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Abstract

The relativistic pseudopotential (PP) method is one of the most common and suc-
cessful approximations in computational quantum chemistry. If suitably parame-
terized – e.g., fitted to atomic valence total energies from highly accurate relativis-
tic reference calculations –, atomic PPs provide effective(spin–orbit) 1-electron
operators mimicking the chemically inert atomic core subsystem, which thus is
excluded from explicit considerations.

This work deals with the development of a Kramers-restricted, 2-component
PP Hartree–Fock SCF program based on the spin-restricted, 1-component HF SCF
modules of the “Quantum Objects Library” of C++ program modules at the Dolg
and Hanrath groups at Cologne University. Kramers’ restriction, i.e. time reversal
symmetry, is addressed at the lowest hierarchical level of the (formally complexi-
fied) matrix algebra modules. PP matrix elements are computed using PP integral
subroutines of the ARGOS program, which are interfaced to the existing struc-
ture. On this basis, a set of spin-restricted, 1-component (all-electron and) spin-
free PP, and Kramers-restricted, 2-component spin–orbit PP HF SCF programs is
implemented. “Optimal damping” and initial guess density matrices constructed
from atomic densities are shown to improve SCF convergence significantly. As
first steps towards correlated 2-component calculation schemes, a modular struc-
ture for matrix–matrix multiplication-driven 4-index integral transformations to
the Fockian eigenbasis is developed, and preliminary 2-component MP2 calcula-
tions are presented.
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Kurzzusammenfassung

Eines der am weitesten verbreiteten und erfolgreichsten N¨aherungsverfahren der
computergestützten Quantenchemie ist das der relativistischen Pseudopotenziale
(PP). Geeignet parametrisierte PPs, die etwa durch Fits an atomare Valenzgesamt-
energien aus hochgenauen relativistischen Referenzrechnungen erhalten werden
können, stellen effektive (spin- und bahndrehimpulsabh¨angige) Einelektronenop-
eratoren dar, die den chemisch inerten Atomrumpf simulieren. Letzterer wird
somit von der expliziten Betrachtung ausgeschlossen.

Gegenstand dieser Arbeit ist die Entwicklung eines Kramers-eingeschränkten,
2-komponentigen PP-Hartree–Fock SCF-Programms auf Grundlage der spin-ein-
geschränkten, 1-komponentigen Module der “Quantum Objects Library”-Biblio-
thek von C++-Programmmodulen in den Arbeitsgruppen Dolg und Hanrath an
der Universität zu Köln. Die Kramers-Beschränkung, d.h. die Forderung nach
Invarianz bezüglich Zeitumkehr, wird auf der hierarchisch tiefsten Ebene der (for-
mal komplexifizierten) Matrixalgebra-Module realisiert.Zur Berechnung von PP-
Matrixelementen werden Teile des ARGOS-Programms in die vorhandene Struk-
tur integriert. Auf dieser Basis werden spin-eingeschränkte, 1-komponentige “all-
electron”- und PP-, sowie Kramers-eingeschränkte, 2-komponentige spin–bahn-
gekoppelte PP-HF SCF-Programme implementiert. Es wird gezeigt, dass sowohl
die Methode der “optimalen Dämpfung”, als auch die Verwendung von aus atom-
aren Dichtematrizen konstruierten “initial guess”-Dichtematrizen die Konvergenz
des SCF-Verfahrens bedeutend verbessern. Weiterführende Schritte zu 2-kompo-
nentigen korrelierten Verfahren beinhalten die Entwicklung einer modularen Pro-
grammstruktur zur Transformation der 4-Index-Integrale auf die Eigenbasis des
Fock-Operators unter Ausnutzung schneller Matrix–Matrix-Multiplikation. Ab-
schließend werden erste 2-komponentige MP2-Rechnungen vorgestellt.
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1

Introduction

The term “relativistic effect” is not easily defined. As put in a footnote to a recent
paper by Wang et al.,1

“[ The] world is relativistic, the nonrelativistic Schr̈odinger approach
being a reasonable approximation for lighter elements only.”

In this spirit, one could state that relativistic effects inchemistry2,3 are discrepan-
cies arising if formally non-relativistic considerationsare juxtaposed with obser-
vations of nature or, most often, accurate relativistic electronic structure calcula-
tions. Thus, increasingly popular statements as, e.g.,4 “Relativistic effects play an
important role in the chemistry of[the heaviest main-group elements]” have to be
understood in the sense that non-relativistic quantum chemistry ceases to provide
the correct picture.

This is already the case for second- and, to a greater or lesser extent, first-row
transition metals:2,3,5 Spin–orbit interactions6 are decisive for ground state con-
figurations of elements as light as nickel.1,7 The situation is even more pronounced
for heavy and super-heavy elements2,3,8 and, of course, especially important for
magnetic properties5 and optical spectroscopy.6,9

With the Dirac–Coulomb–Breit (DCB) Hamiltonian, possiblyeven including
corrections due to quantum electrodynamics, today’s machinery of wave function-
based correlation methods2,3,10,11allows relativisticab initio calculations of atomic
and small molecular systems with remarkable accuracy. However, 4-component
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DCB schemes are generally not affordable for systems of chemical interest, and
often are also not mandatory: In fact, chemistry and large parts of molecular
physics are dominated by comparably small energies and electronic momenta.
Beginning maybe in the late 1980s, a wealth of approximate12–15 and “exact” 2-
component theories16–20 to the Dirac equation has been developed.2,10,11 All of
these allow to focus the full computational effort to the Dirac spinors’ positive
energy components that dominate atomic and molecular electronic structure, and
address spin–orbit coupling non-perturbatively from the beginning. Although the
“ four components good, two components bad!” debate21 has not been settled,
it is safe to say that modern 2-component methods have been proven to be both
affordable and reliable tools for relativistic quantum chemistry.

The relativistic pseudopotential approximation2,22–24is conceptually different
in the sense that it does not aim at the decoupling of the Diracequation directly.
Instead, it provides a set of effective, variationally stable 1-electron (spin–orbit)
operators25,26
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that allow to solve electronic Schrödinger equations for valence electrons only:
The excluded atomic core subsystems – for which relativistic considerations are
generally most important – are mimicked by spin- and orbitalangular momentum-
dependent “pseudo-potentials” obtained from, e.g., relativistic atomic reference
calculations.27

The aim of this work is the development of a Kramers-restricted 2-component
pseudopotential Hartree–Fock self-consistent field program28–30 on the basis of
the spin-restricted HF SCF parts of Cologne’s “Quantum Objects Library” set
of C++ program modules. From their intimate connection to the QOL’s larger
parts, providing well-developed (arbitrary excitation single- and multi-reference)
Coupled Cluster modules, this is expected to give way to the possibility to per-
form high-level correlated electronic structure calculations also at the relativistic
2-component level in the forseeable future.

The adopted bottom-up implementation strategy, discussedin detail in ch. 4.3,
reflects, to a large extent, the organization of this work:

2



In 2-component Roothaan–Hall HF SCF theory, operator matrix representa-
tions have twice the row and column dimensions as compared tothe 1-component,
spin-restricted case, and are generally complex-valued. Kramers’ restriction, i.e.
invariance with respect to time inversion, manifests in special matrix block sym-
metries. The necessary modifications and extensions of the QOL’s matrix algebra
modules are discussed in ch. 5. 2-component pseudopotential integrals over Carte-
sian Gaussian-Type Orbital basis functions31,32 are calculated using the ARGOS
integral program31–35 of Pitzer et al., which has been interfaced to the QOL as
described in ch. 7. 6.

The 1-component spin-restricted all-electron and spin-free PP, and 2-compo-
nent Kramers-restricted spin–orbit PP Hartree–Fock SCF programs are presented
in ch. 7; all have been supplemented to allow fractional atomic occupation num-
bers, “optimal damping”36,37, and improved SCF initial guesses.38

On the basis of these programs, ch. 8 presents design and implementation of
modules for 4-index integral transformation to the molecular 2-spinor basis, and
preliminary correlated calculations at a 2-component Møller–Plesset perturbation
theory level to second order.

3



2

Principles of
Relativistic Quantum Chemistry

The purpose of this first, introductory chapter is to providea brief overview of the
larger context, the underlying concepts, and a number of more special issues of
central importance for this work. In sec. 2.1 the Schrödinger equation of motion,
the special role of time in quantum mechanics, and – in more detail – the symme-
try operation of time reversal are introduced. Then, sec.s 2.2 and 2.3 outline the
most basic features of relativistic quantum chemistry for the particularly simple
example of the Dirac equation for the hydrogen atom – which eases the discus-
sion of angular momentum and spin–orbit coupling from the spherical symmetry
of the potential –, and of 2-component approximation schemes to this Dirac equa-
tion, respectively; the 2-component pseudopotential approximation is discussed
in more detail in sec. 2.3.2.

It is clear that the presentation of this chapter cannot be comprehensive by
any means. Instead, the discussion has been given an operational focus with the
particular aim of fixing notation and introducing importantrelations as reference
for the following parts of this work.

4



Equation of Motion, Time, and Time Reversal

2.1 Equation of Motion, Time, and Time Reversal

The following discussion gives brief accounts of the time-dependent and -indepen-
dent Schrödinger equations in sec. 2.1.1 mainly to providegrounds for the detailed
discussion of the symmetry operation of time reversal and its properties in sec.
2.1.2.

2.1.1 Time-Dependent and -Independent Schrödinger Equations

Central to almost all wave function-based quantum theoriesof atomic and molecu-
lar physics and chemistry – independent of the nature, number, and types of inter-
actions among the system of interest’s particles – is the time-dependent Schrödin-
ger equation39–41a

i
d

dt
j	t i D OEt j	t i : (2-1)

Eq. 2-1 defines both the system and its state by its hermitian “Hamiltonian” energy
operator OE and state functionj	t i, respectively. Writing41

d

dt
j	t i ´ lim

�!0

j	tC � i � j	t i
�

(2-2)

) j	t C dt i D .O1 � i OEdt/j	t i µ OUtC dt j	t i (2-3)

defines the infinitesimal unitary “time translation” operator OUtC dt that effects
propagation of the state function from timet to time t C dt . For the special, but
common case of time-independent HamiltoniansOE, the statej	t i at timet is thus
defined by the finite transformation

j	t i D e�i OEt j	0i D OUt j	t i : (2-4)

Thet D 0 statej	0i is formally the single integration constant for the solution of
eq. 2-1 with OEt D OE.b

a The primary reference is probably Schrödinger’s “Undulatory Theory of the Mechanics of Atoms
and Molecules”, 39 but central ideas have been published elsewhere.42–45. Here and in the fol-
lowing, the term “Schrödinger equation” refers to any equation of the form 2-1, with OEt not
necessarily restricted to Schrödinger’s non-relativistic energy operator.

b There is no (hermitian) time operator or observable in quantum mechanics.46 Instead,t is un-
derstood as parameter that formally labels a family.j	t i/t 2 R representing propagation of the

5



2: Principles of Relativistic Quantum Chemistry

For the stationary states considered in the largest part of this work,j	t i of eq.
2-4 is an eigenfunction ofOE. Then, the time dependency can be factored out as
time-dependent phase e�iEt , and eq. 2-1 simplifies to40,41

OEj	 i D Ej	 i with j	t i D e�iEt j	 i : (2-5)

2.1.2 Time Reversal in Quantum Mechanics

“T symmetry”, i.e. the invariance of (a subset of) the laws of physics under time
reversal46–50

T W t 7! �t ; (2-6)

is a fundamental discrete symmetry of systems of chemical interest.T symmetry
can, to some extent, be exploited similiarly to point and space group symme-
tries to give insight to a given system’s physics, and to simplify its abstract de-
scription.49,51,52Put somewhat simplified, if for a time reversal-invariant system
a given trajectory is accessible,T symmetry allows also the reversed trajectory.

It is stressed that “time reversal” does not refer to “going backwards in time”,
but is best understood as “motion reversal”:46,47,49T transforms a given system’s
dynamical variables of position and (conjugate) momentum as

r 7! r ; p 7! �p I (2-7)

consequently,L 7! �L.
Within the contemporary experimental uncertainty there isno evidence that

electromagnetic interactions breakT symmetry.c Therefore, the relativistic elec-

state. Moreover, the “time derivative” of eq. 2-1 is not an operator on the state Hilbert spaceE:
Eq. 2-1 is, more precisely, to be understood as a parametrization of .j	t i/t 2 R � E such that
OEt W E! E, acting onj	t i, is identical to the� ! 0 limit of the difference quotient of eq. 2-2.46

Therefore, time dependency of both operators and states is indicated by a subscriptt , e.g.j	t i,
instead of by the possibly more suggestive notationj	.t/i.

c Note that nature does breakT symmetry. If theCPT theorem49,53 is true,CP violations – as
experimentally observed in, e.g., kaon andB meson decay54,55 – imply T violation. Note, too,
that the collective behavior of macroscopic ensembles doesdisplay a “time direction”, seemingly
contrasting time reversal invariance of the systems’ equations of motion. However, whereasT
violation by the weak interaction is truly a consequence of the symmetry properties of the system
dynamics, macroscopic irreversibility is a purely statistical phenomenon independent of time or
time reversal.49,56
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Equation of Motion, Time, and Time Reversal

tromagnetic HamiltonianOEt of eq. 2-1 is assumed to be time reversal-invariant in
the absence of external magnetic fields.d

In quantum mechanics, time reversal is different from thet 7! �t operation 2-6
because of the special role of the time variablet . The time-reversal transformed
statej	t i is

Okj	�t i µ j N	�t i ; (2-8)

i.e. obtained fromj	t i by both theT operation 2-6 and action of Wigner’s anti-
unitary time reversal operatorOk.47–49For consistency with eq.s 2-7

hri	t
7! hri N	�t

D h	�t
Ok�j Or Ok	�t i ) Ok Or Ok� D Or ;

hpi	t
7! �hpi N	�t

D �h	�t
Ok�j Op Ok	�t i ) Ok Op Ok� D �Op I

(2-9)

) Okiıxy Ok� D OkŒ Ox; Opy �� Ok� D
� Ok Ox Ok�; Ok Opy Ok�

�

�
D �iıxy O1 (2-10)

and similar for all pairs of Cartesian coordinatesx, y, ´, because eq.s 2-9 must
hold component-wise. From eq. 2-10Ok is anti-linear,47,57 i.e. Ok effects complex
conjugation of numbers by conjugation. A number of special algebraic properties
of Ok and its explicit form (in the position representation) are discussed in more
detail below, but its physical interpretation is clear fromeq.s 2-9 and 2-10:

If j	t i is a solution of eq. 2-1, i.e.

i
d

dt
j	t i D OEj	t i (2-11)

) Oki
d

dt
j	t i D �i

d

dt
j Ok	t i µ �i

d

dt
j N	t i D OEj N	t i (2-12)

provided OE D Ok OE Ok�; then, applyingT W t 7! �t shows47,49

i
d

dt
j N	�t i D OEj N	�t i : (2-13)

Thus, if j	t i is a solution of the time-dependent Schrödinger equation 2-1, then
j N	�t i is a solution of the same equation of motion, obtained from the first solution

d The term “external” has a precise meaning in this context: Ifthe fieldB D r � A, defined by
its vector potentialA, is provided by system components also subject to theT transformation,
A 7! �A, and OEt is time reversal-invariant; “external” thus refers to fieldsources not explicitly
addressed in terms of field source dynamical variables by eq.2-1, i.e. not simultaneously reversed
underT .51

7



2: Principles of Relativistic Quantum Chemistry

at time�t by the transformationOk. Note that the “time reversal operator”Ok is
distinct from time reversalT ; an anti-unitary operator cannot act non-trivially on
a real parameter.

Brief Review of Some Properties of Anti-Linear and Anti-Unitary Operators

Anti-linear and, thus, anti-unitary operators behave in a slightly different way as
compared to linear and unitary operators typically employed in quantum mechan-
ics.47,51,57–59Only a brief account of the operationally most important manipula-
tion rules is given here, mainly to fix notations and provide areference for the rest
of this work.

� Anti-linear operatorsOk on Hilbert spacesE act, forCa; Cb 2 C andj ai;
j bi 2 E, as

Ok
�

Caj ai C Cbj bi
�

D C �
a j Ok ai C C �

b j Ok bi : (2-14)

Note that it is necessary to explicitly indicate whetherOk operates on the
anti-linear or linear, i.e. on the bra or ket argument of the inner product;
formal expressions as, e.g.,h aj Okj bi are ambiguous.47

� As Ok� is also anti-linear,Ok� is defined by

h a Ok�j bi ´ h aj Ok bi� D h b Ok�j ai : (2-15)

� Anti-unitary, i.e. anti-linear unitary operatorsOk preserve the (positive-semi-
definite) normk ak2 D k Ok ak2, but

Ok� D Ok�1 (2-16)

) h a Ok�j Ok bi D h aj Ok� Ok bi� D h aj bi� D h bj ai : (2-17)

The operator O�B of complex conjugation is a special anti-linear operator that
is defined in terms of a basisB only.47,57 For a givenB, O�B is the anti-linear
operator that leaves allj�pi 2 B invariant. Ifh�pj�qi D ıpq, O�B is anti-unitary;57

moreover, O�2B D O1 for all B. Messiah47 provides a comprehensive discussion of
changes of bases.

8



Equation of Motion, Time, and Time Reversal

The Time Reversal Operator and Kramers’ Theorem

An abstract, representation-independent definition of thetime reversal operatorOk
can only be given in terms of eq.s 2-9, i.e. the time reversal transformation of the
dynamical variablesOr and Op; for quantum systems with spin, eq.s 2-9 have to be
supplemented by

Ok OS Ok� D �OS (2-18)

as the total angular momentumOJ D OL C OS must transform consistently with
OL D Or � Op) Ok OL Ok� D � OL.e

In the position basis and, for the spin variable, the basis.j˛i; jˇi/ of OS´ eigen-
functions, for a single electron47–49

Ok W� �i2 OSy O� ; (2-19)
OkW j˛i 7! j Ok˛i D �jˇi ; OkW jˇi 7! j Okˇi D j˛i : (2-20)

O� ´ O�.jri;j˛i;jˇ i/; is the anti-linear complex conjugation operator in the.jri; j˛i;
jˇi/ basis; as, in this basis,OSx and OS´ are purely imaginary andO� thus effects sign
change, eq. 2-18 requires an additional unitary transformation e�i� OS � ey D �i2 OSy
on the spin-1

2
Hilbert space, i.e. a spin rotation about they axisey by �.

From eq. 2-19
Ok Ok D Ok2 D �O1 I (2-21)

as O�2 D O1, this can essentially be backtraced to the spin space rotation by�C�,
i.e. the special spinor transformation behavior under rotation. Because of eq.s
2-17, 2-21, and 2-15,

h	 j Ok	 i D h	 Ok�j Ok Ok	 i� D �h	 Ok�j	 i� D �h	 j Ok	 i D 0 (2-22)

shows thatOk has no eigenfunctions and, thus, no spectral decomposition.47,49,51

As the time reversal operatorOK for anN -electron system is simply the product
operator

OK ´ Ok1 ˝ � � � ˝ Oki ˝ � � � ˝ OkN (2-23)

) OK2 D .�O1/N ; (2-24)

e With eq. 2-18, Ok commutes with all rotations of position and/or spin space:47 BecauseOk is anti-
unitary, Oke�i OJ � n' Ok� D ei Ok OJ � n Ok�' D e�i OJ � n' . In fact, Ok commutes with all operators of spatial
symmetry transformations, i.e. translations, rotations,and reflexions.47

9



2: Principles of Relativistic Quantum Chemistry

eq. 2-22 is also valid for anyN -electron system withN odd.
Eq.s 2-23 and 2-24 allow the algebraic proof47–49of Kramers’ theorem,60 i.e.

of the theorem that, in the absence of external magnetic fields, all energy levels of
a system of odd numbers of electrons are at least two-fold degenerate; and, in fact,
every such degeneracy is even-fold. Clearly, ifOEj	 i D Ej	 i, then OEj OK	 i D
OKEj	 i D E OKj	 i becauseOE is time reversal-invariant; but, ash	 OK�j	 i D 0

for all j	 i, j	 i andj OK	 i are independent states.
Because of eq. 2-21 and, in consequence, eq. 2-24, anN -electron state func-

tion cannot be made invariant underOK. However, as OK2 D O1 for N even, one
can always choose a phase factor for theN -electron statej	 i such thatj OK	 i D
j	 i,51 as exploited in the context of, e.g., Kramers-restricted Hartree–Fock SCF
theory28,29discussed in detail in ch. 3.

2.2 The Dirac Hydrogen Atom

The preceeding discussion of sec. 2.1 has been set up very general and did not
refer to the precise nature of the Hamiltonian energy operator OE of, e.g., eq. 2-1.
The present section is focussed on the relativistic Hamiltonian and state function
for a single electron only, and will address only a number of points in detail that
provide the basis for the following parts.f

For a single relativistic electron in the proton’s time-independent electrostatic po-
tential OV , the Hamiltonian OE of eq. 2-1 is the Dirac operator10,11,61

OhD D c0 O’ � OpC Ǒmec
2
0 C OV (2-25)

with c0 the vacuum speed of light; the electron rest massme D 1a:u: has been
written explicitly for clarity.g

f Whereas the restriction to the spherical, point-like proton Coulomb potential is, of course, a limi-
tation from the point of view of a general (molecular) electrostatic potential, the system’s angular
symmetry allows to clarify particularly the coupling of orbital angular momentum and spin, which
is of central importance.

g Here and in the following, the electron–proton interactionis assumed to be instantaneous, i.e.
retardation and QED effects are neglected.11 Moreover, the Born–Oppenheimer approximation is
applied, and the proton’s spin and vector potentialA are omitted.

10



The Dirac Hydrogen Atom

Eq. 2-25 cannot be “derived” or motivated in any detail here.It must suffice
to briefly address the key points:

To arrive at a relativistic, Lorentz-invariant equation ofmotion of first order
in spatial and time variables, the square root argument of the relativistic energy–
momentum relation62

E D c0
p

m2ec
2
0 C p � pC V (2-26)

is assumed to be a perfect square.’ �pCˇc0me/
2, the quantities̨ x, ˛y , ˛´, and

ˇ are to be defined. Then, eq. 2-1 withOE D OhD of eq. 2-25 follows immediately
from the “correspondence principle”. The algebra of the components of theO’
vector and Ǒ operator follow from the requirement to match eq. 2-26, i.e.

m2ec
2
0 C Op � Op

ŠD O’ � OpC Ǒc0me (2-27)

) Ǫ 2r D Ǒ2 D O1 ; Œ Ǫr Ǫs�C D ırs O1 ; Œ Ǫr ; Ǒ�C D O0 (2-28)

for Cartesian coordinatesr; s 2 ¹x; y; ´º. In the Dirac “standard” representation,
the Ǫr and Ǒ operators are represented as2 � 2 matrices

Ǫr �
�

ǪCC
r ǪC�

r

Ǫ�C
r Ǫ��

r

�

D
� O0 O�r
O�r O0

�

; Ǒ �
� O1 O0
O0 �O1

�

(2-29)

in terms of the Pauli sigma operatorsO�r .h Consequently, the solution of the Dirac
equation is a quantity

j	t i �
�

j	C
t i; j	�

t i
�T
; (2-30)

the 2-spinorsj	C
t i andj	�

t i being referred to as “large” and ”small” components,
respectively.

In a given frame of reference, which is mostly the Born–Oppenheimer frame,
the time-dependence of the stationary 1-electron statej	t i can be factored out to
give the time-independent Dirac equation.10,11With eq. 2-29,

� OV Cmec
2
0

�

j	Ci C c0 O¢ � Opj	�i D Ej	Ci ; (2-31)

c0 O¢ � Opj	Ci C
� OV �mec

2
0

�

j	�i D Ej	�i (2-32)

h The Dirac standard representation corresponds to a choice of .1; 0/T and.0; 1/T as vector repre-
sentations of the “positive” and “negative energy basis functions” jCi andj�i, respectively. Con-
sequently, the standard representation of eq. 2-29 is defined up to a unitary transformation,11,63

but only eq. 2-29 will be referred to here.

11



2: Principles of Relativistic Quantum Chemistry

where the vector operatorO¢ collects the Pauli sigma operatorsO�x, O�y , O�´.
No detailed discussion of the solutions or the properties ofthe solutions of

eq.s 2-31 and 2-32 will be given at this point. Instead, only anumber of selected
points are addressed that aim at the following discussion of(2-component spin–
orbit pseudopotential) approximations to the Dirac equation.

Notes on The Dirac Hamiltonian Spectrum and The 4-Spinor Structure

The Dirac HamiltonianOhD of eq. 2-25 allows negative energy eigenvaluesE and,
moreover, is not bounded from below. Instead, theOhD spectrum has continua for
E � mec

2
0 andE � �mec

2
0 , as well as a number of discrete bound states in the

interval Œ0;mec
2
0/.

10,11

The existence of positive and negative energy solutions is directly connected
to the 4-spinor nature of the state functionj	 i, i.e. the presence of both large
and small componentsj	Ci andj	�i, whereas a direct physical interpretation is
difficult. As can be seen from eq.s 2-31 and 2-32,j	Ci andj	�i are coupled by
the off-diagonal operatorsOhC�

D D Oh�C
D D c0 O¢ � Op. Operationally, forE�mec

2
0 �

0 this coupling is “small” in the sense that

k	Ck2 � k	�k2 ;
i.e. that the state functionj	 i is dominated by the large component, justifying the
“large” label.i

The observation thatj	 i is dominated byj	Ci – with the notable and, quan-
titatively, important exception of inner-shell electronsof heavy and super-heavy

i It is noted in passing that for large electron velocities, i.e. for very strongly bound and high-energy
continuum states withE � 0 andE � mec

2
0 , respectively, the large component is generally not

large in the stated sense. Moreover, for negative energy states generallyk	�k2 � k	Ck2.
The physical interpretation of the negative energy states is, from only the point of view of eq.s
2-31 and 2-32, problematic also within the picture of hole theory,63 i.e. assuming a “Dirac sea”
of occupied positronic states.63–65 In fact, the Dirac equation’s structure and properties point to
the necessity of (Dirac spinor) field quantization,63 i.e. many-particle (-electron and -positron)
theories also for a single relativistic free or bound electron.
From the point of this work the significance of theE < 0 solutions comes from the fact that,
generally, the positive energy functions only cannot span the complete function spaceOhD is defined
on; any 1-electron state functionj	 i has both positive and (most often comparably small) negative
energy contributions.
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The Dirac Hydrogen Atom

elements – is the point of departure for a number of large component-only approx-
imation schemes.10,11j

Angular Symmetry and Spin–Orbit Coupling in The Dirac Hydro gen Atom

The Dirac equation introduces spin to quantum mechanics in anon-heuristic way,
i.e. via the algebra of theǪr operators. In fact, the velocity operatorc0 O’ does not
only couple the large and small components but, within each component, electron
orbital angular momentum and spin via

c0 O¢ � Op D c0jOrj�2. O¢ � r/.2i OS � OLC Or � Op/ (2-33)

such that the large and small component’s angular partsjXC
jmj
i andjX�

jmj
i are11

h�; 'jX˙
jmj
i D

X

ms

C.j � 1
2
;mj �ms; s;ms I j;mj / � Y

mj �ms

j� 1
2

.�; '/ jsmsi I

C.l;ml ; s;ms I j;mj / are Clebsch–Gordan coefficients,h�; 'jlmli D Yml
l .�; '/

spherical harmonics, andjsmsi D
ˇ
ˇ1
2
;˙1

2

˛

the OS´ eigenfunctions
ˇ
ˇ1
2
;C1

2

˛

µ j˛i ; OS´j˛i D msj˛i DC12 j˛i ;
ˇ
ˇ1
2
;� 1

2

˛

µ jˇi ; OS´jˇi D msjˇi D� 12 jˇi
(2-34)

already employed in eq.s 2-20. BothjX˙
jmj
i and, thus,j	 i are eigenfunctions of

the total and projected total angular momentum

OJ � OJ j	 i D j.j C 1/j	 i ; OJ´j	 i D mj j	 i : (2-35)

However, j	 i is not an eigenfunction ofOL´ and OS´, because bothjX˙
jmj
i are

linear combinations of products of spherical harmonics andspin functions with
differentml D mj �ms andms.

k

j Note, however, that “relativistic effects” in chemistry4,10,11,66are not necessarily small if only the
small component is small.

k j	 i is also no eigenfunction ofOL � OL, whereas thejX˙
jmj
i are, albeit with eigenvaluesl.l C 1/

of different orbital angular momentum quantum numbersl . Note that spin–orbit coupling qualita-
tively changes the non-relativistic “orbital” pictures asillustrated by, e.g., Dyall and Fægri10 and
Szabo.67
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2: Principles of Relativistic Quantum Chemistry

Consequently, the energy11

E D Enj�j D mec
2
0

�

1C Zc�1
0p

�2 �Z2c�2
0 C n � j�j

��1=2

; (2-36)

with � D jC 1
2

and the nuclear charge numberZ, depends explicitly onj D l˙s.
In other words, the non-relativistic energy level degeneracy with respect to the
orbital angular momentum quantum numberl is lost.

2.3 Approximations to The Dirac Equation

A number of problems arise with the straightforward application of the 1-electron
Dirac Hamiltonian OhD of eq. 2-25 in the framework of quantum chemistry: The
fact that OhD is not bounded from below prohibits a simple variational strategy to be
employed for solving eq.s 2-31 and 2-32 (whereas similar, yet more involved tech-
niques10,11 can be applied somewhat routinely with contemporary 4-component
codes). Moreover, the need to explicitly address small component contributions
to the electronic state function causes the computational costs to increase signifi-
cantly, compared to non-relativistic considerations.

As already pointed out in sec. 2.2, the fact thatj	 i is typically dominated by
the large componentj	Ci, can be exploited to give rise to a variety of 2-compo-
nent approximations to the Dirac equation that only consider j	Ci or equivalents
thereof; the term “2-component” thus refers to the spin components of the 2-spinor
j	Ci D j	C

˛ ˝ ˛i C j	
C
ˇ ˝ ˇi.l

Common to all such 2-component theories10,11 is the (formally exact or ap-
proximate) decoupling of eq.s 2-31 and 2-32 by elimination,68–70unitary transfor-
mations on the basis of Foldy–Wouthuysen14,71 or Douglas–Kroll–Hess parame-
trizations,12,13,15,72and several matrix techniques.16–20m As the field is vast and
continuously expanding, no attempt to review any or all of these approximation
schemes in detail is made here; the textbooks by Dyall and Fægri,10 Reiher and

l Moreover, most of these approximations allow separation ofspin-independent and -dependent
terms and, therefore, provide spin-free, 1-component models by ommiting the latter.

mThe pseudopotential approximation discussed in more detail in sec. 2.3.2 is different in this re-
spect, as it does not aim at a decoupling of the Dirac equationdirectly.

14



Approximations to The Dirac Equation

Wolf,11 and, to some extent, Schwabl63 provide comprehensive elaborations and
bibliographies.

Instead, the following discussion is restricted to a somewhat naı̈ve, exemplary
small component elimination11 leading to a Pauli-like HamiltonianOhP. Whereas
OhP is of no practical importance for variational calculation schemes, the Pauli-like
Schrödinger equation is instructive from a conceptual point of view, and illustrates
a number of important points.

2.3.1 Small Component Elimination: Pauli-Like Theory

For the purpose of the following discussion it is convenientto “shift” the OhD spec-
trum by a constantmec

2
0 , i.e. to setOhD 7! OhD �mec

2
0
O1, such that, withj	˙i 7!

eimec
2
0
t j	˙i,

OV j	Ci C c0 O¢ � Opj	�i D Ej	Ci ; (2-37)

c0 O¢ � Opj	Ci C
� OV � 2mec

2
0

�

j	�i D Ej	�i : (2-38)

Effectively this aligns the Dirac and the non-relativisticSchrödinger spectra to a
commonE D 0 reference, i.e. the bound discrete energy levels lie in theŒ�mec

2
0 ;

0/ interval with the positive energy continuum atE � 0.
Solving eq. 2-38 forj	�i and substituting in eq. 2-37 gives11

�

OV C c0 O¢ � Op
1

2mec
2
0

�

s�1
E c0 O¢ � Op

�
�

j	Ci D Ej	Ci (2-39)

with sE ´ 1� . OV �E/=2mec
2
0 . Eq. 2-39 is formally exact, the small component

being “eliminated” from eq. 2-37.n Expanding the geometric seriess�1
E up to first

order and approximatingE by its non-relativistic counterpart gives the Pauli-like
Schrödinger equation and 2-component Hamiltonian

OhPj	Ci � Ej	Ci ; (2-40)

OhP´ OT C OV � 1

8m3ec
2
0

j Opj4 C 1

8m2ec
2
0

� OV C Z

2m2ec
2
0

jOrj�3 OS � OL (2-41)

n Note that, as. O¢ � Op/s�1
E
. O¢ � Op/ D Op � OpC i O¢ � . Op � s�1

E
Op/, eq. 2-39 reduces to the non-relativistic

Schrödinger equation forsE D 1.
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2: Principles of Relativistic Quantum Chemistry

where the spherical symmetry of the point-like proton Coulomb potential OV D
�ZjOr j�1 has been used to write the Pauli spin–orbit operator as2ZjOr j�3 OS � OL D
O¢ � .r OV � Op/.

Eq. 2-40 is a large component-only approximation to the Dirac equation.
As compared to the non-relativistic Schrödinger Hamiltonian Oh D OT C OV , the
Pauli-like HamiltonianOhP of eq. 2-41 includes a number of spin-independent and
-dependent relativistic correction terms, i.e. the mass–velocity, Darwin, and spin–
orbit terms, respectively. As both the mass–velocity term proportional toj Opj4
and the spin–orbit operator are variationally unstable, the use ofOhP is mainly re-
stricted to perturbative calculation schemes.o The importance ofOhP comes from
its illustrative character, i.e. the formal derivation of the correction terms – partic-
ularly the Pauli spin–orbit operator – from, and as an approximation scheme to,
the rigorous Dirac operatorOhD.

