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Abstract

Chronic lymphocytic leukemia (CLL) is an incurable disease, which is char-
acterized by an accumulation of monoclonal CD5/CD19/CD23-positive B-
lymphocytes, which exhibit a functional apoptotic block. The vascular en-
dothelial growth factor (VEGF) is a potent mitogen with the capacity to in-
duce angiogenesis by stimulation of vascular endothelial cells. It has been
suggested that VEGF has an angiogenesis-independent role in hematological
diseases. Also, CLL cells could be shown to express and secrete VEGF and to
feature VEGF-receptors (VEGF-R).

Despite their apoptotic-resistance in vivo, CLL cells die within a few days
when taken out of their natural microenvironment and are placed under cell
culture conditions, strongly suggesting the bone marrow and peripheral blood
to be of critical importance in the prevention of apoptotic CLL cell death in
vivo. As for example bone marrow stromal cells produce and secrete VEGF,
a paracrine feedback loop might be involved in the apoptotic resistance CLL
cells feature in vivo.

The aim of this investigation was to elucidate the role of VEGF in the apoptotic
resistance of CLL cells, especially in the background of a microenvironmental
influence and therefore, to discover potential targets for a CLL cell specific
therapeutic approach.

In this study it could be demonstrated that CLL cells, but not healthy B-
cells express the most common VEGF isoforms and exhibit a phosphorylated
VEGF-receptor 2 (VEGF-R2). Phosphorylation was lost with time under cell
culture conditions and went along with a loss of the apoptotic resistance. Since
addition of tThVEGF increased levels of anti-apoptotic proteins, but did not
significantly influence CLL cell survival in wvitro, it can be concluded that
VEGF has pro-survival functions, but requires further components derived
from the microenvironment to achieve full apoptotic protection as present in
vivo. Therefore, CLL cells were cocultured together with the bone marrow-
derived stromal cell line HS5, which produced and secreted high levels of
VEGF. This resulted in maintenance of the phosphorylated receptor status
and a prolonged survival of the CLL cells in witro. Interestingly, healthy



B-cells, which only express low levels of VEGF-R2, did not profit from co-
culture with HS5 in terms of survival. The essential role of VEGF in HS5-
mediated survival-support could be demonstrated, as neutralization of VEGF
in CLL/HS5 coculture using a monoclonal VEGF antibody significantly re-
duced the survival advantage. In this study it could further be demonstrated
that paracrine VEGF, derived from bone marrow stromal cells, rather than
CLL cell-derived VEGF is essential, as downregulation of VEGF in HS5 cells
by siRNA almost completly abolished the coculture-mediated survival support
for CLL cells.

As a possible mechanism of VEGF-mediated survival support the activation of
signal transducer and activator of transcription (STAT) 3 via tyr705 phospho-
rylation could be demonstrated. This phosphorylation was induced by addition
of recombinant human VEGF to CLL cell monoculture as well as by coculti-
vation with HS5 cells and was reversible by addition of a VEGF-R inhibitor.
The activation of STAT3 could be demonstrated by an upregulation of the
known STAT3 targets Belyy, and cyclinD1. The known downstream effector of
the VEGF-R2 Akt was neither phosphorylated upon rhVEGF stimulation nor
by HS5 coculture.

The VEGF-STATS signal transduction pathway can therefore be considered
a suitable target for a therapeutic intervention. The tested monoclonal anti-
body MAb293 and the VEGF-R inhibitor GW 786034 significantly reduced the
survival advantage CLL cells gained from HS5 coculture. The selected STAT3-
inhibitor was effective in high concentrations after long incubation times with
limited selectivity.

In conclusion, we propose that VEGF action is indispensable in a multi-
part pro-survival complex involving STAT3 and subsequent expression of pro-
survival factors in CLL cells. The VEGF/VEGF-R/STAT3 pathway might

therefore be a promising target for selective therapeutic approaches in CLL.



Zusammenfassung

Die chronische lymphatische Leukémie (CLL) ist eine unheilbare Erkrankung,
die sich durch eine Akkumulation monoklonaler CD5/CD19/CD23-positiver B-
Lymphozyten auszeichnet, deren Fahigkeit zur Apoptose in vivo hochgradig
reduziert ist. Der vaskuldre endotheliale Wachstumsfaktor (VEGF) ist ein po-
tentes Mitogen, welches durch Stimulation von Gefaflendothelien Angiogenese
auslost. Es wird angenommen, dass VEGF bei himatologischen Erkrankungen
eine Angiogenese-unabhéngige Funktion besitzt. Auch CLL-Zellen exprimieren
und sezernieren VEGF und weisen VEGF-Rezeptoren auf.

Trotz ihrer Apoptoseresistenz in vivo sterben CLL-Zellen, die aus ihrer Umge-
bung im Blut oder Knochemark isoliert werden, innerhalb weniger Tage in vitro
ab, weswegen dem natiirlichen Mikromilieu der CLL-Zellen eine wichtige Funk-
tion bei der apoptotischen Resistenz zugeschrieben wird. Da Knochemarkstro-
mazellen etwa VEGF produzieren, konnte eine parakrine VEGF-Riickkopplung
an der Verhinderung des Zelltodes der CLL-Zellen in vivo beteiligt sein.

Das Ziel der vorliegenden Arbeit war, die Rolle von VEGF beim apoptoti-
schen Block der CLL-Zellen, insbesondere im Hinblick auf den Einfluss des
Mikromilieus zu untersuchen und dadurch potentielle Angriffspunkte fiir eine
zielgerichtete Therapie aufzudecken.

Es konnte gezeigt werden, dass CLL-Zellen im Gegensatz zu gesunden B-
Zellen verschiedene VEGF-Isoformen produzieren und phosphorylierte VEGF-
Rezeptoren 2 (VEGF-R2) aufweisen. Diese Phosphorylierung ging mit der Zeit
in Kultur verloren, was mit einem Verlust der Apoptoseresistenz assoziiert war.
Da eine Zugabe von rekombinantem VEGF (thVEGF) zu einer verstérkten Ex-
pression anti-apoptotischer Proteine fiihrte, das Uberleben der CLL-Zellen in
vitro jedoch nicht verbessern konnte, kann davon ausgegangen werden, dass
weitere Komponenten des Mikromilieus benotigt werden um eine vollstandi-
ge Verhinderung von apoptotischem Zelltod, wie sie in vivo vorhanden ist,
zu erzielen. CLL-Zellen wurden deswegen zusammen mit der Knochenmark-
stromazelllinie HS5, welche VEGF exprimiert und sezerniert, kultiviert. Dies
fithrte zu einer Aufrechterhaltung der VEGF-R2-Phosphorylierung und einem
deutlich verbesserten Uberleben der CLL-Zellen. Gleichzeitig profitierten ge-
sunde B-Zellen, welche den VEGF-R2 nur in sehr geringen Mengen aufweisen,
nicht von einer Kokultur mit HS5. Die entscheidende Rolle von VEGF bei der



Cokultur-vermittelten Uberlebensverbesserung der CLL-Zellen wurde daudrch
bestétigt, dass eine Blockierung des VEGF-Signalweges durch Zugabe eines
VEGF-neutralisierenden Antikorpers zu einem reduzierten Uberlebensvorteil
fiihrte. Zudem konnte gezeigt werden, dass ein parakriner Effekt essentiell ist,
da eine siRNA-vermittelte Herunterregulierung von VEGF' in HS5-Zellen den
Uberlebensvorteil der CLL-Zellen fast komplett aufheben konnte.

Als ein moglicher Mechanismus des VEGF-vermittelten Uberlebens der CLL-
Zellen konnte eine Aktivierung des signal transducers and activators of trans-
cription (STAT) 3 durch Tyr705-Phosphorylierung gezeigt werden. Diese wur-
de durch Zugabe von thVEGF in einer CLL-Monokultur und durch Kokul-
tivierung mit HS5-Zellen hervorgerufen und konnte durch gleichzeitige Zuga-
be eines VEGF-R-Inhibitors wieder riickgdngig gemacht werden. Die Akti-
vierung von STAT3 wurde durch eine Hochregulierung der STAT3 Zielgene
Bclyy, und cyclinD1 nachgewiesen. Der bekannte intrazelluldre Signalmedia-
tor des VEGF-Rezeptors Akt zeigte weder nach exogener VEGF Stimulation
noch nach HS5-Kokultur eine verstéarkte Phosphorylierung. Die VEGF /VEGF-
R/STAT3-Achse eignet sich demnach als potentieller Angriffspunkt fiir einen
zielgerichteten Therapienasatz. Sowohl der monoklonale anti-VEGF Antikor-
per MAb293, als auch der VEGF-R-Inhibitor GW 786034 reduzierten das
Uberleben der CLL-Zellen in einer iiberlebensfordernden Kokultur mit HS5-
Zellen signifikant. Der ausgewihlte STAT3-Inhibitor war in hohen Konzentra-
tionen und nach langer Inkubationszeit wirksam und begrenzt selektiv.
Zusammenfassend kann VEGF als ein essentieller Bestandteil eines iiberle-
bensférdernden Zusammenspiels der CLL-Zelle mit ihrem Mikromilieu be-
schrieben werden, bei dem die Aktivierung von STAT3 eine Rolle spielt. Der
VEGF /VEGF-R/STAT3 Signalweg ist demnach ein viel versprechendes Ziel

fiir eine therapeutische Intervention in der CLL.
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1 Introduction

Chapter 1

Introduction

1.1 Chronic lymphocytic leukemia (CLL)

1.1.1 Definition

Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disorder, which
is characterized by the accumulation of mature, but immuno-incompetent B-
lymphocytes in the bone marrow, peripheral blood, and various organs.

CLL is defined by three characteristics which are (i) < 5.000 monoclonal B-
lymphocytes per ul blood, (ii) the presence of a clonal population of CD5/
CD19/CD23-positive lymphocytes and (iii) less than 55% circulating prolym-
phocytes (Hallek et al., 2008).

1.1.2 Epidemiology

Chronic lymphocytic leukemia (CLL) affects mainly people of the age of 50
and older and it account for approximately 40% of leukemias in adults older
than 65 years. Its incidence increases with age and patients younger than
30 years are very rare. Men are twice as likely to develop CLL as women
(Ries LAG, 1999). Prevalence for occurrence of CLL could be encountered
in Europe, North America and Australia, whereas the disease is considerably
less common in Asian countries such as India, Japan or China (Groves et
al., 1995). Since Asians migrating to the USA were shown to maintain their
low incidence rates, genetic factors are more likely to be responsible than

environmental ones (Groves et al., 1995; Pan et al., 2002; Yanagihara et al.,



2 Introduction

1989). Nevertheless, some studies described a correlation of CLL incidence
and pesticides or herbicides used in agriculture or exposure to benzene and the
rubber industry (Goldin and Slager, 2007; Schnatter et al., 2005), but results
are not consistent (Richardson et al., 2005). Furthermore, neither ionizing
irradiation nor viral genes could be associated with the prevelance of CLL
(Kipps, 1998).

Several families with increased occurrence of the disease have been described
over the last 25 years, suggesting a familial predisposition (Cartwright et al.,
1987; Goldgar et al., 1994; Pottern et al., 1991). First- and second-degree
relatives of patients with CLL have an increased risk of subclinical monoclonal
B-cell expansion and lymphoid malignancies including CLL. Furthermore, in
successive generations of families with CLL disease onset is frequently seen
earlier and often present in a more severe form (Rawstron, 2004; Yuille et
al., 1998). Recently, a study demonstrated an 8.5 fold increased risk for case
relatives to obtain CLL (Goldin et al., 2009). Nevertheless, no inherited genetic
defects, making a member of a CLL family prone to obtain the disease, were
identified so far. It is likely that a complex of several aberrant events, rather

than one simple genetic defect, is responsible for occurrence of CLL in families.

1.1.3 Etiology and molecular pathogenesis

The etiology of CLL remains largely unclear up to date. Nevertheless, several

factors have been associated with disease initiation and progression.

1.1.3.1 Origin of the CLL cell

The determination of the origin of the leukemic CLL cell has been a focus of
scientific interest for a long time. The knowledge of the tumor precursor cell
in CLL is of high impact to understand the pathogenesis of the disease and
to obtain insight into the mechanisms of the transformation process from a
healthy B-cell towards a malignant CLL cell.

In general, B-cell development initiates in the bone marrow and in the fe-
tal liver originating from stem cells (HSCs). Starting from HSCs multiple
hemtopoietic lineages can be generated through a series of intermediate pro-

genitors. B-cells develop from a common lymphoid progenitor. Bone marrow-
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derived antigen-inexperienced naive B-cells move to the germinal center (GC)
in the peripheral lymphnodes where they undergo division and proliferation
processes. In the GC, the process of immunoglobulin variable region (IgV)
somatic hypermutation (SHM) modifies the antibody genes of the B-cells to
generate high affinity antibodies. In the progress of normal B-cell development
these B-cells with improved antigene-binding are positively selected and dif-
ferentiate into memory B-cells and plasma cells. GC B-cells also undergo class
switching by a somatic DNA recombination mechanism. Disruption of the reg-
ulation of B-cell differentiation and activation might result in the occurrence
of leukemias or lymphomas. At which step this "oncogenic hit" occurs is not

clear up to now.

IgV hypermutation IgV class switch

chronic antigen stimulation
genetic alterations

. antigen stimulation I
somatic oncogenic hit ? GC B-cells

V(D)J recombination
centrocytes centroblasts

_—
oncogenic hit ? CLL
mutated
Germinal Center
) GC

) naive
B-cells >  CLL

I unmutated

antigen stimulation
oncogenic hit ?

immature
B-cells

Bone Marrow

Figure 1: Model for the cellular derivation of CLL.

Source: Own illustration

CLL cells are in general a morphologically homogenous population with a char-
acteristic immunophenotype expressing the antigens CD5, CD19 and CD23
while exhibiting low levels of surface immunoglobulin (Ig) (Caligaris-Cappio
and Hamblin, 1999). Though, on the genetic level CLL cases are hetero-
geneous with rearranged variable genes in the immunoglobulin heavy chain
(IgVy), which can be either somatically hypermutated or unmutated (Chio-
razzi and Ferrarini, 2003; Fais et al., 1998; Oscier et al., 1997; Schroeder,
Jr. and Dighiero, 1994). Additionally, these genetically-defined subtypes are
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associated with divergent clinical courses. While IgVy-mutated CLL cases
show generally a more benign clinical course, unmutated CLL cases have been
demonstrated to have a less favourable prognosis. These facts at first sug-
gested that there might be different tumor precursor cells for the major CLL
subtypes originating from distinct stages of B-cell development. Additionally,
the presence of somatically mutated antibody genes in CLL patients could be
an indication for antigenic selection to be involved in the development of CLL.
This was further proofed by the finding of certain IgVy family members to
be more frequently present in CLL patients, independent of their mutational
status, than would be expected from their expression in the antibody reper-
toire in normal B-cells (Fais et al., 1998). In several studies it was proofed
that these specific IgVy gene repertoires in CLL patients are indeed a result
of antigen selection rather than simply reflecting the aging process (Potter et
al., 2002; Widhopf et al., 2004). A further pointer towards CLL cells being
a result of antigen-mediated selection is the fact that unrelated CLL patients
can feature almost identical B-cell receptors (BCRs) (Messmer et al., 2004;
Murray et al., 2008; Tobin et al., 2003; Tobin et al., 2004; Widhopf et al.,
2004). Gene expression profiling (GEP) studies could identify a subset of
genes (molecular signature), which allowed differentiation of IgVy unmutated
and IgVy mutated cases. CLL cases with unmutated IgVy; seem to express high
levels of genes which are known to be activated as a result of BCR-mediated
stimulation (Rosenwald et al., 2001). A physiological consequence could be
antigen-mediated BCR-signaling to have impact on the clinical prognosis of
CLL (Muzio et al., 2008).

Another pointer towards CLL cells being derived from antigen-stimulated B-
cells is their cell surface phenotype which resembles that of antigen-activated
B-cells (Damle et al., 2002). GEP suggested B-cells to be most closely related
to a specific B-cell subset of the CD27+ B-cells (Klein et al., 2001). Those
cells comprise a heterogeneous pool of B-cells, such as memory B-cells and
marginal zone B-cells, which are antigen-experienced. Interestingly, GEP did
not identify any correlation between CLL cells and CD5+ cells derived from
cord blood, CD27-(naive), or GC B-cells (Klein et al., 2001; Rosenwald et al.,
2001). CD27+ cells comprise up to 40% of B-cells in the peripheral blood (PB)

of adults and are mainly found in sites of antigen entry, such as the marginal
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zone and the tonsillar subepithelium (Klein et al., 1998). Normal CD27-+
cells respond quickly to exogenous antigens by differentiation into antibody-
secreting cells (Kindler and Zubler, 1997). These facts provide further evidence
for antigen-experienced cells to be the precursor of CLL cells.

Additionally, the cytogenetic abnormalities occurring in CLL patients differ
markedly from that of other B-cell malignancies and resemble most closely
that of hairy cell leukemia (HCL) (Basso et al., 2004). HCL features distinct
morphological and phenotypic characteristics in comparison to CLL (Harris
et al., 1994), but interestingly, HCL resembles CLL in that its GEP is most
closely related to that of the CD27+ cells (Basso et al., 2004).

All the mentioned evidences target on CLL being derived from one com-
mon precursor, an antigen-experienced (CD5-CD27+) B-lymphocyte, which
are highly presented in the lymphoid organs and the peripheral blood (appr.
40%). As virtually all CD27+ cells are CD5-, the CD5 expression in CLL cells
would be a consequence of the activation phenotype of the tumor cell (Wortis
et al., 1995). Besides this theory it has recently been suggested that CLL
cells might arise from a small population of CD5+ B-cells detected in the lym-
phoid organs (Dono et al., 2007). With this background, also the relation of
monoclonal B-cell lymphocytosis, a benign clonal proliferation of CD5 B-cells,
which phenotypically and genetically resemble that of the CLL cell, and CLL
remains unclear (Dagklis et al., 2009; Landgren et al., 2009; Rawstron, 2004).

1.1.3.2 Genetic factors

In CLL several frequently occurring chromosomal aberrations have been de-
scribed. Going along with technique advancement, the numbers of detected
chromosomal abnormalities in CLL patients have increased from 50% detected
by banding analysis (Carney and Wierda, 2005) to approximately 80% detected
by fluorescent in wvitro hybridisation (FISH), comparative genomic hybridisa-
tion (CGH), single nucleotide polymorphism (SNP) and micorarrays (Pfeifer
et al., 2007; Stilgenbauer et al., 2002). Genetic abnormalities in CLL are
thought to be acquired after birth through chromosomal instabilities, rather
then being inherited. The most common genetic defect in approximately 55%
of CLL cases is the deletion of 13q14.1 (Dohner et al., 1999). While at first

the tumor suppressor gene RB1 was suggested to be the candidate gene for
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this aberration (Liu et al., 1992), this assumption was refuted as an RB1 dele-
tion or mutation is only found in a small percentage of the malignant clone
(Dohner et al., 1994). Instead has this region recently been described to en-
code for two distinct micro RNAs (miRNA), miR15A and miR-16-1 (Calin
and Croce, 2006). Up to now, there are no natural targets of those miRNAs.
An increase in T cell leukemia 1 (TCL1) and B-cell lymphoma 2 (Bcl2), both
anti-apoptotic factors, was observed when these miRNAs where deleted, sug-
gesting those genes to be potential targets of miR15A and miR-16-1 (Calin et
al., 2005; Calin and Croce, 2006). As 13q14.1 as a sole abnormality confers a
favourable prognosis (Dohner et al., 2000) the exact role of this deletion is not
clear up to date. Second prevalent chromosomal defect in CLL is the deletion
of 11¢22 in approximately 18% of cases (Dohner et al., 1997). As a candiate
gene the ATM gene has been described to be present in this region. ATM is
a crucial player in cellular response to double strand DNA breaks (Stankovic
et al., 2002). Besides deletion, ATM gene mutations are a frequent event in
CLL (Bullrich et al., 1999; Stankovic et al., 1999). As also here, deletions in
1122 are not always accompanied by mutations, it is thought that potentially
further genes are involved (Schaffner et al., 1999). 11q22 deletion is typically
associated with a poor prognosis and advanced stage disease (Dohner et al.,
1997). The third most common chromosomal aberration is trisomy 12 with an
incidence of approximately 16% (Oscier, 1994). The crucial segment in this
region has yet to be determined. Bands 12q13-q22 include a segment that is
found to be duplicated in CLL (Merup et al., 1997) with MDM2, a negative
regulator of p53 as a potential oncogene, in this location. However, recently
no impact of MDM2 polymophism in a small cohort (85 patients) of CLL pa-
tients could be detected (Lahiri et al., 2007). Several adverse features have
been associated with this abnormality such as atypical cell morohology and
immunophenotype (Dewald et al., 2003; Matutes et al., 1996). Around 7%
of CLL cases exhibit a deletion on the short arm of chromosome 17 which
contains the p53 gene and is associated with short survival, rapid disease pro-
gression (Dohner et al., 1995a) and drug-resistance (Turgut et al., 2007). The
p53 protein arrests cells with damaged DNA and facilitates DNA-repair (Vo-
gelstein et al., 2000). Other than inducing DNA-repair, p53 can also promote
apoptosis to abet the destruction of the damaged cells. In this way p53 also
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mediates cytotoxicity of many anticancer agents; hence it is not surprising
that patients possessing a p53 deletion generally show worse response towards
treatment, such as purine analogs or the anti-CD20 antibody rituximab (Byrd
et al., 2003; Byrd et al., 2007; Dohner et al., 1995b).

1.1.3.3 The bone marrow microenvironment

Neoplastic CLL cells are characterized by their prolonged survival due to a
resistance towards apoptosis in vivo, which entails their accumulation. This
feature is completely absent once CLL cells are taken out of their natural
microenvironment and put under in wvitro culture conditions (Collins et al.,
1989), indicating the bone marrow environment to be a crucial supporter of
their apoptotic resistance. Since early stages of CLL are characterized by bone
marrow infiltration the bone marrow microenvironment can be considered a
critical side of nurturing in the disease process. Bidirectional interactions be-
tween the malignant CLL cells and the non-transformed bystander cells lead to
the establishment by of an abnormal microenvironment favouring the survival
of the CLL cells. In turn, this extended survival might create an intracellu-
lar milieu which supports the occurrence of unfavourable genetic instabilities.
The microenvironment might also represent a niche for the CLL cell to retreat
therapeutic interventions.

Several cell types are present in the bone marrow, such as stromal cell, T-cells,
follicular dendritic cells (FDCs), BM-derived endothelial cells (BMECs), um-
bilical vein endothelial cells (HUVECs), monocyte-derived nurse-like-cells and
also cells involved in bone homeostatis such as chondroclasts, osteoclasts and
osteoblasts. This heterogeneous cell population creates a dynamic microen-
vironment of direct cell-cell interactions with high concentrations of growth

factors and cytokines present.
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Figure 2: Bone marrow microenvironment of the CLL cell.

Source: Own illustration

Several of those accessory cells have been demonstrated to have the capacity
of sustaining prolonged viability of the leukemic clone when placed together
in in vitro culture (Burger et al., 2000; Ghia et al., 2005; Jewell and Yong,
1997; Lagneaux et al., 1998; Panayiotidis et al., 1996a; Pedersen et al., 2002).
FDCs stay in contact with CLL cells especially in the early phase of bone
marrow involvement as well as in the lymph nodes (Chilosi et al., 1985). It
was demonstrated that CLL cell survival support by FDCs involves direct cell
contact dependent on CD44-ligation and subsequent upregulation of the anti-
apoptotic protein Mcll (Pedersen et al., 2002).

The presence of T-cells in a survival supporting in vitro coculture system can be
mimicked by addition of T-cell-derived cytokines, such as 1.4 or soluble CD40L
(Buske et al., 1997; Ranheim and Kipps, 1993). CD40 stimulation not only
prevents spontaneous apoptosis, but also results in proliferation (Granziero et
al., 2001; Patten et al., 2008), activation of CLL cells as well as chemokine pro-
duction (Ghia et al., 2002b; Yellin et al., 1994). Activated CD40L+ T-cells are
present in bone marrow-derived from CLL patients primarily in the so called
"proliferation centres" (PC) or pseudofollicles, which are the histological CLL
hallmark in lymph nodes. In PCs CLL cells are in close physical contact to
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these CD40L+ T-cells providing a CD40L-stimulus (Ghia et al., 2002b). In this
background it is of great interest, that lymph node and bone marrow-derived
CLL cells themselves might be responsible for the presence of activated T-cells
in the PCs, as they were described to express the T-cell attracting chemokines
CCL17 and CCL22. Expression of these chemokines on PB-derived CLL cells
could be induced upon stimulation with CD40L (Ghia et al., 2002b). Hence,
CLL and T-cells in a patient’s bone marrow possess bidirectional interactions
regulated by adhesion molecules and chemokines translating into a further pro-
duction of cytokines by both cell types (Ghia and Caligaris-Cappio, 2000).
Besides T-cells, stromal cells possess a significant influence on CLL cells. Stro-
mal cells are the key regulators of normal B-lymphopoiesis. Despite this
knowledge it is up to now not completely resolved, how the precise ligand-
receptor interaction between B-cells and stromal cells is controlled. Several ad-
hesion molecules have been implicated, such as selectins, integrins, for example
integrin f1-(CD29) and #2-(CD18), immunoglobulins, intracellular adhesion
molecules ICAM-1/CD54, ICAM-2/CD102 or ICAM-3/CD50 and the CD44
family of homing receptors (Caligaris-Cappio and Hamblin, 1999; Takeuchi and
Katayama, 1993). CLL cells express for example the integrins CD49d/CD11a
or CD11b/CD18 which interact with CD54 and CD106 on stromal cells and
have been reported to be survival-supportive for CLL cells (Plate et al., 2000).
Also other adhesion molecules, such as CD44 are highly expressed in CLL cells
and are associated with an aggressive disease progression and adverse progno-
sis (Eistere et al., 1996).

