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Abstract

The relativistic pseudopotential (PP) method is one of thetrnommon and suc-
cessful approximations in computational quantum chemistisuitably parame-
terized —e.g., fitted to atomic valence total energies fraghlia accurate relativis-
tic reference calculations —, atomic PPs provide effedispen—orbit) 1-electron
operators mimicking the chemically inert atomic core ssgbsy, which thus is
excluded from explicit considerations.

This work deals with the development of a Kramers-resiiccomponent
PP Hartree—Fock SCF program based on the spin-restricemmponent HF SCF
modules of the “Quantum Objects Library” of C++ program mleduat the Dolg
and Hanrath groups at Cologne University. Kramers’ resric i.e. time reversal
symmetry, is addressed at the lowest hierarchical levdie{formally complexi-
fied) matrix algebra modules. PP matrix elements are cordpugimg PP integral
subroutines of the ARGOS program, which are interfaced ¢oetkisting struc-
ture. On this basis, a set of spin-restricted, 1-comporedhelectron and) spin-
free PP, and Kramers-restricted, 2-component spin—oBbitiP SCF programs is
implemented. “Optimal damping” and initial guess densitgtrnces constructed
from atomic densities are shown to improve SCF convergeigggfisantly. As
first steps towards correlated 2-component calculatiorrsels, a modular struc-
ture for matrix—-matrix multiplication-driven 4-index &dral transformations to
the Fockian eigenbasis is developed, and preliminary 2pooent MP2 calcula-
tions are presented.




Kurzzusammenfassung

Eines der am weitesten verbreiteten und erfolgreichstaeineNingsverfahren der
computergestitzten Quantenchemie ist das der relélisin Pseudopotenziale
(PP). Geeignet parametrisierte PPs, die etwa durch Fittbamase Valenzgesamt-
energien aus hochgenauen relativistischen Referenaregkn erhalten werden
konnen, stellen effektive (spin- und bahndrehimpulseigigje) Einelektronenop-
eratoren dar, die den chemisch inerten Atomrumpf simulierketzterer wird
somit von der expliziten Betrachtung ausgeschlossen.

Gegenstand dieser Arbeit ist die Entwicklung eines Kraregrgeschrankten,
2-komponentigen PP-Hartree—Fock SCF-Programms auf Grymder spin-ein-
geschrankten, 1-komponentigen Module der “Quantum @bjeibrary”-Biblio-
thek von C++-Programmmodulen in den Arbeitsgruppen Dold Hanrath an
der Universitat zu KoIn. Die Kramers-Beschrankung,. dlie Forderung nach
Invarianz bezuglich Zeitumkehr, wird auf der hierarchisiefsten Ebene der (for-
mal komplexifizierten) Matrixalgebra-Module realisiefiur Berechnung von PP-
Matrixelementen werden Teile des ARGOS-Programms in diearalene Struk-
tur integriert. Auf dieser Basis werden spin-eingesckig&nl-komponentigedil-
electrori- und PP-, sowie Kramers-eingeschrankte, 2-komponergjgn—bahn-
gekoppelte PP-HF SCF-Programme implementiert. Es wirdigezdass sowonhl
die Methode der “optimalen Dampfung”, als auch die Verwergivon aus atom-
aren Dichtematrizen konstruiertemitial gues$-Dichtematrizen die Konvergenz
des SCF-Verfahrens bedeutend verbessern. Weiterfid®ciaritte zu 2-kompo-
nentigen korrelierten Verfahren beinhalten die Entwiokj®iner modularen Pro-
grammstruktur zur Transformation der 4-Index-Integralé die Eigenbasis des
Fock-Operators unter Ausnutzung schneller Matrix—Malixltiplikation. Ab-
schlieBend werden erste 2-komponentige MP2-Rechnunggestellit.
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1

Introduction

The term “relativistic effect” is not easily defined. As paota footnote to a recent
paper by Wang et at,

“[ Thg world is relativistig the nonrelativistic Sclirdinger approach
being a reasonable approximation for lighter elements 8nly

In this spirit, one could state that relativistic effectemistry?2 are discrepan-
cies arising if formally non-relativistic consideratioase juxtaposed with obser-
vations of nature or, most often, accurate relativisticte@ic structure calcula-
tions. Thus, increasingly popular statements as,*:Relativistic effects play an
important role in the chemistry dthe heaviest main-group eleméftsave to be
understood in the sense that non-relativistic quantum ®@tgnteases to provide
the correct picture.

This is already the case for second- and, to a greater or lestmt, first-row
transition metalg-3° Spin—orbit interactiorfs are decisive for ground state con-
figurations of elements as light as nickel The situation is even more pronounced
for heavy and super-heavy elemémt$ and, of course, especially important for
magnetic properti€sand optical spectroscopy?

With the Dirac—Coulomb—Breit (DCB) Hamiltonian, possitdyen including
corrections due to quantum electrodynamics, today’s machiof wave function-
based correlation methotid1%1allows relativisticab initio calculations of atomic
and small molecular systems with remarkable accuracy. Merxvd-component




DCB schemes are generally not affordable for systems of wianmterest, and
often are also not mandatory: In fact, chemistry and largéspaf molecular
physics are dominated by comparably small energies andr@ic momenta.
Beginning maybe in the late 1980s, a wealth of approxidfat&@and “exact” 2-
component theorié§~2°to the Dirac equation has been developed:11 All of
these allow to focus the full computational effort to the dgirspinors’ positive
energy components that dominate atomic and molecularetectstructure, and
address spin—orbit coupling non-perturbatively from tegibning. Although the
“four components gogdwo components batl! debaté! has not been settled,
it is safe to say that modern 2-component methods have beserpio be both
affordable and reliable tools for relativistic quantum hstry.

The relativistic pseudopotential approximatiaii—24is conceptually different
in the sense that it does not aim at the decoupling of the Rigaation directly.
Instead, it provides a set of effective, variationally #ab-electron (spin—orbit)
operator$®26

L—1 L—1
W= Wyy+ > Y Ajllm)(Img| + S+ Y Byllmy) (Imy|L|Imj)(Im]|
=0 my =0 m;mj

that allow to solve electronic Schrodinger equations falemce electrons only:
The excluded atomic core subsystems — for which relativistinsiderations are
generally most important — are mimicked by spin- and orlitgjular momentum-
dependent “pseudo-potentials” obtained from, e.qg., iv&dt atomic reference
calculations?’

The aim of this work is the development of a Kramers-restdc2-component
pseudopotential Hartree—Fock self-consistent field pnod?—2° on the basis of
the spin-restricted HF SCF parts of Cologne’s “Quantum €Cibjéibrary” set
of C++ program modules. From their intimate connection ® @OL’s larger
parts, providing well-developed (arbitrary excitationgle- and multi-reference)
Coupled Cluster modules, this is expected to give way to tssipility to per-
form high-level correlated electronic structure caldolas also at the relativistic
2-component level in the forseeable future.

The adopted bottom-up implementation strategy, discussgetail in ch. 4.3,
reflects, to a large extent, the organization of this work:




In 2-component Roothaan—Hall HF SCF theory, operator matpresenta-
tions have twice the row and column dimensions as compartbe tb-component,
spin-restricted case, and are generally complex-valuedmirs’ restriction, i.e.
invariance with respect to time inversion, manifests incsgdematrix block sym-
metries. The necessary modifications and extensions of @ies@natrix algebra
modules are discussed in ch. 5. 2-component pseudopdiateigrals over Carte-
sian Gaussian-Type Orbital basis functi#h® are calculated using the ARGOS
integral program®—3® of Pitzer et al., which has been interfaced to the QOL as
described in ch. 7. 6.

The 1-component spin-restricted all-electron and spe-fPP, and 2-compo-
nent Kramers-restricted spin—orbit PP Hartree—Fock S@grpms are presented
in ch. 7; all have been supplemented to allow fractional &aocupation num-
bers, “optimal damping®-3/, and improved SCF initial guessé%.

On the basis of these programs, ch. 8 presents design anenraptation of
modules for 4-index integral transformation to the molac@-spinor basis, and
preliminary correlated calculations at a 2-component BtgfPlesset perturbation
theory level to second order.




2

Principles of
Relativistic Quantum Chemistry

The purpose of this first, introductory chapter is to proadwief overview of the
larger context, the underlying concepts, and a number otrapecial issues of
central importance for this work. In sec. 2.1 the Schrodimgguation of motion,
the special role of time in quantum mechanics, and — in maa@ldethe symme-
try operation of time reversal are introduced. Then, se@s8d 2.3 outline the
most basic features of relativistic quantum chemistry far particularly simple
example of the Dirac equation for the hydrogen atom — whidegdhe discus-
sion of angular momentum and spin—orbit coupling from theesigal symmetry
of the potential —, and of 2-component approximation scletméehis Dirac equa-
tion, respectively; the 2-component pseudopotential @ppration is discussed
in more detail in sec. 2.3.2.

It is clear that the presentation of this chapter cannot epcehensive by
any means. Instead, the discussion has been given an opatdticus with the
particular aim of fixing notation and introducing importastations as reference
for the following parts of this work.




Equation of Motion, Time, and Time Reversal

2.1 Equation of Motion, Time, and Time Reversal

The following discussion gives brief accounts of the tinepehdent and -indepen-
dent Schrodinger equations in sec. 2.1.1 mainly to progidends for the detailed

discussion of the symmetry operation of time reversal asgbiibperties in sec.

2.1.2.

2.1.1 Time-Dependent and -Independent Sclkidinger Equations

Central to almost all wave function-based quantum theafiesomic and molecu-
lar physics and chemistry — independent of the nature, ngrabd types of inter-
actions among the system of interest’s particles — is the-tlependent Schrodin-
ger equatio®-412 q A
ialllft) = E|¥,). (2-1)

Eqg. 2-1 defines both the system and its state by its hermitianiiltonian” energy
operatorE and state function, ), respectively. Writing*

d o W) — )
EWG) = rlinof (2-2)
=  |Wriq) =0 —1Ed)|¥,) = Uy q|¥) (2-3)

defines the infinitesimal unitary “time translation” opemat?,er, that effects
propagation of the state function from timéo time¢ + d¢. For the special, but
common case of time-independent Hamiltonizhghe statey,) at timet is thus

defined by the finite transformation

w,) = e £ty = 0,19,) . (2-4)

Thet = 0 state|¥,) is formally the single integration constant for the solotaf
eq. 2-1 withE, = E P

aThe primary reference is probably Schrodingettiulatory Theory of the Mechanics of Atoms
and Molecule’ 32 but central ideas have been published elsewf&r Here and in the fol-
lowing, the term “Schrodinger equation” refers to any dmueof the form 2-1, WithE, not
necessarily restricted to Schrodinger’s non-relativishergy operator.

b There is no (hermitian) time operator or observable in quaniechanicé® Instead,s is un-
derstood as parameter that formally labels a fari¥;)), c g representing propagation of the
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For the stationary states considered in the largest panioWork, |V, ) of eq.
2-4 is an eigenfunction of. Then, the time dependency can be factored out as
time-dependent phase'€?, and eq. 2-1 simplifies {341

E|W) =¢g|¥) with |¥,)=e"€y). (2-5)

2.1.2 Time Reversal in Quantum Mechanics

“T symmetry”, i.e. the invariance of (a subset of) the laws ofgits under time
reversaf®-50
Tt —t, (2-6)

is a fundamental discrete symmetry of systems of chemitaidst.7 symmetry
can, to some extent, be exploited similiarly to point andcspgroup symme-
tries to give insight to a given system’s physics, and to §fynfis abstract de-
scription2-°1.52pyt somewhat simplified, if for a time reversal-invariansteyn
a given trajectory is accessiblg,symmetry allows also the reversed trajectory.

It is stressed that “time reversal” does not refer to “goiagkwards in time”,
but is best understood as “motion revers¥’4°7 transforms a given system’s
dynamical variables of position and (conjugate) momentam a

r—r, p— —p: (2-7)

consequenthl. — —L.
Within the contemporary experimental uncertainty theradsevidence that
electromagnetic interactions bre@ksymmetry: Therefore, the relativistic elec-

state. Moreover, the “time derivative” of eq. 2-1 is not arigior on the state Hilbert spaEe
Eq. 2-1 is, more precisely, to be understood as a paramigrizaf (|¥;)); cg C E such that
E, E — E, acting on|¥,), is identical to ther — 0 limit of the difference quotient of eq. 2 4
Therefore, time dependency of both operators and stateslisaied by a subscript e.g.|¥,),
instead of by the possibly more suggestive notafib(r)).

¢ Note that nature does bredksymmetry. If theCPT theorent®53is true, CP violations — as
experimentally observed in, e.g., kaon aBdneson deca3*>®— imply T violation. Note, too,
that the collective behavior of macroscopic ensembles disgday a “time direction”, seemingly
contrasting time reversal invariance of the systems’ eguatof motion. However, whereds
violation by the weak interaction is truly a consequencenefdymmetry properties of the system
dynamics, macroscopic irreversibility is a purely stétetphenomenon independent of time or
time reversaft®:56




Equation of Motion, Time, and Time Reversal

tromagnetic Hamiltonianﬁ*, of eq. 2-1 is assumed to be time reversal-invariant in
the absence of external magnetic fields.

In quantum mechanics, time reversal is different fromsthe —¢ operation 2-6
because of the special role of the time variabl@ he time-reversal transformed
state|¥,) is .

RIW_) =1 |¥_), (2-8)
i.e. obtained fromj¥;) by both the7 operation 2-6 and action of Wigner’s anti-
unitary time reversal operatdr.47-4° For consistency with eq.s 2-7

(Fy, > (1, = (P hllfhvy) = ARET= & O
Py, = —(p)g, = (W ATphy ) =  kphT=—p:
= kis kT = k(% py) kT = [kikT hp kT]_ = -5, 1 (2-10)

and similar for all pairs of Cartesian coordinatesy, z, because eq.s 2-9 must
hold component-wise. From eq. 2-Z0is anti-linear?’:>’i.e. £ effects complex
conjugation of numbers by conjugation. A number of spedgglaraic properties
of £ and its explicit form (in the position representation) argcdssed in more
detail below, but its physical interpretation is clear fremns 2-9 and 2-10:
If |¥,) is a solution of eq. 2-1, i.e.
d .
id_twlt) = E|¥,) (2-11)
= /%id|11/)— id|/%11/)—~ id|lI/)—E|117) (2-12)
de' T A T T e T T

providedE = £E£T; then, applyingT: ¢ > —t showd7+49

.d - R
1V = E10,). (2-13)

Thus, if |¥;) is a solution of the time-dependent Schrodinger equatidn tBen
|W_,) is a solution of the same equation of motion, obtained froafitist solution

dThe term “external” has a precise meaning in this contexthéffieldB = V x A, defined by
its vector potentialA, is provided by system components also subject tojtheansformation,
A= —A, andE, is time reversal-invariant; “external” thus refers to fislalrces not explicitly
addressed in terms of field source dynamical variables b2-éqji.e. not simultaneously reversed
under7 .5t
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at time—t by the transformatior. Note that the “time reversal operatofa" is
distinct from time reversdl™; an anti-unitary operator cannot act non-trivially on
a real parameter.

Brief Review of Some Properties of Anti-Linear and Anti-Unitary Operators

Anti-linear and, thus, anti-unitary operators behave iligh8y different way as
compared to linear and unitary operators typically empiiaypequantum mechan-
ics.47:51.57-5%0nly a brief account of the operationally most important ipata-
tion rules is given here, mainly to fix notations and providefarence for the rest
of this work.

B Anti-linear operatorsi% on Hilbert space& act, forC,,C, € C and|y,),
[Vp) €E, as

R(Calra) + Col¥)) = Cilkry) + Cit o) . (2-14)

Note that it is necessary to explicitly indicate wheth@eoperates on the
anti-linear or linear, i.e. on the bra or ket argument of tiveer product;
formal expressions as, e.@y, |£|y;) are ambiguoud’

B As 4T is also anti-linearf is defined by
WakT10y) == (Wal k) = (WpkTIy,) . (2-15)

B Anti-unitary, i.e. anti-linear unitary operatoéspreserve the (positive-semi-
definite) norm||v, || = |4, ||?, but

VAR (2-16)
= (kT kyy) = (WalkThyp)* = (Val¥p)* = (Wplva) . (2-17)

The operat0|CB of complex conjugation is a special anti-linear operatat th
is defined in terms of a basiB only.*”>" For a glvenB Cp is the anti-linear
operator that Ieaves db,) € Binvariant. If(¢,[¢,) = é,,, Cp is anti- unitary®’
moreoverCf; = 1 for all B. Messialt’ provides a comprehensive discussion of
changes of bases.
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The Time Reversal Operator and Kramers’ Theorem

An abstract, representation-independent definition ofithe reversal operato@
can only be given in terms of eq.s 2-9, i.e. the time reveraalstormation of the
dynamical variable$ andp; for quantum systems with spin, eq.s 2-9 have to be
supplemented by
Skt = -§ (2-18)

as the total angular momentu gh = L + S must transform consistently with
L—rxp:>/éL/éT——Le

In the position basis and, for the spin variable, the bdsis |8)) of SZ eigen-
functions, for a single electrdf°

>

A

k= —i2§,C, (2-19)
ki la) > [ka) = —|B), ki |B) > [RB) = o). (2-20)

C = C(‘ ).la). 1)) is the anti-linear complex conjugation operator inthe, |a),
|8)) basis; as, in this baS|§ andS are purely imaginary and thus effects S|gn
change, eq 2-18 requires an addltlonal unitary transfoma S-e, — —|2S
on the spln— Hilbert space, i.e. a spin rotation about thexise,, by .
From eq. 2-19

b =52 =-1; (2-21)
asC? = 1, this can essentially be backtraced to the spin spaceantayiy + v,
i.e. the special spinor transformation behavior undertimia Because of eq.s
2-17, 2-21, and 2-15,

(W|hw) = (WhkTbbw)* = —(WhT|W)* = —(w|bw) =0 (2-22)

shows that has no eigenfunctions and, thus, no spectral decompaéftitirt
As the time reversal operatdf for an N -electron system is simply the product
operator

Ki=h® @k 0hy (2-23)
= K2=(-DV, (2-24)

€ with eq. 2-18 b commutes with all rotations of position and/or spin spéEBecausek is anti-
unitary, e 'm0t — gk ke _ e=id me |y fact b commutes with all operators of spatial
symmetry transformations, i.e. translations, rotatiams| reflexionst’
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eq. 2-22 is also valid for any -electron system wittv odd.

Eq.s 2-23 and 2-24 allow the algebraic prfof of Kramers’ theorenf? i.e.
of the theorem that, in the absence of external magneticsfialdenergy levels of
a system of odd numbers of electrons are at least two-foldramgte; and, in fact,
every such degeneracy is even-fold. ClearlyEift) = &|¥), then £|K W) =
KE|W) = §X|¥) becausek: is time reversal-invariant; but, 49 X |@) = 0
for all |¥), |¥) and|J€d/) are independent states.

Because of eq. 2-21 and, in consequence, eq. 2- 24/ -atectron state func-
tion cannot be made invariant und&r. However, ask2 = 1 for N even, one
can always choose a phase factor for Meelectron statéd) such thaﬂJ( V) =
|¥),% as exploited in the context of, e.g., Kramers-restrictedtida—Fock SCF
theory?®2discussed in detail in ch. 3.

2.2 The Dirac Hydrogen Atom

The preceeding discussion of sec. 2.1 has been set up veeyayj@md did not
refer to the precise nature of the Hamiltonian energy operﬁtof, e.g., eq. 2-1.
The present section is focussed on the relativistic Hamaio and state function
for a single electron only, and will address only a number@his in detail that
provide the basis for the following parts.

For a single relativistic electron in the proton’s time-@pa&ndent electrostatic po-
tential IV, the HamiltonianE of eq. 2-1 is the Dirac operatth!1.61

hp = coé - p + pmecd + V (2-25)

with ¢, the vacuum speed of light; the electron rest mags= 1au. has been
written explicitly for clarity?

f Whereas the restriction to the spherical, point-like pnoBmulomb potential is, of course, a limi-
tation from the point of view of a general (molecular) elestatic potential, the system’s angular
symmetry allows to clarify particularly the coupling of @idd angular momentum and spin, which
is of central importance.

9Here and in the following, the electron—proton interactisrassumed to be instantaneous, i.e.
retardation and QED effects are neglectédvioreover, the Born—-Oppenheimer approximation is
applied, and the proton’s spin and vector potemiare omitted.

10



The Dirac Hydrogen Atom

Eqg. 2-25 cannot be “derived” or motivated in any detail hdtenust suffice
to briefly address the key points:

To arrive at a relativistic, Lorentz-invariant equationnobtion of first order
in spatial and time variables, the square root argumenteofdtativistic energy—

momentum relatiof?
E =coymicg+p-p+V (2-26)

is assumed to be a perfect squére p + Bcome)?, the quantitiesr,, ay, oy, and
B are to be defined. Then, eq. 2-1 with= ﬁD of eq. 2-25 follows immediately
from the “correspondence principle”. The algebra of the ponents of thex
vector and3 operator follow from the requirement to match eq. 2-26, i.e.

PO PSR
mgcg +p-p =& P+ feome (2-27)
= 6‘3 = :82 =1. [ey&]y =6,51, [&.B]L =0 (2-28)
for Cartesign coordinatess € {x, y, z}. In the Dirac “standard” representation,
thea, andf operators are represented2as 2 matrices

. (&FT et 0 G, ~ (1 0
o= (o 7)=( %) =5 ) e
in terms of the Pauli sigma operatdrs." Consequently, the solution of the Dirac
equation is a quantity
W) = (1), 197)" (2-30)
the 2-spinor$¥;*) and|¥;") being referred to as “large” and "small” components,
respectively.
In a given frame of reference, which is mostly the Born—Omeémer frame,
the time-dependence of the stationary 1-electron $#gtecan be factored out to
give the time-independent Dirac equatiht! With eq. 2-29,

(V 4+ meed)|WF) + o6 -pl¥™) = ElwT), (2-31)
o6 - PIET) + (V —meed)| W) = E|W™) (2-32)

P The Dirac standard representation corresponds to a chbide 6)" and(0, 1)T as vector repre-
sentations of the “positive” and “negative energy basisfiams” |+) and|—), respectively. Con-
sequently, the standard representation of eq. 2-29 is defipdo a unitary transformatioh 63
but only eq. 2-29 will be referred to here.

11



2: Principles of Relativistic Quantum Chemistry

where the vector operatér collects the Pauli sigma operatars, 6,,, 6.

No detailed discussion of the solutions or the propertiethefsolutions of
eg.s 2-31 and 2-32 will be given at this point. Instead, onfwmber of selected
points are addressed that aim at the following discussig2-cbmponent spin—
orbit pseudopotential) approximations to the Dirac equmti

Notes on The Dirac Hamiltonian Spectrum and The 4-Spinor Stucture

The Dirac HamiltoniarﬁD of eq. 2-25 allows negative energy eigenvaliieand,
moreover, is not bounded from below. Instead,ﬁBespectrum has continua for
E > mgcd andE < —mqcd, as well as a number of discrete bound states in the
interval [0, mgc3). 1011

The existence of positive and negative energy solutiongrésttly connected
to the 4-spinor nature of the state functiph), i.e. the presence of both large
and small component¥ ™) and|¥ ™), whereas a direct physical interpretation is
difficult. As can be seen from eq.s 2-31 and 2-82F) and|¥ ™) are coupled by
the off-diagonal operatods),™ = h," = ¢y -p. Operationally, forE —mecd ~
0 this coupling is “small” in the sense that

[ i [ [

i.e. that the state functioj’) is dominated by the large component, justifying the
“large” label!

The observation that?) is dominated by ™) — with the notable and, quan-
titatively, important exception of inner-shell electronisheavy and super-heavy

I Itis noted in passing that for large electron velocities, fior very strongly bound and high-energy
continuum states witl’ ~ 0 andE > mqc3, respectively, the large component is generally not
large in the stated sense. Moreover, for negative enertgssgenerallyj¥—||2 > ¥ T2,

The physical interpretation of the negative energy statefom only the point of view of eq.s
2-31 and 2-32, problematic also within the picture of holeoity® i.e. assuming a “Dirac sea”
of occupied positronic staté$6%In fact, the Dirac equation’s structure and properties ptmin
the necessity of (Dirac spinor) field quantizati&hj.e. many-particle (-electron and -positron)
theories also for a single relativistic free or bound elaetr

From the point of this work the significance of tl#& < 0 solutions comes from the fact that,
generally, the positive energy functions only cannot sparcomplete function spaé@ is defined
on; any 1-electron state functi¢¥) has both positive and (most often comparably small) negativ
energy contributions.

12



The Dirac Hydrogen Atom

elements —is the point of departure for a number of large corapt-only approx-
imation scheme$%-11i

Angular Symmetry and Spin—Orbit Coupling in The Dirac Hydro gen Atom

The Dirac equation introduces spin to quantum mechanicsiomeheuristic way,
i.e. via the algebra of th@, operators. In fact, the velocity operaige does not
only couple the large and small components but, within eacmponent, electron
orbital angular momentum and spin via

o6 P = colf| 26 -1)(2IS L +¢-p) (2-33)
such that the large and small component’s angular pﬁg‘-t;sj) and|XJ-_mj) aret!

+ ; ; j g .
(0.¢1X;, ) =D CUF 5omj —mg.somg: jom;) - Y™ (8,9) |smy)
m

C(l,my,s,mg: j,m;) are Clebsch-Gordan coefficients, ¢|l/m;) = Y"1 (0, 9)
spherical harmonics, arsin,) = |5, +3) the S, eigenfunctions

3430 =), Sila) = mgle) =+3la),

23 =18, SiB) = milB) =—31B)

2
already employed in eq.s 2-20. qufmj) and, thus|¥) are eigenfunctions of
the total and projected total angular momentum

(2-34)

JJW) =i+ D), T |¥) =m¥). (2-35)

However, |¥) is not an eigenfunction oﬁz and §z, because bottthij) are
linear combinations of products of spherical harmonics spid functions with
differentm; = m; — ms andm.X

I Note, however, that “relativistic effects” in chemisfr}?-11.66are not necessarily small if only the
small component is small.

K|w) is also no eigenfunction dt - L., whereas th¢X,j-Em _) are, albeit with eigenvalugg/ + 1)
of different orbital angular momentum quantum numbemsote that spin—orbit coupling qualita-
tively changes the non-relativistic “orbital” picturesiligstrated by, e.g., Dyall and Feedfiand
Szabo®’

13



2: Principles of Relativistic Quantum Chemistry

Consequently, the enertfy

7 -1 —1/2
% ) , (2-36)

v KZ—ZZCO_2+I1— K|
with x = j+% and the nuclear charge numb&rdepends explicitly o = [ +s.

In other words, the non-relativistic energy level degeagnaith respect to the
orbital angular momentum quantum numbes lost.

E = Ey| = mecg(l +

2.3 Approximations to The Dirac Equation

A number of problems arise with the straightforward appiaaof the 1-electron
Dirac quiltonianﬁD of eq. 2-25 in the framework of quantum chemistry: The
fact thatip is not bounded from below prohibits a simple variationasgy to be
employed for solving eq.s 2-31 and 2-32 (whereas simildamge involved tech-
niques®1 can be applied somewhat routinely with contemporary 4-aorept
codes). Moreover, the need to explicitly address small asmapt contributions
to the electronic state function causes the computatiarsido increase signifi-
cantly, compared to non-relativistic considerations.

As already pointed out in sec. 2.2, the fact th&j is typically dominated by
the large componenty ™), can be exploited to give rise to a variety of 2-compo-
nent approximations to the Dirac equation that only consig€ ) or equivalents
thereof; the term “2-component” thus refers to the spin comemts of the 2-spinor
v =¥ ®a)+ ¥ ®B).

Common to all such 2-component theofi2! is the (formally exact or ap-
proximate) decoupling of eq.s 2-31 and 2-32 by eliminafi$r{Cunitary transfor-
mations on the basis of Foldy—Wouthuy$&ri! or Douglas—Kroll-Hess parame-
trizations1213:1572and several matrix techniqué®:2°™As the field is vast and
continuously expanding, no attempt to review any or all @sthapproximation
schemes in detail is made here; the textbooks by Dyall andiP&Beiher and

I Moreover, most of these approximations allow separatiospif-independent and -dependent
terms and, therefore, provide spin-free, 1-component fsdijeommiting the latter.

MThe pseudopotential approximation discussed in moreldetaéec. 2.3.2 is different in this re-
spect, as it does not aim at a decoupling of the Dirac equdtiestly.

14



Approximations to The Dirac Equation

Wolf, ! and, to some extent, Schwébprovide comprehensive elaborations and
bibliographies.

Instead, the following discussion is restricted to a sonzwiive, exemplary
small component eliminatidn leading to a Pauli-like Hamlltonlahp Whereas
hp is of no practical importance for variational calculatimihemes, the Pauli-like
Schrodinger equation is instructive from a conceptuahipai view, and illustrates
a number of important points.

2.3.1 Small Component Elimination: Pauli-Like Theory

For the purpose of the foIIowmg discussion it is conventerishift” the ED spec-
trum by a constant.c3, i.e. to sethD — hD mec31, such that, witho+) —
e'mecot|l11i)
VIWT) +co6-pl¥™) = E|wT), (2-37)
o6 - PITT) + (V —2meed)|W™) = E|W7). (2-38)
Effectively this aligns the Dirac and the non-relativisBchrodinger spectra to a

commonE = 0 reference, i.e. the bound discrete energy levels lie irj—theec(%,
0) interval with the positive energy continuum &t> 0.

Solving eq. 2-38 fof¥~) and substituting in eq. 2-37 givE's

N o1 PR

(V + o0 .p2mec(% (sElcoo ~p))|11/+) = E|¥T) (2-39)
withsg :=1— (17 — E)/2mgcd. Eq. 2-39 is formally exact, the small component
being “eliminated” from eq. 2-37.Expanding the geometric serie§1 up to first
order and approximating by its non-relativistic counterpart gives the Pauli-like
Schrodinger equation and 2-component Hamiltonian

hel¥t) ~ E|wT), (2-40)

hep:=T+V — I£|73S- L (2-41)

SR T
+ AV +
8mac i 8m2cd 2m2cd

" Note that, a6 - p)sEl(o ‘P)=p-p+ic-(Pxsy 1p), eq. 2-39 reduces to the non-relativistic
Schrodinger equation forg = 1.

15



2: Principles of Relativistic Quantum Chemistry

where the spherical symmetry of the point-like proton CmbopotentiaII? =
—Z|#|~! has been used to write the Pauli spin—orbit operat@zg|3S - L =
6 - (VV x p).

Eg. 2-40 is a large component-only approximation to the ®ieguation.
As compared to the non-relativistic Schrodinger Hamitiom, = 7 + V, the
Pauli-like Hamiltonianﬁp of eq. 2-41 includes a number of spin-independent and
-dependent relativistic correction terms, i.e. the maskeity, Darwin, and spin—
orbit terms, respectively. As both the mass—velocity tenopprtional to|p|*
and the spin—orbit operator are variationally unstable,ube ofip is mainly re-
stricted to perturbative calculation schemieShe importance ofip comes from
its illustrative character, i.e. the formal derivation létcorrection terms — partic-
ularly the Pauli spin—orbit operator — from, and as an appration scheme to,
the rigorous Dirac operatdry.

2.3.2 Semilocal Atomic Pseudopotential Approximations

As already pointed out briefly, the pseudopotential (PP)ff@cave core poten-
tial approximatiort®-2”-"®is conceptually different from the decoupling approx-
imations briefly addressed abdveAs “core approximations®®:’® PP calcula-
tion schemes provide effective static (non-local, pogsipin-dependent) pseudo-

0 Eqg. 2-39is also the starting point for the variational, tagapproximation schemes of van Lenthe,
Baerends, and SnijdefS;"®buts ;! is expanded in terms df (V —2mec3)~!. The Cowan-Grif-
fin 73 and Wood—Boring* approximations depart from the same point, but use the exaces-
sionsg =1 — (V — E)/2mec3.