2.3.2 Semilocal Atomic Pseudopotential Approximations

As already pointed out briefly, the pseudopotential (PP) or effective core poten-
tial approximation10,27,75 is conceptually different from the decoupling approx-
imations briefly addressed above.p As “core approximations”,10,79 PP calcula-
tion schemes provide effective static (non-local, possibly spin-dependent) pseudo-

o Eq. 2-39 is also the starting point for the variational, regular approximation schemes of van Lenthe,
Baerends, and Snijders,69,70buts�1

E
is expanded in terms ofE. OV �2mec

2
0/

�1. The Cowan–Grif-
fin73 and Wood–Boring74 approximations depart from the same point, but use the exactexpres-
sionsE ´ 1 � . OV � E/=2mec

2
0 .

p It must be noted that these decoupling approximation schemes, including the Dirac equation itself,
have been discussed for 1-electron systems only, whereas PPapproximations necessarily apply to
N -electron systems. However, a rigorously relativistic, Lorentz-invariantN -electron theory is
not known, if it exists at all.10,11,63Most often, the electron–electron interaction is modeled by
non-relativistic Coulomb interactions, i.e. a

P

i>j jri � rj j�1 term in theN -electron “Dirac–
Coulomb” (DC) Hamiltonian; more accurate approaches employ the approximately retarded Breit
operator76,77

�12
�

O’i � O’j jri � rj j�1 C
�

.Ori � Orj / � O’i
��

.Ori � Orj / � O’j
�

jOri � Orj j�3
�

in theN -electron DCB Hamiltonian, and may also include QED corrections.10,11,63,78Therefore,
it it stressed, and is understood in the following, that anyN -electron Hamiltonian is necessarily
approximate, and typically other approximations of, e.g.,the 1-electron part enter additionally.
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Approximations to The Dirac Equation

potentials for valence electron-only Schrödinger equations similar to eq.s 2-40 and
2-41. Relativity enters only implicitly via the PP parametrization.22–24

PP theory, particularly of the energy-consistent variant,has recently been re-
viewed by, e.g., Dolg et al.,27,75,80 who also provide comprehensive bibliogra-
phies. Therefore, the following discussion does not attempt to be complete but,
instead, tries to capture the points most important from a conceptual and opera-
tional point of view.

The rigorous basis for PP theory – which might be dated back toHellmann81

and Gombás82 – is provided by Generalized Phillips–Kleinmann83,84 theory. In
essence,10,27,79GPK theory defines an effective “Generalized Phillips–Kleinman”
Nv-electron pseudopotential operatorOWGPK that, if added to valence-only Hamil-
tonians, allows to solve Schrödinger equations for valence-only pseudo-state func-
tions variatonally, and without explicit orthogonality requirements to the (thereby
excluded) core subsystem.q Clearly, GPK and, thus, PP theory imply a frozen core
approximation,10,79,85i.e. assume transferability of a fixed, atomic core subsystem
to a large number of different, generally non-atomic scenarios.

Operationally, OWGPK is approximated27 as sum ofNv 1-electron, 1-center PP
operators OWiA, thus defining a valence-only HamiltonianOHv for Nv � N valence
electrons

OHv �EBO
O1 D

NvX

iD 1

OTi C
NvX

iD1

X

A

. OViA C OWiA/C
NvX

i >j

Ogij (2-42)

that, for thei-th of Nv electrons, provides a molecular core–valence interaction
P

A.
OViAC OWiA/ of contributions OViAC OWiA centered at atomA. EBO is the clas-

sical Born–Oppenheimer nuclear–nuclear, i.e. core–core repulsion energy, which
consequently is to be modified according to the set of PPsOWiA employed.27

Similar to the (non-relativistic) ansatz of Kahn and Goddard,86 most contem-
porary semilocal PPs are written as, dropping the electron and atomic core indices

q A separation in valence and core “parts” or subsystems is, ofcourse, not possible rigorously and
assumes, in one or the other way, some kind of independent-particle theory. Whereas PK theory83

considers a mean-field model from the beginning and actuallyis a 1-electon theory, Weeks and
Rice84 define a set of orthonormal functions spanning a core subspace.
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2: Principles of Relativistic Quantum Chemistry

i andA for clarity,

OW ´
1

X

lD 0

X

jmj

OW 0
lj jljmj ihljmj j (2-43)

with 2-spinor spherical harmonicsjljmj i D
P

mlms
C.l;ml ; s;ms I j;mj /jlmli

˝jsmsi; the projectors provide bothl- andj -dependency of the radial potential
operators OW 0

lj . Practically, all OW 0
lj for l � L are collected in a single local term

OWLJ such that, from
P1
lD0

P

jmj
jljmj ihljmj j D O1, the sum in eq. 2-43 is

truncated as

OW � OWLJ C
L�1
X

lD0

X

jmj

OWlj jljmj ihljmj j ; (2-44)

with OWlj ´ OW 0
lj � OWLJ , to good approximation.86,87Typically,L � 1 is chosen

as the largest orbital angular momentum quantum numberl occupied in the core
subsystem.

Relativistic Energy-Consistent Pseudopotetial Parametrization

Departing from the general relativistic PP expression of eq. 2-44, the radial poten-
tial operators OWlj are mostly written as87

hrj OWlj r 0i D WljA.r/ D
X

k

CljkAjr � rAjnljkAe�ˇljkAjr�rAj2 ; (2-45)

where the atomic core labelA has been explicitly included. For a given atom type
and PP atomic core size, i.e. a given numberNA < ZA core electrons included
in the core subspace, the parameter setAA.NA/ ´ ¹CljkA; nljkA; ˇljkAºljk , is
defined according to one of a number of PP parametrization schemes.27,80

In the particular relativistic energy-consistentab initio PP case,AA.NA/ is
defined by least-square fitting procedures to valence total energies from accurate
reference calculations, typically considering allLS or J levels of a large number
of configurations of the atom and a number of its ions.r Modern parametrization

r Other approaches differ in the actual PP operator expression, the fitting procedure and target data
sets considered, or both. For example, shape-consistend PPs10,27,79depart also from eq. 2-44, but
aim at accurate modelling of all-electron orbital or 2-spinor radial distributions (outside a cutoff
radius) and energies.
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Approximations to The Dirac Equation

schemes rely on numerical finite-difference, i.e. formallycomplete basis set 4-
component MCDHF calculations with DC, DCB, or DCB+QED Hamiltonians
and finite nucleus models,p as discussed in much detail by Cao and Dolg.27

Energy-consistent PPs allow for considerable computational savings: This is
not only because the excluded (possibly large) core subsystem has not to be con-
sidered in the basis set expansion. Instead, the relaxed valence–core orthogonality
requirements allow pseudo-orbital or -2-spinor transformations to smooth radial
distributions of considerably simplified node structures in the core region, which
allow more efficient basis set expansions also of valence orbitals or 2-spinors.27

Separation of Spin-Free and Spin–Orbit PP Parts

Eq. 2-44 can be,25,26 and frequently is, re-arranged to allow separation of a spin-
free and a spin–orbit partOA and OB , respectively. Whereas this separation does not
only ease the interpretation of the compact expression 2-44– which allows for spin
symmetry breaking implicitly by its dependence on the totalangular momentum
quantum numberj D l ˙ s – it is also important for the generation of spin-free,
i.e. scalar-relativistic PPs from, e.g., 4-component reference calculations, as the
spin–orbit part OB can simply be ommitted.

Following the more detailed elaboration given by Dyall and Fægri,10 writ-
ing OW � OWLJ D

PL�1
lD0

OWl in terms of contributions of a single orbital angular
momentum

OWl D
X

jmj

OWlj jljmj ihljmj j ;

one can define the respective contributionsOAl and OBl to the spin-free and spin–
orbit part OA and OB as

OAl ´
l OWl l� C .l C 1/ OWl lC

2l C 1 ; OBl ´ 2
OWl lC � OWl l�
2l C 1 ; (2-46)

with the short-hand notation
l˙ ´ l ˙ 1

2
; (2-47)

i.e. with lC for j D l C 1
2

andl� for j D l � 1
2
. From eq.s 2-46, the spin-free

operators OAl can be interpreted as a degeneracy-weighted average of the operators
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2: Principles of Relativistic Quantum Chemistry

OWl l˙ for the spin–orbit-split levels with quantum numbersl andj D l˙ s, while
the spin–orbit part’sOBl operators correspond to the difference potentials.

Then, expanding the 2-spinor spherical harmonicsjljmj i in terms of products
of spherical harmonics and spin functions, re-arranging eq.s 2-46 for OWl lC and
OWl l� , substituting, and collecting terms gives10,25,26

OW D OWLJ C
L�1
X

lD0

X

ml

OAl jlmlihlml j

„ ƒ‚ …

C OS �
L�1
X

l D0

X

mlm
0
l

OBl jlmlihlml j OLjlm0
lihlm0

l j

„ ƒ‚ …

D OA C OB (2-48)

where a spin space unit operator has been ommited in the spin-free part OA, that
has been defined to include also the local termOWLJ for later convenience. Note
that the spin–orbit PP partOB is variationally stable, as compared to, e.g., the Pauli
spin–orbit operator of eq. 2-41.

From eq.s 2-45 and 2-46, bothOA and OB have essentially analog radial expan-
sions, i.e., forXl 2 ¹Al ; Bl º,

XlA.r/ D
X

jk

XljkAjr � rAjnljkAe�ˇljkAjr�rAj2 (2-49)

for
Al l˙kAµ

�l˙Cl l˙kA
2l C 1 ; Bl l˙kAµ˙

Cl l˙kA
2l C 1 (2-50)

with �l˙ ´ l˙ C 1
2
.
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3

2-Component HF SCF Theory

Hartree–Fock self-consistent field (HF SCF) electronic structure theorya is pivotal
for chemistry and quantum chemistry from a number of important points. First,
it provides a rigorously defined “orbital” concept93 that, although – or maybe be-
cause – not employed that rigorously in chemistry,94–97is central to contemporary
chemists’ ideas of electronic structure and chemical bonding.93,98,99Second, and
more important from the point of view of computational quantum chemistry, it
provides a reference for almost all wave function-based correlated methods100,101

and, to some extent, the basis for Kohn–Sham density functional theory.102–104

The following detailed discussion of 2-component HF SCF theory – both ab-
stract29,30and in finite basis set representation28 in sec.s 3.1 and 3.2, respectively
– assumes closed-shell systems of2Nv electrons and a Born–Oppenheimer,2Nv-
electron PP HamiltonianOHv as given by eq. 2-42, with

Ogij ´ jOri � Orj j�1 : (3-1)

However, most considerations can be directly transfered torespective all-electron
calculation schemes by replacing the core–valence PP interaction

P

A
OVA C OWA

with the electron–nuclei Coulomb interaction
P

A
OUA.

a Primary references are the 1928 and 1930 papers of Hartree88–90 and Fock,91 respectively, but
important contributions have also been made by Slater.92

21



3: 2-Component HF SCF Theory

3.1 Kramers-Restricted 2-Component HF SCF Theory

The presentation of sec.s 3.1.1 and 3.1.2 aims at a relatively detailed elaboration
of the underlying general concepts at a 2-component level ofHF SCF theory,
closely following Almlöf105 and Szabo and Ostlund.100 Kramers’ restriction,28–30

i.e. imposing time reversal invariance on the HF SCF2Nv-electron state function,
is discussed in sec. 3.1.3

3.1.1 The Slater Determinant Ansatz

With its placement as “approximate wave function / rigorousenergy” class the-
ory,106 closed-shell HF SCF theory is defined47,100,105,107by its ansatz to approxi-
mate the solution of a time-independent2Nv-electron Schrödinger equation, given
the “exact”2Nv-electron Hamiltonian,b by a Slater determinant

j	 i D
p

2NvŠ
OA
2NvO

iD 1

j i i D
1

p

2NvŠ

X

P

sgnP j P.1/ ˝ � � � ˝  P.2Nv/
i (3-2)

of 2Nv 1-electron functionsj i i, and by a set of2Nv 1-electron equations

Ofvj i i D �i j i i (3-3)

that define these 1-electron functions. From eq.s 2-42 and 2-44, thej i i are 1-
electron 2-spinors

j i i D j i˛ ˝ ˛i C j iˇ ˝ ˇi : (3-4)

The motivation of the Slater determinant ansatz of eq. 3-2 isthe decoupling of
the2Nv-electron state functionj	 i with respect to the electrons’ spatial and spin
coordinates, giving rise to an ”independent electron picture”, while satisfying the
Symmetrization and Pauli Exclusion principle:47

Clearly, the simple Hartree productj 1 � � � 2Nv
i of 2Nv 1-electron 2-spinors

j i i provides such a picture, as the joint probability density, i.e. the probability

b It is clear from the point of view of the discussion of sec. 2.3, particularly in the PP approximation
setting, this formal classification is problematic and, in fact, does not hold. However, considering
the term “approximated wave function / rigorous energy” is instructive if opposed to the alternative
“rigorous density / approximated energy”106 framework of, e.g., Kohn–Sham DFT.102–104
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density for electronsi , j , . . . to be simultaneously atri , rj , . . . with spin projec-
tions 
i , 
j , . . .2 ¹˛; ˇº, respectively, factorizes as

Q

i jhri
i j i ij2 to give2Nv
probabilistically independent distributions.

The antisymmetrization

OA´ 1

.2Nv/Š

X

P 2S2Nv

.sgnP / OP (3-5)

removes the exchange degeneracy, i.e. the.2Nv/Š-fold ambiguity of the represen-
tation of the2Nv-electron state function byj 1 � � � 2Nv

i, by addressing all.2Nv/Š

permutationsP 2 S2Nv
of electron spatial and spin coordinates, and imposes the

correct fermion permutation symmetry by weightingP with its parity sgnP .c

Among the correct2Nv-fermion permutation symmetry and – trivially, from the
square-integrability of the normalized 1-electron 2-spinors –2Nv-representability,
the HF SCF Slater determinant of eq. 3-2 shares the properties of being vari-
ational; size-extensive; and, in the Born–Oppenheimer approximation, being a
basis for the irreducible representations of the moleculardouble point group with
the exact2Nv-electron wave function.51,101

c Note that, therefore,j	 i by eq. 3-2 does not provide2Nv probabilistically independent 1-electron
probability densities: The joint probability density

ˇ
ˇhr1
1 � � � r2Nv


2Nv
j	 i

ˇ
ˇ
2 D 1

.2Nv/Š

X

PQ

sgn.PQ/
Y

i

 P.i/
i
.ri / 

�
Q.i/
i

.ri /

clearly does not factorize Moreover, the HF SCF pair density˘
1
2
.r1; r2/, i.e. the probability to

simultaneously find any two of the2Nv electrons at positionsr1, r2 with spin projections
1, 
2

˘
1
2
.r1; r2/ D

X

ij

j i
1
.r1/j2j j
2

.r2/j2 �
X

ij

 i
1
.r1/ j
2

.r2/ 
�
j
1

.r1/ 
�
i
2
.r2/

has a “Fermi hole”,100 i.e. for 
1 D 
2 D 
 it is limjr1�r2j!0˘

 .r1; r2/ D 0 throughout
space; contrasting, this limit vanishes everywhere for
1 ¤ 
2. Therefore, the HF SCF state
function j	 i does correlate electrons, albeit only electrons with equalspin projections, as a direct
consequence of the Symmetrization and Pauli Exclusion principle.47 However, this correlation
is of a purely quantum statistical character only, andj	 i is not correlated with respect to the
electron–electron interaction; the latter is almost always referred to as “correlation” in quantum
chemistry,100,101such thatj	 i is frequeuently discussed as “uncorrelated”.
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3: 2-Component HF SCF Theory

3.1.2 Nature and Definition of The 1-Electron 2-Spinors

Employing the variational principle,92,101the set of2Nv 1-electron 2-spinorsj i i
is defined such that the total energy functionalESCF´ hHvi	 is stationary with
respect to functional variations of any of the 2-spinors. Asdiscussed below, this
leads directly to the2Nv Fock equations 3-3.

It is noted at this point that, therefore, the choice of a particular energy opera-
tor OHv defines a respective HF SCF theory in terms of the nature of the1-electron
state functionsj i i.d As already pointed out, the present discussion assumes a
relativistic, i.e. spin–orbit PP Hamiltonian such that thegeneral 1-electron state
function is given by eq. 3-4. However, in the limitingOB ! O0 case of eq. 2-48,
all j i i can be chosen asOS´ eigenfunctions and are typically referred to as spin-
orbitals instead of 2-spinors.100,105,107

ForE.¹j iiºi/ to be stationary with respect to variations of the set of 1-electron
2-spinors

®

j i i
¯2Nv
iD1 D

®

j 1i; : : : j 2Nv
i
¯

; h i j j i
ŠD ıij (3-6)

it is necessary that

ıL D ı
�

E
�

¹j i iºi
�

�
X

ij

�ij
�

h i j j i � ıij
�
�

ŠD 0 (3-7)

with 4N 2
v Lagrange multipliers�ij 2 C. To obtain the Euler–Lagrange equations

defining¹j i iºi one has, first, to expressE in terms of¹j i iºi .
This expression is readily provided by the Slater–Condon rules100,105also for

the 2-component setting, because the Slater–Condon rules only employ the2Nv 1-
electron functions’ orthonormality and the 1-electron or 2-electron operator nature
of the various terms ofOHv. Defining

Oh´ Oh1´ OT1 C
X

A

. OV1A C OW1A/ ; Og´ Og12 ; (3-8)

with the kinetic energy, core charge–electron interaction, and PP operatorsOT ,

d Moreover, for a given OHv, additional variational restrictions as, e.g., the Kramers’ restriction of
time reversal-invariance28–30can or can not be applied to the set 1-electron state functions, which
defines respective restricted or unrestricted HF SCF theories.51,107
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P

A
OViA, and

P

A
OWiA for thei-th electron according to eq. 2-42, from the Slater–

Condon rules

E
�

¹j iºi
�

D
X

i

h i j Oh i i C
1

2

X

ij

h i j j Og i j � Og j i i (3-9)

such that the2Nv Euler–Lagrange equations read100,105

Ofvj i i D
X

j

j j i�j i : (3-10)

Ofv is the 1-electron Fock operator or Fockian

Ofv ´ OhC OJv � OKv D
X

j

� OJ j
� OK j

�

(3-11)

defined in terms of the Coulomb and exchange operatorsOJv and OKv, respectively.
The contributionsOJ j

and OK j
of thej -th 2-spinorj j i to OJv and OKv are integral

operators defined in terms of their matrix elements in the 2-spinor basis, i.e.

h kj OJ j
 i i D h k j j Og i j i ; (3-12)

h kj OK j
 i i D h k j j Og j i i : (3-13)

Note that the exchange operatorOKv couples the spin components of two given 2-
spinors, which is maybe unfamiliar from the point of view of non-relativistic HF
SCF theory.100,105Explicitly, from eq. 3-4

h kj OK j
 i i D h k˛ j˛j Og j˛ i˛i C h k˛ jˇ j Og j˛ iˇ i

C h kˇ j˛j Og jˇ i˛i C h kˇ jˇ j Og jˇ iˇ i (3-14)

introduces a coupling ofj k˛i andj iˇ i and, consequently,j kˇ i andj i˛i that
vanishes in the non-relativistic case if, as usually done,107 the 2-spinors are chosen
as OS´ eigenfunctions.

As both OJv and OKv are invariant under unitary transformations of the 2-spinors
j i i among each other, eq.s 3-10 can be re-arranged to the pseudo-eigenvalue
equations 3-3 by diagonalizing the matrix– 2 C2Nv�2Nv of Lagrange multipliers;
because the Fock operatorOfv is hermitian and, thus,�j i D h j j Ofv i i D ��

ij from
eq.s 3-10, such a transformation always exists, and leaves the Slater determinant
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3: 2-Component HF SCF Theory

j	 i of eq. 3-2 invariant outside a phase factor.100,105The 2-spinors satisfying eq.
3-3 are referred to as “canonical HF 2-spinors”.

Note, however, that eq.s 3-3 defines the 2-spinors only implicitly, as Ofv de-
pends on¹j i iºi through OJv � OKv. Therefore, eq.s 3-3 must be solved iteratively
to self-consistency.100,105,107e

3.1.3 Kramers’ Restriction and Time Reversal Symmetry

It is clearly desirable to incorporate as much properties ofthe exact solution of the
time-independent2Nv-electron Schrödinger equation in any approximation to it.
In fact, it is the consideration of the correct2Nv-fermion permutation symmetry
that gives way to HF SCF theory as discussed here.

As discussed in some detail in sec. 2.1.2, time reversal invariance is another
fundamental symmetry of the electromagnetic HamiltonianOHv in the absence of
external magnetic fields. Asj	 i of eq. 3-2 is even under the transformationOK of
eq. 2-23, i.e. OK2 D O1 from eq. 2-24, this time reversal invariance can be imposed
on the HF SCF Slater determinant by means of “Kramers’ restriction” as discussed
in the following.

Two Statements On Kramers-Restricted Slater Determinants

Before considering Kramers’ restriction of the set of 1-electron 2-spinors in detail,
two statements on Slater determinants and the operation of time reversal – which
have been given in a similarly by Lax51 – will be briefly addressed to outline the
concept.

� A Slater determinantj	 i D det.j i i/i is “Kramers restricted” if, for a
phase�,

j OK	 i D �j	 i (3-15)

with OK D Ok1˝� � �˝ Ok2Nv
; for eq. 3-15 to hold it is necessary and sufficient

thatE1´ span.j i i/i is invariant underOk1.
e It is noted in passing that questions concerning the existence and formal properties of solutions

to eq.s 3-3 are far from trivial. However, almost all works inthis field address non-relativistic
all-electron HF SCF theory;106–110in this setting, e.g., Lions109 proved the existence of solutions
of eq. 3-3 for

P

AZA � N , if N is the number of electrons.
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� If E1 is invariant underOk1 D Ok, the2Nv 2-spinors are eigenfunctions of a
Ok-invariant Fock operatorOfv, i.e. Ok Ofv

Ok� D Ofv.51

The first statement is clear from the anti-unitarity ofOK: If E1 is invariant underOk,
i.e. if j 0i 2 E1) j Ok 0i 2 E1, then Ok effects an anti-unitary transformation of
any orthonormal basis.j 0

i i/i that leaves the Slater derminant of these 2-spinors
invariant outside a phase�.51,100,105

More explicitly, let j	 i D det.j i i/i , and letC 2 C2Nv�2Nv be the matrix
of coefficients of.j i i/i with respect to any orthonormal basis.j 0

i i/i of E1, i.e.
j i i D

P

j Cj i j 0
j i. Then, time reversal effects the transformation

C 7! CU� D D ; (3-16)
OKW j	 i D det

�

j i i
�

i
7! detU� � det

�

j i i
�

i
µ �det

�

j i i
�

i
(3-17)

with j�j2 D 1 becauseU� is unitary. Note that Hafner29 proves a theorem in the
opposite direction.

The second statement follows from the shell theorem:51 If Ok1 maps any j 2
E1 to anyj Ok j i D j N j i D

P

l Ujl j li 2 E1, thej -th 2-spinor’s contribution to
the Coulomb operatorOJ transforms as

h kj OJ N j
 i i D

X

ml

U �
�mkU�lj h m j j Og i li D h k j j Og i j i (3-18)

because
P

ml U
�
�mkU�lj D ıkj , and sinceOg is time reversal-invariant. The ex-

change operatorOK transforms accordingly, such that

Ok Ofv
Ok� D Ofv : (3-19)

Note that, ifj	 i is Kramers-restricted, every 2-spinor eigenvalue�i is even-
fold degenerate:28,29Clearly, similar to the proof of Kramers’ theorem,

Ofvj i i D �i j i i ) Ok Ofvj i i D Ofvj Ok i i D �i j Ok i i (3-20)

with h i j Ok i i D 0 from eq. 2-22.f

f Of course, the eigenvalues of the Slater determinantj	 i are not even-fold degenerate, because
j	 i is a2Nv-electron state function and cannot be orthogonal toj OK	 i.
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Choice of A Time Reversal-Invariant 2-Spinor Basis

It is particularly convenient to choose a 2-spinor basis such that, in eq. 3-15,� D 1,
i.e. j OK	 i D j	 i. This basis is a basis ofNv “Kramers pairs”,

�

j 0
1i; : : : j 0

2Nv
i
�

D
�

j 0
1i; : : : j 0

Nv
i; j N 0

1i; : : : j N 0
Nv
i
�

µ D : (3-21)

Such a basisD always exist and is, in fact, orthonormal.g

Because of eq. 2-21, the time reversal operatorOk transforms the 2-spinor basis
D of eq. 3-21 as

Ok W
�

j 0
1i; : : : j 0

Nv
i; j N 0

1i; : : : j N 0
Nv
i
�

7!
�

j N 0
1i; : : : j N 0

Nv
i;�j 0

1i; : : :� j 0
Nv
i
�

:

If the Slater determinantj	 i is constructed from the basis of eq. 3-21, i.e. ifj	 i D
detD , one hasC D 12Nv

, and OK effects the unitary transformation of eq. 3-16
with

U� D U1 D
�

0 �1
1 0

�

˝ 1Nv
(3-22)

with 1Nv
theNv �Nv unit matrix. Clearly, detU1 D 1, such thatj OK	 i D j	 i as

intended.

In the following, a 2-spinor basis will be referred to as “Kramers-restricted” if
E1 D span.j i i/i is Ok-invariant. The particular Kramers-restricted basisD de-
fined by eq. 3-21 will be referred to as a basis of “Kramers pairs” or “time reversal-
invariant”, as, then,D itself is Ok-invariant outside a set of2Nv phase factors�i .

h

g Following Rösch,111 j 1i and j N 1i are orthonormal because of eq. 2-22. Then,j 2i can be
chosen normalized in the orthogonal complement.j 1i; j N 1i/? µ E1?

1 ; from eq.s 2-15 and
2-17,j N 2i is also inE1?

1 , etc. This procedure defines the basis of eq. 3-21 inNv steps.
h Note, however, that also the time reversal-invariant basisD of eq. 3-21 is not uniquely defined, as

one is still free to choose a symplectic unitary transformation S of D for that detS D 1. Clearly,
any such transformation

S D
�

v �w�

w v�

�

2 C2Nv�2Nv

with v D diagvi 2 CNv�Nv , w D diagwi 2 CNv�Nv , andjvi j2 C jwi j2 D 1 for all i , has unit
determinant and maps a given Kramers pair.j 0

i i; j N 0
i i/ � D of 2-spinors to another, equivalent

Kramers pair
�

vi j 0
i i C wi j N 0

i i;�w�
i j 0

i i C v�
i j N 0

i i
�

µ
�

j 00
i i; j N 00

i i
�

I
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Kramers-Restricted Roothaan–Hall Equations

3.2 Kramers-Restricted Roothaan–Hall Equations

Almost all practical applications of HF SCF theory involve some kind of finite
basis set expansion techniques.100,105,112,113This is mainly connected to the fact
that eq.s 3-3 have necessarily to be solved iteratively to self-consistency: That
is, for Ofv constructed from a given set of 2-spinors, eq.s 3-3 are solved to give
a refined set of 2-spinors that, in turn, allows the construction of a refined Ofv,
and the process is repeated until some “convergence” criterion is met. Whereas
the2Nv integro-differential equations 3-3 can, in principle, be solved for the2Nv
1-electron state functionsj i i numerically by, e.g., finite-difference methods,114

this is practically not the case for systems other than atomsand linear molecules.
The ansatz of Roothaan112 and Hall113 is a discretization of the 2-spinors not

on R3, but on the 1-electron Hilbert spaceE1 directly, i.e. in terms of a given set
B D .j�pi/npD1 of n “basis functions”j�pi.i Then, with

j i i 7!
X

j�pi 2B

j�pih�pj i i D
X

p


Cpi
 j�p
i ; (3-23)

one has to solve for, and refine, the expansion coefficientsCpi 2 C of the projec-
tion of j i i only.100,105,112,113

Although the derivations of the following presentation aresomewhat straight-
forward, the explicit expressions for the Fock and density matrix representations
F andD, respectively, will be elaborated in detail to provide the basic working
equations for the following parts. The time reversal-invariance property ofD and,
thus, Ofv introduces a special matrix block symmetry discussed in sec. 3.2.2. Fi-
nally, sec.s 3.2.3 and 3.2.4 comment on the specialOB ! 0 case and the nature of
the basis functions typically employed, respectively.

thus,D is defined only outside such a symplectic unitary transformation. As discussed in detail
in sec. 7.2, Hafner and Schwarz28 chooseS to maximize the 2-spinor basis’ “similarity” with a
basis of corresponding non-relativistic spin-orbitals.

i Note that the discussion is restricted to expansion in termsof “scalar”, i.e. spin-free basis functions
j�pi. 2-spinor expansion techniques, as common in the 4-component Dirac–Hartree–Fock setting,
are discussed in some detail by, e.g., Dyall and Fægri10 and Reiher and Wolf.11
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3: 2-Component HF SCF Theory

3.2.1 Expansion in Terms of Scalar Basis Functions

The phrase “expansion in terms of scalar basis functions” is, from the point of
the 2-spinor nature of the 1-electron state functionsj i i, an oversimplification.
To be precise, the 2-spinorsj i i are defined in the tensor product of the Hilbert
spaceL of square-integrable continousR3 ! C functions with the spin-1

2
space

S D span.j˛i; jˇi/, symbolicallyE1 D L˝ S. Therefore, if

B´ spanB D span
�

j�pi
�n

pD1
(3-24)

is spanned by then scalar basis functionsj�pi,j the 2-component Roothaan–Hall
equations are obtained by projection to the subspace

B˝ S D span
�

j�p ˝ ˛i
�n

pD 1
[

�

j�p ˝ ˇi
�n

pD 1
; (3-25)

that, as compared toB, includes theOS´ eigenfunctionsj˛i and jˇi of eq. 2-34.
In other words, it is both thę - andˇ-spin components of the 2-spinors that are
expanded in terms of the same scalar basis functionsj�pi 2 B.28k

With eq. 3-23, the projected Fock equations 3-3 read

h�p
 j Ofv i i D
X

q
 0

fpq

 0Cqi
 0 D
X

q
 0

Spq

 0Cqi
 0�i I (3-26)

fpq

 0 ´ h�p
 j Ofv�q

0i ; Spq

 0 ´ h�p
 j�q
 0i D h�pj�qiı

 0 ; (3-27)

for all 2Nv 2-spinorsj i i and all2n functionsj�q
i. As can be inferred from eq.
3-23,Cpi
 D h�q
 j i i D h�qj i
 i.

Collecting all2n � 2Nv equations 3-26 in a single matrix equation gives the
2-component Roothaan–Hall SCF matrix equation28

FC D SC– (3-28)

j Whereas the basis functions are typically chosen to beR3 ! R functions,B is understood to be
defined overC.

k Note that the term “basis” is used loosely in this context. Generally,B includes functions linearly
dependent within numerical accuracy, and should, in a strict sense, be referred to as a generating
system. However, the term “basis” for such sets is common andwill also be employed here and in
the following.
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with the Fockian matrix representation

F D
�

F˛˛ F˛ˇ
Fˇ˛ Fˇˇ

�

´

0

B
B
B
B
B
B
B
B
@

f11˛˛ � � � f1n˛˛ f11˛ˇ � � � f11˛ˇ
:::

:::
:::

:::

f11˛˛ � � � fnn˛˛ fn1˛ˇ � � � fn1˛ˇ
f11ˇ˛ � � � f1nˇ˛ f11ˇˇ � � � f11ˇˇ
:::

:::
:::

:::

f11ˇ˛ � � � fnnˇ˛ fn1ˇˇ � � � fn1ˇˇ

1

C
C
C
C
C
C
C
C
A

2 C2n�2n

As already indicated in eq. 3-27, the overlap matrixS D S˛˛˚Sˇˇ has a similar,
set simpler structure from spin orthogonality.

In the general casen > Nv, and eq. 3-28 is typically extended to also include
a number of2n � 2Nv “virtual” 2-spinor vector representations and correspond-
ing 2-spinor eigenvalues�i , such that all matrices in eq. 3-28 have the common
dimension2n � 2n.

3.2.2 Time Reversal Invariance and Matrix Symmetry

The particular choice of a time reversal-invariant 2-spinor basisD , as defined by
eq. 3-21, manifests in a special structure of the matrices ofeq. 3-28:28

From the definition ofD , the expansion coefficientsC
pNi


of theNv time-
reverse 2-spinorsj N i i are related to the coefficientsCpi
 of theNv time-forward
2-spinors by

C
qNi˛
D h�q˛j N i i D h�q˛j

�

� j �
iˇ˛i C j �

i˛ˇi
�

D �C �
qiˇ ; (3-29)

C
qNiˇ
D h�qˇj N i i D h�qˇj

�

� j �
iˇ˛i C j �

i˛ˇi
�

D C �
qi˛ ; (3-30)

where real-valued basis functionsj�qi have been assumed. Therefore, the HF SCF
eigenvector matrixC 2 C2n�2n, seen as row vector of the2n 2-spinor column
vector representationsCi 2 C2n�1, i.e.

C D
�

C1; : : :Cn;CnC1; : : :C2n
�

D
�

C1; : : :Cn; NC1; : : : NCn
�

; (3-31)

recovers the structure of the 2-spinor basisD of eq. 3-21. Analog to the notation
for the time-reverse 2-spinorj N i i ´ j Ok i i, the time-reverse vector representa-
tion is written

NCi ´ .j ˝ 1n/C
�
i ; (3-32)
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3: 2-Component HF SCF Theory

where the complex conjugation operator in the basisB has been evaluated directly
to give the complex-conjugated vectorC�

i ; the symplectic formj´�2iSy is the
representation of�2i OSy in the basisB.

In fact, in much the same way asOk-invariance ofD imposes a special structure
on C, Ok-invariance of Ofv gives rise to very similar symmetry properties ofF D
hC V CW C J � K. From the point of view of sec. 3.1.3 this follows directly
from eq. 3-19, as the projection ofOk Ofv

Ok� D Ofv to B˝ S readsl

�

0n �1n
1n 0n

� �

F�
˛˛ F�

˛ˇ

F�
ˇ˛ F�

ˇˇ

� �

0n 1n
�1n 0n

�

D
�

F˛˛ F˛ˇ
Fˇ˛ Fˇˇ

�

(3-33)

) Fˇˇ D F�
˛˛ ; Fˇ˛ D �F�

˛ˇ (3-34)

necessarily. However, it will be explicitly shown in the following that all contri-
butions toF have the special structure defined by eq.s 3-34.m

Explicit Expressions: 2-Spinor Energy and Core Hamiltonian Matrices

From eq.s 3-20 it is evident that the matrix– of 2-spinor energy eigenvalues is of
the structure

– D diag�i ˚ diag�i 2 R2n�2n ; (3-35)

clearly satisfying eq.s 3-34.
For real-valued basis functionsj�pi, matrix representations of spin-indepen-

dent operatorsOO , i.e. OT , OV , and OA of eq. 2-48, are also real-valued. As, moreover,
all such matrix representations decouple asO D O˛˛ ˚Oˇˇ from spin orthogo-
nality, eq.s 3-34 are clearly satisfied.

l Note that the time reversal operator effects complex conjugation of operator matrix representations
as, e.g.,F , by conjugation, but by (left) multiplication for 2-spinorvector representations.

mIn their 1979 paper, Hafner and Schwarz28 motivate Kramers’ restriction from the opposite point
of view, starting on the matrix algebra level directly: The spin–orbit PP operator matrix represen-
tationB and, thus, the 1-electron parthC V C AC B of F , is naturally of the structure defined
by eq.s 3-34 (which is connected to the special algebraic properties of the Pauli sigma operators
O�x , O�y , O�´). Then, choosing a time reversal-invariant 2-spinor basisimposes the same structure
on theK matrix and, thus, onF .
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Considering the spin–orbit PP operatorOB, evaluating theOL � OS dot product and
performing spin integration gives

h�p˛j OB�q˛i D
1

2

X

lml

h�qj OBl OL´jlmlihlml j�qi D B�
pqˇˇ ; (3-36)

h�p˛j OB�qˇi D
1

2

X

lml

h�qj OBl. OLx � i OLy/jlmlihlml j�qi D �B�
pqˇ˛ ; (3-37)

where the truncation of the sum over alll , introduced in eq. 2-44, has been om-
mited for clarity. The second equalities, i.e. the relations Bpq˛˛ D B�

pqˇˇ and
Bpq˛ˇ D �B�

pqˇ˛ corresponding to eq.s 3-34, follow from the fact that theOBl OLr
matrix elements betweenj�qi and the spherical harmonicsjlmli are purely imag-
inary.

