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Abstract

The plummeting cost of collecting and storing data and the increasingly available computational power in
the last decade have led to the emergence of new data analysis approaches in various scientific fields. Fre-
quently, the new statistical methodology is employed for analyzing data involving incomplete or unknown
information. In this thesis, new statistical approaches are developed for improving the accuracy of traction
force microscopy (TFM) and data-driven discovery of physical equations.

TFM is a versatile method for the reconstruction of a spatial image of the traction forces exerted by cells
on elastic gel substrates. The traction force field is calculated from a linear mechanical model connecting
the measured substrate displacements with the sought-for cell-generated stresses in real or Fourier space,
which is an inverse and ill-posed problem. This inverse problem is commonly solved making use of regular-
ization methods. Here, we systematically test the performance of new regularization methods and Bayesian
inference for quantifying the parameter uncertainty in TFM. We compare two classical schemes, L1- and
L2-regularization with three previously untested schemes, namely Elastic Net regularization, Proximal Gra-
dient Lasso, and Proximal Gradient Elastic Net. We find that Elastic Net regularization, which combines
L1 and L2 regularization, outperforms all other methods with regard to accuracy of traction reconstruction.
Next, we develop two methods, Bayesian L2 regularization and Advanced Bayesian L2 regularization, for
automatic, optimal L2 regularization. We further combine the Bayesian L2 regularization with the computa-
tional speed of Fast Fourier Transform algorithms to develop a fully automated method for noise reduction
and robust, standardized traction-force reconstruction that we call Bayesian Fourier transform traction cy-
tometry (BFTTC). This method is made freely available as a software package with graphical user-interface
for intuitive usage. Using synthetic data and experimental data, we show that these Bayesian methods
enable robust reconstruction of traction without requiring a difficult selection of regularization parameters
specifically for each data set.

Next, we employ our methodology developed for the solution of inverse problems for automated, data-
driven discovery of ordinary differential equations (ODEs), partial differential equations (PDEs), and stochas-
tic differential equations (SDEs). To find the equations governing a measured time-dependent process, we
construct dictionaries of non-linear candidate equations. These candidate equations are evaluated using the
measured data. With this approach, one can construct a likelihood function for the candidate equations.
Optimization yields a linear, inverse problem which is to be solved under a sparsity constraint. We com-
bine Bayesian compressive sensing using Laplace priors with automated thresholding to develop a new
approach, namely automatic threshold sparse Bayesian learning (ATSBL). ATSBL is a robust method to
identify ODEs, PDEs, and SDEs involving Gaussian noise, which is also referred to as type I noise. We
extensively test the method with synthetic datasets describing physical processes. For SDEs, we combine
data-driven inference using ATSBL with a novel entropy-based heuristic for discarding data points with
high uncertainty. Finally, we develop an automatic iterative sampling optimization technique akin to Um-
brella sampling. Therewith, we demonstrate that data-driven inference of SDEs can be substantially im-
proved through feedback during the inference process if the stochastic process under investigation can be
manipulated either experimentally or in simulations.





Kurzzusammenfassung

In vielen Bereichen der Naturwissenschaften haben die in den letzten Jahrzehnten stark sinkenden Kosten
für Rechenleistung, sowie für die Speicherung großer Datenmengen, zur Herausbildung neuer Methoden
der Datenanalyse geführt. Eine häufige Anwendung solcher Methoden besteht aus der Analyse und In-
terpretation von Datensätzen die unvollständige Informationen enthalten. In dieser Doktorarbeit wer-
den statistische Methoden entwickelt um einerseits die Genauigkeit der Zugkraftmikroskopie (ZKM) zu
verbessern und andererseits auch eine datenbasierte Identifizierung von Gleichungen zur Beschreibung
physikalischer Systeme zu verbessern.

Die ZKM ist eine vielseitig anwendbare Methode um die räumliche Verteilung von Zugkräften zu rekonstru-
ieren, die von Zellen auf elastischen Gelsubstraten ausgeübt werden. Das Zugkraftfeld wird mit Hilfe eines
linearen mechanischen Models berechnet, welches gemessene Substratverschiebung mit der gesuchten,
zellgenerierten Spannung im Real- oder Fourierraum verbindet. Dies ist in der Regel ein schlecht kon-
ditioniertes, inverses mathematisches Problem. Für gewöhnlich wird das Problem mit Hilfe von Regular-
isierungsmethoden gelöst. In dieser Arbeit werden zunächst unterschiedliche Regularisierungsmethoden
systematisch miteinander verglichen. Wir vergleichen zwei klassische Schemata, die L1- und L2 Regular-
isierung, mit drei bislang ungetesteten Schemata und zwar mit dem Elastic Net, dem Proximal-Gradient
Lasso und dem Proximal-Gradient Elastic Net. Es wird festgestellt, dass die Elastic Net Regularisierung,
welche L1 und L2 Regularisierung kombiniert, alle anderen Methoden im Bezug auf die Genauigkeit der
Zugkraftrekonstruktion übertrifft. Als Nächstes entwickeln wir zwei Methoden für eine automatisierte,
optimale Regularisierung, die wir Bayessche L2 Regularisierungen nennen. Mit Hilfe synthetischer und
experimenteller Daten zeigen wir, dass die Bayessche Methode eine robuste Rekonstruierung der Zugkraft
ermöglicht ohne eine Wahl der Regularisierungsparameter speziell für jeden Datensatz zu erfordern. Als
weitere Verbesserung der Bayesschen L2 Regularisierung führen wir eine schnelle Berechnung der nötigen
Größen im Fourier Raum ein. Das Ergebnis ist eine vollständig automatisierte Methode zur Rauschreduk-
tion welche robuste sowie standardisierte Zugkraftrekonstruktion erlaubt. Diese Methode wird als Soft-
warepaket mit einer grafischen Benutzeroberfläche frei zugänglich gemacht.

Algorithmen zur Lösung inverser Probleme, wie sie für die ZKM wichtig sind, finden auch in vielen an-
deren Bereichen Anwendung. In den letzten Jahren insbesondere für das so genannte maschinelle Lernen.
Basierend auf zuvor für ZKM erprobten Regularisationsmethoden werden in dieser Arbeit verschiedene
Ansätze für die datenbasierte Inferenz gewöhnlicher Differentialgleichungen (GDGLs), partieller Differ-
entialgleichungen (PDGLs), und stochastischen Differentialgleichungen (SDGLs) erprobt. Um die bestim-
mende Gleichung für einen gemessenen, zeitabhängigen Prozess zu finden, werden Bibliotheken verschiede-
ner Gleichungskandidaten angelegt. Die Optimierung der Wahrscheinlichkeitsfunktion für die verschiede-
nen Gleichungskandidaten verlangt die Lösung ein linearen, inversen Systems. Hierfür wird eine Bayessche
L1 Regularisierung mit einer iterativen Elimination überflüssiger Ergebniskomponenten kombiniert. Die
entwickelte Methode mit dem Akronym ATSBL ist für die Inferenz von GDGLs, PDGLs und SDGLs ver-
wendbar. Ein umfangreicher Test mit synthetischen Datensätzen zur Beschreibung physikalischer Prozesse
ist erfolgt. Für SDGLs kombinieren wir ATSBL mit einer neuen entropiebasierten Heuristik um Daten-
punkte mit großer Messungenauigkeit zu eliminieren. Zu guter Letzt wird eine iterative Stichprobenop-
timierung ähnlich dem Umbrella Sampling entwickelt, um sie mit ATSBL zu kombinieren. Anhand von
Beispielen wird gezeigt, wie durch gezielte Störung eines gemessenen stochastischen Prozesses die dem
Prozess zugrundeliegenden Differentialgleichungen genauer bestimmt werden können.
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Chapter 1

Introduction

1.1 Historical development of data analysis methods

More than 60 years ago, John Tukey [1] envisioned a future of science that is focused on learn-
ing from data, or “data analysis”, which is a process of using statistical practices to describe,
represent, organize, evaluate, and interpret data. Nowadays, there exists a large number of
automated techniques for generating, collecting, and storing trillions of measurement data
points every day in the whole world. For this reason, data analysis has become increasingly
important in various scientific and engineering fields.

To introduce the concept of statistical learning, we start by considering the classical regres-
sion problem which aims at estimating the relationship between a given data set consisting
of a N-dimensional vector of input data g (often called observed data) with given param-
eters in a N ×M matrix Φ and a M-dimensional vector of dependent data w (often called
the output- or unobserved data). The most common form of regression analysis is linear
regression [2, 3], in which the model is written in matrix notation as

g = f(w) = Φw + s, (1.1)

where s is an observed or unobserved error variable, often called noise. In more general
cases where the relation between w and g may be a non-linear function f(w) mapping the
inputs to the outputs can also be defined [4–6]. In mathematical physics, the formulation
of the forward problem for a physical field involves [7]: (1) The domain in which the field is
studied. (2) The equation function that describes the field. (3) The initial conditions. (4) The
conditions on the boundary of the domain. The inverse problem consists of finding func-
tions used for the forward problem, for example, the unknown f(w) in Eq. (1.1). Given g

and Φ, the calculation of w is referred to as solving an inverse problem. This inverse prob-
lem is historically a long-standing issue and various approaches have been invented and
developed to deal with this problem in past hundreds of years. The least-squares method [8]
was a common early approach for solving an inverse problem like the one associated with
Eq. (1.1).

1.1.1 Classic approaches for solving inverse problems

Least-squares method Over 200 years ago, the method of least squares was first pub-
lished by Adrien-Marie Legendre in 1805 [9, 10]. It is usually also credited to Carl Friedrich
Gauss [11] because in 1809 Carl Friedrich Gauss [12] published the method of calculating
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the orbits of celestial bodies by using the least-squares method and he claimed to have been
in possession of the method since 1795. The simple least-squares fit minimizes the sum of
the squares of the difference between the observed data gi and the fitting function evaluated
at wi:

∑N
i=1(gi − f(wj))

2. If each standard deviation σi for the observed data gi is given,
the least-squares method can also be written as the minimization of

∑N
i=1((gi − f(wj))/σi)

2,
which is called a χ2 fit. This χ2 fit was first described by the German statistician Friedrich
Robert Helmert in 1876 [13, 14] and was independently rediscovered by the English math-
ematician Karl Pearson in 1900 [15]. The main disadvantages of this simple least-squares
method are the requirement of small deviations between data and model, which allows one
to assume a Gaussian distribution and causes sensitivity to outliers.

In 1809 [12], Gauss extended the least-squares method through a probabilistic perspective.
He combined the Lambert-Bernoulli idea [16, 17] with Laplace’s analytical formulation of
inverse probability [18, 19]. Requiring that the mode of what is nowadays called the poste-
rior probability distribution equals the arithmetic mean, Gauss derived the normal distribu-
tion [12, 20]. From the least-squares method to modern methods for solving complex inverse
problems, normally distributed errors appear in many statistical approaches.

Maximum likelihood estimation Before 1912, maximum likelihood estimation (MLE) oc-
curred in rudimentary forms, but not under this name. Some of the estimates called “most
probable” would today have been called “most likely” [20]. In 20th century statistics, the
making of maximum likelihood was one of the most important developments [21, 22]. In
1912, the British statistician and geneticist R. A. Fisher [23] started producing one of the
earliest contribution to modern statistics by using a simple maximum likelihood method
(“absolute criterion”) to estimate unknown parameters. R. A. Fisher introduced the term
“likelihood” in 1921 [24] and the name “maximum likelihood estimate” finally appeared
in the article “On the mathematical foundations of theoretical statistics” in 1922 [25]. Let
w be an unobserved data set and g be a set of observed data. The conditional probabil-
ity of g, given w, p(g|w) is called likelihood. MLE is to maximize the likelihood function
L(w) with respect to the unobserved data w. For example, consider the maximum likeli-
hood estimation applied for the inverse problem in Eq. (1.1) [26]. The errors s are assumed
to be values of a random variable S which follows a Gaussian distribution S ∼ N (0, 1/β),
where the variance is 1/β. Thus, the likelihood is written as p(g|w) = (2π/β)−N/2 exp

(
−

β(g −Φw)
2
/2
)
. To obtain w, one maximizes the log-likelihood function which is denoted

as l(w) = −N/2 log(2π)+N/2 log β−β/2
(
(g −Φw)T(g −Φw)

)
. Here, the maximum likeli-

hood estimation is equivalent to the east-squares method for minimizing
∑N
i=1(gi−Φijwj)

2.

Between 1912 and 1922, R. A. Fisher had produced three justifications and three names for
the technique of MLE [20, 22]. Although R. A. Fisher is certainly the father of maximum
likelihood analysis, his attempts to prove the procedure remained largely fruitless [27]. The
solid theoretical basis for the maximum likelihood estimation procedure was laid by Samuel
S. Wilks in 1938 [27], now also called Wilks’ theorem. This theorem states that the error
in the logarithm of likelihood values for estimates from multiple independent observations
is asymptotically χ2-distributed, which enables convenient determination of a confidence
region around any estimate of the parameters.

Bayesian methodology The foundations of Bayesian probability theory were posthumously
published in Thomas Bayes’ article “An Essay Towards Solving a Problem in the Doctrine of
Chances ” in 1764 [28]. Later, the french mathematician, Pierre Simon Laplace independently
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rediscovered the Bayes’ modern mathematical form in the article “Mémoire sur la probabil-
ité des causes par les événements” in 1774 [18] and the later article “Théorie analytique des
probabilités” in 1812 [29]. Like in MLE, w is an unobserved data set and g is an observed data
set. The conditional probability p(w|g) expresses the probability of finding the sought-for
quantities w, given the observed quantities g. The posterior probability distribution p(w|g)

is typically not known. Frequently, however, the reverse conditional probability distribution
p(g|w) is known either based on generic assumptions regarding the experimental system or
because one is dealing with numerical simulations. The posterior probability and the likeli-
hood can be related to each other by making use of the unconditional probabilities p(g) and
p(w). The standard modern-days Bayes’ rule was first given by Laplace as [30]

p(w|g) =
p(w,g)

p(g)
=
p(g|w)p(w)

p(g)
∝ p(g|w)p(w). (1.2)

Here, p(w,g) is the joint probability distribution. Since p(w) can reflect a prior informa-
tion about the sought-for quantity w, it is called "prior". In contrast, p(g) is the uncondi-
tional probability distribution for observing the values g and is therefore called "evidence" or
"marginal likelihood". In Eq. (1.2), the posterior distribution is proportional to likelihood mul-
tiplied by prior. The maximum a posterior (MAP) estimate of w is defined as that value that
maximizes the likelihood multiplied by a prior. Thus, MLE is a special case of the MAP esti-
mation, where a uniform prior p(w) = const. is assumed in Eq. (1.2). However, the Bayesian
methodology provides much broader flexibility since one can choose priors p(w) together
with the likelihood function.

1.1.2 Challenges and modern approaches for solving inverse and ill-posed
problems

We have introduced the classic approaches to solve the inverse problem in Eq. (1.1). One
common challenge is that the inverse problem is often a so-called ill-posed problem. The study
of inverse and ill-posed problems began in the early 20th century [7]. In 1902, J. Hadamard
proposed the concept of well-posedness of problems for differential equations [31] and he
termed a problem well-posed if there exists a unique, robust solution to this problem. He
also gave an example of an ill-posed problem, namely, the Cauchy problem for the Laplace
equation, where the solution does not depend continuously on the data and any small
change in the data causes large changes to the solution [32–34]. The challenge of solving
ill-posed problems occurs in almost all fields of science, particular examples are image re-
construction [35, 36], traction force reconstruction [37, 38], machine learning [39, 40], seismic
exploration [41], tomography [42], astronomy [43], and air and water quality control [44].

One common important property of ill-posed linear problems is the strong sensitivity of the
solutions to small perturbations in the equation parameters. In linear regression Eq. (1.1),
the well-posedness of the solution depends on the matrix Φ and it can be analyzed by using
a perturbation approach [7, 45]. Introducing the perturbations δg and δw, Eq. (1.1) becomes
g+δg = Φ(w+δw). We can also write δg = Φδw, which implies δw = Φ−1δg and ‖δw‖2 ≤
‖Φ−1‖2‖δg‖2. The unperturbed Eq. (1.1) yields ‖g‖2 ≤ ‖Φ‖2‖w‖2. Thus, the estimate for the
relative error of the solution becomes ‖δw‖2/‖w‖2 ≤ ‖Φ‖2‖Φ−1‖2‖δg‖2/‖g‖2, which shows
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that the error is determined by the constant

κ(Φ) = ‖Φ‖2‖Φ−1‖2, (1.3)

where κ(Φ) is called the condition number of a system. A system with a large condition num-
ber is said to be ill-posed because small variations in the input δg may lead to relatively
large variations in the solution. Variations (errors) of input data always exist in measure-
ments or simulations. Solving ill-posed problems involving such input data is challenging
with classical approaches, such as those from least-squares methodology. However, inverse
and ill-posed problems can often be solved by imposing an additional regularization con-
straint when performing a least-squares optimization. A general form of this regularization
procecdure when extending the linear regression Eq. (1.1) is written as

ŵ = argmin
w

[
(g −Φw)

2
+ λH(w)

]
, (1.4)

where ŵ is the solution of inverse and ill-posed problem and λH(w) represents the regu-
larization constraint with an unknown parameter λ > 0. Various regularization approaches
have been developed in the past 80 years.

1.1.2.1 Regularization approaches

In 1943 [46], A. N. Tikhonov pointed out the practical importance of ill-posed problems and
the possibility of finding stable solutions to them. The nowadays standard approach to solve
ill-posed problems is called ridge regression and was published by David L. Phillips [47] in
1962 and A. N. Tikhonov in 1977 [32]. The ridge regression or Tikhonov regularization relies
on the constraint λH = λ2‖w‖22 involving the 2-norm and therefore it also called L2 regu-
larization. The solutions of L2 regularization are typically smooth and non-sparse and the
computation is efficient because analytical expressions can be derived for the L2 regulariza-
tion.

In 1986, geophysicists observed that the constraint λH = λ1‖w‖1 can be successfully applied
to compute a sparse reflection function indicating changes between subsurface layers [48].
In 1996, Robert Tibshirani [49] greatly popularized the use of L1-norm and related greedy
methods in statistics, called the Lasso, or Lasso regression, or L1 regularization. The main
property of L1 regularization is the sparsity of solutions, which means that the solution
contains only few non-zero components.

In 1994, the method of L0-norm constraint λH = λ0‖w‖0 was suggested by D. P. Foster
and E. I. George [50] and today this regularization method is called L0 regularization or best
subset selection [51]. The solutions from L0 regularization are for certain sparse models more
accurate than the solutions obtained from L1 regularization [52]. However, computational
challenges related to L0 regularization result from the discontinuity and nonconvexity of the
L0-penalty function. This issue is usually dealt with by replacing the L0-penalty function
with a continuous or convex approximation function [53, 54].

In 2005, Zou and Hastie [55] introduced the elastic net regularization which combines the
L2- with the L1-norm constraint λH = λ2‖w‖22 + λ1‖w‖1. This approach balances smooth-
ness and sparsity of the solutions from ridge- and Lasso regression, respectively. Recently,
the elastic net regularization is widely employed in various scientific applications such as
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studying anticancer drug sensitivity [56, 57], gene expression [58], structure and function of
ocean microbiome [59], and face recognition [60].

Here, we have briefly introduced five regularization approaches to deal with inverse and
ill-posed problems. When one uses these approaches, the challenge is to identify the op-
timal regularization parameter λ, which is a priori unknown. A number of methods ex-
ist for selecting the regularization parameters, such as the L-curve [61], generalized cross-
validation [62] or quasi-optimality criterion [63]. However, these methods mostly rely on
heuristics and manual selection of the regularization parameter is usually necessary. Those
problems can be overcome by using Bayesian analysis.

1.1.2.2 Bayesian regularization approaches

The heuristic regularization approaches discussed above can be related to the concept of
maximizing the posterior probability in a Bayesian framework. To illustrate this connection,
we assume, as for the maximum likelihood estimator of the linear regression Eq. (1.1), a
noise s that obeys a Gaussian distribution si ∼ N (0, 1/β). Here, the prior is also assumed
to be a Gaussian wi ∼ N (0, 1/α), where the variance is 1/α. According to Bayes’ rule in
Eq. (1.2), the posterior distribution is written as p(w|g) = (2π/β)−N/2(2π/α)−M/2 exp

(
−

β(g −Φw)
2
/2
)

exp
(
− αw2/2

)
∝ exp

(
− β(g −Φw)

2
/2 − αw2/2

)
. To obtain w, we max-

imize the posterior ŵ = argmax
w

[−β(g −Φw)
2
/2 − αw2/2], where the form is the same as

the L2 regularization ŵ = argmin
w

[(g −Φw)
2

+ λ2w
2] with λ2 = α/β. The constraint λH

in each of the regularization approaches that were mentioned above can be related to a par-
ticular prior function, for example, here, L2 regularization yields a Gaussian prior. It is not
difficult to find that the L1-, L0-, and elastic net regularization respectively, are equivalent
to a MAP estimation employing a Laplace prior p(w) ∝ exp(−λ1‖w‖1) [64], L0-regularized
prior p(w) ∝ exp(−λ0‖w‖0) [65], and Elastic net prior p(w) ∝ exp(−λ1‖w‖1 − λ1‖w‖22) [66].

While these results connect the regularization approaches to the Bayesian MAP estimates,
the challenge of selection of regularization parameter remains when using only the MAP
approach. However, this challenge can be overcome in the Bayesian framework.

Bayesian regularization Bayesian regularization [67, 68] involves two levels of inference:
(1) Choose models and fit data (model fitting). (2) Rank the alternative models (model com-
parison). In the first level of inference, the particular model is assumed and fitted to the data,
which can be done with a MAP estimation procedure. In the second level of inference, the ev-
idence for the model parameters is calculated, for example, by using the marginal likelihood
which is given in the Bayes’ rule of Eq. (1.2). This process embodies the colloquial “Occam’s
razor”, which ensures that overly complex models will not be preferred over simpler models
unless the data supports them. The details of Bayesian regularization employing a Gaussian
prior will be laid out in Chapter 2.

Sparse Bayesian learning In 2001, M. E. Tipping [69] demonstrated a probabilistic Bayesian
learning framework where the solution is assumed to consist of only few basis functions,
which is therefore called relevance vector machine (RVM). This work is an extension of
Bayesian regularization techniques because it also utilizes the maximum evidence princi-
ple estimate the parameters or hyperparameters of likelihood and prior. In 2003, M. E.
Tipping and A. C. Faul [70] described a highly accelerated algorithm which exploited the
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evidence function [67] to enable maximization via a principled and efficient sequential ad-
dition and deletion of candidate basis functions. The details of this approach will be laid out
in Chapter 2. Sparse Bayesian learning approaches were successfully applied to reduce the di-
mensionality of sensor data. This technique is now called Bayesian compressive sensing [71,
72]. These Bayesian sparse learning approaches require Markov chain Monte Carlo (MCMC)
methods [73–77] or a more efficient variational Bayesian (VB) analysis [67, 78].

All the above approaches to solve inverse problems with an unknown vector w, rely on
the provision of a matrix Φ and a (measurement) data vector g. However, in some cases
the matrix Φ may be unknown. For example, in classification tasks one may have a set of
training data for the relationship between the classifier ĝ and the feature vector g, but the
system matrix X and the noise b are unknown in ĝ = k(g) = Xg + b. In such cases, one
can use neural networks and methods from deep learning to obtain the unknown system
parameters.

Overview of approaches

problem ill-pose problem
Linear regression unknown large condition number Inverse Inverse 

Bayesian methodology

Least squares

Regularization

Non-Bayesian methods

L0

L1

L2

EN

MLE

MAP estimation

Bayesian regularization

assumed 

priorL0 prior

Laplace prior

Gaussian prior 

EN prior maximum evidence 

Sparse Bayesian learning 

basis functions from

problems

Solving inverse  

ill-pose problems

Solving inverse 

automatically select

highly accelerated algorithm

Figure 1.1: Schematic overview of Non-Bayesian and Bayesian methods for
solving linear inverse problems.

1.1.3 Deep learning for analysis of noisy data

Deep learning can be traced back to 1943 [79], when W. S. McCulloch and W. H. Pitts created
a computer model based on the neural network of the human brain. Recently, thousands
of deep learning methods have been developed that involve, for example, backpropagation
algorithm, convolutional neural networks, recurrent neural networks, recursive neural net-
works, autoencoders, and graph neural networks. Here, we utilize the example of noise
reduction to explain the central idea of supervised neural networks [80, 81]. Given an input
vector t, e.g., a space or time vector, and a target noisy data g, we train a neural network with
the given relation between t and g. A successfully trained network will, for any given t, pro-
duce an output ĝ that is close to the target vector g. To demonstrate this concept, a two-layer
neural network [80] is employed. The hidden layer is written as ζX1,b1(t) = ζ(X1t + b1),
where ζ is an activation function, e.g., ζ(·) = tanh(·). X1 and b1 are respectively called
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weights and biases. The output layer is written as ĝ = ζX1,b1(t)X2 + b2. These unknown
weights and biases X1, b1, X2 and b2 of each layer are learned by the minimization of a cost
function, which is the sum of the deviation between the output and the target. Using such a
neural network, the noise in the inferred output ĝ typically can be significantly reduced [82].

In Figure 1.1, we present an overview of methods for solving inverse problems. The Bayesian
methodology has the advantage of allowing one to prescribe clearly defined assumptions in
the form of priors which then automatically produce robust solutions. However, many ap-
proaches for solving inverse problems in physics and biophysics still exclusively rely on
non-Bayesian methods. In this thesis, we systematically test the classic approaches and de-
velop new methods to solve inverse ill-posed problems in two applications, namely traction
force microscopy and data-driven discovery of physical equations. To prepare the stage, we will in
the following sections introduce background information on these two applications.

1.2 Background information on measurement of cellular forces

The mechanical behaviour of cells and tissues plays a crucial role in a variety of biological,
biophysical and biochemical processes, including cell migration [83, 84], tissue morphogen-
esis [85, 86], wound healing [87, 88], cell differentiation [89, 90], and gene expression [91, 92].
Many of the relevant mechanobiological processes occur on a subcellular lengthscale, for ex-
ample at micrometer-sized cellular adhesions and at filopodia. However, mechanobiology
also plays a critical role on the level of multiple cells and on lengthscales of millimeters,
for example in embryonic development [93, 94]. The mechanical behaviours of cells are not
only controlled by biochemical reactions inside of cells, but also depend on the mechani-
cal properties of extracellular matrix (ECM). To understand the interplay of extracellular and
intracellular mechanics and biological regulation, a reliable and accurate method for the
measurement of cellular forces is required. Over the past 50 years, various approaches have
been developed for this purpose. In Ref. [95], different kinds of methods were systemat-
ically summarized. Various approaches and tools for measuring the forces generated on
ECM were also reviewed in Ref. [96].

In this section, some background information on the mechanobiology of cells is introduced.
First, we introduce the mechanical structures: the cytoskeleton, transmembrane, and ex-
tracellular structures. Then, we introduce different mechanical models for the structures.
Finally, we summarize several approaches and tools to measure the mechanical forces.

1.2.1 Mechanical structures of cell

1.2.1.1 Cytoskeleton

The cytoskeleton (CSK) is a polymeric fiber-based scaffold for structural integrity inside cells.
These scaffolds not only serve as a traffic system for intracellular transport [97], for example,
helping to ship vesicles or organelles, but also are important mechanical structures for cells
migration. Usually, the CSK consists of at least three distinct filamentous elements: micro-
tubules, actin-CSK, and intermediate filaments, illustrated in Fig. 1.2 (b). Here, we briefly
introduce each of these structures and their mechanical properties.

• Microtubules have a length up to roughly 50µm and are composed of α- and β-tubulin.
The outer diameter of a microtubule is about 25 nm and the inner diameter is about
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Figure 1.2: Structures of the cytoskeleton in cells. (a-Top) Illustration of the
components of the actin cytoskeleton in representative fibroblast-like cells. The
direction of migration is denoted by the wide gray arrows. (a-Bottom) Electron
micrograph of the cytoskeleton of a Xenopus laevis fibroblast. (b-Top) The
cytoskeleton (CSK) has the three types of biopolymers: microtubules, actin and
intermediate filaments. The three types of CSK pertain to different stiffness
regimes because of their differing filament architectures.
(b-Middle) Fluorescence micrographs for each type of CSKs in real cells.
(b-Bottom) Schematic graphs show that each type of CSKs is how to distribute
inside cells. (Figure (a) adapted from T. Svitkina 2018 [98]. Figure (b) adapted
from F. Huber, 2011 [99] with source material from D. E. Ingber, 2003 [100] and J.
R. D. Soiné, 2014 [101].)

13 nm. They are very rigid polymer tubes that usually emerge as individual fibers,
which are typically associated with organelle positioning and intracellular transport.

• Actin-CSKs are composed of monomeric G-actin and the linear polymeric F-actin with
a diameter from 4 nm to 7 nm [102]. Actin filaments are semi-flexible polymers appear-
ing as cross-linked networks within cells, illustrated in Fig. 1.2 (b-ii) [100]. The actin
CSK is a dynamical structure that appears in different forms, including compact stress
fibers and finely crosslinked nets.

• Intermediate filaments have a diameter of roughly 50 nm, which is between the size of
actin filaments and microtubules, illustrated in Fig. 1.2 (b-iii) [100]. Intermediate fila-
ments are composed of a family proteins including desmin, keratins, and lamins.

The CSK is the essential structure creating motility-driving forces. These forces are gen-
erated by polymerization and the interaction of the F-actin network with myosin motors.
The former, the polymerization of actin filaments at the leading edge of cells, can move the
edge forward [103] and the force generation in this process can be explained by two models,
ratchet models [104, 105] and autocatalytic models [106, 107]. The latter, the myosin mo-
tors move on actin filaments through a usual three-step process of binding, power-stroke,
and unbinding [108], which generates contractile forces. The force generated from each of
the motors is extremely tiny. For example, to lift a 5 kg weight, about 1013 myosin motors
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are required [108]. These two motility-driving mechanisms not only result in motion and
deformation of the cytoskeleton and the cell, but also produce a mechanical load on the
extracellular structures.

1.2.1.2 Transmembrane and extracellular structures

The mechanical connection between the intracellular CSK and the extracellular world is
maintained by dedicated molecular structures. Figure 1.3 (a) shows a schematic diagram of
different types of cell-cell adhesions, which include gap junctions, tight junctions, adherens
junctions, and desmosomes [109]. These cell-cell adhesions not only can transfer mechanical
forces from one cell to another cell, but also provide an aisle for different molecules between
two cells, for example, ions and electrical impulses. Here, we briefly summarize the struc-
tures and their properties.

• Gap junction are intercellular connections with a variety of transport functions and, for
instance, allow the passage of small molecules or electrical signals.

• Tight junctions, also called occulding junctions, seal the space between neighboring
cells and can control the passage of ions and small moclecules.

• Adherens junctions provide the strong mechanical attachments between cells. Adherens
junctions can contain nectin-afadin or E-cadherin-a-catenin-vinculin bonds, illustrated
in Fig. 1.3 (a) and they are linked to the actin-CSK inside the cell.

• Desmosomes are localized patches, which can hold two adjacent cells closely together [110].
Desmosomes are attached to intermediate filaments of keratin in the cytoplasm, illus-
trated in Fig. 1.3 (a).

Cell-matrix connections transmit stresses to the ECM and are important in many physiolog-
ical processes such as cell migration, proliferation, and differentiation. Cell-matrix connec-
tions can be classified into three different groups, as illustrated in Fig. 1.3 (b).

• Nascent adhesions (NAs) locate at the edge of a cell protrusion by nucleating three to six
transmembrane proteins called integrins. NAs are dynamically coupled to the poly-
merizing branched actin network.

• Focal adhesions (FAs) mature from a small number of nascent adhesions and these stable
FAs are important for regulating cell adhesion and motility. FAs typically can be highly
dynamic assemblies and thus the cell can change its shape and persistently migrate
through ECM [111, 112].

• Fibrillar adhesions (FBs) are developed from the maturing focal adhesions by growing
their size and changing their protein composition [113, 114]. Fibrillar adhesions are
typically large adhesions in protrusions and the cell body and represent the endpoint
in terms of adhesion maturation [115].

Various types of ECM can serve as substrate for cell adhesion [119]. In vivo, the native ECM
of one cell can be other cells, tissues or organs, illustrated in Fig. 1.3 (c-i) [116]. Recently,
to study properties and behaviors of cells, many artificial ECMs have been designed and
fabricated, for example, beds of microneedles to isolate mechanical force [117] and poly-
acrylamide hydrogels to study the traction force [118], illustrated in Fig. 1.3 (c-ii, c-iii), re-
spectively.
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Figure 1.3: Extracellular structures. (a) Four types of cell-cell conjunctions, gap
junctions, tight junctions, adherens junctions, and desmosomes. (b) Three
different types of cell-matrix conjunctions are classified into nascent adhesions,
focal adhesions, and fibrillar adhesions according to the different levels of
traction forces. Each of cell-cell and cell-ECM conjunctions is connected to the
cytoskeleton inside of cells and thus the conjunction can transfer forces from
cytoskeleton to ECM. (c) Extracellular native and artificial matrix. (c-i) Scanning
electron micrograph demonstrates a native ECM, a tissue from the cornea of a
rat. (c-ii) Artificial beds of microneedles to isolate mechanical force and collagen
fibers matrix to learn cell migration. Space bar: 10µm. (c-iii) Artificial substrates
to be used for traction force microscopy. The beads and protein are put on the
top of substrates. Space bar: 30µm. (Figure (a) adapted from S. Sluysmans et al.,
2017 [114]. Figure (b) adapted from Z. Sun et al., 2016 [109]. Figure (c-i) taken
from B. Alberts et al., 2002 [116]. Figure (c-ii) taken from J. L. Tan, et al.,
2003 [117]. Figure (c-iii) adapted from H. Colin-York et al., 2017 [118].)

A general principle for measuring the cellular forces is that a displacement field generated by
the forces in the extracellular environment is first measured by using a microscopy technique
and then the forces are calculated from the displacement field by using a given mechanical
model. In the next section, we briefly introduce the imaging methods and mechanical mod-
els used in this context.

