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Fuí en pos de un sueño, 

un sueño tal vez vago, pero claro en que tenía que llevarse a cabo; 

sin embargo no encontré lo que esperaba 

y perdí mucho en el camino 

Caí y me perdí y hube de andar entre las más terribles tinieblas, 

y enfrentado conmigo mismo ahondé los rincones más obscuros 

Luz y amor iluminaron el camino, 
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and faced with myself lured the darkest insides 

Light and love enlightened the way, 

pick up the broken pieces for looking into myself 

the way to oneself is hard to follow 

Now that the voyage ends, another is still in course 

and I now that in its end, I will see that pursuing that dream has been worth it. 
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Abstract 

 

 

Circadian clocks are internal timekeepers that provide organisms with a sense of 

time. These oscillators, which are entrained by external stimuli, predict the daily day/night 

transitions and have a periodicity of about 24 hours. The Arabidopsis thaliana circadian 

clock is composed of interconnected transcriptional-translational feedback loops. The 

morning expressed elements CCA1 and LHY, which are clock controlled and light 

inducible, repress the transcription of the evening element TOC1. At dusk, TOC1 

repression is relieved as CCA1 and LHY protein diminish. Then TOC1 stimulates the 

expression of the morning components closing the loop. Still, how the light signal at dawn 

entrains this clock has remained elusive. time for coffee (tic) was originally reported as a 

circadian-clock mutant based on its early phase and a short period. It was found that tic is 

defective in sensing dawn because its clock incorrectly resets before morning light. 

Because TIC mRNA and protein were found to be constant through a diurnal cycle, an 

activation event could trigger TIC time-specific function within the oscillator. Therefore 

TIC action takes place before the expression of CCA1 and LHY and coincides in time with 

clock entrainment by light.  

In this thesis, I report the results from a microarray study that led to a detailed 

phenotypic analysis of tic in an effort to uncover the mechanism to clock entrainment. I 

could confirm and expand the defective clock-gene expression profile of tic. Interestingly 

tic showed increased transcriptional changes in response to the environment compared to 

wild type. Global transcriptomic analysis indicated that tic has altered redox homeostasis 

and defects in ABA signalling pathways. Furthermore GO enrichment analysis highlighted 

that stress and environmental responses were among the most abundant categories 

misexpressed in tic. In conclusion, TIC was found to be an essential component for global 

transcriptome reprogramming to a dawn light signal. 

The results obtained through the microarray analysis directed me to demonstrate 

that tic resulted in an array of pleiotropic phenotypes. Besides its clock defects, tic 

presented hypersensitivity to oxidative stress, altered ABA-related signalling and responses, 

such as drought tolerance, defects in iron homeostasis, alterations in starch metabolism and 

disrupted stress responses. Furthermore it is suggested that tic has a role in nucleotide and 

secondary metabolism. All together, I concluded that TIC functions in maintaining 

metabolic homeostasis through modulation of stress responses. 
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To start to understand TIC biochemical function, a yeast two hybrid screen was 

performed. Through this screen for TIC interactors, the SNF1 stress-related kinase 

AKIN10, a proposed master metabolic sensor, was isolated. It was shown through in vitro 

studies that TIC could be phosphorylated by AKIN10. The physiological relevance of the 

interaction between TIC and AKIN10 toward the circadian clock was genetically tested. I 

found that AKIN10 had an effect on clock period that was TIC dependent. Thus, this 

physical and genetic interaction could define the basis for a metabolic input to the 

oscillator. 

In the A. thaliana genome TIC has a single homolog sequence termed TKL. To 

examine a plausible role of TKL in the circadian clock, a T-DNA mutant, termed tkl-1, was 

characterized. I found that tkl-1 had no observable defects of circadian rhythms. This 

finding was supported by phylogenetic analyses of TIC-like encoded proteins that 

suggested an evolutionary divergence between TIC and TKL. From these results it was 

concluded that TKL is not part of the circadian clock. 

In summary from the data presented here, I hypothesize that clock entrainment 

occurs through metabolic signals, probably derived from photosynthesis and cellular 

energy homeostasis. These signals would be integrated to the oscillator by TIC. In this way, 

TIC would promote the anticipation of the oncoming new day. 
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Zusammenfassung 
 
 

 
Zirkadiane Uhren sind interne Zeitmesser, die Lebewesen mit einer Wahrnehmung 

für Zeit ausstatten. Diese Oszillatoren werden durch externe Stimuli eingestellt und 

ermöglichen den Organismen die Einregelung auf den 24-stündigen Tag/Nachtrhythmus. 

Die zirkadiane Uhr von Arabidopsis thaliana besteht aus einem Netzwerk von 

transkriptionellen und translationellen Rückkopplungen. Die am Morgen exprimierten 

Gene CCA1 und LHY sind durch Licht induzierbar und uhrenkontrolliert und können die 

Transkription des Abend-Gens TOC unterdrücken. Am Abend nimmt die Protein-

Konzentration von CCA1 und LHY ab und die Repression von TOC wird somit 

aufgehoben. TOC1 stimuliert daraufhin die Expression der Morgen-Gene und schließt so 

den Tag/Nachtrhythmus. Welchen Einfluß das Licht am Morgen auf die Einstellung der 

Uhr hat, ist bisher unbekannt. Die zirkadiane Uhr Mutante time for coffee (tic) weist eine 

frühe Phase und kurze Periode auf. Es wurde gezeigt, dass tic einen Defekt in der 

Wahrnehmung der Morgendämmerung besitzt, da die zirkadiane Uhr vor dem Lichtsignal 

am Morgen zurückgestellt wird. Protein- und mRNA-Konzentration von TIC sind während 

des täglichen Tag/Nachtrhythmus konstant sodass eine Aktivierung von TIC für seine 

Funktion innerhalb des Oszillators verantwortlich sein muss. Die Funktion von TIC findet 

vor der Expression von CCA1 und LHY statt und stimmt somit zeitlich mit der Uhr-

Einstellung durch Licht überein. 

In dieser Arbeit berichte ich die Ergebnisse einer Microarray-Analyse sowie einer 

detallierten phänotypischen Analyse der Mutante tic. Interessanterweise zeigt tic eine 

verstärkte transkriptionelle Antwort auf Umwelteinflüsse und Stress im Vergleich zum 

Wildtyp. Desweiteren besitzt tic einen Defekt in der ABA-Signaltransduktion sowie in der 

Redox-Homöostase. TIC ist somit essentiell für die globale Transkriptregulation als 

Antwort auf das Lichtsignal in der Morgendämmerung.  

Die Ergebnisse der Microarray-Analyse deuteten desweiteren auf eine Vielzahl von 

pleiotrophen Phänotypen hin. tic besitzt eine Hypersensitivität gegenüber oxidativem 

Stress, veränderte Toleranz für Trockenheit, Defekte in der Eisen-Homöostase, 

Veränderungen im Stärke-Metabolismus und eine gestörte Stress-Antwort. Außerdem 

scheint tic eine Rolle im Nukleotid- und sekundären Stoffwechsel zu spielen. Die Funktion 

von TIC scheint daher die Erhaltung der metabolischen Homöostase durch Modulation der 

Stress-Antwort zu sein.  
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Um die biochemische Funktion von TIC genauer zu untersuchen, wurde ein Hefe-

2-Hybridscreen durchgeführt. Dadurch konnte AKIN10, eine SNF1-verwandte Kinase, als 

Interaktor von TIC identifiziert werden. Durch in vitro Studien konnte gezeigt werden, 

dass TIC durch AKIN10 phosphoryliert wird. Die Relevanz der Interaktion von TIC und 

AKIN10 für die zirkadiane Uhr wurde mittels genetischer Studien getestet. Ich konnte 

zeigen, dass AKIN10 einen Effekt auf die Periode der Uhr hat, welcher abhänging von TIC 

ist. Daher könnte diese physische und genetische Interaktion die Basis für den 

metabolischen Einfluß auf den Oszillator darstellen.  

Im A. thaliana Genom findet sich ein Homolog zu TIC, TKL. Um eine mögliche 

Rolle von TKL in der zirkadianen Uhr zu untersuchen, wurde eine T-DNA Mutante, tkl-1, 

charakterisiert.  Ich konnte zeigen, dass tkl-1 keinen detektierbaren Defekt in der 

zirkadianen Rhythmik hat. Dieses Ergebnis wurde weiter durch phylogenetische Analysen 

von TIC-ähnlichen Proteinen unterstützt, die auf eine evolutionäre Divergenz von TIC und 

TKL hindeuten. Aufgrunddessen wurde geschlussfolgert, dass TKL keinen Teil der 

zirkadianen Uhr darstellt.  

Aus den hier dargestellten Ergebnissen ziehe ich den Schluß, dass die Einstellung 

der zirkadianen Uhr durch metabolische Signale erfolgt, die möglicherweise aus der 

Photosynthese und der zellulären Energie-Homöostase stammen. Diese Signale könnten 

mithilfe von TIC in den Oszillator integriert werden. Dadurch würde TIC die Antizipation 

des neuen Tages vermitteln. 
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Introduction 

I. Introduction 

 

I. Circadian clocks in a rotating world 

 

Circadian clocks are a time-measuring machinery that provide organisms with the 

ability to anticipate daily changes. The term "circadian" derives from the latin words circa 

= almost, dies = day, as these clock have a ~24 hour pace. This ~24 hour rhythm is a 

consequence of the cyclic transitions between day and night due to Earth´s rotation. These 

light to dark transitions have been present since the origin of life and are the most 

dominant environmental cue most terrestrial organisms face. Therefore they evolved the 

circadian clocks as a mean to anticipate the light to dark transitions. Consequently, many 

organisms adapted their physiological and behavioural responses to predict these changes. 

These responses include leaf movement, flower bud opening and stomata aperture in 

plants, conidiation in fungi, behavioural conduct in flies and melatonin secretion and sleep 

cycles in mammals (Dunlap, 2003). Thus a circadian clock provides fitness to the 

organisms by predicting the changes of day and night (Wijnen, 2006; Bell-Pedersen, 

2005). 

In a world that never stops rotating, rhythmic patterns could simply be driven by 

the daily exposure to light/dark periods. Rhythms that are sustained by this transition are 

diurnal rhythms, which do not predict future environmental changes (Dunlap, 2003). 

Circadian-clock-driven rhythms provide an advantage to diurnal rhythms as the former 

anticipates to the light to dark transitions. These circadian rhythms are defined by three 

main characteristics (McClung, 2006). First, a circadian rhythm persists even in the 

absence of environmental time cues, such as occurs under constant light and temperature. 

The observed rhythmic oscillation that takes place under constant conditions is called the 

free-running period. Second, the periodicity of this rhythm, which is about 24 hours, is 

fairly constant over a wide range of physiologically relevant temperatures. This is known 

as temperature compensation. Finally the circadian driven rhythm can be entrained by 

strong environmental signals, such as light/dark and warm/cold cycles typical of a day. 

These signals reset the clock on a daily basis (Salomé, 2005). In conclusion, a circadian 

rhythm is self sustainable and is adjusted on a daily basis to its current environment. 

The study of the circadian clocks includes the analysis of the observed oscillation 

during the free-running period. This oscillation acquires the shape of a sinusoidal wave, 

which can be explained by mathematical terms. As a wave, the parameters of period, 
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amplitude and phase describe properties of the circadian clocks under study (McClung, 

2006). The period refers to the distance between to peaks or troughs, which is the length of 

one complete cycle. The amplitude is half the distance of the wave from its highest to the 

lowest point. The phase is commonly measured as the distance from the last entrained 

oscillation to the first peak under free-running conditions (figure I.1). All together, these 

parameters define oscillating patterns for a given rhythm. 

The first observations of the existence of an internal rhythm come from the 4th 

century B.C., but these findings were forgotten for centuries. It was until 1729 that the 

knowledge of an internal pacemaker was reintroduced and experimentally proven (Dunlap, 

2003). J.J. DeMarian made pioneering examinations in Mimosa describing a rhythm of leaf 

movement. In the same century, Carl Linnaeus observed that different plant species opened 

their floral buds on a daily basis at a specific time of the day. Later during the 19th century, 

Darwin also described the daily pattern of leaf movement in plants. Finally in the 20th 

century, Erwin Bünning proposed that circadian rhythms provided adaptive values to the 

organisms (Dunlap, 2003). Recently, the adaptive value of having a circadian system in 

resonance with its environment has been demonstrated (Ouyang, 1998; Dodd, 2005), 

confirming Bünning´s hypothesis.  

The selective advantage provided by an internal pacemaker had been demonstrated 

in algae and plants. In a competition experiment, strains of cyanobacteria that had 

circadian clocks with a wild type, short, or long period, were subjected to T-cycles in three 

different batches. Each T-cycle consisted in equivalent light/dark periods for a total 

amount of 22 (11:11), 24 (12:12) or 30 (15:15) hours. After 27 days of incubation under 

these conditions, the strain that outgrew the others was the one with a clock that matched 

its environment (Ouyang, 1998). In the same fashion, Dodd et al. (2005) demonstrated that 

higher plants with a clock which resonates with the external LD cycle, had enhanced 

growth, higher carbon fixation and improved photosynthesis, leading to increased survival 

compared to plants with a clock that did not match the experimental T-cycle. These studies 

provided evidence for how a clock synchronized with the environment enhances fitness, in 

both lower and higher organisms. 

Circadian clocks are present in organisms ranging from bacteria to eukaryotes. The 

study of the pacemakers of model organisms like Synechococcus, Drosophila, Neurospora, 

Arabidopsis and Mus have shown features in common. These include that each clock has 

positive and negative elements that comprise a transcriptional feedback loop (Bell-

Pedersen, 2005). In general, the transcription of the positive elements induces the 
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Figure I.1. Circadian rhythms persist even in the absence of environmental signals. The 
wave like output from the circadian clocks can be studied by mathematical parameters. 
 A) Circadian rhythms from organisms previously entrained by an environmental cue, in the 
example by 12 hr light/ 12 hr dark cycles, keep their pace under free running conditions, either 
under constant light or darkness (represented by white and black bars, respectively at the 
bottom of the figure). 
B) Amplitude. The half the distance from the highest to the lowest point of a wave is the 
amplitude. The rhythms can be of high (purple) or low (blue) amplitude. 
C) Period. The distance between two peaks or troughs of a wave is the period. In the absence 
of an entrainment signal the period of circadian clock mutants may be shorter or longer than 
24 hrs. As an example of the later a long period is shown in green. 
D) Phase. A point in the wave relative to the last entraining signal is called phase. The 
moment of a phase event can take place before or after the expected time under free running 
conditions (red and blue waves) without affecting the period. Under diurnal environmental 
stimuli the clock is entrained and the effect of a different phase relative to wild type is masked 
(red wave). However under free running conditions a shorter or longer phase would cause a 
shift of the wave relative to a normal or wild-type phase (blue wave). 
E) Re-entrainment. A circadian rhythm can be entrained by a strong environmental signal, in 
the example light (orange arrow). Re-entrainment shifts the rhythm, but does not affect period, 
nor other circadian parameters (cyan wave). The clock is more susceptible to re-entrainment at 
the verge of the expected light/dark transitions. Note that the arrow indicates a shift to light 
conditions during the second half of the dark period. 
In figures B to E the wild type or normal rhythm (A, black wave) is shown in gray for aiding 
in the comparisons. 
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expression of the negative elements, which in turn repress the expression of the formers, 

thus closing the loop. Therefore in many organisms, the circadian clock consists of a 

transcriptional-translational feedback loop. Interestingly, though the all these clocks share 

an analogous mechanism, their components are not conserved between them, suggesting 

that the circadian clocks must have appeared several times throughout evolution. 

The clock transcriptional-translational feedback loop cannot sustain a ~24 hour 

rhythm by itself. To keep such a pace, this loop requires posttranslational processes that 

govern the activity and stability of both the positive and negative elements (Gallego, 

2007). Reversible phosphorylation is emerging as an essential mechanism that drives the 

timing of the loop by activating, inactivating or providing a targeting signal for protein 

degradation. Several examples of changing the protein phosphorylation status by kinases 

and phosphatases have been described in Neurospora crassa, Drosophila melanogaster 

and Mus musculus clocks (Gallego, 2007). From all these studies emerges a view in which 

phosphorylation is essential to fine tune the function of the circadian clocks (Merrow, 

2006; Gallego, 2007). 

 

 

II. The Arabidopsis thaliana circadian clock 

 

A. Generalities 

 

Physiological observations of the existence of an oscillator in plants existed, but the 

molecular and genetic processes behind those rhythms were unknown (Dunlap, 2003). 

Evidence of fluctuating plastid and nuclear mRNA through the length of the day in tomato 

fruits were originally thought to be consequence of the light-regulated expression 

(Piechulla, 1987). This and the lack of a model for studying clock rhythms, impaired the 

study of the circadian clock in plants. This situation dramatically changed when 

Arabidopsis thaliana was established as a model for plants to study the circadian clock, by 

describing that the expression of the CHLOROPHYLL A/B BINDING PROTEIN (CAB) 

followed a rhythm under constant conditions (Millar, 1991). Thus a tractable rhythm in a 

genetically amenable plant provided promise to decipher the clock mechanisms in 

angiosperms. A few years later, the field gained its most valuable tool by using the firefly 

luciferase gene as a reporter of clock-gene expression (Millar, 1995a), which allowed the 

identification and study of a plethora of mutants in the circadian clock (Millar, 1995a,b). 
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Through the molecular-genetic analysis of mutants, the first model of the plant 

circadian clock was proposed. The core of the A. thaliana oscillator was proposed to 

comprise of a loop between two morning components and one evening component. The 

formers are two Myb-related transcription factors, CIRCADIAN CLOCK ASSOCIATED 

(CCA1) and LATE ELONGATED HYPOCOTYL (LHY) (Wang, 1998; Schaffer, 1998; 

Mizoguchi, 2002), whose encoded proteins bind to the Evening Element (EE) in the 

promoter of TIMING OF CAB EXPRESSION/ PSEUDORESPONSE REGULATOR1 

(TOC1/PRR1), the evening component (Alabadí, 2001). This binding represses TOC1 

transcription, but at dusk the protein levels of CCA1 and LHY diminish and the repression 

of TOC1 is relieved. As a consequence, TOC1 mRNA reaches its maximum around dusk, 

and by an unknown mechanism, TOC1 protein activates the transcription of CCA1 and 

LHY (Alabadí, 2001; Mizoguchi, 2002). Though these three elements have been considered 

the core of the plant clock (Dunlap, 2003), this model cannot fully explain all experimental 

data (Locke, 2006). 

Additional mutants that affect circadian rhythms have been documented and those 

genes remain to be placed within the clockwork. Mutations in several genes, such as 

GIGANTEA (GI), EARLY FLOWERING 3 (ELF3), EARLY FLOWERING 4 (ELF4), TIME 

FOR COFFEE (TIC), LUX ARRHYTMO (LUX), TEJ, and ZEITLUPE (ZTL), among many 

others, alter clock rhythms (Harmer, 2009). Also the TOC1-related family of 

pseudoresponse regulators (PPR9, PRR7, PRR5, PRR3) work within the circadian clock 

framework, as mutations in these genes affect clock rhythms (Makino, 2002; Salomé, 

2005; Harmer, 2009). The transcription of these genes was described to peak sequentially 

through the circadian cycle with partially overlapping functions (Matsushika, 2000; 

Salomé, 2005). The expression of some of above molecules is light induced. Thus it has 

been proposed that those light inducible genes could function as components of a light-

input pathway to the clock. For this reason, more complex clock models have arisen aided 

by computational modelling (Locke, 2005 and 2006; Zeilinger 2006).  

Mathematical models have been formalized to comprise a clock with three 

interconnected feedback loops, which harbour unknown components within them. In a 

three-loop model, besides their described role in the core oscillator, CCA1 and LHY also 

participate in a morning loop to induce the expression of PRR7 and PPR9, which in turn 

bind and repress the transcription of the formers (Imaizumi, 2010; Nakamichi, 2010). A so-

called evening loop places TOC1 as a repressor of an unidentified Y component, which 

feeds back by inducing TOC1 expression. GI was proposed to be the Y component, but GI 
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only partially fulfils this role (Locke, 2006; Hubbard, 2009). Within this model, the 

identity of an X factor, which serves as the component between TOC1 expression and 

CCA1/LHY was mathematically required. A gene with these characteristics has not yet 

been found (figure I.2). An element acting between TOC1 and CAA1/LHY transcription 

was identified and termed CCA1 HIKING EXPEDITION (CHE) (Pruneda-Paz, 2009). This 

factor cannot be X, as its protein only binds the promoter of CCA1 and not that of LHY. 

Furthermore CHE binding to CCA1 promoter represses CCA1 transcription. This is 

opposed to the expected X function of an activator (Imaizumi, 2010). 

Transcription of several clock components, including CCA1, LHY, PRR9, PRR7 

and GI was reported as light inducible (Más, 2008). Therefore it was proposed that light 

signals at dawn and dusk could be integrated to the oscillator by the morning elements and 

GI, respectively. This notion of an oscillator with interconnected loops was the first 

rational model established for a ~24 hour clock in plants (Locke, 2006; Zeilinger, 2006). 

This model could be confirmed experimentally, for example the cca1/lhy/toc1 triple mutant 

was shown to be arrhythmic (Ding, 2007b). 

Most knowledge of A. thaliana clockwork has been transcriptional, as studies 

involving post-translation modifications have lagged in comparison to clocks of other 

model organisms. Nonetheless recent studies have shown that post-translational 

modifications are essential for the function of the plant circadian clock. For example it has 

been shown that ZTL, a light-sensitive protein, binds to TOC1 during the night, directing 

TOC1 to degradation by the proteasome (Más 2003). Furthermore ZTL was proposed as a 

circadian blue-light photoreceptor that is stabilized by GI only under blue light (Kim, 

2007). Contrary to the action of ZTL on TOC1 stability, PRR3 protects TOC1 from 

degradation (Para, 2007). Protein targeted degradation also takes place in the morning 

phase of the oscillator. As an example, LHY protein turnover was shown to be regulated 

by de-etiolated 1 (DET1). There it was demonstrated that DET1 inhibited LHY 

degradation in a light-independent process (Song, 2005). 

Besides protein targeted degradation, protein phosphorylation has been shown to be 

necessary for proper rhythms. For example, the above mentioned interaction between 

TOC1 and PRR3 is enhanced when the later is phosphorylated (Para, 2007). Also casein 

kinase 2 (CK2) was shown to phosphorylate CCA1. Upon phosphorylation, CCA1 binding 

to DNA was enhanced and consequently rhythms of output genes could be sustained 

(Sugano, 1999; Daniel, 2004). Recently a GTPase, termed LIP1, was implicated in light 

input to the oscillator (Kevei 2007). In summary, post-translational mechanisms have an 
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 I.2. Three loop model of Arabidopsis thaliana circadian clock.  
re of the oscillator is composed by two morning negative elements and one evening 
e component (Alabadi, 2001). The two Myb like transcription factors CCA1 and LHY 
nscriptionally induced after dawn and their protein products bind to the Evening 
t (EE) in the promoter of evening genes, such as TOC1, repressing their transcription. 
k TOC1 repression is relieved as CCA1 and LHY are degraded, leading to TOC1 
iption. TOC1 closes the loop by inducing CCA1 and LHY transcription by a yet 

n mechanism. 
ee loop model of the clock incorporated one morning and one evening loop. During the 
CA1 and LHY induce the transcription of the pseudoresponse regulators PRR9 and 
whose protein products bind to the promoters of the formers repressing their 

iption. Within the evening loop, GI is transcriptionally induced as the repression from 
moter is relief before dusk and GI protein stimulates TOC1 transcription. Then TOC1 
ack by repressing the transcription of GI. In the three lop model (Locke, 2006), an 
n component named X, is the missing factor between TOC1 and CCA1 and LHY 

iption. The component X action would take place before dawn and may participate in 
ntrainment. 
arrows indicate induction and red bars represent repression. Day and night are indicated 
r pale blue and dark blue respectively. Dawn and dusk are indicated by graded color 
s representing the sunrise/sunset (left and right side respectively). 
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important role in fine tuning the clock and now are starting to come into scene in the plant 

oscillator. 

 

B. Light in clock entrainment and as an input signal to the oscillator 

 

 The circadian clock anticipates diurnal changes providing a competitive advantage 

compare to simply responding to the transitions of light to dark and dark to light. To keep 

track of the environment, the circadian clock is reset on a daily basis and in plants this 

resetting is driven by the dark to light transition at dawn. This resetting is called 

entrainment, which shifts the phase of gene expression to the changing photoperiod 

(Salomé, 2005). Thus entrainment is particularly required in locations away from the 

equator where day length changes dramatically on a daily basis, especially during mid-

Spring and mid-Autumn. Clock entrainment occurs on a daily basis through "zeitgebers" 

(from the german word "time-givers") that consist predominantly as light and temperature 

changes (Salomé, 2005). My thesis work has focused on clock entrainment by light, 

because the dawn dark to light transition is the main environmental cue that entrains the 

clock (Salomé, 2005) and most clock controlled gene expression patterns follow light 

inputs (Michael, 2008). 

 Plants perceive light through different classes of photoreceptors. The phytochromes 

mainly sense red and far-red light, whereas the cryptochromes perceive preponderantly 

blue light (Fankhauser, 2002; van der Horst, 2004). These molecules are essential for plant 

development, as mutations in photoreceptor genes impair the de-etiolation process 

(Fankhauser, 2002). Interestingly photoreceptors transcription was reported to be under 

circadian control (Toth, 2001). Photoreceptor mutants were used to establish their role 

within the circadian clock. It was described that the photoreceptor function within the 

clock was wavelength specific: phytochrome B (phyB) was the main red light 

photoreceptor, cryptochrome 1 (cry1) the blue light photoreceptor and phytochrome A 

(phyA) the low fluence light photoreceptor (Somers, 1998). It was shown that 

photoreceptors mutant displayed a light intensity dependent effect on clock periodicity. 

Only under low fluence rates these mutants exhibited a lengthened period (Somers, 1998). 

This effect obeys Aschoff rule, which states that the higher the light intensity, the shorter 

the period (Dunlap, 2003). Thus the light-signal input to the clock and the clock response 

to light were not affected in the photoreceptors mutants. Though photoreceptor mutants 

affected the clock period (Somers, 1998), it was found that phyA and phyB were not 
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necessary for circadian responses (Anderson, 1997). Furthermore it was described that 

even a quadruple photoreceptor mutant (phyA/phyB/cry1/cry2) displayed robust circadian 

rhythms (Yanovsky, 2000). Consequently though light input is essential for clock 

periodicity, photoentrainment still takes place without the main photoreceptors. This result 

suggested that other molecules may be responsible of transducing light signals to the 

oscillator.  

If photoreceptors do not transduce light signals to the clock, other light perceiving 

molecules could act as circadian photoreceptors. As mentioned before, ZTL has been 

described as a blue-light photoreceptor. ZTL structure contains a Light-Oxygen-Voltage 

(LOV) domain that is essential for the light dependent binding of ZTL with GI (Kim, 

2007). Two other proteins exist in the A. thaliana genome with a similar structure to ZTL. 

These are the LOV-KELCH PROTEIN 2 (LKP2) and FLAVIN BINDING KELCH 

REPEAT F-BOX 1 (FKF1), which both posses a LOV domain, though no clear role in 

light perception has yet been established for these products. ztl was described as a clock 

mutant that altered period in a fluence-dependent manner (Somers, 2000). lkp2 and fkf1 

single mutants showed subtle effects on circadian rhythms, but a ztl/lkp2/fkf1 triple mutant 

became essentially arrhythmic (Baudry, 2010). Thus ZTL had a major role in the circadian 

clock. Consequently ZTL remains a likely candidate for light transduction to the clock.  

 Several other mutants affect light input to the clock. ELF3 has been described as 

arrhythtmic under continuous light, but rhythmic in darkness (Hicks, 1996). ELF3 light 

input to the clock may take place at dusk as its clock stops at this time (McWatters, 2000). 

It has been described that ELF3 together with ELF4 negatively regulate light input to the 

clock (McWatters, 2007), while SENSITIVITY TO RED LIGHT REDUCED (SRR1) acts as 

a positive regulator of light input (Staiger, 2003). Other genes described with a dual role in 

light input as well as photomorphogenesis are FAR RED ELONGATED HYPOCOTYL 3 

(FHY3) (Allen, 2006), LIGHT INSENSITIVE PERIOD 1 (LIP1) (Kevei, 2007) and XAP5 

CIRCADIAN TIMEKEEPER (XCT) (Martin-Tyron, 2008). All together, light input to the 

clock, in particular to entrainment, is far from resolved and awaits to be clarified by 

finding the missing pieces as well by fully understanding the input function of known light 

signalling mutants. 
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C. TIME FOR COFFEE in the A. thaliana circadian clock 

 

time for coffee (tic) was isolated from a mutagenized population for its short phase 

of CAB:LUC bioluminescent expression (Hall, 2003). The mutant exhibited a low 

amplitude rhythm that rapidly dampened CAB expression under constant conditions. 

Besides the low amplitude rhythms, the period length of CAB2 and COLD AND 

CIRCADIAN REGULATED 2 (CCR2, also known as AtGRP7) reporter genes were shorter 

in tic than in the wild type, under constant light and in dark conditions, respectively (Hall, 

2003). Furthermore the robustness of the rhythms was weaker in tic than the wild type, 

because this mutant displayed higher variability in its rhythm, causing a higher 

mathematical error (Hall, 2003). Interestingly, when the periodicity of the mutant was 

scored by the movement of leaves, it was found that tic had a longer period than wild type 

(Hall, 2003). In that work, tic was described as being a fully recessive mutant. 

tic growth displayed a phenotype consisting of a short hypocotyl and chlorotic 

leaves, which resembled that of cca1/lhy double mutant (Hall, 2003); cca1/lhy is defective 

in dawn circadian events (Mizoguchi, 2002). By release assays, which consisted in giving a 

2 hour dark interval to plants previously shifted from cycling light-dark conditions to 

continuous light, it was shown that the clock in tic would restart between late night or early 

morning (Hall, 2003). This particular result gave birth to the name of "time for coffee," as 

the authors felt that at this time any human activity required a cup of coffee to "go on." All 

together, the data described a new circadian-clock mutant that functions between late night 

and dawn suggesting that tic participates in the clock light entrainment without altering 

downstream light signalling. 

