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Abstract

The physics of open quantum systems, and therefore the phenomenon of decoherence,
has become important in many branches of research. Within this thesis, we investigate
the system–environment interaction in the context of different problems. The
influence of decoherence is ubiquitous and, due to the scale independence of quantum
theory, not limited to microscopic systems.

One of the great open problems in theoretical physics is the appearance of a
cosmological constant which differs by many orders of magnitude from the theoretical
predicted value. In the first part of this thesis we will address this question within
the framework of quantum mechanics. The considerations are based on a quantum
mechanical model which explains the value of the cosmological constant without
introducing extremely small numbers. Decoherence, based on the uncontrollable
entanglement with the environment, can explain the localization of the vacuum energy
to the classical observed value. The model mentioned above allows, in principle,
the tunneling into a universe with a different vacuum energy. We investigate the
modification of the tunneling rate due to dissipative effects which follow from the
system–bath interaction.

Closely related to the cosmological constant problem and subject of the second
part of this thesis is the spontaneous decay of a quantum field vacuum. Using a
semiclassical approximation it is possible to investigate this process within the frame-
work of the path integral formalism. We discuss the quantum–to–classical transition
of the spontaneously nucleated vacuum bubbles. Furthermore, we investigate the
dependence of the decay rate on the space-time backgrounds.

The third part of this thesis is dedicated to the interaction between quantum
systems and their environment in a different context. We investigate the generation
of entanglement between two systems which are interacting indirectly with each
other through the coupling to a heat bath. The interaction–induced entanglement
will be destroyed rapidly through decoherence and dissipation. We will show that
it is possible to generate a significant amount of entanglement by imposing certain
boundary conditions to the bath. Furthermore, the dependence of the entanglement
generation on the spatial separation of the systems will be analyzed. Specifically we
will examine the bathinduced entanglement of oscillators and spins.



Zusammenfassung

Die Physik offener Quantensysteme, und somit das Phänomen der Dekohärenz,
hat eine bedeutende Rolle in vielen Bereichen der Forschung eingenommen. In
der vorliegenden Arbeit wird die Wechselwirkung zwischen Systemen und ihrer
Umgebung im Zusammenhang mit verschiedenen Fragestellungen untersucht. Der
Einfluss von Dekohärenz ist allgegenwärtig und, aufgrund der Skalenunabhängigkeit
der Quantenmechanik, nicht auf mikroskopische Systeme beschränkt.

Eines der großen Probleme innerhalb der theoretischen Physik ist das Auftreten ei-
ner kosmologischen Konstante beziehungsweise einer Vakuumenergie des Universums,
die um viele Größenordnungen von dem vorhergesagten Wert abweicht. Im ersten
Teil der vorliegenden Arbeit wollen wir uns dieser Fragestellung im Rahmen der
Quantenmechanik zuwenden. Die Grundlage der Betrachtungen ist ein quantenme-
chanisches Modell, welches das Auftreten einer Vakuumenergie ohne Zuhilfenahme
von unnatürlich kleinen Zahlen erklärt. Dekohärenz, basierend auf unkontrollierter
Verschränkung mit der Umgebung, kann die Lokalisierung der Vakuumenergie auf
den klassisch beobachteten Wert erklären. Das oben erwähnte quantenmechanische
Modell erlaubt prinzipiell auch einen Tunnelprozess in ein Universum mit einer
anderen Vakuumenergie. Wir untersuchen in diesem Kontext die Änderung der
Tunnelwahrscheinlichkeit durch dissipative Effekte als Folge der Wechselwirkung
zwischen System und Umgebung.

Eng verwandt mit dem Problem der kosmologischen Konstante ist der spontane
Zerfall des Vakuums eines Quantenfeldes, welches Thema des zweiten Teils dieser
Arbeit ist. Dieser Prozess wird oft innerhalb einer semiklassischen Näherung im
Rahmen des Pfadintegralformalismus beschrieben. Anhand des Vakuumzerfalls wird
mithilfe der Dekohärenz die Lokalisierung von entstehenden “Vakuumblasen” disku-
tiert. Weiterhin wird die Abhängigkeit der Zerfallsrate von verschiedenen Raumzeit–
Hintergründen des Quantenfeldes beleuchtet.

Der dritte Teil dieser Arbeit widmet sich dem Einfluss der Wechselwirkung zwi-
schen Quantensystemen und ihrer Umgebung in einem anderen Kontext. Untersucht
wird hier die Erzeugung von Verschränkung zweier Systeme, die nicht direkt mit-
einander gekoppelt sind, aber indirekt über ein thermisches Bad wechselwirken. Die
Verschränkung, welche die indirekte Wechselwirkung induziert, wird jedoch durch
Dissipation und Dekohärenz schnell wieder zerstört. Es wird jedoch gezeigt, dass
signifikant viel Verschränkung erzeugt werden kann, wenn das Bad gewissen Randbe-
dingungen unterworfen wird. Insbesondere wird analysiert, wie sich der räumliche
Abstand der Systeme auf die Erzeugung von Verschränkung auswirkt. Konkret
wird die badinduzierte Verschränkung von Harmonischen Oszillatoren und Spins
untersucht.
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1 Introduction

The physics of open quantum systems is a very active area of research in theoretical
and experimental physics. Every realistic physical system is in effect an open one
since its interaction with environmental degrees is unavoidable. In certain cases,
when the system is sufficiently shielded from the environment, the approximation of
a closed system is viable. However, the only closed system in nature is the universe
as a whole. A feature of open quantum systems are their non–unitary behavior.
From the quantum mechanics of closed systems we know that, due to unitarity, every
time evolution can be inverted. Stating differently, it is always possible to obtain the
initial state of a system by applying a suitable unitary transformation. For an open
system there does not exist, in general, a unitary transformation which inverts the
time evolution.

In order to analyze open quantum systems one considers the unitary evolution of
the system and “the rest of the universe” which contains all environmental degrees
of freedom. Tracing over everything, but the system degrees of freedom, leads to the
reduced dynamics of the open system. This contains a unitary part, describing the
free evolution of the system, and a non–unitary part due to the system–environment
interaction.

An important phenomenon, which is widely studied within the context of open
quantum systems, is decoherence. It has been first introduced in 1970 by Zeh [1]
who pointed out, that realistic macroscopic systems are never closed and interact
strongly with their environment. This would explain, according to Zeh, the fragility
of macroscopic quantum states through a “dynamical decoupling” of wave–function
components. It took another decade until the decoherence program, including the
quantum–to–classical transition, was formalized by Zurek [2, 3]. However, it is
remarkable that this aspect of open quantum systems has not been investigated in
the early days of quantum mechanics. Joos called it an “historical accident” that the
implications of decoherence on fundamental problems had been overlooked so long
[4]. Although the absence quantum of aspects on macroscopic scales had been noted
very early, its connection to the system–environment interaction was not realized.
We will introduce the concept of decoherence and related formal aspects in chapter
2.

Since quantum mechanics, and therefore decoherence, is believed to be viable on
all scales, it can be applied to cosmological systems, for example dark energy. The
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1 Introduction

extremely small magnitude of the universe’s vacuum energy is still an open problem.
Before we address this issue in the context of quantum mechanics, we will give an
incomplete review on standard cosmology in chapter 3. Special focus lies on different
attempts to describe and explain dark energy. A possible quantum mechanism for
the generation of a small cosmological constant will be introduced in chapter 4.
Since one observes a classical cosmological constant, we investigate aspects of the
quantum–to–classical due to interaction with environmental degrees of freedom.

It is well-known that the cosmological constant can be mimicked by a scalar field,
see chapter 3. Therefore the vacuum energy of a scalar field is strongly related
to the issue of dark energy. During the last years, it has been discussed whether
our universe is only a small part of a huge cosmological landscape [5]. If it is true
that the vacuum energy of the universe is determined by a scalar field, it might be
possible that this field is trapped in a local minima of the landscape. However, due
to quantum tunneling, the field can evolve into another minimal of the potential.
This “decay of the vacuum” corresponds to the nucleation and rapid expansion of a
finite size “new vacuum” bubble within a sea of “old vacuum”. We will investigate
the influence of decoherence and nontrivial geometrical backgrounds on this process,
also know as “false vacuum decay” [6, 7], in chapter 5.

In the last part of this thesis, chapter 6, we address aspects of system–environment
interaction in a different context: the generation of entanglement between remote
quantum systems. Controllable entanglement of quantum systems, for example
photons or ions, is necessary for the application of certain quantum algorithms.
Entangled states of remote quantum systems are extremely fragile and sensitive to
decoherence. During the last years, several authors proposed that it should be possible
to generate entanglement via a bath–mediated interaction [8, 9]. The systems become
entangled with each other through an indirect interaction, i.e. a coupling to the
same thermal bath. After introducing different measures for entanglement in section
6.2, we will investigate the generation of bath mediated entanglement of oscillators
and spins in sections 6.3 and 6.4. We will focus on the distance dependence of the
bath–mediated entanglement generation and discuss under which circumstances this
is a viable mechanism.

In the following we set the constants ~, c and kB equal to one.
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2 Decoherence

2.1 Collapse and Entanglement

According to many textbooks on quantum mechanics the measurement process
requires a “collapse of the wave function”(see e.g. [10–13]). This dynamical process,
which was introduced by Heisenberg [14], breaks the unitary time evolution which is
given by the Schrödinger equation. Nevertheless, it remains unclear when transition
from the unitary time-evolution to the non-unitary time evolution takes place.

Since the measurement process is crucial for the interpretation of quantum me-
chanics, we will discuss it here using the example of a double slit experiment with
electrons.

Consider electrons passing through a plate with two slits and hitting a screen
which is placed parallel behind the plate. The density distribution of the striking
electrons on the screen exhibits an interference pattern, independent of whether the
electrons pass the plate individually or in a bunch. The quantum mechanical state
of an electron in a double slit experiment is given by

|Ψ〉 =
1√
2

(|ψL〉+ |ψR〉) , (2.1)

where |ψR〉 and |ψL〉 represent the partial waves passing from the right and left slit
to the screen, respectively. Measuring the position of the electron at one of the slits
will destroy the interference pattern as soon as we find the particle to be present at
one of the slits. According to Bohr there exists the principle of complementarity
between waves and particles [15]; depending on the experiment one observes either
interferences or acquires knowledge of the electron’s path. This principle was also
subject of a debate between Einstein and Bohr in 1927 [16] that involved the double-
slit experiment. Einstein argued, that it should be possible to measure the direction
of the recoil of the screen when the particle is striking. Bohr claimed that obtaining
any which-path information leads to a disturbance of the system and the interference
pattern vanishes, the wave function |Ψ〉 collapses on either of the states |ψR〉 and
|ψL〉.

However, this either–or distinction is not correct. It is possible in certain situations
to gain some information about the path of the electron without disturbing the
interference pattern completely [17, 18] which is in conflict with the complementarity
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2 Decoherence

between waves and particles. To discuss this feature, the description in terms of
a collapse of the wave function is no longer suitable. Instead, we will assume that
both, system and measurement apparatus, are evolving unitarily. We will treat the
measurement apparatus and the system quantum-mechanically and use the so-called
von Neumann scheme and the concept of entanglement. This stands in contrast
to the Copenhagen interpretation which includes the indispensability of classical
concepts for the measurement process [19, 20].

Regarding the double slit experiment, the inclusion of the detector system into the
quantum-mechanical treatment can be achieved as follows [21]. One places behind
each slit a detector which is initially in the state |ready〉. By covering the left slit
and placing the particle source directly behind the right slit, such that the particle
will pass through the latter, the electron is prepared in the state |ψR〉. The detector
behind the right slit will trigger and the composite system of particle and detector
will evolve according to

|ψR〉 |ready〉 → |ψR〉 |R〉 . (2.2)

In an analogous way it is also possible to cover the right slit such that the time
evolution reads

|ψL〉 |ready〉 → |ψR〉 |L〉 . (2.3)

Due to the linearity of the Schrödinger equation, we may also consider the time
evolution of a superposition,

1√
2

(|ψR〉+ |ψL〉) |ready〉 → 1√
2

(|ψR〉 |R〉+ |ψL〉 |L〉) . (2.4)

This is the von Neumann measurement scheme which involves the superposition
principle and the linearity of the Schrödinger equation [22]. The composite system is
determined by a pure state with all available information of electron and detector,

|Ψ〉〈Ψ| = 1

2
(|ψR〉 |R〉+ |ψL〉 |L〉) (〈ψR| 〈R|+ 〈ψL| 〈L|) . (2.5)

Since we are interested only in information about the electron, we trace out all
degrees of freedom concerning the detector. We find the reduced density matrix for
the electron to read

ρelectron ≡ trdetector|Ψ〉〈Ψ| (2.6)

=
1

2
[|ψR〉〈ψR|+ |ψL〉〈ψL|+ |ψR〉〈ψL|〈L|R〉+ |ψL〉〈ψR|〈R|L〉] .

As we see, the interference pattern is only destroyed when the detector states are
orthogonal. In this case, the detectors are perfectly able to distinguish whether the
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2.1 Collapse and Entanglement

particle moved through the right and left slit, respectively. When they are unable to
resolve the path, the interference pattern is not destroyed. In general, there can be a
finite overlap of the detector states, i.e. 0 < |〈R|L〉| < 1, such that the interference
pattern is only partially destroyed.

Note that even in the case of perfect measurement, 〈R|L〉 = 0, no collapse into
a partial wave is assumed. The global superposition (2.4) still exists, but it is
inaccessible to an observer by means of local observations.

The example considered above is a special case of an ideal measurement process,
which is determined through an interaction of von Neumann’s form, i.e.

Hint =
∑
n

|n〉〈n| ⊗ An , (2.7)

where |n〉 denote the state vectors of the system under consideration, and the
operators An are acting only on a macroscopic measurement apparatus. Furthermore,
the operators An have to be chosen such that the overlap between different apparatus
states |Φn(t)〉 originating from the same initial detector state |Φin〉 is negligible for
sufficiently large times, i.e. 〈Φm(t)|Φn(t)〉 ≈ δmn. The interaction (2.7) has the
characteristic to leave the state vectors of the system unperturbed. In other words,
any backreaction of the apparatus onto the system is neglected.

An initial product state containing a superposition of different system state vectors
|n〉 and the initial apparatus state |Φin〉 will evolve into an entangled state,(∑

n

cn|n〉
)
|Φin〉 →

∑
n

cn|n〉 |Φn(t)〉 , (2.8)

which is obviously a generalization of the situation considered in (2.4).
An observer will not have access to the global state but only to a local subsystem,

given by the reduced system density matrix that is obtained by tracing out the
apparatus states,

ρsys =
∑
n,m

c∗mcn|n〉〈m| →
∑
n,m

c∗mcn〈Φm|Φn〉|n〉〈m| . (2.9)

If the apparatus states are orthogonal to each other, i.e. 〈Φm|Φn〉 = δnm, the system
matrix becomes diagonal,

ρsys →
∑
n

|cn|2|n〉〈n| . (2.10)

All interference terms are destroyed locally in the basis defined by the interaction (2.7).
The phase relations are inaccessible for an observer by means of local observations.
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2 Decoherence

In the context of a system–environment interaction, equation (2.8) is the formal
description of the decoherence process (see section 2.2). In realistic scenarios, the
environmental states |Φn(t)〉 will be approximately orthogonal which leads to a
reduced density matrix of the form (2.10). However, this does not imply a collapse of
the system’s wave function to a specific state, say |n〉, as in the standard interpretation
of quantum mechanics. In contrast, all physical outcomes are in principle possible
and no specific state is singled out. Thus, the determination of a definite outcome
of the measurement process remains unsolved within the concept of decoherence
and leads to the “many-worlds interpretation” which is subject of section 2.3. In
principle, it is always possible to enlarge the system so as to include system and
apparatus and thus recover the coherences.

It is important to remark that the diagonal form of the density matrix (2.10)
does not represent a proper mixture. A proper mixture describes a situation, where
the system is in either of the states |n〉, whereas the pure state (2.8) involves
superpositions between different |n〉. The formal similarity of the reduced density
matrix (2.10) with a proper mixture originates from the non-unitary trace operation
with respect to the apparatus. Since all phase relations can in principle be obtained
by enlarging the system, this cannot be compared with a situation finding the system
in one of the states |n〉.

2.2 Decoherence and Environment

Based on the universality of quantum mechanics and and the superposition principle,
the decoherence program was first initiated by Zeh in [1] (see also [20]). It can
be considered as the solution to the following difficulty that arises when the mea-
surement apparatus is treated quantum–mechanically. According to the entangled
system–apparatus state (2.4) that can be seen as special case of (2.8), superpo-
sitions of different “pointer positions” |Φn(t)〉 are generally possible. However, a
Geiger counter being in a superposition of |“an atomic decay has been detected”〉
and |“no atomic decay has been detected”〉 has never been observed. Zeh noted,
that the treatment of system and apparatus as closed system is unrealistic and the
interaction between the macroscopic measurement device and its environment has
to be taken into account [1]. This environment, e.g. photons, air molecules etc.,
is usually considered to be extremely large and practically inaccessible to a local
observer. To state it more explicitly, we assume the environment to be initially in
the state |E0〉. Schrödinger’s equation generates the time evolution into an entangled
state, i.e. (∑

n

cn|n〉|Φn〉
)
|E0〉 →

∑
n

cn|n〉|Φn(t)〉|En(t)〉 . (2.11)
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2.3 Pointer Basis and Everett Interpretation

Orthogonality of the environmental states, which is valid under realistic conditions,
leads to the reduced density matrix which contains all available information of a
local observer,

ρred =
∑
n

|cn|2|n〉〈n| ⊗ |Φn(t)〉〈Φn(t)| . (2.12)

In the context of the entangled system–apparatus state (2.8), the states |Φn(t)〉
have to be interpreted as “remainder of the universe” including the measurement
apparatus [1]. The special case of non-orthogonal apparatus states (see equation
(2.6)) is only valid, if system and apparatus are shielded from the environment.

Furthermore, the decoherence program can also be applied without referring to
a measurement device, e.g. a detector. This leads naturally to an explanation for
the quantum–to–classical transition [23–25]. Due to the ubiquitous interaction of
physical systems with its environment, e.g. scattering of photons and airmolecules,
every object experiences a continuous monitoring process. On macroscopic scales,
decoherence is very efficient and information about the phase relations on an object
are delocalized in the environment on very short time scales.

2.3 Pointer Basis and Everett Interpretation

Associated with the quantum measurement, being described in terms of entanglement
of system and apparatus, is the preferred basis problem. From the state (2.8), the
measured observable is not uniquely defined since it is possible to find for any choice
of system states {|n〉} the corresponding apparatus states {|Φn〉}. The decoherence
program can be used to define a suitable pointer basis [26], this is also known as
Environment–induced superselection of a preferred basis. Zurek suggested that the
preferred pointer basis “contains a reliable record of the state of the system S”[2].
In other words, demanding that the system–apparatus correlations |n〉|Φn〉 are not
disturbed by the interaction with the environment, singles out a basis {|Φn〉} which
satisfies a dynamical stability criterion [27]. Mathematically, one demands that the
Hamiltonian describing the apparatus–environment interaction commutes (at least
in a good approximation) with the projectors |Φn〉〈Φn|.

In the context of system–environment interaction, that is without referring to
an explicit measurement apparatus, different cases of the emergence of a pointer
basis are distinguished. If the dynamics is dominated by the system–environment
interaction, the pointer states are eigenstates of the interaction Hamiltonian. Typical
system–environment interactions are scattering processes which are described through
Newton’s or Coulomb’s force law. Since gravitational and electrodynamic interactions
depend on the distance, the pointer states are position eigenstates [2, 3]. When the
internal dynamics of the system is dominating, the environment will only be able
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2 Decoherence

to monitor constants of motion and the pointer states are energy eigenstates of the
system Hamiltonian [28]. For the intermediate case, the pointer states are localized
in phase space [29].

This superselection of a preferred basis is also used to solve the preferred–basis
problem in the relative state interpretations of quantum mechanics. The most
prominent example is the Everett interpretation [30]. Everett abandoned the special
role of the observer that is part of the Copenhagen interpretation and assumed
the existence of a state |Ψ〉 representing the universe which is evolving according
to the Schrödinger equation. Every term in the superposition of the state |Ψ〉 at
the completion of the measurement corresponds to a physical state which can be
understood to be relative to the other part of the total state. To state it more
explicitly, every term of the superposition represents a physical state which is realized
in a certain “Everett branch”. This relative-state formalism was the motivation for
the “many-worlds interpretation” of DeWitt [31] and Deutsch [32]. The superselection
of a preferred basis using the concept of decoherence can be used to define stable
Everett branches [33].

For an extensive review of decoherence and the interpretation of quantum mechan-
ics, see [34]

2.4 Localization

An important application of the decoherence process is the localization of macroscopic
objects due to the ubiquitous interaction with their environment. Starting from the
quantum mechanics of isolated systems, it is not obvious that macroscopic objects
are found in spatial localized states. As an example, for the author of this thesis
it is not possible to be in a superposition of two different locations, say Cologne
and Dresden. Does this mean that the superposition principle does not apply to
“classical objects”? And where is the borderline between quantum mechanics and
classical mechanics?

This problem was already the subject of a debate between Born and Einstein. The
former stated that the solution lies in the limit of large masses (Born, November 26,
1954),

“[...] Aber nun muss ich mir doch die Freiheit nehmen zu behaupten, dass
Deine Behandlung des Beispiels (ein zwischen zwei Wänden hin und her prallender
Ball) nicht das beweist, was Du behauptest: nämlich dass die wellenmechanische
Lösung im Grenzfall makroskopischer Dimensionen nicht in die klassische Bewegung
übergeht. Das liegt nur daran, dass Du – verzeih mir die Frechheit – eine unrichtige,
der Frage nicht angemessene Lösung des Problems gewählt hast. Macht man es
gemäß den Vorschriften, so erhält man eine Lösung, die im Grenzfalle (Masse →∞)
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2.4 Localization

genau in die klassische deterministische Bewegung übergeht –obwohl sie natürlich
für endliche (große) Werte der Masse immer nur statistische Aussagen mit riesiger
Wahrscheinlichkeit produziert. Wenn man einen Ablauf beschreiben will, muss man
die zeitabhängige Schrödinger-Gleichung

− ~2

2m

∂2ψ

∂x2
= i~

∂ψ

∂t
(2.13)

benutzen, und nicht, wie Du es tust, den speziellen Fall, dass ψ proportional eiωt ist
(~ω = E), betrachten; denn dieser entspricht scharfer Energie, also unbestimmtem
Orte [...] ψ(x, 0) ist der willkürliche Anfangszustand. Diesen muss man so wählen,
dass er ausdrückt: Zur Zeit t = 0 ist der Ball nahe am Punkt x mit ungefähr
der Geschwindigkeit v. Also muss ψ(x, 0) überall Null sein außer in einem kleinen
Intervall um die Stelle x0 [...] Dann kommt sicher heraus (man kann es qualitativ
ohne Rechnung einsehen), dass das Wellenbündel ψ(x, t) hin und her prallt genau wie
ein Teilchen, wobei es ein bisschen verwaschener wird. Aber diese Ungenauigkeiten
werden für m→∞ verschwindend klein [...]”

In a reply to this letter, Einstein points out that the superposition principle allows
also states that cannot be called “classical”,

“[...] Zunächst muss ich sagen, dass Dein Standpunkt mich überrascht hat. Ich
dachte nämlich, dass angenäherte Übereinstimmung mit der klassischen Mechanik
stets dann zu erwarten sei, wenn die in Betracht kommenden de Broglie-Wellen-
längen klein sind gegenüber den sonstigen relevanten räumlichen Abmessungen.
Ich sehe aber, dass Du die klassische Mechanik nur mit solchen ψ-Funktionen in
Beziehung bringen willst, die bezüglich Koordinaten und Impulsen “eng” sind. Wenn
man es so auffasst, dann kommt man aber zu der Ansicht, dass weitaus die meisten
quantentheoretisch denkbaren Vorgänge von Makrosystemen keinen Anspruch darauf
machen dürfen, durch die Makro-Mechanik annähernd beschreibbar zu sein. Dann
müss te man sich z. B. sehr wundern, wenn ein Stern oder eine Fliege, die man zum
ersten Mal sieht, so etwas wie quasi-lokalisiert erscheinen.

Wenn man sich nun aber trotzdem auf Deinen Standpunkt stellt, so muss man
wenigstens verlangen, dass ein System, welches zu einer gewissen Zeit “quasi-
lokalisiert” ist, es gemäß der Schrödinger-Gleichung auch bleiben muss. Dies ist eine
rein mathematische Frage, und Du erwartest, dass die Rechnung diese Erwartung
bestätigen werde. Dies scheint mir aber ausgeschlossen zu sein [...]”

The solution to this problem starts with the observation that macroscopic objects
are constantly interacting with the environment which adopts the role of a measure-
ment apparatus. Since the environment is very large, the exact knowledge of the
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2 Decoherence

state describing the composite system of the macroscopic object and environment
is generally not possible. For a local observer who has only access to some degrees
of freedom of the macroscopic object, say position and momentum, the interference
terms which are present in the composite state are unobservable. The process of
decoherence depends crucially on the number of degrees of freedom present in the
environment. A single photon scattering at the macroscopic object is not able to
resolve the distance between two possible positions, i.e. the wavelength of the photon
is larger than the distance. However, a huge amount of scattering photons makes
the decoherence process very efficient [35].

Ignoring any recoil, one finds the reduced density matrix ρ of a macroscopic object
to be [21, 24]

〈x|ρ(t)|x′〉 = ρ(x, x′, t) = ρ(x, x′, 0) exp(−Λt(x− x′)2) , (2.14)

where |x〉 are the position eigenstates of the object and Λ is the localization rate
determining the “efficiency” of the decoherence process. Λ depends linearly on the
incoming flux of the scattering particles which emphasizes the role of the amount
of “measuring events”. We see from (2.14) that phase relations between different
position eigenstates of the macroscopic object are exponentially suppressed. The
pointer states coincide in (exponentially) good approximation with the position
eigenstates. As can be seen from (2.14), interferences are dynamically suppressed,
which corresponds to the dynamical choice of pointer states that are determined
through the interaction.

2.5 Observation of Decoherence

The process of decoherence on mesoscopic objects was observed in different setups.
Here we want to mention only some of the experimental breakthroughs. For an
extensive discussion see e.g. [21]

In 1996, Brune and collaborators [36] were able to create a mesoscopic state of
radiation fields and watched the destruction of this superposition by decoherence. A
rubidium atom is prepared in a superposition of two Rydberg states and traverses a
cavity which contains a coherent state. Due to the experimental setup, the atom
and the coherent state become entangled in such a way, that the field is finally in a
superposition of different states after measuring the atomic state. It was possible to
observe the decay of the field superposition due to decoherence.

This was the first time, that a mesoscopic “Schrödinger kitten” was generated and
decoherence was observed in a controlled way.

Later on, the effect of decoherence has been observed in experiments involving a
superposition of C70 molecules [37] and in various setups involving superconducting
quantum interference devices (SQUID’s) [38].
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2.6 Decoherence in Quantum Field Theory

The process of decoherence is universal and can also be applied in field theoretic
settings. Kiefer [39] considered measurements of electromagnetic fields by charges in
the context of scalar QED where the magnetic field is measured through a scalar
field which could describe charged pions, for example.

Furthermore, decoherence was applied in order to understand the classicality of
space-time. The scheme of the canonical formalism of quantization applying to
general relativity leads to the “timeless” Wheeler-DeWitt equation,

Hgravψ = 0, (2.15)

which is unfortunately only solvable using various approximation schemes and sym-
metry reductions [40]. However, it has been shown that the classicality of space-time,
i.e. the scale factor of the universe, can be understood through interaction with light
degrees of freedom such as density perturbations in the early universe [41].
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3 Cosmological Models

Before we apply the concept of decoherence to a cosmological issue in section 4,
we give a short overview about some basic facts concerning the standard model of
cosmology. For detailed introductions, see [42–45].

Einstein included in 1917 a cosmological constant Λ in the field equations of
general relativity. The motivation was the incorporation of Mach’s principle into the
theory of general relativity. Mach’s principle states that it is useless to define any
motion with respect to an absolute space, meaningful is only the motion with respect
to all objects in the universe. Einstein wanted to incorporate Mach’s principle on
cosmological scales such that space-time vanishes if the universe does not contain any
matter. This can be achieved using the field equations with cosmological constant,

Rµν − 1

2
gµνR− Λgµν = 8πGTµν , (3.1)

where Rµν denotes the Ricci tensor, gµν are the metric coefficients, Tµν is the energy
momentum tensor, and G is the gravitational constant. Here and in the following
we use for the metric the sign convention (+,−,−,−, ).

A positive cosmological constant allows a static and closed universe since it acts
as repulsive “force” counterbalancing the attractive force of matter. The mass of
this universe is directly related to its volume such that the universe disappears if the
mass vanishes. According to Mach, it was only meaningful to define a motion of an
object against a material background. Nonetheless, in the static Einstein universe
without matter there is no background which could be used as a reference frame.

Slipher observed in the 1920s a redshift of the light from distant galaxies, which can
be explained by the Doppler effect if the galaxies are departing from each other. In
1922, Friedmann constructed a matter dominated model for the expanding universe
without cosmological constant, which led finally Einstein to abandon the idea of a
cosmological constant.

3.1 Friedmann-Robertson-Walker Universe

Assuming spatial homogeneity and isotropy of the universe, one finds the Friedmann-
Robertson-Walker line element

ds2 = dt2 − a2

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θ2dφ2

)
, (3.2)
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3 Cosmological Models

where a(t) denotes the scale factor of the universe and k ∈ (1, 0,−1) is the spatial
curvature for a closed, flat or open universe, respectively. If the energy momentum
tensor describes a perfect fluid with density ρ and pressure P , Einstein’s equations
reduce to two coupled ordinary equations, the Friedmann equations. The first
differential equation involved only first derivatives of the scale factor,

H2 =
8πGρ

3
+

Λ

3
− k

a2
(3.3)

where the Hubble parameter is defined as H = ȧ/a. The second differential equation
for the scale factor is the acceleration equation,

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
. (3.4)

Equation (3.3) can be rewritten in the form

1

2
ȧ2 + V (a) = −k

2
(3.5)

with a potential for the scale factor,

V (a) = −4πG

3
ρa2 − Λ

6
a2 . (3.6)

The right hand side of equation (3.5) can be interpreted as total energy of a particle
with coordinate a moving in a potential V (a).

From (3.5) one can easily derive the static Einstein universe. For simplicity we
assume pressureless matter with the energy density ρ = ρmat(a0/a)3, where a0 denotes
the present scale factor and ρmat is the present matter density. The potential has a
maximum for

a =

(
4πGρmata

3
0

Λ

)1/3

. (3.7)

Since the scale factor is constant, we have a = a0 which leads to the critical
cosmological constant, Λ = Λcrit = 4πGρmat. Using energy conservation, i.e. equation
(3.5), we find Λcrit = 1/a2

0.
However, this solution is unstable since small perturbations would lead to an

expansion or an collaps of the universe. Furthermore, the Einstein static universe
contradicts with the observations suggesting an expanding universe.

Although there are various models with nonvanishing spatial curvature [42], we
will focus on spatially flat universes, since the model investigated in chapter 4 is
defined with vanishing spatial curvature.
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The critical density of the universe is defined by

ρcrit =
3H2

0

8πG
, (3.8)

where H0 is the current value of the Hubble parameter. Defining the density
parameters for the different matter components at the present epoch to be Ωi ≡
ρi(a0)/ρcrit, one can recast equation (3.3) into the form

H2

H2
0

=
Ωrad

a4
+

Ωmat

a3
+ ΩΛ . (3.9)

In a spatially flat universe, the density parameters add up to one, i.e.
∑

i Ωi = 1.
Neglecting the contribution from radiation, i.e. Ωrad = 0, one obtains for Ωmat+ΩΛ = 1
the exact analytical solution

a(t) ∝
(

sinh
3

2

√
Λ

3
t

)2/3

. (3.10)

This solution interpolates between a matter dominated epoch for
√

Λt� 1 and an
exponential expansion for

√
Λt� 1.

An approximate exponential increase of the scale factor is obtained if the cosmologi-
cal constant dominates the energy content of the universe, which is obviously the case
for ΩΛ 6= 0 at late times as can be deduced from equation (3.9). If Ωmat = Ωrad = 0,
we obtain from (3.9) an exact exponential increase of the scale factor, which is
assumed to be the case during the period of inflation in the early universe [46].
The corresponding geometry is the de Sitter space, which is defined through the
hyperplane

−X2
1 +X2

2 +X2
3 +X2

4 +X2
5 = H−2 (3.11)

in a five-dimensional auxiliary space. The solution with k = 0 is given by the
flat spatial sections of de Sitter space, whereas solutions of (3.9) for nonvanishing
spatial curvature, i.e. k = ±1, correspond to closed and open spatial sections of de
Sitter space, respectively. The explicit coordinates of these geometries, which will be
important in section (5), and further considerations concerning de Sitter geometry
are given in [47, 48].

3.2 Models for Dark Energy

Since observations hint to the existence of a cosmological constant respectively dark
energy (see [49]), there have been various attempts for theoretical explanations. The
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ad hoc introduction of the parameter Λ in the field equations of general relativity
(see equation (3.1)) does not offer a deeper understanding of its origin.

Zeldovich proposed that the cosmological constant may be the vacuum energy of
a scalar field. Unfortunately this is a divergent quantity. For a single scalar field φ
with mass m in Minkowski space, one obtains the energy momentum tensor

Tij = φ,iφ,j − 1

2
ηijφ,kφ

,k +
1

2
m2φ2ηij , (3.12)

where ηij denotes the Minkowski metric. Quantization of the scalar field according to

φ =
1√

2L3
√
k2 +m2

∑
k

(
ake

−i
√
k2+m2t+ikx + h.c.

)
(3.13)

leads to the vacuum expectation values

〈0|T0i|0〉 = 0 , (3.14)

and

〈0|T00|0〉 = −〈0|Tii|0〉 =
1

2

∑
k

ωk =
L3

4π2

∫ ∞
0

dkk2
√
k2 +m2 , (3.15)

where L3 is the quantization volume. Although the energy momentum tensor is
formally equal to the introduction of a cosmological constant, the expression (3.15)
is problematic since it contains an ultraviolet divergence.

In standard quantum field theory, this causes no problems since usually one is
interested in energy differences, allowing a redefinition of the zero point energy.
In contrast, the field equations (3.1) are sensitive to the absolute value of energy
contained in all forms of matter. A naive cutoff at the Planck scale does not solve
the problem since the cosmological constant would be ΛPlanck ∼ 1076GeV4, in strong
disagreement with the observed value ΛObs ∼ 10−47GeV4. This strong discrepancy is
known as the cosmological-constant problem.

In order to obtain a realistic value for Λ, various approaches have been investigated.
Dolgov proposed a decaying cosmological constant due to a non-minimal coupling to
the scalar curvature [50–52]. The generation of a small cosmological constant from
inflationary particle production was pushed forward by Sahni and Habib [53].

Many attempts have been made to explain dark energy using a minimally coupled
and spatially homogeneous scalar field φ. The energy density and the pressure are
given by

ρφ =
1

2
φ̇2 + V (φ) , (3.16)

Pφ =
1

2
φ̇2 − V (φ) , (3.17)
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which leads for φ̇2 � V (φ) to an approximate equation of state ρ ≈ −P which
resembles the equation of state of a cosmological constant. If the universe contains
only a scalar field and pressureless matter, we find from the Friedmann equations
(3.3) and (3.4) with k = Λ = 0

4πGa2H2

(
dφ

da

)2

= −aH dH

da
− 3

2
ΩmatH

2
0

(a0

a

)3

. (3.18)

Since the left hand side of equation (3.18) is always positive, we have

− aH dH

da
≥ 3

2
ΩmatH

2
0

(a0

a

)3

, (3.19)

which is nothing else but the weak energy condition for a dark energy term.
Depending on the shape of the potential, different scenarios have been discussed

in the literature. Simple potentials, e.g. V (φ) = m2φ2/2, cause fine tuning problems:
the relative values of matter and field densities have to be adjusted to high accuracy,
in order to be approximately equal at the present epoch.

Choosing the scalar field potential [54]

V (φ) =
k

φα
, k, α > 0 , (3.20)

one finds that the background energy density ρB of radiation or matter is related to
the energy density of the scalar field according to

ρφ
ρB

∝ t
4

2+α . (3.21)

Thus the scalar field density dominates at late times even if it was subdominant at
early times .

For an overview on various scalar field models, see [42] and references therein.
Beside the scalar field models of Λ, also hydrodynamic models are discussed

in the literature [55–57]. Within these models one describes the Λ-term with
a phenomenological equation of state, P = P (ρ). In the case of a cosmological
constant, the equation of state reads P = wρ with the equation of state parameter
w = −1. WMAP seven-year data limits on the equation of state parameter are
w = −1.12 0.42

−0.43. Using in addition results from the Sloan Digital Sky Survey Data,
one finds w = −0.980± 0.053 [49].

3.3 Anthropic Considerations

As we pointed out in the last section, the discrepancy between the observed value of
a cosmological constant and a naively predicted one is extremely large. Nevertheless,
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it might be the case that the small value of Λ is accidental and results from the
initial conditions in the universe. As example, it is obvious that the distance between
the earth and the sun is not a fundamental length that can be derived from a theory.
This length is rather accidental and could in principle be different. However, most of
the possible distances would not be suitable for the evolution of life.

