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Zusammenfassung 

Samendormanz oder Samenruhe ist definiert als das Ausbleiben der Keimung eines lebensfähigen 

Samens unter günstigen Bedingungen. Bei vielen höheren Pflanzen wird durch die Samenruhe der 

Zeitpunkt  der  Keimung  in  einer  Samenpopulation  optimiert.  Samendormanz  kann  sowohl 

Austreiben vor der Ernte als auch verfrühte Keimung im Winter verhindern. Während der letzten 

Jahrzehnte wurden viele  physiologische Untersuchungen zur Samendormanz durchgeführt.  Aber 

obwohl  die  Rolle  von  Pflanzenhormonen  bekannt  ist  wie  auch  die  Auswirkungen  einiger 

Chemikalien  und  der  Umwelt,  ist  das  Wissen  über  die  zugrunde  liegenden  molekularen 

Mechanismen immer noch lückenhaft. 

Diese  Arbeit  beschreibt  zwei  Ansätze  um mehr  Einblick  in  die  molekularen  Mechanismen  zu 

gewinnen.  Einerseits  wurde  die  Chromatinstruktur  während  der  Samenreifung  und  Dormanz 

untersucht. Während es nicht gelungen ist einen Unterschied in der Chromatinstruktur dormanter 

und nicht dormanter Samen zu messen, konnten Hinweise gefunden werden, dass das Volumen von 

Embryokernen  während  der  Samenreifung  abnimmt.  Das  könnte  mit  der  Entwicklung  der 

Trockentoleranz während der Samenreifung zusammen hängen. Außerdem wurde das Gen, das für 

den Dormanzphänotyp der reduced dormancy2 (rdo2) Mutante verantwortlich ist, kloniert und als 

TFIIS  Transkriptionselongationsfaktor  identifiziert.  Das  kodierte  Protein  weist  starke 

Konservierung mit dem Homolog aus Hefe auf, die Funktion ist aber pflanzenspezifisch, da es den 

Phänotyp der  Hefemutante  nicht  komplementieren kann.  Von Hefe  ist  bekannt,  dass  das  TFIIS 

Protein direkt mit der RNA Polymerase II interagiert, um eine transkriptionelle Sperre zu lösen. 

RDO2 ist in allen Geweben exprimiert, aber am höchsten im Samen. Die Menge des Transkripts 

steigt  während  der  Samenreifung  an,  und  erreicht  im  reifen  Samen  das  Maximum.  Stabile 

Transformanden, die ein RDO2-YFP Fusionsprotein exprimieren, zeigen Fluoreszenz im Zellkern, 

was mit der annotierten Funktion von RDO2 als TFIIS Protein übereinstimmt. Quantitative Real 

Time  PCR  hat  gezeigt,  dass  rdo2 Mutanten  während  der  Samenreifung  weniger  DOG1,  ein 

Dormanzschlüsselgen, exprimieren als Ler. Das würde die geringere Dormanz der  rdo2 Mutante 

zumindest teilweise erklären. RDO2 ist das zweite klonierte Gen nach HUB1, das eine Verbindung 

zwischen Transkriptionsregulation und Dormanz herstellt. 

Es ist  wahrscheinlich,  dass während der Samenreifung, wenn sich der Wassergehalt  der  Samen 

verringert  und  die  Kerne  schrumpfen,  die  Effizienz  der  Transkriptionselongation  abnimmt  und 

deshalb Transkriptionselongationsfaktoren wie RDO2 zunehmend benötigt werden. 
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Abstract 

Seed dormancy is defined as the failure of an intact viable seed to complete germination under 

favorable conditions. Many higher plants express seed dormancy to optimize the distribution of 

germination over time in a population of seeds. Seed dormancy can prevent preharvest sprouting as 

well  as  the  untimely  germination  during  winter. During  the  last  decades  several  physiological 

investigations were performed on seed dormancy. But even though the role of plant hormones is 

known as well  as the effect  of some chemicals  and the environment,  the knowledge about  the 

underlying molecular mechanisms remains fragmentary. 

This thesis describes two approaches to gain more insight in the molecular mechanisms. At the one 

hand,  the  chromatin  structure  during  seed maturation  and dormancy was  investigated.  While  a 

difference  of  chromatin  structure  of  dormant  and  non-dormant  seeds  was  not  measurable, 

indications were found that embryo nuclei reduce their volume during seed maturation. This could 

be related with the acquisition of desiccation tolerance during seed maturation. 

In addition, the gene responsible for the dormancy phenotype of the  reduced dormancy 2 (rdo2) 

mutant was cloned and identified as a TFIIS transcription elongation factor. The encoded protein 

shows strong conservation with the yeast homologue, but has a plant specific function, as it cannot 

complement the phenotype of the yeast mutant. In yeast the TFIIS protein is known to interact 

physically with the RNA polymerase II complex to release it from transcriptional arrest.  RDO2 is 

expressed in all tissues, but highest in seeds. The transcript level increases during seed maturation 

and reaches a maximum in mature seeds. Stable transformants expressing an RDO2-YFP fusion 

protein express fluorescence in the nuclei, which is consistent with the annotated function of RDO2 

as a TFIIS protein. Quantitative Real Time PCR revealed, that the transcript level of DOG1, a key 

dormancy gene, is reduced in rdo2 mutant seeds during maturation compared to Ler. This would at 

least partially explain the reduced dormancy of the rdo2 mutant. 

RDO2 is the second cloned gene after  HUB1 that links transcription regulation to dormancy. It is 

probable, that during seed maturation, when the water content of the seeds is reduced and the nuclei 

shrink, transcription elongation becomes less efficient, therefore a transcription elongation factor 

like RDO2 is increasingly required. 
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1 Introduction 
Seed dormancy, defined as the incapability of a viable seed to germinate under favorable conditions, 

is an important trait in nature and agriculture. To get access to the genomic mechanisms behind it 

the topic is studied in the model plant Arabidopsis thaliana. 

1.1 Arabidopsis thaliana 
The small dicot Arabidopsis thaliana, member of the  Brassicaceae, started its career as a model 

organism in the 1940s, when Laibach recommended it for genetic and physiological investigation 

(Laibach, 1943). By now it is an intensively studied plant, being object to physiological, genetical, 

biochemical and molecular investigations (Meyerowitz, 1987). It is favored because of its short life 

cycle of six to eight weeks, the ease of self- or cross-fertilization at will, the numerous progeny, and 

the possibility to be grown on minimum space in greenhouses and climate chambers (Meyerowitz, 

1987).  The  genome  of  Arabidopsis  thaliana is  distributed  over  five  chromosomes  and  counts 

approximately  130  Mb  encoding  more  than  27,000  genes.  The  genome  is  sequenced  almost 

completely (The  Arabidopsis Genome Initiative,  2000) and all  information is publicly available 

(www.arabidopsis.org). Consequently mutant and knockout collections of practically every gene are 

available.  Over  the last  decades,  scientists  of the Arabidopsis  research community developed a 

variety of techniques including efficient transformation and ways to study its molecular genetics, 

biochemistry and physiology.  Internet  resources provide access to results  of various  large scale 

experiments, like microarray data, as well as in silico analysis tools. Arabidopsis thaliana is native 

to  the  northern  hemisphere,  even  though  its  exact  geographic  origin  is  unknown.  It  has  been 

collected  from  the arctic  circle  to  the  equator  at  various  altitudes (Hoffmann,  2002).  Most 

commonly used  in  laboratory work  are  the  accessions  Columbia  (Col),  which  was  chosen  for 

sequencing, and Landsberg erecta (Ler), background line of various mutants. Accessions collected 

from natural  populations  provide  greater  variation  in  genotype  and phenotype  and are  utilized 

especially to analyze quantitative traits (Koornneef et al., 2004). Finally, variation in germination 

response and dormancy phenotypes of Arabidopsis thaliana is comparable to that of many higher 

plants, qualifying Arabidopsis thaliana as a model in seed research (Koornneef et al., 2002). 

1.2 Seed development in Arabidopsis thaliana 
Under greenhouse conditions  Arabidopsis thaliana generates elongated siliques that contain 40 to 

60 seeds each. The seed development takes about 20 days from pollination to release of the mature 

seed. Ripe Ler seeds have an average length of 0.5 mm and a red-brown color. Embryogenesis 
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starts after pollination, when the haploid egg cell and the central cell of the embryo sac are fertilized 

in parallel by a sperm cell each. The fertilized egg cell forms a diploid zygote that generates the 

embryo. The two haploid nuclei of the central cell of the embryo sac fuse with one sperm cell and 

develop into the triploid endosperm. During the first ten days of development the embryo undergoes 

a phase of rapid cell growth and proliferation. From the zygote it develops into a heart-shaped then 

a torpedo-shaped structure. After bending of the cotyledons it looks like a walking stick before 

finally hypocotyl and cotyledons have similar volume (Figure 1.1). At the end of seed expansion, 

when the embryo has reached its final size and fills the seed coat completely, cell division in the 

embryo  arrests  (Raz  et  al.,  2001).  During  the  second  half  of  seed  development  reserves  are 

accumulated  (reviewed  by  Meinke, 1994),  primary  dormancy  is  initiated  (Bewley,  1997), 

chlorophyll is degraded and tolerance to desiccation is acquired. The induction of dormancy starts 

early during seed maturation and in the mature seed dormancy is at its highest level (Raz et al., 

2001). During maturation drying 90 to 95 % of the original water content is removed. This results in 

a gradual reduction of metabolism and the embryo gets into a metabolically quiescent state. In the 

dehydrated state the seed can survive disadvantageous circumstances and the metabolism will be 

restarted when favorable conditions promote germination (Kermode and Finch-Savage, 2002). 

Figure 1.1: Seed development in Arabidopsis thaliana.  During embryogenesis the seed grows from a 
zygote to a bend structure that fills the seed coat,  before during the second half  of seed development 
reserves  are  accumulated,  chlorophyll  is  degraded,  dormancy  is  initiated  and  dessication  tolerance  is 
acquired. daf, days after fertilization, equivalent to days after pollination (dap) (adapted from Debeaujon et 
al., 2007). 

2
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1.3 Seed dormancy in Arabidopsis thaliana 
An intact viable mature seed is dormant, if it is not able to germinate under favorable conditions, 

which are presence of water, oxygen, light and appropriate temperature (Bewley, 1997). Dormancy 

can occur during time as primary dormancy, induced during seed maturation and determined by 

environmental  and  endogenous  factors,  or  secondary  dormancy,  which  might  be  induced  by 

unfavorable conditions after release from the dormant state. Seed dormancy is an adaptive trait and 

assures that germination occurs during the most suitable time to establish seedlings and complete 

the plants life cycle. It is a survival strategy in which development is temporally adjourned and 

energy is saved (Bewley, 1997).  The quality and duration of the dormant state is different and 

therefore characteristic among the accessions of  Arabidopsis thaliana (Laibach, 1951; Evans and 

Ratcliffe, 1972; Ratcliffe, 1976). 

There are two kinds of dormancy which are caused by different mechanisms. The coat-imposed or 

coat-enhanced dormancy is generated by the seed envelopes. When the physical barrier of the seed 

envelopes is removed, the isolated embryo is able to germinate. Here the growth potential of the 

embryo is important to overcome the constraints of the seed envelopes (Bentsink and Koornneef, 

2002). Embryo dormancy, on the other hand, is intrinsic to the embryo and not promoted by some 

other structure (Debeaujon et al., 2007).  

Dormancy is  regulated  by a  combination  of  environmental  and  endogenous  signals.  Molecular 

studies of dormancy revealed changes in transcriptomes,  proteomes, and hormone levels during 

different  dormancy  states  (Finkelstein  et  al.,  2008).  The  relation  of  abscisic  acid  (ABA)  to 

gibberellin (GA) levels and sensitivity is a crucial regulator of dormancy status, but not the only 

one. ABA promotes dormancy induction and maintenance, whereas GA promotes progression from 

release through germination (Hilhorst, 1995; Debeaujon and Koornneef, 2000). 

Dormancy release is a gradual process, a combination of changes in the constraints of the seed 

envelopes  and the growth potential  of the embryo.  Besides  changes  in  the hormonal  state  also 

exogenous factors can promote germination. Two possibilities are cold stratification, i.e. exposure 

to  cold temperatures under  moist  conditions,  and afterripening,  which is  dry storage of  mature 

seeds. The requirement of these treatments to break dormancy are specific to Arabidopsis thaliana 

accessions. Winter annuals experience afterripening during summer, leading to germination in fall, 

while  summer  annuals  rely  on stratification  during  winter  and  are  able  to  germinate  in  spring 

(Baskin and Baskin, 1998). 

3
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Even though some aspects of dormancy regulation have been explored, the knowledge about the 

underlying  molecular  mechanisms  remains  fragmentary  (Finch-Savage  and  Leubner-Metzger, 

2006).

Dormancy genes referred to in this thesis 

One important regulator of dormancy, DOG1, was first identified as a quantitative trait locus (QTL) 

for dormancy in Arabidopsis thaliana (Alonso-Blanco et al., 2003). As described by Bentsink et al. 

(2006)  the  non-dormant  mutant  dog1 was  found  in  a  mutagenesis  screen  for  reduced  seed 

dormancy. For this seeds of a near isogenic line containing a Cvi introgression in Ler background at 

the  position  of  the  DELAY OF GERMINATION 1  QTL  (NIL DOG1)  were  treated  with  γ-

irradiation and mutants with no or strongly reduced dormancy were selected. The dog1 mutant is 

completely non-dormant and expresses no pleiotropic phenotype except being less storable at room 

temperature than Ler. The DOG1 gene was cloned and turned out to be a member of a novel plant 

specific  gene family with unknown function.  Lately it  was found that  the DOG1 locus  is  also 

involved in the ABA-mediated sugar signalling pathway, since the DOG1 Cvi allele responds to 

addition of glucose (Teng et al., 2007).  

Another gene involved in the dormancy process is HISTONE MONOUBIQUITINATION1 (HUB1), 

which was recently cloned in our lab (Liu et al., 2007). Its mutant was identified in a mutagenesis 

screen for reduced dormancy in Ler, and was originally named rdo4 (Peeters et al., 2002). The hub1 

mutant is less dormant than Ler and expresses several pleiotropic phenotypes. The HUB1 gene was 

found to encode a C3HC4 RING finger protein responsible for ubiquitination of histone H2B. It 

was shown, that the expression of several dormancy-related genes in the hub1 mutant is changed, 

suggesting a role for transcription control by histone ubiquitination in the dormancy mechanism. 

1.4 The dormancy mutant rdo2 
Four mutants with reduced dormancy, isolated in a dormancy screen after γ-irradiation of the Ler 

accession, were described by  Léon-Kloosterziel  et al.  (1996) and Peeters et al.  (2002).  reduced 

dormancy 2 (rdo2) seeds are characterized by their ability to germinate directly after harvest in 

contrast to the wild-type Ler, which needs two to six weeks of after-ripening. The recessive mutant 

also expresses a weak pleiotropic phenotype consisting of slightly darker green rosette leaves, less 

side shoots and a minor retardation of flowering time in comparison to Ler. The normal sensitivity 

of the rdo2 mutant to ABA suggests that RDO2 functions in a different, yet unknown pathway than 

the typical non-dormant ABA mutant.  A rough mapping localized the gene at  the lower part of 

4
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chromosome 2 (Peeters et al., 2002) but did not show co-localization with known dormancy genes 

or QTLs. 

1.5 Transcription elongation factor TFIIS
Transcription  is  the  process  of  transcribing  DNA sequence  into  RNA sequence.  In  eucaryots 

transcription of  genes proceeds in  three steps,  which are  initiation,  elongation and termination. 

Initiation starts when the promoter sequence binds the RNA polymerase and all required additional 

factors.  Consequently  the  DNA around the  starting  point  unwinds,  resulting  in  single-stranded 

DNA. After initiating the synthesis of the new RNA strand,  the RNA polymerase gets  into the 

elongation phase. During transcription, the polymerase complex also unwinds and reanneals the 

DNA in front and behind the point of transcription, and proofreads the new RNA strand. At the end 

of the transcribed sequence, the RNA and the enzyme complex dissociate from the DNA, which is 

called termination (Watson et al., 2008). 

Transcription elongation by the RNA polymerase is  not always continuous,  but faces blocks of 

different nature. These include nucleosomes, DNA lesions, DNA binding proteins and specific DNA 

sequences  itself  (Uptain  et  al.,  1997).  One  of  the  factors  that  enable  the  RNA polymerase  to 

overcome these blocks is the TFIIS transcription elongation factor. At the beginning of the 1970s 

the TFIIS protein was identified in mouse (Natori et al.,  1973), later in yeast (Sawadogo et al., 

1980A), calf thymus (Rappaport et al., 1987), humans (Reinberg and Roeder, 1987) and Drosophila 

(Sluder et al.,  1989). Most eucaryots have several copies with specific spatial or developmental 

expression (Uptain et al., 1997; Spencer and Groudine, 1990). TFIIS proteins have not yet been 

studied in plants, but the topic is deeply investigated in Saccharomyces cerevisiae.  The protein 

contains three functional domains, of which the N-terminal TFIIS domain is composed of a four-

helix  bundle that  is  not  required for the known biochemical  and biological  functions  of TFIIS 

(Booth et al., 2000). Nevertheless a number of biochemical and genetical interactions between the 

TFIIS domain and other factors have been described (Pan et al., 1997; Wery et al., 2004; Malagon et 

al., 2004; Davie and Kane, 2000; Fish et al., 2006). The TFS2M domain forms a three-helix bundle 

and is connected to the zinc finger domain by a short linker (Kettenberger et al., 2003). The zinc 

finger domain  is composed of three antiparallel  β-sheets  that  form a zinc ribbon. The TFS2M 

domain and the linker are required for binding of the RNA polymerase II whereas the zinc finger 

domain is essential for stimulation of RNA cleavage (Awrey et al., 1998). 

5
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Figure 1.2: Structure of yeast TFIIS protein. The location of the three functional domains is depicted 
(adapted from Olmsted et al., 1998). 

The function of the TFIIS protein which is best investigated is its ability to accelerate the overcome 

of transcriptional arrest of RNA polymerase II (Fish and Kane, 2002). Kettenberger et al., (2004) 

showed,  that  the  C-terminus  of  the  TFIIS  protein  inserts  into  the  active  center  of  the  RNA 

polymerase II complex and induces a shift of the RNA strand. The TFIIS stimulated RNA cleavage 

creates a new RNA 3' end in the active center and facilitates read through of the block. Lately 

additional roles for TFIIS were found. It was shown to support the formation of the transcription 

preinitiation complex (Kim et al., 2007) and to act as a general RNA polymerase III transcription 

factor  (Ghavi-Helm et  al.,  2008). In yeast  knock-out of the single  copy TFIIS gene leads to  a 

phenotype only in presence of the NTP-depleting drugs 6-azauracil and mycophenolic acid, so the 

protein might not be essential  under normal conditions or be functionally redundant with other 

transcription factors (Wery et al., 2004). 

1.6 Chromatin structure 
All  eucaryots  have  chromosomes with  more and less  gene-rich  regions.  The different  kinds  of 

chromatin  are  structurally characterized  by varying  degrees  of  compaction  and associated  with 

specific proteins such as histones. In contrast to many other plants  Arabidopsis thaliana has little 

highly condensed heterochromatin, which facilitates investigation of the chromatic structure.  By 

staining with dyes that intercalate in the DNA helix (DAPI or propidium iodide) interphase nuclei 

display the highly aggregated chromatic areas as regions of strong fluorescence. These so called 

chromocenters contain the strongly condensed and repeat rich heterochromatin (Fransz et al., 2002). 