Besides direct cell-cell contacts also soluble factors, such as cytokines con-
tribute to CLL cell survival. Stromal cells for example produce the interleukins
IL-6, IL-7, I1-10, TGF-3, stem cell factor (SCF) and vascular endothelial
growth factor (VEGF) therewith exerting a complex regulatory function on
CLL cells (Ghia and Caligaris-Cappio, 2000). In general, CLL cells are known
to exhibit receptors for many pro-survival cytokines, suggesting a high response
potential towards these factors secreted by accessory non-tumorigenic cells in
the bone marrow and in the PB. Since CLL cells are also able to produce sev-
eral of those cytokines themselves, autocrine loops are likely to additionally
support CLL cell survival (Kay et al., 2002b).
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1.1.3.4 Abberant regulation of intracellular signaling cascades

Possibly reflecting the clinical heterogeneity observed in patients, various aber-
rantly activated signaling cascades have been associated with the initiation and
the course of CLL. A variety of humoral factors and cytokines that play a role

in the deregulation of these pathways have been described.

1.1.3.4.1 B-cell receptor (BCR) signaling

A current hypothesis suggests that CLL cells are selected by some sort of
antigenic pressure (Johnson et al., 1997) as evidenced by a highly restricted
immunoglobulin heavy chain variable region (IgVy) gene repertoire compared
to the normal adult B-cell repertoire (Kipps et al., 1989; Meinhardt et al.,
1999). Further the existence of somatic hypermutations of IgVy genes (Damle
et al., 2002) and expression profiling signatures (Klein et al., 2001) support
the idea of BCR-mediated stimulation to be involved in the origin of the CLL
cell, which was discussed earlier.

The BCR consists of membrane Igs which are associated with a CD79a/CD79b
heterodimer (van Noesel et al., 1992). Signal transduction of the BCR leads
to activation of non-receptor tyrosine kinases like Src and Syc (Burkhardt et
al., 1991; Yamanashi et al., 1991), increased intracellular calcium levels and
subsequently to cell division. This defective calcium release has been linked to
changes in global tyrosine phosphorylation patterns of cytosolic phosphopro-
teins.

The typical CLL cell expresses CD19, CD23 and CDb5, while expression of
CD22, FMC, CD79b and surface immunoglobulins is low or absent (Zomas et
al., 1996). CD79b is usually replaced by a truncated form, which is able to in-
hibit apoptotic signaling (Alfarano et al., 1999; Cragg et al., 2002). CLL cells
of patients show a wide heterogeneity in terms of the functional response of
their BCRs to stimulation through the surface immunoglobulins (sIg). While
some cases are highly sensitive and show effective activation as detected by
increased global tyrosine phosphorylation (Lanham et al., 2003), others are
completely unresponsive. It is of interest that the BCR unresponsiveness is re-
versible in vitro and dependent on the surface levels of IgM (Mockridge et al.,
2007). High responsiveness could be correlated with unmutated IgVy status,
ZAP70 and CD38 expression (Lanham et al., 2003; Zupo et al., 1996). Nev-
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ertheless, outcome seems to be highly dependent on time, strength, affinity
of the binding and antigen type. It can be speculated that in the cases with
more competent BCRs a constant antigenic stimulation might promote cell
survival and possibly also cell growth, while in non-responsive cases an ongo-
ing stimulation results in receptor desensitization an anergic state (Stevenson
and Caligaris-Cappio, 2004). While CLL cells are in GO/early G1 phase of the
cell cycle (Caligaris-Cappio and Hamblin, 1999), they are at the same time
apparently phenotypically hyperactivated (Damle et al., 2002). The determi-
nation of signaling pathways originating from the BCR have been the focus
of intense research. Recently constitutive activation of the mitogen-activated
protein kinase (MAPK) could be demonstrated which went along with active
NF-AT transcription factor activity. Interestingly, activation of Akt was not
seen in this study (Muzio et al., 2008). The combination of active MAPK and
NF-AT together with inactive Akt could be correlated with an anergic state
in murine B-lymphocytes (Merrell et al., 2006).

1.1.3.4.2 Apoptotic signaling pathways

Apoptosis is the process of programmed cell death and is controlled by a wide
range of cell signals, such as growth factors, cytokines, hormones, or toxins.
Several apoptotic pathways converge into a common final one, which results in
the activation of the family of caspases. Caspases are cysteine proteases with
the ability to cleave a variety of substrates in the cell, subsequently resulting
in their demise. Numerous pro-death and pro-survival molecules have to be
precisely balanced in order to maintain an accurate control of cell death in-
duction and prevention. CLL is a classical example for how dysregulation of
the apoptotic pathways can lead to malignancies. In CLL the anti-apoptotic
protein Bcl2 is highly upregulated. The Bcl2 family of proteins can be consid-
ered a key regulator of programmed cell death (Reed, 1997). Bcl2 is the best
characterized member and functions via several mechanisms (Tsujimoto and
Shimizu, 2000). It prevents pro-apoptotic proteins from functioning by forming
inactivating heterodimers and it can also form channels that stabilize the mi-
tochrondrial membrane, therefore impeding the release of apoptosis-inducing
factors, such as cytochrome C. Another member of the Bcl2 family of proteins

is Mcll. Mcll was recently described to function as a predictive marker in re-
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gard to response to chemoimmunotherapy in CLL, where high Mcll levels were
predictive of a poor response (Kitada et al., 1998). In CLL also the X-linked
inhibitor of apoptosis (XIAP), which is a member of the family of inhibitors of
apoptosis proteins (IAPs), was described to be present at high levels (Byrd et
al., 2002; Schliep et al., 2004). TAPs have a direct negative influence on apop-
tosis induction through inhibiting caspase activity (Deveraux et al., 1997) and
their presents is therefore likely to have strong impact on the ability of a cell

to undergo apoptosis.

1.1.3.4.3 Wnt/j-catenin/Lef-1 signaling pathway

The Wnt//-catenin/Lef-1 signaling pathway is known for its crucial role dur-
ing embryogenesis, while being largely downregulated or even completely shut
off in the adult organism. Its aberrant activity has been associated with sev-
eral cancers such as colon cancer or breast cancer. Wnt-proteins bind to a cell
surface receptor complex comprised of a member of the frizzled (FZD) receptor
family and its coreceptor LDL receptor related protein 5/6 (LRP5/6), lead-
ing to activation of a dishevelled protein family member (DSH). Active DSH
inhibits a complex consisting of glycogen synthase kinase 35 (GSK30), Axin
and adenomatous polyposis coli (APC). In its active state, this complex leads
to phosphorylation of S-catenin via GSK3p3, which is subsequently degraded
by the proteasome. Inhibition of the GSK33/Axin/APC complex prevents
[-catenin phosphorylation and degradation. It accumulates in the cytoplasm
and translocates into the nucleus, where it binds and activates a member of
the T-cell factor (TCF)/lymphoid enhancer binding factor 1 (Lef-1) transcrip-
tion factor family. This leads to expression of target genes, which are involved
in the regulation of cellular processes, such as proliferation and differentiation
(Polakis, 2000).

Reasons for aberrant activity of this pathway in cancer are variable and range
from reduced presence of natural occurring Wnt-inhibitors to constitutively
activating mutations. In CLL, the expression of several Wnt-inhibitors is re-
duced due to epigenetic silencing (Chim et al., 2008), while Wnt-proteins are
significantly overexpressed (Lu et al., 2004) and the final effector of the cascade
Lef-1 was described as one of the most overexpressed genes in CLL (Jelinek

et al., 2003). It has been demonstrated that this pathways confers a crucial
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survival support to CLL cells and that it offers several option for therapeutic
interventions (Gehrke I et al., 2009) Wnt-signaling inhibition by for example
R-Etodolac (Lu et al., 2004) or the small molecule substances CGP049090
and PKF 115-484 (Gandhirajan RK et al., 2010) could be demonstrated to

selectively induce apoptosis in CLL cells.

1.1.4 Clinical aspects
1.1.4.1 Diagnosis

Many patients are diagnosed with CLL without prior symptoms, but rather
during a blood test for an unrelated health problem or a routine check up.
Usually, CLL symptoms are mainly vague and general. They include weak-
ness, fatigue, weight loss, fever, night sweats and enlarged lymph notes (lym-
phadenopathy). A further sign of CLL is nausea after eating small meals,
which is due to an enlarged spleen (splenomegaly). Most symptoms are a
consequence of the severe increase of CLL lymphocytes, which replace normal
blood cells, such as healthy functional lymphocytes (leucopoenia), erythrocytes
(anemia) and platelets (thrombocytopenia). The lack of these blood compo-
nents results in an increased susceptibility to infections, weakness and excess
bruising and bleeding. Also autoimmune effects are frequently observed, such
as hematolytic anemia.

Diagnosis of CLL is further based on the revised guidelines of the national
cancer institute working group (NCI-WGQG) (Cheson et al., 1996; Hallek et al.,
2008). Several conditions have to be given in order to diagnose CLL. These
are the persistence of >5%109 mature lymphocytes of B-cell origin per litre
blood in the absence of other causes. A heavy bone marrow infiltration with
consecutive peripheral cytopenia compensates for lymphocyte count in blood.
The presence of <5%109 monoclonal lymphocytes per litre blood without any
other clinical symptoms has recently been termed monoclonal B lymphocytosis
(MBL) (Marti et al., 2005).

Further, distinct immunophenotypic criteria apply for diagnosis of CLL: The
simultaneous existence of B-cell surface molecules, such as CD19, CD20 and
CD23, and the T-cell surface marker CD5 must be given. At the same time

no further T-cell markers should be detectable. In addition, immunoglobulins
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must be light chain restricted, negative for the B-cell antigen FMC7, sur-
face immunoglobulins (sIg) must be low and CD79b expression must be low
or completely absent. For diagnosis of CLL special consideration has to be
given to several distinct immunophenotypic and/or morphologic patterns to
distinguish CLL from other hematologic malignancies with similar clinical and
microscopic features, such as mantle cell lymphoma (MCL), hairy cell lym-
phoma (HCL), B-cell prolymphocytic leukemia (PLL), splenic marginal zone
lymphoma (SMZL) or Waldenstrom “s macroglobulinemia (Jaffe et al., 2008).

1.1.4.2 Staging

CLL patients are commonly classified by staging systems to summarize the
progression of the cancer. For CLL staging two different systems exist, the
Rai system and the Binet system. The former is more often used in the USA,
whereas the latter is common in Europe and other parts of the world. Rai
staging separates patients into five groups (O-IV) which correspond to three
risk groups: low risk (stage 0), intermediate risk (stages I and IT) and high risk
(stages IT and IV). Binet staging focuses on the number of lymphoid tissues
which are involved. Enlarged lymph nodes of the neck, underarms, and groin,
as well as the spleen, are each considered "one group," whether unilateral (one-
sided) or bilateral (on both sides). The stages and their major clinical features

are listed in the following tables.

clinical feature Rai stage

low risk intermediate risk  high risk

0 | Il m v
lymphocytosis X X X/~ x/-  x/-
lymphadenopathy X X X X
hepatomegaly X X X
splenomegaly X X X
anemia X X
thrombocytopenia X

Table 1: CLL staging after RK Rai (Rai et al., 1975).

Source: Own illustration
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clinical feature Binet stage
A B C

>3 areas of lymphadenopathy X

< 3 areas of lymphadenopathy X X

anemia X

thrombocytopenia X

Table 2: CLL staging after JL Binet (Binet et al., 1981).

Source: Own illustration

1.1.4.3 Prognostic factors

CLL patients show a remarkable clinical diversity. The disease may be char-
acterized by a rather indolent course with good long-term prognosis without
the need of a specific therapy or it may take on an accelerated course requir-
ing treatment immediately. Several prognostic factors have been established,
which allow to predict time to treatment and overall survival expectancy.
The somatic hypermutational status of the rearranged variable regions of the
immunoglobulin heavy chain (IgVy) has been demonstrated to have substantial
prognostic relevance in CLL by separating patients into two different groups
(Hamblin et al., 1999). CLL patients who exhibit a mutated IgVy; gene locus
have a considerable better prognosis than those featuring an unmutated IgVy
gene locus, which generally show a more aggressive disease progression, atyp-
ical morphology, adverse cytogenetic features or therapy resistance (Krober
et al., 2002; Oscier et al., 2002). The definition of "mutated" or "unmu-
tated" is based on a defined threshold of 98% homology to the most similar
germline counterparts (Dighiero, 1998; Hashimoto et al., 1995; Schroeder, Jr.
and Dighiero, 1994). Interestingly, the rearrangement of a specific variable-
region gene, the V3-21 gene, has been associated with an unfavorable clinical
outcome irrespective of the Vi mutational status (Krober et al., 2002; Tobin
et al., 2002).

Other prognostic markers are serum levels of the thymidinkinase (TK), [,
microglobulin (5,MG) and soluble CD23 (sCD23). All these markers have
been described to positively correlate with several parameters such as disease

progression, diffuse bone marrow infiltration or rapid doubling time (Keating
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et al., 2005; Wierda et al., 2005).

Also the expression of surface markers, such as CD38 and zeta-associated pro-
tein (ZAP) 70, has prognostic significance in CLL. Although at first described
to correlate with the IgVy status (Damle et al., 1999), CD38 was recently
described to vary over time (Montillo et al., 2005) and hence, its evaluation
should be independent and by its modal expression rather than by a fixed
cut-off level. ZAP70 functions as a surrogate marker for the IgVy status as
the majority of mutated cases are ZAP70 negative, while unmutated cases are
ZAPT0 positive (Rosenwald et al., 2001).

Furthermore, cytogenetic features are of prognostic value. The most com-
mon genetic abberations in CLL are 13q deletion (55%), 11q deletion (10%-
32%), trisomy 12 (11%-18%) and 17p deletion (3%-27%) (Seiler et al., 2006).
Whereas patients with 17p deletion, involving p53, have generally the worst
outcome (median survival 32 months) going along with resistance towards
alkylating drugs and purine analogues (Byrd et al., 2006), patients harbor-
ing exclusively a 13q14.1 deletion are considered to have a favorable prognosis
(median survival 133months). An 11q deletion, involving the ATM gene, also
predicts poor prognosis as seen by a low median survival of 79 months (Dohner
et al., 2000; Seiler et al., 2006). Additionally, del(11q) is associated with male
gender, younger age and massive lymphadenopathy (Montillo et al., 2005).
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prognostic factor clinical risk
low high

patient gender female male
clinical stage Binet A, Binet B,C,

Rai 0, | Rai ll, 1, IV
bone marrow infiltration non-diffuse diffuse
lymphocyte doubling time >12months <12 months
genetic abnormalities none del 11q, 17p,

del 13q (sole)

p53 mutation

CD38 expression <20% >20%
Zap70 expression low high
IgVy gene status mutated unmutated
serum thymidine kinase low high
B2-MG low high
soluble CD23 levels low high

Table 3: Prognostic factors in CLL.

Source: Own illustration

1.1.4.4 Current therapeutic strategies

CLL is a very heterogeneous disease. It progresses slowly in most cases, but
can also be aggressive, developing rapidly to advanced disease stages. There-
fore, the treatment strategy is highly dependent on prognosis, based on disease
stage following Rai and Binet staging systems, and the general composition of
prognostic markers of the individual patient. Furthermore, the appearance of
symptoms guides the decision for treatment strategy (Eichhorst and Hallek,
2007).

CLL patients in early stages with slowly progressing disease do not initially
require treatment. Only upon progress of the disease and the occurrence of
life quality reducing effects treatment is indicated (Hallek et al., 2008). It
was further demonstrated, that early treatment with alkylating agents does
not prolong patient survival, confirming the "watch and wait" strategy at this
disease stage (Dighiero, 1997).

In general, CLL treatment focuses on disease control and reduction of symp-
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toms rather than on an outright cure of the disease. The most commonly
used therapeutic strategy is conventional chemotherapy. For advanced disease
stages, refractory disease or relapsed CLL bone marrow transplantation is an
option (Hallek et al., 2008). Recently, also targeted therapies based on the
knowledge of the biology of the CLL cell, have been gaining attention and sev-
eral strategies and compounds are under evaluation. Although the disease still
remains incurable, response rates and progression free survival have steadily

improved over the last 10 years (Brenner et al., 2008).

1.1.4.4.1 Conventional therapy

Since the 1950 s chlorambucil was the drug of choice for treatment of CLL.
This alkylating drug was sufficient in palliation of symptoms, but overall sur-
vival was not significantly affected (Sawitsky et al., 1977; Shustik et al., 1988).
After introduction of the staging systems of Rai and Binet in the 1970s and
80s, respectively (Binet et al., 1981; Rai et al., 1975), it became clear that
in some instances the prognosis for CLL patients can be extremely poor and
an improvement in therapy was highly required. At this point purine analogs
became available. Up to now, CLL therapy is based on purine analogs alone,
fludarabine, pentostatin or cladribine, or their combination with other, mainly
alkylating, agents. The first line treatment is a combination of fludarabine
and cyclophosphamide. The addition of the monoclonal antibody rituximab
(anti-CD20) is up to now not part of the standard therapy regime, but is ap-
plied frequently. For patients with insufficient kidney function either of the
substance alone is the treatment of choice.

Treatment of relapsed patients is highly dependent on age and comorbid-
ity, as well as the duration of remission and how the disease was initially
treated. Long remission duration after an initial potent chemotherapy (fludara-
bin/cyclophosphamide/rituximab) suggests a repetition of the initial treat-
ment, while after short durations of remission a change in the treatment
strategy is indicated. Furthermore, the monoclonal antibody alemtuzumab
(anti-CD52) and the hybrid alkylating agent bendamustin are approved for

treatment of relapsed or fludarabine-resistant patients.
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1.1.4.4.2 Hematopoietic stem cell transplantation

Hematopoietic stem cell transplantation is the intravenous infusion of hemato-
poietic stem cells to re-establish hematopoietic function in patients with dam-
aged or defective bone marrow or immune systems. Prior to stem cell transfu-
sion the patients” hematopoietic (neoplastic) cell population is eradicated by
high dose chemotherapy. Subsequently, healthy hematopoietic stem cells are
infused into the patients " body with the aim of repopulation of the hematopoi-
etic systems. Dependent on whether the infused stem cells originate from the
patient himself or from a secondary healthy human leucocyte antigen (HLA)-
matching donor, the transplantation is either autologous or allogeneic.

An indication for autologous or allogene stem cell transplantation is therapy-
resistant disease, early relapse (within 12 months of complete remission) or
17p-abnormalities.

As a first line treatment stem cell transplantation is only indicated in young

high risk patients.

1.1.4.4.3 Novel targeted therapy

Conventional chemotherapy is an unselective therapy, therefore exhibiting high
levels of unwanted side effects. Additionally, treatment with cytotoxic drugs is
not curative and patients invariably relapse or possess resistance towards this
therapy. Hence, the development of treatment strategies aiming on selective
targeting of the neoplastic cells is of high interest.

The first targeting agents in CLL therapy were, as mentioned above, ritux-
imab (anti-CD20) and alemtuzumab (anti-CD52). There are several other
monoclonal antibodies in clinical development, which are targeting B-cell spe-
cific surface antigens, such as lumilixumab (anti-CD23) or ofatumumab (anti-
CD20).

Further potential new drugs for CLL therapy are tyrosine kinase inhibitors such
as flavpiridol, which is though to act via inhibition of cyclin-kinases and sub-
sequent downregulation of anti-apoptotic proteins, immunomodulating drugs,
such as lenalidomid, antisense molecules, such as oblimersen, which targets
the mRNA of the anti-apoptotic protein Bcl2 (Pepper et al., 2001) or small
molecules, such as the pan-Bcl2-inhibitor obatoclax (O’Brien et al., 2009).
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1.2 The vascular endothelial growth factor

In the late 1980 “s the vascular endothelial growth factor VEGF was first de-
scribed as heparin binding angiogenic growth factor with high specificity for
endothelial cells (Ferrara and Henzel, 1989; Gospodarowicz et al., 1989). At
around the same time, a protein promoting extravasation of proteins from
tumor-associated blood vessels was characterized and named vascular perme-
ability factor (VPF) (Senger et al., 1983). It turned out that VEGF and VPF
are one and the same as they were derived from a single gene (Keck et al.,
1989; Leung et al., 1989; Tischer et al., 1989). The term "vascular endothe-
lial growth factor" has prevailed over "vascular permeability factor" and is

commonly accepted.

1.2.1 The VEGF-family

VEGF denotes a family of homodimeric glycoproteins consisting of six mem-
bers including VEGF-A, placental growth factor (PIGF) (Maglione et al.,
1991), VEGF-B (Olofsson et al., 1996a), VEGF-C (Lee et al., 1996), VEGF-D
(Achen et al., 1998; Orlandini et al., 1996) and viral homologues of VEGF,
termed VEGF-E (Meyer et al., 1999; Ogawa et al., 1998; Wise et al., 1999).
All members possess a conserved central core region, the so called VEGF-
homology domain, which is a central part of eight invariant cysteine residues
essential for assembly of inter-and intramolecular disulfide bonds. Despite the
structural similarity, all VEGF family members show distinct tissue distribu-
tion and display different biological activities, mainly due to their different
abilities to bind to the three VEGF-receptors.

While VEGF-A has strong mitogenic and permeability enhancing activities,
PIGF has only weak potential in this regard. However, PIGF has the abil-
ity to enhance VEGF-A action (Park et al., 1994). Furthermore, PIGF can
form heterodimers with VEGF, which have increased potency to mediate mito-
genic stimulation of endothelial cells relative to PIGF alone (Cao et al., 1996).
VEGF-B exists in two different isoforms, which are both predominantly ex-
pressed in embryonal and adult muscle tissue (myocardium and skeletal mus-
cle) and are co-expressed with VEGF in many tissues, most prominantly in
the heart (Lagercrantz et al., 1996; Olofsson et al., 1996b). VEGF-C and
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VEGF-D are produced as long precursor proteins. After proteolytic process-
ing several variants with different VEGF-receptor binding affinities are created
(Joukov et al., 1997; Stacker et al., 1999). In midgestation embryos, VEGF-C
is mainly expressed in regions where the lymphatic vessels undergo sprouting
from embryonic veins (Kukk et al., 1996). In adult humans VEGF-C is pre-
dominantly expressed in heart, placenta, ovary, small intestine, and the thyroid
gland (Joukov et al., 1996). During embryogenesis VEGF-D was detected in
high amounts in the developing mouse embryo (Stacker et al., 1999) and in
human tumors (Achen et al., 2001).

VEGF-A is dimeric, disulfid-bound glycoproteins of 34-42kDa in size and the
most common VEGF family member. It is generally referred to as VEGF and
is the focus of this work. Due to alternative splicing six major isoforms of
VEGF ranging in the sizes from 121 to 206 aminoacids exist. The primary
VEGF transcript is derived from a single VEGF gene consisting of 8 exons
separated by seven introns. Whereas exons 1 to 5 and exon 8 are conserved
domains and present in all isoforms, alternative splicing in exons 6 and 7,
which are responsible for heparan and heparin binding abilities, gives rise to

the other isoforms.

VEGF gene

s—ifH2H3H 4 [sH 6 H 7 Hg—%

VEGFix[1[2[ 3] 4 [5d
VEGFus[1[2] 3] 4 [5]6]d
VEGFs[1]2] 3] 4 [5] 7 ¢
VEGF,[1]2 ]3] 4 [5]6] 7 [
VEGFi[1]2[ 3] 4 [5]6] 7 g
VEGFs[1]2[ 3] 4 [5] 6 | 7 8

Figure 3: VEGF gene and its splice variants

Source: Own illustration

These isoforms mainly differ in their ability to interact with extracellular ma-
trix components, such as heparan sulfate proteoglycans (Neufeld et al., 1999).
VEGF 5, is freely diffusible (Park et al., 1993), whereas the other isoforms
VEGF 5, VEGF 45, VEGF 533, VEGF 39 and VEGF, have increasing hep-
arin binding ability. VEGF,y;, VEGF,,5, and VEGF 45 can induce prolifera-
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tion of endothelial cells and in vivo (Park et al., 1993; Poltorak et al., 1997;
Zhang et al., 1995). VEGF, 39 and VEGF,; are sequestered on heparin sul-
fate proteoglycans of cell surfaces and in the extracellular matrix (EM) and
are not secreted. EM-bound VEGF g9 can be cleaved by proteases such as
plasmin to release an active soluble proteolytic fragment of 110 amino acids
(VEGF,,y) (Houck et al., 1992; Plouet et al., 1997). Usually, several VEGF
isoforms are produced simultaneously by VEGF-producing cells with VEGF';5;
and VEGF 4 being the predominant variants (Bacic et al., 1995). Further-
more, these two isoforms are also the most active isoforms for binding and

activating the VEGF-receptors 1 and 2 (Gerber et al., 1998).

1.2.2 The VEGF-receptors

There are three major VEGF-receptors, which have been described to mediate
VEGF-signaling: the 180kDa VEGF-receptor 1 (Fms-like tyrosine kinase 1,
Flt-1) (de Vries et al., 1992) the 200kDa VEGF-R2 (kinase insert-domain
containing receptor, KDR or Flk-1) (Terman et al., 1991) and the 180kDa
VEGF-3 (Fms-like tyrosine kinase 4, Flt-4) (Aprelikova et al., 1992). They
belong to the class III receptor tyrosine kinases of the platelet-derived growth
factor (PDGF) receptor subfamily (Klagsbrun and D’Amore, 1996).

1.2.2.1 Structure and binding

The VEGF-receptor family is characterized by the presence of seven immuno-
globulin homology domains (Ig domains) in their extracellular ligand-binding
part and an intracellular tyrosine kinase domain. The kinase domain is split by
hydrophilic residues, the so called kinase insert, which is essential for substrate
recognition (van der Geer et al., 1994). Intra-and extracellular domains are
separated by a single transmembrane region. VEGF-receptors homodimerize
upon ligand-binding, which results in transphosphorylation of their intracellu-
lar kinase domains and subsequently to activation of signaling pathways.

Besides the VEGF-R1, 2 and 3, additional VEGF-binding receptors have been
described. Neuropilinl (NRP1) and Neuropilin 2 (NRP2), initially discovered
as neuronal cell guidance receptors of the semaphorin ligands (He and Tessier-
Lavigne, 1997) have the ability to bind VEGF, 4 (Soker et al., 1998) and, in
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the case of NRP1, also PIGF (Migdal et al., 1998). As they lack an intracel-
lular catalytic domain, thus not possessing any signal transduction function,
they have been described as accessory receptors, which stabilize the VEGF-
R/VEGF-complex.

extracellular N-terminus

p VEGF
Binding
domain VEGF
receptor binding
Ig domains > .
’ dimerization 53 domain
domain receptor
<« dimerization
- domain
cell membrane

transmembrane —> | | <— transmembrane
domain domain
kinase domain ;
tyrosine . -
y Neuropillin 1 Neuropilin 2
NRP1 NRP2

kinases

intracellular ~ C-terminus

VEGF-R1 (Flt-1) VEGF-R3 (Flt-4)
VEGF-R2 (Flk, KDR)

Figure 4: Structure of VEGF-receptors and Neuropilins

Source: Own illustration

It was shown by domain deletion studies, that ligand-binding is localized to the
second Ig domain in VEGF-receptors 1 and 2. In addition, the domains one
and three are needed for full affinity-binding of ligand and receptor (Barleon et
al., 1997; Cunningham et al., 1997; Fuh et al., 1998). The forth Ig domain plays
a role in the process of receptor dimerization upon ligand binding as shown
for VEGF-R1 (Barleon et al., 1997). Due to close structural similarity this is
also likely to be the case for VEGF-R2. In VEGF-R3 the fifth Ig homology
domain of the extracellular part is proteolytically cleaved and the resulting
polypeptides remain linked by two disulfide bonds (Pajusola et al., 1994).

