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1. Abbreviations 
 
[11C]MET -[11C]Methionine 
[18F]FDG  -2-[18F]fluoro-2-deoxy-D-glucose 
[18F]FLT -3'-Deoxy-3'-[18F]-fluoro-L-thymidine 

CML  -Chronic Meylogenous Leukemia 
EGFR  -Epithelial growth factor receptor 
mTor  -mammalian Target of rapamycin 
NSCLC -Non-Small Cell Lung Cancer 
PDGFR -Platelet Derived Growth Factor Receptor 
PET  -Positron Emission Tomography 

ROC  -Receiver Operating Curve 
TK1  -Thymidine Kinase 1 
VEGF  -Vascular Endothelial Growth Factor 
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2. Summary (English) 
 

Molecular imaging allows for in vivo monitoring of important processes for tumor 

development, tumor growth and, finally, treatment response. The major goal of this 

study was to investigate different multi-modal imaging techniques for the assessment 

of different tumor specific molecular processes (Jacobs et al., 2005a; Ullrich et al., 

2008a; Ullrich et al., 2008b).  

In the first step, I investigated the use of [18F]FLT for the non-invasive in vivo 

assessment of tumor proliferation in different types of tumor models in men and mice. 

[18F]FLT reacts as a substrate of thymidinkinase 1 (TK1) that is highly expressed 

during S-phase of the cell cycle. Shields et al could show that the accumulation of 

[18F]FLT reflects cells entering the s-phase in vitro and in vivo (Shields et al., 1998). 

Here, we first sought to analyze the accuracy of [18F]FLT to detect tumor cell 

proliferation in patients with gliomas. We investigated the dynamic [18F]FLT 

distribution for the asessment of tumor cell proliferation in vivo (Ullrich et al., 2008a). 

In patients with newly diagnosed high grade gliomas we showed by the use of kinetic 

analyses that the phosphorylation rate of [18F]FLT by thymidine kinase 1 can be 

detected and, most importantly, is related to tumor cell proliferation as in vitro 

assessed by Ki-67 immunostaining. We concluded that [18F]FLT PET represents an 

accurate marker for the in vivo assessment of tumor cell proliferation in patients with 

gliomas.  

We next hypothesized that [18F]FLT PET might provide a sensitive marker for 

monitoring treatment induced G1 arrest in Non small cell lung cancer (NSCLC). 

Herewith, we analyzed [18F]FLT in comparison to [18F]FDG PET as a marker for 

monitoring anti-proliferative treatment response. In collaboration with the Cancer 

Genomic Group by Dr. Roman Thomas we investigated the potential of [18F]FLT to 

detect treatment response to specific Epithelial growth factor receptor (EGFR) 

inhibition in an EGFR-dependent NSCLC model. We used two EGFR-inhibition 

sensitive cell lines harboring the L858R mutation leading to oncogenic dependency 

on EGFR signaling. To validate the specificity of EGFR-inhibition we applied the 

EGFR inhibition resistant cell line H1975 harboring both the L858R and the T790M 

mutation. The T790M mutation prevents Erlotinib from binding to the intracellular 

domain of the EGFR. Only two days after initiation of treatment we observed a 

striking decrease in [18F]FLT uptake in the EGFR-mutant tumor xenograft due to 
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therapy induced G1 arrest. The specificity of this approach is confirmed by a 

complete lack of [18F]FLT response in the T790M EGFR-resistant xenografts. 

Moreover, the reduction of [18F]FLT uptake after 2 days translated into dramatic 

tumor shrinkage 6 days later (Ullrich et al., 2008c). Together, these data strongly 

suggest [18F]FLT PET as a robust marker to assess tumor proliferation, to detect 

induction of G1 arrest and, thus, to detect therapy response at a very early time 

point.  

Tumor growth requires new vessel formation as a critical step in tumor progression. 

In a recent study our group found a significant correlation between the expression of 

CD31 and  [11C]MET uptake in gliomas (Kracht et al., 2003). [11C]MET is transported 

via the L amino acid transporter that is expressed on endothelial cells suggesting this 

tracer for imaging angiogenesis. Based on these findings we further investigated the 

relationship between [11C]MET uptake and angiogenesis during tumor progression by 

comparing uptake ratios of [11C]MET and the expression of the vascular endothelial 

growth factor (VEGF) in patients with gliomas. Here, we again found a significant 

correlation between changes in VEGF expression and [11C]MET uptake (Ullrich et al., 

2009). Moreover, increase in [11C]MET uptake of more than 14,6 % was highly 

sensitive and specific to detect malignant progression in patients with gliomas.   

In summary, multi-modal imaging enables to assess tumor relevant processes, to 

monitor changes in tumor growth and, finally, to assess treatment response to agents 

targeting those processes.    
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3. Summary (German) 
 

In dieser Arbeit untersuchten wir das Potential unterschiedlicher Bildgebungsansätze 

der Positronen-Emissions-Tomographie zur Darstellung relevanter Prozesse für das 

Tumorwachstum mit dem Ziel diese Bildgebungsansätze zu nutzen, um 

Therapieansprechen nicht-invasiv bestimmen zu können.  

Hierbei untersuchten wir in einem ersten Ansatz die [18F]FLT Positronen-Emissions-

Tomographie PET zur nicht-invasiven Bestimmung von Tumorzellproliferation in 

Menschen und in Mäusen. Der Radiotracer [18F]FLT reagiert als Substrat der 

Thymidinkinase 1 (TK1). TK1 ist ein Enzym, das vermehrt während der S-Phase des 

Zellzyklus exprimiert wird. Die Mitarbeiter um Shields konnten in vitro als auch in vivo 

zeigen, dass [18F]FLT spezifisch in Zellen akkumuliert, die sich in der S-Phase des 

Zellzyklus befinden. Wir untersuchten das Potential der [18F]FLT PET um 

Tumorzellproliferation in Patienten mit glialen Gehirntumoren zu bestimmen. Mittels 

dynamischer [18F]FLT PET Messungen bestimmten wir die Kinetik von [18F]FLT im 

Tumor. Bei Patienten mit neu-diagnostizierten hochgradigen Gliomen versuchten wir 

anhand der Kinetik von [18F]FLT im Tumorgewebe die Phosphorylierungsrate von 

[18F]FLT durch die Thymidinkinase 1 zu detektieren um diese dann mit der 

Proliferationsrate aus den Tumorgewebeschnitte mittels Ki-67 zu vergleichen. Hierbei 

zeigten wir, dass wir (a) aus der [18F]FLT Kinetik die TK1 Aktivität bestimmen können 

und (b) dass die in vivo erhobenen Daten aus der [18F]FLT Kinetik mit der 

histologisch erhobenen Proliferationsrate korreliert. Wir schließen daraus, dass wir 

anhand der kinetischen Auswertung der [18F]FLT Verteilung die Proliferationsrate 

nicht-invasiv in Patienten mit hochgradigen Gliomen bestimmen können.        

Aufbauend auf diesen Ergebnissen untersuchten wir das Potential der [18F]FLT PET 

Bildgebung zur Darstellung von Therapieansprechen. In Zusammenarbeit mit der 

Gruppe von Dr. Roman Thomas verglichen wir die [18F]FLT PET mit der [18F]FDG 

PET zur Darstellung von Therapieansprechen von Erlotinib induzierter EGFR-

Inhibition in einem EGFR-abhängigen subkutanen NSCLC Modell in der Maus. Als 

NSCLC Modell verwendeten  wir 2 EGFR sensitive Zelllinien, bei denen eine L858R 

Mutation zu einer onkogenen Abhängigkeit vom EGFR Signalweg führt. Zur 

Validierung der Spezifität unseres Ansatzes verglichen wir diese beiden Zelllinien mit 

einer weiteren Zelllinie (H1975), die neben der L858R Mutation die T790M Mutation 

trägt. Die T790M Mutation führt hierbei zu einer Konformationsänderung in der ATP-
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Bindungstasche des EGFR, die eine Bindung von Erlotinib und somit die Erlotinib 

vermittelte EGFR Rezeptorinhibition verhindert. Bereits nach 2 Tagen Erlotinib-

Therapie beobachteten wir eine deutliche Abnahme der [18F]FLT Aufnahme im PET 

in den L858R mutierten Zellinien. In den  Xenotransplanaten mit der zusätzlichen 

T790M Mutation zeigte sch dagegen keine Veränderung in der [18F]FLT 

Anreicherung im PET. Die [18F]FLT PET ist somit ein geeignetes Verfahren um 

Therapieansprechen nach Erlotinib-Therapie frühzeitig zu detektieren.  

Die Ausbildung von tumoreigenen Gefäßen ist ein essentieller Schritt zum malignen 

Wachstum. In einer vorangegangenen Studie fanden wir eine signifikante Korrelation 

zwischen der Expression des Endothelzellmarkers CD31 und der Anreicherung von 

[11C]MET in der PET bei Patienten mit Gliomen (Kracht et al., 2003). Die zelluläre 

Aufnahme von [11C]MET wird über den LAT1 Transporter gesteuert, der 

insbesondere auf Endothelzellen exprimiert ist. Basierend auf diesen Ergebnissen 

untersuchten wir den Zusammenhang  zwischen der [11C]MET Aufnahme und der 

Expression des vaskulären Wachstumsfaktors VEGF in Patienten mit Gliomen. 

Hierbei zeigte sich ein signifikanter Zusammenhang zwischen der [11C]MET 

Aufnahme und der Expression VEGF. Desweiteren zeigte sich, dass eine Zunahme 

der [11C]MET Aufnahme über 14,6 % spezifisch und sensitiv für eine Malignisierung 

des Tumors war. Die [11C]MET PET ist somit ein vielversprechender Marker um nicht 

invasiv die Malignisierung von Gliomen zu detektieren (Ullrich et al., 2009).   
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5. Introduction 

 

Advances in molecular cell biology have dramatically strengthened our knowledge of 

molecular signaling pathways being relevant for tumor growth. However, despite 

improvements in cancer therapies based on these knowledge cancer still remains 

largely incurable and survival for cancer patients is often measured in months to few 

years. In the last decades substantial efforts have been made to identify the optimal 

target for each cancer type. As such, small molecular inhibitors as imatinib for 

chronic meylogenous leukemia (CML), trastuzumab for breast cancer with ERBB2 

amplification and Erlotinib for non small lung cancer (NSCLC) with mutated epithelial 

growth factor receptor (EGFR) have shown strong treatment efficacy (Baselga et al., 

1996; Daley et al., 1990; Lynch et al., 2004; Paez et al., 2004). Moreover, various 

cancer types present dependency on the PI3K and MAPK signaling pathway as 

highly promising treatment targets (Sos et al., 2009). However, the non-invasive 

identification of patients that profit best from the various molecular targeted treatment 

approaches still remains elusive.  

Molecular imaging enables to non-invasively monitor the effect of activation of these 

relevant signaling pathways and, most importantly, to assess treatment efficacy of 

these new molecular targeted compounds. To date the evaluation of responses to 

cancer therapy are mainly based on volumetric and morphological criteria, in 

particular relative tumour sizes before and after treatment. These criteria were 

defined more than 25 years ago as the WHO (World Health Organization) and 

RECIST (Response Evaluation Criteria in Solid Tumors) criteria, respectively 

(Macdonald et al., 1990; Therasse et al., 2000). Here, Macdonald et al. introduced 

the 2-dimensional (2D) WHO criteria for the diagnosis of brain tumours. For solid 

tumours, Therasse et al determined the WHO criteria in 2000 by uni-dimensional 

measurements of tumor size known as  RECIST criteria. RECIST defines response 

to therapy by a decrease of a 30% in the largest dimension of the tumour (Therasse 

et al., 2000). However, criteria based on morphological changes are rather limited in 

their ability to assess early effects of therapy since tumor shrinkage occurs at a 

rather late time point. Thus, the development of novel targeted cancer therapies 

would strongly benefit from non-invasive approaches providing target-specific 

molecular information by functional imaging methods. This would not only allow 
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patient stratification and selection for molecular-targeted treatment but also provide 

early assessment of treatment response before any reduction in tumour volume is 

visible.  

Molecular imaging (MI) implies the use of imaging technologies by applying specific 

molecular probes. MI aims at the non-invasive characterisation of the dynamics of 

disease-specific molecular changes in vivo. To date, Molecular imaging modalities 

can be divided in two groups: those primarily providing structural information like CT, 

MRI or ultrasound; and those primarily aiming at functional or molecular information, 

like PET, SPECT or optical imaging. Molecular imaging usually exploits specific 

molecular probes as the source of imaging contrast to report on the underlying 

biochemistry and cell biology associated with disease progression and response to 

therapy. Functional imaging techniques as PET and SPECT provide a very high 

sensitivity that allows for the detection of even very low levels of specific tracer 

accumulation in the picomolar range. Moreover, these methods enable in vivo 

imaging with unlimited depth penetration, excellent signal-to-background rations and 

a broad range of clinically applicable probes. Though, the major limitation of 

radionuclide imaging is its inherently limited spatial resolution (currently 3-7 mm in 

clinical application, about 1.3 mm in experimental settings). Furthermore, patients are 

exposed to relevant doses of radiation that limits the number of examinations and the 

single dose of the tracer. Finally, imaging centers need to have access to a cyclotron 

and radiochemistry facility. In contrast, MR imaging techniques provide a good depth 

penetration and a very high spatial resolution. However, temporal resolution is low 

and the sensitivity to detect molecular imaging probes remains reduced.  

Positron-Emission-Tomographie (PET) represents a highly sensitive non-invasive 

method to detect molecular processes with a very high resolution. PET enables for 

the in vivo assessment of metabolic and molecular processes with a high sensitivity. 

In patients with tumors, PET provides physiological and biochemical information on 

the molecular level to characterize the tumor´s extent, its proliferative activity, 

metabolism and its expression of various tumor specific receptor (Figure 1). The 

accumulation of each tracer reflects the activity of its transporter via the cell 

membrane and the activity of specific enzymes by which these tracers are 

metabolized and trapped.  
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Figure 1: Parameters of interest in the noninvasive diagnosis of brain tumors. 

Alteration of the blood-brain barrier and the extent of peritumoral edema are detected 

by MRI. Signs of increased cell proliferation can be observed by multitracer PET 

imaging using [18F]FDG, [11C]MET, and [18F]FLT as specific tracers for glucose 

consumption, amino acid transport, and DNA synthesis, respectively. Secondary 

phenomena, such as inactivation of ipsilateral cortical cerebral glucose metabolism, 

may be observed ([18F]FDG), and are of prognostic relevance. (Reproduced with 

permission from Jacobs A. PET in Gliomas. Stuttgart: Thieme; 2003:72–76.74) 

 

The most commonly used PET tracer in the diagnosis of tumors is 2-[18F]fluoro-2-

deoxy-D-glucose ([18F]FDG). [18F]FDG reacts as an analogue of glucose and, thus, 

its accumulation reflect cellular glucose metabolism. It is well known that tumours 

mainly rely on anaerobic glycolysis during their energy consumption. Due to the 

limited efficacy of anaerobic glycolysis and their high demand of energy cancer cells 

frequently present increased glucose metabolism. This is accompanied by an 

increased activity of the GLUT1 transporter and high hexokinase activity (Zhao et al., 

2005). In contrast to glucose, once [18F]FDG has entered the cell, it is 

phosphorylated but it is not further metabolised. This results into an intracellular 

trapping of [18F]FDG in the cell enabling accurate quantification of hexokinase activity 

in vivo.  

 [18F]FDG PET has been approved by the Food and Drug Administration (FDA) for 

the assessment of abnormal glucose metabolism in patients with cancer. Moreover, 

in 1999 the EORTC-PET Group had established response assessment guidelines for 

[18F]FDG PET (Young et al., 1999). However, the diagnostic specificity of [18F]FDG 

PET remains limited due to its usually high background activity in healthy tissue. E.g. 
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the brain shows high cortical [18F]FDG uptake high glucose metabolism (Phelps and 

Mazziotta, 1985). Furthermore, high physiological [18F]FDG uptake is also seen in 

tonsils, salivary glands, reactive lymph nodes, liver, gastrointestinal tract and testis, 

as well as muscles. In addition, inflammatory cells as macrophages present high 

[18F]FDG uptake (Buck et al., 2003). Thus, tumoral inflammatory response might 

mimic high tumor cell [18F]FDG uptake. As anti-cancer treatment might induce 

inflammatory response within the tumor [18F]FDG PET might present high [18F]FDG 

uptake due to invasion of macrophages and not due to high tumor cell metabolism 

(Reinhardt et al., 1997). For these reasons, [18F]FDG PET seems not to be a specific 

marker for the evaluation of novel therapies in cancer. 

Beside glucose metabolism the synthesis of proteins is one of the essential 

processes for cell proliferation. Due to the proliferation rate of cancer cells, the 

process of protein synthesis and, thus, amino acid transport is increased in tumor 

cells (Jager et al., 2005). Thus, amino acid metabolism could provide useful 

information with regard to tumour metabolism. Nearly all amino acids and slightly 

modified variants have been radiolabelled, but only a few have clinical use. Among 

these few are [11C]methionine (MET), [18F]fluorethyl-tyrosine (FET) and [11C]tyrosine 

(TYR) for PET imaging, and [123I]iodomethyl-tyrosine (IMT) for SPECT imaging 

(Jager et al., 2001). From these tracers, only [11C]TYR uptake represents both 

transport and protein synthesis, whereas the remaining tracers represent increased 

transport into tumour cells. In comparison with [18F]FDG PET imaging is amino acid 

imaging less influenced by inflammation. In the last years, radiolabelled methionine 

and thymidine compounds have been shown to be more specific tracers in tumour 

detection, delineation and staging due to their relatively low uptake in healthy tissue.  