1.2.2 Mechanical models and imaging techniques

The CSK and extracellular structures typically are solid materials. These solid materials can
be deformed by the motility-driving forces on CSK or the external forces applied on them.
The relationship between forces and deformation is called a material constitutive equation or
a mechanical model. For solid elastic materials, this relationship can be defined by relating
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the stress σ, the force per unit area, and strain ε, the fractional change in the length of a
material.
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Figure 1.4: Mechanical models and imaging techniques. (a) Mechanical models
relating the force and displacement. (a-i) Simple relationship between stress and
strain in linear materials with a constant Young’s modulus. (a-ii) The non-linear
model can be also employed in measurement of cellular forces. (a-iii) The
complex ECM can be described by an anisotropic and nonlinear model.
(b) Young’s modulus (E) represents the stiffness of solid materials, with units of
Pa. Different types of cells have different Young’s moduli. (c) Under different
types of loading, the equations of Young’s modulus can be written in different
forms, for example, the forms of uniaxial tension, shear rheology, loading from
atomic force microscopy (AFM), and beam bending shown in (c-i to c-iv).
(d) Imaging techniques for conducting biomechanical tests in different length
scales. Imaging techniques, transmission electron microscopy, atomic force
microscopy, scanning electron microscopy, fluorescence microscopy, optical
microscope, and micro-CT are employed from the biomolecules to organs.
(Figure (a, c) adapted from J. M. Barnes et al., 2017 [96]. Figure (b) taken from W.
J. Polacheck et al., 2016 [120]. Figure (d) taken from C. T. Lim et al., 2006 [121].)

The simplest mechanical model is linear elasticity. Here, stress is linearly related to the
strain, illustrated in Fig. 1.4 (a-i), and the constant coefficient between the stress and strain is
called Young’s modulus E. The different types of materials have different Young’s moduli,
illustrated in Fig. 1.4 (b). Typical values are, for example, a Young’s modulus of E ≈ 10 Pa

for mucus and E ≈ 1 GPa for bone. For an elastic material, the equation allowing one
to determine the Young’s modulus depend on the types of loading, for example, uniaxial
tension, shear loading, loading from atomic force microscopy (AFM), and beam bending
illustrated in Fig. 1.4 (c-i to c-iv), respectively. The mechanical model can also be a non-
linear relationship, illustrated in Fig. 1.4 (a-ii). The usual non-linear models include plasticity
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and viscoplasticity. To model the complex structure of the ECM, one can also employ an
anisotropic model, in which the anisotropy depends on the direction, illustrated in Fig. 1.4
(a-iii).

We have introduced mechanical models for the CSK and extracellular structures. To cal-
culate the forces that cells exert on these structures, we also need to measure the material
displacements. Due to the fact that these structures are typically microscopically small, the
displacement needs to be obtained by using a microscope or related imaging techniques.
Here, we briefly introduce several techniques to take images at different length scales, il-
lustrated in Fig. 1.4 (d) [121] and the techniques include transmission electron microscopy
(TEM), atomic force microscopy (AFM), scanning electron microscope (SEM), optical mi-
croscopy (includes fluorescence microscopy), and computer tomography. For example, to
visualize the biomolecules of the cytoskeleton with sizes in the nm range AFM, TEM, and
fluorescence microscopy are required. Cells with sizes in the µm range can be visualized
with AFM, TEM, SEM, optical microscopy, and fluorescence microscopy. Fluorescence mi-
croscopy utilizes the characteristic emissions of excited fluorophores, for example, fluores-
cent proteins [122] and this microscopy technique has been widely employed to study cellar
forces, for instance with traction force microscopy [118]. In the following section, we will
introduce several special approaches to measure such cell-generated forces.

1.2.3 Measurement methods of cell-generated forces

Over the past 50 years, various methods have been developed to measure the cell-generated
forces. Here, we briefly introduce methods for measuring forces on a single cell and methods
for measuring forces at cell-ECM connections.

1.2.3.1 Methods for measuring the mechanical behavior of a single cell

To study the mechanical response of a single cell, the cell is often subjected to an external
loading. Under this load, the deformation of the cell can be measured and forces can be
calculated by using a constitutive law. According to the different types mechanical devices,
the methods [123, 124] can be divided into the following categories:

• Atomic force microscopy (AFM) can be used to locally probe the mechanical response of
cells. A schematic view of AFM is shown in Fig. 1.5 (a) and the minute displacement of
the cantilever can be measured by using a high-resolution scanning probe microscopy.
AFM not only can measure the mechanical response of the cell, but also can provide a
three-dimensional surface profile [127].

• Micropipette aspiration is a technique to deform one cell by using a pipette in a solu-
tion. The cell is partially aspirated into a glass pipette, illustrated in Fig. 1.5 (b), and
the forces on the cell can be calculated by using a model related to the suction pres-
sure [128].

• Optical tweezers utilize a highly focused laser beam acting on colloidal particles to pro-
vide a force on cells, illustrated in Fig. 1.5 (c). These instruments have been widely
employed to measure the forces on molecules and cells [129, 130].

• The optical stretcher is a contact-free measurement tool. A dual-beam optical trap is
employed to deform the cells, which are in a flow channel, illustrated in Fig. 1.5 (d).
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Figure 1.5: Schematic different methods for measuring forces on a single cell.
(a) Atomic force microscopy (AFM). (b) Micropipette aspiration. (c) Optical
tweezers. (d) Optical stretcher. (e) Microfluidic assay. (f) Magnetic twisting
cytometry. (g) Shear flow. (h) Microplate stretcher. (i) Magnetic
nanoparticle-based stimuli. (Figure adapted from M. Unal et al., 2012 [95] with
source material from S. Suresh, 2007 [123]; G Bao et al., 2003 [124]; H. Milting et
al., 2014 [125] and F. D. Modugno et al., 2019 [126].)

• The microfluidic assay is a technique to analyze the mechanics of a cell by using fluid
pressure. When fluid is flown one tube into a constriction, the pressure is increased
and the cells can be deformed by the fluid.

• Magnetic twisting cytometry uses ferromagnetic microbeads to apply a twisting shear
stress on cell surface receptors [131].

• Application of a shear flow to a cell that is adhered to a substrate can produce a deforma-
tion of the cell. The mechanical properties of the cell are studied by using a mechanical
model.

• The microplate stretcher is a technique to stretch a cell by using a rigid glass micro-plate
at the bottom and a flexible plate at the top [132] because the cell can adhere to the
bottom and top microplates.

• Magnetic nanoparticle-based stimuli is a technique that relies on the displacement of mag-
netic nanoparticles deposited on the cell membrane or injected into the cell by using a
magnetic field.

1.2.3.2 Methods for measuring forces of cell-ECM connections

Many approaches for quantifying cellular mechanics do not rely on external force applica-
tions. Such techniques include those for measuring the forces on cell-ECM connections, beds
of microneedles, DNA hairpin force sensors, and traction force microscopy [96]. We mainly
introduce the method based on beds of microneedles and DNA hairpin force sensors in this
section. Traction force microscopy will be introduced in the next section.
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Figure 1.6: Two methods for measuring forces of cell-ECM connections. (a) Beds
of microneedles. (a-i) A sample of artificial beds of microneedles. (a-ii) Scanning
electron micrograph of a muscle cell attached to pillars. (a-iii) The force map
was spatially correlated to immunofluorescence localization of the focal
adhesion protein vinculin. (a-iv) Plot of the force generated on each of post as a
function of total area of focal adhesion staining per post. Space bar: 10µm.
(b) DNA hairpin force sensors. (b-i) Schematic depiction of the tension probes.
A DNA hairpin is functionalized with a fluorophore-quencher pair, covalently
conjugated by the 3′ end of the hairpin to a solid substrate and conjugated by its
5′ end, via a PEG spacer, to the integrin-binding peptide RGD.
(b-ii) Fluorescence signals of a mouse embryonic fibroblastsrate (MEF) cell on a
TP-coated substrate. (b-iii) The traction stress maps calculated from the
fluorescence level. (b-ii, iii) Space bar: 20µm. (b-iv) The traction stress map of an
individual adhesion site. Space bar: 3µm. Mean stress per adhesion site as a
function of time for individual cells treated with an inhibitor of contractions
(Y-27632) (b-v) and lysophosphatidic acid (LPA) (b-vi), respectively. (Figure (a)
adapted from J. L. Tan et al., 2003 [117]. Figure (b) adapted from B. L. Blakely et
al., 2014 [133] with source material from W. J. Polacheck et al., 2016 [96].)

Beds of microneedles are an artificial substrate, illustrated in Fig. 1.6 (a-i) and were designed
to measure the cell-generated forces on each of the needles [117]. A description of substrate
fabrication can be found in Ref. [117]. To estimate the cell-generated forces one employs a
simple model for beam bending, illustrated in Fig. 1.4 (c-iv). A horizontal force F is applied
on the top of each microneedle. The horizontal force can be easily calculated to be F =

3EId/L3, whereE, I are respectively the Young’s modulus and the moment of inertia. d and
L are the horizontal displacement on the top of needle and the length of needle, respectively.

The mechanical and geometrical properties of the beds of microneedles can be adapted to the
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experimental demand. For example, the beds of microneedles for measuring forces gener-
ated by a muscle sell are designed as a substrate containing posts (needles) of 3µm diameter,
11µm height, and 6µm spacing, illustrated in Fig. 1.6 (a-ii) [117]. When a cell displaces the
needles, the horizontal displacement on each needle d can be measured by using a micro-
scope, for example, in fluorescence imaging mode. Then, the cell generated force on each
needle are calculated from the displacement by using the beam bending model, as shown
in Fig. 1.6 (a-iii). In Ref. [117], using this approach, the authors found that the force exerted
on each one of the needles is proportional to the total area of the focal adhesion staining at
this needle, illustrated in Fig. 1.6 (a-iv). The weaknesses of this approach are that it requires
highly contractile cells and is unable to determine forces on lengthscales smaller than the
needles [96].

The DNA hairpin method [133] utilizes molecular tension probes (TPs) to measure the trac-
tion forces of adherent cells. These TPs consist of DNA hairpins conjugated to fluorophore-
quencher pairs and when the DNA hairpin unfolds under force, the shifted emission of the
fluorophore can be measured by using fluorescence microscopy, illustrated in Fig. 1.6 (b-i),
or by using Förster resonance energy transfer (FRET). In detail, the force at which the DNA
hairpins unfold depends on the length and the composition of the DNA sequence.

Figure 1.6 (b-i) shows how the hairpin is connected to a cell and substrates. The 5′ end of
each hairpin is conjugated to the integrin adhesion receptor’s GGRGDS peptide and the 3′

end of the hairpin is functionalized with a free thiol linker, enabling chemical conjugation
to the substrates. Using this DNA hairpin approach [134], the fluorescence signal field for
a mouse embryonic fibroblast (MEF) is shown in Fig. 1.6 (b-ii) and the traction forces fields
are displayed in Figs. 1.6 (b-iii, iv). Further, the authors found that the cell-generated forces
are rapidly diminished, illustrated in Fig. 1.6 (b-v) when cells are treated with Y-27632, an
inhibitor of contraction. The forces are increased as shown in Fig. 1.6 (b-vi) when the cells are
treated with lysophosphatidic acid (LPA), a strong stimulant of contraction [135]. Although
the DNA hairpin technique is a new approach to measure the forces exerted on the ECM, it
also has several limitations, for example, bleaching of the fluorescent molecules, optical sen-
sitivity, a limitation to two-dimensional imaging planes, long sample-prep time and, most
importantly, the fact that an analog measurement of forces at each sensor is impossible. [96].

1.2.3.3 Traction force microscopy

Traction force microscopy (TFM) is a classical method to measure the cell-generated forces
on ECM [37, 96, 136]. This perturbation-free method yields a spatial image of substrate
stress exerted by cells on relatively soft elastic gel substrates, illustrated in Fig. 1.8 (a). The
elastic gel is an artificial ECM, for example, a polyacrylamide hydrogel. This method has its
origins in pioneering work by Harris et al. [137], who employed flexible silicone substrates to
investigate the mechanical forces that cells generate. Nowadays, TFM has become a method
that is routinely used in laboratories studying cell biology and soft matter physics around
the world [96, 138–142].

In Fig. 1.7 (a), a 2D traction force field is displayed that was measured by using TFM for the
case of a single Madin–Darby canine kidney (MDCK) epithelial cell on collagen-coated poly-
acrylamide gels [86]. The spots of traction force are distributed as a ring along the internal
boundary of the cell. In Fig. 1.7 (b), we show the use of the TFM approach to measure the
2D forces field generated by groups of migrating bacteria and this work was to answer the
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Figure 1.7: Several results of traction forces obtained by using TFM. (a-i) MDCK
cell expressing GFP-E-cadherin with traction stress vectors superimposed on 2D
substrates. The green line indicates the region used for calculation of total
traction forces. (a-ii) Heat-scale plot of traction stress magnitudes of the cell
shown in (a-i). Space bar: 5µm. (b-i) Groups of cells move with a finger-forming
spreading pattern on 2D substrates. Red quivers are gel displacement field.
Only every fourth measurement is displayed, for clearer visibility.
(b-ii) Calculated traction from the displacement field. (c-i) Bead displacement
trajectories colour coded by magnitude for an EGFP-expressing NIH 3T3
fibroblast in 3D substrates. Space bar: 50µm. (c-ii) Contour plot of the tractions
(magnitude) exerted by a cell. (d-iii) A map of estimated traction forces for
epithelial cells (d-i and d-ii) in 3D substrates. Space bar: 50µm. (Figure (a) taken
from V. Maruthamuthu et al., 2011 [86]. Figure (b) taken from B. Sabass et al.,
2017 [143]. Figure (c) taken from W. R. Legant et al., 2010 [144]. Figure (d)
adapted from N. Gjorevski et al., 2015 [145].)

question of how bacteria generate and coordinate forces during collective migration [143].
These experiments were done by using 2D TFM methods and recently the 3D TFM approach
is also increasingly being used by biophysicists. In Fig. 1.7 (c), we show a 3D traction forces
field that is obtained by using a TFM technique for the case of EGFP-expressing NIH 3T3
fibroblast spreading in the 3D substrates [144]. This 3D technique also can be employed to
calculate the traction forces generated by a tissue of epithelial cells, illustrated in Fig. 1.7
(d) [86]. In this thesis, our aim is to develop some mathematical techniques for accurate trac-
tion reconstruction with a focus on 2D problems. Thus, we first introduce the experimental
details for 2D TFM.

Figure 1.8 (b) contains a general flowchart for high-resolution 2D TFM that mainly includes
seven steps [136, 146]: (1) Preparation of TFM substrates, which are coverslip-bound PAA
gels containing two colors of fluorescent beads with covalently linked ECM. (2) Transfection
of cells on TFM substrates. (3) Setting up a perfusion chamber. (4) Acquiring time-lapse TFM
movies. (5) Detachement of cell by trypsinization and acquiring images. (6) Calculation of
the displacement field by tracking the bead. (7) Reconstruction of traction force.
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Figure 1.8: Schematic diagram of the procedure for performing high-resolution
traction force microscopy (TFM) on a compliant PAA substrate. (a) Schematic of
a TFM experiment depicting elastic substrate deformed by an adherent cell.
(b) Flowchart for high-resolution TFM: (1) Preparation of TFM substrates.
(2) Transfection of cells on TFM substrates. (3) Setting up a perfusion chamber.
(4) Acquiring time-lapse TFM movies. (5) Detachement of cell by trypsinization
and acquiring images. (6) Calculation of the displacement field by tracking the
bead. (7) Reconstruction of traction force. Several steps of experimental images
are shown in the right side. (Top) Space bar: 30µm. (Bottom) Space bar: 10µm.
(Figure (a) taken from S. V. Plotnikov et al., 2014 [136]. Figure (b) adapted from
S. V. Plotnikov et al., 2014 [136] and H. Colin-York et al., 2016 [146].)

In step (1) and (5), two techniques can be employed to obtain a high precision of the displace-
ment measurement. One is the use of two colours of fluorescent beads in the preparation
of TFM substrates [37]. Another one is the use of stimulated emission depletion (STED) mi-
croscopy for acquiring images because this technique can bypass the diffraction limit of light
microscopy to increase the resolution [147]. When a pair of images containing fluorescent
markers in the deformed and undeformed gel has been acquired, one can employ a tracking
technique to obtain a discrete displacement field u from the images. Popular image analysis
algorithms for this purpose are single-particle tracking (SPT), particle tracking velocimetry
(PTV), and particle image velocimetry (PIV).

In step (7), our goal is to calculate the traction forces from the displacement field u. A variety
of methods exist for this purpose, for example, finite element methods [148–152], boundary
element methods [37, 153, 154], and methods operating in Fourier space [37, 140, 152, 155,
156]. These approaches mostly are based on a mechanical model relating a discrete displace-
ment u and the traction force field f [37]

u = Mf + s, (1.5)
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where M is a coefficient matrix, whose form depends on the chosen method and which we
will discuss the detail in Chapter 3 and Chapter 4. s represents measurement noise. Given a
measured displacement field u and a coefficient matrix M, we need to calculate f in Eq. (1.5).
This problem has exactly the same form as the linear regression Eq. (1.1). Because the con-
dition number κ(M) is usually large, the calculation of f becomes an inverse and ill-posed
problem. This means that even the smallest noise s leads to very large errors if a direct in-
version of Eq. (1.5) is attempted. Thus, the TFM methodology is limited by two common
serious issues that introduce systematic errors. First, the resolution of the measured trac-
tion is usually not high enough to resolve processes at micrometer-sized cellular structures.
Secondly, the most commonly used TFM algorithms require the user to choose a filter or a
regularization parameter, which introduces a considerable degree of subjectivity regarding
smoothness and magnitude of the resulting traction.

The initial observation motivating this thesis was that all present methods for TFM rely on
non-Bayesian techniques. L2 regularization was applied in TFM very early and this ap-
proach not only was used in real space calculations [157], but also in Fourier-space calcu-
lations [37]. Later, L1 regularization was employed in TFM and in approaches [158, 159],
the L1 regularization was numerically implemented by making use of an algorithm called
iterative reweighted least squares. However, L1 regularization can be also done by using
proximal gradient methods, which usually operate in wavelet space and employ adaptive
or non-adaptive thresholding of high spatial frequencies [160, 161]. Proximal gradient meth-
ods are for instance used for reconstructing lost parts of an image [162–164], for analysis of
MRI data [165], and for analysis of genomic data [166, 167]. The L1 regularization solved by
proximal gradient methods has not yet been tested for TFM. Moreover, other regularization
approaches can be used for TFM. In our overview of approaches, Fig. 1.1, other regulariza-
tion methods are mentioned, for example, the elastic net regularization. Literally, the elastic
net regularization behaves like a stretchable fishing net that retains "all the big fish" while
removing the small background signal [55]. The elastic net regularization problem also can
be solved by using the proximal gradient methods [168]. The challenge regarding all regu-
larization methods is that they require the manual selection of one or more regularization
parameters. However, this challenge can be overcome by using a Bayesian approach. In this
thesis, the Bayesian regularization will be employed for TFM.

Methods for solving inverse problems also play an important role for topical research on
machine learning. In particular, sparse regularization is used for automatic inference of
equations that describe measured data. In the following section, we will therefore provide
some background information on data-driven methods for automatic discovery of govern-
ing equations.

1.3 Background information on data-driven discovery of gov-

erning physical equations

Many if not most models employed in the natural sciences can be expressed through differ-
ential equations. These can be ordinary-, partial-, and stochastic differential equations. In
physics, the equations can often be derived from first principles, for instance, conservation
of mass, energy and momentum, and thermodynamic considerations. A classical example is
the Navier-Stokes equation in fluid mechanics which expresses conservation of momentum.
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However, in complex systems as they occur for example in biophysics, climate science, and
neuroscience, first principles determining the system behavior are hardly known since the
systems are typically not close to an equilibrium state, processes can be highly nonlinear,
and the dynamics can occur on multiple scales. In these cases, one can resort to phenomeno-
logical, effective descriptions that may include some level of coarse graining and are based
on experimental data. Recently, an increased computational power has made it possible to
construct such models in an automated fashion, which is known as data driven discovery of
governing equations.

During the last decades, various approaches have been developed to determine the underly-
ing governing equations in a non-linear dynamical system from measurement data. Focus-
ing on chaotic systems, early attempts were made to fit parameters in an appropriate basis
to generate an analytical description of the system dynamics [169]. In “symbolic regression”,
one employs function libraries to automatically extract the terms in a governing equation
that best represents the measured data according to some optimization criterion [170, 171].
Recently, the use of sparse regression techniques for symbolic regression has received con-
siderable scientific attention [39, 40]. In sparse symbolic regression, the physical quantity u
often can be taken to have the general mathematical form ǔ = N(u, x, t, ϑ), where ǔ is the
left-hand side of the governing equation, e.g., ǔ = ut, and N(·) is an unknown function on
the right-hand side of the governing equation. x, t, and ϑ respectively represent the space,
time, and a parameter. To identity the functionN(·), a library Θ(u) can be constructed, where
u is a time-series data and the candidate mathematical expressions in the library can be lin-
ear, nonlinear, and partial derivative terms. Thus, the general mathematical form can be
written as ǔ = Θ(u)ξ, where ξ is a sparse vector because the governing equation is expected
to have a simple form. This sparse vector can be identified by using a sparse regression
technique and each zero element in the vector ξ corresponds to a term in the library that the
term is excluded from the governing equation. We will mainly focus on this sparse symbolic
regression approach and next, we will show how this approach has recently been employed
to identify ordinary differential equations (ODEs), partial differential equations (PDEs), and
stochastic differential equations (SDEs).

1.3.1 Inference of ordinary and partial differential equations

In Ref. [39], the authors show that the governing ODE, e.g., Lorenz equations, can be dis-
covered from time-series data by using a sparse symbolic regression approach, illustrated
in Fig. 1.9 (a). In a three-dimensional Lorenz system, the data is a time-series of positions
X = (x, y, z). By introducing a function library Θ(x) that is evaluated with the measure-
ment data, one can write the the dynamical equation as

ẋ = Θ(x)ξx + s,

where s is a noise, e.g., measurement noise. ξx is a sparse vector containing the weights
associated with each non-vanishing term in the library. In this equation, ẋ and Θ(x) can be
constructed from the time-series data , details will be given in Chapter 5. The aim is to obtain
the sparse vector ξx. This problem has exactly the same form as our regression Eq. 1.1. In
symbolic regression, the condition number κ(Θ) is usually large and thus this the inference
of ξx is an inverse and ill-posed problem.
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In Ref. [39], the authors propose a method called sparse identification of nonlinear dynamics
(SINDy), which is essentially based on a sequential thresholded least squares algorithm. At
each iteration, ξx is first obtained from a least-squares optimization and then ξx is thresh-
olded such that values smaller than a cutoff κ are set to zero. These steps are repeated until
convergence conditions are satisfied. Using this algorithm, the Lorenz equations are identi-
fied as illustrated in Fig. 1.9 (a).
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Figure 1.9: Identification of ordinary and partial differential equations by using
sparse symbolic regression. (a) Schematic of the SINDy algorithm identifies the
Lorenz equations. The artificial data, time-series positions X = (x, y, z), are
calculated from the Lorenz system. Next, the library Θ(X) and the Ẋ are
constructed from the given data. Using the library approach, the governing
equations can be written Ẋ = Θ(X)Ξ. The few terms of vector Ξ are calculated
by sparse regression with a threshold. (b) Identification of Navier-Stokes
equations. (b-i) The artificial data is collected as snapshots of a solution from the
Naver-Stokes equations. (b-ii) The library Θ and the ωt are constructed from the
artificial data. The matrix library form is written as ω̇ = Θ(ω, u)ξ. (b-iii) The
sparse vector ξ is calculated by using the sparse regression. (b-iv) The
identification of Naver-Stokes equations is obtained from the data. (Figure (a)
adapted from S. L. Brunton et al., 2016 [39]. Figure (b) adapted from S. H. Rudy
et al., 2017 [40].)

Partial differential equation, containing partial derivatives of a physical quantity with re-
spect to the independent variables, e.g, time and space, have also been studied in the con-
text of sparse regression. The identification of PDE, e.g., Navier-Stokes equations, is possible
with given time-space-series data, e.g., the vorticity ω and velocity u, illustrated in Fig. 1.9
(b) [40]. The governing PDE’s in the sparse symbolic regression approach are written as

ω̇ = Θ(ω, u)ξ + s, (1.6)

where ω̇ and Θ(ω, u) can be constructed from the time-space-series data, see Chapter 5.
Here, again, the calculation of ξ also becomes an inverse and ill-pose problem. To solve
Eq. 1.6 for the identification of PDE, an algorithm called train Sequential Threshold Ridge
regression (TrainSTRidge) was described in Ref. [40]. Sequential Threshold Ridge regres-
sion (STRidge) is a sequentially thresholded least squares (STLS) optimization procedure
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for ridge regression. In STRidge, the vector ξ is first calculated by using ridge regression
with a regularization parameter λ2. Then, the ξ is set to zero for all elements that have a
smaller absolute value than κ, which is the same thresholding procedure as in SINDy. To
automatically estimate the threshold κ, the authors added a training step to the STRidge and
therefore call their methods TrainSTRidge [40]. In this training step, the cost function is cal-
culated from part of the data by using a L0 regularization and details of this algorithm will
be described in Chapter 5. However, this TrainSTRidge algorithm still requires the user to
choose a regularization parameter. This drawback has been eliminated in threshold sparse
Bayesian regression which also was employed for identification of PDE [172]. This Bayesian
regression approach is the same as the sparse Bayesian learning method shown in Fig 1.1.
The advantage of this Bayesian approach is that it does not require the provision of a reg-
ularization parameter, but it still requires a manually selected threshold. In this thesis, we
will develop a new approach to solve the inverse ill-pose problem in data-driven discov-
ery of governing physical equations that combines the training approach with the Bayesian
method.

Figure 1.10: The neural network algorithm for the identification of partial
differential equations from type II noisy data. The dataset is calculated from
Burgers equation and then noise is added. The reconstructed data is obtained
from a neural network. The Burgers equation is identified from the
reconstructed data. (Figure adapted from G. J. Both et al., 2019 [82].)

The approaches for solving inverse problems that are schematically depicted in Fig 1.1 are
mostly based on the assumption that the noise s obeys a Gaussian distribution in g = Φw+s.
We call this type of noise type I Gaussian noise. However, in some experiments [40, 82], a
Gaussian noise is directly added in the measurement data, for example, u and ω in Eq. (1.6).
We call this type of noise type II Gaussian noise. The vector ω̇ and the library Θ(ω, u) can
be constructed like in the case of type I noise yielding ω̇ = Θ(ω, u)ξ + ŝ, where ŝ does not
obey a Gaussian anymore. Therefore, it is a challenge to identify the governing equations
from data with high levels of type II noise. To overcome this challenge, a neural network
deep learning method can be employed to reduce the high level of noise in measurement
data [82], as illustrated in Fig. 1.10. In this deep learning approach, the cost function is
written as Lcost = LMSE(u, û) + LReg( ˙̂u,Θξ) + LL1(ξ), where LMSE is a mean squared error,
LReg presents a regression penalty, and LL1 is a L1 penalty. Using such a method, data-
driven identification of the Burgers equation from 75% type II Gaussian noisy data has been
demonstrated [82]. Besides ODE and PDE, stochastic differential equations are a further
important framework for describing physical processes. In the next section we will introduce
data-driven identification of stochastic systems.
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1.3.2 Stochastic differential equations

Langevin-type equations describe the evolution of system variables under the influence of
stochastic noise [173]. The Langevin equation, a SDE, is written as a sum of deterministic-
and stochastic parts dX(t) = g(X(t), t) + h(X(t), t)Γ(t), where X(t) denotes a time depen-
dent state. Γ(t) is a time-dependent random variable satisfying 〈Γ(t)〉 = 0 and 〈Γ(t)Γ(t′)〉 =

δ(t− t′).

a b

Figure 1.11: The identification of stochastic differential equations. (a) Potential
energy profile U(x) (Left), and its gradient −∇U(x) called the drift force (Right).
(b) Binned data from the trajectory (red points), the reconstructed result (blue
line) and the real data (black line) for the drift force. (Figure adapted from L.
Boninsegna et al., 2018 [174].)

The stochastic process described by the Langevin equation can also be described by a corre-
sponding Fokker-Planck equation for the probability density function fX(x, t), ∂fX(x, t)/∂t =

L̂(x, t)fX(x, t), where L̂(x, t) = −∂D(1)/∂x + ∂2D(2)/∂x2. Here, the Kramers-Moyal (KM)
coefficients are D(n) = limτ→0 1/(n!τ)〈[X(t+ τ)−X(t)]n〉X(t)=x. These coefficients are con-
nected to the functions g and h in the Langevin equation provided above as, g = D(1) and
h =

√
2D(2) [175]. To identify g and h from a trajectory data of the state X , we can use

the formula for the KM coefficients and construct a general form for the drift and diffusion
terms as

D = ΘW1,

F = ΘW2,

where D, F, and library Θ can be reconstructed from the trajectory data, see Chapter 5. Our
aim is to calculate the sparse vectors W1 and W2 for a given data set. Here, again, an
inverse ill-posed problem needs to be solved. In Ref. [174], the authors modify the threshold
sparse regression approach to enforce sparsity iteratively, which can remove the need of
threshold parameter. Using this algorithm, they develop a Stepwise Sparse Regressor (SSR)
for the standard least square regression and employ Cross Validation to select the number of
iterations. The authors are able to correctly infer the drift forces from stochastic trajectories,
illustrated in Fig. 1.11. However, since this algorithm is based on Cross Validation, a manual
threshold must be provided. Thus, in this thesis, we will use our new approach to identity
SDE in a completely parameter free approach.
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1.4 Overview of the remaining chapters

The remainder of this thesis is structured in five chapters. In Chapter 2, various methods are
described to solve inverse ill-posed problems. These methods mainly include regularization
methods and Bayesian approaches. The regularization approaches studied are L2-, L1- and
elastic net regularization, and the Bayesian methods include Bayesian regularization and
sparse Bayesian learning.

In Chapter 3, we demonstrate the application of regularization methods and Bayesian regu-
larization for TFM. First, we test various regularization methods which include the classical
methods, L1- and L2 regularization, and previously untested methods from computer vi-
sion, namely Elastic Net (EN) regularization, Proximal Gradient Lasso (PGL), and Proximal
Gradient Elastic Net (PGEN). Secondly, we develop two Bayesian methods into TFM that
are Bayesian L2 regularization (BL2), where the magnitude of the noise in the displacement
data must be measured separately, and Advanced Bayesian L2 regularization (ABL2) which
requires no extra input.

Chapter 4 mainly contains the exposition of a new approach, Bayesian Fourier transform
traction cytometry (BFTTC), which not only can calculate traction forces very efficiently by
using Fourier transform traction cytometry, but also can automatically select the regulariza-
tion parameter by using a Bayesian approach. This chapter also contains an explanation of a
user-friendly software package which contains Fourier transform traction cytometry (FTTC)
and BFTTC.

In Chapter 5, we develop a new approach to identify the governing equations from mea-
surement data, called automatic threshold sparse Bayesian learning (ATSBL), which does
not require the provision of any parameter. This approach is employed for the identification
of ODE, PDE, and SDE. Further, we employ a deep learning approach to reduce the noise in
measurement data and thus the governing equations can be discovered from data containing
high levels of non-Gaussian noise.

In Chapter 6, we discuss the results obtained in this thesis and suggest future research di-
rections regarding the two applications, TFM and the identification of governing equations
from measurement data.
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Chapter 2

Methods for solving ill-posed
inverse problems

2.1 Inverse and ill-posed problems

We consider a system matrix {Φij} and a vector of observation data {gi}, where i = 1, 2, · · · , N
and j = 1, 2, · · · ,M . Here, N,M are positive integers. A vector {wj} with unknown entries
has a simple linear relationship with the observed data as [176]

gi =

M∑
j=1

Φijwj + si,

where {si} represents an additive random noise drawn from a zero-mean Gaussian distri-
bution. Like in Chapter 1, this relationship is given in matrix notation by

g = Φw + s, (2.1)

In the previous Chapter 1, we mentioned that linear problems like Eq. (2.1) can be ill-
posed. Here, we provide a generic definition for ill-posedness through the definition of
well-posedness of a problem [177]. We posit that the solution w is to be estimated from a
given data g with the operator Φ in Eq. (2.1). Each element of w and g lies in their each
metric space W and Q with metrics ρW (w1, w2) for w1, w2 ∈W and ρQ(g1, g2) for g1, g2 ∈ Q.

Figure 2.1 shows a relationship between the spaces (W and Q). The metrics ρQ(g1, g2) and
ρW (w1, w2) frequently represent the Euclidean distance. The space W and Q are assumed
to be Hilbert spaces. A well-posed problem of determining the solution w in the space W
from the given data g in the space Q governed by the operator Φ has to satisfy the following
three conditions [45, 177], (1) existence: for any element g ∈ Q, there exists a solution w in
the space W to the equation g = Φw; (2) uniqueness: the solution w to the equation g = Φw

is unique in the space W ; (3) stability: for any neighborhood ẅ ⊂W of the solution w to the
equation g = Φw, there is a neighborhood g̈ ⊂ Q of g such that for all ˆ̈g ∈ g̈ the element
Φ−1 ˆ̈g = ˆ̈w belongs to the neighborhood ẅ. The problem g = Φw is ill posed if at least
one of the three conditions does not hold. The operator Φ of a linear ill-posed problem is
called an ill-conditioned matrix. In this chapter, we will introduce mathematical formulations
of practical methods to solve linear, ill-posed problems.
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Figure 2.1: Well posedness is defined by the relationships between elements,
spaces, the operator, and metrics. The solutions (w1, w2) in the space W can be
obtained from the given data (g1, g2) in the space Q and the operator Φ.
Typically, the metrics ρW (w1, w2) and ρQ(g1, g2) are the Euclidean distances and
the spaces W and Q are Hilbert spaces. (Figure adapted from M. A. Abidi et al.,
2016 [177].)

2.2 Regularization methods

A classical heuristic approach to calculate w for a linear, ill-posed inverse problem as given
in Eq. (2.1) is regularization. Here, not only the residual (‖g−Φw‖22 = (g−Φw)T(g−Φw))
is minimized in a least-squares sense, but also the magnitude of the solution is penalized
through its p-norm denoted by ‖w‖p. The trade-off between minimization of the residual
and minimization of the solution norm is determined by fixed regularization parameters, λ1

and λ2, leading to a minimization problem of the type

ŵ = argmin
w

[
‖Φw − g‖22 + λ1‖R1w‖1 + λ2‖R2w‖22

]
. (2.2)

The two norms are explicitly written as ||x‖1 =
∑
k |xk| and ||x‖22 =

∑
k x

2
k. R1 and R2 are

functions that are to be defined, e.g., as the unit matrix I. In this thesis, we will mainly focus
on the following regularization methods: L2-, L1-, and elastic net regularization.