In yeast,  Drosophila melanogaster and mammalian cells, a clear relationship has been established 

between epigenetic markers, chromatin organization and gene expression during cell differentiation 

(reviewed by Arney and Fisher, 2004). Grigoryev et al. (2004) found in mouse lymphocytes, that 

constitutive centromeric heterochromatin plays an active role in the transition from proliferation to 

6
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quiescence. At crucial points during the plant life cycle, when cells or tissues transform towards a 

new fate or function,  the chromatin undergoes structural  changes  in organization.  During floral 

transition pericentromeric heterochromatin as well as gene-rich chromatin decondensates, possibly 

to  provide  better  access  to  the  DNA  for  transcription  (Tessadori  et  al.,  2007B).  Upon 

dedifferentiation  of  mesophyll  cells  into  undifferentiated  protoplasts  the  heterochromatin 

decondenses, and the repeat-rich areas are resorted (Tessadori et al.,  2007A). Rearrangements can 

also be caused by low light conditions, biotic stress or infection by pseudomonas (Tessadori et al., 

2007B, Paul Fransz, personal communication). 

1.7 Objectives of the thesis
The work described in this thesis aimed to a better understanding of the molecular mechanisms of 

seed dormancy in Arabidopsis thaliana. The goal was to clone and characterize the dormancy gene 

RDO2 and to investigate the chromatin structure of seeds during seed maturation and dormancy. 

Chromatin structure during seed maturation and dormancy

The change from seed maturation to dormancy is an important transition during plant development, 

and  is  associated  with  large  scale  changes  in  the  transcriptome.  This  could  be  reflected  in 

alterations in the chromatin structure of embryonic nuclei. This thesis aimed to answer the question 

whether there is a measurable alteration of chromatin organization at the microscopic level during 

seed maturation and dormancy. Besides the comparison between dormant and non-dormant seeds as 

well  as  seeds  during  maturation  another  goal  was  to  establish  a  technique  to  measure 

heterochromatin content. 

Cloning and characterization of RDO2 

To improve our understanding of the molecular mechanism of seed dormancy, the elucidation of 

gene functions and regulatory pathways involved in this process is an important goal. The aim of 

this thesis was to clone the gene that is responsible for the reduced dormancy of the rdo2 mutant. Its 

molecular  function  and  interactions  with  other  dormancy genes  or  regulatory  pathways  would 

elucidate its role in dormancy. 

7
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2  Materials and methods 

2.1 Materials 

2.1.1 Chemicals and antibiotics 
All chemicals used for the experiments were purchased from the following suppliers: AppliChem 

(Darmstadt, Germany), Aventis (Strasbourg, France), Becton, Dickinson & Co. (Le Pont de Claix, 

France),  Bio-Budget  (Krefeld,  Germany),  Biorad  (Hercules,  USA),  Fermentas  (St.  Leon-Rot, 

Germany),  Fluka  (Buchs,  Germany),  Invitrogen  (Karlsruhe,  Germany),  Merck  (Darmstadt, 

Germany),  Promega  (Mannheim,  Germany),  Roche  (Mannheim,  Germany),  Roth  (Karlsruhe, 

Germany), Serva (Heidelberg, Germany), Sigma (Deisenhofen, Germany). 

All  antibiotics  for  bacterial  work were purchased  from Duchefa (Haarlem, Netherlands).  Stock 

solutions of dissolved antibiotics were stored at -20°C. 

Antibiotic 
(Abbrevation)

Stock Conc. 
(mg/ml)

Solvent Final Conc. for selection 
on LB or YEB medium (mg/l)

E.coli A.tumefaciens
Ampicillin (Amp) 100 H2O 100 -
Carbenicillin (Carb) 50 Ethanol - 50
Chloramphenicol (Cam) 50 Ethanol 25 -
Gentamycin (Gent) 10 H2O 10 10
Kanamycin (Kan) 50 H2O 50 25
Rifampicin (Rif) 50 DMSO - 50
Tetracyclin (Tet) 10 H2O 10 10

Table 2.1: Antibiotics

2.1.2 Buffers and culture media 
General  buffers  and  media  were  prepared  as  described  by Sambrook  and  Russel (2001)  and 

autoclaved for 20 min at 121°C. For some applications specific solutions were prepared. 

Enzyme mix 
0.3 % pectolyase, 
0.3 % cytohelicase 
0.3 % cellulase 
in citrate buffer

BVO Fix buffer (after Bauwens and Van Oostveldt)
1 % formaldehyde 
10 % DMSO 
2 mM EGTA 
0.1 % Tween-20 
in PBS 
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PBT 
0.1 % Tween-20
in PBS

Dellaporta DNA Extraction Buffer
50 mM Tris pH 8 
10 mM EDTA pH 8 
0,1 M NaCl 
1 % SDS 

Dellaporta 5M/3M potassium acetate 
3 M potassium acetate 
11,5 % glacial acetic acid 

RNA High Salt Precipitation Solution 
0.8 M sodium citrate 
1.2 M sodium chloride 

2.1.3 Enzymes and commercial kits 
All  restriction  enzymes  including  their  buffers  were  purchased  from Fermentas  (St.  Leon-Rot, 

Germany), New England Biolabs (Frankfurt a. M., Germany), or Roche (Mannheim, Germany). 

The following nucleic acid modifying enzymes were used: 

Accu Prime Pfx DNA Polymerase (Invitrogen, Karlsruhe, Germany)
Klenow fragment exo (Fermentas, St. Leon-Rot, Germany) 
Lysozym (Roche, Mannheim, Germany) 
Pfu DNA-Polymerase (Fermentas, St. Leon-Rot, Germany) 
Ribonuclease Inhibitor (Roche, Mannheim, Germany) 
RNase A (DNase-free) (Qiagen, Hilden, Germany) 
RNase H (Promega, Mannheim, Germany) 
SuperscriptTM II reverse transcriptase (Invitrogen, Karslruhe, Germany) 
Taq DNA Polymerase (Invitrogen, Qiagen or Roche) 
T4 DNA Ligase (Invitrogen, Karlsruhe, Germany) 

The following commercial reagents and kits were used: 

1kb DNA ladder (Invitrogen, Karlsruhe, Germany)
Gateway® BP/LR-ClonaseTM II Enzyme Mix (Invitrogen, Karlsruhe, Germany) 
MagAttract® 96 DNA Plant Kit (Qiagen, Hilden, Germany) 
NucleoSpin® Plasmid (Macherey-Nagel, Düren, Germany) 
NucleoSpin® RNA Plant (Macherey-Nagel, Düren, Germany) 
Power SYBR® Green PCR Master Mix (Applied Biosystems, Darmstadt, Germany) 
QIAprep®Spin Miniprep Kit (Qiagen, Hilden, Germany) 
QIAquick® Gel Extraction Kit (Qiagen, Hilden, Germany)
RevertAidTM H Minus First Strand cDNA Synthesis Kit (Fermentas, St. Leon-Rot, Germany) 
RNAqueousTM Phenol-free total RNA Isolation (Ambion, Austin, USA)
RNeasy® Plant Mini Kit (Qiagen, Hilden, Germany) 
RNA Isolation Aid (Ambion, Austin, USA) 
Zero Blunt® TOPO PCR Cloning Kit (Invitrogen, Karlsruhe, Germany) 
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2.1.4 Oligonucleotides and plasmids 
All synthetic oligonucleotides were purchased from Invitrogen (Karlsruhe, Germany) or Operon 

(Köln, Germany). The primers used for different applications, are listed below. 

The differentiation of  wtRDO2 and mutant  rdo2 is possible with a primer that ends with the 4 bp 

deleted in the mutant. It does not anneal to the mutant sequence but amplifies the wt sequence 

selectively. 

Table 2.2: Primers for mapping of RDO2 and their physical position on chromosome 2

Table 2.3: Primers for different genotypes
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Name Position (Mb) Type Forward Sequence 5' to 3' Reverse Sequence 5' to 3'
T2N18 15,586 SSLP TTTACGAATAGGATTGGGTTTCATC ATGATTCTCTTTATGGCTCCTCAGC
F16M14 15,995 SSLP TAGCTACAGTCACCACGAGCAC CCTGGAACCTAAATCTAAGAATATGAC
T19C21 16,110 SSLP AACAAGCCAGTCTTTCCAATGC AAATTTTGGTGAATGCCTTTGC
T6A23-2 16,129 SSLP CACAAAAAGCATCTCTTTCAGTCC TGAATAATGCTTCATCTATCTTTCACG
T6A23-1 16,175 SSLP TCACCTTTACATTGTTTGCTTTGG CGTCTCAGATCTCTCACAGATGTTC
F12L6 16,487 SSLP CGCAGCATTGCTATCACATCAG GCCTGCATGGGAATAGTGACAG
T3K9 17,114 SSLP AAATTGCTGTGATGGTGAG GAAGGAGCATTATGGACATG
MHK10-2 17,694 SSLP TTGTAAGATTTCCCGGAGTTTCG CTAGCCACGGCCACGATTTC
T1O24 18,019 SSLP TTAACAGAAACCCAAAGCTTTC TGACCTCCTCTTCCATGGAG

Name Genotype Forward Sequence 5' to 3' Reverse Sequence 5' to 3'
RDO2-mut-R RDO2 wt GTCACAGTTAACACATGTAACAT
rdo2-mut-R rdo2 mutant GTCACAGTTAACACATGTAAAGT
nit1.2 NILD117 CGGAATTGATGTTTTGGACC CCCTACATTCTACAACCATGTAGCC
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Table 2.4: Primers for molecular cloning

Table 2.5: Primers for quantitative RT-PCR 
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Name Sequence 5' to 3'
CAATCCCACTATCCTTCGC

BASTA_R CAGTCGTAGGCGTTGCGTGCCTTC
CTATGGAACTGCCTCGGTGAG
CAATCGGTAGATTGTCGCACCTG

M13_F GTAAAACGACGGCCAG
M13_R CAGGAAACAGCTATGAC
pat_F GCTTCAAGAGCGTGGTCGCTGTC
pat_R GAAGTTGACCGTGCTTGTCTCG
RDO2-3UTR-GW-R GGGGACCACTTTGTACAAGAAAGCTGGGTCGCAGTTGAGTCAGAATCAGTTTC
RDO2-3UTR-R GCAGTTGAGTCAGAATCAGTTTC
RDO2-F ATGGAGAGTGATTTGATTGATTTG

GACATAGTCGACTTCATGGAGAGTGATTTGATTG
RDO2-GW-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGAGAGTGATTTGATTGATTTG
RDO2-GW-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAACAGAACTTCCAGTGGTTGTC

GAGTTGCGGTTGCTACTGTCTC
GGCAATCGGCGCGCCGAGAGAGTTGCGGTTGCTACTGTCTC
GTACAAACCTGCAGGCTTCGAGTTGCGGTTG
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAGTTGCGGTTGCTACTGTCTC
GGGGACCACTTTGTACAAGAAAGCTGGGTCCGTTCCGACAATCCCTAGCTC
CGTTCCGACAATCCCTAGCTC
CAATCAACTCGAGCTCCAACGTTCCGACAATCCCTAGCTC

RDO2-proms-F TTTGTGAAAAGCCCATCAAAC
CGAGGGCGCGCCTTTGTTTGTGAAAAGCCCATCAAAC

RDO2-R TCAACAGAACTTCCAGTGGTTGTC
CAAGAATTCTGGGTCTCAACAGAACTTCCAGTGG
CAAGAAAGCTGCAGCTCAACAGAACTTCCAGTGG
TCGCGTTAACGCTAGCATGGATCTC
GTAACATCAGAGATTTTGAGACAC

35S-promotor

KanR-F
KanR-R

RDO2-F-SalI

RDO2-proml-F
RDO2-proml-F-AscI
RDO2-proml-F-SfbI
RDO2-proml-GW-F
RDO2-proml-GW-R
RDO2-proml-R
RDO2-prom-R-XhoI

RDO2-proms-F-AscI

RDO2-R-EcoRI
RDO2-R-PstI
SeLA
SeLB

Gene Forward Sequence 5' to 3' Reverse Sequence 5' to 3'
Actin 8 CTCAGGTATTGCAGACCGTATGAG CTGGACCTGCTTCATCATACTCTG
DOG1 CGGCTACGAATCTTCAGGTGG CTGCGTCTTCTTGTAGGCTTGAG
RDO2 CTCGTTGCGACTCAGGTGG CAACCGTTAGTGCCTTCGG
wtRDO2 GCCCTGTTTGATTGTGAG GTCACAGTTAACACATGTAACAT
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Tabelle 2.6: Primers for semiquantitative PCR 

All plasmids used for molecular cloning were provided by colleagues or purchased from Invitrogen 

(Karlsruhe, Germany). 

Table 2.7: Plasmids for molecular cloning 

2.1.5 Bacterial strains 
For  molecular  cloning  chemically  competent  cells  of  E. coli strain  DH5α were  used 

(Hanahan, 1983).  The  E. coli strain  DB3.1  was  used  for  amplification  of  vectors  carrying  a 

Gateway cassette  (Invitrogen)  including  the  CcdB gene.  For  plant  transformation,  cells  of  the 

A. tumefaciens strain GV3101 were used, some of them carrying pSoup or pMP90RK, depending 

on the used plasmid. 

2.1.6 Yeast strains 
For the Yeast-two-hybrid screen the  strains AH109 and Y187 were used. Furthermore the library 

HS-Ara in AH109, derived from complete Col plants (09.08.2004) was used. 

For the growth test the strains CH1305 and CMKy3 were used, kindly provided by Caroline Kane 

(University of California, Berkley). 
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Gene Forward Sequence 5' to 3' Reverse Sequence 5' to 3'
ACT2 GTATGGTGAAGGCTGGATTTGC TGAGGTAATCAGTAAGGTCACGTCC
PER1 ATAAGAGAGGCGTGAAGCTCCTTGG GTGGGAACATCTTTTTGGCTTCCTC
DOG1 GAGCTGATCTTGCTCACCGATGTAG CTGCGTCTTCTTGTAGGCTTGAG
ABI4 GCTTCCCAACATCAACACAACCATC GGAGACGGAGGAGGAAGAGGAAGAG
ATS2 CGTGGTGACTTGGATGACACACTTC GCACCGCCTTATGGCTTCTTTAGAC
CYP707A2 TAAGCGGCTGGTCCAGTCTTCTTTC GAGGAGATTGGGGTGGTCGTGTAAG
NCED9 AACCGCAGCGTTTAATCAAGAATCG TTTCCACCGCGTCTAAAACCATAGC
SPT GACTGTGAAAGCGAGGAAGGAGGAG CGGGTGAAGTAAGGAGAGGGAAAGG
wtRDO2 GGAGATTTCACCAGAGAAACTC GTCACAGTTAACACATGTAACAT
RDO2+rdo2 ATGGAGAGTGATTTGATTGATTTG TCAACAGAACTTCCAGTGGTTGTC

Name Resistance Supplied/provided by
pCR-Blunt II-TOPO Kanamycin Invitrogen (Karlsruhe, Germany) 
pDONR201 Kanamycin + Chloramphenicol Invitrogen (Karlsruhe, Germany)
pDONR207 Gentamycin + Chloramphenicol Invitrogen (Karlsruhe, Germany) 
pENSG_YFP Ampecilin/Carbenicilin + Chloramphenicol AG Schnittger (MPIZ)
pEXSC_YFP Ampecilin/Carbenicilin + Chloramphenicol AG Schnittger (MPIZ)
pGreen_gw_MCS Kanamycin + Chloramphenicol AG Turck (MPIZ)
pLeela_GW Ampecilin/Carbenicilin + Chloramphenicol Melanie Schwab (MPIZ) 
pSoup Tetracyclin Christina Philipp (MPIZ) 
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2.1.7 Plant material 
Ecotypes of Arabidopsis thaliana used for the described experiments are Landsberg  erecta (Ler, 

Rédei, 1992),  Cape  Verde  Islands  (Cvi,  Lobin, 1983)  and  Columbia  (Col).  Furthermore  near 

isogenic  lines  (NILs),  T-DNA insertion  lines  from SALK (Alonso et  al.,  2003)  and GABI-Kat 

(Rosso et al., 2003) and mutants were used as listed below. 

Table 2.8: Arabidopsis thaliana lines 

2.2 Methods 

2.2.1 Plant works 

2.2.1.1 Germination, growth and harvest

Arabidopsis thaliana seeds were stratified on water-soaked filter paper (Macherey-Nagel, Düren, 

Germany)  in  plastic  Petri  dishes  (Ø 6 cm)  at  4°C in  the  dark  for  4 d  to  break  dormancy and 

synchronize germination. To induce germination, the Petri dishes were then placed in an incubator 

(MC785-VDB, van den Berg, Montfoort, Netherlands) under long day conditions (12 h 25°C light, 

12 h 20°C dark) for ~ 24 h. The moist seeds were transfered one by one to soil, that contained a 

mixture  of  substrate  and  vermiculite.  In  general  plants  were  grown in  air  conditioned  growth 

chambers  (Mobylux  GroBanks,  CLF  Plant  Climatics,  Emersacker,  Germany) under  long  day 

conditions (16 h 22°C light, 8 h 16°C dark) to reduce the influence of the seasons. Some plants (e.g. 

after transformation with Agrobacterium tumefaciens) grew in a greenhouse with ~16 h of natural 

and artifical light when needed. Plants were alowed to ripe without being covered by collection 

paper bags. Seeds were harvested from dry plants, sieved and filled in small, non sealed plastic 

bags. These bags were stored either in a closed cupboard at room temperature in the lab or for the 
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Name Description provided by
dog1 Melanie Schwab (MPIZ)
LCN2-18 Maarten Koornneef (MPIZ)
NILD106 Maarten Koornneef (MPIZ)
NILD117 Maarten Koornneef (MPIZ)
NILD73 Maarten Koornneef (MPIZ)
rdo2-1 Maarten Koornneef (MPIZ)
rdo2-2 GABI-Kat
rdo2-3 NASC
rdo2-4 GABI-Kat
rdo2-5 NASC
rdo2-6 NASC

dog1-1, non-dormant allele of dog1, background NILD106
Cvi introgression at position of RDO2 (chromosome 2), background Ler 
Cvi introgression at position of DOG1 (chromosome 5), background Ler
Cvi introgression at position of DOG6 (chromosome 3), background Ler 
Cvi introgression at position of DOG3 (chromosome 1), background Ler
4 bp deletion in RDO2, background Ler 
GABI_817G07, T-DNA insertion 322 bp in front of ATG of RDO2
SALK_056755, T-DNA insertion 876 bp behind ATG of RDO2
GABI_273H04, T-DNA insertion 1059 bp behind ATG of RDO2
SALK_027259, T-DNA insertion 1073 bp behind ATG of RDO2
SALK_133631, T-DNA insertion 1195 bp behind ATG of RDO2
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time of running germination tests in an incubator (Climacell, MMM Group, Planegg, Germany) at 

constantly 21°C and 50 % humidity in the dark.  

2.2.1.2 Germination test  

For dormancy measurement, the ability to germinate was determined in an periodic assay. About 

100 seeds of each batch were evenly distributed in small Petri dishes with filter paper soaked with 

~500 µl of demineralized water. The Petri dishes were placed in transparent plastic boxes with lids 

and  wet  filter  paper.  These  moisture  chambers  were  stored  in  an  incubator  under  long  day 

conditions (12 h 25°C light, 12 h 20°C dark). After seven days the total number of seeds and the 

number  of  germinated  seeds  were  counted  with  the  help  of  a  dissecting  microscope  (MZ6 or 

MZ12.5, Leica Microsystems, Wetzlar, Germany) and a reflected light lamp (KL1500LCD, Schott, 

Mainz,  Germany).  The  percentage  of  germinated  seeds  was  calculated  and  represents  the 

germination ability at the moment of sowing. The procedure was repeated weekly until the batch 

reached at least 95 % germination. 