To function as a ligand for the VEGF-receptors, two members of the VEGF-
family are linked by disulfide bonds in an anti-parallel orientation to form
a homodimer. The receptor binding sites are located at the poles of each

molecule and consist mainly of hydrophobic residues.

1.2.2.2 Major expression sites

The VEGF-R1 and 2 are selectively expressed in embryonic and adult vascular

and lymphatic endothelial cells, but have also been identified in several other
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tissues in physiological conditions. Whereas the VEGF-R1 was for example
found on trophoblasts (Charnock-Jones et al., 1994), circulating monocytes
and macrophages (Barleon et al., 1996; Sawano et al., 2001) and hematopoi-
etic stem cells (Gerber et al., 1998; Hattori et al., 2002) the VEGF-R2 was
detected in hematopoietic stem cells, megacaryocytes and retinal progenitor
cells (Katoh et al., 1995). Also chronic lymphocytic leukemia cells were found
to express all three VEGF-receptors (Bairey et al., 2004; Kay et al., 2002a; Kay
et al., 2002b). While VEGF-R3 is found in all endothelial cells during embryo-
genesis, its appearance becomes largely reduced when development progresses
and in adult tissues VEGF-R3 is for the most part restricted to lymphatic
endothelium (Kaipainen et al., 1995; Kukk et al., 1996). The importance of
all three VEGF-receptors during embryogensis is highlighted by the fact that
knock outs of either receptor are embryonic lethal in mice (Dumont et al.,
1998; Fong et al., 1999; Shalaby et al., 1995). NRP1 has been described to
be abundantly expressed in endothelial cells of developing embryonic vessels
(Kitsukawa et al., 1995).

Despite their structural similarity, the three VEGF-receptors possess diverse
functions, with VEGF-R1 being mainly involved in vasculogenic and angio-
genic activities such as migration and differentiation, while VEGF-R2 is pri-
marily associated with the regulation of survival and proliferation (Gerber et
al., 1998). VEGF-R3 is almost exclusively implicated in lymphangiogenesis
(Kaipainen et al., 1995). These different functions are for the most parts due
to their tissue distribution. Furthermore, since the three VEGF-receptors and
the two neuropilins feature distinct ligand specificities, their activity status is

also largely dependent on the availability of these ligands.
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VEGF-R1 VEGF-R2 VEGF-R3 Neuropilin1 Neuropilin 2

VEGF»y VEGF»y VEGFC VEGF s VEGF s
VEGFes VEGFu4s VEGFD PIGF
VEGF-B  VEGFgs
PIGF VEGFge
VEGF205
VEGF C
VEGF D

VEGF E

Table 4: VEGF-receptors and their specific ligands.

Source: Own illustration

1.2.3 VEGF/VEGF-R-signaling

The underlying principle of VEGF-mediated modification of cellular processes
is the binding to VEGF-receptors and the subsequent activation of distinct in-
tracellular signaling cascades through several auto- and transphosphorylation
steps.

In the case of VEGF-R1, ligand binding induces receptor phosphorylation, but
results in very little kinase activation. Although VEGF-R1 has a higher affinity
for VEGF than VEGF-R2, no mitogenic response is generated (Waltenberger
et al., 1994). In contrast, VEGF-R1/VEGF-binding even negatively regulated
VEGF function by diverting VEGF from other functional receptors, such as
VEGF-R2 (Claesson-Welsh, 2003). The VEGF-R3 is exclusively-stimulated by
the VEGF-family members VEGF-C and VEGF-D, which induce transphos-
phorylation of tyrosine residues in the intracellular kinase domains and sub-
sequent recruitment of signaling molecules and the activation of MAPK and
Akt signaling cascades (Robinson and Stringer, 2001; Saharinen and Petrova,
2004). Neither VEGF-R1, nor VEGF-R3 are the focus of this thesis and will
therefore not further be discussed.

VEGF-R2-signaling has been associated with the regulation of survival and
proliferation processes (Gerber et al., 1998). Signal transduction follows the

mentioned principles of receptor tyrosine kinases. The major autophosphory-
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lation sites of VEGF-R2 are located in the kinase insert domain (tyr951/996),
in the tyrosine kinase catalytic domain (tyr1054,/1059) and in the C-terminal
domain (tyr1175/1214) (Takahashi et al., 2001). Activation of VEGF-R2 leads
to rapid recruitment of adaptor proteins. In the following the major intracel-

lular signal transduction pathways are described.

1.2.3.1 The PLC~y-pathway

One of the best characterized substrates of VEGF-R2 is phospholipase C~
(PLC«y) (T. Takahashi and M. Shibuya, 1997, Oncogene) PLC~ binds the
phospho-tyr1175 residue of VEGF-R2 (Takahashi et al., 2001). Once acti-
vated by tyrosine phosphorylation, PLC~ catalyses the hydrolysation of phos-
phatidylinositol 3,4-bisphosphate (PIP,) to inositol 1,4,5-trisphosphate (IP3)
and diacylglycerol (DAG), which In turn either induces calcium (Ca2t) fluxes
or activation of members of the protein kinase C (PKC) family (Carpenter and
Ji, 1999). This signaling stream has mainly been associated with mitogenic

response to VEGF due to increased vasopermeability.

1.2.3.2 The Pi3K/Akt-pathway

Phosphatidylinositol 3-kinases (PizK)/Akt signaling has been described to be
essential for survival signaling after VEGF-R stimulation in endothelial cells
(Fujio and Walsh, 1999; Gerber et al., 1998). Its abnormal activation has fre-
quently been associated with tumorigenic processes, mainly due to modulation
of apoptosis (Fresno Vara et al., 2004).

PI;K contains a catalytic subunit pl10a and a regulatory subunit p85. In the
absence of an activating signal p85 inhibits the kinase activity of p110a. Upon
stimulation of the receptor pl10a is released from p85, hence activated and
recruited to the plasma membrane (Okkenhaug and Vanhaesebroeck, 2001),
where it phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP,) to phos-
phatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 recruits proteins that con-
tain a pleckstrin homology domain, such as the serine-threonine kinase Akt
as well as its activating kinase 3-phosphoinositide-dependent kinase 1 (PDK1)
to the cellular membrane (Corvera and Czech, 1998). Activated Akt is the
predominant and essential mediator for the regulation of growth, proliferation

and survival by PI;K. Regulation of survival is mainly controlled by inhibi-
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tion of pro-apoptotic pathways by interfering with B-cell lymphoma 2 (Bcl-2)-
associated death promoter homologue (BAD) and Caspase 9 (Gerber et al.,
1998).

1.2.3.3 The MAPK/ERK-pathway

VEGF stimulation has been shown to induce activation of mitogen-activated
protein kinase (MAPK) in endothelial cells leading to gene transcription and
proliferation (D’Angelo et al., 1995). Classically, MAPK is activated via the
Ras/Raf/MEK cascade (Marshall, 1996). Upon ligand binding and subsequent
autophosphorylation of the receptor a signaling cascade is induced in which
the SOS protein activates the small G-protein Ras. A cascade of phospho-
rylation steps involving the serine/threonine kinases Raf and Mek eventually
results in MAPK activation. In the case of the VEGF-R2 it could be shown,
that MAPK can alternatively be activated independent of Ras via the PLC~-
pathway (Takahashi et al., 1999).

1.2.3.4 The STAT-pathway

In addition to mentioned well accepted classical intracellular signal transduc-
tion pathways induced by VEGF-binding to the VEGF-R2, also the signal
transducers and activators of transcription (STAT) proteins have been in-
volved in VEGF-signaling (Bartoli et al., 2000). To date seven mammalian
STATSs have been identified: STAT1, 2, 3, 4, 5A, 5B and 6 (Ihle, 2001). STAT-
activation features phosphorylation at specific tyrosine residues followed by
serine-phosphorylation as a result of receptor stimulation with various cy-
tokines, growth factors and hormones (Bowman et al., 2000; Darnell, Jr. et
al., 1994; Darnell, Jr., 1997; Ihle, 1996). While STAT activation was initially
thought to be exclusively mediated by Janus kinases (JAKs) (Ihle and Kerr,
1995), its JAK-independent activation could also be demonstrated (David et
al., 1996; Leaman et al., 1996). In general, tyrosine (tyr) 705 phosphorylation
enables STAT to dimerize via reciprocal phosphotyrosine-SH2 domain inter-
action, which is essential for nuclear translocation of STAT and subsequent
transcriptional activity (Darnell, Jr., 1997; IThle, 1995). The role of phosphory-
lation at serine (ser) residues (e.g. ser727) within the transcriptional activation
domain (TAD)-motif, mediated by MAPK or the mTOR pathway rather than
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JAKs (Wen et al., 1995; Yokogami et al., 2000), has been discussed contro-
versially. Whereas it was demonstrated to enhance the DNA-binding affinity
of STATS, especially STAT3 (Decker and Kovarik, 2000), it functioned as an
inhibitor of transcriptional activity in other studies (Lim and Cao, 1999). Ad-
ditionally, it was hypothesized that serine phosphorylation allows the integra-
tion of signals from multiple pathways, hence providing a degree of modulation
of the STAT-mediated gene activation induced by tyrosine phosphorylation
(Frank et al., 1997).

Out of the mentioned STAT proteins, mainly STAT3 has been ascribed onco-
genic potential as it was shown to be associated with tumor initiation and
progression due to facilitation of cellular expansion by transactivating genes
encoding pro-survival factors, such as Bcly or Bcl2, (Bromberg et al., 1999;
Catlett-Falcone et al., 1999; Garcia and Jove, 1998).
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Figure 5: Intracellular signaling cascades downstream of VEGF-R2

Source: Own illustration
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1.2.4 Angiogenesis

The vascular endothelial growth factor (VEGF) is denoted the most important
factor in angiogenesis. Angiogenesis is the development of new blood vessels
from pre-existing ones. It is a crucial process for vascular development and
neovascularisation in physiological and pathophysiological conditions. In the
embryo the vast network of arteries, veins and capillaries is produced by vas-
culogenesis to create the primary network of vascular endothelial cells, which
eventually will become mature blood vessels. The pivotal role of VEGF during
embryogenesis is clearly demonstrated by studies showing that inactivation of
only one VEGF allele results in embryonic lethality due cardiovascular defects
(Carmeliet et al., 1996; Ferrara et al., 1996).

In the adult organism angiogenesis is a rare event. It takes places during the
female reproductive cycle, during pregnancy and wound healing.
Angiogenesis is a highly controlled process. Several positive and negative reg-

ulators act in a complex interplay to control angiogenesis.

anti-angiogenic factors pro-angiogenic factors
angiostatin thrombospondin-1

interferon alpha placental growth factor

prolactin 16-kd fragment vascular endothelial growth factor
metallo-proteinase inhibitors transforming growth factors
platelet factor 4 angiogenin

genistein interleukin-8

placental proliferin-related protein  hepatocyte growth factor

transforming growth factor beta granulocyte colony-stimulating factor

endostatin platelet-derived endothelial cell growth factor

angiopoietin 1

Table 5: Anti-and pro-angiogenic factors.

Source: Own illustration

In general inhibitors of angiogenesis are predominant and angiogenesis is "turned
off". In the case of tissue injury or oxygen lack pro-angiogenic proteins are
released and diffuse into the nearby tissues. Those proteins, such as VEGF,

bind to receptors on endothelial cells (ECs) of existing blood vessels, prompt-
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ing them to proliferate and produce further pro-angiogenic factors. In addition
matrix metalloproteases (MMPs) are produced, which degrade the basement
membrane of the existing vessels allowing migration of ECs into the intersti-
tial space towards the angiogenic stimulus. The formation of new blood vessels
is supported by integrins inducing the formation of a capillary tube. MMPs
"clear the way" by dissolving the tissue in front of the sprouting vessel. New
blood vessels are stabilized by the recruitment of small muscle cells (pericytes),

which provide structural support.

1.2.5 Angiogenesis-independent physiological roles

Although VEGF is mainly known for its strong pro-angiogenic function, it
could be further identified to be implicated in several other physiological
processes, such as normal hematopoiesis and hematopoietic stem cell (HSC)
differentiation and survival (Gerber et al., 2002). Early and differentiated
hematopoietic cells express VEGF and its corresponding receptors, suggest-
ing that autocrine mechanisms are involved in the regulation of hematopoiesis
(Janowska-Wieczorek et al., 2001). Several facts further support a crucial
role of VEGF in hematopoiesis, as conventional gene knock-out experiments
of either VEGF itself (Carmeliet et al., 1996; Ferrara et al., 1996) or the
VEGF-R2 (Shalaby et al., 1995) resulted in early embryonic lethality due to
impaired hematopoiesis and angiogenesis. In another study, a positive cor-
relation of VEGF-R2 and pluripotent stem cell activity in long-term in vitro
cell culture assays could be demonstrated (Kabrun et al., 1997). Furthermore,
VEGF-signaling on hematopoietic precursors could be demonstrated to restrict
B-lymphoid commitment in vitro and in vivo (Fragoso et al., 2008).

Additional angiogenesis independent roles of VEGF are widely distributed
throughout the human body including for example inhibition of dendritic cell
maturation by inhibition of NFxB activation (Gabrilovich et al., 1996), re-
cruitment of monocytes (Barleon et al., 1996) and endothelial cell progenitors
(Lyden et al., 2001) to the vasculature, increase of osteoclastic bone-resorbing
activity (Nakagawa et al., 2000) and osteoclast chemotaxis (Henriksen et al.,
2003) or mediation of a direct neuroprotective effect on motor neurons in vitro

(Oosthuyse et al., 2001).
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1.2.6 VEGF in cancer
1.2.6.1 VEGTF in solid tumors

Solid tumors are usually characterized by a growing tumor mass, due to un-
controlled proliferation of the malignant cells. When the tumor size exceeds 1
to 2 mm, the nutrient and oxygen supply by simple diffusion is not sufficient to
maintain cell survival anymore and the need of an independent blood supply
arises. Hypoxid conditions trigger the production of pro-angiogenic factors,
mainly VEGF, which disturbs the balance of pro-and anti-angiogenic factors
to induce the development of new blood vessels. The turning point when pro-
angiogenic factors outweigh anti-angiogenic factors is commonly referred to as
the "angiogenic switch" and displays a critical step in tumorigenesis, allowing
the disease to proceed to a more progressive phase (Hanahan and Folkman,
1996). Furthermore, angiogenesis is a critical component of tumor metastasis
as it provides an efficient route of exit for tumor cells to leave the primary site
and enter the blood stream. VEGF has been demonstrated to be expressed
and correlate with bad prognosis or advanced stage disease in several cancers,
which are also known for their potential to spread via metastasis, such as
breast cancer (Linderholm et al., 2000), lung cancer (Jarzynka et al., 2006) or
colorectal cancer (Kuniyasu et al., 2000).

Tumor angiogenesis differs significantly from physiological angiogenesis. While
the process of physiological angiogenesis is rapidly initiated and executed fol-
lowing a tight regulation, tumor angiogenesis is characterized by an unorga-
nized progress and a failure of blood vessels to become quiescent. As a conse-
quence, the tumor vasculature develops quite distinct characteristics compared
to blood vessels derived from physiological angiogenesis possessing irregular
shape, being dilated and tortuous. They can also have dead ends or a leaky
structure (Benjamin et al., 1999). Furthermore, tumor vasculature was shown
to incorporate cancer cells into vessel walls (McDonald et al., 2000).

Because tumor growth and metastasis depend on new vessel development, in-
terfering with angiogenic signaling is a logical approach for treatment of solid
cancers. In the early 1990 “s the first studies investigated the effect of block-
age of VEGF/VEGF-R signaling as a strategy to inhibit tumor progression
(Kim et al., 1993; Millauer et al., 1994). A strong inhibitory effect on tumor
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development after blockage of VEGF-signaling in many tumor types could be
demonstrated in the following years (Millauer et al., 1996), thereby initiating
intense efforts directed at the development of efficient inhibitors of VEGF-
production and VEGF-signal transduction for anti-tumor purposes. The first
anti-angiogenic agent to enter the clinic in 2004 was the monoclonal anti-VEGF
antibody bevacizumab (Avastin®, Genentech Inc, San Franzisco, USA). Beva-
cizumab is currently approved in combination with standard chemotherapy as
first and second line treatment in colorectal cancer and as first line treatment in
lung cancer in the United States of America (USA) (for further information see:
http://www.cancer.gov/cancertopics/factsheet / AvastinFactSheet). In addition,
the two broad-spectrum tyrosine kinase inhibitors sorafenib (Nexavar®, Bayer
AG, Leverkusen, Germany) and sunitinib (Sutent®, Pfizer, New York, USA),
which also target the VEGF-receptors, are approved for clinical use. Both
substances are recommended as monotherapy in advanced renal cell carcinoma
and sunitinib is also approved for imatinib-resistant gastrointestinal stromal
tumor (GIST) patients. Sorafenib was also shown to improve overall survival
in liver cancer patients (http://www.onyx-pharm.com/wt/page/pressreleases).
Several other anti-VEGF agents are under investigation, such as cediranib
(AZD2171, Recentin), vandetanib (ZD6474, Zactima) or vatalanib (PTK787/
ZK222584) (Jain et al., 2006).

Besides its role in tumor vascularisation to ensure an appropriate nutrient sup-
ply of the tumor, VEGF has also been discussed as an angiogenesis-independent
pro-survival factor in several cancers. It has been demonstrated that tumor
cells as well as stromal cells express VEGF (Senger and Van De Water, 2000)
and the VEGF-R1 and 2, as well as NRP1 (Bachelder et al., 2001; Dias et al.,
2001; Masood et al., 2001; Soker et al., 1998). It was subsequently suggested
that in those tumors auto- as well as paracrine VEGF-signaling loops might

have a direct influence on the tumor cell growth and survival.

1.2.6.2 VEGF in hematologic malignancies

For a long time the involvement of VEGF in hematologic malignancies has been
neglected due to the opinion that its role is exclusively limited to angiogene-
sis. Since in hematologic malignancies no solid growing tumor mass is evident,

the problem of tumor vascularisation was though to be negligible. When sev-
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eral studies started identifying increased neovascularisation in the bone mar-
row of patients with hematological cancers a potential involvement of VEGF
in the pathophysiology of these so called "liquid tumor" emerged (Aguayo
et al., 2000). Several studies could demonstrate increased VEGF /VEGF-R-
expression and enhanced neovascularization in the bone marrow of patients
with acute myeloid (Fiedler et al., 1997; Ghannadan et al., 2003), acute lym-
phoblastic (Perez-Atayde et al., 1997) and chronic lymphocytic (Aguayo et al.,
2000) leukemias and myelomas (Podar et al., 2001). Furthermore, correlations
between status of bone marrow vascularisation or VEGF levels and disease
stage, progression or response to treatment have been described in hemato-
logic malignancies (Aguayo et al., 1999; Kini et al., 2000; Salven et al., 2000).
Also chronic lymphocytic leukemia cells have been described to express and
secrete VEGF (Aguayo et al., 2000; Kay et al., 2002a) and to possess all
three VEGF-Rs (Bairey et al., 2004). Studies about the VEGF status in CLL
and possible correlation with disease stage, progression or progression free or
overall survival are not consistent. For example, VEGF amounts in serum of
patients were described to have a positive correlation with disease progression
in early CLL (Molica et al., 1999), whereas intracellular VEGF was shown to
be negatively correlated with disease progression (Aguayo et al., 2000). In the
same study no correlation with Rai/Binet stage was found. In contrast, in
another study VEGF and VEGF-R2 correlated positively with each other and
were significantly higher in patients of Rai III/IV than Rai stage I/II patients
(Gora-Tybor et al., 2005). Also Ferrajoli et al (Clin Canc Res, 2001) found
a positive association between VEGF-R2 and shortened survival in CLL pa-
tients (Ferrajoli et al., 2001). In accordance, microvessel density was shown
to be higher in CLL bone marrow biopsies as an effect of VEGF-induced in-
creased angiogenesis compared to healthy tissue, and to positively correlate
with clinical stage (Kini et al., 2000). Intracellular VEGF and the highly up-
regulated protein Bcl2 show a negative correlation with each other (Bairey et
al., 2001). Most of these data are descriptive and mainly based on the angio-
genic function of VEGF. The last mentioned study, correlating VEGF to the
potent anti-apoptotic protein Bcl2, predicts an angiogenesis-independent role
of VEGF by being involved in CLL cell survival. This assumption could further
be proofed by the fact that exogenous VEGF in culture of CLL cells has been



34 Introduction

associated with a reduction in both spontaneous and drug induced apoptosis
(Lee et al., 2004). Also in myeloid leukemia cells stimulation with recombinant
human (rh) VEGF led to phosphorylation of the VEGF-R2 and increased pro-
liferation (Dias et al., 2000). In another study, VEGF induced an increase in
mRNA of a number of hematopoietic growth factors like granulocyte colony-
stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), and interleukin-6 (IL-6) in endothelial cells, suggesting that
paracrine VEGF pathways may enhance leukemic cell survival (Zhang et al.,
2004). Recently, VEGF/VEGF-R2 interaction has been described to inter-
fere with CLL cell extravasation and tissue infiltration processes, as VEGF-
signaling activation reduced the expression of the matrix metalloproteinase
(MMP) 9 via STAT 1-activation, therefore significantly inhibiting CLL cell mi-
gration in in vitro matrigel studies (Ugarte-Berzal et al., 2010). Schuch et al
demonstrated the role of VEGF in promoting leukemia growth in two animal
models. The chloroma producing murine myelomonocytic cell line M1 was
either injected subcutaneously or administered systemically by intravenous in-
jection. It could be conclusively shown that VEGF promoted leukemia cell
growth while addition of a VEGF-antagonist (extracellular soluble portion of
NRP1) inhibited leukemia progression. In this context it is highly informative
that the used cell line M1 does not show any responsiveness towards VEGF in
vitro, thereby demonstrating the importance of the microenvironment in the
complex pro-survival action of VEGF (Schuch et al., 2002).

In can be concluded that VEGF has pro-survival effects in several hemato-
logic malignancies, including CLL, possibly involving auto-and/or paracrine

mechanisms.

1.2.7 Objective

The objective of this study was to investigate the role of the vascular endothe-
lial growth factor (VEGF) in the apoptotic resistance of CLL cells, thereby
potentially identifying targets for novel therapeutic approaches with the aim
of overcoming the apoptotic block. In order to achieve that the following

aspects had to be addressed:

e What is the influence of VEGF on the apoptotic resistance of CLL cells
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and what impact does the bone marrow microenvironment have in this

regard?

e How does VEGF exert its anti-apoptotic function and which downstream

signaling proteins are involved?

e Is VEGEF, its receptor or a downstream player a suitable drug target to

efficiently overcome the apoptotic resistance in CLL cells?
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Chapter 2

Results

2.1 VEGF status in CLL and healthy B-cells

Primary CLL and healthy B-cells were analysed for VEGF production and
secretion. Further the presence of VEGF-receptor 2 (VEGF-R2) and its phos-
phorylation status was determined. For all experiments CLL cells were ex-
tracted from peripheral blood (PB) by Rosette Sep® technique followed by
Ficoll density centrifugation. Healthy B-cells were isolated from PB from
healthy volunteers by mentioned separation technique or by positive selec-
tion using CD19-labeled microbeads. For some experiments peripheral blood
mononuclear cells (PBMCs) were used, which were separated from PB by Ficoll

density centrifugation without any further treatments.

2.1.1 CLL cells express the major VEGF isoforms to a
significantly higher extent than healthy B-cells

The VEGF-expression status in CLL and healthy B-cells was analysed. VEGF
exists in several isoforms due to alternative splicing. The most common ones
are VEGF 5, VEGF4; and VEGF,39. Their existence was determined in
primary CLL samples and healthy volunteer samples by real time PCR using
a common forward primer, a common fluorescent probe and isoform specific
reverse primers. In addition, a complete VEGF message was amplified. As a

housekeeping gene Abl expression was assessed simultaneously.
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Figure 6: Relative expression levels of VEGF isoforms.
Relative expression was calculated dividing Abl Ct by VEGF Ct. Unpaired two-tailed t-test

with Welch-correction (not assuming equal variances) was used to calculate significances.

While all three studied VEGF isoforms were expressed in primary CLL cells
to significantly higher extents than in healthy B-cells, the two soluble isoforms
VEGF,,, and VEGF 45 show higher expression levels as does the heparin-
binding isoform VEGF,g,. Significances comparing CLL (n=25) versus healthy
B-cells (n=>5) were p=0.0011 for VEGF ., plete; P—0.0028 for VEGF 5, p—0.0004
for VEGF 45 and p=0.01 for VEGFg9. Note, that no difference in VEGF
mRNA levels of healthy B-cells was detected between positive (CD19-labeled
magnetic beads) and negative selected (Rosette Sep®) healthy B-cells.

2.1.2 There is no correlation between VEGF mRNA and
ZAPT70 or CD38

Several studies showed correlations between the VEGF status in CLL cells
and diverse patient characteristics, thereby not achieving consistent results.
Furthermore, most of these studies focused on VEGF levels in plasma or serum
of peripheral blood from CLL patients, which may not be necessarily derived
from CLL cells directly. Therefore, VEGF mRNA levels (complete VEGF
message) of 67 patients were determined by real time PCR and correlation
analysis of ZAP70 and CD38 status were conducted.
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test CD38 Zap70
Pearson -0.062 0.090
significance 0.623 0.477
Kendall’s tau 0.039 0.075
significance 0.650 0.391

Spearman’s rho 0.045 0.119
significance 0.719 0.345

Table 6: Correlation statistics of VEGF mRNA with ZAP70 and CD38 status.
Correlation coefficients and their corresponding significances are displayed. Statistics were

calculated using SPSS statistical analysis software, version 17.0.

