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Zusammenfassung
In dieser Arbeit wurden angeregte Zustände in den leihten Kernen 9B und 13N mit Hilfeder (3He,t) Ladungsaustaushreaktion untersuht. Dazu wurden am researh enterfor nulear physis (RCNP) in Osaka, Japan Targets aus 9Be und 13C mit 3He-Kernenbeshossen, die durh das RCNP Ring-Zyklotron auf 420 MeV beshleunigt wurden.Die Tritonen wurden mit dem Magnetspektrometer Grand Raiden analysiert. MitHilfe des Grand Raiden Spektrometers und der dispersiven Strahlführung im �WSourse� des RCNP ist es möglih die (3He,t) Reaktion mit rund 30 keV Energieau�ö-sung zu untersuhen, was rund eine Gröÿenordnung besser ist als die Au�ösung diemit der (p,n) Ladungsaustaushreaktion erzielbar ist. Die hohe Au�ösung erlaubt esZustände besser zu trennen und shwahe Anregungen aufzuspüren. Insgesamt wurden19 Zustände in 13N und 20 Zustände in 9B untersuht. In 13N wurden 9 dieser Zuständeund in 9B 10 dieser Zustände als Gamow-Teller Anregungen identi�ziert. Ladungsaus-taushreaktionen sind mit dem Betazerfall verwandt, und bei vershwindendem Impul-sübertrag existiert eine einfahe Proportionalität zwishen dem Wirkungsquershnitt derLadungsaustaushreaktion und der Fermi (F) oder Gamow-Teller (GT) Stärke im Be-tazerfall. Während die Fermi Stärke B(F) im Übergang in den isobaren Analogzus-tand konzentriert ist, verteilt sih die Gamow-Teller Stärke B(GT) auf die angeregtenZustände. Das Hauptziel dieser Arbeit ist die Bestimmung von B(GT) Stärken in den Ker-nen 9B und 13N. Die einzige Studie des Kerns 9B mit Hilfe einer Ladungsaustaushreak-tion wurde vor 30 Jahren mit der (p,n) Reaktion durhgeführt. Viele Zustände, vorallem bei hoher Anregungsenergie, konnten in dieser Studie niht aufgelöst werden. Indieser Arbeit konnten viele shwah angeregte Zustände mit kleinen Zerfallsbreiten beihohen Anregungsenergien (12-19 MeV) getrennt beobahtet werden. Die Verteilung derB(GT) Stärken wurde ebenfalls bestimmt mit Hilfe neuer Daten aus dem Betazerfallvon 9C und 9Li. Die Ergebnisse deuten darauf hin, dass es starke Untershiede in derKernstruktur der niedrigliegenden Zustände von 9B und den hohangeregten Zustän-den gibt. Dieses Ergebnis wird auh durh theoretishe Rehnungen und Daten ausdem Betazerfall bestätigt. Darüber hinaus konnte die Information über Anregungsen-ergien und Zerfallsbreiten in beiden Kernen signi�kant verbessert werden. Der Kern 13Nwurde zuletzt 2001 mit Hilfe der (p,n) Reaktion untersuht. Ein (3He,t) Experimentwurde ebenfalls vor einigen Jahren (2004) am RCNP Osaka durhgeführt, allerdings mitniedrigerer Au�ösung von rund 300 keV. In dieser Arbeit wurde die (3He,t) Reaktionmit hoher Au�ösung (30 keV) benutzt um die Verteilung der B(GT) Stärken in 13N zubestimmen. Die Targetanreiherung und die hohe Au�ösung der Spektren erlaubte esden T=3/2 Zustand bei 15.1 MeV vom 12N Grundzustand zu trennen und ermöglihtesomit eine präzise Untersuhung der Verteilung der GT Stärke in 13N.
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Abstrat
Exited states in the light nulei 9B and 13C were studied using the (3He,t) harge-exhange reation on 9Be and 13C targets. The measurements were performed at theresearh enter for nulear physis (RCNP) in Osaka, Japan, using the magneti spe-trometer Grand Raiden and the dispersive WS ourse. The 3He beam with an energyof 420 MeV was aelerated by the RCNP Ring Cylotron. The Grand Raiden spe-trometer and the WS ourse allow to study the (3He,t) harge-exhange reation withan energy resolution of around 30 keV, whih is one order of magnitude better thanmeasurements with the (p,n) harge-exhange reation. The high resolution allows tobetter separate individual states and to determine weak exitation strenghts beause oflow bakground in the spetra. A total of 19 states in 13N were studied, and a total of 20states were observed in 9B. Of these, 9 states in 13C and 10 states in 9B were identi�edas being exited by a Gamow-Teller transition. Charge-exhange reations are relatedto beta-deay, and at zero momentum transfer a simple proportionality exists betweenthe ross-setion of the harge-exhange experiment and the Fermi (F) or Gamow-Teller(GT) beta-deay strength. While the Fermi strength B(F) is onentrated in the transi-tion to the isobari analog state, the Gamow-Teller strength B(GT) is sattered amongthe exited states. The main aim of the present study is to determine the B(GT)strengths in the nulei 9B and 13N. The only harge-exhange study of 9B was made 30years ago with the (p,n) reation and a resolution of around 300-400 keV. Many states,espeially at high exitation energy, ould not be resolved by this study. The presentwork was able to separate many weakly exited states with small deay width at highexitation energies (12-19 MeV) in 9B and determine the B(GT) strength distribution byusing reent high-preision beta-deay data. The results point to a strong di�erene inspatial struture between the low-lying levels of 9B and the levels with high exitationenergy. This result is also orroborated by beta-deay measurements and theoretialalulations. Furthermore, the information on exitation energies and deay widths inboth nulei ould signi�antly be improved. The nuleus 13N has last been studied in2001 using the (p,n) reation. A (3He,t) experiment was also performed at the RCNPOsaka a few years ago (2004), however with a lower resolution of around 300 keV. In thepresent work, the (3He,t) reation with high resolution (30 keV) was used to determinethe B(GT) strength distribution in 13N. The target enrihment and high resolution ofthe spetrum allowed to isolate the T=3/2 state at 15.1 MeV from the 12N ground stateand thus provide a high-preision analysis of the GT strength distribution in 13N.
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CHAPTER 1. INTRODUCTION
Chapter 1Introdution
1.1 Gamow-Teller transitions and harge-exhangereations�I deided to get a Ph.D. in experimental physis beause experimental physiists have their own roomin the Institute where they an hang their oat, whereas theoretial physiists have to hang their oatat the entrane.�George Gamow (1904-1968)Charge-exhange reations in nulear ollisions result from the exhange of a protonand a neutron between the projetile and the target nuleus. In this work, the fousis on the (3He,t) harge-exhange reation at intermediate beam energy (E/A=140MeV/nuleon).Charge-exhage reations share many similarities with beta-deay, where the neutronis onverted into a proton (β− deay) or vie versa (β+ deay) as a result of the weakinteration. In beta-deay, allowed transitions (that is, those transitions that an be de-sribed in an approximation where the transition operator is independent of the positionsand veloities of the nuleons [Boh69℄) an be divided in two types. One is the Fermitransition (F), where the operator is independent of the nuleon spin, and only mediatedby the isospin operator τ±, whih transforms a neutron into a proton and vie versa.The other is the Gamow-Teller (GT) transition, where the operator is proportional tothe spin operator (σ) of the deaying nuleon. The operator of the GT transition is thespin-isospin operator στ±, and the orresponding redued transition strength B(GT) fora system with a number A of nuleons is de�ned as
B(GT±; Ji, Ti, Tzi → Jf , Tf , Tzf) =
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MGT (στ±)2. (1.1)As with eletromagneti redued transition strengths, it is important to be areful aboutthe diretion of the transition (initial and �nal state).
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2 CHAPTER 1. INTRODUCTIONExperimentally, the B(GT) value an be obtained from the beta-deay partial half-lifeti of a state via the f t value if there is no Fermi part in the deay:
B(GT ) =

K

g2
V

· 1

λ2fti
(1.2)where K is a onstant de�ned by [Har09℄

K

g2
V

=
2π3

~
7 ln 2

m5
ec

4g2
V

= 6147(7)s (1.3)and λ=gA/gV is the ratio of weak interation oupling onstants whih has a value of-1.2695(29) [Har06℄. As K/g2
V and f t are measured in seonds, B(GT) is a dimensionlessquantity. It should however be noted that some authors inlude the fator λ2 into theB(GT) value so speial attention is required to make sure whih de�nition of B(GT)(inluding or not inluding the fator λ2) was used for the determination of a quotedB(GT) value. The present work does not inlude λ2 in the B(GT) value, whih is theommon standard used in studies involving harge-exhange reations.For the transition between isobari analog states (IAS), whih an be mediated bythe τ operator alone, the resulting Fermi strength has to be taken into aount. Theredued transition strengths B(GT) and B(F) (for the Fermi transition) then onnet tothe f t value as follows:
B(F ) + λ2B(GT ) =

K

g2
V

· 1

fti
(1.4)The Fermi strength is onentrated in the transition to the isobari analog state of theground state of the initial nuleus and has the value |N − Z| (Fermi sum rule) [Ost92,Orm95℄.Both the Fermi and the Gamow-Teller transitions have spin, isospin and parity sele-tion rules whih are summarized in table 1.1.While B(GT) values an aurately be determined in beta-deay studies, their mainlimitation is the deay Q-value so that only low-lying states an be studied, and only thetransition in one diretion. In order to overome this limitation and obtain B(GT) valuesat higher exitation energies, harge-exhange (CE) reations of the (p,n) or (n,p) typean be used.When using the nulear reation, the projetile-target interation beomes important.This interation is usually very ompliated, depending on the energy of the inidentpartile and the properties of the target nuleus. Solving the sattering problem involvesthe strong interation NN-potentials, whih result in a �nal weak e�etive interation.Love and Franey [Lov81, Fra85℄ wrote the e�etive interation V12 between the nuleons1 and 2 involved in the reation as a sum of entral (C), spin-orbit (LS) and tensor (T)terms with spin-isospin deomposition:

V12(r) = V C
0 (r) + V C

σ (r)σ1σ2 + V C
τ (r)τ1τ2 + V C

στ (r)σ1σ2τ1τ2

+
(

V LS
0 (r) + V LS

τ τ1τ2
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L12 · S
+

(

V T
0 (r) + V T

τ (r)τ1τ2
)

S12(r̂) (1.5)



1.1. Gamow-Teller transitions and harge-exhange reations 3Table 1.1: Seletion rules for Fermi (F) and Gamow-Teller (GT) transitions. The transi-tions onnet an initial state with angular momentum and parity Jπ
i and isospin quantumnumbers Ti,Tzi to a �nal state with quantum numbers Jπ

f ,Tf ,Tzf .FERMI
Ji=Jf ∆J=0
Tf=Ti 6=0 ∆T=0, but 0→0 forbidden
Tzf=Tzi±1 ∆Tz=±1
∆π=0 no parity hangeGAMOW-TELLER
∆J=0,±1 but Ji=0→ Jf=0 forbidden
∆T=0,±1 but Ti=0→ Tf=0 forbidden
Tzf=Tzi±1 ∆Tz=±1
∆π=0 no parity hange

where S=s1+s2 is the total two-nuleon spin, L12 the relative angular momentum oper-ator between the two nuleons and S12(r̂)=3σ1r̂σ2r̂ − σ1σ2 is the tensor operator. Allinteration oe�ients depend on the relative oordinate r=r1-r2 of the two nuleons.The spin-isospin mode whih is of interest for the study of GT transitions is exitedvia the V C
στ (r)σ1σ2τ1τ2 omponent of the interation. This omponent should thus bemaximized against other omponents to study GT strengths. The energy and momen-tum transfer dependene of the omponents of the e�etive interation were studied byLove and Franey[Lov81, Fra85℄, and the energy and momentum transfer dependene ofthe omponents is reprodued in the �gures 1.1 and 1.2. They show learly that atintermediate bombarding energies (E≈100-140 MeV) and at zero momentum transfer,the στ omponent beomes dominant, while the τ omponent beomes suppressed.The low momentum transfer is ahieved at forward angles. Sine at small momentumtransfer a multipole expansion of the transition operator is possible, a simple relationbetween the ross-setion at zero degrees sattering angle and the beta-deay strengthan be expeted. Indeed, a simple proportionality [Goo80℄ was disovered. This propor-tionality has been studied in detail both theoretially and experimentally by Taddeuiet al. [Tad87℄, resulting in the formula

dσ

dΩ
(q, ω) = K(Ei, ω) ·ND(q, ω) · |JGT |2 ·B(GT ) (1.6)where K is a kinemati fator, ND a distortion fator and JGT represents the volumeintegral of the nuleon-nuleus e�etive interation entral omponent V C

στ . The momen-tum transfer is denoted by q, the energy of the inident partile by Ei and ω=Ex-Qgs isthe energy loss (exitation energy of exited state expressed in terms of exitation energyrelative to the ground state of the target nuleus). The kinemati and distortion fators



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Energy dependene of the entral omponents of the e�etive interation
V12 at zero momentum transfer, inluding diret and exhange terms. Figure takenfrom [Ost92℄. The horizontal axis is the bombarding energy expressed in MeV/nuleon.are given by

K(Ei, ω) =
EiEf

(~2c2π)2

kf

ki

(1.7)
ND(q, ω) =

dσ
dΩ

(DW ; q, ω)
dσ
dΩ

(PW ; q = 0, ω = 0)
. (1.8)The distortion fator ND is de�ned by the ratio of plane-waves and distorted-wavesross-setions.The proportionality relation (1.6) allows to determine B(GT) strengths for higherexitation energy regions when a referene B(GT) value is known.1.2 The determination of B(GT) strengths usingharge-exhange reationsThe proportionality of eq. (1.6) was established and tested using the (p,n) reation.Owing to the time of �ight (TOF) measurement used in the neutron analysis, the energyresolution is of the order ≈300 keV, whih greatly restrits the study of individual levelsin mirror nulei.Despite the omplexity of the projetile and ejetile, the (3He,t) reation o�ers aninteresting alternative to the (p,n) reation. At intermediate energies of 100-200 MeVper nuleon, the (3He,t) reation mehanism is expeted to beome simpler and an beapproximated as a one-step reation mehanism. The triton ejetile an be analyzed by a
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Figure 1.2: The strength of the omponents of the e�etive interation V12 as a funtionbombarding energy (number on urve) and momentum transfer, inluding diret andexhange terms. It an be seen that at zero momentum transfer, the non-entral termsof the interation an be negleted at intermediate energy (100-140 MeV), while thestrength of VC
στ is maximal. Figure taken from [Lov81℄, sligthly edited.



6 CHAPTER 1. INTRODUCTIONmagneti spetrometer, thus enabling studies with muh higher resolution (e.g. [Fuj99a,Fuj02b℄). The proportionality relation (1.6) has also been shown to hold for the (3He,t)probe at intermediate energies. At the researh enter for nulear physis (RCNP) inOsaka, an energy resolution of≈30 keV an nowadays be ahieved for the (3He,t) reationat beam energy 140 MeV/nuleon.For experimental purposes, the proportionality relation beteen the B(GT) strengthand the di�erential ross-setion an be rewritten in a simpler form, as
dσ

dΩ

∣

∣

∣

q=0
= σ̂GTB(GT ) (1.9)with the unit ross setion σ̂GT ating as the proportionality fator. This unit ross-setion an be determined when a B(GT) value is known from beta-deay by relating itto the ross-setion at q=0.Experimentally, the q=0 ross-setion has to be extrapolated from measurements at�nite sattering angle around zero degrees. Depending on the exitation energy, the unitross setion also has to be adjusted for the kinemati and distortion fator, whih isdone by a DWBA alulation.For the transition to the IAS, a similar proportionality relation holds, involving theFermi unit ross-setion σ̂F and the Fermi strength B(F):

dσ

dΩ

∣

∣

∣

q=0
= σ̂FB(F ) + σ̂GTB(GT ) (1.10)When analyzing the transition to the IAS, the Fermi part of the total di�erentialross-setion thus has to be isolated in order to obtain the B(GT) strength. In aseswhere both a pure B(GT) transition is known (to determine σ̂GT ) and the IAS B(GT) isknown, σ̂F an be determined.The unit ross setions σ̂F and σ̂GT and their nulear mass and energy dependenehave been studied in detail for the (p,n) reation (see �gure 1.3). The mass dependenetakes the form of a rather smooth urve. Being able to roughly alibrate the unitross setion via suh a systemati mass dependene is very useful when not all B(GT)values required for a alibration of the ross-setion are available. A unit ross-setiondetermined from systematis an then be used as a plaeholder in order to determineB(GT) strengths via the CE reation.A systemati study [Zeg07℄ was reently arried out using the available (3He,t) datato determine the mass A dependene of the unit ross-setions at beam energy 140MeV/nuleon.The empirial relations

σ̂F = 72 · A−1.06 mb/sr (1.11)
σ̂GT = 109 · A−0.65 mb/sr (1.12)were found as best �ts to the experimental data (see �g. 1.4). It has been shown [Col06℄that ontributions from the tensor-τ part of the e�etive entral interation (V T

τ ) pro-due interferenes between the ∆L=0 GT amplitude and ∆L=2 amplitudes, whih exper-imentally lead to higher than expeted unit ross-setions in some ases. The orretion



1.3. The proportionality and experimental requirements 7

Figure 1.3: σ̂F,GT as a funtion of mass number A for (p,n) reations at 120 MeV. Figuretaken from [Tad87℄.dedued from the treatment of V T
τ has the right sign and magnitude to aount for thedeviations.The unit ross-setions for a given nuleus and beam energy are also often presentedin the literature via the ratio R2

R2 =
σ̂GT

σ̂F

. (1.13)1.3 The proportionality and experimental require-mentsIn order to study GT strengths with CE reations and to use the proportionality relationbetween ross-setion and B(GT) strength, several requirements have to be ful�lled inthe measurement. They are, in summary, the following:
• The proportionality is only valid for states that are exited via angular momentumtransfer ∆L=0. Other states, whih are not of Fermi and/or Gamow-Teller naturemay also be exited by the reation. It must be possible to isolate these states inthe measurements obtained with the probe. In the (3He,t) reation, this is donevia the angular distribution of ross-setions, whih is strongly forward-peaked for

∆L=0 transitions (see 4.7). Zero angular momentum transfer is a requirement forobtaining states exited with the στ operator. In ase L is not a good quantumnumber, ∆L=0 means that the wavefuntions of the initial and the �nal stateshave omponents with the same values of L.
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Figure 1.4: σ̂F,GT as a funtion of mass number A for (3He,t) reations at 140MeV/nuleon. Figure taken from [Zeg07℄. The arrows show the orretion if the ef-fet from the tensor-τ interation is removed (see text).
• The reation must take plae under onditions suh that the reation is well-desribed as a single-step transition. The (3He,t) probe at intermediate energiesful�ls this requirement.
• The proportionality is given for momentum transfer q=0 and energy loss ω=0. Ex-perimentally, this requires the extrapolation to the sattering angle at zero degreesand the extrapolation to zero Q-value by using DWBA. The zero-degree measure-ments with the Grand Raiden spetrometer at the RCNP Osaka allow for theextrapolation to zero degrees sattering angle due to the high angle resolution(see 4.8).
• It was shown by Love and Franey [Lov81, Fra85℄ and used by Taddeui etal. [Tad87℄ that the e�et of the στ operator is best isolated at intermediatebeam energies (100-150 MeV/nuleon). This result does not depend on the probestruture, so it is generally ful�lled for any harge-exhange reation. The mainphysial reason is that the mass of the pion is around 140 MeV/2 so that, at abeam energy of around 140 MeV/nuleon, the probability of one-pion exhange ismaximal, and so the ation of the στ operator.



1.4. Nulei studied in this work 91.4 Nulei studied in this workBased on the main priniples outlined in this introdution, this work was aimed at deter-mining B(GT) strengths in the nulei 9B and 13N by using the (3He,t) reation on 9Beand 13C targets at 140 MeV/nuleon beam energy.In the A=13 system, beta-deay information is available for alibrations purposes forthe 13N(β+), the 13O(β+) and the 13B(β−) deays. The isobar diagram of the A=13system is shown as a referene in �gure 1.5. The nuleus 13N has already been studied in(p,n), most reently by Wang et al. [Wan01℄, and in (3He,t) (with muh lower resolution)by Fujimura et al. [Fuj04a℄ and Zegers et al. [Zeg08℄. While Zegers et al. mainly fousedon the determination of the B(GT) value of the 3.5 MeV state in 13N, this work willgive a detailed analysis of the B(GT) distribution up to 20 MeV exitation energy. Ourresults ompare well to the (p,n) results by Wang et al., as will be shown in 5.5.

Figure 1.5: Isobar diagram of the A=13 system, reprodued from [AS91℄.The A=9 system (whose isobar diagram is shown in �g. 1.6) has not been extensivelystudied with harge-exhange reations. In 1980, a 9Be(p,n) experiment was arried outat 135 MeV proton energy at the Indiana University Cylotron Faility (IUCF) [Pug85,Faz82℄ with an energy resolution of about 300-400 keV. At that time, beta-deay data waswas not available to determine B(GT) values, so only ross-setions were determined.Reent high-preision data is available for the beta deays of 9Li and 9C so that aalibration using the ground-state deays of those nulei was possible, although theirB(GT) strengths are very weak. B(GT) strengths in 9B are more di�ult to alibratesine there is no ground-state beta deay between 9B and 9Be. The present study madeuse of the mass-number systematis of the R2 value in order to estimate the Fermi part ofthe ground state transition. The higher resolution and sensitivity of the (3He,t) reationalso made the haraterization of highly-exited states easier, so that the ross-setionsof individual states ould be established.The experimental work was arried out at the ylotron faility of the researh enter



10 CHAPTER 1. INTRODUCTIONfor nulear physis (RCNP) in Osaka, Japan. The next hapter will deal in detail withthe experimental setup and the tehniques used to obtain a high-resolution spetrum.

Figure 1.6: Isobar diagram of the A=9 system, reprodued from [Til04℄.



CHAPTER 2. EXPERIMENTS
Chapter 2Experiments
This hapter desribes the experiments arried out within the sope of the thesis. It willdesribe in detail the experimental setup at the aelerator faility of the RCNP Osaka,and various tehniques used for the ahievement of beam and detetor onditions suitablefor the experiments.
2.1 Overview of the performed experimentsThe experiments were performed at the Researh Center for Nulear Physis1 (RCNP),Osaka University. The 3He beam was aelerated by the K=1202 AVF3 Cylotron,boosted up to 420 MeV (140 MeV/A) by the K=400 Ring Cylotron and guided to thetarget through the WS beam line. Details on the beam tuning, foussing and mathingwill be given in subsequent setions. Targets of metalli 9Be under vauum (thiknessof 1.73 mg/m2) and 13C in the form of 99% enrihed polyethylene4 (thikness 0.5mg/m2) were used to study exited states in 9B and 13N via the (3He,t) reation. Thespei�ation of other targets used for alibration an be found in the Appendix C, TableC.1. The outgoing tritons (A/Z=3) were momentum-analyzed by the Grand Raidenspetrometer whih will be explained in more detail in the next setion. Sattered 3He++(A/Z=3/2) partiles were dumped into the Faraday up installed in the �rst dipolemagnet (D1), whih was also used to monitor the beam urrent. At the foal plane, thepartiles were traed using multiwire drift hambers (MWDC) for trak reonstrutionand plasti sintillators for partile identi�ation and triggering of the MWDCs. Thedata was taken at a spetrometer angle of zero degrees.1Japanese name:##.$9�%(drdÓ $(O=*l&^�Æ��w��Ê��( 	Osaka Daigaku Kakubutsuri Kenky	u Sent	a)2The K number of a ylotron gives the energy up to whih ions an be aelerated. If ions have aharge Q (given in units of the elementary harge e) and a mass A (given in units of the atomi massunit u), then for a given K number these ions an be aelerated up to the energy Eacc = K (Q/e)2

A ,where Eacc is given in MeV [Kat89, Cla90℄.3Azimuthally varying �eld4[−H2C − CH2−]n

11



12 CHAPTER 2. EXPERIMENTSTable 2.1: Spei�ations of the RCNP ylotrons [Kat89℄.Ring Cylotron AVF CylotronNumber of setor magnets 6 3Injetion radius [m℄ 2Extration radius [m℄ 4.04 1Magnet gap [m℄ 6 20.7 (min)Proton max. energy [MeV℄ 400 84
α partile energy [MeV℄ 400 130
3He energy [MeV℄ 510 160Weight of magnet [t℄ 2000 400Main oil power [kW℄ 450 450Trim oil power [kW℄ 250 265Number of avities 3 1Radio frequeny (RF) power [kW℄ 250x3 1202.2 The Grand Raiden SpetrometerThe spetrometer Grand Raiden5 onsists of three dipole magnets (D1,D2, andDSR), two quadrupole magnets (Q1 and Q2), a sextupole magnet (SX) and a multipolemagnet (MP). The shemati arrangement of the magnets that make up the GrandRaiden is shown in �g.2.2, and its spei�ations and ion-optial properties are sum-marized in table 2.2. Its stand-out features are the high momentum resolution p/∆pand its large magneti rigidity6. In order to gain a large aeptane for vertial satter-ing angles7, a strong quadrupole magnet (Q1) is plaed near the sattering hamber.Seond-order ion-optial properties like the tilting angle of the foal plane are adjustedby the sextupole magnet (SX). The multipole magnet (MP) whih is plaed betweenthe two dipole magnets (D1 and D2) an generate quadrupole, sextupole, otupole anddeapole �elds to orret higher order aberrations. The third dipole magnet (DSR) wasinstalled for measurements of the in-plane polarization transfer, and was not used inthe experiments. A omprehensive review of the Grand Raiden spetrometer an befound in the paper by M. Fujiwara et al. [Fuj99b℄.

5named after b��lr\ 8Z![l+åù�(Raiden Tameemon) (1767-1825), onsidered one of the greatest sumowrestlers in history.6The magnitude of the magneti �eld B times the gyroradius of a harged partile equals to itsmomentum per unit harge, also alled magneti rigidity (B · r = mv⊥
|q| )7The vertial angle is ruial for the identi�ation of ∆L=0 transitions, see details regarding theoverfous mode in setion 2.4.3.



2.2. The Grand Raiden Spetrometer 13Table 2.2: Spei�ations of the Grand Raiden magneti spetrometer [Kat89, Ada07,Shi05℄. Mean orbit radius 3mTotal de�etion angle 162◦Measurable angle -4◦ to 90◦Momentum range 5%Momentum dispersion 15.45 mMomentum resolution (p/∆p) 37000Tilting angle of foal line 45◦Foal plane length 120 mMaximum magneti rigidity 5.4 T·mMaximum �eld strength (D1, D2) 1.8 TMaximum magneti gradient (Q1) 0.13 T/mMaximum magneti gradient (Q2) 0.033 T/mHorizontal magni�ation (x|x) -0.417Vertial magni�ation (y|y) 5.98Horizontal aeptane angle ±20 mradVertial aeptane angle ±70 mradMaximum soild angle ∼ 5.6 msrFlight path for the entral ray 20 m

scattering chamber

magnets

VDCs

beam line

Figure 2.1: The Grand Raiden Spetrometer.
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Figure 2.2: Layout of the Grand Raiden Spetrometer with sale. D1, D2 and DSR aredipole magnets, Q1 and Q2 are quadrupole magnets, SX is a sextupole magnet and MP amultipole magnet. The sattering hamber is on the lower right side of the piture.



2.3. The foal plane detetor and trigger system 152.3 The foal plane detetor and trigger systemThe detetor system plaed at the foal plane of the Grand Raiden spetrometer isused to determine the positions as well as the inident angles of partiles. The layoutis shown in �g. 2.3. Multiwire drift hambers (MWDCs), whih are also alled vertialdrift hambers (VDCs), are used for the determination of positions and angles. Theplasti sintillators PS1 and PS2 produe a signal that is proportional to the energy lossof the inident partiles and were used for partile identi�ation (here: to separate thetritons from sattered 3He+ ions8) and to provide trigger signals. A detailed desriptionof the VDC setup an be found in the 1991 annual report of the RCNP Osaka [Nor91℄.Eah VDC onsists of two anode-wire planes (alled X and U) that are sandwihed bythree athode planes. The anode-wire planes ontain sense wires and potential wires.The struture of suh a plane is shematially illustrated in �g. 2.4. The sense wires areplaed 6mm apart in the X-planes and 4mm apart in the U-planes. The potential wiresreate a uniform eletri �eld between the athode planes and the anode plane. When aharged partile rosses the VDC, an avalanhe proess in the gas whih is ontained inthe hamber ours near to the sense wires. For example, in the illustration of �g. 2.4,the partile trajetory an be reonstruted using the drift-time information from fourdi�erent wires. The potential resolution is around 300 µm (FWHM9).

Figure 2.3: Layout of the foal plane detetor system. The system onsists of two sets ofvertial drift hambers (VDCs), MWDC1 and MWDC2, and a trigger system onsisting of twoplasti sintillators, PS1 and PS2. The MWDCs have two anode planes, X and U, where X1(of MWDC1) oinides with the foal plane of the spetrometer, and the U planes are tilted atan angle of 48.2◦ relative to the X planes.The gas used in the MWDCs is a mixture of argon (71.4%), isobutane (28.6%) and8See 3.1 for a detailed disussion of the partile identi�ation9Full width at half maximum



16 CHAPTER 2. EXPERIMENTSa small amount of isopropyl alohol (2-propanol), added to the argon gas at 2◦C withvapor pressure to redue deterioration (like polymerization of gas on the wire surfaes).The two plasti sintillators PS1 and PS2 have a thikness of 10mm, and they are posi-tioned behind the MWDCs. The area of the sintillators (W×H) is 1200mm×120mm.The sintillation was deteted by photomultiplier tubes (PMTs), model HamamatsuH1161, plaed on both sides of the plasti sintillators. The signals from these sintil-lators were used to generate Grand Raiden event signals (trigger) and as energy lossounters for partile identi�ation.Table 2.3: Spei�ations of the MWDCs [Nor91, Ada07, Shi05℄.Wire on�guration X (0◦=vertial), U (48.2◦)Ative area (W×H) 1150 mm × 120 mmNumber of sense wires 192 (X), 208 (U)Cathode-anode gap 10 mmAnode wire spaing 6 mm (X), 4 mm (U)Sense wires ∅ 20 µm gold-plated tungsten wirePotential wires ∅ 50 µm gold-plated beryllium-opper wireCathode 10 µm arbon-aramid �lmCathode voltage -5.6 kVPotential wire voltage -350 V (X), -500 V (U)Gas mixture Argon + Isobutane + Isopropyl alohol(71.4%) (28.6%) (2◦C vapor pressure)Entrane and exit window 12.5 µm aramid �lmDistane between two MWDCs 25 mmPreampli�er LeCroy 2735DCThe trigger system of the foal plane sintillators is set up in the following way: theoutput signals from the PMTs �rst go through onstant fration disriminators (CFDs),whih eliminate smaller signals produed by γ-rays. The CFD ouputs are subsequentlyseparated. One part goes into a time-to-digital (TDC) system, onsisting of a time-to-FERA onverter (TFD) followed by FERAs10. Another part goes into Mean Timers. Thesignals are averaged by the Mean Timers for the left and right PMTs of the sintillatorsand then enter the LeCroy 2366 Universal Logi Modules (ULM) onsisting of FPGA11hips[Yos96℄.
10Fast Enoding and Readout ADCs (Analog-to-digital onverter)11Field Programmable Gate-Array
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Figure 2.4: Shemati illustration of the struture of an X-plane of a VDC. The anode wiresare sandwihed between two athode planes with alternating sense and potential wires. Thearrow indiates a typial trak of a harged partile.