2.2.1 L2 regularization

L2 regularization, employing an L2-norm with λ2 > 0 and λ1 = 0 in Eq. (2.2) to penalize
the magnitude of w through R2 = I is currently the most common technique used for the
inverse ill-posed problem. Thus, the minimization problem becomes

ŵ = argmin
w

[
‖Φw − g‖22 + λ2‖w‖22

]
. (2.3)

L2 regularization is also known as ridge regression or Tikhonov regularization [178] and this
method efficiently produces a continuous and smooth solution ŵ. This approach is widely
applied in the traction force microscopy [37, 146, 157].

Equation (2.3) can be easily solved by a variational approach and its analytical solution is
given by

ŵ = (ΦTΦ + λ2I)−1ΦTg. (2.4)

The inverse of the typically large matrix (ΦTΦ + λ2I)−1 in Eq. (2.4) is often difficult to cal-
culate directly. This calculation can become easier by using the singular value decomposition
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(SVD). The real N ×M matrix Φ can be decomposed uniquely as Φ = UDVT, where U is a
N ×M matrix and column orthogonal (UTU = I), D = diag(d1, · · · , di, · · · , dM ) is a M ×M
diagonal matrix, and V is a M ×M orthogonal matrix (VTV = I). Thus, part of Eq. (2.4)
can be rewritten as

(ΦTΦ + λ2I)−1ΦT = (VDTUTUDVT + λ2VIVT)−1VDTUT

= V(DTD + λ2I)−1DTUT

= Vdiag(
di

d2
i + λ2

)UT.

Therefore, Eq. (2.4) becomes ŵ = Vdiag
(
di/(d

2
i + λ2)

)
UTg, which does not require the

calculation of a large inverse matrix. If R2 6= I, we can employ a generalized singular value
decomposition (GSVD) for the matrix pair Φ and R2, see Ref. [61].

2.2.2 L1 regularization

L1 regularization, also called Least absolute shrinkage and selection operator (Lasso) [49], is
realized through setting λ2 = 0, λ1 > 0, and R1 = I in Eq. (2.2). Thus, Eq. (2.2) becomes in
this case

ŵ = argmin
w

[
‖Φw − g‖22 + λ1‖w‖1

]
. (2.5)

With L1 regularization, small values of the reconstructed signal are efficiently set to zero.
L1 regularization is therefore frequently used in the field of compressive sensing (CS) [179,
180], where the underlying assumption is that the signal can be represented in a sparse form
where all but a few components of the signal vanish. Recently, the technique has been used
for TFM [158, 159, 181, 182], information transmission [183] and image analysis [71] and it
is appropriate for traction fields containing few, sparsely located traction hotspots. The L1
regularization problem in Eq. (2.5) can be solved by using several approaches, for exam-
ple, iterative reweighed least square, proximal gradient methods, and convex optimization
solvers.

• Iterative reweighed least square

The iterative reweighed least square (IRLS) method is a general approach to solve L1 reg-
ularization. For IRLS [158, 184], we first compute the gradient of the function f(w) =

‖Φw − g‖22 + λ1‖w‖1 with respect to w and obtain

∇f(w) = 2ΦTΦw − 2ΦTg + λ1sgn(w), (2.6)

where sgn(w) = (w1/|w1|, . . . , wi/|wi|, . . . , wM/|wM |)T. If wi is zero, f(w) is not differen-
tiable because the absolute function at zero is not differentiable. To get a meaningful gradi-
ent, we employ a threshold ς

wi =

{
wi, wi > ς

ς, wi ≤ ς
,

for example, ς = 1e− 7. Then, Eq. (2.6) becomes

∇f(w) = 2ΦTΦw − 2ΦTg + λ1Kw,
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where K is defined as a diagonal matrix diag(1/|w1|, · · · , 1/|wi|, · · · , 1/|wM |). To find the
value of w at the minimum of the function f(w), we let∇f(w) = 0 and obtain the following
equation

(2ΦTΦ + λ1K)w = 2ΦTg. (2.7)

Since K depends on w, the nonlinear Eq. (2.7) is solved by an iteration method. In Ref. [158],
the authors take the solution of L2 regularization as an initial solution w0 and then K is
updated from w0. Thus, the new w1 can be calculated in Eq. (2.7), which includes an in-
verse matrix (2ΦTΦ + λ1K)−1. This inverse matrix can be easily solved by using the GSVD
approach mentioned in above. The process is stopped at some iteration j, where the conver-
gence conditions are satisfied, for example,

‖wj −wj−1‖2
1 + ‖wj−1‖2

< ε, (2.8)

where ε > 0 is a small prescribed tolerance.

• Proximal gradient methods for L1 regularization (PGL)

Proximal gradient methods provide a way to robustly solve optimization problems involving
locally non-differentiable, convex penalty functions. Proximal gradient methods are widely
applied for image in-painting, which is the process of reconstructing lost or deteriorated
parts of images [162, 165, 185–187]. We follow well-established approaches [168, 186]. The
target function Eq. (2.5) to be considered reads

ŵ = argmin
w

[1
2
‖ΦW ∗W w − g‖22 + λ1‖W w‖1

]
, (2.9)

where W and W ∗ denote an unitary wavelet transform and an inverse wavelet transform,
respectively. For wavelet transformation, we employ the lifting transform function pro-
vided with Ref. [187]. Here, the non-differentiable penalty function is denoted by d(w) =

λ1‖W w‖1. The optimization problem is solved through iterative soft thresholding where the
regularization parameters control the threshold below which the wavelet-coefficients [188,
189] are to zero. The optimization procedure is iterative and based on gradient decent
for the differentiable term ‖Φw − g‖22/2. If we were to employ a gradient decent for this
term only, the w at the iteration number j + 1 would be given by wj+1 = kj with kj =

wj − τΦT(Φwj −g) where τ is the step size. However, since the solution must also obey the
regularization constraints, the iteration is modified as follows

wj+1 = argmin
w

[τd(w) +
1

2
‖kj −w‖2] =: proxτd(w)(kj). (2.10)

Hence, the proximal gradient scheme produces incremental changes that balance a gradient
decent to minimize the solution residual with a minimization of the penalty. The right-
hand side of Eq. (2.10) is a definition of the so-called proximity operator. For the L1 norm,
d(x) = λ1|x|, the proximity operator can be given in closed form as a threshold function to be
applied to each element proxτλ1‖x‖1(x) = (|x|−τλ1)+sgn(x) =: S(x, τλ1). Since the variable
x are for our target function in Eq. (2.8) the wavelet coefficients, result must be transformed
back to real space after every iteration. The result is, see e.g. [168, 185, 186],

wj+1 = W ∗S
[
W (wj − τΦT(Φwj − g)); τλ1

]
.
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In order to obtain a stable iteration, the step size needs to obey τ < 2/‖ΦTΦ‖2. Iterations are
stopped when the change of the solution norm from time-step is smaller than a threshold,
e.g., 10−8%.

2.2.3 Elastic net regularization

The elastic net (EN) regularization [55] combines L1- and L2 regularization, λ1 > 0 and
λ2 > 0 in Eq. (2.2). EN regularization is well established for a wide variety of applications,
most notably the analysis of genetic data [59, 166, 190, 191] and images [192–194]. We can
simply set R1 = R2 = I in Eq. (2.2) and then obtain the following equation

ŵnaive elastic net = argmin
w

[
‖Φw − g‖22 + λ1‖w‖1 + λ2‖w‖22

]
. (2.11)

It is called naive elastic net. Figure 2.2 (a) shows two-dimensional contours of constraint
functions for L1, L2 and EN regression. The constraint functions are (|w1| + |w2|) = t,√
w2

1 + w2
2 = t and

√
w2

1 + w2
2 + (|w1| + |w2|) = t for L1, L2 and EN regularization, re-

spectively, where t is a small constant parameter, e.g., t = 0.1 [195]. The operational char-
acteristics of these three methods in an orthogonal design are shown in Fig. 2.2 (b). The
absolute solutions of Lasso regularization ‖wi‖ < s are set to zero, where s is a constant
threshold. Thus, the Lasso regularization is called “soft thresholding”. The naive EN reg-
ularization can be viewed as a combination of Lasso-type thresholding with a ridge-type
direct shrinkage [55].

Lasso
penalty

Ridge
penalty

Naive Elastic net
penalty

Ridge

Lasso
Naive Elastic net

a b

Figure 2.2: The 2D contour and exact solutions for different regularization
methods. (a) Two-dimensional contours of constraint functions for L1, L2 and
EN regression. (b) The operational characteristics of three regularization
methods in an orthogonal design. Lasso regularization called “soft
thresholding” means that the solution is set to zero for ‖wi‖ < s, where s is a
constant threshold. The naive EN regularization is viewed as a combination of
Lasso-type thresholding with a ridge-regression type direct shrinkage. (Figure
adapted from H. Zou et al., 2005 [55].)

The empirical evidence shows that the solution ŵ in Eq. (2.11) does not perform satisfactorily
unless it is very close to either the result of ridge regression or the lasso, see Ref. [55]. Thus,
it is called naive elastic net. In Ref. [55], an improved formula for the optimization problem
in EN regularization is given as

ŵ∗ = argmin
w∗

[
‖Φ∗w∗ − g∗‖22 +

λ1√
1 + λ2

‖w∗‖1
]
. (2.12)
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Here, Φ∗ and g∗ are called augmented variables and are written as

Φ∗(N+M)×M = (1 + λ2)−1/2

[
Φ
√
λ2I

]
, g∗(N+M)×1 =

[
g

0

]
.

We call ŵ = ŵelastic net =
√

1 + λ2w
∗. Thus, Eq. (2.12) yields

ŵ = argmin
w

[∥∥∥Φ∗ w√
1 + λ2

− g∗
∥∥∥2

2
+

λ1√
1 + λ2

∥∥∥ w√
1 + λ2

∥∥∥
1

]
= argmin

w

[
wT
(Φ∗TΦ∗

1 + λ2

)
w − 2

g∗TΦ∗√
1 + λ2

+ g∗Tg∗ +
λ1‖w‖1
1 + λ2

]
.

Using the augmented quantities g∗ and Φ∗, we calculate
Φ∗TΦ∗ = ΦTΦ+λ2I

1+λ2

g∗TΦ∗ = gTΦ√
1+λ2

g∗Tg∗ = gTg

.

Finally, we obtain an alternative formulation that brings out the relationship between the
original naive elastic net regularization problem as

ŵ = argmin
w

[
1

1 + λ2

{
wT
(ΦTΦ + λ2I

1 + λ2

)
w − 2gTΦw + λ1‖w‖1

}
+ gTg

]
= argmin

w

[
wT
(ΦTΦ + λ2I

1 + λ2

)
w − 2gTΦw + λ1‖w‖1

]
.

(2.13)

Various approaches have been developed to solve the optimization problem given in Eq. (2.13).
From Eq. (2.12), it is apparent that the elastic net problem is equivalent to L1 regularization
for the augmented data g∗ and Φ∗ when λ2 is fixed. Therefore, solving the optimization
problem for EN-regularization can be done efficiently with the same methods used for L1
regularization. We note, however, that this computation is rather slow when M � N .

Elastic net regularization can also be realized by using proximal gradient methods (PGEN).
Like for PGL, we first consider a target function for elastic net regularization

ŵ = argmin
w

[1
2
‖ΦW ∗W w − g‖22 + λ1‖W w‖1 +

λ2

2
‖W w‖22

]
. (2.14)

We define a function d(w) = λ1‖W w‖1 + (λ2/2)‖W w‖22. Then, the iteration equation for
PGEN reads

wj+1 = argmin
w

[τd(w) +
1

2
‖kj −w‖2] =: proxτd(w)(kj).

This equation has the same form as Eq. (2.10) with the different definition of d(w). Finally,
using a wavelet transformation, the iteration becomes [168]

wj+1 =
1

1 + τλ2
W ∗S

[
W (wj − τΦT(Φwj − g)); τλ1

]
.

Here, the step size needs to fulfill the condition τ < 2/‖ΦTΦ‖2 for a stable iteration. The
iterations are stopped when the convergence conditions are satisfied, for example, ‖wj+1 −
wj‖2/‖wj‖2% < 10−8%.
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In this thesis, we also employ the robust convex optimization solver package CVX [196, 197]
to solve the EN regularization problem given in Eq. (2.13). We provide a simple Matlab
interface code to demonstrate the use of CVX in Appendix A.

2.2.4 Choice of regularization parameters

When we employ regularization methods, the choice of a proper regularization parameter
is central. Currently, there are three standard methods available for identification of proper
regularization parameters, namely the L-curve criterion, the generalized cross-validation,
and the quasi-optimality criterion. For the L-curve criterion, a log-log plot of residual norms
log ‖Φwλ−g‖2 and solution norms log ‖wλ‖p [198] is employed to select the proper regular-
ization parameters. In double-logarithmic scale, the resulting curve often has a characteristic
L-shaped appearance with a distinct corner separating the vertical and the horizontal parts
of the curve, see an example for L2 regularization in Fig. 2.3 (a). The optimal regularization
parameters λ are selected at the corner with maximum curvature [199]. At this point, a bal-
ance is reached between strong variation of the residual norm and strong variation of the
solution norm. The L-curve criterion is a popular graphical approach to select the proper
regularization parameters. It was early on employed for L2 regularization [198] and later it
was used for L1- [158] and EN regularization [200].

a b c

Figure 2.3: Three different approaches to select the L2 regularization parameter.
(a) The L-curve criterion suggests to select the optimal parameter at the corner
of a double-logarithmic plot of the solution resiudal norm vs the penalty norm.
(b) For generalized cross validation, one selects the optimal regularization
parameter at the minimum of a target function. (c) For the quasi-optimality
criterion, the optimal parameter is selected at the minimum of the QOC
function. (Figure (a) taken from P. C. Hansen, 2007 [62]. Figure (b) taken from J.
O. Ramsay et al., 2009 [201]. Figure (c) taken from J. Dong et al., 2018 [63].)

The generalized cross-validation (GCV) criterion is also a popular method for choosing the
regularization parameters. In case of the GCV for L2 regularization, the idea is simply to
choose the optimal parameter such that the residual norm is equal to or smaller than a priori
fixed upper bound δe with residual norm ‖e‖2 = ‖g − gexact‖2 where is gexact = Φŵ, i.e.

‖Φwλ2 − g‖2 = δe, where ‖e‖2 ≤ δe.

Where wλ2
is a result of L2 regularization. Using the compensated discrepancy principle, the

above equation can be rewritten as ‖Φwλ2
− g‖2 = σ0(trace(IN − ΦΦ−1))1/2, where σ0 is

a parameter [199]. With GCV, one seeks to minimize the predictive mean-square error δe.
Since gexact is unknown, the GCV approach works instead with the minimization of a GCV
function, which is written as fGCV = ‖Φwλ2−g‖22/(trace(IN−ΦΦ−1))2. Figure 2.3 (b) shows
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an example where the GCV criterion is employed to select L2 regularization parameter [201].
The GCV approach is also used for other regularization methods, for example, L1- [202] and
EN regularization [55].

Another approach for finding proper regularization parameters is the quasi-optimality crite-
rion, which is derived from an error-estimate based on a heuristic parameter choice rule [203].
The goal of this approach is to minimize the estimated error between the regularized so-
lution wλ2 and ŵ. In Ref. [204], the authors suggest an error estimate for L2 regulariza-
tion is given by ‖ŵ − wλ2‖2 ≈ (gT(ΦΦT + λ2I)−4ΦΦTg)1/2. The minimization of the
estimate leads to the problem of minimizing the function fQOC = ‖λ2dwλ2/d(λ2)‖2, where
dwλ2/d(λ2) = −(ΦTΦ + λ2I)−1wλ2 [199]. The optimal L2 regularization parameter is se-
lected by minimization of fQOC, see an example in Fig. 2.3 (c).

Although these methods can be employed to help with the selection of the regularization
parameters, they are of limited use for real data. For example, for the L-curve criterion,
multiple inflection points can often appear and the points are hard to localize precisely on
the employed logarithmic scales. Moreover, the L-curve criterion does not behave consis-
tently in the asymptotic limit of large system sizes or when the data is strongly corrupted
by noise [205, 206]. The disadvantage of GCV criterion is that the optimal regularization
parameter is typically not identified precisely because the GCV-function can have a very flat
minimum [207] or have several minimum points [208]. The quasi-optimality criterion also
has the drawback that the function fQOC often has several minimum points [208]. Conse-
quently, in practical applications involving the inversion of ill-conditioned matrices, such as
Traction Force Microscopy, regularization parameters are often chosen by visual inspection
of the resulting solution. This procedure lacks objectivity and significantly biases any con-
clusions drawn from later analysis of the solution. Note that this problem is not specific to
regularization, but the issue of distinguishing between noise and “real” signal appears gen-
erally with any type of method if the data is processed in any way to reduce noise. Since the
identification of optimal regularization parameters is usually a complex task, we will next
introduce a Bayesian framework that is instrumental for this purpose.

2.3 Bayesian methods

In Bayesian methodology, all quantities in the formula g = Φw + s are viewed as random
variables. The inverse and ill-posed problem in Eq. (2.1) can be connected to Bayes’ theorem.
Bayes’ rule is written as

p(w|g) =
p(g|w)p(w)

p(g)
∝ p(g|w)p(w), (2.15)

where p(w|g), p(g|w), p(w), and p(g) respectively represent the posterior, likelihood, prior,
and evidence. The three subtasks of the Bayesian approach to solve inverse ill-posed prob-
lems are: (1) Based on all the prior information of the unknown solution w, find a prior
distribution p(w) that can judiciously reflect this prior information. (2) Find the likelihood
distribution p(g|w) which describes the interrelation between the unknown w and observa-
tion g, for example, given the distribution of the noise. (3) Develop approaches to explore
the posterior distribution function [209].
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2.3.1 Bayesian regularization

Following above three subtasks, we assume that the unobserved data w is a sample drawn
from a prior distribution which we denote by p(w|α) with an undetermined parameter α.
The function p(w|α) describes any knowledge about the distribution of w. For reasons that
will become clear below, we will assume that the prior distribution for the M × 1 vector w

is a Gaussian [68]

p(w|α) =
exp[−αEw(w)]

Zw
, (2.16)

where Zw = (2π/α)M/2 and Ew = wTw/2. The acquisition noise s presents a source of ran-
domness. Typically, s is assumed to be drawn from a zero-mean Gaussian with unknown
variance 1/β [68, 78, 210, 211]. In the language of Bayesian statistics Eq. (2.15), the probabil-
ity distribution p(g|w, β) is called the likelihood function and determines the probability to
measure a particular vector g given a vector w. Since the noise is a Gaussian, the likelihood
function is written as

p(g|w, β) =
exp[−βEg(g|w)]

Zg
, (2.17)

where Eg(g|w) = (Φw − g)T(Φw − g)/2 and Zg = (2π/β)N/2. N is, as above, the size of
the vector for the measurement data g. The likelihood function p(g|w, β) describes a situ-
ation that is exactly the reverse of the experimental situation, where we are looking for the
probability of having w given measurement g. This situation is described by the posterior
distribution p(w|g) and can be related to the likelihood via Bayes’ rule

P (w|g, α, β) =
p(g|w, β)p(w|α)

p(g|α, β)
=

exp[−βEg(g|w)]

Zg

p(w|α)

p(g|α, β)
. (2.18)

Here, the Gaussian prior and Gaussian likelihood have already been made use of in Bayes’
rule. Based on these assumptions, we prove that the posterior is also a Gaussian distribution
and further we show the exact formula of the Gaussian posterior.

Given a general random variableW obeyedW ∼ N (w0,Γpr) with mean w0 and covariance
Γpr, and the random noise S yielded S ∼ N (s0,Γnoise) with its mean s0 and covariance Γnoise,
the posterior related to the likelihood and prior is also a Gaussian distribution.

According to the given information, we can write the following equations for the prior and
likelihood

p(w) =
( 1

2π|Γpr|

)M/2

exp
(
− 1

2
(w − w0)TΓ−1

pr (w − w0)
)

∝ exp
(
− 1

2
(w − w0)TΓ−1

pr (w − w0)
)
,

p(s) =
( 1

2π|Γnoise|

)M/2

exp
(
− 1

2
(s− s0)TΓ−1

noise(s− s0)
)

∝ exp
(
− 1

2
(s− s0)TΓ−1

noise(s− s0)
)
.

According to the Bayes’ rule in Eq. (2.18), the posterior distribution of w conditioned on g is
given by

p(w|g) ∝ p(w)p(Φw − g)

∝ exp
(
− 1

2
(w − w0)TΓ−1

pr (w − w0)− 1

2
(Φw − g − s0)TΓ−1

noise(Φw − g − s0)
)
.
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Since W and S are Gaussian distributions, their expectation values are well-defined and
given by

E

{[
W
G

]}
=

[
w0

g0

]
,

where G is a random variable for g with its mean g0 = Φw0 + s0. We have two covariances
for the random variablesW and G

E{(W − w0)(W − w0)T} = Γpr,

E{(G − g0)(G − g0)T} = E{(Φ(W − w0) + (S − s0))(Φ(W − w0) + (S − s0))T}

= ΦΓprΦ
T + Γnoise.

Furthermore, we have a covariance for both random variablesW and G as

E{(W − w0)(G − g0)T} = E{(W − w0)(Φ(W − w0) + (S − s0))T} = ΓprΦ
T.

Therefore, we obtain

cov

[
W
G

]
= E

{[
W − w0

G − g0

][
W − w0

G − g0

]T}
=

[
Γpr ΓprΦ

T

ΦΓpr ΦΓprΦ
T + Γnoise

]
.

Hence, the joint probability density function for the random variablesW and G is of the form

p(w,g) ∝
(
− 1

2

[
w − w0

g − g0

]T [
Γpr ΓprΦ

T

ΦΓpr ΦΓprΦ
T + Γnoise

]−1 [
w − w0

g − g0

])

=
(
− 1

2

[
w − w0

g − g0

]T [
Γ11 Γ12

Γ21 Γ22

]−1 [
w − w0

g − g0

])
.

In Ref. [209], the authors prove that the conditioned probability p(w|g) can be obtained from
the above joint probability p(w,g). The conditioned probability is written as

p(w|g) ∝ exp
(
− 1

2
(w −µµµ)TΣ−1(w −µµµ)

)
, (2.19)

where

µµµ = w0 + Γ12Γ−1
22 (g − g0) = w0 + ΓprΦ

T(ΦΓprΦ
T + Γnoise)

−1(g −Φw0 − s0),

Σ = Γ11 − Γ12Γ−1
22 Γ21 = Γpr − ΓprΦ

T(ΦΓprΦ
T + Γnoise)

−1ΦΓpr.

Equation (2.19) links the Gaussian posterior to the given Gaussian prior and likelihood. The
mean and covariance of the Gaussian posterior are µµµ and Σ. According to the Woodbury
identity, we can simplify the mean and covariance as

µµµ = (Γ−1
pr + ΦTΓ−1

noiseΦ)−1(ΦTΓ−1
noise(g − s0) + Γ−1

pr w0),

Σ = (Γ−1
pr + ΦTΓ−1

noiseΦ)−1.

In Refs. [68, 69], a special case is that the distribution of noise is assumed to be a Gaussian
with zero mean s0 = 0 and its variance σ2 = 1/β and the distribution of prior is assumed
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a Gaussian with zero mean w0 = 0 and its variances (1/α1, . . . , 1/αM ). Therefore, we can
further simplify the mean and covariance

Σ = (βΦTΦ + A)−1,

µµµ = (A + ΦTβΦ)−1ΦTβg

= β(βΦTΦ + A)−1ΦTg

= βΣΦTg,

where A = diag(α1, . . . , αM ). This Gaussian posterior p(w|g,ααα, β) = N (µµµ,Σ) has been
employed, for example, in Refs. [67, 69, 70].

In Eq. (2.18), the marginal likelihood p(g|α, β) is the overall probability of finding the ob-
served g when the known w distributions are integrated out. Thus, p(g|α, β) is also called
evidence for the model with {α, β,g}.

Assuming that α and β are known constants, one can maximize the posterior probability
P (w|g, α, β) with respect to w. The resulting solution then satisfies wMP = argminw

[
β‖Φw−

g‖22 + α‖w‖22
]
, which is exactly the formula employed for L2 regularization, Eq. (2.3), if

the parameters α and β are related to the L2 regularization parameter as λ2 = α/β [136].
Thus, our choice of a Gaussian prior is justified if we intend to perform an L2 regularization.
Other popular choices for replacing Eq. (2.16) as prior are the Laplace distribution p(w|θ) =

(θ/2) exp(−θ/2‖w‖1) [72], and a product of a Gaussian and a Laplace distribution [77]. Using
these priors, we would have found the formulas corresponding to L1 regularization and EN
regularization, respectively. Thus, regularization is equivalent to maximizing the posterior
probability of a measurement assuming fixed, known parameters of the prior distributions.

However, α and β can also be treated as variables whose values can be determined by max-
imizing their probability p(α, β|g) = p(g|α, β)p(α, β)/p(g) ∼ p(g|α, β), where we assume a
uniform prior p(α, β) and we can omit the marginal probability p(g) since it plays no role
for the optimization. To calculate the evidence p(g|α, β), we need to integrate out w in the
posterior given in Eq. (2.18). Due to the Gaussian probabilities, this integration can be done
analytically. For convenience, we expand the integrand around the most probable value
wMP. On definingK(w) ≡ αEw(w)+βEg(w) and its Hessian, A ≡ ∇∇K(w) = αI+βΦTΦ,
we expand as K(w) ≈ K(wMP) + (w−wMP)TA(w−wMP)/2. We have proved the Gaussian
posterior and can write the posterior

P (w|g, α, β) =
exp[−K(f)]

ZK
,
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where ZK =
∫

exp[−K(w)] dMw is the normalization. We employ multivariate Gaussian
integrals and the evidence can be calculated as follows

p(g|α, β) =
ZK

ZgZw

=
1

ZgZw

∫
w

exp[−K(w)] dMw

=
1

ZgZw

∫
w

exp[−K(wMP)− 1

2
(w −wMP)TA(w −wMP)] dMw

=
(2π)M/2(det A)−1/2

ZgZw
exp[−K(wMP)].

(2.20)

The logarithm of the evidence is

log p(g|α, β) =− αEw(wMP)− βEg(wMP)− 1

2
log(det A)

+
M

2
logα+

N

2
log β − N

2
log(2π).

(2.21)

The right hand side of this equation is a typical example for the target functions employed in
Bayesian analysis, for example in the context of data fitting [68]. Here, numerical calculation
of log(det A) requires some care. We employ here a Cholesky decomposition of the positive
matrix A = LLT yielding log(det A) = log(det(LLT)) = 2 log ΠiLii = 2Σi log(Lii).

The logarithmic evidence, Eq. (2.21), assumes a maximum at those parameters α̂ and β̂ that
are most likely associated with the measurement data g. The implicit equations resulting
from maximizing Eq. (2.21) read [68] 2αEMP

w = 2n− α̂TrA−1 and 2β̂Eg = 2m−2n+ α̂TrA−1.
Since wMP and A depend on α and β, these equations need to be solved numerically. Once
α̂ and β̂ are determined, the optimal L2 regularization parameter follows as λ̂2 = α̂/β̂.

We employ two approaches for determining the numerical values of α and β. In the first
approach, called Bayesian L2 regularization (BL2), we estimate the inverse noise variance
β directly from the data calculating the variance of the measured data g, for instance in
TFM, the displacements in spatial regions are very far away from any cell. Thus, in BL2
only α is determined through maximization of Eq. (2.21). In the second approach, termed
advanced Bayesian L2 regularization (ABL2), we solve directly for α and β, which requires
an increased computational effort. For both approaches, it is imperative to standardize the
data to adjust its spread in different dimensions. For the observed vector g of length N ,
we first subtract the mean g̃ = g − 1N ḡ with ḡ =

∑N
i=1 gi/N . Next, we calculate the mean

and standard deviation for all columns of the matrix Φ as Φ̄j = 1/N
∑N
i=1 Φij and ηj =

(
∑N
i=1(Φij − Φ̄j)

2/(N − 1))1/2. Thus, we can define a problem matrix where each column
is normalized by its spread Φ̃ij = (Φij − Φ̄j)/ηj . The standardized problem therefore reads
g̃i = Φ̃ijw̃j , which yields wi = w̃i/ηi.

2.3.2 Sparse Bayesian learning

Kernel-based approaches have been widely employed for machine learning in recent years,
for example, a classical kernel method, the “support vector machine” (SVM) [212–214],
which is a sparse linearly-parameterised model. Tipping combined this SVM model with
Bayesian regularization [68] and developed a sparse Bayesian learning algorithm to realize
the relevance vector machine (RVM) [69]. For sake of completeness of this exposition, we
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will in this section derive the mathematical formulation of the RVM. This sparse Bayesian
learning is based on the same likelihood function as Bayesian regularization

p(g|w, β) =

N∏
i=1

N (Φw, β−1) =
(2π

β

)−N
2

exp
{
− β

2
‖g −Φw‖22

}
, (2.22)

where Φ is a N ×M matrix which can be written as a column form Φ = [φ1, . . . , φi, . . . , φM ].
This form of the likelihood function is motivated by the assumption that the errors s obey a
Gaussian distribution with variance σ2 = 1/β. The likelihood function is complemented by
an assumed Gaussian prior over the parameters which takes the form

p(w|α) =

M∏
i=1

(2π

αi

)− 1
2

exp
{
− 1

2
αiw

2
}

= (2π)−
M
2

M∏
i=1

α
1
2
i exp

{
− 1

2
wTAw

}
. (2.23)

Here, the hyper-parameters are α = [α1, . . . , αM ]T. Each parameter αi individually controls
the strength of the prior over its associated weight and these weights are responsible for
the ultimate sparsity of the model. Based on these assumptions, the Gaussian posterior in
Equation (2.19), can be written with Bayes’ rule

P (w|g,α, β) =
p(g|w, β)p(w|α)

p(g|α, β)
.

p(g|α, β) =
∫
p(g|w, β)p(w|α)dw is called evidence, or marginal likelihood. Next, we will

re-derive the following central formula

p(g|α, β) =

∫
p(g|w, β)p(w|α)dw

= (2π)−
N
2

∣∣∣ 1
β

I + ΦA−1ΦT
∣∣∣− 1

2

exp
{
− 1

2
gT
( 1

β
I + ΦA−1ΦT

)−1

g
}

= (2π)−
N
2 |C|− 1

2 exp
{
− 1

2
gTC−1g

}
,

(2.24)

where C = 1/βI + ΦA−1ΦT. This formula means that given a random variable W with
W ∼ N (0,α−1) and a random noise S with S ∼ N (0, β−1), the evidence resulting from
margnizalizing outW with given prior and likelihood, is also a Gaussian.

We will employ the following three equalities for the calculation
Σ−1 = βΦTΦ + A

Σ−1Σ = ΣΣ−1 = I

µT = βgTΦΣT = βgTΦΣ

,
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where the last equation can be obtained because the covariance Σ is a symmetric matrix.
According to Eq. (2.18), the integral evidence can be calculated as

p(g|α, β) =

∫
p(g|w, β)p(w|α)dw

=

∫ (2π

β

)−N
2

exp
{
− β

2
‖g −Φw‖22

}
(2π)−

M
2

M∏
i=1

α
1
2
i exp

{
− 1

2
wTAw

}
dw

=
( β

2π

)N
2
( 1

2π

)M
2

M∏
i=1

α
1
2
i

∫
exp

{
−
[β

2
‖g −Φw‖22 +

1

2
wTAw

]}
dw

=
( β

2π

)N
2
( 1

2π

)M
2

M∏
i=1

α
1
2
i

∫
exp{−Y (w)}dw,

(2.25)

where we define a new function Y (w) = β‖g − Φw‖22/2 + wTAw/2. In order to obtain a
complete integral with respect to w, we need to separate w and g in Eq. (2.25) and therefore
Y (w) can be simplified as

Y (w) =
β

2
‖g −Φw‖22 +

1

2
wTAw

=
1

2
(βgTg − 2βgTΦw + βwTΦTΦw + wTAw)

=
1

2
(βgTg − 2βgTΦw + wT(βΦTΦ + A)w)

=
1

2
(βgTg − 2βgTΦΣΣ−1w + wTΣ−1w)

=
1

2
(βgTg − 2µTΣ−1w + wTΣ−1w + µTΣ−1µ− µTΣ−1µ)

=
1

2
(βgTg − µTΣ−1µ) +

1

2
(µ−w)TΣ−1(µ−w)

= R(g) +
1

2
(µ−w)TΣ−1(µ−w),

where R(g) = (βgTg − µTΣ−1µ)/2. According to the formula for multivariate Gaussian
integrals

∫
exp{−Y (w)}dw = exp{−R(g)}(2π)M/2|Σ|1/2, Eq. (2.25) can be simplified as

p(g|α, β) =
( β

2π

)N
2 |Σ| 12

M∏
i=1

α
1
2
i exp{−R(g)}.

This result can be simplified by making use of the following two expressions

( β
2π

)N
2 |Σ| 12

M∏
i=1

α
1
2
i = (2π)−

N
2 β

N
2

∣∣(βΦTΦ + A)−1
∣∣ 12 M∏

i=1

α
1
2
i

= (2π)−
N
2 β

N
2

M∏
i=1

α
− 1

2
i

∣∣∣[βΦA−1ΦT + I
]−1
∣∣∣ 12 M∏

i=1

α
1
2
i

= (2π)−
N
2

∣∣∣ 1
β

I + ΦA−1ΦT
∣∣∣− 1

2

,
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−R(g) = −1

2
(βgTg − µTΣ−1µ)

= −1

2
(βgTg − βgTΦΣΣ−1βΣΦTg)

= −1

2
βgT(I− βΦΣΦT)g

= −1

2
βgT(I− βΦ(βΦTΦ + A)−1ΦT)g

= −1

2
βgT(I− βΦA−1(I−ΦTβΦA−1)−1ΦT)g

= −1

2
βgT(I + βΦA−1ΦT)−1g

= −1

2
gT
( 1

β
I + ΦA−1ΦT

)−1

g.

Overall, Eq. (2.25) can be written as

p(g|α, β) = (2π)−
N
2

∣∣∣ 1
β

I + ΦA−1ΦT
∣∣∣− 1

2

exp
{
− 1

2
gT
( 1

β
I + ΦA−1ΦT

)−1

g
}
.