2.2.1.3 Stable transformation of Arabidopsis thaliana and selection of transgenics 

A. thaliana plants were transformed following the Floral Dip method (Clough and Bent, 1998). For 

each experiment, 25 to 40 plants were grown in growth chambers under short day conditions (8 h 

22°C light, 16 h 16°C dark) until 5-10 inflorescences opened. Agrobacterium tumefaciens carrying 

the plasmid of choice was streaked out onto YEB plates with the selective antibiotics and incubated 

for 2-3 d at 28°C. Bacteria were collected from the plates by scraping and resuspended in 30 ml 

YEB medium. Prior to dipping 120 ml of a solution containing 5 % sucrose and 0.03 % Silwet L-77 

were added to the bacteria. The upper part of the plants with all inflorescences was dipped into the 

bacteria solution for 10-20 sec. The treated plants were kept horizontal in a moist chamber for one 

day before they were transferred to the greenhouse. 

All plasmids used in this work carry the BASTATM resistance gene as a reporter gene in A. thaliana. 

The T1 seeds of the transformed (T0) plants were sown on soil and when the first real leaves became 

visible,  the  plants  were  sprayed with  a  solution  of  the  herbicide  Glufosinat  (200 mg/l  in  H2O, 

BASTATM, Hoechst, Frankfurt a. M., Germany) three times with an interval of 2 d. The T2 seeds of 

the  surviving  T1 plants  were  treated  the  same  way.  After  spraying,  the  ratio  of  survivors  to 

non-survivors was determined and in case of a 3:1 splitting a single insertion of the T-DNA was 

assumed. The T3 seeds of the T2 plants again were treated with BASTATM. If all of the T3 plants were 

resistant, the T2 parent was identified as being homozygous for the insertion. 
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2.2.1.4 Transient transformation of Allium ampeloprasum

The transient transformation of leek epidermis was performed with the particle gun as described by 

Cole et al.  (2006). 50 mg tungsten  particles were kept on 60°C for 2 h in 1 ml of ethanol before 

they were chilled on ice for 10 min. After short centrifugation the supernatant was removed, and 1 

ml of new ethanol was added prior to three periods of 5 min sonification of maximum 50 W with 

chilling on ice in between. The contents was centrifugated shortly and washed three times with 

water before the suspension was kept in 1 ml of water and stored at -20°C. The ingredients for 

coating the tungsten particles were all stored at -20°C prior to coating and were added to a tube 

while mixing with a vortex in the following order: 50 µl tungsten particles, 10-15 µg DNA in 20 µl 

TE buffer,  20 µl  spermidine  pH 7,  and  60 µl  sterile  2.2 M CaCl2.  The  mixture was shaken for 

10 min at room temperature and subsequently kept on ice until the DNA is on the microcarriers. 

200 µl of ice-ethanol were added and the solution kept on ice for 10 min while the microcarriers 

were prepared. After short centrifugation and  three times rinsing with ethanol, the material was 

taken up in  30 µl  of  ethanol,  which is  sufficient  for  two shots.  15 µl  of  the  prepared  tungsten 

suspension were pipetted on a microcarrier placed on a metalring and air dried. The lower white 

part of fresh leek was divided in halves and pieces of 5x5 cm cut out of the middle layers. For each 

shot one piece was placed on a plastik petri dish with wet filter paper and the surface was cut 

longitudinal to become plane. The bombardment was performed with a particle delivery system 

(PDS-100/He Biolistic®, Bio-Rad, München,  Germany).  The leech was kept dark and moist  for 

some  hours  till  over  night  and  finally  analysed  with  a  stereo  microscope  (MZ16F,  Leica 

Microsystems)  with  a  YFP fluorescence  filter  (10447410,  Leica  Microsystems).  Pictures  were 

processed with Leica LAS software. 

2.2.2 Bacteria works 

Transformation of bacteria and selection of clones 

E. coli chemically competent cells were transformed by heat shock (Hanahan, 1983). Aliquots of 

the bacteria were stored at -80°C in 26 % glycerol. After addition of ~200 ng of plasmid to the 

thawn cells, they were kept on ice for 30 min. The tubes were tranfered to a 42°C water bath for 

90 sec before 950 µl LB medium was added. After 45 min of shaking at 37°C, the cells were plated 

on LB medium including the selective antibiotics and kept at 37°C over night. 

A. tumefaciens chemically competent cells were treated similar (Dower et al., 1988). After addition 

of the plasmid, the cells are kept on ice for 30 min and then frozen in liquid nitrogen for 5 min. 
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After 5 min at 37°C 500 µl of YEB medium was added and the tubes shaked at 28°C for 2 h. After 

plating on YEB with the selective antibiotics, the cells were kept at 28°C for 2-3 d. 

Some of the resistant colonies were grown to 10 ml liquid cultures. The plasmids were extracted 

with an appropriate kit and examined by restriction analyses and PCR. 

2.2.3 Molecular Methods 
Standard  molecular  procedures  were  performed  following  Sambrook  and  Russel (2001)  and 

Ausubel (1994), if not indicated otherwise. 

2.2.3.1 DNA extraction from plants tissue

DNA extraction of large numbers of samples was performed using the MagAttract® 96 DNA Plant 

Kit following the manufacturer's instructions. 

Smaller  numbers  of  samples  were  treated  following  the  method  described  at  Dellaporta et al. 

(1983).  Some young leaves or inflorescences were collected in 2 ml tubes and frozen in liquid 

nitrogen. After addition of a tungsten-carbide bead (Qiagen, Hilden, Germany) the material was 

ground for 1 min at a frequency of 30/min using a Mixer Mill MM300 (Retsch, Haan, Germany). 

750 µl extraction buffer was added and the tubes were shaken again before they were incubated at 

65°C for 10 min. The addition of 200 µl 5M/3M potassium acetate solution was followed by 20 min 

incubation on ice and 10 min centrifugation at 13,000 rpm. The supernatant was transfered into a 

new tube and mixed with an equal volume of isopropanol followed by 10 min centrifugation at 

13,000 rpm. The pellet was washed with 80 % ethanol and air dried. The DNA was eluted in 50 µl 

demineralized water and stored at -20°C. 

2.2.3.2 Plasmid extraction from bacteria 

Plasmid  isolation  from  E. coli and  A. tumefaciens was  accomplished  using  the  column  based 

QIAprep®Spin Miniprep Kit or NucleoSpin® Plasmid following the manufacturer's protocol. 

2.2.3.3 PCR conditions

All PCR reactions wer performed with a Thermocycler T3 (Biometra, Göttingen, Germany). For 

general  application  Taq DNA polymerase  was used,  whereas  for  cloning  and sequencing  Accu 

Prime  Pfx DNA Polymerase  or  Pfu DNA Polymerase  was  used  following  the  manufacturer's 

instructions. The composition and conditions of a standard reaction is listed below. 
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Reagent Concentration Volume (µl)
PCR buffer 10 x 1

dNTPs 10 mM 0.2

Primer F 10 µM 0.4

Primer R 10 µM 0.4

DNA template 50-200 ng/µl 1

DNA polymerase 1 U/µl 0.05

dH2O 6.95

Annealing temperature    55-65°C

Elongation time               1 min/1 kb

Number of cycles             35

Table 2.9: Standard PCR conditions 

2.2.3.4 Analyses of DNA fragments and purification 

DNA fragments were generally analysed by agarose gel electrophoreses. The DNA as well as the 

1kb DNA ladder was supplemented with loading buffer and filled into the slots of a prepared gel. 

The concentration of the agarose depended on the size of the expected fragments. Electrophoreses 

was performed at 5 V/cm using TAE buffer. Finally the separated fragments were visualized on a 

transilluminator  with  UV light  (254 nm)  and  photographed  with  a  gel  documentation  system 

(INTAS, Göttingen, Germany). The exposure of fragments which were subsequently purified from 

the gel was kept at minimum. Gel extraction and purification of DNA fragments was conducted 

using the QIAquick® Gel Extraction Kit following the manufacturer's protocol. 

2.2.3.5 RNA extraction from plant tissue

RNA extraction from leaf material was done using the RNeasy® Plant Mini Kit or NucleoSpin® 

RNA Plant following the manufacturer's protocol. 

RNA extraction from siliques and seeds was performed as established by  Kushiro et al.  (2004). 

40 mg material was frozen in liquid nitrogen and growned with mortar and pestle without being 

thawn and subsequently processed with the RNAqueousTM Phenol-free total RNA Isolation Kit + 

RNA Isolation  Aid  following  the  manufacturer's  instructions.  The  quality  of  the  RNA was 

determined  with  the  Nanodrop  ND-1000  spoctrophotometer  (Peqlab  Biotechnologie  GmbH, 

Erlangen, Germany). As further purification steps, high salt precipitation to remove polysaccharides 

and precipitation of high molecular weight RNA with lithium chloride was performed. The RNA 

was diluted with RNase free water to 1 ml and precipitated by addition of 250 µl isopropanol and 

250 µl high salt precipitation solution. The mixed solution was kept on ice for 2 h before the RNA 

was recovered by 15 min cetrifugation at 14,000 rpm and 4°C. After rinsing the pelet with 70 % ice 
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cold ethanol air drying, it was dissolved with RNase free water to end up with a concentration of 

> 300 ng/µl. By addition of 0.5 volume of 5 M LiCl and subsequent storage on ice over night the 

RNA was precipitated. 20 min centrifugation at 13,000 rpm and 4°C was followed by washing with 

70 % ethanol and air drying. The pellet was finally dissolved in 10 µl RNase free water and the 

quality was controlled. A ratio of absorbance A260nm/A280nm between 1.8 and 2.0 and A260nm/A230nm 

between 2.5 and 3.0 would show optimal low presence of peptides and polysaccharides. If needed 

the purification steps were repeated. Additionally 1 µl of the RNA solution was run on an agarose 

gel to test the integrity by visualization of the 18S and 28S ribosomal RNA. Total RNA was stored 

at -80°C. 

2.2.3.6 cDNA synthesis 

cDNA first strand synthesis was done with the RevertAidTM H Minus First Strand cDNA Synthesis 

Kit following the manufacturer's instructions. 3 µg of total RNA and oligo(dT)16-18 primers were 

used. 

2.2.3.7 Nucleic acid quantification 

For  precise  validation  DNA  and  RNA  was  quantified  using  the  Nanodrop  ND-1000 

Spectrophotometer (Peqlab Biotechnologie GmbH, Erlangen, Germany). 

2.2.3.8 Sequencing 

DNA sequencing was carried out by the MPIZ DNA core facility ADIS on Abi Prism 377, 3100 and 

3730  sequencers  (Applied  Biosystems,  Darmstadt,  Germany)  using  BigDye-terminator  v.3.1 

chemistry and reagents from Applied Biosystems. The output data  was analyzed with DNAstar 

Lasergene SeqMan Software (GATC Biotech AG, Konstanz, Germany). 

2.2.3.9 Molecular cloning 

All constructs were created using the Gateway® technology (Invitrogen, Karlsruhe, Germany). PCR 

products amplified with specific primer extensions (see table 2.6) were pasted into an entryvector 

(pDONR201 or 207) by BP reaction. The resulting plasmid was checked by PCR, restriction digest 

and sequencing of the inserted fragment. By LR reaction with a Gateway compatible expression 

vector the final construct was built and subsequently checked by PCR and restriction analyses. 
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2.2.3.10 Expression analyses 

RNA expression was measured by semiquantitative PCR or quantitative Real Time PCR. To detect 

putative contamination with genomic DNA the primers were either located in different exons or 

across exon-exon boundaries.

For semiquantitative PCR the reaction mix was prepared as described above, but the PCR was run 

for 15, 20, and 25 cycles. The result of the reaction that did not yet lead to maximal amplification 

was chosen for analysis. 

Quantitative  real  time  PCR  was  performed  with  SYBR  Green  (RealMasterMix  SYBR  ROX, 

5Prime, Hamburg, Germany) and a Mastercyler ep realplex (Eppendorf, Hamburg, Germany). The 

PCR  reaction  was  prepared  and  performed  following  the  distributors  instructions.  To  monitor 

appearance of undesired PCR fragments or primer dimers subsequent to every PCR run a melting 

curve  analysis  was  performed  (60°C  to  95°C  with  a  heating  rate  of  0,5°C/s  and  continuous 

fluorescence measurement). Quantification of the normalization gene Actin8 was calculated based 

on a 10-fold dilution series of a reference sample. Each data point represents the mean of three 

technical replicates on the same PCR plate. Plant material was grown under controlled conditions 

(22°C/16 °C, long day)  and for each time point siliques from five to ten different  plants  were 

collected. 

2.2.4 Yeast-two-hybrid and growth test with yeast
The yeast-two-hybrid screen was performed following the method described by Soellick and Uhrig 

(2001). Transformation of yeast cells and growth assay were performed as described in the Yeast 

Protocols Handbook (2001). 

2.2.5 Cytological methods 

2.2.5.1 Spreading and staining of embryo nuclei on slides 

Seeds were imbibed on wet filter paper for 2 h, embryos were isolated and directly transfered to ice 

cold ethanol/acetic acid 3:1; then stored in a tube at  -20°C over night. The fixed embryos were 

washed in the tube with Aqua dest for 2 x 5 min, then washed with 10 mM NaCitrate pH 4,5 for 2 x 

5 min. The embryos were digested with enzyme mix in a closed tube at 37°C for at least 3 h. The 

enzyme mix  was  replaced  in  the  tube  by Aqua dest.  The  embryos  were  placed  on  a  piece  of 

parafilm,  tapped  with  a  blunt  needle  under  the  binocular  until  they  became  a  homogeneous 

suspension. The suspension was transferred to a tube and placed on ice. A drop (3-5 µl) of the cell 

suspension was placed on a slide, 20 µl of 45 % acetic acid added with the help of a blunt needle, 
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the slide placed on a heat block at 45°C, and the drop gently stirred with a blunt needle for 30-45 s. 

The acetic acid was removed with drops of ice cold 3:1, and the slide tilt to remove liquid and air 

dry. Addition of 8-10 µl of 2 µg/ml DAPI or PI in Vectashield at the center of the slide and of a 22 x 

22 mm coverslip. 

2.2.5.2 Whole mount staining of embryos 

Seeds were imbibed on wet filter paper for 2 h, embryos were isolated and fixed with BVO for 

45 min. The embryos were washed with PBT for 2x5 min, with methanol for 2x5 min, with ethanol 

for 5 min, and finally fixed with xylene:ethanol 1:1 for 30 min. After washing with ethanol for 

2x5 min the material was rehydrated with 90%, 70%, 50%, 30% ethanol for 2 min each and washed 

with PBT for 5 min. Incubation with RNase (100µg/ml) + 1% Tween in PBS for 90 min at 37°C 

was followed by washing with PBT for 2x5 min and postfixation with 1% formaldehyde in PBT for 

30 min. After washing with PBT for 2x5 min the embryos were dehydrated with 70%, 90%, 100% 

ethanol 2 min each and transfered to slides. After air drying it was mounted in Vectashield + DAPI 

or PI (2µg/ml) and kept at 4°C in the dark. Analysis by confocal microscope was performed 3 days 

later. 

2.2.5.3 Microscopy 

For fluorescence light microscopy an Axioshot microscope with Differential Interference Contrast 

(Normarsky)-Optics (Zeiss, Heidelberg,  Germany) was used.  Pictures were taken with DISKUS 

version  4.10.19  (Carl  H.  Hilgers  Technisches  Büro,  Königswinter,  Germany).  Confocal-laser-

scanning  microscopy  was  performed  with  TCS  SP2  AOBS  (Leica  Microsystems,  Wetzlar, 

Germany). 

2.2.6 Amino acid sequence alignment (in silico)
Alignment of amino acid sequences was performed with MAFFT Version 6 (Katoh et al., 2008, 

http://www.ebi.ac.uk/Tools/mafft/index.html), sequences were transfered to ClustalW2 (Larkin et 

al., 2007, http://www.ebi.ac.uk/Tools/clustalw2/index.html), and visualization with Jalview (Clamp 

et al., 2004). 
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3 Results

3.1 Chromatin 
Before the start of this project initial observations in the lab showed differences in the chromocenter 

appearance between dormant and non-dormant embryos. While immature Ler seeds as well as ripe 

seeds of the non-dormant mutant  dog1 show strong and distinct chromocenters, the nuclei of Cvi 

seeds after harvest appeared evenly stained without spots. 

In active cells during the interphase the transcriptionally active euchromatin can be distinguished 

from the highly condensed inactive heterochromatin (Sadoni et al., 1999). Staining of the DNA 

reveals  weakly  stained  euchromatin  consisting  of  less  compacted  DNA and  brightly  stained 

heterochromatic spots called chromocenters. 

It has been shown that the chromocenter structure can be disrupted during developmental changes 

(Tessadori et al.,  2007 A+B). The transition from an immature seed to a dormant dry seed and 

finally a  non-dormant  seed could  also be associated  with  changes  in  chromatin  structure. It  is 

known that at certain points during the plant life cycle, when gene transcription adapts new fate or 

function, the chromatin undergoes structural changes in organization (Tessadori et al., 2007B). Also 

dormancy could be determined by specific chromatin organization. 

To  determine  whether  there  is  a  relationship  between  dormancy  and  chromatin  structure,  the 

distribution of heterochromatin in non-dormant and dormant seeds was compared. We analyzed the 

non-dormant mutant dog1 and its background line NIL DOG1 and seeds early in seed maturation 

compared to ripe seeds. For visualization of the chromatic structure specific fluorescent dyes were 

applied.  4',6-Diamidino-2-phenylindol (DAPI)  and  propidium  iodide  (PI)  incorporate  in  the 

heteroduplex structure of the DNA and lead to stronger signals at positions of DNA condensation, 

i.e. chromocenters. The relative intensity of the fluorescence can be quantified at every position of a 

digital picture and this data can be processed by appropriate software. High resolution pictures of 

the chromatin stained nuclei were made with the confocal microscope. Subsequently the pictures 

were analyzed with two specific software programs. The DISKUS CROMO software requires a 

manual  definition  of  the  area  of  interest  (nucleus)  and  counts  the  number  of  pixels  above 

(chromocenters) and below (nuclear background) a given threshold of fluorescence intensity. The 

ACAPELLA software is able to recognize a closed area (nucleus) on a picture and can identify and 

measure spots with given characteristics (chromocenters) within the nucleus. 
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3.1.1 Chromatin structure of non-dormant dog1 and dormant NIL DOG1 embryos 
To compare the chromatin structure of dormant and non-dormant embryos we made use of the dog1 

mutant. 

For  the  described  experiments  we used  mature  non-dormant  dog1  mutant,  the  highly dormant 

NIL DOG1 and moderately dormant Ler seeds. Whole mount staining and analysis of the seeds 

allows the distinction of the cells by tissues. The embryos were isolated from the seed coat, fixed, 

treated with RNase and finally stained with DAPI or PI. Whole mount confocal microscopy was 

used to take pictures from cells of the outer cell layer which usually showed the best staining. The 

compact and dense embryo tissue is not easily permeated by the solutions as well as by the confocal 

laser, which leads to less sharp pictures of inner tissue layers. 

Several whole mount stainings were performed with different material and a number of changes in 

the protocol were made to improve the quality of the pictures. The results showed large variation, 

possibly caused by environmental conditions during the growth of the plants. One example of a 

staining displaying more defined and stronger stained chromocenters in the non-dormant dog1 than 

in the dormant NIL DOG1 cells  is shown in Figure 3.1. 

Figure 3.1: Chromatin structure of non-dormant  dog1 and dormant NIL DOG1.  Confocal pictures of 
whole mount DAPI stained dog1 (left) and NIL DOG1 (right) mature embryos. Scale bars are 5µm. 