Therefore, the matrix representationh D TCVCACB is also time reversal-
invariant – although this fact is not connected to the choiceof a 2-spinor basis of
Kramers pairs, as eq.s 3-36 and 3-37 are essentially independent of eq. 3-31.

Explicit Expressions: Density, Coulomb, and Exchange Matrices

Both the Coulomb and exchange operator matrix representationsJ andK are con-
veniently expressed in terms of the density matrixD. With the Kramers-restricted
HF SCF density operator

OD D j	 ih	 j D
NvX

iD 1

�

j i ih i j C j N i ih N i j
�

; (3-38)

from eq.s 3-23, 3-29, and 3-30, the density matrix elementsDpq

 0 are

Drs˛˛ ´
X

i

�

Cri˛C
�
si˛ C CriˇC �

siˇ

�

D D�
rsˇˇ ; (3-39)

Drs˛ˇ ´
X

i

�

Cri˛C
�
siˇ � C �

riˇCsi˛
�

D �D�
rsˇ˛ : (3-40)

In terms of theDpq

 0, the contributionsOJ i
and OJ N i

of thei-th time-forward
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3: 2-Component HF SCF Theory

and time-reverse 2-spinorsj i i andj N i i, respectively, are

h�p
 j OJ i
�q


0i D h�p i˛j Ogj�q i˛iı

 0 C h�p iˇ j Ogj�q iˇ iı

 0 ;

h�p
 j OJ N i
�q


0i D h�p �
iˇ j Ogj�q �

iˇ iı

 0 C h�p �
i˛j Ogj�q �

i˛iı

 0 ;

where spin integration has been carried out to show thatOJ i
and OJ N i

do not couple
the 2-spinors’̨ - andˇ-spin components. Consequently, with eq.s 3-29, 3-30, 3-
39, 3-40, andD�

sr

 D Dsr

 , the full Coulomb operator’s matrix elements are

Jpq

 0 D
X

i

h�p
 j
� OJ i

C OJ N i

�

j�q
i D 2
X

rs

ReDsr

gprqsı

 0 ; (3-41)

such that theJ matrix decouples as the spin-independent core Hamiltonianpart,
i.e. asJ D J˛˛ ˚ Jˇˇ , clearly satisfying eq.s 3-34.

By essentially the same reasoning one finds for the contributions OK i
and OK N i

to the exchange operatorOK

h�p
 j OK i
�q


0i D h�p
 i˛˛j Ogj i˛˛�q
 0i C h�p
 i˛˛j Ogj iˇˇ�q
 0i
C h�p
 iˇˇj Ogj i˛˛�q
 0i C h�p
 iˇˇj Ogj iˇˇ�q
 0i ;

h�p
 j OK N i
�q


0i D h�p
 �
iˇ˛j Ogj �

iˇ˛�q

0i � h�p
 �

iˇ˛j Ogj �
i˛ˇ�q


0i
� h�p
 �

i˛ˇj Ogj �
iˇ˛�q


0i C h�p
 �
i˛ˇj Ogj �

i˛ˇ�q

0i ;

such that

Kpq

 0 D
X

i

h�p
 j
� OK i

C OK N i

�

j�q
 0i D
X

rs

Dsr

 0gprsq I (3-42)

Kpq˛˛ D K�
pqˇˇ ; Kpq˛ˇ D �K�

pqˇ˛ : (3-43)

Eq.s 3-43 follow directly from the time reversal invarianceof D, as the 4-index
integralsgprsq are real for real-valued basis functionsj�pi. As already pointed
out in sec. 3.1.2,K, as opposed toJ , does break spin symmetry, i.e. couples the
2-spinors’˛- andˇ-spin components through the generally non-vanishingK˛ˇ
andKˇ˛ blocks.
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Kramers-Restricted Roothaan–Hall Equations

3.2.3 Spin Component Decoupling in theOB ! O0 Limit

For vanishing spin–orbit PP operatorsOB, i.e. in a scalar- or non-relativistic setting
with W D A or W D 02n, respectively, the complete core Hamiltonian matrix
representationh decouples with respect to the spin indices. Moreover, from eq.s
3-34,h˛˛ D hˇˇ 2 Rn�n. Then, all2n HF SCF eigenvectorsCi can be chosen
real-valued and to representOS´ eigenfunctions, i.e. to satisfyS´Ci D ˙12Ci ,
provided that the firstJ �K matrix in the SCF loop is constructed from an initial
guess that does not break spin symmetry.

Then, the density matrix decouples accordingly because, ineq. 3-40, the sum
runs over differences of products that always include at least one vanishing factor
as thei-th eigenvectorCi has eitherCpi˛ D 0 or Cpiˇ D 0 for all p. Thus,
from eq. 3-42 alsoK

 0 D 0n for 
 ¤ 
 0, and the 2-component Roothaan–Hall
equation 3-28 decouples to give two real-valuedn � n equations

F˛˛C˛ D S˛˛C˛– and FˇˇCˇ D SˇˇCˇ– : (3-44)

Clearly, both are identical from the imposed Kramers’ restriction – which is, in
fact, identical with the spin restriction of non-relativistic RHF SCF theory100,105

in this case –, and one has the simplified relations

Dpq D 2
X

i

CpiCqi ; Jpq �Kpq D
X

rs

Dsr.2gprqs � gprsq/ ; (3-45)

where the spin indices have been dropped.

3.2.4 Cartesian Gaussian-Type Orbital Basis Functions

So far, outside the assumption�p.r/ 2 R for all r, nothing has been stated about
the nature of the functionsj�pi 2 B used to span the subspaceB˝ S. No review
of the wealth of functions that can possibly be employed is given here. The book
of Helgaker, Jørgensen, and Olsen101 provides both an in-depth discussion of the
subject and a large number of references.

In most wave function-based electronic structure calculations, the basisB is
chosen as a set of Gaussian-Type Orbitals, GTOs, i.e. of typically atom-centered
functions with Gaussian functions – or linear combinationsof Gaussian functions
– for the radial part.
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3: 2-Component HF SCF Theory

Most often these are Cartesian GTOs, i.e. CGTOs, of the form

�p.r/ D Np � .x � xp/mpx .y � yp/mpy .´ � ṕ/
mp´ � e��pjr�rp j2 ; (3-46)

centered atrp. The Cartesian monomialsmpx;mpx;mp´ 2 N are connected to
the CGTO’s associated orbital angular momentum qantum number lp viampx C
mpy C mp´ µ kmpk1 D lp, introducing the Cartesian monomial vectormp 2
N3 and its1-norm for later convenience.n

The main motivation of choosing CGTO basis functions for thediscretization
of, e.g., the Hartree–Fock SCF equations, is connected to the dramatic simplifica-
tion of the evaluation of 1-electron and, to some extent, 2-electron operator matrix
elements between CGTOs101,115 – as compared to, e.g., exponential-type func-
tions. In fact, the convergence of the expansion of eq. 3-23 is slow with respect to
increasing size ofB,101 particularly in the 2-component setting.116 However, as
most matrix elements between CGTOs can be evaluated analytically or employing
at most a single one-dimensional numerical integration, the relatively large size of
CGTO basis sets is typically outweighted by far.

3.3 Closing Comments on Correlation

It is clear that the time-independent Schrödinger equation 2-5 is not solved by the
HF SCF Slater determinant ansatz of eq. 3-2. In fact, as pointed out in sec. 3.1.1,
j	 i of eq. 3-2 incorporates only the quantum statistical correlation of the2Nv
electrons due to their nature as indistuingishable, elementary spin-1

2
particles, but

not correlation due to their physical interaction.
It is this characteristic feature of the HF SCF2Nv-electron state function that

gives rise to the definition of the correlation energy100,101

Ecorr:´ E �ESCF (3-47)

n The set of all CGTOs includes the spherical harmonic-GTOs from the possibility to re-write the
real spherical harmonicsYml

l in terms of only the Cartesian coordinatesx, y, ´, such that every
spherical harmonic-GTO with a given orbital angular momentum quantum numberl is a linear
combinations of CGTOs withkmk1 D l .101 Note, however, that for a givenl there are12 .l C
1/.l C 2/ CGTOs, but only2l C 1 spherical harmonic-GTOs.
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in terms of the “exact” energyE and the expectation valueESCFD hHvi	 of OHv
with the Slater determinantj	 i.

Probably the largest part of methods developed, and still being developed, in
computational quantum chemistry is concerned with the accurate, yet mostly ap-
proximate computation ofEcorr:,

100,101and this is maybe also true for relativistic
quantum chemistry.10,11,78In principle, the exact solution of eq. 2-5 – still assum-
ing a2Nv-electron closed-shell system – is readily written as the (full) Configura-
tion Interaction state function

jfull CIi (3-48)

´ j	 i C
X

ia

C ai j	ai i C
1

.2Š/2

X

ijab

C abij j	abij i C
1

.3Š/2

X

ijkabc

C abcijk j	abcijk i C � � �

in terms ofj	 i of eq. 3-2: The determinantsj	ai i, j	abij i, j	abcijk i, . . . with single,
double, triple, . . . substitutions, respectively, are defined in terms ofj	 i in the
sense that, e.g.,j	ai i is obtained fromj	 i by substituting thei-th 2-spinor with
the a-th of the 2n � 2Nv “virtual” 2-spinors.o However, for a given basis set
expansion of the 2-spinors in terms ofn basis functionsj�pi 2 B, the number
NCI.m/ of m-fold substituted determinants is100

NCI.m/ D
�

2Nv
m

� �

2n � 2Nv
m

�

; (3-49)

and, thus, the number of terms included in eq. 3-48 in almost all cases too large.
Therefore,Ecorr: is almost always computed in terms of approximations tojCIi.
A wealth of hierarchies of approximate correlated electronic structure methods
has been and is still being developed,10,11,78,100,101,117and it is both impossible
and inappropriate to attempt any systematic discussion here.

A successful class of approximations toEcorr: of eq. 3-47 is not obtained from
perturbation theory:100,101Partitioning the2Nv-electron HamiltonianOHv as

OHv µ OF C � OV (3-50)

o jCIi is, in principle, exact because the set of all2Nv-electron Slater determinants is a complete
orthonormal system of functions for the2Nv-electron state Hilbert space. However, this assumes
a complete set of 1-electron state functionsj i i.

37



3: 2-Component HF SCF Theory

in terms of an operatorOF of which eigenfunctions and spectrum are known, and
a “small” perturbation OV , Rayleigh–Schrödinger perturbation theory44,100,118ex-
pands both eigenfunctions and eigenvalues ofOHv in a Taylor series in the ordering
parameter� 2 Œ0; 1�. Cleary, as� ! 1, the original2Nv-electron Hamiltonian
OHv is recovered from eq. 3-50.

A particular common choice of theOF and OV operators for the approximate
calculation of the correlation energyEcorr: is119

OF ´
X

i

Ofvi ;
OV ´

X

i>j

Ogij �
X

i

� OJvi � OKvi

�

(3-51)

with the valence-only FockianOfvi , Coulomb operatorOJvi , and exchange opera-
tor OKvi for the i-th electron, defining Møller–Plesset perturbation theory:100,101

Clearly, the lowest-energy eigenfunction ofOF is the2Nv-electron Slater determi-
nant of eq. 3-2 with eigenvalue

P

i �i . With eq. 3-51, expanding the total energy
up to second order in� gives the Møller–Plesset correlation energy to second
order,100,101p

EMP2´
1

4

X

ijab

jgijab � gijbaj2

�i C �j � �a � �b
; (3-52)

wherei andj label occupied, anda andb label virtual 2-spinors.

p Note that, as discussed in detail by, e.g., Helgaker, Jørgensen, and Olsen,101 the Møller–Plesset
perturbation expansion is not guaranteed to converge, and can, in fact, diverge in cases of practical
interest. However, it is probably fair to stateEMP2 is most often a good estimate of the correlation
energy.

38



4

Scope, Strategy, Status Quo 2006

The main goal of this work is the development of a Kramers-restricted 2-compo-
nent pseudopotential Hartree–Fock SCF program on the basisof the “Quantum
Objects Library” HF SCF modules.

Linking the preceding theoretical with the following technical, implementa-
tion part, this chapter is intended to provide a short discussion of this work’s pre-
requisites, scope, and the global strategy employed to approach the research goals
formulated. In fact, these considerations reflect to a largeextent the structure and
organization of the following chapters, which is briefly outlined and reasoned in
sec. 4.2. Finally, sec. 4.3 provides a technical discussionof a small part of the
2006 QOL implementation’s matrix, integral evaluation, and HF SCF modules.

4.1 The “Quantum Objects Library”

The “Quantum Objects Library”, QOL, is a set of program modules that provides
a modular, highly abstract structure mainly for correlatedwave function-basedab
initio electronic structure methods with emphasis on (arbitrary excitation single-
and multi-reference) Coupled Cluster theory and variants thereof. Technically, the
largest part is written in C++, including a number of code-generated components
and interfaces to standard libraries as, e.g., the LAPACK/BLAS libraries. The
QOL has been initiated, designed, and developed by M. Hanrath and coworkers at
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4: Scope, Strategy, Status Quo 2006

Cologne University.
Around the end of 2006, the QOL also provided a small number ofless de-

veloped modules for CGTO integral evaluation and integral-conventional spin-
restricted HF SCF calculations. The importance of this partof the QOL does not
originate in the competitive performance and functionality characteristics of the
HF SCF program provided – in fact, with respect to these modules, the 2006 QOL
implementation has to be considered as exploratory only. Instead, its relevance
comes from the connection to the well-developed CC modules,and from its na-
ture as in-house development that allows access to, and modification of, the source
code.

4.2 Scope, Strategy, and Organization of This Work

This work builds heavily on the HF SCF (and a number of related) QOL modules
and is, thus, to be understood as part of the ongoing development process at the
group of M. Dolg at Cologne University.

The term “2006 QOL implementation” can, of course, only be used in a some-
what loose sense, as particularly the QOL’s CC modules have been continously
modified and extended by M. Hanrath and coworkers. However, the QOL’s HF
SCF-related modules have only been modified and extended in the course of this
work, such that the term “2006 QOL implementation”, if employed with respect
to these modules, refers to the QOL HF SCF parts’ status quo prior to the modi-
fications and extensions presented here, and does so from end2006 to ca. spring
2010.

4.2.1 Implementation Goals

Starting from the 2006 QOL implementation’s 1-component spin-restricted HF
SCF modules, this work aims at

� the implementation of both spin-averaged and spin–orbit pseudopotential
integrals over generally contracted CGTO basis functions;

� the integration of these functionalities in the established QOL HF SCF mod-
ules, i.e. the development of both 1-component spin-restricted all-electron
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and spin-free PP, and 2-component Kramers-restricted spin–orbit PP HF
SCF programs; and

� the development of programs for 4-index integral transformations to the
molecular 2-spinor basis, and for subsequent 2-component Møller–Plesset
perturbation theory calculations.

Additionally, much effort has been made to guarantee and, tosome extent, en-
able applicability of the developed HF SCF modules to the use-cases considered
(e.g. by improving the 2006 QOL implementation’s naı̈ve Roothaan–Hall SCF
algorithm and core Hamiltonian inital guess).

Strategically, it is clear from the introductory discussion of sec. 4.1 thatany
approach of these implementation goals is to be made within the primary require-
ments of maintaining interoperability and compatibility with the established mod-
ules– both technically and in terms of the object-oriented programming paradigm
employeda –, as well as with the modules being subject of ongoing development.
It is stressed again that, from this point of view, this work must not be understood
as independent, but as part of the global QOL structure as it stands around spring
2010.

4.2.2 Implementation Strategy and Outline

Because of the nature of this work as part of the ongoing QOL development pro-
cess, most of this work’s implementation has necessarily been done in C++.b

Globally, a bottom-up strategy was employed to approach theimplementation
goals formulated. The following, second part of this work isorganized essentially
analog to this strategy which is, thus, given in some detail to outline the former.

a It is noted in passing that, from the point of view of the formulated research goals, the 2006 QOL
implementation both enables and limits this work: As, for example, the development of the QOL
integral evaluation modules is not, and cannot be, the scopeof this work alongside with what has
been stated, the HF SCF programs developed in this work are logically restricted by the 2006 QOL
implementation’s exploratory status.

b A review of object-oriented scientific programming in FORTRAN90 and C++, introducing C++
concepts as, e.g., inheritance, polymorphism, and template techniques from the point of view of
particle physics, has been given by Cary et al.120
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� From the spin symmetry-breaking nature of the spin–orbit PPoperator OW
of eq. 2-44 one has to consider the fullC2n�2n Roothaan–Hall SCF equa-
tions instead of two smaller, spin symmetry-relatedRn�n problems.
Consequently, in the very first step the 2006 QOL implementation’s matrix
algebra modules were complexified and supplemented by matrix classes
exploiting time reversal-related index symmetry. In a subsequent step these
were connected to the established QOL iterator–evaluator structure, allow-
ing the assembly of all non-PP matrices in the extendedC2n�2n framework.
The implementation details are discussed in ch. 5.

� In a next intermediate step, PP classes and the necessary PP parameter input
functionalities have been introduced, including the 2006 QOL implementa-
tion’s all-electron calculation scheme as special case.
Then, with the necessary matrix algebra framework established, spin-aver-
aged and spin–orbit PP integrals have been implemented by interfacing the
PP integral subroutines31,32 of the ARGOS integral program31–35 as dis-
cussed in ch. 6.

� The third step, addressing the 2-component PPs in the HF SCF framework,
was to

� implement complex-valued hermitian eigenvalue equation solving and
spin symmetry-broken density matrix assembly;

� implement spin component exchange coupling according to eq. 3-42;
and

� organize SCF eigenvector processing to impose and maintaintime re-
versal-invariance according to eq. 3-31 over the iterativesolution of
eq. 3-28.

Improvements of SCF convergence and initial guessing, i.e.the implemen-
tation of a 2-component “Optimal Damping Algorithm”36,37 and “Mole-
cule-from-Atoms” density matrices,38 are also discussed in ch. 7.

4-index integral transformation to the Fockian eigenbasisis, to a greater or lesser
extent, independent from the HF SCF framework and is presented in ch. 8.

Generally, the presentations given in the upcoming chapters 5, 6, 7, and 8 – and,
consequently, also the following discussion of parts of the2006 QOL implemen-
tation in sec. 4.3 – have been given a strong technical focus,and have been set
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up close to the source code. This necessarily goes at the expense of the reader
who is not interested in implementation details. However, much of the value of
the accessibility of the source code comes from its documentation. From this and
the point of view of sec. 4.1, ch.s 5–8 have been written with the particular aim
of providing a documentation of the design, implementation, and, to some extent,
the source code, i.e. with the hope to be able to assist futuredevelopment.

4.3 Quantum Objects Library: Status Quo End 2006

The following discussion of a smaller number of selected modules and class struc-
tures of the 2006 QOL implementation cannot aim at a self-contained documenta-
tion and is far from comprehensive. Instead, it presents code design features that
guided and – for compatibility reasons – restricted design and implementation of
new modules and class structures. Particularly the introduction of complex-valued
matrix classes and the interface of the ARGOS PP integral subroutines discussed
in ch.s 5 and 6, respectively, are closely interrelated to these parts of the 2006
QOL implementation.

Consequently, sec.s 4.3.1, 4.3.2, and 4.3.3 are set up – and meant to be limited
– to provide a preparatory technical discussion for the upcoming ch.s 5, 6, and, to
some extent, 7.

4.3.1 QOL Matrix and Matrix Representation Classes

Generally, QOL matrix class design and implementation is characterized by the
strict separation from matrix entry-storing “container–evaluator”, and upper level
matrix ”algebra” classes:

Every matrix object makes reference to an associated “container–evaluator”
object that defines memory allocation, layout, and access via a container class
holding the matrix entries, and an index operator for structured random access
mimicking the possibly non-trivial matrix structure.c The matrix “algebra”, i.e.

c In principle, a container–evaluator class does not need to allocate any memory at all. Matrix
elements could as well be re-computed at access by connecting the index operator to, e.g., integral-
processing subroutines. The particular HF SCF setting does, however, employ container–evaluator
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the set of permitted operations relating matrices to othersand other quantities, is
common to all matrix objects independent of their internal structure, and imple-
mented as a set of matrix class methods and operators. This gives way to the easy

bind: <ScalarProduct!
FullSpaceIntegration>

QOL::MatrixVector QOL::LinearAlgebra

Matrix SymmetricMatrixRepresentation

FullSpaceIntegrationstd::vector<double>
SymmetricMatrix

SymmetricMatrix_MemEvaluator LinearSpace UnitarySpace

bind: <Field ! double>
Fig. 4.1: UML class diagrams for parts of theQOL::MatrixVector andQOL::LinearAlgebra

namespaces. All template parameters and most implied template argument bindings have
been ommited for clarity. For example, theSymmetricMatrix_MemEvaluator attribute
of Matrix implies binding of theEvaluator template argument ofSymmetricMatrix
to SymmetricMatrix_MemEvaluator .

and logical implementation of different types of matrices by inheritance from,
and by letting the container–evaluator class be a template argument of, the basic
Matrix class.

Fig. 4.1 illustrates the interdependence of the container–evaluator and matrix al-
gebra classes for the particularSymmetricMatrix class case:

SymmetricMatrix is a three-parameter template class derived fromMatrix.
Matrix symmetry enters through the second, typicallySymmetricMatrix_Mem-
Evaluator-valued template argument, that stores the1

2
n.nC1/ symmetry-unique

matrix entries, i.e. the upper or lower triangular part ofM 2 Rn�n, as defined by
the MatrixPackageOrder template argument. Precisely,SymmetricMatrix_-
MemEvaluator has astd::vector attribute that holds the matrix entries sequen-
tially for efficient one-index random accesss. Both the two-fold indexed structure
and the generation of symmetry-redundant from symmetry-unique entries is pro-
vided by the two-index() operator

classes that hold all (symmetry-unique) matrix entries in memory, such that the term “container–
evaluator” can be understood synonymeously with “container”.
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1 
onst value_type & operator () (int p, int q) 
onst {
2 if ( matrixPackageOrder == LowerDiagonal ) {
3 if( p < q )
4 std::swap(p, q);
5 return _v[p*(p+1)/2 + q] );
6 } // ...

which is therefore necessarily an attribute of theSymmetricMatrix_MemEvalua-
tor class.

Algebraic operations that define sums, products, etc. of matrices, including
(but not restricted to) symmetric matrices, are defined in terms of methods and op-
erators of theMatrix base class, and can be accessed by, e.g.,SymmetricMatrix

through the inheritance relationship.

Most matricesM in the HF SCF setting are actually referred to as matrix repre-
sentationsO of operators OO in finite-dimensional subspacesB spanned by CGTO
basis functionsj�pi 2 B D .j�pi/npD 1. The connection ofO and OO is estab-
lished by

OO �
X

j�pi;j�qi 2B

j�pih�pj OO�qih�qj D
X

pq

Opqj�pih�qj ; (4-1)

which makes reference to a scalar or inner productB � B ! R, .j�pi; j�qi/ 7!
h�pj�qi for the definition of the matrix representation’s matrix elements.O/pq D
Opq D h�pj OO�qi.d

This abstract structure is mimicked through the design of the QOL matrix rep-
resentation modules as illustrated in fig. 4.1 for the particularSymmetricMatrix-
Representationcase: The top-levelSymmetricMatrixRepresentationclass
is a two-parameter template class of a firstUnitarySpace, and a particular matrix
class second template argument, which is set toSymmetricMatrix by default. In
fact,SymmetricMatrixRepresentation is such aSymmetricMatrixby inher-

d Note that the inner product in eq. 4-1 can generally not be restricted to the domainB � B and,
therefore, cannot be considered as a property ofB. This is because in eq. 4-1 the functionj OO�qi
is not necessarily inB; the projectionj�pih�p j OO�qi is, of course, but requires the definition of
the inner product ofj�pi 2 B andj OO�qi 2 B0 � B, i.e. on some “larger” spaceB0 that contains
B as a proper subspace.
Whereas this point might be referred to as formal, it actually is of particular importance for the
generalization of eq. 4-1 to include spin–orbit pseudopotential operators as discussed in 5.2.1.
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itance, thus inheriting all matrix algebra operations shared with general (symmet-
ric) matrices that do not necessarily represent operators.UnitarySpace provides
the inner product information and, thus, defines theSymmetricMatrix classes’
value_type template argument, i.e. the matrix entries’ data type, asUnitary-
Space::_ScalarProduct::_Field.e

Eq. 4-1 provides a natural connection of the construction ofmatrix representation
objects and the evaluation of operator matrix elements, i.e. integrals, through the
CGTO-spanned unitary subspaceB D spanB. Consequently, QOL integrals are
evaluated not before the construction of, e.g.,SymmetricMatrixRepresenta-
tion from abstractContainerRepresentation objects that carry the relevant
function space and operator information, as briefly discussed in the next section.

4.3.2 QOL Iteration, Integration, and Integral Communicat ion

The link between the QOL matrix algebra and matrix representation modules on
the one side, and the integral-evaluating modules on the other side is effectively
provided by theStandardMolecularHamiltonianRepresentation class:

Generally, top-level construction of matrix representation objects involves re-
spectiveStandardMolecularHamiltonianRepresentation methods as, e.g.,
overlap(), and handing theContainerRepresentation return type objects to
theSymmetricMatrixRepresentation constructor:f For example,

e In a non- or scalar-relativistic spin-free HF SCF setting, operators are represented in a subspace
B � L of the Hilbert space of square-integrable continousR3 ! R functions overR, spanned by
n CGTOsj�pi. B inherits theL inner product

�

j�pi; j�qi
�

7! h�pj�qi D
Z

R3
dr ��

p .r/�q.r/ 2 R :

Consequently,UnitarySpace typically is of aCartesianGaussian_UnitarySpace1 type, its
ScalarProduct template argument being set toFullSpaceIntegration by default. Then, the
SymmetricMatrix template argumentvalue_type is set to the same type as the CGTO’s do-
main data type by thetypedef typename Vector::_Field _Field type definition inFull-
SpaceIntegration, i.e. a single or double precision floating point representation of R.

f Whereas there is no “operator” that corresponds to the overlap matrixS, i.e. the subspaceB’s met-
ric in theB representation,S is technically represented by aSymmetricMatrixRepresentation
object from the close connection to eq. 4-1 withOO D O1.
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1 typedef StandardMolecularHamiltonianRepresentation<
2 CGTOBasis> H;
3 H h( molecule, basis );
4
5 // OVERLAP MATRIX CONSTRUCTION USE CASE
6 SymmetricMatrixRepresentation<H::USpace1>
7 overlapMatrix( h.overlap() );

ContainerRepresentation is derived from theGContainer class. TheGCon-
tainer’s four template parameters control, in an abstract way,

� the integral, i.e. the CGTO-spanned subspace’s inner product codomain via
UnitarySpace::_ScalarProduct::_Field;

� this subspace, to be understood as “index” space of a setB of CGTOs, from
which a setI � B �B of CGTO pairs can be constructed to iterate over;g

� this iteration scheme over these CGTO pairs¹j�pi; j�qiºpq 2 I ,g and a
rule to evaluate the corresponding matrix element integralOpq, via the
Buffered_IteratorEvaluator1-valued template argumentIterator;
and

� memory allocation, layout, and access via theEvaluator template argu-
ment.

Stated briefly – and discussed in more technical detail below–, it is this massively
templated structure that allows the simple, intuitive handling of matrix represen-
tation class objects, showcased in lines 6–7 of theS matrix use-case, through the
underlying QOL iterator–evaluator hierarchy. This iterator–evaluator hierarchy is
defined byGContainer’s third template argumentIterator – which has, in the
general 1-electron operator case, the valueBuffered_IteratorEvaluator1 –,
and provides all information for the construction of matrixrepresentation objects
as, e.g.,SymmetricMatrixRepresentation.

g The set notation “I � B � B” is somewhat of an understatement from the complicated internal
structure of the CGTO basis functions: As briefly discussed in sec. 3.2.4, a given CGTOj�pi is
defined byrp, lp, �p, andmp, and any iteration scheme over a set of pairs of CGTO is an 8-loop
over quantities.rp; lp; �p;mpI rq ; lq ; �q ;mq/. A particular loop nesting can be significantly more
efficient from the point of view of, e.g., integral evaluation and pre-screening.121 Thus,I should
more precisely be referred to as a sequence of 8-tupels generated from a subset ofB �B, instead
of only an (unstructured) subset ofB � B.
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Coarse-Grain Overview of the QOL Iterator–Evaluator Hiera rchies

The two most central concepts of the 2006 QOL implementation’s iterator–evalu-
ator hierarchy are:

� a top-level black box class structure applying to all 1-electron and 2-electron
operator matrix elements, i.e. 2-index and 4-index integrals, that wraps pos-
sibly complicated integral-batched iteration schemes over (hermitian) sym-
metry-unique integral index combinations in a common, STL-like interface;
and

� a rigorous separation of iteration and the objects iteratedover, i.e. of iterator
and container classes.

Both design elements relate directly to theBuffered_IteratorEvaluator

class. The generalBuffered_IteratorEvaluator is a two-parameter template
class ofIterator andEvaluator arguments, both being anIterator by inher-
itance, and havingIterator- andEvaluator-type attributes.

The 1-electron operator case classBuffered_IteratorEvaluator1 is derived
by setting theIterator argument toCGBTree_HermitianTupel2_Iterator,
and by defining the nature of the integralsOpq D h�pj OO�qi to be evaluated, i.e.
the 1-electron operatorOO referred to, by theEvaluator argument.

The base classBuffered_IteratorEvaluator provides attributes, meth-
ods, and operators necessary for an STL-like iterator interface, i.e.valid() and
reset() methods, and increment++ and de-reference* operators. Integral eval-
uation byreadAhead() is directly coupled to the++ operator:h

1 virtual int readAhead() = 0;
2
3 Buffered_IteratorEvaluator & operator ++ () {
4 Iterator:: operator ++ ();
5 if ( ++_i >= _n ) {
6 _i = 0;
7 _n = readAhead();
8 }

h readAhead() is virtual to allow derived class-specific, i.e. a 1-electron operatorcase-specific
integral batching as implemented for theBuffered_Iterator-Evaluator1 class.
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QOL::LinearAlgebra QOL::CartesianGaussianIntegration

CGBTree_HermitianTupel2_Iterator>
bind: <Iterator!

Buffered_IteratorEvaluator1

Buffered_IteratorEvaluator

CGBTree_HermitianTupel2_Iterator

SymmetricMatrixRepresentation

CartesianGaussian_UnitarySpace1

ContainerRepresentation

GContainer

UnitarySpaceLinearSpace

StandardMolecularHamiltonian-
Representation

Fig. 4.2: UML class diagrams for parts of theQOL::LinearAlgebra andQOL::CartesianGaus-
sianIntegration namespaces:SymmetricMatrixRepresentation is constructed by
ContainerRepresentation that, through the inheritance relationship with the abstract
GContainer class, provides the necessary iteration schemes and integral evaluation rules
defined byBuffered_IteratorEvaluator1 for the 1-electron operator case.

9 return *this;
10 }

Incrementing the generalBuffered_IteratorEvaluator increments the spe-
cial underlyingCGBTree_HermitianTupel2_Iterator that, thus, iterates over
all CGTO pairs inI . As the flat counter_i runs out of the current batch,_i is re-
set, andreadAhead() evaluates the next_n-sized batch, transforms,i and writes

i The QOL integral modules can handle (segmented and generalized) contracted CGTO, and CGTO
basis sets transformed to spherical-type sets via the respective CGBTree_Contracted andCGB-
Tree_Contracted_AngularTransformed basis set classes. Integral evaluation is, however, im-
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the transformed integral batch to thestd::vector<typename Evaluator::

value_typeCR> attribute_buffer of Buffered_IteratorEvaluator. Then,
de-referencingBuffered_IteratorEvaluator returns_buffer’s element at
position_i.

The particular implementations of thereadAhead() methods are, from the
nested four-level structure of the CGTO basis set classesCGBTree_Contracted

andCGBTree_Contracted_AngularTransformed, somewhat complicated and
cannot be discussed in full detail. What is of importance here is thatreadAhead()
links QOL iteration and integration by calling the() operator of theBuffered_-
IteratorEvaluator’s Evaluator-type attribute,j as briefly discussed below.

1-Electron Integral Evaluation Interface

Generally, all QOL 1-electron operator matrix element integrals are evaluated in
terms of integrals over primitive CGTO basis functions, using the interface of the
OneBody_Evaluator class:

1 // typedef typename Operator::_T T;
2 template <
lass Operator>
3 inline
4 typename OneBody_Evaluator<Operator>::T
5 OneBody_Evaluator<Operator>::operator () (
6 
onst CartesianGaussianFunction<T> & bra,
7 
onst CartesianGaussianFunction<T> & ket ) 
onst {
8
9 return _op(bra, ket);

10 }

TheOneBody_Evaluator’s single template argumentOperator defines – inde-
pendently of the() operator – the nature of the integralsOpq D h�pj OO�qi to be
evaluated, i.e. the 1-electron operatorOO referred to. Moreover, it also defines any

plemented over primitive, non-normalized CGTOs only; integrals over transformed CGTOs are
obtained by transforming the primitive integrals. Note, too, that only iteration is done batch-wise,
but integral evaluation is not!

j More precisely, this attribute is of a
onst Evaluator & type, as the actualEvaluator object
is associated withStandardMolecularHamiltonianRepresentation .
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particular integral evaluation schemes as implemented in theOperator classes’
() operator called in line 9.