 Further characterization of TIC included analyses of expression and rhythms of 

several clock genes. For this, the original mutant was introgressed to Ws-2 by backcrossing 

at least 4 times to this ecotype background. This was done as in the Ws-2 background 

many genetic resources were available to study epistatic relationships between tic and 

other clock mutants (Ding, 2007). The CAB:LUC gene expression was analysed in double 

mutants between tic and clock gene mutants. It was found that tic combined with any other 

evening clock mutant resulted in immediate lost of rhythms or just after one cycle (Ding, 

2007). The authors also studied the diurnal and circadian gene expression of tic. The 

expression analysis of genes including GI, TOC1, ELF3, CCA1 and LHY was found to 

have an advanced phase compared to the wild type. Luciferase reporter genes and gene 

expression analysis led to conclude that tic resulted in shorter periods and dampening of 
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rhythms (Ding 2007). Though the clock-gene expression in tic presented an early phase, 

the daily mean expression levels of these genes in tic and wild type was equal. The 

exception was LHY, whose mRNA abundance was found to be low and arrhythmic (Ding, 

2007). Taken together, these results supported the hypothesis of TIC action within the 

clock and specifically participating in LHY expression, before dawn. 

TIC was cloned and was found to correspond to the A. thaliana genomic sequence 

At3g22380 (Ding, 2007). The original tic mutation, referred as tic-1, had a cytosine to 

thymine transition in the fourth exon generating an encoded premature stop codon. It was 

reported that TIC genomic sequence has more than 4500 nucleotides that encode for a 

novel hypothetical protein sequence of 1500 amino acids with unknown functional 

domains, with exception of a theoretical ATP-GTP binding P-loop domain located in the 

last exon. Ding et al. (2007) demonstrated that the sequence At3g22380 was TIC by 

restoring the wild-type circadian responses in tic-1 after complementation with the former. 

The authors also described the circadian defects in a transgenic line with a T-DNA 

insertion in the second exon termed tic-2, which is in the Col-0 background. TIC was 

found to be a single copy gene, though it has a paralog sequence in A. thaliana genome 

that was named TIC-like (TKL for the acronym of TICKLE). In conclusion TIC gene was 

identified and was demonstrated to be necessary for clock function with two different 

alleles. 

Because many clock genes are circadian regulated, TIC mRNA expression was 

evaluated and was found that it did not cycle. Consequently TIC protein was analysed, it 

was observed that TIC was constitutively nuclear localised and that the protein levels were 

fairly constant through a circadian cycle (Ding, 2007). Collectively, it was proposed that 

TIC was a nuclear early-morning regulator of the circadian clock and that TIC function 

would be triggered via an as yet unknown mechanism. 

 

 

III. Genome transcriptional control by the circadian clock 

 

In the last years, it has been experimentally demonstrated that having a clock that 

matches and adjusts to its environment enhances fitness (Ouyang, 1998, Dodd, 2005). The 

oscillator generates a network with its environment by perceiving environmental signals, 

such as light and temperature, called the input pathways to the clock, and controlling 

responses as gene expression and metabolic reprogramming, which are termed the outputs 
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of the clock (Salomé, 2005; Wijnen, 2006). These clock-driven responses can also 

feedback to the clock. Consequently the oscillator can modulate the perception of these 

input signals (Harmer, 2009). At the end, the ultimate function of the circadian clock is to 

coordinate the physiological and metabolic processes to take place at the time when they 

are needed. 

Microarray expression analysis demonstrated the pervasiveness of the circadian 

clock in the plant transcriptome (Harmer, 2000). Estimates of the percentage of genes 

under circadian control ranged between 6% up to 15%, but more recent views concluded 

that at least 30% of the transcriptome is under clock control (Covington, 2008; Hubbard, 

2009). This percentage of genes is relatively similar to those found under clock control in 

the fly and mouse transcriptomes (Hubbard, 2009). These transcript profile analyses 

demonstrated how the circadian clock drives the expression of different biological 

processes in anticipation of physiological events.  

Harmer et al. (2000) were the first to show that the clock governed the transcription 

of several metabolic pathways. The induction of gene expression in sets of photosynthetic 

genes and from the phenylpropanoid biosynthesis pathway took place early in the day and 

before dawn, respectively, whereas cold responsive genes were expressed before dusk. 

Furthermore the authors also established that the clock controlled the coordination of 

carbon, sulfur and nitrogen metabolism, as well as numerous developmental programmes. 

The clock exerted such a control on these diverse processes by driving the expression of 

key transcription factors or rate limiting enzymes (Harmer, 2000). Later, microarray 

studies analysed with improved algorithms described that pathways as the isoprenoid 

metabolism, key in carotenoid, tocopherol and phytohormones ABA and GA biosynthesis, 

were all under circadian control (Covington, 2008). In summary these data showed that the 

clock has a pervasive role in the physiology of plants and consequently is capable of 

adjusting most biological responses.  

Other transcriptomic analysis took into consideration not only circadian microarray 

datasets, but also diurnal data and concluded that at least 89% of the transcribed genome is 

controlled by either the clock, diurnal cycles or thermocycles (Michael, 2008). This 

analysis suggested that such an extensive control was achieved by dispersed promoter 

sequences throughout the plant genome that provide a particular time frame of expression 

(Michael, 2008). These authors also found that at least in one of the conditions tested, more 

than 10,000 genes were under circadian control, while more than 16,000 were diurnally 

controlled. Interestingly an overlap of only 8,500 between both of them was found, giving 
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the possibility that a fraction of diurnal environmental stimuli are not under clock control. 

Furthermore most of the genes expression peaks tended to be toward either dawn or dusk. 

Thus, it seems that either clock or diurnal controlled, most of the responses to the 

environment are tightly time coordinated using the light/dark transitions as the main 

environmental signal. 

As stated above, Covington et al. (2008) found a significant set of genes that were 

circadian regulated and responsive to hormone treatments, in particular to ABA, 

cytokinines, methyl jasmonate, salicylic acid and auxin. The exerted control by the 

circadian clock on the transcription of hormones is not a surprise as hormones are outputs 

of the clock. After all, hormones are involved in many physiological responses, from 

growth and stomata opening to many others that occur at a specific time of the day 

(Buchanan, 2000). It has been shown that hormones can feedback to the clock and are 

capable of affecting period length, amplitude or phase (Hanano, 2006). Furthermore the 

responses to hormones are gated by the circadian clock. For example stomata opening is 

dictate by the clock in well watered plants, opening in the dawn and closing before dusk 

(Dodd, 2005). ABA, which promotes stomatal closure, is less effective early in the day 

than at the end of it (Robertson, 2008). Similarly many auxin genes are clock regulated and 

the later gates the sensitivity to the hormone depending on the time of day (Covington, 

2007; Rawat, 2009). The gated response to auxin explains the observed growth of plants 

around dawn in a LD cycle (Nozue, 2007). At this time of the day, auxin levels and plant 

responsiveness coincide with increased water turgor pressure and renewal of carbon 

supply, promoting growth. In resume, the plethora of genes under circadian control and the 

capacity the clock has on modulating multiple responses through a gating mechanism, 

highlights the importance of the circadian clock in adjusting the plant to its environment.  

Interestingly from all the available microarray expression profiles, the circadian 

datasets were found to overlap with ABA (Mizuno, 2008, Matsui, 2008) and cADPR 

(Dodd, 2007) datasets. The relationship between the clock and ABA is extremely 

interesting because the later controls many environmental stress responses as water use and 

responses to drought, as well as to cold. Recently it was found that TOC1 expression is 

induced by ABA (Legnaioli, 2009). Therefore the link between the circadian clock and 

ABA-related responses could define a link of how the clock prepares and deals with stress 

responses and enhances fitness. 

The overlap between ABA and clock microarray datasets arise from the circadian 

control of many key genes involved in ABA biosynthesis or signal transduction. 
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Furthermore genes such as EARLY RESPONSE TO DEHYDRATION 10 (ERD10) and 7 

(ERD7), COLD REGULATED 15 B (COR15B) and A (COR15A) and RESPONSE TO 

DISSECATION (RD29A) were found to be transcriptionally induced during the day 

(Mizuno, 2008). All of these genes are involved in the responses to drought and water 

deprivation or osmotic stress. A detailed examination by Covington et al. (2008), not only 

showed that ABA induced genes are expressed during the day, but that key enzymes in 

ABA precursors and biosynthesis are also clock controlled. These included 

CLOROPLASTOS ALTERADOS 1 (CLA1), PHYTOENO SYNTHASE (PSY), 9-

CIS’EPOXYCAROTENOID DIOXYGENASE (NCED3) and ABA DEFICIENT 2 (ABA2), 

which participate in isoprenoid precursors synthesis, carotenoid synthesis and ABA 

biosynthesis, respectively. Recalling that carotenoids participate in the xantophyll cycle in 

chloroplast to avoid excess of solar energy absorption, as well as the circadian control of 

stomatal opening (Robertson, 2008), the circadian clock seems to link the light period of 

the day with stress and water loss, and consequently prepares in advance to them. 

Given the relationship between the circadian clock and ABA, it is no surprise that 

microarray datasets from osmotic, salt and water deprivation stress also have a high 

number of genes circadian regulated (Covington, 2008). By means of a genome tilling 

arrays, it was shown that both annotated and unannotated regions responded to a diversity 

of abiotic stress. In the same report the similarity between salt and osmotic stress profiles 

was the highest between all the treatments. ABA treated samples showed certain similarity 

with the previous stresses, whereas cold and heat profiles shared less identity (Zeller, 

2009). Unfortunately in this analysis plants were grown under continuous light and no data 

is available about the time of the treatments. However as seen from their principal 

component analysis, time was an important factor, as all the samples after 1 hour of 

treatment clustered together and apart from those that were sampled 12 hrs after their 

respective treatments (Zeller, 2009). 

So far, I have focused on introducing pathways whose peak of expression is at 

dawn or early in the day, but dusk is also a signal for circadian control. At dusk genes 

involved in starch remobilization and lipid modification reach their higher expression 

(Harmer, 2000, Smith, 2007). The later has been interpreted as a correlation with the 

anticipation of cold nights and consequently freezing tolerance. In fact, the circadian clock 

controls the expression of cold responsive genes through the C-REPEAT BINDING 

FACTOR 1/ DEHYDRATION RESPONSIVE ELEMENT BINDING 1 (CBF1/DREB1) 

family of transcription factors. The expression of the more than 100 targets known as the 
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CBF/DREB regulon not only provides freezing tolerance but also resistance to salt and 

drought (Hotta, 2007). Though the later share the resistance profile with the ABA induced 

genes, the CBF/DREB transcription factors are totally independent of ABA (Urano, 2010). 

Interestingly Franklin et al. (2007) demonstrated that CBF1, CBF2 and CBF3 expression 

was increased under a low R/FR ratio and only after experiencing this condition plants 

acquired freezing tolerance. Because these conditions are mainly found at dawn and dusk, 

to a greater extent at higher latitudes, and the circadian clock gates cold responses (Fowler, 

2005), the expression of these genes prepares the plant for the oncoming night. Thus the 

circadian clock, ABA and light signals coordinate the transcriptional cold response and 

interconnects the clock input and output pathways. 

 

 

IV. The circadian clock and metabolism: a link toward homeostasis 

 

A. Overview of metabolism in circadian systems 
 

In recent years, the clock field has seen a change of perspective by several 

discoveries linking the traditional view of the transcriptional-translational feedback loop to 

cellular metabolism and homeostasis. Most of these breakthrough discoveries were 

obtained in the mammalian circadian clock, which I will briefly describe here. The 

mammal clock is comprised of the positive elements CIRCADIAN LOCOMOTOR 

OUTPUT CYCLES KAPUT (CLOCK) and BRAIN AND MUSCLE ARYL HYDROCARBON 

RECEPTOR NUCLEAR TRANSLOCATOR (ARNT)-LIKE (BMAL1), which induce the 

transcription of the negative elements CRYPTOCHROME (CRY) and PERIOD (PER). The 

formers are interconnected in a secondary loop with REVERSE ERYTHROBLASTOSIS 

VIRUS α (REV-ERBα) and RETINOIC ACID RECEPTOR-RELATED ORPHAN 

RECEPTOR α (RORA) (Wijnen, 2006). Within this system, a metabolic framework has 

been incorporated with an important role. 

SIRTUIN1 (SIRT1), a NAD dependent enzyme, associates with CLK and this is 

required for CLK acetylation activity (Nakahata, 2008). Furthermore, NAD levels cycle 

within 24 hours and a NAD rate-limiting enzyme, nicotinamide phophoribosyltransferase 

(NAMPT), is circadian regulated, and consequently its inhibition affect clock rhythms 

(Nakahata, 2009). These findings could be related to those reported decades earlier in 

which pyridine nucleotides were found to cycle in N. crassa (Brody, 1973). Evidence of a 
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link between energy metabolism and the clock was provided by the discovery that 

adenosine monophosphate activated protein kinase (AMPK), an enzyme that responds to 

nutrient availability, phosphorylates CRY targeting it for degradation (Lamia, 2009). In a 

similar fashion, the circadian clock regulates heme metabolism by controlling some rate-

limiting enzymes in heme biosynthesis. Heme affects the clock because it binds REV-

ERBα, which then represses the expression of glucose catabolic genes and BMAL1 (Yin, 

2007). A couple of reports linked carbohydrate metabolism to the circadian clock. The 

inhibition of a glycogen synthase had effects on clock period regulation (Hirota, 2008) and 

also induced the degradation of REV-ERBα (Yin, 2006). These reports indicated that 

energy metabolism can feedback to the circadian clock by altering some of its components. 

Transcriptomic studies suggested associations between the circadian clock and 

metabolism. Analysis of microarray data from mammals had shown that within the 

circadian transcriptome there is a high representation of genes that encode for enzymes 

involved in mitochondrial oxidative phosphorylation, glucose and lipid metabolism, 

(Kohsaka, 2006), all of them sources of energy. As mentioned above, NAD levels oscillate 

in a circadian fashion and at least NAMPT is also under circadian control (Nakahata 2009). 

NAD is coenzyme for many dehydrogenases that participate in oxidation reactions and the 

Krebs cycle. Also NAD is a substrate for ADP ribosylation (Eckel-Manhan, 2009), and it 

is required for the synthesis of cADPR through the action of ADP ribosyl cyclase (ADPR 

cyclase) (Lee, 1997). All together, the data highlighted that cellular energy control through 

pyridine nucleotides and/or through ATP could be linked to circadian control. 

 

B. Links between the plant circadian clock and metabolism 

 

In plants the first evidence of a link between the circadian clock and metabolism 

was provided Dodd et al. (2007). These authors found that cyclic adenosine diphosphate 

ribose (cADPR), which is synthethized from NAD by the ADP ribosyl cyclase, peaked 

early in the morning and affected the clock oscillation. A decrease in the concentration of 

cADPR lengthened the period of clock-controlled genes, whereas nicotinamide inhibited 

the ADP ribosyl cyclase and weakened circadian calcium oscillations (Dodd, 2007). 

Previously it was demonstrated that ADPR cyclase activity was induced by ABA 

and that 30% of all ABA responsive genes were expressed in a similar pattern that those 

from cADPR (Sánchez, 2004). Recalling that circadian clock microarray datasets 

overlapped with ABA transcriptomic profiles (Mizuno, 2008), a link between the circadian 
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clock and metabolism in plants through cADPR could be suggested. Therefore a link 

between the transcriptional control of the circadian clock, ABA and cADPR in adjusting 

metabolism could exist.  

What could lie as a common factor between the clock, ABA and energy is the status 

of carbon availability through the day. Previously several screens for altered sugar 

responses led to the description of glucose insensitive (gin), sugar insensitive (sis) and 

sucrose uncoupled (sun) mutants. Many of these mutants were ABA mutants, being allelic 

to ABA insensitive 4 (ABI4) and ABA2 (Rook, 2006). Therefore ABA and carbon are 

tightly linked. It has been reported that ABA and carbohydrates repress the expression of 

photosynthetic and plastocyanin genes (Rook, 2006) by binding to a minimal light-

responsive promoter fragment of photosynthetic genes (Acevedo-Hernández, 2005). 

Therefore it seems that a relationship between ABA and carbohydrate exists and share 

similar roles in repressing photosynthesis. 

Already has been mentioned the pervasiveness of the circadian clock and its 

relation with ABA gene expression profiles, but carbohydrates also influence the 

expression of clock responsive genes. Blasing et al. (2005) reported that half of the 

circadian controlled genes could respond to sugar. Similarly cellular sugar levels showed a 

major contribution in the establishment of diurnal gene expression patterns (Blasing, 

2005). Interestingly these authors described that sugar-controlled gene expression was 

sensitive and responsive to low sugar levels, but not to high sugar. Through the study of a 

plastidial mutant in the PHOSPHOGLUCOMUTASE (PGM) gene, which impaired starch 

synthesis, they observed that when endogenous sugars levels diminished, sugar responsive 

genes were rapidly and highly expressed. In contrast, when high sugar levels were present 

during the light period gene expression did not change. Therefore in the wild-type strains 

the transcriptional reprogramming to declining levels of sugars occurs at the end of the 

night (Blasing, 2005). It seems that the circadian clock and the diurnal changes in carbon 

availability through photosynthesis are tightly linked and are responsible for most, if not 

all, the 24 hour cyclic gene expression patterns in natural diurnal cycles. 

A link between ABA and sugar signalling could be provided by the ARABIDOPSIS 

PROTEIN KINASE 10 (AKIN10 or SnRK1). AKIN10 belongs to a family of serine-

threonine kinases that share high homology with the conserved SUCROSE NON 

FERMENTING 1 (SNF1) yeast kinase (Polge, 2007). These kinases are multisubunit 

proteins that are essential for transcriptional metabolic reprogramming and consequently 

developmental control (Polge, 2007). As a pair of examples, in yeast, SNF1 controls the 
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transcriptional switch of a quarter of the genome in the transition from fermentative to 

oxidative metabolism in response to glucose deprivation. In mammals, when the AMP 

activated protein kinase (AMPK) senses a low ATP/AMP ratio, represses anabolic 

pathways and induces the catabolic ones (Polge, 2007). In a similar fashion, AKIN10 and a 

kinase with high identity to it, AKIN11, were proposed to be a central component in the 

control of cellular energy signalling and homeostasis (Baena-Gonzalez, 2007, 2008). In the 

case of AKIN10, the kinase senses and responds to the cellular ATP/AMP ratio. When this 

ratio is high, the kinase is inactivated, but a low ratio triggers its activity (Baena-González, 

2008).  

The transcript profile of AKIN10 activation showed that the expression of anabolic 

pathways was repressed, in particular protein and ribosomal protein synthesis. On the other 

hand, the transcription of catabolic pathways was induced including starch remobilization, 

hydrolysis of polysaccharides and cell wall, and β-oxidation of lipids (Baena-González, 

2007, 2008). Genes that were expressed upon AKIN10 activation were repressed by the 

addition of sugars (Baena-González, 2007). Therefore it is plausible that over a diurnal 

cycle, AKIN10 senses a change in ATP/AMP ratio through the decreasing levels of 

available carbohydrates. Furthermore AKIN10 activity has been shown to decrease starch 

content while increases the levels of monosaccharides (Baena-González, 2007). Also it 

was observed that AKIN10 activity led to an ABA hypersensitive phenotype which was 

enhanced by addition of glucose (Jossier, 2009). All together, the data places cellular 

energy homeostasis at the hearth of transcriptional control of primary carbohydrate 

metabolism and ABA, between which a link with the circadian clock awaits to be clarified. 

 

 

V. The circadian clock, light and environmental stimuli 

 

A. Light as a source of ROS and energy 

 

Photosynthesis is the primary and most important metabolic process plants commit 

to, because it is their source of energy. The ultimate step of the photosynthetic process is 

the generation of NADPH and ATP synthesis. The energy obtained is then used in the 

Calvin cycle (Nelson, 2000). Though photosynthesis is essential, the light absorption 

creates oxidative stress due to the formation of reactive oxygen species (ROS) such as 

singlet oxygen (1O2), superoxide (O2
•-) and hydrogen peroxide (H2O2). Furthermore under 
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stress conditions or high light irradiance, the electron flow through the photosynthethic 

chain overcomes the passage of electrons from the ferredoxin to several reductases causing 

an over-reduction of the plastoquinone and cytochrome b complex (Oelze, 2008). 

 To cope with ROS production plants have energy dissipating strategies and several 

ROS quenching systems. The first ones involve conformational changes in the 

photosystems, absorption of light by carotenoids and the non photochemical quenching by 

the xantophyll cycle. The quenching systems involve a series of enzymes including the 

ascorbate and glutathione pools, thioredoxins, peroxiredoxins, glutaredoxins, as well as the 

superoxide dismutases and catalases (Oelze, 2008, Wormuth, 2007). 

 Because plants are aerobic organisms, photosynthesis is not the only source of ROS 

production. Through respiration, plants consume carbohydrates and reducing equivalents 

as NADH and FADH to yield ATP, as well as substrates from the tricarboxylic cycle 

(TCA) for biosynthetic pathways through oxidative phosphorylation. Besides respiration, 

during the light period plants also make photorespiration, which is enhanced under high 

light or stressful conditions (Buchanan, 2000; Noguchi, 2007). To alleviate stress, the plant 

mitochondria dissipates excessive electron flow through the rotenone insensitive NAD(P)H 

oxidases and the cyanide resistant alternative oxidase (AOX). These processes enhance 

plant fitness by improving photosynthesis under stress conditions (Noguchi, 2007, Rhoads, 

2007). 

As ROS generation is concomitant to photosynthesis and respiration, it was 

surprising that ROS responsive genes were not found to be under clock control (Covington, 

2008). This could be explained by three characteristics of ROS responsive genes. First, the 

transcription of these genes is induced upon stress. Secondly, many enzymes activity 

change due to their redox state (Oelze, 2008, Wormuth, 2007). Finally, their rate of 

transcription is environment dependent. It has been observed that the longer the 

photoperiod or the higher the light intensity, ROS antioxidant genes are higher expressed 

and the ascorbate pool increases (Becker, 2006 and Bartoli, 2006, respectively). In 

summary, plants have a complex network to cope with ROS generation and the role of the 

circadian clock in ROS transcriptional control still is unclear. 

 

B. Stress and energy as a metabolic input to the clock 

 

A link between energy metabolism, ROS production and environmental responses 

could be provided by the changes in NAD and poly-ADPribosylation in response to stress. 
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Though NAD synthesis has been shown to be rhythmic only in mammals (Nakahata, 2009, 

Ramsey, 2009), as photosynthesis is under circadian control, pyridine nucleotide levels 

could oscillate through the day. It has been reported that the degree of poly ADP ribose 

(PAR) synthesis by the PAR polymerases (PARP) is increased in proportion to stress 

severity (Hashida, 2009). PARP reaction consumes NAD and ATP, therefore affecting 

energy homeostasis (De Block, 2005). These authors observed that the downregulation of 

PARP enhanced stress tolerance probably due to a reduced consumption of NAD and ATP. 

However PAR takes place in response to ROS and DNA damage (Qin, 2008). Ishikawa et 

al. (2009) observed that overexpression of a PARP pyrophophohydrolase, AtNUDX7 

(NUCLEOSIDE DIPHOSPHATE LINKED TO SOME MOIETY X), increased resistance to 

oxidative stress; whereas the mutant had higher levels of cellular NAD and ATP, but was 

hypersensitive to oxidative stress. Thus it seems that a tight correlation in the appropriate 

use of energy is essential to acquire resistance against ROS regardless of their origin.  

Polyribosylation of proteins by PARPs is overcome by the antagonistic reaction of 

the PAR glycohydrolases (PARG). Interestingly one A. thaliana clock mutant, TEJ (from 

Sanskrit bright) was identified as a PARG (Panda, 2002). Besides its brighter luminescence 

that traduced into higher amplitude of all tested clock genes, the period of the rhythms was 

lengthened independent of light quality and quantity. Furthermore the mutant affected the 

transcription of clock regulated genes and flowered earlier independent of the photoperiod 

(Panda, 2002). Therefore these results suggest that a link between energy homeostasis and 

the circadian clock exists and has not yet been completely defined. 
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VI. Aim of this work 

 

Several questions regarding the role of TIC in clock entrainment remain 

unanswered. How does TIC participate in entraining the clock at dawn? What is the role of 

TIC in entrainment and what is the state of tic clock prior to dawn? Does the state of tic 

clock alter other metabolic process and physiological responses that participate in light 

gating to the clock? Is tic response to re-entrainment different from wild type? How does 

TIC exert its time-specific function? 

With those questions defined, the objectives of my thesis work were as followed: 

 

 

Main objective 

 

Characterize TIC function in regard of pre-dawn light in the morning entrainment 

of the circadian clock. 

 

 

Particular objectives 

 

1. Perform and analyse a microarray transcript profile toward morning anticipation 

and the effect of advancing the resetting of the clock prior to dawn, in a TIC 

dependent fashion. 

2. Characterize tic effects and responses derived from its clock arrest during night. 

3. Search for TIC protein interactors and generate a hypothesis of a mechanism for 

TIC action within the circadian clock. 

4. Characterize the TIC-like gene, TKL, in regard of its function in the A. thaliana 

clock.   

 

 

 I addressed those questions during my research as a presentation for this thesis. I 

found that tic responses to light signals were different from the wild type, as well as its 

transcriptional profile differed prior to dawn. tic presented pleiotropic phenotypes with 

altered responses to ROS, ABA, abiotic and biotic stress. It is plausible that tic displayed 

such physiological defects because of a general disruption in cellular homeostasis. In 
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support of this, TIC was found to be able to interact with the kinase AKIN10. These results 

suggested that TIC could be activated by AKIN10 and consequently TIC could exert its 

function within the circadian clock. Finally I hypothesized that TIC activation would lead 

to morning entrainment. As an aside, the TIC-related gene, TKL was not found to have a 

function within the clock. 
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II. Material and Methods 
 
 
II.A. Material 
 
 Unless otherwise stated, all material used was bought from DUCHEFA (media, 
agar, organic and inorganic salts, organic compounds) or SIGMA (chemicals, hormones, 
inorganic salts). 
 When water was used as a solvent, Millipore grade filtered water was used, unless 
otherwise noted. 
 
 
Growth media for plants 
 
1) Murashige and Skoog (MS) basal salts 

• 4.4 g/L MS 
• 0.5 g/L 2-(N-morpholino)ethanesulfonic acid (MES) 
• 1 % (w/v) sucrose (MS1) or 3 % (w/v) sucrose (MS3) 
• 1 % (w/v) phytoagar 

 
pH adjusted to 5.7 with KOH and sterilized in an autoclave for 20 minutes at 121oC. 
 
Antibiotics, hormones or chemicals were added to the required concentrations for their 
respective assays. 
 
2) MS1 basal salts for iron tests 

• 2.2 g/L MS 
• 0.5 g/L 2-(N-morpholine)ethanesulfonic acid (MES) 
• 1 % (w/v) sucrose 
• 0.9 % (w/v) gelrite (Scott laboratories) 

 
pH adjusted to 5.7 with KOH and sterilized in an autoclave for 20 minutes at 121oC. 
 
Iron solutions or chelators were added to the specified concentrations. 
 
3) Gambourgh B5 (G-B5) with bromocresol purple as a pH indicator. 

• 3.163 g/L G-B5 with micro and macroelements including vitamins 
• 0.25 g/L 2-(N-morpholine)ethanesulfonic acid (MES) 
• 0.2 mM CaSO4.2H2O 
• 0.008 % (w/v) bromocresol purple 

 
pH adjusted to 6.5 with NaOH and sterilized in autoclave for 20 minutes at 121oC. 
 
4) Agar-water 

• 0.01 % (w/v) agar in water 
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Growth media for bacteria 
 
1) NYGA 

• 5 g/L bactopeptone (Difco) 
• 3 g/L yeast extract (Difco) 
• 20 ml/L glycerol 
• 10 g/L agar 

 
Antibiotics 
 

• Kanamycin 100 mg/mL in H2O 
• Hygromycin 100 mg/mL in H2O 
• Carbenicillin 100 mg/mL in H2O 
• Rifampicin 50 mg/mL in DMSO 

  
Antiobiotics were dissolved in water and filter sterilized through a 0.45 µM filter 

(Millex), except rifampicin. They were store at -20oC until use. 
 
 
Hormones and chemicals 
 

• Dimethyl sulfoxide (DMSO) 
 

• Methylviologen dichloride (MV) 
25.7 mg/10 mL H2O for 10 mM stock solution 

 
• Diphenyleneiodonium chloride (DPI) 

10 mg/3.18 mL DMSO for 10 mM stock solution 
 

• Salicylhydroxamic acid (SHAM) 
15.314 mg/10mL H2O for 10 mM stock solution 

 
• Hydrogen peroxide (H2O2) 

30% w/w solution 
 

• cis-trans (+/-) abscisic acid (ABA) 
24.6 mg/10mL ethanol for 10mM stock solution 

 
• 3-(2Pyridyl)-5,6-diphenyl-1,2,4-triazine-4,4-disulfonic acid sodium salt (ferrozine) 

123.1 mg/50 mL H2O for a 5mM solution 
 

• 17-β-estradiol 
2.72 g/mL DMSO for a 10mM solution 

 
All except ferrozine were kept at -20oC until use. Ferrozine was kept at 4oC and 

protected from light. 
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Buffers and solutions 
 
DNA extraction buffer (DBE) 

• 200 mM Tris pH 8.0 
• 240 mM NaCl 
• 25 mM Ethylendiamintetraacetic acid (EDTA) 
• 1% (w/v) dodecyl sodium sulfate (SDS) 

 
10X Tris EDTA (TE) 

• M Tris pH 7.5 
• 10 mM EDTA 

 
25X Tris borate EDTA (TBE) electrophoresis buffer 

• 67.23 g/L Tris 
• 34.31 g/L boric acid 
• 37.22 g/L EDTA 

 
pH adjusted to 8.0 with KOH 
 
Bleach solution 

• 33 % Klorix (commercial sodium hypochlorite solution) 
• 0.02 % Triton X-100 

 
50 mM D-luciferin (LABTECH international, UK) 

• 1 g D-luciferin (D-[4,5-dihydro-2-(6-hydroxy-2-benzothiazolyl)-4-thiazole-
carboxylic acid] in 71.3 ml 0.1 M triphosphate buffer (Na2HPO4/NaH2PO4) 
adjusted to pH 8.0. 