Neither Pearson, Kendall “s Tau nor Spearman “s Rho correlation analyses re-
vealed any significant correlation between VEGF mRNA levels and the anal-

ysed parameters.

2.1.3 CLL cells secrete VEGF to a higher extent than
healthy B-cells

Primary CLL cells (n=9) and B-cells from healthy volunteers (n=7) were cul-

tured for 24 hours under standard conditions and supernatants were analysed

for VEGF content by ELISA. At the same time cell survival was determined

to identify VEGF secretion relative to the amount of living cells.
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Figure 7: VEGF levels secreted by CLL and healthy B-cells.

Mann-Whitney-U-test was used to calculate the significance.

CLL cells secreted significantly higher amounts with 198.2 pg +/- 22.1 pg
VEGF /107 living cells compared to healthy B-cells with 75.5 pg +/- 13.8 pg
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VEGF /107 living cells (p=0.0003).

2.1.4 CLL cells exhibit the VEGF-receptor 2 (VEGF-R2)

Further it was analysed whether CLL cells and healthy B-cells exhibit the
VEGF-R2. Freshly isolated primary cells from CLL patients or healthy vol-
unteers were subject to flow cytometry using a VEGF-R2-specific antibody, a

FITC-labeled secondary antibody and an appropriate isotype control.

CLL healthy B-cells

.

VEGF-R£ VEGF-R2

count
count

| 78.1% 9.8%

Figure 8: VEGF-R2 status in CLL and healthy B-cells.
Grey shades represent the isotype control. One representative sample out of five indepen-

dently carried out experiments is displayed.

VEGF-R2 was detected on an average of 78.8% +/- 5.5% CLL cells (n=5),
but only 11.5% +/- 4.2% of healthy B-cells (n=5).

2.1.5 The VEGF-R2 is constitutively phosphorylated in
CLL cells, but not in healthy B-cells

We analyzed the phosphorylation status of VEGF-R2, which takes place upon
VEGF binding, therefore determining its activity. Freshly isolated primary
cells were incubated with a VEGF-R2 specific antibody, which only detects
the receptor when phosphorylated on tyr951, a major autophosphorylation
side in the kinase insert domain of the receptor. Samples were subject to

intracellular phospho flow cytometry.



40 Results

CLL healthy B-cells

88.1%

count
count

13.3%

PVEGF-R2 pPVEGF-R2

Figure 9: pVEGF-R2 status in CLL and healthy B-cells.
Grey shades represent the isotype control. One representative sample out of five indepen-

dently carried out experiments is displayed.

While 89.5% +/- 0.8% of CLL cells (n=>5) carried phosphorylated VEGF-
R2, only 11.8% + /- 2.2% of healthy B-cells (n=5) were positive for pVEGF-
R2. We could further show the functionality of the VEGF-R2 in CLL cells.
Stimulation of starved CLL cells (RPMI 1640/3% FCS for at least 6 hours)
with recombinant human (rh) VEGF at 100 ng/ml for 1 hour resulted in
an additional increase of phosphorylated VEGF-R2-positive CLL cells up to
almost 100%. (96.8% +/- 1.2%, n=5). Healthy B-cells also demonstrated a
slight increase (17.2% +/- 3.7%, n=5).

CLL +rhVEGF healthy B-cells +rhVEGF

95.5% 18.5%

pVEGF-R2 pVEGF-R2

Figure 10: pVEGF-R2 status in thVEGF-stimulated CLL and healthy B-cells.
Grey shades represent the isotype control. One representative sample out of five indepen-

dently carried out experiments is displayed.

2.1.6 Stimulation with rhVEGF induces increased VEGF

expression in CLL cells

To further elucidate the existence of a potential VEGF feedback loop mecha-
nism, CLL cells were stimulated with thVEGF'. For that purpose serum-starved
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CLL cells (RPMI 1640/3% FCS for at least 6 hours) were incubated with 10
ng/ml, 50 ng/ml and 100 ng/ml rhVEGF for 24 hours. mRNA was isolated,

reverse transcripted into cDNA and subject to real time PCR.
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Figure 11: VEGF mRNA levels of rhVEGF-stimulated CLL cells.

Fold changes were calculated using the comparative 9-8ACt ethod with the untreated

control as calibrator.

Exogenous stimulation with 50 ng/ml and 100 ng/ml rhVEGF resulted in a
moderately increased expression of VEGF mRNA levels in CLL cells (n=7) of
1.49 +/-0.20 fold (p=0.0391) and 3.06 +/-0.81 fold (p=0.0039) compared to
untreated control, respectively. 10 ng/ml rhVEGF did not result in significant
upregulated VEGF mRNA levels in CLL cells (1.14 +/-0.15 fold). Significances

were calculated using non parametric paired t-test (Wilcoxon matched pairs).

2.1.7 Secretion of VEGF by CLL cells increases with time

in culture

As demonstrated, CLL cells express functional VEGF-R2 (Figure 9) and are
capable of expression and secretion of VEGF (Figure 6, Figure 7). VEGF
amounts secreted by CLL cells were determined after 24 hours in culture. To
elucidate whether this is a steady level, a time course covering 5 days was con-
ducted. CLL cells and healthy peripheral blood mononuclear cells (PBMCs)
were cultured in RPMI 1640, supplemented with 3% FCS, supernatant was
harvested every 24 hours and analysed for its VEGF content by ELISA. Si-
multaneously, cells were removed from culture and analysed for survival by
flow cytometry (Annexin V-FITC/PI staining).
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Figure 12: VEGF levels secreted by CLL and healthy B-cells over 5 days.

VEGF amounts were normalized to simultaneously measured amount of living cells.

While all tested CLL samples (n=>5) showed increasing levels of secreted VEGF,
healthy PBMCs showed a constant VEGF level of 120 pg/107 living cells (n=3).
The analysed CLL samples showed very heterogenous responses varying from
2 fold to greater 20 fold increase compared to day 1 (215 pg to 3816 pg/107
living cells at day 5).

2.1.8 CLL cell-derived VEGPF is not sufficient to stimu-
late the VEGF-R2

With the existence and functionality of VEGF-R2, the ability of CLL cells
to express and secrete VEGF and the increase of VEGF secretion over time,
it could be speculated that VEGF-signaling is active in CLL cells n wvitro.
Therefore, VEGF-R2 phosphorylation in CLL cells was analysed over a period

of 5 days under culture condition using intracellular phospho flow cytometry.
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Figure 13: pVEGF-R2 levels in CLL cells during a time course of five days.
Grey shades represent the isotype control. One representative sample out of three indepen-

dently carried out experiments is displayed.

Despite increasing levels of VEGF in the supernatant of CLL cells (Figure 12)
the percentage of pVEGF-R2 positive cells steadily decreased with time. It
can be excluded that this reduction was due to reduced survival, hence a lower
number of existing total VEGF-R2, as the used gating strategy eliminated
dead CLL cells, which show a significant shift in forward/sideward scatter-
grams upon apoptosis induction due to cell shrinkage and fragmentation. As
stimulation with rhVEGF in concentrations similar to those achieved by CLL
cells under culture conditions, induced phosphorylation of the VEGF-R2, it
can be assumed that CLL cell-derived VEGF is insufficient to stimulate the
VEGF-R2 in a monoculture setting.

2.2 Role of VEGF in the apoptotic block of CLL

cells

As demonstrated CLL cells are capable of producing and secreting VEGF and
also feature the VEGF-R2. VEGF-signaling is a known potent pro-survival
stimulus for endothelial cells and other cell types. It has also been implicated
in apoptotic resistance of CLL cells, although the underlying functional mech-
anisms are not well understood up to date. Therefore, the effect of VEGF on

CLL cells in vitro was analysed.
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2.2.1 rhVEGF induces upregulation of anti-apototic pro-
teins in CLL cells, but not healthy B-cells

Stimulation of CLL cells with thVEGF increased the number of phosphory-
lated, hence active VEGF-R2 in CLL cells almost up to 100% (Figure 10).
VEGF /VEGF-R2-signaling is supposed to be involved in apoptotic resistance
of the CLL cells and their prolonged survival. To further determine the effect of
VEGF stimulation and subsequent activation of VEGF-signaling on survival,
CLL and healthy B-cells were stimulated with thVEGF, lysed and analysed by
immunoblotting for protein levels of the anti-apoptotic proteins Mcll, XIAP
and Becl2.

Healthy Healthy
CLL B-cells 1 B-cells 2
ng/ml 100ng/ml
rhVEGF S A Sy

Mcll

XIAP

B-actin

Bcl2

Figure 14: Anti-apoptotic protein levels in CLL and healthy B-cells after rhVEGF

stimulation.
For CLL cells one representative sample out of three independently carried out experiments

is displayed.

A concentration-dependent increase of the anti-apoptotic proteins XIAP and
Mecll could be detected in CLL cells upon thVEGF stimulation, while Bcl2
levels remained unchanged. In healthy B-cells levels of the analysed anti-
apoptotic proteins were unaffected by rhVEGF stimulation. Note the severe

overexpression of Bcl2 in CLL cells compared to healthy B-cells.

2.2.2 The anti-apoptotic proteins Mcll, XIAP and Bcl2

are reduced with time in culture

CLL cells seem to loose the ability for autocrine VEGF stimulation in culture,

as demonstrated by a time-dependent reduction of VEGF-R2 phoshorylation.
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CLL cells were cultured for 120 hours and harvested every 24 hours (exception
96 hours). Cells were lysed and analysed for protein levels of Mcll, XIAP
and Bcl2. f-actin served as loading control. At the same time survival was
determined by Annexin V-FITC/PI staining and flow cytometry (data not
shown). CLL cells showed reduced survival with time as expected, total protein
amounts were also reduced, as seen by decreasing amounts of fs-actin. For
that reason band intensities were determined densitometrically and values were

normalized to fs-actin as input control.
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Figure 15: Anti-apoptotic protein levels in CLL cell during a time course of 5 days.
To overcome uneven loading, band intensities were normalized to $-actin. One representative

sample of three experiments is shown.

Not surprisingly reduced survival went along with moderate reduction of the
anti-apoptotic proteins Mcll, XIAP and Bcl2. Since those proteins are regu-
lated by a variety of intracellular signaling cascades and their downregulation
is strongly involved in apoptosis induction in general, their reduction cannot

be assigned to downregulated VEGF-R signaling though.

2.2.3 rhVEGF stimulation does not affect survival of CLL
cells
CLL cells were cultured over a time period of 120 hours in RPMI 1640 medium

including 20% FCS or RPMI 1640, 20% FCS, supplemented with 100 ng/ml
rhVEGF. Medium was exchanged daily.
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Figure 16: Survival advantage of rhVEGF-stimulated CLL cells.
Four individual samples are displayed (CLL1-CLL4).

Addition of thVEGF at high concentrations of 100 ng/ml did not affect CLL
cell survival compared to standard cell culture medium not including thVEGF.

For the most part the survival difference was in the range of + /- 4%.

2.3 Influence of bone marrow (BM) stromal cells
on the VEGF status in CLL cells and their

survival

Since CLL cells loose their major pathophysiological feature, the resistance
towards apoptosis, when taken out of their natural microenvironment and
placed into cell culture, the bone marrow microenvironment can be assumed
to be of high influence on CLL cell survival in vivo. To approximate the in
vivo micromilieu we used the bone marrow-derived stromal cell line HS5 as a
feederlayer for CLL cell culture in vitro and analysed the influence on VEGF-

mediated survival.

2.3.1 The BM-derived stromal cell line HS5 produces
high amounts of VEGF

Stromal cells are a known source for cytokines, chemokines and growth factors.

In the following HS5 cells were anlysed for VEGF mRNA by real time PCR and

secreted VEGF by ELISA after having reached confluency under cell culture

conditions.
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Figure 17: VEGF status of HS5 cells.
(A) Relative VEGF mRNA values were calculated by dividing Ct values of the calibrator
Abl by Ct values of VEGF. (B) Secreted VEGF levels were normalized to the number of

living cells.

HS5 exhibited VEGF mRNA levels in considerably higher amounts than healthy
B-cells and CLL cells. As shown earlier, CLL cells (n=9) secreted 198.2 pg
+/- 22.1 pg VEGF /107 cells and healthy B-cells (n=7) 75.5 pg +/- 13.8 pg
VEGF /107 cells (Figure 7). VEGF levels in supernatant of HS5 cell (from two
independent batches of HS5) were approximately 20 fold higher than in CLL
cells (4067.0 pg +/- 245.4 pg VEGF /107 cells).

2.3.2 VEGF expression is significantly increased by co-
culture with HS5 in CLL cells, but not healthy B-

cells

As demonstrated, HS5 cells produce and secrete high levels of VEGF. Further-
more, the addition of rhVEGF to CLL cells in monoculture led to an increase
in VEGF mRNA levels produced by CLL cells. Therefore, the HS5-derived
VEGF might act in a paracrine fashion. To test this hypothesis, CLL cells were
cultured as monoculture or on a HSH feederlayer for 24 hours. Also healthy

B-cells were cultured on HS5 feederlayer.
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Figure 18: VEGF mRNA fold change in CLL or healthy B-cells by coculture with
HS5.

Fold changes relative to expression in monoculture were calculated using 9-24Ct_ethod.

Coculture of CLL cells (n=4) on a monolayer of HS5 led to an increased VEGF-
expression of 13.6 + /- 0.4 fold in CLL cells. Healthy B-cells (n=3) responded
less intensely (2.1 +/- 0.6 fold increase), which excluded HS5 contamination
in coculture supernatant as cause for increased VEGF mRNA levels (compare
Figure 41).

2.3.3 CLL cells maintain constitutive phosphorylated
VEGF-R2 when cocultured with HS5

In monoculture CLL cells lost the constitutive phosphorylation of the VEGF-
R2 with time, despite increasing amounts of secreted VEGF in culture super-
natant. It was suggested that CLL cell-derived VEGF is not sufficient to stim-
ulate the VEGF-R2. This could be due to inactivation, potentially by cleavage
of VEGF in monoculture, or also by a lack of further activating factors. These
factors may be microenvironment-derived. Therefore, the phosphorylation sta-
tus of VEGF-R2 in CLL cells cocultured with HS5 cells was analysed every 24

hours over a time course of 72 hours.
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Figure 19: pVEGF-R2 levels of CLL cells cocultured with HS5 over a time course of
three days.

Grey shades represent the isotype control. One representative sample out of three indepen-

dently carried out experiments is displayed.

In contrast to CLL cell monoculture, where secreted VEGF did not induce
phosphorylation of the VEGF-R2, coculture with HS5 maintained high num-
bers of approximately 80% pVEGF-R2-positive CLL cells over the analysed
period of 72 hours.

2.3.4 Coculture with HS5 supports survival of CLL cells,
but not healthy B-cells

CLL cells die quickly when taken out of their natural microenvironment and
can generally only be maintained in culture conditions for several days (com-
pare Figure 21). In our experiments CLL cell-derived VEGF was not sufficient
to activate the VEGF-R2 and prevent CLL cell death (Figure 13). Also the
addition of exogenous ThVEGF (100 ng/ml) did not prolong CLL survival in
vitro (Figure 16). After observing an increased VEGF expression in CLL cells
in coculture with HS5 and a prevention of VEGF-R2 phosphorylation loss with
time, it was investigated whether the coculture setting also has impact on CLL
cell survival. CLL cells or B-cells from healthy volunteers were seeded at a ap-
proximately 10 fold higher density onto a monolayer of HS5 cells. Survival was

assessed by Annexin V-FITC/PI staining every 24 hours for 5 days.
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Figure 20: Survival advantage of CLL and healthy B-cells cocultured with HS5.
The survival advantage was calculated by subtracting the percentage of living cells in cocul-

ture by the percentage of living cells in monoculture.

CLL cell survival was enhanced in HS5 coculture, with a constantly increasing
survival advantage over time, which was 16.8% + /- 2.3% at day one (n=13),
22.7% +/- 2.8% at day two (n=12), 33.9% +/- 4.0% at day 3 (n=10), 53.9%
+/- 6.5% (n=3) at day four and 69.7% + /- 7.4% (n=3) at day five compared to
monoculture controls. Healthy B-cells (n=3) did not profit from HS5 coculture
as their survival remained within a range of +/- 2% during the time course of
5 days compared to monoculture.

To not only show relative numbers Figure 21 displays the absolute survival of

three samples analysed for a time period of 5 days.
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Figure 21: Absolute survival of CLL cells in mono- or in coculture with HS5 over a

time course of five days .
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While CLL cells in monoculture presented a steadily decreasing survival in
vitro (lower three lines), the presence of HS5 cells largely prevented CLL cell
from undergoing apoptosis as seen by a constant survival rate of around 80%
(upper three lines). It is important to mention that HS5 cells showed reduced
viability after coculture for 120 hours due to increased nutrient needs. De-
spite this, CLL cell survival in coculture compared to monoculture was more

pronounced at later time points.

2.3.5 Neutralization of VEGF by a monoclonal antibody

reduces the coculture-mediated survival advantage

At this point, HS5-mediated CLL cell survival support could not be attributed
to VEGF but other factors derived from HS5 cells might be involved. To de-
termine, the importance of VEGF in the prolonged survival of cocultured CLL
cells, VEGF was neutralized using a monoclonal antibody (R&D Systems,
MAD 293). This antibody was tested for its VEGF-neutralizing ability by de-
termination of the VEGF-R2 phosphorylation status by intracellular phospho
flow cytometry after addition of 1 ng/ml and 10 ng/ml.

Grey: isotype control

Red: Untreated control

Blue: 1 ug/ml anti-VEGF mAb
: 10 pg/ml anti-VEGF mAb

PVEGF-R2

count

Figure 22: pVEGF-R2 levels upon addition of the VEGF-neutralizing antibody
MADb293 (mAbD).
The pVEGF-R2 status was determined by intracellular phospho flow cytometry. Gray shade

represents the isotype control

A significant reduction of the VEGF-R2 phosphorylation status was observed
at 10 ng/ml of MAb293 (Figure 22, green peak). That is why this concentration
was used in the following experiments.

CLL cells were cultured on HS5 feederlayer with or without addition of the
VEGF neutralizing antibody MAb293. Survival was assessed after 24 hours
by Annexin V-FITC/PI staining.
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Figure 23: Annexin V-FITC/PI staining of CLL cells in mono- and coculture with
and without the addition of anti-VEGF MAb293.

Annexin V/PI double negative cells are considered alive (green), Annexin V-positive/PI-
negative cells are considered early apoptotic (orange) and Annexin V/PI double positive
cells are considered dead. One representative sample out of four independently carried out

experiments is displayed.

In four analysed samples the addition of anti-VEGF-MAb 293 decreased the
HS5-mediated survival advantage by an average of 66.3% -+ /- 4.6% compared
to coculture not containing the antibody. This clearly indicates VEGF to be
critical in promotion of HSH-mediated CLL cell survival. It has to be mentioned
that the used VEGF-antibody did not affect HS5 survival as determined by
Annexin V-FITC/PI staining (data not shown).

2.3.6 VEGPF-depletion in HS5 by siRNA abolishes the

coculture-mediated survival advantage for CLL cells

In addition to blocking VEGF protein in the HS5/CLL coculture supernatant
by a neutralizing antibody, expression and secretion of VEGF by HS5 cells
was reduced using short interfering RNA (siRNA). 24 hours after transfec-
tion of HS5 siRNA was removed and CLL cells were added to confluent HS5
cells, which were either control treated (normal VEGF-expression) or VEGF-
depleted by siRNA. CLL monoculture was carried out in parallel. VEGF
downregulation upon siRNA treatment was analysed on both, mRNA and

protein level by real time PCR and ELISA, respectively.
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Figure 24: siRNA-mediated downregulation of VEGF.
Results are displayed relative to control siRNA-treated HS5 set at 1. VEGF mRNA levels
(A) were normalized to the calibrator Abl. Levels of secreted VEGF (B) were normalized

to the amount of living cells. Mean values of three independent experiments are displayed.

siRNA treatment reduced VEGF mRNA to levels of 0.53 + /- 0.03, 0.52 + /-
0.08 and 0.39 + /- 0.07 after 24, 48 and 72 hours (Q*AACt—method) relative to
siRNA control set at 1 (Figure 24A). The amount of secreted VEGF in the
supernatant of HS5 cells was reduced to 0.78 +/- 0.02 at 24 hours, 0.56 +/-
0.05 at 48 hours and 0.60 +/- 0.07 at 72 hours in VEGF siRNA treated HS5
relative to control siRNA treated HS5 set at 1 (Figure 24B).

CLL cell survival and HS5 survival was assessed by Annexin V-FITC/PI stain-
ing after 24 hours and 48 hours of coculture with control-treated and VEGF
siRNA-treated HS5.
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Figure 25: CLL cell survival after cocultivation with control-treated and VEGF
siRNA-treated HS5 cells after 24 and 48 hours of coculture.

Survival differences are displayed relative to CLL cell survival in coculture with control-

treated HS5 cells. Three independently carried out experiments are displayed.

Survival of CLL cells in coculture with VEGF-knockdown HS5 resembled sur-
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vival rates of CLL cells in coculture with the control siRNA transfected HS5
after 24 hours. However, at 48 hours the survival advantage for CLL cells was
significantly reduced in knockdown VEGF cocultures (levels of -0.02, -0.53
and 0.43 compared to the control level set at 1. It is important to note that
siRNA-treatment did not affect HS5 survival.

HS5 +siRNA control, 72h HS5 +VEGF siRNA, 72h

PI

annexin V-FITC annexin V-FITC

Figure 26: Survival of siRNA control-treated or VEGF siRNA-treated HS5 cells after
three days.

Annexin V-FITC/PI double negative cells are considered dead. One representative sample

out of three independently carried out experiments is displayed.

2.3.7 Physical separation of CLL cells from HS5 reduces

the coculture-mediated survival advantage

Up to this point it could be shown that a coculture with HS5 cells significantly
increased the survival of CLL cells and that VEGF is an essential factor in
this regard. Since neither thVEGF stimulation nor CLL cell-derived increased
VEGF levels were sufficient to prolong CLL cell survival in wvitro, it must
be concluded that further factors are involved. Besides soluble factors this
could also be direct cell-cell contacts. That is why CLL cells were cultured
as monoculture or coculture on HS5 feederlayer either physically separated by
a transwell or allowing direct cell-cell contact for a time course of 72 hours.
Survival was assessed by Annexin V-FITC/PI staining. The survival advantage
was calculated by subtracting the percentage of living cells in coculture by the

percentage of living cells in monoculture.
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Figure 27: Survival advantage of CLL cells in coculture with HS5 with and without

physical separation.
Co=Coculture of CLL cells and HS5, CoSep=Coculture of CLL cells with HS5 using trans-

well

The survival advantage for CLL cells (n=4) cultured directly on a HS5 feed-
erlayer was 24.8% -+ /- 5.3% after 24 hours, 22.1 +/- 0% after 48 hours and
36.4 +/- 8.2 after 72 hours in coculture compared to survival in monoculture.
When CLL cells were physically separated by transwell the survival advantage
was decreased with 3.2% + /- 4.3% after 24 hours, 7.0% + /- 1.6% after 48 hours
and 18.9% + /- 4.9% after 72 hours better survival compared to the correspond-
ing monoculture. It can be concluded, that CLL cells benefit from physical
interaction with HS5 stroma cells regarding their survival ability in vitro. To
maintain comparable conditions, monoculture controls were also cultured in

transwell.

2.4 Mechanistical background of VEGF-mediated
apoptosis prevention

In study it was demonstrated that VEGF is involved in microenvironment-
supported apoptosis resistance of CLL cells, while the mechanistical back-
ground is not clear. Knowledge of the events downstream of the VEGF-
receptor is of high interest and might possibly reveal targets for specific CLL
therapy.
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2.4.1 PCR-array suggests an upregulation of STAT3 and
downregulation of RB1 and E2F1 upon rhVEGF-

stimulation

A PCR array (96 well format) was conducted to detect possible changes in
transcription factor levels upon VEGF stimulation in CLL cells. This array
contained primer sets for 86 genes coding for transcription factors plus several
controls. Real time PCR was carried out using SYBR green fluorescent dye
on a 96 well cycler. Starved CLL cells were either-stimulated with thVEGF
for 6 hours or left untreated. ¢cDNA was subject to PCR array. Analysis is
based on the 2722¢_method and was done using a softwaresystem provided

by SABioscience.
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Figure 28: PCR array results of unstimulated versus rhVEGF-stimulated CLL cells.

Two independent experiments were carried out.

The average of two independent experiments revealed an upregulation of the
oncogene STAT3 of 8.79 fold +/- 3.11 fold, a 3.68 fold +/- 2.09 fold down-
regulation of E2F1 and a 5.77 fold -+ /- 3.67 fold downregulation of the tumor
suppressor RB1.
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2.4.2 PCR-array suggested downregulation of E2F1 and
RB1 is not reproducible by PCR

To confirm the results obtained from the PCR array, CLL cells from 5 pa-
tients were-stimulated with thVEGF (100 ng/ml, 6 hours) or left unstimu-
lated. ¢cDNA was prepared and analysed by real time PCR using E2F1 and
RB1 specific primers and probes.
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Figure 29: RB1 and E2F1 mRNA levels of rhVEGF-stimulated CLL cells relative to

unstimulated control.

Fold change was calculated based on the 2-22C*_method.

RB1 and E2F1 expression was not significantly changed by rhVEGEF stimula-
tion (1.04 +/- 0.20 fold and 0.73 +/- 0.04 for RB1 and E2F1, respectively).
The 2722¢ value of E2F1 mRNA levels after thVEGF stimulation compared
to untreated control is equivalent to a fold downregulation of 1.37 (1/0.73),
but does not reach statistical significance as determined by paired student “s
t-test (p=0.14).

2.4.3 rhVEGF stimulation does not increase total STAT3
but induces its phosphorylation on tyr705

Based on the array results an upregulation of STAT3 was expected. CLL
cells were thVEGF-stimulated, treated with a combination of rhVEGF and
the VEGF-R inhibitor GW 786034 or left untreated. Cell lysates were subject
to immunoblotting for total STAT3 levels.

