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Abstract

The impact of lattice vibrations on the electric conductivity has been considered a settled
issue since the proof of the Migdal theorem. The precondition for its validity is a higher
velocity of electronic than phononic excitation modes. In some new materials, e. g. weakly
coupled spin chains and heavy fermion systems, this precondition is not fulfilled. The heat
conductivity of such systems is calculated by means of perturbation theory in this work.

Another subject is the interplay of Umklapp scattering and weak disorder in spin chains
and one-dimensional correlated metals. Hidden conservation laws lead to a strong coupling
between heat current and charge or spin current, respectively. The transport properties are
calculated perturbatively within the hydrodynamic memory matrix formalism, which gives a
lower bound to the conductivies. To calculate the Lorenz number of one-dimensional metals,
we model within this formalism also the influence of phonons, which in physical systems
contribute substantially to the heat current.

The introduction of ultracold quantum gases in optical lattices in the recent years provides
a powerful tool for the modeling of many systems to solid state physics, in particular systems
out of equilibrium. The relatively slow dynamics of the cold atoms allows for time resolved
imaging of the atoms and thus opens up new perspectives.

In the last part of this thesis, a recent experiment, which measures the expansion of a
correlated atom cloud in an optical lattice, is compared to a lattice Boltzmann simulation.
Depending on the local density, the problem is shown to be described by the crossover from
diffusive to ballistic transport.





Kurzzusammenfassung

Der Einfluss von Gitterschwingungen auf die elektrische Leitfähigkeit wurde bisher innerhalb
des Migdaltheorems als abschließend behandelt betrachtet. Die Voraussetzung für dessen
Gültigkeit ist eine, im Vergleich zu den elektronischen Anregungen, langsame Geschwindigkeit
der Vibrationsmoden. Für einige neue Materialien, wie Spinketten mit schwacher Kopplung
und Schwer-Fermionen-Systemen, ist diese Voraussetzung nicht erfüllt. Die Wärmeleit-
fähigkeit solcher Systeme wird in dieser Arbeit mittels Störungstheorie berechnet.

Ein weiteres Thema ist das Wechselspiel von Umklapp-Streuung und schwacher Unord-
nung in Spinketten und eindimensionalen Metallen. Versteckte Erhaltungssätze führen zu
starken Kopplungen zwischen Ladungs- oder Spinstrom und Wärmestrom. Anhand des hy-
drodynamischen Memory-Matrix-Formalismus werden die Transporteigenschaften perturbativ
berechnet. Die erzielten Leitfähigkeiten sind eine exakte untere Schranke der tatsächlichen
Leitfähigkeiten. Für die Berechnung der Lorenzzahl eindimensionaler Metalle wird innerhalb
dieses Formalism auch der Einfluss von Phonon modelliert, die im physikalischen System
wesentlich zum Wärmestrom beitragen.

Mit der Möglichkeit mittels ultrakalter Quantengasen in optischen Gittern wechselwirk-
ende Systeme zu simulieren, hat die Festkörperphysik in den letzten Jahren ein wertvolles
Instrument zur Untersuchung von vielen Modellen, insbesondere von Systemen außerhalb
des Gleichgewichts, gewonnen.

Die vergleichsweise langsame Dynamik der kalten Atome erlaubt eine zeitaufgelöste Ab-
bildung der Atome und eröffnet so neue Fragestellungen.

Im letzten Teil dieser Dissertation wird die experimentelle Messung der Expansion einer
wechselwirkenden Atomwolke in einem optischen Gitter mit einer Gitter-Boltzmann Simula-
tion des Problem verglichen. Die Expansion wird, abhängig von der lokalen Teilchendichte,
durch diffusiven oder ballistischen Transport beschrieben.
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Introduction

The technological importance of transport in solids can hardly be overestimated. Electrical,
but also thermal conduction plays a huge role in any modern electronic device. Macroscop-
ically, these phenomena are governed by relatively simple equations which relate the charge
and thermal currents to an external voltage and temperature gradient, respectively. The
involved proportionality constants are material properties.

However, the microscopic derivation of these material constants is incredibly complex.
Since charge and thermal transport often are mediated by the same excitations, they are
intrinsically coupled. This gives rise to the well-known issue of thermoelectric effects, which
gained their own technological relevance with the applications of thermoelectric cooling and
thermoelectric power generation.

In the recent years, low dimensional system became increasingly important in technical
applications of transport properties, on the one hand due to the ongoing miniaturization of
circuitry, which confines conducting paths in, for example, processors already on nano-scales,
on the other hand some materials with embedded quasi-one-dimensional conductors provide
high-end efficiencies for thermoelectrics.

Heat can be transmitted by any propagating excitations of a system, in metals e. g.
electronic excitations and lattice vibrations. The interaction between different heat current
carrying modes is dispersing the heat current within one subsystem, but that does not nec-
essarily mean dissipation. Momentum that is transferred from one subsystem to the other
typically in the next scattering process is transferred back into the original system, an effect
called backflow. Due to this effect, scattering processes between different modes must be
investigated carefully, in particular with respect to conserved quantities.

Furthermore, interaction effects become central, since systems of free carriers, which are
often starting points for the calculation of equilibrium properties of solids, show a diverging
response to an external force or temperature gradient. The reason is the lack of a scat-
tering mechanism, which could disperse the respective current, or more generally speaking,
conservation laws of the system.

Consequently, the common scheme of interaction as a weak perturbation to the free
system can not be applied to transport quantities in a straight-forward way. This reveals the
dilemma of transport theory, since in solid state physics, exact calculations usually are only
possible for simplified models, which are supposed to still contain the relevant physics. In the
special case of transport properties, exactly the simplifications that usually make a problem
feasible cause diverging transport coefficients. On the other hand, numerical simulations of
microscopic transport are also very difficult, since a time-dependent inhomogeneous system
must be modeled. In particular, extracting the transport coefficient from data for the time-
dependence of the current can be very difficult.

Already in the sixties of the past century, with the hydrodynamic memory matrix formal-
ism, a theory has been established, which allows to compute lower bounds of conductivities
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in systems close to integrability, i. e. integrable systems plus a weak perturbation that breaks
the integrability. The currents are supposed to be carried dominantly by that modes of the
system, which are scattered the weakest, referred to as slow modes. Usually, they can be
identified as conserved quantities of the integrable system, that are scattered by the per-
turbations. Within this approach, the leading order conductivities are obtained from certain
correlation functions calculated with the integrable system only.

In low-dimensional systems, this achieves a particular importance, since many interacting
one-dimensional systems, like the Heisenberg model with nearest neighbor coupling, are inte-
grable, and correlation functions can be calculated exactly, for instance within the bosoniza-
tion formalism.

This allows to treat the effect of a wide range of interactions to transport properties of
one-dimensional systems which exhibit the Luttinger liquid fixed point as a low energy theory.

In this work, a couple of problems of transport theory in low dimensions are investigated,
with special focus on the impact of conservation laws.

The thesis is organized as follows: In the first chapter, the foundations of transport theory
are introduced, and the basic methods, starting from the Boltzmann equation, relaxation
time approximation, and the variational principle of transport theory, over linear response
theory and the Green-Kubo relations for thermal conductivities, and finally the hydrodynamic
memory matrix formalism.

The second chapter deals with the problem of phonons scattered off slow fermions, which
can be either the excitations of weakly coupled spin chains in Jordan-Wigner representation,
i. e. one-dimensional fermions, or three-dimensional slow fermions, as occur in the recently
discovered heavy-fermion materials. The lifetime of the phonons due to fermion-phonon
interaction is calculated by perturbation theory, which must go beyond the Migdal theorem
because the lowest order scattering is forbidden by energy and momentum conservation.
From the lifetime, the heat conductivity is deduced within the relaxation time approximation
to the Boltzmann equation.

In the next chapter, thermoelectric effects in one-dimensional systems are investigated.
The heat conductivity of the antiferromagnetic Heisenberg spin chain model with Umklapp
scattering and weak Gaussian disorder is calculated by means of the memory matrix for-
malism. The interplay of disorder and Umklapp scattering leads to a suppression of the
magnetic heat conductivity at finite magnetic fields, due to a hidden conservation law of the
Umklapp scattering Hamiltonian. The used method accounts for the conservation law and
gives an exact lower bound to the heat conductivity. A comparison to recent experiments on
the magnetic heat conductivity of the spin chain compound copperpyrazinedinitrate shows
qualitative agreement.

In one-dimensional metals, the Umklapp scattering has a similar conservation law, which
acts different on charge and heat currents. Again by means of the memory matrix formalism,
the charge and heat conductivity are calculated for a system of a weakly disordered correlated
metal with Umklapp scattering. We derive a huge enhancement of the Lorenz number at
commensurate filling and a strong suppression at finite doping. The large thermoelectric
effects make one-dimensional conductors with Umklapp scattering interesting systems for
thermoelectric cooling, as can be seen from the thermoelectric figure of merit, which is also
calculated. To model a physical system, additionally coupling to lattice vibrations is included
and the influence of the phonons to the Lorenz number investigated.

The last chapter describes a recent experiment with ultracold atoms, that expand in an
optical lattice after the release from a trap. The setting is a realization of the Hubbard
model with inhomogeneous starting condition. We set up a lattice Boltzmann simulation
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with transport coefficients obtained from a microscopic calculation. In agreement to the
experiment, we find a crossover from diffusive to ballistic expansion.
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1 General Transport Theory

Thinking about transport, the first thing coming into our minds might be electrical conduc-
tivity, which, on a macroscopical level, is usually given by Ohm’s Law. The next candidate
would be heat transport which obeys Fourier’s Law. The deciding common feature of these
phenomena is that both are constituted by currents of conserved quantities, electric charge
in the former case, energy in the latter. Generally, for any locally conserved quantity with a
density ρ (x) a continuity equation

∂tρ (x) +∇j (x) = 0 (1.1)

holds, where j (x) is the corresponding current. Crudely speaking, this means that the only
way the density in a region can be altered is via a current through its boundary.

Clearly in thermal equilibrium there can not be any currents1. Currents can, for instance,
be induced by an symmetry breaking external field or by preparing the system in a non-
equilibrium state. Both possibilities are considered in this thesis.

The purpose of transport theory is to deduce the principles for the behavior of currents
from the microscopic properties of a system. Addressing correlated systems as they are
common in condensed matter physics within their full complexity, this surely is a demanding
task. The theory of Linear Response reduces this in some cases to a solveable problem.
By stating that, for small perturbations, out of equilibrium properties are determined by
correlation functions in equilibrium.

A very general Ansatz with less restrictions is provided by Boltzmann Theory, which on
the other hand leaves the (generally not solvable) problem of calculating the scattering term,
and hence needs more approximations there. Both methods are used in this work and are
introduced in the present chapter.

1.1 Boltzmann Equation

The introduction to Boltzmann theory follows [1] and can be found in more details there.
Consider a quantum system with some kind of carriers, which can be e. g. electrons, phonons
or quasiparticles, whose eigensystem has quantum numbers k . Out of equilibrium, the eigen-
states are populated according to a distribution function f (k , r , t). The Boltzmann equation
describes the evolution in time of this distribution function by the means of a semi-classical
equation of motion.

Without collisions, the time evolution is determined by

d

dt
f (k , r) =

∂f

∂t
+
∂f

∂k

∂k

∂t
+
∂f

∂r

∂r

∂t
, (1.2)

1the occurrence of persistent currents and equilibrium is subtle and shall not be addressed here



1.1. BOLTZMANN EQUATION

where ∂k
∂t = F is an external force and ∂r

∂t = vk = ∂εk
∂k is the group velocity of a quantum

mechanical (quasi) particle with dispersion εk . The last two terms on the right hand side of
equation (1.2) describe the motion of a particle due to external fields and diffusion. Together
they are called the drift-term d/(dt)fk |drift of the Boltzmann equation.

Scattering processes modify the distribution function. Assuming elastic scattering only,
starting from an occupied state |k〉, the probability, that the particle is scattered out of this
state, is the probability density Pkk ′ of the transition into another state |k ′〉 integrated over
all possible |k ′〉.

The scattering probability Pkk ′dk ′ depends on the occupation fk of the state |k〉 scattered
from, and for fermions of the free phase space (1− fk ′) of the states |k ′〉 scattered into, and
the bare transition amplitude Zkk ′ , i. e. the overlap of the states, as

Pkk ′dk ′ = fk (1− fk ′)Zkk ′dk ′. (1.3)

For the total change of fk one has to account for all particles scattered out of and into
the state |k〉, leading to

dfk
dt

∣∣∣∣
sc

=

∫
dk ′ (fk ′ (1− fk)− fk (1− fk ′))Zkk ′ (1.4)

Combining the two equations gives a nonlinear integrodifferential equation for the distri-
bution function,

∂fk
∂t

+ F
∂fk
∂k

+ v
∂fk
∂r

=

∫
dk ′ (fk ′ (1− fk)− fk (1− fk ′))Zkk ′ , (1.5)

referred to as the Boltzmann equation, in its version for fermionic carriers. It is totally clear
that finding a solution of this equation in almost all cases must be beyond feasibility. Hence,
approximations must be made. A very common simplification is the linearization for small
deviations from equilibrium, i. e. fk = f 0

k +δfk . Here f 0
k is the equilibrium distribution function,

which in case of fermionic particles is the Fermi-Dirac function f FDk = 1/(exp(β(εk−µ))+1),
with β = 1/(kBT ) the inverse temperature and µ the chemical potential.

For the linearized Boltzmann equation, only terms to leading order in δfk are retained.
In the force term, the leading order contribution already comes from f 0

k , which depends
on k only through the dispersion εk . The second term contains the spatial variations of
the distribution function, which for f 0

k requires the notion of local equilibrium with local
temperature and chemical potential. Here again the leading contribution comes from the
equilibrium part of the distribution function. Together one obtains

∂fk
∂t

∣∣∣∣
drift

≈ vF
∂f 0
k

∂εk
+ v

(
∂f 0
k

∂T
∇T +

∂f 0
k

∂µ
∇µ
)

(1.6)

for the drift part.
Apparently, an electric force on charged particles can equivalently be included as either

an external force or a gradient of chemical potential, so only one of the two possibilities has
to be taken into account.

The scattering integral readily simplifies to

∂fk
∂t

∣∣∣∣
sc

≈
∫

dk ′ (δfk − δfk ′)Zkk ′ , (1.7)

by using that for elastic scattering processes f 0
k = f 0

k ′ , since the equilibrium distribution
function depends only on the energy εk , which in such processes is conserved. Inserting the

6



CHAPTER 1. GENERAL TRANSPORT THEORY

linearized expressions for drift and scattering into (1.5), one obtains the linearized Boltzmann
equation:

∂fk
∂t

+ vF
∂f 0
k

∂εk
+ v

(
∂f 0
k

∂T
∇T +

∂f 0
k

∂µ
∇µ
)

= −
∫

dk ′ (δfk − δfk ′)Zkk ′ , (1.8)

which is a linear integrodifferential equation for the deviation δfk from the equilibrium dis-
tribution function. While above only elastic scattering is discussed, for inelastic scattering
a similar equation is obtained, with modified transition rates Zkk ′ . However, there is still
the task of calculating the transition probabilities Zkk ′ . An obvious idea would be to use
Fermi’s golden rule for the transition rate but, already for systems with moderate number of
dimensions, the momentum integrations became unfeasible.

One frequently used method to treat this problem is the relaxation time approximation,
which states the form

dfk
dt

∣∣∣∣
sc

=
δfk
τk

(1.9)

for the scattering term, where τk is called the scattering rate. The latter usually comes from
a microscopic calculation or heuristic argumentation.

Another common way to find out an approximate solution is given by the variational prin-
ciple for the Boltzmann equation, which will be explained after the introduction of transport
coefficients in the next section.

1.2 Connection to Macroscopic Transport Coefficients

The Boltzmann equation and its derivatives introduced here are about distribution functions
and their dependence on external perturbations. In typical experiments currents and fields
can be measured directly. Naturally, one wants to deduce predictions from transport the-
ories which can be tested by such an experiment. Thus, ultimately one has to calculate
transport coefficients, which connect the experimentally accessible currents and fields, so
the connection between the latter and distribution functions has to be made.

For this purpose, we need a theoretical definition of particle and heat current, which foots
on the continuity equations, equation (1.1). With the polarization operator

P =

∫
dr rρ(r), (1.10)

where ρ is the particle density, and its analogue for the heat current,

Rε =
1

2

∫
dr (rH(r) +H(r)r) , (1.11)

where H(r) is the local Hamiltonian density of the studied system, one can deduce by inte-
grating by parts and using the continuity equation, that the particle current is

J = ∂tP = i [H,P ] (1.12)

and the heat current
Jε = ∂tRε = i [Rε, H] , (1.13)

7



1.2. CONNECTION TO MACROSCOPIC TRANSPORT COEFFICIENTS

see [2]. In many cases, for the particle current only the kinetic part of the Hamiltonian con-
tributes, since the polarization operator commutes with the density operator, which appears
in most interactions. In momentum space representation, the particle current thus reads

J =
∑
k

vkρ(k), (1.14)

where the velocity vk = ∂kε(k) is the momentum derivative of the dispersion.
The operator Rε generically does not commute with any parts of the Hamiltonian, and

contributions to the heat current arise from every interaction. For a lattice model, one writes
Rε in terms of the site Hamiltonian hi and the positions Ri ,

Rε =
∑
i

Rihi , (1.15)

where the sum over all hi gives the Hamiltonian. The heat current then is

Jε = i
∑
l ,m

Rl [hm, hl ] (1.16)

For a free particle system, this evaluates to

Jε =
∑
k

vkεkc
†
kck , (1.17)

modulo potential spin sums. Contributions to the heat current from interactions are typ-
ically very specific and will not be discussed here. In many applications, the interaction
contributions are neglected, in particular for perturbative calculations in the interactions.

From the expressions (1.14) and (1.17), the connection to the Boltzmann formalism is
quiet obvious. The current of the respective carriers can be obtained from the distribution
function with

J =

∫
dkvk fk =

∫
dkvkδfk (1.18)

and the related flux of energy is given by

Jε =

∫
dkεkvk fk =

∫
dkεkvkδfk . (1.19)

The second equalities hold because in an equilibrated system there are neither particle nor
energy currents.

From the structure of the linearized Boltzmann equation one can deduce that particle
and thermal currents must be linear functions of the external fields F and ∇T , i. e.(

J

Jε

)
=

(
LFF LFT
LTF LTT

)(
F

1
T∇T

)
(1.20)

By definition, the particle current J = σF must be measured at constant uniform temperature
in a finite field. So the conductivity σ is identical to the coefficient LFF . The latter is obtained
within the relaxation time approximation by inserting equation (1.8) with ∇T = 0 into the
definition of the current, yielding

J =

∫
dkv2

k

∂f 0
k

∂εk
τkF (1.21)

8



CHAPTER 1. GENERAL TRANSPORT THEORY

from which one can directly read of the conductivity.
For the heat current Jε = −κ∇T the situation is more complicated since a heat cur-

rent is always accompanied by a particle current. This gives rise to thermoelectric effects.
Experimentally a heat conductivity measurement is defined for a system which is insulated
against particle current. Setting J = 0 in equation (1.20) creates automatically a counter-
force F = −LFT /(TLFF )∇T to the temperature gradient. So the heat conductivity κ is not
simply −LTT /T but

κ = −
1

T

(
LTT −

LTFLFT
LFF

)
. (1.22)

Inserting equation (1.8) into the definition of the thermal current, one obtains, again within
relaxation time approximation

Jε =

∫
dkv2

k εk
∂f 0
k

∂εk
τkF −

∫
dkv2

k εk
∂f 0
k

∂T
τk∇T. (1.23)

Comparison of the coefficients allows us to identify the first integral with LTF and the second
one with κ = −LTT /T . Yet one coefficient, namely LFT , remains undetermined. Fortunately
there are general relations for this kind of problem called Onsager relations that relate the
off-diagonal elements of the matrix. For the used choice of generalized force2 1/T∇T
associated with the generalized current Jε, the matrix of transport coefficients is symmetric,

LFT = LTF . (1.24)

This relation shall not be proven here, the proof can be found, e. g. in [3].
In conclusion, the relaxation time approximation provides a straightforward recipe to

calculate conductivities, once the relaxation time τk is known.

1.3 The Variational Principle of Transport Theory

The task of finding the solution of a linear inhomogeneous integral equation with a positive
definite kernel such as the linearized Boltzmann equation is a typical problem of applied
mathematics. Such equations are related to the variation of a certain integral. It is well
known that the solution can be formally constructed by applying a variational principle to a
general trial function. For this approach it is convenient to rewrite the Boltzmann equation
in a canonical form in terms of a new function φk , defined by

fk = f 0
k − φk

∂f 0
k

∂εk
, (1.25)

which is a measure of the deviation from equilibrium, namely the average extra energy that
the particles carry due to transport processes. By defining the scattering operator P̂ as a
momentum integration over the transition probability kernel,

P̂(...) =

∫
dk ′(...) Pkk ′ , (1.26)

the right hand side of the Boltzmann equation (1.8) can be written as P̂φk/kBT . Similarly,
X is defined such that X/(kBT ) matches the left hand side, giving an alternative formulation
of the Boltzmann equation

X = P̂φk (1.27)
2the choice of the generalized force corresponding to a current is not unique, see [2]

9



1.3. THE VARIATIONAL PRINCIPLE OF TRANSPORT THEORY

in terms of the newly introduced operators.
Taking the inner product, defined by

〈φ,ψ〉 =

∫
dkφkψk , (1.28)

of equation (1.27) and the trial function φk , the canonical form of the integral equation,

〈φ,X〉 =
〈
φ, P̂φ

〉
(1.29)

is obtained. It can be proven by elementary algebra that the solution φk of this integral
equation gives the minimal value to the functional〈

φ, P̂φ
〉

〈φ,X〉2
, (1.30)

as shown e. g. in [1]. However, the mathematical formulation of the problem does not
give much insight into the underlying physics, which becomes clearer from a thermodynamic
formulation of this variational principle.

The relevant physical quantity one has to look at is the entropy, which is generalized to
non-equilibrium with the Shannon-entropy, defined as

S = −kB
∫

dk (fk ln fk + (1− fk) ln(1− fk)) . (1.31)

Differentiating this expression with respect to time one obtains, to leading order in φk , the
rate of entropy production

Ṡ ≈ −
1

T

∫
dkφk ḟk +

1

T

∫
dkEk ḟk . (1.32)

The second term vanishes for systems with conserved energy. The remaining term can
be transformed to a function of the integrals 〈φ,X〉 and

〈
φ, P̂φ

〉
, which constitute the

mathematical form of the variational principle, equation (1.30), by inserting the Boltzmann
equation (1.5) expressed in terms of the new functions φk , namely

ḟ sc
k =

1

kBT

∫
dk ′(φk − φk ′)Pkk ′ =

1

kBT
P̂φ. (1.33)

One obtains for the scattering part of the entropy production the positive definite expression

Ṡsc =
1

2kBT

∫∫
dkdk ′(φk − φk ′)2Pkk ′ = −

1

T

〈
φ, P̂φ

〉
, (1.34)

which implicitly proves Boltzmann’s H-theorem3 for an assembly of fermions. On the other
hand, the drift part of the entropy production rate can be deduced from equation (1.32) by
applying the canonical form, equation (1.29), of the Boltzmann equation, giving

Ṡdrift =
1

T
〈φ,X〉 , (1.35)

3which states that the entropy of an assembly increases irreversibly, despite reversible microscopic dynam-
ics, originally proven by Boltzmann for the ideal gas, [4].
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CHAPTER 1. GENERAL TRANSPORT THEORY

which can be evaluated to be minus the macroscopic rate of entropy production,

Ṡdrift = −∇
(

1

T
Jε

)
−

1

T
JF = −Ṡmacro. (1.36)

In total, the rate of entropy production is a function of the variational integrals
〈
φ, P̂φ

〉
and

〈φ, x〉, and thus must become extremal.
In summary, the variational principle states that in the steady state the currents are such

that the production of entropy takes the maximal value. This of course is totally equivalent
to the mathematical formulation in equation (1.30).

Practically, conductivities can be calculated from this principle. For example in a system
with a finite force and no thermal gradient, the macroscopic entropy production is Ṡmacro =

FJ/T = J2/σT . In the steady state, Ṡmacro must be equal to the entropy production due
to scattering Ṡsc, thus the equation can be solved for the conductivity, giving

σ =
J2

T Ṡsc
= −

(∫
dkvkφk

∂f 0
k

∂εk

)2

〈
φ, P̂φ

〉 , (1.37)

where the current has been expressed in φk . According to the variational principle, the
conductivity thus must be extremal for the solution. Therefor, the minimization of the
entropy production rate Ṡsc for a fixed current J is equivalent to solving the Boltzmann
equation.

Inserting any trial function gives a lower bound to the physical conductivity. As an
approximation one typically chooses a linear combination of standard functions weighted
by variational parameters and performs the optimization numerically or, in simple cases,
algebraically.

If the trial functions are well-chosen, the result will be close to the real solution, but a
good choice requires some insight into the underlying mechanisms, since their is no general
rule of which functions the variational trial function should be composed.

1.4 Theory of Linear Response

The idea of linear response theory is to split the Hamiltonian into two parts, where for the
first one the eigensystem is known and the second one acts as a small perturbation to it such
that one can use time-dependent perturbation theory4.

For the expectation value of any current operator ĵ(r , t) the Kubo formula

δ
〈̂
jα(r , t)

〉
= −i

t∫
−∞

dt ′
〈[̂
jα (r , t) , H′

(
t ′
)]〉

(1.38)

gives the response to the external perturbation H′(t ′) where the brackets stand for thermal
average in the Matsubara formalism. In the case of electrical current in a solid responding
to an external electric field, expressed by the vector potential A, the perturbation can be
written as

H′ (t) = −
1

c

∑
α

∫
dr ĵα(r)Aα(r , t), (1.39)

4the framework of manybody perturbation theory is reviewed for example in [2]

11



1.4. THEORY OF LINEAR RESPONSE

where the electrical field E = c∂tA is expressed in terms of the vector potential A. This
leads to a separable form of equation (1.38)

δ
〈̂
jα(r , t)

〉
=

1

cV

∑
β

t∫
−∞

dt ′
∫

dr ′
〈[̂
jα (r , t) , ĵβ

(
r ′, t ′

)]〉
Aβ(r ′, t ′). (1.40)

The time integral depends only on the difference t − t ′. This result can be simplified further
by using translational invariance to give the relation as function of the momentum. From
that, the matrix which connects the current ĵ with the external field E is obtained as

σαβ (q, ω) =
1

ωV

∞∫
0

dte iωt
〈[̂
jα (−q, t) , ĵβ (q, 0)

]〉
+ i

n0e
2

mω
δαβ, (1.41)

which gives the conductivity in terms of correlation functions. The latter depend only on
properties of the system and not on the perturbation. The second term in equation (1.41)
is called the diamagnetic or static conductivity. The derived expression for σαβ contains the
Fourier transform of the retarded current-current correlation function, defined as

Παβ
(
q, t − t ′

)
= −

i

V
θ
(
t − t ′

) 〈[̂
jα (−q, t) , ĵβ (q, 0)

]〉
(1.42)

The thermal average can be carried out by doing an integral over Matsubara frequencies in
complex time plane. The equivalent Matsubara current-current correlation function is

Παβ (q, iωn) = −
1

V

β∫
0

dτe iωnτ
〈
Tτ ĵα (−q, τ) ĵβ (q, 0)

〉
, (1.43)

where Tτ denotes time-ordering and β inverse temperature. Using analytic continuation,
from equations (1.41) and (1.42) it can be easily seen that

σαβ (q, ω) =
i

ω

(
lim
δ→0

Παβ (q, ω + iδ) +
n0e

2

m
δαβ

)
. (1.44)

To obtain the dc conductivity one has to take the limits q → 0 and subsequently ω → 0.
Since for a static electric field there is no absorption, the conductivity must be real, which
implies that the diamagnetic term does not contribute. One concludes

σdc = Re

[
lim
ω→0

σαβ (0, ω)

]
= lim
ω→0

(
1

ω
lim
δ→0

Im
[
Παβ (0, ω + iδ)

])
, (1.45)

which gives a straightforward recipe to calculate conductivities from microscopic correlation
functions. Alternatively, one can write this result as

Re
[
σαβ

]
=

1

V
lim
δ→0

∞∫
0

dte−δt
β∫

0

dλ
〈̂
jβ(−t − iλ)̂jα(0)

〉
, (1.46)

which is completely equivalent, and it will be useful in the subsequent introduction of an
hydrodynamic approach.
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In the same fashion the linear transport coefficient L between any thermodynamical flux
Jl and its conjugate thermodynamic force Fi can be obtained from the auto-correlation
function of the current by

Ll i = −
1

β
lim
δ→0

∞∫
0

dte−δt
β∫

0

dλ
〈
J lα(−t − iλ)J iβ

〉
, (1.47)

which is called the Green-Kubo relation [5, 6].
The limitations of this approach are obvious because one still has to calculate correlation

functions, which, in most cases, can only be done by means of perturbative approximations.

1.5 Conservation Laws: Hydrodynamic Approach

The calculation of the needed correlation functions for conductivities in linear response for
a correlated system is again a non-trivial problem. Particularly, there is one major complica-
tion, which lies in the principles of perturbation theory. The standard method to calculate
correlation functions in correlated systems is to split the Hamilton operator into two parts,
the free part Ĥ0, for which the eigensystem is known, and the interacting part Ĥint, which
is regarded as a weak perturbation to Ĥ0.

In the case of the needed current-current correlation function, often the current J happens
to be a conserved quantity of the free Hamiltonian Ĥ0, which implies a vanishing scattering
rate τ−1

k and infinite conductivity σ. Naturally, for the interacting part, which contains
the scattering mechanism, the relaxation time becomes finite and so does the conductivity.
Apparently, a perturbative expansion in powers of the scattering operator must be highly
singular. This means that the perturbation theory must be set up in a cleverer way, i. e.
to do perturbation theory in the inverse coupling constant 1/g of the scattering process.
This leads to the Memory Matrix formalism introduced by Mori [7] and Zwanzig [8], and
introduced to solid state applications in [9].

In this section, the derivation of Memory Matrix formalism shall be reviewed, following
the textbook of Forster5 [10]. The basic idea is that in a system with conservation laws
which are weakly violated by a perturbation, the main contribution to the current comes
from the hydrodynamic modes with the slowest decay rate. By means of the projection
operator technique the relevant part of the problem is separated. For this, the current must
be reformulated as series of modes, which form a Hilbert space with the scalar product

(A|B) =
1

V

β∫
0

dτ
〈
A†(0)B(iτ)

〉
− β

〈
A†
〉
〈B〉 . (1.48)

The second term can always be absorbed by a redefinition of A as A − 〈A〉. The operators
A, B are regarded as vectors of the Hilbert space and their time dependence is generated by
the Liouville operator L . = [H, . ] with

|A(t)) =
∣∣e iHtAe−iHt) = e iL |A) (1.49)

5Note that for convenience all definitions of correlation functions deviate slightly from [10] by a factor of
β
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In this language, the Kubo-expression for the conductivity reads

σ =

∞∫
0

dte iωt (j(t)|j) , (1.50)

where the Laplace transform can be carried out to give

σ =

(
j

∣∣∣∣ i

ω − L

∣∣∣∣ j) . (1.51)

Note that this expression is totally equivalent to the linear response Kubo formula, equation
(1.38), including the diamagnetic term, which can be seen by changing to the Lehmann
representation.

The Hilbert space spanned by all modes of the system can be decomposed into one
subspace which is spanned by modes with short scattering times and one subspace which
contains modes that would be protected by conservation laws in the unperturbed system.
Without the perturbation, the latter would have infinite scattering times, which are rendered
finite, but still large by the perturbation. In the hydrodynamic regime, these slowly decaying,
or shorter, slow modes of the system carry most of the current. To proceed, one defines
projection operators P and Q onto the subspace spanned by slow modes respectively by all
other modes. For a set {J1, ..., JN} of slow modes the projection operator P can be written
as

P =

N∑
i ,j=1

|Ji)
1(
Ji |Jj

) (Jj ∣∣ , (1.52)

where the denominator is the i , j element of the matrix of static susceptibilities

χi ,j =
(
Ji |Jj

)
, (1.53)

related to the according equal time correlation function.
In such a system with N slow modes, the physical current can be written as a series of

modes
|j) =

∑
i

1

(Ji |Ji)
(Ji |j) |Ji) , (1.54)

with the index i running over all modes. The physical conductivity σ then mainly depends on
all Ji -Jj correlation functions, but as it will be seen later on, only the slow mode conductivities
must be retained. They are organized as the matrix of conductivities

σi ,j =

(
Ji

∣∣∣∣ i

ω − L

∣∣∣∣ Jj) . (1.55)

Applying the truncation in slow and fast subspaces on the Liouville operator L = LP +LQ,
one can evaluate the current-current correlation function further, as(

j

∣∣∣∣ i

ω − L

∣∣∣∣ j) =

(
j

∣∣∣∣ i

ω − LQ

∣∣∣∣ j)+

(
j

∣∣∣∣ 1

ω + LQLP
i

ω − L

∣∣∣∣ j) , (1.56)

where the algebraic operator identity

1

X + Y
=

1

X
−

1

X
Y

1

X + Y
(1.57)
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CHAPTER 1. GENERAL TRANSPORT THEORY

has been applied. In the first term of equation (1.56) the i/(ω − LQ) can be expanded
in a Taylor series in L. It can be easily seen that only the zero-order term of this series
can contribute, since every higher order term contains a projector Q onto the fast decaying
modes on the right side, which kills its contribution.

Inserting the definition of P into the second term, one obtains after some simple algebra(
j

∣∣∣∣ 1

ω + LQLP
i

ω − L

∣∣∣∣ j) =

(
j

∣∣∣∣ 1

ω + LQL
∣∣∣∣ j)(j ∣∣∣∣ i

ω − L

∣∣∣∣ j)χ−1. (1.58)

Resinserting this into equation (1.56), the equation can be solved for (j(t)|j), giving the
matrix expression

σi ,j = χi ,j (−i(ωχ+ L) +M)−1
i ,j χi ,j (1.59)

for the conductivity, where the matrix L = (j |L| j) is independent of frequency and will be
neglected later on, and

Mi ,j =

(
Ji

∣∣∣∣LQ i

ω − LQQL
∣∣∣∣ Jj) =

(
∂tJi

∣∣∣∣Q i

ω − LQQ
∣∣∣∣ ∂tJj) (1.60)

are the elements of the memory matrix. The physical conductivity σ can be obtained from
equation (1.59) with

σ =

N∑
i ,j=1

(j |Ji)
(
Jj |j
)

χi ,iχj,j
σi ,j . (1.61)

This expression for the conductivity is exact for the perfect choice of the slow modes.
However, it has been shown [11] that the conductivity obtained with any set of modes gives
a lower bound to the real conductivity. This means that the better the choice of the slow
modes and the more modes are included, the better the result for the conductivity.