Figure 2.5: Ciruit diagram of the trigger system of the foal plane sintillators.



18 CHAPTER 2. EXPERIMENTS2.4 Beam mathing tehniques and beam tuningThis setion will fous on the details of the beam mathing tehniques used and ap-plied at the RCNP faility in order to obtain high-resolution partile spetra. An earlyreview on the resolution of aelerator magneti analyzing systems from 1959 by B.L.Cohen [Coh59℄ gives the basi onepts of this problem. Papers published by Y. Fujitaet al. [Fuj97℄, H. Fujita et al. [Fuj02a, Fuj01℄ and T. Wakasa et al. [Wak02℄ over theRCNP-spei� details of beam mathing tehniques via the WS ourse beamline and theion-optial resolution of the Grand Raiden spetrometer. Further details regardingthe optis of high resolution magneti spetrometers an also be found in [Liy99, Mar83℄.The entral result of the beam transformation (explained in detail in appendix A) arethe relations
xfp = x0 (s11b11T + s12b21)

+ θ0 (s11b12T + s12b22)

+ δ0 (s11b13T + s12b23 + s13C)

+ Θ (s12 + s13K) (2.1)
θfp = x0 (s21b11T + s22b21)

+ θ0 (s21b12T + s22b22)

+ δ0 (s21b13T + s22b23 + s23C)

+ Θ (s22 + s23K) (2.2)
δfp = δ2 = KΘ + Cδ0 (2.3)whih give the foal plane oordinates of position (xfp), horizontal sattering angle(θfp) and frational momentum deviation (δfp) as funtions of the inoming beam o-ordinates (x0, θ0, δ0) and the spetrometer and beam line transformation matries (sij)and (bij). This result is derived and explained in detail in appendix A and is the basisof the resolution improvement ahieved at RCNP through lateral and angular dispersionmathing.2.4.1 Lateral and angular dispersion mathingThe intrinsi resolution of the Grand Raiden spetrometer is about 20 keV for a420 MeV 3He beam with a 1mm horizontal spread. However, the energy spread ofthe beam produed by the ylotron redues the energy resolution to typially 100 keVin ahromati beam transportation. A high-resolution measurement using this beaman only be ahieved by mathing the spetrometer and the beam line [Fuj97, Wak02,Fuj02a℄.These mathing tehniques and their appliations will be brie�y desribed in thissetion.The �rst three terms in eq. (2.1) in the previous setion depend on the soure point
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Figure 2.6: Layout of the WS ourse beam line setup at the RCNP Ring Cylotron Faility.parameters x0,θ0 and δ0 and on the beam line and spetrometer matrix elements bij and
sij. In order to redue unertainties in the position xfp at the foal plane, the horizontalspread x0 of the inoming beam should be minimized �rst. Subsequently, the minimumhorizontal spread at the target (and thus the best resolution) an be ahieved if theoe�ents of the θ0,δ0 and Θ in eq. (2.1) are zero.These mathing onditions are alled fous mathing (θ0-oe�ient is zero), disper-sion mathing (δ0-oe�ient is zero) and kinematis orretion (Θ-oe�ient is zero).To obtain a good angle resolution (of the horizontal sattering angle θ), the δ0-term ineq. (2.2) should also be minimized (preferrably zero), as it has the biggest in�uene on
θfp one dispersion mathing is realized.All mathing onditions an, in priniple, be ahieved simultaneously. However, theorder of the steps taken to ahieve the mathing onditions is important as the orretionsin�uene eah other. The general way is to �rst ompensate the kinemati broadeningof the beam in the spetrometer (kinematis orretion), then to adjust the kinematidefousing and �nally to implement the dispersion mathing onditions.The kinematis orretion is relatively easy and an be ahieved by adjusting thesettings of the spetrometer magnets (the strength of the horizontal quadrupole) only,as the Θ-oe�ient in eq. (2.1) and (2.2) depends only on spetrometer matrix elements.If s12 = −s13K, then dispersion mathing (δ0-oe�ient is zero in eq. (2.1) and (2.2))is ahieved if (using s11s22 − s12s21 = 1)

b13 =
s13

s11

(1 + s11s23K − s21s13K)
C

T
(lateral dispersion matching) (2.4)
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b23 = (s21s13 − s11s23)C (angular dispersion matching) (2.5)These relations show that the beam line parameters b13 (lateral dispersion mathing)and b23 (angular dispersion mathing) have to be hanged while staying adjusted to thekinematis orretion, i.e. the spetrometer parameters required for the orret mathingrelating to the reation of interest at the target.The resolving power of the mathed system is given by [Fuj97, Mar83℄

R =
1

2x0

s13

s11b11T − s13b21K
=

1

2x0

s13

M
(2.6)where M is the x0-oe�ient in eq. (2.1) with kinematis orretion applied (s12 =

−s13K), and represents the overall horizontal magni�ation of the beam spread.

Figure 2.7: Shemati trajetories for zero-degree sattering under di�erent mathing ondi-tions. The rays shown orrespond to the trajetories of partiles with zero degrees satteringangle, having di�erent momenta. (a) ahromati fous - the momentum spread of the fousedbeam results in a broadened image at the foal plane due to the momentum-analyzing haraterof the spetrometer. (b) lateral dispersion mathing - lateral mathing onditions ensure thatmomentum deviations in the inident beam are anelled at the foal plane. The broadening inthe horizontal sattering angle however remains. () lateral and angular dispersion mathing -the horizontal sattering angle broadening is anelled by mathing the angles of inident raysaordingly, while still maintaining the lateral dispersion mathing as in (b).The result of di�erent mathings of beamline and spetrometer at the foal planeare shown in �g. 2.7. The �gure shows only entral rays sattered at zero degrees,with three di�erent momenta, δ0 = 0,δ0 = +∆p/p and δ0 = −∆p/p. In part (a) ofthe �gure, the trajetories are shown with ahromati fous at the target position (thismeans b13=b23=0, i.e. there is no momentum in�uene from the beam line transforma-tion on x and θ). Partiles with di�erent momenta are thus �momentum-analyzed� bythe spetrometer and the beam spread at the foal plane is proportional to the beammomentum spread.



2.4. Beam mathing tehniques and beam tuning 21Part (b) of the �gure shows trajetories with only lateral dispersion mathing realized(b13 mathed aording to eq. (2.4), while b23=0). In this ase, rays with di�erent mo-menta are foused at di�erent positions on the target (dispersive monohromati fous),and this dispersion at the target is ompensated by the dispersion of the spetrometer(thus dispersion mathing).However, in this ase, rays with di�erent momenta ross the foal plane with di�erentangles, thus showing that lateral dispersion mathing alone gives rise to unertainty inthe sattering angle. The angles an be made aurate by obtaining the right inidentangles for rays with di�erent momenta at the target, as shown in part () of the �gure.This adjustment of the angle dispersion is the angular dispersion mathing.Table 2.4: Overview of mathing onditions.NAME LATERAL ANGULARkinematis orretion s12 + s13K = 0 s22 + s23K = 0fous mathing s11b12T + s12b22 = 0 s21b12T + s22b22 = 0dispersion mathing b13 = s13

s11
(1 + s11s23K − s21s13K) C

T
b23 = (s21s13 − s11s23)C

2.4.2 Faint beam tuningAhieving the desired mathing onditions disussed in the previous setion requires amonitoring of the beam (beam diagnostis). Beam viewers oated with phosphoresentzin sul�de (ZnS) are plaed inside the beam line at the target position and at fousingpoints; however, the ahieving of mathing onditions annot be judged by the beamspot pro�le on these viewers as both a defoused beam and a dispersed beam have abroad pro�le.A beam diagnosti method using the spetrometer was proposed by Fujita et al. [Fuj02a℄and is used at the RCNP to tune the beam in order to ahieve the mathing onditions,alled faint beam tuning. It uses the fat that the mathing between beamline andspetrometer an be veri�ed at the foal plane by using the beam going diretly into thespetrometer, without any target, as the beam envelope is kept intat by the spetrom-eter. Therefore, the image at the foal plane diretly shows the ondition of the beam.The shemati images of four di�erent ases are shown in �g. 2.8. The desired beamondition is (a).There are two issues when using this method. The �rst one is that the beam intensityhas to be substantially redued, as even a few nanoamperes of beam intensity would bedamaging the detetor system. Therefore, wire grid attenuators were plaed downstream



22 CHAPTER 2. EXPERIMENTSof the ion soure, reduing the beam urrent to a few thousand partiles per seond.Despite the muh lower intensity, the faint beam still has the same emittane12 andmomentum spread as the beam used for the harge-exhange experiment.Table 2.5: Magnet settings of the WS ourse used for the experiments E237 and E273.Deviations an be as high as ±0.3%. See �g. 2.6 for the position of the magnets in theWS ourse. MAGNET CURRENT MAGNET CURRENTQM3U -17.18 A QM7U 0.02 AQM3D 14.62 A QM7D -11.06 AQM4U 13.79 A QM8U 21.45 AQM4D -14.23 A QM8D -33.00 AQM5U 40.91 A QM9S 21.10 AQM5D 20.73 A QM10U 24.67 AQM6U 20.71 A QM10M -40.64 AQM6D 40.88 A QM10D 24.60 AThe seond tuning problem is related to the harge-exhange experiment. The faintbeam tuning method requires that the partiles are orretly foused on the foal plane,therefore the Grand Raiden magnets have to be set to fous 3He partiles (3Hemode). But the mathing onditions for the dispersive mode depend on the spetrometermatrix elements as well, whih means that for the (3He,t) reation, the beamline hasto be adjusted together with the spetrometer in triton mode. The magnet settings ofGrand Raiden for the triton mode and the 3He mode are very di�erent at 420 MeVbeam energy, whih means that if the beamline is tuned by using the 3He beam at thefoal plane, the mathing will break down as the spetrometer is set to analyze tritonsfrom the harge-exhange reation.This problem is solved by trying to obtain (in the 3He faint beam tuning at 420MeV) similar matrix elements to the ion optis of the triton mode at 420 MeV. Thefous tuning for the faint beam was performed by using the (3He,3He') elasti satteringat 10◦ spetrometer angle on a 1.93 mg/m2 197Au target, and setting the over-fous(Q1 magnet) somewhat lower. Then, the beamline is adjusted to reah the requiredmathing onditions. This was done mainly by adjusting the Q8U (lateral dispersion),Q9U (angular dispersion) and Q10U/M/D (fous) magnets (see �g. 2.6 for the positionof the magnets in the WS ourse).After installing a target, the relative momentum ratio C (see eq. (A.13)) hanges.In order to adjust for this hange and �ne-tune the dispersion mathing, additionaladjustments were made using the triton mode with the (3He,t) reation on an 27Altarget at zero degrees spetrometer angle. The �nal settings of the dispersive mode ofthe beamline used for the experiments E237 and E273 are shown in table 2.5.12The beam emittane of a partile aelerator is the extent oupied by the partiles of the beamin spae and momentum phase spae as it travels. A low-emittane partile beam is a beam where thepartiles are on�ned to a small distane and have nearly the same momentum.
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Figure 2.8: Shemati illustration of the beam image at the foal plane in xfp-θfp oordinatesfor di�erent mathing onditions. When no mathing onditions are realized, the beam imageis broad in the x- and θ-dimension at the foal plane, as in (d). If only fous mathing but nodispersion mathing ondition is met, partiles with di�erent momenta have di�erent impatpoints at the foal plane and the beam image has the shape of a tilted ellipse, as in (). Iffous and lateral dispersion mathing is ahieved, the beam image is observed as an elongatedellipse, but without slope, as in (b). Finally, if all mathing onditions are met, the spatial andangular spread of the beam image at the foal plane beomes small, as shown in (a). Themathing proedure using the faint beam method onsists in minimizing the image size of thefaint beam at the foal plane.



24 CHAPTER 2. EXPERIMENTS2.4.3 O�-fous mode

Figure 2.9: Vertial beam envelope inside the Grand Raiden spetrometer for di�erentfous onditions. (a) Normal fous (b) Over-fous () Under-fous.To distinguish states exited by ∆L=0 transitions, whih have a strongly forward-peaked angular distribution (see 4.7), a good resolution of the sattering angle is im-portant. The sattering angle depends on the vertial (φ) as well as the horizontal (θ)angles (eq. (A.1) and �g. A.1). Good resolution for the horizontal angle is ahieved viathe angular dispersion mathing, but a good resolution is also required for the vertialangle.Sine the Grand Raiden is a horizontal bending spetrometer, a vertial fousingquadrupole magnet (Q1, see �g. 2.2) is plaed near the target hamber in order to obtaina large vertial aeptane. As a result, the vertial angle magni�ation beomes small.Trajetories inside the Grand Raiden for normal vertial fous are shown in �g. 2.9(a)from the target position on to the horizontal fous plane. The vertial angle is saledby a fator ≈0.17, meaning that reation produts with rather large vertial satteringangle are observed at small angle at the foal plane. The MWDCs (2.3) have an angleresolution of around 2 mrad, so this means that with normal fous, the best possiblevertial angle resolution is 12 mrad.It is thus neessary to defous the beam in vertial diretion using the Q1 magnetin order to improve the vertial angle resolution. The defousing of the beam in vertialdiretion does not pose a problem for the analysis as the vertial sattering angle an bereonstruted from the vertial position (yfp) in the detetor plane. The defousing aneither be ahieved by inreasing the strength of the Q1 quadrupole magnet (over-fousmode) or dereasing it (under-fous mode). The yfp position depends only on φtgt in�rst order (at a given xfp position), but also depends in seond order on the horizontalangle θtgt, the horizontal position xtgt, and the relative momentum δ of the inomingbeam. The alibration of the vertial angle (as well as the adjustment of the horizontal



2.4. Beam mathing tehniques and beam tuning 25angle) was performed o�ine by software (see Appendix B for the detailed proedure) toobtain the high-resolution spetra from alibration runs using a sieve slit.A good vertial angle resolution an be ahieved in the over-fous mode by inreasingthe strength of the Q1 magnet urrent by about 17% ompared to the normal (point-to-point) fous. In total, the vertial defousing and the lateral and angular dispersionmathing provide an angle resolution of around 8 mrad.It should be noted that sine the mathing onditions dependend to some extent onthe Q1 magnet strength, the beamline has to be mathed to the spetrometer to realizeangular and lateral dispersion mathing onditions after the over-fous mode has beenset.
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CHAPTER 3. SPECTRUM RECONSTRUCTION
Chapter 3Spetrum reonstrution �GêD��Three years on a stone(japanese proverb)1In order to obtain a lean high-resolution spetrum of the nuleus under onsideration,the raw data must be proessed in a variety of sophistiated ways. This hapter dealswith the di�erent proedures used to obtain the �nal high-resolution spetra.3.1 Partile identi�ationThe inident 3He beam oming from the Cylotron reates, besides the tritons, a varietyof other reation produts upon hitting the target. All these partiles have a di�erentmean radius (ρ) in the spetrometer whih selets the partiles aording to their mo-mentum and harge. For a reation produt to reah the foal plane, its momentum andharge must satisfy the relation

m
v2

ρ
= zvB ⇔ Bρ =

mv

z
(3.1)where mv is the momentum of the partile (mass m and veloity v) and z its atomiharge. The magneti �eld B of the spetrometer an be set to detet tritons at thefoal plane. However, 3He+ partiles produed by the pikup of an eletron of theinident 3He++ beam have nearly the same mv/z value than the produed tritons andare thus also deteted at the foal plane. Sine the atomi harge exhange is not anulear reation, the energy of the 3He+ partiles is nearly the same as the inidentenergy of the 3He++ partiles aelerated by the Cylotron (420 MeV) and they are thusexpeted to hit the high momentum side of the foal plane detetors. However, theyan be eliminated from the spetrum through a partile identi�ation proedure, using1meaning that to aomplish anything, about three years of preparation and perseverane are required(it takes three years sitting on a stone to make it warm).
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28 CHAPTER 3. SPECTRUM RECONSTRUCTIONthe di�erent energy loss of the harged 3He+ and the tritons in the plasti sintillators(PS1 and PS2) behind the vertial drift hambers (VDC). This energy loss is mainly dueto sattering on the eletrons of the target, whih is desribed by the Bethe formula[Bet30℄
−dEkin

dx
=

4π

mec2
nz2

β2

(

e2

4πǫ0

)2

·
[

ln

(

2mec
2β2

I (1− β2)

)

− β2

] (3.2)where me ist the rest mass of the eletron, and n the eletron density, n = NAZρ
A(Avogadro number NA, material density ρ, Z and A atomi number and mass numberof the target material) and β = v

c
(where v is the projetile veloity), ze the hargeof the projetile and x the distane travelled by the projetile partile. I is the meanexitation potential of the target material, whih is material-dependent [Ogi88℄. Notethat the energy loss does not depend on the mass of the projetile, only on its veloityand harge. However in our ase (see eq. 3.1) the veloity of the partile is dependingon its mass and harge. Sine 3H+ and 3He+ have the same mass and harge, theirenergy losses in the sintillators should be equal. However, the overwhelming part of theinident 3He+ ions loses its eletron immediately upon entering the sintillator materialand beomes 3He++, thus having a four times larger energy loss than the tritons. Thisan be seen in �g. 3.1, where the energy loss is plotted against the xfp oordinate.The energy loss itself is obtained from the sintillators through the photomultipliertubes (PMT) attahed on both sides of them. The sintillation photons produed bythe ionizing partiles are attenuated in the sintillator material through absorption andthe photon intensity is observed in the PMTs depending on the position of the inidention as
I(x) = I0e

−x
l (3.3)where I0 is the initial photon intensity and l a harateristi attenuation lenght ofthe sintillator material. If the total lenght of the sintillator is L, then the output ofthe left and right PMT (PL and PR) are proportional to I(x) and I(L−x), respetively.The geometrial mean of both values (Pm) then beomes independent of the position xand diretly proportional to I0, whih is itself proportional to ∆E:

Pm =
√

PL · PR ∝
√

I(x) · I(L− x) = I0e
− L

2l (3.4)The result of this proedure is shown examplarily for a run of the 9Be(3He,t)9Bexperiment in �g. 3.2. Subsequently all spetra were gated to inlude only the tritonevents.



3.1. Partile identi�ation 29

xfp (mm)

xfp (mm)

∆E (channel)

∆E (channel)
xfp (mm)

xfp (mm)

∆
E

(c
h
a
n
n
el

)
∆

E
(c

h
a
n
n
el

)

counts

counts

←−3 He+

←−3 He+

SCINTILLATOR 1

SCINTILLATOR 2

Figure 3.1: Energy loss in the plasti sintillators 1 and 2 plotted against the xfp oordinatedeteted in the MWDC's. The 3He+ events are learly separated from the triton events.
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3.2. Trak reonstrution in the multiwire drift hambers 313.2 Trak reonstrution in the multiwire drift ham-bers
p = pi + lWS

di−1 + di+1

di−1 − di+1
di+1

pi+1pi

pi−1 lWS lWS
di

di−1

p

Figure 3.3: Position determination in the MWDCs using the drift information derived frommultiple sense wires.As shown shematially in �g. 2.4, the position(s) (i.e. trajetories) of hargedpartiles entering the foal plane are determined by the MWDCs. The position p atwhih a partile hits the foal plane is determined by the drift lengths di−1,di,di+1,... ofat least more than two wires within the same luster. Sine X- and γ-rays mostly onlyause the �ring of one wire, bakground events by photons an generally be exluded byrequiring the �ring of several wires. If di is the minimum drift length in an event ausingthe �ring of three wires, the position p an then be determined (see also �g. 3.3 as:
di+1

lWS + pi − p
= − di−1

p− pi−1

⇔ p− pi

lWS + pi − p
= −di−1

di+1

⇔ p− pi−1 = − di−i

di+1
(lWS + pi − p)

⇔ p

(

1− di−1

di+1

)

= − di−i

di+1
(lWS + pi) + pi−1

⇔ p =
−di−1(lWS + pi)

di+1 − di−1

+
di+1pi−1

di+1 − di−1

⇔ p =
−di−1(lWS + pi) + di+1(pi − lWS)

di+1 − di−1

⇔ p = pi + lWS
di−1 + di+1

di−1 − di+1
(3.5)where pi−1 and pi are the positions of the ith and (i-1)th sense wire, lWS is the wirespaing and the di's are the various drift lengths as seen in �g. 3.3. The signs of di−1 and

di+1 are opposite sine the eletrons moving to the (i-1)th and the (i+1)th wire driftin opposite diretions. In the standard setting of the Grand Raiden spetrometer,partiles having orret trajetories usually ause more than three sense wires to �re,
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Figure 3.4: TDC spetra of the MWDCs for X- and U-plane wires. The X-axis is an arbitraryhannel number. The drift veloity hanges onsiderably in the viinity of the sense wires.



3.2. Trak reonstrution in the multiwire drift hambers 33exept for partiles with small sattering angles in the low-momentum region of thefoal plane.
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Figure 3.5: Wire on�gurations of the X-plane and the U-plane of the MWDCs. The U-planewires have an inlination angle of 48.19◦ relative to the X-plane wires. The wire spaing is6mm in the X-plane and 4mm in the U-plane.Four anode planes in two MWDCs are used to determine the three-dimensional tra-jetory of the harged partiles. Eah VDC has two anode planes, an X-plane and anU-plane. The wire on�gurations of these planes are shown in �g. 3.5. The wires in theU-plane have an inlination angle relative to the X-plane wires of ψ=48.19◦. The sensewire spaing is 6mm in the X-plane and 4mm in the U-plane (see 2.3).The oordinate system in the MWDCs is given as in �g. 3.5 and is labeled x',y',z'.The z' axis is perpendiular to the anode planes (X and U) of the MWDCs. The MWDCoordinate systems are di�erent from the entral ray oordinates (x,y,z), where the z-axisis the momentum diretion of the entral ray.The positions px1,px2,pu1 and pu1, determined as in equation (3.5), represent theinident ray positions in the drift hambers. The angles of the inident ray relative tothe z' axis in the MWDCs system are denoted by θ′

x,θ′

y and θ′

u. Using the distane ofthe two MWDCs, L = z
′

x2 − z
′

x1 = z
′

u2 − z
′

u1, the angles an be determined as
tan θ

′

x =
px2 − px1

L
(3.6)

tan θ
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L
(3.7)

tan θ
′

y =
tan θ
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x

tanψ
− tan θ

′

u

sinψ
(3.8)and the x′

0,y′

0 and u′

0 positions (the horizontal, vertial and u-diretion position atthe z'=0 plane) in the MWDC oordinate system an be determined by (see �g. 3.6)
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u’ 0cosψx’Figure 3.6: Illustration of the oordinates x′0,y′0 and u′

0 and the relation to the u-Plane tiltingangle ψ.For the Grand Raiden spetrometer, the distane between the two drift hambersis L=250 mm. The horizontal and vertial angles in the MWDC oordinates an beonverted bak into the entral ray oordinate system by using (see �g. 3.7)
θx = θ

′

x −ΘVDC (3.12)
tan θy = tan θ

′

y cos ΘVDC (3.13)with ΘVDC being the the angle at whih the MWDCs are positioned relative to theentral ray. For the Grand Raiden setup, ΘVDC=45◦. The setup of the two MWDCsis shown in �g. 3.7. The entral ray oordinate angles θx and θy as determined byequations (3.12) and (3.13) an be traed bak to the sattering angles at the target.This will be desribed in the next setion.
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Figure 3.7: Illustration of the oordinates x' and z' and the setup of the MWDCs at theGrand Raiden experiment.3.3 Reonstrution of the sattering angleIn order to obtain a high-resolution spetrum for the reation at 0◦ sattering angle,the sattering angles θtgt and φtgt at the target have to be reonstruted from the foalplane observables θfp and yfp. A good way to ahieve this is the sieve slit tehniqueusing the over-fous mode of the Grand Raiden spetrometer (see 2.4.3 and [Fuj01℄). Amulti-hole slit with well-known metris as shown in �g. 3.8 is plaed behind the targetand a spetrum is reorded. The deformed image (see �g. 3.9) of the sieve slit is thenused to obtain the orret sattering angles for the raytraed events. The proedure isexplained in detail in the appendix B. The multi-hole slit (sieve) was installed 605.5mm behind the target. An example of the foal plane image of the sieve in θfp and
yfp (overfous) oordinates for two di�erent exitation energy regions (xfp oordinates)is shown in �g. 3.9. A 70 µm 13CH2 target was used for the angle alibration runs.Two spetra were reorded for a total of 50min. For the reonstrution of the satteringangles, the dependene of the horizontal and vertial sattering angles at the target wereassumed to be polynomial funtions of the sattering angles at the foal plane and theposition at the foal plane, as follows:
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∑
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fp (3.15)whih requires 77 parameters in total to reonstrut the sattering angles (32 parametersfor the vertial sattering angle and 45 parameters for the horizontal sattering angle).The determination of these parameters is explained and shown in the appendix. Theresult of the sattering angle reonstrution is shown in B.1.3.
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38 CHAPTER 3. SPECTRUM RECONSTRUCTION3.4 Corretion of φ and θ-aberrationsAfter the sieve slit orretion and the reonstrution of the target sattering angles
θtgt and φtgt, higher-order aberrations are still present in the spetra. They manifestthemselves in distorted peak lines in the xfp − θtgt and xfp − φtgt spetra. If thesattered partiles were orretly foused, the peaks would be seen as straight lines. Thedefousing is mainly due to the saturation of the dipole magnets of Grand Raidenat the high magneti �eld of 1.7 T.This aberration has important onsequened for the energy resolution of projetedspetra. Sine a spetrum obtained by making a ut in θ − φ spae inludes a range of
θ or φ oordinates, the distortion of the peak line severely worsens the resolution.To treat these higher-order aberrations, the peak lines were orreted by softwareusing spline and polynomial interpolation. The novel proedure used to treat theseaberrations and the software odes developed for this purpose are disussed in detail inthe appendix B.2.After the treatment of the φ and θ aberrations, the triton spetra have the desiredhigh resolution needed for a detailed determination of B(GT) values.Figure 3.10 shows the results obtained after eah step of the o�ine orretion for asample peak (the ground state of 13N). In the �rst row of the �gure, only the sieve slitangle alibration has been arried out. Aberrations in θ and φ are learly present anda�et the projeted spetra. The spetrum shown is the smallest angle ut, obviouslythe e�et of the aberration on the resolution is even worse at larger angles.The seond row shows the result obtained after orreting the θ-aberration with theproedures outlined in B.2. The xfp − θtgt spetrum is orreted so that a straightline is obtained, while the xfp − φtgt spetrum is still distorted. The resolution alreadybeomes muh better sine the θ-aberration has a larger e�et than the φ-aberration onthe resolution.After treating the φ-aberration as well, the last row is obtained, whih shows straightlines in the x-φ and x-θ spetra. After both aberrations have been treated, the �nalspetra have the highest possible resolution of around 30 keV and an be further analyzed.
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Figure 3.10: Illustration of the e�et of aberration orretions on the resolution of the�nal spetrum. The �rst olumn shows the xfp − θtgt spetrum, the seond olumn the
xfp − φtgt spetrum, and the �nal olumn the spetrum obtained by projetion of eventswith Θ =

√
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tgt ≤0.5◦. All plots show the ground state of 13N obtained after variousorretions.The �rst row (A) shows the spetra obtained after the sieve slit orretion. The aber-rations in θ and φ an be learly seen. Even in a projetion with Θ ≤0.5◦, the e�et on theenergy spetrum are signi�ant.The seond row (B) shows the spetra obtained after a orretion of the θ-aberration. The
xfp − θtgt spetrum now has the form of a straight line, while the xfp − φtgt spetrum is stilldistorted.The third row (C) shows the �nal spetrum after both the θ and the φ aberrations have beentreated. The peak in the energy spetrum now has the best possible resolution of around 30keV.
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CHAPTER 4. DATA ANALYSIS
Chapter 4Data Analysis
4.1 Projetions of 2D Spetra and alibrationSpetra for various sattering angle regions were obtained by projeting events withinthese regions onto the x-axis of the foal plane (see e.g. �g 4.18). Spetra for satteringangles between 0◦ and 0.50◦ are of main interest for the determination of Gamow-Tellerstrengths, while higher angle uts were used to identify ∆L=0 transitions, whih havea pronouned forward-peaking in their angular distributions. Espeially the di�erenespetra between 0◦ and 2◦ are very sensitive to ∆L=0 ontributions [Jän93℄. Usingseveral bins of sattering angles, the angular distribution an be extrapolated to thedi�erential ross setion at zero degrees, whih is used to obtain the Gamow-Tellerstrength.
4.2 Peak �ttingThe spetra were analyzed using the omputer ode sfit [Fuj℄ by H. Fujita. The programallows to deonvolute peaks using a Lorentzian or gaussian peak shape, as well as austom referene shape and its onvolution with a Lorentzian peak shape. Even withthe high resolution of around 30 keV, some peaks still overlap, espeially with broaderstates, making deonvolution absolutely mandatory. The peaks in the spetra generallyhave a Lorentzian distribution, however this is a�eted by the beam ondition, the �ne-tuning of the ion optis by hardware and the o�-line spetrum reonstrution proess.Therefore, it is useful to use an isolated peak (preferably with no natural width) as areferene shape for the peak �tting proedure.For both the 9Be(3He,t)9B and the 13C(3He,t)13N reation, the ground state peakwas used as a referene peak. The peaks were sampled from a low-angle ut spetrumand smoothed by spline interpolation to obtain a referene funtion for the peak shape.The form of the peak shapes an be seen in �gs. 4.1 and 4.2. Both referene peaks havea FWHM value of roughly 5 hannels (4.75 hn for 9B, 5.2 hn for 13N), the exitation
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Figure 4.1: The referene peak shape for the 9Be(3He,t)9B reation used in the deonvolutionof the spetra. The x-axis represents hannel numbers, the y-axis the intensity in arbitraryunits.
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Figure 4.2: The referene peak shape for the 13C(3He,t)13N reation used in the deonvolutionof the spetra. The x-axis represents hannel numbers, the y-axis the intensity in arbitrary units.



