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Abstract

In this thesis we explore di�erent phenomena occurring in open quantum many-body systems.
This is a research �eld which is becoming increasingly more important due to the experimental
progress towards realization of quantum-simulators and quantum computers using a variety of
platforms, from ultracold atoms to superconducting qubit arrays. These systems are inherently
driven and open, and it is an ongoing e�ort to develop theoretical tools and approaches to study
their non-equilibrium physics.

In the �rst part of this thesis we explore the di�erent non-equilibrium condensate phases of
resonantly interacting bosons in the presence of coherent pump and incoherent losses. This study
might be of relevance to existing Rydberg-polariton setups. We derive an e�ective non-equilibrium
�eld-theory of this model and study its resulting phase diagram. We �nd a rich phase diagram in-
cluding a phase where particles form a condensate of tightly bound molecules. By changing the
detuning from the scattering resonance it is possible to drive an Ising phase transition from the
molecule condensate phase to a more standard atom condensate phase.

In the second part of this thesis we explore the many-body localization (MBL) transition in an
open-driven system. Typically, coupling to a bath is expected to destroy localization and transform
the sharp MBL transition to a crossover. Here we show how one can use the couplings to non-
equilibrium baths in order to detect sharp signatures of the transition, including the divergence
of the dynamical exponent in the Gri�th regime of the ergodic phase. This is done by solving for
the steady-state of the Lindblad quantum-master equation using matrix-product operator tech-
niques. Our work here suggests a new scalable numerical approach to study the MBL transition.

In the third part of this thesis we study the entanglement properties of measurement trajectories
in a free-fermion system subject to dephasing noise. These trajectories describe the evolution of
an open system when photons exiting the system are continuously monitored. We are inspired
by recent works which studied the entanglement dynamics in hybrid quantum circuits consisting
of random-unitary gates and projective measurements. There it was found that a phase transition
between a phase with volume-law scaling of entanglement and an area-law phase occurs at a critical
value of the measurement rate. In our case we �nd a new regime, where at weak noise rate the
system exhibits logarithmic entanglement scaling, similar to that of (1 + 1)d conformal �eld-
theories. For some measurement protocols, we �nd a transition to an area-law phase at a critical
noise strength.
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1 Introduction

Recent years have seen great progress in the experimental techniques allowing the creation and
manipulation of “synthetic quantum-matter” systems. These systems can be realized in a variety
of platforms such as: ultracold-atoms [1], trapped ions [2], atoms in optical cavities [3] and su-
perconducting circuit arrays [4]. The precise experimental control over those systems allows the
engineering of lattice potentials and interaction couplings and opens the path for quantum sim-
ulation of a variety of physical models at scales which are out of reach for theoretical tools [5, 6].
These platforms are also the leading candidates for the realization of quantum computers [7–10],
a research endeavor which has enjoyed tremendous interest and fast progress in the last years.

One thing that is common to all of the synthetic quantum-matter systems mentioned above,
is that they are all strongly driven and constantly interacting with external (classical or quantum)
electromagnetic-�elds. Those are not just unwanted artifacts, but essential ingredients for the en-
gineering of Hamiltonians, measurement and stabilization of interesting phases. Thus, a full de-
scription and understanding of the di�erent phenomena which can occur in synthetic quantum-
matter systems requires taking into account the fact that those systems are inherently open and
driven out of equilibrium.

The main challenge in theoretical studies of many-body systems out of equilibrium stems from
the fact that non-equilibrium systems are much less constrained than their equilibrium counter-
parts. Simply stated, the space of things that can happen out of equilibrium is much larger than
the space of things which can happen under equilibrium conditions. As a consequence, many of
the statistical-mechanics concepts which are crucial to the description of equilibrium many-body
systems, such as free-energy and its associated thermodynamic intensive variables (temperature,
chemical potential etc.), do not generically exist out of equilibrium. Hence a big part of the chal-
lenge is in identifying and developing alternative organizing concepts and tools to assist in taming
the inherent complexity of many-body systems out of equilibrium.

In this thesis, we will limit ourselves to the investigation of a speci�c class of open systems whose
interaction with the environment can be e�ectively described by a coupling to a collection of local
Markovian baths. As a consequence, the dynamics of these system can be well described by the
Lindblad quantum master-equation (QME) [11, 12]. While the theory of open quantum systems
and the Lindblad QME description has been studied already since the 80s by pioneers in the �eld
of quantum-optics, those earlier works dealt mainly with the physics of single-atoms. The type of
systems we consider in this thesis are constituted of many interacting particles which puts them
in the realm of quantum many-body open systems. This is a �eld which has emerged in the last
decade and lies at the intersection of quantum-optics and condensed matter physics [13].

From a computational perspective, the increased di�culty in studying open many-body sys-
tems is manifested in the fact that instead of considering pure-states, as we would for example in
the case of zero temperature physics or closed system dynamics, we have to consider a full descrip-
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1 Introduction

tion of the system in terms of a density matrix ρ. Considering for example a spin chain with N
sites, this implies that we have to deal with (2N )2 coe�cients instead of 2N coe�cients when only
considering pure states. While thermal equilibrium states are also described by a mixed-state, they
are constrained to be of the form ρ ∼ e−βĤ (say for the canonical ensemble), hence we can infer
their properties from the Hamiltonian eigenstates.

While studies of open quantum many-body systems pose new challenges, they also bring new
opportunities. One promising direction is that of engineered dissipation and dissipative state
preparation [14–16]. In many experiments with quantum simulators the goal is to prepare and
study a ground-state (or low temperature state) of some model Hamiltonian of interest. While
the �nal goal in this setting is to study equilibrium physics, the process of state preparation and
stabilization leading to the target ground-state is inherently non-equilibrium process. In the con-
text of dissipative state preparation we think of the dissipation which arises due to the coupling
of the system to an environment as a friend instead of an enemy. The goal is to engineer the dis-
sipative couplings such that the QME dynamics naturally lead an arbitrary initial state to a target
state of interest.

Of course we are not limited to the goal of reproducing speci�c equilibrium states. Another
research direction is a more general exploration and classi�cation of the phases that arise as the
non-equilibrium steady-states (NESS) of the QME. An interesting scenario occurs when, as a
function of an external control parameter, some properties of the NESS change in a non-analytic
way, this is known as a dissipative phase-transition. Understanding the similarities and di�erences
between dissipative phase-transitions and their equilibrium counterparts is an active area of re-
search [17–23]. In chapter 3 we will show how the interplay between two-particle coherent pump,
particle losses and interactions in the vicinity of a scattering resonance, can lead to a stabilization
of NESS characterized by di�erent types of bosonic condensates.

Synthetic quantum matter systems are also uniquely suitable to study a variety of questions re-
garding non-equilibrium quantum-dynamics (in closed or open systems). A very active research
area is that which concerns quantum thermalization of isolated interacting quantum systems after
a quantum quench [24]. In this setup we consider an interacting system starting from some initial
state |ψ0〉which is not an eigenstate of the Hamiltonian, and then let it evolve under the unitary
dynamics induced by the Hamiltonian |ψt〉 = e−iHt|ψ0〉. At long times, generic quantum in-
teracting systems are expected to thermalize. This means that their local observable properties
are well described by a thermal state with a certain temperature determined by the initial energy-
density (this kind of self-equilibration process is in fact crucial for the study of equilibrium phases
of matter in ultarcold atoms). However, there is a class of interacting systems which fail to thermal-
ize when evolving in isolation, due to the e�ects of strong disorder. This phenomenon is known
as many-body localization (MBL) [25, 26].

As a function of the disorder strength some systems are expected to undergo a phase transition
between a thermalizing phase and an MBL phase [25,27,28] . This is a dynamical phase transition
with no equilibrium analog, as it necessitates a dramatic change in the entanglement properties
of all eigenstates of the Hamiltonian. Unlike equilibrium phase transitions, the MBL transition
is expected to be sharp only in completely isolated systems, this leads to a di�culty in studying
it in experiments where some coupling to the environment is inevitable. However, in chapter 4,
we will show how one can nevertheless �nd signatures of the MBL transition in open systems. In
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fact we will see that that the open-system setting provides an advantage over the closed setting for
numerical studies of the MBL transition.

Studies of dynamics of open quantum systems are also important for the understanding and
characterization of quantum devices from the point of view of their ability to perform quantum
computation. While quantum algorithms are often theoretically designed in terms of a sequence
of coherent unitary operations on a register of qubits, one must take into account the noise pro-
cesses the qubits are exposed to when such algorithms are implemented in the lab.

One recent line of research in this direction revolves around the dynamics of entanglement in
systems evolving under unitary dynamics combined with non-unitary noise in the form of mea-
surements. Generic unitary dynamics typically lead to generation of quantum states with large
scale entanglement [29–31]. From a quantum computation perspective, preparation and manip-
ulation of states with a large amount of entanglement is crucial for achieving any advantage over
classical computers, since the dynamics of many-body states with low entanglement can be e�-
ciently simulated classically [32, 33]. A main question which thus arises is: what is the maximal
amount of noise under which the unitary dynamics can still generate an extensive amount of en-
tanglement?

Recent works considered 1d spin chains evolving under random-unitary circuit dynamics in
addition to projective or weak local-measurements which are performed at some rate p [34–37].
Those works considered the entanglement-entropy, averaged over di�erent measurement trajec-
tories. At a critical measurement rate a phase-transition of a new type was discovered. This is a
transition between a phase where the trajectory states exhibit extensive volume-law entanglement
at long times, and an area-law phase where the presence of measurements leads to low amount
of entanglement. While the random-unitary evolution is believed to be a good representative
of unitary evolution with generic interacting Hamiltonians, it is also interesting to look for en-
tanglement transitions in more natural physical systems. In chapter 5 we will perform such an
investigation for a model of free-fermions subject to continuous dephasing noise.

Let us now outline the content of the remaining chapters of this thesis and highlight the main
results. We begin with a general introduction to open quantum systems in chapter 2. There we
�rst introduce the Lindblad quantum-master equation which governs the dynamics of the class
of Markovian open quantum systems we will investigate in this thesis. We sketch the QME deriva-
tion and explain under what physical assumptions it provides a good description of the dynamics.
We then introduce the Keldysh formalism and explain how it can be used in order to derive a �eld-
theory description of quantum open systems. Finally we provide a review of several experimental
settings which allow the investigation of open quantum many-body systems.

In chapter 3 we consider a model of interacting bosons close to a scattering resonance, which
are driven by a two-particle coherent pump and experience particle loss. This chapter is based on
work done in collaboration with Alessio Chiocchetta and Sebsatian Diehl. The model we consider
is inspired by recent advancements in experiments with Rydberg-polariton systems [38–40]. We
use the Keldysh formalism in order to construct an e�ective �eld theory description which forms
a basis for our exploration. Earlier theoretical works, concerning equilibrium states of bosonic
ultracold-atoms close to a Feshbach resonance, predicted the existence of a novel type of molecule
condensate phase in addition to a more standard atomic condensate [41, 42]. Here, we �nd that
a similar situation might occur in the driven-dissipative setting. As a function of the two-pump
frequency and distance from the scattering resonance, we �nd a rich phase diagram which include
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1 Introduction

a molecule and atom condensate phases in addition to bistability regions. Our work also indicates
the existence of a dissipative Ising phase transition between the molecule condensate and atom
condensate phases, which can be observed by tuning in addition to �rst order phase transitions in
certain parameter regimes.

Chapter 4 deals with signatures of the MBL transition in open systems. Parts of this chapter
have been published in:

• Lenarčič, Z.*, Alberton, O.*, Rosch, A., Altman, E. (2020). Critical Behavior near the
Many-Body Localization Transition in Driven Open Systems. Physical Review Letters, 125(11),
116601. (*equal contribution)

In this chapter we consider a situation in which a 1d system undergoing an MBL transition is
weakly coupled to non-equilibrium Markovian baths. While a coupling to an external bath is typ-
ically considered detrimental to localization, we show how in this setup the steady-states of the
system contain signatures of the MBL transition. We �nd that the strength of the coupling to
the non-thermal baths plays a similar role to that of a �nite temperature in a T = 0 quantum
phase transition. By probing the response of the system to weak bath coupling we are able to de-
tect the divergence of the dynamical exponent when approaching the transition from the thermal
side. This is shown by solving the Lindblad QME numerically using matrix-product operator
techniques, and suggests a new numerical method for exploration of the MBL transition at scales
much larger than those accessible by exact-diagonalization studies of closed systems.

Finally in chapter 5 we turn to an investigation of the entanglement transition in measurement
trajectories, using a naturally motivated free-fermion model. Parts of this chapter were included
in the following preprint (currently under peer-review):

• Alberton, O., Buchhold, M., Diehl, S. (2020). Trajectory dependent entanglement transi-
tion in a free fermion chain – from extended criticality to area law. arXiv/2005.09722.

In this chapter we consider free-fermions with nearest-neighbor hopping on a 1d chain, which
experience local dephasing noise. The dephasing noise can be interpreted as a continuous mea-
surement of the fermion density at each site, hence this model describes a competition between
the entangling unitary Hamiltonian dynamics and the non-unitary dephasing noise which tends
to reduce entanglement. Similar to previous works on the entanglement transition, we consider
the trajectory averaged entanglement-entropy S̄vN. Our main �nding is that at weak dephasing
strength, there exist an extensive region where S̄vN exhibits logarithmic scaling, similar to that
which is observed in conformal-�eld theories describing 1d quantum critical points. For some
measurement protocols we �nd that at critical dephasing rate the system undergoes an entangle-
ment transition to an area-law phase. Our work suggests free-fermion systems as an appealing
simple model system to further study trajectory entanglement transitions.
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2 Background: Quantum open systems

2.1 The quantum master equation

This thesis is concerned with phenomena which occur in open systems, that is, systems which
are coupled to an external environment. This external environment is also referred to as a “bath”.
By an "environment" we refer to some large collection of degrees of freedom which we do not
have access to experimentally. In other words, we do not have any access to information about the
dynamics of the environment. One prominent example is the quantized electromagnetic �eld in
the vacuum, which often plays the role of the bath in systems with strong light-matter coupling.

Even though we cannot track the dynamics of the bath, we still want to understand the e�ect
it has on the system of interest. In this section we will explain how to obtain an approximate
description, deriving an equation for the dynamics of a system coupled to a Markovian bath.
Discussions and derivations of the quantum master equation can be found in several textbooks
(e.g. [11, 12, 43]), most typically those which deal with quantum optics, the original context in
which much of the theory for open quantum systems have been developed. Here we will follow
the discussion in [11].

We will show that under the assumption of a Markovian bath the time evolution of the re-
duced density matrix of the systemρS can be described by the Lindblad quantum master equation
(QME) 1:

∂tρS(t) = −i[HS , ρS(t)] +D[ρS(t)] ≡ LρS(t), (2.1)

D ≡
∑

i

γi

[
LiρS(t)L†i −

1

2
{L†iLi, ρS(t)}

]
.

WhereD is known as the dissipator,Li termed Lindblad operators andL is the Liouvillian. The
�rst term in the RHS represents the unitary evolution generated by the system HamiltonianHS .
The dissipator represents the irreversible non-unitary dynamics induced by the coupling with the
bath, where γi are dissipation rates associated with speci�c dissipative processes represented by
Li. Importantly Eq. (2.1) is trace preserving, as can be seen from ∂ttrρS = trLρS = 0. While
Eq. (2.1) can be derived microscopically in certain settings note that it is the most general form of
a Markovian trace preserving evolution [11].

The Hamiltonian describing the dynamics of the system and the bath is given by

H = HS +HB +HSB.

1Here, and for the rest of this thesis we work in units where ~ = 1, with the exception of a few sections where we
want to make contact with well known quantum optics expressions.

5



2 Background: Quantum open systems

Here HS (HB) is the system (bath) Hamiltonian, which contains only system (bath) operators.
The last termHSB describes the interaction between the system and the bath. For simplicity we
will assume that H is time independent, but the derivation can be generalized for the case of a
time dependent Hamiltonian. The full density-matrix describing the joint system and bath state
ρ(t) = |ψ(t)〉〈ψ(t)| obeys the von-Neumann equation

∂tρ(t) = −i[H, ρ(t)].

We are interested in the reduced state describing the dynamics of the system only, which is ob-
tained by tracing out degrees of freedom inB, ρS(t) = trBρ(t) and obeys the evolution equation

∂tρS(t) = −itrB[H, ρ(t)]. (2.2)

The rest of this section is devoted to obtaining an approximation to the RHS of Eq. (2.2).
For the purpose of the derivation it is convenient to work in the interaction picture where the

state is given by ρInt(t) = ei(HS+HB)tρ(t)e−i(HS+HB)t and time evolution is generated only
byHI(t) = ei(HS+HB)tHSBe

−i(HS+HB)t. For the rest of this section we denote ρ(t) ≡ ρI(t),
and assume that all states are speci�ed in the interaction picture. We can reformulate Eq. (2.2) as
an integral equation

∂tρS(t) = −
∫ t

0
dstrB[HI(t), [HI(s), ρ(s)]] (2.3)

where we assumed that trB[HI(t), ρ(0)] = 0.
We now perform our �rst approximation, known as the Born approximation, where we assume

ρ(t) ≈ ρS(t)⊗ ρB. (2.4)

That is, we assume that the coupling between the system and the bath is weak, such that the ef-
fect on the bath is negligible (similar to the typical assumption taken when thinking of a bath in
thermodynamics).

The second approximation is the Markov approximation, where we assume that excitations
created in the bath decay very fast as compared to the typical time-scale of the system evolution.
The Markov approximation allows us to perform two simpli�cations of the RHS of Eq. (2.3).
First we can replace ρS(s) → ρS(t). Furthermore, we assume that the integrand in Eq. (2.3)
vanishes for |t− s| � τB , with τB the time scale for the decay of bath correlations. This allows
us to perform a change of variables s→ t−s and extend the limit of integration to in�nity. Those
approximations are justi�ed as long as the typical time scale τR, over which ρS varies appreciably,
is large compared to τB .

We thus obtain the following Markovian evolution equation in the Born-Markov approxima-
tion

∂tρS(t) = −
∫ ∞

0
dstrB[HI(t), [HI(t− s), ρS(t)⊗ ρB]]. (2.5)

We can see that this evolution equation for ρS(t) is indeed of a Markovian form where the state
ρS(t+ dt) depends only on the state at ρS(t).

6



2.1 The quantum master equation

To bring the evolution equation to the Lindblad form, we need to perform one last approxi-
mation. We decompose the system-bath coupling in the form

HSB =
∑

α,ω

Aα(ω)⊗Bα (2.6)

with A(B) acting only on the system (bath), and Aα(ω) is an annihilation operator of a system
excitation with energy ω, that is [HS , Aα(ω)] = −ωAα(ω) 2. In practice, for a generic many-
body HamiltonianHS , it will be exponentially hard to actually �nd the operatorsAα(ω), because
this is equivalent to a full diagonalization ofHS

3. Still, the fact that such a decomposition exists
is useful for the rest of the derivation.

Plugging the decomposition in Eq. (2.6) into Eq. (2.5) we obtain

∂tρS(t) =
∑

ω,ω′,α,β

ei(ω−ω
′)tΓαβ(ω)[Aβ(ω)ρS(t)A†α(ω′)−A†α(ω′)Aβ(ω)ρS(t)] + h.c. .

(2.7)
Here, Γαβ(ω) is the Laplace transform of the bath correlation functions

Γαβ(ω) ≡
∫ ∞

0
dseiωstrB(B†α(s)Bβ(0)ρB), (2.8)

and we assumed that the state ρB is stationary. We now perform the last approximation, known
as the rotating-wave approximation, where we neglect terms with ω 6= ω′ in Eq. (2.7). This is
justi�ed if the typical intrinsic time scale of the system τS ∼ |ω′ − ω|−1 (for ω′ 6= ω) is large
compared to the relaxation time τR induced due to the coupling with the bath, which is the typical
time scale over which ρS varies appreciably. Performing the rotating-wave approximation results
in

∂tρS(t) = −i[HLS , ρS(t)] +D(ρS(t)), (2.9)

HLS =
∑

ω,α,β

Sαβ(ω)A†α(ω)Aβ(ω),

D(ρS(t)) =
∑

ω,α,β

γαβ(ω)

[
Aβ(ω)ρSA

†
β(ω)− 1

2
{A†α(ω)Aβ(ω), ρS}

]
.

Where we denoted Γαβ(ω) = 1
2γαβ(ω) + iSαβ(ω). The termHLS is known as the Lamb-shift

and it represents the renormalization of the energy levels of the system due to the coupling with
the bath. Finally, we can bring Eq. (2.9) to the standard Lindblad form Eq. (2.1) by diagonalizing
the matrix γαβ(ω).

2Note that the sum extends also over negative frequencies and Aα(−ω) = A†α(ω), so the system-bath interaction
can both annihilate or create excitations in the system.

3Often it is the case that we are interested in the situation whereAα are annihilation or creation operators of the free
part ofHS .
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2 Background: Quantum open systems

2.1.1 Example: Two-level system interacting with the electromagnetic
field

To put the abstract derivation in the previous section on more concrete grounds, we will now
consider the derivation of the QME for the simple example of a two-level atom interacting with
an electromagnetic-�eld [11]. The system, bath and system-bath Hamiltonians are given by:

HS =
ω0

2
σz, (2.10)

HB =
∑

k,λ=1,2

ωkb
†
λ(k)bλ(k), (2.11)

HSB = −D ·E. (2.12)

where σz = |e〉〈e| − |g〉〈g|, with |g〉(|e〉) the ground(excited)-state of the atom. The system-
bath coupling is the usual expression in the dipole approximation with the system dipole operator
given byD = dσ− + d∗σ+ (where the dipole moment is d ∝ 〈g|x̂|e〉), and the electric-�eld
operator is

E = i
∑

k,λ=1,2

√
2πωk
V

eλ(k)(bλ(k)− b†λ(k)). (2.13)

Thus, the explicit expression forHSB is

HSB = −iσ− ⊗
∑

k,λ=1,2

√
2πωk
V

d · eλ(k)[bλ(k)− b†λ(k)] + h.c. . (2.14)

Note that σ−(σ+) is the annihilation (creation) operator for HS , so in this case HSB is already
of the form in Eq. (2.6) withA(ω) = σ−, A(−ω) = σ+ .

For this speci�c setting, the dissipator of Eq. (2.9) becomes

D(ρS) = γ(−ω0)[σ+ρSσ
− − 1

2
{σ−σ+, ρS}] + γ(ω0)[σ−ρSσ

+ − 1

2
{σ+σ−, ρS}], (2.15)

where γ(ω0) = im
∫∞

0 dseiω0s〈(d∗ ·E(s))(d ·E(0))〉. Assume that the radiation �eld is in a
thermal state with temperature β−1. In this case we have

〈bλ(k)bλ′(k
′)〉 = 0, 〈b†λ(k)b†λ′(k

′)〉 = 0

〈b†λ(k)bλ′(k
′)〉 = δk,k′δλ,λ′nBE(ωk), 〈bλ(k)b†λ′(k

′)〉 = δk,k′δλ,λ′(1 + nBE(ωk))

where nBE(ω) = [exp(βω) − 1]−1 is the Bose-Einstein distribution. With these correlation
functions we obtain

γ(ω0) = γ0(1 + nBE(ω0)), γ(−ω0) = γ0nBE(ω0), (2.16)

where γ0 = 4ω3
0|d|2/(3c3).
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2.2 Keldysh path-integral description of open quantum systems

Thus the interaction of the two-level system with the thermal radiation �eld results in the fol-
lowing QME (transformed back to the Schrödinger picture)

∂ρ(t) = −i[H, ρ] + γ0[1 + nBE(ω0)]Dσ− [ρ] + γ0nBE(ω0)Dσ+ [ρ]. (2.17)

The �rst dissipator term corresponds to spontaneous emission, and it exists also in the T = 0
case when there are no thermal photons around and nBE = 0. The second dissipator term
corresponds to an excitation of the atom due to photon absorption (hence it vanishes at T = 0
since there are no photons to absorb). Note that in the absence of drive term in H , the steady
state of Eq. (2.17) is a thermal state with the same temperature as the photon bath.

Finally let us comment on the validity of the Markov approximation in the quantum optics
example. We obtained that the typical relaxation rate of the system is given by τR = γ−1

0 . On
the other hand the correlation time of the bath is given by the typical frequency ω0. Hence the
Markov approximation is valid if γ0 � ω0. This condition is usually valid in quantum optics
where the typical inverse lifetimes are of order 107−109s−1 while optical frequencies are usually
of order 1015s−1 [11].

2.2 Keldysh path-integral description of open quantum
systems

Our goal in this thesis is to study the properties of the steady-state solutions ( ∂tρ = 0) of the
quantum master equation [Eq. (2.1)], for di�erent types of systems. In this section we will in-
troduce a mapping of the quantum master equation to a path-integral using the Keldysh for-
malism [17, 44], which allows us to study of open quantum systems using �eld-theory methods.
This formulation of the problem is convenient for the development of approximation schemes
and techniques, opening new lines of attack on the otherwise intractable problem of solving the
QME for a generic many-body problem. In particular the �eld theoretic formulation allows us to
borrow tools and knowledge that have been developed for many years in e.g. high-energy [45] or
equilibrium condensed-matter physics [46], and adapt these ideas to the open system setting.

2.2.1 Construction of the path integral

To derive the Keldysh path-integral description for Eq. (2.1) we follow the approach outlined
in [17]. Our starting point is the partition-function

Z = lim
t→∞

tr[ρ(t)], (2.18)

Where ρ(t) is obtained via time evolution according to Eq. (2.1), starting from some initial state
ρ(t0). We can formally express the time evolution operator in terms of the Liouvillian

ρ(t) = exp(t−t0)L ρ(t0). (2.19)

Note that for the special case of a closed system, Eq. (2.19) reduces to the expression ρ(t) =

U(t, t0)ρ(t0)U †(t, t0), where the unitary time evolution operator is given byU(t, t0) = T e−i
∫ t
t0

dtH(t)

9



2 Background: Quantum open systems

(T being the time ordering operator). The astute reader will notice that Z = 1 due to the fact
that time evolution generated by the Liouvillian is trace preserving and trρ(t0) = 1 for a physical
state. Nevertheless, we will later show howZ allows us to obtain expectation values of observables
with respect to the system steady-state by introducing source terms.

To obtain a path-integral we take a similar approach to that taken in equilibrium �eld-theory
which is to expand the Liouvillian exponential in a �rst order Trotter decomposition

exp(tL) = (1 + δtL)N +O(δt2), δt =
t

N
, (2.20)

and express the evolution over each time step δt via a set of coherent-state �elds. After doing
so we will take the limit N → ∞ to obtain the path-integral. This is similar to the derivation
of the path-integral for the case of pure-state evolution, but here we will have two sets of �elds
corresponding to the ket and bra states of the density-matrix.

We assume that the Hamiltonian and the Lindblad operators can be expressed in terms of a set
of creation and annihilation operators {ai}, {a†i}. Here we will assume that ai are bosonic oper-
ators, but the construction can be easily done also in the fermionic case. To lighten the notation,
we will present the derivation in the case of a single degree of freedom with annihilation operator
a. The derivation can then be trivially generalized to the case with many degrees of freedom by
adding an extra index.

An important ingredient of the derivation is the set of coherent states set of coherent states
{|ψ〉}ψ∈C, associated with the annihilation operator a. The coherent states obey a|ψ〉 = ψ|ψ〉
and 〈ψ|a† = 〈ψ|ψ∗. Furthermore they provide a resolution of the identity

1 =
1

π

∫
dψdψ∗e−ψ

∗ψ|ψ〉〈ψ|. (2.21)

Consider the evolution of ρ over one time step δt, this is given by

ρ(tn+1) = ρ(tn) + δtLρ(tn), (2.22)

where tn = nδt. We express ρ(tn) in terms of its coherent states matrix elements

ρ(tn) =
1

π2

∫
dψ+,ndψ−,ndψ∗+,ndψ∗−,n (2.23)

× e−|ψ+,n|2−|ψ−,n|2〈ψ+,n|ρ(tn)|ψ−,n〉|ψ+,n〉〈ψ−,n|.

To obtain the matrix elements 〈ψ+,n+1|ρ(tn+1)|ψ−,n+1〉 we plug Eq. (2.23) into Eq. (2.22).
We need to evaluate matrix-elements for operators acting from the left, right and from both sides
of ρ(tn). Assume all operators in the Liouvillain are brought to normal-ordered form and are
polynomials of single-particle creation and annihilation operators , then

[ÔLρ(tn)ÔR]ψ+,n+1,ψ−,n+1 =

∫

n
eδt(ψ

∗
+,n∂tψ

∗
+,n+ψ∗−,n∂ψ−,n) (2.24)

×OL[ψ∗+,n+1, ψ+,n]OR[ψ∗−,n, ψ−,n+1]ρ(tn)ψ+,ψ− ,

10



2.2 Keldysh path-integral description of open quantum systems

where we denoted
∫
n ≡ 1

π2

∫
dψ+,ndψ−,ndψ∗+,ndψ∗−,n, the discretized derivative ∂tψ∗+,n ≡

(ψ∗+,n+1 − ψ∗+,n)/δt andO[ψ∗i , ψj ] = (ψ∗i )
p(ψj)

q for Ô = (a†)paq .
Collecting all terms in Eq. (2.22) and re-exponentiating we obtain

〈ψ+,n+1|ρtn+1 |ψ−,n+1〉 =

∫

n
eiδt(−ψ+,ni∂tψ∗+,n−ψ∗−,ni∂tψ−,n−L[ψ∗+,n+1,ψ+,n,ψ∗−,n,ψ−,n+1])

× 〈ψ+,n|ρ(tn)|ψ−,n〉+O(δt2). (2.25)

Applying the formula for one time step recursively, and then taking the limit N → ∞ we can
obtain the expression for the partition function

Z =

∫
D[ψ+, ψ

∗
+, ψ−, ψ

∗
−]eiS , (2.26)

where the path-integral measure is D[...] = limN→∞ΠN
n=0Πσ=±

dψ∗σ,ndψσ,n
π and the action is

given by S = Sc + Sd

Sc =

∫ ∞

−∞
dt
∑

σ=±
σ(ψ∗σi∂tψσ −H[ψ∗σ, ψσ]), (2.27)

Sd = −i
∫ ∞

−∞
dt
∑

α

γα

[
Lα,+L

∗
α,− −

1

2
(L∗α,+Lα,+ + L∗α,−Lα,−)

]
. (2.28)

We denoted Lα,σ = Lα[ψ∗σ, ψσ]. Note that in principle we need to also include the matrix-
element corresponding to the initial state 〈ψ+(t0)|ρ|ψ−(t0)〉 in the integrand in Eq. (2.26). How-
ever, this can be neglected under the assumption that the system at t→∞ has lost the memory of
the initial state due to the dissipative nature of the open system dynamics leading to a steady-state
�xed point.

2.2.2 Correlation functions

Having obtained Z we would now want to do something useful with it, since as we have seen
Z = 1, so at the moment Eq. 11 seems like a very complicated way to write 1. The key point is to
notice that, on the one hand, we can repeat the construction above for the case of 〈O〉 = tr(Oρ).
This leads to a connection between expectation values in the operatorial form and correlation
functions of �elds computed using the action S

trôn(tn)...ô1(t1)ρ =

∫
D[ψ∗+, ψ+, ψ

∗
−, ψ−]ôn,+(tn)..o1,+(t1)eiS ≡ 〈on,+(tn)...o1,+(t1)〉,

trρô1(t1)...ôn(tn) =

∫
D[ψ∗+, ψ+, ψ

∗
−, ψ−]ôn,−(tn)..o1,−(t1)eiS ≡ 〈on,−(tn)...o1,−(t1)〉.

where we assumed tn > tn−1 > ... > t1 and that all times are already in the steady-state regime.
We see that correlation function of the +(−) �elds are related to (anti-) time-ordered expectation
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2 Background: Quantum open systems

values of operators. On the other hand, note that we can obtain correlation functions of the �elds
by adding sources Jσ = (jσ, j

∗
σ) to the action

Z[J+, J−] ≡
∫
D[ψ∗+, ψ+, ψ

∗
−, ψ−]eiS+i

∫ ∑
σ(j∗σψσ+c.c.), (2.29)

such that derivatives ofZ with respect to the sources generate correlation functions. For example,
the two-point correlation functions are given by

− δ(2)Z

δj∗σ(t)δjσ′(t′)

∣∣∣∣
J+=J−=0

=
〈
ψ∗σ′(t

′)ψσ(t)
〉
. (2.30)

A convenient representation for analysing the properties of the action S is obtained by intro-
ducing the classical and quantum �elds

ψc ≡
1√
2

(ψ+ + ψ−), ψq ≡
1√
2

(ψ+ − ψ−). (2.31)

The c/q basis is especially convenient for the analysis of the two-point correlation functions, also
known as the Green’s functions. In the non-equilibrium context there are three types of Green’s
functions- retarded (GR), advanced (GA) and Keldysh (GK ), which are de�ned as [44]

iGR(t, t′) = θ(t−t′)〈[ψ̂(t), ψ̂†(t′)]〉 = 〈ψc(t)ψ∗q (t′)〉, (2.32a)

iGA(t, t′) = −θ(t′ − t)〈[ψ̂(t), ψ̂†(t′)]〉 = 〈ψq(t)ψ∗c (t′)〉, (2.32b)

iGK(t, t′) = 〈{ψ̂(t), ψ̂†(t′)}〉 = 〈ψc(t)ψ∗c (t′)〉, (2.32c)

where we suppressed other �eld indices, such as position or momentum, in the expressions above.
The physical interpretation of the di�erent Green’s functions will become clear in the next sec-
tion.

2.2.3 Example: Free bosons with single-particle pump and loss

To discuss several important properties of the Green’s functions and the Keldysh action let us
consider a concrete toy model of non-interacting bosons subject to incoherent single-particle loss
and pump. This system is described by the following QME

∂tρ = −i[H, ρ] + 2γp

∫

x
Dψ†(x)[ρ] + 2γl

∫

x
Dψ(x)[ρ], H =

∫

x
ψ†(x)(−∇2)ψ(x),

12



2.2 Keldysh path-integral description of open quantum systems

where
∫
x ≡

∫
ddx, and we have rescaled the dissipation rates in order to avoid carrying factors of

1/2 around. Mapping to the Keldysh path-integral we obtain the following quadratic action (in
Fourier space)

S =

∫

ω,k
(ψ∗c (ω,k), ψ∗q (ω,k))

(
0 PA

PR PK

)(
ψc(ω,k)
ψq(ω,k)

)
, (2.33)

PR = ω − k2 + i(γl − γp), PA = (PR)∗, PK = 2i(γp − γl), (2.34)

where
∫
ω,k ≡ (2π)−(d+1)

∫
dω
∫

ddk. The structure of the action in Eq. (2.33) is the usual
structure of the quadratic part of the Keldysh action. Importantly note that the fact that noψ∗cψc
term exists is an exact property of the Keldysh action, which will be preserved also when the action
is renormalized due to interactions. This can be traced to the fact that the time evolution generated
by the Liouvillian is trace preserving (probability preserving), which leads to the more general
constraint on the Keldysh action S[ψc, ψ

∗
c , ψq = 0, ψ∗q = 0] = 0 [17].

Adding sources to the action and using Eq. (2.30) we can obtain the Green’s functions

GR = (PR)−1 =
1

ω − k2 + iγ̃
, GK = −GRPKGA =

2iγ̃

(ω − k2) + γ̃2
, (2.35)

where we denoted γ̃ = γl − γp. Let us assume for the moment that γl > γp such that γ̃ > 0
(the reason for this will become clear shortly).

Considering GR(GA) as a function of a complex frequency, we see it is analytic in the up-
per(lower) half of the complex plane. This observation is not limited to our simple toy model but
is again a general property of the Keldysh action. To see why it must be so, �rst we start with a sim-
ple mathematical argument. In the time-domain GR(t) ∝ θ(t), hence for any point ω∗ ∈ C+

the contour integral
∮
ω∈C G

R(ω), around the contourω(θ) = reiθ+ω∗ , is vanishing as r → 0

∣∣∣∣
∮

ω∈C
GR(ω)

∣∣∣∣ ≤ r
∫

dθ

∫ ∞

0
dte−Imω∗t|GR(t)| −→

r→0
0. (2.36)

This implies that there could be no pole ofGR(ω) at any ω∗ ∈ C+.
To understand the physical meaning ofGR, consider coupling the system a weak classical exter-

nal source with some frequency and momentum pattern (i.e. j(ω,k) = ei(ωt−k·x)j0). This leads
to an addition of a drive term to the HamiltonianH → H+ [j(ω,k)ψ̂†(k) +h.c.]. The source
acts as a coherent particle pump, leading to a �nite expectation value 〈ψ̂(ω,k)〉 = 〈ψc(ω,k)〉.
The response of 〈ψc(k)〉 to an in�nitesimal �eld is given by

δ〈ψc(ω,k)〉
δj∗c (ω,k)

∣∣∣∣
jc=0

= − δ(2)Z

δj∗c (ω,k)δjq(ω,k)

∣∣∣∣
jc,jq=0

= iGR(ω,k). (2.37)

Now assume we apply a weak �eld j(t0,k) =
∫
ω e
−iωt0j(ω,k) localized at time t = t0. From

Eq. (2.37) we can conclude that at time t > t0

〈ψc(t,k)〉 − 〈ψc(t,k)〉0 =

∫

ω
e−iωt〈ψc(ω,k)〉 = j(k2,k)e−γ̃(t−t0)e−ik

2(t−t0). (2.38)
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2 Background: Quantum open systems

From this we see the physical meaning of the analyticity properties of GR which guarantee that
�uctuations generated due to weak perturbations are exponentially decaying with time. Requir-
ing γ̃ > 0 guarantees stability of the steady-state value 〈ψ̂〉 = 0 against arbitrary weak perturba-
tions. Of course, we might want to consider a, physically relevant, situation where γp > γl and
thus γ̃ < 0. In order to discuss the instability of the system in this case, as we will do shortly, we
will have to take interactions into account.

From the discussion above we see that the poles ofGR occur at a natural excitation frequencies
of the system where the response to a weak external �eld will be strongest. The real part of the pole
frequency is the excitation energy while the imaginary part γ̃ is the decay rate. More generally,
we can de�ne the spectral function which encodes the spectral properties of the system, via the
relation [46]

A(ω,k) = −2ImGR(ω,k). (2.39)

In our simple, non-interacting, case we the spectral function has a Lorentzian form

A(ω,k) =
2γ̃

(ω − k2)2 + γ̃2
, (2.40)

which becomes a delta peak in the limit γ̃ → 0−. For generic interacting systems we expect
branch cuts to emerge in GR(ω,k) which represent a continuum of excitations as opposed to
the isolated Lorentzian structure.

We turn now to the Keldysh Green’s function. From Eq. (2.32c) we can see that, at equal times,

GK(t, t;k) = 1 + 2〈ψ̂†(t,k)ψ̂(t,k)〉. (2.41)

For a time translation invariant steady-state we can obtain the occupation function of momentum
states via

nk =
1

2

(
i

∫

ω
GK(ω,k)− 1

)
. (2.42)

Hence, we see thatGK encodes information about the statistical occupation of the available states.
For our speci�c example we obtain

nk =
γp

γl − γp
. (2.43)

We note that in our example all momentum modes are equally occupied, which makes sense as
the Markovian pump and loss do not depend on energy or momentum. Of course this cannot be
the case in a real physical system. This pathological behavior can be cured by a momentum cuto�
(assuming the pump is ine�ective at high momenta) and by the inclusion of interaction e�ects
which will renormalize the pump and loss rate and induce a momentum dependence. Also note
that when γl = γp we have a divergence of nk which is related to the instability we encounter in
GR in this case.

More generally, the Keldysh Green’s function can be parametrized, for a scalar �eld, as

GK(ω,k) = F (ω,k)
(
GR(ω,k)−GA(ω,k)

)
= −iF (ω,k)A(ω,k), (2.44)

F (ω,k) ≡ 1 + 2n(ω,k). (2.45)
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2.2 Keldysh path-integral description of open quantum systems

Heren(ω,k) can be interpreted as an occupation function since Eq. (2.44) together with Eq. (2.42)
implies that nk =

∫
ω n(ω,k)A(ω,k). In our example we have

F (ω,k) =
γl + γp
γl − γp

. (2.46)

In equilibrium the occupation function is given by the Bose-Einstein distribution and 1 +
2n(ω,k) = coth(ω/2T ). This implies that in the equilibrium the Keldysh and retarded Green’s
function are not independent

GK = coth
( ω

2T

)
2iImGR(ω,k). (2.47)

This is a manifestation of the �uctuation-dissipation theorem [46], and it is the reason why in
equilibrium �eld-theory we only need one Green’s function in order to describe the system. Eq. (2.47)
does not hold in a general non-equilibrium setting, however it can be sometime used to de�ne an
e�ective temperature by a �t to the low frequency behavior of the ratio Im[GK(ω,k)/GR(ω,k)]
(see e.g. [47, 48]). It can also happen that an e�ective temperature emerges at long wavelengths in
the vicinity of a critical point, as was shown in a renormalization-group (RG) study of the inter-
acting version of our example system in Ref. [18].

Condenstation instbaility at γp = γl

We now turn to discuss the instability we encountered when γp = γl. In order to consider this
case we must add interactions and two-body loss processes to our model which means we can
no longer obtain the exact Green’s functions. Here we will be satis�ed with a simple mean-�eld
analysis. For a full RG study of the interacting model see Ref. [18].

The interaction Hamiltonian we consider is given by Hint = u
2

∫
x ψ̂
†(x)ψ̂†(x)ψ̂(x)ψ̂(x),

in addition we consider a two-body loss process described by a dissipator term Γ
∫
xDψ̂(x)ψ̂(x).

This two additions result in the following interaction action

Sint = −
∫

t,x

{
u+ iΓ

2
[(ψ∗c )

2 + (ψ∗q )
2]ψqψc + c.c.− 2iΓ|ψq|2|ψc|2

}
. (2.48)

We have seen that having γp > γl signals an instability of 〈ψc〉 (which is vanishing for γl < γp)
towards in�nitesimal �uctuations. We can obtain an approximation to the value of 〈ψc〉 in the
steady-state using the saddle-point approximation where we assume an homogeneous value and
neglect all e�ects of classical and quantum �uctuations. The expectation values of both ψc, ψq
are obtained as a solution of

δS

δψ∗c
= 0,

δS

δψ∗q
= 0. (2.49)

First note that the condition S[ψc, ψq = 0] implies that the �rst equation is identically zero
when ψq = 0. Since 〈ψq〉 = 0 must hold by construction in the Keldysh formalism, we only
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2 Background: Quantum open systems

need to consider the second equation evaluated at ψq = 0. We consider a solution of the form
ψc(t,x) = eiµtψc, we obtain

[i(γ̃ +
Γ

2
|ψc|2) + µ− u

2
|ψc|2]ψc = 0. (2.50)

For γ̃ > 0 Eq. (2.50) has only a trivial solution ψc = 0. However when γ̃ < 0 we get another
solution

|ψc|2 = −2γ̃

Γ
= ρ0, (2.51)

with µ = u/2|ψc|2. We see that the regime of instability of the steady-state with 〈ψc〉 = 0 we
saw in the previous section coincides with the regime where steady-state with a �nite condensate
value 〈ψc〉 6= 0 exists.

To see that the condensate solution is stable, we can expand the action in �uctuations around
the condensate value ψc =

√
ρ0 + δψc, ψq = δψq . Since the presence of a �nite conden-

sate generates terms of the form δψ∗c δψ
∗
q it is convenient to introduce a Nambu spinor δΨT

α =
(δψα(ω,k), δψ∗α(−ω,−k)) for α = c, q. We obtain the action

S�uc =
1

2

∫

ω,k
(δΨ†c δΨ†q)

(
0 PA
PR PK

)(
δΨc

δΨq

)
, (2.52)

with the inverse retarded function given by

PR(ω,k) =

(
ω − k2 + (iΓ− u)ρ0/2 (−u− iΓ)ρ0/2

(−u+ iΓ)ρ0/2 −ω − k2 − (iΓ + u)ρ0/2

)
, (2.53)

where we used the fact that γ̃ = −Γ
2 ρ0 and µ = u/2ρ0.

The poles ofGR, and consequently the excitation spectrum of the system, can be obtained by
a solution of det(PR(ω,k)) = 0 which leads us to

ωR±(k) = −iΓ
2
ρ0 ±

√
k2(k2 + uρ0)− Γ2ρ2

0/4. (2.54)

We thus see that due to the non-linearity induced by the two-particle loss can stabilize a condensate
solution, since ImωR±(k) ≥ 0. At small momentum we have ωR+(k) ≈ −i2uk2/Γ, which
indicates the existence of a dissipative gapless Goldstone mode. This is related the breaking of the
U(1) symmetry, ψα → eiθψα, of the action in the condensate phase [18].

2.2.4 Effective action formalism

In this section we describe the e�ective-action formalism which is one useful formulation of the
many-body problem, especially when condensation phenomena is considered [17, 49, 50]. Con-
sider a �eld-theory with a set of �elds Φ = (φ1, .., φn), where the index i = 1, .., n can be discrete
or continuous (e.g. position, momentum, di�erent species) 4. The Keldysh e�ective-action Γ is a

4To lighten the notation we assume that we work with real �elds here, but the derivation in the case of complex �elds
is equivalent.
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2.2 Keldysh path-integral description of open quantum systems

functional of the �elds expectation values φ̄i ≡ 〈φi〉 such that the physical steady-state value of
Φ̄ is given by a stationary-point of the functional Γ[Φ̄].

Given an action S we can de�ne the generating functional of connected correlation functions
W by coupling the �elds to external sources

W [Jc, Jq] = −i logZ[Jc, Jq], (2.55)

Z[Jc, Jq] =

∫
D[Φ]eiS+i

∫
(JTq Φc+JTc Φq) =

〈
ei

∫
(JTq Φc+JTc Φq)

〉
. (2.56)

Here we collected (di�erent Keldysh components of) the �elds and sources into vectors JTα =
(jα,1, ..., jα,n), and ΦT

α = (φα,1, ..., φα,n), and we denoted Φ = (Φc,Φq). W is a functional of
the sourcesJq, Jc, and derivatives ofW with respect to the sources generate connected correlation
functions:

δ(n)W

δjα1,i1 ..δjαn,in

∣∣∣∣
Jq ,Jc=0

= (−i)(n+1)
〈
φα′1,i1 ...φα′n,in

〉
connected

, (2.57)

where we introduced the notation c′ = q, q′ = c for the Keldysh index.

We now want to obtain an object which is a functional of the �eld expectation values, this is
done by means of a Legendre transform

Γ[Φ̄c, Φ̄q] = W [Jc, Jq]−
∫

(JTc Φ̄q + JTq Φ̄c), (2.58)

δΓ

δΦ̄c
= −Jq,

δΓ

δΦ̄q
= −Jc. (2.59)

From Eq. (2.59) we see that in the absence of external sources Jc, Jq = 0, the �eld expectation
values are given by the stationary point of Γ, that is

δΓ

δΦ̄α
= 0. (2.60)

At a �rst glance Eq. (2.60) looks similar to the classical equations of motion (EOM) obtained
by looking for the stationary point of the bare action S. However, unlike the classical EOM,
Eq. (2.60) is exact and includes the e�ects of all statistical and quantum �uctuations in deter-
mining Φ̄. The �eld-equation is exact only when an exact expression for Γ is available, which is
generically not the case for interacting theories. However, by introducing approximations to Γ,
Eq. (2.60) allows us to include beyond mean-�eld corrections in a systematic way.
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2 Background: Quantum open systems

From the second variation of Γ we can obtain the full Green’s functions of the theory, which
as we have seen encode the stability properties of steady-states of the open system. To see this note
that Eq. (2.59) implies

−δαβδij =
δ

δjα′,i

δΓ

δφ̄β,j
=
∑

γ,m

δφ̄γ,m
δjα′,i

δΓ

δφ̄γ,mδφ̄β,j

= i
∑

γ,m

δ(2)W

δjα′,iδjγ′,m

δ(2)Γ

δφ̄γ,mδφ̄β,j
= −

∑

γ,m

Gαγ(i,m)Γ
(2)
γβ (m, j),

where we denoted Γ
(2)
γβ (m, j) ≡ δ(2)Γ

δφ̄γ,mδφ̄β,j
. Hence we see that the second variation of Γ is the

inverse connected Green’s functions

Γ
(2)
αβ(i, j) = G−1

αβ(i, j). (2.61)

It can be shown that higher derivatives of Γ generate the 1PI vertex functions, also known as
1PI amputated correlation functions [45, 51]. A 1PI correlation function is de�ned as a corre-
lation function whose representation in terms of sum of Feynman diagrams contains only 1PI
diagrams. A 1PI diagram is a diagram which cannot be disconnected into two parts by cutting
one propagator line. An amputated correlation function, or vertex function, is obtained from a
connected correlation function by removing propagator factors corresponding to external legs in a
diagrammatic representation. The 1PI vertex functions contain all renormalization e�ects, since
the connected correlation functions can be computed from tree-level diagrams (without loops)
composed out of the 1PI vertices and the full propagator.

A simple approximation which is often used is the one-loop approximation, which amounts
to expanding S[Φ̄ + δΦ] in Gaussian �uctuations around Φ̄. This results in

Γ[Φ̄] = S[Φ̄] + itr logS(2)[Φ̄], (2.62)

with S(2)
αβ ≡ δ(2)S/δΦαδΦβ and the trace running over frequency,momentum, Keldysh and

any other indices of the �elds. The �rst term in the RHS of Eq. (2.62) is the bare action evaluated
at the stationary value Φ̄, keeping only this term is equivalent to the saddle-point approximation
of the bare action S. The second term contains the contributions to the e�ective action due to
quadratic quantum and statistical �uctuations around the condensate value.

A more explicit expression for the 1-loop contribution in Eq. (2.62) can be obtained by de-
composing S(2)[Φ̄] = G−1

0 + V [Φ̄], where G−1
0 is the bare Green’s function arising from the

quadratic part of S. With this decomposition we can expand

tr logS(2)[Φ̄] = tr logG−1
0 −

∞∑

n=1

(−1)n

n
tr[(G0V [Φ̄])n]. (2.63)

Note that the term tr[(G0V )n] is of order n in the interaction couplings, and is at least of order
n in the condensate value Φ̄. It is also convenient to represent the di�erent terms in Eq. (2.63)
as Feynman diagrams with external lines representing the condensate �elds (coming from the V
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2.3 Experimental platforms

terms) and inner lines representing the bare propagatorsG0. The RHS of Eq. (2.63) generates all
1PI one-loop diagrams. Taking derivatives of Eq. (2.62) we can obtain the �eld equations at the
1-loop level

δΓ

δΦ̄
= itr

(
G−1

0 + V [Φ̄]
)−1

∂Φ̄V [Φ̄] = 0. (2.64)

2.3 Experimental platforms

The work in this thesis deals largely with understanding di�erent phenomena which can occur in
open quantum systems using simpli�ed theoretical models which are not strongly tied to a speci�c
experimental implementation. It is nevertheless important to at least have some examples in mind
of the type of systems we will be thinking about. For this end we provide a brief review of several
relevant experimental platforms whose dynamics can be well described by the QME Eq. (2.1).

2.3.1 Ultracold atoms in optical lattices

In the last two decades systems of ultracold gases trapped in optical lattices have emerged as one
of the leading platforms for quantum-simulation of many-body physics [1]. This success has
been facilitated by the ability to control the interaction strength in those systems using Fesh-
bach resonances [52], allowing to investigate strongly correlated regimes even at low densities,
and the ability to create optical potentials in di�erent dimensionalities allowing the exploration of
low-dimensional quantum systems. Another important recent development is the realization of
quantum-gas microscopes enabling detection of individual atoms at a single-site resolution [53].