P It must be noted that these decoupling approximation schgimeluding the Dirac equation itself,
have been discussed for 1-electron systems only, whereapg®&ximations necessarily apply to
N-electron systems. However, a rigorously relativisticydrmiz-invariantN -electron theory is
not known, if it exists at alt%11.63Most often, the electron—electron interaction is modelgd b
non-relativistic Coulomb interactions, i.e.d; ; r; — rj|_1 term in the N-electron “Dirac—
Coulomb” (DC) Hamiltonian; more accurate approaches eynble approximately retarded Breit
operator 877

—5 (& - &lry — [N (B —F) - &) ((F; — #7) - &) IF; — #;177)

in the N -electron DCB Hamiltonian, and may also include QED coioext10:11.63.78Therefore,
it it stressed, and is understood in the following, that Amelectron Hamiltonian is necessarily
approximate, and typically other approximations of, elge,1-electron part enter additionally.
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Approximations to The Dirac Equation

potentials for valence electron-only Schrodinger equmetisimilar to eq.s 2-40 and
2-41. Relativity enters only implicitly via the PP paraniedtion.22-24

PP theory, particularly of the energy-consistent varibag recently been re-
viewed by, e.g., Dolg et af”">8%who also provide comprehensive bibliogra-
phies. Therefore, the following discussion does not attemjpe complete but,
instead, tries to capture the points most important fromreceptual and opera-
tional point of view.

The rigorous basis for PP theory — which might be dated badKeitmanrf!
and Gomb&¥ — is provided by Generalized Phillips—Kleinmaii$* theory. In
essenceé? 2" "9GPK theory defines an effective “Generalized Phillips—Hiean”
N, -electron pseudopotential operal&ng that, if added to valence-only Hamil-
tonians, allows to solve Schrodinger equations for vademaly pseudo-state func-
tions variatonally, and without explicit orthogonalitygquerements to the (thereby
excluded) core subsysteirClearly, GPK and, thus, PP theory imply a frozen core
approximationt®:/%-85% e, assume transferability of a fixed, atomic core subsyste
to a large number of different, generally non-atomic sdesar

Operatlonally WGPK is approximated’ as sum ofN, 1-electron, 1-center PP
operators¥, 4, thus defining a valence-only Hamiltoniah, for N, < N valence
electrons

N,
Z Ti+ Z Y Via+Wia) + Z 8ij (2-42)

i=1 A i>]

that, for thei-th of N, electrons, provides a molecular core—valence interaction
ZA(V,-A + W,-A) of contributionsV,-A + W,-A centered at ato. Epg is the clas-
sical Born—Oppenheimer nuclear—nuclear, i.e. core—@palsion energy, which
consequently is to be modified according to the set oflliﬂli{,semployed?7

Similar to the (non-relativistic) ansatz of Kahn and Godfrmost contem-
porary semilocal PPs are written as, dropping the electndratomic core indices

4 A separation in valence and core “parts” or subsystems ispofse, not possible rigorously and
assumes, in one or the other way, some kind of independetitipaheory. Whereas PK thedty
considers a mean-field model from the beginning and actigbly1-electon theory, Weeks and
Rice® define a set of orthonormal functions spanning a core subspac
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2: Principles of Relativistic Quantum Chemistry

i and A for clarity,

o
=D > Wjllimy){jm| (2-43)
with 2-spinor spherical harmonidgjm;) = 3_,, ,, C(l.m;,s,mg: j,m;)|lm;)

®|smy); the projectors prowde both and] -dependency of the radial potential
operatorsW,] Practically, aIIW,] for [ > L are collected in a single local term
Wy s such that, from) ;2 OZ]m \Ljm;)({ljm;| = 1, the sum in eq. 2-43 is
truncated as

L—1
WoaWop+ Y > Wyllim;){ljm;] . (2-44)

with W;; := Wy, — Wz, to good approximatiofi®®” Typically, L — 1 is chosen
as the largest orbital angular momentum quantum nurhbecupied in the core
subsystem.

Relativistic Energy-Consistent Pseudopotetial Parameization

Departing from the general relativistic PP expression oRedy, the radial poten-
tial operatorsi¥;; are mostly written &

(K IWE) = Wiia(r) = Y Cpyalr = rq"maePurale=ral” - (2.45)
k

where the atomic core labdl has been explicitly included. For a given atom type
and PP atomic core size, i.e. a given numbgr < Z4 core electrons included
in the core subspace, the parameter$gtN,) = {Cjjxa. 1k a- Bijkaltijk, 1S
defined according to one of a number of PP parametrizatiognset’’-8°

In the particular relativistic energy-consisteatt initio PP case# 4(Ny) is
defined by least-square fitting procedures to valence taggees from accurate
reference calculations, typically considering &8 or J levels of a large number
of configurations of the atom and a number of its ibodern parametrization

" Other approaches differ in the actual PP operator expmestsie fitting procedure and target data
sets considered, or both. For example, shape-consistesid-PP °depart also from eq. 2-44, but
aim at accurate modelling of all-electron orbital or 2-gpinadial distributions (outside a cutoff
radius) and energies.
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Approximations to The Dirac Equation

schemes rely on numerical finite-difference, i.e. formalmplete basis set 4-
component MCDHF calculations with DC, DCB, or DCB+QED Hatanlians
and finite nucleus modebsas discussed in much detail by Cao and Dolg.
Energy-consistent PPs allow for considerable computatisavings: This is
not only because the excluded (possibly large) core sudasyisas not to be con-
sidered in the basis set expansion. Instead, the relaxedogtcore orthogonality
requirements allow pseudo-orbital or -2-spinor transfations to smooth radial
distributions of considerably simplified node structuneshie core region, which
allow more efficient basis set expansions also of valenciatstor 2-spinors’’

Separation of Spin-Free and Spin—Orbit PP Parts

Eq. 2-44 can b&>28and frequently is, re-arranged to allow separation of a-spin
free and a spin—orbit pan andB, respectively. Whereas this separation does not
only ease the interpretation of the compact expression-2vddich allows for spin
symmetry breaking implicitly by its dependence on the tataular momentum
guantum numbej =/ + s — it is also important for the generation of spin-free,
i.e. scalar-relativistic PPs from, e.g., 4-componentresfee calculations, as the
spin—orbit parté can simply be ommitted.
FoIIowmg the more deta|led elaboration given by Dyall aradfi® writ-
ing W — W, , = Z, 01 W, in terms of contributions of a single orbital angular
momentum A R
Wi = Wylljm;)(Ljm;|.
jm;
one can define the respective contributiocﬁsand l?, to the spin-free and spin—
orbit part4 and B as

i e IWp— + (L + DWW+ 5 Wi — Wy-
=

B =2———— 2-46
20 +1 ol 241 (2-46)
with the short-hand notation
=1+l (2-47)
i.e. with/* for j =1 + 5 Land/~ for j =1 — 1. From eq.s 2-46, the spin-free

operatorsA ; can be mterpreted asa degeneracy weighted average qiehators
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2: Principles of Relativistic Quantum Chemistry

W,li for the spm—orblt split levels with quantum numbémndj; = [ + s, while
the spin—orbit part’sB, operators correspond to the difference potentials.

Then, expanding the 2-spinor spherical harmoﬁmj) in terms of products
of spherical harmonics and spin functions, re-arranging 2e{6 forW,,+ and
W;,—, substituting, and collecting terms giv8<>26

L—1 L—1
W= Wpy+ > > Agllmp)(Imy| + S>> Byllmy)(Imy|L|im})(Im}]
l=0 my l=0m/m§
= A + B (2-48)

where a spin space unit operator has been ommited in the‘raeirpart/f, that
has been defined to include also the local té¥; for later convenience. Note
that the spin—orbit PP paﬁt is variationally stable, as compared to, e.g., the Pauli
spin—orbit operator of eq. 2-41.

From eq.s 2-45 and 2-46, bothand B have essentially analog radial expan-
SiOﬂS, i.e., fOEXl € {Al, Bl}’

Xpa(r) =Y Xpjpalr — vyl"ragPuialt—ral (2-49)
ik
for 12 Coos C i
/ 1ITkA 1l1TkA
Ak = o P TR (2-50)

with v, := 1% 4 1.
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3

2-Component HF SCF Theory

Hartree—Fock self-consistent field (HF SCF) electronigddtire theor¥yis pivotal
for chemistry and quantum chemistry from a number of impurfeints. First,
it provides a rigorously defined “orbital” concéptthat, although — or maybe be-
cause — not employed that rigorously in chemi$fry?’is central to contemporary
chemists’ ideas of electronic structure and chemical bundf-°¢-%°Second, and
more important from the point of view of computational quantchemistry, it
provides a reference for almost all wave function-basedetated method€?-101
and, to some extent, the basis for Kohn—Sham density furaitibeory!92-104

The following detailed discussion of 2-component HF SCheihe- both ab-
strac£®3%and in finite basis set representafidin sec.s 3.1 and 3.2, respectively
— assumes closed-shell systemg b7, electrons and a Born—Oppenheimzn, -
electron PP Hamiltonialﬁv as given by eq. 2-42, with

gij = IF; —f'j|_1 . (3-1)

However, most considerations can be directly transferedgpective all-electron
calculation schemes by replacing the core—valence PRaatten) ", V, + W,
with the electron—nuclei Coulomb interactidn, Uy.

aprimary references are the 1928 and 1930 papers of H&t%and Fock?! respectively, but
important contributions have also been made by Sfer.
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3: 2-Component HF SCF Theory

3.1 Kramers-Restricted 2-Component HF SCF Theory

The presentation of sec.s 3.1.1 and 3.1.2 aims at a relatiethiled elaboration
of the underlying general concepts at a 2-component levélFofSCF theory,
closely following Almlfl% and Szabo and Ostlurid® Kramers’ restrictior?8-30
i.e. imposing time reversal invariance on the HF SX2F-electron state function,
is discussed in sec. 3.1.3

3.1.1 The Slater Determinant Ansatz

With its placement as “approximate wave function/rigoremergy” class the-
ory,196 closed-shell HF SCF theory is defirféd 019510y its ansatz to approxi-
mate the solution of a time-independ@mn, -electron Schrodinger equation, given
the “exact”2N,-electron HamiltonianR, by a Slater determinant

2N,
~ N 1
¥) = V2N A Q) [v;) = > SgNP[Ypy ® -+ ® Ypew,) (3-2)
im1 V2N,! 7

of 2N, 1-electron function$y; ), and by a set o N, 1-electron equations

Flwi) = €lvy) (3-3)

that define these 1-electron functions. From eq.s 2-42 afdl 2he|y;) are 1-
electron 2-spinors
Vi) = [Vig ® @) + [Yip ® B). (3-4)

The motivation of the Slater determinant ansatz of eq. 3thaésdecoupling of
the2 NV, -electron state functiop) with respect to the electrons’ spatial and spin
coordinates, giving rise to an "independent electron p&tuvhile satisfying the
Symmetrization and Pauli Exclusion princiglé:

Clearly, the simple Hartree produet; - -- ¥, ) of 2N, 1-electron 2-spinors
|¥;) provides such a picture, as the joint probability densisy, the probability

bItis clear from the point of view of the discussion of sec., p&rticularly in the PP approximation
setting, this formal classification is problematic and,dotf does not hold. However, considering
the term “approximated wave function / rigorous energyhatiuctive if opposed to the alternative
“rigorous density / approximated enerd{® framework of, e.g., Kohn—Sham DFf2-104
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Kramers-Restricted 2-Component HF SCF Theory

density for electrong, j, ...to be simultaneously af, r;, ...with spin projec-
tionsy;, y;, ...€ {a, B}, respectively, factorizes d; |(r; vilw;)|? to give 2N,
probabilistically independent distributions.
The antisymmetrization
~ 1
2N

> (sgnp) P (3-5)

P GS2NV

removes the exchange degeneracy, i.e(2)!-fold ambiguity of the represen-
tation of the2 N -electron state function by, - -- ¥, ), by addressing alEN,)!
permutationsP € S, of electron spatial and spin coordinates, and imposes the
correct fermion permutation symmetry by weightiRgwith its parity sgnpP .

Among the correc2 N, -fermion permutation symmetry and — trivially, from the
square-integrability of the normalized 1-electron 2-spsn-2 N, -representability,
the HF SCF Slater determinant of eq. 3-2 shares the propeasfibeing vari-
ational; size-extensive; and, in the Born—Oppenheimercqapation, being a
basis for the irreducible representations of the molealdaible point group with
the exac N, -electron wave functiof!10*

¢ Note that, thereforg¥) by eq. 3-2 does not providaV,, probabilistically independent 1-electron
probability densities: The joint probability density

1
[(r1y "'ervlszv|‘1’)|2 = ang! ZSQF(PQ) HWP(i)yi TV o)y, i)
v po i

clearly does not factorize Moreover, the HF SCF pair derigy,, (r;.r5), i.e. the probability to
simultaneously find any two of th&V, electrons at positions; , r, with spin projectiong/, y,

I, ,,(ry.rp) = Z Wiy, (1'1)|2|‘/ij2 (rp)|* - Z Viy, DYy, 0DV, k)Y, (12)
ij ij

has a “Fermi hole®® i.e. fory; = y, = y itis limj; _y o [Ty, (r;,r2) = 0 throughout
space; contrasting, this limit vanishes everywhereyfor# y,. Therefore, the HF SCF state
function|¥) does correlate electrons, albeit only electrons with egpia projections, as a direct
consequence of the Symmetrization and Pauli Exclusiorciplim®’ However, this correlation
is of a purely quantum statistical character only, &#&d is not correlated with respect to the
electron—electron interaction; the latter is almost alvesferred to as “correlation” in quantum
chemistryl00.101gych thaiw) is frequeuently discussed as “uncorrelated”.
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3: 2-Component HF SCF Theory

3.1.2 Nature and Definition of The 1-Electron 2-Spinors

Employing the variational principl&1%the set o N, 1-electron 2-spinorgy;)
is defined such that the total energy functiohalr := (H, )y IS stationary with
respect to functional variations of any of the 2-spinors.dfssussed below, this
leads directly to the N,, Fock equations 3-3.

It is noted at this point that, therefore, the choice of aipaldr energy opera-
tor I:IV defines a respective HF SCF theory in terms of the nature df-#lectron
state functiongy;).9 As already pointed out, the present discussion assumes a
relativistic, i.e. spin—orbit PP Hamiltonian such that deneral 1-electron state
function is given by eq. 3-4. However, in the limiting — 0 case of eq. 2-48,
all |y;) can be chosen a‘%z eigenfunctions and are typically referred to as spin-
orbitals instead of 2-spinord?:105.107

For E({|v;)};) to be stationary with respect to variations of the set ofektedbn
2-spinors

WYY =) Wan)) . Wlvy) = 65 (3-6)
it is necessary that
8L=8( (v Zeu Wilv,) - ,-,))éo (37)

with 4N 2 Lagrange multiplierg;; € C. To obtain the Euler-Lagrange equations
defining{|v;)}; one has, first, to expredsin terms of{|v;)};.

This expression is readily provided by the Slater—Conddesttl-1%also for
the 2-component setting, because the Slater—Condon mileemploy the2 N,, 1-
electron functions’ orthonormality and the 1-electron @l@ctron operator nature
of the various terms off,. Defining

};::};1 = fl—i-Z(VlA-i-WlA), g&:=281, (3-8)
A

with the kinetic energy, core charge—electron interactimmd PP operatorf,

d Moreover, for a givenﬁv, additional variational restrictions as, e.g., the Krasheestriction of
time reversal-invariané@3%can or can not be applied to the set 1-electron state furs;tighich
defines respective restricted or unrestricted HF SCF tagotilo”
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R ,A, and) 4 W, ,A for thei-th electron according to eq. 2-42, from the Slater—
Condon rules

. 1 R
E({[w)h) = D _(Wilhvi) + 5 3 (Wav; |8viv; — &v;00) - (3-9)
i ij
such that the N, Euler—Lagrange equations réd1%°

fulv) = Z [V )eji - (3-10)
J

f:, is the 1-electron Fock operator or Fockian

f:,:};—i-fv—le\,: Z(jw/ —kw]) (3'11)
J

defined in terms of the Coulomb and exchange operal(pamd Kv, respectively.

The contrlbutlonsl andK _ of the j -th 2-spinor]| 1//J) to J andK are integral

operators deflned in terms of their matrix elements in thpi@es basis, i.e.

Wil Jy, Vi) = (Wl 8035 (3-12)
Wil Ky, i) = (V12993 - (3-13)

Note that the exchange operanﬁ{; couples the spin components of two given 2-
spinors, which is maybe unfamiliar from the point of view afmrelativistic HF
SCF theory:9%:-195Explicitly, from eq. 3-4

(Wil Ky, ¥i) = (VkaVjal@VjaVia) + (VkaVipl2VjaVis)
+ (Vip¥ial8VipVia) + (VipVigléVg¥ip) (3-14)

introduces a coupling df/,) and|y;5) and, consequentlyyyg) and|v;, ) that
vanishes in the non-relativistic case if, as usually dHehe 2-spinors are chosen
asS$, eigenfunctions.

As bothJ, andK, are invariant under unitary transformations of the 2-sggino
|¥;) among each other, eq.s 3-10 can be re-arranged to the psmaivalue
equations 3-3 by diagonalizing the mateix C2N>2Ny of Lagrange multipliers;
because the Fock operatﬁy is hermitian and, thus,;; = (| f\ﬂ/’l) = ¢;; from
eg.s 3-10, such a transformation always exists, and leheeSlater determinant
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3: 2-Component HF SCF Theory

|¥) of eq. 3-2 invariant outside a phase facttf:'°>The 2-spinors satisfying eq.
3-3 are referred to as “canonical HF 2-spinors”.

Note, however, that eq.s 3-3 defines the 2-spinors only aitlgli as f:, de-
pends or{|y;)}; throughJ, — K,. Therefore, eq.s 3-3 must be solved iteratively
to self-consistency??-105.107e

3.1.3 Kramers’ Restriction and Time Reversal Symmetry

Itis clearly desirable to incorporate as much propertigh®fxact solution of the
time-independen2 N, -electron Schrodinger equation in any approximation.to it
In fact, it is the consideration of the correx¥v, -fermion permutation symmetry
that gives way to HF SCF theory as discussed here.

As discussed in some detail in sec. 2.1.2, time reversatianvee is another
fundamental symmetry of the electromagnetic Hamiltorﬁﬁnin the absence of
external magnetic fields. Ag) of eq. 3-2 is even under the transformatiinof
eq. 2-23, i.eX2 = 1from eq. 2-24, this time reversal invariance can be imposed
on the HF SCF Slater determinant by means of “Kramers’ @gin” as discussed
in the following.

Two Statements On Kramers-Restricted Slater Determinants

Before considering Kramers’ restriction of the set of le&len 2-spinors in detail,
two statements on Slater determinants and the operatiomefreversal — which
have been given in a similarly by Lak— will be briefly addressed to outline the
concept.

B A Slater determinant¥) = det(|y;)); is “Kramers restricted” if, for a
phase, .
| KW) = |W¥) (3-15)

with X = /@1 ®-- ~®/@2NV; for eq. 3-15to hold it is necessary and sufficient
thatE! := spar(|y;)); is invariant undet .
€t is noted in passing that questions concerning the existamd formal properties of solutions
to eq.s 3-3 are far from trivial. However, almost all workstliis field address non-relativistic

all-electron HF SCF theory®6-110in this setting, e.g., Lion¥? proved the existence of solutions
ofeq. 3-3ford_4 Z, > N, if N is the number of electrons.
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Kramers-Restricted 2-Component HF SCF Theory

mIf E! is invariant underfé1 = &, the2N, 2-spinors are eigenfunctions of a
#-invariant Fock operatoy,, i.e. £ kaT f,.5t

The first statement is clear from the anti—unitarity]éf If EL is invariant undeg,
ie.if |[y/) e B! = |/%1//) € E!, then effects an anti-unitary transformation of
any orthonormal basigv;)); that leaves the Slater derminant of these 2-spinors
invariant outside a phage!:100.105

More explicitly, let|¥) = det(]y;));, and letC e C2M>*2M pe the matrix
of coefficients of(|y;)); with respect to any orthonormal bagjg/)); of E!, i.e.
ly;)=>.,C j Lil¥;). Then, time reversal effects the transformation

C—CU, =D, (3-16)
K: |¥) = det(|y;)), —> detU, - det(|y;)), =: cdet(|y;)), (3-17)
with |¢|*> = 1 becausdJ, is unitary. Note that HafnéP proves a theorem in the
opposite direction.
The second statement follows from the shell theorért: kl maps anyy; €

E! to any|/é1//J) 1¥;) = > Ujslyy) € E', the j-th 2-spinor’s contribution to
the Coulomb operatoi transforms as

Wil i) = 3 Ui U; Wm ¥ 180301) = (Wa1800v;)  (3-18)

ml

because) _,,; U,k Uy = d;,» and sinceg is time reversal-invariant. The ex-
change operatoK transforms accordingly, such that

bkt = f,. (3-19)

Note that, if|¥) is Kramers-restricted, every 2-spinor eigenvadués even-
fold degenerat&®-2° Clearly, similar to the proof of Kramers’ theorem,

L) = el = kAW = Alky) = elby;) (3-20)
with (y;|&v;) = 0 from eq. 2-27.

f Of course, the eigenvalues of the Slater determiféitare not even-fold degenerate, because
|¥) is a2N,-electron state function and cannot be orthogoni@).
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3: 2-Component HF SCF Theory

Choice of A Time Reversal-Invariant 2-Spinor Basis

Itis particularly convenient to choose a 2-spinor basifishat, in eq. 3-1%, = 1,
i.e.|K¥) = |¥). This basis is a basis &, “Kramers pairs”,

(Iv1). - lvan)) = (VD). [on ) 191D [Wy,)) =2 D (3-21)

Such a basi® always exist and is, in fact, orthqnorrr?al.
Because of eq. 2-21, the time reversal operéttransforms the 2-spinor basis
D of eq. 3-21 as

b (I90) o W) 10D 1)) = (190D, [0, =) = [WA)

If the Slater determinant?) is constructed from the basis of eq. 3-21, i.¢¥if =
detD, one hasC = 12Nv’ and X effects the unitary transformation of eq. 3-16
with 0 —1

UL=U1=(1 0)@11\,v (3-22)

with 1y, the N, x N, unit matrix. Clearly, del; = 1, such tha{ KX ¥) = |¥) as
intended.

In the following, a 2-spinor basis will be referred to as “Krars-restricted” if
E! = spar(|y;)); is f-invariant. The particular Kramers-restricted basigle-
fined by eq. 3-21 will be referred to as a basis of “Kramerssiair “time reversal-
invariant”, as, then itself is £-invariant outside a set @fV, phase factors; h

9 Following Roscht? |y,) and |y/,) are orthonormal because of eq. 2-22. Thgh,) can be
chosen normalized in the orthogonal complemét, ), |1ﬁ1))L =: ]E}L; from eq.s 2-15 and
2-17,|v,) is also inEiJ-, etc. This procedure defines the basis of eq. 3-24,jisteps.

h Note, however, that also the time reversal-invariant b@sisf eq. 3-21 is not uniquely defined, as
one is still free to choose a symplectic unitary transforome$ of D for that detS = 1. Clearly,
any such transformation

*

\4 —W

S_ ( v )  C2Nx2N,
w A\

with v = diagy; € CNVM w = diagw; € CNM*M and|v; |2 + |w;|? = 1 for all i, has unit
determinant and maps a given Kramers [ggirf), |/)) C D of 2-spinors to another, equivalent
Kramers pair

(vi 19]) + w; [¥l), —wiwi) + o 1w))) = (W), 19]) :
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Kramers-Restricted Roothaan—Hall Equations

3.2 Kramers-Restricted Roothaan—Hall Equations

Almost all practical applications of HF SCF theory involvense kind of finite
basis set expansion techniqud€8:1%5.112.113rhjs is mainly connected to the fact
that eq.s 3-3 have necessarily to be solved iteratively feceasistency: That
is, for ﬁ, constructed from a given set of 2-spinors, eq.s 3-3 are ddlveyive
a refined set of 2-spinors that, in turn, allows the conswuacof a refinedf,,
and the process is repeated until some “convergence” iorités met. Whereas
the2 N, integro-differential equations 3-3 can, in principle, lodved for the2 N,
1-electron state functions/;) numerically by, e.g., finite-difference methot$,
this is practically not the case for systems other than agmddinear molecules.
The ansatz of Roothak and Half2 is a discretization of the 2-spinors not
onR3, but on the 1-electron Hilbert spafig directly, i.e. in terms of a given set
B = (|¢p));=; Of n “basis functions”|</5p).i Then, with

Vi) > Y 1) (bl ¥) Z pivBpy) (3-23)

l¢,) € B

one has to solve for, and refine, the expansion coeffici€pts= C of the projec-
tion of |wl) On|y_100,105,112,113

Although the derivations of the following presentation soenewhat straight-
forward, the explicit expressions for the Fock and densiatrix representations
F andD, respectively, will be elaborated in detail to provide tlesils working
equations for the following parts. The time reversal-itmace property ofD and,
thus,f:, introduces a special matrix block symmetry discussed in3&c2. Fi-
nally, sec.s 3.2.3 and 3.2.4 comment on the spd%ial» 0 case and the nature of
the basis functions typically employed, respectively.

thus, D is defined only outside such a symplectic unitary transfoiona As discussed in detail
in sec. 7.2, Hafner and SchwafzchooseS to maximize the 2-spinor basis’ “similarity” with a
basis of corresponding non-relativistic spin-orbitals.

I Note that the discussion is restricted to expansion in tefitecalar”, i.e. spin-free basis functions
|¢,)- 2-spinor expansion techniques, as common in the 4-conmp@ieac—Hartree—Fock setting,
are discussed in some detail by, e.g., Dyall and F¥gnd Reiher and Wolt!
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3: 2-Component HF SCF Theory

3.2.1 Expansion in Terms of Scalar Basis Functions

The phrase “expansion in terms of scalar basis functionsfragn the point of
the 2-spinor nature of the 1-electron state functipfg, an oversimplification.
To be precise, the 2-spinof¢;) are defined in the tensor product of the Hilbert
spacel. of square-integrable continol®® — C functions with the spir% space

S = sparf|a),|B)), symbolicallyE! = . ® S. Therefore, if

B := spanB = span(|gzsp));=1 (3-24)

is spanned by the scalar basis function|$/>1,,),j the 2-component Roothaan—Hall
equations are obtained by projection to the subspace

B®S =span(l¢, ®a)); _ U(ld, ® ), _ (3-25)

that, as compared , includes the§z eigenfunctionga) and|8) of eq. 2-34.
In other words, it is both the- and -spin components of the 2-spinors that are
expanded in terms of the same scalar basis functiggise B.28k

With eq. 3-23, the projected Fock equations 3-3 read
¢pV|fvl/’l Z Joayy Caiy' = Z pavy Caiy/€i (3-26)

quyy’ = (¢pV|fv¢qV >’ Spqyy’ = (¢py|¢qy ) = (¢p|¢q>8yy’ . (3-27)

for all 2V, 2-spinors|y;) and all2n functions|¢, y). As can be inferred from eq.

3-23, Cply (¢qV|WI> = (¢q|¢iy)-
Collecting all2n - 2N, equations 3-26 in a single matrix equation gives the
2-component Roothaan—Hall SCF matrix equatfon

FC = SCe (3-28)

I Whereas the basis functions are typically chosen tRbe> R functions,B is understood to be
defined overC.

kK Note that the term “basis” is used loosely in this contextn&ally, B includes functions linearly
dependent within numerical accuracy, and should, in atsteiase, be referred to as a generating
system. However, the term “basis” for such sets is commomalhelso be employed here and in
the following.
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Kramers-Restricted Roothaan—Hall Equations

with the Fockian matrix representation

fllaa flnaa fllotﬂ fllaﬂ\

F = (Faa F(xﬂ) - fll(xa fnn(xa fnl(xﬂ fnlaﬂ ECanZn
Fgo Fpgp Si1ga = Singa | S1188 0 S1188

\fll,Bot fnnﬂa fnl,Bﬂ fnl,Bﬂ

As already indicated in eq. 3-27, the overlap ma¥ix S, ® Sgg has a similar,
set simpler structure from spin orthogonality.

In the general case > N,, and eq. 3-28 is typically extended to also include
a number o2n — 2N, “virtual” 2-spinor vector representations and correspond
ing 2-spinor eigenvalues;, such that all matrices in eq. 3-28 have the common
dimensiom2n x 2n.

3.2.2 Time Reversal Invariance and Matrix Symmetry

The particular choice of a time reversal-invariant 2-spinasisD, as defined by
eq. 3-21, manifests in a special structure of the matrices)o8-2828

From the definition ofD, the expansion coefficients iy of the N,, time-
reverse 2-spinor);) are related to the coefficiengs,;, of the N, time-forward
2-spinors by

Cria = (¢qa|x@-> = {(pgal( = [¥ipe) + [ViaB)) = —CJig . (3-29)

Cq{'g = <¢q:8|1/’1> = <¢q:8|( - W:}sa) + |¢i*oz:3>) = C;ia > (3-30)
where real-valued basis functiofg, ) have been assumed. Therefore, the HF SCF
eigenvector matrixC e C2"*2" seen as row vector of thin 2-spinor column
vector representatior§; € C2"*1 j.e.

C=(C,...C,,Cpyy....Cypy) = (Cy,...C,. Cy,...Cy), (3-31)
recovers the structure of the 2-spinor basif eq. 3-21. Analog to the notation
for the time-reverse 2-spindty;) := |kvy;), the time-reverse vector representa-

tion is written )
C,=(j®1,C/, (3-32)
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3: 2-Component HF SCF Theory

where the complex conjugation operator in the b#&skgs been evaluated directly
to give the complex- conjugated vecf; the symplectic fornj := —2iS,, is the
representation 0#2|S in the basisB.

In fact, in much the 'same way asinvariance ofD i imposes a special structure
on C, #-invariance of fv gives rise to very similar symmetry propertieskof=
h +V + W + J — K. From the point of view of sec. 3.1.3 this follows directly
from eq. 3-19, as the projection éff, 27 = £, to B ® S read$

(On _ln) (F&ka &kﬂ) ( On ln) — (Fotot Fa,B) (3_33)
1, o, )\Fs, Fis)\-1, o, Fpo Fpg

= F,Bﬂ = F;a s F,Bot = _F;,B (3-34)
necessarily. However, it will be explicitly shown in thelfaving that all contri-
butions toF have the special structure defined by eq.s 3'34.

Explicit Expressions: 2-Spinor Energy and Core Hamiltonian Matrices

From eq.s 3-20 it is evident that the mateixof 2-spinor energy eigenvalues is of
the structure

¢ = diage; @ diage; € R?"2" (3-35)
clearly satisfying eq.s 3-34.

For real-valued basis funct|0r1|$p) matrix representations of spin-indepen-
dent operator®, i.e.7’, V, andA of eq. 2-48, are also real-valued. As, moreover,
all such matrix representations decouplédas= O, ® Ogg from spin orthogo-
nality, eq.s 3-34 are clearly satisfied.

I Note that the time reversal operator effects complex catjag of operator matrix representations
as, e.g.F, by conjugation, but by (left) multiplication for 2-spingector representations.

Min their 1979 paper, Hafner and Schw&fmotivate Kramers' restriction from the opposite point
of view, starting on the matrix algebra level directly: Theérs-orbit PP operator matrix represen-
tationB and, thus, the 1-electron part+ V + A + B of F, is naturally of the structure defined
by eq.s 3-34 (which is connected to the special algebraipegties of the Pauli sigma operators
6y, 6y, 67). Then, choosing a time reversal-invariant 2-spinor basjgoses the same structure
on theK matrix and, thus, offf.
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Kramers-Restricted Roothaan—Hall Equations

Considering the spin—orbit PP operaﬁJrevaluating thd. -S dot product and
performing spin integration gives

~ 1 P
(¢pOt|B¢th) = 5 Z<¢q|Ble|lml><lml|¢q> = B;qﬂﬂ > (3-36)
Im;
A 1 A . .
(bpe| BbgB) = 5 D {9q| Bi(L —iLy)imy)(milbg) = —Bjopy . (3-37)
Im,;

where the truncation of the sum over Bllintroduced in eq. 2-44, has been om-
mited for clarity. The second equalities, i.e. the relagidt ., = B,,sp and
B, = —B}4pq COrresponding to eq.s 3-34, follow from the fact that the.,
matrix elements betwed, ) and the spherical harmoniisn; ) are purely imag-
inary.

Therefore, the matrix representatibn= T + V + A +B is also time reversal-
invariant — although this fact is not connected to the choica 2-spinor basis of

Kramers pairs, as eq.s 3-36 and 3-37 are essentially indepenf eq. 3-31.