4.3. Determination of errors 43energy being roughly 6.5 keV/hn1; this means the resolution ahieved is around 30 keV.The ground states of 9B and 13N have only very small deay widths. The ground state of
13N has a half-life of 9.965(4) min whih gives a deay width in the order of 10−21 keV2,and the ground state of 9B has a deay width of 0.54(21) keV. The spetra were �ttedusing hannels as position variables. The position and width information resulting fromthe �ts as well as their respetive errors (see next setion) were subsequently onvertedinto exitation energy using the energy alibration funtions obtained as desribed inAppendix C.4.3 Determination of errorsThe program sfit produes position, peak volume (intensity) and width information ofthe deonvoluted peaks. However, it does not automatially generate error estimatesfor these outputs. Nevertheless, it gives a χ2 value of the obtained �t. In order toestimate the �tting error, a proedure suggested by P.R. Bevington [Bev69℄ was used.Approximating by expansion the χ2 hypersurfae, one �nds that for a variation of σ2

i inone parameter ai and an optimization of all other parameters ai6=j , the new value of χ2will be greater than the old value by 1:
χ2(ai + σ2

i ) = χ2(ai) + 1 (4.1)The errors of �ts were determined using this approximation, whih an be onsideredreasonable for the de�nition of the unertainty σi for linear and non-linear �tting [Bev69℄.4.4 Identi�ation of ontaminant peaksIt has to be taken into aount that states originating from target impurities an appearin the obtained spetra. There are no isotopi impurities in the Beryllium target ase,sine the natural abundane of 9Be is nearly 100%, with only trae amounts of 10Be. Asmall amount of arbon ontamination must have existed in the target or the vauumontainer sine the strong 12N ground state peak an be observed in the spetra (see �gs.4.13 and 4.14). Fortunately, due to the high resolution of the spetrometer, this statean be separated from the 9B states in the spetra. In the ase of the 13C target, thetarget has a 99% enrihment in 13C (natural abundane 1.109%), thus ontains 1% ofthe naturally more abundant (98.89%) 12C isotope. The 12N ground state (whih is themost prominent state in the 12C(3He,t)12N reation, see Appendix C) is thus observed inthe spetra. Inidentally, the tritons being produed by an exitation of the ground stateof 12N have nearly the same magneti rigidity value Br within the spetrometer as theT=3/2, 15064.6(4) keV, Jπ=3/2− state in 13N. The separation of the ross-setion ofthis peak from the ontaminant ross-setion is thus more di�ult, but an neverthelessbe ahieved beause of the high resolution of the spetrometer and by using the �tting1See Appendix C2Γ = ~ ln 2
597.9s = 4.6 · 10−18eV



44 CHAPTER 4. DATA ANALYSISprogram (see 4.2). The di�erene of 0.4 kG·m in magneti rigidity orresponds to 58keV exitation energy di�erene, whih is just at the limit of the resolving power of thespetrometer. This state will later be disussed in more detail. The spetra did notontain other ontaminants or impurities.4.5 The 13C(3He,t)13N spetrumFigure 4.3 shows the full 13C(3He,t)13N spetrum reorded at 420 MeV beam energyfor sattering angle Θlab<0.5◦. In the following setions, the features of the spetrum(mainly the exitation energies and widths of exited states in 13N) will be analyzed inmore detail.4.5.1 Exitation energies from 0 to 6.5 MeVThe 13C(3He,t)13N spetrum from 0-6.5 MeV in exitation energy, for Θlab<0.5◦ is shownin �g. 4.4, with a ut-o� around 1000 ounts, hosen to show the weakly exited states.The dominant peaks in this region are the Jπ=1/2− ground state and the 3.5 MeV,3/2− state of 13N. The 1/2+ state at 2.36 MeV and the 5/2+ state at 6.36 MeV an beweakly observed.Sine the proton-separation energy of 13N is very low (Sp=1.9435 MeV), all exitedstates have intrinsi natural deay widths. Thus, Lorentzian shapes were employed in�tting the peaks of the disrete states. When the energy resolution of around 30 keVwas not negligibly small ompared to the width of a disrete state, the Lorentzian shapes(BW) were folded with the referene peak shape shown in �g. 4.2 (RB) when possible.The obtained energies, deay widths and the triton yield in the Θ<0.5◦ angular utare presented in table 4.1. There is good agreement with the ompiled data from thenulear data sheets (NDS) by F. Ajzenberg-Selove [AS91℄. There is a state at 3.55 MeV(Jπ=5/2+) whih annot be separated from the state at 3.5 MeV. The transition to the3.55 MeV state is not of Fermi or Gamow-Teller nature (∆L 6=0), and therefore is notexpeted to have a signi�ant ross-setion. If its ross-setion were signi�ant, it woulddrastially alter the angular distribution of the 3.5 MeV, 3/2− state, sine its angulardistribution would have a minimum at zero degrees and a maximum at �nite angle. Thisis not the ase, as will be seen later.
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Figure 4.3: Full spetrum of the 13C(3He,t)13N reation at 420 MeV beam energy. In thelower part of the piture, the spetrum has been ut o� in order to make weakly exited statesvisible.



46 CHAPTER 4. DATA ANALYSIS
Table 4.1: Summary of the spetrum deonvolution for exitation energies 0-6.5 MeV.
(a) peak shape is the response funtion folded with a Breit-Wigner (Lorentzian) distribution
(b) peak shape is a Breit-Wigner (Lorentzian) distribution only
(c) τ1/2=9.965(4) min [AS91℄
(d) the natural width was determined from the width ΓBW of the �tted peak using the energy resolutionfrom the response funtion for 13N of 33.8 keV: Γc.m.=√

Γ2
BW − 33.82Peak E
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x Jπ Γ

(EXP )
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−20.9 2364.9(6) 1/2+ 23(3) 31.7(8) 328(54)RB 3501.2+3.4
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Figure 4.4: Deonvolution of the spetrum for sattering angle less than 0.5◦ of the
13C(3He,t)13N reation for exitation energies 0-6.5 MeV.



4.5. The 13C(3He,t)13N spetrum 474.5.2 Exitation energies from 6 to 16 MeV
13C(3He, t)13N, scattering angle ≤ 0.5◦
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13C(3He,t)13N reation for exitation energies 6-16 MeV.The 13C(3He,t)13N spetrum from 6-16 MeV in exitation energy (for Θlab<0.5◦)is shown in �g. 4.5, while �g. 4.6 shows the same spetrum with a y-axis ut-o� at750 ounts, for a better visibility of the weakly exited states. The exitation energyand deay width of eight states in total were determined for this sattering angle regionusing sfit. The results are summarized in table 4.2 and ompared to the ompiledvalues [AS91℄.As expeted, mainly states with Jπ=1/2− and 3/2− (∆L=0) are exited at zerodegrees in the (3He,t) reation. These are the prominent states in the spetrum for thisenergy region, at 8.9 MeV (1/2−), 9.5 MeV (3/2−), 10.8 MeV (1/2−), 11.9 MeV (3/2−)and 15.1 MeV (3/2−).The state at 11877(7) keV exitation energy (with Γc.m.=82(5) keV) in the spetrumis strongly exited, and its angular distribution learly supports a ∆L=0 assignment.The ompilation, however, lists a state at 11860(40) as being a 1/2+ state with a widthof 380(50) keV, both of whih are not supported by the present experimental evidene.The 11860(40), 1/2+ level was observed by Meyer and Plattner [Mey73℄ in 1973 fromproton sattering on 12C, who only found a 3/2− state at 11.7 MeV with a width of 530keV. A similar study from 1972 by Wienhard, Clausnitzer and Hartmann [Wie72℄ foundno evidene for the 1/2+ state found by Meyer and Plattner, whih was inside the energyrange of their analysis. Wienhard et al. found a 3/2− state at Ex=11.67 MeV (a levelwhih they felt was not idential with the 11.88 level seen in pik-up and two-nuleontransfer reations, see below) and a 3/2+ state at 11.82 MeV, dedued from a strong
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Table 4.2: Summary of the spetrum deonvolution for exitation energies 6.5-16 MeV.
(a) the natural width was determined from the width ΓBW of the �tted peak using the energy resolutionfrom the response funtion for 13N of 33.8 keV: Γc.m.=√

Γ2
BW − 33.82

(b) The angular distribution as well as observations by other experimentators are strongly supportingthe 3/2- assignment, see disussion in text or [Fuj04a℄
(c) The existene of a 3/2− state at 11.8 MeV has been on�rmed by many other transfer reations,see text.Peak E

(EXP )
x E

(NDS)
x Jπ Γ

(EXP )
c.m. Γ

(NDS)
c.m.shape [keV℄ [keV℄ (NDS) [keV℄ [keV℄BW 7385.2(68) 7376(9) 5/2- 66.2(74)(a) 75(5)RB 8881(27) 8918(11) 1/2- 243(14) 230RB 9478(11) 9476(8) 3/2- 25(2) 30RB 10811.3(45) 10833(9) 1/2- 20(2)RB 11876.9(65) 11860(40) 1/2+ 82(5) 380(50)or 11740(50), or 3/2-(b) or 530(80)11.88 MeV(c) [Fuj04a℄ 3/2− 98 [Fuj04a℄BW 13474(48) 12937(24) or 438(27) >40013.5 MeV [Nag61℄ 500 [Nag61℄BW 13645 13500(200) 3/2+ 4565 ≈6500RB 15062.6(25) 15064.6(4) 3/2- 5.0+5.8

−5.0 0.86(12)



4.5. The 13C(3He,t)13N spetrum 49destrutive interferene observed in the 12C(p,γ0)13N reation at 90◦ indiating a levelwith positive parity (1/2+ or 3/2+) at 11.8 MeV.An 11.8 MeV, 3/2−, Γ=115 keV state had already been observed in many transferreations in the 1960s, by Kozub et al. [Koz67℄, Bahelier et al. [Ba66℄, Hinterbergeret al. [Hin68℄, Fleming et al. [Fle68℄ and Ball et al. [Bal69℄. More reently (2004),Fujimura et al. [Fuj04a℄ have also studied the (3He,t) reation on 13C at 450 MeV andfound this 3/2− state at Ex=11.88 MeV with a width of 98 keV, whih is in agreementwith the observations in the present study. It seems the elasti proton sattering is notsensitive to this level, whih is learly seen as a strongly exited state in both (p,n) and(3He,t) reations. This 3/2− state was also observed in 11B(3He,n) at 11878(12) keV,
14N(p,d) at 11.86 MeV and 14N(d,t) at 11.8 MeV [AS91℄. The (p,n) reation does noto�er su�ient energy resolution to hoose between 11.74 and 11.88 MeV, the reentexperiment by Wang et al. [Wan01℄ with an energy resolution of 200 keV gives theompiled energy of 11.74 MeV.The analog 3/2− state in 13C is given at 11.748(10) MeV with a width of Γ=110(15)keV, while a level at 11.848(4) MeV with a width of 68(4) keV is assigned Jπ=7/2+ [AS91℄.A 12C(d,p)13C experiment by Goss et al. [Gos73℄ saw both levels in the proton spetraat 11.748(10) MeV (Γ=107(14)) and 11.851(5) MeV (Γ=68(4)). The 3/2− spin as-signment for the 11.75 MeV level in 13C is the result of a neutron inelasti satteringstudy (12C(n,n)12C) by Knox and Lane [Kno82℄, who aknowledge that the �proposedstruture in this region is less ertain than that at lower energies due to the di�ultiesin �tting the experimental data in this region�.The exitation energies and deay widths of all other negative parity states observedare in agreement with the ompiled data.The T=3/2, Jπ=3/2− state at 15.1 MeV is important for the analysis of GT strengthsfor alibration purposes, as it has two analog β-deay transitions (13B(β−)13C and
13O(β+)13N ), whose lifetimes, and thus B(GT) values are known from experiments.In the (3He,t) experiment on a arbon target, a di�ulty arises sine the 15.1 MeVstate in 13N is nearly inseparable from the ground state of 12N exited by the harge-exhange reation on 12C, espeially if a target with low enrihment in 13C is used. At 420MeV and zero degrees, relkin [Phi67, Poi68, Dav69℄ gives a magneti rigidity value of5193.45 kG·m for the 15.1 MeV state in 13N and 5193.05 kG·m for the ground state of
12N. This di�erene of 0.4 kG·m orresponds to an energy di�erene of 58 keV3, whihmeans the separation of both states is just at the limit of the resolving power of GrandRaiden (both states have negligible intrinsi deay widths). Previous experiments, likethe (3He,t) experiment on an enrihed 13C target by Fujimura et al. [Fuj04a℄, with a lowerenergy resolution (about 300 keV), were not able to separate both states and had toestimate the in�uene of the 12N ground state ross-setion on the 13N T=3/2,Jπ=3/2−state ross-setion at 15.1 MeV exitation energy.In the present work, it was possible to separate both states in the deonvolutionanalysis using sfit and the referene peak shapes. The deonvolution for Θlab<0.5◦ isshown in �g. 4.7. In this spetrum (and for the used target whih had 99% enrihment in3See Appendix C
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Figure 4.6: Deonvolution of the spetrum for sattering angle less than 0.5◦ of the
13C(3He,t)13N reation for exitation energies 6-16 MeV. The spetrum is saled for bettervisibility.
13C), the 12N ground state ross-setion orresponds to around 6.5% of the ross-setionof the 13N state at 15.1 MeV.Another feature of the reorded spetrum is the presene of a broad state whih peaksat around 13.6 MeV. The data ompilation quotes a state at 13.5(2) MeV with a widthof ≈6.5 MeV. There are two referenes for this level, a natC(p,γ) reation at 9-24 MeVproton energy by D. F. Measday, M. Hasino� and D. L. Johnson [Mea73℄ whih givesthe 6.5 MeV width, and an elasti proton sattering experiment by Nagahara [Nag61℄,who obtained Ex=13.5 MeV and Γ=500 keV. The present experimental study seems tore�et both results. A state at 13.5 MeV an learly be seen (we obtain 13474(48) keV),and the width of 438(27) is omparable to the width obtained by Nagahara. On theother hand, there is also evidene for a broad underlying struture in the region between10 and 16 MeV in exitation energy. The state at 13645 keV presented in table 4.2was obtained by holding all other peak positions and widths at their previously �ttedpositions, and �tting a broad Lorentzian shape with free width and position. The best
χ2 was obtained for Ex=13645 and Γ=4565, whih is lose to the value of Measday etal. [Mea73℄. It is di�ult to give error estimates for these broad states from the �t, butthe position an vary by at least 100 keV and the width by several hundred keV.At higher sattering angle, the ross-setion of states exited via ∆L≥1 graduallyinreases. This an be seen in �g. 4.8, where the spetra obtained for di�erent satteringangle regions are plotted, adjusted for the solid angle size (see 4.8). The spetra areplotted with a small y-o�set of 25 units per spetrum for better visibility. Sine the
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13C(3He, t)13N, scattering angle ≤ 0.5◦
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13C(3He,t)13N reation for exitation energies 17-30 MeV.18.2 and 18.4 MeV (Wang et al. give the 18.17 MeV value for the 3/2− level). Fujimuraet al. [Fuj04a℄ (who also noted the di�ulty to �nd one-to-one orrespondene with theompiled data) also observed this level, they found it at 18.37(1) MeV with a width of23 keV (�xed, orresponding to the ompiled width of the 18.96(1), (3/2−,7/2+) state),whih is in agreement with the present study. The two smaller states at 17.8 MeV and18.2 MeV were found by Fujmura et al. [Fuj04a℄ at 17.68(3) MeV and 18.12(2) MeVrespetively.There are more states at higher exitation energy, but no ∆L=0 nature an evidentlybe attributed to them. Sine this work is restrited to rather small sattering angles, notmuh an be said about the states beyond 19 MeV. The work of Fujimura et al. [Fuj04a℄also studied higher sattering angles of up to 6.25◦, and analyzed the region 16-30 MeVexitation energy in great detail. Of the states found in [Fuj04a℄, the states at 19.15MeV (19.11(1) MeV in [Fuj04a℄), 19.76 MeV (19.83(2) MeV in [Fuj04a℄). 21.9 MeV(22.14(1) MeV in [Fuj04a℄) and 24.6 MeV (24.50(4) MeV in [Fuj04a℄) were observed aswell.



54 CHAPTER 4. DATA ANALYSIS4.6 The 9Be(3He,t)9B spetrumFigure 4.10 shows the full 9Be(3He,t)9B spetrum reorded at 420 MeV beam energy forsattering angle Θlab<0.5◦. The nuleus 9Be has the smallest neutron separation energyamong stable nulei (Sn=1665.4(4) keV) [Til04℄, and the mass di�erene between 9Band 9Be being smaller than the mass di�erene between proton and neutron gives anegative proton separation energy for 9B (Sp=-185.6(10) keV), whih means all statesin 9B are above the proton threshold and partile-unbound.In the following setions, the features of the spetrum (mainly the exitation energiesand widths of exited states in 9B) will be analyzed in more detail.4.6.1 Exitation energies from 0 to 10 MeVThe exited states in 9B below 10 MeV, with exeption of the ground state, are overlap-ping with large widths, whih makes the identi�ation of individual states rather di�ult.All states below 10 MeV are T=1/2 states. The deonvolution of the spetrum was at-tempted based on the ompiled information from Tilley et al. [Til04℄4. The obtainedexitation energies and widths for states below 10 MeV are summarized in table 4.3 andompared to the previous evaluations. The deonvolution of the spetrum is shown inthe �gures 4.11 and 4.12.The �rst exited state in 9B is deemed to be the analog of the 1.68 MeV, Jπ=1/2+state of 9Be. The searh for this state has yielded a wide range of possible energies andwidths in previous experimental studies. Sine 1/2+ states are only weakly exited inthe (3He,t) reation at forward angle, this state would be buried under the very largebump-like struture arising from the overlapping of the higher exited states with largewidths. The present deonvolution attempt yields a value for the exitation energy of1.85(13) MeV for this state, and a deay width of 700+270
−200 keV. This is broadly in linewith previous studies, espeially the reent (3He,t) deonvolution analysis by Akimuneet al. [Aki01℄. The next state is the strongly exited 5/2− state at 2.358(7) MeV (theseond-strongest after the ground state), whose exitation energy and width is wellon�rmed in the present study.The study by Akimune et al. [Aki01℄ from 2001, using the same (3He,t) reation ata slightly higher beam energy of E/A=150 MeV, furthermore found ompelling evidenefor a state at exitation energy of 3.8 MeV, whih is also learly seen in the presentexperiment. The angular distribution also supports a ∆L=0 harater, and the obtaineddeay width also agrees with the value obtained by Akimune et al.The spetrum of the present experiment also ontains a rather strongly exited statewith ∆L=0 harater around 2.7 MeV. Akimune et al. observed this state as well,but �xed the exitation energy at 2.788 MeV, whih orresponds to a state assigned5/2+ [Til04℄. The evaluation ites a state at 2.75(30) MeV with Jπ=1/2− (analogto the 2.78 MeV state in 9Be) whih would better orrespond to the observed angular4The most urrent data an be found on the TUNL nulear data evalutation website,http://www.tunl.duke.edu/nuldata/
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Figure 4.10: Full spetrum of the 9Be(3He,t)9B reation at 420 MeV beam energy. In thelower part of the piture, the spetrum has been ut o� in order to make weakly exited statesvisible.
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Table 4.3: Summary of the spetrum deonvolution for exitation energies 0-10 MeV.The observables presented in olumns indiated with a (NDS) supersript denote valuesfrom the evaluation by Tilley et al. [Til04℄, unless another itation is given.
(a) this value has been kept �xed for the deonvolution
(b) A wide range of exitation energies and widths have been given from searhes for the analog of the1.68 MeV 1/2+ state of 9Be [Til04℄. The values obtained by Akimune et al. [Aki01℄ for the exitationenergy and width of this state losely oinide to the values obtained in the present study.
(c) A 5/2+ and a 1/2− state have been reported in this energy range [Til04℄. Akimune et al. hose to �xthe position of this state in the spetrum at 2788 keV, but aknowledged the angular distribution doesnot follow the expeted L=1 behaviour for a 5/2+ state. The width, however, mathes the reportedvalue. The exitation energy obtained in the present study agrees with both energy values, but not thequoted widths. It agrees with the width obtained in [Aki01℄, and the angular distribution shows a lear
∆L=0 harater.
(d) This state is not present in the previous evaluations. The deonvolution of the spetrum supportsthe presene of an additional very broad peak within this energy range.E(EXP )

x E(NDS)
x Jπ(NDS) Γ

(EXP )
c.m. Γ

(NDS)
c.m.[keV℄ [keV℄ [keV℄ [keV℄0.0(3) g.s. 3/2- 0.0+0.5 0.54(21)1850(130) ≈1600(b) 700+270

−200 ≈7001800+220
−160 [Aki01℄ 600+300

−270 [Aki01℄2358(7) 2361(5) 5/2- 84(7) 81(5)2730(70) 2750(300)(c) 1/2- 1000(200) 3130(200)2788(30)(c) 5/2+ 550(40)810+340
−310 keV [Aki01℄3930(100) 3820+230

−220 [Aki01℄ 1570(250) 1330+620
−360 [Aki01℄4900(a) 4800(100) 2000(500) 1200(200)7000(a) 6985(50) 7/2- 2190(a) 2180(150)8800(d) ≈ 6000
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Figure 4.12: Deonvolution of the lower part of the spetrum for sattering angle less than0.5◦ of the 9Be(3He,t)9B reation. The spetrum is saled to the height of the 2.73 MeV peakfor better visibility of the broad states making up the �bump�-like struture of the spetrumbetween 1-10 MeV exitation energy.



4.6. The 9Be(3He,t)9B spetrum 594.6.2 Exitation energies from 10 to 16 MeV
9Be(3He, t)9B, scattering angle ≤ 0.5◦
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Figure 4.13: Deonvolution of the spetrum for sattering angle less than 0.5◦ of the
9Be(3He,t)9B reation for exitation energies 10-16 MeV.More easily separable peaks appear in the spetrum starting with the 12.245(56)MeV, 5/2− state. The deonvolution of the spetrum in the exitation energy region10-16 MeV is shown in �g. 4.13, and the obtained energies and widths are presented intable 4.4 and ompared to the ompiled data.The observed exitation energy of the 12.2 MeV state agrees with the ompilation,however we �nd a somewhat smaller deay width of 376(20) keV (Γ(NDS)=450(20) keV).A bump-like struture an be seen in the spetrum between 13.8 and 15.3 MeV. Itontains the well-separated 14101+50

−90 keV state (its energy and width agree with theompilation, and the angular distribution supports a ∆L=0 assignment, whih gives thespin/parity assignment possibilities Jπ=(1/2,3/2,5/2)−), and the T=3/2 analog stateto the 9C ground state (Jπ=3/2−) at 14.65 MeV.The remaining strength is given by the ompilation as a state with Ex=14.70(18)MeV and Γ=1.35(20) MeV. The deonvolution of the spetrum annot be ahieved in asatisfatory way assuming the existene of suh a state. Espeially the sharp drop of thespetrum at around 15.3 MeV rules out a signi�ant strength with large deay width.The deonvolution attempt of the present spetrum uses three states whih the best�t plaes at 14.45, 14.90 and 15.2 MeV, with deay widths of 175,330 and 150 keV,respetively. The angular distribution of the whole �bump� shows no signi�ant ∆L≥1ontribution, so that it an be assumed that the whole struture ould have GT nature(the (5/2)− assignment in the ompilation is thus not ontradited). However, sine it



60 CHAPTER 4. DATA ANALYSISseems that a deomposition in several smaller states is required in order to reproduethe total struture, it annot be ruled out that strength arising from higher L transferis present in the struture. it will therefore not be attempted to extrat a GT strengthfrom the three extra states derived from the deonvolution, but rather an upper limitfor the GT strength that an be derived from the zero degree ross-setion of the wholestruture will be given.The spetrum ontains a further state, near the ontaminant 12N ground state peak,but well-separated, at 16050(40) keV, whih agrees with the ompiled value of 16024(25)keV (the obtained width agrees as well). This state does not have a spin/parity assign-ment, but the angular distribution supports a ∆L=0 harater for this state. It an thusbe assigned Jπ=(1/2−,3/2−,5/2−).Table 4.4: Summary of the spetrum deonvolution for exitation energies 10-16 MeV.The observables presented in olumns indiated with a (NDS) supersript denote valuesfrom the evaluation by Tilley et al. [Til04℄, unless another itation is given.
(a) The bump-like struture between 13.8 and 15.3 MeV was deonvoluted using the learly separatedpeaks at 14.1 MeV and 14.65 MeV. The ompilation [Til04℄ only gives one very broad state (Γ=1.35(20)MeV) at an energy degenerate with the T=3/2 peak at 14.65 MeV. The present spetrum an not bedeonvoluted using suh a state. Instead, it was found that rather three states are needed to orretlyreprodue the observed spetrum. They are given here with the �tted positions and width, withouterrors. The state at the edge of the bump, at Ex=15.2 MeV might orrespond to the 15.3 MeV statein the ompilation.E(EXP )

x E(NDS)
x Jπ(NDS) Γ

(EXP )
c.m. Γ

(NDS)
c.m.[keV℄ [keV℄ [keV℄ [keV℄12245(56) 12190(40) 5/2- 376(20) 450(20)14101+50

−90 14010(70) π= � 454(35) 390(110)14652(3) 14655(3) 3/2-, T=3/2 0.0+7.0 0.395(42)14450(a) 17514895(a) 14700(180) (5/2-) 330 1350(200)15205(a) 15290(40) 15016050(40) 16024(25) 155(20) 180(16)
4.6.3 Exitation energies from 16 to 25 MeVThe deonvolution of the spetrum for the exitation energy region 16-25 MeV is shownin �g. 4.14, and the obtained energies and deay widths are summarized in table 4.5,and ompared with previously ompiled data.



4.6. The 9Be(3He,t)9B spetrum 61

9Be(3He, t)9B, scattering angle ≤ 0.5◦

1

2

3 4

12N

7

6

5

5. E=17637(7) keV
6. E=18650(100) keV
7. E=20850(100) keV

(energy region 16−25 MeV)

2. ground state of 

chn

counts

1. E=16050(40) keV

3. E=16800(10) keV
4. E=17076(4) keV

 0

 100

 200

 300

 400

 500

 3200  3400  3600  3800  4000  4200  4400  4600

Data
All peaks

Background

Figure 4.14: Deonvolution of the spetrum for sattering angle less than 0.5◦ of the
9Be(3He,t)9B reation for exitation energies 16-25 MeV.The 9B nuleus has a seond T=3/2 state (the analog of the �rst 1/2− state in 9Liand 9C) at 17.1 MeV, whih is seen as a sharp state in the (3He,t) spetrum. Its levelenergy is known with good auray from its γ-deay to the ground state.Some 300 keV lower there is a state identi�ed at 16.71(10) MeV in the ompila-tion [Til04℄, from unpublished work [Pug85, Faz82℄ on 9Be(p,n). Dixit et al. [Dix91℄observed the analog state in 9Be at 16.671(8) MeV, whih is assigned Jπ=5/2+, whihwould not be ontradited by the observed angular distribution (∆L≥1). The level en-ergy assigned in the present study (Ex=16.800(10) MeV) is muh more preise than theompiled value, sine the state an be well separated from the T=3/2 state owing tothe high resolution.The width of this state has not been given before, we obtain 81(5) keV in the presentstudy.The next observed peak is seen at 17.637(7) MeV in the present study. There aretwo levels in the ompilation whih orrespond to this energy, and it might well be thease that both levels are not distint [Til04℄. One is given as 17.54(10) MeV (7/2+)from unpublished 9Be(p,n) work [Pug85, Faz82℄ and is thought to be the analog of the
9Be 7/2+ state at 17.49 MeV. Dixit et al. observed this level at 17.490(9) and assignedJπ=7/2+. The other ompiled state is given at 17.638(10) MeV, with a deay width of71(8) keV. The energy assigned in the present study (Ex=17.637(7) MeV) agrees wellwith the seond data point, however the width obtained is a little larger (Γ=102(18)keV). The deay width from the ompilation is the average of 71(8) keV obtained froma 7Be(d,n) experiment and 70(20) keV from a 6Li(3He,α) study [Til04℄. The angular



62 CHAPTER 4. DATA ANALYSISdistribution of this peak does not have ∆L=0 harater.There are only two more levels ompiled above 18 MeV exitation energy in 9B, bothare broad and lie near to the neutron and triton separation energies. The level givenas Ex=18.6(3) MeV, Γ=1 MeV is observed at 18.65(10) MeV with a somewhat smallerwidth of 680(140) keV. The 8B+n separation threshold lies at 18.577 MeV.The last ompiled state is given at Ex=20.7(5) MeV, Γ=1.6(3) MeV. We observethis level at 20.85(10) MeV with a larger width of 2.56(22) MeV. The 6Be+t separationthreshold lies at 20.909 MeV.Table 4.5: Summary of the spetrum deonvolution for exitation energies 16-25 MeV.The observables presented in olumns indiated with a (NDS) supersript denote valuesfrom the evaluation by Tilley et al. [Til04℄, unless an other itation is given.
(a) level from unpublished work on 9Be(p,n) [Pug85, Faz82℄, whih might not be distint from the17.637(10) MeV level [Til04℄. The Jπ assignement of the analog state in 9Be was determined from aproton sattering experiment at 180 MeV by Dixit et al. [Dix91℄, who plaed this level at 17.490(9) MeV.The present study annot distinguish these states. The angular distribution of the observed 17.637(7)MeV peak does not have ∆L=0 harater.E(EXP )

x E(NDS)
x Jπ(NDS) Γ

(EXP )
c.m. Γ

(NDS)
c.m.[keV℄ [keV℄ [keV℄ [keV℄16800(10) 16710(100) (5/2+) 81(5)17076(4) 17076(4) 1/2-, T=3/2 22.5(35) 22(5)17637(7) 17638(10) 102(18) 71(8)17540(100)(a) (7/2+) [Dix91℄18650(100) 18600(300) 680(140) 100020850(100) 20700(500) 2560(220) 1600(300)



4.7. Identi�ation of ∆L=0 states in the (3He,t) reation 634.7 Identi�ation of ∆L=0 states in the (3He,t)reationGamow-Teller transitions our upon the ation of the στ operator on the nulear wave-funtion, where τ hanges the isospin, and the operator σ an ause a hange ∆S=0 or1 in the spin part of the nulear wavefuntion, but no hange in L. In Fermi transitions,there is no hange in orbital or spin angular momentum. The orbital angular momentumL is not always a good quantum number, however if the nulear wavefuntion is deom-posed in its various omponents, it an be seen that Gamow-Teller of Fermi transitionsan only our between those parts of the wavefuntion where the orbital momentumL of the onsidered omponents does not hange (the wavefuntions of the initial and�nal states have omponents with the same values of L). The (3He,t) reation at zerodegrees mainly exites states via ∆L=0, whih is desired sine Gamow-Teller (and Fermi)exitations are the subjet of this analysis. However, states with higher angular momen-tum transfer an be weakly observed as well, and their ross-setion inreases with thesattering angle. The ∆L=0 ross-setion has a strong forward-peaking with maximumat zero sattering angle, while the ross-setion for states exited via ∆L≥1 inreases asthe momentum transfer q gets larger. The ross-setions of these states peak at �niteangle. Figure 4.15 shows the typial angular distribution of ross-setions obtained fordi�erent ∆L transfer in a (3He,t) reation. The angular distributions were alulatedusing the DWBA ode Fold by J. Cook and J.A. Carr [Coo℄ in an updated version.
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64 CHAPTER 4. DATA ANALYSISand at �nite angle, and to normalize it with respet to a known ∆L=0 transition. Statesexhibiting the same behaviour as this transition ould then be lassi�ed as ∆L=0, whilestates showing a higher ratio would be lassi�ed as ∆L≥1.Another method would be to analyze the angular distribution of the respetive ross-setions in detail. The angular distribution of ross-setions an be ompared to a DWBAalulation to analyze the L-transfer harater. This is the most exhaustive method andshould be used if the �rst, rather rude method is inonlusive. The rough method ofonsidering intensity ratios of zero degree and �nite sattering angles is, however, inmost ases su�ient to distinguish ∆L=0 from ∆L≥1 states.The �gures 4.16 and 4.17 show a plot of the normalized ratio of ounts obtainedfrom the deonvolution of the spetrum with sattering angle less than 0.5◦ to thespetrum with sattering angle 1.5◦ ≤ Θ ≤2.0◦ for both analyzed nulei. The ratio isnormalized so that the average of the ratio obtained from the ground state transitionand the transition to a highly exited T=3/2 state is unity. It an be seen that in bothases, the normalized ratio of states with dominant ∆L=0 harater does not deviatemore than 25% from unity.
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Figure 4.16: Identi�ation of ∆L=0 states in the 13C(3He,t)13N reation. The ratio of theounts obtained in the 1.5◦ ≤ Θ ≤2.0◦ spetrum to the ounts obtained in the 0.0◦ ≤ Θ ≤0.5◦spetrum an be used as a tool to identify these states. The ratio was normalized to the averagevalue of the ratio for the ground state and the 15.1 MeV state. The lines show variations of25% from unity. States within the lines have a dominant ∆L=0 nature. The ratio is plottedon a logarithmi sale.
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66 CHAPTER 4. DATA ANALYSIS4.8 Determination of Cross-setionsThis setion desribes the experimental proedures used to derive absolute di�erentialross-setions for the experiments. The analysis of the angular distributions of ross-setions (the experimental results) will be onsidered in detail in the next hapter, as theextrapolated di�erential ross-setion at zero degrees is used to determine the B(GT)strength.The sattering angles were divided into four bins of 0.5◦ (8.7 mrad) (See �gs. 4.18and 4.19) in the laboratory frame, up to a total of 2◦ (34.9 mrad) in sattering angle. Inthe enter of mass frame, 2◦ in the lab frame orrespond to around 2.52◦ for the arbontarget and 2.74◦ for the beryllium target5. The solid angle Ωi (i=1,2,3,4) is
Ωi =

∫ 2π

Φ=0

∫ θi+1

Θ=θi

sin ΘdΘdΦ (4.2)where Θ and Φ are the regular spherial oordinates, while the sattering angles derivedfrom the experimental data are the horizontal (θ) and vertial (φ) sattering angles.However, sine the involved angles are small (horizontal displaement angle (θ) andvertial displaement angle (φ) are smaller than 2◦), the surfae of the irle insribedin the θ-φ plane as in �g. 4.18 and 4.19 an also be used as a good approximation toobtain the relevant solid angle. This surfae is muh easier to alulate, espeially if theangles are limited by the spetrometer aeptane:
Ωr,a,b ≃ 2 · Ir(a, b) = 2 ·

∫ b

a

√
r2 − θ2 dθ =

(

θ
√
r2 − θ2 + r2 arcsin

θ

r

)∣

∣

∣

∣

b

a

(4.3)For example, in the ase of Ω1, the di�erene is 8·10−4% (0.8 pm):
Ω1 =

∫ 2π

Φ=0

∫ π
360

Θ=0

sin ΘdΘdΦ = 0.000239244 sr (4.4)
≃ Ω0.5◦,−0.5◦,0.5◦ = 2 ·

∫ π
360

− π
360

√
r2 − θ2 dθ = 0.000239246 sr (4.5)The solid angles Ωi (i=1,2,3,4) an thus be approximated (depending on the aeptane,5Calulated with CatKin [Cat04℄



4.8. Determination of Cross-setions 67whih is di�erent for the 9Be and the 13C target) as
Ω1 ≃ Ω0.5◦,−0.5◦,0.5◦

= 0.000239246 sr (4.6)
Ω

(13C)
2 ≃ Ω1.0◦,−1.0◦,0.9◦ − Ω0.5◦,−0.5◦,0.5◦

= 0.000939095− 0.000239246 = 6.99849 · 10−4 sr (13C target) (4.7)
Ω

(9Be)
2 ≃ Ω1.0◦,−1.0◦,0.6◦ − Ω0.5◦,−0.5◦,0.5◦

= 0.00082073− 0.000239246 = 5.81484 · 10−4 sr (9Be target) (4.8)
Ω

(13C)
3 ≃ Ω1.5◦,−1.2◦,0.9◦ − Ω1.0◦,−1.0◦,0.9◦

= 0.00173458− 0.000939095 = 7.95485 · 10−4 sr (13C target) (4.9)
Ω

(9Be)
3 ≃ Ω1.5◦,−1.5◦,0.6◦ − Ω1.0◦,−1.0◦,0.6◦

= 0.00160992− 0.00082073 = 7.8919 · 10−4 sr (9Be target) (4.10)
Ω

(13C)
4 ≃ Ω2.0◦,−1.2◦,0.9◦ − Ω1.5◦,−1.2◦,0.9◦

= 0.00242735− 0.00173458 = 6.9277 · 10−4 sr (13C target) (4.11)
Ω

(9Be)
4 ≃ Ω2.0◦,−1.6◦,0.6◦ − Ω1.5◦,−1.5◦,0.6◦

= 0.00243471− 0.00160992 = 8.2479 · 10−4 sr (9Be target) (4.12)In the ase of the outer angular bins (Ω2,Ω3,Ω4), the limits of integration are on-strained by the angular aeptane of the spetrometer (see �g. 4.18 and 4.19), andangles θ > 0.9 and θ < −1.2 (for the 13C target) and θ > 0.6 and θ < −1.6 (for the
9Be target) have to be exluded from the integration. The opening solid angles in thelaboratory frame are listed in table 4.6 for eah sattering angle region and target.Table 4.6: Laboratory sattering angle ranges and orresponding opening angles.