The results had to be quantified to measure their significance. For every measurement, 50 nuclei of 

cotyledon and hypocotyl from five to ten different embryos per line were photographed in high 
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resolution  by  confocal  microscopy.  These  pictures  were  analyzed  with  the  DISKUS  CROMO 

software (Figure 3.2) by manual selection of the area of the nucleus in the picture and a part of the 

background. Subsequently the pixels of the picture are displayed as black or white depending on the 

value of fluorescence intensity of each pixel. The threshold was set and defined the areas set above 

the limit (chromocenters) or below the limit (nuclear background). 

Figure 3.2: Principle of DISKUS CROMO measurement. Left: Confocal picture of a PI stained nucleus. 
Middle: Result of the manual selection of the nucleus  (yellow line) and a marked area of background (white 
line). Right: Screen shot of the black-and-white mask to set the intensity threshold. 

A prerequisite for the measurement of the heterochromatin fraction is an appropriate staining of the 

nucleus. The pictures of three experiments were chosen for measurement (Table 3.1). The results 

are not consistent. Although the fraction of heterochromatin is always higher in dog1 seeds than in 

the dormant NIL DOG1 or Ler seeds, it varies between two to ten times. Therefore the results are 

not reliable due to the big differences between the experiments. The variation could be caused by a 

low quality of the analyzed pictures or the principle of the measurement with DISKUS CROMO. 

Most chromocenters contain strongly stained and lower stained parts. Sometimes chromocenters of 

lower intensity are located in less stained parts of the nuclei. By setting a threshold of intensity, 

these  less  strongly stained  parts  of  the  chromocenters  fall  below the  limit  and  are  counted  as 

“nucleus”. But the main reason for the difficulties of the measurement is the compactness of the 

nuclei. The nuclei in embryos are much smaller and more dense than for example in leaves, where 

this method has proven to be successful (Soppe et al., 2002). Due to the density of the nuclei, the 

software cannot identify and measure chromocenters properly. 
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staining sample
area 

(fraction of chromocenter 
to nucleus)

intensity 
(fraction of chromocenter 

to nucleus)

DAPI
dog1 0,28 % ± 0,07 0,55 % ± 0,15
NIL DOG1 0,02 % ± 0,01 0,06 % ± 0,02

DAPI
dog1 3,43 % ± 0,43 5,86 % ± 0,66
Ler 2,60 % ± 0,54 4,29 % ±0,79

PI
dog1 0,86 % ± 0,08 2,11 % ± 0,19
NIL DOG1 0,51 % ± 0,08 1,23 % ± 0,19

Table 3.1:  DISKUS CROMO measurement of  heterochromatin in nuclei  of  non-dormant  dog1 and 
dormant NIL DOG1 or Ler embryos. Mature dog1, NIL DOG1 and Ler embryos were whole mount stained 
with DAPI or PI. Pictures of longitudinal section with highest fluorescence of 50 single nuclei from cotyledon 
and hypocotyl were taken with the confocal microscope. Percentage of area and intensity of chromocenters 
compared to nucleus was measured with the DISKUS CROMO software. Values give means and standard 
errors. 

To improve the measurement, we used the ACAPELLA software which is an algorithm specialized 

to identify areas like cells and to identify dots within these areas. In this case the dots are the 

chromocenters in the area of the nucleus. 

To optimize the settings for our purpose, some example pictures with discrete chromocenters and 

unstructured heterochromatin with DAPI and PI staining were chosen from all experiments. The 

DAPI stained nuclei were found to be inappropriate for the ACAPELLA software. The PI pictures 

were converted into 8 bit gray scale by Adobe Photoshop. Dr. Kurt Stüber (MPIZ) wrote a program 

to  automate  the  identification  of  the  nuclei  and  the  measurement  of  the  chromocenters  (see 

appendix).  Figure  3.3  shows  an  example  of  a  recognized  nucleus  (middle)  and  the  selected 

chromocenters  (right).  The  criteria  for  the  identification  of  the chromocenters  include  the  size, 

intensity and distance of the spots (see appendix). The number and intensity of the pixels within the 

spots and the intensity of the pixels of the nuclear area without the spots are summed up and all data 

transfered to a table. 
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Figure 3.3: Principle of ACAPELLA measurement. Left: Confocal picture of a PI stained nucleus. Middle: 
Result of the automatic identification of the nucleus (red line). Right: Result of automatic selection of five 
chromocenters (red, yellow, green, blue and purple lines).

Three  data  sets  of  non-dormant  dog1 and  dormant  NIL DOG1 embryos  stained  with  PI  were 

analyzed (Table 3.2). One set of pictures could not be processed by the software. The other two data 

sets show that the ACAPELLA software identifies larger areas of chromocenters in the NIL DOG1 

than in the dog1 nuclei. Even though the mean pixel intensity is lower in the non-dormant nuclei, no 

significant difference is measured in the percentage of chromocenter intensity to intensity of the 

total nucleus between the dog1 and NIL DOG1 samples. 

sample mean area of 
chromocenters

mean pixel intensity 
of chromocenters

chromocenter to 
nucleus intensity

dog1
NIL DOG1

4092
6412

31,1
28,9

94,8 % ± 0,8
97,4 % ± 0,7

dog1 
NIL DOG1

3394
no data

28,5
no data

92,3 % ± 2,2
no data

dog1 
NIL DOG1

6385
6709

43,7
42,6

96,4 % ± 0,9
96,0 % ± 0,9

Table 3.2: ACAPELLA measurement of heterochromatin in nuclei of non-dormant dog1 and dormant 
NIL DOG1 embryos. Mature dog1 and NIL DOG1 embryos were whole mount stained with PI. Pictures of 
the longitudinal section of highest fluorescence of 50 single nuclei from cotyledon and hypocotyl were taken 
with the confocal microscope. Area and intensity of the nuclear parts identified as chromocenters in relative 
values and percentage of chromocenter intensity to intensity of total nucleus measured with the ACAPELLA 
software. Values give means and standard errors in the third column. 
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In  comparison  to  the  results  from the  measurement  with  DISKUS the  ACAPELLA values  are 

strikingly different in general. While the fraction of chromocenters to the complete nucleus are in 

the  DISKUS  measurement  below  4  %  for  all  samples,  all  results  from  the  ACAPELLA 

measurement  are  above  90  %.  The  only  possible  explanation  for  this  huge  discrepancy  is  a 

fundamentally different principle of measurement. 

A structural difference of non-dormant and dormant nuclei is not measurable with the available 

methods. The reason is the difficulty to define the less distinct chromocenters in the small and dense 

nuclei of the dormant embryos. 

During the course of the experiments data from Paul Fransz (personal communication) showed that 

the heterochromatin fraction in the Cvi accession is lower than in the Ler accession. This explains 

the difference that was originally found between the dormant Cvi seeds and the non-dormant seeds 

in Ler background. 

3.1.2 Dynamics in nuclear size during seed maturation 
During the second half of seed development the embryo matures and desiccates for a possibly long 

duration in the soil until germination. This structural change could become visible in a change of 

nuclear appearance. 

Cvi seeds were dissected from siliques at different time points during seed maturation. Embryos 

were digested, the material was spread on slides and stained with DAPI. Pictures of 15 nuclei were 

taken with a fluorescence microscope at 10 days after pollination (dap), 15 dap and 21 dap. They 

show a strong decrease of nuclear size as visible on the representative pictures of Figure 3.4. 

Figure 3.4: Nuclei of Cvi during seed maturation. Cvi seeds were harvested 10 dap, 15 dap and 21 dap, 
embryos  digested  and  the  nuclei  spread  on  slides.  After  DAPI  staining  pictures  were  taken  by  light 
microscopy. Microscope magnification 100x. 
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Measurement of nuclear areas and intensities was performed with the DISKUS CROMO software. 

The mean values are summarized in Table 3.3. The data reflects the strong reduction in area of the 

nuclei between 10 dap and 15 dap and a slight decrease between 15 dap and 21 dap as  shown in 

Figure 3.4. 

days after pollination area nucleus intensity nucleus
10 13362

± 1221
778679
± 30430

15 2827
± 151

332230
± 13696

21 2646
± 200

337273
± 22687

Table 3.3: Size of spread Cvi nuclei during seed maturation. Cvi seeds were harvested 10 dap, 15 dap 
and 21 dap, embryos digested and the nuclei spread on slides. After DAPI staining pictures were taken by 
light microscopy. Percentage of area and fluorescence intensity of nuclei and chromocenters were measured 
with the DISKUS CROMO software. Values give means and standard errors of 15 nuclei. 

Due to the spreading of the nuclei it is possible that the size difference appears stronger than it is in 

three dimensions. Furthermore, it is possible that the more condensed looking nuclei do not spread 

that broadly as the nuclei from earlier stages but remain more three-dimensional. To exclude this 

factor, in a second experiment whole mount stained embryos were analyzed. 

Ler seeds were harvested at 10 dap, 13 dap, 16 dap, 18 dap and when mature. The embryos were 

isolated from the seed coat and whole mount staining with PI was performed. Confocal microscope 

pictures of single nuclei were taken. Figure 3.5 shows three examples for each time point.  
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10 dap

13 dap

16 dap

18 dap

mature
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Figure 3.5: Whole mount Ler nuclei during seed maturation. Ler seeds were harvested 10 dap, 13 dap, 
16 dap, 18 dap and mature, embryos were isolated from the seed coat and whole mount stained with PI. 
Shown are three confocal pictures of single nuclei of each time point. Scale bars are 1 µm. 

Confocal pictures of the of 40 to 50 single nuclei were taken from the cotyledons and the hypocotyl 

of  at  least  five  different  embryos  at  each  stage.  The  nuclear  area  was  defined  manually  and 

measured with the DISKUS CROMO software (Figure 3.6). The pictures in Figure 3.5 as well as 

the measurement show a decrease of nuclear size at the start of seed maturation between 10 dap and 

13 dap. 

Figure 3.6: Size of whole mount Ler nuclei during seed maturation. Ler seeds were harvested 10 dap, 
13 dap, 16 dap, 18 dap and mature, whole mount stained with PI and the  longitudinal section with the 
maximal  area of  single  nuclei  of  cotyledons and hypocotyl  photographed by confocal  microscopy.  The 
pictures  were  analyzed  with  DISKUS  CROMO  software.  Values  are  means  of  pixels  and  error  bars 
represent standard errors. 

Therefore there are indications for a reduction in nucleus size during seed maturation. However, the 

data is not yet confirmed, which should be done by a further improved method of measuring. 

29



                                                                                                                                                                          Results -   RDO2     

3.2 RDO2 
A mutagenesis  screen for reduced dormancy after  γ-irradiation was performed by Karen Léon-

Kloosterziel  in  the  lab  of  Maarten  Koornneef  and  resulted  in  four  mutants  named  reduced 

dormancy (rdo) 1 to 4. All of them display higher germination after harvest than Ler and they have 

been roughly mapped and characterized (Léon-Kloosterziel et al., 1996 and Peeters et al., 2002). 

RDO4 (HUB1)  has  recently  been  cloned  and  characterized  (Liu  et  al.,  2007).  It  encodes  a 

C3HC4 RING  finger  protein  responsible  for  histone  H2B  monoubiquitination  and  consequently 

influences transcription activity. The expression level of some dormancy-related genes is changed in 

the rdo4 mutant. 

reduced dormancy 2  (rdo2) seeds are characterized by a reduced dormancy and mild pleiotropic 

phenotypes. The mutant plants are somewhat smaller and take one to two days longer till flowering 

than Ler. The arrangement of the single flowers in the inflorescence is disturbed and the rosette 

leaves look slightly darker green than the wild type. Because of the germination phenotype of the 

mutant RDO2 could play a role in the dormancy network and the pleiotropic phenotypes facilitate 

the identification of the mutant in the greenhouse. Therefore, RDO2 was selected for fine-mapping 

and cloning in a forward genetic approach. 

3.2.1 Mapping of RDO2 
Previously RDO2 was roughly mapped to the bottom of chromosome 2, south of nga168 (Peeters et 

al., 2002).  Map based cloning of  RDO2 was generally performed as described by  Jander et  al. 

(2002). Fine mapping of a gene that influences a quantitative trait such as dormancy is difficult 

because the genetic variation between the two parents of the mapping population can interfere with 

the phenotype of the mutant.  To reduce this  variation the  rdo2 mutant  in  Ler background was 

crossed to the Near  Isogenic  Line (NIL) LCN2-18 (Keurentjes et  al.,  2007)  which contains an 

introgression  of  Cvi  only  at  the  estimated  position  of  RDO2 in  Ler background.  The  precise 

location of the Cvi introgression in LCN2-18 is the very bottom of  chromosome 2 starting between 

marker M323 (14.9 Mb) and marker T2N18 (15.6 Mb). 

F2 plants showing pleiotropic phenotypes of the rdo2 mutant were selected in the greenhouse and 

reduced dormancy was confirmed by a germination test. The position of RDO2 was narrowed down 

by analyzing the genotype of the F2 plants at different molecular markers in the region. The rdo2 

mutant is homozygous Ler and recombinants in the region between RDO2 and the marker should 

have a Cvi allele for the tested marker. In this way the area of interest could be narrowed down from 

30



                                                                                                                                                                          Results -   RDO2     

both sides. The location of RDO2 was previously mapped to a region of 3 Mb by Dr. Yongxiu Liu. 

Further fine mapping was performed with molecular markers; about 1100 F2 plants were screened 

with  10  simple  sequence  length  polymorphism  (SSLP)  markers  based  on  the  Monsanto 

Polymorphism  Collection  (http://www.arabidopsis.org/Cereon/)  (Table 2.2  in  Materials  and 

methods). Finally the position of RDO2 was narrowed down to an area of 45 kb (Figure 3.7) which 

contains 15 annotated genes. 

Figure 3.7: Fine mapping of  RDO2.  From top to bottom are depicted chromosome 2, the area of fine 
mapping  with  the  approximate  location  of  the  molecular  markers,  the  number  of  plants  found  to  be 
recombinant between the molecular marker and RDO2, and the final 45 kb area with a scheme of 15 open 
reading frames (ORFs) annotated in this area, RDO2 is shown in orange. 

Since the main phenotype of the rdo2 mutant is observed in seeds, candidate genes are likely to be 

expressed in seeds. Publicly available microarray data was analyzed using Genevestigator software 

(http://www.genevestigator.etzh.ch; Zimmermann et al., 2004). It revealed a few genes which show 

high expression in seeds. After evaluating the predicted functions of these genes based on the  TAIR 

(http://www.arabidopsis.org) annotation, one gene was chosen for sequencing as the most promising 

candidate. This was At2g38560, which is expressed constitutively in the plant and highest in mature 

siliques,  i.e.  ripe seeds,  and germinating seeds (Figure 3.8).  It  is  annotated as a  putative TFIIS 

transcription elongation factor based on sequence similarity to a yeast protein. 
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Figure  3.8:  Expression  of  At2g38560 in  different  organs. X-axes  gives  relative  expression  level 
increasing from left to right. Graph taken from Genevestigator. 

Sequencing of At2g38560 in Ler and rdo2 revealed a 4 bp deletion in the rdo2 mutant at the end of 

the coding sequence. This deletion causes a frameshift that results in an elongated nucleic acid 

sequence coding for a protein with a longer but different C-terminal domain. In the rdo2 mutant the 

zinc  finger  domain  is  destroyed.  The  TAIR  database  (http://www.arabidopsis.org)  displays  the 

genomic sequence of At2g38560 as depicted in the appendix. Figure 3.9 and Figure 3.10 show the 

sequence schematically. It consists of two exons of 165 bp and 972 bp, respectively, and an intron 

of 381 bp (Figure 3.9). 
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Figure 3.9: Genomic and protein structure of At2g38560 in Ler and rdo2. Scheme of genomic structure 
of At2g38560 in Ler  (orange, top) and position of the 4 bp deletion in the  rdo2 mutant (orange, bottom). 
Scheme of the corresponding protein and position of the functional domains annotated for At2g38560 in Ler 
(green, top) and rdo2 mutant (green, bottom). 

RDO2 is  located in a  gene-rich region.  Additional to the 5'UTR of 163 bp the distance to the 

previous gene is only 223 bp (Figure 3.10). The 3'UTR comprises of 376 bp, followed by 158 

intergenic basepairs in front of the next gene. The complete genomic sequence of At2g38560 from 

its ATG to the stop codon contains 1518 bp; the cDNA is 1137 bp long. The analogous protein 

consists of 378 aa. The predicted protein includes a N-terminal TFIIS domain, a TFS2M domain 

and a zinc finger C2C2 domain at the C-terminal end (Figure 3.9). 

Figure 3.10: Region in front of At2g38560. Scheme of At2g38550 and the intergenic region of At2g38550 
and At2g38560 including the position of three promoter sequences (pRDO2s, pRDO2l, pRDO2xl) used for 
complementation. 

The  TFIIS  domain  is  characteristic  for  transcription  elongation  factor  S.  The  TFS2M  domain 

assembles the protein to the RNA polymerase II. Responsible for the binding to the DNA is the zinc 
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finger  domain  (Awrey et  al.,  1998).  TFIIS  proteins  are  conserved through all  eucaryots,  many 

organisms have several genes whereas the Arabidopsis thaliana and yeast genome contain only one 

copy. The TFIIS protein is thoroughly investigated in yeast, where it is responsible for activation of 

RNA polymerase cleaving function for restarting after transcriptional arrest (Kettenberger et al., 

2004). The mutation in rdo2 destroys the zinc finger domain and probably causes a non-functional 

RDO2 protein. 

To confirm the identity of At2g38560 as RDO2, a complementation assay of the rdo2 mutant with 

the Ler RDO2 sequence was performed. The insertion of the wild type  RDO2 sequence into the 

genome of  the  mutant  should  revert  the  mutant  phenotypes  if  this  gene  is  responsible  for  the 

observed phenotypes. 

Two  genomic  fragments  of  2.6 kb  and  1.9 kb  Ler genomic  sequence  were  used  for 

complementation.  Both  contain  the  genomic  sequence  of  At2g38560  and  a  shorter  or  longer 

putative promoter  fragment  of  0.4 kb and 1.1 kb,  respectively (Figure 3.10).  They were named 

pRDO2s:gRDO2 and  pRDO2l:gRDO2. The fragments were transformed into rdo2 plants. T4 seeds 

of five homozygous lines with independent single insertions of the short promoter construct (Figure 

3.11A)  and  three  homozygous  lines  with  independent  single  insertions  of  the  long  promoter 

construct were analyzed (Figure 3.11B). Twelve plants per line were grown next to  rdo2 and Ler 

plants under controlled conditions and germination tests were performed on individual plants. All 

lines show a germination phenotype intermediate between Ler and rdo2, regardless the length of the 

putative RDO2 promoter that was included in the construct. 
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Fig.  3.11:  Germination  of  rdo2 mutant  plants  transformed  with  pRDO2s:gRDO2  (A)  or 
pRDO2l:gRDO2 (B). The percentage of germinated T4 seeds of independent homozygous lines, rdo2 and 
Ler  is  shown.  Twelve  plants  per  line  were  analyzed  individually  for  germination  during  after-ripening, 
standard errors are depicted as bars. 
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Therefore both constructs partially complement the  rdo2 mutation. However, they probably lack 

some unknown regulatory part that is necessary for full complementation of the mutant phenotype. 

A second  confirmation  for  the  identity  of  At2g38560  as  RDO2 was  obtained  by the  study of 

additional mutant alleles of this  gene.  For  Arabidopsis  thaliana a  large collection of lines with 

T-DNA  insertions  in  specific  genes  is  available  (http://arabidopsis.info/).  The  long  T-DNA 

insertions can interrupt the open reading frame of a gene causing a disruption of transcription and 

an absence of full-length mRNA. 