This equation shows that the evidence (or marginal likelihood) is a Gaussian distribution,
where the mean is zero and the covariance is (1/βI + ΦA−1ΦT)−1

The logarithm of the evidence L(α) is written as

L(α) = log p(g|α, β) = −1

2
[N log(2π) + log |C|+ gTC−1g]. (2.26)

In Bayesian regularization, we have employed a similar form of the logarithmic evidence to
calculate the optimal regularization parameter, see Eq. Eq. (2.21). Here, for sparse Bayesian
learning [69, 70], the key property is that the inferred result vectors are exceedingly sparse.
The majority of entries in the solution vector are automatically set to zero which is controlled
by the marginal likelihood maximization related to the set of vectors (φ1, . . . , φM ). Next, we
will present details of the mathematical procedure that allows one to obtain the sparse w.
The covariance of the evidence C in Eq. (2.26) can be decomposed as follows

C = σ2I + ΦA−1ΦT

= σ2I +
∑
m 6=i

α−1
m φmφ

T
m + α−1

i φiφ
T
i

= C−i + α−1
i φiφ

T
i ,

where C−i does not contain the i vector from in (φ1, . . . , φi, . . . , φM ). Using properties of
determinants and inverse matrices, we can exactly obtain

|C| = |C−i| |1 + α−1
i φT

i C−1
−iφi|,

C−1 = C−1
−i −

C−1
−iφiφ

T
i C−1
−i

αi + φT
i C−1
−iφi

.
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Therefore, the logarithm of the evidence in Eq. (2.26) can be written

L(α) = −1

2
[N log(2π) + log |C|+ gTC−1g]

= −1

2

[
N log(2π) + log |C−i|+ gTC−1

−1g

− logαi + log(αi + φT
i C−1
−iφi)−

(φT
i C−1
−ig)2

αi + φT
i C−1
−iφi

]
= L(α−i) +−1

2

[
logαi − log(αi + si) +

q2
i

αi + si

]
= L(α−i) + `(αi),

(2.27)

where we define si = φT
i C−1
−iφi and qi = φT

i C−1
−ig. In Ref. [70], si and qi are respectively

called the “sparsity factor” and “quality factor”, which depend on the basis vector φi. In
order to find each optimal αi at the maximal marginal likelihood, we directly do the partial
derivative of Eq. (2.27) respect with αi. Since L(α−i) does not depend on αi, we can easily
calculate derivatives as

∂L(α)

∂αi
=
∂`(αi)

∂αi
=

1

2

[
1

αi
− 1

αi + φT
i C−1
−iφi

−
(φT
i C−1
−ig)2

(αi + φT
i C−1
−iφi)

2

]
=

1

2

[
1

αi
− 1

αi + si
− (qi)

2

(αi + qi)2

]
=
α−1
i s2

i − (q2
i − si)

2(αi + si)2
.

In order to obtain the optimalαi at the maximal marginal likelihood, we calculate ∂L(α)/∂αi =

0 and find αi =
s2i

q2i−si
, if q2

i > si,

αi =∞, if q2
i ≤ si.

si and qi has the term C−1
−i , which excludes the current utilized function φi. In fact, these

values can be simply updated with the following equationsSj = φT
j C−1φj ,

Qj = φT
j C−1g,

and they are related to si and qi as sj =
αjSj

αj−Sj
,

qj =
αjQj

αj−Sj
.

When αj = ∞, si = Sj and qi = Qj . Using linear algebra, we find C−1 = B − BΦΣΦTB,
where B = σ2I. Thus, Sj and Qj are written asSj = φT

j Bφj − φT
j BΦΣΦTBφj ,

Qj = φT
j Bg − φT

j BΦΣΦTBg.

At this point, we have collected all the required formulas to update the si, qi, µ, and Σ for the
sparse Bayesian learning method. In Ref. [70], a fast RVM algorithm is developed to update
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these quantities in a very efficient way. The details of this fast algorithm are as follows.

(1) Adding a new function φi,

2∆L =
Q2
i − Si
Si

+ log
Si
Q2
i

,

Σ̃ =

[
Σ + β2ΣiiΣΦTφiφ

T
i ΦΣ −β2ΣiiΣΦTφi

−β2Σii(ΣΦTφi)
T Σii

]
,

µ̃ =

[
µ− µiβΣΦTφi

µi

]
,

S̃j = Sj −Σii(βφ
T
j ei)

2,

Q̃j = Qj − µi(βφT
j ei),

where Σii = (αi + Si)
−1, µi = ΣiiQi. We define ei = φi − βΦΣΦTφi.

(2) Re-estimating a function φi,

2∆L =
Q2
i

Si + [α̃−1
i − α

−1
i ]−1

− log 1 + Si[α̃
−1
i − α

−1
i ],

Σ̃ = Σ− κhΣhΣ
T
h ,

µ̃ = µ− κhµhΣh,

S̃j = Sj + κh(βΣT
hΦTφj)

2,

Q̃j = Qj + κhµh(βΣT
hΦTφj),

where κh = (Σhh + (α̃i − αi)−1)−1 and Σh is the h-th column of Σ.

(3) Deleting a function φi,

2∆L =
Q2
i

Si − αi
− log

(
1− Si

αi

)
,

Σ̃ = Σ− 1

Σhh
ΣhΣ

T
h,

µ̃ = µ− µh
Σhh

Σh,

S̃j = Sj −
1

Σhh
(βΣT

hΦTφj)
2,

Q̃j = Qj +
µh

Σhh
(βΣT

hΦTφj).

Using this relevance vector machine and an iterative approach, the sparse solution ŵ, being
the mean of the posterior µ, can be efficiently calculated. This method is what we call the
sparse Bayesian learning approach [69, 70].

The sparse Bayesian learning problem also can be solved with Markov chain Monte Carlo
(MCMC). In Ref. [75], the authors employ the MCMC for Bayesian L1-, L2-, and EN regular-
ization in hierarchical models. A graphical representation of these three Bayesian models is
provided in Fig. 2.4. The MCMC approach requires more computation time than variational
methods.

The sparse learning method is also employed in the field of compressive sensing, which
aims at efficiently acquiring and reconstructing signals by finding solutions to underdeter-
mined, linear systems based on the assumption that the solutions are sparse. Here, the
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Figure 2.4: Graphical model of the sparse Bayesian approaches. (a) Bayesian
compressive sensing (BCS) using the Gaussian prior. (b) Bayesian compressive
sensing using the Laplace priors (BCSL) in hierarchical model. (c) Bayesian
elastic net (BEN) using the elastic net prior in hierarchical model.

method is called Bayesian compressive sensing (BCS) [71]. The prior used for these ap-
proaches is a Gaussian distribution. Based on BCS, Bayesian compressive sensing using
Laplace priors (BCSL) method has been proposed in Ref. [215]. Here, we briefly summarize
the differences between BCS and BCSL. The Laplace prior with a parameter λ is written as
p(w|λ) = λ/2 exp(−λ/2‖w‖1). Since this prior is not conjugate to the likelihood in Eq. (2.22),
an additional hyper-prior γi p(γi|λ) = Γ(γi|1, λ/2) is employed, see Ref. [215]. Therefore, the
Laplace prior can be rewritten as

p(w|λ) =

∫
p(w|γ)p(γ|λ)dγ =

λN/2

2N
exp

(
−
√
λ
∑
i=1

|wi|
)
,

where p(λ|ν) = Γ(λ|ν/2, ν/2) with a parameter ν. The posterior is again a multivariate
Gaussian distribution N (µL,ΣL), where the mean and covariance are respectively µL =

βΣLΦTg and Σ = (βΦTΦ + Λ)−1 with Λ = diag(1/γi). The evidence can be calculated by
using a similar approach as above

p(g|γ, β, λ) = (2π)−
N
2 |CL|−

1
2 exp

{
− 1

2
gTC−1

L g
}
p(γ|λ)p(λ)p(β),

where CL = 1/βI + ΦΛ−1ΦT and p(β) = Γ(β|a, b). p(β) is taken a non-informative prior
with a = b = 0 [69]. Here, we find that the evidence is not a Gaussian distribution anymore.
The logarithm of the evidence is written as

LL =− 1

2
log CL −

1

2
gTC−1

L g +N log
λ

2
− λ

2

∑
i

γi +
ν

2
log

ν

2

− log Γ(
ν

2
) + (

ν

2
− 1) log λ− ν

2
λ+ (aβ − 1) log β − bββ.

(2.28)

To update the hyper-parameters in the above equations, we take the derivative of the loga-
rithmic evidence with respect to each hyper-parameter and set it to zero. Thus, we obtain

λ =
N − 1 + ν/2∑
i γi/2 + ν/2

, (2.29a)

log(ν/2) + 1− ψ(ν/2) + log(λ)− λ = 0. (2.29b)



2.4. Summary 43

The logarithmic evidence is also decomposed in two parts of which only one depends on the
vector φi.

LL(γ) = −1

2

[
log |C−i|+ gTC−1

−ig +
ν

2

∑
j 6=i

γj

]
+

1

2

[
log

1

1 + γisi
+

q2
i γi

1 + γisi
− λγi

]
= L(γ−i) + `(γi),

where si = φTi C−1
−iφi and qi = φTi C−1

−ig. In the fast algorithm, we only consider the second
term, which depends on γi. Maximization of the evidence yields γiγi =

−si(si+2λ)+si
√

(si+2λ)2−4λ(si−q2i +λ)

2λs2i
, if q2

i − si > λ,

γi = 0, otherwise.

Here, si = Si/(1 − γiSi) and qi = Qi/(1 − γiSi), where Si and Qi are calculated from the
same formulas as in the BCS approach. The updates of the Si, Qi, µ and Σ are used as in
BCS where the function φi can be efficiently added, deleted, and re-estimated to maximize
the evidence function.

2.4 Summary

In this chapter, we discussed two complementary approaches for solving inverse problems
in length, namely regularization and the Bayesian approach.

The former includes the L2-, L1- and Elastic Net regularization. These regularization meth-
ods require one to manually select one or two regularization parameters. A heuristic for
choosing these regularization parameters is the L-curve criterion. The latter approaches
mainly consist of Bayesian regularization and sparse Bayesian learning. In Bayesian regular-
ization, the optimal regularization parameter can be automatically selected by maximizing
an evidence function. Then, the reconstructed data is calculated by using the L2 regular-
ization with the optimal parameter. Sparse Bayesian learning is based on priors that force
most of the entries of the solution to zero. Here too, the optimal sparsity is determined by
maximizing an evidence function. Sparse Bayesian learning algorithms employing a Laplace
prior have been developed for compressive sensing. Algorithms based on iterative approxi-
mation of the evidence function are computationally efficient.

In the following, all these approaches will be tested for application in traction force mi-
croscopy, see Chapter 3 and 4. The sparse Bayesian learning methods will also be employed
for another application, namely the identification of governing equations from measurement
data, see Chapter 5.
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Chapter 3

Traction force microscopy

3.1 Mechanical model

The basic assumption that is being made for traction force microscopy (TFM) is that cell-
generated forces are exerted on the free surface of a substrate, as illustrated in Fig. 3.2 (c).
Thus, these forces can be calculated from the displacements of the substrate by using a me-
chanical model. In the mechanical model, the substrate is usually assumed to be a homoge-
neous, isotropic, and linear elastic semi-infinite medium. It is required that the forces vanish
at infinity. In such a case, the mechanical equilibrium model relating a continuous displace-
ment field Ui(x) to the traction force field Fj(x′) on a two-dimensional (x = (x1, x2)) surface
of the gel is expressed as the integral equation [216]

Ui(x) =

∫
Ω

Gij(x− x′)Fj(x
′)dx′, (3.1)

where Ω denotes the whole surface of the substrate. The integrand contains the Green’s
function

Gij(x) =
(1 + ν)

πE

[
1− ν
r

δij +
νxixj
r3

]
=

(1 + ν)

πE

(
(1− ν)r2 + νx2

1 νx1x2

νx1x2 (1− ν)r2 + νx2
2

)
, (3.2)

where E and ν represent Young’s modulus and Poisson’s ratio, respectively. We also write
r2 = |x|2 and δij is the Kronecker delta function. The model in Eq. (3.1) can also be extended
to include the case that the displacements are not measured at the surface of the gel but
below the surface in a plane with constant coordinate z. The corresponding Green’s function
is given as [136]

Gij(x1, x2, z) =
1 + ν

2πE

[
2(1− ν)r + z

r(r + z)
δij +

(2r(νr + z) + z2)xixj
r3(r + z)2

]
, (3.3)

where z is a vertical distance from the surface of gel, as shown in Fig. 3.2 (c). In both cases, the
continuous forces and displacements in Eq. (3.1) can be calculated with discretized fields. A
very popular and fast approach to solve Eq. (3.1) is called Fourier-transform traction cytometry
(FTTC) [37, 155, 217]. FTTC is a global discrete method, see Chapter 4. However, Eq. (3.1) can
also be solved by using a local discrete approach, for example, the boundary element method
(BEM) [37, 153, 154] and finite element method (FEM) [148–152]. In this chapter, we mainly
focus on the BEM.



46 Chapter 3. Traction force microscopy

For the BEM, the traction forces Fj are approximated by a shape function on discrete nodes.
To discretize the traction field, we introduce a rectangular, regular mesh with meshsize w.
The position of the mesh nodes is denoted by yk. The distance between any point in the
traction field at x′ and the mesh nodes at yl is abbreviated for simplicity as (d1, d2) = x′−yl.
The traction at x′ is assumed to be a linear combination of the traction values at the four
surrounding nodes. Hence, we introduce a pyramidal shape function, located at every node
yl, which is equal to 1 on the local node and drops linearly to 0 in all adjacent nodes. The
shape function scales the traction magnitude at x′ depending on the distances (d1, d2) as

h(d1, d2) =θ(d1)θ(d2)(1− d1/w)(1− d2/l)θ(w − d1)θ(w − d2)

+ θ(−d1)θ(d2)(1 + d1/l)(1− d2/l)θ(w + d1)θ(w − d2)

+ θ(d1)θ(−d2)(1− d1/l)(1 + d2/l)θ(w − d1)θ(w + d2)

+ θ(−d1)θ(−d2)(1 + d1/l)(1 + d2/l)θ(w + d1)θ(w + d2),

where θ(x) is written as

θ(x) :=

{
1, x ≥ 0

0, x < 0
.

With the help of the shape function, the continuous traction field is linearly approximated
as Fj(x′) =

∑
l h(x′ − yl)fj,l. Thus, Eq. (3.1) becomes

Ui(x) =
∑
j,i

∫
Ω

Gij(x− x′)h(x′ − yl)d
2x′fj,l =

∑
j,i

M′
j,l(x

′)fj,l. (3.4)

The coefficient matrix M is constructed from the M′
j,l(x

′) by inserting discrete measurement
positions for x. This approach is also suitable for the case of three-dimensional displacement
fields or the alternative Green’ function in Eq. (3.3). We can write Eq. (3.4) in a matrix-
notation as u = Mf . In the two-dimensional case, we write the discrete displacement field
u as a 2m × 1 vector, where m is the number of discretization nodes. The discrete traction
field f is a 2n × 1 vector, where n is the number of nodes at which traction is prescribed.
Due to the fact that measurement noise always exists in the displacement field u for TFM,
we extend the equation as

u = Mf + s, (3.5)

where s is the linear acquisition noise. Given u and M, Eq. (3.5) allows one to calculate f.
This becomes an inverse ill-posed problem because the condition number of the matrix M is
usually large.

In Fourier space, Eq. (3.1) also can be calculated by using the convolution and shift theorem
and a Fourier-transformed shape function. We employ a Fourier transformation with wave
vector k = (k1, k2). The shape function h(d1, d2) is transformed into Fourier space and
becomes

h̃(k1, k2) = sinc2(k1)sinc2(k2).

The Green’s function reads in Fourier space

G̃ij(k1, k2) =
2(1 + ν)

Ek3

[
(1− ν)k2 + νk2

2 −νk1k2

−νk1k2 (1− ν)k2 + νk2
1

]
, (3.6)
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where k2 = k2
1 + k2

2 . The Green’s function depending on the vertical coordinate z becomes
in Fourier space [136]

G̃ij(k1, k2, z) =
2(1 + ν)e−z

√
k21+k22

E(k2
1 + k2

2)3/2

[
(k2

1 + k2
2)δij − kikj

(
ν +

z
√
k2

1 + k2
2

2

)]
. (3.7)

Using the convolution and shift theorem, we rewrite Eq. (3.4) to obtain a discrete equation
in Fourier space as

Ui(x) =

n∑
j=1

Ft−1(G̃ij(k)h̃(k)e−ikyl)fj,l. (3.8)

This equation is an alternative expression for Eq. (3.4) but it provides a fast way to calculate
the coefficient matrix M via Fast Fourier Transform. Note however that the sharp corners in
the pyramidal shape functions can result in artifacts due to the finite cutoff on high spatial
wave vectors.

Reconstruction

Tested reconstruction methods

a

Regularization methods:

 parameter choice required

Bayesian models:

  no free parameter     

L2 L1 EN PGL PGEN

b

BL2

Measured substrate

    displacements
Reconstructed

     traction

ABL2

Gel u f

u=Mf

Figure 3.1: Schematic representation of a typical traction force microscopy
(TFM) setup and different reconstruction methods for TFM. (a) Cells are plated
on a planar gel substrate containing fiducial markers. Tracking the markers
allows to infer the deformations u in the surrounding of the cell. These
deformations are linearly related to the cellular traction forces f . The problem of
calculating traction f from displacement u is associated with inverting an
ill-conditioned matrix M. This problem can be solved with different
reconstruction methods. (b) In this work, we test five regularization methods for
traction reconstruction: L2 regularization (L2), L1 regularization (L1), EN
regularization (EN), Proximal Gradient Lasso (PGL) and Proximal Gradient
Elastic Net (PGEN). Furthermore, we develop two Bayesian approaches that do
not have any free parameters, namely Bayesian L2 regularization (BL2) and
Advanced Bayesian L2 regularization (ABL2).

In this chapter, we systematically compare various approaches for solving Eq. (3.5), the in-
verse ill-posed problem in TFM. We compare the performance of seven approaches, illus-
trated as a schematic diagram in Fig. 3.1. First, we test various regularization methods.
Among these are the classical TFM methods, L1- and L2 regularization and previously
untested methods from computer vision, namely Elastic Net (EN) regularization, Proximal
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Gradient Lasso (PGL), and Proximal Gradient Elastic Net (PGEN). We find that the new EN
regularization scheme has a substantially improved accuracy as compared to previous ap-
proaches but requires considerable extra computational cost. Secondly, we seek to establish
Bayesian models that can automatically perform an optimal regularization of the data. Ini-
tial tests indicate that different freely available Bayesian hierarchical models are of little use
for TFM since a large number of hidden variables, even when used with sparsity priors, does
not enforce sufficient data faithfulness. Instead, we find that the simplest-possible Bayesian
models with global priors yield robust results that can be interpreted as optimal L2 regu-
larization. We study two variants of this algorithm: Bayesian L2 regularization (BL2), where
the magnitude of the noise in the displacement data must be measured separately, and Ad-
vanced Bayesian L2 regularization (ABL2) which requires no extra input. We test the Bayesian
methods using artificial data and real experimental data. Our results suggest that BL2 is not
only very robust but also superior to classical L2 regularization when measurement noise is
large. Most importantly, BL2 automatically determines the degree of regularization, which
removes subjectiveness from the result. This advance is particularly relevant for in-detail
comparison of cells in different conditions, where the varying signal-to-noise ratio previ-
ously made an unambiguous comparison challenging.

3.2 Generation of artificial test data and experimental proce-

dures

3.2.1 Artificial test data

To quantitatively compare the performance of different reconstruction methods, we require
artificial data with exactly known traction force and displacements. To generate synthetic
test data that is completely known, we employ explicit formulas for the displacement field
around a single circular traction patch. We calculate displacements on the surface of the
substrate and in a plane below the surface, given a circular traction patch on the substrate
surface, as illustrated in Fig. 3.2 (c). Test images containing multiple patches can be assem-
bled by adding the displacement vectors resulting from the individual patches. The analyt-
ical solution is calculated for a patch with radius R located at the origin. We employ polar
coordinates, r = (r cos θ, r sin θ), with r and θ being the radial and angular coordinate. The
traction patch is described as

f(r) =

{
f0, |r| < R,

0, |r| ≥ R.
(3.9)

The traction vector is given by fx = f(r) cos γ and fy = f(r) sin γ, where γ is the angle
between the x axis and the direction of the traction. Fourier transformation yields

f̃(ρ) =

∫ 2π

0

∫ ∞
0

f0e
iρr cos(φ−θ)rdrdθ = 2πRf0J1(ρR)/ρ,

where J1(ρR) is a Bessel function, ρ is a radial wave vector, and φ is an angle. The traction
vector in Fourier space is thus f̃x(ρ) = f̃(ρ) cos γ and f̃y(ρ) = f̃(ρ) sin γ. Given such force
patch, next, we calculate an analytical 2D displacement on the surface of the gel and the
displacement in the gel.
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3.2.1.1 A analytical calculation of displacements around a circular traction patch

In the two-dimensional case (z = 0), the Fourier space Green’s function in polar coordinates
reads

G̃ij(ρ, φ) =
2(1 + ν)

Eρ

[
(1− ν) + ν sin2 φ −ν sinφ cosφ

−ν sinφ cosφ (1− ν) + ν cos2 φ

]
.

According to the convolution theorem from Eq. (3.1), the displacement field in Fourier space
becomes [

ũx

ũy

]
=

2(1 + ν)

Eρ

[
(1− ν) + ν sin2 φ −ν sinφ cosφ

−ν sinφ cosφ (1− ν) + ν cos2 φ

][
f̃x

f̃y

]
.

Thus, the displacements in real space can be calculated through inverse Fourier transforma-
tion [

ux

uy

]
=

(
1

2π

)2 ∫ 2π

0

∫ ∞
0

[
ũx

ũy

]
e−iρr cos(φ−θ)ρdρdφ

The result can be simplified as

ux(r, θ) =
R(1 + ν)

πE

[(
(1− ν)N1 + νN2

)
f0 cos γ − νN3f0 sin γ

]
,

uy(r, θ) =
R(1 + ν)

πE

[
− νN3f0 cos γ +

(
(1− ν)N1 + νN4

)
f0 sin γ

]
.

For the functions N1 to N4, we have for the inner region where r < R and ξ1 = r2/R2

N1 = 4E0(ξ1),

N2 =

4 cos(2θ)

(
(r2 +R2)E0(ξ1) + (r2 −R2)K0(ξ)

)
3r2

+ 4 sin2 θE0(ξ1),

N3 =

2 sin(2θ)

(
(r2 − 2R2)E0(ξ1) + 2(R2 − r2)K0(ξ1)

)
3r2

,

N4 = 4 cos2 θE0(ξ1)−
4 cos(2θ)

(
(r2 +R2)E0(ξ1) + (r2 −R2)K0(ξ1)

)
3r2

.

Here, E0 is complete elliptic integral of the first kind and K0 is complete integral of the
second kind. For the outer region where r > R and ξ2 = R2/r2, we have

N1 =

4

(
r2E0(ξ2) + (R2 − r2)K0(ξ2)

)
rR

,

N2 =

(
6r2 − 2(r2 − 2R2) cos(2θ)

)
E0(ξ2) + 2(r2 −R2)(cos(2θ)− 3)K0(ξ2)

3rR
,

N3 =

2 sin(2θ)

(
(r2 − 2R2)E0(ξ2) + (R2 − r2)K0(ξ2)

)
3rR

,

N4 =

(
6r2 + 2(r2 − 2R2) cos(2θ)

)
E0(ξ2)− 2(r2 −R2)(cos(2θ) + 3)K0(ξ2)

3rR
.

In this thesis, we call this completely analytical solution of displacements around a circular
traction patch, 2D theory.
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Figure 3.2: Analytically calculated displacement field around 15 circular traction
patches. (a) 15 circular traction patches are randomly distributed on a
25µm× 25µm region. The maximal traction force is 200 Pa. The traction forces
are applied on the free surface of substrate (z = 0), shown in (c). (b) The
displacements on the surface of substrate z = 0 are calculated by using 2D
theory (Left) and semi-analytical theory. (Middle). A local comparison from 2D
theory and semi-analytical theory is obtained at y = 6µm (Right). (d) The
displacement fields are obtained by using semi-analytical theory along z at point
A, B, C, and D, for z equal to 0µm, 0.5µm, 1µm, and 1.5µm, respectively. Space
bar: 5µm.

3.2.1.2 Displacements resulting from a circular traction patch for z ≥ 0

The same traction forces shown in Eq. (3.9) are applied on the surface of substrate and we
aim to calculate the displacements in a plane below the surface. The displacement in the
substrate can be calculated by using a similar approach like in the 2D case. In this approach,
Fourier space Green’s function in polar coordinates can be written as

G̃ij(ρ, φ, z) =
2(1 + ν)e−zρ

Eρ

[
1− (ν + zρ/2) cos2 φ −(ν + zρ/2) sinφ cosφ

−(ν + zρ/2) sinφ cosφ 1− (ν + zρ/2) sin2 φ

]
.

The displacement field in Fourier space as a function of z is calculated by making use of the
convolution theorem[

ũx

ũy

]
=

2(1 + ν)e−zρ

Eρ

[
1− (ν + zρ/2) cos2 φ −(ν + zρ/2) sinφ cosφ

−(ν + zρ/2) sinφ cosφ 1− (ν + zρ/2) sin2 φ

][
f̃x

f̃y

]
.

Therefore, the real space displacements can be obtained by the inverse Fourier transforma-
tion [

ux

uy

]
=

(
1

2π

)2 ∫ 2π

0

∫ ∞
0

[
ũρ(ρ, φ, z)

ũφ(ρ, φ, z)

]
e−iρr cos(φ−θ)ρdρdφ.
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We simplify the results as

ux(r, θ, z) =
(1 + ν)R

πE

[
(t1 − νt2 −

z

2
t3)f0 cos γ − (νt4 +

z

2
t5)f0 sin γ

]
,

uy(r, θ, z) =
(1 + ν)R

πE

[
− (νt4 +

z

2
t5)f0 cos γ + (t1 − νt6 −

z

2
t7)f0 sin γ

]
,

where we define the functions t1 to t7

t1 = 2πI(1, 0;−1),

t2 = 2π cos2 θI(1, 0;−1)− cos(2θ)

r
I(1, 1;−2),

t3 = 2π cos2 θI(1, 0; 0)− cos(2θ)

r
I(1, 1;−1),

t4 = −π sin(2θ)I(1, 2;−1),

t5 = −π sin(2θ)I(1, 2; 0),

t6 = 2π sin2 θI(1, 0;−1) +
cos(2θ)

r
I(1, 1;−2),

t7 = 2π sin2 θI(1, 0; 0) +
cos(2θ)

r
I(1, 1;−1).

The integrals of Lipschitz-Hankel types are shown as the follows

I(1, 0;−1) =

∫ ∞
0

J1(2πRρ)J0(2πrρ)ρ−1e−zρdρ,

I(1, 1;−2) =

∫ ∞
0

J1(2πRρ)J1(2πrρ)ρ−2e−zρdρ,

I(1, 0; 0) =

∫ ∞
0

J1(2πRρ)J0(2πrρ)e−zρdρ,

I(1, 1;−1) =

∫ ∞
0

J1(2πRρ)J1(2πrρ)ρ−1e−zρdρ,

I(1, 2;−1) =

∫ ∞
0

J1(2πRρ)J2(2πrρ)ρ−1e−zρdρ,

I(1, 2; 0) =

∫ ∞
0

J1(2πRρ)J2(2πrρ)e−zρdρ,

where Ji is Bessel function with the integer order i = 0, 1, 2. We take two approaches to
solve these integrals of Lipschitz-Hankel types. One is numerical integration, called semi-
analytical theory. Another one is a completely analytical solution based on integral tables,
see in Appendix B.

Figure 3.2 shows the solution of analytical displacement field calculated from 15 circular
traction patches. The mechanical properties of the substrate are characterized by its Young’s
modulus of E = 10 kPa and a Poisson ratio of ν = 0.3. The 15 circular traction patches with
random directions are shown in Fig. 3.2 (a), in which the maximal traction is 200 Pa. Fig-
ure 3.2 (b) shows the analytical displacement fields obtained by using 2D theory and semi-
analytical theory on the surface of substrate at z = 0. We find that these two displacement
fields are identical and a local comparison obtained by using 2D theory and semi-analytical
theory at y = 6µm is shown in Fig. 3.2 (b-Right). We further plot the displacement at dif-
ferent positions, z = 0µm, 0.5µm, 1µm, and 1.5µm in Fig. 3.2 (d). The maximal magnitude
of displacement in each layer decreases with growing vertical distance from the surface z.
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The solutions for a displacement field at z ≥ 0 obtained by evaluating tabulated integrals
are shown in Appendix B. Note that the analytical solutions and the semi-analytical solu-
tions for theory deviate from each other due to significant errors resulting from numerical
evaluation of tabulated integral expressions.

In this thesis, we employ the 2D analytical solutions to generate the artificial test data. The
process of generating this data is shown in Fig. 3.4 (a, i–iv) and involves prescribing trac-
tion force magnitude and direction in distributed circular areas, analytical calculation of
the resulting displacements [37], sampling displacements at discrete positions and addition
of noise. Throughout the chapter, artificial test data is generated for gel substrates with a
Young’s modulus of E = 10 kPa and a Poisson’s ratio of ν = 0.3. The size of the image plane
is arbitrary, but fixed to 25 µm×25 µm and involves 9 or 15 circular traction spots. For these
fixed geometries we vary the traction magnitude, density of displacements, and the noise
level.

3.2.2 Evaluation metrics for assessing the quality of traction reconstruc-
tion

To evaluate the quality of the reconstructed traction, we introduce four different error mea-
sures comparing reconstructed traction and known original traction. For this purpose, trac-
tion at every grid node is written as a two-dimensional vector t = {tx, ty}. Real traction
and reconstructed traction are discriminated by superscripts as treal and trecon. The error
measures are calculated by discriminating traction inside and outside of Ni circular traction
patches in a test sample.

• The Deviation of Traction Magnitude at Adhesions (DTMA) [37] is defined as

DTMA =
1

Ni

∑
i

meanj
(
‖trecon
j,i ‖2 − ‖treal

j,i ‖2
)

meanj
(
‖treal
j,i ‖2

) , (3.14)

where Ni is the number of circular traction patches and the index i runs over all
patches. The index j runs over all traction vectors in one patch. A DTMA of 0 rep-
resents a perfect average traction recovery and a negative or positive value implies
underestimation or overestimation, respectively.

• The Deviation of Traction Magnitude in the Background (DTMB) is the normalized dif-
ference between the reconstructed and real traction magnitude outside the circular
patches

DTMB =
meank

(
‖trecon
k ‖2 − ‖treal

k ‖2
)

1
Ni

∑
i meanj

(
‖treal
j,i ‖2

) , (3.15)

where the index k runs over all traction vectors outside the patches. A DTMB with
a magnitude much smaller than unity implies low background noise in the recon-
structed traction.

• The Signal to Noise Ratio (SNR) for TFM

SNR =
1
Ni

∑
i meanj(‖trecon

j,i ‖2)

stdk(trecon
k )

. (3.16)
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measures the detectability of a real signal within a noisy background [218]. As before,
the index k runs over all traction vectors outside the patches while j is the index of
each traction vector in the patch i. The value of the SNR runs from 0 to infinity where
a SNR that is much larger than unity indicates a good separation between traction and
noise.

• The Deviation of the traction Maximum at Adhesions (DMA) measures how peak-values
of the traction over- or underestimate the true value. The quantity is defined as

DMA =
1

NA

∑
i

[
maxj(‖trecon

j,i ‖2)−maxj(‖treal
j,i ‖2)

]
maxj(‖treal

j,i ‖2)
, (3.17)

where the maxima of traction magnitude are calculated for each traction patch sep-
arately through index j. This error measure is particularly important since traction
maxima are easy to extract from real experimental data. A DMA of 0 means that the
local traction maxima in the reconstruction and in the original data are equal. Positive
or negative values of the DMA indicate that the maximum of traction is overestimated
or underestimated.

3.2.3 Experimental procedures

The experimental data used in this thesis was generated by collaborators. For complete-
ness, we here briefly summarize the employed procedures. Primary murine podocytes were
isolated and maintained by following previously published protocols [219]. In brief, mGFP
positive podocytes were isolated from mTom/mGFP*Nphs2Cre reporter mice and subse-
quent FACS based purification resulted in a primary podocyte culture of highest purity [220].
Mice were housed in a SPF facility with free access to chow and water, according to the NIH
guide for the care and use of laboratory animals as well as the German law for the wel-
fare of animals (kept at 12 hour day/night cycle). All animal experiments were approved
by local authorities (Regierungspraesidium Freiburg, Germany - G11/51). TFM substrates
were prepared according to previously established protocols74. For all experiments, gels
were prepared from 12% acryamide and 0.15% Bis-acrylamide and contained fluorescent
beads. Elastic properties of this gel are characterized by a Young’s modulus of 49 kPa and
we assumed a Poisson’s modulus of 0.47. The gel surface was covered with the crosslinker
Sulfo-SANPAH and Fibronectin solution was added. Crosslinking was enhanced by expo-
sure of the gels to UV light for 5minutes. After letting the reaction proceed for 12hours, the
gels were thoroughly washed with water and PBS. Subsequently, primary podocytes were
seeded and cultivated for 12–16hours. Then, coverslips were placed in flow chambers and
images of beads and cells were recorded on an inverted confocal microscope with a 63x ob-
jective. After recording images of a cell and of the beads below it, the cell was completely
removed from the substrate by using a micromanipulator (Eppendorf). Subsequently, im-
ages of the fluorescent beads in the relaxed gel were recorded, yielding an unstressed refer-
ence state. Substrate deformations between the stressed state with cells and the unstressed
reference state were quantified using correlation-based tracking of the beads.

