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Abstract

In this thesis a data science study of elementary stochastic processes is laid, aided with
the development of two numerical software programmes, applied to power-grid frequency
studies and Dansgaard–Oeschger events in paleo-climate data.

Power-grid frequency is a key measure in power grid studies. It comprises the bal-
ance of power in a power grid at any instance. In this thesis an elementary Markovian
Langevin-like stochastic process is employed, extending from existent literature, to show
the basic elements of power-grid frequency dynamics can be modelled in such manner.
Through a data science study of power-grid frequency data, it is shown that fluctuations
scale in an inverse square-root relation with their size, alike any other stochastic pro-
cess, confirming previous theoretical results. A simple Ornstein–Uhlenbeck is offered as
a surrogate model for power-grid frequency dynamics, with a versatile input of driving
deterministic functions, showing not surprisingly that driven stochastic processes with
Gaussian noise do not necessarily show a Gaussian distribution.

A study of the correlations between recordings of power-grid frequency in the same
power-grid system reveals they are correlated, but a theoretical understanding is yet
to be developed. A super-diffusive relaxation of amplitude synchronisation is shown to
exist in space in coupled power-grid systems, whereas a linear relation is evidenced for
the emergence of phase synchronisation.

Two Python software packages are designed, offering the possibility to extract condi-
tional moments for Markovian stochastic processes of any dimension, with a particular
application for Markovian jump-diffusion processes for one-dimensional timeseries.

Lastly, a study of Dansgaard–Oeschger events in recordings of paleoclimate data un-
der the purview of bivariate Markovian jump-diffusion processes is proposed, augmented
by a semi-theoretical study of bivariate stochastic processes, offering an explanation for
the discontinuous transitions in these events and showing the existence of determin-
istic couplings between the recordings of the dust concentration and a proxy for the
atmospheric temperature.
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Chapter 1

Introduction

Stochastic noise is ubiquitous in physical systems. Its presence embodies a collection
of phenomena: external fluctuations, high-frequency couplings in the system’s elements,
and from a measurement perspective, instrumental noise and uncertainty. Commonly,
noise is considered as a drawback as it can impede the stability or observability of a
system. Yet, the stochastic characteristics carry an enormous scientific and application
value as much of the processes’ intrinsic characteristics manifest themselves through
their noise.

This dissertation touches on modelling and analysis of continuous-time stochastic
processes with applications in energy systems and paleo-climate data. It comprises a
development of non-parametric estimators for continuous-time stochastic processes in
N dimension, as well as the development of a non-parametric estimators for bivariate
Markovian Poissonian jump-diffusion processes. The methods developed and numeri-
cally implemented are applied in power-grid frequency studies and Dansgaard–Oeschger
events in recordings of paleo-climate data.

This thesis begins with a short introduction to the applications discussed in this the-
sis, i.e., power-grid frequency dynamics and paleoclimate data, a prologue to continuous-
time stochastic processes employed, and an overview of the publications included in this
thesis—either published, submitted, or in preparation—with a short abstract of each
publications. The second chapter contains all scientific publications grouped into three
sections. Firstly, a section on data-driven power-grid frequency modelling, where the rel-
evant publications are included [1, 2, 3]. Secondly, a spatio-temporal study of power-grid
frequency augmented with synchronous recordings [4, 5]. Thirdly, a section addressing
fast paleo-climatic transitions, in specific, Dansgaard–Oeschger event in the Last Glacial
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2 Chapter 1. Introduction

Period, and the application of bivariate jump-diffusion processes [6, 7, 8]. The last chap-
ter concludes with a critical examination of the publications as well as an examination
of contemporaneous works and their implications. A note on authorial contributions and
data used and collected during the thesis is found in the appendices.

1.1 Energy systems and power-grid frequency

dynamics

Energy systems, and in particular, power-grid systems are the technical backbone of
modern society. The access to electricity, ubiquitous is the developed world, is central
to the functioning of society, for the most basics human needs to the most advance
technological and industrial applications, rely on the access to electric power [9]. Under-
lying what for many has become a commodity are complex control mechanism ensuring
that electricity is robustly available to everyone [10]. These systems, power-grid systems,
are amongst the most complicated human-made structures, sometimes spanning entire
continents and traditionally operate under strict control mechanisms [11].

Maybe the most remarkable feature of the dynamics of power grids is the emergence
of self-organised synchronisation on vast spatial scales up to thousands of kilometres.
All inertial generators across a power grid rotate with the same frequency (or integer
multiples thereof), at 50Hz in Europe [12]. One curious aspect here is that unlike many
other commodity networks, like gas or water supply, power cannot be easily stored.
Although at a small scale—to operate mobile phones or run a laptop—batteries or other
power storage exist, at the scale of countries or continents, power is generated and
consumed simultaneously. This fact makes these systems unique, as they have to ensure
that the costumers’ desires are met at each instant, i.e., that roughly at any chosen
minute of the day, the power being produced within a power grid is simultaneous being
consumed. Thus, a large market structure exists behind these systems, ensuring that
each producer—be it a large nuclear power plant, a hydro generator, or a collection of
wind turbines—can sell power to the ever-present and ever-changing consumers [13].

Noticeably, the power-grid frequency carries a mark of each of these elements. As
mentioned, in a power-grid system, a nominal angular rotation of synchronous generators
must be ensured [14, 15, 16]. At any moment one expects to be able to withdraw energy
from a power grid—on a local power socket or over a larger power cable—with a fixed
frequency: fifty cycles per second. Now as this frequency is ensured to be at the desired
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nominal frequency by a collection of coupled rotating masses at each power plant, if there
is an lack of power being produced, the rotation of these masses starts slowing down [10].
Likewise, an excess of power production accelerates the rotation of these generators.
These changes of power generation are proportional to the frequency deviations and
these deviations can easily be seen by examining power-grid frequency recordings—one
of the central timeseries analysed in this thesis.

Naturally, to ensure that the power-grid frequency is kept at the desired nominal
value a set of control mechanisms are in place [17]. In some sense, the first one was
already mentioned: Large coupled rotating masses serve as inertia in these systems,
ensuring that the rate at which frequency deviation grow is bounded, thus leaving time
for the remaining control mechanisms to be activated. [18]. Alongside the inertia in the
system, a subset of power producers, mainly fast-reaction gas fired power plants aided
by battery storage, are kept in reserve to add or withdraw power from the power-grid
system to ensure any fast deviation from the nominal frequency is quelled [19]. These
systems act in a manner of seconds in, for example, Continental Europe. They systems
typically react in a manner of seconds and should stop the growth of frequency deviations
in under a minute. his control mechanism is denoted, in the engineering jargon, primary
control. In a language closer to physics, this mechanism ensures only that this large
dynamical systems find a new stable fixed point of operation—yet not necessarily at
the desired nominal frequency operation [20, 21]. One should not forget that coupled
rotating masses can, in principle, rotate synchronously at any desired frequency. Thus,
a secondary (and even tertiary) control mechanism is in place.

Commonly denoted secondary control, this is a set of longer timescale control mech-
anism that are present to ensure that after a large deviation of the power-grid frequency,
the system can revert back to a synchronous rotation of all coupled oscillators as close as
possible to the desired nominal frequency [22]. The control actions, more precisely, the
changes in the power generation of the respective power plants, are proportional to the
integral of the frequency deviation. Unlike the primary control, whose job is solely to en-
sure any deviation is bounded, secondary control is actively the desire to take the newly
obtained stable fixed point of the power-grid frequency after a perturbation and drag it
back until it matches a stable fixed point at the nominal frequency. It the language of
control engineering, primary and secondary control combined form a PI-controller [12].

One should note here that there are several other dimensions to the problem. Not
only frequency needs to be controlled, but power flow between elements of the power-
grid system as well [23]. This, although not discussed, is part both of secondary and
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tertiary control. Moreover, as expected, the interaction of coupled oscillators leads also
to a set of other internal oscillations in these system, denoted intra-area and inter-area
oscillations, referring to their local and more global aspects in a power grid, that need
to be managed [24].

Lastly, what is here discussed revolves solely around the operation of a power-grid
system, i.e., a set of coupled oscillators, around an already stable fixed point [25]. One
should mark that more catastrophic events are possible in power-grid systems, namely
partial or total blackouts [26]. These are complete losses of stability of the system, which,
picking up on the language on network science, are equivalent to losses of connectivity in
these networks [27]. These, mind, can be both physical, in a sense that a transmission line
is broken, as well as simply the decoupling of generators, thus not necessarily stemming
from a physical change. These, thankfully, happen rarely [28].

Modern power-grid systems begun, from the beginning of this millennium, undergoing
a fundamental transition from conventional, fossil based generation, to renewable sources
of energy to mitigate climate change [29, 30, 31, 32, 33]. Maybe the most pronounced one
is the change of centralised to de-centralised power generation [14]. Traditional power-
grid systems are roughly based on a concept of centralised production of energy, at a large
power plant, from which power is distributed, first over a long-distance transmission lines,
next to regional, and lastly to local distributions grids. Due to the technological advances
on both wind turbine and photo-voltaic technology, as of this decade, it is now possible
to generate substantial amounts of power from a single generator of this type. This
however yields an impressive control problem: the scattering of thousands to millions
photo-voltaic and wind turbine units in a grid, whereas the number of dispatchable
generators decreases.

The change in power generation sources implies that the traditionally vertically de-
signed power-grid systems, where power flows from a large producer to a swat of numer-
ous local consumers, now sees power flowing from the bottom up. Every local producer
has the ability—and desire—to sell their energy. This, particularly for the study in this
thesis, adds an element of uncertainty not present in a similar scale before: irregular
and unpredictable fluctuations in power generation. The characteristics of these fluc-
tuations are augmented by the nature of the energy sources, i.e., their volatile power
generation [34, 35]. Unlike conventional power plants, as nuclear or coal-based power
plants, which can deliver a steady and controllable amount of power, renewable ener-
gies are plagued with uncertainty. Wind turbine power generation is entirely dependent
on weather conditions: a lack of wind flow implied a lack of power generation [36, 37].



1.1. Energy systems and power-grid frequency dynamics 5

Likewise, solar power generation, however certain about the time of the day the sun is
shining, is subject to the movement of clouds [38]. This makes solar power generation
as uncertain and volatile as wind power generation.

Compounding this problem is the fact that most renewable energy sources do not
share the same intrinsic relation discussed above between power generation and angu-
lar velocity of a synchronous rotating machines [39]. As mentioned above, the inertial
rotation of synchronously rotating masses plays a crucial role in ensuring power-grid
frequency is kept at a desired nominal angular velocity [40]. Wind and solar power gen-
eration do not possess any intrinsic inertia. Particularly, solar photo-voltaic is a power
generation procedure without any “moving parts” and thus has no rotational inertia.
Most photovoltaic power sources are connected to the grid via simple power-electronic
inverters, which simply follow the grid’s voltage and frequency. Advanced inverter con-
cepts are being developed that strives to mimic the physical relation of power generation
and frequency of synchronous machines to contribute to the stability of the grid. [41,
42].

On a broader spectrum it is conjectured that the ongoing increase of renewable energy
sources of energy felt across the globe will lead to increased fluctuations in power-grid
systems. This is certain at the level of power generation, as it proves to be a problem
already existent. From the point-of-view of power-grid frequency, this rationale is not
straightforward [43]. A reduced amount of inertia in a power-grid system, i.e., a smaller
amount of rotating masses overall, leads to the immediate realisation that stricter control
is needed, to ensure large excursions of the power-grid frequency are quelled within the
agreed allotted time [44, 40]. On the other hand, strict control measures are already in
place, which account for this change of status quo. Nevertheless, this is a pressing issue
for control actions in power-grid systems, as a stable power-grid system is paramount to
the functioning of modern society.

Augmenting this is the presence of fluctuations in power-grid frequency, which, to
this date, has not seen thorough scientific examination. High-frequency ambient os-
cillations, i.e., overall stochastic fluctuations, are ubiquitous in power-grid frequency
recordings [45, 46]. A stochastic element, i.e., what one denoted “noise”, is present in
any physically driven system. This noise element can be viewed as more than just an
additional nuisance in real-world recordings. Thus, instead of filtering it out, one can
examine it, for it can carry some of the more interesting properties of the underlying
physical process. This is the perspective taken throughout this thesis. But in the context
of power-grid frequency what can this noise element represent? This noise is, interest-



6 Chapter 1. Introduction

ingly, an agglomeration of phenomena [47]: It comprises local properties of the location
where a recording in taken; it comprises interactions with (spatially) close fluctuations,
which are possibly due to local effects that propagate to nearby areas, or specific changes
in generation, consumption, faults, etc., that affect the adjacent areas. Note here that
certainty about the actual origin and specific elements that generate the stochastic fluc-
tuations in power-grid frequency is not granted. However, this is not concerning. What
can concern scientific investigation is what one can learn from the characteristics of these
stochastic fluctuations. In particular, what one can learn from power-grid frequency in
relation to other physical phenomena, i.e., what are the statistics of the stochastic fluc-
tuations? Are they correlated to some discernible underlying phenomenon? How do they
grow with external factors? And in comparison between different recordings?

Yet, there are events that one can clearly pin-point in power-grid frequency with
events on energy systems. Notably, the aforementioned market activities, which involve
a set of producers selling power on fixed time slots, in specific at each 15 minutes in
Continental Europe, leads to large deterministic deviations in the power-grid frequency.
Actually, the presence of large control mechanisms serves both as a counter mechanism
to these know and scheduled market activities, as well as sporadic unexpected changes
(e.g. power line failures). These deviation lead to large excursions from the nominal
frequency, which can be distinctly seen each 15 minutes [48].

Moreover, one can distinctly see what is commonly described in the mathematical
sciences as “mean reversion”. This is not surprising. What one observes in power-grid
frequency recordings are small fluctuations around the nominal frequency, i.e., small
excursions away from this nominal frequency, which revert back to the nominal value
due to the elaborate control system and sychrony across the power grid. Moreover,
large excursions do occur—large here can be understood as being considerably larger
than the expected variance of a mean-reverting stochastic process, i.e., in this thesis, an
Ornstein–Uhlenbeck process [49]. Even when these large deviations do occur, this is a
deterministic phenomena, as if one drives the frequency away from the nominal value.
This, as discussed, is equivalent to temporarily obtaining a new fixed stable point, or
in the language on stochastic processes, the mean-reverting drift term is temporarily
changed. Even in these cases one observes the strict phenomenon of mean reversion,
where the frequency fluctuates around a moving drift value.

Examining real-world power-grid timeseries is key to understanding the character-
istics, functioning, and potential problems in power-grid systems. Foremost, as is the
concern of a large part of this thesis, parameter estimation is possible under a stochastic
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description of power-grid frequency. Secondly, a description of power-grid frequency as a
stochastic process can be derived from first-principals in a similar fashion to a dynamical
systems’ approach, yet no clear description—or even explanation—is possible to offer to
the nature of the stochastic fluctuations. This, however, one can motivate directly from
the data, utilising the various timeseries estimators applicable from stochastic process
theory. Thus, one can uncover proxy parameters for the aforementioned primary control,
secondary control, and the stochastic noise. Equivalently, proxy terms can uncover the
market activities behind the generation and consumption of energy. Lastly, embedded
in the physical nature of the “fluctuations of the fluctuations”, rich phenomena of the
strength of diffusion, the propagation of fluctuations in space, and the coupling of spatial
and temporal dispersion can be uncovered. These aspects of power-grid frequency dy-
namics are the central phenomena discussed in this thesis, as evidenced in the scientific
publications it comprises.

1.2 Paleo-climatic transitions and

Dansgaard–Oeschger events

Understanding paleo-climatic events is fundamental to understanding today’s climate as
well as the stages of evolution of the Earth’s atmosphere, ocean, and their interaction.
This naturally can only be achieved via proxy measurements, from rocks and sediments,
ice sheets, corals and fossils, from which one can piece together the conditions and events
of the past [50]. Particularly important for this are the recordings stored in regions of
the planet not anthropically affected, as for example the heart of Greenland. Ice-core
drilling in Greenland has provided the most vivid description of the recent present events,
particularly for the Last Glacial Period. In these proxy recordings a surprising stamp
of very fast transitions are recorded which still puzzle the scientific community, denoted
Dansgaard–Oeschger events [51, 52].

Dansgaard–Oeschger events are particularly abrupt transition of the northern hemi-
sphere temperature, seen across paleo-climatic records from the past 100 000 years [53].
These are abrupt transitions, which can seemingly result in changes of over 6◦ Celsius of
the temperature of the northern hemisphere in a span of less than 40 years. They have,
so far, only been observed in glacial periods. In particular, several proxy temperature
records from the last glacial period, between circa 115 000 – 11 700 BCE, reveal roughly
25 sudden increases in the global temperature which slowly relax back to a global colder
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temperature.

These abrupt transitions, affecting mainly the northern hemisphere, are particularly
visible in paleo-climate records from Greenland’s ice core. Particularly, the laborious
efforts of the scientific ice-core drilling expeditions to the heart of Greenland led of a
plethora of records. A subset of these comprises a collection of stable isotope concen-
tration (Oxygen-18 δ18O, Calcium Ca2+, Sodium Na+) as well as dust concentration,
which serve as proxy for the atmospheric and sea temperature. The concentration of
oxygen-18 δ18O isotope relates directly to the temperature of precipitation or evapora-
tion of a fossil of over a region, i.e., in this case Greenland. Given it is a heavier isotope
than the common oxygen-16, is precipitates faster due to its heaviness, and equivalently,
evaporates slower. Thus it serves as an indicator of the temperature of the water content
of, or surrounding, an object or region. Of distinction are the North Greenland Ice Core
Project NGRIP project [54, 55, 56], the Greenland Ice Sheet Project Two (GISP2), and
the Greenland Ice Core Project (GRIP) [57].

These proxy records serve as the stepping stones to past events, from which one can
uncover distinct phases of the Quaternary glaciation, mostly in the last 400 000 years,
and in particular the ongoing ice age, where mainly in the Holocene modern human
civilisation flourished on the globe. The Quaternary glaciation is permeated with colder,
full-glacial (denoted stadial) and milder (interstadial) periods. The interstadial period
can last several decades to millennia. Daansgard–Oeschger events are fast transitions (in
a climatic scale) between stadial and interstadial conditions.

Noticeably, there is no scientific agreement about the cause or origin of Dansgaard–
Oeschger events. At the beginning of this century, some authors suggested these event
are periodic, roughly happening every 1 470 years [58], yet a view that these events are
Poisson distributed seems more likely [59, 60]. More recent hypothesis, also backed by an
agreement that Dansgaard–Oeschger events are world-wide effects, put weight on a cou-
pled effect between ocean-atmosphere interaction. In particular, Dansgaard–Oeschger
events could be coupled with changes of the Atlantic meridional overturning circula-
tion [61], which manifests in a change in the mixing of the southern and northern water
currents. The exact causal relation between Dansgaard–Oeschger events and changes in
the Atlantic meridional overturning circulation is still unknown.

One interesting task is the examination of paleo-climate records under the purview
of data-driven stochastic models [62, 63]. In particular, due to the clear presence of two
distinct states in the paleo-climate proxy records of the global temperature, stochastic
models with bistable potentials have been proposed [64]. These models often are of-
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ten pre-designed, i.e., carry already a set of underlying assumptions (e.g. Markovianity,
memory components, delayed coupling), but have so far not included explicit discontin-
uous trajectories. Moreover, the explicit functional forms of the drift or mean reverting
terms are given a priori, and a subsequent best-fitting parameter extraction is sought.
This thesis discusses a particular non-parametric estimation of the parameters underly-
ing the stochastic process driving the oxygen-18 and dust records, under the particular
case of jump-diffusion processes.

1.3 Stochastic processes

This thesis is centred on continuous-time Markovian stochastic processes, yet not neces-
sarily continuous processes. An extension of commonly employed Langevin-like stochas-
tic processes with a jump component is presented as

dX(t) = a(x)dt+ b(x)dB(t) + ξdJ(t), (1.1)

where a(x) is the drift strength, b(x) is the diffusion or volatility, B(t) is a Brownian
motion, and J(t) is a time-homogeneous Poisson jump process with rate λ(x, t) and an
amplitude ξ that is normally distributed as ξ ∼ N (0, σ2

ξ ) [49]. This thesis is centred on
this particular choice of Poissonian jumps with Gaussian distributed weights, but the
aforementioned model is extendable to other discontinuous types of jumps, e.g. Lévy
or Beta-distributed processes [65]—naturally caring for the proper derivation of the
relation between moments and parameters of the processes [66]. This model, in this
specific formulation, was initially proposed in Ref. [47], derived in Refs. [67, 38], and
extended to provide a formal derivation of the impact of discretisation as well as a
criterion to discern between pure diffusions and jump-diffusion processes in Ref. [68].

1.3.1 Applications in power-grid frequency studies

For the study of power-grid frequency dynamics, an elementary Langevin-like approach is
offered [49]. More specifically, an Ornstein–Uhlenbeck process is employed as a surrogate
model for power-grid frequency is proposed, i.e., X(t) = ω(t) = 2πf(t), where f(t) is the
commonly used frequency minus the reference frequency of the grid. The drift coefficient
a(X) always features a mean-reversion term a = −θX(t) and possibly other deterministic
contributions. Furthermore, b(x) = σ is the volatility or diffusion coefficient, and B(t)

is a Brownian motion or Wiener process. The jump-like elements are not present in
power-grid models.
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The model was motivated in Ref. [69], where it was proposed for the dynamical
system’s model for a aggregated “bulk” angular frequency in Ref. [44] by incorporating
an ad hoc stochastic uncorrelated “noise” element. In particular, the model is an extension
of a simple swing equation, i.e., a second-order ordinary differential equation, augmented
with a stochastic noise. This approach equates the mean-reverting term θ in a(x) to the
aforementioned primary control, a second term proportional to in the integral over the
frequency to be the secondary control, and a deterministic driver serving as a proxy for
the imbalance of power. The stochastic noise of the process is added ad hoc with the
desired complexity, i.e., so far solely uncorrelated Gaussian noise.

1.3.2 Applications in paleo-climate studies

In the context of paleo-climate studies the application of a bivariate jump-diffusion
process is put forth. In particular, a data-driven derivation under the purview of dis-
continuous stochastic processes is offered for the oxygen-18 isotope δ18O and the dust
recording for the last glacial period, roughly 120 000 to 10 000 years Before the Common
Era (BCE), relating to Dansgaard–Oeschger events in this period. In this format, no
explicit functional form for the drift a(x) or the diffusion b(x) is chosen a priori, these
are extracted via non-parametric estimators. The presence of discontinuous transitions,
i.e., the jump components, is motivated via a study of higher-order Kramers–Moyal
coefficients and their scaling, and previous observation suggesting Dansgaard–Oeschger
events are Poisson distributed.

1.4 Overview of relevant publications

This thesis comprises eight scientific publications, five of which are published, one sub-
mitted, and two in preparation. These are:

#1 [published] L. Rydin Gorjão, M. Anvari, H. Kantz, C. Beck, D. Witthaut, M.
Timme, and B. Schäfer. Data-Driven Model of the Power-Grid Frequency Dynam-
ics. IEEE Access 8, 2020, pp. 43082–43097, Ref. [1].

#2 [published] M. Anvari, L. Rydin Gorjão, M. Timme, D. Witthaut, B. Schäfer,
and H. Kantz. Stochastic properties of the frequency dynamics in real and synthetic
power grids. Physical Review Research 2(1), 2020, p. 013339. Ref. [2].
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#3 [published] L. Rydin Gorjão and F. Meirinhos. kramersmoyal: Kramers–Moyal
coefficients for stochastic processes. Journal of Open Source Software 4(44), 2019,
p. 1693, Ref. [3].

#4 [published] L. Rydin Gorjão, R. Jumar, H. Maass, V. Hagenmeyer, J. Kruse, M.
Timme, C. Beck, D. Witthaut, and B. Schäfer. Open data base analysis of scaling
and spatio-temporal properties of power grid frequencies. Nature Communications
11, p. 6362, 2020, Ref. [4].

#5 [in preparation] L. Rydin Gorjão, L. Vanfretti, D. Witthaut, C. Beck and B.
Schäfer, under the working title Phase and amplitude synchronisation in power-
grid frequency fluctuations, Ref. [5].

#6 [published] L. Rydin Gorjão, J. Heysel, K. Lehnertz, and M. R. R. Tabar. Anal-
ysis and data-driven reconstruction of bivariate jump-diffusion processes. Physical
Review E 100, 2019, p. 062127, Ref. [6].

#7 [submitted] L. Rydin Gorjão, D. Witthaut, and P. G. Lind. JumpDiff: A Python
library for statistical inference of jump-diffusion processes in sets of measurements,
submitted to the Journal of Statistical Software, 2020, Ref. [7].

#8 [in preparation] L. Rydin Gorjão, K. Riechers, F. Hassanibesheli, D. Witthaut,
and P. G. Lind, under the working title Dansgaard–Oeschger events: Change in
stability and jumps modelled via univariate and bivariate jump-diffusion processes,
Ref. [8].

Part of this Doctoral thesis was also the making of Refs. [70, 71, 72] and the software
in Ref. [73], but these four scientific works are not included in this thesis.

Publication #1: Data-driven model of the power-grid frequency dynamics
In this publication an easy-to-use, data-driven stochastic model is designed to gener-
ate exemplary trajectories of power-grid frequency. In the same manner, a set of non-
parametric estimators is offered to retrieve from data the primary and secondary control
mechanisms ensuring balance in power-grid frequency dynamics. A second-order stochas-
tic differential equation is presented, where the short-term primary control (acting in a
scale of a few seconds) is retrieved by extracting the drift coefficient a(x). The long-term
recovery control, the secondary control, is recovered by the deterministic exponential de-
cay of the power-grid frequency trajectories. Intrinsic stochastic noise is retrieve through
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the diffusion terms b(x). Lastly, the flexibility of the model lies in the ability of adding a
deterministic driving function for the power-grid frequency. The balance of power gener-
ation and consumption is, from the point-of-view of a system operator, a deterministic
driver function, where the difference should vanish. Excess or lack of power results in
large deterministic deviations of the power-grid frequency.