13C target
i Θ-range [◦℄ Ωi [sr℄ Ωi/Ω11 [0.0,0.5) 0.239246·10−3 1.0002 [0.5,1.0) 0.699849·10−3 2.9253 [1.0,1.5) 0.795485·10−3 3.3254 [1.5,2.0) 0.69277·10−3 2.896

9Be target
i Θ-range [◦℄ Ωi [sr℄ Ωi/Ω11 [0.0,0.5) 0.239246·10−3 1.0002 [0.5,1.0) 0.581484·10−3 2.4303 [1.0,1.5) 0.78919·10−3 3.2994 [1.5,2.0) 0.82479·10−3 3.447For eah opening angle Ωi, the absolute di�erential ross-setion in the enter ofmass frame dσ(Θ)

dΩc.m.
is given by
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Figure 4.18: Angular aperture and integration surfaes for the experiment with 13C target.
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Figure 4.19: Angular aperture and integration surfaes for the experiment with 9Be target.
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dσ(Θi)

dΩc.m.
=

1

f 2Ωi
· Ntriton(Θi)

ntarget ·N3He

, (4.13)where Ntriton(Θi) is the number of tritons in the foal plane at angle Θi (i.e. inthe orresponding sattering angle bin) that an be attributed to the harge-exhangereation for a given number of inident 3He partiles (N3He) on the target, and where
ntarget gives the number of target nulei per unit area. The solid angle in the laboratoryframe (Ωi) is transformed into the solid angle Ωc.m. in the enter of mass frame via thefator f whih onnets both frames. The fator f an be alulated relativistially andis f = 1.372 for the beryllium target and f = 1.260 for the arbon target. The averageangle Θi (laboratory frame) used to represent eah bin was alulated in way suh thatit would halve the surfae of the orresponding irle in the θ− φ plane, by the formula

Θi =

√

θ2
i + θ2

i+1

2
, (4.14)whih gives the values presented in table 4.7. This table also ontains the onversionof the lab frame angles to the respetive enter of mass angles, whih is useful for theangular distributions.Table 4.7: Sattering angles in the enter of mass and the laboratory frame.Laboratory frame .m. frame [mrad℄ .m. frame [mrad℄[mrad℄ (9Be target) (13C target)

Θ1 6.17 8.38 7.85
Θ2 13.80 19.02 17.45
Θ3 22.25 30.54 28.10
Θ4 30.85 42.41 38.92The determination of the zero degree ross setion gives rise to a statistial error,whih is aused by the �tting of the angular distribution with four angular bins andthen extrapolating to zero degrees, as well as by the �tting of the respetive spetrato determine Ntriton(Θi), and a systemati error whih is due to the unertainty in theoverall normalization of the 3He beam. The 3He beam intensity is normalized usingthe sattered 3He partiles olleted in the D1 Faraday up of the Grand Raidenspetrometer.Absolute ross-setions of states exited by the (3He,t) reation an be deduedfrom the experiments by determining the number of tritons Ntriton(Θi) sattered fromthe target under the sattering angle Θi at various energies. The number of tritons isdetermined as disussed in 4.2 by �tting the spetra obtained for eah sattering anglebin.The number of inident 3He partiles from the beam was determined in the experi-ment from a Faraday up installed inside the inner bend of the �rst dipole (D1) magnet



4.8. Determination of Cross-setions 71of Grand Raiden. The harge aumulated in the Faraday up was ounted by asaler/integrator with a sampling frequeny of 1kHz. At various full sale urrent set-tings of the saler, the total amount of harge (in nanooulomb) aumulated during arun an be determined by
Q [nC] = scaler counts× full scale current [nA]

1000 Hz
(4.15)For the harge-exhange reation with the 9Be target, the full sale urrent of theintegrator was set at 20 nA. The total amount of inident 3He beam partiles an thusbe determined by dividing the total olleted harge by two elementary harges.

N3He =
Qtotal

2e
(4.16)The data of the various experimental runs is shown in table 4.8. For the 9Be(3He,t)9Breation, 5.09·1014 partiles were olleted in total in the Faraday up during 4.86hof runtime, orresponding to an average beam urrent of 9.3 nA. The live time ofthe spetrometer was approximately 94%. As was noted during the experiment, thetransmission to the D1 Faraday up was not 100%. Beam urrent measurements at thesattering hamber Faraday up and the beam stopper BS3 indiate approximately 20%loss. Therefore the total amount of inident 3He partiles was orreted by a fator 1.25.Table 4.8: Intensity of the 3He beam (9Be target).run 1129 1130 1131 Totaltime [s℄ 6857 6922 3734 17513beam intensity [saler℄ 3113167 3269962 1764286 8147415aumulated harge [nC℄ 62263.34 65399.24 35285.72 162948.3

3He partiles 1.9431·1014 2.0409·1014 1.1012·1014 5.0852·1014orreted for D1FC loss 6.3565·1014GR event request 14944083 15736677 8427357 39108117GR events after veto 13981196 14727892 7897833 36606921ratio 93.56% 93.59% 93.72% 93.60%GR lok request 65962240 66560741 35922201 168445182GR lok after veto 62294519 62696908 33850612 158842039ratio 94.44% 94.20% 94.23% 94.30%If eq. (4.13) is rewritten, the di�erential ross-setion for the 9Be(3He,t)9B reationbeomes
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dσ(Θi ∈ Ωi)

dΩc.m.
=

1

f 2Ω1
· 1

ntarget
· 1

N3He

· Ntriton(Θi)

Ωi/Ω1

=
1

(1.372)2(0.239246 · 10−3 sr)(6.3565 · 1014)
×

× 9.012 · 103 g ·mol−1 · 1027 mb · cm−2

1.0 · 1.73 g · cm−2 · 6.022 · 1023 mol−1
· Ntriton(Θi)

Ωi/Ω1

= (3.02176 · 10−5 mb/sr) · Ntriton(Θi)

Ωi/Ω1
(4.17)where the relativisti angle saling fator f = 1.372, the target thikness of 1.73

mg/cm2, the Avogadro onstant NA = 6.022 · 1023mol−1, the target enrihment of100%, the molar mass of 9Be (9.012 g ·mol−1) and the the de�nition of millibarn(1mb = 10−27cm2) were used.Table 4.9: E�ieny of the MWDCs (9Be target).e�ieny of the X1 plane 99.80%e�ieny of the U1 plane 99.83%e�ieny of the X2 plane 99.67%e�ieny of the U2 plane 99.82%total e�ieny 99.12%
Table 4.10: E�ieny of the MWDCs (13C target).e�ieny of the X1 plane 99.52%e�ieny of the U1 plane 99.75%e�ieny of the X2 plane 99.51%e�ieny of the U2 plane 99.75%total e�ieny 98.54%The number of triton ounts Ntriton(Θi) has to be orreted for the dead time ofthe data aquisition system of the spetrometer (GR dead time, see table 4.8) and thedetetion e�ieny of the MWDCs. To assess the e�ieny of the drift hambers, theraytraing information provided by the analyzer program [Yos01℄ (see table D.1 in theappendix) was used. The e�ieny of eah plane is de�ned as
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ǫX1
=

NX1∩U1∩X2∩U2

NX1∩U1∩X2∩U2
+NU1∩X2∩U2

(4.18)
ǫU1

=
NX1∩U1∩X2∩U2

NX1∩U1∩X2∩U2
+NX1∩X2∩U2

(4.19)
ǫX2

=
NX1∩U1∩X2∩U2

NX1∩U1∩X2∩U2
+NX1∩U1∩U2

(4.20)
ǫU2

=
NX1∩U1∩X2∩U2

NX1∩U1∩X2∩U2
+NX1∩U1∩X2

(4.21)Where NX1∩U1∩X2∩U2
is the number of events for whih the raytraing was suess-ful (position determined in all four planes, RAY-ID=1), and Ni∩j∩k is the number ofevents for whih the position ould only be determined in the planes i,j and k (i.e. theposition ould not be determined for one plane, RAY-ID=1,2,4,5). These numbers arein priniple dependant on the triton energy, and the time-di�erene spetra from thetrigger sintillators an be used as a gate to roughly estimate the position (i.e. exita-tion energy) dependene. The position dependene of the e�ieny is negligible in thepresent experiments. E�ienies of 98-99% were obtained for all planes (see table 4.9and table 4.10) and the overall e�ieny is 99.12% for the experiment with 9Be targetand 98.54% for the experiment with 13C target.Let us now onsider the 13C(3He,t)13N experiment. As for the 9Be(3He,t)9B ross-setions, 3He beam partiles were olleted in the Faraday up inside the D1 magnet.For the harge determination using the integrator, the full sale urrent was set to 60nA. The data from the experimental runs is shown in table 4.11, and the total result forall runs in table 4.12. A total of 2.87·1014 partiles were gathered within 3.3h of runtime,orresponding to an average beam urrent of 7.68 nA. The live time of the spetrometerwas approximately 99%.If eq. (4.13) is rewritten as for the 9Be target, the di�erential ross-setion for the

13C(3He,t)13N reation beomes
dσ(Θi ∈ Ωi)

dΩc.m.

=
1

f 2Ω1

· 1

ntarget

· 1

N3He

· Ntriton(Θi)

Ωi/Ω1

=
1

(1.26)2(0.239246 · 10−3 sr)(3.592 · 1014)
×

×13.00335 · 103 g ·mol−1 · 1027 mb · cm−2

0.99 · 0.5 g · cm−2 · 6.022 · 1023 mol−1
· Ntriton(Θi)

Ωi/Ω1

= (3.19736 · 10−4mb/sr) · Ntriton(Θi)

Ωi/Ω1
(4.22)where the relativisti angle saling fator f = 1.26, the target thikness of 0.5

mg/cm2, the Avogadro onstant NA = 6.022 · 1023mol−1, the target enrihment of99%, the molar mass of 13C (13.00335 g ·mol−1) and the the de�nition of millibarn(1mb = 10−27cm2) were used.
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Table 4.11: Intensities of the 3He beam (13C target).run 1024 1025 1026 1027time [s℄ 3622 905 1198 148beam intensity [saler℄ 471475 130318 151338 12485aumulated harge [nC℄ 28288.5 7819.08 9080.28 749.1

3He partiles 8.8281·1013 2.4401·1013 2.8337·1013 2.3378·1012GR event request 1814747 530521 603085 52683GR events after veto 1788315 521232 593483 51830ratio 98.54% 98.25% 98.41% 98.38%GR lok request 34842170 8708076 11527972 1424196GR lok after veto 34394036 8576953 11378802 1411138ratio 98.71% 98.49% 98.71% 99.08%run 1028 1029 1030 1031time [s℄ 1487 1514 1578 1542beam intensity [saler℄ 194826 196734 189508 188013aumulated harge [nC℄ 11689.56 11804.04 11370.48 11280.78
3He partiles 3.6480·1013 3.6838·1013 3.5484·1013 3.5205·1013GR event request 796305 792071 775721 783083GR events after veto 782603 778415 762220 769927ratio 98.28% 98.28% 98.26% 98.32%GR lok request 14296363 14567326 15182528 14830824GR lok after veto 14099483 14371718 14990915 14637079ratio 98.62% 98.66% 98.74% 98.69%

Table 4.12: Intensity of the 3He beam (13C target, total of all runs).run numbers 1024-1031time [s℄ 11994beam intensity [saler℄ 1534697aumulated harge [nC℄ 92081.82
3He partiles 2.8736·1014orreted for D1FC loss 3.592·1014GR event request 6148216GR event after veto 6048025ratio 98.37%GR lok request 115379455GR lok after veto 113860124ratio 98.68%



CHAPTER 5. EXTRACTION OF GAMOW-TELLER STRENGTHS
Chapter 5Extration of Gamow-Tellerstrengths
This hapter deals with the extration of the B(GT) strengths from the 9Be(3He,t)9Band the 13C(3He,t)13N reations, by using the proportionality relation (5.1) between theB(GT) strength and the ross-setion at momentum transfer q=0.5.1 DWBA alulationsThe following setion analyzes the dependene of the ross setion distribution as afuntion of momentum transfer q and energy loss ω. In the proportionality relationship

dσ

dΩ
= σ̂α(Ep, A)Fα(q, ω)B(α) (5.1)the fator F (q, ω) desribes the shape of the ross-setion distribution as a funtionof q and ω = Ex − Q and goes to unity in the limit of zero momentum transfer andenergy loss. If the reation is �xed, this fator depends only on the sattering angle andexitation energy F = F (θlab, Ex). Sine we are mainly interested in the ross-setion atzero degrees, what should be examined is the dependene of the ross setion distributionon the exitation energy. The determination of the energy dependene of the F -fator isruial to extrat B(GT) values from the measured di�erential ross-setions. For thesereasons, F (Θ = 0◦, Ex) was studied by DWBA (distorted wave Born approximation)alulations. The ode DW81 by J.R. Comfort [Com℄, whose formalism is detailed in[Ray67℄, was used to perform these alulations.5.1.1 Q-valuesTo ompute the exitation energies for the onsidered reations, their respetive Q-valueshave to be determined. The Q-value of the A

ZX(3He,t)AZ+1Y reation is
Q = mX +m3He −mY −mt. (5.2)

75



76 CHAPTER 5. EXTRACTION OF GAMOW-TELLER STRENGTHSThe Q-values of the analyzed reations were alulated using masses from the AtomiMass Evaluation [Aud03℄ as given in table 5.1.Table 5.1: Masses (from [Aud03℄) and orresponding reation Q-values.Nuleus Mass [keV℄ Reation Q-value [keV℄t 14949.8060(23)
3He 14931.2148(24)
9Be 11347.6(4)
9B 12415.7(10) Q(9Be(3He, t)9B)=-1086.7(10)
13C 3125.0113(9)
13N 5345.48(27) Q(13C(3He, t)13N)=-2239.06(27)

5.1.2 DWBA alulation parametersThe DWBA alulation requires parameters for the optial potential (entrane and exithannel) and the interation, single partile energies and transition densities.Optial potential parameters for 12C are available for 3He beams of 450 MeV (Yam-agata et al.) [Yam95℄ and 443 MeV (Kamiya et al.) [Kam03℄. These parameters (givenin table 5.2) were used in the DWBA alulations for the 9Be(3He,t) and 13C(3He,t)reations.Table 5.2: Optial potential parameters for 12C from 3He elasti sattering by Yamagataet al. [Yam95℄ and Kamiya et al. [Kam03℄.ref. E3He VR [MeV℄ rR [fm℄ aR [fm℄ WI [MeV℄ rI [fm℄ aI [fm℄[Yam95℄ 450 30.4 1.49 0.73 11.2 1.15 1.37[Kam03℄ 443 19.73 1.592 0.705 37.76 0.989 0.868The e�etive 3He-N interation V3HeN was used in the DWBA alulations. Theinteration parameters, represented by a Yukawa potential, were Vτ=0.75 MeV, Vστ=-2.5 MeV and VTτ=-2.1 MeV [Zeg03℄. For the outgoing triton hannel, by following thearguments given by van der Werf et al. [vdW89℄, the well depths were multiplied by afator of 0.85 without hanging the geometrial parameters of the optial potential.The single-partile energies for the p3/2 and p1/2 orbits were taken from �g.5.1:Ep3/2=-9.75 MeV for A=9 and -18 MeV for A=13, Ep1/2=-3.5 MeV for A=9 and -13MeV for A=13. These values an be obtained in more detail, e.g. in [Sh08℄ (see 5.3),but the more preise values (di�erent for proton and neutron orbits) have only marginalin�uene on F (0◦, ω).For the one-body transition densities (OBTD), various senarios were onsidered. Asit is shown in �g. 5.2, in the A=9 ase, (p3/2p−1
3/2) and (p1/2p−1

3/2) transitions were on-
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Figure 5.1: Single partile energies for light nulei in the shell model. Energies of neutronorbits in Wood-Saxon potentials. r0=1.27 fm, VWS=-51 MeV, R=r0A1/3.sidered, whereas in the A=13 ase, (p1/2p−1
3/2) and (p1/2p−1

1/2) transitions were onsidered.Only pure transitions (OBTD=1) were onsidered for all ases to derive the behaviourof the F (0◦, ω)-fator. As it an be seen in �g. 5.3 and 5.4, the energy-dependentbehaviour of the F-fator at zero degrees is robust against hanges in the parametersof the optial potential as well as a hange in the shells onsidered for the transition.The derease in GT strength obtained via the di�erential ross-setion is about 20% at18 MeV reation Q-value. A detailed table of the alulated values shown in �gs. 5.3and 5.4 an be found in the appendix (tables E.1 and E.2).5.2 Angular distribution of ross-setionsThe di�erential ross-setions obtained from the data analysis were �tted to angu-lar distributions alulated using a distorted wave Born approximation (DWBA) withthe program Fold [Coo℄. This ode uses the Love-Franey nuleon-nuleon intera-tion [Lov81, Fra85℄, double-folded over the projetile-ejetile and target-residue transi-tion densities. A short-range approximation [Lov81℄ is used for the exhange terms inthe potential. Radial wave funtions were alulated using the Woods-Saxon potential(parameters from [Sh08℄) with the ode wsaw, a part of the fold pakage1. Optialpotential parameters were used as desribed in the previous setions. For the outgoingtriton hannel, by following the arguments given by van der Werf et al. [vdW89℄, the welldepths were multiplied by a fator of 0.85 without hanging the geometrial parametersof the optial potential (radii and di�useness).1The fold program pakage an be downloaded from Remo Zegers' website athttp://www.nsl.msu.edu/∼zegers/fold.html
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Figure 5.2: Possible on�gurations (not exhaustive) resulting from β−-type transitions(∆J=0,1) 9Be→9B and 13C→13N. The most simple shell struture is assumed. The �llingof protons (π) and neutrons ν is shown with �lled blak and striped irles, respetively. Thepartiles and holes newly reated by the transitions are shown in �lled grey and dotted irles,the arrows indiate the diretion of the harge-exhange reation.
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 0  5  10  15  20Figure 5.4: Evolution of the relative ross-setion of 13C(3He,t)13N alulated with DWBA.The ross-setion is normalized to zero energy loss and zero momentum transfer, where thefator F (0◦, Ex) goes to unity (data from table E.2 is used).5.3 Cross-setions of the 13C(3He,t)13N reationFor the 13C(3He,t)13N reation, the absolute di�erential ross-setions shown in table 5.4were determined for four angular bins, as desribed in 4.8. The angular distributions ofstates with ∆L=0 harater (1/2− and 3/2−) were ompared to angular distributionsalulated in DWBA as desribed in 5.2. The alulated distributions were �tted tothe obtained data by using a single saling parameter, using the program topfit [Wie℄.The �t to these alulated distributions allows to extrapolate the ross setion at zerodegrees sattering angle, dσ
dΩ

(Θc.m. = 0) whih is shown in table 5.3 for all states with
∆L=0 harater.In priniple, the analysis of ∆Jπ=1+ states requires a �t in whih the ∆L=0 andthe ∆L=2 parts are separately �tted2. The DWBA analysis shows that inoherent
∆L=2 ontributions to the ross setion are very small at forward sattering anglesin the ase of 13N (less than 1%, thus negligible when onsidering the ross-setionunertainties [Zeg08℄).The values obtained for the zero-degrees ross-setion of observed GT states aresummarized in table 5.3 and in the logarithmi plot of angular distributions in �g. 5.5.These ross-setions an then be used to alulate the ross-setion at momentum trans-fer q=0 by dividing by the fator F (0◦, ω) alulated in 5.1. The ross setion at zerodegrees and zero momentum transfer an then be used to determine the Gamow-Tellerstrength of the orresponding state.2A ∆Jπ=1+ an be obtained via ∆L=0,∆S=1 and ∆L=2,∆S=1, where only the �rst possibility isphysially relevant for the B(GT) strength.



80 CHAPTER 5. EXTRACTION OF GAMOW-TELLER STRENGTHSTable 5.3: Extrapolated absolute di�erential ross-setions for 13N levels with ∆L=0harater from �ts to alulated DWBA angular distribution.E(exp)
x

[

dσ
dΩ

(0◦)
](exp)(mb/sr)0 keV 11.89(11)3501(4) keV 31.63(31)8881(27) keV 5.32(10)9478(11) keV 1.25(2)10811(5) keV 2.53(4)11877(7) keV 8.98(10)13474(48) keV 0.77(2)15063(3) keV 4.75(5)18397(4) keV 0.50(1)The individual angular distributions dσ

dΩ
(Θc.m.) together with the �tted DWBA urvesare shown in �gs. 5.6-5.11. The errorbars shown in the plots only re�et the statistialerror arising from the deonvolution of the spetrum, and do not aount for systematierrors (mainly the beam intensity and target thikness) whih would have the e�et ofsaling the entire set of derived ross setions by a single saling fator (see 4.8).
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red.=0.36).
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Figure 5.11: Angular distribution of the ross-setion of the 13N (1/2−,3/2−) state at 11.88MeV exited by the (3He,t) reation at 140 MeV/A beam energy. The solid urve is thealulated anuglar distribution for ∆L=0, ∆S=1, saled to �t the data with a single salingfator (χ2
red.=0.08).
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Figure 5.12: Angular distribution of the ross-setion of the 13N (1/2−,3/2−) state at 13.47MeV exited by the (3He,t) reation at 140 MeV/A beam energy. The solid urve is thealulated anuglar distribution for ∆L=0, ∆S=1, saled to �t the data with a single salingfator (χ2
red.=1.71).
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Figure 5.13: Angular distribution of the ross-setion of the 13N 3/2−, T=3/2 state at 15.06MeV exited by the (3He,t) reation at 140 MeV/A beam energy. The solid urve is thealulated anuglar distribution for ∆L=0, ∆S=1, saled to �t the data with a single salingfator (χ2
red.=0.38).
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Figure 5.14: Angular distribution of the ross-setion of the 13N (1/2−,3/2−) state at 18.40MeV exited by the (3He,t) reation at 140 MeV/A beam energy. The solid urve is thealulated anuglar distribution for ∆L=0, ∆S=1, saled to �t the data with a single salingfator (χ2
red.=0.12).



86 CHAPTER 5. EXTRACTION OF GAMOW-TELLER STRENGTHSTable 5.4: Absolute di�erential ross-setions for 13N levels. ∆ dσ
dΩ

stat. indiates thestatistial error from the �tting of the angular distribution and the triton spetra. ∆ dσ
dΩ

tot.inludes the errors from the target thikness and the 3He beam intensity, both of whihare assumed at 10%.
Θc.m.

dσ
dΩ

(Θc.m.) ∆ dσ
dΩ

stat.
∆ dσ

dΩ

tot.
Θc.m.

dσ
dΩ

(Θc.m.) ∆ dσ
dΩ

stat.
∆ dσ

dΩ

tot.

[◦] mb/sr mb/sr mb/sr [◦] mb/sr mb/sr mb/srE(exp)
x =0 keV Jπ= 1/2- E(exp)

x = 2373+26
−21 keV Jπ= 1/2+0.45 11.5 0.3 1.6 0.45 0.11 0.02 0.021.00 10.8 0.2 1.5 1.00 0.30 0.02 0.051.61 8.9 0.2 1.3 1.61 0.59 0.03 0.092.23 6.6 0.1 0.9 2.23 0.91 0.05 0.14E(exp)

x =3501.2+3.4
−3.6 keV Jπ=3/2- E(exp)

x =6363.3(34) keV Jπ= 5/2+0.45 31.1 0.8 4.5 0.45 0.021 0.004 0.0051.00 28.2 0.5 4.0 1.00 0.028 0.003 0.0051.61 23.5 0.4 3.3 1.61 0.038 0.003 0.0062.23 18.0 0.4 2.6 2.23 0.052 0.003 0.008E(exp)
x =7385(7) keV Jπ=5/2- E(exp)

x = 8881(27) keV Jπ=1/2-
Θc.m.

dσ
dΩ

(Θc.m.) ∆ dσ
dΩ

stat.
∆ dσ

dΩ

tot.
Θc.m.

dσ
dΩ

(Θc.m.) ∆ dσ
dΩ

stat.
∆ dσ

dΩ

tot.

[◦] mb/sr mb/sr mb/sr [◦] mb/sr mb/sr mb/sr0.45 0.130 0.016 0.024 0.45 5.53 0.32 0.841.00 0.170 0.016 0.029 1.00 4.88 0.16 0.711.61 0.148 0.013 0.025 1.61 3.96 0.13 0.572.23 0.128 0.013 0.022 2.23 2.87 0.10 0.42E(exp)
x =9478(11) keV Jπ=3/2- E(exp)

x =10811(5) keV Jπ=1/2-0.45 1.29 0.07 0.19 0.45 2.40 0.09 0.351.00 1.16 0.03 0.17 1.00 2.25 0.06 0.321.61 0.93 0.03 0.13 1.61 1.92 0.05 0.282.23 0.67 0.02 0.10 2.23 1.44 0.04 0.21E(exp)
x = 11877(7) keV Jπ=(3/2-;1/2-) E(exp)

x =13474(48) keV Jπ=(3/2-;1/2-)
Θc.m.

dσ
dΩ

(Θc.m.) ∆ dσ
dΩ

stat.
∆ dσ

dΩ

tot.
Θc.m.

dσ
dΩ

(Θc.m.) ∆ dσ
dΩ

stat.
∆ dσ

dΩ

tot.