The dependence of the quality of the result of the choice of slow modes makes the
memory matrix formalism resemble the variational principle of transport theory, where also
an improved test function gives an increase in the accuracy of the obtained lower bound for
the conductivity. Actually the two approaches are completely equivalent in cases where the
Boltzmann equation applies, as Belitz has proven in 1984, [12]. The advantage of using
the memory matrix formalism lies in an inherent possibility of finding suitable slow modes
and, of course, the matrix structure of the scattering which accounts for conservation laws.
In addition, the memory matrix formalism can even be used in cases where no Boltzmann
equation description is possible as, for instance, in Luttinger liquids.

By construction, the conserved quantities of the unperturbed system are a good choice
for the slow modes. Using them reveals the biggest advantage of the formalism: the memory
matrix, equation (1.60), is a matrix of correlation functions of time derivatives of currents.
If these currents are conserved quantities of the pure system, their time derivatives are
already linear in the perturbations. Due to this, the memory matrix in lowest order in the
perturbations is equal to the memory matrix calculated within the Liouville operator of the
unperturbed system. This is a great simplification and accounts for the practical significance
of the formalism.

For the actual calculation of the memory matrix, it is convenient to drop the scalar product
introduced for the derivation and switch back to the language of correlation functions. Then
the definition, equation (1.60), reads

Mi ,j =
i

ω

 ∞∫
0

dte iωt
〈[
J̇i(t), J̇j

]〉low
+ β

〈
J̇
†
i

〉〈
J̇j

〉 =
i

ω

(〈
J̇i ; J̇j

〉low

ω
−
〈
J̇i ; J̇j

〉low

ω=0

)
,

(1.62)
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where 〈 . ; . 〉low denotes the Fourier transform of the Matsubara correlation function, cal-
culated with the low energy Hamiltonian. As already pointed out, in equation (1.45), the
dc-conductivity is obtained by taking the limit ω → 0 of the real part of the conductivity σ
at q = 0. Since the matrix χ is purely real, one sees from equation (1.59) that one needs
the real part of the memory matrix,

Re
[
Mi ,j

]
=

1

ω
Im
[〈
J̇i ; J̇j

〉low

ω
−
〈
J̇i ; J̇j

〉low

ω=0

]
. (1.63)

This object can, not easily but routinely, be calculated for several correlated systems for
which a low energy theory is known. In particular in one-dimensional systems, where many
systems are known to exhibit the Luttinger Liquid behavior as low energy fixed point, this
is extremely useful. Accordingly, the formalism has been applied in the past to calculate
properties like Umklapp resistivity in one-dimensional fermion systems [13], conductivity of
clean one-dimensional wires [14], heat conduction and Wiedemann-Franz law of disordered
Luttinger liquids [15], thermal conductivity of spin-1/2 chains [16], heat transport of clean
spin-ladders coupled to phonons [17], and it has been demonstrated a powerful tool for the
treatment of transport properties in correlated systems.
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2 Scattering of Fast Phonons

One typical application of the relaxation time approximation to the linearized Boltzmann
equation is the calculation of the heat conductivity in a metal, i. e. a system where electrons
and phonons can carry heat currents. In the ”conventional” case where the velocity of
the phonons is much higher than the electron velocity, the theory is well established. The
scattering rates for all kinds of interactions have been calculated a long time ago 1 from the
respective self-energies in first order perturbation theory.

Especially for the electron-phonon interaction the perturbation theory treatment works
very well, giving accurate predictions for conductivities. The deeper reason for the good
convergence is found with the Migdal theorem ([18]), which states that vertex corrections
to the electron-phonon interaction only play a minor role in systems where the electrons are
much faster than the phonons. More precisely the exact interaction vertex, i. e. the sum
over all vertex corrections, is

Γ = γ

(
1 +O

[(m
M

) 


])
(2.1)

where γ is the bare interaction vertex and m, M are the masses of the electrons and phonons,
respectively.

This theorem seemed to cover all the practically relevant regimes. However, with the
discovery of heavy fermion compounds ([19], see [20] for a review), the question of electron
phonon scattering must be revisited. Also spinchain compounds with small coupling constants
provide a realization of a fast-phonon-slow-fermion setup, when one uses the Jordan-Wigner
mapping of the spinons to spinless fermions [21].

Despite the large research interest that heavy fermion materials attracted in the recent
years, the question of such systems interacting with phonons hardly appears in the literature.
Only very recently, a group of theorists from Würzburg, Göttingen and Baton Rouge, [22],
studied the impact of phonons to the coherence scale of models of heavy fermions. They
investigated a periodic Anderson model with coupling of the conduction electrons to Holstein
phonons by means of a combination of the slave boson method and Migdal-Eliashberg approx-
imation, as well as the dynamical mean-field theory. From the obtained phonon corrections
to the electronic selfenergy they conclude the breakdown of the Migdal theorem and a large
reduction of the coherence temperature already at weak electron phonon coupling. Also, an
enhancement of magnetic instabilities driven by Ruderman-Kittel-Kasuya-Yosida interactions
between local moments is predicted. As a goal to future studies, they want to investigate
the interplay of these instabilities within the framework of cluster methods.

Concerning magnetic systems, only a two-dimensional example could be found in the
literature. Motivated by an experimental study on the isotope effect on the Néel temperature
in antiferromagnetic cuprates, [23], R. Hlubina and G. K. Sadiek investigated an effective

1for a review of the theory of electron and phonon heat conduction see [1]



2.1. ELECTRON-PHONON SCATTERING

spin model for strongly interacting electrons at half filling, coupled to phonons, [24]. The
phonon energy was assumed to be larger than the antiferromagnetic coupling, and the authors
concluded the existence of an isotope effect to the Néel temperature in this limit, which
matches the order of magnitude of the observations in the experiment.

In the context of superconductivity of fullerene compounds, which have a very low Fermi
energy of the order of the Debye frequency, C. Grimaldi, L. Pietronero, and S. Strässler
formulated a generalization to the Eliashberg equation for interaction with phonons which
includes vertex corrections, [25, 26, 27], from which they derived the occurrence of non-
adiabatic effects. In particular, they predict a strong dependence of the critical temperature
of superconductivity on the ratio of the Debye frequency and the Fermi energy.

However, so far nobody seems to have investigated the transport properties of systems
with slow fermionic excitations coupled to fast phonons. In this chapter, the heat conductivity
of phonons scattered from fast fermions, both, one- and three-dimensional, will be discussed.

2.1 Electron-Phonon Scattering

On the most general level the Hamiltonian of a solid contains interaction terms between all
possible degrees of freedom, in particular kinetic terms for electrons and ions plus interactions
between them. This is simplified using the Born approximation, which assumes that electrons
move around easily, but ions stay fixed at their positions and form the crystal lattice.

By relaxing the constraint for the ions slightly, allowing for small vibrations around the
mean position one introduces collective modes of lattice vibrations. These so-called phonons
are bosonic quasi-particles with linear dispersion at low energies, which is captured within the
harmonic approximation. The derivation is straight-forward by using canonical quantization
of the displacement fields (see e. g. [2]).

q

k+ q

k

Figure 2.1: Elementary vertex for interaction between electrons and phonons. Dashed lines
represent phonon Green’s function and continuous lines fermionic ones. While the fermion
propagator has a direction dependence, the phonon propagator is the superposition of two
counterpropagating modes.

A solid with a simple cubic lattice has three acoustic phonon modes with different polariza-
tions. For simplicity, here only one transverse mode is taken into account. The Hamiltonian
for this simplified system then reads

Hph =
∑
q

ωqa
†
qaq , (2.2)

where a(†)
q annihilates (creates) a phonon with (crystal-) momentum q and the phonon
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frequency

ωq ≈
√
K

M
a |q| (2.3)

is linear for small momenta. The latter depends on the ion mass M, the lattice spacing a
(which is set to be 1 in the following), and the force constant K.

The lattice vibrations have direct impact on the electronic system, which can be described
in the tight-binding approximation2. Within this, the electronic wave-functions in real-space
are written in a series of Wannier-functions, which are localized at the lattice sites. Their
dynamics then are dominated by the overlap of Wannier-functions at neighboring sites, which
allows to write the Hamiltonian in second quantization as

Hel =
∑
i ,j,σ

ti ,jc
†
iσcjσ, (2.4)

where ti ,j denotes the hopping amplitude from a Wannier state at site i to a Wannier state
at site j and c(†)

iσ annihilates (creates) an electron with spin σ at site i . For simplicity here
only one Wannier state per site is assumed, which corresponds to taking into account only
the lowest electronic band. For fixed ion positions, this Hamiltonian is easily diagonalized by
Fourier transformation, which yields

Hel =
∑
k,σ

εkc
†
kσckσ (2.5)

with the electronic dispersion εk .
Allowing for weak deviations from the equilibrium positions of the ions, the hopping matrix

elements ti ,j become a function of this deviation, since the overlap of neighboring Wannier-
functions changes when the ions are displaced from their position, e. g. by a vibrational mode.
By expanding the ti ,j in a power series in the displacement one obtains to linear order an
electron phonon interaction part to the Hamiltonian. Generally it has the form

Hel−ph = −
∑
q,G

ρ (q + G) Vel−ph (q + G) (q + G)

√
~

2MNωq

(
aq + a

†
−q

)
, (2.6)

where the sum is over all phonon momenta q in the first Brillouin zone and all reciprocal lattice
vectors G. The sum over the reciprocal lattice vectors reflects the lower symmetry of a solid in
comparison to free space, which reduces the conservation of momentum to the conservation
of crystal momentum, which means momentum modulo reciprocal lattice vectors. The main
effect in this context is the possible scattering of electrons and phonons with high momenta,
which sum up to a reciprocal lattice vector, which is called an Umklapp-, or U-process, in
contrast to a Normal- or N-process. At low temperatures only small momenta are thermally
populated, hence the summation can be restricted to N-processes. ρ is the Fourier transform
of the electron density

ρ (q) =
∑
k,σ

c
†
k+qσckσ. (2.7)

The electron electron interaction is neglected here, since it must be subleading in the phonon
scattering process. For three dimensional fermions this approximation is also legitimated by
Landau Fermi-Liquid theory [29, 30, 31], which assures that interaction between electrons
at low temperatures only renormalizes the effective mass, i. e. the dispersion.

2see any textbook on solidstate physics, e. g. [28]
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2.2 First Order Contribution: Conservation Laws

k

εk
particle-hole 
  continuum

phonon

k

εk
particle-hole 
  continuum

phonon

Figure 2.2: Excitation spectra of three-dimensional phonons and three-dimensional fermions.
As in the latter case, for ratio of velocities vP /vF � 1 (left) there is damping, for vP /vF � 1

(right) there is none.

k||

εk

particle-hole 
  continuum

    phonon 
 continuum

k||

εk

particle-hole 
  continuum

    phonon 
 continuum

Figure 2.3: Excitation spectra of three-dimensional phonons and one-dimensional fermions.
As function of the parallel component of the momentum k‖, the phonon spectrum becomes
a continuum. For ratio of velocities vP/vF � 1 (left) the spectra overlap, thus phonons
can decay into particle-hole excitations. For vP/vF � 1 (right) there is no damping and the
lifetime of the phonons is infinite to first order.

While for the scattering of slow phonons the first order self-energy of the phonons already
gives a good approximation to the lifetime, for fast phonons this can be excluded by simple
physical arguments. Concerning three-dimensional fermions, the one-particle excitation spec-
trum for small momenta is the well-known particle hole continuum with quadratic boundary,
see figure 2.2. An acoustic phonon with dispersion ωq = vP |q| will intersect this contin-
uum for vP � vF , but there is no intersection at small momenta for large phonon velocities
vP . At large momenta the spectra might intersect at some point, since higher bands or
multi-particle excitations start to play a role, but at low temperatures the corresponding high
energy phonon states just will not be populated. Thus the first order scattering process can
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Figure 2.4: All allowed diagrams to the phonon self-energy to second order.

not conserve energy and momentum in any accessible part of the phase space, implying the
phonon self-energy being zero to first order in electron-phonon interaction.

In the case of one-dimensional fermions, depicted in figure 2.2, the situation is only slightly
different. The scattering process between three-dimensional phonons and one-dimensional
fermions doesn’t conserve (crystal-) momentum, but only its parallel component. So the
relevant spectrum of the phonons is no longer linear, but a continuum with ωq ≥ vP |qq|. On
the other hand, in one dimension the particle hole continuum of the fermions narrows to a
small wedge at small momenta. In total, just like for three-dimensional fermions, there is no
intersection of the phonon and fermion excitation spectra and thus no phonon decay in first
order perturbation theory.

2.3 Second Order Processes

In second order perturbation theory, it is possible to construct two distinct diagrams from
the elementary vertex (figure 2.1). They are shown in figure 2.4. It turns out during the
calculation that these diagrams would cancel exactly for a purely linear electron dispersion.
Thus, the backscattering of a phonon must be a band-curvature effect.

For the calculation of the phonon lifetime, from which the heat conductivity can be
obtained in relaxation time approximation, only the imaginary parts of these diagrams are
needed. This can be achieved in a convenient way by exploiting the branch cuts of the Green’s
functions (see Appendix A). By directly applying the imaginary part to the diagrams, one
generates a sum of products of real and imaginary parts of the contained free propagators.
Only those contributions which contain ”propagating” Green’s functions from one external
leg to the other are of interest, since local bubbles cannot transport momentum.

It can easily be seen that this is the case only for such diagrams where each two interaction
vertices are connected by a real part of a fermion Green’s function. By combining them into
the effective vertex (figure 2.5) the imaginary part of the phonon self-energy can be expressed
as a single diagram

Unlike the elementary vertex, which depends only on one phonon momentum and no

Figure 2.5: Effective vertex for scattering of a phonon and a fermion. The inner fermionic
Green’s function contributes only with its real part, which renormalizes the vertex.
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D0(q+ ∆q,Ω + ∆Ω)

q,Ω q,Ω

G0(k, ξ)

G0(k+ ∆q, ξ + ∆Ω)

Figure 2.6: Phonon-selfenergy to second order expressed in effective scattering vertices

energy

Melem
q = −Vel−ph (q) q

√
~

2MNωq
, (2.8)

the effective vertex depends on the momenta of both involved phonons plus momentum and
energy of the inner virtual fermion. Consider the phonon and fermion coming in from the left
with momentum q and k + ∆q and energy Ω and ξ + ∆Ω respectively. After the scattering
the momentum ∆q and the energy ∆Ω has been transferred. The effective vertex for this
process expressed in formulas is

Meff
q,q+∆q,k = Melem

q

(
Re
[
G0 (k − q, ξ −Ω)

]
+ Re

[
G0 (k + q + ∆q, ξ + Ω + ∆Ω)

])
Melem
q+∆q .

(2.9)
In this particular case, for the diagram shown in figure 2.6, it can be seen that the external
energy Ω dominates the scattering amplitude. The imaginary part of the phonon self-energy
is, as demonstrated in appendix A.1,

Im
[
Πel−ph (q,Ω)

]
=
∑
∆q,k

∫
dξd∆Ω

π2
(nF (ξ + ∆Ω)− nF (ξ)) (nB(∆Ω)− nB(∆Ω + Ω))

×
(
Meff
q,q+∆q,k

)2 (
δ(Ω + ∆Ω− ωq+∆q)− δ(Ω + ∆Ω + ωq+∆q)

)
δ(ξ + ∆Ω− εk+∆q)δ(ξ − εk),

(2.10)

where the imaginary parts of the bare Green’s functions have been inserted. Performing the
frequency integration over the latter delta functions yields for the effective vertices

Meff
q,q+∆q,k = Melem

q

(
1

Ω− (εk+q+∆q − εk+∆q)
−

1

Ω− (εk − εk−q)

)
Melem
q+∆q . (2.11)

By expanding the fermionic energies up to quadratic order, this simplifies to

Meff
q,q+∆q,k = Melem

q

(
~2

m (q + ∆q)q

(Ω− ∆1)(Ω− ∆2)

)
Melem
q+∆q ≈ Melem

q

~2(q + ∆q)q

mΩ2
Melem
q+∆q , (2.12)

where ∆1 = εk+q+∆q − εk+∆q and ∆2 = εk − εk−q are of order vF |q| and thus negligible
compared to Ω, since vF � vP . In the case of one-dimensional fermions, only the paral-
lel components of the phonon momenta enters the effective vertex, since the components
orthogonal to the chains is not conserved in the intermediate scattering processes. From
the latter equation it can be seen easily that for a perfectly linear fermionic dispersion, the
effective vertex vanishes.
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Figure 2.7: Diagrammatic calculation of the heat current-heat current correlation function
with the full phonon propagator (dashed double line) and vertex corrections from effective
electron phonon interaction.

The above integrals are evaluated in appendix A in the limit of small external momentum
and temperature for both settings. The result for the scattering from three-dimensional
fermions is

Im
[
Πel−ph(q, vP q)

]3D ∝
a6

m2M2

(
Vel−ph

vF vP

)4

q4T 3. (2.13)

In the case of scattering from one-dimensional fermions, the setting has a lower symmetry,
which is reflected in the phonon lifetime

Im
[
Πel−ph(q, vP q)

]1D ∝
a4V 4

el−ph

m2M2v2
F V

4
P

q4 cos2(φ)T, (2.14)

it obtains an angle dependency. Only phonons which carry momentum parallel to the fermion
chains are damped, those perpendicular are not scattered at all.

2.4 Connection to Heat Conductivity

Up to now, only imaginary parts of phonons were discussed, which are some kind of lifetime
of the quasi-particle. However, it is important to distinguish relaxation times, as appear in
the Boltzmann equation, and lifetimes. The difference is crucial, since the scattering of a
quasi-particle does not disperse all carried energy-current in all cases. Depending on the
kind of scattering, currents can persist although the carriers have been scattered, e.g. if the
scattering process alters the direction only weakly. This is known as forward scattering and
has evident consequences, for example in the electrical conductivity of normal metals. There
the scattering is almost elastic, leading to an extra T 2 contribution to the scattering rate
τ−1

el = T 3, resulting in the Bloch T 5 law of electrical resistivity ([32]).
Formally, the heat conductivity κ in linear response is, in analogy to (1.45)

κ = lim
Ω→0

1

ΩT
Im [〈JεJε〉 (Ω)] , (2.15)

where the heat current Jε in this context denotes only the phonon contribution. The heat
current-heat current correlation function can be calculated from the phonon Green’s function
diagrammatically, see figure 2.7. It can be written as a bubble of the selfenergy corrected
phonon propagator, with vertex corrections from the effective electron phonon scattering
process.

In general, the effect of the conservation laws, e. g. forward scattering, is contained in this
series only if one takes all vertex corrections into account. However, the effective electron
phonon scattering for fast phonons favors backward scattering, since the energy of a fast
phonon can not be absorbed by a slow fermion otherwise. Thus, there is no cancellation
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2.5. MEAN FREE PATH AND BOUNDARY SCATTERING

between selfenergy and vertex corrections, and the corrections from vertex corrections are
of order one. To describe the physics of the scattering, it suffices therefore to take into
account the selfenergy corrections in D and neglect the vertex corrections.

With this simplification, the heat current heat current correlation function can be obtained
from the phonon Green’s function D by

〈JεJε〉 (iΩ) ≈
1

4

∑
q,ωn

v2
qω

2
qD(q, iωn + iΩ)D(q, iωn). (2.16)

The factor 1/4 in front comes from the definition of the phonon propagator, which is chosen
symmetrically as

D (q, iω) =
〈(
a†q + a−q

) (
aq + a

†
−q

)〉
(iω) . (2.17)

It is an easy task to evaluate the imaginary part of expression (2.16) with the technique
described in appendix A. Doing so, Im [〈JεJε〉 (iΩ)] is expressed as function of the imaginary
part of the phonon propagator. The latter can be obtained easily from Dyson equation, which
gives the connection between self-energy and full Green’s function. Assuming the self-energy
broadens the two peaks of the free phonon Green’s function only slightly, such that they
remain clearly separated, one obtains

Im [D(q, ω)] = Im

[
1

ω − ωq − iΠ(q, ω)
+

1

ω + ωq − iΠ(q, ω)

]
=

Π(q, ω)

(ω − ωq)2 + Π(q, ω)2
+

Π(q, ω)

(ω + ωq)2 + Π(q, ω)2
. (2.18)

Inserting this into the heat conductivity,

κ = lim
Ω→0

1

ΩV T

1

4π

∑
q

∫
dωv2

qω
2
q (nB (ω)− nB (ω + Ω)) Im [D(q, ω)] Im [D(q, ω + Ω] ,

(2.19)

it becomes apparent that there are two contributions for small Ω, each from the vicinity
of one common pole of the two Green’s functions. The Bose functions are approximately
constant around the pole, so the integrals both are simply over the square of a Lorentzian,
and hence yield the same result, namely

κ = −
1

V T

∑
q

v2
qω

2
q

∂nB(ωq)

∂ωq

1

2Π(q, ωq)
. (2.20)

By applying the identity ∂ωnB(ω) = −T/ω∂T nB(ω), one can conclude from comparison to
equation (1.23) that the relaxation time in the Boltzmann equation is τq = 1/(2Π), which
is identical to the definition of the phonon lifetime.

2.5 Mean Free Path and Boundary Scattering

In the last section, an expression for the heat conductivity depending on the phonon lifetime
has been derived. In principle, this could directly be evaluated and one would be done.
However, the prerequisite is of course, that the momentum sum converges, which might fail
if the scattering mechanism is too weak. In this case, other scattering mechanisms must
be taken into account to describe the physical situation, where the heat conductivity usually
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is finite. Within the relaxation time approximation, various scatterings can be treated by
the Matthiessen’s rule [33], which states that, if for each scattering process on its own a
relaxation time can be defined, the total relaxation rate, i.e. the inverse relaxation time, is
the sum of the separate relaxation rates. This rule is only phenomenological, its validity is
discussed e. g. in [1].

According to Matthiessen’s rule, in each scattering process each mode is scattered with
the same relaxation time. Here a slightly different approach is used, where the relaxation
times are allowed to be momentum dependent. That way, an interplay of different scattering
mechanisms can be described, where each mode is scattered predominantly by the process
with the smallest mean free path for its momentum. The effective momentum dependent
scattering time is defined by

1

τk
=
∑
i

1

τ ik
, (2.21)

where τ ik is the momentum dependent scattering time of the ith scattering mechanism.
The lifetimes obtained in the previous section diverge for small values of the phonon

momentum q, which means that the phonon can propagate a huge distance, namely the
mean free path l = vP τq, without being scattered. In practice, the real mean free path
is limited, in the absence of other scatterers, at the latest by the diameter of the system.
Within the current approach, a relaxation time for the surface scattering of phonons thus can
be achieved from the mean free path as τsurf = Λ/vP , with the system diameter Λ. According
to equation (2.21), the total relaxation time is then

τtot =
τsurf

1 + τsurf
τel−ph

. (2.22)

Using this combined relaxation time, the momentum sum can not be calculated in a
closed form, instead numerical computation must be applied. Expressed as a momentum
integral, in the case of scattering from three-dimensional fermions, the heat-conductivity is

κ3D(T,Λ) = −
4π

T

∞∫
0

dqq4v2
P

∂nB
(
vP q
T

)
∂q

Λ

1 + Λ
vP
Cq4T 3

, (2.23)

with the constant C = a6(Vel−ph/vF vP )4/m2M2, which is, together with its asymptotics,
depicted in figure 2.5.

For small temperatures, the heat conductivity κ3D
low ≈ 16π5/(15v2

P )ΛT 3 reflects clearly
the signature of surface scattering, with the T 3 power law of the Debye heat capacity. Above
the crossover to higher temperatures, where fermion scattering dominates, the heat capacity
behaves asymptotically like κ3D

high ≈ 4πC1/4v
7/4
P Λ1/4T−9/4

In the case of scattering from one-dimensional fermions it is possible to investigate the
heat conductivity in chain direction and perpendicular to the chain direction. This can be
achieved by replacing the factor v2

q in equation (2.20) by either the square of the velocity
in chain direction vq sinφ in the former or perpendicular to with vq cosφ in the latter case.
With this, one obtains for the direction dependent heat conductivity

κ1D
‖ (T,Λ) = −

2π

T

∞∫
0

dq

π∫
0

dφ sin(φ)q4v2
P sin2(φ)

∂nB
(
vP q
T

)
∂q

Λ

1 + Λ
vP
C̃q4 cos2(φ)T

,

κ1D
⊥ (T,Λ) = −

2π

T

∞∫
0

dq

π∫
0

dφ sin(φ)q4v2
P cos2(φ)

∂nB
(
vP q
T

)
∂q

Λ

1 + Λ
vP
C̃q4 cos2(φ)T

, (2.24)
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Figure 2.8: Heat conductivity of fast phonons scattering from slow three-dimensional
fermions. At low temperature, boundary scattering provides the dominant scattering mech-
anism, at high temperatures, the low frequency divergence is regulated by the cutoff from
finite sample diameter Λ. Here the Λ-dependence of the crossover has been scaled out by
introducing T0 =

(
15/4π4

)4/21
(C/vP )1/21.

where the constant C̃ is the one-dimensional analogue to the three-dimensional case, C̃ =

C/a2. Since there is no directional dependence in the surface scattering part of the relaxation
time, the low T behavior is identical to the case of three-dimensional fermions, weighted with
a factor 1/3 in parallel direction and 2/3 perpendicular. The high T behavior is in direction
perpendicular to the chains κ1D

high,⊥ ≈ 8π3/3(vPΛT/C̃)1/2, on the other hand the parallel
conductivity κ1D

high,‖ ≈ 8π/3v7/4Λ1/4C̃−3/4T−3/4 drops with increasing temperature.
In case of the perpendicular component of the heat conductivity with one-dimensional

fermions, the high temperature limit seems not to match the numerical integration. In fact,
the crossover is very slow, such that the two curves converge only at very high temperatures,
beyond the scaleof the figure.

For a more accurate treatment, some more peculiarities must be considered. In the first
instance, phonon heat transport is not the only contribution to the heat transport, one should
take into account the fermion system. However, since the phonon velocity is in the studied
systems much larger than the fermion velocity, the main contribution comes from the former.

In principle, the fermion heat conductivity could be described in a similar way by calculating
the fermion lifetime, and then using the relaxation time approximation. Summing up the two
contributions would give the total heat conductivity of the combined system. Unfortunately,
this approach is incorrect, the reason is again related to conservation laws. If a phonon
is damped by the scattering off a fermion, or vice versa, the energy and momentum that
are dissipated from the phonon system don’t vanish, but are carried by the fermion system,
causing heat flux there, to be eventually transferred back to the phonon system in the next
scattering event. This effect, called drag, is quite typical for Boltzmann equation problems. It
can be treated for example by using so-called conserving approximations for the self-energies,
or the hydrodynamic memory matrix approach, which accounts for the role of conservation
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Figure 2.9: Heat conductivity from fast phonons scattered from one-dimensional slow
fermions, left contribution from phonons in chain direction, right from those perpendicu-
lar. The low temperature asymptotics are, as in the case of three-dimensional fermions,
dominated by surface scattering with the characteristic T 3 law, where the parallel contri-
bution is 1/3 of the three-dimensional result and the perpendicular 2/3. In the figure this
behavior is hidden in the different crossover scales T ‖0 = (2π4/15)−4/15vP (C̃Λ)−1/5 and
T⊥0 = (15/4π2)−4/15v(C̃Λ)−1/5. In the high temperature regime the phonon-fermion scat-
tering becomes dominant, giving the depicted T−3/4 and T 1/2 dependencies. The additional
Λ dependencies from the long wavelength cutoff are scaled out.
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laws for the scattering between different modes, i.e. the matrix structure of the scattering
rates.

The latter will be applied in this thesis for a few model systems in one dimension. Also
other shortcomings of this section, like thermoelectric effects, are included into the discussion.
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3 Thermoelectric Effects in
One-Dimensional Systems

One-dimensional systems are, in many senses, special since widely used concepts of solid
state theory are invalid. There is, for instance, the absence of long-range order due to the
Mermin-Wagner theorem [34, 35], which prohibits the use of mean-field-like methods. Also
the concept of the Fermi liquid breaks down, crudely speaking a consequence of the special
Fermi surface topology in one dimension. Instead, the notion of the Luttinger liquid (named
after Luttinger, who introduced the underlying model for one-dimensional interacting fermions
[36]) arises, which is the low-energy fixed point of many one-dimensional microscopic models.
Some major consequences are algebraic power laws for correlation functions, and the fact
that all possible excitations must be collective ones, or, in more detail, spin-charge-separation.

Properties like these can be derived by use of the bosonization technique, which utilizes
the possibility to linearize the spectrum of many (originally fermionic) Hamiltonians around
the Fermi points. The eigenspace of such a Hamiltonian with a linear spectrum corresponds to
a bosonic Hilbert space by means of an exact operator identity [37, 38, 39]1. In the language
of those bosonic fields, the Hamiltonian can be diagonalized, yielding the celebrated Lut-
tinger Hamiltonian. The latter happens to describe a Lorentz-invariant system, implying the
conservation of the energy current. Furthermore, the system is integrable and thus contains
an infinite number of conservation laws. The effect of integrability to transport properties,
in particular in the context of spin chain materials, has been discussed controversially in the
recent years

The theoretical interest was boosted by experiments which found evidence for large mag-
netic thermal conductivities in low-dimensional quantum magnets, e. g. experiments by So-
logubenko et al. [42, 43, 44, 45], Hess et al. [46], Kudo et al. [47], in a range of materials
with different coupling constants.

A review of experimental results on heat transport in low dimensional quantum system
was published in 2007 by C. Hess, [48].

On the theoretical side, the interest mainly concentrated on the question, under which
conditions transport in a quantum spin chain becomes anomalous, which means that the
respective conductivity has a delta peak in the zero frequency limit, which is referred to as
Drude peak. This concept applies for thermal as well for spin or charge transport. Anomalous
transport is often measured by the prefactor of this peak, called Drude weight or, in case of
spin transport, equivalently spin stiffness.

Zotos and collaborators claimed in 1997, [49], that conservation laws in integrable quan-
tum systems lead to dissipationless thermal transport at finite temperatures. In the following,
several studies on both, integrable and nonintegrable quantum spin chains, have been inves-
tigated with focus on this problem. In 1998, some of the authors of [49] published results of

1For a comprehensive review see [40] or [41]
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an exact diagonalization study of the heat conductivity in an anisotropic Heisenberg model
(XXZ-model), [50]. They found a long-time decay of the heat current heat current correla-
tion function to a finite value, which is the signature of anomalous (ballistic) transport for
values of the anisotropy ∆ between zero, which is equivalent to the XY-model, and one, the
isotropic Heisenberg model.

Narozhny et al. found, also by means of exact diagonalization, ballistic thermal transport
in the XXZ model, which they traced to the high number of degenerate states rather than
the integrability.

The problem of the spin Drude weight in quantum spin chains has been discussed more
controversially one year later, Zotos published the results of a Bethe-ansatz calculation of
the spin Drude weight in the anisotropic Heisenberg model for ∆ < 1, [51]. The resulting
spin Drude weight was a monotonically decreasing function of temperature for all studied
values of anisotropy, and approaches the T = 0 value like a power law. In the isotropic limit,
∆ = 1, the spin Drude weight vanished at all finite temperatures.

Starting 2002, Heidrich-Meisner et al. published several studies of the heat and spin
transport in integrable and nonintegrable systems by means of exact diagonalization and
mean field theory, [52, 53, 54, 55]. In agreement to Zotos Bethe-ansatz results, they found
in the XXZ model a finite spin Drude weight for all ∆ < 1 and vanishing Drude weight in
the isotropic case. Other results were normal transport in several nonintegrable models, like
frustrated Heisenberg chains, dimerized chain, and a spin ladder. For the XXZ model in finite
magnetic field a strong field dependence of the spin Drude weight was derived in the gapless
regime.

A numerical calculation of the transport properties of the antiferromagnetic and fer-
romagnetic XXZ model, in the gapless [56] as well the gapped [57] regime was given by
Klümper and Sakai in 2003. By means of a lattice path integral formulation, they found a
finite thermal and spin Drude weight, i. e. ballistic transport.

Also in 2003, Fujimoto and Kawakami published a study on several one-dimensional
quantum liquids with the Luttinger liquid low energy fixed point, including some nonintegrable
models. Their conformal perturbation theory calculation of the transport properties yielded
a non-vanishing finite temperature Drude weight also for the nonintegrable systems, which
is the result of the conservation of momentum in the studied systems.

Another exact treatment of the XXZ chain by thermodynamic Bethe-ansatz, [58], yielded
contradicting results for two different bases. The choice of basis they considered the correct
one, the spinon anti-spinon basis, lead to a spin Drude weight monotonously decreasing with
temperature only for small anisotropies. At the isotropic point they found a finite spin Drude
weight with an infinite positive slope at T = 0.

Motivated by experimental data from NMR experiments on the spin chain compound
Sr2CuO3, [59], which concluded spin diffusion, Sirker et al. obtained good agreement to the
experimental data in a field theoretical approach to the XXZ model with the assumption that
the spin Drude weight vanishes for finite temperatures, [60]. Earlier numerical results which
predicted a finite Drude weight were reinvestigated with a direct calculation of the current
current correlation function with a DMRG algorithm. The resulting correlation function were
nonmonotonic in time and did not converge to an asymptotic value up to large times. In
combination, they concluded in contradiction to older results that the low temperature spin
Drude weight of the XXZ chain must be either zero or very small.

Very recently, the question of anomalous transport in integrable and nonintegrable one-
dimensional quantum systems was addressed with an approach new in this field, the adaptive
time-dependent density matrix renormalization group, [61]. The authors studied frustrated
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and integrable spin chains, and obtained once more diffusive transport for nonintegrable and
ballistic transport for integrable systems.

However, the problem wether anomalous transport can occur in nonintegrable systems
is hard to solve, since the interpretation of numerical studies always is complicated by finite
size effects and numerical errors, and on the other hand analytical transport calculations for
nonintegrable systems are very difficult.

In 2007 Jung and Rosch established a formalism to calculate lower bounds to the heat
conductivity of almost integrable systems, i. e. an integrable system plus a weak perturbation
which breaks the integrability, [62]. The authors applied the scheme to a XXZ chain with weak
next-nearest neighbor coupling in [63] and discussed the question how nonlocal conservation
laws can affect transport properties.

Apart from the question of integrability and anomalous transport, also some research on
normal transport in one-dimensional systems has been done.

For example, Giamarchi et al. studied an antiferromagnetic spin chain in the presence of
Umklapp scattering by means of a memory function approach, and concluded wrongly normal
thermal transport in this system, [13]. The correct solution of this problem was given by
Shimshoni et al. , [16], where they stressed the matrix structure of the scattering rates due
to conservation laws in the Umklapp processes, which yields normal transport only from the
interplay of at least two Umklapp processes.

