FOXO1DN/DN-expressing MEFs. Blue (DAPI), 
DNA; green, eGFP. Magnification: 200x. (B) FACS analysis of control, FOXO1DN/+-, and 
FOXO1DN/DN-expressing MEFs.  

 

Western blot analysis indicated expression of FOXO1DN in MEFs after Cre-mediated 

recombination. Due to the fact that FOXO1DN is a truncated variant of FOXO1, they can be 

easily discriminated by size (Figure 35A). Since FOXO1DN contains a DBD, but lacks TAD 

including residues essential for nuclear export, FOXO1DN binds permanently to recognition 

sequences without transcriptional activity [279]. Consistently, endogenous FOXO1 

translocated from the nucleus to the cytoplasm upon stimulation with insulin, while 

FOXO1DN localisation was not affected by insulin stimulation (Figure 35B, C). 
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Figure 35: Functional validation of the dominant negative FOXO1 construct in MEFs.  
(A) Western blot analysis using FOXO1 and α-Tubulin (α-Tub, loading control) antibodies of whole cell lysates 
from control, FOXO1DN/+-, and FOXO1DN/DN-expressing MEFs stimulated with insulin for the indicated 
timepoints.  (B) Western blot analysis using FOXO1 and LaminA/C (LamA/C, loading control) antibodies of 
nuclear lysates from control, FOXO1DN/+-, and FOXO1DN/DN-expressing MEFs stimulated with insulin for 
the indicated timepoints. (C) Western blot analysis using FOXO1 and α-Tub (loading control) antibodies of 
cytoplasmic lysates from control, FOXO1DN/+-, and FOXO1DN/DN-expressing MEFs stimulated with insulin 
for the indicated timepoints.  

 

To further validate FOXO1DN function, the DNA-binding capacity was assessed by 

EMSA using nuclear extracts from control, FOXO1DN/+, and FOXO1DN/DN MEFs. Insulin 

stimulation decreased the binding capacity of FOXO1, in contrast to the persistent binding of 

FOXO1DN to its consensus DNA sequence. The specificity of FOXO1- and 

FOXO1DN-binding was addressed by supershift using antibodies recognising FOXO1 and 

FOXO1DN, respectively (Figure 36).  

Taken together, Cre-mediated expression of the FOXO1DN transgene in MEFs leads 

to constitutive nuclear localisation of FOXO1DN and target gene promoter occupancy 

independent of insulin stimulation.  
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Figure 36: FOXO1 DNA-binding capacity of FOXO1DN in MEFs. 
EMSA of nuclear extracts isolated from control, FOXO1DN/+-, and FOXO1DN/DN-expressing MEFs upon 
2 h insulin stimulation using a radioactively labelled consensus sequence for FOXO1 and specific protein 1 
(SP1, loading control), respectively. For supershift, two FOXO1 antibodies were used for detecting either 
FOXO1 or FOXO1DN. Arrow indicates supershift of FOXO1 or FOXO1DN.  

 

3.2.3 POMC neuron-specific FOXO1DN expression partially attenuates 

mild obesity of STAT3-CPOMC mice 

In order to analyse whether expression of FOXO1DN can rescue the mild obesity 

observed in STAT3-CPOMC mice, FOXO1DNfloxstop/+ mice were intercrossed with 

STAT3-C/CPOMC mice (3.1.2) to obtain STAT3-Cfloxstop/FOXO1DNfloxstopPOMC-Cre 

(STAT3-C/FOXO1DNPOMC) mice expressing STAT3-C and FOXO1DN selectively in POMC 

neurons, while Cre-negative mice of this breeding served as controls (Figure 37).  

 
Figure 37: POMC neuron-restricted expression of STAT3-C and FOXO1DN. 
STAT3-C/CPOMC mice were intercrossed with FOXO1DNfloxstop/+ mice to obtain STAT3-C/FOXO1DNPOMC mice 
expressing STAT3-C and FOXO1DN selectively in POMC neurons.  

 

To confirm Cre-mediated recombination and FOXO1DN expression in POMC 

neurons of STAT3-C/FOXO1DNPOMC mice, ARC protein lysates of control, STAT3-CPOMC, 

and STAT3-C/FOXO1DNPOMC mice were analysed by Western blot. FOXO1DN was only 
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detected in STAT3-C/FOXO1DNPOMC mice, but not in control and in STAT3-CPOMC mice 

(Figure 38).  

 
Figure 38: Verification of Cre-mediated expression of FOXO1DN in STAT3-C/FOXO1DNPOMC mice.  
Western blot analysis of ARC extracts from control, STAT3-CPOMC, and STAT3-C/FOXO1DNPOMC mice using 
antibodies against STAT3, FOXO1DN, and α-Tubulin (α-Tub, loading control). 

 

To determine the impact of FOXO1DN signalling on the regulation of energy 

homeostasis, body weight of male control, STAT3-CPOMC, and STAT3-C/FOXO1DNPOMC 

mice was monitored from weaning until 16 weeks of age (Figure 39). As demonstrated in 

paragraph 3.1.3, STAT3-CPOMC mice exhibit a significantly increased body weight compared 

to controls. However, STAT3-C/FOXO1DNPOMC mice exhibited an up to 6%, but not 

significantly reduced body weight compared to STAT3-CPOMC mice, while body weight of 

STAT3-C/FOXO1DNPOMC was significantly increased compared to control mice (Figure 39). 

 
Figure 39: FOXO1DN expression decreased body weight of STAT3-CPOMC mice.  
Average body weight of male control, STAT3-CPOMC, and STAT3-C/FOXO1DNPOMC mice was determined 
weekly (n = 18 - 21 per genotype). Displayed values are means ± SEM. * p ≤ 0.05, ** p ≤ 0.01, and 
*** p ≤ 0.001 versus control.  
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To examine whether the partially diminished mild obesity in 

STAT3-C/FOXO1DNPOMC mice is accompanied by reduced body fat mass, the amount of 

epigonadal fat in male control, STAT3-CPOMC, and STAT3-C/FOXO1DNPOMC mice was 

analysed. Consistently, STAT3-C/FOXO1DNPOMC mice exhibited a reduced epigonadal fat 

pad mass at the age of 18 weeks compared to STAT3-CPOMC mice, while in comparison to 

controls it was still increased (Figure 40A). Furthermore, in vivo magnetic resonance 

spectrometry analysis confirmed the reduced adiposity in STAT3-C/FOXO1DNPOMC mice 

(Figure 40B). Moreover, the significantly increased body length observed in 

STAT3-CPOMC mice was partly rescued by POMC cell-specific expression of FOXO1DN 

(Figure 40C).  

