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1 Introduction 

1.1 Innate and adaptive immunity 
In vertebrates the innate and adaptive immune systems both contribute to defend the 

organism against pathogenic infections. The adaptive immune system has been the 

subject of scientific research for a number of decades, whereas the specific response 

strategies employed by the innate immune system have only recently been started to 

be uncovered.  

The innate immune response forms the first line of the hosts’ defense against 

pathogens. After invasion of infectious agents, such as viruses, bacteria, fungi, or 

parasites, the innate immune response seeks to prevent their dissemination and 

thereby to limit the detriment to the infected host. The main components mediating 

innate immune responses are the complement system, phagocytes, and natural killer 

cells (NK cells) (for details see section 1.3). 

In vertebrates, the adaptive immune response becomes activated as a consequence of 

complement activation and the release of proinflammatory cytokines by phagocytes or 

natural killer cells. The subsequent clonal response of the adaptive immune system is 

specific for the invading pathogen and leads to the development of memory B-cells. 

 

1.1.1 Evolution of the immune systems in vertebrates 
More primitive life forms, like flowering plants or insects, rely solely on innate immune 

defense strategies and have developed intricate mechanisms to fight off pathogenic 

infections. 

The adaptive immune system seems to be an invention of the gnathostome lineage 

(jawed vertebrates) within the vertebrate clade, as it is absent in agnathans (jawless 

vertebrates represented by lampreys and hagfishes). The evolution of the jaw 

presumably led to dietary changes accompanied by a higher degree of injuries and 

infections. This might have resulted in a selective constraint leading to the development 

of the thymus, the central organ of the adaptive immune system (Matsunaga and 

Rahman 2001).  

To date, there is ongoing controversy about the temporal origin of the adaptive immune 

system. One model is the ‘‘big bang’’ hypothesis (Abi Rached et al. 1999), proposing 

that the adaptive immune system emerged in association with the postulated two 

rounds of genome-wide duplications, one of which is thought to have occurred before 

and the other after the split of agnathans and gnathostomes. The other model 

postulates that the adaptive immune system arose by gradual accumulation of small 
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changes over an extended period, arguing that the evolution of the adaptive immune 

system started long before the divergence of those two lineages (Klein and Nikolaidis 

2005). 

Indeed, earlier studies in jawless vertebrates showed that these are capable of 

producing specific agglutinins against antigens and rejecting skin allografts with 

immunological memory suggesting that agnathans are equipped with adaptive immune 

systems (Finstad and Good 1964; Fujii et al. 1979a; Fujii et al. 1979b; Hildemann 1970; 

Linthicum and Hildemann 1970; Litman et al. 1970; Marchalonis and Edelman 1968; 

Pollara et al. 1970). However, subsequent attempts to identify T cell receptors (TCRs), 

B cell receptors (BCRs), or major histocompatibility (MHC) molecules have been 

unsuccessful. This apparent paradox was resolved by the discovery that jawless 

vertebrates have a unique form of adaptive immunity that does not rely on TCR, BCR, 

or MHC molecules (Alder et al. 2005; Cooper and Alder 2006; Pancer and Cooper 

2006). The identification of variable lymphocyte receptors (VLRs) in lampreys suggests 

that different types of antigen receptor systems emerged during vertebrate evolution 

(Pancer et al. 2004). Although VLRs and TCRs/BCRs both generate diversity by 

combinatorial joining of gene segments, they are structurally and evolutionary 

unrelated. But in general it appears that the acquisition of antigen receptors capable of 

generating diversity by somatic recombination was indispensable for the survival of the 

emerging vertebrates. 

From an evolutionary perspective the cartilaginous fish (Chondrichthyes) and the bony 

fish (Osteichthyes) are among the earliest vertebrate groups in which the main 

components of the adaptive immune system (MHC genes and B/T cells) are present. 

The zebrafish, Danio rerio, belongs to the infraclass Teleostei of the ray-finned fish 

class (Actinopterygii). As a model organism it can therefore be used to explore the 

immune system of jawed vertebrates. 

 

 

1.2 Cells of the immune system in zebrafish 
The immune system of the zebrafish resembles that of higher vertebrates in many 

aspects. Since the essential features of a multi-lineage myeloid system have been 

retained, the zebrafish has proven itself to be a robust and highly conserved model for 

studying vertebrate hematopoiesis (for review see (Amatruda and Zon 1999; Berman et 

al. 2005; Crowhurst et al. 2002; Traver 2004). 

The obvious differences are that zebrafish lack bone marrow and lymph nodes. 

Hematopoiesis takes place in the kidney of adult zebrafish, as is the case in all teleosts 

(Zapata 1979). Immune and blood cells arise from hematopoietic, pluripotent stem cells 
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in the whole kidney marrow (Fig. 1.1). These stem cells differentiate either into the 

myeloid lineage (giving rise to monocytes, neutro-, eosino-, and basophilic 

granulocytes, thrombocytes, and erythrocytes) or the lymphoid lineage (B-, T-, and NK-

cells). The early progenitors of T-cells migrate from the kidney to the thymus, where 

they mature to immunocompetent T-cells (Trede and Zon 1998; Willett et al. 1999). The 

presence of mast cells and dendritic cells in zebrafish has been unclear, but recent 

results indicate that both cell types are present (Dobson et al. 2008; Lin et al. 2009). 

In contrast to mammals, fish additionally possess melanomacrophages, which contain 

heterogeneous inclusions of mostly melanin, hemosiderin, and lipofuscin (Agius 1984; 

Herraez and Zapata 1991). Melanomacrophages are found as aggregates in the 

hematopoietic tissues of spleen and kidney and in the periportal areas of the liver 

(Roberts 1975; Wolke 1992). It has been suggested that these aggregates represent 

the primitive analogues to germinal centers of lymph nodes in mammals (Ferguson 

1976; Roberts 1975).  

Thymus

Hematopoietic

stem cell

lymphoid

precursor B progenitor

T progenitor

myeloid

progenitor

Myeloblast

Monoblast

Erythroblast Proerythrocyte Erythrocyte

eo/basophilic Myelocyte

neutrophilic Myelocyte

Promonocyte

Pre B cell

NK progenitor Pre NK cell

Pre T cell

Prothrombocyte Prethrombocyte Thrombocyte

Eo/basophil

Neutrophil

Monocyte

NK cell

B cell

T cell

Kidney

 
Figure 1.1: Model of the definitive hematopoiesis in adult zebrafish.  

All definitve blood and immune cells derive from hematopoietic pluripotent stem cells (HSCs) located in the 

kidney. The HSCs give rise to two cell lineages, the myeloid and lymphoid cell types. The myeloid 

progenitor cells develop into monocytes, granulocytes, thrombocytes, and erythrocytes. Note that 

erythrocytes are nucleated in most fish species. The lymphoid precursors give rise to T and B lymphocytes 

as well as NK cells. The T cell precursors migrate to the thymus, where they mature to immunocompetent 

T cells (modified after (Traver et al. 2003). 
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1.2.1 Development of immune cells in the zebrafish 
The zebrafish is an excellent model to study the development of immune and blood 

cells due to its external development with optically transparent embryos. A diverse 

collection of described blood mutants provides a rich source for the study of genetic 

components of human blood and immune disorders (reviewed in (Barut and Zon 2000). 

The development of immune and blood cells in vertebrate embryos occurs in two 

temporally overlapping phases, which are called primitive and definitive hematopoiesis.  

The primitive hematopoiesis in mammals initiates in the extraembryonic yolk sac, while 

in zebrafish it takes place within the embryo at two distinct sites: the anterior lateral 

mesoderm (ALM) and the posterior lateral mesoderm (PLM), which later forms the 

intermediate cell mass (ICM). Primitive erythrocytes derive from the ICM (Al-Adhami 

and Kunz 1977; Detrich et al. 1995; Thompson et al. 1998) and primitive macrophages 

are formed in the ALM and migrate subsequently onto the yolk (Herbomel et al. 1999). 

Both primitive cell subsets arise between the 13- to 30-somite stages. Since the 

primitive wave of hematopoiesis is transient, it lasts only for less than 24 hours.  

With the onset of circulation at about 24 hours post fertilization (hpf) the first 

progenitors of the second, definitive wave of hematopoiesis can be found (Burns et al. 

2002; Gering and Patient 2005; Kalev-Zylinska et al. 2002). Similar to the primitive 

wave, also the definitive hematopoiesis occurs at independent sites within the zebrafish 

embryo.  

At first, erythromyeloid progenitors develop in the posterior blood island (PBI). Studies 

in mammals, where they are also formed in the yolk sac, have shown that these cells 

have a limited differentiation program, giving rise only to erythroid and myeloid cells 

(Palis et al. 2001; Palis et al. 1999). Furthermore, they seem to constitute a transient 

population, due to their lack of self-renewal properties (Cumano et al. 2001). By fate-

mapping studies similar results have been obtained in the zebrafish (Bertrand et al. 

2007). 

These findings led to the speculation that these cells evolved to provide innate immune 

protection before the first hematopoietic stem cells (HSCs) are produced (Palis et al. 

2001). This seems indeed likely, since mature cells derived from the HSCs are not yet 

present for several days in mammalian as well as in zebrafish development. 

In mammals and in the zebrafish the HSCs arise predominantly in the ventral wall of 

the dorsal aorta in a region known as the aorta-gonad-mesonephros (AGM). The 

development of HSCs and blood cells in the zebrafish is initiated and regulated by 

signal transduction pathways including the vascular endothelial growth factor (Vegf), 

bone morphogenetic protein (Bmp), Hedgehog, prostaglandin E2 (Pge2) – wingless-

type MMTV integration site family (Wnt), and Notch - runt-related transcription factor 
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(Runx) pathways. Wilkinson and colleagues just recently demonstrated that Bmp4 is 

required for HSC formation in the developing zebrafish embryo (Wilkinson et al. 2009). 

By 26 hpf, genes involved in specifying definitive HSCs, c-myb and runx1, start to be 

expressed in the AGM (Burns et al. 2005; Gering and Patient 2005). A subset of the 

runx1+ cells in the AGM express CD41, the earliest known surface marker of nascent 

HSCs, at 33 hpf (Bertrand et al., 2008; Kissa et al., 2008).  

Fate mapping and cell tracing studies revealed that HSCs leave the AGM and migrate 

through the blood to the pronephros at 48-56 hpf (Bertrand et al. 2008; Kissa et al. 

2008). In addition, HSCs populate the caudal hematopoietic tissue (CHT), which has 

formed as a consequence of extensive remodeling of the PBI region (Murayama et al. 

2006). In the CHT the HSCs give rise to erythroid, myeloid, and thromboid cells at 

around 3 dpf. Similar to the fetal liver in mammals, the CHT represents an intermediate 

site of hematopoietic differentiation, so that subsequently erythropoiesis, myelopoiesis, 

and thrombopoiesis shift to the kidney at around 5 dpf (Lin et al. 2005). From the larval 

stage into adulthood the kidney marrow is the primary site of hematopoiesis. B 

lymphocytes have been found at 19 dpf in the kidney and the pancreas, although the 

latter is still discussed as a site for B cell maturation (Danilova and Steiner 2002; 

Langenau et al. 2004; Willett et al. 1999). Secreted immunoglobulin (Ig) was only 

detectable by Western blotting at 4 weeks post fertilization (wpf) onwards (Lam et al. 

2004). 

A different subset of HSCs from the AGM has been observed to colonize the 

developing thymus at around 54-56 hpf (Kissa et al. 2008). By day 4, the expression of 

lymphoid genes like recombination activating gene (rag) 1 and 2 and ikaros have been 

observed in thymocytes within the developing thymus (Willett et al. 1997). Mature 

lymphocytes are found in thymic epithelium by 7 dpf (Trede et al. 2001). However, 

during the first three weeks of development functional T cells could not be identified 

outside the thymus (Langenau et al. 2004) and the thymus itself does not seem 

morphologically mature until 3 weeks post fertilization (wpf) (Lam et al. 2002), although 

individual T cells have been found to be present in peripheral organs already at 9 dpf 

(Danilova et al. 2004). By assaying the acquired immune response to T cell dependent 

and independent antigens, it has been shown that immunocompetence is first achieved 

at 4-6 weeks of development (Lam et al. 2004). 

For the first three weeks of development the zebrafish is therefore entirely dependent 

on innate immune defense mechanisms to fend off invading pathogens. In contrast to 

mice, which have circulating T cells at 7 days post partum  (reviewed in (Adkins 1999), 

the zebrafish offers the opportunity to examine the defense strategies employed by the 

innate immune system independently of the acquired immune response.  
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1.3 The innate immune system in zebrafish embryos 
Pathogens are recognized by three different components of the innate immune system: 

the complement system, NK cells, and phagocytes.  

The complement system is highly developed in fish. Components of the classical 

(antibody-dependent), the alternative, and the mannose-binding lectin pathways have 

been identified in fish (reviewed in (Zarkadis et al. 2001a). Furthermore, zebrafish 

possess additional complement components compared to mammals, e.g. three genes 

encoding C3 convertase, two factor B genes, and at least three mannose-binding lectin 

genes (Gongora et al. 1998; Zarkadis et al. 2001b). However, not all of these extra 

components have been functionally evaluated.  

In adult zebrafish complement factors are produced by the liver. Although in the 

embryo the liver primordium begins to develop at 32 hpf (Korzh et al. 2001), 

vascularization, which is critical for liver function, is not completed until 3 dpf (Field et 

al. 2003). In order to activate the mainly macrophage-based immune response in the 

embryo, different sources of complement have been discussed, like the yolk syncytial 

layer or the macrophage itself. Indeed, early hepatic cells that appear in the endoderm 

of the yolk sac have been observed (Korzh et al. 2001). However, using in vitro and in 

vivo approaches Wang and colleagues demonstrated that maternal complement 

components of the alternative pathway protect the early zebrafish embryo against 

bacterial infection (Wang et al. 2009; Wang et al. 2008). Additionally it was shown by 

this group, that complement gene transcripts of the alternative pathway were markedly 

increased by challenge with lipopolysaccharide (LPS) soon after hatching, which 

occurs at around 3 dpf.  

The presence of NK-like cells has been shown in various fish species. Based on 

structural relationships to mammalian NK receptors, two multigene families identified in 

the zebrafish have been proposed to be the functional orthologs of mammalian NK 

receptors. One large gene family, the novel immune-type receptors (NITRs), encode 

Ig-like receptors of the KIR-type (Hawke et al. 2001; Litman et al. 2001; Yoder et al. 

2001). The other family has been proposed to be orthologous to the mammalian NK 

receptor group 2D (NKGD) genes, which encode Lectin-type NK cell receptors (Sato et 

al. 2003). Although the receptor genes have been found to be highly divergent, the 

adaptor molecules like DNAX-activation protein (DAP) 12 and DAP10 have been 

shown to be conserved between mammals and fish (Yoder et al. 2007). 

In addition to NK-like cells, fish possess non-specific cytotoxic cells (NCCs) (Evans et 

al. 1984b; Greenlee et al. 1991; Le Morvan et al. 1996). They are found predominantly 

in the kidney. Morphologically they appear similar to monocytes, but their mode of 

action resembles mammalian NK cells. It has been suggested, that NCCs represent 
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the evolutionary precursor to NK cells (Evans et al. 1984c; Jaso-Friedmann et al. 

2001). However, the classification of NCCs as NK cells has remained in question, 

mainly because the NCCs used for functional studies were composed of a mixture of 

cell types or subpopulations that targeted different yet unknown antigens. Furthermore, 

in the channel catfish a NK cell line has been cloned from peripheral blood leukocytes 

that has been proven to be distinct from NCCs (Evans et al. 1984a; Evans et al. 1987). 

As of now, it is still unclear if these NCCs are the evolutionary progenitors to 

mammalian NK cells or if they rather represent a fish specific cell type. 

The first primitive macrophages in the developing zebrafish embryo have been 

observed before the onset of circulation (Herbomel et al. 1999). Immature granulocytes 

start to circulate in the blood by 48 hpf, whereas eosinophilic granulocytes could first be 

detected at 5 dpf (Lieschke et al. 2001; Willett et al. 1999).  

As in mammals, the first cells to arrive at the site of infection are the resident 

macrophages. Upon release of proinflammatory signals by these macrophages, 

granulocytes will arrive within 6 hours to 4 days. These are followed by monocytes from 

the blood circulation, which will differentiate into macrophages. The phagocytotic 

uptake of pathogens by activated leukocytes leads to degradation and subsequent 

antigen presentation by MHC molecules. The presented antigens can be recognized by 

CD8 or CD4 T cells. The mechanisms of pathogen recognition by phagocytes resulting 

in their activation have only partially been resolved in the zebrafish and will be 

discussed therefore based on signal transduction pathways known form mammals. 

 

 

1.4 Cellular innate immune mechanisms 
A primary challenge to the innate immune system is the discrimination of a wide variety 

of potential pathogens from self, with the use of a restricted number of germline-

encoded receptors. These receptors recognize highly conserved microbial structures, 

so called pathogen-associated molecular patterns (PAMPs). Pathogen-associated 

motifs include mannans in the yeast cell wall, various bacterial cell-wall components 

such as LPS, peptidoglycans (PGN) and lipoproteins, as well as viral components, 

such as double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), and DNA.  

There are three major groups of pattern recognition receptors (PRRs): the Toll-like 

receptors (TLRs), the nucleotide-binding domain and leucine-rich repeat containing 

proteins (NLRs), and the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs).  

Recognition of PAMPs is mediated in almost all TLRs and NLRs by leucine-rich 

repeats (LRRs) and the downstream signal is generally transduced by protein-protein 

interaction domains. This leads to the activation of signaling cascades resulting in the 
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induction of proinflammatory cytokines, cytokine processing or cell death. Furthermore, 

the responses elicited by the PRRs are important not only to eliminate pathogens but 

also to develop a pathogen-specific acquired immune response.  

 

1.4.1 TLR-mediated signaling 
TLRs are highly conserved from Drosophila to humans and share structural and 

functional similarities (Lemaitre et al. 1995; Lemaitre et al. 1996; Medzhitov et al. 

1997). There are now at least 10 TLRs known in humans and 13 in mice, which differ in 

regard to their ligand specificity, expression pattern and induction of target genes (for 

review see (Aderem and Ulevitch 2000; Beutler 2009; Kumar et al. 2009; Medzhitov 

and Janeway 2000). TLRs can be classified into two groups on the basis of their 

subcellular localization. TLR1, 2, 4, 5, 6, and 11 are present at the plasma membrane 

and recognize pathogen components in the extracellular space. The second group is 

made up by TLR3, 7, 8, and 9, which localize to intracellular compartments, such as 

the endoplasmic reticulum (ER), endosomes, or lysosomes. 

The additional TLRs present in human and mice appear to be the product of species-

specific expansions. TLR10, which exists in humans and is most closely related to 

TLRs 1, 2, and 6, has been lost from the mouse genome. The TLRs 11, 12, and 13 are 

non-functional in or lost from the human genome. Of these, only TLR11 has been 

characterized so far, indicating that TLR11-mediated recognition of PAMPs is 

necessary for the regulation of interferon (IFN) γ and the subsequent responses it 

induces (Yarovinsky et al. 2008; Yarovinsky et al. 2005).  

TLRs elicit cellular responses by signaling through their cytoplasmic Toll-interleukin-1 

receptor (TIR) domain, which recruits TIR-containing adaptors. These adaptors include: 

myeloid differentiation factor 88 (MyD88) (Lord et al. 1990); TIR domain-containing 

adaptor protein (TIRAP), also called MyD-adaptor-alike (MAL) (Fitzgerald et al. 2001; 

Horng et al. 2001); TIR-domain-containing adaptor molecule-1 (TICAM-1), also referred 

to as TIR-domain-containing adaptor inducing interferon-β (TRIF) (Oshiumi et al. 

2003a; Yamamoto et al. 2003a); TICAM-2, also called TRIF-related adaptor molecule 

(TRAM) or TIR-containing protein (TIRP) (Bin et al. 2003; Oshiumi et al. 2003b; 

Yamamoto et al. 2003b); and sterile α and HEAT/armadillo motif containing protein 1 

(SARM1) (Mink et al. 2001).  

The signaling cascade induced by TLRs will be described using TLR1 and TLR2 

signaling as an example (Fig. 1.2): Heterodimerization of the receptors upon ligand 

sensing leads to the recruitment of the adaptors MyD88 and TIRAP. MyD88, which has 

been shown to be the essential adaptor for all TLRs besides TLR3, subsequently 

interacts with the IL-1R-associated kinase 4 (IRAK4) via their Death domains. IRAK4 



 
1 INTRODUCTION 

 9

then in turn recruits IRAK1 and IRAK2 to the complex, by which these become 

phoshorylated and thereby activated (Janssens and Beyaert 2003; Suzuki et al. 2002). 

The kinases dissociate from the receptor complex and interact with tumor necrosis 

factor receptor (TNFR) associated factor 6 (TRAF 6), an E3 ligase. This leads to the 

recruitment of transforming growth factor β (TGFβ) activated kinase 1 (TAK1) binding 

protein 1 and 2 (TAB1 and TAB2), by TRAF6. Upon activation by phosphorylation of 

TAK1, which is bound by the TAB proteins, the inhibitory κB (IκB) kinase (IKK) complex 

becomes activated. The IKK complex comprises the two catalytic subunits IKK1 and 

IKK2 as well as the regulatory subunit, referred to as NFκB essential modulator 

(NEMO). Next, the IKK complex phosphorylates IκB, thereby marking it for 

ubiquitination and releasing the transcription factor NFκB (Deng et al. 2000). 

Subsequently, NFκB translocates into the nucleus, where it activates the expression of 

target genes encoding proinflammatory cytokines and chemokines. Negative regulators 

like IRAK3 or Toll interacting protein (TOLLIP) influence the signal intensity and 

duration (Kobayashi et al. 2002; Zhang and Ghosh 2002).  

TLR1 and TLR2 signaling also leads to the activation of activator protein-1 (AP-1) 

induced target genes via the mitogen-activated protein (MAP) kinase cascades p38, 

extracellular signal-regulated kinase (ERK) 1/2, and Jun N-terminal kinase (JNK). 

Additional signal transduction pathways activate interferon regulatory factor (IRF) 3 or 

7, which induce the expression of type I interferons.  

Most TLRs are thought to be functional multimers. They are either heteromeric, like the 

TLR2 complexes with TLR 1 or 6, homomeric, or complexed with non-TLR subunits, 

like CD14, MD-2, or Dectin-1. For example, TLR4 seems not to detect LPS directly, but 

only as a complex with MD2 (Kim et al. 2007). While the majority of TLRs utilize more 

than one adaptor, certain adaptor molecules have been shown to be essential for 

individual TLR signaling, e.g. TLR4 signaling is dependent on TICAM-2 expression 

(Oshiumi et al. 2003b).  

The diverse set of TLRs and the distinct signaling pathways proximal to the receptors 

ensure not only the recognition of various pathogens but also allow for a fine-tuned 

first-line response without damage to the host. 
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Figure 1.2: Components of the TLR, NLR and IFN signaling pathways.  
Recognition of microbial motifs by TLRs or NLRs leads to the activation of adaptor molecules, which in 

turn activate downstream signaling proteins, like kinases that amplify the signal, or to the activation of 

caspases, which proteolytically activate interleukin 1β (IL1β) Subsequent activation of intracellular 

signaling proteins ultimately results in the induction or suppression of genes that orchestrate the 

inflammatory response. Binding of interferon (IFN) to its cognate receptor activates the classical Janus 

tyrosin kinase (JAK) - signal transducer and activator of transcription (STAT) pathway leading to the 

expression of further antiviral or proinflammatory cytokines and chemokines. 

The molecules analyzed in this work are shown in color. For simplicity, not all members of each protein 

family are shown.  

 

 

1.4.2 RLR-mediated signaling 
The RLR family of cytoplasmic RNA helicases comprises three members: retinoic acid-

inducible gene-I (RIG-I), melanoma differentiation associated gene 5 (MDA5) and 

laboratory of genetics and physiology 2 (LGP2). RIG-I and MDA5 contain N-terminal 

tandem caspase recruitment domains (CARDs), a central DExD/H helicase domain 

and a C-terminal repressor domain. LGP2 is similar in domain structure, but lacks the 

CARDs. 

A number of studies have shown that both RIG-I and MDA5 detect RNA viruses and 

the synthetic dsRNA analogue polyinosine-polycytidylic acid (poly(I:C)) in the 
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cytoplasm (Andrejeva et al. 2004; Kang et al. 2002; Kovacsovics et al. 2002; 

Yoneyama et al. 2005; Yoneyama et al. 2004). Subsequent in vivo studies revealed 

that RIG-I and MDA recognize different groups of RNA viruses (Gitlin et al. 2006; Kato 

et al. 2006). This distinction is based on nonself RNA patterns generated by the viruses 

over the course of their replication. Biochemical studies have shown that RIG-I 

preferentially recognizes short dsRNA or ssRNA with a non-capped 5’ triphosphate 

moiety, whereas MDA5 senses long dsRNA (Cui et al. 2008; Kato et al. 2008; Takahasi 

et al. 2008).  

The viral RNA patterns are sensed by the repressor domain (Cui et al. 2008; Takahasi 

et al. 2008). In the absence of viral RNA, however, the repressor domain is proposed to 

autorepess the RLRs by masking the CARDs and the helicase domain. Binding of 

nonself RNA by the repression domain may then induce conformational changes 

releasing the CARDs for downstream signaling and the helicase domain for 

multimerization using ATP hydrolysis (Saito et al. 2007).  

Although the repressor domain shows only limited conservation among the RLR family 

members, the repressor domain of LGP2 has been shown to bind to RIG-I, thereby 

negatively regulating RIG-I mediated antiviral signaling (Saito et al. 2007). However, 

results from a different study using LGP2-deficient mice suggest that depending on the 

type of RNA virus, the LGP2 protein can both negatively and positively regulate RIG-I 

and MDA5 responses (Venkataraman et al. 2007). 

Both RIG-I and MDA5 initiate the antiviral response by binding to IFNβ promoter 

stimulator-1 (IPS-1) (Kawai et al. 2005), which has also been referred to as CARD 

adaptor inducing IFNβ (Cardif) (Meylan et al. 2005), mitochondrial antiviral signaling 

protein (MAVS) (Seth et al. 2005), and virus-induced signaling adaptor (VISA) (Xu et al. 

2005). Activated RIG-1 and MDA5 interact via their CARDs with the CARD of IPS-1. 

IPS-1 relays the signal to the TNFR-associated death domain protein (TRADD), which 

forms a complex with the Fas-associated death domain protein (FADD) and the 

receptor-interacting protein kinase 1 (RIPK1) (Kawai et al. 2005; Michallet et al. 2008). 

FADD in turn recruits caspase 8 and caspase 10 to the complex, where these become 

processed and activate NFκB (Takahashi et al. 2006). TRADD also recruits TRAF3 to 

activate the kinases TRAF family member associated NFκB activator (TANK) binding 

kinase 1 (TBK1) and IKKε, which leads to the activation of IRF3 and IRF7 (Schroder et 

al. 2008; Soulat et al. 2008). Furthermore, FADD has also been implicated in IRF3 

activation (Balachandran et al. 2004).  

Additional factors contributing to RLR mediated antiviral signaling have been identified 

in the recent past. The mediator of IRF3 activation (MITA), also called stimulator of IFN 

genes (STING), for example, has been demonstrated to form a complex with IPS-1, 
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RIG-I, and TBK1, suggesting that it functions as an adaptor to link IPS-1 to TBK 

(Ishikawa and Barber 2008; Zhong et al. 2008). A further factor identified is TRIM25, a 

member of the tripartite motif (TRIM) protein family, which contains a cluster of a RING-

finger domain, a B box/coiled-coil domain and a splA/ryanodine receptor (SPRY) 

domain. As an E3 ubiquitin ligase, TRIM25 has been shown not only to be essential for 

RIG-I ubiquitination, which facilitates the recruitment of IPS-1, but also for an increase 

in RIG-1 downstream signaling activity (Gack et al. 2007). 

Thus, recognition of viral RNA in the cytosol by RIG-1 and MDA5 leads to the 

expression of type I interferons and inflammatory cytokines via different signaling 

cascades. RIG-I itself is inducible by IFN. An increase of RIG-I levels observed during 

the IFN response might therefore promote RIG-1 self-asssembly and potentiate 

signaling to drive an IFN amplification loop (Saito et al. 2007). 

 

1.4.3 NLR-mediated signaling 
Many different names have been given to this family, but in 2008 a standardized 

nomenclature has been proposed (Ting et al. 2008), which will be used in the following.  

The nucleotide-binding domain and leucine-rich repeat containing proteins (NLRs) 

constitute a large family of intracellular PRRs involved in the sensing of pathogenic 

products and the regulation of cell signaling and cell death. Mutations within several 

NLR encoding genes have been linked to human autoimmune and autoinflammatory 

diseases (reviewed in (McGonagle et al. 2007).  

The NLR family members share a common tripartite domain architecture consisting of 

a variable N-terminal effector domain, a central nucleotide-binding domain and C-

terminal repeats, which are in most cases LRRs.  