Nucleic acids have been radiolabelled as PET tracers for in vivo imaging of cellular 

proliferation. Today, [3H]thymidine incorporation is widely used for assessing 

proliferation in vitro (Kelloff et al., 2005).  In PET, Thymidine labelled with positron-

emitting nuclides enables in vivo imaging of proliferating cells. Thymidine labelled 

with [11C] in the pyrimidine ring provides the authentic substrate of the thymidine 

kinase 1 and is incorporated into DNA.  

TK1 is a cytosolic enzyme that is expressed during the S phase of the cell cycle. 

Thus, TK1 expression is specifically increased in dividing cells and decreased in non-

dividing cells (Vesselle et al., 2002). Validated kinetic models of [11C]thymidine have 

been used to image cell proliferation in human tumours and response to 
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chemotherapy that directed at the de novo DNA synthesis pathway (Wells et al., 

2003). 

In analogy, the deoxyribose group of thymidine can also be labelled with [18F] at the 

3’-deoxy position resulting in 3’-deoxy-3’-fluorothymidine ([18F]FLT) (Shields et al., 

1998). [18F]FLT is transported via specific nucleoside transporters from the blood 

pool into the cells. Within the cells [18F]FLT reacts as an analogue substrate of 

thymidine which is phosphorylated by the thymidine kinase 1 (TK1) (see Figure 2). 
Several clinical studies revealed a significant correlation between [18F]FLT uptake 

and the in vitro proliferation marker Ki-67 in various tumor types (Buck et al., 2003; 

Wagner et al., 2003). In addition, in vitro and animal studies comparing [18F]FDG and 

[18F]FLT have repeatedly confirmed that [18F]FLT uptake in inflammatory tissue is 

considerably less than [18F]FDG, which is advantageous. However, [18F]FLT uptake 

in tumours appears to be lower than [18F]FDG, as demonstrated in many types of 

cancer (Been et al., 2004). [18F]FLT PET, therefore, seems to be less suitable for 

staging of cancer and currently most research focuses on response evaluation as 

[18F]FLT has great potential utility in following response to therapy. A tumour cell that 

responds to anti-proliferative treatment (as EGFR targeting compounds) may 

continue to metabolize [18F]FDG to maintain ion gradients or to provide energy for the 

P-glycoprotein (P-gp) pump function or protein biosynthesis; however, it will not 

synthesize new DNA, thus will not accumulate [18F]FLT. A decrease in DNA 

synthesis is likely following either cytostatic or cytotoxic therapy, highlighting the 

general utility of [18F]FLT PET for detecting response (Kelloff et al., 2005). Clinical 

studies might benefit from using rigorously quantitative methods to distinguish 

thymidine delivery and transport from thymidine kinase enzyme activity (Muzi et al., 

2005). In a recent study, we demonstrated that [18F]FLT uptake (i) enables to 

differentiate between low grade and high grade tumours and (ii) is mainly due to 

increased transport and to a lower extent to phosphorylation by TK1 in gliomas 

(Jacobs et al., 2005b).  
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Figure 2: Dynamic distribution of [18F]FLT from the blood pool into the cell. 
[18F]FLT behaves in a similar manner as [11C]Thymidine. Its uptake is regulated by 

the nucleoside transporter on the cell membrane reflected by the rate of transport K1 

into the cell and k2 from the cell back to the plasma (/min). Within the cell TK1 

phosphorylates [18F]FLT to [18F]FLT monophosphate, diphopsphate and triphosphate 

determined by the rate konstant k3 (/min). The rate constant k4 (/min) reflects the 

rate of dephosporylation back to [18F]FLT. Of note, in contrast to thymidine only a 

very small proportion of [18F]FLT is incorporated into the DNA (modified from (Krohn 

et al., 2005)).   

 

 

Amino acids tracers such as [11C]methyl-[11C]-L-[11C]Methionine ([11C]MET), [11C]-

tyrosine, [18F]fluoro-tyrosine and O-(2-[18F]-fluoroethyl)-L-tyrosine have been 

investigated for the diagnosis of tumors. The increased [11C]MET uptake is due to 

increased transport mediated by type L-amino acid transporters and this increased 

transport seems to be directly regulated by tumour growth factors that effects the 

mTor complex (Miyagawa et al., 1998). [11C]MET PET detects parts of brain tumours 

as well as infiltrating areas with high sensitivity (87%) and specificity (89%) by an 

uptake threshold of 1.3 fold (Kracht et al., 2004). Furthermore, [11C]MET uptake 

correlates with the tumor proliferative activity (Sato et al., 1999) and enables to 

differentiate between WHO II and WHO grade III/IV gliomas (Sasaki et al., 1998). By 

using a threshold of 1.5 [11C]MET PET permits the differentiation between non-

tumoural lesions and gliomas with a sensitivity of 79 % (Herholz et al., 1998). 
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[11C]MET also enables to differentiate recurrent tumour from radiation necrosis while 

the tracer accumulation is nearly independent from disruption of the BBB or 

macrophage activity (Thiel et al., 2000). Moreover, [11C]MET PET detects parts of 

brain tumours as well as infiltrating areas with high sensitivity and specificity (Galldiks 

et al., 2009; Kracht et al., 2004). Interestingly, in one of our recent studies we found 

that [11C]MET uptake correlates with microvessel density (Kracht et al., 2003). This 

study indicated that [11C]MET uptake might be regulated by angiogenesis promoting 

factors (see Figure 3). 
 

 

 

 

                 
 

 

Figure 3: [11C]MET uptake correlates with microvessel density. In A a patient 

with a low grade astrocytoma (grade II) presenting low microvessel counts and 

corresponding low [11C]MET uptake.   In contrast in B a glioblastoma with high 

[11C]MET uptake and high number of red-stained microvessels in the tumor specimen 

(Kracht et al., 2003). 
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In summary, PET allows for the in vivo assessment of tumor specific processes 

enabling monitoring therapy response of therapy approaches targeting these 

processes. Most importantly, PET is already in a wide clinical use that preclinical 

findings can directly be translated into clinical trials. In this thesis we aimed to 

investigate non-invasive multi-modal PET modalities to characterize tumor specific 

processes and to finally establish non-invasive PET marker for imaging guided 

treatment response.  
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6. Present investigation – “Multi-modal imaging of tumor growth driving 
processes and monitoring molecular targeted treatment by the use of 
Positron-Emission-Tomography” 
 

6.1  Glioma proliferation as assessed by 3'-fluoro-3'-deoxy-L-

thymidine positron emission tomography in patients with newly diagnosed 

high-grade glioma. 

 

Inhibition of tumor cell proliferation is one of the most relevant targets in the 

treatment of cancer. Thus, a method that enables to monitor in vivo tumor cell 

proliferation is highly required for the evaluation of treatment response in patients 

with cancer. In the present investigation we aimed to investigate the potentials of 

[18F]FLT PET to assess tumor cell proliferation in patients with brain tumors. We 

tested the [18F]FLT imaged derived data in comparison to data from the 

corresponding [11C]MET PET for their potential to assess tumor cell proliferation in 

vivo. Furthermore, we compared the in vivo assessed data with 

immunohistochemistry from PET guided stereotactic biopsies.  

 
Material and Methods 
 
Patients  
In this study 13 patients with newly diagnosed primary brain tumors (9 male, 4 

female, age: median 64.0 years, range: 35 to 71 years) were included. All patients 

gave their written informed consent on multimodal PET and MR imaging. Patients 

received T1-weighted MRI before PET measurements. PET and MRI measurements 

were performed within one week. After MRI/PET scans except for one all gliomas 

were confirmed by histology and classified according to World Health Organization 

(WHO) grade (stereotactic biopsy, n=7; resection, n=5). Five patients were classified 

as astrocytoma grade III, one as oligoastrocytoma grade III and 6 as glioblastoma 

(grade IV).  
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PET 
PET imaging was performed on an ECAT EXACT (CTI/Siemens; in-plane full width at 

half maximum, 6 mm; slice thickness, 3.375 mm; axial field of view, 162 mm) and an 

ECAT EXACT HR (CTI/Siemens; in-plane full width at half maximum, 3.6 mm, slice 

thickness, 3.125 mm; axial field of view, 150 mm). Ten minute transmission scans 

with rotating germanium-68/gallium-68 sources were performed for attenuation 

correction of the PET data.  

[11C]MET and [18F]FLT syntheses were produced in house with a radiolabeling yield 

of 10 % ± 1.5% and a radiochemical purity of higher than 98%. The mean injected 

dose of [18F]FLT was 321.9 +/- 85.1 MBq (range 111-370 MBq). From all patients 

arterialized blood samples were taken by a peripheral intravenous catheter. [18F]FLT 

PET images were acquired in the following dynamic sequence: 6 x 10 s, 3 x 20 s, 2 x 

30 s, 2 x 60 s, 2 x 150 s and 16 x 300 s. 

Tracer accumulation was recorded in a three dimensional mode over 60 min in 47 

transaxial slices of the entire brain. For coregistration to the anatomic data, T1, T2 

and contrast enhanced MRI scans were performed in all patients on a 1.5 T system 

(Gyroscan Intera, Philips Medical Systems). MR images were coregistrated to 

summed PET images by the use of the in-house VINCI software with an accuracy of 

2 mm or better. 

We used in-house VINCI software for data analysis. Herewith, a region-of-interest 

(ROI) approach to determine the maximal tracer uptake in [18F]FLT and [11C]MET 

PET of the summed images. The circular ROI with a diameter of 8 mm was placed in 

the tumor region with the highest tracer uptake. To calculate the uptake ratio a 

reference ROI was placed on the contralateral unaffected tissue. Tracer uptake was 

calculated as the ratio between tumor and healthy tissue. 

The time activity curves were determined in the part of the tumor with the highest 

uptake. Three consecutive brain slices were included in the calculation. Kinetic 

analysis was performed by using PMOD biomedical image quantification and kinetic 

modeling software (PMOD Technologies Ltd.). 

 
Histological assessment of proliferation by immunostaining Ki-67 
A representative formalin-fixed, paraffin-embedded section from each specimen was 

immunohistochemically stained with MIB-1 (Ki-67) antibody by use of the Avidin-

Biotin-Peroxidase-Complex (ABC) method and the DCS Detection-Kit with DAB and 
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H2O2 (DCS, Hamburg, Germany). All cells with nuclear staining of any intensity were 

regarded as positive. Proliferative activity was defined as the percentage of nuclei 

stained with MIB-1 per total number of nuclei in the biopsy. The fraction of labelled 

tumor cells, defined as the Ki-67 labeling index (Ki-67 LI), was assessed over 4 

microscopic high power fields (0.16mm2), that contained the highest average fraction 

of labelled cells. The Ki-67 LI was determined by scoring the fraction of cells stained 

with the MIB-1 antibody in 5% intervals. 

 
Statistical Analysis 
Parametric statistical tests were used to determine significant correlations between 

the parameters (Pearson correlation analysis). Correlations were considered 

significant at a level for p<0.05. Statistical analysis were performed by SPSS 

software (Release 11.0.1. SPSS Inc., Chicago. IL. USA). 

 
Results 
 
Kinetic analysis of in vivo [18F]FLT distribution: from the blood into the cell 
[18F]FLT is a radiolabelled analogue of thymidine. Thymidine is incorporated into 

DNA during DNA replication. The pathway of thymidine is determined by the 

transport from the blood into the cell via nucleoside transporter (K1), out of the cells 

into the blood (k2), its phosphorylation to mono-/di-/tri-phosphate (k3) and its 

dephosphorylation (k4) (see Figure 2). In contrast to thymidine [18F]FLT is only to a 

very small proportion incorporated into the DNA. However, the rate of cell 

proliferation (P) – that is proportional to the rate of incorporation of thymidine into the 

DNA – can be expressed in terms of the of the thymidine concentration in blood 

(ThB) by 
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Since KTh4 is small compared to KDNA this expression is independent from kDNA. 

Since the other reactions are the same as in the thymidine pathway we replace the 

thymidine constants by their fluorothymidine analogue leading to 

                                        
 

 

Thus, the rate of cell proliferation is proportional to the metabolic rate constant KI and 

the thymidine level in the blood.   

 

Contribution of the rate of transport K1 and the rate of phosphorylation to 
[18F]FLT uptake in gliomas 
In a first step we investigated the contribution of kinetics of [18F]FLT to its final 

uptake. We found that the rate constant for transport of [18F]FLT K1 showed a 

weaker correlation to [18F]FLT uptake than the phosphorylation constant k3 (see 
Figure 4). This indicates that in high grade gliomas [18F]FLT uptake is rather due to 

the phosphorylation rate of [18F]FLT by thymidinkinase 1 than to the activity of 

nucleoside transporter reflecting the high proliferation rate of high grade gliomas. Of 

note, the calculated rate of proliferation KI (see above) showed the strongest 

correlation to [18F]FLT uptake.   
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Figure 4: Relationship between the ratio of [18F]FLT uptake and its 
corresponding kinetic constants. The transport rate K1 showed a weaker 

correlation to [18F]FLT uptake than the phosphorylation rate k3 (K1: r=0.52, p=0.064; 

k3: r=0.6, p=0.029).  

 

 

 

 

 

Comparison of proliferation activity as assessed in vivo by PET with the in 
vitro proliferation marker Ki-67 
In order to proof which kinetic process of [18F]FLT best assesses tumor cell 

proliferation we compared the image derived data with the in vitro proliferation 

marker Ki-67. Herewith, we used tumor probes that were obtained from PET imaged 

guided biopsies or resection. This allowed validating the PET derived findings head-

to-head to immunohistochemistry. Here, we found that the phosphorylation rate of 

[18F]FLT and the rate of tumor cell proliferation as assessed by KI strongly correlate 

to the expression of Ki-67 (see Figure 5). Of note, neither [18F]FLT nor [11C]MET 

uptake ratios correlate to Ki-67 expression.     
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Figure 5: Correlations between the in vivo derived kinetic constants of [18F]FLT 

uptake and its corresponding histological Ki-67 staining. There are significant 

correlations between the kinetic constant k3 (r=0.88, p<0.001), KI (r=0.79, p=0.004) 

and the proliferation index of Ki-67.  
 
 
 
 
 
Concluding remarks 
This study demonstrates that [18F]FLT PET enables the non-invasive assessment of 

tumor cell proliferation in patients with high grade gliomas. Moreover, we show that 

kinetic analysis of [18F]FLT is required to assess tumor cell proliferation since usual 

[18F]FLT uptake ratios are not related to tumor cell proliferation as assessed by Ki-67 

staining in vitro. These findings strongly encourage to further investigate the potential 

of [18F]FLT kinetic analysis for the early prediction of clinical outcome and response 

to therapy in patients with gliomas. Moreover, we showed that blood curves can be 

non-invasively calculated out of the imaged derived data, thus avoiding invasive 

collection of arterial blood samples (Backes et al., 2009). Our findings indicate that 

[18F]FLT PET might represent a highly sensitive method for the non-invasive 

assessment of therapy response of individual molecular targeted approaches. 
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6.2  Early detection of erlotinib treatment response in NSCLC by 3'-

Deoxy-3'-[18F]-fluoro-L-thymidine ([18F]FLT) positron emission tomography 

(PET). 

 

The epidermal growth factor receptor (EGFR) signalling pathway represents a 

promising molecular target in the treatment of patients with advanced NSCLC. 

Inhibition of EGFR has shown clinical success in patients with advanced non-small 

cell lung cancer (NSCLC). Somatic mutations of EGFR were found in lung 

adenocarcinoma that lead to exquisite dependency on EGFR signaling; thus patients 

with EGFR-mutant tumors are at high chance of response to EGFR inhibitors (Lynch 

et al., 2004; Paez et al., 2004). However, imaging approaches affording early 

identification of tumor response in EGFR-dependent carcinomas have so far been 

lacking. In this study, we investigated head-to-head [18F]FDG to [18F]FLT PET for 

their potentials to non-invasively assess response to the EGFR tyrosine kinase 

inhibitor erlotinib in an EGFR dependent lung cancer model.  

 

Material and Methods 
 

Cell cultures 
We used the EGFR-tyrosine kinase inhibitor (TKI) sensitive adenocarcinoma cell 

lines HCC827, PC9 and the resistant cell line H1975. All cell lines were maintained in 

RPMI 1640 supplemented with 10% heat inactivated fetal bovine serum (FBS, Roche 

Diagnostics, Mannheim, Germany), 1% penicillin and 1 % streptomycin (P/S, Life 

Technologies) at 37 0C in a 5% CO2/95% air atmosphere.  