 
Figure 40: FOXO1DN expression decreased body fat content and body length of STAT3-CPOMC mice.  
(A) Epigonadal fat pad weight of male control, STAT3-CPOMC, and STAT3-C/FOXO1DNPOMC mice at the age of 
18 weeks (n = 18 - 21 per genotype). (B) Body fat content of male control, STAT3-CPOMC, and 
STAT3-C/FOXO1DNPOMC mice at the age of 18 weeks was determined using in vivo nuclear magnetic 
resonance (n = 18 - 21 per genotype). (C) Body length of male control, STAT3-CPOMC, and 
STAT3-C/FOXO1DNPOMC mice at the age of 18 weeks (n = 18 - 21 per genotype). Displayed values are means ± 
SEM. * p ≤ 0.05 and ** p ≤ 0.01 versus control. 

 

To investigate whether POMC cell-specific expression of FOXO1DN in 

STAT3-CPOMC mice also normalises POMC, quantitative RT-PCR was performed using total 

mRNA isolated from ARC of control, STAT3-CPOMC, and STAT3-C/FOXO1DNPOMC mice. 

This analysis revealed slightly elevated POMC mRNA levels in STAT3-C/FOXO1DNPOMC 

mice compared to STAT3-CPOMC mice, however, POMC mRNA was still decreased 

compared to control mice (Figure 41).  
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Figure 41: Hypothalamic expression of POMC in STAT3-C/FOXO1DNPOMC mice. 
Relative hypothalamic expression of proopiomelanocortin (POMC) of male control, STAT3-CPOMC, and 
STAT3-C/CPOMC mice at the age of 18 weeks (n = 14 - 15 per genotype) using quantitative RT-PCR. Displayed 
values are means ± SEM. * p ≤ 0.05 versus control.  

 

Taken together, these results reveal that dominant inhibition of FOXO1 in 

POMC-expressing neurons of STAT3-CPOMC mice ameliorates the mild obesity caused by 

enhanced activation of STAT3 in these neurons.  
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3.3 Constitutive FOXO1 activation in the central nervous system 

causes postnatal lethality induced by neuronal apoptosis 

 

FOXO proteins are involved in a variety of cellular processes such as differentiation, 

cell cycle, detoxification, and survival [328]. To investigate the impact of persistent FOXO1 

activation, a mouse strain expressing a Cre-inducible constitutively active version of FOXO1 

(FOXO1ADA) was generated. Since the three AKT/SGK phosphorylation sites of FOXO1 

were exchanged by site-directed mutagenesis to nonphosphorylatable amino acids (T24A, 

S256D, S319A), FOXO1ADA acts as a constitutive activator of transcription independent of 

insulin signalling. 

 

3.3.1 Generation of a Cre-inducible FOXO1ADA mouse strain 

To analyse the role of FOXO1 in metabolism, a transgenic mouse strain containing a 

Cre-inducible FOXO1ADA construct in the ROSA26 locus preceded by a transcriptional stop 

cassette was generated. To this end, a targeting vector was designed that contains homology 

arms to the ROSA26 locus and the CAGGS promoter followed by the loxP-flanked WSS stop 

cassette. Subsequently, the FOXO1ADA cDNA was inserted upstream of the IRES eGFP 

cassette (Figure 42A). Afterwards, the FOXO1ADA ROSA26 targeting vector was 

electroporated into V6.5 ES cells and selected with G418. 10 days after electroporation 

96 ES cell clones were isolated as single clones and subjected to Southern blot analysis. 

Homologous recombinant ES cell clones were identified by Southern blot analysis using an 

external ROSA26 probe and an internal Neo probe (Figure 42B, C). Southern blot analysis of 

EcoRI digested genomic DNA using the ROSA26 probe resulted in a 7.1 kb targeted band 

besides the 16 kb wild-type band (Figure 42D). To demonstrate the single integration of the 

construct, Southern blot analysis of NsiI digested genomic DNA and usage of the Neo probe 

resulted in a single 17.7 kb band (Figure 42E).  

Ultimately, 33 of 96 ES cell clones were identified as homologous recombinants, 

while 8 positive FOXO1ADA clones were injected into CB20 blastocysts. Chimeric mice of 

clones D3 and D9 resulted in germline transmission of the FOXO1ADA construct. To test the 

FOXO1ADA construct in vivo, FOXO1ADAfloxstop/+ mice were intercrossed with both 

C57BL/6 and FOXO1ADAfloxstop/+ mice. 
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Figure 42: Targeting of FOXO1ADA into the ROSA26 locus.  
(A) Scheme of the FOXO1ADA ROSA26 targeting vector with EcoRI and NsiI restriction sites. (B) Scheme of 
the ROSA26 genomic locus with EcoRI, NsiI and XbaI restriction sites. (C) Scheme of the ROSA26 genomic 
locus after homologous recombination with EcoRI and NsiI restriction sites. (D) Southern blot analysis of EcoRI 
digested genomic DNA with external probe ROSA26 resulted in a 7.1 kb targeted band besides the 
16 kb wild-type band. (E) Southern blot analysis of NsiI digested genomic DNA with probe Neo resulted in a 
17.7 kb band indicating single integration of the construct. CAGGS, chicken β actin promoter with upstream 
CMV enhancer; DTA, diphtheria toxin A gene driven by pGK promoter; eGFP, enhanced green fluorescent 
protein gene; FOXO1ADA, constitutively active mutant of forkhead box-containing protein class O 1; HR, 
homologous recombinant; IRES, internal ribosome entry site; LAH, 4.2 kb long arm of homology; NeoR, 
neomycine resistance gene driven by TK promoter; SA, adenoviral splice acceptor; SAH, 1.0 kb short arm of 
homology; WSS, Westphal stop sequence; WT, wild-type; filled triangles, loxP; filled rectangles, exons; closed 
ellipses, FRT sites.  

 

3.3.2 Verification of the constitutively active FOXO1 construct in MEFs  

To test constitutive activation of FOXO1ADA, MEFs were isolated from 

FOXO1ADAfloxstop/+ and FOXO1ADAfloxstop/floxstop embryos. These MEFs were incubated with 

HTNC leading to Cre-mediated recombination of the loxP-flanked stop cassette, thus resulting 

in the composed expression of the foxo1ada transgene and eGFP (Figure 43).  
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Figure 43: Cre-mediated expression of a constitutively active foxo1 transgene. 
Scheme of the foxo1ada transgene inserted into the ROSA26 locus. Cre-mediated recombination eliminates the 
loxP-flanked NeoR and WSS only in cells expressing Cre and thereby allowing transcription of the bicistronic 
FOXO1ADA eGFP mRNA. CAGGS, chicken β actin promoter with upstream CMV enhancer; IRES, internal 
ribosome entry site; eGFP, enhanced green fluorescent protein gene; FOXO1ADA, constitutively active mutant 
of forkhead box-containing protein class O 1; NeoR, neomycine resistance gene driven by the TK promoter; 
WSS, Westphal stop sequence; filled triangles, loxP; closed ellipses, FRT sites. 