The effect of phonon coupling and impurity scattering to the spinon heat transport has
been investigated within a Boltzmann equation calculation by Chernyshev and Rozhkov, [64].
They claimed, that in the regime of exchange coupling of the spins bigger than the Debye
energy the main relaxation mechanism of the magnetic heat current was the coupling to
phonons, where the heat current was dissipated quickly to the phonon bath. However, they
did not take into account the backflow of momentum from the phonon bath to the spin
system, which is a very important effect for transport.

Similar assumptions have been used by Louis et al. , who investigated the isotropic
antiferromagnetic Heisenberg model and the antiferromagnetic XY model coupled to phonons
within a memory function approach, [65], which thus has the same problems.

An approach which takes into account the conservation of the total momentum of phonon
and spin system is given with the memory matrix formalism, used by Boulat et al. to cal-
culate the heat conductivity of spin ladder systems with Umklapp scattering, coupled to
phonons, [17]. Depending on the ratio of spin gap and Debye energy, the obtained magnetic
contribution to the heat conductivity are positive or negative.

In general, transport properties of Luttinger liquid like models must be dominated by
additional symmetry-breaking effects, that are not contained in the free bosonic description.
Typical symmetry-breaking candidates are the so-called Umklapp processes, band-curvature
effects or disorder scattering. As shown by Haldane [66], these additional effects to the “free”
Luttinger model can also be treated within the bosonization formalism.

Coming from a lattice model, Umklapp processes can be generated in a natural way by
keeping those terms in the bosonized Hamiltonian, that oscillate with a frequency corre-
sponding to a reciprocal lattice vector. For any commensurate filling the suitable Umklapp
can be found, which physically can be viewed as the scattering of the matching number of
fermions from one Fermi-point to the other.

As pointed out in [14], at least two Umklapp processes are needed to dissipate momentum
effectively. The reason is a class of conservation laws contained in the Umklapp Hamilto-
nians, protecting the respective pseudo momenta of each process. Components of currents
parallel, in the Hilbert space spanned by the used slow modes, to a pseudomomentum decay
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exponentially slowly. Since pseudo momenta of two different Umklapp processes are orthog-
onal two processes are sufficient to destroy the persistence of the complete current. The
disadvantage of relying on two Umklapp processes as an unique scattering mechanism is their
strong thermal suppression away from the respective commensurate filling. In particular since
the suppression gets stronger for higher Umklapps, while the commensurate points of lower
order scatterings are separated further.

For experiments, the situation described above thus is not very relevant, since, in the
first place, very low temperatures would be necessary. Achieving such low temperatures in a
transport measurement is complicated by intrinsic heating. Second, in physical realizations
of one-dimensional systems, the manufacture of very clean systems is a non-trivial issue.
Presently, the interplay of Umklapp scattering at one commensurate point with disorder
scattering is of greater experimental interest, due to better accessibility, than that of two
Umklapp processes.

In this chapter, thermoelectric and thermomagnetic effects, that result from the interplay
of Umklapp scattering and disorder scattering in two one-dimensional model systems are
discussed. The first example is an antiferromagnetic spin-1/2 Heisenberg chain in finite
magnetic field,

HHeisenberg = −J
∑
i

Si · Si+1 − gLµB
∑
i

BSzi , (3.1)

with nearest-neighbor coupling J < 0, Si spin operators at site i , the Landé g-factor, the
Bohr magneton µB, and B the modulus of the magnetic field, which is assumed to point
into z-direction. The elementary excitations of this Hamiltonian are spin-waves, or spinons.
The spinon heat conductivity and its dependency on an external magnetic field is studied.
Heisenberg chains are interesting systems for transport calculations, given the striking prop-
erties of the pure model: being soluble via Bethe-ansatz [67], its thermodynamic properties
are basically known [56]. Consequently, it has been tackled with many approaches, bringing
already considerable knowledge about their characteristics

By use of Jordan-Wigner transformation, the low energy part of the Heisenberg model
can be mapped into spinless fermions with repulsive nearest-neighbor interaction, and the
external magnetic field acting as a chemical potential. The resulting fermionic model,

HJW = −
∑
i

(
J
(
c
†
i+1ci + h.c.

)
+ J

(
c
†
i+1ci+1 −

1

2

)(
c
†
i ci −

1

2

)
+ gLµBB

(
c
†
i ci −

1

2

))
(3.2)

can be treated by bosonization, showing that indeed the Luttinger liquid is the low energy
fixed point of the Heisenberg chain. In the case of disordered chains, it is known [68] that
interactions strongly renormalize the disorder strength. Additionally, for Umklapp processes,
it is possible to extract the exact coupling constants from the Bethe-ansatz solution, which
allows predictions with few free parameters.

As already pointed out, the Heisenberg chain is an integrable system, which theoretically
would have an infinite spinon heat conductivity. In physical systems this is obstructed, for
instance, by disorder, or coupling to phonons. Experimental studies of this setting have
attracted lot of interest in the recent years [42, 43, 44, 46, 47]. In particular, measurements
on the spin chain compound copper pyrazine dinitrate Cu(C4H4N2)(NO3)2(CuPzN) [69] have
motivated our studies. This compound has a relatively small exchange coupling J/kB ≈
10.3K, which makes the regime of completely polarized system accessible, and thus it allows
us to separate the spinon part of the heat conductivity from the phonon part by assuming
that the latter is not affected by a magnetic field. In the magnetic part, a pronounced dip
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is observed, whose position scales linearly with the magnetic field, thus indicating a simple
underlying mechanism.

Here, a quantitative description by an antiferromagnetic Heisenberg model with weak
Gaussian disorder is attempted. For the commensurate filling corresponding to zero magnetic
field, the 4kF Umklapp process is retained in the Hamiltonian. This process transfers two
spinons from one Fermi-point to the other, while the excess momentum of 4kF can be
absorbed by the lattice. The treatment is made comparable to real measurements by including
the physical coupling constants, obtained from Bethe-Ansatz calculations. The results of this
project have been published in [70].

In a second example, the interplay of thermal and electric conductivity in a metallic system
is studied. The model of interest is the well-established paradigm for interacting electrons,
the Hubbard model [71], which reads in one dimension

HHubbard =
∑
i ,σ

(
−t
(
c
†
i+1,σci ,σ + h.c.

)
+ Uc

†
i ,↑ci ,↑c

†
i ,↓ci ,↓

)
. (3.3)

The first term describes the kinetics of the electrons with t the amplitude of an electron
hopping to a neighboring site, and the second the interaction with U the overlap integral
between the wavefunctions of two electrons of opposite spin, located at the same site.

Just like for the Jordan-Wigner spinless fermions, the spinful case of interacting electrons
in one dimension has a bosonization description, with the difference that the latter needs
separate bosonic fields for charge and spin degrees of freedom.

One hallmark result of one-dimensional physics is the separation of spin and charge exci-
tations, which is reflected in the effective bosonic Hamiltonian for the Hubbard model, which
contains no mixing of charge and spin fields, but is quadratic in both with different velocities
and interaction parameters. This behavior has recently been confirmed experimentally in
ARPES studies of SrCuO2 [72].

The inclusion of Umklapp scattering terms in the Hamiltonian must break this symmetry,
since in processes which transfer an odd number of electrons from one Fermi-point to the
other, along with the respective number of charge fields also an odd number2 of spin fields
must be transferred.

In normal (three-dimensional) metals, the Wiedemann-Franz law, which states that the
ratio of thermal conductivity and electric conductivity times temperature, called the Lorenz
number L, is a constant [73],

L =
κ

σT
=
π2

3

(
kB
e

)2

≡ L0, (3.4)

where e is the charge of the electron, is valid for a wide range of materials. To be precise,
the more important elastic scattering is in a system, the better the Wiedemann-Franz law is
fulfilled, because only inelastic scattering can degrade a thermal current without degrading a
charge current [28]. For Fermi liquids at zero temperature with impurity scattering it is valid
exactly. This ratio is of particular interest due to its technical relevance for thermoelectrical
power generation. Materials with a large Wiedemann-Franz ratio are likely to make up
efficient thermoelectric elements [74], which reflects in a high thermoelectric figure of merit
[75], a quantity also studied later on in this thesis.

For Luttinger liquids it has been shown by means of a memory function approach [15]
that weak disorder leads only to violations of the Wiedemann-Franz ratio of the order of one.

2one to leading order in temperature
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Deviations of larger order usually happen when the excitation spectrum changes drastically,
e. g. when Umklapp scattering opens a gap3. In a Mott insulating state the electric con-
ductivity is suppressed to zero, while heat can still be transported by excitations of the spin
sector.

Adding Umklapp scattering should cause large effects in the Wiedemann-Franz ratio
even in a situation where no gap is opened, since electrical and thermal conductivities are
affected in very different ways. These deviations from L0 are expected to be strongest at
the commensurate point with the lowest number of electrons transferred, i. e. half filling,
because for this process the thermal suppression is the weakest. However, the transfer of
two or any other even number of electrons does not affect the spinons in the system. Thus,
at half filling, the impact of Umklapp scattering on the Wiedemann-Franz ratio is limited
due to the spinon part of the heat conductivity, which is not altered. Strong deviations at
half filling are expected anyway in systems with an additional mechanism that breaks the
spin-charge separation. As example for this kind of system, the Wiedemann-Franz ratio of
an one-dimensional metal with band curvature is studied in this thesis.

Another regime with large violations of the Wiedemann-Franz law can be found in one-
dimensional metals without band curvature effects, but at commensurate points where odd
numbers of electrons are scattered, most prominently the 6kF process at one third filling,
which is also discussed in this work. In contrast to the spin chain, in the one-dimensional
metal it is not possible to separate the phonon contribution by a simple experimental trick. In
particular the contribution to the heat conductivity in general is large and has to be accounted
for. Coupling between electronic system and lattice vibrations is mediated via the hopping
matrix elements. Basically, the coupling must be expanded in the displacement, which leads
to additional terms in any part of the Hamiltonian that contains the lattice spacing a. In
particular, besides a coupling to the charge density, new Umklapp processes with involved
phonons arise. The results for the violation of the Wiedemann-Franz law in weakly disordered
correlated metals without coupling to phonons have been published in [78], the calculations
including phonons are hitherto unpublished.

3.1 Basics of the Bosonization technique

The Bosonization technique is a mapping from one-dimensional fermionic field operators to
bosonic fields. It relies on the linearization of the original dispersion relation around the two
Fermi-points, thus yielding effective low energy theories of the studied models. In the special
(academic) case of a perfect linear fermionic spectrum, the mapping is exact given that the
two branches of left- and right-moving fermions are separately extended to minus infinity4.

This kind of spectrum is unbounded, as can be seen in figure 3.1, which raises the problem
of how to calculate expectation values. Doing it naively yields infinities for many operators,
e. g. the particle number which counts all occupied states down to minus infinity, which
have been added artificially. To avoid this problem, one has to apply normal ordering of the
operators before taking the expectation value, which means that all contained destruction
operators must be put right of all construction operators. Equivalently, the quasiparticle

3In higher dimensions, the Mott metal-insulator transition is a well-known effect [76]. It has been shown
that in Luttinger liquids at commensurate fillings Umklapp scattering leads to an insulating state in the charge
sector, while spin properties are unaffected [77]

4This model is referred to as Tomonaga-Luttinger model

34



CHAPTER 3. THERMOELECTRIC EFFECTS IN ONE-DIMENSIONAL SYSTEMS

-2 -1 0 1 2
k [kF]

E
 [

vk
F
]

linearized
exact

occupied

Figure 3.1: The linearization of the spectrum results in two separate branches for left- and
right-moving particles, which are occupied with infinitely many particles at negative energies.

vacuum average of the respective operator can be subtracted to get the meaningful operator

: Â : = Â− 〈0|Â|0〉. (3.5)

In such a system, particle-hole excitations become independent of the momenta of the
involved particles, forming well-defined quasi-particles of bosonic nature. Thus, interaction
operators that are quartic in the fermionic formulation become quadratic when expressed in
the basis of creators and annihilators of those basic excitations5. Remarkably, the kinetic
part of the model remains quadratic, yielding in total an easy to diagonalize Hamiltonian.

To achieve this important simplification6, one makes use of the exact operator identity

ψR/L(x) = FR/L lim
a→0

1√
2πa

e i±(kF− π
L

)xe−i(±φ(x)−θ(x)) (3.6)

between the right- or left-moving fermion field and the bosonic fields φ(x), θ(x). The so-
called Klein-factors FR/L decrease the total number of fermions by one, ensuring the identity
of the bosonic and fermionic operator. For most applications, namely those where fermion
fields only appear pairwise, Klein-factors can safely be dropped. In the limit L → ∞ and
a → 0 the model becomes continuous. In practice the thermodynamic limit can be taken
from the beginning, while a is kept finite until the very end of the calculation as it regularizes
certain correlation functions.

The bosonic fields can be interpreted physically in terms of the densities ρR/L of right-
and left-moving fermions as

∂xφ(x) = −π (ρR(x) + ρL(x))

∂xθ(x) = π (ρ(x)− ρL(x)) . (3.7)

5Note that this implies all excitations of the system being collective ones
6for a detailed derivation of the analysis see e.g. [40, 41]
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As can be verified by an elementary calculation, φ(x) and 1/(π)∂θ(x) are conjugate fields
with the canonical commutation relation[

φ(x), ∂x ′θ(x ′)
]

= iπδ(x ′ − x). (3.8)

In the more general case of spinful fermions, separate fields φ↑/↓, θ↑/↓ for both spin species
generically appear. In a typical Hamiltonian fields with different spins are coupled in the
interaction part. By introducing total charge and spin degrees of freedom as

ρ(x) =
1√
2

(
ρ↑(x) + ρ↓(x)

)
σ(x) =

1√
2

(
ρ↑(x)− ρ↓(x)

)
, (3.9)

a unitary transformation is defined, which diagonalizes the Hamiltonian with the correspond-
ing relation for the bosonic fields

φc(x) =
1√
2

(
φ↑(x) + φ↓(x)

)
φs(x) =

1√
2

(
φ↑(x)− φ↓(x)

)
(3.10)

and similarly for the θ. This transformation retains the commutation relations between φ
and θ of the same kind unchanged, while fields of different sectors always commute. Hence,
the identity between fermionic and bosonic fields in the spinful case reads

ψR/L,σ(x) =
1√
2πa

e±ikF xe
− i√

2
(±φc(x)−θc(x)+σ(±φs(x)−θs(x))

, (3.11)

where σ = ±1 for spin up or down, and after taking the thermodynamic limit7.
Inserting the mapping into the spinless model with nearest-neighbor density-density in-

teraction we obtained from the Jordan-Wigner transformation of the Heisenberg model,
equation (3.2), it is argued that all oscillatory terms average out to zero, leaving

Hspinless = v

∫
dx

2π

(
K(∂xθ(x))2 +

1

K
(∂xφ(x))2

)
, (3.12)

where v is the renormalized velocity and K the Luttinger interaction parameter. This Hamil-
tonian is the low energy fixed point of a whole class of one-dimensional models, apart from
the antiferromagnetic Heisenberg model from which we derived it.

For spinful fermions, we to start from the Hubbard-model, equation (3.3), which leads
to a very similar result, namely

Hspinful =

∫
dx

2π

∑
i=c.s

vi

(
Ki(∂xθi(x))2 +

1

Ki
(∂xφi(x))2

)
(3.13)

with separate v and K for spin and charge degrees of freedom. This Hamiltonian decomposes
into an independent sum of a spin part and a charge part, which is known as spin-charge
separation. This is again true for the exactly linear spectrum. Allowing for small quadratic
deviations actually couples the degrees of freedom.

7Klein-factors are dropped from now on
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∆k=2k
F

Figure 3.2: Typical Umklapp process at half filling: two electrons can be transferred from
one Fermi-point to the other when their momentum matches a reciprocal lattice vector

These two models are obviously translationally invariant, implying momentum is a con-
stant of motion. The original models were defined on a lattice where momentum is conserved
only modulo a reciprocal lattice vector. This information is lost by going to the continuum
limit, but by some effort important lattice effects can be reintroduced.

Clearly processes that are allowed by the symmetries of the original model must not
vanish if the spatial average is done correctly. In particular, all processes that are allowed by
the operators for a discrete translation by a multiple of a lattice constant, Ta, inversion P,
or time reversal T will contribute in the end. Of special interest for transport calculations
are those of these processes which alter the scattering rates, i.e. do not commute with the
respective currents. It can be shown8 that only those processes degrade the currents, that
change the total number of right- and left-moving particles.

In the case of the spin chain, they are to leading order of the form9

HU
nm = gU

nm

∫
dx

e i∆knmx
n∏
j=0

ψ
†
R(x + ja)ψL(x + ja) + h.c.


=

gU
nm

(2πa)n

∫
dx
(
e i∆knmxe i2nφ(x) + h.c.

)
(3.14)

which means that n spinons are transferred from one Fermi-point to the other, matching m
units of lattice momentum G. Each process depends on the magnetization through

∆knm = n2kF −mG (3.15)

and is exponentially suppressed when moving away from the respective commensurate filling.
For the spinful system, the argumentation works analogously, but it must be considered

that the transferred particles carry charge and spin. Thus one obtains

HU
mncns =

gU
mncns

(2πa)nc

∫
dx
(
e i∆kmncns xe i

√
2(ncφc(x)+nsφs(x)) + h.c.

)
, (3.16)

for the process where nc particles are transferred matching m units of lattice momentum,
and ns is the number of spin fields that are transferred thereby, typically one for odd numbers
of electrons and zero for even numbers. The momentum mismatch is now controlled by the
Fermi-momentum, since real electrons are described.

These so-called Umklapp-processes contain the relevant physics of the lattice symmetries
that are needed for a bosonization description of transport theory. It will be shown in the
subsequent sections that these processes and their hidden conservation laws have a strong
impact on transport coefficient and give rise to interesting phenomena.

8see [16]
9here finite magnetic field is assumed. For odd n, time-reversal symmetry forbids terms like that and one

has to go to the next higher order
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3.2 Magnetothermal effects in Heisenberg chains

In this section the antiferromagentic spin-1/2 Heisenberg chain is modeled by an effective
low-energy description in terms of a bosonic Hamiltonian, including effects of weak disorder
and Umklapp scattering close to half filling (which corresponds to zero magnetic field). From
this, the thermal conductivity is derived with the memory matrix formalism and the effects
of the hidden conservation law are studied. By using exact coupling constants from Bethe-
Ansatz calculations, the theory is formulated in physical units, allowing for direct comparison
with experimental data from CuPzN.

3.2.1 Model Hamiltonian

As a model Hamiltonian for the spin chain compound, the antiferromagnetic Heisenberg
model in the presence of a magnetic field and with weakly disordered exchange couplings
δJi � J shall be used. The original Hamiltonian,

H = −
∑
i

(J + δJi)Si · Si+1 + gLµBB
∑
i

Szi , (3.17)

which is similar to equation (3.1) plus weak deviations δJi of the spin-couplings, where gL is
the Landé g-factor and µB the Bohr magneton, is mapped to Jordan-Wigner fermions and
then translated to a bosonic Hamiltonian.

It is useful to split the effective low-energy Hamiltonian of the system into three parts

H = HLL +HU +Hdis, (3.18)

namely the Luttinger liquid part HLL, the Umklapp part HU, and the disorder part Hdis.
Explicitly, the first one reads

HLL = v

∫
dx

2π

(
K(∂xθ(x))2 +

1

K
(∂xφ(x))2

)
, (3.19)

where ∂xφ(x) denotes fluctuations of the magnetization in x-direction and ∂xθ(x) is the
conjugate variable, with the commutation relation

[φ(x), ∂x ′θ(x ′)] = iπδ(x − x ′). (3.20)

The generic Luttinger liquid parameters K and v for the low energy fixed point of the spin-
rotationally invariant Heisenberg model are known to be K = 1/2 and v = π/(2)Ja.

For the Umklapp Hamiltonian, only the dominant process is kept, which close to half
filling is the 4kF term

HU =
g

(2πa)2

∫
dx
(
e i∆kxe i4φ(x) + h.c.

)
. (3.21)

For later use, the first part will be called HU,1 and its hermitian conjugate HU,2. Notice
that such a term transfers two spinons from one Fermi point to the other while the lattice
absorbs the excess momentum 4kF = 2π/a. Away from half filling, this contribution to the
Hamiltonian oscillates with ∆k = 4kF −2π/a = 4π 〈Sz 〉 /a, causing it to be suppressed expo-
nentially for v∆k � kBT . Exactly at half filling, which corresponds to ∆k = 0, the Umklapp
scattering is a marginally irrelevant operator whose strength decreases logarithmically with
temperature.
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The form of the disorder part of the Hamiltonian,

Hdis =
1

2πa

∫
dxη(x)

(
ie i2φ(x) + h.c.

)
, (3.22)

has been derived in [68], it describes the scattering from one Fermi point to the other with
η(x) ∼ δJ . Here, the disorder is assumed to be uncorrelated with 〈η(x)η(x ′)〉 = Ddisδ(x−x ′),
where Ddis is the disorder strength. In the same paper the authors showed that the interaction
leads to a strong renormalization of disorder. To avoid this effect, temperature is assumed
to be sufficiently high, such that the renormalized disorder remains weak, δJi �

√
JT .

3.2.2 Memory Matrix

The first step for the calculation of the heat conductivity with the memory matrix formalism
is the identification of the slow modes of the system. This is easily achieved by seeing that
the so-called pseudomomentum related to the 4kF -scattering, Q = JH+v∆k/(4K)Js , where
the heat current is defined as

JH = v2

∫
dx∂xθ(x)∂xφ(x) (3.23)

while the spin-current

Js =
vK

π

∫
dx∂xθ(x), (3.24)

is a conserved quantity of the clean system HLL +HU. These definitions correspond directly
to the lattice conductivities for free particles, equations (1.14) and (1.17). Interaction
contributions to the heat current are not taken into account, because they do not contribute
to the conductivities to leading order in the interactions.

The conservation of Q can be seen by calculating the commutator of the pseudomo-
mentum with the Hamiltonian, [Q,HLL +HU], which vanishes. Both constituents of Q are
constants of motion in the Luttinger liquid, since it is Galilei invariant, so only the effect of
HU must be considered.

Acting on the heat current, which is the momentum operator P times v2, the commutator
gives v2∆k , since in the process a momentum of ∆k is generated,

[JH, HU,1] = v2 [P,HU,1] = v2∆kP. (3.25)

The spin-current on the other hand is changed by −4v as two spinons with velocity v are
scattered into states with velocity −v ,

[Js , HU,1] = −4vJs (3.26)

Thus, in the commutator of the pseudomomentum Q with HU the contributions from heat-
and spin-current cancel exactly. This conservation law is broken when weak disorder is added,
making both currents slowly decaying modes and therefore suitable candidates to set up the
operator space for the memory matrix. In the following, JH is chosen to be the first mode
and Js the second. For more transparency, matrix elements are labeled with H and s, which
stands for the respective number of the mode.

The heat conductivity can be obtained by applying the scheme described in section 1.5 in
a straightforward way. This will give the magnetic part of the heat conductivity of one spin
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chain to leading order in the Umklapp coupling constant g, which is the small parameter of
the perturbation theory.

As explained in [40], in the presence of marginal operators the coupling constant is
renormalized in a renormalization group flow. Correlation functions can be calculated with the
fixed point Hamiltonian and the renormalized coupling constants, but logarithmic corrections
must be added to capture the influence of the marginal operators on the correlation functions
at high temperatures. Therefore, calculating the correlation functions to leading order in g,
i. e. without logarithmic corrections, is equivalent to calculating them in leading order in
1/ ln(T/J) and 1/ ln(B/J). Provided that the used slow modes are the relevant ones, the
resulting heat conductivity should be accurate, and additionally it is a lower bound to the
real value in any case [16].

Since the memory matrix approach is perturbative, it is legitimate to separate the con-
tributions from disorder and Umklapp scattering, because cross contributions are always
subleading. In practice, for this reason, the heat conductivity can be written as

κmag ≈
1

T

(
χ
(
M̂U + M̂dis

)−1
χ
)

1,1
, (3.27)

with the memory matrix M̂ as an independent sum of the contributions from disorder and
Umklapp scattering, and the matrix of susceptibilities as defined in equation (1.53).

Since in this context the χ̂-matrix is diagonal, only the 1, 1-component is needed to
calculate the heat conductivity from equation (3.27). As shown in [16], one obtains easily

χ1,1 =
πvT 2

3
. (3.28)

The memory matrix is constituted, as already pointed out, by the zero energy limit of
the imaginary parts of the correlation functions of the time-derivatives of the respective
currents, see equation (1.60). These derivatives are obtained in the usual manner from
the commutator with the Hamiltonian, where for the Umklapp part HU is used and for the
disorder part Hdis. To distinguish these, the short notation ∂U

t , ∂
dis
t is used for the respective

parts of the total time derivative. One obtains after a short calculation, which can be found
in appendix B.1 in equations (B.5) and (B.4), for the Umklapp parts

∂U
t JH =

v∆k

4K
∂U
t Js =

v∆k

4K
i

4vKg

(2πa)2

∫
dx
(
e i∆kxe i4φ(x) − h.c.

)
(3.29)

and, see equations (B.6) and (B.7), for the disorder parts

∂dis
t Js = −

vK

πa

∫
dxη(x)

(
e i2φ(x) + h.c.

)
∂dis
t JH =

v2

2a

∫
dxη(x)

(
∂xe

i2φ(x) − h.c.
)
. (3.30)

With these expressions the correlation functions between the respective time-derivatives of
currents must be calculated. Due to equation (3.29) for the Umklapp part of the memory
matrix only one correlation function is involved:

M̂U =

((
v∆k
4K

)2 − v∆k
4K

− v∆k
4K 1

)
lim
ω→0

1

iω
Im

∫
dt
(
e−iωt − 1

) 〈
∂U
t Js ; ∂

U
t Js
〉

︸ ︷︷ ︸
Γ (B,T )

, (3.31)
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and the latter integral shall be called Γ (B,T ).
Since the correlation functions put into the integrand are time-ordered Green’s functions,

in principle the obtained correlation function
〈
∂U
t Js∂

U
t Js
〉

(ω) is also a time-ordered one.
What actually is needed to calculate the conductivity is the corresponding retarded correlation
function, which is obtained by doing the Wick rotation τ = it + asign(t), [79]. For the
correlation functions used here, this is equivalent to

χR(t, x) = −2θ(t)Im
(
χT (x, t)

)
, (3.32)

where χR denotes the retarded and χT the time-ordered correlation function10.
The existence of a hidden conservation law is reflected in the fact that the matrix in

equation (3.31) has a zero eigenvalue. Inserting the above expression for the spin current,
one obtains

Γ (B,T ) =

= −
16v2K2g2

(2πa)4

∫
dt
(
e−iωt − 1

) ∫
dx

∫
dx ′
〈(
e i∆kxe i4φ(x) − h.c.

)(
e i∆kx ′e i4φ(x ′) − h.c.

)〉
=

16v2K2g2

(2πa)4

∫
dt
(
e−iωt − 1

) ∫
dx

∫
dx ′e i∆k(x−x ′)

〈
e i4φ(x)e−i4φ(x ′)

〉
. (3.33)

It can be shown by symmetry arguments11 that the integral in the last line for ω � 1 is
approximately equal to

−ω
∫

dt

∫
dx

∫
dx ′te−i∆k(x−x ′)Im

(〈
e i4φ(x)e−i4φ(x ′)

〉)
. (3.34)

The 4kF correlation function in the latter line can be transformed by use of the standard
identity12 〈

e
P

j Ajφ(rj )+Bjθ(rj )
〉

= e
− 1

2

D
(
P

j Ajφ(rj )+Bjθ(rj)
2
E

(3.35)

to a function of the elementary φ-φ correlation function, which is known, namely〈
e i4φ(x)e−i4φ(x ′)

〉
= e16〈φ(x)φ(x ′)〉. (3.36)

Inserting this into equation (3.33), the integral can be done by contour integration,as explicitly
shown in appendix B.2). The resulting Umklapp memory matrix then is

M̂U =

((
v∆k
4K

)2 − v∆k
4K

− v∆k
4K 1

)
−g2v∆k2

8π2
n′B

(
v∆k

2

)
(3.37)

with n′B the derivative of the Bose function. Calculating the disorder part of the memory
matrix is a bit less cumbersome: In the first place, it must be diagonal since the time-
derivatives of the heat- and spin current contain different numbers of fields. Secondly, the
uncorrelated disorder makes the correlation function purely local. The same arguments apply

10for more detail see [40].
11see B.2
12for a proof see e.g. [40]
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as for the Umklapp memory matrix, and one obtains

Mdis
ss = lim

ω→0

1

iω

v2K2

π2a2
Im

∫
dt
(
e−iωt − 1

) ∫
dx

∫
dx ′
〈
η(x)η(x ′)

〉
×
〈(
e i2φ(x) + h.c.

)(
e i2φ(x ′) + h.c.

)〉
≈ lim
ω→0

1

iω

v2K2

π2a2
Im

∫
dt(−iωt)

∫
dx

∫
dx ′Ddisδ(x − x ′)e4〈φ(x)φ(x ′)〉 (3.38)

for the disorder spin current relaxation rate and

Mdis
HH ≈ lim

ω→0

1

iω

v4

4π2a2
Im

∫
dt(−iωt)

∫
dx

∫
dx ′Ddisδ(x − x ′)∂x∂x ′e4〈φ(x)φ(x ′)〉 (3.39)

for the disorder heat current relaxation rate. These integrals can again be evaluated elemen-
tary, which is done in B.3. The resulting disorder memory matrix is

M̂dis =

(
T 0

0 2
π2T

)
vπDdis

8a
. (3.40)

Like M̂dis, the matrix of susceptibilities χ must be diagonal, thus the heat conductivity is
governed by the 1, 1-component of the inverse memory matrix solely. Being only 2× 2, the
inverse can be calculated directly, giving

M−1
HH =

MU
ss +Mdis

ss(
MU
HH +Mdis

HH

)
(MU

ss +Mdis
ss )− MU

sH
2 (3.41)

Together with the susceptibility of the heat current13 χHH = πvT 2/3, a closed expression
for the heat conductivity can be derived.

3.2.3 Results

The magnetic heat conductivity turns out to be only a function of the scaling variable h =

µBgB/kBT and the dimensionless parameter

α(T ) =
Ddisv

2

(kBT )2g(T )2a
(3.42)

which measures the relative strength of the (renormalized) disorder and Umklapp scatterings.
The latter contains the coupling constant g(T ) for the 4kF -Umklapp process, which is an
unknown parameter within this theory. However, the problem of Umklapp scattering in the
XXZ-chain, which contains the isotropic Heisenberg chain as a limiting case, can be treated
by Bethe-Ansatz, giving an analytic formula for the coupling constant. Lukyanov did such
a study on a XXZ-chain, using a slightly different notation [80], with the result that his
coupling constant14 g̃, which is related to g by

g(T ) =
π2Ja

2
g̃(T ). (3.43)

13see B.4
14in his notation
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fulfills the transcendental equation

1

g̃
+

ln(g̃)

2
= ln

(
e

1
4

+γ
√

π
2 J

T

)
(3.44)

where γ = 0.5772... is the Euler constant. Within the precision of this calculation g̃(T )

turns out to be ≈ 1/ ln(J/T ), but to include subleading corrections the solution of equation
(3.44) shall be used to obtain g(T ).

Using the variables introduced above, the normalized heat conductivity reads

κmag(B,T )

κmag(0, T )
=

π3α(T )− 2π2h2n′B(h)

π3α(T )− (2π2 + 4h2)h2n′B(h)
(3.45)

with nB(h) = 1/(eh − 1). This result is valid in the scaling limit of weak disorder and
1/ ln(B/J), 1/ ln(T/J) � 1. It gives a lower bound to the exact heat conductivity of the
model system and should provide, for the sensible choice of slow modes, an accurate approx-
imation to the former. As can be seen in figure 3.3, a dip is predicted to evolve in the field
dependence of the heat conductivity at B ∼ T .
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Figure 3.3: Field dependence of the normalized heat conductivity as a function of rescaled
field h = gµBB/kBT for various α. With decreasing α the dip gets broader and deeper

The limiting behavior of the field dependence of the thermal conductivity can be easily
extracted from (3.45). For α small compared to h2n′B(h), i.e. weak disorder and not too
strong fields15, one finds

κmag(B,T )

κmag(0, T )
≈

1

1 + 2h2

π2

. (3.46)

This implies a strong reduction of κmag of order 1 for µBB ∼ kBT as long as the renormalized
disorder is sufficiently weak, α(T ) � 1. In the opposite limit, where α(T ) is the dominant
contribution in the denominator, one obtains by a Taylor series for small h a small suppression
of κmag as

κmag(B,T )

κmag(0, T )
≈ 1 +

4n′B(h)h4

π3α(T )
, (3.47)

15of course for h →∞ the normalized heat conductivity goes to 1 for any fixed α since Umklapp scattering
is exponentially suppressed
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Figure 3.4: Experimental thermal conductivity of CuPzN by A. Sologubenko et. al. ([69]),
expressed as function of rescaled field h = gµBB/kBT for some temperatures

which gives rise to a minimum at h ≈ 3.83, independently of α, where κmag/κ
0
mag approxi-

mately takes the value 1− 0.63/α(T ).
The deeper reason for this structure in the suppression of the heat conductivity is the

conservation of the pseudomomentum Q = JH + v∆k/(4K)Js in the Umklapp Hamiltonian.
Exactly at the commensurate point the pseudo-momentum is equal to the heat current,
which therefore can be altered solely by disorder scattering. Then, moving away from the
commensurate filling, JH is no longer identical to the pseudo-momentum, and thus less
protected from decay due to Umklapp processes. Finally, at large fields, the Umklapp process
is thermally suppressed, leading again to disorder dominated behavior.

3.2.4 Comparison with Experiments

The obtained theoretical results contain only one free parameter, namely κmag(0, T ). In a
suitable experimental realization of a Heisenberg chain, this parameter could be fixed by a
zero-field measurement.

One such realization is given by the spin chain compound copper pyrazine dinitrate
Cu(C4H4N2)(NO3)2, abbreviated by CuPzN, whose structural and magnetic properties are
well-studied. Its relatively small exchange coupling of only J/kB ≈ 10.3 K [81, 82] allows
to polarize the system with moderate magnetic fields of Bc = 15 T, which is easily accessi-
ble experimentally. CuPzN has an orthorhombic structure with lattice constants a = 6.712

Å, b = 5.142 Å, and c = 11.73 Å at room temperature [83]. The chains of Cu2+ spins
S = 1/2 run along the a axis. Inelastic neutron scattering, magnetization, and specific heat
measurements have confirmed that CuPzN is very well described by the antiferromagnetic
Heisenberg model with nearest-neighbor couplings, equation (3.1) [81, 82, 84]. The one-
dimensional nature of the spin interaction is reflected by a very low ordering temperature,
TN = 0.107 K, and therefore the ratio of interchain J ′ to intrachain J couplings is estimated
to be tiny, |J ′/J| ≈ 4.4× 10−3 [85].