In contrast to the PCR array, total STAT3 protein levels observed upon
rhVEGF stimulation were only marginally increased, if at all (Figure 30A).
STATS3 has been described by others as a potential downstream effector of the

VEGR-R2 in CLL as its nuclear translocation was induced as a consequence
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of VEGF-R engagement (Lee et al., 2005). Transcriptional activity of STAT is
regulated by its phosphorylation, hence the total protein levels do not necessar-
ily refer to functional and active protein. To further assess this point, STAT3
was investigated for phosphorylation on distinct residues in stimulated and un-
stimulated CLL cells. CLL cells were starved for 6 hours (3% FCS) followed by
rhVEGF stimulation (50 ng/ml) or left untreated for 24 hours with or without
simultaneous treatment with the VEGF-R inhibitor GW786034. Cell lysates
were prepared and analysed by immunoblotting using antibodies specifically
recognizing the serine 727 (ser727) and tyrosine 705 (tyr705) phosphorylation
sides of STATS.

A B
rhVEGF - + + rhVEGF - + +
GW 786034 R R 4 GW 786034 _ . +
PSTAT3
STAT3 (tyr705)
. PSTAT3
B-actin (ser727)

B-actin

Figure 30: STAT3 and pSTATS3 levels in CLL cells after thVEGF stimulation or

VEGF-R inhibition using GW 786034.
(A) Total STAT3 amount. (B) Phosphorylation status of STAT3 on residues ser727 and
tyr705. One representative sample out of three (A) and two (B) independent experiments

is displayed.

STAT3 ser727 was found to be constitutively phosphorylated, while tyr705
phosphorylation was present only upon rhVEGF stimulation. Tyr705 phos-
phorylation was either prevented or was reduced again when cells were si-
multaneously treated with the VEGF-R inhibitor GW786034. STAT3 ser727
phosphorylation remained unchanged upon both, thVEGF stimulation and
VEGF-R inhibitor treatment (Figure 30B).

As a further proof of the results obtained from immunoblotting experiments,
the STAT3 phosphorylation status, with and without thVEGF stimulation,
was determined by intracellular phospho flow cytometry. The stimulation pro-

cess was the same as described above. Instead of cell lysis, cells were fixed,
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permeabilized and incubated with directly fluorescently labeled antibodies or

the appropriate controls and analysed by intracellular phospho flow cytometry.

+ rhVEGF +rhVEGF

count
count

pSTAT3 ser727 pSTAT3 tyr705

Figure 31: STAT3 phosphorylation status after thVEGF stimulation in CLL cells
assessed by flow cytometry.

One representative sample out of three independently carried out experiments is displayed.

Immunoblotting results could be confirmed: while phosphorylation of STAT3
on ser727 was present without exogenous VEGF stimulation in about 50% of
cells, VEGF stimulation did not further increase this phosphorylation (average
46.9% +/- 0.9). In contrast, tyr705 phosphorylation was detectable only after
addition of thVEGF.

2.4.4 Phosphorylation on tyr705 activates STAT3

It has been described before, that ser727 phosphorylation alone is not sufficient
to confer a transcriptional signal and that tyr705 phosphorylation is required
for full transcriptional activity (Darnell, Jr., 1997; Thle, 1995).

To assess the activity status of STATS3, protein levels of the known STAT3
target genes cyclinD1 and Bcly;, were analysed by immunoblotting. The ex-

perimental set up was as described above.
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Figure 32: CyclinD1 and Bclxy, levels after thVEGF stimulation or VEGF-R inhibi-
tion using GW 786034 in CLL cells.

One representative experiment out of three independently carried out experiments is dis-

played.

Both tested STAT3 targets cyclinD1 and Bcly;, were increased upon thVEGF
stimulation, while the presence of the VEGF-R inhibitor GW786034 reversed
this effect.

2.4.5 Coculture with HS5 provokes tyr705 phosphoryla-
tion of STAT3 and its activation in CLL cells

As demonstrated above HS5 cells possess a substantial survival-promoting in-
fluence on CLL cells with VEGF being an essential player in this process. It
is of interest, whether coculture with HS5 cells also induces STAT3 phospho-
rylation on tyr705 and subsequent transcriptional activation in CLL cells.

To test this hypothesis, CLL cells were cultured alone or together with HS5
with or without addition of the VEGF-R inhibitor GW 786034 for 24 hours.
Lysates from CLL cells and HS5 cells were analysed for protein levels of tyr705
phosphorylated STAT3, the STAT3 target cyclinD1 and the anti-apoptotic pro-
teins Mcll and XIAP by immunoblotting. For that purpose membranes were

stripped and reincubated twice.
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Figure 33: Protein analysis of CLL cells in mono- or coculture with HS5 with and
without GW 786034 treatment.

DMSO treatment functioned as vehicle control. One representative sample of three inde-

pendently carried out experiments is displayed.

Similar to external VEGF stimulation using the recombinant protein, STAT3
was clearly phosphorylated on tyr705 upon coculture. To proof VEGF-signaling
to be responsible for this phosphorylation, rather than other HS5-derived fac-
tors, the VEGF-R inhibitor GW 786034 was added. As GW 786034 clearly
reduced the STAT3 phosphorylation again, it can be concluded that VEGF-
signaling is responsible for HS5 coculture-mediated STAT3 tyr705 phosphory-
lation. This was further supported by the upregulation of the STAT3-target cy-
clinD1 in cocultured CLL cells, which was in turn downregulated when VEGF-
signaling was blocked by GW 786034. When comparing STAT3 ser727 levels,
it can be seen that GW 786034 downregulates the constitutive phosphoryla-
tion in monoculture, while this was not the case when rhVEGF was present
(compare Figure 30). Also the anti-apoptotic proteins Mcll and XIAP, which
were associated with VEGF stimulation, are downregulated upon GW 786034
treatment in both mono-and coculture, while an upregulation in coculture

compared to monoculture was only noticed for Mcll and not XIAP.
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2.4.6 Neither rThVEGF nor coculture with HS5 effectu-
ates phosphorylation of Akt in CLL cells

Several other signaling pathways have been demonstrated to be activated upon
VEGF-binding to the VEGF-R. One of them is the Akt-signaling cascade. To
test whether Akt is activated upon VEGF stimulation, starved CLL cells were
incubated with thVEGF (100 ng/ml), rthVEGF combined with GW 876034
(50 M) or the lymphocyte stimulant phorbol 12-myristate 13-acetate (PMA)
(100 nM) as a positive control for 6 hours or cultured with or without HS5
feederlayer for 24 hours. Cell lysates were analysed for Akt and phosphorylated
(serd73) Akt by immunoblotting using specific antibodies.

A B
rhVEGF - + + - © e
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GW 786034 - - + - £ £ 7
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pAkt
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pAkt B-actin
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Figure 34: Akt and pAkt protein levels in CLL cells under several conditions: (A)
CLL cells stimulated with thVEGF and/or treated with GW 876034, (B) CLL cells

in mono- or coculture with HS5 cells
PMA-stimulation functioned as positive control for Akt phosphorylation. One representative

sample of three independently carried out experiments is displayed.

Akt protein was present in CLL cells; at the same time Akt phosphorylated on
serd73 was detectable but distinctly lower. While PMA stimulation increased
this phosphorylation as expected, neither rhVEGF (A), nor HS5 coculture (B)
effectuated increased ser473 phosphorylation of Akt. In contrast, active Akt
seemed rather to be downregulated in CLL cells which were cocultured with

HS5. This slight downregulation was present in all three tested samples.
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2.5 Potential of VEGF as therapeutic target in
CLL

CLL cells showed significantly improved in vitro survival when placed on an
HS5 feederlayer. Since partial blockage of VEGF in this setting using the
monoclonal VEGF-neutralizing antibody MAb293 (Figure 23) and an siRNA-
mediated downregulation of VEGF-expression and secretion in HS5 cells re-
duced the coculture-derived survival advantage for CLL cells (Figure 25), an
anti-VEGF-based therapeutic approach in CLL seems to be a logical conse-
quence.

For this purpose either VEGF itself or its receptor could serve as a drug tar-
get. VEGF exerts its pro-survival effect via activation of intracellular signaling
pathways, which in turn transduce the extracellular signal into a survival-
supporting response, which is mainly mediated through activation of tran-
scription factors that modulate gene expression in favour to anti-apoptotic
survival-promoting proteins. Therefore, a therapeutic intervention at the level

of downstream effectors might also be of therapeutic interest.

2.5.1 Anti-VEGF antibody treatment does not alter sur-
vival in CLL cell monoculture

CLL cells were treated for 24 hours with the VEGF-neutralizing antibody

MAD293 or the commercially available humanized anti-VEGF antibody beva-

cizumab (Avastin®, Roche) at different concentrations. Survival was assessed
by Annexin V-FITC/PI staining.
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Figure 35: Survival of CLL cells upon treatment with anti-VEGF MADb293 or beva-

cizumab.

Percentage of surviving cells was normalized to vehicle-treated controls (NaCl 0.9% for
bevacizumab and PBS for MAb293).

In a monoculture setting neither MAb293 nor bevacizumab had an influence
on CLL cell survival in the tested concentrations. In contrast, in coculture
with HS5 cells, where CLL cells remained their apoptotic resistance, MAb293
could be shown to reduce CLL cell survival (Figure 23).

2.5.2 The VEGF-R inhibitor GW 786034 effectively in-
duces apoptosis in CLL cells in mono- and in co-

culture

An alternative target to prevent VEGF-signaling could be the VEGF-receptor
(VEGF-R), rather than VEGF itself. For that purpose the small molecule
tyrosine kinase inhibitor GW 786034 was used which has high selectivity to-
wards the VEGF-R. CLL cells in mono- and in coculture with HS5 and healthy
PBMCs were treated with 50 uM of GW 786034 or DMSO vehicle control for
24 hours, followed by assessment of survival by Annexin V-FITC/PI staining.
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Figure 36: Cell survival upon treatment with GW 786034 in mono- or coculture with

HS5.
Cells were treated with 50 pM of GW 786034.

GW 786034 treatment resulted in decreased survival of CLL cells for both,
monoculture (n=6) and coculture with HS5 (n=4), while healthy B-cells (n=4)
were not affected. Also in concentrations up to 100 uM primary healthy
PBMC:s did not show decreased survival (data not shown). Besides the VEGF-
R, GW 786034 also has inhibitory function on several other tyrosine kinase
receptors such as PDGF (platelet-derived growth factor) and might therefore
be a more potent, albeit less specific, inducer of apoptosis compared to mon-

oclonal antibodies, especially in the monoculture setting.

2.5.2.1 VEGPF-R inhibitor treatment downregulates anti-apoptotic

proteins and activates caspases

To further look into the mechanism of apoptosis induction by GW 786034,
protein levels of the anti-apoptotic proteins Mcll and XIAP were analysed by
immunoblotting in CLL cells upon treatment with varying concentrations for
24 hours.
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Figure 37: Anti-apoptotic protein levels after treatment with GW 786034.

One representative sample out of four independently carried out experiments is displayed.

Both substances led to a concentration-dependent decrease of the anti-apoptotic
proteins XIAP and Mcll. XIAP is a direct inhibitor of caspase activation and
therefore it is consequent to investigate the caspase activation upon treatment
with the VEGF-R inhibitor. Further, caspase activation leads to cleavage of
PARP, which was also analysed. Initiator caspase 9 (cleaved and intact) and
effector caspase 3 (cleaved), PARP and cleaved PARP were detected using

specific antibodies by immunoblotting.

GW 786034
UTC DMSO 10uM 100puM

Caspase 9 e

cl.Caspase 9
PARP — —
cl.PARP 8--

cl. caspase 3

B-actin

Figure 38: Intact and cleaved (cl.) caspase and PARP protein levels after treatment
with GW 786034.

One representative sample out of three independently carried out experiments is displayed.

Caspases 9, 3 and PARP showed a concentration-dependent decrease of the
inactive intact forms, while cleaved active forms were increased upon treatment

with GW 786034.
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2.5.3 The STAT3 inhibitor S3I-201 requires high concen-

trations to reduce CLL cell survival

CLL cells in mono- (n=>5) and in coculture with HS5 (n=2) and PBMCs from
healthy volunteers (n=3) were treated with the STAT3 inhibitor IV (S31-201,
Calbiochem) at 10 uM, 100 uM and 150 uM for 24 hours and 48 hours or
the appropriate DMSO control. Survival was assessed by Annexin V-FITC/PI

staining.
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Figure 39: Cell survival upon treatment with S3I-201 in mono- and coculture with
HS5.

Percentage of surviving cells was normalized to DMSO-treated cells.

At 24 hours CLL cell survival was even at high concentrations of 150 uM
only slightly reduced (62.4% -+ /- 12.2%), while an average of 85.4% + /- 2.7%
healthy PBMCs were alive. The substance was most effective in cocultured
CLL cells with a survival of 49.7% + /- 8.0% at the highest tested concentra-
tion. After 48 hours survival after treatment with 150 pM S31-201 was 16.4%
+/- 6.1% and 46.9% +/- 10.6% in CLL cells and healthy PBMCs, respec-
tively. Also here cocultured CLL cells showed the highest sensitivity towards
treatment with a survival rate as low as 6.5% +/- 10.6% at the highest tested
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concentration.

2.5.4 Pan-JAK inhibition by Pyridone 6 does not reduce

CLL survival in tested low concentrations

STATS3 activation seems to be an effect of VEGF /VEGF-R-signaling and hence
to be involved in the VEGF-mediated survival support of CLL cells. JAKSs are
the most commonly known mediators of STAT-phosphorylation and subse-
quent activation. In this study it was not further analysed whether JAK is in-
terconnected between VEGF /VEGF-R-signaling activation and STAT3 phos-
phorylation. Nevertheless, the potential of JAK inhibition to induce apoptosis
in CLL cells and healthy PBMCs was determined.

Cells were treated with several concentration of a Jak inhibitor (Pyridone
6, Calbiochem) for 24 hours and cell survival was analyzed by Annexin V-

FITC/PI staining.
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Figure 40: Cell survival upon treatment with Pyridone 6.

Percentage of surviving cells was normalized to DMSO-treated cells.

Pyridone 6 had a modest effect in reducing CLL cell (n=6) survival after 24
hours at the highest tested concentration (20 ug/ml corresponding to 6.4 pM),
while healthy PBMCs (n=3) were completely unaffected, suggesting CLL cell-
specificity of the substance. This would justify the use of higher concentrations,
which unfortunately could not be carried out in this study due to low concen-

trated stock solutions (1 mg/ml).
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Chapter 3
Discussion

Chronic lymphocytic leukemia (CLL) is up to day still an incurable disease.
While it is the most common adult leukemia in western countries treatment is
still mainly focusing on minimizing progression rather than on an outright cure.
CLL patients show very heterogeneous outcomes with slow progressing disease
and no need of treatment for several years, whereas others progress rapidly
and require immediate treatment. Possibly reflecting the clinical heterogeneity
in CLL patients, CLL research has lately been unravelling an unprecedented
flurry of information giving insight into the pathophysiology of the disease.
Thereby, a focus is the determination of mechanism underlying the apoptotic
block of CLL cells with the aim of a targeted therapy.

This study aimed on obtaining further insight into the pro-survival role of
VEGF in CLL cells, especially in the background of their interaction with
the bone marrow microenvironment, thus potentially identifying targets for

therapeutic interventions.

3.1 VEGF status in CLL cells and its involve-

ment in apoptosis prevention

At first the VEGF status in primary CLL cells and healthy B-cells was as-
sessed. CLL cells express all three major VEGF-isoforms VEGF5;, VEGF 45
and VEGF g in higher levels than healthy B-cells. Furthermore, CLL cells
secreted significantly more VEGF protein into the supernatant after 24 hours

in culture compared to healthy B-cells. This was in accordance with previous
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studies showing significantly higher VEGF protein levels in CLL cells com-
pared to healthy PBMCs (Aguayo et al., 2000; Thle, 1995). Interestingly, levels
of both VEGF mRNA and secreted VEGF protein were quite heterogeneous
in different CLL samples, perhaps representing a correlation between VEGF-
expression and patient characteristics. Disappointingly, in 67 CLL patients
no correlation between VEGF mRNA levels and CD38 or Zap70 status was
detected. Possibly, correlation of patient characteristics with VEGF mRNA
levels does not reflect the actual impact of VEGF on CLL cells, as mRNA
requires several ongoing steps to represent a functional protein. A correla-
tion study with secreted protein might therefore be a more suitable approach.
Available studies comparing VEGF levels with patient characteristics and/or
disease progression mainly focus on VEGF in serum or plasma. While not
being consistent, they show a general trend towards a positive correlation be-
tween VEGF and several clinical parameters such as Rai-stage, progression
free or overall survival (Aguayo et al., 2000; Ferrajoli et al., 2001; Gora-Tybor
et al., 2005; Thle, 1995; Molica et al., 1999). It has to be kept in mind, that
plasma or serum VEGF cannot be exclusively assigned to CLL cells, rather it
might be derived from other blood components or be a result of a feedback
loop-involving cross talk between CLL cells and their microenvironment in the
peripheral blood or the bone marrow.

CLL cells exhibit VEGF-R2, which was found to be constitutively phospho-
rylated in this study. In contrast to CLL cells the VEGF-R2 was only ex-
pressed in low percentages in healthy B-cells. Since stimulation with exoge-
nous thVEGF further increased VEGF-R2 phosphorylation in CLL cells, it
can be concluded that this receptor is biologically functional in CLL cells. In
addition, CLL cells showed a concentration-dependent feedback loop response
upon stimulation with thVEGF as seen by increasing VEGF mRNA levels
upon stimulation. tThVEGF stimulation further resulted in upregulated pro-
tein levels of the anti-apoptotic proteins Mcll and XTAP in CLL cells, but not
healthy B-cells. Also here the effect was concentration-dependent. Bcl2 levels
did not change upon stimulation. The latter result is in accordance with Lee
et al, who also did not detect any changes in total Bcl2 levels upon stimulation
with thVEGF in CLL cells (Ihle, 1995; Lee et al., 2004; Molica et al., 1999).
The reason for unchanged Bcl2 levels upon VEGF stimulation in CLL cells
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is not clear and it can only be speculated that since Bcl2 is already highly
upregulated some kind of saturation state is already reached. In acute lym-
phoblastic leukemia (ALL) the Bcl2 protein was described to be phoshorylated
upon VEGF-stimulation, which was also survival-supportive for ALL cells in
culture (Wang et al., 2005a). As Bcl2 requires phosphorylation for optimal
anti-apoptotic function, the same group studied the effect of ThVEGF on Bcl2
phoshorylation in primary CLL cells and did not see any changes (Wang et al.,
2005b). Taken together with our results, it seems that in ALL and CLL cells
the crucial anti-apoptotic processes might be differential as ALL cells require
Bcl2 activation, while CLL cells seem to be independent on Bcl2.

At this point it stands to reason that CLL cells might be able to maintain
their resistance towards apoptosis in vitro, since they are capable of producing
VEGF, secreting it into the supernatant, exhibiting functional VEGF-R2 and
rhVEGF stimulation resulted in VEGF-R2 phosphorylation and increased lev-
els of anti-apoptotic proteins. Nevertheless, it is widely known that CLL cells
can actually not preserve their resistance towards apoptosis when taken out
of their natural microenvironment and are placed into cell culture (Collins et
al., 1989), which was reproduced in this study. One possible explanation for
this discrepancy could be the loss of the ability of CLL cells to produce VEGF
with time in culture. To test this hypothesis, CLL cells were cultured for a
time course of 5 days and the amount of VEGF present in the supernatant was
evaluated. At the same time survival was determined to normalize the VEGF
concentration to the amount of living cells. The result contradicted the enun-
ciated hypothesis as VEGF protein per amount of living cells increased, rather
than decreased, with time in culture, although to different degrees (range 2-fold
to greater 20-fold at day 5 in the tested samples). The VEGF concentration in
cell culture supernatant of healthy PBMCs remained unchanged over a period
of 5 days. Despite high amounts of VEGF in the supernatant, the percentage
of pVEGF-R2 was significantly reduced with time, indicating VEGF derived
from CLL cells to be insufficient to stimulate the VEGF-R2. Here, it can
be excluded, that the reduced pVEGF-R2 levels are due to reduced overall
VEGF-R2 owing to increased cell death, as dead cells can be distinguished
from living ones in size and were therefore separated by appropriate gate set

up. Possible reasons for reduced VEGF-R2 phosphorylation despite high levels
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of CLL-derived VEGF could be the need of further cofactors either for forma-
tion of a VEGF complex capable of binding the receptor or also the need of
co-receptors such as NRP1 to properly transduce a signal. Another explanation
could be an increased presence of VEGF-R1, which has been suggested to pos-
sibly function as a decoy/dummy receptor regulating the availability of VEGF
for the signal transducing VEGF-R2. Furthermore, soluble VEGF-receptors
might heterodimerize with membrane receptors to form dummy receptors for
VEGF that would affect VEGF-signaling (Barleon et al., 1997; Roeckl et al.,
1998).

If apoptosis prevention was supported by VEGF-mediated VEGF-R2 stimu-
lation inducing upregulation of the anti-apoptotic proteins Mcll and XIAP in
CLL cells, then it seems consequent to expect an enhanced in vitro survival
of CLL cells under addition of thVEGF. To create an even higher complexity
of VEGF-supported survival in CLL cells, in our experiments medium supple-
mented with thVEGF did not yield an improved survival of CLL cells in vitro
over a time course of 5 days with daily refreshment of rhVEGF-supplemented
medium. Wang et al observed a reduction of drug-induced apoptosis in CLL
cells when pre-treated with thVEGF, but did not find rhVEGF alone to sup-
port CLL cell survival either, though it has to mentioned that the time frame
analysed in this study was indicated as "overnight" an is therefore short (Bar-
leon et al., 1997; Wang et al., 2005b). In contrast, Lee et al found rhVEGF to
protect primary CLL cells from spontaneous and chlorambucil-induced apop-
tosis after 24 hours in culture (Lee et al., 2004).

It must be concluded, that the survival support of CLL cells is highly com-
plex and besides VEGF additional stimuli derived from the microenvironment
seem to be necessary to restore the central physiological feature of CLL cells

to resist apoptosis.
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3.2 Influence of the bone marrow-derived stro-
mal cell line HS5 on VEGF-mediated CLL

cell survival

The stimulation of CLL cells in vitro with thVEGF does not reflect the ac-
tual situation of the CLL cells as it is present in their natural environment
within a patient’s bone marrow or peripheral blood, where CLL cells can phys-
ically interact with bystander cells and are exposed to a variety of cytokines,
chemokines and humoral factors (Munk-Pedersen and Reed, 2004). Stromal
cells are a major component of the bone marrow microenvironment and there-
fore likely to contribute to the apoptotic resistance of CLL cells in vivo (Burger
et al., 2000; Burger and Kipps, 2002; Kay et al., 2007; Lagneaux et al., 1999;
Lee et al., 2004).

In this study, the influence of the bone marrow microenvironment on VEGF-
mediated CLL cell survival support was analysed. For that purpose the human
bone marrow-derived stromal cell line HS5 was utilized. It could be shown that
CLL cells can be maintained in cell culture several weeks or even up to sev-
eral months, when cultured on bone marrow stromal cells as a feederlayer
(Kay et al., 2007; Panayiotidis et al., 1996b). HS5 cells comprise for example
fibroblasts, adipocytes and endothelial cells, hence representing functionally
distinct components of the bone marrow microenvironment (Roecklein and
Torok-Storb, 1995; Torok-Storb et al., 1999). They are therefore well suited
for creation of an in wvivo-like milieu in an in wvitro cell culture set up. We
found HS5 cells to produce and secret substantially higher VEGF amounts
compared to CLL cells. In contrast to monoculture, CLL cells did not show
decreased amounts of pVEGF-R2 positive cells, but maintained a constant
level of around 80% of cells positive for pVEGF-R2 over three days, sug-
gesting VEGF to be capable of activating VEGF-R2 in HS5/CLL coculture.
Furthermore, CLL cells kept in coculture with HS5 cells exhibited a strongly
increased VEGF-expression, with mRNA levels being up to almost 14 fold
higher than in monoculture. It is of interest that healthy B-cells did not re-
spond with increased VEGF-expression to HS5-coculture. The latter fact also

excluded HS5 contamination in the coculture supernatant to be responsible
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for increased VEGF mRNA levels in CLL cells. Since HS5 cells secrete a va-
riety of factors other than VEGF and also physically interact with CLL cells,
the increased VEGF-expression in CLL cells cannot necessarily be assigned
to a paracrine VEGF-loop. Nevertheless, as CLL cells reacted with increased
VEGF-expression when-stimulated with exogenous thVEGF, it can be sug-
gested that VEGF at least theoretically has the potential to act in a feedback
loop manner. Going along with constitutive phosphorylation of the VEGF-R2,
CLL cells remained their resistance towards apoptosis when cocultured with
HS5. The survival advantage CLL cells gained from being kept on an HS5
feederlayer was approximately 17% after 24 hours and continuously increased
with time reaching around 34% improved survival after 3 days. While CLL
cells in monoculture were dead for the most part at day 5 (average of three
tested samples 12.0% +/- 5.9% survival), survival of CLL cells derived from
the same patients in coculture with HS5 was 81.7%+ /- 1.5%. Interestingly,
healthy B-cells did not respond with increased survival as seen by survival
rates within a range of +/- 2% over three days compared to monoculture. In
a study of Lagneaux et al healthy B-cells did not profit from bone marrow
stromal cells going along with our results, while Seiffert et al demonstrated
the opposite (Lagneaux et al., 1998; Seiffert et al., 2007). These discrepan-
cies might be explained by the use of either primary bone marrow-stromal
cells or the bone marrow-derived stromal cell line HS5 in the different studies,
which produce variable qualities and quantities of soluble factors. Furthermore,
the purity of the B-cells might be important, since contamination with other
PBMCs could contribute to B-cell survival. Interestingly, Kay et al stated
that they did not observe a differential survival-supporting capacity of bone
biopsy-derived marrow stromal elements from CLL patients compared to those
derived from healthy donors (Kay et al., 2007; Lagneaux et al., 1998). This
would suggest the marrow components of CLL patients themselves to perhaps
be non-tumorigenic and comparable to healthy marrow, therefore, the survival
supporting effects might possibly be exclusively mediated by aberrancies in
the CLL cells themselves.