 

1.4.3.1 The NACHT domain 
Initially, members of this protein family were identified by the presence of the 

nucleotide-binding domain, which has NTPase activity. This NTPase domain shows 

similarities to motifs of an ATPase domain termed NB-ARC, because its nucleotide-

binding domain (NB) has been found in different pro-apoptotic proteins like the 

mammalian apoptotic protease activating factor 1 (APAF1), the plant resistance (R) 

proteins involved in disease and stress response, and the cell death protein 4 (CED-4) 

from C. elegans. (van der Biezen and Jones 1998b). Moreover, proteins harboring a 

NB-ARC or the NTPase domain found in NLRs share an analogous domain structure, 

characterized by the presence of protein-protein interaction modules C-terminal to the 

nucleotide-binding domain, like WD40 repeats or LRRs. 
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Figure 1.3: Conserved protein architecture in mammalian NLRs and plant NB-LRR proteins.  
Nucleotide binding and leucine-rich repeat containing (NLR) proteins have a tripartite structure: an N-

terminal effector domain, a central nucleotide-binding domain (NBD, referred to as NACHT), and C-

terminal leucine-rich repeats (LRRs). The N-terminal effector domain consists of either a caspase 

recruitment domain (CARD), a pyrin domain (PYD), baculoviral inhibitor of apoptosis (BIR) repeats, or a 

transactivation domain (AD). One NLR protein has an undefined effector domain (X). Apoptotic-protease 

activating factor 1 (APAF1) and plant nucleotide binding site, leucine-rich repeat (NB-LRR) proteins 

contain a related nucleotide-binding domain, called NB-ARC. APAF1 also has an N-terminal CARD, 

whereas NB-LRR proteins are characterized by Toll/Interleukin-1 receptor (TIR) or coiled-coil (CC) N-

terminal effector domains. APAF-1 has C-terminal WD40 repeats, NLRs and NB-LRRs have LRRs 

instead.  

 

The founding members of the NLRs also include animal, fungal, plant, and bacterial 

proteins and thus the individual names were also used to generate an acronym for this 

emerging new family of NTPases. These founding proteins were neuronal apoptosis 

inhibitor protein (NAIP), MHC class II transactivator (CIITA), plant het gene product 

involved in vegetative compatibility (HET-E), and telomerase-associated protein 1 (TP-

1), which led to the term NACHT describing this particular domain found in a variety of 

proteins (Koonin and Aravind 2000). As evident from these early observations, the 

NACHT domain in NLR proteins is evolutionary highly conserved and closely related to 

the NB-ARC domain found in plant NB-LRR proteins (Leipe et al. 2004); for review on 

the NB-ARC domain containing plant NB-LRRs see (DeYoung and Innes 2006; Jones 

and Dangl 2006).  

The NACHT domain has been implicated to be essential for the biological function of 

the NLRs, because NLR activation by microbial ligands leads to the oligomerization of 
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NACHT domains, resulting in large multiprotein complexes serving as signaling 

platforms for the activation of adaptor molecules or effector proteins. These 

multiprotein scaffolds have also been referred to as inflammasomes (Martinon et al. 

2002). In vitro studies suggest that the underlying mechanistic principles leading to this 

assembly are similar to those observed for the apoptosome formation by APAF-1, 

which has been resolved by electron cryo-microscopy (Faustin et al. 2007; Yu et al. 

2005; Yu et al. 2006). 

 

 

1.4.3.2 Ligand sensing mediated by LRRs 
Various PAMPs with diverse structures have been shown to induce a NLR-mediated 

response (reviewed in (Kawai and Akira 2009). According to the current paradigm, NLR 

signaling is believed to be initiated by the C-terminal LRR region through the 

recognition of PAMPs, a property the NLRs share with members of the TLR family. 

Several studies have demonstrated that the LRRs of NLR proteins are required for 

PAMP sensing (Inohara et al. 2001; Inohara et al. 2003; Tanabe et al. 2004). However, 

there is no clear evidence of a physical interaction between the PAMPs and the LRRs 

and it has also been speculated that additional linker proteins are involved. Recently, 

some insight into the possible mechanism of ligand-receptor binding was obtained by 

the analysis of crystal structures of TLR1:TLR2 and TLR4:MD2 interacting with 

agonistic ligands. For the TLR1:TLR2 heterodimer a ligand-binding site at the concave 

surface of the LRR domain was proposed, whereas the ligand sensing by the 

MD2:TLR4 complex seemed to be primarily mediated by MD-2 (Jin et al. 2007; Kim et 

al. 2007). Although it is tempting to speculate that a similar mechanism operates for the 

LRRs of NLRs, the fact that the cytoplasmic NLRs are not attributed to intracellular 

compartments raises the question of how the cytoplasmic LRRs can come into 

proximity to their designated ligands.  

To date, only in plant NB-LRRs direct PAMP-LRR interactions have been observed 

(Dodds et al. 2006). The intracellular NBS-LRRs proteins have also been found to 

indirectly recognize PAMPs. During infection, bacterial type III secretion systems 

translocate effector proteins into host cells. The NB-LRRs have been shown to 

recognize the host cell proteins targeted by these type III effector proteins (reviewed in 

(van der Biezen and Jones 1998a). Analogous to the mechanism identified in plants, it 

has been suggested that some of the mammalian NLRs react to the bacterial type III 

secretion system, e.g. detect pore formation. There is no direct evidence for this, but it 

appears that NLR family members react to membrane perturbation or its downstream 

consequences, e.g. potassium efflux (Franchi et al. 2007; Kanneganti et al. 2007; 
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Mariathasan et al. 2006; Pelegrin and Surprenant 2007; Petrilli et al. 2007; Sutterwala 

et al. 2007). These signals are also released by damaged or dying cells and have been 

referred to as danger signals or danger associated molecular patterns (DAMPs), with 

reference to PAMPs. Various DAMPs, like ATP, uric acid, or UV irradiation, have been 

shown to induce a NLR-mediated response (Feldmeyer et al. 2007; Mariathasan et al. 

2006; Martinon et al. 2006; Sutterwala et al. 2007). 

Similar to the repressor domain of RLRs, the LRRs are also implicated to autorepress 

the effector and the NACHT domain in the absence of a stimulus. Upon ligand sensing 

the induced conformational changes unmask the NACHT for oligomerization and the 

effector domain to transduce the signal to further adaptors or effector proteins.  

 

1.4.3.3 Effector domains and downstream signaling 
At present, there are 22 NLR family members known in humans, whereas in mice 33 

NLRs have been identified. The mammalian NLRs can be divided into four subfamilies, 

based on different N-terminal effector domains. The effector domains found in NLRs 

are CARDs, pyrin domains (PYDs), baculoviral inhibitor of apoptosis repeat (BIR) 

domains, or the transactivator domain (AD) (Fig. 1.3). The designated subfamilies are 

(based on the initial of the domain name): NLRC (formely known as NODs), NLRP 

(formerly known as NALPs), NLRB (formely known as NAIP or Birc) and NLRA.  

The sole member of the NLRA subgroup is the MHC class II transactivator (CIITA). 

CIITA does not directly interact with DNA, but supposedly coordinates the assembly of 

transcription factors and histone-modifying acetylases and methylases on MHC class II 

promoters (Zika et al. 2005; Zika and Ting 2005). In humans, defects in CIITA result in 

an autosomal recessive hereditary immunodeficiency, termed bare lymphocyte 

syndrome (BLS) (Steimle et al. 1993). BLS patients are extremely sensible to a variety 

of infections (reviewed in (Reith and Mach 2001), which is probably due to reduced 

numbers of peripheral CD4 T cells (DeSandro et al. 1999). 

A further subfamily, designated as NLRX, groups NLR family members that do not 

share any of the other known effector domains.  

The majority of NLRs found in mammals harbor a CARD or a PYD, which both belong 

to the death-fold domain superfamily. As the name suggests, they were originally 

identified in proteins involved in apoptosis, but have also been found in proteins 

participating in immune and inflammatory response pathways. The recruitment and 

activation of NLR interaction partners is mediated by homotypic interactions between 

these domains (CARD-CARD or PYD-PYD). The mammalian NLRP1 (NALP1) and 

NLRP3 (NALP3) as well as NLRC4 (IPAF) have been shown to assemble upon 

activation into an inflammasome, acting as a molecular scaffold for caspase-1 
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activation (Boyden and Dietrich 2006; Franchi et al. 2006; Mariathasan et al. 2006; 

Martinon et al. 2002; Miao et al. 2006). In PYD-containing NLRPs the activation of 

caspase-1 is mediated by the apoptosis-associated speck-like protein containing a 

CARD (ASC) adaptor protein. This protein has a bimodular structure, containing both a 

PYD and a CARD. NLRC4 directly interacts with CARD domain of caspase-1, as does 

NLRP1, which has a unique CARD at its C-terminus. Caspase-1 is a cysteine protease 

that cleaves proteins at specific sequences following aspartyl residues and is produced 

as catalytically inactive zymogen. The current view is that the scaffold of activated, 

oligomerized NLRs leads to an arrangement of tightly packed caspases, allowing their 

crossprocessing, which is essential for activation. In vitro studies have shown that the 

interaction of procaspase-1 molecules with the CARDs of oligomerized NLRP1 proteins 

is sufficient to achieve protease activation (Faustin et al. 2007). Caspase activation by 

scaffold activated homotypic interactions was initially observed in the apoptosome, by 

which the caspases 8 and 9 become activated and initiate a proteolytic cascade 

resulting in apoptosis (Acehan et al. 2002; Shiozaki et al. 2002). 

The proinflammatory caspase-1, however, processes the inactive prointerleukin-1β 

(proIL-1β) to produce the active cytokine IL1β, which is a major mediator of 

inflammation in mammals (Cerretti et al., 1992; Thornberry et al., 1992). Active 

caspase-1 also cleaves other cytokines like IL18, IL17b and IL33 (Nadiri et al., 2006). 

The secreted cytokines bind to their ubiquitiously expressed cognate receptors, which 

belong to the TLR-IL-1R superfamily. Activation of these receptors and subsequent 

interaction of their TIR domains with downstream signaling components leads to 

activation of NFκB and MAPK, as well as to the induction of additional cytokines, such 

as IL6, IFNγ, or IL4. In addition to the induced inflammatory response, this will also 

lead to activation of the acquired immune system.  

The most intensively studied members of the NLRC subfamily are nucleotide-binding 

oligomerization domain containing protein 1 (NOD1) and NOD2, which have retained 

their names. Upon activation by bacterial peptidoglycan derivatives they transduce the 

signal via CARD-containing adaptors like RIPK2 to downstream signaling components, 

resulting in the activation of NFκB and MAPK and the induction of proinflammatory 

cytokines and chemokines (Chamaillard et al. 2003; Girardin et al. 2003a; Girardin et 

al. 2003b; Girardin et al. 2003c; Inohara et al. 2003; Viala et al. 2004).  

Members of the NLRB subgroup are called NAIP proteins. The NAIP proteins are 

unusual in that they contain three BIR repeats at their N-terminus. NAIP proteins have 

been shown to be activated by Legionella flagellin protein (Wright et al. 2003). 

Subsequent activation of caspase-1 has also been described, but the exact interaction 

mechanisms have not been fully resolved (Ren et al. 2006). It has been proposed that 



 
1 INTRODUCTION 

 17

activated NAIP interacts with NLRPC4 via their NACHT domains, leading to caspase 

activation (Zamboni et al. 2006). However, it was also found that NAIP5 mediates 

caspase-independent restriction of Legionella pneumophila pathogenesis, hence the 

signaling pathways downstream of NAIP remain a question of further studies (Lamkanfi 

et al. 2007; Lightfield et al. 2008; Molofsky et al. 2006).  

In addition to inducing an inflammatory response, NLRs have also been implicated in 

cell death. In particular, they seem to induce two different modes of cell death, 

pyroptosis and pyronecrosis. Both differ from apoptosis, in that they elicit a substantial 

inflammation, which affects neighboring cells. The morphological features of the dying 

cell are also more similar to necrosis than apoptosis, like an intact mitochondrial 

membrane or a lack of chromatin condensation. In contrast to necrosis, pyroptosis and 

pyronecrosis require the adaptor ASC. Pyroptosis has been shown to be inducible by 

NLRC4, NAIP, and NLRP1, which results in caspase-1 mediated cell death (Cervantes 

et al. 2008; Fernandes-Alnemri et al. 2007; Miao et al. 2008). Pyronecrosis, on the 

other hand, is caspase-1 independent and induced by NLRP3, which activates a 

cathepsin B-mediated lysosomal pathway leading to cell death (Fujisawa et al. 2007; 

Huang et al. 2009; Willingham et al. 2007). This is intriguing, since NLRP3 interacts 

with ASC within the inflammasome leading to caspase-1 activation and an 

inflammatory response.   

Several recent studies reported interactions of different NLR signaling pathways (Hsu 

et al. 2008; Pan et al. 2007) and also crosstalk between TLR, RLR, and NLR signaling 

(Kim et al. 2008; Moore et al. 2008; van Heel et al. 2005). Additional components 

involved in NLR-induced inflammation and cell death have been identified, ranging 

from a diverse set of pathogenic elicitors (reviewed in (Geddes et al. 2009) to positive 

or negative regulators (Moore et al. 2008; Saitoh et al. 2008; Tattoli et al. 2008) and 

additional signaling targets (Willingham et al. 2009). These findings have broadened 

the view on the complex interplay in innate immune signaling pathways. However, 

molecular details of NLR signaling like the mode of ligand sensing or the temporal and 

spatial regulation of NLRs within the cell remain unresolved. 

 

 

1.4.4 Interferon signaling  
Vertebrate interferon (IFN) proteins are widely expressed cytokines that play an 

important role in the defense against viral and microbial infections. They have also 

been recognized for their antiproliferative and immunomodulatory effects.  

The IFNs are classified into three types (type I-III) (kotenko 2003, pestka 2004) 

according to receptor specificity, gene structure, and sequence homology. The IFNs 
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belong to the class II cytokine family, which also includes IL10-related cytokines 

(reviewed in (Renauld 2003). Type I (IFNα, β, ε, κ, ω) and type III IFNs (IFNλ1-3) are 

induced in many cell types by viral or bacterial products. In addition to their strong 

antiviral effects, they modulate many aspects of immune and inflammatory responses 

(for review see (Li et al. 2009; Stetson and Medzhitov 2006). In contrast to type I and 

type III IFNs, the sole type II IFN, IFNγ, is a more potent pro-inflammatory than antiviral 

cytokine and a key endogenous activator of macrophages. IFNγ is mainly secreted by 

T cells, NK cells and macrophages. 

The members of each IFN type bind to a type-specific receptor complex. These 

receptors consist of heterologous receptor chains, which are thought to dimerize upon 

ligand binding. The ligand-receptor interaction activates the classical Janus tyrosine 

kinase (JAK) – signal transducer and activator of transcription (STAT) pathway 

(Fig. 1.1) together with additional signaling cascades. IFN signaling results in the 

transcriptional induction of a large number of target genes (IFN-stimulated genes; 

ISGs) to evoke versatile biological activities. (Boehm et al. 1998; Der et al. 1998; Ehrt 

et al. 2001).  

Further characteristics of the interferons and their receptors are described in detail in 

regard to the results obtained during this work. 

 

 

1.5 Aims 
The zebrafish is increasingly used as a model to genetically address immunological 

problems. However, there has been a paucity of information concerning the repertoire 

of innate immune components and the complexity of the signaling mechanisms. The 

first aim of this work was therefore to conduct a thorough phylogenetic analysis to 

identify orthologs of known innate immune signaling components in the genome of the 

zebrafish. A second aim was to investigate the physiological functions of the Ifnγ 

signaling system during the innate immune response to bacterial infection in zebrafish 

embryos. Suitable infection assays should be tested and used in combination with 

morpholino-mediated knockdown approaches to analyze potential Ifnγ receptor chains 

and target genes. An additional aim was to analyze a novel nlr gene, which was 

identified during the phylogenetic analysis. 
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2 Materials and Methods 

2.1 Materials 
The chemicals and enzymes used in this study had at least the quality standard pro 

analysi and were bought, if not stated otherwise, from the following companies: Biozym 

(Oldendorf), Sigma-Aldrich (Deisenhofen), NEB (New England Biolabs; Beverly, USA), 

GibcoBRL/Life Technologies (Paisley, Schottland), Roth (Karlsruhe). 

Buffers and solutions, which are not mentioned separately, have been prepared 

according to (Sambrook et al. 2001). 

 

2.1.1  Solutions and buffers 
 

Block I     0.2 % (w/v) BSA (Bovine Serum Albumine) in PBST 

  

Block II    0.2 % (w/v) BSA / 5 % sheep serum (heat inactivated) in PBST 

 

DEPC-H2O   0.1% (v/v) DEPC in H2O 

 

DNA loading dye (6x)  0.25% (w/v) Bromphenol Blue or Xylene Cyanol 

    70% (v/v) Glycerol 

 

DNA-extractionbuffer  10 mM Tris pH 8.2       

    10 mM EDTA 

    200mM NaCl 

    0.5% SDS 

     

Embryo media   40 mM NaCl 

    1 mM KCl 

    1.5 mM HEPES 

    2.5 mM CaCl2 

    pH 7.21 

 

Hybridisation-Mix   50% (v/v) Formamid 

    5x SSC 

    1% (w/v) Boehringer Block (Roche) 

    5 mg/ml torula yeast RNA (Roche) 

    50 μg/ml Heparin 

    1x Denhards 

    0.1% (v/v) Tween-20 

    0.1% (w/v) Chaps 

    5 mM EDTA 
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P1    50 mM Tris-HCl (pH 8.0) 

    10 mM EDTA 

    100 µg/ml DNase-free RNase 

 

P2    200 mM NaOH 

    1% (w/v) SDS 

 

P3    3 M NaOAc (pH 5.5) 

 

PBS    140 mM NaCl 

10 mM KCl  

8 mM Na2HPO4  

2 mM KH2PO4  

    pH 7.4 

 

PBT    0.1% (v/v) Tween-20 in PBS 

 

SSC (20x)   3 M NaCl 

    0.3 Na-citrate 

    pH 7.4 

 

TAE    40 mM Tris 

20 mM acetic acid 

    1 mM EDTA 

 

TBE    45 mM Tris 

25 mM boric acid 

    1 mM EDTA 

 

TE    10 mM Tris-HCl pH 8.0 

    1mM EDTA 

 

low TE    10 mM Tris-HCl pH 8.0 

    0.1mM EDTA 

 

Xpho    100 mM Tris-HCl pH 9.5 

    50 mM MgCl2 

    0.1% (v/v) Tween-20 

 

 

2.1.2 Cells and Plasmids  
For overexpression studies the pCS2+ vector was used, which is the standard vector 

for misexpression experiments in zebrafish and Xenopus (Turner and Weintraub 1994). 

As control for these functional studies and for GFP-morpholino control experiments, a 
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modified pCS2+eGFP was used (kindly provided by the members of the former 

Campos-Ortega lab). Standard transformations were done using competent DH5α 

(Invitrogen).  

 

2.1.3 Oligonucleotides 
The used oligonucleotides were synthesized by the companies Metabion or Invitrogen. 

The lyophylized oligo was dissolved in an appropriate volume of H2O to obtain a 

concentration of 100 μM. All used primers are listed below in 5’ – 3’ orientation.  

 
Tab. 2.1: Oligonucleotides 
 
Dr ifnγ1 SP   GCGCATACAGATTTCGACGG  

Dr ifnγ1 ASP    TTTTTCTGTGGAGGCCCGAT 

Dr ifn-γ2 SP   ATGATTGCGCAACACATGAT  

Dr ifn-γ2 ASP    AAAGCCTTTCGCTGGACGAT 

Dr crfb1 SP1   AGTGAACCGGGTGTAGTGACGT 

Dr crfb1 ASP1   AGCAGAGTCACACTTTAGCAAT 

Dr crfb1 SP2   CACGACTTCATCATTGCTAA 

Dr crfb1 ASP2   TATCGTCTTTCCTTGATTCA 

Dr crfb6 SP   GAACGACGCTTTCTCAACTC 

Dr crfb6 ASP   GACTCGATTTGAAATGGCCC-3´ 

Dr crfb7 SP   ATGTGGAAAGAGAACTATGA 

Dr crfb7 ASP   TTTAGCCTTACTCTCCTGTC 

Dr crfb7 SP1 e2   CGACATATGGGAGGGAAATG 

Dr crfb7 ASP1 i4    TCAAGGTGTCCATTGGGTTT 

Dr crfb7 SP2 i6    TGCTGCTTCACAATTTGTTTG 

Dr crfb7 ASP2 e7    ATGGTTGTTTCGGTTTCAGC 

Dr crfb13 SP e1:   TGATCATTATGTGGTGTCGGTGACGG 

Dr crfb13 ASP e5 :   GCGATTGATCCACAGAGAATAGCTGC 

Dr crfb13 SP e4:  AGCTGTGGATGCGTCTGT 

Dr crfb13 ASP i4:  ACAGACTGCCACTGCTCA 

Dr crfb13 ASP e4  GGATGGGTTAAGGATGATGG 

Dr crfb13 ASP e6    TCATCTCCAGCAGGCATTTAGGACTGTCGT 

Dr crfb15 SP e1:   CCTCAGAACGTGAAGGTGGTCTCC 

Dr crfb15 ASP e4 :   CAGGAGTGCTGTACTGTCCCACTTC 

Dr crfb15 SP2   TGGTCTCCATCAACATGGGTG 

Dr crfb15 ASP2   GATCCACCTTTGCCTGAACACA 

Dr crfb15 SPi3e4    GATGCTCAGTCCTTGCGATT 

Dr crfb15 ASPi5    GAAGGCATGACCCAAATGTC 

Dr nwd1 SP1 e5  CTCTTGACTGACCTGAAGCAACGCAT 

Dr nwd1 ASP1 e5  AAGACAAACACCTCGAAGAACAGAATCG 

Dr nwd1. ATG SP2   ATGGATGTGGTGGAGATGAGAGAG 

Dr nwd1. ATG ASP2  GCGTTGCTTCAGGTCAGTCAAG 

Dr nwd1 SP3   GATGGAGCATGGCTTTCTCAG 

Dr nwd1 ASP3   CGTTGCTTCAGGTCAGTCAA 

Dr nwd1 e4 SP4   TATATCCTCCTGCCAATCACG 

Dr nwd1 e4 ASP4   GCAACCTCAGCAGAACAACTC 
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Dr nwd1 SP5  TCAAATGTGGAATGCGTGAC 

Dr nwd1 ASP5  CAGTGAAATCCCCGTCTCTC 

Dr nwd1 SP6  ACAATCGGGGAGTTGTTCTG 

Dr nwd1 ASP6  TTCAGATGCAAAGGGTTTCC 

Dr nwd1 SP7  AACACACAGCCCTACACACATC 

Dr nwd1 SP8  GGAAACCCTTTGCATCTGAA 

Dr nwd1 ASP8  TGCGTGAGCAAGGTGATAAG 

Dr nwd1 SP9 e6/7  TTCACTCACAGGCAGTTTGC 

Dr nwd1 ASP9 e10/11  CAACAGCCTTCACCCCTTTA 

Dr nwd1 SP10  GGATCCCTCGCTGTTAGTGACA 

Dr nwd1 ASP10  TGCGGTCAGCTCAAACAGAG 

Dr nwd1 SP11  TTTGGGGAAAGCCGTCTACATTC 

Dr nwd1 ASP11  GAGTACCTTTCAAATGGTCCATCG 

Dr nwd1 SP12  CTTTATCCCAGAAACCTTGTGC 

Dr nwd1 ASP12  GATGCCAATGAAGTTGAACTGA 

Dr nwd1 SP13 e1  GGCCTTCCTGATCTCAGTGG 

Dr nwd1 ASP13 e2  CAAACTTTGGCAGTGGGTCT 

Dr nwd1 SP14 e19  GATGATGCCACACAAGGATG 

Dr nwd1 ASP14 e19  CGGTCGTTGAGTGTGTGAAG 

Mm nwd1 SP e8  GACGTGGAGGAACAACAGGT 

Mm nwd1 ASP e12  TTCAGAAACCACCAGGAACC 

Mm nwd1 SP2   GCCCTTAGCCACTACAGCAG 

Mm nwd1 ASP2   CCTGCTTCAACTCCTCCAAG 

Dr nod1 SP e1   AACTCTTACCTGAAGCTGCTGACTGTTCA 

Dr nod1 ASP e3:   TGGTCCAGATTCTGTAAATATCCCAAACTC 

Dr nod2 SP e1:   CAGGTTCGAAGACTGTTAGACCAAGTAA 

Dr nod2 ASP e1:   AAATGAGGGTGGTCTAGGATGAATTG 

Dr nod3 SP e1:   CTGTTACCAGGGGCAACACT 

Dr nod3 ASP e3:   TAATAGAGAGCGCCCAGGAA 

Dr nod9 SP e1:   CTCAGATCCCATTGAGATCCACAGGC 

Dr nod9 ASP e1:   CGCTGCATAACTCAGTGGAGCTGA 

Dr apaf1 SP e2:   AAAGCCACTCTGGAGCAGGACATCAA 

Dr apaf1 ASP e4:   TGAGTGAACGATCTCGAACAACCTCG 

Dr irge1 SP   GACGCTAAGCCTAAAGAAAAAACAAGGAAACT  

Dr irge1 ASP   TAGACATCATGTCTATCAGAATACGGTCAGTG 

Dr irge2 SP   ATGAAGATACAGAAGCAGAAGCAGGAATTG  

Dr irge2 ASP   TCAACTGGCTGTTTCAGCAAGATCCT 

Dr irge3 SP   GGCCACAGCAAAAGCCAAAGAAAGTT  

Dr irge3 ASP   CTGAAAGCCTCGCCAGTGATCCATC 

Dr irge4 SP   GGAAAAGGCCACAGCAAAAGCCAAAG 

Dr irge4 ASP   GTTTATTTTTTCTGAAAGCCTCGCCAGTGA 

Dr irge5 SP   CATTTGTCAATGCCCTGCGAGGC  

Dr irge5 ASP   CAGTGACACTCCTGGGATTGGAGCAA 

Dr irge6 SP   ATGGAATGTGTGATTGAGCAAAACAAGC  

Dr irge6 ASP   TTAATAGACACCAGTCACTCCTGCAGCTT 

Dr irgf1 SP   GACTATTGTGTAATAACCCAGGAGGACCTG  

Dr irgf1 ASP   CAGCAGATTTAAATCATACTTGCTGAGC 

Dr irgf2 SP   ATCTGCCAACAGCATTTGGCACAAT  

Dr irgf2 ASP   TTATCACATTTCTGATGTCTTCTGCTATGACATTC 

Dr irgf3 SP   GCTGAAACTGGGGTTGTAGAAACCACC  

Dr irgf3 ASP   CTAGACTTCAGTCTCCAGTGAAGCATTTAGCA 
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Dr irgf4 SP   GCTGAGGAGATTGTAAGATTGAGGAAAACC  

Dr irgf4 ASP   CTTCCCTGATACATCACAGAGCCTCTG 

Dr irgg1 SP   ATGTTTTTTTCTAGATTATGCATGCCAGCA 

Dr irgg1 ASP   TCACCTTGCTTTTAGCCATCCACCA 

Dr irgq1 SP   ACACAGCACGTCCAGCAGACTGAGAAAC  

Dr irgq1 ASP   GCGATATAATATGCAAAAGCACTTGTCCTG 

Dr irgq2 SP   ATGGCTGACGTGATAAAGGGTCTCAACC 

Dr irgq2 ASP   CTACTGTCGCTCTCCAGTCACCATAGCAAC 

Dr irgq3 SP   ATGAGAGCTCGAAAGCTGGAGTTGCA 

Dr irgq3 ASP    TTACATAAATTTGCAAGAATCTGATCTTTTCCA 

Dr β-actin SP   ATGGATGATGAAATTGCCGCAC  

Dr β-actin ASP   ACCATCACCAGAGTCCATCACG 

T3    AATTAACCCTCACTAAAGGG 

T7    GCCCTATAGTGAGTCGTATTAC 

 

2.1.3.1 Oligos to generate PCR products for UTR-GFP morpholino controls 

 
Tab. 2.2: Oligos for UTR-GFP constructs  

 
Dr crfb1 Mo con UTR SP   GACTGGATCCGAACCGGGTGTAGTGACGTT  BamH1 

Dr crfb1 Mo con UTR ASP  CTAGGAATTCCACAAACAAAAGCAGAGTCACA  Eco R1 

Dr crfb6 Mo con UTR SP  GACTGGATCCGCCGATGGGATTTAAACGTA  BamH1 

Dr crfb6 Mo con UTR ASP  CTAGATCGATTCACCACATCTTTCACCAAACCA ClaI + Stop 

Dr crfb7 Mo con UTR SP  GACTGGATCCCTGCTTGGGTGCTACAGATG  BamH1 

Dr crfb7 Mo con UTR ASP  CTAGGAATTCTGTCAGTTCAGCATCATATCCA  Eco R1 

 

2.1.4 Morpholino oligonucleotides 
The following morpholino oligonucleotides (Mo) were used (synthesized by Gene 

Tools). 

 
Tab. 2.3: Morpholinos 
 
Mo crfb1   GAGTCACACTTTAGCAATGATGAAG 

Mo crfb6   TCTTTCACCAAACCATTTGCGAGAG 

Mo crfb7  TCAGTTCAGCATCATATCCAACAAC 

Mo crfb15 1 AACATAAGCATTTTCATACCTCATC 

Mo crfb15 2 TCCTATGATAGCTACAAGGGAGCAA 

Mo crfb13  TCTAAATGGTTTGTAGTTACCTGAG  

Mo ifnγ1  TTTCTGTGCTGTGAACCAAGTGATG 

Mo ifnγ2  TGAAGGCGTTCGCTAAAGTTAGAGT 

Mo nwd1  TAACATGACTGACCTTGATAACAGG 

Mo pu.1  GATATACTGATACTCCATTGGTGGT 

 

 

2.1.5 Software 

Adobe Acrobat Reader 9 

Adobe Photoshop CreativeSuite2 
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Adobe Acrobat Reader 9 

AxioVision 4.6, Zeiss 

ClustalW 

Informax Vector NTI 10 

Jalview 

Leica Application Suite 2.8.1 

MEGA 3.1  

Microsoft Office 2003 

Furthermore the services of PubMed, Blast, Zebrafish EST-Database, ZFIN, Ensembl, 

Bioinformatics, Primer3, HMMer, LogoMatM, Pfam, Swissprot, Smart, and Prosite have 

been used. 
 