The experimentally accessable heat conductivity is constituted by contributions from
phonons and spinons, but the purely phononic contribution κph(T ) is assumed to be inde-
pendent of the magnetic field, whilst the spinon part κmag(B,T ) strongly depends on it. This
was verified in [69] by measuring the field dependence of the heat conductivity parallel and
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perpendicular to the chains. Thus, as argued there, the spinon part of the heat conductivity
can be extracted by subtracting the zero-field value, giving the field dependend part of the
magnetic heat conductivity

∆κmag(T,B) = κ(T,B)− κ(T,B = 0) = κmag(T,B)− κmag(T,B = 0). (3.48)

Unfortunately the measurement of κmag(T, 0) is obscured by a large phonon background, but
as a crude estimate16, κmag ≈ 3.5T 2 WmK−3, can be obtained from the behavior at large
fields, which corresponds to a heat conductivity per spin chain of κmag ≈ 2.110T 2 WmK−3.
For the four lowest studied temperatures, T = 0.37, 0.66, 0.96, 1.48 K, this yields for the di-
mensionless parameter α(T ) ≈ 0.52, 0.12, 0.049, 0.016, respectively. These estimates allow
a quantitative comparison between theory and experiment.

Qualitatively, there is an overall agreement between the theoretical curves shown in figure
3.3 and the experimentally obtained data depicted in figure 3.4 in the same units. However,
looking at the details two main discrepancies are observed. The experimentally measured
κmag(B,T )/κmag(0, T ) shows a pronounced dip at h = gµBB/(kBT ) ≈ 3, whereas the
dip in the theoretical curve is rather located around h ≈ 4 for large α and at even higher
values of h for the α corresponding to the studied temperatures. Secondly, the magnitude
of the suppression is strongly overestimated by the theoretical prediction of more then 50%

reduction, compared with only 10% in the experiment.
As an explanation for such differences, one should note that for the temperatures and

magnetic fields shown in figure 3.4 both subleading effects of order ln(B/T )/ ln(J/T ) or
ln(ln(J/T ))/ ln(J/T ) and band-curvature effects17, that have been neglected in the calcula-
tion, can become important. For example, g̃2 calculated to leading order is for J/T = 30 a
factor 2.5 larger than the value obtained from equation (3.44).

More importantly, the model Hamiltonian (3.18) apparently does not correctly capture
all aspects of the physics of CuPzN samples. Especially, modeling the disorder by equation
(3.22) might not be appropriate. This was also the conclusion of [69] from an analysis
of the heat conductivity at large fields B ∼ 15 T in the quantum critical regime where the
magnetization is close to saturation. Indeed, for other types of disorder rather than Gaussian,
the matrix (3.40) will have a different structure which will affect the quantitative predictions,
while the qualitative picture will remain unmodified. For example, it might be necessary
to take the interplay between forward scattering and interactions into account. Forward
scattering affects transport at B = 0 only weakly but it can reduce the Umklapp dip in κmag

considerably as the suppression of κmag at larger fields relies on momentum conservation.
A more realistic modeling of disorder should also account for the possibility that defects

might cut the one-dimensional chains in long pieces, [45, 69], In such a situation, one has
also to model how phonons or weak inter-chain interactions couple heat into and out off such
long chain segments.

3.3 Violation of Wiedemann-Franz Law in Luttinger Liquids

The second example of transport properties discussed here are thermoelectric-electric effects
in one-dimensional correlated metals. For several reasons this setting is much more complex
than the preceding example of heat transport in spin chains: the bosonization description of
a metal involves four bosonic fields instead of two for the spin chain. This already increases

16see [69] for details
17the overall downturn of κmag in large fields
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the number of slow modes that must be taken into account, since in the pure model without
Umklapp scattering and disorder the spin momentum as well as the charge momentum is a
conserved quantity. Equivalently the reason is that the heat current of the Luttinger liquid
is not parallel to the total momentum because spin and charge excitations have different
velocities.

Secondly, as explained before, the strongest effects can not be found with the simplest
Umklapp process which does not alter the spinon momentum. Instead, the more complicated
third-filling commensurate point must be used, or an additional effect which mixes spinon and
charge momentum also at half filling has to be added to the description. The prerequisites
for the latter are given by band curvature, which breaks the Galilei-invariance of the system
and degrades also the spin part of the heat current. This further complications arise due to
the change in total particle number in a non-linear spectrum at finite temperatures, which
must be balanced by an additional chemical potential shift.

The final point lies in the different question asked in the two problems: For the spin chain
it is experimentally possible to extract the spinon part of the heat conductivity from the
phonon background by arguing that the phonon system doesn’t change with the magnetic
field. For the one-dimensional correlated metal it is impossible to separate the phonon
heat conductivity from the electronic one, since the Fermi momentum, which determines
the Umklapp scattering here is tuned by the electronic band filling, which experimentally is
harder to control. The phonon heat conductivity must be included because it is a relevant
part of the physical effect that shall be described: in metals typically the main contribution
to the heat conductivity comes from the phonon system, which hence dominates this part
of the Wiedemann-Franz ratio as well as the thermoelectric-electric figure of merit. For this
reason, phonons are also included into the calculation, making the memory matrix a four by
four matrix with correspondingly many independent elements, from which not only the bare
heat-conductivity, but also the Seebeck coefficient and the electrical conductivity must be
derived.

3.3.1 Model System

The model system shall describe the low energy theory of a one-dimensional metal, which is
described by the Luttinger liquid Hamiltonian, embedded into a three-dimensional solid with
its lattice vibrations. For this system, interactions between electrons and phonons as well as
Umklapp and disorder scattering are added as perturbations. Band curvature effects might
also be included.

The total Hamiltonian of the system,

H = HLL +Hph +HU +Hdis +Hc−ph +HBC (3.49)

is the sum of all these effects, where the first two terms,

HLL =
∑
i=c,s

∫
dx

2π

(
Ki(∂xθi(x))2 +

1

Ki
(∂xφi(x))2

)
, (3.50)

with the parameters for spin and charge part introduced earlier, and

Hph =

∫
dx

2π

(
(πP (x))2 + v2

p (∇q(x))2
)

(3.51)

constitute the low energy part for the spinon, charge and the displacement fields of the
lattice ions. The phonon displacement field q(x) obeys, as well as the Luttinger liquid fields,
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equation (3.8), bosonic commutation relations with its conjugate momentum P ,[
Pα(r), qβ(r ′)

]
= iδα,βδ(r − r ′). (3.52)

The interaction between the lattice vibrations and the Luttinger liquid is, in analogy with the
three-dimensional metal explained in chapter 2, mediated by the change in hopping ampli-
tudes. From this, a direct coupling term between the charge field φc(x) and the displacement
field q(x) with the form

Hc−ph = gN

∫
dx(∂xφc(x))(∂xq(x)) (3.53)

emerges, where gN is the coupling constant for normal processes. The linear coupling of the
phonons to the spin fields at vanishing magnetic field is forbidden by spin inversion symmetry.
In principle, a higher order coupling between the spin field and phonon fields exists, but it is
less important for the transport problems studied here and therefore neglected.

Besides the normal processes, also the coupling constant of Umklapp scattering as in-
troduced in section 3.1 is affected by distortions of the lattice from phonons. For small
displacement of the ions, the coupling constants with phonons g̃U

mncns can be expanded in a
Taylor series around the rigid-ions value gU

mncns , giving

g̃U
mncns = gU

mncns (1 + α∂xq(x)), (3.54)

where α is the series coefficient.
Inserting the new coupling constant, the Umklapp Hamiltonian for Luttinger liquids in

the absence of phonons, equation (3.16), to leading order in the displacement field changes
to18

HU
mncns =

gU
mncns

(2πa)nc

∫
dx
(

(1 + α∂xq(x)) e i∆kmncns xe i
√

2(ncφc(x)+nsφs(x)) + h.c.
)
. (3.55)

Notice that such a term allows Umklapp processes combined with phonon scattering. The
Umklapp processes with involved phonon at first glance seem to be subleading to the conven-
tional ones. However, since the phonons in typical one-dimensional models are the slowest
relevant modes, and the Umklapp processes away from commensurate filling are exponentially
suppressed ∼ v∆k/T , the range of momentum-mismatches where phonon-assisted Umklapp-
scattering affects the conductivities is bigger than for pure Umklapp-processes, making the
latter subleading to the former for some possible fillings. In addition, taking into account
processes to the same order in the whole matrix provides the valuable cross-check of the
eigenvalues, of which one must vanish due to the conservation law and the rest must be
positive for each order separately

The coupling constants gU
mncns and momentum mismatch ∆kmncns from the respective

commensurate point are, of course, different for each combination of transferred fields nc
and ns , and the latter a function of the band filling.

As in the case of Umklapp scattering in Heisenberg chains, the Hamiltonian for Umklapp
scattering for any commensurate point has a hidden conservation law, which leads to a
singular memory matrix for any choice of slow modes. This conservation law in a physical
system is violated by impurities, which here again are modeled by Gaussian disorder. The

18see [16]
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effect of Gaussian disorder on thermal transport in Luttinger liquids has been studied before
by Li and Orignac [15], who modeled the weak backscattering due to disorder as

Hdis =
1

πa

∫
dxη(x)

(
e i
√

2φc(x) cos
(√

2φs(x)
)

+ h.c.
)
, (3.56)

where the Gaussian correlated impurity potential η(x) fulfills〈
η(x)η(x ′)

〉
= Ddisδ(x − x ′), (3.57)

and Ddis is the disorder strength. In principle, the phonons are also affected by the impurity
potential.

However, a phonon with small momentum has a very long wavelength, which locally is
a weak distortion of the lattice. If the impurity is a part of this lattice, and hence moves
together with the other ions in a vibrational mode, the coupling between phonon and impurity
vanishes for small phonon momenta, and the phonons mean free path diverges like Lq ∼ q−4

in the limit q → 0, see [1]. Thus, phonon disorder scattering is ineffective to degrade
a thermal current, and the heat conductivity diverges in a phonon system with no other
scattering mechanism.

Here, only the disorder scattering of charge and spin fields is taken into account, and
the phonon heat current is degraded indirectly via the normal processes and the disorder
scattering of the Luttinger liquid fields.

Indeed, this treatment of the phonon impurity scattering is not completely correct, since
it describes the scattering of the Luttinger liquid fields from fixed impurities, while in a
real system the impurities are shifted together with their surrounding by lattice vibrations.
If implemented correctly, the same situation as for phonons scattering directly from point
defects is restored, and the mean free path of the low frequency phonons diverges again.

To describe the dissipation of the phonon momentum completely, one must go beyond the
effects discussed here, which can become quite complicated. In this context, the scattering
from fixed impurities is used anyway, as an easy approximation to the disspation of the
phonon heat current. However, one has to keep in mind that this doesn’t reflect the physical
scattering mechansim.

At even commensurate fillings, the Umklapp Hamiltonian has another conservation law
since only charge fields are transferred. Thus, the spinon contribution to the heat current
can not be degraded by these Umklapp processes. This symmetry results in a much weaker
suppression of the heat conductivity than at odd commensurabilities, which is the signature
of the perfect spin-charge separation in the Luttinger liquid model. In a real one-dimensional
model, the dispersion is not exactly linear, such effect can be modeled within the bosonization
language as a perturbation which mixes the spin and charge sector, as shown by Haldane [39].
Exactly at half filling, using the typical tight-binding cosine dispersion, the spectrum is truly
linear, and thus there would be no mixing of charge and spin fields. However, this particle-
hole symmetry of the band is also not realized in the physical system, since next-nearest
neighbor hoppings violate it and generate a small curvature even at half filling.

Translated into the notation used here, the Haldane band-curvature Hamiltonian reads

HBC = −
1

6
√

2m

∫
dx
(

(∂xφc(x))3 + 3(∂xφc(x))
(

(∂xφs(x))2 + (∂xθs(x))2 + (∂xθc(x))2
)

+6(∂xφs(x))(∂xθs(x))(∂xθc(x)))− δµ
∫

dx∂xφc(x), (3.58)
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where m is the band curvature parameter. Here an extra correction term with a temperature
dependent chemical potential δµ has been included to rebalance the particle number, which
is independent of temperature only for an exactly linear spectrum. It is calculated from the
change of particle number due to band curvature to leading order in 1/m,

〈δN〉BC =
1

π

∫
dx 〈∂xφc(x)〉BC ≈

1

π

〈∫
dx∂xφc(x)

(
−
∫

dx ′dτhBC

)〉
=

1

π

(
−
∫

dxdx ′dτ
〈
∂xφc(x)∂x ′φc(x ′, τ)

〉
δµ

−
1

2
√

2m

∫
dxdx ′dτ

〈
∂xφc(x)∂x ′φc(x ′, τ)

〉
×
∑
i=c,s

(〈
∂x ′φi(x

′)∂x ′φi(x
′)
〉

+
〈
∂x ′θi(x

′)∂x ′θi(x
′)
〉))

, (3.59)

with hBC the density corresponding to the band curvature Hamiltonian. From this one can
read of the δµ that enforces δN = 0 directly, namely

δµ =
1

6
√

2m

∫
dx ′dτ

∑
i=c,s

(〈
∂x ′φi(x

′)∂x ′φi(x
′)
〉

+
〈
∂x ′θi(x

′)∂x ′θi(x
′)
〉)
, (3.60)

where the integrals over the local correlation functions can easily be done,

δµ =
π2T 2

12m

(
1

v2
c

(
Kc +

1

Kc

)
+

1

v2
s

(
Ks +

1

Ks

))
. (3.61)

Including such contribution to the band curvature Hamiltonian, the particle number becomes,
at least to leading order, again independent of temperature, as in the physical system.

3.3.2 Memory Matrix for the One-Dimensional Metal

The first step setting up the memory matrix for this system is again the choice of the slow
modes. It is guided by the effects that shall be described and the correlation functions one
wants to obtain from it.

For the calculation of the Wiedemann-Franz ratio the charge conductivity σc and the
heat conductivity κ are needed. Clearly, the charge current

Jc = vcKc(NR − NL) =
√

2vcKc

∫
dx∂xθ(x), (3.62)

must be included to calculate the charge conductivity. For the calculation of the heat con-
ductivity, the total heat current is needed, but to make the effect of Umklapp scattering
more transparent it is splitted into several modes here.

Without the phonon contribution, the Umklapp Hamiltonian conserves the pseudomo-
mentum

Qmncns =
∆kmncns
2ncvcKc

Jc + PLL, (3.63)

whose constituents are the charge current Jc and Luttinger liquid momentum

PLL = −
∑
i=c,s

(∂xφi(x))(∂xθi(x)). (3.64)
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Thus, the momentum of the Luttinger liquid PLL is chosen as the second slow mode. Dif-
ferent from the case of Heisenberg chains, the Luttinger liquid contribution to the heat
current,

JH = −
∑
i=c,s

v2
i

∫
dx(∂xφi(x))(∂xθi(x)), (3.65)

is not parallel to the momentum any more, since charge and spin excitations have different
velocities. Thus, the Luttinger liquid heat conductivity can not be obtained from the mo-
mentum alone, but JH must be included as another slow mode. Equivalently, it would be
possible to chose the spinon and charge momenta as slow modes instead of JH and PLL, and
obtain all correlation functions by collecting the contributions. The connection between the
is a simple linear transformation, there is no physical difference.

To make the heat conductivity complete, the part of momentum of the phonon system
which is parallel to the chain direction, given by

Pph = −
∫

drπP (x)∂xq(x), (3.66)

is added.
As in the precedent section, matrix elements are labeled by the corresponding mode. In

matrix notation the order is, from one to four, charge current Jc , Luttinger liquid momentum
PLL, Luttinger liquid heat current JH, and phonon momentum Pph.

The charge conductivity σc is, for the strictly linear system, simply the (1, 1)-component
of the resulting conductivity matrix σ̂, since the charge current obtained from the continuity
equation is equal to the first slow mode. If band curvature is added, the physical charge
current is modified to

Jphys
c = Jc +

1

m
PLL, (3.67)

again to leading order in 1/m. In this case an interaction contribution to the charge current
arises, since the band curvature Hamiltonian does not commute with the polarization oper-
ator, see equation (1.17). This correction must be taken into account, because it couples
different slow modes and thus generates corrections to leading order in the perturbations.

After this change, more components of the matrix of conductivities enter the physical
charge conductivity, namely

σBC
c = σ̂Jc ,Jc +

2

m
σ̂Jc ,PLL +

1

m2
σ̂PLL,PLL . (3.68)

For the heat current the corrections due to band curvature are subleading, and we can use
the free part of the heat current again. However, several elements of σ̂ contribute from the
beginning. The heat conductivity can be constructed by using the free part of the physical
heat current,

J
phys
H ≈ JH + v2

PPph, (3.69)

yielding the heat conductivity for the electrically insulated system,

κ0 =
1

T
LTT =

1

T

(
v4
P σ̂Pph,Pph + Nchainσ̂JH,JH

)
, (3.70)

which is related to the macroscopic transport coefficient LTT . Note that the phonon heat
current is obtained from the phonon momentum in chain direction, summed over three-
dimensional momenta, thus giving a heat conductivity per area. In contrast, the obtained
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conductivities for the Luttinger liquid are calculated for one chain. To combine the two, one
needs an extra factor of chain density Nchain in all Luttinger liquid conductivities to match
the units. However, this factor is trivial and does not introduce any new effect, that can not
be absorbed into coupling constants. Therefore it can be safely set to one in the following.

As explained in section 1.2, the total heat conductivity κ contains additional thermoelec-
tric corrections, because a temperature gradient in an electrically insulated system generates
automatically a particle countercurrent, namely

κ =
1

T

(
LTT −

L2
TE

LEE

)
= κ0 − TS2σc , (3.71)

with the Seebeck coefficient, defined by

S =
1

T

LTE
LEE

=
1

T

σ̂Jc ,JH +
v2
P√

Nchain
σ̂Jc ,Pph

σ̂Jc ,Jc
. (3.72)

In case of curved band, the charge conductivity in κ and S of course must be replaced by
σBC
c , leading to

SBC =
1

T

σ̂JH,Jc + 1
m σ̂JH,PLL +

v2
P√

Nchain
σ̂Pph,Jc +

v2
P

mNchain
σ̂Pph,PLL

σBC
c

, (3.73)

and
κBC = κ0 + T

(
SBC

)2
σBC
c . (3.74)

Also the generalized susceptibilities are different. Without band curvature, for the first
three modes, Jc , PLL, and JH, the generalized susceptibilities χi ,j are easily calculated similar
to equation (B.22). The susceptibility of the phonon momentum has been calculated in
[86] and can be readily used. All cross susceptibilities between Luttinger liquid fields and
phonon momentum vanish, since only local contractions appear. The complete matrix of
susceptibilities thus reads

χ̂ =
πT 2

3


6vcKc
π2T 2 0 0 0

0 1
v3
c

+ 1
v3
s

1
vc

+ 1
vs

0

0 1
vc

+ 1
vs

vc + vs 0

0 0 0 2
5
T 2

v5
P

 . (3.75)

With band curvature and for fixed particle number, the susceptibilities with leading order
band curvature correction can be calculated by

χBC
i ,j =

〈∫
dxdτji(x, 0)jj(x, τ)

(
1−

∫
dx ′dτ ′hBC(x ′τ ′)

)〉
, (3.76)

where the part including the integral is the correction and rest the hitherto susceptibility.
The calculation is carried out explicitly in appendix B.6, yielding corrections to leading order
only for two elements of the χ̂-matrix, namely for χJc ,PLL and χJc ,JH . One finds

χJc ,PLL =
πT 2

3m

(
1

v3
c

+
1

v3
s

)
, (3.77)

and

χJc ,JH =
πT 2

3m

(
1

vc
+

1

vs

)
, (3.78)
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respectively. The former result can be easily understood, remembering that the change in
particle number δN must be equal to

〈
J

phys
c PLL

〉
. Since the band curvature Hamiltonian

has been corrected to rebalance the particle number by a chemical potential, one can deduce
from this one component of χ̂ to leading order in 1/m,

0 =
〈
Jphys
c PLL

〉
= χJc ,PLL +

1

m
χPLL,PLL , (3.79)

and thus reproducing the same expression for χJc ,PLL .

3.3.2.1 Time-Derivatives of Slow Modes

In the next step the time-derivatives of the slow modes with respect to each perturbation,
or generalized forces as they are also called, have to be calculated in order to set up the
memory matrix.

Starting with the disorder Hamiltonian, one obtains

∂dis
t Jc = i

2vcKc
a

∫
dxη(x)

(
e i
√

2φc(x) − h.c.
)

cos(
√

2φs(x)) (3.80)

for the time-derivative of the Luttinger liquid part of the charge current,

∂dis
t PLL =

1

πa

∫
dxη(x)∂x

(
cos
(√

2φs(x)
)(
e i
√

2φc(x) + h.c.
))

(3.81)

for the Luttinger liquid momentum, and

∂dis
t JH =

1

πa

∫
dxη(x)

(
v2
s

(
∂x cos

(√
2φs(x)

))(
e i
√

2φc(x) + h.c.
)

+ v2
c cos

(√
2φs(x)

)
∂x

(
e i
√

2φc(x) + h.c.
))

(3.82)

for the heat current. It is not necessary to take into account the phonon momentum in the
disorder scattering, since it is known that the heat current of three-dimensional phonons can
not be degraded by scattering from point defects, [1].

The time-derivatives from Umklapp scattering are

∂U
t Jc = −i

2πncvcKcg
U
mncns

(2πa)nc

∫
dx(1 + α∂xq(x))

(
e i∆kxe i

√
2(ncφc(x)+nsφs(x)) − h.c.

)
,

∂U
t PLL =

gU
mncns

(2πa)nc

∫
dx(1 + α∂xq(x))

∑
i=c,s

(−π)
(
e i∆kx

(
∂xe

i
√

2niφi (x)
)
e i
√

2n̄iφī (x) + h.c.
)
,

∂U
t JH =

gU
mncns

(2πa)nc

∫
dx(1 + α∂xq(x))

∑
i=c,s

(−πv2
i )
(
e i∆kx

(
∂xe

i
√

2niφi (x)
)
e i
√

2n̄iφī (x) + h.c.
)

∂U
t Pph =

gU
mncns

(2π)nc

∫
dx∂x

(
e i∆kxe i

√
2(ncφc(x)+nsφs(x)) + h.c.

)
α∂xq(x). (3.83)

From these, the conserved currents of the Umklapp Hamiltonian can be derived. In the
case of no involved phonon, we already know that the pseudomomentum Qmncns , equation
(3.63) is conserved, but with phonons it is less obvious. Consider one unit of Luttinger
liquid momentum scattered by an one-phonon Umklapp process. The change in momentum
∂U
t PLL can be compensated by adding π units of phonon momentum, as can be seen by
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evaluating the derivative of the product in the last line of equation (3.83). However, this
generates a second term from the derivative of e i∆kx , which again can be canceled by adding
∆k/(2ncvcKc) units of charge current. In total, one obtains the conserved pseudomomentum
for the one-phonon Umklapp process,

Q1
mncns =

∆k

2ncvcKc
Jc + PLL + Pph. (3.84)

Additional terms coupling the two subsystems of the Luttinger liquid and the vibrational
modes arise from the normal processes, with the respective time derivatives

∂
c−ph
t Jc =

√
2vcKcπgN

∫
dx∂2

xq(x)

∂
c−ph
t PLL = −πgN

∫
dx
(
∂2
xq(x)

)
(∂xφc(x))

∂
c−ph
t JH = −πv2

c gN

∫
dx
(
∂2
xq(x)

)
(∂xφc(x))

∂
c−ph
t Pph = −gN

∫
dx
(
∂2
xφc(x)

)
(∂xq(x)) (3.85)

What is not included so far is the effect of band curvature. Here symmetry reduces
the number of finite generalized forces: The charge current Jc and the Luttinger liquid
momentum PLL commute with the band curvature Hamiltonian, as it is still Galilei-invariant.
Since no corrections from lattice distortion are taken into account in this term, also the
phonon momentum Pph commutes with HBC, so the only finite contribution comes from the
Luttinger liquid heat current JH.

The corresponding time-derivative can be obtained by making use of the way the mo-
mentum operators of each sector act on operators, namely[

P̂α, H
]

= −i∂αx H, (3.86)

where the partial derivative ∂αx acts only on fields of the respective sector, charge or spin.
Since the heat current is composed of momentum operators of the two sectors, it follows

∂BC
t JH = i [JH, HBC] = −v2

c ∂
c
xHBC − v2

s ∂
s
xHBC. (3.87)

In practice, only mixed terms can contribute, since unmixed ones are surface terms and all
fields are assumed to vanish at the infinite. Therefore, one obtains

∂BC
t JH =

v2
c − v2

s

2
√

2m

∫
dx
((
∂2
xφc(x)

) (
(∂xφs(x))2 + (∂xθs(x))2

)
+2K

− 1
2

c

(
∂2
x θc(x)

)
∂xφs(x)∂xθs(x)

)
. (3.88)

The result can be cross-checked with the symmetry between charge and spin sector, which
causes the two contributions to cancel exactly when the velocities vc and vs become equal.
This cancellation also reflects the Galilei-invariance of the total momentum, which becomes
a multiple of the heat current for equal velocities.
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3.3.2.2 Disorder Contribution

The contribution to the memory matrix from disorder affects only the Luttinger liquid fields,
since three-dimensional phonons cannot be scattered by point defects in the limit q → 0.
The exact form of the correlation functions can be taken from [15], where exactly the
same Hamiltonian has been used to calculate the transport properties of the heat and charge
currents of a Luttinger liquid by means of a memory function approach19. Also the correlation
functions involving the Luttinger liquid momentum PLL can be derived from this, because
the time-derivative of the latter has a very similar structure as the one of the heat current.
The matrix can be written, using some shorthand notations, as

M̂dis = cdisΓdis


(

4Kcvc
2πT

)2
0 0 0

0

„
Kc
v2
c

+Ks
v2
s

«
Kt

1+Kt

K2
t

1+Kt
0

0
K2
t

1+Kt
vcvsK̃ 0

0 0 0 0

 (3.89)

where Kt and K̃ are functions of the Luttinger liquid parameters, namely

Kt = Kc +Ks ,

K̃ =

(
Kcv

2
c +Ksv

2
s

)
Kt

vcvs(1 +Kt)
, (3.90)

cdis is a common prefactor of the matrix elements, also depending on these parameters
through the Gamma function Γ (x),

cdis =
(2π)Kt−1

2

(
vc
vs

)Kt Γ 2
(
Kt
2

)
Γ (Kt)

(3.91)

and the scattering rate Γdis contains the complete temperature-dependence, which is equal
for each element, i. e.,

Γdis =
Ddis

a2

(
aT

vc

)Kt
. (3.92)

3.3.2.3 Luttinger Liquid part of Umklapp Contribution

To obtain the memory matrix for Umklapp scattering, more work has to be done. Since the
structure of the matrix is quite complicated, for more transparency two sectors are explained
separately. In the pure Luttinger liquid one has to calculate a three by three submatrix which
to leading order does not involve any phonon fields. This submatrix is simply embedded into
the full four by four matrix with phonons, thus for transparency it is introduced first.

All Umklapp derivatives of slow modes have a typical common structure, namely they are
composed of exponential functions of the momentum mismatch ∆k , and the charge and the
spin fields with different derivatives of single factors with respect to the space variable. By
pulling out these derivatives, the needed correlation functions can be obtained by using again
the identity equation (3.36), which is, of course, equally valid for spin and charge fields.

19which didn’t take Umklapp scattering into account and thus misses the striking effect of hidden conser-
vation laws.
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One obtains for example for the auto correlation function of the Umklapp time-derivative
of the charge current the integral

〈
∂U
t Jc∂

U
t Jc

〉
(ω) =

(gU
mncns )

2

(2πa)2nc
8v2
cK

2
cn

2
cπ

2

∞∫
−∞

dt iωt

∞∫
−∞

dxe i∆kxe2n2
c 〈φc(x)φc(0)〉e2n2

s 〈φs(x)φs(0)〉.

(3.93)
Again, the retarded correlation function is obtained from the time-ordered by

χR(t, x) = −2θ(t)Im
(
χT (x, t)

)
. (3.94)

Apart from the different prefactors, the correlation functions from other modes differ in
the spatial derivatives, see B.7. As described there, for the Luttinger liquid momentum PLL
this additional derivative can be absorbed into the prefactor by partial integration, as done for
the spin chain. The reason why this works for the momentum and not for the heat current
JH is that the sum over the contributions from derivatives of the charge and spin sector can
be combined into a derivative of the product of the two. Thus the derivative can be shifted
to the exponential of momentum mismatch, giving for the auto correlation function of the
time-derivative of the Luttinger liquid momentum and the cross correlation function with the
time-derivative of the charge current the same result as for

〈
∂U
t Jc∂

U
t Jc

〉
(ω) times a function

of the momentum mismatch, namely〈
∂U
t PLL∂

U
t PLL

〉
(ω) =

∆k2

4v2
cK

2
cn

2
c

〈
∂U
t Jc∂

U
t Jc

〉
(ω) (3.95)

for the former, and 〈
∂U
t Jc∂

U
t PLL

〉
(ω) =

−∆k

2vcKcnc

〈
∂U
t Jc∂

U
t Jc

〉
(ω) (3.96)

for the latter.
For the heat current, the different velocities of the contributions from charge and spin part

prohibit to combine the sum into a total derivative, and hence generate more complicated
and very lengthy expressions, which are best expressed with the abbreviation for the typical
integrals

Fmn =

∫
dt iωt

∫
dxe i∆kx

(
∂mx e

2n2
c 〈φc(x)φc(0)〉

)(
∂nx e

2n2
s 〈φc(x)φs(0)〉

)
. (3.97)

With this, one obtains the correlation functions

〈
∂U
t JH∂

U
t JH

〉
(ω) = −

2
(
πgU

mncns

)2

(2πa)2nc

(
v4
c F20 + 2v2

c v
2
s F11 + v4

s F02
)

(3.98)

〈
∂U
t PLL∂

U
t JH

〉
(ω) = −

2
(
πgU

mncns

)
2

(2πa)2nc

(
v2
c F20 + (v2

c + v2
s )F11 + v2

s F02

)
(3.99)

〈
∂U
t Jc∂

U
t JH

〉
(ω) = i

4
(
πgU

mncns

)2
vcKcnc

(2πa)2nc

(
v2
c F10 + v2

s F01

)
. (3.100)

In general, one has to compute the integrals F20, F10, F11, F00, F01, and F20 as function
of the momentum mismatch and temperature. The number of integrals can be reduced by
realizing that some of the integrals can be related to each other by further use of partial
integration. One finds

F02 = −(i∆kF01 + F11) (3.101)
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and

F20 = −(i∆kF10 + F11), (3.102)

which allows to eliminate F10 and F01 from the matrix.
Further simplifications can be achieved for even Umklapp processes, where in the leading

process only charge fields are transferred, implying ns = 0. In this case all integrals Fmn with
a finite n vanish automatically, and the rest can be transformed into F00, giving

〈
∂U
t JH∂

U
t JH

〉
(ω)

ns=0
=

2
(
πgU

mncns

)2

(2πa)2nc
v4
c ∆k2F00, (3.103)

〈
∂U
t PLL∂

U
t JH

〉
(ω)

ns=0
=

2
(
πgU

mncns

)
2

(2πa)2nc
v2
c ∆k2F00, (3.104)

〈
∂U
t Jc∂

U
t JH

〉
(ω)

ns=0
= −

4
(
πgU

mncns

)2
v3
cKcnc

(2πa)2nc
∆kF00. (3.105)

Thus, the whole (sub-)matrix of Umklapp scattering rates can be expressed by one integral,
F00, which for ns = 0 can be evaluated analytically, as shown by Giamarchi [13, 87]. Here
the form as in [14] is used, which reads20

F00
ns=0
≈ 4n2

c

2 sin
(
πKcn2

c
2

)
π4a2nc−2vc

(
2πaT

vc

)n2
cKc−2

−
∣∣∣Γ (n2

cKc
4 − i vc∆k

4πT

)∣∣∣2 Γ (1− n2
cKc
2

)2

∣∣∣Γ (1− n2
cKc
4 − i vc∆k

4πT

)∣∣∣2
+
Γ
(
n2
cKc
4 − iω+vc∆k

4πT

)
Γ
(
n2
cKc
4 − iω−vc∆k

4πT

)
Γ
(

1− n2
cKc
2

)2

Γ
(

1− n2
cKc
4 − iω+vc∆k

4πT

)
Γ
(

1− n2
cKc
4 − iω−vc∆k

4πT

)
 . (3.106)

By using Euler’s reflection formula Γ (1 − z)Γ (z) = π/ sin(πz), the leading term in
frequency, which enters into the memory matrix, can be extracted as

F00
ns=0

= iω
2n2
c

π4a2n2
c−2T

(
2πaT

vc

)n2
cKc−2

∣∣∣Γ (Kcn2
c

4 + i vc∆k
4πT

)∣∣∣4
Γ
(
Kcn2

c
2

)2 , (3.107)

from which the scattering rates for all modes can be easily obtained.
As already said, this is only valid for even commensurabilities. When spin fields are trans-

ferred in an Umklapp process the integration must be done numerically for each parameter.
For this purpose as many parameters as possible must be scaled out by the right choice of
integration variables. Inserting the elementary Green’s functions B.23 into the integral Fmn
and substituting t̃ = πTt and x̃ = πTx/vc yields

Fmn = iω
(πaT )Kcn

2
c+Ksn2

s+m+n−3

v
Kcn2

c+m+n−1
c v

Ksn2
s

s am+n−3
F̃mn, (3.108)

20note that in [14] the Fourier transform of time in the definition of the memory matrix has not been ap-
proximated by the low energy linear behavior. Thus the formula holds only approximately where the expression
on the right is exact and the one on the left is not.
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Figure 3.5: Numerical values for the dimensionless parametric integrals F̃mn of the one
third filling Umklapp process with nc = 3 and ns = 1 for some values of vc∆k/πT and
interpolations. The used Luttinger liquid parameters are Kc = 0.6, Ks = 0.8, vs/vc = 2

with the dimensionless integrals

F̃mn = 2Im

 ∞∫
0

dt̃ t̃

∞∫
−∞

dx̃e iδx̃

(
∂mx̃
(

sinh(x̃ + t̃ − iε) sinh(x̃ − t̃ + iε)
)−Kcn2

c
2

)

×

∂nx̃ (sinh

(
x̃
vs
vc

+ t̃ − iε

)
sinh

(
x̃
vs
vc
− t̃ + iε

))−Ksn2
s

2

 . (3.109)

The exact value would be obtained in the limit ε → 0, practically the cutoff-dependency of
the integrals is weak, so with the result for several finite ε the limit can be taken by linear
extrapolation to zero.