Some experimental results obtained with ultracold atoms in optical lattices include: the re-
alization of the Bose-Hubbard model and the observation of the Mott-super�uid phase transi-
tion [54]; measurements of charge and spin correlations in the Fermi-Hubbard model in one
and two dimensions [55, 56]; and investigation of spin transport in the strongly correlated Mott
regime of the Fermi-Hubbard model [57].

In addition, ultracold atoms play an important role in the investigation of non-equilibrium
dynamics after a quantum quench and the questions regarding thermalization of closed quantum
systems [24]. For example, the �rst experimental evidence for many-body localization has been
observed using ultracold fermions trapped in a quasi-periodic potential in 1D [58] (see chapter 4
for more details on many-body localization).

Ultracold atoms are considered to be quite well isolated from their environment, as compared to
solid-state systems where phonons are always present. However, there still exist sources of dissipa-
tion, due to photon scattering, which need to be taken into account when describing experiments.
In the rest of this section we brie�y describe two origins of dissipation in those systems, dephasing
noise where the Lindblad operator is hermitian Li = ni and particle loss where Li = ai. We
mainly follow here the discussion in Ref. [13], which can be consulted for further details.

At the microscopic level the Hamiltonian can be described as:

Ĥatoms =

∫

x
ψ̂†(x)[

~2

2m
∇2 + Vopt(x)]ψ̂(x) +

u

2

∫

x
(ψ̂†(x))2ψ̂2(x), (2.65)
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2 Background: Quantum open systems

where ψ(x) is the annihilation operator of atom at position x, and Vopt(x) is the optical lattice
potential, and we introduced the notation

∫
x ≡

∫
d3x. In the low-energy limit the e�ects of

the complicated atom-atom interaction potential U(x) can be e�ectively captured in the point
approximation as uδ(x) with u = 4π~2a/m and a the S-wave scattering length [1] (for more
details see chapter 3).

The optical lattice potential is generated by the interference of two counter-propagating laser
beams resulting in a standing wave pattern. The origin of the optical potential as well as dissipation
in the system can be understood by considering atoms with two relvant internal levels moving in
the presence of an external classical electric �eld as done in Ref. [59]. The atomic Hamiltonian is
given by

Hatom =

∫

x
{
∑

α=g,e

ψ̂†α(x)[−∇
2

2m
+ ∆δαe]ψ̂α(x)− [

Ω(x)

2
ψ̂†e(x)ψ̂g(x) + h.c.]}. (2.66)

Here we are working in a rotating frame, rotating with the laser frequency ωL. ∆ = ωL −
ω0 is the detuning of the laser frequency and Ω(x) is the spatially dependent Rabi frequency
which is obtained from the dipole term−d ·E in the rotating wave approximation. In addition,
spontaneous emission from the excited state can be described with a dissipator term [59]

Γ

∫

x

∫
d2uN(u)DCu(x)[ρ], Cu(x) = e−ik0u·x̂ψ̂†g(x)ψ̂e(x), (2.67)

where k0 = ω0/c is the momentum associated with the internal transition, and N(u) ∝ (1 −
(u · d)2) is the distribution of emitted photon directions which depends on the atom dipole
moment.

In the limit of large detuning |∆| � Ω,Γ we can adiabatically eliminate the excited state from
the master equation and derive an e�ective equation for ρgg(x,x′) alone. In [59] this was done
using the optical Bloch equations, here we will show how to do this in the Keldysh technique.
For simplicity we approximate the dissipator in Eq. (2.67) to be ΓDψ̂† , for a full treatment see
Ref. [59]. The Keldysh action is given by S = Sg + Se + Seg where:

Se = −∆

∫

t,x
[|ψe,+(t,x)|2 − |ψe,−(t,x)|2], (2.68)

Seg = −
∫

t,x

∑

σ=±
σ[

Ω(x)

2
ψ∗e,σ(t,x)ψg,σ(t,x) + c.c.],

− iΓ
∫

t,x
[ψ∗g,+ψe,+ψg,−ψ

∗
e,− −

1

2
(|ψg,+|2|ψe,+|2 + |ψg,−|2|ψe,−|2)],

where for notational compactness we suppressed the time and space dependence of the �elds in
the quartic term. Here we neglected the dynamics of the atoms in the excited state as compared to
the detuning scale |∆|. With this approximation we can integrate out the excited state, which is
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2.3 Experimental platforms

equivalent to replacingψe,σ with its saddle-point value given by the classical equations of motion
δS/δψ∗e,σ = 0. From the equations of motion we obtain

ψe,σ(t,x) ≈ Ω(x)

2∆
ψg,σ(t,x). (2.69)

Physically we assumed that the dynamics related to the excited state population are much faster
compared to external dynamics of ground state atoms. We work in an approximation where the
excited state population instantaneously adjusts to changes in the ground state density, as can be
seen from Eq. (2.69).

Plugging Eq. (2.69) in Eq. (2.68) we obtain the optical potential and the e�ective dissipation
for the atoms in the ground state:

So = −
∫

t,x

∑

σ

σ
|Ω(x)|2

4∆
|ψg,σ(t,x)|2, (2.70)

Sd = −i
∫

t,x

Γ|Ω(x)|2
4∆2

[|ψg,+|2|ψg,−|2 −
1

2
(|ψg,+|4 + |ψg,−|4)]. (2.71)

The continuum QME we obtained can be mapped to a tight-binding model using Wannier
wave-functions loacalized around the di�erent minima of the optical potential. Working in an
approximation where only the lowest Wannier band is populated ψ̂(x) ≈∑iw(x−Xi)b̂i one
obtains the following lattice QME

∂tρ = −i[H, ρ] + γ
∑

i

[niρni −
1

2
{n2

i , ρ}]. (2.72)

Hence we see that the inelastic scattering from the excited internal state results in an e�ective
dephasing noise with Lindblad operatorLi = ni. In chapter 5 we will consider the e�ect of such
dephasing noise on the entanglement properties of free-fermions hopping on a lattice.

In addition to the dephasing noise, photon scattering can lead to particle loss when the momen-
tum recoil due to the emitted photon transfers the atom to a momentum state with energy larger
than the trap potential. This can happen in experiments inadvertently due to collisions with some
(un-trapped) background gas. Local particle losses can also be induced in a controlled manner by
usage of a laser beam in quantum gas microscopes with single-site addressing capabilities [60]. In
those cases the system can be described by a QME with the dissipator γ

∑
iDb̂i [ρ], where b̂i is

the annihilation operator of a particle at site i. This type of controlled single-particle loss has been
used in Ref. [61] to investigate signatures of many-body localization in open systems (see chapter
4).

Finally, let us comment that an incoherent pump term of the form γp
∑

iDâ†i [ρ] can be engi-
neered by immersing the system in a gas of a second un-trapped atomic species [62]. In this setup
atoms in higher Bloch bands of the lattice (which are not part of the “system” in our e�ective de-
scription) can decay to the lowest band due to interaction with the background gas, leading to an
e�ective incoherent pump.
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2 Background: Quantum open systems

2.3.2 Atoms in cavities

Another interesting platform for quantum simulation is implemented in experimental setups
where cold quantum gases are coupled to the radiation �eld of a high-�nesse optical cavity, a
�eld also known as cavity-QED. This is a setting which allows to investigate systems with long-
range atom-atom interactions, since those are mediated by the cavity photons. Examples of cavity
QED quantum simulation experiments include the realization of an open system version of the
Dicke model and its associated superradiance phase transition [63]; observation of magnetic self-
ordering in spinor BECs [64, 65]; realization of photonic Laughlin states [66]; formation of a
supersolid phase, accompanied by spontaneous symmetry breaking of a continuous translational
symmetry [67] and quantum-simulation of dynamical phase transitions in the Lipkin-Meshkov-
Glick model [68]. In this section we will brie�y describe the realization of the dissipative Dicke
phase transition, for a more general review see [3].

In the experiment by Baumann et al. [63] a BEC was trapped inside an optical cavity and driven
using a pump laser in a direction transversal to the cavity mode. Here we denote the cavity axis as
x̂ and the transversal pump axis as ẑ. The Hamiltonian after adiabatic elimination of an internal
atomic excited state (similar to sec. 2.3.1) is given by

Ĥatom =

∫

x
ψ̂†(x)[−∂

2
x + ∂2

z

2m
+ V0 cos2(kz)]ψ(x), Ĥphoton = −∆câ

†â, (2.73)

Ĥp−a = η(â† + â)

∫

x
cos(kx) cos(kz)ψ̂†(x)ψ̂(x) + U0â

†â

∫

x
cos2(kx)ψ̂†(x)ψ̂(x),

here
∫
x ≡

∫
dxdz, k is the momentum associated with the pump laser, V0 is the potential in-

duced by the pump laser, â is an annihilation operator of a cavity photon and ∆c is the cavity
detuning with respect to the pump frequency.

Mapping of this model to the Dicke model can be done by considering momentum modes of
the BEC. The photon-atom couplingHp−a induces transitions between BEC state with zero mo-
mentum |px = 0, py = 0〉 = (N !)−1/2(ψ†p=0)N |0〉 and a state ψ̂†p=(±k,0)ψ̂0|0, 0〉 ≡ | ± k, 0〉
while the coupling with the pump �eld can induce transitions which changes the momentum in
the ẑ direction ψ̂†p=(0,±k)ψ̂0|0, 0〉 ≡ |0,±k〉. A process where a cavity (pump) photon is ab-
sorbed and a pump (cavity) photon is emitted induces a transition between the state |0, 0〉 and
the state | ± k,±k〉 ≡ (1/2)

∑
σ,σ′=± |σk, σ′k〉 [63].

When considering the BEC momentum states the system can be described by the Dicke model
Hamiltonian [69]:

HDicke = ωzJz + ω0a
†a+

λ√
N

(a† + a)(J+ + J−). (2.74)

In the usual description of the Dicke model Jz, J± are spin operators describing a spin of sizeN ,
where the large spin is realized by a collection of N two-level atoms interacting with the cavity
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mode Ĵz =
∑

i σ
z, Ĵ+ =

∑
i σ

+. In the experiment [63] the analogy to the Dicke model is
obtained by mapping the two-level systems to the momentum excitations of the BEC, such that

Ĵ+ =
1

2

∑

σ,σ′=±
ψ̂†p=(σk,σ′k)ψ̂p=0.

Even tough a high-�nesse cavity is used in the experiment, there is still some leakage of photons
outside of the cavity. This needs to be taken into account when describing steady-states of the
system. Hence the full system is described by

∂tρ = −i[HDicke, ρ] + κDa[ρ]. (2.75)

Note that from an experimental perspective the fact the some photons leak outside of the cavity
is important, because it is measurement of these photons and their correlations which allows for
an experimental characterization of the state inside the cavity.

The Dicke Hamiltonian has a discrete Z2 symmetry and is invariant under P = eiπ(Jz+a†a).
Namely, the total parity of the spin + photon number is conserved. When considering the ground-
state properties ofHDicke, this symmetry is spontaneously broken at a critical value of the photon-
spin couplingλc where Jx, a+a† develop �nite expectation values. The broken symmetry phase
is also known as the superradiant phase since the photon number obtains a macroscopic value〈
a†a
〉
∼ N .

The transition still occurs in the presence of photon loss as was observed in the experiment. We
can see this using the Keldysh formalism following Ref. [47]. The key is to perform a Holstein-
Primako� expansion which allows us to replace the spin operators with bosonic operators in the
limit of large atom number Jz = −N/2 + b†b, Jx ≈

√
N(b+ b†) +O(N−1/2). Keeping only

up to O(N0) terms [with higher order terms of order at least O(N−1)] results in a quadratic
Keldysh action

S =

∫
(a∗c b∗c a∗q b∗q)

(
02×2 PA

PR PK

)



ac
bc
aq
bq


 (2.76)

with
PR =

(
ω − ω0 + iκ −λ
−λ ω − ωz

)
, (2.77)

and PK = diag(2iκ, 0). Note that this description is only valid for the symmetric phase and
in order to describe the superradiant phase we need to also take into account the leading 1/N
correction. The value of λc can be obtained by looking for an instability where one of the poles
of GR, obtained from solving det(PR(ω)) = (ω − ωz)(ω − ω0 + iκ) − λ2 = 0, has a zero
imaginary value. This occurs at the critical value

λc =
1

2

√
ωz

√
κ2 + ω2

0

ω0
. (2.78)
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We can also compute the photon number n =
〈
a†a
〉

using GK(ω) which results in
〈
a†a
〉
∼

(λc − λ)−1. This kind of mean-�eld critical behavior of n is the same as the one encountered in
the closed system at �nite temperature [69].

In the experiment [63] the superradiant transition is observed by tuning the external pump in-
tensity which e�ectively tunes the couplingλ. Above a threshold pump strength a sharp increase is
observed in the mean photon number and in addition peaks at±kx̂,±kẑ appear in the momen-
tum distribution of the condensate which is evidence for a �nite expectation value 〈J+ + J−〉.

2.3.3 Circuit QED

In recent years much progress has been made towards the realization of many-body phases of pho-
tonic matter using microwave photons in superconducting circuits, a �eld known as circuit-QED
(cQED) [4] . A lot of the technological advances in these devices are driven by the fact that su-
perconducting qubits are one of the leading platforms for the realization of quantum computers,
as evidenced for example in a recent experiment which claimed to show the �rst demonstration
of quantum advantage [70]. The same capabilities which makes superconducting circuits good
qubit candidates , such as long coherent times and scalability, also makes it an appealing platform
for the realization of strongly interacting synthetic photonic matter.

The basic building blocks in cQED are LC resonator circuits. A linear LC circuit consists of
a capacitor with capacitance C and inductor with inductance L. Its quantized Hamiltonian is
given by

HLC =
Q̂2

2C
+

Φ̂2

2L
, (2.79)

where Q̂ is the charge operator and Φ̂ is the �ux. Since Q̂ and Φ̂ are canonical conjugates, this is
nothing but an harmonic oscilator

HLC = ωra
†a, (2.80)

with ωr = 1/
√
LC . In current devices ωr is typically in the microwave regime. Hence, one LC

resonator realizes a lattice site where a non-interacting microwave photon mode resides.
By replacing the simple inductor with a Josephson junction (a tunneling junction between two

superconductors) one gets a circuit with non-linear inductance, also known as the transmon

Htransmon =
Q̂2

2C
+ EJ cos(Φ̂) (2.81)

This leads to an interaction term between the microwave photons in the resonator

Htransmon ≈ ωb̂†b̂+ Ub̂†b̂†b̂b̂, (2.82)

where the interaction, also known as a Kerr non-linearity, U ≈ −EC/2 (with EC = e2/(2C)
the charging energy) is attractive. The non-linearity is also what allows to operate the circuit
as a qubit as it results in the energy levels no long being equidistant and allows addressing only
the |0〉, |1〉 states of the oscilator. Tunneling between the interacting sites (or coupling of an
harmonic-oscilator and a qubit) can be induced by capacative coupling of two circuits which leads
to a term of the formH12 = C12V̂1V̂2 = g(b̂†1+b̂1)(b̂†2+b̂2). This term can be approximated as a
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tunneling term in the rotating wave approximation. Therefore, with an array of transmon qubits
it is possible to realize a photonic version of the Bose-Hubbard model with attractive interactions.

Since photon loss naturally occurs due to leakage from the circuit, one has to take into account a
term of the form γ

∑
iDbi [ρ] when describing circuit-QED setups. The loss needs to be counter-

balanced in order to obtain a steady state with a �nite photon number. The most promising route
for preparing strongly correlated many-body states in those systems is by means of engineered dis-
sipation such that the resulting QME steady-state is the state of interest [4]. For example, Ref. [71]
suggested a scheme for dissipative stabilization of fractional quantum Hall states against photon
loss by coupling each photonic site, via a two-photon pump, to an auxiliary qubit site with a fast
relaxation rate. Ref. [72] suggested a scheme for stabilizing incompressible Mott-insulator states
using engineered non-Markovian baths. Hence a full description of the open system dynamics in
terms of a (possibly non-Markovian) quantum-master equation is especially important for super-
conducting circuit arrays.

In a recent experiment by Ma et al. [73] the dissipative preparation of a Mott insulator state of
photons, with �lling n = 1, was demonstrated in a 1D transmon qubit chain with seven sites.
The interacting Bose-Hubbard chain was driven to a state where at high probability each site is
occupied by one photon, with average Mott �delity 〈|1〉〈1|〉 ≈ 0.88. This was done by coupling
one end of the chain to a dissipative stabilizer site. The stabilizer consists of a transmon qubit
whose two-photon state is coupled to an extra lossy site. A coherent pump drives a two-photon
transition from the n = 0 to the n = 2 state of the transmon, and the photon loss due to the
coupling to the reservoir drives the transmon site to the n = 1 state. Intuitively, when such a
stabilizer site is coupled to a BH chain it acts as a narrow-band single photon source which �lls
the system until all sites are in the n = 1 state [73]. Once all sites are �lled the stabilizer is unable
to inject more photons into the system owing to the fact that the Mott state is incompressible (i.e.
there is a gap ∆comp between the n = 1 Mott state and the state with an extra photon) .
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3 Condensate phases of coherently
driven bosons close to a scattering
resonance

3.1 Introduction

In experiments with ultracold atoms the interaction between atoms can be tuned by means of
a Feshbach resonance [1, 52]. When the scattering length is positive this gives rise to a molecule
bound state in the two-particle spectrum, which has lower energy than the state of two free atoms.
On the other hand if the scattering length is negative there exist no bound state. Hence by tuning
the scattering length from positive to negative through the resonance, the two-particle ground
state changes its nature from molecular to atomic. For a system with �nite many-body density of
fermionic atoms, this leads to the well studied BCS-BEC crossover between a BCS like super�uid
of cooper pairs in the atomic side of the resonance and a Bose-Einstein condensate of molecules
in the molecular side [74–77].

The situation is quite di�erent in the case of bosonic atoms, where, instead of a crossover, a
sharp Ising phase-transition between a molecule condensate phase and an atom condensate phase
was predicted to occur [41, 42, 78, 79]. However, unlike the fermionic case, the molecule BEC
and the phase transition are yet to be observed in experiments due to the inherent di�culty of
stabilizing a Bose gas close to a Feshbach resonance. A main di�culty in studying the equilibrium
properties of the Bose gas close to the resonance is the fact that in this regime 3-body inelastic loss
processes are strongly enhanced [80–82]. Thus, the system might not have time to equilibrate on
the experimental time-scale 1. Moreover, it was pointed out that the molecule condensate is ther-
modynamically unstable in the dilute limit and molecule-molecule repulsive interactions together
with large enough density are necessary in order to stabilize it [84].

Inspired by the predictions of Refs. [41, 42] we set out to explore whether similar phases and
phase transitions could be realized in an alternative driven-dissipative setting. One such promis-
ing platform that we consider is a system of Rydberg-polaritons, a type of strongly interacting
light-matter quasi-particles. It has been recently shown that it is possible to control the Rydberg-
polariton interactions and realize scattering resonances [39, 40].

Rydberg-polariton systems are inherently driven-dissipative lossy systems and hence it is im-
portant to take into account the way in which a state with a �nite density is stabilized. In previous
work the many-body physics of a one-dimensional Rydberg-polariton system was analyzed by ne-
glecting the e�ect of losses and assuming that in its steady-state the system e�ectively thermalizes

1Some progress has been made recently in studying the properties of Bose gas close to resonance in non-equilibrium
quench experiments [82, 83].
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3 Condensate phases of coherently driven bosons close to a scattering resonance

to an equilibrium Gibbs-state with the temperature dependent on the initial energy density of
the system [85]. Such an approach might be suitable in the regime of very weak pump and losses.
In this paper we take a di�erent approach and consider explicitly the e�ects of losses and external
pump on the long time steady-state into account by using an e�ective quantum master equation
description of the Rydberg-polariton system.

In particular, we consider a situation where a two-particle coherent pump is used in order to
stabilize a �nite particle density against losses. We choose this pumping scheme since it crucially
does not break the Ising symmetry associated with the phase transition between the molecule
condensate and an atom condensate. In addition, the pump frequency serves as a useful tuning
parameter which allows controlling the pumping e�ciency at di�erent energies. We develop an
e�ective model using the tools of Keldysh �eld theory and explore the di�erent condensate phases
that arise in this situation. We �nd a rich phase diagram which includes the molecule condensate
phase, a phase where both atoms and molecules are condensed, and in addition several bistability
regions. An initial mean-�eld analysis of the phase transition between the molecule condensate
and atom condensate phase suggests that it belongs to the model A dynamical universality class
[86].

Outline and summary of results

Let us provide a brief highlight of the di�erent sections in this chapter. In sections 3.2- 3.4 we re-
view background information which is helpful for framing and understanding the results of this
chapter. In particular: Sec. 3.2 reviews the physics of two-particle quantum mechanical scattering
including its description in terms of a �eld-theory. While the �eld-theory formulation is not new,
here we use the Keldysh formalism to describe the problem in order to set the stage for later work
in the dissipative setting. In Sec. 3.3 we review previous theoretical works on bosonic condensate
phases in the vicinity of Feshbach resonance in equilibrium states of ultracold gases. Sec. 3.4 re-
views the experimental platform of Rydberg-polaritons which might provide a realization of the
theoretical driven dissipative model we consider in this chapter.

The description of our research work starts in section 3.5 where we introduce the model and its
associated �eld-theory. Before performing any detailed analysis we review the di�erent condensate
phases which are expected to occur in the systems based on symmetry analysis in Sec. 3.6, see
table 3.1. In particular we argue for the existence of a phase with a molecule condensate (MC)
where the condensate consists of tightly bound pairs. In addition there is a phase where both a
molecule condensate and a standard atom condensate exist (AC).

In Sec. 3.8, starting from the bare action of attractively interacting atoms with coherent pump,
we derive an e�ective action describing interacting atoms coupled to interacting coherently pumped
molecules [Eq. (3.89)]. The main �ndings of this section are: (i) We explicitly show the existence
of the molecule bound state in the dissipative vacuum setting. (ii) We �nd that the loss desta-
bilizes the in�nite series of three-body E�mov bound states, expected to emerge in equilibrium,
and hence they can be safely neglected from the many-body description (iii) We show explicitly
how the two-particle pump generates an e�ective molecule pump, leading to a �nite molecule
condensate density.
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3.2 Background: Scattering Resonance

In Sec. 3.9 we use a simpli�ed phenomenological model, inspired by the e�ective-action atom-
molecule action, to perform a detailed mean-�eld study together with stability analysis of quadratic
�uctuations. The main result of this section are the phase diagram shown in Fig. 3.13. The analy-
sis of the phenomenological model allows us to understand the essence of the MC-AC transition.
This transition occurs due to enhancement of the e�ective two-particle pump felt by the atoms,
via the coupling to the molecule condensate. The pump enhancement leads to closing of the
atomic gap and results in a condensation instability. In addition we point out the atom photolu-
minescence as a possible experimental probe which is sensitive to the di�erent phases.

Finally, in Sec. 3.10 we perform an initial exploration of the MC-AC Ising transition. We de-
compose the atom �eld into two Ising degrees of freedom, one of them becomes gapless at the
transition while the other remains gapped. By integrating out the gapped degree of freedom we
obtain an e�ective Gaussian theory for the transition. At this level of analysis we �nd that the tran-
sition is describe by an e�ective equilibrium dynamical transition at �nite temperature, belonging
to the model A universality class.

3.2 Background: Scattering Resonance

In this section we describe the physics of a two-particle scattering resonance and explain how this
quantum-mechanical phenomenon can be captured using a �eld theory description. We start with
a very brief recap of scattering theory and how the scattering of two-particles can be described at
low energies. This leads us to the concept of the scattering amplitude and the S-wave scattring
length. We then show how the low energy physics of the scattering problem can be reproduced
in terms of a �eld theory in the limit of vanishing particle density. This will form the basis of our
discussion of many-body physics in the vicinity of a scattering resonance in later sections.

3.2.1 Two-particle scattering at low energies

Let us consider a situation where two identical particles are interacting via a spherically symmet-
ric potential V (r), with r = r1 − r2 the relative coordinate. We can parametrize the two-
particle wave function as Ψ(r,R;P cm) = eiP cm·Rψ(r), withR (P cm) the center of mass co-
ordinate(momentum). ψ(r) obeys the Schrödinger equation:

i∂tψ(r) =

[
P 2

cm
4m
− ∇

2
r

m
+ V (r)

]
ψ(r), (3.1)

Hence, solving the two-particle scattering problem is equivalent to solving the scattering problem
of a single-particle from the potential V (r). For the rest of this section we will consider the prop-
erties of ψ(r). Since this is standard text-book material, we will just recapitulate some basic facts
here, further information can be found in e.g. [87].

At low energies (i.e. small relative momentumk) it is possible to describe the scattering proper-
ties of the two atoms via a single parameter called the S-wave scattering length. Intuitively this can
be understood by the fact that a low-momentum particle scattering from some potential cannot
resolve the details of the potential at short length scales. It is thus only sensitive to long wavelength
properties, which at the k → 0 limit can be described by one parameter.
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3 Condensate phases of coherently driven bosons close to a scattering resonance

More concretely, we can decompose the two-particle wave function as an incoming plane wave
with momentum k = kẑ, and a scattered outgoing radial wave:

ψ(r) = eikz + fk(θ)
eikr

r
. (3.2)

The scattering amplitudefk(θ) encodes all the information about the scattering process. The scat-
tering length is then de�ned as the low-energy limit of the scattering amplitude (which becomes
isotropic in that limit):

a ≡ − lim
k→0

fk(θ) (3.3)

Another useful object to introduce is the T matrix which is de�ned as V |ψ〉 = T |k〉. The
scattering amplitude is related to the T -matrix via:

f(k′,k) = −4πm

~2
〈k′|T |k〉. (3.4)

We will see that this is an object that comes up naturally when considering the �eld-theoretic for-
mulation of the two-body scattering problem. Note that since the scattering is energy-conserving
we have f(k′,k) = δkk′fk(θ), with θ = cos(k̂

′ · k̂).
In the case of a spherically symmetric potential, a systematic low-energy expansion of the scat-

tering amplitude can be obtained by expanding the wave function in terms of spherical-harmonics.
This expansion is termed the partial wave expansion and is given by

fk(θ) =

∞∑

l=0

(2l + 1)fl(k)Pl(cos θ). (3.5)

Here Pl(x) is the lth Legendre polynomial. The index l corresponds to di�erent total angular
momenta. The physical meaning of fl(k) can be understood by expanding the incoming plane-
wave in Eq. (3.2) in terms of spherical waves, and plugging in Eq. (3.5) which leads to the following
asymptotic expression for the wave function

ψ(r) =
∑

l

(2l + 1)
Pl(cos θ)

2ik

[
(1 + 2ikfl(k))

eikr

r
− e−i(kr−lπ)

r

]
. (3.6)

We see that the total wave function can be represented as a sum of incoming and outgoing spheri-
cal waves with di�erent angular-momenta. The scattering potential a�ects only the coe�cient of
the outgoing wave.

Probability conservation implies that the total probability �ux through a spherical surface must
vanish. In addition since angular momentum is conserved this statement must be true for each
partial-wave separately (i.e. for each l in Eq. (3.6)). This means that the magnitude of the coe�-
cient of the outgoing and incoming spherical-waves for each angular-momentum sector must be
equal, which leads to the unitarity relation

|1 + 2ikfl(k)| = 1. (3.7)
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3.2 Background: Scattering Resonance

The meaning of this constraint is that the e�ect of scattering can be parametrized in terms of a
phase-shift e2iδl(k) = 1 + 2ikfl(k), which leads us to

fl =
1

k cot δl(k)− ik . (3.8)

For atoms interacting via a short range potential, in the low k limit, the phase shifts scale as
δl(k) ∼ k2l+1. Hence, we see that higher angular momentum contributions are less important.
For identical bosons or spinfull Fermions the leading term is the S-wave phase shift (l = 0). For
V (r) with a long-range tail (such as WdV interactions) higher angular momentum phase shifts
are not so strongly suppressed, but they still contribute less than the S-wave phase shift.

We can expand the S-wave phase shift at low momentum

k cot δ0(k) = −1/a+ 1/2rsk
2 − 1/4Psk

4 + ... . (3.9)

Where a is the scattering length, rs is called the e�ective range, and Ps is called the S-wave shape
parameter. Plugging the e�ective range expansion in the expression forf0(k) (Eq. (3.8)) we obtain

f(k) ≈ 1

−1/a+ 1/2rsk2 − ik (low energies). (3.10)

The low-energy expression for the scattering amplitude Eq. (3.10) is a basis for an approxima-
tion commonly used in theoretical models of ultracold atoms, where the full interaction potential
V (r) is replaced by a contact delta-function potential

V (r)→ 4π~2a

m
δ(r). (3.11)

This contact potential reproduces exactly the result for the S-wave scattering amplitude at the low-
energy limit Eq. (3.10), when �nite-range corrections are neglected (i.e. setting rs = 0). Hence,
in the low-energy limit all the scattering properties are captured by one parameter, which is the
scattering length.

In this chapter, we will be concerning ourselves with a situation where the S-wave scatter-
ing length a becomes very large. As we can see from Eq. (3.10) this means that the scattering-
amplitude will obtain a large value as k → 0, hence this is situation is termed a scattering reso-
nance. Will now see that the occurrence of a scattering resonance can be related to the existence
of a bound-state in the two-particle interaction potential V (r) [87, 88].

Let us consider a simple toy-model of a potential well with a delta-function barrier

V (r) = −κ
2
0

m
Θ(R− r). (3.12)

The Schrödinger equation for the radial part of the wave function is given by

[− 1

m
∂2
r + V (r)− k2

m
]χ(r) = 0 (3.13)
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3 Condensate phases of coherently driven bosons close to a scattering resonance

where E = k2/m is the collision energy, and we denoted χ(r) = rψ(r). We consider only
S-wave scattering in the low-energy limit k → 0. In this limit, and using Eq. (3.6) the wave
function outside of the well can be written asχ(r) ∝ eiδ sin(kr+ δ). The wave function inside
the potential well can be written as χin(r) ∝ sin(

√
κ2

0 + k2r).

Our goal is to �nd the S-wave phase shift δ. This can be done by matching the logarithmic
derivatives at the point r = R

χ′(R)

χ(R)
=
χ′in(R)

χin(R)
. (3.14)

This results in an expression for cot δ(k), which in the limit of k → 0 is given by

k cot δ(k) = κ0 cot(κ0R) = −1

a
⇒ a = −κ−1

0 tan(κ0R). (3.15)

We see that the scattering length diverges when κ0R = π/2 +n, which is also a condition on the
depth of the well such that it has a bound-state energy exactly atEb = 0. Hence, we see that the
existence of a bound-state inside the scattering potential V (r) with energy close to zero leads to a
large scattering legnth.

3.2.2 Field-theory description of the scattering problem

Having reminded ourselves about the basics of the two-particle scattering problem, we will ex-
plain in this section how it can be described in a �eld-theoretical formulation [89–91]. While this
might be an overkill for the two-particle setting, the �eld-theory formulation forms a basis which
can be extended to describe the many-body problem where �nite particle density is introduced.
Even though theT = 0 vacuum can be conveniently described by means of imaginary-time equi-
librium �eld-theory, we will explicitly use the Keldysh formalism here as preparation for the next
sections. We note that in this chapter we always assume to work in 3d.

We consider atoms interacting via a contact-potential ua at zero temperature in the vacuum.
The Keldysh action for this problem at T = 0 is given by S = S0 + Sint

Sa =

∫

ω,k

[
ψ∗q (ω,k)

(
ω − k2

2m
+ iε

)
ψc(ω,k)

]
+ c.c.+ 2iεsign(ω)|ψq|2, (3.16)

Sint = −ua
∫

t,r
|ψ+|4 − |ψ−|4, (3.17)

where we de�ned
∫
ω,k ≡ (2π)−4

∫
dωd3k and

∫
t,r ≡

∫
dtd3r (this notation will be used in

other sections of this chapter as well). The �eldψ is associated with the annihilation operator of an
atom, and ε→ 0 is an in�nitesimal regularization of the path-integral. The term∼ sign(ω)|ψq|2
enforces the T = 0 equilibrium condition, and can be also viewed as arising from a coupling to a
zero-temperature thermal bath [44].
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3.2 Background: Scattering Resonance

The emergence of a bound state from the attractive interaction between atoms can be described
by the inclusion of an auxiliary �eld via a Hubbard-Stratonovich (HS) transformation [46]. The
HS transformation amounts to decoupling the quartic interaction using the identity

ei
∫

(ΨΨ)†Ua(ΨΨ) =

∫
D[φ]ei

∫
Φ†U−1

a Φ+
∑
σ=± σφ

∗
σψσψσ+c.c., (3.18)

where φ is an auxiliary complex �eld, [ΨΨ]T = (ψ2
+, ψ

2
−), ΦT = (φ+, φ−) and Ua = −uaσz .

The resulting action can be rewritten as

S = Sa + Sm + Sam, (3.19a)

Sm =

∫

t,r

[
φ∗q(−ν̃ + iη)φc + c.c.+ 2iηφ∗qφq

]
, (3.19b)

Sam =

∫

t,r
g
[
2φ∗cψcψq + φ∗q

(
ψ2
c + ψ2

q

)
+ c.c.

]
, (3.19c)

here η → 0 is an in�nitesimal regularization, similar to ε, the parameters ν̃ and g are related to
the interaction as

ua = −2g2

ν̃
. (3.20)

By means of the HS transformation, we replaced the quartic interaction ua by introducing an
auxillary �eld which is coupled to the atoms. The two-point correlation function ofφ encodes the
two-atom scattering properties. We introduced a parameter ν̃, which can be related to the inverse
scattering length and hence to the distance of the system from a scattering resonance, as we will
soon see.

Note, that we could view the action in Eq. (3.19) as the microscopic starting point for the de-
scription of ultracold atoms in the vicinity of a Feshbach resonance [52]. In this setup a two-atom
state is coupled to a molecule bound-state which exists as a bound state of a closed scattering chan-
nel. This situation can be described by Eq. (3.19) if we neglect the bare dynamics of the molecule,
which is justi�ed in the case of a broad Feshbach resonance. In experiments the atom-molecule
coupling is used in order to tune the atom-atom scattering length, which is achieved by tuning
the energy of the molecule bound-state via a magnetic-�eld, related to ν̃ in our description.

To see the connection between the �eldφ and the scattering-amplitude of two atoms, we use the
fact that the scattering amplitude can be extracted from the time-ordered connected 4-point func-
tion

〈
Tψψψ†ψ†

〉
c
. More conveniently the two-particle scattering properties can be extracted

from the amputated 4-point function iAwhich we de�ne as
〈
Tψ(Q1)ψ(Q2)ψ†(Q3)ψ†(Q4)

〉
=

(2π)d+1δ(Q1 + Q2 − Q3 − Q4)[ΠiG
T(Qi)]iA(Q1, Q2, Q3, Q4) ,where we introduced the

notationQi = (ωi, qi). According to the LSZ reduction formula the T matrix is obtained from
A by requiring all external frequencies to be on shell, that is ωi = q2

i /(2m) [45, 89].

In the Keldysh formalism the time-ordered correlation function is given by
〈
ψ∗+ψ

∗
+ψ+ψ+

〉
,

which in our case is given by the tree-level Feynman-diagram shown in Fig. 3.1a. Hence we see
that the amputated 4-point functionA is proportional to the molecule �eld propagator

〈
φ∗+φ+

〉
.

Denoting the molecule Green’s functions by D, at zero-temperature equilibrium we obtain the
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Figure 3.1: Diagrams involved in calculation of the atom-atom scattering amplitude. Straight lines corre-
spond to an atom propagator while wiggly lines correspond to a molecule propagator. (a) The
diagram for the atom connected 4-point function (b) The self-energy correction to the molecule
propagator.

following relation between the time-ordered Green’s function and the retarded/advanced Green’s
functions:

DT(ω,k) = Θ(ω)DR(ω,k) + Θ(−ω)DA(ω,k), (3.21)

where we used the fact that inT = 0 equilibriumDK(ω,k) = sign(ω)[DR(ω,k)−DA(ω,k)].

Thus, we see that the scattering properties of two atoms are encoded in the retarded Green’s
function of the φ �eld. At the bare-level the �eld φ has no dynamics, and the frequency and
momentum dependence of the Green’s function is given by the self-energy shown in Fig. 3.1b

[DR
eq(ω,k)]−1 = −ν̃ − iη − ΣR

m,eq(ω,k). (3.22)

We note here that the diagram in Fig. 3.1b gives the exact self-energy in vacuum since the atom
propagator is not renormalized in vacuum. This is a consequence of the fact that there is no back-
ground particle density for the propagating atom to interact with. Mathematically, this physi-
cal observation is manifested by the fact that every diagram with closed momentum loop (i.e. a
closed loop when following the momentum arrows) is vanishing in vacuum. This results in a
massive simpli�cation as compared to the �nite density case, since it leads to a closed hierarchy of
equations where then-particle Green’s function depends only on the 1, .., n−1-particle Green’s
functions [14, 90].

Turning to the computation of the retarded self-energy, it is given by

ΣR
m,eq(K)/(4ig2) =

∫

P
GR(K/2− P )GK(K/2 + P ) (3.23)

=

∫

P

sign(ω + ω0/2)

(ω0
2 − ω −

(k/2−p)2

2m + iε)(ω0
2 + ω − (k/2+p)2

2m + iε)

= −i
∫

p

1

ω0 − k2

4m − p2 + 2iε
,

where we denoted K = (ω0,k), P = (ω,p). Performing the integral over momentum we
obtain

ΣR
m,eq(ω,k) =

g2m
3
2

π

√
k2

4m
− i2ε− ω −

∫

q

4g2m

q2
. (3.24)
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3.3 Background: Pairing phases of bosons close to a Feshbach resonance in equilibrium

We see that ΣR includes a UV diverging term (the second term in the RHS of Eq. (3.24)). In
order to deal with the UV divergence we �rst regularize it by introducing a �nite momentum UV
cuto� Λ, such that ΣR = IIR(ω,k) + IΛ with IΛ = 2g2m/π2Λ and IIR independent of
Λ. We then perform renormalization by representing the bare detuning ν̃ as a sum of a physical
coupling ν and a diverging counter-term ν̃ = ν + δν, where we choose δν = −IΛ. With this
choice of renormalization condition we obtain the renormalized Green’s function

[DR(ω,k)]−1 = −ν − g2m
3
2

π

√
k2

4m
− i2ε− ω. (3.25)

We now have to relate the parameter ν appearing in our theory to some physical observable. Us-
ing the connection betweenDR and the atom-atomT -matrix we can obtain the S-wave scattering
amplitude in terms of ν

f(k) = −mT (k)/(4π) = −mg2/πDR(k2/m, 0) = [πν/(mg2)− ik]−1. (3.26)

comparing to the expression for the S-wave scattering amplitude in Eq. (3.10) we see that ν is
related to the scattering length via

ν = −g
2m

πa
. (3.27)

In particular we see that ν = 0 corresponds to the resonance position where a→∞.
Looking at the Green’s function we see that for ν < 0 it has a pole at

ωR(k) =
k2

4m
− π2ν2

m3g4
− i2ε. (3.28)

This means that for negative ν the �eld φ indeed describes a molecule bound state, a fact which is
also seen from the T -matrix having a pole at the binding energy

Eb = − π
2ν2

m3g4
= − 1

ma2
. (3.29)

In addition to the molecule pole,DR also has a branch-cut forω(k) = k2/(4m)− i2ε, which is
related to the continuum of two-atom scattering states. Hence the �eld φ represents in general a
mixture of a molecule bound-state (giving rise to the pole) and two-atom pairs ψ̂(k)ψ̂(−k) (giv-
ing rise to the branch-cut). At ν ≥ 0 there is no longer a pole, which means that the molecule
bound-state does not exists. Furthermore one can see that the bound-state pole residue is contin-
uously decreasing as ν → 0−.

3.3 Background: Pairing phases of bosons close to a
Feshbach resonance in equilibrium

In this section we review previous theoretical works which examined condensate phases of attrac-
tively interacting bosons. The question of condensation in attractive Bose gases was considered
already in the 80s by Nozières and Saint-James [78], in the context of excitons in semiconductors.

35



3 Condensate phases of coherently driven bosons close to a scattering resonance

This problem has received revived interest when it was later considered in the context of a Fesh-
bach resonance in ultracold gases by Radzihovsky et al. [41] and Romans et al. [42]. The main
insight from these works is that in the presence of attractive interactions a new type of condensate
phase can occur where the bosonic atoms condense only as strongly bound molecules. Tuning
the interaction strength changes the bound-state energy, eventually making it more energetically
favorable for atoms to form a more standard atomic condensate composed of single particles.

Ref. [41] used a two-channel model which is often used as a theoretical starting point for the
description of a Feshbach resonance in ultracold atoms [92]. The model describes atomic and
molecular degrees of freedom which are coupled to each other via an inter-conversion mechanism,
where the imaginary time action is given by:

S =

∫ β

0
dτ

∫

r
[ψ∗ĥaψ +

ua
2
|ψ|4 + φ∗ĥmφ+

um

2
|φ|4 (3.30)

+ uam|ψ|2|φ|2 − g(ψ∗ψ∗φ+ c.c.)],

with the �eldψ (φ) originating from the annihilation operator of an atom (molecule), and ĥσ =
∂τ − ∇2/(2mσ) − µσ is the single-particle Hamiltonian. Here, µa = µ and the molecule
chemical potential is shifted by the detuning from resonance µm = 2µ− ν.

In a typical ultracold atom experiment the number of particles is �xed. The phase-diagram of
interest is in terms of the temperature T and the total particle density n. This can be done by
relating the density to the chemical potential in the dilute limit via the condition n = −∂F/∂µ
[41].

Let us denote φ0 = 〈φ̂〉, ψ0 = 〈ψ̂〉, and consider �rst the T = 0 case. When µa, µm < 0
it is energetically bene�cial for the system to be in the normal phase where φ0 = 0, ψ0 = 0.
When ν < 0 is large enough in magnitude, the molecule chemical potential can become positive
leading to a molecule condensate phase (MC). By decreasing µ the system can then be driven
through another phase transition where the atomic chemical potential becomes positive leading
to atomic condensation. The transition between the MC phase and the atom condensate (AC)
phase is accompanied by a breaking of aZ2 symmetry (ψ → −ψ), hence it is expected to be in the
Ising universality class. Due to the Yukawa coupling gψ2φ∗+c.c., atom condensation necessarily
implies molecule condensation. This is because the atomic condensate acts as an external �eld for
the molecule condensate.

In order to determine the temperature for the normal-MC and normal-AC transitions, one can
approximate the free-energy with the non-interacting one in the dilute limit:

f0 =
1

βV

∫

k

∑

σ=a,m

log(1− e−β[k2/(2mσ)−µσ ]), n = − ∂f0

∂µa
− 2

∂f0

∂µm
. (3.31)

Taking the derivatives of f0 and performing the momentum integration results in the following
relation for the total density:

n =
1

λdT

[
gd/2(eβµ) + 21+d/2gd/2(eβ(µ−ν))

]
(3.32)
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We study bosonic atoms near a Feshbach resonance, and predict that in addition to a standard
normal and atomic superfluid phases, this system generically exhibits a distinct phase of matter:
a molecular superfluid, where molecules are superfluid while atoms are not. We explore zero- and
finite-temperature properties of the molecular superfluid (a bosonic, strong-coupling analog of a BCS
superconductor), and study quantum and classical phase transitions between the normal, molecular
superfluid and atomic superfluid states.

Experimental realizations and coherent manipulation
of trapped degenerate gases [1, 2] is leading to excit-
ing possibilities for studies of quantum liquids in previ-
ously unexplored (e.g., extremely coherent and nonequi-
librium) regimes. Magnetic field-induced Feshbach reso-
nance (FBR) in ultracold atom collisions allows fine tun-
ing of interactions in these quantum fluids, and was re-
cently used to create a degenerate mixture of coherently-
coupled alkali atoms and their diatomic molecules [3].
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FIG. 1: Mean-field phase diagram for a bosonic atom-
molecule mixture, showing molecular (MSF) and atomic
(ASF) superfluid phases.

In this Letter we study phases and phase transitions
that take place in bosonic atom-molecule mixtures. Our
main contribution is the prediction of a thermodynami-
cally distinct “molecular superfluid” (MSF) phase, that,
as illustrated in Figs. 1, 2 ubiquitously intervenes be-
tween the “normal” (N) and “atomic superfluid” (ASF)
phases. Molecular superfluidity [and accompanying off-
diagonal long-range molecular order (ODLRO)] distin-
guishes MSF from the normal state, and the absence
of atomic superfluidity from the ASF, in which both
bosonic atoms and molecules display ODLRO. If atomic

and molecular components can be imaged independently
[4], in a harmonic trap MSF should be easily identifi-
able by a sharp Bose-Einstein condensation (BEC) peak
in the molecular density profile and a broad, seemingly
normal, thermal atomic cloud.

As a conventional superfluid, MSF is characterized by
a (molecular) acoustic second-sound mode. However,
MSF also exhibits a gapped, Bogoliubov-like mode, de-
rived from unpaired atom excitations. MSF ground state
(bosonic analog of the BCS state) exhibits strong (atom
and molecule) pairing correlations that in a trap should
be observable in the atomic density-density correlation
function. Experimentally, MSF should be accessible by
tuning temperature, atomic density (or number), and de-
tuning ν. The MSF-ASF transition is in the (d + 1)-
and d-dimensional Ising universality classes for T = 0
and finite T , respectively, and is reentrant as a func-
tion of detuning ν and density n. The tricritical point,
where N, MSF and ASF meet, exhibits nontrivial and,
to our knowledge, unexplored quantum critical behavior
for d < 4. We now sketch derivation of these results.

Near a FBR a bosonic atom-molecule system is char-
acterized by the grand-canonical Hamiltonian Ĥµ = Ĥ −
µN̂ [5]

Ĥµ =

∫
ddx

[
2∑

σ=1

(
ψ̂†

σĥσψ̂σ +
gσ

2
ψ̂†

σψ̂
†
σψ̂σψ̂σ

)

+ g12ψ̂
†
1ψ̂

†
2ψ̂2ψ̂1 − α

(
ψ̂†

1ψ̂
†
1ψ̂2 + h.c.

)]
(1)

where ψ̂†
σ(x), ψ̂σ(x) are bosonic field operators for atoms

(σ = 1) and molecules (σ = 2), ĥσ = −(!2/2mσ)∇2 −µσ

are the corresponding single particle Hamiltonians (fo-
cusing for concreteness on the case of a homogeneous
trap) with effective chemical potentials µ1 = µ and
µ2 = 2µ − ν. Chemical potential µ tunes the aver-
age total number of atoms (whether free or bound into
molecules) to N , and detuning ν is related to the en-
ergy of a molecule at rest, that can be experimentally
controlled with a magnetic field. In the dilute gas limit

2

g1, g2, g12 are proportional to the 2-body s-wave atom-
atom, atom-molecule and molecule-molecule scattering
lengths, respectively, and α characterizes coherent atom-
molecule interconversion rate, encoding that molecules
are composed of two atoms[5].

The mean-field phase diagram as a function of
µ1,2 and β = 1/kBT can be worked out by min-
imizing the imaginary-time (τ) coherent-state action

S =
∫ β!
0

dτ
∫

ddx
∑2

σ=1 [ψ∗
σ!∂τψσ + Hµ(ψ∗

σ,ψσ)]. Sim-
ple analysis leads to three thermodynamically distinct
phases (Fig. 1): (i) “normal” (N): Ψ10 ≡ ⟨ψ̂1⟩ = 0,

Ψ20 ≡ ⟨ψ̂2⟩ = 0, (ii) “molecular superfluid” (MSF):
Ψ10 = 0, Ψ20 ≠ 0, (iii) “atomic superfluid” (ASF):
Ψ10 ≠ 0, Ψ20 ≠ 0. Condensed atoms cause α to act as an
effective field on the molecular order parameter Ψ20, so
an equilibrium phase in which atoms are condensed, but
molecules are not, is forbidden [6].

We now examine in more detail these phases and cor-
responding phase transitions. Phase N is stable for
µ1,2 < 0, with µ determined by the total atom constraint
n = n1 + 2n2, which in the non-interacting limit, ap-
propriate to a dilute weakly interacting gas, is given by:

n =
1

Λd
T

[
fd/2

(
eβµ
)

+ 2(d+2)/2fd/2

(
eβ(2µ−ν)

)]
, (2)

where ΛT = h/
√

2πm1kBT is the thermal de Broglie
wavelength and fα(z) =

∑∞
n=1 zn/nα (|z| < 1) is the

extended zeta-function.
The N-ASF transition line Tc1(n, ν) occurs at µ = 0 for

ν > 0, while the N-MSF line Tc2(n, ν) occurs at µ−2ν = 0
for ν < 0 (see Fig. 2). Using the appropriate asymptotics
of fα(z), one obtains from (2):

Tcσ(n, ν) =

⎧
⎨
⎩

Tc0

[
1 + aσ

(
|ν|

kBTc0

) d−2
2

]
, |ν| ≪ kBTc0

T ∞
cσ = bσc2/dTc0, |ν| ≫ kBTc0,

(3)
with c = 1 + 2(d+2)/2, a1 = 2(d+4)/2|Γ

(
2−d
2

)
|/dcζ(d/2),

a2 = 2−da1, b1 = 1, b2 = 2−(d+2)/d and Tc0 =
(h2/2πm1kB)[n/cζ(d/2)]2/d the transition temperature
at the tricritical point ν = 0.

In the neighborhood of Tc1 the “massive” molecular
field ψ̂2 decouples at low energies (can be safely inte-
grated out of the partition function, leading to an effec-
tive quartic coupling g1 → ḡ1 ≡ g1 − 2α2/|µ2|), and
the N-ASF transition is identical to that of a single-
component system, continuous so long as ḡ1 > 0. At
T = 0, the N-ASF transition takes place at vanish-
ing atom density (the N phase is simply a vacuum of
atoms), and although nontrivial, is exactly soluble [9],
corresponding to a build-up of atomic superfluid (with
condensate density n10 = |Ψ10|2 ∼ |µ|2β , with mean-field
result β = 1/2 for d > 2, and β = d/4 for d < 2) as the
trap is loaded. At T ≠ 0 the N-ASF transition lies in the
usual d-dimensional XY-universality class [7].

Similarly, in the neighborhood of Tc2, ψ̂1 decouples and
the resulting N-MSF transitions are in the same univer-
sality classes discussed above. The full phase boundary is
illustrated in Fig.2. In 3d it exhibits a square-root singu-
larity at the tricritical point and for |ν| → ∞ asymptotes
to the single-component BEC temperatures T ∞

cσ .

ASF

T

ν (n,0)c

ν (n,T)c

Normal

MSF

Tc0
Tc1Tc2

ν

FIG. 2: Phase diagram for a bosonic atom-molecule mixture
in d = 3, expressed in terms of detuning ν and temperature
T . It illustrates a finite-T tricritical point at Tc0 and a quan-
tum critical point at νc(n, 0). In the weakly-interacting limit

appropriate to experiments the ratio T ∞
c1 /T ∞

c2 = 25/3.