If our universe is part of a large multiverse in which the cosmological constant
adopts all possible values, one might apply anthropic ideas. Weinberg showed in
1987 that the formation of galaxies is only possible if

ρΛ <
500ρmat(tR)(δmat(tR))3

729
, (3.22)

where δmat is a typical density perturbation and tR is the time of recombination
[58]. This estimate reduces the difference between theoretical prediction of the
cosmological constant and the observed value by 120 orders of magnitude.

We do not know whether we live in a probable universe, since the distribution
of vacua in a hypothetical cosmological landscape is unknown and all attempts to
derive a distribution rely on various assumptions [59].

During the last years the occurrence of a string landscape with as much as 10500

possible vacuum states brought new aspects into the discussion [60–64]. The arising
of the landscape can be understood as follows. One considers the ten–dimensional
space-time of string theory to be of the form M3,1 × X, where M3,1 represents
our space-time and the manifold X is chosen to be small and compact. This
compactification scheme introduces a high amount of ambiguity, since the choice of
X is far from being unique. The continuous degeneracy of consistent ten–dimensional
background are labeled by so–called moduli which appear as massless scalar fields in
four dimensions. Since nobody ever observed those fields it is necessary to generate a
potential such that the moduli become massive. This is done via flux compactification
[62, 65, 66] where one assumes non–zero background values of the field strengths of
the gauge fields appearing in the theory. Varying the background fluxes leads to an
ensemble of moduli potentials. The set of all possible four–dimensional constructions
is called string landscape.

Note that the idea of multiverses in cosmology have to be distinguished from
multiverses arising in the Everett-interpretation (see chapter 2). The latter refers
to possible outcomes of quantum decisions whereas the cosmological landscape
is a complicated potential landscape arising from the huge amount of possible
compactifations of extra dimensions in string theory.
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3.4 Observational Hints to a Nonvanishing

Cosmological Constant

Several independent observations hint to a cosmological constant greater than zero.
In order to come to this conclusion, results from WMAP data have to be combined
with high redshift supernova observations and models for structure formation.

The current value of the Hubble constant is according to WMAP seven-year data
H0 ≈ (71±2.5)km/sec/Mpc [49] and the age of the universe is t0 = (13.75±0.13)Gyr,
which would be in conflict with the age of the oldest stars unless the universe is flat
and Λ–dominated with a total energy density Ωmat + ΩΛ ' 1. In an open matter
dominated universe for instance, some globular clusters would be older than the age
of the universe unless the Hubble parameter is very small, H0 < 45km/sec/Mpc.

Observations of the large scale structure of the universe favor a universe with a
low matter density [67, 68]. Parameters in these models agree with Ωmat ≈ 0.3 and
ΩΛ ≈ 0.7.

Supernovae of type Ia can be used as standard candles in cosmology since dispersion
in their luminosity is very small and the width of the supernova lightcurve is strongly
correlated with its intrinsic luminosity. These standard candles have been used to
determine the value of H0 and the joint probability distribution of Ωmat and ΩΛ which
gives in combination with CMB results a peak of the likelihood near Ωmat + ΩΛ = 1
[69, 70].
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4 Cosmological Constant from
Decoherence?

Many attempts have been made to investigate the vacuum energy contribution Λ
on a more fundamental basis (see section 3.2), however, its origin is still unknown
and one of the biggest issues in cosmology. In particular, Λ could in general be time-
dependent, although it seems that all data are consistent with the state parameter
w = −1 [49].

An interesting idea to explain a small positive cosmological constant was put
forward by Yokoyama [71]. He assumed that, perhaps due to some unknown symmetry,
the exact ground state of the universe is characterized by a vanishing vacuum energy,
that is, a vanishing cosmological constant. This part of the cosmological-constant
problem thus remains unsolved by his proposal. The observed small deviation from
zero arises, according to [71], from the fact that the universe is not in its ground state.
More concretely, Yokoyama considers a double-well potential as a model for the dark
energy. This is motivated by recent ideas in string theory where a ‘landscape’ of
many (perhaps as many as 10500) local minima of a complicated potential is discussed,
see the short discussion in section 3.3. The simplest approximation to accommodate
these ideas is to start from a double-well potential, which is a well studied example in
quantum theory, and then to extend the discussion to the presence of many minima.

The ground state for a double-well potential is extended (delocalized) over both
minima. In contrast to this, a state localized in one of the minima is a superposition
of the eigenstates; in the simplest case, it is a superposition of the ground and the
first excited state. The effective energy of such localized states is bigger than the
ground-state energy and is thus positive in our case. If the wall between the wells is
not too small, the values for this positive energy are tiny because they differ from the
ground-state energy only by a small tunneling factor proportional to exp(−S0), where
S0 is the instanton action. The reason for the observed small positive cosmological
constant could thus lie in the fact that the universe is in a localized state being
concentrated near one of the minima of the potential. An extension of Yokoyama’s
work to the case of many wells (taking into account ideas from string theory) was
suggested in [72]. However, the authors consider the ground state of our universe to
be a superposition of all accessible vacuum states. Due to the unavoidable interaction
between the configuration of the universe and environmental degrees of freedom, for
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example standard model fields or thermal excitations, this seems to be a doubtful
assumption.

As long as the universe stays in a localized state, the effective equation of state
would be p ≈ −ρ. There exists, however, a certain probability that the universe can
tunnel into another localized state. The question then arises how big the time scale
and the tunneling rate are which should obey all known observational constraints [49].
In the following we shall elaborate on this idea in two respects. First, it has to
be justified why the universe is not in its ground state in the first place, but in a
localized state. The key concept for addressing this problem is decoherence [21, 25].
It has been pointed out in section (2) that decoherence is used in quantum mechanics
in order to understand the emergence of classical properties, for example, the spatial
localization of a particle which is originally in a superposition of localized states.

The case closest to our cosmological situation is the emergence of molecular
structure ([25], section 3.2.4). Chiral molecules such as sugar can be described by
a double-well potential. While their energy eigenstates are delocalized over both
minima, their chiral (parity-violating) states are localized in the two minima. Except
for small molecules, these systems are usually found in their localized states. The
reason is the ubiquitous interaction with environmental degrees of freedom such as
air molecules and photons which ‘fix’ the molecular structure and thus lead to chiral
states; this is decoherence. A similar mechanism is invoked here to justify that the
universe is in a state with small positive Λ.

Our second elaboration is a direct consequence of the first problem. If additional
‘decohering’ degrees of freedom are present, they will have an effect on the tunneling
rate. One may expect that they will in general reduce this rate, so that tunneling
will become less likely [73]. We shall thus discuss both the pure tunneling rate of the
isolated system as well as its modification by the environment. These considerations
should be relevant, too, for the inflationary stage of the early universe, which was
also dominated by an (effective) cosmological constant. We shall discuss both the
case of two minima and of many minima.

We start in section 4.1 with a brief introduction on tunneling in quantum mechanics
and quantum field theory, mainly following the treatment given in [74]. Then we will
give short review of Yokoyama’s proposal in section 4.2. In the subsequent section
4.3, we will present our model in detail. The reduced density matrix describing the
cosmological constant will be considered in section 4.4. Modifications of the tunneling
rate due to system-environment interaction are subject of section 4.5, aspects of
decoherence in a cosmological landscape are discussed in section 4.6.
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4.1 Tunneling in Quantum Theory

Tunneling is a purely quantum mechanical phenomenon and cannot be understood
in classical terms [74]. It describes the barrier penetration of particles being trapped
in a local minima of a potential. Classically, the particle would not have enough
energy to overcome the barrier. In contrast, the quantum mechanical description of
a particle relies on a wave function that is non-vanishing within the potential barrier.

Consider the Hamiltonian of a particle moving in a one-dimensional potential,

H =
p2

2
+ V (x) . (4.1)

According to Feynman, the transition amplitude of the particle moving from xi to
xf is

〈xf |e−iHt/~|xi〉 = N

∫
DxeiS/~ , (4.2)

where we reintroduced Planck’s constant ~ explicitly and N is a normalization
constant. The euclidean version of (4.2) can be obtained by the analytical continuation
of the time t→ −itE, and reads

〈xf |e−HT/~|xi〉 = N

∫
Dxe−SE/~ , (4.3)

where T is the euclidean time within the particle state changes from |xi〉 to |xf〉.
The euclidean action, given by

SE =

∫ T/2

−T/2
dtE

[
1

2

(
dx

dtE

)2

+ V (x)

]
(4.4)

determines the motion of a particle in a potential −V .
Formula (4.3) is often used for obtaining the tunneling amplitude of the particle,

the motivation shall be given in section 4.1.2. The left hand side of equation (4.3)
can be evaluated in a set of energy eigenstates of the Hamiltonian,

H|n〉 = En|n〉, (4.5)

and therefore

〈xf |e−HT/~|xi〉 =
∑
n

e−EnT/~〈xf |n〉〈n|xi〉 . (4.6)

The leading term of this expression in the large T limit is determined by the lowest
energy eigenstate and the corresponding wave-function. The big advantage of the
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path integral formulation is, that the right hand side of (4.3) can be evaluated in the
semi-classical limit, i.e. for small ~. Expanding up to first order in ~, we have

N

∫
Dxe−SE/~ = A exp(−SE/~) , (4.7)

where SE is the classical Euclidean action and the prefactor A is determined by the
second variation of the action.

4.1.1 The Harmonic Oscillator

To start with, we consider the harmonic oscillator with frequency ω. The path
integral has to be evaluated along all possible trajectories x(tE) with x(−T/2) = xi
and x(T/2) = xf . We separate the function x(tE) in a classical trajectory x̄ and a
sum of real and orthonormal functions xn(tE) that are vanishing at the boundaries,

x(tE) = x̄(tE) +
∑
n

cnxn(tE) , (4.8)

with ∫ T/2

−T/2
dtExn(tE)xm(tE) = δnm . (4.9)

A simple example is the case xi = xf = 0. The classical action vanishes since x̄ = 0
and we are left with contributions from the second variation of the action,

〈0|e−HT/~|0〉 = N
∏
k

∫
dck(2π~)−1/2 exp

(
−1

~
∑
n

(
− d2

dt2E
+ ω2

)
c2
n

)

= N

[
Det

(
− d2

dt2E
+ ω2

)]−1/2

, (4.10)

where the orthonormality of the xn has been used. For large T , we find with an
appropriate normalization

N

[
Det

(
− d2

dt2E
+ ω2

)]−1/2

=
( ω
π~

)1/2

e−ωT/2 , (4.11)

from which we deduce the ground state energy,

E0 =
1

2
ω~ . (4.12)
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4.1 Tunneling in Quantum Theory

4.1.2 The Double Well

Now we investigate the tunneling process in an even potential, V (x) = V (−x), with
two local minima and their corresponding position eigenstates |x+〉 and |x−〉. In the
following we will compute the transition amplitudes

〈x+|e−HT/~|x+〉 = 〈x−|e−HT/~|x−〉 (4.13)

and

〈x+|e−HT/~|x−〉 = 〈x−|e−HT/~|x+〉 . (4.14)

In contrast to the simple harmonic oscillator, the classical solutions to the equations
of motion for vanishing energy are nontrivial. Varying the action (4.4), we find the
differential equation

− d2x̄

dt2E
+ V ′(x̄) = 0, (4.15)

which has for vanishing energy the solution

x̄(t) =

∫ t

0

dtE
√

2V + x+/−. (4.16)

The corresponding classical euclidean action reads

SE =

∫
dtE

((
dx̄

dtE

)2

+ V (x̄)

)
=

∫ x+

x−

dx̄
√

2V . (4.17)

Thus, the expression for the tunneling rate, Γ ∝ exp(−SE), coincides with the
usual amplitude for transmission through a potential barrier that can be obtained
by solving the Schrödinger equation explicitly [74]. The euclidean path integral
formalism has the advantage that it can be generalized to field theoretical settings.

The classical solutions going from x− to x+ are called “instantons”, because they
are similar to particle–like solutions of classical field theories. Whereas particle–like
solutions like solitons are structures in space, the instanton solutions are structures
in time (see p. 271 in [74]).

In order to compute the amplitudes (4.2) and (4.3) one has to sum over all
configurations starting at x+/− and ending at x+/−. The instanton solutions are
centered around times t1, ..., tn, where

T/2 > t1 > ... > tn > −T/2 . (4.18)

Furthermore, one is assuming that the instantons are widely separated. In other
words, the time scale of the transition from x− to x+ has to be much smaller than T .
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4 Cosmological Constant from Decoherence?

For n instantons, the formula (4.11) is corrected due to the transitions between x−
and x+, ( ω

π~

)1/2

e−ωT/2 →
( ω
π~

)1/2

e−ωT/2Kn , (4.19)

with ω2 = V ′′(x+/−) and K is defined such that the right hand side of (4.19) gives
the correct answer for a single instanton, i.e. n = 1.

The instantons are centered at times ti which fulfill the relation (4.18). By
integrating over all possible centers we obtain the factor∫ T/2

−T/2
dt1

∫ T/2

t1

dt2...

∫ T/2

tn−1

dtn =
T n

n!
. (4.20)

All together this leads to the transition amplitudes

〈x+|e−HT/~|x+〉 = 〈x−|e−HT/~|x−〉 (4.21)

=
( ω
π~

)1/2

e−ωT/2
∞∑
n=0

(KTe−SE/~)2n

(2n)!

=
( ω
π~

)1/2

e−ωT/2
1

2

[
exp(KTe−S0/~) + exp(−KTeS0/~)

]
and

〈x+|e−HT/~|x−〉 = 〈x−|e−HT/~|x+〉 (4.22)

=
( ω
π~

)1/2

e−ωT/2
∞∑
n=0

(KTe−SE/~)2n+1

(2n+ 1)!

=
( ω
π~

)1/2

e−ωT/2
1

2

[
exp(KTe−S0/~)− exp(−KTeS0/~)

]
.

From these expressions, we can deduce the two lowest eigenfunctions of the Hamilto-
nian, |0〉 = (|x+〉+ |x−〉)/

√
2 and |1〉 = (|x+〉− |x−〉)/

√
2 with the energy eigenvalues

E0 = ~ω/2− ~K exp(−S0/~) and E1 = ~ω/2 + ~K exp(−S0/~), respectively. These
are the usual odd and even combinations of localized harmonic oscillator states. The
degeneracy is broken by the exponential small tunnel splitting, exp(−SE/~).

The correction K is given according to Callan and Coleman [75] by the ratio of
two functional determinants,

K =

(
SE
2π~

)1/2 ∣∣∣∣ Det(−d2/dt2E + ω2)

Det′(−d2/dt2E + V ′′(x̄))

∣∣∣∣1/2 , (4.23)

where the prime indicates that the zero eigenvalue has been omitted. Otherwise the
evaluation of the determinant would lead to an infinity, i.e. the integral over the
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4.2 Yokoyama’s Proposal

expansion coefficient c1 which corresponds to the eigenfunction with zero eigenvalue,
x1, is not bounded. This eigenfunction appears due to the time translational
invariance and can be obtained by differentiating the equation of motion (4.15) with
respect to time. It reads explicitly

x1(tE) = S
−1/2
E

dx̄

dtE
, (4.24)

where the normalization is obtained through equation (4.17) and the normalization
(4.9). Comparing the changes of x induced by a small change of the instanton center
t1,

dx =
dx̄

dt1
dt1, (4.25)

and the change induced by a variation of the expansion coefficient, c1,

dx = x1dc1, (4.26)

one finds (
1

2π~

)1/2

dc1 =

(
SE
2π~

)1/2

dt1 . (4.27)

This explains the inclusion of a factor (SE/2π~)1/2 instead of the zero eigenvalue in
equation (4.23).

In the following sections, we set ~ = 1 again.

4.2 Yokoyama’s Proposal

Before describing our model in detail, we will give a short review on Yokoyama’s
proposal [71]. He considered an abstract field theory with two localized vacuum
states, |+〉 and |−〉. The transition is classical forbidden, but quantum mechanically,
there exists an instanton solution describing the tunneling from |+〉 to |−〉 and
vice versa. It follows that the true ground state, |S〉, is given by the symmetric
superposition

|S〉 =
|+〉+ |−〉√

2
. (4.28)

The local energy density of both |+〉 and |−〉 is given by ρ0, whereas the energy
density of the ground state, ρ, can be obtained by summing over all instanton
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4 Cosmological Constant from Decoherence?

configurations. Yokoyama considers the probability amplitude for the system to
remain in the ground state,

〈S|e−HT |S〉 =: exp(−VTρ) , (4.29)

where H is the (time independent) Hamiltonian of the system. The volume V is the
spatial region, in which the quantum field is defined. From section (4.1) we know
that the tunneling amplitude is determined by the instanton action SE. In order to
evaluate (4.29), the expressions

〈+|e−HT |+〉 = 〈−|e−HT |−〉 (4.30)

and

〈+|e−HT |−〉 = 〈+|e−HT |−〉 (4.31)

have to be obtained. If the field rested in a potential with only one local minima, one
would find only the contributions from the second variation of the classical action
since the classical action vanishes. Generalizing (4.11), one finds

NDet(−∂2
tE
−∇2)−1/2 ∝ e−ρ0VT , (4.32)

where ρ0V is the sum of the ground state energies of all harmonic oscillators within
the quantization volume V. Again, the instantons and anti-instantons correct the
formula such that we have

NDet(−∂2
tE
−∇2)−1/2 ∝ (VK)ne−ρ0VT , (4.33)

where K is given by a ratio of functional determinants similar to (4.23). We integrate
again over the centers of the locations of the instantons and find a factor T n/n! as
in equation (4.20). Now we have to sum up all instanton configurations,

〈+|e−HT |+〉 = e−ρ0VT
∞∑
n=0

(
KTVe−S0

)2n

(2n)!
(4.34)

and

〈+|e−HT |−〉 = e−ρ0VT
∞∑
n=0

(
KTVe−S0

)2n+1

(2n+ 1)!
. (4.35)

From (4.34) and (4.35), Yokoyama’s result can be derived,

〈S|e−HT |S〉 = exp
(−VT (ρ0 −Ke−S0

))
. (4.36)
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4.3 The Model

The energy density ρ is supposed to vanish according to some unknown symmetry,
i.e.

ρ = 0 = ρ0 −Ke−S0 . (4.37)

Since the energy density of a localized vacuum state ρ0 equals the dark energy density
of our universe, one has with (4.37) a natural explanation for its smallness, i.e.
ρ0 = 10−120M4

Planck. One can account for this small value without introducing small
numbers since from (4.37) follows S0 = 120 ln 10 + ln(K/M4

Planck). The requirement
that the universe is too young to be relaxed into the ground state |S〉 leads with
the tunneling rate per unit volume, Γ = Ke−2S0 , and the current Hubble parameter,
H0 =

√
ρ0/(3M2

Planck), to the condition

Γ/H4
0 ≈ 9M4

Planck/K ≤ 1 . (4.38)

4.3 The Model

In this section we will incorporate Yokoyama’s idea in an explicit model, explaining
in addition the localization of the Λ-term.

The vacuum energy is mimicked by a scalar field φ in a quartic potential with two
quasi-localized minima; this we shall call our ‘system’. Furthermore, we consider
a scalar field environment, which will influence our system. The system and the
environment are supposed to evolve in a flat FRW-background with the line element

ds2 = gB
µνdx

µdxν = dt2 − a2(t)(dx2 + dy2 + dz2) . (4.39)

We assume here for later convenience that the scale factor, a, has the dimension of a
length, while x, y, and z are dimensionless. The action of system and environment
then reads

S =

∫
d4x
√
−gB (Lsys + Lenv + Lint) , (4.40)

where gB is the determinant of the metric gB
µν and Lsys, Lenv and Lint denote the

Lagrangian of the system, environment and interaction, respectively. The spatially
homogeneous scalar field describing the vacuum energy is given by

Lsys =
1

2
φ̇2 − V (φ) . (4.41)

The Lagrangian of the environment, Lenv, reads in the case of the scalar field
environment

Lenv,σ =
1

2
∂µσ∂

µσ . (4.42)
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4 Cosmological Constant from Decoherence?

The interaction between the system and environment has to be suited to distinguish
different values of the scalar field φ. In quantum mechanical settings usually one
choses bilinear interactions, see for instance the Caldeira-Leggett model [73, 76]
or the Spin-Boson model described in section 5.3 of [21]. However, the field φ is
assumed to be spatially homogeneous. Therefore, a bilinear term in the action which
is of the form

∫
d3xσ(x, t)φ(t) would give no interesting dynamics, since only a single

Fourier component of the scalar field σ, the one with vanishing momenta, interacts
with the system field. We consider instead the tri-linear interaction

Lint,σ = −gSσ2φ (4.43)

for the scalar field environment. Here, the coupling constants gS has to be chosen
such that the product gSφ is positive, but otherwise arbitrary. This requirement
assures that the corresponding Hamiltonians are bounded from below and the theory
is stable.

The terms can formally be derived from an expansion of the determinant
√−g

into the scalar and tensor modes. Therefore, we consider the FRW line element with
scalar and tensor perturbations [77],

ds2 = (1 + 2ψ1)dt2 − a2((1− 2ψ2)δij + hij)dx
idxj , (4.44)

where ψ1/2 are scalar perturbations and hij are tensor modes. In the transverse
and traceless gauge, there are only two independent tensor modes, h23 = h32 and
h22 = −h33. If there is a linear term in the potential of the system field φ, we have∫

d3x
√−gφ ≈ (4.45)∫

d3x
√
−gB

(
1 + ψ1 − 3ψ2 − 2ψ2

1 +
3

2
(ψ1 − ψ2)2 − 1

2
h2

22 −
1

2
h2

23

)
φ .

Discarding the terms linear in ψ1 and ψ2 for the reason mentioned above, we are left
with tri-linear interactions of the form (4.43).

4.4 The Reduced Density Matrix

The Hamiltonian which can be derived from (4.40) reads in momentum representation

Hφ,σ =

∫
dp3

(
1

2a3
Π̃(p)Π̃(−p) +

a

2
p2σ̃(p)σ̃(−p) (4.46)

+gSa
3φσ̃(p)σ̃(−p)

)
+Hφ ,
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4.4 The Reduced Density Matrix

where we defined

σ(x) =
1

(2π)3/2

∫
d3p σ̃ab(p)eixp , (4.47)

Π(x) =
1

(2π)3/2

∫
d3p Π̃(p)eixp . (4.48)

Note that p is dimensionless and the scalar field φ is spatially homogeneous, i.e.
φ(x, t) = φ(t).

In the following we simplify the part of the Hamiltonian describing the system. We
shall assume that the dynamics of the system is dominated by the two lowest energy
eigenvalues of the double-well potential, that is, we assume that their difference is
much smaller than the energy gaps within a single well. It is then possible to reduce
the system to an effective two-state system,

Hφ =

(
E+ ∆
∆ E−

)
, (4.49)

where E+ and E− are the energy levels of the localized minima, and ∆ is the tunneling
matrix element. The reduction of system to an effective two-state system leads to
the interaction

Hint,σ = gSa
3(t)

(
φ+ 0
0 φ−

)∫
d3p σ(p)σ(−p) , (4.50)

where the environment can only distinguish between the two different minima of the
potential, φ+ and φ−.

All together, our model resembles a spin–boson model [78], although the coupling
in the standard situation is taken to be linear in the environmental fields. It is
well known that situations with a double-well potential can often be described by
an effective two-state system [21, 25]. Spin–boson models describe the interaction
of a central system with its environment, when the system is effectively acting as
two-level system.

With this simplification at hand it is possible to calculate the reduced density
matrix of the two-state system. We assume that the initial state is a product of a
system and an environmental state, |Ψ〉sys ⊗ |Ψ〉env. The time evolution will then
generate an entanglement between them. This evolution is governed by the functional
Schrödinger equation

i|Ψ̇〉 = Hφ,σ|Ψ〉 . (4.51)

Setting ∆ = 0 in (4.49), it is possible to solve the Schrödinger equation exactly. We
assume the state of system and environment to be of Gaussian form [79] and make
the ansatz

|Ψ〉 =

(
αN+(t) exp

(−1
2

∫
d3p σ(p)Ω+(φ, p, t)σ(−p)− iE+t

)
βN−(t) exp

(−1
2

∫
d3p σ(p)Ω−(φ, p, t)σ(−p)− iE−t

)) , (4.52)
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4 Cosmological Constant from Decoherence?

where Ω+/−(p, t) and N+/−(t) are time-dependent functions to be determined from
the Schrödinger equation, α and β are constants with |α|2 + |β|2 = 1. With the
above ansatz one obtains the following Riccati-type equations, cf. [39],

− iΩ̇+/−(p, t) = −(Ω+/−(p, t))2

a3
+ p2a+ gSa

3φ+/− (4.53)

and

1

2a3
TrΩ+/−(p, t) = i

Ṅ+/−

N+/−
. (4.54)

These equations can be solved by the ansatz

Ω+/−(p, t) = −ia3 u̇+/−(p)

u+/−(p)
. (4.55)

Switching to conformal time defined by a dη = dt, we obtain

(p2 + 2gSφ+/−a
2)u+/−(p, η) +

2a′

a
u′+/−(p, η) + u′′+/−(p, η) = 0 . (4.56)

The density matrix for system and environment is given by the pure state

ρ(t) = |Ψ〉〈Ψ| (4.57)

from which the reduced density matrix shall be obtained by integrating out the
environmental scalar field,

ρ(t)sys = Trenv|Ψ〉〈Ψ| . (4.58)

In position representation, this reads

ρij =

∫
DσΨ∗i [σ]Ψj[σ] , (4.59)

where i, j run over the values + and −, and Ψ ≡ (Ψ+,Ψ−)T. Since we neglected
dissipation by setting ∆ = 0, the diagonal elements of the reduced density matrix
remain unchanged, that is, one has

ρ++(t) = |α|2|N+(t)|2
∫
Dσ exp

[
−
∫
d3pσ(p)<Ω+(t)σ(−p)

]
= |α|2 = ρ++(0) (4.60)

as well as ρ−−(t) = ρ−−(0). The probabilities of finding the system in state 1 or 2 are
thus unchanged by the environment; this corresponds to a quantum-nondemolition
(or ideal) measurement [21, 25].
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4.4 The Reduced Density Matrix

The non-diagonal elements can be calculated as follows,

ρ+−(t) = ρ∗−+(t) = αβ∗N+ (N−)∗ ×∫
Dσ exp

(
−1

2

∫
d3p
(
Ω+ + Ω∗−

)− i(E+ − E−)t

)
= αβ∗

det1/4(<Ω+) det1/4(<Ω−)

det1/2 ((Ω+ + Ω∗−) /2)
×

× exp

(
−i
∫ t

dt′
1

2a3
Tr(<Ω+ −<Ω−)− i(E+ − E−)t

)
. (4.61)

The functions Ω+/− depend on the small parameter a2γ/p2 for sub-Hubble modes
and γ/H2 for super-Hubble modes, where γ = 2gSφ+/−. (For notational convenience
we suppress the indices + and − on γ.) Expanding up to second order in γ, we have

Ω+/−(γ) ≈ Ω+/−

∣∣∣∣∣
γ=0

+
d

dγ
Ω+/−

∣∣∣∣∣
γ=0

γ +
1

2

d2

dγ2
Ω+/−

∣∣∣∣∣
γ=0

γ2

=: Ω + Ω
′
γ +

1

2
Ω
′′
γ2 . (4.62)

The approximate expression for the non-diagonal elements then reads

ρ+−(t) = ρ+−(0) exp

(
−g

2
S(φ+ − φ−)2

4
Tr

(
(<Ω

′
)2 + (=Ω

′
)2

(<Ω)2

)
− iϕ+−

)
(4.63)

with ρ+−(0) = αβ∗ and

ϕ+− = Tr

(=Ω
′

<Ω

gS(φ+ − φ−)

2
+

(=Ω
′′

<Ω
− =Ω

′<Ω
′

(<Ω)2

)
g2
S(φ2

+ − φ2
−)

2

)
+

∫ t

dt′
1

2a3
Tr(<Ω+ −<Ω−) + (E+ − E−)t . (4.64)

In the following we want to discuss the explicit form of the decoherence factor.
To begin with, we consider the impact of the sub-Hubble modes on the system.
Within a WKB-approximation, which is adequate for p2 � a′′/a, the solutions to
the differential equation (4.53) reads

u+/−(k, η) =
A

a
exp

(
i

∫ η

dη′ω+/−(η′)

)
, (4.65)

where

ω+/−(η) =

(
k2 + 2gSφ+/−a

2 − a′′

a

)1/2

. (4.66)
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We have chosen an instantaneous vacuum in the infinite past, also known as Bunch–
Davies vacuum [80]. This is possible since the interaction vanishes for a→ 0 when
the modes are far inside the horizon. The trace of the real part of the exponent in
(4.63) reads

Tr

(
(<Ω

′
)2 + (=Ω

′
)2

(<Ω)2

)
=
πa4V

(2π)3

∫ ∞
kmin

dk
k2(

k2 − a′′

a

)2

=
πa4V

2(2π)3

 kmin

k2
min − a′′

a

+
1

2

√
a

a′′
ln

kmin +
√

a′′

a

kmin −
√

a′′

a

 . (4.67)

The WKB-approximation holds for modes far inside the horizon kmin >
√
a′′/a, in

the case of a constant Hubble rate we have kmin >
√

2Ha.
To discuss the explicit form of the decoherence rate for super-Hubble modes we

shall restrict ourselves to the de Sitter case H = const. It is not possible to take
WKB solutions, since the time evolution is highly non-adiabatic for super-Hubble
modes. The solution for equation (4.56) is given by

u+/−(p, η) =
H
√
π

2

(
η

p

)3/2

H(1)√
9/4−2gSφ+/−/H2

(pη) , (4.68)

where H(1) denotes a Hankel function. This expression is equal to the usual Bunch–
Davies vacuum for gS = 0:

ugS=0(p, η) = − Hη√
2p2

(
1 +

i

pη

)
eipη . (4.69)

In this example it is easy to obtain the effect of particle creation on the decoherence
factor. Using a Gaussian state and the expression (4.69), it is easy to show that for
g = 0 we have

Ω(p, t) =
p2a2

p− iaH . (4.70)

Using (4.70) and the approximation of (4.68) for pη → 0,

u+/−(p, η) ∝
(
η

p

)3/2 (pη
2

)−√9/4−2gSφ+/−/H2

, (4.71)

we obtain for the impact of super-Hubble modes on the system

Tr

(
(<Ω′)2 + (=Ω

′
)2

(<Ω)2

)
=

4πV a2

9(2π)3H2

∫ pmax

pmin

dp

(
1 +

2aH

p

)2

=
4πV a2

9(2π)3H2

[
pmax − pmin −

(
2a2H2

pmax

− 2a2H2

pmin

)
−
(
a4H4

3p3
max

− a4H4

3p3
min

)]
. (4.72)
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This result for the trace depends on the minimal and maximal values for the
dimensionless wave number. For the super-Hubble modes, we take for the minimal
wavelength the Hubble scale, so pmax = 2πaH. For the maximal wavelength, a
reasonable value is given by the scale factor itself, so pmin = 2π. Evaluating the trace
using these numbers and inserting the result into (4.63), we find for the absolute
value of the non-diagonal element of the density matrix,

|ρ+−(t)| = |ρ+−(0)| exp

(
−g

2
Sa

2V (φ+ − φ−)2

72π2H2

[
(aH)4

24π3
+O(aH)2

])
. (4.73)

We recognize explicitly that this non-diagonal element becomes smaller for increasing
aH, that is, decoherence becomes efficient and the field is localized in one of the
wells.

Evaluating the density matrix (4.67) for the sub-Hubble modes, we obtain with
kmin = 2πHa,

|ρ+−(t)| = |ρ+−(0)| exp

(
−g

2
Sa

3V C(φ+ − φ−)2

64π2H

)
, (4.74)

where C ≈ 0.3296. Taking the ratio of the widths of the two Gaussians (4.73) and
(4.74), we obtain

(∆φ)2
super

(∆φ)2
sub

≈ 8.9π3

(aH)3
, (4.75)

which goes to zero for aH → ∞, that is, the super-Hubble modes are much more
efficient in the localization of φ than the sub-Hubble modes.

4.5 Modification of the Tunneling Rate

In this section we investigate the influence of the system–environment interaction on
the tunneling rate. Before we discuss this in detail, we shall recall some basic facts
on tunneling in quantum mechanical settings under the influence of environmental
degrees of freedom. An important generic model is the Caldeira–Leggett model that
has been considered in [73]. The authors consider the tunneling of a macroscopic
variable out of a metastable state. The bilinear interaction with an environment,
modeled by a set of harmonic oscillators, changes the decay rate. Since the envi-
ronmental degrees of freedom appear only linearly and quadratically in the action,
they can be integrated out. The authors derive an effective euclidean action for the
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macroscopic variable,

Seff [q] =

∫ T

0

dtE

(
1

2
Mq̇2 + V (q)

)
(4.76)

+
η

4π

∫ ∞
−∞

dtE

∫ T

0

dt′E
(q(tE)− q(t′E))2

(tE − t′E)2
, (4.77)

where M is the mass of the macroscopic variable, q denotes the position variable and
η is a friction coefficient greater than zero. Due to the interaction with environmental
degrees of freedom, the effective action (4.76) is nonlocal in time, resulting in an
equation of motion with a nonlocal friction term,

M ¨̄q =
∂V

∂q̄
+
η

π

∫ ∞
−∞

dt′E
q̄(tE)− q̄(t′E)

(tE − t′E)2
. (4.78)

Since the modified decay rate is given at lowest order by exp(−Seff [q̄]), the system–
bath interaction reduces the tunneling probability because the nonlocal correction
term in (4.76) is always positive.

4.5.1 Minkowski Background

In contrast to [73] we investigate tunneling in a potential which is bounded from
below. Therefore the field may tunnel between both localized vacua, whereas a
decaying particle as in [73] will not tunnel to the metastable state from outside.
Before we discuss this in detail, we want to recall some basic facts about tunneling
in field theory. We shall first address the case of a Minkowski background and then
turn to the exanding Universe.

According to [74], the transition probabililty of a system given by a scalar field
Lagrangian is of the form

〈φ−|e−HT |φ+〉 = N

∫
Dφe−SE,φ (4.79)

which can be approximated to first order in ~ according to

Γ0 = A exp(−SE,φ) , (4.80)

where SE,φ is the classical Euclidean action of the scalar field evaluated along the
tunneling trajectory of φ; the prefactor A can be determined by the second variation
of the action.

According to the classical equations of motion, the field φ adopts for most of
the time the value φ+ of the false vacuum and approaches the value φ− of the true
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vacuum after a short transition time. The terms “false vacuum” and “true vacuum”
may be misleading, since they denote the classical minima of the potential (with φ+

representing here the higher minimum), in contrast to the true quantum mechanical
vacuum which is a superposition of φ+ and φ−.

The tunneling time T between the two vacuum states is assumed to be large
compared to the characteristic instanton transition time 1/ω. We thus consider
situations in which the various tunneling processes from one minimum to the other
can be considered separately. This classical picture of separated transitions can only
by justified by decoherence since the superposition principle is universally valid and
thus holds also for widely separated jumps.

Assuming spherical symmetry, the transition between the localized vacuum states
can be described by the growth of a bubble that is nucleating spontaneously at a
radius R0. For a more extensive discussion of nucleating vacuum bubbles, see section
5.

Starting from (4.40) and switching to euclidean time t→ −itE we find the euclidean
action

SE = SE,φ +

∫
dx3dtEσ(x, t)

(
−1

2

(
d2

dt2E
+∇2

)
+ gSφ(tE)

)
σ(x, t) . (4.81)

Integrating out the environmental field σ leads to the formal expression

Γ = Γ0N

∫
Dσ(x, t) exp(−SE) =

√
Det(−d2/dt2E −∇2)

Det(−d2/dt2E −∇2 + 2gSφ(tE))
Γ0 . (4.82)

The normalization N was chosen such that the expression simplifies to the bare
tunneling amplitude for gS = 0, i.e. Γ|gS=0 = Γ0. Solving the nonlocal equations of
motion given by the variation of

SE,eff = SE,φ − 1

2
Tr ln(−d2/dt2E −∇2 + 2gSφ) (4.83)

and evaluating the effective action along the tunneling trajectory of φ would give the
exact modification of the tunneling amplitude. In order to simplify the calculations,
we will neglect the backreactions of the environment on the trajectory of φ(tE). Thus,
we assume that φ(tE) can be obtained roughly by solving the unperturbed equations
of motion, and we are left with a computation of a functional determinant.