The publication offers an explanation of why the statistics of power-grid record-
ings in Continental European are always platykurtic, and conversely the Great British
power-grid frequency recordings are leptokurtic, just as it is possible to do so with any
deterministically driven stochastic system.

Publication #2: Stochastic properties of the frequency dynamics in real and
synthetic power grids In this publication an extended examination of power-grid
frequency recordings is offered for Continental Europe and Great Britain, for the years
2015, 2016, and 2017.

Taking an Markovian Ornstein–Uhlenbeck model as the basis of the analysis, a char-
acteristic damping constant is obtained by analysing the autocorrelation functions of
the data, yielding the relaxation time of power-grid frequency in both power grids. A
study of the increments of power-grid frequency is put forth, where a super-statistical
q-Gaussian (with q 6= 1) is shown to fit the distribution of the increments. A study of the
power spectrum is presented to justify the stationarity of the recordings, two three-point
correlation functions are offered to justify time-symmetry in the data, and an examina-
tion of the Chapmann–Kolmogorov test yields that the processes are Markovian. This
early analysis of power-grid frequency records features a set of simplifying assumptions,
which are critically reviewed in Section 3.1.

Publication #3: kramersmoyal: Kramers–Moyal coefficients for stochastic pro-
cesses In this publication an N -dimensional non-parametric Nadaraya–Watson esti-
mator of the Kramers–Moyal coefficients and conditional moments of stochastic time-
series, to any desired order, is presented. The software is based on numerically efficient
convolutional procedures in the computer language Python. The software was used ex-
tensive in publications #1, #4, #6, and #7.

Publication #4: Open data base analysis of scaling and spatio-temporal prop-
erties of power grid frequencies In this publication a study of the statistical prop-
erties of an extensive data collection of power-grid frequency recordings is put forth.
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The statistical properties of the distribution of the frequency in various grids around
the globe is presented and a scaling of the diffusion coefficient b(x) first presented in
Ref. [69] is confirmed. A subsequent analysis of spatio-temporally distributed recordings
in Continental Europe in 2019, comprised of six synchronised measurements, reveals the
existence of strong correlations of the increments of power-grid frequency time series. A
study of a relaxation time for synchronisation is also presented, yielding a diffusion-like
relation between relaxation time and squared-distance, resulting in a first examination
of the relaxation of fluctuations in power-grid frequency dynamics, which seems to follow
a diffusive behaviour.

Publication #5: Phase and amplitude synchronisation in power-grid fre-
quency fluctuations In this publication a thorough examination of six high-frequency
synchronous power-grid frequency recordings from the Nordic synchronous area is put
forth. A separation of phase and amplitude synchronisation is proposed based on the
distinction of temporal correlation and fluctuation relaxation of the incremental time-
series of the power-grid recordings. Thus the scale of phase synchronisation is found
to take place < 2 second scale whereas the amplitude synchronisation takes place in
2 ∼ 5 seconds. Moreover, phase synchronisation emerges in a linear relation in the spa-
tial separation of recordings whereas amplitude synchronisation emerges diffusively, as
first observed in Publication #4. Additionally, it is posited that the class of diffusive
amplitude synchronisation falls in the category of a super-diffusive process, intrinsically
linked with the temporal correlations of each timeseries, i.e., to their Hurst coefficient.

Publication #6: Analysis and data-driven reconstruction of bivariate jump-d-
iffusion processes In this publication bivariate jump-diffusion process are introduced,
alongside a data-driven, non-parametric estimation procedure of higher-order (up to 8)
Kramers–Moyal coefficients, allowing the reconstruction of all relevant parameters in
a jump-diffusion process. The procedure is validated numerically, presenting the limita-
tions in the presence of coupled processes, the capability of retrieving the jump elements,
and the numerical limitations for short timeseries.

Publication #7: JumpDiff: A Python library for statistical inference of jump-d-
iffusion processes in sets of measurements In this publication a Python library
denoted JumpDiff is presented, comprising of non-parametric estimators to retrieved
a relevant parameters of one-dimensional jump-diffusion processes. The software relies
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of the mathematical methods derived in Publication #3, specialised for jump-diffusion
processes in one dimension. Furthermore presented is a set of second-order corrections to
the Kramers–Moyal operator, represented as the solution of the Kramers–Moyal equa-
tion for discontinuous Markovian stochastic processes via a exponential representation
and approximation of the Kramers–Moyal operator, extending the work in Ref. [74]. The
software includes as well a criterion to discern between pure diffusions and jump-diffusion
processes, following the basic methods introduced in Ref. [68].

Publication #8: Dansgaard–Oeschger events: Change in stability and jumps
modelled via univariate and bivariate jump-diffusion processes In this publi-
cation an analysis of Dansgaard–Oeschger (D–O) during the Last Glacial Period under
the purview of bivariate jump-diffusion processes is presented. A data-driven analysis of
δ18O and dust recordings suggests that there is a change from a bistable to a unistable
potential of the dust count, via an imperfect supercritical pitchfork bifurcation.

Furthermore, the δ18O recording is discontinuous and thus best modelled via a jump-
diffusion model. The aforementioned criteria to discern between continuous and discon-
tinuous stochastic processes is employed to separate the stochastic nature of the δ18O
and dust recordings. Lastly, the coupling of any terms in the bivariate jump-diffusion is
shown to be vanishing, suggesting that the D–O are deterministically triggered.
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2.1 Stochastic analysis and modelling of power-grid

frequency dynamics
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L. Rydin Gorjão, M. Anvari, H. Kantz, C. Beck, D. Witthaut, M. Timme, and B.
Schäfer. Data-Driven Model of the Power-Grid Frequency Dynamics. IEEE Access 8,
2020, pp. 43082–43097, Ref. [1].
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ABSTRACT The energy system is rapidly changing to accommodate the increasing number of renewable
generators and the general transition towards a more sustainable future. Simultaneously, business models
and market designs evolve, affecting power-grid operation and power-grid frequency. Problems raised by
this ongoing transition are increasingly addressed by transdisciplinary research approaches, ranging from
purely mathematical modelling to applied case studies. These approaches require a stochastic description of
consumer behaviour, fluctuations by renewables, market rules, and how they influence the stability of the
power-grid frequency. Here, we introduce an easy-to-use, data-driven, stochastic model for the power-grid
frequency and demonstrate how it reproduces key characteristics of the observed statistics of the Continental
European and British power grids. Using data analysis tools and a Fokker–Planck approach, we estimate
parameters of our deterministic and stochastic model. We offer executable code and guidelines on how to
use the model on any power grid for various mathematical or engineering applications.

INDEX TERMS Stochastic modelling, power-grid frequency, swing equation, control systems, parameter
estimation, Fokker–Planck equation, data-driven model.

I. INTRODUCTION
The energy system is currently undergoing a rapid transition
towards a more sustainable future. Greenhouse gas emissions
are reduced by implementing distributed renewable-energy
sources at ever growing rates in the world [1]. Simultane-
ously, new policies, technologies, and market structures are
being implemented in various regions in the energy sys-
tems [2]. These new market structures are not necessarily
benefiting the stability of the power grid: A control power
shortage in the German grid in June 2019 was potentially

The associate editor coordinating the review of this manuscript and
approving it for publication was Roberto Sacile.

caused by unknown traders exploiting the energy market
structure [3], [4].

The field of energy research itself is quickly developing
and attracting researchers from various disciplines working
towards new control systems, new market models, and new
technologies every year [5], [6]. Regardless of the specific
aspect of the energy system, one element remains unchanged:
The electrical power system and the stability of its frequency
are critical for a stable operation of our society [7].

The power-grid (mains) frequency dynamics mirrors the
balance of supply and demand of the power grid: An excess
of generation leads to an increased frequency and a shortage
of generation leads to a reduced frequency value. The power
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grid is stabilised by controlling the frequency andmaintaining
it at a nominal frequency [8]. But the task of maintaining
a set frequency across an entire power-grid system is not a
simple one: systems vary in size and structure, energy sources
are possibly volatile in their output, as for example are wind
or photo-voltaic generators [9], [10], and the dispatch of
electrical energy and market activity have an impact on the
overall dynamics.

Understanding the intricacies of the frequency dynamics
becomes of great importance, both to control the current
power grid [8], [11] but also for implementing real-time
pricing schemes [12], [13] or smart grids in the future [14].
Solid estimates of fluctuations are essential for example when
dimensioning back-up or control options, such as determining
the capacity of batteries or other energy storage to balance
periods with highly fluctuating demand or times without
renewable generation [15]. Similarly, when establishing new
power grid types, such as smart grids with potentially novel
electricity market structure, the market design should ideally
support the stability of the grid.

While both the power-grid frequency dynamics and the
stochastic nature of the power-grid frequency have been
intensely studied, we require a better understanding of the
interaction of frequency dynamics with both stochastic fluc-
tuations and market behaviour. The dynamics of the power-
grid variables, including frequency, voltage, reactive power,
etc., may bemodelled with arbitrary complexity based on var-
ious models [8], [11], [16]–[19]. Simultaneously, stochastic
modelling of fluctuations within the power grid [18], [20] still
often uses Gaussian noise models [14], [21], [22], while non-
Gaussian statistics [9], [23] as well as deterministic events
caused by trading [24] are rarely included.

Existing literature that explicitly deals with realistic fore-
casts of the power grid frequency often focuses on inverter
control [25] or the power interface between grid layers [26].
Alternatively, forecasts are done for electricity consump-
tion [27] or for renewable generation, such as solar gen-
erators [28]. In contrast, models that predict or even give
stochastic characteristics of the power-grid frequency are
very rare [29].

Here, we propose an accessible and easy-to-use stochastic
model that seeks to describe the dynamics of the power-grid
frequency in a reduced framework combining stochastic and
deterministic factors acting on the power-grid frequency. We
focus on the intermediate time scale of several seconds to few
hours, leaving very short or very long time scale for future
work. Simultaneously, our modelling approach balances the
benefits of realistic case studies, generally applicable and
abstract stochastic models as well as application-oriented
data-driven approaches.

We first review the factors influencing the power-grid fre-
quency dynamics, based on frequency recordings from Euro-
pean grids. Next, we introduce a general stochastic model and
discuss three particular cases of how the model may be imple-
mented. For each case we estimate the system parameters,

such as control strength and noise amplitude using stochastic
theory and data-driven approaches.

We compare the frequency statistics of the models with
real-world measurements to showcase how they reproduce
characteristic features. Overall, our modelling approach is
very flexible and easily applicable to many different power
grids and could be used for planning purposes, e.g. when set-
ting security operational limits or designing markets. We pro-
vide executable code for the model in the supplementary
material.

II. FACTORS IMPACTING THE POWER-GRID FREQUENCY
To construct a model describing the intermediate time scale
dynamics and characteristics of the power-grid frequency,
we must first recall the nature and the intricate details of
the power-grid frequency dynamics, both deterministic and
stochastic, as we observe them in frequency trajectories [30],
see Fig. 1.

FIGURE 1. The frequency dynamics is influenced by both stochastic and
deterministic aspects. The trajectory of the power-grid frequency is
substantially influenced by stochastic effects, as seen by the erratic
motion. In addition, we observe deterministic behaviour: Every
15 minutes (vertical lines) the frequency abruptly decreases and then
slowly trends upwards for the next 15 minutes. The plot uses the
TransNetBW data [30] from the European Central power grid CE, from
January, 10th 2019, 20:45 to 21:45.

The power-grid frequency is not following a simple Gaus-
sian process but displays heavy tails and regular correlation
peaks, see Fig. 2 and [23], [31], [32] for more detailed anal-
ysis. To get a better understanding of the different factors
impacting the grid frequency, we give an overview of these:
First, we review the innate and humanly devised control
systems, continue with the market and power dispatch design
and close the section with a stochastic description of the noise
acting on the power grid.

A. THE FUNDAMENTAL CONTROL SCHEMES
The power supply of the grid is designed so that the frequency
of the alternating current is kept steadily at a fixed nominal
value, i.e., 50 Hz in Europe and many parts of the world,
or 60 Hz in the Americas, Southern Japan and some other
regions. The electrical frequency of e.g. 50 Hz corresponds
to large mechanical generators rotating in synchrony at this
frequency (or integer multiples of it) across each synchronous
region, such as the Continental European grid. How is this
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frequency kept fixed when facing fluctuations or larger dis-
turbances?

Suppose a large generator disconnects from the grid while
the power demand in the region stays constant. The missing
energy cannot be drawn from the grid itself, as it cannot
store any energy directly [34]. Instead, power is first provided
by inertial energy until primary, secondary, and potentially
tertiary control set in to ensure the provision of the miss-
ing power [34]. In the first moments after the disturbance,
the missing power is drawn from the kinetic energy of the
large rotating machines. Their kinetic energy is converted
into electrical energy and the generators are slowed down,
thereby reducing the overall frequency in the grid. This iner-
tial response ensures the system does not drift off from its
designed nominal frequency too rapidly and smoothens any
disturbances. Nevertheless, the generators continue to slow
down. Moments later, primary control activates: Dedicated
power plants, and recently also battery stacks [35], measure
the deviation of the frequency from the reference and insert
additional power into the grid proportional to the frequency
deviation. This power influx prevents a further decrease of
the frequency and stabilises it at a fixed but lower frequency,
which is not desired for operation, as any further problems
might cause the frequency to leave the stable operational
limits [8], [34]. While the primary control compensates for
the missing power, the kinetic energy of the rotors is still
lower than initially and thereby the frequency is not at the
reference value. To restore the frequency back to the reference
frequency an integrative control, secondary control, is neces-
sary. A few minutes after the disturbance, this control fully
restores the energetic state and the grid is brought back into a
new stable state at its nominal frequency (i.e., 50 Hz or 60 Hz,
depending on the grid in question). On even longer time
scales of potentially hours, tertiary control, often operated
manually, sets in [36]. As this tertiary control sets in, primary
and secondary control can be reduced to become available for
further control actions.

Here, we focus on the effects of inertia, as well as pri-
mary (proportional) and secondary (integrative) control in our
synthetic model. The time scales of these three controls are
significantly different, and they functionally react to devi-
ations of different variables of the system: Where primary
control stabilises the grid based on the frequency deviations
of the system, the secondary control balances the total power
to ensure stability based on an integral of the frequency,
i.e., an angle.

As a recent challenge, the replacement of conventional
power generators with renewable generators reduces the
overall system inertia [37] and thereby makes comple-
mentary control mechanisms or virtual inertia increasingly
important [38].

B. ELECTRICITY DISPATCH AND MARKET
While the control schemes keep the frequency close to
the reference for small and unforeseen changes of supply
and demand, an electricity market has been established to

coordinate longer-term power dispatches dealing with large
and predictable variations.

The effective demand acting on the power grid is the
aggregation of millions of consumers throughout the syn-
chronous region. This aggregated demand is continuously
changing over time since consumption during the day tends
to be higher then during the night and industrial activities
during the week lead to higher consumption than during the
weekends [34].

The continuously changing demand has to be met with
sufficient supply of electrical power in the same synchronous
grid. Therefore, power plant operators have to adjust their
generation according to the needs of the consumers. While
some power plants, such as gas turbines, can ramp their
generation up or down very fast, other plants, such as coal or
nuclear power plants, require more time and therefore prefer
to commit generation for longer time periods [36], [39].
Demand response schemes, where consumers shift their
demand to periods of higher generation, bring additional
flexibility to the grid [40].

To reach an economic optimum on who is supplying and
when, power-plant operators bid on spot markets to offer
power generation [36]. This includes a day-ahead market
to fulfil the expected power demand, and an intra-day mar-
ket acting on time scales of few hours to several minutes,
to balance short-term mismatches, amongst other [41]. This
bidding on the market takes place in discrete time-slots: Any
power provided by one operator is provided for a fixed inter-
val, e.g. one hour, half an hour, or 15 minutes, as is often the
case, such as in the European Energy Exchange (EEX) [42].

An important consequence of the fixed intervals of gen-
eration is that it does not perfectly fit the smooth demand
curve. If we approximate a monotonically increasing demand
function (such as during the early morning hours) with a step
function assuming the mean for a given time interval, we will
initially overestimate the demand, which is still growing.
After some time, supply and demand perfectly match but
then the demand surpasses the supply again. This leads to the
balance between supply and demand being approximately a
sawtooth function, see Fig. 3.

Indeed, we also observe the consequences of the intervals
when analysing the frequency trajectory [24] or its auto-
correlation in the Continental European grid. The frequency
displays regular surges and sags approximately every 15 min-
utes, where the supply updates to the new demand interval.
At full hours these effects are more pronounced since the total
dispatch and trading volume is higher at full hours compared
to other 15 minute intervals [43]. Not only the frequency tra-
jectory displays these jumps and sags, see Fig. 1 but also the
autocorrelation function of the power-grid frequency c(1t)
reveals distinct peaks at 15, 30, 45 and 60 minutes, see Fig. 2
and [23], [31].

We will include the market influence by employing a
deterministic power-mismatchmodel in our stochasticmodel.
But more importantly, we can extract vital information by
observing this phenomenon, as we will highlight below.
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FIGURE 2. The power-grid frequency is heavy-tailed and has regular correlation peaks. (a) The frequency histogram displays
heavy tails, which are quantified by a kurtosis κ that is much larger than the Gaussian value of κGaussian = 3. Consistently,
the best-fitting Gaussian distribution (dashed line) does not capture the tails. (b) The autocorrelation function of the grid
frequency decays exponentially within the first minutes, which is a typical behaviour for many stochastic processes [33].
In addition, the autocorrelation peaks every 15 minutes due to trading activity. The plots use the TransNetBW data from
January 2019 [30].

FIGURE 3. The effective power balance approximates a sawtooth function over time. We schematically depict the interplay
between generation, demand and the resulting power imbalance: (a) While the demand curve is approximately smooth,
the scheduled generation approximates the curve using step functions. (b) The resulting power balance is approximately a
sawtooth function with jumps upwards and ramps downwards if the demand rises and ramps upwards and jumps downwards if
the demand decreases. Here, we display all jumps with the same height for simplicity. In our model, we use different jump
heights of the Heaviside and thereby also of the sawtooth function for hourly, half- or quarter-hourly jumps.

C. NOISE
So far, we have introduced the two deterministic elements
of our model: Control in the form of inertia, primary and
secondary control, and electricity trading occurring at fixed
times. We are only missing the stochastic element of the
model, i.e., the noise acting on the system. Noise here is
meant as any form of stochastic fluctuation. Its sources are
plentiful, ranging from demand fluctuations [40], [44] to
intermittency in the renewable generators [9], [45], ther-
mal fluctuations, and others, many of which are typically
unknown [23]. However, the precise origin of the noise is not
essential for our modelling approach. In fact, we only observe
the cumulative effect of the noise in how it influences the
power-grid frequency, regardless whether it originates from
local disturbances or system-wide variations. Aggregating
all sources of noise allows it to be handled as a stochastic
process, see also [32] for more details.

As a first approximation for the noise, we will assume
white Gaussian noise, based on two important observations.
First, Gaussian noise arises naturally in many settings due to
the Central Limit Theorem. In its simplest form it states that
the sum of randomly drawn numbers, in our case the aggrega-
tion of renewable, demand and any other form of fluctuation,
approximates a Gaussian distribution if sufficiently many

contributions are summed up [33]. Second, we note that non-
Gaussian frequency distributions can easily be described by
super-imposed Gaussian distributions, following superstatis-
tics [23], [38], [46], where parameters, such as the standard
deviation change over time. Moreover, the above mentioned
trading intervals are known to contribute significantly to these
tails [31].

If so desired, employing another form of noise is left
open in the model, without any fundamental change of the
model itself. There are plenty of non-Gaussian sources of
noise impacting the power grid, such as jump noise from
solar panels [9] or turbulence from wind turbines [20], [47].
Instead of Gaussian noise, we could include for example non-
Gaussian effects via Lévy-stable distributions or q-Gaussian
distributions [38], [48].

III. DATA-DRIVEN MODEL
Now, we formulate a simple dynamical model for the fre-
quency dynamics that includes all factors influencing the
power-grid frequency. First, we present themodel and explain
how the above-mentioned factors enter the model. We then
discuss special cases of how some parameters could be set
as constants or as time-dependent. We close the section by
proving the theory to estimate the parameters of the model.
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For simplicity, we do not use the frequency f as the vari-
able but the bulk angular velocity ω = 2π (f − fref), with
reference frequency fref = 50 or 60 Hz, i.e., we move into the
rotating reference frame. In this frame, the dynamics of the
angular velocity ω and the bulk angle θ may be modelled in
an aggregated swing equation [49] as

dθ
dt
= ω,

M
dω
dt
= −c1ω − c2θ +1P+ εξ. (1)

The factorM gives the inertial constant of the system and sets
the time scale it reacts to changes. For simplicity, we absorb
it in the remaining constants and setM = 1 in the following,
i.e., c1→ c1/M , c2→ c2/M ,1P→ 1P/M and ε → ε.

The term−c1ωmodels primary control and general damp-
ing acting on the system [16], [34]. The larger the deviation
from the nominal frequency, i.e., the larger ω, the larger the
damping and control force.

The expression −c2θ models the secondary control
[50], [51]. If the system deviates from the nominal frequency,
e.g. because ω > 0 for a long time, then the bulk angle
θ increases more and more and thereby the secondary con-
trol increases and acts as an increasing force to return the
system towards the nominal frequency. We use the simplest
integral control, whereas other secondary control implemen-
tations [50], [52]–[56] might be considered in the future.
Typically, the magnitude of the primary control parameter is
much larger than the secondary control parameter c1 � c2
to implement that primary control acts faster than secondary
control.

The power mismatch is given as 1P. It contains only
the deterministic mismatch between supply and demand.
If generation surpasses consumption, 1P becomes positive
and vice versa. In our market model, we will employ a
time-dependent1P, inspired by empirical power trajectories,
see Fig. 3.

Finally, εξ denotes the aggregated noise acting on the sys-
tem. As pointed out in the previous section, we assume ξ to be
white Gaussian noise, i.e., its time average is zero 〈ξ (t)〉 = 0
and its correlation is zero for non-identical times, i.e., it is a
delta function 〈ξ (t)ξ (t ′)〉 = δ(t − t ′) [33]. Extensions using
correlated or non-Gaussian noise are also possible in the same
framework and can prove very useful if the noise function
or its characteristics are known. From an a priori point-of-
view, employing coloured noise would required an explicit
knowledge of its presence in power-grid frequency systems
and would complicate the parameter extraction.

The model (1) is very general as we have not yet specified
the parameters c1, c2, ε or the function 1P. Note again the
different roles of primary and secondary control: Assume
1P = P0 > 0, this will increase the angular velocity
ω and thereby the angle θ . Without secondary control and
noise, i.e., c2 = ε = 0, the new quasi–steady state becomes
ω∗ ≈ P0/c1 > 0. The full fixed point ω = 0 can only be
restored with an additional (integrative) secondary control.

A. CASES
We consider some special cases of parameter choices for
model (1) here. Theoretically, the model proposed so far
would allow that the three parameters c1, c2, and ε are chosen
as zero or non-zero constants, time-dependent functions, or to
follow their own stochastic process. Similarly, the power mis-
match 1P could be any function, as long as the differential
equation is still well-defined. We review three cases, see also
Fig. 4 for an overview.
The distinguishing factor between those cases is the role

of secondary control c2 and power imbalance 1P: Any non-
zero power imbalance1Pwill be compensated by secondary
control if c2 > 0. This means from a data-analysis it is vir-
tually impossible to distinguish cases where 1P = 0 and no
secondary control is active or1P 6= 0 and secondary control
restored the frequency or a case where a slowly changing1P
restored the frequency on its own without secondary control
active. Complementary, large and rapid changes in the power
imbalance are clearly visible in the frequency trajectory and
always have to be included in the models.
Case A: A simple starting point is to set c1, c2, and ε all as

non-zero constants. By including an active secondary control,
we neglect slow changes in the power imbalance 1P and
assume that secondary control is the main restoring force fol-
lowing a sudden jump. Specifically, we assume that the power
mismatch1P is given as a piece-wise constant function, i.e., a
Heaviside function. This model has the advantage that we can
easily estimate all parameters from the trajectory.
Case B: Alternatively, we may neglect the effects of sec-

ondary control, setting c2 = 0. To balance the frequency,
we then require a balanced power dispatch on average,
i.e., 〈1P〉 = 0. A simple function to realise this, while
maintaining the jumps, which are visible form the frequency
trajectories, is a sawtooth function, i.e., piecewise linearly
increasing or decreasing over time. Similar to Case A, we still
use constant non-zero c1 and ε.
Case C : We again repeat Case A but instead of estimating

the power mismatch 1P from frequency trajectories, we use
historic demand data of Germany, based on data published by
ENTSO-E [57].

B. ESTIMATING PARAMETERS
To generate a synthetic trajectory approximating real data,
we need to estimate suitable parameters for our model. Here,
we present the mathematical background and basics that
allow this parameter estimation as well as illustrations of the
procedure in Figs. 5, 6 and 7. We provide additional guidance
and code on how the estimators can be applied in practice in
the Supplemental Material.