At this point the actual impact of VEGF on the HS5-mediated support of CLL
cell survival is not clear, as other secreted factors or direct cell-cell contacts

could be largely involved. To proof the significance of VEGF at first a mono-
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clonal VEGF-neutralizing antibody (MAb293) was used. The capacity of this
antibody to reduce VEGF-signaling was assessed by flow cytometric determi-
nation of the VEGF-R2 phosphorylation status upon treatment with different
concentrations. Addition of this antibody to CLL/HS5 coculture significantly
reduced the survival advantage for CLL cells (average 66.3% + /- 4.6% reduc-
tion compared to coculture without MAb293) which they gain from coculture.
To not only block VEGF externally, but reduce its production, VEGF was
downregulated by siRNA in HS5 cells. 24 hours after transfection, trans-
fection complexes were removed to not expose CLL cells, which were added
subsequently. VEGF-knockdown was controlled on both the mRNA and the
protein level. While at 24 hours no difference of CLL cell survival in coculture
with HS5 featuring reduced VEGF-levels compared to CLL cells in coculture
with negative control-treated HS5-cells was seen, at 48 hours CLL cells showed
a significantly reduced survival when VEGF was donwregulated in HS5 cells.
The extent of survival-support reduction was very heterogeneous in the three
tested samples ranging from a survival which was considerably lower than that
in monoculture to an approximately 50% reduced survival advantage compared
to CLL cells in coculture with negative control-treated HS5. This different re-
action might be due to variable dependencies of CLL cells on a VEGF signal
in order to obtain the maximum protection from apoptosis, possibly corre-
lating with certain patient characteristics or patient subtypes. It has to be
mentioned, that siRNA treatment did not affect survival of HS5 cells, hence
reduced CLL cell survival after 48 hours in coculture cannot be assigned to
reduced total levels of HS5.

As a conclusion from these experiments it can be stated that VEGF derived
from bone marrow stromal cells is essential for CLL cell survival. This result
together with the inability of CLL cells to maintain their own survival in vitro
contradicts the hypothesis of an autocrine pro-survival loop in CLL cells. A
further proof of this statement could be achieved by analysing the effect of
VEGF-downregulation directly in CLL cells. A general problem here is that
CLL cells are naturally hard to transfect, showing high rates of occurring cell
death upon transfection procedure (Lagneaux et al., 1998; Seiffert et al., 2007).
Furthermore, as CLL cells do not possess the ability to resist apoptosis when

their natural micromilieu is absent, therefore proposed VEGF-mediated sur-
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vival support is not fully functioning, it can be concluded that this experiment
in CLL monoculture would probably only be of limited significance. A com-
bined downregulation of VEGF in CLL and HS5 cells in a coculture set up
might be an option to further elucidate the significance of VEGF for CLL cell
survival but requires a high complexity of experimental set up.

Nevertheless, it can be concluded, that both strategies, VEGF-neutralization
using a monoclonal antibody and siRNA-mediated VEGF knock down in HS5
cells broadly diminished the coculture-procured survival advantage, therefore
clearly identifying VEGF as an indispensable factor in the CLL cell’s micro-
milieu.

Besides soluble factors, such as cytokines and growth factors, also direct cell-
cell contacts have been a focal point of microenvironment-focused CLL research
(Ghia et al., 2002a). For example, CLL cell survival support by follicular
dendritic cells (FDCs) in the bone marrow requires CD44-ligation-dependent
direct cell contact (Pedersen et al., 2002). Also T-cells have been described
to be, mostly within the proliferation centers, in close physical contact with
CLL cells. Here, CD40 present on the CLL cell is thought to interact with
CD40L, provided from T-cells (Ghia et al., 2002b). Also stromal cells interact
with CLL cells via receptor-ligand binding. CLL cells express several adhesion
molecules. It could be demonstrated that interactions between the integrins
CD49d/CD11a or CD11b/CD18 on CLL cells with CD54 and CD106 on stro-
mal cells substantially improve CLL survival in a coculture setting (Plate et
al., 2000). Also direct physical contact of f1- and $2-integrins on CLL cells
with bone marrow stromal cells (Burger and Kipps, 2002; Lagneaux et al.,
1999) or the interaction of CD100 on CLL cells and PlexinB1 on stromal cells
(Granziero et al., 2003) entailed improved CLL cell survival. In the present
study CLL cells were physically separated by transwell from the HS5 feeder-
layer and survival was assessed. The survival advantage CLL cells gain from
coculture with HS5 was still present, but reduced when physical contact was
prohibited. Interestingly, it seemed that physical separation has a stronger
influence on HS5-mediated survival support at short culture periods, as af-
ter 24 hours the survival advantage reduction due to physical separation was
87.1% as compared to coculture allowing physical interaction. At 72 hours
CLL cells cultured without physical contact to HS5 featured a 48.1% reduced
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survival advantage in comparison to CLL cells with direct cell-cell contact to
HS5 cells. Hence, it can be suggested that initially, as cytokine concentrations
are still low, the direct cell-cell contact is of crucial importance for survival
support. With time in culture though a steady increase of the cytokine con-
centration, including VEGF, gives rise to a micromilieu which has increasing
survival-supporting capacity, possibly even being able to compensate for the
lack of survival supporting signals through direct physical interactions. This
statement though requires a long term study of survival outcome of CLL cells
with and without physical separation going along with a determination of cy-
tokine concentrations over time.

To test the influence of soluble factors versus direct physical contacts several
groups cultured CLL cells in conditioned medium (CM) derived from HS5 or
primary bone marrow cell culture. The survival advantage was always lower
as it was achieved in a coculture allowing cell-cell contacts, further proving the
need of direct physical interactions between CLL cells and stromal cells for full
apoptotic protection. Kay et al further tested whether CM could rescue cells
from drug-induced apoptosis and found HS5-CM to effectively protect CLL
cells from adaphostin-triggered apoptosis (Granziero et al., 2003; Kay et al.,
2007). Adaphostin (NSC 680410) induces cell death through oxidative stress
via generation of reactive oxygen species (ROS). Interestingly, it has been
suggested that adaphostin-generated ROS might act via downregulation of
VEGF in leukemia cells (Avramis et al., 2002; Avramis et al., 2003; Granziero
et al., 2003). In the presence of stromal cell-CM, adaphostin had only limited
apoptosis-inducing capacity, possibly due to the presence of large amounts
of VEGF opposing the VEGF-downregulation by adaphostin-generated ROS.
Hence, the protective ability of soluble factors or direct cell contacts against
drug-induced apoptosis could be dependent on the mechanism of action of the
drug.

From our studies it can be concluded, that VEGF is of severe importance
for CLL cell survival, as its inhibition in monoculture, where CLL cells are
apparently not exposed to the appropriate and complete survival signaling
repertoire including functional VEGF-signaling, does not reduce survival. If
CLL cells are cocultured with HS5, they received paracrine VEGF stimuli,
resulting in constant VEGF-R2 phosphorylation and a significantly prolonged
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in vitro survival, which was in turn largely reduced, when VEGF was neutral-
ized by an antibody. Further, it can be concluded that VEGF-derived from
HS5 cells, but not CLL-cells is the essential factor as VEGF downregulation
in HS5 cells by siRNA completely abrogated the coculture-mediated survival
support. In contrast, high levels of secreted VEGF in the supernatant of CLL
cell monoculture were insufficient to prevent in wvitro apoptosis of CLL cells.
In other words, there is no autocrine pro-survival VEGF-loop in CLL cells. As
it was shown in this study that VEGF mRNA is highly upregulated in CLL
cells upon coculture with bone marrow stromal cells, it can be hypothesized
that an intracellular autocrine (intracrine) VEGF loop, not involving VEGF
secretion, might be involved in CLL cell survival.

In general it can be said, that the microenvironment is a highly complex mi-
crostructure, which supports CLL cells survival not only by one central feature,
but is likely to function via several mechanisms comprised of soluble factors
and direct physical cell-cell interactions involving VEGF as an essential com-
ponent. The influence of these components might further be of variable impact

on CLL cell population from individual patients.

3.3 Mechanistical background of VEGF-mediated
apoptosis prevention

It was of further interest of this study to obtain insight into the mechanism
of VEGF-mediated CLL cell survival support. For that purpose, a PCR array
was carried out. mRNA from untreated and rhVEGF-stimulated CLL cells
was isolated and subject to PCR-array, which allowed testing of the expres-
sion status of 84 different genes, in our case transcription factors, in a 96 well
plate format. Several input controls, negative controls and gDNA contami-
nation controls were included. In two independently carried out experiments
the potent oncogene STAT3 was upregulated, while the known tumor sup-
pressor RB1 and the E2F family member E2F1 were downregulated. E2F1 is
involved in cell cycle control, but has also been described to have the ability
to induce apoptosis by a death receptor-dependent mechanism (Phillips et al.,
1999). These results suggested a dual mechanism of VEGF-mediated survival
support: the upregulation of a potent oncogene (STAT3) and the downregula-
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tion of a tumor suppressor (RB1) and an inhibitor of anti-apoptotic signaling
(E2F1). Unfortunately, PCR-array results could not be confirmed by PCR
(RB1 and E2F1) and immunoblotting (STAT3), where no significant change
in mRNA or protein levels could be detected. Nevertheless is STAT3 a known
downstream target of the VEGF-R (Bartoli et al., 2000). As STAT3 requires
phosphorylation in order to carry out its function as a transcription factor,
which is usually induced by cytokine-mediated receptor tyrosine-kinase activa-
tion, the phosphorylation status of STAT3 was investigated. As demonstrated
before (Frank et al., 1997), also in our study phosphorylation of the residue
serine 727 (ser727) was constitutively present in CLL cells. The kinases re-
sponsible for the constitutive serine phosphorylation in CLL have not been
identified up to now and could only be characterized as being sensitive to the
PKC kinase inhibitor H7 (Frank et al., 1997). In the same study MAP kinase
was excluded as responsible kinase. STAT3 can only dimerize when simultane-
ously phosphorlylated on tyrosine 705 (tyr705). As dimerization is essential for
STATS3 to translocate into the nucleus, tyr705 phosphorylation is necessary for
transcriptional activation of STAT3 (Darnell, Jr., 1997; Thle and Kerr, 1995).
In our studies it could be demonstrated that stimulation of CLL cells with
rhVEGEF led to phosphorylation of STAT3 on tyr705. As it was demonstrated
in this study, thVEGF stimulation alone does not reflect the actual in vivo
situation of the CLLs cell within their natural habitat in the bone marrow.
For that reason the STAT3 phosphorylation status in CLL cells upon cocul-
ture with HS5 was analysed. And indeed, cultivation of CLL cells on an HS5
feederlayer gave rise to tyr705 phosphorylation. In HS5 coculture other factors
besides VEGF could be responsible for STAT3 activation such as IL6, which is
secreted by stromal cells and known to activate STAT3 via phosphorylation.
When the VEGF-R was blocked by addition of the VEGF-R inhibitor GW
786034 tyr705 phoshorylation was reversed. This was true for both, rhVEGF
stimulation and HS5-coculture, thereby clearly demonstrating VEGF signal-
ing to be causative for phosphorylation of STAT3 on the tyr705 residue also
in the coculture setting. STAT3 is a highly potent oncogene and has been
detected in large number of cancers (Bromberg, 2002). Furthermore, it could
be demonstrated, that STAT3 has a direct influence on oncogenic transforma-

tion from non-malignant to malignant phenotypes, as for example a dominant



80 Discussion

negative form of STAT3 prevented Src-induced transformation of NIH3T3 cells
(Turkson et al., 1998), therefore suggesting STAT3 to possibly have a causative
role in oncogenesis (Bromberg et al., 1999). Besides CLL, also several other
hematologic malignancies have been described to exhibit aberrantly activated
STATS, such as acute lymphoblastic leukemia (ALL) (Gouilleux-Gruart et al.,
1996) acute myelogenous leukemia (AML) (Chai et al., 1997; Gouilleux-Gruart
et al., 1996), and chronic myelogenous leukemia (CML) (Carlesso et al., 1996;
Chai et al., 1997).

STATs in general are thought to exert their oncogenic activity through the
induction of anti-apoptotic pathways. In multiple myeloma cells for exam-
ple the anti-apoptotic proteins Bcly;, and Mcll were upregulated upon IL6-
mediated STAT3 activation (Catlett-Falcone et al., 1999; Puthier et al., 1999).
In head and neck cancers malignant proliferation through a Bclg;-induced
anti-apoptotic mechanism was demonstrated to rely on constitutively active
STAT3 (Grandis et al., 2000; Song and Grandis, 2000). Also in our experi-
ments VEGF-mediated tyr705 phosphorylation of STAT3 seemed to entail its
activation, as we could observe an increased expression of Bcly;, and also of the
cyclin-dependent kinase regulator cyclinD1, which is an identified STAT3 tar-
get (Bromberg et al., 1999; Sinibaldi et al., 2000). While Belyy, is a known po-
tent pro-apoptotic player and hence, has an obvious impact in VEGF-mediated
prevention of survival, the role of the cell cycle regulator cyclinD1 is not clear.
Despite the fact of most circulating CLL cells residing in GO/early G1 phase of
the cell cycle, they have been stated to have the capacity to proliferate under
appropriate conditions (Stevenson and Caligaris-Cappio, 2004). Further, they
exhibit shortened telomeres, indicating that they at one point underwent repli-
cation processes (Damle et al., 2004). CyclinD1 levels in CLL cells have been
assessed by several groups with variable outcome (Delmer et al., 1995; Paul
et al., 2005; Ravandi-Kashani et al., 2000). In general it can be said that cy-
clinD1 levels were low in CLL cells in the mentioned studies, but nevertheless
higher than in healthy counterparts, such as normal peripheral blood B-cells
or immunophenotypically matched CD5+ /CD19+ cord blood cells (Korz et
al., 2002; Paul et al., 2005). It is of further interest that cyclinD1 levels in
CLL cells were demonstrated to be associated with distinct patient character-

istics. For example, cyclinD1 protein amounts could be correlated to shorter
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survival times (Ravandi-Kashani et al., 2000). Contradicting to that were
the results of Paul et al who demonstrated an inverse correlation of cyclinD1
mRNA levels and Rai stage, with Rai 0 stage patients featuring the highest
cyclinD1 levels (Paul et al., 2005). In the same study a positive correlation
between lymphocyte doubling time (LDT) and cyclinD1 levels was described,
while no correlation could be found between drug resistance and cyclinD1.
In our study cyclinD1 protein levels were low or undetectable. Independent
on the base level, cyclinD1 protein was increased in CLL cells upon thVEGF
stimulation and in HS5 coculture. It can be speculated that cyclinD1 levels
are higher in CLL cells within their natural environment, where they are in
"pro-survival-mode", though the functional basis and relevance of cyclinD1 in
the CLL pathophysiology is up to now not clear.

Another common signaling-pathway downstream of the VEGF-R is the Akt-
signaling pathway. Akt-activation has frequently been associated with pro-
survival signaling following VEGF-R stimulation (Fujio and Walsh, 1999; Ger-
ber et al., 1998). Despite this role, no activation of Akt was detected in our
study, neither by thVEGF stimulatin, nor by coculture with HS5 cells, as as-
sessed by determination of the phosphorylation status at the serd73 residue.
Coculture with HS5 seemed to rather have the opposite effect as a slight down-
regulation of pAkt in CLL cells could be detected when compared to pAkt
levels in CLL cells in monoculture. At this point it can only be speculate
about cause and implication of a possible pAkt downregulation in cocultured
CLL cells. Recently, a crosstalk between the p42/p44 mitogen-activated pro-
tein (MAP) kinase/extracellular signal-regulated kinase (ERK) pathway, was
described. Growth factor-induced Akt phosphorylation was broadly attenu-
ated when ERK signaling was hyperactivated (Hayashi et al., 2008). Hence,
MAPK/ERK signaling in CLL cells might be activated through coculture, pos-
sibly even through the VEGF-R (Rousseau et al., 1997) and act in a negative
feedback loop mechanism to inhibit Akt. However, this speculation remains
to be clarified.
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3.4 Potential of VEGF as therapeutic target in
CLL

As VEGF has an essential function in the CLL cells’ resistance towards apop-
tosis, targeting components involved in intracellular signal transduction down-
stream of the VEGF-R2 seems a consequential approach when aiming on re-
solving the apoptotic block. Several stages of VEGF-signaling could be possi-
ble targets, such as VEGF itself, the VEGF-receptor or also major intracellu-
lar signaling molecules. In our study STAT3 activation via phosphorylation on
tyr705 was described to occur in CLL cells upon VEGF-R2 stimulation using
either recombinant VEGF or in a coculture together with bone marrow stromal
cells, hence also targeting STAT3 might be of clinical potential. For that rea-
son, we tested several substances for their ability to induce apoptosis in CLL
cells in monoculture and more important, in a survival supporting coculture
with bone marrow stromal cells to obtain a microenvironment closer to the
actual in vivo situation of the CLL cell. At first two monoclonal antibodies,
MADB293 (R&D Systems) and bevacizumab (Avastin®), Roche) were used to
neutralize VEGF. Both antibodies were tested for their capacity to reduce the
phosphorylation of the VEGF-R2 by flow cytometry and used in an appropri-
ate concentration for further experiments. Neither of the substances induced
apoptosis at the tested concentrations in CLL cells in monoculture. Also in
other studies treatment of leukemia cells in monoculture with anti-VEGF an-
tibodies (hMAb293 and bevacizumab) in concentrations up to 1 mg/ml did
not result in induction of apoptosis in primary CLL cells (Lee et al., 2005).
The same was shown in an erythroleukemia cell line (HEL) using the anti-
VEGF mMADbD 4.6.1 (Santos and Dias, 2004). In this study it was proposed
that both internal as well as external VEGF /VEGF-R2 loops exist and that
repression of only the external one, as achieved by an anti-VEGF antibody, is
not sufficient for effective apoptosis induction. They found the VEGF-R2 to be
predominantly located in the nucleus of VEGF-R2-positive HEL cells (human
erythroleukemia) and HL-60 cells (human promyelocytic leukemia cells) and
detected its shift towards the cell surface when VEGF was blocked externally
by an anti-VEGF MAD. Internal inhibition using a VEGF-R2 tyrosine kinase

inhibitor only modestly resulted in a shift from a nuclear towards a membrane
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associated location. Nevertheless, it can be concluded that both internal and
external VEGF loops are necessary for maintenance of active nuclear VEGF-
R2. In the same study it was demonstrated that internal and external VEGF
loops act via different mechanisms, as external VEGF-signaling inhibition re-
duced levels of NFxB, whereas internal inhibition resulted in a clear reduction
of phoshporylated ERK1/2 and Akt. Going along with our results external
inhibition of VEGF alone did not induce apoptosis as compared to internal
VEGF-R2 inhibition, which was a highly effective apoptosis inducer in the
two tested cell lines. Interestingly, a combined treatment of internal and ex-
ternal inhibitor showed synergistic effects. It can be concluded that a potent
survival reduction in VEGF /VEGF-R2-positive cells requires an effective inhi-
bition of VEGF-R2 activity, for which blockage of both internal and external
VEGF loops are necessary. That is why we tested the VEGF-R tyrosine ki-
nase inhibitor GW 786034 in primary CLL cells. GW 786034 is an indazolyl
pyrimidine, which targets the ATP binding site in the intracellular domain of
the receptor and thus prevents homodimerisation induced by VEGF-binding
as well as subsequent autophosphorylation of the receptors. At 50 uM GW
786034 efficiently induced apoptosis in CLL cells, supporting the hypothesis
of internal VEGF-signaling inhibition to be more potent in reducing CLL cell
survival than external inhibition. The rational for using 50 M was that this
concentration was determined to be in the range of the lethal concentration
50 (LCs) of this substance in CLL cells in our group before. GW 786034
was shown to be highly selective towards CLL cells as healthy PBMCs were
not significantly affected at concentrations up to 100 uM. Furthermore, GW
786034 possessed effective inhibition of tumor growth in a CLL-like xenograft
nude mouse model (Paesler et al., 2010). In this study, we could also show that
GW 786034 reduced levels of Mcll and XIAP concentration-dependent. This
substance is approved for metastatic renal cell carcinoma and is currently be-
ing tested in further phase-2 trials for the treatment of soft-tissue sarcoma and
ovarian carcinoma. GW 78034 was also effective in hematological malignancies
such as multiple myeloma (Podar et al., 2001), which has been demonstrated
to exhibit VEGF-R2 and to be capable of producing and secreting VEGF
(Kumar et al., 2003). Also other components such as SU11657, a precursor of
Sutent®) (Pfizer), or the green tea component EGCG are capable of reducing
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phosphorylation of the VEGF-R2 (Lee et al., 2004; Sohal et al., 2003) and
have proven pro-apoptotic potential in CLL cells (Lee et al., 2004; Lee et al.,
2005). Hence, the VEGF-R should in fact be considered a promising target
for CLL therapy.

As a major result of this study was the finding that the microenvironment
is indispensable for VEGF-mediated CLL cell survival support, it is only of
limited significance to test candidate substances for targeted CLL therapy
in a CLL monoculture. That is why the monoclonal antibody MAb293 and
the VEGF-R tyrosine kinase inhibitor were tested in a coculture setting of
CLL cells together with the bone marrow-derived stromal cell line HS5. Inter-
estingly, MAb293 effectively reduced the survival advantage which CLL cells
gained from HS5 coculture. As already discussed earlier, it must be concluded
that VEGF-signaling is of important survival-supporting capacity as its inhi-
bition in a monoculture setting with limited VEGF-signaling, did not have an
influence on CLL survival, but strongly reduces the survival advantages, CLL
cells gain from being kept in a coculture with bone marrow stromal cells. Also
GW 78034 was capable to overcome the HS5-mediated survival advantage in
our studies. As mentioned earlier, by combining the VEGF-R inhibitor with
an externally acting anti-VEGF antibody an additive effect might be achieved.
A further pointer towards VEGF being a crucial pro-survival factor serving as
a promising target for CLL-therapy is the fact that substances which do not
have VEGF-specific inhibitory activity were not capable of keeping their CLL
cell killing potential upright when VEGF was added. For example, the cyto-
static drug chlorambucil (Glaxo Smith Kline), which has for long been the first
line treatment for CLL patients, only had reduced potency, when rhVEGF was
added to CLL cell monoculture (Lee et al., 2004). Also exposure of CLL cells
to thVEGF prior to incubation with 4-hydroperoxycyclophosphamide (4-HC),
the active metabolite of cyclophosphamide (Baxter), which is up to date part
of the CLL standard therapy regime, resulted in reduced CLL cell death (Wang
et al., 2005b). Cyclophosphamide is an alkylating agent mainly inducing cell
death through introduction of double strand breaks in rapidly dividing cells,
and is therefore acting in a highly unselective manner. Since those substances
also carry a high risk of affecting healthy cells in the patients’ body, a selective
strategy is highly wanted. As healthy B-cells cells neither produce VEGF,
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exhibit the VEGF-R nor seem to rely on VEGF in any sort (no increased
VEGF-expression or survival support upon coculture, no upregulation of anti-
apoptotic proteins upon thVEGF stimulation), targeting the VEGF-signaling
pathways seems a promising approach for the development of new CLL ther-
apies with significantly reduced side effects.

From the theoretical point of view, every downstream component which is ac-
tivated by VEGF-R-activation could serve as potential therapeutic target. In
general though, to be considered a "drug target" a "cause and effect" relation-
ship, how its activity relates to the disease is required (Drews, 2000; Gibbs,
2000). For a suitable drug target two important points are ideally required:
(i) induction of particular disease phenotype by constitutive activation and (ii)
vice versa reversal of this phenotype upon blockage or inhibition. We identified
STATS3 as an immediate target of VEGF /VEGF-R-signaling activity. Above
mentioned points are given for STAT3 as discussed earlier (Bromberg et al.,
1998; Bromberg et al., 1999; Gibbs, 2000; Turkson et al., 1998). Therefore,
STAT3-inhibition might be a suitable approach in CLL therapy. For that rea-
son, the STAT3 inhibitor IV (S31-201, Calbiochem) was used. This compound
was discovered through virtual screening as an inhibitor of the Src homol-
ogy 2 (SH2) dimerization domain of STAT3 resulting in prevention of STAT3
transcriptional activity and subsequent reduction of STAT3 target gene ex-
pression. (Siddiquee et al., 2007). In STAT3-active cancers its inhibition
might therefore be an effective strategy for a therapeutic intervention. We
could demonstrate a concentration-dependent reduction of CLL cell survival
by S31-201, which was more prominent after 48 hours of treatment compared
to 24 hours. Used concentrations were admittedly high with up to 150 uM.
But since in wvitro studies demonstrated an ICs, value for inhibition of DNA-
binding activity of 86 uM +/- 33 uM (Siddiquee et al., 2007), the need of these
high concentrations for reduction of survival is not surprising. Three major
questions have to be considered when deciding about whether this substance
is of potential interest for CLL therapy: (i) is the substance selective towards
CLL cells? In this study three healthy PBMC samples were treated with S3I-
201 in concentrations up to 150 pM. At 24 hours healthy PBMCs were only
marginally effected by the treatment (85.4% -+ /- 2.7% survival) after treatment
with 150uM, but also CLL cells did not react with substantial loss of viability
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at this time point (62.4% +/- 12.2% survival). After 48 hours of treatment
S31-201 had a significant survival reducing effect on CLL cells (16.4% + /- 6.1%
survival). Healthy PBMCs were also affected, but to an articulately smaller
extent (46.9% + /- 10.6% survival). (ii) is the substance capable of overcomig
the BM microenvironment-mediated survival advantage? S3I1-201 seemed to
exert an even more potent cytotoxic effect on CLL cells when cultured to-
gether with HS5: 6.5% + /- 10.6% surviving cells after treatment with 150 uM
for 48 hours in our experiments. It has to be mentioned that these results
were generated from only two independent experiments and that it was not
tested whether S31-201 has an effect on HS5 cells. And (iii) can those high
concentrations be achieved in vivo? Further studies have to be conducted to
answer the latter question.