QOL overlap, kinetic energy, nuclear potential energy, andelectron–electron
repulsion 4-index integralsSpq, Tpq,Upq, andgpqrs, are typically evaluated using
the Obara–Saika recursion schemes122,123as discussed by Helgaker, Jørgensen,
and Olsen.101

Integral Communication and Matrix Representation Construction

Stated naı̈vely, construction of operator matrix representation objects involves, at
first, computation of all (symmetry-unique) integrals and,second, mapping these
integrals to the matrix elements in question. Both tasks areeffectively addressed
within the constructor of, e.g.,SymmetricMatrixRepresentation, from aCon-
tainerRepresentation object by

� converting theContainerRepresentation, i.e.GContainer object with
Buffered_IteratorEvaluator1- andvoid-valuedIterator andEva-
luator template arguments, respectively, to an intermediateGContainer

with HermitianRepresentationIterator- andMemEvaluator-valued
Iterator andEvaluator template arguments;
thereby running through the iterator–evaluator hierarchybriefly introduced
above;

� mapping and writing of the integrals from the intermediateGContainer’s
toSymmetricMatrix_MemEvaluator’s container attribute, employing this
intermediateGContainer’s HermitianRepresentationIterator.

The key point is in the difference of the constructor argument GContainer’s
and the intermediateGContainer’s template argumentsIterator andEvalua-
tor: The former carries the complete iterator–evaluator structure in itsBuffer-
ed_IteratorEvaluator1 template argument and attribute, but does not have a
container attribute allocating any physical memory, i.e. avoid-typeEvaluator
only. Contrasting, the latter has a simpleHermitianRepresentationIterator
iterator-only structure, but aMemEvaluator-type Evaluator that does allocate
physical memory for the1

2
n.nC 1/ integralsOpq.
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Both GContainer-type objects are linked by their commonUnitarySpace-
typeIndexSpace template argument. Stated explicitly,

1 template <
lass value_type, 
lass IndexSpace,
2 
lass Iterator1, 
lass Evaluator>
3 template <
lass Iterator2>
4 inline
5 GContainer<value_type, IndexSpace, Iterator1, Evaluator>::
6 GContainer(
onst GContainer<
7 value_type, IndexSpace, Iterator2, void> & g1) :
8 // ...
9 {

10 for( Iterator2 I(g1.indexSpace(), g1.evaluator());
11 I.valid(); ++I )
12 (*this)[I.operator Iterator1()] = g1[I];
13 }

As Iterator2 is Buffered_IteratorEvaluator1-valued, the loop in lines
10–12 runs through the QOL iterator–evaluator hierarchy, thereby evaluating the
integrals through the coupling ofreadAhead() to the++ operator as discussed
above. If theEvaluator template argument isvoid-valued, as it is for the con-
structor argumentg1, the[] operator de-referencesg1’s Buffered_Iterator-
Evaluator attribute and returns the integral corresponding toI’s current position.
In line 12, this integral is assigned to theMemEvaluator’s container attribute, ac-
cessed via the[] operator, at the position defined by the type conversion operator
from Buffered_IteratorEvaluator1’s base classCGBTree_HermitianTu-
pel2_Iterator to HermitianRepresentationIterator.

Note that it is this conversion of the complicated,8-loop Buffered_Iter-
atorEvaluator1 iteration scheme to the simple iteration scheme ofHermitian-
RepresentationIterator that maps¹Opqºpq to the sequence.Opq/p�q read-
ily cast to, e.g., the lower triangular part of the matrix container class: Within the
constuctor ofSymmetricMatrixRepresentation from ContainerRepresen-
tation, i.e.GContainer,k

1 // template <class CR>

k Note that, in the type definition in lines 3–8, the fourth template argument is not stated explicitly,
and is thus set to its default valueMemEvaluator<typename CR::UnitarySpace, Hermiti-
anRepresentationIterator<typename CR::UnitarySpace>>.
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2 // ...
3 typedef GContainer<
4 typename CR::UnitarySpace::_Field,
5 typename CR::UnitarySpace,
6 HermitianRepresentationIterator<typename
7 CR::UnitarySpace>
8 > G2;
9

10 _Field * P = &(*this)(0,0);
11 G2 g2(g1);
12
13 int j = 0;
14 for( typename G2::const_iterator I(g2); I.valid(); ++I )
15 P[j++] = g2[I];

In line 10,P is set to the address of the first element ofSymmetricMatrix_Mem-
Evaluator’s container; the loop in lines 14–15 runs within theHermitianRe-
presentationIterator’s (“horizontal”-lower triangular) iteration scheme.

4.3.3 The QOL Self-Consistent Field Algorithm

The 2006 QOL implementation’s self-consistent field algorithm is a closed-shell,
integral-conventional, null-guess, straightforward implementation as discussed by,
e.g., Szabo and Ostlund100 or Almlöf.105

Stated briefly, parsing molecular structure and CGTO basis set information by
constructing the respectiveMolecule andStandardMolecularHamiltonian-
Representation class objects is followed by

� construction ofS, T , andU matrices;

� evaluation of all symmetry-unique electron–electron repulsion 4-index in-
tegralsgprqs 2 �n, and storage;

� setting the initial guess density matrixD0 to null;
then, forıD > 0 a density threshold, in the�-th SCF iteration

1: assembleG� D G.D�/ from D� via eq. 3-45;l

l The discussion of the construction of matrix representation class objects fromContainerRepre-
sentation given in sec. 4.3.2 does not apply directly to theG D JCK matrix: It is clearly more
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2: assemble the�-th Fock matrixF� D F.D�/ D hCG�;
3: orthogonalizeF�, diagonalize, and back-transform to obtain the�-th

MO eigenvector matrixC�;
4: assemble a new density matrixD�C1

pq D 2
PN
iD 1 C

�
piC

��
iq from the

�-th vector representations of theN doubly “occupied”, i.e. theN
lowest-energy MOs;

5: terminate ifkD�C1 �D�k2 � ıD; else go to 1.

� computation of the Hartree–Fock SCF energyESCF.D
�C 1/ via ESCF D

1
2

P

pqD
�C1
pq .2hpq C Jpq �Kpq/

efficient to iterate over theO.n4/ uniquegprqs 2 �n, because everygprqs contributes to a large
part ofG matrix elementsGpq D

P

rs Dsr .2gprqs � gprsq/, i.e. to choose an “integral-driven”
assembly ofG.
The 2006 QOL implementation provides a global functionassembleRHFMatrix_2BodyPart2

that returns aSymmetricMatrixRepresentation fromCartesianGaussian_UnitarySpace-
2, SymmetricMatrixRepresentation, andstd::vector<double> arguments corresponding
to B ˝ B, D, and�n, respectively. Technically,assembleRHFMatrix_2BodyPart2 employs
a CGBTree_HermitianTupel4_Iterator class to run over all inputgprqs 2 �n; every given
uniquegprqs is then added to allJ andK matrix elements it contributes to (cf. sec. 7.1).
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The 2-component Roothaan–Hall- SCF matrix equations discussed in sec. 3.2, i.e.

FC D SC– ;

differ from their spin-free analog of eq. 3-44 in two main points: First, because
of the non-vanishing spin–orbit pseudopotential integralsWpq the Fock matrixF
and, thus, its eigenvector matrixC are generally complex-valued. Second,F does
not decouple asF˛˛˚Fˇˇ from spin symmetry breaking, and one has to consider
the full C2n�2n problem.a

From their abstract and general structure of inheritance hierarchies of template
classes the QOL matrix and matrix representation algebra modules are, in princi-
ple, well suited for the generalization to the spin symmetry-broken 2-component
framework. However, due to the simpler problem setting of the spin-free eq. 3-
44, the 2006 QOL implementation certainly did not exploit the full flexibility it
could have from its general structure. Therefore, outside new classes that had to
be added, a number of changes had to be made to the existing matrix and matrix
representation algebra modules to fully integrate the new components.

The presentation in this chapter follows both the general bottom-up strategy

a This is true only if one restricts the decoupling transformation to be complex-valued. For time
reversal-invariantF , one can find quaternion-valued decoupling transformations and solve time
reversal-related smallerHn�n problems.111 However, this strategy has not been employed in this
work because of the difficulties arising from the need for efficientHn�n equation solving.
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and the concepts of the 2006 QOL implementation discussed insec. 4.2.2: Matrix
algebra, matrix representation algebra, and equation solving has been kept sepa-
rate and is discussed in this order. Time reversal-invariance was introduced on the
lowest possible, i.e. the matrix container class level as abstract block symmetry,
providing ready-made interfaces for quaternion algebra modules. Complexifica-
tion was introduced by abstract inner products connecting complex-valued matrix
with top-level matrix representation classes through formally complex codomains.

5.1 Matrix Container and Algebra Classes

The two additional class hierarchies for complex-valued matrix algebra, provid-
ing base classesHermitianMatrix andHermitianCayleyMatrix for deriving
top-level hermitian and hermitian time reversal-invariant matrix representation
classes, respectively, follow the concepts as already discussed for theSymmetric-
Matrix class in sec. 4.3.1. The following discussion will, therefore, be limited to
the most important ideas and implementation details only.

5.1.1 Hermitian and Time Reversal-Like Block Symmetry

Within the HermitianMatrix class hierarchy analog to fig. 4.1, the container–
evaluator classHermitianMatrix_MemEvaluator differs fromSymmetricMa-
trix_MemEvaluator in thevalue_type template argument, which is assumed
to be of astd::complex type. Moreover, symmetry-redundant matrix elements
Mpq … R are generated from symmetry-unique ones differently: Clearly, storing
only symmetry-unique matrix elements implies read access via

1 value_type operator () (int p, int q) 
onst {
2 if( matrixPackageOrder == LowerDiagonal ) {
3 if( p < q ) {
4 std::swap(p,q); return conj( _v[p*(p+1)/2 + q] );
5 }
6 else return _v[p*(p+1)/2 + q];
7 } // ...

i.e. returningM �
qp ¤Mpq for i < j . This is, however, payed for by the two-index

() operator returning copies, and by the need for a separate write access method
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onst value_type & v).
Implementation of theHermitianMatrix class involves only a small num-

ber of methods to overload inheritedMatrix functions, e.g.norm2() returning
kMk2 D

pP

pq jMpqj2 in place of
pP

pqM
2
pq.

bind: <ScalarProduct!
FullSpaceIntegration>

QOL::MatrixVector QOL::LinearAlgebra

Matrix

FullSpaceIntegration

LinearSpace UnitarySpace

HermitianCayleyMatrix

std::vector<complex<double>>
HermitianCayleyMatrix_-

MemEvaluator

bind: <ScalarProduct_Codomain!
complex<double>>

HermitianTimeReversal-

HermitianQuaternionMatrix-
Representation

InvariantMatrixRepresentation

Fig. 5.1: UML class diagrams for the newHermitianCayleyMatrix andHermitianTimeRever-
salInvariantMatrixRepresentation classes: All template parameters and most im-
plied template argument bindings have been ommited for clarity.

As time reversal symmetry cannot be meaningfully referred to on an abstract, i.e.
matrix algebra-only level without referring to the conceptof matrix representa-
tions of time reversal-invariant operators, the special structure of eq.s 3-34 has
been introduced through the concept of “Cayley matrices”: AC2n�2n matrix M

of the special “time reversal-like” symmetry type

M D
�

M˛˛ M˛ˇ

Mˇ˛ Mˇˇ

�

D
�

M˛˛ M˛ˇ

�M�
˛ˇ M�

˛˛

�

(5-1)

for M˛˛;M˛ˇ 2 Cn�n is referred to as “Cayley matrix” or “being of Cayley
symmetry”.b For hermitian Cayley matricesM, hermiticity introduces additional

b “Cayley matrix” is a reference to the British mathematicianArthur Cayley, 1821–1895, and his
name’s connection to the Cayley–Dickson construction124,125of a sequence of algebrasAiC1 D
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structure by restrictingM˛˛ andM˛ˇ to be hermitian and antisymmetric, respec-
tively:

Mpq

 D M �
qp

 ; Mpq
 0
 00 D �M �

pq
 00
 0 D �Mqp
 0
 00 (5-2)

for 
; 
 0; 
 00 2 ¹˛; ˇº, 
 0 ¤ 
 00.
TheHermitianCayleyMatrix class hierarchy is similar to theHermitian-

Matrix case. From the richer internal structure given by eq.s 5-2, however, stor-
age of only the1

2
n.nC 1/C 1

2
n.n� 1/ D n2 symmetry-unique matrix elements,

and access-related index operations, are more involved. The container–evaluator
classHermitianCayleyMatrix_MemEvaluator stores either theM˛˛ upper
andM˛ˇ lower triangular part, or theM˛˛ lower andMˇ˛ upper triangular part,
respectively, excluding the
 ¤ 
 0 block’s vanishing diagonal, as controlled by
its template parameterHermitianCayleyMatrixPackageOrder and illustrated
in fig. 5.2 Again, read and write access requires to return copies from the two-

�
M˛˛ M˛ˇ

�M
�
˛ˇ

M
�
˛˛

�

�

Fig. 5.2: Layout of theHermitianCayleyMatrix_MemEvaluator ’s STL vector-type container
class: Onlyn2 of 4n2 matrix elements are stored in a horizontal-“dictionary” (left) or
horizontal-“sequential” (right) fashion; the latter is more convenient for implementation
purposes as theM˛˛ block is given by the first12n.nC1/ consecutive container elements.

index () operator, symmetry-redundant matrix elements being generated from
symmetry-uniqe ones by eq.s 5-2, and a separatevoid setValue(int p, int
q, 
onst value_type & v) method, respectively.

The implementation ofHermitianCayleyMatrixhas been done closely ana-
log toHermitianMatrix.

Ai ˚ Ai . TheAiC1 algebra’s elements have anAi -valued2 � 2 matrix-like array representation
of the special structure given by eq. 5-1. In fact,M of eq. 5-1 is a representation of a quaternion-
valuedn � nmatrix126 as discussed in sec. 5.1.2.
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5.1.2 Quaternion Matrix Matrix Representations

TheC2n�2n matrices of eq. 5-1 can be interpreted as complex-valued matrix rep-
resentations of quaternion-valuedn � n matrices that, through their block sym-
metry, mimick non-commutative quaternion multiplication.126 Whereas there is,
in principle, no need to refer to this abstract algebraic connection from the point
of theory, its use111 has been shown to simplify computations in the Kramers re-
stricted HF and DHF SCF127 and MCSCF128 frameworks. This connection will
be briefly reviewed to address theHermitianQuaternionMatrixRepresenta-
tion auxiliary class implementation.

Any quaternionc square matrixY can be identified with a pair of complex-
valued matricesA;B 2 Cn�n � Hn�n asY D AC Bj. This is a linear bijective
map111

N W Cn�n �Cn�n ! Hn�n ;

.A;B/ 7! Y D AC Bj D ReAC iIm AC jReBC i � jIm B :

D AC Bj D ReAC iIm AC jReBC kIm B (5-3)

Thus, for quaternion square matricesY D A C Bj and Z D C C Dj, noting
Aj D jA�,

YZ D .AC Bj/.C CDj/ D .AC � BD�/C .AD C BC�/j ; (5-4)

Y � D A� � jB� D A� � Bj : (5-5)

It is easily established from eq.s 5-4 and 5-5 that the bijective map

MW Hn�n ! An � C2n�2n ; AC Bj 7!
�

A B

�B� A�

�

3 An (5-6)

c Stated very briefly, the quaternionsH are numbersQ D aC ibC jcC kd with a; b; c; d 2 R and
unit products

i2 D j2 D k2 D ijk D �1 ) ij D k and cyclic;

respecting the order of factors, and with quaternion conjugation and norm-square defined by
Q� ´ a � ib � jc � kd and jQj2 ´ QQ� D Q�Q D a2 C b2 C c2 C d2, respectively.
H is a non-commutative normed division algebra, andH � C � R. The importance of quater-
nions comes from the possibility to provide a unified calculus for classical, special- and general-
relativistic, and quantum theories through Clifford algebras (which can be constructed as tensor
products of quaternion algebras).126
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is an isomorphism of the quaternion matrix algebraHn�n and the sub-algebra
An of complex-valued non-singular2n � 2n matrices of the special type defined
by eq. 5-6, with quaternion multiplication and conjugationrepresented by matrix
multiplication and taking the hermitian adjoint, respectively.111

With M�1 defined by inverting eq. 5-6, matrix representations of hermitian
time reversal-invariant operators can be interpreted as hermitian quaternion-valued
matrices, and algebraic manipulation can be carried out inHn�n – which is pos-
sibly favorable for steep scaling algorithms –, following mapping toC2n�2n via
M.111

Every complex-valued matrix representationM.Y / of a quaternion matrixY is,
from eq. 5-6, a Cayley matrix by eq. 5-1. However, the converse is not true;
from eq. 5-1 there is no need to refer to the algebra isomorphism M, and eq.
5-1 does not restrict a non-zero Cayley MatrixM to be non-singular. This rela-
tionship is easily implemented as inheritance, i.e. by deriving the auxiliary class
HermitianQuaternionMatrixRepresentation from its base classHermiti-
anCayleyMatrix (and contracting the somewhat clumsy expression “quaternion
matrix matrix representation” to “quaternion matrix representation”).

Within this structure one can easily connect complex- and quaternion matrix
algebra in a transparent and meaningful way. For example, the constructor

1 template <MatrixPackageOrder mPO, 
lass Evaluator>
2 HermitianQuaternionMatrixRepresentation(
3 
onst HermitianMatrix<
4 QOL::ElementaryMath::Quaternion<typename
5 value_type::value_type>, mPO, Evaluator> & );

constructs aHermitianQuaternionMatrixRepresentation-type object from
a QOL::ElementaryMath::Quaternion-valuedHermitianMatrix object via
M, and plays an important role in the QOL PP integral communication discussed
in ch. 6.

5.2 Matrix Representation Classes

A straightforward implementation of matrix representation class hierarchies ana-
log to SymmetricMatrixRepresentation discussed in sec. 4.3.1 is spoiled by
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the 2006 QOL implementation’s connection of the matrix representation elements’
codomain – which is restricted toR – to the CGTO basis functions these are evalu-
ated from. This link is, as discussed in sec. 4.3.1, providedby theUnitarySpace
andScalarProduct classes, which thus had to be modified to enable implemen-
tation of HermitianMatrixRepresentation andHermitianTimeReversal-
InvariantMatrixRepresentation class hierarchies coherent with the 2006
QOL implementation.

5.2.1 QOL Unitary Spaces and Scalar Products

The 2006 QOL implementation of the matrix representation modules discussed
in sec. 4.3.1 cannot handle spin–orbit (pseudopotential) operator matrix elements.
This is because of the complex-valued representation of thespin–orbit PP oper-
ators OB of eq. 2-48 in the CGTO basis: For aR3 ! R CGTO j�i 2 B and

; 
 0 2 ¹˛; ˇº, generallyhr
 j OB�
 0i … R, such thath
 j OB�
 0i … B. In other
words, whereas the integral exists,h�p
 j OB�q
 0i is not aB � B scalar product,
thus clearly not property of onlyB.

Technically, this is intimately connected to the definitionof the matrix repre-
sentation classes’value_type template parameter asUnitarySpace::Scalar-
Product::_Field, i.e.

1 template <
lass Vector>
2 
lass ScalarProduct {
3 publi
: typedef typename Vector::_Field _Field;

which defines matrix representation elements to lie in aB � B scalar product
codomain, and identifies this scalar product codomain with the CGTOs’ domain
of defintionVector::_Field.

To overcome this limitation, but maintaining the 2006 QOL implementation’s
global structure for compatibility reasons, the CGTO-spanned spaceB was “ex-
tended” to includeh
 j OW �
 0i. This “extension” ofB is its complexification.

Formal Concept: Finite-Dimensional Function Space Complexification

Let B D span.j�pi/npD1 be theR-function space spanned byn R3 ! R CGTOs
j�pi. Its complexificationB0 is the tensor product ofC – seen as 2-dimensional
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R-space – withB,129 i.e. the function space

B0 ´ C ˝ B D span
�

.1˝ j�pi/npD1 [ .i ˝ j�pi/npD1

�

: (5-7)

Then, anyj�i 2 B0 has a unique decomposition in terms of the basis functions of
B0,

j�i D
X

p

ap.1˝ j�pi/C
X

p

bp.i ˝ j�pi/ D
X

p

yp ˝ j�pi ; (5-8)

with ap; bp 2 R andyp D apC ibp, from the linearity of the tensor product. One
can, then, define multiplication of complex numbers´ with functions inj�i 2 B0

by
�

´; j�i
�

7!
X

p

.´ � yp/˝ j�pi µ
X

p

.´ � yp/j�0
pi D ´j�i (5-9)

such thatB0 D C ˝ B becomes ann-dimensionalC-function space with basis
functionsj�0

pi ´ 1˝ j�pi, i.e. the space of complex-valued linear combinations
of R3 ! R CGTOs. The structure ofB is retained asB is a proper “real-valued”
subspace ofB0.

From
h�0
q j�i D

X

p

yph�0
q j�0

pi D yq 2 C (5-10)

sinceh�0
qj�0

pi D h1˝ �q j1˝ �pi D ıqp, B0 can be considered to have aB0 � B0

scalar product implied by its “real-valued” subspace’sB � B scalar product, e.g.
integration overR3, but with a complex-valued codomain.

Separation ofVe
tor::_Field and The Scalar Product’s Codomain

As given through eq. 5-10, complexification of the CGTO-spanned function space
B within the 2006 QOL implementation’s framework has been achieved by sep-
arating the CGTO’s domain of definition from the CGTO-spanned space’s scalar
product codomain, and assigning astd::complex type to the latter.

To maintain compatibility with the existing matrix representation and 1-com-
ponent HF SCF modules, theCartesianGaussian_UnitarySpace1 template
class was given a second template parameterScalarProduct_Codomain:
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1 /* ------ STATUS QUO END 2006 QOL IMPLEMENTATION
2
3 template <class CGTOBasis>
4 CartesianGaussian_UnitarySpace1 :
5 public UnitarySpace<LinearSpace<CGTOBasis>,
6 FullSpaceIntegration<typename CGTOBasis::_T>>
7 {
8 ------ */
9

10 template <
lass CGTOBasis,
11 
lass ScalarProduct_Codomain = typename CGTOBasis::_T>
12 CartesianGaussian_UnitarySpace1 :
13 publi
 UnitarySpace<LinearSpace<CGTOBasis>,
14 FullSpaceIntegration<ScalarProduct_Codomain>>
15 {

Whereas this decouples the CGTO basis.j�pi/p and the CGTO-spanned space’s
scalar product codomain completely, the 2006 QOL implementation remains un-
touched through the default value of the second template parameter to the CGTO
domain of definition, effectively recovering the special case of aB�B! R � C

scalar product.d

Unitary “Representation” and “Index” Space Decoupling

As discussed in sec.s 4.3.1 and 4.3.2, construction of matrix representation class
objects from theStandardMolecularHamiltonianRepresentation classes’
ContainerRepresentation attributes is linked to QOL iteration, integration,
and integral communication through the CGTO-spanned function space: The cor-
respondingCartesianGaussian_UnitarySpace1class is both a template argu-
ment of the matrix representation class and an attribute ofStandardMolecular-
HamiltonianRepresentation, being communicated byGContainer as its tem-
plate argumentIndexSpace. Therefore, construction ofHermitianTimeRever-
salInvariantMatrixRepresentation object should involve communication

d In an analog way, theScalarProduct class was changed from a 1-parameter template to become
a 2-parameter template class, the second template parameter being a
lass ScalarProduct_-
Codomain set to the defaulttypename Vector::_Field.
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of aCartesianGaussian_UnitarySpace1 object with aScalarProduct_Co-
domain type definition corresponding to the complex-valued regime.

However, the spin-independent operatorsOT , OU , and the spin-free pseudo-
potential operatorOA, have real-valued matrix representationsO that, moreover,
decouple asO D O˛˛ ˚Oˇˇ , with the identityOˇˇ D O�

˛˛ D O˛˛ 2 Rn�n

from time reversal symmetry.e These block matrices are the same as in a spin-
free 1-component HF SCF calculation scheme. Therefore, it is not necessary to
adapt the 2006 QOL implementation’s iterator–evaluator structure to the complex-
valued regime. In fact, it is possible to make use of the established structure for the
construction ofT , U , andA by choosing the “real-valued” subspaceB � B0 for
these block matrices; only the spin–orbit partOB of OW needs the fullB0 for its rep-
resentation. Effectively this means to decouple the unitary “representation” space
referred to for operator matrix representation, i.e. generally B0, from the unitary
“index” space the iterator–evaluator structure uses for iteration, integration, and
integral communication.f

The top-levelStandardMolecularHamiltonianRepresentation class was,
thus, replaced by the essentially analog 1-component and 2-component HF SCF
calculation scheme classes

1 /* ------ 1-COMPONENT HF SCF CALCULATION SCHEME ------- */
2 template <
lass CGTOBasis>
3 
lass
4 StandardMolecularHamiltonianOrbitalRepresentation_Container
5 {
6 publi
:
7 typedef CartesianGaussian_UnitarySpace1<CGTOBasis>
8 USpace;
9 typedef CartesianGaussian_UnitarySpace1<CGTOBasis>

10 U1Space1;

e This is also true forOJ . The exchange operatorOK is, however, not spin-independent as it involves
permutations of both spatial and spin electron coordinates.

f As discussed in ch. 6, the ARGOS PP integral routines computebothWpq˛˛ andW˛ˇ integrals in
a single call from the respective CGTOsj�pi andj�qi, permitting a single iteration overI 2 B�B
for the construction of both PP matrix representation blocks W˛˛ andW˛ˇ .
Note that, formally, the “index” space does not need the inner product information and should be
of the base class typeLinearSpace instead of the derivedUnitarySpace.
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and

1 /* ------ 2-COMPONENT HF SCF CALCULATION SCHEME ------- */
2 template <
lass CGTOBasis>
3 
lass
4 StandardMolecularHamiltonian2SpinorRepresentation_Container
5 {
6 publi
:
7 typedef CartesianGaussian_UnitarySpace1<CGTOBasis,
8 std::complex<typename CGTOBasis::_T>> USpace;
9 typedef CartesianGaussian_UnitarySpace1<CGTOBasis>

10 U1Space1;

respectively. As opposed to the 2006 QOL implementation, both have two dis-
tinct CartesianGaussian_UnitarySpace1 type definitions and attributes. The
first, defined in lines 7–8, set the global CGTO-spanned “representation” spaceB0

communicated externally to matrix representation class objects to be constructed;
the second, defined in lines 9–10, define a “index” spaceB � B0 communicated
internally to the iterator–evaluator structures.

This construction leaves large parts of the 2006 QOL implementation, par-
ticularly the complicated iterator–evaluator structure,essentially unchanged, and
provides very similar class interfaces for both 1-component and 2-component HF
SCF calculation schemes. However, it necessarily requiresto communicate a uni-
tary “representation” space object to the matrix representation classes’ construc-
tors fromGContainer, because this is generally different from theGContainer’s
unitary “index” space.g

5.2.2 Symmetric, Hermitian, and
Hermitian Time Reversal-Invariant Matrix Representation s

Both theHermitianMatrixRepresentation andHermitianTimeReversal-
InvariantMatrixRepresentation class hierarchies have been designed ana-

g This is the single substantial change to the 2006 QOL implementation’s class structure interface.
In principle, one did not need to hand over a unitary “representation” space object to theSym-
metricMatrixRepresentation constructor fromGContainer, because it coincides with the
latter’s unitary “index” space. However, theSymmetricMatrixRepresentation constructors
have been modified accordingly to provide a larger measure ofsimilarity among the 1-component
and 2-component scheme interfaces.
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log to theSymmetricMatrixRepresentation class hierarchy established with
the 2006 QOL implementation, i.e. have been built on theHermitianMatrix and
HermitianCayleyMatrix class hierarchies, respectively. Fig. 5.1 illustrates the
class structure for theHermitianTimeReversalInvariantMatrixRepresen-
tation case

TheHermitianTimeReversalInvariantMatrixRepresentation hierar-
chy differs from this general structure in its auxiliary (base) classHermitianQua-
ternionMatrixRepresentation. This construction allows both quaternion al-
gebra operations as, e.g., to address only the spin–orbit part of O˛˛ andO˛ˇ by
accessing the imaginary parts of the corresponding quaternion matrix M�1.O/,
by inheritance ofHermitianQuaternionMatrixRepresentationmethods and
operators, and construction fromQOL::ElemenaryMath::Quaternion-valued
HermitianMatrix objects as discussed in sec. 5.1.2.

Both theHermitianMatrixRepresentation andHermitianTimeReversal-
InvariantMatrixRepresentation classes have a constructor fromUnitary-
Space andGContainer analog to that ofSymmetricMatrixRepresentation.
The latter has, however, been changed from the need to decouple unitary “repre-
sentation” and “index” spaces, i.e.

1 /* ------ STATUS QUO END 2006 QOL IMPLEMENTATION
2
3 template <class Iterator, class Evaluator>
4 SymmetricMatrixRepresentation(
5 const GContainer<
6 typename UnitarySpace::_ScalarProduct::_Field,
7 UnitarySpace, Iterator, Evaluator> & );
8 ------ */
9

10 template <
lass GC>
11 SymmetricMatrixRepresentation( 
onst UnitarySpace &,
12 
onst GC & );

as discussed in the preceding section.
It is through this construction that it is possible to make use of the unchanged

2006 QOL implementation’s iterator–evaluator structure to construct theS, T ,
and U matrices – provided a horizontal-“sequential” layout of the underlying
HermitianCayleyMatrix_MemEvaluator’s container, as illustrated in fig.s 5.2
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and 5.3, is chosen. Then, the QOL iterator–evaluator structure computes ordI D
1
2
n.nC 1/matrix representation elements¹Opqºpq; by HermitianRepresenta-

tionIterator, .Opq/p�q is then mapped directly to the first1
2
n.nC 1/ Hermi-

tianCayleyMatrix_MemEvaluator’s container elements, which are associated
with the non-vanishingO˛˛ block, thus leaving the elements associated with
Oˇ˛ D 0n unchanged.h

HermitianRepresentationIterator

Buffered_IteratorEvaluator1

O˛˛ ˚O˛˛ �

Fig. 5.3: Construction of spin-free operator matrix representations within a 2-component scheme:
The 1

2n.n C 1/ integrals.Opq/p�q map to the lower triangular part of the symmetric
n�n blocksO˛˛ through theHermitianRepresentationIterator ’s lower triangular
“horizontal” iteration scheme.

5.3 Output Formatting and Visualization

Output, i.e.<< operators forHermitianMatrix andHermitianCayleyMatrix
– and, by type downcast, for the matrix representation classes of sec. 5.2.2 –
have been implemented analog to that ofSymmetricMatrix. Thus, both use
theQOL::IO::AlignedArray class that converts matrix elements to (character)
strings and, depending on itsAlignMode attribute, hands a set of left-, center-,
right-, or decimal point-justified matrix element strings to a ostream reference
via theAlignedArray’s << operator.

h Within a 1-component HF SCF calculation scheme only, this was also true for the spin-free PP
operator matrix representationA. Including this as a special case of the more general 2-component
HF SCF calculation scheme, however, requires an altogetherdifferent implementation. Stated
briefly – and discussed in more detail in sec. 6.3.3 –, construction of theW matrix involves a
constructor specialization that, first, constructs a quaternion-valued hermitian matrix fromWpq˛˛
andWpq˛ˇ via theC � C ! H mapN , eq. 5-3, and, second, maps this to the complex-valued
2n � 2n matrixW via M�1.
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For thestd::complex-valuedHermitianMatrix andHermitianCayley-
Matrix classes a specialAlignMode enumeration typeDecimalPoint_Suited-
4Complex was implemented.DecimalPoint_Suited4Complex effects decimal
point-justification for real and imaginary parts, and a canonical complex number
notation, i.e.

[ -1.98 + 7.83 i 6.29 + 2.78 i 7.17 -95.2 i
-80.4 + 0.163i -2.18 +13. i -0.524+61.3 i
-7.7 + 2.93 i 9.19 - 0.283i -6.63 +52.6 i ]

This format is GNU Octave-compatible and can thus conveniently be processed
also outside the QOL.

Within theQOL::IO namespace, a global 1-parameter template function

1 template <
lass T>
2 void Matrix2Fig( 
onst Matrix<T> &, ofstream & );

has been implemented to enable simple visualization, e.g. for easy inspection of
matrix structure or symmetry, as showcased in fig. 5.4. Generally, graphical data

Fig. 5.4: Matrix visualization: 2-component HF SCF density matricesfor Rn2 atdRn�Rn D 7 a:u:,
small-core MC-DHF PP with aug-cc-pVTZ basis,130 ıE D 1 �10�9 a:u: energy threshold,
without (W D A, left) and with spin–orbit part (W D AC B, left).

is written in XFig’s “Fig Format” as set of256 gray-scale colors and, forM 2
Cn�m, ann �m array of gray-scale-colored square boxes. A given boxes’ gray-
scale color is defined by partitioning the interval

�

0;maxpq¹log jMpqjº
�

(5-11)
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in 256 sub-intervalsli of equal length, and assigning thei-th gray-scale color to
theMpq box if log jMpqj 2 li , with l0 being white.i Whereas this visualization is
somewhat of an oversimplification from droppingMpq phase (and thus sign) in-
formation, it proved to be sufficient for the purpose of this work and is, moreover,
readily generalized using the same interface.

i More precisely, to prevent a large fraction of the gray-scale colors being assigned to almost-zero
Mpq boxes, color assignment is defined by partitioning the closed intervalŒt;maxpq¹log jMpq jº�,
t > 0; typically, t D 1 � 10�8.
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2-Component Pseudopotentials

From the point of view of implementation, the spin-free and spin–orbit parts OA
and OB of the general 2-component semilocal atomic pseudopotential

OW D OWLJ C
L�1
X

lD0

X

ml

OAl jlmlihlml j

„ ƒ‚ …

C
L�1
X

lD 0

X

ml

OBl OS � OLjlmlihlml j

„ ƒ‚ …

(6-1)

D OA C OB
require different program functionalities from their different properties:a In terms
of matrix representationsW 2 C2n�2n, A decouples asA˛˛ ˚ Aˇˇ . Moreover,
from time reversal-invarianceA˛˛ D Aˇˇ 2 Rn�n, such that spin-free PPs are
readily introduced in a spin-free 1-component HF SCF framework. Contrasting,
B breaks spin symmetry and is complex-valued. In fact, all newclasses intro-
duced to, and all modifications of the 2006 QOL implementation’s matrix and
matrix representation algebra modules discussed in the preceding chapter, have
been motivated solely by the consideration of non-vanishing OB operators.

However, both spin-free and spin–orbit PPs have been implemented on a com-
mon, coherent footing, i.e. employing the same class structure, PP parameter def-

a The simpler expression of eq. 6-1 is equivalent to eq. 2-48 because, in eq. 2-48, the projection
operator

P

m0
l
jlm0

l ihlm0
l j commutes withOS � OL and is idempotent.25 Consequently, it is eq. 6-1

that is departed from for the evaluation of PP integrals overCGTO basis functions.31,32
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inition, parsing, and integration and integral communication techniques:
The QOL PP modules have been implemented guided by the general “pseudo-

molecule” design principles briefly discussed in sec. 6.1 The PP classes have been
designed similarly to the QOL CGTO basis set classes and employ similar, Bison-
generated parsers to process XML PP parameter definitions. PP integrals over CG-
TOs are evaluated using the interfaced ARGOS PP integral subroutines of Pitzer
and Winter,31,32and communicated as quaternion-valued integrals.