In order to compute the functional determinant we have to solve the eigenvalue
equation (

− d2

dt2E
−4+ 2gsφ(tE)

)
ψ = λψ . (4.84)
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Since the nucleation of the bubble is spherical symmetric, it is appropriate to use
the Laplacian in spherical coordinates. Making the ansatz ψ = φln(r)Ylm(θ, φ)u(tE),
we find for the eigenvalue equation of the radial component(

− 1

r2

∂

∂r
r2 ∂

∂r
+
l(l + 1)

r2

)
φln(r) = κnmφln(r) . (4.85)

A natural boundary condition would be φln(R0) = 0, i.e. the eigenfunctions are
vanishing at the boundary of the bubble. Equation (4.85) is solved by the spherical
Bessel functions, i.e. φln(r) ∝ jl(κlnr). The eigenvalues κln are the n-th root of jl
divided by R0. We thus have

Det(−�E + 2gsφ(tE)) =
∞∏

n,l=0

(2l + 1)Detnl

(
− d2

dt2E
+ κ2

ln + 2gsφ(tE)

)
, (4.86)

Where the degeneracy of the eigenvalues was taken into account with a factor 2l + 1.
Since the eigenvalues of the spherical Bessel functions are not explicitely known,

we simplify the problem by assuming periodic boundary conditions in a volume L3

with L = O(R0). For the spatial part of the euclidean D’Alembert operator we
choose periodic boundary conditions with a length L. The functional determinant
involved in (4.82) separates into a product of functional determinants labeled with
the mode number n:

Det

(
− d2

dt2E
−∇2 + 2gSφ(tE)

)
=
∞∏
n=0

dnDetn

(
− d2

dt2E
+

4π2n2

L2
+ 2gSφ(tE)

)
, (4.87)

where dn is the degeneracy of the mode number n which is in three dimensions
roughly equal to 4πn2 for large n. This expression is divergent for two reasons.
Firstly, for each fixed mode number n the determinant is an infinite product of
eigenvalues, which is in general infinite. Secondly, due to the infinite number of
modes the situation becomes even worse.

In order to regularize the expression (4.87) we choose the ζ-function regularization
method presented in [81]. A short summary of this method is given in the appendix.
For any second-order differential operator D we can write

(DetD)1/2 = exp

(
−1

2
ζ ′(0)− 1

2
ζ(0) lnµ2

)
, (4.88)

where ζ(s) is a generalized zeta function,

ζ(s) =
∑
λ

1

λs
, (4.89)
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involving all eigenvalues λ of the differential operator. The parameter µ appearing
in (4.88) is a renormalization parameter with dimension of a mass. According to
[81], the ζ-function reads

ζ(s) =
sin(πs)

π

∫ ∞
0

dM2

M2s

d2

dM2
I(M2, s) (4.90)

with

I(M2, s) =
∞∑
n=1

1

n2s
lnu(M2n2, tE) . (4.91)

The integral (4.90) converges for some s > 0, since I(M2, s) increases with finite
polynomial order ∝Mk, and can be analytically continued to s = 0 [81]. The func-
tions u(−λ, tE) are the eigenfunctions of the differential operator under consideration.
The eigenvalue equation corresponding to (4.87) reads for fixed n(

− d2

dt2E
+

4π2n2

L2
+ 2gSφ(tE)

)
u(−λ, tE) = λu(−λ, tE) . (4.92)

Note that the differential operator is always positive definite since gSφ(tE) > 0.
In general two independent boundary conditions are needed in order to determine

the eigenvalues of (4.92) uniquely. We assume that the mode functions have a root
at nucleation time T0, i.e. u(−λ, T0) = 0 [81]. This time is usually in the order of or
equal to the nucleation radius R0 [6]. The second boundary condition is given by
the normalization, see below. Since the employed regularization method discards
one of the two independent solutions of equation (4.92) (see appendix for a detailed
discussion), the eigenfunctions are uniquely determined by a normalization condition.

The leading term of the uniform WKB-solution of (4.92) reads

u(−λ, tE) =

(
4π2n2

L2
+ 2gSφ(tE)− λ

)−1/4

× exp

[∫ tE

tE,0

dt′E

(
4π2n2

L2
+ 2gSφ(t′E)− λ

)1/2
]
, (4.93)

where the choice of tE,0 determines the normalization of u(−λ, tE). We assume that
the scalar field φ is in the true vacuum at some large positive time tE, i.e. φ(tE) = φ−
and fix the normalization such that

u(−λ, tE) =

(
4π2n2

L2
+ 2gSφ− − λ

)−1/4

× exp

[
−
(

4π2n2

L2
+ 2gSφ− − λ

)1/2

tE

]
. (4.94)
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Since the normalization of u(−λ, tE) enters the function I(M2, s) only logarithmically,
a different normalization will not alter the results significantly.
Including the approximate degeneracy of 4πn2 we find for large tE

I(M2, s) =
∞∑
n=1

4πn2

n2s

[
− 1

4
ln

(
4π2n2

L2
+ 2gSφ(tE) +M2n2

)

+

(
4π2n2

L2
+ 2gSφ(tE) +M2n2

)1/2

tE

]
, (4.95)

where we assumed that φ(tE) is approximately constant for large tE. For M2 → 0
we define

I(0, s) ≡
∞∑
n=1

f(n)

n2s
(4.96)

with

f(n) = −2πn2 lnn+ g(n) (4.97)

and

g(n) = −πn2 ln

(
4π2

L2
+

2gSφ(tE)

n2

)
+4πn2

(
4π2n2

L2
+ 2gSφ(tE)

)1/2

tE . (4.98)

The function I(0, s) can be evaluated using the Abel-Plana-formula [81, 82]

I(0, s) = −
∞∑
n=1

2πn2 lnn

n2s
+

∫ 1

0

dn g(n) +

∫ ∞
1

dn
g(n)

n2s

+i

∫ ∞
0

dy
g(iy)− g(−iy)

e2πy − 1
− 1

2
g(0) +O(s) . (4.99)

The sum on the right hand side of (4.99) will not affect the ζ-function since it gives
an M -independent term of I(M2, s). We retained in (4.99) the regularizing factor
1/n2s only in the sum and the second integral since the remaining terms are finite
for s→ 0. The splitting of the integral at x = 1 is made for convenience and does
not affect the end result. In order to regularize the remaining integral we have to
integrate by parts several times. For this purpose we change the integration variable
to x = 1/n and define the function

φ(x) = x3g(1/x) , (4.100)

40



4.5 Modification of the Tunneling Rate

which is analytic at x = 0. Integrating by parts, the divergent integral in (4.99) leads
to ∫ ∞

1

dn
g(n)

n2s
=

4∑
k=0

(−1)k

(2s− 4) · ... · (2s− 4 + k)
x2s−4+kφ(k)(x)

∣∣∣∣∣
1

0

− 1

(2s− 4) · ... · 2s
∫ 1

0

dxx2sφ(5)(x) . (4.101)

We keep only the boundary terms at x = 0 which are finite for the subsequent
application of the limits s → 0 and x → 0. The divergent boundary terms are
regularized with the parameter s. In other words, one keeps the parameter s
sufficiently large and takes the limit x→ 0 such that the divergences are vanishing.

The function I(0, s) can be expanded around s = 0 according to

I(0, s) =
Ipole(0)

s
+ IR(0) +O(s) . (4.102)

The term of the regularized quantity (4.101) which is proportional to 1/s in the limit
s→ 0 reads

Ipole(0) =
1

48

d4φ(x)

dx4

∣∣∣∣∣
x=0

. (4.103)

The part of (4.99) which is regular in the limit s→ 0 is given by

IR(0) =
25

288

d4φ(x)

dx4

∣∣∣∣∣
x=0

− 1

24

∫ ∞
0

dx lnx
d5φ(x)

dx5

+i

∫ ∞
0

dy
g(iy)− g(−iy)

e2πy − 1
− 1

2
g(0)−

∞∑
n=1

2πn2 lnn

n2s
. (4.104)

The expression (4.103) and the second integral in (4.104) result from the convergent
integral remaining after the repeated integration by parts. A factor x2s/s in this
integral can be expanded according to x2s/s = 1/s + 2 lnx +O(s) which leads to
the aforementioned terms.

The first term in (4.104) results from the finite contributions of the boundary
terms where the limit x→ 0 and s→ 0 can be interchanged. We find the explicit
expressions

Ipole(0) = −g
2
SL

3tEφ
2(tE)

8π2
, (4.105)

41



4 Cosmological Constant from Decoherence?

and

IR(0) =
gSL

3φ(tE)

24π2

[
2
√

2πgSφ(tE) + gSφ(tE)tE

(
14 + 3 ln

(
L2gSφ(tE)

23π2

))]

−25

48

g2
SL

3φ2(tE)tE
π2

− 2<
iπ

∫ L
π

q
gSφ(tE)

2

0

y2

e2πy − 1
ln

(
1− L2gSφ(tE)

2π2y2

)
+8π

∫ ∞
L
π

q
gSφ(tE)

2

dy
y2
(

4π2y2

L2 − 2gSφ(tE)
)1/2

tE

e2πy − 1
−
∞∑
n=1

2πn2 lnn

n2s
. (4.106)

Furthermore we need the pole part of I(M2, 0) for M 6= 0. Equation (4.103) holds
also for arbitrary M if we replace 4π2/L2 → 4π2/L2 + M2 in the definition of
g(n). More directly we may expand I(M2, s) for large n and use the fact that the
Riemannian ζR-function has a pole at s = 1, i.e.

ζR(2s+ 1) =
1

2s
+O(s0) . (4.107)

We find

Ipole(M2) = − g2
SπtEφ

2(tE)(
4π2

L2 +M2
)3/2

. (4.108)

In the limit M →∞ we find the regular part of IR(M2, 0) to be

IR(M2 →∞) = −
∞∑
n=1

2πn2 lnn

n2s
. (4.109)

This sum appears also in I(0, s) and will therefore not affect ζ(0) and ζ ′(0). The
logarithmic contribution of I(M2, 0) vanishes since ζR(−2) = 0.

Using (4.88) and equation (9.21) from the Appendix, we can compute the modified
tunneling amplitude from I(M2, s). Expanding (4.106) up to the first order in gS
and using the normalization defined through (4.94), we find the modified tunneling
amplitude to read

Γ = Γ0 exp

(
−gSφ(tE)L2

8π
+
gSLtEφ(tE)

12

)
. (4.110)

This result can be stated more explicitly with a given shape of the function φ(tE),
i.e.

φ(tE) =
φ− − φ+

2
tanh(ωtE) +

φ− + φ+

2
(4.111)
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with the characteristic time scale of the instanton, 1/ω. Considering the limit of
large Euclidean nucleation time T0, i.e. T0 � 1/ω, we find

Γ ≈ Γ0 exp

(
−gSφ−L

2

8π
+
gSφ−LT0

12

)
. (4.112)

Note that the exponent in (4.112) is positive if L ≈ T0 ≈ R0. In the case that T0 � L,
the contribution resulting from sub-exponential terms of the WKB-expansion can be
neglected, i.e.

Γ(T0 � L) ≈ Γ0 exp

(
gSφ−LT0

12

)
. (4.113)

This result deserves some explanation. Since the interaction term (4.43) is quadratic
in the environmental field, it has a positive mean, i.e. 〈σ2〉 > 0. Thus, the effect
introduced by the interaction increases with the quantization length L. Because the
product gSφ is demanded to be positive in order to render the theory stable, the
interaction enhances the tunneling amplitude.

At the beginning of this section we stated, that Caldeira and Leggett found a sup-
pression of the tunneling amplitude due to dissipative effects of the environment [73].
Their model involves a spectral density with a cutoff frequency Ωc. This would
correspond to a finite number of environmental degrees of freedom. How would our
results be changed if we had considered an environment out of N harmonic oscillators
instead a field with infinitely many degrees of freedom? Expanding the expression
(4.95) to lowest nonvanishing order in gS leads to a gS-independent sum, which is
canceled by the normalization in (4.82), and a term linear in gS, involving the sum

N∑
n=1

n =
N

2
(N + 1) . (4.114)

Obviously the expression (4.114) is always greater than zero, which finally would
lead to a suppression of the tunneling amplitude.

In contrast, an infinite number of environmental degrees of freedom has to be
regularized. We chose a regularization method which is based on the analytically
continuation of a generalized ζR-function. These regularization method flips the sign,

∞∑
n=1

n

n2s
= − 1

12
+O(s) , (4.115)

which leads to the positive sign in (4.112) and therefore to an enhancing of the
tunneling amplitude.
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Regularization methods involving generalized ζ-functions have been applied in
various branches of quantum field theory. One of the most famous result where the
regularization method has predictive power is the Casimir effect [83]. It was shown
by Casimir [84] that two uncharged perfectly conducting plates attract each other.
The corresponding force per unit area reads (with factors of ~ and c restored)

F = − ~cπ2

240a4
, (4.116)

where a denotes the distance between the plates. The force depends in general
crucially on the geometry determining the boundary conditions of the field and
can both be repulsive and attractive. In order to regularize the infinite mode sums
appearing in the expressions determining the Casimir force, one usually uses a
regularization based on the Riemannian ζ-function [83].

The boundary conditions defining the eigenvalues of the determinant (4.82) lead to
an enhancing of the tunneling amplitude. Modifications of the boundary conditions
could alter the results significantly.

Physically we interpret the enhancing of the tunneling amplitude in the following
way. Due to boundary conditions defining the functional determinant, there are
fewer environmental modes than there would be without the boundary conditions
and thus less decoherence.

4.5.2 FRW Universe

In a Friedmann universe with scale factor a, the eigenvalue equation (4.92) changes
to (

− d2

dt2E
− 3ȧ

a

d

dtE
+

4π2n2

L2a2
+ 2gSφ(tE)

)
u(−λ, tE) = λu(−λ, tE) . (4.117)

With the ansatz u(−λ, tE) = ϕ1(−λ, tE)ϕ2(tE) and an appropriate choice for ϕ2(tE),
we eliminate the first derivative in (4.117),(

− d2

dt2E
+

4π2n2

L2a2
+

9ȧ2

4a2
+ 2gSϕ(tE) +

3

2

d

dtE

(
ȧ

a

))
ϕ1(−λ, tE) =

= λϕ1(−λ, tE) . (4.118)

The scale factor is in general a complex function of the euclidean time tE leading to
complex eigenvalues of the differential operator. Assuming that no eigenvalues lie on
the negative real axis, we can still apply the regularization method. The functional
determinant related to (4.118) is obtained by substituting

L2 → L2a2 (4.119)
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and

2gSφ(tE)→ 2gSφ(tE) +
9ȧ2

4a2
+

3

2

d

dtE

(
ȧ

a

)
. (4.120)

We restrict ourselves to the flat de Sitter space with ȧ/a = −iH = const. with a
small Hubble parameter, i.e. T0, L� 1/H and H � ω. Using equation (4.95), we
find a correction term of order gSH

2,

Γ = Γ0 exp

[
gSLφ−T0

12
− gSL

2φ−
8π

−gSH2φ−

(
LT 3

0

72
− 3L4

128π
− 9L3T0

32π2

(
1− ln

(
4π

L

)))]
, (4.121)

where we omitted terms that can be neglected for large T0. In order to discuss the
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Figure 4.1: We set L = T0 and show the change of modified tunneling rate with increasing
L for different couplings gs.

result quantitatively we depict in fig. 4.1 the dependence of ln(Γ/Γ0) on the length
L which is roughly the size of the nucleating vacuum bubble. The Hubble parameter
has been set to zero and we evaluated ln(Γ/Γ0), using the expressions (4.106) and
(4.108). Obviously, the correction term of the nucleation rate increases with L and
the coupling gS. In fig. 4.2 we depict the correction term of the exponent in (4.121)
for small values of the Hubble parameter, i.e. L, T0 � 1/H. The finite Hubble
horizon diminishes the exponent for small L and T0.
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Figure 4.2: We set L = T0 and show the change of modified tunneling rate with increasing
L for different Hubble parameters H. The coupling was chosen to be gS = 0.1 Φ−.

4.6 Cosmic Landscape

The cosmic landscape motivated by string theory [60, 85] has been discussed in
various publications. Usually one considers Coleman–de Luccia tunneling [6, 7, 86–
88] between a huge amount of vacua and discusses various solutions of ad hoc rate
equations. Under certain circumstances, a continuum limit of the rate equations can
be derived [89].

According to Coleman and de Luccia [7], the probability for a field to tunnel from
a local minima i to a local minima j is given by

Γi→j = e−S(φ)+S(φi), (4.122)

where S(φ) is the Euclidean action for the tunneling trajectory, and S(φi) is the
euclidean action for the initial configuration φ = φi. Coleman and de Luccia
incorporated gravitational effects by including the Ricci scalar into the action.

Furthermore, finite temperature effects have been considered in [90] based on
Hawking–Moss tunneling [91, 92], i.e. a homogeneous tunneling of the universe
occuring everywhere at the same time. The solution of Hawking and Moss does not
interpolate between the field configurations; the tunneling rate reads

Γi→j = e−S(φtop)+S(φi) , (4.123)

where φtop denotes the field value corresponding to the top of the potential barrier
between the local minima, φi and φj.

Tye proposed rapid tunneling assuming that resonance tunneling is dominant
in the landscape [93, 94] (see also [95] for a critic based on standard QFT). In
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the following we want to extend our model discussed in the preceding sections to
multilevel systems in order to see under what circumstances an ad hoc rate equation
can be formulated.

One can, for example, generalize the Hamiltonian (4.49) and the interaction (4.50)
in the following way:

Hφ = Hdiag +H∆ = diag(ω1, ..., ωn) +
∑
i 6=j

∆ij|i〉〈j| , (4.124)

Hint = gSa
3(t)diag(S11, ..., Snn)

∫
d3p σ(p)σ(−p) . (4.125)

The interpretation is as follows: The numbers ωi denote the different local vacua of a
cosmic landscape and the ∆ij are tunneling matrix elements which can be computed
in WKB-approximation. The pointer states Sii distinguish the different vacua, which
is an obvious generalization of measuring the left and the right well in the double-well
systems discussed above.

Since the tunneling matrix elements are usually exponentially small, the short
time dynamics (short with respect to the tunneling times ∆−1

ij ) is determined by the
decoherence rates. The off-diagonal elements of the density matrix read

ρij(t) = ρij(0) exp

(
−g

2
S(Sii − Sjj)2

4
Tr

(
(<Ω

′S)2 + (=Ω
′S)2

(<ΩS)2

)
− iϕij

)
. (4.126)

One can conclude from this expression that the suppression of interference terms
depends crucially on the distance between different minima in the landscape.

Neglecting possible degeneracies and assuming that the typical decoherence rate
is much larger than the tunneling rate, the system dynamics is determined by the
equations [21]

ρ̇ii(t) = −
∫ t

0

ds[H∆(t), [H∆(s), ρ(s)]]ii . (4.127)

Applying a Markov approximation one obtains

ρ̇ii(t) = λ
∑
k 6=i

|∆ik|2(ρkk − ρii) , (4.128)

where λ is chosen such that the coarse graining in time is not too small and the
approximation is valid.

There exists another generalization of the model where the tunneling between
different vacua may, in fact, be mediated by the environment. This is described
by setting ∆ij = 0 and Sij 6= 0, i 6= j in the above Hamiltonian. Indirect coupling
between metastable states is a well-known phenomena in glasses, see, for example, [96].
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4 Cosmological Constant from Decoherence?

In the following we will derive the master equations for the environment-mediated
tunneling. The interaction Hamiltonian in the interaction picture has the form

HI
int(t) = gSa

3(t)
∑
ij

ei(ωi−ωj)Sij|i〉〈j|
∫
d3p σ(p, t)σ(−p, t) . (4.129)

Restricting ourselves to flat de Sitter space, the operators σ(p, t) are given by

σ(p, t) = fp(t)ape
ipx + h.c. (4.130)

with [80]

fp(t) =

√
V

(2π)3

1√
2p3

(
p

a(t)
+ iH

)
ei

p
a(t)H . (4.131)

Applying the Redfield approximation [21], we find for the system density matrix

ρ̇IS(t) = −TrB

∫ t

0

ds[HI
int(t), [H

I
int(s), ρ

I
S(t)ρB]] . (4.132)

In the limit of vanishing temperature, the bath density matrix is just ρB = |0〉〈0|.
The coefficients of the density matrix satisfy the system of differential equations [97],

ρ̇Iji = δji
∑
k 6=i

ρIkk(w
+
kiik + w−kiik)− ρIji

[∑
l

(w+
jllj + w−illi)− w+

iijj − w−iijj
]

(4.133)

with the correlation functions

w+
klmn(t) = g2

S

∫ t

0

ds ei(ωk−ωl)(s−t)SklSmna
3(t)a3(s)

×
∫
d3p

∫
d3q〈σ(p, s)σ(−p, s)σ(q, t)σ(−q, t)〉 (4.134)

and

w−mnkl(t) = g2
S

∫ t

0

ds ei(ωk−ωl)(s−t)SklSmna
3(t)a3(s)

×
∫
d3p

∫
d3q〈σ(p, t)σ(−p, t)σ(q, s)σ(−q, s)〉 . (4.135)

In deriving equation (4.133), several approximations have been performed: the
Born approximation, which states that the total density matrix can be written
approximately as a tensor product of the bath density matrix and the system density
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4.6 Cosmic Landscape

matrix, and the rotating wave approximation which is valid when the intrinsic time
scale of the system is much larger than the relaxation time of the open system. Since
the correlation functions are not homogeneous in time due to the scale factor, the
master equation is not Markovian.

The rates in (4.133) are not necessarily exponentially small and may therefore
dominate the dynamics of the string landscape. The transition probabilities between
the vacua are symmetric, since we assume that the environment is described by a
Gaussian wave function rather than an ensemble of states. On the other hand, the
tunneling rates in the Pauli equations (4.133) are not symmetric and jumping to
lower energy levels is more probable than jumping to higher energy levels depending
on the bath temperature. It would be interesting how the situation changes if the
Gaussian is replaced by a (micro)canonical ensemble.

Evaluating the correlation functions we find

w+
klmn(t) = g2

S

∫ t

0

ds ei(ωk−ωl)(s−t)SklSmna
3(t)a3(s) (4.136)

×(2π)3

V

∫
d3k

(
2(fk(t)f

∗
k (s))2 +

V

(2π)3

∫
d3p|fk(t)|2|fp(s)|2

)
and

w−mnkl(t) = g2
S

∫ t

0

ds ei(ωk−ωl)(s−t)SklSmna
3(t)a3(s) (4.137)

×(2π)3

V

∫
d3k

(
2(fk(s)f

∗
k (t))2 +

V

(2π)3

∫
d3p|fk(s)|2|fp(t)|2

)
.

The dominating contributions in the correlators (4.136) and (4.137) are given by
infrared contributions k < Ha, since the phases in the integrands are oscillating
rapidly if k > Ha. Neglecting the second term in the bracket of (4.136) respectively
(4.137) and applying the approximation eik/Ha ≈ 1 leads to

w+
klmn(t) = g2

S

∫ t

0

ds ei(ωk−ωl)(s−t)SklSmna
3(t)a3(s)

× 2V

(2π)3

∫
d3k

1

(2k3)2

(
k

a(t)
+ iH

)2(
k

a(s)
− iH

)2

(4.138)

and an analogous expression for w−mnkl(t). The evolution equation for the off-diagonal
elements reads in the Schrödinger picture

ρ̇Sch
ij = −(Γij − i(ωi − ωj))ρSch

ij (4.139)

with

Γij = <
(∑

l

(w+
jllj + w−illi)− w+

iijj − w−iijj
)
. (4.140)
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The imaginary part of the correlation function has been absorbed in the frequencies
ωi. For Sij = Siiδij we obtain for a(t)� a(0)

Γij ≈ g2
S(Sii − Sjj)2V H

3a6(t)

9(2π)2

(
1

k3
min

− 1

k3
max

)
(4.141)

where kmin is an infrared cutoff and kmax ∼ Ha. Solving equation (4.126) using the
rates (4.141) gives for large times

|ρij(t)| = ρij(0) exp

(
−g2

s

∫ t

t0

dt′Γij(t
′)

)
≈ exp

(
−(Sii − Sjj)2

4

V a6H2

56π2

(
1

k3
min

− 1

k3
max

))
. (4.142)

This result can be compared with the off-diagonal element (4.63). Using the dominant
contribution of the exponent, given by equation (4.72), we find

|ρ±(t)| = ρ±(0) exp

(
−g2

s

(φ+ − φ−)2

4

V a6H2

56π2

(
1

p3
min

− 1

p3
max

))
. (4.143)

The transition between the different localized vacuum states is given by the rate
equation

ρ̇Sch
ii = −2

∑
k 6=i

(<w+
ikkiρ

Sch
ii −<w+

kiikρ
Sch
kk ) . (4.144)

For a(t)� a(0) we find

<w+
kiik = <w+

ikki =
g2
S|Sik|2V a6(t)

(2π)2

H5

9H2 + (ωi − ωk)2

(
1

k3
min

− 1

k3
max

)
. (4.145)

Depending on the physical situation whether a bath-induced coupling between
different vacua or whether the tunneling dominates, equation (4.144) or (4.128)
describes the evolution of the cosmic landscape.

The evolution is described by n coupled ordinary differential equations and can
obviously not be solved for n ∼ 10500 vacua; therefore, further assumptions and
approximations are necessary in order to obtain some physical insight.

The approximation of Markov equations via Fokker–Planck equations is, for
example, described in [98] and can always be applied if there is some small expansion
parameter, for example, the ratio of the jumps between different vacua and the size
of the tunneling landscape. The large number of vacua motivates the transition
from discrete values ρii(t) to a function ρx(t) where x is a continuous coordinate
in a smooth cosmic landscape. When the landscape is one-dimensional one might
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4.6 Cosmic Landscape

consider the following scenario: There is a probability to go to the left and to the
right which is described by functions α(x′) and β(x′) when the observer is located at
a position x′. These functions are the continuum limit next-neighbour transitions
rates in equation (4.128),

λ|∆i,i+1|2 = βi → β(x),

λ|∆i,i−1|2 = αi → α(x) , (4.146)

respectively equation (4.144),

2<w+
i,i+1,i+1,i = βi → β(x),

2<w+
i,i−1,i−1,i = αi → α(x) . (4.147)

The probability that there is a local minimum in the potential between x and x+ dx
is Ωγ(x)dx, where Ω denotes the size of the cosmic landscape. Therefore, we take
into account the tunneling rates and the distance to “nearest neighbours” of local
vacua.

The transition from the sum in (4.144) to a continuous description can be under-
stood as follows:∑

k

w+
kiikρkk =:

∑
k

w(i, k)ρ(k)

=

∫
dx(δ(x− k1) + ...+ δ(x− kn))w(i, x)ρ(x)

≈
∫
dx

∫
dkf(x− k)w(i, x)ρ(x)

=

∫
dxγ(x)w(i, x)ρ(x) . (4.148)

Following the treatment of [98] and assuming detailed balance,

β(x′)γ(x)ρ(x′)stat = α(x′)γ(x′)ρ(x)stat , (4.149)

where ρ(x)stat is some stationary distribution, the Fokker–Planck equation of diffusion
type holds:

∂ρ(x, t)

∂t
=

2

Ω

∂

∂x

1

γ(x)

∂

∂x

ρ(x, t)

ρstat(x)
. (4.150)

This equation describes diffusion in an inhomogeneous medium, since the rates do
not prefer a special direction in the cosmic landscape, that is, the dynamics is a
random walk in an inhomogeneous medium. The drift term in equation (4.150) is
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4 Cosmological Constant from Decoherence?

due to inhomogeneities in the cosmic landscape and vanishes for γ(x) = const. In
the following we will rescale the time such that the factor 2/Ω is absorbed.

If the pure tunneling given by (4.128) dominates and γ(x) = λ∆2, where ∆ is a
typical tunneling rate, we obtain the usual solution for the diffusion equation,

ρ(x, t) =
1√

πλ∆2t
exp

(
− x2

λ∆2t

)
. (4.151)

If the dynamics is environment-induced and given by (4.144), the diffusion depends
on the scale factor. For a scalar-field environment and assuming a(t) = exp(Ht), the
result is approximately given by

ρ(x, t) =

√
H

πD(a6 − 1)
exp

(
− Hx2

D(a6 − 1)

)
, (4.152)

with

D =
g2

sL
3S2

H2
, (4.153)

where S denotes a typical transition element Sik in the interaction (4.125). The
width of the distibution (4.152) increases faster than the width of (4.151) due to the
exponentially increasing scale factor a. Therefore the diffusion process may become
faster if the system environment interaction dominates the dynamics in the landscape.
This is, of course, only possible if the cosmic landscape and its environment exchange
enough energy to lift the scalar field from one local minima to another.

4.7 Conclusions

Based on a model which gives an explanation of the small cosmological constant
within the framework of quantum theory, we studied the influence of the environment.
Within this model, a scalar field which mimics dark energy can tunnel between
two local minima. We showed how decoherence can justify the localization in a
well and the (local) disappearance of superpositions. Furthermore, the model was
generalized by taking into account an arbitrary number of local minima. Through
decoherence it was possible to derive effective rate equations which are similar to
the Pauli equations in quantum electrodynamics [97]. From these rate equations it
is possible to derive Fokker–Planck equations in the continuum limit. A realistic
scenario enabling the calculation of the observed value can only be presented after a
definite cosmic landscape for the potential has been retrieved from a fundamental
theory.
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4.7 Conclusions

Furthermore, the change of the tunneling rate due to dissipative effects has been
discussed. Using a renormalization method for functional determinants we have
derived, in contrast to the findings of Caldeira and Leggett [73] in a quantum
mechanical setting, an increase of the tunneling rate.
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5 Influence of Nontrivial
Backgrounds and Decoherence
on Vacuum Decay

We present solutions of vacuum decay in non-Minkowski space-times. In the case
of de Sitter space-time we find a decay rate that can be recovered in some limit
from earlier publications and derive explicit expressions of the trajectories of the
nucleating bubbles. In contrast to the manifest O(4)–invariant setting of [7], our
considerations rely on an O(3)–invariant setting which allows the investigation of
tunneling in FRW–universes with power-law scale factors. In addition, we discuss
the vacuum decay in Schwarzschild-de Sitter and Reissner-Nordström space-times.
In the case of Minkowski space-time we include an interaction with environmental
degrees of freedom and analyze the effects of decoherence and dissipation as well as
the quantum-to-classical transition of the nucleating bubble.

5.1 Introduction

The decay of metastable vacuum states has been of great interest for several decades.
Since the literature addressing this topic is enormous, we want to mention only some
of the important results that have been found.

In the context of field theory, vacuum decay was first described using a semiclassical
approach in [6, 75, 99]; later on, gravitational effects on and of vacuum decay have
been studied in [7, 100–102]. The influence of finite temperature on vacuum decay
has been addressed in [103].

Based on quantum tunneling, important cosmological models were proposed, for
example eternal inflation [104, 105], the Hartle-Hawking-instanton [106, 107] or
the Hawking-Moss instanton [108]. The quantum creation of topological defects, e.g.
strings and branes in a fixed space-time, have been discussed in [109, 110].

In the last years, several authors have suggested that string theory in four di-
mensions might have as many as 10500 different vacua [111, 112]. All these vacua
considered in string theory are local minima of a very complicated potential, resulting
from the huge amount of possible compactifications of the ten-dimensional, respec-
tively eleven-dimensional theory, to four dimensions. In this context the tunneling
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5 Influence of Decoherence on Vacuum Decay

between different local minima is of great importance.
Many of the findings concerning quantum tunneling are based on the high symme-

tries of Minkowski and de Sitter space-time. Coleman considered tunneling of scalar
fields in a Minkowski background [6] and in a closed de Sitter universe [7]. In both
cases, the O(4)-symmetry after Wick rotation was used explicitly.

Here we want to generalize results of vacuum decay in curved backgrounds to
various O(3)-symmetric settings. Although the chosen background is determined by
Einstein’s equation, we neglect the backreaction of the (time-dependent) vacuum
energy distribution on the curvature scalar.

The decay of metastable vacua is usually treated in the instanton picture which
is of great success [74]. One assumes that the scalar field is initially located in
a false vacuum φf and tunnels through a barrier into the true vacuum φt. In
order to make the problem tractable, the field theoretical problem is reduced to a
quantum mechanical problem by means of symmetry considerations. Both vacua
denote classical minima of the potential and have to be distinguished from the
quantum mechanical ground state, which is given by the symmetric superposition of
φf and φt. One may ask under what circumstances it is allowed to ignore quantum
mechanical superpositions by considering only localized, i.e. “classical”, vacuum
states. Analogous to this situation would be the localization of chiral molecules in left-
handed or right-handed states, although under certain circumstances, a superposition
between both can be observed [21, 25]. The localization of quantum states can only
be justified with the influence of a system-environment interaction; therefore one aim
of this paper will be to investigate the influence of decoherence on vacuum tunneling.

This chapter is organized as follows. In Section 5.2 we summarize known results
of vacuum decay. We then turn in Section 5.3 to vacuum decay in fixed backgrounds.
The influence of decoherence on tunneling and the decay rate will be discussed in
section 5.4.

5.2 Vacuum Decay in Minkowski Space

The starting point is a scalar field theory

Sφ =

∫
d4x

(
1

2
∂µφ∂

µφ− V (φ)

)
, (5.1)

where the potential V (φ) is assumed to have two local minima. The difference
between the energy densities in the localized vacua is denoted by ε.

The Euclidean version of Feynman’s path integral describing the transition from
φf to φt reads [74]

〈φt|e−HT |φf〉 = N

∫
Dφe−Sφ , (5.2)
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where T = it denotes the euclidean time, H is the Hamiltonian corresponding to
the action (5.1) and N is the normalization of the path integral. The right hand
side of equation (5.2) can be evaluated in the semiclassical limit. It follows, that the
tunneling rate at lowest order is given by Γ = A exp(−2=(S)), where S denotes the
classical tunneling action and A includes the one-loop corrections [6].

Initially the field is constant in space, adopting the value φf . This situation
is quantum mechanically unstable since the field can tunnel through the barrier.
Due to the nucleation process, spatial regions with the field value φt are created
spontaneously within the initial configuration.

Assuming O(4)-invariance of the tunneling solution, the field theoretical problem
reduces to a quantum mechanical problem with a single degree of freedom φ depending
on the four-dimensional radius ρ. The effective particle moves in a potential −V (φ)
from the false vacuum φf to the true vacuum φt.

Following Coleman [6], the simplified euclidean action following from (5.1) reads

=(S) = −π
2

4
ρ4ε+ π2ρ3S1 . (5.3)

The first term in (5.3) is a volume term originating from the field φ staying near
φf until a very large “time” ρ. The second term arises from the transition of the
particle from φf to φt around the “time” ρ where the soliton action S1 depends on
the concrete shape of the potential. In order to end up with a finite tunneling action,
we demand that V (φf ) = 0. If V (φf ) 6= 0, we consider Sφ − Sφf .

The action (5.3) is minimized for ρ = R0 = 3S1/ε which leads to the famous result
[6]

=(S) =
27π2S4

1

4ε3
. (5.4)

This specific tunneling action is valid in the so-called thin-wall approximation,
meaning that the transition time between the vacua is small compared to the
nucleation radius R0. Analytic continuation to Minkowski time leads to the conclusion
that the true vacuum bubble will expand almost instantly at the speed of light, since

R(t) =
√
R2

0 + t2 . (5.5)

It is possible to derive this result without referring explicitly to the O(4)-invariance
of the problem after Wick rotation. Assuming spherical symmetry of the expanding
vacuum bubble, the action consists of a volume term involving the difference between
false and true vacuum and an integral over the two-dimensional surface of the sphere.
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Using Minkowski time, the action reads [113]

SR =

∫
dt

(∫
|x|≤R

d3x
√−ηε−

∫
|x|=R

d2x
√−γσ

)
=

∫
dt

(
4πR3ε

3
− 4πσR2

√
1− Ṙ2

)
, (5.6)

where η is the determinant of the Minkowski-metric and γ is the determinant of the
induced metric on the surface of the sphere. The relative minus sign in the action
(5.6) is due to the energy conservation of the system: The difference of the energies
in the nucleating region has to be balanced by the negative energy of the surface of
the sphere. This allows the interpretation of σ as surface tension. The solution of
the classical equations of motion coincides with (5.5) after the substitution σ → S1.

In contrast to (5.3), the action (5.6) can be generalized in a straightforward manner
to problems without O(4)-symmetry.

5.3 Tunneling in nontrivial Backgrounds

The geometry of space-time is determined by Einstein’s equations involving the
Ricci tensor and the energy momentum tensor. Although any change of the matter
distribution will have an impact on the geometry [7], we will ignore this backreaction
and consider the background to be fixed. Therefore we will discard any changes
in the Einstein-Hilbert action due to the tunneling process. The effective action
determining the dynamics of the scalar field is a straightforward generalization of
(5.6) and reads (see also [109])

SR =

∫
dt

(∫
|x|≤R

d3x
√−gε−

∫
|ξ|=R

d2ξ
√−γσ

)
. (5.7)

Here we have denoted the determinant of an arbitrary metric gµν by g, and γ is the
determinant of the induced metric

γab = gµν
∂xµ

∂ξa
∂xν

∂ξb
, (5.8)

where the xµ(ξ) parametrize the space-time manifold on the sphere using two
coordinates ξa.

In the case of a Friedmann-Robertson-Walker universe with the line element

ds2 = a2(y)(dy2 − dx2 − f 2(x)dΩ2) , (5.9)
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the action (5.7) adopts the form

Sx,FRW =

∫
dy

(
4πεa4(y)

∫ x(y)

0

dx′f 2(x′)

−4πσa3(y)f 2(x)
√

1− ẋ2(y)

)
. (5.10)

The conformal time is denoted with y and the function f is given by x, sin(x) and
sinh(x) for flat, closed and open universes, respectively. The coordinate of the bubble
is given by the dimensionless function x(y) and ẋ denotes the derivative with respect
to y.

