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Zusammenfassung

Auch heutzutage noch übertre�en so genannte "primitive Spezies" wie Insek-

ten jede von Menschen entwickelte Fortbewegungsmaschine in Punkto Agilität,

Anpassungsfähigkeit und Zuverlässigkeit - um nur einige zu nennen. Die vor-

liegende Arbeit beleuchtet zwei wichtige Aspekte, die wesentlich zur Überlegen-

heit der biologischen, terrestrischen Lokomotionsysteme beitragen, nämlich Be-

wegungssteuerung und Muskeleigenschaften.

Im ersten Teil wird ein neuartiger Steuerungsansatz für die Kontrolle von

mehrsegmentigen Beinen vorgestellt, welcher die komplexen Berechnungen, die

üblicherweise zur Kontrolle kinematischer Ketten notwendig sind, über�üs-

sig macht. Das Steuerungsprinzip basiert auf spezi�schen sensomotorischen

Regeln, die aus mehreren Jahrzehnten Forschung an der Stabheuschrecke (Ca-

rausius morosus) gewonnen wurden. Mittels einer physikalischen Simulation

des Stabheuschreckenkörpers wird gezeigt, dass die für die Stabheuschrecke

bekannten Mechanismen zur Koordination von Beinsegmenten hinreichend sind,

um im Mittelbein stabile, periodische Laufbewegungen zu erzeugen. Weiterhin

war es mit Hilfe des Steuerungsprinzips auch möglich Vorder- und Hinterbeinbe-

wegungen zu kontrollieren, wobei für die erfolgreiche Kontrolle des Hinterbeins

eine leichte Veränderung im Regelsatz notwendig war.

Der zweite Teil dieser Arbeit, der aus drei Kapiteln besteht, behandelt die Mod-

ellierung des Extensors tibiae, eines der Hauptbeinmuskeln. Der Muskel ist das

zentrale Element jeder Bewegungsform und mittlerweile ist unumstritten, dass

Muskeln komplexe und sehr variable Eigenschaften haben. Die Zusammen-

hänge zwischen Aktivität im Motorneuron und der letztendlich resultierenden

Bewegung können in der Regel nur mit Hilfe von Computermodellen und Sim-

ulationen nachvollzogen werden.

Es wird zunächst beschrieben wie das Modell eines einzelnen, individuellen Ex-

tensormuskels erstellt werden kann. Dieser Ansatz erfordert, dass alle Kennlin-

ien, die zur Erstellung eines klassischen Hill-Modells notwendig sind, an einem

einzelnen Muskel experimentell bestimmt werden können. Hierzu ist es nötig,

die Anzahl und Dauer der Muskelmessungen und Stimulationen auf ein Min-

imum zu reduzieren, sodass der Muskel das gesamte Protokoll ermüdungsfrei

überstehen kann.
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Im Anschluss an die Darstellung dieses Ansatzes wird im nächsten Teil eine

Anwendung der individuellen Muskelmodelle gezeigt. Muskeln von 10 ver-

schiedenen Versuchstieren werden auf Unabhängigkeit ihrer Modellparame-

ter hin untersucht. Tatsächlich ergeben sich bei dieser Untersuchung Ab-

hängigkeiten in zwei Parameterpaaren - einmal zwischen zwei Parametern der

statischen passiven Kraftkurve, und einmal zwischen einem Parameter der

Kraft-Längenkurve und einem anderen der Kraft-Aktivierungskurve. Letz-

tendlich lassen beide Korrelationen darauf schlieÿen, dass das Modell noch

weiter reduziert werden könnte.

Im letzten Teil werden isometrische und isotonische Simulationen mit unter-

schiedlichen Kon�gurationen des Modells durchgeführt. Hier wird der Frage

nachgegangen, inwieweit sich eine Mittelwertbildung unterschiedlicher Modell-

parameter auf die Leistungsfähigkeit des Modells auswirkt. Dies wird an vier

unterschiedlichen Modellkon�gurationen untersucht, die sich nur im Anteil an

gemittelten Parametern unterscheiden.

Es zeigt sich, dass im Vergleich zu einem Modell welches ausschlieÿlich aus

gemittelten Parametern besteht, das muskelspezi�sche Modell um etwa 40%

besser ist.



Abstract

It is a matter of fact that even so called �primitive species� (like insects) readily

outperform any human locomotive invention with respect to agility, adaptabil-

ity and reliability � to name the least. The work at hand deals with two aspects

that contribute to the pre-eminence of biological, terrestrial locomotor systems,

namely motion control and muscle properties.

In the �rst part of this work, a new, biologically well-founded approach for the

control of articulated legs is presented. This controller, based on the detailed

physiological knowledge of the stick insect's (Carausius morosus) leg control,

redundantizes complex forward or backward kinematic calculations by dexter-

ous employment of sensory feedback and muscle properties.

This section shows that the collection of segmental coordination rules (which

have been studied in the stick insect for several decades) is indeed able to gen-

erate periodic, robust middle leg stepping movements in a physical simulation

of the animal. Furthermore, the controller is capable of handling stepping in

the front and hind leg; although for hind leg stepping minor modi�cations were

necessary.

The second part of this work is about muscle modeling and it is divided into

three chapters. Lynchpin of any motion is the muscle, and nowadays it is well-

accepted that muscle properties are complex and highly variable. Hence, no

trivial relationship between motor neuron activity and motion can be expected

and typically, computer modeling is required to link the two.

This part therefore �rst describes how a model of the stick insect's extensor

tibiae muscle can be developed for individual muscles. The approach presented

o�ers a way to measure and model all properties for the generation of a clas-

sical Hill-type model, in a single animal. Therefore it was necessary to reduce

the number of measurements, stimulations and the overall time span of the

experiment to a degree this muscle could take without severe loss in vitality.

After this approach has been described, the next section deals with a possible

application of individual muscle modeling. The variation of muscle model pa-

rameters is investigated for 10 di�erent individuals. The question of parameter

independence is addressed, and in fact it could be shown that there is co-
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variation between two di�erent pairs of parameters. One correlation was found

between two parameters modeling passive static force curve, the other between

one parameter of the force-length and one of the force-activation curve. Both

correlations suggest that the model can be reduced further.

In the �nal section, isometric and isotonic simulations were performed with

di�erent model con�gurations. It is investigated how far averaging parameters

of di�erent animals would in�uence model performance. This is studied by

comparing the error produced by four di�erent model con�gurations, di�ering

in their share of averaged parameters. Compared to a model entirely composed

of averaged parameters, performance of the muscle speci�c model improves by

approximately 40%.
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1 Overview

This section is called overview, because each chapter has its own, non repetitive

introduction. At this place I would like to explain the linkage between the

chapters and why they are sequenced the way they are.

This work is divided into four parts, three of them dealing with a detailed

description of a model of the stick insect's (Carausius morosus) middle leg

extensor tibiae muscle. Chapter 2, however, deals with a neuro-mechanical

simulation, which sits in �rst place as these investigations initiated the muscle

studies in the following chapters.

The simulations in chapter 2 were performed with a very simple muscle model,

and led to the conclusion that proper kinematics cannot be achieved without

a realistic muscle model. These experiences motivated the development of an

improved extensor tibiae model. The development of this model turned out to

be a long and bendy road and the model as it is presented in chapters 3-5 is

the result of endless recursive trials and improvements.

In chapter 3 I present the experimental and theoretical approach that were

used to build the model. It is important to understand how the data basis was

acquired and what processing was used for generating the model parameters,

because the approach used is quite unusual. Due to the large variation observed

in these muscles, the models were based on data of individual muscles. This

process involved a sophisticated experimental paradigm, which is elaborated in

chapter 3.

The next chapter deals with muscle variability. The possibility to generate

models of individual muscles provides a tool for investigating inter-muscle vari-

ation. Thus, chapter 4 is an application of the individual muscle modeling

approach presented in chapter 3.

Finally, chapter 5 investigates the performance of the individual models. A

bene�t of having an individual model is that its output can be compared to the

output of the muscle it was made from. This o�ers very sensitive performance

comparison and evaluation. But the major point in chapter 5 is to investigate

the e�ect of using averaged parameters in modeling. Four di�erent model
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1 Overview

con�gurations are compared, which contain di�erent con�gurations of averaged

parameters.

It now appears that this work primarily deals with muscle modeling, but its

very own and initial motivation was based on neuro-mechanical simulation.
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2 Simulation of insect walking

2.1 Introduction

Understanding biological control of animal motion, in particular walking, is an

important research topic. It is interdisciplinary, challenging and its prospec-

tive results may in�uence biological, medical (e.g. prosthetics) and technical

domains (e.g. robot design).

Animal motion involves numerous biomechanical and neuronal mechanisms

(Dickinson et al., 2000; Chiel et al., 2009) and several studies have investigated

the combination of neuronal control, behavior, kinematics and biomechanics

(Dickinson, 2006; Novakovic et al., 2006; Ritzmann and Büschges, 2007; Grill-

ner et al., 2008; Pearson, 2008)

A special type of these complex models are so called �musculoskelal models�.

They are mainly developed for humans - (for review see Pandy, 2001; Zajac

et al., 2002; Zajac, 2002; Zajac et al., 2003) and have a variety of applications

like improvement of motion physics in sports to analysis of soft tissue damages

during accidents (see for example Anthony, 2002). However, some biomechan-

ical models of invertebrate systems exist (nicely reviewed in Pearson et al.,

2006; Edwards, 2010). Very prominent invertebrat models are for example the

simulation of feeding behavior in Aplysia (Yu et al., 1999) and cockroach hind

leg (Full and Ahn, 1995).

Walking is a particular challenging aspect of this research, due to its inher-

ent circular and feed back nature. It results of an interweavement of neuronal

pattern generation, electro-mechanical transformation, sensory feedback, envi-

ronmental loops as well as biophysical and biomechanical constraints (Pearson,

1993b; Bässler and Büschges, 1998; Kubow and Full, 1999; Duysens et al., 2000;

Holmes et al., 2006). This richness of inter-dependent mechanisms makes it dif-

�cult to design and interpret experiments an thus simulations including sensory

feedback were developed (Ekeberg, 1993; Ekeberg and Pearson, 2005).

Until the end of the 1990's, the stick insect (Carausius morosus), although be-

ing a model system for locomotion for several decades, has not entered the world
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2 Simulation of insect walking

of computer simulation. Sophisticated experiments have revealed a great deal

of knowledge about the neuronal and behavioral bases of walking and walking

control (Bässler, 1983; Cruse, 1990; Bässler, 1993; Bässler and Büschges, 1998).

In general two types of experiments had contributed to this knownledge. On

the one hand neuro-physiological studies, in particular these of sense organs

and their integration into stepping cyle. But these experiments are hard to do

under closed-loop conditions. The animal usually has to be �xated, dissected

and frequently legs not under investigation have to be removed.

Behavioral experiments, on the other hand, are easy to do (and are inherently

closed-loop). The animal is usually intact and more or less free to move, but

insights into the underlying neuronal mechanisms can only be indirectly inferred

and without additional experimental studies. This led to the situation that

much physiological detail was known on the low level, and many behavioral

observations were made on the high level, but the linkage of both was largely

missing.

Thus, the desire to get a more integrated understanding of walking and its

control, initiated the development of the �rst stick insect walking simulations

at the end of 1990 (Cruse et al., 1999, 2000). These simulations forti�ed coor-

dination rules derived from behavioral experiments by combining an arti�cial

neuronal network controller with a kinematic stick insect simulation. However,

these simulations did not model the neuronal mechanisms shown in the plenty

of neurophysiological experiments, thus it remained an open question how the

kinematic rules observed could be implemented on the neuronal level.

This issue has been approached by the development of neuro-mechanical, dy-

namic simulations (Hoy et al., 1990; Ekeberg, 1993; Loeb et al., 1999; Ekeberg,

2001; Ekeberg et al., 2004; Chiel et al., 2009; Pearson et al., 2006). These types

of simulations combine the modeling of neuronal principles (e.g. leg control)

with the Newton physics of rigid bodies and thus introduce a higher level of

realism and integration. Especially it is possible to study sensory systems un-

der closed loop conditions, preserving the full access to the detailed underlying

mechanisms.

Movement in these dynamic simulations is created by force being applied to a

mass. Mass motion can be further constraint in its degree of freedom to create

joints. However, the dynamic paradigm prohibits the direct speci�cation of

linear or angular body velocity therefore controllers used in kinematic simula-

tions (like the walk-net controller developed by Cruse et al.) can not be used

without substantial modi�cation.
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2.2 Simulation set up
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Figure 2.1: Key concepts of stick insect leg control. In panel a) is shown that each
major leg segment is controlled by a dedicated CPG (one for the thorax-coxa joint
(TC), one for coxa-trochanter (CT) and one for femur tibia joint (FT)). Loose coupling
can infrequently be observed between these CPGs (indicated by the dashed arrows
between the three oscillators). Each CPG has two mutual exclusive states (protraction
(Pro) or retraction (Ret), levation (Lev) or depression (Dep) and extension (Ext) or
�exion (Flex)). Switching into a state activates the associated motor system (dark
squares) which consists of motor neurons and muscles.
Panel b) shows how sensory information interacts with centrally generates rhythms.
The central oscillatory network (A and B in circles) generates rhythmic output and
activates their associated motor system (A and B in squares). This activation generates
movement which in turn is detected by sense organs (SO). These sensory signals
can both change the phase of the CPG and the amplitude of motor system activity
(adapted from Büschges, 2005).

In case of the stick insect many neurophysiological experiments have been per-

formed investigating the role of central and sensory in�uence on motorneuron

activity or muscle activation. None of these results can be easily related to

angular velocities, but they can be related to muscle force. This fact makes

dynamic simulations a means of choice for understanding how changes in neu-

ronal activity e�ects and possibly controls movement(Lloyd and Besier, 2003;

Zakotnik et al., 2006; Pearson et al., 2006; Chiel et al., 2009).

2.2 Simulation set up

2.2.1 Leg step controller

The leg stepping controller is responsible for the integration of all sensory inputs

and calculates muscle activation levels based on the instantaneous combination

of these signals. It is an important simpli�cation that this controller does not

keep track of its own state, all decisions made are purely due to the incoming

sensory information at any time. In understanding how the controller is set up

it might help to conceptually divide it into two parts. One part is responsi-
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2 Simulation of insect walking

ble for selecting which muscle to activate (muscle activation timing), another

part controls the activation amplitude of the active muscles (magnitude). This

division �ts well to the common hypothesis that muscle activation timing and

magnitude are separately controlled (Büschges, 2005). This idea is based on

�ndings showing that interneuronal networks are able to e�ect activation phas-

ing by in�uencing when a given muscle gets activated (e.g. Bässler and Wegner,

1983; Büschges et al., 1995) while signals from sense organs are processed in

parallel and e�ect how strong it is activated (e.g.Bässler and Büschges, 1998;

Büschges et al., 2000).

Figure 2.1 summarizes current ideas of walking pattern generation. Central

element of the controller organization is the joint oscillator (interconnected

circles). It could be shown that each joint is associated with a dedicated internal

oscillator (Bässler and Wegner, 1983; Büschges et al., 1995). Cycle coupling

between oscillators in the absence of sensory input occurs very infrequently

and proved to be weak to establish a �ctive locomotion pattern for the whole

limb (the coupling is indicated by the dashed arrows between the oscillators in

Figure 2.1 a). Figure 2.1 a highlights this idea by presenting three basically

independent oscillatory systems, one for each of the major leg joints (thorax-

coxa (TC) joint, coxa-trochanter (CT) joint and femur-tibia (FT) joint). The

output of the internal oscillator is fed to the motor system (motor neurons,

muscles and tendons) represented by the dark boxes. Figure 2.1 b) shows

the current understanding of how sensory input and central pattern generators

cooperate. The CPG element controls the timing of muscle activation by either

activating motor system A or B. The active motor system eventually causes a

movement which in turn is detected by the sense organs (SO). They again feed

back into the CPG and the motor system. The CPG uses sensory information

mainly to coordinate its rhythm (it decides whether to stay in the current

activity phase, or to switch and activate the antagonistic motor system). The

sensory signals feeding into the motor system serve another purpose and are

used to tune muscle activation level (magnitude).

The controller used here, does not have an internal oscillator and thereforewill

not be able to generate movements without sensory feedback. However, al-

though internal oscillators (central pattern generators, CPG's) have been shown

to be activateable in almost all rhythmic locomotor systems (Grillner, 1985;

Pearson, 1993a; Marder and Bucher, 2001; Grillner, 2003; Pearson, 2004)their

proportion in controlling functional motor output unclear and most likely de-

pends on the kind of motor task. Especially in highly adaptable behaviors
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2.2 Simulation set up

like (slow) walking, sensory signals can be expected to in�uence the resulting

motor pattern that much, that one could expect meaningful simulation results

even in the absence of an internal oscillator. From a theoretical perspective, as

the timing of muscle activation is strongly determined by sensory information,

the CPG could be approximated with a constant arousal system, which possi-

bly might have phasic e�ects on the probability of a senor-induced activation

switching, but is not capable of dictating its periodicity to the motor neurons.

Therefore by omitting an internal oscillator, the probability of a sensor signal

causing a switch in muscle activation is arti�cially increased, but the results

should still be meaningful.

2.2.2 Simulation environment

The leg stepping controller operates in a three dimensional environmental simu-

lation. This simulation includes a six legged, physical model of the stick insect,

a surface to move on, gravity, body collision detection an realistic proportional

body masses. The simulator code was developed by Örjan Ekeberg in the C

computer language and it was exclusively adapted to the stick insect simula-

tions performed here. Stick insect body model, starting conditions, and all

other parameters were hard coded into the simulator. The leg stepping con-

troller however, was loaded during run time as a Python script, which allowed

�exible and easy experimentation with di�erent controller versions.

Leg Segment Length (mm) Mass (mg)

Front Coxa 1.61 0.43
Femur 17.85 10.30
Tibia 17.10 3.30

Middle Coxa 1.57 1.00
Femur 13.47 8.05
Tibia 13.20 1.70

Hind Coxa 1.39 1.00
Femur 15.51 8.60
Tibia 16.51 2.70

Head / Thorax /Abdomen 73.20 760.40

Table 2.1: Size and mass of the body elements used in the mechanical model of the
stick insect simulator. Numbers are partially fromCruse, 1976 or have been measured
by members of the department of animal physiology of the university Cologne.
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2 Simulation of insect walking

The mechanical stick insect model consisted exclusively of rigid bodies, cylin-

drical in shape the caps closed with a hemisphere. Head, trunk and abdomen

of the animal were approximated with a single cylinder, each leg was assembled

out of three cylinders. All joints have been simpli�ed to being hinge joints with

a single degree of freedom which is a pretty accurate approximation for coxa-

trochanter and femur-tibia joint, but the thorax-coxa joint is known to be more

complex in reality (Cruse and Bartling, 1995). Irrespective of the fact that this

joint has more than one degree of freedom, it is most of the time operating like

a hinge joint.

Size and mass of each body part was averaged from several animals or, if

available, taken from the literature (Cruse, 1976, see also Ekeberg et al., 2004).

A summary of all masses and sizes used in the mechanical model can be found

in Table 2.1.

As explained on page 4, motion in dynamic simulations results from the ap-

plication of forces to body parts. Force in this simulation is generated by

simpli�ed Hill-type muscle model. This muscle model transforms an arbitrary

unit activation level into a force depending on muscle length and contraction

velocity. Force-length and force-velocity relations were approximated by linear

�ts to data of Storrer (1976).

The simulator �nally provides information about joint angles and angular ve-

locities (both crucial for muscle length and contraction velocity calculations)

as well as joint torques and ground contact. This data was made available to

the leg stepping controller as well, but only joint angle, velocity and ground

contact signals are used during control.

Stepping is simulated with only a single leg actively moving at any time, the

other legs supporting body weight and stabilize the animals position. Non-

moving legs are immobilized by strong co-contraction of its muscles, the moving

leg is de�ned friction less to allow it to slide over the ground during stance

phase. This situation is comparable to classic slippery surface experiments or

experiments performed with a tread-band (Graham and Cruse, 1981; Epstein

and Graham, 1983; Gruhn et al., 2006).

2.3 Leg control mechanisms

Many sense organs and many di�erent types of sensory information are involved

in leg stepping control (Graham, 1985; Cruse, 1990; Bässler and Büschges,

1998). Historically most investigations were performed on the middle leg, thus
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2.3 Leg control mechanisms

most detailed knowledge is available for this leg. However, not all of these

known in�uences could be incorporated into this model, only timing and mag-

nitude in�uences have been included instead. Two types of signals were of

particular interest. Signals originating from the FT joint sense organs (FT an-

gle and angular velocity) and signals encoding strain inside the leg which are

crucial for proper ground contact detection. The sense organ responsible for

the neuronal FT joint feedback is the femoral chordotonal organ (fCO, Bässler,

1974). Strain or load on the leg is sensed by two populations of campaniform

sensillae, one located on the trochanter and another on the femur (trCS and

fCS, Delcomyn, 1991; Hofmann and Bässler, 1982).

Sections 2.3.1 and 2.3.2 describe the in�uences of sensory information for leg

stepping control which were included in the simulation. A visual summary of

these results is given in Table 2.2.

2.3.1 Timing in�uences (middle leg)

Signals number 1 and 2 both originate from the most proximal joint, the torax-

coxa (CT) joint. The strain signals however are detected on the trochanter, the

adjacent leg segment, by the trochanteral campaniform sensillae (trCS). These

signals in�uence the timing of both major joint controlling muscles (protractor

coxae (PRO) and retractor coxae (RET)). An increase in strain can cause the

retractor to become active if it was inactive before the same signal is able to

terminate preceding protractor activity. (Note that all signals share this mu-

tual exclusive behavior for antagonistic joint muscles.) When strain decreases

again the e�ects are reversed. Retractor activity becomes more likely to get

terminated and protractor onset is supported. The role of trCS in joint control

has been investigated in detail by Akay et al. 2004.

Signals number 3 to 6 in�uence the coxa-trochanter (TC) joint. In analogy

to the TC joint, the sense organs providing the control signals are placed on

the adjacent leg segment, the femur. The femoral chordotonal organ (fCO)

delivers directed position, velocity and also acceleration signals, but only the

�rst two have veri�able e�ects on the timing of muscle activity. If substantial

�exion velocity or a critical �exed position is detected (signals 3 and 4), it

can initiate activity in the levator trochanteris (LEV) and at the same time

terminate activity in the depressor trochanteris (DEP). The opposite responses

can be observed for extension signals. An extending motion or an extended

joint position can terminate levator activity and initiate depressor activity.
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2 Simulation of insect walking

The e�ects of position signals can be even strong enough to lock the oscillatory

network of the CT joint in one phase (for example the levation phase). The

e�ects summarized here result from investigations of Bucher et al. (2003); Hess

and Büschges (1999)and Bässler (1977).

Signals 7 to 10 e�ect the femur-tibia joint (FT). Two sense organs are involved

in the joint control, the fCO provides movement and position information and

the femoral campaniform sensillae (fCS) provide stain signals. In contrast to

the control of TC and CT joint, the sense organs and the e�ected muscles reside

on the same leg segment. A fact that is sometimes referred to as intra joint

control, in contrast to inter joint control (where sense organs in�uence muscle

activity of adjacent leg segments).

Interestingly, in case of the FT control, a logical separation between position

and velocity signals can be seen. Increased �exion velocity assists the ongoing

�exion by consolidating �exor tibiae (FLX) activity and decreasing the prob-

ability of extensor tibiae (EXT) becoming active (Bässler, 1976, 1988). This

forms a positive feedback loop which supporting the robustness of the stance

phase. Flexion can be �nally terminated by position signals of the fCO. At a

critical FT angle, these signals can cause the termination of �exor activity and

initiate extensor activity.