 

Western blot analysis  

Cells were serum-starved for 24h in the presence or absence of erlotinib. After 

preparation of cell lysates phosphorylation level of the proteins were determined 

using antibodies for total EGFR, phospho-EGFR (pEGFR) (both purchased from 

Biosource), total Akt and phospho-Akt (pAKT) (both obtained from Cell Signaling 

Technology).  
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Apoptosis assay 
Cells were plated in 6-well plates and incubated for 24h at 5% CO2 and 37°. Cells 

were then  treated with 0.5 µM erlotinib for 12h, 24h, 36h, 48h, 72h, and 96h and 

were finally harvested after trypsinization. Then cells were washed with PBS, 

resuspended in Annexin-V binding buffer and finally stained with Annexin-V-FITC 

and PI. FACS analysis was performed on a FACS Canto Flow Cytometer (BD 

Biosciences, Germany) and results were finally calculated using FACS Diva 

Software.  

 

Cell cycle analysis  
Cells were fixed and then treated with RNase A (500 µg/ml). Following resuspension 

of the cells in propidium iodide and in sodium citrate cells were analysed for DNA 

content by flow cytometry.  

 

Xenograft model  
All animal procedures were in accordance with the German Laws for Animal 

Protection and were approved by the local animal committee and the 

Bezirksregierung Köln. Tumors were generated by s. c. injecting 5 x 106 tumor cells 

into nu/nu athymic male mice. When tumors had reached a size of 100 mm3, animals 

were randomized into two groups, control (vehicle) and erlotinib-treated mice. 

Erlotinib (Tarceva) was dosed at 6% Captisol (CyDex, Inc., Lenexa, KS) in water for 

solution over night. All controls were dosed with the same volume of vehicle. After 

PET measurement mice were treated daily by oral gavage of 50mg/kg Tarceva. 

Tumor size was monitored every two days by measuring perpendicular diameters. 

Tumor volumes were calculated from the determination of the largest diameter and 

its perpendicular according to the equation [tumor volume = a x (b2/2)].     

 

PET imaging  

Tumor bearing mice were investigated using a R4 microPET scanner (Concord 

Microsystems, Inc., Knoxville, TN). [18F]FLT and [18F]FDG synthesis were produced 

in house with a radiolabeling yield of 10 % ± 1.5% and a radiochemical purity of 

higher than 98%. No-carrier-added [18F]FLT was administered i.v. (tail vein) into 

experimental animals with a dose of 200 µCi/mouse. No-carrier-added [18F]FDG was 

injected intraperitoneally (i.p.) with a dose of 200 µCi. Since the biodistribution of 
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[18F]FDG is comparable for i.v. and i.p. injections after 60min and i.p. injections allow 

for a more accurate dosage of tracer injection, we decided to use intraperitoneal 

injections for [18F]FDG. All PET images were performed 60 min after injection. Data 

evaluation was based on a volume of interest (VOI) analysis of the entire tumor by 

the use of the in-house VINCI software. For data analysis I assessed the maximal 

voxel radioactivity within the tumors. I calculated the uptake ratio as described above 

with the mediastinum as reference. Data were decay corrected and divided by the 

total injected dose to represent percentage injected dose per gram (%ID/g).   

 

Immunohistochemistry and TUNEL detection  
After the last PET measurements animals were sacrificed and s.c. tumors were 

extracted. After fixation (4% paraformaldehyde, 40C, 24h; 30% sucrose, 40C, 24h), 

tumors were embedded in tissue freezing medium (Jung, Nussloch, Germany) and 

cut in 10-µm frozen sections. H&E staining on the tissue was done according to 

standard protocols. Tumor proliferation was assessed using an anti-Ki-67 monoclonal 

antibody (1:200 dilution, KI6811C06, DCS, Hamburg, Germany), and the percentage 

of specifically stained cancer cells for Ki-67 was calculated. The number of Ki-67 

positive nuclei was determined as percentage of Ki-67 stained nuclei per total 

number of nuclei in three representative tumor areas ((F1+F2+F3)/3 (%)) that 

contained the highest average fraction of labelled cells. To quantify the number of 

apoptotic positive cells TUNEL was performed on cryostat tumor slices with the 

DeadEndTM TUNEL system (Promega). Cells were fixed in 4%PFA. Cells were then 

permeablized  with 100ml Proteinase K (20µg/ml). The average numbers of TUNEL 

positive were counted in three randomly selected fields in two tumor samples from 

each cell line.  

 
Statistical analysis  
Wilcoxon test was performed using SPSS software (release 11.0.1 SPSS, Inc., 

Chicago. IL.USA), statistical significance was set at p<0.05.  
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Results 
 

In vitro detection of EGFR oncogene dependancy  
As a model of EGFR-dependent NSCLC, we employed the cell lines HCC827 and 

PC9. Both cell lines carry mutated as well as amplified EGFR alleles and are highly 

sensitive to the EGFR TKI erlotinib in the low nanomolar range (Moyer et al., 1997). 

As control for the specificity of drug action we used the cell line H1975 expressing 

both the L858R mutation of EGFR as well as the T790M EGFR resistance mutation. 

After 24h of treatment with even low doses of erlotinib, we found that the EGFR-

sensitive PC9 and the HCC827 cells were arrested in the G1 phase of the cell cycle 

following erlotinib treatment with a concomitant decrease of cells in the S phase of 

the cell cycle (Figure 6A). Subsequent to the cell cycle arrest the sensitive cell lines 

PC9 and HCC827 underwent massive apoptotic cell death 36h after onset of 

treatment (Figure 6B). This was paralleled by reduction in p-EGFR and p-Akt levels 

in both cell lines (Figure 6A). In contrast, the T790M-mutant cell line H1975 showed 

no cell cycle arrest (Figure 6A), no loss of EGFR or Akt phosphorylation (Figure 6A) 
and did not exhibit any signs of apoptotic cell death (Figure 6B), confirming that the 

observed phenotypes were due to on-target effects of the drug. 
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Figure 6: Erlotinib treatment induces down-regulation of EGFR/EGFR-coupled 

signaling pathways and cell cycle arrest with subsequent induction of 

apoptosis in EGFR sensitive tumor cells. The cell lines HCC827 and PC9 and the 

T790M cell line H1975 were treated with the indicated doses of erlotinib for 24 hours. 

Whole-cell lysates were subjected to immunoblotting with the indicated antibodies 

(A). PC9, HCC827 and H1975 cells were treated with erlotinib (0.5 µM) for 24h, 48h 

and 72h and analyzed by flow cytometry. Results are shown for the G1 and S phases 

of the cell cycle (A). Apoptotic effects of erlotinib on EGFR-sensitive cell lines in 

comparison to the T790M mutant H1975 (B). Annexin V FACS was performed 12h, 

24h, 36h, 48h, 72h and 96h after 0.5 µM erlotinib treatment. Images show Annexin V-

positive cells after 48h in the different cell lines.  

 

 

 

Imaging EGFR inhibition in vivo 
In a next step we investigated the feasibility of [18F]FLT and [18F]FDG PET to 

measure response to erlotinib treatment in a murine tumor xenograft model. 

HCC827, PC9 and H1975 cell lines were transplanted subcutaneously onto nude 

mice. After oral treatment with either vehicle or erlotinib (50 mg/kg), mice were 

imaged by [18F]FLT or [18F]FDG PET. After only 48h of erlotinib treatment we 

observed a striking reduction of [18F]FLT uptake in the sensitive cell lines HCC827 

and PC9. By contrast, no changes in [18F]FLT uptake were observed in mice bearing 

the resistant cell line H1975 or in the control group treated with the vehicle alone 

(Figure 7A). After four days of erlotinib treatment [18F]FLT uptake remained 

decreased in HCC827 and PC9 tumors whereas we observed no decrease in 

[18F]FLT uptake in the H1975 tumor xenografts. Thus, the reduction in [18F]FLT 

uptake reflects inhibition of cellular proliferation due to induction of a G1 arrest in 

EGFR-dependent tumors. 

We observed a slight decrease in [18F]FDG uptake after 4 days of erlotinib treatment 

only in the HCC827 but not in the PC9 xenograft. However, this reduction was far 

less pronounced in comparison to the results observed with [18F]FLT (Figure 7B). 
Thus, in our analysis [18F]FLT PET appeared to be superior in detecting response of 

EGFR-mutant tumors to EGFR inhibition than [18F]FDG PET. 
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Figure 7: [18F]FLT PET predicts response to erlotinib therapy as early as 2 days 

after initiation of treatment. In (A) a representative [18F]FLT PET image of a mouse 

bearing the sensitive PC9, HCC827 and the resistant H1975 xenografts before 

beginning of treatment, 48h and 96h after daily erlotinib treatment (Tarceva, 

50mg/kg). (B) Quantitative analysis of changes in [18F]FLT and [18F]FDG uptake 

ratios after 48h and 96h daily erlotinib treatment vs. vehicle only as control.  

 
 
In order to determine whether our in vitro observation of apoptosis following cell cycle 

arrest was reflected in vivo we analyzed tumor specimens extracted after 4 days of 

erlotinib treatment for the presence of apoptotic cells by TUNEL staining. This 

analysis revealed the presence of apoptotic cells in the sensitive cell lines but not in 

the T790M-carrying tumors (Figure 8A). Most importantly, the appearance of 

apoptotic cells in the sensitive cells was reflected in dramatic tumor shrinkage 

starting at day 6 of treatment (Figure 8C). Together, these findings show that that a 

decrease in [18F]FLT PET is not only reflective of tumor cells arrested in G1 but also 

predicts induction of apoptotic cell death and tumor response in EGFR-addicted 

tumors treated with erlotinib. 
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Figure 8: Immunostaining of the frozen tissue samples for Ki-67 and TUNEL, 

relation of [18F]FLT and [18F]FDG uptake to Ki-67 expression, and measurement 

of tumor volume shrinkage. (A) Frozen tissue sections were stained for Ki-67 and 

TUNEL (magnification 10x). Columns, average number of TUNEL positive cells 

(green cells) were counted in three randomly selected field (area 0.625mm2) in two 

tumor samples for each cell line. The Ki-67 labeling index as assessed by the 

percentage of nuclei stained with MIB-1 per total number of nuclei was compared to 

uptake ratios of [18F]FLT and [18F]FDG (B). Effects of daily Erlotinib treatment on the 

tumor size of the xenografts for the assessment of tumor response (C).  
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Concluding remarks 
 
In this study we could demonstrate that [18F]FLT PET is not only an accurate tool to 

assess tumor cell proliferation in vivo but most importantly a highly sensitive marker 

to detect treatment response of molecular targeted compounds. Since the selection 

of patients that benefit from molecular targeted treatment remains crucial [18F]FLT 

PET might enable to detect treatment response non-invasively and to an early time 

point. This shall reduce the risk of treatment induced side effects and to enable to 

offer patients the best individual treatment strategy. Of note, these results built the 

basis for a clinical study at the University hospital of Cologne that is about to be 

finished. Here, Zander et al could demonstrate that as seen in the mouse model 

[18F]FLT enables detecting patients that response to Erlotinib treatment as early as 7 

days after initiation of the treatment (Zander et al, in preparation).   
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6.3 [11C]Methionine positron emission tomography as diagnostic 

marker for the malignant progression and the formation of 

angiogenesis in patients with gliomas. 

 

Gliomas are the most frequent brain tumors. The decision for the specific tumor 

treatment in gliomas is mainly dependent on the grading according to WHO 

classification. Thus, the early detection of malignant transformation in gliomas from 

WHO grade II to grade III or from grade III to grade IV is of high clinical importance. 

However, malignant progression in gliomas is unpredictable and in many cases not 

clearly detectable on the basis of clinical symptoms and/or MRI findings, alone. In 

order to decipher the grading, tissue samples have to be obtained by invasive 

methods as stereotactical biospsy or surgery that are accompanied by high risks for 

the patients. In previous studies it has been shown that [11C]MET uptake in gliomas 

is correlated to the histological grading. However, high inter-individual variability of 

[11C]MET uptake in gliomas does not allow for a non-invasive grading. The purpose 

of this study was to investigate the potential of intra-individual changes in [11C]MET 

metabolism in PET to non-invasively detect malignant progression in patients with 

gliomas.   

 
 
Patients, Material and Methods 
 
Patients  
In this retrospective study, 24 patients with primary supratentorial cerebral gliomas 

were included. We investigated 14 men and 10 women after having given their 

written informed consent (mean age 40, SD 11.6 years). All patients that underwent 

repeat [11C]MET PET imaging and had corresponding neuropathological diagnosis 

during the time period from 1993 till 2006 were included in the study. The [11C]MET 

PET investigations were part of the routine preoperative diagnostic procedure and 

used for guidance of the biopsy from the tumor part with highest [11C]MET uptake. 

Repeated PET investigations with the corresponding biopsy were performed when 

there were suspicious findings for tumor progression on MRI/CT and/or suggestive 

clinical symptoms. The time interval between PET measurements differed from 1 

month to 6 years. Information on patients included age, gender, presence of contrast 
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enhancement on magnetic resonance imaging (MRI) or computerized tomography 

(CT) scan, and extent of surgical resection (13 stereotactic biopsies, 23 subtotal 

resections and 21 macroscopic total resections). The tumors were classified 

according to the World Health Organisation classification of neuroepithelial tumors 

(WHO). In the initial diagnosis tumor types were distributed as follows: astrocytoma 

WHO grade II (n=7), anaplastic astrocytoma WHO grade III (n=4), oligoastrocytoma 

WHO grade II (n=7), anaplastic oligoastrocytoma WHO grade III (n=2), 

oligodendroglioma WHO grade II (n=1), anaplastic oligodendroglioma WHO grade III 

(n=2) and glioblastoma WHO grade IV (n=1). 

 
PET 
For PET imaging we used an ECAT EXACT (CTI/Siemens; in plane full width at half 

maximum, 6mm; slice thickness, 3.375; axial field of view, 162 mm) and an ECAT 

EXACT HR (CTI/Siemens, in plane full width at half maximum, 3.6 mm; slice 

thickness 3.125 mm; axial field of view, 150 mm). Subsequent images were acquired 

on the same scanner. All patients fasted for at least 4 hours before PET. Images 

were acquired in a supine position with eyes closed. Before tracer application a 10-

min transmission scan with 3 rotating 68Ga/68Ge sources was performed. [11C]MET 

was injected intravenously as a bolus injection of 740 MBq (20 mCi). Accumulation of 

the tracer was recorded over 40 min in 47 transaxial slices of the entire brain. The 

spatial resolution was 6 mm or better in all dimensions.  

Except 4, all PET scans had corresponding contrast enhanced MRI or CT studies. 

Regions of [11C]MET uptake were compared to areas of contrast enhancement in 

MRI. 

PET data evaluation was performed using a region of interest (ROI) analysis. As 

[11C]MET uptake at later imaging time points more specifically reflects transport 

activity rather than early time points we used summed images covering the time 

frame 20 to 60 minutes after injection for data analysis. As described by Herholz et 

al. a circular region of interest of 7 mm diameter was placed on the area of the 

highest [11C]MET uptake to determine the maximal tracer uptake (Herholz et al., 

1998). A ROI of the same diameter was placed on the contralateral-mirrored region 

to measure the corresponding reference. The relative index of [11C]MET uptake was 

calculated from the ratio of tumor area to the contralateral tissue. The change of 
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[11C]MET uptake was defined as the relative percentage change between [11C]MET 

uptakes of two subsequent scans in the same patient. 

 
Histological analysis 
Histological analysis and immunohistochemistry of the biopsies of the initial tumors of 

all patients as well as recurrences obtained by stereotactic biopsy or open surgery 

were performed on formalin-fixed, paraffin-embedded 4 µm sections. For 

immunohistochemistry, an automated staining system (Biogenex, San Ramon, CA, 

USA) using the ABC technique and 3,3’-diaminobenzidine as chromogene and H2O2 

as co-substrate, was used. In brief, classification of the tumors according to the WHO 

classification of neuroepithelial tumors was based on H&E staining and 

immunohistochemistry with monoclonal antibodies against rabbit anti-human MIB-1 

(DCS, Hamburg, Germany; clone SP6 (Ki-67 antigen); dilution 1:200) and mouse 

anti-human p53-protein (Biogenex; clone 1801; dilution 1:200) and polyclonal rabbit 

anti-human antibodies against GFAP and S100-protein (Dako, Hamburg, Germany; 

dilution GFAP 1:1000, S100-protein 1:2000). Advanced immunohistochemistry was 

performed with the following monoclonal mouse anti-human antibodies: EGFR 

(Merck, Darmstadt, Germany; clone E30; dilution 1:20), PDGFR (BD Biosciences, 

Heidelberg, Germany; clone 28; dilution 1:200), pRb (Zymed Laboratories, Karlsruhe, 

Germany; clone Rb1; dilution 1:50), PTEN (Biogenex; clone 28H6; dilution 1:10), and 

VEGF (DCS; clone VG1; dilution 1:50). Histological evaluation was performed by two 

independent neuropathologists. The number of immunoreactive nuclei were 

determined comprising three areas (F1, F2, and F3) of three high power fields each, 

with maximal frequency, moderate frequency, and minimal frequency, respectively, of 

immunoreactive nuclei. The number of positive nuclei was determined as 

F1+F2+F3/3 (%).  