 
Aliquots of 1.5 mL were stored at -80°C upon use. For the 5 mM working solution the 
stock was diluted with 0.01% (w/v) Triton-X100. 
 
Fe3EDTA solution 

• 1.835 g/500 mL for a 10 mM solution 
 
FeS04.7H2O solution 

• 1.39 g/500 mL for a 10 mM solution 
 
MgCl2 6.H2O 

• 20.33 g/L for a 10 mM solution 
 
Lugol solution 
Ethidium bromide (10 mg/mL) 
Silwet L77 (Lehle Seeds, USA) 
Ethanol 
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Molecular Biology 
 
 
PCR reagents (all from PEQLAB) 
 

• 10X Buffer 
• 25 mM MgCl2 
• 5X Enhancer 
• 10 mM di-deoxinucleotides (dNTPs) 
• Oligonucleotides (from Invitrogen or Sigma) 
• Laboratory purified Thermus aquaticus DNA polymerase as described by Engelke 

et al. (1990) and Grimm et  al. (1995) 
 
 
RNA extraction 

• RNAeasy kit from Qiagen (Germany) 
 
 
RNA driven complementary DNA (cDNA) synthesis, amplification for microarray 
ATH1 hybridization  

All these steps were perfomed according to the instructions of the following kit 
from Ambion (USA): Ambion MessageAmp II-Biotin Enhanced single round aRNA 
amplification kit; catalog number: 1791. The kit provided all reagents necessary for cDNA 
synthesis, purification and biotionylation of cRNA. 
 
cDNA synthesis 

• T7 oligo (dT) primer 
• Arrayscript 
• RNase inhibitor 
• 10X first strand buffer 
• dNTP mix 
• 10X second strand buffer 
• DNA polymerase 
• RNase H 
• T7 enzyme mix 
• T7 10X reaction buffer 
• Biotin NTP mix 
• Nuclease free water 

 
cDNA purification and fragmentation 

• Wash buffer 
• cDNA binding buffer 
• aRNA binding buffer 
• 5X array fragmentation buffer 
• aRNA and cDNA filter cartridges 
• Nuclease free water 
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ATH1 chips hybridization, staining and scanning 
 
Hybridization 

• ATH1 chips (Affymetrix, USA) 
• Streptavidin Phycoerythrin (SAPE) staining solution 

o 2X MES stain buffer 
o 50 mg/mL acetylated bovine serum albumin (BSA) (Invitrogen) 
o R-Phycoerythrin Streptavidin (SAPE) (Molecular probes) 
o Nuclease free water 

 
• Antibody solution 

o 2X MES stain buffer 
o 50 mg/mL acetylated BSA (Invitrogen) 
o SAPE (Molecular probes) 
o Goat antibody IgG 
o Biotinylated anti-streptavidin antibody (goat) (Vector Laboratories) 
o Nuclease free water 

 
• Hybridization cocktail 

o DMSO 
o 2X hybridization buffer (prepared according to Affymetrix) 
o 10 mg/mL herring sperm DNA (Promega) 
o 50 mg/mL acetylated BSA (Invitrogen) 
o control oligonucleotide B2 (Affymetrix) 
o 20X eukaryotic hybridization controls (BioB, C, D, Cre) (Affymetrix) 
o Nuclease free water 
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Material for Yeast two hybrid screen 
 
 
Media 
YPDA 

• Yeast extract 10 g/L 
• Peptone 20 g/L 
• Glucose 20 g/L 
• Agar  20 g/L 

 
Synthethic minimal and drop out media (from Clontech-Takara, France) 

Leucine/Tryptophan (LW), LW/Histidine/Adenine, LW/Histidine 
 
Strains 
PJ69-4a (James, 1996) 
PJ69-4α (James, 1996) 
 
Solutions 
 
Tris EDTA Lithium acetate 

• 1X TE 
• 100 mM Lithium acetate 

 
Polyethylene glycol lithium acetate 

• 8 mL 40% Polyethylene glycol (PEG) 
• 1X TE 
• 100 mM Lithium acetate 

 
Salmon sperm carrier DNA (Invitrogen) 
 
Vectors (Gateway derived from Invitrogen, Germany) 
pDEST32 
pDEST22 
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Material for in vitro pull-down and in vitro phosphorylation 
 
Lysis buffer 

• 50 mM Tris HCl pH 7.5 
• 300 mM NaCl 
• 25 mM imidazole 
• 10 mM NaF 
• 10% glycerol 
• 2 mM β-mercaptoethanol 
• 1:100 protease inhibitor cockatil 

 
Dialysis buffer 

• 50 mM Tris HCl pH 7.5 
• 40% glycerol 
• 2 mM β-mercaptoethanol 
• 0.1 mM EGTA 
• 1 mM phenylmethylsulfonyl fluoride (PMSF) 

 
Gluthathione agarose beads 
 
Kinase buffer 

• 20 mM HEPES 
• 2.5 % Triton X-100 
• 10 mM MgCl2 
• 50 mM NaF 
• 5 mM PMSF 
• 5X protease inhibitor cockatil 

 
γ-32P ATP (Amershan-GE Healthcare Life Sciences, Germany) 
 
SDS-Polyacrylamide gel electrophoresis (PAGE) (According to Laemmli, 1970) 

• 29:1 acryalamide-bisacrylamide 
• Tris-HCl pH 8.8 or 6.8 
• 10 % SDS 
• 10 % ammonium persulfate (APS) 
• TEMED 

 
SDS buffer 

• 25 mM Tris 
• 192 mM glycine 
• 0.1 % SDS 

 
Coomassie staining solution 

• 1 % brilliant blue R-250 
• 10 % glacial acetic acid 
• 45 % methanol 
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Plant material 
 
The following lines were used throughout the study: 
 
 
 

Table I. Wild type and transgenic lines used in this study. 
 
 

Name Ecotype Luciferase marker Reference 
Col-0 (wt) Col --- NASC 

wt Col CCA1 (Doyle, 2002) 
wt Col CAB (Ding, 2007) 
wt Col CCR2 (Doyle, 2007) 

tic-2 Col --- (Ding, 2007) 
tic-2 Col CCA1 (Ding, 2007) 
tic-2 Col CAB (Ding, 2007) 
tic-2 Col CCR2 (Ding, 2007) 

AKIN10 Col --- Berendzen, K. PhD thesis 
(2005) 

AKIN10 Col CCA1 This thesis 
tic-2/AKIN10 Col CCA1 This thesis 

AKIN11 Col --- Berendzen, K. PhD thesis 
(2005) 

AKIN11 Col CCA1 This thesis 
tic-2/AKIN11 Col CCA1 This thesis 

tkl-1 Col --- This thesis 
tkl-1 Col CAB This thesis 
tkl-1 Col CCR2 This thesis 

tic-2/tkl-1 Col --- This thesis 
tkl-2 Col --- This thesis 
gi-2 Col --- NASC 

gi-100 Col --- unpublished 
Ws-2 (wt) Ws --- NASC 

wt Ws CCA1 (Doyle, 2002) 
tic-1 Ws CCA1 (Ding, 2007) 
gi-11 Ws CAB (Ding, 2007) 

tic-1/gi-11 Ws CAB (Ding, 2007) 
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Oligonucleotides 
 
 The following list includes oligonucleotides used for genotyping plants and for the 
generation of constructs for expression of recombinant proteins. 
 
 

Table II. List of oligonucleotides 
 

Name Gene/insertion Sequence Product 
size (bp) 

For genotyping plant transgenic lines 
tic2LP tic-2 

SAIL 753 E03 
TGATTGTAGTGACGCGTGAAC 952 

tic2RP tic-2 
SAIL 753 E03 

GAAGAATAATTTTCCGCCGAC 952 

tkl1LP tkl-1 
SALK 028176 

GTGCAGTTGTTTTCAAATTGC 
 

1004 

tkl1RP tkl-1 
SALK 028176 

TCCTCTTACTCCGATTGAACG 1004 

tkl2LP tkl-2 
SAIL 714 A02 

CAGTTGTTTTCAAATTGCATATCAG 959 

tkl2RP tkl-2 
SAIL 714 A02 

CTTCTTCTCCTCTTACTCCGATTG 959 

LBb1 SALK lines GCGTGGACCGCTTGCTGCAACT variable 
LB1S SAIL lines GCCTTTTCAGAAATGGATAAATAGCCTT

GCTTCC 
variable 

AK10fwd AKIN10 GGATCTTGAGTCGACGGATC 573 
AK10rev AKIN10 CATAATTTGGACTTCCACAACTTGT 573 
AK11fwd AKIN11 AAATGGGCTCTTGGACTTCAGT 416 
AK11rev AKIN11 TCCGTCGACTCAGCATAATCT 416 

For constructs for protein expression 
TIC-LP TIC 5’ primer GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAGAAGGAGATAGAACCATGGATAG
AAATAGAGAA 

variable 

TIC-
RP250 

TIC 3’ primer for 
TIC-250 

GGGGACCACTTTGTACAAGAAAGCTGGG
TACTAATTAGCTGGAGACGT TGA 

750 

TIC-
RP564 

TIC 3’ primer for 
TIC-564 

GGGGACCACTTTGTACAAGAAAGCTGGG
TACTAACAATTCCTCTCAAACTT 

1692 

TIC-
RP770 

TIC 3’ primer for 
TIC-770 

GGGGACCACTTTGTACAAGAAAGCTGGG
TACTATTGCTGCCTCTGCTGAAA 

2410 

AK10-LP AKIN10 full 
lenght 

GGGGACAAGTTTGTACAAAAAAGCAGCT
TAGAAGGAGATAGAACCATGGATGGAC
AGGCACA 

2208 

AK10-RP AKIN10 full 
lenght 

GGGGACCACTTTGTACAAGAAAGCTGGG
TATCAGAGGACTCGGAGCTG 

2208 

AK11-LP AKIN11 full 
lenght 

GGGGACAAGTTTGTACAAAAAAGCAGG
CTTAGAAGGAGATAGAACCATGGATCAT
TCATCAAAT 

2067 

AK11-RP AKIN11 full 
lenght 

GGGGACCACTTTGTACAAGAAAGCTGGG
TATCAGATCACACGAAGCTC 

2067 
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II.B. Methods 

 

Seed surface sterilization 

 Seed aliquots were surface sterilized by adding the following volumes of solutions. 

As each solution was added, the tube containing the seed aliquot was shaken in a vortex 

and spun down. The procedure consisted in washing the seeds with 500 µL ethanol, 

followed by 400 µL of bleach solution, immediately afterwards they were rinsed three 

times with 800 µL of sterilized water and finally resuspended in 500 µL of agar/water. 

 The seeds were kept in the tube or placed on plates with MS1 or MS3 media for 2-3 

days at 4oC in the dark before releasing to growth conditions. 

 

Growth conditions 

 The seeds were germinated over MS1 or MS3 under photoperiods of 12 hours light 

and 12 hours darkness (12:12 LD). Most of the experiments were performed on MS1 

media. 

 When seedlings were 7-day old, they were transferred to soil, then were placed 

either under long-day (16:8 light/dark), short-day (8:16 light/dark) or intermediate-day 

(12:12 light/dark) photoperiods. The first two were under greenhouse conditions, whereas 

for the latter a climatic chamber was used. 

 

Generation of plant resources and transgenic lines. 

 Plants were crossed for obtaining the desired genotypes by using preferentially the 

luciferase harbouring line as the male and the other as the female. For this a female flower 

that had not opened yet was emasculated by removing carefully the sepals, petals, and 

stamens, while leaving intact the carpel. The later was fecundated with the pollen of a 

mature flower recognized by its yellow colour. 

 The obtained siliques from the crosses were harvested and the progeny (F1) was 

selected by luciferase imaging screen, antibiotic resistance and/or genotyping by PCR. The 

selected F1 plants self pollinated and their progeny (F2) was screened again for the 

presence of the desired trait. Either in the F2 population or its progeny (F3), the 

homozygous plants for a particular trait/marker were obtained. These plants were 

confirmed as homozygous by repeating the selection tests on their progeny (F3 or F4). 
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DNA extraction 

 The plant material was ground using a pistil and sand or metal beads with 400 µL 

DEB and 75 µL chloroform. The material was shaken in a vortex and centrifuged at 2500 g 

for 10 min, and finally, the supernatant was recovered and transferred to a clean tube. Then 

300 µL isopropanol was added, followed by shaking with vortex before a second 

centrifugation step under the same conditions. The pellet was recovered by decantation, 

then it was washed once with 70% ethanol and the pellet was kept by decanting the 

supernatant. Finally the DNA was allowed to dry for 10-30 min by standing the tubes 

uncapped at room temperature. The DNA was brought back to solution with either 100µL 

water or 1X TE. 

 

PCR and Electophoresis 

 Standard PCR procedures were employed (Sambrook, 2001), which consisted of 

the following parameters: 1 cycle of 94oC/2 min, followed by 30 cycles of 94oC/20s, 

60oC/30s, 72oC/90s and a final cycle of 72oC/10 min.  

 Plant DNA samples were used to screen for the presence of the desired transgene 

by amplifying with a specific oligonucleotide pair (table II). The final reaction volumes 

were 10 or 20 µL at the final concentration of 1X PCR buffer, 1.5 mM Mg2Cl, 1X 

enhancer, 0.25 mM dNTPs, 0.5 µM each primer and 0.2 µL Taq Polymerase with 1 µL of 

DNA solution as template. 

 Electrophoresis conditions were standard (Sambrook, 2001), as 1% agarose gels 

with ethidium bromide (0.5µg/mL) were run in 1X TBE at 90 volts. Visualization of the 

bands was achieved using the BIORAD GEL DOC system. 

 

Microarray samples and ATH1 hybridization 

Replicate biological samples of wild type and tic-2 were grown in MS3 media 

under 12:12 LD photoperiod for seven days. On the 8th day, the plants were collected, 

either before lights on (dawn-anticipation assay) or after giving a pulse of light with 

duration of 2 hours before the expected time for lights on (clock-resetting assay), and 

frozen in liquid nitrogen (see figure II.1A). Total RNA was extracted using the RNAeasy 

kit from Qiagen and RNA quality was assessed by examining the integrity of ribosomal 

bands after electrophoresis. 
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re II.1. Schematic representation of the microarray experimental designs and of the 
wise comparisons performed. 
iagram of experimental design. Seedlings grown on MS3 for 7 days under 12:12 LD 
period were collected the next day at the indicated time (arrows). Only days 7 and 8 are 
n. White and black bars represent respectively, light and dark periods. 
awn anticipation assay. The plants were harvested just before the lights on. 
lock resetting assay. The seedlings received a 2 hour light pulse before the predicted onset of 
 and were collected as soon as the light pulse was over. 

cheme of the group comparisons for the data analyses. The experimental designs allowed the 
ation of mRNA changes between genotypes under 2 physiological conditions (vertical 
s), as well as the response within genotypes toward an environment change (horizontal 
s). This thesis focused on the comparison between wild type and mutant and their respective 

of differentially expressed genes (depicted by the circles next to the arrows). The overlapping 
(light gray) between the lists (center of the figure) corresponds to the mRNA abundance 
ges in tic-2 that were independent of the physiological conditions and therefore were called as 
 specific. 
direction of the arrows indicates the way of the comparison (1, tic-2 vs. 2, wt); consequently 
old change values describe induction or repression of tic-2 genes. 
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 The service unit from the MPI Tübingen performed cDNA synthesis, amplification, 

labeling, hybridization and scanning of the Affymetrix ATH1 chips. Quality control of the 

chip image after hybridization was ensured.  

 The cDNA synthesis was executed by using the MessageAmp II-Biotin Enhanced 

kit from Ambion. For the first strand synthesis, the RNA was mixed with the T7 oligodT 

primer and incubated for 10 min at 70oC, followed by the addition of the reverse 

transcription master mix and incubated for 2 hours at 42oC. For the second strand cDNA 

synthesis, the second strand master mix was incorporated to the reaction followed by an 

incubation of 2 hours at 16oC. Then the cDNA was purified by mixing with the binding 

buffer and the solution was spun down through the cDNA filter cartridge which binds the 

cDNA. The filters were washed and the samples were eluted by adding twice previously 

warmed water at 55oC. The synthesis of the biotin labeled antisense RNA (aRNA) 

involved mixing the purified cDNA with the in vitro transcription master mix which then 

was incubated at 37oC for at least 4 hours but less than 14 hours. After incubation water 

was added to each sample and the aRNA was mixed gently with the aRNA binding buffer 

and pure ethanol. The samples were purified by passing through the aRNA filter cartridge, 

followed by washing and elution steps. 

 Finally for the hybridization to the ATH1 chips, the aRNA samples were mixed 

with the hybridization cocktail and denatured at 99oC for 5 min followed by 45oC for 5 min. 

Previously the ATH1 chips were adjusted and room temperature and prehybridized with 

1X hybridization buffer at 45oC for at least 10 min. Then the prehybridization buffer was 

removed from the ATH1 chips and they were loaded with the hybridization mix containing 

the aRNA. Finally hybridization was performed overnight at 45oC with gently rotation at 

60 rpm. After hybridization, the samples were removed from each ATH1 chip and the later 

was washed with the corresponding buffer and stained according to Affymetrix protocol 

EukGe-WS2v4 by using the GeneChip Fluidics Station 450. The arrays were scanned with 

the Affymetrix GeneChip scanner GS300 7G. 

 

Microarray data analysis and mining 

 The CEL files generated with the Affymetrix GeneChip Operating System (GCOS) 

were analysed using the Affymetrix Expression Console software. After loading the CEL 

files, the Robust Multichip Analysis (RMA) algorithm (Irizarry, 2003; Grant, 2007) was 

applied to the CEL files from the 8 hybridized ATH1 chips. Besides evaluating the image 

derived from the ATH1 chip hybridizations, box plots, MvA expression plots, were used to 
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evaluate signal intensity between the 8 ATH1 chips and for detecting artefacts, 

respectively. mRNA spike controls were analysed for an equal hybridization signal 

intensity between and within arrays and for the quality of biological material (Affymetrix 

Expression Console manual; Grant, 2007; Allison, 2006). Then I proceeded with the 

normalization after which the 8 chips had equal signal intensity as evaluated by box plots 

of expression. Spearman’s correlation and PCA were used to visualize the similarity of the 

expression profiles within the samples (Allison, 2006, Cordero, 2008). Volcano plots were 

used to visualize the fold change of expression and the statistical significance of the later 

(Allison, 2006; Grant 2007). 

The microarray statistical analysis was performed using Flexarray software version 

1.1 (Blazejczyk, 2007). To perform the complete pipeline with this software, the CEL files 

instead of the CHIP files previously generated with GCOS, were employed for the analysis. 

The CEL files were normalized with the three available algorithms: MAS 5.0, GC-RMA 

and Probe Logarithmic Intensity ERor (PLIER) followed by an ANOVA test. By 

comparing the output gene-lists obtained, and based on published records of the most 

robust algorithms used for microarray expression analysis (Allison, 2006; Grant, 2007; 

Cordero, 2008), I selected the GC-RMA algorithm for the rest of the analysis. 

After GC-RMA normalization, a Cyber-T statistical test (Cordero, 2008) was 

applied to pair-group comparisons. These consisted in comparing the same genotype under 

both treatments and between the genotypes under the same experimental condition, 

generating 4 different data sets (see figure II.1B). In all cases, a False Discovery Rate 

(FDR) filter with p-value equal or below 0.05, which statistically reduces the false negative 

calls (Grant, 2007), and a filter based on log2 fold change were applied. Therefore a gene 

was called as differentially expressed when it met the requirements of having a p-value 

equal or below 0.05 and a fold change above or equal 2 or below or equal 0.5. A second set 

of gene-lists were generated by applying a less stringent filter which consisted in a fold 

change of above or equal 1.5 or below or equal 0.66, while still enforcing a FDR p-value of 

0.05. 

The gene-lists were analysed for overrepresented Gene Ontology (GO) terms using 

the FatiGO tool from Babelomics (Al-Shahrour, 2006). This tool allowed the comparison 

of the gene-lists to the genome for functional enrichment of particular GO terms by 

performing a Fisher test and a multiple test correction. Other GO analyses were done with 

GOTerm Finder and Genecodis (Nogales-Cadenas, 2009). Also the lists were analysed for 

pathways or reactions overrepresented in them using the Skypainter tool from Reactome 
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(Tsesmetzis, 2008) and MAPMAN (Thimm, 2004). The 4 gene-lists generated with a 

threshold of a p-value equal or below 0.05 and a fold change above or equal 2 or below or 

equal 0.5 after FDR correction, were analysed with Babelomics, Skypainter and 

MAPMAN. The lists from the tic-2 vs. wt comparisons and its derived tic-2 specific gene-

list with the less stringent threshold (mentioned above) were evaluated with all the 

mentioned programs. 

 

Rhizosphere acidification test 

 Seedlings grown on half strength MS1 solidified with gelrite (see methods MS1 for 

iron test) for 5 to 6 days were transferred to the same base media, but supplemented with 

200 µM FeSO4, 200 µM Fe3EDTA or 300 µM ferrozine, and grown for two more weeks. 

After this time lapse, the plants were carefully transferred to G-B5 media with bromocresol 

purple as pH indicator and grown for 2 or 3 days. The later is the time required to observe 

a change of colour in the media due to the rhizosphere acidification response toward iron 

availability. A decrease in pH in the media caused a colour change from red to yellow 

while an increase from red to purple. 

 

Germination assays 

 Stratified seeds were spread over MS1 media containing increasing concentrations 

of methylviologen or ABA (0 to 10 µM, between 100 to 300 seeds per concentration), or 

H2O2 (0 to 1 mM) and placed under 12:12 LD. 

 Germination was scored after 7 days considering as a germinated seed those that 

had opened and green cotyledons. 

 

Drought tolerance assay 

 Pots containing equal amounts of soil were weighed before seedling transfer. To 

obtain the total amount of grams of dried soil, pots were placed in an oven at 60-70 oC for 

one week. Similarly, pots that were watered until the soil was saturated, were weighed to 

define the total amount of water that the soil could hold. The difference in weight between 

both was considered as the grams of water required to have a soil at 100% water capacity. 

Plants that were between 3 to 4 week old and grown under 12:12 LD were shifted 

to new watering regimes. The plants were watered by weighing the pots individually and 

adding the amount of water in grams required for reaching the desired soil water capacity 

(65%, 30%, or 15% soil water capacity). The plants were kept under this regimen for 20 to 
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35 days by monitoring weight and adding water at least each two days. In parallel, the 

amount of water added was recorded as gram weight. 

 

Starch qualitative measurement 

 Plants grown under short day conditions (8:16) were harvested immediately after 

dawn, before dusk or after a 2 hour prolongation of the night period. Rosettes were 

immediately submerged in 80% ethanol, followed by two or three more changes of ethanol 

and left overnight at 4oC. The next day, if the tissues were not complete for chlorophyll 

extraction, another wash with ethanol was performed. Otherwise the samples were shortly 

washed in water and then stained with lugol solution. The samples were briefly washed in 

water before images were acquired. 

 

Infection with Pseudomonas syringae 

 Plants were grown on soil between 4 and 5 weeks on short days (8:16) before 

infecting them with the bacteria. The infection was performed at dawn and at dusk, 

respectively, by spraying the bacterial suspension over the leaf area (Tornero, 2001; Zipfel, 

2004). Before infection, the plants were covered with a lid previously sprayed with water 

to obtain high humidity at least 3 hours before the performing the infection. 

 Psedomonas syringae (P. syringae) strain DC300 (virulent strain, compatible 

interaction) and AvrRps4 (avirulent strain, incompatible interaction) were grown overnight 

one day before the infection (Hinsch, 1996). Bacterial cultures were harvested with MgCl2 

and set to an optical density of 0.2 at 600 nm in this solution with 0.04% silwet. The 

bacteria were sprayed throughout the leaves surface, kept covered under the humidified 

lids without any perturbation for 3 or 4 hours to let dry the leaves surface. This protocol is 

a slight modification from Tornero et al. (2001) and Zipfel et al. (2004). 

 Leaf discs of 0.6mm from three biological replicates each one from 3 leaves were 

washed in 70% ethanol, rinsed twice with water and finally collected in a tube with 1.5 mL 

10 mM MgCl2 /0.01% silwet. They were incubated at 650 rpm for 1 hour at 28oC. An 

aliquot of 20 µL was taken from each tube and was spotted on to NYGA media. Bacterial 

Colony Forming Units (CFU) for day 0 were counted after incubation for one day at 28oC 

followed by an incubation for another day at room temperature. 

 For the CFU count at 3 days after infection, the same protocol as above was 

followed with the exception that a dilution series after the incubation of the bacteria took 
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place. The dilution was a 1:10 series from 10-1 to 10-5 in 10 mM MgCl2. All dilutions were 

plated on NYGA media with its respective antibiotic. 

 

Luciferase imaging 

 Transgenic plants harbouring a clock promoter gene fused to the luciferase gene 

construct were used for monitoring clock periodicity by measuring bioluminescence with a 

TOPCOUNT scintillation counter from Perkin Elmer. The promoter:luciferase constructs 

used are listed in table I in this section. This protocol, briefly described below, is as 

Hanano et al. (2006). 

 The experiments consisted in transferring 7 day old seedlings entrained to 12:12 

LD cycles to previously ethanol sterilized and dried 96 well black microtiter plates 

(Perkin-Elmer), containing MS1 or MS3 media with or without a particular concentration 

of a chemical or hormone. For statistical analysis, between 24 to 48 seedlings per genotype 

for each concentration were transferred by distributing them in rows. 15 µL of filter 

sterilized luciferin 5 mM were added to each well and the plate was sealed with transparent 

film which was perforated for allowing gas exchange. 

 Once the plates were set up, they were placed in a TOPCOUNT with trichromatic 

LED panels having red and blue light at a fluence of 1-1.5 µE each as a light source. For 

this, the plates were stacked by alternating the experimental set up with reflector plates 

consisting of a mirror that reflects the light source in an equal distribution. The equipment 

was set up to measure each plate after 1 minute of delay for avoiding chlorophyll 

autofluorescence and by reading each well for 5 seconds. The plates were entrained for 1 o 

2 days in the topcount under red and blue light for 12 hours and 12 hours of darkness 

before setting the experiment to constant light (LL). 

 

Analysis of clock rhythms 

 For visualization of the luminescence patterns, the data from the scintillation 

counter were processed with the EXCEL macro TOPTEMP II (available under the website 

http://millar.bio.ed.ac.uk/Downloads.html). The estimation of period values was performed 

using the Biological Analysis Software System (BRASS) macro in Excel (Southern and 

Millar, 2005). This application includes the Fast Fourier Transformation Non Linear Least 

Square (FFT-NLLS) analysis tool (Plautz, 1997). The analysis for period estimates was 

performed by selecting a time window of at least a minimum of 60 hours, but ideally equal 

or larger than 72 hours. Standard analysis parameters included period limits between 15-35 
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hours with a confidence probability of 95%. Rhythms were assessed by comparison of 

Relative Amplitude of Error (RAE) weighted means of the period lengths (calculated by 

BRASS) in addition to comparisons of individual period and of RAE values. The RAE is a 

ratio of the amplitude’s error in relation to an estimate of the most probable amplitude that 

describes the fit of the actual data to a theoretical cosine curve. Therefore, the RAE is a 

measure to evaluate rhythmicity, where a RAE equal to 0 is a perfect cosine curve and 

RAE equal to 1 is arrhythmic. 

 

Yeast two hybrid (Y2H) screen 

 Amplified cDNA corresponding to the TIC amino terminal fragments and full-

length AKIN10, both with flanking attB sites, were cloned to the pDONR201 vector 

through the gateway BP reaction and later mobilized to pDEST32 and pDEST22 

destinations vectors through the gateway LR reaction according to the manufacturer 

(Invitrogen). In both steps, recombinant colonies were selected on media with the 

appropriate antibiotic. 

 Competent yeast cells were obtained by inoculating a YPDA media with either 

PJ69-a or PJ69-α and incubating at 30oC at 2000 rpm overnight. The next day, fresh media 

was inoculated with the yeast cultures and incubated 30oC at until an OD between 0.4 and 

0.6 was reached. Cultured yeast cells were centrifuged at 1000 rpm for 5 min at room 

temperature. Then the pellet was resuspended and washed with 50 mL of distilled H2O. 

After centrifugation at 1000 rpm for 5 min at room temperature, 1X TE/LiAc was added to 

the cell pellet, and this was resuspended by pipetting. The freshly prepared yeast 

competent cells were used for the transformation within 1 hour. 

For yeast transformation, 100 ng of each destination vector were mixed with 

previously denatured salmon sperm carrier DNA. Yeast competent cells PJ69-4a and PJ69-

4α were mixed with pDEST32-N-TIC, pDEST22-AKIN10, respectively, and mixed by 

vortexing for 10 s. Then, 600 µL of freshly PEG/LiAc was added to DNA-yeast mixture, 

and subsequently it was mixed with vigorous vortexing for 30 s. The cells were incubated 

at 30 oC for 30 min with shaking at 200 rpm. After incubation, 70 µL of DMSO was added 

and the tube containing the cells was placed at 42oC in a water bath for 15 min and 

followed by ice for 1 minute. The cells were centrifuged at maximum speed for 30 s and, 

the pellet was resuspended with 500 µL 1X TE. 100 µL of resuspended cells were spread 

on the selective media. For pDEST32-N TIC transformants, cells were spread on the SD-
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Leu media, and for pDEST22-AKIN10 transformants, cells were plated on the SD-Trp 

media. In both cases, transformants were grown at 30 oC for 2 to 3 days. 

The yeast transformants were mated by inoculating fresh YPDA media with both 

strains and incubated overnight at 30 oC. The following morning, the culture was plated on 

SD-LW, SD-LWHA and SD-LWH with a range of concentrations of the histidine 

biosynthetic inhibitor according to the manufacturer (Clontech). 

 

GST pull-down 

 Recombinant histidine tagged AKIN10 (His-AKIN10) protein was obtained as 

described by Berendzen (2005). The vector that produces GST tagged TIC amino fragment 

(GST-TIC) recombinant protein was obtained by amplifying a TIC amino fragment and 

introduced it to a pGEX-2T vector (GE Healthcare). GST-TIC was isolated according to 

the manufacturer guidelines. Purified recombinant proteins of GST-TIC and His-AKIN10 

were mixed with gluthathione sepharose beads and incubated at room temperature for 30 

minutes. After incubation, the mixture was centrifuged and the supernatant was recovered. 