6.1 General Design Principles

Central to the design of the QOL PP modules is, first, the attempt to provide an
intuitive, logically consistent class structure in line with object-oriented program-
ming paradigms and, second, to integrate the new PP components with a minimum
of changes to the interfaces of the already established 2006QOL implementation’s
modules.

The particular design – and, thus, the implementation – of the QOL PP classes
has been guided by the formal analogy of the closed-shell all-electron and the
valence-only PP Fock operatorOf and Ofv of eq. 3-11, respectively, i.e.

Of D OT C OU C OJ � OK and Ofv D OT C OV C OW C OJv � OKv W

The closed shell all-electron Fock operatorOf provides, for one electron, mean
fields of2N � 1 electrons and the nuclear Coulomb potentialsUA of all atomic
nucleiA. Contrasting, the valence-only pseudopotential Fock operator Ofv sets up
such fields for2Nv � 1 < 2N � 1 electrons only, and nuclear core-Coulomb and
pseudo-potentialsVA andWA of all atomic nucleiA. Clearly, this does not only
introduce a new, i.e. the PP partOW . Instead, as compared toOf , Ofv also implies
modification of global system properties as, e.g., the number of electrons and the
classical Born–Oppenheimer nuclear repulsion energy.

The idea is to put eq. 3-11 at the beginning, and define a systemof “pseudo-atoms”
A of nuclear chargeZA � NA, each of which provides a valence–core pseudo-
potentialVACWA for the system’s2Nv D �eC

P

A.ZA �NA/ electrons, ife is
the total system charge.
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In other words, the atomic nucleus labelA is understood to uniquely define a
parameter tuple

ParA´
�

NA;AA.NA/
�

D
�

NA; ¹CljkA; nljkA; ˇljkAºljk
�

; (6-2)

with AA.0/ ´ ¹0º, for every pseudo-atomA. ParA defines theA-th valence–
core pseudo-potentialOUA D OUParA D OVParA C OWParA such that

OVParA D �.ZA �NA/jOr � OrAj�1 ;
OWParA D OWLJ C

X

ljk

CljkAjOr � OrAjnljkAe�ˇljkAjOr�OrAj2
X

mj

jljmj ihljmj j ;

where an analog expansion of the local partOWLJ has been ommited for clarity.
A closed shell “pseudo-molecule” of such pseudo-atomsA has2Nv electrons

and a nuclear repulsion energyEBO.¹ZA�NAºA/ without any need to change the
meaning of the respective attributes; only the “atom” concept employed is slightly
different. Moreover, the pseudo-molecule concept includes the all-electron as spe-
cial case

P

ANA D 0, recovering
P

A
OUParA D �

P

AZAjOr�OrAj�1 directly from
AA.0/´ ¹0º.
Guided by these general design principles, and as discussedin the next section,
everyQOL::Molecule::Atom is assigned a PP – which is, however, a null PP in
most cases.b For the ease of notation, the pseudo-molecule concept will also be

b An alternative design and implementation strategy is to putthe molecular system of interest at the
beginning, and refer to eq. 3-11 as the definition of a mean-field approximation to the solution of
a (non-relativistic or approximate relativistic)2Nv-electron model Schrödinger equation. In place
of the established top-levelStandardMolecularHamiltonianRepresentation, a somewhat
analog “StandardMolecularModelHamiltonianRepresentation” class could then provide
anAtom-to-PP assignment and assemble theV andW matrices similarly toU .
This alternative strategy is closer to eq. 3-11 on a conceptual level, i.e. regarding its formal place-
ment amongab initio electronic structure theories. However, this was at the expense of having
to moveMolecule methods asnElectrons() andnuclearPotential() to the model Hamil-
tonian class, and having to interrelateV andW matrix assembly, also for the all-electron case.
The pseudo-molecule concept, on the other side, allows to restrict all changes of the 2006 QOL
implementation to a small number of class definitions – not interfaces! – in theQOL::Molecule
namespace, and to leave the implementation of intuitively understood concepts as, e.g., the number
of electrons, unchanged.
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employed on the level of presentation, i.e. the valence-only index of, e.g., Ofv, 2Nv
etc. will be discarded, and both pseudo-molecules and -atoms will be referred to
as “molecules” and “atoms”.

6.2 Pseudopotential Definition and Classes

In the implementation of discussed general design principles discussed in sec. 6.1,
the 2006 QOL implementation’sQOL::Molecule::Atom class has been given a
SemilocalAtomicPseudopotential attributec as presented in sec.s 6.2.2 and
6.2.3. As construction of a particularSemilocalAtomicPseudopotential ob-
ject is thus interrelated with the construction ofAtom andMolecule, the following
discussion is organized “sequentially”, i.e. following the line of PP parameter def-
inition; Atom andMolecule construction and PP parameter parsing; and, finally,
non-null PP definition.

6.2.1 Input and Parameter Definition

From the intimate connection of molecular, i.e.pseudo-molecular, and PP param-
eter information established in sec. 6.1, the PP definitionsfor a particular HF SCF
calculation are given together with the molecular composition and structure defi-
nitions. For the simple TlH example, the molecular input filethen readsgeometry = {

Tl 0.0 0.0 0.0
H 3.533787599 0.0 0.0

};pseudopotential = {
Tl "pseudopotentials/Tl_ECP60MDF/Tl_ECP60MDF"

};

The hydrogen null PP is implied by the missing PP parameter file path statement
for H. Consequently, the completepseudopotential token is, from the point of
view of input processing, completely optional and recoversthe 2006 QOL imple-
mentation’s use-case if absent.

c More precisely, this attribute is of aboost::shared_ptr of SemilocalAtomicPseudopoten-
tial type.
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<Atomi
PseudopotentialEntry>
<Comment> --------------------------------------------------------------------------

B. METZ, M. SCHWEIZER, H. STOLL, M. DOLG, W. LIU: THEOR. CHEM. ACC. 104, 22 (2000)

------------------------------------------------------------------------- </Comment>
<CoreSize> 60 </CoreSize>
<PseudopotentialAngularMomentumGroup l="0">

<Exponent> 12.167805 <Coeffi
ient> 281.284663 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 8.294909 <Coeffi
ient> 62.434251 </Coeffi
ient> <n> 2 </n> </Exponent>

</PseudopotentialAngularMomentumGroup>
<PseudopotentialAngularMomentumGroup l="1">

<Exponent> 9.891072 <Coeffi
ient> 72.299253 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 9.003391 <Coeffi
ient> 144.558037 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 7.151492 <Coeffi
ient> 4.633408 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 5.172865 <Coeffi
ient> 9.341756 </Coeffi
ient> <n> 2 </n> </Exponent>

</PseudopotentialAngularMomentumGroup>
<PseudopotentialAngularMomentumGroup l="2">

<Exponent> 7.130218 <Coeffi
ient> 35.943039 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 6.926906 <Coeffi
ient> 53.909593 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 5.417570 <Coeffi
ient> 10.381939 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 5.138681 <Coeffi
ient> 15.583822 </Coeffi
ient> <n> 2 </n> </Exponent>

</PseudopotentialAngularMomentumGroup>
<PseudopotentialAngularMomentumGroup l="3">

<Exponent> 5.626399 <Coeffi
ient> 15.825488 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 5.548952 <Coeffi
ient> 21.104021 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 2.874946 <Coeffi
ient> 2.915127 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 2.821451 <Coeffi
ient> 3.896903 </Coeffi
ient> <n> 2 </n> </Exponent>

</PseudopotentialAngularMomentumGroup>
<PseudopotentialAngularMomentumGroup l="4">

<Exponent> 6.679057 <Coeffi
ient> -7.494534 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 6.706835 <Coeffi
ient> -9.540575 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 7.209284 <Coeffi
ient> -7.797992 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 7.070964 <Coeffi
ient> -9.259524 </Coeffi
ient> <n> 2 </n> </Exponent>

</PseudopotentialAngularMomentumGroup>
<PseudopotentialAngularMomentumGroup l="L">

<Exponent> 1 <Coeffi
ient> 0 </Coeffi
ient> <n> 2 </n> </Exponent>
</PseudopotentialAngularMomentumGroup>
<PseudopotentialAngularMomentumGroup l="1">

<Exponent> 9.891072 <Coeffi
ient> -144.598506 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 9.003391 <Coeffi
ient> 144.558037 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 7.151492 <Coeffi
ient> -9.266817 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 5.172865 <Coeffi
ient> 9.341756 </Coeffi
ient> <n> 2 </n> </Exponent>

</PseudopotentialAngularMomentumGroup>
<PseudopotentialAngularMomentumGroup l="2">

<Exponent> 7.151492 <Coeffi
ient> -35.943039 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 5.172865 <Coeffi
ient> 35.939729 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 9.891072 <Coeffi
ient> -10.381939 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 9.003391 <Coeffi
ient> 10.389215 </Coeffi
ient> <n> 2 </n> </Exponent>

</PseudopotentialAngularMomentumGroup>
<PseudopotentialAngularMomentumGroup l="3">

<Exponent> 5.626399 <Coeffi
ient> -10.550326 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 5.548952 <Coeffi
ient> 10.552010 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 2.874946 <Coeffi
ient> -1.943418 </Coeffi
ient> <n> 2 </n> </Exponent>
<Exponent> 2.821451 <Coeffi
ient> 1.948451 </Coeffi
ient> <n> 2 </n> </Exponent>

</PseudopotentialAngularMomentumGroup>
</Atomi
PseudopotentialEntry>

Fig. 6.1: QOL pseudopotential parameter definition for the81Tl small-core MC-DHF PP of Metz
et al.131 Parameters have been sorted by increasingk and, within, increasingj D l ˙ 1

2
The l D 4 spin–orbit part has been discarded because of the limitation of the ARGOS PP
integral subroutines tol � 3 for the OB part.

Non-empty parameter file path statements are processed relative to the$HOME/
QOLBasis2/ directory and define locations of XML data files, the “.xml” suffix
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understood. The given example defines the81Tl small-core MC-DHF PP of Metz
et al.,131 located at$HOME/QOLBasis2/pseudopotentials/Tl_ECP60MDF/; the
particular PP parameter definition is showcased in fig. 6.1.

Generally, PP parameters are organized for spin-free and spin–orbit PP parts
separately.d Within both parts, parameters are organized Gaussian exponent-wise,
i.e. every̌ ljk is associated aXljk andnljk wrapped inCoefficient andn tags,
respectively. All suchExponent units with commonl are grouped inPseudo-
potentialAngular-MomentumGroup tags that have a single,l-valued orbital an-
gular momentum quantum number attributel. ThePseudopotentialAngular-
MomentumGroup applies to both the PPOA and OB parts; these are separated by the
local,l="L" part that is, thus, mandatory. PP core size and optional commentary
statements are given within separateCoreSize andComment tags, respectively.

6.2.2 Modifications to the Atom and Molecule Classes: Parsing

Instead of being supplemented by an “owned”SemilocalAtomicPseudopoten-
tial, the QOLAtom class has been given aboost::shared_ptr toSemilocal-
AtomicPseudopotentialattribute. This is connected to the fact that, at the time
of the construction ofAtom from the molecular composition and structure data
given in the inputgeometry token, no PP parameter definitions are available. In
fact, these become available not before entering thepseudopotential token,
i.e. not before having finished the construction of allAtom objects.

Therefore, everyAtom’s shared_ptr to SemilocalAtomicPseudopoten-
tial is set to point to a null PP upon construction – which is the default setting
for the all-electron case and, generally, for most non-heavy atoms –, and re-set to
point to a non-null PP defined at a later time via thevoid define_Semilocal-
AtomicPseudopotential(
onst string & SP) method.

d This seems disadvantagous compared to the more compact parametrization of eq. 2-45. However,
the PP parameter definition as showcased in fig. 6.1 is closer to the actual implementation of the
QOL PP classes, provides intuitive separation of PPOA and OB parts, and allows for easy internal
consistency check.
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lass Atom {publi
:
Atom(
onst Point3D<double> & P, 
onst TypeClass & TC,

string Label = string()) :
_p(P), _tc(TC), _label(Label), _sptrPP() {

_sptrPP =
shared_ptr<SemilocalAtomicPseudopotential<double>>(new

SemilocalAtomicPseudopotential<double>(TC, P));
}void
define_SemilocalAtomicPseudopotential(
onst string & SP) {

_sptrPP =
shared_ptr<SemilocalAtomicPseudopotential<double>>(new

SemilocalAtomicPseudopotential<double>(SP, _tc, _p));
}

// ...private:
Point3D<double> _p;
TypeClass _tc;
string _label;
shared_ptr<SemilocalAtomicPseudopotential<double>> _sptrPP;

}

In this way everySemilocalAtomicPseudopotential object is defined only
once, albeit not at the same time asAtom.

Note that the class interface, i.e. the parameter list of theconstructor defined
in lines 4–10, remains essentially unchanged.

The actual PP parameter definitions become available in the course of reading thepseudopotential token after construction ofMolecule from all Atom objects
defined ingeometry. Molecule is astd::vector<Atom> by inheritance and
has therefore – with the exceptions of thenElectrons() andNuclearPoten-
tial() member functions – not been modified directly.

However, theMolecule constructor fromistream & employs a specialized
Parser class to read molecular composition and structure definition files that, as
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discussed in sec. 6.2.1, include the PP definitions as pathesto XML PP parame-
ter files. Consequently, theParser implementation had to be modified to allow
reading of thepseudopotential token’s contents:epseudopotential holds a (possibly empty) list of pairs of element symbols
and PP parameter file pathes. IfParser finds a non-empty PP definition,Parser
iterates over all ofMolecule’s Atom entries and, if the element symbol matches
the currentAtom’s TypeClass attribute, calls thatAtom’s define_Semilocal-
AtomicPseudopotential with the PP parameter file path as argument. As can
be inferred from lines 14–16, and as discussed in sec. 6.2.3,this constucts a new
SemilocalAtomicPseudopotential from the PP parameter file and the current
Atom’s _tc and_p attributes, corresponding to the atomic element symbol and
positionrA, respectively, and re-sets_sptrPP.

As already briefly stated, the only direct modifications ofMolecule concern
the implementation of thenElectrons() andnuclearPotential() methods
to return

P

A.ZA �NA/ and

EBO

�

¹.ZA �NA/; rAºA
�

D
X

A>B

.ZA �NA/.ZB �NB/
jrA � rB j

;

respectively.

6.2.3 QOL 2-Component Semilocal Atomic Pseudopotentials

The QOL PP classes have been designed to provide a single, general class struc-
ture applying to both spin-free 1-component and spin–orbit2-component HF SCF
calculation schemes. By eq.s 2-49 and 2-50 both the PPOA and OB part’s radial
potential functionsXl 2 ¹Al ; Blº can be written in the form as, discarding the

e Put somewhat simplified, the 2006 QOL implementation’sParser class is a GNU Bison 2.3-
generated LALR(1) parser that constructs astd::vector of QOL::Molecule::Atom from
which Molecule is derived. The rules definingAtom assembly from thegeometry token’s con-
tents are given by a finite-state machine-type parser table,generated by the Bison parser generator
from a Backus–Naur form context-free grammar. This grammerhas been supplemented to also en-
able reading – and, along these lines, check for syntactic correctness – of thepseudopotential
token.
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atomic core labelA and implyingrA D 0 for clarity,

Xl.r/ D
X

jk

Xljk � jrjnljk e�ˇljk jrj2 (6-3)

where the expansion coefficientsXljk 2 ¹Aljk ; Bljkº are related to the parame-
ters¹Cljkºljk of eq. 2-45 via

.2l C 1/Al l˙k D �l˙Cl l˙k ; (6-4)

.2l C 1/Bl l˙k D ˙Cl l˙k for l � 1 (6-5)

with the short-hand notationsl˙ ´ l ˙ 1
2

and�l˙ ´ l˙ C 1
2
.

From the central role of the radial potential function expansion of eq. 6-3, two
auxiliary classesPP_GaussianExponentCoefficientPair andPP_Angular-
MomentumGroup have been implemented as template classes of a single, numer-
ical precision-defining argumentT. PP_GaussianExponentCoefficientPair

is a std::pair<T, T> by inheritance, modeling the.ˇljk ; Xljk/ pair of each
term of eq. 6-3; the single attribute_n defines this term’s radial exponentnljk .
PP_AngularMomentumGroup has been derived from astd::vector of PP_-
GaussianExponentCoefficientPairentries, and models the whole expansion
of Xl . Two additionalbool attributes define locality and spin-dependency to dis-
criminate otherwise analog expressions forOWLJ , OA, and OB; the third,unsignedint attribute_l definesPP_AngularMomentumGroup’s l value.

The top-level single-parameterSemilocalAtomicPseudopotential tem-
plate class of argumentT has, then, been derived from astd::vector of PP_An-
gularMomentumGroup. To account for the full complexity of the general expres-
sion of eq. 2-45,SemilocalAtomicPseudopotential has had to be given a
number of atomic core-relatedTypeClass-, unsigned int-, andPoint3D-type
attributes defining the atomic core’s element symbol,NA, andrA, respectively,
and two moreunsigned int attributes defining the PPOA and OB part’s expan-
sion lengthsL � 1.f

f The obvious implementation alternative of employing, e.g., a pointer or reference to the associated
Atom object is prohibited asAtom itself has ashared_ptr of SemilocalAtomicPseudopoten-
tial, which would result in a cyclic dependence of these. However, SemilocalAtomicPseudo-
potential must carry the atomic core information as these are to be passed to the ARGOS PP
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Construction ofSemilocalAtomicPseudopotential from 
onst string &,
onst TypeClass &, andPoint3D<double> by Atom’s define_Semilocal-
AtomicPseudopotentialmethod, alongside PP parameter parsing, involves the
2006 QOL implementation’s XML-parsing modules, particularly the QOL:XML::
XMLParser andQOL::XML::XMLTreeInputIterator, in a largely analog fash-
ion as employed in the construction of the CGTO basis set classes, and will not be
discussed in any detail.

6.3 Pseudopotential Integrals

QOL PP matrix elements between CGTO basis functions are evaluated using parts
of the ARGOS program31–35of Pitzer et al.g

Guided by the discussion of sec. 4.3.2, the interface of the ARGOS PP integral
subroutines has been designed to

� evaluate PP matrix elementsWpq

 0 between primitive non-normalized CG-
TO basis functions only; and

� to evaluateWpq

 0 atom-wise and sum over all atomic PP contributions of
the molecular PP afterwards.

Whereas the first point is motivated by interoperability reasons – and effectively
allows to employ of the 2006 QOL implementation’s iterator–evaluator structure
–, the second allows to circumvent, to some extent, ARGOS array dimension lim-
itations, and eases ARGOS subroutine and QOL module communication. Clearly,
both spoil efficient construction of theW matrix, but this is considered insignif-
icant as the computational effort of any HF SCF calculation is exclusively deter-
mined by 4-index integral evaluation and/or (repeated)J �K matrix assembly.

The atom-wise evaluation of PP matrix elements allows to employ the lower-
level ARGOS subroutinesPSEUD1, PSEUD2, andPSEUD3 briefly introduced in sec.

integral subroutines alongside the PP parameters, but without explicit reference to the particular
Atom object.

g The “Argonne, Ohio State” program ARGOS is a general-purpose integral program for the eval-
uation ofSpq , Tpq , Upq , Apq , Bpq , gprqs, and a number of property integrals over symmetry-
adapted, generally contracted CGTO functions, from the COLUMBUS suite of programs.132–135
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6.3.1. Juxtaposing these subroutines’ interfaces with the2006 QOL implementa-
tion’s iterator–evluator structure, discussed in sec. 4.3.2, almost directly defines
the QOL PP integral evaluator classes and QOL PP integral communication, as
presented in sec.s 6.3.2 and 6.3.3.

6.3.1 ARGOS Integral Subroutines: Overview

ARGOS spin-free and spin–orbit PP integrals over symmetry-adapted generally
contracted CGTO basis functions are evaluated within the McMurchie–Davidson
recursion scheme:31,32h

Matrix elements of the localOWLJ , the non-local spin-freeOA � OWLJ , and the
non-local spin–orbitOB part of the general 2-component semilocal atomic pseudo-
potential operator of eq. 6-1 are referred to as type 1, type 2, and type 3 integrals,
and computed byPSEUD1, PSEUD2, andPSEUD3, respectively. All are FORTRAN-
written, closely related subroutines that are called with analog sets of six parame-
ters, e.g., for theOWLJ part,SUBROUTINE PSEUD1(CCR,GOUT,NCR,NKCRL,NKCRU,ZCR)

� TheREAL*8 array variablesCCR andZCR, and theINTEGER array variable
NCR each define a maximum of 77 PP parametersXljkA, ˇljkA, andnljkA,
respectively; the spin–orbit part’s expansion coefficients XljkA D BljkA
are required to be divided by2l C 1.

� GOUT is a REAL*8 array variable that, on exit, contains the integrals over
all pairs of CGTOs with the input basis functions’lp andlq:i As there are
1
2
.lC1/.lC2/Cartesian monomialsxmxymy´m´ withmxCmyCm´ D l ,

GOUT holds
1
2
.lp C 1/.lp C 2/ � 12.lq C 1/.lq C 2/

h PP integrals are first separated in angular and radial parts.Whereas angular integral evaluation is
relatively straightforward, radial integration is more difficult from the integrands’ modified sphe-
rical Bessel functions and involves different, (for reasons of numerical stability) case-dependent
single and double power series expansion, Gaussian quadrature, and techniques of expansion in
terms of scaled modified spherical Bessel functions.31,32

i Note that the CGTO information is communicated over theONE andCALLIN common blocks, as
discussed below.
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integrals for input CGTOsj�pi andj�qi with lp andlq.
From the ARGOS limitation tol � 4 CGTOs,GOUT’s dimension is255 for
PSEUD1 andPSEUD2. In the specialPSEUD3 case,GOUT is of size3 � 255 D
675, because it holds three real integrals

ImBpq˛ˇ D
PL
lD1

P

ml
h�pj OBl OLxjlmlihlml j�qi ;

ReBpq˛ˇ D �i
PL
lD1

P

ml
h�pj OBl OLy jlmlihlml j�qi ;

ImBpq˛˛ D
PL
lD1

P

ml
h�pj OBl OL´jlmlihlml j�qi

at GOUT positions3ipq , 3ipq C 1, and3ipq C 2, respectively, with respect
to the positionipq of a particular.mp;mq/ integral in the spin-freePSEUD1
andPSEUD2 cases.j

� The INTEGER array variablesNKCRL andNKCRU – in the specialPSEUD3
case:NKLSL andNKLSU – of dimension6 assist ARGOS PP parameter def-
inition: If all PP parameter triples.XljkA; ˇljkA; nljkA/ are listed with one
such triple in each line, starting with theOWLJ expansion, and being ordered
by increasingl , NKCRL andNKCRU contain the numbers of the first and last
lines, respectively, of alll blocks.k

Additionally, including the auxiliaryANG1, ANG2, BESS, CINTS, COLIB1, COR-
TAB, FACAB, PTWT, QCOMP, QPASY, andRECUR1 subroutines called byPSEUD1,
PSEUD2, andPSEUD3, a larger number of variables communicated via the com-
mon blocksUNITS, PARMR, PARMI, ONE, CALLIN, QSTORE, LTAB, ZLMTAB, DFAC,
PIFAC, and FACT, and 4 globalLOGICAL variablesESF, ESFC, IGUEQ1, and
JGUEQ1 are required. These include, for example, thej�pi and j�qi parameters
needed forWpq

 0 evaluation. No comprehensive discussion of the ARGOS data

j Note that ReB˛˛ D 0n. ForPSEUD1 andPSEUD2, a particular.mp;mq/ integral’sGOUT position
ipq is defined by ARGOS’ ordering of the Cartesian monomialsm, as collected in tab. 6.1: Ifmp
andmq are the�mp

-th and�mq
-th Cartesian monomials, respectively,GOUT holds the respective

integral at position
ipq D 1

2�mp

�

.lp C 1/.lp C 2/C 2�mq

�

:

k For the81Tl small-core MC-DHF PP given in fig. 6.1,NKCRL andnkcru contain the numbers 1,
2, 4, 8, 12, 16; and 1, 3, 7, 11, 15, 19, respectively. Consequently, NKLSL andNKLSU contain 20,
24, 28, 0, 0, 0; and 23, 27, 31, 0, 0, 0, respectively.
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Tab. 6.1: Ordering of Cartesian monomialsm D .mx ; my ; m´/ by ARGOS: For all CGTO orbital
angular momentum numbersl � 4 supported, the Cartesian monomial’s position�m is
given, ommiting the triviall D 0 case.

kmk1 D l D 1 kmk1 D l D 2 kmk1 D l D 3 kmk1 D l D 4
m 7! �m m 7! �m m 7! �m m 7! �m

.1; 0; 0/ 7! 0 .2; 0; 0/ 7! 0 .3; 0; 0/ 7! 0 .4; 0; 0/ 7! 0

.0; 1; 0/ 7! 1 .0; 2; 0/ 7! 1 .0; 3; 0/ 7! 1 .0; 4; 0/ 7! 1

.0; 0; 1/ 7! 2 .0; 0; 2/ 7! 2 .0; 0; 3/ 7! 2 .0; 0; 4/ 7! 2
.1; 1; 0/ 7! 3 .2; 1; 0/ 7! 3 .3; 1; 0/ 7! 3
.1; 0; 1/ 7! 4 .2; 0; 1/ 7! 4 .3; 0; 1/ 7! 4
.0; 1; 1/ 7! 5 .1; 2; 0/ 7! 5 .1; 3; 0/ 7! 5

.0; 2; 1/ 7! 6 .0; 3; 1/ 7! 6

.1; 0; 2/ 7! 7 .1; 0; 3/ 7! 7

.0; 1; 2/ 7! 8 .0; 1; 3/ 7! 8

.1; 1; 1/ 7! 9 .2; 2; 0/ 7! 9
.2; 0; 2/ 7! 10
.0; 2; 2/ 7! 11
.2; 1; 1/ 7! 12
.1; 2; 1/ 7! 13
.1; 1; 2/ 7! 14

flow and variable interdependence will be given. Instead, the following presenta-
tion of the ARGOS–QOL interface is focussed on the comparably few cases that
have to be addressed directly on the QOL side of the ARGOS–QOLinterface.

6.3.2 ARGOS–QOL Interfacing

From the preceding discussion, calling thePSEUD1, PSEUD2, andPSEUD3 subrou-
tines requires, first, assembly and communication of the parameter list – including
re-formatting from QOL to generally different ARGOS data organization schemes
– and, second, global and case-dependent common block variable setting:

The first communication level, being considered only with PPparameters and
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integral array memory allocation, is enabled by a simple, singleQOL2ARGOS_PP-
MapperContainer class. The second level requires two FORTRAN-written sub-
routinesINIT andEDIT, wrapped by theARGOSCommonBlockWrapper class. PP
matrix elements between CGTOs of particular Cartesian monomials in theGOUT
arrays are located by the auxiliaryARGOS2QOL_Cartesian-FunctionIntegral-
Mapper class.

QOL-to-ARGOS Pseudopotential Parameter Communication

To enable safe, wrapped PP parameter re-formatting to ARGOS-read array vari-
ables, an auxiliary one-parameter template classQOL2ARGOS_PPMapperContai-
ner of argumentT is provided: It has, outside a pointer to theSemilocalAtomic-
Pseudopotential it refers to, flat C-array attributes_ccr and_zcr of T, and
_ncr, _nkcrl, _nkcru, _nklsl, and_nklsu of int types. These resemble the
CCR, ZCR, NCR, NKCRL, NKCRU, NKLSL, andNKLSU array variables handed over
to thePSEUD1, PSEUD2, andPSEUD3 subroutines and are, accordingly, filled as
discussed in sec. 6.3.1 upon construction ofQOL2ARGOS_PPMapperContainer

from 
onst SemilocalAtomicPseudopotential<double> &.l

ARGOS Common Block and PP Integral Subroutine Wrapping

As C++ does not support declaration and definition of global variables in com-
mon blocks, ARGOS common block variables are set by two FORTRAN-written
subroutinesINIT andEDIT:

TheINIT subroutine is intended to be called only once for each program exe-
cution, and provides straightforward declaration and definition of all DATA state-
ments, andUNITS, PARMR, PARMI, ONE, CALLIN, QSTORE, LTAB, ZLMTAB, DFAC,
PIFAC, andFACT common blocks. Note thatINIT does not, and cannot provide
a full emulation of an ARGOS or even COLUMBUS run on the level of common

l Technically, bothQOL2ARGOS_PPMapperContainer andSemilocalAtomicPseudopotential
are templates of a numerical precision-defining argumentT. However, asAtom andMolecule usedouble types only, typically only instances withT set todouble are employed. Moreover, AR-
GOS employs double precision floating point, i.e.REAL*8 types only, and FORTRAN subroutines
do not allow overloading.
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block variable settings, but, instead, addresses only those variables that turned out
to be relevant for PP integral evaluation.

Contrasting,EDIT has been implemented to be called every time a particular
PP matrix element – actually the pair.Wpq˛˛;Wpq˛ˇ / – is to be evaluated and,
thereby, to re-set the case-dependent variables defining PPand CGTO parame-
ters. EDIT is, therefore, called with a total of20 parameters collected in tab. 6.2.
From these, all case-dependentONE andCALLIN variables, and thej�pi andj�qi
normalization constantsNp andNq for ARGOS normalization to

k�pk 7!
q

cmfmp ´
q

.2mpx � 1/ŠŠ � .2mpy � 1/ŠŠ � .2mp´ � 1/ŠŠ (6-6)

are calculated; eq. 6-6 defines the “Cartesian monomial double factorial” function
for the ease of further discussion.

From the C++ side, twovoid-returning global functionsQOL::Pseudopoten-
tial::init andQOL::Pseudopotential::edit have been defined to call the
respective,extern "C"-declared FORTRAN subroutinesINIT andEDIT with
parameter lists of pointers to the respective parameters’ types.m

init andedit are wrapped by the auxiliaryARGOSCommonBlockWrapper
class, being a single-parameter template class of argumentT, that provides two
methodsvoid init_ARGOSCommonBlock() and

1 void edit_ARGOSCommonBlock(
2 
onst CartesianGaussianFunction<T> &,
3 
onst CartesianGaussianFunction<T> &,
4 
onst SemilocalAtomicPseudopotential<double> &,
5 
onst bool &) 
onst;

that effectively callINIT andEDIT via init andedit, respectively. AllEDIT pa-
rameters of tab. 6.2 are retrieved fromCartesianGaussianFunctionandSemi-
localAtomicPseudopotential objects’ attributes; the fourth
onst bool &

parameter defines spin-free and spin–orbit use-cases, i.e.PP spin-dependency, byfalse andtrue, respectively.

mINIT andEDIT are declared with an underbar character appended via theQOL::Pseudopoten-
tial::FortranLinkage pre-processor directives; declaration ofFortranLinkage(INIT) and
FortranLingage(EDIT) asextern "C" disables C++ name mangling and, thus, polymorphism
and overloading.
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Wrapping ARGOS common block variable setting in this way does not only
restrict the globalinit andedit functions to be exclusively called by methods of
ARGOSCommonBlockWrapper, but also provides, to some extent, type-safety and
simplifies use-cases.

Tab. 6.2: Variable types, names, and meanings of theEDIT subroutine’s parameter list.EDIT re-
setsONE andCALLIN common block variables for the evaluation of PP matrix elements
between CGTOs�p.r/ D Np � xmpxympy´mp´ exp.��pjr � rpj2/, for a single atomic
PP atrA, with expansion lengthL � 1.n

type name meaningREAL*8 IX__, IY__, IZ__; IMX__, IMY__, IMZ__ rp; mpREAL*8 JX__, JY__, JZ__; JMX__, JMY__, JMZ__ rq ; mqINTEGER IL__; JL__ lp ; lqREAL*8 IA__; JA__ �p ; �qREAL*8 X__, Y__, Z__ rAINTEGER L__ L

In a similar way, the global functionspseud1, pseud2, andpseud3, implemented
in theQOL::Pseudopotential namespace, call the ARGOSPSEUD1, PSEUD2,
andPSEUD3 subroutines with parameter lists of pointers to the respective param-
eters’ types.

Locating Integrals over CGTO Pairs with Specified CartesianMonomials

For easy, intuitive retrieval of particular integrals overCGTOs j�pi and j�qi
with given Cartesian monomialsmp and mq from the GOUT arrays, the auxil-
iary classARGOS2QOL_CartesianFunctionIntegralMapper has been derived
from vector<map<QOL::AngularBasis::CartesianFunction, unsignedint>>: This design effectively mimicks tab. 6.1, employing thevector compo-
nents as angular momentum quantum numberl . The only member functionread

n The Cartesian monomialsm 2 N3 are, despite their components’ non-negative integer nature,
represented byREAL*8 types to take into account the full domain, i.e.Q, of the double factorial
function.
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of ARGOS2QOL_CartesianFunctionIntegralMapper takes a
onst Carte-
sianFunction & CF as argument and, viareturn (*this)[CF.sum()].find(CF)->second
gives the number�m of the input Cartesian monomialm, thus locatingApq˛˛,
ImBpq˛ˇ , ReBpq˛ˇ , and ImBpq˛˛ in GOUT as discussed in sec. 6.3.1.

6.3.3 Integration and Pseudopotential Integral Communication

Whereas the particular integral evaluation procedure is almost completely defined
by the ARGOS–QOL interface’s class structure of sec. 6.3.2,the top-level eval-
uator class interface is less independent of the 2006 QOL implementation if the
established iterator–evaluator structure is to be re-usedwithout modifications. As
discussed in sec. 4.3.2, the QOLBuffered_IteratorEvaluator1 class iterates
over all symmetry-unique CGTO pairs.j�pi; j�qi/ 2 I � B � B and, of course,
only once. – However, for any CGTO pair inI , bothWpq˛˛ andWpq˛ˇ are to be
evaluated.

Therefore, QOL PP matrix elements are communicated quaternion-valued by
setting the template argumentT of the evaluator class interface

1 // typedef typename T::value_type _Field;
2 template <
lass T>
3 T McMDPseudopotential_Evaluator<T>::operator () (
4 
onst CartesianGaussianFunction<_Field> & bra,
5 
onst CartesianGaussianFunction<_Field> & ket ) 
onst;

toQOL::ElementaryMath::Quaternion, employing the mapsN andM of sec.
5.1.2.