To study the MSF phase, we separate ψ̂σ = Ψσ0 +
φ̂σ into classical condensate fields Ψσ0 (with Ψ10 = 0
inside MSF) and fluctuations about it. Within MSF it
is sufficient to expand Ĥµ to second order in fluctuations

φ̂σ, which leads to Ĥµ = E(0)(Ψ20) + Ĥ(2) with:

E(0) =

∫
ddx

(
Ψ∗

20ĥ2Ψ20 +
g2

2
|Ψ20|4

)
(4)

Ĥ(2) =

∫
ddx

[
2∑

σ=1

φ̂†
σh̃σφ̂σ +

1

2

(
λσφ̂

†
σφ̂

†
σ + h.c

)]
,

in which h̃σ = ĥσ + rσ, r1 = g12|Ψ20|2, r2 = 2g2|Ψ20|2,
λ1 = −2αΨ20, and λ2 = g2Ψ

2
20. The linear term in

φ̂2, φ̂
†
2 vanishes automatically by the self-consistent choice

of Ψ20 as the true minimum of the free energy. To lowest
order this gives

n20 ≡ |Ψ20|2 = (2µ − ν)/g2, (5)

which coincides with the minimum of E(0) and allows us
to eliminate µ in favor of ν and n20.

For a homogeneous system, Ĥ(2) may be diagonal-
ized by Fourier transformation φ̂σ = V −1/2

∑
k eik·xâσk,

followed by independent Bogoliubov transformations on
atoms and molecules to new boson operators γσ,k, γ†

σ,k:

γ̂σ,k = uσ,kâσ,k + vσ,kâ†
σ,−k

|uσ,k|2 = 1 + |vσ,k|2 =
1

2

(
ε̃σ,k

Eσ,k
+ 1

)

Ĥ(2) =
∑

σ,k

Eσ,k

(
γ̂†

σ,kγ̂σ,k − |vσ,k|2
)

, (6)
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Figure 3.2: Phase diagrams obtained from analysis of an atom-molecule model (Eq. (3.30) ) describing a
Bose-gas in the vicinity of a Feshbach resonance, as obtained by Radzihovski et al. [41]. (a) Zero
temperature phase diagram obtained in the grand-canonical ensemble, where µa = µ, µm =
2µ− ν. (b) Phase diagram at �xed density. (Figures adapted from [41]).

with gα =
∑∞

n=1 z
n/nα and λT =

√
2πβm the thermal de-Broglie wave-length. Solving

this equation for the case µa = 0 (µm = 0) allows �nding the critical temperature for atom
(molecule) condensation. For positive detuning, ν > 0, atoms are energetically less expensive and
will condense �rst, where the transition temperature βc,a is determined by plugging-in µ = 0 in
Eq. (3.32). On the other hand, for negative detuning the molecules are energetically favorable and
will hence condense �rst, where βc,m is determined by plugging-in µ = ν/2 < 0 in Eq. (3.32).

The simplest method to �nd the AC-MC phase transition line is to perform a stability analysis
of the atomic �uctuations in the MC phase [41]. To perform the analysis the action is expanded
in �uctuations around the condensate values ψ = ψ0 + δψ, φ = φ0 + δφ, keeping terms only
up to quadratic order in δψ, δφ. This leads to the following action for the atom �uctuations in
momentum space

S2,a =

∫

ω,k

1

2
δΨ†(−iω,k)G−1

a (−iω,k)δΨ(−iω,k), (3.33)

where we de�ned the Nambu-spinor δΨT = (δψ(−iω,k), δψ∗(iω,−k)). The inverse Mat-
subara Green’s function is given by

G−1
M (−iω,k) =

(
−iω − εa,k gφ0

gφ0 iω − εa,−k

)
, (3.34)

with εa,k ≡ k2/2m−µ+uam|φ0|2. We can �nd the atom �uctuation dispersion by solving for
detG−1

M (−iω,k) = 0, which leads to the poles at

ω∗a,±(k) = ±i
√(

k2

2m
− µ+ uam|φ0|2

)2

− 4g2φ2
0 (3.35)
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3 Condensate phases of coherently driven bosons close to a scattering resonance

The MC phase becomes unstable when the atomic gap closes ω∗a,+(0) = 0. At T = 0 we
can use that |φ0|2 = µm/um in the MC phase, in order to eliminate µ from Eq. (3.35). We thus
obtain the following expression for the atomic gap in the MC phase

Egap,a =

√
[−ν/2− (um/2− uam)ρm]2 − 4g2ρm (3.36)

From Eq. (3.36) we see that for negative detuning, decreasing |ν| leads to a decrease in the atom
excitation gap which at a critical value of ν will lead to a condensation instability. To �nd the
critical value for the detuning leading to a quantum phase transition between the MC and AC
phase, we can use the fact that at T = 0 in the MC phase the density is given by n = 2ρm. This
leads to

νc(n, T = 0) = −(um/2− uam)n− 2g
√

2n. (3.37)

To compute the critical temperature for an MC-AC phase transition, Radzihovski et al. [41] ob-
tain an expression for the molecule condensate density at �nite T by taking into account the con-
tribution of quadratic �uctuations to the free-energy. This results in the phase-diagram shown in
Fig. 3.2b.

The analysis of Ref. [41] neglected the e�ect of dressing of the molecule action due to the cou-
pling with the atoms (arising from a self-energy correction as in Sec. 3.2.2). Neglecting these e�ects
is appropriate when the system is not too close to the Feshbach resonance, but they are important
in the vicinity of the reosnance. In [42] these dressing e�ects where taken into account. The
self-energy corrections lead to the modi�cation of the molecule chemical potential as

µm = 2µ− εm, εm = −ν − g4m3

2π2
(
√

1− 4π2ν/(m3g4)− 1) (3.38)

Note that close to the resonance , when π2|ν|/(m3g4) � 1, we have εm ≈ Eb with Eb the
binding energy computed in Eq. (3.29). In addition one has to work with renormalized molecule
�elds φ̃ = Z−1/2φ, with Z−1 = 1 + g2m3/2/(2π

√
|εm|). The expression for the atomic gap

in the MC phase (Eq. (3.36)) is now

Egap,a =

√
[−εm/2− (Z2um/2− Zuam)ρm]2 − 4g2Zρm (3.39)

This will lead to a shift in the critical detuning value νc(n, 0) for the MC-AC quantum phase-
transition.

Finally, let us note that in Refs. [78,79] the MC-AC transition was analyzed in a model contain-
ing only attractively interacting atoms. This is relevant to the case of a broad Feshbach resonance,
which is equivalent to the model we introduced in Sec. 3.2.2 at �nite density. There it was shown
explicitly that the T = 0 MC-AC transition occurs when the extent of the molecule bound-state
(which scales as∼ a) is of the order of the mean interparticle distance n1/3.
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3.4 Background: Rydberg-polaritons
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Figure 3.3: Level scheme of the atomic medium in the Rydberg-polariton system. |g〉 is the atomic ground
state, |s〉 is a long-lived excited Rydberg state, and |e〉 is an intermediate excited state with decay
rate γ.

3.4 Background: Rydberg-polaritons

In this section we will discuss the experimental platform of Rydberg-polaritons, which might serve
as a platform for realizing a driven-dissipative version of the physics discussed in the previous sec-
tion. Rydberg-polaritons are light-matter quasi-particles originating from the hybridization of
photons in an electromagnetically induced transparency (EIT) [93] con�guration and Rydberg
excitations. The distinctive features of Rydberg-polaritons are long lifetime, and a strong inter-
particle interaction, inherited from the Rydberg excitations [94–97]. While Rydberg-polaritons
have been realized in di�erent setups [38, 98–102], in the following we will focus on the con�gu-
ration of Ref. [38, 98, 99].

We consider a beam of photons propagating along the ẑ-axis and impinging on a cloud of
atoms. For each atom only the optically active levels are considered, and consequently it can be
modelled as a three-level system, with a ground state |g〉, a long-lived excited Rydberg state |s〉 and
an intermediate excited state |e〉with a �nite lifetime γ−1 (see Fig. 3.3). The states |s〉 and |e〉 are
coupled via an external control �eld with Rabi frequency Ω and detuning ∆ = ωs − ωe − ωc,
with ωs, ωe the level frequencies and ωc the control �eld frequency.

Now, consider photons with frequency ω̃ propagating inside the medium. When ω̃ is approx-
imately satisfying the EIT condition ω̃ ≈ ωp − ωg + ∆, the photons can hybridize with the
Rydberg state |s〉 via a two-photon process, and propagate in the Rydberg medium in the form
of a dark-state polariton [103] which is a superposition of a photon and an atomic Rydberg exci-
tation |s〉. The dark polariton wave function does not have an overlap with the intermediate lossy
state |e〉 and hence it experiences only small losses when propagating through the medium.

Importantly, the dark Rydberg-polaritons inherit a strong interparticle interaction from their
Rydberg component [94–97], as two Rydberg atoms at distance r experience a strong van der
Waals interaction V (r) = C6/r

6.
In addition to the dark-polariton, the system has two other quasi-particle branches, namely

the bright polaritons, which experience large losses as these states contain contributions from the
intermediate state |e〉. The polariton basis, which includes the dark polariton and the two bright
polariton states diagonalizes the non-interacting part of the photon-atom Hamiltonian. However
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3 Condensate phases of coherently driven bosons close to a scattering resonance

the Rydberg-Rydberg interaction is diagonal in terms of the atomic states and therefore has o�-
diagonal elements in the polariton basis.

A simple, e�ective description of the dark-polaritons can however be obtained by integrating
out the bright-polariton modes [39, 40]. The presence of bright polaritons renormalizes the scat-
tering properties of the dark polaritons, leading to an e�ective interaction potential between the
dark polaritons U(r), which can be tuned via experimentally controllable parameters. Impor-
tantly the potentialU(r) can be tuned to be either repulsive or attractive.

At low energies the scattering properties can be encoded in the S-wave scattering length a, as
we have explained in Sec. 3.2.1 . The full potential U(r) can then be replaced with a contact
interaction (4π~2a/m)δ(r) which reproduces correctly the low energy scattering properties of
U(r) [1].

WhenU(r) is attractive and strong enough, it can support two-body bound states of Rydberg-
polaritons, as was previously experimentally observed [38, 99]. Remarkably, theoretical predic-
tions show that the value of the potential U(r) can be tuned through a scattering resonance,
where a diverges and changes sign, allowing one to explore both the regime of e�ective repulsive
contact interactions and attractive contact interactions between dark Rydberg polaritons [39,40].

By taking into account the approximation ofU(r) as a contact potential, the e�ective Hamil-
tonian of the dark Rydberg-polaritons in three-dimensions is given by [40]

HRP =

∫

r

[
ψ̂†(r)(−ivg∂z −

∂2
z

2mz
− ∂2

⊥
2m⊥

)ψ̂(r) (3.40)

+ uaψ̂
†(r)2ψ̂(r)2 + u3ψ̂

†(r)3ψ̂(r)3

]
,

where here ψ̂†(r) is the creation operator of a Rydberg-polariton at position r and ⊥ denotes
the directions transverse to the propagation direction ẑ. The existence of a drift term vg∂z is
related to the experimental setup, where the incoming photon beam is propagating along the ẑ
direction. The drift term can be eliminated by working in a co-moving frame, and we will assume
this from now on. The transformation to a co-moving frame is done by a Galilean transformation
of momentum and frequency kz → kz − k0, ω → ω − k2

0/(2mz) with k0 ≡ mzvg . The
longitudinal and transverse massesmz,m⊥ are functions of the experimental control parameters
and in general have di�erent values, although it is possible to choose experimental values where
they are equal [40].

In additionHRP includes a repulsive three-body interaction u3. Although it is usually less rele-
vant than the quartic interactionua, the inclusion of this term becomes necessary when attractive
two-particle interactions are considered at �nite density, in order to avoid the collapse of the Bose
gas [84,104]. In Rydberg-polariton systems this three-body interaction emerges as a consequence
of the Rydberg blockade [105]. It was shown that when two Rydberg-polaritons are in the vicin-
ity of a third Rydberg-polariton, the two polaritons are non interacting among themselves due
to the strong shift of the Rydberg levels. This means that a three-body interaction with the same
magnitude and opposite sign to the 2-body interaction exists. A more detailed calculation done
by integrating out e�ects of high-momentum modes showed that the three-body interactions can
also be tuned using the experimentally controllable parameters [105].
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Figure 3.4: Schematic plot of the considered scheme and relevant parameters. The �gure shows the possible
two-particle states in vacuum, with energies E, as a function of detuning ν from the scatter-
ing resonance (starred point), which is connected to the scattering length as ν ∝ −a−1. For
ν < 0 there exist a two-particle molecule bound state (bright-blue line) in addition to the un-
bound two-particle state (dark-blue line). Since particles experience losses the system needs to
be pumped. Finite density is introduced using a two-particle pump with strength λ and fre-
quency 2ωp. In this paper we are interested in mapping the phase diagram as a function of ν
andωp. We concentrate on the parameter regime shown in the shaded region, where the atoms
pump is red-detuned (to avoid atom condensation instabilities at �nite momenta) and not too
close to the resonance point (where the theory becomes strongly coupled and challenging to
deal with).

3.5 Model

We consider a microscopic model of polaritons with attractive interactions, and single- and two-
particle losses, described in Sec. 3.4. In this chapter we consider the case of a three-dimensional
system. As we are interested in exploring condensate phases of this system, we have to introduce
a pumping mechanism to compensate for particle losses. Here we choose to work with a two-
particle coherent pump of the form∼ λei2ωptψ̂2+λ∗e−i2ωpt(ψ̂†)2. The state of the many-body
system subject to these processes is given by the following quantum master equation

∂tρ = −i[H, ρ] + 2γaDψ̂[ρ] + 2ΓaDψ̂ψ̂[ρ], (3.41)

The second and third terms in Eq. (3.41) describe the single- and two-particle losses, with strength
γa and Γa respectively, with the dissipatorDÔ given by

DÔ[ρ] ≡
∫

r

[
Ô(r)ρÔ(r)† − 1

2
{Ô(r)†Ô(r), ρ}

]
. (3.42)

The HamiltonianH in Eq. (3.41) contains the e�ects described in Sec. 3.4 together with the two-
particle coherent pump. In the rotating-frame (rotating with the frequency ωp),H is given by:

H =

∫

r

[
ψ̂†
(
−∇

2

2m
+ δa

)
ψ̂ +

λ

2

(
ψ̂2 + ψ̂†2

)
+ uaψ̂

†2ψ̂2 + u3ψ̂
†3ψ̂3

]
, (3.43)
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3 Condensate phases of coherently driven bosons close to a scattering resonance

with δa = ωa − ωp the detuning between the atoms’ natural frequency ωa and half of the drive
frequency ωp, λ the drive strength, and ua and u3 the strength of the two- and three-particle
interactions.

In the following we will focus only on the regime where δa > 0, so that �nite-momentum
instabilities do not occur in the non-interacting problem. Whileλ is in general a complex number,
one can rede�ne the �elds so that only |λ| enters the Hamiltonian, as ψ̂ → ψ̂e−i arg λ/2, ψ̂† →
ψ̂†ei arg λ/2, with arg λ the angle of λ in the complex plane. For this reason, in the following we
will assume λ > 0 without loss of generality.

To explore the steady-states of the QME Eq. (3.41) we will use a Keldysh description, where
the system is described by the action S = Sa + Sint. The free part Sa is given by:

Sa =

∫

t,r

[
ψ∗q

(
i∂t +

∇2

2m
− δa + iγa

)
ψc + c.c.

+ 2iγaψ
∗
qψq − λ

(
ψ∗qψ

∗
c + ψcψq

)]
. (3.44)

As we discussed in Sec. 3.2.2, when describing the scattering problem it is advantageous to de-
couple the interaction terms with an Hubbard-Stratonovich transformation. Performing the HS
transformation here we obtain Sint → Sm + Sam with:

Sm =

∫

t,r

[
φ∗q(−ν̃ + iη)φc + c.c.+ 2iηφ∗qφq

]
, (3.45a)

Sam =

∫

t,r

{
g
[
2φ∗cψcψq + φ∗q

(
ψ2
c + ψ2

q

)
+ c.c.

]
(3.45b)

− uam
[
φ∗qφc

(
|ψc|2 + |ψq|2

)
+ψ∗qψc

(
|φc|2 + |φq|2

)
+ c.c.

]}
. (3.45c)

Note that in the presence of the 3-body interactionu3|ψ|6 the equivalence betweenSint andSm+
Sam is only approximate [89]. Other than the uam term, the action in Eq. (3.45) is similar to the
one we obtained in the equilibrium case, Eq. (3.19). However, here η is no longer an in�nitesimal
regularization but rather related to the two-body loss rate Γa. The parameters ν̃, η and g are
related to the bare polariton interaction ua and two-particle loss Γa via

ua = − 2g2ν̃

η2 + ν̃2
, Γa =

2g2η

η2 + ν̃2
. (3.46)

From Eq. (3.46) we see that the complex detuning parameter −ν̃ + iη controls the distance
of the system from the scattering resonance, as the coherent two-body interaction and two-body
loss are diverging when both ν̃ and η are vanishing. Comparing to the case with only coherent
interaction we see the that presence of �nite two-body losses η > 0 leads to a broadening of the
scattering-resonance and a �nite value ofua at ν̃ = 0. We also note the similarity of theη > 0 case
to the setup of an optical Feshbach resonance [52], where an e�ective two-atom loss is generated
due to the coupling of atoms to an excited bound-state that has a �nite life-time.
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3.6 Expected phases from symmetries

To see how the uam term gives rise to the 3-body interaction term u3|ψ|6 and for some further
details on the introduction of the auxilary �eld φ in the presence of 3-body interactions, refer to
App. 3.A.

3.6 Expected phases from symmetries

Before delving into a more detailed analysis of the atom-molecule model let us consider possible
phases from the perspective of symmetry. First we note that the two-particle pump λ breaks the
U(1) symmetry of the action, given by ψα → eiθψα, φα → ei2θφα. Hence we expect that the
system is always in a condensed phase. However, there still exists a residual Z2 symmetry given by
ψ → −ψ . Hence we expect two possible phases:(i) Z2 symmetric phase. In this phase particles
condense only as molecules ( 〈φc〉 6= 0) but not as atoms (〈ψc〉 = 0). We will denote this phase
as molecule condensate (MC). (ii) Z2 broken phase. Particles condense both as molecules and
atoms (〈φc〉 6= 0, 〈ψc〉 6= 0). We will denote this phase as atom-molecule condensate (AC).

Considering the MC phase itself, we will see that a bi-stability can occur where the system
admits di�erent solutions not related by U(1) rotation (i.e. solutions with di�erent values of
|〈φc〉|2). This situation occurs often in the presence of a symmetry breaking coherent pump, and
is related to the phenomenon known as optical bistability [106,107] . For an intuitive explanation,
consider �rst the simpler situation where an external magnetic �eld breaks a discrete symmetry in
an Ising model. This leads to two distinct solutions in the ferromagnetic phase. In equilibrium it
is assumed that the system is in the solution which is the global minimum of the free-energy, but
out of equilibrium there is no such construction in general and the system is bi-stable. Coming
back to theU(1) case consider the equilibrium case where the free-energy density for an homoge-
neous condensate solution is given by f(φ) = µ|φ|2 + u|φ|4 + λReφ. Using the density-phase
representation φ ≡ √ρeiθ we �nd that the minimum of f is always at θ = π (assuming λ > 0).
The free-energy density is thus given by f(ρ) = µρ+uρ2−λ√ρ, which is equivalent to the case
of the Ising model with an external magnetic �eld. This explains intuitively why we can expect a
bi-stability in the non-equilibrium case, we will show that this happens explicitly in Sec. 3.9.1.

We expect the two-particle pump frequencyωp, or equivalently the atom detuning δa, and the
molecule bound state energy Eb to play a central role in driving transitions between the phases
described above. The phase diagram is expected to display di�erent features depending on δa
being δa ' 0 (pump resonant with atomic lowest energy mode, i.e. its ground state energy in
vacuum) or δa ' Eb/2 (pump resonant with molecule lowest energy mode, i.e. the molecule
binding energy in vacuum with respect to the atom ground state energy).

3.7 Non-interacting case

Before going further with the investigation of the atom-molecule model let us consider the sim-
pler case of non-interacting atoms subjected to a two-particle pump. That is, in this section we
consider a model whereS = Sa. This simpler case will help us build understanding and intuition
of the e�ect of the two-particle pump term λ, and we will see how it can lead to condensation of
the atoms.
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3 Condensate phases of coherently driven bosons close to a scattering resonance

MC molecule condensate (〈φc〉 6= 0, 〈ψc〉 = 0)
AC molecule and atom condensate (〈φc〉, 〈ψc〉 6= 0)

MC2 bi-stabality: two MC solutions, “high-density”
and “low-density” with |〈φc〉high| > |〈φc〉low|.

AC2 bi-stability: two AC solutions with
di�erent values of condensate density.

AC/MC bi-stablity: one “low-density” MC solution,
and one AC solution (with higher molecule
condensate density).

Table 3.1: A summary of the di�erent phases found in our analysis and their notation.

Since the pump term λ in Eq. (3.43) induces anomalous correlations between the atoms, it is
useful to collect the �elds in a Nambu basis as

ΨT ≡
(
ψc(ω,k) ψ∗c (−ω,−k) ψq(ω,k) ψ∗q (−ω,k)

)
. (3.47)

The quadratic part of the action can be rewritten in terms of Ψ as

Sa =
1

2

∫

ω,k
ΨT (ω,k)G−1(ω,k)Ψ(ω,k). (3.48)

The 4× 4 matrixG−1(ω,k) reads

G−1(ω,k) =

(
0 PA(ω,k)

PR(ω,k) PK(ω,k)

)
, (3.49)

where PR(ω,k) = (PA)†(ω,k) and

PR(ω,k) =

(
ω + iγ − εk λ

λ −ω − iγ − εk

)
, PK(ω,k) = 2iγa1. (3.50)

Here εk = k2/(2m) + δa. The 2× 2 structure of the Green’s functions re�ects the presence of
anomalous correlations between the bosonic �elds.

The Hamiltonian (3.43) couples creation and annihilation operators (similarly to a Bogoliubov
Hamiltonian for interacting Bose gases [108]). One typically resorts to a Bogoliubov transforma-
tion in order to diagonalize it and unveil the quasiparticles. Here we derive the spectrum of exci-
tations by looking at the poles ofGR, i.e, by solving detPR(ω,k) = 0 for ω [17]. This yields:

ωa(k) = −iγa ±
√
ε2k − λ2. (3.51)

As in an equilibrium condensate, there exist positive and negative excitation branches, arising
from the mixing between particle and hole-like excitations. The spectrum presents two di�erent
regimes, which are shown in Fig. 3.5: (i) for λ ≤ δa, the damping rates (imaginary part) of the
two branches are independent of k and given by γa, while the dispersion (real part) presents a
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Figure 3.5: Excitation spectrum of the non-interacting polaritons with two-particle pump, given by
Eq. (3.51), shown for (top) λ < δa (middle) λ =

√
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a (bottom) λ >
√
δ2
a + γ2

a . Solid
lines correspond to the positive excitation branch and dashed lines correspond to the negative
branch.

gap given by 2
√
δ2
a − λ2, which closes at λ = δ2

a, leading to a linear dispersion at low momenta.
(ii) For λ > δa, the damping rates acquire a k dependence, while the dispersion vanishes for
momenta below k∗ =

√
2m(λ− δa). Eventually, when the condition

λ2 = δ2
a + γ2

a, (3.52)

is satis�ed, the damping rate of one branch vanishes for small momenta as ∼ k2, signalling the
emergence of a long-lived mode and, ultimately, of a condensation instability, which we discuss
below in Sec. 3.9.1.

Further insight can be obtained from the momentum distribution, which can be evaluated
from the diagonal part ofGK by using Eq. (2.42) and reads:

na(k) =
λ2

(
k2

2m + δa

)2
+ γ2

a − λ2

. (3.53)

As expected the momentum distribution develops a singularity atk = 0 when the condition (3.52)
is satis�ed, signalling the onset of condensation at k = 0. Integrating over momentum we obtain
the total atom density, in the case where λ > γa:

na =
1√
2π

m3/2λ2

√
δa +

√
λ2 − γ2

a +
√
δa −

√
λ2 − γ2

a

. (3.54)
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Figure 3.6: Photoluminescence spectrum for the non-interacting case (Eq. (3.58)). Parameters λ =
0.5δa, γ = 0.1δa, δa = 1.

We see that for large detuning na is small and behaves as∼ λ2/
√
δa. For the case where γa � λ

we get na ∼ λ2/
√
γa.

From the o�-diagonal element of the Keldysh Green’s function GK12 we obtain the atom pair
correlations

〈ψ̂(k)ψ̂(−k)〉 =
λ
(
k2

2m + δa + iγa

)

( k
2

2m + δa)2 + γ2
a − λ2

. (3.55)

We see that a �nite λ leads to non-vanishing atom pairing correlations in a similar manner to the
role of the condensate in a BEC. For low momentum and large detuning the pair correlation scales
as 〈ψ̂(k)ψ̂(−k)〉 ∼ λ/δa.

Unlike the case of na(k), the integral over pairing correlations diverges
∫
k〈ψ̂(k)ψ̂(−k)〉 ∼

Λpump, with Λpump some UV momentum cuto� above which our theory, which ignores a variety
of short range e�ects, is no longer valid. This is a result of the fact that the two-particle pump
term we introduced acts at all momentum scales and the single-particle loss is independent of
momentum. In a physical situation there will exist a momentum cuto� at which the two-particle
pump is no longer e�cient. We will discuss how to deal with this divergence in Sec. 3.8.4.

Another observable we can consider is the photoluminescence which is de�ned by

Satom(ω,k) =

∫

τ
eiωτ 〈ψ̂†k(τ)ψ̂k(0)〉. (3.56)

Satom(ω,k) can be observed experimentally in the correlations of photons exiting the system. The
photoluminescence can be computed in the Keldysh formalism using the relation

Satom(ω,k) =
i

2
[GK(ω,k) +GA(ω,k)−GR(ω,k)]. (3.57)
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3.8 E�ective action description for the atom-molecule model

We compute the photoluminescence in the non-interacting case using Eq. (3.57), this results
in the following analytic formula:

Satom(ω,k) =
2γλ2

[(ω + iγ)2 − E2
k][(ω − iγ)2 − E2

k]
, (3.58)

withE2
k =

(
k2/(2m) + δa

)2 − λ2. We plot Satom(ω,k) for some examplary set of parameters
in Fig. 3.6. We see that Satom(ω,k) provides information about both disperssion branches with
positive and negative energies where the signal is peaked. This implies that excitations at negative
frequencies are also occupied, unlike the typical scenario in equilibrium. Since the system is non-
interacting, the slight broadening of the signal is only due to the external single-particle loss γa
(which is taken to be rather small in Fig. 3.6).

3.8 Effective action description for the atom-molecule
model

Having understood the e�ects of the two-particle pump in the non-interacting case, we are ready
to take a step forward towards understanding of the implications in the interacting case. Our
starting point is the bare atom-molecule action S = Sa + Sm + Sam described by Eqs. (3.44)
and (3.45). We will make use of the e�ective-action formalism in the 1-loop approximation which
is suitable for determining the di�erent condensate phases of the model. Recall that the e�ective
action Γ is a function of the �eld expectation values φ̄α = 〈φα〉, ψ̄α = 〈ψα〉, and in the 1-loop
approximation it is given by

Γ[ψ̄, φ̄] = S[ψ̄, φ̄] + itr logS(2)[ψ̄, φ̄]

= S[ψ̄, φ̄]− i
∞∑

n=1

(−1)n

n
tr[(G0V [φ̄, ψ̄])n] + itr log G−1

0 . (3.59)

HereG0 denotes the bare Green’s function in the absence of condensates. The term∼ tr[(G0V )n]
can be represented by all 1-loop Feynman diagrams with n interaction vertices insertions, where a
diagram withm external molecule legs (denoted as wiggly lines) andk external atom legs (denoted
as straight lines) contributes to the 1PI vertex∼ φ̄mψ̄k.

Our main goal is to obtain the condensate densities and determine the di�erent steady-state
phases characterized by atom and molecule condensation, similar to previous works done in the
equilibrium settings [41,42], which we reviewed in Sec. 3.3. Given the e�ective action, the steady-
state values of the �elds are determined from the stationarity conditions δφ̄Γ, δψ̄Γ = 0. The �eld
equations can be obtained directly by taking a derivative of the RHS in the �rst line of Eq. (3.59).
In Sec. 3.8.1 we derive the �eld equations and solve them in order to get a �rst glimpse into the
phase diagram of the model.

However in the dynamical setting it is also crucial to consider the stability properties of the solu-
tions φ̄, ψ̄ against �uctuations, by examining the imaginary part of the Green’s functions obtained
by the second derivative of Γ. For the purpose of stability analysis we need to derive an approx-

47



3 Condensate phases of coherently driven bosons close to a scattering resonance

imate dynamical action for the molecule, including quartic molecule-molecule interactions, and
we need to resort to a truncation of the in�nite series in Eq. (3.59).

Our strategy, and the plan for the rest of this section is as follows:

1. Working in vacuum, λ = 0, we derive the dynamical part of the molecule action arising
from the term tr(G0V )2 (Sec. 3.8.2).

2. Still in vacuum, we derive the quartic molecule-molecule interaction term |φ̄|4 which is
necessary for the stability analysis of a molecule condensate solution. This is done by com-
puting contributions from the tr(G0V )3, tr(G0V )4 terms. (Sec. 3.8.3)

3. We include the leading contribution of the pumpλwhich is an e�ective molecule coherent
pump, resulting from the term tr(G0V ). (Sec. 3.8.4)

4. In Sec. 3.8.2 we also examine numerically the e�ect of �nite pump λ 6= 0 on the molecule
dispersion.

3.8.1 Mean-field phase diagram

In this section we use the one-loop approximation of the e�ective-action to derive the �eld-equations
for the condensate values, allowing us to obtain a phase diagram of the atom-molecule system.
Here we work in the simplest case where uam = 0. Taking the derivative of Eq. (3.59) with
respect to the quantum-�elds

δΓ

δφ̄∗q
= 0,

δΓ

δφ̄∗q
= 0,

we obtain the set of equations (see App. 3.B for details):

(−δa + iγa − ua|ψ0|2)ψ0 + (λ+ 2gφ0)ψ∗0 = 0, (3.60a)

(−ν + iη)φ0 + 2gψ2
0 + i2g

∫

ω,k
GK12(ω,k;φ0, ψ0) = 0, (3.60b)

withψ0 = ψ̄c, φ0 = φ̄c the atomic and molecular condensate, respectively. HereGK12[ψ0, φ0] =
δ(2)S/δψ∗qδψ

∗
c , and note that

∫
ω,kG

K
12(ω,k;φc, ψc) = 〈ψ2

c (t, x)〉 ∝ λ. Hence, we can under-
stand the appearance of the last term in Eq. (3.60b) as follows: the presence of a �nite two-particle
atom pumpλ 6= 0 generates a �nite density of atom pairs. The atom pairs in turn act as a coherent
pump term which can generate molecules via the conversion term gφ∗ψ2.

In order to simplify the solution of the �eld equations we performed an approximation in their
derivation, where we neglected the hybridization of atoms and molecules, assuming all atom-
molecule Green’s functions are vanishing 〈φ∗αψβ〉 = 0. Those correlation functions are non-
vanishing only in the AC phase, due to the fact that the term leading to hybridization of atomic
and molecular excitations is of the form g〈ψc〉φ∗cψq + c.c.. This approximation could justi�ed
in the regime of small atom condensate density |ψ0| � 1.

In Sec. 3.7 we have seen that in the non-interacting case an atom condensation instability arises
when λ is larger than some critical threshold value. This kind of instability could be cured by a �-
nite atom condensateψ0 6= 0, only in the presence of quartic atom-atom interactions∼ ua|ψ|4.
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Figure 3.7: Phase diagram obtained from solutions of Eq. (3.60). Parameters used: γa = 0.1, λ =
0.5, ua = 1, η = 0.005, g = 1, uam = 0. The di�erent phases denoted in the phase dia-
gram are de�ned in table 3.1. For reference, we denoted the line where the atomic detuning is
equal to half the molecule binding energy δa = |Eb|/2, as a dashed black line. Here it doesn’t
seem to be of importance, but this will change when molecule-molecule interactions are prop-
erly taken into account.

Although we decoupled the quartic term present in the bare action when we introduced the
molecule-�eld, the quartic interaction term would be regenerated in the full expression for the
e�ective action. Hence we include such a term phenomenologically at the level of the �eld equa-
tions derived form the 1-loop approximation, in order to allow for a stable atomic condensate
phase.

After �nding the mean-�eld solutions we perform stability analysis by considering the retarded
Green’s function

(GR)−1 =
δ2S[φc, ψc]

δψ∗qδψc
. (3.61)

From the poles of the Green’s functions in Eq. (3.61) we obtain the following quasi-particle dis-
persion:

ωa,k = −iγa ±

√(
k2

2m
+ δ̃a

)2

− |λ̃|2 (3.62)

with δ̃a = δa+2ua|ψ0|2, λ̃ = λ+2gφ0−uaψ2
0 . We emphasize that at this point we do not take

into account corrections to the quasi-particle dispersion due to �uctuations, which can lead for
example to appearance e�ective molecule-molecule interactions and have important e�ect on the
stability properties. We will deal with these e�ects on a more phenomenological level in Sec. 3.9.
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3 Condensate phases of coherently driven bosons close to a scattering resonance

In Fig. 3.7 we show a phase diagram resulting from solutions of Eq. (3.60). As a function of
the atom detuning δa and the detuning from resonance ν we observe four di�erent regimes of the
phase diagram. When the magnitude of the atomic detuning |δa| is below a threshold set by λ,
only an AC condensate solution exists. For larger values of |δa|, several regimes exist depending on
the value of the detuning from resonance ν. Far-away from resonance and also close to it, the only
stable solution is that of a molecule condensate. For intermediate values of ν the system exhibits
two di�erent bistable regions where several di�erent steady-state solutions co-exist. We note that
in Fig. 3.7 the value of the molecule binding energy does not seem to play a big role. We will see
that this will change when we take the e�ect of molecule-molecule interaction into account. We
will do this in Sec. 3.9 using a phenomenological mean-�eld model, which will also allow us to
understand the origin of the di�erent phases.

3.8.2 Molecule dynamics

In this section we �rst compute the molecule Green’s function in vacuum where λ = 0 and
φ̄c, ψ̄c = 0. The computation is almost identical to the one we performed in the zero temper-
ature equilibrium case in Sec. 3.2.2, since we already presented the computation in the Keldysh
framework there. The main di�erence is that the imaginary parts obtained here are �nite due to
the external losses.

The single particle properties of the molecule are contained in the corresponding retarded and
Keldysh Green’s functions,DR andDK , respectively. Recall thatDR, DK can be evaluated from
the e�ective action using the de�nition [17]:

(
DK DR

DA 0

)−1

=




δ2Γ
δφ̄∗cδφ̄c

δ2Γ
δφ̄∗cδφ̄q

δ2Γ
δφ̄∗qδφ̄c

δ2Γ
δφ̄∗qδφ̄q



φ̄c=φ̄q=0

, (3.63)

where we only considerU(1) symmetric Green’s functions, as the vacuum model isU(1)-symmetric
and, accordingly, all the anomalous Green’s functions are identically zero.

Let us �rst focus on (DR)−1, which encodes the spectral properties of the molecule. Plugging
in the expansion in Eq. (3.59) we obtain

(DR
vac)
−1(K) =

δ(2)

δφ̄∗q(K)δφ̄c(K)

[
S − i

2
tr(G0V )2

]∣∣∣∣
λ,φ̄,ψ̄=0

(3.64)

≡ −ν̃ − iη − ΣR
m,vac(K),

whereK ≡ (ω,k) and we de�ned the retarded self-energy

ΣR
m,vac(K) ≡ i

2

δ(2)

δφ̄∗q(K)δφ̄c(K)
tr(G0V )2

∣∣∣∣
λ,φ̄,ψ̄=0

. (3.65)

In vacuum ΣR is given by the diagram in Fig. 3.1b. As we explained in Sec. 3.2.2 the expression
forDR in Eq. (3.64) obtained from the 1-loop expansion of Γ is in fact exact in vacuum.
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Performing the loop integration, similar to Sec. 3.2.2, we obtain the self-energy

ΣR
m,vac(K) =

g2m
3
2

π

√
k2

4m
− i2γa − ω −

∫

q

4g2m

q2
. (3.66)

this expression is identical to Eq. (3.24) except of the fact that γa 6= 0 is �nite due to the �nite
loss.

The similarity to the equilibrium case can be understood by considering the fact that the main
di�erence between the zero-T Keldysh action and the action we consider here is that in the zero-T
case the Keldysh element of the inverse atom Green’s function is PKeq (ω) = 2iεsign(ω) while
here it is 2iγa. Since the molecule self-energy in vacuum is obtained only from a particle-particle
diagram, frequency integration results in evaluating thePK(ω) only at a positive frequencyω =
k2/(2m) > 0 where PKeq (ω) = 2iε. This would not be the case when working with �nite
density where we expect to see di�erences between the equilibrium and dissipative case.

As in the equilibrium case we encounter the UV divergence, which is cured by introducing a
counter term in the bare action ν̃ = ν + δν such that ν = 0 is the resonance position and the
scattering length is given by

a = − g2m

π(ν − iη)
. (3.67)

Note that the presence of a �nite two-body loss η 6= 0 results in a complex scattering length. The
result we obtained here is similar to the scenario of an optical Feschbach resonance where atoms
are optically coupled to a molecular state with a �nite lifetime [52].

It is interesting to note that although both the real and imaginary part of the bare molecule
mass term (ν̃ − iη) have the same (bare) scaling dimension, we only need one real counter-term
δν in order to absorb the UV divergence. This can be understood from the fact that the UV
divergence occurs due to contributions from high momentum modes to the atom-atom scattering
amplitude, which is encoded here in the self-energy of the auxiliary �eld φ. At high momenta the
kinetic energy dominates over other terms in the atom propagator, hence the UV contribution is
real. This would no longer be true in the presence of di�usion, where the atom kinetic mass m
can be complex. However since we are dealing with the quantum mechanical scattering problem
in vacuum the atoms propagation remains completely coherent and m is strictly real. Also note
that since the UV divergence appearing in the retarded self-energy is real, the Keldysh self-energy,
which obeys ΣK

m = 2ImΣR
m in vacuum, has no UV divergence.

Taking the renormalization of ν into account, the molecule retarded Green’s function is given
by:

[DR
vac(ω,k)]−1 = −ν + iη − g2m

3
2

π

√
k2

4m
− i2γa − ω (3.68)

The (complex) dispersion of the moleculeωm(k) corresponds to the pole of the retarded Green’s
function, hence the dispersion is obtained from the condition (DR)−1(ωm(k),k) = 0. Similar
to the equilibrium case (Sec. 3.2.2) a pole exists only for ν < 0, in which case:

ωm(k) =
k2

4m
+ Eb − iγm, (3.69)
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whereEb describes the bound state energy and γm the molecule inverse lifetime, and are given by

Eb = −π
2
(
ν2 − η2

)

g4m3
, γm = 2

(
γa −

π2ην

g4m3

)
. (3.70)

Let us comment on the properties of the molecule dispersion displayed by Eq. (3.69). First of all,
as in equilibrium systems, the molecule acquires a dispersion quadratic in the momentumk, with
a mass corresponding to twice the mass of the single atoms. Moreover, in absence of single- and
two-particle losses (γa and η, respectively), the molecule lifetime is expectedly in�nite as γm = 0,
and the binding energyEb < 0 recovers its equilibrium value [52]. While a �nite value of single-
particle losses γa only induces a �nite molecule lifetime, the presence of �nite two-body losses η
a�ects both the molecule binding energy and life-time. In particular, Eb is reduced by the two
particle losses, and eventually vanishes for η = |ν|, indicating that the bound state breaks down
and that the molecule ceases to be a well-de�ned degree of freedom. Moreover, a �nite value of η
also increases the molecule damping rate γm (notice that ν < 0).

We also notice that at the resonance, ν = 0, the loss rate becomes η independent Im[ωm(k)] =
2γa. This means that at ν = 0 the molecule becomes decoupled from the two-particle loss pro-
cess. Intuitively this can be understood by the fact that as ν → 0 the extent of the molecule
bound state becomes very large, such that the two bound-together atoms are on average far from
each other. Since the two-particle loss is a local term acting only on two atoms which are in the
same position, the two atoms will be less a�ected by it when they are in a bound state with a large
extent.

Self-energy corrections at finite pump λ 6= 0

We now turn to analyze the e�ects of the two-particle pump on the spectral properties of the
molecule as compared to the vacuum case. In the presence of �nite λ we can no longer obtain
exact results for the self-energy ΣR

m. Furthermore as we will see later on in this chapter a �nite
value ofλ necessaraly implies a �nite value of φ̄c, hence the full 1-loop expression for the molecule
self-energy includes contributions from all terms in the expansion (3.59)

ΣR
λ [φ̄]ij = i

δ2

δΦ̄∗q,iδΦ̄c,j
[
∞∑

n=2

(−1)n

n
tr(G0V )n], (3.71)

where we introduced the Nambu spinor ΦT
α(K) = (φα(K), φ∗α(−K)). When the molecule

condensate density is small we can neglect the n > 2 terms in Eq. (3.72) and we remain with the
contribution from the term tr(G0V )2

ΣR
λ [φ̄]ij ≈

i

2

δ(2)

δΦ̄∗q,i(K)δΦ̄c,j(K)
tr(G0V )2

∣∣∣∣
λ 6=0

. (3.72)
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3.8 E�ective action description for the atom-molecule model

The self-energy is obtained from the loop integrals

ΣR
λ,11(K) = −4ig2

∫

P
[GR0 ]11(K − P ;λ)[GK0 ]11(P ;λ), (3.73)

ΣR
λ,12(K) = −2ig2

∫

P
[GK0 ]12(K + P ;λ)[GR0 ]12(P ;λ). (3.74)

Where here G0(P ;λ) denotes the bare atom Green’s function in the presence of two particle
pump (introduced in Sec. 3.7). The expression in Eq. (3.73) is structurally similar to the expres-
sion obtained in the vacuum case, however due to the presence of �niteλwe can no longer evaluate
the full integrals analytically. We can expand the atom Green’s functions in powers of λ to obtain
a perturbative analytical expression for the momentum independent parts of the self-energy. Per-
forming the integrations using Mathematica we obtain the leading correction for the self-energy
(of order λ2):

ΣR
11,(2)(ω0, 0) = −im

3/2g2λ2

2
√

2πγ2
a

(
γa
√

∆a − ω0/2

|∆a − ω0/2|
− 2Im

√
∆a − ω0/2

)
(3.75)

ΣR
12,(2)(ω0, 0) =

m3/2g2λ2

2
√

2πγ2
a

(√
∆∗a − ω0/2− 1/

√
∆a − ω0/2

)
(3.76)

where we denoted the complex atom detuning ∆a = δa + iγa. The shift in the binding energy 2

can be estimated from−ReΣR
11,(2)(−|Eb|, 0) ∼ − sin(arg(∆a+|Eb|))λ2/(γa

√
|∆a + |Eb||) <

0.
We compute ΣR

λ numerically and obtain the spectrum of molecule excitations solving the equa-
tion det (DR)−1(ω,k) = 0. In Fig. 3.8 we show a comparison between the excitation spectrum
in vacuum and the spectrum with �niteλ. We can see that the two-particle pump lowers the bind-
ing energy of the molecule and in addition it has the e�ect of slightly increasing the e�ective mass
of the molecule as can be obtained numerically from the kinetic energy coe�cient (the coe�cient
of k2 in the molecule dispersion). We also note that when the pump is weak, the molecule spec-
trum is qualitatively similar to the vacuum one, at least at low momenta. From this we conclude
that in order to simplify the initial exploration of the phase diagram of our system it is reasonable
to neglect the molecule self-energy corrections due to �nite λ.

3.8.3 Molecule-molecule interactions

In order to perform stability-analysis of the steady-state solutions obtained from the �eld equa-
tions, it is important to include molecule-molecule interaction processes that will be generated
due to atomic �uctuations, as interactions are crucial for the stabilization of condensates. Since
the two-particle pump λ breaks U(1) symmetry explicitly, it will in principle lead to the gen-
eration of non-charge conserving interaction terms. At order O(λ0) (that is in the absence of
two-particle pump) only charge-conserving interactions are generated. For an initial analysis of
the model we will neglect the e�ect of interaction couplings which do not conserve charge, as

2Note that in the presence of �nite λ corrections, the molecule binding energy is less well de�ned since the o�-
diagonal terms will tend to induce pairing correlations in momentum space.
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Figure 3.8: Molecule spectrum in the presence of �nite two-particle pump, as obtained from solving
det(DR)−1(ω∗, k) = 0. Numerical parameter values: λ = 0.8, δa = 1, γa = 0.1, g =
1, ν = −1, η = 0.
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Figure 3.9: Diagrams contributing to molecule-molecule interaction in vacuum. (a) The contribution
from tr(G0V )4 in Eq. (3.59). (b) The contribution from tr(G0V )3 term in Eq. (3.59) which
is due to the 3-body interactions. Note that the contribution from diagram (a) alone results in
an attractive molecule-molecule interaction, and the contribution from (b) is necessary for the
molecule-molecule interaction to be repulsive.
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3.8 E�ective action description for the atom-molecule model

those are generated at higher orders in λ. We �nd that the atom �uctuations generate an e�ective
quartic molecule-molecule interaction: ∼ |φ|4, where the corresponding diagrams are shown in
Fig. 3.9.

To organize the computation we introduce further notation:

V ≡ gVg + uamVam = S(2)
g + S(2)

am (3.77)

Vg =

(
Vg,φ Vg,ψ
V ∗g,ψ 0

)
(3.78)

Vam =

(
Vam,φφ Vam,ψφ

V †am,ψφ Vam,ψψ

)
(3.79)

The �rst diagram, which arises only in the case of non-vanishing atom-molecule coupling uam,
arises from the term 1

3 tr(G0V )3 in Eq. (3.59). Here we evaluate it in the vacuum limitλ, φ̄c, ψ̄c =
0

d I s na

v
un

d I s na

v
un

O(g2uam)O(g4)

a) b)

= ig2uamtr(G0Vg,φG0Vg,φG0Vam,φφ) ≡ I3, (3.80)

withG0 denoting the bare atom Green’s function in the absence of pump (λ = 0). The second
diagram we need to compute is obtained form the tr(G0V )4 term in Eq. (3.59), and arises only
due to the Yukawa coupling

d I s na

v
un

d I s na

v
un

O(g2uam)O(g4)

a) b)

= − ig
4

4
tr(G0Vg,φ)4 ≡ I4 (3.81)

In order to obtain um, we compute the coe�cient of the term φ̄∗qφ̄c|φ̄c|2 as we expect all non-
vanishing terms to have the same coe�cient, due to the fact that the dissipative-vacuum is equiva-
lent to the equilibrium vacuum in the limit γa → 0. We also use the fact that in vacuum we have
GK11 = GR11 −GA11.

In principle evaluating the diagrams in Eqs. (3.80), (3.81) at non-vanishing external momenta
and frequencies will lead to momentum and energy dependent interaction vertices. And often
used approximation, in the so-called derivative expansion of the action, is to neglect the compli-
cated momentum dependence and approximate um(K1,K2,K3,K4) ≈ um(0, 0, 0, 0). In the
case of negative detuning when a molecule bound-state with energy −|Eb| exists, it is more ap-
propriate to approximate um by evaluating the diagrams at external frequencies corresponding to
the molecule binding energy um ≈ um(ωi = −|Eb|).
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Figure 3.10: The leading contribution at �nite pump, generating an e�ective molecule pump term ∼
λmφ̄q + c.c..

We thus obtain:

1

2
δφ̄∗q φ̄∗c φ̄cφ̄cI3/(−i16g2uam) = (3.82)
∫

K

[
GA(−K + P0)GR(−K + P0)GR(K + P0) +GR(−K + P0)2GR(K + P0)

−GA(−K + P0)GA(−K + P0)GR(K + P0)

]
,

1

2
δφ∗qφ∗cφcφcI4/(32g4i) = (3.83)
∫

K
GK(K + P0)GA(K + P0)GR(−K + P0)

[
GR(−K + P0) +GR(K + P0)

]
,

where we denotedK ≡ (ω,k), P0 ≡ (−|Eb|/2, 0), andGx11 = Gx. Performing the integration
in Mathematica we obtain

um =
g2

π
√
δa + |Eb|/2

(
3
√

2uam −
g2

4
√

2(δa + |Eb|/2)

)
(3.84)

Note that in the absence of the atom-molecule interaction, uam = 0, the e�ective molecule-
molecule interaction is attractive um < 0. This shows that a �nite uam is needed in order to
stabilize a molecule condensate, as an attractive interaction cannot stabilize the molecule conden-
sate, as was also pointed out in the equilibrium context in Refs. [84, 109].

3.8.4 Effective molecule pump

In this section we compute the leading order to the e�ective-action at λ 6= 0, which arises from
the term trG0V in Eq. (3.59), represented by the diagrams in Fig. 3.10. This leads to a linear term
in the e�ective-action

Γ1[φ̄, ψ̄] = λmφ̄q + c.c. (3.85)

Due to probability conservation no terms linear in φ̄c can appear as it will imply �nite value of
φ̄q . Also note that due to the Z2 symmetry of the bare-action S (corresponding toψ → −ψ) no
e�ective single-particle pump term∼ ψ̄q can be generated.

Evaluating the �rst diagram in Fig. 3.10 we obtain

λm = 2ig

∫

ω,k
[GK0 ]12(ω,k;λ). (3.86)
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3.8 E�ective action description for the atom-molecule model

Recall that [GK0 ]12(ω,k;λ) ≡ 〈ψc(ω,k)ψ∗c (−ω,−k)〉, hence the e�ective molecule pump is
proportional to the atomic o�-diagonal correlations 〈ψ̂2〉.

In the limit of small pump λ � γa, δa, we can approximate Eq. (3.86) to leading order in λ.
Performing the loop integral we obtain

λm = −
√

2gm3/2λ

π

√
∆∗a +

2gmλΛpump

π2
. (3.87)

where ∆a = δa + iγa is the complex atom-detuning as before. Here we denoted by Λpump a
momentum cuto� for the pump. Λpump arises due to the fact that the two-particle wave function
of a pair created by the coherent pump is not localized at a point but rather has a �nite extent with
some scale ap which is much larger than the microscopic short-length scale (given typically by the
van der Waals length aVdW).

In order to eliminate the dependence of the action on the cuto� Λpump we can use the ad-
ditive renormalization procedure, similar to the one we introduced for the bare detuning ñu in
Sec. 3.2.2. To do so we add a “counter-term” of the form δλmφ

∗
q+c.c. to the bare molecule action

in Eq. (3.45a). In order to determine the value of δλm, we need to choose a renormalization con-
dition, which connectsλm to some physical parameter. In the case of the detuning ν̃ we chose δν
such that the scattering resonance occurs at ν = 0 which allowed us to connect the renormalized
parameter ν to the physical parameter which is the scattering length a. For λm we will make the
simple choice that

δλm = −2gm3/2λΛpump

π2
. (3.88)

This choice guarantees that λm|λ=0 = 0, that is that we don’t induce any molecule pump in the
absence of a two-particle atom pump.