We estimate the parameters of the synthetic model as fol-
lows: The primary control c1 and the noise ε are obtained
from using the first and second Kramers–Moyal coefficient
respectively. Next, the powermismatch1P and the secondary
control c2 are determined from the trajectory at the trading
times.
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FIGURE 4. We consider three different cases to model the power-grid frequency based on the
model (1). In Case A, we apply constant primary and secondary control, white Gaussian noise with
constant amplitude ε and a Heaviside power mismatch 1P . In contrast, Case B uses no secondary
control and applies a sawtooth function for the power mismatch 1P . We still apply a constant primary
control c1 and white Gaussian noise with constant amplitude ε. Finally, Case C uses Case A’s settings
but we extract the jump heights of the Heaviside function from independent historic demand data [57]
and not from the frequency trajectory. As in Fig. 3, we display all jumps with the same height for
simplicity.

1) KRAMERS–MOYAL AND FOKKER–PLANCK
Let us briefly review some relevant stochastic theory nec-
essary to estimate the parameters. The synthetic model (1)
includes stochastic and deterministic dynamics. Assuming
that the deterministic contribution given by 1P and the sec-
ondary control c2 are either very small or subtracted from
the trajectory, we are left with a purely stochastic process
for ω in the form of a Langevin equation. Such an equation
cannot be solved deterministically but we may formulate the
Fokker–Planck equation of the stochastic system instead [33]:

∂p
∂t
= −

∂

∂ω
(−c1ωp)+

ε2

2
∂2p
∂ω2

= −
∂

∂ω
D(1)p+

∂2

∂ω2D
(2)p.

(2)

This Fokker–Planck equation is a partial differential equa-
tion for the probability density function p(ω, t) of the sys-
tem. Solving this Fokker–Planck equation thereby returns the
probability p(ω, t) to observe the system in state ω at time t ,
see e.g. [33] for an introduction to Fokker-Planck equations.

Terms subject to first derivatives are known as drift terms
D(1), while terms subject to second derivatives are called dif-
fusion terms D(2) [33]. Drift terms describe the deterministic
behaviour of the full stochastic system, e.g. the movement
of a particle within a potential or in our case the control
and damping forces acting within the power grid, causes a
‘‘drift’’ towards the stable state. Complementary, the diffu-
sion terms determine the stochastic part of the trajectory.
Random noise makes state of the grid ‘‘diffuse’’ through
the available state space and typically leads to a broadening
of the probability distribution p [33]. We can read off the
drift and the diffusion terms of the angular velocity ω as

D(1)
= −c1ω and D(2)

=
ε2

2 respectively. These drift and
diffusion terms of the Fokker–Planck equation are also known
as the Kramers–Moyal coefficients from the Kramers–Moyal
expansion of the fundamental master equation of the system.
Only this approximation allows us to write the Fokker–Planck
equation [58], [59]. From these coefficients we estimate the
mentioned parameters.

From a data-driven perspective, we can recover the drift
D(1) and diffusion D(2) coefficients strictly from the data
by employing a histogram regression or a Nadaraya–Watson
kernel estimator. This approach is particularly useful when
the fundamental equations of motion are not known but we
also use it here to approximate the functional form of the
Fokker–Planck equation and recover the primary control c1
and noise amplitude ε, as given by (3) and (4), respec-
tively. The drift and diffusion coefficients are the two lowest-
order Kramers–Moyal coefficients. Further information on
Fokker–Planck equations, Kramers–Moyal expansion, and
stochastic modelling is available in [33], [58], [59].

2) ESTIMATING THE PRIMARY CONTROL c1
Having set out the theory of Fokker–Planck equations and
Kramers–Moyal coefficients, we now apply them to deter-
mine the primary control c1, by applying a two-step pro-
cess: We first subtract the deterministic and slow time scale
components from the trajectory and then determine the first
Kramers–Moyal coefficient.

We first remove the driving deterministic characteristics
of the model (1) from any trajectory we analyse. To do so,
we filter the data with a Gaussian kernel filtering, with a
window of 60 seconds, to remove the deterministic trend
and any slow process, such as secondary control, and thus
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FIGURE 5. The primary control c1 is computed from fluctuations around
the trend. To estimate the primary control c1, we first detrend the data by
applying a Gaussian kernel and then compute the drift coefficient. (a): We
display a snippet of the power-grid frequency trajectory from the CE data
from January 2019, as in Fig. 1, alongside with the 60 seconds window
Gaussian kernel detrending, that captures the deterministic and slowly
changing contributions of the power-grid frequency. (b): We extract the
stochastic motion by subtracting the deterministic trend from the
power-grid frequency. What is left is a stochastic trajectory resembling
approximately an Ornstein–Uhlenbeck process. (c): We compute the first
Kramers–Moyal coefficient, known as the drift coefficient, of the now
purely stochastic process. The slope of the drift coefficient is equal to the
primary control −c1.

FIGURE 6. The noise amplitude ε is obtained using the diffusion
coefficient. We display the diffusion coefficient, or second
Kramers–Moyal coefficient around 50 Hz for the CE grid for the month of
January 2019. By taking the value at 50 Hz, indicated on the plot, and by
using relation (4), we obtain the noise ε.

remain solely with the stochastic component of the process.
A window too small (e.g. 5 seconds) would still contain noise
contributions, while a large window (e.g. 300 seconds) leads
to an almost flat signal. The procedure is independent of the
specific driving method (cf. Case A and Case B).

FIGURE 7. Power imbalance 1P and secondary control c2 are
determined from trading peaks. We investigate the frequency trajectory
at a trading peak: The power imbalance 1P is obtained from the initial
slope, i.e., the rate of change of frequency (ROCOF) and the secondary
control c2 from the following exponential decay, see (6). The frequency
trajectory is using the CE data from January 10 2019.

The detrending is illustrated in Fig. 5: The same snippet of
data from Fig. 1 is shown alongside with the Gaussian kernel
detrending. In panel (b) the subtraction of the detrending
on the data yields the purely stochastic process governing
the power-grid frequency dynamics without deterministic
or slow time scale influences. Finally, we extract the first
Kramers–Moyal coefficient in panel (c):

D(1)(ω) =
1
1t
〈(ω(t +1t)− ω(t))|ω(t)=ω〉 = −c1ω, (3)

where1t is the sampling rate of the process at hand, which is
1t = 1 s for our data sets. Furthermore, 〈...|ω(t)=ω〉 denotes
the following: A spatial average of the difference (ω(t+1t)−
ω(t)) is taken at the point of evaluation ω(t) = ω, i.e., at
a particular frequency ω all differences (ω(t + 1t) − ω(t))
are evaluated and the diffusion D(1) is obtained as a function
of ω. Based on our modelling assumptions, we presume this
function to be linear in ω. And, when we apply this to the
real data in Fig. 5, we notice that the numerically extracted
drift term is indeed well described as a linear function with
slope −c1.

3) ESTIMATING THE NOISE AMPLITUDE ε
The noise amplitude ε is unravelled from data by studying
the secondKramers–Moyal coefficient. In our case, we obtain
the second conditional moment as

D(2)(ω) =
1
1t
〈(ω(t +1t)− ω(t))2|ω(t)=ω〉 =

ε2

2
, (4)

where 1t is again the sampling rate of the process and
the empirical D(2)(ω) is assumed to approximately con-
stant, based on our model. Computing the second condi-
tional moment D(2) thereby yields the noise amplitude ε.
Empirically, we note that the de-trending is not even nec-
essary to determine the correct diffusion coefficient. So we
instead compute the diffusion from the original data directly.

We display the diffusion coefficient, i.e., the second
Kramers–Moyal coefficient, as a function of the frequency
in Fig. 6 for the month of January 2019 for the CE grid.
We determine the diffusion coefficient value at 50 Hz and
by using (4) thus determine the noise amplitude ε.
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4) ESTIMATING THE MARKET IMPACT 1P
To determine both 1P and c2, we have a closer look at the
frequency behaviour following a sudden power imbalance.
Assuming that the power imbalance is large enough, we can
neglect the noise amplitude ε ≈ 0 as the dynamics close to
the power jump are approximately deterministic. Before the
power imbalance, we assume that the system is close to the
nominal frequency, i.e., 1P = 0, θ ≈ 0 and ω ≈ 0. Next,
we introduce a power imbalance, e.g. due to trading by setting
1P = P0. The equations of motion then are

dθ
dt
= ω,

dω
dt
= −c1ω − c2θ + P0. (5)

A full solution of this driven, damped harmonic oscillator is
given by

ω(t) =
P0e
−

1
2 t
(√

c21−4c2+c1

)
√
c21 − 4c2

[
et
√
c21−4c2 − 1

]
. (6)

We evaluate the rate of change of frequency (ROCOF) at
the jump time, i.e., at t = 0 to be

dω
dt

∣∣∣∣
t=0
= P0, (7)

and thereby determine the jump height P0, which gives us
the power imbalance 1P, again assuming θ (0) = ω(0) ≈ 0.
Recall that we rescaled all variables with the inertiaM so that
the ROCOF depends on the change of power and the inertia
as expected.

Note, while the solution (6) explicitly used the Heaviside
function with secondary control (Case A), the ROCOF also
determines the power jump in the case of a sawtooth function
(Case B). The reason is that the derivative at t = 0 is
independent of what happens for t > 0 and also does not
depend on c1 or c2.

5) ESTIMATING THE SECONDARY CONTROL c2
The estimation of c2 is only necessary for models that
include it, such as Case A with its simple Heaviside function.
We know how the trajectory of the angular velocity ω, given
by (6), develops following a jump: Initially, the value of ω
increases and then decays approximately exponentially back
to the reference value.

Since the primary control parameter c1 is typically much
larger than the secondary control parameter c2, we make use

of the following approximation:
√
c21 − 4c2 ≈ c1−

2 c2
c1

. Thus
(6) reduces to

ω(t) =
P0e
−t c2c1

c1 −
2c2
c1

[
1− e

−t
(
c1−

2c2
c1

)]
. (8)

For larger times t � 1 s, the second term in (8) decays
much faster than the first term. We can therefore further

approximate the angular velocity ω as

ω(t) ∼ exp
(
−
c2
c1
t
)
, (9)

which allows an estimate of the secondary control c2, taken
we determined the primary control c1 earlier. We only need to
determine the exponent of the exponential decay, as depicted
in Fig. 7. Note that the exponential decay constant does not
depend on which trading interval we analyse. For more robust
analysis, we perform the fits using the decay following hourly
jumps, see also Supplemental Material.

This sequence of parameter estimations allows us to
uncover all underlying parameters of the system directly from
power-grid frequency measurements. In fact, a single mea-
surement of 60 minutes of data already entails a good ground
for estimation but naturally employing as much data as possi-
ble yields more reliable parameter estimations, as well as the
possibility of error estimation in an efficient way.

IV. CASE STUDY: CONTINENTAL EUROPEAN GRID
With the model properly defined, we now show how it
approximates the stochastic behaviour of real frequency
trajectories in Europe. The frequency statistics and also
market setting differ substantially between different power
grids [23]. So, instead of applying each case to all potential
power grids, we showcase it on one power grid example
where the statistics are well approximated.

Hence, we first apply Case A to data from Continental
Europe, Case B to data from Great Britain and finally show
that we can also import and utilize real dispatch data to further
improve the model predictions in Case C.

A. CASE A: PARAMETER EXTRACTION FOR
JANUARY 2019, CENTRAL EUROPE
We analyse power-grid frequency data for the month of
January 2019, using measurements provided by the transmis-
sion system operator TransnetBW GmbH who operates the
German grid in the state Baden-Württemberg [30]. For this
month, we estimate the following parameters:

Central Europe, January, 2019.

ε [s−2] c1 [s−1] c2 [s−2]

0.00105 0.008311 0.000030
For simplicity, we considered the dispatch at the hourly

mark as the reference, as can be seen in Fig. 1 to be the
strongest driver of the system.

Case A: CE P0, January, 2019
at :00 at :30 at :15, :45

P0 [s−2] 0.001641 0.000547 0.000273

Extracting the value, as described, of the1P for the hourly
mark, we considered the half-hour and quarter-hour trading
windows to be 1/3 and 1/6 of the hourly value of 1P.
Notice that there is no limitation in calculating this from
data but the results can prove unreliable given the small
differences in dispatch. Furthermore, to mimic the structure
of the dispatch [24], we take a naïve 6-hour window where
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FIGURE 8. Case A: Heaviside dispatch approximates CE trajectories. We
compare two days of the power-grid frequency of the Central
European (CE) power grid in January 2019 with synthetic data generated
by our model (1). For this particular analysis, we utilise Case A that relies
on a step function mimicking the jumps of the power mismatch 1P . The
four governing parameters: Noise ε, primary c1 and secondary c2 control,
and power mismatch 1P parameters are given in Section IV-A, further
details are given in the Supplemental Material. (a) We plot a snippet of
the power-grid frequency trajectory from the CE data, the model, and the
surrogate model without power dispatch. The 15 minute trading intrinsic
to the model and the data is highlighted with grey lines. (b) We display
the probability density function of the CE data (histogram), the model
data (solid line), and the surrogate model data without dispatch (dashed
line). Standard deviation and kurtosis of each process are indicated in the
legend. (c) We display the autocorrelation of the processes for a time
window of 75 minutes, noting the initial exponential decay and regular
peaks.

the P0 jumps are positive values, followed by an equivalent
6-hour windowwith negative peaks. This should approximate
the daily cycles of human daily activity: The work sched-
ule begins: demand increases; Work schedule ends: demand
decreases; Private consumption at home begins: demand
increases; Night time begins, demand decreases.

Having these parameters at hand, we can now employ our
model (1) to integrate synthetic power-grid frequency trajec-
tories. We employ an Euler–Mayurama stochastic integrator,
with a time sampling of 0.001 seconds, for a total length of
two days, and make use on a step function with changing
values every 15 minutes, as formulated in Case A, to mimic
the power dispatch curve.

FIGURE 9. Case B: Sawtooth dispatch approximates GB trajectories.
We compare two days of the power-grid frequency of the British (GB)
power grid in January 2019 with synthetic data generated by our
model (1). Here, a sawtooth function is used to describe the mismatch in
power 1P , see Fig. 4, Case B. Noise amplitude ε, primary c1 control, and
power mismatch 1P are given in Section IV-B, see also Supplemental
Material for details on parameter estimation. Note that Case B does not
use secondary control. (a) We plot snippet of the power-grid frequency
trajectory from the GB data, the model, and the surrogate model without
power dispatch. (b) We display the probability density function of the GB
data (histogram), the model data (solid line), and the surrogate model
data without dispatch (dashed line). Standard deviation and kurtosis of
each process are indicated in the legend. (c) We display the
autocorrelation of the processes for a time window of 75 minutes, noting
the initial exponential decay and regular peaks. Contrary to the Heaviside
function of Case A, the sawtooth function forces a negative correlation of
the system by first driving the system driven to one state and then
inverting this trend at the trading interval.

We compare the data, the synthetic model based on (1) and
surrogate model without the market structure, i.e., where we
set 1P = 0, in Fig. 8. The introduction of the model without
the market allows us to understand concisely the influence
of the dispatch on the trajectory of the power-grid frequency,
as well as the influence it has on the statistical behaviour of
the system.

Several distinct features of the market effect can be seen
in Fig. 8: While the surrogate only fluctuates randomly close
to the reference frequency, both the real and the synthetic tra-
jectory display surges of the frequency close to the 15 minute
trading windows, see panel (a). These large surges lead to
a non-Gaussian probability distribution of the power-grid
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FIGURE 10. Case C: Realistic dispatch trajectories better approximate the real frequency statistics. (a) We use the real
dispatch trajectories of the demand in Germany [57] to obtain the correct jumps for the Heaviside function (as in Case A) of the
power mismatch 1P and use our model (1) to generate a synthetic trajectory. (b) The synthetic frequency trajectory statistically
resembles the real trajectory for the two day period depicted here. Noise amplitude ε, primary c1 and secondary c2 control were
calculated as described in the Supplemental Material. (c) We display the probability density function of the CE data (histogram),
the model data (solid line), and the surrogate model data without dispatch (dashed line). Standard deviation and kurtosis of
each process are indicated in the legend. (d) We display the autocorrelation of the processes for a time window of 75 minutes,
noting the initial exponential decay and regular peaks.

frequency, evidenced in panel (b). Both the data and the
synthetic model with the market display a high kurtosis
(κ > 3), while the surrogate model without any market is
essentially Gaussian. This indicates that the market activity
has a considerable impact on the distribution of the frequency,
specifically its tails. With the market, the system reaches
critical values much more often than what would be expected
by a normally distributed process. We finally compare the
autocorrelation functions of the power-grid frequency for the
CE data of January 2019, the modelled data, and the surrogate
model in panel (c). We note that the system’s scheduled
trading/dispatch windows generate defined peaks at exactly
15, 30, 45, and 60 minutes. By comparison, a surrogate
system without a market structure displays no correlation
peaks at any time lag.Moreover, it is importance to notice that
all peaks in the autocorrelation function are positive valued,
both for the synthetic and the real data. This indicates that the
system’s dispatch is not an uncorrelated random process but
the direction of the frequency change is correlated: Frequency
surges are more likely followed by more frequency surges
and vice versa for frequency sags. The modelled data mimics
this with accuracy by implementing an over-simplistic yet
successful heuristic argument based on human daily cycles,
as explained before.

B. CASE B: PARAMETER EXTRACTION FOR
JANUARY 2019, GREAT BRITAIN
Analogously, we analyse data from Great Britain for
the month of January 2019, obtained from the British
transmission system operator National Grid ESO [60].

Applying the discussed methods, we derive the following
parameters

Great Britain, January, 2019

ε [s−2] 1P [s−2] c1 [s−1] c2 [s−2]

0.00205 0.00204 0.00606 #
where in this case we set the value of the secondary control
c2 to be zero. Here, we apply Case B, for two reasons: First,
we wish to show that it is also capable of capturing the
frequency distributions of a given grid. Second, the British
frequency trajectory does not display any clear exponential
decay following the trading activity. This is likely caused by
a smaller relative trading volume and a larger relative noise
amplitude [23]. Both effects also contribute to much smaller
autocorrelation peaks at the trading intervals.

We recover the statistics of the British power-grid fre-
quency data with remarkable precision using a sawtooth
function for the power dispatch 1P, see Fig. 9. The GB
data exhibits low kurtosis values (κ < 3), especially when
compared to the Continental European values. Our employed
model captures the process with high accuracy, when we
apply a sawtooth function for 1P (Case B). Notably, for the
case of the surrogate model without market activity, the prob-
ability distribution again approximates a Gaussian distribu-
tion with kurtosis κ = 3. Although the autocorrelation
function exacerbates the peaks, it captures the initial decay
and the trend of regular peaks well. The oversized oscillations
arise since we assumed consistent periods of six hours with
the same jump and ramp behaviour. In turn, the negative auto-
correlation arises as the sawtooth function suddenly changes
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the sign of the market effect. Both assumptions arepart of a
very simple but thereby easy-to use model of the British grid,
which still captures the probability distribution (histogram)
very well.

C. CASE C: USING REAL POWER DISPATCH FOR
CONTINENTAL EUROPE
Finally, we use real dispatch data from Germany, provided
by ENTSO-E [57], to determine the power mismatch 1P in
our model (1) and compare synthetic and real trajectories
in Fig. 10. To this end, we simply set the power mismatch
1P as a Heaviside function based on the real demand for
the German grid, i.e., we use the actual demand and assume
it stays constant for a given 15 minute interval. While the
autocorrelation and the rough shape of the histogram of the
model data closely match those of the real data set, we note a
substantial difference in the computed kurtosis values. This
discrepancy is likely caused by the large variations in the
volume of the dispatched power. Here we use data from
the German grid to allow a 15 minute resolution. However,
the full power dispatch affecting the Continental European
grid is given as the sum over all participating countries and
would likely be smoother and lead to lower kurtosis values.
As noted before, we only require the jump height in1P, here
as the demand, while the generation enters as the simplified
secondary control term −c2θ . We chose the German data
because its time resolution of 1P is 15 minutes, compared
to 1 hour resolution for many other countries. Using such
real demand data breaks the symmetrical and regular six hour
patterns we have been using so far in Cases A and B. Thereby,
we also include larger time scales in the synthetic frequency
data since the real demand naturally includes for example
daily and weekly cycles. Aside form 1P, we use the same
values as in Case A for the other parameters, i.e., noise ε,
primary and secondary control c1 and c2. Comparing the
synthetic trajectory and derived measures with the real fre-
quency trajectory, we not that including the real demand data
improves the approximation further, see Fig. 10. For example
the probability density of the real frequency is even better
approximated by the synthetic data than in Case A.

V. DISCUSSION
We set out to devise a model to generate realistic synthetic
trajectories of the power-grid frequency to be used in simu-
lations of power and control system dynamics and to assist
planning and operation of today’s and future power grids.
To that end, we first showed that the frequency trajectories
show both deterministic and stochastic features, leading to
non-standard frequency statistics: Heavy tails in the prob-
ability distributions and regular autocorrelation peaks pose
challenges to properly model the trajectories.

We proposed a simple model combining the deterministic
and stochastic aspects of the trajectories. Using stochastic
theory and data analysis we were able to extract all essential
parameters of the model from real trajectories. We specif-
ically highlighted how the model approximates probability

distributions and autocorrelation functions of realistic grids.
A more detailed analysis of the mathematical properties of
both real trajectories and the model is presented in [32].

The presented model was designed to be generally appli-
cable, easily extendible and usable, which inevitably requires
several simplifications: It does not capture the very short
time scale when short-term noise, dynamical behaviour of
the rotation machines or switching delays play an important
role. Similarly, the model does also not include the long time
scale with effects such as synoptic or even seasonal cycles,
long-term trading commitment etc. Finally, the model is a
stochastic model, i.e., it is not suitable for forecasting of the
near future but instead it reproduces critical statistical prop-
erties such as large frequency deviations. Conceptually, our
modelling approach bridges power engineering, stochastic
modelling and data analysis. Power engineering serves as the
inspiration to our model building blocks like primary and
secondary control. The universality of stochastic modelling is
used in formulating the Fokker–Planck equation and deriving
both the diffusion coefficient and primary control. Finally,
more data analysis tools are necessary to estimate remaining
parameters such as the secondary control or the strength of
the dispatch or market actions.

Critically, we unveiled how much the market activity
influences the tails of the probability distribution, i.e., the
probability to observe large deviations from the reference.
Comparing models with and without market revealed that
just by including the market activity most large events can
be explained, consistent with earlier findings [31], [43]. This
emphasizes the role the market design has on the stability of
the power grid.

The explicit modelling of the market in the stochastic
model is specifically interesting when designing new market
rules or introducing new business models. As we have seen,
the market has a dramatic influence on the stability-defining
large deviations. Our model can easily predict the effects
on the frequency when shifting from 15-minute to 5-minute
dispatch actions or when introducing real-time pricing. New
proposals of smart grids, the impact of demand-side manage-
ment etc. can all be captured by appropriately modifying the
power dispatch1P of our model. Thereby, we provide guide-
lines how new concepts and devices can be introduced in the
grid without destabilizing it but ideally providing additional
stability.

Concluding, our research offers a tool that can be used
by natural scientists, mathematicians, engineers, economists
or industry practitioners on various questions related to the
electricity system. It can be used to plan future grids, such as
setting up smart grids and microgrids by providing guidelines
on how control parameters should be set to guarantee a certain
frequency quality. Executable computer code and easy-to-
read pseudo-code of the model and the parameter estimation
are provided in the supplementary material.

The model presented here can easily be extended in mul-
tiple directions: We could apply more advanced stochastic
measures to compare the synthetic trajectory with the real
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Listing 1. Load libraries and data.

trajectory, as partially done in [32]. Simultaneously, the fre-
quency dynamics considered here could be extended by volt-
age amplitude dynamics. While we included primary and
secondary control, additional work is necessary if tertiary
control should be part of the model. Furthermore, while we
only considered constant Gaussian noise, this noise could
easily be extended: Either by including explicit non-Gaussian
noise [23], as it is observed fromwind and solar generators [9]
or by making the noise or the control time-dependent, lead-
ing to superstatistical modelling [46]. Finally, the proposed
model and possible extensions should be systematically com-
pared to alternative power grid frequency forecast methods
and their performance versus historic data.

VI. SUPPLEMENTAL MATERIAL
A. PARAMETER EXTRACTION GUIDELINES
Following the mathematical foundations presented in the
main text, we present hands-on instructions on how to extract
the parameters for the example of a month-long recording
of the power-grid frequency in Germany for the month of
January 2019. As we focus mainly on specific characteristics
of the power dynamics, we calculate, strictly from the data,
the noise amplitude ε, the power mismatch at the hourly
stamp 1P, the primary and secondary control amplitudes c1
and c2. The procedure follows in a simple manner:
• Noise amplitude ε: Utilise the second Kramers–Moyal
coefficient, i.e., the diffusion, to extract the noise
strength ε from the timeseries of the data. Use relation
(4) to obtain the value, by taking either the value of the
diffusion at f = 50 Hz or averaging in windows around
f = 50 Hz.

• Power mismatch 1P (for the hourly jumps): Take
the first 10 seconds of data just after the hour, e.g.
from 12:00:00 to 12:00:10. Calculate the slope of the

Listing 2. Noise ε.

frequency increase or decrease in this window with a
linear fit. Given that the process displays jumps up and
down, i.e., excess and lack of power supply, take the
absolute value to obtain the general power mismatch
1P. Average to obtain the average effect.

• Primary control c1: This is a two-step process: Per-
form a Gaussian kernel de-trending of the data, with a
60-seconds window, to remove the effects of the mar-
ket and dispatch, so to capture the system’s stochastic
nature. The choice of a 60-second window ensures one
removes only the deterministic characteristics of the
frequency trajectory: a smaller window will mimic the
noise, a larger window will reflect the overall mean
of 50 Hz (60 Hz) of the process. Utilise now the
first Kramers–Moyal coefficient, i.e., the drift term, to
obtain a negatively tilted line: linearly fit the line around
f = 50 Hz (or 60 Hz) and extract the slope, which is the
drift coefficient of the governing Ornstein–Uhlenbeck
process. The slope is the negative primary control −c1.