For a given a(y) it seems hopeless to find an analytic solution to the highly
nonlinear equation of motion for x(y). Therefore we will solve the inverse problem:
given a radius function x(y), we obtain solutions for a scale factor a(y), among them
solutions for physically reasonable cases.

The equation of motion resulting from (5.10) reads

d

dy

(
σa3x2 ẋ√

1− ẋ2

)
= εa4x2 − 2σa3x

√
1− ẋ2 . (5.11)

In order to find solutions for the differential equation (5.11), we assume the relation√
1− ẋ2 = g(y)ẋ , (5.12)

where g(y) is chosen such that g(y)ẋ is positive but otherwise arbitrary. From here
it follows that

ȧ

a
− ġ

3g
− ga

R0

+
2

3

∂xf(x)

f(x)ẋ
= 0 . (5.13)

Equation (5.13) has the general solution

a(y) =

(
g(y)
g(y0)

)1/3

e−F (y)

C − 1
R0

∫ y
y0
dy′
(
g(y′)
g(y0)

)1/3

g(y′)e−F (y′)

, (5.14)

with

F (y) =
2

3

∫ y

y0

dy′
∂xf(x)

f(x)ẋ
. (5.15)

The radius function reads

x(y) =

∫ y

ỹ0

dy′
1√

1 + g2(y′)
. (5.16)

Although the solution for arbitrary functions x is thereby given in principle, the scale
factor a, given by (5.14), will have an awkward form in general. The problem now is
to find suitable functions g and x in order to obtain reasonable scale factors a(y).
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5.3.1 De Sitter Space

De Sitter space is of great importance for the understanding of the early universe
and maybe also for the future, since cosmological data suggest that our universe is
dominated by dark energy with an equation of state close to a cosmological constant
[114].

De Sitter space is defined as a four-dimensional hyperboloid,

−X2
0 +X2

1 +X2
2 +X2

3 +X2
4 = H−2 , (5.17)

where H denotes the Hubble parameter and Xi are the coordinates in an auxiliary
five-dimensional space. It is possible to choose a flat, closed or open spatial slicing
of the de Sitter space leading to three different choices of coordinates. In order to
distinguish the conformal times of the different coordinate patches, we denote them
with z, y and w in case of the flat, closed and open spatial slicings, respectively.

The flat spatial sections of de Sitter space are defined as [47]

X0 =
1

2H

(
−1

z
+ z − x2

z

)
, (5.18)

X1 =
1

2H

(
−1

z
− z +

x2

z

)
, (5.19)

X2 = − x1

Hz
, (5.20)

X3 = − x2

Hz
, (5.21)

X4 = − x3

Hz
, (5.22)

with x2
1 + x2

2 + x2
3 = x2 and the conformal time z running from −∞ to 0. The line

element reads

ds2 = a2(z)(dz2 − dx2 − x2dΩ2) (5.23)

with

a(z) = − 1

Hz
. (5.24)

Using the equations (5.14) and (5.16) and the ansatz g = α/(z + constant), we find

x(z) =

√
α2 +

(
z +

α

R0H

)2

, (5.25)

where the integration constant α is greater than zero.

60



5.3 Tunneling in nontrivial Backgrounds

In order to shrink the radius function (5.25) to zero, one has to continue z
analytically to the complex plane, i.e. z = −α/(R0H) + iT , with T running from α
to 0. In order to determine the tunneling rate Γ, the action (5.10) has to be evaluated
along the trajectory of x given by the analytic continuation. We find the expression

=(S) =
π2ε

3H4

(
1−

√
1 +R2

0H
2
)2

√
1 +R2

0H
2

, (5.26)

which is independent of α and coincides with the result already found by Parke
[115] in the limit κ→ 0 leaving κ(Uf − Ut) constant. The result was also found by
Simon et al. [116]. In the limit H → 0, equation (5.26) coincides with (5.4). In the
limit ε→ 0, one obtains =(S) = π2σ/H3, which is the result for the nucleation of a
domain wall separating two degenerate vacua found by Basu et al. [109].

The physical bubble radius is

Rphys = ax = −

√
α2 +

(
z + α

R0H

)2

Hz
, (5.27)

and the radius at nucleation, Rnucl,flat = R0, is independent of α. Since the action is
invariant under the rescaling z → αz and x→ αx, it is possible to eliminate α. This
explains why (5.26) does not depend on this parameter.

Now we may transform this result to the closed spatial sections of de Sitter
space-time, which are parametrized by [47]

X0 =
sin(y)

H cos(y)
, (5.28)

X1 =
1

H cos(y)
cos(χ) , (5.29)

X2 =
1

H cos(y)
sin(χ) cos(Θ) , (5.30)

X3 =
1

H cos(y)
sin(χ) sin(Θ) cos(φ) , (5.31)

X4 =
1

H cos(y)
sin(χ) sin(Θ) sin(φ) . (5.32)

The line element reads

ds2 = a2(y)(dy2 − dχ2 − sin2(χ)dΩ2) (5.33)

with

a(y) =
1

H cos(y)
, y ∈

(
−π

2
,
π

2

)
. (5.34)
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Transforming the solution (5.25) to a closed de Sitter universe and using (5.14), we
obtain the physical radius

Rphys = a sin(χ)

=
1

H cos(y)

√
1−

(
1− A2

1 + A2

)2

sin2(y − y0) (5.35)

with

A = α

√
1 +

1

R2
0H

2
, α > 0, (5.36)

and

y0 = ± arcsin

(
2

R0H

A

1− A2

)
. (5.37)

The solution with positive y0 has a minimum in the contracting branch of the closed
de Sitter universe at

ymin = − arccos

(
1 + 1

R2
0H

2

)2

A√
A2 + 1

4R2
0H

2 (1 + 6A2 + A4)
(5.38)

with the minimal radius

Rmin =
R0√

1 +R2
0H

2
. (5.39)

The solution with negative y0 has the minimum value Rmin in the expanding branch
at −ymin. In contrast to the flat de Sitter solution, the nucleation radius depends on
H and α. We have

Rnucl,closed = R0
1− A2

1 + A2
(5.40)

at the nucleation time

ynucl = arccos

(
2

R0H

A

1− A2

)
(5.41)

for the solution with the minimum in the expanding branch. The corresponding
solution with the minimum in the contracting branch adopts the value (5.40) at the
nucleation time −ynucl. For this solution, it is possible that the physical nucleation
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radius is larger than the physical radius at subsequent times (see fig. 5.1). The
nucleation radius is determined by the requirement that the comoving radius adopts
a minimum value for some real nucleation time. Subsequently, one chooses the
analytical continuation to complex time such that comoving bubble radius shrinks
to zero.

The value of A is constrained by the condition that y0 given by (5.37) has to be
real. From this condition and equation (5.39), we conclude that the nucleation radius
is constrained by the relation

Rmin ≤ Rnucl,closed ≤ Rnucl,flat . (5.42)

In order to shrink the bubble to zero we use complex time y = ynucl + iU , with U
running from arcosh1+A2

1−A2 to 0.
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Figure 5.1: Choosing a slicing of de Sitter space with positive curvature, we find for the
same values of R0H and α two different solutions that can be obtained from each other by
reflection with respect to the Rclosed/R0-axis. The marks on the curves label the nucleation
radius and the nucleation time defined by Rphys(ynucl) = Rnucl,closed.
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5 Influence of Decoherence on Vacuum Decay

A third possibility is the spatially open slicing of de Sitter space using the coordinates
[47]

X0 = − cosh(ψ)

H sinh(w)
, (5.43)

X1 = − cosh(w)

H sinh(w)
, (5.44)

X2 = − 1

H sinh(w)
sinh(ψ) cos(Θ2) , (5.45)

X3 = − 1

H sinh(w)
sinh(ψ) sin(Θ2) cos(Θ3) , (5.46)

X4 = − 1

H sinh(w)
sinh(ψ) sin(Θ2) sin(Θ3) , (5.47)

and the scale factor

a(w) = − 1

H sinh(w)
, w ∈ (−∞, 0) . (5.48)

Transforming into these coordinates and using (5.14), we find

Rphys = a sinh(ψ)

= − 1

H sinh(w)

√(
1 + A2

1− A2

)2

cosh2(w + w0)− 1 (5.49)

with

w0 = arsinh

(
2

R0H

A

1 + A2

)
> 0 . (5.50)

The bubble is nucleating at the radius

Rnucl,open = R0
1 + A2

1− A2
(5.51)

and the time

wnucl,open = −w0 . (5.52)

Obviously, the size of the nucleation radius is constrained by

Rnucl,open ≥ Rnucl,flat . (5.53)
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The analytic continuation of the time is w = wnucl + iV , and V runs from arccos 1−A2

1+A2

to 0.
The tunneling rate for the flat, closed and open slicing is determined by the same

expression (5.26) which can be concluded directly from the coordinate–invariant
approach of [7]. However, it turns out that only the imaginary part of the finite
instanton action (5.14) is coordinate independent since it obeys an O(3)–symmetry
and is not generally covariant. The physical size of the nucleating bubble depends on
the coordinate patches, as can be seen from equations (5.40) and (5.51). For the flat
slicing of de Sitter space, the nucleation radius is independent of the nucleation time
due to the manifest scale invariance of the action (5.10). In contrast, the nucleation
radius for the closed and open slicing of de Sitter space depends explicitly on the
integration constant α which enters the expressions of the nucleation times (5.41)
and (5.52). This reflects the loss of scale invariance.

5.3.2 Power-Law Expansion in a spatially flat Universe

Since the action (5.10) is only O(3)–symmetric, it is also possible to find analytical
solutions for a power-law scale factor if one restricts to the case ε = 0, that is, two
degenerate vacua.

In order to obtain the de Sitter universe as a limit for n→∞, we choose the scale
factor of the form

a(t) =
1

H

(
1 +

Ht

n

)n
, (5.54)

where t is the cosmological time. Changing the parametrization from t to conformal
time z, the scale factor reads

a(z) =
1

H

(
−n− 1

n
z

)− n
n−1

. (5.55)

Unfortunately it is not possible to obtain an analytic expression for x(z) such that
the scale factor is exactly of the form given by equation (5.55). We will merely
find a scale factor which coincides with the expression (5.55) for small z, i.e. large
cosmological times t.

In order to obtain a power law behavior one has to choose the radius function

x(z) =

√
α2 +

2n− 2

2n+ 1
z2 , (5.56)

which coincides for ε→ 0 and n→∞ with the result (5.25). The scale factor then
reads

a(z) =
1

H

(
−n− 1

n
z

)− n
n−1
(

1 +
6(n− 1)

(2n+ 1)2

z2

α2

)1/6

, (5.57)
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which has the expression (5.55) as limit for z → 0.
Using this result we can calculate the tunneling amplitude via the instanton action.

In order to increase the bubble radius from 0 to α, the conformal time has to run
from iα

√
(2n+ 1)/(2n− 2) to 0.

We find for the imaginary part of the action (5.10)

=(S) = σα3π3/2

(
n− 1

n
αH

)− 3n
n−1
(

2(n− 1)

2n+ 1

) 4n−1
2(n−1)

×

×n− 1

n− 4
sin

(
π(2n+ 1)

2(n− 1)

)
Γ
(− 1

n−1

)
Γ
(

1
2
− 1

n−1

) n→∞−−−→ π2σ

H3
. (5.58)

For n→ 1, the expression oscillates rapidly, which means that the WKB approxima-
tion breaks down. This is due to the conformal-time parametrization of the scale
factor. Note that the tunneling rate depends here on the size α of the bubble; the
scale invariance is established only for n→∞.

5.3.3 Bubble Expansion without Tunneling

The nucleation of a vacuum bubble has so far been described through an increase of
the radius from zero to Rnucl using analytical continuation of the time. One may ask
whether it is possible to find solutions of (5.11) where no analytical continuation is
necessary for the increase of the vacuum bubble from zero. This can be achieved by
choosing the scale factor such that the tunneling barrier vanishes.

We consider a flat FRW-universe and

g(y) = tan(y) , (5.59)

giving the radius function for the bubble to be

x(y) = sin(y) . (5.60)

Using equation (5.14) we find

a(y) =
R0| cot(y)|1/3

3| cos(y)|1/3F21

(
1
6
, 1

6
, 7

6
, cos2(y)

)
+ C

, (5.61)

where F21 is a hypergeometric function and C is a constant greater than or equal to
zero (see fig. 5.2). If the integration constant is chosen to be zero, the radius of the
vacuum bubble increases from zero at y = 0, given that the scale factor is infinitely
large at y = 0.
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Figure 5.2: The physical bubble radius and the scale factor are plotted as functions of the
conformal time, the constant of integration was chosen to be C = 0. This solution allows
only an increase of the radius from zero if the scale factor is infinitely large at y = 0.
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Figure 5.3: The physical bubble radius and the scale factor are plotted as functions of the
conformal time, the constant of integration was chosen to be C = 10. The scale factor and
the bubble radius increase from zero starting at y = π/2.
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Choosing any C > 0, we find that the scale factor and the bubble radius grow from
zero starting at y = π/2. Afterwards, the scale factor becomes infinitely large at
y = π whereas the bubble radius decreases to zero at y = π after adopting some
maximum value (see fig. 5.3). Due to the symmetry of the solution, there is also
a branch where the bubble radius starts at zero for an infinite scale factor and
decreases to zero again at y = π/2. Therefore we have obtained solutions that allow
an expansion of a true vacuum bubble without a previous tunneling process.

5.3.4 Static Space-times

Solutions for vacuum decay in an O(3)-symmetric background with an explicit
timelike Killing symmetry are easy to obtain if the center of the vacuum bubble
coincides with the fixed point of the rotation symmetry.

The line element of a static space-time has the form

ds2 = f(r)dt2 − f−1(r)dr2 − r2dΩ2 , (5.62)

where f is some function which depends only on r. From equation (5.7) we find

S =
4π

3
εR4

0

∫
dy x2

(
x−

√
f − f−1ẋ2

)
, (5.63)

where we have introduced the dimensionless radius function x = R/R0 and the
dimensionless time y = t/R0. From conservation of energy which is due to the
timelike Killing symmetry, we find the first-order differential equation

ẋ = f

√
1− f

x2
. (5.64)

Whether it is possible to find a solution of the form x = x(y) depends on the function
f . The imaginary part of the tunneling action is given by

=(S) =
4π

3
R4

0

∫ x2

x1

dxx2f−1
√
f − x2 , (5.65)

where x1 and x2 are given by the two positive roots of f −x2. These roots are exactly
the turning points of the tunneling trajectory through an effective particle potential.
Since this cannot be seen from (5.63) directly due to the non-standard form of the
action, we will switch to the Hamiltonian formalism.

In order to get rid of the square root in the action we parametrize the action with
an affine parameter λ, [117]

S =
4π

3
εR4

0

∫
dλ x2

(
x
dy

dλ
−
√
f

(
dy

dλ

)2

− f−1

(
dx

dλ

)2
)
. (5.66)
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Introducing an auxiliary variable ν leads to an action classically equivalent to (5.63):

S̃ =
4π

3
εR4

0

∫
dλ x2

(
x
dy

dλ
− f(dy/dλ)2 − f−1(dx/dλ)2

2ν
− ν

2

)
. (5.67)

The corresponding Hamiltonian constraint reads

H =
3

8πεR4
0

(
fP 2

x

x2
− 1

fx2

(
Py − 4π

3
εR4

0x
3

)2

+

(
4π

3
εR4

0

)2

x2

)
≈ 0 . (5.68)

This gives rise to the potential of an effective particle potential

V (x) =
2π

3
εR4

0x
2f−1(f − x2) . (5.69)

Using this potential we are able to interpret the results easily. Due to the timelike
Killing vector field we have a conserved energy which constrains the Hamiltonian
to zero. If the potential is greater than zero, the particle has to tunnel through
the barrier. If V (x) < 0 for all x, the particle will leave the false vacua without
tunneling.

We now consider two concrete cases: the Schwarzschild-de Sitter and the Reissner-
Nordström space-times. For the Schwarzschild-de Sitter space-time we have

f(x) = 1− 2M

R0x
−H2R2

0x
2 . (5.70)

From this follows that the particle has to tunnel between

x1 =
2√

3(1 +R2
0H

2)
cos

(
1

3
arccos (β)− 2π

3

)
(5.71)

and

x2 =
2√

3(1 +R2
0H

2)
cos

(
1

3
arccos (β)

)
(5.72)

with

β = −
√

27M

R0

√
1 +R2

0H
2 . (5.73)

The tunneling always occurs between the two horizons of Schwarzschild-de Sitter
space. The trajectories of the bubble shell after tunneling are plotted in fig. 5.4 for
different parameters. We see that close to the outer horizon the velocity decreases to
zero.
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Furthermore, the imaginary part of the tunneling action decreases for increasing
black hole mass, since the barrier is lowered for increasing M . In fig. 5.5 the
imaginary part of the action is plotted for different values of M and H. The barrier
vanishes completely for

M >
R0√

27(1 +R2
0H

2)
. (5.74)
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Figure 5.4: Schwarzschild-de Sitter space-time: The vacuum bubbles nucleating at a radius
larger than the inner horizon of the Schwarzschild-de-Sitter-space-time reach the outer
horizon in the limit of infinite times.

Our second example is the Reissner-Nordström-space-time defined by

f(x) = 1− 2M

R0x
+

Q2

R2
0x

2
. (5.75)

If |Q| < M holds, the line element describes a black hole with charge, if |Q| > M ,
the space-time describes a naked singularity. In the following we want to discard the
latter case.
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Figure 5.5: Schwarzschild-de Sitter space-time: The imaginary part of the tunneling action
decreases with growing black hole mass M .

For |Q| < M , tunneling between x1 and x2 occurs only if f − x2 has three positive
roots. If there is only a single positive root of f−x2, we find that a tunneling solution
exists only behind the inner horizon and is not visible for an observer outside. Under
the restrictions that |Q| < M and that three positive roots exist, we find after some
algebra

Q2 < M2 <
R2

0

54

(
1 + 36

Q2

R2
0

+

(
1− 12

Q2

R2
0

)3/2
)
, (5.76)

which implies Q2 < R2
0/16. The turning points of the potential are given by

x1/2 =

√√√√1

6

(
1 + <

(
∆

2

)1/3
)

±

√√√√1

3
− 1

6
<
(

∆

2

)1/3

− M

R0

√
3

2

(
1 + <

(
∆

2

)1/3
)−1/2

(5.77)
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with

∆ = −2− 72
Q2

R2
0

+ 108
M2

R2
0

+i

√
4

(
1− 12

Q2

R2
0

)3

−
(

2 + 72
Q2

R2
0

− 108
M2

R2
0

)2

. (5.78)

In fig. 5.6 we plot the classical trajectory of the bubble after tunneling. The imaginary
part of the action for different values of M and Q is depicted in fig. 5.7.
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Figure 5.6: Reissner-Nordström space-time: The expansion of the vacuum bubbles starting
at a nucleation radius larger than the outer horizon is growing to infinity.
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Figure 5.7: Reissner-Nordström space-time: The imaginary part of the tunneling action
decreases with growing black hole mass M . Since we do not consider naked singularities,
we discard the values for =(S) if |Q| > M .

5.4 Interaction with external Degrees of Freedom

5.4.1 The System-Environment Interaction

In the preceding sections, we have considered the scalar field φ to be an isolated
system. Furthermore, the field was not represented by infinitely many degrees of
freedom but rather a single quantum–mechanical variable R. In the semiclassical
picture, the variable R moves along a tunneling trajectory through the barrier before
it expands after nucleation. However, a more general field configuration could consist
out of superpositions of vacuum bubbles with different radii R. Thus, the classical
appearance of the vacuum bubble after nucleation cannot be deduced from here, since
superpositions are in principle possible for arbitrary large vacuum bubbles. Here we
will show how the localization of the field can be understood through the process of
decoherence. More explicitly, we consider an interaction of the quantum mechanical
variable R field with environmental degrees of freedom in the spirit of [118, 119]. We
assume for the environmental modes the quadratic action

Sbath =
1

2

∫
dt

∫
d3x

(
∂µψ∂

µψ −m2ψ2
)
, (5.79)
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where the mass m is a free parameter. The field ψ represents internal degrees of
freedom of the field φ that have been neglected in the simplified description so far,
or vacuum fluctuations of other fields.

For the interaction between the fluctuations ψ and the bounce field φ we choose

Sint =

∫
dt

∫
d3xgφψ . (5.80)

This can be written as

Sint = g

∫
d4xφψ (5.81)

= g

∫
d4xφfψ − g

∫
dt

∫
|x|<R

d3x(φf − φt)ψ ,

where we have neglected the small transition region between φf and φt. After Fourier
transforming the environmental scalar field, the interaction reads

Sint = g(φt − φf )
∫
dt

∫
|x|<R

d3x
∑

k

eikrψk (5.82)

= g(φt − φf )
∫
dt
∑

k

4π

k3
(sin(kR)− kR cos(kR))ψk ,

where we have neglected the constant first term in the second line of equation (5.81).
The radius R will be interpreted as a quantum variable like in the action (5.6). The
interaction between R and ψ grows with kR, that is, modes with short wavelengths
are able to resolve the vacuum bubble better than modes with longer wavelength, as
expected.

5.4.2 Effective Two-state System

The simplest approximation for the description of a tunneling process between two a
“false” vacua and a “true” vacua is a two–level system. As noted by Lee and Weinberg
[86], the decay of the true vacuum is possible when thermal excitations or gravitational
effects are taken into account. In general, superpositions of the local vacuum states
cannot be neglected, if the tunneling rate is of the same order of magnitude as
the decoherence rate, that is, the time scales of vacuum bubble localization and
the tunneling process is of the same order. In this case, the instanton picture
considering well–localized tunneling trajectories of the field, might be misleading.
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We approximate the system and the environment by the Hamiltonian

Htotal =

(
4π
3
R3

0V (φf ) Γ
Γ 4π

3
R3

0V (φt)

)
+

1

2

∫
d3x

(
Π2
ψ + (∇ψ)2 +m2ψ2

)
−g
(
φf 0
0 φt

)∫
|x|<R0

d3xψ . (5.83)

The first term in equation (5.83) describes the transition between the states “A
bubble of radius R0 has energy density V (φf)” and “A bubble of radius R0 has
energy density V (φt)” . The second term of equation (5.83) is the bath Hamiltonian,
and the last term describes the environment measuring the system to be located at
φf respectively φt.

The master equation for the reduced density matrix in the Schrödinger picture
reads in the Redfield approximation [21]

ρ̇S(t) = −i[H0, ρS] (5.84)

−trB

∫ t

0

ds[Hint, [Hint(s− t), ρS(t)⊗ ρB]]

with

Hint = −4πg

(
φf 0
0 φt

)∑
k

∫ R0

0

dr
r

k
sin(kr)ψk

≡
∑

k

Mk(R0)ψk . (5.85)

The reduced density matrix ρS contains all available information about the effective
two-state system.

Ignoring the free dynamics of the density matrix, equation (5.84) becomes

ρ̇S = −
∫ t

0

ds
∑

k

Ak(t− s)[Mk(R0), [Mk(R0), ρS]] (5.86)

+i

∫ t

0

ds
∑

k

Bk(t− s)[Mk(R0), {Mk(R0), ρS}] .

The functions Ak and Bk are defined by

〈ψ̂kψ̂k(s− t)〉 =
1

2Vk [cos(k(t− s))− i sin(k(t− s))]
≡ Ak(t− s)− iBk(t− s) , (5.87)
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where V denotes the quantization volume. We have restricted ourselves here to
vanishing temperature. The second line of (5.86) contains a contribution to the
unitary dynamics and will be ignored from here. Using this approximation we
integrate equation (5.86) and find that the off-diagonal elements of the density
matrix decay according to

ρS,01(t) = ρS,01(0)e−4g2(φf−φt)2R6
0h(R0,t) (5.88)

with

h(R0, t) =
13t2

180R2
0

+
t4

720R4
0

+ ln t

(
t4

48R4
0

− t6

1440R6
0

)
+ ln

∣∣∣∣ t+ 2R0

t− 2R0

∣∣∣∣ ( t

15R0

− t3

36R3
0

)
+ ln

∣∣t2 − 4R2
0

∣∣ ( 1

18
− t4

96R4
0

+
t6

2880R6
0

)
. (5.89)

For times t . R0 we find for the decoherence rate

Γdec ≡ ρ̇S,01

ρS,01

≈ −g2(φf − φt)2R4
0t , (5.90)

which has to be compared with the transition frequency given by the difference
between ground state and first excited state. In the case of degenerate vacua this is
frequently given by the tunneling rate Γ. We see that Γ > Γdec is in general possible
for sufficiently small times. In cases when the nucleation radius is small or when
the local minima of the potential are very close to each other, interference effects
between different vacuum configurations are not necessarily negligible. Therefore we
state that there could be regions in the cosmic landscape which should be treated
quantum mechanically. The pure rate-equation approach which is frequently used is
then doubtful.

For large t� R0, the off-diagonal elements decay polynomially according to

ρS,01(t) = ρS,01(0)× (5.91)

× exp

[
−4g2

9
(φf − φt)2R6

0

(
7

4
+ ln

(
t

2R0

))]
.

The result (5.91) can be compared with the suppression of interference in a well-
known system, the dissipationless spin-boson model (see for example [120]). Using
the ohmic spectral density by J(ω) = ω exp(ω/Ω), the decoherence rate in this model
is given by

Γ(t) = −λ1

2
ln(1 + Ω2t2)− λ ln

(
sinh(tπT )

tπT

)
, (5.92)
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where T denotes the temperature, λ the coupling strength, and Ω the frequency
cutoff. The second term is due to the thermal contributions of the bath modes
and is roughly equal to −λtπT for t � 1/T . Since we consider in our model only
the case of vanishing temperature, the thermal contributions vanish and we are left
with the vacuum fluctuations. Therefore we obtain only a logarithmic dependence
of Γdec which is similar in the spin-boson model where one obtains for large times
Γ(t) ≈ −λ ln(Ωt) in the limit T → 0.

5.4.3 Localization of the growing Vacuum Bubble

The reduction of the scalar field tunneling process to a two–state system is a drastic
simplification, since the scalar field has infinitely many degrees of freedom. However,
this simplification is valid, if one is only interested in superpositions of a true vacuum
bubble of vanishing size with a true vacuum bubble of size R0. In the following, we
apply the decoherence program on superpositions of vacuum bubbles with arbitrary
radii R. This is appropriate in order to describe the quantum–to–classical transition
of the expanding vacuum bubble. The possibility of a tunneling process back to the
false vacuum will be discarded here.

Macroscopic objects, i.e. dust particles, are observed in well–localized states in
contrast to microscopic particles that are often found in energy eigenstates. The
localization can be explained with the interaction of the macroscopic object with the
environment; the phase relations of different states are delocalized through continuous
measurement [25]. A local observer has no access to the interference terms; this
information can only be obtained through an exact knowledge of the environmental
system which is in general not possible.

In order to quantize the system given by the action (5.6), we reparametrize the
action analogously to (5.66) and obtain

SR =

∫
dλ

(
4πR3ε

3
ṫ− 4πR2σ

√
ṫ2 − Ṙ2

)
, (5.93)

which is classically equivalent to

S̃R =

∫
dλ

[
4πR3ε

3
ṫ− 2πR2σ

(
ṫ2 − Ṙ2

ν
+ ν

)]
. (5.94)

Since the kinetic term is quadratic in Ṙ, we proceed with the canonical quantization
procedure. After reparametrizing (5.79) and (5.80) in a similar way we obtain the

77



5 Influence of Decoherence on Vacuum Decay

following canonical momenta:

PR =
4πR2σ

ν
Ṙ , (5.95)

Pt = 4πR2

(
Rε

3
− σṫ

ν

)
(5.96)

−
∑

k

(
1

2ṫ2
ψ̇kψ̇−k +

1

2
(k2 +m2)ψkψ−k

−g(φt − φf )
∫
|x|<R

d3xeikxψk

)
,

Pψk
=

ψ̇−k

ṫ
. (5.97)

The constraint Hamiltonian reads

H =
ν

8πR2σ

{
16π2R4σ2 + P 2

R (5.98)

−
(
Pt − 4πR3ε

3
+
∑

k

[
1

2
(k2 +m2)ψkψ−k

+
1

2
Pψk

Pψ−k
− g(φt − φf )

∫
R

d3xeikxψk

])2
}
≈ 0 .

Since the quantization of the constraint equation (5.98) does not lead to a differential
equation of Schrödinger type, we consider the square root of the constraint equation
ignoring factor-ordering problems. We then find

i∂t|Ψ〉 =

(√
16π2R̂4σ2 + P̂ 2

R −
4πR̂3ε

3
+
∑

k

[
1

2
P̂ψk

P̂ψ−k
+

1

2
(k2 +m2)ψ̂kψ̂−k

−g(φt − φf )
∫
|x|<R̂

d3xeikxψk

])
|Ψ〉 , (5.99)

where the substitution Pt → −i∂/∂t was performed. Except for the appearance of a
square root, the Hamiltonian is of standard form. In order to simplify the problem
further, we assume that the momentum PR dominates over the quartic term for large
R. This can be justified with the classical equations of motion: the radius R grows
proportionally to t, but PR grows proportionally to t3. With this approximation,
which is valid for t� R0, we discard all the factor ordering problems. The system
Hamiltonian simplifies to

H0 ≈ |PR| − 4πR̂3ε

3
, (5.100)
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and the corresponding Heisenberg equations of motion have the solutions

R̂H(t) = R̂0 ± |t| , (5.101)

P̂H
R (t) = P̂R(0) +

4πε

3

(
(R̂0 ± |t|)3 − R̂3

0

)
. (5.102)

Since we are interested in the localization of the growing vacuum bubbles, we restrict
ourselves to the positive signs in equations (5.101) and (5.102). The interaction now
reads

Hint = −4πg(φt − φf )
∑

k

∫ R̂

0

dr
r

k
sin(kr)ψk

≡ −
∑

k

fk(R̂)ψk , (5.103)

where the radius is not fixed, in contrast to the interaction (5.85). Using equations
(5.84) and (5.87) we find the master equation

ρ̇S = −i [H0, ρS] (5.104)

+i

∫ t

0

ds
∑

k

Bk(t− s)[fk(R̂), {fk(R̂ + |t− s|), ρS}]

−
∫ t

0

ds
∑

k

Ak(t− s)[fk(R̂), [fk(R̂ + |t− s|), ρS]] .

Since we are only interested in decoherence, we drop the unitary part as well as the
terms describing dissipation in equation (5.104). In order to obtain an estimate for
the decoherence factor, we calculate the k-dependent correlators in (5.104) in the
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position basis, i.e.

C(R,R′, t) ≡
∫ t

0

ds
∑

k

Ak(t− s)fk(R)fk(R
′ + |t− s|)

=
g2(φt − φf )2

120

{
Rt(63R2R′ + 53R′

3
+ 48R2t+ 74R′

2
t

+52R′t2 + 16t3)

+
1

8

[
(R−R′)2 ln(R−R′)2 + (R +R′)2 ln(R +R′)2

]
×(12R3 − 14RR′

2
+ 120RR′t+ 80Rt2)

+
1

8

[
(R−R′)2 ln(R−R′)2 − (R +R′)2 ln(R +R′)2

]
×(9R2R′ + 60R2t− 7R′

3
+ 60R′

2
t+ 40R′t2)

−1

8

[
(R−R′ − 2t)3 ln(R−R′ − 2t)2

+(R +R′ + 2t)3 ln(R +R′ + 2t)2

]
×

×(12R2 + 7R′
2

+ 18R′t+ 8t2)

−1

8

[
(R−R′ − 2t)3 ln(R−R′ − 2t)2

−(R +R′ + 2t)3 ln(R +R′ + 2t)2

]
(21RR′ + 12Rt)

}
.(5.105)

Using this result it is possible to integrate the master equation (5.84),

ρ(R,R′, t) = ρ(R,R′, 0) exp

{
−
∫ t

0

ds
[
C(R,R, s)

−C(R,R′, s)− C(R′, R, s) + C(R′, R′, s)
]}

. (5.106)

In the limit t� |R−R′| we find

ρ(R,R′, t) = ρ(R,R′, 0) exp

[
− g2(φt − φf )2

8
(R−R′)2t2

×
{

4(R2 +RR′ +R′
2
) + (R +R′)2 ln

(R +R′)2

(R−R′)2

}]
, (5.107)

whereas for times t� R,R′ the non-unitary part of the density matrix is approxi-
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mately given by

ρ(R,R′, t) ≈ ρ(R,R′, 0)

∣∣∣∣ t2(R +R′ + 2t)2

((R−R′)2 − 4t2)(R + t)(R′ + t)

∣∣∣∣− 1
45
g2(φt−φf )2t6

≈ ρ(R,R′, 0) exp

[
−g

2

90
(φt − φf )2t4(R−R′)2

]
. (5.108)

Compared to (5.91), the suppression of the off-diagonal elements increases strongly
with time, since the vacuum bubble expands. The decoherence process is sensitive on
the size of the vacuum bubble, that is, it is more efficient for larger than for smaller
ones. In contrast to (5.85), the interaction (5.103) does not assume a fixed size of
the vacuum bubbles.

5.4.4 Modified Tunneling Rate due to Environmental
Degrees of Freedom

Caldeira and Leggett showed in [73, 76] that the decay rate of a metastable state is
modified due to the interaction with the environment.

To obtain the modified tunneling amplitude one has to evaluate the path integral
over all ψk and normalize the resulting expression such that the impact of the
interaction vanishes if g tends to zero. Since the interaction (5.80) is bilinear, this
will reduce to a ratio of two functional integrals which will be evaluated semiclassically.
It is important to include a renormalization term in order to ensure, that the system
cannot lower its potential energy by moving in the ψk–directions of the configuration
space [73]. After switching to imaginary time T = −it we find the euclidean action

SE = SE,R + SE,bath + SE,int + SE,ren (5.109)

with

SE,R = −
∫ T0

0

dT

(
4πε

3
R3 − 4πσR2

√
1 + Ṙ2

)
,

SE,bath =

∫ T0

0

dT
∑

k

V
2

(
ψ̇kψ̇−k + (k2 +m2)ψkψ−k

)
,

SE,int = −
∫ T0

0

dT
∑

k

fk(R)ψk ,

SE,ren =

∫ T0

0

dT
∑

k

f 2
k (R)

2V(k2 +m2)
, (5.110)

where f(R) was defined in equation (5.103) and V denotes again the quantization
volume of the environmental modes. The euclidean time at which the bubble radius
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vanishes is denoted with T0 and coincides with R0 in the limit of vanishing system-
environment interaction. The ratio of the functional integrals can be evaluated
exactly since the action is quadratic in the ψk’s (see [121]). We find∫

ΠkDψk exp(−SE)∫
ΠkDψk exp(−SE(g = 0))

= exp(−Seff) (5.111)

with

Seff = SE,R + SE,ren (5.112)

−
∫ T0

0

dT

∫ T0

0

dT ′
∑

k

fk(R)fk(R
′)

4V√k2 +m2

cosh
(√

k2 +m2
(|T − T ′| − T0

2

))
sinh

(√
k2 +m2 T0

2

) ,

with R′ = R(T ′). The expression (5.112) can be simplified by the definition
R(T + T0) ≡ R(T ), that is, we have

Seff = SE,R +

∫ ∞
−∞

dT ′
∫ T0

0

dT
∑

k

e−
√
k2+m2|T−T ′|

8V√k2 +m2
(fk(R)− fk(R′))2 .(5.113)

From this expression we deduce that the interaction with environmental degrees of
freedom leads to a suppression of the tunneling amplitude (see [73]). Varying the
effective action, we find the equations of motion to be

d

dT

(
4πσR2Ṙ√

1 + Ṙ2

)
= −4πεR2 + 8πσR

√
1 + Ṙ2 (5.114)

+

∫ ∞
−∞

dT ′
∑

k

e−
√
k2+m2|T−T ′|

2V√k2 +m2
∂Rfk(R)(fk(R)− fk(R′))

The term in the second line is a nonlocal friction term. We can state this result more
explicitly, if we consider the limit m = 0 and expand ∂Rfk(R)(fk(R)− fk(R′)) up to
lowest order in k. Since contributions for large k are exponentially suppressed for
T 6= T ′, this approximation will not alter the integrand significantly. Thus, we find a
friction term which is of a similar form as in [73],

1

R2

d

dT

(
4πσR2Ṙ√

1 + Ṙ2

)
= −4πε+

8πσ

R

√
1 + Ṙ2

+
4g2

3
(φt − φf )2

∫ ∞
−∞

dT ′
R3 −R′3
(T − T ′)2

, (5.115)

where the integral has to be interpreted as its principal value.
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Although in general one would have to solve equation (5.114) or (5.115) in order
to find the numerical value of the instanton action, here we neglect the back reaction
of the environment on the bubble and set T0 = R0. Substituting

∑
k

→ V
(2π)3

∫
d3k (5.116)

and evaluating the integrals numerically, we find for m = 0 the correction to the
imaginary part of the euclidean classical action (5.6) to be

Seff − SE,R ≈ 0.088g2(φt − φf )2R6
0 . (5.117)

The correction for arbitrary m is plotted in fig. (5.8). Since the nonlocal terms as
well as the renormalization term in the action (5.112) decrease with growing m, we
find that the suppression of the tunneling process for large masses is weaker than it
is for small masses.
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Figure 5.8: The system–environment interaction decreases with growing mass of the
environmental field.