Embryonic rat heart muscle cells were obtained from pregnant rats (Wistar, Charles River,
Sulzfeld) at 18–19 days of gestation, details are published elsewhere [221]. Before decap-
itation, the pregnant rat was anesthetized with CO2. Afterwards the rat embryos were
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Figure 3.3: Classical methods for selecting the regularization parameter λ2 with
the L-curve and GCV for strong noise σn/σū ' 0.85. The L2 regularization
parameters suggested by the L-curve criterion and the GCV differ considerably,
about by a factor of ten. Data is artificial and consists of 15 circulars traction
spots.

taken and decapitated immediately (Animal testing license number 84-02.04.2015.A173, Lan-
desamt fuer Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Duesseldorf, Ger-
many). Cover slides were coated with approximately 70µm thick silicone elastomer layer
produced from a commercial two-component formulation (Sylgard 184, Dow Corning; mix-
ing ratio 50:1 base to crosslinker by weight; cured overnight at 60 ◦C). These substrates
contained fluorescent beads in their uppermost layer (FluoSpheres Crimson carboxylate-
modified beads; Invitrogen) and were coated with fibronectin before cell seeding. Details
on sample preparation and cell culture are published elsewhere [221]. Calibration of stiff-
ness [222] yielded a Young’s modulus of 15 kPa and a Poisson’s ratio of 0.5. Live cell mi-
croscopy on spontaneously beating cardiac myocytes was performed and positions of fluo-
rescent beads were determined by cross-correlation [221, 223].

3.3 Results

3.3.1 Manual selection of optimal regularization parameters is challeng-
ing

The optimal regularization parameters λ1/2 in Eq. (2.3) are usually unknown. Classical meth-
ods for their choice are the L-curve criterion [205, 224] or the generalized cross validation
(GCV) for L2 regularization [62, 225]. However, these two methods hardly ever produce
the same parameter values and results can differ substantially in the presence of noise, see
Fig. 3.3. The regularization parameters suggested by L-curve criterion and the GCV are
0.023 Pix2/Pa2 and 0.0021 Pix2/Pa2.

To illustrate the strong effect of regularization on traction reconstruction, we focus on ar-
tificial test data where the underlying traction pattern is known. Figure 3.4 (a) illustrates
the generation of artificial traction fields consisting of circular patches each exerting 100 Pa.
Fig. 3.4 (c) demonstrates how variation of the regularization parameters affects the error of
traction reconstruction with different methods. Note that the errors exhibit minima for in-
termediate values of the regularization parameters. For the methods shown in panels i, iv,
v of Fig. 3.4 (c) (L2 regularization, PGL, PGEN), minima occur in the positive error of the
background traction DTMB. In contrast, L1 regularization shown in panel ii of Fig. 3.4 (c) ex-
hibits a maximum in the DTMA, indicating that the average traction magnitude is estimated
reasonably accurately here.
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Figure 3.4: Systematic tests illustrate substantial ambiguity in the choice of
regularization parameters. (a) Schematic of the employed procedure to test the
reconstruction methods. (a-i) Artificial traction pattern consisting of circular
spots that uniformly exert a traction of 100 Pa. (a-ii) Analytical calculation of the
gel displacements. (a-iii) The displacement field is sampled at random positions
representing measurements of motion of fiducial markers. (a-iv) Reconstruction
of the traction. (b) Central formula summarizing different regularization
approaches. (c) Dependence of various error measures on the regularization
parameters. (b-i)-(b-v) Error measures defined in Eqns. ((3.14)-(3.17)) exhibit
various extrema and turning points, making the definition of an optimal
parameter challenging. Note that the minima of the errors do not correspond to
values of regularization parameters suggested by the L-curve criterion (Green
dotted lines vs. black dotted lines). DTMA: Deviation of traction magnitude at
adhesion, DTMB: deviation of traction magnitude in background.
(b-I)-(b-V) Traction fields calculated with regularization parameters that
correspond to the error minima at the black dotted lines. Space bar: 5µm.

The occurrence of clear minima in the error measures suggests that the corresponding reg-
ularization parameter values produce a faithful traction reconstruction. Indeed, employing
the values corresponding to the error minima yields traction fields that visually compare
well with the original data, see Fig. 3.4 (a and d). Note that for L1 regularization, the recon-
struction clearly overestimates the maximum traction locally. As shown in the Appendix B
Fig. B.2, the overestimation of the maximum quantified by the DMA can only be reduced
through ∼ 10 fold reduction of λ1, which however leads to strong background traction and
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Figure 3.5: Results of L1 regularization using CVX for different λ1.
Reconstruction using the L1_CVX method for 9 circular spots. (i) The L-curve
exhibits a turning point indicating a transition from a data-dominated to a
regularization-dominated regime. (ii) The employed artificial data contains 2%
noise. (iii)-(v) Traction fields obtained by L1_CVX at λA1 , λB1 and λC1 .

suppression of real traction, see also Fig. 3.5. While the minima of the error measures in
Fig. 3.4 (c) allow to determine a “best” regularization for test data, the resulting regulariza-
tion parameter values deviate from those suggested by the L-curve criterion, see green lines
in Fig. 3.4 (c). Moreover, the L-curves for these samples are complex and exhibit multiple
turning points, illustrating the difficulty in choosing the right regularization parameter in
experiments, see the Appendix B Fig. B.5.

3.3.2 The elastic net outperforms other regularization methods for trac-
tion reconstruction

To facilitate quantitative comparison of different reconstruction methods, we employ artifi-
cial data consisting of 15 circular traction spots with traction magnitude between 0 Pa and
250 Pa, see Fig. 3.6 (a). Gaussian noise with a standard deviation given in percent of the
maximal absolute value of the of true displacements is added. The spots have a diameter of
2 µm and the mesh constant for traction reconstruction is 0.5 µm.

Results from different regularization approaches are shown in Fig. 3.6 (a). The figure il-
lustrates that L2 regularization can yield realistic estimates for the absolute magnitude of
traction on the spots but produces a strong traction background which may render identi-
fication of traction sites difficult. The opposite deficiencies occur for results from L1 regu-
larization. Here, the background is nicely suppressed, which can allow excellent resolution
of very small traction spots. However, the peak tractions are significantly overestimated,
which can not be mitigated by increasing the regularization parameter, see Fig. 3.7. Note
that the quality of L1 regularization can be improved by using an Iterative Reweighted Least
Squares algorithm and the solution from the L2 regularization as an initial guess, see Fig. 3.7.
The best results are obtained with the EN regularization which combines the advantages of
L1- and L2-regularization. Here, we obtain a clean background combined with acceptable
accuracy in the absolute traction magnitude on the circular patches. The results from the
proximal gradient methods PGL and PGEN qualitatively have a smooth appearance with
a level of background traction that is between those of L2 and L1. Fig. 3.6 (b) quantifies
the described differences between the regularization methods through the error in traction
magnitude on the traction spots (DTMA), the error in traction magnitude in the background
(DTMB), signal to noise ratio (SNR), and error in maximum traction on the spots (DMA). The
Appendix B Fig. B.8 contains additional plots of these quantities. We find that the reconstruc-
tion quality of traction and background improves with increasing number of displacement



3.3. Results 57

 
L2 L1

EN PGL

a

PGEN

0

b
i ii

iii

Arti cial traction

M
e
a
n
 t

ra
c
ti

o
n
 e

rr
o
r

B
a
c
k
g
ro

u
n
d
 e

rr
o
r

( 
  

  
  
)

S
ig

n
a
l 
to

 n
o
is

e
 r

a
ti

o
( 

  
  

)

1 2

[Pix /Pa ]2 2

iv

M
a
x
. 

tr
a
c
ti

o
n
 e

rr
o
r

( 
  

  
 )

( 
  
  

  
)

iv

c diL2

iii iv

iii

[Pix /Pa ]2 2

[Pix /Pa ]22

[Pix /Pa ]2 2

EN

v

L1

ii iiiPGL

[Pix /Pa]2

[Pix /Pa]2

[Pix /Pa]2

iv

PGEN

[Pa] 2500

i ii iii

iv v vi

Figure 3.6: The elastic net (EN) outperforms other reconstruction methods in the
presence of noise and when applied to undersampled data. (a) Artificial test data
with uniform traction spots and 4% noise in the displacements. Traction maps in
(ii–vi) result from usage of different regularization methods. Space bar: 5µm;
displacements are sampled on average every 0.5µm. (b) Comparison of errors
resulting from undersampled data. Undersampling is realized by reducing the
number of displacement vectors m. (c) L-curves with chosen regularization
parameters (gray boxes) for a data set containing 2% noise and m/n = 0.4.
(d) Comparison of errors for the regularization parameters shown in (c). EN
regularization shows a favorable tradeoff between error and background signal.

measurements m. Furthermore, EN regularization outperforms other regularization meth-
ods with regard to the reconstruction accuracy of undersampled data (m/n < 1). However,
the advantage of EN regularization comes at a significantly increased computation time and
memory requirement as shown in Table 3.1.

Table 3.1: Overview of the runtime RAM requirement for each method.

Reconstruction method Regularization Bayesian models
Name L2 L1 EN PGL PGEN BL2 ABL2
Simulation time 8 s 75 s 0.8 h 126 s 127 s 0.1h 0.5h
RAM requirement 350 MB 1.98 GB 3.87 GB 101 MB 107 MB 400 MB 400 MB

The benchmark tests were conducted with a data set consisting of 1000 displacement measurements
and a traction field consisting of 2500 entries.
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Figure 3.7: Results of L1 regularization using CVX and IRLS for different λ1. (a)
and (b) Reconstruction using the L1_CVX and L1_IRLS method for 15 circular
spots, respectively. (b-i) and (c-i) The L-curve and three selection of points A, B
and C for CVX and IRLS. (a-ii) and (b-ii) The input artificial test traction.
(a-iii)-(a-v) Reconstruction using L1_CVX at different λ1.
(b-iii)-(b-v) Reconstruction using L1_IRLS at different λ1. Clearly, the
regularization parameter should be chosen well-above the turning point to
avoid partial suppression of traction patterns.

3.3.3 Bayesian variants of the L2 regularization allow parameter-free trac-
tion reconstruction

We next consider the performance of the two Bayesian methods, BL2 and ABL2, that al-
low automatic choice of the optimal L2 regularization parameter, as schematically shown in
Fig. 3.8 (a). Both methods select the optimal regularization parameter by maximizing the
logarithmic evidence, Eq. (2.20). As illustrated in Fig. 3.8 (a), the regularization parameter
is here deduced from the parameters β and α, characterizing the distributions of measure-
ment noise and traction respectively. We first employ the same test data as used for Fig. 3.6,
containing 5% Gaussian noise in the displacements with β = 400 Pix−2.

With BL2, the log evidence exhibits a clear maximum in a one-dimensional space as seen
in Fig. 3.8 (c). Figure 3.8 (d) shows the reconstructed traction employing the optimal pa-
rameter λ̂2 = 76.75 Pa2/Pix2. Visual comparison of the color-coded traction magnitude in
Fig. 3.8 (d,b) clearly shows that the reconstructed traction has the correct range.

For ABL2, the evidence is a function of β and α as seen in Fig. 3.8 (e). Numerical localization
of the maximum yields α̂ = 3.06e4 Pa−2 and β̂ = 394 Pix−2, which is very close to the known
input value of β = 400 Pix−2. The optimal regularization parameter in this case is thus
λ̂2 = α̂/β̂ = 77.66 Pa2/Pix2, which agrees well with the estimate from BL2 (76.75 Pa2/Pix2).
The resulting traction map is shown in Fig. 3.8 (f) and is very similar to the traction map
resulting from BL2 in Fig. 3.8 (d). Thus, BL2 and ABL2 yield consistent parameter estimates
that produce traction reconstruction of good accuracy. See the Appendix B Fig. B.8 for a
comparison of the Bayesian methods with non-Bayesian approaches.

As with other regularization approaches, the quality of reconstruction strongly depends on
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Figure 3.8: Bayesian L2 regularization (BL2) and Advanced Bayesian L2
regularization (ABL2) are robust methods for automatic, optimal regularization.
(a) Schematic diagram of the procedure employed to infer λ̂2 in BL2 and ABL2.
BL2 requires the variance of the displacement measurements 1/β, which can be
obtained by analyzing displacement noise far away from any cell. ABL2
estimates this noise strength directly from the data. (b) Artificial test data. For
the shown results, 5% Gaussian noise is added to the displacements. Space
bar: 5µm. (c) For BL2, the optimal regularization parameter is located at the
maximum of a one-dimensional plot of the evidence Eq. (4.9). (d) Reconstruction
of traction force using BL2. (e) For ABL2, the optimal regularization parameter
is located at the maximum of a two-dimensional plot of the data evidence vs. α
and β. (f) Reconstruction of traction force using ABL2. (g-i)-(g-iv) Comparison
of reconstruction accuracy for L2, BL2 and ABL2. Different levels of traction
forces were applied to change signal-to noise ratio. Here, σn is the standard
deviation of the noise and σū is the standard deviation of the noise-free traction
field. Note that BL2 outperforms the other methods for high noise levels.

the present noise. When the magnitude of the noise is comparable to the magnitude of the
displacements caused by the traction (σn/σū ≈ 1), little information can be recovered. For
instance, the circular spots with weak traction labelled 1 and 2 in Fig. 3.6 (a) are almost im-
possible to detect in the presence of 5 % noise, but can be reconstructed in the noise-free case,
see the Appendix B Fig. B.6. To quantitatively assess the fidelity of reconstruction with small
traction forces, we employ a constant 5 % but scale the tractions to mean values of (12 Pa, 16
Pa, 60 Pa and 120 Pa). The resulting relative strength of noise and displacements is quantified
through the ratio of standard deviations σn/σū, which is plotted against our reconstruction
quality measures in Fig. 3.8 (g). For comparison, results from manual selection of the regu-
larization parameter using the L-curve criterion are also given. The reconstruction qualities
of BL2, ABL2 and L2 are similar when σn/σū � 1 (high traction). However, BL2 and ABL2
have an improved signal to ratio SNR compared with the L-Curve approach when σn/σū
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approaches unity, see (iii). This is due to the difficulties with the L-curve criterion at high
noise. The logarithmic evidence function exhibits in all cases a clear maximum that enables
robust and reliable choice of optimal parameters with BL2 and ABL2. In general, the results
from BL2 are however more reliable since the optimization involves here only one parame-
ter. Overall, the tests with artificial data show that these Bayesian methods containing few
additional parameters to be determined from the data can resolve the ambiguity associated
with manual choice of the regularization parameters over a wide range of signal strengths
σn/σū < 1.
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Figure 3.9: The determination of regularization parameters from different
methods for the experimental data. (a) L-curve and GCV function for the
classical L2 regularization. (b)-(c) L-curves for L1- and EN-regularization.
(d)-(e) L-curves for PGL and PGEN. (f) The logarithmic evidence curve
calculated in BL2 as function of the regularization parameter. The variance of
the measurement noise is estimated from the data to be about 0.01 Pix2. (g) Map
of the logarithmic evidence for ABL2. The maximum of this function is located
at 1/β = 0.008 Pix2, which is close to the noise variance estimated from the data

BL2 and ABL2 are based on the simplest structure of a Bayesian model with only one, global
prior distribution. One may hypothesize that more complex hierarchies of priors yield an
improved traction estimate. For instance, it is possible to prescribe a position-dependent
prior for sparse traction patterns through hierarchical Bayesian networks. Such methods re-
quire more advanced techniques for sampling of the probability distributions and optimiza-
tion, such as variational techniques or Markov-chain Monte Carlo methods. We have tested
three such algorithms that were originally developed for purposes other than TFM [70, 72,
75, 226]. Results are shown in the information of the Appendix B Fig. B.7 and Fig. B.8. How-
ever, the tested algorithms all produce highly overestimated, localized traction patterns that
sensitively depend on noise. Such errors are likely due to the many free parameters of the
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models that do not favor a faithful data reconstruction in spite of the sparsity constraints.
Thus, our tests suggests that these hierarchical network models are not suited for the in-
verse problem associated with TFM.
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Figure 3.10: Test of all reconstruction methods using experimental data.
(a) Image of an adherent podocyte with substrate displacements shown as green
vectors. (b)-(h) Reconstructed traction forces using L2, L1, EN, BL2, PGL, PGEN
and ABL2, respectively. Reconstruction with L2-type regularization exhibits a
comparatively high background noise. L1-regulation shows very high, localized
traction. Based on tests with artificial data, we expect that these peaks
overestimate the traction. The EN method combines the advantages of L1 and
L2 regularization, namely a clean background and localized traction of
reasonable magnitude. PGL and PGEN have smooth traction forces at adhesion
and background. (g-h) The Bayesian methods BL2 and ABL2 yield very similar
results as the standard L2 regularization without requiring a search for the
optimal regularization parameters. For better visibility, only every fourth
traction vector is shown. Space bar: 25µm.

3.3.4 Test of methods with experimental data

To compare the performance of the different methods for real cells, we employ primary
mouse podocytes studied with a standard TFM setup. The deformation field resulting from
cellular traction is shown in Fig. 3.10 (a). Using this displacement data, we find that the
variance of the noise is ∼ 0.01 pix2 = 103.4 nm2 in regions that are far away from the cell.
The maximum displacement is 0.52µm. Fig. 3.10 (b)-(h) show reconstruction results using
all methods discussed above. As for artificial data, we find here that the EN regularization
results in a very clear background. The traction magnitudes and shapes of the traction spots
are similar to those resulting from regularization with the L2 method. For L1 regularization,
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traction localizes in sparse regions and has a significantly higher value than for other meth-
ods. Proximal gradient methods produce smooth traction profiles as expected from the use
of the soft wavelet thresholding. The magnitude of traction measured with PGL and PGEN
is close to the results of EN and L2.

Next, we considered the performance of the Bayesian methods. The logarithmic evidence,
Eq. (2.20), calculated with BL2 and ABL2 reveals pronounced maxima, allowing to robustly
choose the optimal parameters for the experimental data. See Fig. 3.9 (f) and (g). The re-
sulting values for λ̂2 are 30.4 Pa2/Pix2 and 24.4 Pa2/Pix2 for BL2 and ABL2, respectively,
and thus agree reasonably well with each other. For BL2, only a single maximum of the evi-
dence was found in all our tests. For ABL2, we found that further extrema may occur at the
boundary of the region of scanned parameters. Figures 3.10 (e), (h) show the traction fields
calculated with BL2 and ABL2. These traction fields are visually very similar to the one
obtained with standard L2 regularization. However, the L-curve criterion provides a much
more uncertain estimate of a regularization parameter due to the difficulty of localizing it
on a logarithmic scale, see Fig. 3.9 (a-e). Note that the regularization parameters obtained
from the L-curve criterion can not be directly compared to the parameters resulting from the
Bayesian methods due to standardization employed for the latter. Overall, the suggested
Bayesian models can eliminate ambiguity in TFM by automatically providing a consistent
parameter choice.
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Figure 3.11: L-curve selection regularization parameter for the data for analysis
of traction time sequences. (a) L-curve and GCV function for the classical L2
regularization. (b)-(c) L-curves for L1- and EN-regularization. (d)-(e) L-curves
for PGL and PGEN.

3.3.5 Bayesian regularization enables consistent analysis of traction time
sequences

TFM is frequently employed to study dynamic aspects of cell mechanics. Examples include
cell migration, cell division, or cytoskeletal reorganization in response to extracellular stim-
uli. Such processes are usually accompanied by a change in the traction distribution. As a re-
sult, the optimal regularization parameter varies among different images in a time sequence
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of microscopy data. Additionally, the regularization parameter can also change if the degree
of noise varies over time, which can be caused for example by stage drift or photo bleach-
ing. In such cases, it is very challenging to perform a consistent, frame-by frame analysis to
determine the degree of regularization with conventional methods. Thus, one fixed param-
eter is commonly employed for the whole time sequence whereby precision and accuracy of
traction reconstruction are sacrificed.
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Figure 3.12: Bayesian L2 regularization robustly adapts to different traction
levels allowing quantitative analysis of time series. (a) Image of a spontaneously
beating heart muscle cell on an elastic, micropatterned substrate. (b) Overall
norm of traction magnitude in successive image frames. The maximum
corresponds to one contraction of the heart muscle cell. Traction is calculated
with BL2 or, for comparison, via L2 regularization where λ2 is either selected
manually for every frame using the L-curve criterion or held constant
throughout the image sequence. (c) Optimal regularization parameter suggested
by BL2 and the norm displacement field correlate. (d-i)-(d-iii) Cell images with
displacement field at frames 1, 4, and 6. (e-i)-(e-iii) Snapshots of the traction
fields resulting from L2 regularization with a manually chosen parameter
λL-curve and a constant parameter λL-const. in an intermediate range.
(f-i)-(f-iii) Snapshots of the traction fields resulting from BL2. Note the different
scaling of displacement and tractions for the different frames. Frame 1 (I)
illustrates that BL2 yields a smaller traction magnitude than L2 in the presence
of large noise, where the L-curve criterion is hard to employ. As a result, BL2
allows to differentiate real traction from noise outside of the cell. For better
visibility, only every fourth traction vector is shown.
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To test whether our Bayesian methods can be useful in this situation, we employ TFM data
with a spontaneously beating cardiac myocyte, see Fig. 3.12. Due to the large size of the cell,
we focus on a region of interest shown in Fig. 3.12 (a). The analyzed time sequence corre-
sponds to one cell contraction. Snapshots from frames 1, 4, and 6 are shown for illustration.
Figure 3.12 (b) shows the overall norm of reconstructed traction where λ2 is either chosen
according to the L-curve criterion, held at an intermediate, constant value, or automatically
determined in BL2. The overall traction magnitudes are similar in frames 2–6 where traction
is high. Differences occur, however, in the low-traction regime, where BL2 systematically
yields lower values of traction. We expect that the results from BL2 are more trustworthy in
this regime since the L-curve criterion yields highly ambiguous values for the regularization
parameters, see Fig. 3.11. Figure 3.12 (c) shows the overall norm of the gel displacement
and the optimal regularization parameter estimated with BL2. The noise variance is small,
∼ 0.00003 pix2, in regions that are far away from the cell (pixel size 0.1µm). As expected,
λBL2 is inversely correlated with the displacement magnitude.

Figure 3.12 (e) shows snapshots of the resulting traction fields that illustrate again that BL2
produces slightly different results for low traction, most apparent in Fig. 3.12 (e) i, I and
Fig. 3.12 (f), i. Note that the traction field resulting from classical L2 regularization in
Fig. 3.12 (e), i, I shows a noise background outside of the cell that is almost comparable
to the real cellular traction. In contrast, BL2 suppresses this background at the price of an
apparently reduced spatial resolution as seen in Fig. 3.12 (f), i. However, this provides an
objective distinction between real signal and noise, which is what is to be expected from a
faithful data reconstruction.

3.4 Summary and discussion for Chapter 3

Many, if not all, TFM methods critically rely on some form of noise reduction. Usually,
traction is calculated from substrate displacement through the solution of a linear problem
involving elastic Green’s functions. Here, the effects of noise are not a technical issue re-
lating to the data precision, but connected directly to the structure of the linear problem
where even the slightest numerical noise can be amplified to an extent that the true solution
is entirely lost. The most immediate approach is to deal with noise is to filter the displace-
ment field prior to traction reconstruction. Filtering becomes possible if the solution is calcu-
lated in Fourier space because the convolution theorem simplifies the matrix inversion [155].
However, filtering the input data generally reduces the spatial resolution and optimal reso-
lution can only be gained if the filter is adapted for each sample. In certain cases, moreover,
data filtering is not sufficient to guarantee stability of the solution, for example, if the three-
dimensional position of displacements is included.

A popular alternative strategy for enforcing well-behaved solutions is regularization. With
regularization, Fourier-space inversion becomes more robust [37, 152]. However, regular-
ization is also used for real-space approaches and has been used in conjunction with finite
element methods or boundary element methods. Solving the linear problem in real space is
generally more demanding, but has the advantage that the spatial sparsity of traction pat-
terns is conserved. For TFM, two regularization methods have to date been used, namely L2
regularization [37, 136, 218] and L1 regularization [158, 159, 182]. These methods each have
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one regularization parameter that is chosen manually based on heuristics, which introduces
a considerable degree of subjectivity in the resulting traction.

In this work, we systematically compare the classical L1- and L2 regularization to three
other methods that have, to our knowledge, not yet been employed for TFM. These three
regularization methods are the Elastic Net (EN), Proximal Gradient Lasso (PGL) and Prox-
imal Gradient Elastic Net (PGEN). Our tests with artificial data clearly demonstrate that
EN regularization outperforms other regularization methods with regard to the reconstruc-
tion quality. Here, accurate traction reconstruction is due to a simultaneous suppression of
background noise and penalization of large traction magnitude. In contrast, the proximal
gradient methods PGL and PGEN are effective at producing a smoothed traction field, due
to the local removal of high-frequency spatial variations. These results obtained with arti-
ficial data agree qualitatively with results from tests with experimental data. Here too, L1
and L2 regularization yield overestimated or underestimated traction on adhesion sites. EN
again yields a clear background without producing excessively sharp traction peaks at adhe-
sions, see Fig. 3.10. PGL and PGEN yield smooth traction fields and rounded adhesion site
contours. While our work presents a comprehensive overview of regularization variants
in TFM, it does not cover all variants and solution procedures. For example, an Iterative
Reweighted Least Squares algorithm for L1 regularization outperforms in our experience
the L1 regularization method studied here, see Fig. 3.7. Also, it has been suggested to use
an L1 norm for both the residual and regularization term [159], and various other iterative
regularization procedures can be tested for TFM in the future.

Next, we ask if Bayesian methods can eliminate the necessity of a manual choice of regular-
ization parameters. Here, the corresponding parameter values are inferred by maximizing
their evidence given a fixed class of chosen probability distributions. Using the simplest ap-
proach, our prior assumption on the traction forces is that they are drawn from one global
Gaussian distribution with an unknown variance 1/α. The posterior distribution determin-
ing the probability of a particular traction field given a measured displacement field is then
determined by the parameter 1/α and a further parameter 1/β, quantifying the variance of
the measurement noise. For fixed values of α and β, maximization of the posterior distri-
bution corresponds exactly to L2 regularization with λ2 given by α/β. However, the values
of α and β can also be determined through maximizing their probability conditioned on a
given measurement and the chosen probability distributions. Here, this is equivalent to max-
imizing the evidence for u, given any two parameter values. We refer to the simultaneous
determination of both parameters from the evidence as advanced Bayesian L2 regulariza-
tion (ABL2). In an even simpler approach, we estimate the noise strength directly from the
displacement data, leaving only one parameter α to be determined by maximization of the
evidence; which we call Bayesian L2 regularization (BL2). These methods represent an auto-
matic optimization of the L2 regularization. Thus the resulting traction field has all the qual-
itative features of L2 regularization, including the suppression of exceedingly high traction
values and a visible background traction. For all our tests, we found that BL2 was a robust
method yielding reasonable estimates for traction and regularization parameters. Due to
the difficulty in choosing the correct regularization parameter manually, BL2 has substantial
advantages over the classical L2 procedure, in particular if the traction is so small that the
resulting displacements are comparable to the noise σn/σū ≈ 1.
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We mention that we have also tested more elaborate hierarchical Bayesian network algo-
rithms that were originally designed for other purposes than for use with TFM. These in-
clude a variational approach termed “Bayesian compressive sensing using Laplace priors”
(BCSL) [72], and Markov chain Monte Carlo methods, for instance the “Bayesian Lasso” [75].
In our experience, however, none of these methods could compete with the much simpler
Bayesian L2 regularization when applied to TFM problems, see the Appendix B Fig. B.6 to
Fig. B.9.

The advantage of employing Bayesian traction reconstruction is most apparent when cells in
different conditions are to be compared. To perform a correct comparison of situations with
different traction, different substrate rigidities, etc., it is technically necessary to adapt the
regularization parameter for each case. However, the difficulty of finding the corresponding
parameters usually makes this impossible, which introduces significant quantitative errors.
Bayesian methods present a possible solution to this problem. We have shown here that
BL2 produces a regularization that adapts smoothly and robustly to changes of cellular trac-
tion. Thus, we expect that this method can be of wide use for quantitative studies of cell
physiology.
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Chapter 4

Traction force calculations in
Fourier space

We have introduced the BEM approach to solve the TFM problem in Chapter 3. The BEM
is based on the idea of partitioning the whole surface of the substrate Ω into numbered el-
ements of small, non-overlapping subdomains. The forces on each discrete point can be
approximated by using a local shape function, e.g., a pyramidal shape function. The ad-
vantage of the BEM is that the formulas can be easily understood and implemented into a
numerical algorithm. However, it requires substantial computation (time) to integrate each
element. To overcome this weakness, a fast method called Fourier-transform traction cy-
tometry (FTTC) was introduced [37, 153, 155]. In FFTC, the integral Eq. (3.1) can be directly
solved by using the convolution theorem, see next section. Using FFTC, we also can obtain
a similar linear equation in Fourier space like Eq. (3.5) and thus, the calculation of traction
forces also becomes an inverse problem. In Ref. [37], the authors develop an approach which
utilizes L2 regularization to solve the inverse ill-posed problem in Fourier space. However,
these approaches require one to manually select the regularization parameter.

Virtually all standard methods for the calculation of traction forces require the implicit or
explicit choice of a parameter that suppresses noise and leaves as much of the true signal
conserved as possible. Within a Bayesian framework, this parameter choice can be rational-
ized by relating filter- or regularization parameters to prior distributions that represent prior
knowledge about the data. Maximizing the likelihood of the prior distributions yields the
corresponding optimal trade-off between noise suppression and faithful data reconstruction.
Bayesian regularization has been used for example in astrophysics [78, 210] and mechanical
structure monitoring [227]. For inference of internal stress in a cell monolayer, an interative
maximum a posteriori estimation has been employed [228]. Bayesian L2 regularization was
first employed for real-space TFM methods in Chapter 3 since this variant allows comparison
of a broad variety of approaches. For practical applications, however, calculations in Fourier
domain have significant advantages in terms of robustness and speed. In this chapter, we
present the corresponding method that we term Bayesian Fourier transform traction cytome-
try (BFTTC). We compare BFTTC with other methods such as classical L2 regularization,
Bayesian L2 regularization in real-space (BL2), and regularized Fourier transform traction
cytometry (FTTC). We find that BTTC is a computationally fast method that provides robust
traction calculations without requiring manual adjustment of the noise-suppression level.
We also provide a Matlab software package for BFTTC that is freely available for download.
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This software package is intended to provide a simple and robust solution for data analy-
sis in the hands of experimentalists. A graphical user interface allows intuitive use of the
program and little theoretical background knowledge is required.

4.1 Methods and software

4.1.1 Fourier-transform traction cytometry (FTTC)

In Chapter 3, the integral equation Eq. (3.1) was solved through numerical discretization in
real space. Alternatively, Eq. (3.1) can be solved in Fourier space. We employ a spatial wave
vector k = (k1, k2) with absolute value k = |k|. In standard FTTC, the integral Eq. (3.1) is
written as

ũik =

{∑
j

G̃ij f̃j

}
k

. (4.1)

where the tilde denotes the Fourier-transformed quantity. The Fourier-transformed Green
function G̃ijk is written as

G̃ijk =
2(1 + ν)

E

(
δij
k
− νkikj

k3

)
, (4.2)

where E and ν represent the Young modulus and Poisson ratio, respectively. δij is the Kro-
necker delta function. This equation is also given in Eq. (3.6).

Using a matrix formulation analogous to the real-space expression, we have ũ = M̃f̃ with
M̃ having a tri-diagonal structure. For conceptual clarity, in the following we will write the
measurement noise in the recorded displacement explicitly as s in the real-space domain
and as s̃ in Fourier space. This noise can be estimated in the experiment by quantifying the
variance of the measured displacements in absence of traction. The discretetized equations
then read u = Mf + s in real space,

ũ = M̃f̃ + s̃ in Fourier space.
(4.3)

The continuous traction and displacement fields are discretized by rectangular meshes where
m and n are the number of discretization nodes for tractions and displacements respectively.
In these discretized equations in Eq. (4.3), the size of the displacement vector u is 2m×1 and
size of the traction vector f is 2n × 1 where the two vector components of the planar fields
are concatenated. For the Fourier space methods, the displacement and traction fields are
discretized with the same grid and we then have m = n.

For traction force microscopy, either of these equations is employed to determine the trac-
tions f . The removal of noise is critical in most TFM methods. In real-space calculations,
the condition number of M, defined as the ratio of the largest singular value to the smallest,
is almost always much larger than unity, typically above 105. M is therefore ill-conditioned
which implies that small noise produces drastic changes in the calculated traction forces. For
FTTC, spatially varying random noise occurs mainly at high spatial wave numbers. Hence,
noise suppression can be achieved by suppressing high frequency data. In Chapter 3, we
systematically tested a variety of traction reconstruction approaches based on Eq. (4.3). The
standard approach for solving the equation in real space is L2 regularization [37, 141, 153,
229], which invokes a penalty on the traction magnitude to robustly suppress the effects
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Figure 4.1: Schematic of traction force microscopy (TFM) to measure cellular
traction on flat elastic substrates. Adherent cells deform the substrate and the
displacement field u is obtained by tracking markers within the gel. The traction
force field f generated by the cell is calculated by inverting a linear equation
system.

of noise. With Fourier space methods, a low-pass filter is frequently employed to sup-
press noise in the displacement field before direct inversion of Eq. (4.3) [155]. Alternatively,
Fourier-space traction reconstruction can also be combined with L2 regularization, which
conveys additional robustness [37, 136, 218, 230].

4.1.2 L2 regularization for Fourier-transform traction cytometry

The classical approach to solve Eq. (4.3) is L2 regularization, which is also called Tikhonov
regularization or ridge regression. L2 regularization is a robust procedure that suppresses
noise and produces a smoothed traction field [200]. Here, the residual ‖u−Mf‖22 = (Mf −
u)T(Mf −u) is minimized together with the solution norm λ2‖f‖22 = λ2f

Tf . The factor λ2 is
called regularization parameter. The reconstructed traction f̂ satisfies

f̂ = argmin
f

[
‖Mf − u‖22 + λ2‖f‖22

]
. (4.4)

This approach can be employed for real-space TFM and in Fourier space, where the square
norms can be calculated conveniently with Parseval’s theorem. The proper choice of the
regularization parameter λ2 is critical in case accurate traction calculations are required. A
popular heuristic for choosing the regularization parameter is based on a double-logarithmic
plot of the solution residual vs. the traction norm for varying λ2. Often, the plotted line re-
sembles an “L” shape and the regularization parameter is chosen to lie in the corner of this
curve, thus providing a trade-off between faithful reconstruction and smoothing [62]. How-
ever, this “L-curve criterion” is often of little use, in particular when the corner is either
absent or can not be localized precisely on the double-logarithmic scale. Moreover, it has
also been shown that the L-curve criterion can fail systematically [206]. Thus, the L-curve
criterion is often complemented with other methods for finding the regularization parame-
ter, such as cross-validation [200]. In any case, a manual parameter variation is mandatory
to check the validity of the solution.