 
Statistical analysis 

Statistical analyses were performed by SPSS software (Release 11.0.1, SPSS Inc., 

Chicago, IL, USA). For correlation analysis, the Pearson method was applied with 

subsequent parametric tests; two-sample ANOVAs were used for comparisons 

between the groups with and without malignant progression. Tests were performed 

two-sided at the significance level 0.05, and the p-values were understood in an 

explorative sense regarding the multiple hypotheses problem. Sensitivity and 
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specificity of changes in [11C]MET uptake were calculated for several thresholds and 

the optimum cut-off was determined by receiver operation characteristics (ROC) 

analysis. An iterative leave-one-out approach was used to validate the ROC analysis. 

At each step, one case (i.e. one follow-up) was left out for the analysis, a fit of the 

model was produced for the remaining follow-ups and a malignant progression 

prediction was made for the left-out case. This means that each single follow-up 

value was compared with the cohort of the remaining 32/33 values with regards to its 

individual percent change of [11C]MET uptake. Moreover, baseline [11C]MET uptake 

was included as a covariate in a Cox regression model to investigate its relation to 

the time to histological progression. In order to avoid artificial variance reduction by 

mixing independent and dependent observations, we used only the data of the first 

follow-up investigation (n=24) for all methods of statistical inference (Pearson method 

and two-sample ANOVA).  

 
Results 
 
Malignant progression as detected by [11C]MET PET 
In 24 patients with repetitive [11C]MET PET investigations and the corresponding 

histological determined WHO grade we investigated the correlation between changes 

[11C]MET uptake and histological progression of the tumor. We calculated the 

percentage change in [11C]MET uptake from the prior [11C]MET PET investigation 

compared to the subsequent examination. The percent change in [11C]MET uptake 

was then compared with the progression as assessed by histology and 

immunohistochemistry (Figure 9).  
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Figure 9: [11C]MET PET of a 39 y.o. man with a malignant progression of a 

recurrent glioma. In (A) the newly diagnosed astrocytoma grade II with an average 

[11C]MET uptake of 1.3 to the contralateral gray matter, without any CE on CCT and 

no immunohistochemical VEGF expression. In (B) one year later the patient 

presented with a malignant progression to an astrocytoma grade III associated with a 

significant increase of [11C]MET uptake to the 2.1-fold and only slight contrast 

enhancement outside of the metabolic active tumor. Histological analysis from the 
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resection showed an increase in cellularity and numerous pleomorphic nuclei and low 

VEGF expression. (C) In the following year the resection of the tumor confirmed 

again a malignant progression to a glioblastoma multiforme showing markedly 

increased uptake of [11C]MET to the 2.8-fold, marginal contrast enhancement in MRI 

and ~35% of the tumor cells expressing VEGF (original magnification x 400).  

 

Here, we found that the mean percent increase of [11C]MET uptake from the prior 

[11C]MET PET to the following [11C]MET PET in patients with histologically proven 

malignant progression was much higher (mean 54.4 %, SD 45.5 %) than in patients 

without change of the tumor grade (mean 3.9 %, SD 13.7 %) (Figure 10). Statistic 

analyses revealed a significant difference between changes in [11C]MET uptake in 

the group with malignant progression in comparison to the group without malignant 

progression (p<0.001).  

 

 
 

 

Figure 10: Comparison of changes in [11C]MET uptake between patients with 

malignant progression and without malignant. Patients presenting histologically 

proven progression in WHO grading show a significant increase in [11C]MET uptake 

according to the prior PET investigation (Values reflect the %-change in [11C]MET 

uptake from the prior to the following investigation).  
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We next performed receiver operating characteristics (ROC) analysis to assess the 

value of change in [11C]MET uptake that best identifies malignant progression 

(Figure 11). ROC revealed that an increase of 14.6 % determines malignant 

progression with a sensitivity of 90 % and a specificity of 92.3 %.  

 

 
 

Figure 11: Receiver-operating-characteristic (ROC) analysis to identify the 

change of [11C]MET uptake for differentiation between malignant progression 

of the tumor grade from no malignant progression. The percent increase that 

best distinguished malignant progression from no malignant progression was at a 

threshold of 14.6 % with a sensitivity of 90 % and a specificity of 92.3 %.  
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Correlate of [11C]MET uptake to immunohistochemical tumor marker as 
determined by histology 
 
We next sought to analyse the relation of changes in [11C]MET uptake to changes of 

molecular markers as assessed by immunohistochemistry. Here, we found that 

changes of [11C]MET uptake are related to the expression of the vascular endothelial 

growth factor (VEGF). However, we did not find a significant correlation between 

changes in EGFR, PTEN, pRb, p53, Ki-67 and platelet derived growth factor receptor 

(PDGFR) expression and changes in [11C]MET uptake.  

 
 
 
 
 
Concluding remarks:  
 

These findings indicate that [11C]MET PET represents an accurate marker to non-

invasively detect malignant progression in gliomas. Furthermore, it is well known that 

the mammalian target of Rapamycin (mTOR) is located downstream of the VEGF / 

VEGFR2 pathway via PI3K/AKT regulated by VEGF (Kim et al., 2008; Riesterer et 

al., 2004). mTor again modulates amino-acid transport by regulating the expression 

of LAT1 (Fuchs and Bode, 2005). Although the correlation between changes in 

[11C]MET uptake and VEGF expression is relatively weak, we hypothesize that there 

might be a crosslink between VEGFR2 signalling and amino-acid transport. The 

activation of VEGF / VEGFR2 signalling induces mTOR kinase activity with mTor 

being one of the key enzymes regulating amino acid transport. The hypothesis that 

[11C]MET uptake may serve as surrogate marker for activated VEGFR signalling 

remains to be investigated. 
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Glioma Proliferation as Assessed by 3‘-Fluoro-3’-Deoxy-L-Thymidine
Positron Emission Tomography in Patients with Newly
Diagnosed High-Grade Glioma
Roland Ullrich,1,2 Heiko Backes,3 Hongfeng Li,1Lutz Kracht,1HrvojeMiletic,4 Kristina Kesper,1

Bernd Neumaier,1Wolf-Dieter Heiss,1KlausWienhard,1and Andreas H. Jacobs1,2,5

Abstract Purpose:The aim of this study was to investigate the relationship between the in vivo derived
kinetic parameters of 3¶-deoxy-3¶-18F-fluorothymidine (18F-FLT) and the proliferation rate mea-
sured in vitro by Ki-67 staining in patients with newly diagnosed high-grade gliomas.
Experimental Design:Thirteen patients with newly diagnosed high-grade gliomas were inves-
tigated with 18F-FLTand methyl-11C- L-methionine (11C-MET) positron emission tomography
(PET) and T1-, Gd-T1^, and T2-weighted magnetic resonance imaging on consecutive days.
Tracer kinetic parameters of 18F-FLTas well as the standardized uptake value and the tumor-
to-background (T/B) ratio of 18F-FLTand 11C-METwere determined. Data of kinetic modeling,
standardized uptake value, and T/B values derived from 18F-FLT-PETwere compared withT/B
values derived from 11C-MET-PETand to the in vitro proliferationmarker Ki-67.
Results: A significant correlation was observed between the metabolic rate constant Ki and the
proliferation index as measured by Ki-67 immunostaining [Ki, r = 0.79 (P = 0.004)]. Also, the
phosphorylation rate constant k3 correlated with Ki-67 [k3, r = 0.76 (P = 0.006)], whereas the
rate constant for transport through the blood brain barrier K1showed a weaker correlation with
Ki-67 [K1, r = 0.62 (P = 0.044)]. No significant correlation between 11C-METand 18F-FLTuptake
ratios and Ki-67 was observed.
Conclusions:This study shows that kinetic analysis of 18F-FLT tracer uptake is essential for the
in vivo assessment of tumor proliferation inhigh-grade gliomas, whereas uptake ratios of11C-MET
and18F-FLT failed to correlate with the in vitro determined proliferationmarker.Thus, kinetic anal-
ysis of 18F-FLT might provide an accurate method for the assessment of early response to glioma
treatment in the future.

Positron emission tomography (PET) with radiolabeled amino
and nucleic acids allows metabolic imaging of tumor activity
in vivo. Methyl-11C- L-methionine (11C-MET) and 2-18F-fluoro-
deoxy-D-glucose have been established as markers in the
diagnosis of gliomas. 2-18F-fluoro-deoxy-D-glucose enables to
detect brain tumors because of their increased glucose
consumption. However, the high cortical background level of
glucose limits the capacity of 2-18F-fluoro-deoxy-D-glucose to
distinguish tumoral tissue from normal brain tissue. 11C-MET

enables to determine with high sensitivity the delineation of the
extent of the tumor, the effect of treatment, and the
differentiation of recurrent tumor from radiation necrosis (1).
Methionine uptake correlates to microvessel density (2), to the
proliferative cell nuclear antigen index indicating the malig-
nancy of brain tumors (3), and to the expression of the LAT1
amino acid transporter (4). However, kinetic analysis remains
limited because of the short half-life of 11C and the fast
metabolism of 11C-MET.
Shields et al. (5) have developed 3¶-deoxy-3¶-18F-fluoro-

L-thymidine (18F-FLT) as a tracer to image proliferation in vivo.
They established 18F-FLT as an analogue substrate of thymidine,
which is intracellulary phosphorylated by the thymidine kinase 1
(TK1). TK1 is a cytosolic enzyme that is expressed with the onset
of the S phase during DNA synthesis and that is decreased in
nondividing cells. Activity of TK1 increases up to 10-fold during
the S phase, after which it is directly degraded (6). Compared
with normal proliferating tissue, the increase of TK1 activity
is even higher in proliferating tumor cells (7) and can be imaged
by 18F-FLT as selective substrate for TK1 that converts 18F-FLT
to its nucleotide monophosphate. This 18F-FLT monophosphate
is not further metabolized and accumulates in the cell.
In several clinical studies, 18F-FLT has been validated to assess

proliferation of different types of tumors in vivo (8–11).
Correlations between the standard uptake value (SUV) of
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18F-FLT and the Ki-67 expression in vitro have been shown
in lung cancer, malignant lymphoma, colorectal cancer, and
recently, in brain tumors (12–15). In a mixed population of
patients with newly diagnosed and recurrent gliomas, our
group recently showed that 18F-FLT uptake (a) enables to
differentiate between low-grade and high-grade tumors; (b) is
mainly due to increased transport and to a lower extent
to phosphorylation by TK1; and, finally, (c) that 18F-FLT-, 11C-
MET-PET, as well as Gd-enhanced magnetic resonance imaging
(MRI) yield complementary information on the activity and
the extent of gliomas (16).
The long half-life of 18F allows for kinetic analysis, providing

the differentiation between metabolized and nonmetabolized
18F-FLT in the tissue. Especially in brain tumors, kinetic
modeling enables to distinguish between increased 18F-FLT
uptake due to increased transport through the blood brain
barrier (BBB) and increased uptake due to an increased TK1
activity (16, 17).
The aim of this study was to measure tumor proliferation

noninvasively in vivo in patients with nontreated newly
diagnosed high-grade gliomas using kinetic modeling and to
investigate the correlation between the kinetic parameters of 18F-
FLT and the immunohistochemical proliferation marker Ki-67.

Materials andMethods

Patients

Thirteen patients suffering from newly diagnosed primary central
nervous system tumors (9 male and 4 female; median age, 64.0 y;
range, 35-71 y) were included in this prospective study after giving their
written informed consent on multimodal PET and MRI. The study
protocol differed from our previous study (16) only with respect to
patients with newly diagnosed tumors. After the PET scan, except for
one, all gliomas were confirmed by histology and classified according to
WHO grade (stereotactic biopsy, n = 7; resection, n = 5). Five patients
were classified as astrocytoma grade III, one as oligoastrocytoma grade
III, and six as glioblastoma (grade IV; Table 1). All patients underwent
Gd-diethylenetriaminepentaacetic acid–enhanced MRI within 6 d
before the PET investigation. PET investigation was done when there
were suspicious findings for tumor proliferation in the MRI.

PET

Data acquisition. PET imaging was done on an ECAT EXACT (CTI/

Siemens; in-plane full-width at half maximum, 6 mm; slice thickness,

3.375 mm; axial field of view, 162 mm) and an ECAT EXACT HR (CTI/

Siemens; in-plane full-width at half maximum, 3.6 mm; slice thickness,

3.125 mm; axial field of view, 150 mm). Ten-minute transmission scans

with rotating germanium-68/gallium-68 sources were done for atten-

uation correction of the PET data.
11C-MET and 18F-FLT syntheses were done as described previously

(16). The radiolabeling yield of 18F-FLT was 10% F 1.5%, and the
radiochemical purity of 18F-FLT was >98%.

The mean injected dose of 18F-FLT was 321.9 F 85.1 MBq (range,
111-370 MBq). From all patients, arterialized blood samples were taken
by a peripheral i.v. catheter. 18F-FLT-PET images were acquired in the
following dynamic sequence: 6 � 10, 3 � 20, 2 � 30, 2 � 60, 2 � 150,
and 16 � 300 s.

Tracer accumulation was recorded in a three dimensional mode
>60 min in 47 transaxial slices of the entire brain as described pre-
viously (2, 16).

For coregistration to the anatomic data, T1, T2, and contrast
enhanced MRI scans were done in all patients on a 1.5 T system
(Gyroscan Intera; Philips Medical Systems). Magnetic resonance images
were coregistrated to summed PET images with an accuracy of 2 mm or
better (18).
Data analysis. We used a region-of-interest approach to determine

the maximal tracer uptake in 18F-FLT- and 11C-MET-PET of the summed
images. The circular region-of-interest with a diameter of 8 mm was
placed in the tumor region with the highest tracer uptake. To calculate
the uptake ratio, a reference region-of-interest was placed on the
contralateral unaffected tissue. Uptake and SUV were then calculated as
previously described (2, 16). Coregistration and region-of-interest
calculation was done by using the VINCI software (19).

Mankoff et al. (20, 21) established a kinetic model to quantify the
incorporation of thymidine into DNA. In analogy to this kinetic model
for thymidine, Muzi et al. (22) validated a compartment model for 18F-
FLT in patients with lung cancer to quantify TK1 activity. They used a
four-parameter two-compartment model with strong constant estimates
that correlate to the in vitro proliferation marker Ki-67. In this model,
the rate constant K1 determines the transport across the BBB into the
tissue and k2 determines the return from the tissue to the blood. The
rate constant k3 represents the intracellular phosphorylation of 18F-FLT,
and the small proportion that is dephosphorylated back to 18F-FLT is

Table 1. Clinical data, PET uptake values, kinetic rate constants k3 and Ki, and percentage expression of the
in vitro proliferation marker Ki-67

Pat.
no.

Age
(y)

Sex Location Histology 11C-MET
uptake ratio

18F-FLT
uptake ratio

18F-FLT
SUV

k3
(tumor; 1/min)

Ki
(tumor; 1/mL/g/min)

Ki-67
(%)

1 57 M R/BG — 1.6 3.83 0.8 0.0055 0.0016 —
2 58 F L/T Astrocytroma grade III 3.73 10.8 2.42 0.1578 0.0396 70
3 70 F R/PT Glioblastoma 3.2 5.67 1.87 0.055 0.0173 40
4 71 M R/O Astrocytoma grade III 1.8 5.4 1.61 0.0267 0.0086 20
5 56 F R/T Astrocytoma grade III 2.46 2.29 0.44 0 0 25
6 66 M L/P Glioblastoma 3.6 7.79 1.88 0.044 0.0132 30
7 35 M L/PO Glioblastoma 3 3.73 1.32 0.0223 0.012 —
8 69 M R/BG Astrocytoma grade III 2.4 2.16 0.41 0 0 5
9 54 M BS Astrocytoma grade III 1.9 2.34 0.63 0 0 30
10 63 F L/P Glioblastoma 4.6 6.99 1.7 0.03 0.0143 20
11 67 M L/P Glioblastoma 2.8 6.45 1.75 0.237 0.029 55
12 64 M R/F Glioblastoma 3.2 6.77 1.3 0.0472 0.0161 45
13 66 M R/F Oligoastrocytoma III 4.5 4.03 1.24 0.0833 0.0122 60

Abbreviations: Pat. no., patent number; M, male; F, female; R, right; L, left; BG, basal ganglia; BS, brain stem; T, temporal; PT, parietotemporal;
PO, parietooccipital; O, occipital; P, parietal; F, frontal.
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represented by k4 (23). Also, blood volume was included as a
parameter in the model.

We also used a four-parameter (+blood volume) two-compartment
model including k4. Although Akaike’s Information Criterion values
between the four-parameter model and the three-parameter model were
not significantly different, we decided to use the four-parameter two-
compartment model because ignoring k4 as kinetic constant rate in the
kinetic model leads to an overestimation of the influx of 18F-FLT as
reported previously (24, 25).