5.4.5 One-loop Corrections

So far we investigated a bilinear interaction between a quantum mechanical variable
and an environmental field. In leading order WKB–expansion, the decay rate is
suppressed due to dissipative effects. Here, we want to investigate corrections to the
ground state energy from higher order WKB–approximation that contribute to the
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decay probability. Expressing the action (5.109) in terms of the fields φ and ψ, we
have

SE,R = SE,φ + SE,bath + SE,int + SE,ren (5.118)

with

SE,φ =

∫
d4x

(
1

2
(∂µφ)2 + V (φ)

)
(5.119)

SE,bath =
1

2

∫
d4x(∂µψ)2 (5.120)

SE,int = −g
∫
d4xφψ (5.121)

SE,ren = −g
2

2

∫
d4xφ∆−1φ , (5.122)

where we chose m = 0. The renormalization term (5.122) is similar to (5.110) and
prevents the theory from becoming unstable due to the bilinear interaction. If this
term were not present, the potential energy would become arbitrarily negative solely
due to the measuring process of the field φ through the field ψ.

For g = 0 we know that the scalar field φ has an O(4)–invariant solution. Since
the counterterm breaks this symmetry explicitly, the action (5.118) obeys only
O(3)–invariance. The effective action for the scalar field φ is found by substituting

fk(R)→ gVφ±k (5.123)

in equation (5.113), where

φk =
1

V
∫
d3xφ(x, T )e−ikx . (5.124)

We find

Seff = SE,φ + g2V
∫
dT ′

∫
dT
∑

k

e−k|T−T
′|

8k
×

× [φk(T )− φ−k(T ′)] [φ−k(T )− φk(T ′)] (5.125)

and therefore

Seff = SE,φ +
g2

(4π)2

∫
dT

∫
dT ′

∫
dx3

∫
dy3 × (5.126)

×
(

φ(|x|, T )φ(|y|, T )

|x− y|2 + |T − T ′|2 −
φ(|x|, T ′)φ(|y|, T )

|x + y|2 + |T − T ′|2
)
,
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where we assumed O(3)–invariance of the field φ. The bounce goes from the false
vacuum at time minus infinity to the false vacuum at time plus infinity

lim
T→±∞

φ(|x|, T ) = φf (5.127)

and can be described in the thin wall approximation with a variable R, which was
used in the preceding sections. R separates the true vacuum φt from the false vacuum
φf . The corrected decay rate reads now

Γ =
S2

eff

4π2

∣∣∣∣∣Det(δ2S̃eff/δφ
2)

Det′(δ2Seff/δφ2)

∣∣∣∣∣
1/2

exp(−Seff) , (5.128)

where the prime denotes, that the zero eigenvalues have been omitted and S̃eff is the
action Seff with V (φ) replaced by V ′′(φf )φ2/2. We know from [74], that the second
variation of Seff has a negative eigenvalue for g = 0 which can be shown also for
g 6= 0. We imbed the classical solution of the field equations φ̄ into a one–parameter
family of functions

φλ = φ̄(|x|/λ, T/λ) , (5.129)

then we find

Seff(φλ) = λ2 1

2

∫
d4x(∂µφ̄)2 + λ4

∫
d4xV (φ̄)

+λ6Λ(φ̄) , (5.130)

where the definition of Λ becomes obvious from equation (5.126). Seff has to
be stationary at λ = 1, since φ̄ is a solution of the equations of motion. With
dSeff(φλ)/dλ|λ=1 = 0 we deduce

Seff(φ̄) =
1

4

∫
d4x(∂µφ̄)2 − Λ(φ̄)

2
(5.131)

and

d2Seff(φλ)

dλ2

∣∣∣∣
λ=1

= −2

∫
d4x(∂µφ̄)2 + 12Λ(φ̄) (5.132)

From (5.131) we know, that the effective action for the bounce is positive for g = 0
as well as for sufficient small g; and from (5.132) we know, that the second variation
of Seff has at least one negative eigenvalue under the same conditions. In order to
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show that this is true for arbitrary g, we combine the embedding (5.129) and the
expression (5.131) to

Seff(φλ) = λ2 1

4

∫
d4x(∂µφ̄)2 + λ6 Λ(φ̄)

2
. (5.133)

Varying with respect to λ leads to

Seff(φ̄) =
1

6

∫
d4x(∂µφ̄)2 > 0 , (5.134)

that is, the action is always positive though the potential is somewhere negative. For
the second variation we deduce

d2Seff(φλ)

dλ2

∣∣∣∣
λ=1

= −2

∫
d4x(∂µφ̄)2 < 0 , (5.135)

that is, the second variation of the action has at least one negative eigenvalue for
arbitrary g. Assuming that there is exactly one negative eigenvalue, we have a
small imaginary contribution to the ground state energy which is exactly the decay
probability per unit time.

5.5 Conclusions

We have discussed in various settings the behavior of vacuum tunneling in curved
backgrounds. In particular the solutions concerning de Sitter space should be
important for the investigation of the cosmic landscape.

Furthermore we included environmental degrees of freedom in order to investigate
the quantum–to–classical transition. Using decoherence one may also justify the
suppression of interferences of bounces in multibounce–configurations that are used
in the dilute gas approximation. An analog situation would be the alpha–decay. The
state vector is a superposition of different partial waves that are decohering due to
the interaction between emitted particle and environment. If the decoherence process
is weak, that is, for sufficiently small nucleation radii or small system-environment
couplings, the intuitive picture of a particle moving along a tunneling trajectory might
be misleading. We have chosen the interaction between system and environment to
be linear in the environmental degrees of freedom, an assumption which has been
applied to various models that can be described by a macroscopic variable [76]. The
motivation behind this linear coupling is, that every single environmental degree of
freedom is only weakly perturbed by the system. This does not mean that the effect
on the system is weak, since infinitely many degrees of freedom are involved.

The specific form how the macroscopic variable enters the interaction was derived
from a generic bilinear and locally Lorentz-invariant interaction between system field
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and environmental field. In contrast to the treatment of decoherence in quantum
mechanical models, we did not need to assume a particular form of the spectral
density.

An aspect for future research addressing the tunneling in curved backgrounds
could be the inclusion of one–loop corrections to the decay rate in a more explicit
way than the formal functional determinants considered in [75].
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6 Entanglement Generation via a
Bosonic Heat Bath

The results presented in the following part of this thesis have been achieved in
collaboration with Thomas Zell and Rochus Klesse.

6.1 Motivation

6.1.1 Entanglement as a Resource

In the preceding sections it has been stressed that entanglement between a system
with a finite number of degrees of freedom and a reservoir with infinitely many
degrees of freedom leads to a localization of the system variables. The central point
of the process of decoherence is the uncontrollable entanglement between system and
environment. In the following we want to investigate the generation of controllable
entanglement which can be of use for quantum computing and quantum information
processing.

It is well known that certain computational problems can be solved faster than with
traditional algorithms by employing “quantum logic”. Using Grover’s algorithm [122]
it is possible to find an item in a unsorted database with N entries in O(

√
N) steps.

Another prominent example is Shor’s algorithm [123] for factoring an n-bit integer
number using O(n2) operations. In contrast, the best known classical algorithm,
the so–called number field sieve, requires roughly exp(n1/3) operations. In other
words, for some problems, quantum algorithms are exponentially faster than classical
algorithms. As a proof of principle, Shor’s algorithm has already been implemented
on a quantum computer for factorizing the number 15 [124]. The key ingredient of
Shor’s quantum algorithm is the quantum Fourier transformation that is defined
analogously to the discrete Fourier transformation. Due to the superposition principle
it is possible to compute the quantum Fourier transformation of a state vector within
a time that grows only polynomially with n, whereas the computing time of classical
algorithms such as the Fast Fourier Transform grows as 2n. For an overview of
quantum algorithms, see e.g. [125].

Quantum cryptography allows secure information transmission [126], i.e. an
eavesdropper cannot elicit any information from the transmitted quantum particles
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without disturbing the information in such a way that the legitimate users notice his
intervention. This secure information transmission has already been used for bank
transfers [127].

Another interesting aspect is quantum teleportation of an unknown quantum state
that can be implemented if two users are presharing a Bell state [128]. The original
state is destroyed, otherwise teleportation would violate the no cloning theorem [129].
We want to state this example explicitly. Suppose two physicists, Alice and Bob,
share the state of two perfectly entangled spins |ψ〉 = (|0〉A|0〉B + |1〉A|1〉B)/

√
2,

where 0 denotes “spin down” and 1 denotes “spin up” and the index denotes the
owner of the component. The state which is in the possession of Alice and has to be
teleported to Bob is of the form |φ〉 = α|0〉A + β|1〉A. Alice applies to their qubits
a so–called CNot gate, that is a unitary operation defined by |γ〉|δ〉 → |γ〉|γ ⊕ δ〉,
where ⊕ is the addition modulo 2. She then sends her first bit through an Hadamard
gate defined by |0〉 → (|0〉+ |1〉)/√2 and |0〉 → (|0〉 − |1〉)/√2. Thus we have

|ψ〉|φ〉 −→ 1

2

[
|0〉A|0〉A(α|0〉B + β|1〉B) + |0〉A|1〉A(α|1〉B + β|0〉B)

+|1〉A|0〉A(α|0〉B − β|1〉B) + |1〉A|1〉A(α|1〉B − β|0〉B)

]
.(6.1)

Depending on Alice’s measurements (|0〉A|0〉A, |0〉A|1〉A, |1〉A|0〉A or |1〉A|1〉A), Bob
will measure the corresponding outcome. Of course, in order to know the state in
which he is, Alice has to tell Bob her measurement result. This prevents quantum
teleportation from transmitting information faster than light. If Bob knows his
quantum, he can apply the appropriate quantum gate in order to obtain Alice’s state
|φ〉 = α|0〉A + β|1〉A.

6.1.2 Controllable vs. Uncontrollable Entanglement

The example discussed in the previous section did not involve any environmental
degrees of freedom, which is obviously an idealization. Generally speaking, it is a
difficult task to generate controllable entanglement between microscopic systems, e.g.
spins, especially when they are spatially separated. On the one hand, the systems
have to interact with each other in order to become entangled. On the other hand,
they have to be shielded in order to avoid uncontrollable entanglement with the
environment which leads to a localization of the systems.

In sections 4.4 and 5.4, we have seen explicitly that the efficiency of decoherence
processes with respect to a system is determined by the distinguishability of different
system states. For example, the localization rate of a macroscopic particle due to
scattering processes depends on the distance in configuration space (see section 2.4),
the localization rate of the effective two-state system which was discussed in section
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4.4 depends on the separation of the local minima, and the off-diagonal elements of
the reduced density matrix for the vacuum bubble discussed in section 5.4 decrease
exponentially with increasing difference of the radii configurations of the bubbles.

During the last years, several authors have promoted that it should be possible to
entangle systems that are coupled to the same heat bath and do not interact directly
with each other [8, 9, 130, 131]. In other words, the interaction which generates
the entanglement is solely determined by the coupling to a common environment.
Entanglement between two two–level systems has been investigated in [8, 9, 130, 132–
134], whereas entanglement of harmonic oscillators was the subject of discussion
in [135–140].

Braun showed in [8] that the system-bath interaction leads to perfect entanglement
of two qubits occupying the same position. He considered two spins with degenerate
energy levels, and the heat bath was modeled by a collection of harmonic oscillators
interacting bilinearly with the spins. The composite system can be solved exactly
since it resembles a dissipationless two–spin boson model (see [78] for a review on the
spin–boson model). Braun’s theoretical model relies on two idealizing assumptions
that cannot be met in general: since any eigendynamics of the spins is neglected
(i.e. the energy levels are degenerate), the system does not exchange energy with the
environment. Furthermore the spins are not spatially separated and no environmental
mode with a finite wavelength is able to resolve the distance between the spins.
However, Braun’s results confirm that entanglement generation via a common heat
bath might indeed be possible.

The author generalized the model in [130] where he investigated the entanglement
generation of two spins that are coupled to the heat bath at different positions.
Braun showed that the first maximum of entanglement appears after a period of
time that scales with the third power of the spatial separation. For sufficiently large
times, almost perfect entanglement can be generated, whereas for infinitely large
times the entanglement vanishes. Dissipative effects are discarded in this generalized
model as well.

This result is counterintuitive. Although both spins are strongly entangled with
the bath (which should lead to a localization of the spin states), they are only
weakly entangled with an individual bath mode. In other words, if the entanglement
between a spin and N environmental degrees of freedom of the bath is of order γ, the
entanglement with an individual bath mode should be of order γ/N . The generation
of significant entanglement between the low–dimensional remote systems in the
presence of infinitely many environmental modes is therefore doubtful. One may ask
whether the findings of Braun rely on the disregard of dissipation. In the following
we will pursue the study of dissipative effects on bath mediated entanglement of two
remote systems.

This chapter is organized as follows. In section 6.2 we present different measures of
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6 Entanglement Generation via a Bosonic Heat Bath

entanglement for bipartite systems. The generation of entanglement for two remote
harmonic oscillators is discussed in 6.3 and a system involving two spins is the subject
of section 6.4.

6.2 Entanglement Measures

Given a quantum state of a multi-partite system, it is in general very difficult
to decide whether the subsystems are entangled with each other or not. Since
we are interested in the entanglement of a bipartite system, we will restrict the
discussion of entanglement measures to this case. For an extensive review of quantum
entanglement, see [141].

Any bipartite pure state |Ψ12〉 ∈ H12 = H1 ⊗H2 is called entangled if and only if
it cannot be written as a product of two vectors contained within the Hilbert spaces
of the subsystems:

|Ψ12〉 = |ψ1〉|ψ2〉 . (6.2)

Expressed in terms of an orthonormal product basis {|ei1〉 ⊗ |ei2〉}, the state vectors
reads

|Ψ12〉 =
∑
i,j

Aij|ei1〉 ⊗ |ei2〉 . (6.3)

The state is a product if and only if the matrix Aij has a rank equal to 1.
Due to decoherence phenomena it is in practice impossible to prepare systems in

pure states and one has to deal with mixed states. In those cases, it is generally much
more difficult to define viable entanglement measures. It is useful to have a notion
for separable states, i.e. unentangled configurations. Any bipartite state ρ12 ∈ H12 is
separable if and and only if it can be written as a convex combination of product
states [142]:

ρ12 =
∑
i

piρ
i
1 ⊗ ρi2 , (6.4)

where ρ1 ∈ H1 and ρ2 ∈ H2 are density matrices defined on the Hilbert spaces of
the subsystems. The coefficients pi are greater or equal to zero and add up to 1.
Mixed states which cannot be written as a convex combination of product states are
entangled.

6.2.1 The Positive Partial Transpose (PPT) Criterion

A strong criterion for identifying separable states has been proposed by Peres and
Horodecki [143, 144]. It states that a bipartite mixed state is separable if the partially
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transposed density matrix is a density operator. Expressing this statement in a fixed
product basis, we say that the matrix

〈m|〈µ|ρT2
12 |n〉|ν〉 ≡ 〈m|〈ν|ρ12|n〉|µ〉 (6.5)

has to be positive definite in order for ρ12 to be a separable state. This statement
is independent of the chosen basis {|m〉, |n〉}. If the partial ρT2

12 is positive definite,
the density matrix can be written in the form (6.4). This condition is necessary
and sufficient, if and only if d1d2 ≤ 6, where d1 and d2 are the dimensions of the
systems [144]. In other words, for larger dimensions there can be entangled states
whose partial transposed density matrix is positive definite.

6.2.2 Entanglement Measures for Spins and Oscillators

Vidal and Werner [145] used the Peres–Horodecki criterion to define entanglement
measures. The first one is the negativity,

N (ρ) ≡ ||ρ
T2
12 ||1 − 1

2
(6.6)

which is equal to the absolute value of the sum of negative eigenvalues of the partial
transposed density matrix ρT2

12 . In (6.6) we used the trace norm ||..||1. The negativity
measures the partially transposed state’s deviation from positive definiteness.

The second measure defined in [145] is the logarithmic negativity

E(ρ) = log2||ρT2
12 ||1 . (6.7)

Both measures do not increase under local operations and classical communication.
In addition, the logarithmic negativity is an additive quantity.

The measures are useful in the context of information transfer based on nonlocal
correlations [128]. Vidal and Werner showed that the negativity bounds the extent to
which the state ρ12 can be used to perform quantum teleportation. The logarithmic
negativity is an upper bound for the distillable entanglement contained in ρ12, which
is the amount of “almost” pure state entanglement that can be distilled from ρ⊗N12 ,
N →∞.

Although the measures are easy to compute for a system of two spins, they are
clearly not viable for a bipartite system of harmonic oscillators with which we are
dealing in section (6.3).

However, it is possible to derive from the Peres–Horodecki criterion a measure in
the case of Gaussian oscillator states [146, 147]. This can be achieved by considering
the covariance matrix which defines the Gaussian state up to a shift of the canonical
variables. Since the covariance matrix can be defined for n oscillators, we will

93



6 Entanglement Generation via a Bosonic Heat Bath

consider this general case in the following. We start with the definition of the vector
R = (Q1, ...Qn, P1, ..., Pn), where Qi and Pi are the canonical variables of n harmonic
oscillators which are chosen to be dimensionless. Gaussian states are uniquely defined
by their first two moments which read

m1,i = Tr(Riρ12) (6.8)

and

m2,ij = Tr(RiRjρ12) . (6.9)

The first moments, m1,i, can always be eliminated by an appropriate shift of the
canonical variables and will be set to zero in the following. Decomposing the second
moments into commutators and anticommutators we have

Tr(RiRjρ12) =
1

2
Tr({Ri, Rj}ρ12) +

i

2
Tr([Ri, Rj]ρ12) (6.10)

=
1

2
Covij +

i

2
σij , (6.11)

where the covariance matrix Cov is defined as the symmetric part of the second
moments. The matrix σ is state-independent and given through the commutation
relations of the canonical variables. For a single mode system, the covariance matrix
reads

Cov =

(
2〈q2〉 〈{q, p}〉
〈{q, p}〉 2〈p2〉 ,

)
(6.12)

which has to satisfy an uncertainty inequality, i.e.

Det Cov = 4〈q2〉〈p2〉 − 〈{q, p}〉2 ≥ 1 . (6.13)

This Sp(2,R)–invariant condition is nothing else but the usual uncertainty inequality
for hermitian operators. It follows from the Cauchy–Schwarz inequality for complex
Hilbert spaces,

Tr(pqρ)Tr(qpρ) = Tr(
√
ρpq
√
ρ)Tr(

√
ρqp
√
ρ) ≤ Tr(p2ρ)Tr(q2ρ) , (6.14)

where we used explicitly the positivity of the density matrix in order to write
ρ =
√
ρ
√
ρ. Decomposing the product qp into a symmetric and antisymmetric part,

the left hand side of (6.14) can be rewritten as

Tr(pqρ)Tr(qpρ) =
1

4
(Tr{q, p})2 +

1

4
. (6.15)

From this relation, together with (6.14), follows the uncertainty relation (6.13).
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We turn again to the n–mode system. Unitary transformations generated by
quadratic Hamiltonians act as symplectic transformations on the vector R [148],

U †RU = SR , (6.16)

where S ∈ Sp(2n,R). For the second moments we find

1

2
Cov′ +

i

2
σ′ ≡ Tr(U †RRTUρ)

= Tr(SRRTSTρ)

= S

(
Cov

2
+
i

2
σ

)
ST

= S
Cov

2
ST +

i

2
σ , (6.17)

where we used the invariance of σ under symplectic transformations in the last step.
It is obvious that, if a system defined through Cov is physically realizable, then

so is Cov′, since the uncertainty relation (6.13) is not affected by the symplectic
transformation (6.17). The invertibility of S implies the inverse statement as well.

Furthermore it is guaranteed by Williamson’s theorem [149, 150] that, for any
symmetric positive 2n× 2n matrix Cov, there exists a symplectic S form such that

SCov ST = diag(λ1, ..., λn, λ1, ..., λn) ≡ Covdiag . (6.18)

This theorem implies, together with (6.13), that

λi ≥ 1 , i = 1, ..., n . (6.19)

Note that, in general, a symplectic transformation is not a similarity transformation,
therefore the eigenvalues of Cov and Cov′ are different. However, the symplectic
matrix acts on Cov σ as a similarity transformation. From equation (6.18) follows

Covdiagσ = SCov STσ = SCov STσSS−1 = SCov σS−1 , (6.20)

where we used, again, the invariance of σ under symplectic transformations. Since
Covdiagσ takes an off-diagonal form, we consider the diagonal matrix

(Covdiagσ)2 = −diag(λ2
1, ..., λ

2
n, λ

2
1, ..., λ

2
n) . (6.21)

In order to decide whether a state given by a covariance matrix is physically realizable,
the eigenvalues of −(Cov σ)2 have to be greater than 1, since this matrix is related
to Covdiag through a similarity transformation.
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Now we are able to derive a measure for entanglement in the case of two harmonic
oscillators. We consider the Wigner representation of the bipartite density matrix

W (Q1, Q2, P1, P2) = (6.22)

=
1

(2π)2

∫
dQ′1dQ

′
2

〈
Q1 − Q′1

2
, Q2 − Q′2

2

∣∣∣∣ρ∣∣∣∣Q1 +
Q′1
2
, Q2 +

Q′2
2

〉
eiQ

′
1P1+iQ′2P2 .

It follows, that the partial transpose operation on system 2 equals an inversion of
the variable, P2 → −P2. This corresponds to a “local time reversal” with respect to
system 2,

R→ T2R , T2 = diag(1, 1, 1,−1) . (6.23)

The expectation value for the covariance matrix changes according to

Cov→ T2 Cov T2 . (6.24)

In order to represent a physically realizable state, the eigenvalues of the “local
time–reversed” covariance matrix have to be greater than one. In contrast, if there
are eigenvalues smaller than one, the original Gaussian state, defined through the
covariance matrix Cov, is not separable. This allows us to define an entanglement
measure for a system of oscillators. Let λ1 and λ2 be the symplectic spectrum of the
“locally time-reversed” covariance matrix of a Gaussian state. Then

E = −
2∑
i=1

log2 min(1, λi) (6.25)

is the logarithmic negativity for the system of two oscillators.
Although the Peres criterion provides a useful entanglement measure for two qubits,

we will use, in section (6.4), the concurrence which has been proven by Wootters to
be a valid entanglement measure for two qubits [151]. It relies on the entanglement of
formation which is defined as follows [152]. Given a density matrix ρ12 of a bipartite
system, consider all pure–state decompositions of ρ12, i.e. all ensembles of states |ψi〉
with probabilities pi, such that

ρ12 =
∑
i

pi|ψi〉〈ψi| . (6.26)

For each pure state |ψ〉〈ψ|, the entanglement EN is defined as the von Neumann
entropy of the respective subsystems,

E(ψ) = −Tr(ρ1 log2 ρ1) = −Tr(ρ2 log2 ρ2) , (6.27)
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where ρ1 = Tr2|ψ〉〈ψ| and ρ2 = Tr1|ψ〉〈ψ|. The entanglement of formation of the
mixed state ρ12 is defined as the average entanglement of the pure states of the
decomposition, minimized over all decompositions of ρ,

E(ρ) = min
∑
i

piE(ψi). (6.28)

Wootters showed that in the case of two spins, (6.28) is equal to the expression

F (C) = h

(
1 +
√

1− C2

2

)
, (6.29)

h(x) = −x log2 x− (1− x) log2(1− x) (6.30)

with the concurrence

C = max {0, λ1 − λ2 − λ3 − λ4} . (6.31)

The λi are the eigenvalues, in decreasing order, of the Hermitian matrix R =√√
ρsysρ̃sys

√
ρsys and

ρ̃sys = (σy ⊗ σy) ρ∗sys (σy ⊗ σy) . (6.32)

The star denotes complex conjugation and the matrix σy reads

σy = i|0〉〈1| − i|1〉〈0| (6.33)

in the σz-eigenbasis. Since the function F is monotonically increasing from 0 to 1 as
the concurrence goes from 0 to 1, the latter can be chosen as a viable measure of
entanglement.

6.3 Entanglement of Harmonic Oscillators via a

Common Heat Bath

6.3.1 The Exact Model

Since the dissipative two–spin boson model is not exactly solvable, we will focus here
on a system of two harmonic oscillators coupled to a heat bath. One may argue
that, for low temperatures, the oscillators resemble spins in a good approximation
if only the two lowest levels are significantly populated [153]. To begin with, we
derive the quantum mechanical setup from a generalization of a field theoretical
model which was first analyzed by Unruh and Zurek in [29]. Although the solution
of the model can be given explicitly in an integral representation, the analytical
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expressions cannot be easily interpreted. Thomas Zell evaluated the integrals by
applying numerical methods, see [154, 155]. In sections 6.3.2 and 6.3.3 we will discuss
an analytic approximation of the model which is valid under certain restrictions.

The field theoretical model is given by two harmonic oscillators interacting with a
massless scalar field. The Lagrangian has the form

L =
1

2

∑
i=1,2

(
Q̇2
i − Ω2

0Q
2
i

)
+

1

2

∫
d3x

(
φ̇2 − (∇φ)2

)
+ g

∫
d3xφ̇(x)

(
δ
(
x− r

2

)
Q1 + δ

(
x +

r

2

)
Q2

)
. (6.34)

The oscillators with canonical variables Q1/2 and P1/2 are coupled bilinearly to
a field at positions ±r/2, where g denotes the coupling constant. Although the
notation suggests a three-dimensional setup, we will consider this model also in the
one-dimensional case. Note that the masses of the oscillators have been set to unity.

Since the oscillators are coupled to the “velocity” of the scalar field, the positivity
of the corresponding Hamiltonian is ensured,

H =
1

2

∫
d3x

(
φ̇2 + (∇φ)2

)
+

1

2

∑
i=1,2

(
Q̇2
i + Ω2

0Q
2
i

)
. (6.35)

The environmental field can be expanded according to

φ(x) =
1

V1/2

∑
k

φke
ikx , (6.36)

where V is the quantization volume. We find

L = Lsys + Lbath + Lint (6.37)

with

Lbath =
1

2

∑
k

(
φ̇kφ̇−k − ω2

kφkφ−k

)
(6.38)

Lsys =
1

2

∑
i=1,2

(
Q̇2
i − Ω2

0Q
2
i

)
(6.39)

Lint =
g

V1/2

∑
k

φ̇k

(
ei

kr
2 Q1 + e−i

kr
2 Q2

)
. (6.40)

The field is assumed to be massless (photons), thus ωk = k. The delta function
appearing in (6.34) leads to divergences in the bath correlators of the field φ. In
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order to avoid these, we introduce a cutoff in the spectral densities. This corresponds
to a smearing out of the delta function, that is

δ (x)→ f (x) , (6.41)

where the function f is peaked around the origin with a finite width δx. The position
of the harmonic oscillators is measured by the field with an accuracy of δx which
defines the cutoff for the field modes to be Ωc ∼ 1/δx. Alternatively, we may state
the interaction (6.40) in the form

Lint =
1

V1/2

∑
k

gkφ̇k

(
ei

kr
2 Q1 + e−i

kr
2 Q2

)
(6.42)

where we introduced a mode dependent coupling,

gk = g

∫
d3xeikxf(x) (6.43)

with k = |k|. The gk decrease exponentially around ωk = Ωc. This corresponds to
the introduction of a spectral density J(k) with a cutoff around k ∼ Ωc. We will
specify the shape of J(k) below.

Applying a Legendre transformation to (6.37), we find the Hamiltonian

H = Hsys +Hbath +Hint +Hcount (6.44)

with

Hbath =
1

2

∑
k

(
ΠkΠ−k + ω2

kφkφ−k

)
, (6.45)

Hsys =
1

2

∑
i=1,2

(
P 2
i + Ω2

0Q
2
i

)
, (6.46)

Hint = − 1

V1/2

∑
k

gkΠk

(
e−i

kr
2 Q1 + ei

kr
2 Q2

)
, (6.47)

Hcount =
1

2V
∑

k

g2
k

(
e−i

kr
2 Q1 + ei

kr
2 Q2

)(
ei

kr
2 Q1 + e−i

kr
2 Q2

)
. (6.48)

The canonical momenta are given by

Pi = Q̇i (6.49)

Πk = φ̇−k +
gk
V1/2

(
ei

kr
2 Q1 + e−i

kr
2 Q2

)
, (6.50)

where the counterterm Hcount ensures the positive definiteness of the full Hamiltonian
and avoids “runaway” solutions of the equations of motion. Without this counterterm,
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direct couplings proportional to Q1(t)Q2(t) would spoil the indirect coupling of the
oscillators.

It is a straightforward task to derive the Heisenberg equations of motion for the
environmental modes and the system oscillators

φ̈k(t) + ω2
kφk(t) +

gk
V1/2

(
e−i

kr
2 Q̇1(t) + ei

kr
2 Q̇2(t)

)
= 0 , (6.51)

Q̈1(t) + Ω2
0Q1(t)− 1

V1/2

∑
k

gkφ̇k(t)ei
kr
2 = 0 , (6.52)

Q̈2(t) + Ω2
0Q2(t)− 1

V1/2

∑
k

gkφ̇k(t)e−i
kr
2 = 0 . (6.53)

The differential equation (6.51) determines the temporal evolution of a particular
field mode and has the solution

φk(t) = φk,hom(t)− 1

V1/2

gk
ωk

∫ t

0

ds sin(ωk(t− s))
(
e−i

kr
2 Q̇1(s) + ei

kr
2 Q̇2(s)

)
, (6.54)

where φk,hom(t) solves the homogeneous part of the equation.
Substituting the field variables in equations (6.52) and (6.53), we arrive at the

quantum Langevin equations

Q̈1(t) + Ω2
0Q1(t) =

1

V1/2

∑
k

gkΠk,hom(t)e−i
kr
2 (6.55)

− 1

V
∑

k

g2
k

d

dt

∫ t

0

ds cos(ωk(t− s))
(
Q1(s) + eikrQ2(s)

)
and

Q̈2(t) + Ω2
0Q2(t) =

1

V1/2

∑
k

gkΠk,hom(t)ei
kr
2 (6.56)

− 1

V
∑

k

g2
k

d

dt

∫ t

0

ds cos(ωk(t− s))
(
e−ikrQ1(s) +Q2(s)

)
,

with the homogeneous field momenta

Πk,hom(t) = φ̇−k,hom(t) +
1

V1/2
gk cos(ωkt)

[
Q1(0)ei

kr
2 +Q2(0)e−i

kr
2

]
. (6.57)

The specific form of Πk,hom(t) can be derived from the following requirements. First, it
has to coincide with the Schrödinger momenta Πk for t = 0 since the inhomogeneous
part of the Heisenberg momenta then vanishes. Second, it has to oscillate with the
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frequency ωk since it has to obey the same time dependence as φk,hom(t). Expressing
the homogeneous field operators in terms of creation and annihilation operators leads
to

φk,hom(t) =
1√
2ωk

(ake
−iωkt + a†−ke

iωkt) (6.58)

Πk,hom(t) = −i
√
ωk
2

(ake
−iωkt − a†−ke

iωkt) . (6.59)

The first terms on the right hand sides of equations (6.55) and (6.56) correspond
to classical stochastic forces acting on the oscillators. The nonlocal memory terms
contain the back-reaction of the oscillators on the bath and a bath-mediated retarded
interaction which couples the oscillators to each other.

Before we state the formal solution of the quantum Langevin equations, we want
to show that an equivalent set of integro–differential equations can be derived if
one considers a bilinear coupling between the system oscillators and the position
variables of the environmental field. This can be achieved by applying the canonical
transformation φk → −Π̃−k/ωk and Πk → φ̃−k ωk to the Hamiltonian (6.44). In
the case of a one–dimensional setup, we find exactly the Hamiltonian which was
presented in [154]. However, the counterterms (6.48) had to be assumed there in
order to avoid a direct coupling of the oscillators. In contrast, the appearance of
those terms is now justified by the field theoretic model (6.34).

The resulting equations of motion read, after the canonical transformation,

Q̈1(t) + Ω2
0Q1(t) =

1

V1/2

∑
k

gkωkφ̃k,hom(t)ei
kr
2 (6.60)

− 1

V
∑

k

g2
k

d

dt

∫ t

0

ds cos(ωk(t− s))
(
Q1(s) + eikrQ2(s)

)
and

Q̈2(t) + Ω2
0Q2(t) =

1

V1/2

∑
k

gkωkφ̃k,hom(t)e−i
kr
2 (6.61)

− 1

V
∑

k

g2
k

d

dt

∫ t

0

ds cos(ωk(t− s))
(
e−ikrQ1(s) +Q2(s)

)
,

where the homogeneous fields φ̃k,hom(t) and their corresponding momenta are given
by expressions (6.58) and (6.59). Inverting the canonical transformation, φ̃k,hom(t)→
Π̃−k,hom(t)/ωk, shows the equivalence to (6.55) and (6.56).

The quantum Langevin equations can be written in matrix form, i.e.

Ṙ(t) + ZR(t) +
d

dt

∫ t

0

dsC(t− s)R(s) = B(t) , (6.62)
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where R = (Q1, Q2, P1, P2), B = (0, 0, B(r/2, t), B(−r/2, t)). The matrices are
defined as

Z =


0 0 −1 0
0 0 0 −1

Ω2
0 0 0 0

0 Ω2
0 0 0

 , C(t) =


0 0 0 0
0 0 0 0

C(t, 0) C(t, r) 0 0
C(t, r) C(t, 0) 0 0

 , (6.63)

with

B(r/2, t) =
1

V1/2

∑
k

gkΠk,hom(t)e−i
kr
2 (6.64)

and

C(t, r) =
1

V
∑

k

g2
k cos(ωkt)e

ikr . (6.65)

Then, the solution R(t) of equation (6.62) for initial R(0) and inhomogeneity B(t) is

R(t) = G(t)R(0) +

∫ t

0

dsG(t− s)B(s) , (6.66)

where the Green’s function G(t) solves the homogeneous part of equation (6.62).
Assuming that at t = 0 the total state factorizes in an initial oscillator state ρsys

and a thermal state ρbath for the environment, the time evolution of the covariance
matrix reads

Cov(t) = G(t)Cov(0)G†(t) +

∫ t

0

ds

∫ t

0

ds′G(t− s)K(s− s′)G(t− s′)† . (6.67)

The matrix K(t) contains the bath correlators and has the nonvanishing entries
K34(t) = K43(t) = K(r, t) and K33(t) = K44(t) = K(0, t) which read, in the three–
dimensional setting,

K(r, t) = 〈{B(r/2, t), B(−r/2, 0)}〉ρbath
. (6.68)

In order to derive the model in one dimension, the quantization volume V has to be
replaced by a quantization length L and gk → hk in all foregoing equations.

The explicit form of C(t, r) and K(r, t) for one and three dimensions will be derived
using the one–dimensional spectral density

J1D(ω) =
1

2L
∑
k>0

h2
kδ(ω − ωk)ωk . (6.69)
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The hk can be related to the gk by demanding that the overall coupling strength
between oscillators and the field is the same, i.e.

1

V
∑

k

g2
k =

1

L
∑
k

h2
k . (6.70)

Assuming that gk ∝ Θ(k − Ωc) and hk ∝ Θ(k − Ωc), we find

g2
k ≈

6π

Ω2
c

h2
k , (6.71)

where the sums have been replaced by integrals according to∑
k

→ L
2π

∫
dk and

∑
k

→ V
(2π)3

∫
d3k . (6.72)

From here follow the bath correlators

K(r, t) =

{
4
∫∞

0
dωJ1D(ω) cos(ωr) cos(ωt) coth

(
ω

2T

)
for D=1

4
∫∞

0
dωJ3D(ω) sin(ωr)

ωr
cos(ωt) coth

(
ω

2T

)
for D=3 ,

with J3D(ω) = 3J1D(ω)
(
ω
Ωc

)2

. The damping kernels have the form

C(r, t) =

{
4
∫∞

0
dωJ1D(ω) cos(ωr) cos(ωt) for D=1

4
∫∞

0
dω J3D(ω)

ω
sin(r)
ωr

cos(ωt) for D=3 .

For a heat bath without boundary conditions we define the spectral density to be

J1D(ω) =
1

2L
∑
k>0

h2
kδ(ω − ωk)ωk ≡

2γ

π
ω

(
ω

Ωc

)s−1

e−
ω
Ωc , (6.73)

where γ is the coupling strength with dimension of a mass and s is the spectral
index.
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Figure 6.1: The generation of entanglement via a three–dimensional heat bath depends
strongly on the distance. If the spatial separation exceeds a critical distance, the generated
entanglement vanishes. We chose the parameters to be Ωc = 10 Ω0, γ = Ω0, and s = 1.
Initially, the system oscillators are in the ground state.

After applying numerical methods [155] one obtains the temporal evolution of entan-
glement. In fig. 6.1 we show the entanglement generation for a three–dimensional
heat bath. The generated entanglement vanishes above a critical distance, i.e. entan-
glement generation via a bosonic heat bath is only viable for small spatial separations
of the oscillators. For infinite times one observes below a critical distance nonva-
nishing asymptotic entanglement. In fig. 6.2 we depict the cutoff dependence of
the critical distance where the heat bath is chosen to be one–dimensional. The
critical distance decreases with increasing cutoff Ωc which is usually of the order
of the inverse size of the quantum systems. Since, when the Ωc increases, more
environmental modes contribute to decoherence and dissipation, the decrease of the
critical distance is not surprising.