[◦] mb/sr mb/sr mb/sr [◦] mb/sr mb/sr mb/sr0.45 8.9 0.3 1.3 0.45 0.79 0.05 0.121.00 8.0 0.2 1.1 1.00 0.71 0.03 0.101.61 6.7 0.1 1.0 1.61 0.56 0.02 0.082.23 5.1 0.1 0.7 2.23 0.39 0.03 0.06E(exp)
x =15062.6(25) Jπ=3/2- E(exp)

x =18397(4) keV Jπ=(3/2-;1/2-)0.45 4.68 0.11 0.67 0.45 0.49 0.03 0.081.00 4.28 0.08 0.64 1.00 0.44 0.02 0.061.61 3.52 0.06 0.54 1.61 0.38 0.01 0.062.23 2.65 0.06 0.41 2.23 0.28 0.01 0.04



5.4. Cross-setions of the 9Be(3He,t)9B reation 875.4 Cross-setions of the 9Be(3He,t)9B reationFor the 9Be(3He,t)9B reation, the absolute di�erential ross-setions shown in table 5.6were determined for four angular bins, as desribed in 4.8. The angular distributions ofstates with ∆L=0 harater (1/2−,3/2−,5/2−) were ompared to angular distributionsalulated in DWBA as desribed in 5.2. The alulated distributions were �tted tothe obtained data by using a single saling parameter, using the program topfit [Wie℄.The �t to these alulated distributions allows to extrapolate the ross-setion at zerodegrees sattering angle, dσ
dΩ

(Θc.m. = 0) whih is shown in table 5.5 for all states with
∆L=0 harater.Table 5.5: Extrapolated absolute di�erential ross-setions for 9B levels with ∆L=0harater from �ts to alulated DWBA angular distribution.E(exp)

x

[

dσ
dΩ

(0◦)
](exp)(mb/sr)0.0(3) 24.53(6)2358(7) 6.29(1)2730(70) 18.71(20)3930(100) 9.31(5)12245(56) 0.732(9)14101+50

−90 0.461(6)14652(3) 0.135(1)14895 0.494(7)16050(40) 0.065(1)17076(4) 0.0705(8)The detailed DWBA �t for 9B is di�ult as optial potentials are only known formuh lower beam energies, and the angle region of the experiment is not large enoughto allow a detailed determination of all parameters. We will assume in the following thatthe inoherent ∆L=2 ontribution to the ross-setion at zero degrees sattering angleis small.The values obtained for the zero-degrees ross-setion of observed GT states aresummarized in table 5.5. These ross-setions an then be used to alulate the ross-setion at momentum transfer q=0 by dividing by the fator F (0◦, ω) alulated in 5.1.The ross setion at zero degrees and zero momentum transfer an then be used todetermine the Gamow-Teller strength of the orresponding state.The individual angular distributions dσ
dΩ

(Θc.m.) together with the �tted DWBA urvesare shown in �gs. 5.15-5.24. The errorbars shown in the plots only re�et the statistialerror arising from the deonvolution of the spetrum, and do not aount for systematierrors (mainly the beam intensity and target thikness) whih would have the e�et ofsaling the entire set of derived ross-setions by a single saling fator (see 4.8).
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Figure 5.15: Angular distribution of the ross-setion of the 9B 3/2− ground state exitedby the (3He,t) reation at 140 MeV/A beam energy. The solid urve is the alulated angulardistribution for ∆L=0, ∆S=1, saled to �t the data with a single saling fator.
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Figure 5.16: Angular distribution of the ross-setion of the 9B 5/2− state at 2358(7) keV,exited by the (3He,t) reation at 140 MeV/A beam energy. The solid urve is the alulatedangular distribution for ∆L=0, ∆S=1, saled to �t the data with a single saling fator.
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Figure 5.17: Angular distribution of the ross-setion of the 9B 1/2− state at 2730(70) keVexited by the (3He,t) reation at 140 MeV/A beam energy. The solid urve is the alulatedangular distribution for ∆L=0, ∆S=1, saled to �t the data with a single saling fator.
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Figure 5.18: Angular distribution of the ross-setion of the 9B (1
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−) state at3930(100) keV exited by the (3He,t) reation at 140 MeV/A beam energy. The solid urve isthe alulated angular distribution for ∆L=0, ∆S=1, saled to �t the data with a single salingfator.
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Figure 5.19: Angular distribution of the ross-setion of the 9B 5/2− state at 12245(56) keVexited by the (3He,t) reation at 140 MeV/A beam energy. The solid urve is the alulatedangular distribution for ∆L=0, ∆S=1, saled to �t the data with a single saling fator.
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Figure 5.20: Angular distribution of the ross-setion of the 9B (1
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Figure 5.21: Angular distribution of the ross-setion of the 9B 3/2−, T=3/2 state at 14652(3)keV exited by the (3He,t) reation at 140 MeV/A beam energy. The solid urve is the alulatedangular distribution for ∆L=0, ∆S=1, saled to �t the data with a single saling fator.
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Figure 5.22: Angular distribution of the ross-setion of the 9B (1
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−) state(s) around14895 keV exited by the (3He,t) reation at 140 MeV/A beam energy. The solid urve is thealulated angular distribution for ∆L=0, ∆S=1, saled to �t the data with a single salingfator.
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Figure 5.23: Angular distribution of the ross-setion of the 9B (1
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−) state at16050(40) keV exited by the (3He,t) reation at 140 MeV/A beam energy. The solid urve isthe alulated angular distribution for ∆L=0, ∆S=1, saled to �t the data with a single salingfator.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  0.5  1  1.5  2  2.5  3  3.5  4

9Be(3He, t)9B

E = 140 MeV/A

d
σ

d
Ω

(Θ
c.

m
.)

[m
b
/s

r]

Θc.m. [◦]

Ex=17.08 MeV

Figure 5.24: Angular distribution of the ross-setion of the 9B 1/2−, T=3/2 state at 17076(4)keV exited by the (3He,t) reation at 140 MeV/A beam energy. The solid urve is the alulatedangular distribution for ∆L=0, ∆S=1, saled to �t the data with a single saling fator.
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Table 5.6: Absolute di�erential ross-setions for 9B levels. ∆ dσ
dΩ

stat. indiates the sta-tistial error from the �tting of the angular distribution and the triton spetra. ∆ dσ
dΩ

tot.inludes the errors from the target thikness and the 3He beam intensity, both are as-sumed to be at 10%.
Θc.m.

dσ
dΩ

(Θc.m.) ∆ dσ
dΩ

stat.
∆ dσ

dΩ

tot.
Θc.m.

dσ
dΩ

(Θc.m.) ∆ dσ
dΩ

stat.
∆ dσ

dΩ

tot.

[◦] mb/sr mb/sr mb/sr [◦] mb/sr mb/sr mb/srE(exp)
x = 0.0(3) keV Jπ=3/2- E(exp)

x =2358(7) keV Jπ=5/2-0.48 24.37 0.13 3.45 0.48 5.95 0.03 0.841.09 20.41 0.09 2.89 1.09 5.08 0.02 0.721.75 15.42 0.08 2.18 1.75 4.08 0.01 0.582.43 10.22 0.06 1.45 2.43 2.77 0.01 0.39E(exp)
x =2730(70) keV Jπ=1/2- E(exp)

x =3930(100) keV Jπ=(1
2

−
, 3

2

−
, 5

2

−)0.48 18.13 0.49 2.61 0.48 8.88 0.15 1.261.09 15.05 0.29 2.15 1.09 7.28 0.08 1.031.75 11.96 0.22 1.71 1.75 5.34 0.05 0.762.43 8.23 0.18 1.18 2.43 3.27 0.03 0.46E(exp)
x =12245(56) keV Jπ= 5/2- E(exp)

x =14101+50
−90 keV Jπ=(1

2

−
, 3

2

−
, 5

2

−)0.48 0.696 0.024 0.101 0.48 0.444 0.018 0.0651.09 0.584 0.013 0.084 1.09 0.373 0.010 0.0541.75 0.492 0.010 0.070 1.75 0.278 0.006 0.0402.43 0.355 0.007 0.051 2.43 0.213 0.005 0.031E(exp)
x =14652(3) keV Jπ=3/2- E(exp)

x =14895 keV Jπ=(5/2)-0.48 0.136 0.004 0.020 0.48 0.484 0.023 0.0721.09 0.122 0.003 0.017 1.09 0.399 0.012 0.0581.75 0.094 0.002 0.013 1.75 0.310 0.008 0.0452.43 0.077 0.002 0.011 2.43 0.216 0.006 0.031E(exp)
x =16050(40) keV Jπ= (1

2

−
, 3

2

−
, 5

2

−) E(exp)
x =17076(4) keV Jπ=1/2-0.48 0.066 0.003 0.010 0.48 0.0680 0.0024 0.00991.09 0.060 0.002 0.009 1.09 0.0613 0.0014 0.00881.75 0.047 0.002 0.007 1.75 0.0510 0.0010 0.00732.43 0.003 0.002 0.005 2.43 0.0404 0.0008 0.0058



94 CHAPTER 5. EXTRACTION OF GAMOW-TELLER STRENGTHS5.5 Gamow-Teller strengths for the 13C targetThe extrapolated ross-setions at zero degree sattering angle determined in 5.3 allowto determine the orresponding GT strength by using the proportionality relation [Tad87℄
dσ

dΩ

∣

∣

∣

q=0
= σ̂GTB(GT ) (5.3)for Gamow-Teller states, and

dσ

dΩ

∣

∣

∣

q=0
= σ̂FB(F ) + σ̂GTB(GT ) (5.4)for the isobari analog state (IAS), where the fators σ̂F,GT are the unit ross-setionsfor the Fermi- and Gamow-Teller transitions. The unit ross-setions an be obtainedby alibrating the experimental ross-setion with a known lifetime from beta-deay, orby arefully using the systematis aross a wide range of nulear masses [Zeg07℄.For the (3He,t) reation at 420 MeV beam energy, the empirial relations

σ̂F = 72 · A−1.06 mb/sr (5.5)
σ̂GT = 109 · A−0.65 mb/sr (5.6)give unit ross-setions σ̂F=4.75 mb/sr and σ̂GT=20.6 mb/sr for A=13. Further-more, the transition to the 3/2−,T=3/2 state at 15.06 MeV in 13N an be used to ali-brate the GT unit ross-setion, sine the lifetimes of the analog transitions 13B(β−)13Cand 13O(β+)13N are known from beta-deay measurements.Using the ft values from beta-deay, the B(GT) value an be obtained (see intro-dution) using

B(F ) +

(

gA

gV

)2

B(GT ) =
K

g2
V · ft

, (5.7)where K/g2
V =6147(7) s [Har09℄ and gA/gV =-1.2695(29) [Har06℄. The GT strengthof the ground state transition an be found by assuming that the Fermi strength B(F)exhausts the full Fermi sum rule [Ost92℄

ΣB(F ) = (N − Z) = 1, (5.8)an assumption that is valid on the level of 0.15(9)% [Orm95℄, and gives (using the logftvalue of the 13N to 13C ground state to ground state beta-deay of 3.6648(5))
B(GT ) =

1

(gA/gV )2

(

K

g2
V · ft

− 1

)

=
1

(1.2695(29))2

(

6147(7)

4621(5)
− 1

)

= 0.205(2) (5.9)
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Figure 5.25: β-deays and analog transitions for A=13However, this value is not suited to aurately alibrate the GT unit ross-setion [Zeg08,Zeg07, Wan01℄ sine the Fermi unit ross-setion has to be known with good auray.There is no Fermi part in the beta deay of the 13O 3/2− ground state to the 13N1/2− ground state, and in the 13B 3/2− ground state to the 13C 1/2− ground state.The lifetimes of these deays an be used to alibrate the GT unit ross-setion. Thelogft value of the 13O→13N transition is 4.081(11), whih gives ft=12050(305)s. Thuswe obtain for the B(GT) value of this transition
B(GT ;13O(g.s.)→13 N(g.s.)) = 0.317(2). (5.10)To obtain the B(GT) value of the 13C(g.s.) →13N(Ex=15.1 MeV) transition, one has toadjust for the di�erent spin and isospin fators, while the redued matrix element MGTis the same for both transitions. The relation between B(GT) and the redued matrixelement of the στ operator is

B(GT ) =
1

2(2Ji + 1)

〈TiTzi∆T∆Tz|TfTzf〉2
2Tf + 1

M2
GT (5.11)where Ji and Jf are the total angular momentum of the initial and �nal states, Ti and

Tf the initial and �nal isospin values, and Tz the z-projetion of Isospin. Sine
B(GT ;13O(g.s.)→13 N(g.s.)) = 0.317(2) =

1

8
· 1
2
·
〈3

2
;−3

2
; 1; 1

∣

∣

∣

1

2
;−1

2

〉2

M2
GT (5.12)and

B(GT ;13C(g.s.)→13 N(15.1 MeV)) =
1

4
· 1
4
·
〈1

2
; +

1

2
; 1;−1

∣

∣

∣

3

2
;−1

2

〉2

M2
GT (5.13)the B(GT) value for this transition an be obtained by ombining both expressions, to
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B(GT ;13C(1

2

−

, 1
2
,+ 1

2)
→13 N( 3

2

−
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2
,− 1

2)
) =

〈1
2
; +1

2
; 1;−1|3

2
;−1

2
〉2

〈3
2
;−3

2
; 1; 1|1

2
;−1

2
〉2 · 0.317(2)

=
2

3
· 0.317(2) = 0.211(1) (5.14)A similar alulation for the 13B(g.s.)→13C(g.s.) (logft=4.034(6)) yields B(GT)=0.353(3)for this transition and thus B(GT)=0.235(2) for the transition from the 13C ground stateto the T=3/2 state at 15.1 MeV in 13N. The di�erene between both values is due tothe breaking of the isospin by the Coulomb interation. The B(GT) value for the on-sidered transition should be between those two values. Rather than taking an averageof both values, Taddeui et al. used the 13B(β−) value and the asymmetry parameterfor A=12, by whih they obtained B(GT)=0.23(1) with the larger error aounting forthe unertainty arising from the asymmetry [Tad87℄. We shall use this value for ouronsiderations as well.Using this transition to alibrate the GT unit ross-setion has the disadvantagethat the Q-value for this beta-deay is rather large (∼17 MeV), whih means that themomentum transfer for this transition is relatively large. The value of the ross-setionat zero momentum transfer has to be extrapolated (see 5.1) using the fator F(ω,0◦).The unertainty arising from this extrapolation is however smaller than using the groundstate transition whih ontains the Fermi part.Using F(ω=17.3 MeV,0◦)=0.82 and the zero-degrees ross-setion extrapolated fromthe data (4.75(5) mb/sr), one obtains

dσ

dΩ

∣

∣

∣

q=0,Θ=0
= 5.79(6) mb/sr. (5.15)Using this value and B(GT)=0.23(1) to alibrate, the GT unit ross-setion is 25(1)mb/sr, whih is not onsistent with the value of 20.6 mb/sr obtained from the system-atis3. It should however be remembered that the errors do not inlude the systematierrors stemming from the beam normalization and the target thikness, both of whihare signi�ant. The deviation in the GT unit ross-setion from systematis does alsonot a�et the derived B(GT) values using the alibration, as the systemati errors a�etall determined ross-setions by the same magnitude.The B(GT) strengths in 13N obtained by using this GT unit ross-setion are givenin table 5.7 in the �fth olumn. They are ompared to B(GT) values obtained from a(p,n) reation by Wang et al. [Wan01℄ in 2001.Wang et al. used a di�erent method to obtain the GT unit ross-setion (in thisase for the (p,n) reation at 197 MeV), namely alulating it using the ground statetransition B(GT) derived from the known beta-deay ft value (B(GT)=0.205(2)) andextrating the σ̂GT unit ross-setion by using the empirial ratio R2=σ̂GT /σ̂F obtainedfrom mass-number systematis (in this ase, from the (p,n) reation on even targets,see [Tad87℄).3Zegers et al. [Zeg08℄ obtained a unit ross-setion of 20(1) mb/sr in their (3He,t) experiment



5.5. Gamow-Teller strengths for the 13C target 97If we use a similar approah, following [Zeg07℄, we would obtain a value (see equa-tions (5.5) and (5.6))
R2

(A=13) =
σ̂GT (A = 13)

σ̂F (A = 13)
=

109

72
130.41 = 4.33(69) (5.16)where the error is obtained by the error of the systematis indiated in [Zeg07℄ (5% for

σ̂GT and 15% for σ̂F ). Using this R2 value together with the ground state transitionB(GT)=0.205(2) yieldŝ
σGT =

dσ
dΩ

(Ex = 0)
∣

∣

∣

q=0,Θ=0

B(GT ) + 1
R2B(F )

=
11.98(11)

0.205(2) + 1
4.33(69)

= 27(2) mb/sr (5.17)whih agrees with the value of 25(1) mb/sr whih results from using the 15.06 MeVtransition (25(1) mb/sr), but has larger unertainty. Its absolute value is about 10%higher, whih agrees with the works of Watson [Wat01, Wat85℄ and Zegers [Zeg08℄regarding the issue of using the ground state transition for alibration purposes (seedisussion in 6.1).The B(GT) values derived using this method (analog to the one usedby Wang et al.) are shown in table 5.7 in the sixth olumn.The distribution of B(GT) strength obtained in this study is ompared to the (p,n)values from by Wang et al. in �gure 5.26.
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5.5. Gamow-Teller strengths for the 13C target 99

Table 5.7: B(GT) values for 13C(g.s.)→13N(Ex) alulated using the GT unit ross-setion obtained by alibrating with the T=3/2 beta-deay values. The errors are onlystatistial (arising from the �tting of the triton spetra). B(GT) values obtained from(p,n) [Wan01℄ are shown as omparison.
(a) Obtained by using the ft value for the 15.06 MeV transition to determine the GT unit ross-setion
(b) Obtained by using the ground state transition and R2 mass number systematis to extrat the GTunit ross-setion
(c) Wang et al. alulated σ̂GT by normalizing to the Fermi transition and using the empirial ratioR2=σ̂GT /σ̂F obtained with even targets in the (p,n) reation.
(d) Value derived from the 13N(β+) deay, see disussion regarding the Fermi unit ross-setion in thetext
(e) alibration value for σ̂GT used in the present work
Ex F (0◦, ω) dσ

dΩ
(0◦) dσ

dΩ
(q = 0) B(GT) B(GT) B(GT)[MeV℄ [mb/sr℄ [mb/sr℄ present data(a) present data(b) [Wan01℄(c)0.00 0.99 11.89(11) 11.98(11) 0.205(2)(d) 0.205(2)(d) 0.20(d)3.50 0.97 31.63(31) 32.56(32) 1.29(6) 1.19(10) 1.068.88 0.91 5.32(10) 5.82(11) 0.23(1) 0.21(2) 0.169.48 0.91 1.25(2) 1.38(2) 0.055(3) 0.050(4) 0.0810.81 0.89 2.53(4) 2.85(5) 0.113(5) 0.104(9) 0.1211.88 0.87 8.98(10) 10.30(11) 0.41(2) 0.37(3) 0.3913.47 0.85 0.77(2) 0.91(2) 0.036(2) 0.033(3) 0.1215.06 0.82 4.75(5) 5.79(6) 0.23(1)(e) 0.21(2) 0.1918.40 0.76 0.50(1) 0.66(1) 0.026(1) 0.024(2) 0.03

Σ 2.60(6) 2.40(11) 2.35



100 CHAPTER 5. EXTRACTION OF GAMOW-TELLER STRENGTHS5.6 Gamow-Teller strengths for the 9Be targetThe extrapolated ross-setions at zero degree sattering angle determined in 5.4 an beused along with the proportionality relations (5.3),(5.4) to determine the B(GT) strengthfor the 9Be target. Equations (5.5) and (5.6) give unit ross-setions σ̂F=7.01 mb/srand σ̂GT=26.13 mb/sr for A=9 (R2=3.73). In this ase, however, there is no beta-deayfrom 9B that an be used for alibration purposes.
Tz=−3/2Tz=−1/2Tz=+1/2Tz=+3/2
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β
−

β+
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18

3(
5)

(14.392 MeV)

Figure 5.27: β-deays and analog transitions for A=9.The Gamow-Teller unit ross-setion an be alibrated as in the 13C ase by usingthe analog beta deays from 9Li and 9C (see �g. 5.27):
B(GT ;9C(g.s.)→9 B(g.s.)) = 0.0183(5) (5.18)

B(GT ;9Li(g.s.)→9 Be(g.s.)) = 0.0181(6) (5.19)These values were taken from the ompilation by Tilley et al. [Til04℄. Reent studies ofthe 9C(β+) deay were arried out by Buhmann et al. [Bu01℄, Bergmann et al. [Ber01℄and Mikolas et al. [Mik88℄. Reent studies of the 9Li(β−) deay inlude the works ofNyman et al. [Nym90℄ and Prezado et al. [Pre03℄. Regarding the Gamow-Teller strength,the experimental work of Dangtip et al. [Dan00℄ using the 9Be(n,p)9Li reation shouldalso be mentioned. Although large asymmetries have been observed in the A=9 systemfor deays to exited states [Pre03℄, the deays to the ground states of 9Be and 9Bexhibit no asymmetry. Adjusting for the di�erent spin and isospin harater of the
9Be(g.s.) →9B(Ex=14.655 MeV) transition (using eq. (5.11) and the same proedureas outlined for the A=13 ase), we obtain
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,+ 1

2)
→9 B( 3
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−

, 3
2
,− 1

2)
) =

1
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2
; +1

2
; 1;−1|3

2
;−1

2
〉2

〈3
2
;−3

2
; 1; 1|1

2
;−1

2
〉2 · 0.0183(5)

=
1

3
· 0.0183(5) = 0.0061(2) (5.20)using the 9C(β+) deay and B(GT)=0.0060(2) taking the 9Li(β−) deay value. In thepresent study, we shall use the value B(GT,9Beg.s. →9B14.6 MeV)=0.00607(18) as thealibration value for the Gamow-Teller unit ross-setion.



5.6. Gamow-Teller strengths for the 9Be target 101As for the A=13 ase, using this transition to alibrate the GT unit ross-setion hasthe disadvantage that the Q-value for this beta-deay is rather large (∼16 MeV) whihmeans that the momentum transfer for this transition is relatively large. The value ofthe ross-setion at zero momentum transfer has to be extrapolated (see 5.1) using thefator F(ω,0◦). This is however the only pratiable way sine there is no ground statebeta-deay of 9B.Using F(ω=15.74 MeV,0◦)=0.836 and the zero-degrees ross-setion extrapolatedfrom the data (0.135(1) mb/sr), one obtains
dσ

dΩ

∣

∣

∣

q=0,Θ=0
(Ex = 14.655MeV ) = 0.161(2) mb/sr. (5.21)Using this value and B(GT)=0.00607(18) to alibrate, the GT unit ross-setion is26.5(8) mb/sr, whih is onsistent with the value of 26.13 mb/sr obtained from the sys-tematis. The errors do not inlude the systemati errors stemming from the beam nor-malization and the target thikness, both of whih are signi�ant. Using the R2=3.73(59)value from the systematis4, the Fermi unit ross-setion obtained is
σ̂F =

26.5(8)

3.7(6)
= 7(1) mb/sr. (5.22)The Fermi unit ross-setion derived from the R2 systematis an be used to extrat theB(GT) strength in the ground state transition (9Beg.s. →9Bg.s.). Following eq. (5.4), weobtain (assuming one more that the total B(F)=N-Z=1 strength is onentrated in theIAS)

dσ

dΩ
(Ex = 0)

∣

∣

∣

q=0,Θ=0
= σ̂F · 1 + σ̂GT · B(GT ;9 Beg.s. →9 Bg.s.)

⇔ B(GT ;9 Beg.s. →9 Bg.s.) =
1

R2







dσ
dΩ

(Ex = 0)
∣

∣

∣

q=0,Θ=0

σ̂F
− 1







= 0.66(18) (5.23)All other B(GT) strengths in 9B were obtained by dividing the extrapolated zero-degrees, q=0 ross-setion by the determined σ̂GT . The results are summarized in ta-ble 5.8 and the B(GT) strength distribution is shown in �g. 5.28.
4The error is derived from the error of the systematis indiated in [Zeg07℄ (5% for σ̂GT and 15%for σ̂F ), ∆R2=√

(0.05 ·R2)2 + (0.15 ·R2)2



102 CHAPTER 5. EXTRACTION OF GAMOW-TELLER STRENGTHSTable 5.8: B(GT) values for 9Be(g.s.)→9B(Ex) alulated using the GT unit ross-setion obtained by alibrating with the T=3/2 beta-deay values. The errors are onlystatistial (arising from the �tting of the triton spetra).
(a) Obtained by using the B(GT) values from the 9Li(β−) and 9C(β+) deays to determine the GT unitross-setion (see text)
(b) Obtained using R2 from systematis (see text)
(c) as disussed in setion 4.6, the bump-like struture around 14.9 MeV most probably onsists ofseveral states, all of whih may not be GT states. The analysis of the angular distribution supports anoverall ∆L=0 harater, but as a preaution the B(GT) value is given as an upper limit. This valuewas inluded in the total sum of B(GT) strength.

Ex F (0◦, ω) dσ
dΩ

(0◦) dσ
dΩ

(q = 0) B(GT)[keV℄ [mb/sr℄ [mb/sr℄ present data(a)0.0(3) 0.997 24.53(6) 24.61(6) 0.66(18)(b)2358(7) 0.985 6.29(1) 6.38(1) 0.241(8)2730(70) 0.983 18.71(20) 19.0(2) 0.718(24)3930(100) 0.974 9.31(5) 9.56(5) 0.360(12)12245(56) 0.875 0.732(9) 0.836(10) 0.0315(11)14101+50
−90 0.845 0.461(6) 0.545(7) 0.0205(7)14652(3) 0.836 0.135(1) 0.161(2) 0.0061(2)14895 0.832 0.494(7) 0.594(9) ≤0.0224(8)(c)16050(40) 0.812 0.065(1) 0.0806(18) 0.00304(12)17076(4) 0.793 0.0705(8) 0.0889(1) 0.00335(11)

Σ 2.07(18)
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 0  2  4  6  8  10  12  14  16  18Figure 5.28: Distribution of B(GT) strength in 9B obtained from the 9Be(3He,t)9B experiment.The arrows indiate the very weak strengths at 16.05 and 17.08 MeV.



CHAPTER 6. INTERPRETATION OF THE OBTAINED RESULTS ANDCOMPARISON WITH PREVIOUS STUDIES
Chapter 6Interpretation of the obtainedresults and omparison withprevious studies
6.1 GT strength in 13NThe B(GT) strengths obtained in the present 13C(3He,t)13N experiment were alreadygiven in table 5.7, and ompared to the results obtained by Wang et al. in [Wan01℄. Wewill now ompare these results in more detail.It has been known for some time, espeially from the works of Watson et al. [Wat01,Wat85℄, that there are anomalies in the onversion of CE ross-setions to GT strengthwhen onsidering the ground state to ground state transitions in odd-A nulei (espeiallyfor the targets 13C,15N and and 39K). Charge-exhange measurements using the (p,n)reation [Wat01℄ found that the Gamow-Teller fration fGT = σGT /(σF + σGT ) in theground state transitions is typially 10% larger than predited from beta-deay matrixelements and the systematis of even-A (p,n) results.Both the studies of Watson et al. [Wat01, Wat85℄ and the more reent studies ofZegers et al. [Zeg07, Zeg08℄ onlude that this e�et is due to an interferene between
∆L=0 and ∆L=2 amplitudes whih breaks the general proportionality between the beta-deay strength and the experimental ross-setion. While Watson et al. speulate thatthis is due to ∆-isobar admixtures in the reation mehanism [Wat85℄, Zegers et al.found [Zeg07, Col06, Zeg08℄ that a theoretial desription of the ross-setion usingDWBA with the e�etive interation of Love and Franey yields values onsistent withsystematis when the e�et of the tensor-τ (V T

τ ) part of the interation is aountedfor. The onsequenes of both desriptions are similar (interferene of ∆L=0 and ∆L=2amplitudes that break the proportionality for ground state to ground state transitions forodd-A target nulei).This auses the unit ross-setions derived from harge-exhange experiments onthese nulei (when using odd-A systematis) to deviate by about 10-15% from theproportionality. Zegers et al. [Zeg08℄ found that the ontribution from the tensor-τ part
103



104
CHAPTER 6. INTERPRETATION OF THE OBTAINED RESULTS ANDCOMPARISON WITH PREVIOUS STUDIES

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10  12  14  16  18

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10  12  14  16  18

B
(G

T
;E

x
)

B
(G

T
;E

x
=

3
.5

M
eV

)

B
(G

T
;E

x
)

B
(G

T
;E

x
=

3
.5

M
eV

)

Ex[MeV]

Ebeam=140 MeV/A
(present data)

13C(3He,t)13N

13C(p,n)13N
Ep=197 MeV
(Wang et al. 2001)
[B(GT) corrected by factor 1.21]

Figure 6.1: Comparison of the ratios of the B(GT) strength of exited states in 13N withrespet to the 3.5 MeV B(GT) strength. The data of Wang et al. [Wan01℄ was re-alibrated tothe 15.1 MeV transition (see text).