• Secondary control c2: This is the last parameter to calcu-
late, and it depends on the primary control c1. Take 900
seconds windows at every hourly jump, similarly to the
above calculations for the power mismatch 1P. Fit (8)
to the data snippets (or (6), although strictly mathemat-
ically correct, it is harder to fit). Obtain the exponential
decay made explicit in (9), i.e., the last term of (8). Input
the previously obtained value for the primary control c1
(step above) to determine teh secondary control c2.

Having concluded these four steps, we possess all the nec-
essary variables to numerically integrate a synthetic version
of the evaluated power-grid frequency.

The simplest and most straightforward method is to imple-
ment an Euler–Mayurama integration scheme. This is a
scheme identical to a regular Euler integration scheme, incor-
porating a noise function ξ . This is done by generating a set
of normally distributed values with mean µ = 0 and variance
σ =

√
τ , with τ the employed time-step of integration.

Stochastic integration requires small time-steps, thus we sug-
gest using at least 0.01 seconds, or better even 0.001 seconds.
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Listing 3. Primary control c1.

From this store only the 1 second recording to accurately
compare with available real power-grid data (if your temporal
resolution is different, match it). Other more integrators, such
as Runge-Kutta integrators for stochastic equations, can be
used to ensure higher precision of the numerical results.

To extract the Kramers–Moyal coefficients there are open
source Python (‘kramersmoyal’) or R (‘Langevin’) packages,
see [61] and [62], respectively.

VII. PSEUDO-CODE
Pseudo-code for extracting the parameters from data, based
on the methodology implemented for the Central European
power grid. As Supplemental Material, a minimal python
code is attached. This was the code used for obtaining the
parameters from the data.

In the following we compartmentalise the code in four
sections, each corresponding to the parameter recovery of
each of the four parameters under analysis: Noise ε, primary
control c1, secondary control c2, and dispatch 1P.

For all cases below, the first step is naturally to import the
data

Import data
• Load data

IF data is recorded at 50 hz: data = data − 50
Retrieving the Noise ε
• Load module km to obtain Kramers–Moyal coefficients
• diffusion, space = km(data, coefficient = 2)
• find f =0 in space
• ε =

√
diffusion(space = 0)× 2

Listing 4. 1P .

Retrieving the primary control c1
• Load module km to obtain Kramers–Moyal coefficients
• Load module filter to obtain the Gaussian kernel
filtering

• data_filtered = data − filter(data)
• drift, space = km(data_filtered, coefficient
= 1)

• find f =0 in space
• fit line to drift around space = 0
• c1 = −slope of fit
Retrieving the dispatch 1P

FOR every hour:
– fit line to data[first 10 secs]
– save slope to record

• Take absolute of record
• 1P = mean(abs(record))

Retrieving the secondary control c2
FOR every hour

– fit curve of (8) to data[900 seconds]
– save exp. decay to record

• c2 = mean(record)×c1
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Listing 5. Secondary control c2.

It is advisable to discard the statistical outliers, since fitting
an exponential decay to the frequency data is especially unre-
liable if the dispatch difference is very small for that period.

VIII. PYTHON MINIMAL-WORKING CODE
Listings 1–5.
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The frequency constitutes a key state variable of electrical power grids. However, as the frequency is subject
to several sources of fluctuations, ranging from renewable volatility to demand fluctuations and dispatch, it is
strongly dynamic. Yet, the statistical and stochastic properties of the frequency fluctuation dynamics are far
from fully understood. Here we analyze properties of power-grid frequency trajectories recorded from different
synchronous regions. We highlight the non-Gaussian and still approximately Markovian nature of the frequency
statistics. Furthermore, we find that the frequency displays significant fluctuations exactly at the time intervals of
regulation and trading, confirming the need of having a regulatory and market design that respects the technical
and dynamical constraints in future highly renewable power grids. Finally, employing a recently proposed
synthetic model for the frequency dynamics, we combine our statistical and stochastic analysis and analyze
in how far dynamically modeled frequency properties match the ones of real trajectories.

DOI: 10.1103/PhysRevResearch.2.013339

I. INTRODUCTION

A stable electric power supply is essential for the function-
ing of our society [1]. The ongoing energy transition towards
renewable generation fundamentally changes the conditions
for the operation of the power system [2]. A better understand-
ing of the dynamics, control, and variability of this highly
complex system is needed to ensure stability in a rapidly
changing environment [3,4].

The power-grid frequency is the central observable for the
control of AC electric power grids, as it directly reflects the
balance of the grid: A surplus of feed-in power increases
the frequency and a shortage reduces the frequency [5]. Ob-
serving the frequency of the power grid can thus provide deep
insights into the dynamical stability of the grid as well as the
operation of the control system and the economic dispatch of
generators. In today’s system strict operational boundaries are
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imposed on the frequency and the rate of change of frequency
[6]. For example, in the Central European power grid (CE),
the stable operational boundary for frequency variations is set
at ±200 Hz . Moreover, if the frequency deviates more than
� f = ±20 Hz, the existing control systems, i.e., primary and
secondary control, are activated to compensate the imbalance
in the power grid and to return the frequency to the nominal
one [7].

These control mechanisms and operational boundaries are
especially interesting when designing new grids involving
concepts such as smart grids [8], prosumers [9], or microgrids
[10], and their interaction with the grid frequency. Further-
more, due to the increased usage of renewable energies, syn-
chronous machines are replaced by power electronics, such as
inverters, posing additional challenges on ensuring frequency
stability [11]. Inverter-based generators do not have any innate
inertia, leading to the frequency of the power grid becoming
more volatile, unless additional stabilizers are included in the
system [12].

A more sophisticated analysis of the power-grid frequency
dynamics is paramount, as all power generators and con-
sumers have to ensure the stability of the grid in the presence
of many effects simultaneously impinging on it. In such anal-
yses it is both relevant to study existing power grids [13] as
well as to evaluate any forecasts and models of the frequency
dynamics expected in future grids [14].

Despite the strict operational boundaries for frequency
variations, numerous different sources of disturbances

2643-1564/2020/2(1)/013339(11) 013339-1 Published by the American Physical Society
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introduce measurable variations of the frequency over time.
Important sources introducing fluctuations to the grid fre-
quency include consumers, renewable energies, and the dis-
patch of power plants via the energy market. Recent research
shows that today’s demand fluctuations contribute substan-
tially to uncertainties in the power balance [15–17]. Moreover,
intermittent renewable energies influence the frequency first
due to their stochastic and often non-Gaussian power feed-in
[18,19], and second due to the decreasing the inertia in the
power grid, as mentioned above. Hence, to operate energy
systems with a high share of renewable energies, a solid
understanding of the impact of fluctuating feed-in on the
grid’s frequency is necessary. Previous studies described the
stochastic behavior of the grid frequency using stochastic op-
timization [20], a simulated robustness analysis [21], Fokker-
Planck approaches [22,23], or tracing the impact of wind feed-
in on the grid frequency [24,25], and the integration of storage
systems to improve the frequency quality in the presence
of wind power [26]. However, the mathematical properties
of the underlying stochastic process have not been studied
comprehensively.

In addition to the aforementioned stochastic disturbances,
trading affects the grid frequency by scheduled deterministic
periodic events, e.g., dispatch actions on the energy market
cause brief jumps of the frequency [13,23,27]. While deter-
ministic disturbances have been observed for various grids
[13,28], no comprehensive model exists to describe the market
interaction with the grid frequency quantitatively. We thus aim
for a dynamical model of the power-grid frequency including
the role of trading and regulator action in the power grid. Such
a model may help especially to plan future grids with a high
share of renewable energies. Volatile renewable energies, such
as wind and solar power, are unpredictable and thus cannot be
used to balance the grid frequency following trading actions.
Instead, it is fundamental to understand the interplay between
the stochastic dynamics of unpredictable fluctuations and the
deterministic characteristics of the energy market.

Here we first review essential statistical properties and
the temporal evolution of the frequency of real-world power
grids. With a special focus on the deterministic fluctuations at
trading and dispatch times. Our approach provides a method
to obtain bountiful information on the power-grid frequency
that can be obtained from simple measurements. Next we
introduce our stochastic model to regenerate the frequency
dynamics and explain how we estimate its parameters solely
from the power-grid trajectory. Finally, we demonstrate how
our model reproduces key aspects of the stochastic and deter-
ministic behavior of real trajectories.

II. POWER-GRID FREQUENCY OVERVIEW

The power-grid frequency displays several characteristic
features, such as non-Gaussian distributions, an exponential
decay of the autocorrelation, and regular impacts by trading
[23]. We extend earlier studies by uncovering other stochastic
properties of power-grid frequency, namely addressing the
questions of Markovianity, linearity, and stationarity of the
data. Specifically, we investigate the recorded frequency from
Great Britain (GB) [29], and from two different regions in
central Europe (CE). The two data samples of CE have

FIG. 1. The power-grid frequency fluctuates over time, with dif-
ferences between distinct regions. Displayed are 3 h of frequency
trajectories on March 1st for Paris, Baden-Württemberg (both CE),
and GB. The data sets belong to 2015, 2016, and 2017, respec-
tively, for Paris, GB, and Baden-Württemberg. Note that the Baden-
Württemberg and Paris data are from different years, while still
displaying similar statistics.

been recorded in Paris (France) [30] and Baden-Württemberg
(southwest of Germany) [31]. The time resolution of data sets
are 1, 10, and 1 s, respectively for GB, Paris, and Baden-
Württemberg. We analyze data spanning over one year: 2015
for France, 2016 for GB, and 2017 for Baden-Württemberg.
The final section addresses the modeling following the data
from Baden-Württemberg. A direct observation of the fre-
quency of the three samples (Great Britain, Paris, Baden-
Württemberg) during three arbitrarily chosen hours in March
reveals substantial differences in the fluctuation patterns, see
Fig. 1. The range of variations in GB is larger than in the
other two frequency data sets. The reason being, the primary
control in GB is only activated for frequency deviations of at
least ±200 Hz, while the other frequency sets belong to the
CE grid, where control is activated at ±20 Hz . Consequently
the CE data set has smaller overall fluctuations and a lower
standard deviation.

In contrast to many random processes, the values of the
power-grid frequencies do not strictly follow Gaussian (nor-
mal) distributions [32,33]. Instead, the distributions display
heavy tails, where large deviations occur much more fre-
quently than anticipated from a normal distribution. In Fig. 2
the frequency and increment frequency distributions of GB
and Baden-Württemberg are shown. As both Paris and Baden-
Württemberg belong to the CE power grid, they have similar
(but not identical) statistical properties. Therefore, for the
rest of this section, we focus our analysis on the frequency
measurements from Baden-Württemberg as an example, and
where we aim to refer to general statistic features, we refer
to the CE grid. Comparing the frequency probability distribu-
tion function (PDF) with the best-fitting normal distribution,
highlights the non-Gaussian properties of the frequency PDF
of CE, which has a kurtosis 4.23, Fig. 2(c). The kurtotsis,
the normalized fourth moment, measures the heavy-tailedness
of a distribution, see, e.g., [34]. Any value of the kurtosis
larger than the that of a normal distribution (κnormal = 3)
indicates heavy tails [35]. The frequency distribution for GB
breaks the symmetry expected from a normal distribution and
exhibits a skewness of 0.191, see Fig. 2(a). The skewness,
the normalized third moment β, measures how skewed, i.e.,
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FIG. 2. Both the PDFs of the frequency and of the frequency increments display non-Gaussian features. We compare the PDF of the
frequency with the most-likely Gaussian fit (blue curve) and q-Gaussian (red curve), for (a) the GB grid and (c) the CE grid evaluating the
Baden-Württemberg time series. We observe an asymmetry (nonzero skewness β) in the GB data with the deformation parameter q = 0.95
and pronounced heavy tails (high kurtosis κ) in the CE data with q = 1.1. Increment statistics in (b) GB and (d) CE grid were carried out for
different time lags. Short-time lag (τ = 100 s ) displays more pronounced deviations from Gaussianity (dashed lines) than larger time lags.

asymmetric, a distribution is. For a normal distribution, the
skewness is zero. Furthermore, based on the shape of the
PDFs, large deviations of the power-grid frequency towards
very low frequencies occur more often in the GB grid, while
deviations towards higher frequencies are more common in
the CE grid. We note that both skewness and kurtosis statistics
depend on the sample size, but the observed non-Gaussian
features are genuine since we do use large data sets with
high sample frequency. Instead of normal distributions, the
observed statistics is possibly better described by Lévy-stable
or q-Gaussian distributions [23].

The frequency increment statistics also display non-
Gaussian features. We estimate the probability to observe
large fluctuations on short timescales by computing frequency
increments, i.e., � fτ = f (t + τ ) − f (t ), see Figs. 2(b) and
2(d), for τ = 100 s and τ = 1000 s, respectively. Next, we
compare the observed increment probabilities with the best
Gaussian fit: Frequency variations of the order of 210 mHz
within 100 mHz occur in the GB frequency data set 105 times
more often than expected for Gaussian processes. For the
Baden-Württemberg data, frequency variations ∼60 mHz oc-
cur 100 times more often compared to a Gaussian distribution.
The increment frequency statistics indicates that the frequency
on the short timescale is particularly subject to large fluctua-
tions. Potentially new control systems or market mechanisms
are necessary to compensate the power imbalance in the
power grid on short timescales. In contrast, the shape of the
frequency and frequency increment PDF become similar for
larger time lags, such as τ = 1000, and the deviation from
Gaussianity is not as extreme as for the short timescale, see
Figs. 2(b) and 2(d).

To obtain more information from the frequency trajectory,
we investigate the autocorrelation and its decay for the fre-
quency data sets. The autocorrelation measures the correla-
tion of a signal with itself at a later time. High correlation
values indicate that a large signal is typically followed by
still a large signal and vice versa. The power-grid frequency
autocorrelation decays approximately exponentially as a func-
tion of the time lag �t for short-time lags, see [23] and
Fig. 3. Several prototypical stochastic processes, such as the
Ornstein-Uhlenbeck process, display a similar decay, follow-
ing precisely an exponential function [36]

c(�t ) = 〈 f (t ) f (t + τ )〉, (1)

cOU(�t ) = exp(−α�t ), (2)

with a damping constant α. While initially the system is highly
correlated with its own history, this damping will cause a
decorrelation. Naturally, distinct power grids will have their
specific characteristic damping constant. A least squares fit
of an exponential decay (2) to the data yields α−1 which
is ∼385 s for the GB grid and ∼312 s for the CE grid
respectively, see Fig. 3(a).

Another feature of the autocorrelation are the regular peaks
every 15 min, which are highlighted with black arrows in
Fig. 3. These peaks are caused by a mismatch of power
supply and demand [13,27,32]. In most electricity grids the
operation of dispatchable power plants is scheduled in 1 h
blocks, where additional (shorter) 30 and 15 min intervals
might exist. Hence the generation curve is steplike, while the
demand varies continuously. From step to step, the power
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FIG. 3. Regular peaks in the autocorrelation demonstrate a mis-
match between power supply and demand. (a) The autocorrelation
c(�t ) of GB and CE for a 1 h lag period. The black arrows indicate
the times of trading/dispatch actions after 15 and 30 min, which
cause the peaks in the autocorrelation. The dotted red line reports
the exponential decay of the autocorrelation in the first 10 min.
The inverse damping constants α−1 are estimated to be ∼385 and
∼312 s for the GB and CE power grids, respectively. (b) The
autocorrelation function c(�t ) of the GB (black) and CE (blue)
data sets for a 24 h lag period. Regardless of regions, the initial
exponential decay is followed by regular autocorrelation peaks. The
black arrows highlight peaks of the autocorrelation after 1 h and and
also after 24 h, related to the periodicity of the frequency trajectory.

balance rapidly switches from positive to negative or vice
versa, leading to large deviations of the grid frequency, which
become visible in the autocorrelation function, see also [14].
In addition, daily routine, scheduled events, etc., contribute
to an increased correlation every hour and 24 h, see black
arrows in Fig. 3(b). Again, based on the specific regulations
of different synchronous regions and their transmission sys-
tem operators, the nature of the autocorrelation differs from
region to region. For instance, the height of peaks in the
GB autocorrelation in Fig. 3(a) is visibly smaller than CE,
which we attribute to a smaller trading and regulatory volume
and overall larger stochastic fluctuation in GB. Consequently,
the deterministic aspect of the frequency dynamics is diluted
in GB.

Finally, to clearly demonstrate the impact of the energy
trading market and related regulator actions on the frequency,
we show the daily average frequency of both GB and CE
in Fig. 4. The daily average frequency for every second is
obtained by averaging over all days of the year. The impact
of the trading and regulation becomes clear, as we observe
sharp frequency jumps upwards or downwards every hour in
both GB and CE. The direction of the jump and thereby the

FIG. 4. Regular market activities induce periodic frequency
jumps. Displayed is the frequency trajectory for (a) the GB grid and
(b) CE grid, averaged over all 366 days in 2016. We notice clear
frequency jumps every hour, consistent with the previous observation
of peaks in the autocorrelation function.

question whether the grid is displaying a shortage or a surplus
of power is not random but also follows a deterministic pat-
tern. The market design is different for various synchronous
grids or different countries within the same grid. For exam-
ple, both the CE and the GB data display a periodicity of
frequency jumps but the frequency dynamics within the CE
grid appears more predictable. Frequency drops occur in the
CE grid in each hour between 20:00 and 00:00, while the
frequency clearly increases between 06:00 to 08:00 and 16:00
to 18:00. This pattern is linked to the slope of the demand
curve. The steplike generation curve anticipates an increase
or decrease of the demand [13]. In case of rising demand,
such as during the morning, an increasing amount of power
is dispatched for each trading interval, see Fig. 5(b). Every
15 min the generation is increased to anticipate the demand
by the consumers. These discrete changes in the supplied
power form the basis for the power mismatch in the synthetic
frequency model discussed below.

III. STOCHASTIC PROPERTIES

Before we introduce a stochastic model for the power
frequency dynamics, we perform some complementary tests
to further characterize the underlying stochastic dynamics. Is
the observed stochastic process stationary or nonstationary?
Do we observe time symmetry, i.e., is the underlying process
linear or nonlinear? Does the process depend on its past or
only on the current state, i.e., is the process Markovian?

Stationary process. To test the reproducibility of the mea-
sured frequency, we first investigate the stationarity for the
data. In the general definition, a probabilistic process is sta-
tionary if the probability of measured variables, in our case
the probability of the frequency, does not depend on the time
[38]. One of the standard methods to test the stationarity
of a data set is analyzing its spectrum. The sharp peaks in
Fig. 6 emphasise the existence of the periodicity on different
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FIG. 5. Discrete power dispatch leads to jumps of the scheduled power supply. (a) We display the real dispatch trajectory of the electricity
supply in Germany in one day in 2017 [37]. (b) The scheduled power jumps every 15 min, as highlighted by the zoom on the two hours
highlighted in red in (a). Overall, the scheduled power supply approximates the changing demand throughout the day. Its discrete nature leads
to jumps of the supply that has to be compensated by control mechanisms.

timescales in the considered data. According to the spectrum,
there are visible periods every 1/4, 1/2, 1, 12, and 24 h in
the grid frequency. This shows the nonstationary of the data
on these timescales. However beyond 24 h, i.e., on longer
timescales, the spectrum is decreasing and consequently the
data becomes stationary.

There are other natural cycles influencing a power-grid
system, such as the weekend–weekday pattern, as well as
seasonal and yearly cycles. However, these cycles do not

FIG. 6. Market activities and long timescales introduce nonsta-
tionarity. We plot the power spectrum of (a) GB and of (b) the CE
data. The spectra exhibit well-determined peaks before they decay
on a large timescale. The dotted vertical lines show 1/4, 1/2, 1, 12,
and 24 h cycles (from right to left).

seem to leave a significant imprint in the spectrum of the
power-grid frequency. Our stochastic model will focus on the
intermediate timescale and hence include the characteristic
daily dispatch and demand pattern, while neglecting longer-
term processes.

Linear process. Next, we investigate if there is any nonlin-
earity in the recorded power-grid frequency. For this purpose,
consider the three-point autocorrelation of the frequency data
as a measure of the time asymmetry in the data. If a time series
is asymmetric in time, it is also nonlinear [38]. The following
relations have been suggested to calculate the three-point
autocorrelation for a data set [38]:

LT 1 = 〈 f (t )2 f (t + τ )〉 − 〈 f (t ) f (t + τ )2〉, (3)

LT 2 = 〈[ f (t ) − f (t + τ )]3〉/〈[ f (t ) − f (t + τ )]2〉, (4)

where LT stands for linear test. A linear, and therefore time-
symmetric, trajectory has both LT 1 and LT 2 sufficiently close
to zero. Checking the validity of our results for a realistic
process, we compare the original data to a surrogate time
series, that provides a reference point of LT 1 and LT 2 for
a linear process. To generate the surrogate time series, we first
take the Fourier transform (FT) of the original data and then
randomize the phases. Finally, we employ an inverse FT to
obtain the surrogate data. With the described procedure we
suppress any nonlinearity in the process, and therefore the
surrogate data includes only the linear characteristics of the
considered data [39]. The original data is linear if the LT
result of the original data lies within the value range of the
LT results of the ensemble of surrogate data. Here, instead of
displaying the full ensemble of surrogate data in Fig. 7, we
have shown just an example for a surrogate data to avoid to
obscure the figure. Comparing the LT 1 results of the surrogate
data sets with the LT 1 of the original data sets displays that
the qualitative behavior of both are equivalent, entailing that
the processes approximately follow linear characteristics, for
both the GB and the CE data sets, as seen in Fig. 7(a). Looking
more closely at the LT 1 for the CE surrogate data, which only
includes the linear characteristics and fluctuations, we note
that its deviation from zero are larger than LT 1 for the original
CE data. Investigating the value of LT 2 for GB also confirms
the linear characteristic of the data set. As the LT 1 and LT 2
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FIG. 7. The frequency trajectories display small nonlinear effects. (a) The LT 1 results for the GB and CE frequency measurements. The
dashed lines show the LT 1 results for the surrogate data sets. The surrogate results act as a reference case of a linear model. Comparing
the results of the original data with surrogate ones, we conclude both GB and CE are approximately linear. (b) LT 2 results for the CE data.
Surrogate (dashed black) and original data (solid blue) do differ more than when using LT 1. This difference and the periodicity in LT 2 are the
signature of small nonlinear effects.

results for GB are the same, we only show the LT 1 results.
However, for the CE data set, LT 2 indicates that the data
might not be strictly linear but displays small nonlinearities,
as seen in Fig. 7(b). As shown in Fig. 3, the effect of the
market activity in CE is more regular and more severe than
in GB, therefore we suspect that the nonlinearity in CE data is
caused by the regular jumps in the frequency trajectory. When
devising our model, we will therefore approximate the weakly
nonlinear process as linear.

Chapman-Kolmogorov test. A fundamental property of
stochastic processes is whether future states only depend on
the current state or whether they have memory. In other words,
whether the process is Markovian or not. A well-known
approach to evaluate whether a process is Markovian is the
Chapman-Kolmogorov test [36]. According to the Chapman-
Kolmogorov test, the conditional PDFs of Markovian pro-
cesses obey the following equation:

p( f3, t3| f1, t1) =
∫

p( f3, t3| f2, t2)p( f2, t2| f1, t1)df2, (5)

where t3 > t2 > t1. To test the Markovianity for the data,
instead of employing directly Eq. (5), one considers its 2D
and 3D conditional PDF. As shown in Fig. 8, p( f3, t3| f1, t1)
and p( f3, t3| f2, t2; f1, t1) match approximately, implying the

power-grid frequency is mostly Markovian. Any stochastic
model for the power frequency should therefore be Markovian
as well.

IV. STOCHASTIC MODEL

We now introduce a synthetic model for the power-grid
frequency as a stochastic, mostly linear, and Markovian pro-
cess. The stochastic model presented here aims at reproducing
essential features of a power grid, as well as its statistical
characteristics, and consists of three independent systems:
First, the intrinsic deterministic dynamics of the power grid,
including primary and secondary control. Second, it embodies
as well a stochastic signal or noise, as evidenced by the
aforementioned frequency trajectories [27]. Third, we model
the sudden power imbalance arising after the dispatch actions
by implementing an appropriate deterministic function: We
make use of historic dispatch data and apply it using a a step
function of the power. Other functions, such as artificial steps
or sawtoothlike functions are also possible.

Instead of the actual frequency, we use the bulk angular
velocity relative to the reference frequency of 50 Hz, ω =
2π ( f − 50 Hz) to express our model. Contrary to network
analysis on power grids [40,41], we have only access to
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FIG. 8. The Markovian nature of the real data is confirmed by a Chapman-Kolmogorov test for (a) the GB grid and (b) the CE grid using
the Baden-Württemberg data set. The proximity of the contour lines of p( f3, t3| f1, t1, f2, t2) (red contour) and p( f3, t3| f1, t1) (colored contour)
show the validity of Chapman-Kolmogorov test for the frequency data sets. The time t1 is chosen to contain ten data points to show the contours
clearly. Next, the times t2 and t3 are multiples of t1, chosen as 2t1 and 3t1, respectively.
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FIG. 9. All terms of the synthetic model (6) are necessary to reproduce the frequency trajectory. We plot the angular velocity ω as a function
of time when using the synthetic frequency model (6) but setting individual parameters to 0. Parameters are chosen for pure illustrative purpose
and we set ω(0) = 0.1 as an initial condition. (a) Including only primary control leads to a pure exponential decay of the angular velocity.
(b) Adding nonzero noise ε, we recover an Ornstein-Uhlenbeck process. (c) Including a step function for the power imbalance �P leads to a
continuously drifting Ornstein-Uhlenbeck process. (d) Finally, including secondary control guarantees that the angular velocity returns back
to the reference. Parameters are ε = 0.001/s2, c1 = 0.005/s, c2 = 0.00003/s2, �P = 0.004/s2 at every hour and half or a quarter of it every
30 or 15 and 45 min, respectively.

frequency measurements on the global scale and therefore
average over all nodes to obtain the averaged (bulk) fre-
quency and angular velocity [42] ω = 1

M

∑N
i=1 Miωi, where

M = ∑N
i=1 Mi is the total inertia of all nodes and N is the

number of nodes in the power grid. Typically, the frequency
at each node is very close to the bulk frequency throughout
the grid, with fluctuations indicating the gross power balance.
Notable exceptions are high-frequency disturbances, which
are typically localized [43,44], or interarea oscillations, where
energy is oscillating from one part of the grid to another one.
The synthetic model of the frequency dynamics is discussed
in detail in [14]. It is given as a linear stochastic differential
equation:

dω

dt
= −c1ω − c2θ + �Pext + εξ, (6)

with bulk angle θ and its derivative dθ/dt = ω. Furthermore,
�Pext is the exogenous influence on the power balance, i.e.,
the trading or dispatch impact of the power imbalance, ε and
ξ are the noise amplitude and Gaussian white noise function,
respectively. Finally, c1 is the magnitude of the fast-acting
primary control, while c2 is the magnitude of the secondary
control which acts slower and lasts longer than primary con-
trol. We illustrate the contribution of the different terms of the
synthetic model (6) in Fig. 9.