The appeareance of a critical distance which is roughly of the order of the inverse
cutoff shows up in all numerical simulations. Thus, it seems to be very difficult to
establish entanglement when the separation of the spins is larger than the inverse
cutoff frequency 1/Ωc.

However, as we will show in the following, the generation of entanglement can be
enhanced significantly if the bath is subject to nontrivial boundary conditions.
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Figure 6.2: The critical distance of the asymptotic entanglement is roughly inverse propor-
tional to the cutoff. We chose spectral index to be s = 1.

Van Hove Singularities

It has been shown by van Hove [156] that the spectral density of phonons in a crystal
has analytic singularities. The nature of these singularities depends on the spatial
geometry in determines the boundary conditions of the phonon bath.

As illustration, consider photons which are confined between two plates parallel
to the x − y-plane. Due to the finite distance d between the plates, the standing
wave-vectors are of the form k = kxex + kyey + (2πn/d)ez. In contrast to kx and ky
which can adopt all possible values, kz = 2πn/d can only adopt discrete values. This
translates into singularities in the spectral density. For simplicity we assume that
there is only a single van Hove singularity at frequency ω0 which is determined by the
largest possible wavelength. If the system is two–dimensional, the spectral density
exhibits a logarithmic divergence around a frequency ω0, whereas a one–dimensional
system has a singularity of the form 1/

√
ω2 − ω2

0.
We will show that these special spectral densities lead to an enhancement of

entanglement compared to bath modes that are not subject to boundary conditions.
A one–dimensional system can be established if the environmental modes are

trapped in a long hollow tube, whose diameter determines the position of the peak.
We derive the one–dimensional van Hove spectral density from the continuum limit
of the three–dimensional correlator C(0, 0), that is

C(0, 0) =
6

Ω2
c

∫ ∞
0

dω ωJ(ω) =
4π

(2π)3

∫ ∞
0

dkk2g2
k. (6.74)

Now we impose boundary conditions on the bath modes. In the case of a hollow tube
with length L and a quadratic cross section with side length a, we have V = a2L.
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We can decompose the vector k into the components

k = kLeL + kxex + kyey . (6.75)

So we can write

C(0, 0) =
1

(2π)3
lim

kmax→∞

∫ kmax

−kmax

dkL

∫ kL

−kL
dkx

∫ √k2
L−k2

x

−
√
k2
L−k2

x

dkyg
2
k . (6.76)

Changing the integration variable kL to k =
√
k2
L + k2

x + k2
y, we find

C(0, 0) =
1

(2π)3
lim

kmax→∞

∫ kmax

−kmax

dk

∫ k

−k
dkx

∫ √k2−k2
x

−
√
k2−k2

x

dkykg
2
k√

k2 − k2
x − k2

y

. (6.77)

It is obvious that the expression (6.77) is equal to (6.74) in the limit of infinite a.
However, due to the boundary conditions we have to replace the integral over kx and
ky by a discrete sums,

C(0, 0) =
1

2πa2
lim

kmax→∞

∫ kmax

−kmax

dk

σk∑
−σk≤nx

√
σ2
k−n2

x∑
−
√
σ2
k−n2

x≤ny

g2
kΘ(1− (nx

σk
)2 − (ny

σk
)2)√

1− (nx
σk

)2 − (ny
σk

)2
(6.78)

with σk = ka/(2π). Assuming that, at low temperatures, only the first peak is
important and comparing with (6.3.1), we find

CvH(0, 0) =
6

Ω2
c

∫ ∞
0

dω ωJvH(ω) , (6.79)

with

JvH(ω) =
1

L
∑
k>ω0

ω2
0√

k2 − ω2
0

h2
kδ(ω − k)

=
2γ

π
Θ(ω − ω0)

ω2
0√

ω2 − ω2
0

(
ω

Ωc

)s−1

e−
ω
Ωc , (6.80)

where we used ωk = k, ω0 = 2π/a and absorbed constant factors of O(1) in
the coupling strength γ. The spectral density (6.80) vanishes for ω < ω0 and a
significant fraction of the spectral weight is concentrated in the small region given
by ω0 < ω < ω0 + δω.
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6.3.2 The Generic Toy Model

Due to the occurrence of a van Hove singularity in the spectral density (6.80) of an
effectively one–dimensional system, we will obtain in the following an approximate
solution of the model discussed in section 6.3. The tube model starting from the
three–dimensional setup will be discussed in section 6.3.3.

In one dimension we can decompose the Hamiltonian (6.44) with respect to
symmetric and antisymmetric modes of the environment and the system oscillators.
Replacing hk → hk/2 and using the variables

QS =
(Q1 +Q2)√

2
, PS =

(P1 + P2)√
2

, (6.81)

QA =
(Q1 −Q2)√

2
, PS =

(P1 − P2)√
2

, (6.82)

qk,S =
φk + φ−k√

2
, pk,S =

Πk + Π−k√
2

, (6.83)

qk,A = i
φk − φ−k√

2
, pk,A = −iΠk − Π−k√

2
, (6.84)

we find the Hamiltonian

H = Hsys +
∑
k>0

(Hbath,k +Hint,k +Hcount,k) , (6.85)

with

Hsys =
1

2

(
P 2
S + Ω2

0Q
2
S + P 2

A + Ω2
0Q

2
A

)
, (6.86)

Hcount,k =
h2
k

2L cos2

(
kr

2

)
Q2
S +

h2
k

2L sin2

(
kr

2

)
Q2
A , (6.87)

Hbath,k =
1

2

(
p2
k,S + ω2

kq
2
k,S + p2

k,A + ω2
kq

2
k,A

)
, (6.88)

Hint,k = − hk
L1/2

cos

(
kr

2

)
pk,SQS − hk

L1/2
sin

(
kr

2

)
pk,AQA . (6.89)

We assume that the modes within the spectral peak can be approximated by two
harmonic oscillators with frequency ω0, one representing the symmetric modes within
the peak and the other representing the antisymmetric ones. The justification for
this approximation is as follows: the modes within the van Hove peak of the spectral
density (6.80) are oscillating coherently at least for times t < 1/δω and distances
r < 1/δω, where δω denotes the width of the peak. Therefore a substitution of
those coherently oscillating modes with harmonic oscillators is viable within this
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regime. For larger times and distances, the modes will oscillate incoherently and,
consequently, the approximation is expected to break down.

The coupling oscillator representing the symmetric modes of the peak has the
canonical variables qω0,S and pω0,S and couples to QS, whereas the coupling oscillator
representing the antisymmetric modes of the peak has the canonical variables qω0,A

and pω0,A and couples to QA. For the moment we consider gω0 to be independent
from the spectral density. A relation between the two will be established in the
course of the discussion of the tube model in section (6.3.3).

Since we treat the coupling oscillators separately, the Hamiltonian now reads

H = H0,S +H0,A +
∑

k>0,k 6=peak

(Hbath,k +Hint,k) , (6.90)

with

H0,S =
1

2

(
P 2
S + Ω2

SQ
2
S

)− gω0 cos
(ω0r

2

)
pω0,SQS

+
1

2

(
p2
ω0,S

+ ω0
2q2
ω0,S

)
(6.91)

H0,A =
1

2

(
P 2
A + Ω2

AQ
2
A

)− gω0 sin
(ω0r

2

)
pω0,AQA

+
1

2

(
p2
ω0,A

+ ω0
2q2
ω0,A

)
.

Absorbing the counterterms, the frequencies of the symmetric and the antisymmetric
mode of the system oscillators are renormalized according to

ΩS =

√
Ω2

0 +
1

L
∑
k>0

h2
k cos2

(
kr

2

)
(6.92)

ΩA =

√
Ω2

0 +
1

L
∑
k>0

h2
k sin2

(
kr

2

)
. (6.93)

The interaction between the system oscillators and the peak oscillators will be treated
exactly, whereas the interaction between the bath modes and the system oscillators
will be covered by a master equation [21, 120]. Restricting ourselves to a second–order
master equation, we find that the evolution for the symmetric and antisymmetric
modes are decoupled from each other. We conclude that the reduced density matrix
is of the form

ρsys = ρA ⊗ ρS , (6.94)

where the index S refers to the symmetric modes and the index A to the antisymmetric
ones. Since the calculation of ρS and ρA is completely analog, we will suppress the
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indices. In order to diagonalize H0 we introduce the canonical variables

P̄1 =
P + ξω0qω0√

1 + ξ2
,

P̄2 =
Ω̄2(pω0 + ξω0Q)

ω0

√
1 + ξ2

,

Q̄1 =
ω0Q− ξpω0

ω0

√
1 + ξ2

,

Q̄2 =
ω0qω0 − ξP
Ω̄2

√
1 + ξ2

. (6.95)

The part of the Hamiltonian corresponding to the free evolution of system- and
peak-oscillators has the diagonal form

H0 =
∑
i=1,2

1

2

(
P̄ 2
i + Ω̄2

i Q̄
2
i

)
. (6.96)

The mixing-parameter ξ is given by

ξ =
1

2ĝω0

(
ω2

0 − Ω2 − ĝ2 +
√

(Ω2 + ĝ2 − ω2
0)2 + 4ĝ2ω2

0

)
, (6.97)

and the eigenmodes read

Ω̄1 =

√
1

2

(
Ω2 + ĝ2 + ω2

0 +
√

(Ω2 + ĝ2 − ω2
0)2 + 4ĝ2ω2

0

)
,

Ω̄2 =

√
1

2

(
Ω2 + ĝ2 + ω2

0 −
√

(Ω2 + ĝ2 − ω2
0)2 + 4ĝ2ω2

0

)
.

In this context, the coupling ĝ denotes gω0 cos(ω0r/2) for the symmetric mode and
gω0 sin(ω0r/2) for the antisymmetric mode, respectively.

Since we want to find an analytic approximation of the model, we treat the system–
bath–interaction within a Born–Markov–approximation. The evolution equation of
the reduced density matrix including the evolution of the two system oscillators and
the peak oscillators reads

ρ̇ = −i[H0, ρ]−
∫ ∞

0

dt ν(t, r)[Q, [Q(−t), ρ]]

+i

∫ ∞
0

dt µ(t, r)[Q, {Q(−t), ρ}] , (6.98)
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with the real functions ν and µ defined by

ν − iµ =
1

L
∑
k>0

h2
kf(ωk)〈pkpk(−t)〉

=
1

2

∫ ∞
0

dωJ(ω)f(ω)
(

coth
( ω

2T

)
cos(ωt)− i sin(ωt)

)
, (6.99)

where the spectral density, J(ω), is defined in equation (6.69) Furthermore the
function f reads f(ωk) = cos2(ωkr/2) for the symmetric bath modes and f(ωk) =
sin2(ωkr/2) for the antisymmetric ones, respectively. The first term on the right
hand side of equation (6.98) describes the unitary evolution and is mainly responsible
for the entanglement of the two system oscillators. The second and third term are
dissipative contributions to the dynamics due to system–environment interaction.
Note, that the system has been enlarged and includes the peak oscillators as well.

We restrict ourselves to Gaussian density matrices and work with a method for
solving the differential equation (6.98) that has been used by Unruh and Zurek [29].
We transform the density matrix into the “k −∆”-representation according to

ρ̃(k,∆) = tr

(
ρ̂e

i
“
k ˆ̄Q+∆ˆ̄P

”)
, (6.100)

with the vectors k = (k1, k2), ∆ = (∆1,∆2),
ˆ̄Q = ( ˆ̄Q1,

ˆ̄Q2) and ˆ̄P = ( ˆ̄P1,
ˆ̄P2). This

representation is related to the Wigner–distribution via a double Fourier transforma-
tion and has, in position representation, the form

ρ̃(k,∆) =

∫
dx1dx2e

ikxρ

(
x +

∆

2
,x− ∆

2

)
, (6.101)

where x = (x1, x2). The xi label the diagonal elements of the density matrix and the
∆i determine the distance between diagonal and off–diagonal elements.

Using this particular representation we find that the master equation is linear
in the derivatives with respect to ki and ∆i, whereas it would be quadratic in the
derivatives with respect to the Qi’s. Although both representations are equivalent,
the former makes it much easier to solve the differential equations.

With a Gaussian ansatz for the density matrix ρ(k,∆), we end up with a linear
first order system of differential equations, which are given explicitly in the appendix
(see (8.15 – 8.28)). The coefficients of the linear first order system (8.15 – 8.28)
involve four different system–bath correlators αi that depend on the energies Ω̄1/2,
the distance r and the spectral density J(ω).

Although the exact model exhibits a frequency gap, we assume J(ω) to be nonvan-
ishing for all frequencies and given by the expression (6.3.1). Note, that the spectral
density (6.3.1) follows from adding all van Hove–peaks and taking the limit ω0 → 0.
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In the exact model, the spectral weight of all modes ω < ω0 is exactly zero, whereas,
according to (6.3.1), we assume the spectral weight to be proportional to ωs, which
is valid if the spectral weight is negligible for ω0 � Ωc.

Before presenting our results, we comment on the physical interpretation of the
bath correlators which is the same as in the Caldeira–Leggett model [21]. The
system–bath correlator α1 determines the decoherence rate and therefore the decay
of interference terms. After singling out the α1 term, the master equation reads in
position basis

ρ̇(Q,Q′) = −α1(Q−Q′)2ρ(Q,Q′) . (6.102)

The solution of (6.102) describes spatial localization of the oscillators, i.e.

ρ(Q,Q′) ∝ exp(−α1(Q−Q′)2t) , (6.103)

which allows us to interpret α1(Q−Q′)2 as a decoherence rate. In Wigner represen-
tation, equation (6.102) has the form of a diffusion equation,

∂

∂t
W (Q,P, t) = α1

∂2

∂P 2
W (Q,P, t) . (6.104)

Thus, α1 is also known as the normal–diffusion coefficient. The correlator α2 is called
anomalous-diffusion coefficient, since its contribution to the master equation, i.e.

∂

∂t
W (X,P, t) = −α2

∂

∂P

∂

∂X
W (X,P, t) , (6.105)

involves a mixed partial derivative. The correlator α3 describes the Lamb shift
and can therefore be added to the oscillator frequencies. Finally, α4 determines
dissipation due to the system–environment interaction, which leads to an exponential
damping of the oscillator momenta,

〈P 〉(t) ∝ e−2α4t〈P 〉(0). (6.106)

Explicit expressions for the correlators are given in chapter 8 (see equations (8.64) –
(8.71)). Note that α1 and α4 depend only on the value of the spectral density at the
oscillator frequencies Ω̄1/2.

In order to find explicit analytical solutions we need to decouple the system of
differential equations. Since the dissipative part of equation (6.98) consists of sixteen
different double commutators involving also higher order couplings between Q̄1/2 and
P̄1/2 (see equation (8.3)), this cannot be done analytically. Neglecting terms O(ξ) in
the dissipative part of equation (8.3) will remove the higher order couplings and we
are left with the usual four double commutators known from the Caldeira-Leggett
model. In this approximation we are able to decouple the system of differential
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equations (8.15) – (8.28) analytically. The expectation values of the anticommutators,
and therefore the negativity, can be expressed in terms of the solutions ci(t) of the
differential equations, see equations (8.29) – (8.38).

We chose the system- and peak oscillators to be initially in a Gaussian state of
the form

ρ =

√
ab

2π
exp

(
−q

2
ω0
a

2
− Q2b

2

)
, (6.107)

with the squeezing parameters a and b determining initial energies of the oscillators
to be

Eqω0
=
a2 + ω2

0

4a
(6.108)

EQ =
b2 + Ω2

0

4b
. (6.109)

Only for a = ω0 and b = Ω0 the respective oscillators are in the ground state,
otherwise they are in a superposition of (infinitely many) eigenstates.

From the approximate solutions, see (8.41) – (8.63), we find that the damping
of the eigenmodes is solely determined by the dissipation-correlator α4. The Lamb
shift related to α3 modifies the eigenmodes Ω̄1/2. We found that, for small and
intermediate times, the analytical expressions coincide very well with the numerical
solutions found for the ci(t) from equations (8.15) – (8.28). However, the analytic
solutions do not exhibit a damping of the peak oscillators which prevents us from
defining a suitable asymptotic state in this case. Nevertheless, in section 6.3.2, we
will give an analytic expression for the asymptotic entanglement which agrees, for
small dissipative couplings γ, very well with the asymptotics obtained from the
numerical solutions of equations (8.15) – (8.28).

Generation of Entanglement

In the following, we present the dependence of entanglement generation on the
various model parameters. Although it is possible to give an approximate analytical
formula for the entanglement using the solutions (8.41) – (8.63), it is a very lengthy
expression which is difficult to interpret. Therefore, we elucidate the dependence of
the entanglement generation by plotting the logarithmic negativity E for different
sets of parameters. We will measure all quantities in units of the bare oscillator
frequency Ω0. For now, we consider couplings γ and gω0 to be independent from each
other.

The starting point of the discussion is the dependence of the entanglement genera-
tion on the dissipative coupling γ for various initial states. Since we consider low
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temperatures, it is sufficient to choose the initial state of the peak oscillators to be
the ground state, i.e. a = ω0. If the system oscillators are prepared in their ground
states, too, they have to evolve into an excited state in order to become entangled.
In other words, the coupling to the bath changes the ground state of system and
environment such that the system oscillators become excited. This effect is obviously
only of order g2

ω0
. In fig. 4.11, we plotted the entanglement evolution in time for

different dissipative couplings γ and spectral parameters s = 1 and s = 3. The
damping of the logarithmic negativity increases with growing dissipative coupling
strength γ. The decay rate of the entanglement is at least min[α4,S, α4,A], which can
be deduced from the analytical solutions (8.41) – (8.63).

One can enhance the generation of entanglement if the system oscillators are
initially prepared in a squeezed state, b 6= Ω0, which has energy greater than Ω0,
see equation (6.109). Thus they can release energy to the bath and evolve into an
entangled state with lower energy. We depicted the entanglement generation for the
squeezing parameters b = 2 Ω0 and b = 10 Ω0 in fig. 6.4 and 6.5. Compared to the
case where the system oscillators were initially prepared in the ground state, the
amount of generated entanglement increases by one and two orders of magnitude for
the choices b = 2 Ω0 and b = 10 Ω0, respectively. Since the spectral density (6.3.1)
contains a factor 1/Ωs−1

c , the dissipation rate α4 decreases with growing s which
results in a weaker damping of the logarithmic negativity.

Entanglement can also be enhanced by increasing the coupling constant gω0 .
Choosing b = 10 Ω0, we find that, for gω0 = 0.1 Ω0, the maximal negativity is
Emax ≈ 0.8, whereas for gω0 = Ω0 we have Emax ≈ 2 (see fig. 6.6). In addition, the
frequencies of the enveloping oscillations increase significantly with gω0 .

Next, we consider the influence of shifting the peak oscillator frequency ω0 on
the entanglement generation. In the limit γ = 0, any background effects due to
dissipation effects are suppressed, see fig. 6.7. The entanglement is generated
solely by the interaction with the peak oscillators. Although the maximal possible
entanglement is not affected by the shift of ω0, the negativity increases more slowly
for large shifts. The periods of the enveloping oscillations of the negativity are
increasing with |Ω0 − ω0|. Only if the system and peak oscillators are approximately
in resonance, the negativity adopts a significant value after a short time.

For a nonvanishing dissipative coupling, one observes even in the limit of vanishing
oscillator–peak coupling, that is gω0 → 0, the generation of a small amount of entan-
glement. This “background” effect is due to the dissipative effects: the symmetric
mode and the antisymmetric mode are decaying on different time scales, which leads
to entanglement of the system oscillators. In the first plot of fig. 6.8, we shifted the
peak frequency ω0 away from Ω0, which results in a decrease of the negativity and a
suppression of the oscillations. The remaining entanglement for frequencies ω0 that
are shifted far away from Ω0 is solely due to the dissipative coupling. In the second
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plot of fig. 6.8, we compared a large shift of ω0 with vanishing coupling gω0 . From
this plot it can be deduced that the entanglement due to the coupling constant gω0

is vanishing for gω0 → 0 as well as for |ω0 − Ω0| → ∞. The remaining entanglement,
however, is generated by the dissipative coupling γ and has at least a decay rate
equal to min[α4,S, α4,A].

The generated entanglement decreases with increasing temperature since thermally
excited bath modes contribute to the decoherence process. For the chosen parameters
in fig. 6.9, the negativity depends only weakly on the temperature for T < 0.2 Ω0.

Increasing the cutoff Ωc lowers the generated entanglement, since also modes with
small wavelengths contribute to the decoherence process, see fig. 6.10. It is well
known that high–frequency modes are able to destroy coherences much faster than
modes with low frequencies.

Here we treat the dissipative coupling strength γ and the coupling constant gω0

to be independent from the distance r. Hence the logarithmic negativity will not
decrease with growing r. Due to the distance dependence of the bath correlators
αi and the couplings gω0,S = gω0 cos(ω0r/2) and gω0,A = gω0 sin(ω0r/2), we observe
oscillations in the r–direction (see fig. 6.12) with a period π/ω0. A special case
is the limit r → 0, where only the symmetric mode of the system oscillators is
decaying. In contrast, the antisymmetric mode is not damped, since α4,A(r = 0) = 0.
The environment is not able to resolve zero distance between the oscillators and
the system does not thermalize, see fig. 6.11. In other words, vanishing distance
leads to direct interaction between the oscillators which in turn leads inevitably to
entanglement.
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Figure 6.3: Since the system oscillators are initially prepared in their ground states, the
amount of generated entanglement is small. We considered the spectral indices s = 1,
which describes an ohmic bath, and s = 3, which refers to an electromagnetic field. The
remaining parameters are gω0 = 0.1 Ω0, T = 0.01 Ω0, Ωc = 10 Ω0, ω0 = Ω0, r = 1/Ω0, and
a = ω0.
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Figure 6.4: The initial preparation of the system oscillators in a squeezed state with the
squeezing parameter b = 2 Ω0 enhances the generation of entanglement by one order of
magnitude compared to the case considered in fig. 6.3. The remaining parameters are
gω0 = 0.1,Ω0, T = 0.01 Ω0, Ωc = 10 Ω0, ω0 = Ω0, r = 1/Ω0, and a = ω0.
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Figure 6.5: The initial preparation of the system oscillators in a squeezed state with the
squeezing parameter b = 10 enhances the generation of entanglement by two orders of
magnitude compared to the case considered in fig. 6.3. The remaining parameters are
gω0 = 0.1 Ω0, T = 0.01 Ω0, Ωc = 10 Ω0, ω0 = Ω0, r = 1/Ω0, and a = ω0.
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Dependence of the entanglement on the coupling constant gω0

gω0 = 0.1 Ω0
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gω0 = Ω0

Figure 6.6: The maximal entanglement as well as the frequencies of the enveloping oscilla-
tions increase for growing gω0 . The remaining parameters are γ = 0.01 Ω0, T = 0.01 Ω0,
Ωc = 10 Ω0, ω0 = Ω0, r = 1/Ω0, s = 1, a = ω0, and b = 10 Ω0.
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Figure 6.7: We depict the generation of entanglement for γ = 0 and different values of ω0.
Since, for γ = 0, the system evolves unitarily, the maximum value of E is not affected by
the choice of ω0. In contrast, the frequency of the enveloping oscillations decreases with
growing ω0. The remaining parameters are γ = 0.01 Ω0, T = 0.01 Ω0, Ωc = 10 Ω0, ω0 = Ω0,
r = 1/Ω0, s = 1, a = ω0, and b = 10 Ω0.
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“Background” entanglement due to dissipative damping
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Figure 6.8: We depict, in the upper plot, the generation of entanglement for γ = 0.01 Ω0

and different frequencies ω0. The generated entanglement adopts its maximum value if
the peak oscillators and the system oscillators are in resonance and decreases with the
increasing shift of ω0. In contrast to the case of γ = 0 (see fig. 6.7), we have nonvanishing
entanglement for finite times in the limit ω0 → ∞. Since the symmetric mode and the
antisymmetric mode of the system oscillators are decaying at different rates (α4,S 6= α4,A),
some entanglement is induced solely by the dissipative effects. As can be seen in the lower
plot, the generated entanglement for large ω0 approaches the “background” entanglement
which can be obtained for gω0 → 0. The remaining parameters are T = 0.01 Ω0, Ωc = 10 Ω0,
ω0 = Ω0, r = 1/Ω0, s = 1, a = ω0, and b = 10 Ω0. In the upper plot we chose gω0 = Ω0.
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Figure 6.9: Since the decoherence rate increases with growing temperature, the generated
entanglement decreases. Note that the temperature dependence of the entanglement is
weak for T < 0.2 Ω0. The remaining parameters are gω0 = 0.1 Ω0, γ = 0.01 Ω0, Ωc = 10 Ω0,
ω0 = 1.1 Ω0, r = 1/Ω0, s = 1, a = ω0, and b = 2 Ω0.
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Figure 6.10: The generated negativity is lowered if the cutoff Ωc increases, since environ-
mental modes with large frequencies contribute to the decoherence process. The remaining
parameters are T = 0.01 Ω0, gω0 = 0.1 Ω0, γ = 0.01 Ω0, ω0 = 1.1 Ω0, r = 1/Ω0, s = 1,
a = ω0, and b = 2 Ω0.
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Entanglement in the limit of vanishing distance
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Figure 6.11: We plot the generation of entanglement in the limit r = 0 for an initial
squeezing of b = 2 and b = 10. Since the antisymmetric mode is not decaying, the system
does not thermalize and the negativity is oscillating around a nonzero value. The remaining
parameters are T = 0.01 Ω0, gω0 = 0.1 Ω0, γ = 0.01 Ω0, Ωc = 10 Ω0, ω0 = 1.1 Ω0, s = 1, and
a = ω0.

Asymptotic Entanglement

The exact asymptotic entanglement is given by the thermal expectation value of
the covariance matrix with respect to the Hamiltonian (6.44). This is clearly not
computable in an analytic way due the the bilinear system–bath interaction.

An approximate asymptotic state of the oscillators can be determined from the
inhomogeneous parts of the differential equations (8.15) – (8.28), since the homoge-
neous parts of the solutions become damped due to dissipative effects and vanish
in the limit t→∞. Note that the inhomogeneous parts, and thus the asymptotic
state, do not depend on the initial conditions.

However, it is necessary to retain all higher order couplings of the master equation.
In contrast, neglecting the terms O(γξ) in equations (8.15) – (8.28) would not lead to
an asymptotically time–independent state since the peak oscillators remain undamped.
In other words, the dissipative couplings O(γξ), which have been neglected in order
to obtain the analytical solutions (8.41) – (8.63), are necessary for the thermalization
of the peak oscillators.
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Figure 6.12: We depict the generation of entanglement for different values of ω0. Due to
the distance dependence of the couplings gω0,S/A, one observes oscillations in r–direction.
We chose the parameters to be Ωc = 5 Ω0, T = 0.01 Ω0, ω0 = Ω0, a = ω0, b = 5 Ω0 and
s = 1.
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We find that the lowest order of the asymptotic state is independent of the cou-
pling strength γ since it involves only ratios of the bath correlators αi. Thus, the
approximate asymptotic state is of the form

|Ψasym〉 = |ψ(γ0)〉+ |ψ(O(γ1))〉 . (6.110)

For small dissipative couplings, say γ → 0, it is possible to obtain a simple analytic
expression for the asymptotic logarithmic negativity. Therefore, we assume that
the system oscillators as well as the peak oscillators thermalize for infinite times.
Computing the thermal expectation value of the covariance matrix with respect to
the Hamiltonian H0 = H0,S + H0,A, whose parts are defined in (6.91) and (6.92),
leads to the logarithmic negativity

Easym = − log2 (min [1, λ1])− log2 (min [1, λ2]) , (6.111)

where the symplectic eigenvalues are given by

λ2
1 =

1

1 + ξ2
A

[
ξ2
A

Ω̄A,2

coth

(
Ω̄A,2

2T

)
+

1

Ω̄A,1

coth

(
Ω̄A,1

2T

)]
× 1

1 + ξ2
S

[
Ω̄S,1 coth

(
Ω̄S,1

2T

)
+ Ω̄S,2ξ

2
S coth

(
Ω̄S,2

2T

)]
(6.112)

and

λ2
2 =

1

1 + ξ2
S

[
ξ2
S

Ω̄S,2

coth

(
Ω̄S,2

2T

)
+

1

Ω̄S,1

coth

(
Ω̄S,1

2T

)]
× 1

1 + ξ2
A

[
Ω̄A,1 coth

(
Ω̄A,1

2T

)
+ Ω̄A,2ξ

2
A coth

(
Ω̄A,2

2T

)]
. (6.113)

The indices S and A have been reintroduced for the symmetric and antisymmetric
oscillator mode, respectively.

As can be seen from figs. 6.13–6.16, the expression (6.111) coincides with the
negativity found from the inhomogeneous solutions of (8.15) – (8.28) for γ/gω0 � 1.
An increase of γ leads to a growing discrepancy, since the thermal state of four
oscillators is different from the thermal state of a system which consists of four
oscillators and a thermal bath. The master equations are able to resolve this
difference when the dissipative coupling is not too strong.

The entanglement between the oscillators is mainly due to the coupling gω0 which
determines the coupling of the system oscillators to the modes within the van Hove
singularity. In fig. 6.17 we depict the gω0–dependence of the asymptotic entanglement
for various dissipative couplings γ. Depending on γ, the coupling gω0 has to exceed
a minimum critical value such that the asymptotic entanglement is nonvanishing.
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Figure 6.13: The temperature dependence of the asymptotic logarithmic negativity is
shown for a small dissipative coupling, γ = 0.0001 Ω0. We chose various coupling constants
g and found that the curves coincide with the thermal expectation values of the logarithmic
negativity which have been obtained from expression (6.111) and which are depicted as
colored marks. The remaining parameters have been chosen to be Ωc = 3 Ω0, ω0 = Ω0, r = 0,
and s = 1.
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Figure 6.14: Here we chose the larger dissipative coupling γ = 0.001 Ω0. Although
the thermal expectation value is still a good approximation, terms O(γξ) lead to small
corrections. The remaining parameters have been chosen to be Ωc = 3 Ω0, ω0 = Ω0, r = 0,
and s = 1.
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Figure 6.15: Here, we chose γ = 0.01 Ω0; the correction terms from the asymptotics of
equations (8.15 – 8.28) are increasing. The remaining parameters have been chosen to be
Ωc = 3 Ω0, ω0 = Ω0, r = 0, and s = 1.

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

T [Ω0]

E a
sy

m

Asymptotic entanglement for γ = 0.1 Ω0

gω0 = 0.25 Ω0

gω0 = 0.5 Ω0

gω0 = 0.75 Ω0

gω0 = Ω0

Figure 6.16: A large dissipative coupling γ = 0.1 Ω0 leads to large corrections. This is
due to the fact that the size of dissipative terms which have been neglected in equation
6.111 is of the same order of magnitude as the asymptotic entanglement. The remaining
parameters have been chosen to be Ωc = 3 Ω0, ω0 = Ω0, r = 0, and s = 1.
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Figure 6.17: The minimal critical value for g, which is necessary in order to obtain nonvanish-
ing asymptotic entanglement, increases with growing γ. In order to overcome the dissipative
effects, the peak oscillators have to be coupled sufficiently strong to the system oscillators.
The remaining parameters have been chosen to be Ωc = 3 Ω0, ω0 = Ω0, T = 0.01 Ω0, r = 0,
and s = 1.

In general, one can say that the dissipative coupling leads to the localization of the
oscillators which destroys any entanglement. In order to counterbalance this effect,
the coupling gω0 has to be increased sufficiently.

Finally, we consider the distance dependence of the asymptotic entanglement in
the limit of small γ. Since the coupling to the symmetric modes, gS = gω0 cos(ω0r),
and the coupling to the antisymmetric modes, gA = gω0 sin(ω0r), are periodic in
r, the distance dependence of the asymptotic entanglement is oscillating, too. As
can be deduced from fig. 6.18, the characteristic period is π/ω0 since the couplings
appear quadratically in expression (6.111).

So far we have assumed that the bath correlators αi are determined by the spectral
density (6.3.1). Nevertheless, the correct van Hove spectral density (6.80) exhibits
a frequency gap, that is the weight for modes below the van Hove singularity is
exactly equal to zero. This implies that the system oscillators do not thermalize if
their frequencies are located within the gap since the dissipative bath correlator α4

vanishes then. Without a damping of the homogeneous solutions of the differential
equations (8.15) – (8.28), an asymptotic time–independent state does not exist. In
other words, the system oscillators are not able to exchange energy with the bath if
there are no environmental modes that have the same energy as the oscillator modes.
This result was also found via exact numerical simulations.

However, Gaussian states are solely determined by two–point–correlation functions.
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Figure 6.18: The entanglement is oscillating with a characteristic period of π/ω0 if the
distance increases. The remaining parameters have been chosen to be Ωc = 3 Ω0, T =
0.01 Ω0, ω0 = Ω0, r = 0, and s = 1.

It is doubtful whether this idealizing assumption can be met in realistic physical
situations. The van Hove spectral density may adopt nonzero values for modes below
the singularity such that the bath correlator α4 is nonvanishing.

In general, higher order correlation functions describing non–Gaussianities could
lead to a thermalization of the system oscillators. For example, four–point–correlation
functions would involve sums of the form∑

p,q,t

f(ωp, ωq, ωt)δ(ωp + ωq + ωt − Ω̄) , (6.114)

which are nonvanishing even if the oscillator mode Ω̄ is located within the gap.

6.3.3 Entanglement in a Tube

In the preceding sections, we discussed entanglement for a one–dimensional model.
The singling out of two coupling oscillators, a symmetric and an antisymmetric one,
was motivated with van Hove singularities, which have been discussed in section
(6.3.1)

In the following we turn to a more realistic description of entanglement in a
cylindical tube with radius ρ0, i.e. we start from a three-dimensional model. We will
see that the distance dependence of entanglement changes crucially.

Due to the cylindrical symmetry, we have to expand the field φ(x) in eigenfunctions
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of the Laplacian in cylindrical coordinates,

4 =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂ϕ2
+

∂2

∂r2
. (6.115)

The eigenfunctions are determined by the boundary conditions of the field, i.e.
φ(r, ρ0, ϕ) = 0 and φ(r, ρ, ϕ) = φ(r, ρ, ϕ+ 2π). For solving the eigenvalue equation
−4u(x) = ω2u(x), we choose the ansatz

u(x) = u1(ρ)u2(ϕ)u3(r) . (6.116)

We find

u1(ϕ) = eimϕ, m = 0,±1.± 2, ... , (6.117)

u2(r) = eikLr , (6.118)

u3(ρ) = Jm(κmnρ), n = 1, 2, ... , (6.119)

where the Jm are Bessel functions of the first kind and κmn = λmn/ρ0. λmn is
the n-th zero of the function Jm. The eigenvalues of the Laplacian are therefore
ω2
kLmn

= k2
L + κ2

mn. Expanding the scalar field into the eigenfunctions leads with∫
dkL → (2π/L)

∑
kL

to the mode expansion

φ(x) =
1√
πρ2

0L
∑
kL,n,m

1

Jm+1(λmn)
φkL,n,mJm(κmnρ)eikLreimϕ (6.120)

=
∑
kL,n,m

1

Lρ0Jm+1(λmn)
√
ωkLnm

Jm(κmnρ)eikLreimϕakL,n,m + h.c. ,

Π(x) =
1√
πρ2

0L
∑
kL,n,m

1

Jm+1(λmn)
ΠkL,n,mJm(κmnρ)eikLreimϕ (6.121)

= −i
∑
kL,n,m

√
ωkLnm

Lρ0Jm+1(λmn)
Jm(κmnρ)eikLreimϕakL,n,m + h.c. ,

where the normalization is determined through the canonical commutation relation
[φ(x),Π(y)] = iδ(x− y) and the orthonormality of the eigenfunctions,∫

dkL
∑
n,m

1

2π2ρ2
0[Jm+1(λmn)]2

Jm(κmnρ)Jm(κmnρ
′)eim(ϕ−ϕ′)eikL(r−r′)

= δ(ϕ− ϕ′)δ(r − r′)δ(ρ− ρ
′)

ρ′
. (6.122)
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Decomposing into symmetric and antisymmetric oscillator variables leads to

qkL,n,m,S =
φkL,n,m + φ−kL,n,m√

2
,

pkL,n,m,S =
ΠkL,n,m + Π−kL,n,m√

2
,

qkL,n,m,A = i
φkL,n,m − φ−kL,n,m√

2
,

pkL,n,m,A = −iΠkL,n,m − Π−kL,n,m√
2

. (6.123)

With the system oscillator variables (6.81) and (6.82) we find the interaction

Hint = −
∑
kL,m,n

gkLmn√
πρ2

0L

(
pkL,n,m,SQS cos

(
kLr

2

)
+pkL,n,m,AQA sin

(
kLr

2

))
,(6.124)

where the normalization factors have been absorbed in the couplings gkLmn. We will
consider, analogously to the procedure in section 6.3.2, the bath oscillators around
the first van Hove peak as effective coupling oscillator, i.e. {pkL,n=1,m=0,S, kL ≈ 0} →
pω0,S, {pkL,n=1,m=0,A, kL ≈ 0} → pω0,A, and {gkL10/

√
πρ2

0L, kL ≈ 0} → gω0 . The
peak frequency ω0 has the value ω0 = λ01/ρ0 where λ01 = 2.40483 is the smallest
eigenvalue of the cylindrical Laplacian. Singling out the Hamiltonian involving the
system oscillators and the coupling oscillators, we have, analog to equations (6.91)
and (6.92),

H0,S =
1

2

(
P 2
S + Ω2

SQ
2
S

)− gω0pω0,SQS +
1

2

(
p2
ω0,S

+ ω0
2q2
ω0,S

)
, (6.125)

H0,A =
1

2

(
P 2
A + Ω2

AQ
2
A

)
+

1

2

(
p2
ω0,A

+ ω0
2q2
ω0,A

)
, (6.126)

since cos(kLr)|kL≈0 ≈ 1 and sin(kLr)|kL≈0 ≈ 0. The frequencies QS and QA are
renormalized through the counterterm, see below. We see that the entanglement is
generated by the peak oscillator representing the symmetric peak modes, whereas the
coupling oscillator representing the antisymmetric peak modes does not couple to QA

and is therefore only a dummy variable. The Hamiltonian H0,S can be diagonalized
using the variables (6.95) and H0,A already has diagonal form, that is ξA = 0,
Ω̄A,1 = ΩA and Ω̄A,2 = ω0.