 

The Cre-mediated recombination efficiency was assessed by FACS analysis of 

FOXO1ADAfloxstop/floxstop (control) and HTNC-treated FOXO1ADAfloxstop/+ (FOXO1ADA/+) 

and FOXO1ADAfloxstop/floxstop (FOXO1ADA/ADA) MEFs. While 50% of FOXO1ADA/+ and 

52% of FOXO1ADA/ADA MEFs expressed eGFP, 0% of control MEFs were identified as 

eGFP-positive (Figure 44). 

 
Figure 44: Verification of Cre-mediated recombination in FOXO1ADA MEFs.  
FACS analysis of control, FOXO1ADA/+-, and FOXO1ADA/ADA-expressing MEFs.  

 

Furthermore, expression of FOXO1ADA in MEFs upon Cre-mediated recombination 

was confirmed by Western blot analysis. This experiment revealed increased total FOXO1 

protein levels in FOXO1ADA/+ and FOXO1ADA/ADA MEFs compared to controls, while 

FOXO1ADA expression from two alleles in FOXOADA/ADA MEFs was clearly enhanced 

in comparison to FOXO1ADA expression from one allele in FOXO1ADA/+ MEFs 

(Figure 45). As a result of the substitution of the AKT/SGK phosphorylation sites to 

nonphosphorylatable amino acids (T24A, S256D, S319A) in FOXO1ADA, insulin-stimulated 
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phosphorylation of FOXO1ADA is expected to be blocked [280]. Consistently, the increase 

of insulin-stimulated Ser256 phosphorylation of FOXO1 in FOXO1ADA/+ and 

FOXO1ADA/ADA MEFs was comparable to control MEFs (Figure 45).  

In summary, Cre-mediated recombination of the loxP-flanked stop cassette leads to the 

expression of the foxo1ada transgene in MEFs and insulin stimulation failed to phosphorylate 

FOXO1ADA.  

 
Figure 45: Functional validation of the constitutively active FOXO1 construct in MEFs.  
Western blot analysis using FOXO1, phosphorylated Ser256 FOXO1 (pFOXO1), and α-Tubulin (α-Tub, loading 
control) antibodies of whole cell lysates from fasted and 1 h insulin-stimulated control, FOXO1ADA/+-, and 
FOXO1ADA/ADA-expressing MEFs.  

 

3.3.3 Constitutively active FOXO1 expression causes apoptosis in MEFs  

Recently, it was demonstrated that in the absence of insulin and other growth factors 

FOXO proteins are able to induce apoptosis [259, 329]. Therefore, the cleavage of caspase-3 

in FOXO1ADA/+ and FOXO1ADA/ADA MEFs was assessed by Western blot analysis. This 

analysis revealed that the apoptotic cleaved caspase-3 fragments were detectable in 

FOXO1ADA-expressing MEFs in a dose-dependent manner, while control MEFs showed no 

sign of apoptosis (Figure 46). Furthermore, all three isoforms of the proapoptotic protein Bim, 

which is a known FOXO target gene [233, 329, 330], were clearly increased in 

FOXO1ADA/+ and FOXO1ADA/ADA MEFs compared to the controls (Figure 46).  

In summary, expression of FOXO1ADA in MEFs induces apoptosis indicated by 

caspase-3 cleavage due to enhanced expression of Bim.  
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Figure 46: Expression of FOXO1ADA induces apoptosis in MEFs. 
Western blot analysis using FOXO1, Caspase-3, Bim, and α-Tubulin (α-Tub, loading control) antibodies of 
whole cell lysates from control, FOXO1ADA/+-, and FOXO1ADA/ADA-expressing MEFs.  

 

3.3.4 Generation of central nervous system-specific FOXO1ADA-

expressing mice 

To investigate the effect of excessive FOXO1 signalling in neurons, 

FOXO1ADAfloxstop/floxstop mice were intercrossed with mice carrying the nestin cre transgene 

(Figure 47A) [323] to obtain FOXO1ADAfloxstop/+Nestin-Cre (FOXO1ADACNS) mice 

expressing FOXO1ADA selectively in the central nervous system (CNS). Cre-negative mice 

of this breeding served as controls. (Figure 47B). In contrast to Synapsin-Cre mice, which 

express Cre recombinase in mature neurons [331], Nestin-Cre mice are wildly used for 

pan-neuronal expression of genes of interest [323]. 

 
Figure 47: Central nervous system-restricted expression of FOXO1ADA. 
(A) In nestin cre transgenic mice the Cre recombinase (Cre) expression cassette was inserted into the translation 
initiation site (ATG) of nestin exon 1. Exon 2 of the nestin gene contains a known enhancer of Nestin 
expression. (B) FOXO1ADAfloxstop/floxstop mice were intercrossed with mice carrying the nestin cre transgene to 
obtain FOXO1ADACNS mice expressing FOXO1ADA selectively in the central nervous system.  
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Surprisingly, expression of FOXO1ADA in the CNS led to the death of pups within 

two days after birth (Figure 48A, C). FOXO1ADACNS embryos were still alive at E19.5 

(Figure 48B), despite the fact that Cre recombinase expression is initiated at E10.5 [332]. 

 
Figure 48: FOXO1ADACNS mice die within two days after birth. 
(A) Survival rate of control and FOXO1ADACNS mice from day 1 to day 21 after birth (n = 22 – 56 per 
genotype). (B) Photographs of representative control and FOXO1ADACNS embryos at E19.5. (C) Photographs of 
representative control and FOXO1ADACNS pups at day 2.  

 

To assess whether expression of FOXO1ADA leads to alterations in brain morphology 

of FOXO1ADACNS embryos at E19.5, histological analyses were performed. However, 

H&E stainings of control and FOXO1ADACNS embryonic brains revealed no obvious 

alterations in brain morphology (Figure 49). 