Pseudopotential Integral Evaluation Interface

QOL::Pseudopotential::McMDPseudopotential_Evaluator is a single-pa-
rameter template class of argumentT, closely resembling the 2006 QOL imple-
mentation’s evaluator classes. The single constructor from 
onst Molecule &

provides the molecular PP information and assembles the evaluator classes’std::
vector attribute that, for every non-null atomic PP, has astd::pair of Semilo-
calAtomicPseudopotentialandQOL2ARGOS_- PPMapperContainer entry to
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assist PP parameter information communication to the underlying ARGOS PP in-
tegral subroutines. ARGOS common block variable setting and integral retrieval
from GOUT is enabled byARGOSCommonBlockWrapper andARGOS2QOL_Carte-
sianFunctionIntegralMapper attributes.

T is intended to be of aQuaternion-type that, through the time reversal-
symmetry of the PP operators, enables to wrap bothWpq˛˛ andWpq˛ˇ as a single
quaternion

N .Wpq˛˛;Wpq˛ˇ / D Apq˛˛ C iBpq˛˛ C jReBpq˛ˇ C kReBpq˛ˇ

using theCn�n �Cn�n ! Hn�n mapN of eq. 5-3 for the specialn D 1 case.

As PP integrals are evaluated atom-wise, calling the parentheses operator in-
volves, after initialization of the return quaternionintegrals, iteration over all
entries of thevector of pair of SemilocalAtomicPseudopotentialandQOL-
2ARGOS_PPMapperContainer attributes. For every such entry pointed at by the
employedconst_iterator A,

� C-arraysscratch1, scratch2, andscratch3 of sizes255, 255, and675
are defined. After setting the case-dependent ARGOS common block vari-
ables by theARGOSCommonBlockWrapper<double> _CB’s edit_ARGOS-
CommonBlock, the wrapped ARGOS subroutinespseud1, pseud2, and
pseud3 are called to evaluate the current atomic PP’s contributions toWpq˛˛
andWpq˛ˇ . For example, for the spin–orbit integrals,

1 double scratch3[675];
2 memset(scratch3, 0.00, 675*sizeof(double));
3
4 _CB.edit_ARGOSCommonBlock(ket, bra, A->first, true);
5 QOL::Pseudopotential::pseud3(
6 A->second._ccr, scratch3,
7 A->second._ncr, A->second._nklsl,
8 A->second._nklsu, A->second._zcr
9 );

Note that the bra and ket CGTOs have to be interchanged with respect to
the QOL index definition. Then,

� Apq˛˛, Bpq˛˛, ReBpq˛ˇ , and ImBpq˛ˇ corresponding to the bra and ket
CGTOs’ Cartesian monomials are located in thescratch1, scratch2, and
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scratch3 arrays byARGOS2QOL_CartesianFuntionIntegralMapper,
and added to the1, i, j, and k components ofintegrals, respectively.o

After the loop over all atomic PP contributions has been finished,integrals is
re-“normalized” to non-normalized CGTOs, i.e.

N .Wpq˛˛;Wpq˛ˇ / 7! N .Wpq˛˛;Wpq˛ˇ / �
k�pk � k�qk

p
cmfmp � cmfmq

; (6-7)

because normalization – again to
p

cmfm – is done in the course of contrac-
tion of the primitive integrals to integrals over contracted (and possibly Cartesian-
to-spherical-transformed) CGTOs by the 2006 QOL implementation’s iterator–
evaluator modules.

Integral Communication and Matrix Representation Construction

From the possibility to wrap bothWpq˛˛ andWpq˛ˇ in a single quaternion-valued
return type, PP integral evaluation is readily incorporated in the 2006 QOL imple-
mentation’s module architecture:

The top-level classStandardMolecularHamiltonian2SpinorRepresen-
tation_Containerhas been supplemented with the necessary attributes to allow
a methodPP() to return aContainerRepresentation object with, similar to
the discussion of sec. 4.3.2, third and fourth template argumentsBufferedItera-
torEvaluator1 andOneBody_Evaluator of McMDPseudopotential_Evalu-
ator of Quaternion, respectively.p

On the matrix representation classes’ side, theHermitianTimeReversalInva-
riantMatrix constructor fromContainerRepresentation – more precisely:
the template constructor from aContainerRepresentation-type instance ofCR

o It is necessary to clean thePSEUD1, PSEUD2, andPSEUD3 subroutines’GOUT arrays from almost-
zero entries before adding upintegrals, as these entries have been observed to severely break
spin symmetry in HF SCF calculations employing the PPOA part only. The present implementa-
tion sets allscratch1, scratch2, andscratch3 entries smaller than10�20 to zero before PP
integrals are processed any further.

p A very small number of modifications to theBuffered_IteratorEvaluator1 implementation
has had to be made to allow contraction of quaternion-valuedintegrals using the established loop
structures, i.e., replacing the employedOpq D Oqp by the more generalOpq D O�

qp relation.
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– has been specialized forMcMDPseudopotential_Evaluator-valuedOpera-
tor arguments of theOneBody_Evaluator argument ofBuffered_Iterator-
Evaluator1: The implementation is closely analog to the 2006 QOL implemen-

Buffered_IteratorEvaluator1

HermitianRepresentationIterator

�

W˛˛ W˛ˇ

�W
�
˛ˇ W

�
˛˛

�

�

Fig. 6.2: Construction of general 2-component pseudopotential operator matrix representations:
HermitianRepresentationIterator maps the12n.n C 1/ quaternions to a sequence
.Wpq/p�q � H and, thus, to the lower triangular part of the hermitian matrix M 2 Hn�n.
Then,M is sent toQ 2 An � C2n�2n via M.

tation’s construction of spin-free operator matrix representation objects. Instead
of aUnitarySpace::_ScalarProduct::_ScalarProduct_Codomain-valued
SymmetricMatrixRepresentation, however, aQuaternion-valuedHermiti-
anMatrix is constructed in an otherwise identical fashion. This is readily mapped
to aHermitianQuaternionRepresentationMatrix

Q D .M ıN /.W˛˛;W˛ˇ / ;

using theHn�n ! An matrix isomorphismM as illustrated in fig. 6.2, and cast
to the derivedHermitianTimeReversalInvariantMatrixRepresentation.
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Self-Consistent 2-Spinor Fields

7.1 Spin Component Exchange Coupling

As an indirect consequence of the spin symmetry-breaking properties of the spin–
orbit pseudopotential operatorOB, the HF SCF Exchange operator couples the 2-
spinor’s˛- andˇ-spin components by eq. 3-42, i.e.

Kpq

 0 D �
X

rs

gprsqDsr

 0 ; (7-1)

which must, thus, be implemented differently from the spin-free 1-component HF
SCF calculation scheme.

To provide similar interfaces for both the 1-component and the 2-component
case, two separate functionsassemble_1cSCF2ParticlePart andassemble_-
2cSCF2ParticlePart have been implemented analog to the 2006 QOL imple-
mentation’sassembleRHF2ParticlePart2 function in theQOL::Cartesian-
GaussianIntegration namespace. The following discussion is focussed exclu-
sively on the 2-component case; specialization to the simpler 1-component case is
straightforward by formally settingKpq

 0 to Kpq

 0ı

 0 2 R and, technically,
employing the respective spin-free 1-component matrix andmatrix representation
classes of sec. 4.3

The arguments taken byassemble_2cSCF2ParticlePart, i.e.
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1 // typedef
2 // HermitianTimeReversalInvariantMatrixRepresentation<
3 // UnitarySpace> Mrep;
4 template <
lass UnitarySpace>
5 Mrep assemble_2cSCF2ParticleParts(
6 
onst CartesianGaussian_UnitarySpace2<typename
7 UnitarySpace::_Basis> & BtensorB,
8 
onst Mrep & D,
9 
onst vector<typename UnitarySpace::_Field> & G_n ) {

correspond to the unitary spaceB˝B spanned by the CGTO productsj�p�qi, the
density matrixD, and the set�n of all symmetry-unique 4-index integralsgprqs,
respectively.

In the integral-driven assembly of the exchange operator matrix representation
– as briefly discussed for the 2006 QOL implementation in sec.4.3.3 – iteration
is over all symmetry-unique 4-index integralsgprqs 2 �n. As a given integral
gprqs contributes to severalKpq

 0, for every suchgprqs all �prqs � 8 unique
index combinationsa are to be identified with the corresponding elements ofD,
and with the elements ofK they contribute to.

This procedure is schematically illustrated by tab. 7.1: For example, ifp D q
andr D s (given as the next to last case in tab. 7.1),gprpr contributes, both as
gprpr andgrprp, toKpr

 0 andKrp

 0, respectively; from eq. 3-42, every such
4-index integral in�n is to be multiplied by�Dpr

 0 and�Drp

 0 and added to
Kpr

 0 andKrp

 0, respectively.

This straightforward assembly scheme can be significantly simplified by consid-

a The number�prqs of unique index combinations depends on the given index values, i.e. on which
of six possible sets of index equalities among these values apply. From

gprqs D h�p�r j Og�q�si D
“

R3�R3

dr1dr2 �
�
p .r1/�

�
r .r2/

1

jr1 � r2j
�q.r1/�s.r2/

) gprqs D grpsq D g�
qspr D g�

sqrp

due to electron–electron symmetry and hermiticity ofOg. Moreover, since�n � R for real-valued
CGTOsj�pi, one can electron-1 and -2 indices independently, i.e.gprqs D grqrps D gpsqr D
gqspr D grpsq D gsprq D grqsp D gsqrp, to arrive at�prqs D 8 for pairwise distinct index
values. Clearly, for any other identity relation among the index values, a smaller number of distinct
4-index integrals arises; for example, forr D s, �prqr D 4.
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7: Self-Consistent 2-Spinor Fields

Tab. 7.1: Construction ofK 2 C2n�2n by assemble_2cSCF2ParticleParts: The given sym-
bolic expressions, e.g., “gprqs W � � Dqr

 0 7! Kps

 0” are read as: “gpqrs is to be
multiplied by�Dqr

 0 , and this product is to be added toKpq

 0 ”. The �- andC-
labeled contributions toK˛˛ andK˛ˇ are non-redundant as discussed in the text.

K˛˛ 2 Cn�n K˛ˇ 2 Cn�n

gprqs W ��Dqr 

 0 7! Kps

 0 W Kps˛˛ Kps˛ˇ �

= gqrps W ��Dpr

 0 7! Kqs 

 0 W Kqs˛˛ Kqs˛ˇ �

= gpsqr W ��Dqs

 0 7! Kpr

 0 W Kpr˛˛ Kpr˛ˇ �

= gqspr W ��Dps

 0 7! Kqr 

 0 W Kqr ˛˛ Kqr ˛ˇ �

= grpsq W ��Dsp

 0 7! Krq

 0 W Krq˛˛ =K�
qr ˛˛ Krq˛ˇ = �Kqr ˛ˇ

= gsprq W ��Drp

 0 7! Ksq

 0 W Ksq˛˛ =K�
qs˛˛ Ksq˛ˇ = �Kqs˛ˇ

= grqsp W ��Dsq

 0 7! Krp

 0 W Krp˛˛ =K�
pr˛˛ Krp˛ˇ = �Kpr˛ˇ

= gsqrp W ��Drq

 0 7! Ksp

 0 W Ksp˛˛ =K�
ps˛˛ Ksp˛ˇ = �Kps˛ˇ

gprqr W ��Dqr 

 0 7! Kpr

 0 W Kpr˛˛ Kpr˛ˇ �

= gqrpr W ��Dpr

 0 7! Kqr 

 0 W Kqr ˛˛ Kqr ˛ˇ �

= grprq W ��Drp

 0 7! Krq

 0 W Krq˛˛ =K�
qr ˛˛ Krq˛ˇ = �Kqr ˛ˇ

= grqrp W ��Drq

 0 7! Krp

 0 W Krp˛˛ =K�
pr˛˛ Krp˛ˇ = �Kpr˛ˇ

gprps W ��Dpr

 0 7! Kps

 0 W Kps˛˛ Kps˛ˇ �

= gpspr W ��Dps

 0 7! Kpr

 0 W Kpr˛˛ Kpr˛ˇ �

= grpsp W ��Dsp

 0 7! Krp

 0 W Krp˛˛ =K�
pr˛˛ Krp˛ˇ = �Kpr˛ˇ

= gsprp W ��Drp

 0 7! Ksp

 0 W Ksp˛˛ =K�
ps˛˛ Ksp˛ˇ = �Kps˛ˇ

gppqq W ��Dqp

 0 7! Kpq

 0 W Kpq˛˛ Kpq˛ˇ �

= gqppq W ��Dpp

 0 7! Kqq

 0 W Kqq˛˛ Kqq˛ˇ = 0 C

= gpqqp W ��Dqq

 0 7! Kpp

 0 W Kpp˛˛ Kpp˛ˇ = 0 C

= gqqpp W ��Dpq

 0 7! Kqp

 0 W Kqp˛˛ =K�
pq˛˛ Kqp˛ˇ = �Kpq˛ˇ

gprpr W ��Dpr

 0 7! Kpr

 0 W Kpr˛˛ Kpr˛ˇ �

= grprp W ��Drp

 0 7! Krp

 0 W Krp˛˛ =K�
pr˛˛ Krp˛ˇ = �Kpr˛ˇ

gppppW ��Dpp

 0 7! Kpp

 0 W Kpp˛˛ Kpp˛ˇ = 0 C
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Tab. 7.2: Construction of the auxiliary matricesk˛˛ ;k˛ˇ 2 Cn�n: Only the non-redundant,�-
andC-labeled contributions of tab. 7.1 are considered. Note thefactor of 12 multiplied
into the density matrix diagonal elementsDpp

 0 to prevent double counting the contri-
butions to theK˛˛ diagonal according to eq. 7-2.

k˛˛ 2 Cn�n k˛ˇ 2 Cn�n

gprqs W � �Dqr 

 0 7! kps

 0 W kps˛˛ = k�
sp˛˛ kps˛ˇ = �ksp˛ˇ

= gqrps W � �Dpr

 0 7! kqs 

 0 W kqs ˛˛ = k�
sq ˛˛ kqs ˛ˇ = �ksq˛ˇ

= gpsqr W � �Dqs

 0 7! kpr

 0 W kpr˛˛ = k�
rp˛˛ kpr˛ˇ = �krp˛ˇ

= gqspr W � �Dps

 0 7! kqr 

 0 W kqr ˛˛ = k�
rq˛˛ kqr ˛ˇ = �krq˛ˇ

gprqr W � �Dqr 

 0 7! kpr

 0 W kpr˛˛ = k�
pr˛˛ kpr˛ˇ = �kpr˛ˇ

= gqrpr W � �Dpr

 0 7! kqr 

 0 W kqr ˛˛ = k�
rq˛˛ kqr ˛ˇ = �krq˛ˇ

gprps W � �Dpr

 0 7! kps

 0 W kps˛˛ = k�
ps˛˛ kps˛ˇ = �kps˛ˇ

= gpspr W � �Dps

 0 7! kpr

 0 W kpr˛˛ = k�
rp˛˛ kpr˛ˇ = �krp˛ˇ

gppqq W � �Dqp

 0 7! kpq

 0 W kpq˛˛ = k�
qp˛˛ kpq˛ˇ = �kqp˛ˇ

= gqppq W ��12Dpp

 0 7! kqq

 0 W kqq˛˛
= gpqqp W ��12Dqq

 0 7! kpp

 0 W kpp˛˛

gprpr W � �Dpr

 0 7! kpr

 0 W kpr˛˛ = k�
rp˛˛ kpr˛ˇ = �krp˛ˇ

gppppW ��12Dpp

 0 7! kpp

 0 W kpp˛˛

eration of the hermiticity and antisymmetry of theK˛˛ andK˛ˇ blocks, respec-
tively: In tab. 7.1, the unlabeled redundant matrix elements can be generated from
the non-redundant,�- andC-labeled matrix elements fromKpq˛˛ D K�

qp˛˛ and
Kpq˛ˇ D �Kqp˛ˇ . TheC-labeled entries non-redundant forK˛˛, but redundant
for theK˛ˇ block becauseKpp˛ˇ D 0 for all p.

Tab. 7.2 illustrates a simplified scheme via the auxiliary matrices k˛˛ and
k˛ˇ , and

K˛˛ µ k˛˛ C kT�
˛˛ ; K˛ˇ µ k˛ˇ � kT

˛ˇ : (7-2)

Employing this simplified scheme is, compared to the straightforward assem-
bly following tab. 7.1, expected to reduce the floating pointoperation count of
assemble_2cSCF2ParticleParts by almost a factor of2. However, because
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7: Self-Consistent 2-Spinor Fields

of the significant, approximately constant overhead from both the construction
CGBTree_HermitianTupel4_Iterator and theswit
h block checking for 4-
index equalities,assemble_2cSCF2ParticleParts CPU times are dominated
by floating point operations for large numbers of 4-index integrals only. Thus, sig-
nificantly accelerated assembly ofG D J �K is observed only for large numbers
of 4-index integrals, i.e. comparably large basis sets, as showcased for the simple
TlH example in fig. 7.1.b

0

2

4

6

8

20 40 60 80 100 120 140

t
/s

numbern of CGTO basis functions

2 aug-2 3 aug-3 4 aug-4

straightforward implementation

c c c
c

c

c
c

assembly viak˛˛, k˛ˇ

s s s
s

s

s

s

Fig. 7.1: Meanassemble_2cSCF2ParticleParts CPU timest : TlH at experimentaldTl�H D
3:5338 a:u:,138

81Tl small-core MC-DHF PP131 with cc- and aug-cc-pVXZ basis,139,140

for cardinality numbersX of 2, 3, and4. CPU timest have been averaged over the23, 22,
25, 24, 27, and26 SCF iterations run, respectively (ıE D 1 � 10�9 a:u: energy threshold);
error bars are standard deviations.

b It should be noted that this performance gain is not significant within the conventional HF SCF
calculation scheme of the present QOL implementation, which is exclusively dominated by the
computation of all (symmetry-unique) 4-index integrals with respect to both CPU time and mem-
ory requirements.
Clearly, any attempt to further accelerate assembly ofG D J �K requires, in the very first place,
moving to an integral-direct38,105or “-semi-direct”121 HF SCF calculation scheme, thus enabling
integral screening,121 D andG extrapolation,121 and RI techniques.136,137
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7.2 Eigenvector and Density Matrix Processing

The choice of a 2-spinor basis ofN Kramers pairs introduced in sec. 3.1.3, eq.
3-21, i.e.

�

j 1i; : : : j 2N i
�

D
N
[

iD1

�

j i i; j N i i
�

i
µ D

does not only place a variational restriction but, as pointed out in sec. 3.1.3,
also employs a special unitary symplectic transformation within every eigenspace
E.�i /. However, whereas there is no physical reason for a particular choice, from
an algorithmic point of view it is necessary to define the2n vector representations
Ci such that

CiCn D NCi ´ .j ˝ 1n/C
�
i ; (7-3)

i.e. such that eq. 3-31 holds. It is only through eq. 7-3 that any exploration of time
reversal-invariance becomes possible.

Stated globally, Roothaan–Hall eigenvector processing – i.e. Fock matrix or-
thogonalization, diagonalization, back-transformationto C, construction of a time
reversal-invariant basisD , and assembly of the density matrixD.C/ – has been
wrapped in theHermitianTimeReversalRoothaanHall2cSCF_EigenSystem
class briefly introduced in sec. 7.2.1. The particular transformation techniques
applied to arrive at eq. 7-3, and (atomic fractional occupation number) density
matrix assembly are explained in sec.s 7.2.2 and 7.2.3, respectively.

7.2.1 Top-Level Self-Consistent Field Algorithm Classes

HermitianTimeReversalRoothaanHall2cSCF_EigenSystem is derived from
Hermitian_EigenSystem, particularly for eigenvector sorting, transformation,
and density matrix assembly. It is a single-parameter template class of aUnitary-
Space-type argument defining the CGTO-spanned subspaceB the 2-component
HF SCF equations are solved in.c

Generally, theHermitianTimeReversalRoothaanHall2cSCF_EigenSys-
tem constructor from two
onst HermitianTimeReReversalInvariantMat-

c An essentially analogRoothaanHall1cSCF_EigenSystem class has been implemented to pro-
vide a similar interface for the scalar-relativistic spin-free case.
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7: Self-Consistent 2-Spinor Fields

rixRepresentation & and oneunsigned int & argument, corresponding to
F , S, and the number2N of electrons, respectively, calls the base class con-
structor and, thus, the LAPACK/BLAS generalized eigenvalue equation solver.d

Central for the communication of eigenvectorsCi , eigenvalues�i , and 2-spinor
occupation numbers�i is thestd::vector of KramersPairsOf_Molecular2-
SpinorRepresentationsattribute, that is constructed in the course of the trans-
formation ofC to a time reversal-invariant basisD .

Both theKramersPairOf_Molecular2SpinorRepresentations andMo-
lecular2SpinorRepresentation are templates ofUnitarySpace that allow
structured processing of theCi , �i , and�i : KramersPairOf_Molecular2Spin-
orRepresentationsowns aMolecular2SpinorRepresention_fwd, and twodouble attributes_e and_n that mimick the.Ci ; �i ; �i / triple; the “time-reverse”
2-spinor vector representationNCi is not held in memory, but generated from_fwd
if required. The memberSU2Transform() wraps the transformation ofCi and
NCi to have “maximum similarity” with non-relativistic spin orbitals as discussed
in sec. 7.2.2.

Molecular2SpinorRepresentation has been implemented in analogy to
the existing matrix representation classes:

1 template <
lass UnitarySpace>
2 
lass Molecular2SpinorRepresentation : publi

3 publi
 QOL::MatrixVector::Matrix<typename
4 UnitarySpace::_ScalarProduct::_ScalarProduct_Codomain>
5 {
6 publi
:
7 // ...
8 
onst typename
9 UnitarySpace::_ScalarProduct::_ScalarProduct_Codomain &

10 operator [] (
onst int & i) 
onst {
11 return (*this)(i,0);
12 }
13 Molecular2SpinorRepresentation TimeReversalTransform()
14 
onst;
15 // ...
16 private:

d An optional fourth constructor argument defines a set of possibly fractional atomic occupation
numbers different from an Aufbau occupation scheme.
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17 
onst UnitarySpace * _space;
18 };

Molecular2SpinorRepresentation provides, outside an one-index[] opera-
tor for vector entry access andTimeReversalTransform(), special methods for
inner and dyadic products, real and imaginary parts, etc.e

7.2.2 Choosing Time Reversal-Invariant Eigenspace Bases

Operator matrix representations in a basisD of Kramers pairs, i.e. a basis satis-
fying eq. 7-3, are necessarily of the special Cayley form of eq. 5-1 from the dis-
cussion in sec. 3.2.2. However, the converse is generally not true: If only F 2 An
hermitian, the relation

FC D C– ; (7-4)

with – D diag�i 2 R2n�2n, does not guaranteeC to be a matrix ofn Kramers
pairs of eigenvectorsCiCn D NCi . Instead, eq. 7-4 defines all2n eigenvectors
Ci up to phase factors�i only, which, since generally�i … R, do not commute
with the (co-representation of the) time reversal operator. Assuming the existence
of a matrixC0 2 An of n Kramers pairsC0

iCn D NC0
i , and writingCi D �iC

0
i ,

generally it is�iCn ¤ ��i
) CiCn ¤ NCi : (7-5)

One can, however, find the2n inverse phase factors��1i , i.e. re-phase all2n
eigenvectorsCi to ��1i Ci D C0

i , from

hCiCn��1iCn; ���1
i
NCi i D ���1

iCn�
��1
i hCiCn; NCi i

ŠD hC0
iCn; NC0

i i D 1 (7-6)

) �iCn D �i D hCiCn; NCi i�1=2 (7-7)

for normalized eigenvectors.
Analog to sec. 3.1.3, a basis of eigenvectorsCi of a Cayley matrixF 2 An

will, in the following, be referred to as “Kramers-restricted”. If, moreover, a set of
n phase factor relations is defined such that eq. 7-3 holds for all i , this Kramers-
restricted basis ofn Kramers pairs.Ci ;CiCn/ D .Ci ; NCi / will be referred to as
“Kramers-conjugate” or “time reversal-invariant”.

e Thel_SubspaceNormSquare(
onst int &) andremoveSymmetryContamination(
onstint &) methods apply to the special atomic case and are discussed insec. 7.2.3.
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“Kramers Pairing”: Choosing Time Reversal-Invariant Eige nspace Bases

In a straightforward approach, a Kramers-conjugate basisD could be constructed
by iteration over all eigenspacesbi D span.Ci ;CiCn/ and re-phasing according
to eq. 7-7.

However, for dimbi D 2ni > 2, the LAPACK/BLAS generalized eigenvalue
equation solver generally does not provide a basisDi D .Ci� ;Ci�Cn/

ni

�D 1 closed
under time reversal: Clearly, for anyCi� 2 Di

.j ˝ 1n/C
�
i�
2 bi 6) � � .j ˝ 1n/C

�
i�
2 Di ; (7-8)

i.e. one cannot always find a phase� such that the time reversal-transformed basis
vector NCi� is also a vector of the basisDi ; but this has been assumed for the
re-phasing procedure of eq. 7-7. Although this LAPACK/BLASbehavior has not
been observed for the most common dimbi D 2 case, higher (for example atomic
mj ) degeneracies and, thus, eigenspace basis definitions as those discussed cannot
be ruled outa priori.

Therefore, a procedure different from the straightforwardapproach of eq. 7-7
has been adopted:

TimeReversalInvariantRoothaanHall2cSCF_EigenSystemhas aprivate
methodvoid construct_KramersConjugate2SpinorBasis() called by the
constructor, i.e. right after the LAPACK/BLAS generalizedeigenvalue equation
solver has been run via the in-list constructor of theHermitian_EigenSystem

base.
Looping over all eigenspacesbi , construct_KramersConjugate2Spinor-

Basis() constructs Kramers-conjugate bases via eq. 7-7 for dimbi D 2, and em-
ploys a Schmidt-like orthogonalization scheme111 for the dimbi > 2 case. Along
these lines, eigenvectorsCi and eigenvalues�i are re-ordered to match eq. 7-3,
i.e., for i 2 ¹1; : : : nº, from an�2i�1 D �2i ordering to an�i D �iCn ordering,
and the time-forward member of the transformed eigenvectorpair .C0

i ; NC0
i / ist cast

to thevector of KramersPairsOf_Molecular2SpinorRepresentations at-
tribute. Thus,

� if dim bi D 2ni D 2, Ci andCiCn are re-phased according to eq. 7-3, and
that eigenvector with the largest˛-spin component is cast to the_fwd at-
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tribute of the respectiveKramersPairOf_Molecular2SpinorRepresen-
tations.

� if dim bi D 2ni > 2, an eigenspace basisDi of Kramers pairs.C0
i�
; NC0

i�
/

is constructed from the basisDi D .Ci� ;Ci�Cn/� as follows:
In the�-th step, the projector

P� D P��1 � 1

kCi�k2
Ci�CT�

i�
� 1

k NCi�k2
NCi� NC

T�
i�

(7-9)

D P��1 � 1

kCi�k2
Ci�CT�

i�
� 1

kCi�k2
.j ˝ 12n/C

�
i�

CT
i�
.j ˝ 12n/

T

is constructed from

Ci� ´ arg max
�

®

kCi�k
2

ˇ
ˇ Ci� 2 D

��1
i

¯

; (7-10)

D
��1
i ´

�

P��1 � � �P1Ci� ;P
��1 � � �P1Ci�Cn

�

�
n ¹ 0 º (7-11)

and, subsequently, applied to all vectors inD��1
i to give a newD�i D

.P�D
��1
i /n ¹ 0 º. The vectorsCi� , NCi� are re-normalized toC0

i�
, NC0

i�
and

added to

D
��1
i ´

��1
[

�D1

.C0
i�
; NC0

i�
/ (7-12)

to give a newD
�
i . Technically, in every step�, that member of the pair

added toD� with the largest̨ -spin component norm is cast to the_fwd
attribute ofKramersPairOf_Molecular2SpinorRepresentations.
After ni steps,Dni

i D ¿ andD
ni

i µ Di is the sought eigenspace basis of
ni Kramers pairs.C0

i�
; NC0

i�
/.

Note that, in the2ni > 2 case, no re-phasing step is necessary for eq. 7-3 to hold,
as this relation is built in the Schmidt-like procedure: In the�-th step,D� is
constructed with reference to only the largest-norm vectorCi� 2 D

��1
i , whereas

the second member ofD� is definedas NCi� .
The remaining degree of freedom, i.e. the special unitary symplectic trans-

formation among the members of every Kramers pair.C0
i ; NC0

i /, is removed by
choosing a set of particular transformation to maximize the2-spinors’ similarity
to non-relativistic spin orbitals.28
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Choosing Maximum 2-Spinor Similarity to Non-Relativistic Spin Orbitals

As briefly discussed in sec. 3.1.3, a given Kramers pair.C0
i ; NC0

i / of vector repre-
sentations of 2-spinors is defined up to a special unitary symplectic transformation
only. Precisely, one is allowed to choosevi ; wi ; �i 2 C such that

.C0
i ; NC0

i /i 7! .C000
i ; NC000

i /i ´
�

�i .viC
0
i Cwi NC0

i /; �
�
i .�w�

i C0
i C v�

i
NC0
i /

�

i
; (7-13)

jvi j2 C jwi j2 D 1 ; j�i j2 D 1 ; (7-14)

symbolically
�

C000
i ; NC000

i

�

D
�

C0
i ; NC0

i

�
�

�ivi ���i w�
i

�iwi ��i v
�
i

�

I (7-15)

eq. 7-3 also holds for the transformed Kramers pair from the Cayley form of the
transposed transformation matrix in eq. 7-15.

Following Hafner and Schwarz,28 the parametersvi , wi , and �i are chosen
as to maximize the 2-spinors’ “similarity” to the respective spin orbitals from the
non-relativistic, i.e. spin-symmetric limit, by maximizing the norms of the time-
forward 2-spinor’s̨ -spin and real part (and of the time-reverse 2-spinor’sˇ-spin
component and real part).

Maximizing the norm of thę -spin component ofC00
i D viC0

i Cwi NC0
i defines

.vi ; wi /´ arg max
vi ; wi

®

kC00
i˛k2 � li

�

jvi j2 C jwi j2 � 1
�¯

(7-16)

from the constraint 7-14, i.e. by making the Lagrangian

Li D kviC0
i˛k2 � 2Re

�

v�
i wi hC0

i˛;C
0�
iˇ i

�

C kwiC0�
iˇk2 � li

�

jvi j2 C jwi j2 � 1
�

stationary with respect tou� 2 ¹v�
i ; w

�
i º; thus,f

@Li

@u�
D

´

vi kCi˛k2 � wi hCi˛;C�
iˇ i � li vi

ŠD 0 for u� D v�
i

wikC�
iˇk2 � vi hC�

iˇ ;Ci˛i � liwi
ŠD 0 for u� D w�

i

(7-17)

In a similar way, the phase�i can be chosen as to maximize the norm of the
real part ofC000

i D �iC00
i , i.e.

f Differentiation ofLi with respect tovi andwi gives the complex-conjugate eq.s 7-17.
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�i D ai C ibi ´ arg max
ai ;bi

®

kRe�iC
00
i k2 � �i .j�i j2 � 1/

¯

: (7-18)

Expanding ReC00
i ´ 1

2
.�iC

00
i C ��i C00�

i / 2 R2n gives the Lagrangian

�i D



Re

�

aiReC0
i C iai Im C0

i C ibiReC0
i � bi Im C0

i

�



2 � �i .a2i C b2i � 1/

which is stationary in terms of the real and imaginary partsai andbi of �i if

1

2

@�i

@c

D
´

aikReC00
i k2 � bi hReC00

i ; Im C00
i i � �iai

ŠD 0 for c D ai
bikIm C00

i k2 � ai hIm C00
i ;ReC00

i i � �ibi
ŠD 0 for c D bi

(7-19)

using ReC00
i ; Im C00

i 2 R2n ) hReC00
i ; Im C00

i i 2 R. From �i D ei'i , eq.s 7-
19 can be re-cast in terms of a single real parameter'i such thatai D cos'i ,
bi D sin'i .

Therefore, both parameter sets.vi ; wi / and.cos'i ; sin'i / are obtained from the
analog linear systems of equations 7-17 and 7-19.

Technically, the transformation to maximum similarity to non-relativistic spin
orbitals was implemented asvoid SU2Transform() method ofKramersPair-
Of_Molecular2SpinorRepresentations called for allKramersPairOf_Mo-
lecular2SpinorRepresentations constructed withinconstruct_Kramers-
Conjugate2SpinorBasis(). The transformation parametersvi , wi , and�i are
computed analytically from eq.s 7-17 and 7-19.g

g The normalized solutionse˙ of the hermitian2 � 2 eigenvalue problemte˙ D �˙e˙ are com-
puted as

e˙
1 D

1
p

1C .�˙ � t11/2t�212
; e˙

2 D
�˙ � t11

p

1C .�˙ � t11/2t�212
:

with �˙ D 1
2 .t11 C t22/ ˙

p
1
4 .t11 � t22/2 C jt12j2 2 R from the characteristic polynomial.

Both eC and e� are evaluated to assert that the solutions of eq.s 7-17 and 7-19 are not only
stationary points, but really maximizers ofkC00

i˛k2 andkReC000
i k2, i.e. satisfy eq.s 7-16 and 7-18,

respectively.
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For the ease of notation, the three-fold primed time reversal-invariant eigenspace
basis vectors similar to non-relativistic spin orbitalsC000

i will, from here on, be
simply written asCi , the discussed transformations being understood.

7.2.3 Atomic Occupation Numbers and Angular Symmetry

Most atoms’ ground state electronic structure cannot be modeled by a single HF
SCF Slater determinant because of its open-shell nature. Whereas unrestricted141

and restricted open-shell10 formalisms are, to some extent, applicable in a num-
ber of special (i.e.J -doublet) cases, this is certainly not true for the Kramers-
restricted closed shell HF SCF ansatz of eq. 3-2.

However, from, e.g., the point of view of approximate initial guess molecular
from atomic density matrices discussed in sec. 7.4, also very simple approximate
models of atomic electronic densities are of some value.