For a fixed set of Luttinger liquid parameters Kc , Ks and ratio of velocities vs/vc , for
each commensurability these integral depend only on the effective momentum mismatch
δ = vc∆k/πT . Figure 3.5 shows the numerical values of the integrals F̃00, F̃11, F̃20, and F̃02

for a set of momentum mismatches δ and the parameters Kc = 0.6, Ks = 0.8, vs/vc = 2

for the one third filled band, where three charge fields and one spin field are transferred in
the Umklapp process. Between the computed points the integrals are interpolated by a cubic
spline.

With the integrals introduced up to now, the Umklapp contribution to the memory matrix
for the Luttinger liquid subsystem can be written down explicitly,

M̂U
LL = lim

ω→0

1

ω
Im

(πgU
mncns )

2

(2πa)2nc

×

8v2
cK

2
cn

2
cF00 −4vcKcnc∆kF00 −4vcKcnc

∆k

(
v2
c (F20 + F11) + v2

s (F11 + F02)
)

′′ 2∆k2F00 2
(
v2
c F20 + (v2

c + v2
s )F11 + v2

s F02

)
′′ ′′ 2

(
v4
c F20 + 2v2

c v
2
s F11 + v4

s F02

)


(3.110)
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In the limit ω → 0 the only ω dependence is the factor iω in the definition of the Fmn,
equation (3.108), which cancels with the 1/ω from the definition of the memory matrix.
Taking the imaginary part only acts on the i from the same expression, since everything else
is real.

Inserting the Umklapp integrals Fmn, the main part of the temperature dependence can
be pulled out of the matrix by defining the scattering rate

ΓU =

(
gU
mncns

)2

a2nc−1

(
aT

vc

)Kcn2
c+Ksn2

s−1

, (3.111)

and the commom dimensionless prefactor of the memory matrix elements

cU =
πKcn

2
c+Ksn2

s+1

(2π)2nc−1

(
vc
vs

)Ksn2
s

. (3.112)

One obtains for the memory matrix

M̂U = ΓUcU


4v2
cK

2
c n

2
c

T 2 F̃00 −2vcKcnc
T 2 ∆kF̃00 −2vcKcnc

∆k

(
F̃20 + F̃11 +

v2
s

v2
c

(
F̃02 + F̃11

))
′′ ∆k2

T 2 F̃00 F̃20 + F̃11 +
v2
s

v2
c

(
F̃02 + F̃11

)
′′ ′′ v2

c F̃20 + 2v2
s F̃11 +

v4
s

v2
c
F̃02

 ,
(3.113)

where ′′ denotes that a value is equal to its transposed element. In this form of the Umklapp
memory matrix, for each element the dimensionality can be read of, which is useful for later
analysis.

3.3.2.4 Phonon Part of the Umklapp Contribution

Taking also phonons into account, this block matrix remains unchanged to leading order, while
additional elements with higher order in the phonon coupling appear for cross correlations
with the phonon momentum. The resulting correlation functions are integrals similar to the
Fmn, but with additional phonon propagators 〈∂xq(x)∂x ′q(x ′)〉 in the integrand.

Here it is important to be aware that the right phonon propagator to be used is the
Green’s function of the displacement field along the chain, which is calculated in appendix
B.8

〈q(x, t)q(0, 0)〉 =
πT

vP x

(
coth

(
πT

(
x

vP
+ t − iε

))
− coth

(
πT

(
−
x

vP
+ t − iε

)))
.

(3.114)
Making use of the above equation, the needed correlation functions can be expressed in terms
of the integrals

Klmn =

∫
dt iωt

∫
dxe i∆kx

(
∂ lx 〈q(x)q(0)〉

) (
∂mx e

2n2
c 〈φc(x)φc(0)〉

)(
∂nx e

2n2
s 〈φs(x)φs(0)〉

)
,

(3.115)
which again are brought to a dimensionless form and computed numerically for a discrete set
of momentum mismatches. With the substitutions x̃ = vcx/πT and t̃ = t/πT one obtains

Klmn = iω

(
πaT

vc

)l+m+n−1(πaT
vc

)Kcn2
c
(
πaT

vs

)Ksn2
s vc
vP
K̃lmn. (3.116)
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Here the dimensionless integrals K̃lmn are given by

K̃lmn = 2Im

 ∞∫
0

dt̃ t̃

∞∫
−∞

dx̃e iδx̃

(
∂ lx̃

1

x̃

(
coth

(
vc
vP
x̃ + t − iε

)
− coth

(
−
vc
vP
x̃ + t − iε

)))

×
(
∂mx̃
(

sinh(x̃ + t̃ − iε) sinh(x̃ − t̃ + iε)
)−Kcn2

c
2

)

×

∂nx̃ (sinh

(
x̃
vc
vs

+ t̃ − iε

)
sinh

(
x̃
vc
vs
− t̃ + iε

))−Ksn2
s

2

 ,
(3.117)

where δ is the effective momentum mismatch defined before, and the limit ε → 0 must
be taken by extrapolation. The numerical integration has been done for the same set of
parameters as for the pure Luttinger liquid, the results are depicted in figure 3.6.

Some of the obtained curves show sign-changes as function of vc∆k/(πT ), which for a
scattering rate of course is forbidden. The actual physical scattering rates, i. e. the diagonal
elements of the memory matrix, listed below, are linear combinations of the Klmn, and thus
are positive. However, since the Klmn enter the memory matrix in many different linear
combinations, they are depicted separately. In terms of the integrals Klmn, the phonon
contributions to elements of the Umklapp memory matrix read

MU,P
Jc ,Jc

=

(
αgU

mncns

)2

(2πa)2nc
8π2n2

cv
2
cK

2
cK200 (3.118)

MU,P
Jc ,PLL

=

(
αgU

mncns

)2

(2πa)2nc
4π2ncvcKc(iK210 + iK201) (3.119)

MU,P
Jc ,JH

=

(
αgU

mncns

)2

(2πa)2nc
4π2ncvcKc(v2

c iK210 + v2
s iK201) (3.120)

MU,P
Jc ,Pph

=

(
αgU

mncns

)2

(2πa)2nc
4πncvcKc(∆kK200 + iK210 + iK201) (3.121)

MU,P
PLL,PLL

= −
(
αgU

mncns

)2

(2πa)2nc
2π2(K220 + 2K211 +K202) (3.122)

MU,P
PLL,JH

= −
(
αgU

mncns

)2

(2πa)2nc
2π2(v2

c (K220 +K211) + v2
s (K202 +K211)) (3.123)

MU,P
PLL,Pph

=

(
αgU

mncns

)2

(2πa)2nc
2π(∆k(iK210 + iK201)−K220 − 2K211 −K202) (3.124)

MU,P
JH,JH

= −
(
αgU

mncns

)2

(2πa)2nc
2π2(v4

cK220 + 2v2
c v

2
s K211 + v4

s K202) (3.125)

MU,P
JH,Pph

= −
(
αgU

mncns

)2

(2πa)2nc
2π
(
v2
c (K220 +K211 − ∆k iK210) + v2

s (K202 +K211 − ∆k iK201)
)

(3.126)

MU,P
Pph,Pph

=

(
αgU

mncns

)2

(2πa)2nc
(∆k2K200 + 2∆k(iK210 + iK201)− (K220 + 2K211 +K202))

(3.127)
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Figure 3.6: Numerical values for the dimensionless integrals K̃lmn needed to calculate the
scattering rates for the Umklapp process at one third filling with one phonon involved. The
used parameters are vc = 0.5, vs = 1., vP = 0.1, Kc = 0.6, Ks = 0.8. The effective
momentum mismatch becomes temperature dependent, and the values of the integrals are
scaled with high powers of temperature, which suppress the scattering strongly. Integrals
with Klmn with even l + m + n are even functions of ∆k , while iK̃210 and iK̃201 are odd
functions of ∆k .

Despite the appearing i factors in some places, the obtained correlation functions are
indeed real. The additional i comes from derivatives of the factor e i∆kx and thus is an
internal part of the integrals K210 and K201. Thus, for these two cases, one must take the
real part instead of the imaginary part of the integral to get the retarded correlation function.
Since real and imaginary parts of the elementary correlation functions of all three excitation
modes are even functions of x , integrals over an expression involving an odd number of
derivatives of them times an even function over the whole space evaluate to zero. The only
finite contribution arises from the additional odd part of e i∆kx , namely i sin(∆kx). Together
with the external i, this gives a contribution to the imaginary part of the integrals around the
delta-like pole of each propagator.

Similar to the Umklapp memory matrix of the Luttinger liquid without phonons, equation
(3.113), a dimensionless version of the phonon Umklapp memory matrix built from the
elements listed in equations (3.118) to (3.127) can be obtained with the scattering rate

Γ PU =
(αgU

mncns )
2

a2nc−1

(
aT

vc

)Kcn2
c+Ksn2

s+3

(3.128)

and the dimensionless prefactor

cPU =
πKcn

2
s+Ksn2

s+3

(2π)2nc−1

(
vc
vs

)Ksn2
s vc
vs
. (3.129)
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The resulting memory matrix reads

M̂U,P = cPU Γ
P
U


a2
cK̃2 acK̃3 acK̃3w

ac
π (δK̃2 + K̃3)

′′ −K̃4 −K̃4w
1
π (δK̃3 − K̃4)

′′ ′′ −K̃4ww − 1
π (K̃4w − δK̃3w )

′′ ′′ ′′ 1
π2 (δ2K̃2 + 2δK̃3 − K̃4)

 , (3.130)

where ac is the prefactor of the Umklapp derivative of the charge current, equation 3.83),
times an extra factor vc/(πT ) from the T -dependence of the Klmn which deviate from Γ PU .
Similarly, factors ∆k systematically combine with these extra T -dependencies to effective
momentum mismatches δ = vc∆k/(πT ).

Also, a short notation for the appearing linear combinations of the integrals K̃lmn has
been used, where K̃i stands for the sum over all K̃lmn whose indices l , m, n add up to i

K̃i =
∑
l ,m,n

δi ,l+m+nK̃lmn, (3.131)

and K̃iw stands for the corresponding linear combination

K̃iw =
∑
l ,m,n

(
{m>n}v

2
c + {m<n}v

2
s + δm,n

)
K̃lmn, (3.132)

in which each contribution is weighted with v2
c if the number of derivatives is higher in

the charge sector, and with v2
s vice versa. This is expressed in the formula by use of the

characteristic function {A}, which is equal to one on the set A and zero everywhere else.
For equal numbers of derivatives, m = n, the weight in the sum is one. The only linear
combination which appears in the matrix and does not fit into this scheme,

K̃4ww = v4
c K̃220 + 2v2

c v
2
s K̃211 + v4

s K̃202 (3.133)

is labeled with K̃4ww .

3.3.2.5 Contribution from Normal Processes

An additional effect on the transport properties comes from the normal processes between
phonons and charge modes, which generates another contribution to the memory matrix.
The respective time-derivatives have been stated above. From these one gets for the charge
current charge current element〈

∂
c−ph
t Jc∂

c−ph
t Jc

〉
(ω) = 2v2

cK
2
cπ

2g2
N

∫
dt iωt

∫
dx
〈
∂2
xφc(x)∂2

xφc(0)
〉

= 0, (3.134)

which vanishes due to the fast decay at the infinite, since the integrand is a differential with
respect to the integration variable.

All other elements containing Jc as well give no contribution, since the time-derivatives
of the other modes all contain phonon fields, which thus can not pair up to a non-local
correlation function with ∂c−ph

t Jc .
The correlation functions of the remaining modes can be transformed by partial integra-

tion to expressions which contain the same single correlation function. In total, one obtains
the matrix

M̂c−ph =


0 0 0 0

0 −π2 −π2v2
c π

0 −π2v2
c −π2v4

c πv2
c

0 π πv2
c −1

 g2
N

(
πaT

vc

)5 Kc
2vcvP

IN(vc , vP ), (3.135)
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with the numerical integral

IN(vc , vP ) = 2Im

 ∞∫
0

dtt

∞∫
−∞

dx

(
2 cosh(x + t − iε)2 + 1

sinh(x + t − iε)4
+

2 cosh(x − t + iε)2 + 1

sinh(x − t + iε)4

)

× ∂2
x

(
1

x

(
coth

(
vc
vP
x + t − iε

)
− coth

(
−
vc
vP
x + t − iε

))) . (3.136)

A scattering rate of the normal processes is defined by

ΓN = g2
N

(
πaT

vc

)5 Kc
2vcvp

. (3.137)

The submatrix without the charge current mode has full rank, implying that the normal
processes do not conserve any quantities. The numerical integral IN must be calculated
in the limit δ → 0 for a set of velocities one is interested in. For example, for vc = 0.5,
vP = 0.1, the integral evaluates to IN(vc = 0.5, vP = 0.1) = −8.02.

3.3.2.6 Band Curvature Contribution

The memory matrix from band curvature has only one finite element, the diagonal element
for the Luttinger liquid heat current, which is the only mode that can be scattered in a leading
order process. Inserting the respective time-derivative of the heat current JH derived above,
one obtains the auto-correlation function〈

∂BC
t JH∂

BC
t JH

〉
(ω) =

(v2
c − v2

s )2

16m2

∫
dt iωt

∫
dx

×
(〈
∂2
xφc(x)∂2

xφc(0)
〉 〈(

(∂xφs(x))2 + (∂xθs(x))2
) (

(∂xφs(0))2 + (∂xθs(0))2
)〉

+ 4
〈
∂2
x θc(x)∂2

x θc(0)
〉
〈∂xφs(x)∂xθs(x)∂xφs(0)∂xθs(0)〉

+ 4
〈
∂2
xφc(x)∂2

x θc(0)
〉 〈

((∂xφs(x))2 + (∂xθs(x))2)∂xφs(0)∂xθs(0)
〉)
. (3.138)

In appendix B.9 from this an expression with an explicit temperature dependence is derived,
which gives for the finite memory matrix element

MBC
Jh,JH

=
(v2
c − v2

s )2

v4
c v

4
s

vcKc

(
K2
s +

1

K2
s

− 2

)
π8T 8

32m2
B

(
vs
vc

)
(3.139)

with the dimensionless integral

B (λ) =

∞∫
0

dt

∞∫
−∞

dxtIm

(
2 + cosh(x + t − iδ)2

sinh(x + t − iδ)4

1

sinh (xλ+ t − iδ)2 sinh(xλ− t + iδ)2

)
(3.140)

that depends only on the ratio vs/vc and the cutoff δ. The weak cutoff dependence is
again linearly extrapolated to get the proper value for the analytically continuated correlation
function. In our case, vs/vc = 2, the resulting numerical value of the integral is B(λ) =

0.35411.
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3.3.3 Results

After having completed all necessary preparations, now the physical results can be discussed.
From the memory matrix, all transport coefficients can be obtained directly. In particular,
the Lorenz number

L =
κ

σcT
(3.141)

can be derived, which is the key to our central question, wether the Wiedemann-Franz law
is violated. Given the high complexity of the studied system, this is done in several steps,
subsequently completing the picture.

First, the effects in the correlated metal without phonons, i. e. with fixed ion positions is
discussed. For a detailed analysis the focus is set to single commensurate point. Then the
full physical picture including phonon heat transport follows.

3.3.3.1 Rigid Ion Approximation

The charge conductivity of a one-dimensional metal with finite band curvature m and disorder
strength Ddis is calculated, taking into account the leading Umklapp processes at 1/2, 1/3,
and 1/4 band filling plus their multiples21.

As can be seen from equation (3.108), the scattering rates due to Umklapp processes
have a high power of the number of transferred fields as temperature dependence, namely
T n

2
cKc+n2

sKs . Thus, for higher commensurabilities the importance of Umklapp scattering is
rapidly decreasing. For the typical values Kc = 0.6 and Ks = 0.8 for the Luttinger interaction
parameters, this means that for Umklapp processes with more than four fields transferred, the
scattering rate is at least, for the 10kF -process at 1/5-filling, (T/εF )6.2 times smaller than
the corresponding scattering rates at quarter filling. Therefore, higher Umklapp processes
are not taken into account.

Using equation (3.68) and the memory matrix including the contributions from the re-
spective Umklapp processes, equation (3.110), from disorder scattering equation (3.89) and
band curvature scattering, equation (3.139), the conductivity can be calculated for any tem-
perature and band filling.

Figure 3.7 shows the charge conductivity σc as function of the band filling ν for a very
pure system with disorder strength Ddis = 10−7g2 in units of the Umklapp coupling constant
g, which is set to 0.01 for all studied processes.

The conductivity shows sharp dips at the commensurate fillings, which become narrower
and less accentuated with decreasing temperature. At the two lower temperatures, the sizes
of the dips are, as expected, deepest at half filling, then less deep at 1/3 and least deep
at ν = 1/4. Beetween the dips, the conductivity takes its value of ν = 0, showing that
Umklapp scattering does not play a role in this regime.

At the highest temperature T = 0.015vs/a, additional dips evolve between the commen-
surate fillings. The reason is the very high purity of the system: Umklapp scattering can
degrade currents only in combination with another scattering process, which breaks its con-
servation of the respective pseudomomentum. Since the disorder scattering in the considered
system is so weak, for high temperatures the Umklapp scattering from the next-nearest com-
mensurate point becomes the second strongest scattering process, which leads to a lower
value of the conductivity at some regions between two commensurate points.

21ν = 0 and ν = 1 formally are multiples of the commensurabilities taken into account, but the system is
a band insulator at that point and the bosonic description must break down. So these points are explicitly
excluded from the discussion
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Figure 3.7: Transport properties of the correlated one-dimensional metal with weak Umklapp
scattering and disorder: beginning at the top, as function of the band filling, charge conduc-
tivity σc , plain heat conductivity κ0, heat conductivity including thermoelectric corrections κ
and Lorenz number L, all in units of the respective ν = 0 values, where Umklapp scattering
vanishes. The inset in the first figure shows the ν = 1/2 dip in its full size. Parameters:
vc/vs = 0.5, Kc = 0.6, Ks = 0.8, gU

mncns = 0.01, Ddis = 10−7g2
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The inset of the figure shows the full size of the central dip, where the conductivity is
suppressed by a factor of 108. This very high number of course is the result of a unrealistic
choice of parameters to demonstrate the striking effect. In physical systems, the effective
disorder typically is much stronger.

Below the electric conductivity, the heat conductivity without thermoelectric corrections
κ0 is shown for the same temperatures. As the electric conductivity, in the vicinity of
commensurate fillings there is a suppression due to Umklapp scattering, which increases in
width and depth with temperature. However, coming very close to the commensurability,
Umklapp scattering is inefficient in decreasing the heat current, and there is no suppression
of κ0. Like for the electric conductivity, the Umklapp features in κ0 become wider with
increasing temperature. At the highest temperature in the figure, T = 0.015, the minima due
to different Umklapp processes already start to intersect. Going to even higher temperatures,
the more dominant signature of the 4kF process around half filling would hide the effects
of the other Umklapp processes. The strong asymmetry of the dips left and right of the
same commensurate filling is caused by the band curvature, which breaks the particle-hole
symmetry.

The latter seems to be restored in the heat conductivity κ, which is shown in the third
part of figure 3.7. The band curvature effects to the plain heat conductivity κ0 and the ther-
moelectric correction TS2σc cancel exactly, giving in total features in the heat conductivity,
which are symmetric around each commensurate point. The suppression of the heat con-
ductivity from Umklapp scattering sets in at the same values of distance to commensurate
dopings δν, but the total suppression is stronger and the upturn close to the commensurate
filling narrower than without the thermoelectric correction.

To understand this behavior, it is necessary to have a closer look at the conservation
laws of the Umklapp processes, and their overlaps with the respective currents. As shown
in equation (3.63), each Umklapp process conserves a pseudomomentum, which is a linear
combination of the charge current and the total momentum of the Luttinger liquid. Assum-
ing the temperature being low enough, such that the effects of each Umklapp process are
well-separated and at each filling only one Umklapp process plays a role. From the continuity
equation, one can show [14] that the cross susceptibility between the conserved pseudo-
momentum of this process Qmncns and the charge current is, neglecting exponentially small
corrections, proportional to the distance to the respective commensurate filling,

χJcQmncns = 2δν =
∆k

2ncvcKc
χJcJc + χJcPLL , (3.142)

while the cross susceptibility χJcQmncns is positive and has a quadratic temperature depen-
dence, χJcQmncns ∼ T 2 The cross susceptibility measures, crudely speaking, the overlap
between current modes.

Exactly at a commensurate filling, the overlap of the charge current with the pseudo-
momentum corresponding to this commensurability vanishes, which means that the charge
current is orthogonal to the pseudomomentum. Thus, Jc can not profit from the conserva-
tion law and is strongly decreased by Umklapp scattering.

In contrast, the heat current does have a finite overlap with the pseudomomentum at
commensurate dopings. Accordingly, the heat current is protected by the pseudomomen-
tum conservation, and the heat conductivity is only limited by disorder and band curvature
scattering.

Due to these strongly different scattering mechanisms for heat and charge current, the
Lorenz number L has big peaks at each commensurate doping, as can be seen in the lowest
part of figure 3.7.
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Figure 3.8: Lorenz number L divided by the Wiedemann-Franz value L0 for the 6KF Umklapp
process around ν = 1/3 as function of effective momentum mismatch δ = vc∆k/(πT ). The
violations of the Wiedemann-Franz law depend strongly on the ratio D̃ between renormalized
disorder strength and Umklapp scattering. For weak disorder D̃ � 1, a peak of height 1/D̃

with width
√
D̃ is followed by a pronounced minimum. Inset: conductivity σc and heat

conductivities κ, κ0 in units of the respective conductivity without Umklapp scattering, as
function of effective momentum mismatch δ. The suppression due to Umklapp scattering is
strongest at δ = 0 for σc , where it is ineffective for κ and κ0. The latter become suppressed
at finite momentum mismatches, which is explained by the conservation laws.

Away from commensurate fillings, according to equation (3.142) the overlap between
charge current and conserved pseudomomentum, and therefore also the charge conductivity
σc , grows rapidly up to its value due to disorder scattering.

On the other hand, the heat conductivity at δν ∼ T gets strongly suppressed by the
thermoelectric counter term. Physically, this suppression can be understood qualitatively in
the low disorder limit. The origin lies in the boundary condition Jc = 0, under which the
heat conductivity must be measured. Since the component of the charge current perpen-
dicular to Qmncns decays rapidly due to Umklapp scattering, Jc becomes almost parallel to
the pseudomomentum. Thus, the heat current measurement effectively is done under the
constraint of vanishing pseudomomentum. This destroys the possibility of the heat current
to profit from the conservation law. The heat conductivity hence is dominated by Umklapp
scattering, which leads to strong suppression in this regime of δν.

For Umklapp processes which transfer an even number of electrons, the spinon part of the
heat conductivity can not be scattered. Here the included band curvature effects play their
crucial role: they couple the spinon and charge contributions to the heat current, which leads
to an affection of both components by Umklapp scattering and thus a stronger suppression
of the heat conductivity in the vicinity of commensurate dopings.

In total, the Lorenz number becomes strongly enhanced at commensurate fillings, and
suppressed in the vicinity.

The influence of band curvature scattering makes a quantitative analysis of the effect
more complicated, since perturbative calculations for limiting cases require knowledge, which
processes are more or less important.

For the 6kF -process, which is effective around ν = 1/3, the band curvature is not essential
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to observe the deviations of the Lorenz number from the Wiedemann-Franz value, since it
affects also the spinon heat conductivity by itself. Thus, for a better understanding, we
study a system which contains only the Luttinger liquid with weak impurity scattering and
the Umklapp process from the ν = 1/3 commensurability,

H = HLL +Hdis +HU
1,3,1, (3.143)

with the respective Hamiltonians defined in equations (3.50), (3.56), and (3.55). For such
a system with a fixed set of Luttinger liquid parameters vc , vs , Kc , Ks , the Lorenz number
depends only on the ratio of the scattering rates ΓU, defined in equation (3.111), and Γdis,
equation (3.92),

D̃ =
Γdis

ΓU
=

Ddisa
2nc−3

(gU
mncns )

2
(
aT
vc

)γ , (3.144)

with γ = (n2
c − 1)Kc + (n2

s − 1)Ks − 1, and the effective momentum mismatch

δ =
vc∆k

πT
. (3.145)

Figure 3.8 shows the Lorenz number as function of δ divided by the value without Umklapp
scattering L0 = π2/3 for several values of D̃ with the parameters vc/vs = 0.5, Kc = 0.6,
Ks = 0.8. At commensurate filling δ = 0, L/L0 exhibits a maximum of size 1/D̃, followed
by a pronounced dip around δ ≈ 4.

The inset shows the dependence on the effective momentum mismatch δ of the conduc-
tivities in units of the respective disorder dominated conductivity, defined by

σ0 =
v2
c a

2nc−3

(gU
mncns )

2

( vc
aT

)β
, (3.146)

with β = Kcn
2
c +Ksn

2
s − 3. Since in the disorder dominated regime, the Wiedemann-Franz

law is valid, κ0
0 can be obtained from this as κ0

0 = σ0TL0. The charge conductivity is
suppressed strongly at δ = 0 and increases with increasing δ, while the heat conductivities
κ and κ0 take the same value at δ = 0 as for large δ and are suppressed at intermediate
values. The minimum for the heat conductivity with thermoelectric correction lies at smaller
values than for κ0, and the total suppression is stronger.

The underlying mechanism can be understood well by looking at a simplified model with
only charge modes. Of course, this is the same model as studied in section 3.2, but there
thermoelectric corrections were not considered, because the spin density, in contrast to the
charge density, is not a conserved quantity. For such a model, momentum operator and
heat current operator are parallel and we get a two by two memory matrix for disorder and
Umklapp scattering with the structure

M̂ = d(T )

(
1
T 2 0

0 1

)
+ u(T )f (δ)

(
1
T 2 − δ

T

− δ
T δ2

)
, (3.147)

where the first component is the charge current and the second the momentum. The Umk-
lapp part of the matrix reflects the typical conservation law of a linear combination of the
momentum and the charge current times the effective momentum mismatch δ. In front of
it stands the overall Umklapp scattering rate u, which carries the temperature dependence,
and a dimensionless function f (δ), which decreases exponentially for large momentum mis-
matches. The disorder part of the memory matrix is diagonal and does not conserve any
current. Its scattering rate is called d(T ).
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The corresponding matrix of generalized susceptibilities is assumed to be diagonal with
elements χ1 for the charge current and χ2 for the momentum.

From equation (3.147), the conductivities can be obtained easily by inverting the two by
two matrix. To analyze the limit of strong Umklapp scattering, d(T ) is assumed to be much
smaller than u(T ), and the conductivities are expanded in a Taylor series in δ. One obtains
for the charge conductivity

σc = χ2
1

(
M̂−1

)
1,1

δ2� d(T )
u(T )

≈ χ2
1T

2

(
1

d(T ) + u(T )
+ δ2 u(T )2

d(T )(d(T ) + u(T ))

)
.

d(T )�u(T )
≈ χ2

1T
2

(
1

u(T )
+

δ2

d(T )

)
(3.148)

Exactly at the commensurate point δ = 0, σc ∼ 1/u(T ) is suppressed by Umklapp scattering.
Going to finite δ, in agreement to the above discussion for the more general case, the charge
current starts to profit from the conservation law and the scattering is reduced rapidly as
function of δ until at

δc =

√
1−

d(T )

u(T )

d(T )�u(T )
≈ 1−

d(T )

2u(T )
∼ 1−

D̃

2
(3.149)

the crossover to disorder dominated scattering is reached. In the opposite limit of δ → ∞,
the conductivity is dominated by disorder scattering σc(δ →∞) ∼ 1/(d(T )).

The heat conductivity without thermoelectric corrections is, to leading order in δ,

κ0 =
v4
c χ

2
2

T

(
M̂−1

)
2,2

δ2� d(T )
u(T )

≈
v4
c χ

2
2

T

(
1

d(T )
− δ2 u(T )

d(T )(u(T ) + d(T ))

)
. (3.150)

As explained above for the correlated metal, the heat conductivity at commensurate filling,
which corresponds to δ = 0, is protected from Umklapp scattering by the conservation law,
and thus κ0(δ = 0) ∼ 1/(d(T )). With increasing δ, the impact of Umklapp scattering
increases as the overlap of the momentum with the protected current becomes smaller, and
the heat conductivity starts to become suppressed.

Starting from the other side, at large δ Umklapp scattering plays no role, then in the
limit of weak Umklapp scattering, the heat conductivity becomes

κ0
δ�1
≈

v4
c χ

2
2

T

(
1

d(T )
− δ2f (δ)

u(T )

d(T )2

)
, (3.151)

where f (δ) ∼ e−δ for large δ. The minimum value of κ0 can be obtained directly by
calculating the derivative of κ0 with respect to δ. One finds the minimum at

δmin
κ0

= 2 +W
(

2u(T )

e2d(T )

)
, (3.152)

where W denotes the Lambert W function. In the weak disorder limit d(T ) � u(T ), the
position of the minimum can be approximated by

δmin
κ0
≈ 2 + ln

(
2

e2

u(T )

d(T )

)
. (3.153)
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Taking thermoelectric corrections into account, in the heat conductivity,

κ =
v4
c χ

2
2

T

(M̂−1
)

2,2
−
(
M̂−1

)2

1,2(
M̂−1

)
1,1

 δ2� d(T )
u(T )

≈
v4
c χ

2
2

T

(
1

d(T )
− δ2 u(T )

d(T )2

)
, (3.154)

the leading correction in δ is∼ u(T )/(d(T ))2 instead of∼ 1/(d(T )) as for the plain heat con-
ductivity, so the thermoelectric corrections make the peak at commensurate filling narrower.
Therefore, the corrected heat conductivity is suppressed strongly close to commensurate
filling, and a crossover to Umklapp dominated scattering takes place. The minimum of the
heat conductivity with thermoelectric corrections can again be estimated from the derivative
with respect to δ, which vanishes at

δmin
κ ≈ 2. (3.155)

At the minimum, κ takes the value

κ(δmin
κ ) =

v4
c χ

2
2

T

1

d(T ) + 4
e2 u(T )

, (3.156)

which is strongly suppressed by Umklapp scattering. In the weak disorder regime, the mini-
mum is very broad and extends to small values of δ. Hence the crossover scale to the disorder
dominated regime around commensurate filling can be obtained equating equation (3.154)
and (3.156), and solve for δ. The resulting crossover scale is

δcross
κ =

1√
e2

4 + u(T )
d(T )

d(T )�u(T )
≈

√
d(T )

u(T )
∼ D̃, (3.157)

where the second part gives the weak disorder expansion.
For very large δ, the heat conductivity takes the form

κ
δ�1
≈

v4
c χ

2
2

T

(
1

d(T )
− δ2f (δ)

u(T )

d(T )2

)
, (3.158)

which is identical to the corresponding expression for the bare heat conductivity, equation
(3.151).

From the derived behavior of the charge and heat conductivity, features of the Lorenz
number L in the weak disorder regime can be deduced. At the commensurate point, the
conductivity σc ∼ T 2/u(T ) is dominated by Umklapp scattering and κ ∼ 1/(d(T )) by
disorder scattering, so the Lorenz number

L(δ = 0) ≈
v4
c χ

2
2

χ2
1T

4

u(T )

d(T )
∼

1

D̃
(3.159)

becomes very big. The temperature dependence of the susceptibilities cancels exactly with
the temperature to power four, giving a temperature independent Lorenz number. Around
δcross
κ =

√
d(T )/u(T ), the heat conductivity starts to be suppressed by Umklapp scatter-

ing, thereby spoiling the enhancement of L. Simultaneously, the suppression of the charge
conductivity decreases, up to its crossover to disorder scattering at δc =

√
1− d(T )/u(T ).

Since the minimum of the heat conductivity at δmin
κ = 2 lies at values of δ bigger than the
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crossover to disorder dominated scattering in the charge conductivity, the Lorenz number
takes its minimal value at δ = δmin

κ , which in the weak disorder regime evaluates to

L(δmin
κ )

δ2� d(T )
u(T )

≈
v4
c χ

2
2

χ2
1T

4

5e2

16

d(T )

u(T )
∼ D̃. (3.160)

The width of the peak around commensurate filling in the weak disorder regime is lim-
ited by the crossover to Umklapp dominated scattering of the heat current δcross

κ , equation
(3.157), which is smaller than the crossover to disorder dominated scattering of the charge
current δc , equation (3.149). This gives a peak width ∼

√
d(T )/u(T ).

For bigger momentum mismatches δ > δmin
κ , the Lorenz number increases again, until

it reaches its disorder scattering value far away from the commensurate filling, where the
Wiedemann-Franz law holds.

The described simplified scenario also explains the observed effects of the 6kF Umklapp
scattering in weakly disordered correlated metals. Indeed, the description of the latter re-
quires two separate modes for heat current and momentum, and thus the Umklapp memory
matrix can not be brought to the form as in equation (3.147) by partial integration, but
the underlying conservation law for the pseudomomentum holds nonetheless. Since the two
modes momentum and heat current are strongly coupled by both, Umklapp and disorder scat-
tering, they form a “complex of complicated codependencies”, which is hard to disentangle.
On the other hand, this strong entanglement allows to deduce an overall similar scattering
behavior of the two modes, apart from different prefactors. Accordingly, the considerations
about the dominant scattering mechanisms in different regimes remain valid.

Hence, the explanation of the scattering behavior can be generalized. The charge con-
ductivity at commensurate filling is strongly suppressed with the Umklapp scattering rate,
σc ∼ 1/ΓU. With increasing effective momentum mismatch a crossover to disorder scatter-
ing σc ∼ 1/Γdis sets in around δ ∼ T ∼ D̃−1/γ , which is a weak dependency on the disorder
strength.

The plain heat conductivity is protected from Umklapp scattering at δ = 0, and thus
dominated by disorder scattering, κ0 ∼ 1/Γdis. The same is true for the heat conductivity
with thermoelectric corrections, which for δ = 0 is identical to κ0. For finite δ, they both
become dominated by Umklapp scattering, but with different crossover scales and minima.
While the minimum of the plain heat conductivity shifts ∼ const + ln(D̃) and the crossover
is smooth, the minimum of the heat conductivity with thermoelectric corrections is at a value
of δ independent of D̃, and the crossover happens sharply at δ ∼

√
D̃.

This behavior is in qualitative agreement with the results of the numerical calculation for
a certain set of parameters, which is shown in the inset of figure 3.8. The scaling behavior,
which is not shown, is in good agreement with the predictions from the simplified model.