The gluthathione sepharose beads were washed with buffer and centrifuged. This washing 

step was repeated three times. After this, 2 X SDS loading buffer was added to the column 

to elute the protein samples. Finally the proteins were separated by SDS-PAGE 

electrophoresis after being denatured by boiling and the gel was stained with Commassie 

blue following standard procedures (Sambrook, 2001). 

 

in vitro protein kinase assay 

 Equal amounts of His-AKIN10 and GST-TIC described above were mixed and 

labelled with 5µCi γ-32ATP in 1X kinase buffer using as a control a separate sample of 

His-AKIN10 without substrate. The kinase reaction was performed at room temperature 

and stopped by addition of 4X SDS loading buffer added with 100 mM EDTA (Berendzen, 

2005). The samples were resolved by SDS-PAGE electrophoresis. The gel was dried 

between sheets of Whatman paper under vacuum and finally exposed to a film for 

autoradiography (Sambrook, 2001). 
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Internet resources 

 

 The following websites were used for retrieving sequences and generating the 

alignment. All parameters were set as default. 

http://blast.ncbi.nlm.nih.gov/

http://align.genome.jp/ 

http://www.ebi.ac.uk/Tools/clustalw2/index.html

http://www.cbs.dtu.dk/services/MaxAlign/

 

 The following web-pages were used to download free software or make online 

analyses. When online analyses were performed, parameters were set as default. 

http://genomequebec.mcgill.ca/FlexArray/  

http://www.babelomics.org/

http://arabidopsisreactome.org/

http://bar.utoronto.ca/

http://mapman.gabipd.org/web/guest/home

http://genecodis.dacya.ucm.es/analysis/

http://go.princeton.edu/cgi-bin/GOTermFinder 

 

 

Contributions 

 

 Dr. Zhaojun Ding and Dr. Jieun Shin performed independent yeast two hybrid 

screens, Zhaojun Ding also performed in vitro experiments with recombinant TIC protein. 

 Dr. Csaba Koncz kindly provided the estradiol inducible AKIN10 and AKIN11 lines. 

The cDNA library for the yeast two hybrid screen was a gift from Dr. Hans Sommer. 

 I worked together with Katharina Heidrich in the infection assay with Pseudomas 

syringae. 

 42

http://blast.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/Tools/clustalw2/index.html
http://www.cbs.dtu.dk/services/MaxAlign/
http://genomequebec.mcgill.ca/FlexArray/
http://www.babelomics.org/
http://arabidopsisreactome.org/
http://bar.utoronto.ca/
http://mapman.gabipd.org/web/guest/home
http://genecodis.dacya.ucm.es/analysis/


Results 

III. RESULTS 

 

General overview and restatement of the biological phenomena under study 

 

time for coffee (tic) was described as a short period mutant with a low amplitude of 

CAB:LUC expression (Hall, 2003). The phenotype of tic resembled that of the double 

mutant cca1/lhy, as the mutant was found to have a short hypocotyl and chlorotic leaves. It 

was concluded that TIC was required during the late night as by release assays, tic clock 

was found to be reset between late night and early morning (Hall, 2003). Further 

characterization of tic showed that the expression of evening and morning clock genes, 

such as GI, TOC1, ELF3 and LHY, CCA1, was altered, as all displayed and advanced phase 

of expression relative to the wild type (Ding, 2007). Additional genetic analyses of tic 

demonstrated that it was required for clock progression through pre-dawn events and to 

maintain clock rhythms (Ding 2007).  

Even though it was shown that TIC had a time-specific participation in the clock, 

TIC transcript and protein levels were not found to oscillate through the day. Additionally 

TIC protein was found to be constitutively nuclear localised (Ding, 2007). Therefore TIC 

time-specific action in the oscillator must be triggered by an as of yet unknown mechanism. 

As the transition from dark to light is the main environmental cue that entrains the 

circadian clock on a daily basis (Salomé, 2005), and the clock in tic stops just before this 

transition takes place, TIC time-specific activity may be a key player in clock entrainment. 

To understand the role of TIC in clock entrainment, I envisioned that a microarray 

gene-expression profile toward the anticipation of dawn, as well as triggering the resetting 

of the clock prior to the expected sunrise, could help elucidate the transcriptional changes 

that take place and are dependent of TIC. Thus from the analysis of tic transcriptome under 

these conditions, it would be possible to infer the role of TIC in response to clock resetting 

under ever changing photoperiods. 
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III.A. time for coffee gene expression analysis unraveled a mutant with a pleiotropic 

phenotype. 

 

1) Microarray data analysis 

 

 To gain insight into TIC function in clock entrainment, a transcript profiling 

analysis was performed using the A. thaliana Affymetrix ATH1 GeneChip (ATH1). 

Taking into account that the clock in tic had been shown to stop around late night, two 

different time-points were selected (see figure II.1-I). The dawn-anticipation assay, in 

which samples were collected before the dark period ended, was designed with the purpose 

to detect the transcriptomic alterations in tic due to clock arrest. The clock-resetting assay 

that consisted in giving a 2 hr light pulse out of a normal diurnal cycle (2 hr before the 

expected time), had the aim of revealing the transcriptomic changes consequent of clock 

resetting, as well as defining TIC involvement in this re-entrainment. Additionally the gene 

expression changes that were dependent on TIC regardless of the experimental conditions, 

served to genetically characterize the mutant. I found that tic gene expression was not only 

altered within the circadian clock, but that it resulted in disrupted gene expression of 

several metabolic pathways and stress responses. Thus tic transcriptomic profile unraveled 

a mutant with a complex phenotype and provided a striking example of the pervasiveness 

of the circadian clock in modulating plant development. 

  The gene-expression analyses consisted of pair-wise comparisons between tic-2 

and wild type: i) before the break of dawn and ii) as a response to the resetting of the 

clock; iii) as well as between the conditions (clock resetting versus dawn anticipation) in 

each genotype (figure II.1-I). For this, RNA was extracted from duplicate biological 

samples for each physiological condition. Amplified cDNA from each RNA sample was 

hybridized to an A. thaliana Affymetrix ATH1. This generated a total of 8 microarray 

hybridizations. After hybridization, the quality of the arrays was evaluated. This consisted 

in a visual examination of the hybridized ATH1 chips with the Affymetrix GeneChip 

scanner (Affymetrix manual 2006; Allison, 2006). The 8 ATH1 chips fulfilled the quality 

standards and consequently the derived CEL files from the scanned images were used for 

gene-expression analysis. 

 To assess the quality of microarray hybridizations, of the biological material as 

well of the reproducibility and reliability of the samples, further quality tests were 

performed. These included the evaluation of the scanned image derived from the ATH1 
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chip hybridizations, signal intensity box plots, MvA expression plots and mRNA spike 

controls (see methods). Spearman’s correlation and Principal Component Analysis (PCA) 

were used to visualize the similarity of the expression profiles within the samples (Allison, 

2006; Cordero, 2008). 

The PCA plot simplifies the input data and clusters it based on the extent to which 

the samples relate to each other. The PCA showed that the experimental conditions had a 

larger effect on the transcript profiles than the genotypes (see figure III.1A). The 

experimental conditions explained ~60% of the variability of the transcriptional changes 

observed, while the genotype background explained only ~25% (figure III.1A). The 

samples from the dawn-anticipation assay (black symbols) were separated by a larger 

distance (in the X axis) from those of the clock-resetting assay (white symbols) than 

between themselves (Y axis) (figure III.1A). Furthermore within each genotype, tic-2 

showed a larger difference between its transcript profiles than the wild type (the white and 

black circles are farther away from each other in the X axis than the white and black 

diamonds). In conclusion, the PCA analysis showed that the expression profiles of the 

biological duplicate samples were similar, indicating biological reproducibility in the 

experiments. Though the treatments had a larger effect on gene expression, the genotypes 

also showed specific effects in patterns of transcript accumulation. 

 Statistical analyses were performed on the microarray data files. For this, I 

generated 4 lists of genes differentially expressed from all the possible pair comparisons 

(figure II.1-II). The number of differentially expressed genes reflected the earlier finding 

with the PCA plot, as the experimental conditions had a larger effect on global gene 

expression (figure III.B). The pair-wise comparisons showed a larger number of 

misexpressed genes due to the conditions than to the genotypes (compare the total number 

of differentially expressed genes between left and right Venn diagrams in figure III.1B). 

When the clock-resetting assay was compared to the dawn-anticipation assay, the number 

of transcripts found as differentially expressed between these conditions was around 3,000 

and 2,000 genes in tic-2 and wild type, respectively (figure III.1B, left panel). Therefore 

the mutant exhibited an exacerbated response to the environmental shift relative to the wild 

type. When the genotypes were compared under the same experimental conditions, the 

number of genes differentially expressed was around 1100 and 1400 in the resetting and 

anticipation assay, respectively (figure III.1B right panel). The overlapping area of this 

Venn diagram became of interest as it reflects those genes that are misexpressed in tic-2 

regardless of the experimental setup. This set of genes, that herein I called as "tic-2 
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 A Two dimensional Principal Component Analysis Plot 
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ponent 1, X axis), while the variability due to the genotype was around 25% (component 2, Y 
. Note that the distance between tic-2 expression profiles was larger than in the wild type 
 
enn diagrams showing the overlap of genes differentially expressed in comparisons between 
experimental conditions in each genotype (left), or when the genotypes were compared to 
other in a single condition (right). The first comparison (left) shows that tic-2 had a higher 
er of genes differentially expressed than wt (3,000 and 2,000, respectively). The right panel 

rates that the number of genes differentially expressed between tic-2 and wt was around 
 and that less than half of them were constitutively modified in tic-2 regardless of the 

iological conditions. 
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specific," could explain the genetic difference between tic-2 and wild type that by PCA 

analysis was found to be responsible of ~25% of all transcriptome changes (figure III.1A). 

From the four generated gene-lists, the tic-2 versus wild-type comparisons and their 

overlapping area (tic-2 specific) were the main focus of this thesis. 

 Considering that tic-2 was isolated in a screen for clock mutants, I first examined 

the expression of clock genes and clock-related genes in the 4 lists of differentially 

expressed genes. Table III summarizes the fold-change expression values found between 

the four comparisons (figure II.1-II). In the genotype comparisons (first two columns of 

table III), I found that tic-2 resulted in increased expression of almost all circadian clock 

and clock-related genes with a 2 to 8 fold increase relative to wild type. The overexpressed 

genes included the evening genes GI, ELF3, TOC1, LUX, CCR2 and the pseudo response 

regulator (PRR) family. Interestingly, LUX, a myb like transcription factor (Hazen, 2005), 

was within the 10 genes that displayed the highest overexpresion in tic-2. In contrast, the 

morning gene LHY was found to be repressed, whereas CCA1 mRNA abundance 

resembled that of wild type. Two further genes that exhibited reduced expression in tic-2 

were FLOWERING LOCUS C (FLC) and TIC gene itself. The observed TIC transcriptional 

repression in tic-2 could be an artefact of the 25 length oligonucleotide design of the ATH1 

and the T-DNA insertion, though the gene repression was only observed in 2 of the 4 

comparisons (table III). Analysis of the clock-resetting versus dawn-anticipation 

comparisons showed that the behaviour of both genotypes toward light was similar. 

Induction of light-responsive genes, such as GI and PRR9 was detected in both genotypes 

(table III). These expression profiles corroborated earlier findings that tic results in 

abnormal clock-gene expression (Ding, 2007) and the microarray analysis here presented 

expanded the list of clock genes affected in the tic-2 background. 

 To obtain a global view of the transcriptional changes that occurred in tic-2, the 

gene-lists were analysed for enrichment of Gene Ontology (GO) terms. GO is a structure 

vocabulary that describes genes products based on their association with cellular 

component or localisation, molecular process involved and biological function across 

databases in a species independent manner (Ashburner, 2000). The GO analysis was 

performed with gene-lists derived from two different fold-change thresholds (see methods), 

as a limited number of genes taken into account diminish the probability of finding 

overrepresentation of GO terms or pathways. Nevertheless, both thresholds were reliable in 

avoiding false positives and the gene-lists were analyzed with several programs. For the 

GO enrichment analysis, I focused on the lists of differentially expressed genes obtained 
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 Table III. Clock genes fold change (log2) values  

 
Table III. Fold change values of core clock genes and clock associated genes. 
Fold changes were calculated from the expression values of each pair comparison. The 
values represent induction or repression respective to the first element in each 
comparison. Gene expression values (log2) are shown in a color intensity code (red 
induced, pale red <2.0, dark red >2.0; green repressed, light green <2.0, dark green 
>2.0) for each of the 4 comparisons. Note that most of the genes were induced in tic-2. 
 
nd stands for not detected as a differentially expressed gene after statistical analysis. The 
analysis had as a threshold a two fold change with a p-value below or equal to 0.5 and a 
False Discovery Rate (FDR) below or equal to 0.5. 
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from the comparison between genotypes. Particular attention was placed to the GO 

categories from and the list of genes specific to tic-2. Table IV displays a summary of the 

GO terms and pathways that appeared with a biological significance as scored with a low 

p-value in the lists of differentially expressed genes. The GO analysis allowed the of study 

tic-2 global gene expression in an unbiased manner. 

From the GO analysis, I observed that tic-2 exhibited different responses to 

environmental and cellular stimulus than the wild type (table IV). Concerning the 

environmental stimuli, stress responses toward diverse environmental cues, such as light, 

water and oxidative stress were highlighted categories. Involving light stimulus and 

signalling, the photoreceptors PHYTOCHROME A (phyA) and PHOTOTROPIN 1 

(PHOT1), as well as signalling molecules such as PHYTOCHROME INTERACTING 

FACTOR 4 (PIF4) and NON PHOTOTROPIC HYPOCOTYL 3 (NPH3) were induced in 

tic-2. GO terms associated to responses to salt stress and water deprivation were present in 

the 4 gene-lists, but to a higher extent in the genotype comparison analyses. Therefore 

responsive genes to these stimuli such as DEHYDRATATION RESPONSIVE ELEMENT 

BINDING PROTEIN 2A (DREB2A), COLD REGULATED 15A and B (COR15A and 

COR15B) and a group of EARLY RESPONSE TO DEHYDRATATION genes (ERD7, ERD3, 

ERD4, ERD10) were upregulated in tic-2 (table V). Genes defined as involved in responses 

to oxidative stress displayed a complex pattern of expression. Some genes, such as 

CATALASE 1 and CATALASE 3 (CAT1, CAT3), SENESCENCE RELATED 1 (SEN1) were 

upregulated. However the vast majority of genes in the oxidative stress category were 

downregulated, including peroxidases (L-ASCORBATE PEROXIDASE, PER20, PER73) 

NADPH oxidases as RESPIRATORY BURST OXIDASE HOMOLGUE (RBOHD and 

RBOHC), gluthathione-S-transferases and CUPPER-ZINC SUPEROXIDE DISMUTASE 

(CSD2) (table V). Therefore tic-2 transcriptional profile exhibited a marked difference 

toward environmental signals relative to the wild type. 

With regard to GO terms involved in responses to endogenous cellular stimulus, 

some categories of hormones were highlighted. An example was ABA, whose GO term 

enrichment showed genes that were both up and down-regulated. Besides the ABA related 

responses to environment mentioned above, ABA metabolic genes as ABA DEFICIENT 2 

(ABA2), phosphatases such as the SNF1-RELATED PROTEIN KINASES (SNRK2.2, and 

SNRK 2.3), as well as ABA responsive genes as ABA INSENSITIVE 1 (ABI1) and 

RESPONSE TO DESICCATION (RD22) were misregulated (table V). Another major GO 

term in the data set, mostly with induced genes, was iron homeostasis (table IV). The 
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Table IV. Summary of the Gene Ontology terms with a significant p-value present in the differentially expressed gene lists. 

The 4 lists of differentially expressed genes were loaded to online tools that indentify overrepresentation of GO terms within the input 
data by applying algorithms and statistical tests. The table presents a summary of the main terms or pathways that were significant as they 
presented a low p-value through one or more of the independent analysis (see methods). 

The column at the right indicates if the overrepresented terms were identified in set of genes derived from: the experimental conditions 
(dawn anticipation/clock resetting), genes that were exclusively induced (Up) or repressed (Down), that had induced and repressed genes within 
the GO category (full gene-list) or only present in the mutant (tic-2 specific). 
 

Gene Ontology Annotation Observations 
Biological process  

circadian rhythm (GO:0007623) Up / tic-2 specific 
regulation of circadian rhythm (GO:0042752) Up / tic-2 specific 
response to stress (GO:0006950) Full gene-list 
response to endogenous stimulus (GO:0009719 Full gene-list 
response to abiotic stimulus (GO:0009628) Full gene-list 
response to temperature stimulus (GO:0009266) Full gene-list 
response to light stimulus (GO:0009416) Up 
response to water deprivation (GO:0009414) Full gene-list 
response to hormone stimulus (GO:0009725) Full gene-list 
response to jasmonic acid stimulus (GO:0009725) Down 
response to abscisic acid stimulus (GO:0009737) Full gene-list 
response to salt stress (GO:0009651) Full gene-list 
response to wounding (GO:0009611) Down 
response to oxidative stress (GO:0006979) Down 
response to reactive oxygen species (GO:0000302) Down 
cellular iron ion homeostasis (GO:0006879) Up / tic-2 specific 
iron ion transport (GO:0006826) Up / tic-2 specific 
iron ion homeostasis (GO:0055072) Up 
di-, tri-valent inorganic cation transport (GO:0015674) tic-2 specific 
transition metal ion transport (GO:0000041) tic-2 specific 
biological regulation (GO:0065007) Up 
regulation of cellular process (GO:0050794) Up 



regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process (GO:00192190) Up 
regulation of primary metabolic process (GO:0080090) Up 
carbohydrate metabolic process (GO:0005975) Full gene-list 
starch metabolic process (GO:0005982) tic-2 specific 
cellulose and pectin-containing cell wall loosening (GO:0009828) Full gene-list 
secondary metabolic process (GO:0019748) Down 
terpenoid metabolic process (GO:0006721) Down 
isoprenoid metabolic process (GO:0006720) Down 
flavonoid biosynthetic process (GO:0009813) Down 

Molecular Function  
transcription factor activity (GO:0003700) Up 
DNA binding (GO:0003677) Up 
structural constituent of cytoskeleton (GO:0005200) Up 
transcription regulator activity (GO:0030528) Full gene-list 
oxidoreductase activity, acting on peroxide as acceptor (GO:0016684) Down 
peroxidase activity (GO:0004601) Down 

Pathways and Reactions (KEGG or AraCyc)  
sterol biosynthesis Down / tic-2 specific 
plastoquinone biosynthesis Dawn anticipation 
ascorbate biosynthesis Dawn anticipation 
vitamin E biosynthesis Dawn anticipation 
flavonoid biosynthesis tic-2 specific 
S-adenosylmethionine (SAM) cycle Dawn anticipation 
starch degradation in leaves tic-2 specific 
spermine biosynthesis Down / tic-2 specific 
glucosinolate biosynthesis from phenylalanine, tryptophan and homomethionine Clock resetting 
leucine degradation tic-2 specific 
polyamine biosynthesis Down / tic-2 specific 
chlorophyllide a biosynthesis Up/ tic-2 specific 
fatty acid metabolism tic-2 specific 
phenylpropanoid biosynthesis Down / tic-2 specific 
metabolism of xenobiotics and drugs cytochrome P450 tic-2 specific 
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overexpression of ferritins (FER1, FER3, FER4), NICOTIANAMINE SYNTHASE 2 (NAS2), 

as well as the IRON RESPONSIVE TRANSPORTER 1 (IRT1) and METAL TRANSPORTER 

NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1) were 

specific to tic-2 as they were induced in both experimental conditions (table V). Taken 

together, the GO enrichment analysis suggested that tic-2 had altered responses to 

environmental stress conditions. 

Along with the stress responses, the gene expression profiles suggested an energy 

imbalance in tic-2. This was noted by the misregulation of transcripts that encode structural 

or catalytic proteins of mitochondria such as ALTERNATIVE OXIDASE 1A (AOX1A), 

ATP/AMP transporters, cytochrome c biogenesis proteins and some enzymes of the citric 

acid cycle, also known as tricarboxilic acid cycle (TCA). Similarly genes involved in the 

biosynthesis of plastoquinone and antioxidants, such as ascorbate and tocopherols were 

missexpressed, while genes that participate in the synthesis and salvage of nicotinadenin-

dinucleotide (NAD) such as L-ASPARTATE OXIDASE (AO) and NICOTINATE 

PHOSPHORIBOSYL TRANSFERASE (NAPRT), respectively, were repressed only in the 

dawn-anticipation assay (table V). 

 Primary and secondary metabolic processes were affected in tic-2, as seen by GO 

terms derived from the mutant comparison to wild type. Genes required for chlorophyll 

synthesis, such as PROTOCHLOROPHYLLIDE OXIDOREDUCTASE A and B (PORA, 

PORB) and UROPORPHYRINOGEN DECARBOXYLASE (HEME1) were increased in tic-

2, whereas transcripts from photosynthetic genes such as LIGHT HARVESTING 

COMPLEX/CHLOROPHYLL A/B-BINDING PROTEIN (CAB4, CAB3), ferredoxin and 

others were increased or reduced in the genotype comparisons (table V). In the same 

comparison, carbohydrate metabolism, in particular starch degradation, presented several 

genes overexpressed and this included STARCH EXCESS (SEX1, SEX4), and amylases 

(AMY3, BAM4). Similarly some DARK INDUCED GENES (DIN4, DIN10), involved in 

dark to light transitions and starvation (Baena-González, 2007), were induced in tic-2. 

Interestingly genes involved in nucleic acid metabolism, including both DNA and RNA, 

were misexpressed in tic-2, as well as several genes within the cell cycle (table V). In 

general, tic-2 transcriptome displayed overexpression of genes involved in the categories 

of DNA repair and expression of transcription factors (table IV), whereas the regulation of 

transcription had both induced and repressed elements. Some particular examples from 

these processes are listed in table V. Surprisingly, not only these basic processes were 

transcriptionally altered, but also constituents of the cytoskeleton, in particular tubulin 
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filaments. Thus these analyses suggested that tic-2 has alterations in essential metabolic 

processes. 

Secondary metabolism, in particular terpene, flavonoid and phenylpropanoid 

metabolism, was highlighted by GO enrichment, as genes in these pathways were 

differentially expressed between tic-2 and wild type (table IV). These pathways appeared 

with a group of genes that mainly presented decreased transcript levels. Some examples 

include NARANGENIN-CHALCONE SYNTHASE (CHS) and FLAVONOL SYNTHASE 1 

(FLS1) (table V). The expression profile also suggested that polyamine biosynthesis would 

be restrained in tic-2 as the expression of ARGININE DECARBOXYLASE 1 and 2 (ADC1, 

ADC2) and SPERMIDINE SYNTHASE (SPDS3) was reduced (table IV and V). 

All together, the microarray transcript profiles gave an insight into several and 

unexpected metabolic alterations that occurred in tic-2, either concomitant to the mutation 

or environmental dependent. This global gene expression analysis suggested that the 

alteration of the circadian rhythms have a pervasive consequence in plant development and 

metabolism equilibrium or that tic-2 results in a pleiotropic disruption of gene expression 

due to a homeostatic function of TIC in A. thaliana. 

 

 

2) General tic-2 phenotypic and physiological characterization 

 

The microarray transcript profile analysis suggested that TIC mutation caused 

effects in gene expression beyond the circadian clock. Prior to this work, tic had not been 

extensively characterized regarding its growth phenotype (Hall, 2003). Nonetheless tic 

displayed a dramatically different morphology (figure III.2). Therefore I decided to 

examine tic-2 phenotypes under different physiological treatments. Similarly based on the 

gene expression data and the GO categories described above, I explored tic physiology and 

responses toward environmental and chemical perturbations. 

 

 

2.1) tic-2 phenotype under different photoperiods 

 

 To obtain an expanded phenotypic characterization of the tic allele in Col-0 

background (tic-2), plants were grown under different photoperiods and their development 

was followed by macroscopic observations. When grown in soil, the tic-2 mutant presented 
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Figure III.2. tic-2 rosette morphology and development. 
A) Growth development of Col-0 wild type and tic-2 under differen
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a dark green colour, compared to the wild type, and tic-2 displayed serration of its the 

leaves (figure III.2). Furthermore the growth rate of tic-2 was slower as the rosette size and 

the number of leaves were reduced in time after sowing compared to wild type. 

Consequently tic-2 made its transition to flowering later than the wild type. These 

developmental characteristics are presented in figure III.2A, as the photographs were taken 

when the plants were of the same age (around 4 weeks after sowing). Note that under a 

12:12 photoperiod, wild type already bolted, while tic-2 had not yet committed to flower 

under a 16:8 photoperiod. tic-2 developmental defects were observed regardless of the 

photoperiod length, though the longer the light period, the darker the coloration of the 

leaves was relative to the wild type (figure III.2). These results suggested that tic-2 has a 

slower developmental programme than wild type. This and the leaf serration could be a 

consequence of tic-2 defects in the circadian clock. 

 

 

2.2) tic-2 had a starch excess phenotype 

 

 The transcript profile and GO terms indicated alterations in the carbohydrate 

metabolism, particularly starch degradation, in tic-2. Genes such as SEX1, SEX4, AMY3 

and BAM4, all of them involved in starch catabolism (Smith, 2007), were overexpressed in 

tic-2. This led me to evaluate if starch levels were altered in tic-2. As starch content in A. 

thaliana leaves displays a diurnal pattern with maximum and minimum levels at dusk and 

dawn, respectively (Zeeman, 2007), I grew plants under short-day conditions (8:16). From 

these plants, whole rosettes were collected at three time-points: at dawn, before dusk and 

after an extension of the night by 2 hours. The later triggers a starvation response, as plants 

consume almost all of their starch prior to the expected dawn and consequently have 

exhausted their carbohydrates resources (Zeeman, 2007). These time-points were chosen to 

observe the maximum and minimum amount of starch throughout a day in wild type and 

tic-2. Starch content was evaluated by iodine staining after removing chlorophyll from the 

plants with ethanol. 

Interestingly and contrary to the predictions from the gene expression pattern, tic-2 

presented a starch excess phenotype. This term was applied to mutants that were impaired 

in starch breakdown and consequently presented a dark brown coloration after lugol 

staining at the end of the night, as in the case of the mutant sex1 (Caspar, 1991; Yu, 2001). 

Tissues rich in starch, composed of polysaccharides amylose and amylopectin retain iodine 
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within its structure acquiring a dark brown/purple colour, whereas starch free tissues 

remain pale (Caspar, 1991). At dawn, the time in which the starch content reaches its 

minimum level in the wild type, tic-2 still showed starch accumulation in its leaves (figure 

III.3). Similarly two alleles of the clock mutant gigantea (gi) displayed the previously 

reported starch excess phenotype for this gene (Eimert, 1995). At dusk, all samples 

presented a dark coloration, indicating that starch synthesis occurred through the light 

period. Strikingly even initiating a starvation response by extending was not enough to 

trigger starch remobilization both in tic-2 and gi, as their rosettes still appeared stained 

(figure III.3 bottom row). Therefore I concluded that tic-2 was not impaired in starch 

biosynthesis, but manifested a defect in its catabolism. Consequently this caused starch 

accumulation, leading to the observed starch excess phenotype. 

 

 

2.3) Iron homeostasis in tic-2 

 

Iron homeostasis appeared as one of the main statistically different GO terms 

specific to the mutant, in addition to the circadian rhythm category (table IV). The genes 

involved in iron metabolism that were overexpressed included the ferritins (FER1, FER3, 

FER4) as well as the iron transporter IRT1 and the nicotianamine synthase NAS2 (table V). 

All of these genes appeared as highly induced in tic-2 regardless of the experimental 

conditions. Therefore their expression defects were specific to tic-2. During this work, Duc 

et al. (2009) established a tight correlation between TIC and iron homeostasis by 

confirming that ferritin expression is under TIC control. All together, TIC is an essential 

component for iron metabolic regulation. 

Ferritins are expressed under iron excess conditions or after iron resupply to iron 

starved plants (Kim, 2007). In order to test if the cause of high ferritin expression was a 

response to defective iron uptake, the later was tested through a simple pH test. Iron uptake 

in A. thaliana involves the secretion of protons to the rhizosphere, which acidify the media 

allowing the mobilization of insoluble iron (Yi, 1996). To test for the acidification 

response, tic-2 and wild-type plants were grown on media supplemented with iron (200 

µM FeSO4 or 200 µM Fe3EDTA) or grown under iron-deficient conditions, through the 

use of the iron chelator ferrozine. After growing under these conditions, the plants were 

transferred to a control media with a pH indicator to assess for their rhizosphere 

acidification response toward iron availability. The acidification response was evaluated by 

 56



Results 

 
 

 wt tic-2 gi-2 gi-100 
 

 

 
ZT 0 

 

 

 

 

 
ZT 7 

 

 

 
ZT 24 

+ 2 
 

 

 

 

 

 

 
Figure I
Plants w
samplin
for asses
darkness
duration
Whole r
After sta
to iodin
starch ex
which s
the yello
row) wa
accumul
(Eimner

 

 

 

 

 

 

 

 

 

 

 

 

 

II.3. tic-2 displayed a starch excess phenotype. 
ere grown in the greenhouse under short day (8:16) conditions for 45-50 days before 

g. Whole rosettes were taken as dawn broke (ZT 0), and one hour prior to dusk (ZT 7) 
sing diurnal starch accumulation. After dusk onset, another set of samples were kept in 
 until ZT 2 the next day (2 hours after subjective dawn), therefore extending the night 
 (bottom row). 
osettes were submerged in ethanol for removing chlorophyll prior to lugol staining. 
ining, starch accumulation in the leaves was revealed as a dark brownish coloration due 
e binding to starch molecules. The photographs demonstrated that tic-2 displayed a 
cess phenotype as starch was observed in the leaves of tic-2 at dawn, time of the day at 

tarch content reaches its minimum (compare the brown coloration of leaves in tic-2 to 
wish colour shown by the wild type at ZT 0). A night extension of two hours (bottom 
s not enough to observe starch remobilization in tic-2. As a positive control for starch 
ation, two alleles of gigantea (gi), previously shown to have a starch excess phenotype 
t, 1995), are shown. 