2.1.6 Sequences used in the phylogenetic analysis 
The protein sequences analyzed in the phylogenetic study are available at 

http://genomebiology.com/2007/8/11/R251#IDAMU5GP. 
 

 

2.2 Methods 
 

2.2.1  Zebrafish methods  
 

2.2.1.1  Keeping and raising zebrafish  
 

2.2.1.1.1 Origin of zebrafish  
The zebrafish Danio rerio is a three to four centimetres long fresh water fish from the 

Ganges that belongs to the family Cyprinidae. Animals kept in the facility were obtained 

from the Tautz and Campos-Ortega labs (Cologne strain) and were further bred. The 

fish originally derive from pet shops in Cologne and Göttingen. 

  

2.2.1.1.2 Growth conditions  
Starting with day 6, zebrafish were kept in an aquarium, consisting of several serial 12 l 

tank units, at a water temperature between 26 and 28°C (Mullins et al., 1994). The 

maximum extent of utilization of a unit amounted to 10 fish per liter. The aquarium was 

supplied continuously with fresh water, whereby daily 1/10 of the liquid volume was 

replaced by fresh water. One half of the fresh water was adjusted by means of an ion 

exchange resin to a total hardness between 6-10 degrees of hardness units; the other 

half was transmitted from a reverse osmosis plant. Within the aquarium, the water was 

circulated by a pump system. Suspended particles were sieved by integrated filter units 
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from the water and the filtered water was sterilized afterwards by UV irradiation. The 

accumulation of toxic substances (e.g. nitrite) was prevented by using a bacterial filter. 

Fish were fed twice daily. Beside the usual fodder (Tetramin), Artemia and Bosmina 

were fed, in order to ensure balanced nutrition. The light and darkness rhythm was 

adjusted to 14 hours light and 10 hours darkness.  

 

2.2.1.1.3 Zebrafish embryos  
The collection of embryos for various experiments took place in the morning starting 

with the light phase, which is the trigger for spawning. In the evening before, the adult 

male and female fish were put into a plastic box, divided by a separator. The bottom of 

the box was filled with marbles with the aim to prevent the adult fish feeding their own 

eggs. In the morning the divider was removed at the designated time point, allowing the 

fish to mate and 20-30 minutes later the embryos were collected. Embryos and young 

larvae were kept in petri-dishes with embryo medium before and after the experiments 

and were allowed to develop until the desired stage in an incubator at 28.5°C. The 

embryo medium was exchanged daily. 

 

2.2.1.1.4 Staging of embryos and larvae 
Staging of the embryos and larvae during development was performed according to 

(Kimmel et al. 1995). 

 

2.2.1.2 Anesthetization of embryos, larvae and adults  
For anesthetization tricaine (ethyl-4-aminobenzoate, Sigma-Aldrich) was used. The 

stock-solution containing 0.4% (w/v) tricaine in 50mM Tric-HCl (pH 7.5) was kept at 

4°C in the dark and was diluted to 0.02% (w/v) in embryo media for anesthetization of 

the fish. 

 

2.2.1.3 PTU treatment to prevent pigmentation 
Embryos were incubated starting at 6 hpf in 0.2mM phenylthiourea (PTU) to prevent 

pigmentation. The stock solution containing 0.06% (w/v) (4mM) PTU (Sigma-Aldrich) 

was kept at -20°C and was diluted to 0.003% (w/v) (1:20) in embryo media for usage. 

 

2.2.1.4 Lateral line labeling with 4-di-2-Asp 
Neuromast hair cells of embryos or larvae were labeled by incubating the fish in 5 mM 

4-(4-diethylaminostyryl)-Nmethylpyridiniumiodide (4-di-2-Asp, Sigma D-3418) (Collazo 

et al. 1994) in embryo medium for five minutes. Labeled embryos or fish were rinsed in 

fresh embryo medium and were anaesthetised with tricaine for observation.  
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2.2.1.5 Mechanical dechorionisation of embryos  
Embryos of the desired growth stage were manually dechorinated using fine-pointed 

watch-makers forceps.  

 

2.2.1.6 Fixation and storage of zebrafish embryos  

Embryos or larvae were fixed in 4% paraformaldehyd (PFA) in PBS. The fixation 

was performed either for two hours at room temperature or overnight at 4°C. After 

fixation embryos were transferred to PBT (PBS + 0.1 % Tween-20) and washed in 

PBT 3 x 5min. After subsequent washing steps in methanol (3 x 5min), the embryos 

or larvae were kept at -20°C in methanol until further use. 

 

2.2.1.7 In situ hybridization of whole embryos  
In situ hybridization by means of Digoxygenin labeled probes is a non-radioactive 

procedure, which makes it possible, to determine the spatial expression of mRNA 

(Tautz and Pfeifle 1989). The embryos were incubated with digoxygenin labeled anti-

sense RNA probes. The hybridized probes were then detected immunochemically, by 

means of alkaline phosphatase (AP) conjugated anti-digoxygenin Fab fragments, 

whereby the enzymatic conversion of specific substrates resulted in the production of 

colored precipitates.  

For in situ hybridisation of zebrafish embryos the protocol by Schulte-Merker and 

colleagues (Schulte-Merker et al. 1992) was followed with slight modifications.  

 

2.2.1.7.1 Prehybridisation  
Embryos were first incubated in a solution of 50% PBST / 50% Hybridisation solution 

(Hybmix), which was replaced after 5 min by 100% Hybmix. The incubation in Hybmix 

was 1 hour at 65°C. 

 

2.2.1.7.2 Hybridisation  
The RNA probes were dissolved in a small volume of Hybmix (250μl). After the 

prehybridisation the pure Hybmix was replaced by the prepared probe/Hybmix solution, 

in which the embryos were incubated for 16h at 65°C.  

 

2.2.1.7.3 Washing steps  
After hybridisation the embryos were incubated for 30 min in Hybmix at 65°C. 

Subsequently and successively the embryos were washed 2 times for 30 min with a 

solution of 50% hybmix/50% 2xSSCT and 2times for 30 min with 0.2xSSCT at 65°C.  
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2.2.1.7.4 Antibody incubation  
The embryos were first washed twice for 5 min and later once for 20 min with PBST at 

room temperature. Then the embryos were incubated for 10 min in Block I and 

subsequently in Block II for 60 min. Block II was afterwards replaced by an 1:2000 

dilution of anti-Digoxygenin-AP Fab fragments (Roche) in Block II. The incubation was 

carried out for 6h at room temperature, followed by eight times washing for 15 min with 

PBST. 

  

2.2.1.7.5 Color substrate reaction  
Embryos were incubated 2 times for 5 min in AP buffer and subsequently transferred to 

24 well plates, in which the AP buffer was replaced by BM-Purple-solution (Roche). 

The color substrate reaction took place in the dark and was carried out from 30 min to 

several hours, depending on the target RNA. To stop the reaction BM-Purple was 

removed, the embryos were washed twice in PBST and afterwards fixed in 4% PFA. 

 

2.2.1.7.6 Analyzing whole-mount embryos  
The embryos were transferred into 4% methylcellulose (sigma), on a hollow grinding 

slide and brought into a suitable position using a fine needle. The embryos were then 

analysed using a stereomicroscope (MZ16; Leica) and photographed with a digital 

camera (Leica). 

 

2.2.1.8 Infection assays 
 
2.2.1.8.1 Incubation method 
PTU-treated embryos were dechorionized at 26-28 hpf. Bacterial suspensions were 

diluted in embryo media to a final volume of 5ml. The embryos were incubated with the 

bacteria in petri-dishes at 28.5°C. By serial dilution and plating on LB-agar or 

Middlebrook-Cohn-7H10 agar the cfu/ml was determined. For each bacterial 

concentration tested (see Fig. 3.20) 20 embryos were used. The survival rate of the 

embryos was measured from 1 day post infection (dpi) up to 6 dpi. Control embryos 

were grown in embryo media.  

 

2.2.1.8.2 Infection method 
At 24-32 hpf dechorionized embryos were anesthetized using tricaine and arranged on 

agarose plates for infection. Infection was achieved by injecting the bacteria into the 

embryonic blood island or the caudal vein. To determine the amount of injected 

bacteria, control injections were performed in 100 μl of sterile PBS and plated on LB-
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Amp plates to count the colonies. After infection, embryos were washed in embryo 

media and incubated further at 28.5 °C to score survival or for RNA isolation.  

 

 

2.2.2 Molecular biology protocols 
 
2.2.2.1 Polymerase chain reaction (PCR)  
 

2.2.2.2 PCR with double stranded (ds) DNA as template  
To perform the PCR the Biometra UNO-Thermoblock (Biotron) was used. 

 

Components for the PCR:  

For one reaction 1-100ng template DNA were used. Furthermore 100nM sense Primer, 

100nM antisense Primer, 100μM Desoxynucleotidtriphosphate (dNTP)-mixture (Sigma) 

and 1 × reactionbuffer were added. The end volume of the reaction was 50μl. 1μl of the 

Red Taq DNA Polymerase (1unit/μl) (Sigma) were required for each reaction.  

 

PCR conditions:  

 

(1) 2 min at 95°C for Denaturation  

(2) 15 sec at 95°C  

(3) 30 sec at 55°C for primer annealing (temperature depending on the used primer)  

(4) 1 min at 72°C for DNA synthesis (time depending on product length; 1 min for 1kb)  

(5) 29 repeats of steps 2-4  

(6) 5 min at 72°C for elongation  

(7) hold at16°C 

 

The obtained PCR products were then run on an agarose gel (2.2.3) and extracted 

following the protocol of the Rapid GFX PCR DNA Purification Kit (Amersham 

Biosciences). 

 

2.2.2.3 PCR with first strand synthesis as template  
The used first strand synthesis was produced with RNA from embryos of different 

developmental stages. RNA was isolated from up to 100 embryos using the μMacs 

mRNA isolation kit (Miltenyi Biotec) according to the protocol. The SuperScript III First-

Strand Synthesis System for RT-PCR (Invitrogen) and oligo dT-primer or random 
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hexamers were used for the first strand reaction (set up according to kit protocol). 

PCRs were performed as described in 2.2.2.2 with 7.5ng template cDNA. 

 

2.2.2.4 PCR with genomic DNA as template  
To amplify the 5’UTR of crfb1, crfb6, and crfb7 for the morpholino control experiments, 

as well as for the validation of the irg Primer and to analyze intron/exon boundaries for 

splice-morpholino design, genomic DNA was used as template for the PCR (PCR 

conditions see 2.2.2.2; primer seq. see materials table 1 and 2). Genomic DNA was 

isolated from embryos or adults. The obtained PCR product, and in parallel the eGFP-

pCS2+ vector for the morpholino control experiments, was digested with the indicated 

restriction enzymes ( see table 2), purified as described (2.2.4) and extracted using the 

Rapid GFX PCR DNA Purification Kit (Amersham Biosciences). Afterwards the 

digested product and the plasmid were ligated (ligation see 2.2.7). The ligation was 

then used to transform DH5α (Invitrogen) (transformation see 2.2.8).  

 

2.2.3 Agarose gel electrophoresis  
To separate nucleic acids depending on their size agarose gels were used. The 

amount of agarose was between 0.8 % und 2 % in 1 × Tris-Acetat Electrophoresis 

(TAE)-buffer. 1/6 6 × loading-dye was added to the samples. The 1kb hyperladder 

(Bioline) was used as DNA standard. and the gel was run in a horizontal flat bed gel 

chamber filled with 1 x TAE. To visualize nucleic acids Ethidiumbromide was added to 

the melted gel (4μl Ethidiumbromide-solution (10μg/ml) in 100 ml) and the gels were 

analysed and pictured on a UV-Transiluminator (GelDoc EQ (Biorad)).  

 

2.2.4 Extraction of PCR fragments from agarose gels (Gelextraction)  
The fragment of interest was cut from the gel using a scalpel and transferred into a 1.5 

ml eppendorf. The further extraction was done using the Rapid GFX PCR DNA 

Purification Kit (Amersham Biosciences) according to the manual.  

 

2.2.5 Restriction enzyme digestion of DNA  
The total volume of the reaction was 50μl. Depending on the following experiment 1-

5μg of DNA were digested. Furthermore the reaction consisted of 1/10 reaction buffer 

and 10U of the desired restriction enzyme and was incubated for 1-2h at 37°C. 

Afterwards the DNA was cleaned doing a gel extraction (2.2.4) or a phenol-chloroform 

extraction (2.2.6). 
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2.2.6 Phenol-Chloroform Extraction and Ethanol precipitation  
The standard way to remove proteins from nucleic acid solutions is to extract first with 

phenol: chloroform and then with chloroform. To the DNA protein mixture an equal 

volume of phenol-chloroform was added and mixed together until an emulsion forms 

(Vortex, 30 sec). It was then centrifuged at 13000g for 60s, at RT. Using a pipette, the 

aqueous phase was transferred into a fresh eppendorf tube and the organic phase was 

discarded. The phenol-chloroform extraction was repeated twice. Subsequently, an 

equal volume of chloroform was added to the sample, mixed (Vortex, 30 sec) and 

centrifuged at 13000g for 60s. Afterwards the aqueous phase was transferred to a new 

eppendorf tube. Subsequently an ethanol precipitation was performed to concentrate 

the DNA:  

1/20 Vol 5M NaCl and 2.5 Vol Ethanol (100%) were added to the solution. The DNA 

was precipitated for ≥10h at -20°C. This was followed by a centrifugation step at 

13000g for 20 min. The pellet was washed using 70 % Ethanol and again centrifuged 

at 13000g for 5 min. Then the Ethanol was removed and the pellet was allowed to dry 

for 5 min before it was resuspended in H2O.  

 

2.2.7 Ligation  
20-40ng of the vector were used for the ligation and the amount of the insert-DNA was 

adjusted to a molar ratio between 1:1 to 3:1 to the vector. Additionally the ligation 

reaction contained 1/10 ligation buffer (NEB), 1 μl Ligase enzyme (400,000 units/ml 

concentration) and finally autoclaved water to a final volume of 10μl. The reaction was 

incubated overnight at 16°C and was used the next day to transform bacteria cells 

(2.2.8).  

 

2.2.8 Transformation of bacteria cells  
10µl of the ligation mix or 10ng plasmid-DNA was transformed into 50µl of competent 

DH5α (Invitrogen). The competent bacteria were thawed on ice, and the plasmid –DNA 

or the ligation mix (2.2.7) were added. After 20min of incubation on ice, a heat shock 

was performed for 90s at 42°C. After 2min incubation on ice, 500µl LB media was 

added and the transformed bacteria were incubated for 1h at 37°C and 200 rpm.  

 Following this, different concentrations of the transformed bacteria were plated on LB 

plates carrying the appropriate antibiotic resistance (100μg/ml). The LB plate was then 

incubated over night at 37°C.  
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2.2.9 Growing of Escherichia coli  

E. coli DH5α (Invitrogen) was grown according to existing protocols (Sambrook et al. 

2001).  

DH5α genotype: 

 F-, Φ80, lacZΔM15, Δ(lacZYA-argF) U169, recA1, endA1, hsdR17 (rK-, mK+), phoA, 

supE44, λ-, thi-1, gyrA96, relA1, λ - 

 

2.2.10 Minipreparation of plasmid DNA  
Using sterile tips single clones were picked from the bacteria plate and transformed to 

3-5 ml LB-medium containing the required antibiotic in a concentration of 50μg/ml. The 

culture was incubated overnight at 37°C. The next morning the plasmid preparation 

was performed using the alkaline extraction procedure after Birnboim (Birnboim and 

Doly 1979). 2ml of the bacterial culture were centrifuged for 1min (14000rpm). The 

supernatant was removed and the pellet was resuspended in 150µl P1 followed by 

addition of 150µl P2. The bacterial lysis and denaturation of genomic DNA was 

achieved by incubation for 5min at room temperature. 150µl P3 were added to 

neutralize the solution. After centrifugation for 10min at 4°C and 1400rpm, the 

supernatant was transferred into a new reaction tube. 1ml ice-cold 96%(v/v) ethanol 

was added , followed by 20min centrifugation at 4°C and 14000rpm. The supernatant 

was removed and the pellet washed in 1ml 70%(v/v) ethanol with subsequent 

centrifugation for 15min at 4°C.  The supernatant was removed and the pellet was 

dried at room temperature. The pellet was solved in 30-50µl dH2O or 5mM Tris (pH 

8.0). 

 

2.2.11 DNase-free RNase 
RNase A was solved in 10mM NaAc(pH 5.2) to a final concentration of 10mg/ml and 

was incubated for 15min at 100°C. When the solution had cooled down to room 

temperature 0.1 volumes of 1M Tris-HCl (pH 7.4) were added to neutralize the pH. 

 

2.2.12 Sequencing of DNA 
The sequencing of DNA took place according to the dideoxy chain termination method 

(Sanger et al., 1977). The reaction was performed using the Abi Prism BigDye 

Terminator Cycle Sequencing Kit F with AmpliTaq DNA polymerase (Perkin Elmer 

Applied Biosystems). Sequencing reactions contained 1µl DNA (100-200ng), 1µl 

Primer (10µM), 1µl BigDye version 3.0 and 1µl BigDye sequencing buffer, at a total 

volume of 10μl. 
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Reaction profile:  

Initial denaturation of DNA took place at 96°C for 1 min. At the beginning of a cycle, 

there were 10 seconds of denaturation at 96°C. The annealing of the sequencing 

primer took place for 15 seconds at 52°C (The annealing temperature depends on the 

sequence of the primer used). The extension was accomplished at 60°C for 4 min. The 

cycle was repeated 25-30 times.  

 

Purification and analyses:  

After the reaction the volume was adjusted to 20μl. The further cleaning and the 

analysis of the reaction were performed in the Sequencing Facility (Institute for 

Genetics, Cologne) according to their standards. The obtained sequence files were 

analysed using Vector NTI 10.0 (Infor Max, Inc.) 

 

2.2.13 In vitro transcription to produce in situ probes  
To produce labeled RNA probes the T3, T7 or SP6 polymerase (Roche) was used, 

depending on the promotor present on the template DNA. The probes were labeled 

using the Digoxygenin-RNA Labeling Mix from Roche.  

The transcription reaction contained 200-500ng DNA, 1μl 10 Χ Labeling Mix, 1μl RNA 

Polymerase (20 U/μl), 1μl 10 Χ Transcription-buffer (contains 60 mM MgCl2) and 0.5μl 

RNase Inhibitor (40 U /μl, Roche). The total volume was adjusted to 10μl with H2ODEPC 

(DEPC = Diethylpyrocarbonat). The reaction was incubated at 37°C for 2h and 

subsequently stopped by adding 1μl RNase free 0,2M EDTA. Purification of the 

transcripts was done by ethanol precipitation according to Roche protocol. The RNA 

pellet was resolved in a mixture of 20μl H2ODEPC and 20μl Formamide and was stored 

at -20°C. 

 

2.2.14 Injection of morpholino oligonucleotides and mRNA into zebrafish 
embryos  
 

2.2.14.1 Preparation of capped mRNA for zebrafish injections  

Capped mRNA for overexpression of ifnγ1, ifnγ2, or ifnφ1, and for the different crfb-

5’UTR-GFP morpholino control RNA was made using the mMessage mMachine kit 

(Ambion) according to the manual.  

 

2.2.14.2 Morpholino design  
The appropriate sequences for morpholino design were selected from the full length 

sequences of the gene candidates and sent to the company Gene tools for synthesis. 
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The sequences of all the morpholinos used in experiments are listed in the Materials 

section (table 3). Morpholinos were delivered lyophilized and were immediately diluted 

in H2O. The concentration of the stock solution was 3μM.  

 

2.2.14.3 Injection of zebrafish embryos  
Zebrafish embryos were injected in the 1-2 cell stage into the yolk directly under the 

first cell(s). Embryos were put in a row on a dark agarose plate (1% Agarose in H2O 

containing activated carbon), the water was removed and embryos were injected 

immediately using FemtoJet® and a Micromanipulator from Eppendorf. The used 

capillaries (Hildenberg) were pulled using a Sutter P9 Micropipette Puller (Sutter) 

(pulling conditions: heat 537, pull 100, velocity 100, time 150). The concentration of the 

morpholino was between 0.5 and 0.9mM, and additionally 0.1M KCL and 0.2%(v/v) 

Phenol red were added to the injection solution. mRNA was injected in range of 100-

400ng/μl in a solution containing 0.1 M KCL and 0.2% Phenol red. After the injection 

the embryos were transferred into a petridish with embryo medium and incubated to 

the desired stage. 

 

2.2.14.4 Isolation of genomic DNA  
Genomic DNA was extracted either from embryos or from by fin-clipping from adult 

fish. The embryos or part of the fin were transferred into a 1.5ml eppendorf, the water 

was removed and 990μl DNA-extraction buffer as well as 10μl Proteinase K (Roche) 

were added. The tube was mixed (vortexed, 10 sec) and incubated for 3h at 55ºC. 

Every 45 min the tube was mixed again (vortexed, 10 sec). Afterwards the DNA was 

precipitated by adding 1Vol of 100% (v/v) ethanol. The tube was inverted several times 

and the DNA was pulled out using a glass pipette and transferred to a fresh 1.5ml 

eppendorf containing 70% (v/v) ethanol. Subsequently, the ethanol was removed, the 

DNA was dried for 5-10 min at RT. Then the DNA was solved in 500μl low TE. 

 

2.2.14.5 RNA isolation and first-strand synthesis (RT) 
RNA was isolated from up to 100 embryos or adult tissue using the μMacs mRNA 

isolation kit (Miltenyi Biotec) according to the protocol. The amount of RNA was 

quantified using a spectrophotometer (2.2.14.6). 300ng RNA were, in general, used as 

template for the RT-reaction. The SuperScript III First-Strand Synthesis System for RT-

PCR (Invitrogen) and oligo dT-primer or random hexamers were used for the first 

strand reaction (set up according to kit protocol). 
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2.2.14.6 Quantification of DNA or RNA by spectrophotometric determination  
To quantify the amount of DNA or RNA a Biophotometer (Eppendorf) was used. 

Reading was taken at a wavelength of 260/280 nm according to the manual. 

 

2.2.14.7 Bacterial strains used for infections 

E. coli (DH5α) and Y. ruckeri (strain 4015726Q) and V. anguillarum carrying the 

dsRED-expressing pGEMDs3 plasmid (van der Sar et al. 2003) were grown in 

standard LB medium containing ampicillin (50 μg/ml). M. marinum (ATCC 927) carrying 

the dsRED-expressing pGEMDs3 plasmid (van der Sar et al. 2003) were grown on 

Middlebrook-Cohn-7H10 agar (Becton Dickinson) which was enriched with ADC. 

ADC-supplement: 

2g glucose 

5g BSA Fraction V 

0.85g NaCl 

in 100ml H2O 

 

E. coli were grown at 37°C, Y. ruckeri, V. anguillarum, and M. marinum at 30.5°C. 

For infection with E. coli, Y. ruckeri, or V. anguillarum a 3 ml overnight culture was 

used. For co-incubation with M. marinum, colonies from plates were suspended in 

PBT. 

Bacterial cultures or suspension were centrifuged for 3min at 4000 g, the supernatant 

was removed, and the pellet washed with PBS. Washing was repeated three times to 

remove traces of LB, Middlebrook-Cohn-7H10, and metabolites. After washing, the 

pellet was resuspended in 1ml PBS. Optical density was determined using Ultrospec 

10 (GE Healthcare). 

 

For injection of bacteria, the final injection solution contained the washed E. coli or Y. 

ruckeri diluted in PBS containing 1/10 Phenol Red. 

 

 

2.3 Phylogenetic analysis 
Standard web-based programs were used for sequence comparisons, alignments, and 

phylogenies (2.1.5). The phylogenetic trees in the figures were generated using the 

MEGA software package (Kumar et al. 2004). In all phylogenetic trees presented in this 

study complete sequences were used rather than only the conserved domains. 

The alignments for generating the phylogenetic trees were performed with ClustalW 

using the Blosum matrix with standard parameters (Thompson et al. 1994). For the 
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phylogenetic reconstruction the neighbor-joining method (Saitou and Nei 1987) was 

used with a bootstrap test of 1,000 replicates. Gaps and missing data were treated as 

pair-wise deletions. The HMMs were generated using the software HMMER (Eddy 

1998) and were visualized using the LogoMat-M method (Schuster-Bockler et al. 

2004).  
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3 Results 

The zebrafish has become a powerful model to study the immune system of 

vertebrates (Trede et al. 2004). The ontogeny of the myeloid and lymphoid cell types 

has been studied in great detail in the zebrafish (reviewed in {Trede, 2001 #155; 

Traver, 2003 #44}; see section 1.2). These findings have demonstrated that zebrafish 

possess the full set of immune cells which mediate the innate and acquired immune 

response in mammals. Furthermore, these and other studies have shown that the 

zebrafish is exceptionally well suited for the analysis of the innate immune system in 

vertebrates, especially since an acquired immune response is first detectable at 4-6 

weeks of development (Lam et al. 2002). 

Several proteins and genes with a function in innate immune defense mechanisms 

have been identified in the zebrafish. Large gene and protein families have been 

analyzed, the TLRs and the NITRs (Jault et al. 2004; Meijer et al. 2004; Yoder et al. 

2001), both of which showed that immune-related protein families or members thereof 

have diverged and expanded in fish. 

However, it was not clear whether the innate immune mechanisms operating in 

zebrafish are comparable to those employed by mammals or whether the complexity of 

these mechanisms is similar. In order to use the zebrafish as a model to study the 

innate immune system it was therefore of interest to determine whether the 

components that are known from mammals to be involved in innate immune processes 

are also present in the zebrafish.  

Thus, an analysis was conducted to identify genes that encode homologs of 

mammalian innate immune components in the zebrafish genome. The results of this 

search are described in the first section. 

Next, genes identified during the genome-wide search were analyzed for their potential 

function and their involvement in an innate immune response. In order to examine the 

innate immune response in the zebrafish embryo, infection assays were tested. Those 

results are presented in the second part.  

 

3.1 In silico analysis of innate immune genes in the zebrafish 
The advances in genomic resources for the zebrafish have made it both pertinent and 

feasible to determine which of the genes that encode components of the mammalian 

innate immune system are also present in fish. In addition to the zebrafish genome, the 

genomes of two pufferfish, Takifugu rubripes and Tetraodon nigroviridis, were 
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searched for homologs of mammalian innate immune components to assess the 

degree of conservation among different fish species. 

At first, sequences of mammalian proteins involved in the TNF, IFN, TLR, and NLR 

signaling pathways were assembled. Putative homologs of genes encoding these 

proteins where identified using public databases like Ensembl (Hubbard et al. 2009), 

ZFIN (Sprague et al. 2006), or RefSeq (Pruitt et al. 2007). In cases when putative 

homologs could not be found in these databases, TBLASTN (Altschul et al. 1990) 

searches were performed to screen unfinished clones from the genome sequencing 

project and to trace sequences from the whole genome shotgun (WGS) project. 

Identified candidate sequences were analyzed in detail in their genomic context. 

Manual annotations to generate gene predictions were perfomed in collaboration with 

Gavin Laird and Mario Caccamo from The Wellcome Trust Sanger Institute, 

Cambridge, United Kingdom. For some predicted proteins, the identified sequences 

were not complete and could not be completed because the available DNA sequences 

were not sufficiently reliable. Nevertheless, the entire predicted protein sequences 

were compared rather than just conserved domains, for the divergence not only 

between the species but also between protein family members would otherwise not be 

appropriately reflected. 

The MEGA software (Kumar et al. 2004) was used to compare the encoded fish 

proteins with their mammalian counterparts. The retrieved sequences were aligned 

with the ClustalW program using the Blosum matrix with standard parameters 

(Thompson et al. 1994). In some case these alignments were manually refined. For the 

phylogenetic reconstruction the neighbor-joining method (Saitou and Nei 1987) was 

used and a bootstrap test of 1,000 replicates was applied (Efron 1982; Felsenstein 

1985). Since not all sequences are complete and validated, the phylogenetic trees 

presented in this study aim not to show precise evolutionary distances, but present 

relationships within protein families and between species. 

The following protein groups and protein families were analyzed: adaptors, kinases, 

IRFs, STATs, TRAFs, class II cytokines and their receptors, and the NLR proteins. The 

results are presented in order. 

 

3.1.1 Conserved protein families in mammals and fish 
 

3.1.1.1 Adaptor proteins 
Previous studies have demonstrated that several adaptor proteins interacting with the 

TLRs are well conserved in fish (Jault et al. 2004; Meijer et al. 2004; van der Sar et al. 
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2006). Indeed, as is described in the following, most mammalian adaptors have clear 

orthologs in the three fish species analyzed (Fig. 3.1).  

The adaptors that are involved in innate immune signaling cascades constitute a very 

heterogeneous group of proteins that do not belong to one common protein family. The 

phylogenetic tree is therefore not rooted. For a better comparison of the identified 

proteins, diagrams of their protein structures were drawn (Fig. 3.1). Protein domains 

were identified by searching Pfam (Finn et al. 2008) or Smart (Letunic et al. 2009) 

databases. Some domains were not recognized by these programs, although manual 

inspection indicated clear conservation of the domains in proteins of different species. 

These domains were included in the diagrams. 

Orthologous proteins have been found in each of the three fish species for MyD88, 

SARM1, TOLLIP, IKK complex associated protein (IKAP), NEMO, TAB1, TAB2, and 

TAB3, and in the zebrafish and Takifugu the gene encoding Tirap (Fig. 3.1).  