The full model is displayed in Fig. 9(d): In case of an
abundance of generation, i.e., a sudden positive �Pext, the

frequency increases above the reference (50 Hz ). The primary
control c1 mitigates the sudden rise of the frequency and
quickly stabilizes the frequency, but not at the nominal value
of 50 Hz . Subsequently, the secondary control slowly restores
the frequency back to its reference of 50 Hz . According to the
time schedule of control systems, we assume that the primary
control acts faster than secondary control, and consequently
c1 � c2 [45,46].

Furthermore, the nature of the dispatch structure �Pext

must be specified. The generation of each power plant (the
dispatch) is rapidly adapted by the operators, e.g., based on
trading at the European Energy Exchange. As discussed in
detail at the end of Sec. II, the operation of dispatchable power
plants is scheduled at fixed intervals. As we have shown in
Fig. 5 the power generation can increase or decrease every
15 min, which we model approximately as a step function,
with potentially different step sizes at the 1 h, 30 min, or
15 min intervals. On the other hand, data of power generation
in different regions or countries are generally available, and
can be implemented directly in the model. In the model
presented here, we extracted the power generation in Germany
for the equivalent month of December 2017, and used this as
the power balance �Pext [37].

Before we compare results of the synthetic model with the
real data, we need to determine suitable parameters. Details
are given in [14] on how to estimate the parameters from
a given frequency trajectory. In short, the noise amplitude
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TABLE I. The parameters for the synthetic model for CE, De-
cember 2017.

ε (s−2) c1 (s−1) c2 (s−2)

0.00107 0.00915 0.00003

ε is estimated based on the stochastic fluctuations around
the observed frequency trajectory, while the power imbalance
�Pext is directly read from the rise or sag of the frequency at
the scheduled time points of dispatch, which are proportional
to the missing or exceeding amount of power. (Notice that in
our case we include the real power generation from Germany
for December 2017, thus circumvent extracting the power
generation �Pext from the data.) Primary control c1 is recov-
ered by studying the process’ affinity to revert its trajectory
to the dispatched power and secondary control c2 is estimated
from the frequency recovery rate to the nominal value after a
scheduled action [14].

V. QUANTITATIVE COMPARISON BETWEEN
MODEL AND DATA

To evaluate the stochastic model described above, we
generated one month of synthetic data with a 1-s resolution,
mirroring the CE data from December 2017. The parameters
for the synthetic model [14] are estimated from the 1-s reso-
lution data series provided by [31] and their values are shown
in Table I. The data for the power generation for the month of
December 2017, in Germany, can be found in [37].

Now we repeat most of our statistical and stochastic anal-
yses to compare how well the synthetic model reproduces
the original data. First, we note that the general shape of
the PDF [see Fig. 10(a)] and autocorrelation [see Fig. 10(b)]
do agree well between the model (yellow) and the empirical
data (black). Both the model and the data display heavy tails,
i.e., the aforementioned deviation from Gaussianity. Further-
more, the autocorrelation function of the synthetic model
captures the regular peaks, due to the changing dispatch.
The decay of the autocorrelation function is approximately
described by the current model. Both results emphasise the
enormous impact of the energy market activity and dispatch
structure on the dynamics and stability of the power system.
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FIG. 11. Chapman-Kolmogorov test confirms the Markovian na-
ture of the synthetic model. The test used 1 month of synthetic CE
data generated by (6).

Consistent with our modeling assumptions, we find that
the synthetic model is Markovian, based on a Chapman-
Kolmogorov test, see Fig. 11. Similarly, we do observe that
both LT 1 and LT 2 results show that the synthetic model
has compatible characteristics with the real one, i.e., while
the LT 1 reports a linear process, LT 2 results show a small
nonlinearity in the synthetic, cf. Fig. 12. As we discussed in
Sec. III, this nonlinear behavior is likely linked to the regular
trading in the CE power grid.

We again emphasise that our model addresses the dy-
namics on the intermediate timescale of the frequency, i.e.,
approximately 30 s to a few hours. On shorter timescales, our
model neglects: (i) dynamical behavior of rotating machines,
(ii) nontrivial stochastic noise, (iii) network dynamics, and
(iv) momentary reserve vs primary control. Moreover, the
switching in trading is not instantaneous as we have assumed
in the model. Similarly, our model does not include all effects
acting on larger timescales, for example, (i) feed-in of wind
and solar power, which determines how much inertia exists
in the system and how much the generation side fluctuates,
and (ii) dispatch of power plants determined on the spot
market, such as the European Energy Exchange (EEX). This
is especially relevant for areas where no historic market data
are available or forecasts are attempted. In order to capture
these effects, we would need a full fledged market model plus
meteorological input for the weather data.

FIG. 10. The synthetic model captures important features of the real data, including trading peaks and heavy tails. (a) The probability
distributions of the frequency data from CE in 2017 (black), compared to our synthetic model (yellow). Both display distinct heavy tails with
kurtosis κ > 3. (b) The autocorrelation function of the frequency initially decays and then displays regular peaks at the trading intervals.
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FIG. 12. The synthetic model is approximately linear. We apply
the linear tests on the time series generated by the synthetic model:
LT 1 shows linear characteristics for the CE data set, however LT 2
reports a small nonlinearity also found in the real data of the CE
power-grid frequency.

The spectral analysis and the increment statistics of the
synthetic data are shown in Fig. 13. Similarly to Fig. 2, in
Fig. 13(a) the frequency increment statistics of the generated
data also display non-Gaussian features on short timescales
as the real data. The spectrum of the synthetic frequency tra-
jectory displays several pronounced peaks, which are mostly

FIG. 13. Increment and spectral analysis of the synthetic model
are consistent with the real data. (a) The increment statistics of the
synthetic data shows non-Gaussian characteristics similar to the real
one. (b) The spectrum of the synthetic frequency trajectory reports
large peaks at the trading times, while it decays to zero for longer
timescales. The dotted vertical lines show respectively, 1/4, 1/2, 1,
12, and 24 h from right to left.

consistent with the trading times of the model, i.e., 1/4, 12,
and 24 h (cf. Fig. 13).

VI. DISCUSSION

In summary, we have presented an analysis of the statis-
tics of power-grid frequency dynamics, with an emphasis on
nonstandard behavior. In particular, we have shown the non-
Gaussian nature of the power-grid frequency fluctuations in
the aggregated and increments statistics, which includes heavy
tails. Furthermore, we have demonstrated that the power-grid
frequency trajectory is adequately described as a Markovian
process and that it shows small nonlinear effects. Regulatory
and trading events introduce some distinct periodicities in
both autocorrelation and spectrum of the data sets. As we
have mentioned before, the trading also has an obvious effect
on the tails of frequency PDFs, or in other words, it is the
source of non-Gaussinaity in the measured data [27]. Finally,
based on the observed properties, we have constructed a
synthetic model that captures not only the aggregated statistics
in terms of the histogram but also qualitatively reproduces
the observed autocorrelation decay, correlation peaks due to
market activity, increment statistics, and spectral properties
of the real data [14]. The model is well suited to under-
stand the energy-market effects on power-grid frequency on
intermediate timescales and goes beyond previous studies
focusing on a description [13,27] of trading or a stochastic
theory [23]. We here focused on a statistical and stochastic
analysis of real-world frequency dynamics, with a comparison
to the presented model. The analysis of the synthetic model is
consistent with our modeling assumptions, in that it is approx-
imately Markovian and displays small nonlinear and periodic
market effects. We should emphasise here that the observed
heavy tails of the frequency distributions arise mainly due to
trading actions, impacting not only the frequency temporally
close to the market action but also several minutes later. This
is clear since we only applied Gaussian noise to an otherwise
linear dynamics. Only the deterministic trading actions can
therefore cause the non-Gaussian properties. The spectral and
increment properties of the synthetic model also approximate
the original real-world data, which confirms again the ef-
fect of the trading market on the frequency dynamics. It is
worth to reiterate that the presented model is conceptually
simple, easy to implement, and includes a minimum set of
adjustable parameters. Therefore, we explicitly did not model
the machine dynamics, noise on very short timescales or a
detailed market and dispatch model. Some alternative model
approaches, involving more fitting parameters are explored
in [14].

Concluding our analysis of power-grid frequency dynam-
ics and the stochastic model we presented, including a struc-
tured comparison, may help to better understand the interplay
of the internal dynamics and external disturbances of electric-
power systems and to develop improved simulation models.
A thorough understanding of this interplay is a prerequisite
for the design and optimization of future electricity markets,
as well as regulatory and control schemes. For instance,
the current market design in the continental European grid
regularly causes substantial frequency deviations when the
dispatch is adjusted every 15 min such that primary control
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has to be activated on a regular basis. A smoother change
of the dispatch could reduce these frequency deviations and
reduce stress onto the primary and secondary control system
[13]. Alternatively, frequency regulations could be adapted
in a way that the typical frequency deviations due to the
changing dispatch are tolerated while exceptional cases are
identified and handled by the control system. Our structured
analyses (Markov, stationary, and linearity properties) and
model may offer a powerful and versatile framework to
study these questions, in particular because the model, while
still simple, simultaneously captures essential features of the
interplay of internal dynamics, control, and market activity.
The presented analysis and modeling framework can thus
contribute to the design of future power system, reducing the
necessity for control actions and saving costs.

The model can further be used to assess the frequency sta-
bility of future power-grid structures, including in particular
microgrids [8] or low-inertia grids [12]. Traditional dynamical
stability analyses focus on local and global stability of fixed
points and the impact of large isolated disturbances such as
the sudden shutdown of the power plant. In comparison, the
impact of ongoing stochastic disturbances on grid stability
has received less attention. As evidenced in this study, the
regulatory system and market design may have played an
important role for these external stochastic effects.

We kept the model as simple as possible to reproduce key
features of the frequency time series such as the histogram and
the autocorrelation. Future research could naturally extend the
model to better match the spectrum or long-time autocorrela-
tion. Furthermore, one could investigate particular intervals of
the power grid trajectory, e.g., high- vs low-demand intervals,
such as weekdays vs weekends. Additional stochastic investi-
gations could further quantify the agreement between real data
and the synthetic model, e.g., by investigating higher-order N-
point statistics, going beyond our current two-point statistics
(increments).
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Summary

A general problem for evaluating Markovian stochastic processes is the retrieval of the mo-
ments or the Kramers–Moyal coefficients M from data or time-series. The Kramers–Moyal
coefficients are derived from an Taylor expansion of the master equation that describes the
probability evolution of a Markovian stochastic process.
Given a set of stochastic data, ergodic or quasi-stationary, the extensive literature of stochastic
processes awards a set of measures, such as the Kramers–Moyal coefficients or its moments,
which link stochastic processes to a probabilistic description of the process or of the family
of processes (Risken, 1996). Most commonly known is the Fokker–Planck equation or trun-
cated forward Kolmogorov equation, partial differential equations, obtained from the Taylor
expansion of the master equation.
Of particular relevance is the growing evidence that real-world data displays higher-order (n >
2) Kramers–Moyal coefficients, which has a two-fold consequence: The common truncation
at third order of the forward Kolmogorov equation, giving rise to the Fokker–Planck equation,
is no longer valid. The existence of higher-order (n > 2) Kramers–Moyal coefficients in
recorded data thus invalidates the aforementioned common argument for truncation, thus
rendering the Fokker–Planck description insufficient (Tabar, 2019). A clear and common
example is the presence of discontinuous jumps in data (Aït-Sahalia, 2002; Anvari, Tabar,
Peinke, & Lehnertz, 2016), which can give rise to higher-order Kramers–Moyal coefficients,
as are evidenced in Gorjão, Heysel, Lehnertz, & Tabar (2019) and references within.
Calculating the moments or Kramers–Moyal coefficients strictly from data can be computa-
tionally heavy for long data series and is prone to innaccuracy especially where the density of
data points is scarce, for example, usually at the boundaries on the domain of the process.
The most straightforward approach is to perform a histogram-based estimation to evaluate
the moments of the system at hand. This has two main drawbacks: it requires a discrete
space of examination of the process and is shown to be less accurate than using kernel-based
estimators (Lamouroux & Lehnertz, 2009).
This library is based on a kernel-based estimation, i.e., the Nadaraya–Watson kernel estimator
(Nadaraya, 1964; Watson, 1964), which allows for more robust results given both a wider range
of possible kernel shapes to perform the calculation, as well as retrieving the results in a non-
binned coordinate space, unlike histogram regressions (Silverman, 2018). It further employs
a convolution of the time series with the selected kernel, circumventing the computational
issue of sequential array summation, the most common bottleneck in integration time and
computer memory.
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The package presented here contains several options: A general open-source toolbox for the
calculation of Kramers–Moyal coefficients for any given data series of any dimension and to
any order, with a selection of commonly-used kernel estimators.

Mathematics

For a general N -dimensional Markovian process x(t) ∈ RN the Kramers–Moyal yields all
orders of the cumulants of the conditional probability distribution P (x′, t+∆T |x, t) as

Mσ(x, t) = lim
∆t→0

1

∆t

∫
dx′[x(t)′ − x(t)]σP (x′, t+∆T |x, t), (1)

with [. . . ]σ a dyadic multiplication and the power σ allowing for a set of powers depending on
the dimensionality of the process (Risken, 1996).
The exact evaluation of the Kramers–Moyal coefficients for discrete or discretised datasets
y(t)—any human measure of a process is discrete, as well as any computer generated data—
is bounded by the timewise limit imposed. Taking as an example a two-dimensional case with
y(t) = (y1(t), y2(t)) ∈ R2, the Kramers–Moyal coefficients M[ℓ,m] ∈ R2 take the form

M[ℓ,m](x1, x2, t) =

lim
∆t→0

1

∆t

∫
dy1dy2(y1(t+∆t)−y1(t))

ℓ(y2(t+∆t)−y2(t))
mP (y1, y2, t+∆t|x1, x2, t), (2)

at a certain measure point (x1, x2). The order of the Kramers–Moyal coefficients is given
here by the superscripts ℓ and m.
Theoretically, there are still two details to attend to: Firstly, there is an explicit dependence
on time t. For the case of stationary (or quasi-stationary) data discussed here, P (x′, t +
∆T |x, t) = P (x′,∆T |x). This entails time-independent Kramers–Moyal coefficients Mσ(x).
Secondly, ∆t should take the limiting case of ∆t → 0 but the restriction of any measuring
or storing device—or the nature of the observables themselves—permits only time-sampled or
discrete recordings. In the limiting case where ∆t is equivalent to the minimal sampling rate
of the data, the Kramers–Moyal coefficients take the form, in our two-dimensional example,
as

M[ℓ,m](x1, x2) =
1

∆t
⟨∆yℓ1∆ym2 |y1(t)=x1,y2(t)=x2

⟩, with ∆yi = yi(t+∆t) − yi(t). (3)

It is straightforward to generalise this to any number of dimensions. The relevance and
importance of adequate time-sampling was extensively studied and discussed in Lehnertz,
Zabawa, & Tabar (2018).
The Kramers–Moyal coefficients exist on an underlying probabilistic space, that is, there
exists a probabilistic measure assigned to the process, stemming from the master equation
describing the family of such processes. The conventional procedure, as mentioned previously,
is to utilise a histogram regression of the observed process and retrieve, via approximation or
fitting, the Kramers–Moyal coefficient. The choice of a histogram measure for the Kramers–
Moyal coefficient results in an acceptable measure of the probability density functions of the
process but requires a new mathematical space (a distribution space). The employment of
a kernel-estimation approach, the Nadaraya–Watson estimator, implemented in this library,
permits an identical overview without the necessity of a new (discretised) distribution space,
given that the equivalent space of the observable can be taken.
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Like the histogram approach for the measure of the Kramers–Moyal coefficients, each single
measure of the observable y(t) is averaged, with a designated weight, into the distribution
space. The standing difference, in comparison to the histogram approach, is the removal
of a (discrete) binning system. All points are averaged, in a weighted fashion, into the
distribution space—aiding especially in cases where the number of point in a dataset is small—
and awarding a continuous measurable space (easier for fitting, for example) (Lamouroux &
Lehnertz, 2009).

Exemplary one-dimensional Ornstein–Uhlenbeck process

A one-dimensional Ornstein–Uhlenbeck process y(t) takes the form

dy(t) = −θy(t)dt+ σdW (t), (4)

with θ denoted as the drift or mean-reverting term, σ the diffusion, volatility, or stochastic
amplitude, and W (t) is a Brownian motion, i.e., a Wiener process. For this particular example
set θ = 0.3 and σ = 0.1.
To be able to test the library and the retrieval on the Kramers–Moyal coefficients, and sub-
sequently recover the drift and diffusion term, one can numerically integrate the process.
We employ a Euler–Maruyama integrator, for simplicity. There are more reliable and faster
integrators, for example JiTCSDE (Ansmann, 2018).

0 100 200 300 400 500
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0.0

0.2

0.4

y
(t

)

Trajectory of O U process

Fig. 1: Trajectory of Eq.(4) for θ = 0.3 and σ = 0.1, for a total time of 500 time units, with
a time step of 0.001, i.e., comprising 5 × 105 data points.
For the present case, with an integration over 500 time units and with a timestep of 0.001,
which can be seen in Fig. 1. The first and second Kramers–Moyal coefficients are presented in
Fig. 2, where as well the conventional histogram-based estimation, a non-convolution based
kernel estimation, and this library implementing a convolution of the kernel with the terms
the right-hand side in Eq.(3). An Epanechnikov kernel was chosen for both kernel-based
estimations.
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Fig. 2: Comparison of exemplary results of obtaining the Kramers–Moyal coefficients with
a histogram-based approach, a conventional kernel-based approach, and the kramersmoyal
library, sequentially left to right, from the numerical integration of Eq.(4). The top row
displays the drift coefficient, i.e., the first Kramers–Moyal coefficients. The bottom row
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displays the diffusion coefficient, i.e., the second Kramers–Moyal coefficients. For the
histogram 40 bins were used, for the conventional kernel and this library a space with 5500
numerical points were used, with a bandwidth of 0.05. The total number of points of the
numerically integrated data is 5 × 105.

Library

The presented kramersmoyal library is comprised of two separate blocks, kernels and km,
and is a standalone package for a non-parametric retrieval of Kramers–Moyal coefficients,
solely dependent on numpy and scipy. The sub-module kernels comprises the kernels
for the kernel-based estimation, similarly available in sklearn, and km performs the desired
Kramers–Moyal calculations to any desired power (Pedregosa et al., 2011). There exists a
library to retrieve Kramers–Moyal coefficents in R (Rinn, Lind, Wächter, & Peinke, 2016).
In order compare the computational speed up of the library the aforementioned Ornstein–
Uhlenbeck Eq.(4) was used (with θ = 0.3 and σ = 0.1), and the total time of integration of the
process was increased iteratively. In Fig. 3 the comparative results of employing a histogram
estimation with 200 bins, a conventional kernel-based regression in a space with 5500 numerical
points, and this library’s kernel-convolution method, over similarly 5500 numerical points.
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Fig. 3: Comparison of speed performance of obtaining the Kramers–Moyal coefficients with
a histogram-based approach, a conventional kernel-based approach, and the kramersmoyal
library, of a numerical integration of Eq.(4) over increasing number of data points. For the
histogram 200 bins were used, for the conventional kernel and this library a space with 5500
numerical points was used. The total number of points of numerical integration was varied
between 5 × 103 and 5 × 106. The horizontal line indicates a total of 1 second. Integration
performed on a laptop with an Intel Core i5 CPU @2.20~GHz (@2.56~GHz turbo).
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The energy system, and in particular the electricity system, is
undergoing rapid changes due to the introduction of
renewable energy sources, to mitigate climate change1. To

cope with these changes new policies and technologies are
proposed2,3, and a range of business models are implemented in
various energy systems across the world4. New concepts, such as
smart grids5, flexumers6, or prosumers7, are developed and tested
in pilot regions. Still, studies rarely systematically compare dif-
ferent approaches, data, or regions, in part because freely available
research data are lacking.

The frequency of the electricity grids is a key quantity to
monitor, as it follows the dynamics of consumption and gen-
eration: a surplus of generation, e.g., due to an abundance of wind
feed-in, directly translates into an increased frequency. Vice versa,
a shortage of power, e.g., due to a sudden increase in demand,
leads to a dropping frequency. Many control actions monitor and
stabilise the power-grid frequency when necessary, so that it
remains close to its reference value of 50 or 60 Hz8. Implementing
renewable energy generators introduces additional fluctuations, as
wind or photo-voltaic generation may vary rapidly on various
timescales9–11 and reduces the overall inertia available in the
grid12. These fluctuations pose new research questions on how to
design and stabilise fully renewable power systems in the future.

Analysis and modelling of the power-grid frequency and its
statistics and complex dynamics have become increasingly pop-
ular in the interdisciplinary community, attracting much atten-
tion from mathematicians and physicists as well. Studies have
investigated, e.g., different dynamical models13–15, compared
centralised vs. decentralised topologies16–18, investigated the
effect of fluctuations on the grid’s stability19,20, or how fluctua-
tions propagate21,22. Further research proposed real-time pricing
schemes23, optimised the placement of (virtual) inertia24,25, or
investigated cascading failures in power grids26–29. However,
these theoretical findings or predictions are rarely connected with
real data of multiple existing power grids.

In addition to the need raised by theoretical models from the
physics and mathematics community, there is also a great need
for open databases and analyses from an engineering perspective.
Although there exist databases of frequency time series, such as
GridEye/FNET30 or GridRadar (https://gridradar.net/), these
databases are not open, which limits their value for the research
community. In particular, different scientists with access to
selected, individual types of data only, from grid frequencies to
electricity prices, demand and consumption dynamics, cannot
combine their data with these databases, thereby hindering to
study more complex questions, such as the impact of price
dynamics or demand control on system stability.

Hence, open empirical data are necessary to validate theoretical
predictions, adjust models, and apply new data analysis methods.
Furthermore, a direct comparison of different existing power
grids would be very helpful when designing future systems that
include high shares of wind energy, as they are already imple-
mented in the Nordic grid, or by moving towards liberal markets,
such as the one in Continental Europe. Proposals of creating
small autonomous cells, i.e., dividing large synchronous areas into
microgrids31 should be evaluated by comparing synchronous
power grids of different size to estimate fluctuation and stability
risks. In addition, cascading failures, spreading of perturbations,
and other analyses of spatial properties of the power system may
be evaluated by recording and analysing the frequency at multiple
measurement sites.

In this study, we present an analysis of an open database for
power-grid frequency measurements32 recorded with an Elec-
trical Data Recorder (EDR) across multiple synchronous
areas33,34. Details on how the recordings were made are described
in ref. 32, whereas we focus on an initial analysis and

interpretation of the recordings, which are publicly avail-
able (https://osf.io/by5hu/). First, we discuss the statistical prop-
erties of the various synchronous areas and observe a trend of
decreasing fluctuation amplitudes for larger power systems. Next,
we provide a detailed analysis of a synchronised wide-area
measurement carried out in Continental Europe. We perform a
detailed analysis showing that short time fluctuations are inde-
pendent, whereas long timescale trends are highly correlated
throughout the network. We extract the precise timescales on
which the power-grid frequency transitions from localised to bulk
dynamics. Finally, we extract inter-area oscillations emerging in
the Continental European (CE) area. Overall, by establishing this
database and performing a first analysis, we demonstrate the
value of a data-driven analysis in an interdisciplinary context.

Results
Data overview. We recorded power-grid frequency time series
using a Global Positioning System (GPS)-synchronised frequency
acquisition device called EDR33,34, providing similar data as a
Phasor Measurement Unit would. Recordings were taken at local
power sockets, which have been shown to give similar measure-
ment results as that of monitoring the transmission grid with GPS
time stamps35 (see also ref. 32 for details on the data acquisition
and a description of the open database). In addition, we received a
1-week measurement from the Hungarian TSO for the two cities
Békéscsaba and Győr. We marked the locations of the measure-
ment locations on a geographic map in Fig. 1a, b. Still, many
more synchronous areas in the Americas, Asia, Africa, and
Australia should be covered in the future.