Five  lines  with  T-DNA insertions  in  At2g38560 were  obtained  from the  Salk  insertion  mutant 

collection (Alonso et al., 2003) and the GABI-Kat collection (Rosso et al., 2003). All these lines are 

in Columbia (Col) background. They were named as alleles of rdo2 in the order of their insertions 

along the genomic sequence. The original  rdo2 mutant will further be referred to as  rdo2-1. The 

position of the insertions were verified by PCR and the seeds were analyzed for their germination 

phenotype. The location of the insertions in the genomic sequence of  RDO2 is depicted in figure 

3.12.  Line  rdo2-2 contains  an  insertion  in  the  promoter  region  while  the  four  other  T-DNA 

insertions are all located within 320 bp at the beginning of the second exon. 

Figure 3.12: Location of the insertions of the T-DNA insertion lines in At2g38560. The scheme depicts 
the structure of the genomic sequence, the parts that code for the three annotated functional domains and 
the position of the 4 bp deletion in rdo2-1. The position of each T-DNA insertion is shown by a triangle on 
top of the sequence. Blue arrows mark the position of the primers used for expression analyses. 

A semiquantitative RNA expression analyses of total RNA from leaves was performed to analyze 

whether the production of full-length mRNA is disturbed in the insertion lines (Figure 3.13). Total 

RNA was extracted from leaves of the plants and cDNA synthesis was performed. The position of 

the primers used for the PCR are marked by blue arrows in Figure 3.12. The result shows that the 

expression of full-length RDO2 RNA is strongly reduced in the four lines that carry insertions at the 

beginning of the second exon but not in line rdo2-2 that contains an insertion in front of the gene. 
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Figure  3.13:  RDO2  mRNA  expression  of  T-DNA  insertion  lines  of  At2g38560.  Gel  picture  of 
semiquantitative PCR with cDNA synthesized from total RNA extracted from leaf material. 

The dormancy phenotype of the five T-DNA insertion lines was obtained in a germination test 

(Figure 3.14). Two of the four lines with T-DNA insertions in the second exon show a germination 

phenotype very similar to the rdo2-1 mutant while the other two express a phenotype intermediate 

to  rdo2-1 and  Ler.  Line  rdo2-2 with  the  T-DNA insertion  in  front  of  the  coding  sequence  of 

At2g38560 behaves like its background Col, which is less dormant than Ler. 

Therefore the reduced dormancy phenotype of rdo2-1 is confirmed in the insertion mutants. 

37



                                                                                                                                                                          Results -   RDO2     

Figure 3.14: Germination of T-DNA insertion lines of At2g38560. Percentage of germinated seeds of 
the five T-DNA insertion lines, Ler, Col and rdo2.  Twelve plants per line were analyzed separately during 
after-ripening, standard errors are depicted as bars. 

In summary we found three confirmations for the identity of At2g38560 as the RDO2 gene. There is 

a 4 bp deletion in the coding sequence of At2g38560 in the  rdo2-1 mutant compared to Ler. The 

mutation destroys the C-terminal zinc finger domain of the encoded protein. The transformation of 

rdo2-1 mutant  plants  with  the  Ler genomic  sequence  of  At2g38560  leads  to  a  partial 

complementation  of  the  mutant  phenotype.  Finally  two  of  the  four  T-DNA insertion  lines  of 

At2g38560 display a germination phenotype very similar to that of the rdo2-1 mutant. 
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3.2.2 Characterization of RDO2

As described in the previous chapter, the gene  RDO2 was found to encode a TFIIS transcription 

elongation  factor.  This  chapter  describes  the  characterization  of  the  gene  and  its  role  in  seed 

dormancy control. 

RDO2 is  annotated  as  a  TFIIS  transcription  elongation  factor  in  the  TAIR  database 

(http://www.arabidopsis.org).  While  little  is  known  about  this  protein  in  plants,  TFIIS  is  well 

studied in  Saccharomyces cerevisiae. It was found to accelerate the overcoming of trancriptional 

arrest of RNA polymerase II (Fish and Kane, 2002), to support the formation of the transcription 

preinitiation complex (Kim et al., 2007) and to act as a general RNA polymerase III transcription 

factor (Ghavi-Helm et al.,  2008). Furthermore, in yeast knocking out the TFIIS gene leads to a 

phenotype only in presence of the NTP-depleting drugs 6-azauracil and mycophenolic acid, so the 

protein might be functionally redundant with other factors (Wery et al., 2004). A sequence search 

revealed  that  homologues  of  the  Arabidopsis  thaliana TFIIS  protein  can  be  found  in  many 

eucaryotic organisms. In  Arabidopsis thaliana it is a unique gene, since no matches for a second 

gene with a similar sequence or the same set of domains were found. PCR with specific primers 

showed that  RDO2 and the putative promoter sequence of 1 kb upstream of its transcription start 

can  also  be  found  in  the  close  relatives  Arabidopsis  lyrata and  Arabidopsis  halleri  (Marilyne 

Debieu, personal communication). Altogether these findings suggest a fundamental and conserved 

function of RDO2. 

The  TFIIS  protein  is  involved  in  the  general  process  of  transcription  but  the  rdo2 mutant  in 

Arabidopsis thaliana has been identified by its seed dormancy phenotype. The relation between 

transcription elongation and seed dormancy can be revealed by study of the RDO2 gene and protein. 

3.2.2.1 RDO2 expression during seed maturation 
Dormancy is established during seed maturation, i.e. the second half of seed development (Raz et 

al., 2001). The expression of the RDO2 gene during seed development was analyzed. Since RDO2 

influences  the  dormancy  phenotype  of  Arabidopsis  thaliana, it  is  important  to  determine  the 

expression of the gene during seed development. 

Ler plants were grown under controlled conditions, which lead to ripe seeds within 20 days after 

pollination (dap). Total RNA was extracted from siliques at 10 dap, 12 dap, 14 dap, 16 dap, 18 dap 

and  20  dap  and  the  expression  of  RDO2 was  assessed  by  quantitative  real  time  PCR.  Three 

biological replicates of the experiment showed the same tendency. The amount of RDO2 mRNA is 
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increasing during the second half of seed maturation and is highest in mature seeds. A representative 

experiment is shown in Figure 3.15.  

Figure 3.15: Transcript levels of RDO2 in Ler seeds during seed maturation. Transcript levels of RDO2 
were  determined  by  quantitative  RT-PCR.  cDNA was  generated  from mRNA from 40 mg Ler siliques 
harvested 10 dap,  12 dap,  14 dap,  16 dap,  18 dap and  20 dap.  The expression values of  RDO2 were 
normalized using the expression level of ACT8 as internal standard. 

3.2.2.2 Overexpression of RDO2 
The  rdo2 mutant shows that loss of RDO2 function leads to reduced dormancy. Increased RDO2 

expression could lead to a different effect on dormancy. The high abundance of a protein can lead to 

enhanced  or  additional  phenotypic  effects  (Lloyd,  2003).  For  overexpression  of  a  gene  in 

Arabidopsis thaliana, the double 35S promoter (Jakoby et al.,  2004) can be used, which is highly 

expressed in all tissues. 

rdo2 plants were transformed with cDNA of  RDO2 expressed from the p2x35S promoter.  Four 

independent homozygous lines with single insertions were selected in the T2 generation on the basis 

of  3:1 ratio  of  BASTA resistant  to BASTA sensitive plants.  The germination phenotype of  the 

homozygous lines  was compared to Ler and  rdo2 (Figure 3.16).  One of the transformant lines 

(14-1) showed the same germination pattern as the rdo2 mutant, which could indicate that RDO2 is 

not expressed. The other three lines show intermediate phenotypes which are very similar to each 

other. The germination of the lines 5-1, 7-4 and 8-3 is in between the phenotype of Ler and rdo2. 
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Figure 3.16: Germination of rdo2 plants transformed with p2x35S:cRDO2. Percentage of germinated 
seeds on water in the light after different periods of dry storage is shown for Ler, rdo2 and four independent 
homozygous  transformants  of  rdo2 with  p2x35S:cRDO2.  Values  are  means  of  ten  plants,  the  bars 
represent standard errors. 

The dormancy level of the overexpression lines is similar  to that  of the complementation lines 

(Chapter 3.2.1). The reason could be that an increased level of RDO2 does not lead to a change in 

dormancy or that the expression of RDO2 is not increased in the transformed lines. 

One disadvantage of overexpression constructs is the possibility of silencing. Gene silencing can be 

induced by multiple tandem insertions of the transgene (Assaad et al., 1993). Silencing results in the 

degradation of the mRNA of the gene. However, tandem repeats of the insert which could induce a 

silencing process were excluded by PCR analysis. Furthermore, silencing of a gene should lead to a 

phenotype  similar  to  the  knock out  mutant.  This  is  not  the case for  the  RDO2 overexpression 

transformants. 

The expression level of RDO2 was examined in seeds of Ler, rdo2 and the transformants at 17 dap. 

mRNA was extracted from seeds 17 dap and primers amplifying specifically wtRDO2 were used for 

quantitative RT-PCR (Figure 3.17). 
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Figure 3.17: Transcript levels of wtRDO2 in rdo2 transformed with p2x35S:cRDO2. Transcript levels of 
wtRDO2 were determined by quantitative RT-PCR. cDNA was generated from mRNA from 40 mg seeds 
17 dap of Ler,  rdo2 and three independent homozygous transformants of  rdo2 with p2x35S:cRDO2.  The 
expression values of wtRDO2 were normalized using the expression level of ACT8 as internal standard. 

As expected no wtRDO2 can be detected in rdo2 seeds. The three investigated transformants show 

between 0,1x and half  of the expression of  RDO2 in  Ler.  This is  consistent  with the observed 

dormancy phenotype of the lines. 

To exclude the possibility that lines of high dormancy were missed by the mode of selection of 

transformants, all 50 T2 populations were screened again for high dormancy. However, no highly 

dormant transformants were found. 

In summary, we could not obtain a line that overexpresses  RDO2. After transformation of  rdo2 

plants with  RDO2 under the double 35S promoter all obtained lines show an expression level of 

RDO2 similar to the endogenous promoter, corresponding with the phenotypes. 

The transformants contain the mutated rdo2 gene as well as the wt RDO2 gene, and both genes are 

presumably expressed.  It  is  possible  that  the total  amount  of  transcript  is  regulated.  Transcript 

regulation can be mediated by a gene specific micro RNA (Brodersen and Voinnet, 2006). However, 

evidence for regulation of  RDO2 by this mechanism was not found. No miRNA is annotated for 

RDO2 (http://mpss.udel.edu/at/). 
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3.2.2.3 Intracellular localization of the RDO2 protein 
The annotation of RDO2 as a TFIIS factor is based on in silico data (http://www.arabidopsis.org).  A 

transcription elongation factor should localize in the nucleus,  therefore I tested the intracellular 

localization of RDO2. The localization of a protein inside the cell, i.e. its confinement to a certain 

compartment, could hint to the process the protein is working in. To visualize a protein inside an 

organism it can be tagged with a fluorescent marker and when the fusion protein is expressed its 

precise position in the cell can be determined with the help of a fluorescence microscope (Leffel et 

al., 1997). 

To gain knowledge of the intracellular localization of the RDO2 protein, the Ler cDNA of the gene 

was fused with YFP at the N- or C-terminus and expressed by a 2x35S promoter.  In an initial 

experiment the constructs were expressed in leek epidermal cells by micro particle bombardment. 

Some  cells  incorporate  the  sequence  and  express  the  encoded  protein  when  bombarded  with 

particles that are coated with a plasmid. Leek leaves were used because they consist of large cells 

and fluorescence can be detected easily in the lower chlorophyll-less parts of the leaves. 

After bombardment of white parts of leek leaves with one of the plasmids the fluorescent signal 

became visible  after  a  few hours of incubation.  Both the C-terminal and the N-terminal  fusion 

protein lead to strong fluorescence exclusively in the nuclei (Figure 3.18). The strong expression 

was possibly due to the overexpression promoter. We concluded that the RDO2 protein is localized 

in the nucleus and the attached YFP does not hinder its nuclear import. This agrees with the role of 

RDO2 as TFIIS factor. 

Figure 3.18: Transient expression of YFP-RDO2 and RDO2-YFP. Fluorescence of YFP fused to the N-
terminus (A)  or C-terminus (B)  of  RDO2 in  leek epidermis cells  after  bombardment is  detected in  the 
nucleus. The cell walls reflect the fluorescent shine from the nuclei. Scale bar is 1 mm. 

To gain insight into the natural location of RDO2 in Arabidopsis thaliana cells the fusion protein 

was stably transformed ito  rdo2 mutant  plants.  For  stable  expression of  the RDO2-YFP fusion 

protein, rdo2 mutant plants were transformed with one of the constructs. Independent homozygous 

lines with single insertions were tested for the intracellular localization of the fusion protein by 
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investigation of embryos and seed coats. Additional staining of the material with propidium iodide 

(PI), which stains the DNA, was performed. 

Figure 3.19 shows an embryo with its seed coat in overview and a part of the cotyledon in higher 

magnification.  The  microscope  analysis  shows  that  plants  transformed  with  the  overexpressed 

RDO2 fused to YFP have strong fluorescence signals that co-locate with the PI stained nuclei. This 

is  consistent with the result  of  the transient expression of the constructs  in leek.  Therefore the 

RDO2-YFP fusion protein is located in the nucleus. 

Figure  3.19:  Expression  of  RDO2-YFP  in  stable  transformants. Confocal  pictures  of  Arabidopsis 
embryo and seed coat (A) and embryo nuclei (B) expressing RDO2 protein with C-terminal fusion of YFP. 
Left: transmission, middle: PI staining, right: YFP fluorescence. Scale bars are 75 µm (A) and 3 µm (B).  

The  functionality  of  the  RDO2-YFP fusion  proteins  was  tested  by  analysis  of  the  dormancy 

phenotype  of  some of  the  lines  (Figure  3.20).  Surprisingly,  the  plants  with  the  overexpressed 

RDO2-YFP protein germinated faster than the rdo2 mutant. The protein does not delay germination 

as in Ler. It is possible that the attachment of the YFP tag blocks the function of RDO2 and could 

even act as a dominant-negative mutation as indicated by the stronger phenotype. It could inhibit 

the function of the protein complex that is involved in transcription elongation. 
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Figure  3.20:  Germination  of  rdo2 plants  transformed  with  p2x35S:YFP-RDO2  (A)  and 
p2x35S:RDO2-YFP (B). Percentage of germinated seeds on water in the light after different periods of dry 
storage is shown for Ler, rdo2 and four independent homozygous transformants of rdo2 with p2x35S:YFP-
RDO2 (A) and three independent homozygous transformants of  rdo2 with p2x35S:RDO2-YFP(B). Values 
are means of ten plants, the bars represent standard errors. 

To analyze the expression level of  RDO2 in  the transformed lines semiquantitative RT-PCR of 

YFP-RDO2 and  RDO2-YFP mRNA in leaves and seeds was performed (Figure 3.21). Total RNA 

was extracted from leaves of three and two independent lines, respectively. cDNA was prepared and 
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used for PCR with primer pairs amplifying parts of Actin 2 (ACT2), wtRDO2 and both wtRDO2 and 

mutant rdo2. 

The signal of ACT2 of all lines was similar in strength indicating comparable amounts of mRNA in 

these samples. The two lines with C-terminally fused YFP showed a strongly increased expression 

of RDO2 compared to Ler and rdo2, while the lines with N-terminal fused YFP did not. 

Figure 3.21: Expression of RDO2 RNA in leaves of RDO2+YFP fusion lines. Semiquantitative RT-PCR 
of cDNA synthesized from total RNA of leaves. 

Transgenic plants with a fusion of  RDO2 with YFP visualized its location in the nucleus both in 

transiently and stably transformed plant cells.  Even though the transgene transcript is expressed 

from the 2x35S promoter,  RDO2 mRNA is highly abundant solely when fused with YFP at the 

C-terminus. Furthermore, the germination phenotype of the mutant could not be rescued by the 

transgene indicating that the tagged RDO2 protein is not functional. Therefore the result of the 

localization study has to be considered with care. 
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3.2.2.4 Functional conservation of Arabidopsis thaliana and yeast TFIIS function 
The  TFIIS  transcription  elongation  factor  is  well  investigated  in  the  yeast  Saccharomyces  

cerevisiae. The yeast TFIIS gene, named DST1, is a single copy gene. It encodes a protein of 309 

amino acids  and is  ubiquitously expressed;  the  knockout  leads  to  minor  defects  under  specific 

conditions (Wery et al., 2004). DST1 was found to be responsible for the restart of RNA polymerase 

II complexes after transcriptional arrest (Fish & Kane, 2002) as well as for the assembly of the 

transcription preinitiation complex assembly (Kim et al., 2007) and it was shown to function as a 

general  transcription  factor  for  RNA polymerase  III  (Ghavi-Helm et  al., 2008).  The  molecular 

structure of the yeast TFIIS protein and its interaction with the arrested polymerase II was resolved 

by crystallization studies (Kettenberger et al., 2004). 

The phenotypes of the mutated TFIIS gene in yeast  and  Arabidopsis  thaliana are similar.  Both 

mutants  are  viable  and  show  only  minor  defects  under  specific  conditions  or  in  a  specific 

developmental phase (Wery et al., 2004,  Léon-Kloosterziel et al., 1996). Alignment of the amino 

acid sequences of the two proteins reveals conservation especially in the functional domains (Figure 

3.22). Considering the similarity between DST1 and RDO2, it is possible, that they can complement 

each others function. 

The  yeast  TFIIS mutant  was  transformed with  two different  plasmids  containing  the  cDNA of 

RDO2 which are expressed as single copy in each cell or as multiple copies. In parallel, the yeast 

genomic sequence of DST1 expressed from the p2x35S or the short RDO2 putative promoter was 

stably transformed in rdo2 mutant plants. 
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Figure 3.22: Conservation of RDO2 and DST1.  Shown are the amino acid sequences of  RDO2 and 

DST1  and the position of the functional domains. The degree of conservation is displayed as yellow to 

brown columns; the taller and lighter the column, the higher is the degree of conservation of the amino acid. 

Complementation of the yeast TFIIS mutant with RDO2

The yeast  TFIIS mutant  named  Δdst1 shows reduced growth on medium with the transcription 

inhibiting chemical 6-azauracil  (6-AU) (Exinger and Lacroute, 1992).  For the complementation 

experiment the  Δdst1 mutant CMKy3 and its background strain CH1305 (Davie and Kane,  2000) 

were used. In the mutant yeast strain a large part of the  DST1 sequence is replaced by the open 

reading frame of the URA3 gene, orientated in the opposite direction. URA3 is coding for orotidine 

5-phosphate decarboxylase, involved in the synthesis of pyrimidine ribonucleotides, and is used as a 

reporter  gene  (http://db.yeastgenome.org/).  The  reduced  growth  phenotype  of  the  mutant  was 

visible on 100 µg/ml 6-AU and the substitution of the DST1 gene by the URA3 gene was confirmed 

by PCR. 

To test the ability of  RDO2 to rescue the yeast mutant,  Δdst1 was transformed with the cDNA of 

RDO2 controlled by an  ADH promoter that  leads  to constitutive expression.  The construct was 
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cloned in a CEN plasmid and a 2µ plasmid, respectively. The CEN plasmid is present in one to two 

copies in each cell and is inherited like a chromosome during cell division.  The 2µ plasmid creates 

20 to 100 copies per cell and will lead to high transcript levels. As a control Δdst1 was transformed 

with plasmids containing DST1 or no insert. 

On medium without 6-AU all strains grew with similar density. The growth phenotype of the strains 

was screened on selective medium with concentrations of 6-AU ranging from 1 µg/ml to 200 µg/ml. 