The Fourier traction forces in Eq. (4.3) can also be solved by using a similar L2 regularization
method in real space [37, 136]. The integral Eq. (3.1) with the L2 regularization scheme is
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written to be a corresponding variational equation in real space [37]:∫∫ [∑
l,j

Gli(x,x
′′)Glj(x

′′,x′)fj(x
′)−

∑
j

Gji(x,x
′′)uj(x

′′)

]
dx′′dx′

+λ2

∫ ∑
j

Hji(x,x
′)fj(x

′)dx′ = 0,

where Hji is the square of R2 introduced in Chapter 2. This equation can now be trans-
formed into Fourier space and solved there:

f̃ik =

{∑
l,j

[∑
m

G̃mlG̃mi + λ2H̃il

]−1

G̃jlũj

}
. (4.5)

For the regularization kernel H̃il, we choose the identity matrix (0th order regularization).
The whole expression on the right-hand side of Eq. (4.5) can, like in the former method
L2 regularization in real space, be calculated at once, making the regularized method only
marginally slower. The final step is, like above, the inverse Fourier transformation. Thus,
this is a complete L2 regularization method for Fourier-transform traction cytometry.

4.1.3 Bayesian Fourier transform traction cytometry

Bayesian methods can be used to regularize data in a systematic and automated way. Our
approach is based on an established iterative inference procedure [68]. In the first step, a
model is fitted to the data. In the second step, the evidence for the chosen model is calcu-
lated. Traction computations with Bayesian L2 regularization (BL2) were first introduced
as a real-space approach in Ref. [200]. Here we describe the adaptation of this method to
Fourier-space traction calculation. It is assumed that the noise s in Eq. (4.3) has a Gaussian
distribution with vanishing mean and a variance of 1/β . Therefore, given a traction vector
f , the likelihood of measuring a particular 2m× 1 displacement vector u is

p(u|f , β) =
exp[−βEu]

Zu
=

exp[−β(Mf − u)T(Mf − u)/2]

Zu
, (4.6)

where Zu = (2π/β)m. As a prior distribution for the 2n × 1 vector of traction forces f we
choose a Gaussian distribution with variance 1/α as

p(f |α) =
exp[−αEf]

Zf
=

exp[−αfTf/2]

Zf
, (4.7)

where Zf = (2π/α)n. According to Bayes’ rule, the posterior distribution of f is given by

p(f |u, α, β) =
p(u|f , β)p(f |α)

p(u|α, β)
=

exp[−K(f)]

p(u|α, β)ZuZf
, (4.8)

where K(f) = βEu + αEf and p(u|α, β) =
∫

d2nf exp[−K(f)]/(ZuZf). To find the traction
vector with the highest posterior probability, we maximize p(f |u, α, β) with respect to f .
The calculation yields fMP = argmin

f

[
β‖Mf − u‖22/2 + α‖f‖22/2

]
, which is equivalent to our

formula for L2 regularization in real space, when λ2 = α/β [136].

Next, the values of the hyperparameters α and β have to be determined. In principle, both
values can be found by maximizing the evidence p(α, β|u) that depends on the measured
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displacements u. However, the noise variance 1/β can also be estimated directly from the
measurement uncertainty. Thereby, the maximization of p(α, β|u) can be reduced to a ro-
bust one-dimensional search for the optimal value of α. Bayes’ law yields p(α, β|u) =

p(u|α, β)p(α, β)/p(u). We next assume a uniform prior p(α, β) ' const. and note that ev-
idence p(u) does not play a role for the optimization. Thus, we only need to maximize
p(u|α, β) ∼

∫
d2nf exp[−K(f)] with respect to α. The integral can be analytically calculated

by completing the square. On defining A = αI + βMTM one finds

p(u|α, β) =

∫
d2nf exp[−K(f)]

ZuZf
=

(2π)n(det A)−1/2

ZuZf
exp[−K(fMP)]. (4.9)

Since fMP and A both depend on α, the maximization of Eq. (4.9) with respect to α needs to
be done iteratively. This iteration can be sped up by performing the calculations in Fourier
space. For notational clarity, we will write Fourier-space variables and derived quantities
with a tilde. The Fourier-transformation of fMP yields f̃MP = (M̃†M̃ + α/βI)−1M̃†ũ [37],
where the complex transpose is indicated by a †. Parseval’s theorem allows convenient
expression of Eq. (4.9) through Fourier-space variables. We have Ẽu = (M̃f̃ − ũ)†(M̃f̃ −
ũ)/(2m), Ẽf = f†f/(2n), and Ã = αI/n+ βM̃†M̃/m. Using these expressions, the logarithm
of the evidence, cf. Eq. (4.9), can be written as

log p(ũ|α, β) = −βẼu(f̃MP)−αẼf(f̃MP)− 1

2
log(det Ã) +n logα+m log β−m log(2π). (4.10)

This expression is evaluated numerically. The calculation of log(det Ã) is done by a Cholesky
decomposition of the positive matrix Ã = LLT as the form log(det(LLT)) = 2 log ΠiLii =

2Σi log(Lii) [200]. To determine the value of α = α̂ that maximizes log p(ũ|α, β) we employ
a golden-section search. Finally, the L2 regularization parameter follows as λ̂2 = α̂/β.

The calculation of the parameter value λ̂2 requires a well-defined maximum of the loga-
rithmic evidence as a function of α. To assess whether this maximum exists, we investi-
gate the condition d

dα log p(ũ|α, β) = 0. For evaluation of the derivatives of Ẽu(f̃MP) and
Ẽf(f̃MP) we use that n = m and that M̃ commutes with (M̃†M̃ + α/βI)−1 since the Fourier-
transformed Green’s function is a real, symmetric matrix. A straight forward calculation
yields d

dα Ẽu(f̃MP) = −λ d
dα Ẽf(f̃MP). Therefore, the condition determining the maximum be-

comes 0 = d
dα log p(ũ|α, β) = −Ẽf(f̃MP)− 1

2nTr[Ã−1] + n
α . We next perform a symbolic eigen-

value decomposition of M̃ and denote the eigenvalues by {mi}, the matrix of eigenvectors
by VT , and define ûi = Vij ũj . The condition determining the maximum of the logarithmic
evidence then reads

1

2n

2n∑
i=1

βû†i ûim
2
i

(m2
i + λ2)2

=
1

2

2n∑
i=1

m2
i

λ2(m2
i + λ2)

. (4.11)

Solutions exist if the functions of λ2 on the left hand side and on the right hand side of
Eq. (4.11) cross each other. Both functions decrease monotonously with λ2. However, for
λ2 → 0 the left hand side remains finite while the right hand side diverges. Thus, Eq. (4.11)
has a real solution if the left hand side becomes bigger than the right hand side for any
λ2 ≥ 0. In the limit of λ2 → ∞, the condition for the occurrence of a maximum becomes
1
n

∑2n
i=1 βû

†
i ûim

2
i /
(∑2n

j=1m
2
j

)
≥ 1. For the TFM data, we find that the values of û†i ûi roughly
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decrease with decreasing squared eigenvalues m2
i since the displacement magnitudes typ-

ically decrease with higher Fourier modes, as do the entries of M̃. Assuming that the ap-
proximate ordering of m2

i and û†i ûi holds strictly, we can invoke Chebyshev’s sum inequal-
ity to obtain 1

n

∑2n
i=1 βû

†
i ûim

2
i /
(∑2n

j=1m
2
j

)
≥ 1

n2

∑n
i=1 βû

†
i ûi. Since for all reasonable TFM

datasets the mean squared displacement is larger than the noise variance, we expect that
1
n2

∑n
i=1 βû

†
i ûi = 2β

n

∑n
i=1 u

2
i > 1. Therefore, the condition for the occurrence of a maximum

in log p(ũ|α, β) should be fulfilled for some λ2 > 0. The resulting maximum is unique. In
summary, a semi-quantitative argument supports the existence of a maximum of the loga-
rithmic evidence log p(ũ|α, β) when appropriate TFM data is used. In our tests, a unique
maximum was found for all datasets.

4.1.4 Software for traction force calculation

We provide a Matlab software package containing the presented Fourier-space methods for
calculating traction forces. Note that the program requires the input of substrate displace-
ments. Usually, these are quantified by measuring the lateral displacements of fluorescent
marker beads in a stressed substrate with respect to the marker positions recorded in a stress-
free state. The standard computational image analysis method for this task is called particle
image velocimetry (PIV) and various well-established software packages are available [231–
233]. Once the displacement data has been extracted, our program can be used to calcu-
late the traction forces with standard L2 regularization or with Bayesian L2 regularization
in Fourier space. The software is split into a routine for loading data and two routines for
TFM. The routine “get input data" allows the user to select folders containing the data for
the measured displacements, the noise, and for images. The required data structure in the
file with the displacement data is illustrated in Fig. 4.2 (a). Parameters of the experimental
setup, including the Young modulus and the Poisson ratio, also need to be provided. Next,
the user can choose between “Regularization" and “Bayesian regularization", as shown in
Fig. 4.2 (b) and (c). Selecting “Regularization" allows the choice of a regularization parame-
ter, which is then held fixed for the whole sequence of images that are analyzed in the data
set. For “Bayesian regularization", an optimal regularization parameter is selected automati-
cally from the data set and the noise variance. The standard deviation of the noise can either
be provided as an input or can be determined by manually selecting an image region that is
far away from the cell, as illustrated in Fig. 4.2 (c). Once selected, the region used for deter-
mining the noise remains the same throughout the whole data set of multiple images. After
pressing “Analyze sequence” the results are calculated and saved in automatically named
files, see Fig. 4.2 (c). Since the regularization parameter λ2 depends in our framework on the
noise and the traction magnitudes, it should be adapted if the signal-to-noise level changes
significantly. However, note that a change of the parameter within one image sequence is
not always necessary, which reduces the computational effort and may be advantageous for
data postprocessing.

The TFM software is a collection of MATLAB functions that are called via intuitive menus
in a graphical user interface. Fig. 4.3 illustrates the purpose of the TFM software, namely to
calculate spatial maps of the cellular traction forces from measured substrate displacements.
The calculations can be done either with Regularized Fourier transform traction cytome-
try [37] or with Bayesian Fourier transform traction cytometry [200]. The difference between
the two methods is that data smoothing is either done manually or automatically:
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input_data.mat

.noise(i) .displacement(i)

.vec

.pos
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Results 

Manual selection 

Two methods for reconstruction 

Automatic 
selection 

Regularizationc

b Bayesian regularization

Get input dataa

Manual noise selection

Structure of input data

Figure 4.2: Graphical user interface of the provided software for regularized
FTTC and BFTTC. (a) The “get data” interface allows users to input data
locations and parameters of experimental setup. The data structure of the input
files can handle a whole video sequence or individual traction recordings. (b) If
the “Regularization” option is chosen, a regularization parameter in units of
Pix2 must be provided by the user. (c) If the option “Bayesian regularization” is
chosen, the regularization parameter is automatically determined from the
measured displacement data and its noise variance. A sample with
displacement noise can either be provided with the input file or it can be
determined from a manually selected region that is far away from the cell. A
“Preview” button offers the possibility to visually inspect the solution before
one presses “Analyze sequence” to calculate and save the results.

• Regularization→manual selection of a regularization parameter.

• Bayesian Regularization→ automatic selection of a regularization parameter.

To calculate the traction forces, the following experimental data must be provided: (1) A list
of two-dimensional substrate displacements [pixel]. The displacements can be measured,
e.g., by tracking the motion of fluorescent marker beads in the substrate. (2) Optionally a
sequence cell images in .tif or .jpg format corresponding to the time points at which the
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displacements were measured.

Displacements and cell Software Traction forces

Time sequence Time sequence

Regularization

regularization
Bayesian

Figure 4.3: The software provides two methods to calculate cellular traction
forces from experimental data. The software provides the regularization (FTTC)
and Bayesian regularization (BFTTC) two approaches in Fourier space. The
software can analysis the time sequence of displacements and calculated the
time sequence traction force field.

This software runs in a MATLAB environment. Therefore, you need two requirements: a re-
cent copy of MATLAB (https://ch.mathworks.com/), as well as the Image Processing Tool-
box (https://ch.mathworks.com/products/image.html). The package has been developed
with MATLAB R2017b and should work for versions R2010b and above. It can be run on
Windows, Linux, and Macintosh OS X operating systems. The TFM software is freely avail-
able for download at GitHub: https://github.com/CellMicroMechanics.

4.2 Generation of synthetic test data and reconstruction qual-

ity measures

4.2.1 Generation of synthetic test data

To confirm that the Bayesian approach yields a correct estimate for the regularization pa-
rameter we employ synthetic data sets with known properties. In our first test series, we
generate random traction fields by drawing individual traction vectors from Gaussian dis-
tributions with fixed variances, as illustrated in Fig. 4.4 (a-i) and (a-ii). The traction field is
produced on a 50 × 50 grid with a Young modulus of E = 10 kPa and a Poisson ratio of
ν = 0.3. For example, we employ a Gaussian traction distribution with a variance of 104 Pa2

and therefore α = 10−4 Pa−2. After calculation of the displacements from the traction, Gaus-
sian noise with a variance of 10−4 Pix2 is added, thus β = 104 Pix−2.

In the second test series, we construct synthetic data to study the reconstruction quality for
localized traction patterns. As in previous work [37, 200], we assume that the traction is
localized in circular spots, each having a constant traction magnitude. For every individual
spot, the step-like traction profile can be integrated analytically to produce a displacement
field. Due to the linearity of the problem, displacements from different spots can be added
to produce the final result. Explicit formulas for the displacement field are provided in
the supplementary of Ref. [200]. For generation of this data, we fix the Young modulus
E = 10 kPa and the Poisson ratio ν = 0.3. The traction patterns consist of 10 − 20 circular
traction spots, as illustrated in Fig. 4.5 (a). The diameter of the spots is 2µm and the mesh
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size of the reconstructed traction is 0.5µm. The traction force magnitude in the spots is
randomly chosen in the range [0 − 700] Pa and the sum of the x- and y components of the
traction forces vanishes. To simulate the measurement uncertainty, Gaussian noise is added
after calculation of the displacement field. The noise variance in the different samples is
between 2% and 8% of the maximum absolute displacement value.

4.2.2 Reconstruction quality measures

For the synthetic test data with circular spots the traction force is exactly known. Therefore,
we can qualitatively calculate the reconstruction errors. Here, we use four different error
measures introduced and defined in Chapter 3. To provide simple definitions of the error
measures, we rewrite the 2m× 1 traction vector f as a m× 2 traction vector with the values
t = {tx, ty} at every grid node. Real traction and reconstructed traction are denoted by ttrue

and trecon, respectively. Here, we only provide a simple explanation of each quality measure
and the detail definitions can be found in Eq. (3.14 - 3.17) in Chapter 3.

• The Deviation of Traction Magnitude at Adhesions (DTMA) lies between −1 and 1

where 0 indicates a perfect average traction recovery and a negative or positive value
implies underestimation or overestimation, respectively.

• The Deviation of Traction Magnitude in the Background (DTMB) is the normalized
difference between the reconstructed and real traction magnitude outside the circular
patches. The DTMB lies in the range [0, 1] and a value close to 0 indicates low back-
ground noise in the reconstructed traction.

• The Signal to Noise Ratio (SNR) measures the detectability of a real signal within a
noisy background. Its value ranges from 0 to infinity where a SNR that is much larger
than unity indicates a good separation between traction and noise.

• The Deviation of the traction Maximum at Adhesions (DMA) measures how peak val-
ues of the traction over- or underestimate the true value. A DMA of 0 indicates that the
local traction maxima in the reconstruction and in the original data are equal. Positive
or negative values of the DMA imply that the maximum of traction is overestimated
or underestimated.

4.3 Results

4.3.1 Validation of the method with synthetic data

To check whether the proposed method actually finds the correct regularization parameter,
synthetic data sets with exactly known underlying distributions are required. Therefore, we
create random traction patters with traction vectors at each grid point drawn from a Gaus-
sian distribution. Exemplary data is shown in Fig. 4.4 (a-i). The calculated displacement
field is then corrupted with a controlled level of noise, see Fig. 4.4 (a-ii). For the recon-
struction, we search for the hyperparameter α that maximizes the log-evidence function,
Eq. (4.10). As illustrated in Fig. 4.4 (a-iii), log p(u|α, β) has a unique, clear maximum. The
regularization parameter determined from the optimization compares favorably with the
true optimal parameter resulting from the distributions used for simulating the data, here
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λ̂2 = 9.3 × 10−9 Pix2/Pa2 ' α/β = 10−8 Pix2/Pa2. Visual comparison of the traction pat-
terns in Figs 4.4 (a-i,a-iv), as well as a comparison of the traction distributions in Fig. 4.4 (b),
confirm that the Bayesian traction reconstruction yields correct results.
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Figure 4.4: Validation of the Bayesian method for regularization parameter
choice. (a,i) Traction force vectors, discretized on a quadratic mesh, are
randomly chosen from a Gaussian distribution with fixed variance σ2

f . Space
bar: 100 Pix = 10 grid spacings on a 50× 50 mesh. (a-ii) Using the prescribed
traction as input, a displacement field is calculated and Gaussian noise with a
variance σ2

noise is added. (a-iii) The regularization parameter is determined by
localizing the maximum in the log evidence curve and traction forces are
subsequently calculated. (b) Histogram of the tractions for the sample shown in
(a). In the limit of weak noise, the histogram of the reconstructed traction
matches the true traction distribution. (c) Relative difference between the
standard deviation of the measured traction distribution σBFTTC

f and the width of
true traction distribution σtrue

f . The grid mesh sizes are denoted by dx. σ2
u is the

variance of the synthetic displacement data prior to corruption with noise.
Increasing the noise level produces a measured (posterior) traction distribution
that no longer agrees with the true traction distribution. (d) Mean error of the
reconstructed traction as a function of the relative measurement uncertainty
σnoise/σu. The Bayesian estimate for the regularization parameter λ̂2 and the
optimal regularization parameter α/β produce comparable errors for all noise
levels.

Note that the measured (posterior) traction distribution does not agree with the original trac-
tion distribution when the noise magnitude is large. This fact corresponds to a deviation of
the posterior Eq. (4.8) from the prior probability distribution. In Fig. 4.4 (c), we illustrate the
difference between the measured traction distribution and the original traction distribution
for the synthetic data. The relative difference of the traction standard deviations is plot-
ted against the variance of the noise-free displacement field divided by the noise variance,
σ2

u/σ
2
noise. The relative difference of the standard deviation of the measured posterior and the
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original traction distribution scales with the relative noise variance. Figure 4.4 (d) illustrates
how the measurement uncertainty affects the mean traction error. For the experimentally
relevant regime of measurement uncertainties, 0.01 & σnoise/σu & 0.1, the relative mean
traction error is almost proportional to the relative measurement uncertainty σnoise/σu. For
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Figure 4.5: Reconstruction quality of BFTTC compared to other regularization
methods. (a) Synthetic traction force pattern that is used for testing the
reconstruction. Space bar: 5µm. (b) Tabulated overview of the compared
traction reconstruction methods. (c) Classical traction reconstruction in real
space with L2 regularization. The L-curve shows a slight “corner”, which is
used to determine the value of the regularization parameter. Note that
calculations in real space are done with standardized data [200], which renders
the regularization parameter dimensionless. (d) Bayesian L2 regularization
(BL2) in real space determines the regularization parameter value automatically.
The automatically determined regularization parameter is close to the one
predicted in (c) from the L-curve. (e) Classical, regularized Fourier transform
traction cytometry (FTTC). The L-curve does not show a “corner”, which makes
it difficult to determine an appropriate regularization parameter. (f) Bayesian
Fourier transform traction cytometry (BFTTC) determines an optimal
regularization parameter automatically. (g) Comparison of the reconstruction
quality measures in 8 synthetic data sets; error bars are the standard deviations
of the samples. The reconstruction accuracy of all four methods is found to be
similar.
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very low measurement noise, the mean traction error is dominated by numerical inaccuracy
and aliasing effects. Note that the Bayesian estimate for the regularization parameters λ̂2

produces errors that are close to the optimal errors resulting from regularization with the
known parameters α/β for synthetic data.

4.3.2 Quality assessment of traction reconstruction with BFTTC

To quantify the reconstruction quality for localized traction patterns, we construct synthetic
data consisting of circular spots of constant traction as shown in Fig. 4.6 (a). We employ two
classical methods where the regularization parameter value is selected by the L-curve crite-
rion, namely a real space calculation with L2 regularization and regularized Fourier trans-
form traction cytometry (FTTC). The results are compared with the corresponding parameter-
free approaches, namely Bayesian L2 regularization (BL2) in the real-space domain and
Bayesian Fourier transform traction cytometry (BFTTC), see Fig. 4.5 (b). For the real-space
TFM results shown exemplarily in Fig. 4.5 (c), the L-curve can have a visible corner. Note
that the calculations in real space are done with standardized data [200], which renders the
regularization parameter dimensionless. For the Bayesian real-space approach, illustrated in
Fig. 4.5 (e), the logarithmic evidence always exhibits a clear maximum in our experience. The
resulting optimal regularization parameter is usually close to the value from the L-curve cri-
terion. However, in the Fourier-space approach, illustrated with the example in Fig. 4.5 (d),
the L-curve often does not show a clear corner and it becomes challenging to select an appro-
priate regularization parameter. This weakness of the Fourier-space approach is overcome
with BFTTC. As illustrated in Fig. 4.5 (f), the logarithmic evidence calculated in BFTTC has
a pronounced maximum, which provides a clear criterion for the automated choice of the
optimal regularization parameter.

Table 4.1: Computation time for different methods

Reconstruction method L2 BL2 FTTC BFTTC
Building of M or M̃ 23.3 h 0.07 s

Traction reconstruction 67.4 s 338.8 s 0.06 s 3.1 s
The employed data set consists of a rectangular grid with 2500 displacement and traction
vectors. Benchmark tests were done on a desktop computer equipped with 16 GB RAM
and an Intel I5-7500 CPU (3.40 GHz).

To generate statistics on the performance of the different methods, we next record the trac-
tion reconstruction quality in 8 separate tests with different traction magnitudes and pat-
terns. The resulting error norms show that all four methods offer similar traction recon-
struction accuracies, see Figs. 4.5 (e) (i-iv). The most noticeable reconstruction errors are an
underestimation of mean traction (negative DTMA) and a pronounced traction background
(positive DTMB) [200]. The similarity in reconstruction accuracy is expected because all
methods are based on L2 regularization and also make use of the same spatial grid for dis-
cretization. However, the numerical effort required for the four methods is very different.
Table 4.1 summarizes the computation time required for building the coefficient matrices M

or M̃ and for reconstructing the traction forces. While M̃ is rapidly built in Fourier space,
the assembly of a large coefficient matrix M in real space requires can require many hours.
Inferring the optimal regularization parameter requires additional computation time. Over-
all, real-space methods are not prohibitively slow but quite impractical for every-day use
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by experimental scientists. BFTTC, however, requires acceptable computation times ranging
from seconds to a few minutes.
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Figure 4.6: Test of Bayesian Fourier transform traction cytometry (BFTTC) using
experimental data. (a,i-ii) Image of an adherent cell and the measured gel
displacements. Only every 7-th displacement is shown for better visibility. The
cell edge is outlined in white. (b) Results from traction calculation with BFTTC.
(b,i) A plot of the logarithmic evidence reveals a clear maximum, which serves
to determine the regularization parameter. (b,i-ii) Calculated traction forces.
(c) Results from traction calculation with the real-space method BL2 for
comparison with BFTTC. While the two methods produce similar results,
traction fields calculated with BFTTC are slightly smoother than the fields
calculated with the real-space method due to the different discretizations.

4.3.3 Application of BFTTC to experimental data

To provide an application example for BFTTC, we quantified the traction forces generated
by a NIH 3T3 fibroblast on a polyacrylamide gel substrate. The experiments were done pre-
cisely as described in Ref. [136]. The gel substrate had a Young’s modulus ofE = 32 kPa and
a Poisson’s ratio of ν = 0.48. Figure 4.6 (a) shows the cell outline and an image of the fluores-
cent nanobeads that are embedded in the substrate. After recording images of the cell and
the nanobeads, the cell was removed from the substrate to provide a stress-free reference for
tracking the motion of the nanobeads. For visualization of the force-generating structures,
the cell-substrate adhesions were labeled with GFP-paxillin. Focal substrate adhesions can
be seen in Fig. 4.6 (b) as bright red spots. We estimate the variance of the noise in the dis-
placement data by quantifying the displacement variance in a small region that is very far
away from the cell and contains no systematic displacement. Plotting the logarithmic ev-
idence as a function of α yields a curve with a clearly defined maximum, see Fig. 4.6 (c),
which results in an unambiguous selection of the regularization parameter. Regularization
with the thus chosen parameter produces a traction map with defined foci that co-localize
with the GFP-labeled sites of focal adhesion, see Fig. 4.6 (d).
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4.4 Summary and discussion for Chapter 4

Traction force microscopy is a popular technique for studying minute forces generated by
biological cells, as well as wetting or frictional forces, on soft substrates. The technique is
based on the measurement of substrate displacements below the specimen, which allows
calculation of the traction forces. Usually, this calculation is done by solving an inverse lin-
ear problem involving elastic Green’s functions. The procedure requires methods for noise
suppression. Dealing with noise appropriately is an essential issue since the linear system
can be ill-conditioned, which means that the noise can become amplified to an extent that the
true solution is entirely degraded. A simple way to remove the effects of noise is to filter the
displacement field prior to traction reconstruction. This strategy usually works if the linear
problem is solved in Fourier space because the resulting linear system is sparse. An alter-
native strategy for dealing with noise is regularization, most popular is L2 regularization.
With L2 regularization, spatial high-frequency variations in the data are suppressed, which
leads to a robust solution of the inverse problem of calculating the traction. Regularization is
more versatile than data filtering since it can deal with higher levels of noise, works both in
real-space and Fourier-space approaches, and ensures robust reconstruction if non-standard
Green’s functions are employed, for example to take into account three-dimensional sub-
strate topography and tractions. Regardless of the method, suppression of noise always
reduces the spatial resolution. Optimal resolution of the fine details of the traction field can
only be gained if the level of noise suppression is adapted for each sample. For L2 regular-
ization, this adaptation is done by changing the regularization parameter, which is usually a
manual process based on heuristics, which introduces a considerable degree of subjectivity
in the resulting traction.

Here, we have introduced a Bayesian method for automatic inference of the L2 regulariza-
tion parameter for traction reconstruction in Fourier space. Using synthetic data of differ-
ent type, we demonstrate that Bayesian Fourier transform traction cytometry (BFTTC) is a
fast and reliable method. Our tests show that BFTTC can handle large measurement noise.
However, the noise- and displacement variances ideally satisfy σ2

noise/σ
2
u . 0.01 for accurate

traction reconstruction. While the quality of traction reconstruction with BFTTC is compara-
ble to other methods based on L2 regularization, the choice of the regularization parameter
is now automated. Heuristics like the L-curve criterion, which is particularly ambiguous
in Fourier space, are no longer required. The additional computation time required for de-
termining the optimal regularization parameter in BFTTC is only a few seconds to minutes
for large data sets. In our experience, the logarithmic evidence always exhibits a maximum
that is sufficiently pronounced to yield a regularization parameter estimate. However, it
is important to keep in mind that the algorithm is based on the assumption of a Gaussian
prior distribution that is symmetric around the origin. Thus, the use of BFTTC is not rec-
ommended if the traction forces in the field of view do not balance each other. Moreover, if
complex, non-Gaussian traction distributions, e.g., multi-modal distributions, are expected,
it may be preferable to resort to Bayesian methods with prior distributions taylored to the
specific problem in order to maximize the reconstruction quality.

To provide users from biology, physics, and materials sciences with an easy-to-use tool to
analyze their TFM data, we implemented BFTTC as well as regularized FTTC as a Mat-
lab package. The package comes with a user-friendly graphical interface, requires minimal
knowledge of the algorithmic details, and is freely available [234].
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Chapter 5

Data-driven, automated discovery
of differential equations for
physical processes

In this thesis, we mainly develop approaches to solve the inverse- or ill-posed inverse prob-
lem for two applications. In Chapters 3 and 4, we have focused on Traction Force Microscopy
as an application of solution strategies for ill-posed, inverse problems. In this Chapter, we
focus on another application for a problem with a similar mathematical structure, namely
data-driven discovery of equations from measurement data.

We consider ordinary-, partial-, and stochastic differential equations describing physical
processes. Classically, these equations can often be derived from first principles, for in-
stance, conservation of mass, energy and momentum, and thermodynamic considerations.
However, in complex systems as they occur for example in biophysics, climate science, and
neuroscience, first principles determining the system behavior are hardly known since the
systems are typically not close to equilibrium, processes can be highly nonlinear, and the
dynamics can occur on multiple scales. In these cases, one can resort to phenomenological,
effective descriptions that may include some level of coarse graining and are based on ex-
perimental data. Recently, increased computational power has made it possible to construct
such models in an automated fashion, which is known as data driven discovery of governing
equations.

5.1 Model setup and solution strategies

5.1.1 Inference of ordinary and partial differential equations from data

We assume a given set of measurement data that is recorded as a time-series, for example,
a time-series of positions. In a data-driven approach to modeling such systems, we rely on
the measurement data to automatically infer the a priori unknown equations that govern
the observed process. In this thesis, inference is based on libraries of possible equations,
which can include linear, nonlinear, and partial derivative terms. The simplest examples
are ordinary differential equations (ODEs). To discover ODEs, we assume that we have a
n-dimensional measurement data Z = [z1, z2, . . . , zn] ∈ Rn which is recorded at different
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times t1, . . . , tm. Thus, this data can be written in a matrix form

z = [z1, z2, . . . , zn] =

ti
m

e

y

state−−−−−−−−−−−−−−−−−−−−−−−−−→
z1(t1) z2(t1) · · · zn(t1)

z1(t2) z2(t2) · · · zn(t2)
...

...
. . .

...
z1(tm) z2(tm) · · · zn(tm)

 .

Using the finite difference approximation, the time derivative of the measurement data is
written as

ż = [ż1, ż2, . . . , żn] =
ti

m
e

y

state−−−−−−−−−−−−−−−−−−−−−−−−−→
ż1(t1) ż2(t1) · · · żn(t1)

ż1(t2) ż2(t2) · · · żn(t2)
...

...
. . .

...
ż1(tm) ż2(tm) · · · żn(tm)

 ,
An ODE for each state at different times, e.g., z1, may be written as

ż1 = f(z1, z2
1, z1z2, · · · , sin(z1), cos(z1), sin(z1z2), · · · , c).

where c represents a constant parameter. In the above equation, the left-hand side ż1 is
known and the right-hand side f(·) can be written as a library matrix Θ(z) multiplied with
a sparse vector w1. Thus, we obtain

ż1 = Θ(z)w1, (5.1)

where the library matrix Θ(z) is constructed as assumed terms from the measurement data,
e.g., included z1 and sin(z2). Note that the library does not include the differential term
for ODEs. For example, the library matrix Θ(z) may consist of constant, polynomial and
trigonometric terms

Θ(z) =

 | | | | | | | |
1 z zP2 zP3 · · · sin(z) cos(z) sin(2z) cos(2z) · · ·
| | | | | | | |

 ,
where zP2 and zP3 are the higher-order polynomials. For instance, zP2 is written in the
following form:

zP2 =


z2

1(t1) z1(t1)z2(t1) · · · z2
2(t1) z2(t1)z3(t1) · · · z2

n(t1)

z2
1(t2) z1(t2)z2(t2) · · · z2

2(t2) z2(t2)z3(t2) · · · z2
n(t2)

...
...

. . .
...

...
. . .

...
z2

1(tm) z1(tm)z2(tm) · · · z2
2(tm) z2(tm)z3(tm) · · · z2

n(tm)

 .

In Eq. (5.1), ż1 and Θ(z) can be calculated from the measurement data. Given ż1 and Θ(z),
our aim is to calculate the sparse vector w1, which is non-zero for those components that
correspond to libary terms that appear in the inferred ODE. This problem also becomes an
inverse problem that can be often solved by using sparse regression learning [39, 40]. The
approach used for the first variable z1 can be used analogously to infer governing equations



5.1. Model setup and solution strategies 83

for the variables z2, . . . , zn.

If the library includes partial derivatives of a variable, the library can be used for inference
of PDE’s. The measurement data for inference of PDEs needs to allow for the estimation of
at least two derivatives, for example, with respect to time and space. Usually, measurements
consist therefore of space-time series recordings of system variables. For example, the n-
dimensional state Ž is written as

z1(xr, t1) z2(xr, t1) · · · zn(xr, t1)

z1(xr, t2) z2(xr, t2) · · · zn(xr, t2)

...
...

. . .
...

z1(xr, tm) z2(xr, tm) · · · zn(xr, tm)

z1(x2, t1) z2(x2, t1) · · · zn(x2, t1)

z1(x2, t2) z2(x2, t2) · · · zn(x2, t2)

...
...

. . .
...

z1(x2, tm) z2(x2, tm) · · · zn(x2, tm)

z1(x1, t1) z2(x1, t1) · · · zn(x1, t1)

z1(x1, t2) z2(x1, t2) · · · zn(x1, t2)

...
...

. . .
...

z1(x1, tm) z2(x1, tm) · · · zn(x1, tm)

space

state

ti
m

e

ž =

where the data in the x-space ranges from x1 to xr. The derivative with respect to x is also
calculated by using a finite difference approximation. For example, the first derivative (Ž)x

is written as

(z1)x(xr, t1) (z2)x(xr, t1) · · · (zn)x(xr, t1)

(z1)x(xr, t2) (z2)x(xr, t2) · · · (zn)x(xr, t2)

...
...

. . .
...

(z1)x(xr, tm) (z2)x(xr, tm) · · · (zn)x(xr, tm)

(z1)x(x2, t1) (z2)x(x2, t1) · · · (zn)x(x2, t1)

(z1)x(x2, t2) (z2)x(x2, t2) · · · (zn)x(x2, t2)

...
...

. . .
...

(z1)x(x2, tm) (z2)x(x2, tm) · · · (zn)x(x2, tm)

(z1)x(x1, t1) (z2)x(x1, t1) · · · (zn)x(x1, t1)

(z1)x(x1, t2) (z2)x(x1, t2) · · · (zn)x(x1, t2)

...
...

. . .
...