To gain a first impression of the frequency dynamics, we
visualise frequency trajectories in different synchronous areas and
note quite a distinct behaviour (see Fig. 1c–e). We refer to each
measurement by the country or state in which it was recorded (see
also Supplementary Note 1). We group the measurements into
(European) continental areas, (European) islands, and other (non-
European) regions, which are also mostly continental. Most
islands, such as Gran Canaria (ES-GC), Faroe Islands (FO), and
Iceland (IS), but also South Africa (ZA), display large deviations
from the reference frequency, whereas the continental areas, such
as the Baltic (EE) and Continental European areas (DE), as well as
the measurements taken in the United States (US-UT and US-TX)
and Russia (RU), stay close to the reference frequency. There are
still more differences within each group: e.g., the dynamics in ES-
GC and ZA are much more regular then the very erratic jumps of
the frequency over time observable in the FO and IS areas. Finally,
we do not observe any qualitative difference between 50 and 60Hz
areas (right), when adjusting for the different reference frequency.
It is noteworthy that some of the synchronous areas considered
here are indeed coupled via high-voltage direct current (HVDC)
lines but still possess independent synchronous behaviour.
Specifically, the British (GB), Continental (DE), Baltic (EE), and
Nordic (SE) European areas, as well as Mallorca (ES-PM), are
connected in this way. The HVDC connection of Mallorca
towards Continental Europe might be the reason it displays overall
smaller deviations than the FO or IS areas, which cannot access
another large synchronous area for balance.

Let us quantify the different statistics in a more systematic way
by investigating distributions (histograms) and autocorrelation
functions of the various areas. The distributions contain
important information of how likely deviations from the
reference frequency are, how large typical deviations are (width
of the distribution), whether fluctuations are Gaussian (histogram
displays an inverted parabola in log-scale), and whether they are
skewed (asymmetric distribution). Analysing the distributions
(histograms) of the individual synchronous areas (Fig. 2a–c), we
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note that the islands tend to exhibit broader and more heavy-
tailed distributions than the larger continental areas. Still, there
are considerable differences within each group. For example, we
observe a larger standard deviation (SD) and thereby broader
distribution in the Nordic (SE) and British (GB) areas compared
to Continental Europe (DE), which is in agreement with earlier
studies36,37. Some distributions, such as those for Russia (RU) or
the Baltic grid (EE), do show approximately Gaussian character-
istics, whereas for several other areas, such as ES-GC and IS, they
exhibit a high kurtosis (κIS ≈ 7, as compared to κ= 3 for a
Gaussian), i.e., heavy tails, and thereby a high probability for large
frequency deviations. We provide a more detailed analysis of the
first statistical moments, i.e., SD σ, skewness β, and kurtosis κ in
Supplementary Note 1.

Complementary to the aggregated statistics observable in
histograms, the autocorrelation function contains information
on intrinsic timescales of the observed stochastic process
(see Fig. 2d–f). For simple stochastic processes such as
Ornstein–Uhlenbeck processes, we would expect an exponential
decay expð�γτÞ of the autocorrelation with some damping
constant γ38. Although most synchronous areas do show an
approximately exponential decay, the decay constants vary widely.
For example, the autocorrelation of the Icelandic data (IS) rapidly
drops to zero, whereas the autocorrelation of the Nordic grid (SE)
has an initial sharp drop, followed by a very slow decay. Other
grids, such as the Faroe Islands (FO) or the Western Interconnec-
tion (US-UT) do show a slow decay, indicating long-lasting
correlations, induced, e.g., via correlated noise. Finally, regular
power dispatch actions every 15 min are clearly observable in the
Continental European (DE), British (GB), and also the Mallorcan
(ES-PM) grids, consistent with earlier findings36,37,39.

In conclusion, we see that histograms are a good indicator of
how heavy-tailed the frequency distributions are, whereas the

autocorrelation function reveals information on regular patterns
and long-term correlations. These correlations are likely con-
nected to market activity or regulatory action, demand and
generation mixture, and other aspects specific to each synchro-
nous area. Instead of going deep into individual comparisons, let
us search for general applicable scaling laws instead.

Scaling of individual grids. For the first time, we have the
opportunity to analyse numerous synchronous areas of different
size, ranging from Continental Europe with a yearly power gen-
eration of about 3000 TWh40 and a population of hundreds of
millions to the Faroe Islands with a population of only tens of
thousands. These various areas allow us to test a previously
conjectured scaling law36 of fluctuation amplitudes given as
ϵ � 1=

ffiffiffiffi

N
p

, i.e., the aggregated noise amplitude ϵ in a synchro-
nous area should decrease like the square root of the effective size
of the area.

To derive this scaling relation, we formulate a stochastic
differential equation of the aggregated frequency dynamics. A
basic model, also known as the aggregated swing equation41,42, is
given as:

M
d
d t

�ω tð Þ ¼ �Mγ�ω tð Þ þ ΔPðtÞ; ð1Þ

with bulk angular velocity �ω, total inertia of a region M, power
imbalance ΔP(t), and effective damping to inertia ratio γ, which
also comprises primary control. The bulk angular velocity is the
scaled deviation of the frequency from the reference: �ω ¼
2π f � f ref

� �
and ΔP(t) effectively represents noise acting on

the system with mean hΔPðtÞi ¼ 0, as generation and load are
balanced on average. A simple scaling law for the frequency
variability can be derived if the short-term power fluctuations at
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each grid node are assumed to be Gaussian. If the grid has N
nodes with identical noise amplitudes, the SD of the power
imbalance scales as:

σΔP �
ffiffiffiffi

N
p

: ð2Þ
At the same time, the total inertia typically scales linearly with the
size of the grid, i.e., M ~N. As a result, the amplitude of the total
noise acting on the angular velocity dynamics scales as:

ϵ � 1
M

σΔP � 1
ffiffiffiffi

N
p : ð3Þ

A more detailed derivation is provided in Supplementary Note 2
and discussed in refs. 36,37. In addition, a technical discussion of
extracting the aggregated noise amplitude is presented in ref. 43.
We note that the scaling law has to be modified if the noise at the
nodes is not Gaussian36.

To verify the proposed scaling law in Eq. (3), we approximate
the number of nodes N by the population of an area, as generation
data are not available for all synchronous areas, and population
and generation tend to be approximately proportional40. We
utilise the population size as a proxy for size of the grid N. Indeed,
we note that the aggregated noise amplitude ϵ does approximately
decay with the inverse square root of the population size, as
predicted (see Fig. 3). At a certain size, the noise saturates. The
deviations from the prediction, such as by ZA and IS, are likely
caused by different local control mechanisms, or non-Gaussian
noise distributions, which we focus on in the next section.
Interestingly, although FO and ES-PM do display non-Gaussian
probability density functions, they follow the proposed scaling law.
Why this is the case and how a fully non-Gaussian scaling law
could capture this even better remain open questions for future
work. Still, we observe a decay of the noise, approximately
following the prediction over four orders of magnitude.

Increment analysis. In the previous section, we approximated the
noise acting on each synchronous area as Gaussian to derive an
approximate scaling law. In the following, we want to go beyond
this simplification and investigate the rich short time statistics
present in each synchronous area. We will see in particular how
non-Gaussian distributions clearly emerge on the timescale of a
few seconds.

This short timescale is investigated via increments Δfτ. The
increment of a frequency time series is computed as the difference
of two values of the frequency with a time lag τ:

Δf τ ¼ f ðt þ τÞ � f ðtÞ: ð4Þ
An analysis of Δfτ provides information on how the time series
changes from one time lag τ to the next. On a short timescale of
τ ≈ 1 s, the increments can be used as a proxy for the noise ϵ
acting on the system (see also Supplementary Note 2).

The increments for a Wiener process, an often used reference
stochastic process, are Gaussian regardless of the lag τ38.
However, for many real-world time series, ranging from heart
beats44 and turbulence to solar and wind generation9, we observe
non-Gaussian distributions for small lags τ. For many such
processes with non-Gaussian increments, the probability dis-
tribution functions of the increments tend to approach Gaussian
distributions for larger increments9. We observe a similar
behaviour for the frequency statistics (see Fig. 4). The Nordic
area (SE) displays deviations from Gaussianity for small lags τ but
approximates a Gaussian distribution for larger τ. The Russian
area (RU) even starts out with an almost Gaussian increment
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distributions. Contrary, the Icelandic area (IS) shows clear
deviations from a Gaussian distribution for all lags τ investigated
here. Still, for larger lags, the pronounced tails flatten and the
increment distribution slowly approaches a Gaussian distribution.
The non-Gaussian increments on a short timescale point to non-
Gaussian driving forces, e.g., in terms of generation or demand
fluctuations acting on the power grid.

To investigate the deviations of the frequency increments from
Gaussian properties, we utilise the excess kurtosis κ− 3 of the
distribution. As the kurtosis κ, the normalised fourth moment of
a distribution, is κ= 3 for a Gaussian distribution, a positive
excess kurtosis points to heavy tails of the distribution.

Computing the excess kurtosis κ− 3 for all our data sets, we
observe variable degrees of deviation across the various
synchronous areas (Fig. 4). In some areas, the intermittent
behaviour of the increments Δfτ is subdued and the overall
distribution approaches a Gaussian distribution (in EE, DE, SE,
RUS, and US-UT), i.e., the excess kurtosis κ− 3 becomes very
small (≲100). In contrast, all islands as well as GB, US-TX, and
ZA display large and non-vanishing intermittent behaviour, with
a large excess kurtosis (~101…102). IS and ES-GC show
impressive deviations from Gaussianity, which require detailed
modelling in the future.

We summarise that smaller regions tend to display more
intermittency in their increments than larger regions, again
consistent with findings on the scaling of the aggregated noise
amplitude ϵ (Fig. 3). Furthermore, we observe that increment
distributions tend to approach Gaussian distributions for larger
increments, as expected9, but with distinct time horizons that
depend on the grid area. For most of the islands the excess
kurtosis remains high even for lags of 10 s. In contrast, in most
areas of continental size, the excess kurtosis is very small already
for lags larger than 1 s. Very interesting is also the following
observation: non-Gaussian distributions in the aggregated
frequency statistics (Fig. 2) are not necessarily linked with non-
Gaussian increments. For example in Continental Europe (DE),
we observe Gaussian increments but a non-Gaussian aggregated

distribution. The deviation from Gaussianity in the aggregated
distribution, e.g., in terms of frequent extreme events, is likely
explained by the external drivers, such as market activities45.
Finally, the analysis presented here extends previous increment
analyses22,46, which only considered increments of less than a
second (τ < 1 s), whereas we observe relevant non-Gaussian
behaviour for larger increments (τ ≥ 1 s). We further analyse the
differences between aggregated kurtosis and increment kurtosis in
Supplementary Note 1, and discuss Castaing’s model47 and
superstatistics48 as more theoretical approaches towards incre-
ment analysis in Supplementary Note 3.

Correlated dynamics within one area. Moving away from com-
paring individual synchronous areas, we use GPS-synchronised
measurements at multiple locations within the same synchronous
area and the CE area, marked as diamonds and triangles, respec-
tively, in Fig. 1. These measurements reveal that the frequency at
different locations is almost identical on long timescales but differs
on shorter timescales (see Fig. 5). Although the trajectories of the
two German locations, Oldenburg and Karlsruhe, are almost
identical, there are visible oscillations between the frequency values
recorded in Central Europe (Karlsruhe) compared to the values
recorded in the peripheries (Istanbul and Lisbon).

Let us quantify this by analysing the time series at the timescale
of 1 s and hours (see Fig. 6). Increments Δfτ, as also introduced
above, reveal the short-term variability of a time series. In
addition, we measure the long-term correlations on a timescale of
hours by determining the rate of change of frequency (RoCoF).
The RoCoF is the temporal derivative of the frequency and
thereby very similar to increments. However, here it has a very
different meaning, as we evaluate it only at every full hour and
take into account several data points (see ref. 37 and Methods).
Thereby, the RoCoF mirrors the hourly power dispatch49 and
gives a good indication of long-term dynamics and deterministic
external forcing. In the next section, we will also investigate
the intermediate timescale of several seconds and inter-area
oscillations.
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Short timescale dynamics, as determined by frequency increments
Δfτ, are almost independent on the timescale of τ= 1 s (see
Fig. 6a–d). We generate scatter plots of the increment value Δfτ(t) at
the same time t at two different locations. If the increments are
always identical, all points should lie on a straight line with slope 1.
If the increments are completely uncorrelated, we would expect a
circle or an ellipse aligned with one axis. Indeed, the increments
taken at the same time for Oldenburg and Karlsruhe are highly
correlated and almost always identical, i.e., the points in a scatter
plots follow a narrow tilted ellipse (Fig. 6a). Moving geographically
further away from Karlsruhe, the increments of Istanbul (Fig. 6b)
are completely uncorrelated with those recorded in Karlsruhe, i.e.,
large frequency jumps in Istanbul may take place at the same time as
small jumps happen in Karlsruhe. A similar picture of uncorrelated
increments emerges when comparing Lisbon and Istanbul (Fig. 6d),
whereas Lisbon vs. Karlsruhe displays some small correlation (Fig.
6c). At the two peripheral locations, Lisbon and Istanbul, the
increment distributions are much wider, i.e., larger jumps on a short
timescale are much more common in Istanbul and Lisbon than they
are in Karlsruhe. For larger lags τ > 1 s, the increments between all
pairs become more correlated (see Supplementary Note 4).

Let us move to longer timescales. At the 60 min time stamps,
power is dispatched in the CE grid to match the current demand,
leading to a sudden surge in the frequency37,39,49. Interestingly,
the frequency dynamics at the different grid sites are very similar,
i.e., the deterministic event of the power dispatch is seen

unambiguously everywhere in the synchronous area, almost
regardless of distance (see Fig. 6e–h). All locations closely follow
the same trajectory on the 1 h timescale. This is reflected in highly
correlated RoCoF values, with a particularly good match between
Oldenburg and Karlsruhe, and a linear regression coefficient of at
least R2 ≥ 0.93 for all pairs (Fig. 6e–h).

We combine these different timescales in a single detrended
fluctuation analysis (DFA), where we also integrate the two
Hungarian locations (see Fig. 7). At short timescales, the DFA
results differ for the six locations, while starting at the timescale of
t ~ 101 s, the four curves coincide. For the timescale of 1 s, all
locations are subject to different fluctuations, with Istanbul and
Lisbon displaying the largest values of the fluctuation function.
This is coherent with results of the increment analysis, where
Istanbul and Lisbon have the broadest increment distributions
(Fig. 6a–d). Moving to longer timescales of tens or hundreds of
seconds, we observe a coincidence of the fluctuation function. This
coincidence, i.e., identical behaviour for large timescales is in good
agreement with the highly correlated RoCoF results (Fig. 6e–h).
We may also interpret this change from short-term and localised
dynamics to long-term and bulk behaviour as a change from
stochastic to deterministic dynamics, i.e., the random fluctuations
are localised and take place on a short timescale, whereas the
deterministic dispatch actions and overall trends penetrate the
whole grid on a long timescale. See also Methods and
Supplementary Note 5 for details on the DFA methodology.

–20

–10

0

10

20

R2 = 0.720

Oldenburg vs. Karlsruhe

R2 = 0.011

Istanbul vs. Karlsruhe

–20 –10 0 10 20

–20

–10

0

10

20

R2 = 0.178

Lisbon vs. Karlsruhe

–20 –10 0 10 20

R2 = 0.003

Lisbon vs. Istanbul

a b

c d
–2

–1

0

1

2

R2 = 1.000

Oldenburg vs. Karlsruhe

R2 = 0.955

Istanbul vs. Karlsruhe

–2 –1 0 1 2

RoCoF (mHz s–1) RoCoF (mHz s–1)

R
oC

oF
(m

H
z

s–1
)

R
oC

oF
(m

H
z

s–1
)

–2

–1

0

1

2

R2 = 0.985

Lisbon vs. Karlsruhe

–2 –1 0 1 2

R2 = 0.933

Lisbon vs. Istanbul

e f

g h

Δf  (mHz) Δf  (mHz)

Δf
  
(m

H
z)

Δf
  
(m

H
z)

Fig. 6 From localised fluctuations to bulk behaviour. From left to right, we move our focus from short timescales (increments) to long timescales (RoCoF).
a–d Short time increments are mostly independent. We compute the increment statistics Δfτ= f(t+ τ)− f(t) for the increment time τ= 1 s at the four
sites in Continental Europe. The squared correlation coefficient R2 is rounded to 4 digits. See also Supplementary Note 4 for larger lags τ and more details.
e–h Correlations at the long timescale. We record the estimated rate of change of frequency (RoCoF) df/dt every 60min for all four grid locations. In the
scatter plots, each point represents the RoCoF or increment value Δfτ computed at two different locations at the same time t.

19:45 20:00 20:15 20:30 20:45
Time (min)

–60

–30

0

30

60

90
f –

 f
re

f (m
H

z)
Oldenburg Karlsruhe Istanbul Lisbon

0 10 20 30 40 50 60
t (s)

–20

–10

0

10

20 Oldenburg Karlsruhe Istanbul Lisbon

Δf  = 4sR
oC

oF

a b

Fig. 5 Synchronised measurements within the Continental European (CE) synchronous area differ on the short timescale. We show a 1 h frequency
trajectory recorded at four different sites in the CE area: Oldenburg, Karlsruhe, Lisbon, and Istanbul (a, b). We further illustrate the RoCoF (rate of change
of frequency) as the slope of the frequency every hour and the increment statistics Δfτ as the frequency difference between two points with time lag τ. For
clarity, we do not include the two Hungarian measurement sites here, which produce similar results.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19732-7

6 NATURE COMMUNICATIONS |         (2020) 11:6362 | https://doi.org/10.1038/s41467-020-19732-7 | www.nature.com/naturecommunications



Spatio-temporal dynamics. Next, let us investigate the spatio-
temporal aspect of the synchronised measurements. We connect
the transition from local fluctuations towards bulk behaviour with
the geographical distance of the measurement points, com-
plementing earlier analysis based on voltage angles50,51. We
determine the typical time-to-bulk, i.e., the time necessary so that
the dynamics at a given node approximates the bulk behaviour.
To this end, we choose Karlsruhe, Germany, as our reference,
which is very central within the CE synchronous area. The choice
of the reference does not qualitatively change the results. For each
of the remaining five locations, we compute the relative DFA
function:

ηð‘Þ ¼ F2Locationð‘Þ � F2Karlsruheð‘Þ
F2Karlsruheð‘Þ

ð5Þ

with respect to Karlsruhe and ask, when does this difference drop
below 0.1 (or 10%), i.e., when are the fluctuation at each location
almost indistinguishable from the ones in Karlsruhe?

The further apart two locations are, the later they reach the
bulk behaviour, i.e., the larger their time-to-bulk (see Fig. 8). This
observation can be intuitively understood: two sites in close
geographical vicinity are typically tightly coupled and can be
synchronised by their neighbours, whereas sites far away have to
stabilise on their own. Our time-to-bulk analysis quantifies this
intuition. We consider both a linear and a quadratic fit. A linear
dependence is expected if the bulk behaviour is realised by
coupling via the shortest available path. In contrast, if the
propagation is following a diffusive pattern via multiple

independent paths, we would expect a quadratic dependence of
the time with respect to the distance. Indeed, the quadratic fit,
following diffusive coupling, is a much better fit than a linear one,
as indicated by a lower root-mean-squared-error 0.5, compared to
1.2 s in the linear case. Using the newly obtained fits, we find that
a location only 100 km from Karlsruhe will have to independently
stabilise fluctuations on the scale of 0.5–1 s and will then closely
synchronise with the dynamics in Karlsruhe (our bulk reference).
In contrast, a site 1000 km away has to stabilise already for about
3–5 s before it is fully integrated in the bulk. This gives additional
guidance for the control within large synchronous areas, in
particular for remote and weakly coupled sites. Clearly, these first
estimates demonstrate that further research is necessary to
validate and adjust spatio-temporal models of the power grid21.

Principal component analysis. So far, we have focused on when
and how the localised fluctuations transition into a bulk beha-
viour. During this transition, on the intermediate timescale of
about 5 s, we observe another phenomenon: ‘Inter-area oscilla-
tions’, i.e., oscillations between sites in different geographical
areas far apart but still within one synchronous area. Different
methods are available to extract spatial inter-area modes, ranging
from Empirical Mode Decomposition52 to nonlinear Koopman
modes53. Here we use a principal component analysis (PCA)54,
which was already introduced to power systems when analysing
inter-area modes and identifying coherent regions55. A PCA
separates the aggregated dynamics observed in the full system
into ordered principal components, which we interpret as oscil-
lation modes. Ideally, we can explain most of the observed
dynamics of the full system by interpreting a few dominant
modes. Each of these modes contains information of which
geographical sites are involved in the modes dynamics, similar to
an eigenvector. Typical behaviour includes a translational
dynamics of all sites (the eigenvector with entries 1 everywhere)
or distinct oscillations between individual sites (an eigenvector
with entry 1 at one site and −1 at another site).

Indeed, applying a PCA to the synchronised measurements in
CE, we can capture almost the entire dynamics with just three
modes (see Fig. 9). In Fig. 9a, we provide the squared Fourier
amplitudes of each mode and in Fig. 9b–d we visualise the first
three modes geographically. These three modes already explain
the largest shares λm of the total variance (see Supplementary
Note 6 for the remaining modes and more details). The first mode
(PC1) explains λ1 ≈ 99.2% of the variance and represents the
synchronous bulk behaviour of the frequency. The second (PC2)
and third (PC3) mode correspond to asynchronous inter-area
modes. They contribute much less to the total variance due to
their small amplitude (cf. Fig. 5). In PC2 (Fig. 9c), Western
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Europe forms a coherent region that is in phase opposition to
Istanbul (East–West dipole), whereas in PC3 (Fig. 9d), Lisbon
and Istanbul swing in opposition to Oldenburg (North–South
dipole). Similar results were found in an earlier theoretical study
of the CE area, which also revealed global inter-area modes with
dipole structures56.

The temporal dynamics of the spatial modes exhibit typical
frequencies of inter-area oscillations. Figure 9a shows the squared
Fourier amplitudes |F(am(t))|2 of the spatial modes. The
components PC2 and PC3 have their largest peaks at t ≈ 7 s
and t ≈ 4.5 s, which are the periods of these inter-area modes.
These periods correspond well to the typical periods of inter-area
oscillations, which are reported to be 1.25–8 s57. On larger
timescales t > 12 s, the amplitudes |F(am(t))|2 of the inter-area
modes drop below the values of PC1. Thus, the frequency
dynamics is dominated by the bulk behaviour again, which is
consistent with the estimated time-to-bulk of 12–15 s (Fig. 8).

Discussion
In this study, we have presented a detailed analysis of a recently
published open database of power-grid frequency measure-
ments32. We have compared various independent synchronous
areas, from small regions, such as the FO and ES-PM areas, to
large synchronous areas, such as the Western Interconnection in
North America and the CE grid, spanning areas with only tens of
thousand customers to those with hundreds of millions. Espe-
cially the smaller areas tend to show a larger volatility in terms of
aggregated noise but also increment intermittency, such as IS and
ES-GC. We have complemented this analysis of independent
grids by GPS-synchronised measurements within the CE power
grid, revealing high correlations of the frequency at long time-
scales but mostly independent dynamics on fluctuation-
dominated short timescales. Compared to other studies apply-
ing synchronised, wide-area measurements, such as FNET/
Grideye in the US30 or evaluations from IS58, the data we ana-
lysed here is freely available for further research32.

The comparison of different synchronous areas gives us a solid
foundation to test previously conjectured scaling laws of fluc-
tuations in power grids with their size36, helps us to develop
synthetic models37, or predict the frequency59 of small grids, such
as microgrids. Furthermore, aggregating standardised measure-
ments from different areas, we can compare countries with high
shares of renewables (high hydro generation in Iceland or the
Nordic area) with areas with almost no renewable generation
(Mallorca) to learn how they influence the frequency dynamics
and thereby the power-grid stability. Similarly, this comparison
also gives insights on how different market structures impact the
frequency statistics and stability of a power grid.

Our results on the spatial dependencies in the CE synchronous
area are also highly relevant for the operation of power grids and
other research in the field. The observations that the long-term
behaviour is almost identical throughout the synchronous area
but short time fluctuations differ, are in agreement with earlier
theoretical findings21. Based on the DFA results (Figs. 7 and 8),
we provide a quantitative estimate that at least for the CE area
already at timescales of about 10 s, we observe an almost uniform
bulk behaviour, even for locations thousands of kilometres apart.
This bulk behaviour emerges much faster when locations are
closer to one another.

In the regime of resonant behaviour21, we observe inter-area
oscillations with period lengths of t= 7 s and t= 4.5 s, which we
extract using a PCA. These timescales agree well with frequencies
of inter-area oscillations reported in other studies in
Europe56,57,60 but also in the United States61. However, we notice
that the timescales separating bulk, resonance and local behaviour
are different than the authors in a theoretical work21 assumed.
There, local fluctuations were described for the 0.1 s timescale and
bulk dynamics already started at times between about 2 and 5 s.
This raises the question on how these timescales depend on the
size and the dynamics of the power grid under consideration.
Finally, we note that the PCA is a prime example for a model-free
and data-driven analysis that leads to better understanding.

Our observation of frequency increments being independent
on timescales of 1 s is consistent with earlier studies46. For
Continental Europe, we find that 1 s increments are correlated at
small distances (below 500 km), but independent at locations far
apart. On timescales of 1 s and below, we cannot observe global
inter-area modes anymore. Instead, we expect local fluctuations
that quickly decay with distance to their origin21,22, which is
consistent with our findings. The distribution of these short-term
fluctuation was reported to exhibit a strongly non-Gaussian dis-
tribution when subject to intermittent wind power feed-in46. In
agreement with these results, the non-Gaussian effects vanish on
timescales above 1 s in our recordings from Continental Europe.
However, in other, particularly smaller, synchronous areas we
even observe heavy-tailed increment distributions on timescales
up to 10 s. This is likely related to the grid size and control
regulations, although a detailed explanation still remains open.