Explicit Expressions: Density, Coulomb, and Exchange Matices

Both the Coulomb and exchange operator matrix represensatiandK are con-
veniently expressed in terms of the density malyixwith the Kramers-restricted
HF SCF density operator

NV
D =Wy = > (I (Wil + 1¥:) (i) (3-38)
i=1
from eq.s 3-23, 3-29, and 3-30, the density matrix eleménfs, . are
Dysaq = Z (Criotcsﬂ;'ot + Criﬂc;;ﬂ) = D;*ksB,B ’ (3-39)
i
Drsa,B = Z (CriotC;;',B - Cr*iﬂcsia) = ;‘ksﬂa- (3-40)

i

In terms of theD,,,,,,/, the contributionsfwi and f&,- of thei -th time-forward
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3: 2-Component HF SCF Theory

and time-reverse 2-spinofg;) and|y;), respectively, are

D719y, 007"} = DpVial219gVia)Byy + (BpVip| 210G Vip)Syy
(¢pV|J1ﬁl ¢qyl> = (¢p¢i73|é|¢q¢i73)8yy/ + (¢p¢iﬁx|é|¢q¢iﬁx>8yy/ >

where spin integration has been carried out to showJpaand./; do not couple
the 2-spinorsu- and -spin components. Consequently, with eq.s 3-29, 3-30, 3-

39, 3-40, andD ¥ =D the full Coulomb operator’'s matrix elements are

sryy sryy?

Ipayy’ = Z(‘ﬁpﬂ(jl/f,' + f,/‘,[)lqﬁqy) = 22 ReDgryy8prgsbyy . (3-41)

1 rs

such that theJ] matrix decouples as the spin-independent core Hamiltopda
i.e.as) = Jy, @ Jgg, Clearly satisfying eq.s 3-34. . A

By essentially the same reasoning one finds for the conitsiK';, and Ky,
to the exchange operatdf

(EpVIKy,bq?) = (DpYVia®|81Via@Bgy') + ($py Viae|2|VipBoyY')
+ Doy VipBlE|Viady V') + (Dpy VigBlEIVigBbeY')
(bp¥|Kg, 007y = (bpy¥isel@lVisad,y’) — (b ¥isel2|¥inBeyy')
- (¢pVWi*a/8|§|Wi?}a¢qyl> + <¢pyw;:xﬁ|§|Wi*(x/3¢qyl> s
such that
quyy/ = Z(¢py|(kwl =+ Ieiﬁl)lquy/) = ZDsryy/gprsq; (3_42)
Kpgaa = K;qﬂﬂ v Kpgap = _K;qﬂa’ (3-43)

Eq.s 3-43 follow directly from the time reversal invarianzieD, as the 4-index
integralsg,,, are real for real-valued basis functiofgs,). As already pointed
out in sec. 3.1.2K, as opposed td, does break spin symmetry, i.e. couples the
2-spinors’a- and B-spin components through the generally non-vanistkig
andK g, blocks.
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3.2.3 Spin Component Decoupling in theB — 0 Limit

For vanishing spin—orbit PP operatdﬁsi.e. in a scalar- or non-relativistic setting
with W = A or W = 0,,, respectively, the complete core Hamiltonian matrix
representatiom decouples with respect to the spin indices. Moreover, frgrs e
3-34,hy, = hgg € R"™". Then, all2n HF SCF eigenvector€’; can be chosen
real-valued and to represeﬁ; eigenfunctions, i.e. to satisfy,C; = = 41 >Ci,
provided that the firsl — K matrix in the SCF loop is constructed from an |n|t|al
guess that does not break spin symmetry.

Then, the density matrix decouples accordingly becauss;.i3-40, the sum
runs over differences of products that always include atleae vanishing factor
as thei-th eigenvectorC; has eitheGCm = 0orC,ig = 0forall p. Thus,
from eq. 3-42 alsK,,,, = 0, for y # ', and the 2-component Roothaan-Hall
equation 3-28 decouples to give two real-valued n equations

FuoCo = SpaCye and FﬂﬂCﬂ = SﬂﬂC3€ . (3-44)

Clearly, both are identical from the imposed Kramers’ iiegtm — which is, in
fact, identical with the spin restriction of non-relattitsRHF SCF theory®0-105
in this case —, and one has the simplified relations

=2 Z qz ) - K Z Dsr(zgprqs - gprsq) ) (3-45)

rs

where the spin indices have been dropped.

3.2.4 Cartesian Gaussian-Type Orbital Basis Functions

So far, outside the assumptigi(r) € R for all r, nothing has been stated about
the nature of the functiong,) € B used to span the subspd@ex S. No review

of the wealth of functions that can possibly be employedvemihere. The book
of Helgaker, Jgrgensen, and Ol$&nhprovides both an in-depth discussion of the
subject and a large number of references.

In most wave function-based electronic structure calmnat the basif is
chosen as a set of Gaussian-Type Orbitals, GTOs, i.e. afdljypiatom-centered
functions with Gaussian functions — or linear combinatioh&aussian functions
— for the radial part.
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3: 2-Component HF SCF Theory

Most often these are Cartesian GTOs, i.e. CGTOs, of the form
¢p(r) = Np c(x — xp)mpx (v — yp)mpy (z — Zp)mpz. . e_é'p‘r_rp\z , (3-46)

centered ar,,. The Cartesian monomiahapx,mpx,mpz € N are connected to
the CGTO's associated orbital angular momentum gantum euiplvia m,,, +
My, +my,, =: |m,|l; = L,, introducing the Cartesian monomial vectay, €
N3 and its1-norm for later convenience.

The main motivation of choosing CGTO basis functions fordtseretization
of, e.g., the Hartree—Fock SCF equations, is connectedttdrimatic simplifica-
tion of the evaluation of 1-electron and, to some extenig2teon operator matrix
elements between CGT&%-115_ as compared to, e.g., exponential-type func-
tions. In fact, the convergence of the expansion of eq. 32Biwv with respect to
increasing size oB, 11 particularly in the 2-component settidg® However, as
most matrix elements between CGTOs can be evaluated amaéllytor employing
at most a single one-dimensional numerical integratiomyéfatively large size of
CGTO hasis sets is typically outweighted by far.

3.3 Closing Comments on Correlation

It is clear that the time-independent Schrodinger eqonai® is not solved by the
HF SCF Slater determinant ansatz of eq. 3-2. In fact, asguiotit in sec. 3.1.1,
|¥) of eq. 3-2 incorporates only the quantum statistical catieh of the2N,
electrons due to their nature as indistuingishable, elmspin% particles, but
not correlation due to their physical interaction.

It is this characteristic feature of the HF SCH, -electron state function that
gives rise to the definition of the correlation enef¢y10

Econ. 1= € — Escr (3'47)

"The set of all CGTOs includes the spherical harmonic-GTOmfthe possibility to re-write the
real spherical harmonicg/™ in terms of only the Cartesian coordinatesy, z, such that every
spherical harmonic-GTO with a given orbital angular mormenguantum number is a linear
combinations of CGTOs withjm||; = /.1%1 Note, however, that for a givehthere arel (/ +
1)(I 4+ 2) CGTOs, but only2/ + 1 spherical harmonic-GTOs.
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in terms of the “exact” energ§ and the expectation valuéscr = (H, )y Of ﬁ\,
with the Slater determinany’).

Probably the largest part of methods developed, and stilgbgeveloped, in
computational quantum chemistry is concerned with the ratepyet mostly ap-
proximate computation of ., ,%%1% and this is maybe also true for relativistic
quantum chemistry?-1%78In principle, the exact solution of eq. 2-5 — still assum-
ing a2 N, -electron closed-shell system —is readily written as tb#) (€onfigura-
tion Interaction state function

Ifull CI) (3-48)
_ aj,ra abc abc
= 1¥)+ D G + (2,)2 > e (WZcuk Wk

ijab ijkabc

in terms of|¥) of eq. 3-2: The determinant®?), [¥ab), [wehe), ... with single,
double, triple, ...substitutions, respectively, are defiin terms of|¥) in the
sense that, e.g|¥{) is obtained from¥) by substituting the-th 2-spinor with
the a-th of the2n — 2N, “virtual” 2-spinors® However, for a given basis set
expansion of the 2-spinors in terms masis functiong¢,) € B, the number
Nc,(m) of m-fold substituted determinants'f§

vaom = (0) (*2%). (3-49)

and, thus, the number of terms included in eq. 3-48 in almbshtaes too large.
Therefore,E ., IS almost always computed in terms of approximationgZio.

A wealth of hierarchies of approximate correlated electra@tructure methods
has been and is still being developd1:78.100.101.119nq it is both impossible
and inappropriate to attempt any systematic discussios her

A successful class of approximationsig,,, of eq. 3-47 is not obtained from
perturbation theory?:191partitioning the2 N, -electron Hamiltoniarf, as

H,=F+V (3-50)

2|Cl) is, in principle, exact because the set of &N, -electron Slater determinants is a complete
orthonormal system of functions for tlev, -electron state Hilbert space. However, this assumes
a complete set of 1-electron state functiogs).
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in terms of an operatoﬁ of which eigenfunctions and spectrum are known, and
a “small” perturbationV, Rayleigh—Schrodinger perturbation thetiy0-118ex-
pands both eigenfunctions and eigenvalueé(\(,)fn a Taylor series in the ordering
parameteir € [0, 1]. Cleary, asA — 1, the original2N,-electron Hamiltonian
H, is recovered from eq. 3-50.

A particular common choice of thé and V operators for the approximate
calculation of the correlation enerdy,,, is'®

F = Z foin V= Zg’ij - Z (Jui — Kui) (3-51)
i i>j i

with the valence-only Fockia[f:,i, Coulomb operator,;, and exchange opera-

tor K,; for the i-th electron, defining Maller—Plesset perturbation thet9R/~0L

Clearly, the lowest-energy eigenfunction bfis the2 N, -electron Slater determi-

nant of eq. 3-2 with eigenvalug_; ¢;. With eq. 3-51, expanding the total energy

up to second order i gives the Mgller—Plesset correlation energy to second
order100.101p
b |2

1 ¥ |8ijab — 8ijba (3-52)

Eypz = 7 ;
4 € +€;, —€,—¢€
ijab i+ j a b

wherei and; label occupied, and andb label virtual 2-spinors.

P Note that, as discussed in detail by, e.g., Helgaker, Jsegerand Olsef%! the Mgller—Plesset
perturbation expansion is not guaranteed to converge,amdrcfact, diverge in cases of practical
interest. However, it is probably fair to stalg,p, is most often a good estimate of the correlation
energy.
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The main goal of this work is the development of a Kramergriatsd 2-compo-
nent pseudopotential Hartree—Fock SCF program on the ba#ie “Quantum
Objects Library” HF SCF modules.

Linking the preceding theoretical with the following tedtal, implementa-
tion part, this chapter is intended to provide a short disicunsof this work’s pre-
requisites, scope, and the global strategy employed tmaphrthe research goals
formulated. In fact, these considerations reflect to a lasgent the structure and
organization of the following chapters, which is briefly lmgd and reasoned in
sec. 4.2. Finally, sec. 4.3 provides a technical discussfam small part of the
2006 QOL implementation’s matrix, integral evaluationgd &t SCF modules.

4.1 The “Quantum Objects Library”

The “Quantum Objects Library”, QOL, is a set of program meduhat provides
a modular, highly abstract structure mainly for correlatee function-basedb
initio electronic structure methods with emphasis on (arbitragjtation single-
and multi-reference) Coupled Cluster theory and varidrgesof. Technically, the
largest part is written in C++, including a number of codegmated components
and interfaces to standard libraries as, e.g., the LAPACKSB libraries. The
QOL has been initiated, designed, and developed by M. Haarat coworkers at
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Cologne University.

Around the end of 2006, the QOL also provided a small numbéess de-
veloped modules for CGTO integral evaluation and integoaiventional spin-
restricted HF SCF calculations. The importance of this pathe QOL does not
originate in the competitive performance and functiogatiharacteristics of the
HF SCF program provided — in fact, with respect to these nexjuhe 2006 QOL
implementation has to be considered as exploratory onlste&, its relevance
comes from the connection to the well-developed CC modaled,from its na-

ture as in-house development that allows access to, andioatidin of, the source
code.

4.2 Scope, Strategy, and Organization of This Work

This work builds heavily on the HF SCF (and a number of rela@@L modules
and is, thus, to be understood as part of the ongoing developprocess at the
group of M. Dolg at Cologne University.

The term “2006 QOL implementation” can, of course, only bedis a some-
what loose sense, as particularly the QOL's CC modules haee bontinously
modified and extended by M. Hanrath and coworkers. HowekierQOL's HF
SCF-related modules have only been modified and extendéxe icaurse of this
work, such that the term “2006 QOL implementation”, if emy@d with respect
to these modules, refers to the QOL HF SCF parts’ status qootprthe modi-
fications and extensions presented here, and does so fro2086do ca. spring
2010.

4.2.1 Implementation Goals

Starting from the 2006 QOL implementation’s 1-componenh-spstricted HF
SCF modules, this work aims at

B the implementation of both spin-averaged and spin—orteugspotential
integrals over generally contracted CGTO basis functions;

B the integration of these functionalities in the establis@Q®©L HF SCF mod-
ules, i.e. the development of both 1-component spin-tsttiall-electron
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and spin-free PP, and 2-component Kramers-restricted-smit PP HF
SCF programs; and

B the development of programs for 4-index integral transtdioms to the
molecular 2-spinor basis, and for subsequent 2-componertieMPlesset
perturbation theory calculations.

Additionally, much effort has been made to guarantee andpioe extent, en-
able applicability of the developed HF SCF modules to theaas®es considered
(e.g. by improving the 2006 QOL implementation’s naive ®Raan—Hall SCF
algorithm and core Hamiltonian inital guess).

Strategically, it is clear from the introductory discussiaf sec. 4.1 thaany
approach of these implementation goals is to be made witl@mptimary require-
ments of maintaining interoperability and compatibilitytimhe established mod-
ules— both technically and in terms of the object-oriented paogming paradigm
employed —, as well as with the modules being subject of ongoing devedapm
It is stressed again that, from this point of view, this workghnot be understood
as independent, but as part of the global QOL structure #&snts around spring
2010.

4.2.2 Implementation Strategy and Outline

Because of the nature of this work as part of the ongoing QQkldpment pro-
cess, most of this work’s implementation has necessariy loene in C++.
Globally, a bottom-up strategy was employed to approacimipéementation
goals formulated. The following, second part of this workiiganized essentially
analog to this strategy which is, thus, given in some detailitline the former.

2|t is noted in passing that, from the point of view of the fotatad research goals, the 2006 QOL
implementation both enables and limits this work: As, foamyple, the development of the QOL
integral evaluation modules is not, and cannot be, the sobihgs work alongside with what has
been stated, the HF SCF programs developed in this work gi@lty restricted by the 2006 QOL
implementation’s exploratory status.

b A review of object-oriented scientific programming in FORIIRO0 and C++, introducing C++
concepts as, e.g., inheritance, polymorphism, and temptahniques from the point of view of
particle physics, has been given by Cary et#).
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B From the spin symmetry-breaking nature of the spin—orbibﬁ@ratorvf/
of eq. 2-44 one has to consider the fG#"*?” Roothaan—Hall SCF equa-
tions instead of two smaller, spin symmetry-relaRt” problems.
Consequently, in the very first step the 2006 QOL impleme@rist matrix
algebra modules were complexified and supplemented by>»xmaasses
exploiting time reversal-related index symmetry. In a sghent step these
were connected to the established QOL iterator—evalustactare, allow-
ing the assembly of all non-PP matrices in the exter@&d<” framework.
The implementation details are discussed in ch. 5.

B In anextintermediate step, PP classes and the necessasydtiaper input

functionalities have been introduced, including the 20@.Qmplementa-
tion’s all-electron calculation scheme as special case.
Then, with the necessary matrix algebra framework estadalisspin-aver-
aged and spin—orbit PP integrals have been implementeddyaaing the
PP integral subroutiné$32 of the ARGOS integral prografi—=° as dis-
cussed in ch. 6.

B The third step, addressing the 2-component PPs in the HF @@feWwork,

was to
O implement complex-valued hermitian eigenvalue equatidvirsg and
spin symmetry-broken density matrix assembly;
O implement spin component exchange coupling according .t8-4@;
and
0 organize SCF eigenvector processing to impose and matita@re-
versal-invariance according to eq. 3-31 over the iteragiveition of
eq. 3-28.
Improvements of SCF convergence and initial guessingtheeimplemen-
tation of a 2-component “Optimal Damping Algorithd?>’ and “Mole-
cule-from-Atoms” density matrice® are also discussed in ch. 7.
4-index integral transformation to the Fockian eigenbasito a greater or lesser
extent, independent from the HF SCF framework and is preddantch. 8.

Generally, the presentations given in the upcoming chafie6, 7, and 8 — and,
consequently, also the following discussion of parts of26@6 QOL implemen-
tation in sec. 4.3 — have been given a strong technical fad,have been set
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up close to the source code. This necessarily goes at thesxué the reader
who is not interested in implementation details. Howevarcmof the value of
the accessibility of the source code comes from its docuatient From this and
the point of view of sec. 4.1, ch.s 5-8 have been written Withgarticular aim
of providing a documentation of the design, implementatand, to some extent,
the source code, i.e. with the hope to be able to assist fdewelopment.

4.3 Quantum Obijects Library: Status Quo End 2006

The following discussion of a smaller number of selected mexland class struc-
tures of the 2006 QOL implementation cannot aim at a selfainad documenta-
tion and is far from comprehensive. Instead, it presente clasign features that
guided and — for compatibility reasons — restricted desighienplementation of
new modules and class structures. Particularly the intibaiu of complex-valued
matrix classes and the interface of the ARGOS PP integrabstibes discussed
in ch.s 5 and 6, respectively, are closely interrelated &sehparts of the 2006
QOL implementation.

Consequently, sec.s 4.3.1, 4.3.2, and 4.3.3 are set up —eamt o be limited
— to provide a preparatory technical discussion for the opieg ch.s 5, 6, and, to
some extent, 7.

4.3.1 QOL Matrix and Matrix Representation Classes

Generally, QOL matrix class design and implementation aratterized by the
strict separation from matrix entry-storing “containemi@ator”, and upper level
matrix "algebra” classes:

Every matrix object makes reference to an associated “cmravaluator”
object that defines memory allocation, layout, and accessaveontainer class
holding the matrix entries, and an index operator for stmgt random access
mimicking the possibly non-trivial matrix structufeThe matrix “algebra”, i.e.

In principle, a container—evaluator class does not needidoate any memory at all. Matrix
elements could as well be re-computed at access by congéleéiindex operator to, e.g., integral-
processing subroutines. The particular HF SCF setting, dmsgever, employ container—evaluator
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the set of permitted operations relating matrices to otaetsother quantities, is
common to all matrix objects independent of their internalcure, and imple-
mented as a set of matrix class methods and operators. Ths\gay to the easy

QOL: :MatrixVector | QOL: :LinearAlgebra |

| std::vector<double> l(--tj-ln(-j-:-fal-?-l----?-99-111!!:!'-6-?---{ FullSpacelntegration |

bind: <ScalarProduct —
FullSpaceIntegration>

[o%
|

| SymmetricMatrix_MemEvaluator | | LinearSpace |<—| UnitarySpace |<:}
4 SymmetricMatrix |<[:]——| SymmetricMatrixRepresentation |

Fig. 4.1: UML class diagrams for parts of thg0L: :MatrixVector andQOL: :LinearAlgebra
namespaces. All template parameters and most implied &enptgument bindings have
been ommited for clarity. For example, thgmmetricMatrix_MemEvaluator attribute
of Matrix implies binding of theEvaluator template argument fymmetricMatrix
to SymmetricMatrix_MemEvaluator.

and logical implementation of different types of matricgsibheritance from,
and by letting the container—evaluator class be a temptgtaraent of, the basic
Matrix class.

Fig. 4.1 illustrates the interdependence of the contagwetuator and matrix al-
gebra classes for the particugymmetricMatrix class case:

SymmetricMatrix is a three-parameter template class derived Mamrix.
Matrix symmetry enters through the second, typic8ijyametricMatrix_Mem-
Evaluator-valued template argument, that storeséhenJr 1) symmetry-unique
matrix entries, i.e. the upper or lower triangular pariMbfe R”*", as defined by
the MatrixPackageOrder template argument. PreciseBymmetricMatrix_-
MemEvaluator has astd: : vector attribute that holds the matrix entries sequen-
tially for efficient one-index random accesss. Both the fold-indexed structure
and the generation of symmetry-redundant from symmetigrignentries is pro-
vided by the two-index) operator

classes that hold all (symmetry-unique) matrix entries @mmary, such that the term “container—
evaluator” can be understood synonymeously with “containe
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1 const value_type & operator () (int p, int q) comnst {
2 if ( matrixPackageOrder == LowerDiagonal ) {

3 if( p<q)

4 std: :swap(p, q);

5 return _v[px(p+1)/2 + ql );

6 Y/

which is therefore necessarily an attribute of $f@metricMatrix_MemEvalua-
tor class.

Algebraic operations that define sums, products, etc. oficeat including
(but not restricted to) symmetric matrices, are definedrimseof methods and op-
erators of thélatrix base class, and can be accessed by,3fimetricMatrix
through the inheritance relationship.

Most matricesM in the HF SCF setting are actually referred to as matrix repre
sentationdO of operators@ in finite-dimensional subspac@sspanned by CGTO
basis functiond¢,) € B = (|¢p))g= - The connection oD and O is estab-
lished by

0 Z |¢p ¢p|0¢q ¢q| - Z q|¢p ¢q| (4'1)

l9,).10,) € B
which makes reference to a scalar or inner prodist B — R, (|¢,),[¢,)) —
(¢p|¢q) for the defmltlon of the matrix representation’s matrixrents(0) ,, =
= ($,104,)

ThIS abstract structure is mimicked through the design@fQL matrix rep-
resentation modules as illustrated in fig. 4.1 for the paldicSymmetricMatrix-
Representationcase: The top-levelymmetricMatrixRepresentationclass
is a two-parameter template class of a fiisi tarySpace, and a particular matrix
class second template argument, which is s8ftmetricMatrix by default. In
fact,SymmetricMatrixRepresentationis such é8ymmetricMatrix by inher-

d Note that the inner product in eq. 4-1 can generally not beicesd to the domaiiB x B and,
therefore, cannot be considered as a proper§.dfhis is because in eq. 4-1 the functlm¢q)
is not necessarily iB; the prOject|0n|¢p)(¢p|0¢q) is, of course, but requires the definition of
the inner product of¢,) € B and|0¢,) € B’ C B, i.e. on some “larger” spad®’ that contains
B as a proper subspace.
Whereas this point might be referred to as formal, it acyuiallof particular importance for the
generalization of eq. 4-1 to include spin—orbit pseudapitsiboperators as discussed in 5.2.1.
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itance, thus inheriting all matrix algebra operations sawith general (symmet-
ric) matrices that do not necessarily represent operdiatistarySpace provides
the inner product information and, thus, defines $hametricMatrix classes’
value_type template argument, i.e. the matrix entries’ data typejmisary-
Space: :_ScalarProduct::_Field.®

Eq. 4-1 provides a natural connection of the constructiomatirix representation
objects and the evaluation of operator matrix elementsintegrals, through the
CGTO-spanned unitary subspde= spanB. Consequently, QOL integrals are
evaluated not before the construction of, eSymmetricMatrixRepresenta-
tion from abstracContainerRepresentation oObjects that carry the relevant
function space and operator information, as briefly disedisss the next section.

4.3.2 QOL lteration, Integration, and Integral Communication

The link between the QOL matrix algebra and matrix repredem modules on
the one side, and the integral-evaluating modules on ther gidle is effectively
provided by theStandardMolecularHamiltonianRepresentation class:

Generally, top-level construction of matrix representatbjects involves re-
spectiveStandardMolecularHamiltonianRepresentation methods as, e.g.,
overlap(), and handing th@ontainerRepresentation return type objects to
the SymmetricMatrixRepresentation constructor: For example,

€In a non- or scalar-relativistic spin-free HF SCF settingemtors are represented in a subspace
B < L of the Hilbert space of square-integrable continBds— R functions oveiR, spanned by
n CGTOs|¢,). B inherits thell inner product

(8p):160) = @plég) = [ or 83000(6) < R.

ConsequentlylnitarySpace typically is of aCartesianGaussian_UnitarySpacel type, its
ScalarProduct template argument being setRallSpaceIntegration by default. Then, the
SymmetricMatrix template argumentalue_type is set to the same type as the CGTO's do-
main data type by theypedef typename Vector::_Field _Field type definition inFull-
SpaceIntegration, i.e. a single or double precision floating point represgéomeof R.

f Whereas there is no “operator” that corresponds to the @weniatrixS, i.e. the subspad#’s met-
ric in the B representatiorf§ is technically represented bysgmmetricMatrixRepresentation
object from the close connection to eq. 4-1 with= 1.
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typedef StandardMolecularHamiltonianRepresentation<
CGTOBasis> H;
H h( molecule, basis );

// OVERLAP MATRIX CONSTRUCTION USE CASE
SymmetricMatrixRepresentation<H: :USpacel>

1
2
3
4
5
6
7 overlapMatrix( h.overlap() );

ContainerRepresentationis derived from th&Container class. The&Con-
tainer’s four template parameters control, in an abstract way,

B the integral, i.e. the CGTO-spanned subspace’s inner ptataomain via
UnitarySpace::_ScalarProduct::_Field,

B this subspace, to be understood as “index” space of B s€CGTOs, from
which asetl ¢ B x B of CGTO pairs can be constructed to iterate dver;

W this iteration scheme over these CGTO pdis, ). [¢,)},, € 1,9 and a
rule to evaluate the corresponding matrix element integrg/, via the
Buffered_IteratorEvaluatoril-valued template argumenterator;
and

B memory allocation, layout, and access via Bvaluator template argu-
ment.

Stated briefly — and discussed in more technical detail belatis this massively
templated structure that allows the simple, intuitive Heagdof matrix represen-
tation class objects, showcased in lines 6—7 ofShmatrix use-case, through the
underlying QOL iterator—evaluator hierarchy. This iteratvaluator hierarchy is
defined byGContainer’s third template argumertterator — which has, in the
general 1-electron operator case, the v@uefered_IteratorEvaluatorl —,
and provides all information for the construction of mat@presentation objects
as, e.g.SymmetricMatrixRepresentation.

9 The set notationI' C B x B” is somewhat of an understatement from the complicatedriate
structure of the CGTO basis functions: As briefly discusseskic. 3.2.4, a given CGT(3,) is
defined byr,, /,,, {,, andm,,, and any iteration scheme over a set of pairs of CGTO is aw@-lo
over quantitiegry,, ,,, §,,my;r,, 1, {,, my). A particular loop nesting can be significantly more
efficient from the point of view of, e.g., integral evaluatiand pre-screenind?! Thus,/ should
more precisely be referred to as a sequence of 8-tupelsajeddrom a subset & x B, instead
of only an (unstructured) subset 8fx B.
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Coarse-Grain Overview of the QOL lterator—Evaluator Hierarchies

The two most central concepts of the 2006 QOL implementatiterator—evalu-
ator hierarchy are:

B atop-level black box class structure applying to all 1-etatand 2-electron
operator matrix elements, i.e. 2-index and 4-index integthat wraps pos-
sibly complicated integral-batched iteration schemes @vermitian) sym-
metry-unique integral index combinations in a common, $ikéinterface;
and

B arigorous separation of iteration and the objects iterated, i.e. of iterator
and container classes.

Both design elements relate directly to theffered_IteratorEvaluator
class. The generaluffered_IteratorEvaluatoris a two-parameter template
class oflterator andEvaluator arguments, both being dterator by inher-
itance, and havingterator- andEvaluator-type attributes.

The 1-electron operator case cl@&sfered_IteratorEvaluatorl is derived
by setting thelterator argument taCGBTree _HermitianTupel2_Iterator,
and by defining the nature of the integrdlg, = ¢p|0¢q) to be evaluated, i.e.
the 1-electron operatc@ referred to, by th&valuator argument.

The base clasBuffered_IteratorEvaluator provides attributes, meth-
ods, and operators necessary for an STL-like iteratorfater i.e.valid() and
reset () methods, and increment and de-reference operators. Integral eval-
uation byreadAhead() is directly coupled to the+ operator®

virtual int readAhead() = O;

1
2
3 Buffered_IteratorEvaluator & operator ++ () {
4 Iterator:: operator ++ ();
5 if ( ++_1i >= n ) {

6 i 0;

7 readAhead() ;

8

1
_n

}

M readAhead () is virtual to allow derived class-specific, i.e. a 1-electron operesse-specific
integral batching as implemented for theffered_Iterator-Evaluatorl class.
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QOL: :LinearAlgebra | ‘ QOL: :CartesianGaussianIntegration

| LinearSpace |<—| UnitarySpace |J:]~—| CartesianGaussian_UnitarySpacel

—I SymmetricMatrixRepresentation |

Y

| ContainerRepresentation I‘_ )

ly
StandardMolecularHamiltonian-

Representation

| Buffered_IteratorEvaluatorl |

v

| Buffered_IteratorEvaluator
]

bind: <Iterator —
CGBTree_HermitianTupel2_Iterator>

v

| CGBTree_HermitianTupel2_Iterator
T

Fig. 4.2: UML class diagrams for parts of ti@L: : LinearAlgebra andQOL: : CartesianGaus-
sianIntegration namespacesSymmetricMatrixRepresentation is constructed by
ContainerRepresentation that, through the inheritance relationship with the alastra
GContainer class, provides the necessary iteration schemes andahesgiuation rules
defined byBuffered_IteratorEvaluatori for the 1-electron operator case.

9 return *this;
10 }

Incrementing the gener@uffered_IteratorEvaluator increments the spe-
cial underlyingCGBTree_HermitianTupel2_Iterator that, thus, iterates over
all CGTO pairs in/. As the flat counter i runs out of the current batcbj is re-
set, andreadAhead() evaluates the nextn-sized batch, transformisand writes

I The QOL integral modules can handle (segmented and gerextationtracted CGTO, and CGTO
basis sets transformed to spherical-type sets via the ct@peGBTree_Contracted andCGB-
Tree_Contracted_AngularTransformed basis set classes. Integral evaluation is, however, im-
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the transformed integral batch to tBed: : vector<typename Evaluator::
value_typeCR> attribute _buffer of Buffered_IteratorEvaluator. Then,
de-referencingBuffered_IteratorEvaluator returns_buffer’s element at
position _i.

The particular implementations of theadAhead() methods are, from the
nested four-level structure of the CGTO basis set claG8BSree_Contracted
andCGBTree_Contracted_AngularTransformed, Somewhat complicated and
cannot be discussed in full detail. What is of importance iethatreadAhead ()
links QOL iteration and integration by calling tl{¢ operator of th&8uffered_-
IteratorEvaluator’s Evaluator-type attributé,as briefly discussed below.

1-Electron Integral Evaluation Interface

Generally, all QOL 1-electron operator matrix elementgnéds are evaluated in
terms of integrals over primitive CGTO basis functionsngdihe interface of the
OneBody_Evaluator class:

1 // typedef typename Operator::_T T;

2 template <class Operator>

3 inline
typename OneBody_Evaluator<Operator>::T

N

5 OneBody_Evaluator<Operator>::operator () (

6 const CartesianGaussianFunction<T> & bra,

7 const CartesianGaussianFunction<T> & ket ) const {
8

9 return _op(bra, ket);

10 }

TheOneBody_Evaluator’s single template argumedperator defines — inde-
pendently of the() operator — the nature of the integrals, = (¢,/0¢,) to be
evaluated, i.e. the 1-electron operatdreferred to. Moreover, it also defines any

plemented over primitive, non-normalized CGTOs only; gnéds over transformed CGTOs are
obtained by transforming the primitive integrals. Note, tthat only iteration is done batch-wise,
but integral evaluation is not!

I More precisely, this attribute is of @nst Evaluator & type, as the actudlvaluator object
is associated witBtandardMolecularHamiltonianRepresentation.
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particular integral evaluation schemes as implementeté@perator classes’
() operator called in line 9.

QOL overlap, kinetic energy, nuclear potential energy, aledtron—electron
repulsion 4-index integralS,,, 7,4, U,,, andg,,,, are typically evaluated using
the Obara—Saika recursion scheﬁ?ggze’as discussed by Helgaker, Jgrgensen,
and Olsent®!

Integral Communication and Matrix Representation Construction

Stated naively, construction of operator matrix repreg@n objects involves, at
first, computation of all (symmetry-unique) integrals aselcond, mapping these
integrals to the matrix elements in question. Both taskefiectively addressed
within the constructor of, e.gSymmetricMatrixRepresentation, from aCon-
tainerRepresentation object by

B converting theContainerRepresentation, i.e.GContainer object with
Buffered_IteratorEvaluatorl- andvoid-valuedIterator andEva-
luator template arguments, respectively, to an intermedi@tetainer
with HermitianRepresentationIterator- andMemEvaluator-valued
Iterator andEvaluator template arguments;
thereby running through the iterator—evaluator hierafutigfly introduced
above;

B mapping and writing of the integrals from the intermediégtentainer’s
toSymmetricMatrix_MemEvaluator's container attribute, employing this
intermediateGContainer’s HermitianRepresentationIterator.