We can rewrite the cuto� independent part of Eq. (3.87) as λm ∝ (λ/|∆a|)|∆a|3/2. If we
take the limit |∆a| → 0 while keeping the ratio α = λ/|∆a| �xed at α � 1 to satisfy the weak
pumping limit, we see that λm vanishes as |∆a|3/2. Physically this could be understood from the
fact that in this limit the two-particle pump is resonant with the atoms which means that it will
mostly pump atom pairs instead of molecules.
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3 Condensate phases of coherently driven bosons close to a scattering resonance

3.8.5 Summary of the approximate atom-molecule effective action

Summarizing all the contributions to the e�ective-action discussed in the previous sections we
end up with:

Γ = Γa + Γm,e� + Γam, (3.89a)

Γa =

∫

t,r
ψ̄∗q

(
i∂t +

∇2

2m
− δa + iγa

)
ψ̄c + λψ̄∗q ψ̄

∗
c + c.c.+ 2iγaψ̄

∗
q ψ̄q (3.89b)

− ua
∫

t,r
ψ̄∗q ψ̄c

[
ψ̄∗c ψ̄c + ψ̄∗q ψ̄q

]
+ c.c., (3.89c)

Γm,e� =

∫

t,r

[
Zmφ̄

∗
q

(
i∂t +

∇2

4m
− δm + iγm

)
φ̄c + c.c.+ 2iγm|φ̄q|2 + λmφ̄q + λ∗mφ̄

∗
q

]

(3.89d)

− um
∫

t,r
φ̄∗qφ̄c

[
φ̄∗c φ̄c + φ̄∗qφ̄q

]
+ c.c.,

Γam = g

∫

t,r

[
2φ̄∗cψ̄cψ̄q + φ̄∗q

(
ψ̄cψ̄c + ψ̄qψ̄q

)
+ c.c.

]
(3.89e)

− uam
∫

t,r

[
φ̄∗qφ̄c

(
|ψ̄c|2 + |ψ̄q|2

)
+ ψ̄∗q ψ̄c

(
|φ̄c|2 + |φ̄q|2

)
+ c.c.

]
. (3.89f )

The quadratic part of Γm in Eq. (3.89d) was obtained from the single particle pole in the
molecule propagator given in Eq. (3.68). This was done by writingDR

vac in the form:

DR
vac =

Z−1
m

ω − ωm(k)
+ f(ω, k) (3.90)

with ωm given in Eq. (3.69) and f an analytic function around ωm(k), which we neglect (struc-
tureless background of scattering states). Doing so we obtain :

δm = 2δa −
π2
(
ν2 − η2

)

g4m3
, γm = 2

(
γa +

π2η|ν|
g4m3

)
, Z−1

m =
2π2

g4m3
(iη − ν). (3.91)

Note that the molecule propagator residueZ−1
m is vanishing at the resonance point ν → 0, η →

0, where our approximation breaks down. This is a manifestation of the fact that the molecule
state becomes unbound, hence the propagator of the �eld φ encodes only atom-atom scattering.

In order to include other e�ects giving rise to a residual e�ective repulsion between the atoms,
we also included a repulsive atom-atom interaction parametrized by ua > 0. Although this term
is absent in the bare action obtained after the HS transformation , it would be nevertheless be
generated by �uctuations. Including this term is crucial for obtaining stable steady state solutions
in the saddle-point analysis that follows.

58



3.8 E�ective action description for the atom-molecule model

3.8.6 Efimov bound states

A well known phenomenon that occurs in a system of interacting Bosons at a scattering resonance
is the appearance of an in�nite tower of 3-body bound states called E�mov states [89]. In ultracold
atom systems the presence of E�mov bound states results in large 3-body losses, and it is in fact
one of the main obstacles for an experimental realization of a unitary Bose-gas with �nite density.
In this section we examine the e�ect of the coherent pump and losses present in our model on the
E�mov states.

In this section we show that understanding the fate of E�mov bound states in the presence of
loss and pump can be done using a functional-renormalization group (FRG) framework, which
was originally used in the zero-T equilibrium case in Ref. [91]. In FRG one considers the e�ective
action at scale k, denoted Γk. Γk is the action obtained by integrating all quantum and classical
�uctuations with momenta q ∈ [k,Λ], where Λ is the UV-cuto�. Starting from the action at the
UV scale ΓΛ = S [given by Eqs. (3.44) - (3.45)], we can obtain the e�ective action Γk using the
formally exact Wetterich equation [110]

∂kΓk =
i

2
Tr
[
∂kRk(Γ

(2)
k +Rk)

−1
]
≡ i

2
Tr∂̃k log(Γ

(2)
k +Rk). (3.92)

HereRk is an IR cuto� function which suppresses �uctuations at all momenta q < k with k the
running cuto� scale. Γ

(2)
k is the second variation of the e�ective action with respect to the �elds,

and the trace is take over all momenta,frequencies and Keldysh indices. The scale derivative ∂̃k
is de�ned as acting only on the cuto� function Rk, this allows us to represent the RHS of Eq.
(3.144) in terms of an expansion in Feynamn diagrams. It is also useful to de�ne t = log(k/Λ)
such that the �ow starts from t = 0 and �ows toward t = −∞.

The object of interest is the scale dependent atom-molecule coupling uam(t) appearing in
Eq. (3.45c). In the FRG framework E�mov bound states are expected to be manifested as periodic
divergences in uam(t) during the RG �ow, where divergences occurs at momenta determined by
the 3-body bound-state energies [89]. In the RG language the E�mov e�ect is manifested as a
limit-cycle �ow.

The �ow equation for uam is depicted diagramaticaly in Fig.3.11. Since the dependence on the
two-particle pump strengthλ comes only from atom Green’s functions, and there are no diagrams
containing o�-diagonal Green’s functions in the �ow equation, the leading order correction will
be of orderO(λ2) which we neglect.

It has been shown in Ref. [91] that in order to obtain the periodic limit cycle behavior, it is
enough to work in a point approximation where momentum dependence of uam is neglected
(this does not produce an accurate quantitative value for the limit cycle period). Using the point
approximation we evaluate the diagrams in Fig. 3.11 and obtain the �ow equation for uam. See
App. 3.C for details of the FRG computation.

Solutions of the �ow equations for di�erent values of the atom-detuning δa and atom loss δa
are shown in Fig. 3.12. We see that introducing even a small drive frequency of order 10−1, no
divergences are encountered during the �ow. This is a manifestation of the fact that δa and γa act
as relevant perturbations taking the system away from the unitary point.

From the RG computation we see that for �nite δa and γa, the system is in a regime where
either no E�mov states exist or maybe just one E�mov state is present (since the energy of the �rst
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Figure 3.11: Diagrammatic representation of the FRG �ow equation for the atom-molecule vertexuam(t)
(with t = log(k/Λ)). Solid lines denote atom propagators, wiggly lines denote molecule
propagators and the red line-�lled circle denotes the renormalized 3-body vertex. ∂̃t acts only
on the cuto� functionRk.

E�mov bound state is non-universal we cannot rule out this scenario based on our qualitative
RG computation). Even if it is the case that the system supports an E�mov state, we expect it to
not play an important rule in determining the phase diagram of the system as long as the pump
frequency is far enough detuned from the E�mov bound sate energy Ee�mov. Since there is no
in�nite-tower of E�mov states in the presence of pump and loss, we can work in a parameter
regime of ν and δa where |Ee�mov| � |Eb|, |δa|.

3.9 Understanding the phase diagram from
phenomenological mean-field models

In order to gain better understanding of the e�ects of di�erent couplings in the e�ective action
in Eq. (3.89), we consider in the following sections mean-�eld phase diagrams obtained in simpli-
�ed settings where some of the couplings are not present. We will use phenomenological atom-
molecule models inspired by the structure of the action (3.89), where we assume that the di�erent
couplings are independent of each-other. Ignoring the fact in principle some couplings depend
on others when derived from the more microscopical bare action Eq. (3.45) ). Our approach here
is somewhat similar to that taken in Refs. [41, 42], which studied condensation of molecules and
atoms close to a Feshbach resonance using two-channel models.

The phenomnological mean-�eld equations we consider in this section are given by:

0 =
(
−δa + iγa − ua|ψ0|2 − uam|φ0|2

)
ψ0 + (λ+ 2gφ0)ψ∗0 (3.93a)

0 =
(
−δm + iγm − um|φ0|2 − uam|ψ0|2

)
φ0 + gψ2

0 + λm (3.93b)

This set of phenomenological equations can be obtained from the approximate Eq. (3.89) by con-
sideringZm ≈ 1 and ignoring the dependence ofZm on ν. Away from resonance we expect that
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�a = 10�4, �a = 0�a = 0, �a = 0

�a = 0, �a = 0.5�a = 0, �a = 10�4

Figure 3.12: FRG �ow of the atom-molecule coupling uam obtained form numerical solution of the
�ow equation for uam. (upper-left): �ow in the resonant case where γa, η, δa, ν = 0 and
uam(Λ) = 0.1 divergences during the �ow are due to the presence of E�mov bound states.
(upper-right) and (lower-left) : e�ects of very small deviations from resonance due to �nite
atom loss or �nite drive frequency, only a few E�mov states exist at high-energies. (lower-
right): Introducing a drive frequency of order 10−1 no E�mov bound states are encountered
during the �ow.
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Figure 3.13: Phase diagrams obtained via solution of the mean-�eld equations of the phenomenological
model Eq. . The dashed black line line marks half the molecule binding energy in vacuum. (a)
Phase diagram in the absence of atom-molecule coupling (g = 0). (b) Phase diagram for the
case of a non-interacting molecule (um = 0) (c) Phase diagram for the full phenomenological
model. See de�nition of the di�erent phases in table 3.1. In all cases, the values of the param-
eters (when not explicitly set to zero) are: γa = 0.1, γm = 0.2, λ = 0.5, λm = 1.0, g =
1, ua = 1, um = 0.5, uam = 0.1.

the results obtained in this way are qualitatively similar to the results obtained when taking Zm
into consideration. In addition we ignore the dependence ofλm on δa, γa, λ and replace it with a
phenomenological constant which helps simplifying the analysis and focusing on the main physi-
cal phenomena. In order to connect with experimentally tunable parameters we retain the depen-
dency of the molecular detuning δm on the atom detuning δa and the detuning from resonance
ν̃, δm = 2δa − π2ν̃2

g4m3 .
The retarded Green’s functionGR = (PR)−1 used for stability analysis of �uctuation around

the MF solution is given by:

PR =

(
PRa PRam

(PRam)† PRm

)
(3.94a)

PRa =

(
ω − εa,k + iγa − ∂U

∂ρa
λe�

λe� −ω − εa,k − iγa −− ∂U
∂ρa

)
(3.94b)

PRm =

(
ω − εm,k + iγm − ∂U

∂ρm
−umφ

2
0

−um(φ∗0)2 −ω − εm,k − iγm − ∂U
∂ρm

)
(3.94c)

PRam =

(
−uamψ0φ

∗
0 + 2gψ∗0 −uamφ0ψ0

−uamφ∗0ψ∗0 −uamφ0ψ
∗
0 + 2gψ0

)
(3.94d)

with U = uaρ
2
a + umρ

2
m + uamρaρm and λe� = λ+ 2gφ0 − uaψ2

0 .
The mean-�eld equations (3.93) are a set of multivariate polynomial equations in the real and

imaginary parts of the condensate �elds. As such they are generically not analytically solvable,
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3.9 Understanding the phase diagram from phenomenological mean-field models

but there exist e�cient numerical methods that are able to �nd all possible roots of multivariate-
polynomials without requiring a good initial guess (unlike Newton methods for solving general
non-linear equations). Speci�cally we use here the homotopy-continuation method as imple-
mented by the Julia package HomotopyContinuation.jl [111].

In what follows, we consider several speci�c cases where some of the couplings are not present in
Eq. (3.93). This allows us to obtain analytical expressions in some cases and to better understand
the role of the di�erent couplings.

3.9.1 Case 1: atoms and molecules decoupled (g = uam = 0)

We start by analyzing the case where atoms and molecules are completely decoupled, that is we set
g = 0, uam = 0 in Eq. (3.89). This allows us to consider the condensation mechanisms of atom
and molecule degrees of freedom separately.

Considering steady-state homogeneous solutions , the saddle-point equations in the fully de-
coupled case are given by:

(
−δa + iγa − ua|ψ0|2

)
ψ0 + λψ∗0 = 0 , (3.95a)

(
−δm + iγm − um|φ0|2

)
φ0 + λm = 0 . (3.95b)

Since the two equations are completely decoupled we can consider them separately.

Condensation of atoms with two-particle pump

We now discuss possible solutions of Eq. (3.95a) and analyze their stability properties. We already
discussed the condensation instability due to two-particle pump in the ua = 0 case in Sec. 3.7.
Here we generalize the discussion for the case ua 6= 0 which is crucial for having a stable conden-
sate solution.

First we note that Eq. (3.95a) always has a trivial solution with ψ0 = 0 where atoms are not
condensed, however this solution is not always stable as we will see below.

Let us consider solutions where ψ0 6= 0. In this case we can recast Eq. (3.95a) into a simple
quadratic equation for the atomic condensate density ρa ≡ |ψ0|2 by taking the absolute value:

(δa + uaρa)
2 + γ2

a = |λ|2 , (3.96)

ρa =
−Ω±

√
Ω2 − u2

ar

u2
a

, (3.97)

where we denoted Ω ≡ δaua and r ≡ δ2
a+γ2

a−|λ|2. We are only interested in physical solutions
where ρa ≥ 0.

We consider only the case δa > 0 (the case δa < 0 leads to �nite-momentum instability which
we will not be considered in this work). Thus, we have Ω > 0 and positive solution for Eq. (3.97)
exists only when r < 0. Hence, the condition on λ for atom condensation to occur is

|λ|2 > λ2
c = δ2

a + γ2
a . (3.98)
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3 Condensate phases of coherently driven bosons close to a scattering resonance

Expanding in small r, we see that close to the transition we have

|ψ0| ≈
√
−r, (r < 0, |r|/δ2

a � 1). (3.99)

The trivial solution ψ0 = 0 is stable as long as the poles of the retarded Green’s function, de-
noted byωa(k), lie in the lower half of the complex plane. In the case ofψ0 = 0 the atom retarded
Green’s function is identical to the non-interacting case discussed in Sec. 3.7. Examining the dis-
persion in Eq. (3.51) we see that the trivial solution is stable as long as |λ|2 < λ2

c . At the critical
value of the pump strength we have ωa(k = 0) = 0 which indicates a closing of the dissipative
gap and the system undergoes a second order phase transition into the atomic condensate phase.

Note that the inclusion of the atom-atom interaction ua in the model is crucial in order to
obtain a stable atom-condensate solution. In the presence of an atom-condensate the dispersion
in Eq. (3.51) changes to

ωa(k) = −iγa ±
√(

k2

2m
+ δa + 2ua|ψ0|2

)2

−
∣∣λ− uaψ2

0

∣∣2. (3.100)

Hence the atom-condensate occurring at |λ| > λc can be stable only when ua > 0.

Condensation of molecules with single-particle pump

We now turn to analyze the solutions for Eq. (3.95b). Equating the modulus of both sides of the
equation, we obtain an equation for the molecule condensate density ρm ≡ |φ0|2 :

ρm =
|λm|2

(δm + umρm)2 + γ2
m
. (3.101)

We remind the reader that the molecule detuning is given by δm = 2δa − |Eb| with |Eb| ∼ ν̃2

the molecule binding energy. Unlike the case of atoms with two-particle pump, in the molecule
case only solutions with ρm > 0 exist. This is a manifestation of the fact that U(1) symmetry is
explicitly broken by the two-particle pump.

In the case of um = 0 we can see that the largest condensate value is obtained when δm = 0,
which occurs when δa = |Eb|/2. Simply stated, the maximum value of the condensate occurs
when the two-particle pump is resonant with the molecule bound state. In this case we have ρm =
|λm|2/γ2

m.
In the interacting case, um 6= 0, the interaction shifts the condensate energy such that the

e�ective detuning of the pump is δ̃m = δm + umρm. When δm < 0 (red-detunged) this can
lead to a situation where the interaction induced detuning shift leads to δ̃m ≈ 0 and the pump
becomes e�ectively resonant. In this case ρm increases with decreasing δm.

Solving Eq. (3.101) we observe the behavior illustrated in Fig. 3.14. For δm > 0 (δa > |Eb|/2)
there exist only one solution, which is similar to the non-interacting solution. For negative de-
tuning δm below some threshold δ∗1 two stable solutions exist, we refer to these solutions “high-
density condensate” and “low-density condensate”. The low-density solution behaves similar to
the non-interacting case where the condensate density decreases as δm is further increased beyond
resonance at δm ≈ 0. The condensate density of the high-density solution keeps increasing as
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Figure 3.14: Behavior of molecule condensate with coherent molecule pump (solutions to Eq. (3.101) ).
When the detuning δm is in the interval [δ∗2 , δ

∗
1 ] the system is bistable with a “high-density

condensate” solution (blue) and “low-density condensate” solution (red). The dashed gray
line corresponds to an unstable solution.

δm is decreased. Once the system is red-detuned below a second critical value δ∗2 the high-density
solution no-longer exist. This is related to the �nite decay rate of molecules γm.

In addition to triggering a bi-stability the introduction of molecule interaction um also cre-
ates �nite density of non-condensed molecules. Expanding in quadratic �uctuations around the
saddle-point solution we obtain the expression for the non-condensed molecule density nm(k)

nm(k) =
u2

mρ
2
m

( k
2

4m + δm + umρm)2 − u2
mρ

2
m + γ2

m
. (3.102)

We see that in our non-equilibrium setup nm(k) ∝ u2
mρ

2
m which means that the fraction of non-

condensed molecules increases with increasingρm. This can be viewed as an increase of an e�ective
temperature due to molecule-molecule interactions.

Having described the mechanisms for atom and molecule condensation in our setup, let us
emphasize the di�erences between them. As we have seen the atom condensation due to two-
particle pump is triggered by a closing of the dissipative gap and results in breaking of the Z2

symmetry ψ → −ψ, hence it is expected to be a sharp phase transition. In contrast the molecule
condensate is always present due to the explicit breaking of theU(1) symmetry by the two-particle
pump. There is however a crossover to a regime with high molecule condensate density which also
shows bistability. Unlike the atom case no closing of a gap occurs for the molecule.

Phase diagram in the decoupled case

We are now in a position to understand the phase diagram obtained from the solution of Eqs. (3.95),
which we show in Fig. 3.13a. Keep in mind that changing the detuning ν, modi�es only the
molecule detuning, while changing the atom detuning changes both atom and molecule detun-
ing simultaneously. As δa is decreased below the pump strength λ the atoms become unstable
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3 Condensate phases of coherently driven bosons close to a scattering resonance

towards condensation due to the gap closing described above, this is the reason for the straight
phase boundary between the AC phases and the MC phase. For δa above the threshold set by the
pump strength only molecule condensation occurs.

Detuning the system away from resonance (increasing −ν) has the e�ect of decreasing the
pump detuning δm. We see that the boundary between the MC region with a single low-density
solution to the bistability region (MC2), where both a low-density and high-density molecule
condensate solutions exist, follows roughly the dashed red curve which denotes the parameter
values for which the pump is exactly at resonance with the molecule energy and δm = 0. As the
system is detuned further away from resonance the region with high-density solution terminates,
due to molecule losses ( weaker molecule losses will correspond to a broader bi-stability region).
Finally, we note that the presence of the region where two AC solutions exist (denoted AC2) is
only due to the coexistence of a molecule condensation bi-stability and atom condensation.

3.9.2 Digression: bistability in coherently driven open systems

We have seen that the presence of the molecule pump λm, leads to a bi-stability where several
dynamically stable solutions to the mean-�eld equations exist. The existence of bistable regions
will remain a feature of our mean-�eld phase diagram also when we switch on all interaction and
couplings between atom and molecules. When several stable solutions exist in an equilibrium
setting one determines the state of the system by choosing the solution which has the minimal
free-energy value. In the non-equilibrium setting the notion of free-energy minimization does not
exist, and one has to in principle consider the dynamical evolution of the system including noise
and information of the initial state in order to determine the fate of the system in the bistable
region.

The appearance of a bi-stability in mean-�eld solution of a coherently driven �eld is not sur-
prising and has been discussed previously in the literature. It is known to occur in a variety of
systems such as a single-cavity with Kerr non-linearity [106], driven-dissipative Bose-Hubbard
model in an array of cavity resonators [107, 112–114], Rydberg-atoms lattices [115–117], and in
driven-dissipative spin models [118–120]. The fate of the mean-�eld bi-stability when correlations
are taken into account depends on the dimensionality of the system.

In Ref. [106] the case of an optical bi-stability in a single cavity with coherent drive and loss
(also known as the Kerr model) was considered. In that case it is possible to obtain an analytic
solution for the quasiprobability phase space distribution in the P representation. The analytical
solution shows that when quantum �uctuations are considered, there is always a unique steady
state in the single cavity case.

In our case in addition to quantum �uctuations, also classical spatial �uctuations of the con-
densate have to be taken into account in order to understand the fate of the bi-stability beyond the
saddle-point solution. In 1D it was shown, using matrix-product operator techniques, that cor-
relations beyond mean-�eld wash-out the bi-stability region and turn it into a crossover between
the high-density and the low-density phases [119, 120]. In the case of the 2D driven-dissipative
Bose-Hubbard model, calculations using the truncated Wigner approximation indicate that the
bi-stability becomes a sharp �rst-order transition due to �uctuations [107,121]. Since �uctuations
usually play a more important role in lower-dimensional systems, it is not clear what is the fate of
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3.9 Understanding the phase diagram from phenomenological mean-field models

the mean-�eld bi-stability in 3D. Indeed, in the in�nite-dimensional limit mean-�eld is expected
to be exact and the system will exhibit a true bi-stable behavior [118].

3.9.3 Case 2: Atoms coupled to non-interacting molecules

We now consider the case where atoms and molecules are coupled via the interconversion term g,
but the molecule interactions um and atom-molecule interactions uam are switched o�. In this
case the saddle-point equations for the steady-state homogeneous con�gurations are

(
−δa + iγa − ua|ψ0|2

)
ψ0 + (λ+ 2gφ0)ψ∗0 = 0, (3.103a)

(−δm + iγm)φ0 + gψ2
0 + λm = 0. (3.103b)

From Eq. (3.103b) we obtain an expression for φ0

φ0 =
gψ2

0 + λm
δm − iγm

. (3.104)

Plugging Eq. (3.104) in Eq. (3.103a) and taking the absolute value, we obtain an equation for
the atom condensate density ρa which is exactly the same form as Eq. (3.96) but with e�ective
interaction and pump

ua,e� = ua −
2g2

δm − iγm
, (3.105)

λe� = λ+
2gλm

δm − iγm
. (3.106)

The interpretation of Eq. (3.106) is that the molecule condensate acts as an e�ective two-particle
pump for the atoms (atom pairs can be created from the condensate). When the external two-
particle pump frequency is on resonance with the molecule binding energy and δm ≈ 0, this can
lead to a large enhancement of the two-particle pump amplitude experienced by the atoms and
trigger atomic condensation. Also note that the e�ective interaction ua,e� has an imaginary part,
which means that the molecule condensate creates a two-particle loss for the atoms.

Looking for a non-trivial solution for ψ, the equation for the condensate density ρa is now
given by

ρa =
−Ωe� ±

√
Ω2

e� − |ua,e�|2re�

|ua,e�|2
. (3.107)

with

Ωe� = (δaReua,e� − γaImua,e�), (3.108)
re� = δ2

a + γ2
a − |λe�|2. (3.109)

If Ωa,e� > 0 the condition for atom condensation is similar to the one discussed in Sec. 3.9.1

|λe�|2 > λ2
c = δ2

a + γ2
a. (3.110)
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3 Condensate phases of coherently driven bosons close to a scattering resonance

We also have to consider the case Ωe� < 0 which might occur when ua,e� < 0 (e�ective at-
tractive interactions). In this case there still exists a non-trivial atom condensate solution when
|λe�| > λc. In addition there is a region with two non-trivial solutions (with di�erent values for
ρa) when

λ2
c −

Ω2
e�

|ua,e�|2
< |λe�|2 < λ2

c . (3.111)

Note that in this case the trivial solution with ρa = 0 is still stable.
In Fig. 3.13b we show numerical solution of Eq. (3.103), taking into account also stability prop-

erties of the solutions. We indeed see that the e�ective pump for the atoms is enhanced in a region
where |Eb| ≈ 2δa, which is manifested in atom condensation occurring in a region along the
molecule bound state energy line (dashed black line).

In addition we see that a bistability region emerges, where both the AC and MC phase coexist.
This occurs due to the fact that in that regime the e�ective mean-�eld atom interaction ua,e�
becomes attractive. As we saw above this leads to a situation where an atom condensate solution
exists but the trivial solution with ρa = 0 is also stable. We also note that the phase diagram has
instability regions, where no saddle point solution is stable. The reason for this instability is that
the e�ective attractive interaction for the atoms is not compensated by other repulsive mechanism,
such as the ones provided by um, uam, here neglected.

To summarize, from the analysis above we learn that the coupling of the atoms to a non-interacting
molecule state acts as an e�ective two-particle pump for the atoms. Even when the strength of the
bare two-particle pump |λ| is smaller than the critical pump strength for atom condensation λc,
atom condensation can still occur if the e�ective pump is above threshold |λe�| > λc. This oc-
curs when the pump frequency is in resonance with the molecule bound state energy. Thus, the
atom-molecule coupling enables a new mechanism for atom condensation which can be triggered
by tuning the pump frequency close to the molecule bound state energy.

3.9.4 Case 3: Atoms coupled to interacting molecules

We now consider the case were both atoms and molecules are interacting, given by Eq. (3.93) with
all interaction couplings present In this case the features of the two previous cases are expected to
merge. In particular, a bistability region with two MC solutions should emerge as a consequence
of the molecule-molecule interaction. A numerical solution of the full set of equations is shown
in Fig. 3.13c.

Due to the molecule interactionum we can no longer write an explicit solution for the molecule
condensateφ0 in terms ofψ0 alone. We can still understand intuitively the e�ect of �nite molecule
condensateφ0 on the atoms by seeing that it enters Eq. (3.93a) in the same way as the two-particle
pump term (λ + 2gφ0)ψ∗0 . Hence a large value of the molecule condensate density can create a
large e�ective two-particle pump for the atoms and trigger atomic condensation.

Our intuition is con�rmed by the numerical solutions of Eq. (3.93b) as seen in Fig. 3.13c.
We see that a �nite value of um gives rise to a region of molecule condensation bistability, whose
origins were discussed in Sec. 3.9.1. As ν is decreased the system exhibits an extended region where
there exist an AC solution which breaks the Z2 symmetry in addition to the low-density MC
solution. This is due to the fact that the molecule condensate-density is increasing with decreasing
ν in the high-density MC solution (as we have seen in Fig. 3.14), hence at some point the e�ective
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atom pump λ + 2gφ0 reaches the critical value and a closing of the atom dissipative gap occurs,
leading to atom condensation instability. Finally, we see that increasing the pump frequency ωp
causes also the low-density MC solution to become unstable towards atom condensation, since it
decreases the value of the critical pump strength λc below the value of the e�ective atom pump.

Finally, we can consider the e�ect of the atom-molecule interaction term uam|ψ0|2|φ0|2. In
the presence of the atom-molecule interaction the atom dispersion in the MC phase (ψ0 = 0) is
given by

ωa(k) = −iγa ±
√

[k2/(2m) + δa,e�(φ)]2 − |λe�(φ)|2, (3.112)

where we denoted λe�(φ0) ≡ 2gφ0 + λ and δa,e�(φ) ≡ δa + uam|φ0|2. Hence, the molecule
condensate has two competing e�ects : (i) increasing the e�ective pump, which leads to decrease
of the atom dissipative gap (ii) increasing the e�ective atom detuning, which increases the atom
dissipative gap.

Having examined the phase diagrams obtained by numerical solution of Eq. (3.93) we can now
examine the condition for an atom condensation instability in order to obtain an equation deter-
mining some of the phase boundaries. Speci�cally, let us consider the condition for a transition
between a solution with only molecule condensate and a solution with an atom condensate. In
the case of a second-order phase transition, the condition for the transition can be obtained by
assuming |ψ0| = ε � 1 in Eq. (3.93a) and then taking the limit ε → 0 which results in a
condition

|λc|2 ≡ |(δa − iγa + uam|φ0|2)|2 = |λ+ 2gφ0|2 ≡ |λe�|2 (3.113)

plugging Eq. (3.93b) we obtain

|∆̃m|4
[
(δa + uamρm)2 + γ2

a

]
=
[
|∆̃m|2λ− λm(δm + umρm)

]2
+ (γmλm)2 (3.114)

with ∆̃m ≡ δm + umρm − iγm.
We solve Eq. (3.114) numerically and plot the phase boundary curves (νc, δa,c) on top of the

phase-diagram in Fig. 3.13. This allows us to identify phase boundaries which correspond to
a second-order transition (when the system follows one of the solution branches in the case of
a bistability), corresponding to the red curves. On the converse, phase boundaries in Fig.3.13c
were condition (3.113) is not satis�ed are expected to correspond to �rst order transitions. It also
con�rms that the MC-AC transition is indeed a consequence of the atomic gap closing due to the
molecule condensate acting as an e�ective pump as we discussed in Sec. 3.9.3.

3.9.5 Characterization of the phases

We now turn to characterize some observable properties of the di�erent phases. First let us look
at the dependence of the order parameters ρa, ρm as a function of the detuning from resonance ν.
This is shown in Fig. 3.15 for di�erent values of δa. For relatively large atom detuning δa = 5.5
(Fig. 3.15a ) starting from ν ≈ −2 and increasing the detuning away from resonance we see that
the molecule condensate density ρm continuously increases with increasing |ν|. When the high-
density branch of ρm reaches a critical value at ν = νc it triggers atom condensation and a new
solution with ρa > 0 emerges, as expected. In addition we see the emergence of a low-density
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Figure 3.15: Condensate densities as a function of the detuning ν for di�erent values of the atomic detun-
ing δa corresponding to horizontal cuts in the phase diagram in Fig. 3.13c. In all cases we see
that at large |ν| the high-density solutions become unstable and in the low density solution the
condensate densities tend to zero.

branch 0 < ρm � 1 at νb > νc. For |ν| large enough only the low-density MC solution exists
and ρm decreases with increasing |ν|.

For smaller value of atom detuning δa = 1.5, shown in Fig. 3.15b, a slightly di�erent scenario
occurs. Here the atom condensation transition occurs before any bistability emerges. Further
more we observe that for a small range of detuning values a bistability region exists with both
a high density atom-molecule condensate solution and a low-density atom-molecule condensate
solution. Finally at larger value of |ν| the low-density molecule condensate solution emerges. We
also observe that in the high-density atom-molecule condensate solution the ρa (ρm) is higher
(lower), as compared to the case with higher δa (Fig. 3.15a).

When the atom detuning is below a threshold determined by the two-particle pump strength
λ, an atom condensate solution always exists, as shown in Fig. 3.15c for δa = 0.5. In this case, as
|ν| is increased a bistable region emerges with a low-density atom-molecule condensate solution.
We see that lowering δa results in even higher (lower) values of ρa (ρm) as compared to the two
previous cases. This is physically expected, since as we lower the atom detuning the two-particle
pump becomes more resonant with the atoms and less resonant with the molecules.

Another useful quantity to consider is the atom photoluminescence, given in Eq. (3.56). The
photoluminescence encodes both information about the excitation spectrum of the system and
the occupation of excitations. In Fig. 3.16 we plot the atom photoluminescence for di�erent val-
ues of δa at a �xed ν, exploring di�erent phases. We observe distinct behavior in each phase, which
can serve as an experimental probe. In the MC-high phase we see a shift of the peak with respect
to the vacuum case. In the AC phase we see four di�erent peaks, this is related to the fact that the
quasi-particle excitations in the AC phase are a mixture of molecule and atoms. At the phase tran-
sition between the MC high-density phase and the AC phase the photoluminescence spectrum
exhibits a gap closing as anticipated, as can be seen in Fig. 3.16 for δa ≈ 5.25. Hence, the photo-
luminescence spectrum displays a clear signature of the di�erent phases and the phase transition.
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Figure 3.16: (a) Atom photoluminescence Satom(ω, k) for di�erent values of δa at �xed detuning ν = −4
(corresponding to points in the phase-diagram in Fig. 3.13c.). (b) Cuts showing the photolu-
minescence at zero momentum Satom(ω, k = 0) at the MC-high, critical and AC phase.
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In the MC phase where 〈ψ0〉 = 0 we can write an analytic expression for Satom(ω, k) :

Satom(ω, k) =
2γa|λe�|2

[(ω + iγa)2 − E2
k ][(ω − iγa)2 − E2

k ]
, (3.115)

E2
k ≡

(
k2

2m
+ δa + uam|φ0|2

)2

− |λe�|2, λe� ≡ 2gφ0 + λ.

From Eq. (3.115) we see that the photoluminescence spectrum is symmetric with respect to ω.
This means that both negative energy modes with energy −Ek and positive energy modes with
energyEk are equally occupied. For real frequencies Satom(ω, k) has peaks at ω = ±Ek, where

Satom(±Ek, k) =
2|λe�|2
γ2
a + 4E2

k

. (3.116)

It is interesting to compare the photoluminescence spectrum in our system to the expression
for Seq(ω, k) for a regular equilibrium BEC at �nite temperature

Seq(ω, k) = nBE(βω)

[
εk + µ+ Ẽk

Ẽk
δ(ω − Ẽk) −εk + µ− Ẽk

Ẽk
δ(ω + Ẽk)

]
.

Where nBE is the Bose-Einstein distribution, Ẽk ≡
√
k2(k2 + µ) ,µ is the chemical potential

and β is the inverse temperature. In the equilibrium case the weight of the peaks is momentum
dependent and furthermore, the weight of the peak at positive frequency is always higher than the
weight of the negative peak. This is in stark contrast to what we see in the case of an atom with a
two-particle coherent pump where both peaks are equal.

3.10 MC-AC Ising transition

We will now derive an e�ective �eld theory which describes the Ising transition between the MC
phase with high-density and the AC phase. We ignore here the fact that our mean-�eld calculation
predicts a bistability region, and assume that the entire system is in a state with a speci�c value of
the molecule condensate ψ0. That is we want to describe the situation where the state of the
system follows the high-density branch of ρm(ν) shown in Fig. 3.15a.

To obtain the e�ective theory we �rst express the quadratic part of the atoms action in terms
of real �elds by de�ning

ψ̃α = ei arg(λ+φ0)/2ψα, ψ̃α(t, x) = ηα(t, x) + iχα(t, x). (3.117)
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De�ning the vector vT ≡ (ηc, χc, ηq, χq), we can write the action as

S =

∫

ω,k

1

2
vT (−ω,−k)

(
0 PA

PR PK

)
v(ω,k) (3.118)

PR(ω,k) =

(
|λe�| − ξk iω − γa
−iω + γa −|λe�| − ξk

)
(3.119)

PK = 2iγa1. (3.120)

where as before λe� ≡ λ+ 2gφ0, and ξk ≡ k2/(2m) + δa + uam|φ0|2.

In the absence of loss, we see that the �eld η will become massless at the critical point where
|λe�| = ξ0 while the �eldχ stays gapped. Hence we can integrate outχ to obtain a theory for the
critical mode only. Doing so we obtain the following theory for the �eld η

Lη =
1

2
ηq(−ω,−k)

[
(ω + iγa)

2

|λe�|+ ξk
− (ξk − |λe�|)

]
ηc(ω, k) + c.c. (3.121)

+ 2iγa

(
1 +

γ2
a

(|λe�|+ ξk)

)
ηq(−ω,−k)ηq(ω, k),

where note that η∗α(ω, k) = ηα(−ω,−k) (since it is the Fourier transform of a real �eld). For
�nite γa we can neglect the term ∼ ω2 and the k dependence of the denominator of the fre-
quency coe�cient (when we want to describe the critical behavior), this result in the e�ective low
frequency Lagrangian

Lη ≈
1

2(|λe�|+ ξ0)
ηq(−ω,−k)

[
2iγaω − (ξk − |λe�|)(ξ0 + |λe�|)− γ2

a

]
ηc(ω,k) + c.c.

+ 2iγa

[
1 +

γ2
a

(|λe�|+ ξ0)

]
ηq(−ω,−k)ηq(ω,k).

The pole of the retarded Green’s function is at

ωη(k) = − i

2γa

[
(|λe�|+ ξ0)

(
k2

2m
+ ξ0 − |λe�|

)
+ γ2

a

]
. (3.122)

We see that the η mode is completely dissipative close to the transition, since ωη(k) has no real
part. In particular, the dissipation rate at zero momentum is given by

ωη(0) = − i

γa

(
ξ2

0 + γ2
a − |λe�|2

)
→

|λe�|→λc
0. (3.123)

Thus we see that η is indeed the right �eld which describes the critical theory at the Z2 transition.
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3 Condensate phases of coherently driven bosons close to a scattering resonance

The model we obtain at the quadratic level is equivalent to model A in the Hohenberg-Halperin
classi�cation of classical dynamical criticality [86, 122]. From the relation between the noise term
and the frequency coe�cient we can read o� the e�ective temperature

Te� =
1

2
(|λe�|+ ξ0)

(
1 +

γ2
a

(|λe�|+ ξ0)2

)
(3.124)

We see that even in the limit γa → 0 (which implies |λe�| = ξ0), the critical Ising degree of
freedom is at e�ective �nite temperature Te� = ξ0. The result we obtain here is similar to that
obtained in Ref. [123] which formulated an e�ective Keldysh �eld-theory for the transverse-�eld
Ising model subject to dissipation described by a Lindblad operatorLi = σ−i .

3.11 Discussion

Let us now summarize the results of this chapter and provide some outlook. We considered a
model of attractively interacting bosonic atoms close to a scattering resonance. The atoms expe-
rience Markovian single- and two-particle losses and are not coupled to any equilibrium bath, a
setting which is naturally realized in Rydberg-polariton systems.

First, we considered the case without particle pump processes. By means of a Keldysh-�eld the-
ory description, we showed that a molecule bound state exists in this setup, with spectral prop-
erties similar to the equilibrium vacuum. The main di�erences here is that due to the losses, on
the one hand, the molecule bound state acquires �nite life-time, and on the other hand its bind-
ing energy is decreased. Furthermore, we explored the possibility of three-particle E�mov bound
states, which are known to exist in the equilibrium vacuum case. Using an FRG calculation we
have shown that the single-particle losses are detrimental to the E�mov bound states. At relatively
weak loss no E�mov states appear. This allows us to ignore them when considering many-body
e�ects.

In order to explore steady-states with a �nite many-body density we introduced a two-particle
coherent pump. This pump explicitly breaksU(1) symmetry, inducing a �nite molecular conden-
sate density. Tuning the frequency of the coherent pump, it is possible to drive a phase transition
from a molecule condensate (MC) phase to a phase with an atom condensate (AC). This is shown
by a mean-�eld study of a phenomenological model, whose form is inspired by considering the
leading corrections to the e�ective action at weak pumping.

The phase transition is associated with a breaking of a Z2 symmetry. We identify the mech-
anism behind the atom condensation instability to be an enhancement of the coherent pump
due to the molecule condensate. This enhancement is most pronounced when the pump is reso-
nant with the molecule binding energy, hence we see how the many-body phase diagram emerges
from the properties of the two-particle vacuum. Photoluminescence measurements provide an
experimental probe which is able to detect the di�erent phases and the gap closing at the phase
transition.

The work in this chapter suggests several future directions. First let us consider the pumping
mechanism. The advantage of a coherent pump over an incoherent Markovian one, is that the
former allows targeting a speci�c energy by tuning the pump frequency. This energy selectivity
is crucial to unveil the molecular physics: a Markovian pump would inject the same energy at all
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frequencies, favouring always atomic condensation and thus washing out the phase transition.
However, we pay the price of breaking explicitly theU(1) symmetry, which eliminates a possible
phase transition between the molecular BEC and a normal phase. In this respect, an appealing
option is to consider recently proposed and experimentally realized non-Markovian incoherent
pumping schemes which allow to pump particles into a speci�c narrow band of energies [72,73],
while preservingU(1) symmetry.

Another feature which merits further investigation is the fate of the bistability regions beyond
mean-�eld. In order to investigate this, one option would be to consider the dynamical evolution
of the condensate �elds in the presence of noise. One approach for this is to derive and solve semi-
classical stochastic Gross-Pitaevskii equations describing the time evolution of non-homogeneous
condensate pro�lesφ0(x, t), ψ0(x, t) in the presence of classical stochastic noise. This was done,
for example, in a similar driven-dissipative model in one and two-dimensions [107]. Another ap-
proach to include beyond mean-�eld corrections could be to use the 2PI formalism in order to
derive and solve a set of coupled equations describing both the condensate evolution and the evo-
lution of two-point correlation functions [124–126].

Yet another interesting direction would be to consider speci�cally the case of very weak pump-
ing and loss strength. There, it is possible that particle collisions, happening at a faster rate than
loss or pump events, cause the system to e�ectively thermalize. In this case the steady-state could
be well described by a thermal state with an e�ective temperature and chemical potential deter-
mined by the ratio of the pump and loss strength [127,128]. This regime might allow to reproduce
more faithfully the equilibrium physics suggested in [41, 42], whereas the main challenge would
be to derive and solve the equations for determining the e�ective temperature and chemical po-
tentials induced by the external baths.
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3 Condensate phases of coherently driven bosons close to a scattering resonance

Appendices to chapter 3

3.A Introducing the auxiliary φ field in the presence of
2-body loss and 3-body interactions

In this appendix we provide details regarding the equivalence between the atom-molecule action
Sm + Sam introduced in Eq. (3.45) and an atom only action with 2-body loss and 3-body inter-
action with the Lagrangian

Lint =
∑

σ=±
σ
[
ua − iσΓa|ψσ|4 + u3|ψσ|6

]
− iΓaψ2

+(ψ∗−)2 (3.125)

The equivalence will be shown by integrating out out the molecule �eld φ. For this purpose it is
convenient to write the action in Eq. (3.45) in the± basis,

Lm =
∑

σ=±
σ(−ν − iησ)φσφ

∗
σ − 2iηφ∗−φ+ (3.126)

Lam =
√

2gσ
∑

σ=±
(ψ2

σφ
∗
σ + c.c.)− uamσ

∑

σ=±
|ψσ|2|φσ|2 (3.127)

where we suppressed time and space indices.

To eliminate theφ�eld, we replace it with it’s stationary value given by the solution of δS/δφ =
0 3 [89]. The stationary values for φ are given by:

φ+ =

√
2gψ2

+

−iη + ν + uam|ψ+|2
(3.128a)

φ− =

√
2g
(
ηψ2
− + iνψ2

− + iuamψ
2
−|ψ+|2 − 2ηψ2

+

)

(iη + uam|ψ−|2 + ν)(η + iν + iuam|ψ+|2)
(3.128b)

φ∗+ =
2
√

2gη(ψ∗)2
−

(iη + uam|ψ−|2 + ν)(η + iν + iuam|ψ+|2)
(3.128c)

+

√
2g(ψ∗)2

+

−iη + ν + uam|ψ+|2
(3.128d)

φ∗− =

√
2g(ψ∗)2

−
iη + uam|ψ−|2 + ν

(3.128e)

3In the absence of theuam term this procedure is completely equivalent to Gaussian integration ofφ. Foruam 6= 0 it
is equivalent to gaussian integration only up to a log detD(uam|ψ|2) withD the molecule bare Green’s function.
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3.B Field equations derived form the 1-loop e�ective action

Plugging in the solutions (3.128) in the action Sm we obtain:

2g2ψ2
+(ψ∗)2

+

uamψ+ψ∗+ − iη + ν
− 2g2ψ2

−(ψ∗)2
−

uamψ−ψ∗− + iη + ν
(3.129)

+
4g2η(ψ∗)2

−ψ
2
+

(uamψ−ψ∗− + iη + ν)(iuamψ+ψ∗+ + η + iν)
+ ... (3.130)

where ... denotes terms withψ6 in the numerator. The leading contribution is obtained by ignor-
ing uam|ψ|2 terms in the denominator, which results in terms quartic in ψ.

The real terms generated correspond to coherent interaction, and the terms with imaginary
coe�cient correspond to two-body loss. This results in the following two-body interaction and
loss:

ua = − 2g2ν

η2 + ν2
, Γa =

2g2η

η2 + ν2
(3.131)

Expanding up to orderO(ψ6) we also obtain a 3-body interaction term:

−6g2uam
(
ν2 − η2

)(
|ψ+|3 − |ψ−|3)

)

(η2 + ν2)2 (3.132)

In the presence of �nite η, extra terms are generated, which cannot clearly be traced back to
having benn originated from a coherent Hamiltonian evolution [H, ρ] or a Lindblad term in some
e�ective quantum master equation:

−12ig2ηνuam

(η2 + ν2)2 [−(ψ∗)2
−ψ
∗

+ψ
3
+ − ψ−(ψ∗)3

−ψ
2
+ (3.133)

+ ψ3
−(ψ∗)3

− + (ψ∗)3
+ψ

3
+]

−12g2uamη
2

(η2 + ν2)2

(
(ψ∗)2

−ψ
3
+ψ
∗

+ − ψ−(ψ∗)3
−ψ

2
+

)
(3.134)

These terms are O(η|ψ|6) and O(η2|ψ|6), and can be neglected in the limit of small two-body
loss and atom condensate density.

3.B Field equations derived form the 1-loop effective
action

In this appendix we derive the �eld equations using the 1-loop expression for the 1PI e�ective
action Eq. (3.59). As explained in the main text, the equations are derived from the stationary
condition δΓ/δφ∗q , δΓ/δψ∗q = 0). Taking the derivatives with respect to the quantum �elds we
obtain:

(−δa + iγa − ua|ψ0|2)ψ0 + (λ+ 2gφ)ψ∗0 + itr(∂ψ̄∗qG
−1)G(φ0, ψ0) = 0, (3.135)

(−ν + iη)φ0 + 2gψ2
0 + itr(∂φ̄∗qG

−1)G(φ0, ψ0) = 0. (3.136)
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3 Condensate phases of coherently driven bosons close to a scattering resonance

We denoted here the 8× 8 Green’s function as

G−1 ≡ δ(2)S

δχ∗αδχβ
, χ ≡

(
Ψc Ψq Φc Φq

)
, (3.137)

Ψα(K) =
(
ψα(K) ψ∗α(−K)

)
, Φα(K) =

(
φα(K) φ∗α(−K)

)
, (3.138)

with K ≡ (ω,k). We added the atom interaction ua by hand in order to stabilize the atom
condensate. It is not possible to describe a stable atom condensate in the absence of ua. This
coupling will be in principle generated due to higher order contributions at �nite-density.

Evaluating the derivatives of G−1 at φq = ψq = 0 we obtain

∂φ̄∗qG
−1 =




0 0 0 0 2g 0 0 0
0 0 0 0 −uamφ∗c −uamφc 0 0
0 0 0 0 0 0 2g 0
0 0 0 0 0 0 −uamφ∗c −uamφc

−uamφc 0 0 0 −uamψc 0 0 0
−uamφ∗c 2g 0 0 0 −uamψc 0 0

0 0 −uamφc 0 0 0 −uamψc 0
0 0 −uamφ∗c 2g 0 0 0 −uamψc




∂φ̄∗qG
−1 =




−uamφc 0 0 0 −uamψc 0 0 0
2g −uamφc 0 0 −uamψ∗c 0 0 0
0 0 −uamφc 0 0 0 −uamψc 0
0 0 2g −uamφc 0 0 −uamψ∗c 0
0 0 0 0 0 0 0 0

−uamψ∗c −uamψc 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −uamψ∗c −uamψc 0 0 0 0




We also denote the di�erent 4× 4 blocks of the Green’s function as:

G ≡
(

G Gam
Gma D

)
. (3.139)
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3.C uam flow equations

Using these expressions we get:

tr(∂φ∗qG−1)G = 2g

∫

P
GK12 (3.140)

− 2uam

[
φc

∫

P
GK11 + ψc

∫

P
[GKam]11 + ψ∗c

∫

P
[GKam]12

]

tr(∂ψ∗qG−1)G = 2g

∫

P
([GKam]11 + [GKam]22) (3.141)

− 2uam

[
ψc

∫

P
DK

11 + φc

∫

P
[GKam]11 + φ∗c

∫

P
[GKam]12

]

In the limit of small or vanishing atom-condensate |ψc| � 1 we can neglect all atom-molecule
correlation functionsGam. In this limit the mean-�eld equations are given by

(−δa + iγa − ua|ψ0|2)ψ + (2gφ0 − λ)ψ∗0 = 0 (3.142a)
(
−ν + iη − 2iuam

∫

ω,k
GK11

)
φ0 + 2gψ2

0 + 2ig

∫

ω,k
GK12 = 0 (3.142b)

If we further neglect the contribution ofψc to the atom Green’s functions, we can write the atom
inverse retarded Green’s function in this limit as

PRa =

(
ω − εa,k + iγa − uam|φ|2 λ+ 2gφ

λ+ 2gφ∗ −ω − εa,k − iγa − uam|φ|2
)

(3.143)

3.C uam flow equations

In this appendix we provide details on the derivation of the FRG �ow equation for the atom-
molecule coupling uam.

The main object examined in the FRG formalism is the e�ective action at momentum scale k,
denoted Γk, which is the action obtained by integrating all quantum and classical �uctuations
with momenta q ∈ [k,Λ], where Λ is the UV-cuto�. Starting from the action at the UV scale
ΓΛ = S, we can obtain the e�ective action Γk using the formally exact Wetterich equation

∂kΓk =
i

2
Tr
[
∂kRk(Γ

(2)
k +Rk)

−1
]
≡ i

2
Tr∂̃k log(Γ

(2)
k +Rk). (3.144)

HereRk is an IR cuto� function which suppresses �uctuations at all momenta q < k with k the
running cuto� scale. Γ

(2)
k is the second variation of the e�ective action with respect to the �elds,

and the trace is take over all momenta,frequencies and Keldysh indices. The scale derivative ∂̃k
is de�ned as acting only on the cuto� function Rk, this allows us to represent the RHS of Eq.
(3.144) in terms of an expansion in Feynamn diagrams. It is also useful to de�ne t = log(k/Λ)
such that the �ow starts from t = 0 and �ows toward t = −∞.

Due to the fact that in vacuum only particle-particle diagrams are non-vanishing the �ow equa-
tions for then-body sector of the e�ective-action (which we de�ne as the set of vertices of the form
φmψr with r + 2m = 2n) are decoupled from all higher order sectors. In particular the 1-body
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3 Condensate phases of coherently driven bosons close to a scattering resonance

sector (i.e. atom propagator) remains unnormalized [90]. This vacuum hierarchy allows us to in-
troduce separate cuto�s for the atom and molecule. In particular choosingRa,k(p) = k2 for the
atom allows for an exact integration of the �ow equation for the molecule propagator in vacuum
and we obtain the result in Eq. (3.68).

To obtain the �ow-equations for the three-body sector, namely for the couplinguam, we intro-
duce a sharp momentum cuto� for the moleculeRm,k(p) = Θ(p − k). The action of the scale
derivative ∂̃t on this cuto� results in ∂̃tRm,k = −kδ(p − k) such that all momentum integrals
are just evaluated at the cuto� scale.

In order to obtain the E�mov limit-cycle it was shown in [91] that it is enough to work in the
point approximation where we negelect momentum dependence of the 3-body coupling uam.
The structure of the most generic three-body vertex in the point approximation is of the form:

Γ(3) =

∫

Q1,Q2,Q3,Q4

(uam)α
′,β′
α,β φα(Q1)φ∗α′(Q2)ψβ(Q3)ψ∗β′(Q4)δ(Q1 +Q3 −Q2 −Q4)

(3.145)
However, we �nd that in vacuum where the only dissipative processes are one and two particle
loss the structure of the 3-body sector remains similar to the second term in Eq. (3.45) and we
have to consider only one coupling uam(t) which is independent of the Keldysh indices.

In order to derive the �ow-equation for uam(t) we can evaluate the diagrams in Fig. 3.11 with
zero external-momenta and frequencies and a speci�c set of external Keldysh indices, e.g. corre-
sponding to φ∗qφcψ∗cψc.