6.1. GT strength in 13N 105of the e�etive interation inreases the Fermi part of the ground state ross-setionby about 16% (from 5.1(5) mb/sr to 5.9(5) mb/sr) while it dereases the GT partof the ground state ross-setion by 16% (from 5.0(2) mb/sr to 4.2(2) mb/sr). The
σ̂GT values derived from the systematis are thus too large when alibrating with theground state transitions, and all B(GT) values for higher exited states obtained fromthe proportionality relation are thus smaller than they should be. A alibration witha transition where suh interferenes are not signi�ant (e.g. pure GT transitions likethe 15 MeV beta-deay of 13O to 13N) is thus the better hoie and o�ers a way toempirially test the proportionality breaking when a ground-state beta-deay is available,suh as for the 13N ase.In the ase of 13N, the problems were ompouded by the fat that the 15.1 MeVstate is ontaminated by the ground state of 12N whih has nearly the same Q-value.Charge-exhange measurements using the (p,n) probe were unable to separate bothstates, whih is one of the main reasons Wang et al. [Wan01℄ hose to determine B(GT)values from their (p,n) experiment by relying on the systematis of unit ross-setions.If their B(GT) value of B(GT,Ex=15.1 MeV)=0.19 were taken as referene value, alltheir B(GT) values would have to be inreased by about 21%, whih would e.g. bringthe B(GT) value of the 3.5 MeV transition (1.06(5)·1.21=1.28(7)) in-line with the resultof (3He,t) studies (1.37(7) [Zeg08℄, and 1.29(6) (present work)) and shell-model results(1.50 with the CKII interation with 67%-quenhing [Zeg08℄ and 1.34 with the WBTinteration [Wan01℄). The results obtained are shown in table 6.1 and ompared tothe results of Wang et al. if realulated using the 15.1 MeV state ross-setion as areferene. The B(GT) ratios obtained by dividing the B(GT) strength of an exited stateby the strength of the 3.5 MeV state are shown in �gure 6.1 and �gure 6.2.While the results for the states with rather large ross-setions agree quite well, thosewith smaller ross-setions learly do not. This is most ertainly a result of the highersensitivity and resolution of the (3He,t) reation ompared to the (p,n) experiment.The B(GT) values for the strong and well-separated 3.5 MeV state agree if thealibration is made with the 15.1 MeV state. The states at 8.88 and 9.48 MeV annotbe well separated in the (p,n) reation, while the (3He,t) reation learly separates them.While the present study obtains a higher B(GT) for the 8.88 MeV state (0.23(1) vs0.19(1) in (p,n)), it also obtains a lower value (0.055(3) vs 0.099(5)) for the 9.48 MeVstate. If both strengths are added together, the present study obtains B(GT,8.88+9.48MeV)=0.285 while Wang et al. would obtain 0.288 (if alibrating with the 15.1 MeVstate). The B(GT) of the 10.81 MeV and 11.88 MeV states, whih are separated in thespetra, agree with the results of [Wan01℄, however they are smaller than the resultsobtained if the (p,n) data is alibrated with the 15.1 MeV state.The most important deviation (by about a fator of four) is observed for the GTstrength of the 13.47 MeV state. As has been disussed in 4.5, the present experimen-tal study distinguishes two separate states around this exitation energy. The B(GT)strength of 0.036(2) given represents the strength of the sharper state with width of 440keV. The present study assumes that the broader state (Γ ≈4.5 MeV) is not a GT stateand thus its ross-setion does not result in a orresponding GT strength. The (p,n)reation is ertainly unable to distinguish both states (see spetrum shown in [Wan01℄
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6.2. B(GT) strengths in 9B 107ompared to �g. 4.6 in this work).The same e�et is most probably playing into the 50% larger B(GT) value determinedin (p,n) for the 18.4 MeV state. As an be seen in �g. 4.9, the (p,n) reation ross-setion ertainly has a large admixture of strength resulting from the states at 17.8 and18.2 MeV whih do not have ∆L=0 nature and should thus not give rise to any B(GT)strength.Table 6.1: B(GT) values for 13C(g.s.)→13N(Ex) by various authors. B(GT) values from[Wan01℄ were obtained from (p,n), B(GT) values from [Zeg08℄ from (3He,t).
(a) Obtained by using the ft value for the 15.06 MeV transition to determine the GT unit ross-setion
(b) Obtained by using the ground state transition and using R2 mass number systematis to extrat theGT unit ross-setion
(c) Wang et al. alulated σ̂GT by normalizing to the Fermi transition and using the empirial ratioR2=σ̂GT /σ̂F obtained with even targets in the (p,n) reation. The values were realulated from theross-setions indiated in [Wan01℄ using the indiated statistial errors.
(d) Values that would be obtained from the (p,n) data of Wang et al. if they had alibrated with the15.1 MeV state, and the indiated 15.1 MeV ross-setion is indeed the 13C(p,n) ross-setion.
(e) Zegers et al. [Zeg08℄ obtained B(GT)=1.37(7) for this state in their (3He,t) study.
(f) The results obtained from the shell model alulations both inlude the phenomenologial quenhingof about 0.67 for the Gamow-Teller strength. The values from [Zeg08℄ were derived using the CKIIinteration, while the values from [Wan01℄ were derived from the WBT interation.
(g) Value derived from the 13N(β+) deay
(h) alibration value for σ̂GT used in the present work and in [Zeg08℄, also used for olumn 5.Ex B(GT)(a) B(GT)(b) B(GT)(c) B(GT)(d) B(GT)(f)

SM B(GT)(f)
SM[MeV℄ present work present work [Wan01℄ (×1.21) [Zeg08℄ [Wan01℄0 0.205(2)(g) 0.205(2) 0.2 0.2(g) 0.19 0.173.5 1.29(6)(e) 1.19(10) 1.06(5) 1.29(6) 1.5 1.348.88 0.23(1) 0.21(2) 0.156(8) 0.189(9)9.48 0.055(3) 0.050(4) 0.082(4) 0.099(5)10.81 0.113(5) 0.104(9) 0.116(6) 0.141(7)11.88 0.41(2) 0.37(3) 0.39(2) 0.47(2)13.47 0.036(2) 0.033(3) 0.123(7) 0.149(8)15.06 0.23(1)(h) 0.21(2) 0.19(1) 0.22(1) 0.23 0.2918.4 0.026(1) 0.024(2) 0.033(2) 0.040(2)

6.2 B(GT) strengths in 9BPrevious harge-exhange studies of 9B inlude the 9Be(p,n)9B reation at Ep=135 MeVstudies by B.G. Pugh in his Ph.D. thesis at MIT [Pug85, Faz82℄. While Pugh was notable to give B(GT) values due to the lak of beta-deay data (and the di�ulty to resolvethe weakly exited state at 14.6 MeV), di�erential ross-setion values for the exitedstates in 9B are given in his thesis.These ross-setions an be used to obtain a omparison to the present (3He,t) data
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CHAPTER 6. INTERPRETATION OF THE OBTAINED RESULTS ANDCOMPARISON WITH PREVIOUS STUDIESTable 6.2: Comparison of the ratio obtained by dividing the B(GT) strength of an exitedstate by the B(GT) strength of the state at 3.5 MeV for the present data and the (p,n)data of Wang et al. [Wan01℄. The (p,n) data has been realibrated to the 15.1 MeVstate (see text). The data is ompared graphially in �gure 6.2Ex

B(GT ;Ex)
B(GT ;3.5)

B(GT ;Ex)
B(GT ;3.5)[MeV℄ (present data) (Wang et al. [Wan01℄, realibrated)0 0.159(7) 0.159(7)3.5 1.00(6) 1.00(7)8.88 0.18(1) 0.15(1)9.48 0.042(3) 0.077(6)10.81 0.088(6) 0.109(7)11.88 0.32(2) 0.37(2)13.47 0.028(2) 0.116(9)15.06 0.18(1) 0.17(1)18.4 0.020(1) 0.031(2)by onverting them to B(GT) values using the present results. It would not be wise toalibrate the (p,n) data using the 14.6 MeV T=3/2 state, as the resolution and sensitivityof the (p,n) reation is not good enough to isolate the strength of this state (see spetrumin [Pug85℄). Instead a alibration by using the strongest pure GT state, the 5/2− stateat Ex=2.36 MeV was made. The alibration value used was B(GT)=0.241(8) taken fromthe present high-resolution (3He,t) experiment (see table 5.8 in 5.6). The results of thedetermination of B(GT) values derived from the (p,n) ross-setions is shown in table 6.3,and the B(GT) ratios obtained by dividing the B(GT) strength of an exited state bythe strength of the 2.36 MeV state are shown in �g. 6.3. The zero-degree ross-setionsobtained by Pugh were onverted to q=0 ross-setions by alulating the F(ω) fatorin DWBA, using the proton bombarding energy of Ep=135, and the optial potentialparameters Pugh used for the �tting of ross-setions in his experiment (VR=16.2 MeV,rR=1.2 fm, aR=0.66 fm, WI=11.1 MeV, rI=1.28 fm and aI=0.63 fm [Pug85℄). Thealibration to the B(GT) strength of the 2.36 MeV state yields a GT unit ross-setionof

σ̂
(p,n)
GT =

2.13(4) mb/sr

0.241(8)
= 8.85(34) mb/sr (6.1)whih agrees well with the systemati trend of the (p,n) GT unit ross-setions (see�g. 1.3 in the introdution). All q=0 ross-setions (exept for the ground state) werethen divided by σ̂(p,n)

GT to obtain the orresponding B(GT) strength. The ground statewas treated using eq. (5.23) sine there is no beta-deay data available. The Fermi toGamow-Teller unit ross-setion ratio was taken from the systematis for (p,n) experi-ments [Tad87℄, assuming a 10% error:
R2 =

(

Ep(MeV )

55

)2

= 6.0(6) (6.2)The B(GT) value for the ground state transition obtained in this way is B(GT,Ex=0) =



6.2. B(GT) strengths in 9B 1090.91(15), whih agrees with the value of 0.66(18) obtained from the (3He,t) data withinthe errorbars.Table 6.3: B(GT) values for 9Be(g.s.)→9B(Ex) alulated from the ross-setion dataobtained by Pugh in his 9Be(p,n) experiment [Pug85, Faz82℄. Like in the omparisonwith (p,n) data for the 13C target, the B(GT) values of strong and well-separated GTstates agree with the (3He,t) results, while weaker states and states that are near to other
∆L≥1 states that annot be resolved in the (p,n) reation result in muh higher B(GT)values sine the ∆L≥1 often annot be properly separated in the (p,n) experiment dueto lower resolution.
(a) The F-Fator was determined by DWBA using the bombarding proton energy of 135 MeV and theoptial potential parameters used by Pugh in his thesis [Pug85℄
(b) The B(GT) values were derived from the zero-degree ross-setions given by Pugh in his the-sis [Pug85℄, using the 2.36 MeV state as a alibration value sine it is the strongest pure GT state. Thereferene value used was B(GT)=0.241(8) obtained from the present (3He,t) study.
(c) The ground state B(GT) was alulated using the equation (5.23), and using the R2 value obtainedfrom (p,n) systematis: R2=(

Ep(MeV )
55

)2 [Tad87℄
Ex F (0◦, ω)(a) dσ

dΩ
(0◦) dσ

dΩ
(q = 0) B(GT)[MeV℄ [mb/sr℄ [mb/sr℄ derived from [Pug85℄(b)0 0.995 9.52(4) 9.56(4) 0.91(15)(c)2.36 0.98 2.09(4) 2.13(4) 0.24(1)(b)2.71 0.977 2.83(36) 2.9(4) 0.33(4)2.75 0.977 9.73(29) 10.0(3) 1.13(5)4.3 0.962 2.41(6) 2.50(6) 0.28(1)12.2 0.848 0.230(14) 0.27(2) 0.031(2)14 0.814 0.0657(22) 0.081(3) 0.0091(5)14.6 0.802 0.213(25) 0.27(3) 0.030(4)15.9 0.775 0.0578(59) 0.075(8) 0.0084(9)16.7 0.759 0.0441(50) 0.058(7) 0.0066(8)

Σ 2.98(16)Generally, like in the ase of the 13C target, the B(GT) obtained for the strong statesthat an be resolved in the (p,n) reation agree with the (3He,t) results. In 9B this anonly be said for the ground state, the 2.36 MeV state (whih was used for alibration),and the 12.2 MeV state. Remarkably, the B(GT) value for the 12.2 MeV state (0.031(2)),whih is the strongest of the states at higher exitation energy and is also well separatedfrom other states, agrees ompletely with the (3He,t) value (0.0315(11)).The values for the states with higher exitation energy are all muh larger than themore preise data obtained from (3He,t). The sharp T=3/2 state at 14.6 MeV (whihwas used for the alibration of the (3He,t) data) ould not be separated from the �bump�strength (see 4.6) and the 14 MeV state is not learly separated as well. Comparing thewhole strength in the 14-15 MeV region gives a better result: for the (p,n) data, we obtain
ΣB(GT)=0.0091(5) + 0.030(4) = 0.039(4) and for the (3He,t) data ΣB(GT)=0.049(1)(sum of the strengths of the 14.1 MeV state, the 14.6 MeV state and the 14.9 MeVstate) whih is in muh better agreement than the individual B(GT) strengths.
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Figure 6.3: Comparison of the ratios of the B(GT) strength of exited states in 9B with respetto the 2.36 MeV B(GT) strength. The data derived (see text) from the ross-setions obtainedin Pugh's (p,n) experiment [Pug85℄ are shown in omparison.



6.3. Clusters, the NCSM and beta-deay 111The same separation problem exists for the states given at 15.9 MeV and 16.7 MeVin Pugh's thesis. Both states are near to the 16.8 MeV state and the 17.6 MeV state,both of whih have ∆L≥1 harater and have a signi�ant ross-setion. The B(GT)values of both states being larger by a fator of two in the (p,n) results is therefore notsuprising.The most important di�erene (whih also makes the biggest ontribution to thelarger total B(GT) strength) omes from the treatment of the broad states at 2-3 MeVexitation energy. Here, Pugh gives two ross-setions, for a 2.71 MeV state and a 2.75MeV state, whih yield a total B(GT) value of 1.46, while the B(GT) value from (3He,t)for the 2.73 MeV state is only 0.718(24). The 2.75 MeV state shown in the spetrum�ts in [Pug85℄ has a very unusual shape and seems to be more of a residual strengthrequired to obtain a good �t. Pugh assumed that the broad �bump� around 3 MeV wasmainly the result of a single broad peak, whih he assumed was the 2.75 MeV state.From (3He,t) results with higher resolution, like the study of Akimune et al. [Aki01℄,we now know that the bump is made up of several states with di�erent harater. It istherefore understandable that (while it still an not be ruled out that there are still someweak GT states present in the spetrum in the region 5-9 MeV) the strength obtainedfrom the (p,n) data is far too large.Table 6.4: Comparison of the ratio obtained by dividing the B(GT) strength of an exitedstate by the B(GT) strength of the state at 2.36 MeV for the present data and the dataextrated from the (p,n) ross-setions obtained by Pugh [Pug85℄. The data is omparedgraphially in �gure 6.3.Ex
B(GT ;Ex)
B(GT ;3.5)

Ex
B(GT ;Ex)
B(GT ;3.5)[MeV℄ (present data) [MeV℄ (derived from Pugh [Pug85℄)0 2.7(2) 0 3.8(6)2.358 1.00(4) 2.36 1.00(6)2.73 3.0(1) 2.71 1.4(2)2.75 4.7(3)3.93 1.50(7) 4.3 1.17(7)12.245 0.131(6) 12.2 0.13(1)14.101 0.085(4) 14 0.038(3)14.652 0.025(1) 14.6 0.12(2)14.895 0.093(4)16.05 0.0126(6) 15.9 0.035(4)17.076 0.0139(6) 16.7 0.027(3)

6.3 Clusters, the NCSM and beta-deayStudies of B(GT) strength in light nulei are an important testing ground for theoretialnulear struture alulations, as has been shown e.g. for the nuleus 11B [Fuj04b℄.
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CHAPTER 6. INTERPRETATION OF THE OBTAINED RESULTS ANDCOMPARISON WITH PREVIOUS STUDIESThe B(GT) transition strengths are an important observable that state-of-the art nu-lear struture alulations like ab initio alulations (no ore shell model, NCSM) orluster alulations (antisymmetrized moleular dynamis (AMD) or fermioni moleulardynamis (FMD)) must be able to reprodue. The B(GT) strengths also give someinsight into the nulear struture. This will be illustrated here for the 9B ase.Table 6.5: Shell model preditions for the lowest levels in 9B. The values are taken fromthe work of Mikolas et al. [Mik88℄. Four interations were onsidered and are given in thisorder in the table: Cohen-Kurath CK-2BME [Coh65℄, Millener [Mik88℄, Kumar [Kum74℄and Cohen-Kurath CK-POT [Coh65℄.Jπ Ex(SM) B(GT;Ex) Experiment[MeV℄ (SM) (present work)3/2- 0 0.647 B(GT)=0.66(18)0 0.617 Ex=00 0.569 Jπ=3/2-0 0.6035/2- 2.64 0.145 B(GT)=0.241(8)3.03 0.177 Ex=2358(7)2.43 0.145 Jπ=5/2-2.95 0.1811/2- 3.02 0.655 B(GT)=0.718(24)2.75 0.653 Ex=2730(70)3.25 0.651 Jπ=1/2-1.79 0.6383/2- 5.09 0.243 B(GT)=0.360(12)4.87 0.292 Ex=3930(100)5.49 0.303 Jπ=(1/2-,3/2-,5/2-)4.66 0.300An immediately obvious feature of the B(GT) strength distribution in 9B (�g. 5.28)is that the B(GT) strengths above 12 MeV exitation energy are one order of magnitudesmaller (even two orders of magnitude smaller starting from 14.6 MeV) than the B(GT)strengths of the states with exitation energy 0-4 MeV.To understand this, it must be remembered that the B(GT) strength is an expressionof the ation of the στ operator, whih by its simple form annot hange the spatialshape of the nuleus. The fat that B(GT) strengths to the higher exited energies arestrongly suppressed therefore suggests that the states lying in the exitation energy rangeof the ground states of the Tz=±3/2 nulei 9Li and 9C and above have a di�erent spatialstruture. A similar behaviour an be observed in the beta-deays of these Tz=±3/2nulei to the Tz=±1/2 nulei 9Be and 9B (see �gure 6.4). Reent high-preision beta-deay measurements of 9C(β+)9B [Ber01, Pre03, Bu01℄ and 9Li(β−)9Be [Nym90℄ learlyshow that the transitions from the ground state of these nulei to the ground states of

9Be and 9B have very weak B(GT) strengths, while transitions to the highly exited



6.3. Clusters, the NCSM and beta-deay 113states have very large B(GT) strengths. This is the same e�et as the one observed inthe (3He,t) harge exhange reation, where the transitions between the ground statesand states with low exitation energy have large B(GT) strengths whereas the B(GT)strength to states with higher exitation energy above 14 MeV are strongly suppressed.This fat is illustrated in �gure 6.5.The desription of states with di�erent spatial strutures is a big hallenge for theshell model. While standard shell model alulations (see table 6.5) are able to preditquite well the exitation energy and B(GT) strengths of the lowest levels, the higherexitation energies and B(GT) values ould not be reprodued.Reent ab initio shell model alulations using a three-body interation (TNI) [Nav07,For05℄ have been quite suessful in the desription of higher exited states in light nulei.Navratil et al. report a B(GT) value for the sharp T=3/2 states that is in agreement withour experimental results while the exitation energies only di�er by about 800 keV [Nav℄(the older shell model alulations underpredited the exitation energies of these statesby around 2 MeV [Mik88℄).
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CHAPTER 7. SUMMARY
Chapter 7Summary
Exited states in the light nulei 9B and 13C were studied using the (3He,t) harge-exhange reation on 9Be and 13C targets. The measurements were performed at theresearh enter for nulear physis (RCNP) in Osaka, Japan, using the magneti spe-trometer Grand Raiden and the dispersive WS ourse. The 3He beam with an energyof 420 MeV was aelerated by the RCNP Ring Cylotron.The Grand Raiden spetrometer and the WS ourse allow to study the (3He,t)harge-exhange reation with an energy resolution of around 30 keV, whih is oneorder of magnitude better than measurements with the (p,n) harge-exhange reation.The high resolution allows to better separate individual states and to determine weakexitation strenghts beause of low bakground in the spetra. For both the 9Be andthe 13C targets, exited states ould be studied in the harge-exhange reation with apreision that was previously not available. This made it possible to get more preise andomplete information on exitation energies and deay widths of exited states in thesenulei. A total of 19 states in 13N were studied, and a total of 20 states were observedin 9B. Of these, 9 states in 13C and 10 states in 9B were identi�ed as being exited bya Gamow-Teller transition.Charge-exhange reations are related to beta-deay, and at zero momentum transfera simple proportionality exists between the ross-setion of the harge-exhange exper-iment and the Fermi (F) or Gamow-Teller (GT) beta-deay strength. While the Fermistrength B(F) is onentrated in the transition to the isobari analog state, the Gamow-Teller strength B(GT) is sattered among the exited states. The main aim of the presentstudy was to determine the B(GT) strengths in the nulei 9B and 13N.The only harge-exhange study of 9B was made 30 years ago with the (p,n) reationand a resolution of around 300-400 keV. Many states, espeially at high exitation energy,ould not be resolved by this study. The present work was able to separate many weaklyexited states with small deay width at high exitation energies (12-19 MeV) in 9Band determine the B(GT) strength distribution by using reent high-preision beta-deaydata. This was a signi�ant improvement over the (p,n) study whih was unable todisern among these states. The results point to a strong di�erene in spatial struturebetween the low-lying levels of 9B and the levels with high exitation energy. Thisresult is also orroborated by beta-deay measurements and theoretial alulations.
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118 CHAPTER 7. SUMMARYFurthermore, the deay width and exitation energy information of the highly exitedstates in 9B was substantially improved.The nuleus 13N has last been studied in 2001 using the (p,n) reation. A (3He,t)experiment was also performed at the RCNP Osaka a few years ago (2004), howeverwith a lower resolution of around 300 keV. In the present work, the (3He,t) reationwith high resolution (30 keV) was used to determine the B(GT) strength distribution in
13N. For the �rst time, the 13N T=3/2 state at 15.1 MeV ould be separated from theontaminant 12N state whih lies at nearly the same exitation energy in the spetrum,allowing a unambiguous alibration of the GT unit ross-setion. This alibration alloweda preise determination of B(GT) strengths in 13N whih on�rms the main results of the(p,n) analysis, but provides results going beyond the (p,n) study beause some states andtheir ross-setion ould be better isolated owing to the high resolution of the (3He,t)data and the high target enrihment.



APPENDIX A. BEAM OPTICS
Appendix ABeam optis
This appendix hapter ontains the detailed derivation of equations (2.1),(2.2),(2.3)introdued in 2.4.A.1 Beam oordinatesA beam line an be idealized as a set of magneti elements that are plaed sequentiallyat intervals along an (assumed) referene trajetory. This referene trajetory (or entraltrajetory) is the path of a harged partile produed by the beam soure with the designmomentum p0 that is passing through ideal magnets (i.e. with no fabriation or posi-tioning errors). As neither the magneti elements nor the beam soure an be assumedto be perfet, a realisti beam is always broadened. The design of the beam line and thetuning of the magneti parameters an however provide means to ensure mathing of adispersed and di�rated beam to the spetrometer to get optimal measuring onditions(e.g. a high resolving power).

p0

θ

φ
x

y

reference trajectory

arbitrary ray p

Figure A.1: Geometrial representation of the arbitrary ray with respet to the assumed entralbeam trajetory and the omponents of ~v as given in eq. A.1.For theoretial purposes, we an model the position of a harged partile in the beam
I



II APPENDIX A. BEAM OPTICSline (following the widely used notations of the omputer ode TRANSPORT [Car98℄)as a vetor ~v (that will also be referred to as ray) with six omponents
~v =
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φ
l
δ

















(A.1)
whih are (see illustration in �g. A.1:
• x = the horizontal displaement of the arbitrary ray with respet to the referenetrajetory
• θ = the angle between the ray and the referene trajetory in the horizontal plane(horizontal angle)
• y = the vertial displaement of the ray with respet to the referene trajetory
• φ = the angle between the ray and the referene trajetory in the vertial plane(vertial angle)
• l = the path lenght di�erene between the ray and the entral trajetory
• δ = ∆p/p0 is the frational momentum deviation of the ray from the assumedentral trajetory.To be strit, θ and φ are not really angles but tangents of angles (tan θ,tanφ) butthe di�erene between an angle and its tangent is of third order for angles lose to zeroso that they an be referred to as angles. The loal oordinate system is shown in �g.A.2.A.2 Beam transformationIn �rst order, the ation of a magneti lens on the partile oordinates an be representedby a square matrix R. Taking ~v0 as initial oordinate vetor of the onsidered partile and

~v1 as the �nal (transformed) oordinate vetor, the ation of a magnet an be desribedby the equation
~v1 = R~v0 (A.2)The same matrix R an be used for all partiles going through the magnet, sinethey only di�er in their initial oordinates ~v0.



A.2. Beam transformation III
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Figure A.2: The loal oordinate system shown before and inside a bending magnet. Thelongitudal oordinate is marked as z. The distane along the referene trajetory is usuallymarked as s. In a �eld-free region, s and z are the same. However, inside a bending magnet,the oordinate s is urvilinear and follows the entral trajetory, while z remains retilinear andis tangent to the entral trajetory.When going through a system of magnets and drift spaes (the beam line), thetransforming e�ets an be umulated in a single umulative transfer matrix whih isthe produt matrix of the individual transformation matries:
R(t) = R(n)R(n− 1) · · ·R(3)R(2)R(1) (A.3)If we now only onsider bending magnets ating on the horizontal omponent of thebeam, the 6×6 matries an be redued to 3×3 square matries if we don't onsider thepath lenght di�erene l in our alulations. So let us onsider a beam originating froma soure point at the beginning of the beam line with omponents x0,θ0,δ0. This beamis transported to the target and its omponents are transformed under the ation of thebeam line matrix B̂=(bij) and just before hitting the target the ray has the omponents

x1,θ1,δ1. The energy is not hanged inside the beamline, whih means that δ1 = δ0.Thus we an write:
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(A.4)
=





b11x0 + b12θ0 + b13δ0
b21x0 + b22θ0 + b23δ0

δ0



 (A.5)At the target, the beam partiles are sattered. Assuming a sattering angle α anda target angle relative to the entral ray of the beam of φT , the horizontal distane of asattered non-entral ray hanges (see �g. A.3) from x1 to x2 and the transformationan be easily derived from the �gure:
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Figure A.3: Sattering situation at the target in the horizontal plane.
L = x1

cos φT
= x2

cos ǫ

π = π
2
− α + φT + π

2
+ ǫ

=⇒ ǫ = α− φT ; x2 =
cos(α− φT)

cosφT
x1 (A.6)The fator transforming the horizontal displaement of the ray at the target is alledtarget funtion and will be alled T . Thus, we already have the transformation of the�rst oordinate of the ray at the target:

x2 = T · x1 =
cos(α− φT )

cosφT

x1 (A.7)The transformation of the horizontal angle an also easily be derived from �g. A.3.The inident beam has a horizontal angle θ1 relative to the entral trajetory. Thesattered partile has a relative horizontal angle θ2. Introduting the free parameter
Θ = θ2 − θ1 as "e�etive sattering angle" (the real sattering angle of the non-entralray would be α + θ2 − θ1) [Fuj97℄, we get

θ2 = θ1 + Θ (A.8)as transformation for the horizontal angle of the partile ray. The only issue left toonsider is the transformation of the frational momentum deviation δ1 to δ2. In orderto alulate it, the following de�nition an be used:
δ2 =

∆pout

pout
(A.9)



A.2. Beam transformation Vand the di�erential ∆pout (pout depends on the sattering angle α and the inidentmomentum pin) an then be alulated as
∆pout =

∂pout

∂α
∆α +

∂pout

∂pin
∆pin (A.10)Further using the relations ∆α = θ2 − θ1 = Θ (the horizontal angle di�erenebetween the sattering angle of the entral trajetory and the sattering angle of thenon-entral ray) and ∆pin = pin · δ1 (see eq. A.9) we obtain

δ2 =
1

pout

(

∂pout

∂α
Θ +

∂pout

∂pin
pinδ1

) (A.11)where δ1 = δ0 (eq. A.4). Introduing the kinemati fator K and the relativemomentum ratio C de�ned as
K =

1

pout

∂pout

∂α
(A.12)

C =
pin

pout

∂pout

∂pin

(A.13)we an rewrite eq. A.11 as
δ2 = KΘ + Cδ1 (A.14)We now have the transformations for all three omponents of the ray, and an thuswrite down the ray omponents diretly after the sattering as a funtion of the initialoordinates x0,θ0,δ0:





x2

θ2
δ2



 =





Tb11x0 + Tb12θ0 + Tb13δ0
b21x0 + b22θ0 + b23δ0 + Θ

KΘ + Cδ0



 (A.15)The last transformation is the beam trajetory inside the magneti spetrograph,whih we will desribe by the matrix Ŝ (one again the energy of the beam is nothanged here, so s31 = s32 = 0 and s33 = 1). The end oordinates of the ray on thefoal plane of the detetor are de�ned as x,θ,δ. The transformation gives:




x
θ
δ



 =





s11 s12 s13

s21 s22 s23

0 0 1



 ·





Tb11x0 + Tb12θ0 + Tb13δ0
b21x0 + b22θ0 + b23δ0 + Θ

KΘ + Cδ0



 = (A.16)




x0(s11b11T+s12b21)+θ0(s11b12T+s12b22)+δ0(s11b13T+s12b23+s13C)+Θ(s12+s13K)

x0(s21b11T+s22b21)+θ0(s21b12T+s22b22)+δ0(s21b13T+s22b23+s23C)+Θ(s22+s23K)

KΘ+Cδ0



(A.17)



VI APPENDIX A. BEAM OPTICSThe end result at the foal plane is thus
xfp = x0 (s11b11T + s12b21)

+ θ0 (s11b12T + s12b22)

+ δ0 (s11b13T + s12b23 + s13C)

+ Θ (s12 + s13K) (A.18)
θfp = x0 (s21b11T + s22b21)

+ θ0 (s21b12T + s22b22)

+ δ0 (s21b13T + s22b23 + s23C)

+ Θ (s22 + s23K) (A.19)
δfp = δ2 = KΘ + Cδ0 (A.20)



APPENDIX B. ANGULAR CALIBRATION PROCEDURE
Appendix BAngular alibration proedure
The following hapter desribes in detail the alibration proedure to obtain a goodde�nition of the sattering angle, as well as spetra with a high energy-resolution, whihwas brie�y summarized in hapter 3. It is strutured in two parts, whih follow thehronologial order of the data proessing: �rst the reonstrution of the satteringangle using a multi-hope slit (sieve), then the orretion of higher-order aberrations andthe orretion of the spetra.B.1 Reonstrution of the sattering angleIn order to obtain a high-resolution spetrum for the reation at 0◦ sattering angle,the sattering angles θtgt and φtgt at the target have to be reonstruted from the foalplane observables θfp and yfp. A good way to ahieve this is the sieve slit tehniqueusing the over-fous mode of the Grand Raiden spetrometer [Fuj01℄. A multi-hole slitwith well-known metris is plaed behind the target and a spetrum is reorded. Thedeformed image of the sieve slit is then used to obtain the orret sattering angles forthe raytraed events. The proedure will be explained in detail in this setion.The deformation of the original sieve image is a funtion of several variables. Thedeformation depends on the x-position at the foal plane, as well as the angle oordinates
θfp and yfp at the foal plane. For the orretion method desribed here, we will assumethat

φtgt = φtgt(yfp, θfp, xfp) =

3
∑

i=0

3
∑

j=0

1
∑

k=0

aijkx
i
fpθ

j
fpy

k
fp (B.1)

θtgt = θtgt(yfp, θfp, xfp) =

2
∑

i=0

4
∑

j=0

2
∑

k=0

bijkx
i
fpy

j
fpθ

k
fp (B.2)whih requires 77 parameters in total to reonstrut the sattering angles (32 pa-rameters for the vertial sattering angle and 45 parameters for the horizontal sattering

VII



VIII APPENDIX B. ANGULAR CALIBRATION PROCEDUREangle). This number may seem large, but onsider that approximately 40 hole images ofthe sieve slit an be seen at the foal plane for eah foal plane position. Sine sieve slitimages were taken for ten di�erent regions at the foal plane, this gives a total amountof roughly 400 data points whih have to be �tted in order to reonstrut the satteringangles at the target. The following setions will explain in detail how the parameters inequations (B.1) and (B.2) were derived.The �rst step requires to obtain the �distorted� images of the sieve slit for various
xfp positions at the foal plane. Nine suh images were obtained for di�erent x-regionsas shown in �g. B.1.
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Figure B.1: Images of the sieve slit at nine di�erent x-positions at the foal plane. Theseimages were used to reonstrut the sattering angles θtgt and φtgt at the target from the foalplane observables via the known dimensions of the sieve.These images, whih show a θfp vs yfp plot of triton events, an subsequently beslied in �rows� and �olumns� to determine the distorted positions of the original θtgtand φtgt oordinates.