The key point is in the difference of the constructor argun@&ontainer’s
and the intermediatéContainer’s template argumentsterator andEvalua-
tor: The former carries the complete iterator—evaluator strecin itsBuffer-
ed_IteratorEvaluatori template argument and attribute, but does not have a
container attribute allocating any physical memory, i.eoad-type Evaluator
only. Contrasting, the latter has a simpkermitianRepresentationIterator
iterator-only structure, but BemEvaluator-type Evaluator that does allocate
physical memory for thén(n + 1) integralsO,,, .
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Both GContainer-type objects are linked by their commonitarySpace-

type IndexSpace template argument. Stated explicitly,

1 template <class value_type, class IndexSpace,

2 class Iteratorl, class Evaluator>

3 template <class Iterator2>

4 inline

5 GContainer<value_type, IndexSpace, Iteratorl, Evaluator>::
6 GContainer(const GContainer<

7 value_type, IndexSpace, Iterator2, void> & gi)

8 S

9

{

10 for( Iterator2 I(gl.indexSpace(), gl.evaluator());
11 I.valid(O; ++I )

12 (*this) [I.operator Iteratori()] = gi[I];

13 }

As Iterator?2 is Buffered_IteratorEvaluatori-valued, the loop in lines
10-12 runs through the QOL iterator—-evaluator hierardigtetby evaluating the
integrals through the coupling @feadAhead () to the++ operator as discussed
above. If theEvaluator template argument igoid-valued, as it is for the con-
structor argumeng1, the [1 operator de-referencegd’s Buffered_Iterator-
Evaluator attribute and returns the integral correspondingsacurrent position.
In line 12, this integral is assigned to themEvaluator’s container attribute, ac-
cessed via thé&] operator, at the position defined by the type conversionatper
from Buffered_IteratorEvaluatorl’s base clas€GBTree_HermitianTu-
pel2_TIteratorto HermitianRepresentationIterator

Note that it is this conversion of the complicatédloop Buffered_Iter-
atorEvaluatorl iteration scheme to the simple iteration schemieafnitian-
RepresentationIteratorthat mapg0,,},, to the sequenced,,), >, read-
ily cast to, e.g., the lower triangular part of the matrix @oner class: Within the
constuctor oSymmetricMatrixRepresentation from ContainerRepresen-
tation, i.e.GContainer,X

1 // template <class CR>

K Note that, in the type definition in lines 3-8, the fourth téate argument is not stated explicitly,
and is thus set to its default valMemEvaluator<typename CR::UnitarySpace, Hermiti-
anRepresentationIterator<typename CR::UnitarySpace>>.
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/] ...
typedef GContainer<
typename CR::UnitarySpace::_Field,
typename CR::UnitarySpace,
HermitianRepresentationIterator<typename
CR::UnitarySpace>
> G2;

© 00N O~ WN

_Field * P = &(*this) (0,0);

11 G2 g2(gl);

12

13 int j = 0;

14 for( typemame G2::const_iterator I(g2); I.valid(); ++I )
15 P[j++] = g2[I];

iy
o

In line 10,P is set to the address of the first elemens8phmetricMatrix_Mem-
Evaluator’s container; the loop in lines 14-15 runs within thermitianRe-
presentationIterator’s (“horizontal’-lower triangular) iteration scheme.

4.3.3 The QOL Self-Consistent Field Algorithm

The 2006 QOL implementation’s self-consistent field altijoni is a closed-shell,
integral-conventional, null-guess, straightforward lempentation as discussed by,
e.g., Szabo and Ostluk? or Almlof. 195

Stated briefly, parsing molecular structure and CGTO basim&rmation by
constructing the respectivélecule andStandardMolecularHamiltonian-
Representation class objects is followed by

B construction ofS, T, andU matrices;
B evaluation of all symmetry-unique electron—electron feipn 4-index in-
tegralsg,,,s € $», and storage;

B setting the initial guess density mati to null;
then, forép > 0 a density threshold, in the-th SCF iteration

1: assembl&G* = G (D*) from D* via eq. 3-45,

I The discussion of the construction of matrix representatlass objects frorflontainerRepre-
sentation given in sec. 4.3.2 does not apply directly to the= J + K matrix: It is clearly more
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2. assemble th@-th Fock matrixk* = F(D#) = h + G*;

3: orthogonalizeF'#, diagonalize, and back-transform to obtain th¢h
MO eigenvector matrixC#;

4: assemble a new density matX. ¥ = 23" | 24 from the
u-th vector representations of thé doubly “occupied”, i.e. theV
lowest-energy MOs;

5: terminate if|[D# 1 —D#|, < §p; else go to 1.

B computation of the Hartree—Fock SCF enetgy-{(D* ™) via Eqcf =
1
2 qu D%rl(zhpq + Jpq = Kpg)

efficient to iterate over thé (n*) uniqueg, 45 € 4., because every,, . contributes to a large
part of G matrix elementss,, = >, D, (28,45 — Eprsq)» I-€. 10 choOSE an “integral-driven”
assembly ofG.

The 2006 QOL implementation provides a global functiagfsembleRHFMatrix_2BodyPart?2
that returns 8&ymmetricMatrixRepresentation from CartesianGaussian_UnitarySpace-

2, SymmetricMatrixRepresentation, andstd: :vector<double> arguments corresponding
toB ® B, D, and§,,, respectively. TechnicalljassembleRHFMatrix_2BodyPart2 employs
aCGBTree_HermitianTupeld_Iterator class to run over all input,,,s € $,; every given
uniqueg, ., is then added to all andK matrix elements it contributes to (cf. sec. 7.1).
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The 2-component Roothaan—Hall- SCF matrix equations gésziiin sec. 3.2, i.e.
FC = SCe,

differ from their spin-free analog of eq. 3-44 in two mainmsi First, because
of the non-vanishing spin—orbit pseudopotential integhgl, the Fock matrixF
and, thus, its eigenvector matiare generally complex-valued. Secohdjoes

not decouple aB,, ® Fgg from spin symmetry breaking, and one has to consider
the full C2"**2" problem?

From their abstract and general structure of inheritanesahthies of template
classes the QOL matrix and matrix representation algebidutes are, in princi-
ple, well suited for the generalization to the spin symmétgken 2-component
framework. However, due to the simpler problem setting ef $pin-free eq. 3-
44, the 2006 QOL implementation certainly did not explog fall flexibility it
could have from its general structure. Therefore, outsile casses that had to
be added, a number of changes had to be made to the existing arat matrix
representation algebra modules to fully integrate the rmwponents.

The presentation in this chapter follows both the generéibbwup strategy

aThis is true only if one restricts the decoupling transfatiorato be complex-valued. For time
reversal-invarianF, one can find quaternion-valued decoupling transformatamd solve time
reversal-related small&"™>" problems! However, this strategy has not been employed in this
work because of the difficulties arising from the need forcedfit H” <" equation solving.
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and the concepts of the 2006 QOL implementation discusssekcim.2.2: Matrix
algebra, matrix representation algebra, and equatioringphas been kept sepa-
rate and is discussed in this order. Time reversal-invaeamas introduced on the
lowest possible, i.e. the matrix container class level atratt block symmetry,
providing ready-made interfaces for quaternion algebrdutes. Complexifica-
tion was introduced by abstract inner products connectimgpdex-valued matrix
with top-level matrix representation classes through dlyrcomplex codomains.

5.1 Matrix Container and Algebra Classes

The two additional class hierarchies for complex-valuedrixalgebra, provid-
ing base classéfermitianMatrix andHermitianCayleyMatrix for deriving
top-level hermitian and hermitian time reversal-invariamatrix representation
classes, respectively, follow the concepts as alreadyislisd for th€ymmetric-
Matrix class in sec. 4.3.1. The following discussion will, therefdoe limited to
the most important ideas and implementation details only.

5.1.1 Hermitian and Time Reversal-Like Block Symmetry

Within the HermitianMatrix class hierarchy analog to fig. 4.1, the container—
evaluator clas#ermitianMatrix_MemEvaluator differs from SymmetricMa-
trix_MemEvaluator in thevalue_type template argument, which is assumed
to be of astd: : complex type. Moreover, symmetry-redundant matrix elements
M,, ¢ R are gengrated from symmetry.-unique ones differently: iGlestoring
only symmetry-unique matrix elements implies read access v

1 value_type operator () (int p, int q) comnst {

2 if ( matrixPackageOrder == LowerDiagonal ) {

3 if(p<qg) {

4 std: :swap(p,q); return conj( _v[px(p+1)/2 + q] );

5 }
6
7

else return _v[p*(p+1)/2 + ql;
/.

i.e. returningM j, # M,,, fori < j. Thisis, however, payed for by the two-index
() operator returning copies, and by the need for a separate aaotess method
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void setValue(int p, int g, comst value_type & V).
Implementation of thélermitianMatrix class involves only a small num-
ber of methods to overload inheritédtrix functions, e.gnorm2() returning

IM|l, = /3, IMp, % inplace of /3, MZ,.

bind: <ScalarProduct_Codomain —
complex<double>>

QOL: :MatrixVector | ! [QOL: :LinearAlgebra | :

| std::vector<complex<double>> |< | FullSpacelntegration |

bind: <ScalarProduct —

FullSpaceIntegration> ‘
HermitianCayleyMatrix -
MemEvaluator | LinearSpace |<—| UnitarySpace |<:}
| Matrix |<-| HermitianCayleyMatrix HermitianTimeReversal- .
InvariantMatrixRepresentation
| | HermitianQuaternionMatrix-
Representation

Fig. 5.1: UML class diagrams for the neleérmitianCayleyMatrix andHermitianTimeRever-
salInvariantMatrixRepresentation classes: All template parameters and most im-
plied template argument bindings have been ommited foitglar

As time reversal symmetry cannot be meaningfully refercedrt an abstract, i.e.
matrix algebra-only level without referring to the conceptmatrix representa-
tions of time reversal-invariant operators, the specialcstire of eq.s 3-34 has
been introduced through the concept of “Cayley matricesC% 2" matrix M
of the special “time reversal-like” symmetry type

M M M M
M = oo aﬂ) — ( oo aﬂ) 5-1
(Mﬂa Mg -Mgp Mg, &1

for Mo, Mg € C™*" is referred to as “Cayley matrix” or “being of Cayley
symmetry”® For hermitian Cayley matrice®l, hermiticity introduces additional

b«Cayley matrix” is a reference to the British mathematickathur Cayley, 1821-1895, and his
name’s connection to the Cayley-Dickson constructfrt?®of a sequence of algebras, ; =
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structure by restricting1,, andM to be hermitian and antisymmetric, respec-
tively:

Mpqyy = Mq*pw’
fory.y".y" ela. B}y #v".
TheHermitianCayleyMatrix class hierarchy is similar to th&ermitian-

Matrix case. From the richer internal structure given by eq.s S®geker, stor-
age of only the%n(n +1)+ %n(n — 1) = n? symmetry-unique matrix elements,
and access-related index operations, are more involved.cdhtainer—evaluator
classHermitianCayleyMatrix_MemEvaluator stores either theM,, upper
andM,z lower triangular part, or thd,, lower andM g, upper triangular part,
respectively, excluding the # y’ block’s vanishing diagonal, as controlled by
its template parametélermitianCayleyMatrixPackageOrder and illustrated
in fig. 5.2 Again, read and write access requires to returriesofpom the two-

M =-—-M,,,, =—M

sk
paqy'y” = pqy"y qapy'y” (5-2)

Myq Maﬁ - ]
-M*, M?

af ao

O e O T e O PO e

o,

Fig. 5.2: Layout of theHermitianCayleyMatrix_MemEvaluator's STL vector-type container
class: Onlyn? of 4n2 matrix elements are stored in a horizontal-“dictionangft or
horizontal-“sequential” (right) fashion; the latter is recconvenient for implementation
purposes as thel ,, block is given by the firs%n (n+ 1) consecutive container elements.

index () operator, symmetry-redundant matrix elements being géserfrom
symmetry-unige ones by eq.s 5-2, and a sepateid setValue(int p, int
q, const value_type & v) method, respectively.

The implementation diermitianCayleyMatrix has been done closely ana-
log toHermitianMatrix.

A; ® A;. TheA; . algebra’s elements have ag-valued2 x 2 matrix-like array representation
of the special structure given by eq. 5-1. In fad,of eq. 5-1 is a representation of a quaternion-
valuedn x n matrix!?8 as discussed in sec. 5.1.2.
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5.1.2 Quaternion Matrix Matrix Representations

TheC?2"*2" matrices of eq. 5-1 can be interpreted as complex-valuedxmap-
resentations of quaternion-valuedx n matrices that, through their block sym-
metry, mimick non-commutative quaternion multiplicatit?! Whereas there is,
in principle, no need to refer to this abstract algebraicneation from the point
of theory, its usé'! has been shown to simplify computations in the Kramers re-
stricted HF and DHF SCF’ and MCSCE?® frameworks. This connection will
be briefly reviewed to address tHermitianQuaternionMatrixRepresenta-
tion auxiliary class implementation.

Any quaterniofi square matriXY¥ can be identified with a pair of complex-
valued matriced,B € C™*" ¢ H"*" asY = A + Bj. This is a linear bijective
mapt1!

N: CXn 5 CnXn _, Jn<n
(A.B)>Y =A +Bj=ReA +ilmA +jReB +i-jmB.
= A +Bj=ReA +ilmA +jReB + kimB  (5-3)

Thus, for quaternion square matricés= A + Bj andZ = C + Dj, noting
Aj = JA%,
YZ = (A + Bj)(C + Dj) = (AC —BD*) + (AD + BC")j, (5-4)
Y*=A*—-|B* = A* —Bj. (5-5)
It is easily established from eq.s 5-4 and 5-5 that the lNjechap

M: H" - A, C C2"2" A 4+ Bj+—> (_‘;* f*) 5 A, (5-6)

¢ Stated very briefly, the quaterniofilsare number®) = a +ib +jc +kd witha, b,c,d € R and

unit products
i2=j2=k*>=ik=-1 = ij=kandcyclic

respecting the order of factors, and with quaternion catjog and norm-square defined by
Q* :=a—ib—jc—kd and|Q|> := Q0* = 0*Q = a? + b? + % + d?, respectively.
H is a non-commutative normed division algebra, &dc C C R. The importance of quater-
nions comes from the possibility to provide a unified calsuior classical, special- and general-
relativistic, and quantum theories through Clifford algesb(which can be constructed as tensor
products of quaternion algebra's®
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is an isomorphism of the quaternion matrix algeBf&*” and the sub-algebra

A, of complex-valued non-singul&n x 2n matrices of the special type defined
by eq. 5-6, with quaternion multiplication and conjugatr@presented by matrix

multiplication and taking the hermitian adjoint, respeely.'1!

With M~! defined by inverting eq. 5-6, matrix representations of likm
time reversal-invariant operators can be interpreted msitian quaternion-valued
matrices, and algebraic manipulation can be carried oHt"itY* — which is pos-
sibly favorable for steep scaling algorithms —, followingypping toC2"*2" via
M 111

Every complex-valued matrix representatisf(Y) of a quaternion matriy is,
from eq. 5-6, a Cayley matrix by eq. 5-1. However, the coreessnot true;
from eq. 5-1 there is no need to refer to the algebra isomempbi(, and eq.
5-1 does not restrict a non-zero Cayley MatMk to be non-singular. This rela-
tionship is easily implemented as inheritance, i.e. byvilegi the auxiliary class
HermitianQuaternionMatrixRepresentation from its base clasBermiti-
anCayleyMatrix (and contracting the somewhat clumsy expression “quaterni
matrix matrix representation” to “quaternion matrix reggatation”).

Within this structure one can easily connect complex- aratemion matrix
algebra in a transparent and meaningful way. For exampegdhstructor

1 template <MatrixPackageOrder mP0O, class Evaluator>
2 HermitianQuaternionMatrixRepresentation(

3 const HermitianMatrix<
4 QOL: :ElementaryMath: : Quaternion<typename
5 value_type: :value_type>, mP0, Evaluator> & );

constructs @lermitianQuaternionMatrixRepresentation-type object from
aQOL: :ElementaryMath: : Quaternion-valuedHermitianMatrix object via
M, and plays an important role in the QOL PP integral commuiaicaliscussed
in ch. 6.

5.2 Matrix Representation Classes

A straightforward implementation of matrix representatadass hierarchies ana-
log to SymmetricMatrixRepresentation discussed in sec. 4.3.1 is spoiled by
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the 2006 QOL implementation’s connection of the matrix espntation elements’
codomain —which is restricted ®— to the CGTO basis functions these are evalu-
ated from. This link is, as discussed in sec. 4.3.1, provigetheUnitarySpace
andScalarProduct classes, which thus had to be modified to enable implemen-
tation of HermitianMatrixRepresentation andHermitianTimeReversal-
InvariantMatrixRepresentation class hierarchies coherent with the 2006
QOL implementation.

5.2.1 QOL Unitary Spaces and Scalar Products

The 2006 QOL implementation of the matrix representatiordnes discussed
in sec. 4.3.1 cannot handle spin—orbit (pseudopotentjaior matrix elements.
This is because of the complex-valued representation o$pire-orbit PP oper-
ators B of eq. 2-48 in the CGTO basis: ForR® — R CGTO |¢) € B and
v.v" € {a, B}, generally(ry|B¢y’) ¢ R, such that(y|B¢y’) ¢ B. In other
words, whereas the integral exis(ggpﬂéqsqy/) is not aB x B scalar product,
thus clearly not property of onli.

Technically, this is intimately connected to the definitmfrthe matrix repre-
sentation classesalue_type template parameter @aitarySpace: : Scalar-
Product::_Field,i.e.

1 template <class Vector>

2 class ScalarProduct {
3 public: typedef typename Vector::_Field _Field;

which defines matrix representation elements to lie i & B scalar product
codomain, and identifies this scalar product codomain viieh@GGTOs’ domain
of defintionVector: : _Field.

To overcome this limitation, but maintaining the 2006 QOlplamentation’s
global structure for compatibility reasons, the CGTO-smhspacd was “ex-
tended” to include(y|vf/¢y/). This “extension” ofB is its complexification.

Formal Concept: Finite-Dimensional Function Space Complification

LetB = spar(|¢p))1’§=l be theR-function space spanned byR3 — R CGTOs
l$,). Its complexificationB’ is the tensor product of — seen as 2-dimensional
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R-space — witB,1%%i.e. the function space

B :=C®B=span((1® |¢,))p—1 U QIp,))p=1)- (5-7)

Then, any|¢) € B’ has a unique decomposition in terms of the basis functions of
B/,
$) =D ap(1®1d,) + D by ®Idp)) =Y v, ®18,), (5-8)
p D )4

with a,, bp eR andyp =a,+ ibp, from the linearity of the tensor product. One
can, then, define multiplication of complex numbenwith functions in|¢) € B’
by
(z.19)) Z(z V) ®lp) =) (@ yp)lgp) =zl¢)  (5-9)
p

such thatB’ = C ® B becomes am-dimensionalC-function space with basis
functions|¢,) := 1 ® |$,), i.e. the space of complex-valued linear combinations
of R3 — R CGTOs. The structure @ is retained a® is a proper “real-valued”
subspace dB’.

From

¢q|¢ Zyp ¢q|¢p Yq eC (5'10)

since(dyl¢,) = (1 ® ¢4]1 ® ¢p) = 84, B’ can be considered to havaBax B’
scalar product implied by its “real-valued” subspadg’s B scalar product, e.qg.
integration oveiR3, but with a complex-valued codomain.

Separation ofVector: : _Field and The Scalar Product's Codomain

As given through eq. 5-10, complexification of the CGTO-gmahfunction space
B within the 2006 QOL implementation’s framework has beerieadd by sep-
arating the CGTO’s domain of definition from the CGTO-spahspace’s scalar
product codomain, and assigning#d: : complex type to the latter.

To maintain compatibility with the existing matrix represation and 1-com-
ponent HF SCF modules, tl@artesianGaussian_UnitarySpacel template
class was given a second template parangietarProduct_Codomain:
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/¥ === STATUS QUO END 2006 QOL IMPLEMENTATION

template <class CGTOBasis>

CartesianGaussian_UnitarySpacel :

public UnitarySpace<LinearSpace<CGTOBasis>,
FullSpaceIntegration<typename CGTOBasis::_T>>

© 00 ~NOO O WNPRE
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template <class CGTOBasis,
class ScalarProduct_Codomain = typename CGTOBasis::_T>
CartesianGaussian_UnitarySpacel :
public UnitarySpace<LinearSpace<CGTOBasis>,
FullSpaceIntegration<ScalarProduct_Codomain>>
{

Whereas this decouples the CGTO bagfs,)),, and the CGTO-spanned space’s
scalar product codomain completely, the 2006 QOL impleatéri remains un-
touched through the default value of the second templatenpeter to the CGTO
domain of definition, effectively recovering the speciadeafaB xB — R C C
scalar product.

[ R e
a b~ wWwN P

Unitary “Representation” and “Index” Space Decoupling

As discussed in sec.s 4.3.1 and 4.3.2, construction of xr&presentation class
objects from theStandardMolecularHamiltonianRepresentation classes’
ContainerRepresentation attributes is linked to QOL iteration, integration,
and integral communication through the CGTO-spanned iomsipace: The cor-
respondinartesianGaussian_UnitarySpacel class is both a template argu-
ment of the matrix representation class and an attribugz @fidardMolecular-
HamiltonianRepresentation, being communicated BContainer as its tem-
plate argumenIindexSpace. Therefore, construction ¢fermitianTimeRever-
sallnvariantMatrixRepresentation object should involve communication

d1n an analog way, thecalarProduct class was changed from a 1-parameter template to become
a 2-parameter template class, the second template pardme@ig aclass ScalarProduct_-
Codomain set to the defaultypename Vector::_Field.
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of aCartesianGaussian_UnitarySpacel object with aScalarProduct_Co-
domain type definition corresponding to the complex-valued regime

However, the spin-independent operat(ﬁs U, and the spin-free pseudo-
potential operatoréf, have real-valued matrix representatiddsthat, moreover,
decouple a® = Oy, ® Opg, with the identityOgg = Ogyy = Oy € R™”
from time reversal symmetf. These block matrices are the same as in a spin-
free 1-component HF SCF calculation scheme. Therefors,ribt necessary to
adapt the 2006 QOL implementation’s iterator—evaluatacstire to the complex-
valued regime. In fact, itis possible to make use of the déistadal structure for the
construction ofl', U, andA by choosing the “real-valued” subspaBec B’ for
these block matrices; only the spin—orbit pArbf W needs the fulB’ for its rep-
resentation. Effectively this means to decouple the unitapresentation” space
referred to for operator matrix representation, i.e. gaihe’, from the unitary
“index” space the iterator—evaluator structure uses tatton, integration, and
integral communicatioh.

The top-levelStandardMolecularHamiltonianRepresentation class was,
thus, replaced by the essentially analog 1-component arairponent HF SCF
calculation scheme classes

[* —===== 1-COMPONENT HF SCF CALCULATION SCHEME ------—- */
template <class CGTOBasis>
class
StandardMolecularHamiltonianOrbitalRepresentation_Container
{
public:
typedef CartesianGaussian_UnitarySpacel<CGTOBasis>
USpace;
typedef CartesianGaussian_UnitarySpacel<CGTOBasis>
UlSpacel;

© 00O ~NOO O WNPRE
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€ This is also true fot/. The exchange operataﬁ" is, however, not spin-independent as it involves
permutations of both spatial and spin electron coordinates

f As discussed in ch. 6, the ARGOS PP integral routines confttelV, ., , andW,g integrals in
asingle call from the respective CGT(@s,) and|¢, ), permitting a single iteration ovére Bx B
for the construction of both PP matrix representation éddk,, and Weg.
Note that, formally, the “index” space does not need theripneduct information and should be
of the base class tyfgeinearSpace instead of the derivetinitarySpace.
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and

[* —=——== 2-COMPONENT HF SCF CALCULATION SCHEME ------- */
template <class CGTOBasis>
class
StandardMolecularHamiltonian2SpinorRepresentation_Container
{
public:
typedef CartesianGaussian_UnitarySpacel<CGTOBasis,
std: :complex<typename CGTOBasis::_T>> USpace;
typedef CartesianGaussian_UnitarySpacel<CGTOBasis>
UlSpacel;

© 00N O wWwN PR
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respectively. As opposed to the 2006 QOL implementatioth bave two dis-
tinct CartesianGaussian_UnitarySpacel type definitions and attributes. The
first, defined in lines 7-8, set the global CGTO-spanned &sgmtation” spacd’
communicated externally to matrix representation clagsotdto be constructed,;
the second, defined in lines 9-10, define a “index” sf&ice B’ communicated
internally to the iterator—evaluator structures.

This construction leaves large parts of the 2006 QOL imptdat®n, par-
ticularly the complicated iterator—evaluator structwessentially unchanged, and
provides very similar class interfaces for both 1-comporen 2-component HF
SCF calculation schemes. However, it necessarily reqtoresmmunicate a uni-
tary “representation” space object to the matrix repregant classes’ construc-
tors fromGContainer, because this is generally different from t@ntainer’s
unitary “index” spacé.

5.2.2 Symmetric, Hermitian, and
Hermitian Time Reversal-Invariant Matrix Representation s

Both theHermitianMatrixRepresentation andHermitianTimeReversal-
InvariantMatrixRepresentation class hierarchies have been designed ana-

9 This is the single substantial change to the 2006 QOL impiegati®n’s class structure interface.
In principle, one did not need to hand over a unitary “repnéséon” space object to theym-
metricMatrixRepresentation constructor fromGContainer, because it coincides with the
latter’s unitary “index” space. However, tl8gmmetricMatrixRepresentation constructors
have been modified accordingly to provide a larger measusaofarity among the 1-component
and 2-component scheme interfaces.
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log to theSymmetricMatrixRepresentation class hierarchy established with
the 2006 QOL implementation, i.e. have been built oriidenitianMatrix and
HermitianCayleyMatrix class hierarchies, respectively. Fig. 5.1 illustrates the
class structure for thBermitianTimeReversalInvariantMatrixRepresen-
tation case
TheHermitianTimeReversallnvariantMatrixRepresentation hierar-
chy differs from this general structure in its auxiliary g clas$lermitianQua-
ternionMatrixRepresentation. This construction allows both quaternion al-
gebra operations as, e.g., to address only the spin—omioh®,, andO,g by
accessing the imaginary parts of the corresponding quatematrix M~1(0),
by inheritance ofiermitianQuaternionMatrixRepresentationmethods and
operators, and construction froQ@L: :ElemenaryMath: : Quaternion-valued
HermitianMatrix objects as discussed in sec. 5.1.2.

Both theHermitianMatrixRepresentation andHermitianTimeReversal-
InvariantMatrixRepresentation classes have a constructor framitary-
Space andGContainer analog to that oBymmetricMatrixRepresentation.
The latter has, however, been changed from the need to decanipary “repre-
sentation” and “index” spaces, i.e.

/¥ === STATUS QUO END 2006 QOL IMPLEMENTATION

=

template <class Iterator, class Evaluator>
SymmetricMatrixRepresentation(
const GContainer<
typename UnitarySpace::_ScalarProduct::_Field,
UnitarySpace, Iterator, Evaluator> & );

© 00 ~NO O~ wWwN
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template <class GC>
SymmetricMatrixRepresentation( const UnitarySpace &,
const GC & );

R
N -

as discussed in the preceding section.

It is through this construction that it is possible to make akthe unchanged
2006 QOL implementation’s iterator—evaluator structweconstruct theS, T,
and U matrices — provided a horizontal-“sequential” layout o thnderlying
HermitianCayleyMatrix_MemEvaluator’s container, as illustrated in fig.s 5.2
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and 5.3, is chosen. Then, the QOL iterator—evaluator sireictomputes ord =
%n(n + 1) matrix representation elemer{t§,,, } ,,; by HermitianRepresenta-
tionIterator, (O,,), > IS then mapped directly to the fir%tn(n + 1) Hermi-
tianCayleyMatrix_MemEvaluator’s container elements, which are associated
with the non-vanishingO,, block, thus leaving the elements associated with

O, = 0, unchanged.

HermitianRepresentationIterator
_:-:_:D -:-I
o I I W e L L
O H O

|

Ocux 2] Oaa ~

[T

[HHh |
CHHHA I ITTIIIIITIT]

Buffered_IteratorEvaluatoril

Fig. 5.3: Construction of spin-free operator matrix representatiaithin a 2-component scheme:

The %n(n + 1) integrals(0p,), >4 Map to the lower triangular part of the symmetric

n x n blocksO,,, through thelermitianRepresentationIterator’s lower triangular
“horizontal” iteration scheme.

5.3 Output Formatting and Visualization

Output, i.e<< operators foHermitianMatrix andHermitianCayleyMatrix

— and, by type downcast, for the matrix representation etasd sec. 5.2.2 —
have been implemented analog to thatSgfumetricMatrix. Thus, both use
theQOL: :I0: :AlignedArray class that converts matrix elements to (character)
strings and, depending on itd ignMode attribute, hands a set of left-, center-,
right-, or decimal point-justified matrix element strings& ostream reference
via theAlignedArray's << operator.

h Within a 1-component HF SCF calculation scheme only, this alao true for the spin-free PP
operator matrix representatian Including this as a special case of the more general 2-coergo
HF SCF calculation scheme, however, requires an altogelifferent implementation. Stated
briefly — and discussed in more detail in sec. 6.3.3 —, cocistmu of the W matrix involves a
constructor specialization that, first, constructs a quate-valued hermitian matrix frorwpqaa
and W, 8 via theC x C — H map<V, eq. 5-3, and, second, maps this to the complex-valued

pqa . X
2n x 2n matrix W via ML,
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For thestd: : complex-valuedHermitianMatrix andHermitianCayley-
Matrix classes a speciallignMode enumeration typBecimalPoint_Suited-
4Complex was implementeddecimalPoint_Suited4Complex effects decimal
point-justification for real and imaginary parts, and a caocal complex number
notation, i.e.

[ -1.98 + 7.83 i 6.29 + 2.78 1 7.17 -95.2 i
-80.4 + 0.1631i -2.18 +13. i -0.524+61.3 1
-7.7 +2.931 9.19 - 0.2831 -6.63 +562.6 i ]

This format is GNU Octave-compatible and can thus convelyidie processed
also outside the QOL.

Within theQOL: : I0 namespace, a global 1-parameter template function

1 template <class T>
2 void Matrix2Fig( const Matrix<T> &, ofstream & );

has been implemented to enable simple visualization, ecgdsy inspection of
matrix structure or symmetry, as showcased in fig. 5.4. Gdlgegraphical data

DELROE 10 N0 JLLLELLY I DHLLLLL )

Fig. 5.4: Matrix visualization: 2-component HF SCF density matrif@skn, atdg,_r, = 7au.,
small-core MC-DHF PP with aug-cc-pVTZ basig) §; = 1-10~° au. energy threshold,
without (W = A, left) and with spin—orbit partWv = A + B, left).

is written in XFig's “Fig Format” as set 0256 gray-scale colors and, favl €
C™m ann x m array of gray-scale-colored square boxes. A given boxes/-gr
scale color is defined by partitioning the interval

(0, max,,{log|M,,,|}] (5-11)

68



Output Formatting and Visualization

in 256 sub-intervald; of equal length, and assigning theh gray-scale color to
the M, box iflog|M,,| € [;, with [, being white. Whereas this visualization is
somewhat of an oversimplification from droppidd,, phase (and thus sign) in-
formation, it proved to be sufficient for the purpose of thisrkvand is, moreover,
readily generalized using the same interface.

I More precisely, to prevent a large fraction of the gray-scallors being assigned to almost-zero
My, boxgs, color assignment is defined by partitioning the daseerval[r, max,, {log | M, |}],
t > 0; typically,r = 1-1078,
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From the point of view of implementation, the spin-free aphsorbit partS/f
and B of the general 2-component semilocal atomic pseudopatenti

L—1 L—1
W= Wpy+ > > Allm)(Imy| + > " BS-Lilm;)(Imy|  (6-1)

[=0 mj; [=0 mj

= A + B

require different program functionalities from their @ifent propertie8:In terms
of matrix representationsV € C2"*2", A decouples ad,, @ Agg. Moreover,
from time reversal-invariancd,, = Agg € R"*", such that spin-free PPs are
readily introduced in a spin-free 1-component HF SCF fraorkwContrasting,
B breaks spin symmetry and is complex-valued. In fact, all c&gses intro-
duced to, and all modifications of the 2006 QOL implementegionatrix and
matrix representation algebra modules discussed in theegireg chapter, have
been motivated solely by the consideration of non—vang;hﬁmperators.