57



Results 

the change of colour in the media from red to yellow. This colour change is a consequence 

of the release of protons to the media by the roots. Wild-type plants acidified more their 

surrounding than tic-2 (figure III.4). Unexpectedly, wild-type plants displayed an increased 

acidification response both under control conditions and with an available source of iron 

such as FeSO4 when compared to plants previously grown on an insoluble form of iron as 

Fe3EDTA or with the iron chelator (figure III.4). This behaviour was different from the one 

reported by Yi et al. (1996). Though tic-2 had a lower acidification response compared to 

the wild type, a similar pattern was observed. A higher acidification response was observed 

in FeSO4 treated or control mutant plants than with ferrozine and Fe3EDTA treatments 

(figure III.4). This implied that the acidification response toward iron availability was not 

impaired in tic-2. Therefore from this, I concluded that iron uptake was not compromised 

in tic-2 and was not the cause of high ferritin expression. 

 

 

2.4) tic-2 manifested hypersensitivity to oxidative stress. 

 

 The gene-expression profile led me to hypothesize that oxidoreductase metabolism 

and responses to oxidative stress were impaired in tic-2. To confirm this, seeds from tic 

mutant in Col-0 and Ws-2 backgrounds were germinated on MS1 media supplemented 

with methylviologen (MV). This compound, commercially known as paraquat, produces 

oxidative stress by capturing electrons from photosystem I, while reacting with oxygen, 

which in turn produces superoxide damaging the chloroplast (Nelson, 2000; Buchanan, 

2000). The germination of the mutant was arrested at lower concentrations relative to the 

wild type. tic-1 was twice as susceptible, as it reached its half lethal dose below 0.5 µM 

MV, whereas the half lethal dose in wild type was just below 1.0 µM MV (figure III.5A). 

As a control for resistance to oxidative stress by methylviologen, I used the gi mutant, 

which was previously shown to be resistant to this chemical (Kurepa, 1998). gi displayed 

the expected resistance to the chemical presenting a half lethal dose around 4.0 µM MV 

(figure III.5A). Interestingly the double mutant tic-1/gi-11 mimicked the susceptibility of 

tic-1 single mutant (figure III.5A). This result suggested that tic-1 would act downstream 

of gi-11 in regard of resistance to oxidative stress or that effect of the mutation of the 

former is dominant in this respect. 
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 Figure III.4. Rhizosphere acidification response toward iron availability. 
Seedlings that were grown for 5 to 6 days on MS1 media for iron tests were transferred to media 
supplemented with iron (200 µM FeSO4 or 200 µM Fe3EDTA) or with an iron chelator 
(ferrozine) and grown for a further two weeks. After this period, plants were transferred to 
Gambourg B5 media with a pH indicator. The transfer was done in the order and positions 
presented on the scheme (upper right) for each genotype. The pictures were taken three days 
after transferring to G-B5 media, the time lapse required for observing the acidification 
response.  
The upper panels are photographs taken with top illumination to show the red colour of the 
media, the aspect of the plants and the change of pH. The lower panels are pictures of the plates 
presented above, but with bottom illumination. This created a higher contrast of the rhizosphere 
acidification response, aiding in the visualization of the change of colour of the media from red 
to yellow. 
In general Col-0 wild-type plants (wt) acidified to a greater extend the media than the mutant. 
The acidification response in both genotypes was diminished with Fe3EDTA, which is an 
insoluble source of iron, and with the iron chelator, ferrozine. Though the rhizosphere 
acidification was diminished in tic-2 compared to wild type, the response itself was not 
compromised. 
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 The experiment with methylviologen was repeated with lines in the Col-0 

background. Similar results were found in this ecotype (figure III.5B). The main difference 

observed was that the gi allele in Col-0 was more susceptible to MV the allele in Ws-2. 

This dissimilar behaviour has been previously reported (Kurepa, 1998). 

In order to test the susceptibility of tic to other forms of oxidative stress, I 

performed another germination assay by adding hydrogen peroxide (H2O2) to the media 

and monitored the percentage of seed survival. I found a similar trend in susceptibility to 

H2O2 as to MV (figure III.5C). tic-2 germination rate diminished at lower concentrations 

relative to wild type, reaching its half lethal dose around 0.75 mM H2O2. At this 

concentration wild type was unaffected (figure III.5C). While tic-2 germination was 

arrested at 1 mM H2O2, wild type viability was only slightly affected. From these 

experiments, I concluded that tic-2 was hypersensitive to superoxide radicals and peroxide, 

two different sources of oxidative stress. 

 

 

2.5) ABA related responses in tic-2. 

 

 In the gene-ontology data mining, ABA appeared as one hormone-stimulus 

pathway that was modified in tic-2 (table IV). I focused on ABA because other abiotic 

processes related to ABA-mediated responses, such as water deprivation and salt stress, 

were also highlighted as overrepresented GO terms in the data sets (table IV). Therefore I 

tested the effect exogenous ABA application. For this, I scored the germination rate of wild 

type and mutant on MS1 media supplemented with increasing concentrations of this 

hormone. tic-2 germination was arrested at lower concentrations than the wild type, 

resulting in an ABA hypersensitive phenotype (figure III.6). The mutant sensitivity to 

ABA was ~2 fold compared to wild type. Notably, tic-2 responded to ABA as low as 1 µM, 

a concentration that had no effect on the wild type. Furthermore at 5 µM ABA, tic-2 

germination was completely arrested, whereas wild-type seeds still germinated. This result 

provided evidence of altered ABA signalling in tic-2, in support of the bioinformatic 

analysis.  

Further analysis showed that genes such as DREB2a, COR15a, ERD3, ERD7, 

RD22, ABI1, SNRK2.2 and SNRK2.3 were upregulated in tic-2 (table V). This suggested 

that the mutant may be tolerant to drought. Consequently I tested drought tolerance in wild 

type and mutant plants grown under different soil water capacities. For this, plants were 
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watered with the required amount to keep a constant soil water capacity (SWC) over the 

course of the experiment (see methods). tic-2 demonstrated to be tolerant to slight and 

severe drought conditions (figure III.7). When wild type and tic-2 plants were kept at 65% 

SWC, a well watered soil, they developed normally. At 30% SWC, the growth of wild type 

was slightly reduced compared to itself at 65%, but without compromising its physiology. 

On the other hand, at 30% SWC tic-2 development appeared identical to itself at 65% 

(figure III.7). Interestingly when wild-type plants were under severe drought at 15% SWC, 

their leaves appeared wilted and necrotic, whereas the leaves of tic-2 were still turgid and 

general plant fitness was not obviously compromised (figure III.7). When both wild type 

and mutant plants were left without watering for 21 days, the symptoms of wild type 

toward drought were enhanced, while tic-2 was basically unaltered (figure III.7). This 

indicated that tic-2 was drought tolerant. 

To assess if the drought tolerance observed in tic-2 was related to its water loss, the 

total amount of water used during irrigation to maintain a constant SWC was recorded. The 

total water consumption from the mutant during the mild drought period or control 

conditions was significantly less than that of wild type (figure III.7B and 7C). The amount 

of water added to the soil of tic-2 plants to keep the SWC at 65% and 30% was around 

50% of wild type (figure III.7B and 7C). This data indicated that tic-2 could loss less water 

through transpiration. Taken together, these physiological tests suggested that tic-2 had 

altered ABA responses that lead to hypersensitivity to the hormone while germinating, and 

resistance to drought through higher levels of gene expression related to this condition. 

 

 

2.6) Susceptibility to biotic stress infringed by Pseudomonas. 

 

ABA and reactive oxygen species (ROS) production play a crucial role in plant 

defence mechanisms (Ton, 2009). As tic-2 displayed hypersensitivity toward ROS (figure 

III.5) and ABA (figure III.6) and had altered ABA related-responses (figure III.7), I 

decided to examine how the mutant would behave in response to biotic stress. Therefore I 

performed a bacterial infection trial by subjecting wild type and mutant plants to 

Psedomonas syringae strains, either virulent or avirulent (DC3000 and DC3000 AvrRps4, 

respectively) (Hinsch, 1996). For each plant/bacterial strain combination (4), the infection 

was executed at dawn or at dusk (8 total) and colony forming units (CFU) were counted to 

measure bacterial growth. 
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Figure III.7. tic-2 showed tolerance to drought conditions. 
Plants were grown for 3-4 weeks under a 12:12 photoperiod and normal watering. Immediately afterwards, watering was continued by adding the 
volume of water required to reach the desired soil water capacity. The photographs shown were of wild type and tic-2 plants grown for 3 weeks under 
the specified soil water capacities. 
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Three days after inoculation, the infection rate with the P. syringae virulent strain 

revealed a time-dependent effect on wild-type plants, producing ~10 times less CFU in the 

evening than in the morning (figure III.8). This time-dependent effect was not observed 

with the avirulent strain. Furthermore as expected, the avirulent strain produced less CFU 

than the virulent one. In contrast, tic-2 showed a higher susceptibility to the bacterial 

infection with the P. syringae virulent strain than wild-type plants. Also the time-

dependent susceptibility effect was not observed in tic-2, as demonstrated by similar rates 

of infection at dawn and dusk (figure III.8). Concerning the effect of the avirulent bacterial 

strain on tic-2, a higher variability between assays was observed. However infection rates 

were slightly higher in tic-2 than those with wild type and no time-dependent effect was 

observed. In conclusion wild-type plants showed a time-dependent susceptibility to a 

virulent P. syringae strain. In contrast, tic-2 was hypersensitive to P. syringae infection 

and no time-dependent infection susceptibility was observed. 

 

 

3) Effect of chemicals causing oxidative stress or blocking electron transfer in 

circadian periodicity. 

 

 tic circadian-clock defects included an early phase and low amplitude rhythms 

(Hall, 2003), but the mechanism underlying these effects are still unknown. In this work, I 

demonstrated that tic showed hypersensitivity to oxidative stress (figure III.5). Considering 

that diurnal physiological process, such as photosynthesis and respiration, produce ROS, I 

hypothesized that ROS would have an effect on circadian rhythms. Furthermore, it is 

before and after the light to dark transitions when the clock is more susceptible to 

entrainment, and tic clock is arrested before dawn, which coincides with the time when 

photosynthesis will restart and will be source of ROS production. Therefore I tested the 

effect of compounds that produce oxidative stress on circadian periodicity. These 

compound were methylviologen (MV), hydrogen peroxide (H2O2), salicylhydroxamic acid 

(SHAM) and diphenyleneiodonium chloride (DPI). The first two cause oxidative stress, 

while SHAM and DPI inhibit proteins involved in ROS dissipating processes and 

oxidoreductase activities, respectively. SHAM blocks specifically the alternative oxidase 

(AOX1a), which provides plants with a non conservative energy passage of electrons from 

complex II, avoiding overreduction of the mitochondrial electron transport chain 
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complexes (Nelson, 2000). DPI binds to flavoproteins and is an inhibitor of NADPH 

oxidases, NADPH-ubiquinone oxidoreductase and nitric oxide synthase (Riganti, 2004). 

 To test the effect of redox-altering compounds on wild type and tic-1 clock rhythms, 

I selected the CCA1:LUC as a reporter of the pharmacological action of these compounds 

on clock period. I selected CCA1 as a reporter for clock-gene expression because it was the 

only clock-gene not found to be misexpressed in tic-2 microarray data (table III). Ws-2 

wild type and tic-1 seedlings were grown for 7 days on MS1 under a 12:12 photoperiod. 

Then they were transferred to media with or without the above mentioned compounds and 

luciferin was added. Bioluminescence was recorded under constant light conditions after 

one day of further entrainment (see methods). 

CCA1:LUC driven rhythms of wild-type plants displayed an oscillating pattern with 

a peak of expression at dawn, whereas tic-1 plants showed a rhythm with low amplitude 

that dampened through time (figure III.9 follow the pattern of the black symbols), as 

previously described (Hall, 2003). The pharmacological effects were thus compared to 

these two baselines. 

The addition of H2O2 produced a lengthening effect of clock periodicity at low 

H2O2 concentrations in wild type (figure III.9A and C blue diamonds, 0.10 mM). This 

effect was reversed by increasing the H2O2 concentration and then it provoked a shortening 

of the period (figure III.9A and C pale blue and yellow diamonds, 0.25 mM 0.50 mM, 

respectively). Notably the amplitude of the wild-type rhythms was decreased regardless of 

the H2O2 concentration applied (figure III.A). Addition of H2O2 to tic, compound to which 

I previously showed it has germination susceptibility (figure III.5C), did not affect its 

periodicity, except at high concentrations that markedly compromised plant fitness (figure 

III.9B and C). Thus the wild-type oscillator was sensitive to a dose response of H2O2 in a 

complex manner and tic-1 was resistant to this effect. 

Methylviologen application affected in a different manner the circadian periodicity 

of wild type and tic-1, when compared to the effect of H2O2 addition. In the wild type, MV 

provoked an increase of period in a dose-dependent fashion (figure III.10). Rather than 

observing a constant increase in period length, MV effect "was buffered," meaning that a 

given concentration threshold had to be surpassed for observing a significant response. The 

wild-type period was lengthened at 0.5 µM (dark yellow) with a second increase at 2-5 µM 

(pink and white, respectively). The period was shortened at a concentration of 10 µM (pale 

blue) (figure III.10A and C). Besides the effect on period, a reduction of amplitude was 

observed in a dose-dependent manner (figure III.10A). Though tic-1 showed a similar 
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Figure III.9. (continuation). Dose response of hydrogen peroxide on circadian 
periodicity. 
C) Bar chart summarizing the change of period length in wild type and tic-1 after addition 
of H2O2. At the bottom of the graph the colour key specifies the H2O2 concentrations 
employed per treatment. Note that at low concentrations, H2O2 lengthens period of wild 
type, at higher concentrations the circadian clock pace was restored and then reduced, 
whereas the addition of H2O2 did not produce such an effect on tic-1. 
Error bars indicate standard error from a population between 28 to 48 plants per treatment. 
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Figure III.10. Dose response of methylviologen on circadian periodicity. 
A) CCA1:LUC luminescence rhythms of Ws-2 (wt) under constant light after transferring 
seedlings to MS1 media with increasing concentrations of methylviologen. 
B) CCA1:LUC luminescence rhythms of tic-1 under constant light after transferring seedlings 
to MS1 media with increasing concentrations of methylviologen. 
The codes at the left of the panels specify the concentration of methylviologen per treatment. 
The first 24 hours belong to an LD cycle before transfer to LL at ZT 48. 
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Figure III.10. (continuation). Dose response of methylviologen on circadian 
periodicity. 
C) Chart summarizing the period length in wild type and tic-1 upon treatment with 
methylviologen. At the bottom of the graph the colour key displays the MV concentration 
gradient. Plain and stripped colours indicate wild type and tic-1, respectively. 
The pro-oxidant increased the period length in both genotypes. Note that wild type had 
two thresholds for these increases (0.50 µM and 2.0 µM, dark yellow and pink 
respectively), while in tic-1 a clear threshold was reached until 1.0 µM of methylviologen 
(pale yellow). Furthermore, tic-1 displayed hypersensitivity to oxidative stress as seen by 
the decrease in period length at a lower concentration than wild type (compare white 
bars). 
Error bars indicate standard error from a population between 28 to 48 plants per treatment. 
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trend as wild type, the lengthening effect of period took place at lower concentrations (1-2 

µM pale yellow and pink, respectively) (figure III.10B and C). Also the period was 

shortened at lower concentrations (5 µM, white) (figure III.10C), probably reflecting the 

susceptibility of the mutant to this chemical as I previously described in a germination 

assay (figure III.5). Taken together, both wild type and tic-1 circadian clock were 

responsive to methylviologen as this provokes a lengthening of the periodicity. However 

the specificity of this effect was dependent of the genotype. 

Periodicity was also assessed with DPI, an inhibitor of NADPH oxidases and other 

flavoproteins. DPI had no effect on period length in the wild type at the range of 

concentrations tested in this study (figure III.11A and B). However an effect on amplitude 

was observed at higher concentrations (figure III.11A, lime and green figures). Contrary to 

these results, DPI caused a lengthening of tic-1 periodicity at a concentration of 1.0 µM 

(figure III.11B and C, dark green). Also no clear effect on amplitude was found in tic-1 

except at 1.0 µM. These results suggested that tic-1 period was more susceptible to the 

effect of DPI (figure III.11). It remains to be tested if the period of wild type could be 

affected by DPI at higher concentrations. 

As briefly stated above, the mitochondrial bound AOX1a can be inhibited by 

SHAM. This chemical became of interest as the expression of AOX1a was found to be 

induced in tic-2 (table V). When SHAM was applied to wild type, no clear effect on period 

length was found (figure III.12A and C). A slight shortening of period length occurred at 

2.0 µM (figure III.C). Interestingly this period shortening effect was stronger on the mutant 

and it took place at the lowest concentrations used in this study (figure III.12B and C pale 

blue and light gray). From these results, I concluded that tic was hypersensitive to SHAM, 

as tic could require higher activity of the AOX1a to sustain its ROS hypersensitive 

phenotype. 

The results from the chemical perturbation of the clock rhythms showed that the 

circadian clock can be affected by ROS and specific inhibitors. These effects can alter 

clock periodicity and/or amplitude. The results suggested that the extent of the effect of 

these compounds would depend on the metabolic status of the plant as a mutant 

hypersensitive to oxidative stress like tic displayed different patterns of responses than 

wild type. 
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Figure III.11. Dose response of DPI on circadian periodicity. 
A) CCA1:LUC luminescence rhythms in Ws-2 (wt) after transferring seedlings to 
increasing concentrations of DPI under constant light. 
B) CCA1:LUC luminescence rhythms in tic-1 after transferring seedlings to increasing 
concentrations of DPI under constant light. 
The key code at the left of the panels shows the DPI concentration used per treatment.  
The first 24 hours shown were under LD, from ZT 48 on, the conditions were constant 
light. 
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 Figure III.11. (continuation). Dose response of DPI on circadian periodicity. 
C) Bar chart summarizing the change of period in wild type and tic-1 after chemical 
perturbation by DPI.  The inhibition of NADPH oxidases and ROS production by the 
addition of DPI at the concentrations tested were not found to have an effect on circadian 
periodicity on either the wild type or the mutant. 
The period shortening in wild type (pale blue) nor the lengthening seen in tic-1 (yellow 
bar with pattern) in the presented chart, were observed to such an extent in biological 
replicate experiments. 
Error bars indicate standard error from a population between 28 to 48 plants per treatment. 
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Figure III.12. Dose response of SHAM on circadian periodicity. 
A) CCA1:LUC luminescence rhythms of Ws-2 (wt) under constant light after transferring 
seedlings to MS1 media with increasing concentrations of SHAM. 
B) CCA1:LUC luminescence rhythms of tic-1 under constant light after transferring seedlings 
to MS1 media with increasing concentrations of SHAM. 
At the left of the panels a colour key shows the SHAM interval of concentrations used. 
The first 24 hours shown were under LD, from ZT 48 on, the conditions were constant light. 
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Figure III.12. (continuation). Dose response of SHAM on circadian periodicity. 
C) Chart summary of the effect of SHAM on period length in wild-type and tic-1. The top 
and bottom panel show different experiments. Not all the concentrations (shown at the left 
in boxes with a colour key) were applied to both assays. Note that wild-type behaviour 
was different, as the period length reduction was not observed in the lower panel, though 
the 2.0 µM concentration (fuchsia) was not used in this experiment. Although the period 
lengths varied in tic-1 between assays, a tendency for period reduction upon SHAM 
treatment was observed even at low concentrations. 
Error bars indicate standard error from a population between 28 to 48 plants per treatment. 
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III.B. TIME FOR COFFEE interaction with the sucrose non-fermenting (SNF1) 

related protein kinase (SnRK) AKIN10.  

 

TIC function in the circadian clock is time-specific, playing its role before dawn 

and therefore affecting entrainment. It was noticed that the dysfunctional clock in tic could 

be restarted late in the night (Hall, 2003). Many circadian-clock components are controlled 

by the oscillator, as their transcript levels cycle through a ~24 hour period, this includes 

CCA1, LHY, TOC1 and GI (Más, 2008). This cycling of mRNA levels participates in 

establishing the transcriptional feedback loop of the circadian clock. However some 

circadian clock elements do not cycle at their transcript level, but nonetheless their proteins 

exhibit a rhythmic pattern of degradation in a daily basis. Then this mechanism drives their 

oscillation (Más, 2008). Therefore in the clock fine tuning, the cyclic degradation of clock 

protein products and/or their phosphorylation provides a lagging step in the observed 

transcriptional-translational loops. 

Previously it was reported that neither TIC mRNA nor TIC protein oscillate 

through the day (Ding, 2007). These results indicated that TIC exerted its time-specific 

function by an unknown mechanism. As TIC was found not to be under circadian control, 

two time-specific scenarios for TIC function are plausible. In one scenario, an event could 

trigger TIC activation and only then TIC would exert its function in the clock. In a second 

scenario, TIC would be constitutively active and its function would be attenuated by a 

rhythmic factor. Either situation could explain the observed clock arrest in tic. Therefore 

post-translational modifications may control TIC activation or protein stability in the first 

and second scenarios, respectively. Consequently for TIC to be post-translationally 

modified, TIC would interact with another protein in a time-specific manner. TIC sequence 

encodes for a protein of about 1550 amino acids and this sequence did not suggest a 

putative function. No identifiable domains of hypothetical function were present in TIC 

sequence in the current protein databases with exception of a P-loop GTP binding domain 

in its carboxy terminus (Ding, 2007 and this work). Therefore identifying TIC protein 

interacting partners could provide an insight into the mechanism of its morning regulation 

of the circadian clock.  
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1) Yeast two-hybrid screen for TIC protein interactors 

 

 With the aim to reveal factors that could render TIC its time-specific activity and 

more generally to understand TIC mechanism of action, a yeast two hybrid (Y2H) screen 

was performed. A Y2H screen was selected as it allows the identification of novel protein 

interactors even when no particular targets for the protein or domain of interest are known 

(Sambrook, 2001). The Y2H screen was performed between a fragment of the amino 

terminus of TIC (770 amino acid in length) and a cDNA library (Li, 2009). The TIC 

fragment was fused to the DNA activation domain as the "bait" as the cDNA library was 

randomly fused to the DNA binding domain as a "prey." From the Y2H screen, several 

candidate protein interactors were found. The list of TIC protein interactors included 

several transcription factors and other elements associated to stress or transcriptional 

control. Some of those interactors that were represented by several clones in the screen are 

presented in table VI. 

 To examine if any of the TIC Y2H interactors could be involved in TIC 

developmental programme and/or function in the circadian clock, I search for T-DNA 

mutants in the genes of these encoded proteins. Then I isolated homozygous mutants and 

examined their growth. Rationalizing that these proteins could interact with TIC and tic 

resulted in a stress phenotype (figure III.2), I screen the mutants under greenhouse 

conditions for growth phenotypes that may resemble that of tic-2. T-DNA transgenic lines 

for candidates involved in transcription, DNA binding, response to oxidative stress or of 

unknown function, were not available at the European Arabidopsis Stock Centre (NASC) 

when this work was performed (table VI). The T-DNA available mutants corresponded to 

two transcription factors, MYC2/JIN1 and BIM1. However further analysis of MYC2/JIN1 

and BIM1 was not pursued as they did not show a tic-like phenotype consisting either in 

dark green leaves, slow growth rate or leaf serration. 

In the particular case of the protein kinase AKIN10, null mutants do not exist 

because the mutation is lethal (Csaba Koncz, personal communication). Fortunately, the 

laboratory of Dr. Csaba Koncz had generated genetic resources through an estradiol 

inducible system (Zuo, 2000) and gave access to these lines for this research. This system 

was generated by the fusion of the DNA-binding domain of the bacterial LexA, the 

transactivating domain of VP16 and the regulatory region of an estrogen receptor (Zuo, 

2000). AKIN10 has a homologue kinase, AKIN11 (Le Guen, 1992). AKIN10 and AKIN11 

are two SnRK1s [(Sucrose non fermenting 1) Relative Kinase] that share sequence 
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Table VI. List of candidate TIC protein interactors 
 
 
 
 
 
 
 
 
 
 
 
 

The amino terminus of TIC protein was used as bait in a yeast 2 hybrid screen. The 
displayed locus corresponds to interactors found that concurrently appeared with multiple 
positive clones. 
 

§ T-DNA insertion lines SALK_040500 and SALK_061267 for MYC2 and SALK_051585 
and SALK_132178C for BIM1 were screened under 16:8 photoperiod without displaying 
phenotypic resemblance to tic-2. 
* T-DNA insertion lines were not available when the present research was performed and 
therefore these mutants were not tested. 

 
ATG code Name Description 

 
 
 
 

At1g32640 

 
 
 
 

JIN1/ 
MYC2 §

MYC-related transcription factor with a basic helix-loop-helix 
leucine zipper motif. Its transcription is induced by 
dehydration stress and ABA treatment. Negative regulator of 
blue light–mediated photomorphogenic growth and blue and 
far-red-light gene expression. Regulates JA dependent 
functions. Negatively regulates Trp metabolism and 
biosynthesis of Trp derived secondary metabolites. Positively 
regulates flavonoid biosynthesis, resistance to insects, and 
response to oxidative stress. Regulates other transcription 
factors expression. 

 
At4g16780 

 
HAT4 

Homeodomain-leucine zipper protein that is rapidly and 
strongly induced by changes in the ratio of red to far-red light. 
Also involved in cell expansion and cell proliferation and in 
the response to auxin. 

 
At5g08130 

 
BIM1 §

Basic helix-loop-helix family protein involved in 
brassinosteroid signalling. It synergistically interacts with 
BES1 to bind to E box sequences. 

 
At3g01090 

 
SNRK1.1/ 
AKIN10 

SNF1-related protein kinase that physically interacts with 
SCF subunit SKP1/ASK1 and 20S proteosome subunit PAD1. 
Master regulator of energy signalling. 

At2g40820 unnamed Unknown 
 

At1g17760 
 

CSTF77 
(Cleavage stimulation factor 77) Encodes a homolog of the 
mammalian protein CstF77, a polyadenylation factor subunit. 
RNA processing factor of antisense FLC transcript. Mediates 
silencing of the floral repressor gene FLC. 

At5g43130 TBP-4 * TATA Binding Protein-associated factor 4. Transcription. 
At4g38710 unnamed * Glycine rich protein. Unknown. 

 
At5g05610 

 
AL1 *

Member of the Alfin-Like family of nuclear-localized PhD 
domain containing homeodomain proteins. Binds to H3K4 di 
or trimethylated DNA. 

 
At5g55070 

 
unnamed *

2-oxoacid dehydrogenase family protein. Involved in response 
to oxidative stress. Located in cytosol, ribosome and 
mitochondria. 
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similarity to their relatives in yeast and mammals, but diverged from plant SnRK2 and 

SnRK3 (Polge, 2007). Given their similarity, both inducible lines were provided. 

In this inducible system, the transgenic lines of the protein kinases AKIN10 and 

AKIN11 are strictly transcriptionally induced upon application of β-estradiol, an estrogen.  

Besides the resource availability of AKIN10 transgenic lines, AKIN10 was of interest as it 

has been involved in energy homeostasis in the night to day transition (Baena-González, 

2007). This coincides with TIC time-specific function. Thus both, the availability of these 

resources and its biological significance made AKIN10 one of the most interesting TIC 

interacting partners. Thus AKIN10 characterization and its interaction with TIC were 

tested. 

 The interaction between the amino terminus of TIC and AKIN10 was confirmed in 

yeast. For this, a series of 3 deletion fragments of the amino terminus of TIC (1–250, 1-564, 

1-770 amino acids) were used (figure III.13 upper panel). This was because the TIC full-

length protein and the carboxy terminus of TIC were difficult to express in vitro, 

suggesting these regions were not suited for Y2H studies. Briefly for the Y2H, TIC 

fragments were fused to the DNA binding domain using the pDEST32 vector and the full 

length AKIN10 and its homologue kinase AKIN11 were fused to the activation domain 

using the pDEST22 vector. Both constructs were introduced to yeast strains and the yeast 

were mated under selective conditions. In these conditions, only if the tested proteins 

interacted with each other, yeast could grow on an auxotrophic media. As seen in figure 

III.13B, the transformation of yeast with the empty vectors was not sufficient for 

promoting growth. Both AKIN10 and AKIN11 supported yeast growth when using the 

TIC-770 amino fragment and a similar result was obtained with the TIC-564 fragment. 

However only AKIN10 interacted with the TIC smallest fragment (TIC-250) as seen by 

yeast growth with AKIN10 and no growth with AKIN11 (figure III.13). In conclusion, this 

test confirmed TIC interaction with AKIN10 and implied a tighter binding between these 

than TIC with AKIN11. 

Further confirmation of the Y2H interaction between TIC and AKIN10 was 

obtained through an in vitro pull-down assay. For this, a small amino-terminal fragment of 

TIC protein was fused to a GST tag and the full length AKIN10 to a histidine (His) tag. 

Both recombinant proteins were incubated together and the mixture was passed over a 

GST column. After elution, the mixture was separated trough SDS-PAGE electrophoresis. 

It was observed that both proteins were present and this indicated they could form a 

complex (figure III.14). 
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Figure III.13. 
hybrid assay. 
A) TIC protein
(Y2H) assay co
a Y2H assay. T
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AKIN10. Even
Note that both
the TIC-250 in
yeast growth.  
TIC was fused
length AKIN10

 

 

 

 

Empty vector

TIC 1-564 aa

TIC 1-770 aa

TIC 1-250 aa

Empty vector

TIC 1-564 aa

TIC 1-770 aa

TIC 1-250 aa

TIC amino terminus can interact with the kinase AKIN10 in a yeast two 

 deletion fragments used for generating constructs for the yeast two hybrid 
nfirmation. The fragment TIC-770 was used for screening the cDNA library by 
IC full-length sequence is shown as a reference. 
hybrid screen confirmation of the interaction of TIC amino terminus with 
 the smallest TIC fragment, TIC-250, was sufficient to interact with AKIN10. 
 TIC-250 and TIC-750 interaction with AKIN10 allowed yeast growth, while 
teraction with the homologue kinase AKIN11 was not sufficient for sustaining 

 to the DNA binding domain using the pDEST32 vector (bait) and the full-
 and AKIN11 to the activation domain using the pDEST22 vector (prey) 
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igure III.14. TIC amino terminus interaction with the kinase AKIN10 was 
onfirmed by in vitro pull-down and AKIN10 could phosphorylate TIC in an in vitro 
inase assay. 
) SDS-PAGE electrophoresis of the pull-down assay between the GST tagged TIC 

mino terminus fragment and histidine tagged full-length AKIN10. 
) in vitro phosphorylation of TIC amino terminus by AKIN10. Autoradiography of ATP 

adiolabelled proteins after electrophoresis. Due to the kinase autocatalytic activity, 
KIN10 appeared with a strong signal as a consequence of high P32 incorporation to the 
rotein. The autoradiography revealed a fainter lower molecular weight band 
orresponding to TIC after phosphorylation by AKIN10. 
ote that TIC protein migrated faster as only a fragment of the amino terminus of low 
olecular weight was used for these constructs. 
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Once the proteins were shown to interact, the nature of the kinase activity of 

AKIN10 suggested that it could use TIC as a substrate. To test this hypothesis, both 

purified recombinant proteins were mixed together and an in vitro phosphorylation assay 

using radioactive ATP was performed. After incubation, proteins were separated by 

electrophoresis and revealed by autoradiography. A band of higher molecular weight that 

migrated at the size of AKIN10 was found. This band was a product of the AKIN10 

autocatalytic kinase activity as it contained radiolabelled ATP. When the recombinants 

proteins were incubated together, a band of lower molecular weight was also revealed by 

autoradiography, demonstrating that AKIN10 could trans-phosphorylate TIC amino 

fragment (figure III.14). This result indicated that in vitro conditions TIC could serve as a 

substrate for AKIN10. Therefore from these in vitro studies it was suggested that AKIN10 

interaction with TIC could led to a mechanism of TIC action through phosphorylation. 