Concentrations  up  to  25 µg/ml  did  not  lead  to  a  visible  difference  in  growth  of  the  strains. 

Concentrations of 6-AU between 50 µg/ml and 200 µg/ml did show a differential growth pattern. 

As  an  example  the  growth  of  eight  strains  on  100 µg/ml  6-AU  is  shown  in  Figure  3.23. 

Transformation with an empty plasmid did not change the decreased growth of the  Δdst1 mutant 

compared  to  its  background.  Transformation  of  the  mutant  with  a  plasmid  containing  DST1 

recovered the growth phenotype, while  RDO2 did not. The number of plasmid copies does not 

influence the growth phenotype. 

Therefore we conclude that RDO2 is not able to complement the yeast TFIIS mutant. 

Cloning of these constructs and all work concerning yeast was performed by Christina Philipp. 

Figure 3.23: Growth phenotype of Δdst1 mutant transformed with RDO2 and DST1. Dilution series of 
eight different yeast strains grown on medium containing 100 µm 6-AU. 
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Complementation of the rdo2 mutant with the yeast TFIIS gene 

To  test  whether  DST1 is  able  to  complement  the  rdo2 mutant  phenotype  two  plasmids  for 

expression in planta were designed to express DST1 at different levels. The genomic sequence of 

DST1 was cloned into a plasmid containing the p2x35S promoter for overexpression. To investigate 

expression of DST1 at endogenous levels the genomic sequence of DST1 was expressed under the 

short putative RDO2 promoter. Assuming DST1 can complement the rdo2 mutant, the transformants 

should show a similar change in dormancy as the complementation of the mutant with RDO2 itself. 

Seeds from the transformed plants will be obtained soon. 

3.2.2.5 The relation between RDO2 and dormancy QTLs  
To gain insight into the genetic interaction between dormancy loci, plants containing these loci can 

be  crossed and the phenotype of the double lines analyzed. 

The  rdo2 mutant  was  crossed  with  three  different  near  isogenic  lines  (NILs)  containing  Cvi 

introgressions in Ler background at locations of the dormancy QTLs DOG1, DOG3 and DOG6. 

The double lines were created in Wageningen  based on the pleiotropic phenotypes of the  rdo2 

mutant. The single NILs display a higher dormancy level than Ler. Putative relations between the 

rdo2  mutant and the QTLs would result in a change of the germination phenotype of the double 

lines.  Therefore  the  dormancy phenotype  of  the  three  double  lines,  the  single  lines  (NILD73, 

NILD106 and NILD117) and controls (Ler and rdo2) was analyzed. 

All double lines containing the rdo2 mutation in the background of NILD73 (DOG3) and NILD106 

(DOG1) or NILD117 (DOG6) did show reduced dormancy compared to the single NILs (Figure 

3.24a). Since the tested plants turned out to be not homozygous for the rdo2 mutation, the analysis 

was repeated with homozygous plants  of the double line with NILD117 (Figure 3.24b),  which 

showed the strongest effect. Also the homozygous lines show a similar reduction of dormancy as 

the segregating lines.  

All NILs are additive to the rdo2 mutation, the genes seem to function in different pathways than 

RDO2. 
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Figure 3.24a: Germination of NILD73rdo2, NILD106rdo2 and NILD117rdo2 double lines. Percentage of 
germinating seeds on water in the light after different periods of dry storage is shown for Ler, rdo2, NILD73 
and NILD73rdo2, NILD106 and NILD106rdo2, and NILD117 and NILD117rdo2. Values are means of twelve 
plants, the bars represent standard errors. 

Figure 3.24b: Germination of the homozygous NILD117rdo2 double line.  Percentage of germinating 
seeds on water in the light after different periods of dry storage is shown for Ler,  rdo2, Cvi, NILD117 and 
NILD117rdo2. Values are means of twelve plants, the bars represent standard errors. 
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3.2.2.6 The analysis of rdo2 transcriptome data and qRT-PCR for downstream genes 
If RDO2 is acting as a transcription elongation factor, it is likely to affect the expression of genes.  

Analysis of transcriptome data 

An  in silico analysis  of the  rdo2 transcriptome was performed, using microarray data from the 

group of Mike Holdsworth, available via NASCArray (http://arabidopsis.info/). Data provided by 

Mike  Holdsworth  listed  the  genes  down-  or  upregulated  in  ripe  seeds  for  a  certain  mutant  in 

alphabetical order. The data of rdo2 was compared with those of two other mutants that completely 

lack dormancy, the ABA deficient mutant aba1-1 and the ABA insensitive mutant abi1-1. 

The set of genes which is down- or upregulated in the rdo2 mutant did not show an enrichment of 

genes  related  to  dormancy or  germination  or  any other  specific  process.  To compare  the  gene 

expression in  rdo2 to other dormancy mutants, we searched the transcription data of  aba1-1 and 

abi1-1 for similarities. Figure 3.25 shows the number of genes which are down- or upregulated in 

mature fresh seeds of rdo2, aba1-1 and abi1-1 plants compared to Ler. It also indicates how many 

of  these  differentially  expressed  genes  are  shared  by the  different  mutants.  We find  2/9  genes 

down-/upregulated in all  three dormancy mutants  compared to Ler.  Furthermore 105/131 genes 

were down-/upregulated only in  rdo2, 4/19 regulated genes shares  rdo2 with  abi1-1,  16/18 genes 

with  aba1-1.  The results show that the three dormancy genes participate in different pathways, 

because the majority of the differentially expressed genes is specific for each of the mutants. 

Figure  3.25:  Venn-diagram  depicting  overlapping  genes  between  the  dormancy  mutants  rdo2, 
aba1-1 and abi1-1. Number of genes downregulated (left) and upregulated (right) compared to Ler in one, 
two and three of the mutants, respectively. 

We analyzed the identity of the 9/2 genes up-/downregulated in all of the three mutants because 

they  could  be  involved  in  a  general  dormancy  process.  However,  none  of  them is  related  to 
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dormancy or germination.  RDO2 is active during seed maturation, but probably not in ripe seeds 

because they are transcriptionally inactive. The arrays were performed with mature seeds so no 

conclusion can be drawn for differential  gene expression during seed maturation.  Instead these 

results might represent genes far downstream of RDO2. 

The hypothesis is that RDO2 is needed at the end of seed maturation to support RNA transcription. 

This support could be especially important for long genes (Grasser, 2005). In the rdo2 mutant, this 

support  is  absent. According  to  this  hypothesis  it  would  lead  to  a  down  regulation  of  long 

transcripts in the rdo2 mutant seeds. We analyzed the length of the genes differentially regulated in 

rdo2 and  the  other  mutants  based  on  the  genomic  sequence  given  in  the  TAIR  database 

(http://www.arabidopsis.org). There is only a slight difference in the average length between the 

genes up-/downregulated in the three mutants (Fig. 3.26). While the genes downregulated in aba1-1 

and  abi1-1 tend  to  be shorter  than the upregulated ones,  in  rdo2 the  downregulated genes  are 

slightly longer than the upregulated genes. This fits to the theory. 

Figure 3.26: Length of genes differentially expressed in three dormancy mutants. Average length of 
the  genomic  sequence  of  the  genes  up-  or  downregulated  in  rdo2,  aba1-1 and  abi1-1 mature  seeds 
according to the transcriptome data and standard errors. 
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Expression analysis by quantitative real time PCR 

A different approach to identify downstream genes of RDO2 is to compare the mRNA expression of 

a gene between Ler and rdo2 mutant. The disadvantage of this analysis is, that candidate genes have 

to  be  selected  beforehand.  I  decided  to  analyze  the  expression  of  a  number  of  dormancy and 

germination related genes. 

Initially a semiquantitative reverse transcriptase assay was carried out. Total RNA was extracted 

from Ler and  rdo2 ripe seeds and siliques harvested 8 dap, 10 dap, 15 dap, after which cDNA 

synthesis  was  performed.  A PCR  was  run  with  primers  for  Actin  2 (ACT2),  RDO2,  DOG1, 

SUPRESSOR OF ABI3 4 (SUA4), NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 9 (NCED9), 

1-CYS PEROXIREDOXIN (PER1), CYP707A2, ABA INSENSITIVE 4 (ABI4), ATS2 and SPATULA 

(SPT) (Figure 3.27). 

The similar intensity of bands of ACT2 indicate a comparable amount of mRNA in all probes. Most 

genes show a similar expression in Ler and  rdo2 at the same time point during seed maturation. 

Only for  DOG1 different levels of mRNA could be detected in Ler and  rdo2 probes during seed 

maturation. 
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Figure 3.27: Transcript levels of dormancy genes in Ler and rdo2 during seed maturation. Transcript 
levels were determined by semiquantitative RT-PCR. cDNA was generated from mRNA from 40 mg seeds. 
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To investigate the mRNA expression of  DOG1 in Ler and  rdo2 during seed maturation more in 

detail, a quantitative real time PCR assay was performed. Siliques were harvested 10 dap, 12 dap, 

14 dap, 16 dap, 18 dap and 20 dap. Total RNA was extracted and cDNA syntheses performed. qRT-

PCR was carried out with appropriate primers for  Actin 8 as internal control and  DOG1  (Figure 

3.28). Similar results from three experiments results reveal that DOG1 mRNA is expressed in rdo2 

to a lower level than in Ler at every tested time point during seed maturation. 

Therefore DOG1 is regulated by RDO2 - either directly or indirectly. 

Figure 3.28: Transcript levels of  DOG1 in Ler and rdo2 during seed maturation. Transcript levels of 
DOG1 were determined by quantitative RT-PCR. cDNA was generated from mRNA from 40 mg seeds. The 
expression values of DOG1 were normalized using the expression level of ACT8 as internal standard. 
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3.2.2.7 Search for interactors of RDO2 using a yeast-two-hybrid screen  
In yeast the proteins Med13 (Srb9) and Spt8 were isolated as two-hybrid partners of the conserved 

TFIIS N-terminal domain; they are part of the RNA polymerase II complex (Wery et al., 2004). 

Based on sequence comparison, no similar proteins were found in Arabidopsis thaliana. Therefore a 

yeast two hybrid cDNA library screen was performed. 

To test the interaction of RDO2 with other proteins we used the GAL4 yeast two hybrid (Y2H) 

technique in  Saccharomyces cerevisiae.  RDO2 was fused to a domain of the transcription factor 

GAL4 which is the bait protein while the cDNA library was combined with the prey domain. If 

RDO2 interacts physically with any of the proteins in the library, the two halves of the transcription 

factor  GAL4  couple  and  become  functional.  Subsequently,  the  reporter  gene  responsible  for 

replication of the yeast in selective medium is expressed. This is a fast and low cost technique to 

identify protein-protein interactions. The disadvantage of a Y2H is that the conditions in yeast do 

not always reflect the conditions in  Arabidopsis thaliana. Furthermore, the method solely reveals 

direct interactions but cannot detect interactions that require additional factors or bigger complexes. 

Christina Philipp performed two Y2H screens with RDO2 cDNA and the all-Arabidopsis thaliana 

cDNA  library  HS-Ara.  Only  one  of  the  screens  revealed a  weak  interaction  with  LOS4 

(At3g53110), a putative DEAD-box RNA helicase. The protein might be involved in temperature 

sensing and the export of polyA RNA (Gong et al., 2002, 2005). However, the interaction could not 

be confirmed by exchanging bait and prey in the Y2H screen and a T-DNA insertion line of LOS4 

did not show a dormancy phenotype compared to the background Col. Therefore the analysis of this 

gene was not further continued. 

57



                                                                                                                                                        Discussion and conclusions  

4 Discussion and conclusions 

4.1 Cytological analysis of seed dormancy
A dependency of chromatin organization and gene expression during cell differentiation is known in 

yeast,  Drosophila and mammalian cells (reviewed by Arney and Fisher, 2004). Major changes in 

gene expression are likely to be associated with changes in chromatin organization, which are even 

visible  at  the  microscopic  level  (Tessadori  et  al.,  2007A).  Also  in  Arabidopsis  thaliana the 

chromatin structure is modified during developmental changes throughout the plant life cycle. For 

example  Tessadori  et  al.  (2007B)  reported  a  dramatic  decondensation  of  pericentromeric  and 

gene-rich  chromatin  in  leaf  mesophyll  nuclei  during  floral  transition.  They  propose,  that 

decondensation of chromatin in flowering-induced plants may enhance the accessibility of DNA for 

the transcription machinery on a genome-wide scale.  From expression analysis  it  is known that 

during floral transition hundreds of genes are up or down regulated (Schmid et al., 2003). 

A similar  change in  gene  expression  and  chromatin  organization  could  take  place  during  seed 

maturation, when development and growth of the embryo has been completed and the seed prepares 

for duration in the soil until favorable conditions promote germination. 

The aim of this  project  was to analyze the phase of seed maturation and the dormant state for 

possible changes in nuclear appearance by cytological methods. 

4.1.1 No measurable difference in chromatin structure of dog1 and NIL DOG1 
An initial  comparison  of  dormant  Cvi  seeds  and  non-dormant  dog1 mutant  seeds  gave  some 

indication for a structural difference of the chromatin of dormant an non-dormant embryo nuclei. 

The heterochromatic structure of mature non-dormant  dog1 and dormant NIL DOG1 seeds was 

compared.  Whole  mount  staining  of  embryos  with  DNA intercalating  dyes  was  followed  by 

confocal analysis. Confocal pictures were analyzed with two different software programs, DISKUS 

CROMO and ACAPELLA, but the heterochromatin could not be measured reliably. 

The quantification of the initially observed difference in chromatic structure of non-dormant and 

dormant seeds was not possible. It turned out that the difference in heterochromatic appearance 

between non-dormant seeds in Ler background and dormant seeds in Cvi background is caused 

rather  by the  general  difference  of  the  heterochromatic  fraction  of  Ler  and  Cvi  (Paul  Fransz, 

personal communication) than by the difference in dormancy level. 

There  are  examples  where  measurement  of  the  amount  of  heterochromatin  was  performed 

successfully (Soppe et al., 2002, Tessadori et al., 2007A+B). However, the described experiments 
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were not performed in mature seeds, but protoplasts or leaf cells of Arabidopsis thaliana. Baroux et 

al. (2007) investigate endosperm nuclei during early seed development, stating that these nuclei are 

even bigger than the ones from leaf cells. We found that the cells and nuclei of mature embryos are 

much smaller and the tissue and chromatin is more dense than for example in leaves. This could be 

an effect of dessication. It is known that in dessication-tolerant seeds chromatin is highly condensed 

(reviewed by Pammenter and Berjak, 1999). When the density of the chromatin is high it is more 

difficult to distinguish between heterochromatin and euchromatin. 

4.1.2  Nuclei shrink during seed maturation 
During investigation of mature seeds, we noticed that the embryo nuclei were much smaller than 

reported  for  embryos  during  early  seed  development  (Baroux  et  al.,  2007).  Therefore  this 

phenomenon  was  further  analyzes  in  the  embryos  during  maturation.  Seeds  were  harvested  at 

different points during seed maturation The size of spread nuclei isolated from embryos as well as 

pictures of three-dimensional whole mount preparations were measured with the DISKUS CROMO 

software. The data display a decrease of nuclear size at the start of seed maturation between 10 dap 

and 13 dap but not during further development. 

Even though the decrease of nuclear size during seed development is not significant in this data set, 

the research was continued. It was noticed that during the confocal analyses of the embryos the 

nuclei differ slightly in size in different tissues of the same embryo. Additionally some embryos 

show variation also between neighboring cells, possibly caused by incomplete fixation of the tissue. 

The main disadvantage of the used method, the reduction of a nucleus to a two-dimensional picture, 

can  be  avoided by measuring  the  volume of  the  nuclei.  Dr.  Vittoria  Brambilla  analyzed  three-

dimensional  data  and excluded  embryos  with  obvious  defects.  The  preliminary results  show a 

convincing decrease of nuclear volume during seed maturation. 

Even though decrease of nuclear volume during seed maturation was never reported, it is known 

since years, that the chromatin gets more condensed during desiccation. It is possible that during 

maturation drying the conformation of the DNA changes from the B-helix to the more dense Z-form 

(Osborne and Boubriak,  1994).  Loss  of  water  increases  the  intracellular  concentration  of  ions, 

modificates  the histone H1 content  as  well  as  phosphorylation and changes  the activity of  the 

poly(ADP-ribose)polymerase (reviewed by Deltour, 1985). It is likely that during drying also the 

nuclear  membrane  shrinks,  thereby  reducing  the  nuclear  volume.  These  structural  changes 

complicate all processes taking place in the cells during late embryo maturation. 
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4.2 Mapping and characterization of RDO2 
The rdo2 mutant described by Léon-Kloosterziel et al. (1996) displays reduced seed dormancy and 

is possibly involved in the network of dormancy genetical factors. The aim was to identify the gene 

and characterize it in the means of dormancy mechanism. 

4.2.1 RDO2 is a TFIIS transcription elongation factor   
RDO2 was fine mapped and a 4 bp deletion at the end of the gene At2g38560 was found to be 

responsible for the reduced dormancy phenotype of  rdo2 seeds.  RDO2  is annotated as a  TFIIS 

transcription elongation factor that in yeast is catalyzing the release of the RNA polymerase II from 

transcriptional arrest (Izban and Luse, 1992). The protein contains three functional domains, the C-

terminal zinc finger is destroyed in the mutant rdo2 protein. 

Transformation of the rdo2 mutant with the wild type RDO2 gene led to partial complementation, 

suggesting  that  some essential  element  is  missing  in  the  construct.  One possibility  is,  that  the 

stability of the RDO2 mRNA is reduced because the construct misses the 3'UTR part. It is known, 

that this area increases the stability of the mRNA (Brodersen and Voinnet, 2006). Nevertheless often 

cDNA constructs  which  lack  the  UTRs  are  successfully  used  for  transformation  experiments. 

Transcription factors and other trans-acting elements should be present in the mutant background. 

Therefore the absent regulatory element could be something which has to be located in proximity of 

the ORF of RDO2 and is not present in the selected genomic sequence used for transformation. It is 

known, that for the correct expression of a gene several cis-regulatory elements are needed, which 

can be located thousands of bp from the promoter both upstream and downstream (Watson et al., 

2008). An example for an essential regulatory element located far downstream of the ORF, is the 

promoter  of  LATERAL  SUPPRESSOR (LAS).  Complementation  experiments  with  deletion 

constructs demonstrated that at least 820 bp upstream of the ATG and 3547 bp downstream of the 

ORF are necessary to restore the wild type phenotype (Eicker,  2006).  An additional attempt of 

complementation was started recently with a construct including the 3'UTR of RDO2 and the 2381 

bp upstream of the ATG, including the previous gene without its first exon. rdo2 mutant plants were 

transformed, the T1 seeds will be harvested soon.  If a larger part of the genomic area including 

RDO2 is needed for complementation, it would include more ORFs from this gene-rich area. These 

genes would have to be inactivated, for example by excluding the ATGs from the sequence, to avoid 

additional effects of their expression. Finally one could think of conformational reasons. The three 

dimensional  structure  of  the  DNA where  the  RDO2 gene  is  located  could  be  important  to  get 

regulatory elements in close proximity to the activation site. This is known from the promoters of 
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higher eucaryots (Watson et al., 2008). Since the transformed sequence is inserted in the plant DNA 

randomly, the three dimensional structure would not be the same as at the endogenous location. 

Four alleles of rdo2 in Col background with T-DNA insertions at the beginning of the second exon 

did not express the  RDO2 mRNA and show dormancy phenotypes  very similar  to  the original 

mutant. One line containing a T-DNA introgression in the putative promoter region of RDO2 does 

express  RDO2 mRNA at  the  same  level  as  Ler and  rdo2-1 and  expresses  dormancy  like  its 

background Col. This confirms the identity of RDO2 as At2g38560 which is annotated as a TFIIS 

transcription elongation factor. 