STAT activation is usually induced by Janus kinases (JAKs). JAKs have ini-
tially been identified in the process of erythropoietin (EPO)-mediated hemato-
poiesis, which promotes the conversion of bone marrow cells to red blood cells.
With this background it was suggested that JAK might participate in the
activation and proliferation of marrow-derived cells, and hence to potentially
be of interest for leukemia therapy. Lee et al demonstrated a physical inter-
action between VEGF-R2 and STAT3 in CLL cells (Lee et al., 2005). The
same group also mentioned preliminary data, in which they could not see any
response in terms of STAT3 phoshorylation upon JAK-inhibition, suggesting
STAT3 phosphorylation in CLL cells to be JAK-independent. Nevertheless,
we decided to test the Jak inhibitor Pyridone 6 for its ability to induce CLL
cell apoptosis in vitro. In the tested concentration range (1 pug/ml - 20 pg/ml)
only the highest concentration induced significant reduction of survival com-
pared to healthy PBMCs after 24 hours. Healthy PBMCs were completely
unaffected by treatment up to 20 pug/ml, hence an increased concentration
would be justified in order to achieve a stronger survival reduction in CLL
cells, which was only about 30% lower as the DMSO-treated control. Unfortu-
nately, a limit to our study was the highly diluted stock concentration, which
did not allow treatment with higher amounts of the drug. Also here, the above
mentioned questions have to be assessed: is the substance also effective in a
survival supporting atmosphere (e.g. coculture of CLL cells with HS5 cells)

and can effective concentrations be achieved in vivo?
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Out of the tested substances the VEGF-R tyrosine kinase inhibitor GW 786034
seemed to have the highest potential as a substance for a targeted CLL therapy.
Besides the mentioned selectivity towards CLL cells, the ability to overcome
HS5-induced survival-support and the in vivo efficacy in prevention of tumor
growth (CLL-like xenograft nude mouse model), GW 786034 is orally available
and showed promising results in metastatic renal cell carcinoma and is tested
in further phase-2 trials for the treatment of soft-tissue sarcoma, ovarian carci-
noma and multiple myeloma. Furthermore, clinically achievable concentrations
have been demonstrated to be 40 uM and higher after once daily administra-
tion of 800 mg (Kumar et al., 2007). Altogether, this substance might be of
high potential for an effective and selective CLL treatment.

Up to now, VEGF was commonly accepted as playing a pro-survival role in
CLL cells (Lee YK, Blood, 2004, Lee YK, Blood, 2005), but neither the ex-
tent of microenvironmental factors, nor any molecular mechanisms in regard to
VEGF have been described. We now hypothesize that in vivo CLL cells are un-
der the influence of VEGF secreted from non-malignant accessory cells such as
bone marrow stromal cells, which turns on a feedback loop stimulating the CLL
cells’ own VEGF production. High amounts of VEGF stimulate the VEGF
receptor, which subsequently activates STAT3 through tyr705 phosphoryla-
tion, ultimately leading to expression of target genes involved in counteracting
apoptosis. The influence of direct cell-cell interactions and secreted factors
other than VEGF in the micromilieu, crucial for full apoptosis protection, are
of high interest and will help to further understand the underlying mechanisms
of prolonged CLL cell survival. This knowledge could facilitate the develop-
ment of successful strategies to overcome the apoptotic block in CLL, offering

new options for novel therapeutic approaches for a targeted CLL therapy.

3.5 Future directions

In this study the VEGF-signaling pathway was identified to be essentially in-
volved in the survival of CLL cells within their natural microenvironment,
as its inhibition significantly reduced the bone marrow stromal cell-mediated
survival advantage. STAT3 activation could be identified as a potential down-

stream effector, being responsible for the upregualtion of proteins involved in
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apoptosis prevention. Hence, the VEGF-STAT3 axis might be a suitable tar-
get for a selective therapeutic approach in CLL.

In this study several substances have been demonstrated to be of possible in-
terest, such as anti-VEGF antibodies, the small molecule VEGF-R tyrosine
kinase inhibitor (GW 786034) and a STAT3 inhibitor (S31-201). The first
two showed effective survival reducing effects in CLL cells when present in
a survival-supporting atmosphere such as coculture with the bone marrow
stroma-derived cell line HS5, providing the proof-of-concept for the potential
clinical use. The STATS3 inhibitor was effective in monoculture, but also af-
fected healthy PBMCs to a certain degree at the highest concentration tested.
As this inhibitor appeared to be even more potent towards CLL cells in a co-
culture together with HS5 cells, it might be possible to reduce concentrations
to increase selectivity without substantial loss of effect towards CLL cells. To
make a clear statement whether the mentioned substances are potential can-
diates for clinical use, further pharmacokinetic studies including its bioaivali-
bility, especially in the case of S31-201, are needed. In addition, the selectivity
of these substances in regard to interference with physiological roles of STAT3
has to be determined. The latter also applies for VEGF-R inhibition.

In this study the complex interplay between the CLL cells and their bone mar-
row microenvironment in regard to VEGF /VEGF-R-signaling and the impact
on the apoptotic block has been determined. Several parameters were het-
erogenous amongst patients in this study, such as VEGF mRNA levels, amount
of secreted VEGF in the supernatant after 24 hours and expecially its change
with time or the response of the CLL cells towards thVEGF stimulation and /or
bone marrow stromal cell coculture in terms of change in VEGF-expression and
survival. Therefore, it can be speculated that CLL cells might feature vari-
able depencies towards VEGF-mediated survival support. This could possibly
lead to different sensitivities of the patients towards therapeutic intervention
targeting the VEGF-STAT3 axis. Hence, further studies on possible corre-
lations between patients’ characteristics and mentioned parameters might be
indicated to potentially identify patient subsets which benefit better from a
targeted therapy aiming on blockage of the VEGF-STAT3-pathway.
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Material and methods

4.1 Material
4.1.1 Instruments

Agarose gel chamber
Analytical balance
Autoclave

Capillaries cooling device

Centrifuge

Deep freezer
Developer
Flow Cytometer
Gel documenting device
UV/VIS Transluminator
Camera
Thermo printer
Screen
Hematocytometer
Heatblock

Incubator

DNA Sub Cell, Bio Rad
Mettler

Varioklav Typ 400, Labortechnik GmbH

Light Cycler Cooling block, Roche
Laborfuge 400R. Hereaus

(Rotor: 8172, Hereaus)

Labotect -80 °C ilShin®) DF8524
Curix 60, Agfa

FACSCanto, BD Bioscience

LTF Labortechnik

Hama

P91, Mitsubishi

Sony

Neubauer, Labortechnik

TB1 Thermoblock, Biometra

B 5060 EK/C02, Hereaus

Labotect Incubator C200, BeLoTec



90 Material and methods

Lab Scale

Laminar flow bench

Luminometer
MACS® Separator

Microcentrifuges

Microscope

PAGE System
pH-meter

Photometer

Pipetts

Power supply

RT-PCR Systems

Rocking plate
Sealing device
Sonication system
Vortex

Waterbath

Western Blot System

TE 1538, Sortius

HLB 2448, Hereaus

SterilGard IIT Advance, Baker Company
MicroLumatPlus LB 96V, Berthold
Miltenyi Biotec

Biofuge fresco, Hereaus

(Rotor: 3325B; Hereaus)

Biofuge pico, Hereaus

(Rotor: 3328, Hereaus)

Diavert, Leitz

Axiolab, Carl Zeiss

X-cell SureLock, Invitrogen

pH Levell, inoLab

1 Quant, BioTek Instruments, Ultrospec
3000, Pharmacia Biotech

Research, Eppendorf

Multipette stream, Eppendorf
PreCision, Biozym

PreCision Multi, Biozym

Proline, Biohit

Power Pac 200, BioRad

Power Pac 1000, BioRad
LightCycler 2.0 Instruments,

Roche Diagnostics

LightCycler 480, Roche Diagnostics
LightCycler Carousel Centrifuge 2.0,
Roche Diagnostics

Centrifuge 5430, Eppendorf

Rocky RT-1S, Uniequip

Folio 3602, Severin

Sonoplus HD 2070, Bandelin
K-550-GE, Bender & Holbein
GFL-1004, Gesellschaft fiir Labortechnik
Xcell IT blot module, Invitrogen
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4.1.2 Consumables

Cell culture flasks, 25cm?2, 75c¢m?2, 175cm?
Cell culture multiwell plates, 6well, 12well
Centrigugation tubes 15 ml, 50 ml
FACS tubes
MACS® columns
Microcon YM-10 centrifugal filter units
Micro tubes, 2 ml
Nitrocellulose membrane incl. filter paper
Pipett assecories

Tips 10 pl, standard

Tips 10-100 pl

Tips 100-1000 pl

Dualfilter PCRclean, sterile,

10 pl, 200 pl, 1000 wpl
Reaction tubes, 1,5 ml
RT-PCR capillaries, 20 pul
Serum tubes, 30 ml
Sterile filters, Sterifix, 0.2 uM
Sterile plastic pipettes, 5 ml, 10 ml, 25 ml
Syringes, 10 ml, 20 ml

Tissue culture inserts, transwells, 0.4 M

4.1.3 Chemicals and reagents

Agarose

Albumin Fraction V

Copper Sulfate Pentahydrate
Dimethylsulfoxid (DMSO)
Dithiotreitol (DTT)

Ethanol absolute

Ethidium bromide (EtBr)

Nunc
Greiner-Bio-One
Greiner-Bio-One
BD Falcon
Miltenyi, Biotec
Milipore
Sarstedt

Invitrogen

Eppendorf
Sarstedt
Sarstedt

Eppendorf
Sarstedt

Roche Diagnostics
Sarstedt

Braun
Greiner-Bio-One
Braun

Greiner-Bio-One

Carl Roth
Carl Roth
Carl Roth
Carl Roth
Sigma

Carl Roth

Serva
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Ethylene glycol tetraacetic acid (EGTA)
Ethylenediaminetetraacetic acid (EDTA)

Fetal calf serum (FCS)

Ficoll-Hypaque (Lymphoprep)

Carl Roth
Carl Roth

BioChrom AG
Axis-Shield

Formaldehyde Carl Roth

Hydrochloric acid (HCI) Carl Roth

Methanol Carl Roth

Milk powder Carl Roth

NaCl Carl Roth

PBS tablets Gibco

Ponceau S Carl Roth

Phosphatase inhibitor cocktail tablets Roche

(PhosStop®)

Protease inhibitory cocktail tablets Roche

(Complete®)

Roti-Blok® Carl Roth

Roti-Nanoquant® Carl Roth

TRIS-Base Carl Roth

Tween20 Serva,

4.1.4 Buffer and solutions
4.1.4.1 Substances

substance company dissolvedin :;zfr';tion
bevacizumab (Avastin®) Roche NaCl 25 mg/ml
GW?786034 (Pazopanib) Glaxo-Smith-Kline DMSO 10 mM
fgm)‘" 12-myristate 13-acetate oy gignaling DMSO 200 uM
Pyridone 6 Calbiochem DMSO 1 mg/ml
recombinant human (rh) VEGF BioMol ddH0 100 pg/ml
STATS Inihibitor VI S31-201 Santa Cruz DMSO 10 mM

Table 7: List of substances used.
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4.1.4.2 Buffer and solutions for molecular biology

4.1.4.2.1 siRNA

name target sequence catalog no.
VEGF_4 5-ATG CAG ATT ATG CGG ATC AAA S100051534
VEGF_5 5’-AAG AAA GAT AGA GCA AGA CAA S102757643
VEGFA_1 5-ATA GAG AAT TCT ACA TAC TAA S104130749
VEGF_1 5-CTG GAA TTT GAT ATT CAT TGA S100051513
Ctrl_AllStars 2 not disclosed, cell death control S104381048
Ctrl_AllStars_1 not disclosed, cell death control S103650318

Table 8: List of siRNAs and used controls.
* This product is AlexaFlour488 conjugated at the 3 -end. All products are from Qiagen.

siRNA was received lyophilized and reconstituted with RNase-free water using
100 pl per 1 nmol siRNA to obtain a 10 uM solution. This solution was used

for further procedures as explained earlier.

4.1.4.2.2 Gel electrophoresis

Ethidium bromide solution
1% (m/V) Ethidiumbromid

Ethidium bromide was dissolved in ddH,O and stored at 4 °C protected from
light.

TAE (TRIS-acetate-EDTA) buffer (50x)

242 g TRIS-base
51.1 ml glacial acetic acid (100%)
100 ml 0.5M EDTA

ddH,0O was added to a final volume of 1000 ml. TAE buffer was diluted 1 in

50 ddH50O to reach a final concentration of 1x for preparation of agarose gels
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and for use as running buffer.

4.1.4.3 Buffer and solutions for protein biochemistry

Phosphate buffered saline (PBS)

Ten PBS tablets were dissolved in 500 ml ddH,O to obtain a 10x PBS solu-
tion. This 10x solution was diluted to 1x with ddH,O when needed. pH was
adjusted to 7.6 using HCI or NaOH.

TRIS-buffered saline (TBS)
50 mM TRIS-Base
150 mM NaCl

Components were dissolved in ddH,O and pH was adjusted to 7.6 using HCI.

Ponceau-S stock solution

2% w/v Ponceau S
30% w/v Trichloroacetic acid
30% w/v Sulfosalicylic acid

Components were dissolved in ddH,0. For use 1 part stock was dissolved with

3 parts ddH,0.

Blocking buffer I (PBS/milk/Roti)
5% w/v nonfat dry milk
10% Rotiblok®

Components were dissolved in PBS (1x) and filtered. Blocking buffer I was

stored at 4 °C for one week.

Blocking buffer 1T (PBS/milk)
5% w /v nonfat dry milk
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Milkpowder was dissolved in PBS (1x) and filtered. Blocking buffer II was

stored at 4 °C for one week.

Blocking buffer IIT (TBST /milk)
0.1% Tween-20
5% w /v nonfat dry milk

Milkpowder was dissolved in TBS (1x), filtered and Tween-20 was added.
Blocking buffer 111 was stored at 4 °C for one week.

Blocking buffer IV (TBST/BSA)
0.1% Tween-20
5% BSA

BSA was dissolved in TBS (1x), filtered and Tween-20 was added. Blocking

buffer IV was stored at 4 °C for one week.

4.1.5 Cell culture reagents and media

4.1.5.1 Reagents

DMEM + L-glutamine Sigma
Fetal calf serum Biochrom
N-2-Hydroxyethylpiperazine-N- Gibco
ethanesulfonic acid (HEPES) 1 M
Penicillin/Streptomycin-solution Biochrom

(10.000 pg/ml Streptomycin sulphate,

10.000 units/ml Penicillin G)

RPMI 1640-medium + L-glutamine Sigma
Trypsin-EDTA solution (10x) Sigma
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4.1.5.2 Culture medium

Culture medium for HSH

10% v/v FCS

100 U/ml Penicillin

10 pg/ml Streptomycin
10 mM HEPES buffer

Components were dissolved in DMEM including L-glutamine. Medium was
stored at 4 °C.

Culture medium for primary material (healthy B-and CLL cells)
20% v/v FCS

100 U/ml Penicillin
10 pg/ml Streptomycin
10 mM HEPES buffer

Components were dissolved in RPMI 1640 including L-glutamine. Medium

was stored at 4 °C.

Culture medium for creation of starving conditions (healthy B-and CLL cells)
3% v/v FCS

100 U/ml Penicillin
10 pg/ml Streptomycin
10 mM HEPES buffer

Components were dissolved in RPMI 1640 including L-glutamine. Medium

was stored at 4 °C.
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4.1.6 Special reagents and kits

LightCycler® FastStart DNA
MasterPlus Hybridization Probes

Magnetic Beads, CD19

QIAamp® RNA Blood mini Kit
Quantikine® VEGF ELISA Kit
Rossette Sep® B-cell enrichment
cocktail

RT?2 First strand Kit

RT2 Profiler™ PCR, Array

RT? qPCR-Grade RNA Isolation Kit
SuperScript® III First-Strand
Synthesis System for RT-PCR

Roche Applied Science

Miltenyi Biotec
Qiagen

R&D Systems

Stem Cell technologies

SABioscience
SABioscience
SABioscience

Invitrogen

4.1.7 Ready-to-use buffers and solutions

ECL Western Blotting detection reagents
(I+11)*

Electrophoresis sample buffer (6x)*
Erythrocyte lysis buffer

Lymphoprep®*

M-PER® lysis buffer

NuPage® Antioxidant*

NuPage® LDS sample buffer (4x)*
NuPage® MES Running buffer (20x)
NuPage® Sample reducing agent (10x)*
NuPage® Transfer buffer (20x)
Roti®-Free Stripping buffer (ready-to-use)
Trypanblue solution (0.5%)

Amersham

Fermentas
Qiagen

Axis Shield
Thermo Scientific
Invitrogen
Invitrogen
Invitrogen
Invitrogen
Invitrogen

Carl Roth

Biochrom

All buffers and solutions indicated with a star (*) were stored at 4 °C.
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4.1.8 Antibodies

4.1.8.1 Antibodies for immunoblotting

incubated in

gﬂgzgglyagainst company catarll?)?ue- ciuten b{;)l::fl:ér:g antislf:g;ggzns‘
Akt (pan) cs 4061 1:1000 vV rabbit
Bcl2 BD 610539 1:2000 | mouse
Belx BD 556496 1:2000 | mouse
(cl.) caspase 3 CS 9661 1:1000 v rabbit
(cl.) caspase 9 CS 9501 1:1000 1\ rabbit
(cl.) PARP BD 519000017 1:2000 | mouse
cyclinD1 BD 554181 1:1000 | rabbit
hILP/XIAP BD 610762 1:1000 | mouse
Mcl1 SCBT 20679 1:200 | rabbit
pAkt (ser473) CS 4060 1:1000 1\ rabbit
pPSTATS3 (ser727) Cs 9134 1:1000 v rabbit
PSTAT3 (tyr705) Cs 9134 1:1000 v rabbit
B-actin BD 612656 1:2000 | mouse

Table 9: List of antibodies used for immunoblotting.
Secondary antibodies were from DAKO (mouse P-0447, rabbit P-0448) and horseradish
peroxidase (HRP)-labeled.

4.1.8.2 Antibodies for flow cytometry

antibody directed

catalogue-

fluorochrome/

A company dilution secondary treatment
against no. antibody
CD19 BD 345781 1:10 PerCy5.5 none
CD23 BD 332780 1:50 APC none
CD5 BD 335036 1:10 FITC none
fixation &
pSTATS3 (ser727) BD 558085 20 plitest  Alexa Fluor 488 permeabilization
fixation &
pSTATS (tyr705) BD 612569 20 pl/test PE permeabilization
. anti-mouse fixation &
PVEGF-R2 (tyr951) cs 2476 1:1000 FITG permeabilization
VEGF-R2 cs 2479 11000 antirabbitFiTc __ (xation &

permeabilization

Table 10: List of antibodies used for flow cytometry.

4.1.8.3 VEGF-neutralizing antibody

The monoclonal anti-VEGF antibody MAb293 from R&D Systems and the

commercially available humanized monoclonal anti-VEGF antibody bevacizu-
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mab (Avastin®), Roche) were used for neutralization of VEGF bioactivity.

4.1.9 Oligonucleotides

gene primer sequence location  amplicon
VEGFiomard 5°-CCC TGA ATG AGA TCG AGT ACA TCTT-3’ exon 3

VEGF e121 5-GCC TCG GCT TGT CAC ATT TT-3° exon 5/8 254bp
VEGF 165 5°-AGCAAG GCC CAC AGG GAT TT-3° exon 5/7 254bp
VEGF e139 5°-AAC GCT CCA GGA CTT ATA CCG-3’ exon 6 310bp
VEGF el 5-ACC GCC TCG GCT TGT CAC-3’ exon 8 267bp
VEGF yropo 5-FAM ATC CTG TG'-II:-'IG'EI\(;TRC,;AC—;;’GAT GCG ATG CGG exon 3

E2F 1 orward 5"-AGA TGG TTA TGG TGA TCA AAG CC-3’ exon 5

E2F 1 everse 5-ATC TGA AAG TTC TCC GAA GAG TCC-3’ exon 5/6 73bp
E2F1, o 5°-FAM CTC CTG AGA CCC AGC TCC AAG CC- exon 5

probe TAMRA-3

RB1orward 5°-CTT GCA TGG CTC TCA GAT TCA C-3° exonl7

RB1 everse 5-AGA GGA CAA GCA GAT TCA AGG TG-3° exon17/18 94bp
RB prope 5-FAM ATT AAA CAA TCA AAG GAC CGA GAA GGA exon 17

CCA ACT G-TAMRA-3’
ABLforward 5-TGGAGATAACACTCTAAGCATAACTAAAGGT -3’ exon 2
ABL everse 5-GATGATGTTGCTTGGGACCCA -3’ exon 3 124bp

5-FAM -CCATTTTTGGTTTGGGCTTCACACCATT-

ABLproe DABCYL-3"

exon 3

Table 11: Primers used for real time PCR.
VEGEF primers were adopted from Wellmann et al (Wellmann et al., 2001). Primer and
probe stocks are 20 pg/ml (20 uM). All primers were synthesised from TibMolBiol, Berlin.

4.1.10 Cell lines

The cell line HS5 was established from human bone marrow stromal cells which
were transformed by the human papilloma virus E6/E7 genes (Roecklein and
Torok-Storb, 1995; Torok-Storb et al., 1999). HS5 are fibroblastic-appearing

cells, which adhere when cultured and form a reticulum of overlapping cells.
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HS5 cells were used for coculture experiments. Due to the availability of patient
material and the lack of convincing CLL cell lines, all work in this project was

carried out using primary cells and no other cell lines were used.

4.1.11 Primary patient material

All CLL patients included in this study had a confirmed diagnosis according
to standard criteria (Cheson et al., 1996). Patients were either untreated or
had not been treated for at least 3 months prior to blood withdrawal. Patients
represented all Binet-stages. All patients provided written informed consent
and the study was in accordance with the declaration of Helsinki and approved
by the internal review board of the University Hospital Cologne. Peripheral
blood from patients or healthy volunteers was taken into EDTA-coated tubes

and processed within one day of withdrawal.

4.1.12 Software

BD FACS Diva

Cyflogic 1.2.0 flow cytometry data analysis tool
Graph Pad Prism Software 4.0

Image J, v.1.1.1

Primer3, version 0.4.0

Reference Manager 11

SPSS statistical analysis software, version 17.0.
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4.2 Methods

4.2.1 Cells
4.2.1.1 Extraction of CLL cells from whole blood

Peripheral blood from patients was withdrawn into EDTA-coated tubes. Whole
blood was incubated with Rosette Sep® B-cell enrichment antibody cocktail
at 40 pul/ml blood for 20 minutes. This cocktail contains antibodies directed
against surface markers of non-B-cells of the blood (CD2, CD3, CD16, CD36,
CDb56, CD66b, and glycophorinA). The antibodies crosslink non-B-cells to mul-
tiple red blood cells (RBCs), which are pelleted along with free RBCs during
the process of subsequently carried out density gradient centrifugation using
Ficoll-Hypaque density medium (LymphoPrep®)). For this process preincu-
bated blood was diluted with an equal volume of PBS/0.5% FCS and layered
carefully on top of Ficoll-Hypaque, followed by centrifugation at 1500 rpm for
20 minutes. Non-labeled B-cells accumulate in the interphase between plasma
and the density medium and can easily be isolated. To reduce the amount
of contaminating RBCs, isolated cells were incubated with erythrocyte lysis
buffer for 10 minutes, followed by two washing steps. Cells were resuspended
in RPMI, Pen/Strep, HEPES, 20% FCS. After this process CLL cell purity
was usually larger than 95% as assessed by flow cytometry using CD5/CD19

staining.

4.2.1.2 Extraction of healthy B-cells from whole blood

4.2.1.2.1 Positive selection

Positive selection was carried out by MACS®) cell separation (Miltenyi Biotec).
For this purpose, healthy peripheral blood mononuclear cells (PBMCs) were
separated from whole blood of healthy volunteers by Ficoll density gradient
centrifugation as mentioned earlier without preincubation with Rossette Sep®.
Isolated PBMCs were incubated with magnetically labeled anti-CD19 antibod-
ies. The mixture of CD19-positive labeled B-cells and non labeled cells was
pipetted into a MACS® column, which was placed into a permanent mag-
netic field (MACS® Seperator). Magnetically labeled CD19 positive cells were

retained, whereas unlabeled cells were removed from the column by several
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washing steps. Labeled cells were released after removal of the column from
the magnet. Isolated cells were dissolved in RPMI, 20% FCS and used for the

intended experimental procedure.

4.2.1.2.2 Negative selection

Negative selection of healthy B-cells was carried out using already mentioned
RossetteSep® technique. However, instead of whole blood buffy coats estab-
lished from 500 ml of whole blood obtained from the blood bank of the Univer-
sity Hospital Cologne was used. Those large amounts of blood were required
since healthy blood only contains a maximum of approximately 3x105 B-cells/

ml.

4.2.1.3 Cell culture

All used media contained 100 U/ml Penicillin, 10ug/ml Streptomycin and 10
mM HEPES-buffer if not otherwise indicated. In the following passages only
the amount of added FCS is stated.

4.2.1.3.1 Cultivation of cell lines

The bone marrow-derived stromal cell line HS5 was maintained as a stocks of
1x107cells/ml in DMEM, 10% FCS and 10% DMSO at -80 °C. For preparation
of cell culture experiments cells were thawn rapidly and washed immediately
in medium without DMSO and FCS. After washing, cells were dissolved in 20
ml DMEM, 10% FCS and put in a 75 cm? cell culture flask and incubated at
37 °C in a humidified atmosphere containing 5% CO,. Cells were split every
2nd to 3rd day dependent on cell density. For that purpose adherent HS5 were
washed twice with DMEM not containing FCS. Trypsin (10x) was diluted 1 in
10 with FCS-free DMEM and added to HS5 containing culture flask. HS5 were
incubated for approximately 10 minutes at 37 °C. After that time HS5 cells
could usually be detached by vigorous tapping of the culture flask. HS5 cells
were diluted with DMEM, 10% FCS to inactivate trypsin. In the following
HS5 cells were pelleted via centrifugation and the pellet was diluted in fresh
DMEM, 10% FCS. Cells were usually split 1 in 10. Cells were controlled
frequently for viability using light microscopy and used for experiments after

reaching confluency.
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4.2.1.3.2 Primary cell cultivation

Primary CLL- or healthy B-cells were cultivated in RPMI, 20% FCS. Cells
were seeded at 4x106/ml and plated in either 6-or 12-well plates dependent
on the following experimental procedure. Since CLL-and primary healthy B-
cells do no proliferate, actual long term cultivation was not possible. CLL cells
usually die within one week after isolation from blood. Therefore, experimental
procedures using primary cells were limited to a short time period, which was

typically not longer than 48 hours.

4.2.1.3.3 Coculture

HS5 cells were seeded at a density of 3x105/ml in DMEM, 10% FCS. After
overnight cultivation the supernatant was withdrawn and adherent cells were
washed twice with DMEM not containing FCS. Primary CLL cells were iso-
lated from whole blood as described earlier. 4x106 CLL cells/ml RPMI, 20%
FCS were added to adherent HS5 cells. In any case CLL cells were equivalently
seeded in a monoculture setting. CLL cells were removed from HS5 by taking
the supernatant of the coculture after a period of time suitable for the experi-
mental procedure subsequently carried out. Extent of HS5 cell contamination
was assessed by flow cytometry separating CLL-and HS5 cells by their obvious

size difference. Contamination was typically around 1.5%.