 

 

2) AKIN10 activity affected clock period and this effect was TIC dependent. 

 AKIN10 was demonstrated to interact with TIC in a Y2H assay, as well as by an in 

vitro pull down, and that TIC could act as substrate for AKIN10. These results suggested 

that AKIN10 could affect the circadian clock through TIC. To study the physiological role 

of AKIN10 on the clock, the homologue kinases AKIN10 and AKIN11 were assessed for 

their effect on clock periodicity. Besides their sequence similarity, both kinases share 

functions as central regulators in response to darkness and stress (Baena-González, 2007). 

Therefore though it was found by Y2H that TIC interacted with AKIN10, but not to the 

same extent with AKIN11 (figure III.13), both kinases were evaluated in regard of the 

clock. For this, estradiol inducible lines of the catalytic subunit of the kinases were crossed 

to lines harbouring the CCA1:LUC luciferase construct. Then as mentioned above, the 

transcriptional induction of the kinases could be specifically triggered by the addition of β-

estradiol. For monitoring clock rhythms, the CCA1:LUC was selected as a reporter because 

the mRNA levels of CCA1 were not found to be different between tic-2 and wild type 

(table III). 

To test the effect of AKIN10 and AKIN11 on the clock, seedlings were transferred 

to control media or media added with β-estradiol. After one day of entrainment, the 

seedlings were released into constant light conditions. As long as the kinases were not 

induced, the CCA1:LUC reporter showed no difference on period length, nor the waveform 

of the rhythmic oscillation (figure III.15A). To test the effect of the induction of kinases on 
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the circadian-clock driven rhythms, wild type and the AKIN10 and AKIN11 transgenic 

lines were exposed to media with β-estradiol. Addition of the β-estradiol did not affect 

wild-type CCA1:LUC expression (figure III.15B). Thus the addition of the chemical per se 

did not alter the clock. Interestingly induction of AKIN10 led to a lengthening of the 

period, indicating that the kinase could affect the circadian clock (figure III.15). On the 

other hand, after exposure of AKIN11 to β-estradiol, no effect on the clock period was 

observed. From these results, I concluded that only the induction of the AKIN10, but not 

AKIN11 provoked a lengthening of clock periodicity (figure III.15B). 

As TIC was found to interact with AKIN10 and the later to have an effect on the 

clock, I hypothesized that AKIN10 effect on the clock would be through the activation of 

TIC. To test this, transgenic lines of tic-2 harbouring the CCA1:LUC construct were 

crossed to the β-estradiol inducible AKIN10 lines and the triple tic-2/AKIN10/CCA1:LUC 

transgenic line was isolated. Then 7 day old seedlings of the triple transgenic with its 

respective controls were transferred to control and β-estradiol added media and released 

into constant light after one further day of entrainment. As seen from figure III.16, under 

non inductive conditions, I found that AKIN10 presented a period as wild type with robust 

oscillations of CCA1:LUC driven expression as was observed before (figure III.15). Both 

tic-2 and tic-2/AKIN10 displayed a low amplitude expression of CCA1:LUC that tended to 

arrhythmia (figure III.16). Upon induction and as stated above, wild type was not perturbed 

and AKIN10 displayed a lengthening effect of the period (figure III.16B, for clarity the data 

has been replotted in figure III.16C). Interestingly the AKIN10 lengthening effect on the 

period was not observed in tic-2/AKIN10, as this line had a similar pattern of CCA1:LUC 

expression as tic-2 single mutant (figure III.16B). This can be clearly observed in figure 

III.D and E by comparing the period length of AKIN10 with or without β-estradiol 

induction to that of the wild type and to the double mutant tic-2/AKIN10 under the same 

conditions. Therefore from these experiments, I concluded that AKIN10 effect on clock 

period was dependent on TIC. 
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Figure III.16 (continuation). The clock period lengthening effect by induction of AKIN10 
required TIC. 
C) Data of wild type and AKIN10 with (white figures) and without (full figures) addition of β-
estradiol re-plotted from B and A respectively. Notice that the graphs overlap each other with 
exception of the induced AKIN10 (white circles). 
D and E) Periods estimates of CCA1:LUC rhythms by FFT-NLLS analysis with (E) and 
without (D) addition of β-estradiol. Note that the transcriptional induction of AKIN10 
lengthened the period compared to wild type (white vs. black bars), and that this effect 
required TIC (dark gray hatched bars).  
Error bars indicate standard error from a population between 28 to 48 plants per treatment. 
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III.C. The TIC-like gene, TICKLE, (TKL) was not found to have a role in the 

circadian clock period rhythms. 

 

 As many plants have experienced several genome duplications over evolutionary 

time, groups of genes with a high degree of similarity are often present in their genomes. 

Commonly these gene families diverged from a homologous ancestor. Some genes 

acquired new functions, but many others had redundant or partially redundant functions. 

Because TIC was described as a gene product that encodes for a protein of unknown 

function, TIC protein sequence was analyzed through a BLAST search with the aim to 

detect related sequences (Ding, 2007). It was found that TIC, which encodes for a 

hypothethical protein of 1550 amino acids, was restricted to the plant kingdom. 

Furthermore, it was shown that TIC is a single gene in the A. thaliana genome and the only 

paralog sequence with similarity to TIC was termed TICKLE (TKL), an acronym derived 

from TIC-like (Ding, 2007). As these two genes displayed sequence similarity, it was 

suggested that TKL could have a role within the circadian clock. Here I present efforts to 

assess if TKL could have either an independent or overlapping function with TIC in regard 

of the circadian clock. 

 

 

1) Expansion of the phylogenetic relationship of TIC like sequences. 

 Considering that the availability of genomes and sequences has increased in the last 

years, I performed a new search for sequences related to TIC. Using the translated TIC 

sequence, I ran a BLAST search through all available sequence data from NCBI. I found 

that the only significant matches were from sequences from the plant kingdom. I found 

TIC-like sequences within all the Viridiplantae, ranging from black cottonwood (poplar) 

and castor oil, to grape, rice and wheat and even the common moss (figure III.17). 

Unfortunately though cucumber, papaya, maize, algae and other plant species genomes 

have been sequenced in the last years (www.ncbi.nlm.nih.gov/genomes/PLANTS and 

(www.phytozome.net), TIC-like sequences from these genomes have not yet been 

annotated. 

The retrieved sequences were aligned by using ClustalW from the Kyoto 

University Bioinformatics Center (http://align.genome.jp/) and by ClustalW2 from the 

European Bioinfromatics Institute (EBI) a division of the European Molecular Biology 

Laboratory (EMBL) (http://www.ebi.ac.uk/Tools/clustalw2/index.html). Both multiple 
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Figure III.17A. Alignment of TIC translated sequence and TIC related sequences. 
TIC sequence is indicated with a red box. At the bottom of the alignment, bars indicating the degree of conservation between sequences, 
quality of the alignment per residue and a consensus sequence (from top to bottom respectively) are provided. Numbers bellow the 
conservation bars reflect the degree of variability for each amino acid residue. 0 = No conservation, 9 = high conservation, * = 100% 
conservation. The degree of amino acid conservation and the quality are also indicated with a scale colour from dark brown to yellow 
indicating 0 to 100% identity between the presented sequences. At the top of the alignment, numbers indicate the amino acid residue based 
on the consensus sequence. 
Block A (see discussion) 
 
Arabidopsis thaliana (thale cress) TIC and TKL, Ricinus communis (castor oil plant) putative ATP binding protein (XP_002516769.1), Vitis 
vinifera (grape) predicted and unnamed protein (XP_002277982.1 (A) and CBI26227.1 (B), respectively), Populus trichocarpa (black 
cottonwood or balsam poplar) predicted protein (XP_002311616.1), Oryza sativa (rice) hypotetical protein OsJ_24809 (A) and 
Os07g0571100 (B), Sorghum bicolor (sorghum) hypotetical protein 02g036890, Physcomitrella patens (common moss) predicted proteins 
XP_001760051.1 (A) and XP_001758408.1. (B). 



 

 

B  C
 

Figure III.17B. Alignment of TIC translated sequence and TIC related sequences (continuation). 
A fragment of the sequences alignment between amino acids 365 and 485 is shown. 
TIC sequence is indicated with a red box. For legends and features below the alignment see figure III.17A. 
Note that TIC serves as bridge for the conservation of amino acids residues between the eudicotyledons and the monocotyledons, which 
are located above and below TIC sequence, respectively. All sequences from tracheophytes were separated from those of briophytes with 
exception of A. thaliana TKL sequence. 
Note segments of high conservation scattered between highly divergent areas. 
Block B and C (see discussion). 
Arabidopsis thaliana (thale cress) TIC and TKL, Ricinus communis (castor oil plant) putative ATP binding protein (XP_002516769.1), 
Vitis vinifera (grape) predicted and unnamed protein (XP_002277982.1 (A) and CBI26227.1 (B), respectively), Populus trichocarpa 
(black cottonwood or balsam poplar) predicted protein (XP_002311616.1), Oryza sativa (rice) hypotetical protein OsJ_24809 (A) and 
Os07g0571100 (B), Sorghum bicolor (sorghum) hypotetical protein 02g036890, Physcomitrella patens (common moss) predicted 
proteins XP_001760051.1 (A) and XP_001758408.1. (B). 
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Figure III.17C. Alignment of TIC translated sequence and TIC related sequences (continuation). 
A fragment of the sequences alignment between amino acids 485 and 605 is shown. 
TIC sequence is indicated with a red box. For legends and features below the alignment see figure III.17A.  
Note that as P. patens proteins were larger, several areas of the alignment only contain these sequences creating gaps in the alignment. 
Also in this region is clear that TKL do not posses a block highly conserved between all the other species (amino acids 500 to 550).  
Block D (see discussion) 
Arabidopsis thaliana (thale cress) TIC and TKL, Ricinus communis (castor oil plant) putative ATP binding protein (XP_002516769.1), 
Vitis vinifera (grape) predicted and unnamed protein (XP_002277982.1 (A) and CBI26227.1 (B), respectively), Populus trichocarpa 
(black cottonwood or balsam poplar) predicted protein (XP_002311616.1), Oryza sativa (rice) hypotetical protein OsJ_24809 (A) and 
Os07g0571100 (B), Sorghum bicolor (sorghum) hypotetical protein 02g036890, Physcomitrella patens (common moss) predicted 
proteins XP_001760051.1 (A) and XP_001758408.1. (B). 
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Figure III.17D. Alignment of TIC translated sequence and TIC related sequences (continuation). 
A fragment of the sequences alignment between amino acids 955 and 1075 is shown. 
TIC sequence is indicated with a red box. For legends and features below the alignment see figure III.17A. 
Note that the sequences from the eudicotyledons do not posses small blocks present in the monocotyledons (965 to 984, 1024 to 1035 
and 1052 to 1060).  
Block E (see discussion). 
Arabidopsis thaliana (thale cress) TIC and TKL, Ricinus communis (castor oil plant) putative ATP binding protein (XP_002516769.1), 
Vitis vinifera (grape) predicted and unnamed protein (XP_002277982.1 (A) and CBI26227.1 (B), respectively), Populus trichocarpa 
(black cottonwood or balsam poplar) predicted protein (XP_002311616.1), Oryza sativa (rice) hypotetical protein OsJ_24809 (A) and 
Os07g0571100 (B), Sorghum bicolor (sorghum) hypotetical protein 02g036890, Physcomitrella patens (common moss) predicted 
proteins XP_001760051.1 (A) and XP_001758408.1. (B). 
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sequence alignments tools resulted in similar alignments. Fragments of the alignment 

obtained from the EBI are displayed in figure III.17. Several interesting features were 

observed in this alignment. This included that A. thaliana TIC sequence was positioned 

between the sequences from eudicots and monocots and that TKL lay away from all the 

group of vascular plants. The degree of conservation between monocotyledoneans and 

dicotyledoneans was higher within their members than between these groups. Despite this 

clear divergence, the sequences shared blocks of amino acid residues highly conserved and 

some amino-acid identities (see discussion for further details). Furthermore the sequences 

of cereals presented stretches of residues exclusive to this group (figure III.17D). It was 

also noted that the sequences from the briophytes, represented by the common moss, were 

larger and therefore created gaps in the alignment. 

The multiple sequence alignment was followed by the generation of a phylogenetic 

tree. This tree showed an evolutionary pattern that revealed the characteristics above 

described from the alignment. The first land plants, the mosses represented by 

Psycomitrella patens, exhibited a clear separation from the tracheophytes, within the later 

monocotyledons and dicotyledons demonstrated their expected divergence (figure III.18). 

The phylogenetic tree also revealed that TIC and TKL could share a common ancestor, but 

that since the duplication that originated the vascular plants, these proteins diverged. 

Furthermore all TIC-like sequences from the tracheophytes were found to be more similar 

to TIC than to TKL. Summarizing this bioinformatic analysis indicated that TIC and TKL 

could have acquired different functions in A. thaliana as they have diverged through 

evolution. 

 

  

2) TKL does not have a role in the circadian clock. 

TIC is essential to maintain circadian rhythms. As several components of the A. 

thaliana circadian clock share partially redundant activities, it was possible that TIC and 

TKL could share partially overlapping functions within the clock. To assess if TKL could 

have a role in the circadian clock, T-DNA insertion mutants from the SALK 

(SALK_028176; tkl-1) and SAIL (SAIL_714 A02; tkl-2) collections were acquired (figure 

III.19). Homozygous lines for tkl-1 and tkl-2 were obtained and analysed macroscopically 

and for their clock rhythms. The phenotype of both tkl-1 and tkl-2 single mutants was 

evaluated by growing them under short and long days. Under these conditions, both 
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II.18. Phylogenetic tree of TIC related sequences. 
uences were aligned using CLUSTALW2 from the website EMBL-EBI 

ww.ebi.ac.uk/Tools/clustalw2/index.html). From the derived alignment results, a 
tic three was constructed. 
logram displayed the divergence observed in the alignment. Nodes separating 
s from tracheophytes and dicotyledons from monocotyledons are clearly 

ed. TKL sequence appeared as an outlier in this arrangement indicating early 
ce within the A. thaliana genome before the separation of tracheophytes. 

sis thaliana (thale cress) TIC and TKL, Ricinus communis (castor oil plant) 
ATP binding protein (XP_002516769.1), Vitis vinifera (grape) predicted and 
 protein (XP_002277982.1 and CBI26227.1, respectively), Populus trichocarpa 
ttonwood or balsam poplar) predicted protein (XP_002311616.1), Oryza sativa 
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tkl-2tkl-1 tkl-2tkl-1

Figure III.19. TKL gene structure. 
TKL sequence has a length of 3238 nucleotides divided in 11 exons. The encoded hypothethical protein has a length of 978 amino 
acids. 
Two T-DNA insertion lines, SALK_028176 and SAIL_1285_H12, termed tkl-1 and tkl-2 were analyzed in this study. As seen in 
the diagram, the insertions are located between the promoter and first exon and between exons the 8th and the 9th exon for tkl-1 and 
tkl-2, respectively. 



Results 

mutants presented a phenotype as the wild-type plants. This indicated that TKL did not 

have a role in the developmental programme. 

As neither tkl-1 nor tkl-2 showed developmental alterations, only tkl-1, which has 

an insertion between the promoter and the first exon (figure III.19), suggesting it is a 

stronger allele, was evaluated for its clock-driven luciferase expression. For this, the tkl-1 

lines were crossed to lines harbouring the luciferase gene under the promoter of clock 

controlled genes as CAB and CCR2. Circadian rhythms of established homozygous lines 

were studied by shifting the plants from cycling light/dark conditions to constant light or 

darkness. I found that tkl-1 did not reveal any circadian defects. I observed that tkl-1 did 

not exhibit an effect on period nor phase compared to wild type with both CAB and CCR2 

luciferase reporters, while tic-2 showed the described low amplitude rhythm (figure III.20). 

This result suggested that tkl-1 could be dispensable for the clock. 

As TKL function could be partially redundant with TIC, but masked by the later, a 

double mutant between both genes was generated. This could uncover any subtle effects of 

tkl that would be rescued by a functional TIC, either in plant growth or within the clock. 

However I observed that under green house conditions, the double mutant tic2/tkl-1 did not 

exhibit any visible phenotypic difference to tic-2 single mutant (not shown). Consequently 

further analyses on tkl mutants were not further pursued, as all the gathered data suggested 

that TKL and TIC have no related functions within the circadian clock of A. thaliana. 
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IV. Discussion 

 

 TIC was described as a nuclear component of the circadian clock that is necessary 

for maintaining clock-driven rhythms (Hall, 2003, Ding, 2007). In the absence of a 

functional TIC, circadian rhythms displayed shorter periods, a lower amplitude and an 

early phase of expression. Both the early phase of gene expression and the shorter period 

coincided with tic dysfunctional clock being reset late at night (Hall, 2003). The expression 

of the clock genes examined was advanced in tic, but without affecting their expression 

levels, with exception of LHY. The finding that LHY expression was constitutively low in 

tic, led to the conclusion that TIC participated in mediating differentially the expression of 

CCA1 and LHY (Ding, 2007). Though the circadian defects shown by tic indicated that it 

should work close to the central oscillator, the mechanism by which TIC could confer its 

action within the oscillator remained obscure.  

To expand on TIC function within the oscillator, I performed a transcriptomic 

analysis taking into account that tic clock stops just before dawn. Consequently the 

experimental design consisted in two sampling time-points: the dawn-anticipation assay in 

which seedlings were collected prior to the shift to the light period and the clock-resetting 

assay in which plants received a light pulse during the night causing a "jetlag" (figure II.1 

I-A). Through the dawn-anticipation assay, I expected to find those genes affected by the 

clock arrest in tic. As light is the main environmental cue that entrains the clock, with the 

clock-resetting assay, I tested the effect of light in clock entrainment and its dependence on 

TIC. As the clock in tic would restart earlier than the wild type, the responses to light 

entrainment could be influenced by their respective physiological and transcriptional 

programme. Furthermore as tic presented a stress-like phenotype, the transcript profile 

allowed me to reveal the alteration of several metabolic processes probably associated with 

its phenotype. Through this work, I found that tic was hypersensitive to ROS and ABA, 

had altered starch metabolism, as well as defects in abiotic and biotic stress responses. 

Furthermore a plausible mechanism for TIC function was established by its interaction 

with the kinase AKIN10, as the activity of the later on the clock was dependent of TIC. 

This mechanism would involve the sensing of the cellular metabolic status by AKIN10, 

which would activate TIC, and consequently the later could exert its function in the clock 

entrainment to dawn. 
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Microarray expression profile 

 

General overview 

 

 The microarray analysis included four separate array experiments, and 

consequently, the same number of pair-wise expression profiles examinations. From the 

four possible comparisons between the two experimental conditions and the two genotypes 

(figure II.1-II), the work that I present here mainly focused on the mutant versus wild-type 

comparisons under both physiological conditions: dawn anticipation and clock resetting. 

The microarray transcript profile analysis gave a general panorama of the behaviour of 

wild type and tic-2 under the physiological conditions tested. The Principal Component 

Analysis (PCA) provided the first insight into the transcriptional changes that occurred 

between the genotypes and the conditions. At first glance, it seemed striking that the 

physiological conditions (resetting versus dawn) had a major effect, and therefore, 

importance in the transcriptome changes (figure III.1A). However the result was logical 

because the experimental conditions can be viewed as light versus dark, conditions that 

would lead to a drastic transcriptional switch. The gene expression changes would be a 

consequence of the direct light induction of gene expression, as well as of the controlled 

gene expression by the circadian clock after the later was reset. Thus not surprisingly, the 

number of genes that were found as differentially expressed by comparing a single 

genotype between both experimental conditions was higher than when comparing both 

genotypes in a single condition (figure III.1B). 

 I found that tic-2 transcriptional profile was different from the wild type, regardless 

of the conditions. This was suggested from the distance between the genotypes in the 

component 2 of the PCA (figure III.1A). This result indicated that regardless of time and 

environmental conditions, tic-2 had a gene expression pattern that differed from wild type. 

Nonetheless, the resetting of the clock caused a higher increase in the number of genes 

differentially expressed in tic-2 than in the wild type. This was clearly seen in the PCA 

component 1, as a longer distance separated the light treated samples to those kept in the 

dark in the tic-2 background (compare the distance between the white and black symbols in 

figure III.1A in both genotypes). This observation was reflected in the Venn diagrams as 

tic-2 expression profile presented around ~3,000 genes differentially expressed, while the 

wild type displayed a change in only ~2,000 (figure III.1B right panel). The response of 

tic-2 to the clock resetting suggested that the alteration of its clock did not impair clock 
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light entrainment nor light responses. However tic-2 response toward light was exacerbated 

as seen by the quantity of genes differentially expressed compared to wild type. This could 

be taken as an indication that tic-2 required a major transcriptional reprogramming to cope 

with environmental changes. Thus tic-2 seemed to be a hypersensitive mutant to a light 

environmental change.  

 

Clock genes expression in tic-2. 

 

 As tic is a circadian clock mutant, I first analysed the gene expression profile of 

clock and clock related genes. Not surprisingly, many clock genes to date described were 

misregulated between tic-2 and wild type (table III). Most of the genes, with exception of 

LHY and FLC, were upregulated in tic-2 (table III, tic-2 versus wt comparisons). Evening 

genes such as TOC1, GI, LUX, ELF3 and CHE were overexpressed in tic-2. This result 

was contradictory with previous analysis where Ding et al. (2007) described that the mean 

expression levels of evening genes as TOC1, GI and ELF3 were not altered in tic. The 

difference between these results could be the time-points of both analyses, as I studied 

gene expression prior to dawn and Ding et al. (2007) made a time course. Then it is 

possible that the microarray profile studied here coincided with the peaks of gene 

expression in tic which has an early phase of gene expression (Ding, 2007). However the 

differences in gene expression before dawn reported by Ding et al. (2007) were subtle 

compared to the fold-change reported here (table III). Additionally it is also possible that 

the differences were a consequence of the ecotype, as in the published work Ws-2 (tic-1 

allele) was used and the profile that I examined was in Col-0 (tic-2 allele). 

Besides the overexpression of the evening genes described above, the comparison 

of gene expression between tic-2 and wild type showed that PRR9, PRR7 and PRR3 were 

overexpressed in tic-2 (table III). The arguments mentioned above about the microarray 

time-points coinciding with the peaks of expression or the background effects could also 

apply to the overexpression of the PRR gene family. However only the expression of PRR9 

was analysed previously, and it was found that PRR9 expression in tic-1 was identical to 

wild type (Ding, 2007). Another gene not previously analysed, which I found differentially 

expressed in tic-2 was LUX, also known as PHYTOCLOCK (table III). This finding was 

interesting as LUX encodes for a Myb-like transcription factor related in sequence to CCA1 

and LHY, but whose expression is evening phased (Hazen, 2005). Though the sequences of 

DNA that LUX bind still are unknown, the overexpression of this gene could be partially 
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responsible for the clock gene misexpression in tic-2. Contrary to tic-2 short hypocotyls 

and delayed flowering, it was reported that lux resulted in a long hypocotyls and early 

flowering (Hazen, 2005), therefore tic and lux display opposite phenotypes. 

 The transcript profiles from the clock-resetting versus dawn-anticipation 

comparisons showed that GI, PPR9 and PRR7 were induced by light (table III). These 

genes have been suggested as light-input elements to the clock as their expression is 

responsive to light (Locke, 2006). Finding that GI, PPR9 and PRR7 could be 

transcriptionally induced in both genotypes in the clock resetting-assay, suggested that 

clock light responsiveness was not altered in tic-2. Thus these genes might still work as 

light-integrating components to the circadian clock in tic-2. This clock-gene light 

responsiveness indicated that the clock in tic-2 could be entrained, albeit with defects. 

Therefore tic-2 defects in the clock do not impair its capacity to respond to a light 

environmental change. 

In conclusion, most of the clock genes from the current clock model were 

misexpressed in tic-2. From these the vast majority was overexpressed in tic-2 compared to 

the wild type. This could be due to an early phase of expression of tic-2. 

 

Gene Ontology Overview 

 The enrichment of gene ontology (GO) categories derived from the differentially 

expressed genes provided a panorama of the altered transcript profile of tic-2 (table IV). I 

found that tic-2 had a different expression profile to stress responses and environmental 

cues. Based on the results, I decided to investigate tic physiology to characterize the 

mutant beyond its clock phenotypes. At the same time, this analysis provided an insight 

into the pervasiveness of the circadian clock in development and the stress-like phenotype 

of tic. This included a slow growth rate and leaf serration. 

 In the next sections I will discuss the results obtained through this characterization 

that demonstrated that tic mutation causes an array of pleiotropic phenotypes. 

 

Nucleotide metabolism and transcription 

Several GO categories related to DNA, transcription, and nucleic-acid metabolism 

were highlighted in tic-2 profile (table IV). These GO terms correlated with the change of 

expression of multiple genes involved in these processes, as well as with the expression of 

transcription factors (table V). Among these genes, PAB5 and ZWILLE/AGO10 have been 

described in mRNA translation, processing and degradation (Belostotsky, 2003), and in 
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miRNA translational repression (Brodersen, 2008), respectively. Furthermore it was shown 

that an ago10 mutant had higher levels of cupper superoxide dismutase (CSD2) mRNA 

(Brodersen, 2008). Interestingly tic-2 transcription profile had high levels of AGO10 

mRNA, which in turn will partly explain the repression of the transcription of CSD2 (table 

V). In the case of PAB5, its transcription has been shown to be limited to reproductive 

tissues and developing seeds (Belostotsky, 2003). Therefore it was striking to find it highly 

expressed in tic-2. It is tempting to speculate that TIC may be involved in the silencing or 

specific repression of PAB5. Besides these two particular genes, many ribosomal subunits, 

as well as RNA polymerases, in particular the sigma subunit of chloroplasts RNA 

polymerases, were misregulated (table V). Some of them were only differentially 

expressed in the dawn anticipation assay. This suggested that the clock arrest in tic-2 could 

have consequences in setting global transcription at an appropriate time frame. Thus it is 

predictable that the circadian clock would influence the timing of general transcriptional 

events. However other genes within this category were either induced or repressed in both 

experimental conditions in tic-2 (table V), suggesting that their misexpression is a result of 

the mutation. A mechanism of TIC in transcriptional control is still obscure, though 

probably the observed effects were due to the disruption of the circadian clock. 

Finding GO terms in DNA and RNA processes as enriched was unexpected. 

Previously it was reported that these components were not circadian regulated (Harmer, 

2000, Covington 2008). Covington et al. (2008) reported that categories related to DNA 

replication and chromatin structure, RNA processing, the cell cycle, as well as protein 

synthesis, secretion and degradation presented few transcripts with an oscillation pattern. 

However in the transcriptional profile reported here, these categories appeared as 

overrepresented (table IV). This suggests that the clock and nucleic-acid metabolism are 

linked. In the mammalian circadian clock, a link exists between the mentioned processes 

and the oscillator, as the clock component CLOCK is itself a histone acetylase (Doi, 2006, 

Grimaldi, 2009). Other reports have mentioned that DNA repair capacity is circadian 

regulated (Kang, 2009). Similarly in cyanobacteria, KaiC ATPase activity, but not its 

kinase activity correlated with the cell cycle and cellular division (Dong, 2010). Therefore 

it could be plausible that TIC has a role in nucleic acid metabolism and cell cycle or that 

these events are under a so far masked circadian control. Considering that transcription 

requires an open state of chromatin, transcriptional control by the circadian clock would 

have an effect on DNA chromatin structure and vice versa. So far, the only link established 

between the plant clock and DNA chromatin status has been the description of TOC1 
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expression by histone acetylation/deacetylation cycles (Perales, 2007). The transcriptional 

profile from tic-2 suggested that timing DNA and RNA processes is influenced by the 

circadian clock. Establishing a relationship between chromatin structure and the circadian 

clock and the role of TIC in this regard will require further research into this area.  

 

tic-2 phenotypic characterization. 

 The first developmental report of tic described it as a short hypocotyl mutant with 

chlorotic leaves and with a slight decrease in rosette size compared to the wild type (Hall, 

2003). Because no further morphological and physiological description of tic-1 was 

reported, I describe here tic-2 morphology, development (on the Col-0 background) and 

physiology, guide all by the microarray transcript profile. 

 tic-2 presented a decrease growth rate compared to wild type that was photoperiod 

independent. The rosette size and number of leaves in tic-2 were decreased relative to wild 

type. This caused a delay flowering time in tic-2 as scored by the number of days after 

sawing (figure III.2). Though tic-1 was described with chlorotic leaves as a seedling (Hall, 

2003), in greenhouse conditions tic-2 acquired a deep green coloration of its leaves, which 

also displayed a degree of serration at the edges. Both characteristics were more evident 

under a longer photoperiod (figure III.2). The dark green colour of tic-2 leaves could be 

attributable to the higher expression of genes involved in chlorophyll synthesis as well as a 

higher content of iron (table V). Genes as PORB and HEME1, whose proteins participate 

in chlorophyllide and porphyrin synthesis, respectively, were overexpressed in tic-2, 

indicated that the mutant could synthesize more chlorophyll than wild type, and 

consequently, would acquire a dark green colour. As the ferritins, which bind iron in green 

tissues, were also overexpressed at the transcript level, a higher content of iron could lead 

to a darker pigmentation. In conclusion, tic-2 plants displayed a striking different 

morphology attributable to a deregulation of several processes. 