(z1)x(x1, tm) (z2)x(x1, tm) · · · (zn)x(x1, tm)

space

state

ti
m

e(ž)x =

Using the same approach, the higher derivatives (Ž)xx, (Ž)xxx, . . . can also be constructed
from the measurement data. Inclusion of these derivative terms into the library ΘP (Ž) yields
a matrix of the form

ΘP (ž) =

 | | | | | | | | |
1 ž žP2 · · · (ž)x (ž)xx · · · ž(ž)x · · · žP3(ž)xxx

| | | | | | | | |

 ,
where the highest derivatives of the library is in this example given by the cubed nonlin-
earities žP3 multiplied (ž)xxx. With this library, inference of the governing equations again
becomes a linear optimization problem. For example, the PDE governing ž1 can be written
as

˙̌z1 = ΘP (ž)w1, (5.2)

which has the same form as in Eq. (5.1). As above, the resulting equation systems are large
and possibly involve a matrix with a large condition number. Next, we will discuss how one
can introduce stochasticity into the inferred equations for the observed variables.
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5.1.2 Inference of stochastic differential equations from data

Langevin equations are a popular class of stochastic differential equations (SDEs) that are
used to describe the time evolution of state variables, X(t) [173, 235]. In general, Langevin
equations take the form

dXi(t)

dt
= gi(X(t), t)︸ ︷︷ ︸

deterministic part

+hij(X(t), t)dWj(t)︸ ︷︷ ︸
stochastic part

, (5.3)

where we employ the sum convention and Xi(t) denotes the state of the system at time
t. The function gi represents deterministic forces that determine the evolution of Xi. The
function matrix hij represents the strength of stochastic perturbations to the trajectory of Xi.
Frequently, the stochastic forcing is assumed to result from a Wiener process with a driving
noise source Γj(t) and dWj = Γj(t)dt. The noise is then assumed to be δ-correlated and to
have a Gaussian distribution with vanishing mean

〈Γj(t)〉 = 0,

〈Γi(t)Γj(t′)〉 = δijδ(t− t′).

In this thesis, the states of the trajectory X are calculated by making use of Ito’s interpretation
of stochastic integrals [173]. The Fokker-Planck equation of the evolution of a probability
density function fXi

(x, t) for state Xi, which corresponds to Eq. (5.3) can be written as

∂fXi
(x, t)

∂t
= L̂(x, t)fXi(x, t),

where L̂(xm, t) is called the Fokker-Planck operator and m represents the number of states.
The operator is written as [175]

L̂(x, t) = − ∂

∂xi
D

(1)
i (x, t) +

∂2

∂xi∂xj
D

(2)
ij (x, t),

where the Kramers-Moyal (KM) coefficients read as

D
(1)
i (x, t) = lim

τ→0

1

τ
〈[Xi(t+ τ)−Xi(t)]〉X(t)=x, (5.4)

D
(2)
ij (x, t) = lim

τ→0

1

2τ
〈[Xi(t+ τ)−Xi(t)][Xj(t+ τ)−Xj(t)]〉X(t)=x. (5.5)

Here, D(1)
i (x, t) and D

(2)
ij (x, t) are also respectively referred to as the drift coefficient and dif-

fusion coefficient. τ is a small time step. In the Langevin equation, the functions gi and hij are
related to these KM coefficients as

gi(x, t) = −∇xi
U(x, t) = D

(1)
i (x, t),

hij(x, t) =

√
2D

(2)
ij (x, t),

where U(x, t) is a potential energy function, for example, a double-well-, three-well-, or
four-well potential.

In the following, we focus on the case that the drift- and diffusion coefficients do not depend
explicitly on time. To estimate the drift- and diffusion coefficients for one state variable X
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from the measurement data {Xl}l=1,...,N+1 with the help of Eq. (5.5), we need to construct
two new sequences D and F [174]

{Dl}l=1,...,N =

{
Xl+1 −Xl

s

}
l=1,...,N+1

,

{Fl}l=1,...,N =

{
(Xl+1 −Xl)

2

2s

}
l=1,...,N+1

,

where s is the time step which we assume to be sufficiently small. To reduce the effects of
minor observation errors in these trajectories, we utilize data binning to group more or less
continuous values into a number of Q bins

{Xl}l=1,...,N 7→ {xi}i=1,...,Q = x,

{Dl}l=1,...,N 7→ {di}i=1,...,Q = D,

{Fl}l=1,...,N 7→ {fi}i=1,...,Q = F.

We use these binned data to identify the drift coefficient D(1)
i (x) and diffusion coefficient

D
(2)
ij (x). Note that these coefficients are only a function of x in this thesis. To achieve the

identification, we construct a library ΘQ×K from the binned data x, where K is the number
of terms in the library, for example, ΘQ×K = [1, x, x2, . . . , sin(x)]. The drift- and diffusion
coefficients in Eq. (5.5) can be respectively written as two linear equations

D = ΘW1, (5.6a)

F = ΘW2, (5.6b)

where W1 and W2 are sparse weight vectors. These two equations are the data-driven
model for SDEs. In these equations, given D, F and Θ, W1 and W2 need to be calculated.
Thus, the mathematical formulation becomes an inverse problem.

So far, we have not discussed an essential part of the data-driven identification of differ-
ential equations, namely, the solution strategies typically employed for the resulting linear
problems of type g = Φw+s. Various approaches have been developed for solving this prob-
lem in the context of data-driven model inference, for example, sequential thresholded least
squares algorithm [39], TrainSTRidge [40], Stepwise Sparse Regressor [174] and Thresholded
sparse Bayesian regression [172]. All these approaches have in common that they require at
least one threshold or regularization parameter that must be provided based on expert sys-
tem knowledge of the user. In this thesis, we develop a new algorithm which combines
sparse Bayesian learning [69, 70, 172] with automatic thresholding methods for selecting pa-
rameters [40]. We call our algorithm automatic threshold sparse Bayesian learning (ATSBL).
This approach eliminates the need for manual fine-tuning of parameters to correctly infer
governing differential equations from measured data.

5.1.3 Automatic threshold sparse Bayesian learning

Sparse Bayesian learning is a robust and reliable approach to obtain a sparse solution vec-
tor for inverse and ill-posed problems [69, 72]. In Ref. [70], an accelerated algorithm has
been suggested which maximizes the evidence in linear systems by iterative addition and
removal of candidate basis functions in the solution space. A similar algorithm has been
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Function: ATSBL(Θ, g, dtol, niters)
%% Split the measurement data into training and test parts
Θ 7→ [Θtrain,Θtest]; % e.g., 80% for training, 20% for test
g 7→ [gtrain,gtest];
%% Initial setting
[U, s,V] = svd(Θtrain); % SVD for approximation of the inverse of Θtrain

t = 1e− 4; %% Small threshold for s matrix
for ( i = 1; i < size(s); i = i+ 1 ) {

if si > t then
si = 1/si;

else
si = 0;

end
}
Θtrain
inv = VsU′;

wbest = Θtrain
inv gtrain;

η = 10−3κ(Θ); % κ(Θ) is the condition number of the matrix
ebest = ‖Θtestwbest − gtest‖22 + η‖wbest‖0; % Assign initial error predictor
tol = dtol; % Assign initial threshold
%% Automatically estimate the sparse vector and the threshold
for ( i = 0; i < niters; i = i+ 1 ) {

σ2 = std(gtrain)2/1e2; % Initial noise variance
w =FastLaplace(Θtrain,gtrain, σ2); % Calculate the sparse vector from BCSL
e = ‖Θtestw − gtest‖22 + η‖w‖0; % Calculate current error predictor
%% Automatically obtain the threshold
if e ≤ ebest then

%% Decrease the error
ebest = e;
tol = tol + dtol;

else
%% Tolerance too high
tol = max([0, tol − 2dtol]);
dtol = 2dtol

niters−i ;
tol = tol + dtol;

end
%% Use the threshold
for ( i = 1; i < size(w); i = i+ 1 ) {

if wi < tol then
Θtrain(:, i) = 0;

end
}
%% One of convergence conditions
if ‖wbest −w‖2/‖wbest‖2 < 1e− 9 then

return wbest;
end
wbest = w;

}
return wbest;

Algorithm 1: Pseudocode for automatic threshold sparse Bayesian learning (ATSBL)

employed for compressive sensing using Laplace priors [72], which is called Bayesian com-
pressive sensing using Laplace priors (BCSL). Details of the BCSL algorithm can be found in
Chapter 2.

Since a large library is usually constructed, the solution vector generated by the BCSL al-
gorithm typically still contains quite a few non-vanishing but small entries. To improve the
identification of governing equations, a thresholding procedure is employed for removing
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those entries in the library that have very small weight [39, 172, 174]. Usually, the thresh-
old needs to be manually provided by the user. However, in Ref. [40], a procedure was
proposed to estimate the threshold automatically based on test data (20% of the data) in a
training process. In our work, we combine BCSL with this training method. Details of the
proposed algorithm which we call automatic threshold sparse Bayesian learning (ATBSL)
are shown in Algorithm 1.

For ATSBL, we provide the input data, namely the vector g and the library matrix Θ, an
initial increment for the threshold dtol and the maximum number of iterations niters. We first
split the input data g and Θ respectively into two parts that are Θtrain, Θtest, gtrain and gtest.
For example, the training data is 80% and the test data is 20%. Then, we calculate some initial
parameters, for example, an initial error predictor ebest and an initial threshold tol. Next, the
core part of the training algorithm is a loop to automatically calculate the sparse vector w

and the threshold tol. Here, we first employ the FastLaplace function from BCSL to obtain
w from the training part of data, where the function is shown in Appendix C. Then, a new
error predictor e can be calculated as [40]

e = ‖Θtestw − gtest‖22 + η‖w‖0,

where η = cκ(Θ), where c is a constant parameter, e.g., c = 1e−3. κ is the condition number.
If the estimated error is decreased, we increase the threshold tol, otherwise the threshold is
reduced. Finally, the entries in the library matrix Θ corresponding to entries in the solution
w that are smaller than the threshold are set to zero. This training process will be stopped
when the convergence conditions are satisfied. The final solution wbest is the sparse vector
that determines the terms in the governing differential equations, ODEs, PDEs and SDEs.

5.2 Results

5.2.1 Identification of ordinary and partial differential equations

5.2.1.1 Identification of a chaotic Lorenz system

We employ a Lorenz system to demonstrate the identification of ODEs from data [236]. The
Lorenz system is a paradigm for chaotic behavior and is written as

ẋ = a(y − x),

ẏ = x(b− z)− y,

ż = xy − cz,

where the standard parameters are a = 10, b = 28 and c = 3/8.

We solve the equations numerically to obtain trajectory data X = xi = (x,y, z), where
the initial values are chosen as [x0, y0, z0] = [−8, 7, 27] and the time step is chosen as
∆t = 0.001 [39]. We consider a short-time trajectory 0 ≤ t ≤ 20 and a long-time trajectory,
0 ≤ t ≤ 250, respectively illustrated in Fig. (5.1) (b-Top) and (b-Bottom). In these plots,
we see that the chaotic system involves two attractors. To identify the Lorenz equations
from the data, we utilize a library of ODEs for each of the components, x, y and z. The
library Θ(X) and ẋi are constructed from the simulated trajectory. The library is written as
Θ(X) = [1 x y z . . . z4], which includes 56 terms, which is the library size also employed
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Full simulation Identi�ed system, Identi�ed system, 

b

 Lorenz system
True ODE Identi ed system Identi ed system 

Figure 5.1: Exemplary results for data-driven identification of the ordinary
differential equations for the Lorenz system. (a) The original Lorenz equations
and the identified corresponding equations for different noise levels are reported
in the table. (b) Numerically calculated trajectories for time from t = 0 to t = 20
(Top) and t = 0 to t = 250 (Bottom) with a time step ∆t = 0.001. The trajectories
for the original system are shown on the left. The trajectories calculated with the
identified equations are shown in the middle and on the right for the noise level
ι = 1 and ι = 10, respectively. The colour-map represents the local sensitivity.

in previously published approaches [39]. Three linear equations are used to identify the
Lorenz system, for example, ẋ = Θ(X)w + s, where s is the type I Gaussian noise. Here, we
consider two noise levels where the Gaussian noises have standard deviations of ι = 1 and
ι = 10.

The governing Lorenz equations are identified correctly with ATSBL, as illustrated in Fig. (5.1)
(a). To quantitatively assess quality of the equation identification, we introduce a deviation of
identified coefficient (DIC) and a maximum deviation of identified coefficient (MDIC) in this thesis,

DIC =
1

R

∑
i

‖pi − p′i‖2
‖p′i‖2

× 100, (5.7)

MDIC = maxi
‖pi − p′i‖2
‖p′i‖2

× 100, (5.8)

where pi is a coefficient of one term in the identified equation and p′i is the corresponding
coefficient in the real equation. R represents the number of coefficients. The sums only run
over non-zero coefficients. DIC and MDIC lie in the range [0,∞] where 0 indicates a perfectly
identified equation. For the Lorenz equations, when ι = 1, DIC is equal to 0.028% and MDIC
is equal to 0.2%. When ι = 10, DIC and MDIC are respectively equal to 0.1% and 0.5%.
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b
Correct PDE

Identi ed PDE (clean data)

Identi ed PDE (5% noise)

a

Figure 5.2: The identification of partial differential equations for Burgers’
equation. (a) 101 time snapshots of a solution calculated from the Burgers’
equation. The time step is ∆t = 0.1. The initial condition is a Gaussian
distribution on one-dimensional space x, discretized on a uniform grid with 256
elements. The Gaussian distribution propagates as a travelling wave. (b) The
original and identified Burgers’ equations.

5.2.1.2 Identification of one-dimensional partial differential equations

Burgers’ equation Burgers’ equation is wildly employed in mathematics and physics to
describe wave propagation. This fundamental PDE has the form of a Navier-Stokes equation
for the velocity field with omitted pressure gradient term. Solutions to Burgers’ equation do
not exhibit turbulent behavior. The Burgers’ equation is written as

ut + uux − 0.1uxx = 0.

We employ as data set for inference the velocity field u(x, t) provided with Ref. [40] , which
consists of snapshots of a travelling wave, illustrated in Fig. (5.2) (a). The time step is ∆t =

0.1 with 101 total steps. The spatial discretization is done on an uniform-mesh with 256

elements in one-dimensional space −8 ≤ x ≤ 8. The initial condition of the wave is a
Gaussian distribution.

Using the time-space series data u(x, t), we can easily calculate ut, ux, uxx, . . . by using a
finite difference approximation. With these values, we construct the library matrix being Θ,
which has 16 terms with the highest derivative term uxxx. Again, we assume ut = Θw + s,
where s is a type I Gaussian noise. Using ATSBL, we identify the Burgers’ equation, as
illustrated in Fig. (5.2) (b). For clean data, DIC and MDIC are equal to zero, where the
identified equation is exactly the same as the correct equation. For the data corrupted by 5%
noise, DIC and MDIC are respectively equal to 0.043% and 0.1%.

The KdV equation The Korteweg-de Vries (KdV) equation is a non-linear model for
waves on the water surfaces. This equation was first introduced by Boussinesq [237]. The
KdV had subsequently been applied in a wide range of physical systems, for example, shock
waves, waves in a density-stratified ocean, and acoustic waves on a crystal lattice. The KdV
equation is given by

ut + 6uux + uxxx = 0.

The solution of this non-linear PDE also shows a travelling wave behaviour, illustrated in
Fig. (5.3) (a). The initial condition of this solution is two solitons in the space domain −30 ≤
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Figure 5.3: Testing the identification of partial differential equations with the
KdV equation. (a) A solution of the KdV equation u(x, t) is plotted on a
one-dimensional space x from −30 to 30 and a time t from 0 to 20. The solution
has 102912 total points with 201 time steps and 512 spatial grids. The initial
condition consists of two solitons and the wave propagates with increasing time.
(b) The table shows the correct KdV equation and two identified equations from
data without noise and with 5% type I Gaussian noise.

x ≤ 30. The total data covers 512 spatial grid points and 201 time steps with a time step of
∆t = 0.1.

Using the data, we first to calculate ut, ux, uxx, uxxx and uxxxx. Then, we construct the
library Θ which includes 12 terms and write a linear equation as ut = Θw + s, where s is a
type I Gaussian noise. Using ATSBL, we identify the KdV equation from the original data set
and for the addition of 5% type I Gaussian noise, illustrated in Fig. (5.3) (b). We find that the
identified equations contain the correct terms compared to real equation. For the original,
noise free data, DIC and MDIC are equal to 1.686% and 3.4%, respectively. For 5% type I
Gaussian noise, DIC and MDIC are respectively equal to 1.707% and 4.0%.

5.2.1.3 Identification of two-dimensional partial differential equations

Navier-Stokes equations Here, the Navier-Stokes equation is employed to describe a two-
dimensional fluid that passes a cylinder [40]. In this system, the vorticity equation deduced
from the Navier-Stokes equations is

ωt + (v · ∇)ω =
1

Re
∇2ω,

where ω is the vorticity and v = (u, v) is the flow velocity. Re is the Reynolds number, which
is equal to 100. Thus, the vorticity equation in a two-dimensional space can be rewritten as

ωt = 0.01ωxx + 0.01ωyy − uωx − vωy.

The system of the fluid past a cylinder can be numerically solved by using an Immersed
Boundary Projection Method (IBPM) [239, 240]. Here, we employ previously published
datasets containing numerical results for the fluid flow. Exemplary results including the
vorticity ω, velocity u and velocity v are respectively shown in Fig. (5.4) (a-i to a-iii) [238].
These data is given on a grid of size 199× 449 with 501 time steps.
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Figure 5.4: The identification of partial differential equations for Navier-Stokes
equations. (a-i to a-iii) The snapshot of vorticity ω, velocity u and v at t = 0 for
numerically calculated test data [238]. Only data inside the white box is used for
identification in order to avoid boundary effects. (b) The table shows the correct
vorticity equation and the identified vorticity equation from the data without
noise and with 5% type I Gaussian noise.

Since the original data 199× 449× 501 is too large, we only employ the data in the white box
shown in Fig. (5.4) (a), where x is from (2− 8.5) and y is from (0.25− 3.75). We also increase
the spacial grid size by a factor of 5. Thus, the size of the data for ω, u and v becomes
35 × 66 × 501. Using the data-driven model for discovery of PDEs, we first construct the
vector ωt and the library matrix Θ, which has 15 terms. Then, we obtain a linear equation
ωt = Θw + s, where s is type I Gaussian noise. The results from ATSBL for the vorticity
equation are shown in Fig. (5.4) (b). We find that these identified equations have the correct
terms compared to the real equation. For the noise-free data, DIC and MDIC are equal to
0.624% and 2%, respectively. For the 5% type I Gaussian noise data, DIC and MDIC are
respectively equal to 0.914% and 2%.

Reaction diffusion equation Reaction-diffusion equations have attracted interest as a pro-
totype model for pattern formation in biochemical systems, which involve constituents lo-
cally transformed into each other by chemical reactions and transported in space by diffu-
sion. The reaction-diffusion equation can describe a wide range of phenomena, for example,
the formation of traveling waves, wave-like phenomena, and self-organized patterns. One
of the common reaction diffusion systems is the Turing reaction-diffusion model which is
usually used to describe biological pattern formation [241–243]. Here, we consider a two-
variable Turing model in a two-dimensional, planar, periodic region with the following
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Figure 5.5: The identification of partial differential equations for
reaction-diffusion equations. (a) Snapshots of the initial conditions for u and v
and the numerically calculated patterns after a time t=0.4. The results are
obtained by using a time step ∆t = 0.02 and the mesh grid is 256× 256 with
periodic boundary conditions. (b) The table shows the correct reaction diffusion
equations, the identified equations from noise-free data and from data with 5%
type I Gaussian noise.

equations

ut = Du∇2u+ f1(u, v), (5.9a)

vt = Dv∇2v + f2(u, v), (5.9b)

f1 =
u3v

1 + v2
, f2 = u2v + uv − 0.5v3, (5.9c)

Where two states u and v can the thought of as morphogen concentrations. The diffusion
coefficients Du and Dv are equal to 0.1. The functions f1 and f2 model chemical transforma-
tions. The Eq. (5.9) can be rewritten as

ut = −utv2 + 0.1uxx + 0.1uxxv
2 + 0.1uyy + 0.1uyyv

2 + u3v,

vt = 0.1vxx + 0.1vyy + u2v + uv − 0.5v3.

We solve the equations (5.9) numerically by using a spectral transform method. Equa-
tions (5.9) can be written after a Fourier transformation of the spatial coordinates as

ũt = 0.1(k2
x + k2

y)ũ+ ˜f1(u, v),

ṽt = 0.1(k2
x + k2

y)ṽ + ˜f2(u, v),

where the spatial wave vector is k = (kx, ky). These equations can be solved numerically
by using a Runge-Kutta ODE solver. Figure (5.5) (a) shows exemplary results. The two
solutions u and v are calculated on grids of size 256× 256 in a domain 14× 14 with periodic
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boundary conditions. The total simulation time is t = 2 with a time step ∆t = 0.02.

As for the previous data-driven model inference procedures, we first construct u̇, v̇, ux, uxx,
uxxx, vx, vxx, and vxxx from the numerical data on u and v. Then, we build the library
matrix Θ, which includes 35 terms and write two linear equations, ut = Θw + s and vt =

Θw + s, where s is the type I Gaussian noise. Finally, using ATSBL, we identify the reaction-
diffusion equations from the noise-free data and 5% type I Gaussian noise data, as illustrated
in Fig. (5.5) (b). We find the correct terms in both cases. For the noise-free data, DIC and
MDIC are equal to 0.31% and 0.46%, respectively. For the 5% type I Gaussian noise data,
DIC and MDIC are equal to 2.08% and 3.40%, respectively.

We have so far demonstrated a method for identification of governing ODEs and PDEs from
data in the presence of type I Gaussian noise where the problem can be written in a form
g = Φw + s. Next, we will employ a neural network deep learning approach to reduce type
II Gaussian noise which usually present in measurement data.

5.2.1.4 Neural network deep learning improves the identification of PDEs from type II
Gaussian noise data

One issue related to library-based data-driven inference of governing equations is that nu-
merical derivatives are required. However, derivatives amplify noise in the data. Neural
networks are widely employed in many fields, for example, image analysis [244–246], au-
tonomous cars [247–249], and diagnosis [250–252]. Deep neural networks can be used for
so-called automatic differentiation where the derivatives are estimated together with a cost
function to directly suppress the measurement noise. In Ref. [82], the authors describe a
neural network deep learning approach to reduce noise in the data for the identification
of governing PDEs. Essentially, the proposed method is a neural-network-based filter. In
this method, an L1 penalty is employed for the cost function in deep learning. We mod-
ify the cost function by using the Elastic Net penalty because the Elastic Net regularization
combines both L2- and L1 regularization and is expected to outperform both of the two
regulation methods invidually, as demonstrated in Chapter 3. The cost function is written
as

L = LMSE + LReg + LEN ,

where LEN is the Elastic Net penalty for the vector wi, LMSE is the mean squared error
between the output urecon and the target data unoise and LReg is the regression based cost
function. These functions are respectively written as

LEN = λ1‖wi‖1 + λ2‖wi‖2i ,

LMSE =
1

N

N∑
i=1

|unoise − urecon|2,

LReg =
1

N

N∑
i=1

|Φijwj − u̇recon
i |2.

Using this approach, we use the time t and space x as an input data and the noisy data unoise

as target data. The reconstruction urecon is an output data. The output data is produced
by the neural network deep learning framework TensorFlow by minimizing the given cost
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Figure 5.6: The neural network deep learning reduces the type II Gaussian noise
data and the governing equations is identified by using ATSBL. The solution of
the KS equation is corrupted with 20% type II Gaussian noise and denoted by
unoise. Time t and space x dimensions of the data. The reconstructed data urecon is
predicted by using the neural network where the cost function includes the
MSE-loss, a regression loss and an Elastic Net penalty. The identified KS
equation is obtained by using ATSBL.

function. The noise in the reconstructed data urecon is significantly reduced. Then, we employ
ATSBL to identify the governing equation from the reconstructed data urecon.
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Figure 5.7: The neural network deep learning method improves the
identification of the Kuramoto-Sivashinsky (KS) equation. (a-Left) The
snapshots of the KS equation with 1024 spatial points and 251 time-steps. The
time step is ∆t = 0.4. (a-Middle) 10% and 20% type II Gaussian noise is added
to the data. (a-Right) The reconstructed data obtained by using the neural
network. (b) The table shows the correct KS equation and identified equations.

Next, we employ the Kuramoto-Sivashinsky (KS) equation as an example to demonstrate the
power of the approach. The KS equation is a one-dimensional fourth-order PDE, which has
been independently derived for several physical systems, for example, for the dissipative
trapped ion model in plasmas, instabilities in laminar fronts, fluctuations in fluid and phase
dynamics in reaction-diffusion systems. The KS equation is written as

ut + uux + uxx + uxxxx = 0.
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This equation is solved by using the spectral method [40]. The size of solution is 1024×251
data points in the format space×time, illustrated in Fig. (5.7) (a-Left). The snapshots of u(x, t)

are calculated by using the dimensionless time step ∆t = 0.4 and time ranges from 0 to 100.
The one dimensional solution along the non-dimensional space coordinate x ranges from 0

to 100. We first add 10% and 20% type II Gaussian noise into the solution of snapshots u(x, t),
illustrated in Fig. (5.7) (a-Middle). Using the neural network, we apply a filter to obtain re-
constructed data, illustrated in Fig. (5.7) (a-Right). Next, using the data-driven model for the
identification of PDEs, we construct the vector u̇ and library matrix Θ from the reconstructed
data and build a linear equation ut = Θw+s. Finally, we identify the KS equations by using
ATSBL, as illustrated in Fig. (5.7) (b). We find that these identified equations have the correct
terms. For 10% type II Gaussian noise, DIC and MDIC are equal to 23.95% and 33.7%, re-
spectively. For 20% type II Gaussian noise, DIC and MDIC are respectively equal to 35.38%
and 50.4%. Note that in the article that originaly proposed neural networks for identification
of PDEs, Ref. [40], the identified KS equation is ut+ 0.46uux+ 0.48uxx+ 0.49uxxxx = 0 when
only 1% type II Gaussian noise is added and its DIC and MDIC are equal 39.25% and 54.0%,
respectively. Thus, we demonstrate that our modifications of the deep learning approach
along with ATSBL significantly improve the inference of PDE’s.

5.2.2 Identification of stochastic differential equations

According the data-driven model approach for inference of SDEs with Eq. (5.6), the drift-
and diffusion coefficient can be identified from trajectories of stochastic processes that can
be modeled by a Fokker-Planck equation. In this section, we will explain details of the
inference procedure and provide examples.

5.2.2.1 Identification of stochastic differential equations from double-well potential sys-
tems

To generate exemplary stochastic trajectory data, we consider a one-dimensional double-
well potential U(x). The potential and the drift force g(x) are written as

U(x) =
1

2
x4 − 4x3 + 9x2 − 3x, g(x) = D(1)(x) = −dU

dx
= −2x3 + 12x2 − 18x+ 3. (5.10)

An inhomogeneous diffusion coefficient is written as D(2)(x) = x2 + 1. We employ the
Euler–Maruyama method to numerically solve the one-dimensional Langevin equation

dX(t)

dt
= g(X(t), t) + h(X(t), t)dW (t). (5.11)

The initial state of the trajectory is located at X = 0 and the time step ∆t is equal to 5e − 3.
We numerically obtain a trajectory X with 2e7 states, with an example shown in Fig. (5.8-a).
We find that most states are located in one of the two potential wells (yellow region).

According to the data-driven model for discovery of SDEs, we first construct datasets con-
taining the discretized derivatives D and F from the trajectory X. Then, using data binning,
we construct three datasets {xi}, D and F from these trajectories. Next, we utilize the binned
data {xi} to construct a 11-term library Θ1 = [I, x, x2, x3, x4, x5, . . . , x10] and a 6-term li-
brary Θ2 = [I, x, x2, x3, x4, x5] respectively for the drift and diffusion coefficients. Finally,
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Figure 5.8: The identification of stochastic differential equations for a
double-well potential with an inhomogeneous diffusion. (a) A part of a
stochastic trajectory on a double well potential depth map. The trajectory is
calculated by using a time step ∆t = 5e− 3 and the initial state is X = 0. (b,
c) The identification of the drift and diffusion coefficients from the trajectory
data. The blue points are binned data and the black line is the true solution. The
identified terms of the equation are shown in the lists of library terms for the
drift and diffusion coefficients.

we build two linear equations for the drift- and diffusion coefficients as

D = Θ1W
1,

F = Θ2W
2.

Using ATSBL, we obtain the sparse solution vectors W1 and W2, which are given in Fig. (5.8-
b and -c). With the help of these vectors, we can write the drift and diffusion coefficients as

D̆(1)(x) = −1.9867x3 + 11.8054x2 − 17.6515x+ 2.9183,

D̆(2)(x) = 0.9845x2 + 1.0938.

We find that the identified drift- and diffusion coefficients have the correct terms that also
appear in the original equations in Eq. (5.10) and Eq. (5.11). DIC and MDIC for the drift
coefficient D̆(1)(x) are equal to 1.737% and 2.723%, respectively. DIC and MDIC for the
diffusion coefficient D̆(2)(x) are respectively equal to 5.465% and 9.380%.

5.2.2.2 A novel probability-threshold procedure improves the identification of stochastic
differential equations

In our approach for identification of SDEs, the trajectories are dealt with by using data bin-
ning. Thus, we know the probability p(xi) of each binned state xi. In information theory, self-
information is defined as I(Xi) := − log2[p(xi)]. One state has a large self-information if its
occurrence is highly improbable, for example, consider two states A and B, with p(A) = 0.9,
I(A) = log2(0.9) = 0.152bit and p(B) = 0.1, I(B) = log2(0.1) = 3.322bit. The Shannon
entropy or total uncertainty is given by [253, 254]

H = −
Q̂∑
i=1

p(xi) log2 p(xi), (5.12)

where we only consider states xi with a non-zero probability and Q̂ is the number of states
bins with non-vanishing probability and Q is the overall number of bins, thus, Q̂ ≤ Q. To
reduce the total uncertainty for the binned data, we introduce a probability threshold T to
remove states with small probabilities and high uncertainty. To find a optimal probability
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threshold, we plot the log-log curve of the total uncertainty vs different thresholds and we
select the optimal probability threshold at the corner of the curve. While we were not able to
justify this heuristic procedure theoretically, we found that it produces excellent results. As
an example, we employ a one-dimensional double-well potential given in Eq. (5.10) with a
homogeneous diffusion coefficient as

D(1)(x) = −2x3 + 12x2 − 18x+ 3 (5.13)

D(2)(x) = 1. (5.14)

Using a Langevin equation containing this drift- and diffusion terms, we simulate a trajec-
tory of 1e6 steps with a time step of ∆t = 5e− 3.
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Figure 5.9: An improved identification of stochastic differential equations
through using a probability threshold. (a) The binned data and identified drift-
and diffusion coefficients without using the probability threshold. (b-i) A log-log
curve of the total uncertainty vs different probability thresholds. The optimal
probability threshold is selected at the corner of the curve equal to 5e− 4. (b-ii
and b-iii) The binned data and the identified terms in the drift and diffusion
functions when using the probability threshold. Here, blue points are binned
data and red curves are exact solutions.

Then, we produce the binned data {xi}, D and F from the trajectories. In Fig. (5.9-a) we show
results from the reconstruction without using a threshold on the probability. We find that
the binned data exhibits large errors as quantified by the blue error bars on the distribution.
Using ATSBL, we identify the drift- and diffusion coefficients as

D̆(1)(x) = −0.3565x4 + 9.1717x2 − 17.9303x+ 3.7413,

D̆(2)(x) = 1.1509.

We find that D̆(1)(x)contains a term x4 which is not present in the original equation. The
DIC of the diffusion coefficient is equal to 15.09%. Next, we employ the probability thresh-
old. The log-log curve of the total uncertainty vs different threshold values is plotted in
Fig. (5.9-b-i). We select the optimal probability threshold at the corner of the curve. Using
this threshold, we plot the binned data for the D(1)(x) and D(2)(x), and results are shown in
Fig. (5.9-b-ii and iii), respectively. As illustrated in the plots, we choose a threshold at a value
where the entropy just starts to change significantly. Thereby, we efficiently remove the bins
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with high uncertainty. Using ATSBL, the drift- and diffusion coefficients are identified from
the thresholded data as

D̆(1)(x) = −2.102x3 + 12.386x2 − 18.268x+ 3.049,

D̆(2)(x) = 1.076.

Here, D̆(1)(x) and D̆(2)(x) contain the correct terms. For the drift coefficient, D̆(1)(x), DIC
and MDIC are equal to 2.857% and 5.099%, respectively. For the diffusion coefficient, D̆(2)(x),
DIC is equal to 7.60%.

5.2.2.3 An automatic iterative sampling optimization improves the identification of stochas-
tic differential equations

From above two tests for the identification of SDEs, we find that the density of measured
trajectories is highest around the minima of the potential, see Fig. (5.8-a). At the minimum
of the potential, the probability of the binned data is the highest and its uncertainty is the
smallest. For example, we employ a double-well potential as given in Eq. (5.10) with a
homogeneous diffusion D(1)(x) = 1 to numerically simulate a trajectory. The two minima
of the potential are respectively located at A and C, illustrated in Fig. (5.10-a-i). A saddle
point B is located between A and C. Because most measurement points lie close to the two
minima, A and C, the binned probability exhibits maxima there, as shown in Fig. (5.10-a-ii).
The saddle point B is located between these two maximum probabilities.
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Figure 5.10: The identification of stochastic differential equations is improved by
using sampling strategy. (a-i) The double-well potential (red line) is controlled
by one-well potential (blue line) at the saddle point B. (a-ii) The probability for
original and controlled binned data. (a-iii) The binned data for the drift
coefficients are plotted, where controlled and original data are respectively
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the diffusion coefficients are plotted. (b-i and iii) The local uncertainty of drift-
and diffusion coefficients are distributed at the range of binning data. The green
plot is for the controlled data and the red plot is for the original data.
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In oder to decrease uncertainty of the binned data, we employ an Umbrella Sampling tech-
nique where we add a control potential to reduce the saddle point and to increase origi-
nal minimum potential [255, 256], for example, a one-well control potential Uc(x) = 2(x −
2.1683)2, where 2.1683 is the position of the saddle point. The sampling potential is plotted
as a blue curve, illustrated in Fig. (5.10-a-i). Using this sampling strategy, we obtain a mod-
ified trajectory and its binned data, see Fig. (5.10-a-iii and -iv). Note that the binned data
with the “control potential” has been corrected for the known “control force” 4(x− 2.1683).
We find that the probability in the data with a control potential is approximately uniformly
distributed from A to C, as illustrated in Fig. (5.10-a-ii). In Fig. (5.10-a-iii and iv), the binned
original data (red points) does not contain many measurements in the range from 1 = 1.5

to x = 3.5 while the data with the control potential (blue points) is well-spread in the range
x = 0 to x = 3.7. For these binned data, we can calculate the local uncertainty by using
universal prediction distribution for surrogate models [257]. The local uncertainty is high where
the density of binned data is small. Thus, the original data missed in 1.5 < x < 3.5 leads to a
high local uncertainty in this region and the local uncertainty for the controlled data is small
from −0.4 to 3.7, illustrated in Fig. (5.10-b-i and b-ii).

