Dummann, W., Steinig, S., Hofmann, P., Floegel, S., Osborne, A. H., Frank, M., Herrle, J. O., Bretschneider, L., Sheward, R. M. and Wagner, T. (2020). The impact of Early Cretaceous gateway evolution on ocean circulation and organic carbon burial in the emerging South Atlantic and Southern Ocean basins. Earth Planet. Sci. Lett., 530. AMSTERDAM: ELSEVIER. ISSN 1385-013X

Full text not available from this repository.

Abstract

Organic carbon burial is an important driver of carbon cycle and climate dynamics on geological and shorter time scales. Ocean basins emerging during the Early Cretaceous break-up of Gondwana were primary sites of organic carbon burial, implying that their tectonic and oceanographic evolution may have affected trends and perturbations in global climate via changes in local organic carbon burial. Assessing the role of individual ocean basins in the global carbon-climate context requires a sound understanding of the processes that induced large-scale changes in carbon burial and the timing of these changes. Here we reconstruct the oceanographic evolution, and its links to organic carbon burial, in the Barremian to Albian South Atlantic and Southern Ocean basins, which may have acted as carbon sinks of global importance. Our reconstruction is based on combined seawater neodymium isotope and sedimentological records obtained from multiple deep sea drill sites and a new general circulation model. Deep water circulation within and between those basins was primarily controlled by the opening of the shallow Falkland Plateau Gateway (between similar to 118 Ma and similar to 113 Ma) and the deep Georgia Basin Gateway (by similar to 110 Ma), for which we provide new age constraints based on biostratigraphic and carbon isotope data. The opening of these gateways was accompanied by local to basin-wide decreases in organic carbon burial, suggesting that ocean circulation affected the oxygenation state via changes in deep water ventilation. Although our data do not provide quantitative information on the impact of changes in regional organic carbon burial on the global carbon cycle, the synchronicity between the reduction of organic carbon burial in the South Atlantic basin and global warming during the Early Albian points to a strong causal relationship. Crown Copyright (C) 2019 Published by Elsevier B.V. All rights reserved.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Dummann, W.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Steinig, S.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hofmann, P.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Floegel, S.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Osborne, A. H.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Frank, M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Herrle, J. O.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Bretschneider, L.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Sheward, R. M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Wagner, T.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-348811
DOI: 10.1016/j.epsl.2019.115890
Journal or Publication Title: Earth Planet. Sci. Lett.
Volume: 530
Date: 2020
Publisher: ELSEVIER
Place of Publication: AMSTERDAM
ISSN: 1385-013X
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
CONTINENTAL FLOOD BASALTS; RARE-EARTH-ELEMENTS; ND ISOTOPE; MANTLE HETEROGENEITY; MOZAMBIQUE RIDGE; TM ADDITION; ICP-MS; PARANA; NEODYMIUM; CLIMATEMultiple languages
Geochemistry & GeophysicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/34881

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item