In this study, we connect the mathematics and physics com-
munities with the engineering community, by providing potent
data analysis tools from the theoretical side and then connecting
these findings in the practical domain of power-grid dynamics
without the use of an explicit model. Both the data analysis and
its interpretation could be very useful for the operation of indi-
vidual grids. Our insights for the scaling could be used to improve
control mechanisms, such as demand side management62,
whereas our spreading insights give further indications about how
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fast cascading failures will spread throughout the power grid28.
Several grid operators and other researchers have likely recorded
power-grid frequency time series at many more grid locations
than we could provide in this single study. All such recordings
from different sources should be combined to enable more
comparisons between the dynamics of synchronous areas of dif-
ferent sizes and under different conditions. The database studied
here32 may offer a valuable starting point for such endeavours.

As data are still only scarcely available, there remain many
open questions: can we systematically determine a propagation
velocity of disturbances through the grid and compare these with
theoretical predictions21,25,63? Can we identify other time series
influencing the power-grid frequency dynamics and quantify
their correlation such as hydro power plants in the Nordic area or
demand of aluminium plants in IC? Can we extract the impact of
market activities on the frequency dynamics in all synchronous
areas? From a statistical modelling perspective, it would be
interesting to investigate the scaling of higher moments, i.e.,
skewness and kurtosis, with time lag and size in more detail.
These questions constitute only a small selection from a multi-
tude that an open database may help to address from a broad,
interdisciplinary perspective, including engineering, mathematics,
data science, time series analysis, and many other fields.

Methods
Data selection. We make use of the open database, described in detail in ref. 32, to
perform all analyses presented in the main text and in Supplementary Notes 1–6.
This data set contains recordings of 12 independent synchronous regions recorded
between 2017 and 2020. Although some locations, such as the FO area only contain
a single week of data, other regions, such as Continental Europe have been
monitored for several months or years (for more details, see ref. 32). However, due
to some technical difficulties, e.g., loss of GPS signal or unplugging the device, some
measurements are not a number, i.e., ‘NaN’, and are tagged as not reliable in the
database. These entries have been deleted to compute the histograms and statistical
measures in Supplementary Note 1. To compute the autocorrelation function and
for the analysis of the synchronised measurement in Continental Europe, we
selected the longest possible trajectory without any ‘NaN’ entries. As a final note,
from the available ES-GC data, we are using the March 2018 data.

RoCoF computation. When determining the RoCoF, i.e., the time derivative of the
frequency, we follow the same procedure as has been outlined in ref. 37: we select a
short time window centred around the anticipated dispatch jumps at 60min of about
25 s length, i.e., starting at (X) : 59 : 48 and lasting until (X+ 1) : 00 : 12 for all hours X.
Then, we fit this short frequency trajectory with a linear function f(t)= a+ bt. We are
not interested in the offset a but the value of b gives us the slope of the frequency
changes, i.e., the time derivative of the frequency is approximately given as df

d t � b.

Detrended fluctuation analysis. To carry out the DFA we follow a similar pro-
cedure as outlined in ref. 64, using the package outlined in ref. 65. The main idea is
to detrend the data and extract the most dominant timescales by measuring the
scaling behaviour of the data from increasing segments of data. The commonly
denoted fluctuation function F2(ℓ), function of the segment size ℓ on the time
series, accounts for the variance of segmented data of increasing size. The scaling of
the underlying process or processes can thus be extracted. In ref. 64, a detailed study
of the different timescales in power-grid frequencies can be found, largely focusing
on scales of about 10 s and above, whereas we put particular emphasis on the
smallest timescales available, of the order of 1 s. More details are given in Sup-
plementary Note 5.

Time-to-bulk. To extract the time-to-bulk, seen in Fig. 8, we take the measure-
ments of the DFA in Fig. 7 and utilise Karlsruhe as the reference for comparison.
Having Karlsruhe as a reference, we compare the normalised fluctuations η(ℓ):

ηð‘Þ ¼ F2locationð‘Þ � F2Karlsruheð‘Þ
F2Karlsruheð‘Þ

; ð6Þ

(Eq. (5) in the main text), to extract the excess fluctuation at the different locations.
As there is no standard, we choose a threshold value of 10% for fluctuations at the
different recordings to be identical. Once η(ℓ) drops below this threshold of 10%,
the data sets are considered to be identical. In this manner, we determine the time-
to-bulk as the necessary time of a recording to exhibit the same fluctuation
behaviour as the reference of Karlsruhe. The distance measures taken are the
geographic distances with respect to Karlsruhe, applying OpenStreet Maps https://
www.openstreetmap.org/ and using the routing by Foot(OSRM). This yields the

following distances from Karlsruhe: Oldenburg: 538 km, Győr: 825 km, Békéscsaba:
1163 km, Lisbon: 2203 km, Istanbul: 2276 km. The reason to use route finding by
foot is that the power grid is not taking any air plane routes but is limited also to
the shortest routes available in the transmission grid. These distances in the power
system might be even longer where transmission line density is low. It is note-
worthy that our choice of geographical distance does not apply any assumption on
the underlying power-grid topology. With full (yet currently unavailable) infor-
mation about all operational transmission lines, a shortest path distance on the
transmission network would be an alternative22.

Data availability
Frequency recordings are described in detail in ref. 32. An open repository containing all
recordings can be accessed here: https://osf.io/by5hu/. The Hungarian TSO data are
available here: https://osf.io/m43tg/. All data that support the results presented in the
figures of this study are available from the authors upon reasonable request.

Code availability
Code to produce the presented analysis and figures is available on github: https://github.
com/LRydin.
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SUPPLEMENTARY NOTE 1

Details on individual measurements: Abbreviations and statistical measures

Abbreviations

The power grid frequency has been recorded in several synchronous areas across Europe and beyond. We introduce
the abbreviations used when referring to the measurement sites, e.g. in plots, in Supplementary Table I: We list the
town, and country where the measurement was taken and the synchronous area to which this particular device was
connected. For example, the measurement taking place in Karlsruhe, Germany is abbreviated as DE (ISO 3166 for
Germany) and is connected to the Continental European synchronous area (CE). When discussing the results, we
will often refer to the synchronous area and name the measurement site abbreviation in parenthesis, e.g. Continental
Europe (DE) is known to be influenced by market dynamics, see also [1]. Unless we are specifically interested in
the short time scale, a measurement taken in one location is representative for the whole synchronous area, see also
discussion on time-to-bulk in the main text. For areas that are part of a larger country, we first name the country and
then specify the area further, e.g. US-UT stands for the United States of America, State Utah, which in turn is part
of the Western Interconnection.

Supplementary Table I. Abbreviations of measurement locations and their connection to synchronous areas. For each country,
we adopt the ISO 3166 code. The population is extracted from Wikipedia and the sources therein in March 2020.

Abbreviation Measurement location Synchronous area Population

Islands
IS Reykjavík, Iceland Iceland 360,390
FO Vestmanna, Faroe Islands Faroe Islands 51,783

ES-GC Las Palmas de Gran Canaria, Canary Islands, Spain Gran Canaria 851,231
ES-PM Palma de Mallorca, Balearic Islands, Spain Mallorca 896,038

Continental
DE Karlsruhe, Germany Continental Europe (CE) 500,000,000
GB London, United Kingdom Great Britain (GB) 66,224,800
EE Tallin, Estonia Baltic 6,042,657
SE Stockholm, Sweden Nordic 21,180,931

Others
US-UT Salt Lake City, Utah, US Western Interconnection 84,600,000
US-TX College Station, Texas, US Texas Interconnection 28,995,881
ZA Cape Town, South Africa South Africa 58,775,022
RU St. Petersburg, Russia Russia 146,745,098

Statistical measures

Let us systematically investigate the statistical properties of the various areas by computing their mean deviation
from the reference µ, as well as their standard deviation σ, skewness β, and kurtosis κ in Supplementary Table II.
First, we note that most of the synchronous areas are very close to their reference frequency of 50 Hz (or 60 Hz for US
areas) on average. Except for Great Britain (GB) and South Africa (ZA), continental areas display a smaller standard
deviation than islanded areas. For GB, we can attribute this large deviations to the very different frequency regulation
framework (when compared to Continental Europe), which allows large deviations [2]. The skewness and kurtosis are
more difficult to interpret. Some areas, such as Texas (US-TX) and Faroe Islands show a substantial skewness, while
other areas, such as Continental Europe (DE) and Iceland (IS) display a large kurtosis κ > 3, hinting at heavy tails
in the distribution.

Kurtosis of aggregated data and increment statistics Let us have a closer look at the kurtosis values. We utilise
the kurtosis and its deviation from the Gaussian value of κGauss = 3 to quantify whether a given distribution displays
heavy tails and thereby deviates from a Gaussian distribution. For the aggregated statistics studied above this is
relevant as it tells us how likely we will observe extreme deviations, which could lead to a curtailment of demand or a
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Supplementary Table II. Statistical properties of different measurement sites. We report the mean µ as the mean deviation
from the reference frequency f − f ref, standard deviation σ, skewness β and kurtosis κ of the data.

Area Mean µ [mHz] Std. σ [mHz] Skew. β Kurtosis κ

Islands
IS 0.90 55.81 -0.04 7.02
FO -36.65 133.15 0.27 2.39

ES-GC -0.60 61.63 0.38 5.00
ES-PM 1.32 70.13 0.06 2.62

Continental
DE 0.22 18.77 0.08 3.95
GB -0.06 62.29 0.04 2.42
EE -0.29 12.44 -0.09 2.95
SE 0.61 48.91 0.19 4.05

Others
US-UT -0.73 18.67 -0.04 2.56
US-TX 0.20 17.79 -0.49 2.42
ZA 1.47 93.43 -0.15 2.39
RU -1.63 16.44 -0.24 2.52

shutdown of generators. For the increments, this is of particular interest for the statistical modelling since a classical
Ornstein–Uhlenbeck Process would lead to Gaussian increments [3].

A kurtosis of κ > 3 is only clearly observed in the aggregated data of IS, ES-GC, DE, and SE. In all cases, the
numerous extreme events are a remarkable observation. For such a highly regulated and controlled system as the
power grid to deviate so strongly so often demands an explanation. We are confident that the heavy tails at the two
continental areas DE and SE are related to extreme deviations at the trading intervals [1, 4, 5]. The tails in the two
islands might also be caused by market activities or arise due to a different operation by the TSO, as will be clarified
in future work.

The role of the kurtosis changes when moving to increments. A large kurtosis of the increments indicates that the
effective noise acting on the system does indeed not follow a Gaussian distribution, as expected in many stochastic
processes. Naturally, investigating the increments of an empirical trajectory, we will observe a much more volatile
behaviour than if we only observe the trajectory itself. Large jumps will be present and on a short time scale we
expect extreme tails in real-world data. Some of these large jumps could be caused by renewable generators, others by
fast control mechanisms or inverters. Still it is remarkable that kurtosis values of κ 102, are observed for IS and ES-GC
in Fig. 4 of the main text. While the general trend of decreasing kurtosis with increasing time lag is in coherence
with previous work on increment analysis [6, 7], further work is necessary to arrive at a full statistical description of
frequency increment.
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SUPPLEMENTARY NOTE 2

Scaling of fluctuations

Let us investigate whether the fluctuation in terms of regular deviations, measured by the standard deviation σ, or
extreme deviations, measured by the kurtosis κ scale with the size of the power system. Intuitively, we would expect
that the more generation is present in a given area, the smaller the fluctuations we observe are going to be. As a
proxy of the total generation, we use the total population of a synchronous area as this information is easily available
for all areas and population and total generation are approximately proportional [8]. As we can see in Supplementary
Fig 1, the kurtosis κ is not a simple function of the size of a synchronous area. The occurrence of heavy tails, as
measured by the kurtosis κ, depends on dispatch strategies, market regulations [9] and control requirements, which
are standardised within the European Network of Transmission System Operators for Electricity (ENTSO-E) [2],
leading to very similar values of the kurtosis in most synchronous areas.

104 105 106 107 108 109

Population

1

3

5

7

κ
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FO

EE
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SE

GB

DE

RUUS-TX

US-UT

ZA

ES-GC

Supplementary Figure 1. Extreme fluctuation occurrence do not decrease with increasing grid size. We plot the kurtosis as a
measure of heavy tails as a function of the population of a synchronous area.

In contrast, we have seen in the main text that the aggregated noise amplitude ε decreases approximately as the
square root of the size of a synchronous area. Let us review the derivation of this relation in more detail and discuss
alternative approaches to observe the scaling. We follow the arguments presented in [1]: Let us use the standard swing
equation [10] to describe the synchronous frequency dynamics at each node i as

Miω̇i (t) = −Diωi (t) + εiΓi(t) + Pmi + P ei , (1)

where ωi = fi/(2π) is the nodal angular velocity, Mi is the inertia, Di is the damping, εiΓi(t) is a noise term and Pmi
and P ei are the mechanical power generated or consumed and the transmitted electrical power respectively. Moving to
the bulk description, i.e., defining the total inertia M :=

∑N
i=1Mi and the bulk angular velocity ω̄ :=

∑N
i=1Miωi/M

and assuming a constant damping to inertia ratio γ = Di/Mi [11] as well as balanced electrical and mechanical power
on average, i.e.,

∑N
i=1 P

m
i = 0,

∑N
i=1 P

e
i = 0, we obtain

d
dt
ω̄ (t) = −γω̄ (t) +

1

M

N∑

i=1

εiΓi (t) . (2)

The equation from the main text is re-obtained by identifying ∆P as
∑N
i=1 εiΓi (t). If we assume that the noise Γi(t)

at each node is approximately Gaussian with zero mean and standard deviation 1 (the amplitude is included in εi),
we can formulate the Fokker–Planck equation [3] of this Ornstein–Uhlenbeck process (2) as

∂p

∂t
= γ

∂

∂ω̄
(ω̄p) +

1

2

1

M2

[
N∑

i=1

ε2i

]
∂2p

∂ω̄2
. (3)

The resulting probability density function p (ω̄) is a normal distribution with mean 0 and standard deviation

σ =

√∑N
i=1 ε

2
i

γM2
. (4)
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As an additional simplification, let us assume identical noise εi = ξ and identical inertia Mi = m at all nodes, i.e.,
M = Nm. Then, the standard deviation is given as

σ =

√
Nξ2

γm2N2
=

√
ξ2

γm2

1√
N
. (5)

This means the standard deviation decays approximately as σ ∼ 1/
√
N . An important assumption when comparing

areas with Supplementary Eq. (5) is that we assume similar noise ξ, damping γ, and inertia m. While the inertia per
machine will likely be similar in the different areas, the effective damping depends on the control applied and the
noise on the mix of generators (nuclear, hydro, coal, wind, solar, ...) and the nature of the demand fluctuations.

To take these additional external factors into account when comparing the empirical data of the various synchronous
areas, we do not compare the standard deviation several areas but their aggregated noise amplitudes ε. To retrieve
the aggregated noise amplitude ε we employ a non-parametric Nadaraya–Watson estimator to extract the Kramers–
Moyal moments of the underlying stochastic dynamics. For a timeseries x(t), the nth Kramers–Moyal moment can be
extracted via

Mn(x, t)= lim
∆t→0

1

∆t

〈
(x′(t+∆t)−x′(t))n|x′(t)=x

〉
, (6)

where the averaging process is made more precise by implementing a kernel-density function Kh(·) = h−1K(·/h) with
a bandwidth h. The Nadaraya–Watson estimator Wh(x), at point i, is given by [12]

Wh(x)i =
Kh(x− x′i)∑S
j=1Kh(x− x′j)

, (7)

where we take Kh(x) to be an Epanechnikov function, compact in R[−1,1], and S is the number of data points.
The aggregated noise amplitude ε is retrieved studying the second Kramers–Moyal moment, and employing the
aforementioned estimator, resulting in

M2(x) =
1

S∆t

S∑

i=1

Wh(x)i[x
′(t+∆t)− x′(t)]2i = ε2, (8)

with ∆t = 1s. All Kramers–Moyal moments are easily retrievable, see Refs. [13, 14]. The so extracted aggregated
noise amplitude ε will closely follow the empirical Fokker–Planck equation and should therefore resemble a ε ∼ 1/

√
N

decay, as any deterministic effects are filtered out.
Finally, while we expect the noise to decay with the size, it is well-justified to add a constant to our previously

derived expression (5), modifying it to

ε ∼ σ =
a√
N

+ b. (9)

We add the constant b to take the effect of deadbands into account. All synchronous areas have deadbands [10], i.e.
frequency ranges for which there is no (primary) control active and the frequency dynamics evolves freely. This means
for a certain range |ω| < ωdeadband the damping to inertia ratio γ, which explicitly includes primary control, is much
smaller and the frequency randomly evolves and contributes a minimum noise contribution b.

In addition to the standard deviation σ or the aggregated noise amplitude ε, we might also consider using a
Gaussian kernel to detrend the data and only analyse the standard deviation of the detrended data. Finally, we could
also consider using the standard deviation of the increments (at the smallest available time lag τ = 1) as a proxy of
the actual noise. We compare these different approaches in Supplementary Fig. 2: Moving from top to bottom: Taking
the unfiltered standard deviation of the data (Supplementary Fig. 2 a), does give a rough trend but areas as South
Africa (ZA) or Great Britain (GB) have a much larger standard deviation than we would expect from the scaling law.
When we introduce the de-trending, the overall standard deviation drops (Supplementary Fig. 2 b) but the problems
with GB and ZA persist. Likely this is caused by control regulations that allow larger deviations than they are allowed
for example in Continental Europe. Next, we extract the aggregated noise amplitude ε (Supplementary Fig. 2 c) and
observe a decay, well-approximating the conjectured scaling law. Finally, we note that using the standard deviation
of the increments at lag τ = 1s is almost identical to the aggregated noise amplitude ε (Supplementary Fig. 2 d).
Comparing all four plots, in particularly in terms of the standard deviation of the best fit (shaded area), leads to the
conclusion that panels c and d are the best descriptors. Both the extracted noise ε as well as the increments on the
one second scale ∆f1 are good proxies of the diffusive forces acting on the synchronous area.
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Supplementary Figure 2. Average fluctuations decrease with increasing grid size with increments ∆f1 and aggregated noise
amplitude ε as the best descriptors. We plot the standard deviation (a), filtered standard deviation (b), the aggregated noise
amplitude (c) and the standard deviation of the increments at time lag τ = 1s (d). The shaded area gives the standard deviation
of the fit.
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SUPPLEMENTARY NOTE 3

Castaing’s model for increments
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Supplementary Figure 3. Increment analysis reveals non-Gaussian characteristics, dominantly in islands. We plot the Castaing
parameter λ2

τ , given by Supplementary Eq. (14), for the different examined power grid frequency recordings. We observe a
non-vanishing intermittency in Gran Canaria (ES-GC), Iceland (IS), Faroe Islands (FO), Mallorca (ES-PM), Britain (GB),
Texas (US-TX) , and South Africa (ZA). In contrast, the increments’ distribution of the Baltic (EE), Continental Europe (DE),
Nordic (SE), Russia (RU) synchronous areas and the Western Interconnection (US-UT) approach a Gaussian distribution.

In the main text we quantified deviations from Gaussianity of the increment distributions by the use of the excess
kurtosis κ−3, which should decay to zero if the distributions under consideration are Gaussian. Here, we offer a more
theoretical view by using Castaing’s model. This model describes the deviations of the increments’ distribution from
a Gaussian distribution [15–17] and has already been applied to frequency analysis [6, 7]. The increments ∆fτ with
the lag τ have a non-homogenous scaling, which leads to distributions with high kurtosis, and sometimes non-zero
skewness [18]. The rationale is that the process is a superposition of several subset processes with distinct scales,
similar to superstatistics [19, 20]. Specifically, Castaing’s model is a special case of log-normal superstatistics applied
to increments. The probability density function (PDF) of the increments p(∆fτ , στ ) is a function of the widths στ ,
given by

p(∆fτ , τ) =

∫ ∞

−∞
Lλ(στ )p0(∆fτ , στ )d lnστ , (10)

where the underlying subset processes are assumed to have a Gaussian distribution p0(∆fτ , στ ) ∼ N (0, στ ) of some
variance σ and Lλ(στ ) accounts thus for the scales of each superposition. This scale function Lλ(στ ) is conjectured
to be log-normally distributed

Lλ(στ ) =
1

λτ
√

2π
exp

[
− ln2(στ/σ0)

2λ2
τ

]
, (11)

with λ2
τ being the Castaing parameter. For the case λ2

τ → 0, the distribution Lλ(στ ) approached a δ-distribution, and
the increments ∆fτ are purely Gaussian distributed. As λ2

τ increases, the convolution includes more scales and the
tails of the PDF of the increments enlarge. Inserting Supplementary Eq. (11) into Supplementary Eq. (10) yields the
explicit PDF of the increments as

p(∆fτ , τ) =

1

λτ2π

∫ ∞

0

dστ
σ2
τ

exp

[
−∆f2

τ

2σ2
τ

− ln2(στ/σ0)

2λ2
τ

]
.

(12)

The increments intermittency behaviour is thus solely described by the Castaing parameter λ2
τ . Multiplying both sides

of Supplementary Eq. (12) by ∆f2
τ and integrating over [−∞,∞], we find

σ2
0 = 〈∆f2

τ 〉 exp
[
−2λ2

τ

]
. (13)

One can now recover the Castaing parameter λ2
τ by extracting the fourth-order statistical moment, i.e., the kurtosis

κ∆f (τ), of the PDFs of ∆fτ as function of the lag τ . The Castaing parameter λ2
τ results in

λ2
τ = ln

(
κ∆f (τ)

3

)
, (14)
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i.e., for a Gaussian distribution with κ∆f (τ) = 3 the Castaing parameter decays to 0.
To extract the Castaing parameter, we compute the increment statistics ∆fτ of a certain timeseries fτ and calculate

the kurtosis κτ of the PDF of the increments. Then, we take the normalised logarithm as in Supplementary Eq. (14)
and do so over the desired range of increments time-lag τ .

Computing the Castaing parameter λ2
τ for our data, we observe very heterogeneous results between the various

synchronous areas, see Supplementary Fig. 3. In some areas, the intermittent behaviour of the increments ∆fτ is
subdued and the overall distribution approaches a Gaussian distribution (in EE, DE, SE, RUS, and US-TX), i.e.,
the Castaing parameter λ2

τ approaches 0. On the other hand, all islands display large and non-vanishing intermittent
behaviour, as well as GB, US-TX, and ZA. Iceland (IS) but particularly Gran Canaria (ES-GC) shows impressive
deviations from Gaussianity that require detailed modelling in the future.

With Castaing’s model and parameter we used an alternative approach to quantify heavy tails, instead of purely
using the kurtosis κ. A further advantage of Castaing’s approach is that it allows us to model the increments as
superimposed distributions, complementary to superstatistics of the aggregated frequency distributions [1]. An explicit
increment model will be left for future work.
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SUPPLEMENTARY NOTE 4

Further increment analysis

−20

−10

0

10

20

∆
f τ

[m
H

z]

a

τ = 1 τ = 2

−20 −10 0 10 20

−20

−10

0

10

20

∆
f τ

[m
H

z]

τ = 5

−20 −10 0 10 20

τ = 10

Oldenburg vs. Karlsruhe

−20

−10

0

10

20

b

τ = 1 τ = 2

−20 −10 0 10 20

−20

−10

0

10

20 τ = 5

−20 −10 0 10 20

τ = 10

Istanbul vs. Karlsruhe

−20

−10

0

10

20

∆
f τ

[m
H

z]

c

τ = 1 τ = 2

−20 −10 0 10 20
∆fτ [mHz]

−20

−10

0

10

20

∆
f τ

[m
H

z]

τ = 5

−20 −10 0 10 20
∆fτ [mHz]

τ = 10

Lisbon vs. Karlsruhe

−20

−10

0

10

20

d

τ = 1 τ = 2

−20 −10 0 10 20
∆fτ [mHz]

−20

−10

0

10

20 τ = 5

−20 −10 0 10 20
∆fτ [mHz]

τ = 10

Lisbon vs. Istanbul

Supplementary Figure 4. Long increment lags lead to increased correlations. We repeat the increment analysis from the main
text but with larger lags 1 s ≤ τ ≤ 10 s. Note that each of the 2×2 subpanels is now using four different lags τ but the overall
figure still follows the same arrangement as in the main text.

We complement the increment analysis from the main text by considering larger time lags τ > 1 s. In particular, we
compute the increments [6, 21] ∆fτ = f(t+τ)−f(t) for the four measurement sites in Continental Europe: Karlsruhe,
Oldenburg, Istanbul and Lisbon. For the pairs investigated in the main text, we consider a lag τ = 1, 2, 5, 10 seconds
in Supplementary Fig. 4. Since the scatter plots report increments at two locations at the same time t, points on the
diagonal indicate large correlations, while circles or ellipses aligned with one axis indicate no correlations. The results
for Oldenburg vs. Karlsruhe are almost independent of the specific time lag τ . The magnitude of the increments
increases for increasing time lag τ but almost all values follow the diagonal, indicating a high correlation on the full
time scale for 1 to 10 seconds. In contrast, the increment plots involving Istanbul and Lisbon change much more with
increasing lag τ as their increments on the time scale of 1 second are almost completely uncorrelated but at 5 to 10
seconds, an increasing number of points follow the diagonal, i.e., fluctuation events become correlated. Similar to the
detrended fluctuation analysis (DFA) from the main text, we again observe that short time scales are independent,
while we approximate a bulk description for longer time scales. This observation is also consistent with claims found e.g
in [22] that high frequency fluctuations do not penetrate the grid over long distances but lower frequency fluctuations
do.
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Supplementary Figure 5. The kurtosis κ of the increment statistics ∆fτ decreases with increasing lag τ . We plot the kurtosis
κ of each recording site as a function of the increment lag τ .