SCF Density Matrices for Fractional Occupations of Atomic 2-Spinors

A straightforward approach is a formal generalization of the SCF density matrix
expression of eq.s 3-39 and 3-40 to

D D CāCT� (7-20)

)

8

ˆ̂
ˆ
ˆ̂
<

ˆ̂
ˆ
ˆ̂
:

Dpq˛˛ D
1

2

n
X

iD1

�

Cpi˛C
�
qi˛ C C �

piˇCqiˇ
�

� �i

Dpq˛ˇ D
1

2

n
X

iD1

�

Cpi˛C
�
qiˇ � C �

piˇCqi˛
�

� �i

(7-21)

with the “occupation number matrix”

ā D 1
2

diag�i ˚ 1
2

diag�i 2 R2n�2n (7-22)

of generally non-integer “occupation numbers”�i 2 Œ0; 2� of the i-th Kramers
pair of 2-spinors,h and Trā D

Pn
iD1 �i D 2N . Clearly, eq.s 7-21 collapse to the

h A less clumsy definiton ofā could be written as, e.g.,ā D diag�i , with �i 2 Œ0; 1� the occupation
number of thei-th 2-spinor. However, in the Kramers-restricted closed-shell formalism�i D �iCn
as indicated by eq. 7-22, and�i can be referred to as a property of the Kramers pairCi ;

NCi .
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special eq.s 3-39 and 3-40 for a closed-shell occupation number matrix

1N ˚ 0n�N ˚ 1N ˚ 0n�N : (7-23)

Then, starting with eq. 7-21, the�i can be set to that fraction ofNnl electrons
in a given, not necessarily closed, atomic.n; l/ shell that “occupies” every of the
2l C 1 Kramers pairs in that shell, i.e.

�inl
D �nl D

Nnl

2l C 1 (7-24)

for all Kramers pairsinl in that shell.
This ad hocchoice of atomic density matrices is similar to the Grand Canon-

ical Hartree–Fock and Kohn–Sham (GCHF, GCKS) SCF theories of Abdulnur et
al.142 and Jørgensen and̈Ohrn,143 but the particular choice ofā by eq. 7-24 does
generally not correspond to physically meaningful ensembles.

For a non-Aufbau occupation,i the TimeReversalInvariantRoothaanHall2-
cSCF_EigenSystemconstructor takes an optional fourth
onst string & argu-
ment defining this occupation scheme in conventional notation, e.g."5s^2 5p^6

5d^2 6s^2" for the ground state72Hf atom with 60-electron PP. Then, a special
occupation number-to-eigenvector assignment block is executed:

� The first step involves mapping the blindstring data to an internally struc-
tured occupation scheme object

std::map<std::pair<QOL::ShellIndex::Shell, unsigned int>,unsigned int> Aufbau;

In Aufbau, an atomic.n; l/ shell is modeled by an STLpair of the QOL
Shell class and anunsigned int main quantum numbern. Shell is the
first pair template argument to have atomic shells ordered by increasing
orbital angular momentum quantum numbersl and, within, main quantum
numbersn. The STLmap is, then, used to assign anunsigned int num-
berNnl of electrons to all members of the ordered set of atomic shells.

i The term “Aufbau” or “Aufbau occupation” refers to an atomicoccupation scheme obeying the
“Aufbau principle”,144 i.e., for an atom ofZ electrons, to a special occupation scheme that defines
theZ lowest-energy 2-spinors as occupied.37 In the present implementation, however, the term
“Aufbau” is employed somewhat loosely to label any, including non-Aufbau occupation number-
to-eigenvector assignments.
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� To come to an assignment of these occupation numbers�nl to eigenvectors
Ci , the latters’ orbital angular momentum quantum numbersli are identi-
fied by

li ´ arg max
l

²
X

p 2Bl

�

jCpi˛j2 C jCpiˇ j2
�
³

li

; (7-25)

i.e. by projecting allCi to all subspaces spanned by the CGTO basis func-
tions j�pi 2 Bl � B with orbital angular momentum quantum numbers
kmpk1 D l , and assigning thatli that gives rise to the projection with the
largest norm-square.

� Finally, iterating over allAufbau entries, the lowest-energyCi with li equal
to the currentAufbau entry’s l is interpreted as belonging to this atomic
shell, and the_n attribute of the correspondingKramersPairOf_Molecu-
lar2SpinorRepresentations is set to

�i  7 �inl
 7 �nl D

Nnl

2l C 1 ; (7-26)

which effectively enables the connection of the flat 2-spinor indexi and the
atomic shell quantum numbersn andl implied through eq. 7-24. The same
occupation number is assigned to the next.2lC1/�1 eigenvectorsCi with
the same orbital angular momentum quantum numberli ,

j and the current
pair<Shell, unsigned int> is removed fromAufbau.

The default reference to an emptystring defines an Aufbau occupation by eq.
7-23.

j Note that the present implementation assumes that�nlj < �n0lj for n < n0 and allj , i.e. that, for
a given commonl , the.n; l C 1

2 / 2-spinors’ energies are still lower than the.n0; l � 12 / 2-spinors’
energies. This might not be true for cases with extreme spin–orbit splitting!145

It is noted in passing that it is generally not sufficient to exclude such extreme scenarios from only
physical arguments. In early, poorly damped SCF iterationsstarting from bad initial densities, the
“Knotenregel” has been numerically observed to be broken bystrong spin–orbit coupling, such
that �nlj < �n0l 0j for n > n0 and l < l 0: For example, in the the72Hf test case illustrated in
fig. 7.2, the4-th SCF iteration6p1=2 virtual 2-spinor energies drop between the5d3=2 and5d5=2
(fractionally) occupied 2-spinor energies. “Knotenregel” violations – within the stated assumption
�nlj < �n0lj for n < n0 and allj – are, however, routinely handled with the present implementa-
tion.
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Atomic Angular Symmetry

Having established this occupation number-to-eigenvector assignment, the assem-
bly of D according to eq. 7-21 is straightforward. However, it has been observed in
a large number of atomic test cases that convergence of the atomic self-consistent
field is not. Instead, convergence is spoiled by contamination of C and, thus,D

8

6

4

2

0

0 10 20 30 40 50 60 70 80 90 100

pl
ot

te
d

qu
an

tit
y

/a
.u

.

SCF iteration count�

� lg jE� �E��1j
b

b
b

b
b
bbbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbb
b
b
b
b
b
b
b

bb

bb

b

b

b

b

bbbb
bb

bb
bb

bb

bbbb

bbbbbb

bb

bb

bb
bb

bb

bb
bb

bb

bb
bb

bb

bb

b

� lg kD� �D��1k2
rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
r

rr
rrrrr

r
rr
rr
rrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

re

e
e

e
e
eeeeee

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

uu

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Fig. 7.2: Angular symmetry breakdown andremoveSymmetryContamination: Convergence be-
havior of HF SCF energyE� and density matrixD� for the72Hf atom, small-core MC-
DHF PP with cc-pVDZ basis,146 5s2 5p6 5d2 6s2 occupation scheme, without (small cir-
cles c, s) and withremoveSymmetryContamination (big circles e, u)

matrix elements with almost-zero contributions from the numerical solution of the
underlying generalized eigenvalue equation systems.

As showcased for the72Hf example in fig.s 7.2 and 7.3, this is amplified over
the SCF loop: At� D 37, bothjE��E��1j andkD��D��1k2 begin to increase
again with increasing� as, illustrated in fig. 7.3, angular symmetry “blocking” of
C andD breaks down.

Therefore, in every SCF iteration and for all eigenvectorsCi , all eigenvector
componentsCpi
 with respect to CGTOsj�pi with lp ¤ li are discarded, and
the “clean”, angular symmetry-enforced eigenvectors are re-normalized. Techni-
cally, a functionvoid removeSymmetryContamination(unsinged int &)

was implemented as aMolecular2SpinorRepresentationmethod:
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� D 20 � D 30 � D 40 � D 99 “clean”

C�

D�

Fig. 7.3: Pictorial representations of eigenvector and density matricesC� andD� from the 20-th,
30-th, 40-th, and 99-th SCF iteration� of fig. 7.2; the rightmost matrix pictures corre-
spond to the “clean”, angular symmetry-enforced 99-th SCF iteration matrices employing
removeSymmetryContamination .

1 template <
lass USpace>
2 inline void Molecular2SpinorRepresentation<USpace>::
3 removeSymmetryContamination(
onst int & l)
4 {
5 typename Molecular2SpinorRepresentation<USpace>::_Field
6 _T;
7 typename _T::value_type norm = sqrt(this->norm());
8
9 
onst int n = _space->basis().size();

10 unsigned int p = 0;
11
12 // ITERATE OVER CGTO BASIS FUNCTIONS:
13 for( CGBTree_Iterator<typename USpace::_CGBasisType>
14 I( _space->basis() ); I.valid(); ++I, ++p )
15 {
16 // first.first.l() RETURNS ANGULAR MOMENTUM QUANTUM NUMBER
17 if( I.i2()->first.first.l() != l ) {
18 (*this)[ p ] = 0;
19 (*this)[p+n] = 0; }
20 else {
21 (*this)[ p ] *= norm/sqrt(this->norm());
22 (*this)[p+n] *= norm/sqrt(this->norm()); }
23 }
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24 }

As soon as a given eigenvector’s orbital angular momentum quantum numberli is
evaluated in the course of the occupation number-to-eigenvector assignment, this
eigenvector is cast toMolecular2SpinorRepresentation, and itsremoveSym-
metryContamination method is called withli as argument.

As evident from the particular example shown in fig.s 7.2 and 7.3, enforcing an-
gular symmetry greatly facilitates, if not enables SCF convergence in the general
atomic case. With the exception of oscillations for small�, which are not atypical
for calculations starting from poor (e.g., core Hamiltonian) initial guess density
matrices, convergence is generally smooth, yet slow.

7.3 Optimal Damping

In order to improve SCF convergence also for the general molecular, large basis set
case, the 2006 QOL implementation’s naı̈ve Roothaan–Hall-like SCF algorithm of
sec. 4.3.3 has been abandoned in favor of the Optimal DampingAlgorithm (ODA)
of Cancés and Le Bris.36,37

Stated briefly, the ODA is the most simple of a class of more general “relaxed
constraint algorithms” that relax the nonlinear idempotency constraintD�SD� D
D� over the minimization ofESCF.D/; idempotency is recovered at convergence
of D. Operationally, in the� C 1-th SCF iteration one does not diagonalize the
Fock matrixF�C 1, but, instead,QF�C 1 D F. QD�C1/ constructed from the “op-
timally damped” density matrix

QD�C1´ .1� �/ QD� C �D�C 1 (7-27)

) QF�C1 D .1� �/ QF� C �F�C 1 : (7-28)

From the similarity of eq.s 7-27 and 7-28 to analog expressions definingD andF

matrix damping techniques,147–149the parameter

�´ arg min
�2 Œ0; 1�

®

ESCF. QD�C1/
¯

; (7-29)

is referred to as “optimal damping parameter”.
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Both the derivation and the detailed discussion of the SCF ODA, as given by
Cancés and Le Bris,36,37 will not be repeated here.k However, the 2-component
HF SCF energy functional of time reversal-invariant,C2n�2n density matricesD,
i.e.

ESCF.D/ D Tr
�

hC 1
2
G.D/

�

D (7-30)

differs from the 1-component HF SCF energy functional of spin-restricted,Rn�n

density matricesD considered by Cancés and Le Bris. Consequently, the analytic
expression for the optimal damping parameter� obtained via eq. 7-29 is slightly
different:

Abbreviating QE�C1
SCF D ESCF. QD�C 1/, from eq.s 7-30 and 7-27,

QE�C1
SCF

D QE�SCFC �Tr
� QF�.D�C1 � QD�/

�

C 1
2
�2 Tr

�

.F�C1 � QF�/.D�C1 � QD�/
�

D QE�SCFC �a�C1 C 1
2
�2b�C1

such that eq. 7-29 implies

��C1 D
²

1 if a�C1 � �b�C1

�b�C1=a�C1 else
(7-31)

which differs from the 1-component Cancés–Le Bris expression in a factor of1
2

for a�C1.
It has been observed that, in late SCF iterations employing tight convergence

thresholds, computation of the optimal damping parameter��C1 becomes numer-
ically unstable as bothD�C1� QD� ! 02n andF�C1� QF� ! 02n with increasing
�. Therefore, in the present implementationa�C1 andb�C1 are computed from

k Put in a somewhat simplified way, the ODA is a minimization scheme ofESCF.D/ on the set
Q� D ¹ QD 2 C2n�2njTr QD D 2N; k QDS QDk � k QDkº of “relaxed constraint” density matrices.

Clearly, Q� contains the set� of all idempotent density matricesD as proper subset.
The ODA is motivated and enabled by the facts that, first,ESCF has the same minima onQ�
and� � Q�,37 and, second, thatQ� is convex, i.e. from¹ QDi ºi � Q� )

P

i �i
QDi 2 Q� if only

P

i �i D 1 for non-negative�i .
37

Then, in each SCF iteration�, diagonalization ofF. QD�/ givesD�C1 2 � – defining the “steepest
descent” ofESCF.

QD�/ in the direction of idempotent density matricesD 2 � – that serves to
construct a new inputQD�C1 2 Q� via eq. 7-27, with� defined such thatESCF is minimized.
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the 1- and 2-electron energiesE�C1
1 andE�C1

2 , the 2-spinor energy matrix–�C1,
and 2-spinor occupation number matrixā

�C1 via

a�C1 D E�C1
1 C 2E�C1

2 � b� � Tr F�C1 QD� ; (7-32)

b�C1 D Tr –
�C1

ā
�C1 � Tr QF� QD� (7-33)

with
E
�C1
1 D Tr hD�C1 ; 2E

�C1
2 D Tr G�C1D�C1 (7-34)

to avoid repeated computation of traces (of products) of almost-zero matrices.l

The implemented 2-component SCF ODA can thus be stated as follows:

� construction ofS, T , U , andW matrices;

� evaluation of all symmetry-unique electron–electron repulsion 4-index in-
tegralsgprqs 2 �n, and storage;

� setting the initial guess density matrixD0 to null;
then, forıD > 0 a density threshold, in the�-th SCF iteration

1: orthogonalizeQF�, diagonalize, and back-transform to obtain the�-th
eigenvector matrixC�;
construct a Kramers-conjugate basis and assemble a new density ma-
trix D�C1 via eq. 7-21;

2: if kD�C1 �D�k2 � ıD terminate and computeE�C1
SCF ;

else
3: assembleG�C1 D G.D�C1/ via eq.s 3-41 and 3-42;
4: assemble the�C 1-th Fock matrixF�C1 D F.D�C1/ D hCG�C1;
5: computeE�C1

1 ,E�C1
2 , a�C1; b�C1 according to eq.s 7-34, 7-32, and

7-33, respectively, and the�C1-th optimal damping parameter��C1

as
��C1 D

²

1 if a�C1 � �b�C1

�b�C1=a�C1 else

l Moreover, ifa�C1 and/orb�C1 drop below a thresholdı, typically set toı D 10�12, ��C1 is
set to12 , defining a simple averaging ofQD� andD�C1.
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6: assemble
QD�C1´ .1� ��C1/ QD� C ��C1D�C1

QF�C1´ .1� ��C1/ QF� C ��C1F�C1

and go to 1.

Fig. 7.4 shows, for the72Hf atom example, the improved SCF convergence
behavior, as compared to the performance of the Roothaan–Hall-type SCF algo-
rithm employed for fig. 7.2.ESCF is converged below10�9 a:u: in only 15, as
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Fig. 7.4: Performance of the SCF ODA for the72Hf atom, small-core MC-DHF PP with cc-pVDZ
basis,146 5s2 5p6 5d2 6s2 occupation scheme. The same plot scale as in fig. 7.2 has been
chosen for the ease of comparison with the Roothaan–Hall-type SCF algorithm.

opposed to44 iterations.
Although tempting to conclude from comparison of fig.s 7.2 and 7.4 only, the

SCF ODA does generally notaccelerateconvergence. In fact, algorithms employ-
ing convergence acceleration techniques as, e.g., DIIS,150 and advanced relaxed
constraint algorithms36,151,152have been shown to be superior to the SCF ODA in
late iterations near stationary points ofESCF.

36 However, the SCF ODA has been
shown to be more stable, particularly in early iterations,36 and is guaranteed to
converge to a minimum of the HF SCF energy.37m

mWhether this remarkable, yet formal algorithmic property is of practical value from the point of
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Fig. 7.5: Comparison of Roothaan–Hall-type and SCF ODA convergence behavior: TlH at exper-
imentaldTl�H D 3:5338 a:u:,138

81Tl small-core MC-DHF PP131 with cc-pVXZ and
aug-cc-pVXZ basis,139,140for cardinality numbersX of 2, 3, and4. Displayed are both
� lg jE� �E��1j and� lg kD� �D��1k2 for the Roothaan–Hall-type (small circlesc,
s) and SCF ODA (big circlese, u), respectively.

These properties are, to some extent, illustrated by the seemingly uncompli-
cated TlH example in fig. 7.5 and tab. 7.3: Clearly, SCF convergence becomes

view of implementation, where SCF convergence may well be spoiled by numerical artifacts as,
e.g., discussed in sec. 7.2.3, cannot be assessed here in anydetail.
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worse with increasing basis set size. Whereas even the somewhat naı̈ve Roothaan–
Hall-type SCF algorithm converges faster for the smaller cc-pVDZ and aug-cc-
pVDZ basis sets, the SCF ODA saves7 iterations for the cc-pVTZ case and shows
equally robust convergence behavior over the whole range ofscenarios consid-
ered; contrasting, the Roothaan–Hall-type SCF algorithm fails to converge at all
for basis sets larger than, and including, aug-cc-pVTZ.

Tab. 7.3: Numbers of SCF iterations� needed to convergeESCF below ıE D 10�9 a:u: for the
discussed TlH case, using different cc-pVXZ and aug-cc-pVXZ basis sets139,140 with
cardinality numbersX , for the Roothaan–Hall-type and the SCF ODA.

2 aug-2 3 aug-3 4 aug-4

� Roothaan–Hall-type 15 18 33 failed failed failed
� ODA 23 22 25 24 27 26

7.4 Molecule-From-Atoms Initial Guess Densities

To further improve SCF convergence, particularly for earlyiterations in the SCF
ODA loop, a “molecule-from-atoms” density (MFAD) initial guessing scheme has
been implemented. As originally proposed by Almlöf et al.,38 the0-th molecular
SCF density matrixD� D D0 is constructed from SCF density matricesD.A/ for
all atomsA of the molecular system of interest as

D0


 0 D D

 0.1/˚D

 0.2/˚ � � � ˚D

 0.A/˚ � � � (7-35)

for 
; 
 0 2 ¹˛; ˇº.n Eq. 7-35 is similar to the ASA153and ADMA methods,154 and
is the first step of Jansı́k et al.’s multilevel strategy;155 van Lenthe et al.’s156 inves-
tigations demonstrate that MFAD are generally superior among typically available
semiempirical and minimal basis initial guesses.

n The need for a block-wise definition ofD0 comes from the particular row and column ordering
adopted in sec.s 3.2, 5.1.1, and 5.2.2. for hermitian time reversal-invariant matrix representations.
With theHn�n ! An mapM of eq. 5-6, however, one can defineD0 D M

� L

A M�1D.A/
�

,
which is employed in the implementation of eq. 7-35.
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Molecule-From-Atoms Initial Guess Densities

The following discussion is, again, restricted to the more general 2-component
case. However, completely analog functionalities are provided for the spin-free 1-
component HF SCF calculation scheme.

Technically, the top-level classStandardMolecularHamiltonian2SpinorRe-
presentation_Containerhas been given a methodprovide_AtomicSCFDen-
sityInitialGuess() that returns aHermitianTimeReversalInvariantMa-
trixRepresentation object that is, then, employed as0-th molecular SCF den-
sity matrix.

Central toprovide_AtomicSCFDensityInitialGuess() is the auxiliary
CompactAtomic2cODASCFJob class of a single templateCGTOBasis parameter,
matching the wrappingStandardMolecularHamiltonian2SpinorRepresen-
tation_Container’s CGTOBasis argument. The single constructor from
onst
Molecule & and two references to
onst string, defining the atom, the atomic
CGTO basis set,o and the atomic occupation scheme, respectively, carries out an
HF SCF calculation with an energy threshold ofıE D 10�8 a:u: The converged,
quaternion-valued density matrixM�1D is then retrieved via theAtomicSCFDen-
sityMatrix() method.

Having wrapped the actual HF SCF calculation withCompactAtomic2cODA-
SCFJob, provide_AtomicSCFDensityInitialGuess() runs over allAtom en-
tries of the inputMolecule and constructs astd::map<Atom, CompactAtomic-
2cODASCFJob> container: For every unique atom type, a corresponding single-
entryMolecule, PP core size-specific occupation schemestring,p and basis set-

o More precisely, the
onst string & defines the path, relative to the$HOME/QOLBasis2 direc-
tory, of the respective CGTO basis set’s XML file.
Note that both through the matching ofCompactAtomic2cODASCFJob ’s andStandardMolecu-
larHamiltonian2SpinorRepresentation_Container ’s CGTOBasis template argument, and
through setting the
onst string & argument toStandardMolecularHamiltonian2Spinor-
Representation_Container ’s basis set-defining attribute_basis, the basis set for the atomic
calculation is restricted to the basis set employed for thatatom in the subsequent molecular calcu-
lation.

p PP core size-dependent occupation schemes are provided by the auxiliaryAtomCore2Occupa-
tionSchemeMapper class derived frommap<pair<string, unsigned int>, string> that
assigns element names (coded asstring, and readily converted toQOL::Molecule::Type-
Class) and PP core sizes to occupation schemes as discussed in sec.7.2.3. Upon construc-
tion,AtomCore2OccupationSchemeMapper reads this assignment information from a C-array of
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7: Self-Consistent 2-Spinor Fields

definingstring is defined and handed to the respectiveCompactAtomic2cODA-
SCFJob’s constructor to run the calculation.

1 // provide_AtomicSCFDensityInitialGuess() const {
2
3 typedef std::map<Atom, CompactAtomic2cODASCFJob> mA2SCF;
4 mA2SCF AtomicSCF;
5 AtomCore2OccupationSchemeMapper OccMapper;
6
7 for( Molecule::const_iterator A = _molecule.begin();
8 A != _molecule.end(); ++A )
9 {

10 typename mA2SCF::const_iterator I = AtomicSCF.find(*A);
11 if( I == AtomicSCF.end() )
12 {
13 
onst string Basis(_basis1.first);
14 
onst string Occ = OccMapper[make_pair(
15 A->typeClass().name(), A->PP().coreSize())];
16
17 AtomicSCF.insert(make_pair( *A,
18 CompactAtomic2cODASCFJob(*A, Basis, Occ) ));
19 }
20 }

Then, iteration over all atomic centersrA of the CGTO basis set, and step-wise
construction of the direct sum of eq. 7-35 from the atomic density matrix D.A/

of the atomic type atrA, gives rise to the same basis function ordering inD0 and
matrix representations constructed from the full molecular basis set.

The improvement of the SCF ODA convergence is illustrated infig. 7.6 and tab.
7.4 for the TlH example already considered in sec. 7.3: For all cc-pVXZ basis sets
considered, the MFAD initial guess bringskD1 � D0k2 close to1. Convergence
is generally smooth and free of oscillations also for the very first iterations, and
– for ıE D 10�9 a:u: – achieved in19, 18, and18 iterations as compared to23,
25, and27 for cardinal numbersX of 2, 3, and4, respectively; analog conclusions
apply to the considered aug-cc-pVXZ basis set cases not displayed. Note, too,
that the MFAD SCF ODA provides equally robust performance for all basis sets

AtomCoreString objects (declaredstati
 and) defined inStandardMolecularHamiltoni-
an2SpinorRepresentation_Container.C.
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Fig. 7.6: Comparison of core Hamiltonian and MFAD initial guess SCF ODA convergence: TlH
at experimentaldTl�H D 3:5338 a:u:,138

81Tl small-core MC-DHF PP131 with cc-pVXZ
basis,139,140 for cardinality numbersX of 2, 3, and4. Displayed are both� lg jE� �
E��1j and� lg kD� � D��1k2 for core Hamiltonian (D0 D 02n, small circles c, s)
and MFAD initial guesses (big circlese, u), respectively.

considered – contrasting the core Hamiltonian initial guess cases.

Tab. 7.4: Comparison of core Hamiltonian and MFAD initial guess for the TlH example of fig. 7.6.
Given are numbers of SCF iterations� needed to convergeESCF belowıE D 10�9 a:u:,
2-norms of differences of the first and last iteration’s density matrix andD0 for MFAD
initial guess matrices; the latter vanishes trivially forD0 D 02n.

2 aug-2 3 aug-3 4 aug-4
MFAD initial guess

� 19 19 18 18 18 18

kD1 �D0k2 1:16 1:37 1:01 2:27 22:69 11:97

core Hamiltonian initial guess

� 23 22 25 24 27 26

kD1 �D0k2 20:94 47:91 34:46 51:85 323:25 413:10
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8

4-Index Integral Transformation
and MP2

Almost all post-HF electronic structure theories that makeuse of expansion tech-
niques in terms of 2-spinor Slater determinant many-electron functions refer to
matrix elements of 1- and 2-electron operators in the “molecular 2-spinor”, i.e. a
Fockian eigenbasis. For example, in the second-order Møller–Plesset perturbation
theory energy expression

EMP2D ESCFC
1

4

X

ijab

jgijab � gijbaj2

�i C �j � �a � �b
; (8-1)

the indicesi , j , a, andb refer to (occupied and virtual) 2-spinorsj i defined
by h i j Of  j i D �j ıij ; consequently,gijab D h i j j Og a bi. However, the 2-
spinors are generally different from the “atomic” CGTO basis functions in terms
of which these are expanded for the discretization of the HF SCF equations.

Therefore, the first step in a post-HF calculation is the transformation of the
“atomic 2-spinor basis”a 1-electron 2-index and 2-electron 4-index integrals to the
molecular 2-spinor basis.

a From the expansion of the 2-spinorsj i i D
P

p.Cpi˛j�p˛i C Cpiˇ j�pˇi/ in terms of “scalar”,
i.e. not spinor-valued CGTO basis functionsj�pi, the term “atomic 2-spinor basis” has to be used
in a somewhat loose sense, meaning the basis of then atom-centered CGTOs.
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Based on the QOL 2-component HF SCF modules discussed in the preceding
chapters, a 4-index integral transformation similar to the4n5 algorithm has been
designed and implemented as a first step towards correlated calculation schemes.
Integral indices are transformed pairwise for implicit spin integration as discussed
in sec. 8.2.1. The naı̈ve4n5 transformation algorithm of sec. 8.2.2 is formulated as
a sequence of matrix–matrix multiplications, employing highly efficient BLAS3
routines and specialized matrix classes discussed in sec. 8.2.3. An exploratory
application of 2-component MP2 theory to the Rn dimer is presented in sec. 8.3.

4-Index Integrals: Index Notation, Restriction, and Symmetry

The connection of the atomic and molecular 2-spinor basis (AS and MS basis)
4-index integrals is given by eq. 3-23, i.e.

gijkl D
X

p


X

q
 0

X

r
 00

X

s
 000

C �
pi
C

�
qj
 0Crk
 00Csl
 000gprqs (8-2)

for p; q; r; s 2 ¹1; : : : nº and
; 
 0; 
 00; 
 000 2 ¹˛; ˇº. As already defined in sec.
3.2, here and in the followingp, q, r , s; and i , j , k, l are general AS and MS
indices, respectively.

Where necessary, “occupied” and “virtual” will be labeledi , j , k, l ; anda, b,
c, d , respectively, spanning the occupied and virtual subspaces

O D span
�

j i i; j N i i
�

i 2O � span
�

j i i; j N i i
�

�i D 2 ;

V D span
�

j ai; j N ai
�

a2V � span
�

j ai; j N ai
�

�a D 0 :
(8-3)

Note that, for almost all post-HF calculations, typically only a subspace ofO ˚
V is considered, i.e.tO occupied andtV virtual 2-spinor Kramers pairs of are
discarded. For the ease of notation,O andV are understood to always exclude
these2tO C 2tV 2-spinors, and to be defined by the occupied and virtual index
setsO ´ ¹tO C 1; : : : N º andV ´ ¹N C 1; : : : n � tV º, i.e. by the equality in
8-3.b

b In a small numbers of cases as, e.g., the generalEMP2 expression of eq. 8-1, no particular reference
to a Kramers-restricted calculation scheme is made, andO andV are understood accordingly as,
e.g.,O D span.j i i/i 2 ¹2tO C1; ::: 2N º � span.j i i/�i D1. However, no different notations will
be employed, as the precise meaning of, e.g.,O will always be clear from the context.
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8: 4-Index Integral Transformation and MP2

Note, too, that for real-valued CGTO basis functionsj�pi the AS basis inte-
gralsgprqs are real, but generallygijkl … R. Therefore, fewer symmetry rela-
tions, i.e.

gijkl D gj ilk D g�
klij D g�

lkj i ; (8-4)

apply to thegijkl as compared to thegpqrs. However, for a time reversal-invariant
2-spinor basisD D .j i i; j N i i/i , one has from eq.s 2-15, 2-17, and 2-21 the
additional relations

gijkl D g
�
Nil Nkj ; (8-5)

gij Nkl D �g
�
Nilkj ; (8-6)

where the barred indexNi is understood to label thei-th time reversal-transformed
2-spinor, i.e.g�

Nil Nkj D h N k j j Og N i li; clearly,gijkl D g
�
Ni Nj NkNl .

8.1 Preliminary Considerations

The integral transformation of eq. 8-2 is typically implemented employing the so-
called4n5 or “successive transformation” algorithm157 Considering the simpler
spin-free 1-component case of eq. 8-2, i.e. transforming toreal-valuedgijkl and
dropping spin indices, the idea is to carry out the summationin four steps, re-
writing

gijkl D
X

p

Cip

X

q

Cjq

X

r

Crk

X

s

Cslgpqrs : (8-7)

For anRn�n�n�n ! Rn�n�n�n transformation, the operation count scales as ca.
4n5 with n: In the innermost and second-innermost sums

P

s Cslgpqrs D gpqrl
and

P

r Crkgpqrl D gpqkl one hasn multiplications (and additions) for alln2

.r; l/ andn2 .k; l/ index pairs, respectively, i.e.n�n2Cn�n2 D 2n3 operations; but
this has to be done for alln2 .r; s/ index pairs, thus involvingn2 � 2n3 operations.
Computation of the two outermost sums via the same process gives thus a total
operation count of4n5.c

c For Rn�n�n�n ! Rm�m�m�m transformations to truncated Fockian eigenbases of dimensions
m D n � tO � tV � n, the operation count isn4mC n3m2 C n2m3 C nm4, i.e. approximately
n4m for n� m. Considerations of index symmetry158–160can further reduce the computational
effort.
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Integral Transformation to Fockian Eigenbases

Eq. 8-7 can be written as a sequence of four matrix–matrix multiplications and
re-ordering steps: For example, the innermost sum overs can be written as

X

s

Cslgpqrs D
X

s

gprqsCls µ
X

s

I�n.p; q; r/s
Csl D .IC/�n.p; q; r/l

; (8-8)

employing theRn
3�n 4-index integral matrixI;

�nW .p; q; r/ 7! �n.p; q; r/ D n2p C nq C r (8-9)

is a map from the first three of the four 4-index integral indices to theI matrix’s
row index. Then, after re-sorting theIC matrix’s elements as.IC/�n.p; q; r/l

7!
.IC/�n.l; p; q/r

, the second-innermost sum overr can be computed in exactly the
same fashion, etc.

Whereas this key point, i.e. the step-wise computation of the four sums of eq. 8-7
as matrix–matrix multiplications, is also central to the implemented 2-component
transformation algorithm, a somewhat different procedurehas to be adopted from
the 2-spinor nature of the 1-electron functions and the anti-unitarity of the time
reversal operator.

8.2 Integral Transformation to Fockian Eigenbases

8.2.1 Broken Spin Symmetry: Index Pair Transformation

In the general 2-component case, the transformation of AS toMS basis 4-index
integralsgijkl cannot be performed as a straightforward sequence of four matrix–
matrix multiplications from the breaking of spin symmetry:Expanding a 4-index
integralgijkl in terms of thei-th, j -th, k-th, andl-th 2-spinors’ spin components
gives

gijkl D gi˛j˛k˛l˛
C gi˛jˇk˛lˇ

C giˇj˛kˇl˛
C giˇjˇkˇlˇ

; (8-10)

using the notationgi
j
 0k
 00 l
 000 ´ gijkl

 0
 00
 000 for the clarity of presentation.
However, eq. 8-10 follows from spin orthogonality and the spin-independence

of Og, whereas the individual spatial integralsgi
j
 0k
 00 l
 000 generally do not vanish
for arbitrary spin index combinations
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8: 4-Index Integral Transformation and MP2

Therefore, a 4-index integral transformation similar to the 4n5 algorithm of
sec. 8.1 must be carried out in two steps, transforming the electron-1 and -2 indices
pairwise in each such step.

First of all, the 2-spinor expansion coeffient matrixC 2 An is partitioned in four
n � n block matrices as

C D
�

C˛ NC˛
Cˇ

NCˇ

�

´

0

B
B
B
B
B
B
B
B
@

C1˛1 � � � C1˛n �C �
1ˇ1 � � � �C �

1˛n
:::

:::
:::

:::

Cn˛1 � � � Cn˛n �C �
nˇ1 � � � �C �

n˛n

C1ˇ1 � � � C1ˇn C �
1˛1 � � � C �

1˛n
:::

:::
:::

:::

Cnˇ1 � � � Cnˇn C �
n˛1 � � � C �

n˛n

1

C
C
C
C
C
C
C
C
A

(8-11)

i.e. in the time-forward and -reverse 2-spinor vector representations’̨ - andˇ-spin
component matricesC˛, NC˛ D �C�

ˇ , Cˇ , and NCˇ D C�
˛ , respectively.

Transformation of the electron-1 indicesp andr is done by separate multi-
plication of I 2 Rn

3�n by, e.g.,C˛ andCˇ , obtaining the intermediateCn3�n

matrices with elements.IC˛/�n.q; r; s/i˛
D gqrsi˛ and.ICˇ /�n.q; r; s/iˇ

D gqrsiˇ ,
respectively. Then, re-ordering the intermediate matrices as.IC
 /�n.q; r; s/i


7!
.IC
 /�n.s; i
 ; q/r

, is followed by respective multiplication with, e.g., the time-
reverse matricesNC˛ and NCˇ , and addition to the intermediate matrix with trans-
formed electron-1 indices, i.e. with elements

g
siq Nk
D g

si˛q
Nk˛
C g

siˇq
Nkˇ
:

Transformation of the electron-2 indices proceeds in exactly the same fashion,
re-ordering of the intermediate matrix understood. The index pair transformation
steps are illustrated in fig. 8.1.

Within a given pair transformation step, arbitrary truncations of theO ˚ V basis
transformed to are readily achieved by employingn � m sub-matrices ofC
 for
multiplication, i.e. by discarding the firsttO and the lasttV columns such that
m D n � tO � tV . Then, the dimensions of the intermediate matrices change
with every multiplication and re-ordering step. Consequently, the tensor-to-matrix
index map�n of eq. 8-9 has to be generalized to

�dW .p; q; r/ 7! �d.p; q; r/´ nqnrp C nrq C r (8-12)
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gsǐ q Nǩ

gsį q Nk̨

gsǐ qr

gqrsį

gqrsǐ

gsiq Nk D
P


 gsi
q Nk


NC˛C˛

Cˇ
NCˇ

gsį qr
gqrsp

Fig. 8.1: Illustration of a single pair transformation step: 4-indexintegral matrices are represented
in terms of their 4-index integral matrix elements, e.g.,.IC
 /�d.q; r; s/i


D gqrsi
 . Solid
and dashed box-connecting arrows indicate matrix–matrix multiplication and index re-
ordering steps, respectively.

and, thus, depends on all four indices’ domains collected inits vector indexd D
.np; nq ; nr ; ns/.