B.1. Reonstrution of the sattering angle IXB.1.1 Reonstrution of φtgt
φtgt as a linear funtion of yfpTo determine the parameters required for the reonstrution of the φtgt angle, the imagesshown in �g. B.1 are slied into �ve �olumns�. For the images with the highest xfpvalues, the �fth olumn ould not always be seen or did not have a su�ient numberof events to be used in the �tting proedure. The olumns orrespond to the the θtgtpositions given in table B.1, derived from the positions of the holes in the sieve slit andthe target-slit distane of 605.5 mm. For olumn 5, it was assumed that observed ountsonly result from partiles originating from the parts of the hole losest to the enter ofthe slit, whose horizontal displaement is 9 mm (instead of 10.5 mm if the enter of thehole is onsidered)Table B.1: θtgt positions orresponding to the olumn numbers.Column θtgt[

◦]Column 1 -0.993(5)Column 2 -0.497(5)Column 3 0.000(5)Column 4 0.497(5)Column 5 0.852(5)For eah of the nine xfp-ranges, �ve olumns are projeted onto the yfp axis, andthe yfp position of the respetive peaks is related to the φtgt position orresponding tothe respetive hole in the sieve slit:
φtgt = a(θtgt, xfp)yfp + b(θtgt, xfp) (B.3)with a and b depending on the x-position and the olumn (i.e. the θ-position). Theresults of the linear �t are summarized in table B.2, and the details of the individualprojetions are shown in the �gures B.3-B.11.
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θ = tan−1(x/d)

φ = tan−1(y/d)
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B       =0.4968°

Figure B.2: Dimensions of the sieve slit. The large hole in the enter is asymetrially installedat a horizontal distane of 3.2 mm. The plaement of the smaller holes is symmetri and allhave the same horizontal and vertial spaing (exept around the large hole). Horizontal andvertial angles resulting from a target-slit distane of 605.5 mm are given in the piture.
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Figure B.3: Projetions of all �ve olumns for the sieve slit image at xfp ∈ [−410,−367] anddetermination of entroids. The entroids are �tted to their respetive original φtgt positionusing a linear funtion. The �tted funtions are shown along with the residuum of the �t.
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Figure B.4: Projetions of all �ve olumns for the sieve slit image at xfp ∈ [−295,−255] anddetermination of entroids. The entroids are �tted to their respetive original φtgt positionusing a linear funtion. The �tted funtions are shown along with the residuum of the �t.
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Figure B.5: Projetions of all �ve olumns for the sieve slit image at xfp ∈ [−140,−80] anddetermination of entroids. The entroids are �tted to their respetive original φtgt positionusing a linear funtion. The �tted funtions are shown along with the residuum of the �t.
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Figure B.6: Projetions of all �ve olumns for the sieve slit image at xfp ∈ [−74,−48] anddetermination of entroids. The entroids are �tted to their respetive original φtgt positionusing a linear funtion. The �tted funtions are shown along with the residuum of the �t.
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Figure B.7: Projetions of all �ve olumns for the sieve slit image at xfp ∈ [−45,−5] anddetermination of entroids. The entroids are �tted to their respetive original φtgt positionusing a linear funtion. The �tted funtions are shown along with the residuum of the �t.
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Figure B.8: Projetions of all �ve olumns for the sieve slit image at xfp ∈ [35, 95] anddetermination of entroids. The entroids are �tted to their respetive original φtgt positionusing a linear funtion. The �tted funtions are shown along with the residuum of the �t.
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Figure B.9: Projetions of all �ve olumns for the sieve slit image at xfp ∈ [115, 190] anddetermination of entroids. The entroids are �tted to their respetive original φtgt positionusing a linear funtion. The �tted funtions are shown along with the residuum of the �t.
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Figure B.10: Projetions of all �ve olumns for the sieve slit image at xfp ∈ [190, 320] anddetermination of entroids. The entroids are �tted to their respetive original φtgt positionusing a linear funtion. The �tted funtions are shown along with the residuum of the �t.
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Figure B.11: Projetions of the �rst four olumns for the sieve slit image at xfp ∈ [340, 520]and determination of entroids. The entroids are �tted to their respetive original φtgt positionusing a linear funtion. The �tted funtions are shown along with the residuum of the �t.
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Table B.2: Results of the linear �t onneting yfp to original φtgt position via φtgt =
ayfp + b.Column x ∈ x ∈ x ∈ x ∈ x ∈

[−410,−367] [−295,−255] [−140,−80] [−74,−48] [−45,−5]Col.1 a .0677(1) .0699(1) .0736(1) .0748(2) .0757(1)b -.022(4) -.014(3) -.016(3) -.017(3) -.018(3)Col.2 a .0752(1) .0778(1) .0821(2) .0835(2) .0844(2)b -.001(3) .010(3) .014(3) .009(3) .001(3)Col.3 a .0802(2) .0832(2) .0874(2) .0887(2) .0897(2)b .017(4) .033(4) .035(1) .030(4) .029(4)Col.4 a .0847(2) .0878(2) .0938(2) .0959(2) .0972(2)b .042(4) .050(4) .051(4) .045(4) .042(1)Col.5 a .0887(3) .0933(3) .1023(4) .1060(5) .1089(4)b .062(5) .074(4) .088(3) .081(6) .079(5)Column x ∈ x ∈ x ∈ x ∈
[35, 95] [115, 190] [190, 320] [340, 520]Col.1 a .0779(1) .0800(2) .0830(2) .0879(2)b -.016(3) -.015(3) -.018(3) -.005(1)Col.2 a .0889(2) .0922(2) .0982(2) .0982(2)b -.000(3) .010(2) .009(2) .006(2)Col.3 a .0923(2) .0953(2) .0994(2) .1080(3)b .022(4) .016(4) .017(4) .019(4)Col.4 a .1015(3) .1066(3) .1141(3) .1323(4)b .039(2) .038(4) .032(4) .025(1)Col.5 a .1179(5) .1227(65) .126(9) .140(15)b .063(5) .05(1) .05(1) .05(1)



B.1. Reonstrution of the sattering angle XXIParameters of the linear funtion as a funtion of θtgtThe parameters a(θtgt, xfp) and a(θtgt, xfp) derived as in table B.2 were subsequently�tted for eah xfp region as a funtion of θtgt. The di�erent olumns of the sieve slitimages orrespond to spei� θtgt values as given in table B.1. The parameters were�tted as third-order polynomial funtions of θtgt:
a(θtgt, xfp) = αa(xfp) + βa(xfp)θtgt + γa(xfp)θ

2
tgt + δa(xfp)θ

3
tgt (B.4)

b(θtgt, xfp) = αb(xfp) + βb(xfp)θtgt + γb(xfp)θ
2
tgt + δb(xfp)θ

3
tgt (B.5)where the �tted parameters αa,b, βa,b, γa,b and δa,b still depend on the foal planeposition xfp. The results of the �t are summarized in table B.3, and the details of theindividual �ts are shown in the �gures B.12-B.20.Table B.3: Results of the �t of a(θtgt, xfp) and b(θtgt, xfp) as a funtion of θtgt fordi�erent xfp positions.

xfp αa βa γa δa-386(5) 0.0802(1) 0.0089(15) -0.0010(3) 0.0026(23)-273(4) 0.0830(2) 0.0092(3) -0.0001(4) 0.0040(4)-107(2) 0.0873(2) 0.0102(4) 0.0029(4) 0.0066(6)-54(3) 0.0886(2) 0.0105(4) 0.0047(5) 0.0082(6)-23(3) 0.0895(2) 0.0108(4) 0.0059(5) 0.0091(7)69(5) 0.0919(2) 0.0121(5) 0.0103(5) 0.0123(7)157(5) 0.0952(2) 0.0154(19) 0.0100(12) 0.0100(13)274(7) 0.0994(3) 0.0187(5) 0.0152(13) 0.0130(14)430(15) 0.1081(3) 0.0293(6) 0.0289(18) 0.0200(18)
xfp αb βb γb δb-386(5) 0.018(3) 0.041(7) 0.007(6) 0.007(10)-273(4) 0.031(3) 0.038(7) 0.005(5) 0.011(9)-107(2 0.035(1) 0.033(7) 0.009(3) 0.028(9)-54(3) 0.026(3) 0.032(8) 0.013(7) 0.025(11)-23(3) 0.020(2) 0.033(5) 0.017(6) 0.023(8)69(5) 0.018(2) 0.036(6) 0.010(6) 0.008(9)157(5) 0.020(3) 0.019(6) 0.008(9) 0.025(1)274(7) 0.018(3) 0.015(6) 0.005(9) 0.027(11)430(15) 0.014(2) 0.016(4) 0.008(9) 0.011(10)
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Figure B.12: Third-order polynomial �t as a funtion of θ for the linear parameters a and b ofthe φtgt = ayfp +b relation for the sieve slit image at xfp ∈ [−410,−367]. The �tted funtionsare shown along with the residuum of the �t.
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Figure B.13: Third-order polynomial �t as a funtion of θ for the linear parameters a and b ofthe φtgt = ayfp +b relation for the sieve slit image at xfp ∈ [−295,−255]. The �tted funtionsare shown along with the residuum of the �t.
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Figure B.14: Third-order polynomial �t as a funtion of θ for the linear parameters a and b ofthe φtgt = ayfp + b relation for the sieve slit image at xfp ∈ [−140,−80]. The �tted funtionsare shown along with the residuum of the �t.

∆b (θtgt)

∆a (θtgt)a (θtgt)

b (θtgt)

θtgt

θtgt θtgt

θtgt 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

−1 −0.5  0  0.5

−0.0004

−0.0002

 0

 0.0002

 0.0004

−1 −0.5  0  0.5

function error

−0.02

 0

 0.02

 0.04

 0.06

 0.08

−1 −0.5  0  0.5

−0.008

−0.006

−0.004

−0.002

 0

 0.002

 0.004

 0.006

 0.008

−1 −0.5  0  0.5

function error

Figure B.15: Third-order polynomial �t as a funtion of θ for the linear parameters a and b ofthe φtgt = ayfp + b relation for the sieve slit image at xfp ∈ [−74,−48]. The �tted funtionsare shown along with the residuum of the �t.
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Figure B.16: Third-order polynomial �t as a funtion of θ for the linear parameters a and b ofthe φtgt = ayfp + b relation for the sieve slit image at xfp ∈ [−45,−5]. The �tted funtionsare shown along with the residuum of the �t.
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Figure B.17: Third-order polynomial �t as a funtion of θ for the linear parameters a and b ofthe φtgt = ayfp + b relation for the sieve slit image at xfp ∈ [35, 95]. The �tted funtions areshown along with the residuum of the �t.
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Figure B.18: Third-order polynomial �t as a funtion of θ for the linear parameters a and b ofthe φtgt = ayfp + b relation for the sieve slit image at xfp ∈ [115, 190]. The �tted funtionsare shown along with the residuum of the �t.
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Figure B.19: Third-order polynomial �t as a funtion of θ for the linear parameters a and b ofthe φtgt = ayfp + b relation for the sieve slit image at xfp ∈ [190, 320]. The �tted funtionsare shown along with the residuum of the �t.
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Figure B.20: Third-order polynomial �t as a funtion of θ for the linear parameters a and b ofthe φtgt = ayfp + b relation for the sieve slit image at xfp ∈ [340, 520]. The �tted funtionsare shown along with the residuum of the �t.



B.1. Reonstrution of the sattering angle XXVIIDetermination of aijk for the reonstrution of φtgtThe parameters αa,b, βa,b, γa,b and δa,b as determined in table B.3 still depend on thefoal plane position xfp. By �tting these parameters as a funtion of xfp up to thirdorder one an �nally obtain the oe�ients aijk required to orret the vertial angle
φtgt:

αa(xfp) = a000 + a100xfp + a200x
2
fp + a300x

3
fp (B.6)

βa(xfp) = a010 + a110xfp + a210x
2
fp + a310x

3
fp (B.7)

γa(xfp) = a020 + a120xfp + a220x
2
fp + a320x

3
fp (B.8)

δa(xfp) = a030 + a130xfp + a230x
2
fp + a330x

3
fp (B.9)

αb(xfp) = a001 + a101xfp + a201x
2
fp + a301x

3
fp (B.10)

βb(xfp) = a011 + a111xfp + a211x
2
fp + a311x

3
fp (B.11)

γb(xfp) = a021 + a121xfp + a221x
2
fp + a321x

3
fp (B.12)

δb(xfp) = a031 + a131xfp + a231x
2
fp + a331x

3
fp (B.13)The oe�ients aijk are given in table B.4, and the �ts are shown in �g. B.21and B.22.Table B.4: Results of the �t of αa,b, βa,b, γa,b and δa,b as a funtion of foal plane position.

a(θtgt, xfp) (k=0) a0j0 (i=0) a1j0 (i=1) a2j0 (i=2) a3j0 (i=3)
αa (j=0) 0.0901(1) 2.80(5)E-05 1.7(2)E-08 2.9(6)E-11
βa (j=1) 0.0111(2) 1.26(21)E-05 4.0(4)E-08 6.6(19)E-11
γa (j=2) 0.0065(2) 3.4(2)E-05 3.3(5)E-08 -9.6(2)E-12
δa (j=3) 0.0093(4) 1.95(27)E-05 1.8(59)E-09 7(15)E-12

b(θtgt, xfp) (k=1) a0j1 (i=0) a1j1 (i=1) a2j1 (i=2) a3j1 (i=3)
αb (j=0) 0.024(1) -7.1(9)E-05 1.3(6)E-07 4.9(7)E-10
βb (j=1) 0.031(3) -5.0(24)E-05 -2.5(35)E-08 1.4(17)E-10
γb (j=2) 0.011(3) 5(24)E-06 -3.4(35)E-08 -2(18)E-11
δb (j=3) 0.022(4) 1(40)E-06 -7.7(54)E-08 6(28)E-11
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B.1. Reonstrution of the sattering angle XXIXB.1.2 Reonstrution of θtgt
θtgt as a quadrati funtion of θfpTo determine the parameters required for the reonstrution of the θtgt angle, the sieveslit plots obtained after the φtgt orretion (previous setion) were slied into seven �rows�and projeted onto the θ-axis. The row numbers orrespond to the rows of the multi-holeslit (see �g. B.2), ounted from the lowest vertial angle (row 1, φtgt=-2.8364◦) to thehighest vertial angle (row 11, φtgt=+2.8364◦). In order to obtain su�ient data pointsfor a �t, the rows 5-7, whih ontain the large hole, were onsolidated into one (row 6would only have three anhor points, while rows 5 and 7 would only ontain data aboutthe fringe of the large hole). The θfp position was determined by �tting the obtainedspetra. In order to reonstrut the horizontal angle at the target, it was assumed that

θtgt = a(φtgt, xfp) + b(φtgt, xfp)θfp + c(φtgt, xfp)θ
2
fp (B.14)with the parameters a, b and c to be determined by �tting the positions obtainedby �tting the row projetions to the sieve position. The results are shown in table B.5,and the details of the �ts (projetions of the rows and �t-funtions) an be found in the�gures B.24-B.37.

φ
tg

t[
◦
]

ROW 2

ROW 1

ROW 3

ROW 4

ROWS

5−7

ROW 8

ROW 9

ROW 10

ROW 11

θfp (◦)Figure B.23: A sieve slit image after the reonstrution of φtgt. To obtain the row projetionson the θfp axis, the image is slied into rows on the φtgt axis as shown in the piture.
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Figure B.24: Projetions for the �ve lowest x-positions of row 2 of the sieve slit image anddetermination of entroids. The entroids are �tted to their respetive original θtgt positionusing a seond order polynomial funtion.
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Figure B.25: Projetions for the �ve highest x-positions of row 2 of the sieve slit image anddetermination of entroids. The entroids are �tted to their respetive original θtgt positionusing a seond order polynomial funtion.
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Figure B.29: Projetions for the �ve highest x-positions of row 4 of the sieve slit image anddetermination of entroids. The entroids are �tted to their respetive original θtgt positionusing a seond order polynomial funtion.
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−1 −0.5  0  0.5Figure B.30: Projetions for the �ve lowest x-positions of rows 5-7 of the sieve slit image anddetermination of entroids. The entroids are �tted to their respetive original θtgt positionusing a seond order polynomial funtion.
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Table B.5: Results of the �t onneting θfp to the original θtgt position via φtgt =
a+ bθfp + cθ2

fp.Row x ∈ [−410,−367] x ∈ [−295,−255]
φtgt a b  a b Row 2 -2.270 0.288(4) 0.943(5) -0.112(11) 0.316(4) 0.937(5) -0.208(7)Row 3 -1.703 0.306(3) 0.916(5) -0.174(6) 0.295(3) 0.918(4) -0.168(6)Row 4 -1.135 0.299(3) 0.915(4) -0.170(6) 0.285(3) 0.918(4) -0.156(6)Rows 5-7 0.000 0.283(4) 0.896(4) -0.173(7) 0.268(4) 0.899(4) -0.156(7)Row 8 1.135 0.299(3) 0.914(4) -0.168(6) 0.285(3) 0.916(4) -0.156(6)Row 9 1.703 0.306(3) 0.911(5) -0.164(6) 0.292(3) 0.915(4) -0.156(6)Row 10 2.270 0.315(3) 0.908(5) -0.166(6) 0.302(3) 0.913(4) -0.160(6)Row x ∈ [−140,−80] x ∈ [−74,−48]
φtgt a b  a b Row 2 -2.270 0.312(4) 0.932(5) -0.199(7) 0.312(4) 0.936(5) -0.193(8)Row 3 -1.703 0.288(3) 0.914(4) -0.158(6) 0.291(4) 0.913(4) -0.162(6)Row 4 -1.135 0.278(3) 0.916(4) -0.146(4) 0.280(4) 0.917(4) -0.148(6)Rows 5-7 0.000 0.267(4) 0.894(4) -0.152(7) 0.267(4) 0.896(5) -0.151(7)Row 8 1.135 0.279(3) 0.912(4) -0.148(6) 0.281(4) 0.914(4) -0.151(6)Row 9 1.703 0.286(3) 0.911(4) -0.151(6) 0.289(4) 0.912(5) -0.153(8)Row 10 2.270 0.295(3) 0.908(4) -0.154(6) 0.296(4) 0.912(5) -0.153(6)Row x ∈ [−45,−5] x ∈ [35, 95]
φtgt a b  a b Row 2 -2.270 0.308(4) 0.937(5) -0.191(7) 0.307(4) 0.940(5) -0.187(7)Row 3 -1.703 0.286(3) 0.917(4) -0.158(6) 0.285(4) 0.918(5) -0.157(9)Row 4 -1.135 0.277(3) 0.920(4) -0.144(6) 0.274(3) 0.918(4) -0.146(6)Rows 5-7 0.000 0.266(4) 0.905(5) -0.144(7) 0.271(4) 0.896(4) -0.161(7)Row 8 1.135 0.275(4) 0.920(4) -0.143(6) 0.271(3) 0.919(4) -0.147(6)Row 9 1.703 0.281(3) 0.917(4) -0.147(6) 0.277(3) 0.917(4) -0.150(6)Row 10 2.270 0.290(3) 0.917(4) -0.149(6) 0.285(4) 0.920(4) -0.147(5)Row x ∈ [120, 180] x ∈ [240, 300]
φtgt a b  a b Row 2 -2.270 0.302(4) 0.947(5) -0.178(8) 0.304(4) 0.938(13) -0.180(13)Row 3 -1.703 0.280(4) 0.916(5) -0.157(6) 0.280(3) 0.919(4) -0.149(6)Row 4 -1.135 0.269(4) 0.916(4) -0.148(6) 0.270(3) 0.912(4) -0.146(6)Row 5-7 0.000 0.272(4) 0.896(4) -0.167(7) 0.281(4) 0.889(4) -0.175(7)Row 8 1.135 0.266(4) 0.917(4) -0.149(6) 0.265(4) 0.913(4) -0.148(6)Row 9 1.703 0.272(4) 0.918(5) -0.151(8) 0.272(3) 0.915(4) -0.147(6)Row 10 2.270 0.277(3) 0.922(4) -0.145(6) 0.278(3) 0.929(5) -0.133(6)Row x ∈ [340, 400] x ∈ [440, 500]
φtgt a b  a b Row 2 -2.270 0.308(4) 0.931(13) 0.177(13) 0.304(4) 0.993(18) -0.062(28)Row 3 -1.703 0.289(3) 0.938(5) -0.130(7) 0.287(4) 0.937(12) -0.129(12)Row 4 -1.135 0.278(4) 0.910(4) -0.148(6) 0.276(4) 0.939(5) -0.117(7)Rows 5-7 0.000 0.294(4) 0.881(4) -0.185(7) 0.292(4) 0.877(4) -0.184(7)Row 8 1.135 0.274(4) 0.910(4) -0.148(6) 0.271(4) 0.926(5) -0.129(6)Row 9 1.703 0.280(3) 0.924(5) -0.135(6) 0.281(4) 0.946(5) -0.118(7)Row 10 2.270 0.288(4) 0.936(12) -0.126(12) 0.291(4) 0.926(12) -0.138(12)



B.1. Reonstrution of the sattering angle XLVParameters of the ubi funtion as a funtion of φtgtIn the next step, the parameters a(φtgt, xfp), b(φtgt, xfp) and c(φtgt, xfp) derived as intable B.5 were �tted for eah xfp region as a funtion of φtgt. The parameters were�tted as fourth-order polynomial funtions of φtgt:
a(φtgt, xfp) = αa + βaφtgt + γaφ

2
tgt + δaφ

3
tgt + ǫaφ

4
tgt (B.15)

b(φtgt, xfp) = αb + βbφtgt + γbφ
2
tgt + δbφ

3
tgt + ǫbφ

4
tgt (B.16)

c(φtgt, xfp) = αc + βcφtgt + γcφ
2
tgt + δcφ

3
tgt + ǫcφ

4
tgt (B.17)where the �tted parameters αa,b,c, βa,b,c, γa,b,c, δa,b,c and ǫa,b,c still depend on thefoal plane position xfp. The results of the �t are summarized in table B.6, and the �tsthemselves are shown in the �gures B.38,B.39 and B.40.
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−2 −1  0  1  2Figure B.38: Fit of the parameter a(φtgt, xfp) as a funtion of φtgt for all ten xfp ranges.
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Table B.6: Results of the �t of the parameters a, b and c as a funtion of φtgt.
a(φtgt, xfp) = αa + βaφtgt + γaφ

2
tgt + δaφ

3
tgt + ǫaφ

4
tgt

xfp αa βa γa δa ǫa-389(5) 0.284(4) -0.004(4) 0.013(3) 0.0018(8) -0.0020(6)-275(5) 0.271(4) 0.002(2) 0.010(3) -0.0009(3) -0.0005(5)-110(5) 0.269(3) 0.002(3) 0.007(2) -0.0011(8) -0.00002(5)-61(5) 0.269(4) 0.002(1) 0.009(3) -0.0011(1) -0.0004(5)-25(5) 0.267(3) 0.001(2) 0.006(2) -0.0009(4) 0.0001(2)65(5) 0.270(4) 0.0003(6) 0.002(3) -0.0010(4) 0.0006(6)150(5) 0.270(3) 0.001(2) -0.0019(2) -0.0012(4) 0.0011(1)270(5) 0.275(3) 0.0001(28) -0.005(1) -0.0011(7) 0.0016(2)370(5) 0.287(4) -0.001(2) -0.008(3) -0.0007(5) 0.0020(5)470(5) 0.285(4) -0.0012(7) -0.007(3) -0.0003(2) 0.0019(6)
b(φtgt, xfp) = αb + βbφtgt + γbφ

2
tgt + δbφ

3
tgt + ǫbφ

4
tgt

xfp αb βb γb δb ǫb-389(5) 0.900(4) 0.0033(5) 0.008(3) -0.0021(6) -0.0006(5)-275(5) 0.903(4) 0.0018(6) 0.008(3) -0.0013(3) -0.0008(4)-110(5) 0.899(4) 0.0009(8) 0.010(3) -0.0011(7) -0.0011(4)-61(5) 0.901(4) 0.002(1) 0.007(4) -0.00139(9) -0.0006(5)-25(5) 0.910(4) 0.003(2) 0.005(3) -0.00150(9) -0.0003(5)65(5) 0.901(4) 0.002(1) 0.010(1) -0.0013(5) -0.0009(2)150(5) 0.900(4) 0.004(2) 0.009(4) -0.0017(4) -0.0005(8)270(5) 0.894(4) 0.0003(12) 0.012(4) -0.0003(1) -0.0010(8)370(5) 0.882(4) -0.002(3) 0.026(4) -0.0001(5) -0.0030(11)470(5) 0.881(4) -0.004(2) 0.044(5) -0.0009(7) -0.006(1)
c(φtgt, xfp) = αc + βcφtgt + γcφ

2
tgt + δcφ

3
tgt + ǫcφ

4
tgt

xfp αc βc γc δc ǫc-389(5) -0.169(6) 0.011(4) -0.004(5) -0.004(1) 0.002(1)-275(5) -0.156(5) -0.004(4) 0.002(3) 0.003(1) -0.001(1)-110(5) -0.150(6) -0.006(4) 0.004(5) 0.003(1) -0.002(1)-61(5) -0.150(6) -0.005(4) 0.0005(26) 0.003(1) -0.001(1)-25(5) -0.143(4) -0.003(4) 0.0004(17) 0.002(1) -0.0011(4)65(5) -0.157(6) -0.005(4) 0.008(5) 0.003(1) -0.002(1)150(5) -0.163(6) -0.004(4) 0.011(5) 0.002(1) -0.002(1)270(5) -0.170(6) -0.007(4) 0.017(5) 0.003(1) -0.003(1)370(5) -0.183(6) -0.008(5) 0.033(5) 0.003(1) -0.005(1)470(5) -0.176(6) -0.001(4) 0.043(6) -0.001(2) -0.006(1)



L APPENDIX B. ANGULAR CALIBRATION PROCEDUREDetermination of bijk for the reonstrution of θtgtSine we hose to alibrate the θtgt angle after alibrating the φtgt angle (and used thisalibration), the desription of the parameters of equation (B.2) has to be adapted. Thevariable yfp is a funtion of φtgt, therefore a substitution an be done:
φtgt = φtgt(yfp, θfp, xfp) =

3
∑

i=0

3
∑

j=0

1
∑

k=0

aijkx
i
fpθ

j
fpy

k
fp

=
1

∑

k=0

aky
k
fp

⇒ yfp = yfp(θfp, φtgt, xfp) =
φtgt − a0(θtgt, xfp)

a1(θtgt, xfp)
(B.18)The parameters we obtained in the �tting of rows are therefore the parameters b̃ijkinstead of bijk:

θtgt = θtgt(yfp, θfp, xfp) =

2
∑

i=0

4
∑

j=0

2
∑

k=0

bijkx
i
fpy

j
fpθ

k
fp

= θtgt(φtgt, θfp, xfp) =

2
∑

i=0

4
∑

j=0

2
∑

k=0

b̃ijkx
i
fpφ

j
tgtθ

k
fp (B.19)The obtained b̃ijk are summarized in table B.7, and the details of the �ts are shownin the �gures B.41,B.42 and B.43.
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Figure B.42: Fit of the parameters αb, βb, γb, δb and ǫb as a funtion of xfp to determine b̃ijkfor k=1.
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Table B.7: Results of the �t of αa,b,c, βa,b,c, γa,b,c, δa,b,c and ǫa,b,c as a funtion of foalplane position.
a(φtgt, xfp) (k=0) b̃0j0 (i=0) b̃1j0 (i=1) b̃2j0 (i=2)

αa (j=0) 0.2681 2.20E-06 9.19E-08
βa (j=1) 6.79E-04 -3.71E-06 0.00
γa (j=2) 2.79E-03 -3.02E 0.00
δa (j=3) -1.17E-03 -8.76E-07 5.80E-09
ǫa (j=4) 4.24E-04 4.22E-06 0.00

b(φtgt, xfp) (k=1) b̃0j1 (i=0) b̃1j1 (i=1) b̃2j1 (i=2)
αb (j=0) 0.9026 -1.81E-05 -6.97E-08
βb (j=1) 1.31E-03 -4.67E-06 0.00
γb (j=2) 7.91E-03 2.35E-05 7.97E-08
δb (j=3) -1.25E-03 2.35E-05 7.97E-08
ǫb (j=4) -6.73E-04 -2.96E-06-1.06E-08

c(φtgt, xfp) (k=2) b̃0j1 (i=0) b̃1j1 (i=1) b̃2j1 (i=2)
αc (j=0) -0.1504 -1.52E-05 -1.36E-07
βc (j=1) -5.76E-03 -1.32E-05 4.44E-08
γc (j=2) 2.43E-03 3.98E-05 9.62E-08
δc (j=3) 3.14E-03 3.79E-06 -2.27E-08
ǫc (j=4) -1.70E-03 -5.96E-06 0.00



B.1. Reonstrution of the sattering angle LVB.1.3 Results of the multi-hole slit alibrationThe following setion summarizes the results of the reonstrution of the horizontal andvertial sattering angles at the target, θtgt and φtgt. For ten xfp regions, the originalmulti-hole slit images in θfp-yfp oordinates (as determined by the raytraing in theMWDCs) are ompared to the reonstruted image in θtgt-φtgt oordinates (reonstrutedvia the previously determined parameters aijk and b̃ijk). In order to be able to judgethe quality of the angle reonstrution, the multi-hole slit oordinates are superimposedto the reonstruted images as white lines. The reonstrution is generally very good,exept for the θ ≈1◦ range when the foal plane position xfp beomes large (i.e. towardshigher exitation energies, see �g. B.48).
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Figure B.44: Results of the sieve slit alibration for xfp ∈ [−410,−367] and xfp ∈
[−295,−255].
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Figure B.45: Results of the sieve slit alibration for xfp ∈ [−140,−80] and xfp ∈ [−74,−48].
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Figure B.46: Results of the sieve slit alibration for xfp ∈ [−45,−5] and xfp ∈ [35, 95].
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Figure B.47: Results of the sieve slit alibration for xfp ∈ [120, 180] and xfp ∈ [240, 300].
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Figure B.48: Results of the sieve slit alibration for xfp ∈ [340, 400] and xfp ∈ [440, 500].