Next, we identifyD(1)(x) andD(2)(x) with real drift- and diffusion terms given by Eqs. (5.13)
and (5.14) for both controlled- and non-controlled cases by using ATSBL. The identified
equations in the case of an added control potential are given by

D̆(1)(x) = −2.0062x3 + 12.077x2 − 18.156x+ 2.964,

D̆(2)(x) = 1.0316.

The identified equations for the orginal case without control potential are

D̆(1)(x) = −2.550x3 + 12.892x2 − 18.409x+ 3.051,

D̆(2)(x) = 0.549x4 − 1.272x3 + 1.036x2 − 0.255x+ 1.022.

For the identified D̆(1)(x) from the controlled data, DIC and MDIC are equal to 0.755% and
1.2%, respectively. For the identified D̆(2)(x) from the controlled data, DIC is equal to 3.16%.
For the identified D̆(1)(x) from the original data, DIC and MDIC are equal to 9.726% and
27.50%, respectively. The identified D̆(2)(x) here contains wrong terms. Thus, we find that
the sampling strategy improves the identification of SDEs.

For use of the sampling strategy suggested above, we need to know the saddle points on
the potential. These saddle points are of course not known initially. However, the posi-
tions of saddle points can be well approximated by using the probability distribution of
the binned original data, and assuming that saddle points are located between the known
position of maximum probability, see Fig. (5.10-a-ii). For this purpose, we develop an au-
tomatic iterative sampling optimization to improve the identification of SDEs. The method
is illustrated in Algorithm 2. In this algorithm, we fist find the n maximum probability
points {p1, . . . , pn} and the saddle points {pc1, . . . , pcn−1} are approximated as the center
between two maximum probability points. Secondly, the control potential can be written as
Uc(x) = coeff(x − pc1)2 . . . (x − pcn−1)2, where coeff is a coefficient. Then, we employ this
control potential to generate data and the contribution of the control potential is removed
after binning. Finally, we build libraries and identify the drift- and diffusion coefficients by
using ATSBL. In the next subsections, we demonstrate the use of this algorithm to identify
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Algorithm: Automatic iterative sampling optimization
%% Initial setting
coeff = 0.1; j = 0; control = 0; x = 0; dt = 0.005;
while 1 do

j=j+1;
%% Form of control
if j>=2 then

if n==2 then
drift_c = coeff∗2∗(x(i-1)-pc1); % in case of estimated double-well, add
quadratic potential

end
if n==3 then

%% in case of estimated tripe-well, add double-well potential
drift_c = coeff∗(2∗(x(i-1)-pc2)∗(x(i-1)-pc2)2+2∗(x(i-1)-pc1)2∗(x(i-1)-pc2);

end
. . .
[pco1, . . . , pc

o
n−1] = [pc1, . . . , pcn−1]; % save data

end
%% Generate trajectory
for ( i = 1 : step+ 1 ) {

drift= real_drift+drift_c; % real_drift is a given drift coefficient
x(i)=x(i-1)- drift*dt+sqrt(2*diff*dt)*randn(1,1); % diff is a diffusion coefficient
y=(x(i)-x(i-1))/dt;
D=(x(i)-x(i-1))2/(2*dt);

}
%% Binned data

[p, xc, bins] = histcount(x, number_bin); % p is probability, xc is center of each bin
drift_bin=mean(y(bins));
diffu_bin=mean(D(bins));
pp = [p1, . . . , pn]; %% Find all local maxima of the probability

%% Find center of maximum
[pc1, . . . , pcn−1] = pp(1 : end− 1) + 0.5 ∗ (pp(2 : end)− pp(1 : end− 1));

%% Convergence condition
pmax=max(pp);
b = pp(pp ∼=pmax);
pmax2=max(b);

if pmax<pmax2 then
break;

else
coeff = coeff+0.05;

end
%% Remove the control
if j>=2 then

if n==2 then
mc = coeff∗2∗(xc-pco1);

end
if n==3 then

mc = coeff∗(2∗(xc-pco1)∗(xc-pco2)2+2∗(xc-pco1)2∗(xc-pco2);
end
. . .

end
drift=drift_bin+mc;

%% Build libraries and ddentify the drift and diffusion coefficients by using ATSBL
w = ATSBL(Θ, g, dtol, niters)

end
Algorithm 2: Pseudocode for automatic iterative sampling optimization
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SDEs from three- and four-well potential systems.
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Figure 5.11: The identified SDEs from three-well potential by using an
automatic iterative sampling optimization. (a) Evolution of probability
distribution in automatically iterative control process. Three maximum
probability points are clearly found in (a-i). (b-i) The original trajectory is
plotted on the three potential depth map. (b-ii and iii) The plot of binned data
for drift- and diffusion coefficients from the original trajectory. The binned data
is lost at 1 = −0.8 and x = 1. (b-iv) The trajectory is numerically obtained by
using the control strategy on the three potential depth map. (b-v and vi) The
binned data for drift- and diffusion coefficients from controlled trajectory are
uniformly distributed from x = −2 to x = 2. (b-vii and viii) The local
uncertainty of controlled (light green) and original data (light red) for the drift-
and diffusion coefficients. (c) The identified the drift- and diffusion coefficients
for different iterations, which are improved with increasing iterations.

Three-well potential We consider a three-well potential with a homogeneous diffusion
coefficient D(2)(x) = 1 to generate a stochastic trajectory data. The potential function and
drift force are

U(x) = x6 − 6x4 + 0.5x3 + 8x2, g(x) = D(1)(x) = −6x5 + 24x3 − 1.5x2 − 16x. (5.15)

In the fist iteration, we obtain a trajectory with 6e5 states that are simulated by using the
time step ∆t = 5e − 3 and the initial state X = 0. A trajectory on the potential map is
illustrated in Fig. (5.11-b-i). This first iteration produces a trajectory corresponding to the
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original potential and we clearly find three probability maxima, illustrated in Fig. (5.11-a-
i). Thus, we can approximate the saddle points and write the control potential for the next
iteration. The original binned data for the drift- and diffusion coefficients are illustrated in
Fig. (5.11-b-ii and iii), which are filtered by using a probability threshold equal to 4e − 5.
We find that the data is lost at x = −0.8 and x = 1. Therefore, the local uncertainty is high
in these two regions for both D̆(1)(x) and D̆(2)(x), as illustrated in Fig. (5.11-b-vii and viii).
Using ATSBL, we identify D(1)(x) and D(2)(x) from original data as

D̆(1)(x) = −0.635x7 + 6.409x3 − 1.372x2,

D̆(2)(x) = 1.826.

We find that D̆(1)(x) contains wrong terms compared to the real equation. As for the identi-
fied D̆(2)(x), DIC is equal to 82.6%.

As iterations of the algorithm proceed, the coefficient of the control potential is increasing,
the initial maximum probability is deceasing, and the probability of trajectories crossing the
saddle points are increasing, as illustrated in Fig. (5.11-a-ii). Results for the intermediate
iteration step 15 are shown together with the potential depth map in Fig. (5.11-b-iv). We find
that the trajectory is concentrated around three potential minima. The binned controlled
data for the drift- and diffusion coefficients are respectively shown in Fig. (5.11-b-v and vi).
The local uncertainty of this controlled data is shown in Fig. (5.11-b-vii and viii). We find
that the local uncertainty are is drastically reduced by the additional control potential in
the region −2 < x < 2. Using ATSBL, we identify D(1)(x) and D(2)(x) from the binned
controlled data at iteration= 15 as

D̆(1)(x) = −5.998x5 + 23.995x3 − 1.358x2 − 15.781x,

D̆(2)(x) = 1.197.

These equations have the correct terms as compared to the real equations. For the identi-
fied D̆(1)(x), DIC and MDIC are equal to 2.72% and 9.47%, respectively. For the identified
D̆(2)(x), DIC is equal to 19.7%. Further iterations of the algorithm lead to a continuous im-
provement of the estimates for the drift- and diffusion coefficients, see Fig. (5.11-c).

Four-well potential We consider another one-dimensional example that is a four-well po-
tential with a homogeneous diffusion. The four-well potential and its drift force are written
as

U(x) = 0.055x8 − 0.855x6 + 4x4 − 6x2 + 1.5x,

g(x) = D(1)(x) = −0.44x7 + 5.13x5 − 16x3 + 12x− 1.5.

The homogeneous diffusion coefficient is given by D(2)(x) = 1.2. Using automatic iterative
sampling optimization, at iteration= 1, an original trajectory is obtained by using the time
step ∆t = 5e−3 and the initial stateX = 0. States from an exemplary trajectory are shown in
Fig. (5.12-b-i). Using the data-driven model for identification of SDEs, we obtain binned dis-
cretized datasets for D(1)(x) and D(2)(x), which are filtered by using a probability threshold
equal to 5e − 4, illustrated in Fig. (5.12-b-ii and b-iii), respectively. We find that the binned
data is lost in the regions x ∈ [−0.3, 0.6] and x ∈ [1.1, 2.3]. Thus, the local uncertainty is
very high in these regions, illustrated in Fig. (5.12-b-vii and b-viii). We employ ATSBL and
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Figure 5.12: The identified SDEs from four-well potential by using an automatic
iterative sampling optimization. (a) Probability distribution of binned data in
the process of automatic iterative sampling optimization. The saddle points can
be obtained in probability distribution. (b-i) The part of original trajectory data
is from t = 0 to t = 30000 on the four-well potential depth map, which the most
state are located at minimum potential. (b-ii and iii) The binned data for the
drift- and diffusion coefficients from original trajectory. The data is lost at
x = 0.5 and x = 2. (b-iv) The control trajectory on the potential map at
iteration=15. (b-v and vi) The binned data for drift- and diffusion coefficients
from controlled trajectory. (b-vii and viii) The local uncertainty for controlled-
and original binned data from x = −3 to x = 2.5. (c) Identified drift- and
diffusion coefficients in the iterations process. The identification of equations
become better and better with increasing the iterations.

identify D(1)(x) and D(2)(x) at iteration 1 as

D̆(1)(x) = 0.175x6 − 10.559x2 − 9.520x+ 0.248,

D̆(2)(x) = −2.477x3 − 6.949x2 − 2.993x+ 2.248.

We find that the identified D̆(1)(x) and D̆(2)(x) from the original data have wrong terms.
However, at iteration 1, we clearly find four maximum probability points, illustrated in
Fig. (5.12-a-i) and we obtain three saddles points. The probability maxima are decreasing
with increasing the iteration, see Fig. (5.12-a-ii). Results from an exemplary trajectory simu-
lated in the presence of a control potential at iteration 15 are shown in Fig. (5.12-b-iv). At this
iteration, the trajectories already cover the whole system quite evenly. The binned data for
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D(1)(x) and D(2)(x) are illustrated in Fig. (5.12-b-v and vi). These binned data are uniformly
distributed in −2 < x < 2. Thus, the local uncertainty of the controlled binned data for the
drift- and diffusion coefficients is smaller than the local uncertainty in the original data in
the region −2 < x < 2, see Fig. (5.12-b-vii and viii). Using ATSBL, we identify the D(1)(x)

and D(2)(x) equations from the controlled binned data at iteration 15 as

D̆(1)(x) = −0.429x7 + 5.048x5 − 15.835x3 + 12.000x− 1.403,

D̆(2)(x) = 1.520.

Both identified equations have the correct terms appearing in Eq. (5.2.2.3) andD(2)(x) = 1.2.
For the identified expression D̆(1)(x), the DIC and MDIC are equal to 2.319% and 6.47%,
respectively. For the identified expression D̆(2)(x), the DIC is equal to 26.667%.

5.2.2.4 Identification of two-dimensional stochastic differential equations

The strategy for automatic iterative sampling optimization suggested above only works for
identification of SDEs in one-dimensional problems. However, the Langevin equation in
Eq. (5.3) can be used to describe a higher-dimensional system. Here, we present a test of
the idea of using a similar sampling strategy for a two-dimensional case. We consider a
two-dimensional system with two variables X and Y for the position of a particle along the
x- and y direction. We consider a two-dimensional potential U(x, y). The potential and the
resulting two drift forces are written as

U(x, y) = x4 − 3x2 − 3xy + y4, (5.16)

gx(x, y) = −∂U
∂x

= D(1)
x (x, y) = −4x3 + 6x+ 3y, (5.17)

gy(x, y) = −∂U
∂y

= D(1)
y (x, y) = −4y3 + 3x. (5.18)

The diffusion coefficient matrix is(
D

(2)
xx (x, y) D

(2)
xy (x, y)

D
(2)
yx (x, y) D

(2)
yy (x, y)

)
=

(
0.3 0

0 0.3

)
. (5.19)

The two-dimensional potential is plotted in Fig. (5.13-a-i). We find that the potential map
has two minima, (−1.4,−1) and (1.4, 1). The saddle point of this two-dimensional potential
is at (0, 0). The two drift coefficientsD(1)

x (x, y) andD(1)
y (x, y) are plotted in Fig. (5.13-a-ii and

iii), respectively.

Using above model, an original two-dimensional trajectory (total number of time steps 1e7)
is numerically calculated with an initial state at (−1.4,−1) and a time step ∆t = 0.002, illus-
trated in Fig. (5.13-b-Left). We find that the trajectory clusters around at the left local minimal
potential point from 2 < x < −0.5 and −1.5 < y < 0. Like in the one-dimensional case, the
data is binned to generate discretized numerical data for D(1)

x (x, y), D(1)
y (x, y), D(2)

xx (x, y),
D

(2)
xy (x, y), D(2)

yx (x, y) and D
(2)
yy (x, y) by using 80 × 80 bins. These binned data are filtered by

using a probability threshold of 5e− 4. The drift- and diffusion coefficients identified using
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Figure 5.13: The identification of two-dimensional stochastic differential
equations. (a-i) A plot of two-dimensional potential U(x, y) shows two local
minimal potential. (a-ii-iii) The two drift equations D(1)

x (x, y) and D(1)
y (x, y) are

plotted. (b-Left) An original stochastic trajectory is shown on the
two-dimensional potential map, and all states are located at the region of left
minimal potential. (b-Middle and Right) The drift- and diffusion coefficients
equation are identified from the original trajectory data. The equations are
shown in the Library by using the automatic threshold sparse Bayesian learning
approach. (c-Left) The controlled trajectory data is plotted on the
two-dimensional potential map, which the trajectory has larger region than
original one. (c-Middle and Right) The identification of drift- and diffusion
coefficients are calculated by the controlled trajectory in the library table.

ATSBL are shown in Fig. (5.13-b-Right). The identified equations are(
D̆

(1)
x (x, y)

D̆
(1)
y (x, y)

)
=

(
1.096x4 − 0.909x3 + 2.965y − 4.160

−3.950y3 + 2.959x

)
,(

D̆
(2)
xx (x, y) D̆

(2)
xy (x, y)

D̆
(2)
yx (x, y) D̆

(2)
yy (x, y)

)
=

(
0.307 0

0 0.310

)
.

Here, we find that the identified expression for D̆(1)
x (x, y) has wrong terms compared with

the real equation. For the identified expression D̆
(1)
y (x, y), the DIC and MDIC are equal

to 1.308% and 1.367%, respectively. The DIC for expression D̆
(2)
xx (x, y) and D̆

(2)
yy (x, y) are

respectively equal to 69.3% and 69.0%.

Next, we employ a two-dimensional one-well potential to control the double-well potential
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at the saddle point (0, 0) in two-dimensional space. The added potential to control sampling
is Uc(x, y) = 3x2 − 0.5y2. The shape of this control potential is the inverse of the saddle
shape of the original potential. Using the same parameter set as in the original data, we
simulate trajectories in the presence of the control potential, as illustrated in Fig. (5.13-c-
Left). We find that this trajectory is spread over a much larger area than in the original data,
where the region is in −1.5 < x < 1.5 and −1.5 < y < 1.5. Using the data-driven model
for identification of SDEs, the binned data are first filtered by using a probability threshold
5e− 4. Then, using ATSBL, we identify the drift- and diffusion coefficients as(

D̆
(1)
x (x, y)

D̆
(1)
y (x, y)

)
=

(
−3.978x3 + 6.016x+ 2.973y

−3.969y3 + 2.977x

)
,(

D̆
(2)
xx (x, y) D̆

(2)
xy (x, y)

D̆
(2)
yx (x, y) D̆

(2)
yy (x, y)

)
=

(
0.301 0

0 0.3023

)
.

We find that these identified equations have the correct terms, see Eq. (5.18) and Eq. (5.19).
For the identified expression for D̆(1)

x (x, y), the DIC and MDIC are equal to 0.497% and
0.90%, respectively. For the identified expression for D̆(1)

y (x, y), the DIC and MDIC are equal
to 0.77% and 0.767%, respectively.

5.3 Discussion

Data-driven approaches for semi-automated inference of governing equations from mea-
surement data are becoming increasingly popular among physicists. The data is usually
recorded as a time-space series of states. The mathematical problem of identifying ordinary
differential equations (ODEs), participial differential equations (PDEs) and stochastic differ-
ential equations (SDEs) can be recast as a linear equation system g = Φw + s, where w are
the coefficients of different terms in the equations and g and Φ are constructed from the
measurement data [39, 40, 174]. Thus, data-driven identification of governing equations es-
sentially results in an inverse problem that is usually overdetermined and possibly ill-posed.
Since the goal is to obtain a simple governing equation, sparse learning approaches with a
threshold have previously been introduced to solve the inverse problem, for example, the
sequential thresholded least squares algorithm [39], TrainSTRidge [40], Stepwise Sparse Re-
gressor [174] and Threshold sparse Bayesian regression [172]. However, these approaches
require the input of at least one parameter, e.g., a regularization parameter or a threshold.

Bayesian methodology can be employed to devise algorithms for generating sparse solu-
tions to inverse problems that do not rely on explicit provision of tuning parameters. Sparse
Bayesian learning can be implemented as an efficient algorithm by using the relevance vec-
tor machine [69, 70]. In the field of compressive sensing, an algorithm, called Bayesian com-
pressive sensing using Laplace priors has gained substantial popularity [215]. Alternatively,
threshold parameters can be automatically estimated by using a training approach [40].
Here, we combine the Bayesian compressive sensing using Laplace priors with the training
method in an approach that we call automatic threshold sparse Bayesian learning (ATSBL),
which is a parameter-free method.

ATSBL can be employed to identify ordinary-, partial- and stochastic differential equations.
Noise in the measurement can drastically impair the inference of differential equations due
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to the presence of high-derivative terms in the library. We test established filtering pro-
cedures employing a neural network implementation with TensorFlow and find that this
approach can improve the robustness of data-driven inference of ODEs in the presence of
noise.

In our data-driven approach for discovery of SDEs, the trajectory data is dealt with as binned
data. To improve the quality of the probability distributions underlying the model-inference
procedure, we filter out highly uncertain binned data by using a probability threshold. The
optimal probability threshold is selected as the corner value on the log-log curve of the total
uncertainty vs different probability thresholds. To our knowledge, this approach is new and
we find that thresholding the probability according to our heuristic significantly improves
the accuracy of the identified SDE. If one can manipulate the studied stochastic system, for
example, in a simulation or in a well-defined experimental environment, one can improve
the precision of the sampled distributions by adding additional potential forces as is done in
“Umbrella Sampling” [255, 258]. To leverage this concept for improving data-driven discov-
ery of SDE, we develop an automatic iterative sampling optimization which employs an au-
tomatically optimized control potential for one-dimensional problems. Combining ATSBL
with iterative re-sampling in the presence of an adaptive potential significantly improves
the accuracy of data-driven identification of SDE.
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Conclusion

The purpose of this thesis is to develop and test advanced data analysis methods for solv-
ing inverse problems in the context of traction force microscopy and data-driven inference
of governing differential equations. The employed new methods allow us to significantly
improve the precision and reliability of the results in both applications.

Ill-conditioned, inverse problems have the characteristic that a small perturbation in the
measurement data leads to large variations in the solutions. The classical approach to solve
this problem is regularization, where the target function is supplemented with penalty terms
that render the solution less sensitive to noise. According to the different penalty terms, reg-
ularization methods can be classified into L2-, L1-, and elastic net regularization. These
approaches require one to provide one or two regularization parameters. These regulariza-
tion techniques can be motivated in a Bayesian framework where the penalty terms result
from prior knowledge about the statistical nature of the solution. The Bayesian perspective,
however, allows one to go much further in that it provides means to estimate the optimal
regularization parameters and can produce solutions with desired characteristics, for exam-
ple solutions with a sparse, hierarchical structure.

The first class of inverse problems that are studied occur in Traction Force Microscopy. Trac-
tion force microscopy is a versatile and perturbation-free method yielding a spatial image of
the forces exerted by cells on elastic substrates. The traction forces are calculated by using
a linear mechanical model between the forces and displacements on the surface of the sub-
strates. We systematically compare the classical L2- and L1 regularization with three other
regularization methods which have not yet been employed for TFM. These three regulariza-
tion approaches are the Elastic Net (EN), Proximal Gradient Lasso (PGL) and Proximal Gra-
dient Elastic Net (PGEN). We find that Elastic Net regularization combines the L1- with L2
regularization and outperforms all other regularization methods with regard to accuracy of
traction reconstruction. Further, we develop two methods, Bayesian L2 regularization (BL2)
and advanced Bayesian L2 regularization (ABL2), for automatic, optimal L2 regularization
in real space. In Fourier space, we combine the robustness of BL2 with the computation
speed of Fourier transform traction cytometry (FTTC) in a new algorithm called Bayesian
Fourier-transform traction cytometry (BFTTC). This BFTTC method is made freely available
as a software package with graphical user-interface for intuitive usage. Using artificial data
and experimental data, we show that these Bayesian methods enable robust reconstruction
of traction without requiring a difficult selection of regularization parameters specifically for
each data set.
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Perspectives for future improvement of TFM perhaps lie in a taylored use of prior distribu-
tions for different applications. We find that Elastic Net regularization, combining L1- with
L2 regularizations, is better than the two methods with regard to accuracy of traction recon-
struction. However, Bayesian Elastic Net algorithms tested in this thesis did not perform
well. In the future, a proper Bayesian Elastic Net regularization algorithm could be devel-
oped for TFM. Such a dedicated algorithm could potentially adapt the weight of different
priors automatically and generate results with superior precision and accuracy. Further im-
provements could result from three-dimensional traction analysis and the incorporation of
additional data dimensions in the calculations of cellular tractions.

The second class of inverse problem we study in this thesis occurs in data-driven discovery
of differential equations. The data-driven approach for the discovery of governing physical
differential equations, ODEs, PDEs and SDEs, is also called symbolic regression and relies
on extensive use of process data to evaluate libraries of mathematical expressions. We de-
velop a new algorithm for solving the sparse, linear problem related to finding the optimal
terms in the library and call the algorithm automatic threshold sparse Bayesian learning
(ATSBL). ATSBL is a parameter free approach in which the regularization parameter is se-
lected by using Bayesian sparse learning approach. Using ATSBL, we can identify ODEs
and PDEs precisely in synthetic test data. For the identification of SDEs, we introduce a
probability threshold to filter out highly uncertain binned data. Our heuristic for finding
an optimal probability threshold is to choose the corner value on the log-log curve of the
total uncertainty versus different probability thresholds. The identification of SDEs is im-
proved by using this probability threshold. Furthermore, to improve data-driven discovery
of SDEs, additional potential forces are employed to manipulate stochastic systems as is
done in “Umbrella Sampling”. For finding optimal perturbations of the stochastic process,
we suggest an automatic iterative sampling optimization which employs an automatically
optimized control potential.

Regarding automated identification of ordinary and partial differential equations from data,
the main issue that remains to be tackled is the fact that most processes are only observed
partially. In our work, we only identify the governing equations from the given complete
measurement data. In reality, much information may be hidden in the data. For example,
imagine a the Lorenz system, where only one coordinate x is given, while the coordinates
y and z are hidden. For this case, the hidden data may be estimated by using Kalman fil-
tering. Such filtering approaches could be combined with sparse inference schemes like
ATSBL. Regarding the data-driven identification of SDEs, we find that the identification is
improved by our probability thresholding procedure. In the future, one may build on this
finding to devise optimal data rejection procedures based on information theory. Further-
more, one may devise optimal protocols for the iterative perturbation of accessible stochastic
processes that facilitate data-driven learing of the underlying equations. The coming years
will certainly see the development of a multitude of novel methods that allow researchers
to generate models automatically from their data, which will speed up scientific progress in
many fields.
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Supplementary material for
Chapter 2

A.1 Implementation of the regularization routines

For L2 regularization in real space, we employ a singular value decomposition and the rou-
tines "tikhonov" and "l_curve" provided by the Matlab package "Regularization Tools" [62].
The use of this package for the traction force microscopy has been described earlier [37, 157].
To perform L1- and EN regularization we minimize well-established formulas [55] using the
convex optimization package CVX [196, 197]. The target functions for L1- and EN regular-
ization are given by

ŵ = argmin
w

[
wTΦTΦw − 2gTΦw + wTw + λ1‖w‖1

]
, (A.1)

ŵ = argmin
w

[
wT
(ΦTΦ + λ2I

1 + λ2

)
w − 2gTΦw + λ1‖w‖1

]
. (A.2)

Comparison of the two formulas shows that EN regularization is a stabilized version of the
L1 regularization. Below, we provides a short Matlab code for L1- and EN regularization.

function F = L1_EN_cvx ( n , X , u , lambda1 , lambda2 )
% This code r e q u i r e s the Convex opt imizat ion package CVX.
% n i s the lenght of the vec tor "w" ; X in the matix " Phi " .
% u i s given vec tor " g " .
% lambda1 and lambda2 are r e g u l a r i z a t i o n parameters ;

a = s i z e (X ) ;
R= eye ( a ( 2 ) )

cvx_begin
cvx_solver sedumi ;
v a r i a b l e f ( n ) ;

% This l i n e i s for L1 r e g u l a r i z a t i o n . Comment out i f not needed .
% minimize ( ( X∗ f−u ) ’ ∗ (X∗ f−u)+ lambda1 ∗ (norm ( f , 1 ) ) ) ;
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% This l i n e i s f o r EN r e g u l a r i z a t i o n . Comment out i f not needed .
minimize ( f ’ ∗ (X ’ ∗X+lambda2∗R)/(1+ lambda2 )∗ f−2∗u ’ ∗X∗ f + . . .

lambda1 ∗ (norm ( f , 1 ) ) ) ;

cvx_end ;
end

A.2 Bayesian Lasso (BL) and Bayesian elastic net (BEN)

As an alternative to the variational Bayes approach, hierarchical models can be solved by
Markov chain Monte Carlo methods. To test this approach in conjunction with complex
models, we employ two models provided as Matlab packages together with Ref. [75]. The
BL is based on the same network structure as the BCSL shown in Fig. 2.4 (b). Furthermore,
we also tested a Bayesian version of the elastic net (BEN) where the network is shown in
Fig. 2.4 (c). Both algorithms perform similarly to the BCSL for very low noise. Here, the as-
sumption of sparsity helps to produce a clear background and allows to distinguish traction
sites clearly. However, traction magnitude estimates are strongly exaggerated. As expected,
the full solution of the models via Monte Carlo sampling makes the performance of BL and
BEN slightly more robust than BCSL in the presence of noise. Overall, the performance of
these methods in the context of TFM is unsatisfactory.
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Appendix B

Supplementary material for
Chapter 3

B.1 An analytical solution for displacements resulting from

a circular traction patch for z ≥ 0

We have provided the analytical solution for the displacement field in z ≥ 0 resulting from
local traction spots as functions of integrals of Lipschitz-Hankel I(1,0;-1), I(1,1;-2), I(1,0;0),
I(1,1;-1), I(2,1;-1), and I(2,1;0). The Lipschitz-Hankel functions are related to Bessel functions
via the integral I(µ, γ, λ) =

∫∞
0
Jµ(at)Jγ(bt)tλe−ctdt. The integrals I(1,0;-1),I(1,1;-2), I(1,0;0)

and I(1,1;-1) are given in Refs. [259, 260]

I(1, 0;−1) =

√
ab

ka
E0(k) +

(a2 − b2)k

4a
√
ab

F0(k) +
c

2a
Λ∗0(α, β)− c

a
,

I(1, 1;−2) =
2(a2 + b2)− c2

6ka
√
ab

E0(k) +
c2(2a2 + 2b2 + c2)− 2(a2 − b2)2

24a2b
√
ab

kF0(k)

− (a2 − b2)c

4a2b
Λ∗0(α, β)− bc

2a2
,

I(1, 0; 0) = − kc

4a
√
ab
F0(k)− 1

2a
Λ∗0(α, β) +

1

a
,

I(1, 1;−1) =
c

2k
√
ab
E0(k)− kc(2a2 + 2b2 + c2)

8ab
√
ab

F0(k) +
a2 − b2

4ab
Λ∗0(α, β) +

b

2a
,

with

Λ∗0(α, β) =

{ Λ0(α, β), a > b

1, a = b

2− Λ0(α, β), a < b

.

Here, Λ0(α, β) is the Heuman lambda function, F0(k) is a complete elliptic integral of the
first kind and E0(k) is a complete elliptic integral of the second kind. k is defined follows

k2 = sin2 α =
4ab

(a+ b)2 + c2
,

sin2 β =
c2

(a− b)2 + c2
.
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I(1, 2;−1) and I(1, 2; 0) are given by a recurrence relation of the following form

I(1, 2;−1) =
2

b
I(1, 1;−2)− I(1, 0;−1),

I(1, 2; 0) =
2

b
I(1, 1;−1)− I(1, 0; 0).

Thus, we have a complete set of analytical expressions for the displacement field. We show
an example with one traction force patch in Fig. B.1 (a). Two different displacement fields ob-
tained by 2D theory and semi-analytical theory, where we evaluate the integrals numerically,
are shown in Fig. B.1 (b). Evaluation of the analytical expressions without use of numerical
integration was found to lead to significant numerical errors.

[n
m

]
0

2
0

=0Analytically calculated displacement at 

semi-analytical theory2D theory

Arti�cial traction at =0

6
0

0
[P

a
]

a b

Figure B.1: Analytical displacement fields around one circular traction patch.
(a) The one circular traction patch is applied on a surface of a substrate and the
magnitude of the traction is 60 Pa. (b) Two different displacement fields are
calculated by 2D theory and semi-analytical theory. Space bar: 5µm.

B.2 Supplementary figures
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Figure B.2: Additional error quantification for the regularization examples
shown in Fig. 2 of the main text. Figures (a)-(e) are the signal to noise ratios
(SNR) and deviations of traction maxixima (DMA) for the same tests as shown
in Fig. 2(c) of the main text.
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Figure B.3: Parameter-dependence of EN regularization error at fixed values of
λ1. (a)-(d) The DTMA and DTMB. (e)-(h) SNR and DTM.
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Figure B.4: Parameter-dependence of PGEN regularization error at fixed values
of λ2. (a)-(d) Error norms DTMA and DTMB. (e)-(h) SNR and DTM.
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Figure B.5: L-curves for the regularization methods shown in Fig. 2 of the main
text. (a) L-curve and GCV function for the classical L2 regularization.
(b)-(c) L-curves for L1- and EN-regularization. (d)-(e) L-curves for PGL and
PGEN.
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Figure B.6: Exemplary traction fields reconstructed from noise-free artificial
data. (a) The artificial data consists of 15 circular traction patterns with random
magnitude (from 0-250 Pa). (b)-(f) Reconstructed traction fields obtained with
the regularization methods L2, L1, EN, PGL and PGEN, respectively.
(g)-(i) Reconstructed traction fields obtained using the complex Bayesian
hierarchical network algorithms BL, BEN and BCSL. Space bar 5 µm.
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Figure B.7: Exemplary traction fields reconstructed with Bayesian methods from
artificial data containing 5% noise. (a) Artificial data as in Fig. ?? (a), but 5%
Gaussian noise is added to the displacements. (b)-(c) Reconstructed traction
from BL2 and ABL2, respectively. (d)-(f) Reconstruction traction using the
Bayesian hierarchical network algorithms BL, BEN and BCSL, respectively.
Space bar 5 µm.
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Figure B.8: Exemplary comparison of errors of ten different methods employed
for reconstruction of artificial data with 5% noise. (a) DTMA with error bars, s.d.
(standard deviation error bars). (b) DTMB with error bars, s.e.m.(standard error
of the mean). (c) SNR with error bars, s.e.m. (d) DMA with error bars, s.d.
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Figure B.9: Comparison of various Bayesian methods for TFM. (a) Image of cell
and displacement field (Green vectors). (b)-(c) Reconstruction using BL2 and
ABL2, respectively.(d)-(f) The hierarchical Bayesian network algorithms BL,
BEN, and BCSL produce very sparse patterns with strongly overestimated
traction. Space bar 25 µm.
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Appendix C

Description of the FastLaplace
algorithm

A sparse Bayesian learning approach called Bayesian compressive sensing using Laplace
priors (BCSL) has been proposed in Ref. [215]. Here, we show the pseudocode for BCSL,
called FastLaplace, which can also be found in Ref. [215].

Function: FastLaplace(Θ, g)
%% Initialize all
γi = 0, λ = 0;
while convergence criterion not met do

Choose a γi (or equivalently choose a basis vector φi);
if q2

i − si > λ and γi = 0 then
add γi to the model;

else if q2
i − si > λ and γi > 0 then

Re-estimate γi;
else if q2

i − si < λ then
Prune i from the model (set γi = 0);

end if
Update Σ and µ;
Update si and qi;
Update λ using Eq. (2.29a);
Update ν using Eq. (2.29b);

end
return w, Σ, γ;
Algorithm 3: Pseudocode for FastLaplace for Bayesian compressive sensing using
Laplace priors (BCSL)
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