 One of the pathways that appeared altered in tic-2 was starch degradation (table 

IV). Because either a low rate of carbon fixation by photosynthesis during the light period 

or an inability to use the assimilated carbon could lead to a slower growth rate, I tested 

starch accumulation in tic plants. As seen in figure III.3, tic-2 produced starch but was 

unable of degrading it during the night period. This resulted in tic-2 displaying a starch 

excess phenotype. This phenotype resembled that of gi, which has been described as a 

mutant that causes a starch excess phenotype (Eimert, 1995). However, the cause for starch 

accumulation in gi is unknown, as it has not been involved directly in starch degradation. 
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Thus the mutation of genes not directly involved in starch catabolism can result in starch 

accumulation, as is the case for the clock mutants tic-2 and gi. 

The starch accumulation in tic-2 did not match its transcript profile because several 

key genes involved in starch degradation were overexpressed in the mutant (table V). As a 

particular example, the glucan water dikinase (SEX1), which catalyses the first step in 

starch remobilization (Yu, 2001), was overexpressed in tic-2. This apparent contradiction 

suggests that the cause of starch accumulation may be due to altered enzymatic activities in 

starch catabolism. It has been demonstrated that starch synthesis and degradation are under 

circadian control (Smith, 2007). The genes involved in these processes presented a peak of 

expression that tracked dawn and dusk dependent on the photoperiod length (Smith, 2007, 

Zeeman 2007). Furthermore though the mRNA changes obeyed a circadian rhythm, the 

proteins involved in starch metabolism were shown not to cycle. Because the enzymes 

involved in starch synthesis and starch breakdown seem to require phosphorylation of the 

starch glucose residues for their action (Smith, 2007, Zeeman 2007), tic-2 starch 

accumulation could be a consequence of altered phosphorylation events. On support of this 

hypothesis, I did not find transcriptional changes in glucose or triose transporters, which 

would also lead to starch accumulation (Walters, 2004, Niittlya, 2004). In summary, tic-2 

presented a starch excess phenotype that might be a result of defective phosphorylation 

events. 

 Regardless of the mechanism that led to starch accumulation in tic and gi, is clear 

that their role in carbohydrate metabolism is regulatory. Neither mutant has been 

associated with starch metabolism per se, nor has described hypothetical enzymatic 

activities within their encoded proteins. The consequences of the starch excess phenotype 

are striking, as demonstrated by the gi metabolite profile. Instead of having low 

oligosaccharide levels as would be expected from starch overaccumulation, gi showed 

higher amounts of the main primary carbohydrates as glucose, fructose, sucrose, mannose 

as well as TCA intermediates (Messerli, 2007). Recently Graf et al. (2010) proposed that 

plant fitness results from the proper timing of anticipation of dawn with the starch 

degradation during the night. These authors showed that the double mutant cca1/lhy had 

lower starch content than wild type and presented an early onset of starch degradation and 

induction of starvation response genes. Both processes were in accordance with the short 

period of the cca1/lhy. However it was found that toc1 and ztl mutants did not affect starch 

consumption (Graf, 2010). Therefore not all clock mutants affect starch degradation. As tic 

is a short-period mutant with starch excess, the theory of arrested growth rate due to lack 
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of carbohydrates may not apply. Starch was slowly remobilized after an extension of the 

night in tic and gi (figure III.3). Therefore they would have available sucrose as the 

metabolite profile of gi previously indicated (Messerli, 2007). Therefore not all clock 

mutants affect starch degradation. 

In conclusion tic-2 affected developmental processes by an as yet unknown 

mechanism. tic-2 altered starch metabolism that together with the data from other clock 

mutants indicated a complex interaction between the circadian clock and carbohydrate 

metabolism. 

 

Iron homeostasis in tic-2. 

 Unexpectedly, cellular iron homeostasis appeared as an enriched GO term specific 

to tic-2 (table IV). Within this category the genes that were differentially expressed with 

high transcript levels were the ferritins and some iron transporters (table V). Iron is an 

essential micronutrient which is a structural component of macromolecules involved in 

photosynthesis, respiration and metabolism between others (Buchanan, 2000; Briat 2007). 

I therefore decided to test the relationship between tic and iron homeostasis.  

Ferritins are proteins found in all kingdoms that bind iron and thus serving as a 

cellular reservoir (Briat, 2009). In plants, ferritins transcripts are induced under iron excess 

conditions and serve as protection against ROS (Briat, 2009; Ravet, 2008 respectively). A. 

thaliana extracts iron from the soil by the so-called strategy I, which involves acidification 

of the rhizosphere by proton release from the roots, followed by the reduction of ferric iron 

by the Fe(III) chelate reductase (FRO2) and iron transport by the iron transporter 1 (IRT1) 

(Kim, 2007). This results in net import of iron into the plant. I found that tic-2 had higher 

expression of ferritins, which suggested that the mutant is sensing an excess of iron. If that 

were so, the capability of the mutant to uptake iron from the rhizosphere should be 

increased compared to wild type. The acidification response of the rhizosphere (figure 

III.4) showed that tic-2 had a diminished response to iron availability compared to wild 

type. Thus either the mutant did not perceive an excess of iron or the overexpression of the 

ferritins was a consequence of another signal. 

The results from the root-acidification-response assay should be interpreted 

carefully, as I could not observed the expected responses toward iron availability (control), 

iron excess (FeSO4) or iron deficiency (iron chelator: ferrozine), as described by Yi et.al. 

(1996). These authors reported that in a root-acidification-response assay, only plants 

grown under iron deficient conditions acidified their rhizosphere when shifted to a media 
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with basal iron supply, whereas those grown under iron sufficient conditions did not 

release protons when transferred to a media with basal iron content (Yi, 1996). The results 

from the test presented in figure III.4 showed that plants previously grown in media with 

basal or excessive iron content acidified more readily the media than those grown in media 

with chelated iron. Thus the results obtained are difficult to interpret coherently with the 

published data. Furthermore the observed change of pH could be a consequence of other 

physiological responses, as the MS1 control media has an excess of iron content (Ute 

Kraemer, personal communication). 

 During the course of this study, TIC was isolated in a screen for iron regulators of 

ferritin expression (Duc, 2009). The authors found that tic had a higher constitutive 

expression of ferritins. This result that correlates to the expression profile from the 

microarray described here (table V). Also Duc et al. (2009) showed that the iron content of 

soil grown plants was similar between the tic and the wild type. However when plants were 

grown in vitro, the mutant had less iron and was hypersensitive to an excess of iron in the 

media. Therefore TIC is involved in maintaining iron homeostasis. The mechanism 

through which TIC participates in iron regulation and transcriptional control of ferritins is 

still unknown.  

 

tic-2 is hypersensitive to oxidative stress 

 Just as the GO terms corresponding to the circadian clock and iron homeostasis 

appeared as enriched in the microarray data with genes that were mainly induced, GO 

terms corresponding to responses to ROS, oxidative stress, oxidoreductase and peroxidase 

activities were enriched mainly by genes that were repressed in tic-2 (table IV and V). 

Therefore I tested tic-2 susceptibility to compounds that produce ROS, including 

methylviologen dichloride (MV) and hydrogen peroxide (H2O2). As demonstrated by the 

germination assays, I found that tic-2 was hypersensitive to oxidative stress (figure III.5).  

This physiological test confirmed what was expected from the transcript profile. 

The induced genes in tic-2 were CAT1, CAT3 and SEN1. These have all been described as 

markers of oxidative stress in planta, as they are induced upon these conditions (Gadjev, 

2006). Furthermore the alternative oxidase (AOX1a), and some enzymes involved in 

photorespiration, were also overexpressed tic-2 (table V). The former is induced under 

stress conditions and ameliorates ROS production by accepting electrons from ubiquinone 

without energy conservation. AOX1a is essential for plant development as its mutation led 

to higher ROS production and plant susceptibility to stress, whereas its overexpression 
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diminished ROS production (Maxwell, 1999; Giraud 2008). However AOX1a 

overexpression in tic-2 was not sufficient to overcome the additional stress imposed by 

MV and H2O2. This suggested that the mutant proceeds through development under a 

permanent stress, and consequently cannot cope with an increase in ROS production. 

Induction of AOX1a in tic-2 under normal conditions indicated that tic-2 have a defect in 

its metabolism that leads to either higher ROS production or an impairment in ROS 

quenching mechanisms. Thus tic-2 responds to increased levels of ROS as a basal 

mechanism for survival. 

 Based on the transcript profile, tic-2 could have a defect in mitochondria or 

chloroplast, either in structure or cellular crosstalk. However structural defects lead to a 

complex reprogramming (Noguchi, 2008)). It was reported that the loss of the respiratory 

complex I led to higher expression of ROS scavenging enzymes and their enzymatic 

activities resulting in a plant more resistant to ozone (Dutilleul, 2003). Interestingly a 

mutation in AOX1a provoked susceptibility to drought only under high light (Giraud, 

2008). As another example, thylakoid and cytosolic ascorbate peroxidases single mutants 

had increased resistance to heat and susceptibility to oxidative stress, respectively, and had 

a different transcript profile and behaviour as a double mutant (Miller, 2007). These 

examples demonstrate the complexity of ROS signalling, which makes its mechanistic 

dissection difficult. Therefore unravelling what mechanism caused tic susceptibility to 

oxidative stress or what led to resistance in gi (Kurepa, 1998) would require further 

research. 

I found that tic-2 was hypersensitive to oxidative stress and its transcriptomic 

profile displayed misexpression of several genes involved in photosynthesis and 

respiration. As these two metabolic processes produce ROS, I hypothesized that clock 

entrainment by the light signal could be through either redox changes in proteins or 

changes in energy sources (ATP/AMP ratio, sucrose levels). As the main photoreceptors 

are not necessary for clock entrainment and resetting (Yanovsky, 2000), I decided to test 

the effect of ROS producing compounds on clock rhythms. Thus I could reveal if these 

compounds could affect the clock and in parallel asses the differences between the mutant 

and the wild-type strain. 

 The addition of H2O2 and MV caused changes in the circadian clock periodicity of 

wild type in a concentration-dependent fashion (figures III.9 and III.10). This result 

suggested that the clock has a compensation mechanism toward oxidative stress similar to 

that of temperature. This ROS compensation mechanism could derive from the plant ROS 

 109



Discussion 

scavenging system, which could deal with ROS without compromising cellular functions. 

Regardless of the mechanism, it was found that after a threshold was surpassed, clock 

period was lengthened. This observation was clearly visible by the oxidative stress 

infringed by MV (figure III.10). This period lengthening effect could be due to metabolism 

diversification on ROS quenching reactions, consequently slowing other metabolic 

processes.  

The use of MV to determine periodicity revealed that tic responded in the same 

fashion as the wild type (figure III.10C). This result indicated that the clock in tic was 

responsive to oxidative stress by MV (figure III.10C), even though tic showed 

hypersensitivity to this compound in a germination test (figure III.5). Though the clock in 

tic was responsive to MV, it was not perturbed by H2O2 application (figure III.9). This 

result suggested that the peroxidase activity in tic, which was found transcriptionally 

repressed (table V) was compromised.  

To test the effect of inhibiting enzymes involved in oxido-reduction activities, I 

used DPI. This compound was originally thought to bind flavins, but further testing 

showed that it inhibits NADH:ubiquinone oxidoreductase, NADPH oxidases, NADPH 

cytochrome P450 oxidoreductases, xanthine oxidase and is capable of reacting with heme 

B groups of NADPH oxidases (Riganti, 2004) while increasing ROS in a dose dependent 

manner. In the experiments reported here, DPI showed no effect on wild type under the 

conditions tested, while it caused a period lengthening in tic at high concentrations (figure 

III.11). Thus, tic was more susceptible than wild type to DPI. tic susceptibility may arise 

due to an increased amount of electron flow through membrane bound NADPH oxidases in 

mitochondria or either as a consequence of higher ROS production. 

 Finally because tic had a higher expression of AOX1a, I subjected plants to the 

AOX1a specific inhibitor SHAM (Nelson, 2000). It has been shown that AOX1a inhibition 

diminishes plant fitness and performance because the rate of photosynthesis decreases as 

photorespiration is blocked. If AOX1a is required under normal growth conditions, I 

expected that tic would be more susceptible to SHAM than wild type becasue AOX1a was 

transcriptionally induced in the mutant. Addition of SHAM did not affect the clock period 

with a constant pattern through the experiments in the wild type, whereas in tic at low 

SHAM concentrations, periodicity was decreased (figure III.12). Consequently tic was 

hypersensitive to AOX1a inhibition, probably because tic metabolism has a higher rate of 

photorespiration. Notably SHAM was the only compound tested that reduced free-running 
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period, though an explanation for this particular behaviour is beyond the interpretation of 

the collected data. 

 In conclusion, tic was hypersensitive to oxidative stress and ROS-generating 

compounds altered clock periodicity of wild type and tic in a dose and genotype dependent 

manner. 

 

ABA related responses in tic-2. 

 As ABA hormone stimulus appeared as an overrepresented GO term in the 

microarray datasets (table IV) and circadian clock and ABA microarray data have been 

shown to overlap (Mizuno, 2008), I focused on this hormone and its related responses than 

on the other potentially interesting hormone pathways also misregulated in the microarray 

data. 

 One of the classical ABA assays that described mutants as hyper and hyposensitive 

to this hormone is a germination assay under increasing ABA concentrations (Rook, 2006). 

Consequently I tested the effect of ABA on tic-2 to establish, if any, a relationship between 

the mutant transcript profile and the hormone. The germination assay indicated that tic-2 

had a hypersensitive phenotype to ABA (figure III.6). This result suggested that tic-2 could 

have higher amounts ABA or that the ABA signalling pathways are sensitized to the 

hormone, and consequently, overreact to it. I did not measure cellular ABA levels in tic-2, 

but the microarray expression data did not indicated that the mutant would have higher 

amounts of this hormone. The only ABA biosynthetic gene misregulated in tic-2 was ABA2 

(table V). Furthermore this gene appeared as repressed only in the dawn-anticipation assay, 

suggesting that its missexpression was not a constitutive trait of tic-2. Therefore it might be 

more likely that ABA signalling is altered in tic-2. 

 The tic-2 sensitized ABA signalling hypothesis finds support on the transcript 

profile. This profile included the induction of an ABRE (ABA responsive element) binding 

transcription factor, as well the overexpression of the kinases SNRK2.2 and SNRK 2.3. 

Previously it has been shown that these kinases together with SNRK2.6/OST1 are essential 

for plant development and ABA-mediated stress-gene expression (Fujii, 2009). A triple 

mutant of these genes showed insensitivity to ABA in a germination assay as well as the 

lack of expression of ABA inducible genes as RD22, COR15A between others. The snrk2.2 

/snrk2.2/ snrk2.2 triple mutant phenotype is opposite to tic-2. The later was hypersensitive 

to ABA, SNRK2.2 and SNRK2.3 were overexpressed and tic-2 expression profile displayed 

induction of several ABA inducible genes as COR15A and RD22 (table V). Together this 
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data supported the idea of a constitutive or sensitized ABA signalling in the tic-2 mutant. 

Interestingly effects of ABA on the clock were reported earlier. Hanano et al. (2006) found 

that ABA biosynthetic mutants had a short period, and that ABA application lengthened 

periodicity. As tic is a short period mutant (Hall, 2003), it is unlikely that the observed 

defects in ABA signalling in tic-2 are related to its circadian defects. 

 This sensitized ABA signalling, was suggestive of a stressed mutant. ABA is a key 

hormone produced under several environmental stresses as drought, salinity and cold 

(Shinosaki, 1996). Therefore not surprisingly, many genes that are induced upon drought 

or cold stress were also induced by ABA (Shinozaki, 1996; Seki, 2007). Besides the 

overexpression of COR15A and RD22 in tic-2 expression profile, a plethora of drought and 

cold responsive genes and transcription factors such as DREB2A, ERD7, ERD3 ERD4, and 

ERD10, and COR15B were overexpressed (table V). DREB2A is s key transcription factor 

in controlling gene expression under drought (Liu, 1998), whereas the ERD genes are 

responsible for the tolerance to dehydration (Seki, 2007). The induction of these genes 

reinforced the idea of tic-2 being a stressed mutant. 

Based on the high expression of drought-resistance genes, I hypothesized that tic-2 

could display resistance to drought stress. In order to test this hypothesis, I subjected wild 

type and tic-2 plants to mild and severe drought conditions during 3 weeks. I found that 

tic-2 was tolerant to mild drought and to severe drought conditions at least within the 

duration of the experiment (figure III.7). tic-2 leaves did not exhibited plasmolysis nor was 

the plant growth rate was compromised. Only under non-watered conditions, tic-2 leaves 

displayed slight signs of stress. On the other hand, leaves of the wild-type plants were 

wilted and necrotic (figure III.7). The consequent effect was a detriment on growth and 

survival. Furthermore, the wild-type non-watered plants could not recover from drought 

after re-watering started, whereas tic-2 did (not shown). As a conclusion, the 

overexpression of the drought/cold responsive set of genes in tic-2 could be causal to 

provide the mutant with resistance to drought conditions. 

 tic-2 not only was drought tolerant, but also consumed less water during the 3 

weeks of water arrest. The amount of water the mutant consumed, compared to the wild 

type during the same time lapse, was significantly less (figure III.7B). This could be 

explained by a lower rate of transpiration and consequently less water loss or alternatively 

that water usage is diminished due to the slower growth rate of the mutant. tic-2 was 

genetically tolerant to drought as it displayed around a 40% less of water consumption than 

wild type. 
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Water is lost through transpiration by the stomata pores. The stomata opening is 

controlled by both light and ABA and the effect of both is gated by the circadian clock 

(Robertson, 2008). Therefore it was plausible that tic-2 drought resistance derived from 

either ABA and clock effects on the stomatal aperture or to a morphological trait as a 

reduced number of stomata. To address this question I performed scanning electron 

microscopy (SEM) of tic-2 and wild-type leaves. Preliminary results indicated that cell size 

and stomata number per leaf area were similar in both genotypes (figure IV.1). The only 

structural difference observed was the presence of some meristemoids in tic-2. Though I 

cannot rule out that the stomatal aperture was different, a more careful examination will be 

required to assess this issue. As the findings in this thesis indicated that tic-2 was drought 

resistant and hypersensitive to ABA, and the later may be result of sensitized ABA 

signalling, it would not be a surprise to find that the mutant has a lower transpiration rate 

and that its stomata aperture is reduced compared to the wild type. This remains to be 

tested. 

 

Biotic interaction between tic-2 and Psedomonas syringae. 

 As tic-2 mutant showed hypersensitivity to ABA and ROS, and more generally 

abiotic-stress responses, I wondered how tic-2 would respond to a challenge of stressful 

biotic stimuli. To test this, I infected wild type and tic-2 with Psedomonas syringae. To 

determine the role of the circadian clock and diurnal effects in the biotic interaction, the 

plants were infected either at dawn or at dusk, respectively. 

 From this experiment two interesting aspects emerged. First, the susceptibility of 

the wild type toward P. syringae was dependent on the time of the day, as the wild type 

presented a lower rate of infection in the evening than in the morning (figure III.8). This 

effect was not observed when using an avirulent bacterial strain. Second, the diurnal or 

clock-gated effect of susceptibility to infection was absent in tic-2. Furthermore tic-2 was 

hypersensitive to P. syringae, as it had higher rates of bacterial growth under both 

conditions. These results suggested that tic-2 was more readily infected either due to an 

intrinsic susceptibility to the bacteria or to a disrupted circadian clock.  

During the introduction section, I mentioned that hormone levels fluctuate during 

the day and that the hormone effects on gene expression are controlled and gated by the 

circadian clock (Covington, 2008). Therefore the different bacterial growth rate in wild 

type could be a consequence of a different hormone profile leading to a higher 

susceptibility in the morning. Similarly the susceptibility could arise from the stomatal 
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Figure IV.1. Scanning electromicroscopy revealed that a difference in stomata number 
between tic-2 and wild type was not the reason for the diminished water loss observed 
in tic-2. 
Wild type and tic-2 plants were grown under short-day conditions (8:16) and leaves were 
detached at dawn or at dusk, respectively, for scanning electromicroscopy imaging. 
Cell size and structure was not found drastically altered in tic-2, as it resembled wild-type 
structure. The number of stomata per area was similar between the genotypes, indicating 
that the stomatal index was not modified. In tic-2 leaves, meristemoids were observed with a 
higher frequency than the wild type. 
Preliminary examinations of stomatal aperture did not indicate a significant difference 
between tic-2 and wild type. Around 10 to 14 stomata are present in each leaf area. 
Black bars at the bottom of the photographs represent the scale and are equivalent to 10 µM. 
Photographs were taken with a Zeiss microscope at a 750 X magnification. 
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aperture, as stomata are opened before dawn and closed prior to dusk (Robertson, 2008). 

However the observed phenomena may not be so simple. It has been described that plants 

require light for establishing the hypersensitive response as well as the systemic acquired 

resistance (SAR) upon a biotic interaction. Also it was found that high light led to 

resistance against P. syringae infection (Roden, 2009). Similarly, roles for the 

phytochrome photoreceptors in establishing the salicylic acid mediated defence and the 

SAR (Griebel, 2008) and for the cryptochromes in the regulation of pathogen resistant 

genes have been reported (Wu, 2010). The results I obtained are contradictory with those 

from Griebel et al. (2008), as these authors found a higher infection rate during the dark 

period. However it must be noted that the conditions employed during infection were 

different. Griebel et al. (2008) directly inoculated the bacteria in the plant leaves. My 

infection assays mimicked a more natural infection as bacteria was topically sprayed. 

 The gated susceptibility effect to bacterial infection was lost in tic-2, as it presented 

the same rate of infection both at dawn and dusk. One possibility is that the clock timing 

that controls hormone signalling and effectiveness is disrupted and that this leads to a 

higher susceptibility. However to proof this hypothesis, one would need to observe the 

same behaviour in other clock mutants. The previous assays described in this thesis 

uncovered that tic-2 was hypersensitive to ABA, raising the possibility that the mutant has 

exacerbated ABA signalling. This observation could explain the higher susceptibility to P. 

syringae, because though ABA participates in bacterial infections by triggering the closure 

of stomata, it also counteracts the effects of salicylic acid, jasmonic acid and ROS 

production, consequently promoting bacterial growth (Torres-Zabala, 2009, Ton, 2009). 

Furthermore based on tic-2 hypersensitivity to ROS, bacterial growth could be a 

consequence of tic-2 not triggering ROS production upon infection. Another alternative to 

direct ROS production and quenching could be the redox state of the plastoquinone pool in 

chloroplast. It has been observed that a reduced state of plastoquinone led to resistance 

while an oxidized state displayed the same susceptibility to bacterial infection as the 

control plants (Muhlenbock, 2008, Roden, 2009). In conclusion, tic-2 was hypersensitive 

to bacterial infection and its susceptibility to P. syringae was independent of the time of 

day when the inoculation ocurred. 
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TIC biochemical function 

 TIC is one of the few circadian-clock regulators that is not under an apparent 

circadian control. Ding et al. (2007) previously showed that TIC mRNA and its protein 

levels did not cycle. Also TIC was found to be constitutively nuclear localised (Ding, 

2007). However the TIC effect on the circadian clock is time specific as noted by a clock 

arrest before dawn (Hall, 2003). Consequently elucidating a mechanism by which TIC 

acquires a time-specific action on the circadian clock, in particular to clock entrainment, 

may lead to a better understating of TIC function. With this aim in mind, a biochemical 

approach was undertaken to start to understand TIC function. 

 

TIC protein interacting partners 

 To search for proteins that could interact with TIC, a yeast two hybrid (Y2H) 

screen using the amino terminus of TIC sequence was performed. Through this screen, it 

was found that TIC could interact with several candidates, some of which are presented in 

table VI. Though most candidate interactors have not yet been confirmed by other means, 

associating the microarray expression profile with this selected list of candidate interactors 

could shed light into TIC function in the plant cell. Most of the interactors found were 

transcription factors or were involved in transcription. This correlated with the GO, which 

highlighted processes as transcription factor activity and regulation (table IV). 

Furthermore, the known transcriptional activity of some of these putative protein 

interactors correlates with the changes observed in the transcript profile of tic-2. 

 The interaction of TIC with MYC2 could explain, at least in part, the changes of 

gene expression of a vast quantity of transcription factors. This is because MYC2 controls 

the induction of several transcription factors. Furthermore MYC2 has been shown to 

regulate the gene expression of jasmonic acid, and induces flavonoid biosynthetic genes, as 

well as responses to oxidative stress (Dombrecht, 2007). This is contrasting with tic-2, as 

jasmonic acid related genes, the flavonoid biosynthetic pathway and oxidative stress 

quenching genes were repressed. Consequently tic-2 displayed a transcriptional expression 

pattern similar to that of myc2. These gene expression patterns provide support of a TIC-

MYC2 interaction that would be responsible of the gene expression of these pathways. In 

this sense, MYC2 transcription activity will require TIC as a partner in a hypothetical 

transcription complex. 

 Another TIC candidate interactor that had correlation with the microarray 

expression profile was the Cleavage Stimulation Factor 77 (CSTF77), which is a 
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homologue of a RNA 3’ processing complex conserved in the eukaryotic kingdom (Yao, 

2002). Recently it has been shown that CSTF77 is involved in the repression of flowering 

locus C (FLC) mRNA. A cstf77 mutant, carrying an in-frame mutation in this one copy 

gene, caused higher expression of FLC transcript (Schurger, 2010). Interestingly, FLC was 

the only clock-related gene that had constitutive repression in tic-2 (table III). This could 

be explained by a mechanism in which TIC antagonizes the activity of its interactor. Then, 

CSTF77 will repress FLC expression, seen in tic-2 expression profile, and TIC function 

will be to relieve this repression by targeting CSFT77 to degradation or impeding its 

action. 

 The locus At5g55070, corresponding to a putative dehydrogenase, was an 

interesting TIC interacting partner, as this locus has been implicated in oxidative stress 

responses (Sweetlove, 2002). It could be feasible that the interaction between TIC and this 

protein may be involved in oxidative stress regulation or signalling and consequently the 

disruption of this signal transduction participated in the oxidative stress hypersensitivity 

observed in tic-2 (figure III.5). Exploring this idea awaits experimentation. 

 In conclusion it would be plausible to think that TIC could be an integral part of 

several protein complexes and its interaction with them could lead to either a stable 

complex promoting transcription as in the case of MYC2 or either impeding the action of 

other proteins (figure IV.2). 

 

TIC-AKIN10 interaction in the circadian clock. 

 One of the main candidates from the Y2H screens, due to its physiological activity, 

was the protein kinase AKIN10 (table VI). This TIC protein interactor was interesting 

because it is involved in stress responses, in particular to carbohydrate availability and 

energy signalling in the dark to light transitions (Baena-González, 2007 and 2008). The 

interaction between TIC and AKIN10 was confirmed in yeast and notably this interaction 

showed higher specificity with AKIN10 than with AKIN11 (figure III.13). Furthermore it 

was found that TIC and AKIN10 could interact through an in vitro pull-down experiment 

and that AKIN10 was capable of trans-phosphorylating TIC protein in an in vitro 

phosphorylation assay (figure III.14). Both in vitro assays provided support to a hypothesis 

where TIC activity could be triggered upon phosphorylation by AKIN10 action.

 Considering that AKIN10 interaction with TIC could have an effect on the later in 

its circadian activity, I assayed for effects on the circadian clock by the kinases AKIN10 

and AKIN11. As effective T-DNA lines from these kinases were not available, I used 
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igure IV.2 Possible scenarios for TIC transcriptional control. 
IC could participate in transcriptional control through interacting with other proteins 
ssociated to transcriptional processes. This hypothetical function could be time-specific, 
s for example by activation through phosphorylation, or TIC could be active through the 
ay in non circadian roles, as for example iron homeostasis. 
n one scenario (A), TIC interaction with transcription factors (MYC2 in the example), 
ould be necessary for the transcriptional activity of the later. In a second scenario (B), 
IC could disrupt transcriptional complexes through interacting with one or more of its 
omponents either once bound to DNA or prior to the transcriptional complex assembly. 

etters in the figures indicate hypothetical protein complexes or transcription factors. TIC 
s depicted in this scheme phosphorylated indicated by a red circle labeled with a P 
phosphate). RNApol indicates RNA polymerase and the associated proteins with the 
NApol are indicated with circles with a T (TATA binding proteins and other factors). 
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inducible lines. As seen in figure III.15, both kinases did not have an effect on clock 

rhythms as long as they were not transcriptionally induced. Interestingly upon 

transcriptional activation, only AKIN10 had a lengthening effect on circadian periodicity 

(figure III.15). Therefore AKIN10 activity could have a role in the circadian clock. 

However the period lengthening could be consequence of the kinase activity independent 

of TIC. 

 In order to test if AKIN10 effect in the circadian clock depended on TIC, a tic-

2/AKIN10 line was evaluated on its effect on clock periodicity. I found that the CCA1:LUC 

driven rhythms were dependent of TIC, as in the tic-2/AKIN10 construct the lengthening of 

period did not took place (figure III.16). Therefore the result indicated that TIC is epistatic 

to AKIN10, as the activity of the later only had an effect with a functional TIC. It cannot be 

discarded that the period lengthening could be masked due to the dampened rhythms 

observed in tic-2; however the evidence so far collected is compelling to a requirement of 

TIC for AKIN10 activity toward the circadian clock. 

 I demonstrated that tic-2 presented a starch excess phenotype (figure III.3). This 

result is consistent with an interaction between TIC and AKIN10 as RNA interference 

(RNAi) lines of AKIN10/AKIN11 were unable to breakdown starch during the night 

(Baena-González, 2007). Thus it could be suggested that disruption of TIC-AKIN10 

interaction could lead to an impairment of starch breakdown. However the epistasis 

observed between TIC and AKIN10 within the circadian clock may not apply to the starch 

excess phenotype of tic-2 described in this thesis for and the starch accumulation reported 

for AKIN10 silencing lines (Baena-González, 2007). Earlier findings demonstrated that 

SnRK1 kinases were required for starch synthesis in Psycomitrella patens and in plants 

(Thelander, 2004 ; Halford, 2009). Also the SnRK1 was indispensable for the induction of 

sucrose synthase expression and ADP glucose pyrophosphorylase redox activation 

(Tiessen, 2003, Halford, 2009), both enzymes participating in starch synthesis. 