For the computation of the bath correlators, we consider only the limit ρ0 →∞,
i.e. the boundary condition vanishes. We assume that this approximation resembles
roughly the summation over all van Hove-singularities. In this limit, we will not
use the variables (6.123) and consider instead the standard mode decomposition in
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a large volume V = L3, where we express the summation in terms of cylindrical
coordinates, i.e. k = (kL, kρ, ϕ) with ω2

k = k2 = k2 = k2
L + k2

ρ. We have

φ(x) =
1

V1/2

∑
k

φke
ikx =

1

V1/2

∑
kL,kρ,ϕ

φ(kL, kρ, ϕ)eikx . (6.127)

Note that the fields φ(kL, kρ, ϕ) do not respect the cylindrical boundary conditions
since we consider only the limit ρ0 →∞. Decomposing the φk and Πk in this limit
into symmetric and antisymmetric combinations leads to

qk,S =
φ(kL, kρ, ϕ) + φ(−kL, kρ, ϕ+ π)√

2
,

pk,S =
Π(kL, kρ, ϕ) + Π(−kL, kρ, ϕ+ π)√

2
,

qk,A = i
φ(kL, kρ, ϕ)− φ(−kL, kρ, ϕ+ π)√

2
,

pk,A = −iΠ(kL, kρ, ϕ)− Π(−kL, kρ, ϕ+ π)√
2

. (6.128)

Using this mode decomposition as well as the variables (6.81) and (6.82), we can
express the Hamiltonian according to

H = Hsys +
∑

kL>0,kρ,ϕ

(Hbath,k +Hint,k +Hcount,k) (6.129)

with

Hsys =
1

2
(P 2

S + Ω2
0Q

2
S + P 2

A + Ω2
0Q

2
A) (6.130)

−gω0pω0,SQS +
1

2

(
p2
ω0,S

+ ω0
2q2
ω0,S

)
+

1

2

(
p2
ω0,A

+ ω0
2q2
ω0,A

)
,

Hcount,k =
g2
k

2V cos2

(
kLr

2

)
Q2
S +

g2
k

2V sin2

(
kLr

2

)
Q2
A , (6.131)

Hbath,k =
1

2
(p2

k,S + ω2
kq

2
k,S + p2

k,A + ω2
kq

2
k,A) (6.132)

Hint,k = − gk
V1/2

cos

(
kLr

2

)
pk,SQS − gk

V1/2
sin

(
kLr

2

)
pk,AQA . (6.133)

The couplings have been replaced according to gk → gk/2. Absorbing the countert-
erms into the system Hamiltonian leads to

Hsys +
∑

kL>0,kρ,ϕ

Hcount,k = H0,S +H0,A , (6.134)
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which defines the renormalized frequencies ΩS and ΩA.
The bath correlators of the evolution equation (6.98) involve mode sums which in

the continuum limit read∑
kL>0,kρ,ϕ

→ V
(2π)3

lim
kmax→∞

∫ 2π

0

dϕ

∫ kmax

0

dkL

∫ √k2
max−k2

L

0

dkρkρ

=
V

(2π)3

∫ ∞
0

dk k

∫ 2π

0

dϕ

∫ k

0

dkρkρ
1√

k2 − k2
ρ

, (6.135)

where k2 = k2
L + k2

ρ. For a finite radius ρ0 the boundary conditions of the tube, the
radial component of the wave vector kρ would only adopt discrete values which are
determined by the diameter of the tube. Thus, we have∑

kL>0,kρ,ϕ

→ V
(2π)3

∫ ∞
0

dkk

∫ 2π

0

dϕ
κmn<k∑
n,m

κmn

ρ0

√
k2 − κ2

mn

. (6.136)

However, in order to find analytical expressions for the energy shifts and bath
correlators we consider, as stated above, only the continuum limit (6.135) and
ρ0 →∞. We find

ΩS/A =

√
Ω2

0 +

∫ ∞
0

dω
J3D(ω)

ω

(
1± sin(ωr)

ωr

)
. (6.137)

The bath correlators read

α1,S/A =

∫ ∞
0

dt νS/A(r, t) cos(Ω̄t) (6.138)

=
1

2

∫ ∞
0

dt

∫ ∞
0

dωJ3D(ω)

(
1± sin(ωr)

ωr

)
coth

( ω
2T

)
cos(ωt) cos(Ω̄t) ,

α2,S/A = −
∫ ∞

0

dt νS/A(r, t)
sin(Ω̄t)

Ω̄
(6.139)

= −1

2

∫ ∞
0

dt

∫ ∞
0

dωJ3D(ω)

(
1± sin(ωr)

ωr

)
coth

( ω
2T

)
cos(ωt)

sin(Ω̄t)

Ω̄
,

α3,S/A = −
∫ ∞

0

dt µS/A(r, t) cos(Ω̄t) (6.140)

= −1

2

∫ ∞
0

dt

∫ ∞
0

dωJ3D(ω)

(
1± sin(ωr)

ωr

)
sin(ωt) cos(Ω̄t) ,

α4,S/A =

∫ ∞
0

dt µS/A(r, t)
sin(Ω̄t)

Ω̄
(6.141)

=
1

2

∫ ∞
0

dt

∫ ∞
0

dωJ3D(ω)

(
1± sin(ωr)

ωr

)
sin(ωt)

sin(Ω̄t)

Ω̄
,
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where the functions µS/A and νS/A are defined by

νS/A =
1

V
∑

kL>0,kρ,ϕ

g2
kfS/A(kL)<〈pk,S/Apk,S/A(−t)〉 (6.142)

µS/A = − 1

V
∑

kL>0,kρ,ϕ

g2
kfS/A(kL)=〈pk,S/Apk,S/A(−t)〉 . (6.143)

with the functions fS(kL) = cos2(kLr/2) for the symmetric bath modes and fA(kL) =
sin2(kLr/2) for the antisymmetric ones, respectively. We chose the spectral density
to be

J3D(ω) =
1

4πL
∑
k>0

g2
kω

3
kδ(ωk − ω) =

2γ

π
ω

(
ω

Ωc

)s−1

e−
ω
Ωc . (6.144)

Analytic expressions of the correlators are given in section 8.3.

Relation to the exact Model

So far we have treated the coupling constant gω0 and the coupling strength γ
independently from each other. However, the peak oscillators are an effective
description of the van Hove-singularity. Therefore, it should be possible to derive a
relation between gω0 and γ. For a tube with finite radius we have, for t = 0

νS(r, 0) =
1

V
∑

kL>0,kR,ϕ

g2
k〈p2

k,S〉

=
1

(2π)3

∫ ∞
0

dk k

∫ 2π

0

dφ

n<k/ω0∑
n>0

g2
k

nω2
0√

k2 − n2ω2
0

×

× cos2

(√
k2 − n2ω2

0 r

)
k

2
coth

(
k

2T

)
=

∫ ∞
0

dω

n<ω/ω0∑
n>0

J3D(ω)

ω

nω2
0√

ω2 − n2ω2
0

×

× cos2

(√
ω2 − n2ω2

0 r

)
coth

( ω
2T

)
. (6.145)

Including only the first van Hove peak in our considerations and confining the
integration to the interval (ω0, ω0 + δω), we find

g2
ω0
〈p2
ω0,S
〉 = g2

ω0

ω0

2
coth

( ω0

2T

)
≈ J3D(ω0)

√
2ω0δω coth

( ω0

2T

)
. (6.146)
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Thus, we have derived an effective coupling constant for the interaction between
system and peak oscillators, gω0 . We know that the modes within the peak will
oscillate coherently for distances r < 1/δω. Inserting this relation into (6.146) leads
to an effective distance dependence of gω0 . Since gω0 would increase indefinitely for
r → 0, we need a natural cutoff for the smallest distance possible. The smallest
distance which the bath modes are able to resolve is given by the inverse cutoff 1/Ωc,
therefore we assume

δω =
1

r + 1
Ωc

(6.147)

and obtain an effectively distance dependent coupling constant,

g2
ω0

(r) ≈ 4
√

2γω0

π

(
ω0

Ωc

)s−1
e−

ω0
Ωc√

ω0r + ω0

Ωc

. (6.148)

In the subsequent sections, we will investigate the distance dependence of entangle-
ment generation using relation (6.148).

Generation of Entanglement

The negativity can now be evaluated for various parameters. Since we are interested
especially in the time– and distance–dependence of the generated entanglement, we
will use density plots in the following discussion.

In contrast to the one–dimensional model that was discussed in section 6.3.2,
the coupling constant gω0 is not periodic in the distance parameter r but rather
decreasing with growing separation of the system oscillators (see equation (6.148)).
Thus, the generated entanglement will always decrease with growing r.

At first, we consider the dependence of negativity on the frequency of the coupling
oscillator representing the symmetric modes within the spectral peak. We see from
fig. 6.19 that the logarithmic negativity is maximal if the coupling oscillator and the
system oscillators are approximately in resonance. For small distances, however, the
value of ω0 is less important.

An important ingredient for generating significant entanglement is the choice of the
initial state. From fig. 6.20 we deduce that the initial state of the system oscillators
should be far away from the ground state. If one chooses the ground state (b = Ω0),
the negativity is only of order γ, since the oscillators tend to stay in the ground state.
The generation of entanglement can be enhanced significantly by choosing a strongly
squeezed state since system oscillators then release energy to the bath and evolve
into an entangled state.

Varying the coupling strength γ shows the following (see fig. 6.21): For small γ,
the generation of entanglement takes longer than for large γ. Since the dissipation
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rate depends on the coupling strength, the damping of the logarithmic negativity
increases with γ.

The last dependence that we consider concerns the spectral index s. Since it
appears in the spectral density (6.144) in the factor (ω/Ωc)

s−1 we have to be careful.
Increasing s by one introduces an additional factor of ω/Ωc diminishes the effective
coupling strength. Thus we will rescale the coupling according to γ → γ(Ωc/Ω0)s−1.
We see in fig. 6.22 that the dependence of the entanglement on the spectral index
is weak. Only for the large spectral index s = 3, the generation of entanglement is
diminished.

We see that, due to the van Hove peak, entanglement can be generated over
distances which are significantly larger that in the model without boundary conditions
(see fig. 6.1).
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6.3 Entanglement of Harmonic Oscillators via a Common Heat Bath

Figure 6.19: We plot the generation of entanglement for different frequencies ω0 of the
coupling oscillator. The maximal value of the negativity decreases with growing |ω0 − Ω0|,
that is the peak oscillator and the system oscillator should be approximately in resonance.
We chose the parameters to be γ = 0.02 Ω0,Ωc = 5 Ω0, T = 0.01 Ω0, b = 5 Ω0, a = ω0, and
s = 1.
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Figure 6.20: We depict the generation of entanglement for different initial states of the
system oscillators. When the system oscillators are initially in the ground state (b = Ω0),
the maximal negativity is of order 0.1 whereas this value increases by an order of magnitude
for initially squeezed states. We chose the parameters to be γ = 0.02 Ω0,Ωc = 5 Ω0, T =
0.01 Ω0, ω0 = Ω0, a = ω0, and s = 1.
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Figure 6.21: Here we show the generation of entanglement for different coupling strengths
γ. For small γ = 0.001 Ω0, the generation of entanglement takes longer than for γ = 0.1 Ω0.
However, the damping of entanglement increases with γ. We chose the parameters to be
b = 5 Ω0,Ωc = 5 Ω0, T = 0.01 Ω0, ω0 = Ω0, a = ω0, and s = 1.
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Figure 6.22: We show the dependence of entanglement generation for different spectral
indices. The coupling strength has been rescaled according to γ → γ(Ωc/Ω0)s−1 and the
parameters are γ = 0.5 Ω0, Ωc = 5 Ω0, T = 0.01 Ω0, and ω0 = Ω0.
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Asymptotic Entanglement

The asymptotic entanglement is given by the inhomogeneous solutions of the differ-
ential equations (8.15) – (8.28), since the homogeneous solutions become damped
due to dissipative effects (see section 6.3.2). Retaining only terms of O(γξ) in the
differential equations (as we did in order to find the approximate solutions 8.41)
– (8.63) does not lead to a time–independent asymptotic state since the coupling
oscillator does not thermalize within this approximation.

For a small coupling strength γ, it is possible to obtain a simple analytical
expression by computing the thermal expectation value of the covariance matrix
with respect to the Hamiltonian H0 = H0,S +H0,A whose parts are defined in (6.91)
and (6.92). The result is

Easym = − log2 (min [1, λ1])− log2 (min [1, λ2]) , (6.149)

where the symplectic eigenvalues are given by

λ2
1 =

1

1 + ξ2

1

ΩA

coth

(
ΩA

2T

)
× (6.150)

×
[
Ω̄1 coth

(
Ω̄1

2T

)
+ Ω̄2ξ

2 coth

(
Ω̄2

2T

)]
and

λ2
2 =

1

1 + ξ2
ΩA coth

(
ΩA

2T

)
× (6.151)

×
[
ξ2

Ω̄2

coth

(
Ω̄2

2T

)
+

1

Ω̄1

coth

(
Ω̄1

2T

)]
.

In order to test expression (6.149), we have to make sure that the dissipative coupling
strength γ is smaller than the peak coupling gω0 . Therefore, we will consider both
parameters to be independent for the moment and ignore relation (6.148). We see
from fig. 6.23 that the asymptotic entanglement given by the inhomogeneous solutions
of (8.15) – (8.28) agrees with (6.149) only for γ/gω0 � 1. For γ/gω0 = O(1), the
corrections due to the dissipative effects become important, although the qualitative
shape of the curves remain unchanged.

In fig. 6.24 we used relation (6.148) and computed the temperature–dependence
of the asymptotic entanglement for different values of γ. Obviously, Easym increases
linearly with γ and is roughly of the same order as the coupling strength. This can be
expected, since for low temperatures the asymptotic thermal state is approximately
equal to the ground state of the total Hamiltonian. The entangled ground state
(given here by the asymptotics of the solutions to the differential equations (8.15) –
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(8.28)) differs from the unentangled ground state of H0,S|γ=0 +H0,A|γ=0 only in order
γ.

We show in fig. 6.25 the dependence of the asymptotic entanglement on the
coupling strength γ. In order to obtain nonvanishing asymptotic entanglement, the
coupling strength has to exceed a critical value that increases with the temperature.

In fig. 6.26 we depicted the cutoff–dependence for different temperatures. The
asymptotic entanglement adopts a maximum value for an intermediate cutoff. From
this intermediate cutoff, Easym decreases with increasing Ωc due to the growth of
dissipation and decoherence. Furthermore, Easym diminishes also with decreasing Ωc,
i.e. for a decreasing number of entanglement–generating environmental modes.

The distance–dependence of the asymptotic entanglement is shown in fig. 6.27.
Clearly, Easym decreases with increasing distance. This becomes also apparent from fig.
6.28 where we plot the citical distance, i.e. the distance above which the asymptotic
entanglement vanishes, for different values of the cutoff and the temperature.
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Figure 6.23: The marks denote the asymptotic entanglement given by the analytic expression
(6.149), whereas the solid line is derived from the asymptotic solutions of (8.15) – (8.28).
We chose the parameters to be Ωc = 5 Ω0, ω0 = Ω0, r = 0, and s = 1.
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Figure 6.24: We depict the asymptotic logarithmic negativity for different values of γ. We
chose the parameters to be Ωc = 5 Ω0, ω0 = Ω0, r = 0, and s = 1.
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Figure 6.25: We plot the asymptotic logarithmic negativity for different values of T . The
minimal value γ where Easym 6= 0 increases with the temperature. The parameters were
chosen to be Ωc = 5 Ω0, ω0 = Ω0, r = 0, and s = 1.
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Figure 6.26: We depict the cutoff–dependence of Easym for different temperatures. The
remaining parameters are γ = 0.5 Ω0, ω0 = Ω0, r = 0, and s = 1.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.02

0.04

0.06

0.08

r[1/Ω0]

E a
sy

m

Distance–dependence of the asymptotic entanglement

T = 0.01 Ω0

T = 0.1 Ω0

T = 0.15 Ω0

T = 0.2 Ω0

T = 0.25 Ω0

Figure 6.27: We depict the distance–dependence of Easym for different temperatures. The
remaining parameters are γ = 0.5 Ω0, ω0 = Ω0,Ωc = 5 Ω0, and s = 1.
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Figure 6.28: We depict the critical distance for different values of the temperature and the
cutoff. The remaining parameters are γ = 0.5 Ω0, ω0 = Ω0, γ = 5 Ω0, and s = 1.

Decoherence Times

The question arises how this oscillator model may be related to a realistic situation,
for instance the entanglement of atomic states.

An example would be the 6S1/2 hyperfine ground states |F = 4,mF = 0〉 and
|F = 3,mF = 0〉 of cesium atoms [157]. The transition energy between these two
states is ωε/2π = 9.2 GHz. An advantage of these hyperfine ground states is the
long coherence time ∼ 200 ms.

Although the transition between |F = 4,mF = 0〉 and |F = 3,mF = 0〉 could be
described by spin dynamics, we want to relate this system to our oscillator model.
Since for low temperatures only the ground state and the first excited state of an
oscillator is significantly populated, we may replace the oscillators with spins via
Q→ (σ+ + σ−)/

√
2Ω0 [153].

Restricting ourselves to the part of the master equation describing decoherence, it
reads

ρ̇ = −α1(Ω0)[Q, [Q, ρ]] . (6.152)

Thus, for low temperatures we have in the rotating wave approximation [120]

ρ̇spin = −α1(Ω0)

2Ω0

([σ+, [σ−, ρspin]] + h.c.) , (6.153)

from which we deduce the decoherence time

td ≈ 2Ω0

α1(Ω0)
. (6.154)
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6.4 Entanglement of Spins via a Common Heat

Bath

So far we haven chosen oscillators in order to study bath mediated entanglement.
The advantage was that the oscillator model inhibited dissipative effects and could
treated exactly up to the numerical solution of the Langevin equations (6.55) and
(6.56).

However, in the original work of Braun [8, 130], the author discussed a dissipa-
tionless spin–boson–model which is known to be exactly solvable [78]. In contrast,
the dissipative spin–boson–model is not exactly solvable, which makes it difficult
to study the influence of dissipation on the generation of entanglement in this case.
Applying the rotating wave approximation to the Hamiltonian will allow us to solve
the dissipative spin–boson–model for a restricted set of initial conditions.

An analogous setup involving only a single spin has been considered by Gar-
raway [158] in the context of atomic decay in a cavity [159].

We will see that it is possible to generate a significant amount of entanglement
between the spins, even when they are separated from each other. However, we
will argue that the amount of generated entanglement is too large and relies on the
particular form of the Hamiltonian.

Let us describe the investigated model in more detail. The spins both have
frequency ω0 and are coupled to a three-dimensional heat bath consisting of harmonic
modes of frequencies ωk = k. The spin splitting is given by 2ω0 and σix, σ

i
y and

σiz denote the Pauli operators. It is convenient to define the raising and lowering
operators

σi+ =
1

2
(σix + iσiy) and σi− =

1

2
(σix − iσiy) . (6.155)

The creation and annihilation operators for the bath modes are denoted by b†k and
bk. Placing the spins at the positions r1 and r2, we consider the Hamiltonian

H0 =
∑
i=1,2

ω0σ
i
z +

∑
k

ωkb
†
kbk +Hint , (6.156)

with

Hint =
∑
i=1,2

(σi+ + σi−)φ(ri) . (6.157)

The environmental field φ can be decomposed according to

φ(ri) =
∑

k

(
λkbke

−ikri + h.c.
)
. (6.158)
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Applying the rotating wave approximation, we have

Hint,rot =
∑
i=1,2

∑
k

(σi+λkbke
−ikri + h.c.) . (6.159)

The coupling strengths λk are characterized by an ohmic spectral density

J(ω) = 4π

∫ ∞
0

dkk2λ2
kδ(k − ω) = λω exp(−ω/Ωc) (6.160)

which coincides with the spectral density (6.3.1) for s = 1. We denote the cutoff
with Ωc and the coupling strength with λ.

The bilinear interaction (6.159) consists of combinations of creation operators for
the spins and annihilation operators for the bath modes and vice versa. However,
combinations of the form σi+b

†
k and σi−bk are missing which would appear in the usual

spin boson model [78]. The absence of these terms guarantees an analytical solution
for the model, since the interaction commutes with the generalized number operator

N̂ =
∑
i=1,2

σi+σ
i
− +

∑
k

b†kbk . (6.161)

The disregard of the terms mentioned above is also known as the rotating wave
approximation and is often used in the context of master equations in order to obtain
an evolution equation of Lindblad form which guarantees the positive definiteness of
the reduced density matrix (see [120] for a discussion of quantum master equations).
It can be applied if the time scale of the intrinsic evolution, say 1/ω0, is small
compared to the relaxation time of the model. Roughly speaking, terms like σi+b

†
k and

σi−bk are oscillating rapidly during the relaxation time in which the system changes
appreciably. In the context of master equations, this approximation guarantees the
positive definiteness of the reduced density matrix.

However, the generalized number operator (6.161) is obviously a nonlocal observ-
able, since it involves terms defined at different positions, that is r1 and r2. We
will show, in the following, that the time evolution pretends the generation of a
significant amount of entanglement, which is due to the nonlocal observable.

The model (6.156) with the interaction (6.159) is exactly solvable for one–particle
states |ψ〉 that are defined through 〈ψ|N̂ |ψ〉 = 1. The general ansatz for such a
state reads

|ψ(t)〉 = C10,0(t)|10〉 ⊗ |0〉+ C01,0(t)|01〉 ⊗ |0〉+

+
∑

k

C00,k(t)|00〉 ⊗ |k〉 . (6.162)

146



6.4 Entanglement of Spins via a Common Heat Bath

From the Schrödinger equation involving the Hamiltonian (6.156), we find the
differential equations

Ċ10,0(t) = −
∑

k

∫ t

0

ds|λk|2e−i(k−ω0)(t−s) [C10,0(s) + C01,0(s)e−ik(r1−r2)
]

−i
∑

k

λke
−iω0t−ikr1C00,k(0) (6.163)

and

Ċ01,0(t) = −
∑

k

∫ t

0

ds|λk|2e−i(k−ω0)(t−s) [C01,0(s) + C10,0(s)e−ik(r2−r1)
]

−i
∑

k

λke
−iω0t−ikr2C00,k(0) . (6.164)

Due to the special choice of initial states of the form (6.162), we are restricted in the
choice of initial density matrices. Taking the bath modes to be in the ground state
for t = 0, a possible separable initial state is

ρ(t = 0) =
1

2
(|0, 1〉〈0, 1|+ |1, 0〉〈1, 0|)⊗ |0〉〈0| . (6.165)

The time evolution of the reduced density matrix ρsys(t) = Trbathρ(t) can be expressed
in terms of C01,0(t) and C10,0(t).

After a Laplace transformation L(C) = C̃ of (6.163) and (6.164) with C00,k(0) = 0,
we find

C̃10,0(q) =
C10,0(0)(q + F (q, 0))− C01,0(0)F (q, r)

(q + F (q, 0))2 − F 2(q, r)
(6.166)

C̃01,0(q) =
C01,0(0)(q + F (q, 0))− C10,0(0)F (q, r)

(q + F (q, 0))2 − F 2(q, r)
, (6.167)

with

F (q, r) = λ

∫ ∞
0

dω
ω exp(−ω/Ω)

q + i(ω − ω0)

sin(ωr)

ωr
(6.168)

=
λ

2r

{
e−(r+ i
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(
Γ
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0,−
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r +

i

Ωc

)
(q − iω0)

]
− ln
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1

Ωc

− ir
]

+ ln
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i

q − iω0

]
+ ln

[
−
(
r +

i

Ωc

)
(q − iω0)

])
−e(r− i

Ωc
)(q−iω0)

(
Γ

[
0,

(
r − i

Ωc

)
(q − iω0)

]
− ln

[
1

Ωc

+ ir

]
+ ln

[
i

q − iω0

]
+ ln

[(
r − i

Ωc

)
(q − iω0)

])}
,
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where the spectral density (6.160) was used. The reduced density matrix reads
explicitly

ρsys(t) = (1− |C10,0(t)|2 − |C01,0(t)|2)|00〉〈00|
+

1

2
(|C10,0(t)|2 + |C01,0(t)|2)(|01〉〈01|+ |10〉〈10|)

+<(C10,0(t)C∗01,0(t))(|01〉〈10|+ |10〉〈01|) , (6.169)

where the coefficients C10,0(t) and C01,0(t) satisfy the differential equations (6.163)
and (6.164) and the initial conditions C10,0(0) = 1 and C01,0(0) = 0, that is

C10,0(t) =
1

2
L−1

(
1

q + F (q, 0)− F (q, r)
+

1

q + F (q, 0) + F (q, r)

)
(6.170)

and

C01,0(t) =
1

2
L−1

(
1

q + F (q, 0) + F (q, r)
− 1

q + F (q, 0)− F (q, r)

)
, (6.171)

where L−1 denotes the inverse Laplace transformation with respect to the variable q.
In section 6.2.2 we defined the negativity N as measure for the entanglement for a
bipartite system. For the reduced density matrix (6.169), we find

N =
1− |C10,0(t)|2 − |C01,0(t)|2

2

−
√(

1− |C10,0(t)|2 − |C01,0(t)|2
2

)2

+
[<(C10,0(t)C∗01,0(t))

]2
. (6.172)

For the concurrence (6.31) we find with (6.169) and (6.32) the simple result

C = 2|<(C10,0(t)C∗01,0(t))| . (6.173)

The negativity and the concurrence give different numerical values for the entangle-
ment. However, we see that both are non-vanishing if and only if both C10,0 and C01,0

are different from zero. Since the analytical results are easier to express in terms of
the concurrence than in terms of the negativity, we will use the former measure.

6.4.1 Entanglement Generation for Short Times

In the preceding section, we mentioned that, due to the non–local conserved quantity
(6.161), the time evolution generates entanglement between the spins which would
not be there without this symmetry. In the limit of small times, we are able to
quantify this statement analytically. We compare the concurrence for short times,
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6.4 Entanglement of Spins via a Common Heat Bath

which is due to the spin-bath interaction (6.159) with the concurrence generated
by the interaction term (6.157). For the rotating wave interaction, we find the
concurrence

C(t) = λ
Ω2t2

1 + Ω2r2
, (6.174)

which is only polynomially decreasing. Regardless of how far the spins are separated
from each other, the spins become entangled as soon as the interaction is switched
on. This is due to the fact that the events ”switching on the interaction at position 1”
and ”switching on the interaction at position 2” are spatially separated. However,
the weak polynomial decrease of the short time concurrence is due to the nonlocal
conserved quantity 6.161.

In contrast, taking the bilinear interaction to be of the form (6.157) and computing
the density matrix up to second order perturbation theory, we obtain

ρsys(t) = a(t)|00〉〈00|+ (1/2− b(t))(|01〉〈01|+ |10〉〈10|
+(2b(t)− a(t))|11〉〈11|
−c(t)(|01〉〈10|+ |10〉〈01|)
−d(t)(|00〉〈11|+ |11〉〈00|) , (6.175)

with the coefficients

a(t) =

∫ t

0

dt′
∫ t

0

dt′′e−iω0(t′−t′′)B0(t′ − t′′) ,

b(t) = 2

∫ t

0

dt′
∫ t′

0

dt′′ cos(ω0(t′ − t′′))<(B0(t′ − t′′)) ,

c(t) = 2

∫ t

0

dt′
∫ t′

0

dt′′ cos(ω0(t′ − t′′))<(Br(t
′ − t′′)) ,

d(t) =

∫ t

0

dt′
∫ t

0

dt′′e−iω0(t′+t′′)Br(t
′ − t′′) . (6.176)

The bath correlation functions B0 and Br are defined as

B0 = 〈0|φ(r1)φ(r1)|0〉 = 〈0|φ(r2)φ(r2)|0〉 , (6.177)

Br = 〈0|φ(r1)φ(r2)|0〉 = 〈0|φ(r2)φ(r1)|0〉 . (6.178)

The concurrence corresponding from the density matrix (6.175) reads

C = max
{

0, 2|c(t)| − 2
√
a(t)(2b(t)− a(t))

}
. (6.179)
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Put differently, there is nonvanishing entanglement if and only if the inequality∫ ∞
0

dωe−
ω
Ω

sin(ωr)

r

(
1− cos[(ω + ω0)t]

(ω + ω0)2
+

1− cos[(ω − ω0)t]

(ω − ω0)2

)
> 2

√∫ ∞
0

dωωe−
ω
Ω

1− cos[(ω + ω0)t]

(ω + ω0)2
×

×
√∫ ∞

0

dωωe−
ω
Ω

1− cos[(ω − ω0)t]

(ω − ω0)2
(6.180)

holds. This inequality is always violated which is due to the fact that sin(ωr)
ωr
≤ 1.

We find that there is no entanglement for short times when the rotating wave
approximation is not applied and the observable (6.161) is not a conserved quantity.
Under realistic conditions one would expect that the entanglement for short times
is either exponentially small or vanishing if the separation of the spins exceeds a
critical value. The polynomial decrease of the entanglement in equation (6.174) is
an artifact of the rotating wave approximation.

6.4.2 Entanglement Generation for Finite Times

For the rotating wave interaction (6.159) we are able to compute the entanglement
numerically for arbitrary times. In order to compute the inverse Laplace transform
(6.170) and (6.171), we used a Mathematica package that includes the so called
Durbin formula [160, 161]. The Laplace transform of a function f(t) and its inverse
formula are defined as

F (s) = L[f(t)] =

∫ ∞
0

dte−stf(t) , (6.181)

f(t) = L−1[F (s)] =
1

2πi

∫ v+i∞

v−i∞
dsestF (s) , (6.182)

where v is a real number which is greater than the real parts of all the singularities
of the function F (s), but otherwise arbitrary. According to Durbin [161], one can
approximate the inverse Laplace transform in the interval t ∈ [0, 2T ] through the
Fourier series

fN(t) =
evt

T

(
1

2
<(F (v)) (6.183)

+
N∑
k=0

{
<
(
F

(
v + i

kπ

T

))
cos

kπt

T
−=

(
F

(
v + i

kπ

T

))
sin

kπt

T

})
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which coincides with f(t) in the limit v →∞ and N →∞.
In fig. 6.29 we show the generation of entanglement for various distances. Imme-

diately after switching on the system–bath interaction, one observes nonvanishing
concurrence which increases to a maximum value that is roughly inversely propor-
tional to r. If the bosons had enough time to travel between both spins, that is t = r,
the slope of the curves increases as can be seen in fig. 6.30. From the density plots of
fig. 6.31 we deduce that the entanglement for t < r is small, the concurrence adopts
its maximum value at t & r and decreases afterwards. The decrease of maximal
concurrence depends only polynomially on the distance, which is again due to the
conserved quantity (6.161). We conjecture that the generation of entanglement “close
to perfect” over arbitrarily large distances in the model of Braun [130] has similar
reasons. Since Braun’s model is dissipationless the conserved quantity is given by

Σ = σz,1σz,2 , (6.184)

where the σz-Pauli matrices commute with the total Hamiltonian in [130]. In other
words, remote quantum systems “know” about each other due to nonlocal conserved
quantities. This in turn generates a significant amount of entanglement. However,
it is doubtful whether (6.184) or (6.161) are viable conserved quantities in realistic
physical settings.
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Figure 6.29: Concurrence for different spin separations. The parameters were chosen to be
λ = 0.1ω0 and Ωc = 3ω0.
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Figure 6.30: As soon as the bosons had enough time to travel between the spins, the slope
of the concurrence increases. The parameters were chosen to be λ = 0.1ω0 and Ωc = 3ω0.
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6.4 Entanglement of Spins via a Common Heat Bath

Figure 6.31: Maximum entanglement is generated at times t & r when the environmental
bosons had enough time to bridge the spin separation at the speed of light. For large times,
the concurrence decreases exponentially according to (6.185). The parameters were chosen
to be λ = 0.1ω0 and Ωc = 5ω0.
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6.4.3 Asymptotic Entanglement

For infinitely long times the inverse Laplace transformations (6.170) and (6.171)
simplify drastically since one has to keep only the leading terms for q → 0. We arrive
at

C(t) =
1

2

∣∣e−2κ−t − e−2κ+t
∣∣ , (6.185)

with

κ± = λπω0e
−ω0

Ω

(
1± sin(ω0r)

ω0r

)
. (6.186)

For r 6= 0 the entanglement vanishes always for infinite times. This is in agreement
with the “thermal state” for vanishing temperature, that is the ground state.

Only in the limit r = 0, entanglement exists for t→∞ since vanishing distance
corresponds to a direct interaction between the spins. We obtain the parameter-
independent result

lim
t→∞

lim
r→0
C(t) =

1

2
. (6.187)

One may interpret this result in the following way: since a change in the coupling
strength λ is a rescaling t→ λt for large times, the asymptotic expression should be
independent of λ. Since the distance vanishes, the asymptotic expression can only
depend on Ωc/ω0. But since the smallest resolvable distance ∼ 1/Ωc has no meaning
for spins sitting on top of each other, a dependence on Ωc is not viable.

6.5 Conclusions

We analyzed the generation of entanglement between remote quantum systems via
an indirect system-bath interaction. In section 6.3 we focused on the entanglement
of harmonic oscillators. For free environmental modes, a significant amount of
entanglement can only be created for sufficiently small distances. The situation
becomes better after imposing boundary conditions on the bath modes such that
the spectral density exhibits so–called van Hove singularities. Thus we studied
entanglement generation in a hollow tube. The environmental modes within the
spectral peak are oscillating coherently for times and distances that are smaller than
the inverse peak width. Thus, these modes can be interpreted as effective coupling
oscillators which entangle the system oscillators. In order to generate a significant
amount of entanglement, the system oscillators should initially be in a strongly
squeezed state and their frequencies should be approximately in resonance with the
peak modes.
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6.5 Conclusions

In section 6.4 we analyzed a simplified two-spin-boson model without imposing
boundary conditions on the bath modes. Due to the conservation of a nonlocal
observable, the decrease of entanglement with growing distance is only polynomial.
We believe that the existence of a nonlocal conserved quantity is also the reason
for bath-induced entanglement in the model of Braun [130] over arbitrarily large
distances.
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7 Summary and Outlook

Within this thesis we have studied the impact of decoherence and dissipation on
various quantum systems. In the first half of this work we focused on the phenomenon
of localization and on the modification of tunneling rates through system-environment
interaction. We investigated the emergence of a cosmological constant through
decoherence and studied vacuum bubble nucleation. Nonetheless, there remain some
open questions.

There exist various regularization methods for divergent quantities in flat and
curved spacetime [80], mainly based on subtracting the divergent terms. These
methods are known to be very useful in the context of closed systems but they
may lead to unphysical results for open systems. For example, regularization can
modify reduced density matrices such that they are not normalizable to unity [162].
Therefore, one may ask whether it is possible to find a sensible regularization of the
infrared and ultraviolet divergences in the expressions for the reduced density matrix,
obtained in section 4.4. A similar problem arises through ζ–function regularization
method which has been used to compute the change of a tunneling rate, see section
4.5. The result differs drastically from the expression which would have been obtained
by using a cutoff.

In section (5) we investigated the influence of nontrivial backgrounds on the
tunneling rate. These considerations could be extended to the Kerr–spacetime. Since
the corresponding metric is stationary it should be possible to obtain an integral
representation for the tunneling amplitude. However, the nucleating vacuum bubble
will not be spherical symmetric anymore.

The last part of this thesis, chapter 6, was dedicated to the bath mediated
entanglement generation of remote quantum systems. We have seen that, due to
the conservation of a nonlocal observable, more entanglement is generated than
without this symmetry. We do not now to what extend this might be true in
general. Therefore, given two systems coupled to a common heat bath and a nonlocal
conserved quantity, what is the maximum entanglement that can be generated?

These open questions could be starting points for future research.

157



7 Summary and Outlook

158



8 Appendix I

8.1 Differential Equations

In order to avoid a cluttering of indices we will suppress the labels for the symmetric
and antisymmetric modes.