De�ning the following dimensionless couplings:

γ̂a =
γa
k2
, δ̂a =

δa
k2
, η̂ =

η

k
, ûam = k2uam (3.146)

we obtain the following �ow equations by evaluating the diagrams in Fig. 3.11:

∂tûam = − 4û2
am

π

(
−4π(ν̂ + iη̂) +

√
3g2

√
1− 4iγ̂a − 4δ̂a

) (3.147)

− 32g2ûam

π
(

1− 2iγ̂a − 2δ̂a

)(
−4π(ν̂ + iη̂) +

√
3g2

√
1− 4iγ̂a − 4δ̂a

)

− 64g4

π
(

1− 2iγ̂a − 2δ̂a

)2
(√

3g2

√
1− 4iγ̂a − 4δ̂a − 4π(ν̂ + iη̂)

)

+ 2ûam

and
∂tγ̂a = −2γ̂a, ∂tδ̂a = −2δ̂a, ∂tν̂ = −ν̂ ∂tη̂ = −η̂ (3.148)
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4 Critical behavior near the
many-body localization transition
in driven open systems

4.1 Introduction

Many-body localization is a state of interacting quantum systems, which fail to thermalize subject
to their intrinsic dynamics due to the e�ect of strong disorder [25, 26]. An important question,
currently under intense theoretical study and debate, concerns the nature of the phase transition
between the ergodic and localized phases. This transition represents a new class of dynamical
quantum phase transitions, which involves a fundamental change of the entanglement structure
in all, or at least many, of the eigenstates.

Unlike equilibrium phase transitions, the many-body localization transition is sharp only if
the system is completely isolated, which imposes severe limitations on the ability to study it using
standard theoretical, numerical, and experimental approaches. In particular, the requirement of a
closed system appears to preclude experiments with solid state materials, which, due to coupling to
a thermal phonon bath cannot be many-body localized. Even in experiments with small systems of
ultracold atoms and ion traps, which are usually considered to be exquisitely isolated, signatures of
many-body localization are visibly polluted by extrinsic decay processes that may mask the critical
point [129–132]. At the same time, numerical experiments are also severely limited. In order to
study the MBL transition in a closed system one needs to either have access to a large number
of eigenstates in order to extract full spectral properties or to simulate close systems dynamics.
These requirements have led to numerical studies being mostly restricted to exact diagonalization
(ED) of very small systems [27, 133–138]. There is increasing evidence that such simulations are
overwhelmed by transient �nite-size e�ects that supersede the critical scaling behavior [139, 140].

In this chapter, we show a way to overcome the limitations posed by closed systems, by studying
sharp signatures of the MBL transition in weakly open driven systems. Speci�cally we consider
a situation where a disordered system is copuled to non-equilibrium baths. We assume that the
coupling is such that the dynamics of the system density matrix can be described by a Lindblad
quantum master equation

ρ̇ = −i[H, ρ] + ε
∑

ν

(
Lνi ρL

ν
i
† − 1

2
{Lνi †Lνi , ρ}

)
. (4.1)

Where the HamiltonianH undergoes an MBL transition as a function of disorder strength in the
absence of the coupling to the Lindblad operators. We will show how the weak coupling to the
baths allows probing the underlying MBL transition.
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4 Critical behavior near the many-body localization transition in driven open systems

In a previous work by Lenarčič et al. [141] it was shown that in the limit of vanishing ε, the
MBL transition shows up as a singular change in the temperature variations across the sample.
On the thermalizing side of the critical point (i.e. for su�ciently weak disorder) the temperature
�uctuations vanish in the limit ε→ 0, while they remain �nite on the MBL side.

In this chapter we build upon the work in [141] and extend it by considering the case of a small,
but non-vanishing, coupling to the external baths ε > 0. In this situation we expect that the
sharp transition which is observed in the temperature �uctuations at ε → 0 will broaden into a
crossover governed by the critical point located at ε → 0. The �nite coupling to the bath has a
similar e�ect to that of a �nite-temperature in a quantum phase transition, where the dependence
of the order parameter on temperature contains information on the properties of the underlying
quantum-critical point [142].

By studying the leading dependence of the spatial temperature �uctuations on ε in the vicinity
of the critical point we will show that we can extract the critical properties of the MBL transition,
where our main interest in this chapter is extracting the dynamical critical exponent z. The MBL
transition in one dimensional systems is believed to be preceded by a thermal Gri�ths regime
where z changes continuously as a function of the disorder strength (i.e. the tuning parameter
of the MBL transition), and diverges at the critical point. This scenario explains the subdi�usive
transport which was observed in numerical studies when approaching the MBL transition from
the ergodic sides [143–158].

The relative coupling to the di�erent Lindblad terms in Eq. (4.1) can be arranged such that
the steady state density matrix is well described by a matrix product operator with low bond di-
mension, allowing e�cient computation. Using a matrix product operator ansatz to solve for the
steady-state of Eq. (4.1), enables us to numerically compute the dependence of temperature vari-
ations on ε. Doing so we �nd a sharp signature of the Gri�th regime with a continuously varying
dynamical exponent that diverges at the critical point.

Before proceeding we note the connection to Ref. [159], where Gri�ths exponents have been
computed numerically for a similar spin-chain coupled to Lindblad operators placed at the two
ends of the chain to drive a steady state current. Because in our case the coupling to the drive
and the bath are in the bulk the calculation can converge faster and we are therefore able to access
parameter regimes much closer to the MBL transition.

Outline and summary of results

Let us now present an outline for the rest of this chapter and a highlight of our key results. Sec-
tions 4.2 and 4.3 contain background information. In Sec. 4.2 we provide background on the
MBL phase and the corresponding transition. In Sec. 4.3 we elaborate on the numerical method
we use to �nd the steady state of the QME by means of a matrix-product state ansatz.

The presentation of our research results starts in Sec. 4.4. As explained in the introduction, the
main idea is to explore the e�ect of weak coupling to the baths ε (see Eq. (4.1) ) on the local temper-
ature �uctuation order parameter which was �rst introduced in Ref. [141]. This order parameter
is de�ned as δT/T̄ , where δT is the variance of local temperatures , and T̄ is the mean tempera-
ture (both averaged over di�erent disorder realizations). This order parameter can be equivalently
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4.2 Background: Many-Body Localization

de�ned using the inverse local temperatures. Our key result is the extraction of the dynamical
exponent z from the dependence of δT/T̄ on ε, shown in Fig. 4.7.

The path leading to the extraction of z from δT/T̄ (ε) consists of three main parts:

1. In Sec. 4.4 we use a long wavelength e�ective hydrodynamic description to show that in
the ergodic side of the transition temperature �uctuations obey

√
〈δT 2〉 ∼ ε1/(2z) in 1d.

2. In Sec. 4.5 we use an e�ective resistor-network model of thermal islands with �uctuat-
ing temperatures connected via conducting links with random conductances. Here the
Gri�ths physics, the distance from the MBL transition and the strength of the bath cou-
pling ε are encoded into the model as parameters controlling the distribution of conduc-
tances. We obtain anumerical solution of the resistor-network model for large systems up
to sizeN = 1000. By assuming the dependence obtained from the hydrodynamic descrip-
tion, OT ∼ ε1/(2z), we �nd that the dynamical exponent diverges with the correlation
length z ∼ ξ−1 ( see Fig. 4.4). This scaling of z agrees with observations from previous
works [28,145] (which used alternative probes for z). Hence, the resistor-network compu-
tation substantiates our claim that z can be extracted by studyingOT (ε).

3. Finally, in Sec. 4.6, we use time-evolving block decimation (TEBD) to simulate a micro-
scopic model of an XXZ spin chain with randomhz, hx �elds, coupled to non-equilibrium
baths. The dynamics are described by Eq. (4.1). Analyzing the dependence of temperature
�uctuations in the non-equilibrium steady-state on ε we observe a divergence of z as the
system approaches the MBL transition from the ergodic side. See Fig. 4.7.

From the numerical TEBD data, and the assumption z ∼ |h − hc|−ν we extract a critical
exponent ν ≈ 4.0±0.9 which is consistent with the Harris bound [160] and is in agreement with
the results from previous phenomenological RG studies [28, 161]. This suggests that our open
system approach is less sensitive to the �nite-size e�ects encountered in ED studies, whose results
are in contradiction to the Harris bound. We conjecture that this is related to level broadening
due to �nite dissipation.

4.2 Background: Many-Body Localization

In this section we provide theoretical background on the concept of many-body localization, as
occurring in closed systems. The typical scenario which is considered is that of a quantum quench
in a closed system, where the system is initialized in some state |ψ0〉 and evolves under unitary
Hamiltonian dynamics with some HamiltonianH . That is, |ψ(t)〉 = e−iHt|ψ0〉. Typically, for
an interacting system, it is expected that the interactions between subparts of the system will lead
to a thermal steady-state at long times [24]. More precisely, this means that expectation values of
local observables are time independent and can be captured by an expectation value with respect
to a thermal density matrix:

〈ψ(t→∞)|Ô|ψ(t→∞)〉 =
trÔe−βH

Z
, (4.2)
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4 Critical behavior near the many-body localization transition in driven open systems

where the inverse temperature β is determined by the initial energy density 〈ψ0|H|ψ0〉, andZ =
tre−βH . In case the system in question possesses extra conservation laws beyond energy (e.g.
charge), the thermal steady state will be the one described by the corresponding statistical en-
semble (e.g. Grand-canonical if charge is conserved). A system which thermalizes in such a way is
called an ergodic system.

Note that strictly speaking the closed system is always described by a pure quantum state |ψ(t)〉.
However, Eq. (4.2) implies that locally (at length scales `much smaller than the system sizeL) it is
indistinguishable from a thermal state. In turn this means that any initial quantum information
encoded in the state cannot be retrieved by local measurements and is for all practical purposes
“erased”.

The property of thermalization at long-times can be connected to the eigenstates of the Hamil-
tonian {|α〉}α by considering the in�nite-time average of an observable

〈
Ô
〉
∞
≡ lim

T→∞

1

T

∫ T

0
〈ψ(t)|Ô|ψ(t)〉 =

∑

α

pαÔαα, (4.3)

with Ôαα the diagonal matrix elements in the eigenstates basis andpα are determined by the initial
projection of |ψ0〉 on the eigenstates. In order to ensure that 〈Ô〉∞ behaves in a thermal way
according to Eq. (4.2), we must require that the expectation values of local operators in individual
eigenstates 〈α|Ô|α〉 agree with those obtained from the micro-canonical ensemble with energy
Eα. This explanation of thermalization of closed quantum many-body systems is known as the
eigenstate thermalization hypothesis (ETH) [162,163]. A quantum system whose eigenstates obey
the ETH is called an ergodic system.

In contrast, Many-body localization (MBL) is a phase of matter in which an interacting closed
quantum-system fails to thermalize due to the e�ects of strong disorder. An MBL system has
vanishing conductivity even at �nite temperatures σ(T ) = 0. This is opposed to conventional
insulators which exhibit �nite conductivity at �nite temperaturesσ(T ) ∝ exp(−∆/T ) (with ∆
the gap between the Fermi-energy and the conductance band). Vanishing conductance at �nite
energy density is an obstruction to thermalization, since it prohibits �ow of energy and other
conserved quantities between di�erent parts of the system. As opposed to ergodic systems the
eigenstates of the Hamiltonian of an MBL system do not obey ETH, a statement which can also
be taken as a de�ning property of the MBL phase.

4.2.1 Anderson localization

The insulating behavior due to disorder in the non-interacting case was �rst studied by Anderson
in his seminal paper already in 1958 [164], and is known as Anderson localization. This is a single-
particle phenomenon whose essence is destructive interference which leads to localized single-
particle wave-function. To understand the phenomenon of Anderson localization, consider a
tight-binding Hamlitonian of fermions hopping on a square lattice and subject to a random on-
site potential,

HAnderson = t
∑

〈〈i,j〉〉

(c†icj + h.c.) +
∑

i

εic
†
ici, (4.4)
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where εi ∼ U([−W/2,W/2]) and
∑
〈〈i,j〉〉 denotes sum over nearest neighbors only. In one and

two dimensions it is known that disorder will always lead to localized single-particle eigenstates
ψα(r) ∼ exp(−|r−rα|/ξ) with ξ the localization length (which becomes smaller with stronger
disorder) [165]. In three dimensions, there is a critical value of disorderWc above which all single-
particle states are localized. As the disorder strength is reduced belowWc extended states appear,
where localized and extended states reside in di�erent parts of the energy band and the boundary
separating them is called the single particle mobility-edge. Finally for very weak disorder in three
dimensions practically all states are extended.

In the limit of t = 0 the eigenstates of HAnderson will be localized on a single-site ψi = |i〉
with energies Ei = εi. To show that localization can remain stable for weak but �nite hopping
0 < t � W Anderson considered a perturbative expansion in the hopping. The perturbation
induces corrections to the localized wave-function |i〉 transforming it into |̃i〉, which will have
some overlap with other sites 〈j| ĩ

〉
6= 0. For sites which are at distance n from i on the graph,

the overlap will come from nth order in perturbation theory and will be of the form

〈j| ĩ
〉
∼ t

(εi − εm1)
· · · t

(εmn−1 − εj)
. (4.5)

Since the energies are distributed uniformly in [−W/2,W/2], the denominators are typically of
order |εi − εi′ | ∼ W . Consider now the probability of �nding the particle at some site which is
at distance n from i, it can be naively estimated as

pn ∼
(
Kt

W

)2n

, (4.6)

whereK is known as the connectivity of a regular graph, and is de�ned such that the number of
non self-intersecting paths of length n starting from any point is ∼ Kn (for example the cubic
lattice in 3D has K ≈ 4.5). Hence, we see that as long as Kt/W � 1 the wave-function is
still exponentially localized, which leads to the naive criterion for the critical hopping strength
2Ktc/W = 1.

In [164] Anderson considered the so-called “locator expansion” of the Green’s function in the
basis of localized states:

Gij(E) = 〈i| 1

E −H |j〉. (4.7)

The return probability p0(t), which is the probability of a particle initially place on site i = 0 to
be found there at later times, is given by

p0(t) = − 1

2πi
lim
η→0+

∫
dze−iztG00(z + iη). (4.8)

When the system is localized, we expect p0(t) to stay �nite at large times, while if it is delocalized
we expect an exponential decay of the return probability p0(t) ∝ e−t/τ (in the thermodynamic
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4 Critical behavior near the many-body localization transition in driven open systems

limit). The Green’s function can be written as G00(E) = (E − ε0 − Σ0(E))−1 with the self
energy given by a sum over all paths which start and end at i = 0:

Σ0(E) ≡
∞∑

n=1

∑

m1,..,mn 6=0

t0mn ...tm2m1tm10

(E − εmn)...(E − εm2)(E − εm1)
. (4.9)

Note that �nite decay rate τ > 0 is generated due to the hopping only if Im limη→0+ G00(E +
iη) 6= 0 for a �nite range of energies, which can occur only when Im limη→0+ Σ0(E + iη) 6= 0
[164, 166].

It can be shown that whenever the sum in Eq. (4.9) converges Im limη→0 Σ0(E + iη) = 0,
which implies that the particle initially placed at i = 0 remains localized there. The question of
whether a particle remains localized reduces to the question of the probability of �nding resonant
paths with large transition amplitudes which cause the sum in Eq. (4.9) to diverge. This analysis
leads to the improved criterion for the critical hopping

eKλc log(1/λc) = 1, λ ≡ 2t

W
. (4.10)

The criterion in Eq. (4.10) have been shown to be in agreement with an exact solution in the case
of the Bethe lattice [167] (which can be considered as an in�nite-dimensional case). However,
as we noted above the analysis does not give the correct results for the 1- and 2-dimensional cases
(where all state are always localized), since it doesn’t take into account the possibility of destructive
interference and cancellation of paths.

4.2.2 MBL as Anderson localization in Fock-space

In Ref. [25] Basko, Aleiner and Altshuler (BAA) provided arguments for the stability of Anderson
localization to �nite interaction, by considering the problem of placing a single particle excitation
on top of a many-body eigenstate and mapping it to an Anderson localization problem in Fock-
space. BAA considered the Hamiltonian written in the basis of the single-particle eigenstates of
the disordered quadratic part

H =
∑

α

εαc
†
αcα +

1

2

∑

αβγδ

Vαβγδc
†
αc
†
βcγcδ. (4.11)

For a disordered system with strong enough disorder, the single-particle wave functions are local-
ized in space.

Now, consider placing a single-particle excitation on top of some eigenstate of the many-body
Hamiltonian |Ψk〉, such that the system is initialized in the state |ψ(t = 0)〉 = c†α|Ψk〉. The
interaction term Vγδαβ connects this initial state with states containing three particle-hole excita-
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4.2 Background: Many-Body Localization

tions and we can intuitively view this kind of scattering as a “hopping” process over a lattice whose
sites are the Fock states 1

|nα = 1, nβ = 1, nγ = 0, nδ = 0, ...〉 → |nα = 0, nβ = 0, nγ = 1, nδ = 1, ...〉. (4.12)

Hence, we expect that for strong enough interaction the initial single-particle excitation can
spread over states with three particle-hole excitations, which then spread over states with �ve ex-
citations and so on, until eventually the initial localized excitation decays completely as it spreads
over a continuum of many-body states. In a di�erent scenario with weak interaction it is possible
that the initial excitation spreads only over a limited number of states with a few excitations, and
hence remain localized.

To �nd the criterion for many-body localization consider the Fourier components of |ψ(t)〉

(ε+ Ek −H)|ψ(ε)〉 = c†α|Ψk〉. (4.13)

Eq. (4.13) can be solved iteratively in perturbation theory, as

|ψ(ε)〉 =
1

ε− εα
(|ψ(0)(ε)〉+ |ψ(1)(ε)〉+ |ψ(2)(ε)〉+ ...). (4.14)

The zeroth order is just the initial-state which is a single-particle excitation |ψ(0)(ε)〉 = c†α|Ψk〉.
The �rst order contains 3-particle excitations

|ψ(1)(ε)〉 =
∑

βγδ

Vδγβα

ε− Ωβ
γδ

c†δc
†
γcβ|Ψk〉, (4.15)

where we denoted the energy of the three-particle excitation Ωβ
γδ ≡ εγ + εδ − εβ . Similar to

single-particle Anderson localization, the main question is the probability of �nding large terms in
Eq. (4.15). If all terms are non-resonant and the �rst order correction is small, this is an indication
for MBL since the state |ψ(t)〉 has considerable overlap with the initial state c†α|Ψk〉.

Since the interaction is short-ranged, non-vanishing matrix elements appear only for single-
particle states which are within one localization volume (i.e. they are localized around points at
most∼ ξ from each other, with ξ the localization length), hence the denominators in Eq. (4.15)
are random numbers which are of order of the single-particle level spacing within the localization
cell δξ . The single-particle level spacing is related to the localization length via δξ = (νξd)−1,
with ν the density of states. For weak interactions, λ = max |Vαβγδ|/δξ � 1, most of the
terms in the sum will be small, and it will be dominated by resonant terms for which the energy
denominators are small compared to the interaction element.

Assume there are K terms in the sum in Eq. (4.15) with non-vanishing matrix elements, K
is the connectivity of the state c†α|Ψk〉 to other many-body states with three-particle excitations.

1Strictly speaking the many-body eigenstate |Ψk〉 will be a superposition of Fock-states, but the intutive picture is
still useful.
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4 Critical behavior near the many-body localization transition in driven open systems

Since the denominators are∼ U([−δξ, δξ]), the smallest denominator is of order δξ/K . Hence
the criterion for the probability of �nding a resonant term in Eq. (4.15) is

Kλ ∼ KV

δξ
∼ 1. (4.16)

The connectivity K can be estimated as the number of Fock-states connected to the initial
state c†α|Ψk〉. Those are states with non-vanishing matrix elements Vδγβα 6= 0 and for which
c†δc
†
γcβ|Ψk〉 is non-zero. BAA argue that the energies of allowed particle-hole excitations on top

of |Ψk〉 are constrained by the temperature 2 via −T < εγ , εδ; εβ < T . In addition the inter-
action matrix elements are non-vanishing only when the energy di�erence corresponding to the
transitions α → δ, β → γ (or the same with δ ↔ γ) are not larger than the level spacing δξ .
This leads BAA to the estimateK ∼ T/δξ . Using the Anderson criterion for delocalization this
leads to a criterion for the critical “temperature” (energy density) at which the interaction leads
to delocalization

Tc
δξ
λ| log λ| ∼ 1, λ =

V

δξ
. (4.17)

Since the above arguments are heuristic and also depend on some assumptions on the con-
nectivity of the graph of many-body Fock-states, BAA provide further evidence for the stability
of localization to interactions via a computation of the imaginary part of the self-energy (which
we have seen is related to localization of an initial excitation) using the Keldysh formalism. The
computation is done using the self-consistent Born approximation which takes into account only
a certain class of scattering processes. Speci�cally, only processes where at each step one excita-
tion decays into the maximal number of allowed excitations are considered (in terms of Fock-state
hopping only transitions from Fock-state with n excitations to a state with n + 2 excitations are
considered).

One mechanism for delocalization which was not taken into account by the perturbative com-
putation of BAA, is the e�ect of rare thermal regions inside the MBL phase, as pointed out by
De-Roeck et al. [168]. The main idea is that a rare thermal inclusion inside an otherwise localized
system might act as a bath which can thermalize the other parts of the system. Consider a rare
region with ` sites in which the on-site energies εi are all resonant (they are within V from each-
other). The probability of such a region is p(`) ≈ (V/W )`, and the typical size of such a region
in a system of length L is `typ(W ) ∼ logL/ log(W/V ). Assume there is a critical size `c � 1,
such that the presence of a rare thermal region with ` > `c leads to the entire system becoming
ergodic. This leads to a criterion for a critical disorder strength for which `typ(W ) = `c (to avoid
de-localization due to rare inclusion we needW > Wc),

Wc(L) ∼ V L1/`c . (4.18)

The criterion in Eq. (4.18) implies that MBL cannot exists in the thermodynmic limit, however it
would be hard to observe this e�ect in �nite-size systems to the very slow drift ofWc withL.

2Note that we are considering a closed system so the temperature should be thought of as a Lagrange multiplier which
should be determined by the energy density of the state |Ψk〉.
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4.2 Background: Many-Body Localization

In light of the possibility of de-localization due to rare thermal regions, the stability of the MBL
phase in d ≥ 2 in the thermodynamic limit is still an open research question. However, the
existence of MBL in 1d has been proven rigorously by Imbrie [169].

4.2.3 Emergent integrability in the MBL phase

An important idea which allows us to understand the MBL phase and explains much of the ob-
served phenomenology is the emergence of an extensive set of local conserved quantities, or local
integrals of motion (LIOM), reminiscent of integrable systems. A key property of the MBL phase
which allows to construct the LIOMs is that all of the eigenstates exhibit area-law entanglement.
This property of the MBL phase, which has been observed numerically [170, 171], can be in fact
considered as a de�ning property of the phase. This is in sharp contrast to high-energy eigenstates
of generic ergodic systems, which obey the ETH and exhibit volume-law entanglement.

The fact that the eigenstates of an MBL system have low entanglement, implies that they can be
connected to an un-entangled product state using a series of quasi-local unitary transformations
[171]. To be more concrete, consider the random �eld XXZ model, which is one of the typical
model systems used to study MBL,

H =
∑

i

hiσ
z
i + Jz

∑
σzi σ

z
i+1 + J

∑
(σxi σ

x
i+1 + σyi σ

y
i+1), (4.19)

where hi are random �elds drawn uniformly from [−W,W ]. In the limit J = 0, H com-
mutes with σzi for all i and hence the eigenstates are simple product-states of the form |σ〉 =
|σ1, σ2, .., σN 〉with σi =↑, ↓.

Turning on the kinetic term J 6= 0, but assuming it is weak enough such that the system is
still many-body localized, {σzi }no longer commute withH . The new eigenstates can be obtained
from |σ〉 by applying a quasi-local unitary of the form

U = Πi...U
(3)
i,i+1,i+2U

(2)
i,i+1, (4.20)

where the important property is that long-range unitaries in the decomposition ofU are exponen-
tially close to the identity ||1 − U (n)

i,i+1,..,i+n||2F < e−n/ξ (i.e. their e�ect is exponentially small
and they do not introduce much correlations between far away spins). The fact that quasi-local
unitaries su�ce to transform the product-state |σ〉 to an eigenstate |E〉 ofH , can be understood
from the fact that |E〉 has low entanglement hence only unitaries which entangle nearby spins are
essential. This is in contrast to a generic ergodic Hamiltonian, whose eigenstates can also be built
by applying a unitaryU to an initial product-state, but in this case theU will be highly non-local
in order to build the volume-law entanglement which is expected in that case.

The quasi-local unitaryU transforms the original spin-z operatorsσzi into quasi-local conserved
operators τ zi = U †σzi U , which can be written as

τ zi = Zσzi +
∑

n

V
(n)
i Ô

(n)
i . (4.21)
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The operator Ô(n)
i has support only on sites which are at most distance n from i. Crucially, each

τ zi has a �nite overlap Z 6= 0 with the original spin σzi and the contributions from higher order
operators decay exponentially V (n)

i ∼ e−n/ξ . Here ξ can be viewed as the localization length.
The Hamiltonian in the MBL phase is diagonal in the τ zi basis

HMBL =
∑

i

h̃iτ
z
i +

∑

ij

Jijτ
z
i τ

z
j +

∑

ijk

Jijkτ
z
i τ

z
j τ

z
k + .... (4.22)

Where the interaction couplings decay exponentially with the distance between the involved LI-
OMs. We note again that for every Hamiltonian we can in principle build an extensive set of con-
served quantities similar to Eq. (4.21), however in the generic case τ zi will be a highly non-local
operator with vanishing overlap with the bare σzi .

The phenomenological LIOM Hamiltonian (4.22) explains all the phenomenology observed
in the MBL phase [171, 172]. First, it is clear that the existence of the set of localized conserved
quantities {τ zi } is an obstruction to thermalization, since the dynamics is constrained to keep a
memory of the initial values of extensive set of local expectation values which may have greatly
varying values at di�erent regions of the system. Secondly, the emergent integrability explains the
Poisson statistics of the energy spectrum which is one of the numerical signatures of the MBL
phase [27, 134]. Furthermore, the LIOM picture also explain the observed unbounded loga-
rithmic growth of entanglement entropy in an MBL system after a quench [173, 174], this phe-
nomenon can be explained by {τ zi } con�guration dependent phases which are generated during
time evolution due to the couplings Ji...j between the LIOMs [175].

4.2.4 Experimental observation of MBL

The question of MBL as we framed it so far is whether an isolated system can self-thermalize
due to its internal interactions or not. We expect that coupling a system to a thermal-bath will
eventually lead to thermalization, even if the underlying Hamiltonian is MBL. Hence, it is hard
to observe MBL in experiments with solid-state systems which are always coupled to a thermal-
bath of phonons. The �rst systems in which MBL was observed were synthetic quantum matter
systems, which can be isolated from their environment to a high-degree, such as ultracold atoms
[58, 176], trapped Ions [177] and superconducting qubit arrays [178].

The �rst observation of MBL was in a system of ultracold fermions with a quasi-periodic lat-
tice potential (obtained by superimposing two lattices with incommensurate periods) [58]. The
system is described by the following Hamiltonian:

H = −J
∑

i,σ

(ĉ†i,σ ĉi+1,σ + h.c.) + ∆
∑

i,σ

cos(2πβi+ φ)n̂i,σ + U
∑

i

n̂i,↑n̂i,↓. (4.23)

The non-interacting part ofH is known as the Aubry-André model, and it exhibits a localization
transition at a critical value of the quasi-periodic potential strength ∆ = 2J [179]. Hence here
∆ plays a similar role to the disorder strength in the Anderson model.

In the experiment the system was prepared in an initial highly non-equilibrium state, consisting
of a charge-density wave in which only the even lattice sites are occupied. This state is characterized
by a high imbalance I = (Ne−No)/(Ne+No), withNe(o) the number of particles residing on
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t = 0⌧

macroscopic systems—triggered tremendous the-
oretical efforts (6–8). Furthermore, the break-
down of the eigenstate thermalization hypothesis
(9–12) caused by the failure of these systems to act
as their own heat bath implies the persistence of
initial state information, which might serve as a
useful resource for quantum information tech-
nologies (13). Several other notable features of
many-body localization (MBL) have been unco-
vered, such as the description of fully localized
systems by coupled localized integrals of motion
(14, 15). This underlies the absence of particle
transport but allows the transport of phase cor-

relations, leading to a characteristic logarithmic
growth of the entanglement entropy in the case
of short-range interactions (16–20). Another dis-
tinctive feature of many-body localized systems,
as compared with noninteracting low-dimensional
systems, is the requirement of a nonzero disorder
strength for the localized phase to appear (21, 22).
Recently, the absence of thermalization due to

MBL in a quasi-disordered one-dimensional (1D)
Fermi lattice has been reported (23, 24). These
studies explored the system’s behavior at long
times and high energy density, as opposed to
earlier experiments with noninteracting systems
(25–30) or interacting ultracold atoms in lower-
energy states (31–36). A recent experiment with
3D disordered lattice fermions provided evidence
for the absence of particle transport, even at
elevated temperatures (37). Indications for local-
ization in Fock space, one characteristic property
of MBL (2), have been reported in short ion
chains (38), and MBL has been suggested as one
possible explanation for the recently observed
vanishing conductance in disordered supercon-

ductors at nonzero temperature (39). However,
despite intensive theoretical and experimental
efforts, some aspects of MBL, such as the details
of the localization transition, including the iden-
tification of diverging length scales, are still not
fully understood. Whereas in one dimension the
localization transition is rather well studied
(21, 22, 40, 41), the nature of MBL in higher
dimensions is an open question.
Here we address the open question of the

nature of a MBL transition in two dimensions,
which we observe experimentally and character-
ize. We report on the single-site–resolved study
of thermalization and transport in a disordered
2D bosonic optical lattice, starting from a high–
energy density initial state far from equilibrium.
By tracking the time evolution of an initially
prepared density domain wall for variable dis-
order strengths, we reveal the fairly sharp onset
of nonthermalizing behavior above a critical value
of disorder strength. The observed localization
transition is found when the disorder, single-
particle bandwidth, onsite interaction, and
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Fig. 1. Schematics of the experiment and raw images. (A) A 2D random
disorder potential is imaged onto a single atomic plane in an optical lattice.
The disorder is controlled by a digital mirror device (DMD), which converts
a Gaussian laser intensity profile into a 2D random intensity distribution
with spatially uniform mean light intensity (bottom image). The limited
numerical aperture (NA = 0.68) of the microscope objective introduces a
finite correlation length and leads to a smoothing of the disorder distribu-
tion. The histogram at bottom right (red bars) is the measured disorder
distribution and its asymmetric Gaussian fit curve (red solid line), where D
is the full width at half maximum of the disorder distribution. Distinct to
the other two images showing the original (bottom) and smoothed (middle)
light intensity distributions, the top image displays the local disorder po-
tential determined by in situ spectroscopy (42). The yellow circles on the

lower images indicate the spectroscopically calibrated region. (B) Raw
fluorescence images (the red-to-yellow color scale corresponds to increasing
detected light level) showing the evolution of the initial density step with-
out disorder. The left column shows single images (isolated red dots are
individual atoms) of the parity-projected atomic distribution for the indi-
cated evolution times. The right column displays the mean density distri-
bution averaged over 50 different disorder potentials. The top left image
depicts the initial state for which the analysis region (dx × dy = 5 × 31) is
indicated by the white box. For the high-disorder case shown in (C) the
detected initial-state filling is slightly lower, which is an artifact of the parity
projection (42). In contrast to (B), traces of the initial state remain at all
times in the disordered case. The white circles in the averaged density
profiles after t = 249t highlight the difference. a.u., arbitrary units.
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down of the eigenstate thermalization hypothesis
(9–12) caused by the failure of these systems to act
as their own heat bath implies the persistence of
initial state information, which might serve as a
useful resource for quantum information tech-
nologies (13). Several other notable features of
many-body localization (MBL) have been unco-
vered, such as the description of fully localized
systems by coupled localized integrals of motion
(14, 15). This underlies the absence of particle
transport but allows the transport of phase cor-

relations, leading to a characteristic logarithmic
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of short-range interactions (16–20). Another dis-
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as compared with noninteracting low-dimensional
systems, is the requirement of a nonzero disorder
strength for the localized phase to appear (21, 22).
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studies explored the system’s behavior at long
times and high energy density, as opposed to
earlier experiments with noninteracting systems
(25–30) or interacting ultracold atoms in lower-
energy states (31–36). A recent experiment with
3D disordered lattice fermions provided evidence
for the absence of particle transport, even at
elevated temperatures (37). Indications for local-
ization in Fock space, one characteristic property
of MBL (2), have been reported in short ion
chains (38), and MBL has been suggested as one
possible explanation for the recently observed
vanishing conductance in disordered supercon-

ductors at nonzero temperature (39). However,
despite intensive theoretical and experimental
efforts, some aspects of MBL, such as the details
of the localization transition, including the iden-
tification of diverging length scales, are still not
fully understood. Whereas in one dimension the
localization transition is rather well studied
(21, 22, 40, 41), the nature of MBL in higher
dimensions is an open question.
Here we address the open question of the

nature of a MBL transition in two dimensions,
which we observe experimentally and character-
ize. We report on the single-site–resolved study
of thermalization and transport in a disordered
2D bosonic optical lattice, starting from a high–
energy density initial state far from equilibrium.
By tracking the time evolution of an initially
prepared density domain wall for variable dis-
order strengths, we reveal the fairly sharp onset
of nonthermalizing behavior above a critical value
of disorder strength. The observed localization
transition is found when the disorder, single-
particle bandwidth, onsite interaction, and
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Fig. 1. Schematics of the experiment and raw images. (A) A 2D random
disorder potential is imaged onto a single atomic plane in an optical lattice.
The disorder is controlled by a digital mirror device (DMD), which converts
a Gaussian laser intensity profile into a 2D random intensity distribution
with spatially uniform mean light intensity (bottom image). The limited
numerical aperture (NA = 0.68) of the microscope objective introduces a
finite correlation length and leads to a smoothing of the disorder distribu-
tion. The histogram at bottom right (red bars) is the measured disorder
distribution and its asymmetric Gaussian fit curve (red solid line), where D
is the full width at half maximum of the disorder distribution. Distinct to
the other two images showing the original (bottom) and smoothed (middle)
light intensity distributions, the top image displays the local disorder po-
tential determined by in situ spectroscopy (42). The yellow circles on the

lower images indicate the spectroscopically calibrated region. (B) Raw
fluorescence images (the red-to-yellow color scale corresponds to increasing
detected light level) showing the evolution of the initial density step with-
out disorder. The left column shows single images (isolated red dots are
individual atoms) of the parity-projected atomic distribution for the indi-
cated evolution times. The right column displays the mean density distri-
bution averaged over 50 different disorder potentials. The top left image
depicts the initial state for which the analysis region (dx × dy = 5 × 31) is
indicated by the white box. For the high-disorder case shown in (C) the
detected initial-state filling is slightly lower, which is an artifact of the parity
projection (42). In contrast to (B), traces of the initial state remain at all
times in the disordered case. The white circles in the averaged density
profiles after t = 249t highlight the difference. a.u., arbitrary units.

1Max-Planck-Institut für Quantenoptik, 85748 Garching,
Germany. 2Department of Physics, Princeton University,
Princeton, NJ 08544, USA. 3Institute for Advanced Study,
Princeton, NJ 08540, USA. 4Fakultät für Physik, Ludwig-
Maximilians-Universität, 80799 München, Germany.
*These authors contributed equally to this work. †Corresponding
author. Email: jae-yoon.choi@mpq.mpg.de ‡Present address:
Department of Physics, Princeton University, Princeton, NJ 08540,
USA. §‡Present address: Laboratoire Kastler Brossel, CNRS, École
Normale Supérieure, 75005 Paris, France.

RESEARCH | RESEARCH ARTICLES

on Septem
ber 5, 2020

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

macroscopic systems—triggered tremendous the-
oretical efforts (6–8). Furthermore, the break-
down of the eigenstate thermalization hypothesis
(9–12) caused by the failure of these systems to act
as their own heat bath implies the persistence of
initial state information, which might serve as a
useful resource for quantum information tech-
nologies (13). Several other notable features of
many-body localization (MBL) have been unco-
vered, such as the description of fully localized
systems by coupled localized integrals of motion
(14, 15). This underlies the absence of particle
transport but allows the transport of phase cor-

relations, leading to a characteristic logarithmic
growth of the entanglement entropy in the case
of short-range interactions (16–20). Another dis-
tinctive feature of many-body localized systems,
as compared with noninteracting low-dimensional
systems, is the requirement of a nonzero disorder
strength for the localized phase to appear (21, 22).
Recently, the absence of thermalization due to

MBL in a quasi-disordered one-dimensional (1D)
Fermi lattice has been reported (23, 24). These
studies explored the system’s behavior at long
times and high energy density, as opposed to
earlier experiments with noninteracting systems
(25–30) or interacting ultracold atoms in lower-
energy states (31–36). A recent experiment with
3D disordered lattice fermions provided evidence
for the absence of particle transport, even at
elevated temperatures (37). Indications for local-
ization in Fock space, one characteristic property
of MBL (2), have been reported in short ion
chains (38), and MBL has been suggested as one
possible explanation for the recently observed
vanishing conductance in disordered supercon-

ductors at nonzero temperature (39). However,
despite intensive theoretical and experimental
efforts, some aspects of MBL, such as the details
of the localization transition, including the iden-
tification of diverging length scales, are still not
fully understood. Whereas in one dimension the
localization transition is rather well studied
(21, 22, 40, 41), the nature of MBL in higher
dimensions is an open question.
Here we address the open question of the

nature of a MBL transition in two dimensions,
which we observe experimentally and character-
ize. We report on the single-site–resolved study
of thermalization and transport in a disordered
2D bosonic optical lattice, starting from a high–
energy density initial state far from equilibrium.
By tracking the time evolution of an initially
prepared density domain wall for variable dis-
order strengths, we reveal the fairly sharp onset
of nonthermalizing behavior above a critical value
of disorder strength. The observed localization
transition is found when the disorder, single-
particle bandwidth, onsite interaction, and
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Fig. 1. Schematics of the experiment and raw images. (A) A 2D random
disorder potential is imaged onto a single atomic plane in an optical lattice.
The disorder is controlled by a digital mirror device (DMD), which converts
a Gaussian laser intensity profile into a 2D random intensity distribution
with spatially uniform mean light intensity (bottom image). The limited
numerical aperture (NA = 0.68) of the microscope objective introduces a
finite correlation length and leads to a smoothing of the disorder distribu-
tion. The histogram at bottom right (red bars) is the measured disorder
distribution and its asymmetric Gaussian fit curve (red solid line), where D
is the full width at half maximum of the disorder distribution. Distinct to
the other two images showing the original (bottom) and smoothed (middle)
light intensity distributions, the top image displays the local disorder po-
tential determined by in situ spectroscopy (42). The yellow circles on the

lower images indicate the spectroscopically calibrated region. (B) Raw
fluorescence images (the red-to-yellow color scale corresponds to increasing
detected light level) showing the evolution of the initial density step with-
out disorder. The left column shows single images (isolated red dots are
individual atoms) of the parity-projected atomic distribution for the indi-
cated evolution times. The right column displays the mean density distri-
bution averaged over 50 different disorder potentials. The top left image
depicts the initial state for which the analysis region (dx × dy = 5 × 31) is
indicated by the white box. For the high-disorder case shown in (C) the
detected initial-state filling is slightly lower, which is an artifact of the parity
projection (42). In contrast to (B), traces of the initial state remain at all
times in the disordered case. The white circles in the averaged density
profiles after t = 249t highlight the difference. a.u., arbitrary units.
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A key signature of the transition from ergodic
to MBL phase is the change in the localization
length of the system from being extended over
the entire system to localized over a few lattice
sites. This physics can be studied by measuring
the probability of each energy eigenstate being
present at each lattice site fPa;ng (21). In our
method, the frequencies of the FT signal give
the eigenenergies, and from the magnitude
of the FT terms, fPa;ng can be measured; for
instance, P9;6 is highlighted in Fig. 1C. In the
study of metal–insulator transitions (32, 33),
a common way to quantify the extension in
real space or energy landscape is via the second
moment of the probabilities, defined by partic-
ipation ratio (PR)

PRSpaceðaÞ ≡ 1=
X

n

P2
a;n;PREnergyðnÞ ≡ 1=

X

a

P2
a;n

ð5Þ

PRSpace indicates the number of sites over which
an energy eigenstate jfai has an appreciable mag-

nitude. Similarly, PREnergy measures how many
energy eigenstates have a discernable presence on
lattice site n. Note that the first moments of the
probability distributions are normalization con-

ditions
X

a
Pa;n ¼ 1 and

X

n
Pa;n ¼ 1.

Having demonstrated that we can fully resolve
the energy spectrum of the two-photon energy
manifold, we now extract fPa;ng. In Fig. 4A, we
plot PRSpace for various disorder strengths in
the order of increasing energy. In this energy
manifold, there are 36 single- ðe:g:;j001000100iÞ
and9double-occupancy statesðe:g:;j000020000iÞ,
whichgives

! 9
2

"
þ
! 9
1

"
¼ 45energy levels.For low

disorder ðD=J < 1Þ, PRSpace is about 8, indicating
that almost all energy eigenstates are extended
over the entire chain of nine qubit lattice sites.
As the strength of disorder increases, the eigen-
states with their energies close to the edge of the
energy band start to shrink, whereas the eigen-
states with energies in the middle of the band
remain extended at larger disorders. This is sim-

ilar to the Anderson localization picture, in which
localization begins at the edges of the band, and
a mobility edge forms (the yellow hue) and ap-
proaches the center of the band as disorder be-
comes stronger (32). The existence of the mobility
edge in MBL has been theoretically questioned,
and proper investigation of it requires going to
larger systems and finite size scaling (34). Given
that numerical exact diagonalization is limited
to small systems, scaling up the experiment could
shed light on this matter and the general under-
standing of MBL (33, 35).
In Fig. 4B, we plot the PREnergy , which shows

that as the disorder becomes stronger, the num-
ber of eigenstates present at a given lattice site
is reduced, indicating that eigenstates are be-
coming localized on lattice sites. Furthermore,
with increasingdisorder, the eigenstates are avoid-
ing the edges of the chain, and more eigenstates
are present toward the center of the chain. The
changes in PRSpace and PREnergy are the fastest
near D=J ¼ 2, suggestive of a phase transition
that has been smeared out owing to finite-size
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Fig. 3. Level statistics in a disordered potential. In Eq. 2, we set
hopping to J=2p ¼ 50 MHz, which fixes U=J ¼ 3:5. To obtain a disordered
potential, we set mn ¼ Dcosð2pnbÞ with four different irrational values of
b∈ ½0; 1& chosen and the results averaged over b. (A) The schematic of
energy levels shows how ra is defined. (B) The histogram of PðrÞ measured

for various values of disorder D=J is presented as a color plot. (C) The
measured histogram PðrÞ of frag for D=J ¼ 1 and 5. The dashed lines are
plots of PPoisson and PGOE according to Eq. 4, and the solid lines are
numerical simulations (21). The change from the GOE toward the Poisson
distribution is indicative of vanishing of level repulsion with increase in D.

Fig. 2. Hofstadter butterfly. In Eq. 3,we set on-site potentialsD=2p ¼ 50MHz
and coupling J=2p ¼ 50 MHz. (A) Data similar to Fig. 1D, averaged squared
FTmagnitude, are shown for 100 values of dimensionless magnetic field b
ranging from 0 to 1. (B) For each b value, we identify nine peaks and plot

their location as a colored dot.The numerically computed eigenvalues of
Eq. 2 are shown as gray lines (21).The color of each dot is the absolute value
of the difference between the measured eigenvalue and the numerically
computed one.
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Figure 4.1: Experimental signatures of MBL. (a) Evolution of an initial density imbalance I = (Ne −
No)/(Ne + No) for di�erent values of disorder strength ∆, as observed in a 1D chain of ul-
tracold interacting fermions. For strong disorder I(t) retains a �nite value even at long times
indicating lack of thermalization (�gure taken from [58]). (b) Indications for MBL in 2D sys-
tem, as observed in the remnants of an initial density domain-wall at long times (�gure adapted
from [176]). (c) Experimental measurement of the energy level statistics P (r) for two photons
in a 9 site Bose-Hubbard chain implemented in a superconduting qubit array. P (r) exhibits a
change from Wigner-Dyson statistics at weak disorder to poisson statistics at strong disorder,
which is an indication for a localized phase (�gure taken from [178]).

even(odd) sites. Then the system is evolved and the imbalance I(t) is tracked. In the absence of
the quasi-periodic potential, ∆ = 0, the initial imbalance was observed to quickly relax to zero,
while for ∆ > ∆c the imbalance remained at a �nite value after an initial relaxation implying the
lack of thermalization (see Fig. 4.1a).

Further experimental examples include the investigation of MBL in a 2D system of ultracold
fermions [176], where the system was initialized with a density domain wall. There, for strong
enough disorder, remnants of the density imbalance are still visible at long times, as opposed to the
case with no disorder (see Fig. 4.1b). Signatures of localization were also observed in an experiment
with superconducting qubits, where a novel spectroscopic method was used to directly measure
the energy level statistics [178] (see Fig. 4.1c).

4.2.5 The MBL transition

Starting from the case of strong disorder and weak interactions, where the system is many-body
localized, and decreasing the strength of disorder, an MBL system will eventually undergo a phase
transition to an ergodic thermalizing phase. This MBL transition is very di�erent than typical
quantum (or classical) phase transitions studied in equilibrium settings, since the MBL properties
are encoded in all the eigenstates of the Hamiltonian 3. At the transition the eigenstates undergo
a radical change in their entanglement properties from area-law in the MBL side to volume-law
in the ergodic side. This is in contrast to T = 0 quantum phase transitions which are between
two di�erent ground-states each having area-law entanglement. In a sense the MBL transition can
be thought of as a transition between quantum and classical behavior. Indeed in the MBL phase

3In principle there could exist a many-body mobility edge, separating localized and ergodic eigenstates, but we ignore
such complication in the qualitative discussion here.
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4 Critical behavior near the many-body localization transition in driven open systems

quantum information encoded in the initial state persists to arbitrary long time. On the other
hand quantum information is quickly scrambled and becomes inaccessible in the thermal phase,
whose long time dynamics are well described by classical hydrodynamics.

So far, a clear simple thermodynamic quantity which serves as an order parameter for the MBL
transition is not known, and in fact it could very well be that such an order parameter does not
exist. Hence numerical studies of the MBL transition require analysis of dynamical and spectral
properties, which are quantities that involve a large number of eigenstates. For this reason numer-
ical studies of the transition are challenging and have been mainly limited to ED studies of small
systems [27, 133–138].

A variety of quantities can be studied numerically using ED to detect the transition. Due to
the emergent integrability, the energy levels are expected to exhibit Poisson behavior in the MBL
phase, and Wigner-Dyson behavior in the ergodic phase. This can be seen numerically by studying
the average of the ratio rn = min{δn, δn−1}/max{δn, δn−1} with δn = En+1 − En . As
a function of the disorder strength a transition from 〈r〉 ≈ 0.52 (predicted by random matrix
theory) in the ergodic phase to 〈r〉 ≈ 0.38 (Poisson) in the MBL phase is observed [134]. Another
quantity one can study is the eigenstate entanglement-entropy SA of a subsystem A (averaged
over disorder and eigenstates), which is expected to be independent of subsystem size in the MBL
phase and scale linearly with size in the ergodic phase [135, 136, 180]. Furthermore the standard
deviation ofSA over the disorder ensemble shows a peak at the transition, and it is thus analogous
to a susceptibility.

In the ED studies the critical exponent ν ≈ 1 is found [135, 180]. This result is inconsistent
with the Harris bound ν > 2/d which is a criterion for the stability of classical and quantum
critical points in disordered systems [160, 181], which was argued to hold also for the MBL case
[182]. This implies that ED studies su�er from strong �nite-size e�ects which make observing the
true critical behavior challenging.

A di�erent approach for studying the MBL transition is by means of phenomenological RG
schemes, which were �rst introduced by Vosk et al. [28] and Potter et al. [161]. For example, the
RG description in [28] considers a set of blocks which represent insulating and thermal regions of
a 1d system close to the MBL transition (where we expect both kind of regions to exist). Each block
is described by a many-body level spacing ∆i ∼ 2−`i and thermalization rate Γi (time for entan-
glement propogation). Together these two parameters form a dimensionless quantity g = Γ/∆,
where g � 1 for a thermal region and g � 1 for an insulating region. In addition neighbouring
blocks are coupled with rates Γij . The RG coarse-graining step is comprised by merging the two
block with the largest coupling Γij and computing the new Γe�,∆e�, Γ̃ij according to a set of
phenomenological rules. This can be viewed as reducing a cuto� Ω = max Γij . Depending on
the parameters of the merged block, this can lead to the new block becoming more insulating or
more thermal.

As the RG steps are taken the average block size ` increases. The main point is to examine the
scaling of the typical value ofg as a function of `. In the MBL phase blocks become more and more
insulating as they are coarse grained g ∼ e−`/ξRG , while in the ergodic phase we expect g ∼ es`

at large scales with s the entropy density. Numerical simulation of the phenomenological RG
shows a transition between these two regime as a function of the disorder strength which enters
via the disorder in the initial distribution of gi. This RG scheme,as well as the slightly di�erent
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(but similar in spirit) scheme in [161], predicts ν ≈ 3.3 which is in agreement with the Harris
bound.

4.2.6 Griffiths effects close to the MBL transitions

One remarkable property of the transition between the ergodic and MBL phase in 1d is the pre-
diction of a continuously increasing dynamical exponent z which diverges at the critical point
similarly to the localization length z ∼ ξ ∼ (h − hc)

−ν . This is a manifestation of Gri�th
e�ects which are due to rare localized regions appearing in the thermal side of the transition.

The idea that rare regions in disordered systems can lead to singularities in dynamical corre-
lation functions was originally introduced by Gri�ths [183] and McCoy [184] in the context of
classical disordered spin systems. The key idea of the Gri�ths e�ects in the case of the MBL tran-
sition is the e�ect of rare insulating regions which are embedded in an otherwise thermal system.
In a one-dimensional system these rare insulating regions act as a bottleneck for transport.

To understand the origin of the divergence of z, we bring here the intuitive scaling argument
provided in Ref. [28]. In the ergodic phase, the density of insulating (or critical) regions of length
` decays exponentially with the length and scales as 4

p(`) ∼ 1

ξ2
e−`/ξ, (4.24)

where ξ is the length scale which diverges at the transition. Here we are assuming that the system
size L is much larger than ξ. While long insulating regions are exponentially rare they act as a
strong bottle-neck to transport with transport time τ(`) ∼ τ0 exp(`/a) (with a, τ0 some micro-
scopic length and time scales respectively). For a long system of sizeL� ξ, the number of thermal
regions with length> `, is given byNL(`) = L

∫∞
` dsp(s) = (L/ξ)e−`/ξ . The longest region

we will typically �nd in the system can be estimated from the condition NL(`m) = 1, which
leads to `m(L) ∼ ξ log(L/ξ). Close enough to the MBL transition we can assume that the rare
insulating regions will serve as the main bottleneck for transport, which leads to transport time

τ ∼ τ0 exp(ξ/a log(L/ξ)) ∼ Lξ/a ≡ Lz. (4.25)

Hence we see that the dynamical exponent diverges as the correlation length z ∼ ξ as we approach
the critical point. Beyond the heuristic scaling argument, the divergence of z at the MBL transi-
tion was observed in the RG study of [28], where the phenomenological RG scheme allows one
to extract the typical transport time of a block τtr = (`/`0)Γ−1.