Even though little is known about TFIIS proteins in plants, the topic is deeply investigated in other 

eucaryots.  Studies  in  Saccharomyces  cerevisiae showed,  that  the  TFIIS  protein  contains  three 

independently folding domains, of which the first is not required for the known biochemical and 

biological functions of the protein (Booth et al., 2000). A short linker connects the second to the 

third domain, which forms a zinc ribbon (Kettenberger et al., 2003). Initially the TFIIS protein was 

found to release the RNA polymerase II from transcriptional arrest (Fish and Kane, 2002). Later it 

was reported to support also the formation of the transcription preinitiation complex (Kim et al., 

2007) and to act as a general RNA polymerase III transcription factor (Ghavi-Helm et al.,  2008). 

The three functional domains found in yeast are also annotated for the RDO2 protein. A sequence 

search showed, that there is no second protein in Arabidopsis thaliana with the same combination 

of functional domains. Even though the TFIIS protein seems to play a role in the ubiquitous process 

of transcription, the  rdo2 mutant is viable without severe defects. Also in yeast knock-out of the 

TFIIS gene leads to a non-severe phenotype, so the protein might be functionally redundant with 

other transcription factors (Wery et al., 2004). 

4.2.2 RDO2 Characterization   
Our main interest is to uncover the regulation of dormancy on the molecular level. The rdo2 mutant 

displays  a  dormancy  phenotype  thus RDO2  seems  to  be  part  of  such  a  network.  The 

characterization of RDO2 might lead us to additional members of the dormancy regulation and 

reveal information about the nature of the network. 

4.2.2.1 RDO2 expression increases during seed maturation 
Genevestigator  data  shows,  that  RDO2 is  expressed in  all  tissues  of  Arabidopsis  thaliana.  The 

transcript level of RDO2 during seed maturation was analyzed by quantitative real time PCR. The 
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amount of RDO2 mRNA is increasing during the second half of seed development and is highest in 

mature seeds. 

Transcript abundance is not necessarily related to protein abundance but it  is a commonly used 

approximation. It is possible that the RDO2 protein is needed towards the end of seed maturation in 

a high concentration, because the condition for transcription is getting more difficult in condensed 

and dry nuclei. Another possibility is that the mRNA is not translated directly but stored for use 

during the dormant phase or at the beginning of germination. It was argued, that even though genes 

remain transcriptionally competent in dry seeds, they might not be expressed (Comai and Harada, 

1990). However, increasing transcript levels during after-ripening were reported from  Nicotiana 

tabacum (Leubner-Metzger,  2005),  Nicotiana  plumbaginifolia (Bove  et  al.,  2005)  and  barley 

(Leymarie  et  al.,  2007).  Because  of  the  low  water  content  of  quiescent  seeds,  transcription 

promoting factors like TFIIS could be of special need.  

4.2.2.2 Transformation with overexpressing construct of RDO2 did not lead to plants 
with increased transcript level 
I  could not establish a line that  overexpresses  RDO2.  After  transformation of  rdo2  plants with 

RDO2 under the double 35S promoter all obtained lines show an expression level of RDO2 similar 

to the endogenous promoter, in agreement with the phenotype, which is intermediate to Ler and the 

rdo2 mutant. 

It is possible that highly dormant lines  got lost in the T1 because the seeds were stratified for only 

four days. However in that case I would still expect some moderately dormant lines to be found 

with this approach. Another possibility is that overexpression of RDO2 is lethal. This is not reported 

from yeast, and when we performed the tranformation of the yeast mutant with the yeast TFIIS gene 

in an overexpressing vector the growth phenotype did not differ from the lower expressing line 

(Chapter 3.2.2.4). The cDNA of  RDO2 used for transformation does not include 5' and 3' UTR, 

which might affect stability of the mRNA (Brodersen and Voinnet, 2006). But even if the in excess 

transcribed mRNA is partially degraded, more than the amount of mRNA in Ler should remain. No 

indication for silencing could be found, since tandem insertions, known to lead to silencing (Assaad 

et al., 1993), were excluded by PCR and a miRNA (Brodersen and Voinnet, 2006) is not annotated 

for RDO2. Finally, the total amount of RDO2 mRNA transcripts could be limited by an unknown 

mechanism. In that case the expression level of the mutant  rdo2 mRNA and the wild type  RDO2 

mRNA in the transformed lines would sum up to a total amount not higher than the expression of 
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RDO2 in Ler. A qRT-PCR analysis of the mutant rdo2 transcript level to test this theory failed, but 

will be repeated. 

4.2.2.3 RDO2-YFP fusion protein is localized in the nucleus, but not functional 
Transient expression of RDO2 fused with YFP in leek as well as stable expression of the construct 

in Arabidopsis thaliana revealed a nuclear localization of the fusion protein. This is consistent with 

the annotated function in the transcription process taking place in the nucleus. 

However, the transformed lines express a lower dormancy than the rdo2 mutant which suggests that 

the fusion protein has a dominant negative function. Obviously the fused YFP inhibits the RDO2 

function completely and possibly even disturbs the activity of interaction partners. Maybe this is 

caused by sterically hindered folding of RDO2 or blocking of the functional domains. These are 

common reasons for non-functionality of fluorescent fusion proteins (Snapp, 2005). In yeast it was 

shown that the TFIIS protein inserts in the active center of the polymerase complex (Kettenberger et 

al., 2003). It is possible that the size or the conformation of the fusion protein is inappropriate to 

fulfill this function. The fusion protein is expressed under the p2x35S overexpressing promoter. A 

semiquantitative expression analysis of some lines shows that lines transformed with the N-terminal 

fusion  construct  have  transcript  levels  similar  to  Ler and  rdo2 mutant,  while  lines  with  the 

C-terminal fusion construct show increased transcript levels. As discussed in 4.2.2.2 an unknown 

mechanism could limit the transcript level of  RDO2, which would explain no increase in  RDO2 

expression  level  under  the  overexpressing  promoter.  Maybe  the  C-terminal  YFP tag  prevents 

regulation or degradation of the RDO2 mRNA. 

4.2.2.4 Functional conservation does not lead to complementation of the yeast TFIIS 
mutant with the Arabidopsis thaliana RDO2 gene 
In silico comparison of the amino acid sequence of  RDO2 and the yeast  TFIIS protein reveals 

conservation,  especially  in  the  functional  domains.  There  are  several  examples  for  successful 

complementation of yeast mutants with a homologous gene from a different species (Boocock et al., 

2006; Bassett et al., 1996; Dotan et al., 2001), also for Arabidopsis thaliana (Klutstein et al., 2008). 

However, the complementation of the yeast TFIIS mutant with the RDO2 cDNA was not successful. 

It is reported, that the TFIIS genes from different eucaryots, even though highly conserved, do not 

function in exchange (Shimoaraiso et al., 1997; Sawadogo et al., 1980B). Probably the interaction 

with species specific interactors is disturbed. In yeast the SAGA component Spt8 and the Mediator 

component Med13 were identified as interactors of the TFIIS protein in a yeast-two-hybrid screen 
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(Wery et  al.,  2004).  Sequence  search  of  the Arabidopsis  genome did  not  identify  homologous 

proteins in  Arabidopsis  thaliana.  Maybe their  function is  taken over  by proteins with different 

structure. 

4.2.2.5 RDO2 is additive with three dormancy QTLs 
Lines in which the  rdo2 mutant was combined with three different NILs were analyzed for their 

dormancy  phenotype.  All  "double  lines"  show  increased  germination  compared  to  the  NILs. 

Therefore, the three genes underlying the QTLs work in different pathways than RDO2 explaining 

their additive effect on seed dormancy. 

Results from double mutant approaches are not always easy to interpret, as Koornneef et al. (1998) 

discussed for a number of late-flowering mutants in  Arabidopsis thaliana.  Like flowering time, 

dormancy is  a  quantitative  trait  and  likely to  be  regulated  by a  network  of  genes,  potentially 

interacting in a complex way instead of linear pathways. Therefore more information and detailed 

investigation would be needed to elucidate the interplay of the loci analyzed in this experiment. 

However,  at  present further  analysis  of the interaction of  DOG3 and  DOG6 with  RDO2 is  not 

possible  since  the  genes  responsible  for  the  QTLs  DOG3 and  DOG6  are  not  identified. The 

influence of the mutated rdo2 on the effect of the strong DOG1 allele of Cvi is consistent with the 

finding, that the level of DOG1 transcript is reduced in the rdo2 mutant (Chapter 3.2.2.6). A lower 

expression of DOG1 reduces dormancy also in the rdo2 NILDOG1 double line. 

4.2.2.6 The analysis of rdo2 transcriptome data for downstream targets 
Mature dry seeds consist of dense tissue with condensed nuclei (Chapter 3.1.2) and show a highly 

decreased metabolism (Holdsworth et al.,  2008). Our hypothesis is that  the RNA polymerase II 

faces more difficulties during transcription in maturing seeds than in active tissues due to low water 

content. These complications might require a high concentration of transcription elongation factor 

TFIIS. Therefore the loss of proper RDO2 function might lead to a misexpression of specific genes 

in the rdo2 mutant. 

Transcriptome data from ripe seeds of different dormancy mutants provided by Mike Holdsworth 

was analyzed to identify downstream effectors of RDO2. No candidate associated with dormancy or 

germination could be identified.  As discussed above it  is possible,  that  the  ripe seed  is not the 

developmental  phase when  RDO2 function is  crucial, because ripe seeds contain mainly stored 

mRNA that  has  been  transcribed  during  seed  maturation.  It  could  also  be  before  the  end  of 

maturation, when dormancy is established. To address that phase, seeds harvested about 17 dap 
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should  be  used  and  the  transcriptome  searched  for  genes  associated  with  dormancy  and 

germination. Dr. Yongxiu Liu is working on this experiment at the moment. 

The genes less expressed in the rdo2 mutant compared to Ler are slightly longer than the ones in 

aba1-1 and abi1-1. This is consistent with our theory that genes with longer cDNAs might need the 

support of RDO2 more than shorter genes, since they are more often object of transcriptional arrest. 

Indeed it  is  discussed whether the length of a gene could be a reason for transcriptional arrest 

(Grasser, 2005). 

4.2.2.7  qRT-PCR reveals decreased DOG1 transcript level in rdo2 during seed 
maturation 
Transcript levels of DOG1 in Ler and rdo2 siliques during maturation were analyzed by quantitative 

real time PCR. The data shows that the amount of DOG1 mRNA is lower in rdo2 than in Ler at all 

timepoints. Therefore, DOG1 is a downstream target of RDO2. The lower expression of DOG1 in 

the rdo2 mutant does explain the reduced dormancy phenotype of the mutant. Dr. Melanie Schwab 

(2008) found, that the amount of DOG1 transcript correlates with the dormancy level. 

DOG1 did not show up during the analysis of the transcriptome data as being down regulated by 

RDO2. The reason could be, that the change in expression is not strong enough to be reported, or it 

was not detected in all three replicates of the microarray. In general, the analysis of the transcript 

level of a gene by quantitative real time PCR is more sensitive than the results of a microarray 

experiment. 

4.3 Further analyses to elucidate the connection between transcription elongation 
and seed dormancy 
To confirm the impression that embryo nuclei shrink during seed maturation, the volume of nuclei 

should  be  measured  by  a  more  advanced  technique.  Initial  experiments  were  performed  by 

Dr. Vittoria Brambilla and the results are more convincing showing a similar tendency as the ones 

described above. To identify more downstream targets of RDO2, further quantitative real time PCR 

assays should be performed to investigate the transcript level of other dormancy or germination 

related genes in Ler and rdo2 seeds. To address the phase of seed maturation, seeds harvested about 

17 dap should be used and the transcriptome searched for genes associated with dormancy and 

germination. 

Although transcription elongation does not seem to be connected to seed dormancy, a second gene 

which was cloned in our lab recently, HUB1, was found to be involved in transcriptional regulation, 

65



                                                                                                                                                        Discussion and conclusions  

too (Liu et al. 2007). Dr. Yongxiu Liu performed a Chromatin Immunoprecipitation (ChIP) assay, 

testing the success of transcription of some genes. After cross-linking the proteins to the DNA, 

transcribed regions are identified by antibodies against the RNA polymerase II. After reversing the 

cross-linking quantitative PCR with primers for 3' and 5' regions of selected genes was performed. 

The  ratio  of  the  amount  of  transcript  tells  about  the  achievement  of  the  transcription  process. 

Preliminary results show that transcription of  DOG1  is reduced in the  hub1 mutant compared to 

Ler. The effect on the transcription process should also be tested for RDO2 in such an assay. 

Altogether,  it  seems  that  nuclei  of  embryos  shrink  during  seed  maturation,  which  is  the 

developmental phase when the TFIIS transcription elongation factor RDO2 is highly expressed and 

RDO2 influences the expression of the dormancy regulating gene DOG1. 

These findings suggest that the factors regulating seed dormancy include proteins that influence 

transcription during seed maturation. 

66



                                                                                                                                                     References  

References 
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, 
Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, 
Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, 
Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw 
E,  Brogden  D,  Zeko  A,  Crosby  WL,  Berry  CC,  Ecker  JR  (2003)  Genome-Wide  Insertional 
Mutagenesis of Arabidopsis thaliana. Science 301: 653-657 

Alonso-Blanco C, Bentsink L, Hanhart CJ, Blankenstijn-de Vries H, Koornneef M (2003) Analysis 
of Natural Allelic Variation at Seed Dormancy Loci of Arabidopsis thaliana. Genetics 164: 711-729

Arney KL, Fisher AG (2004) Epigenetic aspects of differentiation. Journal of Cell Science 117(19): 
4355-4363 

Assaad  FF,  Tucker  KL,  Signer  ER (1993)  Epigenetic  repeat-induced  gene  silencing  (RIGS)  in 
Arabidopsis. Plant Molecular Biology 22: 1067-1085 

Ausubel FM (1994) Current protocols in molecular biology. New York, John Wiley & Sons, Inc. 

Awrey DE,  Shimasai  N,  Koth  C,  Weilbaecher  R,  Olmsted  V,  Kazanis  S,  Shan  X,  Arellano  J, 
Arrowsmith  CH,  Kane  CM,  Edwards  AM  (1998)  Yeast  transcript  elongation  factor  (TFIIS), 
structure and function. II: RNA polymerase binding, transcript cleavage, and read-through. Journal  
of Biological Chemistry 273: 22595-22605 

Baskin  CC,  Baskin  JM (1998)  Seeds:  Ecology,  Biogeography and  Evolution  of  dormancy and 
germination. Academic press, San Diego 

Bassett DE Jr, Boguski MS, Hieter P (1996) Yeast genes and human disease. Nature 379: 589-590

Baroux C, Pecinka A, Fuchs J, Schubert I, Grossniklaus U (2007) The Triploid Endosperm Genome 
of Arabidopsis Adopts a Peculiar, Parental-Dosage-Dependent Chromatin Organization.  The Plant  
Cell 19: 1782-1794 

Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus 
controlling seed dormancy in Arabidopsis. PNAS 103 (45): 17042-17047 

Bentsink L, Koornneef M (2002) Seed dormancy and germination. In: The Arabidopsis Book. Eds. 
C.R. Somerville and E.M Meyerowitz. American Society of Plant Biologists. 

Bewley JD (1997) Seed germination and dormancy. The Plant Cell 9: 1055-1066  

Boocock GRB, Marit MR, Rommens JM (2006) Phylogeny, sequence conservation, and functional 
complementation of the SBDS protein family. Genomics 87: 758-771 

Booth  V,  Koth  CM,  Edwards  AM,  Arrowsmith  CH  (2000)  Structure  of  a  Conserved  Domain 
Common to the Transcription Factors TFIIS, Elongin A, and CRSP70.  The Journal of Biological  
Chemistry 275: 31266-31268 

________________________________________________________________________________
67



                                                                                                                                                     References  

Bove J, Lucas P, Godin B, Oge L, Jullien M, Grappin P (2005) Gene expression analysis by cDNA-
AFLP highlights a set of new signaling networks and translational control during seed dormancy 
breaking in Nicotiana plumbaginifolia. Plant Molecular Biology 57: 593-612 

Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants.  TRENDS in 
Genetics 22(5): 268-280 

Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java Alignment Editor. Bioinformatics 
20: 426-427 

Clough  SJ,  Bent  AF  (1998)  Floral  dip:  a  simplified  method  for  Agrobacterium-mediated 
transformation of Arabidopsis thaliana. Plant Journal 16: 735-743 

Cole  M,  Nolte  C,  Werr  W  (2006)  Nuclear  import  of  the  transcription  factor  SHOOT 
MERISTELESS  depends  on  heterodimerization  with  BHL proteins  expressed  in  discrete  sub-
domains  of  the shoot  apical  meristem of  Arabidopsis  thaliana.  Nucleic  Acids  Research 34 (4): 
1281-1292 

Comai L, Harada JJ (1990) Transcriptional activities in dry seed nuclei indicate the timing of the 
transition from embryogeny to germination. Proceedings of the National Academy of Sciences, USA 
87: 2671-2674 

Davie  JK,  Kane  CM  (2000)  Genetic  Interactions  between  TFIIS  and  the  Swi-Snf  Chromatin 
Remodeling Complex. Molecular and Cellular Biology 20: 5960-5973 

Debeaujon I,  Koornneef M (2000) Gibberellin requirement for  Arabidopsis  seed germination is 
determined  both  by  testa  characteristics  and  embryonic  abscisic  acid.  Plant  Physiology 122: 
415-424 

Debeaujon I, Lepiniec L, Pourcel L, Routaboul JM (2007) Seed Coat Development and Dormancy. 
In:  Seed  development,  dormancy  and  germination. Eds.  K.  Bradford,  H.  Nonogaki,  Blackwell 
Publishing, 26-49 

Dellaporte S, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Molecular  
Biological Reports 1: 19-21 

Deltour R (1985) Nuclear activation during early germination of the higher plant embryo. Journal  
of  Cell Science 75: 43-83 

Dotan I, Ziv E, Afni N, Beckmann JS, McCann RO, Glover CVC, Canaani D (2001) Functional 
Conservation  between Human,  Nematode,  and  Yeast  CK2 Cell  Cycle  Genes.  Biochemical  and 
Biophysical Reasearch Communications 288: 603-609 

Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E.coli by high voltage 
electroporation. Nucleic Acids Research 16: 6127-6145  

Eicker  A (2006)  Studien  zur  Charakterisierung  der  regulatorischen  Elemente  des  LATERAL 
SUPPRESSOR Gens in Arabidopsis thaliana. Dissertation, Universität zu Köln 

________________________________________________________________________________
68



                                                                                                                                                     References  

Evans J, Ratcliffe D (1972) Variation in "after-ripening" of seeds of  Arabidopsis thaliana and its 
ecological significance. Arabidopsis Information Service 9: 3-5 

Exinger  F,  Lacroute  F  (1992)  6-Azauracil  inhibition  of  GTP biosynthesis  in  Saccharomyces  
cerevisiae. Current Genetics 22: 9-11 

Finch-Savage BE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New 
Phytologist 171: 501-523 

Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annual  
Review of Plant Biology 59: 387-415 

Fish  RN,  Kane  CM  (2002)  Promoting  elongation  with  transcript  cleavage  stimulation  factors. 
Biochimica et Biophysica Acta 1577: 287-307  

Fish RN, Ammerman ML, Davie JK, Lu BF, Pham C, Howe L, Ponticelli AS, Kane CM (2006) 
Genetic Interactions Between TFIIF and TFIIS. Genetics 173: 1871-1884 