The time evolution for the oscillator variables Q̄1/2 is given by

Q̄1/2(t) = Q̄1/2 cos(Ω̄1/2t) +
1

Ω̄1/2

P̄1/2 sin(Ω̄1/2t) , (8.1)

whereas for P̄1/2 we find

P̄1/2(t) = P̄1/2 cos(Ω̄1/2t)− Ω̄1/2Q̄1/2 sin(Ω̄1/2t) (8.2)

Using relations (6.95) we can decompose the differential equation (6.98) with respect
to the (time-independent) operators Q̄1/2 and P̄1/2, that is

ρ̇ = −i
∑
i=1,2

1

2

[
P̄ 2
i + Ω̄2

i Q̄
2, ρ
]

(8.3)

−α1(Ω̄1)

1 + ξ2

(
[Q̄1, [Q̄1, ρ]] +

ξ

Ω̄2

[P̄2, [Q̄1, ρ]]

)
−α2(Ω̄1)

1 + ξ2

(
[Q̄1, [P̄1, ρ]] +

ξ

Ω̄2

[P̄2, [P̄1, ρ]]

)
− ξ α1(Ω̄2)

(1 + ξ2)Ω̄2
2

(
ξ[P̄2, [P̄2, ρ]] + Ω̄2[Q̄1, [P̄2, ρ]]

)
+
ξ α2(Ω̄2)

1 + ξ2

(
ξ[P̄2, [Q̄2, ρ]] + Ω̄2[Q̄1, [Q̄2, ρ]]

)
−iα3(Ω̄1)

1 + ξ2

(
[Q̄1, {Q̄1, ρ}] +

ξ

Ω̄2

[P̄2, {Q̄1, ρ}]
)

−iα4(Ω̄1)

1 + ξ2

(
[Q̄1, {P̄1, ρ}] +

ξ

Ω̄2

[P̄2, {P̄1, ρ}]
)

−i ξ α3(Ω̄2)

(1 + ξ2)Ω̄2
2

(
ξ[P̄2, {P̄2, ρ}] + Ω̄2[Q̄1, {P̄2, ρ}]

)
+i
ξ α4(Ω̄2)

1 + ξ2

(
ξ[P̄2, {Q̄2, ρ}] + Ω̄2[Q̄1, {Q̄2, ρ}]

)
,
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where ξ was defined in equation (6.97) and the αi are correlation functions that are
given explicitly in section 6.68.

The equations of motion in the “k − ∆”-representation can be constructed by
wrapping

tr (D...) = tr

(
e
i
“
k ˆ̄Q+∆ˆ̄P

”
...

)
(8.4)

over equation (8.13). Using the relations

tr(D[Q̄i, [Q̄j, ρ]]) = ∆i∆j ρ̃ (8.5)

tr(D[Q̄i, [P̄j, ρ]]) = −∆ikj ρ̃ (8.6)

tr(D[P̄i, [Q̄j, ρ]]) = −ki∆j ρ̃ (8.7)

tr(D[P̄i, [P̄j, ρ]]) = kikj ρ̃ (8.8)

tr(D[Q̄i, {Q̄j, ρ}]) = −2i∆i∂kj ρ̃ (8.9)

tr(D[Q̄i, {P̄j, ρ}]) = −2i∆i∂∆j
ρ̃ (8.10)

tr(D[P̄i, {Q̄j, ρ}]) = 2iki∂kj ρ̃ (8.11)

tr(D[P̄i, {P̄j, ρ}]) = 2iki∂∆j
ρ̃ , (8.12)

we arrive at

˙̃ρ =

(
k1 − 2

1 + ξ2
α4(Ω̄1)

(
∆1 − ξ

Ω̄2

k2

))
∂∆1 ρ̃

+

(
k2 − 2ξ

(1 + ξ2)Ω̄2
2

α3(Ω̄2)(Ω̄2∆1 − ξk2)

)
∂∆2 ρ̃

−
(

Ω̄2
1∆1 +

2

1 + ξ2
α3(Ω̄1)

(
∆1 − ξk2

Ω̄2

))
∂k1 ρ̃

−
(

Ω̄2
2∆2 − 2ξ

1 + ξ2
α4(Ω̄2)(Ω̄2∆1 − ξk2)

)
∂k2 ρ̃

+
1

1 + ξ2

[
− α1(Ω̄1)

(
∆2

1 −
ξ

Ω̄2

k2∆1

)
+α2(Ω̄1)

(
k1∆1 − ξ

Ω̄2

k1k2

)
+
ξ

Ω̄2
2

α1(Ω̄2)(Ω̄2k2∆1 − ξ k2
2)

+ξ α2(Ω̄2)(Ω̄2∆1∆2 − ξ k2∆2)

]
ρ̃ . (8.13)

With the gaussian ansatz

ρ̃QS ,q = exp
(− c1k

2
1 − c2k1∆1 − c3∆2

1 − ic4k1 − ic5∆1 − c6k
2
2 − c7k2∆2 − c8∆2

2

−ic9k2 − ic10∆2 − c11k1k2 − c12k1∆2 − c13k2∆1 − c14∆1∆2

)
(8.14)
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we arrive at the first order system

ċ1 = c2 (8.15)

ċ2 = −
(

2Ω̄2
1 +

4

1 + ξ2
α3(Ω̄1)

)
c1 + 2c3

− 1

1 + ξ2

(
2α4(Ω̄1)c2 − 2ξΩ̄2α4(Ω̄2)c11 +

2ξ

Ω̄2

α3(Ω̄2)c12 + α2(Ω̄1)

)
(8.16)

ċ3 = −
(

Ω̄2
1 +

2

1 + ξ2
α3(Ω̄1)

)
c2

− 1

1 + ξ2

(
4α4(Ω̄1)c3 − 2ξΩ̄2α4(Ω̄2)c13 +

2ξ

Ω̄2

α3(Ω̄2)c14 − α1(Ω̄1)

)
(8.17)

ċ4 = c5 (8.18)

ċ5 = −
(

Ω̄2
1 +

2

1 + ξ2
α3(Ω̄1)

)
c4

− 1

1 + ξ2

(
2α4(Ω̄1)c5 − 2ξΩ̄2α4(Ω̄2)c9 +

2ξ

Ω̄2

α3(Ω̄2)c10

)
(8.19)

ċ6 = − 4ξ2

1 + ξ2
α4(Ω̄2)c6 +

(
1 +

2ξ2

(1 + ξ2)Ω̄2
2

α3(Ω̄2)

)
c7

+
1

1 + ξ2

(
2ξ

Ω̄2

α3(Ω̄1)c11 +
2ξ

Ω̄2

α4(Ω̄1)c13 +
ξ2

Ω̄2
2

α1(Ω̄2)

)
(8.20)

ċ7 = −2Ω̄2
2c6 − 2ξ2

1 + ξ2
α4(Ω̄2)c7 +

(
2 +

4ξ2

(1 + ξ2)Ω̄2
2

α3(Ω̄2)

)
c8

+
1

1 + ξ2

(
2ξ

Ω̄2

α3(Ω̄1)c12 +
2ξ

Ω̄2

α4(Ω̄1)c14 + ξ2α2(Ω̄2)

)
(8.21)

ċ8 = −Ω̄2
2c7 (8.22)

ċ9 = c10 +
1

1 + ξ2

(
2ξ

Ω̄2

α3(Ω̄1)c4 +
2ξ

Ω̄2

α4(Ω̄1)c5

−2ξ2α4(Ω̄2)c9 +
2ξ2

Ω̄2
2

α3(Ω̄2)c10

)
(8.23)

ċ10 = −Ω̄2
2c9 (8.24)

ċ11 =
1

1 + ξ2

(
4ξ

Ω̄2

α3(Ω̄1)c1 +
2ξ

Ω̄2

α4(Ω̄1)c2

)
− 2ξ2

1 + ξ2
α4(Ω̄2)c11

+

(
1 +

2ξ2

Ω̄2
2(1 + ξ2)

)
c12 + c13 +

ξ

Ω̄2(1 + ξ2)
α2(Ω̄1) (8.25)

ċ12 = −Ω̄2
2c11 + c14 (8.26)
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ċ13 =
1

1 + ξ2

(
2ξ

Ω̄2

α3(Ω̄1)c2 +
4ξ

Ω̄2

α4(Ω̄1)c3 + 4ξΩ̄2α4(Ω̄2)c6

)
− 2ξ

(1 + ξ2)Ω̄2

α3(Ω̄2)c7 −
(

2

1 + ξ2
α3(Ω̄1) + Ω̄2

1

)
c11

− 2

1 + ξ2

(
α4(Ω̄1) + ξ2α4(Ω̄2)

)
c13 +

(
1 +

2ξ2

(1 + ξ2)Ω̄2
2

α3(Ω̄2)

)
c14

− ξ

(1 + ξ2)Ω̄2

(
α1(Ω̄1) + α1(Ω̄2)

)
(8.27)

ċ14 =
1

1 + ξ2

(
2ξΩ̄2α4(Ω̄2)c7 − 4ξ

Ω̄2

α3(Ω̄2)c8

)
−
(

Ω̄2
1 +

2

1 + ξ2
α3(Ω̄1)

)
c12 − Ω̄2

2c13

− 1

1 + ξ2

(
2α4(Ω̄1)c14 + ξΩ̄2α2(Ω̄2)

)
. (8.28)

The expectation values of the anticommutators can be given in terms of the functions
ci(t) according to

〈{Q̄1, Q̄1}〉 = 2(2c1 + c2
4) (8.29)

〈{Q̄1, Q̄2}〉 = 2(c11 + c4c9) (8.30)

〈{Q̄2, Q̄2}〉 = 2(2c6 + c2
9) (8.31)

〈{Q̄1, P̄1}〉 = 2(c2 + c4c5) (8.32)

〈{Q̄2, P̄2}〉 = 2(c7 + c9c10) (8.33)

〈{Q̄1, P̄2}〉 = 2(c12 + c4c10) (8.34)

〈{P̄1, P̄1}〉 = 2(2c3 + c2
5) (8.35)

〈{P̄2, P̄2}〉 = 2(2c8 + c2
10) (8.36)

〈{P̄1, P̄2}〉 = 2(c14 + c5c10) (8.37)

〈{Q̄2, P̄1}〉 = 2(c13 + c5c9) . (8.38)

8.2 Approximate Solutions of the Differential

Equations

From the initial condition (6.107) we find that the functions c4, c5, c9 and c10 are
vanishing since they describe momentum and position displacements that are absent
in symmetric gaussians. At t = 0, the nonvanishing anticommutators have the
expectation values

〈{pω0 , pω0}〉 =
1

〈{qω0 , qω0}〉
= a (8.39)

〈{P, P}〉 =
1

〈{Q,Q}〉 = b. (8.40)

162



8.2 Approximate Solutions of the Differential Equations

Neglecting terms of order g2γ in the differential equation, some of the equations
(8.15) – (8.28) decouple from each other. For the coefficients concerning the oscillator
with the variable Q̄1, we find

c1 =
3∑
i=1

Aie
λit +

α1(Ω̄1)− 2α2(Ω̄1)α4(Ω̄1)

4α4(Ω̄1)(2α3(Ω̄1) + Ω̄2
1)

(8.41)

c2 =
3∑
i=1

Aiλie
λit (8.42)

c3 =
3∑
i=1

Ai

(
λi
2

+ Ω̄2
1 + 2α3(Ω̄1) + α4(Ω̄1)λi

)
λie

λit +
α1(Ω̄1)

4α4(Ω̄1)
, (8.43)

with the eigenmodes

λ1 = −2α4(Ω̄1) (8.44)

λ2,3 = −2

(
α4(Ω̄1)± i

√
Ω̄2

1 + 2α3(Ω̄1)− α2
4(Ω̄1)

)
. (8.45)

The Ai are chosen such that

c1(0) =
ω2

0 + ξ2 ab

4bω2
0(1 + ξ2)

(8.46)

c2(0) = 0 (8.47)

c3(0) =
ab+ ξ2ω2

0

4a(1 + ξ2)
. (8.48)

For the oscillator Q̄2 we find

c6 = B1e
2iΩ̄2t +B2e

−2iΩ̄2t +B3 (8.49)

c7 = 2iΩ̄2B1e
2iΩ̄2t − 2iΩ̄2B2e

−2iΩ̄2t (8.50)

c8 = −Ω̄2
2(B1e

2iΩ̄2t +B2e
−2iΩ̄2t −B3) . (8.51)

The Bi are chosen such that

c6(0) =
ω2

0 + ξ2ab

4aΩ̄2
2(1 + ξ2)

(8.52)

c7(0) = 0 (8.53)

c8(0) =
Ω̄2

2(ab+ ξ2ω2
0)

4bω2
0(1 + ξ2)

(8.54)
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The coupling between Q̄1 and Q̄2 is described by c11...c14, which read

c11 =
4∑
i=1

Cie
κit (8.55)

c12 = −
4∑
i=1

Ci
2Ω̄2

2(α4(Ω̄1) + κi)

2α3(Ω̄1) + Ω̄2
1 − Ω̄2

2 + 2α4(Ω̄1)κi + κ2
i

eκit (8.56)

c13 =
4∑
i=1

Ciκie
κit +

4∑
i=1

Ci
2Ω̄2

2(α4(Ω̄1) + κi)

2α3(Ω̄1) + Ω̄2
1 − Ω̄2

2 + 2α4(Ω̄1)κi + κ2
i

eκit (8.57)

c14 =
4∑
i=1

Ci
Ω̄2

2(2α3(Ω̄1) + Ω̄2
1 − Ω̄2

2 − κ2
i )

2α3(Ω̄1) + Ω̄2
1 − Ω̄2

2 + 2α4(Ω̄1)κi + κ2
i

eκit , (8.58)

with the eigenmodes

κ1,2,3,4 = −α4(Ω̄1)± i
(

2α3(Ω̄1)− α2
4(Ω̄1) + Ω̄2

1 + Ω̄2
2

± 2Ω̄2

√
2α3(Ω̄1)− α2

4(Ω̄1) + Ω̄2
1

)1/2

. (8.59)

The Ci are chosen such that

c11(0) = 0 (8.60)

c12(0) =
ξ Ω̄2(ω2

0 − ab)
2bω2

0(1 + ξ2)
(8.61)

c13(0) =
ξ(ω2

0 − ab)
2aΩ̄2(1 + ξ2)

(8.62)

c14(0) = 0 . (8.63)

8.3 Bath Correlators

8.3.1 Correlators of the Generic Toy Model

We define fS(ω) = cos2(ωr/2) for the symmetric modes and fA(ω) = sin2(ωr/2) for
the antisymmetric modes. For Ω̄ > 0 we find

α1,S/A(Ω̄) =

∫ ∞
0

dt νS/A(r, t) cos(Ω̄t) =
π

4
coth

(
Ω̄

2T

)
J(Ω̄)fS/A(Ω̄) (8.64)

and

α4,S/A(Ω̄) =

∫ ∞
0

dt µS/A(r, t)
sin(Ω̄t)

Ω̄
=

π

4Ω̄
J(Ω̄)fS/A(Ω̄) . (8.65)
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The evaluation of the remaining correlators involve incomplete Γ-functions and an
infinite sum. For Ω̄ > 0 we find

α2,S/A(Ω̄) = −
∫ ∞

0

dt νS/A(r, t)
sin(Ω̄t)

Ω̄

= − γ

Ωs−1
c

TΓ(1 + s)

4πΩ̄

∞∑
n=−∞

a|n|,S/A(r, Ω̄, s)

ν2
|n| + Ω̄2

(8.66)

and

α3,S/A(Ω̄) = −
∫ ∞

0

dt µS/A(r, t) cos(Ω̄t)

=
γ

Ωs−1
c

Γ(1 + s)

8πΩ̄

a0,S/A(r, Ω̄, s+ 2)

Ω̄2
, (8.67)

with νn = 2πnT . If n > 0 the coefficients concerning the symmetric modes read

an,S(r, Ω̄, s) =

−2Ω̄1+se−
Ω̄
Ωc

(
sin(Ω̄r) sin(πs) + cos(πs)

)<Γ

(
−s,− Ω̄

Ωc

)
−2Ω̄1+se−

Ω̄
Ωc

(
sin(Ω̄r) cos(πs)− sin(πs)

)=Γ

(
−s,− Ω̄

Ωc

)
−2Ω̄1+se

Ω̄
Ωc Γ

(
−s, Ω̄

Ωc

)
+2Ω̄νsn

[
e
iνn
Ωc

+ iπs
2 Γ

(
−s, iνn

Ωc

)
+ c.c.

]
+Ω̄νsn

[
eνn(

i
Ωc
−r)+ iπs

2 Γ

(
−s, νn

(
i

Ωc

− r
))

+eνn(
i

Ωc
+r)+ iπs

2 Γ

(
−s, νn

(
i

Ωc

+ r

))
+ c.c.

]
−Ω̄s+1

[
e−iΩ̄( i

Ωc
+r)Γ

(
−s,−iΩ̄

(
i

Ωc

+ r

))
+eiΩ̄( i

Ωc
+r)+iπsΓ

(
−s, iΩ̄

(
i

Ωc

+ r

))
+ c.c.

]
, (8.68)
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and for n = 0 we find

a0,S(r, Ω̄, s) =

−2Ω̄1+se−
Ω̄
Ωc

(
sin(Ω̄r) sin(πs) + cos(πs)

)<Γ

(
−s,− Ω̄

Ωc

)
−2Ω̄1+se−

Ω̄
Ωc

(
sin(Ω̄r) cos(πs)− sin(πs)

)=Γ

(
−s,− Ω̄

Ωc

)
−2Ω̄1+se

Ω̄
Ωc Γ

(
−s, Ω̄

Ωc

)
+

2Ω̄

s

[
e
iπs
2

(
i

Ωc

− r
)−s

+ c.c.

]

+
4Ωs

cΩ̄

s
− Ω̄s+1

[
e−iΩ̄( i

Ωc
+r)Γ

(
−s,−iΩ̄

(
i

Ωc

+ r

))
+eiΩ̄( i

Ωc
+r)+iπsΓ

(
−s, iΩ̄

(
i

Ωc

+ r

))
+ c.c.

]
. (8.69)

For the antisymmetric modes, the coefficients for n > 0 read

an,A(r, Ω̄, s) =

2Ω̄1+se−
Ω̄
Ωc

(
sin(Ω̄r) sin(πs)− cos(πs)

)<Γ

(
−s,− Ω̄

Ωc

)
+2Ω̄1+se−

Ω̄
Ωc

(
sin(Ω̄r) cos(πs) + sin(πs)

)=Γ

(
−s,− Ω̄

Ωc

)
−2Ω̄1+se

Ω̄
Ωc Γ

(
−s, Ω̄

Ωc

)
+2Ω̄νsn

[
e
iνn
Ωc

+ iπs
2 Γ

(
−s, iνn

Ωc

)
+ c.c.

]
−Ω̄νsn

[
eνn(

i
Ωc
−r)+ iπs

2 Γ

(
−s, νn

(
i

Ωc

− r
))

+eνn(
i

Ωc
+r)+ iπs

2 Γ

(
−s, νn

(
i

Ωc

+ r

))
+ c.c.

]
+Ω̄s+1

[
e−iΩ̄( i

Ωc
+r)Γ

(
−s,−iΩ̄

(
i

Ωc

+ r

))
+eiΩ̄( i

Ωc
+r)+iπsΓ

(
−s, iΩ̄

(
i

Ωc

+ r

))
+ c.c.

]
. (8.70)
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and for n = 0 we find

a0,A(r, Ω̄, s) =

2Ω̄1+se−
Ω̄
Ωc

(
sin(Ω̄r) sin(πs)− cos(πs)

)<Γ

(
−s,− Ω̄

Ωc

)
+2Ω̄1+se−

Ω̄
Ωc

(
sin(Ω̄r) cos(πs) + sin(πs)

)=Γ

(
−s,− Ω̄

Ωc

)
−2Ω̄1+se

Ω̄
Ωc Γ

(
−s, Ω̄

Ωc

)
− 2Ω̄

s

[
e
iπs
2

(
i

Ωc

− r
)−s

+ c.c.

]

+
4Ωs

cΩ̄

s
+ Ω̄s+1

[
e−iΩ̄( i

Ωc
+r)Γ

(
−s,−iΩ̄

(
i

Ωc

+ r

))
+eiΩ̄( i

Ωc
+r)+iπsΓ

(
−s, iΩ̄

(
i

Ωc

+ r

))
+ c.c.

]
. (8.71)

8.3.2 Correlators of the Tube Model

For the decoherence rates we find

α1,S/A(Ω̄) =
π

4
J3D(Ω̄)

(
1± sin(Ω̄r)

Ω̄r

)
coth

(
Ω̄

2T

)
. (8.72)

The dissipation correlators read

α4,S/A(Ω̄) =
π

4

J3D(Ω̄)

Ω̄

(
1± sin(Ω̄r)

Ω̄r

)
. (8.73)
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The anomalous diffusion correlators have the form

α2,S/A(Ω̄) =
γΓ(1 + s)

2π

(
Ω̄

Ωc

)s−1

coth

(
Ω̄

2T

)
×

×
[
e−

Ω̄
Ωc

(
cos(πs)<

{
Γ

(
−s,− Ω̄

Ωc

)}
− sin(πs)=

{
Γ

(
−s,− Ω̄

Ωc

)})

+e
Ω̄
Ωc Γ

(
−s, Ω̄

Ωc

)]

−2TγΩcΓ(1 + s)

π

(
1

Ω̄2s
+
∞∑
n=1

(
2πnT

Ωc

)s
cn

Ω̄2 + (2πnT )2

)

±
{
− γΓ(s− 1)

4πrΩc

(
Ω̄

Ωc

)s−2

coth

(
Ω̄

2T

)
×

×
[

2 cos(Ω̄r)e−
Ω̄
Ωc

(
sin(πs)<

{
Γ

(
−s+ 2,− Ω̄

Ωc

)}
+ cos(πs)=

{
Γ

(
−s+ 2,− Ω̄

Ωc

)})
+ieΩ̄( 1

Ωc
+ir)Γ

(
−s+ 2, Ω̄

(
1

Ωc

+ ir

))
−ieΩ̄( 1

Ωc
−ir)Γ

(
−s+ 2, Ω̄

(
1

Ωc

− ir
))

−ie−Ω̄( 1
Ωc

+ir)−iπsΓ

(
−s+ 2,−Ω̄

(
1

Ωc

+ ir

))
+ie−Ω̄( 1

Ωc
−ir)+iπsΓ

(
−s+ 2,−Ω̄

(
1

Ωc

− ir
))]

+
γTΓ(s− 1)

πr

∞∑
n=1

(
2πnT

Ωc

)s−1
dn

Ω̄2 + (2πnT )2

}
(8.74)
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with

cn = e−i
2πnT

Ωc
−iπs

2 Γ

(
−s,−i2πnT

Ωc

)
+ ei

2πnT
Ωc

+iπs
2 Γ

(
−s, i2πnT

Ωc

)
;

dn = ei2πnT( 1
Ωc

+ir)+iπs
2 Γ

(
−s+ 2, i2πnT

(
1

Ωc

+ ir

))
+e−i2πnT( 1

Ωc
−ir)−iπs2 Γ

(
−s+ 2,−i2πnT

(
1

Ωc

− ir
))

−e−i2πnT( 1
Ωc

+ir)−iπs2 Γ

(
−s+ 2,−i2πnT

(
1

Ωc

+ ir

))
+ei2πnT( 1

Ωc
−ir)+iπs

2 Γ

(
−s+ 2, i2πnT

(
1

Ωc

− ir
))

. (8.75)

The Lamb shifts due to the bath correlators are given by

α3,S/A(Ω̄) = −γΓ(3 + s)Ω̄

2π

(
Ω̄

Ωc

)s−1

×

×
[
e−

Ω̄
Ωc

(
cos(πs)<

{
Γ

(
−2− s,− Ω̄

Ωc

)}
− sin(πs)=

{
Γ

(
−2− s,− Ω̄

Ωc

)})

+e
Ω̄
Ωc Γ

(
−2− s, Ω̄

Ωc

)]
+
γΩ3

cΓ(3 + s)

πΩ̄2(2 + s)

±
{
γΓ(1 + s)

4πr

(
Ω̄

Ωc

)s−1

×

×
[

2 cos(Ω̄r)e−
Ω̄
Ωc

(
sin(πs)<

{
Γ

(
−s,− Ω̄

Ωc

)}
+ cos(πs)=

{
Γ

(
−s,− Ω̄

Ωc

)})
+ieΩ̄( 1

Ωc
+ir)Γ

(
−s, Ω̄

(
1

Ωc

+ ir

))
−ieΩ̄( 1

Ωc
−ir)Γ

(
−s, Ω̄

(
1

Ωc

− ir
))

−ie−Ω̄( 1
Ωc

+ir)−iπsΓ

(
−s,−Ω̄

(
1

Ωc

+ ir

))
+ie−Ω̄( 1

Ωc
−ir)+iπsΓ

(
−s,−Ω̄

(
1

Ωc

− ir
))]}

. (8.76)
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The Lamb shifts originating from the counter terms are determined by∫ ∞
0

dω
J3D(ω)

ω

(
1± sin(ωr)

ωr

)
= (8.77)

=
2γΩc

π

(
Γ(s)± (1 + Ω2

cr
2)−

s−1
2 Γ(s− 1) sin [(s− 1) arctan(Ωcr)]

Ωcr

)
.
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In this section we shall give a short review of the ζ-function renormalization method
as presented in [81]. The authors there considered the renormalization of a functional
determinant defined by a second-order differential equation. Usually, neither the
eigenvalues nor the eigenfunctions of the differential operator are known exactly.
Moreover, even if all the eigenvalues are known, the determinant is an infinite product
of eigenvalues, which is in general a divergent quantity.

To solve these problems, one represents the functional determinant via a generalized
Riemann ζ-function. The determinant of an arbitrary differential operator D can be
written as

(DetD)1/2 = exp

(
1

2
ln
∏
λ

λ

)
= exp

(
1

2

∑
λ

lnλ

)
= exp(W ) , (9.1)

where the eigenvalues of the operator are denoted by λ. We define the generalized
ζ-function

ζ(s) =
∑
λ

1

λs
, (9.2)

which is a convergent series for some s > 0 and can be continued analytically to
s = 0. The exponent W in equation (9.1) can be obtained through

W = −1

2

d

ds
ζ(s)

∣∣∣∣∣
s=0

. (9.3)

Since the eigenvalues of D have the dimension of mass squared, this leads to a wrong
dimensionality for W . Therefore we have to replace (9.3) by

W = −1

2

d

ds

∑
λ

(
µ2

λ

)s ∣∣∣∣∣
s=0

= −1

2
ζ ′(0)− 1

2
ζ(0) lnµ2, (9.4)

where we have introduced a renormalization parameter µ with mass dimension one.
The differential operator corresponding to a single field mode may be labelled

with n. In quantum mechanics we are confronted with a finite number of modes,
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whereas in field theory we have to deal with an infinite number. For each fixed n,
the eigenvalue equation reads

Dnun(−λ, t) = λun(−λ, t) , (9.5)

where λ is determined by the boundary condition

un(−λ, t0) = 0 . (9.6)

This boundary condition and a normalization determine the eigenfunctions uniquely.
All the boundary conditions (9.6) can be collected in the equation

Detun(−λ, t0) = 0 , (9.7)

where the determinant is taken with respect to all modes n and all eigenvalues λ.
With the help of the Cauchy formula, the generalized ζ-function can be expressed as

ζ(s) =
1

2πi

∫
C

dz

zs
d

dz

∑
n

lnun(z, t0) , (9.8)

with the contour C encircling all roots of equation (9.7). Deforming the contour C
to a contour C̃ which encircles the branch cut of the function z−s, we find

ζ(s) =
sin(πs)

π

∫ ∞
0

dM2

M2s

d

dM2

∑
n

lnun(M2, t0) . (9.9)

First, we consider the regularization method for a quantum mechanical system. The
necessary information for the regularization of a system with a finite number of
modes is contained in the function

I(M2) =
∑
n

lnun(M2, t0) . (9.10)

Expanding this function for large M leads to

I(M2 →∞) =
N∑
k=1

(Ik + Īk lnM2)M2k + (IR)ln lnM2 + IR(∞) , (9.11)

where (IR)ln is the coefficient of the logarithmic asymptotic term of I(M2), and
IR(∞) is the asymptotic value of the regular part of I(M2). According to [81], the
ζ-function can be expanded according to

ζ(s) = (IR)ln + s[IR]∞0 +O(s2) , (9.12)
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where [IR]∞0 = IR(∞)− IR(0).
As a demonstration we will apply this method to the harmonic oscillator. The

eigenvalue equation(
− d2

dt2
+ ω2

)
u(−λ, t) = λu(−λ, t) , u(−λ, t0) = 0 (9.13)

has a solution of the form

u(−λ, t) = Ae
√
ω2−λt +Be−

√
ω2−λt . (9.14)

Performing the analytical continuation to the complex plane, λ→ z, the function u
adopts on the negative real axis the form

u(M2, t) = Ae
√
ω2+M2t , (9.15)

where we neglected the exponentially decreasing term. Using for convenience the
normalization u′(0) = 1 leads to

I(M2) = −1

2
ln(ω2 +M2) +

√
ω2 +M2t . (9.16)

Since the term proportional to exp(−√ω2 +M2t) has been neglected, the analytically
continued eigenfunctions do not respect the boundary condition u(−λ, t0) = 0.

From (9.16) we find IR(0) = − lnω + ωt, (IR)ln = −1/2. Using equations (9.1),
(9.4) and (9.12) we arrive at(

Det

[
− d2

dt2
+ ω2

])−1/2

=

√
ω

µ
e−

ωt
2 (9.17)

which gives for large t the correct ground state energy of an harmonic oscillator.
In general, the exact shape of the eigenfunctions un(−λ, t) is unknown and one

approximates the un with a uniform asymptotic WKB-expansion. This asymptotic
expansion has the property that

lnun(M2, t0) = φWKB(n2,M2/n2) (9.18)

is uniform for M2/n2 →∞ and M2/n2 → 0. In addition, it is also possible to use
(9.18) for the regularization of functional determinants in field theory, that is, if the
mode number n is not bounded. The expansion (9.18) has at most a finite power-law
order growth in n [81, 163]. This fact allows us to use the parameter s to cure the
divergences arising from the infinite number of modes. Changing the integration
variable from M2 → n2M2 leads to

ζ(s) =
sin(πs)

π

∫ ∞
0

dM2

M2s

d2

dM2
I(M2, s) (9.19)
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with

I(M2, s) =
∑
n

1

n2s
lnun(M2n2, t0) . (9.20)

For a finite parameter s > 0 the expression (9.19) is finite. Analytic continuation of
the ζ-function from its convergence domain to s = 0 leads to [81]

ζ(s) =
1

s
(Ipole)ln + (IR)ln + [Ipole]∞0

+s

{
[IR]∞0 −

∫ ∞
0

dM2 lnM2dI
pole(M2)

dM2

}
+O(s2) . (9.21)

The coefficients (Ipole)ln, Ipole(∞) and IR(∞) are defined through the large M -
expansion

I(M2 →∞, s) =
(Ipole)ln lnM2 + IR(∞)

s
+IR(∞) + (IR)ln lnM2 +O(M2) (9.22)

and the pole part Ipole(M2) is defined through

I(M2, s) =
Ipole(M2)

s
+O(s0) . (9.23)

Ipole(0) and IR(0) are determined by

I(M2 → 0, s) =
Ipole(0)

s
+ IR(0) +O(s) . (9.24)

It is also possible to apply the regularization method if the differential equation
exhibits singular coefficients. According to Olver [163], the WKB expansion of a
second-order differential equation

d2u(M2, t)

dt2
= ω(t)2u(M2, t) = [f(t) + g(t)]u(M2, t) (9.25)

has the form

u(M2, t) = C(M)(g(t))−1/4 exp

{∫ t

0

dt′(g(t′))1/2

}
[1 + h(t)] (9.26)

with h(t) = O(M−1). The function h(t) can be expressed as Volterra integral

h(t) =
1

2

∫ t

t0

(
1− exp

{
2

∫ t′

0

g1/2(t′′)dt′′ − 2

∫ t

0

g1/2(t′)dt′

})
×

×ψ(t′)[1 + h(t′)]dt′ (9.27)
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with

ψ(t) =
f(t)

g1/2(t)
− 1

g1/4(t)

d2

dt2
1

g1/4(t)
. (9.28)

Therefore the WKB expansion only makes sense if the kernel of (9.27) is bounded.
This leads to the condition

Ψ(t) =

∫ t

t0

dt′|ψ(t′)| <∞ . (9.29)

Here, t0 and t are the boundaries of the interval under consideration. The split of
ω(t)2, see (9.25), is chosen such that singular coefficients like 1/t in the differential
equation do not destroy the WKB expansion. This is the reason for the 1/4–trick in
the paper [81].

As already mentioned above, the evaluation of I(M2, s) involves an important
approximation. In order to fulfill the boundary condition (9.6), two linearly indepen-
dent solutions of the corresponding differential equation are required. After analytical
continuation, the solutions are of the form u ∼ exp(Mt) and u ∼ exp(−Mt). The
second solution is exponentially decreasing and will therefore be discarded. This
implies that the analytically continued functions u(M2, t0) do not respect the bound-
ary condition (9.6). The choice of µ corresponds to a choice of the path integral
normalization. In order to coincide with Schrödinger evolution, one needs to choose
µ = π.
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Raimond, and S. Haroche. Observing the Progressive Decoherence of the “Meter”
in a Quantum Measurement. Phys. Rev. Lett., 77(24):4887, (1996).

[37] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, and
A. Zeilinger. Wave-particle duality of C60 molecules. Nature, 401:680, (1999).

[38] I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij. Coherent
Quantum Dynamics of a Superconducting Flux Qubit. Science, 299(5614):1869,
(2003).

[39] C. Kiefer. Decoherence in quantum electrodynamics and quantum gravity. Phys.
Rev. D, 46(4):1658, (1992).

[40] C. Kiefer. Quantum Gravity, Second edition. Oxford University Press, Oxford.
(2007).

[41] C. Kiefer. Continuous Measurement of Minisuperspace Variables by Higher
Multipoles. Class. Quant. Grav., 4(5):1369, (1987).

179



Bibliography

[42] V. Sahni and A. A. Starobinsky. The Case for a Positive Cosmological Lambda-
term. Int. J. Mod. Phys. D, 9(4):373, (2000).

[43] T. Padmanabhan. Cosmological Constant - the Weight of the Vacuum. Phys.
Rep., 380(5-6):235, (2003).

[44] P. J. E. Peebles and B. Ratra. The cosmological constant and dark energy. Rev.
Mod. Phys., 75(2):559, (2003).

[45] J. Frieman, M. Turner, and D. Huterer. Dark Energy and the Accelerating
Universe. Ann. Rev. Astron. Astrophys., 46:385, (2008).

[46] A. R. Liddle and D. H. Lyth. Cosmological Inflation and Large-Scale Structure.
Cambridge University Press, Cambridge. (1998).

[47] M. Spradlin, A. Strominger, and A. Volovich. Les Houches Lectures on De
Sitter Space. hep-th/0110007, (2001).

[48] E. Schrödinger. Expanding Universes. Cambridge University Press, Cambridge.
(1950).

[49] N. et al. Jarosik. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Sky Maps, Systematic Errors, and Basic Results. (2010).

[50] A. D. Dolgov. The Very Early Universe. Cambridge University Press, Cam-
bridge. (1983).

[51] S. Weinberg. The cosmological constant problem. Rev. Mod. Phys., 61(1):1,
(1989).

[52] S. M. Barr. Attempt at a classical cancellation of the cosmological constant.
Phys. Rev. D, 36(6):1691, (1987).

[53] V. Sahni and S. Habib. Does Inflationary Particle Production Suggest Ωm < 1?
Phys. Rev. Lett., 81(9):1766, (1998).

[54] P. J. E. Peebles and B. Ratra. Cosmology with a time-variable cosmological
’constant’. Astrophys. J., 325:L17, (1988).

[55] A. Yu. Kamenshchik, U. Moschella, and V. Pasquier. An alternative to
quintessence. Phys. Lett. B, 511(2-4):265, (2001).

[56] R. R. Caldwell. A phantom menace? Cosmological consequences of a dark
energy component with super-negative equation of state. Phys. Lett. B, 545(1-
2):23, (2002).

180



Bibliography

[57] R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg. Phantom Energy:
Dark Energy with w < 1 Causes a Cosmic Doomsday. Phys. Rev. Lett.,
91(7):071301, (2003).

[58] S. Weinberg. Anthropic Bound on the Cosmological Constant. Phys. Rev. Lett.,
59(22):2607, (1987).

[59] H. Martel, P. R. Shapiro, and S. Weinberg. Likely Values of the Cosmological
Constant. Astrophys. J., 492(1):29, (1998).

[60] M. R. Douglas. The statistics of string/M theory vacua. JHEP, 05:046, (2003).

[61] F. Denef and M. R. Douglas. Distributions of flux vacua. JHEP, 05:072,
(2004).

[62] M. R. Douglas and S. Kachru. Flux compactification. Rev. Mod. Phys.,
79(2):733, (2007).

[63] F. Denef, M. R. Douglas, and S. Kachru. Physics of string flux compactifications.
Ann. Rev. Nucl. Part. Sci., 57:119, (2007).

[64] S. Ashok and M. R. Douglas. Counting flux vacua. JHEP, 01:060, (2004).

[65] R. Blumenhagen, B. Körs, Dieter Lüst, and Stephan Stieberger. Four-
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