Strain signals are detected by the femural campaniform sensillae (fCS). If strain

increases, which is the case in stance phase, when the leg has ground contact,

�exor activity can be initiated and extensor activity terminated (Akay et al.,

2004). In turn, in case load decreases (for example at the end of stance phase)

fCS signals can activate extensor and terminate �exor, thus supporting the

transition from stance to swing phase.

2.3.2 Magnitude in�uences (middle leg)

Magnitude in�uences have only been identi�ed e�ecting the coxa-trochanter

joint muscles. Motion and position signals, originating from the CFO both

have similar e�ects on levator and depressor activation amplitude. For a �exed

FT joint position or substantial �exion velocity levator activity increases and

depressor activity decreases. The opposite is true for extended positions and

extension motion. In this case depressor activity increases and levator activity

decreases (Hess and Büschges, 1997; Bucher et al., 2003).

Signals 15-18 are generated by the trochanteral hair plates (trHP) and an inter-

nal levator receptor organ (Schmitz, 1986; Schmitz and Schöwerling, 1992). As

the signals originate from the trochanter itself and e�ect CT controlling mus-
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Jo
in

t

Signal
Sense
organ

TC

CT

FT

P
R

O

R
E

T

D
E

P

LE
V

FL
X

E
X

T

strain increase

strain decrease

flex. motion

flex. position

ext. motion

ext. position

flex. motion

flex. position

trCS

trCS

fCO

fCO

fCO

fCO

fCO

fCO

strain increase

strain decrease

fCS

fCS

Timing

Magnitude

1

#

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

CT

ext. position

ext. motion

fCO

fCO

fCO

fCO

trHP

trHP

trHP

trHP

flex. position

flex. motion

lev. position

lev. motion

dep. position

dep. motion

P
R

O

R
E

T

D
E

P

LE
V

FL
X

E
X

T

Table 2.2: State transition matrix of middle leg control. This Table lists signals and
their in�uences on muscle activation strength (magnitude) and activation phase (tim-
ing). The �rst column contains a number for reference in the text, second column
the signal that could be identi�ed to e�ect magnitude or timing (flex. : �exion,
ext.: extension). The following six columns represent the six major leg muscles (PRO:
protractor, RET: retractor, DEP: depressor, LEV: levator, FLX: �exor, EXT: extensor).
Sense organ column denotes the sense organ the signal originates from. The �nal
column groups the joint which is e�ected by the muscle activity (TC: torax-coxa joint,
CT: coxa-trochanter joint, FT: femur-tibia joint).
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2 Simulation of insect walking

Signal Description

FT pos �ex A rather �exed FT joint position.
FT pos ext A rather extended FT joint position.
GC∧¬AR The combination of ground contact (GC) (additionally

representing strain increase) and no conditions for
active reaction (AR) being given. ¬AR is �true� if FT
position is rather �exed and angular velocity of FT is
high.

GC∧AR The combination of ground contact (GC) (additionally
representing strain increase) and active reaction
(AR). AR is �true� in case FT position is rather
stretched and angular velocity of FT is small.

¬GC No ground contact (additionally representing
decreasing or lack of strain).

PEP Posterior extreme position. This refers to the TC joint
position.

Table 2.3: Summary of signals used for state transitions. Signals can be binary (like
ground contact) or continuous (angles or velocities).

cles, they form a feedback loop. This feedback loop is considered as a primary

component of height control of the animal (Cruse et al., 1993). Looking closer

to the e�ects of the trHP signals shows that they build a negative feedback.

When ever the trochanter moves downward or has a downward velocity, depres-

sor activity gets decreased and levator activity increased, potentially stopping

the downward motion and turning it into a levation. In turn, if an upward po-

sition or velocity is detected, levator activity decreases and depressor activity

increases. Thus muscles and trHP can work like a servo controller trying to

keep a certain target CT angle.

2.4 The neural control system

The knowledge outlined above have been used to set up a software controller re-

�ecting the essential features of the biological system. The controller has three

independent modules, each controlling one leg joint (see ellipses in Figure 2.1).

Each module has two mutual exclusive states (circles inside the ellipses in the

same Figure). As joint oscillator coupling is weak (dashed arrows), it wasn't

included into the controller. Interpreting the controller as a state machine,

the combination of the three independent oscillators each being in one of two

possible activity states gives an overall of 8 possible states for a three joint

controller (4 states if only two joints are controlled, which is true in case of leg
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2.4 The neural control system

sideways stepping).

The controller changes its state in dependence of six signals, representing all

sensory input that is capable of in�uencing activity timing (section 2.3.1). The

signals are listed and explained in Table 2.3.

The FT pos flexed and FT pos ext signals simply represent the measured

joint angle from the mechanical simulation. The GC∧AR and GC∧¬AR signals

are a combination of strain, ground contact, position and velocity information.

Whether the leg has ground contact or not can be decided by performing a

collision detection inside the mechanical simulation. As a rigid body simulator

was used, there was no way to get strain information of certain position on leg

segments. This problem was worked around by using ground contact informa-

tion as an approximator for strain. If a leg has ground contact strain could

be expected to increase in all leg segments. In turn, if the leg is being lifted,

strain is likely to decrease signi�cantly in all leg segments.

In case ground contact is detected, the controller is basically expected to switch

to producing a stance phase. But, at least for the middle leg, the stance

phase has two parts, controlled by a phenomenon called the active reaction.

Without going into detail about the active reaction(Bässler, 1988), in short it

changes �exor and extensor activation in response to FT position and velocity

information. The �rst part of the active reaction will occur when FT position is

rather extended and �exion velocity isn't too high. Under this conditions, the

active reaction supports the stance phase by initiating �exor and terminating

extensor activation. If either FT position is rather �exed or �exion velocity is

too high, part two of active reaction ceases �exor and starts extensor activation,

thus supporting stance-swing transition.

The ¬GC signal is generated if the ground collision of the leg disappears. This

signal is thus again an approximation for decreasing strain on the trochanter

and femur.

The �nal signal (PEP) has been added to re�ect a powerful in�uence described

only on the behavioral level. Advanced retraction of the leg in combination

with decreasing load or strain, supports phase transition from stance to swing

(Cruse, 1985). This is done by activating levator, protractor and extensor

while inactivation retractor and depressor. This in�uence is powerful enough

to prevent stance-swing transition if load receptors or TC position receptors

are manipulated to continuously send stance phase information (Bässler, 1977,

1979). Though neuronal mechanisms of this in�uences are not known in any

detail, this e�ect was included into the controller as it has proven to be an
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2 Simulation of insect walking

important part in stepping control. However, strain information could only

be approximated, which didn't allow for continuous load monitoring (ground

contact is a binary signal), PEP was only implemented using the retraction

angle of the leg. The load detection component was not included.

2.4.1 State Transitions (timing control)

The controller was designed as a memory less state machine. Its current state

is purely de�ned by the input signals and on present state information. As

the sideways controller only needs to control a two dimensional movement, its

number of states is reduced to 4. Each sub table in Table 2.4 de�nes which

new state will result from any combination of input signal and current state.

They list all theoretically possible states and transitions, however not all states

or transitions will be used during a normal walking cycle.

For the hind leg, a modi�ed set of signals was used. The active reaction signal

cannot simply be transferred to the hind leg, as its kinematic di�ers from

the more anterior legs (Cruse and Bartling, 1995). The hind leg performs an

extension movement in the FT joint during stance phase. An unmodi�ed active

reaction would interfere with the inversed kinematics of the hind leg FT joint.

In how far the active reaction might be modi�ed in the hind leg had not been

investigated to the time these studies were performed, thus it was decided to

remove the active reaction from the list of input signals for the hind leg. This

decision results in a hind leg controller that doesn't need velocity information

at all and entirely relies on position and ground contact signals. In addition

to the posterior extreme position (PEP) an anterior extreme position signal

(AEP) was added to the hind leg (Cruse, 1979, 1985). The AEP signal was

responsible to terminate the swing phase by activation of depressor trochanteris

in case of advanced protraction.
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2.4 The neural control system

Middle Leg, Sideways

Signal FL FD EL ED
FT pos flex FD FL EL ED
FT pos ext FL FD ED EL
GC∧¬AR EL EL EL EL
GC∧AR FD FD FL FD
¬GC EL ED EL ED
PEP FL FL EL EL

Middle Leg, Forward

Signal RDF RLF RLE RDE PDF PDE PLF PLE
FT pos flex RLF RLF RLE RLE PLF PLE PLF PLE
FT pos ext RDF RDF RDE RDE PDF PDE PDF PDE
GC∧¬AR RDE RLE RLE RDE RDE RDE RLE RLE
GC∧AR RDF RLF RLF RDF RDF RDF RLF RLF
¬GC PDE PLE PLE PDE PDE PDE PLE PLE
PEP RLF RLF RLE RLE PLF PLE PLF PLE

Front Leg, Forward

Signal RDF RLF RLE RDE PDF PDE PLF PLE
FT pos flex RLF RLF RLE RLE PLF PLE PLF PLE
FT pos ext RDF RDF RDE RDE PDF PDE PDF PDE
GC∧¬AR RDE RLE RLE RDE RDE RDE RLE RLE
GC∧AR RDF RLF RLF RDF RDF RDF RLF RLF
¬GC PDE PLE PLE PDE PDE PDE PLE PLE
PEP RLF RLF RLE RLE PLF PLE PLF PLE

Hind Leg, Forward

Signal RDF RLF RLE RDE PDF PDE PLF PLE
FT pos flex RDF RDF RDE RDE PDF PDE PDF PDE
FT pos ext RLF RLF RLE RLE PLF PLE PLF PLE
GC RDE RLE RLE RDE RDE RDE RLE RLE
¬GC PDF PLF PLF PDE PDF PDF PLF PLF
PEP RLF RLF RLE RLE PLF PLE PLF PLE
AEP RDF RDF RDE RDE PDF PDE PDF PDE

Status

Status

Status

Status

a

b

c

d

Table 2.4: State transition tables of the stepping controller. The left column lists
the signals provided by the simulation environment and entering the controller. For
details see section 2.4. The group of columns right hand side denotes the states the
controller can be in. States are de�ned by the activity of antagonistic leg muscles.
The following shortcuts are used: F: �exion, E: extension, L: levation, D: depression,
R: retraction, P: protraction. Depending on the number of joints controlled, each
state is de�ned by two or three letters (for example: FL means �exion and levation,
RDF means retraction, depression and �exion). The transition table de�nes which
state the controller enters for each possible combination of input signal and current
state. Not all states will be entered during normal stepping, however.
a) The sideways stepping is two dimensional; therefore only two joints need to be
controlled, reducing the number of possible states to 4. b-d) Middle, front and hind
leg transition tables. Note that in case of the hind leg, some signals di�er from the
usual set. See text for details about the signal set.
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2 Simulation of insect walking

State

Flexor Extensor Flexor Extensor Flexor Extensor Flexor Extensor
Flexion 3.4 0.01 0.8 0.1 0.8 0.1 0.02 0.01

Extension 0.09 1.9 0.21 0.95 0.21 0.95 0.09 0.96

Depressor Levator Depressor Levator Depressor Levator Depressor Levator
Depression 1.1+d(γ )+h(β) 0.2 l(γ ) 0.2+d(γ )+h(β) 0 0.2+d(γ )+h(β) 0 l(γ )+0.1 h(β) 1.1 d(γ )

Levation 0.1 d(γ ) 1.6 l(γ ) 0  l(γ ) 0  l(γ )  0.51 l(γ ) 4 d(γ ) +0.1

Protractor Retractor Protractor Retractor Protractor Retractor Protractor Retractor
Protraction 0.4 0 0.4 0.4 0.05 0 0.1 0

Retraction 0.1 0.4 0.4 0.4 0 0.35 0 0.9

Front leg Middle leg (restricted) Middle leg Hind leg

Table 2.5: Muscle activation levels. Each state sets the muscle activation level for the
two antagonistic muscles it controls. Activation level can be a constant value or one
of the three magnitude functions (l(x),d(x),h(x)). The magnitude functions have a
joint angle as argument. Angle abbreviations are: a = CT angle, g = FT angle.

Equations used:
l(x) = max(0, 0.28 · p(x) + 0.001 · q(x))
d(x) = max(0, 0.08− 0.105 · p(x) + 0.08 · q(x))
h(x) = max(0, q(x))

p(x) = (x−wmin)
wmax−wmin

if p(x) is used in l(x) or d(x) wmin = 61and wmax = 100
if p(x) is used in h(x) wmin = −40and wmax = 80
q(x) = 1− p(x)

2.4.2 Activation Levels (magnitude control)

The transition tables presented in section 2.4.1 represent a formalized descrip-

tion of the state switching behavior of the controller. However, to make a state

e�ect leg movement, it has to be associated with muscle activation. Usually

constant activation levels have been applied to the muscles controlled by a

state. All extensor, �exor, protractor and retractor activation levels are de-

�ned as constant activation level values (this holds true for all legs). However

levator and depressor are subject to magnitude control (see 2.2) and therefore

don't have constant activation levels. Their activation is a function of FT and

CT angle. A summary of all muscle activations used for each muscle in given

in Table 2.5.

Three di�erent functions were used to modify activation amplitude. The two

functions l(x) and d(x) are modeled after �ndings from Hess and Büschges

(1997) and Bucher et al. (2003). They apply an activation reduction to the de-

pressor and an activation increase the to levator when the FT joint gets �exed.

Additionally an FT joint extension ampli�es activation level of both muscles.

Function l(x) re�ects the in�uence of FT angle to levator activation. Conse-

quently for front and middle leg l(x) was only used in states when levator is
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2.4 The neural control system

active. For the hind leg, l(x) is used during depression, as the kinematic of the

hind leg FT joint is inverted. Function d(x) approximates the in�uence of the

FT angle on depressor activation, thus it is basically an inverted variation of

l(x) with di�erent parameter values. In front and middle leg d(x) was used in

all states with active depressor, again for the hind leg, d(x) was applied to the

levator instead. As a consequence of being close to the center of gravity, the

hind leg generally needs to produce more force. This is also re�ected by the

fact that for the hind leg l(x) and d(x) were additionally scaled by constants

and o�sets (see hind leg column in Table 2.5). The third amplitude modulation

function used was inspired by the work of Cruse et al. (1993) investigating stick

insect height control (corresponding to signals 15-18 in Table 2.2). Function

h(x) creates a negative feedback loop of CT joint angle to the depressor activa-

tion amplitude. It causes depressor activity to increase if the leg is lifted and

to decrease for advanced downward positions. h(x) is only applied to states

when depressor is active. Table 2.5 contains two more functions called p(x)

and q(x). Their purpose however is simply to transform the measured angles

into a range where l(x),d(x) and h(x) produce desired values.

Usually the activation levels for antagonistic muscles don't show co-activation

with some exceptions: In accordance with results from Büschges et al. (1994),

extensor can receive tonic activation during stance phase. This was observed for

the middle leg while the animal walks on a double tread-wheel. However, such

co-activation could not be found for other antagonistic muscles (Epstein and

Graham, 1983; Grahm and Wendler, 1981). In case of the restricted middle leg

co-activation was applied to protractor and retractor. This was done in order

to remove the third degree of freedom from leg movement and resemble the

preparation of the restricted middle leg, where pro- and retraction is prevented

by glue or insect pins.

In other places (front and hind leg) slight co-contraction was used to sti�en

the joints and ensuring a reasonable range of motion. This should basically

be seen as a compensation for the highly simpli�ed muscle model used in

this simulations, which was often unable to generate su�cient torque in time.

Co-Contraction helps in this respect, because motion can be stopped or in-

verted more quickly if the antagonist is already �on�. The positive e�ects of

co-contraction to motion stability are also described for the locust in Zakotnik

et al. (2006).
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Middle Leg, Sideways

Signal FL FD EL ED
FT pos flex FD FL EL ED
FT pos ext FL FD ED EL
GC∧¬AR EL EL EL EL
GC∧AR FD FD FL FD

PEP FL FL EL EL
¬GC EL ED EL ED

Status
1 234







(  )

(  )

Table 2.6: Sequence of states and signals during middle leg sideways stepping. Num-
bers beside state names in the �rst row indicate the succession of states during the
control loop. Arrows point from current state to next state assuming a normal se-
quence of signals. An alternate pathway is indicated by dashed arrows and a dashed
state number label (state FL, with label 4). This alternate pathway depends on the
threshold value of �FT pos �exed� (see text for details and Table 2.4 and 2.3 for
shortcuts).

2.4.3 Neural control of the middle leg

In this section the sequence of events happening during a control loop are de-

scribed for each leg. The middle leg was investigated in two di�erent walking

situations: Sideways and forward walking. In the sideways condition the TC

joint motion is prevented (for example with dental glue or insect pins) in a

way that the middle leg is moving in one plane only (Fischer et al., 2001). In

this walking situation many studies have been made investigating the role of

sensory feedback for walking pattern generation therefore it was important to

simulate this rather arti�cial but well explored condition. Actually, due to the

number and quality of results available for this preparation, the sideways walk-

ing condition was both starting point and reference for simulations performed.

The steps and state changes described in the next sections can also be followed

in Tables 2.4 and 2.7 (for the middle leg), 2.9 (front leg) and 2.11 (hind leg).

2.4.3.1 Sideways

Starting in the swing phase, where levator and extensor are both active, the

�ow of signals and state switches during sideways stepping of the middle leg is

as follows. During swing phase the controller in EL state (see Table 2.6, number

1). As extensor and levator are active, FT joint angle decreases during while

the leg moves upwards. By looking at the set of available signals, it is obvious

that the next signal coming in has to be the �Ft pos ext� signal once the FT

angle decreases to 70° (see Table 2.7 for details about threshold values ). This

signal causes the controller to switch into the ED state (Table 2.6, number 2) by
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2.4 The neural control system

terminating levator activity and activating depressor instead. This will cause

the leg to move down and eventually touch the ground again. Ground contact

with extended FT joint creates the GC∧AR signal which passes control to the

FD state (Table 2.6, number 3) . In this state depressor and �exor are active.

On a tread wheel the leg would now start pulling and accelerate the wheel

towards the animal. But as friction is removed inside the simulation, the leg can

slide over the simulated surface and therefore FT angle also increases constantly

in the simulated stance phase. As the leg approached the trunk again, the next

signal will be generated, which initiates stance-swing transition. Two di�erent

signals could in theory be generated during a regular step sequence, depending

on the threshold values set up. In the simulation presented here, the threshold

for termination of the active reaction (AR) was chosen to be smaller (105°, see

Table 2.7 ) than the angle for the �FT pos �ex� signal (120°, see also Table

2.7). This means, the signal terminating stance phase will be GC∧¬AR and

the controller will immediately switch back into the EL state (see Table 2.6,

number 1) .

However, if threshold of �FT pos �ex� would be set to be smaller than the AR

threshold angle, �FT pos �ex� would be the next signal to come. This signal

would also restore swing phase, but it needs an additional intermediate state,

the FL state (Table 2.6, dashed arrow pointing to number 4) . During this

phase, levator and �exor become active together and will quickly release strain

or load on the leg. Shortly after levator activity onset the leg will lose ground

contact which signals the controller to enter EL state again (Table 2.6, dashed

arrow pointing to number 1). So both possible variations form a control loop

with slightly di�erent kinematics however. As the kinematics of the 3-state

control loop were looking more realistically it was decided to use the threshold

setting generating this sequence of states.
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2 Simulation of insect walking

The establishment of a stable sideways stepping pattern shows that the known

sensory in�uences (presented in Table 2.2) can be su�cient to control simple

repetitive sideways steps. In terms of the controller, a stable sideways stepping

pattern can be achieved with a sub set of the implemented signals, but setting

meaningful threshold values is crucial. The sensitivity of threshold values has

been tested by adding random noise to joint angles and muscle activation levels.

This analysis showed that for joint angles 5% error could be tolerated without

losing stable inter joint coordination. In case of muscle activation noise, the

controller was even more robust, tolerating changes up to 50% of muscle acti-

vation error. This analysis was performed for all subsequent simulations with

similar results. Angular noise is more critical than muscle activation noise.

Often models with increasing noise tend to produce shallow swing phases with

premature touch-down, causing the stepping cycle to get shorter and shorter

until it ends in functionless, high-frequency oscillations.

Muscle activations and kinematics are shown in Figure 2.2. The Figure has

three data groups, �rst muscle activations, second joint angles and third tarsal

coordinates in body reference frame.

In case of the sideways walking middle leg, TC (α) joint is �xated by strong co-

activation of protractor and retractor. Levator and depressor show amplitude

modulation (magnitude control rules) and are strictly alternating. Levator

activation is strong at the beginning of the swing phase, which supports a

fast lift of, and declines as beta angle increases (e�ect of height control rule)

preventing the leg from being lifted too high. Depressor activation pro�le also

shows magnitude control but of a more complex shape as depressor activation

amplitude is modulated by CT (β) and FT (γ) angle. During stance and swing

there is a small amount of co-activation in the FT joint muscles (Büschges

et al., 1994)

Looking at the joint angles, obviously the TC (α) angle is held constant by the

co-activation of protractor and retractor, which is also re�ected in the tarsal y

coordinate. CT (β) and FT (γ) joints show smooth alternating angular changes.
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Figure 2.2: Time course of kinematics and muscle activations of the sideways stepping
middle leg. First six data traces show the activations the controller generated for the
major leg muscles (arbitrary units, usually between 0 and 1). Protractor (�rst trace)
and retractor (second trace) are constantly active to prevent motion in the y axis.
Levator and depressor activation is modulated by the magnitude in�uences (see tables
2.1 and2.5). Next three rows show the joint angles in degrees (a=TC joint angle,
b=CT joint angle, g=FT joint angle). Note that TC (a) angle is constant during the
sideways stepping simulation. In the last three traces the tarsal coordinates are shown
(x values show proximal (0 mm) / distal (30 mm) tarsus positions, y corresponds to
anterior (9 mm) / posterior (-9 mm) positions and z to upward (0 mm) / downward
(-20 mm) positions). Time scale is the simulated time (since start of the simulation)

21



2 Simulation of insect walking

a) Middle leg, sideways:
Joint State Threshold values
FT

EXT ¬GC ∨ GC∧¬AR AR: 105°
FLX else PEP: -25°

CT AEP: 25°
DEP FT pos ext Pos ext: < 70°
LEV FT pos flex ∨ PEP Pos flx: > 120°

Rule

b) Middle leg, forward
Joint State Threshold values
FT

EXT ¬GC ∨ GC∧¬AR
FLX else

CT
DEP FT pos ext AR: 105°
LEV FT pos flex ∨ PEP PEP: -25°

TC AEP: 25°
RET GC Pos ext: < 70°
PRO GC¬ Pos flx: > 120°

Rule

Table 2.7: Transition rules and threshold values used for middle leg stepping. a) Rules
and threshold values for sideways stepping, b) rules and threshold values for forward
stepping. Note: Retraction, depression and �exion decrease angular values. For a
detailed description of the signals and rules see section 2.4 and table 2.3 on page 12.

2.4.3.2 Forward

The sequence of states and events for the forward walking middle leg are ba-

sically similar to the sequence observed during sideways stepping. The set of

signals and their combination to transition rules is summarized in table 2.7.

However, due to the added degree of freedom in motion (by releasing the TC

joint) the controller has more possible states. In contrast to the situation in

sideways stepping control, two states (PDF and PLF) won't become active

during a normal control loop of forward walking. Actually PDF and PLF are

purely hypothetical states, as there is no way of getting into one of these states

from inside any other state. If analysis of forward walking is started again in

the swing phase (PLE, see table 2.8, number 1), the next signal inside a normal

stepping loop would therefore be �FT pos ext�. This terminates levation and

activates depression and control moves into the PDE state (table 2.8, number

2). Identical to the situation in sideways stepping the depression eventually

brings the leg back to the surface and a strain or ground contact signal is

generated (GC∧AR). In combination with the extended FT angle this passes

control to the RDF state (table 2.8, number 3).