18F-FLT is the radiolabeled analogue of the endogeneous thymi-
dine. Thymidine is incorporated into DNA during production and
is therefore strongly related to proliferation. The main purpose of
18F-FLT analysis consists in obtaining information about the
endogenous processes of thymidine and thereby measuring cellular
proliferation. The pathway of thymidine is determined by transport
from blood into tissue (KTh1), out of the tissue into blood (kTh2), its
phosphorylation (kTh3), and its dephosphorylation (kTh4). In contrast
to fluorothymidine, thymidine is incorporated into DNA, i.e., the
thymidine pathway has an additional rate constant describing the
incorporation of thymidine into DNA (kDNA). This constant cannot
be determined from the fluorothymidine analysis. However, the rate
of cell proliferation (P), which is proportional to the rate of
thymidine incorporation into DNA, can be expressed in terms of the
thymidine rate constants and the thymidine concentration in blood
(ThB) by

Pf
KTh1 � kTh3

1þ kTh4=kDNAð Þ � kTh2 þ kTh3
� ThB

If kTh4 is small compared with kDNA, which is a reasonable
assumption, because the dephosphorylation rate is low, this expression
is independent of kDNA. Because the other reactions are also present in
the fluorothymidine pathway, we replace the thymidine rate constants
by their fluorothymidine analogues leading to

Pf
K1 � k3
k2þ k3

� ThB ¼ Ki � ThB

Thus, the rate of cell proliferation is proportional to the influx
constant rate constant Ki and the thymidine level in the blood plasma.

The time activity curves were determined in the part of the tumor
with the highest uptake. Three consecutive brain slices were included in
the calculation. Kinetic analysis was done by using PMOD biomedical
image quantification and kinetic modeling software (PMOD Technol-
ogies Ltd.).

Histologic assessment of proliferation by immunostaining

Ki-67

A representative formalin-fixed, paraffin-embedded section from
each specimen was immunohistochemically stained with MIB-1 (Ki-67)
antibody by use of the Avidin-Biotin-Peroxidase-Complex method and
the DCS Detection kit with 3,3¶-diaminobenzidine and H2O2 (DCS).
All cells with nuclear staining of any intensity were regarded as positive.
Proliferative activity was defined as the percentage of nuclei stained
with MIB-1 per total number of nuclei in the biopsy. The fraction of
labeled tumor cells, defined as the Ki-67 labeling index, was assessed
over four microscopic high power fields (0.16 mm2) that contained the
highest average fraction of labeled cells. The Ki-67 labeling index was
determined by scoring the fraction of cells stained with the MIB-1
antibody in 5% intervals.

Statistical analysis

Parametric statistical tests were used to determine significant
correlations between the parameters (Pearson correlation analysis).

Correlations were considered significant at a level of P value <0.05.
Statistical analysis were done by SPSS software (Release 11.0.1.; SPSS,
Inc.).

Results

Distribution of 18F-FLT and 11C-MET uptake. The uptake
ratios and SUV were calculated by placing a circular region-of-
interest in the area of the tumor with highest tracer uptake
(Table 1). 18F-FLT uptake ratios varied from 2.2 to 10.8 (mean,
5.3; SD, 2.5), SUV from 0.4 to 2.4 (mean, 1.3; SD 0.6), and
11C-MET uptake ratios ranged from 1.6 to 4.6 (mean, 3.0; SD,
0.9). Restricted to the histologic grading mean values of SUV,
18F-FLT and 11C-MET uptake were higher in patients with WHO
grade IV gliomas (n = 6) than in patients with WHO grade III
gliomas [n = 6; fluorothymidine-SUV, 1.6 F 0.3 (WHO IV)
versus 1.1 F 0.8 (WHO III); fluorothymidine uptake ratio,
6.2 F 1.4 (WHO IV) versus 4.5 F 3.3 (WHO III); methionine
uptake ratio, 3.4 F 0.6 (WHO IV) versus 2.8 F 1.1 (WHO III);
Fig. 1]. 18F-FLT uptake ratio correlated weakly to 11C-MET
uptake ratio (r = 0.65; P = 0.016), indicating the relation
between uptake of amino acids and nucleosides in tumor
regions with a disrupted BBB.
Contribution of the kinetic parameter K1 and k3 to 18F-FLT

uptake. Data of kinetic analysis are summarized in Table 2.
Kinetic model analysis provides the rate constants for transport
(K1), reflux (k2), intracellular phosphorylation (k3), and
dephosphorylation (k4) of fluorothymidine and the fraction
of blood volume. The metabolic rate Ki of 18F-FLT is calculated
from the rate constants as described above. To analyze the
contribution of the kinetic constants to 18F-FLT uptake
measured in PET, we calculated their correlation to 18F-FLT
uptake. The kinetic constant K1 showed a weaker relation to
18F-FLT uptake (r = 0.52; P = 0.064) than the phosphorylation
rate constant k3 (r = 0.60; P = 0.029; Fig. 2). These results may
indicate that in high-grade newly diagnosed gliomas, tracer
uptake is more related to the phosphorylation rate than to the
transport through the BBB. The metabolic rate of 18F-FLT Ki
showed the strongest correlation to 18F-FLT uptake (r = 0.87;
P < 0.001).
Kinetic parameters for transport and proliferation were f2-

fold higher in grade IV tumors than in grade III tumors, which
did not reach statistical significance [K1, 0.056 F 0.021 (WHO
IV) versus 0.023F 0.01 (WHO III); k3, 0.072F 0.033 (WHO IV)
versus 0.045 F 0.02 (WHO III); Ki, 0.017 F 0.002 (WHO IV)
versus 0.010F 0.006 (WHO III)]. Interestingly, K1 and k3 values
of the one oligoastrocytoma were higher than K1 and k3 of all
but one astrocytoma (K1, 0.032 versus 0.021F 0.029; k3, 0.083
versus 0.037 F 0.069).
Sensitivity analysis of the parameter estimates. The sensitivity

analysis calculates the effect of the variation of a parameter on
the model output at a certain time, i.e., on the time activity
curve. Figure 3 gives a representative example of the sensitivity
analysis for this kinetic model. At the beginning, the time
activity curve is completely determined by the blood volume.
After the bolus has passed the tissue, the transport process
starts. The sensitivity of the model to K1 increases during the
first 15 minutes until having reached a steady state. The
sensitivity to the phosphorylation rate k3 increases rapidly in
the first 15 minutes and then with a lower slope over the entire
investigation. The negative sensitivity of the time activity curve
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to the rate constants k2 and k4 reflects that an increase of these
constants decreases the model output. At the end of scan time,
sensitivity curves for k2, k3, and k4 have not reached their
plateau, i.e., steady state has not been reached.

In all cases, the correlation matrix of the model parameters
shows covariances between K1 and k2 and between k3 and k4,
which arises from the fact that they describe the same reactions
(forward and reverse). All other covariances are negligible.

Fig. 1. Coregistered 18F-FLT, 11C-MET, parametric map of metabolism Ki, and MRI T1 + Gd. A, a 58-y-old patient with an astrocytoma grade III.The 18F-FLT-PETshows an
uptake of 10.8-fold to the contralateral tissue with a high metabolic constant Ki (Ki = 0.039 mL/g/min) and a 3.73-fold 11C-METuptake corresponding to a high Ki-67
expressionof 70%.B, anoligoastrocytoma grade III of a 66-y-old patient with relatively high11C-METuptake (4.5-fold) and a relatively low18F-FLTuptake (4.03-fold) but high
values of Ki (Ki = 0.0122 mL/g/min) and of Ki-67 expression (60%). A 63-y-old patient with a first diagnosed glioblastoma: the 18F-FLT-PETand 11C-MET image in C show
high tracer uptake ratios in 18F-FLT (6.77-fold) and in 11C-METuptake (3.22-fold) to the contralateral tissue, an increased kinetic metabolic constant Ki (0.0161mL/g/min)
according to a high %^ Ki-67 expression of 45%.

Table 2. Kinetic analysis including k4 in the tumor

Pat. no. Tumor

Ki SD K1 SD k2 SD k3 SD k4 SD vB SD

1 0.0016 0.0667 0.0069 0.0064 0.0185 0.1217 0.0055 0.326 0 —* 0.0492 0.0105
2 0.0396 0.0114 0.0733 0.0331 0.1344 0.2895 0.1578 0.2911 0.0241 0.0176 0.1343 0.0225
3 0.0173 0.0182 0.0411 0.0237 0.0753 0.1816 0.055 0.181 0.0149 0.0408 0.1016 0.0231
4 0.0086 0.0025 0.0123 0.074 0.0117 208.121 0.0267 6308 3.54460 6151 0.112 0.732
5 0.0000 0.0000 0.0066 0.006 0.0099 0.204 0 —* —c —c 0.07 0.0169
6 0.0132 0.0123 0.033 0.0081 0.066 0.0813 0.044 0.1057 0.022 0.0394 0.0452 0.0087
7 0.0120 0.0489 0.0234 0.0087 0.0212 0.0737 0.0223 0.2448 0.0163 0.2049 0.072 0.0129
8 0.0000 0.0000 0.0056 0.6064 0.0135 838 0 —* —c —c 0.0435 0.07
9 0.0000 0.0000 0.0086 0.0136 0.0195 7,454 0 —* —c —c 0.0533 0.0291
10 0.0143 0.0213 0.0353 0.0112 0.0442 0.0728 0.03 0.109 0.012 0.0617 0.11 0.016
11 0.0290 0.0101 0.164 0.058 1.107 0.6781 0.237 0.1851 0.03 0.186 0.125 0.0227
12 0.0161 0.0102 0.041 0.0068 0.0732 0.0645 0.0472 0.0789 0.0191 0.0268 0.0644 0.0081
13 0.0122 0.0067 0.032 0.008 0.135 0.1513 0.0833 0.1338 0.024 0.0255 0.044 0.0069

*The SD cannot be calculated when the parameter is equal to 0.
ck4 is not defined when k3 = 0.
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Thus, our choice of the model with two compartments and one
blood pool is also justified on a statistical basis.
Ki-67 expression. MIB-1 immunohistochemistry was done

in 11 of 13 patient biopsy samples. The tumor probe of one
patient was too small to evaluate a representative region for Ki-
67 expression; the other patient did not undergo surgery after
the PET scan. Mean Ki-67 expression in high grade gliomas
ranged between 5% and 70% (mean, 31.4%; SD 19.5%).
Differences in Ki-67 expression between the WHO grade III and
IV were not found (WHO III: mean, 32.5%; SD, 26.2%; WHO
IV: mean, 30%; SD, 9.4%) indicating that in vitro measurement
of proliferative activity is not necessarily related to WHO
grading.
Analyzing Ki-67 according to the histologic type of astrocy-

toma, the proliferative fraction of the one oligoastrocytoma was
with 60% relatively high compared with the astrocytomas
(mean, 27%; SD, 11.2).
Comparison of proliferation activity in vitro by Ki-67

expression and in vivo by PET. Linear regression analysis
revealed a strong correlation between the metabolic rate
constant of 18F-FLT Ki and the in vitro expression of Ki-67
(r = 0.79; P = 0.004; Fig. 4). Also, the phosphorylation rate
constant of 18F-FLT k3 correlates with Ki-67 (r = 0.76; P =
0.006; Fig. 4). The transport rate K1 shows a weaker correlation
with the proliferation marker Ki-67 (r = 0.62; P = 0.044).
The correlation of the 18F-FLT uptake ratio and the

proliferation index was not statistically significant (r = 0.57;
P = 0.70). Likewise the ratio of 11C-MET uptake did not show
any significant correlation with Ki-67 expression (r = 0.43;
P = 0.19).

Discussion

In a patient population with newly diagnosed high grade
gliomas WHO III and IV, we show that kinetic modeling of
18F-FLT enables to determine tumor proliferation in vivo via
the metabolic constant Ki. Furthermore, this in vivo obtained
proliferation marker correlates strongly with the in vitro
proliferation rate as determined by Ki-67 immunostaining.
These data indicate that kinetic modeling of 18F-FLT uptake in
tumor tissue facilitates (a) to assess the proliferation rate in vivo

and (b) to distinguish the proportion of 18F-FLT uptake that is
due to transport through the BBB from the proportion, which is
due to intracellular proliferation. This distinction between
tracer transport and phosphorylation enables to further analyze
18F-FLT uptake to obtain a highly sensitive tool for the
quantification of tumor proliferation and, thereby, the poten-
tial for monitoring antiproliferative treatment.
T2-weighted images and contrast-enhanced MRI is com-

monly used for the primary diagnosis of brain tumors. In
MRI, T2-weighted hyperintense signal and contrast enhance-
ment provide rather indirect signs for tumor growth.
Therapeutic procedures as chemotherapy, radiotherapy, and
surgery even induce disturbance of the BBB and, hence,
contrast enhancement. Therefore, MRI is not suitable neither
for monitoring response to therapy nor for the prediction of
clinical outcome.
In our recent PET imaging studies, we showed in a

heterogeneous patient population with newly diagnosed and
recurrent gliomas of various WHO grades that tracers such as
11C-MET and 18F-FLT provide complementary information on
the activity and extent of a glioma (16). We showed that 11C-
MET detects the extent of gliomas with a high sensitivity and
specificity, and that uptake of 11C-MET is correlated to
microvessel density (2, 26). 11C-MET might therefore be an
accurate tool to reflect tumor angiogenesis. However, for the
determination of tumor proliferation as well as for monitoring
response to antiproliferative therapy strategies 18F-FLT is the
more favorable marker.

In vitro studies have shown that 18F-FLT uptake reflects TK1
activity (27, 28). Cytosolic TK1 is a cell cycle–regulated
enzyme that is activated during the salvage DNA synthesis
pathway. 18F-FLT serves as a selective substrate for TK1 and
reacts only to a very small part with the mitochondrial TK2.
TK1 converts 18F-FLT to its monophosphate as a first step to
incorporate the nucleoside into the DNA. As soon as the cells
have passed the S phase, TK1 will be degraded (6). Unlike
thymidine, only <1% of 18F-FLT is incorporated into the
DNA (29). The rate-limiting factor for 18F-FLT—in contrast to

Fig. 3. Sensitivity curve of the kinetic parameters in the 18F-FLT model. Sensitivity
of each parameter conforms to the extent that the parameter changes the model.
vB, blood vessel.

Fig. 2. Relationship between 18F-FLTuptake ratio and the kinetic constants.
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thymidine—is therefore phosphorylation and not the incor-
poration into the DNA.
We have shown in this study that the proliferation rate can be

obtained from the kinetics of 18F-FLT if the rate constant for
dephosphorylation of thymidine (kTh4) is small compared with
its rate constant for incorporation into DNA. Because kTh4 is
small, this condition is always satisfied if kDNA and, therefore,
the proliferation rate is sufficiently high—which is always the
case in highly proliferating tissues such as tumors.
The metabolic constant Ki determined in vivo strongly

correlates with Ki-67 expression. This relation confirms the
assumption mentioned above that the proliferation rate is
proportional to the product of Ki and the thymidine level in the
blood plasma, which has not been determined in this study.
We also observed a strong correlation between k3 and Ki-67
indicating that a high proliferation rate is related to a high
phosphorylation rate rather than to an increased transport
through the BBB in high-grade gliomas. These findings support
the notion that a detailed kinetic analysis enables determina-
tion of tumor proliferation in vivo .
It is further interesting to examine the relation of 18F-FLT

SUV or uptake ratios—which do not require kinetic modeling
and can therefore be much easier obtained from the PET

data—to proliferation in high-grade gliomas. Uptake ratios
did not correlate with the in vitro proliferation marker Ki-67.
The failure of uptake values to detect tumor proliferation is
due to the fact that uptake values do not allow to distinguish
whether the accumulation of 18F-FLT is mainly caused by
transport respectively breakdown of the BBB or to prolifera-
tion. This assumption conforms to the patient study recently
reported by Wells et al. (30) with 11C-Thymidine PET that
behaves in analogy to 18F-FLT. In a patient with a brain
tumor, they found a strong divergence between the increasing
transport parameter and a declining flux constant (Ki) after
several treatment strategies. The declining parameter Ki was
finally correlated with the patient’s clinical outcome. Thus,
uptake ratios and SUV might cause misleading estimates of
tumor proliferation.
In contrast to our results, Chen et al. (15) recently described a

significant correlation between 18F-FLT SUV and the expression
of the in vitro marker Ki-67 in brain tumors. However, low-
grade gliomas were also included in this study. This might
suggest that tracer uptake values, determined as SUV, correlate
to in vitro proliferation in a WHO grade–dependent manner
but not within a single WHO grade. We suggest that the
metabolic rate constant Ki is the more sensitive parameter for
imaging proliferation of high-grade gliomas than tracer uptake
ratios of 18F-FLT and 11C-MET.
The correlation between k3 and the 18F-FLT uptake ratio

indicates that in untreated gliomas with a high in vitro
proliferation index, 18F-FLT uptake is more related to phos-
phorylation than to transport of 18F-FLT through the BBB. Also,
the strong correlation between k3, and the metabolic rate
constant Ki confirms the effect of the phosphorylation rate k3
on the amount of 18F-FLT uptake in the tumor. These results
correspond with our previous findings where we found a strong
correlation between the kinetic constants K1 and k3 and 18F-
FLT uptake ratio (16). Although in the previously studied
heterogeneous patient group with newly diagnosed and
recurrent gliomas of various WHO grades, we observed a
stronger correlation of K1 than of k3 to 18F-FLT uptake. In
treated brain tumors, the major proportion of 18F-FLT uptake is
due to transport because of the treatment-induced disturbance
of the BBB. In contrast, in the present study in nontreated
patients with high-grade gliomas, the contribution of the
phosphorylation rate—expressed by k3—to 18F-FLT uptake was
higher than of the transport rate constant K1. This underlines
the capability and the necessity of kinetic analysis to distinguish
between tracer uptake caused by an increased transport through
the disturbed BBB and cellular tumor proliferation.
It should be pointed out that a limitation of stereotactic

biopsy is its limited size, which sometimes is not representative
for the entire tumor. However, in our study, PET data were used
for guidance of stereotactic biopsy from the most active tumor
part.
A detailed analysis of the heterogeneous tumor compart-

ments of 18F-FLT permits to distinguish high-proliferating from
low-proliferating tumor areas. Thus, 18F-FLT analysis allows for
the detection of the strongest proliferating part of the tumor.
Because the most proliferating part of the tumor is mainly
responsible for tumor progression, 18F-FLT analysis enables a
more precise estimation of the malignancy and may also serve
as an accurate measure of the antiproliferative treatment
strategies.