Typically for a weakly disordered system, propagation of particles can be described via a random-
walk process due to a series of scattering events, and hence the equation governing dynamics of
the density is a di�usion equation ∂tn = D∂2

xn. This leads to the common di�usive scaling with
z = 2 and transport time τ ∼ L2. The arguments above suggest that close to the MBL transition
sub-di�usive (i.e. z > 2) transport is expected. This was observed numerically in several works
using ED studies [145, 159, 185].

In particular Agarwal et al. [145] used both ED and an e�ective resistor-network model to study
Gri�ths signatures in the low-frequency behavior of the optical conductivity σ(ω) and in the

4Note that by integrating p(`) we obtain that the total density of critical regions in the thermal bulk is∼ 1/ξ.
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4 Critical behavior near the many-body localization transition in driven open systems

compute the full distribution D½ρðωÞ$ of resistivities ρ at a
fixed sample size as a function of frequency; we find that
the width of this distribution diverges in the low-frequency
limit as ΔρðωÞ ∼ 1=ωα0 . Such behavior is characteristic of a
quantum Griffiths phase [39], in which power-law corre-
lations emerge due to the interplay between the exponential
rareness of large insulating regions and their exponentially
large resistance. We account for these scaling relations by
postulating a scaling form of the spin-diffusion propagator
and a phenomenological resistor-capacitor model with
power-law-distributed resistors.
As our work was nearing completion, a related numerical

study by Bar-Lev et al. [40] appeared. While our numerical
results are consistent with those of Ref. [40], we are also
able to provide an analytic understanding of the subdiffu-
sive phase (see also Ref. [41]).
Numerical simulations.—We work with the XXZ model

given by the Hamiltonian

H ¼
X

i

hiS
z
i þ

X

hiji
JðSxi Sxj þ Syi S

y
jÞ þ JzS

z
iS

z
j; ð1Þ

where hiji implies sites i and j are nearest neighbors. The
local magnetic field values hi are picked uniformly from
the range ½−hmax; hmax$; hmax characterizes the strength of
the disorder. The exponents α; β presented in Fig. 1 were
extrapolated from finite size results computed using system
sizes L ¼ 12; 14; 16 (see the Supplemental Material [42]),
while results in Fig. 2 correspond to L ¼ 14. We use J¼ 1
as the unit of energy, and choose the interaction strength to
be close to the Heisenberg point, Jz ≲ 1, as finite-size
effects are more severe for Jz=J≪ 1. The XXZ chain is
expected to exhibit an infinite-temperature transition to the
MBL phase at a critical hmax [5]. In what follows, we
restrict ourselves to infinite temperature and choose the
subspace of total magnetization

P
iS

z
i ¼ 0.

The real part of the optical conductivity σðωÞ in linear
response reads

TσðωÞ ¼ T
L
1 − e−ω=T

ω

X

mn

e−βEn

Z

!!!!hmj
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jijni
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δðω − ωmnÞ;
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where m, n are the many-body eigenstates of the system
with energies Em, En, which we evaluate using exact
diagonalization, ωmn ¼ Em − En, and T is the temperature
(we set ℏ ¼ kB ¼ 1). The first line of Eq. (2) is the
Lehmann representation of TσðωÞ, given in terms of a
sum over local current operators ji, which are related
to the spin operators using the continuity equations,
ji − jiþ 1 ¼ ∂tS

z
i . The second line of Eq. (2) is the limiting

behavior of TσðωÞ as T → ∞. In the remainder of the
Letter, the factor T is implicitly understood when we refer
to the conductivity σðωÞ. In our numerics, we use a
Lorentzian form for the δ function with a width
η ∼ Δ=102, where Δ ¼ hmax

ffiffiffiffi
L

p
=2L is approximately the

average level spacing ∼10−3–10−2 for the system size
L ∼ 14 and disorder strengths hmax ∼ 1.5–3.5 that we
explore. The precise value of η is unimportant, so long
as it is appreciably smaller than Δ (see the Supplemental
Material [42]). The return probability, Ci

zzðtÞ, is defined as
Ci
zzðtÞ ¼ 4hSzi ðtÞSzi ð0Þi, where i is any site on the chain.

Since we are interested in describing the phase close to the
MBL transition, we also require an additional, independent,
method to identify the transition point.
Following Ref. [5], we consider the level statistics

parameter rm ¼ δm−=δmþ , where δm' are the energy
differences between eigenstate m and the two adjacent
eigenstates with δm− < δmþ . The average over all eigenstates
m, r ¼ hrmi, is known to assume different values, r ∼ 0.39
and r ∼ 0.53 in the cases of the MBL and the conducting
phase, respectively. We crudely estimate the MBL tran-
sition as the point when r is halfway between these values,
as determined for a L ¼ 16 system (dashed line at hmax ≈3
in Fig. 1).

FIG. 2 (color online). Behavior of (a) optical conductivity σðωÞ, (b) return probability CzzðtÞ, and (c) width ΔρðωÞ of the distribution
of resistivities as a function of frequency (magenta). All plots are forJz ¼ 0.8, and disorder strengths as indicated in the legend. The fits
(green) are power laws of the form Czz ∼ 1=tβ, σðωÞ ∼ ωα, and ΔρðωÞ ∼ 1=ωα0 . The inset in (c) shows the relative power γ ¼ α0 − α
governing the scaling of the ratio ΔρðωÞ=hρðωÞi of the width and the mean of the resistivity distribution.
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Figure 4.2: Power-law behavior of the optical conductivity σ(ω) and return probability Czz(t) close to
the MBL transition in the ergodic side, obtained via ED study of the random-�eld XXZ model
[145]. The power-law behavior indicates a sub-di�usive behavior which is a prediction of the
Gri�ths picture. Here the exponent β is related to the dynamical exponent via β = 1/z, and
α ≈ 1− 2β. Figure taken from Ref. [145].

return probabilityCzz(t) ∼ 〈Szi (t)Szi (0)〉. The study is done using the disordered XXZ model
(Eq. (4.19) ), where the in�nite temperature limit of the optical conductivity is computed from
the eigenstates using a linear-response formula Tσ(ω) ≈ (LZ)−1

∑
mn |〈m|

∑
i ji|n〉|2δ(ω −

ωmn) with ji the spin current operators. The numerical results for a system of size L = 14
show that both observables exhibit a power-law behavior σ(ω) ∼ ωα, Czz(t) ∼ t−β on the
ergodic side close to the MBL transition (see Fig. 4.2). The scaling relation observed between
the exponents is α + 2β ≈ 1, which can be predicted by identifying z = 1/β. Speci�cally,
it is observed that β decreases towards zero as the MBL transition is approached. In the case of
di�usive transport Czz(t) ∼ 1/

√
t is expected, so β < 1/2 indicates sub-di�usive transport

indeed. Agarwal et al. further show that an e�ective resistor-network model, with a power-law
distribution of resistances P (R) ∼ R−τ , reproduces the numerical results of the microscopic
model. This serves as evidence that the origin of the sub-di�usive transport is indeed due to the
e�ects of rare insulating regions.

4.2.7 MBL in open systems

So far we have discussed MBL in the context of closed system dynamics, and we have seen that
in a many-body localized system the interactions fail to thermalize the system. However, if we
take an MBL system and connect it to a large thermal bath, for example phonons in a solid-state
system, we would expect that the system will eventually reach thermal equilibrium as the coupling
to phonons leads to transport via variable-range hopping. For this reason MBL has been hard to
observe in real materials.

Experiments observing MBL have been so far performed in systems of synthetic matter of ul-
tracold atoms or trapped ions [58, 176]. In those systems there are no phonons since the lattice is
created via laser potentials. While ultracold atom systems can be isolated to a much better degree
than solid-state systems, dissipation still exists in those systems (e.g. particle loss). Hence, it is im-
portant to study the e�ect of weak dissipation on the experimental signatures of MBL (which in
AMO systems can be usually well described in terms of a Markovian Lindblad quantum master-
equation).
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Activating many-body localization in solids by driving with light

Zala Lenarčič1, Ehud Altman2, and Achim Rosch1

1Institute for Theoretical Physics, University of Cologne, D-50937 Cologne, Germany
2Department of Physics, University of California, Berkeley, California 94720, USA

Due to the presence of phonons, many body localization (MBL) does not occur in disordered solids,
even if disorder is strong. Local conservation laws characterizing an underlying MBL phase decay
due to the coupling to phonons. Here we show that this decay can be compensated when the system
is driven out of equilibrium. The resulting variations of the local temperature provide characteristic
fingerprints of an underlying MBL phase. We consider a one-dimensional disordered spin-chain
which is weakly coupled to a phonon bath and weakly irradiated by white light. The irradiation has
weak e↵ects in the ergodic phase. However, if the system is in the MBL phase irradiation induces
strong temperature variations of order 1 despite the coupling to phonons. Temperature variations
can be used similar to an order parameter to detect MBL phases, the phase transition and an MBL
correlation length.

A quantum many body system subjected to strong dis-
order can be many-body localized and thus fail to ther-
malize when evolving under its own dynamics1,2. This
phenomenon has attracted a lot of interest as an exam-
ple of a novel dynamical state of matter. In the case of a
fully MBL state, where all the many-body eigenstates of
the hamiltonian are localized, the system is characterized
by an extensive set of local integrals of motion3–6.

The local conservation laws persist without fine-
tuning, which makes MBL more robust than conventional
integrability. Like integrable models, however, many-
body localization cannot survive even the weakest static
coupling of the system to an external bath of delocal-
ized excitations7. Any such coupling would lead to ther-
malization, therefore all direct experimental demonstra-
tions of MBL were so far achieved with ultra cold atomic
systems8 as well as trapped ions9, which can be extremely
well isolated from the environment. In solids, by contrast,
the electronic degrees of freedom are inevitably coupled
to phonons and the ensuing thermal state shows no sign
of the local integrals of motion.

In this paper we argue that the local integrals of motion
of an electronic system can be ”reactivated” by driving
the system to a non-equilibrium steady state. In essence,
the driving counters the relaxation with the phonon bath,
giving rise to a new steady state in which the value of the
local integrals of motion is set by a local balance between
the phonons and the drive. In the limit of weak drive and
weak coupling to phonons this scheme allows to make a
sharp distinction between the steady states obtained with
the dominant Hamiltonian in the MBL phase compared
to an ergodic one, as demonstrated in Fig.1.

In previous work, we developed a formalism for com-
puting the steady state density matrix of integrable sys-
tems subject to weak driving and coupling to baths10–12,
which is also applicable here. In the limit of weak driv-
ing steady state expectation values can be approximately
computed using a generalized Gibbs ensemble adjusted
to expectation values of the integrals of motion, deter-
mined by rate equations. Fig. 1 shows how this scheme
plays out in the MBL phase compared to a conventional
thermalizing phase. In the fully MBL system, there is

●

●

● ●

●

● ● ●
● ●

●
●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

h=10
h=3
Tp

2 4 6 8 10 12
10

15

20

25

30

i

T i

�

ϵd,ϵp > 0
ϵd,ϵp 0

h

δT
/T

�

��

����������

FIG. 1. Upper panel: profile of local temperatures in sys-
tems coupled to a phonon bath at temperature Tp and driven
weakly by white light. The temperature variations are large
in the MBL phase (red circles), while they are vanishing in
the ergodic phase (black squares). Lower panel: a schematic
depiction of the standard deviation of local temperatures ver-
sus disorder strength. A sharp phase transition is expected in
the limit of vanishing coupling to the phonons and the drive,
i.e. ✏d, ✏p ! 0, while ✏d/✏p ! const.

always a set of integrals of motion related to the local
energy density. Hence driving the system gives rise to
widely varying local temperatures. In an ergodic system,
on the other hand, only the global energy is conserved,
hence when it is weakly driven the system equilibrates to
a thermal state characterized by a single temperature.

In a similar setup with a disordered system weakly cou-
pled to a bath and a monochromatic drive Refs. 13 and
14 studied optimization of nuclear polarization. Nuclear
polarization is optimized when the underlying system is
close to the localization transition. In agreement with
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Figure 4.3: Lenarčič et al. used local temperature �uctuations to study the MBL transition in a system
weakly coupled to phonons and drive with coupling strength ε [141]. The �gure shows the nu-
merically calculated local temperature, in the limit ε → 0, for di�erent values of the disorder
strength h. For small h the system is in the thermal phase and the temperature pro�le is uni-
form. For large h the system is in the MBL phase and the weak coupling to the baths leads to
large �uctuation of the local temperature, due to the existence of an externsive number of local
integrals of motion. (Figure taken from [141])

Fischer et al. [147] considered the e�ects of coupling a system deep in the MBL phase to a
dephasing noise Li = ni or particle loss Li = ci. Existence of LIOMS allows them to derive an
e�ective classical master equation. The main goal is to explore the e�ect of the dissipation on the
dynamics of a density imbalance I = 〈ne − no〉/〈ne + no〉 (where ne (no) is the occupation
of even (odd) sites) which is imprinted on the initial state. In the MBL phase, in the absence of
dissipation, we expect the initial imbalance to decay to a �nite value and retain a non-vanishing
asymptotic value. Ref. [147] �nds that dissipation leads to decay of the initial imbalance with a
stretched exponential form, which is reminiscent of the dynamical behavior of classical glasses.

Lüschen et al. [61] performed an experimental study using ultracold fermions with controlled
dephasing. They study ultracold fermions in a 1d quasi-periodic optical lattice which realizes the
interacting Aubry-André model, Eq. (4.23). Dephasing with a controlled rate is induced via a
dedicated plane-wave laser which is tuned to induce internal atomic transition leading to photon
scattering (which corresponds to a density “measurement”). The system is initialized in a charge-
density with density imbalance I close to unity.

The experimental measurements of the imbalance dynamics agree with the theoretical predic-
tion of stretched exponential decay I(t) ∼ e(−ΓIt)β in Ref. [147]. The imbalance relaxation
rate ΓI is found to be linearly increasing with the photon scattering rate γ (strength of dephasing
noise). Furthermore, de�ning the susceptibility to dephasing via ΓI = χγ+ Γbg, it is found that
χ increases with interaction strength close to the MBL transition. Even though the experimental
results show that dephasing eventually destroys MBL properties at long times, for weak enough
dephasing rate it is possible to observe an intermediate regime where the imbalance is �nite which
allows for an experimental observation of MBL. One can think of γ having similar e�ect as tem-
perature on a QCP, where the true properties of the QCP only exist at T = 0, but nevertheless
one can observe signatures and crossovers also at T > 0.
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4 Critical behavior near the many-body localization transition in driven open systems

A recent work by Lenarčič et al. [141] (of which our work in this chapter is a continuation of)
suggested a route for observing the MBL transition in open-systems by coupling the system to
an additional non-equilibrium drive. They considered a disordered interacting system which is
weakly coupled to phonons and irradiated by light. In the limit of vanishing strength of drive and
phonon coupling εd, εp → 0. Ref. [141] observed that the variance of local temperatures acts
as an order parameter for the MBL transition, and it is possible to extract the critical exponent
ν by examining its dependence on the disorder strength (see Fig. 4.3). Remarkably, even though
the system sizes studied in [141] are quite smallN ≤ 12, the extracted critical exponent ν ≈ 2.6
obeys the Harris bound ν > 2/d. This is in stark contrast to previous numerical ED studies done
on closed systems, which obtain ν ≈ 1 in contradiction with the Harris bound.

To understand why the local temperature �uctuations are expected to act as an order param-
eter for the weakly open-driven MBL system, recall the fact that the MBL phase is characterized
by an extensive set of quasi-local conserved quantities τ zi . Previous works by Lenarčič, Lange and
Rosch [127, 128] have shown that the steady-states of integrable systems which are weakly driven
and coupled to baths can be well described by a generalized Gibbs ensemble ρ ∼ exp(

∑
i λiCi).

Here, the expectation values of conserved quantities 〈Ci〉, and equivalently the Lagrange mul-
tipliers λi, are determined by the ratios of the drive strength and coupling to a bath. While the
LIOMs in the MBL phase are di�erent than the conserved quantities in integrable systems, we
still expect a similar e�ect where the non-equilibrium steady-state will be characterized by an ex-
tensive set of widely varying local temperatures (Lagrange multipliers), leading to a large variance
δT ∼ O(1). On the other hand, in the ergodic phase only the global energy is conserved (in the
absence of bath coupling and drive) and hence following the results of [128] we expect the state of
the system to be well described by a thermal Gibbs ensemble with one global temperature leading
to no variance δT = 0.

4.3 Background: studying open-quantum systems using
matrix-product states

In this section we provide background on the main numerical technique used in our work, which
is the representation of the density matrix in terms of a matrix-product density operator (MPDO)
and time-evolution of the MPDO using the time-evolving block decimation (TEBD) algorithm
[32,186]. Here we provide just a brief review of the use of matrix-product state (MPS) techniques
for simulation of quantum states of open systems, readers who want to learn more may want to
refer to existing reviews such as Refs. [33, 187, 188].

Consider a 1d spin chain of lengthN . The �rst step we take in order to simulate the dynamics
described by the QME in Eq. (4.1) is using Choi’s isomorphism to map the density matrix to a
state in a doubled Hilbert space and the Liouvillian to a matrix which acts on states in this Hilbert
space [189]:

ρ =
∑

σ,τ

ρσ,τ |σ〉〈τ | → |ρ) =
∑

σ,τ

ρσ,τ |σ, τ 〉, (4.26)
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4.3 Background: studying open-quantum systems using matrix-product states

where we denoted σ = (σ1, .., σN ) and similar for τ . The Liouvillian acting on the vectorized
density-matrix |ρ) is given by the non-hermitian operator

L̂ = −i(H ⊗ 1− 1⊗HT ) +
∑

i

γi

[
Li ⊗ L∗i −

1

2
(L†iLi ⊗ 1 + 1⊗ LTi Li)

]
. (4.27)

Starting from some initial density matrix ρ0 the state of the system at time t can be obtained as:

|ρt) = etL̂|ρ0). (4.28)

The steady-state can be obtained as the eigenstate of L̂with eigenvalue λ = 0. For a spin chain of
sizeN , |ρ) is a vector of length 4N and L̂ is a matrix of size 4N×4N . Hence performing exact time
evolution or �nding the stady-state by means of exact diagonalization (ED) of L̂ is exponentially
expensive in the system sizeN and limits computations to small system sizesN ∼ 12.

In order to simulate the dynamics of larger systems one has to abandon the idea of representing
the quantum state of the system exactly and resort to some sort of approximation which allows
representing the state of the system with a number of parameters which is polynomial in the sys-
tem size N . The approach we will describe here is that of matrix-product states which is an e�-
cient method to represent quantum states with low entanglement, and is often the best method
for performing computations in 1-dimensional systems. Since we have seen that the problem of
simulating the QME dynamics can be mapped to that of non-unitary evolution of a pure state
|ψ〉 in an enlarged Hilbert space, we will �rst describe the method considering time-evolution of
pure states. After doing so we will give some comments regarding the application of the method
in the context of QME dynamics.

A general quantum state of a 1D spin chain can be represented by a tensor cσ1,..,σN written as

|ψ〉 =
∑

σ

cσ1,..,σN |σ〉 (4.29)

where the entries in the tensor cσ1,..,σN are the probability amplitudes of the basis states |σ〉. As
we explained above the number of coe�cients in cσ scales exponentially with the system sizeN .

The simplest approximation one can use is that of a product-state where we assume that the
tensor c is completely factorizable, that is cσ = cσ1cσ2 ..cσN , which leads to the following state:

|ψ〉 =
⊗

i

( ∑

σi=±1

cσi |σi〉
)
. (4.30)

In the case where cσi are independent of i, the product-state ansatz is also known as the mean-�eld
approximation. Using the product-state ansatz reduces the number of complex coe�cients from
2N to 2N . However, product-states are very limited since they cannot represent any connected
correlations or entanglement between spins on di�erent sites, as we will see below.
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4 Critical behavior near the many-body localization transition in driven open systems

Matrix-product states (MPS) are a generalization of product states where instead of factorizing
the high-dimensional tensor cσ as a product of numbers, we factorize it as a product of matrices:

|ψ〉 =
∑

σ

Mσ1
α1
Mσ2
α1α2

...MσN
αN−1

|σ〉 (4.31)

where Mσi
αi−1αi is a matrix of dimension χi−1 × χi (for each site there are two matrices corre-

sponding to σi = ±1), with χi known as the bond-dimension of bond i. The total number of
parameters scales asO(Nχ) with χ = maxi{χi} .

A product-state is a special case of an MPS with bond-dimension 1. On the other hand any
quantum-state can be represented exactly as an MPS when using a bond-dimension which grows
exponentially with the system size. The key insight is that states with moderate amount of entan-
glement can be represented e�ciently as an MPS with a bond-dimension that is independent of
the system-size. To see the connection between bond-dimension and entanglement we consider a
bi-partition of the spin-chain at bond `:

|ψ〉 =
∑

σL,σR

ΨσL,σR |σL〉|σR〉, (4.32)

where we denotedσL = {σ1, .., σ`},σR = {σ`+1, .., σN}. The Schmidt decomposition of the
state can be obtained from a singular-value decomposition (SVD) of the matrix Ψ, and is given
by

|ψ〉 =
r∑

i=1

Λi|αLi 〉|αRi 〉, (4.33)

where {|αLi 〉}({|αRi 〉}) is an orthonormal basis of the left (right) subsystem, and Λi ≥ 0 are the
Schmidt values (or singular values). Here we denoted the number of non-zero Schmidt values by
r. Note that since |ψ〉 is normalized we have

∑
i Λ2

i = 1.
Given the Schmidt decomposition, we can easily compute the entanglement-entropy of the

bi-partition:

ρL = trR|ψ〉〈ψ| =
∑

i

Λ2
i |αLi 〉〈αLi | ⇒ (4.34)

S(`) = −trρL log ρL = −
r∑

i=1

Λ2
i log Λ2

i ≤ log r. (4.35)

So we see that the amount of entanglement is bounded by the logarithm of the Schmidt rank r.
Consider now an MPS, and denote

UσL,α` ≡ (Mσ1Mσ2 ...Mσ`)α` , Vα`,σR ≡ (Mσ`+1 ...MσN )α` . (4.36)

The matrix representing the bi-partition is given by ΨσL,σR = UσL,α`Vα`,σR . This means that
the number of non-zero singular values of Ψ is bounded by the dimension of the index αi 5.

5This is true because the rank of Ψ is equal to the number of non-zero singular values and in addition rkΨ ≤ rkV
due to the fact that kerV ⊆ kerΨ.
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4.3 Background: studying open-quantum systems using matrix-product states

Hence, we see that the maximal entanglement for a bi-partition at bond ` for an MPS with bond
dimension χ` is S(`)MPS-max = logχ`. In particular we see that a product state where χ` = 1
has no entanglement.

From the discussion above we expect that an MPS ansatz is indeed an e�cient ansatz when the
amount of entanglement of the state we want to approximate does not grow faster than logarith-
mically in system size. This is the case for ground-states of gapped local Hamiltonians in 1D, whose
entanglement follows an area-law [190]. The MPS ansatz can also be used for approximating state
of a system after a quantum quench |ψ(t)〉, however for generic systems the method is limited to
short times due to the ballistic growth of the entanglement-entropy. For the mixed state case, note
that an in�nite temperature density-matrix can be represented exactly as a D = 1 MPS, namely
it is the product state of bell-pairs of the σi, τi local spins |ρ∞) = 2−L

⊗
i(| ↑↑〉i − | ↓↓〉i) 6.

Hence we expect that density-matrices which are somewhat close to the in�nite temperature state
can be e�ciently represented as an MPDO.

In our work in this chapter we use the time-evolving block decimation (TEBD) algorithm [32]
in order to compute |ρ(t)) = etL̂|ρ0). By evolving ρ(t) to long-times we can obtain an ap-
proximation for the steady-state of L. The TEBD algorithm , initially introduced for real time
coherent evolution of pure states |ψ(t)〉 = e−iHt|ψ0〉, relies on a Trotter decomposition of the
time-evolution operator U(t) = exp(−iHt). Assuming thatH has at most two-site operators,
we can writeH =

∑L−1
b=1 hb, with hb having support only on sites b, b+ 1. The 1st order Trotter

decomposition then reads

U(Ndt) ≈
[
Πb∈odde

(−idthb)Πb∈evene
(−idthb)

]N
. (4.37)

The error in this approximation is O(dt2) per time step. Here we disucss the 1st order approxi-
mation for simplicity, but in practice we use a 4th order decomposition (see [33]) in our compu-
tations in this chapter.

The key component we need to understand is how to apply a two-site unitary of the form
Ub,b+1 = exp(−idthb) to a state represented as an MPS. In order to do so, we �rst need to intro-
duce the concept of canonical form of an MPS. Note that the representation (4.31) is not unique as
it is invariant under a gauge transformationMi →MiG,Mi+1 → G−1Mi+1, whereG is an ar-
bitrary invertible matrix. We say that an MPS tensor is left-orthonormal ifA[σi]

αi−1αi(A
[σi])∗αi−1α′i

=

δαiα′i and right-orthonormal if B[σi]
αiαi+1(B[σi])∗α′iαi+1

= δαiα′i . We follow a convention where
tensors denoted by A (B) are assumed to be left(right)-orthonormal. An arbitrary MPS can be
brought into a left(right)-canonical form, where all the matrices are left (right)-orthonormal via a
series of QR decompositions.

To applyUb,b+1 we �rst bring |ψ〉 to a mixed canonical form:

|ψ〉 =
∑

σ

Aσ1 ..AσbBσb+1 ...BσN |σ〉

≡
∑

αb−1,αb+1,σb,σb+1

Θ
σb,σb+1
αb−1,αb+1 |αb−1〉|σb〉|σb+1〉|αb+1〉 (4.38)

6This can be seen by transforming ρ∞ =
⊗

i 1i using Choi’s isomorphism.
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4 Critical behavior near the many-body localization transition in driven open systems

where the two site wave-function is Θ
σb,σb+1
αb−1,αb+1 ≡ Aσbαb−1αb

B
σb+1
αbαb+1 and we de�ned the states

|αb−1〉 =
∑

σ1..b−1

(Aσ1 ..Aσb−1)αb−1
|σ1, .., σb−1〉, (4.39)

|αb+1〉 =
∑

σb+2..N

(Bσb+2 ...BσN )αb+1
|σb+2, ..., σN 〉. (4.40)

Due to the orthonormality properties of theA andB tensors, {|αb−1〉} and {|αb+1〉} are sets of
orthonormal states.

ApplyingUb,b+1|ψ〉 results in an update to the two-site wave function

Θ
σbσb+1
αb−1αb+1 → U

σbσb+1

σ′bσ
′
b+1

Θ
σ′bσ
′
b+1

αb−1αb+1 ≡ Θ̃
σbσb+1
αb−1αb+1 . (4.41)

To �nish we want to bring Ub,b+1|ψ〉 back to a mixed canonical form. This can be done by re-
shaping Θ̃ to a (2χb−1)× (2χb+1) matrix and performing an SVD decomposition

Θ̃(σbαb−1)(αb+1σb+1) = U(σbαb−1),αbSαbV
†
αb,(αb+1σb+1) (4.42)

where Sαb ≥ 0 are the singular values which are assumed to be ordered by magnitude. We can
now de�neAσbαb−1,αb

= U(σbαb−1),αb andBσb+1
αb,αb+1 = SαbV

†
αb,(αb+1σb+1).

Note that a consequence of the application ofUb,b+1 is generically an increase of the bond di-
mension χb → 2χb. The key idea of the TEBD algorithm is to keep only the most important
Schmidt values at every unitary update and discard all Schmidt values such that the error intro-
duced is below a cuto� ε. Assume that

∑2χb
αb=dc+1 S

2
αb
≤ ε, then the TEBD update is done via a

truncated SVD decomposition

Θ̃(σbαb−1)(αb+1σb+1) ≈
1

N

dc∑

αb=1

U(σbαb−1),αbSαbV
†
αb,(αb+1σb+1) (4.43)

where the normaliztion factor N =
√∑dc

αb=1 S
2
αb

ensures that the state remains normalized.
Now we can update the tensors Aσb , Bσb+1 as before, but using only dc columns of U and dc
rows ofN−1SV †.

The bond dimension after the update is dc which can be much smaller than 2χb as long as
the state is not too entangled, allowing for an e�cient compression of the state. The error intro-
duced by the state obtained via the truncated SVD update |ψ̃〉 is bounded by the cuto� |||ψ̃〉 −
Ub,b+1|ψ〉||2 ≤ ε.

Finally let us comment on two aspects which are special to the case of Liouvillian evolution of
an MPDO |ρ) using TEBD. When performing the update in the case of Hamiltonian evolution
we relied on the fact that the two-site operator acting at bond b is unitary and hence the state re-
mains in canonical form. This is not the case with non-unitary evolution and we have to bring
back the MPDO to canonical form after every few update steps. Second, the normalization con-
dition for a density-matrix is trρ = 1 which in the vectorized form reads as (1|ρ) = 1. However,
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4.4 Hydrodynamic description of temperature fluctuations in the thermal phase

for applying MPS algorithms in general and TEBD in particular it is important to keep the vec-
torized state normalized according to (ρ|ρ) = 1. Thus when computing expectation values of
operators using the MPDO representation of |ρ) we must divide by trρ

〈Ô〉 =
(ρ|Ô|ρ)

(1|ρ)
. (4.44)

4.4 Hydrodynamic description of temperature
fluctuations in the thermal phase

Having introduced the main ideas behind many-body localization, the transition between the er-
godic phase and the MBL phase, and the expected divergence of the dynamical exponent z due to
rare-region (Gri�ths) e�ects close to the critical point, we are now ready to consider the possibility
of probing the Gri�ths physics by coupling the system to non-equilibrium baths.

We start by considering an e�ective hydrodynamic description for the temperature �uctuations
in the thermal side of the MBL transition, in the presence of coupling to baths. The origin of the
hydrodynamic description comes from a continuity equation for the energy density in the pres-
ence of an external energy source and sink, which in the absence of any other conserved quantities
is given by ∂te + ∇ · J = εθIsource − εIsink. By expressing the energy current in terms of a
temperature gradient J(r) = −κ(r)∇T (r), with κ(r) a local heat conductivity, we obtain

∂te−∇ · (κ(r)∇T (r)) = −ε g1(r)(T (r)− T0) + ε θg2(r). (4.45)

E�ects of disorder are taken into account in Eq. (4.45) by weak �uctuations of the conductivity
κ(r) and of the strength of external energy sources g1(2)(r):

κ(r) = κ̄+ δκ(r), g1(2)(r) = ḡ + δg1(2)(r), (4.46)

where δκ(r), δg1(2)(r) are Gaussian random variables with zero mean. The average e�ective
steady-state temperature is T̄ = T0 + θ, and is obtained by averaging both sides of Eq. (4.45)
with respect to disorder.

We now consider the �uctuations of temperature around T̄ in the steady-state. This is done by
denoting T (r) = T̄ + δT (r) and linearizing Eq. (4.45) in the disorder strength, keeping only
terms which are �rst order in the �uctuationsO(δg), O(δT ), O(δκ). This leads to

(−κ̄∇2 + εḡ)δT (r) = ε θ δg(r), (4.47)

where δg(r) = δg2(r)−δg1(r). This equation can be solved for the local temperature variations
by fourier transforming to momentum space resulting in

(κ̄k2 + εḡ)δTk = εθδgk. (4.48)

We see that δTk = G̃(k)δgk, with the Green’s function given by G̃(k) =
(
κ̄ k2 + ḡ ε

)−1.
Now we can use the formalism of fractional calculus [191, 192] in order to generalize the lin-

earized hydrodynamic Eq. (4.47) to describe the sub- and super-di�usive case. The key idea is
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4 Critical behavior near the many-body localization transition in driven open systems

to modify the real-space Green’s function G(r), describing the response of temperature �uctu-
ations to a random pump and drive δg(r), by replacing the Laplace operator∇2 with the Riesz
fractional derivative∇z . The fractional derivative is de�ned via its Fourier transformF ,

F(∇zy(r)) = −|k|zF(y(r)), z > 0, (4.49)

where y(r) is an inifnitely di�erentiable function. Hence, the generalized continuity equation
gives rise to the following Green’s function in momentum space

G(k) =
1

γ̄|k|z + ḡε
. (4.50)

Uncorrelated disorder 〈δg(r)δg(r′)〉 = (δg)2δ(r − r′) gives the following scaling of tem-
perature �uctuations with the dimension d and fractional power z

〈δT 2〉 =
ε2θ2

L

∫
G(r − r′)G(r − r′′)〈δg(r′)δg(r′′)〉drdr′dr′′

=
ε2θ2δg2

(2π)d

∫
dk

1

(γ̄|k|z + εḡ)2

∼ θ2δg2

ḡ2

ḡd/z

γ̄d/z
(z − d)

z2 sin(dπ/z)
εd/z. (4.51)

By the replacement k2 → |k|z in the hydrodynamic equation for δT we have obtained the scaling
of the of the temperature �uctuations with small ε:

√
〈δT 2〉 ∼ θ |δg/ḡ|(ḡ/γ̄)d/2z εd/2z. (4.52)

Hence this implies that by exploring the response of the local temperature �uctuations to weak
coupling to a bath ε, we will be able to extract the value of the dynamical exponent z.

The derivation above provides a heuristic and intuitive explanation for the expected scaling
form, and explains how z enters into the dependence on ε. We note however, that using a dis-
order averaged Green’s function to get this result may not be properly accounting for the e�ect
of rare regions that dominate the transport in the Gri�ths regime. In Sec. 4.5 we compute the
temperature variations in a minimal model that takes this physics into account.

4.4.1 Hydrodynamic equations as an expansion of the QME

In this section we make the connection between the microscopic QME in Eq. (4.1), describing
a disordered spin chain coupled to Markovian nonequilibrium baths represented by Lindblad
operators, and the hydrodynamic Eq. (4.45) describing long wavelength temperature �uctua-
tions. More speci�cally we show how Eq. (4.45) can be derived using an expansion in small
temperature variations around a thermal density matrix, determined from the Liouville equation
ρ̇ = (L̂0 + εD̂)ρ = 0, where L̂0ρ = −i[H, ρ] and D̂ corresponds to the dissipator super-
operator.
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4.4 Hydrodynamic description of temperature fluctuations in the thermal phase

On the ergodic side, the system approaches a thermal state for ε→ 0 [141]. For small epsilon,
we can therefore expand the steady state density matrix in weak temperature variations around
the thermal state

ρ ≈ ρ0(T̄ ) +
∑

j

δTj
∂ρ

∂Tj

∣∣∣
Tj=T̄

+ · · · , ρ0(T̄ ) ≡ e−H/T̄

tr[e−H/T̄ ]
. (4.53)

We will now use the expansion (4.53) in order to show how the phenomenological terms in Eq. (4.45)
can emerge from the microscopic Liouville equation.

First of all, the term−εḡ(T (r)− T̄ )) ensures the relaxation towards the correct mean temper-
ature T̄ , which is determined from the stationarity condition applied to the total rate equation
for the energy [141],

〈Ḣ〉 = tr[H(L̂0 + εD̂)ρ0(β̄)] = tr[H εD̂ ρ0(β̄)]
!

= 0, (4.54)

where we use the fact that the thermal density matrix commutes with the Hamiltonian and hence
L̂0ρ0 = 0 .

To see the emergence of the other terms in Eq. (4.45) we consider the behaviour of the local
energy density 〈hi〉, where H =

∑
i hi, and hi are terms with local support around bond i (in

the model we consider they are at most two-site terms)

d

dt
〈hi〉 =tr

[
hiL̂0ρ

]
(4.55)

+ tr
[
hiεD̂ρ0(β̄)

]
(4.56)

+ tr


hiεD̂

∑

j

∂ρ

∂Tj

∣∣∣
Tj=T̄

δTj


 (4.57)

+ · · ·

Using the de�nition for the energy currents, ji,i+1 = i[hi, hi+1], we can see that the right hand
side of expression (4.55) equals to the di�erence in expectation value of energy currents across
neighboring links. On the other hand, in a system with spatially varying local temperatures, local
current expectation values are proportional to local temperature gradients

tr
[
hiL̂0ρ

]
= tr[(−ji,i+1 + ji−1,i)ρ] (4.58)

= Γi,i+1(Ti+1 − Ti)− Γi−1,i(Ti − Ti−1)

∼ ∇ · (κ(r)∇T (r)), (4.59)

where we denoted Γi,i+1 the heat conductance between site i and site i+ 1.
The term (4.56) corresponds to the gain and loss of local energy density due to the driving and

dissipation, evaluated with respect to the homogeneous thermal state

tr
[
hiεD̂ρ0(β̄)

]
∼ ε θg2(r). (4.60)
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4 Critical behavior near the many-body localization transition in driven open systems

Here 〈g2(ri)〉 = 1
θN

∑
i tr[hiD̂ρ0(β̄)] = 0 due to Eq. (4.54).

Term (4.57) is of the same type, but comes from the next order expansion in the variation of
local temperatures

tr


hiεD̂

∑

j

∂ρ

∂Tj

∣∣∣
Tj=T̄

δTj


 ∼ εg1(r) δT (r). (4.61)

Collecting the dominant terms in the �uctuation expansion, we get the hydrodynamic relation

∂te−∇ · (κ(r)∇T (r)) = −ε g1(r)(T (r)− T̄ ) + ε θg2(r), (4.62)

which can be identi�ed with Eq. (4.45), except that T0 is replaced by T̄ (set by Eq. 4.54) and that
the last term contains only the random part with a zero mean, i.e., g2(r) = δg2(r).

4.5 Resistor Network simulations

As a minimal model for the Gri�ths regime we consider in this section a chain of conducting
islands, each characterized by its own temperature Ti, coupled by links representing insulating
regions of size `. The essence of the Gri�th physics can be captured by the fact that in the ergodic
phase an insulators are exponentially rare but they also act as a bottleneck for transport with and
exponentially small conductance. To take this into account, the link (insulator) lengths are drawn
from the probability distribution P (`) = 1

N e
−`/ξ , where ξ is identi�ed with the correlation

length that diverges toward the MBL critical point. Each insulating region gives rise to a con-
ductance exponentially small in its length Γins(`) = Γ0e

−`/a, where a is a microscopic length
scale.

Without the coupling to the drive and the bath, the distribution of insulating links leads to a
power-law distribution of inter-island conductances

P (Γ) =
1

N

∣∣∣∣
dΓ

d`

∣∣∣∣
−1

P (`(Γ))

∼ Γ−1(
Γ

Γ0
)a/ξ

∼
(

Γ

Γ0

)α−1

, (4.63)

with α = a
ξ . The range 0 < α < 1, for which the average resistance 〈Γ−1〉 diverges corresponds

to the subdifussive regime [145, 193].
Coupling this system to a bath and to an energy source ultimately destroys the insulating behav-

ior of the links, adding a channel of conductance through the link with conductivity εκ0. Thus
we take the heat conductance through a link in presence of this coupling to be

Γ(`) = ε
κ0

`
+ Γ0e

−`/a, (4.64)
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4.5 Resistor Network simulations

with an implicit short-range cuto� a (to ensure that the probability distribution of conductances
is normalizable). The form in Eq. (4.64) is obtained by assuming that the conductance channel
induced by the bath is connected in parallel to the intrinsic conductance channel of the insulator,
and the conductance of the bath channel is obtained by assuming Ohm’s law dependence Γ ∝
Ld−2.

With the link conductances in hand, we can write the rate equation for the energy transport on
the chain

∂tei − Γi,i+1(Ti+1 − Ti) + Γi−1,i(Ti − Ti−1) (4.65)
= −εg1,i(Ti − T0) + εθg2,i.

This is a discrete version of Eq. (4.45) with a physically motivated distribution of link conduc-
tances. We take g1(2),i = ḡ + δg1(2),i with δg1(2),i drawn from a uniform distribution in the
range [−δg1(2), δg1(2)].

Requiring that the system is in a steady-state ∂tei = 0, Eq. (4.65) reduces to a system of linear
equations which we solve numerically to obtain temperature pro�les. We extract the normalized
variation of local temperatures

OT ≡
δT

T̄
≡
√
〈〈Var(Ti)〉〉
〈〈E(Ti)〉〉

. (4.66)

Here E and Var are the sample mean and variance, while 〈〈·〉〉 denotes averaging over disorder
realizations. For simplicity we assumed that the conducting islands are all of similar size.

The results of the numerical solution for δT/T̄ as a function of ε are shown in Fig. 4.4 for
di�erent values of α = a/ξ. We extract the dynamical exponent z, by assuming the dependence
found in Eq. (4.52), δT ∼ ε1/2z . In Fig. 4.4 we see that for 0 < α < 1 the dynamical exponent
grows with the correlation length as z ∼ 1/α = ξ/a, which agrees with �ndings of closed-
system studies of the Gri�th regime in the vicinity of the MBL transition [28, 145] . For α > 1
the dynamical exponent saturates to z = 2, as expected for a di�usive system. Thus we establish
a direct relation between the leading dependence of the temperature �uctuations δT on ε and
the dynamical exponent z, which governs the sub-di�usive behavior in a closed system [28, 161].
Crucially we �nd that the dynamical exponent diverges together with the correlation length ξ on
approaching the MBL transition [28, 161].

In solid state systems it is usually much easier to measure charge transport than the local tem-
perature pro�le. It is therefore natural to seek signatures of MBL or the Gri�ths regimes in the
resistance of a weakly open system. In order to compute how the resistance scales with the external
bath or drive coupling εwe consider a charge resistor network described by the rate equations

∂tni −
[
Γ̃i,i+1(µi+1 − µi)− Γ̃i−1,i(µi − µi−1)

]
= 0. (4.67)

Hereµi is the electro-chemical potential on island i. Γ̃i,j are charge conductances on links, which
are distributed exactly as the thermal conductances in Eq. (4.65). The main di�erence from
Eq. (4.65), is that here there are no source or sink terms because the external couplings to the
bath and the drive are assumed to conserve charge. In fact for these measurements we can con-
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4 Critical behavior near the many-body localization transition in driven open systems

sider a system with just a drive or just tunable coupling to phonons. Both terms give rise to a
parallel channel of ohmic conductivity proportional to ε on the insulating links, so that

Γ̃(`) = Γ̃0e
−`/a + εσ0/`. (4.68)

To gain analytic insight we calculate the average resistivity of the chain. Comparing the �rst
term in Eq. (4.68) to the second we see that the insulating behavior dominates for ` < `∗ ≈
a log ε−1+a log log ε−1, while the bath or drive induced conductance dominates in longer links.
When computing the average resistivity we can neglect contributions from the regime where con-
ducting behavior dominates

ρ̄ = ¯̀−1

∫
d`P (`)Γ̃(`)−1 ≈ 1

¯̀̃Γ0

∫ `∗

a
d`ξ−1e`(a

−1−ξ−1) ≈ α
¯̀̃Γ0

(
ε

log ε−1

)α−1

,

whereα = 1/z = a/ξ and ¯̀=
∫

d`P (`)` ∼ ξ. In Fig. 4.5 we show a numerical solution of the
current in a one dimensional chain with a bias voltage, the current dependence j ∼ ε1−α together
with the relation j ∼ V/ρ̄ con�rms the approximate analytic dependence of the resistivity on ε.
Thus it should be possible to measure the dynamical exponent z by varying the coupling ε via
controlled cooling of the phonon bath or by varying the strength of an external drive.
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α=3.0
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δ
T
/T
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Figure 4.4: Fluctuations of the local temperatures, δT/T̄ , are computed from a resistor network model
as function of the coupling strength ε to a thermal bath and driving. For small ε, temperature
�uctuations are described by δT/T̄ ∼ ε1/2z with z ∼ α−1 = ξ/a for 0 < α < 1, and
z = 2 in the di�usive regime, α > 1. Parameters: κ0 = 1, aΓ0 = 5.0, T0 = 1, δg1 = 0.05,
δg2 = 0.05, θ = T0,N = 1000, averaged overM = 500 con�gurations.
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Figure 4.5: Dependence of particle current j on the strength of coupling to the baths ε in d = 1. For
α < 1, j ∼ ε1−α is observed. For di�usive α > 1, on the other hand, a �nite j(ε → 0) is
observed. Parameters: σ0 = 1, aΓ̃0 = 5.0,N = 2000, V = 0.1N

4.6 MPS simulations

Besides opening a new experimental route, consideration of weakly open driven systems, suggests
a new approach for accessing the many-body localization transition numerically. Here we calcu-
late how the local temperature variations in a spin-chain model change with the coupling to a
weak drive that brings the system to a non thermal steady state.

The coherent part of the dynamics is governed by the Hamiltonian

H =
∑

i

Si · Si+1 + h(ζzi S
z
i + ζxi S

x
i ), (4.69)

with open boundary conditions and disorder �elds drawn uniformly from the range ζx,zi ∈
[−1, 1]. For simplicity we have chosen a model in which energy is the only conserved quantity,
since the existence of extra conserved quantities will lead to extra slow modes entering the hydro-
dynamic equation (4.45) and coupling between those slow modes and temperature �uctuations
might change the predicted dependence of δT on ε. The MBL transition in the Hamiltonian
(4.69) has been studied in Ref. [194] using ED.

We compute the properties of this system when it is weakly coupled to non-thermal baths de-
scribed through the Lindblad formalism. The precise choice of Lindblad operators is not impor-
tant, as long as the steady-state is non-trivial, ρ∞ 6= 1. Therefore, at least one of the Lindblad
operators has to be non-Hermitian. We choose a symmetric combination of several dissipators

L
(1a)
i =

1√
2
S+
i

(
1

2
1i+1 − Szi+1

)
, L

(1b)
i =

1√
2

(
1

2
1i − Szi

)
S+
i+1,

L
(2a)
i =

1√
2
S−i

(
1

2
1i+1 + Szi+1

)
, L

(2b)
i =

1√
2

(
1

2
1i + Szi

)
S−i+1,

L
(3)
i = Szi . (4.70)
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4 Critical behavior near the many-body localization transition in driven open systems

The (unique) steady stateρ∞ is obtained by solving the Lindblad time evolution in Eq. (4.1) using
the time-evolving block decimation (TEBD) technique for a vectorized density matrix [186, 195],
which we reviewed in Sec. 4.3.

The dephasing termL
(3)
i , Eq. (4.70), is used to ensure that the steady state is su�ciently close

to an in�nite temperature state, so that a bond dimension of χ = 100 is adequate to describe a
system ofN = 20 sites for ε ≥ 0.01. Note that larger bond dimensions and longer propagation
times are needed for smaller ε, making computation in these cases more expensive, as we discuss
below. At �xed h, the same set of disorder con�gurations is used for di�erent values of ε, while
independent con�gurations are used at di�erent values of h. We �nd that this procedure helps to
determine the exponent z as the ε dependence becomes less a�ected by the statistical ensemble.
We average over 100 (h = 1, 2) or 300-500 (h > 2) disorder con�gurations.

The goal of the calculation is to obtain the spatial variation of the local temperature for varying
values of the dissipative coupling ε. To determine the local temperatures Ti we compare the re-
duced density matrix of 2 sites in the steady state ρ(i,i+1)

∞ with a thermal state [196] by minimizing
the cost function

F [βi] = tr
[(
ρ(i,i+1)
∞ − ρ(i,i+1)

th (βi)
)2
]
. (4.71)

Here the thermal state is obtained by computing ρth(β) = Z−1 exp (−βH) for each disorder
realization, where the computation is done by means of imaginary time-evolution of a puri�ed
density matrix starting from the in�nite temperature state (see [33] for details on this standard
technique).

The (inverse) temperature variations δβ/β̄, obtained numerically as a function of ε, are shown
in Fig. 4.6 for a range of disorder strengths. We observe di�erent ε dependence in the MBL and
ergodic phase, namely

δβ

β̄
(ε) ∼

{
ε1/2z, h < hc,
δβ
β̄

∣∣
ε→0
− b ε+O(ε2), h ≥ hc . (4.72)

In the MBL phase we see temperature variations of order one even in the limit ε→ 0 as predicted
in Ref. [141]. At �nite εwe expect an analytic dependence on ε due to the local nature of the MBL
phase.

In the thermal regime, the temperature variations are expected to vanish in the limit ε → 0
[141]. We see an increase of the temperature variations with ε that �ts well with the expected
non analytic behavior δβ/β̄ ∼ ε1/2z at small values of ε (see Fig. 4.6(b)). The �tted dynamical
exponent z, shown in Fig. 4.7 changes continuously with disorder strength, growing rapidly as
the MBL transition is approached. Error bars in Fig. 4.6c and Fig. 4.7 were obtained using a
jackknife resampling. The usage of a resampling method for error estimates is necessary because
statistical errors for di�erent ε at �xed h are strongly correlated in our setup. As discussed above,
the dynamical exponent is expected to diverge together with the correlation length ξ at the MBL
critical point. The apparent saturation of z is an artifact of the �t procedure; it is impossible to
reliably �t a small exponent α to the function εα for realistic values of ε & 0.01.

We obtain an estimate of the critical disorder strengthhc by recording the fractionP of disorder
realizations showing δβ/β̄ increasing with ε near ε = 0.01 (see Fig. 4.6(c)). From the condition
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Figure 4.6: Numerical Time Evolving Block Decimation results – (a) The �uctuations of the inverse tem-
perature, δβ/β̄, show two distinct dependences on ε: while they vanish proportionally to ε1/2z
on the ergodic side of the phase diagram, they obtain a �nite value for ε→ 0 with a linear cor-
rection in the MBL phase. Errorbars show (a correlated) statistical error, while line correspond
to the �ts. (b) Fits (dashed lines) to δβ/β̄ are used to obtain z(h) shown in Fig. 4.7. (c) We
estimate hc ≈ 8.75± 0.5 from the condition that at hc the probability P for δβ/β̄ to have a
positive slope at smallest ε equalsP = 0.5. That is, at hc the sign of the slope is undetermined.

P = 0.5 we estimatehc ≈ 8.75±0.5 forN = 20. Allowing for smaller εmight lead to a slightly
larger estimate ofhc for this system size. A previous ED study of the same model on 20 sites [194]
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Figure 4.7: The dynamical exponent z increases strongly upon approaching the MBL phase transition.
The apparent saturation of z is due to limitation to ε ≥ 0.01. Note that the error bars only
re�ect statistical errors but not �nite size e�ects. Inset: z as function of hc − h on log-log scale
assuming hc = 8.75. Using hc = 8.75± 0.5, our results are conistent with z ∼ (h− hc)−ν
with critical exponent ν = 4± 0.9.

estimated a range of possible values for the critical disorder strength depending on the quantity
being examined, from as low as hc ∼ 2− 3 to hc ∼ 7− 8.

With hc at hand we extract a correlation length exponent ν from the divergence of z ∼ ξ ∼
(hc− h)−ν . As shown in Fig. 4.7, �tting can be reliably performed for h ∈ [1, 4] when the error
bars on z are taken into account. The result of this procedure gives the estimate ν ≈ 4.0 ± 0.9
(with large errorbars due to uncertainty inhc), which is consistent with the Harris-Chayes bound,
ν > 2/d [197, 198] and also in agreement with single parameter scaling �ts to renormalization
group results [28, 161]. In a previous study [141], Lenarčič et al. carried out a �nite size scaling
analysis of the local temperature variations in signi�cantly smaller systems in the limit ε → 0,
which gave the estimates ν ≈ 2.6. We note that recent works derived phenomenological two
parameter RG �ow equations, suggesting Kosterlitz-Thouless like behavior of the MBL transition
[199, 200], which would result in z ∼ ξ ∼ ec/

√
(hc−h). We cannot exclude this possibility based

on our current numerical data. It is an interesting question how the "order parameter" δβ/β̄
behaves at the critical point itself h = hc in the limit ε → 0. Our results are consistent with a
jump across the transition, but they also leave open the possibility of a slow logarithmic behavior
as−1/ log ε, which would allow a continuous change of δβ/β̄ across the transition.
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Figure 4.8: Relative error due to �nite bond dimension χ = 100 can be estimated from the ratio
|O(χ) − O(χ = 100)|/O(χ = 100), O(χ) = δβ

β̄
(χ). The error estimated from the

χ → ∞ extrapolation is below 0.1% for smallest ε = 0.01 used in our computations. Pa-
rameters: N = 20, h = 4, with averaging over 60 realizations.