However, only one homologous gene in each fish was found for the mammalian TICAM 

genes. The fish protein was equally distant to mammalian TICAM1 and TICAM2, 

indicating a duplication of an ancestral gene in the mammalian lineage and subsequent 

divergence of the two copies (Fig. 3.1).  

The Tetraodon version of the Ikap protein contained two full repeats of the insensitive 

to killer toxin 3 (IKI3) domain. It has not been clear whether this prediction is due to an 

error in the genome assembly or whether the gene does indeed contain an internal 

duplication covering the whole length of the gene found in other species. The two 

halves of the predicted gene were treated as separate peptides in the phylogenetic tree 

and the diagram. 

 

3.1.1.2 Kinases 
The kinases were the protein family that exhibited the most apparent orthologies 

between fish and mammals (Fig. 3.2). Orthologs of all the essential kinases involved in 

PRR-mediated signaling were found in zebrafish and in most cases also in pufferfish. 

IRAK2, which is thought to serve as an accessory protein in combination with IRAK1, 

was not found in any of the three fish. This suggests that it has arisen from a 

duplication event that occurred within the lineages of terrestrial vertebrates, as it could 

also be found in the chicken and Xenopus genome. Alternatively, IRAK2 could have 

been lost specifically in the teleost lineage (it is also absent in Medaka and 

stickleback). However, this seems less likely because the cartilaginous fish appear to 

lack an IRAK2 homolog as well, as a search of the ray and shark genomes indicated. 

Conversely, duplications in the fish lineage were observed for Janus kinase 2 (Jak2) 
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and NF-κB essential modulator-like kinase (Nlk), whereas duplications for Ikka and 

Ripk5 were found only in the pufferfish genomes (Fig. 3.2). 

 

 
 
Fig. 3.1: Phylogenetic trees of the innate immune signaling adaptors and diagrams of their protein 
structures. The fish protein names are highlighted in blue (Dr (Danio rerio)) or green (Fr (Takifugu 

rubripes) and Tn (Tetraodon nigroviridis)). The branching order was verified by bootstrapping and 

bootstrap values (in %) are given. Generally, bootstrap values below 85% were regarded as not reliable, 

those above 95% as highly significant. The number of character changes is represented by branch length. 

Scale: interval of 0.1 amino acid substitutions. Hs, Homo sapiens, Mm, Mus musculus.  

Protein domains are shown as boxes based on identification by Pfam (Finn et al. 2008) or Smart (Letunic 

et al. 2009). Some domains were not recognized by these programs, although manual inspection indicated 

clear conservation of the domains in proteins of different species. These domains are also shown as boxes 

in the diagrams. The identities of the domains are listed at the bottom. Scale bar = 100 amino acids.  
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Fig. 3.2: Phylogenetic tree of the kinases.  

For details see legend to Fig. 3.1. 
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3.1.1.3 Interferon regulatory factors (IRFs) 
Interferon regulatory factors (IRFs) constitute a family of transcription factors which 

mediate virus-, bacteria- and IFN-induced signaling pathways and as such play a 

critical role in antiviral defense, immune response, cell growth regulation, and 

apoptosis. The IRFs are characterized by an amino- (N-) terminal DNA binding domain 

with five tryptophan repeats, which forms a helix-turn-helix motif. Besides IRF1 and 

IRF2, all other IRFs have a carboxy- (C-) terminal IRF association domain that 

mediates homo- and heteromeric interactions with other family members or 

transcription factors such as PU.1 or signal transducer and activator of transcription 

(STAT) (for review see (Mamane et al. 1999; Taniguchi et al. 2001).  

For most of the IRFs (IRF1, IRF3, and IRF5 to IRF9), clear orthologous relationships 

were observed between mammals and fish (Fig. 3.3). In each fish, but not in mammals, 

an additional IRF was found. According to the nomenclature rule of subsequent 

numbering, it was named Irf11. The fish Irf11 proteins were equally distant to both IRF1 

and IRF2 and also lacked the IRF association domain (Fig. 3.3).  

In the zebrafish a duplication of irf2 was observed (Irf2a and Irf2b), of which Irf2a 

grouped together with Irf2 from Takifugu, whereas Irf2b seems to have diverged. In 

Tetraodon no Irf2 ortholog was found, but this might be due to the unfinished genome 

assembly (Fig. 3.3). 

For Irf4 three paralogous genes were found in the zebrafish (irf4a, irf4b, and irf4c). Irf4a 

grouped together with the mammalian IRF4 on one clade of the phylogenetic tree, 

whereas Irf4b and Irf4c grouped with the Irf4s from the pufferfish, with Irf4c appearing 

to be most divergent (Fig. 3.3). Interestingly, irf4b and not irf4a was found to map to a 

genomic region that was syntenic with the region containing IRF4 in mammals and in 

both pufferfish. This finding indicates that the irf4b gene in zebrafish represents the 

closest relative to the ancestral irf4 gene, whereas the irf4a and irf4c gene most likely 

arose due to species-specific duplication. 

In addition to the homologs of the IRFs in mammals and the newly identified Irf11, a 

further Irf was found in each of the fish. These predicted proteins were named Irf10 

since they showed a clear orthology to Irf10 from chicken (Fig. 3.3). This gene seems 

to have been lost in mammals.  
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Fig. 3.3: Phylogenetic tree of the IRFs.  

Details of the tree are as in Figure 3.1. 
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3.1.1.4 Signal transducers and activators of transcription (STATs) 
STAT proteins comprise a family of transcription factors that are activated by a variety 

of cytokines, hormones, and growth factors (reviewed in (Darnell 1997; Subramaniam 

et al. 2001b). STATs are activated through tyrosine phosphorylation, which is in most 

cases performed by JAKs. The phosphorylation induces conformational changes that 

promote dimerization and subsequent nuclear translocation of STAT proteins resulting 

in regulation of target gene expression. Although initially identified in mammals, 

JAK/STAT signaling components are highly evolutionary conserved as shown by their 

presence in invertebrate model organisms such as Caenorhabditis elegans and 

Drosophila melanogaster (reviewed in (Arbouzova and Zeidler 2006; Hou et al. 2002). 

The mammalian STATs share sequence and domain structure, but the individual 

STATs have evolved distinct regulatory mechanisms of their intracellular trafficking and 

employ different transporters. 

Clear orthologs of mammalian STAT2, STAT3, STAT4, and STAT6 were found in all 

three fish species (Fig. 3.4).  

For mammalian STAT1 clear orthologs were observed in both pufferfish. In the 

zebrafish, however, two surprisingly divergent Stat1 proteins were found, but these still 

resembled STAT1 more than the other STATs. Analysis of the genomic loci revealed 

shared syntenic relationships between the duplicated zebrafish genes and human 

STAT1 (Fig. 3.5). The entire region containing the MFSD6/NAB1/GLS/STAT1/STAT4 

genes on human chromosome 2 shares synteny with a region on zebrafish 

chromosome 9. On zebrafish chromosome 22 this arrangement of genes was also 

found to be syntenic, besides for STAT4, which has not duplicated in the zebrafish. The 

positions of flanking genes in the human and zebrafish genome showed indications of 

a number of rearrangements.  

STAT5 has been independently duplicated in mammals and in zebrafish, as reported 

by Lewis and colleagues (Lewis and Ward 2004). 
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Fig. 3.4: Phylogenetic tree of the STATs. 

Details of the tree are as in Fig. 3.1. 

 
 
 

 
Fig. 3.5: (see legend on next page) 
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Fig. 3.5: (see previous page) Synteny between regions containing STAT1 and STAT4 in the human 
and zebrafish genome. 

The region encompassing STAT1 and STAT4 genes on human chromosome 2 shares synteny with a 

region found on zebrafish chromosome 9. On chromosome 22 in the zebrafish genome a further syntenic 

region was identified, containing mfsd6, nab1, gls-like, and stat1 genes, but lacking the stat4 gene. 

Genes transcribed on the top or bottom strands are shown above and below the lines representing the 

chromosomes. Homologous regions are shown by colored arrows and the syntenic regions, inversions and 

rearrangements are shaded in the corresponding colors. Numbers represent nucleotide positions in the 

genome in megabases based on the Ensembl zebrafish Zv8 assembly and the human GRCh37 (Genome 

Reference Consortium) assembly, both version 56. Gene names are Swissprot (Boeckmann et al. 2003), 

ZFIN (Sprague et al. 2006), or Ensembl (Hubbard et al. 2009) identifiers. The zebrafish vil1 and usp37 

genes are located on chromosome 9 at position 47,633219-47,670916 and 1,570732-1,601113, 

respectively. The human ADARB1, C21orf70, and FTCD genes are located on chromosome 21 between 

megabases 46,5 and 47,5.  

 

 

3.1.1.5 TNF-receptor associated factors (TRAFs) 
The tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are zinc-finger 

adaptor proteins, which participate in the regulation of a variety of different biological 

processes such as immunity, stress response, embryonic development, and bone 

metabolism (for review see (Chung et al. 2002). The protein family is evolutionary 

conserved, with family members in various multicellular organisms such as Drosophila 

melanogaster (Grech et al. 2000; Liu et al. 1999; Zapata et al. 2000), Caenorhabditis 

elegans (Wajant et al. 1998), and Dictyostelium discoideum (Regnier et al. 1995). Most 

of the seven mammalian TRAFs are linked to a receptor of the TNFR and the 

interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily and participate in a 

signaling cascade leading to the activation of the NF-κB and the JNK pathway (Arch 

and Thompson 1998). 

The TRAF proteins (except for TRAF1) are characterized by an N-terminal cysteine- 

and histidine-rich region containing a RING finger of the C3HC4 type, which has E3-

ligase activity and mediates protein-protein interactions, as well as further 1-3 TRAF-

specific zinc finger motifs. These are in the majority of TRAF proteins followed by a 

coiled-coil (leucine zipper) motif. TRAF1 to 6 contain a meprin and TRAF homology 

(MATH) domain at their C-termini, which is involved in self-assembly and receptor 

interaction. TRAF7 harbors seven WD40 repeats at its C-terminus instead. These 

WD40 repeats have been shown to be responsible for interaction with mitogen-

activated protein kinase kinase kinase 3 (MEKK3) and to be essential for TRAF7 

potentiation of both MEKK3-induced AP1 and C/EBP-homologous protein (CHOP) 

activation (Xu et al. 2004). 
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All TRAF protein family members are represented in fish (Fig. 3.6). For TRAF3, 

TRAF6, and TRAF7 one orthologous protein was found in each of the three fish 

species, in all cases with the same domain structure and a high degree of similarity. 

Traf1 and Traf5 were present in zebrafish, but no predictions existed for genes 

encoding these proteins in the pufferfish genomes. In contrast to zebrafish Traf1, 

mammalian TRAF1 is lacking the RING finger and zinc finger domains (Fig. 3.6). 

These domains are present in all other family members of both lineages indicating that 

they were lost in mammalian TRAF1 after the split of teleosts and tetrapods. Traf4 is 

duplicated only in zebrafish, as has been observed by Kedinger and colleagues 

(Kedinger et al. 2005). Several duplication events in the fish lineage were observed for 

Traf2. 

 

 
 
Fig. 3.6: Phylogenetic tree of the TRAFs and diagrams of their protein structures.  

Details are as in Fig. 3.1, except that the scale shows 0.2 amino acid substitutions. 
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3.1.2 Divergent protein families: the class II cytokines 
Class II cytokines orchestrate a variety of biological functions such as response against 

infection, inflammatory processes and antitumor activities (reviewed in (Pestka et al. 

2004a; Pestka et al. 2004b; Renauld 2003). Although their homology on the primary 

sequence level is rather limited, all class II cytokines display a common four α-helical 

structure. Their genomic organization and structural characteristics indicate that they 

are derived from a common ancestor. Furthermore, these helical cytokines all bind to 

the extracellular binding domains of their cognate receptors, the class II cytokine 

receptors, which are defined by the presence of the extracellular binding domain 

(D200, see section 3.1.3) and can be clearly distinguished from class I cytokine 

receptors or hematopoietic receptors.  

The class II cytokines can be subdivided into type I-III interferons and interleukin (IL) 10 

and its relatives.  

In humans, the large group of type I interferons comprises 13 IFNα proteins as well as 

IFNβ, IFNε, IFNκ, and IFNω. All of these proteins are encoded by intronless genes. 

The type II interferon is represented by IFNγ, whose encoding gene has three phase 0 

introns. The three human IFNλ genes forming the group of type III interferons contain 

four phase 0 introns. The same genomic organization was found for the genes 

encoding IL10 and its family members IL-19, -20, -22, -24, -26.  

It has been speculated that during evolution after the split of teleosts and tetrapods a 

retroposition event occurred, through which the intronless type I IFN gene was 

generated in the tetrapod lineage (Lutfalla et al. 2003). The different type I interferon 

subtypes and especially the IFNα multigene family would then have diverged by 

asymmetric crossover, gene duplication and/or gene conversion after the radiation of 

the major mammalian orders (Diaz et al. 1994; Hughes 1995; Woelk et al. 2007).  

Individual Ifns have been reported in several fish species with an ambiguous 

nomenclature (Altmann et al. 2003; Chen et al. 2005; Chen et al. 2009; Furnes et al. 

2009; Grayfer and Belosevic 2009; Igawa et al. 2006; Long et al. 2006; Long et al. 

2004; Lutfalla et al. 2003; Martin et al. 2007; Milev-Milovanovic et al. 2006; Robertsen 

et al. 2003; Savan et al. 2009; Zou et al. 2005; Zou et al. 2004). However, these 

studies examined only individual fish class II cytokines or limited sets of genes. In the 

course of this work, ten class II cytokine genes were found in the zebrafish, and five in 

each pufferfish (Fig. 3.7). The large group of mammalian type I IFNs was clustered on 

one branch of the phylogenetic tree that did not include any fish class II cytokines. This 

finding supports the hypothesis that the type I IFNs emerged after the split of teleosts 

and tetrapods.  
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Fig. 3.7: Phylogenetic tree of the class II cytokines. 

Details of the tree are as in Fig. 3.1. 
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Clear orthologous relationships where observed between the IFNγ genes in all species 

analyzed. The pufferfish each have one ifnγ gene, whereas the zebrafish has two, ifnγ1 

and ifnγ2 (Igawa et al. 2006), which lie in tandem in a position in the genome that has 

retained its synteny between mammals and teleosts (Fig. 3.8). Furthermore, all fish ifnγ 

genes share the intron/exon structure with mammals, namely three phase 0 introns. In 

the current Ensembl Takifugu and Tetraodon assemblies (Fugu 4.0 and Tetraodon 8.0, 

Ensembl release 56, (Hubbard et al. 2009) the ifnγ genes are incorrectly annotated, 

yielding an additional fifth exon due to the automated genebuild annotation, although 

the correct sequence is given as reference (Zou et al. 2004). 

Apart from the clear fish orthologs of the mammalian type II IFNs, the remaining fish 

class II cytokines were more similar to the mammalian interleukins and type III IFNs. 

Like these, they are mostly encoded by genes containing four phase 0 introns, 

supporting the view that this constitutes the gene structure of the ancestral class II 

cytokine gene. 

Among these class II cytokines, IL10 exhibited an apparent orthology with high 

bootstrap values between fish and mammals (Fig. 3.7) (Zhang et al. 2005; Zou et al. 

2003). This is also supported by the finding that the IL10 genes are situated adjacent to 

and on the opposite strand of the MAPKAP2 genes in all five species (Fig. 3.8).  

The genes that had been annotated as il20 in the zebrafish (Refseq: NP_001076424.1) 

and Tetraodon (Uniprot: Q7SX60), and initially as il19 and then changed to il24 in 

Takifugu (Ensembl: SINFRUG00000154816) were found to be equally related to the 

mammalian IL19 and IL20 genes. The previous automated naming of the fish genes 

was therefore amended in this study. In concordance with the nomenclature rules for 

vertebrate gene families, this gene has been given the next available number in the 

interleukin series (il34) (Fig. 3.7). The fish il34 genes and the mammalian IL19, IL20, 

and IL24 genes are located in the vicinity of the IL10 genes, but duplications and 

inversions have broken up the syntenic relationships downstream of IL10 (Fig. 3.8). 

The phylogenetic analysis showed that it is likely that these genes derive from a 

common precursor, which has duplicated in mammals to yield IL19 and IL20 (Fig. 3.7). 

The data in the current release of the zebrafish genome assembly (Zv8, version 56) 

suggest that both the il10 and the il34 genes are duplicated. They are placed on 

subsequent contigs on chromosome 11 in opposite orientations, so that the first il10 

and il34 genes are on the reverse strand (as in Fig. 3.8), whereas the second il10 and 

il34 genes are placed on the forward strand of the following contig. Since not only the 

coding sequence, but also the genomic sequence is absolutely identical for both 

supposedly duplicated genes, this duplication is most likely an artifact in the database, 

due to an incorrect assembly of subsequent contigs. In regard to the synteny observed 
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for this region between mammals and fish, the initially identified positions for the il10 

and il34 gene have been retained in Fig. 3.8.  

Whether the mammalian IL24 gene is the product of a second local duplication or of an 

older duplication of a larger segment of the genome could not be determined, but it 

showed a higher degree of primary sequence similarity to the IL22 and IL26 gene 

found in a complex on a different chromosome (Fig. 3.8).  

The second group of class II cytokines exhibiting sequence similarity and thus forming 

a clade in the phylogram, were mammalian IL22, IL24 and IL26, and two pufferfish 

interleukins annotated as 'il24' in Tetraodon (Uniprot: Q7SX82) and 'homologous to 

il24' in Takifugu (Ensembl: SINFRUG00000156387). The phylogram showed that this 

name was problematic, because these proteins were more similar to IL22. The 

encoding pufferfish genes exhibited the same syntenic relation to the flanking mdm1 

gene as the IL22 genes in mammals (Fig. 3.8). However, the zebrafish gene in the 

same position (RefSeq: NP_001018628), annotated as il22 (Igawa et al. 2006), was 

highly divergent in sequence. Because frequent gene duplications and loss of genes as 

well as rapid sequence divergence appear to operate within this family, originally 

orthologous genes may no longer be recognizable. This is further illustrated by the 

presence of the flanking IL26 gene in the human genome. The mouse genome has lost 

this gene, whereas in other mammals (e.g. in the dog genome) an IL26 ortholog is 

present. In the zebrafish a class II cytokine gene described as il26 (Igawa et al. 2006) 

is present at this position, but in the phylogenetic tree the zebrafish protein did not 

cluster with the mammalian IL22/24/26 group (Fig. 3.7). Although the interleukin genes 

between MDM1 and IFNγ are in orthologous positions in all five species, there is no 

indication that the mammalian arrangement MDM1/IL22/IL26/IFNγ represents the 

ancestral cluster. It seems equally likely that these two IL genes arose by independent 

duplications of an ancestral gene in mammals and teleosts. 

Because the names given to the fish cytokines of this group were extremely confusing 

and suggested relationships for which there has been no evidence, a new 

nomenclature was proposed, as shown in Fig. 3.7 and Fig. 3.8 (ifnφ6 for zebrafish il22, 

ifnφ5 for zebrafish il26, and il35 for the pufferfish il24).  

Finally, a group of teleost class II cytokines clustered on a clade without mammalian 

cytokines (Fig. 3.7). The bootstrap values for this branch and its internal nodes were 

comparable or even higher than those found for the other groups of orthologous 

proteins, arguing for a common origin. The majority of these fish genes have four 

phase 0 introns, as observed for the mammalian IL10 gene, its related genes, and the 

IFNλ genes. However, they are not more closely related to mammalian IFNλ or IL10 

than to other class II cytokines. As these genes were only found in fish, they were 
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termed ifnφ1 to ifnφ4 (Fig. 3.7). Ifnφ1 has previously been described as 'zebrafish IFN 

(zIFN)', 'IFNab', and 'IFNλ' (Altmann et al. 2003; Levraud et al. 2007; Lutfalla et al. 

2003), and Ifnφ2 and Ifnφ3 as 'type I IFN 2' and 'type I IFN 3' (Zou et al. 2007), 

whereas Ifnφ4 had not been identified before. In each pufferfish only one ifnφ gene 

was found. Both pufferfish ifnφ genes appeared most closely related to the zebrafish 

ifnφ1 gene.  

Taken together, of the ten class II cytokines found in the zebrafish, one is clearly an 

IL10 ortholog and another ortholog is present for its related proteins of the IL19/IL20 

group, which seem to have duplicated in the mammalian lineage. In zebrafish, but not 

in the pufferfish, Ifnγ is duplicated. The six remaining zebrafish class II cytokines 

cannot be linked to mammalian class II cytokines as they are highly divergent. 

Therefore they were named Ifnφ. Four of these form a branch of their own in the 

phylogenetic tree together with one Ifnφ from each pufferfish. The remaining two 

zebrafish class II cytokines are highly divergent and rather appear as outgroups in the 

phylogenetic tree.  

 

 

 
Fig. 3.8: Genomic organization of two class II cytokine gene clusters. 

In the left diagram, the syntenic regions surrounding the Il10 locus are shaded in red and blue. The human 

IL10 gene is located on chromosome 1 and the region shows the same arrangement as in the mouse. The 

two pufferfish genomes exhibit the same arrangement both for the region around il10 and for the mdm1 - 

il35 - ifnγ region, depicted in the right diagram. Chromosomes are shown as lines. Numbers represent 

nucleotide positions in the genomes in mega bases based on the Ensembl human GRCh37, mouse NCBI 

m37, zebrafish Zv8, Tetraodon 8.0, and Fugu 4.0 assemblies. Genes transcribed on the top or bottom 

strands are shown above and below the lines. Class II cytokine encoding genes are shaded in grey.  
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3.1.3 Divergent protein families: the class II cytokine receptors 
The members of the helical class II cytokine receptor family (CRF2) are tripartite single-

pass transmembrane proteins defined by structural similarities in their extracellular 

domain (Bazan 1990; Thoreau et al. 1991). The extracellular domain of 200 amino-acid 

residues, denoted as D200 domain, is composed of two tandem fibronectin type III 

(FNIII) domains, a structural motif in the immunoglobulin (Ig) fold superfamily. 

Conserved residues distinguish the D200 domains of CRF2 members from those of the 

Ig superfamily and the FNIII family (Bazan 1990; Du Pasquier 2001)  

A large group of CRF2-like genes has been found in several fish species, but there are 

no clear orthologies between the receptors in mammals and teleosts (Krause and 

Pestka 2005; Levraud et al. 2007; Lutfalla et al. 2003). In Tetraodon rubripes, 11 genes 

have been identified and named cytokine receptor family B (crfb) 1 to crfb11 (Lutfalla et 

al. 2003). The authors identified a syntenic relationship between the genomic region 

encoding IFNα receptor (IFNAR) chain 2, IL10 receptor (IL10R) chain 2, IFNAR1, and 

IFNγ receptor (IFNGR) chain 2 in mammals and a region containing six class II 

cytokine receptor genes in Tetraodon. 

A subsequent study (Krause and Pestka 2005), which included all available sequences 

throughout the animal kingdom, came to a slightly different conclusion regarding the 

phylogenetic relationships. In this study the authors subdivided the genes into groups 

encoding ligand-binding and non-ligand-binding chains before conducting their 

phylogenetic analysis. However, the justification for the assignment of particular fish 

genes that have no clear orthologs in mammals to one or the other group was not 

obvious, especially because no sequence data were given in this study that 

unambiguously identified the genes analyzed.  

Therefore the phylogeny of the class II cytokine receptors in teleosts and mammals 

was revised in this work. 

As had been pointed out previously (Lutfalla et al. 2003), the bioinformatic identification 

of class II cytokine receptor genes is not trivial, and it was therefore unsurprising that 

Ensembl contained predictions for only ten such genes in zebrafish. 

Three of these did not encode class II cytokine receptors but code for thrombopoietin 

and titin, which have similar domains. To identify further receptor genes, the zebrafish 

genome was searched as well as all available zebrafish expressed sequence tags 

(ESTs) for the subdomains SD100A and SD100B, which constitute the D200 

extracellular domain. 

In total, 22 candidates were identified, of which seven had incomplete D200 domains or 

exhibited only limited resemblance to D200 domains. These and the three genes for 
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thrombopoietin and titin were excluded from further analysis. Gene predictions were 

available for eight of the remaining 12 putative receptor genes. 

Of the four genes that had not been predicted by automated annotation tools, two 

(crfb15 and crfb16) were found only in the as yet unplaced whole genome shotgun 

sequences. All 12 genes were re-annotated, using the known gene structure of class II 

cytokine receptor genes and homology to known class II receptor genes as support. 

The sequences were used for a phylogenetic analysis, which, in addition to the mouse 

and human sequences, also included Takifugu rubripes and Tetraodon nigroviridis 

Crfb1 to Crfb11 and Il20r2, as well as an additional gene, the product of which was 

called Crfb13. A set of recently described zebrafish class II cytokine receptor genes 

included two genes not identified in this study (crfb2 and crfb6), which were added to 

the analysis (Levraud et al. 2007). Finally, DrCrfb14 was found by Georges Lutfalla, 

who generously contributed its sequence for inclusion in this analysis.  

The phylogram of the class II cytokine receptors (Fig. 3.9) corroborated previous 

conclusions that this gene family had undergone independent gene duplications and 

divergence in teleost and mammals. Some of the fish genes could not be matched to 

likely orthologs in mammals, and vice versa, with four exceptions in which high 

bootstrap values justified the interpretation of the genes sharing direct common 

ancestors. The gene encoding tissue factor (TF) (recently renamed to coagulation 

factor III (F3)) in mammals, clustered with two genes from each fish. The phylogeny 

indicated independent duplication events in the pufferfish and zebrafish lineage. The 

pufferfish genes were identified by Georges Lutfalla, who had named them Tf1 and Tf2 

(Lutfalla et al. 2003). To reflect the independent duplications in zebrafish and pufferfish, 

the zebrafish genes were termed Tfa (F3a) and Tfb (F3b). 

The other set of genes that reliably grouped together were those encoding IL20R1, 

IL20R2, and IL22 binding protein (IL22BP), with one representative in each of the 

mammals and fish. The corresponding orthologs in fish are: Crfb8 (IL20R1); DrCrfb16, 

Fr/Tn Il20r2 (IL20R2); Crfb9 (IL20BP). For the other relationships between mammalian 

and fish proteins the low bootstrap values showed that the relationships discussed 

below must be considered with caution. Generally, bootstrap values higher than 85% 

were regarded as acceptable, those above 95% as significant. Several mammalian 

genes had no plausible orthologs in the three fish genomes analyzed, and others had 

more than one.  

Therefore further evidence for evolutionary relationships was sought by analyzing the 

genomic context of the genes. A summary is shown in Fig. 3.10.  

Two sets of genes were linked both in mammals and in the two pufferfish. The first has 

been the IFNAR2, IL10R2, IFNAR1, and IFNGR2 complex and its syntenic complex 
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described by Lutfalla and colleagues for Tetraodon (Lutfalla et al. 2003). This synteny 

has also been maintained in Takifugu and in all three cases continued outside the class 

II cytokine receptor complex, in that the gene neighboring IFNGR2 is TM50B in all 

cases, followed by NNP1. However, the corresponding genes in the zebrafish were 

found to be no longer linked. The synteny was roughly reflected in the sequence 

similarities, that IFNAR2 was most similar to Crfb1 and Crfb2 and that the 

IL10R2/IFNAR1/IFNGR2 group clustered with the Crfb3 (only in the pufferfish) 

/4/5/6/15 group. In particular, the IL10R2/IFNAR1/IFNGR2 and crfb3/4/5/6/15 genes 

encoded receptors with short cytoplasmic domains, whereas IFNAR2 and Crfb1 and 

Crfb2 had long cytoplasmic tails. However, orthologies were not clear within the group. 

Therefore it was not possible to conclude whether the ancestral complex that existed 

before the split of the teleosts and tetrapods contained two genes (a precursor for 

IFNAR2 and a precursor of the IL10R2/IFNAR1/IFNGR2 group) with subsequent 

independent duplications in teleosts and mammals, or four genes, with fast divergence 

in the IL10R2/IFNAR1/IFNGR2 and the crfb3/4/5/6/15 groups obscuring their common 

origin.  

The second region, in which a syntenic arrangement of genes was observed to have 

been retained, is the one containing IFNGR1, IL20R1, and IL22BP in mammals, and 

crfb9 and the previously undetected crfb13 in Tetraodon and Takifugu. Again, the 

closest relatives of these genes (crfb9 and crfb13, respectively) were not syntenic in 

zebrafish. Notably, fish Crfb9 proteins shared the absence of a transmembrane domain 

with the mammalian IL22BPs. In view of this and the syntenic arrangement, the most 

reasonable interpretation is a homology of IFNGR1/Crfb13 and IL22BP/Crfb9. In 

summary, teleost fish have approximately the same number of class II cytokine 

receptors as mammals, but the genes have evolved rapidly and independently since 

the separation of the species.  
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Fig. 3.9: Phylogenetic tree of the class II cytokine receptors. 

Details of the tree are as in Fig. 3.1. 
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Fig. 3.10: Syntenic organization of classII cytokine receptor genes. 

(a)  Diagram of the structures of the mammalian receptor chains, with the blue and green rectangles 

representing the S100A and S100B domains, the red rectangle the intracellular domain of the ligand 

binding chains, and the grey rectangle the intracellular domain of the non-ligand binding chains and TF 

(after (Renauld 2003). 
(b)  Synteny between regions containing class II cytokine receptor genes in mammals and fish. 