Now the leg performs the stance phase. It is pushed towards the ground by the
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2.4 The neural control system

depressor and supports body weight. At the same time the retractor propels the

trunk in respect to the tarsus and the amount �exion controls the direction of

trunk. The �exion can compensate for the circular nature of pro- and retraction

and thus support a more linear forward motion. Now two di�erent pathways

open up for the controller. In case �exion is strong, and reaches the threshold

angle for the second part of the active reaction during stance phase, the RDE

state takes over and causes an additional extension at the end of stance phase

(table 2.8, number 4). This is the typical pathway also observed in the animal.

As retraction continues during RDE, the leg �nally reaches its PEP which then

terminates depressor and starts the levation as the controller switches into the

RLE state (table 2.8, number 5). Once the levator is active the leg will quickly

lose ground contact which brings the system back into the PLE state.

However, the stance phase can also be terminated di�erently (dashed arrows).

Once in RDF (table 2.8, number 3) PEP can also be reached before GC∧¬AR is

triggered, for example if the animal walks downhill or has touched the ground

with a very extended FT angle. In cases like this it can happen that the

leg reaches PEP �rst. Following the dashed arrow, the state response to this

situation is to enter RLF, which basically means to terminate depressor and

activate levator instead. This causes the leg to lift which will also bring the

control back into the initial swing phase state PLE.

In summary, the observed sequence of states show that the basic set of rules

de�ned for the simpli�ed case of sideways walking are also a functional basis

for controlling the forward walking middle leg. The succession of states addi-

tionally proved to be very stable (given the correct threshold values). Once the

system enters one of the �ve major control loop states (table2.8, numbers 1-5),

it will, given no external disturbance, fall back into the stable sequence of states

producing forward walking. Additionally stable control can also re-gained from

the RLF state. Despite the stability, the control can get trapped in other state

loops or �x points (where it `waits' for a signal which cannot be generated by

the current state) but a full investigation of all possible behaviors is beyond

the scope of this work.

Stability investigations concerning sensitivity to changes in parameters have

also been performed for the forward walking middle leg. As they are quali-

tatively similar for all legs, see section 2.4.3.1 on page 18 (sideways walking

middle leg) for details.

Muscle activation pattern, joint angles and tarsal coordinates of the forward

walking middle leg, are shown in Figure 2.3. The resulting activation pattern
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123 45

Middle Leg, Forward

Signal RDF RLF RLE RDE PDF PDE PLF PLE
FT pos flex RLF RLF RLE RLE PLF PLE PLF PLE
FT pos ext RDF RDF RDE RDE PDF PDE PDF PDE
GC∧¬AR RDE RLE RLE RDE RDE RDE RLE RLE
GC∧AR RDF RLF RLF RDF RDF RDF RLF RLF
¬GC PDE PLE PLE PDE PDE PDE PLE PLE
PEP RLF RLF RLE RLE PLF PLE PLF PLE

Status

Table 2.8: Sequence of states and signals for middle leg forward stepping. As there is
an additional degree of freedom in comparison to the sideways walking leg, the con-
troller now has eight states. For explanation of numbers and arrows, see Table 2.4and
2.3 for shortcuts.

looks basically similar to the one produced by the sideways controller, however

protractor and retractor are now alternatingly active. Protraction requires

much less activation than retraction, as the leg has no ground contact during

swing. Also levator activity is reduced; mainly because sideways stepping is

associated with a much more pronounce lifting than forward walking (compare

also tarsal z coordinates). Depressor, extensor and �exor activation pro�les are

very similar to the sideways stepping situation in Figure 2.2.

One interesting detail of the simulation can be seen in the CT (β) angle trace.

During stance, beta angle rises and falls again slightly. This re�ects the vertical

movement of the trunk, as the leg pushes onto the surface. If FT (γ) angle

approaches 90 degrees, the trunk is pushed up and beta angle increases slightly.

For more �exed or more extended FT angles, the trunk comes down again

and β decreases again. This behavior shows, that the leg is really supporting

substantial portions of body weight during the simulated steps.

2.4.4 Predictions for front and hind leg

Predictions for the stepping control of front and hind leg are based on the idea

that mechanisms and in�uences are similar to the ones found for the middle leg.

Compared to the middle leg, knowledge of front and hind leg stepping control

is rather limited (Bässler and Büschges, 1998). But the studies of middle leg

stepping performed in sections 2.4.3.1 and 2.4.3.2 have shown, that the set of

neural rules implemented in the controller, were su�cient to generate stable

repetitive stepping movements.

Though the front leg has a slightly di�erent geometry and shape as the middle

leg, its overall kinematics during forward walking is more comparable to the
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Figure 2.3: Time course of kinematics and muscle activations for the forward walking
middle leg. First six data traces show the activations the controller generated for the
major leg muscles (arbitrary units, usually between 0 and 1). Levator and depressor
activation is modulated by the magnitude in�uences (see tables 2.1 and2.5). Next
three rows show the joint angles in degrees (a=TC joint angle, b=CT joint angle,
g=FT joint angle). In the last three traces the tarsal coordinates are shown. For
additional details see Figure 2.2 on page 21. Time scale is the simulated time (since
start of the simulation).
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Front leg, forward
Joint State Threshold values
FT

EXT ¬GC ∨ GC∧¬AR
FLX else

CT
DEP FT pos ext AR: 95°
LEV FT pos flex ∨ PEP PEP: 10°

TC AEP: 50°
RET GC Pos ext: < 70°
PRO GC Pos flx: > 94.5°¬

Rule

Table 2.9: Transition rules and threshold values used for controlling front leg stepping.
For a detailed description of the signals and rules see section 2.4 and table 2.3 on
page 12.

middle leg than the kinematics of the hind leg. Thus the middle leg controller

works without major modi�cations for the front leg, too. Modi�cations that

had to be done were only in respect to threshold values (AR, PEP, AEP, Pos

ext, Pos �x � see table 2.9) � no change to rules or signals was needed . The

sequence of events and states is basically identical to the sequence shown for

the forward stepping middle leg. Starting inside the swing phase (table 2.10,

number 1) the FT joint extension introduces the swing-stance transition (ta-

ble 2.10, number 2) and activates depressor. Strain, represented by ground

contact initiates stance phase (table 2.10, number 3) by activation of retractor,

depressor and �exor. Advanced �exion triggers the second phase of the active

reaction by initiating extensor and terminating �exor with continued retrac-

tion (table 2.10, number 4). Finally the PEP signal, generated by the on-going

retraction initiates stance-swing transition by activating levator (table 2.10,

number 5). Once the leg loses ground contact, the swing phase is restored by

returning into the PLE state (table 2.10, number 1).

Leg kinematics and muscle activations generated by the controller are shown

in Figure 2.4. Note that, in contrast to the middle leg, slight co-activation

was used during stance phase for protractor and retractor but not for extensor.

Application of co-activation is discussed in more detail in section 2.4.2. At the

beginning of the stance phase there is a short oscillation in muscle activation

(approx. at 17.3 sec). This is a result of the velocity sensitivity of the active

reaction rule. The controller is in PDE state, when the leg touches the ground

after swing phase. If ground contact is established with su�cient downward

speed the FT velocity can get high enough to activate the second part of the

active reaction (GC∧¬AR) which activates the extensor. This is mainly caused
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2.4 The neural control system

by the fact that the simulated surface is frictionless; normally friction would

prevent the tarsus from slipping. Nevertheless, the brief �exor activation at

onset of stance is su�cient to decelerate the FT joint enough to escape from

this problematic control situation and re-establish normal stance phase after

the short extensor activation pulse. Another di�erence to middle leg control

is the slightly ampli�ed magnitude control, which can be seen by comparing

the amount of modulation visible in the muscle activation traces (middle and

front legs, Figure 2.3 and 2.4). This can be, at least in part, attributed to

the di�erent leg and joint geometry of the front leg � potentially also muscle

properties of the front leg di�er stronger from the muscle model used. Levator

activation for example had to be quickly decreased after lift-o� in order to

prevent the leg being lifted way too much. Flexor also needed to work much

harder in the front leg, than in the middle leg.

The hind leg di�ers that much in the way it operates, that it was obvious, that

changes had to be applied to the transition rules in order to make it perform

qualitatively correct movements. The hind leg cannot reach much forward

swing without getting into the operating range of the middle leg. Thus its

stance phase starts only marginally anterior to the point of TC joint origin.

This fact makes the hind leg inoperative for pulling; its main contribution is

pushing the trunk forward (Cruse and Bartling, 1995). Thus in contrast for

front and middle leg, FT joint extension is an essential part of the stance phase

for the hind leg. This however con�icts with the active reaction rules used for

the front and middle leg, as they support �exion during most of the stance

phase and extension is only allowed at the very end of stance. For this reason

the velocity component of the AR rules have been removed from the hind leg

controller.

123 45

Front Leg, Forward

Signal RDF RLF RLE RDE PDF PDE PLF PLE
FT pos flex RLF RLF RLE RLE PLF PLE PLF PLE
FT pos ext RDF RDF RDE RDE PDF PDE PDF PDE
GC∧¬AR RDE RLE RLE RDE RDE RDE RLE RLE
GC∧AR RDF RLF RLF RDF RDF RDF RLF RLF
¬GC PDE PLE PLE PDE PDE PDE PLE PLE
PEP RLF RLF RLE RLE PLF PLE PLF PLE

Status

Table 2.10: Sequence of states and signals for front leg forward stepping. For expla-
nation of numbers and arrows, see Table 2.4and 2.3 for shortcuts.
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Figure 2.4: Time course of kinematics and muscle activations for the forward walking
front leg. First six data traces show the activations the controller generated for the
major leg muscles (arbitrary units, usually between 0 and 1). Levator and depressor
activation is modulated by the magnitude in�uences (see tables 2.1 and2.5). Next
three rows show the joint angles in degrees (a=TC joint angle, b=CT joint angle,
g=FT joint angle). In the last three traces the tarsal coordinates are shown. Time
scale is the simulated time (since start of the simulation). For additional details see
Figure 2.2 on page 21.
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Hind leg, forward
Joint State Threshold values
FT

EXT GC
FLX ¬GC

CT
DEP FT pos flex ∨ AEP AR: -
LEV FT pos ext ∨ PEP PEP: -45°

TC AEP: 5°
RET GC Pos ext: > 90°
PRO ¬GC Pos flx: < 55°

Rule

Table 2.11: Transition rules and threshold values used for controlling hind leg step-
ping. For a detailed description of the signals and rules see section 2.4 and table 2.3
on page 12.

Hind leg control signals were reduced to ground contact and FT position signals

(see table 2.11). Additionally the response rules to ground contact and FT angle

have been inverted. Comparing tables 2.9 and 2.11 shows the di�erences. In

table 2.9 (front leg) ground contact activates �exor whereas in table 2.11 (hind

leg) the same signal causes a switch to extensor activity. Furthermore in case

of the hind leg, FT joint �exion switches from levator to depressor activation.

The opposite e�ect is active in front and middle leg, here FT joint extension

performs this switch. TC joint muscles share the same rules in all leg, however

(GC switches on retraction, lift-o� does so with protraction).

In contrast to the front and middle leg, during the swing phase of the hind leg

there is an FT joint �exion. Thus in early swing phase the PLF state is active

(table 2.12, number 1). As swing phase proceeds, the FT angle get more and

more �exed eventually triggering the FT pos �ex signal. This switches into the

PDF state and levator activity gets replaced by depressor activity (table 2.12,

number 2); the leg starts to move downwards. Next there will be ground

contact and its detection triggers the stance-swing transition for the hind leg

(table 2.12 number 3). Note that hind leg stance phase is characterized by the

extension of the FT joint (RDE state). Extension, depression and retraction

continue until either, the posterior extreme position (PEP) is reached or FT

angle gets over critically extended. Both signals (which ever comes �rst) make

RLE the active state and thus initiate the stance swing transition. Once levator

is active, ground contact will be lost quickly, and the controller returns into

the PLF swing phase state (table 2.12, number 4).
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2 Simulation of insect walking

Hind Leg, Forward

Signal RDF RLF RLE RDE PDF PDE PLF PLE
FT pos flex RDF RDF RDE RDE PDF PDE PDF PDE
FT pos ext RLF RLF RLE RLE PLF PLE PLF PLE
GC RDE RLE RLE RDE RDE RDE RLE RLE
¬GC PDF PLF PLF PDE PDF PDF PLF PLF
PEP RLF RLF RLE RLE PLF PLE PLF PLE
AEP RDF RDF RDE RDE PDF PDE PDF PDE

Status
1234

Table 2.12: Sequence of states and signals for hind leg forward stepping. For expla-
nation of numbers and arrows, see table 2.6. The hind leg has a slightly di�erent set
of signals. See section 2.4 for details and Table 2.4 and 2.3 for shortcuts.

With only four active states, the hind leg controller is somewhat simpler than

front and middle leg controller. However this is solely due to the simpli�ed

stance phase which misses the separation into FT extension and �exion phase

as it is implemented in forward walking front and middle leg. Figure 2.5 shows

the muscle activations and kinematics of hind leg walking controlled by the con-

troller described above. Protractor and retractor are strictly alternating in their

activity, no co-activation needed for these muscles in the hind leg. Levator and

depressor, as well as extensor and �exor have small amounts of co-activation.

Depressor co-activation is mainly due to the �height control� activation scaling,

which increases depressor activity if beta angle increases. Additionally the hind

leg has a slight �exor co-activation during stance, comparable to the one imple-

mented in the middle leg. Noticeable is the small amount of activation needed

for �exor during the swing phase. Activation is too small to be displayed in

Figure 2.5 but it is not zero, as can be seen in table 2.5 on page 16. Comparing

tarsal x position with FT (γ) angle, suggests that FT angular changes mainly

compensate for the movement in the other joints, keeping the tarsal distance

during swing and stance phase roughly constant.
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Figure 2.5: Time course of kinematics and muscle activations of the forward walking
hind leg. First six data traces show the activations the controller generated for the
major leg muscles (arbitrary units, usually between 0 and 1). Levator and depressor
activation is modulated by the magnitude in�uences (see tables 2.1 and2.5). Next
three rows show the joint angles in degrees (a=TC joint angle, b=CT joint angle,
g=FT joint angle). In the last three traces the tarsal coordinates are shown. Time
scale is the simulated time (since start of the simulation). For additional details see
Figure 2.2 on page 21.
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2.5 Discussion

First it has been tested and con�rmed, that a controller, based on a rule set de-

termined by neurophysiological experiments (neuronal controller) can be con-

structed. Furthermore it could be shown, that the presented set of rules is

su�cient to generate stable, repetitive stepping movements in the sideways

walking middle leg, which is the condition they were determined in.

A second, important question arised by these �ndings, was how adaptable

(or general) the controller was. Therefore the controller was tested with an

additional degree of freedom in middle leg forward walking, with di�erent leg

geometries in the front leg and even with geometric and kinematic changes

in case of the hind leg. In all three cases it was possible to generate simple

stepping movements without substantial modi�cations to the controller. Only

in case of hind leg stepping, two state switching rules needed to be inverted.

The predictions for front and hind leg therefore become testable hypothesis for

new experiments. It is well possible to investigate experimentally if strain or

FT position signals are reversed in the hind leg.

The result supports a conceptual paradigm for motor control of stick insect

walking. This is, sensory information is capable of organizing the timing of

motor output of the leg joints. Sensory signals can meaningfully switch ac-

tivity in antagonistic muscles as well as shape or modulate muscle activation

amplitude.

2.5.1 Muscle model

The linear muscle model approximated from sparse data of Storrer (1976) can-

not be expected very accurate. It could at best give a rough indication of how

much force is generated. The aspect of force development over time (activation

dynamics) is completely missing in this model. However, the objective of this

study was to investigate if a step cycle can be generated from the sequence

of events generated by the leg sense organs. This basic statement should be

possible to make even without detailed muscle models.

One drawback of the simpli�ed muscle model can be seen in the kinematics of

all legs (Figures 2.2, 2.3, 2.4 and 2.5). The movement, in particular the swing

phase is very slow. This can be attributed to the linear force-velocity curve of

the muscle model and prevents the muscle form producing su�cient force at

higher contraction velocities.
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2.5.2 Kinematics and muscle activations

The coordination of muscle activations, both of joint speci�c antagonists and

muscles controlling di�erent joints, is basically similar to data measured by Fis-

cher et al. (2001) but di�erences are obvious. In comparison with Fischer et al.

(Figure 9a) the following di�erences can be described:

In the walking animal protractor shows activity reaching into the stance phase

and retractor starts delayed in the stance phase. Interestingly in the animal

depressor motor neurons are not active during the second half of the stance

phase, but as in the middle leg simulation get active shortly before start of

stance. Activity of levator motor neurons is qualitative similar, but the activity

in the motor neurons seems to start a bit earlier, than levator activation in the

simulation. But in both cases the activity starts in late stance and terminates

well before end of swing.

Levator activation during late stance could well be a special response of the

animal to the arti�cial tread wheel walking. Animals often seem to grasp the

tread wheel with their tarsal claw, and pulling it up at the end of stance phase.

This behavior requires early levator motor neuron activation, but it might not

be particularly natural. Furthermore the simulation is not equipped with tarsal

structures, thus levator activation ultimately causes the loss of ground contact.

There is no way for the simulation to signi�cantly activate levator muscle but

at the same time keep ground contact. Thus earlier activation of levator would

simply lead to a shortened stance phase.

Fischer et al. (2001) did not observe extensor activity during late stance, thus

the simulation di�ers in this respect. Also, in the simulation, extensor continues

to be active until end of swing, neuronal activity however ceases slightly earlier.

The di�erence in extensor activation pro�le is consequently re�ected in �exor

activation. Thus �exor activation in the simulation terminates earlier compared

to the neuronal activation. Flexor terminates, because extensor is active in the

�nal part of the simulated stance phase. As this was not the case in the studies

Fischer et al.. performed, they found activity in the �exor motor neurons

throughout the complete stance phase.

In respect to tarsal movement and joint kinematics, a comparison with Cruse

and Bartling (1995) reveals basic similarities of simulated middle leg and real

middle leg during forward walking. As discussed above, the muscle model was

not able to generate su�cient joint torque for quick movements, therefore the

time scale of the stepping is much slower in the simulation, in particular the
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swing phase is too slow even in relative comparison to stance. Swing phase is

particularly sensitive to muscle force-velocity problems, because it is a rapid

movement with low counter force and therefore the muscle operates in the

high-velocity, low-force domain of the force-velocity curve.

As far as the set of neuronal rules and signals are concerned, it is unlikely to

be complete. More mechanisms are known than have been included into the

simulation and on the other hand, not all mechanisms included are neuronally

explicable in su�cient detail. For example the termination of stance phase

via an unknown combination of load and position information Cruse (1985) is

not explained on the neuronal level. In the simulation the probably complex

processing of multiple sense organs were therefore simpli�ed to a simple position

signal a�ecting the activity in the CT circuit. Future investigations will have

to specify which relationship between load and position information is crucial

for the PEP mechanism and if CT joint is the only circuit that is a�ected by

this information.

Evaluation of front and hind leg simulation results is a bit harder than for the

middle leg. Fewer investigations provide reference data for these legs. Com-

paring with in vivo walking, joint kinematics di�er more in front and hind leg,

than in middle leg.

Front and hind leg controllers were developed based on the assumption that

identical underlying structures can be hypothesized for all legs. In how far this

assumption holds true is unclear. Even if the general mode of operation in all

legs proves to be similar, the same sensory signals might have di�erent e�ects

in di�erent legs. The inversion of the rules used for hind leg stepping is one ex-

ample. In now far load or position signals can have di�erent neuronal responses

is not yet clear, but preliminary results on the processing of loaf signals in the

hind leg suggest di�erences in their action compared to the middle leg (Akay,

Ludwar, Schmitz and Büschges, unpublished). Thus, more experiments, par-

ticularly in front and hind leg are needed to con�rm the implicit hypotheses or

suggest improved controller concepts.

2.5.3 Conclusion

Two major results can be summarized as result of this work. First, step-

ping movements (sideways and forward stepping) can be explained as a static

network of immutable responses to local sensory feedback. This controlling

paradigm enables to generate robust stepping without the need for compli-
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cated geometric or dynamic calculations. The controller can be adapted to

di�erent leg geometries purely by changing threshold values. It can even be

adapted to generated di�erent kinematics, by few changes to its logical rules.

This gives the second important result. The same basic controller can operate

in di�erent legs. Though adaptations are required for good performance, the

general control paradigm proves �exible and fairly general.

Sure enough many improvements could be made for future simulations of this

kind. First of all, a more realistic muscle model is needed. Especially the

time constants of stick insect muscles (slow rise, slow decay, see Hooper et al.,

2007) can be expected to e�ect the activation patterns of the joint muscles.

Activation would need to start and terminate earlier, which is would make the

whole activation pattern more similar to the one observed in vivo.

A realistic muscle model in combination with thorough magnitude control is

the foundation for detailed comparison of joint and leg kinematics. Without

having included both improvements, comparison of kinematics can only be done

qualitatively.

The �nal important improvement regards the sense organs. Most sense organs

were heavily simpli�ed . fCS and trCS are complex cuticle strain sensors which

were approximated by binary ground contact information. Similarly fCO also

is a multi-parameter detector, measuring acceleration, velocity and position in

a highly no-linear fashion. More realistic sense organ models would de�nitely

help building a better controller. Additionally the controller, as implemented

here has very limited capabilities of weighting competing sensory information.

If increasing number or level of detail of sense organs, the controller would

also need a more �ne grained method of doing its state decisions. Logical

rules might be replaced by a fuzzy logic, or probability functions. This would

also much better re�ect most of the experimental results, as these often just

describe an increase in activation switch probability, rather than an absolute

switch from one state to the next.

But despite all its shortcomings and simpli�cations, the stepping controller

described here (or, in more detail in Blümel, 2004) quickly found its way into

robot simulation and robot control (Lewinger et al., 2006; Lewinger and Quinn,

2009; Rutter, 2009; von Twickel et al., 2010a,b).
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3 Building an individual Hill-type model of the

extensor tibiae muscle

3.1 Introduction

Understanding neuronal mechanisms of behavior generation and control re-

quire, at least at some point, a thorough understanding of how motor patterns

are translated into movements. It is well known that neuro-mechanical trans-

formation and muscular force generation is complex and for the most part

non-intuitive. Apart from the most simple muscles and motor tasks, computer

models seem to be the only way of estimating how a motor pattern interacts

with the real world. Di�erent muscle models have been developed in recent

times, varying in complexity and explanatory potential. Some are purely phe-

nomenological, basically reproducing measured data (like �black box� models,

for overview see for example Nigg (1995)); others are based on the fundamen-

tal biochemical and biophysical ideas of the sliding �lament theory ought to

explain muscle internal processes (Zahalak, 1981).

One often used model, in particular in studies of more complex motions, is the

Hill-type model (Hill, 1938, 1950; Zajac, 1989). This model conceptually sits

in-between black-box models, purely reproducing data sets, and models based

on fundamental muscle mechanics. The Hill-type model is de�ned by data sets

gained from a series of muscle contractions resulting in a set of curves, each

describing a special, but fairly high level muscle property. Hill-type models are

comparatively fast to compute and as they are based on measured data, they

can be adapted to di�erent muscles relatively easy. This makes these models

attractive for a variety of modeling and simulation applications (Hannaford and

Winters, 1990; Zahalak and Ma, 1990; Zajac and Winters, 1990; Alexander,

2003).