4.6.1 Convergence in system size, time and bond dimension

In this section, we look more closely into what are the limiting factors of the calculation. We �rst
investigate how our results on system sizeN = 20 depend on the bond dimension. Fig. 4.8 shows
the relative change of the expectation value of O = δβ/β̄(ε) with bond dimension χ at steady
state. We set χ = 100, used for the results in the main text, as a baseline. O(χ) is averaged over
60 disorder realizations, which are the same for di�erent χ. We �nd that the error extrapolated
to χ = ∞ is small, e.g., for h = 4 below 0.1%. We also note that the extrapolated error estimate
grows with decreasing ε, hence for smaller values of ε a larger bond dimension will be required,
increasing the costs of computations at small ε.

In Fig. 4.9 we show the relaxation of temperature �uctuationsO(t) = δβ
β̄

(t) to steady state in
the TEBD time evolution. Speci�cally, we plot |O(t) − O(tf )| with respect to theO(tf ) at the
maximal propagation time tf . As expected, we see exponential relaxation to the steady-state value
with a characteristic rate which scales as ε. Obtaining results for smaller ε is thus increasingly hard
with TEBD.

Assuming that the necessary bond dimension χ is independent of system size, our approach
should be scalable, with computational demands growing linearly with system size. Figs. 4.9(a,b)
compare the convergence of O(t) = δβ

β̄
(t) for a single realization at N = 20, 40 system sizes.

While the computational time approximately doubles, the exponential convergence rate with
TEBD evolution time t is comparable.

Finally, we present a �nite size scaling analysis of the results. We show the dependence of the
dynamical exponent z, obtained from our numerical scheme, on the system size. The exponent
z is extracted by �tting a power law for the dependence of the temperature variance on ε with
ε ≥ 0.01, Eq.(9) in the main text. The results are shown in Fig. 4.10.
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Figure 4.9: Evolution of O(t) = δβ
β̄

(t) (with respect to O(tf ) at maximal propagation time tf ) during
the TEBD computation, for one disorder realization at h = 4, χ = 100, for systems of size
(a) N = 20 and (b) N = 40. Note that the time axis is rescaled by ε to reveal an exponential
relaxation with a convergence rate proportional to ε.
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Figure 4.10: Finite-size analysis of the dynamical exponent z for h = 2.0, 3.0, 4.0, 4.5. Calculations are
performed with bond dimensionχ = 100 and ε ≥ 0.01. A di�erent number of realizations is
used for di�erent points, e.g., ath = 2.0 andN ∈ [12, 90], 150−50 realizations are used, for
h = 4.5 andN ∈ [8, 90], 790−190 realizations are used. Fit error bars are obtained with the
jackknife resampling of data with ε ≥ 0.01 and do not estimate systematic deviations from
the z that would be obtained using ε < 0.01, necessary for h > 4.

In systems with disorder strengths h = 2.0, 3.0, 4.0 we do observe negligible �nite size de-
pendence. Recall that this is the range of h we used to extract the power law divergence of z ∼
(hc − h)−ν on approaching the critical point. It is encouraging to see that this behavior is un-
a�ected by �nite size. We do see a non systematic �nite size dependence for disorder strength
h = 4.5, which we attribute to uncertainty in �tting the dynamical exponent z. Indeed, as noted
above, for h > 4 (z > 8) we can no longer extract a reliable power law �t to δβ

β̄
∼ ε

1
2z in the

range ε ≥ 0.01. In order to reliably obtain larger values of z close to the critical point one would
have to reduce the cuto� ε exponentially in z (equivalently, in ξ). Thus it is the �nite time cuto�
(1/ε) rather than the �nite size, which limits the calculation.

As noted above, calculations performed at smaller ε might yield somewhat larger hc as well,
which would, in turn, impact the value of ν obtained from z ∼ (hc − h)−ν �t.

4.7 Discussion

We have demonstrated the advantages of investigating the MBL transition as a function of the
coupling strength ε to external non-equilibrium baths. In this approach the coupling gives rise
to universal broadening of the critical point, governed by the coupling ε in the same way that
temperature broadens a conventional quantum critical point. In numerical computation, the �-
nite coupling to a bath limits the operator entanglement entropy allowing the usage of powerful
matrix-product operator methods on both sides of the phase transition. Thus we were able to
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obtain quantitative information on quantum critical properties, including the dynamical expo-
nent z, the correlation length exponent ν and the critical disorder strength. Moreover, having a
weak coupling to the baths seems to regulate the calculation by broadening the many-body energy
levels facilitating faster convergence to the thermodynamic limit. Even though our calculations
were performed on rather small system sizes, the approach is in principle scalable (the computa-
tional e�ort scales linearly with system size at �xed bond dimension) and thus o�ers an appealing
alternative to non-scalable ED calculations.

Our numerical scheme is scalable in terms of the calculated spatial size. The limiting factor
to approach the critical point is the time-scale imposed by the minimal value of the dissipative
coupling τc ∼ 1/ε. To reliably extract z from the �t to δT ∼ ε1/(2z), one would need to vary
δT/T̄ over about an order of magnitude. Close to the critical point, this would require very
small ε ∼ e−Bξ/a, where ξ ∼ z is the correlation length. This is a fundamental limitation
stemming from the exponential dynamical scaling that characterizes the critical point. It would
be a limiting factor even if we had a perfect quantum simulator at our disposal to study the MBL
transition. In our current numerical scheme reaching small values of ε is challenging, since it
requires performing TEBD evolution for longer times in order to reach the steady-state of Eq.
(4.1) and also requires larger bond dimensions. Thus, it is an interesting research direction to
develop numerical approaches which are better suitable to compute QME steady-states at the
limit of small ε.

An interesting future direction is to go beyond the temperature-�uctuation order parameter
in Eq. (4.66) and study the full statistical properties of the local temperatures. For example, one
could investigate the distributions of thermal region sizes (regions with small temperature vari-
ance) on the MBL side of the transition. This might allow to test recent claims, based on phe-
nomenological RG studies, that the MBL transition obeys Kosterlitz-Thouless scaling [199,200].
It would be also interesting to apply our approach to a model where the MBL transition occurs
due to a quasi-periodic potential instead of real disorder, where Gri�ths e�ects are not expected to
occur. In case we observe that z remains at a �nite value in the quasi-periodic potential scenario,
it will serve as further evidence to the rare-regions mechanism being the origin of sub-di�usive
transport observed in models with real disorder.

Potentially even more exciting than the numerical advances are the experimental breakthroughs
that the open system approach can facilitate in the study of MBL. In particular this approach
may allow to study MBL and the MBL transition in solids in spite of the inevitable coupling to a
phonon bath. The non-equilibrium conditions we considered here can be achieved by driving the
system externally either with light, or with a bias voltage, to a steady state set by the ratio of cou-
plings to the drive and the phonon bath. Both couplings can be controlled, the former through
the strength of the driving �eld and the latter by changing the phonon temperature. We have
shown that under these conditions the critical properties can be inferred from the dependence of
local temperature variations on the coupling ε. In principle local temperatures can be measured
by comparing the Stokes and Anti-stokes response in a local (tip-enhanced) Raman spectroscopy
experiment [201, 202]. However, a more natural measurement in solids would be a simple resis-
tivity measurement. We have argued that dependence of the resistivity on ε at small values of the
coupling can also provide crucial information on the MBL transition.

We note that the sub-di�usive scaling in one dimensional systems ε1/2z may be hard to dis-
tinguish from true localization close to the transition, where the dynamical exponent becomes
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very large z � 2. In two and three dimensional systems, however, we do not expect to observe
sub di�usive scaling even close to a localization transition. Thus the open system approach is
uniquely suitable for determining the fate of many body localization in two and three dimen-
sional systems in view of recent arguments [203] and some numerical evidence [204] for absence
of a sharp MBL transition in this case. For the purpose of numerically computing steady-states of
Eq. (4.1) in 2d, one could use the recently developed neural-network ansatz approach for solving
the QME [205–208], which is expected to be competitive with tensor-network methods in this
scenario.
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5 Trajectory dependent
entanglement transition in a free
fermion chain – from extended
criticality to area law

5.1 Introduction

Fingerprints of the competition between unitary and non-unitary dynamics are found in almost
all aspects of modern quantum science. The spectrum ranges from radiative decay in driven two-
level systems [209, 210] to dephasing of trapped ions and cold atoms due to laser noise [211] or
phonon-induced dissipation in electronic devices and color centers [212, 213]. Non-unitary pro-
cesses crucially a�ect quantum dynamics from single particles to the many-body realm, as we have
also seen in previous chapters.

One fascinating example are phase transitions in the entanglement entropy, which have been
recently discovered in systems undergoing random-unitary circuit evolution subject to local pro-
jective measurements [31, 34, 35, 214–216]. These works explored the entanglement properties
of individual measurement trajectories |ψξ〉. Here, ξ represents a speci�c realization of temporal
randomness encountered during time evolution due to quantum mechanical measurements. For
example, in the case of projective measurements in circuit dynamics, ξ encodes all the di�erent
measurement results and the times at which they were performed.

A particular quantity of interest is the entanglement entropy of the trajectory state |ψξ〉, av-
eraged over all trajectory realizations, denoted S̄vN. When examining the long time value of S̄vN
in random-unitary circuits with measurements, two di�erent phases have been found. For small
enough measurement rate the steady-state value of S̄vN obeys volume-law scaling. This means
that SvN(`) ∼ ` for a given subsystem of length `, implying that the subsystem is strongly entan-
gled with the rest of the system. On the other hand for large measurement rate S̄vN obeys area-law
scaling, meaning that S̄vN(`) ∼ const. for a large enough subsystem size. At a critical measure-
ment rate an entanglement phase transition occurs, where S̄vN exhibits logarithmic scaling. This
novel class of phase-transitions is currently under intense research [36,37,217–221], and has been
reported in a plethora of setups, including non-unitary circuit models and chains of interacting
bosons subject to continuous measurements [222–226].

A characteristic trait of these entanglement transitions is that they manifest themselves in the
expectation value of state-dependent operators tr[ρξÔ(ρξ)], with ρξ = |ψξ〉〈ψξ|. For example,
the entanglement entropy of a subsystem A, can be expressed as SvN(A) = tr[ρξÔS(ρξ)] with
ÔS(ρξ) ≡ − log ρA(ξ). Here ρA(ξ) is the reduced density matrix on subsystem A. Hence we
see that SvN(A) is a highly nonlinear function of the trajectory state ρξ. This implies that dif-
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ferent measurement protocols, which are expected to lead to the same dynamics for the averaged
state ρ(t) = Eξ[ρξ(t)], can result in qualitatively di�erent dynamics of the trajectory-averaged
entanglement-entropy S̄vN(t). Therefore, when considering trajectory entanglement phase tran-
sitions, it is important to explore the e�ects of di�erent measurement protocols.

Here we focus on one of the most elementary models for the competition between unitary and
non-unitary dynamics, free fermions on a periodic chain, subject to coherent hopping and lo-
cal, temporally random, and particle number conserving dephasing dynamics [227–230]. From
a measurement theory point of view, the non-unitary dephasing evolution results from a con-
tinuous, weak measurement of the local fermion particle number, caused for instance by weak
interactions with a monitored photon bath [231–234]. Hence this model describes competition
between entangling Hamiltonian dynamics and disentangling measurement dynamics, similar to
the case of random-unitary circuits with projective measurements.

The free-fermion model can be simulated e�ciently [228], allowing us to investigate large sys-
tem sizes, similarly to the case of random Cli�ord circuits [35, 220, 235]. In addition, it is natural
in terms of physical implementations: this scenario arises, e.g., for ultracold fermions in optical lat-
tices, which experience incoherent light scattering [227, 236], or in Rydberg atom arrays subject
to phase noise in the driving laser [237, 238].

An important di�erence between the free-fermion model and random-unitary dynamics is that
the former is an integrable model and as such it is not expected to capture the full phenomenology
of generic interacting quantum-systems. However, integrable and non-integrable models do share
some similar phenomenology as far as the closed system entanglement dynamics is concerned. In
particular in both cases balistic entanglement growth is observed after a quantum quench [29,30],
and in some models with tunable integrability breaking the same universal formula is obeyed by
the entanglement in the integrable and non-integrable regimes [239]. Even if the free-fermion
model does not capture the full phenomenology of generic trajectory entanglement transitions,
its relative simplicity makes it an appealing model system. Furthermore, it can serve as a starting
point for the exploration of the entanglement transition in the presence of weak-interactions.

Outline and summary of results

Before delving into the details of our work, let us present a high-level outline and summary of
the main results. In Sec. 5.2 we provide background which helps understanding our results and
putting them in context. In particular we review: previous studies of the entanglement transi-
tion in random-unitary circuits in Sec. 5.2.2; stochastic trajectory unravelings of the QME and
their relation to monitoring in Sec. 5.2.3; and some properties of the entanglement-entropy and
correlation functions expected in conformal-�eld theories in Sec. 5.2.4.

The description of our work starts Sec. 5.3 in where we introduce the concrete free-fermion
model we consider, where the fermions are subjected to dephasing noise, resulting form interac-
tion with a photon bath. The resulting quantum master equation dynamics for the averaged state
contains Lindblad operators of the form ni. In this work we are not interested in the averaged
state, but rather in the conditioned state which is obtained when the state of the bath is moni-
tored, which we also refer to as a measurement trajectory. We consider three di�erent types of
measurement trajectories: (i) the quantum state di�usion (QSD), describing a situation where
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the photon bath is continuously monitored via homodyne detection [233, 240] (ii) quantum-
jump (QJ) trajectories which describe the evolution of the state when photons are detected di-
rectly with a photon counter. [233, 241] (iii) The so called “raw” quantum-state di�usion [242]
, which mimics non-unitary quantum circuit evolution (QSDc).

Section 5.4 includes the main result of our chapter where we establish the entanglement phase
diagram of the model Fig. 5.5. The phase diagram emerges as a result of a competition between the
hopping rate J (which we �x to be J = 1 from now on) and the dephasing rate γ. We observe
three di�erent regimes with di�erent behavior of the entanglement-entropy of a subsystem of
lengthL/2 (equal bipartition of the system):

• For weak γ and smallLwe �nd a volume-law behavior of the entanglement∼ L.

• Increasing the system size we observe a cross-over between the volume-law behavior to log-
arithmic scaling of the entanglement-entropy∼ logL. This logarithmic scaling is reminis-
cent of the entanglement scaling in CFTs, as we explained in Sec. 5.2.4. By examining the
entanglement-entropy scaling we can extract aγ dependent e�ective central-charge. Similar
behavior has also been observed very recently in a related free-fermion circuit-model includ-
ing spatio-temporal randomness [226], and in measurement-only quantum circuits [243].

• For some types of trajectory-evolution we �nd area-law behavior ∼ L0 for large enough
γ. In this case a phase transition from the CFT regime to the area-law regime occurs at a
critical dephasing rate γc, where the e�ective central-charge vanishes c(γc) = 0. On the
other hand for a certain type of trajectory-evolution, which can be viewed as a continuous
limit of the non-unitary circuit introduced in [226], we �nd that the system exhibits CFT
like behavior for all γ.

By comparing di�erent types of trajectory evolution, we �nd that the way monitoring is per-
formed is essential for the qualitative properties of entanglement entropy dynamics – as noted, the
area-law regime exists only for certain evolution protocols. In Sec. 5.5, we conjecture that a key in-
gredient for the existence of the area-law regime in the free-fermion system is whether probability
is conserved exactly in the trajectory evolution, or only on average. While exact probability conser-
vation is automatic in unitary dynamics, it may or may not be realized for non-unitary protocols –
even though the average conservation is su�cient to guarantee a consistent open system quantum
dynamics. In addition, we show that the di�erent protocols lead to a very di�erent picture when
considering the full distribution trajectory entanglement-entropies.

Finally, in Sec. 5.6 we further substantiate the claim of a conformally invariant regime at weak
monitoring, by considering the spatial dependence of mutual-information and connected density-
density correlation functions. We observe a scaling behavior which agrees with the predictions of
conformal-�eld theory.

5.2 Background

5.2.1 Entanglement of pure quantum states

Let us consider a bipartition of one-dimensional spin chain at a bond x, denoting the subsystems
A = [1, x], B = [x + 1, L]. Intuitively, we think about the entanglement betweenA andB as
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representing the amount of non-classical correlations between them. It is maybe easiest to explain
when two systems are not entangled. We say thatA andB are not entangled, if the (pure) state of
the system can be written as a product state of the form |ψ〉 = |ψA〉 ⊗ |ψB〉. In this caseA and
B do not share any quantum correlations.

For pure states there exist a useful measure, the entanglement entropy, that can de�ne bipartite
entanglement in a positive way and quantify it. Given a state of the system |ψ〉, we denote the
reduced density-matrix corresponding to the bipartition as

ρ(x) = ρA = trB|ψ〉〈ψ|. (5.1)

We can then de�ne the von-Neumannn entanglement-entropy of the bipartite system as

SvN(x) = −trρ(x) log2 ρ(x). (5.2)

From the point of view of quantum information, this is a natural measure of bipartite entangle-
ment for pure states. Consider two observers Alice and Bob, such that Alice (Bob) has access
only to subsystem A(B). It has been shown that given a su�cient amount of Bell-pairs shared
by Alice and Bob, they can create an arbitrary many-body bipartite state only by means of local
operations (on their respective subsystems) and classical communication (LOCC) [244]. The
entanglement-entropy SvN was shown to be equal to the amount of Bell pairs that are needed to
be shared between Alice and Bob in order to generate the state |ψ〉 via LOCC [244].

It is also useful to consider the set Réyni entropies

Sn(x) =
1

1− n log2 tr(ρ(x))n. (5.3)

A useful property of the Rényi entropies is that they obey the inequality Sn(x) ≤ Sn−1(x). In
particular SvN is the n = 1 Rényi entropy. Another special important case includes the Hartley
entropy

S0(x) = rkρ(x), (5.4)

which is equivalent to the bond-dimension required at bond x for an exact representation of the
state |ψ〉 as an MPS (see our discussion in Sec. 4.3). The Hartley entropy serves as an upper bound
for all other Rényi entropies.

Another quantity that we consider in this chapter is the bipartite mutual information, de�ned
for two subsystemsA,B as

In(A,B) = Sn(A) + Sn(B)− Sn(A ∪B). (5.5)

The mutual-information is useful because it quanti�es the correlations between two subsystems
A andB in a basis independent way. More percisely, IvN(A,B) provides an upper bound on any
connected correlation function betweenA andB [245]

IvN(A,B) ≥ 〈MAMB〉2c
2||MA||2||MB||2

, (5.6)
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whereMA(B) is some observable onA(B) and 〈MAMB〉c = 〈MAMB〉−〈MA〉〈MB〉. Hence,
if the mutual information decays exponentially in the distance between A and B, it implies the
same for the connected correlation functions. Note that in the special case we considered above,
whereA,B are obtained from a bipartition of the entire chain, the entanglement-entropy is twice
the mutual information since in this case SvN(A ∪ B) = 0. Therefore, SvN(x) also serves as an
upper-bound on all correlation functions between the two parts of the system.

From a quantum computation perspective entanglement is a resource, and achieving any ad-
vantage over classical algorithms requires the preparation and manipulation of highly entangled
states [246]. This claim can be understood from the fact that the dynamics of states with low
entanglement can be e�ciently simulated on classical computers by mean of tensor-network rep-
resentation, as we discussed in the previous chapter.

Experimental measurement of the entanglement entropy

Since Sn is not a linear function of the density matrix ρA, we generally don’t think about it as an
observable which is directly measurable, as opposed to some Hermitian operator Ô. However,
in a recent experiment by Islam et al. [247], the 2nd Rényi entropy was directly measured in an
ultra-cold atom system, realizing the Bose-Hubbard model with 4 sites. An increase of S2 in the
ground-state was measured when adibatically tuning the system from the Mott insulating phase
(large interactions) to the super�uid phase (small interactions compared to hopping).

The main idea behind the experiment is to exploit the fact that the purity of a state ρ can be
expressed as an expectation value of the SWAP operator V2 with respect to a state consisting of
two replicas of ρ

trρ2 = tr(V2ρ⊗ ρ) = 〈V2〉ρ⊗ρ, V2(|ψ1〉 ⊗ |ψ2〉) = |ψ2〉 ⊗ |ψ1〉. (5.7)

As seen from its de�nition, the SWAP operator exchanges the states between the two copies. Since
V 2

2 = 1, its eigenvalues are ±1. Furthermore a pure state has 〈V2〉|ψ〉⊗|ψ〉 = tr(ρ2
ψ) = 1

and hence it is contained in the symmetric subspace of V2. When the two copies of the state are
interfered via a 50-50 beam-splitter it can be shown that a pure-state input will lead to an even
number of particles in the output state of the interferometer. Therefore, a measurement of the
average parity of the output state is equivalent to measuring the purity 〈P 〉 = 〈V2〉ρ⊗ρ.

In the experiment the system was initialized with two copies of the ground-state of the Bose-
Hubbard Hamiltonian on two adjecent 4-site 1d chains. The two copies where then interfered
with each other via a 50-50 beam splitter, which was e�ectively implemented via a tunnel coupling
between the two 1d chains. The quantum-gas microscope used in [247] can measure the site-
resolved parity in the two chains systems after the interference, and in this way the purity of the
reduced state trρ2

A could be measured, allowing computation of S2(A).
Another scheme for measurement of the Rényi entropy in quantum simulators, based on ran-

domized measurements, was suggested theoretically by Elben et al. [248] and subsequently real-
ized in a trapped ion setup by Brydges et al. [249]. This scheme is based on application of random
unitary matricesUA drawn from the circular unitary ensemble, and estimating the statistical mo-
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ments of projectors on the computational basis |s〉〈s|. De�ning P (s) = tr[UAρAU †A|s〉〈s|],
one can use the relation

〈P (s)2〉 = EUA{tr[(UAρAU †A)⊗2(|s〉〈s|)⊗2]} ∝ 1 + tr(ρ2
A). (5.8)

In contrast to the replica scheme used in [247], the randomized measurement scheme does not
require a replicated state. This allowed Brydges et al. to measure the dynamics of the 2nd Rényi
entropy of subsystems of up to 10 qubits, with the total length of the chain being N = 20. In
this respect it seems that the randomized measurement scheme provides a promising route for
eventually measuring S2 at scales which are out of reach for classical simulations.

5.2.2 Entanglement phase transition in random-unitary circuits with
measurements

In this section we review the results of recent studies of the entanglement transition in systems
evolving under random-unitary circuit (RUC) dynamics with projective or weak measurements.

The transition was �rst pointed out in Refs. [34,35], both considered a similar hybrid 1D quan-
tum circuit model describing evolution of a spin-1/2 chain. We will start by following the dis-
cussion in Ref. [34] which provides some analytical insight into the origin of the transition in
addition to numerical result. The dynamical evolution consists of unitary steps and projective
measurement steps. In the unitary step random two-site unitaries are applied to all the even or
odd bonds:

|ψ̃i+1〉 =

{∏N/2
k=1 U2k−1,2k|ψi〉, i odd

∏N/2
k=1 U2k,2k+1|ψi〉, i even

(5.9)

withUn,n+1 a random-unitary acting only on sitesn, n+1, drawn from the Haar measure. After
each unitary step a projective measurement is performed on each site with probability p. This is
implemented at each site k by the mapping

|ψ̃i+1〉 →





P↑,k|ψ̃i+1〉
||P↑,k|ψ̃i+1〉||

, prob. p〈ψ̃i+1|P↑,k|ψ̃i+1〉
P↓,k|ψ̃i+1〉
||P↓,k|ψ̃i+1〉||

, prob. p〈ψ̃i+1|P↓,k|ψ̃i+1〉
|ψ̃i+1〉 prob. 1− p

(5.10)

where P↑(↓),k = (1 + (−)σzk)/2. The state resulting from the sequential application of the
mapping (5.10) to all sites is de�ned as |ψi+1〉.

We note that all the entanglement measures mentioned above are de�ned for the case of pure-
state evolution. For the evolution with projective measurements, averaging over the measurement
results leads to a mixed-state, which in the long time limit is a structureless in�nite-temperature
state in the protocol considered here, iregarrdless of the measurement rate. The quantities we
will consider here are the trajectory-averaged quantities. Speci�cally the trajectory averaged Rényi
entropies are given by

Sn(A) ≡ Ep,U
1

1− n log2 tr(trĀ|ψ{p,U}〉〈ψ{p,U}|), (5.11)
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Figure 5.1: Bound on the Rényi entropy of a state obtained via RUC evolution, provided by an arbitrary
cut through the RUC. The initial state is represented as an MPS (white boxes at the bottom),
while the blue boxes represent two-site unitaries acting on the state. (a) The number of “legs”
the red line passes through is denoted by Scut, and it bounds the Rényi entropy Sn(x) ≤ Scut.
In the example shown here Scut = 5. (b) The cut induces a decomposition of the state |ψ〉 as
the product of two tensorsL andR.

where p denotes the set of projective measurements that were performed and their outcomes, U
is the set of random-unitaries applied to the initial state and trĀ is the partial trace over all spins
not in subsystemA. Note that Sn(A) cannot be extracted from the mixed-state dynamics which
arise when averaging over measurement results and times.

Dynamics of S0, minimal-cut picture and mapping to 2D percolation

First, let us consider the evolution of S0(x) under RUC dynamics in the absence of measure-
ments, which allows one to gain some analytical insight. Applying a random-unitary acting on
sites {x, x + 1} at time-step t, it can be shown that S0(x) obeys the following formula with
probability 1 [31]:

S0(x, t+ 1) = min{S0(x− 1, t), S0(x+ 1, t)}+ 1. (5.12)

For the evolution given by Eq. (5.9) (without measurments) Eq. (5.12) implies that

S0(x, 2t) = min{x, t}. (5.13)

Therefore, in the absence of measurements, S0 grows linearly with time until it saturates to a
volume law S0(x, t =∞) = x [31].

Consider the state obtained by application of some quantum circuit composed of random two-
site unitaries to an initial product-state |ψ〉 =

∏N
k=1 U

(k)
ik,ik+1|ψ0〉. A bound on any Rényi en-

tropySn(x) with respect to the state |ψ〉 can be obtained by the following procedure. Consider a
cut starting from bondx at the top of the circuit and traversing down to the bottom of the circuit
without passing through any two-site unitary (this is made clearer by Fig. 5.1a). The “cost” of a
given cut Scut is calculated by the number of “legs” (the vertical black lines in Fig. 5.1a) which
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the cut passes through on its way to the bottom of the circuit. The claim is that Scut, computed
for an arbitrary cut, provides an upper bound on the Rényi entropy Sn(x) ≤ Scut. The tightest
bound is provided by the cut with the minimal cost Smin-cut, also known as the minimal-cut. For
the dynamics we consider in this section S0 saturates the minimal-cut bound [31].

The fact that Sn(x) ≥ Scut can be seen by observing that the cut de�nes a representation of
the state in terms of two tensorsL,R (see Fig. 5.1b)

|ψ〉 =
∑

i,σ

Lσ1,..,σxi1,..,iScut
R
σx+1..σL
i1,..,iScut

|σ1..σx〉|σx+1..σL〉 (5.14)

The Schmidt-rank of |ψ〉 at bondx, and hence the bond-dimension, is then bounded by dim(i1, .., iScut) =
2Scut , which in turn means that S0(x) ≤ Scut. Since for all n > 0 we have Sn(x) ≤ S0(x), this
shows the general bound.

In Ref. [34] it was shown how the minimal-cut picture can be extended to the case where pro-
jective measurements are performed with probability p after application of each unitary. The
e�ect of performing a projective measurement at time t on site j is to �x the value of the spin at
point (j, t). Consider a cut going through the quantum-circuit as in Fig. 5.1, passing through a
“leg” at point (j, t). This means that in the tensor-network representation Eq. (5.14) there is no
summation on the index ij corresponding to (j, t), hence the maximal bond-dimension in this
case is at mostScut− 1. In general, projective measurements lead to broken bonds, which are not
counted in the calculation of Scut.

For small p, measurements will lead only to a sparse set of broken bonds meaning that a cut
traversing from top to bottom of the circuit will still have to cross ∼ min{x, t} of unbroken
bonds, hence S0(x, t) is still described by linear growth saturating in a volume-law. On the other
hand, in the case of large measurement probability, most bonds will be broken, hence we can �nd
a cut which traverses the quantum-circuit from top to bottom cutting only a small non-extensive
number of unbroken bonds. This means that in this case S0(x, t) will quickly saturate to a con-
stant independent of x, t, hence an area-law for entanglement. Hence a transition between an
area-law behavior and a volume-law behavior is expected at some critical value of the measure-
ment rate pc.

Critical behavior

To understand the expected critical behavior at pc, let us consider the minimal-cut picture in the
thermodynamic limit L = ∞ at �nite t. The problem of �nding the minimal-cut in the pres-
ence of measurements can be mapped to what is known as “�rst passage percolation” problem in
2D. First passage percolation deals with �nding the path of minimal cost through a disordered
medium. At the critical point the minimal-cut, starting at the top of the circuit, traverses down
to the bottom passing through a sequence of zero cost regions, where all bonds are broken (see
Fig. 5.2). In the context of �rst passage percolation, it was shown that the sequence of zero cost re-
gions is of increasingly larger size and their distance isO(1) [250]. Hence, after traversing log(t)
regions the cut enters a broken-bond region of scale t and can reach the bottom of the circuit
with no further cost [34, 250]. This leads to the scaling

S0(t; pc) ∼ A log(t). (5.15)
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FIG. 8. Cartoon for the scaling argument showing
S0(t) ⇠ log t at the percolation critical point (cf. Figs. 6, 7).
The minimal cut passes through the sequence of white do-
mains shown in blue/white. Writing the linear sizes of con-
secutive domains in this sequence as R1, R2, . . ., the ratio
Ri+1/Ri is typically larger than one (see text), so for an i
of order log t the minimal cut reaches a cluster of O(t) size
that borders the boundary and the sequence ends. Domains
i and i+1 typically approach each other to within one lattice
spacing, so the cost scales as the number of domains in the
sequence.

This logarithmic scaling for critical first passage is proved
in Ref. 42. The coe�cient A, which can be thought of
as an entanglement per scale, is universal as a result of
the scale-invariance of the process. Below, we estimate
A = 0.27(1).

The typical size ⇠ of the empty chambers is finite for
p . pc, but diverges with the correlation length exponent
as pc is approached:

⇠ ⇠ 1/|p � pc|⌫ . (8)

For classical percolation in two dimensions, the critical
exponent ⌫ = 4/3. The part of the minimal cut within
⇠ of the top of the sample costs A ln ⇠, as above. At
farther distances from the starting point the path travels
through chambers of size ⇠ ⇠. Each chamber-to-chaber
crossing involves passing through an order-unity number
of unbroken bonds, and consequently the minimal cut
passes through a total number S0 ⇠ t/⇠ of unbroken
bonds, so that:

S0(t, p) ⇠ (pc � p)⌫ ⇥ t, (p . pc). (9)

That is, the entanglement S0 at p < pc grows without
bound as a function of time, with a growth rate that
vanishes as p ! pc.

At p & pc the minimal cut escapes to the infinite clus-
ter of unbroken bonds after a section of length O(⇠) at
the top of the lattice. On scales smaller than ⇠ the critical
scaling applies, giving a cost A ln ⇠, so that

S0(t, p) ' A ⌫ ln

✓
1

p � pc

◆
(p & pc). (10)

The above results are all limiting cases of the general
scaling form

S0(t, p) = A ln ⇠ + F (t/⇠), (11)

which can be obtained by imagining rescaling both t and
⇠ by a constant factor and repeating the considerations
above. The asymptotics of F for large and small argu-
ment are determined by Eqs. (9) and (10). Generaliza-
tions of Eq. (11) will be useful to us below in extracting
exponents numerically. This sort of scaling form (with
length in place of time) has also been derived for scal-
ing of higher Rényi entropies in critical random tensor
network states [25], by a di↵erent kind of reasoning.

The scaling results of Eqs. (7)–(11) can be easily gen-
eralized to the case where the system size is finite and the
time t � L. In this case, the minimal cut travels a total
horizontal distance L/2, moving from the top-center of
the lattice to one of the lateral edges. The above results
hold if we replace t with L in Eqs. (7)–(11), except that
the scaling function F in Eq. (11) is di↵erent. If t and L
are both finite, the scaling form has an additional depen-
dence on t/L. In general a nonuniversal speed v would
enter, but here that is fixed to unity by the symmetry of
the square lattice between time-like and space-like direc-
tions. We comment further on the symmetry between t
and L in the following section.

The scaling expectations above can be tested using our
numerical simulations. First, Fig. 9(a) shows S0(t) for
a range of values of p (in a system of fixed aspect ra-
tio, L = 4t). As expected, S0 grows linearly in t when
p < 1/2, and remains constant in the limit of large t at
p > 1/2. The inset shows that our data is also consistent
with the logarithmic dependence S0 / ln t at p = 1/2.

In the entangling phase we may define an asymptotic
entanglement growth rate (for a quench from an area law
state) as well as an entropy density s0 associated with the
volume law entanglement after saturation. The latter is
given by

S0(t ! 1, L) ' s0 ⇥
L

2
. (12)

The growth rate is given by

S0(t, L ! 1) ' v0s0 ⇥ t, (13)

where (by definition) v0 is the ‘entanglement speed’ for
the zeroth Rényi entropy. The quantities v0s0 and s0 are
plotted as functions of p in Figs. 9(b) and (c). Both van-
ish as p ! pc, consistent with Eq. (9) (and the analogous
equation for the opposite regime of aspect ratio) from
which we expect

s0 ⇠ (pc � p)4/3, (14)

for the entropy density at p . pc. The equivalence be-
tween v0s0 and s0 as a function of p [seen in Figs. 9(b)
and (c)], suggests an entanglement velocity v0 ⇠ 1, which
is implied by the symmetry of the lattice.

Figure 5.2: A schematic picture of the minimal-cut traversing the quantum circuit at the critical measure-
ment rate pc. The gray region represents a space-time area where most bonds are unbroken,
while the blue and white regions represent a space-time region where most bonds are broken
and hence traversing this regions does not increase Scut. Figure taken from Ref. [34].

where in the thermodynamic limit,L→∞, S0 does not depend on the bond x.

Away from the critical point the size of the broken-bond regions is �nite, hence we can assign a
�nite length-scale with it ξ. This correlation length diverges at the critical point ξ(p) = |p−pc|−ν ,
where for S0 the critical exponent ν is expected to be that of 2D percolation transition ν = 4/3.
From the mapping to the percolation picture the following scaling form can be derived for S0

S0(t; p) = A log ξ + F (t/ξ) (L→∞). (5.16)

For a �nite system, we can obtain the dependence on L from the above scaling form, by using
t = 4L. We obtain S0(t = 4L) = A logL + G(L/ξ), which leads to the following scaling
form in the long time limit

S0(x = L/2; p)− S0(x = L/2; pc) = G̃((p− pc)L1/ν) (t→∞). (5.17)

HereS0 is evaluated for a bipartition at the middle bond of the system. Similar scaling form should
hold as long as the subsystem for which S0 is computed is of extensive size, i.e.∼ αL.

Numerical simulations of the circuit dynamics using MPS con�rm the scaling form, Eq. (5.17),
obtained from the minimal-cut picture both for S0 and for Rényi entropies with n > 0. In
Ref. [34], using simulation for system sizes up toL = 24, it was found that ν ≈ 4/3 for S0 but
ν ≈ 2.03 for the von-Neumann entanglement-entropy. In Ref. [35] the entanglement growth
was studied for much larger system sizes (up toL = 512) for the more restricted case of random
Cli�ord circuits (which is e�ciently classically simulatable) and an exponent of ν ≈ 1.85 was
found (see Fig. 5.3). A later study in Ref. [37] used the tri-partite mutual-information

I3,n(A,B,C) =Sn(A) + Sn(B) + Sn(C) + Sn(A ∪B ∪ C) (5.18)
− Sn(A ∩B)− Sn(A ∩ C)− Sn(B ∩ C),
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5 Trajectory dependent entanglement transition in a free fermion chain – from extended
criticality to area law
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FIG. 3. The averaged entanglement entropy for models B1
and B2 are shown in panels (a) and (b), respectively, as a
function of system size, for di↵erent values of p, on a log-
log scale. All the data is taken with subsystem size LA =
L/4. In each figure one curve is highlighted with a thick line,
corresponding to a critical value of p = pc, that separates
curves with p < pc that appear to asymptote to a straight
line with slope ⇡ 1 at large L (volume law), from the curves
with p > pc which saturate to lines with slope 0 at large L
(area law).

entropy is plotted versus system size (on a log-log scale)
for di↵erent values of the projection probability p. For
both models we find evidence for a transition at a crit-
ical value p = pc (highlighted with a thick line), with
pc = 0.15 for model B1 and pc = 0.68 for model B2. In
both figures for p < pc, the log SA� log L curves saturate
to straight lines with slope ⇡ 1 for large L, suggesting a
volume law. For p > pc, the curves seem to saturate to a
horizontal line with zero slope for increasing L, i.e., the
entanglement entropy is independent of L, suggesting an
area law scaling behavior. There is a rather clear distinc-
tion between the signs of the curvatures on either side of
this putative transition.

To further probe this phase transition we first re-plot
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FIG. 4. Results for model B1, plotted on a semi-log scale. In
both panels, we take the subsystem size LA = L/4. (a) The
entanglement entropy as a function of p, for di↵erent system
sizes. (b) SA/L� versus (p � pc)L

1/⌫ , for 0.05 < p < 0.3. We
find pc = 0.15, ⌫ = 1.85, � = 0.30 for a best collapse.

the entanglement entropy data versus p (on a semi-log
scale) for the di↵erent systems sizes in Fig. 4(a) for model
B1 and Fig. 5(a) for model B2, respectively. And then
we attempt a data collapse, fitting to the following stan-
dard finite-size scaling form near the critical point for the
steady state entanglement SA(p, LA),

SA(p, cL) = L�F
⇣
(p � pc)L

1/⌫
⌘

, (22)

where the values of pc are taken from Fig. 3, and c =
LA/L  1/2 is a finite constant, fixed to be c = 1/4
in our numerics [36]. Restricting the values of p to be
close to criticality, 0.05 < p < 0.3 and 0.3 < p < 1.0
for the two cases, we re-plot the data as SA/L� versus
(p�pc)L

1/⌫ , and choose the critical exponents � and ⌫ to
get the best collapse. For model B1 we find that ⌫ = 1.85
and � = 0.30 give the best fit as shown in Fig. 4(b),
while the data collapse for model B2 with ⌫ = 1.75 and
� = 0.33 is shown in Fig. 5(b).
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FIG. 3. The averaged entanglement entropy for models B1
and B2 are shown in panels (a) and (b), respectively, as a
function of system size, for di↵erent values of p, on a log-
log scale. All the data is taken with subsystem size LA =
L/4. In each figure one curve is highlighted with a thick line,
corresponding to a critical value of p = pc, that separates
curves with p < pc that appear to asymptote to a straight
line with slope ⇡ 1 at large L (volume law), from the curves
with p > pc which saturate to lines with slope 0 at large L
(area law).

entropy is plotted versus system size (on a log-log scale)
for di↵erent values of the projection probability p. For
both models we find evidence for a transition at a crit-
ical value p = pc (highlighted with a thick line), with
pc = 0.15 for model B1 and pc = 0.68 for model B2. In
both figures for p < pc, the log SA� log L curves saturate
to straight lines with slope ⇡ 1 for large L, suggesting a
volume law. For p > pc, the curves seem to saturate to a
horizontal line with zero slope for increasing L, i.e., the
entanglement entropy is independent of L, suggesting an
area law scaling behavior. There is a rather clear distinc-
tion between the signs of the curvatures on either side of
this putative transition.

To further probe this phase transition we first re-plot
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FIG. 4. Results for model B1, plotted on a semi-log scale. In
both panels, we take the subsystem size LA = L/4. (a) The
entanglement entropy as a function of p, for di↵erent system
sizes. (b) SA/L� versus (p � pc)L

1/⌫ , for 0.05 < p < 0.3. We
find pc = 0.15, ⌫ = 1.85, � = 0.30 for a best collapse.

the entanglement entropy data versus p (on a semi-log
scale) for the di↵erent systems sizes in Fig. 4(a) for model
B1 and Fig. 5(a) for model B2, respectively. And then
we attempt a data collapse, fitting to the following stan-
dard finite-size scaling form near the critical point for the
steady state entanglement SA(p, LA),

SA(p, cL) = L�F
⇣
(p � pc)L

1/⌫
⌘

, (22)

where the values of pc are taken from Fig. 3, and c =
LA/L  1/2 is a finite constant, fixed to be c = 1/4
in our numerics [36]. Restricting the values of p to be
close to criticality, 0.05 < p < 0.3 and 0.3 < p < 1.0
for the two cases, we re-plot the data as SA/L� versus
(p�pc)L

1/⌫ , and choose the critical exponents � and ⌫ to
get the best collapse. For model B1 we find that ⌫ = 1.85
and � = 0.30 give the best fit as shown in Fig. 4(b),
while the data collapse for model B2 with ⌫ = 1.75 and
� = 0.33 is shown in Fig. 5(b).

Figure 5.3: Finite-size scaling performed in Ref. [35] for the case of random circuits taken from the Clif-
ford group together with projective measurements. SA(L/4) is the entanglement-entropy of
a subsystem of length L/4, computed in the long time limit. Here the best data collapse was
obtained with ν = 1.85 and γ = 0.3. (Figures taken from [35])

A quantity which is expected to be less sensitive to �nite-size e�ects. Performing �nite-size scaling
analysis for I3,1 Ref. [37] found ν ≈ 4/3 both for the Cli�ord evolution case and evolution
with random-unitaries sampled from the Haar measure. The �ndings of [37] suggests ν to be
consistent with the percolation transition picture also for Rényi entropies withn > 0, unlike the
previous studies in [34, 35].

Connection to information scrambling

Choi et al. pointed out a connection between scrambling dynamics and the entanglement phase
transition [215]. First, consider that from a naive perspective the stability of the volume-law
phase at any �nite measurement rate might seem surprising. This is due to the observation that
only unitaries which act across the boundary between two subsystems A and B can increase the
bipartite entanglement-entropy between them. On the other hand, local measurements of any
qubit in subsystemA can disentangle it from qubits inB. At any time-step of the hybrid circuit
evolution an extensive amount of measurements is performed∼ pLA, while onlyO(1) unitaries
act across the boundary betweenA andB. Therefore, one might naively conclude that the e�ect
of measurements will always prevail and the system will never develop an extensive amount of
entanglement, in contrast to the numerical observations.

The main observation of Ref. [215] is that the stability of the volume-law phase at weak mea-
surement rate is due to the chaotic nature of the unitary time-evolution which leads to spreading
of correlations over many qubits. Although there could be an extensive number of local measure-
ments, correlations between two subsystems are hidden in highly non-local degrees of freedom
and cannot be accessed by local measurements.

In order to substantiate this claim, �rst an analytical argument based on the quantum-decoupling
theorem [251, 252] from the �eld of quantum-communication is given. Consider two entangled
subsystems A and B of size N , whose entanglement is SA ∼ γN . Let us denote by B̃ the set
all qubits in B which are initially entangled with some parts of A. Now, imagine the situation
where a random-unitary UA is applied to subsystemA, and afterwards a fraction p of the qubits
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Figure 2. (a) A model with tunable degrees of information scrambling (d) and projective measurements (p). An array
of m-qubit blocks undergoes layers of unitary gates (light blue) and random projective measurements (red). Each unitary
acting on neighboring clusters comprises a set of independently random 2-qubit gates (orange). Each Measurement projects a
randomly chosen fraction p of qubits in each qubit block. (b-e) Numerical simulation results for m = 11. (b,c) Entanglement
dynamics with p = 0.4 for two di↵erent system sizes L = 32 (blue) and 48 (light green). (b) The growth of entanglement
density as a function of time t. (c) The change in the entanglement entropy before and after projective measurements at each
time step t. Red dotted lines indicate the regime in which our decoupling inequality is applicable, based on the identification
� = S/(Lm/2). (d) Steady state entanglement entropy per qubit as a function of p for two di↵erent depth d = 3 and 44. All
data are averaged over 240 di↵erent realizations of.random circuit projective measurements. (e) Phase diagram. When d � m,
the e↵ective quantum error correction protects the volume-law entangled phase from projective measurements up to p ⇡ 0.89
(see main text). The color-coded background displays the half-chain entanglement entropies in steady states, normalized by
the number of qubits Lm/2 = 176.

the unitary Ud(i, t) are not Haar-random. Instead, they
are themselves constructed from an internal network con-
sisting of d layers of independent random 2-qubit gates
(over any unitary 2-design). Thus, the parameter d con-
trols the degree of information scrambling within a single
Ud(i, t), and, in the limit d/m ! 1, the distribution of
Ud(i, t) can approach a unitary 2-design over U(22m) [24].
After applications of the Ud(i, t) on pairs of blocks, a frac-
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while an extensive number of qubits are being measured
at every time step.
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(amount of scrambling)

Figure 5.4: Numerical study of a model with tunable scrambling strength by Choi et al. [215]. By increasing
the depth d of unitary circuits which act on 2m qubits between measurements, the system can
be driven from the area-law phase to the volume-law phase.

inA are measured. If we denote byAm the set of measured qubits, then the quantum-decoupling
theorem can be used to show that

EUA ||UAρAmB̃
U †A − ρmax

Am ⊗ ρB̃||1 ≤ 2−(1−2p−γ)N/2 (5.19)

where ρmax
Am

is the maximally mixed state on Am. Eq. (5.19) means that for large N , the state of
Am and B̃ becomes approximately separable after the application of UA, as long as the number
of measured qubits in A obeys 1 − p > γ + p. In this case measurements on Am contain no
information on B̃ and hence cannot reduce the entanglement between B̃ andA.

To further exemplify the fact that the entanglement transition in RUC dynamics is a result of a
competition between scrambling rate and measurement rate, Choi et al. consider a 1dmodel with
Lblocks ofmqubits, where random projective measurements occur between evolution with two-
block unitaries. The block unitaries themselves are composed of circuits of 2-qubit gates acting
on the qubits inside the blocks. The depth of the circuit is d (see Fig. 5.4)a). This model allows to
control the amount of scrambling between measurements, by varying the depth d. Via numerical
simulations of this model, they show that indeed, varying d/m at a �xed measurement rate can
drive a transition between area-law regime and a volume-law regime (Fig. 5.4b).

5.2.3 Quantum trajectory unravelling of the QME

In the works described in previous sections, the entanglement transition was explored in a setting
where a pure state is evolved under discrete unitary dynamics, interspersed with strong projective
measurements occurring at discrete time steps with a constant rate. In each realization of this
evolution, the wave function follows a trajectory in Hilbert-space |ψ(t)〉, which is conditioned
on the speci�c sample of random unitaries and measurement results.

On the other hand, so far in this thesis we have been concerned with open quantum systems,
which are described by a mixed-state, and whose dynamics are governed by the QME which con-
tains a unitary part and a dissipative part. In the QME, the dissipative part arises due to a coupling
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of the system to some bath whose state is not tracked. In this section we explain how the QME evo-
lution of a mixed-state can be connected to pure state evolution in the presence of measurements,
by keeping track of the information transferred from the system to the bath (either theoretically
or even in an experiment).

Given a QME with a set of Lindblad operatorsLi, ρ̇ = −i[H, ρ] +
∑

i γiDLi [ρ], we de�ne a
trajectory unravelling of the quantum master, as a stochastic evolution equation describing pure
state evolution

d|ψ(t; ξ)〉 =

(
−iH̃[|ψ(t)〉]dt+

∑

i

F̂i[|ψ(t)〉, ξi,t]
)
|ψ(t)〉, (5.20)

with ξi,t a set of random variables. At any time t, expectation values of linear operators with
respect to the state ρ(t) can be obtained from averaging over all realizations of |ψ(t; ξ)〉

tr(Ôρ(t)) = Eξ[〈ψ(t; ξ)|Ô|ψ(t; ξ)〉]. (5.21)

Here we denoted ξ ≡ {ξi,t}, and |ψ(t; ξ)〉 denotes an evolution trajectory with speci�c noise re-
alization. We emphasize that the operator F̂i depends on a random variable ξi,t at each in�nitesi-
mal time-step. Both H̃, F̂i may depend on expectation values with respect to the state itself |ψ(t)〉
and hence they are non-linear operators. We will see that the noise ξ can be related to continuous
measurements performed by the bath on the system, a speci�c trajectory is related to a speci�c set
of measurement outcomes and averaging over the noise is related to “integrating out” the bath.

We note that for a given QME, the trajectory unravelling is not unique. Here we will present
two type of unravellings, the quantum-jump (QJ) evolution and the quantum-state di�usion
(QSD). While the idea of a stochastic unravelling was �rst introduced as a theoretical tool to nu-
merically simulate the evolution of an open system, the QJ and QSD evolutions can be related
to di�erent physical measurement schemes and the dynamics of individual quantum-trajectories
can be observed in experiment in some cases.

Quantum-jump trajectories

The quantum-jump method was introduced as a way to simulate the time-evolution of quantum-
optical systems with dissipative processes by Dalibard et al. [241], and in parallel by Dum et al.
[253] in the context of studying a quantum optical system under continuous monitoring. Here
we will follow the description provided in the review article [13], which also provides further de-
tails about the usage of the method for simulations of open many-body systems.
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First let us describe the procedure for evolving a trajectory using the quantum-jump approach1.
Given the trajectory state |ψ(t)〉 the state |ψ(t + δt)〉 is obtained in the following way. First
compute 2

|ψ̃(t+ δt)〉 = (1− iδtHe�)|ψ(t)〉, He� = H − i
∑

i

L†iLi. (5.22)

where we absorbed the dissipation rates γi into the de�nition of the Lindblad operators. Then
de�ne the probability δp via

δp = δt
∑

i

〈ψ(t)|L†iLi|ψ(t)〉 ≡
∑

i

δpi, 1− δp = 〈ψ̃(t+ δt)|ψ̃(t+ δt)〉. (5.23)

δp is the probability that a measurement of the system occurred, as we will justify later. Then, the
state |ψ(t+ δt)〉 is chosen probabilistically

|ψ(t+ δt)〉 =





|ψ̃(t+δt)〉√
1−δp , probability 1− δp

Li|ψ(t)〉√
δpi/δt

, probability δp
. (5.24)

The evolution in the second case is referred to as a quantum-jump, and the jump operator is chosen
according to the probability distrbution Πi = δpi/δp.

To see how the procedure described above reproduces the QME evolution, consider the den-
sity operator ρ(t) = |ψ(t)〉〈ψ(t)|, the propagation of ρ(t) can be obtained by averaging the
probabilistic evolution step

ρ̄(t+ δt) = (1− δp) |ψ̃(t+ δt)〉〈ψ̃(t+ δt)|
1− δp + δp

∑

i

Πi
Li|ψ(t)〉〈ψ(t)|L†i

δpi/δt
, (5.25)

which after re-oragnization becomes nothing but the familiar QME

ρ̄(t+ δt)− ρ̄(t) = −iδt(He�ρ̄(t)− ρ̄(t)H†e�) + δt
∑

i

Liρ̄(t)L†i . (5.26)

Let us note that the QJ evolution can be re-casted to the stochastic form in Eq. (5.20) [11]

d|ψ(t; ξ)〉 =

[
−iH̃[|ψ〉]dt+

∑

i

ξi,t

(
〈L†iLi〉

−1/2
t Li − 1

)]
|ψ(t; ξ)〉. (5.27)

where H̃[|ψ〉] = He� + i
∑

i〈L
†
iLi〉t and ξi,t are random Poisson variables satisfying E[ξ2

i,t] =

〈L†iLi〉tdt and ξi,tξj,t = δijξi,t.