Fat horizontal lines indicate chromosomes in the four species. The brackets above the human genes show 

evolutionary relationships between the paralogs. Vertical broken lines indicate suggested evolutionary 

relationships between the genes in the different species, based on the tree in Fig. 3.9. Color coding of 

names: red: long intracellular domain; black: short intracellular domain; blue: no intracellular domain; pink: 

intermediate length intracellular domain. Circled names: ligand binding chains.  

 

 

 
3.1.4 Divergent protein families: the NLR proteins 
A large family of cytoplasmic proteins, characterized by the presence of a nucleotide-

binding domain, the NACHT domain (Damiano et al. 2004; Koonin and Aravind 2000) 

or the closely related NB-ARC domain (van der Biezen and Jones 1998a), has been 

implicated in inflammation and innate immune signaling in animals and plants (see 

section 1.4.3). Some of these have been shown to recognize intracellular pathogen 

associated molecular patterns (PAMPs) through their C-terminal Leucine-rich repeats 

(LRRs). They differ in their N-terminal effector domains, e.g. CARD or pyrin domains, 

which mediate signal transduction to downstream targets ultimately leading to the 

expression of proinflammatory cytokines or the activation of the apoptotic pathway (see 

section 1.4.3).  
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An initial search in the fish genomes for homologs of the known mammalian NLR 

proteins of the NOD subfamily yielded orthologs for NOD1 and NOD2 in zebrafish and 

Takifugu, and for NOD3 (recently renamed as NLRC3) and NOD9 (recently renamed 

as NLRX1) in all three fish species. Two proteins in zebrafish and Takifugu and one in 

Tetraodon were annotated as ‘NALPs’ but did not group with the mammalian NALPs on 

the phylogenetic tree. No clear orthologs were found for any of the mammalian NALPs 

in fish (Fig. 3.11).  

 

 
 
Fig. 3.11: Unrooted phylogenetic tree of the initially predicted set of NLRs and their adaptors in fish 
and mammals. 

Orthologs of mammalian NOD (NLRC family and NLRXI) proteins were found in fish. Predicted piscine 

‘Nalps’ did not group with mammalian NALPs (NLRPs). There were no orthologs in fish for mammalian 

CIITA, IPAF (NLRC) or NAIP proteins. 

This unrooted tree illustrates the relatedness of the predicted protein sequences without making 

assumptions about common ancestry. Therefore the presence of additionally analyzed NLR adaptor 

proteins (PYRIN, PYCARD (also called ASC), and POP1), did not interfere with the construction of this 

tree. The number of character changes is represented by branch length. Mammalian NALP6 and NALP12 

showed a much longer branch length compared to the other NLRs. To represent this, a dashed line is 

used. 

The sequences used for generating this tree had been retrieved before a new nomenclature system for 

human and mouse NLR genes had been agreed upon (Ting et al. 2008). Mammalian proteins are depicted 

in black, fish proteins in blue. 
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With the subsequent release of the zebrafish genome assembly those annotated 

NALP-encoding genes were retired. 

When the whole zebrafish genome assembly was then screened for sequences 

encoding the NACHT-domain, a large number of highly similar sequences were found, 

but none of these were located within annotated or even ab initio predicted genes by 

GeneScan, the automated gene prediction algorithm. It turned out that these 

sequences were omitted from annotation, exactly because their number and the 

similarity between them was so high, so that they were regarded as repetitive elements 

within the zebrafish genome.  

These genes were therefore manually annotated using ESTs as guides. A large set of 

novel NACHT-domain containing genes was identified. After completion of the initial 

annotations, automated predictions for 205 NACHT-domain encoding genes were 

deposited at RefSeq (Pruitt et al. 2007). These showed only a partial overlap with the 

sequences generated by manual annotation and many of the RefSeq predictions were 

incomplete or contained two NACHT domains, indicating incorrect annotations. Thus, 

the zebrafish genome was re-screened and re-annotated. Finally, more than 200 genes 

of this class were found. These were numbered sequentially by chromosome number 

and by their order on the chromosome. It was not possible to produce perfect gene 

models for all of them, because, as described below, they encoded novel N-terminal 

sequences. In the absence of sufficient EST evidence, reliable conclusions for the 5’ 

ends of the genes could not be drawn in all cases. Similarly, the C-terminal regions 

encoding the LRRs were difficult to predict reliably.  

The two pufferfish genomes were also searched for members of this gene family to find 

out whether the group found in zebrafish was specific to this species, or whether the 

massive gene duplication had occurred early in the fish lineage. 70 members of this 

family were found among the annotated genes in the genome of Takifugu rubripes. A 

large number of matches found in the Tetraodon genome were not part of predicted or 

annotated genes, as had been the case in the zebrafish. Again, these sequences had 

been masked as repeats. A set of sequences was then manually assembled using 

homology to the zebrafish and Takifugu sequences as guides. The majority of the 

members of this gene family, 40 out of 49, were located within incompletely assembled 

contigs/scaffolds that had not been assigned to chromosomes (the ‘Un_random’ set). 

Initially, the searches for NACHT-domain encoding genes in the Tetraodon genome 

resulted in a number of predictions that spanned separate contigs, but which had 

additional fragments of genes of this family interspersed within their predicted introns. 

This suggested that these predictions were not correct, but were due to accidental 

occurrence of apparently spliceable gene fragments in neighboring contigs of this 



 
3 RESULTS 

 59

assembly that were in fact not located next to each other in the genome. This view was 

supported by the finding that three sequences, which were very closely related to 

consecutive parts of the other fish nod2 genes, were positioned on widely separated 

contigs in the Un_random assembly. These three fragments were combined into one 

sequence, which was called TnNod2.  

 

3.1.4.1 NLR protein families in mammals and fish 
A phylogenetic tree of all 277 NLR-like proteins from human, mouse, and the three fish 

species revealed the following relationships (Fig. 3.12). The ‘canonical’ NOD proteins 

NOD1, NOD2, NOD3 (NLRC3), NOD9 (NLRX1), as well as APAF1 and CIITA, were 

present in all five species, and showed clear orthologous relationships (Fig. 3.13). 

Although not a member of the NLR family, APAF1 was included in the analysis, 

because of its relation to the family due to the presence of the NB-ARC domain (see 

section 1.4.3).  

The NALP/NLRP proteins formed a separate branch, representing a mammalian 

expansion of NLR proteins. For most of the proteins on this branch, there were closely 

related pairs of mouse and human proteins, but several cases of mouse- or human-

specific duplications could also be found, notably the mouse Nalp4 (Nlrp4) genes. Two 

zebrafish sequences that clustered with this group, 2.03 and 2.05, consisted only of a 

NACHT domain with a divergent P-loop and should therefore not be considered NALP-

(NLRP-) like proteins. 

Similarly, mammalian IPAF (NLRC4) and NAIP proteins had no orthologs in fish. 

Although IPAF and NAIP contain different N-terminal effector domains (CARD and BIR 

repeats, respectively), they clustered on one clade in the phylogenetic tree (Fig. 3.13). 

The high bootstrap values suggested that they share a common ancestry, and arose 

most likely during the mammalian radiation. This is supported by the observation that 

NAIP-like proteins could not be identified in other terrestrial vertebrates, or are, at least 

currently, not annotated in the genomes of birds (chicken and zebrafinch), amphibians 

(Xenopus) or reptiles (Anole lizard). A putative IPAF (NLRC4) ortholog was found to be 

predicted for the Anole Lizard (Anolis carolinensis), but it remains to be determined 

whether a clear orthology can be established or whether this predicted protein 

represents a divergent homolog of other NOD (NLRC) proteins. 

Most striking was the observation that the large groups of newly identified fish 

sequences lay on mostly species-specific branches (Fig. 3.12). The majority of the 

zebrafish proteins formed a branch of their own, which included no proteins from either 

of the two pufferfish.  
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Consistent with the closer relationship between the two pufferfish, the proteins from 

these two species were less clearly separated. Whereas one branch contained 

exclusively a subset of proteins from Takifugu, the branch that comprised the majority 

of Tetraodon proteins also included several Takifugu proteins. There were two 

branches with several cases of apparent orthologies between Takifugu and Tetraodon, 

i.e. proteins from the two species that were more similar to each other than to any other 

predicted protein in their own species, indicating the existence of the encoding genes 

before the split of the two species and suggesting conservation of their function. Again, 

it is of note that the Tetraodon protein predictions were less reliable and often 

incomplete, leading to spurious homology-assignments. The relationship of these 

sequences to the other fish sequences therefore represents an approximate picture 

that must be interpreted with caution. 

Whereas most of the novel fish NLR proteins were more related to each other than to 

mammalian NLR proteins, there were exceptions (beside the canonical proteins 

mentioned above).   

One group of new fish proteins was identified, which was named NACHT-P1/ Nwd1 

and clustered in phylogenetic trees with APAF1. To determine if this was a fish-specific 

NLR protein the mouse and human genomes were searched for similar sequences. 

One clear ortholog was found in each case, neither of which had been characterized 

previously. Their N-terminal parts contained no motifs known from other proteins. Like 

the APAF1 proteins these sequences contained WD40 repeats instead of LRRs (Fig. 

3.13).  

FrNACHT-P2 and TnNACHT-P2 had an unusual N-terminal addition, a filament-

domain. No other sequence in any organism was found that encoded a protein 

composed of a filament-domain in conjunction with a NACHT-domain. 
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Fig. 3.12: (see legend on next page) 
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Fig. 3.12: (see previous page) Phylogenetic tree of 277 NLR proteins.  
Each sequence has been assigned a background color to illustrate species relationships: pink =human, 

yellow = mouse, blue = zebrafish, green = Takifugu, and turquoise= Tetraodon. The 'canonical' proteins 

NOD1, NOD2, NOD3 (NLRC3), NOD9 (NLRXI), CIITA, and APAF1, which show clear homologous 

relationships between the five species, cluster at the top (rainbow colors). The mammalian NALP (NLRP) 

proteins cluster together (pink/yellow region). Each fish has a large group of species-specific proteins 

(blue, green, and turquoise regions). In addition, Takifugu and Tetraodon share several apparently 

orthologous gene pairs (green and turquoise region).  

The phylogenetic tree was generated using ClustalW phylogenetic calculations based on the neighbor-

joining method of Saitou and Nei (Saitou and Nei 1987). 

 

 

 

3.1.4.2 Fish-specific NLR proteins 
The large groups of novel, fish-specific Nlr proteins were highly conserved in each 

species, indicating recent species-specific expansions (Fig. 3.12). Like other NLR 

proteins, they contained C-terminal LRRs. However, the majority of the fish NLRs did 

not contain any of the N-terminal effector domains that had been found in conjunction 

with NACHT-domains in mammals or plants (such as CARD, PYD, or TIR domains).  

Not only the NACHT-domain, but also the region immediately upstream of the NACHT 

domain was found to be highly conserved in all of the fish proteins (Fig. 3.14). To find 

out whether this region corresponded to other known peptide motifs, a statistical model 

was generated, using multiple sequence alignments of this conserved region. These 

profile Hidden Markov Models (HMMs) (Eddy 1998) specify position-specific letter 

emission distributions and also position-specific insertion and deletion probabilities to 

describe the conserved region upstream of the NACHT-domain. To visualize the 

generated HMMs the LogoMat-M method (Schuster-Bockler et al. 2004) was used (Fig. 

3.15). 

The profile Hidden Markov Model (HMM) built from the zebrafish sequences was used 

for a BLAST search (TBLASTN) of the mammalian genomes. No good matches were 

found. When the three fish genomes were searched, only those genes were found in 

the zebrafish and in Takifugu that were already identified via their NACHT domains. In 

the Tetraodon genome many, but not all of the matches found were upstream of 

NACHT domains or were part of the previous nlr gene predictions. As the remaining 

ones were again located mainly in the Un-random set, no attempt was made to link 

them to the predictions for the NACHT domains, for the reasons discussed above. As 

in the other two fish genomes, none of the matches were within gene predictions for 

other (i.e. non-NACHT-domain) genes.  
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These findings indicated that this domain, which was called the fish-specific NACHT 

associated (Fisna) domain, had been recruited specifically by a common ancestor of 

the novel Nlr proteins in the fish lineage. Confirming this view, a cursory search of other 

fish genomes showed highly similar sequences in catfish and Medaka, also associated 

with NACHT-domain encoding genes.  

Although, as mentioned above, there was no evidence for the presence of this domain 

other than in fish, two short peptide motifs within the Fisna domain could be identified 

in mammalian NLRC proteins: LK/E/NQ/K/RYITE/D in mammalian NOD2 (LEDYITE), 

and LYIIEGESEGVNEEHEVLQ just downstream of the first motif, in mammalian NOD3 

(NLRC3) (LLLVD/EGLSDLQQK/REHDLM/V/TQ) (Fig. 3.15). The region containing 

these sequences in NOD2 and NOD3 (NLRC3) was neither part of the NACHT nor of 

the CARD domain and had not been assigned a cell biological function. Their 

conservation in the new nlr gene families might indicate a shared origin and possibly 

shared functions.  

A similar expansion of Nlr encoding genes was recently found in the sea urchin (Hibino 

et al. 2006; Rast et al. 2006). Jonathan Rast generously shared the sequence data, so 

that the predicted sea urchin protein sequences could be compared to the newly found 

fish Nlrs. In addition to sharing high similarity with the fish proteins in the NACHT 

domain and the LRRs, the sea urchin proteins also had a region upstream of the 

NACHT domain that was highly conserved among the sea urchin set of proteins and 

included sequence motifs similar to those in the fish proteins and in mammalian NOD2 

(Fig. 3.15).  

Further study of the amino-terminal regions of the new zebrafish NLR proteins showed 

that many of them contained considerable stretches of predicted peptide sequences 

upstream of the Fisna domain, in some cases with multiple related sequence repeats. 

Manual editing of the automated alignment created by ClustalW (Thompson et al. 

1994) revealed the following structure of the amino-terminal regions of this protein 

family (Fig. 3.16). 

Based on sequence similarity in the NACHT-domain and in the Fisna domain, the 

protein family was subdivided into four groups (Fig. 3.14). In each of these groups 

further group-specific motifs were identified upstream of the Fisna domain (Fig. 3.16).  

The amino-terminal sequences in group 1 were highly conserved and not found in any 

of the other groups (darker green shading in Fig. 3.16). A comparison with mammalian 

proteins showed that the conserved sequence motif in group 1 exhibited similarities to 

the PYD found in mammalian NALP (NLRP) proteins and in associated adaptor 

molecules.  
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The analysis of the N-terminal sequences in group 2 identified a shared motif of 101 

residues, immediately upstream of the Fisna domain (lighter green shading in Fig. 

3.16). This motif showed a distant resemblance to the PYD-like motif found in group 1. 

The most amino-terminal sequences in group 2 contained motifs shared with members 

from groups 3 and 4.  

A motif shared by members from these three groups was a repeat occurring in one, 

two, or three copies per protein, or in one case, in ten copies (different hues of blue 

shading in Fig. 3.16, indicating different versions of the repeat). Group 2 members had 

a version of this repeat with a four-amino-acid insertion, which was also found in some 

members of group 3. These repeats were usually combined with a specific amino-

terminal peptide of 14 amino acid residues (pink shading in Fig. 3.16). Other conserved 

amino-terminal peptides (yellow or orange shading in Fig. 3.16) are associated with a 

particular type of repeat.  

Group 4 is the least homogeneous, showing divergence both within the group and in 

comparison with the other groups, in the repeats as well as in the Fisna and NACHT 

domains.  

No significant homologies to the repeat sequence were found in mammals. 

In summary, the Fisna domain is found in all of the novel fish NLR proteins and is 

located immediately upstream of the NACHT domain. It is specific for the fish NLRs, as 

it could not be identified in combination with other domains than the NACHT and was 

also not found in other species than fish. Similarities found in the NACHT and Fisna 

domain led to subdivision of the zebrafish NLRs into four groups. The group-specific 

similarities were also observed in the amino-terminal parts of the novel NLR proteins. 

These contain up to three different motifs, two of which are found only in fish. Groups 1 

and 2 contain a PYD-related domain upstream of the Fisna domain. Members of 

groups 2 to 4 can in addition contain one or more copies of a motif that is also specific 

for the novel fish NLR proteins. Members of groups 3 and 4 contain multiple variants of 

this motif but no PYD-like sequences.  

The genes encoding the novel proteins were found to be distributed throughout the 

zebrafish genome. Some chromosomes harbored single genes, or a few, widely 

spaced genes, but many of the genes occur in large tandem clusters (Fig. 3.17). The 

group distribution was also observed to be variable. Some chromosomes contain only 

members of one or two groups e.g. on chromosome 1 the majority of nlr genes were 

found to encode group 3 and group 4 proteins. Other chromosomes, e.g. chromosome 

4, harbor nlr genes coding for all four groups. Within the large gene clusters several 

groups were often found, with tandem duplicated genes from one group interspersed 

with genes from other groups. 
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Fig. 3.13: Phylogenetic tree of NLRs shared by mammals and fish and diagram of their protein 
structures. 

In addition to the NOD1, NOD2, NOD3 (NLRC3), Nod9 (NLRXI), CIITA, and APAF1, a novel NLR protein 

is shared by all five species, which was named NACHT-P1 (NWD1). The protein domain structure diagram 

shown next to NACHT-P3 is representative of the majority of the novel fish-specific NLR proteins. Further 

details of the tree are as in Fig. 3.1. 
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Fig. 3.14: The fish-specific domain upstream of the NACHT domain.  

Alignment of the fish-specific NACHT associated (Fisna) domain in a representative subset of 75 fish 

NLRs. The group names on the right refer to the subdivision of the Danio rerio groups according to 

similarities in the NACHT and the Fisna domain or indicate which species form the group.  
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Fig. 3.15: Hidden Markov Model (HMM) logos of the Fisna domain. 
The fish-specific domain upstream of the NACHT domain found exclusively in fish (Fisna) is highly 

conserved in all novel fish NLRs. HMM logos representing the consensus sequence of the Fisna domain in 

each fish species as well as the consensus of all fish Fisna domains are shown. For the HMM logo 

depicting the zebrafish Fisna consensus, extended sequences were used in comparison to the pufferfish 

sequences, for those found in zebrafish exhibited high conservation outside the ‘core’ consensus. 

Peptide sequences from human NOD2 and NOD3 (NLRC3) with similarity to short stretches of the Fisna 

consensus, color coded to highlight conserved residues, are listed underneath as are stretches of HMM 

logos from the regions upstream of the NACHT domain present in 140 sea urchin NLR proteins. 

Profile HMMs present a probabilistic model. The relative size of a letter expresses its emission probability 

from a state distribution. Letters are sorted in descending order depending on their probability. The HMMs 

were generated using the software HMMER (Eddy 1998) and were visualized using the LogoMat-M 

method (Schuster-Bockler et al. 2004).  
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Fig. 3.16: Structure of the amino-termini of the novel zebrafish NLR proteins.  

The ClustalW multiple alignment of a set of 46 representative zebrafish NLRs was truncated after the start 

residue of the Fisna domain, and the alignment of the remaining amino-terminal sequences was edited 

manually using Jalview (Clamp et al. 2004). 

(A) Overview of the alignment with characteristic sequence motifs shaded in color: green = pyrin-like 

domain (PYD) in group 1 and 2; blue = repeated motif (different shades of blue mark different versions of 

the repeat); yellow/orange = conserved amino-terminal amino acid residues; and pink = specific amino 

terminal peptide of 14 residues.  

(B) Details of the alignment in panel A in which amino acid similarities and identities are highlighted in 

ClustalW colors. A set of mammalian PYD domains are aligned above the zebrafish group 1 and group 2 

PYD-like domains to illustrate the similarity. 
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Fig. 3.17: Chromosomal locations of the novel zebrafish NLR proteins.  
The 11 chromosomes containing the main clusters of nlr genes are shown. The number of nlr genes on 

each chromosome is listed below the chromosome number. Further 42 genes are distributed on 11 other 

chromosomes, and 20 genes are on as yet unplaced contigs. This list includes a compilation of all 

predictions (automated as well as manually annotated) and locations of hits from a TBLASTN search for 

NACHT domains. Future improvements of the genome assembly and further manual annotations will most 

likely result in minor changes of this map. Genes are denoted by lines on the right of the chromosome 

irrespective of orientation.  
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3.2 In vivo analysis of innate immune genes in the zebrafish  
The aim of the following part of this work was to analyze the in vivo function of genes 

putatively involved in innate immunity. For these functional studies, suitable infection 

assays had to be established. Mammalian IFNγ is a key mediator in innate and 

acquired immune response mechanisms. The role of Ifn during an innate immune 

response in the zebrafish embryo had not been analyzed. Supporting the functional 

characterization of the ifnγ genes by Dirk Sieger, putative Ifn target genes were 

evaluated and infection studies were performed. crfb genes were analyzed for their 

potential to transduce the Ifnγ signal. 

The developmental expression of the canonical nlr genes was investigated and the 

nwd1 (nacht-p1) gene was selected for further analysis.  

 

 

3.2.1 Infection of zebrafish embryos  
The zebrafish as a model organism offers the opportunity for large-scale screens. Such 

assays could provide a means to identify components of the innate immune system 

that render the embryo susceptible or resistant to an infection. As a method of choice 

the co-incubation method was tested, which would allow the simultaneous assessment 

of large quantities of embryos under different pathological situations. Alternatively, 

microinjection of pathogenic bacteria into zebrafish embryos was conducted, as this 

method should assure higher infection rates although it would allow to study only 

limited numbers of individuals. 

Three different fish-specific pathogens were tested: Mycobacterium marinum, Vibrio 

anguillarum and Yersinia ruckeri. These bacterial strains expressing DsRed were 

provided by Astrid van der Sar and Wilbert Bitter, VU University Medical Center, 

Amsterdam, The Netherlands.  

Whereas M. marinum had been used for infection studies in embryonic, larval and adult 

stages of zebrafish (Davis et al. 2002; Swaim et al. 2006; van der Sar et al. 2004) and 

V. anguillarum for analysis of its virulence in zebrafish larvae (O'Toole et al. 2004), 

studies using Y. ruckeri had previously not been performed in the zebrafish  

 

3.2.1.1 Infection of zebrafish embryos by co-incubation  
Co-incubation of zebrafish embryos with the different bacteria was performed at 

various time points. The earliest time point was at 28 hpf, a time of development when 

macrophages are present to mount a response and the embryo is well vascularized 

(see section 1.21). Further subsets of embryos, each with a sample size of 20 

embryos, were incubated starting at 2 dpf, when granulocytes can be discerned 
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(Lieschke et al. 2001). Additional subsets were incubated starting at 3, 4, and 5 days of 

development (Fig. 3.18 and 3.19). A summary of the different bacterial concentrations 

used in the co-incubation experiments and the different sets of experiments performed 

is shown in Fig 3.20. 

The survival rate of the embryos was measured from 1 day post infection (dpi) up to 6 

dpi. Control embryos were grown in embryo media. In Fig 3.18 representative results of 

these co-incubation experiments are shown (yellow, orange, olive, and brown colored 

columns). The co-incubation with either of the bacterial strains did not lead to a 

significant decrease in the survival rate of the embryos, as only up to 10% of the 

embryos died during the co-incubation, compared to 5% of the control embryos.  

 

 

 
Fig. 3.18: Co-incubation of embryos with Yersinia ruckeri or Mycobacterium marinum 

Diagrams showing control incubation or incubation with either of the two pathogens. The bacterial 

suspension was for both bacteria a 1:10 dilution of an OD1 suspension, the embryos were therefore 

incubated with 4 x 106 colony forming units (cfu) Yersinia ruckeri or 2 x 107 cfu Mycobacterium marinum. 

Embryos (n =20) were incubated at 48 hpf or 72 hpf and monitored for survival. Numbers of living embryos 

were determined from 1 day post infection (dpi) until 6 dpi. pu.1 morphants or non-injected sibling embryos 

were incubated at 3 dpi (control: dark green and olive columns, respectively; bacterial co-incubation: light 

and dark green columns for the pu.1 morphants, olive and brown columns for the sibling embryos). 

Embryos injured at the tail fin (blue columns) and their non-injured siblings (yellow/orange columns) were 

incubated at 48 hpf. Similar results were obtained in at least two independent experiments. 
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To facilitate the infection process, embryos where also incubated on a rocking platform, 

assuming that this would keep the bacteria more motile and bring the pathogens into 

closer contact with their presumptive hosts. Although the induced infections were more 

pronounced as estimated from the fluorescence of the DsRed labeled bacteria, they 

still did not lead to lethality in the infected embryos (Fig 3.19, yellow, orange, and olive 

colored columns). The incubation on the rocking platform lowered the survival rate of 

the control embryos (survival > 70%) and the co-incubation with either Y. ruckeri 

(survival >70%) or M. marinum (survival >75%) led to comparable survival rates.  

 

 

 
Fig. 3.19: Co-incubation of embryos with Yersinia ruckeri or Mycobacterium marinum on a rocking 
platform. Details of the diagram are as in Fig. 3.18, besides for pu.1 morphant and non-injected sibling 

incubations which was performed for only one set of embryos. 

 
 

In both assays the embryos were infected, but by and large the infection was restricted 

to the gastrointestinal tract, as shown by fluorescence microscopy (Fig. 3.21). The 

infection induced by co-incubation with Vibrio anguillarum was similar to that observed 

with the other bacteria in terms of survival rate of the infected embryos (>85% during 

normal co-incubation; >70% during shaker co-infection), but since the fluorescence 

signal in the bacteria was very weak, this pathogen was not used in further 

experiments. 
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In another approach, the embryos were locally wounded at the tail fin, in order to 

generate an entry site for the infectious bacteria. Accumulation of bacteria at the side of 

wounding was initially observed, but the embryos were able to clear the infection within 

24 hours post infection (hpi) and the local wounding did not seem to alter the embryo’s 

capacity to limit the infection to the intestine (Fig. 3.18 and Fig. 3.19, blue columns; not 

injured sibling embryos, yellow and orange columns).  

It was also examined how embryos lacking macrophages and granulocytes react to the 

co-incubation. At the one-cell stage, embryos where injected with an antisense 

morpholino oligonucleotide (Mo) directed against the 5’ untranslated region of the Pu.1 

transcription factor (kindly provided by Vera Binder), which has been shown to be 

required for myeloid cell differentiation (Rhodes et al. 2005). The previous experiments 

indicated that only the natural entry route for the bacteria, i.e. uptake and digestion, led 

to an infection. The co-incubation was therefore started at 72 hpf, when the intestine 

becomes motile. Although movements of the jaw start slightly later, this time point was 

chosen, because at even later stages the knockdown effect would be greatly 

diminished and eventually lost by 5 -6 dpf. The pu.1 morphants showed a stronger 

inflammation in the gastrointestinal tract (Fig. 3.21), but also the morphants were able 

to cope with the infection (Fig. 3.18, light and dark green columns; Fig. 3.19, dark 

green columns). This suggests that the depletion of myeloid derivatives did not lead to 

higher susceptibility to the bacterial infection upon co-incubation. 

Co-incubation with Y. ruckeri led to accumulation of the bacteria in the entire 

pleuroperitoneal cavity, whereas co-incubation with M. marinum resulted in confined 

areas of fluorescent bacteria within this cavity. These rod-like structures, which might 

represent granuloma, were also observed in brightfield microscopy (Fig. 3.21) 

Taken together, these results indicate that a transient infection of zebrafish embryos 

and larvae could be achieved by the co-incubation, and that the infection was more 

pronounced when the co-incubation was performed on a rocking platform. The age of 

the embryos or larvae at the start of the co-incubation had no impact on the outcome of 

the infection. Local wounding at the tail fin or morpholino-mediated knock-down of 

macrophage precursors did not render the embryos or larvae significantly more 

susceptible to the infection. Due to the restriction of the infection to the gastrointestinal 

tract, this co-incubation method was found to be not suitable to induce systemic 

infections. 

 

 
. 
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Fig. 3.20: Overview of the different bacterial concentrations used in the co-incubation assay. 

Different dilutions of OD1 bacterial suspensions were used in the co-incubation experiments. Y. ruckeri 

OD1: 4 x 107 colony forming units (cfu); V. anguillarum OD1: 3 x 108 cfu; M. marinum OD1: 2 x 108 cfu. 

Each indicated combination (x) was tested in at least three independent experiments. 
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Fig. 3.21: Co-incubation of larvae and pathogenic bacteria  

Bright field and DsRed fluorescence images of larvae at 8 or 9 dpf. (A) pu.1 morphant exhibiting normal 

development, incubated in embryo media, 8dpf. (B) embryos incubated at 72 hpf in Y. ruckeri suspension 

(4 x 106 cfu), 5dpi, 8 dpf. (C) sibling pu.1 morphants of embryos shown in B, incubated at 72 hpf in Y. 

ruckeri suspension (4 x 106 cfu), 5dpi, 8 dpf. (D) embryo incubated at 72 hpf in M. marinum suspension (2 

x 107 cfu), 5dpi, 8 dpf. (E) embryo incubated at 72 hpf in M. marinum suspension (2 x 107 cfu), 6dpi, 9 dpf. 

(F) sibling pu.1 morphant of embryo shown in E, incubated at 72 hpf in M. marinum suspension (2 x 107 

cfu), 6dpi, 9 dpf. (A)-(F) lateral view, anterior to the right. 
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3.2.1.2 Infection of zebrafish embryos by microinjection 
As the co-incubation method was not suitable to induce a systemic inflammation in the 

embryo or larva, the zebrafish embryos were manually injected with pathogenic 

bacteria. This was performed by microinjection into the PBI or the caudal posterior vein 

of the embryos at 28 hpf and 32 hpf. Although the sample size is reduced in 

comparison to the co-incubation method, the injection of bacteria was found to induce a 

systemic inflammation to which, depending on the concentration and the type of 

bacteria, the embryos will succumb. Representative infection assays with DsRed 

expressing E.coli or with DsRed labeled Y.ruckeri are shown in Fig 3.22. Embryos 

survived the injection of doses of up to ~3000 colony-forming units (cfu) of E. coli 

(DH5α), and were able to clear the infection within 2-3 days. By contrast, injection of as 

few as 30 cfu Y. ruckeri killed the embryos within 3 days. The ability of the embryos to 

clear the E.coli infection is also reflected by the low fluorescence intensity observed at 

1 dpi (Fig. 3.27). The injection of Y. ruckeri led to distribution of the bacteria throughout 

the cardiovascular system. (Fig 3.23) 

 

 

 
 
Fig. 3.22: E. coli and Y. ruckeri infection of zebrafish embryos.  