However, Hill-type models often have a delicate inherent di�culty; the amount

of experimental data needed to de�ne the crucial relationships for muscle force

calculation, is too large to be measured with a single, individual muscle. Thus,

frequently data sets of di�erent animals were fused into a single model (for
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3 Building an individual Hill-type model of the extensor tibiae muscle

example by averaging data sets, or by combining curves of di�erent animals).

Any type of combination is based on the assumption of independence of the

combined parts. It remains unknown how far this assumption is justi�able as

long as a detailed comparison of single, individual muscle Hill-type models is

missing. A similar problem was described for neuron models (Golowasch et al.,

2002). One particular di�culty of muscle measurements and thus modeling

is the inherent variability of muscle responses (for stick insect: Hooper et al.,

2006, or in case of the lobster: Thuma et al., 2003).

The idea of making Hill-type model parameter determination more e�cient has

been addressed before by the ISOFIT method of (Wagner et al., 2005; Siebert

et al., 2007). Using the ISOFIT optimization, it is possible to determine most

of the required model parameters with a single type of experiment (isovelocity

contractions). However, this approach requires a pre-de�ned model structure,

for the optimization process. If such a model structure is not available, this

method cannot be used.

An alternative approach would be to �rst measure muscle properties in suf-

�cient detail with di�erent animals. This data set could be used to extract

basic characteristics of the individual properties. For example it can reveal if

the force-velocity curve can be adequately �tted with the Hill-hyperbola, or

which funtion to use for approximation of the force-length curve. At this stage

it is actually bene�cial to be able to compare among many animals, as general

principles should be extracted.

Once the types of equations to be used best are identi�ed, they can be con-

strained much more e�ciently. For example, if the initial studies have revealed

that force-length curve, inside the physiological working range, can be mod-

eled with a simple linear relationship, it should be su�cient to have three data

points to get acceptable �ts. If this principle is applied consequently to all

(or most) relationships, the number of required measurements can be reduced

substantially. Eventually it is possible to decrease the number of measurements

that much, that they all can be performed on a single muscle.

Extensive initial studies of the extensor tibiae muscle of Carausius morosus

have been performed by Guschlbauer et al. (2007). This work de�ned curves

and relationships for passive force (parallel elasticity), series elasticity, force-

length, force-velocity, force-activation and maximum contraction velocity in

relation to activation. This section shows that it is possible to extract enough

general knowledge from this data to a) develop an experimental paradigm to

estimate all crucial properties for modeling in a single muscle, and b) to get
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3.2 Materials and methods

reasonable �ts and thus modeling parameters from these experiments.

Thus, this section provides an approach for the estimation of Hill-type model

parameters of an individual muscle. Although in total 10 muscles (of 10 di�er-

ent animals) have been investigated, only one is presented in detail here. The

other muscles are included in mean R2 values and standard deviations.

3.2 Materials and methods

3.2.1 Modeling tools

Calculations were performed in GnuOctave on Linux (Ubuntu 9.04, Kernel

2.6.28-15-generic, Intel Core2 T5600). Parameters were optimized using the

leasqr routine of the optim package (version 1.0.3). Correlation coe�cients were

calculated using corrcoef of the statistics module. RMS values were calculated

with a custom code.

3.2.2 Dissection and experimental set-up

The experiments were performed by C. Guschlbauer. They were executed

at room temperature with adult female stick insects from the departmental

colony. First, all legs except the right middle leg, were amputated at mid-coxa,

then the animal was pinned dorsal side up on a balsa wood platform and the

coxa, trochanter, and femur embedded in dental cement (ProTempII, ESPE,

Seefeld, Germany). The thorax was opened longitudinally, the gut lifted from

the thorax and moved to one side. Fat tissue was carefully removed.

The thoracic cavity was �lled with Carausius morosus saline (Weidler and

Diecke, 1969). Mesothoracic nerves were dissected to access nerve nl3, which

contains the extensor tibiae motor axons (fast, slow and common inhibitor

Bässler and Storrer, 1980). Finally the nl3 nerve was crushed near the gan-

glion, to remove any type of e�erent information. Then the nerve was dried,

lifted onto the hooks of a bipolar stimulation electrode, and isolated from the

bath with vaseline (Engelhard Arzneimittel GmbH & CoKG, Niederdorfelden,

Germany).

Once the thoracic dissection was completed, the femur was opened distally by

cutting a small window in the dorsal cuticle. The tendon position at 90° FT

angle (de�ned as rest length, Guschlbauer et al., 2007) was then measured and

marked and was afterwards cut distal of the 90° position and connected with a
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3 Building an individual Hill-type model of the extensor tibiae muscle
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Figure 3.1: Example of a muscle response to passive stretch. Passive force (parallel
elasticity) was measured by applying length ramps without stimulation. The force
shows a transient peak (dynamic passive force) followed by a slow relaxation. Steady
state passive force was measured at the asterisk.

hook-shaped insect pin to the lever arm of an Aurora 300 B (Aurora Scienti�c

Inc., Ontario, Canada). After this connection was established, the muscle was

reset to rest length.

3.2.3 Nerve stimulation

Motor nerve stimulation was performed using square-wave current pulses of 0.5

ms duration. This output triggered a digital pulse generator that drove a stim-

ulation isolation unit (both from the electronics workshop at the Zoologisches

Institut, Köln). These signals were then transmitted to the nerve stimulation

electrode.

The current amplitude was set at least 2.5 times above the threshold that

elicited visible contractions. This should ensure the activation of all three

motor axons (Guschlbauer et al., 2007). Two types of stimulation patterns

were used: Single pulses and tonic stimulations of 40, 60, 80, and 100 Hz of

one second duration.

3.2.4 Muscle protocols

Two di�erent types of experiments were performed. Stretching and shortening

the muscle in combination with isometric stimulation was used to investigate

force-length and passive force relationships. In quick-release experiments, the
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3.2 Materials and methods

muscle was �rst isometrically stimulated at rest length, then it was allowed to

contract against a constant counter force (isotonic conditions). This type of

experiment was used to investigate force-velocity and series elasticity proper-

ties.

Passive force-length experiments were performed in the muscle's physiological

working range. Length changes were applied with ramps (0.5 - 0.75 mm/s)

from -0.2 mm to -0.1 mm to 0 mm to 0.15 mm (relative to muscle rest length).

Immediately after the muscle was �rst shortened to -0.2 mm at the beginning

of the protocol, the motor nerve was stimulated with a brief high-frequency

pulse to remove muscle slack (Proske and Morgan, 1999). In response to pas-

sive stretches the muscles showed an initial rapid force increase followed by a

relaxation to a steady-state value (see Figure 3.1). Passive force-length mea-

surements were made at quasi steady-state. Because the time at which the

steady-state was achieved varied for di�erent muscle lengths, these measure-

ments were made at the following times: 40 s after the slack-removing stimu-

lation at the -0.2 mm length, 60 s after the stretch to the -0.1 mm length, 80 s

after the stretch to the rest (0 mm) length, and 100 s after the stretch to the

0.15 mm length.

The quick release experiments were performed at muscle rest length, as shown

in Figure 3.2. The motor nerve was stimulated under isometric conditions

at one of the frequencies noted above. After the force had reached steady-

state, the system was switched into force control mode. Muscle counter-force

was set to 1/4, 2/3, 1.2 or 1.8 times maximal isometric force and the resulting

length change observed. In case force steps were performed to smaller forces,

this change consisted of an initial, extremely rapid change in muscle length

followed by a brief period of oscillation (Edman, 1988) and �nally a slower and

continually decreasing length change (Figure 3.2). The slope of initial 25 ms of

this third portion was used to construct force-velocity curves. The amplitude

of the initial portion of the length change was measured by extrapolating this

slope through the oscillation into its intersection with the initial portion of the

length change (inset in Figure 3.2). This length was later used for determining

muscle series elasticity parameters (see section 3.3.2).

The procedure above required two modi�cations for steps to forces larger than

maximum isometric force (1.2 and 1.8 times maximum isometric force). First,

data from cases with force increases in which no slope discontinuity could be

identi�ed were not included in further analysis. Second, in cases with very large

force increases muscle length could achieve steady-state in less than 25 ms. If
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3 Building an individual Hill-type model of the extensor tibiae muscle
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0.2 mm
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Figure 3.2: Schematic time course of a quick-release experiment for determination of
series elasticity. Motor nerve was stimulated throughout the experiment. Initially the
muscle was held at a given length, thus contracting isometrically. Then the Aurora is
changed from position to force control and the muscle is able to contract as soon as
it overcomes the de�ned counter force. If counter force is greater than muscle force,
the muscle can get stretched in this second part of the experiment. Else, if counter
force is smaller than muscle force, than the muscle will start to contract (as shown
here). Shortening has a rapid, initial part, attributed to series elasticity relaxation,
and a slower second part, generated by active contraction. The inset highlights the
initial �rst part of the contraction with characteristic oscillations. The discontinuity
in slope between L1 and L2 was important for series elastic component determination
(see text for details). It corresponds to the change in series elasticity length induced
by the transition from F1 to F2.

this happened, the length change was determined by the following procedure: In

order to get a time estimate for when to read o� the length value in the position

trace, the time the discontinuity took in the experiment with 1/4 maximum

isometric force at 80 Hz was measured. Then the position value at this time

was used to calculate the slope (see section 3.3.2 for details).

To minimize muscle fatigue isometric experiments were performed �rst, iso-

tonic experiments next, and those involving muscle lengthening were done at

last. Determining force-length and force-velocity curves resulted in three mea-

surements at 40 and 80 Hz, and �ve measurements at 60 Hz. The muscle

fatigue was estimated by comparing isometric force of repeated measurements.

Only experiments in which each force measure reached at least 80% of their

respective maximal force value were used.
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3.3 Results

3.3 Results

The next sections explain which equations were used for parameter optimiza-

tion and how precisely the measurements were used during the process. Once

the required measurement values were extracted from the raw data, model

generation could be automated and was performed by a GnuOctave script.

In order to be able to interpret the measured force values correctly, one needs to

decide for an underlying model concept. Basically two concepts are commonly

accepted, di�ering in what is connected to the series elasticity. Siebert et al.

(2008) compared the properties of these di�erent con�gurations. The CC model

(after Siebert et al., 2008) was used here, which is shown in Figure 3.3. The

type of model hypothesis is important for interpreting passive force and series

elasticity measurements.

3.3.1 Passive force curve (parallel elasticity)

The terms �passive force� and �parallel elasticity� force are used synonymously

here. As shown in Figure 3.3 parallel elastic spring (PE) is arranged parallel to

the contractile element (CE) both connected to the series elastic spring (SE).

The passive force was measured by application of length changes to the inactive

muscle. In response to lengthening the muscle produces a speci�c force pro�le,

similar to the one shown in Figure 3.1. The force response can be separated

into a dynamic or elastic part (the latter being prominent during lengthening)

and a viscous part after the new length has been achieved. The viscous force

reduction actually goes on for a very long time after muscle stretch(Guschlbauer

et al., 2007) which makes it hard to de�ne a steady force state. But force change

CE

SE

PE

Figure 3.3: Arrangement of the functional components of the Hill-type model used
here. Contractile element (CE) and parallel elasticity (PE) are both connected to the
series elastic spring (SE).
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Figure 3.4: Comparison of exponential model (solid line, see equation 3.1) and mea-
sured data points of passive muscle stretch. Note that static passive force, is small
(compared to active forces or dynamic passive force).

declines more and more, thus at some point the system can be assumed to be

almost static.

The passive force curve results from plotting the force of several measurements

over the corresponding muscle lengths. In Figure 3.4 the four measurements

(squares) are presented in combination with the curve �t. The equation for

�tting the data points was an exponential function, suggested by Guschlbauer

et al. (2007)

F = k1 · ek2L, (3.1)

where F is muscle force, L is muscle length (which equals muscle �ber length,

see Guschlbauer et al. (2007), and k1 and k2 are the parameters to �t.

The parameter �t resulted in an R2 value of 0.92. As explained above, in total

10 animals were investigated with this procedure. Across these 10 experiments

the mean R2 value was 0.94±0.04.

3.3.2 Series elasticity

Data for the determination of series elastic properties originate from the quick

release experiments explained in section 3.2.4 and Figure 3.2. The experiment
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Figure 3.5: Scheme of the analytical derivation of spring constant (k3) for series elas-
ticity from quick release experiments. See section 3.3.2 for details of calculation.

results in two distinct length changes, an initial rapid length step and a second,

slower shortening (see inset in Figure 3.2).

Consistent with the model conception underlying this work (see Figure 3.3),

initial, rapid length change can be attributed exclusively to shortening of the

series elastic component (SE in Figure 3.3). In this model measured muscle

force is solely the force of the SE spring, and the goal of these experiments is

to relate SE spring force with SE spring length. The quick release experiments,

however, do not reveal SE spring length directly; only whole muscle length can

be measured.

Guschlbauer et al. (2007) found a quadratic relationship between initial length

change (L2-L1, Figure 3.2) and F2 (see also Figure 3.2). The quadratic re-

lationship of these parameters corresponds to a quadratic relationship of SE

spring force and SE spring length, although this conclusion is not obvious.

Section 3.3.2 on page 48 contains the derivation of this conclusion.

This derivation provides a means to calculate the spring constants of the series

elasticity from the quick release data. Two di�erent ways will be described

here. First, the spring constant can be analytically derived for each data set

of L1, L2, F1 and F2. Second, the constant can be derived by linear �tting

through a plot of
√
F2 −

√
F1 vs. L2�L1.

45



3 Building an individual Hill-type model of the extensor tibiae muscle

Analytic solution

In Figure 3.5 the measured and required parameters are summarized. The quick

release experiments provide measures for ∆L, F1 and F2. L1SE and L2SE are

unknown. However, as a quadratic relationship is assumed, it is possible to

calculate the spring constant even without knowing L1SE and L2SE .

Equation 3.2 is the hypothesis of the quadratic spring, solved for LSE in equa-

tion 3.3 where the term 1√
k
is replaced by the variable m.

F = k · L2
SE (3.2)

LSE = m ·
√
F (3.3)

Equation 3.4 relates m and k to each other.

k =

(
1

m

)2

; m =
1√
k

(3.4)

With equations 3.2-3.4 it is possible to relate ∆L to F1, F2 and m. ∆L is given

by:

∆LSE = L1SE − L2SE (3.5)

However, each LSE term can be expressed as a function of the corresponding

force and spring constant:

∆LSE = m ·
√
F1 −m ·

√
F2, (3.6)

solving for m, results in

m =
∆LSE√
F1 −

√
F2

. (3.7)

This relates the spring constant of the series elastic spring to the forces F1

and F2 and the measured length di�erence (∆L). Thus using equation 3.7, it

is possible to calculate a distinct spring constant value for each quick release

experiment. Ideally m would be identical in each experiment, but it is not. For

modeling an average of all calculated spring constants was used.
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Figure 3.6: Estimating k3 with the linear �t approach. According to equation 3.9, a
linear relationship can be expected between L2 − L1 and

√
F2 −

√
F1. Data of three

di�erent activation levels are shown here (squares, diamonds and circles). The linear
�t shows high correlation (R2 = 0.96) and k3 is similar, but not identical to the
analytical method presented above (compare section 3.3.2 and table 4.1 on page 66).

Linear �t solution

Equation 3.7 can be re-written as done in equation 3.8. Looking at equation 3.8

it becomes clear that a proportionality can be expected between ∆L and the

force di�erence. ∆L and the di�erence of the square root forces are proportional

to 1/m, the reciprocal slope of the series elastic spring. Thus plotting the

measured length di�erences against
√
F1−
√
F2 should give a linear relationship

with the slope of 1/m (which equals
√
k) (equation 3.9).

m−1 ·∆LSE =
√
F1 −

√
F2 (3.8)

m−1 · (L1SE − L2SE) =
√
F1 −

√
F2 (3.9)

Figure 3.6 shows the data for the selected muscle. The strong linear correlation

of the data points (R2 = 0.96) further support the idea of the quadratic spring.

Keeping in mind that the data points originate from experiments at di�erent

muscle activation levels. Figure 3.6 also shows that the spring constant does

not change with activation level.
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3 Building an individual Hill-type model of the extensor tibiae muscle

The quadratic spring as presented in Guschlbauer et al. (2007)

Guschlbauer et al. (2007) found the following relationship of measured length

change in the quick release experiments and F2:

F2 = k4 · (k5 −∆L)2, (3.10)

with free parameters k4 and k5 and F2 the second counter force (see F2 in

Figure. 3.2). Fitting k4 and k5 resulted in a very accurate description of the

measured data (R2 > 0.99). However, this equation is not of immediate use for

modeling, as a relationship is needed describing the spring force for any given

length of the series elastic spring. Thus a description in the following form is

required:

F = k3 · L2
SE , (3.11)

with LSEbeing the length of the series elastic component and F being its force.

The following steps explain why it is allowed to assume such a spring prop-

erty underlying the results shown in Guschlbauer et al. (2007). The idea is

to show that the relationship between F2 and ∆L of the quadratic spring in

equation 3.11 would result in equation 3.10. Therefore ∆L is �rst set up, which

is the result of two di�erent counter forces pulling at the spring. The forces

were called F1 (force before the switch) and F2 (force after switch). In terms

of the spring function, these forces are associated with a certain spring length

(LSE). So if L1SE is the spring length associated with F1 and L2SE ist the

spring length associated with F2 the following relationships can be derived from

equation 3.11:

F1 = k3 · L2
1SE (3.12)

F2 = k3 · L2
2SE (3.13)

L1SE =

√
F1

k3
(3.14)

L2SE =

√
F2

k3
(3.15)
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Figure 3.7: Series elastic spring model. The force the calculated quadratic spring
would produce at di�erent lengths is shown here.

With equations 3.14 and 3.15 it is possible to express ∆L:

−∆L = L2SE − L1SE =

√
F2

k3
−
√
F1

k3
(3.16)

If the second term in equation 3.16 is replaced by a variable (for example k5)

equation 3.18 results:

k5 =

√
F1

k3
(3.17)

−∆L =

√
F2

k3
− k5 (3.18)

As it will turn out later, the k5 de�ned in equation 3.17 is identical to the k5

in equation 3.10. Equation 3.18 can now be solved for F2:

(k5 −∆L) =

√
F2

k3
(3.19)

(k5 −∆L)2 =
F2

k3
(3.20)

k3 · (k5 −∆L)2 = F2 (3.21)
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Having solved this equation for F2 it becomes clear that k3 in equations 3.11-

3.21 is identical to k4 in equation 3.10

k3 = k4. (3.22)

Thus it can be shown that the relationship of F2 and ∆L for a spring following

equation 3.11 results in

k4 · (k5 −∆L)2 = F2 , (3.23)

which is exactly what has been used as a model for �tting in Guschlbauer et al.

(2007). This shows that it is correct to assume a quadratic spring equation (as

given in equation 3.11) from the data published in Guschlbauer et al. (2007).

Figure 3.7 �nally plots the force-length relation of the series elastic spring given

by the estimated k3 value.

3.3.3 Force-activation curve

It is essential to be able to predict the force the muscle develops actively in

response to motor neuron activity. The �rst step achieving this goal was to

describe the steady-state force the muscle develops in response to varying levels

of activation when held at rest length. Figure 3.8 explains this procedure. At

two di�erent stimulation frequencies the muscle produces isometric force. The

asterisk denotes level of the maximum force values as it was measured. Note

that muscle length is constant (at rest length) during this type of experiment.

Figure 3.9 shows the resulting force-activation data and the �tted model to it.

Guschlbauer et al. (2007) �tted these data with an equation of the form:

F = Fmax · (1− e−act/λ) (3.24)

where Fmax is the maximum isometric force the muscle can produce at rest

length, act is the stimulation frequency and λ is the `activation constant'.

For the �ts presented here, there were su�cient data points to independently

determine what function best �t the data, and found that a Gompertz equation,

F = Fmax · e−e
−a·(act−b)

, (3.25)
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Figure 3.8: Example of experimental procedure for the determination of force-
activation curve. At rest length di�erent stimulations are performed (here 40 and
80 Hz). Force builds up isometrically (note the muscle length trace remains constant
throughout the measurement) and is measured at its peak (asterisk).

gave better �ts. Fmax, a, and b are parameters determined from the �ts (see

Figure 3.9). One of its advantages (for example over a standard sigmoid) is

that it provides a certain level of asymmetry in its asymptotes. The Fmax pa-

rameter has a particular relevance to other modeling parts. It is the maximum

isometric force the muscle can produce at full activation (corresponding to a

stimulation frequency of 200 Hz). As force length and force velocity modeling

were performed with normalized force (to keep the number of parameters low),

estimating Fmax accurately is crucial for the quality of these models. Thus

it was important to have particular good �ts for the force-activation data, as

Fmax was not measured directly, but a result of force-activation �tting.

In Figure 3.9 the �t had an R2 value of 0.997; across the 10 experiments

performed, the mean R2 value was 0.9991±0.001.

3.3.4 Force-length curve

Despite knowing how the steady-state force varies as a function of muscle ac-

tivation, it is also necessary to know how steady-state force varies at di�erent

muscle lengths. This relationship is called the �force-length� curve, or more

precisely the �active force-length� curve, if it refers to muscle force generated

by active contraction.

The data for setting up a force length curve originates again from steady

state, isometric force measurements (similar to the measurements shown in

Figure 3.8) but this time at various muscle lengths. Figure 3.10 shows an ex-

ample measurement for setting up the 80 Hz force length curve. Two isometric

contractions are shown at two di�erent muscle lengths. The dashed horizon-
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Figure 3.9: Force-activation model and related data points. Measurements as shown
in Figure 3.8 result in a force-activation relationship at rest length. Four di�erent
stimulation frequencies have been applied (40, 60, 80 and 100 Hz). The �rst data
point (left most) originates from single twitch measurements.

tal line denoted the increase in active isometric muscle force due to muscle

lengthening.

In contrast to force velocity modeling, where the Hill-hyperbola (Hill, 1938)

usually provides very good approximations, force length relations are more

diverse in shape. Thus the �rst step in force length modeling was to think about

a general model which is simple yet �exible enough to reproduce pertinent

features of the measured curve. Several di�erent approaches have been studied

(linear, parabola, polynomial models) but one type of model proved to be very

powerful although it has only a single parameter to �t to the muscle data.

Investigations of force length data of Guschlbauer et al. (2007) led to the pre-

sumption that there may exist a common maximum �ber length for all acti-

vations (see Figure 3.11a). By extrapolation this common intersection of the

length axis was estimated to be approximately 2.7 mm. This idea in mind a

sinusoidal model was designed which met the constraints of crossing the length

axis at 2.7 mm and having a maximum amplitude of 1 (which is the maximum

normalized force in the model). The solid lines in 3.11a show the behavior of

the sinusoidal model when all parameters of the model were individually �t

to the data points. Each line represents one activation level. The model was

almost identical to the one used at last (given in equation 3.29). The only
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Figure 3.10: Example of force-length data measurement procedure. Muscle active
force was measured at four muscle lengths at each of two activation levels (40 and 80
Hz). The data shown here are only for two muscle lengths at the 80 Hz activation
level. To compensate for changes in passive force resulting from the changes in muscle
length, the passive force for each length had to be substracted from the active force.
This value of passive force was measured immediately before stimulation start.

di�erence is that the Aactfunction (as formulated in equation 3.27) was not

known at the beginning. So Aact simply was a parameter optimized for each

activation level (thus called A∗act in equation 3.26).

F = A∗act

[
1 + sin

(
freqact ·

(
L−

(
π
2 + 2.7 · freqact

)))
2

]
(3.26)

It is visible that the model lines �t nicely to the data points up to almost 2 mm,

a length way beyond the working range of the muscle (approximately 1.2-1.6

mm, see Guschlbauer et al. (2007)).