However, both spin-free and spin—orbit PPs have been ingigd on a com-
mon, coherent footing, i.e. employing the same class sirecPP parameter def-

2The simpler expression of eq. 6-1 is equivalent to eq. 2-4fiee, in eq. 2-48, the projection
operatorzm/ |Im}){Im}| commutes withs - L and is idempotent® Consequently, it is eq. 6-1
that is departed from for the evaluation of PP integrals G@®TO basis functions1:32
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inition, parsing, and integration and integral communaatechniques:

The QOL PP modules have been implemented guided by the ¢é&pszado-
molecule” design principles briefly discussed in sec. 6.& PR classes have been
designed similarly to the QOL CGTO basis set classes andogmsphilar, Bison-
generated parsers to process XML PP parameter definitiéghimtéyrals over CG-
TOs are evaluated using the interfaced ARGOS PP integrabstibes of Pitzer
and Winter?1-32and communicated as quaternion-valued integrals.

6.1 General Design Principles

Central to the design of the QOL PP modules is, first, the gitdmprovide an
intuitive, logically consistent class structure in linghkvobject-oriented program-
ming paradigms and, second, to integrate the new PP comisomith a minimum
of changes to the interfaces of the already established Q@6implementation’s
modules.

The particular design — and, thus, the implementation — ef QL PP classes
has been guided by the formal analogy of the closed-sheéledtron and the
valence-only PP Fock operatgrand f, of eq. 3-11, respectively, i.e.

f=T+U0+J-K and f,=T+V+W+J,—K,

The closed shell all-electron Fock operayf)provides, for one electron, mean
fields of 2N — 1 electrons and the nuclear Coulomb potentid)sof all atomic
nuclei A. Contrasting, the valence-only pseudopotential Fockaipey‘:, sets up
such fields fo2N,, — 1 < 2N — 1 electrons only, and nuclear core-Coulomb and
pseudo-potential$’y and W, of all atomic nucleid. Clearly, this does not only
introduce a new, i.e. the PP paWt Instead, as compared pf) fv also implies

modification of global system properties as, e.g., the nurabelectrons and the
classical Born—Oppenheimer nuclear repulsion energy.

Theideaisto put eq. 3-11 at the beginning, and define a systgrmseudo-atoms”

A of nuclear chargeZ 4, — N4, each of which provides a valence—core pseudo-
potentialV, + W, for the system'@N, = —e + >_4(Z4 — N,) electrons, ife is

the total system charge.
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6: 2-Component Pseudopotentials

In other words, the atomic nucleus labgls understood to uniquely define a
parameter tuple

Pard := (Ng. A4(Ng)) = (Na. ACrjxa-n1jkas Brjkatijx) - (6-2)

with 4 4(0) := {0}, for every pseudo -atom. ParA defines thed-th valence—
core pseudo-potentidly = Upas = Veara + Wpara Such that

Voa = —(Zg — NIt — t4] "

2 2 A A . — B, AlP—1 42 . .
Wead = Wrj + chjkA|r — £ [tikagPrjkalf 4l Z \Ljm;)(Ljm;]
ljk m;

where an analog expansion of the local p&itj has been ommited for clarity.

A closed shell “pseudo-molecule” of such pseudo-atehtsms2 N, electrons
and a nuclear repulsion energgo({Z4 — N4}4) Without any need to change the
meaning of the respective attributes; only the “atom” cpheenployed is slightly
different. Moreover, the pseudo-molecule concept indute all-electron as spe-
cial case}", Ny = 0, recovering)_ 4 Upars = — Y. 4 Z4|t —14|~" directly from
A4(0) :={0}.

Guided by these general design principles, and as discuissbd next section,
everyQOL: :Molecule: : Atom is assigned a PP — which is, however, a null PP in
most case8. For the ease of notation, the pseudo-molecule concept Isdl tae

b An alternative design and implementation strategy is tdipeimolecular system of interest at the
beginning, and refer to eq. 3-11 as the definition of a medd-fipproximation to the solution of
a (non-relativistic or approximate relativistiz)V, -electron model Schrodinger equation. In place
of the established top-lev@ltandardMolecularHamiltonianRepresentation, a somewhat
analog ‘StandardMolecularModelHamiltonianRepresentation” class could then provide
anAtom-to-PP assignment and assemble Yhand W matrices similarly tdU.

This alternative strategy is closer to eq. 3-11 on a conegguel, i.e. regarding its formal place-
ment amongab initio electronic structure theories. However, this was at theeese of having

to moveMolecule methods aaElectrons () andnuclearPotential () to the model Hamil-
tonian class, and having to interreld&feand W matrix assembly, also for the all-electron case.
The pseudo-molecule concept, on the other side, allowsstdaeall changes of the 2006 QOL
implementation to a small number of class definitions — ntarfaces! — in th&0L: :Molecule
namespace, and to leave the implementation of intuitivetieustood concepts as, e.g., the number
of electrons, unchanged.
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employed on the level of presentation, i.e. the valencg-imlex of, e.g.f,, 2N,
etc. will be discarded, and both pseudo-molecules and satwithbe referred to
as “molecules” and “atoms”.

6.2 Pseudopotential Definition and Classes

In the implementation of discussed general design priasigiscussed in sec. 6.1,
the 2006 QOL implementation®0L: :Molecule: : Atom class has been given a
SemilocalAtomicPseudopotential attributé as presented in sec.s 6.2.2 and
6.2.3. As construction of a particul@emilocalAtomicPseudopotential ob-
jectis thus interrelated with the constructiom@bm andMolecule, the following
discussion is organized “sequentially”, i.e. followingtine of PP parameter def-
inition; Atom andMolecule construction and PP parameter parsing; and, finally,
non-null PP definition.

6.2.1 Input and Parameter Definition

From the intimate connection of molecular, i.e.pseudoenular, and PP param-
eter information established in sec. 6.1, the PP definitiona particular HF SCF
calculation are given together with the molecular compmsiand structure defi-
nitions. For the simple TIH example, the molecular inputtiilen reads
geometry = {
Tl 0.0 0.0 0.0
H 3.533787599 0.0 0.0
};
pseudopotential = {
Tl "pseudopotentials/T1_ECP60MDF/T1_ECP60MDF"
};

The hydrogen null PP is implied by the missing PP parametpéith statement
for H. Consequently, the complgb@eudopotential token is, from the point of
view of input processing, completely optional and recovkes2006 QOL imple-
mentation’s use-case if absent.

¢ More precisely, this attribute is of®ost : : shared_ptr of SemilocalAtomicPseudopoten-
tial type.
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<AtomicPseudopotentialEntry>
<Comment >

B. METZ, M. SCHWEIZER, H. STOLL, M. DOLG, W. LIU: THEOR. CHEM. ACC. 104, 22 (2000)
</Comment >

<CoreSize> 60 </CoreSize>
<PseudopotentialAngularMomentumGroup 1="0">
<Exponent> 12.167805 <Coefficient> 281.284663 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 8.294909 <Coefficient> 62.434251 </Coefficient> <n> 2 </n> </Exponent>
</PseudopotentialAngularMomentumGroup >
<PseudopotentialAngularMomentumGroup 1="1">

<Exponent> 9.891072 <Coefficient>  72.299253 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 9.003391 <Coefficient> 144.558037 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 7.151492 <Coefficient> 4.633408 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 5.172865 <Coefficient> 9.341756 </Coefficient> <n> 2 </n> </Exponent>
</PseudopotentialAngularMomentumGroup >
<PseudopotentialAngularMomentumGroup 1="2">
<Exponent> 7.130218 <Coefficient> 35.943039 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 6.926906 <Coefficient> 53.909593 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 5.417570 <Coefficient> 10.381939 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 5.138681 <Coefficient> 15.583822 </Coefficient> <n> 2 </n> </Exponent>
</PseudopotentialAngularMomentumGroup >
<PseudopotentialAngularMomentumGroup 1="3">
<Exponent> 5.626399 <Coefficient> 15.825488 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 5.548952 <Coefficient> 21.104021 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 2.874946 <Coefficient> 2.915127 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 2.821451 <Coefficient> 3.896903 </Coefficient> <n> 2 </n> </Exponent>
</PseudopotentialAngularMomentumGroup >
<PseudopotentialAngularMomentumGroup 1="4">
<Exponent> 6.679057 <Coefficient> ~-7.494534 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 6.706835 <Coefficient> =-9.540575 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 7.209284 <Coefficient> ~-7.797992 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 7.070964 <Coefficient> =-9.259524 </Coefficient> <n> 2 </n> </Exponent>

</PseudopotentialAngularMomentumGroup >
<PseudopotentialAngularMomentumGroup 1="L">
<Exponent> 1 <Coefficient> 0 </Coefficient> <n> 2 </n> </Exponent>
</PseudopotentialAngularMomentumGroup >
<PseudopotentialAngularMomentumGroup 1="1">

<Exponent> 9.891072 <Coefficient> -144.598506 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 9.003391 <Coefficient> 144.558037 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 7.151492 <Coefficient> ~-9.266817 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 5.172865 <Coefficient> 9.341756 </Coefficient> <n> 2 </n> </Exponent>
</PseudopotentialAngularMomentumGroup >
<PseudopotentialAngularMomentumGroup 1="2">
<Exponent> 7.151492 <Coefficient> -35.943039 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 5.172865 <Coefficient>  35.939729 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 9.891072 <Coefficient> -10.381939 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 9.003391 <Coefficient> 10.389215 </Coefficient> <n> 2 </n> </Exponent>
</PseudopotentialAngularMomentumGroup >
<PseudopotentialAngularMomentumGroup 1="3">
<Exponent> 5.626399 <Coefficient> -10.550326 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 5.548952 <Coefficient>  10.552010 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 2.874946 <Coefficient> -1.943418 </Coefficient> <n> 2 </n> </Exponent>
<Exponent> 2.821451 <Coefficient> 1.948451 </Coefficient> <n> 2 </n> </Exponent>

</PseudopotentialAngularMomentumGroup >
</AtomicPseudopotentialEntry>

Fig. 6.1: QOL pseudopotential parameter definition for &1 small-core MC-DHF PP of Metz
et al.!3! Parameters have been sorted by increakiagd, within, increasing =/ + 3
Thel = 4 spin—orbit part has been discarded because of the limitafithe ARGOS PP
integral subroutines tb < 3 for the B part.

Non-empty parameter file path statements are processe¢isledtathe$HOME/
QOLBasis?2/ directory and define locations of XML data files, thexthl” suffix
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understood. The given example defines¢h&l small-core MC-DHF PP of Metz
etal.'3! located aHOME/QOLBasis2/pseudopotentials/T1_ECP60MDF/; the
particular PP parameter definition is showcased in fig. 6.1.

Generally, PP parameters are organized for spin-free dnda@pit PP parts
separatel{. Within both parts, parameters are organized Gaussian erpavise,
i.e. everyp, i is associated &; ;. andn; ;; wrapped inCoefficient andn tags,
respectively. All suclExponent units with common are grouped irPseudo-
potentialAngular-MomentumGroup tags that have a singléyvalued orbital an-
gular momentum quantum number attribtiteThePseudopotentialAngular-
MomentumGroup applies to both the PR and B parts; these are separated by the
local,1="L" part that is, thus, mandatory. PP core size and optional aantary
statements are given within separ@tereSize andComment tags, respectively.

6.2.2 Modifications to the Atom and Molecule Classes: Parsm

Instead of being supplemented by an “owng@dhilocalAtomicPseudopoten-
tial, the QOLAtom class has been giverbaost: :shared_ptrtoSemilocal-
AtomicPseudopotential attribute. This is connected to the fact that, at the time
of the construction ofitom from the molecular composition and structure data
given in the inpuigeometry token, no PP parameter definitions are available. In
fact, these become available not before enteringpf®udopotential token,
i.e. not before having finished the construction ofAalbm objects.

Therefore, everyAtom's shared_ptr to SemilocalAtomicPseudopoten-
tial is set to point to a null PP upon construction — which is thedkfsetting
for the all-electron case and, generally, for most non-hed@wms —, and re-set to
point to a non-null PP defined at a later time via #hdid define_Semilocal-
AtomicPseudopotential(const string & SP) method.

dThis seems disadvantagous compared to the more companteteration of eq. 2-45. However,
the PP parameter definition as showcased in fig. 6.1 is clod@etactual implementation of the
QOL PP classes, provides intuitive separation ofPand B parts, and allows for easy internal
consistency check.
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class Atom {
public:

Atom(const Point3D<double> & P, const TypeClass & TC,
string Label = string()) :
_p(P), _tc(TC), _label(Label), _sptrPP() {
_SptrPP =
shared_ptr<SemilocalAtomicPseudopotential<double>>(new
SemilocalAtomicPseudopotential<double>(TC, P));
b

void
define_SemilocalAtomicPseudopotential(const string & SP) {
_SptrPP =
shared_ptr<SemilocalAtomicPseudopotential<double>>(new
SemilocalAtomicPseudopotential<double>(SP, _tc, _p));

//

private:

Point3D<double> _p;

TypeClass _tc;

string _label;
shared_ptr<SemilocalAtomicPseudopotential<double>> _sptrPP;

}

In this way everySemilocalAtomicPseudopotential object is defined only
once, albeit not at the same timef&m.

Note that the class interface, i.e. the parameter list ottmestructor defined
in lines 4-10, remains essentially unchanged.

The actual PP parameter definitions become available indinese of reading the
pseudopotential token after construction dfolecule from all Atom objects
defined ingeometry. Molecule is astd: :vector<Atom> by inheritance and
has therefore — with the exceptions of i&lectrons() andNuclearPoten-
tial() member functions — not been modified directly.

However, thelolecule constructor fromistream & employs a specialized
Parser class to read molecular composition and structure definftles that, as
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discussed in sec. 6.2.1, include the PP definitions as ptahesIL PP parame-
ter files. Consequently, tHearser implementation had to be modified to allow
reading of thepseudopotential token’s contents:

pseudopotential holds a (possibly empty) list of pairs of element symbols
and PP parameter file pathesPHrser finds a non-empty PP definitioRarser
iterates over all oflolecule’s Atom entries and, if the element symbol matches
the currentAtom’s TypeClass attribute, calls thahtom's define_Semilocal-
AtomicPseudopotential with the PP parameter file path as argument. As can
be inferred from lines 14-16, and as discussed in sec. @lis3constucts a new
SemilocalAtomicPseudopotential from the PP parameter file and the current
Atom's _tc and _p attributes, corresponding to the atomic element symbol and
positionr 4, respectively, and re-setsptrPP.

As already briefly stated, the only direct modification®Meiecule concern
the implementation of theElectrons() andnuclearPotential() methods
to return)_,(Z4 — Ny) and

(Z4 — Na)(Zp — Np)
Eso({(Za = Na).xaba) = 3
Bo({(Z4 — Na). T4} a) P Ty —rg]

respectively.

6.2.3 QOL 2-Component Semilocal Atomic Pseudopotentials

The QOL PP classes have been designed to provide a singkrafefass struc-
ture applying to both spin-free 1-component and spin—@4gibmponent HF SCF
calculation schemes. By eq.s 2-49 and 2-50 both thelRid B part’s radial
potential functionsX; € {A4;, B;} can be written in the form as, discarding the

€ Put somewhat simplified, the 2006 QOL implementatidiésser class is a GNU Bison 2.3-
generated LALR(1) parser that constructssi&d: :vector of QOL: :Molecule: :Atom from
whichMolecule is derived. The rules definingtom assembly from thgeometry token’s con-
tents are given by a finite-state machine-type parser tgbtesrated by the Bison parser generator
from a Backus—Naur form context-free grammar. This grantmsibeen supplemented to also en-
able reading — and, along these lines, check for syntactiecimess — of theseudopotential
token.
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atomic core labeH and implyingr, = 0 for clarity,

X;(r) = Zlek . |r|”/jke—,31jk|l'|2 (6-3)
ik
where the expansion coefficienk§;, € {A;;r, Bjjx} are related to the parame-
terS{Cljk}ljk of eq. 2-45 via

Q21 + ) Ay, = v;2Cppxp s (6-4)

with the short-hand notatiori§ :=/ + 1 andv,+ := [ + 1.

From the central role of the radial potential function exgan of eq. 6-3, two
auxiliary classe®P_GaussianExponentCoefficientPair andPP_Angular-
MomentumGroup have been implemented as template classes of a single, humer
ical precision-defining argumefit PP_GaussianExponentCoefficientPair
is astd::pair<T, T> by inheritance, modeling thes;;x, X;;x) pair of each
term of eq. 6-3; the single attributen defines this term’s radial exponem;y .
PP_AngularMomentumGroup has been derived from atd: :vector of PP_-
GaussianExponentCoefficientPair entries, and models the whole expansion
of X;. Two additionalbool attributes define locality and spin-dependency to dis-
criminate otherwise analog expressions#ar;, A, and B; the third,unsigned
int attribute_1 definesPP_AngularMomentumGroup's / value.

The top-level single-paramet@&emilocalAtomicPseudopotential tem-
plate class of argumefthas, then, been derived fronsad: : vector of PP_An-
gularMomentumGroup. To account for the full complexity of the general expres-
sion of eq. 2-45SemilocalAtomicPseudopotential has had to be given a
number of atomic core-relatéypeClass-, unsigned int-, andPoint3D-type
attributes defining the atomic core’s element symb}@[,, and ry, respectively,
and two moreansigned int attributes defining the PR and B part's expan-
sion lengthsl — 1.f

f The obvious implementation alternative of employing, @gointer or reference to the associated
Atom object is prohibited aston itself has ashared_ptr of SemilocalAtomicPseudopoten-
tial, which would result in a cyclic dependence of these. HowearilocalAtomicPseudo-
potential must carry the atomic core information as these are to beegdesthe ARGOS PP
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Construction oBemilocalAtomicPseudopotential from const string &,
const TypeClass &, andPoint3D<double> by Atom's define_Semilocal-
AtomicPseudopotential method, alongside PP parameter parsing, involves the
2006 QOL implementation’s XML-parsing modules, particlyldhe QOL: XML: :
XMLParser andQOL: : XML: : XMLTreeInputIterator, in a largely analog fash-
ion as employed in the construction of the CGTO basis sesetasand will not be
discussed in any detail.

6.3 Pseudopotential Integrals

QOL PP matrix elements between CGTO basis functions areaeal using parts
of the ARGOS prograrft—3°of Pitzer et aP

Guided by the discussion of sec. 4.3.2, the interface of R&AS PP integral
subroutines has been designed to

B evaluate PP matrix elemenitg, .- between primitive non-normalized CG-
TO basis functions only; and

W o evaIuatequw/ atom-wise and sum over all atomic PP contributions of
the molecular PP afterwards.

Whereas the first point is motivated by interoperabilitysaes — and effectively
allows to employ of the 2006 QOL implementation’s iteragmaluator structure
—, the second allows to circumvent, to some extent, ARGC& alimension lim-
itations, and eases ARGOS subroutine and QOL module conuatiion. Clearly,
both spoil efficient construction of th& matrix, but this is considered insignif-
icant as the computational effort of any HF SCF calculat®exclusively deter-
mined by 4-index integral evaluation and/or (repeatkd) K matrix assembly.
The atom-wise evaluation of PP matrix elements allows toleynhe lower-
level ARGOS subroutineBSEUD1, PSEUD2, andPSEUDS3 briefly introduced in sec.

integral subroutines alongside the PP parameters, bubwigxplicit reference to the particular
Atom object.
9 The “Argonne, Ohio State” program ARGOS is a general-pugpgogegral program for the eval-
uation ofS,;, Tpgs Upgs Apgs Bpgr Epras: a.nd a number of property jntegrals over symmetry-
adapted, generally contracted CGTO functions, from the GRBUS suite of program&32-135
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6.3.1. Juxtaposing these subroutines’ interfaces witl2@@6 QOL implementa-
tion’s iterator—evluator structure, discussed in sec.24.8most directly defines
the QOL PP integral evaluator classes and QOL PP integrahmzomntation, as
presented in sec.s 6.3.2 and 6.3.3.

6.3.1 ARGOS Integral Subroutines: Overview

ARGOS spin-free and spin—orbit PP integrals over symmadgpted generally
contracted CGTO basis functions are evaluated within thilichie—Davidson
recursion schema?t32h

Matrix elements of the locall’; ;, the non-local spin-freel — W, ;, and the
non-local spin—orbilﬁ part of the general 2-component semilocal atomic pseudo-
potential operator of eq. 6-1 are referred to as type 1, type@ type 3 integrals,
and computed bySEUD1, PSEUD2, andPSEUD3, respectively. Allare FORTRAN-
written, closely related subroutines that are called withlag sets of six parame-
ters, e.g., for thé¥; ; part,

SUBROUTINE PSEUD1(CCR,GOUT,NCR,NKCRL,NKCRU,ZCR)

B TheREAL#*8 array variable£CR andZCR, and theINTEGER array variable
NCR each define a maximum of 77 PP paramefers 4, B1x 4, andngjy 4,
respectively; the spin—orbit part's expansion coeffigeXitjz 4 = Bjjxa
are required to be divided B/ + 1.

B GOUT is aREAL#*8 array variable that, on exit, contains t_he integrals over
all pairs of CGTOs with the input basis functionlg’and/,:" As there are
2(I+1)(I +2) Cartesian monomials™x y™ z™= with m, +m, +m, = I,
GOUT holds

2, + DU, +2)- 30, + D, +2)

h PP integrals are first separated in angular and radial pAtittereas angular integral evaluation is
relatively straightforward, radial integration is mordfidult from the integrands’ modified sphe-
rical Bessel functions and involves different, (for reasoh numerical stability) case-dependent
single and double power series expansion, Gaussian queglrand techniques of expansion in
terms of scaled modified spherical Bessel functighs?

I Note that the CGTO information is communicated overQiig andCALLIN common blocks, as
discussed below.
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integrals for input CGTO®p,) and|¢,) with [, and/,.

From the ARGOS limitation téd < 4 CGTOs,GOUT’s dimension i55 for
PSEUD1 andPSEUD2. In the speciaPSEUD3 caseGOUT is of size3 - 255 =
675, because it holds three real integrals

M Brgap = izt Lo, (pl B Lllmi)(Lmi|,)
Requotﬂ = —i Zlel Zm, <¢p|€l{‘y|1ml><lml|¢q) >
lmeqaa = Zl:l Zml(¢p|Ble|lml>(lml|¢q>

at GOuT positions3ipq, 3ipg + 1, and3ipq + 2, respectively, with respect
to the positior,, of a particulartm,,, m,) integral in the spin-fre@SEUD1
andPSEUD2 cases.

B The INTEGER array variableVKCRL and NKCRU — in the speciaPSEUD3
caseNKLSL andNKLSU — of dimensiorns assist ARGOS PP parameter def-
inition: If all PP parameter triple§X;;x 4. B1jxa.n1jx 4) are listed with one
such triple in each line, starting with tt#; ; expansion, and being ordered
by increasing, NKCRL andNKCRU contain the numbers of the first and last
lines, respectively, of all blocksk

Additionally, including the auxiliaryANG1, ANG2, BESS, CINTS, COLIB1, COR-
TAB, FACAB, PTWT, QCOMP, QPASY, andRECUR1 subroutines called bpSEUD1,
PSEUD2, andPSEUD3, a larger number of variables communicated via the com-
mon blocksUNITS, PARMR, PARMI, ONE, CALLIN, QSTORE, LTAB, ZLMTAB, DFAC,
PIFAC, and FACT, and 4 globalLOGICAL variablesESF, ESFC, IGUEQ1, and
JGUEQ1 are required. These include, for example, [#g) and|¢,) parameters

needed folV,,,,, evaluation. No comprehensive discussion of the ARGOS data

I Note that Ré,, = 0,. ForPSEUD1 andPSEUD2, a particulam,,, m) integral’'sGOUT position
inq 1S defined by ARGOS' ordering of the Cartesian monomiajsas collected in tab. 6.1: th),
andm, are theyrmp-th andnmq-th Cartesian monomials, respectivedgUT holds the respective
integral at position

ipg = %nmp ((Lp + DU +2) + 27y, ).
K For theg; Tl small-core MC-DHF PP given in fig. 6. §KCRL andnkcru contain the numbers 1,

2,4,8,12,16; and 1, 3, 7, 11, 15, 19, respectively. Consely/&KLSL andNKLSU contain 20,
24,28, 0,0, 0; and 23, 27, 31, 0, 0, O, respectively.
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6: 2-Component Pseudopotentials

Tab. 6.1: Ordering of Cartesian monomiais = (m,,m,,m ) by ARGOS: For all CGTO orbital
angular momentum numbefs< 4 supported, the Cartesian monomial’s positigp is

given, ommiting the trivial = 0 case.

jmjjy =7 =1

jmjly =1 =2

jmll, =1 =3

Imll, =1 =4

m g m >y, m >y, m >y,
(1,0,0) ~ 0 (2,000~ O (3,0,00—~> 0 (4,0,0)> O
0,1,0)~ 1 (02,00~ 1 (03,00~ 1 (0,400~ 1
0,0,1) > 2 (0,0,2) > 2 (0,0,3)> 2 (0,0,4) > 2
(1,1,0) » 3 (2,1,0)—~ 3 (3,1,0) » 3

(1,,) > 4 (2,0,)~ 4 (3,0,1) ~ 4

O, 1,)—~ 5 (1,2,00—~ 5 (1,3,0) > 5

0,2,1) > 6 (0,3,1) > 6

(1,0,2) > 7 (1,0,3) > 7

(0,1,2) —» 8 (0,1,3) > 8

(LL)—~> 9 (2,2,00—~ 9

(2,0,2) > 10

(0,2,2) > 11

2,1,1) > 12

(1,2,1) > 13

(1,1,2) > 14

flow and variable interdependence will be given. Insteael foflowing presenta-
tion of the ARGOS—-QOL interface is focussed on the compgrivl cases that
have to be addressed directly on the QOL side of the ARGOS—Q@tface.

6.3.2 ARGOS-QOL Interfacing

From the preceding discussion, calling #8£UD1, PSEUD2, andPSEUD3 subrou-
tines requires, first, assembly and communication of themater list — including
re-formatting from QOL to generally different ARGOS datgamization schemes
—and, second, global and case-dependent common blocklessigtting:

The first communication level, being considered only withpRPameters and
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integral array memory allocation, is enabled by a simpleglsiQOL2ARGOS _PP-
MapperContainer class. The second level requires two FORTRAN-written sub-
routinesINIT andEDIT, wrapped by thaRGOSCommonBlockWrapper class. PP
matrix elements between CGTOs of particular Cartesian mmagde in theGOUT
arrays are located by the auxiliakfG0S2Q0L_Cartesian-FunctionIntegral-
Mapper class.

QOL-to-ARGOS Pseudopotential Parameter Communication

To enable safe, wrapped PP parameter re-formatting to AR@@$array vari-
ables, an auxiliary one-parameter template cl@8ARGOS_PPMapperContai-
ner of argument is provided: It has, outside a pointer to #wnilocalAtomic-
Pseudopotential it refers to, flat C-array attributesccr and _zcr of T, and
_ncr, _nkcrl, _nkcru, _nklsl, and_nklsu of int types. These resemble the
CCR, ZCR, NCR, NKCRL, NKCRU, NKLSL, andNKLSU array variables handed over
to the PSEUD1, PSEUD2, andPSEUD3 subroutines and are, accordingly, filled as
discussed in sec. 6.3.1 upon constructiorQ@t2ARGOS_PPMapperContainer
from const SemilocalAtomicPseudopotential<double> &.!

ARGOS Common Block and PP Integral Subroutine Wrapping

As C++ does not support declaration and definition of glolzalables in com-
mon blocks, ARGOS common block variables are set by two FORN®Rritten
subroutinedNIT andEDIT:

TheINIT subroutine is intended to be called only once for each progree-
cution, and provides straightforward declaration and dedmof all DATA state-
ments, andJNITS, PARMR, PARMI, ONE, CALLIN, QSTORE, LTAB, ZLMTAB, DFAC,
PIFAC, andFACT common blocks. Note thaiNIT does not, and cannot provide
a full emulation of an ARGOS or even COLUMBUS run on the leiet@mmon

I Technically, botrQOL2ARGOS_PPMapperContainer andSemilocalAtomicPseudopotential
are templates of a numerical precision-defining arguriehtowever, as\tom andMolecule use
double types only, typically only instances withset todouble are employed. Moreover, AR-
GOS employs double precision floating point, REBAL*8 types only, and FORTRAN subroutines
do not allow overloading.
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6: 2-Component Pseudopotentials

block variable settings, but, instead, addresses onlethasables that turned out
to be relevant for PP integral evaluation.

Contrasting EDIT has been implemented to be called every time a particular
PP matrix element — actually the pa&iV),,qq, W,448) — IS to be evaluated and,
thereby, to re-set the case-dependent variables definirgnBRCGTO parame-
ters.EDIT is, therefore, called with a total @D parameters collected in tab. 6.2.
From these, all case-depend@NE andCALLIN variables, and thep,) and|¢,)
normalization constanty/, and N, for ARGOS normalization to

g, | — Jemfm,, := \/(2m,,x — DI @myy, — DI Q2m,, — 1! (6-6)

are calculated; eq. 6-6 defines the “Cartesian monomiallddabtorial” function
for the ease of further discussion.

From the C++ side, twaroid-returning global function§)OL: :Pseudopoten-
tial::init andQOL: :Pseudopotential: :edit have been defined to call the
respectiveextern "C"-declared FORTRAN subroutine®iIT andEDIT with
parameter lists of pointers to the respective parametgs'st”
init andedit are wrapped by the auxiliaryRGOSCommonBlockWrapper

class, being a single-parameter template class of argumehat provides two
methodsvoid init_ARGOSCommonBlock() and

1 void edit_ARGOSCommonBlock(

2 const CartesianGaussianFunction<T> &,
3 const CartesianGaussianFunction<T> &,
4
5

const SemilocalAtomicPseudopotential<double> &,
const bool &) const;

that effectively callINIT andEDIT via init andedit, respectively. AlEDIT pa-
rameters of tab. 6.2 are retrieved fr@artesianGaussianFunctionandSemi-
localAtomicPseudopotential objects’ attributes; the fourtbonst bool &
parameter defines spin-free and spin—orbit use-caseBH.spin-dependency, by
false andtrue, respectively.

MINIT andEDIT are declared with an underbar character appended vigothe: Pseudopoten-
tial::FortranLinkage pre-processor directives; declarationFefrtranLinkage (INIT) and
FortranLingage (EDIT) asextern "C" disables C++ name mangling and, thus, polymorphism
and overloading.
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Wrapping ARGOS common block variable setting in this waysdoet only
restrict the globainit andedit functions to be exclusively called by methods of
ARGOSCommonBlockWrapper, but also provides, to some extent, type-safety and
simplifies use-cases.

Tab. 6.2: Variable types, names, and meanings of Eh&T subroutine’s parameter lisEDIT re-
setsONE and CALLIN common block variables for the evaluation of PP matrix eleisie
between CGTO8, (r) = N, - x"'»x y"ry 7"rz exp(—{,|r —r,|?), for a single atomic
PP atr,, with expansion lengtih, — 1."

type name meaning
REAL*8 IX__,IY__, IZ__;IMX__,IMY__,IMZ__ r,;m,
REAL*8 JX__,JY__, JZ__; JMX__, JMY__, JMZ r,im,
INTEGER IL__;JL__ Ipil,
REAL*8 TIA__;JA__ $pi &g
REAL*8 X__,Y__,Z__ r4
INTEGER L L

In a similar way, the global functionsseud1, pseud2, andpseud3, implemented
in the QOL: :Pseudopotential namespace, call the ARGOSEUD1, PSEUD2,
andPSEUD3 subroutines with parameter lists of pointers to the re$pegiaram-

eters’ types.