(A) Survival of zebrafish embryos infected with E. coli. Embryos were infected with 3000 cfu of E. coli at 

28-30 hpf and monitored for survival. The percentage of surviving embryos was plotted against days post-

infection (dpi). (B) Survival of zebrafish embryos infected with Y. ruckeri. Embryos were infected with 30 

cfu of Y. ruckeri at 28-30 hpf to monitor survival. The percentage of surviving embryos was plotted against 

dpi. Data in (A) and (B) represent the mean of two independent experiments (n=40, each). 
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Fig. 3.23: Yersinia ruckeri infected embryo.  

Bright field, DsRed fluorescence, and overlay image of a 54 hpf old embryo infected with 30 cfu of Yersinia 

ruckeri (24hpi). Injection was performed at 30 hpf. Circulating bacteria are observed by fluorescence 

throughout the cardiovascular system, most prominently in the pericardial cavity and on top of the yolk sac. 

Lateral view, anterior to the left. 
 

 

3.2.2 Functional characterization of ifnγ genes and potential target genes 
Infection by microinjection of bacteria was employed to determine the function of IFNγ 

in the embryos’ immune response, as this cytokine serves as a potent activator of 

macrophages and as a key inducer of a proinflammatory response in mammals. 

It has been previously shown in the zebrafish that both ifnγ genes are inducible by LPS 

and polyIC in tissue culture cells (Igawa et al., 2006). One of the genes, ifnγ2, was 

found to induce mxb and mxc in ZF4 cells and to mediate resistance against viral 

infections in these cells (Lopez-Munoz et al., 2009). However, treatment of adult 

zebrafish with IFNγ2 failed to mediate resistance against viral and bacterial infections 

(Lopez-Munoz et al., 2009). 

The function of ifnγ1 had not been analyzed, so far. In order to determine whether the 

two predicted zebrafish ifnγ genes correspond to mammalian IFNγ in their innate 

immune functions, the zebrafish embryo was used to test their roles in activating target 

genes and defending the fish against pathogens. 

The basal expression of the two ifnγ genes during embryonic and larval development 

was examined by Dirk Sieger, who showed that ifnγ1 mRNA is most likely supplied 

maternally and present throughout embryonic development, whereas ifnγ2 mRNA was 

only observed at very low levels at later stages of development (6 dpi) (Sieger et al. 

2009). 
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3.2.2.1 Ifnγ target genes in the zebrafish  
The finding that the zebrafish ifnγ genes are expressed in the early embryo raised the 

question if the signaling pathway might be active. In an overexpression approach it was 

tested whether ifnγ1 or ifnγ2 were able to activate the transcription of putative target 

genes. A set of zebrafish homologs of known mammalian IFN-inducible genes was 

analyzed by comparing the expression levels in untreated embryos to those which 

overexpressed ifnγ1 or ifnγ2. The overexpression was achieved by injection of in-vitro 

transcribed capped ifnγ1 or ifnγ2 mRNA into 1-2-cell stage embryos. At 28 hpf mRNA 

was isolated from pooled embryos and reversely transcribed into cDNA. The RT-PCRs 

were performed by Dirk Sieger (Fig. 3.24). 

The putative zebrafish Ifnγ targets included ifnφ1, which had been analyzed before and 

shown to be inducible by viral infection (Altmann et al. 2003; Levraud et al. 2007). 

Further target genes were nramp, adar, mx, ifi30, cathepsin D (cathD), p27, cr3, gp91, 

and lmp2.  

Additionally, zebrafish genes encoding putative homologs of the mammalian guanylate-

binding proteins (GBPs) and the immunity-related GTPase proteins (IRGs) were 

examined.  

An initial characterization of the irg homolgs in the zebrafish was performed during my 

diploma thesis (Stein, 2005). GBPs and IRGs belong to the family of IFN-inducible 

GTPases, together with the myxovirus resistant proteins (Mxs) and the very large 

inducible GTPase proteins (VLIGs) (Boehm et al. 1998; Haller and Kochs 2002; Klamp 

et al. 2003). The majority of the genes examined showed a high basal expression, 

which was not influenced by overexpression of ifnγ1 or ifnγ2 (Fig. 3.24). ifnφ1, lmp2, 

and several of the irg genes were inducible by overexpression of either ifnγ gene. The 

irg genes irge3, irge4, irgf1, irgf3, and irgf4 were strongly induced by both Ifns, and 

three additional genes, irge2, irgg1, and irgq1, were weakly induced (Fig. 3.24).  

Further analyses performed by Dirk Sieger showed that the irgf1 gene is specifically 

induced by both Ifnγ proteins and as such a suitable ‘read-out’ in infection assays. 

Whereas irgf1 gene expression is barely detectable in the untreated embryo, its 

expression was found to be constitutive in non-immune related tissues of adult 

zebrafish, like the heart or the testis (Fig. 3.25). Several irg genes were found to be 

expressed in the testis, but irgf1 showed the highest expression level in all three testes 

analyzed. This finding was unexpected, as expression in the testis is particular for the 

irgc gene of mice and humans, which is in both species not inducible by IFNγ (Bekpen 

et al. 2005). However, the members of the zebrafish Irge and Irgf1 protein families are 

most likely a result of a species-specific expansion (Bekpen et al. 2005). 
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Fig. 3.24: RT-PCR analysis to identify Ifnγ targets. 
Potential target gene expression was assayed at 28 hpf in control embryos and in embryos injected with 

ifnγ1 and ifnγ2 mRNA, as indicated by the ‘+’ signs at the top of the lanes. mRNA injections were 

performed in 1-2-cell stage embryos. To verify successful injections, the levels of ifnγ1 and ifnγ2 were also 

tested by RT-PCR. β-actin was used as a control. RT-PCR analysis was performed by Dirk Sieger. 

 
Fig. 3.25: (legend on next page) 
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Fig. 3.25: (see previous page) irgf1 is constitutively expressed in the testis. 
(A) RT-PCR on genomic DNA verifies that all primer pairs used were able to amplify the predicted irg 

products (also for Fig.3.24). (B) Weak irg expression in the adult heart was observed for irge3, irgf1 and 

irgq1 by RT-PCR (arrows). (C) irg expression in the adult testis was observed for irge3, irge4, irge5, irgf1, 

irgf4, irgg1, and irgq1 by RT-PCR.  

 

 

3.2.2.2 Effects of altered ifnγ expression during bacterial infection 
To test whether Ifn signaling has a role in protecting the embryo against pathogens, the 

levels of interferons were raised or lowered in combination with bacterial infections. 

ifnγ1 and ifnγ2 were either overexpressed or downregulated using morpholinos (Mo) 

against the 5’ untranslated region (UTR) of ifnγ1 and ifnγ2 and compared to the effect 

on infections with that of untreated sibling embryos. To block a potential influence of 

Ifnφ1 signaling, a morpholino directed against the Ifnφ1 receptor chain Crfb1 was used 

(Levraud et al. 2007). To test the efficacy of the morpholinos, GFP constructs were 

generated that contained the morpholino target sequences upstream of eGFP. Dirk 

Sieger generated ifnγ1-eGFP and ifnγ2-eGFP in vitro transcribed fusion RNAs. The 

generation of crfb1-eGFP in vitro transcribed fusion RNA is described in section 

3.2.3.2. The different RNAs were injected into one-cell stage embryos with or without 

the corresponding morpholinos. Injection of the fusion eGFP-RNAs led to strong 

fluorescence in the injected embryos, which was effectively shut down by the 

corresponding morpholinos (Fig. 3.29 crfb1 Mo; (Sieger et al. 2009) ifnγ Mo). Thus, all 

three morpholinos blocked translation efficiently. 

The survival rates were assayed of embryos that were injected with crfb1, ifnγ1 and 

ifnγ2 morpholinos and infected with ~3000 cfu of E. coli. Embryos in which any of the 

signaling pathways had been blocked were able to clear the bacteria and showed 

survival rates that were comparable to untreated embryos (Fig. 3.26), indicating that 

knockdown of a single interferon signaling pathway does not abolish resistance to E. 

coli.  

However, only 24% of embryos injected simultaneously with ifnγ1 and ifnγ2 

morpholinos survived the E. coli infection (Fig. 3.26). This was reflected in the extent of 

bacterial clearance determined by a time-course analysis of the infection in the 

surviving embryos (Fig. 3.27). At 3 hours post infection (hpi) the amount of fluorescent 

bacteria was comparable in untreated embryos and ifnγ1 + ifnγ2 Mo-injected sibling 

embryos. At 15 hpi the infection in the ifnγ1 + ifnγ2 Mo-injected embryos appeared 

slightly more pronounced. While the majority of untreated embryos had almost cleared 

the infection at 24hpi, the ifnγ1 + ifnγ2 Mo-injected embryos showed a strong and 
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eventually lethal infection. Knockdown of both ifnγ1 and ifnγ2 also increased the 

mortality caused by infection with Y. ruckeri (Fig 3.35). 

In contrast to infection by Y. ruckeri, which appeared to be confined to the blood 

vessels, infection by E.coli led to extravasation into the surrounding tissue (Fig. 3.27). 

The ifnγ1 + ifnγ2 Mo-injected embryos developed completely normal and did not show 

any signs of retardation before infection (Fig. 3.27). This is also reflected by the high 

survival rate of their non-infected siblings (Fig. 3.26).  

These experiments showed that Ifnγ1 and Ifnγ2 can protect the early zebrafish embryo 

against bacterial infections. The finding that either of the gamma interferons is sufficient 

to protect the embryo against E. coli suggests that they have largely or completely 

overlapping functions, which is consistent with their effects on target gene activation. 

 

 

 

 
 

Fig. 3.26: Survival of ifn-γ knockdown embryos infected with E. coli.  

Embryos were left untreated (control) or injected with morpholinos specific for ifnγ1, ifnγ2, or crfb1 (each 

0.6mM) alone, or in combination, as indicated (data represent the mean of two independent experiments; 

n=40 for each treatment). X-axis: percentage of surviving embryos; y-axis: dpi. The left panel shows the 

survival rates for embryos that were not infected. The right panel shows the survival rates for the embryos 

that were infected with E. coli (3000 cfu.) at 28-30 hpf. 
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Fig. 3.27: Time-course analysis of E.coli infection. 

Bacterial infection in untreated embryos (A) and ifnγ1 + ifnγ2 Mo-injected embryos (B). Bright field and 

DsRed fluorescence images. ifnγ1 + ifnγ2 Mo (0.6mM each) were injected at the 1-cell stage. The 

untreated or morpholino-injected embryos (n = 20 for each set) were infected with E. coli (2600 cfu) at 30-

31 hpf. Before infection, and at 3, 15 and 24 hpi, five randomly selected embryos were photographed. The 

ifnγ1 + ifnγ2 morphants did not show any signs of toxicity induced by the Mo, or developmental defects. 

Before the infection, at 3 hpi, and at 15 hpi the ifnγ1 + ifnγ2 morphants appeared morphologically like their 

untreated siblings. The first dying embryo in the morpholino-treated set was seen at 18.5 hpf. There were 

no dead or dying embryos in the untreated set at 24 hpi. 
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3.2.3 Analysis of genes encoding putative IFNγ receptor chains 
 

3.2.3.1 Sequence analysis of putative IFNγ receptor chains 
In the phylogenetic analysis 16 genes were predicted to code for members of the class 

II cytokine receptor family in the zebrafish (see section 3.1.3). An additional gene, 

encoding a predicted receptor chain with an intracellular domain of intermediate length, 

crfb17, was identified by Georges Lutfalla, Laboratoire de Dynamique des Interactions 

Membranaires Normales et Pathologique, Montepellier, France.  

The sequence similarity between mammalian and fish class II cytokine receptor chains 

is extremely low and mostly confined to the extracellular D200 domain. By manual 

alignment three predicted proteins could be identified in the zebrafish, which contained 

peptide motifs with close homology to essential motifs found in the mammalian IFNGR 

chains (Fig 3.28).  

In mammals the IFNGR1 is involved in mediating ligand binding, ligand trafficking 

through the cell, and signal transduction. The IFNGR2 plays only a minor role in ligand 

binding but is required for signaling. Both mammalian IFNGR chains have no intrinsic 

kinase/phosphatase activity and associate with JAK1 and JAK2.  

The IFNGR1 harbors three critical intracellular motifs: a JAK1-binding site, a ligand 

binding and degradation motif, and a STAT1-binding site. The membrane proximal 

Leu-Pro-Lys-Ser (LPKS) sequence was found to function as the constitutive binding 

site for JAK1 (Farrar et al. 1991; Greenlund et al. 1994). The proline residue in this 

motif has been shown to be dominantly involved in the JAK1 recruitment (Greenlund et 

al. 1995; Kaplan et al. 1996). The zebrafish Crfb13 and Crfb17 contain the essential 

proline residue but differ in composition of the surrounding sequence (Fig. 3.28). 

Adjacent to the JAK1 binding motif is a Leu-Ile dipeptide in the human IFNGR1 which 

has been shown to be important for receptor-mediated ligand internalization and 

degradation (Farrar et al. 1992; Farrar et al. 1991). The leucine residue is conserved in 

mammals and was also found in Crfb13 and Crfb17. The STAT1-binding motif of 

mammalian IFNGR1 is located near the C-terminus and contains the residues Tyr-Asp-

Lys-Pro-His (YDKPH). It forms the docking site for latent STAT1 when the tyrosine 

residue is phosphorylated. Mutational analysis demonstrated that the tyrosine, 

aspartate, and histidine residues were important for the STAT1-binding (Farrar et al. 

1991; Greenlund et al. 1994; Greenlund et al. 1995). In Crfb17 all three residues are 

conserved, whereas Crfb13 displays a lysine instead of the histidine (Fig. 3.28).  

The IFNGR2 contains a JAK2-binding motif (PPSIPLQIEEYL) which is located in 

immediate vicinity to the transmembrane domain (Bach et al. 1996). A highly similar 

sequence was found in Crfb6 (Fig. 3.28). 
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Fig. 3.28: Essential motifs of the mammalian IFNGR1 and IFNGR2 are conserved in zebrafish Crfbs. 

Schematic drawing representing single mammalian IFNGR1 and IFNGR2 chains. The cell membrane is 

denoted by two horizontal black lines. Green and blue boxes depict the extracellular S100 subdomains. 

Red and black rectangles show the intracellular domains. Within the intracellular domains, positions of the 

JAK1-binding site followed by the ligand internalization and degradation motif (denoted by an asterisk) as 

well as the STAT1 binding site and the JAK2 binding site are drawn to scale.  

The human sequence of these motifs is shown to the left and right of each chain in vertical writing. 

Sequence alignments of human, mouse and zebrafish interferon-γ receptor chains displaying the above 

mentioned motifs are shown to the left and right of the drawing.  

 

 

3.2.3.2 Morpholino mediated knockdown of putative IFNγ receptor chains 
To test which of the zebrafish Crfbs are involved in IFNγ signal reception, morpholino 

oligonucleotides were designed to knock them down. The crfb6 and crfb13 genes were 

analyzed as well as two additional candidates, the crfb7 and crfb15 genes.  

The crfb7 gene codes for a receptor chain with a long intracellular domain, whereas the 

crfb15 gene encodes a class II cytokine receptor with a short intracellular domain (Fig 

3.10). Conserved intracellular motifs were not found in the predicted protein sequences 

of these genes. An antisense morpholino for the crfb17 gene was designed and 

validated by Georges Lutfalla. 

For the crfb6 and crfb7 gene AUG-morpholinos were designed, which target the start 

AUG of the open reading frame (ORF). For the crfb13 and crfb15 genes splice-

morpholinos were chosen.  

To test the efficiency of the AUG-morpholinos, crfb6-GFP fusion RNA and crfb7-GFP 

fusion RNA were generated. The fusion RNA consists of the crfb 5’UTR and the first 

nucleotides of the ORF fused in frame to the coding sequence of GFP, so that the 

morpholino target site is present to perform the knockdown of this fusion RNA. Another 
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5’UTR-GFP fusion RNA was generated to test the morpholino designed against crfb1. 

Crfb1 had been shown to be a functional receptor chain for Ifnφ1 (Levraud et al. 2007), 

and was used in this work as a negative control, since it did not transduce the Ifnγ 

signal (Sieger et al. 2009). 

Injection of the crfb6-5’UTR-GFP RNA in the 1-cell stage resulted in a bright 

fluorescence in the embryos (Fig.3.29 A, A’). Co-injection of crfb6-5’UTR-GFP RNA 

and the crfb6 morpholino led to a full knockdown of the transcript since no fluorescence 

could be detected in the injected embryos (Fig.3.29 B, B’). Co-injection of crfb6-5’UTR-

GFP RNA and crfb1 morpholino did not affect GFP expression, showing that the crfb6 

morpholino effect was specific (Fig. 3.29 C, C’). In the untreated siblings no 

fluorescence was detectable (Fig. 3.29 D, D’).  

These results could not be observed when injecting crfb7-5’UTR-GFP RNA together 

with the crfb7 morpholino. The injection of the crfb7-5’UTR-GFP RNA in the 1-cell 

stage resulted in a strong fluorescence (Fig 3.29 E, E’), but in combination with the 

crfb7 morpholino, only a decrease in fluorescence could be detected (Fig 3.29 F, F’). 

The co-injection of crfb7-5’UTR-GFP RNA and the unrelated crfb1 morpholino led to a 

strong fluorescence (Fig 3.29 G, G’). This shows that the crfb7 morpholino led only to a 

partial knockdown of crfb7.  

The injection of the crfb1-5’UTR-GFP RNA in the first cell stage also resulted in a bright 

fluorescence in the injected embryos (Fig. 3.29 I, I’), which was abrogated when the 

crfb1 morpholino was co-injected (Fig. 3.29 J, J’). The observed effect was specific for 

the crfb1 morpholino, since coinjection of the crfb1-5’UTR-GFP RNA with the crfb6 

morpholino showed no decrease in fluorescence in the injected embryos (Fig. 3.29 K, 

K’). 

Taken together the control experiments showed that the crfb6 morpholino and the crfb1 

morpholino caused an efficient knockdown of the target transcript. With the crfb7 

morpholino, on the other hand, only incomplete knockdown could be achieved.  
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Fig. 3.29: UTR-GFP control RNA injections to validate the AUG morpholinos. 

Brightfield and fluorescence images. (A)- (D’) crfb6 and untreated control, (E)- (H’) crfb7 and untreated 

control, (I)- (L’) crfb1 and untreated control; (A), (A’) crfb6-5’UTR-GFP RNA injected embryos (100ng/μl), 

(B), (B’) crfb6-5’UTR-GFP RNA (100ng/μl) + crfb6 Mo (0.6mM) injected embryos; (C), (C’) crfb6-5’UTR-
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GFP RNA (100ng/μl) + crfb1 Mo (0.6mM) injected embryos, (D), (D’) untreated sibling embryos; (E), (E’) 

crfb7-5’UTR-GFP RNA injected embryos (100ng/μl), (F), (F’) crfb7-5’UTR-GFP RNA (100ng/μl) + crfb7 Mo 

(0.9mM) injected embryos; (G), (G’) crfb7-5’UTR-GFP RNA (100ng/μl) + crfb1 Mo (0.6mM) injected 

embryos, (H), (H’) untreated sibling embryos; (I), (I’) crfb1-5’UTR-GFP RNA injected embryos (100ng/μl), 

(J), (J’) crfb1-5’UTR-GFP RNA (100ng/μl) + crfb1 Mo (0.6mM) injected embryos; (K), (K’) crfb1-5’UTR-

GFP RNA (100ng/μl) + crfb6 Mo (0.6mM) injected embryos, (L), (L’) untreated sibling embryos;  

Injections were repeated at least two times with similar results. 91-97% of the crfb-5’UTR-GFP RNA 

injected embryos showed florescence. The embryos injected with crfb6-5’UTR-GFP RNA + crfb6 Mo and 

those injected with crfb1-5’UTR-GFP RNA + crfb1 Mo did not show fluorescence; 78% of the embryos 

injected with crfb7-5’UTR-GFP RNA + crfb7 Mo showed decreased florescence, the remaining 22% 

showed fluorescence. (A)-(L’) whole mount embryos (28hpf). 

 

 

In order to determine whether Crfb6 participates in the signaling of Ifnγ1 or Ifnγ2, one-

cell stage embryos were injected with in vitro transcribed ifnγ1 or ifnγ2 mRNA alone or 

in combination with the crfb6 morpholino. The mRNA of the embryos was isolated at 

28-30 hpf and the generated cDNA used for RT-PCR analysis of irgf1 expression levels 

(Fig. 3.30). The activation of irgf1 expression by Ifnγ was not altered by the crfb6 

morpholino, although this morpholino induced an efficient knockdown of the crfb6-

5’UTR-GFP RNA transcript. Notably, also a higher morpholino concentration than that 

used for the knockdown of the crfb6-5’UTR-GFP RNA transcript did not lead to a down-

regulation of Ifnγ-induced irgf1 expression. 

However, in some of the experiments with the crfb6 morpholino, a weak reduction of 

the Ifnγ2-induced irgf1 expression was detected. Quantitative- (Q-) RT-PCR analyses 

after knockdown with a crfb6 splice-morpholino using irgf1 expression levels as a read-

out show that knockdown of crfb6 leads to a decrease of IFNγ2-induced irgf1 

expression. These analyses were conducted by Georges Lutfalla and Dina Aggad. This 

finding suggests that Crfb6 might be involved in a receptor complex, which transduces 

only the IFNγ2 signal. 

 

A potential role for Crfb7 in IFNγ signaling could not be determined. Further attempts to 

design a crfb7 splice-morpholino were unsuccessful, as no product could be amplified 

from genomic DNA. Several primer pairs were tested to amplify potential intron/exon 

boundaries, yet no products were generated. This might have been caused by an 

incorrect assembly of the genomic sequences at these loci, as RT-PCR products from 

mRNA could be generated (data not shown). 

An additional AUG-Mo, which targeted the first 25 nucleotides of the crfb7 ORF, was 

designed by Georges Lutfalla. However, also this morpholino was found to be non-

functional.  
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Fig. 3.30: RT-PCR analysis to determine the effect of crfb6 Mo on irgf1 expression. 
Embryos were injected at the 1-cell stage with ifnγ1 or ifnγ2 mRNA (100ng/µl each) and in combination 

with the crfb6 Mo, as indicated by the ‘+’ signs at the top of the lanes. ifnγ1, ifnγ2, and irgf1 gene 

expression was assayed at 28 hpf. To verify successful injections, the levels of ifnγ1 and ifnγ2 were also 

tested by RT-PCR. β-actin was used as a control. This result was verified in at least three independent 

experiments. 

 

 

The efficiency of the crfb13 and crfb15 splice-morpholino was determined by RT-PCR. 

A morpholino designed against an intron/exon boundary modifies pre-mRNA splicing, 

which should result either in an insertion of an intron or in the deletion of an exon.  

 

Two crfb15 splice-morpholinos were designed. The first one was found to be non-

functional, whereas the second splice-morpholinos induced the integration of an intron 

into the pre-mRNA. However, knockdown of crfb15 in combination with overexpression 

of either ifnγ gene did not result in down-regulation of irgf1 expression. This suggested 

that crfb15 does not participate in the receptor complex involved in transducing the 

IFNγ1 or IFNγ2 signal (data not shown). 

 

The crfb13 gene was found to be expressed throughout development (Fig.3.31A). To 

test the efficiency of the crfb13 splice-morpholino, the morpholino was injected at 

different concentrations into 1-cell stage embryos. The mRNA of the embryos was 

isolated at 28-30 hpf and the generated cDNA used for RT-PCR analysis of crfb13 

expression levels. The product size indicated that the splice-morpholino induced mis-

splicing of the pre-mRNA (Fig.3.31A). Sequencing of the PCR-product identified that an 

alternative internal splice site was used in the crfb13 morphants, which led to a deletion 

of 140 nucleotides in the transcript sequence (Fig.3.31B). This deletion induced a 

frameshift in the ORF, which would result in an abrogated protein that lacks the 
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transmembrane and intracellular domains (Fig.3.31C). Based on these findings it was 

concluded that the crfb13 splice-morpholino could be used to induce a knockdown of 

crfb13.  

 

To examine whether Crfb13 participates in the signaling of Ifnγ1 or Ifnγ2, 1-cell stage 

embryos were injected with in vitro transcribed ifnγ1 or ifnγ2 mRNA alone or in 

combination with the crfb13 splice-morpholino. The mRNA of the embryos was isolated 

at 28-30 hpf and the generated cDNA used for RT-PCR analysis of irgf1 expression 

levels. The effect of the knockdown of crfb13 on irgf1 expression levels were initially 

observed as shown in Fig.3.31, which will be discussed below. However, in several 

experiments the irgf1 expression levels were not significantly altered and also the 

knockdown of crfb13 seemed not complete, as two products were generated in the RT-

PCR. The product band corresponding to the morpholino-induced deletion showed only 

a low signal intensity, whereas a product band slightly smaller in size than the crfb13 

product without deletion showed a strong intensity (data not shown). Sequencing of this 

PCR-product showed that the zebrafish embryos were polymorphic for the splice-site 

that the morpholino targeted (Fig.3.2).  

Adult male and female fish were genotyped and the offspring of those that were not 

polymorphic for the morpholino target site were used in all further experiments.  

In these experiments the effect of knockdown of crfb13 on irgf1 expression levels was 

again determined. Concomitant knockdown of crfb13 and overexpression of ifnγ2 

resulted in a substantial decrease in irgf1 expression levels (Fig. 3.33). In contrast, 

knockdown of crfb13 in combination with overexpression of ifnγ1 only partially reduced 

irgf1 expression. These results indicate that Crfb13 is involved in transducing the Ifnγ2 

signal, whereas Ifnγ1 signaling appears not to depend on Crfb13, or only partially. 
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Fig. 3.31: Analysis of the crfb13 splice-Mo effect on crfb13. 

(A) RT-PCR analysis shows that crfb13 is robustly expressed during embryonic and larval development 

(right side). Expression is also observed in untreated (wt) and ifnγ1 overexpressing embryos. Injection of 

crfb13 splice-Mo (0.9 mM) at the 1-cell stage results in a different PCR-product size for crfb13 (red 

arrowhead). The mRNA was isolated at the indicated stages and at 30 hpf (for wt, ifnγ1, and ifnγ1+ crfb13-

Mo). (B) Sequencing of the PCR-product marked in A with a red arrowhead showed that the morpholino 

induced the usage of an internal splice site (labeled with GT) in exon 4, which leads to a deletion of 140 

nucleotides in exon 4 and results in a frameshift within the ORF. (C) Schematic drawing of the predicted 

protein structures for Crfb13 and for the Crfb13 fragment with the deletion in exon 4. The Mo-induced 

splice event in the transcript sequence is denoted by a star. Due to the induced frameshift in the ORF the 

amino acid sequence downstream of the frameshift is scrambled (denoted by a black horizontal line). A 

stop codon terminates the ORF, so that a potentially produced protein lacks the transmembrane (TM) and 

the intracellular domain (ICD) and is therefore non-functional.  

S = signal peptide, ECD = extracellular domain. 
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Fig. 3.32: Polymorphism observed at the crfb13 splice-morpholino binding site. 
(A) Alignment of sequencing results obtained from RT-PCR products for crfb13. The mRNA of untreated 

embryos (wt) and embryos injected at the 1-cell stage with the crfb13 splice-Mo (0.9 mM) was isolated at 

28 hpf and used for RT-PCR analysis. The wt-labeled sequences show the crfb13 coding sequence of 

exon 4 and 5 derived from untreated embryos. Sequences designated as Mo show the induced splice 

event by the crfb13 splice-Mo at the internal splice site of exon 4, leading to a deletion of 140 nucleotides 

of exon 4. Polymorphic sequences are labeled with p. The polymorphisms are recognizable throughout 

exon 4. Most notably, a different internal splice site (marked by an arrow) close to the 3’ end of exon 4 and 

the Mo binding site (depicted by a horizontal red line) was used for splicing in the polymorphic embryos. 

The exon/intron boundary targeted by the crfb13 splice-morpholino is not present in these sequences. In 

the polymorphic embryos, the crfb13 splice-morpholino is therefore not functional. The alignment was 

generated using Clustal W and was then manually refined.  

(B) Alignment of the translated sequences depicted in (A). The arrows mark the positions of the internal 

splice sites as determined in (A).  
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Fig. 3.33: RT-PCR analysis to determine the effect of crfb13-Mo on irgf1 expression levels. 

Embryos were injected at the 1-cell stage with ifnγ1 or ifnγ2 mRNA (100ng/µl each) and in combination 

with the crfb13 Mo, as indicated by the ‘+’ signs at the top of the lanes. ifnγ1, ifnγ2, crfb13 and irgf1 gene 

expression was assayed at 30 hpf. To verify successful injections, the levels of ifnγ1, ifnγ2, and crfb13 

were also tested by RT-PCR. β-actin was used as a control. This result was verified in at least three 

independent experiments. 
 