At this stage the model consisted of two parameters, one controlled the ampli-

tude (Aact), the other one controls frequency (freqact) of the sine wave. Both

parameters were sensitive to activation, thus needed adaption to each activation

level. In Figure 3.11b, the values for each parameter at the activation levels are

shown. It is obvious that a) the variation of each parameter with activation is

systematic, thus should be predictable and b) that both parameters (Aact and

freqact) are not independent from each other. Their relationship is drawn in

Figure 3.11c. Their linear dependence makes it easy to express one parameter

by a linear function of the other. Equation 3.27 expresses Aact as a function of

freqact. Equation 3.28 shows the equation used to predict the freqact values

in Figure 3.11b. This equation contains the curvhyp parameter which is the

only remaining parameter that needed to be adapted for the model to work. In

Figure 3.11c, the result of the modeling is shown. In comparison to the results
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Figure 3.11: Scheme of force-length model derivation. There were 14 data points per
activation level curve (total 56 measurements). a) Data from Fig. 9a of Guschlbauer
et al. (2007) replotted and �t with equation 3.26. b) Plot of A∗act and freqact of
equation 3.26 vs. activation level. Note the hyperbolic variation of both parameters
(equation 3.28) and the linear relationship of the two functions. c) Plot of A∗act
vs. freqact and linear �t to the data (equation 3.27). d) Curves obtained when
freqact and Aact functions are used to calculate the force at any activation level. The
numbers in the inset rectangles in a and b and the x-axis label in c refer to activation
normalized to maximum activation (200 Hz motor nerve stimulation).

shown in panel a, the curves in d result from modeling, not from individual �ts

to each activation level. Thus resultant lines in panel d are not as accurate as in

a, but represent a complete model for each stimulation frequency based on only

one parameter (de�ning the `curvature' of the hyperbolic function, curvhyp).

Aact = 2.7− 0.7 · freqact (3.27)

freqact = 2.5 +
1

(curvhyp · (act+ 0.005))2
(3.28)

Equations 3.27 and 3.28 were used in the complete force length model, shown
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in equation 3.29. Note that Aact and freqact are functions, not parameters.

F = Aact

[
1 + sin

(
freqact ·

(
L−

(
π
2 + 2.7 · freqact

)))
2

]
(3.29)

The terms in this equation can be understood as follows. Aact sets the maxi-

mum amplitude of the sine wave and depends on the level of muscle activation.

The '1' and '2' in the square brackets turn all values of the sine curve positive

and limit them between 0 and 1 (and thus, since the F values used here are

normalized and therefore run from 0 and 1, also constrain Aact to lie between

0 and 1). The freqact · L term sets sine wave frequency with freqact being a

function of muscle activation. The π
2 + 2.7 · freqact term ensures that all sine

curves produce 0 force at a muscle length of 2.7 mm and that the peak of the

curves shifts to the right as activation level decreases, which was true for the

muscle shown in Guschlbauer et al. (2007).

This modeling was later transferred to the individual muscles, for simplicity

assuming the relation between Aact and freqact to be constant for all extensor

muscles. As it turned out, it was possible to produce acceptable force-length �ts

under this assumption, for all ten muscles investigated. Therefore, no further

study of this particular relationship was performed.

The procedure to estimate the curvhyp parameter was the following (for all

muscles including the one presented here):

The active force-length curve was measured at four lengths at each of two acti-

vation levels (according to the method outlined in Figure 3.10 and normalized

these data using the Fmax value calculated earlier by �tting equation 3.32, see

also Figure 3.9.

Afterwards the force-length model was �tted (equation 3.29) to each activation

level's four data points (by optimization of curvhyp). This gave two points

(one for each activation level) on the activation / function-value plane shown

in panel 3.11b. These two points were used to constrain the hyperbolic �t

(`hyperbolic �t' line in Figure 3.11b), which resulted in the value of curvhyp

in equation 3.28. Figures 3.12b and 3.12c show the resultant curves for the

activation levels 0.2 and 0.4 of 200 Hz. Figure 3.12d displays the predicted

curve at an activation level of 1.

It is apparent in this example that this �tting procedure, in which all equation

parameters except curvhype were presumed to be constant, resulted in good �ts
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Figure 3.12: Force length curves for selected muscle. Active force-length curves calcu-
lated from four measurements each (squares in panels a and b) at the two activation
levels (numbers in upper right corner of each panel). d) Predicted force-length curve
for an activation of 1 (200 Hz).
Normalization of force has been removed in this plot for ease of comparison with
physiological data.

to the data in Figs. 3.12a (R2 = 0.83) and 3.12b (R2 = 0.91). When the data

from the additional 9 experiments were similarly analyzed, again good �ts

were obtained strengthening the assumption that only curvhyp varied across

muscles (mean R2 = 0.96± 0.03). How far the observed sensitivity to changes

in curvhpy is due to a possible weak sensitivity for the Aact parameter has not

been investigated yet. However, given the strong correlation between the two

parameters and their dedicated purpose in the force-length equation (scaling

and frequency), there is no reason to assume Aact to have considerably less

e�ect on the curve than freqact (with its curvhyp parameter).
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Figure 3.13: Schematic time course of a quick-release experiment for determination of
the force-velocity curve. The same quick release experiments as in section 3.3.2 were
used, but a di�erent analysis was performed. The average slope during 20 ms after end
of the contraction discontinuity was used to calculate the active contraction velocity
of the contractile element (see inset and section 3.2.4 for details about measurement
and analysis).

3.3.5 Force-velocity curve

The classic Hill hyperbola predicts the shortening force-velocity curve. Solved

for force, this relationship is usually noted like equation 3.30:

F =
cpos · (1 + cpos)

(v/vmax) + cpos
− cpos (3.30)

Here v is the velocity of muscle shortening, vmax is the maximum rate of

shortening (at zero force), and cpos is a constant that determines hyperbola

curvature. The cpos value has already been determined by Guschlbauer et al.

(2007) and proved to be rather constant for all investigated muscles (cneg =

0.5).

However, the classic formulation was made for maximum muscle activation

only. It needs scaling applied to it (in some form or other) if it should be used

for varying activation levels. This scaling can be as simple as a linear factor

(scaling proportional to activation level) or more complex, possibly including

activation dependency of other parameters, which is true for the force-velocity

model presented here.

Equation 3.31 shows the scaled version of the Hill hyperbola:
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3 Building an individual Hill-type model of the extensor tibiae muscle

F = FA ·
cpos · (1 + cpos)

(v/vmax) + cpos
− cpos, (3.31)

with FA being equal to function 3.32

FA = Fmax · e−e
−a·(act−b)

. (3.32)

The FA function used for scaling is the force-activation relationship described

in section 3.25, repeated for ease of reading (equation 3.32). In addition to

simple multiplicative scaling, vmax is a function of activation, too. Note that

both, equation 3.30 and 3.31, are valid for shortening velocities only.

The muscle force during lengthening does not follow the same relationship, as it

saturates quickly for lengthening contractions, which cannot be predicted with

the Hill hyperbola. The equation used for lengthening contractions is given in

equation 3.33:

F =
cneg · (1 + cneg)

(v/v0) + cneg
− cneg − FA (3.33)

Note that cneg has a di�erent sign than cpos, which makes this hyperbolic

function saturate in force for increasing lengthening velocities. This function

also needs appropriate scaling in order to have both equations touch each other

at zero velocity. The scaling is done by y-shifting with the �nal �FA term.

The process of �nding appropriate vmax values for the shortening contraction

equation and appropriate cneg for the lengthening contractions was as follows:

For these contractions, all parameters are known for each activation level, ex-

cept for vmax. vmax was determined from same quick release experiments

(Figure 3.13) that were used in section 3.3.2 but using the initial slope of the

second, slow length change (see inset in Figure 3.13). These experiments were

performed using three force step changes at three activation levels. All force

levels were normalized by dividing by Fmax. vmax was calculated by �tting a

linearly scaled version of the Hill hyperbola (equation 3.34) to the force-velocity

data of each activation level.

F = s · cpos · (1 + cpos)

(v/vmax) + cpos
− cpos (3.34)

The scaling factor s in this equation is simply a number, not a function, as the

�tting is done separately for each activation level. This scaling could also have
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Figure 3.14: Determinating maximum contraction velocity (vmax) for di�erent stim-
ulation frequencies. Equation 3.34 was �t to data resulting from quick release ex-
periments of three di�erent stimulation frequencies (squares (40 Hz), circles (60 Hz),
diamonds (80Hz)). Each �t (dashed line) was done with activation speci�c s, cpos and
vmax in order to result in the best possible extrapolation of vmax. Thus the result of
this work are the three vmax values in Figure 3.15.

been performed by �xing s according to the force-activation relationship (see

section 3.3.3). But to maximize goodness of the �ts (and hence the estimates

of vmax) at this intermediate stage, s was instead allowed to be a free variable.

From these �ts the vmax values (where the curves crossed the x-axis) for the

various activation levels (Figure 3.14) were extrapolated. These vmax values

were then plotted vs. activation (Figure 3.15) and �tted to an equation from

Guschlbauer et al. (2007):

vmax = vmax∞ · e−act/0.3 (3.35)

in order to determine vmax∞, which is the vmax at an activation of in�nity. The

'activation constant' of 0.3 is taken from Guschlbauer et al. (2007). It proved

to be rather constant for all investigated animals and was thus used for all

muscles. As function type as well as curvature for this �t were pre-determined

by Guschlbauer et al. (2007), this particular �t was not as good as it could

have been without having the curvature parameter �xed. On the other hand,

the single degree of freedom in this �t makes it possible to work with only three

data points (as only vmax∞ need to be optimized).
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Figure 3.15: Plot of vmax versus activation comparing vmax-model and extrapolated
data. vmax has shown to depend on muscle activation (Guschlbauer et al., 2007).
This plot contains the vmax values determined before (squares, see Figure 3.14). The
solid line represents the estimated �t through the three data points. Note, that model
function and curvature were described to be constant for all muscles by Guschlbauer
et al. (2007), thus only vmax∞ could be optimized here.

As lengthening contractions are very demanding for the muscle to perform,

only two of these contractions were measured (at an activation level of 0.4).

Thus cneg and v0 were simply �t with equation 3.33 using the two data points

from lengthening contractions (open squares in Figure 3.15).

These �tted values were then used to construct continuous force-velocity curves

at di�erent activation levels (Figure 3.16). In these plots the solid lines are

the portions of the curves experimental data was available for (squares). The

inset in Figure 3.16c shows the shortening contraction data points and the �rst

lengthening contraction data point of the panel on an expanded time scale.

Figure 3.16d is the predicted force-velocity curve for an activation of 1.

Quality of �t was measured separately for the shortening and lengthening por-

tions of the curves. In the data shown, the �ts for the shortening contractions

(Figures 3.16 a, b, c) gave R2 values of 0.995, 0.99997 and 0.9998; across the 10

experiments the mean R2 values of the panels were 0.994±0.007, 0.997±0.007,

and 0.998±0.003.

60



3.4 Discussion

0.2 0.3

0.4 1.0

a b

c d

-5 0 5

Contraction velocity (mm/s)
0

50

100

150

200

250

300
Fo

rc
e 

(m
N

)

-5 0 5

Contraction velocity (mm/s)
0

50

100

150

200

250

300

Fo
rc

e 
(m

N
)

-60 -40 -20 0

Contraction velocity (mm/s)
0

50

100

150

200

250

300

Fo
rc

e 
(m

N
)

-5 0 5

Contraction velocity (mm/s)
0

50

100

150

200

250

300

Fo
rc

e 
(m

N
)

-5 0 50

50

100

150

200

250

300

Figure 3.16: Force velocity curves of the model. The panels a-d show the force-velocity
curves for shortening and lengthening contractions for di�erent activation levels as
predicted by the model (with data points measured); the activation level is noted in
the upper right corner of each panel. Dashed lines denote regions where no data has
been measured to compare the model to. The inset in panel c highlights the transition
from lengthening to shortening contractions. Panel d contains the predicted force-
velocity curve for activation level 1 (200 Hz).

3.4 Discussion

It could be shown that all the standard Hill-type parameters describing exten-

sor muscles can be achieved with good R2 values from a set of experimental

protocols small enough to be performed on single muscles. This work, how-

ever, requires su�cient prior experiments being performed so that the general

form of the functions involved can be determined (Guschlbauer et al., 2007).

In order to transfer this approach to another system, these prior experiments

would also need to be performed �rst. Nonetheless, this demonstrates that

it is possible to make these determinations in single experiments, suggesting

that this approach could also be followed in other systems, at least those with

muscles of comparable robustness as stick insect muscles.

A possible concern with these results is that the parameter determinations were

made with only 4 to 11 data points per characteristic. The R2 values associated
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3 Building an individual Hill-type model of the extensor tibiae muscle

with these determinations were uniformly high across the 10 muscles investi-

gated, which suggests that these numbers were su�cient to well constrain the

�ts. It is important to note that this success strongly depended on the exten-

sive prior knowledge of the muscles. For most characteristics the prior work

already de�ned or suggested applicable model functions, in some cases even

certain function parameters have been determined (like cpos in force-velocity

function).

Further this knowledge allowed to pre-determine which experiments should

be performed best to �nd the most useful data points for constraining the

various curves. Although this need for prior knowledge is time-consuming, the

experiments to obtain this background data are standard, and already available

in the literature for many systems. Consideration of prior work in other systems

shows that the functions used in this work also apply to most other muscles.

As such, the approach detailed here is again likely applicable to many other

muscles.

An alternative approach to determining muscle-de�ning parameter values in

experiments on individual muscles was provided by Wagner et al. (2005). In

this work the authors subjected the muscles to iso-velocity length changes at

multiple activation levels and then �tted the parameters of an existing muscle

model so that the model best reproduced the muscle responses to this input.

This approach fundamentally di�ers from the one used here as no direct mea-

surements of muscle Hill-type characteristics were attempted, but instead were

inferred once optimization was accomplished. Provided the muscle model used

in Wagner et al. (2005) is su�ciently accurate, both approaches should give

equivalent results, inasmuch as a given muscle has only one set of such charac-

teristics.

The ISOFIT approach has certain advantages including the ability to measure

muscle responses in vivo. But it has the drawback that an accurate muscle

model must already be available, and it is unclear how sensitive the results

obtained from it are to model details.

Although in some cases data are interpreted in terms of a muscle model here

as well, the data measures itself are model-independent. As such, the approach

detailed here may have advantages for investigating muscle properties in cases

in which insu�cient model detail or computer resources (to perform the op-

timizations) are available. The direct relationship between the measurements

made here and well-understood and widely used descriptors of muscle charac-

teristics is also an advantage of this approach.
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3.4 Discussion

In summary, a methodology is described here, which allows speci�cation of

muscle passive force, series elasticity, force-activation, force-length, and force-

velocity curves at all activations, from only 28 measurements, a small enough

number to perform in experiments on single muscles. This approach allows

modeling muscles individual-by-individual, and will be useful for investigating

how much animal-to-animal variability is present in muscles, whether muscles

from di�erent animals must be modeled individually, and whether there are

correlations among muscle parameters. These issues will be examined for the

stick insect extensor muscle in the following sections.
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4 Parameter variation between individual

Hill-type muscle models

4.1 Introduction

Comparison of muscles contractions of from di�erent individuals to identical

neural driving suggests that considerable inter-individual variation may exist

(Hooper et al., 2006; Thuma et al., 2003). Whole muscle responses result

from the combined action of multiple lower-level processes, and thus these

di�erent responses presumably arise from di�erence in the lower-level processes.

One method to characterize these lower-level processes is by modeling. Hill-

type models composed of multiple equations, each of which are de�ned by

one to several parameters, are very commonly used to predict whole muscle

activity (Hannaford and Winters, 1990; Winters, 1990; Zahalak and Ma, 1990;

Zajac and Winters, 1990). In prior work the values of the parameters in these

equations have been determined from many experiments, with only one or a

few parameters being measured in any one experiment. Since the model's

parameters are never determined for any single muscle, this approach has the

drawback that it is impossible to measure parameter variation across animals.

In section 3 a technique was presented, which enables to measure all parameters

necessary to build a Hill-type model for an individual muscle. The individual

muscle data allows to directly measure both how much variability is present

between di�erent stick insect extensor muscles and whether any of the model

parameters co-vary. As it turned out, there is indeed substantial (1.3 to 17-

fold) variation in model parameters across muscles. Two parameter pairs of

the model co-vary. One of the pairs is present in equations modeling di�er-

ent muscle characteristics (force-length and foce-activation curves). These two

characteristics will vary in a linked fashion across muscles, and this lack of in-

dependence is a good argument to take particular care in combining data from

di�erent muscles into single models.
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4 Parameter variation between individual Hill-type muscle models

Animal k1 
(μN) 

k2 
(mm-1) 

k3 
(N/mm2) 

Fmax 
(mN) A B curvhyp 

vmax∞ 
(mm/sec) 

v0 
(mm/sec) cneg 

A 1.76 4.73 12.1 189 10.8 0.23 4.23 6.27 1.07 -1.42 
B 4.87 4.11 11.6 197 6.6 0.32 3.23 6.02 0.6 -1.26 
C 0.78 5.48 13.6 139 6.3 0.22 4.47 5.6 1.14 -1.57 
D 5.29 4.18 14.2 116 10.3 0.12 6.22 7.05 0.26 -1.68 
E 3.13 4.38 12.1 189 8.1 0.2 4.51 6.58 1.04 -1.63 
F 4.65 4.36 12.7 121 11 0.14 5.57 6.66 0.69 -1.62 
G 1.24 5.1 12.7 196 11.4 0.12 5.82 6.17 0.23 -1.5 
H 0.53 5.99 31.2 132 8.1 0.17 5.13 5.66 1.06 -1.68 
I 4.29 4.09 9.5 170 8.9 0.24 4.19 6.06 3.99 -1.54 
J 0.41 5.73 8.2 54 6.6 0.23 4.24 7 0.49 -1.38 
           

Fold- 
variation 12.9 1.5 3.8 3.7 1.8 2.7 1.9 1.3 17.4 1.3 

Table 4.1: Summary of all parameters and values of the model. The �rst row contains
the parameter names used in the equations an the text. Animals in column one are
identi�ed with a capital letter (A-J). The �nal row lists the variation observed for a
speci�c parameter between all animals. Variation ranges from 1.3 fold to 17.4 fold.
Parameters k1 and k2 are used in passive force, k3 in series elasticity, Fmax, A and B in
force-activation, curvhyp in force-length and vmax(act=1), v0 and cneg in force-velocity
equations.

4.2 Materials and methods

4.2.1 Modeling and experimental procedures

Modeling and muscle experiments were performed the same way as described

in section 3.2. However in this section the results of ten extensor muscles were

examined.

4.2.2 Correlation analysis

The Hill-type model used here has 10 parameters. The ability in the experimen-

tal work to measure all ten of these parameters in single muscles allowed not

only to describe each muscle individually, but to test for correlations among the

parameters across muscles. This work was performed on ten muscles because

with ten parameters ten measurements are su�cient to detect a signi�cant cor-

relation 87.9% of the time (J Edu Stat 14:245-253, 1989). In general individual

parameters across the ten muscles were not normal distributed, which means

that it was necessary to use non-parametric correlation tests. A Spearman rank

correlation was therefore used with a α level of 0.00114 (to compensate for the

multiple comparisons being made, nomial αwas 0.05). The statistical test was

kindly performed by Dr. Silvia Gruhn.
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4.3 Results

4.3 Results

It has been shown in chapter 3 that it is possible to design a Hill-type model

from a set of measurements small enough to be performed on individual mus-

cles. This allows to compare these curves across muscles and to test for cor-

relations between curve parameters. In Table 4.1 all parameter values for all

animals and their variation are presented. In the following sections it is �rst

shown how each type of curve varies across the ten muscles examined. Then

the correlations present among curve parameters and possible bases for these

correlations are examined.

4.3.1 Parallel elasticity

Passive force (parallel elasticity) curves were described in section 3.3.1 (equa-

tion 3.1). Because of the exponential nature of these curves, the absolute value

range across the 10 muscles was relatively small at small �ber lengths (0.4 to

0.85 mN at a �ber length of 1.2 mm, the shorter edge of the working range)

and increased as �ber length increased (3 to 7.6 mN at 1.6 mm, the longer

edge of the working range, Figure 4.1). Parameter k1 showed much greater

variation (12.9-fold) than k2 (1.5-fold, see Table 4.1), but changes in k2 have a

much greater e�ect on how force changes with muscle length than changes in k1

because of k2's position in the exponent. Note, for instance, that the steepest
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Figure 4.1: Passive force (parallel elasticity) curves. The curves show large inter-
animal variation, particularly at long �ber lengths. The key identi�es which data and
curves come from which animal, and is used in all following �gures showing data from
multiple animals.
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curve in the plot (animal H) has the highest k2 value but the second lowest k1

value. This very strong e�ect of changing k2 can also be appreciated by noting

that, although animal H's curve appears very di�erent from those of the other

animals, its k2 value was only modestly larger than that of the next-largest

k2 (5.99 vs. 5.73, see Table 4.1). Because of the exponential nature of these

curves, the across-animal ranges were much smaller when expressed as fold-

di�erences, being 2.1-fold at 1.2 mm �ber length and 2.6-fold at 1.6 mm (with

this variation, of course, being solely because of the di�erent curves having

di�erent k2 values).

4.3.2 Series elasticity

The measurement of series elastic component was performed as described is

section 3.2.4 and 3.3.2. The initial changes observed in quick release exper-

iments are often modeled as arising from instantaneous length changes of a

spring in series with the contractile element. Consideration of earlier extensor

muscle data showed that for this muscle these length responses to changes in

holding force were well modeled with a quadratic spring (see equation 3.2 in

section 3.3.2).

Figure 4.2 shows the force of the series elastic spring for each muscle. Note that

the working range for each spring is given by the maximum force the muscle

can produce (usually below 200 mN). Corresponding to length values between
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Figure 4.2: Series elasticity models for all muscles. Series elasticity shows large inter-
animal variation. Note that the top curves in this �gure and in Figure 4.1 are from the
same animal. Although they appear to be outliers, they are no outliers in Figures 4.3-
4.6.
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0 and approximately 0.14 mm. These curves again showed large variation. Also

variation in parameter k3 was quite large (absolute range 8 to 31 N/mm2, a

3.8-fold variation), see also Table 4.1 in section 4.3.

4.3.3 Force-activation

The force-activation curve was modeled with the Gompertz equation (eqn.3.25).

Figure 4.3a shows the normalized curves and Figure 4.3b the �ts scaled with

individual muscle force. Even in the normalized case, in absence of inter-

muscle maximum force di�erences (see Figure 4.3a), substantial di�erences in

curve shape are apparent. For instance, the activation levels at which the

various curves reach half-maximal force (0.5) range from 0.15 (muscle G) to

0.38 (muscle B), 2.5-fold. These changes are solely due to the di�erent muscles

having di�erent A and B parameter values, ranging from 6.3 to 11.4 (A, 1.8-

fold) and 0.12 to 0.32 (B, 2.7-fold) (see Table 4.1).

In Figure 4.3b the individual maximum muscle force is included in the plot. It

is harder to see the di�erences in curve shape, but this representation highlights

how great the real variation between muscles is. Note that for activation level

0.2 for example, the force varies from 20 mN up to approximately 130 mN.