Locating Integrals over CGTO Pairs with Specified CartesianMonomials

For easy, intuitive retrieval of particular integrals o@GTOs |¢,) and [¢,)
with given Cartesian monomiaim, and m, from the GOUT arrays, the auxil-
iary classARGOS2Q0L_CartesianFunctionIntegralMapper has been derived
from vector<map<QOL: :AngularBasis::CartesianFunction, unsigned
int>>: This design effectively mimicks tab. 6.1, employing th&ctor compo-
nents as angular momentum quantum nunib&he only member functionead

"The Cartesian monomiala € N3 are, despite their components’ non-negative integer eatur
represented bREAL#*8 types to take into account the full domain, i@, of the double factorial

function.
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6: 2-Component Pseudopotentials

of ARGOS2QO0L_CartesianFunctionIntegralMapper takes aconst Carte-
sianFunction & CF as argument and, via

return (xthis) [CF.sum()].find(CF)->second

gives the numberry, of the input Cartesian monomiat, thus locating4,,, 4«

Im B ReBp and ImB in GOUT as discussed in sec. 6.3.1.

pqaB’ qopBr pqoc

6.3.3 Integration and Pseudopotential Integral Communic#on

Whereas the particular integral evaluation procedurem®sat completely defined
by the ARGOS—-QOL interface’s class structure of sec. 61B& top-level eval-
uator class interface is less independent of the 2006 QOleimgntation if the
established iterator—evaluator structure is to be re-usgmbut modifications. As
discussed in sec. 4.3.2, the QBuffered_IteratorEvaluatori class iterates
over all symmetry-unique CGTO pai(p,), [¢,)) € I C B x B and, of course,
only once. — However, for any CGTO pair I bothW,, ., andW,, ;. are to be
evaluated.

Therefore, QOL PP matrix elements are communicated quaievalued by
setting the template argumenbf the evaluator class interface
// typedef typename T::value_type _Field;
template <class T>
T McMDPseudopotential_Evaluator<T>::operator () (

const CartesianGaussianFunction<_Field> & bra,
const CartesianGaussianFunction<_Field> & ket ) const;

a b~ WN P

toQOL: :ElementaryMath: : Quaternion, employing the maps/ andM of sec.
5.1.2.

Pseudopotential Integral Evaluation Interface

QOL: :Pseudopotential: :McMDPseudopotential_Evaluatoris asingle-pa-
rameter template class of arguméantclosely resembling the 2006 QOL imple-
mentation’s evaluator classes. The single constructon #onst Molecule &
provides the molecular PP information and assembles thestvaclassesitd: :
vector attribute that, for every non-null atomic PP, hastd : : pair of Semilo-
calAtomicPseudopotential andQOL2ARGOS_- PPMapperContainer entry to
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assist PP parameter information communication to the iydgrARGOS PP in-
tegral subroutines. ARGOS common block variable settirdjiategral retrieval
from GOUT is enabled byARGOSCommonBlockWrapper andARGOS2Q0L_Carte-
sianFunctionIntegralMapper attributes.

T is intended to be of @Quaternion-type that, through the time reversal-
symmetry of the PP operators, enables to wrap Bidfhy,, andW,, g as a single
guaternion

N Wpgaar Woqap) = Apgaa + 1Bpgaa +IREByyep + KREB, 8
using theC™*" x C"*" — H"*" map.V of eq. 5-3 for the special = 1 case.

As PP integrals are evaluated atom-wise, calling the paeses operator in-
volves, after initialization of the return quaterniantegrals, iteration over all
entries of therector of pair of SemilocalAtomicPseudopotential andQOL-
2ARGOS_PPMapperContainer attributes. For every such entry pointed at by the
employedconst_iterator A,

B C-arraysscratchil, scratch2, andscratch3 of sizes255, 255, and675
are defined. After setting the case-dependent ARGOS comiok Yari-
ables by the\RGOSCommonBlockWrapper<double> _CB'S edit_ARGOS-
CommonBlock, the wrapped ARGOS subroutingseudl, pseud2, and
pseud3 are called to evaluate the current atomic PP’s contribatiolV, ;o
andW,,,,g- For example, for the spin—orbit integrals,

double scratch3[675];
memset (scratch3, 0.00, 675*sizeof (double)) ;

1

2

3

4 _CB.edit_ARGOSCommonBlock(ket, bra, A->first, true);
5 QOL: :Pseudopotential: :pseud3(

6 A->second._ccr, scratch3,

7 A->second. _ncr, A->second._nklsl,

8 A->second._nklsu, A->second._zcr

9

)

Note that the bra and ket CGTOs have to be interchanged vstiect to

the QOL index definition. Then,
B 4,40 Bpgaar REBpgap, and IMB,, g corresponding to the bra and ket

CGTOs' Cartesian monomials are located ingkeatchl, scratch2, and
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scratch3 arrays byARGOS2Q0L_CartesianFuntionIntegralMapper,
and added to thé, i, j, and k components afntegrals, respectively.

After the loop over all atomic PP contributions has beenliieisintegrals is
re-“normalized” to non-normalized CGTOs, i.e.

Pl - lig

\/cmfmp -cmfm,

N(quaav qua,B) = e/\/‘(I/quozou quaﬂ) ' (6'7)

because normalization — again técmfm — is done in the course of contrac-
tion of the primitive integrals to integrals over contratfand possibly Cartesian-
to-spherical-transformed) CGTOs by the 2006 QOL implemigm’s iterator—
evaluator modules.

Integral Communication and Matrix Representation Construction

From the possibility to wrap boti,,,, andW, g in a single quaternion-valued
return type, PP integral evaluation is readily incorpatatethe 2006 QOL imple-
mentation’s module architecture:

The top-level clasStandardMolecularHamiltonian2SpinorRepresen-
tation_Container has been supplemented with the necessary attributesvo allo
a methodPP () to return aContainerRepresentation object with, similar to
the discussion of sec. 4.3.2, third and fourth templateragqisBufferedItera-
torEvaluatorl andOneBody_Evaluator of McMDPseudopotential _Evalu-
ator of Quaternion, respectively.

On the matrix representation classes’ side,HbemitianTimeReversallnva-
riantMatrix constructor fronContainerRepresentation — more precisely:
the template constructor fromCantainerRepresentation-type instance ofR

Ot is necessary to clean tfRSEUD1, PSEUD2, andPSEUD3 subroutinesGOUT arrays from almost-
zero entries before adding uptegrals, as these entries have been observed to severely break
spin symmetry in HF SCF calculations employing thej’Bart only. The present implementa-
tion sets allscratchi, scratch2, andscratch3 entries smaller tham0—2° to zero before PP
integrals are processed any further.

P A very small number of modifications to tlBaffered_IteratorEvaluatorl implementation
has had to be made to allow contraction of quaternion-vaiiegrals using the established loop
structures, i.e., replacing the employég, = O, by the more generad,, = 07, relation.
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— has been specialized f#eMDPseudopotential_Evaluator-valuedOpera-
tor arguments of th@neBody_Evaluator argument oBuffered_Iterator-
Evaluatori: The implementation is closely analog to the 2006 QOL im@am

HermitianRepresentationIterator

|

TN TN,
(ww Waﬂ)N - NN NN
—Wop W u i
I
H M N NNy

Buffered_IteratorEvaluatorl

Fig. 6.2: Construction of general 2-component pseudopotential adpematrix representations:
HermitianRepresentationIterator maps the%n(n + 1) quaternions to a sequence
(Wpq)p>q C Hand, thus, to the lower triangular part of the hermitian imad € H" 7,
Then,M is senttoQ € A,, C C2"*2" via M.

tation’s construction of spin-free operator matrix repraation objects. Instead
of alnitarySpace: : _ScalarProduct: :_ScalarProduct_Codomain-valued
SymmetricMatrixRepresentation, however, &uaternion-valuedHermiti-
anMatrix is constructed in an otherwise identical fashion. Thisaslig mapped
to aHermitianQuaternionRepresentationMatrix

Q = (Mo N)(Wye Wop) .

using theH"*" — A, matrix isomorphismM as illustrated in fig. 6.2, and cast
to the derivedlermitianTimeReversalIlnvariantMatrixRepresentation.
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Self-Consistent 2-Spinor Fields

7.1 Spin Component Exchange Coupling

As an indirect consequence oj the spin symmetry-breakiopgguties of the spin—
orbit pseudopotential operat@, the HF SCF Exchange operator couples the 2-
spinor'sa- andB-spin components by eq. 3-42, i.e.

Kpqyy = = Z 8prsqDsryy - (7-1)
rs
which must, thus, be implemented differently from the sfpge 1-component HF
SCF calculation scheme.

To provide similar interfaces for both the 1-component drel2-component
case, two separate functioassemble_1cSCF2ParticlePart andassemble_-
2cSCF2ParticlePart have been implemented analog to the 2006 QOL imple-
mentation’sassembleRHF2ParticlePart?2 function in theQOL: : Cartesian-
GaussianIntegration namespace. The following discussion is focussed exclu-
sively on the 2-component case; specialization to the sinflpkomponent case is
straightforward by formally setting&,,,, to K,,,,/8,,, € R and, technically,
employing the respective spin-free 1-component matrixraattix representation

classes of sec. 4.3

The arguments taken lgsemble_2cSCF2ParticlePart, i.e.
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// typedef
// HermitianTimeReversalInvariantMatrixRepresentation<
// UnitarySpace> Mrep;
template <class UnitarySpace>
Mrep assemble_2cSCF2ParticleParts(
const CartesianGaussian_UnitarySpace2<typename
UnitarySpace::_Basis> & BtensorB,
const Mrep & D,
const vector<typename UnitarySpace::_Field> & G_n ) {

A WDN PR

© 0N O O

correspond to the unitary spaBex B spanned by the CGTO produdts, ¢, ), the
density matrixD, and the se§,, of all symmetry-unique 4-index integrags, , ,,
respectively.

In the integral-driven assembly of the exchange operatdrixrapresentation
— as briefly discussed for the 2006 QOL implementation in 4633 — iteration
is over all symmetry-unique 4-index integrals, ,; € $,- As a given integral
&prqs cONtributes to severd ../, for every suchg,, . all v,,,; < 8 unique
index combinatiorisare to be identified with the corresponding element® of
and with the elements & they contribute to.

This procedure is schematically illustrated by tab. 7.1 és@ample, ifp = ¢
andr = s (given as the next to last case in tab. 74),,, contributes, both as
Eprpr ANAg,prp, 10 Ky @and K, ./, respectively; from eq. 3-42, every such
4-index integral ing,, is to be multiplied by-D,,,,,,» and—D,.,,,,» and added to

K,ryy andK, .../, respectively.

This straightforward assembly scheme can be significatiplgied by consid-

aThe numbew,,, of unique index combinations depends on the given inde)egie. on which
of six possible sets of index equalities among these valpply.aFrom

1
Eprgs = (¢p¢r|gA¢q¢s> = //1;§3 R drler ¢;(r1)¢:(r2)7¢q(rl)¢s(r2)

Iry —raf
_ % %
= &prgs = 8rpsq = 8qspr = &sqrp

due to electron—electron symmetry and hermiticitgoMoreover, since,, C R for real-valued
CGTOs|¢,), one can electron-1 and -2 indices independentlygi,e,s = grgrps = &psqr =
Sqspr = &rpsq = 8sprq = 8rqsp = 8&sqrp> t0 aArrive atv,,,.,. = 8 for pairwise distinct index
values. Clearly, for any other identity relation among tigeix values, a smaller number of distinct

4-index integrals arises; for example, foe= 5, v, 4, = 4.
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Tab. 7.1: Construction ofK € C2"*2" by assemble_ 2cSCF2Partic1eParts: The given sym-

bolic expressions, €.9.g5,4s: X
multiplied by —D,

qryy’»

- D

qryy/ — K

psyy’
and this product is to be added 15,,,,,,".

"are read as: §,,,, is to be
The «-

and <-

labeled contributions t&,, andK,g are non-redundant as discussed in the text.

Eprgs -
=8qrps*
= 8psqr -
= 8qspr
=8rpsq -
=8sprq*
=8rqsp -
= 8sqrp*

8prar-
= 8qrpr -
=8rprq-
=8&rqrp -

8prps +
=gpspr:
:grpsp:
=gsprp:

8ppraq-
= 8qppq-
= 8paap*
= 8qqpp*

gprpr:
=8&rprp -

8pppp-

X X X X X X X X

><><><>< ><><><><
E b@ Eb@b Eb@b b@bb Eb@b@b@b

X X X X

X X

X

qryy’
pryy’
asyy’
psyy’
spyy’
rpyy’
sqyy’
rqyy’

qryy’
pryy’
rpyy’
rqyy’

pryy’
psyy’
spyy’
rpyy’

apyy’
ppyy’
aqvy’
pavy’

pryy’
rpyy’

ppvy’

= K
= K
= K
= K
= K
' K
= K
= K

' K
= K
= K
= K

= K
= K
= K
= K

= K
= K
' K
= K

r= K
r—= K

i K

psyy’
qsyy’
pryy’
qryy’
rqyy’
sqyy’
rpyy’
spyy’

pryy’
qryy’
rqyy’
rpyy’

psyy’
pryy’
rpyy’
spyy’

ravy’
aqvy’
rovy’
apvy’

pryy’
rpyy’

ppyy’

Kococ e Cnxn Kaﬂ c Cnxn
Kpsotot Kpsotﬂ <
quaa quaﬁ <
Kprotot Kprotﬂ <
quaa quaﬁ <
quotot = K;]kroza quotﬂ = _quotﬂ
quaa = KZsmx quaﬁ = _quaﬁ
Krpotot = K;roza Krpotﬂ = _Kprotﬂ
Kspaa = K;smx Kspaﬁ = _Kpsaﬁ
Kpraa Kpraﬁ <
quotot quotﬂ <
quaa = K;rmx quaﬁ = _quaﬁ
Krpotot = K;roza Krpotﬂ = _Kprotﬂ
Kpsotot Kpsotﬂ <
Kpraa Kpraﬁ <
Krpotot = K;roza Krpotﬂ = _Kprotﬂ
Kspaa = K;smx Kspaﬁ = _Kpsaﬁ
K pgaa Kpgap <
Kggaa Kggap =0 <
K ppaa . Kppap =0 <
Kgpaa = Kpgaa  Kgpap = —Kpgap
Kpraa Kpraﬁ <
Krpotot = K;roza Krpotﬂ = _Kprotﬂ
K ppaa Kppap =0 <
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Tab. 7.2: Construction of the auxiliary matricds,,,kog € C™"*": Only the non-redundanis-
and <-labeled contributions of tab. 7.1 are considered. Notefah®r of% multiplied
into the density matrix diagonal elemeribs, .,/ to prevent double counting the contri-
butions to theK,, diagonal according to eq. 7-2.

nxn nxn
ky, €C kyp €C
. . — 7% —
8prgs + X _quyy’ = kpsyy’ . kpscxcx = kspaa kpsaﬁ = _kspcxﬂ
— . . — % —
=8qrps + X _Dpryy"_)kqsyy’ . kqsaa_ksqotot kqsotﬂ __ksqa,B
— . . — % —
- gpsqr - X _Dqsyy’ = kpryy’ . kprmx - krpaa kpraﬂ - _krp(xﬂ
— . . — % —
=8gspr+ X _Dpsyy’ '_)quyy’ . quaa _quotot quotﬂ __qua,B
. . — 7% —
8prqr+ X _quyy’ = kpryy’ . kprcxcx = kpraa kpraﬁ = _kprcxﬂ
— . . — % —
=8qrpr+ X _Dpryy’ '_)quyy’ . quaa _quotot quotﬂ __quoc,B
. . — % —
8prps+ X _Dpryy’ = kpsyy’ . kpsoax - kpSOtOt kpsotﬂ - _kpsa,B
— . . — % —
- gpspr - X _Dpsyy’ = kpryy’ . kprmx - krpaa kpraﬂ - _krp(xﬂ
. _ . — % - _
gPPqQ’ X 1 D‘IPYV/ = kpqyy’ : kpqocot kqpotot kpqotﬂ kqpot,B
= 8qppq- X _?Dppw’ = kaqyy t Kgqaa
= &paap' X ~2Paayy = Kppyy' © kppaa
. . — 7% —
Eprpr+ X _Dpryy’ = kpryy’ . kprcxcx = krpaa kpraﬁ = _krpcxﬂ
o1 )
Epprr' X =3P ppyy' = Kppyy' ' Kppaa

eration of the hermiticity and antisymmetry of tkg,, andK,g blocks, respec-
tively: Intab. 7.1, the unlabeled redundant matrix elersean be generated from

the non-redundants- and <-labeled matrix elements frok, ;4 = K7y and
K408 = —Kgpap- The<-labeled entries non-redundant &y, , but redundant

for theK, g block becaus&,,,g = 0 for all p.
Tab. 7.2 illustrates a simplified scheme via the auxiliaryrioes k,, and
kotﬂ1 and
Koo = Koo + kan. Kopg =1 Kkop —kig - (7-2)
Employing this simplified scheme is, compared to the sttéogivard assem-
bly following tab. 7.1, expected to reduce the floating paiperation count of
assemble_2cSCF2ParticleParts by almost a factor of. However, because
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of the significant, approximately constant overhead frorthlibe construction
CGBTree_HermitianTupel4_Iterator and theswitch block checking for 4-
index equalitiesassemble_2cSCF2ParticleParts CPU times are dominated
by floating point operations for large numbers of 4-indeednals only. Thus, sig-
nificantly accelerated assembly@f= J — K is observed only for large numbers
of 4-index integrals, i.e. comparably large basis setshawsased for the simple
TIH example in fig. 7.%.

IIIIIIIII#'"'""'I""""'I""""'IIIIIIIIII TTTTTTTT

g L straightforward implementatior—e—
assembly Vi, kopg —e—

tls

4+ 2 aug-2 3 aug-3

ﬁ

20 40 60 80 100 120 140
numbermn of CGTO basis functions

Fig. 7.1: Mean assemble_2cSCF2ParticleParts CPU timest: TIH at experimentaby_y =
3.5338 au., 138 ¢; Tl small-core MC-DHF P31 with cc- and aug-cc-p¥ Z basis39:140
for cardinality numbers( of 2, 3, and4. CPU times have been averaged over i 22,
25, 24, 27, and26 SCF iterations run, respectively£ = 1 - 1072 au. energy threshold);
error bars are standard deviations.

b It should be noted that this performance gain is not sigmifieethin the conventional HF SCF
calculation scheme of the present QOL implementation, wigexclusively dominated by the
computation of all (symmetry-unique) 4-index integralshwiespect to both CPU time and mem-
ory requirements.

Clearly, any attempt to further accelerate assembi§ ef J — K requires, in the very first place,
moving to an integral-direé®:1%%or “-semi-direct’™?! HF SCF calculation scheme, thus enabling
integral screening?! D andG extrapolation!?! and RI techniqued36:137
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7.2 Eigenvector and Density Matrix Processing

The choice of a 2-spinor basis &f Kramers pairs introduced in sec. 3.1.3, eq.
3-21,i.e.

N

(V1)) = U (). 192)), = D
i=1
does not only place a variational restriction but, as pdintet in sec. 3.1.3,
also employs a special unitary symplectic transformatidhiwevery eigenspace
E(e;). However, whereas there is no physical reason for a paatichloice, from
an algorithmic point of view it is necessary to define 2nevector representations
C; such that
Citn=C;:=(®1,)C], (7-3)

i.e. such that eq. 3-31 holds. Itis only through eq. 7-3 thgtexploration of time
reversal-invariance becomes possible.

Stated globally, Roothaan—Hall eigenvector processing.-Fock matrix or-
thogonalization, diagonalization, back-transformato@’, construction of atime
reversal-invariant basi®, and assembly of the density mati C) — has been
wrapped in thélermitianTimeReversalRoothaanHall2cSCF_EigenSystem
class briefly introduced in sec. 7.2.1. The particular ti@nsation techniques
applied to arrive at eq. 7-3, and (atomic fractional occigpahumber) density
matrix assembly are explained in sec.s 7.2.2 and 7.2.3cagely.

7.2.1 Top-Level Self-Consistent Field Algorithm Classes

HermitianTimeReversalRoothaanHall2cSCF_EigenSystemis derived from
Hermitian_EigenSystem, particularly for eigenvector sorting, transformation,
and density matrix assembly. It is a single-parameter tateglass of @nitary-
Space-type argument defining the CGTO-spanned subsjiatiee 2-component
HF SCF equations are solveddn.

Generally, thélermitianTimeReversalRoothaanHall2cSCF_EigenSys-
tem constructor from tw@&onst HermitianTimeReReversalInvariantMat-

¢ An essentially analogoothaanHall1cSCF_EigenSystem class has been implemented to pro-
vide a similar interface for the scalar-relativistic sfiige case.
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rixRepresentation & and oneunsigned int & argument, corresponding to
F, S, and the numbe2N of electrons, respectively, calls the base class con-
structor and, thus, the LAPACK/BLAS generalized eigengadguation solvet.
Central for the communication of eigenvectdr's, eigenvalues;, and 2-spinor
occupation numbers; is thestd: : vector of KramersPairs0f _Molecular2-
SpinorRepresentations attribute, that is constructed in the course of the trans-
formation ofC to a time reversal-invariant basi3.

Both theKramersPairOf _Molecular2SpinorRepresentations andMo-
lecular2SpinorRepresentation are templates dfnitarySpace that allow
structured processing of th&, ¢;, andv;: KramersPair0f_Molecular2Spin-
orRepresentations OwWns @lolecular2SpinorRepresention _fwd, and two
double attributes_e and_n that mimick the(C;, ¢;, v;) triple; the “time-reverse”
2-spinor vector representati@t is not held in memory, but generated frorfwd
if required. The membe3U2Transform() wraps the transformation &; and
C; to have “maximum similarity” with non-relativistic spin bitals as discussed
insec. 7.2.2.

Molecular2SpinorRepresentation has been implemented in analogy to
the existing matrix representation classes:

1 template <class UnitarySpace>

2 class Molecular2SpinorRepresentation : public

3 public QOL::MatrixVector: :Matrix<typename

4 UnitarySpace::_ScalarProduct::_ScalarProduct_Codomain>
5

6 public:

7// ...

8 const typename

9 UnitarySpace::_ScalarProduct::_ScalarProduct_Codomain &
10 operator [] (const int & i) comnst {

11 return (*this) (i,0);

12 }

13 Molecular2SpinorRepresentation TimeReversalTransform()

14 const;

15 //

16 private:

d An optional fourth constructor argument defines a set of iphsractional atomic occupation
numbers different from an Aufbau occupation scheme.
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17 const UnitarySpace * _space;

18 };

Molecular2SpinorRepresentation provides, outside an one-indgx opera-
tor for vector entry access afidmeReversalTransform(), special methods for
inner and dyadic products, real and imaginary partst etc.

7.2.2 Choosing Time Reversal-Invariant Eigenspace Bases

Operator matrix representations in a baBiof Kramers pairs, i.e. a basis satis-
fying eq. 7-3, are necessarily of the special Cayley formgpfsel from the dis-
cussion in sec. 3.2.2. However, the converse is generdalljrue If onlyF € A,
hermitian, the relation

FC = Ce, (7-4)

with € = diage; € R?"*2", does not guarante€ to be a matrix of: Kramers
pairs of eigenvector€; , = C;. Instead, eq. 7-4 defines &k eigenvectors
C; up to phase factorg only, which, since generally ¢ R, do not commute
with the (co-representation of the) time reversal operatesuming the existence
of a matrixC’ € A,, of n Kramers paireC;,, = C/, and writingC; = (;C;,
generally itis; , # ¢
= Ci, #C;. (7-5)

One can, however, find th®: inverse phase factots!, i.e. re-phase altn

eigenvectorL; to ;1 C; = C/, from

_ 1= _ _ ~ | ~.
(Cintitn tF71Ci) = intf HCi40. Ci) = (€)1, C)) = 1 (7-6)
= lgp =4 = (Ci+n,Ci)_1/2 (7-7)

for normalized eigenvectors.

Analog to sec. 3.1.3, a basis of eigenvect@tsof a Cayley matrixk € A,
will, in the following, be referred to as “Kramers-restadt. If, moreover, a set of
n phase factor relations is defined such that eq. 7-3 holddlfor #is Kramers-
restricted basis of Kramers pairgC;, C;,,) = (C;,C;) will be referred to as
“Kramers-conjugate” or “time reversal-invariant”.

€ The 1_SubspaceNormSquare (const int &) andremoveSymmetryContamination (const
int &) methods apply to the special atomic case and are discussed.ii.2.3.
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“Kramers Pairing”: Choosing Time Reversal-Invariant Eige nspace Bases

In a straightforward approach, a Kramers-conjugate kAsisuld be constructed
by iteration over all eigenspacbs = spar(C;, C;.,) and re-phasing according
toeq. 7-7.

However, for dinb; = 2n; > 2, the LAPACK/BLAS generalized eigenvalue
equation solver generally does not provide a bagis= (C; ,C; +n)1'j"= , Closed
under time reversal: Clearly, for a€y; € D;

(G®L)C) eb;, #A -(J®1,)C; €D;, (7-8)

i.e. one cannot always find a phassich that the time reversal-transformed basis
vectorC,-v is also a vector of the basi®;; but this has been assumed for the
re-phasing procedure of eq. 7-7. Although this LAPACK/BLB&havior has not
been observed for the most common d&im= 2 case, higher (for example atomic
m ;) degeneracies and, thus, eigenspace basis definitionssgsdiscussed cannot
be ruled out priori.

Therefore, a procedure different from the straightforwapg@roach of eq. 7-7
has been adopted:

TimeReversalInvariantRoothaanHall2cSCF_EigenSystemhas grivate
methodvoid construct_KramersConjugate2SpinorBasis() called by the
constructor, i.e. right after the LAPACK/BLAS generalizeijenvalue equation
solver has been run via the in-list constructor of Heemitian_EigenSystem
base.

Looping over all eigenspacés, construct_KramersConjugate2Spinor-
Basis() constructs Kramers-conjugate bases via eq. 7-7 foibgim 2, and em-
ploys a Schmidt-like orthogonalization schethkfor the dimb; > 2 case. Along
these lines, eigenvectofs; and eigenvalues; are re-ordered to match eq. 7-3,
i.e., fori € {1,...n}, from ane,;_; = €,; ordering to are; = ¢, ordering,
and the time-forward member of the transformed eigenvegio(C/, C/) ist cast
to thevector of KramersPairs0f_Molecular2SpinorRepresentations at-
tribute. Thus,

B ifdimb; = 2n; =2, C; andC; ., are re-phased according to eq. 7-3, and
that eigenvector with the largestspin component is cast to thewd at-
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tribute of the respectivEramersPair0f_Molecular2SpinorRepresen-
tations.

B if dimb; = 2»; > 2, an eigenspace basi3; of Kramers pairs(C,fU,C,fU)
is constructed from the basl3; = (C; .C; 1,), as follows:
In the u-th step, the projector

1 1 - -
PM _ PM—] CT* T (7_9)

C; = C; C;
IC; 117 N Tl e
0

l 1
_ pu—1 __ T . * T (s T
=P ||C ||2C1U_Cl'u ||Cl ”2(.] ® 12}1)C1U_Clu_(‘] ® 12n)
yoa

is constructed from
C;, = argmax{||C; [ | C;, € pr 1, (7-10)
piti=(prto Pl PATPIC, +,,)U \ {0} (7-11)

1

and, subsequently, applied to all vectorsM to give a newD“ =
(PHDI™ Hv{0Y. The vector<C; ,Ci are re-normalized tﬁf{ ,C’ and
added to

U (Ci,.C (7-12)
v=1
to give a newi)i“. Technically, in every step, that member of the pair
added toD* with the largesix-spin component norm is cast to théwd
attribute ofkramersPair0f_Molecular2SpinorRepresentations.
After n; steps,D;’ = @ andD;" =: D; is the sought eigenspace basis of
n; Kramers pairgC; ,C; ).

Note that, in then; > 2 case, no re-phasing step is necessary for eq. 7-3 to hold,
as this relation is built in the Schmidt-like procedure: e u-th step, D is
constructed with reference to only the largest-norm veel;ore D“ ! whereas
the second member @* is definedasC; iy

The remaining degree of freedom, i.e. the special unitamgpdgctic trans-
formation among the members of every Kramers p€if, C/), is removed by
choosing a set of particular transformation to maximize¥spinors’ similarity
to non-relativistic spin orbitalé®
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Choosing Maximum 2-Spinor Similarity to Non-Relativistic Spin Orbitals

As briefly discussed in sec. 3.1.3, a given Kramers @@jt C/) of vector repre-
sentations of 2-spinors is defined up to a special unitarypssetic transformation
only. Precisely, one is allowed to choosew;,(; € C such that

(C1,CDi = (€}, C]"); = (4 (v; Cf + w; C)), i (—w]C] + vfC))), , (7-13)

i

v; >+ |w; > =1, > =1, (7-14)
symbolically
- - Lo, —fwf
(€. €)= . e (0 ). (715)

eg. 7-3 also holds for the transformed Kramers pair from thgl€y form of the
transposed transformation matrix in eq. 7-15.

Following Hafner and Schwar? the parameters;, w;, and¢; are chosen
as to maximize the 2-spinors’ “similarity” to the respeetispin orbitals from the
non-relativistic, i.e. spin-symmetric limit, by maximigj the norms of the time-
forward 2-spinor'sx-spin and real part (and of the time-reverse 2-spingf&pin
component and real part).

Maximizing the norm of thex-spin component o€/ = v;C/ 4 w,; C} defines
(v, w;) 1= argvTSlX{HCf&Hz - li(|vi|2 + |w; > — 1)} (7-16)

from the constraint 7-14, i.e. by making the Lagrangian

L; = [[v;Cla? = 2Re(vjw; (Ciy. Ci3)) + Nw; Ci5 1 — & (Jv; I* + [wi]> = 1)

stationary with respect to* e {v}, w}}; thus!

!
OL; _ | v [Cigll> = w; (Ciq.Cig) —Liv; =0 foru* = v} (7-17)
- |
du* w; [C31I1% — v; (C3.Ciq) —Liw; =0 foru* = w}

In a similar way, the phasg can be chosen as to maximize the norm of the
real part ofC/”" = (,C/, i.e.

f Differentiation of L; with respect ta; andw; gives the complex-conjugate eq.s 7-17.
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Li = Cli =+ Ibl = arg maX{”ReliCl{IHZ — Ai(|ti|2 — 1)} . (7'18)

ai;,o;

Expanding R&€/ := %(L,-C{’ + FC/'*) € R?" gives the Lagrangian

A; = |Re(a;ReC! + ia;Im C; + ib;ReC; — b;Im C})|* — A;(a? + bZ — 1)
which is stationary in terms of the real and imaginary pajtandb; of ¢; if
10A4;
2 dc
| a;IReCy|2 = b; (ReC}. IMCY) — Aja; =0 forc = a;
b [IlM CY||% — a,(Im C”,ReCY) — A;b; =0 forc = b,

(7-19)

using ReC/”,ImC/ € R?" = (ReC/,ImC/) € R. Fromy; = €%, eq.s 7-
19 can be re-cast in terms of a single real paramgtesuch thatz; = cosy;,
bi = Singoi.

Therefore, both parameter séts, w;) and(cosg;, Sing;) are obtained from the
analog linear systems of equations 7-17 and 7-19.

Technically, the transformation to maximum similarity tomrelativistic spin
orbitals was implemented a®id SU2Transform() method ofkramersPair-
0f _Molecular2SpinorRepresentations called for allKramersPair0f_Mo-
lecular2SpinorRepresentations constructed withirconstruct_Kramers-
Conjugate2SpinorBasis(). The transformation parameters w;, and¢; are
computed analytically from eq.s 7-17 and 7919.

9 The normalized solutions™ of the hermitiar2 x 2 eigenvalue probleme* = A*e* are com-
puted as
VI+ (F =1 )%7 VIt OF =127
with 2% = L(t; + 135) + V(111 —122)% + |112]* € R from the characteristic polynomial.
Both e™ ande™ are evaluated to assert that the solutions of eq.s 7-17 difiiate not only

stationary points, but really maximizers |7, |> and||ReC/’ ||, i.e. satisfy eq.s 7-16 and 7-18,
respectively.
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For the ease of notation, the three-fold primed time relénsariant eigenspace
basis vectors similar to non-relativistic spin orbit&l$’ will, from here on, be
simply written asC;, the discussed transformations being understood.

7.2.3 Atomic Occupation Numbers and Angular Symmetry

Most atoms’ ground state electronic structure cannot beeteddoy a single HF
SCF Slater determinant because of its open-shell naturerdsls unrestrictéd!
and restricted open-shéflformalisms are, to some extent, applicable in a num-
ber of special (i.eJ-doublet) cases, this is certainly not true for the Kramers-
restricted closed shell HF SCF ansatz of eq. 3-2.

However, from, e.g., the point of view of approximate irfig@ess molecular
from atomic density matrices discussed in sec. 7.4, alspsierple approximate
models of atomic electronic densities are of some value.