Fig. 4. Correlation of kinetic constants k3 (A) and Ki (B) to proliferation index
Ki-67 (MIB). Pearson rank correlation coefficient is r = 0.88 (P < 0.001) for k3 and
r = 0.79 (P = 0.004) for Ki, respectively.
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In summary, kinetic analysis of 18F-FLT in patients with
newly diagnosed high-grade gliomas provides a useful
method for the determination of proliferation rate in vivo .
However, with regard to the limited number of patients
included in this study, the potential of 18F-FLT kinetic

analysis for the early prediction of clinical outcome and
response to therapy remains to be further investigated. This
study indicates that evaluation of therapy efficiency of
individual molecular-targeted approaches may benefit from
18F-FLT kinetic analysis.

InVivo Assessment of Proliferation in Glioma
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Abstract

Background: Inhibition of the epidermal growth factor receptor (EGFR) has shown clinical success in patients with advanced
non-small cell lung cancer (NSCLC). Somatic mutations of EGFR were found in lung adenocarcinoma that lead to exquisite
dependency on EGFR signaling; thus patients with EGFR-mutant tumors are at high chance of response to EGFR inhibitors.
However, imaging approaches affording early identification of tumor response in EGFR-dependent carcinomas have so far
been lacking.

Methodology/Principal Findings: We performed a systematic comparison of 39-Deoxy-39-[18F]-fluoro-L-thymidine ([18F]FLT)
and 2-[18F]-fluoro-2-deoxy-D-glucose ([18F]FDG) positron emission tomography (PET) for their potential to identify response
to EGFR inhibitors in a model of EGFR-dependent lung cancer early after treatment initiation. While erlotinib-sensitive
tumors exhibited a striking and reproducible decrease in [18F]FLT uptake after only two days of treatment, [18F]FDG PET
based imaging revealed no consistent reduction in tumor glucose uptake. In sensitive tumors, a decrease in [18F]FLT PET but
not [18F]FDG PET uptake correlated with cell cycle arrest and induction of apoptosis. The reduction in [18F]FLT PET signal at
day 2 translated into dramatic tumor shrinkage four days later. Furthermore, the specificity of our results is confirmed by the
complete lack of [18F]FLT PET response of tumors expressing the T790M erlotinib resistance mutation of EGFR.

Conclusions: [18F]FLT PET enables robust identification of erlotinib response in EGFR-dependent tumors at a very early
stage. [18F]FLT PET imaging may represent an appropriate method for early prediction of response to EGFR TKI treatment in
patients with NSCLC.
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Introduction

Inhibition of the epidermal growth factor receptor (EGFR)
tyrosine kinase by small molecule kinase inhibitors has evolved as a
critical therapeutic strategy in non-small cell lung cancer
(NSCLC). However, only a subset of patients responds to the
treatment; most of these were found to carry activating mutations
in EGFR [1,2,3]. Sensitive methods for mutation detection in
clinical specimens have been developed that enable patient

selection for genetically informed cancer therapy [4,5]. However,
additional patients whose tumors lack EGFR mutations might also
benefit from EGFR inhibitors.
Positron emission tomography using [18F]FDG PET is an

effective means to staging of NSCLC patients and is now part of
routine staging protocols [6,7]. Furthermore, [18F]FDG PET has
been found to enable identification of NSCLC patients responding
to chemotherapy [8] and in mice bearing EGFR-mutant tumors
responding to gefitinib [9]. Given that EGFR inhibitor-induced
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apoptosis in EGFR-mutant tumors is preceded by a pronounced
cell cycle arrest [10], we hypothesized that imaging modalities
reflecting tumor cell proliferation rather than glucose metabolism
might afford even earlier measurements of tumor growth
inhibition.
[18F]-fluoro-L-thymidine ([18F]FLT) PET has been developed

as a specific marker to measure cellular proliferation in vivo [11]. As
an analog substrate of thymidine, [18F]FLT is phosphorylated by
thymidine kinase 1 (TK1). TK1 is a cytosolic enzyme that is
synthesized when proliferating cells enter the S-phase for DNA
synthesis [12]. Moreover, [18F]FLT uptake values have been
shown to correlate to tumor cell proliferation as assessed by Ki-67
immunostaining [13,14]. Thus, [18F]FLT PET might serve as an
effective means to measure drug-induced cell cycle inhibition in
vivo. Supporting this notion is the recent observation of an
advantage of [18F]FLT over [18F]FDG PET in measuring
response of BRAF V600E-mutant melanomas to Mek inhibition
after five days of treatment [15]. Here, we directly compared
[18F]FDG to [18F]FLT PET in their ability to measure the
immediate changes in cellular proliferation following inhibition of
a dominant oncogenic signal.

Results and Discussion

As a model of EGFR-dependent NSCLC, we employed the cell
lines HCC827 and PC9. Both cell lines carry mutated as well as
amplified EGFR alleles and are highly sensitive to the EGFR TKI
erlotinib in the low nanomolar range [10]. We used the cell line
H1975 expressing both the L858R mutation of EGFR as well as
the T790M EGFR resistance mutation as a control for specificity
of drug action. After 24h of treatment with even low doses of
erlotinib, sensitive cells were arrested in the G1 phase of the cell
cycle following erlotinib treatment with a concomitant decrease of
cells in the S phase of the cell cycle (Fig. 1A). Subsequent to the
cell cycle arrest the sensitive cell lines PC9 and HCC827
underwent massive apoptotic cell death 36h after onset of
treatment (Fig. 1B). This was paralleled by reduction in p-EGFR
and p-Akt levels in both cell lines (Fig. 1A). By comparison, the
T790M-mutant cell line H1975 showed no cell cycle arrest
(Fig. 1A), no loss of EGFR or Akt phosphorylation (Fig. 1A) and
did not exhibit any signs of apoptotic cell death (Fig. 1B),
confirming that the observed phenotypes were due to on-target
effects of the drug.
We next sought to determine the feasibility of [18F]FLT and

[18F]FDG to measure response to erlotinib treatment using a
murine tumor xenograft model. HCC827, PC9 or H1975 cell lines
were individually transplanted subcutaneously onto nude mice.
After oral treatment with either vehicle or erlotinib, mice were
imaged by [18F]FLT or [18F]FDG PET. After only 48h of erlotinib
treatment we observed a striking reduction of [18F]FLT uptake in
the sensitive cell lines HCC827 and PC9. By contrast, no changes
in [18F]FLT uptake were observed in mice bearing the resistant
cell line H1975 or in the control group treated with the vehicle
alone (Fig. 2A). Quantitative analysis revealed a mean reduction
of [18F]FLT uptake of 34.6% in the HCC827 xenografts and of
43% in the PC9 xenografts after two days of treatment (p = 0.04)
(Fig. 2B). In the resistant H1975 xenografts [18F]FLT uptake
only slightly decreased by 5.4% (p= 0.12) (Fig. 2B). After four
days of erlotinib treatment [18F]FLT uptake remained decreased
in HCC827 and PC9 tumors whereas we observed no decrease in
[18F]FLT uptake in the H1975 tumor xenografts. Thus, the
reduction in [18F]FLT uptake reflects inhibition of cellular
proliferation due to induction of a G1 arrest in EGFR-dependent
tumors.

By comparison, we observed a slight decrease in [18F]FDG
uptake after 4 days of erlotinib treatment only in the HCC827 but
not in the PC9 xenograft. However, this reduction was far less
pronounced in comparison to the results observed with [18F]FLT
(Fig. 2B). In a quantitative analysis of these results, the [18F]FDG
uptake ratios in the PC9 and the HCC827 xenografts were not
significantly decreased after either 2 days or 4 days of treatment
(p = 0.13). As expected, H1975 xenografts did not show significant
changes in glucose uptake after either 48 or 96 hours of erlotinib
treatment (Fig. 2B). Thus, in our analysis [18F]FLT PET
appeared to be superior in detecting response of EGFR-mutant
tumors to EGFR inhibition than [18F]FDG PET.
We next analyzed cellular proliferation in tumors extracted

from the mice that had undergone PET imaging by Ki-67
staining. On visual microscopic inspection of these tissue
specimens, erlotinib-treated PC9 and HCC827 xenografts but
not H1975 tumors exhibited a substantial reduction in Ki-67
positive cells as compared to the vehicle-treated controls (Fig. 3A
and data not shown). Quantitative analysis revealed that
[18F]FLT uptake ratios correlated significantly with expression
of Ki-67 (r = 0.87, p,0.001, Fig. 3B). By contrast, the
correlation with [18F]FDG PET was far lower (r = 0.38,
p = 0.037, Fig. 3B). Thus, [18F]FLT-based in-vivo measure-
ments of inhibition of proliferation are correlated with in vitro
assessed cellular proliferation.
In order to determine whether our in vitro observation of

apoptosis following cell cycle arrest was reflected in vivo we
analyzed tumor specimens extracted after 4 days of erlotinib
treatment for the presence of apoptotic cells by TUNEL staining.
This analysis revealed the presence of apoptotic cells in the
sensitive cell lines but not in the T790M-carrying tumors (Fig. 3A).
Furthermore, the appearance of apoptotic cells in the sensitive
cells was reflected in dramatic tumor shrinkage starting at day 6 of
treatment (Fig. 3C). Together, these findings show that that a
decrease in [18F]FLT PET is not only reflective of tumor cells
arrested in G1 but predicts induction of apoptotic cell death and
tumor response in EGFR-addicted tumors treated with erlotinib.
The assessment of therapy response poses a great challenge in

oncology. In particular, the advent of molecularly targeted cancer
therapeutics questions the relevance of conventional morphology-
based response methods such as those defined in the RECIST
criteria [16]. Here, we show that [18F]FLT PET enables detection
of a therapeutic response in mice receiving erlotinib treatment for
EGFR-mutant lung cancer as early as 48 hours after onset of
treatment. Strikingly, we reliably saw [18F]FLT PET responses
when morphological changes were still absent and 4 days before
actual tumor shrinkage was observed. The observed responses
were specifically due to inhibition of EGFR kinase activity as mice
with tumors expressing the T790M resistance allele of EGFR did
not exhibit any signs of apoptosis or therapeutic response.
Furthermore, early detection of treatment response was limited
to [18F]FLT PET. [18F]FDG PET measurements that had
previously been suggested for this purpose [9] failed in our study
to robustly identify the responding tumors after only two days of
treatment. We suggest that glucose metabolism as assessed by
[18F]FDG PET rather indirectly reflects tumor cell proliferation
and is therefore not a suitable marker for EGFR inhibition at that
early stage of treatment. Thus, a therapy-induced reduction in
[18F]FDG PET signal is likely to be a later event, occurring during
actual tumor shrinkage.
In summary, [18F]FLT PET enables detecting tumor cells

arrested in G1 before morphological changes thereby providing a
surrogate marker for erlotinib-induced apoptosis and tumor
shrinkage at a very early time point. Thus, [18F]FLT PET might
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Figure 1. Erlotinib treatment induces down-regulation of EGFR/EGFR-coupled signaling pathways and cell cycle arrest with
subsequent induction of apoptosis in EGFR sensitive tumor cells. The erlotinib sensitive cell lines HCC827 and PC9 and the erlotinib-resistant
cell line H1975 were treated with the indicated doses of erlotinib for 24 hours. Whole-cell lysates were subjected to immunoblotting with the
indicated antibodies (A). PC9, HCC827 and H1975 cells were treated with erlotinib (0.5 mM) for 24h, 48h and 72h; nuclei were prepared, stained with
propidium iodide and analyzed by flow cytometry. Results are shown for the G1 and S phases of the cell cycle (A). Apoptotic effects of erlotinib on
EGFR-sensitive cell lines in comparison to the T790M mutant H1975 (B). Annexin V FACS was performed 12h, 24h, 36h, 48h, 72h and 96h after 0.5 mM
erlotinib treatment. Images show Annexin V-positive cells after 48h in the different cell lines.
doi:10.1371/journal.pone.0003908.g001
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be an appropriate method for the early identification of patients
benefiting from EGFR TKI treatment.

Materials and Methods

Cell cultures
We used the EGFR-tyrosine kinase inhibitor (TKI) sensitive

adenocarcinoma cell lines HCC827, PC9 and the resistant cell line
H1975. All cell lines were maintained in RPMI 1640 supplement-
ed with 10% heat inactivated fetal bovine serum (FBS, Roche
Diagnostics, Mannheim, Germany), 1% penicillin and 1%
streptomycin (P/S, Life Technologies) at 37uC in a 5% CO2/
95% air atmosphere.

Western blot analysis
Cells were serum-starved for 24h in the presence or absence of

erlotinib. After preparation of cell lysates phosphorylation level of
the proteins were determined using antibodies for total EGFR,
phospho-EGFR (pEGFR) (both purchased from Biosource), total
Akt and phospho-Akt (pAKT) (both obtained from Cell Signaling
Technology).

Apoptosis assay
Cells were plated in 6-well plates, after 24h of incubation treated

with erlotinib for 12h, 24h, 36h, 48h, 72h, and 96h and finally
harvested after trypsinization. Then cells were washed with PBS,
resuspended in Annexin-V binding buffer and finally stained with
Annexin-V-FITC and PI. FACS analysis was performed on a
FACS Canto Flow Cytometer (BD Biosciences, Germany) and
results were calculated using FACS Diva Software.

Cell cycle analysis
Cells were fixed and then treated with RNase A (500 mg/ml).

Following resuspension of the cells in propidium iodide and in
sodium citrate cells were analysed for DNA content by flow
cytometry.

Xenograft model
All animal procedures were in accordance with the German

Laws for Animal Protection and were approved by the local
animal committee and the Bezirksregierung Köln. Tumors were
generated by s. c. injecting 56106 tumor cells into nu/nu athymic
male mice. When tumors had reached a size of 100 mm3, animals
were randomized into two groups, control (vehicle) and erlotinib-
treated mice. Erlotinib (Tarceva) was dosed at 6% Captisol
(CyDex, Inc., Lenexa, KS) in water for solution over night. All
controls were dosed with the same volume of vehicle. After PET
measurement mice were treated daily by oral gavage of 50mg/kg
Tarceva. Tumor size was monitored every two days by measuring
perpendicular diameters. Tumor volumes were calculated from
the determination of the largest diameter and its perpendicular
according to the equation [tumor volume= a6(b2/2)].

PET imaging
Tumor bearing mice were investigated using a R4 microPET

scanner (Concord Microsystems, Inc., Knoxville, TN). [18F]FLT
and [18F]FDG synthesis were performed as described previously
[17,18]. No-carrier-added [18F]FLT was administered i.v. (tail
vein) into experimental animals with a dose of 200 mCi/mouse.
No-carrier-added [18F]FDG was injected intraperitoneally (i.p.)
with a dose of 300 mCi. Since the biodistribution of [18F]FDG is

Figure 2. [18F]FLT PET indicates response to therapy after 2 days of erlotinib treatment. In (A) a representative [18F]FLT PET image of a
mouse bearing the sensitive PC9, HCC827 and the resistant H1975 xenografts before beginning of treatment, 48h and 96h after daily erlotinib
treatment (Tarceva, 50mg/kg). (B) Quantitative analysis of changes in [18F]FLT and [18F]FDG uptake ratios after 48h and 96h daily erlotinib treatment
vs. vehicle only as control (PC9: n = 8; vehicle, n = 2; HCC827: n = 7; vehicle, n = 2; H1975: n = 8; vehicle, n = 2).
doi:10.1371/journal.pone.0003908.g002
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comparable for i.v. and i.p. injections after 60min and i.p.
injections allow for a more accurate dosage of tracer injection,
we decided to use intraperitoneal injections for [18F]FDG as
recently described [19,20]. All PET images were performed
60 min after injection. Data evaluation was based on a volume of
interest (VOI) analysis of the entire tumor. For data analysis we
used the maximal voxel radioactivity within the tumors. To
determine the uptake ratio we chose the mediastinum as
reference since we observed constant uptake for [18F]FLT and
[18F]FDG in this region. Data were decay corrected and divided
by the total injected dose to represent percentage injected dose
per gram (%ID/g).