To address whether the lethality of FOXO1ADACNS mice is a consequence of 

postnatal neuronal apoptosis, fragmented DNA in neurons was visualised by the TUNEL 

method in control and FOXO1ADACNS embryonic brains at E19.5. While in control brains 

apoptotic cells were hardly detectable, in the brain of FOXO1ADACNS embryos excessive 

amounts of TUNEL-positive cells could be visualised in ARC, cortex, thalamus, and midbrain 

(Figure 50). 

Taken together, the expression of FOXO1ADA in the CNS results in lethality within 

two days after birth, presumably mediated by neuronal apoptosis. 
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Figure 49: Unaltered brain morphology in FOXO1ADACNS embryos. 
Representative hematoxylin/eosin staining of arcuate nucleus (ARC), hypothalamus (HT), hippocampus (HC), 
caudate putamen (CP), and midbrain (MB) from control and FOXO1ADACNS embryos at E19.5. Magnification: 
100x, 400x. 
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Figure 50: Apoptotic neurons in FOXO1ADACNS embryos. 
Representative TUNEL staining of cortex (C), hippocampus (HC), arcuate nucleus (ARC), thalamus (TH), and 
midbrain (MB) from control and FOXO1ADACNS embryos at E19.5. Blue (DAPI), DNA; green, 
TUNEL-positive cells. Magnification: 200x. 
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4 Discussion 
 

The incidence of obesity and type 2 diabetes are intimately connected and represent a 

steadily growing worldwide health problem [2, 6]. For the development of new therapeutic 

strategies to prevent and treat these diseases, a detailed understanding of energy homeostasis 

and elucidation of involved signalling cascades are essential. Numerous studies over the last 

decade have highlighted the crucial role of central leptin and insulin signalling to control body 

weight and glucose homeostasis [97, 192, 333, 334]. 

The aim of this study was to investigate the central function of leptin- and 

insulin-regulated transcription factors STAT3 (signal transducer and activator of 

transcription) and FOXO1 (forkhead box-containing protein class O 1) by cell type-specific 

transgenic expression of mutant versions of these proteins. Cell type-specific expression of 

mutant gene variants is a powerful tool in modern mouse genetics to gain mechanistic insights 

into the physiological function of signalling pathways. Since it was shown that the 

ROSA26 locus is expressed in all cells of adult mice, this locus is widely used for the 

ubiquitous expression of transgenes [312, 335, 336]. The usage of a loxP-flanked stop cassette 

in such ROSA26 insertion strategies allows for Cre-inducible activation of transgenes  

[296, 337]. Therefore, intercrossing of ROSA26 transgenic mice with Cre-expressing mouse 

lines, e.g. POMC-Cre and Nestin-Cre mice [322, 323], results in specific expression of the 

respective transgene in cell types, which express the Cre recombinase. However, the 

transgenes expressed from the ROSA26 locus seem to be expressed at low to intermediate 

levels [335]. While the STAT3 mutant was generated using the conventional reliable strategy 

in which the endogenous ROSA26 promoter drives expression of the STAT3 mutant upon 

Cre-mediated excision of the stop cassette, both FOXO1 constructs contain the strong chicken 

β actin promoter [288] to enhance their expression upon Cre-mediated recombination. 

 

4.1 Functional validation of the transcription factor mutants  

In the present study, the central role of the transcription factors STAT3 and FOXO1 

was elucidated by transgenic expression of a constitutively active version of STAT3 

(STAT3-C), a dominant negative version of FOXO1 (FOXO1DN), and a constitutively active 

version of FOXO1 (FOXO1ADA).  
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The STAT3-C mutant dimerises spontaneously via disulfide bonds due to substitution 

of two residues to cysteins in the SH2-domain, and thus activates transcription independent of 

any stimulation [172]. The functional validation of the STAT3-C construct in ES cells was 

performed using Western blot analysis, EMSA (electrophoretic mobility shift assay), and 

luciferase assay and confirmed the constitutive nuclear localisation of STAT3-C and target 

gene promoter occupancy, which implicates specific activation of STAT3 target gene 

expression. Consistently, constitutive binding of STAT3-C to its consensus sequence could 

also be validated in vivo in STAT3-CPOMC mice. 

The FOXO1DN construct is a C-terminal truncated variant of FOXO1 that blocks 

binding of endogenous FOXO1 and presumably other endogenous FOXO proteins by 

occupying the consensus sequence of the DNA independent of insulin or other growth factor 

signals [279]. In contrast, FOXO1ADA acts as a constitutive activator of transcription due to 

the amino acid substitutions T24A, S256D, and S319A of FOXO1. Thus, FOXO1ADA is 

unable to be phosphorylated by AKT/SGK that would lead to nuclear exclusion of FOXO1 

[280]. To test the function of the mutant FOXO1DN construct, EMSA and Western blot 

analysis of FOXO1DN-expressing MEFs confirmed both the constitutive nuclear localisation 

of FOXO1DN and target gene promoter occupancy. Moreover, Western blot analysis of 

FOXO1ADA-expressing MEFs indicated that insulin stimulation failed to phosphorylate 

FOXO1ADA.  

 

4.2 STAT3-C expression in POMC neurons provokes a negative 

feedback inhibition of leptin and insulin signalling  

Numerous studies over the last decade have demonstrated the crucial role of central 

leptin and insulin signalling to control body weight and glucose homeostasis [97, 192, 333, 

334]. The primary sites of both leptin and insulin action are first order neurons in the ARC of 

the hypothalamus that express either anorexigenic proopiomelanocortin (POMC) or 

orexigenic agouti-related peptide (AgRP) and neuropeptide Y (NPY) neuropeptides [68, 72].  

Cell type-specific disruptions of key players in POMC neurons using POMC-Cre mice 

gained new insights into the signalling pathways regulated by leptin and insulin [153, 193, 

322]. These studies revealed that inactivation of the leptin receptor and the downstream 

transcription factor STAT3 lead to mild obesity indicating a crucial role of leptin-regulated 

STAT3 in the control of POMC expression, energy expenditure, and food intake [153, 322].  
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However, despite the new insights provided by these studies, more than 95% of obesity are 

not caused by genetic alterations but rather by environmental factors and lifestyle changes 

accounting for a yet unsolved mechanism, termed leptin resistance, in which leptin levels are 

high and STAT3 signalling is increasingly activated in the basal state [21, 338-340]. 