LVIII APPENDIX B. ANGULAR CALIBRATION PROCEDUREB.2 Corretion of aberrationsAfter reontrution of the horizontal and vertial sattering angles as desribed in theprevious setion, higher order ion-optial aberrations are still present in the spetra. Theymanifest themselves in urved lines (representing the observed peaks) in the xfp vs. θ,φplots (see �g. B.51). In order to orret these aberrations, the inverse transformationto these urved lines has to be applied. This inverse funtion annot be given globally,and thus a loal inverse mapping has to be found.One suh way is to divide the xfp-θ and xfp-φ planes in relatively thin stripes inthe angles and reproduing the urved peaks by a ubi spline interpolation, to whihthe inverse mapping an be dedued. This proedure will be explained in detail in thissetion. For simpliity, we will only onsider the ase of θ aberration (the φ aberrationis treated in exatly the same way).B.2.1 The aberration as a mappingWe an model the observed aberration as a mapping transforming the retilinear (desired)oordinates into the urved (observed) ones, as it is shown shematially in �g. B.49.The oordinates (x, θ) are transformed by the mapping T into oordinates (x̃, θ) (herewe assume that the θ oordinate remains �xed in the plane):
(x̃, θ) = T (x, θ) (B.20)The whole problem of treating the aberration is thus to �nd an inverse mapping,

T−1, whih ould transform every observed data point in suh a way that the retilinearspetrum is restored. This is however globally impossible sine the mapping is notneessarily injetive. We thus have to onstrut loally an inverse mapping that is rathersimple to ompute but still very preise in order to onserve the high resolution.This an be ahieved by dividing the x-θ plane into stripes (thus e�etively re-ating a mesh, together with the (x̃, θ = 0) data points) and performing ubi splineinterpolations.B.2.2 Cubi spline interpolationThe method of ubi spline interpolation [Boo78, Sto80℄ is a well-known proedure toobtain a smooth urve onneting a given set of points. The method onstruts a setof n− 1 ubi polynomials to n given �ontrol points� and requires only these points aswell as a value for the �rst derivatives at the beginning and the end of the interval wherethe interpolation takes plae. The numerial alulation proedure for this interpolationis well-established and standard odes for various programming languages are available,e.g. [Pre92℄.In our spei� ase, we ut the two-dimensional x-θ plane in n−1 stripes (n ontrolpoints) parallel to the x-axis. If we assume that the θ = 0 line is una�eted by the
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Figure B.49: Model of the observed aberration as a two-dimensional mapping whih onlyhanges the x oordinate.mapping T , we then e�etively obtain a mesh for the x-θ plane, de�ned by the θ-stripesand the x = x(j)(θ = 0) = x
(j)
0 values (see �g. B.50). Using the nomenlature de�nedin �g. B.50, we an alulate a spline funtion Si,j(θ) (where i is the index numberingthe stripes in θ, i ∈ {1 . . . n − 1}) for every observed peak j (j ∈ {1, . . . , m}) whihsmoothly interpolates the observed data. An example of one suh interpolation is shownin �g. B.51.Two additional ontrol points, for i=0 and i=n + 1, are required in order to obtainthe values of the spline funtion derivatives S ′

1,j(θ1) and S ′
n−1,j(θn) at the endpoints ofthe interval. They are omputed simply by taking the di�erene quotients (here, x(θi, j)denotes the x-oordinate of peak j at the angle θi) :

S ′
1,j(θ1) =

x(θ1, j)− x(θ0, j)
θ1 − θ0

(B.21)
S ′

n−1,j(θn) =
x(θn+1, j)− x(θn, j)

θn+1 − θn
(B.22)and the spline funtion an be extended to areas outside of the interval boundariesby using a linear funtion. Thus the transformed oordinate (x̃, θ) of a a point (x, θ)lying on a peak line an be desribed as a funtion of θ as follows (j is the peak index):
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Si,x(θ) = a(x) + b(x)θ + c(x)θ2 + d(x)θ3

Si,j+1(θ) = ai,j+1(x) + bi,j+1(x)θ + ci,j+1(x)θ2 + di,j+1(x)θ3

Figure B.50: Shemati drawing of the spline funtions as derived from the observed data.The two dimensional spetrum is ut in stripes in θ and ontrol points are marked along theobserved �urved� peaks. With these, a smooth ubi spline funtion an be alulated, andthus an inverse mapping to the aberration an be derived.
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x̃ =























(

x(θ1, j)− S ′
1,j(θ1)θ1

)

+ S ′
1,j(θ1)θ if θ < θ1

Si,j(θ) = ai,j + bi,jθ + ci,jθ
2 + di,jθ

3 if θ1 ≤ θ ≤ θn

(

x(θn, j)− S ′
n−1,j(θn)θn

)

+ S ′
n−1,j(θn)θ if θ > θn

(B.23)

θfp (◦)

xfp (mm)Figure B.51: Example of a ubi spline interpolation of one spetral line in the xfp-θfp plane.The individual ubi polynomials are shown as white dotted lines, while the resulting overallspline is shown in red. The ontrol points are marked by blak rosses.We know that the original peak line should be a straight line at �xed x-position forall θ values. However, we have to treat all inoming data points, and the overwhelming



LXII APPENDIX B. ANGULAR CALIBRATION PROCEDUREmajority does not lie exatly on a peak line. If the point (x, θ) in the retilinear systemdoes not lie on a peak line, we an obtain its transformed oordinate (x̃, θ) by thefollowing proedure:1. Choose the right θ-stripe [θi, θi+1] (if θ lies outside the interval endpoints, go topoint 4)2. Calulate Si,j(θ) for all j values (i.e. all peaks), to determine in whih x-interval thepreimage of x̃ is loated. Let us assume it is found that Si,jp
(θ) < x̃ < Si,jp+1(θ),thus x ∈ [x

(jp)
0 , x

(jp+1)
0 ]. If x̃ lies outside of the range where it lies between twopeaks, i.e. j=1 (below the lowest peak) or j=m (above the highest peak), go tostep 5.3. The two known boundary spline funtions Si,jp

(θ) and Si,jp+1(θ) (see �g. B.50)are given by
Si,jp

(θ) = ajp
+ bjp

θ + cjp
θ2 + djp

θ3 (B.24)
Si,jp+1(θ) = ajp+1 + bjp+1θ + cjp+1θ

2 + djp+1θ
3 (B.25)The transformed point (x̃, θ) should thus be obtained via a ubi polynomial

x̃ = Si,x(θ) = a(x) + b(x)θ + c(x)θ2 + d(x)θ3 (B.26)in whih the oe�ients are still unknown. We an derive these parameters (andby these means, x) if we linearily evolve the oe�ients of the boundary splinefuntions. It an easily be shown that this onserves the smoothness of the ob-tained �intermediate� spline funtions. We would thus get
a(x) = ajp

+
x− xjp

0

x
jp+1
0 − xjp

0

(ajp+1 − ajp
) (B.27)

b(x) = bjp
+

x− xjp

0

x
jp+1
0 − xjp

0

(bjp+1 − bjp
) (B.28)

c(x) = cjp
+

x− xjp

0

x
jp+1
0 − xjp

0

(cjp+1 − cjp
) (B.29)

d(x) = djp
+

x− xjp

0

x
jp+1
0 − xjp

0

(djp+1 − djp
) (B.30)where x is the unknown original position that we are looking for. By introduing

xc :=
x−x

jp
0

x
jp+1

0
−x

jp
0

and inserting the equations for the oe�ients into eq. B.26, weget
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x̃ = ajp
+ xc(ajp+1 − ajp

) +
[

bjp
+ xc(bjp+1 − bjp

)
]

θ +

+
[

cjp
+ xc(cjp+1 − cjp

)
]

θ2 +
[

djp
+ xc(djp+1 − djp

)
]

θ3 (B.31)
=

(

ajp
+ bjp

θ + cjp
θ2 + djp

θ3
)

+ xc{(ajp+1 + bjp+1θ + cjp+1θ
2 + djp+1θ

3)−
−(ajp

+ bjp
θ + cjp

θ2 + djp
θ3)} (B.32)

= Si,jp
(θ) + xc(Si,jp+1(θ)− Si,jp

(θ)) (B.33)where everything is known from the data, exept xc, i.e. x itself, and the originalx-position an now be obtained by solving the linear equation:
x− xjp

0

x
jp+1
0 − xjp

0

=
x̃− Si,jp

(θ)

Si,jp+1(θ)− Si,jp
(θ)

(B.34)
⇔ x = (x

jp+1
0 − xjp

0 )

(

x̃− Si,jp
(θ)

Si,jp+1(θ)− Si,jp
(θ)

)

+ x
jp

0 (B.35)Thus, if θ and x̃ are given, the preimage x an be alulated by �nding the orretindies jp (peak index) and i (stripe index). This proedure will yield the originalx-position for all inoming data points that have θ values within the range [θ1, θn].4. if θ 6∈ [θ1, θn], then alulate x̃ aording to eq. B.23 for all j values and obtainthe [x
(jp)
0 , x

(jp+1)
0 ] interval in whih the preimage x of x̃ is loated, as in part 2.From then on, we proeed as in part 3., but this time the boundary funtions arenot ubi but linear:

fjp+1(θ) = ajp+1 + bjp+1θ (B.36)
fjp

(θ) = ajp
+ bjp

θ (B.37)
x̃ = fx(θ) = a(x) + b(x)θ (B.38)The oe�ients are made to evolve linearly within the range [x

jp

0 , x
jp+1
0 ] as well:

a(x) = ajp
+

x− xjp

0

x
jp+1
0 − xjp

0

(ajp+1 − ajp
) = ajp

+ xc(ajp+1 − ajp
) (B.39)

b(x) = bjp
+

x− xjp

0

x
jp+1
0 − xjp

0

(bjp+1 − bjp
) = bjp

+ xc(bjp+1 − bjp
). (B.40)Inserting eqs. B.39 and B.40 into eq. B.38, we obtain

x̃ = ajp
+ xc(ajp+1 − ajp

) +
(

bjp
+ xc(bjp+1 − bjp

)
)

θ (B.41)
= ajp

+ bjp
θ + xc

(

ajp+1 + bjp+1θ − ajp
− bjp

θ
) (B.42)



LXIV APPENDIX B. ANGULAR CALIBRATION PROCEDUREwhih an be solved to obtain x. Inserting the values from eq. B.23, the solutionan be written as
x =































(x
jp+1
0 − xjp

0 )
(

x̃−x(θ1,jp)+S′

1,jp
(θ1)(θ1−θ)

(S′

1,jp
(θ1)−S′

1,jp+1
(θ1))(θ1−θ)+x(θ1,jp+1)−x(θ1,jp)

)

+ x
jp

0

(if θ < θ1)

(x
jp+1
0 − xjp

0 )
(

x̃−x(θn,jp)+S′

n−1,jp
(θn)(θn−θ)

(S′

n−1,jp
(θn)−S′

n−1,jp+1
(θn))(θn−θ)+x(θn,jp+1)−x(θn,jp)

)

+ x
jp

0

(if θ > θn) (B.43)5. If the x-position of the inoming partile is outside the boundaries de�ned by theindividual splines, i.e. x̃ < Si1(θ) or x̃ > Sim(θ), it is not possible to linearly evolvethe spline oe�ients as in step 3. The best way to solve this is by introduing�ghost peaks� with perfetly straight shape (vertial lines) that are loated farbelow the lowest peak and far above the highest peak. This way, the splineoe�ients an still evolve naturally and do not hange drastially over shortranges in x. If these peaks are introdued, the alulation of the preimage anproeed as in step 3 or 4 (depending on the θ position).B.2.3 Implementation in omputer odeThe orretion of the aberration was implemented as FORTRAN ode in the analyzerode for Grand Raiden written by M. Yosoi [Yos01℄ to analyze data obtained via theTAMIDAQ aquisition system [Tam97℄.The aberration orretion was inluded in the CORRFP1 subroutine, whih also in-ludes the sieve slit orretion proedure. The CORRFP1 subroutine is ontained in the
option_m.f soure ode of the Yosoi analyzer. The following sample ode is an aber-ration orretion by splines using 7 peaks numbered by j = 1, ..., 7 and 13 θtgt positionsas spline anhor points. These are given as th(i). The xfp positions of the 7 peaks at
θtgt=0 are given by mid(i). The positions x(θ1, jp) and x(θn, jp) (see previous setion)are given by xta(j) and xtb(j), respetively.The oe�ients of the various splines are alulated via a separate program, splicalc,whih uses the spline anhor points determined from the data to ompute the spline o-e�ients (AG(j,i),BG(j,i),CG(j,i),DG(j,i)) and the derivatives S ′

1,jp
(θ1)(slop(j,1)) and (S ′

n−1,jp
(slop(j,2)). All the values required by the spline or-retion routine inside the analyzer ode are onveniently produed by the splicalcprogram and its output (the numerial value of the variables) has just to be insertedinside the option_m.f �le at the right plae.Only the ode for the orretion of θ-aberrations is presented here, the orretionof φ-aberrations works exatly in the same way. The orretions are arried out sub-sequently, whih means �rst the orretion of θ aberrations needs to be proessed byo�ine analysis, then the output used to determine the required parameters for the φaberration orretion.
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c FIND THE CORRECT STRIPE IN THETA
c (th(i) values compared to AC)
c "i" has to be selected (isel)
c AC=(theta_tgt)
c XC=(x_fp)
c th(i)=(theta_i, spline anchor point)
c xta(j)=(x_fp position at theta_1)
c xtb(j)=(x_fp position at theta_n)

isel=0
do 35 i=1,13

if(AC.gt.th(i)) then
isel=i-1
endif

35 enddo
c PRINT*,’selected stripe:’,isel

c FIND THE CORRECT PEAK j
c since the stripe has been selected, calculate the
c spline values for all peaks j at "isel" and compare
c with XC to find the correct j.

if(isel.eq.0)then
c If theta value is below the last spline anchor point,
c use linear continuation

jsel=0
do 38 j=1,7

c requires access to x and theta anchor points
c y(i,X)=mid(i) is the x-position

sjp=(xta(j)-slop(j,1)*th(2))+slop(j,1)*AC
if(XC.ge.sjp)then
jsel=j
endif

38 enddo

elseif(isel.ge.1.and.isel.lt.11)then
c Region where regular splines can be used, main part

jsel=0
do 36 j=1,7

sjp=ag(j,isel)+AC*(bg(j,isel)+AC*(cg(j,isel)+
& AC*dg(j,isel)))

if(XC.ge.sjp)then
jsel=j
endif

36 enddo

elseif(isel.ge.11)then
c If theta value is above the last spline anchor point,
c use linear continuation
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jsel=0

do 41 j=1,7
c requires access to x and theta anchor points

sjp=(xtb(j)-slop(j,2)*th(12))+slop(j,2)*AC
if(XC.ge.sjp)then
jsel=j
endif

41 enddo
c else PRINT*,’*ERROR* in determination of x-position’

endif

c then calculate the corrected x-value (preimage, yc)
c Positions outside of spline range have to be considered
c as well (linear interpolation), depends on "isel"
c GHOST PEAKS AT X=-1000 and X=1000 introduced.

c FIRST, POSSIBILITY THAT POINT LIES BELOW THE THETA-SPLINE
c REGION (REGION WHERE LINEAR CONTINUATION IS USED, isel=0)

if(isel.eq.0)then
if(jsel.ge.1.and.jsel.lt.7)then

XC=(mid(jsel+1)-mid(jsel))*(XC-xta(jsel)+slop(jsel,1)*
& (th(2)-AC))/((slop(jsel,1)-slop(jsel+1,1))*(th(2)-
& AC)+xta(jsel+1)-xta(jsel))+mid(jsel)

c SLOPE OF GHOST PEAK AT X=-1000. IS ZERO
elseif(jsel.lt.1)then

XC=(mid(jsel+1)+1000.)*(XC+1000.+0.*
& (th(2)-AC))/((0.-slop(jsel+1,1))*(th(2)-
& AC)+xta(jsel+1)+1000.)-1000.

c SLOPE OF GHOST PEAK AT X=+1000. IS ZERO
elseif(jsel.ge.7)then

XC=(1000.-mid(jsel))*(XC-xta(jsel)+slop(jsel,1)*(th(2)
& -AC))/((slop(jsel,1)-0.)*(th(2)-AC)+
& 1000.-xta(jsel))+mid(jsel)

endif

C POINT LIES WITHIN THE THETA-SPLINE REGION
c (isel>=1 and =<11)

elseif(isel.ge.1.and.isel.lt.11)then

if(jsel.ge.1.and.jsel.lt.7)then
sjp=ag(jsel,isel)+AC*(bg(jsel,isel)+AC*(cg(jsel,isel)

& +AC*dg(jsel,isel)))

sjp1=ag(jsel+1,isel)+AC*(bg(jsel+1,isel)+AC*(cg(jsel+1,
& isel)+pointx*dg(jsel+1,isel)))
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dsj=sjp1-sjp

XC=(mid(jsel+1)-mid(jsel))*((XC-sjp)/dsj)+mid(jsel)

elseif(jsel.lt.1)then
sjp=-1000.

sjp1=ag(jsel+1,isel)+AC*(bg(jsel+1,isel)+AC*(cg(jsel+1,
& isel)+AC*dg(jsel+1,isel)))

dsj=sjp1-sjp

XC=(mid(jsel+1)+1000.)*((XC-sjp)/dsj)-1000

elseif(jsel.ge.7)then
sjp=ag(jsel,isel)+AC*(bg(jsel,isel)+AC*(cg(jsel,isel)

& +AC*dg(jsel,isel)))

sjp1=1000.
dsj=sjp1-sjp

XC=(1000.-mid(jsel))*((XC-sjp)/dsj)+mid(jsel)
endif

c POINT LIES ABOVE THE THETA-SPLINE REGION
c (WHERE LINEAR CONTINUATION IS USED, isel>=11)

elseif(isel.ge.11)then
if(jsel.ge.1.and.jsel.lt.7)then

XC=(mid(jsel+1)-mid(jsel))*(XC-xtb(jsel)+slop(jsel,2)*
& (th(12)-AC))/((slop(jsel,2)-slop(jsel+1,2))*(th(12)-
& AC)+xtb(jsel+1)-xtb(jsel))+mid(jsel)

c SLOPE OF GHOST PEAK AT X=-1000. IS ZERO
elseif(jsel.lt.1)then

XC=(mid(jsel+1)+1000.)*(XC+1000.+0.*
& (th(12)-AC))/((0.-slop(jsel+1,2))*(th(12)-
& AC)+xtb(jsel+1)+1000.)-1000.

c SLOPE OF GHOST PEAK AT X=+1000. IS ZERO
elseif(jsel.ge.7)then

XC=(1000.-mid(jsel))*(XC-xtb(jsel)+slop(jsel,2)*(th(12)
& -AC))/((slop(jsel,2)-0.)*(th(12)-AC)+
& 1000.-xtb(jsel))+mid(jsel)

endif

endif



LXVIII APPENDIX B. ANGULAR CALIBRATION PROCEDUREAlternatively, if the aberration is rather symmetrial in the θ or φ oordinate, or ifstates (peak lines) are too lose to eah other to e�etively use the spline interpolation, itis possible to use a polynomial interpolation of the whole peak line (fourth order with noonstant term is usually a good hoie). Using a fourth order polynomial as the desribingfuntion of the aberration for eah peak, the oe�ients an be evolved linearly as forthe spline ase. The software above then simpli�es sine a stripe in θ (or φ) no longerneeds to be seleted or onsidered in the orretion proedure. This an be implementedby using a ode suh as the following (here, bg(j),cg(j),dg(j),eg(j) representthe linear, quadrati, ubi and quarti oe�ients of eah �tted peak shape in x-θspae)
if(jsel.ge.1.and.jsel.lt.14)then

sjp=mid(jsel)+AC*(bg(jsel)+AC*(cg(jsel)+AC*(dg(jsel)
& +AC*eg(jsel))))

sjp1=mid(jsel+1)+AC*(bg(jsel+1)+AC*(cg(jsel+1)
& +AC*(dg(jsel+1)+AC*eg(jsel+1))))

dsj=sjp1-sjp

XC=(mid(jsel+1)-mid(jsel))*((XC-sjp)/dsj)+mid(jsel)

elseif(jsel.lt.1)then
sjp=-1000.

sjp1=mid(jsel+1)+AC*(bg(jsel+1)+AC*(cg(jsel+1)
& +AC*(dg(jsel+1)+AC*eg(jsel+1))))

dsj=sjp1-sjp

XC=(mid(jsel+1)+1000.)*((XC-sjp)/dsj)-1000

elseif(jsel.ge.14)then
sjp=mid(jsel)+AC*(bg(jsel)+AC*(cg(jsel)+AC*(dg(jsel)

& +AC*eg(jsel))))

sjp1=1000.
dsj=sjp1-sjp

XC=(1000.-mid(jsel))*((XC-sjp)/dsj)+mid(jsel)
endif
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Appendix CEnergy alibration proedure
In order to math the reorded arbitrary hannels to the exitation energies present inthe spetrum, an energy alibration has to be arried out. To this end, it is neessary tohave a reasonable amount of referene peaks with well-known energy over a broad rangeof exitation energies. During the experiment, spetra of the reations 24,26Mg(3He,t)and PVA1(3He,t) were reorded and were analyzed for the energy alibration. Somesharp states in the 9Be(3He,t)9B spetrum an also be used for the energy alibration.The exitation energies obtained for di�erent nulei annot be immediately ompared,as the momentum of the outgoing triton depends on the Q value of the reation andon the mass of the target nuleus. However, the exitation energies an be ompared ifwe translate them to their magneti rigidity value2, whih is equal to the momentum pdivided by the harge qc

B r =
p

qc
(C.1)where B is the magneti �eld of the spetrometer and r is the radius of the meanorbit of the tritons. For the energy alibration, we thus �rst have to onstrut a relationbetween known exitation energies and the reorded hannel numbers, and subsequentlya relation between energies and magneti rigidity values. In this way, a hannel-energyrelation an be derived for arbitrary hannels and a given nuleus.The magneti rigidity values Br are derived using the relativisti two-body kinematisode relkin [Phi67, Poi68, Dav69℄ with some modi�ations, inluding an updatedmass exess table [Aud95℄, a orreted alulation of the reation threshold and thepossibility to alulate values for the zero-degrees sattering angle. The stopping powerof hemial elements for harged partiles is alulated in a subroutine using the algorithmof Williamson, Boujot, and Piard [Wil66℄.To determine the hannel positions of known states, raytraed spetra with a sat-tering angle ut of 0o ≤ |Θ| ≤0.5o were used for the alibration runs. The peak hannels1Polyvinyl alohol, (CH2-CH-OH)n2The magnitude of B times the gyroradius of a harged partile equals to its momentum per unitharge, also alled magneti rigidity (B r = mv⊥

|q| )
LXIX
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Figure C.1: Lowest part of the reorded spetrum of the 26Mg(3He,t)26Al reation used forthe energy alibration. Some peaks are very strong so the spetrum is shown in both linearsale and logarithmi sale.
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Figure C.2: Higher part of the reorded spetrum of the 26Mg(3He,t)26Al reation used forthe energy alibration.Table C.1: Thikness of targets used in the experiments.Target thikness [mg/m2℄
9Be 1.73

26Mg 0.872
24Mg 0.815PVA 1.1were determined by �tting the spetra and the results are summarized in table C.2, to-gether with the Br values omputed with relkin. The spetra are shown in �gs. C.1,C.2, C.3 and C.4. The alulated Br values are �tted as a seond-order polynomialfuntion f of the hannel number x. For a better stability of the �t routine, 5000 kG mis substrated from the Br value.

f(x) = a+ bx+ cx2 (C.2)Sine the used targets have di�erent thiknesses (see table C.1), the experimental
Br values are slightly shifted against the values alulated by relkin, whih gives abad �t using the unshifted values (see upper part of �gure C.5). Sine 26Al has the mostdata points with high auray, all other data points were shifted to math the 26Al Brvalues as well as possible. A single shift term was used per target nuleus. These termsare given in table C.3. The fat that the onstituent nulei of the PVA target requireroughly the same shift term orroborates the assumption that the observed shifts are a
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Figure C.3: Reorded spetrum of the PVA(3He,t) reation used for the energy alibration.The used peaks belonging to 16,18F and 12,13N are marked.
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LXXIIITable C.2: Energy levels used for the energy alibration of the spetrum.Chn Ex Br Chn Ex Br[N ℄ [keV℄ [kG m℄ [N ℄ [keV℄ [kG m℄
26Al 24Al1399.17(2) 228.305(13) 5283.016(1) 2884.736(86) 425.8(1) 5214.154(1)1427.517(51) 416.852(3) 5281.734(1) 18F1523.323(11) 1057.739(12) 5277.375(1) 1017.35(20) 0.0(2) 5300.502(2)1641.772(15) 1850.62(3) 5271.979(1) 13N1674.562(27) 2071.64(4) 5270.47(1) 1101.84(13) 0(1) 5296.671(7)1718.440(28) 2365.150(18) 5268.475(1) 1626.34(28) 3502(2) 5272.861(14)1745.136(62) 2545.367(17) 5267.247(1) 16F1774.082(27) 2740.03(3) 5265.920(1) 3056.2(3) 0(1) 5206.417(7)1836.67(13) 3159.889(13) 5263.058(1) 3086.00(96) 193(6) 5205.085(41)1901.70(18) 3596.34(4) 5260.081(1) 3119.109(64) 424(5) 5203.491(34)1920.975(39) 3723.81(4) 5259.211(1) 3163.44(41) 721(4) 5201.441(28)1990.03(22) 4191.92(6) 5256.016(1) 3602.62(24) 3758(6) 5180.432(42)2025.24(13) 4430.72(6) 5254.385(1) 3731.32(14) 4654(6) 5174.218(42)2111.068(17) 5010.24(7) 5250.426(1) 12N2196.044(74) 5584.99(6) 5246.497(1) 3338.012(12) 0(2) 5193.054(14)2249.890(47) 5949.93(8) 5244.001(1) 3477.464(96) 960(12) 5186.401(84)2297.168(28) 6270.19(11) 5241.809(1) 3691.94(29) 2439(9) 5176.132(63)2386.173(55) 6874.29(8) 5237.673(1) 9B2433.970(31) 7198.44(12) 5235.453(1) 926.86(1) 0(1) 5304.481(7)2472.091(59) 7455.34(19) 5233.692(2) 1281.599(58) 2345(11) 5288.569(75)2524.360(51) 7813.63(18) 5231.236(2) 3103.910(72) 14655.0(25) 5204.122(18)3456.97(18) 17076(4) 5187.327(28)target thikness e�et. After thus adjusting the Br values, the data was �tted again,this time yielding a reasonable residuum (see bottom part of �gure C.5).In order to get the �nal energy alibration for a given spetrum, Br values arealulated with relkin for various equidistant energies and the relation between Brvalue y and energy E is again �tted with a seond-order polynomial.

E(y) = α+ βy + γy2 (C.3)Combining the result of this �tting proedure with f(x) derived before, one obtainsa diret relationship between hannel number x and energy E, whih is a polynomial ofdegree four:



LXXIV APPENDIX C. ENERGY CALIBRATION PROCEDURETable C.3: Shift terms of Br against the alulated values for 26Al.Target nuleus Shift term [kG m℄
9Be 0.162

26Mg 0.000
24Mg -0.177
12C 0.213
13C 0.203
16O 0.236
18O 0.261

y = f(x) + 5000 = (a+ 5000) + bx+ cx2 (C.4)
⇒ E(x) = e1 + e2x+ e3x

2 + e4x
3 + e5x

4 (C.5)where
e1 = α + βa− 5000β + γa2 + 50002γ − 10000aγ (C.6)
e2 = βb+ 2γab− 10000bγ (C.7)
e3 = βc+ γb2 + 2γac− 10000cγ (C.8)
e4 = 2γbc (C.9)
e5 = γc2 (C.10)The values obtained from this proedure for the nulei of interest are summarized intable C.4.Table C.4: Parameters of the energy alibration funtion for various nulei.Parameter 9B 13N

e1 -6075.605 -7231.988
e2 6.505 6.500
e3 5.849·10−5 6.153·10−5

e4 -8.333·10−10 -7.484·10−10

e5 -5.698·10−15 -5.118·10−15
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Table D.1: Raytraing information of the MWDCs for both harge-exhange experiments.The RAY-ID number is the raytraing identi�ation hannel of the Yosoi analyzer soft-ware. The desription of the RAY-ID number is given in the �rst olumn. The planenumbers 1,2,4 and 5 orrespond to the X- and U-planes of the two MWDCs. Di�erentRAY-ID events are mutually exlusive.Desription RAY-ID 9Be(3He,t)9B experimentno region ID -10 624Bad VDC events -9 1557711position ID of all planes unsuessful -8 245936four planes have two good lusters -7 8594position ID of only one plane suessful (plane 5) -5 220640position ID of only one plane suessful (plane 4) -4 75616position ID of only one plane suessful (plane 2) -2 28006position ID of only one plane suessful (plane 1) -1 15173RAY-TRACING SUCCESSFUL 0 30085844position ID unsuessful in plane 1 1 59806position ID unsuessful in plane 2 2 49791position ID unsuessful in plane 4 4 100933position ID unsuessful in plane 5 5 54091position ID unsuessful in plane 1 AND 2 12 351247position ID unsuessful in plane 1 AND 4 14 49965position ID unsuessful in plane 1 AND 5 15 9861position ID unsuessful in plane 2 AND 4 24 10734position ID unsuessful in plane 2 AND 5 25 11508position ID unsuessful in plane 4 AND 5 45 202022Desription RAY-ID 13C(3He,t)13N experimentno region ID -10 0Bad VDC events -9 996576position ID of all planes unsuessful -8 185007four planes have two good lusters -7 370position ID of only one plane suessful (plane 5) -5 131391position ID of only one plane suessful (plane 4) -4 49500position ID of only one plane suessful (plane 2) -2 16768position ID of only one plane suessful (plane 1) -1 6982RAY-TRACING SUCCESSFUL 0 4411565position ID unsuessful in plane 1 1 21458position ID unsuessful in plane 2 2 10875position ID unsuessful in plane 4 4 21548position ID unsuessful in plane 5 5 11193position ID unsuessful in plane 1 AND 2 12 124887position ID unsuessful in plane 1 AND 4 14 14736position ID unsuessful in plane 1 AND 5 15 4771position ID unsuessful in plane 2 AND 4 24 3665position ID unsuessful in plane 2 AND 5 25 3047position ID unsuessful in plane 4 AND 5 45 34458



APPENDIX E. CALCULATION OF THE FACTOR F (ω, 0◦) USING DWBA
Appendix ECalulation of the fator F (ω, 0◦)using DWBA

LXXIX



LXXX APPENDIX E. CALCULATION OF THE FACTOR F (ω, 0◦) USING DWBA

Table E.1: Evolution of the relative ross setions for various exitation energies for the
9Be(3He,t)9B reation.

9Be(3He,t)9B ([Yam95℄, pure (p3/2p−1
3/2)) 9Be(3He,t)9B ([Yam95℄, pure (p1/2p−1

3/2))
ω Ex(9B) σDWBA(0◦) F (0◦, ω) ω Ex(9B) σDWBA(0◦) F (0◦, ω)[MeV℄ [MeV℄ [mb/sr℄ [MeV℄ [MeV℄ [mb/sr℄0 � 54.426 1.0000 0 � 42.640 1.00002 0.91 54.045 0.9930 2 0.91 42.339 0.99294 2.91 53.423 0.9816 4 2.91 41.839 0.98126 4.91 52.566 0.9658 6 4.91 41.147 0.96508 6.91 51.487 0.9460 8 6.91 40.272 0.944510 8.91 50.197 0.9223 10 8.91 39.227 0.920012 10.91 48.716 0.8951 12 10.91 38.026 0.891814 12.91 47.062 0.8647 14 12.91 36.688 0.860416 14.91 45.259 0.8316 16 14.91 35.232 0.826318 16.91 43.330 0.7961 18 16.91 33.679 0.7898

9Be(3He,t)9B ([Kam03℄, pure (p3/2p−1
3/2)) 9Be(3He,t)9B ([Kam03℄, pure (p1/2p−1

3/2))
ω Ex(9B) σDWBA(0◦) F (0◦, ω) ω Ex(9B) σDWBA(0◦) F (0◦, ω)[MeV℄ [MeV℄ [mb/sr℄ [MeV℄ [MeV℄ [mb/sr℄0 -1.09 40.679 1.0000 0 -1.09 31.910 1.00002 0.91 40.436 0.9940 2 0.91 31.717 0.99404 2.91 40.006 0.9835 4 2.91 31.369 0.98306 4.91 39.392 0.9684 6 4.91 30.869 0.96748 6.91 38.604 0.9490 8 6.91 30.224 0.947210 8.91 37.652 0.9256 10 8.91 29.445 0.922812 10.91 36.548 0.8984 12 10.91 28.542 0.894514 12.91 35.310 0.8680 14 12.91 27.530 0.862716 14.91 33.954 0.8347 16 14.91 26.425 0.828118 16.91 32.499 0.7989 18 16.91 25.243 0.7911
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Table E.2: Evolution of the relative ross setions for various exitation energies for the
13C(3He,t)13N reation.

13C(3He,t)13N ([Yam95℄, pure (p1/2p−1
3/2)) 13C(3He,t)13N ([Yam95℄, pure (p1/2p−1

1/2))
ω Ex(13N) σDWBA(0◦) F (0◦, ω) ω Ex(13N) σDWBA(0◦) F (0◦, ω)[MeV℄ [MeV℄ [mb/sr℄ [MeV℄ [MeV℄ [mb/sr℄0 -2.24 44.559 1.0000 0 -2.24 6.0879 1.00002 -0.24 44.291 0.9940 2 -0.24 6.0523 0.99424 1.76 43.833 0.9837 4 1.76 5.9916 0.98426 3.76 43.187 0.9692 6 3.76 5.9062 0.97028 5.76 42.364 0.9507 8 5.76 5.7971 0.952210 7.76 41.373 0.9285 10 7.76 5.6655 0.930612 9.76 40.228 0.9028 12 9.76 5.5128 0.905514 11.76 38.946 0.8740 14 11.76 5.3408 0.877316 13.76 37.544 0.8426 16 13.76 5.1514 0.846218 15.76 36.042 0.8089 18 15.76 4.9468 0.812620 17.76 34.458 0.7733 20 17.76 4.7291 0.776822 19.76 32.813 0.7364 22 19.76 4.5008 0.7393

13C(3He,t)13N ([Kam03℄, pure (p1/2p−1
3/2)) 13C(3He,t)13N ([Kam03℄, pure (p1/2p−1

1/2))
ω Ex(13N) σDWBA(0◦) FDWBA ω Ex(13N) σDWBA(0◦) FDWBA[MeV℄ [MeV℄ [mb/sr℄ [MeV℄ [MeV℄ [mb/sr℄0 -2.24 30.052 1.0000 0 -2.24 4.4686 1.00002 -0.24 29.908 0.9952 2 -0.24 4.4482 0.99544 1.76 29.625 0.9858 4 1.76 4.4095 0.98686 3.76 29.207 0.9719 6 3.76 4.3529 0.97418 5.76 28.659 0.9536 8 5.76 4.2789 0.957510 7.76 27.990 0.9314 10 7.76 4.1884 0.937312 9.76 27.208 0.9054 12 9.76 4.0824 0.913614 11.76 26.326 0.8760 14 11.76 3.9620 0.886616 13.76 25.357 0.8438 16 13.76 3.8288 0.856818 15.76 24.314 0.8091 18 15.76 3.6842 0.824520 17.76 23.212 0.7724 20 17.76 3.5298 0.789922 19.76 22.066 0.7343 22 19.76 3.3674 0.7536
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