Fransz PF, Armstrong S, de Jong JH, Parnell LD, van Drunen C, Dean C, Zabel P, Bisseling T, 
Jones GH (2000)  Integrated cytogenetic  map of  chromosome arm 4S of  A. thaliana:  structural 
organization of heterochromatic knob and centromere region. Cell 100: 367-376 

Fransz P, de Jong JH, Lysak M, Ruffini Castiglione M, Schuber I (2002) Interphase chromosomes 
in  Arabidopsis are  organized  as  well  defined  chromocenters  from  which  euchromatin  loops 
emanate. PNAS 99: 14584-14589 

Ghavi-HelmY, Michaut M, Acker J, Aude JC, Thuriaux P, Werner M, Soutourina J (2008) Genomi-
wide  location  analysis  reveals  a  role  of  TFIIS  in  RNA polymerase  III  transcription.  Genes  & 
Development 22: 1934-1947 

Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK (2002) RNA helicase-like protein as 
an early regulator of transcription factors for plant chilling and freezing tolerance. Proceedings of  
the National Academy of Sciences of the United States of America 99: 11507-11512 

Gong Z, Dong CH, Lee H, Xiong L, Gong D, Stevenson B, Zhu JK (2005) A DEAD box RNA 
helicase  is  essential  for  mRNA export  and  import  for  development  and  stress  responses  in 
Arabidopsis. Plant Cell 17: 256-267 

Grasser KD (2005) Emerging role for transcript elongation in plant development. TRENDS in Plant  
Science 10: 484-490 

Grigoryev SA, Nikitina T, Pehrson JR, Singh PB, Woodcock CL (2004) Dynamic relocation of 
epigenetic  chromatin  markers  reveals  an  active  role  for  constitutive  heterochromatin  in  the 
transition from proliferation to quiescence. Journal of Cell Science 117: 6153-6162  

Hanahan  D  (1983)  Studies  on  transformation  of  Escherichia  coli with  plasmids.  Journal  of  
Molecular Biology 166: 557-580 

Hilhorst  HWM (1995) A critical  update on seed dormancy. I.  Primary dormancy.  Seed Science 
Research 5: 61-73 

________________________________________________________________________________
69



                                                                                                                                                     References  

Hoffmann MH (2002) Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae).  Journal  
of Biogeography 29: 125-134 

Holdsworth MJ, Bentsink L, Soppe WJJ (2008) Molecular networks regulating Arabidopsis seed 
maturation, after-ripening, dormancy and germination. New Phytologist 179: 33-54 

Hruz  T,  Laule  O,  Szabo  G,  Wessendorp  F,  Bleuler  S,  Oertle  L,  Widmayer  P,
Gruissem  W,  Zimmermann  P  (2008)  Genevestigator  V3:  A  reference  expression
database  for  the  meta-analysis  of  transcriptomes.  Advances  in  Bioinformatics,  2008,  Article  ID 
420747 

Izban MG, Luse DS (1992) The RNA polymerase II ternary complex cleaves the nascent transcript 
in a 3'----5' direction in the presence of elongation factor SII. Genes and Development 6: 1342-1356 

Jakoby M,  Wang  HY,  Reidt  WWeisshaar  B,  Bauer  P (2004)  FRU (BHLH029)  is  required  for 
induction of iron mobilization genes in Arabidopsis thaliana. FEBS Letters 577: 528-534 

Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis Map Based 
Cloning in the Post-Genome Era. Plant Physiology 129: 440-450 

Katoh K, Toh H (2008) Recent developments in MAFFT multiple sequence alignment program. 
Briefings in Bioinformatics 9: 286-298 

Kettenberger  H,  Armache  KJ,  Cramer  P (2003)  Architecture  of  the  RNA Polymerase  II-TFIIS 
Complex and Implications for mRNA Cleavage. Cell 114: 347-357 

Kettenberger H, Armache KJ, Cramer P (2004) Complete RNA polymerase II Elongation Complex 
Structure and Its Interactions with NTP and TFIIS. Molecular Cell 16: 955-965 

Kermode AR, Finch-Savage BE (2002) Dessication Sensitivity in Relation to Seed Development. 
In: Dessication and Survival in Plants. Drying Without Dying. Eds. M. Black, HW Pritchard. CABI 
Publishing, Oxon 

Keurentjes  JJB, Bentsink L,  Alonso-Blanco C, Hanhart  CJ,  Blankenstijn-de Vries  H,  Effgen S, 
Vreugdenhil  D,  Koornneef  M  (2007)  Development  of  a  Near-Isogenic  Line  Population  of 
Arabidopsis  thaliana and  Comparison  of  Mapping  Power  With  a  Recombinant  Inbred  Line 
Population. Genetics 175: 891-905

Kim B,  Nesvizhskii  AI,  Rani  PG,  Hahn  S,  Aebersold  R,  Ranish  JA (2007)  The  transcription 
elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes. PNAS 104: 
16068-16073 

Klutstein M, Shaked H, Sherman A, Avivi-Ragolsky N, Shema E, Zenvirth D, Levy AA, Simchen G 
(2008)  Functional Conservation of the Yeast and Arabidopsis  RAD54-Like Genes.  Genetics 178: 
2389–2397 

Koornneef M, Alonso-Blanco C, Blankestijn-de Vries H, Hanhart CJ, Peeters AJM (1998) Genetic 
Interactions Among Late-Flowering Mutants of Arabidopsis. Genetics 148: 885-892 

________________________________________________________________________________
70



                                                                                                                                                     References  

Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Current Opinion in  
Plant Biology 5: 33-36 

Koornneef  M, Alonso-Blanco C,  Vreugdenhil  D (2003)  Naturally occuring genetic  variation in 
Arabidopsis thaliana. Annual Review of Plant Biology 55: 141-172 

Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, 
Kamiya  Y,  Nambara  E  (2004)  The  Arabidopsis  cytochrome  P450  CYP707A encodes  ABA 8'-
hydroxylases: key enzymes in ABA catabolism. The EMBO Journal 23: 1647-1656 

Laibach  F  (1943)  Arabidopsis  thaliana (L.)  Heynh.  als  Objekt  für  genetische  und 
entwicklungsphysiologische Untersuchungen. Botanisches Archiv 44: 439-455 

Laibach F (1951) Über sommer- und winterannuelle Rassen von Arabidopsis thaliana (L.) Heynh. 
Ein Beitrag zur Ätiologie der Blütenbildung. Beiträge zur Biologie der Pflanzen 28: 173-210

Larkin MA, Blackshields  G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin  F, 
Wallace  IM,  Wilm  A,  Lopez  R,  Thompson  JD,  Gibson  TJ,  Higgins  DG  
(2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. 

Leffel SM, Mabon SA, Stewart CN (1997) Applications of Green Fluorescent Protein in Plants. 
Biotechniques 23: 912-918 

Leon-Kloosterziel KM, van de Bunt GA, Zeevaart JAD, Koornneef M (1996) Arabidopsis Mutants 
with a Reduced Seed Dormancy. Plant Physiology 110: 233-240 

Leubner-Metzger  G  (2005)  Beta-1,3-glucanase  gene  expression  in  low-hydrated  seeds  as  a 
mechanism for dormancy release during tobacco after-ripening. Plant Journal 41: 133-145 

Leymarie  J,  Brunneaux  E,  Gibot-Leclerc  S,  Corbineau  F  (2007)  Identification  of  transcripts 
potentially  involved  in  barley  seed  germination  and  dormancy using  cDNA-AFLP.  Journal  of  
Experimental Botany 58: 425-437 

Liu Y, Koornneef M, Soppe W (2007) The Absence of Histone H2B Monoubiquitination in the 
Arabidopsis hub1 (rdo4) Mutant Reveals a Role for Chromatin Remodeling in Seed Dormancy. The 
Plant Cell 19: 433-444 

Lobin W (1983) The occurence of  Arabidopsis thaliana in the Cape Verde Islands.  Arabidopsis  
Information Service 20: 119-123 

Lloyd A (2003) Vector Construction for Gene Overexpression as a Tool to Elucidate Gene Function. 
Methods in Molecular Biology, 236: 329-344  

Malagon  F,  Tong  AH,  Shafer  BK,  Strathern  JN  (2004)  Genetic  Interactions  of  DST1 in 
Saccharomyces cerevisiae Suggest a Role of TFIIS in the Initiation-Elongation Transition. Genetics 
166: 1215-1227 

Meinke  DW,  Franzmann  LH,  Nickle  TC,  Yeung  EC  (1994)  Leafy  cotyledon  mutants  of 
Arabidopsis. Plant Cell 6: 1049-1064 

________________________________________________________________________________
71

javascript:AL_get(this, 'jour', 'Biotechniques.');


                                                                                                                                                     References  

Meyerowitz EM (1987) Arabidopsis thaliana. Annual Review of Genetics 21: 93-111 

Natori  S,  Takeuchi K, Takahashi K, Mizuno D (1973) DNA Dependent RNA Polymerase from 
Ehrlich Ascites Tumor Cells. Journal of Biochemistry 73: 879-888 

Olmsted VK, Awrey DE, Koth C, Shan X, Morin PE, Kazanis S, Edwards AM, Arrowsmith CH 
(1998)  Yeast  transcription  elongation  factor  (TFIIS),  structure  and function.  I:  NMR structural 
analysis  of  the  minimal  transcriptionally  active  region.  Journal  of  Biological  Chemistry 273: 
22589-22494 

Osborne DJ, Boubriak I (1994) DNA and desiccation tolerance. Seed Science Research 4:175–185 

Pammenter NW, Berjak P (1999) A review of recalcitrant seed physiology in relation to desiccation-
tolerance mechanisms. Seed Science Research 9: 13-37 

Pan G, Aso T, Greenblatt J (1997) Interaction of elongation factors TFIIS and elongin A with a 
human RNA polymerase II holoenzyme capable of promoter-specific initiation and responsive to 
transcriptional acitvators. Journal of Biological Chemistry 272: 24563-24571 

Peeters AJM, Blankenstijn-de Vries H, Hanhart CJ, Léon_kloosterziel K, Zeevaart JAD, Koornneef 
M (2002) Characterization of mutants with reduced seed dormancy at two novel  rdo loci and a 
further characterization of rdo1 and rdo2 in Arabidopsis. Physiologia Plantarum 115: 604-612 

Rappaport  J,  Reinberg  D,  Zandomeni  R,  Weinmann  R  (1987)  Purification  and  Functional 
Characterization  of  Transcription  Factor  SII  from  Calf  Thymus.  The  Journal  of  Biological  
Chemistry 262: 5227-5232

Ratcliffe D (1976) Germination characteristics and their inter- and intra-population variability in 
Arabidopsis. Arabidopsis Information Service 13: 34-45 

Raz  V,  Bergervoet  JHW,  Koornneef  M  (2001)  Sequential  steps  for  developmental  arrest  in 
Arabidopsis seeds. Development 128: 243-252 

Reinberg D,  Roeder  RG (1987)  Factors  involved in  specific  transcription  by mammalian RNA 
polymerase II. The Journal of Biological Chemistry 262: 3331-3337

Rédei GP (1992) A heuristic glance to the past of Arabidopsis genetics. In: Methods in Arabidopsis  
Research. Eds. C.Koncz, N. Chua, J. Schell, World Scientific: 1-15 

Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-
DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant  
Molecular Biology 53: 247-259 

Sadoni  N,  Langer  S,  Fauth  C,  Bernardi  G,  Cremer  T,  Turner  BM,  Zink  D  (1999)  Nuclear 
Organization  of  Mammalian  Genomes:  Polar  Chromosome  Territories  Build  Up  Functionally 
Distinct Higher Order Compartments. Journal of Cell Biology 146: 1211-1226 

Sambrook J,  Russel  DW (2001)  Molecular  cloning:  A laboratory manual.  Cold Spring Harbor 
Laboratory Press, NY, 3rd Edition 

________________________________________________________________________________
72



                                                                                                                                                     References  

Sawadogo M, Sentenac A, Fromageot P (1980A) Interaction of a New Polypeptide with Yeast RNA 
Polymerase B. The Journal of Biological Chemistry 255: 12-15

Sawadogo M, Sentenac A, Fromageot P (1980B) Similar binding site for P37 factor on Yeast RNA 
Polymerase A and B. Biochemical and Biophysical Research Communications 96: 258-264 

Schmidt  M,  Uhlenhaut  NH,  Godard  F,  Demar  M,  Bressan  R,  Weigel  D,  Lohmann  JU (2003) 
Dissection  of  floral  induction  pathways  using  global  expression  analysis.  Development 130: 
6001-6012 

Schwab,  M (2008)  Identification  of  novel  seed dormancy mutants  in  Arabidopsis  thaliana and 
molecular  and  biochemical  characterization  of  the  seed  dormancy  gene  DOG1.  Dissertation, 
Universität zu Köln 

Shimoaraiso M, Nakanishi T, Kubo T, Natori S (1997)  Identification of the Region in Yeast S-II 
That Defines Species Specificity in Its Interaction with RNA Polymerase II. Journal of Biological  
Chemistry 272: 26550-26554 

Sluder  AE,  Greenleaf  AL,  Price  DH  (1989)  Properties  of  a  Drosophila RNA Polymerase  II 
Elongation Factor. The Journal of Biological Chemistry 264: 8963-8969 

Snapp E (2005) Design and Use of Fluorescent Fusion Proteins in Cell Biology. Current Protocols  
in Cell Biology 21.4.1-21.4.13 

Soellick TR, Uhrig JF (2001) Development of an optimized interaction-mating protocol for large-
scale yeast two-hybrid analyses. Genome Biology 2, research0052.1-0052.7 

Soppe WJJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, Jacobsen SE, Schubert I, 
Fransz PF (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin 
assembly in Arabidopsis. The EMBO Journal 21: 6549-6559 

Spencer  CA,  Groudine  M  (1990)  Transcription  elongation  and  eukaryotic  gene  regulation. 
Oncogene 5: 777-785 

Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, 
Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang R, Huala E (2007) The 
Arabidopsis Information Resource (TAIR): gene structure and function annotation.  Nucleic Acids  
Research 28 database issue 

Teng S, Rognoni S, Bentsink L, Smeekens S (2007) The Arabidopsis GSQ5/DOG1 Cvi allele is 
induced  by  the  ABA mediated  sugar  signalling  pathway,  and  enhances  sugar  sensitivity  by 
stimulating ABI4 expression. Plant Journal 55: 372-381 

Tessadori  F,  Chupeau MC, Chupeau Y, Knip M, Germann S, van Driel  R, Fransz P,  Gaudin V 
(2007A)  Large-scale  dissociation  and  sequential  reassembly  of  pericentric  heterochromatin  in 
dedifferentiated Arabidopsis cells. Journal of Cell Science 120: 1200-1208 

Tessadori  F,  Schulkes  RK,  van  Driel  R,  Fransz  P  (2007B)  Light-regulated  large  -scale 
reorganization  of  chromatin  during  the  floral  transition  in  Arabidopsis.  The  Plant  Journal  50: 
848-57 

________________________________________________________________________________
73



                                                                                                                                                     References  

Uptain SM, Kane CM, Chamberlin MJ (1997) Basic Mechanisms of Transcript Elongation and its 
Regulation. Annual Review of Biochemistry 66: 117-172 

Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R (2008) Molecular Biology of the 
Gene. Cold Spring Harbor Laboratory Press 6th Edition p 590 

Wery M, Shematorova E, Van Driessche B, Vandenhaute J,  Thuriaux P,  Van Mullem V (2004) 
Members of the SAGA and the Mediator complexes are partners of the transcription elongation 
factor TFIIS. The EMBO Journal 23: 4232-4242 

Yeast Protocols Handbook (2001) PT 3024-1, Clontech Laboratories Inc. 

Zimmermann  P,  Hirsch-Hoffmann  M,  Hennig  L,  Gruissem  W  (2004)  GENEVESTIGATOR. 
Arabidopsis Microarray Database and Analysis Toolbox. Plant Physiology 136: 2621-2632 

________________________________________________________________________________
74



                                                                                                                                                                                    Appendix  

Appendix 

ACAPELLA script 
written by Dr. Kurt Stüber 

singlewell( ) 
convolutionmask("Disk",6) 
convolution(image=image1, faster=yes) 
set(image1=image) 
nuclei_Detection_A(image1) 
cytoplasm_Detection_A(image1) 
//spot_Detection_D(image1) 

Genomic sequence of RDO2 and rdo2
The  following  sequence  is  the  genomic  sequence  of  the  coding  region  of  RDO2.  CAPITAL 

LETTERS show exons, gray lower case letters show the intron, the yellow box marks the four bp 

that are deleted in the rdo2 mutant. 

ATGGAGAGTGATTTGATTGATTTGTTCGAGGGAGCTAAGAAGGCAGCCGATGCGGCGGCTCTTGAC
GGTGTTACCTCTTCAGGTCCTGAGGTTTCTCAATGTATCGATGCCCTTAAACAGCTCAAGAAGTTT
CCTGTCACATACGATACCCTCGTTGCGACTCAGgttcgtttctgattatcttctcgtaaccctaaa
aaagattgatttattttgcatttaggaaaaggtttatatatgttgcatttaggagggtttttctag
gtgttgattgcttaatctcgttgcattgacttgtgttgttgttaccttagatttttaattagggtt
atttaatttcatctgaaaaagtttatagaagtttaaaaagagtaactttaattcaatagatgaaga
agcttgagctaactgatttgtataattgactaattgtttgtacgtccccgttgatattgttggaac
aaaccaatttggacattatcctctggaatgttgatagtgtgtgtatttgcttttgagaaagttata
ttcttttcttgcttccagGTGGGAAAGAAGCTGAGGTCTCTTGCAAAACATCCTGTTGAAGATATC
AAAAGCGTAGCTACTGATCTGCTTGAGATATGGAAGAAAGTTGTCATTGAAGAGACAGCCAAAGCT
AAGAAAACCGAAGGCACTAACGGTTGTAAAGAGGCTAAGGTGAATAAGATGGATGTTGAGAAGCCT
TCAAATCCTGCTCCTGTTAAAGTTCAGAAACTTCAGAGGGGTGATTCGGCTAAGAGTATCAAGGTT
GAGAGAAAGGAACCTGACAATAAAGTTGTTACCGGTGTCAAGATAGAGAGAAAGGTACCTGACATC
AAAGTCACCAATGGAACCAAGATAGATTATCGTGGTCAGGCTGTGAAAGATGAAAAGGTCTCAAAG
GACAACCAATCAAGTATGAAAGCTCCAGCTAAAGCAGCTAATGCTCCTCCAAAACTAACTGCAATG
CTCAAATGCAATGATCCTGTGCGTGACAAAATCCGTGAGTTGCTTGTGGAGGCGTTGTGCAGGGTT
GCTGGAGAAGCTGATGACTATGAGAGAGAGTCAGTAAATGCTAGTGATCCTTTACGTGTTGCTGTC
TCAGTGGAATCACTGATGTTTGAGAAATTGGGTCGCTCAACTGGAGCTCAGAAGCTTAAGTACAGA
TCTATAATGTTCAACCTGAGGGATAGTAACAACCCGGACTTAAGAAGGAGGGTTCTCACTGGGGAG
ATTTCACCAGAGAAACTCATAACATTGTCTGCCGAAGATATGGCAAGTGACAAGAGGAAACAAGAG
AACAACCAGATCAAAGAGAAAGCCCTGTTTGATTGTGAGCGTGGTCTTGCTGCAAAAGCATCTACC
GACCAGTTCAAGTGCGGGCGGTGTGGTCAGCGCAAATGCACCTACTATCAGATGCAAACAAGAAGT
GCTGATGAGCCAATGACGACTTATGTTACATGTGTTAACTGTGACAACCACTGGAAGTTCTGTTGA
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