Immunohistochemistry and TUNEL detection
After the last PET measurements animals were sacrificed and s.c.

tumors were extracted. After fixation (4% paraformaldehyde, 4uC,
24h; 30% sucrose, 4uC, 24h), tumors were embedded in tissue
freezing medium (Jung, Nussloch, Germany) and cut in 10-mm
frozen sections. H&E staining on the tissue was done according to
standard protocols. Tumor proliferation was assessed using an anti-
Ki-67 monoclonal antibody (1:200 dilution, KI6811C06, DCS,

Hamburg, Germany), and the percentage of specifically stained
cancer cells for Ki-67 was calculated. The number of Ki-67 positive
nuclei was determined as percentage of Ki-67 stained nuclei per total
number of nuclei in three representative tumor areas ((F1+F2+F3)/3
(%)) that contained the highest average fraction of labelled cells as
described recently [14]. To quantify the number of apoptotic
positive cells TUNEL was performed on cryostat tumor slices with
the DeadEndTM TUNEL system (Promega) following the manufac-
turer’s directions. The average numbers of TUNEL positive were
counted in three randomly selected fields in two tumor samples from
each cell line.

Statistical analysis
Wilcoxon test was performed using SPSS software (release

11.0.1 SPSS, Inc., Chicago. IL.USA), statistical significance was
set at p,0.05.
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Methyl-L-11C-methionine (11C-MET) PET has been shown to de-
tect brain tumors with a high sensitivity and specificity. In this
study, we investigated the potential of 11C-MET PET to nonin-
vasively detect tumor progression in patients with gliomas.
Moreover, we analyzed the relationship between changes in
11C-MET uptake on PET and changes in various molecular im-
munohistochemical markers during progression of gliomas.
Methods: Twenty-four patients with histologically proven glioma
were investigated repeatedly with 11C-MET PET. 11C-MET
uptakewas determined for a circular region of interest. Histologic
and molecular analyses for tumor progression were performed
after open surgery and stereotactic biopsy, respectively.
Results: In patients with malignant progression, the mean in-
crease in 11C-MET uptake was 54.4% (SD, 45.5%; range,
3.1%2162.2%), whereas in patients without a change in tumor
grade, mean 11C-MET uptake did not significantly change
(3.9%; SD, 13.7%; range, 224.4% to 26.3%). The difference in
the change in 11C-MET uptake between the groupwithmalignant
progression and the group without malignant progression was
highly significant (P, 0.001). Receiver-operating-curve analysis
revealed a sensitivity of 90% and a specificity of 92.3% for the
detection of malignant transformation by an increase in 11C-
MET uptake of more than 14.6%. Increased 11C-MET uptake of
more than 14.6% was indicative of malignant progression in all
but 3 leave-one-out iterations. A detailed immunohistochemical
analysis demonstrated a significant correlation between
changes in 11C-MET uptake and the expression of vascular en-
dothelial growth factor. Conclusion: These data suggest that
11C-MET-PET represents a noninvasive method to detect malig-
nant progression in patients with gliomas. Moreover, the in-
crease in 11C-MET uptake during malignant progression is
reflected by an increase in angiogenesis-promoting markers as
vascular endothelial growth factor.

Key Words: [11C]MET; PET; gliomas; malignant progression;
angiogenesis
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Gliomas are the most common primary brain tumors.
More than 50% of gliomas belong to the malignant subtype
glioblastoma (1). The most important criterion for therapeu-
tic management and prognosis is histologic grading. WHO
grade II gliomas have a median overall survival of more than
5 y, whereas anaplastic gliomas show a median survival of
only 2–5 y (2). Most patients with glioblastoma succumb to
the disease within 2 y (2). Thus, noninvasive imaging–based
technology for the detection of malignant progression is
required to select the best possible treatment regimen.

Several studies evaluated methyl-L-11C-methionine
(11C-MET) PET for monitoring the effect of treatment and
for differentiating recurrent tumor from radiation necrosis
(3–7). Uptake of 11C-MET is facilitated by amino acid
transporter, which is upregulated in glioma capillaries
(8). 11C-MET PET detects the most malignant parts of
brain tumors, as well as infiltrating areas, with high sensi-
tivity and specificity (9,10). 11C-MET uptake correlates
with microvessel density (9) and with the proliferative cell
nuclear antigen index (11), demonstrating its relevance
for evaluation of tumor malignancy. Although 11C-MET
uptake correlates with tumor grade (12,13), high interindi-
vidual variability in 11C-MET uptake does not allow for
accurate noninvasive grading (14).

The purpose of this study was to investigate the accuracy
of intraindividual changes in 11C-MET uptake as a non-
invasive indicator of malignant progression in gliomas and
to compare changes in 11C-MET uptake with changes in the
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molecular profile as determined by immunohistochemistry
from tissue samples.

MATERIALS AND METHODS

Patients
This retrospective study included 24 patients with primary

supratentorial cerebral gliomas (½Table 1" Table 1). We investigated 14 male
patients and 10 female patients (mean age, 40 y; SD, 11.6 y). Each
patient gave written informed consent for additional PET imaging,
which is not a standard diagnostic tool for patients with gliomas in
Germany. All patients who underwent repeated 11C-MET PET and
had a corresponding neuropathologic diagnosis during the period
from 1993 to 2006 were included in the study (½Fig: 1" Fig. 1). The 11C-
MET PET investigations were part of the routine preoperative
diagnostic procedure and were used to guide the biopsy so that the
tumor portion with the highest 11C-MET uptake would be
obtained. Repeated PET investigations with corresponding biopsy
were performed when there were findings suggestive of tumor
progression on MRI or CT or suggestive clinical symptoms. The
interval between PET measurements varied from 1 mo to 6 y. In
total, data from 57 PET scans that had a corresponding histologic
diagnosis within the following 3 weeks were available for
24 patients. 11C-MET PET was performed after combined radio-
and chemotherapy in 9 of 57 cases, after radiotherapy alone in 8 of
57 cases, and without preceding radio- or chemotherapy in 40 of
57 cases.

All 24 patients underwent baseline 11C-MET PET, 16 of 24
underwent follow-up 11C-MET once, 7 of 24 underwent follow-up
11C-MET twice, and 1 of 24 underwent follow-up 11C-MET
3 times. Information on the patients included age, sex, presence of

contrast enhancement on MRI or CT, and extent of surgical
resection (13 stereotactic biopsies, 23 subtotal resections, and
21 macroscopic total resections). The tumors were graded accord-
ing to the World Health Organization (WHO) classification for
neuroepithelial tumors (2).

In the initial histologic diagnosis, tumor types were distributed
as follows: WHO grade II astrocytoma (n 5 10), WHO grade III
anaplastic astrocytoma (n 5 3), WHO grade II oligoastrocytoma
(n 5 7), WHO grade III anaplastic oligoastrocytoma (n 5 2),
WHO grade II oligodendroglioma (n 5 1), and WHO grade III
anaplastic oligodendroglioma (n 5 1) (Table 1).

PET Studies
For PET imaging, we used an ECAT EXACT scanner (CTI/

Siemens; in-plane full width at half maximum, 6 mm; slice
thickness, 3.375 mm; axial field of view, 162 mm) and an ECAT
EXACT HR scanner (CTI/Siemens; in-plane full width at half
maximum, 3.6 mm; slice thickness, 3.125 mm; axial field of view,
150 mm) (15,16). Subsequent imaging was performed on the same
scanner. All patients fasted for at least 4 h before undergoing PET.
Images were acquired with the patient supine with eyes closed.
Before tracer application, a 10-min transmission scan with
3 rotating 68Ga/68Ge sources was obtained. 11C-MET was synthe-
sized according the method of Berger et al. (17) and injected
intravenously as a bolus injection of 740 MBq (20 mCi).
Accumulation of the tracer was recorded 0–60 min after tracer
injection. For assessment of 11C-MET PET images, frames
recorded 20–60 min after tracer application in 47 transaxial slices
of the entire brain were used. The spatial resolution was 6 mm or
better in all dimensions.

TABLE 1. Patient Data at Study Entry

Patient no. Age (y) Sex Initial histology and WHO grade Resection Radiotherapy before PET Chemotherapy before PET

1 32 F Astrocytoma II T/P Yes (9)/yes (3) Yes (9)/no
2 46 F Oligoastrocytoma II S/P No/no No/no
3 10 M Astrocytoma II T/T No/yes (6) No/yes (6)
4 40 F Astrocytoma II P/P/P No/no/yes (36) No/no/yes (36)
5 28 M Astrocytoma II S/S No/yes (150) No/no
6 49 F Oligoastrocytoma II T/T No/no No/no
7 26 M Oligoastrocytoma II T/P/P No/no/yes (159) No/no/no
8 35 M Astrocytoma III S/S No/yes (24) No/yes (24)
9 32 F Oligoastrocytoma II T/T/T/T No/yes (376)/yes (53)/no No/no/no/no

10 35 F Oligoastrocytoma II P/P Yes (156)/no No/no
11 53 M Oligodendroglioma II T/P/P No/yes (126)/no No/no/no
12 29 M Astrocytoma II T/S No/no No/no
13 40 M Oligoastrocytoma II T/T/P No/no/yes (12) No/no/yes (12)
14 30 M Oligoastrocytoma III P/P No/no No/no
15 23 M Astrocytoma III P/T No/yes (50) No/yes (50)
16 27 F Oligodendroglioma III S/P No/yes (9) No/yes (9)
17 39 M Oligoastrocytoma II T/T No/no No/no
18 38 F Astrocytoma II T/T/S No/no/yes (102) No/no/no
19 57 F Astrocytoma II S/T No/no No/no
20 37 M Astrocytoma II S/T/T No/no/yes (25) No/no/yes (25)
21 34 M Astrocytoma II P/S No/no No/no
22 59 F Astrocytoma II P/P/P No/no/no No/no/no
23 47 M Oligoastrocytoma III O/P No/yes (25) No/yes (25)
24 58 M Astrocytoma III S/P No/no No/no

T 5 total resection; P 5 partial resection; S 5 stereotactic biopsy; O 5 open biopsy.
Data in parentheses are interval (in weeks) between PET scan and chemo- or radiotherapy.
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In 20 of 24 patients, 48 of 57 PET scans had corresponding
contrast-enhanced MRI (n5 36) or CT (n5 12) scans. In 12 of 24
patients, MRI and PET were performed, in 6 of 24 patients MRI
and CT and PET were performed, in 2 of 24 patients CT and PET
were performed, and in 4 of 24 patients only PET was performed.
Regions of 11C-MET uptake were compared with areas of contrast
enhancement on MRI or CT.

PET data were evaluated using a region-of-interest analysis.
Because 11C-MET uptake at later imaging times more specifically
reflects transport activity, we used summed images covering the
time frame 20–60 min after injection for data analysis. As
described by Herholz et al., a circular region of interest 7 mm
in diameter was placed on the area of highest 11C-MET uptake to
determine the maximal tracer uptake (18). A mirrored, contralat-
eral region of interest of the same diameter was placed as
a reference. The relative index of 11C-MET uptake was calculated
as the ratio of tumor area to reference area. The change in 11C-
MET uptake was defined as the relative percentage change in 11C-
MET uptake between 2 subsequent scans of the same patient.

MRI/CT Studies
MRI was performed on a 1.5-T system (Gyroscan ACS-NT;

Philips Medical Systems) using a head coil. T1-weighted spin-
echo enhanced images were acquired with a slice thickness of
2 mm and a matrix of 512 · 512 pixels. To monitor gadopentetate

dimeglumine enhancement of the tumors, we used a T1-weighted
3-dimensional gradient-echo sequence. CT was performed after
administration of contrast medium (Solutrast 300R; Bracco). We
acquired 22–40 CT images 2 mm thick.

Histologic Analysis
Histologic analysis and immunohistochemistry of the biopsy

samples of the initial tumors of all patients, as well as recurrences
obtained by stereotactic biopsy or open surgery, were performed
on formalin-fixed, paraffin-embedded 4-mm sections. For immu-
nohistochemistry, we applied an automated staining system (Bio-
Genex) using the avidin-biotin-peroxidase complex technique,
with 3,39-diaminobenzidine as chromogene and H2O2 as cosub-
strate. In brief, classification of the tumors according to the WHO
classification of neuroepithelial tumors was based on hematoxylin
and eosin staining and immunohistochemistry with monoclonal
antibodies against rabbit antihuman MIB-1 (DCS, Innovative
Diagnostik-Systeme; clone SP6; dilution, 1:200) and mouse
antihuman p53 protein (BioGenex; clone 1801; dilution, 1:200)
and polyclonal rabbit antihuman antibodies against glial fibrillary
acidic protein and S100 protein (Dako; dilution, glial fibrillary
acidic protein, 1:1,000; S100-protein, 1:2,000). Advanced immu-
nohistochemistry was performed with the following monoclonal
mouse antihuman antibodies: epidermal growth factor receptor
(Merck; clone E30; dilution, 1:20), platelet-derived growth factor

FIGURE 1. 11C-MET PET of 39-y-old
man with malignant progression of re-
current glioma. (A) Newly diagnosed
grade II astrocytoma with average 11C-
MET uptake of 1.3 to contralateral
gray matter, with no enhancement on
contrast-enhanced CT and no immuno-
histochemical VEGF expression. (B)
One year later, patient presented with
malignant progression to grade III as-
trocytoma associated with significant
increase in 11C-MET uptake (to 2.1-fold)
and only slight contrast enhancement
outside metabolically active tumor. His-
tologic analysis from resection showed
increase in cellularity, numerous pleo-
morphic nuclei, and low VEGF expres-
sion. (C) In following year, resection of
tumor again confirmed malignant pro-
gression to glioblastoma multiforme,
showing markedly increased uptake of
11C-MET (to 2.8-fold), marginal contrast
enhancement on MRI, and ;35% of
tumor cells expressing VEGF (original
magnification, ·400). PET-guided biop-
sies were taken from region with highest
11C-MET uptake, which was in different
locations within same tumor over time.
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receptor (BD Biosciences; clone 28; dilution, 1:200), retinoblas-
toma protein (pRb) (Zymed Laboratories; clone Rb1; dilution,
1:50), pentaerythritol tetranitrate (PTEN) (Biogenex; clone 28H6;
dilution, 1:10), and vascular endothelial growth factor (VEGF)
(DCS; clone VG1; dilution, 1:50). Histologic evaluation was
performed by 2 independent neuropathologists. The number of
immunoreactive nuclei was determined, comprising 3 areas (F1,
F2, and F3) of 3 high-power fields each, with maximal frequency,
moderate frequency, and minimal frequency, respectively, of
immunoreactive nuclei. The number of positive nuclei was
determined as F1 plus F2 plus F3, divided by 3 (%).

Statistical Analysis
Statistical analyses were performed using SPSS software (release

11.0.1, SPSS Inc.). For correlation analysis, the Pearson method was
applied, with subsequent parametric tests; 2-sample ANOVA was
used for comparisons between the groups with and without malig-
nant progression. Tests were performed 2-sided at a significance
level of 0.05, and the P values were understood in an explorative
sense regarding the multiple-hypothesis problem. The sensitivity and
specificity of changes in 11C-METuptakewere calculated for several
thresholds, and the optimum cut-off was determined by receiver-
operating-characteristic analysis. An iterative leave-one-out ap-
proach was used to validate the receiver-operating-characteristic
analysis. At each step, 1 case (i.e. 1 follow-up) was left out of the
analysis; a fit of the model was produced for the remaining follow-
ups, and a malignant progression prediction was made for the left-
out case. Thus, each follow-up value was compared with the cohort
of the remaining 32 of 33 values with regard to its individual
percentage change in 11C-MET uptake. Moreover, baseline 11C-
MET uptake was included as a covariate in a Cox regression model
to investigate its relation to the time to histologic progression. To
avoid an artificial reduction of variance caused by the mixing of
independent and dependent observations, we used the data of only
the first follow-up investigation (n5 24) for all methods of statistical
inference (Pearson method and 2-sample ANOVA).

RESULTS

Malignant Progression as Detected by 11C-MET PET
For evaluation of the correlation between 11C-MET

uptake and histologic progression of the tumor, we calcu-
lated the percentage change in 11C-MET uptake between
the prior 11C-MET PET examination and the subsequent
examination. The percentage change in 11C-MET uptake
was then compared with the progression as assessed by
histology and immunohistochemistry.
For the 24 patients, 57 PET scans with corresponding

histologic investigations were available. Among the 24
patients, 16 patients underwent 1 follow-up investigation,
7 patients underwent 2, and 1 patient underwent 3, leading
to a total of 33 follow-up investigations. Among these 33,
20 showed histologically proven malignant progression of
the tumor. Eleven tumors progressed from grade II to grade
III, 6 from grade III to grade IV, and 3 from grade II to
grade IV. In 13 cases, the biopsy did not indicate malignant
progression.
The mean percentage increase in 11C-MET uptake

between PET studies in the group with histologically
proven malignant progression was 54.4% (SD, 45.5%;

range, 3.1%2162.2%). In contrast, the mean percentage
change in 11C-MET uptake in the group without a change
in tumor grade was 3.9% (SD, 13.7%; range, 224.4% to
26.3%) ( ½Fig: 2"Fig. 2). The mean difference in change in 11C-
MET uptake between the group with malignant progression
and the group without was highly significant (P , 0.001).