This points out how important this curve is for muscle force calculation. It also

shows the large variation in maximum isometric force (Fmax) varying from 54

to 197 mN (3.7-fold, see Table 4.1). Note that there is no correlation between

muscle maximum force and the activation level at which half-maximal force
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Figure 4.3: Normalized (panel a) and unnormalized force (panel b) force-activation
curves. No correlation between muscle maximum force and other curve characteristics
is apparent (e.g., at what activation the muscles achieved half-maximal force). `G'
and `B' identify curves arising from the respective muscles (see Table 4.1). Note that
the outlying, bottom curve in b (labeled with the asterisk) shows data from muscle
J. The same muscle also produces peculiar results in Figures 4.4b2-c2 and 4.6a2-c2.
But it did not gave rise to the apparent outlier (top) curves in Figure 4.1 and 4.2.

69
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occurs, as is well shown by the Fmax values of muscle G and B being nearly

identical in maximum force (196 vs. 197 mN) despite their half-maximal force

values occurring at the most di�erent normalized activation levels for any of

the ten muscles (see Figure 5.3a).

4.3.4 Force-length

Muscle force at all lengths and activations was modeled with the equations

described in section 3.3.4. Considering the normalized curves (Figure 4.4 left

column), it is apparent that the variation in curve shape is large for low acti-

vation levels (e.g., Figure 4.4a1).

Maximum normalized force ranges from 0.25 to 0.7 and the position of the sine

peak shifts from 1.8 to 1.6 mm, see arrow.) The curves displayed in Figure 4.4a1

have curvhyp values from 3.23 (bottom curve) to 6.22 (top curve), a 1.9-fold

range (see also Table 4.1). As activation increases the di�erences between the

curves diminish, with the normalized curves becoming essentially identical at

maximum activation (compare Figure 4.4c1).

Incorporating the muscle speci�c maximum force values results in the plots

of absolute muscle force in the right column of Figure 4.4. In these plots the

variation across animals becomes more apparent (compare Figure 4.4c1 and

4.4c2). Also the curves can now cross one another, destroying the smooth ver-

tical and leftward displacement seen in the normalized curves (compare arrow

in Figure 4.4a1). Taken together, these data show that at low activation levels

both inter-muscle di�erences in curvhyp and Fmax contribute to the di�erent

real force curves seen across the muscles, but at high activation levels the dif-

ferences between the muscles are due mainly to their di�ering Fmax values.
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Figure 4.4: Normalized (left column, a1-c1) and unnormalized force (right column,
a2-c2) force-length curves. In normalized plots, the curve peak shifts to the left with
increasing activation (see arrow in a1). Unnormalized data does not show such a
systematic shift and introduces curve crossings. Number in right upper corner in
each panel is the activation level.
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Figure 4.5: Plot of vmax as a function of activation. Note that curvature of the model
function is �xed and has been previously de�ned by Guschlbauer et al. (2007), thus
curves can only vary in amplitude. The vmax parameter shows comparatively large
inter-animal variation, particularly at large activations (see also Table 4.1).

4.3.5 Force-velocity

Force-velocity curves were constructed as described in section 3.3.5. In the

vmax models only amplitude can vary since the curvature parameter of the

equation is �xed to 0.3 (compare equation 3.35). The variation is therefore

small at low activations and increases with activation (Figure 4.5), ranging at

maximum activation from 5.4 to 6.8 mm/s (1.8-fold), with the variation of the

vmax∞ parameter itself being somewhat larger (5.6 to 7.05 mm/s, 1.9-fold,

compare Table 4.1). This di�erence in variation results from the fact that the

model function will still increase for activation levels greater than 1. Thus

the variation at activation 1 is smaller than the maximal possible variation at

in�nite activation.

Figure 4.6 compares the resulting force-velocity model with the measured data.

Again left column shows the normalized plots, right column the plots with

absolute force. In this case, as vmax is a muscle speci�c parameter, the curves

also show considerable variation at low activation levels (compare panels a and

b), even in the normalized display (panels a1 and b1). Maximum contraction

velocity (vmax) ranges from 0.7 to 0.1, thus shows a 7-fold variation.

It is important to keep in mind that maximum isometric force (Fmax) in this

plot is at zero velocity, in the middle of the x-axis. In the normalized pan-

els (a1-d1) variation of Fmax has to decrease with increasing activation level.
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For activation level 1 (panel d1) all force-velocity curves cross the point (0,1),

however they have a di�erent slope due to their di�erent vmax values. In the

absolute force domain (right column, panels a2-d2), the variation is high for all

activation levels. The curves at an activation of 1 have a force range at zero

velocity of 54 to 197 mN (3.7-fold).

Since there is only sparse data for the lengthening side (negative contraction

velocities) the lengthening model is fairly simple and not �rmly validated.

Whether the observable large variability for the lengthening contractions re-

�ects a physiological phenomenon or merely is an artifact of the simple model

type chosen, remains unclear until further experimental data is available.

With respect to the model parameters, variation ranges from 0.23 to 3.99 mm/s

for v0 (17-fold) and from -1.26 to �1.68 mm/s for cneg (1.3-fold).
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Figure 4.6: Normalized (right column) and unnormalized force (left column) force-
velocity curves. In panels a-c they are plotted in together with measured data. Panels
d1 and d2 show the prediction of the model for maximum activation. Numbers in
right upper corner in each panel are activation level.
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Figure 4.7: Correlation of k1 and k2 parameters of the passive force curve (a) and
possible explanation (b). Panel a) shows that k1 and k2 are well correlated by a
negative power function (equation and R value noted on top). b) Solid lines show
data from muscles with largest and smallest k1 and k2 parameters (see Table 4.1).
Upper dashed line shows curve with largest k1 and k2 parameters; bottom dashed line
shows curve with smallest k1 and k2 parameters. The correlation shown in panel a)
results in a reduced force-length area coverage, than it would without the correlation
(shaded area between the dashed lines).

4.3.6 Parameter correlations

A Spearman rank test for correlation among the 10 parameters (across the 10

muscles) identi�ed two signi�cantly-correlated pairs of parameters k1 and k2,

both of passive force curve (section 4.3.1) and parameters B and curvhyp with

B from force-activation curve (section 4.3.3) and curvhyp of the force-length

curve (section 4.3.4).

4.3.6.1 Parameters k1 and k2

Plotting k1 vs. k2 shows that these two parameters are very well �t with a

power-law relationship, with k1 decreasing as k2 increases (Figure 4.7).

The observed correlation of k1 and k2 reduces the variability of the passive force

curves. The solid lines in Figure 4.7b show the four curves from Figure 4.1 that

have the largest and smallest k1 values and the largest and smallest k2 values.

The upper dashed line is the curve that would result from using the largest k1

value and largest k2 value and the lower dashed line is the curve that would

result from using the smallest k1 value and smallest k2 value.

It is apparent that the actual curves occupy a much smaller area than that
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Figure 4.8: Interdependence of force-activation (a) and force-length curve (b). The
force di�erence at positions indicated by the arrows have to match in both curves.
This explains why both curves can not be expected to be independent. Numbers on
the right hand side of panel b denote activation levels.

bordered by the dashed lines. Consideration of equation 3.1 shows that, at

any �ber length, decreasing either k1 or k2 will decrease curve amplitude and

increasing either k1 or k2 will increase curve amplitude. The amplitude of

the passive force curve of a muscle with a large k1 can thus be decreased

by decreasing k2, and one with a large k2 by decreasing k1. (Similarly, the

amplitude of the passive force curve of a muscle with a small k1 can be increased

by increasing k2, and one with a small k2 by increasing k1.)

An inverse relationship between k1 and k2 , as observed here, thus decreases

the e�ects of changes in either parameter on curve amplitude. The negative

correlation thus likely results in better �t accuracy (compared with keeping one

of them constant).

4.3.6.2 Parameters B and curvhyp

The second correlation, between parameter B and curvhyp, likely results from

the force-activation and force-length curve sharing data points in their deriva-

tion. Figure 4.8a1 shows one muscle's force-activation curve and Figure 4.8a2

shows the muscle's force-length curve at an activation of 0.2 and 0.4.

The data in Figure 4.8b for rest length are the same as the 0.2 and 0.4 activation

data in Figure 4.8a, and therefore the di�erence in the force measurements at

the 0.2 and 0.4 activation in Figure 4.8a (arrow) and between the 0.2 and 0.4

activation data points at rest length in Figure 4.8b (1.41 mm, arrow) must be

the same. The data in the two plots are used to �t parameters in two di�erent
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Figure 4.9: E�ects of parameters A (panel a) and B (panel b) on the resulting force
di�erence of force-activation curve (compare Figure 4.8). Increase of either parameter
causes an increase in force di�erence in most of the physiological parameter range.
Only parameter B will not increase any more for very large B values. Note, that
for these investigations the other parameter (for example B in case of investigating
e�ects of varying A) has to be �xed. The value of the �xed parameter value is given
on the left top corner of each panel.

equations (Equation 3.25 for the force-activation curve, Equations 3.26-3.28 for

the force-length curve). In contrast to the data points, the corresponding force

di�erences in the �t lines do not need to be identical. That is because the other

data points the models were �tted to, are not identical. However, particularly

given the goodness of the curve �ts, the force di�erences of the curve �ts should

be also very similar.

Why one could expect a connection between force-activation and the force-

length function is explained in Figure 4.8. The crucial point is that the force-

length model, is able to predict forces for all activations, and thus somehow

needs to contain characteristics of the force-activation curve. In detail, two

data points on the force-length curve at rest length (see arrow in Figure 4.8b)

must have the same force di�erence as the corresponding points in the force-

activation plot (see arrow in Figure 4.8a). Note, however that the force-length

model has to predict these force di�erences for all physiological muscle �ber

lengths, whereas force-activation is only determined for rest length. The force-

length model predicts that these force di�erences are not constant for all muscle

lengths, otherwise the force-length curves for di�erent activation levels would

simply be scaled copies of each other. The presented model, and of course the

data of Guschlbauer et al. (2007), suggest that force-length curve scales and

shifts, maybe even changes its overall shape.

These considerations favor an activation sensitive force-length model over the

use of a force-activation model (at rest length) for scaling muscle force. How-
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Figure 4.10: E�ect of varying the curvhyp parameter to force di�erence (for rest
length). Increasing curvhyp causes a decrease in force di�erence for most of the
physiological parameter range. Only at the very beginning (small curvhyp values) the
force di�erence increases.

ever, the force di�erence of the force-length model at rest length has to match

the force di�erence of the force-activation curve (dashed lines in Figure 4.8),

thus some form of correlation between the parameters of this functions could

be expected.

The e�ects of parameters A, B and curvhyp on the force di�erence (∆F ) are

presented in detail next. Figure 4.9 shows how ∆F changes in response to an

increase in the parameter values A and B of the force-activation model (com-

pare equation 3.25). These plots show that, for almost all of the physiologically

relevant ranges (Table 4.1) of A and B, the force di�erence increases (only for

very large B values the force di�erence will eventually decrease slightly, Fig-

ure 4.9 right hand side).

Figure 4.10 shows how ∆F reacts to increasing curvhyp (compare eqn. 3.26-

3.28). This plot reveals that for the physiologically range of curvhypvalues, the

force di�erence primarily decreases (except for very small curvhypvalues).

In respect to the interplay of force-length and force-activation model it thus

follows that if curvhyp increases, this force di�erence can be kept constant by

decreasing parameter A, B or both, and if curvhyp decreases, is can be kept

constant by increasing parameter A, B or both.

Figure 4.11 correlates parameter A and B with curvhyp. Parameter A shows a

weaker correlation with curvhyp (panel a) than parameter B (panel b). Parame-

ter A's weak correlation actually is too weak to be signi�cant in the correlation

search performed and is additionally in the wrong direction to maintain the

constant force di�erence. As such, the decrease in parameter B as curvhyp

increases must be large enough to compensate both for the changes in curvhyp
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Figure 4.11: Correlations of parameters A, B and curvhyp. Parameter A shows only
weak correlation with curvhyp(panel a). Its correlation is too weak to be signi�cant.
Parameter B is strongly correlated (panel b).

and the associated changes that occur in parameter A.

4.4 Discussion

The protocol for determining all the parameters of the Hill-type muscle model

in experiments on single muscles has been used to measure these parameters

in 10 muscles and to test for correlations among the parameters. Substantial

inter-individual variation have been found in all model parameters and the

curves resulting from them. Also two pairs of parameters have been identi�ed

that were signi�cantly correlated. Possible bases for these correlations were

investigated.

4.4.1 Possible experimental or analysis artifacts

A particular concern in work examining variability is that the observed varia-

tion does not arise from actual di�erences present in the animals, but instead is

the result of dissection damage or other experimental artifacts. Several obser-

vations, however, support the idea of this variation being a real phenomenon.

First, only muscles that showed robust contractions which persisted without

substantial force decline (≤20%) were used in this work (see section 3.2).

Second, it might be expected that substantial damage, at least, would so much

alter muscle characteristics that data from damaged muscles could no longer

be well �t by the various functions chosen. However, in all cases the �ts were

very good (R2 values routinely ≥ 0.95).
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Third, with few exceptions the variations produce a graded series of curves,

not the division into healthy and damaged muscles that would be expected,

at least for substantial damage. Consistent with this interpretation, muscles

that appear to be outliers in one plot, and which might therefore be damaged

muscles, are not outliers in other others (e.g., the muscle that gave the top curve

in Figure 4.1 is not the muscle that gave the lowest muscle in Figure 4.3b, and

neither of these muscles is the one that gave the lowest curve in Figure 4.4a2-

c2).

This observation is particularly important between Figure 4.1 and 4.6, which

measure passive and active force, because one type of damage that might be

expected is loss of muscle �bers during dissection. This would be expected

to decrease equally passive and active muscle force. The lack of correlation

among these two muscle characteristics thus argues against such loss being

the major source for the observed variability. Moreover, since the variability

continues to be present in normalized force curves, loss of muscle �bers or

similar experimental artifact a�ecting whole muscle force responses cannot be

an explanation for it.

Fourth, the large but graded variation between animals, observed for muscle

responses to identical neural driving (Hooper et al., 2006), disagrees with gross

muscle damage or similar experimental artifacts.

Taken together, these arguments suggest that the observed inter-animal varia-

tion is unlikely an artifact but is truly a property of the muscles investigated.

With respect to the observed correlations, the particularly good correlations

shown in Figure 4.7a and 4.11b verify the identi�cations of the original search

among all parameters. A di�erent concern is that the chosen 0.5 α-level was too

stringent, and that biologically relevant correlations or correlations inherent to

the model structure might have been missed. Figure 4.11a shows one such weak

correlation, and searches of all possible combinations of the other parameters

showed three other weak correlations, one between the A and B parameters

(R2 = 0.68), a second between parameter B and cneg (R2 = 0.75), and a

third between curvhyp and cneg (R2 = 0.73). It is impossible from the present

data to state if these correlations are real or spurious, particularly for the cneg

correlations, inasmuch as cneg is determined from only two data points.
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4.4.2 Implications of the observed correlations

One interesting aspect of the k1 − k2 correlation is its power-law shape, given

that the function which k1 and k2 are parameters of is an exponential function.

It could be that this correlation exists because it is particularly well-suited to

limiting amplitude variation of an exponential function.

An important point to make about this correlation, and indeed all the functions

in the phenomenological model used here, is that it is not possible to infer

biological mechanisms from the types of functions that well model the biological

data, or correlations among their parameters. The fact that the passive force-

length data are well �t with an exponential function whose two parameters

are negatively correlated does not imply that there are two linked biological

processes (e.g., levels of two proteins), one represented by k1 and the other k2,

whose expression is inversely linked.

The other correlation, between curvhyp and parameter B, is due to an inherent

connection between model functions. Having a force-activation curve (mea-

sured at rest length) and an activation sensitive force-length curve as compo-

nents of the same model could be expected to be redundant. However, both are

necessary for best modeling results. A good force-activation �t is crucial for

Fmax extrapolation. Data are easy to measure for this curve, since it is based

on isometric measurements at rest length. On the other hand, the force-length

model is a compromise of simplicity and accuracy. Consequently it would not

be bene�cial to rely only on force-length modeling. But once Fmax has been

calculated, the force-activation model might be abandoned for further modeling

or simulation tasks.

As a matter of fact, the simulations performed in the next section were done

without usage of the force-activation curve but the Fmax value that was used

had been calculated using the force-activation model.

4.4.3 Implications of inter-animal variability for neural control and

modeling

Muscles are the drivers of movement, and thus the wide variability observed

here suggests that, to produce the same movement in di�erent animals, neural

input would need to be matched to muscle properties. Although this is un-

doubtedly true in theory, another possibility is that movement in general, or

at least in the stick insect, is not controlled on this level of detail.
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4 Parameter variation between individual Hill-type muscle models

Such `just-good-enough' control of movement has indeed been observed in other

systems, notably in Aplysia feeding movements. These movements are not

matched to the type of food being eaten and show great bite-to-bite variability

even when eating a single food type (Hooper, 2004; Horn et al., 2004).

Further it is possible that muscle antagonist and limb biomechanics (Hooper

et al., 2009) reduce the e�ects of muscle property variation su�ciently so that

these variations do not result in functionally di�erent movements. The conse-

quences could be that for the neural control of actual movements this variation

does not need to be concerned (in detail).

With respect to muscle models, however, the large variations reported here

suggest that muscles from di�erent animals bene�t from individual-speci�c

construction.
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models

5.1 Introduction

Muscles transform motor neuron �ring into force and movement, and hence play

a central role in the production of behavior. Muscle properties have therefore

been intensively studied, and many models have been developed that predict

muscle forces and length changes in response to motor neuron activity. These

models typically require measurement of multiple characteristics.

These measurements have generally not all been made on single muscles from

single individuals. Instead, one or a few characteristics have been measured

from the muscle of interest in several individual animals and other sets of char-

acteristics from other individuals. Each single characteristic is then typically

obtained by some way of averaging the collected data. Then all these charac-

teristics were combined to obtain the �nal model.

This approach has the potential di�culty that none of the mean characteristics

could be correct for any individual animal's muscle. This concern increases if

the muscles show large inter-individual variation.

Testing whether this issue leads to signi�cant errors requires the ability to

measure all muscle model characteristics on an individual-animal basis. The

approach how this can be performed, is described in chapter 3. In this chap-

ter models based on individual characteristics are compared with an averaged

model (assembled from the 9 muscles investigated).

The individual models result from using parameters speci�c to each individual

extensor muscle and the averaged models from using the mean values for all

parameters averaged across the muscles.

One can expect that a good estimation of Fmax, the maximum force a muscle

can produce, would play a large role in the �nal simulation performance. The

e�ect of using muscle-speci�c Fmax values on model performance was also ex-

amined. This was done by comparing models using mean values for all param-
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eters except Fmax, and models using muscle-speci�c values for all parameters

except Fmax (Fmax being an overall muscle average value).

Surprisingly, these comparisons showed that, despite Fmax showing large inter-

individual variation, using muscle-speci�c Fmax values did not improve model

performance. This lack of improvement likely stems from an interaction be-

tween Fmax and other model components.

It could also be shown that inter-individual variation in extensor muscle char-

acteristics is large enough that using across-muscle mean values induces sub-

stantial decreases in model performance, suggesting that accurate modeling in

this system (and hence possibly other muscles in this and other organisms) will

bene�t from individual parameter measurement.

5.2 Material and methods

Calculations were performed in GnuOctave on Linux (Ubuntu 9.04, Kernel

2.6.28-15-generic, Intel Core2 T5600). Parameters were optimized using the

leasqr routine of the optim package (version 1.0.12). Normalized root mean

squared deviation (NRMSD) values were calculated with custom code.

5.2.1 Simulation conditions and stimulation

Experiments and simulations were performed under both isometric and isotonic

conditions. Two di�erent stimulation protocols were used. Fixed frequency

stimulations consisted of series of constant frequency pulses. Physiological

stimulation consisted of a series of pulses delivered in the same patterns as real

extensor motor neuron �ring observed during stick insect sideways stepping.

Three physiological patterns, all recorded from the same animal were applied

(see Hooper et al., 2006). Physiological pattern 1 consisted of a single step,

pattern 2 of two sequential steps, and pattern 3 of three sequential steps.

5.2.1.1 Simulation paradigms

A simulation paradigm is referred to as the combination of simulation condition

and stimulation pattern. The data set provides three simulation paradigms:

isometric contractions with �xed frequency stimulations (IMfixed), isometric

contractions with physiological stimulation (IMphys) and isotonic contractions

with physiological stimulations (ITphys).
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5.2.1.2 Activation dynamics

Many models of activation dynamics can be found in literature, perhaps most

prominent those of Zajac and Hatze (Zajac, 1989; Hatze, 1977, 1978). Many

of these models are quite complex (e.g., Zakotnik, 2006).

Complex activation is very powerful, but also tends to subsume and thus dis-

guse Hill-type model components. Because the Hill-type model developed her

is well-de�ned and almost fully based on experimental data, it should be main-

tained in its full form and a distinct separation between it and the activation

component of the model should be kept. Therefore a very simple activation

transfer function was used, a single-pole �rst-order low-pass �lter. This �lter

was implemented recursively and had two parameters (recursion coe�cients).

The recursion equation is:

act[n] = a · x[n] + b · act[n− 1], (5.1)

where n corresponds to the present, discrete moment in time, act[n] is present

muscle activation, x[n] present stimulation input level, act[n − 1] muscle acti-

vation at one time step before the present step, and a and b are the recursion

coe�cients. In a single-pole low-pass �lter a and b are related by

a = 1− x

b = x, (5.2)

where x varies between zero and one. Functionally, x determines the amplitude

of decay between adjacent samples. x is referred here to as the `�lter ' value.

The other component of the activation module is a scaling factor, achieved by

multiplying the input signal by a constant. The complete activation dynamics

equation is thus

act[n] = (1− filter) · (scaling · x[n] + filter · act[n− 1]). (5.3)

Because the square brackets indicate a given position in the time series, the �lter

response depends on simulation sample rate. Filter time constant independent

of sample rate can be calculated from
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d =
−1

ln(x)
(5.4)

tcont = d · dt, (5.5)

where tconst is the time constant (the time the output signal needs to decay

by 1/e) in seconds, d is the number of samples this time corresponds to, and dt

is the sample rate. A good resource for more details about digital �ltering is

Boug (2001).

5.2.1.3 Mechanical simulation

Muscle force depends on the equations in the Hill-type model that describe

parallel elasticity, series elasticity, force-length, and force-velocity curves.

To understand how these equations interact in generating muscle force and

length changes, �rst consider the two activation-dependent equations, force-

length and force-velocity(compare sections 3.3.4 and 3.3.5). The force-length

equation is straightforward, and simply gives a force for any activation and

muscle length. However, muscles deliver di�erent forces even at the same ac-

tivation and length as a function of their contraction velocity; with muscle

force decreasing as contraction velocity increases. The force-velocity equations

describe this relationship. The force-length equation gives the force at a zero

contraction velocity (the maximum force the muscle can produce at the mus-

cle's activation level and length), and the force-velocity equations have been

derived such that multiplying force-length by force-velocity gives the force the

muscle produces at other contraction velocities.

Excluding series elasticity for a moment, for the remaining three model equa-

tions it is straightforward to understand how they work together. Force-length,

force-velocity and activation equations form a four dimensional `space' as force,

length, activation and velocity are independent from each other. As all equa-

tions produce normalized force, their output values can simply be multiplied.

This gives the following equation:

Fmuscle = fl(act, lm) · fv(vm) + pf(lm) (5.6)

with Fmusclebeing overall (active and passive) muscle force, fl the force re-

sultant from the force-length relationship, fv the force produced by the force-
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velocity relationship and pf being the passive force contributed by the parallel

elasticity. Note that fl scales with activation, but fv does not. Thus mul-

tiplication of fl and fv already produces activation dependent force output.

Therefore there is no need to include the force-activation scaling as a separate

equation. This model will `on its own' produce the appropriate force changes

for varying activation levels.