The crossover of the charge conductivity σc from disorder dominated to Umklapp domi-
nated scattering is hard to find, since there is no distinct feature.. The deviations between
prediction and exact calculation can not be explained by a total prefactor, that might be
contained in one of the scattering matrices, but must lie in the structure of these matrices,
and the two different velocities that are involved in the Luttinger liquid. Anyway, the studied
toy model correctly predicts a strong difference in the structure of the features from Umklapp
scattering in the plain and the corrected heat conductivity, which must be associated to the
conservation law, even when the obtained crossover scales are not exact.

Due to the suppression of the charge conductivity at commensurate filling, the Lorenz
number is enhanced to L(δ = 0) ∼ 1/D̃. The enhancement of L is limited by the starting
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Figure 3.9: The relative Lorenz number L/L0 close to ν = 1/3 as function of the tempera-
ture, where TD is the temperature scale at which Umklapp scattering becomes dominant, see
equation (3.162). Depending on δ̃ the Lorenz number ca increase or decrease with tempera-
ture. Inset: conductivities in units of conductivities without Umklapp scattering as function
of temperature for δ̃ = 0 (red) and δ̃ = 10 (blue).

suppression of the heat conductivity, which renders the width of the peak in the weak disorder
limit ∼

√
D̃. Between the crossover of the heat conductivity κ to Umklapp dominated

scattering and the crossover of the charge conductivity to disorder dominated behavior, the
Lorenz number takes its minimum value, which is of the order L(δ ≈ 1) ∼ D̃.

To study the temperature dependence of the Lorenz number, the dimensionless vari-
ables introduced in equations (3.144) and (3.145) are not appropriate, since the effective
momentum mismatch δ as well as the ratio of disorder and Umklapp scattering rate D̃ are
temperature dependent. Instead of these, the Lorenz number as a function of temperature
is expressed in the units

δ̃ =
δ

D̃1/γ
(3.161)

and with the effective temperature scale

TD =
vc
a

(
Ddisa

2nc−3

(gU
mncns )

2

) 1
γ

, (3.162)

where γ is the exponent of the temperature dependence of the renormalized disorder as
defined in equation (3.144). Figure 3.9 shows the Lorenz number as function of T/TD
for different values of δ̃. For small temperatures, disorder scattering becomes increasingly
more important due to the renormalization. Hence, the Lorenz number L approaches its
value without Umklapp scattering L0 for all values of δ̃. At larger temperatures T > TD,
the curves for different δ̃ start to split. Small values of δ lead to an increase in L/L0 with
temperature, high δ̃ cause a decrease.

Exactly at δ̃ = 0, the effective momentum mismatch δ also must be zero and thus
the maximum value of L/L0 in figure 3.8 is taken. However, with increasing temperature
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D̃ ∼ T−γ decreases22, and the maximum value of L(δ = 0) ∼ 1/D̃ hence becomes bigger.
Away from commensurate filling, it is difficult to relate the features of the Lorenz number

as function of effective temperature to the results in units of D̃ and δ. Apart from the total
upturn of L(T/TD) due to the temperature dependence of D̃, the effective distance to
commensurate filling changes with T . For large δ̃, with increasing temperature the effective
momentum mismatch δ starts moving into the minimum where κ is suppressed by Umklapp
scattering. On the other hand, for smaller δ̃ one starts closer to commensurate filling, such
that the shift of δ with temperature moves these values of δ̃ into the beginning maximum in
the vicinity of δ = 0. According to this, also the curves for bigger δ̃ should show an upturn
for even higher temperatures, which indeed can be seen for the case of δ̃ = 10 in the figure.

Of course, the temperature dependence of the Lorenz number can be obtained more
directly from the conductivities as functions of temperature, which are shown for the two
cases δ̃ = 0 and δ̃ = 10 in the inset of figure 3.9. To make the conductivities comparable,
they are expressed in dimensionless units by dividing σc by

σ̃0 =

(
Ddisa

2nc−3

(gU
mncns )

2

)ζ
v2
c

Ddis
, (3.163)

with ζ = (2−Kc −Ks)/γ, and the two heat conductivities κ, κ0 by σ̃0TL0.
In the first case, δ̃ = 0, which is depicted with red lines in the figure, the charge conduc-

tivity σc is dominated by disorder scattering up to T = TD, where the crossover to Umklapp
dominated scattering takes place. At higher temperatures σc gets strongly suppressed, in
contrast to the heat conductivity at δ̃ = 0, which for all temperatures is dominated by disor-
der scattering, since it is protected from Umklapp scattering by the conservation law. The
plain heat conductivity κ0 for δ̃ = 0 can not be seen in the figure, since it is identical to κ
at commensurate filling, thus the two curves lie exactly on top of each other. The Lorenz
number thus is increasing for T > TD, due to the strong suppression of σc , which is not
balanced by a decrease in κ/T .

In the second case, δ̃ = 10, depicted in blue, both, charge and heat conductivity expe-
rience a crossover to Umklapp dominated scattering at the same temperature T/TD > 1.
However, the heat conductivity becomes eventually smaller than the charge conductivity,
resulting in a decrease of the Lorenz number L at high temperatures.

In summary, the effects of the interplay of the 6kF Umklapp process with weak disorder
scattering in a correlated metal result in large violations of the Wiedemann-Franz law. At
commensurate filling, the Lorenz number is enhanced strongly to L/L0 ∼ 1/D̃, while at
dopings of the order δ ∼ 1 it is suppressed down to L/L0 ∼ D̃. Thermoelectric corrections
play an important role in this context, since they allow the heat conductivity to be suppressed
by Umklapp scattering already at δ ∼

√
D̃, which leads to a more pronounced minimum in

the Lorenz number.
The occurrence of strong thermoelectric effects makes weakly disordered one-dimensional

correlated metals interesting systems for thermoelectric power generation and thermoelectric
cooling. The efficiency of these processes is limited by material properties, and materials with
good properties are rare. In recent years, the interest of researchers with focus on applications
in this field already directed towards low dimensional metals, [74]. The relevant quantity to

22given that γ = (n2
c − 1)Kc + (n2

s − 1)Ks − 1 is positive, which for the systems under consideration is
true. For possible systems with strong repulsive interactions, Kc < n2

c − 1, γ becomes negative. In such
systems Umklapp scattering opens a gap in the charge sector and does not become less important in the low
temperature limit.
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measure the properties of a material for thermoelectric power generation is given with the
thermoelectric figure of merit ZT , defined as

ZT =
TσcS

2

κ
, (3.164)

see [75]. Materials with figure of merit ZT > 1 are already interesting for commercial use.
For the systems studied here, one can easily see from the definition of the heat con-

ductivity with thermoelectric corrections, equation (3.71), that the figure of merit can be
expressed as

ZT =
κ0

κ
− 1. (3.165)

For the weak disorder regime, we derived that κ ∼ 1/ΓU at δ ∼
√
D̃, while κ0 ∼ 1/Γdis

in this regime. Thus, the figure of merit for this system becomes of order ZT ∼ 1/D̃ − 1,
which for a clean system can be a very large number.

Unfortunately, in real physical systems lattice vibrations play a major role in heat transport.
For a reliable prediction of a material with good thermoelectric properties one has to include
the phonon system into the analysis.

3.3.3.2 General Case

To discuss the possible violation of the Wiedemann-Franz law by Umklapp scattering in
existing physical systems, the minimal model system must include phonons and their dominant
relaxation mechanisms. As an example, again the 6kF process around 1/3 filling is used.
The important effects of the weakly disordered correlated metal coupled to a phonon system
are described with the Hamiltonian for the Luttinger liquid with disorder plus the phonon
Hamiltonian and the normal processes and Umklapp contributions, which couple both,

H = HLL +Hdis +Hph +Hc−ph +HU
1,3,1, (3.166)

where the constituents have been introduced in equations (3.50), (3.51), (3.56), (3.53), and
(3.55).

The large variety of effects in such a complex systems bring a wide range of characteristic
scattering rates, namely Γdis for the disorder scattering, equation (3.92), ΓU for the Umklapp
scattering, equation (3.111), ΓU,P for phonon-assisted Umklapp scattering, equation (3.128),
and ΓN for phonon scattering in normal processes, equation (3.137).

Consequently, it is impossible to find universal units in which the resulting effects to the
conductivities and the Lorenz number can be depicted in a simple and complete way. An
approach to the full picture is tried by showing plots of the Lorenz number L as function
of the deviation ∆ν = ∆ka/(2πnc) from commensurate filling for different temperatures T ,
impurity concentrations Ddis, and phonon couplings α. In principle, the coupling constant
for phonon forward scattering gN is a fourth independent parameter, which is chosen here
equal to the backward scattering, gN = αgU for simplicity. The Luttinger liquid parameters
have the same values as before.

Figure 3.10 shows the Lorenz number as function of the filling for different disorder
strengths D, given in units of (gU

mncns )
2/a2nc−3. The temperature is chosen as T = 0.2vs/a,

and the coupling to the phonons as α = 0.01. In the inset, the contributions to the conduc-
tivities from phonons and the Luttinger liquid are shown for one impurity concentration. As
in the case without phonons, the conductivities are given in dimensionless units by dividing

73



3.3. VIOLATION OF WIEDEMANN-FRANZ LAW IN LUTTINGER LIQUIDS

0.01 0.1 1
∆ν

10
-2

10
0

10
2

κ / (σ0TL0)

κ0
 / (σ0TL0)

0.01 0.1 1

∆ν

10
2

10
3

10
4

L
 / 

L
0

D = 1.0 10
-4

D = 2.5 10
-4

D = 5.0 10
-4

D = 1.0 10
-3

D = 2.5 10
-3

0.01 0.1 1
∆ν

10
-2

10
0

10
2

σ / σ0

κ0
LL / (σ0TL0)

κ0
ph / (σ0TL0)

D = 10
-4

T = 0.2
α = 0.01

a

b

Figure 3.10: Lorenz number of the weakly disordered Luttinger liquid coupled to phonons with
Umklapp scattering as function of the doping ∆ν from the commensurate filling ν = 1/3 for
different disorder strengths D in units of g2

U/a
2nc−3. Luttinger liquid parameters are chosen

as before, phonon coupling α = 0.01 and the temperature T = 0.2vs/a. Since phonons
are coupled weakly, the high phonon heat conductivity (see inset for all conductivities as
function of ∆ν for one disorder strength in units like in figure 3.8) leads to an enhancement
of the Lorenz number for large dopings. The normal and phonon assisted Umklapp processes
suppress the heat conductivity, which reflect in dips in the Lorenz number at the positions
a (normal Umklapp) and b (phonon assisted). Close to commensurate filling, the heat
conductivity is partially, but no longer totally, protected by the two non parallel conservation
laws, while the charge conductivity is suppressed strongly. This leads to an enhancement of
the Lorenz number, which is, like all Umklapp features, the bigger the smaller the disorder
strength D is.

them by σ0, which is the disorder value of the charge conductivity. The heat conductivities
are divided by σ0TL0, which is the corresponding Luttinger liquid disorder heat conductivity.

Far away from commensurate filling, all conductivities become independent of ∆ν. The
charge conductivity σc and the Luttinger liquid contribution to the bare heat conductivity κ0

LL

are dominated by disorder scattering, while the phonon contribution is degraded by indirect
disorder scattering via N-processes. For the parameters chosen here, the contribution from
the phonons to the heat conductivity is much bigger than κ0

LL at large ∆ν. Therefore, the
Lorenz number in this regime is enhanced in comparison to the Wiedemann-Franz value L0,
which is valid in the clean Luttinger liquid.

Going to smaller values of ∆ν, phonon assisted Umklapp scattering starts to decrease the
heat conductivity. This affects both, the Luttinger liquid and the phonon contribution to the
heat conductivity. From the discussion in the preceding section, we know that the suppression
of the heat conductivity due to Umklapp scattering is maximal at δ ≈ 1, see equation (3.153),
which translates to ∆ν = T/(6v) with the velocity according to the involved excitation. For
the parameters used here, the phonon Umklapp minimum is expected around ∆ν = 1/3,
which is in good agreement with the data. The phonon contribution to the heat conductivity
is also suppressed by this process, but here the discussion does not apply. We observe that the
suppression sets in at slightly smaller values of ∆ν than in the Luttinger liquid contribution.

The phonon assisted Umklapp scattering features in the total heat conductivity reflect
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in a shoulder in the Lorenz number, signed in the figure with a b.
At even smaller values of ∆ν ≈ 0.1, the normal Umklapp scattering starts to be effective

in degrading the heat current. The minimum of the Luttinger liquid contribution should be
at ∆ν ≈ 0.067, which is again matched by the results, depicted in the inset. Also the phonon
contribution is affected by the normal Umklapp process, but not as strongly as the Luttinger
liquid contribution, since it couples to this scattering process only indirectly.

Unlike the Luttinger liquid without phonons, the heat conductivity is not completely
protected by conservation laws close to commensurate filling. Since there are two scattering
processes with a conservation law, each scatters the protected current of the other. Thus,
the heat currents are scattered close to commensurate filling, and the heat conductivity does
not recover to its value of large ∆ν as in the case without phonons. For the same reason,
thermoelectric corrections only play a minor role in the system including phonons, as can be
seen in the figure at the small difference between κ and κ0.

The charge conductivity starts to be suppressed around ∆ν ≈ 0.1. We expect normal
Umklapp scattering to set in at ∆ν ≈ 0.067, so probably both Umklapp processes play a
role here. Due to the shape of the crossover, it is difficult to separate the influence of
both. However, the interplay of the starting suppression of σc and the minimum of κ around
∆ν ≈ 0.7 yields a strong Umklapp minimum in the Lorenz number around ∆ν ≈ 0.12,
which is signed in the figure with an a. The depth of both Umklapp features increases with
decreasing disorder strength, since the relative strength of Umklapp scattering grows.

Close to commensurate filling ∆ν = 0, the charge conductivity is suppressed strongly,
which together with the partially protected heat conductivity yields a moderate enhancement
of the Lorenz number. The enhancement is the bigger the cleaner the system is, which again
is explained by the increasing relative strength of the Umklapp scattering.

Figure 3.11 shows the Lorenz number as function of ∆ν for different temperatures, while
the disorder strength and the phonon coupling are kept fix at Ddis = 10−4 and α = 0.1. In the
inset the temperature dependence of the conductivities is shown for fixed doping ∆ν = 0.1.

The Lorenz number again exhibits two minima around ∆ν ≈ T/(6vc) and ∆ν ≈ T/(6vp)

due to the suppression of the heat conductivity by normal and phonon assisted Umklapp
scattering. For the highest temperature T = 0.1, the phonon assisted Umklapp minimum at
∆ν ≈ 0.18 is very pronounced, while the normal phonon dip is reduced to a diffuse shoulder
around ∆ν ≈ 0.04. The situation is the other way round for the lowest temperature T = 0.05,
where the normal Umklapp dip at ∆ν ≈ 0.03 becomes pronounced and the phonon Umklapp
feature around ∆ν ≈ 0.1 becomes a shoulder.

The reason for the inverted dominance of the processes is the different temperature
exponent of ΓU and ΓU,P, see equations (3.111) and (3.128).

Note that the positions of the features agree roughly with the prediction for the position
of the minimum of the heat conductivity ∆ν = T/(6vc,p). Small deviations can be explained
by the influence of the starting suppression of the charge conductivity, and the different
position of the minimum in the phonon heat conductivity.

The temperature dependence of the Lorenz number far away from commensurate filling
can be explained by the phonon contribution to the heat conductivity. As can be seen in the
inset, the Luttinger liquid contribution to the heat conductivity and the charge conductivity
obey the Wiedemann Franz law at low temperatures, which correspondents to large ∆ν. The
phonon contribution has a strong temperature dependence in this regime, which reflects in
the temperature dependent enhancement of the Lorenz number.

Since the phonon heat current couples indirectly to the disorder scattering, the corre-
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Figure 3.11: Lorenz number close to ν = 1/3 as function of the doping ∆ν for different
temperatures T in units of vs/a. The disorder strength is D = 10−4 and the phonon coupling
α = 0.1. Higher temperatures increase the size of the Umklapp features, since the relative
strength of the Umklapp scattering processes compared to the disorder increases. Far away
from commensurate filling, L is enhanced by the influence of the phonon contribution to the
heat conductivity, which has a strong temperature dependence, see text. The minima of the
Lorenz number move slightly as function of temperature. inset: conductivities for ∆ν = 0.1

as function of temperature. In the low T regime, σc and κ0
LL are disorder dominated and

obey the Wiedemann-Franz law, while the phonon contribution has a strong temperature
dependence, see text. At high temperature Umklapp scattering affects all currents, leading
to the rich structure of minima observed in the Lorenz number. Thermoelectric corrections
are very small, as can be seen at the tiny difference between κ and κ0.

sponding heat conductivity is

κ0
ph ∼

1

T
v4
pχ

2
Pph,Pph

Γdis + ΓN

ΓdisΓN
. (3.167)

Depending on the phonon coupling α and the disorder strength Ddis, and of the temperature
regime, the bottleneck can either be the disorder scattering, when the phonon momentum
is equilibrated with the Luttinger liquid by strong phonon coupling, or the phonon scatter-
ing when Γdis � ΓN. The Lorenz number has a temperature dependence in both cases,
since κph ∼ T 2 when the bottleneck is the phonon coupling, and κph ∼ T 5.6 when disorder
scattering is the weaker process. Which case applies can be seen, apart from the tempera-
ture dependence, which hints towards equilibrated subsystems, from the dependence of the
Lorenz number of the phonon coupling α, which will be discussed later. However, at very
low temperatures, the phonon scattering rate vanishes rapidly ΓN ∼ T 5, while the disorder
scattering Γdis ∼ TKc+Ks has a moderate temperature exponent. Thus, independent of the
parameters, at really low temperatures the phonon scattering will always be the bottleneck.

The temperature dependence of the phonon contribution to the heat conductivity leads
to an increase of the Lorenz number with increasing temperature in the disorder dominated
regime.

Finally, figure 3.12 shows the dependence of the Lorenz number of the phonon coupling
α. Most prominently, an increase in the phonon coupling is seen in the phonon assisted
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Figure 3.12: Lorenz number L/L0 close to ν = 1/3 as function of the doping ∆ν for different
values of phonon coupling α. Temperature is T = 0.1 and disorder strength D = 10−3.
Higher values of α increase the importance of the dip in the Lorenz number due to phonon
assisted Umklapp scattering at ∆ν ≈ 0.2, while the dip from normal Umklapp scattering
is unaffected. Far away from commensurate filling, the phonon contribution to the heat
conductivity results in an α-dependence of the Lorenz number at low phonon couplings.
This change of dependence reflects the change of the bottleneck scattering process of the
phonon heat current, see text. The higher heat conductivity from phonons at low coupling
yields an overall enhancement of the Lorenz number.

Umklapp dip in the Lorenz number around ∆ ≈ 0.2. It evolves from a shallow shoulder at
weak coupling to a pronounced dip for the biggest coupling α = 0.1.

Apart from that, an overall decrease of the Lorenz number with increasing α can be
observed, which has its cause in the phonon contribution to the heat current. In particular,
far away from commensurate filling, the crossover from disorder dominated phonon scattering
to normal process dominated phonon scattering can be observed, since for the one the phonon
contribution to the heat conductivity is independent of α, while in the other, the phonon
heat conductivity has a 1/α2 dependence.

In the regime, where normal processes are the dominant scattering mechanism for the
phonon heat current, the heat conductivity is enhanced for all ∆ν, since the normal process is
also the bottleneck for indirect Umklapp scattering, and phonon assisted Umklapp scattering
is ineffective, as can be seen from the missing feature. Therefore, the Lorenz number is
enhanced for all dopings in the weak phonon coupling regime.

On the other hand, strong phonon coupling leads to a lower enhancement of the Lorenz
number in the vicinity of commensurate filling. This can be explained by the stronger mutual
violation of the conservation laws of normal and phonon assisted Umklapp scattering, which
partially protect the heat current from Umklapp scattering.

However, it must be reminded that the dissipation of the phonon heat current in our
description relies strongly on the scattering of the Luttinger liquid fields of fixed impurities,
which is an unjustified approximation. A correct treatment would have to model scattering
of impurities moving with the displacement field and include further scattering mechanisms
to degrade the phonon momentum.However, it must be reminded that the dissipation of the
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3.3. VIOLATION OF WIEDEMANN-FRANZ LAW IN LUTTINGER LIQUIDS

phonon heat current in our description relies strongly on the scattering of the Luttinger liquid
fields of fixed impurities, which is an unjustified approximation. A correct treatment would
have to model scattering of impurities moving with the displacement field and include further
scattering mechanisms to degrade the phonon momentum.

In total, also in the general case of a weakly disordered correlated metal coupled to lattice
vibrations, the Wiedemann-Franz law is violated due to the interplay of Umklapp scattering
and weak disorder.

The size of the violations though is much smaller than in the case without phonons,
where the enhancement close to commensurate filling is caused by the protection of the
heat current against Umklapp scattering by the conservation of pseudo momentum. In the
presence of phonons, the second Umklapp process including a phonon spoils the conservation
law and reduces the enhancement.

Furthermore, the minimum of the Lorenz number due to suppression of the heat con-
ductivity by Umklapp scattering and the simultaneous weak scattering of the charge current
at finite fillings becomes less pronounced by introducing phonons, since the suppression of
the charge conductivity due to phonon-assisted Umklapp scattering is effective for higher
momentum mismatches, which reduces the combined effect for thesuppression of the Lorenz
number.

On the other hand, enhancement of the Lorenz number due to the weak scattering of
phonons can be observed, which is not surprising.

In particular, the thermoelectric figure of merit ZT = κ0/κ − 1, which in the case
without phonons was of the order of 1/D̃, is strongly reduced by the influence of lattice
vibrations. Due to the intersecting conservation laws, the thermoelectric corrections to the
heat conductivity are decreased and the figure of merit becomes very small, at least in the
regimes studied here.
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4 Expansion of Interacting Atoms in
Optical Lattices

Physics out of equilibrium in condensed matter systems are in general hard to tackle, both
theoretically and in experiment. On the theoretical side, the difficulties lie in the great
complexity that already arises in the description of rather simple model systems, when moving
away from equilibrium. Experimentally, it is very hard to probe a nano-scaled system time-
resolved and at the same time with high spatial resolution.

However, in the recent years with the development of optical lattices and the increased
experimental control of cold quantum gases confined to them great new possibilities for the
study of non-equilibrium in condensed matter opened up. Nowadays they allow to model
condensed matter type systems, in particular varieties of the Hubbard model, on a bigger
scale with a huge freedom of tuning parameters.

For this purpose, fermionic or bosonic atoms of alkali metals are loaded into a confining
trap and an optical lattice is formed by standing waves from counterpropagating laser beams.
The interaction between the electric field and the atomic polarizability acts as a simple cubic
lattice to the atoms, in the case of fermions making them a copy of electrons on a lattice.
The tight-binding hopping amplitude is controlled by the intensity of the laser beams, which
determines the lattice depth. Additionally, interaction between the atoms can be modeled
with a Feshbach resonance, which provides a possibility to tune the scattering length of
atomic collisions by a magnetic field.

These quantum simulators1 already allowed valuable contributions in the field condensed
matter physics in equilibrium, for example the realization of the quantum phase transition
from a superfluid to a Mott insulator in a gas of ultracold atoms [88], and in this context
the collapse and revival of coherence of the matter wave field of a Bose-Einstein condensate
[89] have been confirmed experimentally.

Another hallmark has been the experimental preparation of a Mott-insulator in a two-
component Fermigas [90, 91], which is to a good approximation a realization of the fermionic
Hubbard model. Motivated by the actual experimental activity, the same scenario had al-
ready been studied just before that by means of inhomogeneous DMFT2 [92], and a direct
comparison of experimental results and theoretical predictions is included in [90].

The inhomogeneous DMFT has proven a particularly useful tool to describe the relevant
systems theoretically, which are typically, due to the trap, not translational invariant. Very
recently, it has been used to study the spin order of a Bose system [93] and, in combination
with a high temperature series expansion and in comparison to experimental data, the entropy
of an repulsively interacting Fermi gas, [94]. These are only some important examples, a
more complete review of the achievements made with ultracold quantum gases in optical

1as they are called after a proposal of Richard Feynman
2Dynamical Mean Field Theory
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lattices is given in [95].
Of special appeal, however, is the ability to investigate settings out of equilibrium. The

high tunability in combination with the slow dynamics of cold atoms allows to investigate
time-dependent processes.

Various exciting results have recently been reported, e. g. how a non-integrable one-
dimensional Bose-gas out of equilibrium thermalizes [96] or the direct time-resolved obser-
vation of the correlated tunnelling of two interacting ultracold atoms through a barrier in a
double-well potential [97]. Another important aspect and prerequisite of experiments is the
adiabatic preparation of many-body states, that has been studied in [98].

An interesting peculiarity has been found with the discovery of repulsively bound states
in bosons [99]. At strong repulsive interactions, initially prepared double occupancies, later
termed doublons, are prohibited to decay into single-particle excitations, since the large
energy of the pair can not be distributed to a small number of excitations. Thus the decay
process is exponentially suppressed and the doublons form metastable quasi-particles. The
investigation of a similarly prepared metastable state in the fermionic Hubbard model lead to
the prediction of exotic (π, π) superconductivity, [100]. In [101] the implications for cooling
have been deployed to introduce the so-called quantum distillation. For the fermionic Hubbard
model, this exponential decay has been experimentally confirmed in [102] and explained by a
diagrammatic calculation.

In the context of this thesis, which is focused on transport questions, the field of ultracold
quantum gases in optical lattices also opens up new possible settings that go beyond the
classical four point current measurement as response to a field gradient. Making use of the
huge tunability, one can prepare an initial state narrowly confined by the trapping potential
and release it suddenly. The slow dynamics of the atoms allow to image the following
expansion time-resolved.

In [103] this has been done for attractively interacting fermions in an optical lattice,
showing anomalous behavior in the cloud radius.

Experimental data by U. Schneider and collaborators on the expansion of repulsively inter-
acting fermions also shows interesting features in the expansion rate. For small interactions
the motion of the fermions is ballistic, which is reflected in a square-shaped atom cloud after
some time. At high interactions the expansion is decelerated by collisions that restore local
equilibrium, leading to a symmetric, circular cloud and diffusive transport.

This behavior has been modeled here by a lattice Boltzmann simulation in relaxation-
time approximation in collaboration with Stephan Mandt, who also did some closer analysis
of the diffusive regime, which will not be discussed here. The results of the project will
be published together with the experimental outcome in a joint article with U. Schneider,
I. Bloch, et al., [104]. The scattering rate is obtained from a memory matrix calculation,
accounting for the conservation laws in the collisions. By using the Hubbard interaction as a
perturbation, one produces a density-dependent scattering rate, which interpolates between
the ballistic transport regime for small interactions or densities close to maximal and minimal
filling and the diffusive regime for strong interactions and intermediate filling. The modeling
of the expanding cloud is a neat example for the combined use of the techniques used in the
preceding chapters. A quantitative comparison to the experimental data is made, and the
quality of the theoretical description is discussed.
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CHAPTER 4. EXPANSION OF INTERACTING ATOMS IN OPTICAL LATTICES

4.1 Experimental Setup

In the experiment, the lowest hyperfine states of potassium 40K atoms represent the spin
up and spin down states of electrons. The scattering length can be tuned by the Feshbach
resonance with a magnetic field, modelling a short-range interaction with the corresponding
strength. A cloud of N = 1 − 1.5 × 105 atoms is loaded into a red detuned crossed dipole
trap. By evaporative cooling down to T = 0.13TF a quantum degenerate mixture of the two
species is prepared3, where TF denotes the Fermi-temperature in the harmonic trap. Then
the trapping frequencies are increased adiabatically to their final values ω = 100(2π)/s in
horizontal, and ω = 400(2π)/s in vertical direction. The three-dimensional simple-cubic
optical lattice with a wavelength λ = 738nm is ramped up linearly within 56ms to a depth
of 8Er

4. During this process, the magnetic field is kept at the value corresponding to no
interaction, i. e. 209.2G. This sequence results in a band-insulating state surrounded by a
metallic shell.

Subsequently, the interaction strength is set to the respective value for the expansion,
which must be done at locally fixed particle number, to prevent changes in the density profile.
To that purpose, the lattice is ramped up to 20Er within 200µs, which is slow enough to
avoid excitations to the second band, but faster than the atom cloud can rearrange. By this
process the coherence of atoms at different lattice sites is completely destroyed. As the atoms
become strictly localized, their momentum must be maximally blurred. This corresponds to
a local distribution function with formally infinite temperature, where every momentum is
equally probable.

After having prepared an initial state with well-known distribution functions, the expansion
process is started by quickly lowering the lattice depth to the desired value between 4Er
and 15Er and simultaneously reduce the trapping potential to a value which cancels the
deconfining of the optical lattice, ensuring in total zero confining.

The following expansion is monitored by in-situ imaging along the vertical axis of the
cloud. Optionally, the tunneling in one direction can be suppressed by deepening the respec-
tive component of the optical lattice. Then the expansion happens independently in each
separate layer, but the resulting image is a weighted average over all layers. There seems to
be no qualitative difference between expansion in three and two dimensions. The expansion
rate is observed to be fastest for the zero interaction case, and to be symmetrically sup-
pressed for higher repulsive or attractive interactions. At large interactions, the distribution
remains circular, whilst in the free expansion it takes a rectangular shape.

Experimentally, both cases, expansion in a two-dimensional and in a three-dimensional
optical lattice, yield similar expansion rates and cloud shapes. The reason is that the sys-
tem is not entirely homogeneous, since gravitation accelerates the atoms in z-direction. In
the two-dimensional case, the motion is restricted to the two directions perpendicular to
the gravitation, so there is no effect. In three dimensions, the force on the atoms leads to
so-called Bloch oscillations in z-direction. According to the semiclassical equations of mo-
tions in energy bands [28], the atoms are accelerated by the force into a higher momentum
state. Due to the periodicity of the dispersion relation, the velocity of the atom, which is
the derivative of the energy with respect to momentum, must also be a periodic function.
Thus, averaged over a Bloch period, the particle does not gain velocity. This effect has been
predicted by F. Bloch in the early days of solid state theory, [105], but could not be observed

3The preparation of the bandinsulating state works similar as described in [90]
4In experiments with cold quantum gases, lattice depths are typically given in recoil energies. 1Er =

h2/(2mλ2)
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4.2. BOLTZMANN EQUATION DESCRIPTION

in real solids because the Bloch period is much longer than typical scattering times of con-
duction electrons. Only some years ago, Bloch oscillations were experimentally observed in
semiconductor superlattices, where the lattice period, which determines the Bloch period,
is much bigger than in usual solids, [106]. Also for a gas of ultracold bosonic atoms in an
optical lattice, Bloch oscillations have been detected recently, [107].

In the experimental system for the expansion, gravitation induces oscillations with the
amplitude 2J/(mg), where J is the hopping amplitude from one lattice site to the other.
The oscillation amplitude is of the order of the lattice constant of the optical lattice, which
prohibits the atom cloud to expand in vertical direction, at least as long as the scattering
time is longer than the Bloch period. Effectively, the expansion experiment therefore can be
described by a two-dimensional simulation.

4.2 Boltzmann Equation Description

A theoretical description of the experiment introduced in the preceding section must cover a
large range of regimes of an interacting quantum system out of equilibrium. Naturally, it is
very difficult to cover all these regimes exactly, a good approximation would have to match
as many limiting cases as possible, e. g. the limiting cases of high and low density. Despite
the fact that the setting does not meet the preconditions for the Boltzmann equation being
valid, the latter turns out to fulfill this demand: In the low density regime, where the atoms
expand freely, their motion is semiclassical and hence well described by the drift term. At
large interactions scattering becomes dominant in the center of the trap where the density
is high, driving the distribution function quickly towards local equilibrium. Such a setting
exhibits diffusive transport of particles and energy which can be described by the Boltzmann
equation in relaxation time approximation [108].

Thus calculating a scattering rate matching the transport coefficients of the diffusive
regime and using it in the linearized Boltzmann equation yields an equation of motion for the
distribution functions which is valid in the two limiting cases. For that purpose the diffusion
constants, that relates the currents to the gradients of particle and energy density, n and ε,
as (

J

Jε

)
=

(
Dp Dpε
Dεp Dε

)(
∇n
∇ε

)
(4.1)

must be identified with the standard transport coefficients for energy and particle transport,
defined by (

J

Jε

)
=

(
LEE LET
LTE LTT

)(
E

1
T∇T

)
. (4.2)

Writing the electric field as

E = ∇µ =
∂µ

∂n
∇n (4.3)

and the temperature gradient as

∇T =
∂T

∂ε
∇ε, (4.4)

the identification can be done from the equation(
Dp Dpε
Dεp Dε

)
=

(
LEE LET
LTE LTT

)( ∂µ
∂n

∂µ
∂ε

∂T
∂µ

1
T
∂T
∂ε

)
. (4.5)
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CHAPTER 4. EXPANSION OF INTERACTING ATOMS IN OPTICAL LATTICES

Since the density of the atom cloud is varying slowly in space, the equilibrium transport
coefficients can be used. As discussed in chapter 1, they are related to the current-current
correlation functions by the Green-Kubo relations. As in the previous chapter, they can be
calculated to leading order in the interaction with the memory matrix formalism. Since the
lowest order contribution is already included in the Li j , the factors ∂µ/∂n and ∂T/∂ε to
leading order can be replaced by their non-interacting values.

The calculation of the scattering rates by menas of the memory matrix formalism is
carried out in chapter 4.3. The resulting τ can be entered into the Boltzmann equation in
relaxation-time approximation, equation (1.8). Thus, one has to solve a partial differential
equation for the distribution function with given starting conditions. The Boltzmann equation
to this problem reads

∂t f (k , r) = −v · (∇r f (k , r)) + U (∇rn(r)) · (∇k f (k , r))

−
1

τ (µ(r), β(r), U2)

(
f (k , r)− f 0(ε(k), µ(r), β(r))

)
(4.6)

where the velocity v is given by the derivative of the dispersion with respect to the momentum

v = ∇kε(k) = ∇k (−2J cos(kx)− 2J cos(ky )) , (4.7)

and U is the interaction strength, which controls the force term as well as the scattering.
In the following, all energies will be given in units of the hopping amplitude J, which in the
calculations is set to J = 1. The scattering term is built such that the distribution function f
always alters towards the equilibrium form f 0, and simultaneously the conservation of particle
number and energy is ensured by adaption of the local inverse temperature β(r) and chemical
potential µ(r).