To investigate the effect of increased basal STAT3 signalling specifically in POMC 

neurons as present in obesity, mice expressing a constitutively active mutant of STAT3 [172] 

exclusively in POMC neurons were generated (STAT3-CPOMC mice). Besides the POMC 

neuron-specific Cre-mediated expression of STAT3-C, the constitutively DNA-binding 

capacity of the STAT3-C protein was also demonstrated in vivo. Although persistently 

activated STAT3 was identified in a variety of clinical cancer samples [151] and STAT3-C 

has been described to hold an oncogenic potential [172], no obvious tumour genesis was 

detected in STAT3-CPOMC mice, probably because the level of STAT3 activity is too low to 

cause tumour genesis. This observation is in line with the description that AgRP 

neuron-specific expression of STAT3-C neither affects cell size nor induces 

proliferation/transformation of AgRP neurons in mice [325]. Taken together, mice expressing 

a constitutively active STAT3 mutant specifically in POMC neurons provide an adequate tool 

to study the role of STAT3 signalling in these cells in vivo.  

Since POMC neurons have been identified as the primary cell type for mediating 

leptin's anorexigenic effect [45, 61, 62, 341], consistently, POMC neuron-restricted 

STAT3-deficient mice as well as POMC cell-specific ObRb-knockout mice are mildly obese 

[153, 322]. Surprisingly, STAT3 overactivation in STAT3-CPOMC mice also mirrors this 

phenotype. The mild obesity accompanied by hyperleptinemia in these mice is a consequence 

of increased food intake, whereas locomotor activity is not significantly reduced as described 

previously [325]. It has been demonstrated that POMC transcription is positively regulated by 

STAT3 in a leptin-dependent manner [73, 153, 342]. As the constitutively active STAT3 

mimics elevated leptin signalling in POMC neurons, an increase of POMC expression was 

expected instead of decreased POMC expression as observed. A leptin sensitivity test as well 

as Western blot and immunohistochemical analysis of leptin-mediated phosphorylation of 

STAT3 clearly elucidated that STAT3-CPOMC mice develop obesity as a consequence of leptin 

resistance.  

The failure of elevated leptin levels to reduce food intake and to increase energy 

expenditure is defined as leptin resistance [343] and is likely caused by multiple mechanisms 

including defects in leptin transport into the brain as well as reduced leptin signalling in 

hypothalamic neurons [107]. The cellular leptin resistance is caused by a block of 



Discussion 
  

 86 

leptin-mediated STAT3 signalling as shown in db/db mice [98], in mice carrying mutated 

ObRb (T1138S) with abolished STAT3-binding sites [131], and in neuron-specific 

STAT3-deficient mice [133] as well as by increased action of negative regulators of STAT3 

signalling. Besides constitutively expressed proteins such as PIAS, SHP2, and PTP1B, 

cytokine-induced proteins as SOCS3 and CIS negatively control STAT3 activation  

[162, 163]. While PIAS expression was unchanged, significantly increased SOCS3 mRNA 

levels were detected in the hypothalamus of STAT3-CPOMC mice albeit only approximately 

5% of hypothalamic neurons express POMC. Moreover, SOCS3 in situ hybridisation analysis 

confirmed the POMC-specific elevated SOCS3 level due to STAT3-C expression. The 

STAT3-activated SOCS3 interacts with phosphorylated ObRb and JAK proteins and 

functions as a classical feedback loop of cytokine signalling [164, 165, 344]. Specific 

interaction of SOCS3 with tyrosine residues 985 and 1138 of the ObRb inhibits 

phosphorylation of STAT3, thus suppressing expression of SOCS3 [165, 345]. Besides 

affecting leptin signalling, SOCS3 functions also as a negative regulator of insulin signalling 

by inhibiting tyrosine phosphorylation of IRS as well as promoting ubiquitin-mediated 

degradation of IRS [326, 327, 346]. Consistently, both SOCS3-haploinsufficient mice and 

POMC neuron-specific SOCS3-deficient mice exhibit enhanced leptin sensitivity 

accompanied by improved glucose homeostasis [347, 348]. Ultimately, POMC 

neuron-specific overexpression of SOCS3 impairs STAT3 and mTOR signalling and 

subsequently leads to obesity, leptin resistance, and glucose intolerance [349]. In line with 

these observations, analysis of insulin-induced PIP3 formation and AKT phosphorylation as 

well as perforated patch recordings of STAT3-C-expressing POMC neurons clearly provide 

evidence that these neurons are not only leptin-, but also insulin-resistant due to increased 

STAT3-mediated SOCS3 expression. 

 

4.3 STAT3-C expression has no effect in diet-induced obesity 

Although various genetic factors have been identified accounting for the development 

of human obesity such as mutations in leptin, lepr, pomc, and mc4r genes [18], the worldwide 

prevalence of obesity is more likely caused by environmental and behavioural changes such 

as lack of physical activity and high caloric diet [21]. Consistently, wild-type mice fed with 

high fat diet (HFD) develop a diet-induced obesity (DIO) [338]. After increase of fat mass, 

peripheral leptin sensitivity is reduced in turn leading to central leptin resistance [338, 339]. 

Indeed, both DIO and accompanied leptin resistance are reversible by replacing HFD with 
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normal chow diet (NCD) [350]. Two independent mechanisms are proposed to cause 

DIO-mediated central leptin resistance: (i) circulating leptin is unable to reach central targets 

and (ii) intracellular signalling is impaired in leptin-responsive neurons [31, 339, 351]. 

Peripheral leptin administration to DIO mice revealed that prominently neurons located in the 

ARC, in comparison with neurons in other hypothalamic and extrahypothalamic sites, show a 

dramatic decrease of phosphorylated STAT3 [351]. However, DIO mice retain the capacity to 

respond to centrally applied leptin, but with a substantially reduced magnitude of STAT3 

activation [339]. In contrast, recently it was reported that the effect of centrally applied leptin 

to phosphorylate STAT3 is attenuated in DIO mice due to an elevated basal STAT3 

phosphorylation level compared to NCD mice [340]. In line with this finding, the experiments 

in this study demonstrated that DIO significantly enhances basal STAT3-binding capacity in 

the ARC of wild-type mice. Moreover, POMC neuron-restricted STAT3-C expression has no 

effect on regulation of energy homeostasis under HFD-conditions. The central leptin 

resistance during DIO, concomitantly increasing STAT3 signalling, blunts the effect of 

STAT3-C-mediated POMC neuron-specific leptin and insulin resistance. This was confirmed 

by similar increases of SOCS3 expression levels in the ARC of STAT3-CPOMC and control 

mice under HFD conditions accompanied by comparable decreases in POMC expression. 