SCF Density Matrices for Fractional Occupations of Atomic 2Spinors
A straightforward approach is a formal generalization & SCF density matrix
expression of eq.s 3-39 and 3-40 to

D =CvC™ (7-20)

n

Dpgaa = %Z (CpiaCia + CripCaip) - i
= - (7-21)
Dpgap = %Z (CpiaCiip = CpipCoia) - Vi
i=1
with the “occupation number matrix”
v = L diagy; @ 3 diagy; € R*"*" (7-22)

of generally non-integer “occupation numbers” € [0, 2] of the i-th Kramers
pair of 2-spinorg, and Trv = > ' _,vi =2N. Clearly, eq.s 7-21 collapse to the

h A less clumsy definiton o could be written as, e.gv, = diagv;, with v; € [0, 1] the occupation
number of the-th 2-spinor. However, in the Kramers-restricted closkelidormalismy; = v; 1,
as indicated by eq. 7-22, and can be referred to as a property of the Kramers @aitC; .
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special eq.s 3-39 and 3-40 for a closed-shell occupatiorbeumatrix
Iy @0, y D1y 00, _x. (7-23)

Then, starting with eq. 7-21, the can be set to that fraction @¥,; electrons
in a given, not necessarily closed, atortrc!/) shell that “occupies” every of the
21 4+ 1 Kramers pairs in that shell, i.e.

_ _ an
ing = Vnl T 5707
for all Kramers pairg,,; in that shell.

This ad hocchoice of atomic density matrices is similar to the Grandd@an
ical Hartree—Fock and Kohn—-Sham (GCHF, GCKS) SCF theofiébdulnur et
al.1*2 and Jargensen ar@hrn,}*3 but the particular choice of by eq. 7-24 does
generally not correspond to physically meaningful ensesnbl

v (7-24)

For a non-Aufbau occupatidrthe TimeReversalInvariantRoothaanHall2-
cSCF_EigenSystemconstructor takes an optional foudbnst string & argu-
ment defining this occupation scheme in conventional rotag.g."5s"2 5p~6
5d°2 6s~2" for the ground state, Hf atom with 60-electron PP. Then, a special
occupation number-to-eigenvector assignment block isugrd:

B The first step involves mapping the blisdring data to an internally struc-
tured occupation scheme object

std: :map<std::pair<QOL::ShellIndex::Shell, unsigned int>,
unsigned int> Aufbau;

In Aufbau, an atomic(n, /) shell is modeled by an SThair of the QOL
Shell class and aansigned int main quantum number. Shell is the
first pair template argument to have atomic shells ordered by incrgasi
orbital angular momentum quantum numbégend, within, main quantum
numbers:. The STLmap is, then, used to assign ansigned int num-
ber N,; of electrons to all members of the ordered set of atomic shell

I The term “Aufbau” or “Aufbau occupation” refers to an atonsiccupation scheme obeying the
“Aufbau principle” 144i.e., for an atom ofZ electrons, to a special occupation scheme that defines
the Z lowest-energy 2-spinors as occupi#din the present implementation, however, the term
“Aufbau” is employed somewhat loosely to label any, inchglhon-Aufbau occupation number-
to-eigenvector assignments.
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B To come to an assignment of these occupation numhgr® eigenvectors
C;, the latters’ orbital angular momentum quantum numbgeese identi-
fied by

b= agmad 3 (Cal + 1Cpal)} (725
peB, li
i.e. by projecting allC; to all subspaces spanned by the CGTO basis func-
tions [¢,) € B; € B with orbital angular momentum quantum numbers
|m, ||, =/, and assigning thd} that gives rise to the projection with the
largest norm-square.

B Finally, iterating over alkufbau entries, the lowest-enerdy; with /; equal
to the currentAufbau entry’s/ is interpreted as belonging to this atomic
shell, and the n attribute of the correspondirgramersPair0f_Molecu-
lar2SpinorRepresentations is set to
N
z;z(_'vnl:y:_lv

which effectively enables the connection of the flat 2-spindexi and the
atomic shell quantum numbersand/ implied through eq. 7-24. The same
occupation number is assigned to the n@tt- 1) — 1 eigenvectorE; with
the same orbital angular momentum quantum nunigeand the current
pair<Shell, unsigned int> isremoved fromufbau.

(7-26)

V; < v

The default reference to an emptyring defines an Aufbau occupation by eq.
7-23.

I Note that the present |mplementat|on assumeset,nglk enrj forn <n’ and aII] i.e. that, for
a given commod, the(n, ! + 1 ) 2-spinors’ energies are stlll lower than thé, [ — ) 2-spinors’
energies. This might not be true for cases with extreme sphit-splitting!14°
Itis noted in passing that it is generally not sufficient telede such extreme scenarios from only
physical arguments. In early, poorly damped SCF iteratsdaging from bad initial densities, the
“Knotenregel” has been numerically observed to be brokestlyng spin—orbit coupling, such
thate,;; < €,/j forn > n" andl < I”: For example, in the the, Hf test case illustrated in
fig. 7.2, thed-th SCF |terat|or6p1/2 virtual 2-spinor energies drop between g, andsds,
(fractionally) occupied 2-spinor energies. “Knotenrégiblations — within the stated assumption
€nij < €pr1j forn < n’and allj —are, however, routinely handled with the present impleeren
tion.
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Atomic Angular Symmetry

Having established this occupation number-to-eigenvexgsignment, the assem-
bly of D according to eq. 7-21 is straightforward. However, it hasrbabserved in
a large number of atomic test cases that convergence ofdheaself-consistent
field is not. Instead, convergence is spoiled by contanunatif C and, thusD

||||||||||||||||||||||||||||||||||||||||:||I|||||é|/|1/||!|Eﬁ:lil|l||||||||||||||||||||||||||
_lg Dk —pi-1],

plotted quantity /a.u.

o N B~ NN O

0 10 20 30 40 50 60 70 80 90 100
SCF iteration counf

Fig. 7.2: Angular symmetry breakdown an@émoveSymmetryContamination: Convergence be-
havior of HF SCF energ¥# and density matriD# for the ;, Hf atom, small-core MC-
DHF PP with cc-pVDZ basis?® 552 5p° 5d? 6s? occupation scheme, without (small cir-
cleso, @) and withremoveSymmetryContamination (big circlesO, ®)

matrix elements with almost-zero contributions from thenetcal solution of the
underlying generalized eigenvalue equation systems.

As showcased for the, Hf example in fig.s 7.2 and 7.3, this is amplified over
the SCF loop: A = 37, both| E#— E#~1| and||D#—D*~1||, begin to increase
again with increasinge as, illustrated in fig. 7.3, angular symmetry “blocking” of
C andD breaks down.

Therefore, in every SCF iteration and for all eigenvecysall eigenvector
componentsC,,;,, with respect to CGTO$p,) with /, # [; are discarded, and
the “clean”, angular symmetry-enforced eigenvectors esearmalized. Techni-
cally, a functionvoid removeSymmetryContamination(unsinged int &)

was implemented asMblecular2SpinorRepresentation method:
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’e.f il wj W e
III _Iﬂillil_li ||| ﬂi’lﬁl_li E‘Ill_lﬂﬁllu 1&“ lE'IEII _Iﬁlllﬂl_li

e E

. (1

Fig. 7.3: Pictorial representations of eigenvector and density ioeC* andD# from the 20-th,
30-th, 40-th, and 99-th SCF iteratign of fig. 7.2; the rightmost matrix pictures corre-
spond to the “clean”, angular symmetry-enforced 99-th S€fiion matrices employing
removeSymmetryContamination.

1 template <class USpace>

2 inline void Molecular2SpinorRepresentation<USpace>::

3 removeSymmetryContamination(const int & 1)

4

5 typename Molecular2SpinorRepresentation<USpace>::_Field

6 -4

7 typename _T::value_type norm = sqrt(this->norm());

8

9 const int n = _space->basis().size();

10 unsigned int p = O;

11

12 // ITERATE OVER CGTO BASIS FUNCTIONS:

13 for( CGBTree_Iterator<typename USpace::_CGBasisType>

14 I( _space->basis() ); I.valid(); ++I, ++p )

15 {

16 // first.first.1() RETURNS ANGULAR MOMENTUM QUANTUM NUMBER

17 if( I.i20)->first.first.1(Q) !'= 1) {

18 (xthis)[ p ] = 0;

19 (*this) [p+n] = 0; }

20 else {

21 (*this) [ p ] *= norm/sqrt(this->norm());

22 (xthis) [p+n] *= norm/sqrt(this->norm()); }

23 }
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24 }

As soon as a given eigenvector’s orbital angular momentuantgun numbet; is
evaluated in the course of the occupation number-to-e@ggay assignment, this
eigenvector is cast iolecular2SpinorRepresentation, and itsremoveSym-
metryContamination method is called witl; as argument.

As evident from the particular example shown in fig.s 7.2 ai®j &nforcing an-

gular symmetry greatly facilitates, if not enables SCF eogence in the general
atomic case. With the exception of oscillations for smalivhich are not atypical

for calculations starting from poor (e.g., core Hamiltanianitial guess density
matrices, convergence is generally smooth, yet slow.

7.3 Optimal Damping

In order to improve SCF convergence also for the generalentze large basis set
case, the 2006 QOL implementation’s naive Roothaan-ifallSCF algorithm of
sec. 4.3.3 has been abandoned in favor of the Optimal Dardpgugithm (ODA)
of Cancés and Le Brig%37

Stated briefly, the ODA is the most simple of a class of moreegarirelaxed
constraint algorithms” that relax the nonlinear idempoyeconstrainD“SD# =
D# over the minimization ofE5-(D); idempotency is recovered at convergence
of D. Operationally, in thex + 1-th SCF iteration one does not diagonalize the
Fock matrixF#* 1, but, insteadf#t1! = F(D**1) constructed from the “op-
timally damped” density matrix

DAL= (1= 1)D* 4+ AD* ! (7-27)
= FATl = (1 —)F* +AF*TT, (7-28)

From the similarity of eq.s 7-27 and 7-28 to analog express@efiningD andF
matrix damping technique¥/14°the parameter

A:=arg min {Ec~f(D*TH 7-29
g/le[O,l]{ sci )} (7-29)

is referred to as “optimal damping parameter”.
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Both the derivation and the detailed discussion of the SCRA(43 given by
Canceés and Le Brig®37 will not be repeated here.However, the 2-component
HF SCF energy functional of time reversal-invaria@£”>2" density matrice®,
ie.

EsceD) = Tr(h + 1G(D))D (7-30)
differs from the 1-component HF SCF energy functional ohgjgistricted R”*"
density matrice® considered by Cancés and Le Bris. Consequently, the analyt
expression for the optimal damping paramétebtained via eq. 7-29 is slightly
different: ) y

Abbreviating E4-' = Egcg(D**1), from eq.s 7-30 and 7-27,

- +1
ESCF

= E§cp+ ATr(F#(D*1 —DH)) + JA> Tr ((F*H! —F*) D ! —DH))
= Efcp+ Aatt! 4 122pH !

such that eq. 7-29 implies

e ou+l — _pptl
AM_’_l _ { 1 if a < b (7_31)

—bH T gt else

which differs from the 1-component Cancés—Le Bris expoesi a factor of%
for a*+1,

It has been observed that, in late SCF iterations employiig tonvergence
thresholds, computation of the optimal damping parametér' becomes numer-
ically unstable as both#*! —D* — 0,, andF*+! —F* — 0,, with increasing
w. Therefore, in the present implementatiot™! andb**! are computed from

K Put in a somewhat simplified way, the ODA is a minimizationesok of Egc(D) on the set

{D € C¥2n|TrD = 2N, |[DSD| < D]} of “relaxed constraint” density matrices.

Clearly, A contains the set\ of all idempotent density matricd® as proper subset.

The ODA is motivated and enabled by the facts that, fisicr has the same minima oA

andA c A,%7 and, second, thafl is convex, i.e. from{D;}; € A = ¥, 4;D; € A if only

3"; A; = 1 for non-negative.; .’

Then, in each SCF iteratign, diagonalization oF (D*) givesD**! e A —defining the “steepest

descent” of Egcg(D*) in the direction of idempotent density matricBse A — that serves to

construct a new inpdd“*1 e A via eq. 7-27, withk defined such thaEgcris minimized.
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Optimal Damping

the 1- and 2-electron energi&4‘t! and E4 11, the 2-spinor energy matris¢* ™1,
and 2-spinor occupation number matsi%*! via

with

attl = EfTL L o ETL _ pi _ TrFATIDA (7-32)
bHFTL = Trentlyttl _ TrFHDK (7-33)
Ef* = TrhpA T 2T = TrgrTDat! (7-34)

to avoid repeated computation of traces (of products) obatraero matrices.
The implemented 2-component SCF ODA can thus be statedlaw$ol

B construction ofS, T, U, andW matrices;

B evaluation of all symmetry-unique electron—electron feipa 4-index in-
tegralsg,,,s € $», and storage;

B setting the initial guess density mati to null;
then, forép > 0 a density threshold, in the-th SCF iteration

1:

»

orthogonalizeF #, diagonalize, and back-transform to obtain theh
eigenvector matrixC#;
construct a Kramers-conjugate basis and assemble a neitydeas
trix D4+ via eq. 7-21;

w+1,

- if |[D#T1 — D#||, < 8p terminate and computBL - ;

else

. assembl&G#A ! = G(D#T1) via eq.s 3-41 and 3-42;

assemble thg + 1-th Fock matrixF#+1 = F(D#+1) = h + G+,

. computeE!* T, E4 ! q# 1 pit1 according to eq.s 7-34, 7-32, and

7-33, respectively, and the+ 1-th optimal damping paramett !

as .
AM_’_l . 1 if a‘hLl < —bM+1
T —bhtTL e else

' Moreover, ifa#*1 and/orb”** drop below a threshold, typically set tos = 10712, A#+1 is
set to%, defining a simple averaging & andD#+1,
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7: Self-Consistent 2-Spinor Fields

6: assemble
prtl.— (1 _Mc+1)f)u 4+ putlpatl
Futl.— (1 —)W“)I:““ + AM IR+l
and goto 1.

Fig. 7.4 shows, for the,Hf atom example, the improved SCF convergence
behavior, as compared to the performance of the Roothadlrtylda SCF algo-
rithm employed for fig. 7.2. Eqcf is converged below0~° a.u. in only 15, as

plotted quantity /a.u.

o N B~ N O

40 50 60 70 80 90 100
SCF iteration counit

Fig. 7.4: Performance of the SCF ODA for thgHf atom, small-core MC-DHF PP with cc-pVDZ
basis146 552 5p¢ 5d2 6s? occupation scheme. The same plot scale as in fig. 7.2 has been
chosen for the ease of comparison with the Roothaan—Had-BCF algorithm.

opposed ta4 iterations.

Although tempting to conclude from comparison of fig.s 7.8 @ only, the
SCF ODA does generally natcelerateconvergence. In fact, algorithms employ-
ing convergence acceleration techniques as, e.g., Bi8nd advanced relaxed
constraint algorithm®-151.15%have been shown to be superior to the SCF ODA in
late iterations near stationary points B.r ¢ However, the SCF ODA has been
shown to be more stable, particularly in early iteratiéhsind is guaranteed to
converge to a minimum of the HF SCF enerjy\’

MWhether this remarkable, yet formal algorithmic propesyf practical value from the point of
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Fig. 7.5: Comparison of Roothaan—Hall-type and SCF ODA convergerbenbor: TIH at exper-
imental dr_y = 3.5338au.,13 ¢, Tl small-core MC-DHF PR3! with cc-pVXZ and
aug-cc-p\X Z basis139:140for cardinality numbersy of 2, 3, and4. Displayed are both
—lg|E* — E*~1 and—Ig | D* — D#~1||, for the Roothaan—Hall-type (small circles
o) and SCF ODA (big circleS, @), respectively.

These properties are, to some extent, illustrated by thmisgé/ uncompli-
cated TIH example in fig. 7.5 and tab. 7.3: Clearly, SCF cayemce becomes

view of implementation, where SCF convergence may well lméleth by numerical artifacts as,
e.g., discussed in sec. 7.2.3, cannot be assessed heredataity
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7: Self-Consistent 2-Spinor Fields

worse with increasing basis set size. Whereas even the dusheaive Roothaan—
Hall-type SCF algorithm converges faster for the smallep¥¢®Z and aug-cc-
pVDZ basis sets, the SCF ODA savkserations for the cc-pVTZ case and shows
equally robust convergence behavior over the whole range@farios consid-
ered; contrasting, the Roothaan—Hall-type SCF algorithits fo converge at all
for basis sets larger than, and including, aug-cc-pVTZ.

Tab. 7.3: Numbers of SCF iterations needed to converg€gcr below sz = 1072 au. for the
discussed TIH case, using different ccp¥ and aug-cc-pX Z basis set539140with
cardinality numbers(, for the Roothaan—Hall-type and the SCF ODA.

2 aug-2 3 aug-3 4 aug-4

v Roothaan—Hall-type 15 18 33 failed failed failed
v ODA 23 22 25 24 27 26

7.4 Molecule-From-Atoms Initial Guess Densities

To further improve SCF convergence, particularly for eddyations in the SCF
ODA loop, a “molecule-from-atoms” density (MFAD) initiabgssing scheme has
been implemented. As originally proposed by Almlof et®Ithe 0-th molecular
SCF density matriD# = D0 is constructed from SCF density matrid@éA) for
all atomsA of the molecular system of interest as

D)(zy’ = Dyy/(l) D D)/y’(z) PP Dyy’(A) ®--- (7_35)

fory,y’ € {«, B}." Eq. 7-35 is similar to the ASA3and ADMA methods:>* and
is the first step of Jansik et al.'s multilevel stratégyyvan Lenthe et al.®® inves-
tigations demonstrate that MFAD are generally superiorragrigpically available
semiempirical and minimal basis initial guesses.

NThe need for a block-wise definition &° comes from the particular row and column ordering
adopted in sec.s 3.2, 5.1.1, and 5.2.2. for hermitian timersal-invariant matrix representations.
With the H**" — A, mapM of eq. 5-6, however, one can defiBd = M (P, M D(4)),
which is employed in the implementation of eq. 7-35.
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The following discussion is, again, restricted to the maeayal 2-component
case. However, completely analog functionalities areigexi/for the spin-free 1-
component HF SCF calculation scheme.

Technically, the top-level classtandardMolecularHamiltonian2SpinorRe-
presentation_Container has been given a methpdovide_AtomicSCFDen-
sityInitialGuess() that returns @élermitianTimeReversalInvariantMa-
trixRepresentation object that is, then, employed @th molecular SCF den-
sity matrix.

Central toprovide_AtomicSCFDensityInitialGuess() is the auxiliary
CompactAtomic2c0DASCFJob class of a single templatégcGT0Basis parameter,
matching the wrappingtandardMolecularHamiltonian2SpinorRepresen-
tation_Container’s CGTOBasis argument. The single constructor fraronst
Molecule & and two references ionst string, defining the atom, the atomic
CGTO basis sét,and the atomic occupation scheme, respectively, carriearou
HF SCF calculation with an energy thresholdsgf = 10~8 a.u. The converged,
quaternion-valued density matri ~!D is then retrieved via th&tomicSCFDen-
sityMatrix() method.

Having wrapped the actual HF SCF calculation withpactAtomic2c0ODA-
SCFJob, provide_AtomicSCFDensityInitialGuess() runs over allitom en-
tries of the inpuMolecule and constructs étd: :map<Atom, CompactAtomic-
2c0DASCFJob> container: For every unique atom type, a correspondingesing
entryMolecule, PP core size-specific occupation schestieing,” and basis set-

O More precisely, theonst string & defines the path, relative to tB80ME/QOLBasis2 direc-
tory, of the respective CGTO basis set’s XML file.

Note that both through the matching @mpactAtomic2c0DASCFJob’s andStandardMolecu-
larHamiltonian2SpinorRepresentation_Container’s CGTOBasis template argument, and
through setting theonst string & argumentt®tandardMolecularHamiltonian2Spinor-
Representation_Container’s basis set-defining attributébasis, the basis set for the atomic
calculation is restricted to the basis set employed fordban in the subsequent molecular calcu-
lation.

PPP core size-dependent occupation schemes are providdt muxiliary AtomCore20ccupa-
tionSchemeMapper class derived fronmap<pair<string, unsigned int>, string> that
assigns element names (codedsaging, and readily converted tQOL: :Molecule: : Type-
Class) and PP core sizes to occupation schemes as discussed iy 28. Upon construc-
tion, AtomCore20ccupationSchemeMapper reads this assignment information from a C-array of
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7: Self-Consistent 2-Spinor Fields

definingstring is defined and handed to the respectivepactAtomic2cODA-
SCFJob’s constructor to run the calculation.

1 // provide_AtomicSCFDensityInitialGuess() const {

2

3 typedef std::map<Atom, CompactAtomic2cODASCFJob> mA2SCF;
4 mA2SCF AtomicSCF;

5 AtomCore20ccupationSchemeMapper OccMapper;

6

7 for( Molecule::const_iterator A = _molecule.begin();
8 A '= _molecule.end(); ++A )
9 {

10 typename mA2SCF::const_iterator I = AtomicSCF.find(*A);
11 if( I == AtomicSCF.end() )

12 {

13 const string Basis(_basisl.first);

14 const string Occ = OccMapper[make_pair(

15 A->typeClass() .name(), A->PP().coreSize())];
16

17 AtomicSCF.insert(make_pair( *A,

18 CompactAtomic2cODASCFJob(*A, Basis, Occ) ));
19 +

20 }

Then, iteration over all atomic centerg of the CGTO basis set, and step-wise
construction of the direct sum of eq. 7-35 from the atomicsitgrmatrix D (A4)

of the atomic type at4, gives rise to the same basis function orderin@fhand
matrix representations constructed from the full molechksis set.

The improvement of the SCF ODA convergence is illustratefigin7.6 and tab.
7.4 for the TIH example already considered in sec. 7.3: FacghV X Z basis sets
considered, the MFAD initial guess bring®! — D?||, close tol. Convergence

is generally smooth and free of oscillations also for theyvest iterations, and
—forég = 10~° au. — achieved inl9, 18, and18 iterations as compared &3,

25, and27 for cardinal numberX of 2, 3, and4, respectively; analog conclusions
apply to the considered aug-cc-g\Z basis set cases not displayed. Note, too,
that the MFAD SCF ODA provides equally robust performanaealbbasis sets

AtomCoreString objects (declaredtatic and) defined irStandardMolecularHamiltoni-
an2SpinorRepresentation_Container.C.
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Fig. 7.6: Comparison of core Hamiltonian and MFAD initial guess SCFAOtonvergence: TIH
at experimentadit;_ = 3.5338 au.,*38 ¢, Tl small-core MC-DHF PR3l with cc-pVX Z
basis3914for cardinality numbersY of 2, 3, and4. Displayed are both-Ig|E* —
E*=1 and—Ig [D* — D#~1|, for core HamiltonianP® = 0,,,, small circleso, e)
and MFAD initial guesses (big circl€3, @), respectively.

considered — contrasting the core Hamiltonian initial guesses.

Tab. 7.4: Comparison of core Hamiltonian and MFAD initial guess fag THiH example of fig. 7.6.
Given are numbers of SCF iterationsmieeded to convergBggbelowsz = 1072 au.,
2-norms of differences of the first and last iteration’s dignsatrix andD® for MFAD
initial guess matrices; the latter vanishes trivially B = 0,,,.

2 aug-2 3 aug-3 4 aug-4
MFAD initial guess

v 19 19 18 18 18 18
D! — DO, 1.16 1.37 1.01 227 2269 1197

core Hamiltonian initial guess

y 23 22 25 24 27 26
ID'—DO|, 2094 4791 3446 51.85 32325 413.10
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8

4-Index Integral Transformation
and MP2

Almost all post-HF electronic structure theories that mage of expansion tech-
niques in terms of 2-spinor Slater determinant many-adacfunctions refer to
matrix elements of 1- and 2-electron operators in the “madégc2-spinor”, i.e. a
Fockian eigenbasis. For example, in the second-order k#llesset perturbation
theory energy expression

|gijab - gijba|2

, 8-1
€ +€—€,—€p 1)

Evipz = Escr+ % >
ijab
the indicesi, j, a, andb refer to (occupied and virtual) 2-spinofg) defined
by (¥;|f¥;) = €;8;;; consequentlyg;i,p, = (¥; V18V, ¥p). However, the 2-
spinors are generally different from the “atomic” CGTO Isafsinctions in terms
of which these are expanded for the discretization of the BF &quations.
Therefore, the first step in a post-HF calculation is thesi@mation of the
“atomic 2-spinor basis'1-electron 2-index and 2-electron 4-index integrals to the
molecular 2-spinor basis.

&@From the expansion of the 2-spindtg ) = > ,(Cpiq|ppa) + Cpigle,B)) in terms of “scalar”,
i.e. not spinor-valued CGTO basis functidigs ), the term “atomic 2-spinor basis” has to be used
in a somewhat loose sense, meaning the basis of #iem-centered CGTOs.
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Based on the QOL 2-component HF SCF modules discussed imebeding
chapters, a 4-index integral transformation similar to4he algorithm has been
designed and implemented as a first step towards correlateglation schemes.
Integral indices are transformed pairwise for implicitrsjsitegration as discussed
in sec. 8.2.1. The naivk:’ transformation algorithm of sec. 8.2.2 is formulated as
a sequence of matrix—-matrix multiplications, employinghty efficient BLAS3
routines and specialized matrix classes discussed in s&8. 8An exploratory
application of 2-component MP2 theory to the Rn dimer is @né=d in sec. 8.3.

4-Index Integrals: Index Notation, Restriction, and Symmery

The connection of the atomic and molecular 2-spinor bass éAd MS basis)
4-index integrals is given by eq. 3-23, i.e.

8ijkl = Z Z Z Z C;in;jy’Crky” sly” 8prqs (8'2)

py qy/ ry// Sy///

for p,q,r,s € {1,...n} andy,y’,y"”,y"” € {a, B}. As already defined in sec.
3.2, here and in the following, ¢, r, s; andi, j, k, [ are general AS and MS
indices, respectively.

Where necessary, “occupied” and “virtual” will be labeled, k, [; anda, b,
¢, d, respectively, spanning the occupied and virtual subspace

O = span(|y; ). 1¥;))ico S span(|y; ). |v; ))u,- =2
V = span(|v,). ¥ 4))aer S 3pan(|1//a),|l5a))ua=o-

Note that, for almost all post-HF calculations, typicaliylypa subspace o® &

V is considered, i.et, occupied andy virtual 2-spinor Kramers pairs of are

discarded. For the ease of notatidh,andV are understood to always exclude

these2r, + 2ty 2-spinors, and to be defined by the occupied and virtual index

setsO :={tp + 1,...N}andV := {N + 1,...n — ty}, i.e. by the equality in

8-3P

b In a small numbers of cases as, e.g., the gerigyab expression of eq. 8-1, no particular reference
to a Kramers-restricted calculation scheme is made Guachd V are understood accordingly as,

e.g.,0 = span(|y;)); e{2tp+1,..2N} S spar(|1//i))vl_=1. However, no different notations will
be employed, as the precise meaning of, &gwill always be clear from the context.

(8-3)
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8: 4-Index Integral Transformation and MP2

Note, too, that for real-valued CGTO basis functigs) the AS basis inte-
grals g,.qs are real, but generally;;;; ¢ R. Therefore, fewer symmetry rela-
tions, i.e.

ijki = &jitk = &klij = &lkji » (8-4)
apply to theg;;;; as compared to the,, ;. However, for a time reversal-invariant
2-spinor basisD = (|¥;),|v¥;));, one has from eq.s 2-15, 2-17, and 2-21 the
additional relations .

8ijki = Silkj - (8-5)
gijkl = _g?lkj ; (8-6)

where the barred indexis understood to label thieth time reversal-transformed
2-spinor, i.e.gf“,,;j = (Y ¥;1&Vivy); clearly, g, = gf.";.,;i.

8.1 Preliminary Considerations

The integral transformation of eq. 8-2 is typically implamex employing the so-
called4n® or “successive transformation” algoritiff Considering the simpler
spin-free 1-component case of eq. 8-2, i.e. transformingabvaluedg;;;; and

dropping spin indices, the idea is to carry out the summaitiofour steps, re-

writing
8ijkl = E Cip E qu E Crk E Cslgpqrs . (8-7)
p q r K

For anR™*mxnxn _, Rrxnxnxn transformation, the operation count scales as ca.
4n° with n: In the innermost and second-innermost SUMSCs18pgrs = &pgri

and) . Crr&€pqari = &pqk1 ON€ has: multiplications (and additions) for ah?
(r,1) andn? (k, ) index pairs, respectively, i.e:n*>+n-n? = 2n3 operations; but
this has to be done for al (r, s) index pairs, thus involving? - 2n3 operations.
Computation of the two outermost sums via the same process thius a total
operation count odn> .

C ForRrxnxnxn _, pmxmxmxm transformations to truncated Fockian eigenbases of diimesns
m=n—tg—ty <n,the operation count is*m + n3m? 4+ n?m3 + nm*, i.e. approximately
n*m for n > m. Considerations of index symmet3?~1%can further reduce the computational
effort.
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Eg. 8-7 can be written as a sequence of four matrix—matrixipticetions and
re-ordering steps: For example, the innermost sum oean be written as

chlgpqrs = ngrqscls = Z Irn(p,q,r)scsl = (IC)rn(p,q,r)l ., (8-8)
s s s

employing theR"> " 4-index integral matrix;

Tt (poq.7) = Ty(pog.r) =n’p +ng +r (8-9)

is a map from the first three of the four 4-index integral irdi¢o thel matrix’s
row index. Then, after re-sorting tH& matrix's elements adC). (,. 4. -1
(IC)<,q, p,q)r» the second-innermost sum ovecan be computed in exactly the
same fashion, etc.

Whereas this key point, i.e. the step-wise computation e@falr sums of eq. 8-7
as matrix—matrix multiplications, is also central to theplamented 2-component
transformation algorithm, a somewhat different procedwa®to be adopted from
the 2-spinor nature of the 1-electron functions and theamitarity of the time
reversal operator.

8.2 Integral Transformation to Fockian Eigenbases

8.2.1 Broken Spin Symmetry: Index Pair Transformation

In the general 2-component case, the transformation of A@Sdasis 4-index

integralsg; x; cannot be performed as a straightforward sequence of fotrixma

matrix multiplications from the breaking of spin symmetBxpanding a 4-index

integralg; jx; in terms of the-th, j-th, k-th, andi-th 2-spinors’ spin components
gives

8ijkl = iy jgkaly T 8igiskals T 8iginksly t 8igjgksly - (8-10)

using the notatiog,-yjy,ky,,,y,,, ‘= &ijklyyy"y fOr the clarity of presentation.

However, eq. 8-10 follows from spin orthogonality and thenspdependence
of ¢, whereas the individual spatial integrgl;;;jy,ky generally do not vanish
for arbitrary spin index combinations

4 ly///
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8: 4-Index Integral Transformation and MP2

Therefore, a 4-index integral transformation similar te #n> algorithm of
sec. 8.1 must be carried out in two steps, transforming #wtrein-1 and -2 indices
pairwise in each such step.

First of all, the 2-spinor expansion coeffient maixe A, is partitioned in four
n x n block matrices as

(Clal o Cian _Cl*,Bl e _Cl*om\
c. C C‘ C' — x _C‘*
C = o _a) — nal nan nB1 nan (8-11)
(Cﬂ C,B Cl,Bl Cl,Bn Cl*al Cl*otn
Cn,Bl e Cn,Bn :otl e C;zkom

i.e. in the time-forward and -reverse 2-spinor vector repngationse- andS-spin
component matrice€,,, C, = —C}, Cg, andCg = C, respectively.

Transformation of the electron-1 indicgsandr is done by separate multi-
plication of I € R7xn by, e.g.,C, andCg, obtaining the intermediat€””’x»
matrices with elementd Cy) (4. -, 5)i, = &qrsi, and(ICﬂ),n(q’r,s),-B = gqrsiﬂ,
respectively. Then, re-ordering the intermediate masras(1C, ). . ,, i,
(ICy)e, s, i), q)r is followed by respective multiplication with, e.g., thme-
reverse matrlce€ andC g, and addition to the intermediate matrix with trans-
formed electron-1 indices, i.e. with elements

gsiql} = gsiaqlga + gsi,;ql}lg .
Transformation of the electron-2 indices proceeds in éxdhe same fashion,
re-ordering of the intermediate matrix understood. Thexnpair transformation
steps are illustrated in fig. 8.1.