HS5 mono CLL mono HS5/CLL Co

trypzinized HS5 cells co-culture supernatant

‘ Number | % of vis | Number | % of vis ‘ Number | % of vis
Visible 10000 100 Visible 10000 100 Visible 10000 100
HS5 6950 69,49 HSS5 60 0,60 HS5 118 1,18
Lymphocytes 68 0,68 Lymphocytes 2911 29,11 Lymphocytes 2752 27152

Figure 41: Flow cytometric differentiation of HS5 and CLL cells by cell volume (FSC
forward scatter) and granularity (SSC side scatter).
Yellow population represent lymphocytes and red population HS5 cells. Red circle indicates

percentage of HS5 contamination in the CLL cell fraction taken from coculture.
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4.2.1.3.4 Physical separation of HS5 and CLL by tissue culture
inserts

The basic coculture set up was as described above. Tissue culture inserts
(transwells) are filters which can be placed into single wells of multiwell plates.
They allow cocultivation of two different cell populations, in our case adherent
HS5 cells and soluble primary CLL cells, preventing their physical interaction.
Both cell types are cultured in the same medium, therefore the exchange of
soluble factors can occur. In our experiments transwells had a pore size of 0.4

uM and were used in a 12 well format. The experimental set up is displayed

-] [ tissue culture insert
Jranswell
. CLL cell I single well
primary cells O
TR0l L s
adherent HS5 cells

in the following figure.

Figure 42: Experimental set up of HS5/CLL cell coculture with physical separation
using tissue culture inserts.

Source: Own illustration

Primary CLL cells were either added directly to HS5 monolayer at 4x106/ml
or placed into a tissue culture insert. Insert contained 200 pl medium. To
maintain CLL cell density the amount of cells was adapted (concentration was
maintained). CLL cells were also cultured without HS5 feederlayer. Monocul-

ture controls were treated equally with or without transwell insert.

4.2.2 Molecular biology
4.2.2.1 Extraction of mRNA

RNA was isolated from primary CLL cells using the QIAamp® RNA Blood
mini Kit (Qiagen, Hilden, Germany). The procedure was carried out follow-
ing the manual. In brief, 1x107 cells were lysed in 500 pl RLT buffer. Lysed
cells were either stored at -20 °C for later use or the subsequent procedure
was carried out immediately. Lysates were pre-cleaned from cell debris by cen-
trifugation through a QIAshredder spin column and mixed with equal volumes

of 70% ethanol. Samples were pipetted into a QIAamp spin column, where
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mRNA was retained in the filter. After three washing steps using buffers RW1
and RPE mRNA was eluted using RNase-free ddH,0.

4.2.2.2 Reverse transcription

Reverse transcription of RNA into ¢cDNA is accomplished by reverse tran-
scriptase, also known as RNA-dependent DNA polymerase. Random hexam-
eres bind RNA and function as a starting point for reverse transcriptase for
creation of complementary DNA strands by addition of dANTPs. We used
the SuperScript™ III First-Strand Synthesis System for RT-PCR (Invitrogen
GmbH, Karlsruhe, Germany) as suggested in the manufacturer’s protocoll.

Reverse transcription-supermix composition was as follows:

supermix-components amount needed for n=1
random hexameres 2.5 ul

dNTP-Mix (10 mM) 25l

10xRT-Buffer 6.0 pl

MgCl, (25 mM) 10.0 pl

DTT (0.1 M) 5.0 pl

RNaseOUT (40 U/ul) 25l

SuperScriptlll reverse transcriptase (200 U/ul) 1.5 pl

30 pl

Table 12: Reverse transcription supermix composition.

30 ] mRNA was added to supermix. Mix was incubated in a PCR cycler set
at 25 °C for 10 minutes, 50 °C for 50 minutes, 85 °C for 5 minutes followed
by a cooling 4 °C step, which was maintained until manually stopped. cDNA

was stored at -20 °C until needed.

4.2.2.3 Real time polymerase chain reaction (RT-PCR)

PCR is used for in wvitro amplification of specific DNA sequences. Since this
reaction is exponential it is possible to gain large amounts out of relatively lit-
tle amount of starting material. The method relies on thermal cycling. After
DNA denaturation (94-96 °C), short oligonucleotides, so called primers, which
flank the sequence of interest, bind to the DNA (annealing). The temperature
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for this step is dependent on the melting temperature of the oligonucleotides
(usually between 55 °C and 65 °C). In the following a DNA-polymerase adds
nucleotides complementary to the DNA-single strand to create a DNA-double
strand (extension). This takes place at a temperature which is optimal for a
particular DNA polymerase to function (usually 72 °C). As PCR progresses,
the DNA generated is itself used as a template for replication, setting in motion
a chain reaction in which the DNA template is exponentially amplified (Mullis
and Faloona, 1987). For real time detection of amplification real time PCR
can be performed. Quantification is based on the measurement of fluorescence,
which increases proportional to the PCR-product, detected after every cycle
in "real time". Quantification can be measured relatively by normalization
to a house keeping gene or as absolute measure by simultaneously running
a sample of known content for creation of a standard curve. A fluorescenct
signal can be achieved by addition of DNA-dyes such as SYBR-green. The dis-
advantage is its unspecificity, since also unspecific amplificates contribute to
the fluorescent signal. That is why sequence specific probes based on fluores-
cence resonance energy transfer (FRET) are widely used. For that purpose two
sequence-specific olignoucletides, which are labeled with different dyes (donor
and acceptor) hybridize to the target sequence during the annealing phase,
which leads to excitation of the acceptor dye. Fluorescence is measured at the
end of the annealing phase. Another method is the use of so called TaqgMan or
hydrolysation probes. One single sequence specific oligonucleotide is marked
with a reporter-dye at one end and a quencher on the other end. When Taq-
polymerase carries out its 5°-3 “exonuclease function the probe is degraded
from the 5°-end while the complementary strand is generated. The resulting
physical distance between quencher and reporter causes an increased fluores-
cent signal, which is measured after the elongation phase. For every run a
specific fluorescent threshold is set dependent on the background fluorescence.
The cycle when the fluorescence hits this threshold is denominated Ct-value.
This value is used for further relative quantification. In our experiments Taq-
Man probes were used. VEGF primers were adopted from Wellmann et al
(Wellmann et al., 2001), whereas Abl, E2F1 and RB1 primers were designed
with the help of the software Primer3, which is available online (for sequences

see Table 5). The Abl gene was used as house keeping gene. PCR set up
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included the following components:

PCR reaction components amount needed for n=1

LC® DNA Master™s Hyb Prob 4 pl
primer (20 uM), each 0.5ul
hybridization probe (20 uM) 0.5ul
uracil-N-glycosylase (1 U/ul) 0.25 pl
ddH,0 9.25 pl

15 pl

Table 13: PCR reaction mix composition.

LightCycler® FastStart DNA MasterPlus Hybridization Probes include all com-
ponents necessary for carrying out a PCR, such as the appropriate buffer,
MgCl,, dNTPs and a modified Tag-polymerase. Furthermore, BSA is included
which is needed for samples not to stick to the glass walls of the capillaries.
The exact composition and concentrations are not provided by Roche. Primers
were added to a total of 15 ul PCR set up which was carefully pipetted into a
light cycler capillary positioned in a cooling block and 5 ul cDNA was added.
PCR was carried out using the Roche Light cycler system. PCR programs

were as following:

denaturation  annealing elongation cycle no

VEGF 95 °C, 15sec 55 °C, 15sec 72 °C, 20sec 40
E2F1 95 °C, 10sec  60°C, 10sec 72 °C, 15sec 45
RB1 95 °C, 10sec  60°C, 10sec 72 °C, 15sec 45

Abl 95 °C, 10sec 60 °C, 15sec 72 °C, 15sec 45

Table 14: Cycling durations and temperatures for PCR.

Initial denaturation was carried out for 5 minutes at 95 °C prior to cycling for all PCRs.

4.2.2.4 The Z_AACt-method

The 2-22Ct 1ethod is a comparative analysis to quantify relative changes
in gene expression from real time PCR experiments. In contrast to absolute
quantification methods, where the input is determined by means of a copy

number by a correlation to a standard curve, relative expression describes
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changes in expression levels of a target gene relative to a reference group. The
reference is dependent on the experiment or the question asked and can be for
example an untreated or healthy sample or the sample at time zero in a time
course experiment. The 9-280t_jethod requires comparable amplification
efficiencies for PCRs of the calibrator, usually a housekeeping gene, and the
gene of interest. Efficiencies are calculated by determination of a standard
curve. For that purpose PCR has to be performed with a dilution series of
the input cDNA. To generate a standard curve, Ct-values (Y-axis) are plotted
against the log of template amount or dilution (X-axis). PCR efficiencies are
comparable for the case that the slopes are similar. For calculation of relative
expression levels the normalized Ct values for both reference and sample of

interest, have to be generated:

ACt (sample) = Ct target — Ct reference
ACt (calibrator) = Ct target — Ct reference

As a next step the AACt value is determined by subtracting the ACt value
of the calibrator from the ACt value of the sample:

AACt = ACt (sample) — ACt (calibrator)

AACYt can be used to calculate a normalized target gene expression level in

the sample of interest by 9-2aCt

with the result of a fold change-value. If
PCR efficiencies of the calibrator and the target are not comparable, the error

produced can be calculated using the following formular:

Error (%) = { 2n 100} ~ 100

(1+E)n
with £/ = PCR efficiency, n = cycle number.

4.2.2.5 Agarose gel-electrophoresis

Agarose gel-electrophoresis was used to separate DNA fragments according to

their size. Electrophoresis was carried out in a horizontal gel chamber. Agarose
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was dissolved in 1xTAE while boiling. Gels contained 1.5% to 2% agarose,
dependent on size of DNA fragment to be displayed, and 0.5 pug/ml ethidium
bromide (EtBr). EtBr intercalates into DNA and is used for detection of the
DNA on the gel using UV-light. Gel-electrophoresis buffer (6x) was added to
samples to prevent them from leaking from the wells and further, to mark the
running front of the samples during the run. For size determination a 100bp
DNA ladder was run in parallel. Agarose gels were run for one hour at 75 V.
DNA bands were visualized through UV light (366 nm) exposure, which leads
to a fluorescing of EtBr with an orange colour. This fluorescence was detected

using a gel documenting device.

4.2.2.6 PCR Array

The PCR array system RT2Profiler® from SABiosciences (Frederick, USA)
was used to determine expression levels of 84 transcription factors in a 96-
well format. Besides specific gene primers it also provides primer sets de-
tecting five housekeeping genes and three RNA and PCR quality controls.
(Cat.No. PAHS-075F, for detailed information about complete gene content,
please visit the company’s website). CLL cells were cultured at 4x106 cells/ml
RPMI1640, 3% FCS under standard conditions for 6 hours followed by either
stimulation with 100 ng/ml rhVEGF or left untreated for one hour. RNA was
extracted (RT2 qPCR-~Grade RNA Isolation Kit) following the recommended
instructions. 1 pug RNA was used for reverse transcription into cDNA, pre-
ceded by a genomic DNA elimination step (RT?2 First strand kit). The used
master mix contained SYBR Green for fluorescent detection. The array for-
mat was optimized for use with the Roche LightCycler® 480. Melting curves
proofed specific amplification of a single PCR product. RNA and PCR quality
controls were included in the experimental set up. Five different housekeep-
ing genes were used for normalization of cDNA content. For data analysis

Q‘AACt—method, offered on the com-

the SABioscience “s software, based on
pany ‘s website was used. Expression in untreated sample was compared to
VEGF-stimulated sample. 3-fold expression change was considered as upre-
gulation/downregulation threshold. Array experiments were carried out with

two different patients under equal conditions.
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4.2.2.7 Short interfering RNA (siRNA)

Short interfering RNA (siRNA) was used to knock down VEGF in HS5 cells.
siRNAs are short double-stranded RNA molecules of 20 to 25 nucleotides in
length and a 2-nucleotide overhang on either end. Those fragments are created
by cleavage of dsRNAs through the ribonuclease protein Dicer (Bernstein et
al., 2001).These siRNAs are then separated into single strands and integrated
into an active RNA-induced silencing complex (RISC), where they function
as sequence determinants of the RNAi pathway (Hannon and Rossi, 2004).
Integrated siRNAs basepair to sequence homologue mRNA-molecules, thereby
initiating their directed cleavage via endonucelases composing RISC. Hence,
the cleaved mRNA cannot function as template for translation anymore and its
protein expression is reduced (Tuschl, 2003). This principal is widely used for
experimental strategies to downregulate the translation of specific proteins.
For that purpose a synthetically produced double stranded siRNA molecule
targeting the mRNA of interest is introduced into the cell and induces its sub-
sequent donwnregulation via mentioned mechanism. We used this technique
to specifically knock-down the translation of VEGF mRNA into VEGF protein
in HS5 cells. For that purpose, HS5 cells were plated at 1x105/ml in DMEM,
10% FCS in 12 well plates on the day prior to transfection. Lyophilized siRNA
was reconstituted with RNase-free ddH,O to a final concentration of 10 uM.
The amounts of used siRNA and transfection reagent are listed in (Table 9).
Four different VEGF-targeting siRNAs (for sequence see Table 2) were used.
They were tested for their efficiency to knock down VEGF-expression by PCR
and ELISA using concentrations ranging from 1 nM to 100 nM. 50 nM turned

out to be most effective and was therefore used for experimental procedures.

equivalent
volume of finale volume of volume of
medium siRNA volume HiPerfect 10 yM
culture on cells amount of diluted reagent final siRNA siRNA
format () (ng) siRNA () concentration stock (pl)
12 well 1100 pl 750 ng 100 pl 6 pl 50 nM 6 pl

Table 15: Set up for siRNA experiments.
Calculation is based on approximate values for a double-stranded, 21nt siRNA molecule:

20 uM  0.25 pg/pl, molecular weight 14 pg/nmol.
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siRNA (6 pl/ml/well) was diluted with 100 ] DMEM without FCS, HiPerfect
transfection reagent was added subsequently (6 ul/ml/well) and the mixture
was vortexed. Samples were incubated for 10 minutes at RT to allow formation
of complexes and then added drop-wise to HS5H cells. HS5 cells were washed

prior to addition of transfection complexes and fresh medium was added.

4.2.3 Protein biochemistry
4.2.3.1 Preparation of cell lysates

To access the protein status of a cell its membranes (cell-, nuclear-, mitochon-
drial membranes) have to be ruptured. For that purpose cell lysis is carried
out. Usually 1x107 cells were used. In case of low expected amounts of targeted
protein the cell amount was doubled. Cells were pelleted via centrifugation at
6.000 U/minute for 2 minutes. Pellets were dissolved in appropriate amounts
of M-PER® mammalian protein extraction reagent containing phosphatase
inhibitor (PhosSTOP, Roche, 1 tablet per 20 ml lysis buffer), proteinase in-
hibitor (Complete, Roche, 1 tablet per 10 ml lysis buffer) and DTT (1:1000).
Cells were lysed by constant shaking at 4 °C for 3 hours. Cell debris and DNA
were removed by centrifugation at 13.000 rpm for 15 minutes at 4 °C. Lysates
were either used immediately or aliquotted and stored at -20 °C for short term
storage or -80 °C for long term storage until used. All steps were carried out

on ice to prevent degradation of proteins.

4.2.3.2 Protein quantification

For protein quantification Roti®-Nanoquant was used, which is based on the
well known procedure described for protein quantification by Bradford (Brad-
ford, 1976). Briefly, the triphenylemethan dye Commassie-Brilliant-Blue G-
250 binds in an acidy environment the cationic and hydrophobic side chains
of proteins. This results in the formation of a blue complex, which can be
quantified photometrically. For quantitative measurements a calibration line
was determined from a dilution series of the BSA protein. Protein lysates
obtained as mentioned earlier were diluted 1:20 and 1:50. The BSA protein
was used at a range between 0 and 250 pg/ml. 50 pl of sample lysate or BSA
standard were pipetted into 96well plates and 1x Roti®-Nanoquant (diluted
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in ddH,0) was added. Intensity of the blue complex was measured at 590nm
with a correction at 450nm using a photometer (uQuant, BioTek). Linearity
was determined by calculating the ratio ODsgg/450. All measurements were

done in duplicates.

4.2.3.3 SDS Polyacrylamide gel electrophoresis (PAGE)

SDS-PAGE is used to separate denatured proteins according to their molecular
weight. SDS is an anionic tenside, which covers the proteins natural charge, so
that they run towards the positive pole during electrophoresis. LDS (Lithium
dodecyl sulphate) can be used equivalently. Furthermore, the secondary and
tertiary structure of the proteins is destroyed through disruption of disulfide-
and hydrogen-bonds by addition of DTT and heating of the sample. NuPage®
LDS sample buffer was added to protein samples (usually 30ug) to obtain a
1 fold concentration. Nu®Page sample reducing agent, containing DTT was
added at 1 p1/10 pl final volume. After incubation at 95 °C for 10 minutes and a
brief spin, samples (25 ul) were loaded onto NuPage® 4-12% Bis-Tris gels. Gels
were run at 200V for 38 minutes in NuPage® MES running buffer including
NuPage® antioxidant. Used electrophoresis chamber was Novex mini-Cell from

Invitrogen.

4.2.3.4 Protein transfer (Western Blot)

Western blotting is the transfer of proteins, which were separated by SDS-
PAGE, to a membrane by an electric field. The electric field has to be vertical
to the SDS gel. Blotting was carried out onto a nitrocellulose membrane using
the Western-Blot Module from Invitrogen (XCell II) together with NuPage®
transfer buffer at 30V for 1h. To proof blotting efficiency transferred proteins
on the membrane were stained with Ponceau-S-Red solution. Ponceau-S visu-
alizes proteins by reversibly binding positively charged aminogroups. Washing
with ddH,O or PBS (1x) removes the dye completely.

4.2.3.5 Immunoblotting and development

Proteins can be visualized on the membrane using specific antibodies. To

block unspecific binding sides the membranes were preincubated with blocking
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solution I (PBS/Milk/Rotiblok) for one hour at room temperature, followed
by one washing step with 1x PBS. Primary antibody incubation took place
at 4 °C over night in the antibody-specific concentration and blocking buffer.
Membranes were washed three times for 10 minutes with PBS (1x) or TBST
(1x) according to blocking buffer. Subsequently, membranes were incubated
with the appropriate secondary horseradish peroxidise-labeled (HRP) antibody
in blocking buffer II for one hour at room temperature, followed by three 10
minute washing steps in PBS (1x). ECL-reagents I and II were mixed in equal
amounts. Membranes were incubated in ECL-mix for 2 minutes, briefly freed
from excessive liquid and put between two clean clear foils in a light protected
film cassette. Kodak X-ray films were exposed to membranes between 10
seconds and 1 hour, dependent on antibody and protein load. Exposed films
were developed using an automated photo developing machine (Kodak). Band
sizes were estimated by comparison to known sizes of protein ladder. When
loading was uneven as seen in variable band intensities for the loading control,
bands were densitometrically quantified by image J v.1.1.1 and normalized to

input (loading control).

4.2.3.6 Enzyme-linked immunosorbend assay (ELISA)

ELISA is a method for protein detection and quantification based on an enzy-
matic colour reaction. An antibody is coated to a solid phase, which is usually
a 96well plate. When samples are added to the wells proteins specific to the
coating antibody are bound and therefore retained in the well during subse-
quent washing steps. A second enzyme-linked antibody targeting the same
antigen at a different epitope as the coating antibody is added. A substrate
solution is added and colour develops in proportion to the initially bound
amount of the protein of interest. After stopping of the colour development
the colour intensity can be quantified densitometrically. For our experiment
the VEGF-ELISA kit (DVE0O, R&D Systems) was used as suggested by the

manufacturers’ instructions.

4.2.3.7 Concentration of supernatants

Supernatants of cell culture were concentrated using Microcon centrifugal filter

devices (Milipore) following the manufactures instruction. In brief, the super-
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natant was carefully pipetted into the sample reservoir and centrifuged for 30
minutes at maximum speed. After centrifugation the filter vial was removed
from the tube and placed upside down into a new tube. The concentrated
supernatant was removed from filter by centrifugation for 3 minutes at 1000 g
and used for determination of VEGF content by ELISA.

4.2.4 Flow Cytometry
4.2.4.1 Detection of surface markers

To test the purity of CLL cells after isolation using combined Rosette Sep®
procedure and subsequent Ficoll-density centrifugation as described earlier,
isolated cells were subject to flow cytometric analysis of CLL cell-specific sur-
face markers. For that purpose isolated cells were incubated with anti-CD5-
FITC (1:10), CD19-PerCy5.5 (1:10) and CD23-APC (1:50) for 30 minutes.
After washing, cells were analysed by flow cytometry (FACS Canto). CD23
and CD19 are classical B-cell markers, while CD5 is as a T-cell marker gen-
erally absent on normal B-cells. Possibly during the process of tumorigenesis,
CLL cells acquire this surface marker and can therefore easily be distinguished
from healthy B-cells. Determined purity of CLL cells in our experiments af-
ter isolation from whole blood by Rosette Sep® procedure and Ficoll-density

centrifugation was usually larger than 90%.

4.2.4.2 Intracellular phospho flow cytometry

To detect unphosphorylated and phosphorylated proteins, which are not present
at the cell surface, intracellular staining techniques are necessary. For that
purpose cells need to be permeabilized prior to antibody incubation. If the
phosphorylation status of a protein needs to be determined it is useful to fix
cells in addition to permeabilization. To ensure rapid fixation of the cur-
rent phosphorylation status of the cells 4% formaldehyde was added to the
cells in culture medium at equal volumes to reach a final concentration of 2%
formaldehyde. Cells were incubated for 10 minutes at 37 °C in the incubator
following two washing steps with 1x PBS, 0.5% FCS. Subsequently, cell pellets
were suspended in 200 pl 1x PBS 0.5% FCS and 100% ice cold methanol was

added drop wise while vortexing at low speed to a final concentration of 90%
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methanol. Cells were then either stored at -20 °C for later use or incubated
at -20 °C for 15 minutes, washed with PBS 0.5% FCS, followed by antibody
incubation. Antibodies used for flow cytometry and their dilutions are listed
in (Table 4). Cells were incubated with primary antibodies or appropriate
isotype control for one hour, followed by two washing steps with 1x PBS, 0.5%
FCS and secondary antibody incubation for 30 minutes. Preceding analysis
on FACS Canto cells were washed twice with 1x PBS. In the case of directly
labeled antibody incubation cells were incubated for one hour followed by two
1x PBS washing steps and subsequent analysis on FACS Canto. Appropriate

directly labeled isotype controls were used accordingly.

4.2.4.3 Annexin V-FITC/PI staining

To analyse a cell population for survival, apoptosis and cell death a combined
staining with fluorochrome-labeled Annexin V and propidium iodide (PI) can
be used. Apoptosis is characterized by several distinct events such as loss of
plasma membrane integrity, condensation of cytoplasm and the nucleus or in-
ternucleosomal DNA-cleavage. The loss of the plasma membrane integrity is
one of the earliest features of apoptosis induction and is characterized by a
translocation of phospholipid phosphatidylserine (PS) from the inner to the
outer leaflet of the plasma membrane. The now exposed PSs can be bound
by Annexin V, which has a high affinity to PSs. Annexin V is bound to a
fluorochrome, in this study FITC, and can be detected by flow cytometry. As
PS translocation is an early event of apoptosis induction, Annexin V posi-
tivity can be assigned a measure for early apoptosis induction. In contrast,
permeability for PI can be considered as a sign for damaged or dead cells.
Hence, cells which are Annexin V/PI double negative can be considered alive,
Annexin V positive/PI negative cells are in early apoptosis, whereas Annexin
V/PI double positive cells can be considered dead (compare Figure 23).

Cells to be analysed were washed twice with cold 1x PBS. Approximately
1x106 cells were dissolved in 100 pl 1x binding buffer and 2 pl Annexin V-
FITC antibody and 2 ul (100 ug/ml) PI solution were added. Binding buffer
was prepared by diluting a 10x stock solution with distilled water. Cells were
incubated for 20 minutes at room temperature protected from light. 300 ul 1x

binding buffer was added and cells were analysed on FACS Canto.
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4.2.5 Statistics
4.2.5.1 Standard error

The analysis of measured data was calculated as a mean of a minimum of three
independent experiments including the associated standard error of the mean
(SEM). The SEM is dependent on the standard deviation, which is a measure
of the spread of a distribution. The standard deviation (s) is the square root

of the variance and can be calculated as follows:

> (zi —m)?

n—1

g =

with z; = single score, m = mean and n = score number.

The standard error of the mean is designated as o,,. It is the standard deviation
of the sampling distribution of the mean. The formula for the standard error

of the mean is:

o
Om = —=

NG

with s = standard deviation, n = score number.

Standard error of the mean (SEM) represents the accuracy of the mean,
whereas the standard deviation rather reflects the variability of single obser-

vations.

4.2.5.2 Statistical significances

Statistical significance describes how likely it is that a result occurred by chance
in a study population as a sample of a total population. The most commonly
used test of significance is the student’s t-test, where the statistics follow a stu-
dent’s t-distribution if the null hypothesis is true. The student’s t-distribution
is a generalized hyperbolic distribution and describes a probability distribution
that results from the problem which comes up when the mean of a normally

distributed population with a small sample size is being estimated. The null
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hypothesis is the assertion that your results are not related and your results are
the product of random chance events and is often the reverse of what the ex-
perimenter actually believes. The null hypothesis it is put forward to allow the
data to contradict it. Student’s t-test can either be unpaired or paired, depen-
dent on whether samples of the different data sets being tested corresponding
to each other or are independent. Furthermore, the t-test can be one-tailed or
two-tailed. A one-tailed test is used for the case that the expected results are
thought to be different in only one direction, e.g. are higher or lower, but not
just different so either higher or lower, which means the interest is only on one
side of the probability distribution. Two-tailed t-tests are frequently used and
consider deviances towards either direction. All statistical calculations done
in this work were two-tailed t-tests. Whether they were unpaired or paired is
specifically indicated. Significance calculations were carried out using Graph
Pad Prism Software 4.0
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