In this description, the distribution function is continuous in space and momentum. It
can be solved using standard numerical methods5, but for the implementation it must be
discretized, where it should be noted that the spacial lattice is not equivalent to the op-
tical lattice. Derivatives must be replaced by quotients of differences, which are chosen
symmetrically. In momentum coordinates, the quotient of differences are chosen as

∂ki
f (k) =

f (k + ∆ki)− f (k − ∆ki)

2∆ki
. (4.8)

It is natural to chose periodic boundary conditions for the momentum coordinates, which
reflects the physical content of the Bloch theorem. In real space a higher density of dis-
cretization points than in momentum space will be needed, to describe decently the inhomo-
geneity of the problem. Accordingly, the spatial derivatives are implemented with a higher
order quotient of derivatives, namely

∂ri f (r) =
−f (r + 2∆ri) + 8f (r + ∆ri)− 8f (r − ∆ri) + f (r − 2∆ri)

12∆ri
, (4.9)

which gives a smoother approximation to the infinitesimal derivative.
Unlike in momentum coordinates, periodic boundary conditions are not the natural choice

for the real space coordinates. There is no link between the different edges of the simulated
space, and one does not expect particles to flow in at all. Nevertheless, they are used
here to gain stronger control over the numerical stability, in particular the conservation of

5In this project, fourth order Runge-Kutta algorithm has been used

83



4.2. BOLTZMANN EQUATION DESCRIPTION

the particle number. With open boundary conditions the particle number is not conserved,
since particles drain through the boundaries. Closed boundary conditions cause a reflection
of atoms reaching the edge, which is practically equivalent to periodic ones due to the used
symmetry of the system. With periodic boundary conditions, the particle number is conserved
exactly, also in the discretized version, as can be seen by summing over all momenta and
lattice sites of the discretized Boltzmann equation.

The disadvantage traded in for this is an unphysical inflow of particles. Fortunately, this
is really tiny as long as no considerable density has moved close to the edges of the system.
Since the density moves at most ballistically with the maximum velocity corresponding to
the momentum ki = π/4, it is obvious when the validity of the description breaks down.
After that time, the simulation becomes unmeaningful, but even with the correct boundary
conditions, it would have been impossible to extract a characteristic width from the simulated
cloud with considerable density flown out of the grid from the beginning.

The discretized version is a system of coupled partial differential equations for each
k(px , py ), which are coupled through the force and the scattering term.

To model the starting conditions, the local chemical potential is calculated from the
trapping potential, namely

µ(nx , ny , nz) = −a0r(nx , ny , nz)2 + b0, (4.10)

with the parameters chosen matching to the experiment a0 = 0.00970237D0 and b0 varying
between 15D0 and 20D0 for each run of the experiment6, both in units of the bandwidth
D0 = 4J. With the chemical potential, the local density can be obtained by summing the
equilibrium Fermi-distribution function at every site over all discrete momenta k(px , py , pz),
which is a three-dimensional sum, since this part of the preparation happens before the layers
are separated. One obtains

n(nx , ny , nz) =
1

NxNyNz

∑
px ,py ,pz

1

eβ(ε(k(px ,py ,pz ))−µ(r(nx ,ny ,nz )) + 1
(4.11)

with ε(k) the three-dimensional analogue to the dispersion introduced in equation (4.7) and
the experimental temperatures vary between β = 0.13D0 and 0.19D0.

Then the distribution function gets quenched in the preparation process by temporarily
prohibiting tunneling between different lattice sites, which locally levels the occupation of
every momentum state while keeping the particle number at every site fixed. The starting
distribution function thus is obtained from

f (nx , ny , nz , px , py ) =
1

n(nx , ny , nz)
, (4.12)

where practically the z space coordinate is the same for the whole system of differential
equations, which describes the time evolution within one layer, and thus can be dropped as a
functional dependency. This distribution function describes the state of a system at infinite
temperature, which makes the practical use of the chemical potential impossible, because the
latter also would have to be infinite, but still generate the correct particle number. Instead,
the fugacity z(r) = exp (β(r)µ(r)) is used, which remains well-defined in this limit.

The fugacity must be obtained by solving the equation(
n(f (r))

ε(f (r))

)
=

1

NxNy

∑
px ,py

(
f 0(k(px , py ), z(r), β(r))

ε(k(px , py ))f 0(k(px , py ), z(r), β(r))

)
(4.13)

6the exact parameters are given in appendix C.1
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CHAPTER 4. EXPANSION OF INTERACTING ATOMS IN OPTICAL LATTICES

for z and β, which is done by means of the generalized Newton algorithm. In the first
step, the energy density of the quenched distribution function is zero, since all momenta are
equally occupied and the dispersion is symmetric in k7. If the equation is fulfilled, both the
equilibrium distribution function and the real distribution function contain the same particle
number and energy per particle. Thus, the scattering process which shifts weight in the
distribution function towards the equilibrium form conserves these two quantities.

Note that the equilibrium distribution function might look different from what one would
expect, since locally high energy content might enforce an inversion of the occupation proba-
bility, which corresponds to a negative inverse temperature. This doesn’t impose a problem,
the equilibrium distribution function changes continuously from positive through zero inverse
temperature to negative.

During the simulation, the inverse temperature and the fugacity must be readjusted to
the changing distribution function in every time step at every space point. For the used
Runge-Kutta algorithm of fourth order, this means that also in the intermediate time steps
the readjustment has to be performed. Since within a time step the distribution function
changes only slightly, the fugacity and inverse temperature from the preceding time step is
typically very close to the solution of the equation and only few iterations are needed to
reach a good numerical accuracy.

The numerical effort can be reduced by taking advantage of the fact that only a minor
part of the simulated space contains a noteworthy amount of particles. In the low density limit
the Pauli principle becomes ineffective, such that the equilibrium values of the particle and
energy density are approximated well by summing over the Maxwell-Boltzmann distribution
instead of the Fermi-distribution. This gives a closed expression for the particle density

n(r) ≈ z(r)
∑
k

e−β(r)ε(k) = z(r)
1

4π2

π∫
−π

dke2β(r)(cos(kx )+cos(ky )) = z(r)J0 (2β(r))2 (4.14)

and the energy

ε(r) ≈ z(r)
∑
k

ε(k)e−β(r)ε(k) = −z(r)
4

4π2

π∫
−π

dk cos(kx)e2β(r)(cos(kx )+cos(ky ))

= −4z(r)J1(2β(r)J0(2β(r)) (4.15)

as functions of fugacity and inverse temperature in terms of Bessel functions Jn(x) of the
first kind. In particular, the energy per particle ε(r)/n(r) is, as easily can be seen, only a
function of β and not of z . This simplifies the task to find the right fugacity and temperature
a lot, since constructing an inverse function numerically is much easier on an one-dimensional
space then on a two-dimensional one.

Practically, for a large set of temperatures, the energy per particle is computed and stored
as a list of tuples with first entry the energy per particle and second entry the corresponding
inverse temperature β. Then a cubic spline is constructed from the set, which gives inverse
temperature for any energy density within the covered range8. Since the spline has to be
built only once for the whole simulation, this procedure is very efficient. Knowing the local

7due to this reason it is necessary to chose the momentum discretization as a multiple of four to ensure
meaningful solutions for the inverse temperature and fugacity

8In the simulation 10000 equally distributed values of β from −50D0 to 50D0 are used.
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temperature β(r), the fugacity can be obtained by solving equation (4.14) for z , giving

z(r) =
n(r)

J0(2β(r))2
, (4.16)

which can be evaluated at small numerical costs.
This approximation scheme is applied for lattice sites with a density n(r) ≤ 0.0001. As

shown in C.2, the relative error of the particle number ∆n made by replacing the Fermi-Dirac
distribution function with the Maxwell-Boltzmann statistics for high temperatures is equal to
the fugacity, for which in this limit

z =
n(r)

1− n(r)
(4.17)

holds. Thus the relative error is ∆n = O(10−4). The error of the energy is of the same order
of magnitude.

On top of using the low density approximation, the numerical effort can further be reduced
by making use of the systems symmetry. The Hubbard model on the underlying simple cubic
lattice has of course the symmetries of the point group of a square plus all translations by
a primitive vector, but the initial state prepared in the trapping potential doesn’t have the
translational symmetry. Hence all physical information is contained in a wedge of size one
eighth of the total system, which reproduces in the other parts by applying the symmetry
operations9.

4.3 Relaxation-Time from Memory Matrix

For the implementation of the lattice-Boltzmann calculation a reasonable estimate of the
relaxation-time as function of filling and temperature is needed. As an approximation to
this quantity the conductivity of the Hubbard model in local equilibrium is calculated and a
scattering rate matching this conductivity constructed.

The integrable, unperturbed part of the Hamiltonian is the free propagation of fermions
on a two-dimensional lattice with a tight-binding dispersion ε(k) = −2(cos(kxa)+cos(kya)),
written in momentum space as

Hkin =
∑
k,σ

εσ(k)c†kσckσ. (4.18)

The remaining part of the Hubbard model, the interaction, is used as a perturbation to the
integrable Hkin, which again breaks the integrability and renders the conductivities corre-
sponding to the slow modes finite. Of practical interest for the simulation is, of course, the
conductivity of the particle current,

J =
∑
k,σ

vkc
†
kσckσ, (4.19)

and that of the heat current Jε

Jε =
∑
k,σ

vkεkc
†
kσckσ (4.20)

9see C.3 for details of the symmetry group
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but to achieve a more accurate lower bound to the real conductivity the particle momentum
P and the hole momentum Phole,

P =
∑
k,σ

kc†kσckσ

Phole =
∑
k,σ

(1− k) c†kσckσ (4.21)

are included as additional slow modes. By taking into account the momenta as slow modes,
the correct asymptotics for low density and temperature, which are dominated by Umklapp
scattering, is achieved. As in chapter 3, the time derivative of these modes is calculated
only with the perturbation to the Hamiltonian, since they are conserved quantities of the
unperturbed part Hkin. For this purpose, the perturbation is best also written in momentum
space operators,

Hint = U
∑

q,k,k ′,σ,σ′

c
†
kσck+qσc

†
k ′+qσ′ck ′σ′ . (4.22)

Since all four modes have the structure sum over k over a function of the momentum times
the particle density in common the calculation of the time derivative must be done only once
for all. It is again performed by the commutator of the current with Hint, leading to

∂tJi = U
∑
qkk ′

(
gi(k + q)− gi(k) + gi(k

′ − q)− gi(k ′))
)
c
†
k+q↑ck↑c

†
k ′−q↓ck ′↓ (4.23)

with gi the k-dependent prefactor of each current Ji , see appendix C.4.1. From these, the
correlation function of every pair of time derivatives of currents must be calculated, as always
within the unperturbed theory. Since the latter is particularly simple, this can actually be done
in real time with the definition〈

∂tJi ; ∂tJj
〉

(ω) =

∫
dte iωt(−iθ(t))

〈[
∂tJi(t), ∂tJj(0)

]〉
. (4.24)

The imaginary part of the correlation function can be partially evaluated, see appendix C.4.2,
giving

Im
〈
∂tJi ; ∂tJj

〉
(ω) = πU2

∑
k,k,k,k,G

∏
l=i ,j

(gl(k1) + gl(k)− gl(k)− gl(k))

×
(
δ(ω − (εk + εk − εk − εk)− δ(−ω − (εk + εk − εk − εk)

)
× δk+k,k+k+Gfkfk

(
1− fk

)
(1− fk) (4.25)

where a sum over four independent momenta within the first Brillouin zone and all reciprocal
lattice vectors G remains. The Kronecker delta ensures momentum conservation and the
two delta functions energy conservation.

From equation (4.25) the conductivities for particle and heat current can be obtained
from

σi j =
(
χ̂M̂−1χ̂

)
i ,j

(4.26)

where the elements of the matrix M̂ are given by

Mi ,j = lim
ω→0

1

ω
Im
[〈
∂tJi ; ∂tJj

〉
(ω)
]
, (4.27)
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Figure 4.1: Inverse scattering rate as function of the density for several temperatures.

and the respective generalized susceptibilities χi by

χi =
∑
k,σ

gi(k)2 (1− fkσ) fkσ, (4.28)

see appendix C.4.3 for details of the calculation. Both, the matrix of correlation functions
and the susceptibilities depend on the chemical potential µ and the temperature T through
the Fermi distribution functions. They can be computed with moderate numerical effort by
Monte Carlo integration for fixed µ and T . From this data set, a formula for the scattering
rates as function of particle density and temperature can be obtained by fitting to a suitable
function with few parameters. Here, the function

τ−1(β, n) =
4A(1− n)n

1− 16AS
(4.29)

was used to produce a fit with parameters A and S for each temperature β. From the
obtained set of fit parameters, a continous fit as function of n and β was obtained by fitting
the parameters A and S as function of β with the functions

A(β) = a arctan(bβ + cβ2)

S(β) = ã arctan(b̃β + c̃β2). (4.30)

The resulting parameters for the actual data set were a = 0.09691, b = 0.64611,
c = 0.70832, ã = 0.38767, b̃ = 0.12932, c̃ = 0.20087.

The transport coefficients LEE , LET , LTT are identical to the components σ1,1, σ1,4, σ4,4

of the matrix of conductivities. Using the expressions derived for the transport coefficients in
relaxation time approximation, equations (1.21) and (1.23), one obtains one relaxation time
per transport coefficient, namely

1

τ1
=
χJpJp
LEE

,
1

τ2
=
χJpJε
LET

,
1

τ3
=
χJεJε
LTT

(4.31)

With each obtained relaxation time, the solution of the linearized Boltzmann equation, equa-
tion (4.6), matches the respective transport coefficient. Thus, one has to make a choice
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which effect shall be governed in the best way and perform an average that suits this purpose.
Here it turns out that the temperature of the described experiment is that high in the whole
trap that heat transport plays only a minor role, and the best choice of τ is such that the
particle current conductivity is matched.

Figure 4.1 shows the inverse scattering rate τ−1 fitted to match the transport coefficient
LEE as function of the filling for some temperatures.

4.4 Results

Since all parameters of the model are adjusted to match the experimental situation, the results
can directly be compared. From the obtained distribution functions, the density profiles of
each time-step are calculated easily.

In the two-dimensional expansion, the cloud is prepared three-dimensional and then sep-
arated by changing the depth of the lattice in z-direction. Therefore, the obtained images
show an average over several expansions in different layers, with different starting conditions.
To make a reasonable comparison, the simulation is also done for each two-dimensional slice
separately, and the final density profile is obtained by summing over them.

Figure 4.2 shows the experimental and theoretical density profiles after 25ms expansion
for different interaction strength U/J. Clearly, the cloud becomes rectangular for small
interactions, while the circular shape of the starting cloud stays better conserved the higher
the interaction strength is.

The experimentally imaged clouds have similar shapes for repulsive and attractive interac-
tions of the same magnitude. This can be explained by a symmetry argument of the Hubbard
model, pointed out by E. Demler, see [104]. Consider two Hubbard-type Hamiltonians,

H± = −J
∑
〈i ,j〉,σ

c
†
iσcjσ ± U

∑
i

ni↑ni↓, (4.32)

which differ only in the sign of the interaction term. For an initial state and a measured
quantity that are both invariant under the symmetry operations time-reversal and momen-
tum shift by Q = (π, π, π) × 2/λ, the time-evolution is equal for repulsive and attractive
interaction.

The measured operator in the experiment, the density operator n(r), fulfills the required
symmetries, as well as the initial state, which consists of atoms that are completely localized
within individual wells.

Since the experimental system is a good realization of the Hubbard model, the symmetry
applies. Consequently, the density distributions, and hence the characteristic width, of the
attractive and repulsive cases are equal.

In the zero interaction case, the scattering term vanishes and the dynamics is completely
governed by the semiclassical motion. The Boltzmann equation, equation (4.6), for x and
y direction decouples, and each momentum eigenstate expands with its group velocity. Ef-
fectively, for each momentum eigenstate a distribution in the shape of the starting cloud
moves through the system. The superposition of all momenta has maxima at finite r , so the
product of the x and y distributions has the characteristic square shape, which can be seen
well also in the experimental data.

For finite interaction, in the high density region a part of the ballistically moving atoms is
scattered into the equilibrium distribution function, which is isotropic. This leads to diffusive
instead of ballistic transport, and the resulting density distribution becomes more circular
with increasing interaction strength U.
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Figure 4.2: Density profiles after 25ms of expansion for different interaction strength U/J,
averaged over all occupied two-dimensional layers. The experimental results look similar
for positive and negative U, which can be explained by a symmetry argument (see text).
At low interactions, the cloud takes a rectangular shape, while it stays ever more circular
with increasing interaction. These features are reproduced well by the lattice-Boltzmann
simulation (image by U. Schneider, with theoretical data by S. Mandt and the author).
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Figure 4.3: Cloud size
√
r2 as a function of expansion time for various interaction strength.

Initial conditions are chosen to match the experiment.

From the density profiles obtained from the numerical simulation, the second moment of
the density distribution can be calculated easily. The result for various interaction strength as
a function of expansion time is shown in figure 4.3. In this measure, the circular or rectangular
shape of the cloud is averaged out. The expansion is fastest for vanishing interaction, and
the expansion rate decreases monotonically with increasing interaction strength.

However, for a comparison with the experiment, the second moment is not suitable. It
measures the characteristic width of a distribution optimally, but can not be obtained from
the experimental data due to inaccuracies. In particular, it is impossible to extract the zero
density bottom line from the background noise in the low density limit.

Instead of calculating the second moment, the full width at half maximum RH is extracted
from radially averaged density profiles as the characteristic width. This approach puts the
focus on the core dynamics, in contrast to the second moment 〈r2〉, which is dominated by
ballistic particles in the low density tails of the cloud.

We applied the same procedure to our numerical data to compare the widths of the
experimental and theoretical profiles.

As an estimate of the expansion velocity, the core expansion velocity vc is obtained by
fitting the time-dependence of the characteristic width as

RH(t) =
√
RH(0)2 + v2

c t
2. (4.33)

In figure 4.4, the core expansion velocities vc in units of λJ/(2~) as function of interaction
strength U/J is shown. The experimental data comes from measurements in lattices with
different depth between 7 and 12Er . As a function of interaction over bandwidth, which
depends on the lattice depth, the velocities vc for the different parameters lie on a single line.
The maximum of the core expansion velocity lies at U/J = 0, the case of free expansion.
At finite interactions, the expansion velocity is symmetric with respect to the sign of the
interaction strength, which is due to the dynamical U → −U symmetry of the Hubbard model
discussed before, and the small influence of the Hartree term. With increasing interaction
strength, the core expansion velocity decays rapidly and reaches even negative values for
interactions |U/J| & 3. In this regime, the diffusive core dissolves by emitting ballistic
particles and therefore shrinks in size.
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Figure 4.4: Core expansion velocities vc of the cloud as function of the interaction strength
U/J in units of lattice spacing times bandwidth λ/2/(~/J), experimental and theoretical
values. The experimental results for optical lattices of different depths nicely fall onto a line
(black line as guide to the eye) as function of U/J, with a pronounced peak at U/J = 0. In
this regime the transport is ballistic and the velocities are matched well by the theoretical
simulation (red line). With increasing interaction, the velocity decays rapidly, to become
negative for interactions |U| & 3J, the strongly diffusive regime. In the theoretical simulation
the decay is faster than the experimental results, but at very high interactions, the measured
velocities are stronger negative. The inset shows the measured dissolution time of double
occupancies. (image by U. Schneider, with theoretical data by S. Mandt and the author).

The peak around zero interaction is matched well by the theoretical results, however, the
decay of the core expansion velocity is slightly faster than in the experiment. In contrast to
the experimental data, the theoretical velocities increase again for very big interactions.

Qualitatively, the numerical simulation captures all features of the experimental core
expansion velocities. Quantitative discrepancies in the high interaction limit might be due to
the breakdown of the relaxation rate approximation in the crossover region from diffusive to
ballistic behavior, where the colliding atoms are far from equilibrium.

Uncertainties of the parameters U and J can not explain the quantitative deviations,
since they are known to good accuracy. In the non-interacting case, the agreement between
simulation and experiment is quiet good, apart from very long expansion times, or large clouds
respectively, where inhomogeneities in the optical lattice start to play a role.

A problem could be the calculation of the scattering rate with the memory matrix for-
malism, which gives only a lower bound to the conductivity, and thus for the scattering rate
1/τ . Indeed, the experimentally observed cloud sizes are consistently bigger than the the-
oretically predicted ones, so an underestimation of the scattering time is probably not the
main mistake. More seriously, the calculation of the conductivity is perturbative in U/J, so
its validity theoretically is limited to small interactions |U/J| � 4.

The main problem of the simulation is probably the breakdown of the relaxation time
description in the regime of intermediate density. In the low density regime, ballistic transport
dominates, which is described well by the numerics, while the high density regime is diffusive
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with a scattering rate 1/τ constructed to match the diffusion constant. Despite the small
size of the crossover regime, the characteristic width of the diffusive core, which mostly
depends on the diffusive regime, is affected strongly by the mistakes made at intermediate
densities.

Being aware of this problem, the relaxation time Boltzmann approach used in this project
proves itself a useful method to model inhomogeneous time-dependend problems in ultracold
atom settings.
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A Calculation of Phonon Lifetime

Here the calculation of the Phonon self-energy to second order shall be carried out. The
standard rules for finite temperature diagrammatic perturbation rules (see e. g. [2]) are
applied. As pointed out in chapter 2, the relevant processes can be described by a single
diagram with an effective vertex. In formulas, this diagram reads

Πel−ph (q, iΩ) = −
∑

ξn,∆Ωm

∑
∆q,k

(
Meff
q,q+∆q

)2
D0(q + ∆q, iΩ + i∆Ωm)

× G0(k + ∆q, iξn + i∆Ωm)G0(k , iξn), (A.1)

where D0 and G0 are free Green’s functions for phonons and fermions, respectively, and the
minus sign in front is due to from the closed fermion loop. The sums run over all internal
momenta and frequencies. For the latter, ∆Ωm are bosonic Matsubara frequencies and ξn
fermionic ones.

A.1 Calculating the Imaginary Part with Branch Cuts

The Matsubara frequency sums can be transformed to real integrals by using the branch cuts
of the Green’s functions. For this purpose the fermionic bubble G0(iξn + i∆Ωm)G0(iξn) shall
be regarded as one bosonic propagator F (i∆Ω) (the momenta are not of concern for the
moment and are dropped temporarily).

The remaining diagram contains a sum over the internal frequency i∆Ω, in which the
Green’s functions D and F have branch cuts. When going from the Matsubara sum to a
contour integration in the complex frequency plane, one can deform the standard Matsubara
contour from vertical paths around the poles of the counting functions to horizontal paths
along the branch cuts.

Since the paths run in opposite directions above and below the cut, the contribution to
the real part of the integral from the two paths exactly cancels, while the imaginary part is
accounted for twice, due to the opposite prefactor. For bosonic frequencies, the counting
function contributes a Bose-function, for fermionic ones a Fermi-function.

In the case studied here, there is one branch cut in D0 at i∆Ωm = −iΩ and one in F at
i∆Ωm = 0. Thus, one can write∑

i∆Ωm

D0(i∆Ωm + iΩ)F (i∆Ωm) =

∫
d∆Ω

π

(
nB(∆Ω)Im

[
D0(∆Ω)

]
F (∆Ω− iΩ)

+ nB(∆Ω)D0(∆Ω + iΩ)Im [F (∆Ω)]
)
, (A.2)

where in every term the respective branch cut has been shifted to i∆Ω = 0. Now one applies
the analytic continuation by replacing iΩ→ Ω + iδ and taking the limit δ → 0+. To ensure



A.1. CALCULATING THE IMAGINARY PART WITH BRANCH CUTS

Figure A.1: Deformation of the Matsubara contour around a branch cut. The summation of
the Matsubara frequencies translates into twice the integral of the imaginary part along the
cut (dashed line).

to keep retarded Green’s functions, in cases where the argument is −iΩ one has to take the
complex conjugate at this point. Taking the imaginary part of the whole expression, one
obtains

Im

∑
i∆Ωm

D0(i∆Ωm + iΩ)F (i∆Ωm)

 =

∫
d∆Ω

π
(nB(∆Ω)− nB(∆Ω + Ω))

×Im
[
D0(∆Ω + Ω)

]
Im [F (∆Ω)] . (A.3)

For this expression, the frequency shift has been revoked. By the same technique the imag-
inary part of the auxilaury bosonic propagator F (i∆Ω) =

∑
ξn
G0

1 (iξn + i∆Ω)G0
2 (iξn) can be

calculated. The subscripts 1, 2 are introduced to keep track of the momentum arguments.
There are brach cuts at iξn = −i∆Ω and iξn = 0. One yields∑

ξn

G0
1 (iξn + i∆Ω)G0

2 (iξn) =

∫
dξ

π

(
nF (ξ)Im

[
G0

1 (ξ)
]
G0

2 (ξ − i∆Ω)

+ nF (ξ)G0
1 (ξ + i∆Ω)Im

[
G0

2 (ξ)
])
, (A.4)

and after analytic continuation and shifting back the frequencies for the imaginary part

Im [F (∆Ω)] =

∫
dξ

π
(nF (ξ)− nF (ξ + ∆Ω)) Im

[
G0

1 (ξ + ∆Ω)
]

Im
[
G0

2 (ξ)
]
. (A.5)

Inserting this back into (A.1), one obtains for the imaginary part of the phonon self-energy

Im
[
Πel−ph (q,Ω)

]
=
∑
∆q,k

∫
dξd∆Ω

π2
(nF (ξ + ∆Ω)− nF (ξ)) (nB(∆Ω)− nB(∆Ω + Ω))

×
(
Meff
q,q+∆q

)2
Im
[
D0(q + ∆q,∆Ω + Ω)

]
Im
[
G0(k + ∆q, ξ + ∆Ω)

]
Im
[
G0(k , ξ)

]
.

(A.6)
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The frequency integrations can be done on general grounds by making use of the two latter
imaginary parts of the free propagators, which are of course delta functions. This yields for
ξ = εk and for ∆Ω = εk+q − εk . For the whole expression one obtains

Im
[
Πel−ph (q,Ω)

]
=
∑
∆q,k

1

π2

(
nF (εk+q)− nF (εk)

) (
nB(εk+q − εk)− nB(εk+q − εk + Ω)

)
×
(
Meff
q,q+∆q

)2
Im
[
D0(q + ∆q, εk+q − εk + Ω)

]
.

(A.7)

A.2 Low Energy Limit of Effective Vertex

In the calculation of the phonon lifetime, the effective vertex always appears squared, since
the process is symmetric under time inversion. Thus, the limit of small external momentum

q of
(
Meff
q,q+∆q

)2
is needed. The momentum enters the expression via Ω = vP |q|. The

square of the vertex thus reads

(
Meff
q,q+∆q

)2
=

V 4
el−ph~6

4M2N2m2v4
P

q2

|q|
(q + ∆q)2

|q + ∆q|
((q + ∆q) q)2

|q + ∆q|4 . (A.8)

Here, the independence of Vel−ph of the momentum has been assumed. One obtains the
dominant contribution, namely the part with the lowest power of |∆q| which will later lead
to the lowest power of T , as

(
Meff
q,q+∆q

)2 ≈
V 4

el−ph~6

4M2N2m2v4
P

q2. (A.9)

In the case of one-dimensional fermion, only the paralell component q|| of the external mo-
mentum enters the formula.

A.3 Momentum Summation for Three-Dimensional Fermions

The momentum sum is as usual evaluated as an integration. In the case of three-dimensional
fermions, it can be carried out using spherical coordinates for both integration variables k
and ∆q, with the angles θ between k and ∆q, and φ between ∆q and q. The integral reads

1

τ3D
q

= 2Im
[
Πel−ph (q,Ω)

]3D
=

2V 4
el−ph~6

M2m2v4
P

a6

(2π)6

∞∫
0

d∆q

∞∫
0

dk

1∫
−1

dη

1∫
−1

dη′q2∆q2k2

×
(
nF
(
εk+∆q

)
− nF (εk)

) (
nB
(
εk+∆q − εk

)
− nB

(
εk+∆q − εk + ωq

))
×
(
δ
(
εk+∆q − εk + ωq − ωq+∆q

)
− δ

(
εk+∆q − εk + ωq + ωq+∆q

))
, (A.10)

with η = cosφ and η′ = cos θ. For simplification, the energies can be linearized for small
values of q, ∆q, and k, successively in this order. Together with the abbrevation C for the
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prefactor, this yields

1

τ3D
q

= C

∞∫
0

d∆q

∞∫
0

dk

1∫
−1

dη′
1∫
−1

dηq2∆q2k2
(
nF
(
εF + vF k + vF∆qη′

)
− nF (εF + vF k)

)
×
(
nB
(
vF∆qη′

)
− nB

(
vF∆qη′ + vP∆q

)) 1

vF∆q

(
δ

(
η′ −

vP
vF

)
− δ

(
η′ +

vP
vF

q + ∆q

∆q

))
.

(A.11)

Again, the dominant term with the highest temperature power is the latter δ function, which
produces a lower power of ∆q in the integrand, leading to a higher power of temperature.
Performing the integration over the angles, after some regrouping one obtains

1

τ3D
q

=
Cq2

vF

∞∫
0

d∆q∆q (nB(vP q)− nB(vP (2q + ∆q)))

×
∞∫

0

dkk2 (nF (εF + vF k + vP (q + ∆q))− nF (εF + vF k)) . (A.12)

The integration over k can be done now by substituting ξ = vF k/T , yielding a factor of
vPπ

2T 2/(3v3
F )(q+∆q). Thus, in the dominant contribution, the latter integral is independent

of ∆q. Therefore the integration over ∆q, which again is done by substituting χ = vP∆q/T ,
results in a factor of π2T/(3vP )q. In total the phonon lifetime in second order perturbation
theory with electron-phonon interaction with three-dimensional electrons then is

1

τ3D
q

=
a6

269π2m2M2

(
qVel−ph

vF vP

)4

T 3. (A.13)

A.4 Momentum Summation for One-Dimensional Fermions

In the case of scattering from one-dimensional fermions, the calculation is slightly different
since the accessible phase space is smaller. In particular the result becomes dependent
on the angle between the one-dimensional manifolds the fermions are confined to and the
propagation direction of the phonon. The integral that must be calculated is

1

τ1D
q

= 2Im
[
Πel−ph (q,Ω)

]1D
=

2V 4
el−ph~6

M2m2v4
P

a4

(2π)4

∑
±

∞∫
0

d∆q

∞∫
−∞

dk

1∫
−1

dη′q2
||∆q2

×
(
nF (εF ± vF k + vF∆qη′)− nF (εF ± vF k)

) (
nB(vF∆qη′)− nB(vF∆qη′ + vP q)

)
×
(
δ
(
vF∆qη′ + vP∆q− vP |q + ∆q|

)
− δ

(
vF∆qη′ + vP∆q + vP |q + ∆q|

))
. (A.14)

Linearization of the fermionic dispersion leads to a sum over contributions from the two
Fermi-points with ± in the arguments of the Fermi distribution. The δ-functions can be
transformed to

1

vF∆q

((
η′ +

vP
vF
−
vP
vF

|q + ∆q|
∆q

)
− δ

(
η′ +

vP
vF

+
vP
vF

|q + ∆q|
∆q

))
.
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Clearly, for vF � vP , there can not be a contribution from the second term. So evaluating
the η′ integral yields

1

τ1D
q

=
C̃

vF

∞∫
0

d∆q

∞∫
−∞

dk∆qq2
|| (nF (εF + vF k + vP∆q− vP |q + ∆q|)− nF (εF + vF k))

× (nB (vP∆q− vP |q + ∆q|)− nB (vP q + vP∆q− vP |q + ∆q|)) . (A.15)

The integration over k again can be done elementary and yields to leading order in the offset
between the two Fermi functions −vP /(vF ) (∆q− |q + ∆q|) ≈ −vP /(vF )q||. By use of
similar substitutions as in the case of three-dimensional fermions, the remaining ∆q integral
can be done, leading to the final result

1

τ1D
q

=
a4V 4

el−ph

4π2m2M2v2
F v

4
P

q4T cos2(φ). (A.16)

Apparently, the reduced accessible phase space of the fermions due to the lower dimensionality
leads to a temperature power of one instead of three. On top of that, the lifetime becomes
angle dependent, with no scattering in the direction perpendicular to the fermionic manifolds.
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B Bosonization Calculations

B.1 Time-Derivatives of Currents for Spin Chain

Commutators are evaluated using the elementary relations

[φ(x), ∂x ′θ(x ′)] = iπδ(x − x ′) (B.1)

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂ (B.2)

[Â, f (B̂)] = [Â, B̂]f ′(B̂) if
[[
Â, B̂

]
, B̂
]

= 0 (B.3)

∂U
t Js = i[Js , HU] = i

vKg

π(2πa)2

∫
dx

∫
dx ′
[
∂xθ(x), e i∆kx ′e i4φ(x ′) + h.c.

]
= i

vKg

π(2πa)2

∫
dx

∫
dx ′
(
e i∆kx ′(−iπ)δ(x − x ′)4ie i4φ(x ′) − h.c.

)
= i

4vKg

(2πa)2

∫
dx
(
e i∆kxe i4φ(x) − h.c.

)
(B.4)

The Umklapp time-derivative of the heat-current can be reduced to a function of that of the
spin current by partial integration:

∂U
t JH =i[JH, HU] = i

v2g

(2πa)2

∫
dx

∫
dx ′
[
∂xθ(x), e i∆kx ′e i4φ(x ′) + h.c.

]
∂xφ(x)

=i
v2g

(2πa)2

∫
dx

∫
dx ′
(
e i∆kx ′(−iπ)δ(x − x ′)4ie i4φ(x ′)∂xφ(x) + h.c.

)
=

v2g

(2πa)2

∫
dx
(
e i∆kx

(
∂xe

i4φ(x)
)
− h.c.

)
P.I.
=

v2g

(2πa)2

∫
dx
((
∂xe

i∆kx
)
e i4φ(x) − h.c.

)
=
v∆k

4K
∂U
t Js (B.5)

∂dis
t Js =i[Js , Hdis] = i

vK

2π2a

∫
dx

∫
dx ′η(x ′)

[
∂xθ(x), ie i2φ(x ′) − ie−iφ(x ′)

]
=−

vK

2π2a

∫
dx

∫
dx ′η(x ′)(−iπ)δ(x − x ′)

(
2ie i2φ(x ′) − h.c.

)
=−

vK

πa

∫
dxη(x)

(
e i2φ(x) + h.c.

)
(B.6)

∂dis
t JH =i[JH, Hdis] = i

v2

2πa

∫
dx

∫
dx ′η(x ′)

[
∂xθ(x),

(
ie i2φ(x ′) + h.c.