Within a given pair transformation step, arbitrary trunmas of theQ & V basis
transformed to are readily achieved by employing m sub-matrices o€, for
multiplication, i.e. by discarding the firgf) and the last,, columns such that

m = n —tg — ty. Then, the dimensions of the intermediate matrices change
with every multiplication and re-ordering step. Consedlyethe tensor-to-matrix
index mapr, of eq. 8-9 has to be generalized to

ta: (p.q,1) = ta(p.q,r) '=ngn.p+n.q+r (8-12)
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C C
= 8qrsiy }’")( 8singr )—a>(g5iaqi‘w
————— o Eaigl) = X S,
8qrsig )} &sigar = Esipais
Cg Cg

Fig. 8.1: lllustration of a single pair transformation step: 4-indetegral matrices are represented
mtamsoﬂhdr4mwexmwgmnnmﬁxdemem&e@Cyhd@Jﬁﬁy:gq”w.smm
and dashed box-connecting arrows indicate matrix—-mattkiplication and index re-
ordering steps, respectively.

and, thus, depends on all four indices’ domains collectatsivector indexd =
(np,nq,n,,ns).

From similar arguments as given in sec. 8.1, the operatiomtcior the first
pair transformation can be estimatedS8a$m + 8n3m + 8n3m? + 8n%2m?, in-
cluding thenm andn?m? re-ordering steps and a factoré€for complex-valued
arithmetic. Accordingly, the second pair transformatioesjasn2m? +8nm?3 +
8nm* + 8m*.

8.2.2 A Ndve 4-Index Integral Transformation Algorithm

The pairwise index transformation step discussed in theggliag section is the
basic building block of both the design and the implemeaotedif theQOL: : Spin-
orTransform_MPPT namespace’s class structure. Whereas these modules — as
discussed in sec. 8.2.3 — provide a certain degree of flayikar the implemen-
tation of more specialized transformation schemes, theudgon given here fo-
cusses on a general, “naive” algorithm to compute a sulbd&S dasis 4-index in-
tegrals from that the complete set can be generated by symne&ttions among
these integrals.

Considering time reversal-symmetry only, from a given ASi®d-index in-
tegralg,,,s, a total of16 possible MS basis integral types can be — and generally
have to be — generated, i.e.

8ijkl > 87jki1 > 8ijkl » 8ijil » 8ijki > 8ijki > 8ijkl » 8ijkl
8ijkl > 8ijil > 8ijkl » 8ijki > 8ijkl > 8ijkl » 8ijkl - andgi}/%l :
However, because of the anti-linearity of the time reveogarator one generally
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8: 4-Index Integral Transformation and MP2

cannot, from a give;;x;, generate all others integrals. In fact, using eq.s 8-4,
8-5, and 8-6, the6 integral types can be collected in four “families” as

Skl = &k = &Gl = &k family 1; (8-13)

* o _
—&Gk1i = —8kjil 8jilk = 8ijkl

} family 2; (8-14)

_ *_ __ * __ * _ * _
=—81kji — 8kiij = 8lijk = 8ilkj
gl_*]ki = gi}];l famlly 4, (8-16)

such that a given family’s members can be generated fromatheh by hermitian
conjugation, electron—electron interchange, and timersal transformation, or
any combinations theredflt is thus necessary, but typically sufficient to compute
only four C™**™m MS basis 4-index integral matrices, i.e. one for each imtegr
family.

Whereas such four matrices are clearly distinct, some shavenber of inter-
mediates over the course of their computation from the A&khasdex integral
matrix I. For example, the family 1 and family 2 integralg; andg;;x; share
the electron-1 indices-transformed intermedigfgy; and, in fact, also the pair
{gqjyks}y-

It is this observation that defines the 2-component 4-indégral transfor-
mation scheme illustrated in fig. 8.2. A total 2§ matrix—matrix multiplications
is necessary to arrive at the four matrix representativéis element; iz, gijki
gijkl» andg;ji;, because different intermediatgs; i}, and{g;;j s}, have to
be computed fog;; ;7 andg;ji;, respectively, in the two right branches of fig. 8.2;
consequently] 0 re-sorting steps are needed.

d Note that the definition of the four integral families acdagito eq.s 8-13, 8-14, 8-15, and 8-16,
allows time reversal transformation of only a single elees 2-spinors and, by eq.s 8-5 and 8-6,
implies swapping the other electron’s 2-spinors among tiielimear and linear arguments of the
inner product. This can be too restrictive for specializpglizations that employ transformations
of the bra and ket 2-spinors to different subspace® @ V as briefly discussed in sec. 8.3.
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Integral Transformation to Fockian Eigenbases

T
electron-1 index T I
transformation {8iqrs)
T
electron-2 index
transformation gl ,Vks g, hks gl s) ] [{guyks} ]

Fig. 8.2: lllustration of the 2-component 4-index integral transfiation algorithm: Matrices are
represented in terms of their 4-index integral elements, aCy),d(, .a,1)s = i, qrs
index re-orderings ommitted for clarity. Only one half oétbomplete tree is shown; the
second half is analog with the electron-1 bra index barnethé present implementation,
only the four gray-shaded matrix representatives are ctedpexplicitly along the gray-
shaded path. Different representatives of integral famidire connected by arrows.

8.2.3 BLASS3 Multiplication-Driven Auxiliary and Matrix Cl asses

Central to the matrix—matrix multiplication-driven imphentation of the 2-com-
ponent 4-index integral transformation algorithm disealsabove is, of course,
efficient multiplication as, e.g., provided by the Level 3% CGEMM andZGEMM
(complex-valued single and double floating point precisi@utines.

Beside theQOL: :MatrixVector: :Matrix class already discussed in sec.
4.3.1, the 2006 QOL implementation provides a second, toesextent differ-
ent matrix class in thQOL: : LAPACK_BLAS namespace. Both classes’ interfaces
are largely similar and provide analog access of matrix el@mvia two-index
() operators, and basic matrix algebra operations. Withouiggato too much
technical detail, however, two main differences are of ingoace for the present
discussion: FirstQOL: : LAPACK_BLAS: :Matrix provides a global function

1 template <class T>

2 void mult_2ndTransposed(

3 const QOL::LAPACK_BLAS: :Matrix<T> & A,
4 const QOL::LAPACK_BLAS: :Matrix<T> & B,
5 QOL: :LAPACK_BLAS: :Matrix<T> & AB,
6 const T &);
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8: 4-Index Integral Transformation and MP2

for BLAS3-driven multiplicationmult_2ndTranspsed takes the product matrix
as third argument to bypass the need to return a copy of thdupto Second,
Matrix does not allow to choose different underlying evaluatomaioer classes
for, e.g., only non-redundant matrix element memory atioca InsteadMatrix
employs a simpl@&oost: :shared_ptr<std: :vector<T>> and a flat() oper-
ator only. Consequently, tH@0L: : LAPACK_BLAS: :Matrix class cannot exploit
matrix symmetry or internal structure.

For the matrix—-matrix multiplication-driven transfornwat of real-valued AS to
complex-valued MS basis 4-index integrals, an additieraljugate () method
was added tdatrix. For both template argumenisd: : complex<float> and
std: :complex<double>, the LAPACK/BLAS CGEMM and ZGEMM subroutines
have been interfaced aslt_2ndTransposed specializations for the respective
cases.

TheLAPACK_BLAS_4IndexIntegralMatrixclassis, then, derived from this
QOL: : LAPACK_BLAS: :Matrix by inheritance. Asindex mapping and re-ordering
is assisted by théctiveIndex, Integral4Index_CyclicPermutation, Ten-
sor2IndexMapper auxiliary classes, these are briefly discussed first.

Index Mapping and Re-Ordering Auxiliary Classes

Itis clear from sec.s 8.2.1 and 8.2.2 that the mappjngf the four integral to the
two matrix indices must change dynamically — both becauseeoéssary matrix
re-ordering steps and, in the general case of transforngatmtruncated 2-spinor
bases, varying index ranges. Therefore, a small numberxilfaay classes have
been provided to assist index operations by and on the t@bIlaPACK_BLAS_-
4IndexIntegralMatrixclass. The key design ideas are, first, that all operations
on the 4-index integrals’ index 4-tupel are cyclic permiota and, second, every
such permutation is defined by an “active” index to be tramséa.

B ActiveIndexis a simple enumeration type i.e.
enum ActiveIndex { ket2, ketl, bra2, bral };

Note thatket2, ket1, bra2, andbral are mapped to the integer valugs
1, 2, and3, respectively, by implicit type conversion.
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Integral Transformation to Fockian Eigenbases

B Integrald4Index_CyclicPermutation tracks index 4-tupel ordering by
its int _P attribute: It provides a singlént map2_mod4(const int &
p) method only, returning the rest of division By and+=, -=, +, and-
operators for addition and subtraction moddlo
In this way IntegraldIndex_CyclicPermutation mimicks the (com-
mutative) group structure of the cyclic permutatiaiisby {0, 1,2, 3} and
addition modulot. The connection to the four integral indices is made by
ActivelIndex, i.e. the value of P defines which integral index is the matrix
column index and, thus, is to be transformed.

B TheTensor2IndexMapper class is derived fromtd: : vector<int> and
effectively provides theyq mapping of eq. 8-12. Mapping of its four entries,
corresponding to the index ranges, is established nitsgral4Index_-
CyclicPermutation attribute: If this is the identity permutation, threc-
tor’s first, second, third, and fourth entry corresponds to teeton-1 bra,
electron-2 bra, electron-1 ket, and electron-2 ket indenéximum value,
respectively.

Index range re-ordering is enabled by theid setActiveIndex(const
ActiveIndex & A) method:A is — via implicit type conversion — “added”
to Integrald4Index_CyclicPermutation, which effectively computes
the cyclic permutation required to go from the current togpecified index
range ordering, and re-orders thector entries accordingly.

BLASS3 Multiplication-Driven 4-Index Integral Matrix Clas ses

The top-levelLAPACK_BLAS_4IndexIntegralMatrix class is a single-parame-
ter template of argumertt, assumed to be aftd: : complex<float> Or std: :
complex<double> types. It is aQOL: :LAPACK_BLAS: :Matrix by inheritance

€ C++ and, e.g., FORTRAN provide the ‘symmetric” modulo fiootz modn := a —n -inta/n,
with inta/n the integer part ofi/n. However, form € Z, generallya modn # (a + m -n) modn
for this function. Thereforepap2_mod4 has been implemented to return-n - |a/n| with the
desired property.

f That is,C4 is mimicked by the quotient group/4Z, i.e. the group of the rest classes moddlo
with addition. In the book of Fischéf® cyclic groupsC,, aredefinedin terms ofZ /nZ.
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8: 4-Index Integral Transformation and MP2

and, thus, makes use of all of the base classes’ methodstahdtas, particularly
of the BLAS3CGEMM- andZGEMM-drivenmult_2ndTransposed function. As al-
ready pointed out, index operations are assisted by an@uliTensor2Index-
Mapper attribute _m, enabling the definition of a four-index operator

1 const T & operator () (int i, int j, int k, int 1) comnst {

2 return (*this) ( _m[1]*_m[2]*i + _m[2]*j + k, 1 );
3}

in terms ofTensor2IndexMapper’s vector entries and the base classes’ two-
index () operator; this is precisely the index map

(i, j. k.1 (ta(i, j k). 1) = (nngi +ngj + k1)

induced by eq. 8-12.

Index re-ordering operations have been wrapped wwoid setActiveln-
dex(const ActiveIndex & A) method: If called, a neWwAPACK_BLAS_4In-
dexIntegralMatrix object is constructed from, setting the respective row and
column dimensions from the integral index ranges. Thengtitges of theLA-
PACK_BLAS_4IndexIntegralMatrix to be re-sorted are written to the new ob-
ject as defined by the cyclic permutation connecting the twdex orderings, and
the latter is assigned to the former.

The SpinComponentPair_4IndexIntegralMatrix class has been implemen-
ted only to assist organization of the complete 2-compo#féntiex integral trans-
formation procedure in terms of pair transformation steysl does not provide
any special functionality itself. Put brieflgpinComponentPair_4IndexInte-
gralMatrix inherits fromstd: :pair of LAPACK_BLAS_4IndexIntegralMa-
trix and has a constructor fromeanst LAPACK_BLAS_4IndexIntegrallMa-
trix &andtwoconst Matrix & arguments, mimicking the construction of two
spin index-labeled intermediate matrices, (@, with elementgIC
= &qrsi, 8S illustrated in fig. 8.1.

Inturn, theLAPACK_BLAS_4IndexIntegralMatrix class has been equipped
by a constructor from aonst SpinComponentPair_4IndexIntegralMatrix
& and, similarly, twaconst Matrix & arguments to wrap the pair transformation
step’s second part, i.e. separate multiplication of tha smdex-labeled interme-
diate matrices by coefficient matrices from the right, anditazh.

y)fd (q.1,9)i,,
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Kramers-Restricted Mgller—Plesset Perturbation Theory

With this class structure established, the electron-1xricensformation of fig.
8.2, i.e. the transformation from the AS basis 4-index irdkg ¢ to interme-
diatesg; ks andg;,is, can, for example, be written as

// typedef LAPACK_BLAS_4IndexIntegralMatrix<complex<

// double>> I4Matrix;

// typedef SpinComponentPair_4IndexIntegralMatrix<complex<
// double>> I4Matrix_Pair;

// I_pqrs CONTAINS ATOMIC 2-SPINOR BASIS 4-INDEX INTEGRALS
// WITH bral AS "ACTIVE" INDEX

© 00 ~NOO O~ WwN PR

I4Matrix_Pair I_iqrs( I_pqrs, fwdC_alpha, fwdC_beta );
I_iqgrs.setActiveIndex(ketl);

o
= O

I4Matrix I_iqks( I_iqrs, fwdC_alpha, fwdC_beta);
I4Matrix I_iqKs( I_iqrs, revC_alpha, revC_beta);

[
w N

In a very similar way, also transformation schemes diffefienm that discussed in
sec. 8.2.2 can easily be assembled within the same modulatwst, including,
for example, computation of different or all integral fagikpresentatives, trans-
formation of bra and ket indices to different subspace®ab V, etc. However,
none of these will be considered in any more detail at thiatpdnstead, this dis-
cussion is closed with the presentation of preliminary i@ggibns at 2-component
Mgller—Plesset perturbation theory level in the next secti

8.3 Kramers-Restricted Mgller—Plesset Perturbation The-
ory

Having the AS basis 4-index integralg,,; € %, transformed to the MS basis, it
is straightforward to evaluate the MP2 energy expressi@yo8-1.

Within the 2-component 4-index integral transformatiohesoe of sec. 8.2.2
that, for every integral familiy of eq.s 8-13, 8-14, 8-15d&8116, computes only
one representativey,,p, is cast to a form involving only these representative in-
tegrals as follows:

Expanding the square modulus and using hermiticity andreleeelectron
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8: 4-Index Integral Transformation and MP2

symmetry of theg;;,;, one obtains

2
1 Z |8ijab — gijba| 1 Z 8ijab8abij — Sijab8abji (8-17)

€ T € €g—€p 4 € t€ —€,—€p

ijab
for unrestricted summations over alV — ¢, occupied 2-spinor indices j, and
all 2n — ty, — 2N —tp. Defining the complex-valued MP2 “amplitudes”

*
8ijab
T__ = € . * = J . 8_18
ijab ijab gl]ab € + € —€4—€p ( )

eq. 8-17 is written in terms of Kramers pairs of 2-spinors as

Eyp2= 3 > ijabTijab — Tijba)&ijab + 3 Zuab( iiab — Tijba)8ijab
+ % ZijalS(TijalS ijba)gijab +3 Zijab(Tijab ijB&)gij&IS
+ 2 Xiiab Tijap = Tiiva) 8iian + 3 Lizan Tijan — Tijva) Sijan
+3 Z;}aé ijab — l]ba)gl]ab +3 Zt]ab( ijab — f}'l;z_z)gz_'}'&l_)
+3 Zt]ab( ijab — l]ba)gl]ab +3 Zt]ab( ijab — fjbz_z)gz_'j&b
+3 Zt]ab( ijab — l]ba)gl]ab +3 Zt]ab( ijab — lTjEt_l)gl_'jt;Z_)
+3 Zt]ab( ijab — l]ba)gl]ab +3 Zt]ab( ijab — i}'bz_z)gi}'&b
+3 Zl]ab iiab — Tijba)8ijab + 2 Zl]ab i7ab — Tiiba)8iiab

Then, from eq.s 8-4, 8-5, and 8-6, every of flteterms can be expressed in terms
of integrals of the types;up, gijaar &ijab @NAg;;ap as collected in tab. 8.1; note
that thee; ;,; are identical for all combinations of barred and unbarreficees.
Technically, theQOL: : SpinorTransform_MPPT namespace provides_&c-
MPPTnEvaluator template class of argumeftthat effectively evaluate®;p,
via tab. 8.1, i.e., for alli, j,a,b) € O x O x V x V, adds all16 rows of the
second column of tab. 8.1. All the necessary informationraesiped to the single
constructor from foukonst LAPACK_BLAS_4IndexIntegralMatrix & argu-
ments, corresponding to the matrices with elements,, gijuar &ijab, aNdgijan;
aconst std::vector<typename T::value_type> & argument holding the
2-spinor energies;; and aconst unsigned int &, corresponding to the num-

128



Kramers-Restricted Mgller—Plesset Perturbation Theory

Tab. 8.1: Re-writing the Kramers-restricted MP2 energy in terms & thpresentative integrals
computed within the 2-component 4-index integral tramsion algorithm of sec. 8.2.2
The «-labeled contributions t&),p, refer to integrals from different integral families.

*
8ijab
€ +€ —€,—€p

*
Tijab = €ijab * Sijab =

*
ijab (+gl]ab gijba)gijab
- * - -

ijab (+gjiba gijba)gjiba
* - -

ijab (+gl]ab gjiab)gijab
* R R

ijab (+gl]ab gijba)gijab

ijba)gijab €
€
€
€
- * -
Ez]ab (+gl]ab gz]ba)gz]ab
—€
—€
€

b~

ab — ijb[z)gij&b
b ijBa)gijaIS
ab — l]ba)gljab
b~
ab —

ija
ija
ija
ija
ija z]ba)gz]ab
J

ijab ( gl]ab + gjlab)gl]ab
ijab ( g]lba + gl]ba)gjlba
ijab (+gl]ab gz]ba)gz]ab

(T;

(T;

(T;

(T;

(T;

(Tijap = Tijpa)Sijan
Ti5ab — Tijba)8ijab
( ijab — z]ba)gz]ab
( ijab ( gbl]a + gaz]b)gbl]a

( ijab (+g1baj gl]ba)glba] <
( ijab (+gl]ab gzab])gz]ab <
(T;

(7;

(T;

(7;

(7;

szba)gz_'jab —€
€
€
Ez]ab ( gabl_] + gbal_])gabl]
—€
€
€
—€

T 1pa)8ijab
T55a)8ijab
T;pa)8ijab
i}'ba)gi}ab
Ti5pa)8i5ab
T335a)8i5ab
Ti35a)8ijab

ijab ( gajlb + gb]la)ga]lb

ijab (+gl]ab gzab])gz]ab <
*__

ijab (+g1baj gl]ba)glba] <

ijab ( gba]z + gabl])gbajz

a
a
a
a
a
a
a
a
a

JII I3 TIP3 33Tl 11

ijab —
ijab —
ijab —
ijab —
]b
ijab —
]b
ijab —

ber2N — ¢, of electrong’

Tab. 8.2 presents equilibrium bond lengtiisdissociation energied,, and har-

9 Implementation of a member function as, e.get_EMP2Contribution ()", for the LAPACK_-
BLAS_4IndexIntegralMatrix class is spoiled by the fact that, as indicated in tab. 81hesof
the contributions toFp, involve MS basis 4-index integrals from different familiglsthese are
defined according eq.s 8-13, 8-14, 8-15, and 8-16).
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Tab. 8.2: Equilibrium distanced,, dissociation energieB,, and harmonic frequencies, for the

222

s¢Rn dimer,gcRn small-core MC-DHF PP and cc-pVTZ basis $&.computed from
the interpolation polynomials of fig. 8.3.

de D¢ We
MP2, W = A, 8.6581 0.8421-1073 5.0882-107°
MP2,W = A + B, 8.4339 1.0551-1073 509115-10~°
Pyykko et al.162 MP2 8.6265 1.2899.1073 7.9280-107°
Pyykko et al.161 CCSD(T) 8.7721 1.0106-1073 6.7434-107>

0.0

AE /1073 a.u.

d la.u.

Fig. 8.3: DifferenceA E of the Rn, total MP2 energy\y,p» and the respective monomer energies as
a function of interatomic separatieh gsRn small-core MC-DHF PP and cc-pVTZ basis
set130 plotted are pointwise computetlE values and smooth interpolation polynomials

fitted to the seven points near the minima.

monic frequencies, calculated for thé22Rn dimer at the MP2 level of theofy,
using the small-core MC-DHF PP and cc-pVTZ basis of Peteesai. 3° both
without and with the PP’s spin—orbit part. Clearly, spirbibeffects are large and

P The underlying transformation to the 2-spinor basis hadreh truncated, i.e. all 2-spinors have
been correlatedd,, D, andw, have been calculated from interpolation polynomidls- B(d —
de)? + C(d — d,)? fitted to seven points near theE minima of fig. 8.3. Preciselyp, = 4 and
we = /2B/m, withm = 4.0470 - 10° a.u. for 222Rn.162
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found to shorteni, by 0.2242 a.u. or 11.9 pm. Rn, is bound byl.0551 - 1073 a.u.
at the 2-component level, which is more stabled®430 - 1073 a.u. or 5.80 meV
(ca.25 %, without BSSE correction) than compared to the spin-fteegmponent
calculation scheme.

Direct comparison with the large-core spin-free PP MP2, BGHd CCSD(T)
calculations of Runeberg and Pyykid that include SO-CISD corrections, is
difficult because of the different calculation schemes. kE\mv, whereas the ex-
ploratory results of this work should not be considered tooctusive, it cannot
be judged which values are more accurate because of, egattier restrictive 4-
index integral transformation truncation scheme empldgpedhe SO-CISD cor-
rections of Runeberg and PyykKk&!
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Summary and Outlook

At the time of writing, i.e. in spring 2010, the research gosthted in sec. 4.2.1
have been accomplished: The Quantum Object Library’s lpom@nt spin-free
Hartree—Fock SCF parts have been modified and extended tofalseomponent
spin-restricted all-electron and spin-free PP, and 2-anmapt Kramers-restricted
spin—orbit PP HF SCF programs. All are compatible with, artdgrated in, both
the established QOL structure and those parts subject afingglevelopment.
The detailed discussions givenin ch.s 5, 6, 7, and 8 are suaedas follows:

B Ch. 5: Matrix Algebra:

The QOL matrix and matrix representation algebra modulee baen sup-
plemented by two class hierarchies corresponding tdémitianMat-
rixRepresentationandHermitianTimeReversalInvariantMatrix-
Representation classes. The separation of basis functions’ domains and
UnitarySpace scalar product codomains introduced complex-valued alge-
bra on the matrix representation level, from basic arithengperations to
equation solving, without substantial changes to the &éskedal class inter-
faces? The inheritance tree of tH@ermitianTimeReversallnvariant-

aThe single relevant exception is that, nowcénst UnitarySpace &-type argument has been
passed to the matrix representation class constructarstfie need to decuple algebraic “repre-
sentation” and iteration-related “index” spaces, as dised in sec. 5.2.1.
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MatrixRepresentation hierarchy includes an auxiliaffermitianQua-
ternionMatrixRepresentation class for future interfaces to quaternion
algebra modules.

Ch. 6: 2-Component Pseudopotentials:

PPs have been introduced in the “pseudo-atom” and “-maé&@mework
of sec. 6.1, i.e. assigning a (generally vanishiggnilocalAtomicPseu-
dopotential to all Atom objects. No modifications of thetom andMole-
cule class interfaces have been made; the all-electron useixaseov-
ered if no PP definitions are given. PP parameter organizatiXML files
allows easy data communication and checks for syntacticamdntic con-
sistency.

PP integrals over CGTO basis functions are computed usagtarfaced
ARGOS PP integral subroutin¥ss® of Pitzer et al. TheélcMDPseudopo-
tential_Evaluator class wraps ARGOS common block definition, sub-
routine calls, and integral retrieval from the C++ side. REgrals are hand-
led quaternion-valued to allow evaluation and communicatf spin-free
and spin—orbit contributions simultaneously, employihg QOL's estab-
lished iterator—evaluator structure.

Ch. 7: Self-Consistent 2-Spinor Fields:

The new functionalities have been combined to give rise  arallel,
essentially analog, i.e. 1-component and 2-component HF @& ulation
schemes. From the use-case point of view, both differ inyramere than a
number of type definitions as, e.dquble VsS.std: : complex<double>.
Top-level classes a@gimeReversalInvariantRoothaanHall2cSCF_Ei-
genSystem encapsulate equation solving and eigenvector processing,
Fock matrix diagonalization; eigenspace-wise Krames-tirthogonaliza-
tion, unitary symplectic transformation, and re-phasimgnforce time re-
versal invariance; occupation number-to-eigenvectoigasent; and den-
sity matrix assembly.

The SCF Optimal Damping Algorith#i-3” has been adopted to the 2-com-
ponent setting and significantly improves, or actually éeslSCF conver-
gence. Initial guess density matrices constructed astditens of atomic
densities3®-1%% allowing fractional atomic occupation numbers, further im
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prove SCF performance.

B Ch. 8: 4-Index Integral Transformation and MP2:

Transformation of 4-index integrals to the molecular Xspibasis has
been implemented similar to the> algorithm 1>7 written as matrix—matrix
multiplications. A specialLAPACK_BLAS_4IndexIntegralMatrix class
has been provided, calling BLAS3 subroutines for efficienttiplication.
Auxiliary classes exploit the group structure of integradéx permutations
to keep track of index mappings and ranges generally chgnwiti every
transformation step. The provided class structure allowdutar, intuitive
implementations of general and special-purpose transitoom algorithms.
Exploratory 2-component MP2 calculations of the,Rmotential curve on
the basis of a full 2-spinor space 4-index integral tramafdion, exploiting
time reversal-invariance, prove the principle.

Before turning to a critical discussion of points of priraignd future interest, it
is noted that none of the issues addressed in this work — hgtlexception of the
4-index integral transformation to the Fockian eigenbpsésented in ch. 8 —is
performance-critical. A given HF SCF calculation’s demahdomputational re-
sources, i.e. CPU time, is almost exclusively determined-bydex integral eval-
uation; the same is true for memory requirements if integoaventional schemes
are consideref.

For example, the present ARGOS—QOL interface, includingngral evalu-
ation and communication from the QOL side, surely does nplogdthe ARGOS
subroutines’ full capability. At the time, PP integrals a@culated for every
distinct pair of primitive CGTOs separately. ContrastipddqgGOS allows evalua-
tion of PP integrals over all (symmetry-adapted and cotgthaCGTO pairs that
arise from all combinations of Cartesian monomials geeéeréitom the CGTO
pair considered, in a single call. However, this is irrefévar the overall perfor-
mance, and it is expected that the current implementatidimemain unchanged
for the forseeable future. A re-implementation is moreljike be addressed from

b However, note that, particularly in the 2- and 4-componeatnework, Fock matrix diagonaliza-
tion has been observed to contribute significantly to thealveomputational efforts3:-164for
density fitting-driven integral-direct or -semi-direct ldFKohn—-Sham DFT SCF calculations.
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the point of view of the current limitations to PP integrads CGTOs with/ < 5
and/ < 4 for the PPA and B parts, respectively.

Considering the actual SCF algorithm, two main points migghaiddressed in
the near future: First, for large systems, fhenatrix diagonalization step can be-
come performance-relevatt?-16°quaternion diagonalization techniqu¥3, ex-
ploiting time reversal symmetry of the problem, can speethigsstep by roughly
a factor of2,111¢but it is expected that other, more critical issues will havée
addressed before. Second, combination of the SCF ODA withergence accel-
eration methods as DIIS or, better, EDI1S®151.153s g |ogical next step towards
improved SCF performance.

As already stated implicitly by the limited size of the exdanp calculations pre-
sented in ch.s 7 and 8, the most critical point from the pdiniew of the present
implementation is the QOL’s 4-index integral part.

At the moment, the QOL provides a naive, integral-coneaai framework
only, and integrals are evaluated for every unique indextgoation separately;
although exploratory implementations exist, pre-screguioes not pay off in this
setting. Clearly, this restricts the applicability of alDQ HF SCF programs both
in terms of requirement of CPU time and memory.

It is therefore of pivotal importance to re-work and re-igmplent the QOL in-
tegral and, consequently, iterator—evaluator modulegmibiciently. Preliminary,
yet uncompleted experiments with code-generated modulg®iHanrath group
are promising, but the code is not operational at this timay #nplementation
of integral-direct SCF algorithms, relying on the code-ated modules, will
surely have to be done along the line with considerationatefjral pre-screening
techniques and integral-direEx matrix assembR/— the latter having to be ad-

¢ Parallelization strategies will probably not pay off in tHE SCF framework, because, — as op-
posed to DFT — much of the value of a given HF SCF calculatiamses from its nature as a
reference for post-HF methods, which are unlikely to beibdasf already the HF SCF calcula-
tion cannot be carried out serially.
Note that a diagonalization-free, trust region-based HFkohn—Sham DFT “Augmented Root-
haan—Hall” SCF algorithm has been proposed by Hast E%a1%6From its conceptual difference,
however, an implementation in terms of the established QBLSEF modules is not straightfor-
ward, but surely a valuable endavor.

d1t cannot be finally judged here wether such implementatiatagors are independent of (future)
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9: Summary and Outlook

dressed at the 2-component level of theory because of spipaoent exchange
coupling.

Very similar considerations apply to the 4-index integrahsformation to the
Fockian eigenbasis: The present implementation is linbiesignificant memory
requirements and crosses the BLASS3 turnover point by fat, gnfar too fast
with increasing system size. It is, therefore, logical tmtio integral-direct trans-
formation techniques, i.e. to re-compute the integralsettrénsfomed on the fly.
Any endavors in this field will surely profit from progress neadlith the efficient
re-implementation of the QOL'’s integral and iterator—eaabr modules.

As already stressed in sec. 4.1, the importance of thiscpdati work is directly
connected to the natural integration of the HF SCF (and, moesextent, the 4-
index integral transformation) modules in the larger-sc@uantum Objects Li-
brary structure. Clearly, the generalization to the reistic, 2-component pseu-
dopotential framework, as done in this work mainly for the 5IEF modules, will
have to be considered also, and in fact primarily, for thegtlarger QOL parts.

considerations of molecular double group symmetry or notarly case, such symmetry consid-
erations would be both interesting and promising, paridulfrom the point of view of post-HF
methods.
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Acronyms and Abbreviations

The following acronyms and abbreviations are used througihnis work. Whereas
most are conventional and common in the context of relditiviguantum chem-
istry and computer science, some are not, such that a canlisleis given®

AS
BSSE
cC
CCSD
CCSD(T)
CGF
CGTO
Cl

CPT
DC
DCB
DHF
DIIS
DFT
EDIIS
GPK
GCHF

Atomic 2-Spinor

Basis Set Superposition Error

Coupled Cluster

Coupled Cluster with Single and Double excitations
CCSD with non-iterative Triple excitation coriiecis
Cartesian Gaussian Function

Cartesian Gaussian-Type Orbital

Configuration Interaction

“Charge—Parity—Time”

Dirac—Coulomb

Dirac—Coulomb—Breit

Dirac—Hartree—Fock

Direct Inversion of the Iterative Subspace
Density Functional Theory

Energy-Direct Inversion of the Iterative Subspace
Generalized Philips—Kleinman

Grand Canonical Hartree—Fock

€ The chosen capitalization emphasizes the meaning of tpectge acronym or abbreviation and
is, thus, neither systematic nor meant to be orthograghicaftrect.
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GCKS
GTO

HF
LARL(1)
MC-
MFAD
MP2

MS

ODA

PP

QED
QOL
SCF

STL
SO-CIDS
UML
XML

Grand Canonical Kohn—Sham

Gaussian-Type Orbital

Hartree—Fock

Lookahead-LR (parser with lookaheayl
Multi-Configuration-

Molecule-From-Atoms Density

Mgller—Plesset Perturbation Theory to Second Order
Molecular 2-Spionor

Optimal Damping Algorithm

Pseudopotential

Quantum Electrodynamics

“Quantum Objects Library”

Self-Consistent Field

Standard Template Library

Spin—0Orbit Configuration Interaction Singles Diesb
Unified Modeling Language

Extended Markup Language
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