 

3.2.3.3 crfb13 knockdown during bacterial infection 
It could be demonstrated that knockdown of crfb13 interferes with the expression of the 

IFNγ-inducible gene irgf1, when irgf1 expression is stimulated by ifnγ2. To find out 

whether the knockdown of crfb13 also affected the innate immune response in the 

embryo, the potential role of crfb13 was tested in response to infection with bacteria.  

Embryos were injected at the 1-cell stage with the crfb13 morpholino and were infected 

at 28-32 hpf with Y. ruckeri and monitored for survival. A different subset of embryos 

was only infected with the bacteria and served as a control, whereas in another subset 

both ifnγ genes were knocked down. 

The infection of the embryos was conducted using different bacterial concentrations. 

When the embryos were infected with a relatively low dose of Y. ruckeri  

(approximately 5-10 cfu), the observed infection in the crfb13 morphants was mild and 

did not lead to a decrease of survival of these embryos. The observed survival rates 

where similar to those observed for the infected, but otherwise untreated control. 

Embryos in which both ifnγ genes were down-regulated showed only at 42 hpi onwards 

a decrease in survival rate, so that after 48 hpi 60% of the infected embryos were alive 

in comparison to approximately 80% in the crfb13 knockdown and in the infected 

control embryos (Fig. 3.34). Without the challenge of infection the development of 

untreated control embryos, crfb13 morphants and ifnγ1 + ifnγ2 morphants was 

unaffected (Fig. 3.34). 
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Fig. 3.34: Survival of crfb13 knockdown embryos infected with 5cfu Yersinia ruckeri.  

 Embryos were left untreated (control) or injected with crfb13 Mo (0.9mM) or ifnγ1 + ifnγ2 Mo (0.6mM 

each) (n = 25 for each treatment). The left panel shows the survival rates of embryos that were not 

infected, in the right panel the embryos were infected with Yersinia ruckerii (5-10 cfu) at 32 hpf. 

(Experiments were repeated two times with similar results. Data from one experiment are shown.)  X-axis: 

hours post infection (hpi), y-axis: percentage of surviving embryos.  

 

When the embryos were infected with a higher concentration of the pathogenic bacteria 

(30 cfu), a dramatic decrease in survival rate was observed for the ifnγ1 + ifnγ2 

morphants. Less than 40% of the infected embryos survived the first 24 hpi and after 

48 hpi all of these morphants had succumbed to the infection. Contrary to this, the 

crfb13 morphants were not affected by the infection with Y. ruckeri and showed again 

survival rates comparable to those of the infected control embryos. Since the bacteria 

were labeled with DsRed, the infection was monitored using fluorescence microscopy. 

Fluorescence images of infected embryos showed circulating bacteria in the blood 

system and suggest a slightly higher bacterial load in the ifnγ1 + ifnγ2 morphants (Fig. 

3.36). It is of note that at the time point of imaging more than 60% of the ifnγ1 + ifnγ2 

morphants had already died because of the infection and that therefore their bacterial 

load could not be determined by fluorescent imaging. The morpholino-injected embryos 

displayed a normal development, which is supported by the finding that the observed 

survival rates are similar in all non-infected embryos (Fig. 3.35).  

Taken together, these results indicate that the lack of crfb13 alone had no influence on 

the survival rate after infection with Y. ruckeri.  

It was therefore tested next, whether knockdown of crfb13 in combination with a 

simultaneous knockdown of either ifnγ1 or ifnγ2 would influence the outcome of the 

infection. Indeed, less than 50% of the embryos injected simultaneously with crfb13 

and ifnγ1 morpholinos survived the first 24 hours after infection, compared to 85% of 

infected control embryos (Fig. 3.37). Concomitant knockdown of both ifnγ1 and ifnγ2 
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led to a similar decrease in survival. On the other hand, simultaneous knockdown of 

crfb13 and ifnγ2 did not result in a higher susceptibility to infection than that observed 

for the infected controls. Also the double-morpholino-injected embryos showed normal 

development and did not exhibit any signs of retardation before infection, as also 

reflected by the survival rate of their non-infected siblings. 

These results suggest that Crfb13 has a functional role in transducing the Ifnγ2 signal, 

whereas signaling induced by Ifnγ1 is independent from Crfb13. The functional 

characterization of the zebrafish ifnγ1 and ifnγ2 gene showed that these genes act 

partially in a redundant manner. The receptor usage however, appears to be specific 

for each of the Ifnγ proteins. 

 
Fig. 3.35: Survival of crfb13 knockdown embryos infected with 30cfu Yersinia ruckeri.  

Embryos were left untreated (control) or injected with crfb13 Mo (0.9mM) or ifnγ1 + ifnγ2 Mo (0.6mM each) 

at the 1-cell stage (n = 25 for each treatment). The left panel shows the survival rates for embryos that 

were not infected, in the right panel the embryos were infected with 30cfu Yersinia ruckeri at 32 hpf. 

(Experiments were repeated two times with similar results. Data from one experiment are shown.)    

X-axis: hours post infection, y-axis: percentage of surviving embryos. 

 

 
 
Fig. 3.36: Embryos infected with 30 cfu of DsRed-expressing Yersinia ruckeri. 

Bright field and DsRed fluorescence images of embryos at 24 hpi (56 hpf). A. Embryo infected with 

bacteria, but otherwise untreated (control). B. Embryo injected with crfb13 Mo (0.9mM) at the 1-cell stage 

and infected with Y. ruckeri. C. Embryo injected with ifn-γ1 + ifn-γ2 Mo (0.6mM each) at the 1-cell stage 

and infected with the pathogenic bacteria. The embryos were infected with ~30 cfu of Y. ruckeri at 32 hpf. 
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Fig. 3.37: Survival rates of embryos after knock-down of ifn-γ and crfb13 and concomitant infection 
with Yersinia ruckeri 

Embryos were left untreated (control) or injected with crfb13 Mo (0.9mM) or ifnγ1 + ifnγ2 Mo (0.6mM each) 

at the 1-cell stage (n = 25 for each treatment). The left panel shows the survival rates for embryos that 

were not infected, in the right panel the embryos were infected with 30cfu Yersinia ruckeri at 32 hpf.  X-

axis: hours post infection, y-axis: percentage of surviving embryos. (Experiments were repeated three 

times with similar results. Data from one experiment are shown.) 

 

 

3.2.4 Conserved NLR proteins in the zebrafish 
Although the transcription factor CIITA belongs to the family of NLR proteins, the 

zebrafish CIITA gene was not further analyzed in this study. As a transcriptional 

activator of MHC class II genes, it seemed not likely to be involved in innate immune 

signaling. 

To assess the expression of the nod1, nod2, nod3, nod9, apaf1, and nwd1 genes, their 

basal expression was determined (Fig 3.38A). mRNA was isolated from pooled wild-

type (wt) embryos at different developmental stages. The generated cDNAs were used 

for RT-PCR analysis. All analyzed genes were expressed during the embryonic and 

early larval development, albeit at different levels. The nod1 and apaf1 genes showed 

a robust expression throughout development. Early expression of nwd1 was weak 

compared to the control (β-actin).  

To test whether the nlr genes respond to bacterial infection or ifn overexpression, RT-

PCRs were performed. Embryos were either injected at the 1-cell stage with in vitro 

transcribed ifnγ1, ifnγ2, or ifnλ RNA or were infected at 24 hpf or 30 hpf with E. coli or 

Y. ruckeri, respectively. mRNA was isolated from these embryos at 30 hpf (ifn-

overexpression and E. coli infection) or 54 hpf (Y. ruckeri infection). Only nod2 and 

nod3 showed a weak induction upon infection with Y. ruckeri, and in the case of nod2 

also upon ifnγ1 overexpression. Furthermore, a splice variant of nod2 was found. 

Whole mount in-situ hybridization was also performed. Besides for nwd1, all other nlr 
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genes were ubiquitously expressed, with the strongest staining for nod1 and apaf1 in 

the cranial region (data not shown). 

The nwd1 (nacht-p1) gene was selected fur further analysis. 

 

 
Fig. 3.38: RT-PCR analysis of the basal, infection- and Ifn-induced expression of the canonical nlr 
genes and apaf1. 
(A) For expression analysis during development, mRNA was extracted from embryos or larvae at the 

indicated time points. (B) Embryos were either injected with ifnγ1, ifnγ2, or ifnλ RNA at the 1-cell stage or 

were infected at 24 hpf or 30 hpf with 3000cfu E. coli or 30cfu Y. ruckeri, respectively. mRNA was isolated 

from these embryos at 30 hpf (ifn-overexpression and E. coli infection) or 54 hpf (Y. ruckeri infection).  

ß-actin was used as control. 

 

 

3.2.4.1 Characterization of the nwd1 (nacht-p1) gene 
The discovery of a novel NLR family member not only in fish but also in mammals was 

unexpected. With the release of the zebrafish zv6 genome assembly the initial version 

of the nwd1 (nacht-p1) gene was found during the search for NACHT-domain encoding 

genes. In contrast to the fish-specific NLRs it was annotated by the Ensembl automatic 

analysis pipeline. Orthologous predicted proteins were found in both mammals and in 

Takifugu, whereas the sequence for the Tetraodon Nwd1 (Nacht-p1) was manually 

derived. Using these sequences the phylogenetic tree and the estimate of the domain 

structure (Fig. 3.39) were generated.  

When the NWD1 protein sequence was compared to all other NLRs analyzed in this 

study, NWD1 appeared to be most closely related to APAF1. This is accountable to the 

presence of the WD40 repeats, which occurred in the analysis of the 277 NLR proteins 

only in those two proteins. The NACHT domain of the NWD1 proteins shared the 

overall domain architecture of the NACHT domains of other NLR family members, 
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whereas the NB-ARC domain of APAF1 shows certain sequence variations that 

distinguish it from the NLR NACHT domain. The central motif of the NACHT domain, 

the ATP/GTPase specific P-loop (Walker A motif) has the sequence GPPGx(V/I)GKT 

and is therefore in line with the consensus sequence for the P-loop of NACHT-domain 

proteins: GxxGxGKT, where x is variable. However, the P-loop sequence was found to 

be highly conserved in NWD1 predicted sequences from more than 25 different 

vertebrate species (data not shown), and was not found in the other 272 NLR genes 

analyzed in this study.  

While the NACHT domain and the WD40 repeats were easily identified, the N-terminal 

part of the NWD1 sequence did not exhibit any homology to known protein domains. In 

order to test whether the predicted sequence contained the full-length ORF of this 

gene, EST sequences were searched. One EST sequence was found upstream of the 

nwd1 gene, the sequence of which was in frame with the predicted ORF for the nwd1 

gene. This led to a hypothetical ORF of 4596bp bases, thereby extending the previous 

ORF by 924 base-pairs (bp). But also this extended 5’ end did not code for any known 

protein domain. 

To determine the nwd1 sequence, splice variants, and polymorphisms, the entire 

transcript of the gene was sequenced. This was performed with a ‘primer walk’ along 

the predicted transcript sequence. Additionally a 5 kb RT-PCR product (Fig. 3.39) of an 

nwd1 transcript was generated, sequenced and compared to those sequences derived 

from the primer walk. The cDNA used for this was generated from mRNA isolated at 52 

hpf. The sequence of the 5kb RT-PCR product did not have any overlaps not did it 

contain internal stop codons. It seems therefore likely that a 5kb transcript of nwd1 is 

expressed in the zebrafish embryo. The obtained sequencing results refined the 

predicted sequence of nwd1. By comparing the generated sequences an internal 

alternative intron was found. Whereas sequences generated by the ‘primer walk’ led to 

the identification of the sequence of exon 17, this exon was disrupted in the 5 kb 

transcript. Analysis of the missing sequence by comparison to the entire sequence of 

exon 17 showed that splice sites are present at the beginning and end (AG-GT) of this 

sequence within exon 17. Furthermore, the open reading frame of the 5 kb transcript 

was not affected by the absence of parts of the sequence of exon 17, suggesting that 

an alternative internal intron was spliced out in this transcript. The genomic structure of 

the nwd1 gene and a schematic of the mRNA is presented in Fig 3.40. The nwd1 

sequence and additional information regarding the sequencing are listed in section 8 

appendix. 

As shown in Fig 3.40 the nwd1 gene harbors 8 potential transcriptional start sites. To 

assess a putative functional role of Nwd1, a splice-Mo was designed, since it could not 
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be excluded that an AUG-Mo would lead to usage of an alternative start site. The 

designed splice-Mo was directed against the exon/intron boundary 3’ to exon5, which 

encodes the NACHT domain. However, morpholino-mediated knockdown of nwd1 was 

not achieved with this morpholino. RT-PCR analysis of nwd1 transcripts derived from 

morpholino-injected embryos did not show an additional or shifted product band (data 

not shown). Sequencing of these RT-PCR products revealed no change in the 

transcript sequence indicating that the splice-morpholino is not functional. Alternative 

intron/exon boundaries could not be used as targets for other splice morpholinos, for 

various reasons. The intronic sequences were often not suited for morpholino design 

due to hairpin structures or repetitive intronic sequences, e.g. 5’ to exon 5 

(intron4/exon5). A morpholino against intron/exon boundaries of the first four exons 

could not be chosen, because it was not clear, which of the multiple start codons are 

used and it could be expected that morpholino knockdown would lead to usage of 

alternative start sites in neighboring exons. Moreover, it could not be excluded that the 

majority of nwd1 transcripts were made from the start sites found in exon 5 and the 

knockdown would then not interfere with these transcripts. To target an intron/exon 

boundary of a different exon 3’ to the NACHT-domain encoding exon 5 seemed also 

not promising, since it has been shown that NLR proteins lacking the C-terminus are 

constitutively actively due to the loss of autorepression by the LRRs. 

 

 
Fig. 3.39: RT-PCR analysis of a 5kb nwd1 transcript. 

Left lane shows the DNA marker (Hyperlader, Invitrogen), right lane shows the PCR products. The 5kb 

RT-PCR product was cloned into pCRII-Topo. Positive clones showed identical sequences, of one positive 

clone the entire insert was sequenced. The mRNA was isolated from embryos at 52 hpf. Sequencing of 

the two other PCR products (~ 350bp and ~ 1050bp in size) identified the amplification of two unrelated 

gene transcripts. 

 



 
3 RESULTS 

 99

 
Fig. 3.40: Gene and transcript organization of the nwd1 gene. 

(A) Schematic of the genomic organization of the nwd1 gene. The black horizontal line denotes the 33kb 

fragment of chromosome 11 containing the nwd1 gene. The 19 exons are represented by red boxes. The 

eight potential start AUGs are depicted by small vertical lines and labeled with M. The NACHT-domain 

encoding sequence is marked by a green box below exon 5. The Walker A motif encoding sequence within 

the NACHT-domain is shown by a small blue vertical line. The morpholino-binding site at the exon 5 – 

inton 5 boundary is indicated in red. The alternative internal intron in exon 17 is indicated. Scale: 1000bp 

(B) Schematic drawing of the nwd1 coding sequence and exon view, based on the cDNAs generated. The 

putative ORF with eight alternative start sides is depicted as a black horizontal line, positions of the start 

AUGs are indicated by small vertical lines. The coding exons are labeled in red, the UTRs in orange. The 

splicable intron of exon 17 is shown in light red. Small blue vertical lines present the start and end of the 

5kb nwd1 transcript. The NACHT-domain encoding sequence is indicated by a green box and the Mo 

binding site by a vertical red line. The drawing is based on the sequencing results obtained.  

. 

 

To determine the expression pattern of nwd1, whole mount in-situ hybridization 

reactions were performed, which revealed that nwd1 is specifically expressed in the 

neuromasts and the olfactory placodes (Fig. 3.41) at 55 hpf. Live neuromast staining 

was performed using the vital dye 4-Di-2-Asp (Sapede et al. 2002). In-situ hybridization 

using younger embryos (24-33 hpf) showed a weaker expression in the olfactory 

placodes and a ubiquitous expression in the head and the pectoral fin (data not 

shown). This finding correlates with the basal expression levels during development as 

detected by RT-PCR (Fig. 3.38), where an increase in expression was observed from 

52hpf onward.  

The mechanoreceptive neuromast organs respond to water turbulence and form a 

system of mechanosensory structures across the head and trunk, collectively called the 

lateral line system. The lateral line system is only present in amphibians and fish. To 
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test whether the Nwd1 gene is expressed in the mouse, RT-PCRs were performed on 

mRNA of various organs of adult mice. The RT-PCR analysis of mouse Nwd1 showed 

expression of this gene in the brain, testis, and thymus of adult mice (Fig 3.42). The 

expression in the testis was very low. However, sequencing of the PCR products 

verified the expression in all three organs.   

 

 
Fig. 3.41: zebrafish nwd1 is expressed in neuromasts. 

(A) WISH on 55hpf old embryos shows expression of nwd1 in the developing neuromasts in the head 

(black arrow) and along the trunk. (B) Live staining of neuromasts (white arrow) with 4-di-2-Asp in 48hpf 

old embryos. (C) Live staining of neuromasts with 4-di-2-Asp in larva at 80hpf. 

 

 

 

 
Fig. 3.42: RT-PCR expression analysis of mouse Nwd1. 

RT-PCR on mRNA derived from adult mouse tissues. β-actin is used as control. th = thymus, li = liver, lu = 

lung, g = intestine, br = brain, he = heart, ki = kidney, te = testis, st = stomach. PCR-products found in 

thymus, brain, and testis were verified by sequencing. 
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4 Discussion 

The zebrafish has lately been recognized as a versatile tool to obtain insights into the 

developing immune system of vertebrates and to study host-pathogen interactions. 

Various experimental infection models have been employed to study both human and 

fish pathogens in zebrafish, such as mycobacteria (Davis et al. 2002; Swaim et al. 

2006), streptococci (Brenot et al. 2004; Neely et al. 2002), staphylococci (Prajsnar et 

al. 2008), Bacillus subtilis (Herbomel et al. 1999), and Salmonella typhimurium (van der 

Sar et al. 2003). 

Compared with mammalian infection models, the zebrafish offers the advantage of 

forward genetic screens, along with the economy of infecting large numbers of animals. 

Moreover, the zebrafish embryo is readily accessible for genetic manipulation and 

allows real-time visualization of host-pathogen interactions.  

However, it has not been clear whether the zebrafish innate immune system would 

employ similar defense strategies to those known from mammals and whether the 

complexity of the system is comparable to that of higher vertebrates.  

 

4.1 In silico analysis of innate immune genes 
The findings presented in this work show that the PRR and class II cytokine signaling 

systems known from mammals are also present in fish. Although the main constituents 

were found, differences were observed in the degree to which the various protein 

groups are conserved. These differences pertain not only to the divergence in 

sequence, but also to the creation of new genes by duplications. 

 

4.1.1. Protein families with largely conserved orthology 
The highest degree of conservation was found for those protein families or protein 

groups which act downstream of the TLRs, NLRs, or IFNs in mammals. These are the 

adaptor molecules, the kinases, the TRAFs and the transcriptional regulators, the IRFs 

and STATs.  

The members of these groups exhibited by and large high sequence conservation 

between the different species and retained orthologous relationships, such that there 

was one copy found for each gene in each species, with these genes being more 

closely related to each other than to other genes of the group.  

However, duplication of genes as well as absence of orthologous genes in mammals or 

fish were also observed and will be discussed in the following.  
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For the mammalian TIR-containing adaptor proteins TICAM1 and TICAM2 only one 

homologous protein was found in each fish species. The phylogenetic analysis showed 

that these proteins were equally distant to both mammalian TICAM proteins (section 

3.2.1.1 and Fig. 3.1). This finding indicates that an ancestral gene was duplicated in the 

mammalian lineage followed by subsequent divergence of the two copies. Sequence 

and domain structure analysis of the TICAM proteins in the five species (Fig. 3.1) 

suggested that the mammalian TICAM1 protein exhibits more resemblance to the 

presumptive ancestral gene product than TICAM2.  

This conclusion stands in contrast to a study by Sullivan and colleagues, who proposed 

that TICAM2 was lost specifically in the teleost lineage (Sullivan et al. 2007). However, 

ticam2 genes seem to be absent from amphibians, birds, and reptiles, as they were not 

identified in the genomes of Xenopus, chicken (Sullivan et al. 2007) and data not 

shown), and Anole lizard (data not shown). A predicted ortholog in the Anole lizard did 

not show any resemblance to mammalian TICAM2 and did also not encode a TIR 

domain.  

Although, as mentioned above, there are indications that TICAM1 might be similar to 

an ancestral mammalian TICAM gene, the phylogenetic analysis does not support the 

conclusion of Sullivan and colleagues that the fish ticam gene unambiguously 

corresponds to TICAM1 in mammals nor that TICAM2 was lost in fish.  

Moreover, it has been recently reported that zebrafish TLR4 does not recognize LPS 

and negatively regulates NFkB signaling (Sepulcre et al. 2009). In mammals, LPS is an 

agonist for TLR4 and leads to the expression of NFκB- and IRF3-inducible genes. The 

TICAM adaptor proteins mediate the TLR4-induced IRF3 activation, in that TICAM2 

physically bridges TLR4 and TICAM1 and functionally transmits LPS-TLR4 signaling to 

TICAM1 resulting in activation of IRF-3. Based on their results, Sepulcre and 

colleagues suggested that the ability of TLR4 to recognize LPS was acquired after the 

divergence of fish and tetrapods. This is further supported by their finding that the 

essential co-receptors of TLR4, MD2 and CD14, are not present in fish. 

This strongly argues for the emergence of TLR4-mediated signaling involving TICAM1 

and TICAM2 during the mammalian radiation, rather than the specific loss of all these 

genes, including ticam2, specifically in fish. 

 

An apparent contradiction to the findings presented here and the conclusions drawn 

has been a report of both Ticam1 and Ticam2 in Hydra (Miller et al. 2007). An 

examination of the sequences given in their study revealed that cnidarians too have 

only one Ticam. The authors refer to the synonymous TRIF for TICAM1 and TRAM for 

TICAM2. However, the gene cited as tram in this study is in fact not encoding the TRIF-
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related adaptor molecule (Tram), but encodes an unrelated protein, the translocation-

associated membrane protein, which has the same acronym. 

 

The results obtained for IRAK2 also suggest a duplication event specifically in the 

mammalian lineage (Fig. 3.2). The exact contribution of IRAK2 in TLR and IL-1R 

signaling has long remained elusive, but it was suggested that it serves as an 

accessory molecule in conjunction with IRAK1. Recent studies in mice have shown that 

IRAK2 is required to perpetuate the signal triggered by TLR4 or TLR9 (Kawagoe et al. 

2008). Although the physiological role for IRAK2 in the signal cascade triggered by 

other TLRs has not been refined, it seems likely that IRAK2 arose in mammals to 

modulate specific signaling pathways.  

 

The novel Irf11, on the other hand, was found only in fish. In the phylogenetic analysis 

Irf11 appeared equally distantly related to IRF1 and IRF2 (Fig. 3.3). Irf1 and Irf2 are 

both found in fish, with two irf2 genes present in zebrafish. Since Irf11 is highly 

divergent in sequence but still resembles IRF1 and 2 more than the other IRFs, it 

seems likely that an ancestral gene was duplicated before the split of teleosts and 

tetrapods, and then lost in the latter. However, the phylogenetic analysis also shows 

that the IRF1 proteins found in the mammals and fish are rather divergent in sequence 

and it can therefore not be excluded that Irf11 is a result of teleost-specific duplication. 

 

Unambiguously identifiable gene duplications were more often found in fish than in 

mammals. For the protein groups with conserved orthology discussed here, duplication 

was observed in 12 fish genes compared to three duplicated genes in mammals. 

However, not all duplicated genes were found in all three fish species, arguing for 

duplication events within specific fish lineages rather than duplication of these genes in 

the entire fish lineage. Orthologous relationships between mammals and fish were 

analyzed for more than 50 different genes, thus the duplication of genes found in 

teleost, though more frequent than in mammals, does not support the third whole 

genome duplication postulated for the teleost lineage (Volff 2005).  

But it cannot be excluded that the duplicated genes found in fish present remnants of a 

third genome duplication, as additional copies might have been lost or have become so 

divergent that they could not be identified with the search criteria applied. The analysis 

of the syntenic arrangement of the STAT1-STAT4 containing region in human and 

zebrafish (Fig. 3.5) might support this, as it not only shows that the Stat1 genes were 

duplicated in zebrafish but also that the adjacent STAT4 had only been retained in one 

of the duplicated arrangements in zebrafish. Nevertheless, based on this finding it 
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cannot be concluded that, firstly, this duplication event has happened in all fish 

lineages and secondly, that this is also the case for all of the analyzed genes.  

 

The conservation of the intracellular components of innate immune signaling pathways 

might also be attributed to the involvement of several of these proteins in non-immune 

signaling pathways, e.g. that of STAT members in Fgf signaling, which is already 

present in invertebrates. Conversely, not all members of the analyzed protein families 

have a function in innate immunity. However, for some, like TRAF3, such a function 

has only recently been reported (Oganesyan et al. 2006).  

 

4.1.2. Divergent protein families  
The family of the class II cytokine receptors is neither highly conserved, nor does it 

exhibit species-specific expansions. All analyzed species have approximately the same 

number of receptor chain genes, but the divergence is so great that for most of the 

genes no reliable orthologies can be established. A similar lack of orthology is seen for 

the ligands, besides for IL10 and IFNγ, for which clear orthologs were found. Apart 

from the lineage specific expansions of the type I IFNs, there are similar numbers of 

class II cytokine genes in the five species. A group of fish interferons was identified, 

that clustered together on a clade without mammalian cytokines (Fig. 3.7). However, 

the strong divergence also prohibits speculations on which ligand might bind to which 

receptor in the zebrafish. Thus far, functional receptors have been identified for Ifnφ1 

and Ifnφ2, consisting of either Crfb1 or Crfb2, respectively, in combination with Crfb5, 

and which both are involved in activating an antiviral response upon ligand binding 

(Aggad et al. 2009; Levraud et al. 2007). The studies presented in this work regarding 

potential Ifnγ receptor genes will be discussed below.  

The rapid evolution of the gene families for the class II cytokines and their receptors 

probably reflects the fact that the IFN system is frequently subverted by pathogens, 

resulting in the need for compensatory mutations to escape inactivation. Significantly, 

the receptor family member that is not primarily associated with pathogen defense, TF, 

does not exhibit this high level of divergence. 

 

The greatest divergence was found in the NLR protein family, with lineage-specific 

expansions in each organism, as has also been observed for this protein family in 

echinoderms (Hibino et al. 2006; Rast et al. 2006). Lineage-specific expansions have 

also been observed for the TLRs (Jault et al. 2004; Meijer et al. 2004), and for the 

tripartite motif (TRIM) protein family (van der Aa et al. 2009). In addition to the fish-

specific expansions, these protein families have also sets of orthologous receptors in 
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fish and mammals. The gene family encoding non-rearranging receptors, the NITRs, 

however, have been found exclusively in fish and present an extraordinarily divergent 

and rapidly evolving gene family (Hawke et al. 2001; Yoder et al. 2004; Yoder et al. 

2001).  

Thus, it appears that those molecules that are directly involved in interactions with 

pathogen components are those that are most likely to diversify by undergoing lineage-

specific expansions. Indeed, a study that specifically tested the role of lineage-specific 

gene families in five eukaryotic species found that the genes that were particularly 

prone to such expansions included those involved in responses to pathogens (Lespinet 

et al. 2002). Furthermore, the results presented in this work are in concordance with 

recent findings from a comparison of three insect genomes that showed the following 

(Waterhouse et al. 2007): first, the genes associated with immune functions are on 

average more divergent than the rest of the genome; and second, that the divergence 

occurs primarily in those genes whose products interact with the pathogen. The 

authors found that in addition to pathogen recognition proteins, this was also the case 

for the effectors, which were not analyzed in the study presented here.  

The expansion of gene families involved in pathogen recognition is likely to reflect 

adaptations of the species to the specific pathogen environments. The C-terminal 

LRRs of the novel NLRs differ enormously in their repeat number and arrangements 

and also the N-terminal parts of these proteins are variable in sequence. In their 

NACHT and Fisna domains, however, the fish-specific NLRs exhibit high sequence 

conservation. It will be interesting to determine whether the Fisna domain fulfills a 

physiological function within the NLR protein and whether the different motifs and 

repeats identified in the N-terminal region interact with as yet unknown targets. 

Particularly for the group 1 and 2 members that harbor PYD-like motifs, it will be a 

question for further studies whether they would interact with the adaptor protein ASC 

(PYCARD), which was also identified during this analysis (Fig. 3.11) but was not 

included in the further investigations. In respect to the oligomerization of the NACHT-

domains as shown in the inflammasomes, it will be exciting to analyze whether the 

different group members interact with each other via their NACHT-domains and 

whether there is a preference for either intra- or inter-group association.  
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4.2 In vivo analysis of innate immune genes 
 

4.2.1. Infection assays 
Initially, infection assays were tested for their capacity to induce lethal infections in 

embryos or larvae. With the co-incubation method this could not be achieved, as the 

bacteria accumulated in the gastro-intestinal tract but did not raise the mortality in the 

course of the experiments. Although the co-incubation method presents a natural route 

of infection, it appeared that the bacteria were not able to penetrate the mucosa and 

thereby to induce a systemic infection. Using adult Pacific salmon it was shown that V. 

anguillarum induces necrosis in the host intestinal mucosa, and it has been suggested 

that this presents a likely mode of excretion and transmission (Ransom et al. 1996). 

Both pathogens are most abundant in blood and blood-producing tissues where they 

are causing haemorrhagic septicaemia to which the infected host will succumb. This 

suggests that zebrafish larvae are more resistant to the infection, and that this might be 

caused by different modes of defense strategies employed during the developmental 

stages. Both TLRs and NLRs are expressed in mouse intestinal ephithelium. Mutations 

in the NLRs have been associated with autoinflammatory disorders like Morbus Crohn 

and other bowel diseases, which are characterized by acute inflammation of the 

intestinal epithelium. It will be a question of further studies to analyze the contribution of 

the TLR, the canonical NLRs, and the novel fish-specific NLRs during infection of the 

gastro-intestinal tract in zebrafish larvae and adult fish. 