However, there is some discrepancy about the observed decreased POMC expression 

levels in DIO mice. Enriori et al. demonstrated that neither baseline nor leptin-induced 

POMC transcription were affected in DIO mice, while leptin-induced α-MSH secretion was 

significantly reduced. Indeed, the impaired leptin-induced α-MSH secretion is restored by 

replacing HFD to NCD [352]. In contrast, Gout et al. reported that basal POMC mRNA levels 

were significantly decreased in DIO mice and additionally that leptin-induced transcription of 

POMC was blocked in these mice [353]. Furthermore, Lin et al. illustrated that the effect 

during DIO in inhibiting leptin-induced POMC expression was positively correlated with the 

exposure time of HFD feeding [354]. Consistently, HFD fed wild-type mice as well as mice 

expressing STAT3-C in POMC neurons exposed to HFD, exhibit a similar reduction of basal 

POMC expression equally to extents observed in STAT3-CPOMC mice under NCD conditions. 

Concordant with the observation that constitutive STAT3 activation in POMC neurons 

increases SOCS3 expression and thus is a reasonable explanation for the development of 

leptin and insulin resistance in POMC neurons, this phenomenon has also been demonstrated 

in the ARC of DIO mice [351, 352]. Similar to DIO mice, seasonally obese rodents such as 

the field vole and the siberian hamster also exhibit an increased SOCS3 expression in the 

ARC [355, 356]. Likewise to POMC, SOCS3 is a direct target gene of STAT3 and acts as a 
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negative feedback regulator of leptin signalling [129, 130, 344]. However, while baseline 

SOCS3 expression is increased in DIO mice, the leptin-induced upregulation of SOCS3 

expression is impaired in these mice [351, 352]. Consistently, studies of heterozygous 

SOCS3-deficient and central nervous system (CNS)-restricted SOCS3-knockout mice 

demonstrated that SOCS3 is a key regulator of diet-induced leptin and insulin resistance as 

such mice failed to develop DIO [347, 357]. In line with these findings, HFD feeding causes a 

significant increase of hypothalamic SOCS3 expression in control mice as well as in 

STAT3-CPOMCmice; however, STAT3-C expression did not further increase SOCS3 

expression. Accordingly, POMC-restricted SOCS3-deficient mice illustrate attenuation of 

DIO due to substantial improvements in leptin and insulin sensitivity under HFD feeding 

[348]. In contrast, POMC-restricted overexpression of SOCS3 resulted in impaired STAT3 

and mTOR signalling subsequently leading to obesity, leptin resistance, and glucose 

intolerance [349].  

Taken together, the observation that enhanced STAT3 signalling in obesity can initiate 

a vicious negative regulatory feedback circle to inhibit not only leptin, but also insulin action 

in the CNS explains how initial weight loss restores leptin sensitivity by reducing circulating 

leptin concentrations as a driving force of elevated basal STAT3 activation and subsequent 

SOCS3-mediated leptin and insulin resistance [358]. Furthermore, these data also offer the 

conclusion that chronically elevated leptin levels, as seen in overweight and/or obese patients, 

is not able to reduce body weight due to chronic activation of the SOCS3 negative feedback 

loop, leading to leptin and insulin resistance. This is in line with the hypothesis that leptin and 

the hypothalamic control circuit were evolutionary necessary to protect against weight loss 

instead of weight gain [359, 360]. 

 

4.4  Simultaneous POMC neuron-specific dominant FOXO1 

inhibition in STAT3-CPOMC mice partially attenuates obesity 

Although STAT3 is the main regulator of POMC expression, as predicted from the 

STAT responsive element in the pomc promoter [73], POMC expression in 

STAT3-CPOMC mice would not be expected to be downregulated even in the presence of 

increased SOCS3, since STAT3-C should still bind to and activate the pomc promoter  

[73, 153, 342]. The experiments in this study clearly indicate the existence of another, 

SOCS3-sensitive, leptin- and/or insulin-induced signalling molecule required for POMC 

expression, even in the presence of fully activated STAT3. In line with this proposal, it was 
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demonstrated that hypothalamic administration of FOXO1 siRNA decreases food intake, 

whereas hypothalamic injection of a constitutively active FOXO1 adenovirus increases food 

intake and suppresses POMC expression [152]. Furthermore, a FOXO responsive element 

was recently identified within the POMC promoter [73]. However, the transcription factors 

FOXO1 and STAT3 have opposing effects on POMC expression through transcriptional 

squelching [73]. While leptin signalling causes STAT3 activation and translocation in the 

nucleus [127], both leptin and insulin administration mediate nuclear exclusion of FOXO1 as 

shown in mice expressing a FOXO1GFP fusion protein selectively in POMC neurons [361]. 

To study the impact of FOXO1 on POMC expression in vivo, a Cre-inducible 

dominant negative FOXO1 mouse strain was generated. Intercrossing of FOXO1DN with 

STAT3-CPOMC mice resulted in mice expressing both a constitutively active STAT3 and a 

dominant negative FOXO1 mutant specifically in POMC neurons (STAT3-C/FOXO1DNPOMC 

mice). These mice provide an adequate tool for studying interactions of STAT3 and FOXO1 

at the pomc promoter in vivo.  

The impact of FOXO1DN to block FOXO1-mediated inhibition of POMC expression 

is controversially discussed. Belgardt et al. demonstrated that in POMC neuron-specific 

PDK1-knockout mice (PDK1ΔPOMC mice) the reduced POMC expression, initial hyperphagia, 

and mild obesity can be restored by POMC cell-restricted expression of FOXO1DN 

(FOXO1DN:PDK1ΔPOMC mice) [281]. In contrast, Iskandar et al. showed that POMC 

neuron-restricted expression of FOXO1DN has no effect on POMC expression in PDK1ΔPOMC 

and wild-type mice albeit in the hypothalamus of FOXO1DN:PDK1ΔPOMC mice, FOXO1DN, 

instead of phosphorylated STAT3, interacts with the pomc promoter [362]. Indeed, Iskandar 

et al. analysed the effect of ROSA26 promoter-driven expression of a FLAG-tagged version of 

FOXO1DN, while Belgardt et al. used the strong chicken β actin promoter [288] to express 

non-modified FOXO1DN as described in this study. Moreover, Iskandar et al. also 

demonstrated that POMC neuron-specific expression of a constitutively active FOXO1 

version in PDK1ΔPOMC mice even more decreases POMC expression [362].  