)]
∂xφ(x)

=
v2

2a

∫
dx
(
∂xe

i2φ(x) − h.c.
)

(B.7)
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B.2 4kF Correlation Function

Symmetry of 4kF correlation function Γ (∆k, ω) ∼
〈
e i4φ(x)e−i4φ(x ′)

〉
(∆k, ω): For small ω

Γ (∆k, ω) ≈ −iω

∞∫
−∞

dt

∞∫
−∞

dxte−i∆kxΓ (x, t)

= −iω

∞∫
0

dt

∞∫
−∞

dxte−i∆kx (Γ (x, t)− Γ (x,−t))

= −iω

∞∫
0

dt

∞∫
−∞

dxte−i∆kx (Γ (x, t)− Γ (x, t)∗)

= −2ω

∞∫
0

dt

∞∫
−∞

dxte−i∆kx Im (Γ (x, t)) (B.8)

Since ImΓ (x, t) is odd with respect to t, as can be seen by appliyng time-reversal, the
integration interval can be chosen symmetric again. Inserting the correlation function

〈
e i4φ(x)e−i4φ(x ′)

〉
= e16〈φ(x)φ(x ′)〉 =

( (
πTa
v

)2

sinh
(
πT
v (x − x ′ + ivt)

)
sinh

(
πT
v (x − x ′ − ivt)

))4K

(B.9)
with K = 1/2 and substituting s = πTt and z = πTx/v gives the integral

Γ (∆k, ω) = −ω̃
ε2a2

2v

∞∫
−∞

ds

∞∫
−∞

dzse−ik̃z

(
1

sinh2(z + is) sinh2(z − is)
− h.c.

)
, (B.10)

where the abbrevations ω̃ = ω/(πT ), k̃ = v∆k/(πT ) and ε = πTa/v have been introduced.
To get retarded correlation functions, analytic continuation must be performed, which means
in these variables sending is to s + iε. This, together with another variable transformation
x+ = z + s and x− = z − s, yields

Γ =− ω̃
ε2a2

4v

∞∫
−∞

dx+

∞∫
−∞

dx−(x+ − x−)e−ik̃(x++x−)/2

(
1

sinh2(x+ + iε) sinh2(x− − iε)
− h.c.

)

=− ω̃
ε2a2

4v

 ∞∫
−∞

dx+
x+e

−ik̃x+/2

sinh2(x+ + iε)

∞∫
−∞

dx−
e−ik̃x−/2

sinh2(x− − iε)

−
∞∫
−∞

dx+
e−ik̃x+/2

sinh2(x+ + iε)

∞∫
−∞

dx−
x−e

−ik̃x−/2

sinh2(x− − iε)
− h.c.


=− iω̃

ε2a2

v

((
∂k̃ I+(−k̃/2)

)
I−(−k̃/2)− I+(−k̃/2)

(
∂k̃ I−(−k̃/2)

))
, (B.11)

with the definition of I as

I±(ν) =

∞∫
−∞

dx
e iνx

sinh2(x ± iε)
. (B.12)

102



APPENDIX B. BOSONIZATION CALCULATIONS

The latter integral can be done by contour integration. Its integrand has poles at x =

−iε+ niπ with residues

Res−iε+inπ

(
e iνx

sinh2(x + iε)

)
= iνeν(ε−nπ). (B.13)

For ν > 0 closing the contour in the upper half plane encloses the poles at n = 1, 2, ..., for
ν < 0 in the lower one with n = ...,−2,−1, 0 yielding

I+(ν) =

{
2πi
∑∞
n=1 iνeν(ε−nπ)

−2πi
∑0
n=−∞ iνeν(ε−nπ)

ε→0−→ −2π|ν|

( ∞∑
n=1

e−nπ|ν| + Θ(−ν)

)

= −2π|ν|
(

1

eπ|ν| − 1
+ Θ(−ν)

)
(B.14)

Analoguosly, I−(ν) evaluates to

I−(ν) = −2π|ν|
(

1

eπ|ν| − 1
+ Θ(ν)

)
, (B.15)

since in this case the central pole lies in the lower plane. By introducing the symmetric
function

f (ν) = −2π|ν|
(

1

eπ|ν| − 1
+

1

2

)
(B.16)

this can be simplified to I±(ν) = f (ν) ∓ πν. Reentering the physical variables, one obtains
as final result

Γ (∆k, ω) = −iω
π2a4∆k2

2v
n′B

(
v∆k

2

)
, (B.17)

where n′B is the derivative of the Bose-function nB(ω) = 1/(eω/T − 1) with respect to the
argument.

B.3 Local Correlation Functions for Disorder Memory Matrix

Mdis
ss ∼ iωDdis

∫
dt

∫
dxte4〈φ(x,t)φ(x,0)〉 = iωDdis

∫
dt

∫
dxt

( (
πTa
v

)2

sinh(πT it) sinh(−πT it)

)K
= −iωDdisV

∫
dt
πTa

v

t

sinh(πT (t + ia))
= −iωDdisV

∫
ds

πT

πTa

v

s

πT

1

sinh
(
s + i aπT

)
= −iωDdisV

πa

vT
(B.18)

In the second last step s = πTt has been substituted. The resulting integral can be done
elementary.

Mdis
HH ∼ iωDdis

∫
dt

∫
dxt(−∂2

x )e4〈φ(x,t)φ(x,0)〉

= −iωDdis

∫
dt

∫
dxt4e4〈φ(x,t)φ(x,0)〉

(
4 (∂x 〈φ(x, t)φ(x, 0)〉)2 + ∂2

x 〈φ(x, t)φ(x, 0)〉
)

(B.19)
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B.4. SUSCEPTIBILITY OF HEAT CURRENT

The first derivative of the φ−φ correlation function vanishes for ∆x = 0, the second derivative
for K = 1/2 is

∂2
x 〈φ(x, t)φ(x, 0)〉 = −

1

4

(
πT
v

)2

sinh(πT it)2
(B.20)

This yields

Mdis
HH ∼ iωDdisV

∫
dtat

(
πT
v

)3

sinh(πT (t + ia))3
= iωDdisV

∫
ds

πT
a
s

πT

(
πT
v

)3

sinh(s + i aπT )3

= iωDdisV
πTa

v3

π2

2
(B.21)

for the disorder heat current scattering rate.

B.4 Susceptibility of Heat Current

Since in the ongoing study more susceptibilities will be needed, the relatively simple heat cur-
rent shall be treated as an example and be demonstrated in greater detail here. In particular,
the susceptibilities of currents in the Luttinger liquid behave very similar.

χHH =
1

V

∫
dx

∫
dτ 〈jH(0)jH(τ)〉

=
v4

V

∫
dx

∫
dτ 〈∂xφ(x, 0)∂xθ(x, 0)∂xφ(x, τ)∂xθ(x, τ)〉

=
v4

V

∫
dx

∫
dτ 〈∂xφ(x, 0)∂xφ(x, τ)〉 〈∂xθ(x, 0)∂xθ(x, τ)〉

=
v4

K2V

∫
dx

∫
dτ 〈∂xφ(x, 0)∂xφ(x, τ)〉2

=
v4

K2V

K2

16

(
πT

v

)4 ∫
dx

∫
dτ

(
1

sinh
(
πT
(
x−x
v + iτ

))2 +
1

sinh
(
πT
(
x−x
v − iτ

))2

)2

=
π4T 4

16V

∫
vdx̃

πT

∫
dt̃

πT

2

sinh(t̃ − iδ)2 sinh(−t̃ + iδ)2
=
πvT 2

3
(B.22)

The entered jH is the current density corresponding to the heat current JH. In the last step,
the volume factor 1/V cancels with the integration over x .

B.5 Elementary Correlation Functions for Luttinger Liquids

Here for completeness, the Luttinger liquid correlation functions and some relations are
written down, which are used frequently in this thesis and can be found in any textbook
about bosonization, e.g. [40]. They are typically the same for carge and spin fields, so they
are just labeled by α, which can be both.

〈φα(x, t)φα(0, 0)〉 = −
Kα
4

ln

sinh
(
πT
(
x
vα

+ t − iδ
))

sinh
(
πT
(
x
vα
− t + iδ

))
(
πaT
vα

)2


(B.23)
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〈∂xφα(x, t)∂xφα(0, 0)〉 =
Kα
4

(
πT

vα

)2
(

1

sinh
(
x+
α

)2 +
1

sinh
(
x−α
)2

)
(B.24)

with the light cone variables x±α = πT (x/vα ± t ∓ iδ). The mixed correlation function gives

〈∂xφα(x, t)∂xθα(0, 0)〉 =
1

4

(
πT

vα

)2
(

1

sinh
(
x+
α

)2 −
1

sinh
(
x−α
)2

)
. (B.25)

〈
∂2
xφα(x, t)∂2

xφα(0, 0)
〉

=
Kα
2

(
πT

vα

)4(2 cosh(x+
α )2 + 1

sinh(x+
α )4

+
2 cosh(x−α )2 + 1

sinh(x−α )4

)
, (B.26)

〈
∂2
xφα(x, t)∂2

x θα(0, 0)
〉

=
1

2

(
πT

vα

)4(2 cosh(x+
α )2 + 1

sinh(x+
α )4

−
2 cosh(x−α )2 + 1

sinh(x−α )4

)
, (B.27)

Correlation functions of θ are related to the ones above by

〈∂xθα(x, t)∂xθα(0, 0)〉 =
1

K2
α

〈∂xφα(x, t)∂xφα(0, 0)〉 . (B.28)

B.6 Band Curvature Corrections to Susceptibilities

χJc ,JH = −vcKc
√

2
1

6
√

2m

∫
dxdτ

∑
i=c,s

v2
i

〈
∂xθc(x, 0)∂xθi(x, τ)∂xφi(x, τ)

×
∫

dx ′dτ ′
(
∂x ′φc(x ′)3 + 3∂x ′φc(x ′)

(
∂x ′φs(x

′)2 + ∂x ′θs(x
′)2 + ∂x ′θc(x ′)2

)
+ 6∂x ′θc(x ′)∂x ′θs(x

′)∂x ′φs(x
′)

)〉
(B.29)

The evaluation is done by using Wick’s theorem, which requires all possible contractions of
the respective expectation value. For the charge part of the heat conductivity, i = c , only
terms containing no spin fields from the band curvature Hamiltonian have to be retained,
namely

〈∂xφc∂xθ′c∂xφ′c(∂xφ
′′3
c + 3∂xφ

′′
c∂xθ

′′2
x )〉 (B.30)

The different dashing represents the respective coordinate sets of the fields. Only combina-
tions with different coordinates within all constractions give a finite contribution. Contrac-
tions with the ∂xφ3

c term have multiplicity 6, those with ∂xθ′′2c multiplicity 2.
Due to the symmetry of the band curvature Hamiltonian, the expectation value with the

spin part of the heat current has the same form, with all fields marked with one dash replaced
by the corresponding spin fields. Thus the spinon contribution can be extracted from the
charge part of the susceptibility, which is given by

χcJc ,JH = −v3
cKc
√

2
1

6
√

2m

∫
dxdτ

∫
dx ′dτ ′

× 6
(〈
∂xφc∂xφ

′′
c

〉 〈
∂xθ
′
c∂xφ

′′
c

〉 〈
∂xφ

′
c∂xφ

′′
c

〉
+
〈
∂xφc∂xφ

′′
c

〉 〈
∂xθ
′
c∂xφ

′′
c

〉 〈
∂xφ

′
c∂xθ

′′
c

〉
+
〈
∂xφc∂xθ

′′
c

〉 〈
∂xθ
′
c∂xθ

′′
c

〉 〈
∂xφ

′
c∂xφ

′′
c

〉
+
〈
∂xφc∂xφ

′
c

〉 〈
∂xθ
′
c∂xφ

′′
c

〉 〈
∂xφ

′
c∂xθ

′′
c

〉)
(B.31)
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Setting in the known correlation functions, the integrals can be done once more elementary,
giving for the charge part χcJc ,JH = −πT 2/(3mvc). To get the spinon contribution, all
correlation functions containing a charge field with coordinate set (x, τ) must be replaced
by spin correlation functions, which in total leads to a relative factor vc/vs , the different
prefactor already included.

Hence the total band curvature correction to χJc ,JH is given by

χJc ,JH =
πT 2

3m

(
1

vc
+

1

vs

)
. (B.32)

The calculation of the other element with non-vanishing band curvature correction, χJc ,PLL , is
very similar to the one above, since the two parts of the mode differ from their counterparts
only by the missing v2

α. Thus the result can be easily generalized for the Luttinger liquid
momentum, giving

χJc ,PLL =
πT 2

3m

(
1

v3
c

+
1

v3
s

)
(B.33)

B.7 Correlation Functions of Umklapp Time-Derivatives

〈
∂U
t Jc∂

U
t Jc

〉
(ω) = −

(gU
mncns )

2

(2πa)2nc
4v2
cK

2
cn

2
cπ

2

∞∫
−∞

dt iωt

∞∫
−∞

dx
〈

(1 + ∂xq(x))(1 + ∂x ′q(x ′))
〉

×
〈(
e i∆kxe i

√
2(ncφc(x)+nsφs(x)) − h.c.

)(
e i∆kx ′e i

√
2(ncφc(x ′)+nsφs(x ′)) − h.c.

)〉
≈

(gU
mncns )

2

(2πa)2nc
8v2
cK

2
cn

2
cπ

2

∞∫
−∞

dt iωt

∞∫
−∞

dxe i∆kxe2n2
c 〈φc(x)φc(0)〉e2n2

s 〈φs(x)φs(0)〉 (B.34)

For the second equality the identity (3.35) has been used. The terms containing phonon
fields q(x) are subleading and therefore neglected.

〈
∂U
t PLL∂

U
t PLL

〉
(ω) =

(πgU
mncns )

2

(2πa)

∞∫
−∞

dt iωt

∞∫
−∞

dx
〈

(1 + ∂xq(x))(1 + ∂x ′q(x ′)
〉

×
〈(
e i∆kx

(
∂xe

i
√

2(ncφc(x)+nsφs(x)
)

+ h.c.
)(
e i∆kx ′

(
∂x ′e

i
√

2(ncφc(x ′)+nsφs(x ′)
)

+ h.c.
)〉

≈
2(πgU

mncns )
2

(2πa)

∞∫
−∞

dt iωt

∞∫
−∞

dxe i∆k(x−x ′)∂x∂x ′
〈
e2n2

c 〈φc(x)φc(x ′)〉e2n2
s 〈φs(x)φs(x ′)〉

〉
P I
=

2(πgU
mncns )

2

(2πa)

∞∫
−∞

dt iωt

∞∫
−∞

dx
(
−∆k2

)
e i∆k(x−x ′)

〈
e2n2

c 〈φc(x)φc(x ′)〉e2n2
s 〈φs(x)φs(x ′)〉

〉
=

∆k2

4v2
cK

2
cn

2
c

〈
∂U
t Jc∂

U
t Jc

〉
(ω) (B.35)

Again the terms with phonon fields are neglected. By partial integration, the auto-correlation
function of the time-derivative of the Luttinger liquid momentum turns out to be up to a
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prefactor the same as the one of the charge current. The same holds, with only one partial
integration, for the cross-correlation function of the two:

〈
∂U
t Jc∂

U
t PLL

〉
(ω) =

∆k

2vcKcnc

〈
∂U
t Jc∂

U
t Jc

〉
(ω) (B.36)

〈
∂U
t JH∂

U
t JH

〉
(ω) =

(πgU
mncns )

2

(2πa)2nc

∞∫
−∞

dt iωt

∞∫
−∞

dx
〈

(1 + ∂xq(x))(1 + ∂x ′q(x ′))
〉

×
〈(
e i∆kx

(
v2
c

(
∂xe

i
√

2ncφc(x)
)
e i
√

2nsφs(x) + v2
s (e i

√
2ncφc(x)

(
∂xe

i
√

2nsφs(x)
))

+ h.c.
)

×
(
e i∆kx ′

(
v2
c

(
∂x ′e

i
√

2ncφc(x ′)
)
e i
√

2nsφs(x ′) + v2
s (e i

√
2ncφc(x ′)

(
∂x ′e

i
√

2nsφs(x ′)
))

+ h.c.
)〉

≈ −
2(πgU

mncns )
2

(2πa)2nc

∞∫
−∞

dt iωt

∞∫
−∞

dxe i∆k(x−x ′)
(
v4
c

(
∂2
x e

2n2
c 〈φc(x)φc(x ′)〉

)
e i2n2

s 〈φs(x)φs(x ′)〉

+ 2v2
c v

2
s

(
∂xe

2n2
c 〈φc(x)φc(x ′)〉

)(
∂xe

2n2
s 〈φs(x)φs(x ′)〉

)
+ v4

s e
i2n2

c 〈φc(x)φc(x ′)〉
(
∂2
x e

2n2
s 〈φs(x)φs(x ′)〉

))
(B.37)

〈
∂U
t PLL∂

U
t JH

〉
(ω) =

(πgU
mncns )

2

(2πa)2nc

∞∫
−∞

dt iωt

∞∫
−∞

dx
〈(
e i∆kx

(
∂xe

i
√

2(ncφc(x)+nsφs(x)
)

+ h.c.
)

×
(
e i∆kx ′

(
v2
c

(
∂x ′e

i
√

2ncφc(x ′)
)
e i
√

2nsφs(x ′) + v2
s (e i

√
2ncφc(x ′)

(
∂x ′e

i
√

2nsφs(x ′)
))

+ h.c.
)〉

=
2(πgU

mncns )
2

(2πa)2nc

∞∫
−∞

dt iωt

∞∫
−∞

dxe i∆k(x−x ′)
(
v2
c

(
∂2
x e

2n2
c 〈φc(x)φc(x ′)〉

)
e2n2

s 〈φs(x)φs(x ′)〉

+
(
v2
c + v2

s

) (
∂xe

2n2
c 〈φc(x)φc(x ′)〉

)(
∂xe

2n2
s 〈φs(x)φs(x ′)〉

)
+ v2

s

(
e2n2

c 〈φc(x)φc(x ′)〉
)(
∂2
x e

2n2
s 〈φs(x)φs(x ′)〉

))
(B.38)

〈
∂U
t Jc∂

U
t JH

〉
(ω) = −i

2(πgU
mncns )

2vcKcnc

(2πa)2nc

∞∫
−∞

dt iωt

∞∫
−∞

dx
〈

(1 + ∂xq(x))(1 + ∂x ′q(x ′))
〉

×
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e i∆kxe i

√
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)(
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(
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i
√
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e i
√
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√
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(
∂x ′e

i
√
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≈
4(πgU

mncns )
2vcKcnc

(2πa)2nc

∞∫
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dt iωt

∞∫
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dxe i∆k(x−x ′)
(
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(
∂xe

2n2
c 〈φc(x)φc(x ′)〉
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e2n2

s 〈φs(x)φs(x ′)〉
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s e
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∂xe
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s 〈φs(x)φs(x ′)〉

))
(B.39)
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B.8 Calculation of Phonon Propagator

For taking into account the interaction between three-dimensional phonons in the one-
dimensional system, the radial part of the phonon propagator is needed in its real space
representation. Starting from the momentum space representation of the time-ordered cor-
relation function, which reads for positive times

G3D
P (k , t) =

1

|k |

(
nke

ivP |k |t + (1 + nk)e−ivP |k |t
)
, (B.40)

the Fourier transform can be done using spherical coordinates,

GP (r, t) =

∞∫
0

dkk2

 1∫
−1

e ikrηdη

 1

k

(
nke

ivP kt + (1 + nk)e−ivP kt
)

=

∞∫
0

dk
1

ir

(
e ikr − e−ikr

) (
nke

ivP kt + (1 + nk)e−ivP kt
)

(B.41)

The time argument of the correlation function is already in real time, but for simplicity the
infinitesimal shift into the complex plane are suppressed during the calclation and entered at
the end. Making use of an elementary identity for the Bose function,

1 + nk = n−k , (B.42)

and changing labels k→ −k in the second part, the integral transforms to

GP (r, t) =
1

ir

∞∫
−∞

dk
1

evP k/T − 1

(
e ik(r+vP t) − e−ik(r−vP t)

)
(B.43)

One obtains an Bose function without mod to Fourier transform with respect to ξ+ = r+vP t

and ξ− = −r + vP t, which is not zero for k → −∞, but −1. This can be done by splitting
the integral into the Fourier transform of −θ(−k) and

∞∫
−∞

dk

(
1

evP k/T − 1
+ θ(−k)

)
e ikξ± . (B.44)

The latter integral is the Fourier transform of an odd function of k, thus only the imaginary
part of the exponential must be retained, and the integral is twice the integral over the
positive part of the integration interval. The remaining integral can be done elementary:

∞∫
0

dk
1

evP k/T − 1
sin(kξ±) =

1

2

(
−

1

ξ±
+
πT

vP
coth

(
πT

vP
ξ±

))
(B.45)

The terms 1/ξ± cancel exactly with the Fourier transform of the theta function which is still
missing, giving in total for the phonon propagator along the chains

GP (r, t) =
1

r

πT

vP

(
coth

(
πT

(
r

vP
+ t

))
− coth

(
πT

(
−
r

vP
+ t

)))
. (B.46)

The time-argument t is related to the complex time by it = τ , so the retarded correlation
function is obtained by replacing t with t − iεsign(t), where ε = 0+.
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B.9 Calculation of Band-Curvature Memory Matrix

The correlation function for the single finite element of the BC memory matrix is given by〈
∂BC
t JH∂

BC
t JH

〉
(ω) =

(v2
c − v2

s )2

16m2

∫
dt iωt

∫
dx

×
(〈
∂2
xφc(x)∂2

xφc(0)
〉 〈(

(∂xφs(x))2 + (∂xθs(x))2
) (

(∂xφs(0))2 + (∂xθs(0))2
)〉

+ 4
〈
∂2
x θc(x)∂2

x θc(0)
〉
〈∂xφs(x)∂xθs(x)∂xφs(0)∂xθs(0)〉

+ 4
〈
∂2
xφc(x)∂2

x θc(0)
〉 〈

((∂xφs(x))2 + (∂xθs(x))2)∂xφs(0)∂xθs(0)
〉)
. (B.47)

Here the arguments of the fields are combined variables of x and t. Also derivatives like
∂xθs(0) are shorthand for first differentiating the field with respect to its spatial variable, and
then setting it to zero.

The expectation values in the spin sector simplify by use of Wick’s theorem to〈(
(∂xφs(x))2 + (∂xθs(x))2

) (
(∂xφs(0))2 + (∂xθs(0))2

)〉
= 2 〈∂xφs(x)∂xφs(0)〉2

(
1 +

1

K4
s

)
+ 4 〈∂xφs(x)∂xθs(x)〉2 (B.48)

〈∂xφs(x)∂xθs(x)∂xφs(0)∂xθs(0)〉

=
1

K2
s

〈∂xφs(x)∂xφs(0)〉2 + 〈∂xφs(x)∂xθs(0)〉2 (B.49)〈
(∂xφs(x)2 + ∂xθs(x)2)∂xφs(0)∂xθs(0)

〉
=

(
1 +

1

K2
s

)
〈∂xφs(x)∂xφs(0)〉 〈∂xφs(x)∂xθs(0)〉 (B.50)

From the definition of the correlation functions 〈∂xφs(x)∂xφs(0)〉 and 〈∂xφs(x)∂xθs(0)〉,
see B.5, it can be seen easily that they can be written in left- and right-moving fields, usually
refered to as chiral fields, as

〈∂xφs(x)∂xφs(0)〉 = Ks (〈∂xφL(x)∂xφL(0)〉+ 〈∂xφR(x)∂xφR(0)〉) (B.51)

〈∂xφs(x)∂xθs(0)〉 = (〈∂xφL(x)∂xφL(0)〉 − 〈∂xφR(x)∂xφR(0)〉) . (B.52)

with 〈
∂xφL/R(x)∂xφL/R(0)

〉
=

1

4

(
πT

vs

)2 1

sinh(x
+/−
s )2

. (B.53)

The chiral fields are related to the usual ones by φR = Kcθc −φc and φL = Kcθc . They can
also be obtained by rescaling the fields φc → K

1/2
c φc and θc → K

−1/2
c θc , which is equivalent

to a Bogoliubov transformation of the Hamiltonian. The rescaled Hamiltonian has K̃ = 1,
which is the analogon of free fields, implying the separation of left- and right-movers, see
e.g. [40].

Thus, after using the identity 〈∂xθα∂xθα〉 = 〈∂xφα∂xφα〉 /K2
α, one obtains for the com-

plete integrand of equation B.47〈
∂2
xφc∂

2
xφc
〉(

2

(
1 +

1

K4
s

+
2

K2
sK

2
c

)
〈∂xφs∂xφs〉2 + 4

(
1 +

1

K2
c

)
〈∂xφs∂xθs〉2

)
+
〈
∂2
xφc∂

2
x θc
〉

4

(
1 +

1

K2
c

)
〈∂xφs∂xφs〉 〈∂xφs∂xθs〉 (B.54)
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For symmetry reasons, only terms proportional to a product of a left- and a right-mover
correlation function in the spin sector give a finite contribution.

In the first term, the contribution from 〈∂xφs∂xφs〉2 is 2K2
s 〈∂xφL∂xφL〉 〈∂xφR∂xφR〉, the

second term produces the same but with a minus sign and no K2
s in front, and the last term

due to its mixed product gives no contribution. One obtains

〈
∂2
xφc∂

2
xφc
〉((

4 +
4

K4
s

+
8

K2
cK

2
s

)
K2
s −

(
8 +

8

K2
c

))
〈∂xφL∂xφL〉 〈∂xφR∂xφR〉 (B.55)

As the two terms containing K2
c cancel, one finds as final result for the auto correlation

function of the band curvature time derivative of the the heat current〈
∂BC
t JH∂

BC
t JH

〉
(ω) = iω

(v2
c − v2

s )2

16m2

(
K2
s +

1

K2
s

− 2

)∫
dtt

∫
dx

×
〈
∂2
xφc∂

2
xφc
〉
〈∂xφL∂xφL〉 〈∂xφR∂xφR〉 (B.56)

Inserting the definitions of the correlation functions and scaling out the temperature depen-
dence from the integral, one obtains for the memory matrix element

MBC
Jh,JH

=
(v2
c − v2

s )2

v4
c v

4
s

vcKc

(
K2
s +

1

K2
s

− 2

)
π8T 8

32m2
B

(
vs
vc

)
, (B.57)

with the dimensionless integral

B (λ) =

∞∫
0

dt

∞∫
−∞

dxtIm

(
2 + cosh(x + t − iδ)2

sinh(x + t − iδ)4

1

sinh (xλ+ t − iδ)2 sinh(xλ− t + iδ)2

)
,

(B.58)
which can be computed numerically for several cutoffs δ, to obtain the limit δ to zero by
extrapolation.
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C Appendices for Expanding Cloud

C.1 Experimental Parameters

The following parameters have been used in the different runs in the experiment:

U/D0 b0/D0 β0/D0

0.015 18.9088 0.148521
0.693 18.4573 0.152064
1.178 19.3808 0.144987
1.245 19.2025 0.146302
1.663 17.36 0.159007
2.214 19.2634 0.14585
2.632 17.9512 0.156238
4.152 18.5231 0.151537
4.570 16.4521 0.170045
6.091 20.0344 0.14036
6.508 17.0967 0.163825
8.029 21.2687 0.132379
9.967 20.6544 0.136232
11.354 14.6795 0.189815

C.2 Error Estimate for Low-Density Limit

The inverse temperatures in the experiment are close to zero, thus a high temperature
expansion of the distribution functions may be used. The particle number with Maxwell-
Boltzmann statistics is

nMB(z, β) =

∫
dkze−βε(k) ≈ z

∫
dke0 = z (C.1)

Using the Fermi-Dirac statistics, one obtains in the same limit

nFD(z, β) =

∫
dk

1

eβε(k)/z + 1
≈
∫

dk
z

e0 + z
=

z

1 + z
(C.2)

Thus by using the Maxwell-Boltzmann distribution function instead of the Fermi-Dirac, one
makes a relative error of

∆n =
nFD(z, β)− nMB(z, β)

nFD(z, β)
≈

z
1+z − z

z
1+z

= z (C.3)

For the relative error ∆ε of the energy, the same calculation applies, with a remaining integral
over the energy remaining in both expresions. Thus ∆ε ≈ z is valid analogously.
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dd’

m

m’

VIIVI

V

IV

III II

VIII

 I

Figure C.1: Symmetry group of a plain square. There are eight equivalent sectors, connected
by rotations by multiples of π/2 and reflections with respect to the four depicted axes

C.3 Symmetries of the System

The symmetry group of the two-dimensional simple cubic lattice combined with a rotational
invariant trap is that of a square.

It contains the rotations Cn by multiples of π/2 and reflections M ,M ′ and D, D′ with
respect to the four symmetry axes, i.e. the m and m′ axes plus the diagonals d and d ′,
see figure C.1. Practically, the distribution function of the whole system can be constructed
from the simulated wedge by applying only reflections. The table below shows how for each
sector the distribution function is related to the one of sector I.

sector symmetry operation px py

II D py px
III M ′ ◦D −py px
IV M ′ −px py
V M ◦M ′ −px −py
VI D ◦M ◦M ′ −py −px
VII D′ ◦M py −px
VIII M px −py

C.4 Scattering Rate

C.4.1 Time-Derivative of Currents

∂tJi = i
[
J, Hint

]
= i
∑
p,σ

fi(p)U
∑
k,k ′,q

[
c†pσcpσ, c

†
k+q↑ck↑c

†
k ′−q↓ck ′↓

]
(C.4)

The contained commutator is equal to[
c†pσcpσ, c

†
k+q↑ck↑

]
c
†
k ′−q↓ck ′↓ + c

†
k+q↑ck↑

[
c†pσcpσ, c

†
k ′−q↓ck ′↓

]
(C.5)
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With the elementary commutator[
c†pσcpσ, c

†
k+qσ′ckσ′

]
= δσ,σ′δp,k+qc

†
k+qσckσ − δσ,σ′δp,kc

†
k+qσ′ckσ (C.6)

the time derivative of the current evaluates by performing two sums over Kronecker-deltas
to

∂tJi = iU
∑
q,k,k ′

(
fi(k + q)− fi(k) + fi(k

′ − q)− fi(k ′)
)
c
†
k+q↑ck↑c

†
k ′−q↓ck ′↓ (C.7)

C.4.2 Real Time Correlation Function

〈
∂tJi ; ∂tJj

〉
(ω) =

∫
dte iωt(−iθ(t))

〈[
∂tJi(t), ∂tJj(0)

]〉
=

∫
dte iωt(−iθ(t))

〈
e−iHkint (∂tJi) e

iHkint
(
∂tJj

)
−
(
∂tJj

)
e−iHkint (∂tJi) e

iHkint
〉

= iU2

∫
dte iωtθ(t)

∑
q,k,k ′

∑
q̃,k̃,k̃

′

(
gi(k + q)− gi(k) + gi(k

′ − q)− gi(k ′)
)

×
(
gj(k̃ + q̃)− gj(k̃) + gj(k̃

′ − q̃)− gj(k̃ ′)
)

×
(
e−iε0t

〈
c
†
k+q↑ck↑c

†
k ′−q↓ck ′↓e

iHkintc
†
k̃+q̃↑ck̃↑c

†
k̃ ′−q̃↓ck̃ ′↓

〉
−e iε0t

〈
c
†
k̃+q̃↑ck̃↑c

†
k̃ ′−q̃↓ck̃ ′↓e

−iHkintc
†
k+q↑ck↑c

†
k ′−q↓ck ′↓

〉)
(C.8)

Since Hkin is diagonal in the c†k , the eigenvalues in the last two lines can be read of directly
as

e i(ε0−εk̃ ′+εk̃ ′−q̃−εk̃+εk̃+q̃)t
〈
c
†
k+q↑ck↑c

†
k ′−q↓ck ′↓c

†
k̃+q̃↑ck̃↑c

†
k̃ ′−q̃↓ck̃ ′↓

〉
(C.9)

and
e−i(ε0−εk ′+εk ′−q−εk+εk+q)t

〈
c
†
k̃+q̃↑ck̃↑c

†
k̃ ′−q̃↓ck̃ ′↓c

†
k+q↑ck↑c

†
k ′−q↓ck ′↓

〉
(C.10)

The expectation values can be evaluated using Wick’s theorem. The two are identical by
exchanging all momenta with and without .̃〈

...
〉

= δk+q,k̃ fk̃↑δk,k̃+q̃

(
1− fk↑

)
δk ′−q,k̃ ′fk̃ ′↓δk ′,k̃ ′−q̃

(
1− fk ′↓

)
(C.11)

For the other term emerging from the Wick decoupling, the prefactor in the sum vanishes
and it can be dropped. Inserting this back into the correlation function, one obtains〈
∂tJi ; ∂tJj

〉
(ω) = iU2

∫
dte iωtθ(t)

∑
q,k,k ′,q̃,k̃,k̃

′

(
e i(ε0−εk̃ ′+εk̃ ′−q̃−εk̃+εk̃+q̃)t − h.c.

)
×
(
gi(k̃ + q̃)− gi(k̃) + gi(k̃

′ − q̃)− gi(k̃ ′)
) (
gj(k + q)− gj(k) + gj(k

′ − q)− gj(k ′)
)

× δk+q,k̃δk,k̃+q̃δk ′−q,k̃ ′δk ′,k̃ ′−q̃fk̃↑
(

1− fk↑
)
fk̃ ′↓
(

1− fk ′↓
)

(C.12)

The time integration has the simple structure

i

∫
dte iωtθ(t)

(
e i∆εt − e−i∆εt

)
(C.13)
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of which only the imaginary part is needed.

Im
〈
∂tJi ; ∂tJj

〉
(ω) ∼ Im

[
i

∫ ∞
0

dt
(
e i(ω+∆ε)t − e i(ω−∆ε)t

)]
= Im

[
lim
δ→0

i

∫ ∞
0

dt
(
e i(ω+∆ε)t − e i(ω−∆ε)t

)
e−δt

]
= Im

[
i lim
δ→0

(
1

−i(ω + ∆t) + δ
−

1

−i(ω − ∆ε) + δ

)]
= π (δ(ω + ∆ε)− δ(−ω + ∆ε)) (C.14)

In total one gets after summing over the deltas and renaming the momenta

Im
〈
∂tJi ; ∂tJj

〉
(ω) = πU2

∑
k,k,k,k,G

∏
l=i ,j

(gl(k1) + gl(k)− gl(k)− gl(k))

×
(
δ(ω − (εk + εk − εk − εk)− δ(−ω − (εk + εk − εk − εk)

)
× δk+k,k+k+Gfkfk

(
1− fk

)
(1− fk) (C.15)

C.4.3 Susceptibilities

χi =
1

V
〈JiJi〉 =

1

V

∑
k,k ′,σ,σ′

gi(k)gi(k
′)
〈
c
†
kσckσc

†
k ′σ′ck ′σ′

〉
=

1

V

∑
k,k ′,σ,σ′

gi(k)gi(k
′)
(〈
c
†
kσckσ

〉〈
c
†
k ′σ′ck ′σ′

〉
+
(

1−
〈
c
†
k ′σ′ckσ

〉)〈
c
†
kσck ′σ′

〉)
=

1

V

∑
k,k ′,σ,σ′

gi(k)gi(k
′) (1− δσ,σ′δk,k ′fkσ) δk,k ′δσ,σ′fkσ =

∑
k,σ

gi(k)2 (1− fkσ) fkσ (C.16)

The odd term in the second line does not give a contribution.
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