Injection of Y.ruckeri into the blood system did cause a lethal infection in otherwise 

untreated embryos and was therefore used in the further infection assays.  

 

4.2.2. Functional characterization of ifnγ genes and potential target genes 
In support to the functional characterization of the ifnγ genes in zebrafish by Dirk 

Sieger, it was shown that the IFN-γ signaling system can be activated in the early 

zebrafish embryo and is able to upregulate several target genes.  

Many of these potential target genes that are inducible by IFNγ in mammals were not 

inducible by the zebrafish Ifns. However, members of the irg family were clearly 

induced by both zebrafish Ifnγ. In particular, the members of the irge and irgf group 

showed responsiveness to Ifnγ.   

This was unexpected for the members of the irgf group. The irge and irgf genes are 

most likely a result of a species-specific expansion (Bekpen et al. 2005), but they also 

resemble the Irgc genes in mammals in that they have an intron in the same place in 

the middle of the main exon that encodes the GTPase-domain. The mammalian Irgc 

genes are not inducible by IFNγ and their expression is restricted to the testis. Most of 
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the irge and irgf1 genes were also found to be expressed in the testes of zebrafish (Fig. 

3.25). However, their functional roles during innate immune responses as well as their 

function in the testis have not been analyzed yet. 

 

The two ifnγ genes did not exhibit differences in their activation of the tested target 

genes, which suggests that they act at least in a partially redundant manner. This was 

also observed during the knockdown experiments in combination with infection. 

Knockdown of each ifnγ resulted in a similar reduction in survival rates, showing that, in 

each case, the remaining ifnγ is equally effective at inducing a low-level defence.  

 

However, the sequences of the ifnγ genes show only a low degree of identity to each 

other (18.8% amino acid identity between zebrafish ifnγ1 and ifnγ2). Furthermore, only 

Ifnγ2 contains a nuclear localisation signal (NLS), whereas Ifnγ1 does not. The NLS of 

Ifnγ2 is found in the same position as in mouse and human IFNγ. Nuclear localisation 

of mammalian IFNγ by its NLS has been shown to be necessary for full biological 

activity (Subramaniam et al. 2001a). Uptake of IFNγ is a receptor-mediated endocytic 

process. It has been reported that plasma membrane lipid microdomains are the 

primary sites for the endocytic events leading to nuclear translocation of IFNγ, IFNGR1, 

as well as STAT1α (Subramaniam and Johnson 2002). 

In the zebrafish embryo, however, IFNγ1 is also without an NLS able to trigger a 

signaling cascade as efficiently as the NLS-containing IFNγ2, indicating that the NLS 

might not be a general prerequisite for IFNγ signaling in the zebrafish. Furthermore, 

only downregulation of both ifnγ genes resulted in a dramatic increase of mortality due 

to infection. This further supports the hypothesis that Ifnγ1 and Ifnγ2 act redundantly in 

the embryos’ response to bacterial infection. 

 

4.2.3. Putative Ifnγ receptor genes 
Knockdown of crfb13 showed that Ifnγ2 target gene activation is impaired and that the 

survival of infected embryos is dramatically decreased, when both crfb13 and ifnγ1 are 

downregulated. This strongly suggests that Crfb13 is the functional ligand-binding 

chain in the receptor complex transducing the Ifnγ2 signal. Furthermore, it indicates 

that the Ifnγ proteins differ in the composition of their cognate receptors. 

The infection studies gave no indication that Crfb13 is also necessary to transduce the 

Ifnγ1 signal, as the embryos in which ifnγ2 and crfb13 were blocked showed the same 

survival rates as the untreated embryos. The RT-PCR analysis of the target gene 

induction showed a partial reduction in irgf1 expression. Since irgf1 is specifically 

induced by overexpression of either ifnγ, an influence of the basal Ifnγ2 levels should 
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not lead to this observation, although a potential positive feedback loop for ifnγ2 can 

not be excluded. This is supported by the finding that ifnγ1 overexpression activated 

ifnγ2 expression (Fig. 3.24), albeit the observed effect was relatively weak. 

The general paradigm for the interaction of mammalian IFNγ with its receptor is that an 

IFNγ dimer interacts with a tetrameric receptor complex, consisting of two IFNGR1 and 

two IFNGR2 chains. Based on the crfb13 knockdown experiments it appears not very 

likely that Ifnγ1 and Ifnγ2 constitute a heterodimer in vivo. On the other hand it could be 

theoretically possible that Crfb13 is one of two IFNGR1 equivalents for Ifnγ1, and that 

the other receptor chain, not affected by the knockdown of crfb13, is sufficient to 

transduce the Ifnγ1 signal.  

Georges Lutfalla and Dina Aggad showed by Q-RT-PCR that a knockdown of crfb17 

reduces the expression of the target gene irgf1, when this was induced by either Ifnγ1 

or Ifnγ2 (personal communication, shared manuscript in preparation). However, the 

decrease of irgf1 expression levels was not as strong as that observed for knockdown 

of crfb13 or crfb6 in combination with overexpression of Ifnγ2. Their finding suggests 

that crfb17 is involved in the transduction of the Ifnγ1 signal, but it also indicates that 

crfb17 might function as a receptor chain for IFNγ2 as well. In preliminary infection 

assays an increase in mortality was not observed for embryos injected with crfb17-Mo 

in combination with either ifnγ-Mo. When the concentration of Y. ruckeri was raised to 

300cfu, all embryos which were injected with either ifnγ1- and ifnγ2-Mo, or with crfb17-

Mo in combination with ifnγ1-Mo or ifnγ2-Mo, died within 24 hours after the infection 

(data not shown). Further experiments will be undertaken, to determine the role of 

Crfb17 in IFNγ signaling. 

 

The finding that knockdown of crfb6 did not alter the expression of irgf1, suggested that 

Crfb6 might not be involved in Ifnγ signaling. However, a weak reduction was 

sometimes observed when irgf1 expression was induced by Ifnγ2. Q-RT-PCR 

conducted by Georges Lutfalla and Dina Aggad showed that injection of a crfb6 splice-

Mo led to a decrease in Ifnγ2-induced irgf1 expression. This suggests that Crfb6 might 

be the IFNGR2 chain equivalent for the Ifnγ2 receptor complex in the zebrafish. 

The discrepancies of the crfb6 knockdown effect are most likely due to the different 

methods applied. The semi-quantitative RT-PCR used in the present study is not as 

sensitive and quantifiable as the Q-RT-PCR and changes in expression levels might 

therefore not have been detected. However, the crfb13 knockdown effect on irgf1 

expression was detectable by RT-PCR. The observed fold changes in irgf1 expression 

were similar in the Q-RT-PCRs for crfb13-Mo and crfb6-Mo. Another explanation might 

be that the crfb6-AUG-Mo did not target the crfb6 transcript, although successful 
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knockdown of the crfb6 5’UTR-GFP-RNA could be demonstrated or that a different 

translational start site was used.  

In mammalian models it has been shown that the IFNGR2 expression is tightly 

regulated and that in certain cell types downregulation of IFNGR2 was induced upon 

exposure to IFNγ (Bach et al. 1995). The probable contribution of Crfb6 in the Ifnγ2 

receptor will be tested using infection assays.  

In summary, these findings suggest that the Ifnγ2 receptor is composed of Crfb13 as 

the ligand-binding and signal transducing chain and Crfb6 as the second signal 

transducing chain. In the view that a functional receptor complex is potentially 

tetrameric, a combination of Crfb13 and Crfb17 appears possible. For the Ifnγ1 

receptor only Crfb17 is a likely candidate for the ligand binding chain. Which of the crfb 

genes encodes the second signal transducing chain could not be determined.  

 

4.2.4. The nwd1/NACHT-P1 gene 
The NWD1/NACHT-P1 gene was found during the phylogenetic analysis of the NLR 

genes as a new member of the canonical NLRs. In contrast to other NLRs, the NWD1 

protein contains WD40 repeats at its C-terminus. The NACHT domain shares the 

domain architecture of the other NLRs, but exhibits a modified P-loop. Although related 

to the canonical NLRs and APAF1, the NWD1 protein lacks an identifiable N-terminal 

domain. The potential physiological role of NWD1 has, so far, not been determined. 

The initial prediction for the nwd1 gene was based on a GenScan annotation. To 

validate the nwd1 sequence and to examine splice variants and polymorphisms, 

transcripts of the gene were sequenced. Additional exons were found as well as 

internal alternative splice sites. The nwd1 gene in zebrafish has 19 exons and encodes 

a protein of 1620 amino acid residues.  

However, the functional analysis of nwd1 was hampered by the fact that a knockdown 

was not achieved. In situ hybridization revealed expression of nwd1 in the neuromasts. 

Neuromasts or the lateral line system in general, has not been linked to immune 

defense mechanisms. However due to the presence of the WD40 domains, NWD1 

could possibly be linked to apoptosis. It has been shown that the hair cells of the 

neuromast undergo cell death, whereas the surrounding mantle cells proliferate 

(Williams and Holder 2000). Analysis of a potential role for NWD1 in apoptosis will be 

an exciting question for further studies.  
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5 Abstract 

The zebrafish embryo offers the in vertebrates so far unparalled opportunity to study 

innate immune responses without the influence of an acquired response, which starts 

to operate much later in development. In the recent past the zebrafish has proven to be 

a versatile tool to study host-pathogen interactions and an excellent model for the study 

of human diseases. However, it has been unclear whether the defense mechanisms 

employed in the embryo are comparable to that known from mammals. 

In order to determine the extent of conservation between mammalian and fish innate 

immune pathways, a phylogenetic analysis was conducted to search the zebrafish 

genome and those of two pufferfish for putative orthologs of known mammalian innate 

immune genes. This revealed that those components of the intracellular signaling 

cascades, that transduce the signal downstream of the receptors, are conserved 

between fish and mammals. However, for the class II cytokines and their receptors the 

assembled data showed that orthologous relationships cannot easily be established. 

Within the class II cytokines it could be shown that fish have their own set of interferons 

(named interferon-φ), which are more closely related to each other than to the 

mammalian class II cytokine genes or to those shared by mammals and fish, 

suggesting that interferon genes expanded independently in zebrafish and mammals. 

The class II cytokine receptor genes are highly divergent. Mammals and fish have 

approximately the same number of receptor genes. Since syntenic relationships were 

found only between pufferfish and mammals and appeared to have been lost in the 

zebrafish, no reliable orthologies could be established.  

IFNγ is a key regulator of immune responses in mammals, but a possible role of the 

two zebrafish ifnγ genes during innate immunity is not well established. Infection 

studies in zebrafish embryos showed that both genes mediate responses to protect the 

embryo against pathogenic bacterial infection, but seem to function in a redundant 

manner. Analysis of putative interferon receptor genes revealed that zebrafish Ifnγ1 

and Ifnγ2 use distinct receptor chains to transduce the signal to the conserved 

intracellular signaling pathway. By conducting knockdown experiments in combination 

with infection assays it was shown that ifnγ2 depends on crfb13 to protect the embryo 

against infection with Yersinia ruckeri.  

Among the NLR protein family, a large fish-specific expansion was found. The NLRs 

are intracellular pathogen sensors that have only recently been described in mammals. 

They react to various pathogens and are implicated in several human autoimmune 

disorders, such as Morbus Crohn. More than 200 novel zebrafish genes encoding 
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NLRs were identified in this study. They were found to be closely related to each other 

but lack the identifiable effector domains that mediate the downstream events in 

mammals. A new conserved domain was identified, which is present in all fish NLRs 

and which was termed Fisna. Its functional role is however unknown.  

Taken together the results from the phylogentic analyses suggest that the signaling 

mediators are conserved in fish, whereas those proteins that possibly respond to or 

interact with pathogens appear to have diverged. 

In addition to the fish-specific NLRs, Nwd1/NACHT-P1 was identified as a novel NLR 

gene in fish and mammals. Analysis of the genomic organization and transcript 

structure of zebrafish nwd1 revealed that it encodes a predicted protein of 1620 amino 

acids that does not contain any known N-terminal effector domain. In situ hybridization 

in zebrafish showed that it is specifically expressed in neuromasts, which are 

mechanosensory organs found only in fish and amphibians. In RT-PCR studies, mouse 

Nwd1 was found expressed in tissues such as brain, thymus, or testis. These data 

suggest a functional role for this gene, which awaits further analysis.  
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6 Zusammenfassung 

Der Zebrafisch Embryo bietet die Möglichkeit das angeborene Immunsystem in 

Vertebraten unabhängig von dem Einfluss einer adaptiven Immunantwort zu 

untersuchen, was in Säugertiermodellen nicht durchzuführen ist. In den letzten Jahren 

hat sich der Zebrafisch als geeignetes Modellsystem zur Untersuchung von 

Interaktionen zwischen Wirt und Pathogenen herausgestellt und wird als Modell zur 

Untersuchung von Krankheiten des Menschens verwendet. Es war bislang jedoch nicht 

geklärt, inwieweit die Verteidigungsstrategien des angeborenen Immunsystems in 

Fischembryonen mit den in Säugern bekannten Mechanismen vergleichbar sind.  

Um das Ausmaß der Konservierung zwischen den angeborenen Immunmechanismen 

in Fischen und Säugern zu bestimmen, wurde eine phylogenetische Analyse 

durchgeführt. Dazu wurden das Genom des Zebrafisches und die Genome zweier 

Kugelfischarten auf mögliche Orthologe der aus Säugern bekannten Komponenten 

durchsucht und die gefundenen Proteine hinsichtlich ihrer Verwandschaftsbeziehungen 

zu den entsprechenden Säugerproteinen analysiert. 

Dies zeigte, dass die meisten Komponenten der intrazellulären Signaltransduktions-

kaskaden, die an einer Signalweiterleitung beteiligt sind, in Säugern und Fischen 

konserviert sind. 

Die Ergebnisse für die Mitglieder der Klasse II Cytokine und ihrer Rezeptoren ergaben, 

dass die phylogenetischen Verwandschaftsbeziehungen in dieser Gruppe schwierig zu 

bestimmen sind. Es wurde gezeigt, dass Fische innerhalb der Klasse II Cytokine eine 

eigene Gruppe von Interferonen besitzen (bezeichnet als Interferon-φ), die 

untereinander engere Verwandschaft aufweisen als mit Klasse II Cytokinen die in 

Fischen und Säugern oder nur in Säugern vorkommen. Daher scheinen die 

Interferongene in Zebrafischen und Säugern unabhängig voneinander expandiert zu 

sein. Die Rezeptoren der Klasse II Cytokine sind hochgradig divergent. Säuger und 

Fische besitzen ungefähr die gleiche Anzahl an Genen für die Rezeptoren. Da 

Syntenieverhältnisse nur zwischen Säugern und Kugelfischen gefunden wurden, aber 

in Zebrafischen anscheinend verloren gegangen sind, konnten keine verlässlichen 

Orthologien bestimmt werden.  

Interferon-γ ist ein bedeutsamer Regulator vieler Immunreaktionen in Säugetieren, eine 

Rolle der beiden Zebrafisch Interferon-γ Gene bei der angeborenen Immunität wurde 

bis vor kurzem jedoch nicht untersucht. Infektionsexperimente in Zebrafischembryonen 

ergaben, dass die beiden ifnγ Gene im Zebrafisch am Schutz des Embryos gegenüber 

pathogenen bakteriellen Infektionen beteiligt sind, dabei aber anscheinend redundante 
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Funktionen ausüben. Die Untersuchung möglicher Gene für Interferonrezeptorketten 

ergab, dass Ifnγ1 und Ifnγ2 unterschiedliche Rezeptorketten nutzen, um das Signal an 

den konservierten intrazellulären Signalweg weiterzuleiten. Durch sogenannte 

knockdown Experimente in Kombination mit Infektionsansätzen wurde bestimmt, dass 

Ifnγ2 von Crfb13 abhängt, um den Embryo vor einer Infektion mit Yersinia ruckeri zu 

schützen.  

In der NLR Proteinfamilie konnte eine große, Fisch-spezifische Expansion festgestellt 

werden. Die NLRs sind intrazelluläre Pathogensensoren, die erst vor kurzem in 

Säugern beschrieben wurden. Sie reagieren auf verschiedene Pathogene und sind an 

Autoimmunkrankheiten beteiligt wie etwa Morbus Crohn. In dieser Arbeit konnten über 

200 neue Zebrafisch Gene für NLRs identifiziert werden, die zwar sehr eng miteinander 

verwandt sind, jedoch keine der aus Säugern bekannten Effektordomänen zur 

Signalweiterleitung enthalten. Eine neue, in allen Fisch-NLRs konservierte Domäne 

wurde identifiziert, die Fisna genannt wurde. Ihre physiologische Funktion ist allerdings 

noch ungeklärt. Zusammengefaßt deuten die Ergebnisse der phylogenetischen 

Analyse darauf hin, dass die Signalmediatoren in Wirbeltieren konserviert sind, 

während Proteine, die auf Pathogene reagieren oder mit ihnen interagieren, 

anscheinend divergiert sind. 

Zusätzlich zu den Fisch-spezifischen NLRs wurde ein neues NLR Protein, 

NWD1/NACHT-P1, in Fischen und Säugern identifiziert. Eine Analyse der 

genomischen Organisation von nwd1 und der Struktur von dessen Transkripten zeigte, 

dass es für ein Protein von 1620 Aminosäureresten kodiert welches keine der 

bekannten Effektordomänen im N-terminalen Bereich.enthält. In situ Hybridisierung 

zeigte, dass das Gen in der Zebrafischlarve in Neuromasten exprimiert ist. Dies sind 

mechanosensorische Organe in Fischen und Amphibien, die in Säugern nicht 

vorkommen. RT-PCR Analysen von murinem Nwd1 ergaben, dass es in 

unterschiedlichen Geweben exprimiert wird, wie etwa im Gehirn, im Thymus oder im 

Testis. Dies deutet darauf hin, dass das Genprodukt eine funktionale Rolle besitzt, die 

in zukünftigen Studien noch zu ermitteln ist.  
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8 Appendix 

Sequencing of the nwd1 gene 
 

To determine the nwd1 sequence, the ‘primer walk’ method was used along the 

predicted transcript sequence. The initial Genescan predicition started within exon 5 

(Fig. 8.01). RT-PCRs on cDNA were performed using the following primer pairs: SP1 + 

ASP1, yielding in a fragment of 507bp; SP2 + ASP2, fragment size 866bp; SP3 + 

ASP1, fragment size 664bp; SP4 + ASP4, fragment size 820bp; SP5 + ASP5, fragment 

size 432bp; SP6 + ASP6, fragment size 511bp; SP6 + ASP8, fragment size 1124bp; 

SP8 + ASP8, fragment size 633bp; SP9 + ASP9, fragment size 667bp; SP10 + ASP10, 

fragment size 577bp; SP7 + ASP11, fragment size 1140bp; SP11 + ASP11, fragment 

size 833bp; SP12 + ASP12, fragment size 808bp; SP13 + ASP13, fragment size 

468bp; SP14 + ASP14, fragment size 519bp. Additionally, a 5 kb RT-PCR product (Fig. 

3.39) of the nwd1 transcript was generated using SP13 and ASP12 oligos. This product 

was cloned into the pCRII-TOPO vector, subsequently sequenced and compared to 

those sequences derived from the ‘primer walk’. By comparing the generated 

sequences an internal alternative intron was identified. Whereas sequences generated 

by the ‘primer walk’ led to the identification of the sequence of exon 17, this exon was 

disrupted in the 5 kb transcript and no RT-PCR product could be generated using the 

SP11 and ASP11 oligos. Analysis of the missing sequence by comparison to the entire 

sequence of exon 17 showed that splice sites are present at the beginning and end 

(AG-GT) of this sequence within exon 17. The open reading frame of the 5 kb transcript 

was not affected by the absence of parts of the sequence of exon 17, suggesting that 

an alternative internal intron was spliced out in this transcript. The complete sequence 

of the nwd1 transcript is listed below with the sequence of the internal intron of exon 17 

presented in grey font colour. The genomic structure of the nwd1 gene and a 

schematic of the mRNA are presented in Fig 3.40 and Fig. 8.01. 
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Fig. 8.01: Genomic organization of the nwd1 gene. 

Schematic of the genomic organization of the nwd1 gene. The black horizontal line denotes the 33kb 

fragment of chromosome 11 containing the nwd1 gene. The 19 exons are represented by red boxes. 

Above each box, the exon size is given in bp. The coding exons are labeled in red, the UTRs in orange. 

The intron size is given in kb. The splicable internal intron of exon 17 is shown in light red. The NACHT-

domain encoding sequence is marked by a green box below exon 5. The morpholino-binding site at the 

exon 5 – inton 5 boundary is indicated by a vertical red line. Small blue vertical lines represent the start 

and end of the 5kb nwd1 transcript. The position of the oligos used for amplification and sequencening of 

fragments are indicated by small orange vertical lines. The drawing is based on the sequencing results 

obtained.  

 

 

>Dr nwd1 cDNA 

cgtaaacaccgggtctccctcggccttcctgatctcagtggataaaatgacggcgctgaggagaacaaacaaccgagc

tggagcgccctgcaacagagagctgtgttcttttttgtataataggagacagctgaaaagtctttaaacaatttgtcaaatgg

cttgatttacatttactttttaattataatttcatttctcaaactagcagtgatgctcacagtggcaccgtagaactacccggatgt

cggtggtttaataggactggaatattctggattaactgaggtgttggtcaggatggatgtggtggagatgagagaggcactt

gggttggaggttctgcggggacaaagcgctgattctctgcagcctacttccagaatggtgcgggtgttcatcagctccactc

actcagacatgaaaaatgagagaaatgcattctgggagaagacctattcggagctacagacccactgccaaagtttgg

gtcttgtttttgaggtagtggatttcaaatgtggaatgcgtgacatcactgcatctgatcatttaataactgaactgtgcattaaa

gaaatcgaaacctgccagaggatatcagatgggccaacttttatagctttgatcggtaatcagtatggccatcgccttgtcc

cgcgcctcataccagaggcagagtttgagttgctgctatcaaaactttccaaagatccagagagtttaaagctccttaacc

aatggttttacaaggacagtaactcaatcccacccacatatatcctcctgccaatcacggtgcactacccacattacaatg

agagagattctgagaacgcacagttgcgggataatgatgtcatatcctggaatctaacagagtcacggctgctgcaggtt

ctccgcagtgcagctctacaggctgagagagacggggatttcactgctgacagcaagcacaagtttttcaaatctgtttta

gaatatgagatggagcatggctttctcaggactcaaagggatgcatcggctgtgctgtttttccgcgaactgcctcgactta

gtaaaagagactgcaagaaaaactttgcaaagtttctgctggacgtcacagccgacggcttgctggacacacaagccc

gggagctcttgactgacctgaagcaacgcatctgcaacaccggtcgcctccaaccactctgtatggagctcagcaaagg

agccatggacccaagccgcaaagaacacaaggaatacctgggtaagctgtgtgaacaggtaacatctcaattgaagg
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aactgatcagcagaaatgctctgcaaacctcaggaacttcagtagatccagtatggtcctggctaaaacaggagatcttt

catcatgccaagttgagtgaggagaagtgtgctgtgtttaaagggagagacgacattctgggaaagatctccatcaccct

gtgggaatccaatgatgtttctcatggacctcttctagtccatggacctccaggagttggtaaaacagctctgctttgcaaact

ggccaaggaaatgcgagcagttgttgacaatcggggagttgttctgctgaggttgctgggaacatctctgctcagttcagat

gtcgattctgttcttcgaggtgtttgtcttcaagtgtgtggagctctagggttgcagtccccatactcgcatatagcgtacacgc

atgaagggctagttcgatttttccattccatgctggaagacgtgtcaaaacaaggagacactcttctactcattctagactca

ttggagcagcttttagagacaaacaaacttcataaactagactggatacctaaaataattccacccaatgtgcaaatcgta

ttctcaacttctaatgagtgcttggacaaatgtaaatctttggtttcagcggaagaaaacatctttaaattggaacttctcacga

aagatcaagggagagacgtcattgatgcatatatgagtgcagctgaacgcaagctgacggcagaacagcaagacgc

aatcttacgctactttgagcaaagtggaaaccctttgcatctgaaactcatgctagacactgccaaactgtggtcctcctac

acccccatgtctagtgttcacctggacaagtcggcggaggaagtgatgacacagtttgtcgagtcacttgaggtgaatcat

gggaagaagctagtcagtcatgctctgagcttcatcctgttatcaagatatggactttcagaggcagagttacaggatgtcc

tatcattagataatgatgttctagctgagatctataaatgctggcttcctccgagccatacgctcatgcgcttcccacgttttcat

tggtcaagactcaggcatgacctgagtgctcatctgacggagagatgggaagccggcgttcttctgctgggtttcactcac

aggcagtttgcagaactggtaaggaggagatatttgtcacgtgatgtgaaagctgacatgcacacgatcctcgccgagta

tttctccggacagtggagtaaggggcagctcagacccatccttctcccctcactgagcgcatttctcaatgctgacagaaa

ggtatcaccccagcccttgtggttttctgaagaacttgccaatttgcgtaagattcatgaacttccttatcaccttgctcacgca

ggaaaatgggacgagctacgacaatcagtgcttgggagtctggactggttgtgctgtaagactctgcagtgtggcgtgag

ctgtgttattcaggacctgaccctttgcactgacctcactgactgccctgagatacagttgctgaaggagacgtttttgcttctt

aaaccctcgctggattttagcgacggccgcgtggatccctcgctgttagtgacagagatctttgccaggctacagggtcttg

ctgatcattacccctccatgattggtcaactgtgttctcaatgtatggactggtttgaatcctattctgacccattacttgtgccca

aatgcagcttctttgaagcccctggtggcccactaaagagcaccctcagaggattcactaaaggggtgaaggctgttgttc

tgtgctcaaagaggaagctgctgttagcaggttcagaggatggactgatcatagtctggagtctaaacaatctgcagcctc

ttcacactctttctggacataaagccggggtgctgtccctgaagctgacggacaaaaccaataactgtttgtctactgggct

cgatgggactctgagaaaatggtgtctgataagtggactgcagcttttctgcatcactgatgccgtttctgtccaaacacac

agccctacacacatccatatgaatgaagaaaggaagatcatcataaccaacccaagcagccaagttaaagcttggga

tttggacactgcagagcctctgtttgagctgaccgcagtgattggttctgttcttggcattgtggaagatgaaatagcgtgcat

atgcagtgaggcgatactctgcttttatgacatatccaccggcactcagacttcccagaccctcctgccctactctgccgga

caccataacatcacctgctgtctcacactcaccaaacactccaagatactcattgcttttggggaaagccgtctacattcgg

tgtggagccatgaaatggagtctgtgattgatcttccatctccagctctctttctcagaacatctgaggatgaaaaactgctg

cttgcaggatgtgacagaacattgtgcgtgttcctcgtgacattgacttcaatgcacaaggttctggatcttcaacatgatgc

atctatcctgtgcgccgtgtcaaacagcgaaggtagcgaaatcatcacgagtgcccaggatcgtataatacgggtatgg

agcgtaaccacaggagccctgctggactggatcggtgtgatggattcctctgtgtcctcattggctgtacatcagcgctttatt

atttccgcctctgttattgtcaaccagcttaaagtatggcagcttgaccacaacaccacgcacaggaacaagagtttcatc

cccgcatactgccccttggcagtcctgtcgaaagatggtgatactgtattctatgtcaaggagggaaataaaaccgaggtt

ttcacctggagctgttcggaaggtctgcagttagacagcatggacgtttcctcagaggtgtgctgtatggaattagcccagc

agaaacggctcctcttctgcggtctgcacactggaaccatctttatttacccgcttgactttatcccagaaaccttgtgcctac
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cgcctccggaaagcctaccaatggtacgcagcatggccatcagcccacgagaggacaaaatggccgtcgcatatga

ggatgccgtctgtctgtttgagattacagcgagggacagcttcccttgcgtcgatggaccatttgaaaggtactcgcttgacc

tgttacattcctcaatctccgccatggctttgttgtccgactgcaggctgctgtatgggacgtttggcggcgaagtggtgatcta

cgactttaaaagcgccacagcagcagagctggatcaccacggtgcagccataacctgcatcaccatgagcaactggg

atgcgcaggcactgattggctctcaggactgtgttcagaagctgtggaatttgagtcccgtcttactgaatcacaccatgga

gtacaagggcttttattttgaaggagttctatgtgctgtcttctcaataaatgataaatacgtgttcactggatccttggacaaa

accgtcaaagtctgggatgtttcgagtggttgtttgctgtatatccagtacgtctactctccggtcataaggatgatgccacac

aaggatggatttgtagctgtatcccagcatggctcattcatcaaggaaggttttcgctgtccagacagcctcaagcctggat

ataaccccctccggaacttccaagtacattacaaagtcacttcacgagacaaaagtctgaacgttccacacagcgtgatc

aatgagctgccagattacaaccctgctcagttcaacttcattggcatcggtctgatcaaatccaaaccatccaatacgtgc

gttctcctctaagtacattctacatcgcaaacctcttataactaggcccacacttattctgcgtgcagatttactaaagctgcgt

cccaaattgcatacttatgcactattctacgccattttgtagtataaatagtttaagtagtgtgttcacattggaaactctaaaaa

taataagtgcactttaattacccggatgatgcactcattcagccgctaaaacgaagtgtgttgtgattgacacttcacacact

caacgaccg 
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