Indeed, a crucial role for insulin signalling to inhibit FOXO1-mediated repression of 

POMC expression could be confirmed in this study, though elucidated by other means. While 

STAT3-CPOMC mice display mild obesity due to inhibited POMC expression as a consequence 

of SOCS3-mediated POMC neuron-specific leptin and insulin resistance, the POMC 

cell-restricted expression of FOXO1DN partially attenuates this effect of STAT3-C. In 

contrast to these findings, Plum et al. demonstrated that adult mice with a POMC 

neuron-specific ablation of FOXO1 showed unchanged POMC expression [255]. On the 
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contrary to the ablation of FOXO1, the FOXO1DN construct used in this study blocks 

binding of endogenous FOXO1 but presumably also that of redundant FOXO3a, FOXO4, and 

FOXO6 by occupying the consensus sequences in the DNA and regulating POMC expression. 

Beside the hypothesis that FOXO1 inhibits POMC expression by binding to the 

FOXO1 responsive element [73, 152], Yang et al. demonstrated that FOXO1 binds directly to 

STAT3 and thus interrupts the interaction of STAT3 with the pomc promoter-bound 

transcription factor SP1 thereby inhibiting transcription of POMC [363]. Moreover, as an 

additional mechanism, mice with a POMC neuron-specific ablation of FOXO1 exhibit an 

increase of carboxypeptidase E expression and selective α-MSH secretion, which decrease 

food intake and body weight [255]. 

 
Figure 51: Model of SOCS3-mediated leptin and insulin resistance in POMC neurons. 
Increased STAT3-mediated SOCS3 expression as present in early hyperleptinemia leads to the combined 
feedback inhibition of leptin and insulin signalling. Decreased insulin signalling leads to inefficient FOXO 
phosphorylation, thereby occupying the pomc promoter and thus inhibiting binding of STAT3, which serves as a 
transcriptional activator of POMC expression. AKT, protein kinase B; FOXO, forkhead box-containing protein 
class O; IR, insulin receptor; JAK2, Janus kinase 2; ObRb, long form of leptin receptor; P, phosphorylation; 
STAT3, signal transducer and activator of transcription 3; SOCS 3, suppressor of cytokine signalling 3. 

 

The findings in this study indicate that in obesity the negative effects of increased 

SOCS3 levels on leptin and insulin signalling not only result in impaired STAT3 activation, 
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but also in decreased POMC expression as a consequence of impaired FOXO1 nuclear 

exclusion; the STAT3-binding sites in the pomc promoter are occupied by FOXO1 leading to 

the inaccessibility of STAT3 to activate POMC expression (Figure 51). Moreover, this study 

elucidates that FOXO1 removal is a prerequisite for functional STAT3-binding, even when 

expressed as a constitutively active mutant.  

 

4.5 Enhanced FOXO1 activation in neurons results in apoptosis  

Although our understanding about how FOXO1 is involved in the regulation of 

cellular processes such as differentiation, cell cycle, detoxification, and survival has improved 

significantly over the last years [328], the specific role of FOXO1 in neurons remains 

controversial. Therefore, to study the impact of neuronal FOXO1 signalling in vivo, a 

Cre-inducible constitutively active FOXO1 mouse strain was generated and intercrossed with 

the Nestin-Cre mouse line. Consistently with the finding that in the absence of insulin or other 

growth factors FOXO proteins are associated with the induction of apoptosis [240], in vitro 

analysis revealed that expression of FOXO1ADA induces apoptosis. Identification of FOXO 

target genes involved in cell survival and apoptosis has led to the conclusion that activated 

FOXO1 proteins can induce apoptosis through mitochondria-dependent and -independent 

pathways [240]. FOXO1-mediated expression of Fas ligand (FasL) or tumour necrosis 

factor-related apoptosis-inducing ligand (TRAIL) causes activation of death receptors  

[259, 364], while transcriptional activation of proapoptotic Bcl-2 family members, such as 

Bim and bNIP3 lead to mitochondrial permeability [233, 329, 365]. Consistently, 

FOXO1ADA expression in MEFs causes prominent increased protein levels of all Bim 

isoforms. 

To investigate the role of enhanced FOXO1 activation in neurons, mice expressing 

FOXO1ADA exclusively in the CNS were generated (FOXO1ADACNS mice). While FOXO 

proteins have been implied in playing a role also in neuronal survival by transcriptional 

regulation of FasL and Bim [233, 366, 367], the pan-neuronal FOXO1ADA expression in 

neurons induces apoptosis, ultimately leading to premature death of mice within two days 

after birth. Consistently, the ischemia-induced neuronal death in gerbil and mouse brains is 

associated with dephosphorylation and nuclear localisation of FOXO proteins and 

concomitant enhanced FasL and Bim expression [368, 369]. Furthermore, it was 

demonstrated that oxidative stress, which has been linked to the development of 

neurodegenerative diseases such as Alzheimer and Parkinson disease [370], leads to FOXO 
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nuclear localisation due to JNK- and MST1-mediated phosphorylation of FOXO in neurons 

[366, 367, 371]. However, besides the expression of apoptosis-initiating proteins, 

stress-induced nuclear localisation of FOXO proteins can also result in upregulation of 

proteins involved in detoxification such as catalase and manganese superoxide  

dismutase [372].  

In contrast to the pan-neuronal FOXO1ADA expression in this study, the expression 

of FOXO1ADA in mature neurons of an Alzheimer disease mouse model led to a life-span of 

at least 60 weeks, which was nonetheless shorter than the life-time of control mice [373]. 

Consequently, the effect of FOXO1 to induce neuronal apoptosis seems to depend on the 

developmental stage of the neuron.  

The findings in this study clearly demonstrate that nuclear localisation of FOXO1 as 

present in FOXO1ADACNS mice and caused by oxidative stress and/or by the absence of 

growth factors in wild-type mice is crucial for the induction of neuronal apoptosis 

(Figure 52).  

 
Figure 52: Model of FOXO-induced neuronal apoptosis.  
Cellular stress and the absence of insulin cause nuclear localisation of FOXO, which activates transcription of 
the proapoptotic Bim, thus leading to apoptosis. AKT, protein kinase B; Bim, Bcl-2 interacting mediator of cell 
death; FOXO, forkhead box-containing protein class O; IR, insulin receptor; JNK, c-jun-N-terminal kinase; 
MST1, mammalian sterile 20-like protein kinase 1; P, phosphorylation; Ub, ubiquitination. 
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4.6 Perspectives 

The POMC neuron-restricted expression of a constitutively active STAT3 mutant 

provides important novel insights into the molecular consequences of HFD-induced SOCS3 

expression. However, the findings presented in this thesis support the importance of other 

leptin-resistant neurons besides POMC cells in the development of DIO [309, 374]. 

Therefore, further studies will be necessary to identify and characterise these neuronal 

populations.  