From similar arguments as given in sec. 8.1, the operation count for the first
pair transformation can be estimated as8n8m C 8n3m C 8n3m2 C 8n2m2, in-
cluding then3m andn2m2 re-ordering steps and a factor of4 for complex-valued
arithmetic. Accordingly, the second pair transformation goes as8n2m3C8nm3C
8nm4 C 8m4.

8.2.2 A Näıve 4-Index Integral Transformation Algorithm

The pairwise index transformation step discussed in the preceding section is the
basic building block of both the design and the implementation of theQOL::Spin-
orTransform_MPPT namespace’s class structure. Whereas these modules – as
discussed in sec. 8.2.3 – provide a certain degree of flexibility for the implemen-
tation of more specialized transformation schemes, the discussion given here fo-
cusses on a general, “naı̈ve” algorithm to compute a subset of MS basis 4-index in-
tegrals from that the complete set can be generated by symmetry relations among
these integrals.

Considering time reversal-symmetry only, from a given AS basis 4-index in-
tegralgpqrs, a total of16 possible MS basis integral types can be – and generally
have to be – generated, i.e.

gijkl ; gNij Nkl ; gi NjkNl ; gNi Nj NkNl ; gNijkl ; gi Njkl ; gij Nkl ; gijkNl ;

g
i Nj NkNl

; gNij NkNl
; gNi NjkNl

; gNi Nj Nkl
; gNi Njkl

; g
ij NkNl

; gNijkNl
; andg

i Nj Nkl
:

However, because of the anti-linearity of the time reversaloperator one generally
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8: 4-Index Integral Transformation and MP2

cannot, from a givengijkl , generate all other15 integrals. In fact, using eq.s 8-4,
8-5, and 8-6, the16 integral types can be collected in four “families” as

gijkl D g�
Nil Nkj D g�

kNji Nl D g NkNl Ni Nj family 1; (8-13)

�g�
Njkli D�g

�
kNjil D gji Nlk D gijkNl

D�g�
l NkNj Ni D�g

�
Nkl Ni Nj D g�

Nl Nij Nk D g�
Ni Nl Nkj

µ

family 2; (8-14)

g�
NkNlij D gij NkNl family 3; (8-15)

g�
NijkNl D gi Nj Nkl family 4, (8-16)

such that a given family’s members can be generated from eachother by hermitian
conjugation, electron–electron interchange, and time reversal transformation, or
any combinations thereof.d It is thus necessary, but typically sufficient to compute
only four Cm3�m MS basis 4-index integral matrices, i.e. one for each integral
family.

Whereas such four matrices are clearly distinct, some sharea number of inter-
mediates over the course of their computation from the AS basis 4-index integral
matrix I. For example, the family 1 and family 2 integralsgijkl andgijkNl share
the electron-1 indices-transformed intermediategiqks and, in fact, also the pair
¹gqj
ks

º
 .
It is this observation that defines the 2-component 4-index integral transfor-

mation scheme illustrated in fig. 8.2. A total of20 matrix–matrix multiplications
is necessary to arrive at the four matrix representatives with elementsgijkl , gijkNl ,
gij NkNl , andgi Nj Nkl , because different intermediates¹gij


Nksº
 and¹gi Nj

Nksº
 have to

be computed forgij NkNl andgi Nj Nkl , respectively, in the two right branches of fig. 8.2;
consequently,10 re-sorting steps are needed.

d Note that the definition of the four integral families according to eq.s 8-13, 8-14, 8-15, and 8-16,
allows time reversal transformation of only a single electron’s 2-spinors and, by eq.s 8-5 and 8-6,
implies swapping the other electron’s 2-spinors among the anti-linear and linear arguments of the
inner product. This can be too restrictive for specialized applications that employ transformations
of the bra and ket 2-spinors to different subspaces ofO ˚ V as briefly discussed in sec. 8.3.
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®

gi
qrs
¯




giqks giq Nks

®

gi Nj
ks
¯




®

gij
 Nks

¯




®

gi Nj
 Nks

¯




gijkNl gi Njkl gi NjkNl gij Nkl gij NkNl gi Nj Nkl gi Nj NkNl

®

gij
ks
¯




gpqrs

gijkl

transformation
electron-1 index

electron-2 index
transformation

Fig. 8.2: Illustration of the 2-component 4-index integral transformation algorithm: Matrices are
represented in terms of their 4-index integral elements, e.g., .IC
 /�d.i
 ; q; r/s D gi
qrs ,
index re-orderings ommitted for clarity. Only one half of the complete tree is shown; the
second half is analog with the electron-1 bra index barred. In the present implementation,
only the four gray-shaded matrix representatives are computed explicitly along the gray-
shaded path. Different representatives of integral families are connected by arrows.

8.2.3 BLAS3 Multiplication-Driven Auxiliary and Matrix Cl asses

Central to the matrix–matrix multiplication-driven implementation of the 2-com-
ponent 4-index integral transformation algorithm discussed above is, of course,
efficient multiplication as, e.g., provided by the Level 3 BLAS CGEMM andZGEMM
(complex-valued single and double floating point precision) routines.

Beside theQOL::MatrixVector::Matrix class already discussed in sec.
4.3.1, the 2006 QOL implementation provides a second, to some extent differ-
ent matrix class in theQOL::LAPACK_BLAS namespace. Both classes’ interfaces
are largely similar and provide analog access of matrix elements via two-index
() operators, and basic matrix algebra operations. Without going into too much
technical detail, however, two main differences are of importance for the present
discussion: First,QOL::LAPACK_BLAS::Matrix provides a global function

1 template <
lass T>
2 void mult_2ndTransposed(
3 
onst QOL::LAPACK_BLAS::Matrix<T> & A,
4 
onst QOL::LAPACK_BLAS::Matrix<T> & B,
5 QOL::LAPACK_BLAS::Matrix<T> & AB,
6 
onst T &);
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8: 4-Index Integral Transformation and MP2

for BLAS3-driven multiplication;mult_2ndTranspsed takes the product matrix
as third argument to bypass the need to return a copy of the product. Second,
Matrix does not allow to choose different underlying evaluator–container classes
for, e.g., only non-redundant matrix element memory allocation. Instead,Matrix
employs a simpleboost::shared_ptr<std::vector<T>> and a flat() oper-
ator only. Consequently, theQOL::LAPACK_BLAS::Matrix class cannot exploit
matrix symmetry or internal structure.

For the matrix–matrix multiplication-driven transformation of real-valued AS to
complex-valued MS basis 4-index integrals, an additionalconjugate() method
was added toMatrix. For both template argumentsstd::complex<float> and
std::complex<double>, the LAPACK/BLAS CGEMM and ZGEMM subroutines
have been interfaced asmult_2ndTransposed specializations for the respective
cases.

TheLAPACK_BLAS_4IndexIntegralMatrixclass is, then, derived from this
QOL::LAPACK_BLAS::Matrix by inheritance. As index mapping and re-ordering
is assisted by theActiveIndex, Integral4Index_CyclicPermutation, Ten-
sor2IndexMapper auxiliary classes, these are briefly discussed first.

Index Mapping and Re-Ordering Auxiliary Classes

It is clear from sec.s 8.2.1 and 8.2.2 that the mapping�d of the four integral to the
two matrix indices must change dynamically – both because ofnecessary matrix
re-ordering steps and, in the general case of transformations to truncated 2-spinor
bases, varying index ranges. Therefore, a small number of auxiliary classes have
been provided to assist index operations by and on the top-level LAPACK_BLAS_-
4IndexIntegralMatrix class. The key design ideas are, first, that all operations
on the 4-index integrals’ index 4-tupel are cyclic permutations and, second, every
such permutation is defined by an “active” index to be transformed.

� ActiveIndex is a simple enumeration type i.e.enum ActiveIndex { ket2, ket1, bra2, bra1 };

Note thatket2, ket1, bra2, andbra1 are mapped to the integer values0,
1, 2, and3, respectively, by implicit type conversion.
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Integral Transformation to Fockian Eigenbases

� Integral4Index_CyclicPermutation tracks index 4-tupel ordering by
its int _P attribute: It provides a singleint map2_mod4(
onst int &

p) method only, returning the rest of division by4,e and+=, -=, +, and-
operators for addition and subtraction modulo4.
In this wayIntegral4Index_CyclicPermutation mimicks the (com-
mutative) group structure of the cyclic permutationsC4 by ¹0; 1; 2; 3º and
addition modulo4.f The connection to the four integral indices is made by
ActiveIndex, i.e. the value of_P defines which integral index is the matrix
column index and, thus, is to be transformed.

� TheTensor2IndexMapper class is derived fromstd::vector<int> and
effectively provides the�d mapping of eq. 8-12. Mapping of its four entries,
corresponding to the index ranges, is established by itsIntegral4Index_-
CyclicPermutation attribute: If this is the identity permutation, thevec-
tor’s first, second, third, and fourth entry corresponds to the electron-1 bra,
electron-2 bra, electron-1 ket, and electron-2 ket index’smaximum value,
respectively.
Index range re-ordering is enabled by thevoid setActiveIndex(
onst
ActiveIndex & A) method:A is – via implicit type conversion – “added”
to Integral4Index_CyclicPermutation, which effectively computes
the cyclic permutation required to go from the current to thespecified index
range ordering, and re-orders thevector entries accordingly.

BLAS3 Multiplication-Driven 4-Index Integral Matrix Clas ses

The top-levelLAPACK_BLAS_4IndexIntegralMatrix class is a single-parame-
ter template of argumentT, assumed to be ofstd::complex<float> or std::
complex<double> types. It is aQOL::LAPACK_BLAS::Matrix by inheritance

e C++ and, e.g., FORTRAN provide the ‘symmetric” modulo function amodn´ a � n � int a=n,
with int a=n the integer part ofa=n. However, form 2 Z, generallyamodn ¤ .aCm �n/modn
for this function. Therefore,map2_mod4 has been implemented to returna � n � ba=nc with the
desired property.

f That is,C4 is mimicked by the quotient groupZ=4Z, i.e. the group of the rest classes modulo4
with addition. In the book of Fischer129 cyclic groupsCn aredefinedin terms ofZ=nZ.
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8: 4-Index Integral Transformation and MP2

and, thus, makes use of all of the base classes’ methods and attributes, particularly
of the BLAS3CGEMM- andZGEMM-drivenmult_2ndTransposed function. As al-
ready pointed out, index operations are assisted by an additional Tensor2Index-
Mapper attribute_m, enabling the definition of a four-index operator

1 
onst T & operator () (int i, int j, int k, int l) 
onst {
2 return (*this)( _m[1]*_m[2]*i + _m[2]*j + k, l );
3 }

in terms ofTensor2IndexMapper’s vector entries and the base classes’ two-
index() operator; this is precisely the index map

.i; j; k; l/ 7!
�

�d.i; j; k/; l
�

D .njnki C nkj C k; l/

induced by eq. 8-12.
Index re-ordering operations have been wrapped in avoid setActiveIn-

dex(
onst ActiveIndex & A) method: If called, a newLAPACK_BLAS_4In-
dexIntegralMatrix object is constructed fromA, setting the respective row and
column dimensions from the integral index ranges. Then, theentries of theLA-
PACK_BLAS_4IndexIntegralMatrix to be re-sorted are written to the new ob-
ject as defined by the cyclic permutation connecting the two index orderings, and
the latter is assigned to the former.

TheSpinComponentPair_4IndexIntegralMatrix class has been implemen-
ted only to assist organization of the complete 2-component4-index integral trans-
formation procedure in terms of pair transformation steps,and does not provide
any special functionality itself. Put briefly,SpinComponentPair_4IndexInte-
gralMatrix inherits fromstd::pair of LAPACK_BLAS_4IndexIntegralMa-
trix and has a constructor from a
onst LAPACK_BLAS_4IndexIntegralMa-
trix & and two
onst Matrix & arguments, mimicking the construction of two
spin index-labeled intermediate matrices, e.g.IC
 with elements.IC
/�d.q;r;s/i

D gqrsi
 as illustrated in fig. 8.1.

In turn, theLAPACK_BLAS_4IndexIntegralMatrixclass has been equipped
by a constructor from a
onst SpinComponentPair_4IndexIntegralMatrix

& and, similarly, two
onst Matrix & arguments to wrap the pair transformation
step’s second part, i.e. separate multiplication of the spin index-labeled interme-
diate matrices by coefficient matrices from the right, and addition.
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With this class structure established, the electron-1 index transformation of fig.
8.2, i.e. the transformation from the AS basis 4-index integralsgpqrs to interme-
diatesgiqks andgiq Nks, can, for example, be written as

1 // typedef LAPACK_BLAS_4IndexIntegralMatrix<complex<
2 // double>> I4Matrix;
3 // typedef SpinComponentPair_4IndexIntegralMatrix<complex<
4 // double>> I4Matrix_Pair;
5
6 // I_pqrs CONTAINS ATOMIC 2-SPINOR BASIS 4-INDEX INTEGRALS
7 // WITH bra1 AS "ACTIVE" INDEX
8
9 I4Matrix_Pair I_iqrs( I_pqrs, fwdC_alpha, fwdC_beta );

10 I_iqrs.setActiveIndex(ket1);
11
12 I4Matrix I_iqks( I_iqrs, fwdC_alpha, fwdC_beta);
13 I4Matrix I_iqKs( I_iqrs, revC_alpha, revC_beta);

In a very similar way, also transformation schemes different from that discussed in
sec. 8.2.2 can easily be assembled within the same modular structure, including,
for example, computation of different or all integral family representatives, trans-
formation of bra and ket indices to different subspaces ofO ˚ V , etc. However,
none of these will be considered in any more detail at this point. Instead, this dis-
cussion is closed with the presentation of preliminary applications at 2-component
Møller–Plesset perturbation theory level in the next section.

8.3 Kramers-Restricted Møller–Plesset Perturbation The-
ory

Having the AS basis 4-index integralsgpqrs 2 �n transformed to the MS basis, it
is straightforward to evaluate the MP2 energy expression ofeq. 8-1.

Within the 2-component 4-index integral transformation scheme of sec. 8.2.2
that, for every integral familiy of eq.s 8-13, 8-14, 8-15, and 8-16, computes only
one representative,EMP2 is cast to a form involving only these representative in-
tegrals as follows:

Expanding the square modulus and using hermiticity and electron–electron
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symmetry of thegijab , one obtains

1

4

X

ijab

jgijab � gijbaj2

�i C �j � �a � �b
D 1

4

X

ijab

gijabgabij � gijabgabji
�i C �j � �a � �b

(8-17)

for unrestricted summations over all2N � tO occupied 2-spinor indicesi , j , and
all 2n � tV � 2N � tO . Defining the complex-valued MP2 “amplitudes”

Tijab ´ �ijab � g�
ijab ´

g�
ijab

�i C �j � �a � �b
; (8-18)

eq. 8-17 is written in terms of Kramers pairs of 2-spinors as

EMP2D 1
2

P

ijab.Tijab � Tijba/gijab C 1
2

P

ij Nab
.T
ij Nab
� T

ijb Na
/g
ij Nab

C 1
2

P

ija Nb
.T
ija Nb
� T
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/g
ija Nb
C 1

2

P
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� T

ij Nb Na
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ij Na Nb
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2

P

Ni Njab
.TNi Njab
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/gNi Njab
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2

P
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.TNi Nj Nab

� TNi Njb Na
/gNi Nj Nab

C 1
2

P

Ni Nja Nb
.TNi Nja Nb

� TNi Nj Nba
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C 1
2

P

Ni Nj Na Nb
.TNi Nj Na Nb
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C 1
2

P

Nijab
.TNijab

� TNijba
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C 1
2

P

Nij Nab
.TNij Nab

� TNijb Na
/gNij Nab

C 1
2

P

Nija Nb
.TNija Nb

� TNij Nba
/gNija Nb

C 1
2

P

Nij Na Nb
.TNij Na Nb

� TNij Nb Na
/gNij Na Nb

C 1
2

P

i Njab
.T
i Njab
� T

i Njba
/g
i Njab
C 1

2

P

i Nj Nab
.T
i Nj Nab
� T
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C 1

2
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i Nj Na Nb
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Then, from eq.s 8-4, 8-5, and 8-6, every of the16 terms can be expressed in terms
of integrals of the typesgijab , gija Na, gij Na Nb, andgi Nj Nab as collected in tab. 8.1; note
that the�ijab are identical for all combinations of barred and unbarred indices.

Technically, theQOL::SpinorTransform_MPPT namespace provides a_2c-
MPPTnEvaluator template class of argumentT that effectively evaluatesEMP2
via tab. 8.1, i.e., for all.i; j; a; b/ 2 O � O � V � V , adds all16 rows of the
second column of tab. 8.1. All the necessary information is provided to the single
constructor from four
onst LAPACK_BLAS_4IndexIntegralMatrix & argu-
ments, corresponding to the matrices with elementsgijab , gija Na, gij Na Nb, andgi Nj Nab;
a 
onst std::vector<typename T::value_type> & argument holding the
2-spinor energies�i ; and a
onst unsigned int &, corresponding to the num-
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Kramers-Restricted Møller–Plesset Perturbation Theory

Tab. 8.1: Re-writing the Kramers-restricted MP2 energy in terms of the representative integrals
computed within the 2-component 4-index integral transformation algorithm of sec. 8.2.2
The�-labeled contributions toEMP2 refer to integrals from different integral families.

Tijab D �ijab � g�
ijab D

g�
ijab

�i C �j � �a � �b

.Tijab � Tijba/gijab 7! �ijab .Cg
�
ijab � g

�
ijba/gijab

.Tij Nab � Tijb Na/gij Nab 7! �ijab .Cg
�
jib Na � g

�
ijb Na/gjib Na

.Tija Nb � Tij Nba/gija Nb 7! �ijab .Cg
�
ija Nb � g

�
jia Nb/gija Nb

.Tij Na Nb � Tij Nb Na/gij Na Nb 7! �ijab .Cg
�
ij Na Nb � g

�
ij Nb Na/gij Na Nb

.TNi Njab � TNi Njba/gNi Njab 7! �ijab .Cgij Na Nb � gij Nb Na/g
�
ij Na Nb

.TNi Nj Nab � TNi Njb Na/gNi Nj Nab 7! ��ijab .�gija Nb C gjia Nb/g
�
ija Nb

.TNi Nja Nb � TNi Nj Nba/gNi Nja Nb 7! ��ijab .�gjib Na C gijb Na/g
�
jib Na

.TNi Nj Na Nb � TNi Nj Nb Na/gNi Nj Na Nb 7! �ijab .Cgijab � gijba/g
�
ijab

.TNijab � TNijba/gNijab 7! ��ijab .�gbij Na C gaij Nb/g
�
bij Na

.TNij Nab � TNijb Na/gNij Nab 7! �ijab .Cgibaj � gi Nj Nba/g
�
ibaj �

.TNija Nb � TNij Nba/gNija Nb 7! �ijab .Cgi Nj Nab � giabj/g
�
i Nj Nab �

.TNij Na Nb � TNij Nb Na/gNij Na Nb 7! ��ijab .�g
�
abi Nj C g

�
bai Nj/gabi Nj

.Ti Njab � Ti Njba/gi Njab 7! ��ijab .�gaji Nb C gbji Na/g
�
aji Nb

.Ti Nj Nab � Ti Njb Na/gi Nj Nab 7! �ijab .Cg
�
i Nj Nab � g

�
iabj/gi Nj Nab �

.Ti Nja Nb � Ti Nj Nba/gi Nja Nb 7! �ijab .Cg
�
ibaj � g

�
i Nj Nba/gibaj �

.Ti Nj Na Nb � Ti Nj Nb Na/gi Nj Na Nb 7! ��ijab .�g
�
baj Ni C g

�
abi Nj/gbaj Ni

ber2N � tO of electrons.g

Tab. 8.2 presents equilibrium bond lengthsre, dissociation energiesDe, and har-

g Implementation of a member function as, e.g., “get_EMP2Contribution()”, for the LAPACK_-
BLAS_4IndexIntegralMatrix class is spoiled by the fact that, as indicated in tab. 8.1, some of
the contributions toEMP2 involve MS basis 4-index integrals from different families(if these are
defined according eq.s 8-13, 8-14, 8-15, and 8-16).
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8: 4-Index Integral Transformation and MP2

Tab. 8.2: Equilibrium distancesde, dissociation energiesDe, and harmonic frequencies!e for the
222
86Rn dimer,86Rn small-core MC-DHF PP and cc-pVTZ basis set.130 computed from

the interpolation polynomials of fig. 8.3.

de De !e

MP2,W D A, 8:6581 0:8421 � 10�3 5:0882 � 10�5

MP2,W D AC B, 8:4339 1:0551 � 10�3 5:9115 � 10�5

Pyykkö et al.,161 MP2 8:6265 1:2899 � 10�3 7:9280 � 10�5

Pyykkö et al.,161 CCSD(T) 8:7721 1:0106 � 10�3 6:7434 � 10�5
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Fig. 8.3: Difference�E of the Rn2 total MP2 energyEMP2 and the respective monomer energies as
a function of interatomic separationd , 86Rn small-core MC-DHF PP and cc-pVTZ basis
set.130 Plotted are pointwise computed�E values and smooth interpolation polynomials
fitted to the seven points near the minima.

monic frequencies!e calculated for the22286Rn dimer at the MP2 level of theory,h

using the small-core MC-DHF PP and cc-pVTZ basis of Petersonet al.,130 both
without and with the PP’s spin–orbit part. Clearly, spin–orbit effects are large and

h The underlying transformation to the 2-spinor basis has notbeen truncated, i.e. all 2-spinors have
been correlated.de,De, and!e have been calculated from interpolation polynomialsAC B.d �
de/

2 C C.d � de/
3 fitted to seven points near the�E minima of fig. 8.3. Precisely,DeD A and

!eD
p

2B=m, withm D 4:0470 � 105 a:u: for 22286Rn.162
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found to shortende by 0:2242a:u: or 11:9pm. Rn2 is bound by1:0551 � 10�3 a:u:
at the 2-component level, which is more stable by0:2130 � 10�3 a:u: or 5:80meV
(ca.25%, without BSSE correction) than compared to the spin-free,1-component
calculation scheme.

Direct comparison with the large-core spin-free PP MP2, CCSD, and CCSD(T)
calculations of Runeberg and Pyykkö161 that include SO-CISD corrections, is
difficult because of the different calculation schemes. However, whereas the ex-
ploratory results of this work should not be considered too conclusive, it cannot
be judged which values are more accurate because of, e.g., the rather restrictive 4-
index integral transformation truncation scheme employedfor the SO-CISD cor-
rections of Runeberg and Pyykkö.161
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Summary and Outlook

At the time of writing, i.e. in spring 2010, the research goals stated in sec. 4.2.1
have been accomplished: The Quantum Object Library’s 1-component spin-free
Hartree–Fock SCF parts have been modified and extended to a set of 1-component
spin-restricted all-electron and spin-free PP, and 2-component Kramers-restricted
spin–orbit PP HF SCF programs. All are compatible with, and integrated in, both
the established QOL structure and those parts subject of ongoing development.

The detailed discussions given in ch.s 5, 6, 7, and 8 are summarized as follows:

� Ch. 5: Matrix Algebra:
The QOL matrix and matrix representation algebra modules have been sup-
plemented by two class hierarchies corresponding to theHermitianMat-
rixRepresentationandHermitianTimeReversalInvariantMatrix-
Representation classes. The separation of basis functions’ domains and
UnitarySpace scalar product codomains introduced complex-valued alge-
bra on the matrix representation level, from basic arithmetic operations to
equation solving, without substantial changes to the established class inter-
faces.a The inheritance tree of theHermitianTimeReversalInvariant-

a The single relevant exception is that, now, a
onst UnitarySpace &-type argument has been
passed to the matrix representation class constructors from the need to decuple algebraic “repre-
sentation” and iteration-related “index” spaces, as discussed in sec. 5.2.1.
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MatrixRepresentation hierarchy includes an auxiliaryHermitianQua-
ternionMatrixRepresentation class for future interfaces to quaternion
algebra modules.

� Ch. 6: 2-Component Pseudopotentials:
PPs have been introduced in the “pseudo-atom” and “-molecule” framework
of sec. 6.1, i.e. assigning a (generally vanishing)SemilocalAtomicPseu-
dopotential to all Atom objects. No modifications of theAtom andMole-
cule class interfaces have been made; the all-electron use-caseis recov-
ered if no PP definitions are given. PP parameter organization in XML files
allows easy data communication and checks for syntactic andsemantic con-
sistency.
PP integrals over CGTO basis functions are computed using the interfaced
ARGOS PP integral subroutines31–35 of Pitzer et al. TheMcMDPseudopo-
tential_Evaluator class wraps ARGOS common block definition, sub-
routine calls, and integral retrieval from the C++ side. PP integrals are hand-
led quaternion-valued to allow evaluation and communication of spin-free
and spin–orbit contributions simultaneously, employing the QOL’s estab-
lished iterator–evaluator structure.

� Ch. 7: Self-Consistent 2-Spinor Fields:
The new functionalities have been combined to give rise to two parallel,
essentially analog, i.e. 1-component and 2-component HF SCF calculation
schemes. From the use-case point of view, both differ in rarely more than a
number of type definitions as, e.g.,double vs.std::complex<double>.
Top-level classes asTimeReversalInvariantRoothaanHall2cSCF_Ei-
genSystem encapsulate equation solving and eigenvector processing,i.e.:
Fock matrix diagonalization; eigenspace-wise Kramers-like orthogonaliza-
tion, unitary symplectic transformation, and re-phasing to enforce time re-
versal invariance; occupation number-to-eigenvector assignment; and den-
sity matrix assembly.
The SCF Optimal Damping Algorithm36,37has been adopted to the 2-com-
ponent setting and significantly improves, or actually enables, SCF conver-
gence. Initial guess density matrices constructed as direct sums of atomic
densities,38,156allowing fractional atomic occupation numbers, further im-
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prove SCF performance.

� Ch. 8: 4-Index Integral Transformation and MP2:
Transformation of 4-index integrals to the molecular 2-spinor basis has
been implemented similar to the4n5 algorithm,157 written as matrix–matrix
multiplications. A specialLAPACK_BLAS_4IndexIntegralMatrix class
has been provided, calling BLAS3 subroutines for efficient multiplication.
Auxiliary classes exploit the group structure of integral index permutations
to keep track of index mappings and ranges generally changing with every
transformation step. The provided class structure allows modular, intuitive
implementations of general and special-purpose transformation algorithms.
Exploratory 2-component MP2 calculations of the Rn2 potential curve on
the basis of a full 2-spinor space 4-index integral transformation, exploiting
time reversal-invariance, prove the principle.

Before turning to a critical discussion of points of principal and future interest, it
is noted that none of the issues addressed in this work – with the exception of the
4-index integral transformation to the Fockian eigenbasispresented in ch. 8 – is
performance-critical. A given HF SCF calculation’s demandof computational re-
sources, i.e. CPU time, is almost exclusively determined by4-index integral eval-
uation; the same is true for memory requirements if integral-conventional schemes
are considered.b

For example, the present ARGOS–QOL interface, including PPintegral evalu-
ation and communication from the QOL side, surely does not exploit the ARGOS
subroutines’ full capability. At the time, PP integrals arecalculated for every
distinct pair of primitive CGTOs separately. Contrasting,ARGOS allows evalua-
tion of PP integrals over all (symmetry-adapted and contracted) CGTO pairs that
arise from all combinations of Cartesian monomials generated from the CGTO
pair considered, in a single call. However, this is irrelevant for the overall perfor-
mance, and it is expected that the current implementation will remain unchanged
for the forseeable future. A re-implementation is more likely to be addressed from

b However, note that, particularly in the 2- and 4-component framework, Fock matrix diagonaliza-
tion has been observed to contribute significantly to the overall computational effort163,164 for
density fitting-driven integral-direct or -semi-direct HFor Kohn–Sham DFT SCF calculations.
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the point of view of the current limitations to PP integrals for CGTOs withl < 5
andl < 4 for the PP OA and OB parts, respectively.

Considering the actual SCF algorithm, two main points mightbe addressed in
the near future: First, for large systems, theF matrix diagonalization step can be-
come performance-relevant;163,165quaternion diagonalization techniques,111 ex-
ploiting time reversal symmetry of the problem, can speed upthis step by roughly
a factor of2,111c but it is expected that other, more critical issues will haveto be
addressed before. Second, combination of the SCF ODA with convergence accel-
eration methods as DIIS150 or, better, EDIIS36,151,152is a logical next step towards
improved SCF performance.

As already stated implicitly by the limited size of the exemplary calculations pre-
sented in ch.s 7 and 8, the most critical point from the point of view of the present
implementation is the QOL’s 4-index integral part.

At the moment, the QOL provides a naı̈ve, integral-conventional framework
only, and integrals are evaluated for every unique index combination separately;
although exploratory implementations exist, pre-screening does not pay off in this
setting. Clearly, this restricts the applicability of all QOL HF SCF programs both
in terms of requirement of CPU time and memory.

It is therefore of pivotal importance to re-work and re-implement the QOL in-
tegral and, consequently, iterator–evaluator modules more efficiently. Preliminary,
yet uncompleted experiments with code-generated modules in the Hanrath group
are promising, but the code is not operational at this time. Any implementation
of integral-direct SCF algorithms, relying on the code-generated modules, will
surely have to be done along the line with considerations of integral pre-screening
techniques and integral-directD matrix assemblyd – the latter having to be ad-

c Parallelization strategies will probably not pay off in theHF SCF framework, because, – as op-
posed to DFT – much of the value of a given HF SCF calculations comes from its nature as a
reference for post-HF methods, which are unlikely to be feasible if already the HF SCF calcula-
tion cannot be carried out serially.
Note that a diagonalization-free, trust region-based HF and Kohn–Sham DFT “Augmented Root-
haan–Hall” SCF algorithm has been proposed by Høst et al.155,166From its conceptual difference,
however, an implementation in terms of the established QOL HF SCF modules is not straightfor-
ward, but surely a valuable endavor.

d It cannot be finally judged here wether such implementation endavors are independent of (future)
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dressed at the 2-component level of theory because of spin component exchange
coupling.

Very similar considerations apply to the 4-index integral transformation to the
Fockian eigenbasis: The present implementation is limitedby significant memory
requirements and crosses the BLAS3 turnover point by far, and by far too fast
with increasing system size. It is, therefore, logical to turn to integral-direct trans-
formation techniques, i.e. to re-compute the integrals to be transfomed on the fly.
Any endavors in this field will surely profit from progress made with the efficient
re-implementation of the QOL’s integral and iterator–evaluator modules.

As already stressed in sec. 4.1, the importance of this particular work is directly
connected to the natural integration of the HF SCF (and, to some extent, the 4-
index integral transformation) modules in the larger-scope Quantum Objects Li-
brary structure. Clearly, the generalization to the relativistic, 2-component pseu-
dopotential framework, as done in this work mainly for the HFSCF modules, will
have to be considered also, and in fact primarily, for the other, larger QOL parts.

considerations of molecular double group symmetry or not. In any case, such symmetry consid-
erations would be both interesting and promising, particularly from the point of view of post-HF
methods.
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Schiffer, H.; Schindler, M.; Schüler, M.; Seth, M.; Stahlberg, E. A.; Zhao,
J.; Yabushita, S.; Zhang, Z.; Barbatti, M.; Matsika, S.; Schüürmann, M.;
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Acronyms and Abbreviations

The following acronyms and abbreviations are used throughout this work. Whereas
most are conventional and common in the context of relativistic quantum chem-
istry and computer science, some are not, such that a complete list is given.e

AS Atomic 2-Spinor
BSSE Basis Set Superposition Error
CC Coupled Cluster
CCSD Coupled Cluster with Single and Double excitations
CCSD(T) CCSD with non-iterative Triple excitation corrections
CGF Cartesian Gaussian Function
CGTO Cartesian Gaussian-Type Orbital
CI Configuration Interaction
CPT “Charge–Parity–Time”
DC Dirac–Coulomb
DCB Dirac–Coulomb–Breit
DHF Dirac–Hartree–Fock
DIIS Direct Inversion of the Iterative Subspace
DFT Density Functional Theory
EDIIS Energy-Direct Inversion of the Iterative Subspace
GPK Generalized Philips–Kleinman
GCHF Grand Canonical Hartree–Fock

e The chosen capitalization emphasizes the meaning of the respective acronym or abbreviation and
is, thus, neither systematic nor meant to be orthographically correct.
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GCKS Grand Canonical Kohn–Sham
GTO Gaussian-Type Orbital
HF Hartree–Fock
LARL(1) Lookahead-LR (parser with lookahead1)
MC- Multi-Configuration-
MFAD Molecule-From-Atoms Density
MP2 Møller–Plesset Perturbation Theory to Second Order
MS Molecular 2-Spionor
ODA Optimal Damping Algorithm
PP Pseudopotential
QED Quantum Electrodynamics
QOL “Quantum Objects Library”
SCF Self-Consistent Field
STL Standard Template Library
SO-CIDS Spin–Orbit Configuration Interaction Singles Doubles
UML Unified Modeling Language
XML Extended Markup Language
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zu Köln.
Dissertation: “Kramers-Restricted Self-Consistent
2-Spinor Fields for Heavy Element Chemistry”,
Betreuer: M. Dolg

152



Acknowledgments

� First of all, I wish to thank M. Dolg for his continuous, generous, and faith-
ful support in a large number of scientific, technical ,and personal questions.
Over the last years, he proved to be a great teacher and a caring supervisor
for me. It has always been a pleasure to work for him, and in hisgroup!

� I also thank M. Hanrath for his professional and patient helpwith technical
and theoretical issues, and his many lessons on C++ and computer science.
He had to repeat a lot of things more often than twice, but, as he knows, “es
ist nicht jedem gegeben.”

� U. Deiters is acknowledged, because he agreed to assess thiswork, and
because he helped and supported me a lot in during the application for post-
doctoral grants. Thank you!

� R. M. Pitzer of (formerly) Ohio State University is greatly acknowledged
for providing the ARGOS integral program source code and hiskind per-
mission to use it.

� In particular, I wish to thank both my office mates Anna Engels-Putzka and
Joachim Friedrich for their company, understanding, support, the numerous
discussions on mathematics, physics, and chemistry, and the fun. Both read
parts of the manuscript of this work and made important comments.

� All present and former members of Cologne’s theoretical chemistry group,
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