To identify the percentage increase in 11C-MET uptake
that best distinguished malignant from nonmalignant pro-
gression, we performed a receiver-operating-characteristic
analysis ( ½Fig: 3"Fig. 3) and calculated the sensitivity and speci-
ficity for each value. The percentage change in 11C-MET
uptake that best determined malignant progression was
14.6% (sensitivity, 90%; specificity, 92.3%). The area under
the curve was 0.96. At a threshold of 14.6%, we identified
in only 2 of 20 cases (10%) false-negative 11C-MET uptake
findings of malignant progression. In both these tumors, the
percentage increase in 11C-MET uptake was less than
14.6% (3.1% and 9.0%, respectively). Malignant progres-
sion in both these cases was from grade III to grade IV. We
had only 1 false-positive 11C-MET uptake finding; uptake
increased by 26.3% whereas the tumor remained histolog-
ically stable at grade II. For the 14.6% threshold, positive
predictive value was 94.7% and negative predictive value
was 85.7%. In the 33-fold cross-validation using the leave-
one-out strategy, we correctly classified 30 of 33 follow-up
investigations; 1 observation was false-positive and 2 were
false-negative, using the 14.6% threshold for change in
11C-MET uptake.

The increase in 11C-MET uptake clearly differed be-
tween progression from grade II to grade III and pro-
gression from grade III to grade IV, being 72.9% (SD,
46.2%) and 33.5% (SD, 35.4%), respectively ( ½Table 2"Table 2). The
change in uptake for progression from grade II to IV was
heterogeneous: 77% in 1 case but only 18.5% and 18.9% in
the other 2 cases.

We further analyzed the influence of baseline 11C-MET
uptake on the time to tumor progression but found no
interrelationship between these parameters (P 5 0.96).

FIGURE 2. Comparison of value of 11C-MET uptake ratio
at time of biopsy vs. percentage change in 11C-MET uptake
in distinguishing malignant from nonmalignant progression.
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Moreover, we compared absolute 11C-MET uptake ratios at
follow-up with changes in 11C-MET uptake for their
potential in distinguishing between malignant and non-
malignant progression: for changes in 11C-MET uptake in
patients with malignant progression (38.2%283.3%) and
without malignant progression (213.2% to 6.6%), the 95%
confidence intervals were separated, whereas for absolute
11C-MET uptake ratios at follow-up, the 95% confidence
intervals overlapped (1.5–2.7 uptake ratio for malignant
progression and 2.4–3.1 uptake ratio for stable disease),
suggesting that relative changes between uptake ratios more
sensitively distinguish malignant progression from stable
disease (Fig. 2).

Changes in Contrast Enhancement on MRI or CT
During Malignant Progression
For 48 of 57 PET investigations, corresponding MRI

(n 5 36) or CT (n 5 12) had been performed within 6 d
beforehand. Using a yes/no categorization, we analyzed for
the presence or absence of changes in tumor accumulation

of contrast agent in 28 PET-corresponding follow-up in-
vestigations. We compared regions of contrast enhance-
ment on the MRI or CTwith regions of increased 11C-MET
uptake ( ½Table 3"Table 3).

The MRI or CT measurements were obtained in 17 cases
of histologically proven malignant progression and in
11 cases of no progression. We did not observe coherence
between newly appearing contrast enhancement on MRI
and an increase in 11C-MET uptake and histologic malig-
nant progression. In 8 of 17 cases with histologically
proven malignant progression, tumor progression could be
detected by newly appearing contrast enhancement on MRI
or CT. In 6 of 17 cases, we observed contrast enhancement
at baseline as well as at follow-up. In 3 of 17 cases, we
observed contrast enhancement neither at baseline nor at
follow-up.

In 7 of 11 cases without histologically proven malignant
progression, we observed contrast enhancement on baseline
MRI or CT as well as at follow-up. In 1 of 11 cases, MRI
and CT showed contrast enhancement neither in the prior
investigation nor in the subsequent investigation. Three of
11 patients showed newly appearing contrast enhancement
on MRI without histologic signs of malignant progression.

Correlation of Molecular Changes on Immunostaining
with Metabolic Changes on 11C-MET PET

Histologic analysis was performed on the 52 biopsy
samples that corresponded to the PET investigation. All 52
samples were immunostained for Ki-67, VEGF, epidermal
growth factor receptor, p53, PTEN, platelet-derived growth
factor receptor, and pRb. To avoid an artificial reduction of
variance caused by mixing independent and dependent
observations, we used only the data of the first follow-up
investigations in determining correlations between changes
in 11C-MET uptake and changes in the expression of
molecular markers. Changes in the expression level of
VEGF correlated to changes in 11C-MET uptake (r 5 0.62,
P 5 0.005), indicating that an increase in 11C-MET uptake
was related to tumor angiogenesis ( ½Fig: 4"Fig. 4). No significant
correlation was observed between changes in 11C-MET
uptake and changes in the expression pattern of Ki-67,
epidermal growth factor receptor, p53, PTEN, platelet-
derived growth factor receptor, or pRb.

DISCUSSION

This study indicated that 11C-MET PET enables the
noninvasive detection of malignant progression in patients
who have gliomas with clinical or radiologic findings of

FIGURE 3. Receiver operating characteristic analysis to
identify change in 11C-MET uptake for differentiation
between malignant progression of tumor grade and no
malignant progression. Percentage increase that best
distinguished malignant progression from no malignant
progression was at threshold of 14.6%, with sensitivity of
90% and specificity of 92.3%.

TABLE 2. Changes in 11C-MET Uptake in Patients Without Tumor Progression or with Various Degrees
of Progression

Malignant progression

Parameter None (n 5 13) From grade II to III (n 5 11) From grade III to IV (n 5 6) From grade II to IV (n 5 3)

Mean 3.9% 72.9% 33.5% 38.1%
SD 13.7% 46.2% 35.4% 33.6%
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tumor progression. Moreover, a correlation was found
between changes in 11C-MET uptake and changes in VEGF
expression, suggesting a potential link between amino acid
transport and tumor angiogenesis.
In gliomas, the early detection of malignant transforma-

tion from WHO grade II to grade III or from WHO grade
III to grade IV is of high clinical importance because the
decision to apply a specific treatment depends mainly on
the WHO grade. The mean interval for progression from
low-grade glioma to high-grade glioma ranges from 4 to 5 y
(19,20). Moreover, malignant progression in gliomas is
unpredictable and in many cases not clearly detectable on
the basis of clinical symptoms or MRI findings alone. Thus,
11C-MET PET might provide sensitive and specific in-
formation on tumor activity and malignant progression in
patients with gliomas when a clear answer cannot be
obtained on the basis of clinical or MRI findings alone.
Repeated 11C-MET PET gives a clear indication of malig-
nant glioma progression and should be used in conjunction
with MRI to decrease the need for diagnostic stereotactic
interventions.
One major limitation of the study was the lack of an

independent sample of patients without clinical or radio-
logic signs of malignant progression to validate the accu-
racy of the calculated threshold for the change in 11C-MET
uptake. However, because of the radiation exposure and the
risks related to invasive stereotactic biopsies, the inclusion
of patients without signs suggestive of malignant pro-

gression is not ethically feasible. Thus, we performed
a cross-validation in a leave-one-out strategy for all re-
ceiver-operating-characteristic analyses to confirm whether
the assessed threshold for changes in 11C-MET uptake was
accurate in indicating malignant progression. However,
1 patient in the study showed an increase in 11C-MET
uptake without histologic signs of malignant progression.
Thus, future prospective studies with constant time points
between 11C-MET PET investigations are required to
confirm the accuracy of the determined threshold and to
validate the specificity of 11C-MET PET in detecting
malignant progression.

Although it has been shown that the high interindividual
variability of 11C-MET PET does not allow for glioma
grading at first diagnosis (14)—most likely because of the
differential effects of oligodendroglial tumor components
on tumor vessels and the related amino acid uptake—we
here demonstrated that 11C-MET PET may be valuable for
the intraindividual follow-up of biologically active glioma
tissue after treatment to determine the time of tumor
progression. The important parameter is not the absolute
11C-MET uptake ratio but the change between two 11C-
MET measurements within the same individual.

We further sought to analyze the relationship between
changes in 11C-MET uptake and molecular markers as
assessed by immunohistochemistry. We found that changes
in 11C-MET uptake are related to VEGF expression. It is
well known that the mammalian target of rapamycin is
downstream from the VEGF/VEGF receptor 2 pathway via
phosphatidylinositol-39-kinase/AKT regulated by VEGF
(21,22). Mammalian target of rapamycin again modulates
amino acid transport by regulating the expression of L-type
amino acid transporter 1 (23). Although the correlation
between changes in 11C-MET uptake and VEGF expression
is relatively weak, we hypothesize that there might be
a crosslink between VEGF receptor 2 signaling and amino
acid transport. The activation of VEGF/VEGF receptor
2 signaling induces mammalian target of rapamycin kinase
activity, with mammalian target of rapamycin being a key
enzyme regulating amino acid transport. The hypothesis
that 11C-MET uptake may serve as a surrogate marker for
activated VEGF receptor signaling remains to be investi-
gated. We did not find a significant correlation between
changes in epidermal growth factor receptor, PTEN, pRb,
p53, Ki-67, or platelet-derived growth factor receptor
expression and changes in 11C-MET uptake. Although
epidermal growth factor, PTEN, pRb, p53, and Ki-67 are
major factors in the genetic pathway to malignant trans-
formation in gliomas, they contribute mainly to changes in
the cell cycle and therefore cell proliferation (24–27).

One major effect of VEGF is the induction of vascular
permeability, with consequent disruption of the vascular
barrier (28,29). To evaluate the relationship between 11C-
MET uptake and leakage of the blood–brain barrier, we
further analyzed whether 11C-MET uptake is accompanied
by contrast enhancement on MRI as a marker of high

TABLE 3. Changes in Contrast Enhancement in Relation
to Histologically Proven Malignant Progression

Newly appearing contrast
enhancement on MRI/CT

Malignant progression Present Absent

Present 8 9
Absent 3 8

FIGURE 4. Correlation between changes in expression of
VEGF and changes in 11C-MET uptake during first follow-up
investigation.
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vascular permeability. Interestingly, we observed in 21%
of the patients 11C-MET accumulation without contrast
enhancement on MRI. This observation underlines—as
reported in previous studies—the fact that 11C-MET uptake
is not related mainly to an elevated diffusion through
leakage of endothelial cell–cell junctions but to specific
amino acid transporter systems (8,18,30). Consequently,
11C-MET can be considered a radiolabeled tracer for
determining the activity of the amino acid transport system
independently of the state of the blood–brain barrier.
We further examined the value of newly appearing

contrast enhancement in detecting malignant progression.
In this study, contrast enhancement on MRI or CT was not
indicative of malignant progression in WHO grade. Al-
though not all our patients underwent MRI, these findings
are in line with a previous study by Scott at al. describing
the inaccuracy of contrast enhancement as a marker for
assessing glioma malignancy in 314 patients (31). Over the
study period, new MRI parameters such as diffusion or
perfusion-weighted imaging were implemented in the di-
agnosis of brain tumors. It remains to be investigated
whether changes in diffusion or perfusion-weighted imag-
ing might allow for the detection of malignant progression
in patients with gliomas, as well.

CONCLUSION

These data suggest that 11C-MET PET is a marker for the
noninvasive detection of malignant progression in patients
with gliomas. Because of the relatively few patients in this
retrospective study, prospective studies are required to
further validate these results.
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Deutschen Forschungsgemeinschaft (Ja98/1-2), the 6th FW
EU grant EMIL (LSHC-CT-2004-503569), and Clinigene
(LSHB-CT-2006-018933).

REFERENCES

1. Statistical Report: Primary Brain Tumors in the United States, 1997–2001.
Hinsdale, IL: Central Brain Tumor Registry of the United States; 2004.

2. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of
tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

3. Tsuyuguchi N, Takami T, Sunada I, et al. Methionine positron emission
tomography for differentiation of recurrent brain tumor and radiation necrosis
after stereotactic radiosurgery: in malignant glioma. Ann Nucl Med. 2004;18:
291–296.

4. Jacobs AH, Kracht LW, Gossmann A, et al. Imaging in neurooncology. NeuroRx.
2005;2:333–347.

5. Jacobs AH, Li H, Winkeler A, et al. PET-based molecular imaging in neu-
roscience. Eur J Nucl Med Mol Imaging. 2003;30:1051–1065.

6. Thiel A, Pietrzyk U, Sturm V, Herholz K, Hovels M, Schroder R. Enhanced
accuracy in differential diagnosis of radiation necrosis by positron emission
tomography–magnetic resonance imaging coregistration: technical case report.
Neurosurgery. 2000;46:232–234.

7. Van Laere K, Ceyssens S, Van Calenbergh F, et al. Direct comparison of 18F-
FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity,
inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging.
2005;32:39–51.

8. Miyagawa T, Oku T, Uehara H, et al. ‘‘Facilitated’’ amino acid transport is
upregulated in brain tumors. J Cereb Blood Flow Metab. 1998;18:500–509.

9. Kracht LW, Friese M, Herholz K, et al. Methyl-[11C]-l-methionine uptake as
measured by positron emission tomography correlates to microvessel density in
patients with glioma. Eur J Nucl Med Mol Imaging. 2003;30:868–873.

10. Kracht LW, Miletic H, Busch S, et al. Delineation of brain tumor extent with
[11C]L-methionine positron emission tomography: local comparison with
stereotactic histopathology. Clin Cancer Res. 2004;10:7163–7170.

11. Sato N, Suzuki M, Kuwata N, et al. Evaluation of the malignancy of glioma
using 11C-methionine positron emission tomography and proliferating cell
nuclear antigen staining. Neurosurg Rev. 1999;22:210–214.

12. Derlon JM, Bourdet C, Bustany P, et al. [11C]L-methionine uptake in gliomas.
Neurosurgery. 1989;25:720–728.

13. Ogawa T, Shishido F, Kanno I, et al. Cerebral glioma: evaluation with
methionine PET. Radiology. 1993;186:45–53.

14. Ceyssens S, Van Laere K, de Groot T, Goffin J, Bormans G, Mortelmans L.
[11C]methionine PET, histopathology, and survival in primary brain tumors and
recurrence. Am J Neuroradiol. 2006;27:1432–1437.

15. Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss WD.
Performance evaluation of the positron scanner ECAT EXACT. J Comput Assist
Tomogr. 1992;16:804–813.

16. Wienhard K, Dahlbom M, Eriksson L, et al. The ECAT EXACT HR: per-
formance of a new high resolution positron scanner. J Comput Assist Tomogr.
1994;18:110–118.

17. Berger G, Maziere M, Knipper R, Prenant C, Comar D. Automated synthesis of
11C-labelled radiopharmaceuticals: imipramine, chlorpromazine, nicotine and
methionine. Int J Appl Radiat Isot. 1979;30:393–399.

18. Herholz K, Holzer T, Bauer B, et al. 11C-methionine PET for differential
diagnosis of low-grade gliomas. Neurology. 1998;50:1316–1322.

19. Watanabe K, Sato K, Biernat W, et al. Incidence and timing of p53 mutations
during astrocytoma progression in patients with multiple biopsies. Clin Cancer
Res. 1997;3:523–530.

20. McCormack BM, Miller DC, Budzilovich GN, Voorhees GJ, Ransohoff J.
Treatment and survival of low-grade astrocytoma in adults: 1977–1988.
Neurosurgery. 1992;31:636–642.

21. Riesterer O, Zingg D, Hummerjohann J, Bodis S, Pruschy M. Degradation of
PKB/Akt protein by inhibition of the VEGF receptor/mTOR pathway in
endothelial cells. Oncogene. 2004;23:4624–4635.

22. Kim BW, Choi M, Kim YS, et al. Vascular endothelial growth factor (VEGF)
signaling regulates hippocampal neurons by elevation of intracellular calcium
and activation of calcium/calmodulin protein kinase II and mammalian target of
rapamycin. Cell Signal. 2008;20:714–725.

23. Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer:
partners in crime? Semin Cancer Biol. 2005;15:254–266.

24. Narita Y, Nagane M, Mishima K, Huang HJ, Furnari FB, Cavenee WK. Mutant
epidermal growth factor receptor signaling down-regulates p27 through
activation of the phosphatidylinositol 3-kinase/Akt pathway in glioblastomas.
Cancer Res. 2002;62:6764–6769.

25. Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the
response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353:
2012–2024.

26. Giacinti C, Giordano A. RB and cell cycle progression. Oncogene.
2006;25:5220–5227.

27. Ohgaki H, Dessen P, Jourde B, et al. Genetic pathways to glioblastoma:
a population-based study. Cancer Res. 2004;64:6892–6899.

28. Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced
vascular permeability. Nature. 2005;437:497–504.

29. Rosenstein JM, Mani N, Silverman WF, Krum JM. Patterns of brain
angiogenesis after vascular endothelial growth factor administration in vitro
and in vivo. Proc Natl Acad Sci USA. 1998;95:7086–7091.

30. Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA. Radiolabeled
amino acids: basic aspects and clinical applications in oncology. J Nucl Med.
2001;42:432–445.

31. Scott JN, Brasher PM, Sevick RJ, Rewcastle NB, Forsyth PA. How often are
nonenhancing supratentorial gliomas malignant? A population study. Neurology.
2002;59:947–949.

jnm065904-sn n 11/6/09

1968 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 50 • No. 12 • December 2009



  67 

10.    Erklärung 

 

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, 
die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der 
Arbeit – einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im 
Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung 
kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder 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