Furthermore, the coexpression of a constitutively active STAT3 and a dominant 

negative FOXO1 mutant exclusively in POMC neurons expanded the knowledge of the 

coordinated STAT3 and FOXO1 transcriptional activation of the pomc promoter and the 

consequential effects on body weight and fat mass. Future experiments are necessary to detect 

and investigate additional potential factors involved in regulating energy homeostasis. An 

additional study could focus on the impact of AKT-mediated effects on maintaining energy 

balance by coexpressing a constitutively active STAT3 with a constitutively active AKT 

mutant selectively in POMC neurons. 

Nevertheless, new insights of HFD-induced SOCS3 expression as well as STAT3- and 

FOXO1-dependent regulation of POMC expression may provide promising new targets for 

the development of novel therapeutic approaches to treat obesity and type 2 diabetes.  
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5 Summary 
The central nervous system (CNS) has been identified as a major site mediating 

leptin’s and insulin’s effects on energy and glucose homeostasis. Cell type-specific disruption 

of key molecules in the CNS has delivered new insights into the signalling pathways 

influenced by leptin and insulin. Such studies revealed that inactivation of leptin or its 

receptor leads to massive obesity, closely resembling the situation in patients deficient for 

these genes. However, more than 95% of obesity account for another yet unsolved 

mechanism, termed leptin resistance, in which leptin levels are high and signalling 

components are increasingly activated.  

In this study the effect of increased basal STAT (signal transducer and activator of 

transcription) 3 signalling specifically in the anorexigenic proopiomelanocortin (POMC)- 

expressing neurons, as present in obesity, was investigated. Therefore, mice expressing a 

constitutively active version of STAT3 (STAT3-C) in POMC neurons were characterised 

(STAT3-CPOMC mice). On normal chow diet, these animals develop obesity as a result of 

hyperphagia and decreased POMC expression accompanied by central leptin and insulin 

resistance. This finding coincides with POMC cell-specific, STAT3-mediated upregulation of 

SOCS3 expression inhibiting both, leptin and insulin signalling. In contrast, upon exposure to 

high fat diet, food intake and body weight were unaltered in STAT3-CPOMC mice compared to 

control mice. These experiments directly demonstrate that enhanced basal STAT3 activation 

in POMC neurons, as present in control mice upon high fat feeding, contributes to the 

development of hypothalamic leptin and insulin resistance. Moreover, these data also indicate 

that constitutive STAT3 activation is not sufficient to promote POMC expression, but instead 

requires simultaneous PI3K-dependent release of forkhead box protein O (FOXO) 1 

repression. This assumption was verified by a partial rescue of POMC expression and the 

mild obesity observed in STAT3-CPOMC mice when a dominant negative version of FOXO1 

was coexpressed in POMC neurons of these mice. 

Furthermore, the generation and characterisation of mice expressing a constitutively 

active version of FOXO1 (FOXO1ADA) selectively in the CNS (FOXO1ADACNS mice) 

indicated a crucial role for FOXO1 in neuronal survival, since FOXO1ADACNS mice die 

within two days after birth due to FOXO1ADA-mediated apoptosis of neurons.  

Taken together, this study highlights the importance of the transcription factors 

STAT3 and FOXO1 to centrally regulate energy homeostasis and neuronal survival using 

state of the art techniques. 
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6 Zusammenfassung 
Leptin und Insulin regulieren die Glukose- und Energiehomöostase hauptsächlich über 

ihren Effekt auf das Zentrale Nervensystem (ZNS). Durch zelltypspezifische Inaktivierung von 

Schlüsselmolekülen im ZNS konnten zahlreiche neue Erkenntnisse über die durch Leptin und 

Insulin regulierten Signaltransduktionsprozesse gewonnen werden. Solche Studien zeigten, dass 

die Inaktivierung von Leptin oder seinem Rezeptor zu massiver Adipositas führt, was die Situation 

von Patienten widerspiegelt, die Mutationen in diesen Genen tragen. Allerdings werden 95% der 

Adipositasfälle durch einen anderen, bisher unzureichend untersuchten Prozess, genannt Leptin-

resistenz, verursacht, bei dem der Leptinspiegel hoch und die Signalmoleküle überaktiviert sind. 

In dieser Studie wurde der Effekt von erhöhter basaler STAT (signal transducer and 

activator of transcription) 3 Aktivität in den Proopiomelanocortin (POMC) produzierenden 

Neuronen untersucht, der auch bei einer Adipositas vorliegt. Daher wurden Mäuse generiert, die 

eine konstitutiv aktive STAT3 Variante (STAT3-C) spezifisch in POMC Neuronen exprimieren. 

Diese Mäuse entwickeln unter Standard-Diät-Bedingungen eine leichte Adipositas in Folge 

erhöhter Nahrungsaufnahme und verringerter POMC Expression kombiniert mit zentraler Leptin- 

und Insulinresistenz. Dieser Phänotyp resultiert aus der POMC-spezifisch erhöhten SOCS3 

Expression, welche über STAT3 vermittelt wird und Leptin- wie auch Insulin-Signaltransduktion 

inhibiert. Im Gegensatz dazu zeigen STAT3-CPOMC Mäuse bei fettreicher Diät im Vergleich zu 

Kontrolltieren keinen Unterschied in Nahrungsaufnahme und Körpergewicht. Somit bewirkt eine 

erhöhte Basalaktivität von STAT3 in POMC Neuronen eine hypothalamische Leptin- und Insulin-

resistenz, wie es auch bei mit fettreicher Diät gefütterten Kontrollen der Fall ist. Außerdem weisen 

diese Beobachtungen darauf hin, dass konstitutiv aktiviertes STAT3 nicht alleine die POMC 

Expression reguliert, sondern eine simultane PI3K-abhängige Freigabe von FOXO (forkhead box 

protein O) 1 erforderlich ist. Diese Annahme wurde durch die zusätzliche POMC-selektive 

Expression einer dominant negativen FOXO1 Variante in STAT3-CPOMC Mäusen bestätigt, die zur 

partiellen Verbesserung der inhibierten POMC Expression und auch Adipositas führte. 

Die Charakterisierung von Mäusen, die ZNS-spezifisch eine konstitutiv aktive FOXO1 

Variante (FOXO1ADA) exprimieren, zeigte eine entscheidende Rolle von FOXO1 für das 

Überleben von Neuronen, da FOXO1ADACNS Mäuse innerhalb von zwei Tagen nach der Geburt 

an neuronaler Apoptose sterben.  

Zusammenfassend zeigen diese Ergebnisse, dass STAT3 und FOXO1 eine entscheidende 

Rolle in der Regulation der Energiehomöostase und im Überleben von Neuronen spielen. 
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