Hill-type model components can be con�gured in di�erent ways; most promi-

nent are two con�gurations which di�er in the position of the parallel elastic

component (a detailed comparison is given in Siebert et al., 2008). The series

elastic component has been placed in series to both, contractile element and

parallel elastic element (like in Delp and Loan, 1995). This results in the fact

that muscle force will - in the �rst place - cause a length change in the series

elasticity. This change in length will then cause the identical change in force

at the opposite end of the spring.

Although in this setup both muscle force and force at the end of the series elastic

spring always have to be identical, sti�ness of this spring crucially in�uences

muscle force production. This can be understood by keeping in mind that

muscle force is both length and velocity dependent. Therefore a weak series

elastic spring would for example lead to a decrease in isometric muscle force

and would also slow down muscle force build up.

Isometric force is decreased because the muscle shortens much more compared

to a sti� series elastic spring, thus producing less force due to the nature of its

force-length curve. The muscle is also expected to be slower in its force response

because rapid changes in activation would cause rapid internal shortening, as

the series elastic spring is comparatively easy to stretch. Rapid shortenings

however can only be performed with low muscle force (as de�ned by the force-

velocity curve). Series elastic spring therefore signi�cantly in�uences muscle

force amplitude and muscle force development over time.

Despite its importance, including a series elastic spring makes modeling more

complicated. As it in�uences both length of the contractile element and con-

traction velocity, it introduces a feedback loop inside the modeling equations.

Muscle force now depends on length and rate of length change of the series elas-

tic spring, whereas its own length again, depends on muscle force. Though this

interdependence can be solved mathematically, simulation results of models

including a series elastic spring are often harder to understand.
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For reasons of �exibility the series elastic spring problem was not solved ana-

lytically, but rather its length was approximated using numerical integration.

As muscle motion is only one dimensional (either shortening or lengthening)

programming the physical simulation is fairly straightforward. Basically only

four parameters need to be calculated during each time step: velocity of the

contractile element, length of the contractile element, length of series elastic

element and force produced by the series elastic component. This was done

simply by applying Newton's law of motion (acceleration = forces/mass)1. The

mass was approximated with 0.2 mg (and preliminary measurements kindly

performed by C. Guschlbauer con�rmed that this number is in the correct

order of magnitude).

Forces are the sum of contraction forces (by muscle activation), extension forces

(via series elasticity stretch) and damping forces. As this model is basically

composed of connected springs, it is crucial to include some term of passive

damping. In the way the model equations are set up, damping is only present

in the force-velocity curve (by reducing muscle force with increasing contrac-

tion velocity). But this type of implementation would not be able to prevent

the concatenated springs from oscillations if muscle is not activated, therefore a

small amount of additional activation independent damping was added (called

passive damping). It was chosen just high enough to prevent arti�cial oscilla-

tions. Further to prevent the muscle from pushing if it was shorted by some

external force, passive damping was additionally reduced for positive contrac-

tion velocities. Passive damping and muscle mass were constant and identical

for all muscle simulations. Numerical integration was implemented by second

order �improved Euler� as described in Boug (2001).

5.2.1.4 Muscle model con�gurations

In the course of the performed simulations the performance of four di�erent

muscle model con�gurations have been compared. The idea behind the di�er-

ent con�gurations was to investigate the in�uence of three model components

in respect to simulation accuracy. These three major model components were

activation dynamics, Hill model characteristics and maximum isometric mus-

cle force (Fmax). Each of these components could be expected to in�uence

simulation results in a di�erent way.

1Of course the second law of motion should be correctly written as F = d
dt
(mv)

or F = m · a. But to highlight it's function in the calculation of motion, it has been

re-arranged.
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ADDPMM Hill Fmax

Muscle Specific Settings

Averaged Settings

Muscle specific config.

Constant Settings

ADDPMM Hill Fmax

Muscle Specific Settings

Averaged Settings

All averaged config.

Constant Settings

ADDPMM Hill Fmax

Muscle Specific Settings

Averaged Settings

Fmax specific config.

Constant Settings

ADDPMM Hill Fmax

Muscle Specific Settings

Averaged Settings

Fmax average config.

Constant Settings

MM:  muscle mass DP:   passive damping
AD:   activation dynamics Hill:   Hill model

Fmax:  maximum muscle force

Figure 5.1: Overview of the di�erent model con�gurations used. Each con�guration
is represented by one of the tables and is assembled by three di�erent settings. Muscle
speci�c settings contain parameters individually optimized for each muscle. Averaged
settings contain parameters that are gained by averaging muscle speci�c parameters
over all muscles. Constant settings are immutable for all muscles. Each model is
a combination of �ve parameters sets: The muscle mass (MM), passive damping
(DP), activation dynamics (AD), Hill-type model (Hill) and maximum isometric force
(Fmax). Muscle mass and damping were constant for all model con�gurations.

Activation dynamics was, as described above, made of two parameters (scaling

and �lter) which were individually optimized for isometric and isotonic con-

ditions. The process of determining these parameters and the reasoning for

separating isometric and isotonic conditions is in detail described in the results

section below.

The Hill-type model contains 7 parameters (excluding Fmax) all acquired for

individual muscles. The in�uence of maximum isometric force was of particular

interest, thus Fmax was extracted from the Hill-type model parameters and used

as a separate model component. It was possible to compare simulations with

muscle speci�c Fmax with simulations using an averaged Fmax.
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5 Simulating and comparing individual Hill-type models

Figure 5.1 summarizes the four di�erent model con�gurations investigated. In

the muscle-speci�c con�guration activation dynamics, Hill-type model param-

eters and Fmax were used with muscle speci�c values. In the all-averaged

con�guration, the Hill-type model parameters, Fmax and activation dynamics

parameters for all muscles were averaged. However activation dynamics param-

eters for isometric and isotonic conditions have been averaged separately. In the

all-averaged con�guration there don't exist nine di�erent models any more, but

only a single one, based on the averaged data of the nine muscles. The Fmax-

speci�c con�guration di�ers only in Fmax from the all-averaged condition. The

averaged Fmax value used in the all-averaged con�guration is replaced by the

muscle's speci�c Fmax.

The �nal con�guration is called the Fmax-average con�guration. In this case

muscle speci�c activation dynamics and Hill model parameters were used in

combination with the averaged Fmax value. This con�guration gives, in direct

comparison with the muscle-speci�c con�guration, a good means to evaluate

how much error is introduced by using averaged Fmax. As explained above, for

all four conditions muscle mass and passive damping was held constant.

5.2.1.5 Error calculations

Model performance was quanti�ed by calculating the normalized root mean

squared deviation (NRMSD) of the force or position traces between simulation

and experimental data. In all cases absolute (not normalized) forces were cal-

culated by multiplying normalized force (the intermediate model output) by

either mean Fmax (for the all-averaged and Fmax-averaged cases) or muscle-

speci�c Fmax (for muscle-speci�c and Fmax-speci�c cases). Error is expressed

as percent error (NRMSD) in all �gures and tables.
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5.3 Results

5.3.1 Approach outline

One important task of muscle model simulations is to predict the force or

movement that would result from a given stimulations pattern. In order to

approach this task, two components needed be added to the Hill-type model

described in chapter 3. These components are the activation dynamics and the

mechanical simulation, both described in detail in the material and methods

section. The �ow of processing applied is presented in Figure 5.2. Simulation

input was a series of unity amplitude square pulses with 1 ms duration. By

means of simple threshold detection, events of action potentials from a nerve

recording were transferred into unity pulses for later use as simulation input.

The top row of Figure 5.2 shows an example of how the physiological pattern

looks like as a pulse train.

The pulses were put into the activation dynamics �lter system. As explained

above, activation dynamics was based on low pass �ltering of this input and

only had two parameters (�lter and scaling). Scaling is actually applied to the

input signal, allowing the �lter response to be greater than unity. The �lter

parameter controls the time constant of the low pass �lter. Figure 5.2, second

row shows an example how the impulse response of the �lter would di�er with

large scaling and �lter (top), and small scaling and �lter values (middle). The

hypothetical impulse is displayed at the bottom of this panel.

The output of the activation dynamics component is what's called muscle acti-

vation level. The second gray box in Figure 5.2 highlights the actual Hill-type

model. Inside this model a normalized force value is calculated which depends

on activation level, length and contraction velocity of the contractile element.

The model consists of seven parameters (k1,k2,k3,curvhyp,vmax,c0,cneg) which

constrain the model equations (passive force, series elastic spring, force-length,

force-velocity) and are speci�c for each on the nine investigated muscles (mus-

cles A-I).

The Hill-model equations all operate on normalized force, thus force output

of the Hill-model is also normalized force. In order to restore absolute force

values, normalized force can be multiplied with the maximum isometric force,

Fmax, which is known for each muscle.
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Figure 5.2: A scheme with building blocks of the simulations. Each simulation starts
with a pulse pattern (unit amplitude, 1 ms durations). This pulse sequence is fed into
the activation dynamics module which converts it into a continuous muscle activation
value. This �ltering is controlled by two variables, �lter and scaling. The �lter

value controls the time constant of the impulse response, scaling is applied to the
input before �ltering. Then muscle activation is passed to the Hill-model equations.
The model used here has 7 parameters (k1, k2, k3, curvhyp, vmax, c0 and cneg) and is
described in detail in chapter 3. The output of the Hill-model is normalized force.
Scaling with the muscle speci�c Fmax results in absolute force.
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The force calculated by the Hill-type model is an instantaneous force. As ex-

plained in materials and methods, the series elastic spring creates a feedback

loop that causes the force applied at the spring to feed back onto itself. There-

fore, to get realistic force development over time it is crucial to simulate the

relative contractions and movements of the model components. This is done in

the mechanic simulation component. Here the force produced by the Hill-type

model is used to calculate the resulting acceleration of contractile element and

series elastic spring. Acceleration is then integrated to get velocities and lengths

of these components which consecutively feed back into the force generation.

Two di�erent simulation environments have been investigated in this study.

Under isometric conditions, the overall muscle length is constraint to be always

constant. This results in the constraint of length of the contractile element

plus the length of the series elastic element equalling muscle rest length at any

time. The isometric simulation condition enforces this condition by stretching

or squeezing the series elastic spring to the length required by this constraint

which consequentially pushes or pulls on the contractile element.

The isotonic condition emulates the operation mode of the measurement tool

used to gain the isotonic experimental data. Basically the length constraint

for this type of simulation is comparable with the behavior of a servo motor.

The muscle cannot shorten as long as its force is below a given counter force.

This force was set to 40 mN for both measurements and simulations. However

even a very high counter force will never stretch the muscle beyond rest length

(because of the servo nature of the control). Once the muscle force exceeds the

counter force, excess force will be converted into shortening movement and the

muscle starts to contract. The observed acceleration will be proportional to

the muscle force excess.

All force output is originally calculated as normalized force but for error anal-

ysis transformed into absolute forces. This is an important step in order to

analyze the e�ects of changes in Fmax to simulation quality.
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Figure 5.3: Parameters of activation dynamics model plotted over stimulation fre-
quency. For isometric contractions �lter and scaling have been optimized to each
stimulation frequency (40, 60, 80 and 100 Hz). Panel a) shows that the �lter values
of di�erent muscles can either rise or fall with increasing frequency. No system-
atic change with frequency could be observed. Panel b) shows the scaling parameter
plotted over the same four stimulation frequencies. Again no systematic change of pa-
rameter value and stimulation frequency can be observed but variation of the scaling

parameter is greater than the �lter parameter.

5.3.2 Activation dynamics

The process of �nding appropriate values for the activation dynamics compo-

nent had two steps, described in this and the next section. The �rst step was

to investigate if activation dynamics parameters show a stimulation frequency

dependency.

5.3.2.1 Frequency dependency

Frequency dependent twitch scaling can be a powerful extension for activation

dynamics, as for example demonstrated by Zakotnik et al. (2006) (or in more

detail described in Zakotnik, 2006). In order to search for frequency dependen-

cies, the optimal parameter values for each muscle and simulation paradigm

have been determined. In the set of stimulations there had been four stimula-

tions that were �xed frequency patterns, which were applied to the muscle (40,

60, 80 and 100 Hz). Figure 5.3 shows the optimal parameter values for each

of these �xed frequency stimulations of all muscles. In six muscles the �lter

parameter hardly changes at all inside the investigated frequency range. Only

muscles B, F and I showed larger variations, especially for 40 Hz (additionally

60 Hz for muscle B). Notably there seems to be no systematic variation in this

parameter. Some muscles show a positive correlation of frequency and �lter
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Figure 5.4: Parameters of activation dynamics of all muscles. This �gure shows the
individual �lter and scaling parameters for IMfixed, IMphys and ITphys stimulations
of each muscle. Circles denote the parameter values resulting from the IMfixed

paradigm, crosses belong to the IMphys and pluses to the ITphys paradigm. Error
bars show the standard deviation. The lines (black, dark gray and light gray) connect
the mean parameter values of each paradigm. The shaded line connects the averages
of both isometric conditions (IMfixed and IMphys). Both parameters (�lter and
scaling) are similar for isometric simulations and can be represented with a muscle
speci�c mean. Parameter values for isotonic simulations are o�set. Therefore isotonic
simulations were performed using the averages of isotonic parameters only (light gray
line).

parameter, others a slightly negative correlation. The scaling parameter shows

greater variation, muscles A, E, F, G and I tend to increase for higher fre-

quencies whereas the others decrease or barely change at all. It was therefore

decided that, at least with this data set, it is impossible to derive a frequency

dependency neither of the twitch scale nor of the twitch time constant. That

is why the averaged �lter and scaling parameters in the simulations were used.

These averages however, were still animal speci�c.

5.3.2.2 Isometric and isotonic parameters

After precluding a systematic in�uence of stimulation frequency, it was inves-

tigated if it would be possible to use the muscle speci�c mean values of the

activation dynamics parameters to simulate both, isometric and isotonic ex-

periments. Figure 5.4 summarizes all data gained from the optimizations of

the activation dynamics parameters for each of the three simulation paradigms

(IMfixed, IMphys, ITphys).
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For every muscle (A-I) it displays the optimal parameters for each paradigm

(circles, crosses or pluses). Furthermore it contains the paradigm speci�c mean

as a solid line with error bars denoting the standard deviation. This line, though

connecting the averages of di�erent muscles, should not imply a hypothetical

linkage between muscles, but simply highlight the variation of the averages

between the muscles. The fourth, shaded line represents IMfixed and IMphys

values averaged to a single value (IMall).

Figure 5.4a shows the optimized �lter values of the IMfixed, IMphys and ITphys

paradigms. Obviously the �lter values for both isometric paradigms are very

similar but �lter values for the isotonic paradigm is o�set (except for muscle

C). A paired Students test resulted in p values between 0.001-0.085 for all

muscles except muscle C (0.22), with an overall mean p value of 0.07. This

supports the idea that for isotonic conditions a di�erent �lter value is needed

than in isometric conditions. On the other hand, the IMall trace in Figure 5.4a

proves that averaging the isometric parameters for each animal only introduces

a small error, as the IMall line is always close to the individual averages and

furthermore the variation in IMfixed and IMphys is fairly small.

In Figure 5.4b the same is shown for the scaling parameter. This parameter

however responds di�erently. Both IM paradigms diverge more and as already

shown in Figure 5.3b, the variability of the data is generally greater. In par-

ticular the IM scaling values spread further apart, thus the error introduced

by using a common mean is greater. However, IT mean is even more distin-

guished, clearly o�set below the IM data. Statistics result in p values ranging

from 0.0005-0.1 (mean 0.036). All muscles except for B and H, had a p value

<= 0.005, thus being signi�cantly di�erent from the IM values.

From the data in Figure 5.4 followed that it is necessary to use di�erent ac-

tivation dynamics parameter values for isometric and isotonic conditions. In

the muscle speci�c model con�guration the IMall �lter and scaling values were

therefore used for all isometric simulations (�xed frequency and physiological)

and �lter and scaling values of ITphys were used for the isotonic conditions.

5.3.3 Performance Overview

Table 5.1 lists the quality of the di�erent muscle speci�c models. Three di�erent

errors are show per muscle: The overall NRMSD of all isometric and isotonic

simulations in the �rst row and in the second and third row the isolated errors

for isometric and isotonic conditions. The �nal column contains the mean error
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A B C D E F G H I Avg

NRMSD (IM and IT) 10.3% 15.3% 11.9% 15.9% 9.4% 8.7% 10.8% 11.4% 8.6% 11.4%

NRMSD IM 10.8% 16.2% 8.7% 9.7% 8.8% 7.7% 10.1% 11.2% 8.5% 10.2%

NRMSD IT 9.1% 13.3% 19.2% 30.4% 10.8% 11.2% 12.5% 11.6% 8.9% 14.1%

Table 5.1: Simulation performance of all muscles. This table gives an overview of
how much error each muscle produced for isometric and isotonic test conditions. The
�rst row shows the combined error of both conditions, second row shows the error of
isometric simulations and third row the error of isotonic simulations. All errors are
expressed as normalized root mean square deviations (NRMSD) in per-cent. The last
column shows the overall mean of each row.

of all muscles. The simulations resulted in overall error values ranging from

9-15% with a mean of slightly above 11%. The minimum error was 7.7% for

muscle F, isometric mean.

Maximum error was produced by muscle D under isotonic conditions (30.4%).

Further slightly better results for isometric conditions can be observed, com-

pared to isotonic conditions (10% isometric, 14% isotonic).

5.3.4 Mean performance example

To get a more detailed idea of the simulation performance, Figure 5.5 shows

the simulation results of muscle H. The decision to show muscle H, was made

because its mean error is about the same as the mean error of all muscles

together (11.4%, see Table 5.1).

In Figure 5.5a, four isometric force traces are shown in response to �xed fre-

quency stimulations (40, 60, 80 and 100 Hz). Traces measured during experi-

ments are black, simulation results are gray. As can be seen, a typical source

of error is a an underestimation of the force amplitude. In particular for slow

stimulation frequencies (see 40 Hz trace in Figure 5.5a) the model predicts a

force rise that is too slow and underestimates the maximum force.

Force rise prediction quality increases signi�cantly for stimulation frequencies

above 80 Hz. Note that muscle force frequently shows a slow long lasting

increase in force and never really reaches a steady state. This phenomenon

can be observed in almost all investigated muscles. The model however is not

capable of reproducing this kind of second order phenomenon.

Another common di�erence between muscle response and simulation results is

the size of the force twitches. Muscle force twitches are in general smaller than
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Figure 5.5: Simulation results of a muscle who's error was closest to the mean error
of all muscles. This �gure shows three di�erent simulation results. In panel a) the
muscle and simulation performance of the IMfixed paradigm is shown for 40, 60,
80 and 100Hz. Panel b) shows the the results of the IMphys paradigm, for the
physiological stimulation pattern 2. And panel c) contains the results of an isotonic
simulation, again with physiological stimulation pattern 2. In all panels gray lines
represent experimental results and black lines simulation results.
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the twitches produced by the simulation (see Figure 5.5a, 40 and 60 Hz). This

di�erence can be mainly attributes to the simplicity of the activation dynamics

�ltering. Force summation is extremely sensitive to twitch time constants and

although Figure 5.3a shows that twitch time constant does not vary in a speci�c

manner, it is obvious that it does change in a way not understood yet.

Another systematic di�erence between the model response and the measured

forces is present in the relaxation behavior. Typically the muscle relaxes no-

ticeably slower, than the simulation. Force relaxation behavior results from a

combination of twitch time constant (and the exact shape of the force decay)

and internal passive damping. As you can see in the 80 and 100Hz traces in

Figure 5.5a, force decline isn't still quite �nished even half a second after the

last spike, which is about 5 times longer than a typical single twitch will need

for full relaxation. This late part of force relaxation is therefore unlikely a result

of continued active force production, but produced by internal damping, which

prevents the contractile element from lengthening quickly. This type of damp-

ing however, has not been investigated �rmly enough to be implemented in the

current model. It was thus approximated by a constant value (see material and

methods for details).

Figure 5.5b shows how the response of the same muscle and the identical simu-

lation as in Figure 5.5a to physiological stimulation input. The result of physi-

ological stimulation pattern 2 is presented here, because it is the one condition

of muscle H, that's error (10.1%) is closest to the mean error of all muscles

(11.3%).

For physiological input, both muscle and simulation produce fairly smooth

force traces. The simulation in this case slightly overestimates the muscle

force, and also rises a bit faster than the real muscle. As far as relaxation is

concerned, the same behavior as in Figure 5.5a can be observed. The muscle

relaxes considerably slower than the simulation. The simulation actually shows

small oscillations at the end of the relaxation phase (e.g. at 0.55 s), which

indicates that passive damping in the simulation is rather small. Despite of the

relaxation, the simulation reproduces the overall shape of the force trace well,

sometimes showing even the same small force oscillations present in the muscle

force (e.g. at 0.4 s).

Under the the isotonic condition, the muscle is allowed to contract and this

shortening is presented as a negative position change in Figure 5.5c. Again

the result of the physiological stimulation pattern 2 is shown, as its error value

(9.6%) is closest to the mean error.
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Figure 5.6: Error comparison of di�erent muscle model con�gurations. This �gure
shows the error values (NRMSD, in per-cent) of four di�erent muscle model con�g-
urations. (See Figure 5.1 and text for details about model con�gurations. ) The
muscle speci�c model proves best both in overall performance as well as in isometric
and isotonic performance individually. Using the Fmax-averaged con�guration gives
the second best performance. The all-averaged and Fmax-speci�c models show the
largest error, and both are very similar in their performance.

Typically the isotonic position responses are smoother than the isometric force

responses, with the position traces in Figure 5.5c being no exception. Striking

at �rst sight is the position overshoot of the experimental data trace. This

can be interpreted as an artifact of the measurement system, and therefore

shouldn't be reproduced by the model. In respect to the shape of the contrac-

tion, even the mean-quality muscle simulation presented in Figure 5.5c) nicely

reproduces the time course of the contraction, only the peak amplitude was

slightly overestimated. Also the passive return to the rest position though a

bit late in the model, was precisely in parallel to the real muscle relaxation.

5.3.5 Model con�guration comparison

The approach of generating muscle speci�c models o�ers the unique opportu-

nity of studying the e�ects of using averaged parameters during modeling. In

order to investigate how the model responses change by the introduction of

averaged parameter values four di�erent model con�gurations (see Figure 5.1)

were set up and the generated errors as well as the shape of the produced force

and position traces were compared. Figure 5.6 shows three error values of all

four con�gurations. The �rst bar group displays the overall error, which is the

error of all isometric and isotonic contraction types. The middle bar group

shows the error of isometric contractions, the last group the error of isotonic

contractions.
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As expected, muscle speci�c modeling produces the smallest error, not only

over all, but also in any other group. The average error of the muscle-speci�c

con�guration is 11.4%, the one of Fmax-averaged is 15.8%, Fmax-speci�c and

all-averaged con�gurations are almost identical (18.7% and 18.6%). The Fmax-

averaged con�guration is the second best in this comparison. Its NRMS error

is in all three groups about 4% higher, than the error of the muscle speci�c

con�guration (which corresponds to an almost 30% increase in error compared

to the muscle speci�c error value). Surprisingly, the error values of the other

two con�gurations are very similar, in all three groups their error is about 18%

(corresponding to a 40% increase compared to the muscle-speci�c con�guration

error).

One actually might expect the results of the Fmax-speci�c con�guration to be

better than the ones of the all-averaged con�guration, however the opposite

proves true. The all-averaged con�guration was actually slightly better than

the combination of averaged Hill-model with muscle speci�c Fmax values. This

can be understood by envisioning that two independent processes in�uence the

error in these cases. Replacing the muscle speci�c Fmax with the averaged

Fmax (FmaxØ) usually increases the simulation error, but the increase can be

ascribed either to an over-estimation or to an under-estimation of position or

force.