1The numerical implementation used in practice is slightly di�erent than the procedure outlined here, as we explain
later in this chapter. However, the evolution procedure we describe here is more appealing in terms of physical
interpretation.

2Note that this is just the application of the �rst order expansion of exp(−iδtHe�).
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We now turn to the physical interpretation of the quantum-jump evolution, which is easiest
to understand with a speci�c simple example of a two-level system. Due to the coupling to the
vacuum electromagnetic �eld, the system can decay incoherently from the excited state |e〉 to the
ground state |g〉 which results in a photon emission. If we don’t keep track of emitted photons
the system will evolve under a QME with L = σ− representing the decay process. Assume that
we know the state of the system at time t, |ψ(t)〉 = α|g〉+ β|e〉.

Now, assume that we have a perfect photon detector which measures the photons coming out
of the system in a time window δt. At each δt there could be two options: (1) A click has occurred
in the photon counter. In this case we know that a quantum-jump has occurred and the state of
the system must be |ψ(t + δa)〉 = |g〉 ∼ σ−|ψ(t)〉. (2) A click has not occurred. In this case
we also gain some information about the system, namely that it is a bit less probable to �nd it
in the excited-state. This is represented by the evolution with He� which leads to decay of the
probability amplitude for �nding the system in |e〉: |ψ(t + δt)〉 ∝ exp(−iHe�δt)|ψ(t)〉 =
α|g〉+ βe−Γδ/2|e〉.

We have thus seen that the quantum-jump trajectory evolution can be interpreted by relating
the quantum jump events to photon counting measurements in a quantum-optical system. A
more rigorous relation between quantum-jump trajectories and photon counting, beyond the
toy example provided here, can be found in [13, 254].

Quantum state diffusion

In the quantum-jump trajectory approach,the e�ect of the coupling to the bath is modeled by a
series of discrete jump events and a deterministic non-unitary evolution in between the jumps. A
di�erent unravelling of the QME can be obtained by considering the setup of hetrodyne measure-
ment [240, 254, 255]. In this setup the weak photo-current exiting the system, is continuously
monitored by interfering it with a second strong coherent light source. In the resulting unravel-
ling, called quantum state di�usion (QSD), the noise is continuous, and it can be viewed as the
limit where there are in�nite quantum-jumps but each jump has an in�nitesimally small e�ect on
the system.

The evolution of a QSD trajectory is governed by the equation

d|ψ〉 = [−idtHe� + dt
∑

i

(2〈Li〉Li − 〈L†i 〉〈Li〉) +
∑

i

(Li − 〈Li〉)dξi,t]|ψ〉 (5.28)

whereHe� was de�ned in Eq. (5.22), and dξi,t is a Wiener process, that is it is a Gaussian random
variable with E[dξi,t] = 0,E[dξi,tdξj,t′ ] = δijδtt′dt.

5.2.4 Entanglement in conformal field-theory

One of the main results of this chapter, is the emergence of an extensive regime where the en-
tanglement and correlation properties of the system under consideration show behavior which is
expected from a system described by a (1 + 1)d conformal �eld-theory (CFT). In this section we
provide a (very) brief introduction to CFTs and their expected entanglement properties.

A CFT is a �eld theory whose action is invariant under conformal transformations, where a
map is called conformal if it locally preserves the angle between two curves. For example, in 2d the
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group of conformal transformations is given by all holomorphic functions de�ned on the complex
plane. Hence, conformal invariance of a (1 + 1)d �eld theory enforces a lot of constraints on the
theory, which in turn makes it a useful property. CFTs are important in statistical mechanics and
condensed-matter theory because many-body systems undergoing (quantum or classical) second-
order phase transitions are often conformally invariant at the critical point [142, 256, 257].

Here we brie�y introduce several facts about (1 + 1)d CFTs which will be important for our
work later on in this chapter. For more details refer to the review in Ref. [258]. In the 2d case it is
convenient and customary to work with complex representation of the 2d plane z = x+ iy, z̄ =
x− iy. In 2dCFTs there is a class of �elds, called primary-fields, which, in the case of scalar �elds,
transform under a conformal map z 7→ w as

Φ(z, z̄)→
∣∣∣∣
∂w

∂z

∣∣∣∣
∆

Φ(w, w̄), (5.29)

where ∆ is known as the scaling weight of the �elds. Using this transformation rule with an in-
�nitesimal transformation z 7→ z + ε(z) one can show that this leads to a constraint on the
two-point correlation function of primary-�elds (here we consider �rst the in�nite-plane geome-
try)

〈Φ(z1, z̄1)Φ(z2, z̄2)〉 ∼ |z12|−2∆, z12 ≡ z1 − z2. (5.30)

To obtain the form of the correlation function in a �nite system with periodic boundary condi-
tions at zero temperature, we can use Eq. (5.29) together with a conformal transformation which
maps the in�nite-plane to the in�nite cylinder, namely w = L/(2π) log(z) (where we assume
w = τ+ix so the system is periodic in the space direction). Doing so we obtain that the two-point
correlation function obeys Eq. (5.30) but with z12 ≡ sin(π/L(x1 − x2)).

An important quantity which characterizes a given CFT is the central-charge c. The central-
charge can be related to the leading singular short-range behavior of the 2-point correlation func-
tion of the stress-energy tensor 〈T (z)T (w)〉 ∼ c/2(z − w)−4 + ..., where T (z) ≡ Tzz(z) =
1/4(T00− 2iT10−T11) [258]. Note that the fact that c 6= 0 implies that T (z) is not a primary-
�eld, since for primary-�elds 〈T (z)φ(w)〉 ∼ ∆(z−w)−2 + ... 3. The reason we introduced the
central-charge here is that in a CFT the entanglement growth with the subsystem size is propor-
tional to c, as we will shortly see.

Calabrese and Cardy [259] introduced a method to compute the entanglement-entropy of a
given CFT in (1 + 1)d, by connecting it to correlation functions of certain type of �elds. The
main idea is a replica trick where one considers the object Zn = trρnA , with ρA the reduced
density matrix on some sub-interval andn ∈ Z+. If we can computeZn we can obtain the Rényi
entropy Sn(A), and by analytic continuation also the von-Neumann entropy.

The quantity Zn(A) can be computed, e.g. in the case n = 2, by �rst considering a system
with two replicas of the full density-matrix ρAB . In this replica system , Z2(A) is given by the
expectation value

trρ2
A = tr(V2(A)⊗ 1ρAB ⊗ ρAB) = 〈V2(A)⊗ 1〉, (5.31)

3This is a consequence of the fact that the action of in�nitesimal conformal transformations is generated by the
chargeQwhich is given by a certain contour-integral over T , together with the in�nitesimal version of Eq. (5.29).
See [258] for details.
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where V2(A) =
∑
iA,i

′
A
|iA〉 ⊗ |i′A〉〈i′A| ⊗ 〈iA| is the SWAP operator which swaps the states

of sites in subsystem A between the two replicas 4. In a path-integral formulation the replicated
system is described by an action with the Lagrangian densityLn =

∑n
i=1 L[φi]. The expectation

value of the SWAP operator is given by a correlation function of two twist-�elds whose operation
enforces a constraint on the path-integral such that φi(x, 0−) = φi+1(x, 0+) for x ∈ A,

Zn(A) = 〈Tn(x1)T̃n(x2)〉. (5.32)

The main result of Cardy and Calabrese is that the twist �elds are primary-�elds with scaling
dimension ∆ = c/12(n − 1/n) [259]. This is a very powerful result, as it allows us to easily
compute the scaling behavior of Rényi entropies of CFTs in a variety of geometries. Speci�cally
in an in�nite plane geometry one obtains

trρnA ∝ 〈Tn(x1)T̃n(x2)〉 ∼ |x2 − x1|−c(n−1/n)/6, (5.33)

which leads to the following results for the entanglement-entropy of a sub-interval of length ` in
an in�nite system

Sn(`) =
c

6

(
1 +

1

n

)
log

(
`

a

)
+ c′n, SvN(`) =

c

3
log

(
`

a

)
+ c′1. (5.34)

Here c′n is a non-universal model-dependent constant, and a is the short range cuto� (i.e. lattice
constant) which is needed in order to obtain a dimensionless ratio.

Applying the same conformal-mapping we used for the two-point correlation function above,
we can obtain the entanglement-entropy for the geometry of a �nite interval in a �nite-system
with periodic boundary conditions

SvN(`;L) =
c

3
log

[
L

πa
sin

(
π`

L

)]
+ c′1. (5.35)

5.3 Model and method

We consider free fermions on a half-�lled periodic chain of length L, which is described by a
nearest-neighbor hopping Hamiltonian. Due to weak measurements of the fermion density by
the environment the fermions experience dephasing noise, which results in a QME evolution with
Lindblad operatorsLi = ni. The dynamics of the density-matrix is thus described by

ρ̇ = −i[H, ρ] + γ
∑

i

(
niρni −

1

2
{ni, ρ}

)
, H =

∑

l

c†l+1cl + c†l cl+1, (5.36)

with fermionic creation and annihilation operators c†l , cl and we used the fact that for fermions
n2
i = ni. Since [H,ni] = 0 the total number of particles is conserved during time evolution.

Note that since the dynamics are described by a QME with an hermitian Lindblad operator, the
4Note that this replica representation is the same that was discussed in Sec. 5.2.1 and was implemented in [247] for

an experimental measurement of S2.
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Figure 5.5: (a) The model we consider: free-fermions hopping on a chain of lengthL subject to continuous
monitoring with dimensionless rate γ. (b) Schematic “phase diagram” showing the di�erent
regimes of scaling with the system size L of the entanglement-entropy of an equal bipartition
SvN(L/2, L). (c) At weak dephasing, we �nd an extensive region of the phase-diagram where
the entanglement-entropy shows scaling behavior similar to this expected in conformal-�eld
theories. At a critical value of dephasingγc a phase-transition occurs between the CFT behavior
and an area-law behavior. For smallγ, L, extensive growth∼ L is observed (inset), approaching
a volume law as γ → 0.

steady-state is expected to be a featureless in�nite temperature state ρ∞ = 1N . Hence we don’t
expect to �nd any interesting physics in the static properties of the steady-state.

As we explained in Sec. 5.2.3, the QME dynamics can be alternatively described by means of
stochastic evolution of pure-states, which we refer to as quantum-trajectories. The time-evolution
of a fermion pure state |ψ({ξ})〉 follows a stochastic trajectory, determined by a speci�c real-
ization of noise increments ξ ≡ {ξl,t}, which physically can be thought of as a speci�c set of
measurement outcomes. They encode the e�ect of interactions of the local fermion density with
a (monitored) environment∼ iξl,tnl. As noted in the introduction and similar to the works done
on the entanglement transition under random unitary dynamics with projective measurements
(see Sec. 5.2.2) the main quantity of interest in this chapter is the trajectory averaged entanglement
entropy, de�ned as

S̄vN(`, t) = Eξ[−trρ`(t; ξ) log ρ`(t; ξ))], ρ`(t; ξ) = trx∈[`,L]|ψ(t; ξ)〉〈ψ(t; ξ)|, (5.37)

with |ψ(t; ξ)〉 is the trajectory state at time t (i.e. the state of the system conditioned on a speci�c
set of measurement outcomes).

We consider three types of trajectory dynamics:
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criticality to area law

1. Quantum state di�usion (QSD) describes fermions interacting with a bath of photons,
which are continuously monitored via homodyne detection [240, 242]. In this case the
evolution of a trajectory is given by

d|ψ{ξ}〉 =

[
−iHdt+

∑

l

(
ξl,tM̂l,t −

γ

2
M̂2
l,tdt

)]
|ψ{ξ}〉, (5.38)

M̂l,t = nl − 〈nl〉t, E[ξl,t] = 0, E[ξl,tξm,t′ ] = γdtδl,mδ(t− t′).

Here a speci�c set of noise valuesξ can be interpreted as the measurement noise observed in
a heterodyne measurement of a quadrature of the �uorescent light going out of the system
[233, 260].

2. Quantum jump evolution (QJ) corresponding to the same bath but where photons scatter-
ing o� fermions are counted directly [13, 233, 234]. In the quantum jump trajectories, the
evolution equation is

d|ψ{ξ}〉 =

[
−iHdt+

∑

l

ξl,t

(
nl√
〈nl〉t

− 1

)]
|ψ{ξ}〉, (5.39)

ξ2
l,t = ξl,t, E[ξl,t] = γdt〈nl〉t (5.40)

for a state with conserved total particle number5. Note that the noise is a binary-variable
distributed according to P (ξl,t) = δξl,t,1ξl,t + δξl,t,0(1 − ξl,t). Here the physical inter-
pretation of a speci�c noise realization is a series of photon detector clicks occurring at all
the times where ξl,t 6= 0.

3. A so-called "raw" quantum state di�usion [232, 242, 261], given by

d|ψ{ξ}〉 =

[
−iHdt+

∑

l

ξl,tnl

]
|ψ{ξ}〉, (5.41)

where the noise ξ is the same as in Eq. (5.38). Note that this equation is similar to the
QSD evolution Eq. (5.38), but lacks the nonlinear “feedback” term 〈nl〉t. While Eq. (5.41)
constitutes an unravelling of the QME, its main drawback is that it does not conserve nor-
malization of the state and hence lacks a clear physical interpretation. However, if we do
normalize the wave-function after each time step, Eq. (5.41) is a continuous version a non-
unitary circuit evolution (QSDc) similar to the one recently explored in Ref. [226] in the
context of the entanglement transition.

5Here we used the fact that the total density is conserved hence the e�ect of the non-unitary part of the e�ective
Hamiltonian ∼ i

∑
i ni = iN leads to an overall state-independent factor of exp(−γNdt/2) which is then

canceled due to the normalization.
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Figure 5.6: Dynamics of the expectation value 〈n3(t)〉 computed for a chain with 3 fermions and 6 sites,
evolving under Eq. (5.38) (QSD), Eq. (5.39) (QJ) and Eq. (5.36) (“exact”). As expected the
results obtained by averaging over trajectories using either QSD or QJ agree results obtained
from an exact time-evolution of the density-matrix according to the QME (“exact”).

For each trajectory evolution, the statistical average over the noise distributionP (ξ) de�nes the
density matrix

|ψ(t; ξ)〉〈ψ(t; ξ)| ≡
∫
DξP (ξ)|ψ(t; ξ)〉〈ψ(t; ξ)| = ρt.

For QSD and QJ trajectories, the density matrix evolution is given by the deterministic QME
with Markovian dephasing given in Eq. (5.36) (see Fig. 5.6). The QSDc trajectories reproduce the
QME only if we do not normalize the state after each in�nitesimal time-step.

In what follows we initialize the system in a short range correlated Néel state

|ψ0〉 = |010101....01〉. (5.42)

We evolve multiple trajectories starting from |ψ0〉 according to the di�erent types of trajectory
evolutions Eqs. (5.38)- (5.41).

The entanglement entropy, mutual information and correlation functions are computed for
each individual trajectory. We denote the statistical average of an observableO by O. The trajec-
tories are propogated to long enough times such that averaged observables have reached a steady
state. See example of the convergence of the trajectory averaged entanglement entropy in Fig. 5.7.
For nonlinear functions f(|ψ〉〈ψ|) of the state, f(|ψ〉〈ψ|) 6= f(|ψ〉〈ψ|) in general and there-
fore SvN(l, L) cannot be obtained from the trajectory averaged state ρ = |ψ〉〈ψ| or from the
QME (5.36). Hence, di�erent trajectory evolutions may yield di�erent results when the entangle-
ment entropy or other objects which are non-linear in |ψ〉 are considered.

135



5 Trajectory dependent entanglement transition in a free fermion chain – from extended
criticality to area law

0 50 100 150
t

0

20

40

60

S
v
N

(L
/2
,t
,8

00
)

γ
0.05

0.15

0.1

0.25

0.2

0.35

0.3

0.4

0.5

0.6

0.8

1.0

1.5

2.0

4.0

6.0

Figure 5.7: Time dependence obtained for the trajectory averaged entanglement entropySvN(L/2, L) for
L = 800 showing convergence to the steady-state values.

5.3.1 Fermionic Gaussian states

An important feature of the evolution equations Eqs. (5.38)-(5.41) which allows for e�cient nu-
merical computation, is that they are quadratic in the fermion operators. This means that if the
initial state of the system |ψ0〉 is Gaussian it will remain Gaussian at later times under the trajec-
tory evolution. A Gaussian state is a state whose correlations are completely determined by its
covariance-matrix, which, in the number conserving case, is given by

Dlk = tr(ρc†l ck). (5.43)

Any higher order correlation functions of a Gaussian state can be obtained from Dlk by the use
of Wick’s theorem [262]. For example, the 4-point correlation function is given by

〈c†icjc
†
kcl〉 = DijDkl +Dil(δjk −Dkj). (5.44)

In our case we assume that the initial state is pure, and hence the state at later times remains
pure under the trajectory evolution. A pure fermionic Gaussian-state |ψ(t)〉 of N particles is
parametrized by anL×N matrixU(t) via

|ψt〉 =
N∏

l=1

( L∑

j=1

Uj,l(t)c
†
j

)
|0〉, (5.45)

where U †U = 1 since we explicitly normalize the state after each time step. In other words, the
state |ψt〉 is a slater-determinant state of N fermions where the single-particle wave-functions
are given by the columns of U . The l-th occupied single-particle state is given by |φl(t)〉 =
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5.3 Model and method

∑
j Uj,l(t)|j〉, where |j〉 is the wave-function localized on lattice site j. For a state represented by

Eq. (5.45) the correlation matrix can be computed fromU via

Dl,j(t) =
[
U(t)U(t)†

]
j,l
. (5.46)

The initial Néel state is represented by the following matrix

UNéel = diag(0, 1, 0, 1, ...). (5.47)

We can generalize the relation in Eq. (5.46) in order to compute the correlation function be-
tween creation and annihilation operators at di�erent times

Dl,j(t+ τ, t) ≡ 〈c†l (t+ τ)cj(t)〉 =
[
U(t)U †(t+ τ)

]
j,l
. (5.48)

Note that the operational meaning 〈c†l (t + τ)cj(t)〉 in the context of a non-unitary trajectory
evolution is: (i) evolve the initial state to time t and apply cj , resulting in |χ〉 = cj |ψ(t)〉 (ii)
evolve |χ〉 to time τ and apply c†l , resulting in |χ̃〉 = c†l |χ(τ)〉 (iii) measure overlap with the
initial state evolved to time t+ τ , hence 〈c†l (t+ τ)cj(t)〉 = 〈ψ(t+ τ)| χ̃〉. In the case of unitary
evolution this coincides with the expectation values of the operators in the Heisenberg picture
cj(t) = eiHtcje

−iHt.

To see explicitly that Eq. (5.48) holds, we plug-in the parameterization in Eq. (5.45) at di�erent
times:

cm|ψ(t)〉 =
∑

k

Umk(t)

N∏

l=1,l 6=k
(

L∑

j=1

Ujl(t)c
†
j)|0〉 ≡

∑

k

Umk(t)|φk(t)〉, (5.49)

〈ψ(t+ τ)|c†n =
∑

k

U∗nk(t+ τ)〈0|
N∏

l=1,l 6=k
(
L∑

j=1

U∗jl(t+ τ)cj) ≡
∑

k

U∗nk(t+ τ)〈φk(t+ τ)|.

Note that 〈φk′(t′)|φk(t′)〉 = δkk′ , and evolving cm|ψ(t)〉 to time t+ τ results in

|χ(τ)〉 =
∑

k

Umk(t)|φk(t+ τ)〉, (5.50)

due to the fact that each |φk〉 a slater determinant state of single-particle modes which evolve in-
dependently from each other under the quadratic dynamics . Taking the inner product of |χ(τ)〉
with 〈ψ(t+ τ)|c†n results in Eq. (5.48).

Using the correlation matrix we can also obtain the entanglement entropy of a subinterval
A = [m1,m2], as �rst shown in [263]. Without loss of generality assume m1 = 1,m2 = l.
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criticality to area law

The reduced density matrix ρA = trx/∈A|ψ〉〈ψ| with respect to a Gaussian state is completely
characterized by the correlation-matrixDA given by

DA ≡



D11 · · · D1l

...
...

...
D1l · · · Dll


. (5.51)

Consider the unitary transformation which diagonalizesDA

V †DAV = diag(λ1, .., λl). (5.52)

Eq. (5.52) implies that the correlation functions of the fermionic operators de�ned by Aj =∑
k Vkjck obey

tr(ρAA†iAj) =
∑

kk′
V ∗ki〈c†kck′〉Vk′j = [V †DV ]ij = λiδij . (5.53)

This in turn implies that ρA is a product state in terms of the modes de�ned by {Aj}

ρA = ρ1 ⊗ · · · ⊗ ρl, (5.54)

with ρi = diag(λi, 1− λi) the mixed-state of modeAi. The entropy of this state is given by the
sum of entropies of the individual modes

SvN(l, L) = −
l∑

j=1

λj log2 λj + (1− λj) log2(1− λj). (5.55)

Given expression (5.55) we can also easily compute the mutual information I(lA, lB) between
two disjoint subsystems A= [m1,m2], B= [m3,m4] of length lA, lB (Eq. (5.5)), which is a useful
indicator for the location of the entanglement transition [220]. It is obtained via I(lA, lB) =
SvN(lA, L) + SvN(lB, L)− SvN(A∪B,L). In addition, we will also consider the square of the
correlation functions

C(l, τ) ≡ |Dl+j,j(t+ τ, t)|2 = 〈nl+j,t+τ 〉〈nj,t〉 − 〈nl+j,t+τnj,t〉,

which is the Fock (exchange) contribution to the density-density correlation in a Gaussian state
(we emphasize that the last equality is a result of Wick’s theorem and is only true for a Gaussian
state).

5.3.2 Numerical evolution of Gaussian state trajectories

Here, we provide details of the numerical implementation of the trajectory evolution described
in Eqs. (5.38), (5.39). As we explained ealier, for each individual trajectory, the state at time t is a
Gaussian state, which is parametrized by anL×N matrixU(t) as in Eq. (5.45). Let us denote a
state parametrized by a speci�c matrixU as |U〉.

138



5.3 Model and method

First let us understand how to perform coherent time-evolution of such a state. Consider the
state e−iHt|U〉, where H =

∑
ij hijc

†
icj is a general quadratic Hamiltonian and the hopping

matrix h is hermitian. Denote the modes diagonalizing H by ai =
∑

l Vilcl with single-particle
energies εi. SinceH is hermitian, V is unitary and V hV † is diagonal. With the matrix V at hand
we can compute that evolution of a single creation operator

e−iHtc†je
iHt =

∑

i

Vije
−iHta†ie

iHt =
∑

i

e−iεitVija
†
i (5.56)

=
∑

ik

V ∗ike
−iεitVijc

†
k =

∑

k

c†k[e
−iht]kj .

Using e−iHt|0〉 = |0〉we can thus write

e−iHt|U〉 =

N∏

l=1




L∑

j,k=1

[e−iht]kjUjlc
†
k


|0〉 = |e−ihtU〉. (5.57)

We see that the evolution in Eq. (5.57) describes the physical situation where the single-particle
wavefunctions, encoded in the columns ofU , evolve independently from each other, as expected
from a non-interacting system. Note that Eq. (5.57) also explicitly shows that a Gaussian pure-
state remains Gaussian under time evolution with a quadratic Hamiltonian.

Simulation of QSD

To simulate the quantum state di�usion evolution we follow the Trotterization approach used in
Ref. [228]. The simplest scheme to integrate Eq. (5.38) is using the Euler method, using a �nite
time-step δt

|ψ(t+ δt)〉 ≈ |ψ(t)〉 − iHδt|ψ(t)〉+
∑

l

(
ξl,tM̂l,t −

γ

2
M̂2
l,tδt

)
|ψ(t)〉. (5.58)

In order to maintain the Gaussian structure we want to express Eq. (5.58) as matrix exponentials
operating on |ψ(t)〉. To this end we note that according to Itô’s lemma, for a Wiener process ξt
and some operator M̂ , the di�erential of the exponential function obeys 6:

dedξtM̂ = 1 + M̂dξt +
1

2

〈
dξ2
t

〉
M̂2 +O(dt2), (5.59)

hence we have
|ψ(t+ δt)〉 ≈ e

∑
l(ξl,tM̂l,t−γM̂2

l,tδt)e−iHδt|ψ(t)〉. (5.60)

Importantly notice the lack of 1/2 factor in the γ term.

6This can be understood intuitively from the fact that
〈
dξ2t
〉

= O(dt) for a Wiener process so it needs to be taken
into account when computing the di�erential.
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In terms of the matrixU we obtain, up to normalization,

U(t+ δt) = Me−ihδtU, M ≡ diag(eξ1,t+γ(2〈n1〉t−1)δt, .. , eξN,t+γ(2〈nN 〉t−1)δt), (5.61)

where h is the hopping matrix, and the densities 〈nl〉t are computed from the correlation matrix
Dl,l(t, t). We then ensure that the columns of U are orthonormal by performing a QR decom-
positionU = QR and rede�ningU = Q. The applied step size is δt = 0.05.

Simulation of QJ evolution

To simulate the quantum-jump evolution Eq. (5.39), we exploit that particle number conserva-
tion enforces a constant jump rate γN and apply the common jump evolution procedure de-
scribed in [13]:

1. Determine the jump time τ = − log(r)/(γN) by drawing a random number r uniformly
from [0, 1]. The time τ corresponds to the time at which the norm of the state decayed to
r, that is |||ψ(t+ τ)〉||2 = r.

2. Evolve the state at time step t to t+ τ viaU(t+ τ) = e−ihτU(t).

3. Choose a jump operator nj according to the probability distribution pj = 〈nj〉t+τ/N .

4. Apply the jump operator to the correlation matrixD = U(t+ τ)U †(t+ τ), according to

Dlm →





1, l = m = j

0, l 6= m and (l = j orm = j)

Dlm − DjmDlj
〈nj〉t , otherwise

.

5. Obtain the new U matrix by performing an SVD decomposition which, for an hermitian
matrix, results in D = USU † (note S11 = .. = SNN = 1, SN+1,N+1 = .. = SLL =
0).

5.4 Entanglement Entropy and phase diagram

For a bipartition of the chain into two equal subsystems, the steady-state entanglement entropy
SvN(L/2) shows three di�erent dependencies on the chain length L and the monitoring rate γ.
This is illustrated in Fig. 5.5(c) for the case of QSD evolution. For the coherent time evolution at
γ = 0, an initial Néel state develops an extensive entanglement entropy converging to a volume
law [264]. This behavior transcends to weak but non-zero dephasing, where one still observes
an extensive entanglement growth SvN(L/2) ∼ L for L < Lc(γ) smaller than a γ-dependent
cuto� length.

Around L ∼ Lc(γ), the entanglement entropy smoothly crosses over from an extensive to a
subextensive growth SvN(L/2) ∼ logL. For 0 < γ ≤ 0.25, this crossover is observed for any
su�ciently large system with size L > Lc(γ). For γ → 0, Lc(γ) → ∞ diverges, following
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5.4 Entanglement Entropy and phase diagram

roughly a stretched exponential Lc(γ) ∼ exp[−(γ0/γ)α] with α ≈ 0.6 7. The asymptotic
behavior of the entanglement entropy SvN(L/2) in the limitL→∞ is thus always logarithmic
for smallγ. In any �nite-size system, however, an extensive entanglement entropy is observed once
Lc(γ) exceeds the system size, e.g., for γ < 0.15 system sizes L < Lc(0.15) ≈ 35 appear as if
they exhibit volume-law scaling, see the inset of Fig. 5.5(c).

Logarithmic growth of the entanglement entropy is characteristic for (1+1)-dimensional con-
formal �eld theories (CFTs) [265,266], as we explained in Sec. 5.2.4. In order to better understand
the CFT scaling regime we explore the scaling of the trajectory-averaged entanglement-entropy
SvN(l, L) as a function of the subsystem size l at �xed system sizeL. This quantity shows several
regimes, as seen for QSD in Fig. 5.8(a) and for QJ in Fig. 5.9.

We �nd a regime where SvN(l, L) exhibits a logarithmic dependence similar to a CFT with
periodic boundaries

SvN(l, L) =
c(γ)

3
log2

[
L

π
sin

(
πl

L

)]
+ s0(γ), (5.62)

but with a γ-dependent "central charge" c(γ) and residual entropy s0(γ), see Fig. 5.8 (b,c). In
thermal equilibrium irrational central charges are unconventional but are found, e.g., in disor-
dered systems [267–269]. However, irrational central charges appear to be characteristic for the
critical point of nonequilibrium transitions, including percolation [34, 270] and entanglement
transitions both in random circuits and Hamiltonian dynamics [34, 220, 225, 226, 243].

In the case of QSDc evolution the conformal scaling (5.62) is observed for any non-zero moni-
toring and su�ciently large system sizesL > Lc(γ), as can be seen from Fig. 5.8(b). The central
charge approaches itself a scaling form c ∼ γ−θ with θ ≈ 0.7, see Fig. 5.5(d). This is com-
parable to an extended conformal invariance in a non-unitary circuit dynamics with disordered
free fermions [224], where it was attributed to the spatio-temporal randomness in the combined
unitary and non-unitary dynamics. Here, however, we show that the same phenomenon appears
when the unitary evolution is disorder free.

A main �nding of our work is that this behavior changes qualitatively in the case of QSD and QJ
evolution. For stronger monitoring, e.g., γ ≈ 0.4 for L = 800 in Fig. 5.8(b), the central charge
experiences a sudden, strong suppression as a function of γ. For �nite system sizes it approaches
zero exponentially fast in γ and vanishes above a critical value γc(L). The transition is evidenced
clearly by several di�erent observations:

1. A qualitative change in the entanglement entropy S̄vN(l, L), showing no subsystem-dependence
for γ ≥ 0.6 in Fig. 5.8(a).

2. The scaling of the e�ective central charge with γ in Fig. 5.8(b), as well as with the system
sizeL in Fig. 5.10, which drops to zero for γ > 0.8 andL→∞.

3. The zero-crossing of the residual entropy s0(γ) at γ ≈ 0.5 in Fig. 5.8(c).

4. Qualitative changes of the mutual information and the correlation function for γ ≥ 0.5
shown in Figs. 5.12, 5.14, which we further discuss in Sec. 5.6.

7This dependence was estimated by solving c(γ)
3

log2(Lc(γ)/π) + s(γ) = 0 with the scaling behavior for
s(γ), c(γ) from the simulations.
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Figure 5.8: (a) The steady-state entanglement entropy as a function of the bipartition size l in the QSD case.
We observe a clear, asymptotic logarithmic growth for slow monitoring and a transition to an
area-law for faster monitoring γ ≥ γc (inset). (b,c) The e�ective central charge and residual
entropy obtained by �tting the data to Eq. (5.62). Depending on the trajectory evolution, the
logarithmic growth is either cut o� at a critical monitoring rate and passes into an area-law
regime, or persists up to arbitrarily large γ. The insets show the same data on a linear (d) and
logarithmic (e). Results are obtained from averages over 500 trajectories for L ≥ 600 and 300
trajectories forL = 800.
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Figure 5.9: The steady-state entanglement entropy as a function of bipartition size l in the QJ case, for a

system of size L = 200. The inset shows the central charge obtained from a �t to Eq. (5.62).
We observe similar behavior to that observed for QSD trajectory evolution.
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Figure 5.10: Finite size scaling behavior of the e�ective central-charge obtained from �tting SvN(l, L) to
Eq. (5.62), in the QSD case. Di�erent colors correspond to di�erent values of γ (marked).
The curves and the value of c(L = ∞) (inset) are obtained by minimizing the least-square
di�erence �t between the data and the scaling hypothesis c(L) − c(L = ∞) ∼ 1/L1/ν ,
�nding a scaling exponent ν = 0.89. This con�rms a non-zero asymptotic charge c > 0 for
γ ≤ 0.8 and a transition to area law for stronger monitoring.

The precise location of the transition in the thermodynamic limit, however, is hard to deter-
mine. We estimate γc(∞) ≈ 0.8 from the �nite size behavior in Fig. 5.10. For stronger mon-
itoring γ ≥ γc, the entanglement entropy follows an area law SvN(l, L) = s0(γ), as shown
in Fig. 5.8(a, inset) for L = 800. In the area-law regime the residual entropy s0 approaches the
asymptotic value s0(γ → ∞) = 0. This shows a transition from an extended, supposedly con-
formally invariant regime to an area law phase for continuously monitored free fermions. Our
�nding does not contradict earlier work on free fermions, which ruled out a volume law phase at
any non-zero monitoring rate but not a subextensive scaling regime [228].

5.5 Deviating trajectory ensembles

All three trajectory evolutions, Eqs. (5.38), (5.39) yield qualitatively similar results for small γ ≤
γc. This includes a subextensive entanglement entropy ∼ logL for large enough system size
and an extensive growth for su�ciently small systems. Only the QSD and QJ evolution exhibit,
however, a transition towards an area law phase at larger monitoring rates γ ≥ γc. The QSDc
shows no indication of an area law transition and the conformal invariance is extended to arbitrary
γ > 0. We conjecture that this is because for γ ≥ γc the nonlinear moments of the correlation
matrix start depending signi�cantly on the trajectory evolution and the QSD and QJ evolutions
deviate from the QSDc evolution.

This deviation is well illustrated, e.g., by considering them-th moment of the normN (m) ≡
〈ψ|ψ〉m. According to Eqs. (5.38), (5.39) one �nds (i) ∂tN (m) = 0 for arbitrarym for the QSD
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144



5.6 Mutual information and correlation functions

and QJ evolution but (ii) ∂tN (m) ∼ γm(m−1)LN (m) for the QSDc evolution (see App. 5.A
for details). The conservation of all moments N (m) reveals the exact probability conservation
intrinsic to the QSD and QJ evolutions. It is enforced by a stochastic evolution, which evolves the
state orthogonally to its Hilbert space location [240, 242]. The QSDc evolution, however, adds a
stochastic component parallel to the state, which leads to a di�erent type of trajectories in Hilbert
space. This conserves probability only on average, i.e., it conserves exclusivelyN (m = 1).

We illustrate the di�erence between QSD and QSDc explicitly by comparing the entanglement
entropy distribution for both evolutions in Fig. 5.11. The bins in the histograms re�ect the prob-
ability for a given entanglement entropy. For weak monitoring, when both types of evolutions
predict conformal invariance, both histograms show a distribution with similar mean and vari-
ance and which is symmetric around its peak, i.e., both evolutions sample a comparable set of
trajectories.

The distribution for the QSDc trajectories remains of similar shape for arbitrarily large mon-
itoring rate and only acquires a smaller mean and variance as γ is increased. The distribution of
the QSD trajectories, however, undergoes a structural change when it enters the area law phase.
It approaches a strongly asymmetric, bimodal distribution with its main peak approaching zero.
A second peak emerges and stays pinned at SvN = 1, indicating a pronounced probability for
a single non-zero eigenvalue λ = 0.5 in Eq. (5.62). In this regime, both distributions deviate
structurally from each other, con�rming again that QSD and QSDc yield signi�cantly di�erent
dynamics for objects with a nonlinear state dependence.

5.6 Mutual information and correlation functions

In order to verify the extended regime of conformal invariance and an area law transition at non-
zero monitoring rate, we investigate several additional indicators, (i) the behavior of the mutual
informationI(lA, lB) between two disjoint intervals A, B, (ii) the equal-time correlation function
C(l, 0) between two sites at distance l and (iii) the local auto-correlation functionC(0, τ).

The mutual information for two disjoint intervals lA = lB = L/8, with centers at a distance
rAB = L/2, is expected to show a sharp peak at the critical point separating the area and the
volume law phase [220]. Inspecting I(lA = lB = L/8, rAB = L/2) for di�erent system
sizes in Fig. 5.12(a) shows that it is signi�cantly larger than zero in the entire critical regime and
approaches zero rapidly in the area law phase, re�ecting extended criticality. A similar peak is
observed for the QJ evolution in Fig. 5.12(b). On the other hand in the QSDc case we observe
�nite value of I even at strong γ, where I shows slow power-law like decay as a function of γ, as
can be seen in Fig. 5.12(c)

To further con�rm the CFT behavior, it is useful to consider the mutual-information for vari-
able subinterval sizes and locations. Consider the mutual-information of two subintervals A =
[m1,m2], B = [m3,m4] which we de�ne I(m1,m2,m3,m4). This quantity can be con-
nected to a four-point correlation function of the “twist-�elds” in the Cardy-Calabrese formal-
ism [226,259]. In a CFT the four-point function of primary-�elds is expected to depend only on
the cross ratio η = m12m34

m13m24
, where for a periodic-boundary condition geometry we havemαβ =

sin(π|mα −mβ|/L) [258]. Hence, in the CFT regime we expect I(m1,m2,m3,m4) = I(η)
[220].
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Figure 5.12: Signature of the conformal invariance at weak monitoring in the mutual-information between
two subintervals of length |A| = |B| = L/8 whose centers are distance rAB = L/2 from
each other. For small γ we observe a non-vanishing value of I(rAB = L/2). In the case of (a)
QSD and (b) QJ evolution the mutual-information rapidly decays to zero for γ > γc, while it
always remains with a �nite value in the case of QSDc (c) evolution, exhibiting slow power-law
decay with γ.
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Figure 5.13: CFT siganture in the dependence of the mutual-information between A = [m1,m2], B =
[m3,m4] on the ratio η = (m12m34)/(m13m24), where mαβ = sin(π|mα −mβ |/L).
Computed for the QSD case with L = 400. (a) For weak dephasing a scaling collapse of
the mutual information as a function of the cross ratio η is observed, indicating the scaling
behavior expected for a CFT I(η) ∼ η. (b) In the area law regime no collapse is observed.

The expected CFT scaling behavior of I is con�rmed in Fig. 5.13(a). For weak dephasing in the
conformally invariant regime, the mutual information I(η) collapses onto a single line for all η,
with a linear increase∼ η for small cross ratios. The linear dependence in η also implies a power-
law decay of the mutual-information I ∼ r−2

AB for small subsystems with large separation [220].
This collapse is a strong indication of conformal invariance and can be observed throughout the
entire logarithmic regime. It can be contrasted with the behavior in the area law phase, shown in
Fig. 5.13(b), where no collapse is observed.

As we have seen in Sec. 5.2.4, in a CFT two-point correlation functions are expected to exhibit
power-law behavior. Hence, we examine the trajectory average of the equal-time correlation func-
tionsC(l, 0) = Ei[〈|c†i+lci|2〉] (in addition to trajectory averaging, we also average over position
i to reduce statistical noise). The behavior ofC(l, 0), shown in Fig. 5.14 for di�erent values of γ,
quantitatively re�ect the phase diagram in Fig. 5.5(b). In the conformally invariant regime, i.e., for
0 < γ ≤ γc, two distinct scaling forms are observed depending on whether l is larger or smaller
thanLc(γ). For l > Lc(γ), where the entanglement entropy grows logarithmically, an algebraic
decay of the correlation function with the square of the distance ∼ [sin(πl/L)]−2 is observed.
The collapse of the correlation functions for variable system sizes in the inset of Fig. 5.14 demon-
strates that this∼ [sin(πl/L)]−2 scaling is observed in the thermodynamic limit L → ∞. On
distances l < Lc(γ) the correlations decay signi�cantly slower, well approximated by a∼ l−1 de-
cay. This can be rationalized with the assumption that the extensive growth re�ects an evolution
in which sites are entangled up to distances l ∼ Lc(γ).

When crossing the transition to the area law regime, the correlations start to decay more rapidly
with the distance lbetween di�erent sites. In this regime, a heuristic �tC(l, 0) ∼ l−5 exp(−l/l0)
yields an increased algebraic decay on short distances compared to the conformally invariant sce-
nario. At larger distances l > l0, the correlations drop to zero exponentially, re�ecting short-
ranged correlations.
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5.7 Discussion

Further information on the dynamics can be inferred from the autocorrelation functionC(0, τ) ≡
Ei[|〈c†i (t+ τ)ci(t)〉|2] computed in the stead-state regime. For unitary, free fermions it can be
shown that they are given by the Bessel function C(0, τ) ∼ J2

0 (τ), describing damped oscilla-
tions with an envelope decaying as τ−1. While damping of the oscillations increases with γ, the
overall decay of the auto-correlations slows down. When entering the area law regime, the oscil-
lations become over-damped and the auto-correlation time is enhanced signi�cantly, indicating a
slowly evolving, quantum-Zeno regime, see Fig. 5.15.

5.7 Discussion

Let us now turn to a summary of the results obtained in this chapter, and provide some outlook.
We considered a model of free-fermions hopping on a 1d chain in the presence of continuous de-
phasing noise, and studied the dynamics of the trajectory averaged entanglement as a function of
the dephasing strength for several types of trajectory evolution. We �nd that at weak enough de-
phasing the steady-state value of S̄vN exhibits logarithmic scaling with the subsystem size, similar
to the behavior of (1+1)-dimensional CFTs. In all three protocols we considered, we observe that
the e�ective central-charge is continuously decreasing with the dephasing strength. The CFT be-
havior is also exhibited in the algebraic decay of the trajectory averaged connected density-density
correlation function, and in the behavior of the bipartite mutual-information.

In the case of QSD and QJ evolution we also �nd a transition to an area-law regime at a critical
dephasing rate, where the e�ective central-charge vanishes. This is not the case with the QSDc evo-
lution where the system seems to always remain in the CFT regime. A main di�erence between
the QSDc protocol and the QSD and QJ unravellings is that under QSDc evolution probabil-
ity is not exactly conserved. We conjecture that this is a possible reason for the absence of phase
transition to an area-law phase in the QSDc evolution. We also observe a di�erence in the full dis-
tribution of entanglement entropies, where in the QSDc case the distribution is always Gaussian,
as opposed to a bi-modal distribution which is observed in the QSD case in the area-law phase. In
the future, it would be interesting to further explore the connection between the entanglement
transition observed here and the properties of the full distribution of trajectory-states induced
by the speci�c measurement protocol. In any case, our results emphasize that, when considering
trajectory entanglement transitions, di�erent measurement protocols may lead to qualitatively
di�erent results.

Let us comment on the relation of our work to an earlier work by Cao et al. [228] which investi-
gated the same model we considered here. There, the authors used the generalized-hydrodynamics
formalism, developed for closed integrable systems, in order to derive an analytic formula for
S̄vN(`, L), under certain approximations and using a certain ansatz. From their analysis, Cao
et al. reach the conclusion that for free integrable systems an area-law is expected for any non-
vanishing dephasing rate. However, we claim that our result is not in contradiction. First, the
analytical result obtained in [228] is only valid when ` � L, while we examine all possible val-
ues of ` and are interested in the case ` = L/2. Second, the numerical results in [228] exclude
volume-law behavior but do not exclude sub-linear scaling.

As we explained in Sec. 5.2.2, it was pointed out in [215] that the scrambling property of generic
random-unitaries is a key ingredient for the stability of the volume-law phase observed in studies of
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RUC dynamics. In this respect it is maybe not surprising that we did not �nd a volume-law in our
nearest-neighbor free-fermion model, since the unitary free-fermion dynamics are integrable. Our
work shows however that critical behavior of S̄vN can be obtained also in non chaotic dynamics.
This observation is further substantiated by two works which appeared in parallel to ours, which
considered di�erent types of free random-unitary circuit evolution and observed CFT like behav-
ior of S̄vN [226,243]. This brings the question: what is the alternative mechanism protecting the
entanglement in the critical CFT phase against the e�ect of measurements?

Let us also further comment that it is not yet completely clear that a transition from volume-law
to area-law phase is impossible to realize in free-fermion systems. Indeed, our initial explorations
indicate that by considering long range hoppings with long enough range, it is possible to obtain
a volume-law phase also in the case of free-fermion evolution. So far, we did not �nd a setting
where a volume- to area-law transition could be observed, but we believe it might be possible
and de�nitely merits further investigation. In general it will be interesting to investigate what
are the di�erent trajectory entanglement phases which could be observed in general free-fermion
models with di�erent symmetries. For example one could consider the case where charge is not
conserved, in which case we can still describe the system by a Gaussian state using the basis of
Majorana fermions.

Another question which could be explored in future work regards the critical properties of
the transition from the area-law phase to the CFT phase. We note that the scenario we observe
here is similar to the Kosterliz-Thouless (KT) scenario of an extensive critical regime, which might
provide some hints when trying to build a simpli�ed phenomenological theory of the trajectory
entanglement transition. The KT transition is notoriously di�cult to study numerically, due to
the exponential divergence of the correlation length. Here recent suggestions for studying free-
fermion Gaussian states using tensor-networks [271,272] might be of help, as they allow studying
systems of considerably larger sizes than those reachable with the numerical approach we used in
this chapter.

Finally it will be interesting to explore the fate of the CFT phase in the presence of weak interac-
tions. One possibility of doing so numerically is using MPS techniques for simulating the trajec-
tory evolution, this should allow describing states with logarithmic entanglement up to a reason-
able system size. However, here we have to caution that in the free case we observed volume-law
scaling of S̄vN at system sizes up toL ≈ 50 for weak dephasing, and the asymptotic CFT regime
appeared only for larger system sizes. A di�erent possible route would be to use a mean-�eld like
approach projecting the state of the interacting system onto a Gaussian state which evolves un-
der an e�ective non-linear Hamiltonian. Finding such an e�ective non-linear model which can
capture some properties of the volume- to area-law trajectory entanglement transition is an inter-
esting direction for future work.
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Appendices to chapter 5

5.A Higher moment evolution

Observables, which depend on higher moments of the state |ψt〉〈ψt| may strongly depend on
the speci�c trajectory evolution. An example is the entanglement entropy in the main text. In
this appendix we illustrate this with a simple analytical example, the m-th moment of the norm
〈ψt|ψt〉m. We start with the QSD evolution (5.38) and, for simplicity, a single, hermitian Lind-
blad operator M̂ . The scaling ξt ∼

√
dt requires that in�nitesimal changes are taken into account

up to order d2. Up to this order, the in�nitesimal change is

d〈ψt|ψt〉m = m〈ψt|ψt〉m−1(〈ψt|dψt〉+ 〈dψt|ψt〉+ 〈dψt|dψt〉)
+m(m− 1)〈ψt|ψt〉m−2(〈dψt|ψt〉+ 〈ψt|dψt〉)2. (5.63)

The Hamiltonian evolution cancels out and expanding again up to order dt one �nds

d〈ψt|ψt〉m = m〈ψt|ψt〉m−1
[
(ξ2 − γdt)〈ψt|M̂2|ψt〉+ ξ〈ψt|M̂ |ψt〉

]

+2m(m− 1)〈ψt|ψt〉m−2ξ2〈ψt|M̂ |ψt〉2. (5.64)

The trajectory average thus yields

d〈ψt|ψt〉m = 2γm(m− 1)〈ψt|ψt〉m〈M̂〉2tdt, (5.65)

where 〈M̂〉t = 〈ψt|M̂ |ψt〉/〈ψt|ψt〉. For the �rst moment,m = 1, the term on the right always
vanishes, enforcing that the trajectory averaged norm is constant. Higher moments, however,
generally do not vanish and their evolution depends on the operator M̂ . For QSDc, M̂ = n is
the particle number operator, and one observes in general an exponential growth of the higher
moments with an approximate rate 2γm(m− 1)〈n〉2. For QSD, however, M̂ = n− 〈n〉t such
that 〈M̂〉t = 0 for any state and thus any momentm of the norm remains constant over time.

The norms in the QJ evolution are more involved because here ξ2 = ξ ∼ dt and thus arbitrarily
high powers in ξ contribute to the evolution of 〈ψt|ψt〉m. We restrict ourselves tom = 1, 2 and

denote M̂ =

(
n√
〈n〉
− 1

)
. This yields

d〈ψt|ψt〉 = ξ〈ψt|M̂2 + 2M̂ |ψt〉 = 0, (5.66)

d〈ψt|ψt〉2 = ξ〈ψt|ψt〉
[
〈M̂〉2 + 4〈M̂〉〈M̂2〉+ 〈M̂2〉2

]
= 0. (5.67)

Here, only the property ξ2 = ξ was exploited and no trajectory average was required to show that
the evolution is constant for this type of jump operator.

This example can be easily generalized to multiple jump operators M̂ and demonstrates that in
QSD and QJ trajectories all higher moments of the norm remain constant over time up to order
dt2 and an initially normalized state remains normalized. For QSDc on the other hand, higher
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momentsm > 1 grow roughly exponentially in time, demonstrating that only the average norm
of the state is conserved while its variance is blowing up.

We emphasize that the di�erence between the di�erent trajectory evolutions is not just a matter
of normalization: the additional parallel evolution in QSDc yields trajectories, which explore are
di�erent Hilbert space than the trajectories from QSD and QJ. This di�erence is not resolved by
an adhoc normalization of the state after each numerical time step [240].
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In this thesis we investigated a variety of di�erent phenomena occurring in open many-body quan-
tum systems, whose dynamics are described by a Markovian Lindblad quantum master equation.
This is an exciting and emergent interdisciplinary �eld combining ideas and theoretical tools from
both AMO and condensed-matter. It is becoming increasingly more relevant with the advent of
synthetic quantum matter systems which are being used in labs around the world as quantum-
simulators and for development of quantum computers.

In chapter 3 we explored the many-body physics of coherently pumped bosons in the vicin-
ity of a scattering resonance, a setup which might be of relevance to the experimental platform of
Rydberg-polaritons, among others. We have uncovered a rich phase diagram including a molecule
condensate and an atom condensate phase, and provided an initial exploration of the phase tran-
sition between those di�erent condensates. This work can serve as a basis of more detailed ex-
plorations using semi-classical stochastic Gross-Pitaevskii equations or 2PI formalism to study
the dynamical behavior, or RG techniques to study the phase transition. In addition it will be
interesting to study the regime of weak pumping and losses where interactions might lead to ther-
malization, allowing an e�ective Gibbs state description.

In chapter 4 we explored the fate of the many-body localization transition in a driven-open
system. As opposed to the common belief that a coupling to an external bath destroys any MBL
signatures, we have shown that it is possible to extract a sharp signature of the transition, by study-
ing the response of local temperature �uctuations to a weak coupling to non-equilibrium baths.
Using this scheme, we were able to observe the divergence of the dynamical exponent when ap-
proaching the transition from the ergodic side, providing further evidence to the existence of a
Gri�th regime. Our work suggests a new numerical scalable approach for studying the MBL
transition. As a future direction it will be very exciting to use our method in order to study the
MBL transition in two-dimensions.

In chapter 5 we studied the dynamics of the entanglement-entropy in a model of free-fermions
in the presence of dephasing noise. This study was motivated by recent works which found a
phase transition between a volume-law entanglement phase and an area-law entanglement phase,
in systems evolving under random-unitary circuits in the presence of measurements. In the free-
fermion model we �nd a phase transition of a new type between an area-law phase and a phase
with logarithmic entanglement scaling, exhibiting behavior similar to conformal �eld theories in
1 + 1 dimensions. This work suggests many future directions, such as a classi�cation of all pos-
sible entanglement phases of di�erent free-fermion models in the presence of measurements, or
studying the stability of the CFT phase to weak integrability breaking terms.

Now, we have �nally reached the end of our journey in the land of open quantum many-body
systems. Hopefully it was an enjoyable one for you ,or at the very least provided something useful
to think about. Of course, this is not the end but really only the beginning. We hope that the
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work presented in this thesis can provide the starting point for several other journeys into the
non-equilibrium quantum physics frontier.
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