Furthermore the moss knockout of the SnRK1 (SNF1a and SNF1b) displayed 

photoperiodic and metabolic defects (Thelander, 2004) similar to those of tic reported in 

this work.  Therefore SnRK1 is essential for both starch synthesis and catabolism. 

Baena-González (2007) reported that the transcriptional induction of the dark 

induced genes (DIN), which are activated upon stress and repressed by sugar and light, 

required AKIN10/AKIN11. The tic-2 transcript profile showed that DIN1/SEN1, DIN4, 

DIN6/ASN1 and DIN10 were overexpressed. This result is consistent with tic-2 constitutive 

stress responsive transcriptome and with a probable starvation response before dawn. 
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Similarly this profile suggests that TIC-AKIN10 interaction is specific to the oscillator and 

that AKIN10 do not require a functional TIC in order to perform other metabolic activities. 

Therefore the TIC-AKIN10 interaction in relation to carbohydrate metabolism may be 

complex and indirect. 

Based on tic arrest of the circadian clock prior to dawn, the hypothesis that TIC 

activity should be triggered at a specific time of day was followed in this discussion. 

Nonetheless other mechanisms are plausible. As for example instead TIC could be active 

through the day and be inactivated in a time-specific manner prior to dawn. Similarly TIC 

activity could be modified through phosphorylation-dephosphorylaton cycles during the 

diurnal cycle. Considering that AKIN10 can interact with SKP1 (S-phase kinase associated 

protein 1) and consequently mediates its proteasomal binding of an ubiquitin ligase 

(Farrás, 2001), TIC specific activity could be determined by its degradation. Though TIC 

protein was shown to be constant through day and night, the protein monitored was driven 

by the cauliflower mosaic virus 35S promoter (Ding, 2007), which could have masked 

proteosomal degradation events. 

In summay, TIC-AKIN10 interaction and its effect on clock periodicity suggested a 

mechanism through which TIC could exert its function, as well as it opened a possible link 

between metabolism and energy signalling in regard of the circadian-clock entrainment. 

Clarifying and establishing these mechanisms will require further research in the area. 

 

 

TIC-like sequences: TKL. 

 Previously it was reported that within A. thaliana genome existed another sequence 

that when translated showed similarity to TIC, called TICKLE (TKL) (Ding, 2007). Both 

sequences were similar despite the differences in the length of their putative encoded 

proteins of 1550 and 978 amino acids for TIC and TKL, respectively. TKL conceptually 

could have a function within the circadian clock as many genes belonging to the same 

family tend to have redundant or partially redundant functions. Furthermore TIC-like 

sequences were restricted to the plant kingdom (figure III.17).  

TIC sequence phylogeny showed that TIC sequence was present since the origin of 

land plants, as it was present in Physcomitrella patens. Interestingly besides the moss, two 

TIC-like sequences were also present in the genome of grape and rice. This result 

suggested that the putative genome duplication of TIC sequence would have taken place 

before the emergence of plants. Both TIC-like sequences would have been present as 
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plants divided in monocots and dicots, followed then by independent gene loss in some 

species as exemplified by Sorghum bicolor and Populus trichocarpa. However the 

possibility of a gene loss before the origin of tracheophytes followed by genome 

duplication cannot be discarded. Strikingly, TIC sequence was found to have higher 

similarity to TIC-like sequences within the dicots than to TKL. This would imply that TIC 

sequence was conserved as speciation took place, but that TKL sequence diverged. 

Another explanation could be that TIC and TKL diverged a long time ago as is suggested 

by the pylogenetic tree (figure III.18). Consequently each gene acquired a different 

function. Supporting this statement, multiple-sequence-alignment curator applications 

discarded TKL sequence before generating a final phylogenetic tree, as the sequence was 

considered to be a divergent outgroup. This finding could explain why I did not observe 

that TKL could have a role in the A. thaliana circadian clock, as I discuss below. 

Interestingly the TIC-like sequences displayed blocks or hypothetical domains 

highly conserved. For example a domain rich in arginine and therefore highly polar is 

conserved in the proximal amino terminus (domain A, figure III.17A). A second block of 

residues positively charged with arginine and lysine surrounded by proline is conserved 

(domain D, figure III.17B). The presence of proline could suggest a folding within the 

protein that could either expose or cover the charged area. Between these charged areas, 

borders a conserved region with hydrophobic and negatively charged amino acids (domain 

B, figure III.17B). However the most interesting feature was block E which exhibited a 

polar region with two cysteines, two of them conserved with all the tracheophytes (except 

TKL) and one of them conserved in all the sequences (domain E, figure III.17). This could 

imply that TIC could be sensitive to redox modifications and therefore activity through 

cysteine bridges. However these structure speculations would require experimental 

confirmation. 

 

TKL within the circadian clock. 

 To assess if TKL could have a function in the circadian clock, I searched for 

available T-DNA insertion lines and generated homozygous mutants harbouring luciferase 

as a reporter gene under the control of the clock promoters CAB or CCR2. The analyses of 

clock-driven rhythms, either under constant light or in constant darkness, were not 

perturbed in the tkl-1 mutant (figure III.19). Thus this result indicated that TKL does not 

have a function in driven clock rhythms. Furthermore both tkl-1 and tkl-2 single mutants 

did not present any phenotypic alteration in rosette size or plant shape. Additionally their 
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flowering time was similar to the wild type. The flowering time as an output of the 

circadian clock suggested that at least the photoperiod pathway was not affected. 

 Considering that the function of TKL could be redundant to TIC, in a TIC wild-type 

background, a genetic role of TKL could be masked. To explore this idea, I generated 

double mutants between tic-2 and tkl-1. The double mutant displayed a phenotype similar 

to the tic-2 single mutant, suggesting that the absence of a phenotype in tkl-1 single mutant 

was not due to redundancy with TIC. 

 The phylogenetic analysis performed here (figure III.17 and III.18), and the results 

obtained through tkl circadian clock and phenotypic characterization (Figure III.19), 

indicated that TIC and TKL sequences had diverged and therefore have different functions, 

at least with respect to circadian rhythms. In support of this conclusion, microarray 

expression profiles available through the Botany Array Resource (BAR) indicated that 

TKL is not circadian regulated. Furthermore the expression profiles of TKL and TIC were 

different toward abiotic stress, in particular to heat and cold (data not shown). Therefore it 

is plausible that both TIC and TKL have different functions within A. thaliana. 
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V. Conclusions 

 

 Microarray gene expression analysis of tic-2 suggested that TIC is involved in 

several metabolic processes and abiotic-sensing responses. 

TIC mutation resulted not only in a disrupted circadian clock gene expression, but 

also in a stress phenotype. tic developmental defects included a slower growth rate and 

serration of leaves, as well as accumulation of starch. 

 tic displayed hypersensitivity to ROS and ABA, as well as susceptibility to biotic 

stress by P. syringae, but tic was tolerant to drought conditions. 

 Circadian clock periodicity can be affected by ROS generating compounds. The 

extent of the effect of these chemicals depended on the genotype. Methylviologen 

lengthened the period of wild type and tic, whereas hydrogen peroxide and SHAM affected 

the period of wild type and tic, respectively. 

 TIC could interact with the kinase AKIN10 in vitro and served as a substrate for 

this kinase. TIC and AKIN10 were epistatic on the circadian clock, as AKIN10 lengthening 

of period required functional TIC. 

 TKL was not found to be associated with the circadian clock, as its mutation 

displayed wild-type rhythms both under constant light and in darkness. 

 

 

 123



Perspectives 

VI. Perspectives 

 

 The research work presented here unveiled TIC functions beyond its role in 

maintaining circadian rhythms. tic-2 transcriptomic analysis helped unravel several stress 

associated phenotypes and responses that were not previously observed. Taken together, 

the constitutive stress behaviour of tic-2 could explain its slower growth and altered 

development. If the mutant has to invest more of its energy sources in dealing with 

inappropriate ROS production, is unable of remobilize carbon stores, such as starch, and it 

mounts a drought tolerance response probably as an effect of diminished gas exchange, 

photosynthesis and homeostasis would be affected. Thus tic-2 growth rate would be "slow 

down" as a strategy for survival. 

 One question that remained elusive through tic-2 characterization was the 

relationship between its function within the circadian clock and the stress behaviour. As 

the circadian clock controls at least 30% of the transcriptome (Covington, 2008), it is no 

surprise that a disruption in the oscillator will lead to pleitropic phenotypes. However no 

other clock mutant to date described has shown such a extensive array of phenotypes as 

tic-2. Widespread metabolic alterations in tic-2 are thus to date unique. Circadian clock 

mutants have been mainly described on their effects on rhythm generation and some clock 

outputs as flowering time (Imaizumi, 2010). Evidence of the selective advantage provided 

by a functional clock in phase with its environment demonstrated that, in the end, the 

circadian clock improved photosynthesis and general fitness (Dodd, 2005). Both short and 

long period mutants were outcompeted by the wild-type strain, regardless that the clock 

was entrained on a daily basis. This indicated that the phase of gene expression is crucial 

for an enhanced fitness. Though this may hold true, as seen for tic-2, it is unknown if clock 

mutants may have secondary effects on metabolism that in turn affect plant fitness. 

Recently Graf et al. (2010) argued that the fitness provided by the clock was not by 

improving photosynthesis, as Dodd et al. (2005) suggested, but that is due to correct timing 

of dawn with use of carbon supplies. However clarifying the role of carbon and clock 

would require investigating the behaviour of clock mutants with both short and long 

periods and analysing these clock mutants fitness respective to their starch accumulating 

phenotype. In this sense, exploring tic and gi mutants would be extremely helpful in 

establishing the role of starch degradation and the anticipation of dawn. 

 Recently the effects on metabolism and plant performance as a consequence of 

disrupted rhythms in circadian clock mutants have been reported (Legnaioli, 2009; 
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Fukushima, 2009). The central oscillator component TOC1 have been implicated in plant 

responses to drought by controlling stomata aperture through the circadian and diurnal 

regulation of the H subunit of the magnesium-protoporphyrin IX chelatase, also known as 

GENOME UNCOUPLED 5 (ABAR/GUN5) (Legnaioli, 2009). In a comprehensive work, 

Fukushima et al. (2009) demonstrated that the triple mutant prr9/prr7/prr5 had several 

metabolic defects that were different to those as a consequence of CCA1 overexpression. 

The authors found that the triple mutant had altered primary metabolism, in particular the 

tricarboxilic acid cycle (TCA), as well as biosynthethic pathways involved in chlorophyll, 

carotenoid, tocopherol and ABA. In this thesis, though the metabolite profile of tic-2 was 

not analysed, the physiological tests and the transcriptome analysis revealed that a single 

mutation could have effects in these and more pathways than the prr9/prr7/prr5. From this, 

it can be concluded that TIC has greater role in linking metabolism and the circadian clock 

than previously studied clock genes. Also it is tempting to speculate that the circadian 

clock and primary metabolism associated with mitochondria respiration and photosynthesis 

are tightly linked. In support of this hypothesis, in this work, I found misexpression of 

genes related to mitochondria metabolism in tic-2. Furthermore, the prr9/prr7/prr5 triple 

mutant was severely affected in the metabolism of the TCA (Fukushima, 2009). This 

would be linked to alterations in mitochondria respiration processes. Determining the 

extent of interaction between the clock and metabolism would require biochemical 

knowledge of the clock components beyond the circadian-clock interactions. 

It is still unclear if the mutations in the clock genes are the cause or the 

consequence of the transcriptomic and metabolic reprogramming so far observed. One 

scenario would be that the clock components have other functions beyond the circadian 

clock. Another possibility, which I favour, is that the circadian clock is linked to primary 

metabolic functions. Therefore a continuous crosstalk through signalling between the clock 

and the organelles, and more generally, cellular metabolism could be responsible of 

providing a selective advantage upon a changing environment. 

 A prime example of an interconnection between transcriptomic and metabolic 

pathways is seen in the mutant gigantea. The GI locus, which encodes for a protein with 

uncharacterized domains, is involved in rosette development (Redei, 1962) and flowering 

time (Fowler, 1999), starch metabolism (Eimert, 1995; Messerli, 2007), circadian clock 

(Fowler, 1999; Park, 1999) and resistance to oxidative stress (Kurepa, 1998). In this sense, 

TIC may also be involved in a plethora of metabolic events as demonstrated through this 

work. How can single genes have a role in so many processes? Further research will be 
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needed to address this question, but it is plausible that TIC may interact with several 

proteins in different complexes affecting transcriptional reprogramming in a diverse 

fashion (figure IV.2). 

Determining the extent of interaction between the clock and metabolism would 

require knowledge of the clock components beyond their effects in circadian clock so far 

described. Probably an understanding of this interconnection, would also require a shift of 

ideas in the area to expand research interests. Given the pervasiveness of the circadian 

clock, a more integrative view of the effects of the known clock mutants could clarify the 

extent of their roles in metabolic events and homeostasis. 

 So far, I have discussed the probable relationship between the circadian clock, 

metabolism and stress responses, and how they could be linked. One can ask how do the 

clock gene products exert their function? In the particular case and interest of this research, 

TIC association with AKIN10 provides a hypothetical mechanism by which the former 

could be specifically activated. TIC is involved in clock entrainment by the light signal at 

dawn and its time-specific function within the clock coincided with the dark to light 

transition and metabolic reprogramming by AKIN10. It is at the verge of dawn when a 

major transcriptomic and metabolic reprogramming occurs, as carbon stores reach their 

minimum levels, the ATP/AMP ratio is low and the onset of photosynthesis takes place. 

Therefore TIC phosphorylation by AKIN10 could be an entrainment signal to the circadian 

clock (figure IV.3). As the oscillator can still be entrained in a quadruple photoreceptor 

mutant (Yanovsky, 2000), it is not photo-transducing signals, but rather a metabolic signal 

derived from photosynthesis and general metabolism, integrated by AKIN10 and TIC, that 

entrains the clock. In this scenario, the clock would anticipate the dark to light transition, 

but as light increases the ATP/AMP ratio through photosynthesis, this signal would reset 

the clock. 

 Further experimentation would be required to test if the circadian clock can be 

entrained by a metabolic signal. If so it would be a difficult task to separate the internal 

metabolic stimuli from the environmental cue as both take place at the same time on a 

daily basis in the real world. Addressing this topic, though challenging, would be an 

exciting task, as it would provide an integrative view of the biology that underlies life 

every day with each new sunrise. 
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Figure IV. 3. Proposed model of TIC action within the circadian clock. 
TIC may act as an integrator of metabolic derived signals at dawn to the circadian 
clock. TIC could participate in the anticipation of the dawn-light through either 
changes in the cellular redox status or a direct oxido-reduction of TIC protein. These 
changes could also be originated by light. 
Similarly TIC action could be triggered upon phosphorylation by AKIN10. AKIN10 
would sense changes in the carbohydrate availability (depicted with a glucose 
molecule) as changes in the AMP/ATP ratio and thus would phosphorylate TIC as one 
of its targets. Then activated TIC could interact with other proteins or protein 
complexes. These interactions could be with the transcription factors revealed during 
the YH2 or with undiscovered components (labeled as W and Z in the figure). TIC 
action within the clock for driving morning clock-gene expression could be by either 
directly interacting with the proposed X factor in the clock three loop model or 
indirectly through other proteins (labeled as W and Z in the figure). Thus TIC would 
participate in closing the loop between TOC1 and CCA1/LHY expression and 
entraining the circadian clock toward the oncoming day. 
 
White lines and arrows indicate interactions between molecules and induction of 
transcription, respectively. Day and night are indicated by clear pale blue and dark 
blue respectively. Dawn and dusk are indicated by graded color changes representing 
the sunrise/sunset (left and right side respectively) 
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VIII. Appendix 
 
 

Table V. Genes differentially expressed relevant to this study 
 

 
 
 
 
 
 
 
 
 

Genes that were found to be differentially expressed (see methods) are listed with their 
corresponding ATG code and their fold change value (log2). Fold change values derived 
from tic-2 versus wild-type comparisons and therefore reflect induction or repression 
respective to the mutant. Negative fold-change values are noted with a minus sign. Dashed 
lines indicate that the gene was not found as differentially expressed. 
The genes were listed in categories based on their known or putative function and/or 
cellular localization relative to the topics studied in this work. A brief description of the 
genes product, activity or process is provided. Further particular details are found 
thorough the text in results and discussion sections. 

 
 
 

ATG code Gene name Function/process Dawn Reset 
Photosynthesis and chloroplast integrity 

At4g27440 PORB Chlorophyllide synthesis 3.91 3.41 
At5g54190 PORA Chlorophyllide synthesis 1.63 --- 
At3g14930 HEME1 Porphyrin biosynthesis 1.00 1.50 
At1g58290 

 
HEMA1 Glutamyl-tRNA reductase  

catalyzing the NADPH-
dependent reduction of Glu-
tRNA to glutamate 1-
semialdehyde (GSA) with. 
Involved in the early steps of 
chlorophyll biosynthesis. 

0.91 0.99 

At3g47470 
 

CAB4 Photosynthesis/Light harvesting 
complex 

0.88 --- 

At1g08550 NPQ1 (AVDE1) Violaxanthin de-epoxidase 0.82 1.50 
At5g54270 

 
CAB3 Photosynthesis/Light harvesting 

complex 
0.51 --- 

At3g16250 Ferredoxin Photosynthesis -1.02 --- 
At1g42550 PMI1 chloroplast movement -1.05 -0.62 
At4g24930 

 
thylakoid 

lumenal 17.9 
kDa protein 

Photosynthesis -1.06 --- 

Iron metabolic process 
At5g01600 FER1 Iron homeostasis 3.24 2.10 
At2g40300 FER4 Iron homeostasis 3.06 3.33 
At5g56080 NAS2 Iron transport 2.81 2.75 
At3g56090 FER3 Iron homeostasis --- 2.36 
At4g19690 IRT1 Iron transport 2.39 --- 
At1g80830 

 
NRAMP metal 

ion transporter 1 
Metal transporter 0.93 --- 
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ATG code Gene name Function/process Dawn Reset 
ABA and ABA related responses: drought, cold, water and salt stresses 

At5g05410 DREB2A Transcription factor for 
drought/cold gene expression 

2.49 1.97 

At2g17840 
 

ERD7  
early response 
dehydration 

Drought/cold/salt stress 1.99 1.54 

At2g42540 COR15A Cold 1.65 1.95 
At1g49720 ABRE binding 

factor 
ABA responsive 1.56 1.00 

At4g19120 ERD3 Drought/cold/salt stress 1.32 1.42 
At1g30360 EDR4 Drought/cold/salt stress 1.23 0.60 
At4g26080 ABI1 Negative regulator of ABA 

promotion of stomatal closure. 
1.21 --- 

At1g20450 ERD10 Drought/cold/salt stress 1.15 --- 
At5g66880 SNRK2.3 ABA kinase 1.09 --- 
At5g25610 RD22 

Response to 
dessication 

Drought/ABA responsive 0.87 --- 

At3g50500 SNRK2.2 ABA kinase 0.81 1.09 
At2g42530 COR15B Cold 0.73 3.23 
At1g52340 ABA2 Conversion of xanthoxin to 

ABA-aldehyde during ABA 
biosynthesis 

-0.96 --- 

Starch and carbohydrate metabolism 
At1g69830 AMY3 Starch degradation 3.61 3.74 
At3g52180 

 
SEX4 Phosphatase. Interacts with 

SnRK AKIN11. Binds starch. 
1.64 1.94 

At5g55700 BAM4 
β-amylase 

Starch degradation 1.17 0.85 

At1g10760 SEX1 
glucan water 

dikinase 

Starch degradation 1.03 1.40 

At1g28330 DRM1  Response to sucrose 1.99 -0.62 
At1g71880 

 
SUC1 

 
Sucrose transport/ sucrose-
proton symporter 

-1.08 -0.72 

At3g13450 
 

DIN4 Light and sucrose stimulus 
responsive 

1.50 0.67 

At5g20250 
 

DIN10 
Dark induced 

gene 

Induced by dark treatment/ 
senescence/photosynthesis 
chemical inhibition and level of 
sugar in the cell. 

0.85 --- 
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ATG code Gene name Function/process Dawn Reset 
DNA and RNA processes and Cell cycle 

At1g71770 PAB5 PolyA binding protein 2.53 2.80 
At5g02820 

 
DNA 

topoisomerase 
VIA (SPO11) 

Replication 1.41 0.74 

At5g43810 
 

ZWILLE/AGO10 Elongation initiation factor 2c 
(Argonaute class). Required to 
establish the central-peripheral 
organization of the embryo apex 
and of central zone and 
peripheral zone cells in 
meristems. 

1.28 0.87 

At5g13730 RNA polymerase 
sigma subunit 
SigD (sigD) / 

sigma-like factor 
(SIG4) 

Regulation of chloroplast 
transcription 

1.12 0.89 

At3g12610 DRT100 DNA damage/repair/toleration 1.06 1.30 
At5g02470 

 
DP-2 

transcription 
factor 

Cell cycle 

Cell cycle core gene 0.83 0.97 

At2g22490 
 

CYCD2 
D-type cyclin  

Cell cycle. Transcription 
regulated by sucrose but not 
phytohormones or nitrate 

-0.63 --- 

At4g31210 DNA 
topoisomerase  

Replication -0.72 0.60 

At3g46030 histone H2B Nucleosome assembly -0.87 --- 
At1g26910 60S ribosomal 

protein L10 
60S structural protein. 
Translation 

-0.87 --- 

At3g55280 60S ribosomal 
protein L23A 

60S structural protein. 
Translation 

-0.87 --- 

At3g03600 Ribosomal 
protein S2, 

mitochondrial 

Mitochondrial ribosome small 
subunit 

-0.87 -0.59 

At1g07070 60S ribosomal 
protein L35a  

Translation. Ribosome 
biogenesis 

-0.87 --- 

At2g45710 40S ribosomal 
protein S27 

40S structural protein. 
Translation. 

-0.97 --- 

At1g07370 Proliferating cell 
nuclear antigen 1 

(PCNA1) 

Replication and cell cycle 
regulation 

-0.97 0.77 

At4g34730 Ribosome 
binding factor A 

RNA binding and processing -1.22 --- 
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ATG code Gene name Function/process Dawn Reset 
DNA and RNA processes and Cell cycle 

At5g24120 RNA polymerase 
sigma subunit 
SigE (SIG5) 

Transcription of plastid genes in 
response to blue light 

-1.38 -0.79 

At1g08540 RNA polymerase 
sigma subunit 
SigB (sigB) / 
sigma factor 2 

(SIG2) 

Subunit chloroplast RNA 
polymerase. Induced by red and 
blue light 

-0.74 --- 

At5g59180 DNA-directed 
RNA polymerase 

II 

Transcription -0.52 0.53 

At5g41010 DNA-directed 
RNA 

polymerases I, II, 
and III 7 kDa 

subunit 

Transcription. Non catalytic 
subunits. 

-0.54 --- 

At1g68990 DNA-directed 
RNA 

polymerase, 
mitochondrial 

(RPOMT) 

Transcription -0.63 --- 

At2g24120 DNA-directed 
RNA 

polymerase, 
chloroplast 
(RPOPT) 

Transcription -0.80 --- 

At3g49000 DNA-directed 
RNA polymerase 

III RPC4  

Transcription --- -0.54 

At1g59990 DEAD/DEAH 
box helicase 

(RH22) 

Helicase -1.44 -0.75 

At2g32765 Small ubiquitin-
like modifier 5 

(SUMO) 

SUMOlyation -1.44 -0.86 

Light perception and signalling 
At2g43010 PIF4 Transcription factor 4.63 1.38 
At1g09570 PHYA Red light photoreceptor 1.84 0.96 
At5g64330 NHP3 Blue light signalling 1.76 2.26 
At3g45780 NHP1/PHOT1 Blue light receptor 1.71 1.50 
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ATG code Gene name Function/process Dawn Reset 
Redox homeostasis/Mitochondrial integrity/defense 

At5g02540 SDR Short chain 
dehydrogenase 

Oxidoreductase activity 2.77 2.06 

At1g20630 CAT1 Redox/catalase 2.51 1.51 
At1g20620 CAT3/SEN2 Redox/catalase 1.43 1.70 
At4g35770 SEN1/DIN1 Oxidative stress/aging/phosphate 

starvation 
1.37 0.87 

At3g22370 AOX1A Electron transfer from the 
ubiquinone to oxygen without 
energy conservation. A marker 
for mitochondrial retrograde 
response. 

1.28 0.97 

At4g26670 Mitochondrial 
import inner 
membrane 
translocase 

subunit 
Tim17/Tim22/Ti

m23 

Transport 2.11 2.91 

At2g38400 Alanine 
glyoxylate 

aminotransferase 

Photorespiration 2.02 --- 

At1g79440 
 

succinate-
semialdehyde 
dehydrogenase 

(SSADH1) 

Mitochondrial NAD dependent 
catabolism reaction of succinic 
semialdehyde to succinate in the 
citric acid cycle. 

1.93 1.08 

At4g39660 Alanine--
glyoxylate 

aminotransferase 

Photorespiration 0.82 --- 

At1g06570 
 

p-hydroxyphenyl 
pyruvate 

dioxygenase 
(HPPDase)/ 

PSD1 

Catalizes the first step in the 
synthesis of both plastoquinone 
and tocopherols in plants 

0.68 --- 

At5g58270 Mitochondrial 
half-ABC 
transporter 

(STA1) 

Responses to heavy metals -0.73 --- 

At5g28840 GDP-D-mannose 
3',5'-epimerase 

activity 

Ascorbate biosynthesis -0.86 --- 

At5g47910 
 

Respiratory burst 
oxidase protein 

D (RbohD) / 
NADPH oxidase 

Reactive oxygen species process. 
Defense 

-0.89 --- 
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ATG code Gene name Function/process Dawn Reset 
Redox homeostasis/Mitochondrial integrity/defense 

At5g51060 Respiratory burst 
oxidase protein C 

(RbohC) / 
NADPH oxidase 

ATP dependent NADPH oxidase --- -1.81 

At2g23420 
 

Nicotinate 
phosphoribosyl 

transferase 
NAPRT  

Nicotinate (NAD) salvage 
pathway 
 

-0.94 --- 

At2g35380 PER20 Peroxidase activity -0.96 -1.16 
At2g29450 

 
Glutathione S-

transferase (103-
1A) 

Oxidative stress responses -1.11 --- 

At3g29200 
 

Chorismate 
mutase, 

chloroplast 

L-ascorbate peroxidase. Redox -1.17 --- 

At2g43510 Defensin-like 
(DEFL) family 

Trypsin inhibitor, putative -1.26 -1.57 

At4g28390 
 

ADP, ATP 
carrier protein, 
mitochondrial 

Transport -1.39 -1.94 

At1g49380 Cytochrome c 
biogenesis 

protein family 

Cytochrome complex assembly -1.43 -0.69 

At2g28190 Cu-Zn 
superoxide 
dismutase 
(CSD2) 

Responses to oxidative stress, 
cupper and iron, and light 

-1.63 -0.74 

At5g67400 PER73 Redox/peroxidase -1.72 -2.69 
At4g31870 Gluthathione 

peroxidase 
Redox -3.40 -1.14 

At5g58260 Expressed 
protein 

NADH dehydrogenase complex 
(plastoquinone) assembly 

-1.45 -0.56 

At5g14760 L aspartate 
oxidase 

NAD biosynthesis -2.77 --- 
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ATG code Gene name Function/process Dawn Reset 
Primary amino acid metabolism 

At3g25900 Homocysteine S-
methyl 

transferase 1 
(HMT-1) 

Methionine biosynthesis 1.45 --- 

At1g03090 3-methycrotonyl-
CoA carboxylase 
1 (MCCA) 

Leucine degradation. Nuclear 
encoded and the active enzyme 
located in the mitochondria. 
 

1.44 -0.65 

At4g35830 ACO 
aconitate 
hydratase, 

cytoplasmic / 
aconitase 

Interconversion of isocitrate and 
citrate via a cis-aconitate 
intermediate in both the TCA 
and glyoxylate cycles. Energy 
balance and iron post-
trasncriptional regulation 

0.81 0.84 

At3g47340 
 

ASN1 asparagine 
synthetase 1 
(glutamine 
dependent)/ 

DIN6 

Induced within 3 hours of dark 
treatment, in senescing leaves 
with exogenous photosynthesis 
inhibitors. Expression pattern is 
responding to the level of sugar 
in the cell. 

1.94 --- 

Secondary metabolism and lipid metabolism 
At5g53120 

 
SPDS3 

spermidine 
synthase,  

Polyamine biosynthesis -0.60 --- 

At4g34710 arginine 
decarboxylase 2 

(SPE2) 

Catalyzes the rate limiting first 
step of polyamine biosynthesis. 
Responses to cold and oxidative 
stress 

-0.78 -0.62 

At2g16500 arginine 
decarboxylase 1 
(SPE1)/(ADC1) 

Catalyzes the rate limiting first 
step of polyamine biosynthesis. 
Responses to cold and oxidative 
stress 

-2.18 -0.94 

At3g61530 ketopantoate 
hydroxymethyl 

transferase  

Vitamin B5 synthesis 
 

-0.81 --- 

At5g08640 
 

flavonol synthase 
1 (FLS1) 

 

Flavonoids biosynthesis -1.36 -0.97 

At5g13930 naringenin-
chalcone 

synthase (CHS) 

Flavonoids and anthocyanins 
biosynthesis. 

-2.67 -1.30 

At5g24150 squalene 
monooxygenase 

1,1 (SQP1,1) 

Sterol biosynthesis -4.16 -0.88 
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ATG code Gene name Function/process Dawn Reset 
Secondary metabolism and lipid metabolism 

At5g24160 
 

squalene 
monooxygenase 

1,2 (SQP1,2) 

Sterol biosynthesis. FAD 
binding 

-0.68 --- 

At4g35790 
 

Phospholipase D 
delta / PLD delta 

Apoptosis 1.32 0.54 

At3g45140 LOX2 Wounding/ jasmonic acid -1.02 --- 
At1g55020 LOX1 Defense/wounding/ jasmonic 

acid biosynthesis 
-1.63 -1.17 
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