The same holds for replacing the muscle speci�c Hill-model with an averaged

model. The averaged model could also increase the error either by over or

under estimation of force. Keeping this in mind, it becomes clear that the

result of combining these two sources of error is at least unpredictable, because

both errors have the potential to partially cancel out each other. (Actually the

e�ects of a modi�ed Fmax to the error are linear, whereas the e�ects of changing

Hill-model parameters are likely non-linear, thus the error can potentially be

more sensitive to changes in these parameters.)

In case of a muscle with a weak Fmax introduction of the averaged Hill-model

could for example cause this speci�c muscle to become even weaker. As Hill-

model parameters and Fmax are independent an uncorrelated (see chapter 4)

a muscle with weak Fmax can very well have a `strong' Hill-model. Thus there

is no reason to expect the averaged Hill-model to be stronger than the one

of a muscle with small Fmax. Continuing this example, the replacement of

the muscle speci�c Hill-model with the averaged model can cause the error to

increase by a sudden underestimation of muscle force. If the muscle speci�c

Fmax is now additionally replaced by FmaxØ, the error will most likely decrease,
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Figure 5.7: Exemplary contractions. This �gure matrix contains 12 isometric con-
tractions, provoked by the physiological simulation pattern 1. Each column contains
one of the four model con�gurations. In the �rst row the best performing contraction
of each condition is shown. The second row contains the contraction which is closest
to the mean error of all muscles and in the third row the worst performing muscle is
selected. Thus reading the �gure column-wise, gives an idea of how much variation
there is inside a single model con�guration. Reading it left to right inside a row, com-
pares di�erent con�gurations at the same performance class (best, mean, worst). In
all panels gray lines represent experimental results and black lines simulation results.

because muscle speci�c Fmax of a weak muscle is almost certainly smaller than

FmaxØ. In the data set investigated here were four muscles (A, B, D, I) where

the combination of averaged Hill-model and muscle speci�c Fmax resulted in an

increased error compared to the all-averaged con�guration. In case of the other

�ve muscles (C, E, F, G, H), the Fmax-speci�c con�guration showed less error

than the all-averaged con�guration; but summing all errors makes error of the

all-averaged con�guration slightly smaller than the error of the Fmax-speci�c

con�guration.
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5.3.6 Best, mean, worst performance comparison

Although comparing errors is valuable, a di�erent quality of information can

be gained by comparing the actual force traces produced. Unfortunately repro-

ducing all results of all muscles under all conditions and model con�gurations

is unfeasible, thus an overview is given of only the best, the mean and the worst

performing muscles and model con�gurations. Figure 5.7 therefore shows 12

exemplary results of the isometric physiological stimulation pattern 1. Each

column contains the results of one model con�guration. The �rst row shows

the best performing muscle of each con�guration, the second row shows the

muscle that is closest to the overall mean and the third row shows the worst

performing muscle. Therefore looking at the graphs in one column gives an idea

of the variation in performance of any model con�guration. On the other hand,

the in�uence of di�erent model con�gurations is accentuated by comparing the

graphs row-wise.

The selected muscle and the corresponding error value are noted in the upper

right corner of each graph. From looking at the �rst column it gets clear, that

for the muscle speci�c model con�guration the main sources of error are over

estimation of force and a lack of slowness, in particular when relaxing.

The e�ects of introducing the averaged Hill-type model can be best studied in

the third, Fmax-speci�c con�guration, column. Beside obvious scaling prob-

lems, the averaged Hill-type model tends to relax slightly quicker than the

presented muscle speci�c models. Also note that the Fmax-speci�c con�gura-

tion is the only one where signi�cant under estimation of force occured.

The second column shows that the simulation response is always identical, as

it should be because there is only a single, identical model for the all-averaged

con�guration. The all-averaged model produces a reasonable force pro�le which

re�ects the major characteristics of the real contractions. The force traces show

the typical three `steps', with the �rst peak being the strongest and the follow-

ing two decreasing sequentially. The overall amplitude and the relative scaling

of the force steps however are not correctly reproduced by the all-averaged

model. Note that column three shows, that including Fmax doesn't solve the

scaling problem of the all-averaged con�guration, for reasons explained earlier.
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Using averaged Fmax with a muscle speci�c Hill-model in column four, isn't

actually as bad as one might expect. The muscle speci�c model and activation

dynamics create force traces that even in the worst case re�ect the general

characteristics of the real muscle force. Sure enough, force level is o�set in

these cases, but this o�set is only approximately 25 mN in the worst case

(muscle D).

5.4 Discussion

The presented work �rst explains in detail how measured muscle properties

were used to form a Hill-type muscle model, then it compares the results of

biomechanical simulations of di�erent muscle models. It was driven by the

question how the compilation of data from di�erent muscles e�ects the per-

formance of the model. Therefore four di�erent model types were compared,

varying in their composition of individual versus averaged model components.

Furthermore a simulation environment has been developed, which provides iso-

metric and isotonic simulation conditions.

5.4.1 Performance of the Hill-type model

This is the �rst time that a Hill-type model of a stick insect muscle, almost

exclusively based on measured muscle properties, has been built for individual

muscles. Optimization of the model output to reference data was applied only

to the two activation dynamics parameters, but not to parameters of the Hill-

type model itself. This unusual approach o�ers a number of interesting insights

into muscle modeling and also into muscle physiology. But the downside of this

�forward modeling� approach is a limited model precision, compared to models

where all or most parameters were optimized to the resulting force or movement

traces.

Additionally, the extensive testing performed here, including �xed and phys-

iological frequency stimulations as well as isometric and isotonic simulation

conditions, has not been found anywhere in literature (compare also Houdijk

et al., 2006).

It is important to keep these particularities in mind when evaluating model

performance or discussing shortcomings and error values.
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5.4.2 Activation dynamics

Activation dynamics is an important aspect for all Hill-type models. But it is

exceedingly important for models excluding series elasticity and purely oper-

ating under isometric conditions. Thus, a lot of expertise has been put into

powerful muscle activation models in the past (compare for example Hatze,

1978; Chou and Hannaford, 1992; Happee, 1994; Bobet and Stein, 1998; Zajac,

1989; Brown and Loeb, 2000a; Zakotnik, 2006). However, in this work none of

the higher order models is used, although they were tested. Two aspects argue

against the use of higher order activation dynamics.

First, substantial low pass �ltering is produced by the series elastic component,

which basically prevents arbitrarily high force changes. Thus, the additional

complexity of higher order �lters, did not improve the �ltering accordingly.

From the vantage point of modeling, an even more important concern was the

disguise of modeling issues by a complex activation dynamics model. Zakot-

nik (2006) has shown that activation dynamics in cooperation with activation

dependent twitch scaling can (under certain conditions) replace most model

properties (except passive damping and parallel elasticity). This poses a prob-

lem for this work as all model parameters, except the activation dynamics

parameters, have been determined experimentally. Thus, using complex acti-

vation dynamics would conceptually favor `black box' optimization results over

measured data. Therefore the decision was made to use a simple, easily un-

derstandable, �rst order low pass �lter for activation dynamics. Although it

can almost certainly be assumed that this activation dynamics model is over-

simpli�ed, it reduces model complexity and therefore eases interpretation of

modeling results. Further on, certain problems often associated with �rst order

activation dynamics (like immediate force responses) happen to be attenuated

by the inclusion of the series elastic component.

Although a rather simple activation dynamics model was used, dependencies

of its parameters on activation level have been investigated (see Figure 5.3).

But in contrast with the c(f) relationship proposed by Zakotnik (2006) no

systematic in�uence of stimulation frequency could be found, neither on twitch

scale nor on twitch time constant. Not to say that twitch response is assumed

to be invariable for stick insect extensor muscle. Moreover, in this case twitch

deformation seems to be more complex. Potential supplementary candidates for

twitch response alteration could be muscle length, contraction velocity, force,

maybe direction of contraction, and/or history of any or all of these parameters.
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Length, velocity, force and direction were tested during model development, but

given the sparse data set and lacking an accurate expectation none turned out

promising enough to be investigated any further.

5.4.3 Isometric and isotonic contractions

Isometric contractions, especially the IMfixed ones, show visible di�erences

between simulation and reference data. The quality of the IMfixed simulations

is comparable to other models having experimentally pre-de�ned characteristics

(like Yu et al., 1999 or Cole et al., 1996).

Typically, these models have not been challenged the way done here, including

multiple physiological isometric and isotonic stimulations and reference data.

However, if physiological conditions were important (like in Sandercock and

Heckman, 1997) typically larger di�erences between model and reference data

result.

The fact that isotonic simulations were performed with di�erent activation

dynamics parameters underlines the non-triviality of Hill-type models operat-

ing under all conditions su�ciently well. The necessity of adapting activation

dynamics parameters for isotonic contractions can be explained by the require-

ment of the model to incorporate a new experimental situation. Under isomet-

ric conditions the measurement device and all connected gear is kept motion

less. Thus, data of isometric experiments should not contain artifacts due to

inertia of the measurement system, which cannot be alleged for isotonic con-

ditions. Here additional errors can be introduced like, friction, gear slag and

inertia of the lever arm.

In respect to these di�erences, it should not be taken for granted that the model

performs almost equally well under all three conditions. This performance

suggests that a reasonable model structure was chosen and that functions and

the arrangement of components were basically sensible.

However, one obvious model improvement can be observed in Figure 5.5a. In

most of the 10 muscles investigated, force keeps on increasing during �xed fre-

quency stimulation. By comparing model and measured force traces it becomes

clear that the model cannot reproduce this slow process of force accumulation.

The origin of the continuing force increase is unclear at present, but the fol-

lowing in�uences can be involved:

The stimulation was designed to induce action potentials in the axons of all

three motor neurons innervating the extensor muscle, namely fast extensor
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tibiae (FETi), slow extensor tibiae (SETi), and common inhibitor (CI). The

properties of the individual motor units are hard to investigate in isolation for

this muscle as, for practical reasons, it is hard to stimulate the di�erent �bers

individually. In the stick insect this would require intracellular stimulation, in

other systems, like the locust (Locusta migratoria), SETi can be excluvively

stimulated extracellulary. In response to stimulation of the locust middle leg

SETi motoneuron, force build-up until saturation, can take several seconds

in the extensor tibiae (Locusta migratoria; Klein, 2009). Depending on the

stimulation frequency, it can take even more than 10 seconds (Guschlbauer et

al. (in prep.)).

The slow muscle �bers are a probable candidate for causing the continuous

slow rise in force. Other alternatives could be facilitation or, less likely though,

neuro-modulation by octopaminergic DUM neurons (Hooper et al., 2007; Weiler

et al., 2005). In a more hypothetical consideration the force increase could be

attributed to the passive damping component, which properties are still only

super�cially understood. The passive damping component can explain most

viscose properties of the contractile element. During passive stretch this com-

ponent can explain the creeping, slow decrease in force by gradually permitting

the lengthening of the contractile element, which in turn, by shortening of the

series elasticity, causes the force to decrease. The same mechanism could ex-

plain the slow force increase during active, isometric contractions. In this case,

the damping would antagonize the shortening of the contractile element, and

any decrease in damping would e�ect a stretch in the series elasticity, thus an

increase in force. Once the properties of this damping are better understood,

it would be a valuable addition to the model.

Another weak point of the model, which is supposably of more relevance for the

actual behavior, is muscle relaxation. In Figure 5.5b, the relaxation of the sim-

ulation has a di�erent quality than the muscle. Although both traces (model

and muscle) keep staying close to each other, they di�er slightly in shape. The

muscle relaxation shows the typical exponential decline (Hooper et al., 2007),

whereas force of the model drops more rapidly. Tuning relaxation behavior

of this model is hard, as it almost completely depends on passive components

(passive force, series elasticity and last but not least passive damping). The

only parameter to adjust freely is passive damping, but little is known about the

details of this property. Furthermore, as passive damping is constant through-

out all simulations, it represents a strong compromise and needs to produce

acceptable results under isometric and isotonic conditions.
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Improved passive damping would also enable the model to generate realistic,

dynamic passive force responses (compare Figure 3.1) - a type of response the

current model does not reproduce well.

As the dynamic passive force is substantially larger than static passive force,

it is likely to become crucially important for the simulation of antagonistic

muscles.

5.4.4 SE compensation for the force-length curve

Modeling often has more bene�ts than a prediction or veri�cation of data.

Usually the process of modeling deepens the understanding of how processes

interact and highlight where a linkage of data or concepts is missing.

During the plenty of discussions and explanations the conviction emerged that

for the topology of model components used here, the force-length curve needs

to be corrected for the length of the series elastic spring. This model is unique

in its individuality, thus it is possible to describe the force-length curve and

the series elastic spring for each muscle.

The force-length characteristic has been measured over the whole muscle length

(which is in case of this muscle commutable with �ber length) but in the classi-

cal Hill-type model it is attributed to the contractile element, exclusively. Zajac

(1989) has already described the problem that elastic elements (a tendon in his

example), which are placed in series to the contractile system, would result in a

distortion of the whole muscle force-length curve. In the model described here,

no tendon is modeled explicitly, as arthropod apodemes can be expected to be

sti� enough to not a�ect muscle length (Full et al., 1998). However, the model

includes a series elastic component, representing all elastic structures in series

of the contractile system. Therefore the issue of force-length curve distortion

is valid for the model presented here, too.

Due to the high sti�ness of the series elastic spring (compare for example Fig-

ure 3.7) its in�uence on the force-length curve was initially neglected. From

Figure 3.7 one can derive that Lse is at most 0.15mm at 200 mN, which is

the maximum force that was produced by any muscle (dropping rapidly for de-

creasing forces). Thus, the length error introduced by the series elastic spring is

approximately 10% at rest length (and 200 mN active force), decreasing quickly

with smaller forces (recall that the average active muscle force was 161 mN).

So for reasons of simplicity and comparability the simulations presented in this

chapter have been performed without the series elastic spring compensation.
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Figure 5.8: E�ect of series elasticity compensation on force-length curve. This �gure
shows the data points of the uncompensated force-length measurements (crosses) in
conjunction with the SE-compensated data points (plus symbols) and model �ts to
these (lines). Labels �a� and �b� highlight the horizontal distance of compensated
and uncompensated data points, which increases with (increasing) force. Labels �*a�
and �*b� in turn punctuate the vertical distance of the uncompensated data points
to the model. Their distance decreases for increasing force level.

Nevertheless, detailed analysis of the model raises the concern that it might

be conceptually spurious to use the whole muscle force-length curve as rep-

resentative of the contractile elements force-length curve without SE length

compensation. For this reason and to further evaluate the error introduced

by this proceeding the reference muscle (H) was additionally modeled and its

contractions simulated with appropriate SE length compensation.

In Figure 5.8 the e�ects of applying series elasticity length compensation to the

whole muscle force-length curve are displayed. As the measured data points

contain an additional length (length of the series elastic component), they shift

towards smaller muscle lengths after the length compensation. Thus, Figure 5.8

shows both: original and compensated data points. In addition the model �t to

the compensated data points is shown. To underline the in�uence of the length

compensation, the horizontal and vertical shift is pointed out with the lines a,

b,∗a and ∗b. Lines a and b have identical dimensions to support recognizing

that x-shift of the data increases with increasing force. Lines ∗a and ∗b are
resized to match the distance of the original (uncompensated) data point to

the model. These lines show that the amount of additional force introduced by

the length compensation reduces with increasing force.

In Figure 5.9 simulation results of muscle H are compared, with an without
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5 Simulating and comparing individual Hill-type models

series elasticity length compensation. The black lines represent the uncom-

pensated model, the brighter ones the model with compensated force-length

curve. It is obvious that the greatest di�erences are for �xed frequency stim-

ulations (the most unnatural ones, by the way). Physiological stimulations,

either isometric or isotonic are almost identical for both models.

Figure 5.10 quanti�es the di�erences in error between both models. Obviously

the 40 Hz isometric stimulations di�er most (by little less than 10% in error).

For all other conditions the di�erence in error is about 1-2%.

These results indicate that, although it might be a conceptual kink, using whole

muscle force-length curve as approximation for the contractile elements force-

length curve, it does not introduce substantial error. Which, of course, can only

be claimed for the muscle investigated here, as the e�ect is highly sensitive to

the sti�ness of the series elasticity.

In literature this problem is hardly addressed, interestingly. Usually Hill-type

model parameters are determined in one of the following ways: Either the whole

model is optimized to a speci�c motor task output (like force, torque, position or

joint angle) or the muscle characteristics are measured individually and �nally

combined into the model. The �rst approach seems to be more popular as the

demands are mostly computational, not experimental. Usually this approach

can produce muscle models non-invasively just by �tting all model parameters

simultaneously to an existing data set (like arm or leg movement). In this case,

the issue discussed above is nonexistent because force-length model parameters

are simply adjusted to best reproduce the reference task.

However, sometimes the approach of measuring muscle characteristics directly

is applied. For models designed that way, the question arises if it is neces-

sary to compensate the measured force-length curve for possible portions of

series elastic length. But unfortunately, no references have been found where

it became clear that the authors were aware of this problem. In Delp and

Loan (1995) and Brown and Loeb (2000b) for example, no compensation of

SE length is mentioned, although their model explicitly contains a series elas-

tic element. In Yu et al. (1999) it remains unclear if any compensation has

been applied. The normalization of the force-length curve does certainly not

resolve this issue. Similar uncertainty of force-length curve treatment can be

found in Rosen et al. (1999) or Meijer et al. (1998). The issue is, however, well

represented in more theoretical modeling articles like Zajac (1989) or Winters

(1990). The latter points out explicitly that whole muscle force-length curves

are not identical with contractile element force-length curves.
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5.4 Discussion
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Figure 5.9: Simulation results of the SE-compensated model. Contractions of muscle
H (same as in Figure 5.5) with a force-length curve compensated for series elasticity
length was simulated. In each panel, darker traces represent the uncompensated
model, lighter ones the SE-compensated model. In panel a) SE compensation causes
higher force output of the model, as could be expected by theory (compare Fig. 5.8).
Note however, that force increase diminishes quickly with increasing force. In panels
b) and c) there is virtually no di�erence any more between both models. The SE-
compensated model produces slightly more force, and thus (in panel c) contracts a
bit further, but both are actually almost indistinguishable.
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5 Simulating and comparing individual Hill-type models

5.4.5 Perfomance of the di�erent model con�gurations

The comparison of di�erent model con�guration revealed that about 40% im-

provement can be achieved by using muscle speci�c parameters instead of av-

eraged ones. Furthermore, it turned out that the Fmax speci�c con�guration

performs worse than the all-averaged con�guration. An implication of this

�nding could be that particular care should be taken if averaged and speci�c

data is combined in a single model. At least in the case presented here, it is

preferable not to combine the averaged Hill-model kernel with muscle speci�c

re�nements (like Fmax). However, this e�ect is related to the prediction of

muscle speci�c data. More precise, muscle H's Fmax-speci�c model is inferior

in predicting muscle H's reference data (compared to the all-averaged model),

but it has not been investigated how good or bad this con�guration reproduces

random muscle data. The question which type of model would best reproduce

a random extensor muscle, could guide future work in this area. Further out-

looks include the improvement of passive properties in particular damping and

the associated viscous properties, as well as the inclusion of history dependent

e�ects, which are known to be prominent in many muscles, including this one

(Rassier and Herzog, 2004; Guschlbauer, 2009).
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Figure 5.10: Comparing the error of the SE-length compensated model with uncom-
pensated one. Displayed are all simulation conditions of muscle H (IM and IT short-
cuts correspond to the isometric and isotonic simulation con�gurations with physio-
logical stimulation patterns). Note that there is no obvious, systematic error reduction
gained by SE length compensation.
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6 Closure remarks

Although this work focuses on muscle modeling, it rose from a background of

neuro-mechanical simulation. The idea to gain new insights into the complex

�eld of motion generation and control had been a primary driving force through-

out this work. A muscle model, at least a Hill-type model, has no particular

value of its own - it is made for being used inside a simulation, eventually.

The type of model described and evaluated here is based on the strategy of

�forward engineering�, meaning that all but three parameters of this model

are based on experimental data. This procedure puts a high burden on the

general model architecture. A model is a �model� because it simpli�es reality

thus it is inherently imperfect (Brown and Loeb, 2000b). Constraining many

model parameters by experimental values distinctly reveals shortcomings and

simpli�cations of the model.

This approach is not chosen frequently, for at least two reasons: First, the

required experiments (and dissections) are simply not possible in many systems,

for ethical or physiological reasons. Second, the model performance is supposed

to be better the more parameters can be optimized to the output of interest.

For example, studies investigating human movements (van Soest et al., 1993;

Pandy, 2001; Barrett et al., 2002; Thelen et al., 2003) usually optimize the

whole model to best reproduce the desired output.

The approach of �forward engineering� a Hill-type model with this level of

complexity has several issues. First of all, it is a very demanding task. Muscle

physiology has to be understood well enough to perform the experiments reli-

ably. Enough data need to be measured for each of the model curves, such that

it is possible to get an impression of the general shape of the curve. Further-

more, the dependencies between curves and parameters have to be uncovered

and need to be described by model curves.

Whenever muscles are investigated in more detail, additional dependecies of

the classic Hill-type model curves seem to appear, like the length-dependent

coupling of activation and velocity investigated by Shue and Crago (1998) or

dependence of maximum shortening velocity on activation (Chow and Darling,

1999). And even more, fundamental assumptions of the Hill-type model can
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6 Closure remarks

be questioned such as the uniqueness of force-velocity relationship (Katz, 1939;

Joyce and Rack, 1969; van Ingen Schenau et al., 1988), or the �yielding� e�ect

(Joyce et al., 1969) as well as the purely conceptional entities of series elastic-

ity and activation level. However, biophysically oriented modeling approaches,

like the distribution moment (DM) model (Zahalak, 1981, 1986; Zahalak and

Ma, 1990), are signi�cantly more complex and its parameters are fairly hard

to estimate.

However, a lot is learned about muscle properties and its modeling by go-

ing this way. The idea to develop this model inspired new experiments and

plenty of valuable discussions. Working through the complexities of muscle

force production also means expunging the frequent misconception of motion

being equivalent to muscle stimulation frequency (compare also Thuma et al.,

2003). In this respect, modeling is always bene�cial; even if the model would

not meet all expectations, the experience gained by its creation is undoubtedly

valuable.

6.1 Outlook

The �eld of neuro-mechanical simulation has been evolving constantly in the

past years. Software tools have improved and today hardware acceleration en-

hances not only computer games, but also this particular type of simulation.

In the long run, this work, its results as well as the expertise and experience

gained during the modeling and simulation development, should result in an

improved neuro-mechanical simulation of the stick insect. A powerful simula-

tion framework, which has already been developed during the initial period of

this work, is already awaiting service.
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Abbreviations

A,B parameters in rest length force-activation curve

Aact maximum amplitude of force-length curves

act muscle activation

cneg curvature of Hill hyperbola for lengthening

contractions

cpos curvature of Hill hyperbola for shortening

contraction

curvhyp curvature of hyperbola relating freqact and act

∆L length change after force step

F force

Fmax maximum isometric force at rest length

FmaxØ averaged isometric force at rest length (mean of

all muscles)

freqact frequency parameter on the force-length model

k1, k2 parallel elasticity model constants

k3 passive steady-state force length

k4, k5 constants used in �ts to Guschlbauer et al. 2007

SE series elasticity

CE contractile element

v velocity of muscle shortening

v0 equivalent of vmax, but a constant, in Hill

hyperbola for lengthening contractions

vmax maximum velocity of muscle shortening (at 0

force)

vmax∞ vmaxat an activation of in�nity

vmax(act=1) vmaxat an activation of 1
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