Finally, we may further investigate how the increment distributions look like, in particular with respect to their large
deviations, i.e., their heavy tails measured by the kurtosis of the increment distributions. Computing the kurtosis κ of
the increment statistics ∆fτ at different lags τ , shows that the deviations from the Gaussian (κGaussian = 3) decrease
on average. While the kurtosis shows a small increase in Győr with increasing time lag, the kurtosis at Istanbul and
Lisbon is substantially reduced, see Supplementary Fig. 5. This finding is consistent with [6], where the authors also
found that long lags lead to approximately Gaussian increment statistics. Here, we go further in that we observe
spatial differences already at a time resolution of 1 second, in particular for locations far away from Karlsruhe.
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SUPPLEMENTARY NOTE 5

Details on Detrended Fluctuation Analysis (DFA)

Detrended Fluctuation Analysis (DFA) [23, 24] studies the fluctuation of a given process by considering increasing
segments of the timeseries. Take a timeseries X(t) with N elements Xi, i = 1, 2, . . . , N . Obtain the detrended profile
of the process by defining

Yi =

i∑

k=1

(Xk − 〈X〉) , for i = 1, 2, . . . , N,

i.e., the cumulative sum of X subtracting the mean 〈X〉 of the data. Section the data into smaller non-overlapping
segments of length s, obtaining therefore Ns = int(N/s) segments. Given the total length of the data is not always
a multiple of the segment’s length s, discard the last points of the data. Consider the same data, apply the same
procedure, but this time discard instead the first points of the data. One has now 2Ns segments. To each of these
segments fit a polynomial yv of order m and calculate the variance of the difference of the data to the polynomial fit

F 2(v, s) =
1

s

s∑

i=1

[Y(v−1)s,i − yv,i]2, for v = 1, 2, . . . , Ns,

where yv,i is the polynomial fitting for the segment i of length v. One also has the freedom to choose the order of
the polynomial fitting. This gives rise to the denotes DFA1, DFA2, . . . , for the orders chosen. Notice F 2(v, s) is a
function of each variance of each v-segment of data and of the different s-length segments chosen. One can define the
fluctuation function F 2(s) by averaging each row of segments of size s

F 2(s) =
1

Ns

{
Ns∑

v=1

F 2(v, s)

}1/2

.

The inherent scaling properties of the data, if the data displays power-law correlations, can now be studied in a log-log
plot of F 2(s) versus s. Herein the scaling of the data obeys a power-law with exponent h as

F 2(s) ∼ sh,

where h is the self-similarity exponent (which may be multifractal) and relates directly to the Hurst index. The self-
similarity exponent h is calculated by finding the slope of this curve in the log-log plots. For a detailed explanation
of DFA, see [25]. The analysis implemented here is based on [26].
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SUPPLEMENTARY NOTE 6

Principal Component Analysis
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Supplementary Figure 6. The principal components reveal the spatial structure of inter-area modes. The maps show the colour-
coded entries of the normalised principal components fm. The spatial structure corresponds to synchronous behaviour (a),
East-West oscillations (b), North-South oscillations (c), Coastal-inland fluctuations (d-e), and intra-Hungarian oscillations (f).
The synchronous component describes the frequency bulk behaviour and thus explains already λ1 = 99.2% of the total variance.
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Supplementary Figure 7. The inter-area modes oscillate with a period between 3 and 9 seconds. The figure displays squared
Fourier amplitudes |F (am(t))|2 of the mode amplitudes am(t). The largest inter-area oscillations occur with a period of t = 7 s
and t = 4.5 s, which corresponds well to the results in [27]. In the main text, we only discussed the first three modes as the
most dominant ones.

We apply a principal component analysis (PCA) to our multivariate frequency time series in order to extract
the dominant modes of inter-area oscillations. Generally, a PCA identifies the orthogonal linear subspaces (principal
components) that maximise the projected variance of the data [28]. Let f(t) be the vector containing the frequency
recordings from all six locations within Europe. The principal components are then given by the eigenvectors fm(t) of
the data covariance matrix. Based on the principal components, we can decompose the centred frequency recordings
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into uncorrelated time series am(t):

f(t) = 〈f〉+

N∑

m=1

am(t)fm.

The time series am(t) describe the amplitude of the frequency recordings f(t) projected onto the m-th principal
component. Their variance, i.e., the projected variance, is given by the eigenvalue λ̃m. By rescaling this variance, we
obtain the share of total variance explained by the m-th component:

λm =
λ̃m∑
m λ̃m

.

We interpret the principal components (PCs) of f(t) as spatial inter-area modes and the time series am(t) as their
amplitudes. Supplementary Fig. 6 displays all six modes obtained from our synchronised measurements in Continental
Europe. The first mode (PC1) represents a synchronous frequency oscillation at all locations and thus corresponds
to the bulk behaviour of the frequency. The other modes (PC2-PC6) display asynchronous spatial patterns and thus
represent inter-area oscillations. Due to their small amplitude, these modes only explain a low portion of the variance
(λ2, ..., λ6 < 0.4%), while the bulk mode already covers λ1 ≈ 99.2%. However, PC2 to PC6 uncover the dominant
spatial structure of inter-area modes across Continental Europe. Let us analyse these modes based on their visualisation
in Supplementary Fig. 6 in more detail: PC2 contains one coherent area in Western Europe that oscillates in phase
opposition to Istanbul. In PC3 Lisbon and Istanbul swing in opposition to the Northern measurement locations. PC2
thus resembles an East-West dipole, while PC3 is similar to a North-South dipole. The other modes correspond to a
Coast-Inland fluctuation (PC4 and PC5) and an intra-Hungarian oscillation (PC6).

To reveal the oscillation period of these modes, we analyse the power spectral density (PSD) of their amplitudes
am(t) (Supplementary Fig. 7). The East-West dipole (PC2) exhibits a main period length of t ≈ 7 s and a smaller
contribution at t ≈ 9 s. PC3 mainly oscillates with a period pf t ≈ 4.5 s, but there is also a distinct peak at
t ≈ 9 s, which also appears in PC2 and PC4. PC5 and PC6 mainly exhibit oscillations with a period of t ≈ 7 s and
t ≈ 4.5 s. The PSD of bilateral differences between single measurement locations reveals the same main period lengths
(Supplementary Fig. 8). Interestingly, no inter-area oscillations can be observed between Karlsruhe and Oldenburg,
which could indicate well-balanced power within Germany or could be caused by the limited spatial resolution of the
available 6 modes. Overall, we identify three main oscillations periods of inter-area modes with t ≈ 9 s, t ≈ 7 s, and
t ≈ 4.5 s, which is consistent with the typical frequency of inter-area modes [29].

The comparison to a more detailed study suggests that our principal components probably relate to overlaps of
different global inter-area modes. A first indicator for this conclusion is the occurrence of multiple substantial peaks
in our PSD in Supplementary Fig. 7 (e.g. for PC3). The detailed analysis in [27] revealed four dominant inter-area
modes in Continental Europe with distinct period lengths. The authors describe a mode G1, which resembles a North-
South dipole and oscillates with t = 5 s. Furthermore, they present mode T1, which represents an East-West dipole
oscillating at t = 6.7s, and similar mode G2 with t = 3.3s. In mode G3, Eastern Europe, Spain, and Portugal swing
in phase opposition to Central Europe with t = 2s. Comparing this to our results, we conclude that PC2 corresponds
well to mode T1, while PC3 is similar to mode G1. However, PC3 contains another substantial oscillation with t = 9s.
This could be an effect of aliasing due to our low Nyquist-frequency of 0.5 Hz. Modes with period lengths below 2s
thus re-appear in our PSD at multiples of their oscillation period. The mode G3 could thus correspond to the peak at
t ≈ 9s in Supplementary Fig 7. Finally, PC4 contains the mode G2 among others, while PC5 and PC6 both contain
the period lengths of G1 and T1. The PCA modes are thus very similar to the results in [27], but they do not isolate
inter-area modes with single distinct periods.

The overlap of different (linear) oscillation modes in our PCA results can have different reasons. Our low spatial
resolution could make it impossible to retain the spatial modes identified in an earlier study [27]. On the other hand,
a linear separation of the inter-area modes through a PCA and a Fourier decomposition could generally fail due to
the non-linearity of power system dynamics. Finally, our time resolution of one second could lead to aliasing and
the incorrect reconstruction of inter-area modes. In the future, a higher spatial and temporal resolution of frequency
recordings would be necessary to further investigate these effects.
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Monitoring and modelling the power grid frequency is key to ensuring stability in the electrical
power system. Many tools exists to investigate the detailed deterministic dynamics and especially
the bulk behaviour of frequency. However, far less attention has been paid to its stochastic prop-
erties, and no coherent framework connects both short-time scale fluctuations and bulk behaviour.
Moreover, commonly assumed uncorrelated stochastic noise is predominantly employed in modelling
in energy systems. In this publication, we examine the stochastic properties of six synchronous
power-grid frequency recording with high-temporal resolution of the Nordic Grid from September
2013, focusing on the increments of the frequency recordings. We show that these increments follow
non-Gaussian statistics and display spatial and temporal correlations. Furthermore, we report two
different physical synchronisation phenomena: a very short timescale phase synchronisation (< 2 s)
followed by a slightly larger timescale amplitude synchronisation (2 s–5 s). Overall, these results
provide guidance how to model fluctuations in power systems.

I. INTRODUCTION

The power-grid frequency is a key indicator of the sta-
bility of electric power systems. It weighs in the balance
of power generation and consumption as well as the op-
eration of each element of the grid and thus serves as
the main observable in automatic generation control [1].
In steady operation, the frequency is the same through-
out the grid and all generators have a fixed phase dif-
ference that essentially determines the real power flows.
Yet, perfect phase locking is only an approximation to
the operation of real power grids subject to numerous
external perturbations. For instance, local perturbations,
such as the loss of a generating unit, can can cause inter-
area oscillations corresponding to the normal modes of
the grid around a steady state [2]. Stronger perturba-
tions can even lead to the complete loss of synchrony be-
tween different parts of the power grid, eventually leading
to blackouts [3]. This article focuses on mild deviations
caused by ambient perturbations and the ability of the
grid to relax to synchrony afterwards.

Frequency dynamics and synchronisation are essen-
tial aspects of power system operation and thus inten-
sively studied in the literature. The ongoing energy tran-
sition strengthened the interest in these topic, as syn-
chronous generators are replaced by inverter-based power
sources [4, 5]. For instance, recent years saw an enor-
mous progress in the mathematical theory of synchroni-
sation [6], leading to the derivation of a variety of rigorous
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† luigi.vanfretti@gmail.com
‡ d.witthaut@fz-juelich.de
§ c.beck@qmul.ac.uk
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stability conditions [7, 8]. An important actual research
topic is the dynamics and design of inverter-based power
grids lacking the inertia provided by large synchronous
machines [9, 10]. Another key approach is the develop-
ment of detailed simulation models to study frequency
dynamics and synchronisation for actual grid layouts and
contingency situations [11, 12]. Power hardware in the
loop then allows to investigate and test actual equipment
coupled with real-time simulations [13, 14]. A common
scenario in such simulation-based studies is the dynam-
ics after a sudden large perturbation modelling a fault
(see, e.g. Ref. [4]). Does the grid remain stable and how
does it take to relax to a steady synchronous operation?
The current manuscript adopts a very different approach
to power-grid synchronisation focusing on the analysis of
synchronous frequency measurements in the presence of
ambient noise. We will extract the essential scales of syn-
chronisation in space and time from frequency time series
in a model-free way.

Non-linear time series analysis has been applied to in-
vestigate various aspects of power-grid systems, includ-
ing stochastic analysis [15], particularly with the applica-
tion of the Hilbert–Huang transform (empirical mode de-
composition) [16], wavelet-based analysis [17], or power
spectral density. The spatio-temporal dynamics of the
power system have been studied in more detail, e.g.
by revealing inter- and intra-area oscillations and eigen-
frequencies. In the Nordic Grid in particular, eigenfre-
quencies [18] and eigenmodes [19] have been estimated
and inter-area oscillations [20] as well as power oscil-
lation damping [21] have been observed. Nevertheless,
stochastic elements, more commonly denoted as ambi-
ent noise [22], are not in the focus of most power system
studies. Only some studies include noise, e.g. when inves-
tigating power generation [23]. Some recent papers have
provided a detailed stochastic analysis and modelling of
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FIG. 1. Six power-grid frequency recordings in the Nordic Grid from 2013, showing very distinct increment statistics. (a)
Approximate locations of the recordings across the Nordic Grid: CTH, LTH, KTH, LTU, Tampere, and Aalto. (b) Excerpts
of the recordings in a 30 minutes time scale. (c) Zoom into the arrows of panel b of a total length of 2 seconds. d-f display
the probability density functions (PDF) of the increments ∆fτ at the shortest increment lag τ = 0.02 s and at τ = 1 s, in a
vertical logarithmic scale, alongside a normal distribution (which is an inverted parabola in a vertical logarithmic scale) with
equal variance for the first recording at τ = 0.02 s, for comparison. PDFs are vertically displaced for clarity. All recordings are
synchronous and have a sampling time of 0.02 s.

the bulk frequency without addressing spatial aspects of
the dynamics [24–26]. Both spatio-temporal or general
time series analysis require access to high-quality, spa-
tially distributed frequency recordings with phasor mea-
surement units (PMUs) or PMU-like devices. Unfortu-
nately, most data sets are not shared openly. While the
US-based initiative FNET/GridEye [27] offers updated
maps of frequencies world-wide, no open access to the
data is available. Other initiatives are not available for
the Nordic Grid, such as Grid Radar [28], or only cover
spatial measurements in Continental Europe [25, 29].

Within this article, we present self-recorded data of
the Nordic synchronous area and power study grid syn-
chronisation in a data-centred model-free approach. We
focus on the increment statistics of the frequency time
series which carries essential information on the volatil-
ity and the synchronisation of the frequency. We show
that non-Gaussian increment statistics are ubiquitous in
increment statistics and that the variance on the incre-
ments scales faster than Brownian-like motions. Next, we
show that stochastic fluctuations exhibits spatial corre-
lations between locations even at vanishing time differ-
ences and that there exist temporal correlation within
the same incremental time series. Finally, we examine
phase and amplitude synchronisation separately. To this
end, we firstly observe a linear relation in space for phase
synchronisation, which contrasts the second finding of a
strong (super-)diffusive coupling in amplitude synchroni-
sation.

II. SYNCHRONISATION PHENOMENA AND
INCREMENT STATISTICS

In this article we analyse power-grid frequency record-
ings in the Nordic Grid from the 9th to the 11th of
September, 2013, with a sampling time of 0.02 seconds.
We illustrate the locations of the recording sites on a
map of the Nordic Grid synchronous area in Fig. 1a. An
excerpt of 30 minutes of recordings is displayed in b, ver-
tically displaced for clarity. Panel c shows a snapshot of
2 seconds length, around the time point indicated by an
arrow in panel b.

One immediately notices the most common proper-
ties of power-grid frequency: On course scales, all record-
ings are synchronous and seem perfectly identical at first
sight. If one examines them at a time scale of hundreds
of milli seconds (in Fig. 1c) the synchronous behaviour is
still present, but small fluctuations occur, each seemingly
with their own dynamics, at each location. We will focus
on these small, high-frequency fluctuations and introduce
here the rather intuitive idea of phase and amplitude syn-
chronisation.

A. Phase and amplitude synchronisation

A coupled dynamical system, say for simplicity, a ro-
tating generator and a (rotating) motor, each with a
given inertia, exchanging power, will display some fre-
quency dynamics around the set value. Three different
regimes of the collective dynamics exist, as depicted in
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Fig. 2 for two sinusoidal signals (e.g. their power-grid fre-
quency). If both signals are only weakly interacting and
independent, we would expect these signals to be uncor-
related, i.e., with a different phase and display different
amplitudes (panel a). Enforcing a synchronised dynam-
ics, e.g. via coupling, will match their phases, but not
yet their amplitude. Hence, we observe a correlation be-
tween both signals (panel b). Lastly, given sufficient cou-
pling, we also obtain amplitude synchronisation, i.e., in
this case a full synchronisation, as both phase and am-
plitude are equal (panel c).

Naturally several questions arise from this depiction:
What are the usual timescales for each synchronisation
to take effect after an external perturbation? What are
the causes for this synchronisation? How do distances
between elements impact the synchronisation (especially
in networked systems)? Lastly, are there properties from
one synchronisation phenomenon that affect the other?

We will address these questions on the basis of mea-
sured time series. Phase synchronisation is analysed in
terms of the signal’s increments, i.e., the change of the
signal between two points in time. If two signals are per-
fectly phase synchronised, their increments will perfectly
correlated. In contrast, amplitude synchronisation must
be studied in terms of the original time series.

different amplitudes
uncorrelated correlated correlated

different amplitudes identical amplitudes

a b c

FIG. 2. Distinct frequency signals first become correlated and
then converge to identical amplitudes. We illustrate this here:
a: Initially, signals are initially uncorrelated and have differ-
ing amplitudes. b: After some time, signals which are phase
synchronised but still differ in amplitude. c: Finally, signals
are synchronised both in phase and amplitude.

B. Increment statistics

In order to study the synchronisation, including corre-
lations of each time series, we investigate the increment
statistics of the recordings. Synchronous power-grid sys-
tems operate at a set frequency. In the Nordic Grid, and
all of Europe, this is the nominal frequency of 50 Hz.
Many of the deterministic properties are studied directly
from the time series themselves, by either studying their
deterministic properties, i.e., as a dynamical system, or
as a stochastic process. Yet, here we take another ap-
proach and focus on fluctuations of the time series—in
particular their increments—and quantify their stochas-
tic properties and correlations.

Increments ∆fτ (t) are defined as

∆fτ (t) = f(t+ τ)− f(t), (1)

where the incremental lag τ gives the temporal differ-
ence of the two points within a time series f(t). Studying
the incremental properties of a time series focuses on the
shortest time scales of the underlying processes, thus ex-
cludes the deterministic trends and deals solely with the
stochastic characteristics of the fluctuations themselves.
Note that we move away from considering the recordings
in their time domain and study the difference between
two points separated by a temporal lag τ .

There is an intrinsic relation between increments and
inertia in the system. The ability of a power-grid sys-
tem to maintain itself at its nominal frequency (50Hz
or 60Hz) is dictated by the mass of their coupled ro-
tating generators. Short term fluctuations in the power
system—i.e., precisely the increments—are conjectured
to grow in amplitude and frequency when more inertia
is removed as renewable generators replace fossil fuelled
ones [4, 5]. These fluctuations are of great importance as
they can lead to large angle variations ergo power flow
fluctuations, putting additional strain on generators and
transmission system components.

After obtaining the incremental time series for all six
sites, we investigate their statistics for the shortest incre-
mental lag τ = 0.02 s and the longer lag τ = 1 s in Fig. 1d-
f. One observes considerable differences of the empirical
probability distributions (PDFs) between the six sites. As
a base-line we might expect Gaussian distributions, i.e.
inverted parabola in the vertical logarithmic plot (dotted
line). Indeed, inspecting the incremental distributions at
a delay τ = 1 s, some sites, such as CTH, approximately
follow such a Gaussian distribution. In contrast, most
sites display clear deviations from Gaussianity for the
short delay τ = 0.02 s, instead displaying heavy-tailed
distributions.

The heavy tails in these distribution indicate that un-
commonly large fluctuations take place in the increments,
i.e., the difference from one time-point to the next is
abnormally large (compared to "normally" distributed
noise). Furthermore, we note that these increments seem
rather distinct at each location, in particular compared
to the much more homogeneous power-grid frequency
recordings. This tell us straightforwardly that, although
there is a strong synchrony in the system—the 50Hz of
operation—each location varies ever-so-slightly and each
in its own manner. What we observe here are local prop-
erties at each site of the recordings.

To best quantify both the deviations from Gaussian
distributions as well as the differences between sites, we
investigate two statistical parameters: the variance and
the kurtosis of each distribution, as a function of time
step τ .

C. Statistical properties of incremental time series

We examine two statistical moments of the incremen-
tal distributions as a function of the incremental lag τ ,
namely, the variance and kurtosis. The variance (sec-
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FIG. 3. Variance σ(∆fτ )2 and kurtosis κ(∆fτ ) of the in-
crement ∆fτ display clear deviations from Gaussianity. a A
power-law scaling is observed, with exponent > 1. For com-
parison, the linear-like scaling of an uncorrelated Brownian
motion is shown. LTU and LTH seem to display the pres-
ence of microscopic noise, uniformly increasing the variance
of their increments, irrespective of τ . b Kurtosis κ(∆fτ ) of the
increment ∆fτ in a vertical logarithmic scale. The increments
statistics are always leptokurtic, i.e., κ > 3. All increment
statistics κ(∆fτ ) converge to κ(∆fτ�0) ≈ 3.35 at τ & 2.

ond statistical moment) indicates the average displace-
ment of each recording from their mean, i.e., how far the
point of the recordings are spread out from their mean.
Note that we have a mean zero here, as we investigate
frequency fluctuations. On the other hand, the kurto-
sis (forth normalised moment) roughly indicates how of-
ten rather large deviations happen, i.e., deviations much
larger than those that fall inside the spread of the stan-
dard deviation (square root of the variance). [30].

Note that we handed-picked two distributions at τ =
0.02 s and τ = 1 s for Fig. 1d-g. Now, we systematically
investigate how the variance and kurtosis of each incre-
ment distribution change as we slowly increase the incre-
mental lag τ . Let us examine variance σ(∆fτ )2 (Fig. 3a)
and kurtosis κ Fig. 3b for the first five seconds of incre-
mental lags τ ∈ [0.02 s, 5 s]. The first observation is that
the variance of the increments ∆fτ increases in a power-
like relation. In particular, we observe a scaling of the
variance as

σ(∆fτ )2 ∼ τ2α, with 1.4 < 2α < 1.9. (2)

Notice here that classical Brownian motion, often as-
sumed when simulating noisy processes, e.g. in Mat-
power or other software, scales with σ(∆Bmfτ )2 ∼ τ ,
i.e., (α = 0.5), see linear dotted line in Fig. 3a.

This strong diffusion scaling of real noise becomes
particularly relevant when performing simulations and

should be incorporated accordingly. Importantly, the ob-
servation of this correlated, i.e. non-white noise is ubiq-
uitous and uniform across locations and strictly derived
from a data analysis, i.e. without imposing any model.
We come back to this observation in Sec. II E and show
that this seemingly innocent coefficient plays an decisive
role in both phase and amplitude synchronisation.

As a last remark, one observes similarly that in both
LTU and LTH additional microscopic noise is present,
possibly with some regular properties (notice the curves
do not approach zero for decreasing τ). Whether these
are artefacts or fundamental physical property of each
site’s local stochastic properties is left to future analysis.

Let us now turn our attention to how the kurtosis
changes with increasing τ (Fig. 3b). As a reference we
provide the kurtosis of a Normal distributions as κN = 3
in the plot. Notably, the kurtosis of the increments de-
creases with growing incremental lags τ , that is to say, as
τ increases the distributions become more and more like
normal distributions. Phrased differently: On very short
time scales, the dynamics displays the highest deviations
from Gaussian statistics. One should note that this is not
completely unexpected behaviour. In similar analyses on
turbulent flows [31–33] and stock market prices [34], sim-
ilar behaviour is found. What is relevant for our analysis
is to understand this as a synchronisation phenomena. As
depicted in Fig. 2c, if one is to achieve amplitude syn-
chronisation, then obviously two recordings must end up
with identical distributions. This does not mean that the
kurtosis of all incremental time series must become nor-
mally distributed, but does imply they must be identical.

With these insights into the increment statistics at a
single location, we can now address the the first guiding
questions formulated in the introduction: Can we unravel
the physics of phase synchronisation and its timescale?
To do so we must study the smallest timescales of the
incremental time series and focus on their correlations.

D. Phase synchronisation

Let us examine the emergence of phase synchronisation
of the incremental time series (from uncorrelated to cor-
related time series). Power grids are designed to ensure
that all power generators work synchronously across the
power grid. Naturally—and as we have seen so far—this
means that the frequency recordings themselves are al-
most identical, i.e., highly correlated with each other, yet
this does not directly translate into fluctuations at each
location acting in a similar fashion. Indeed, both mod-
els and theory treating the power-grid frequency often
assume uncorrelated fluctuations. Again without relying
on any model, we will demonstrate that spatial correla-
tions of the fluctuations are ubiquitous, and especially
prevalent below a certain distance—similar to a scaling
law in long-range fluctuations in power-grid frequency
presented in Ref. [35].

In order to study the correlations of the increments be-
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FIG. 4. Pearson correlation c(∆fXτ ,∆fCTH
τ ) of the increments

between CTH and the other five locations increases with de-
lay τ . (a-c) display the correlations between CTH and Aalto
at a τ = 0.02 s, b τ = 0.40 s, and c τ = 2.00 s. (d) Displays
the Pearson correlation c(∆fXτ ,∆f

CTH
τ ) in τ ∈ [0.02 s, 20 s].

Generally correlations are zero or small with all other record-
ings at τ = 0.02s, yet do not vanish for the closest locations to
CTH: LTH and KTH. For larger increments, the correlation
approaches one: limτ→∞ c = 1.

tween two locations, we examine the Pearson correlation
of two recordings c(∆fXτ ,∆fYτ )

c(∆fXτ ,∆f
Y
τ ) =

Cov
(
∆fXτ ,∆f

Y
τ

)

σ(∆fXτ )σ(∆fYτ )
∈ [−1, 1], (3)

with X and Y the two locations or recordings, σ their
individual standard deviation and Cov their covariance.
A value of c = 1 indicates total correlation, c = −1 total
anti-correlation, and c = 0 no correlation.

Let us take the site CTH as an example. The Pear-
son correlation c(∆fXτ ,∆fCTH

τ ) with all other locations
is displayed in Fig. 4, for 0.02 s< τ < 20 s. Panels a-
c show how large increments lead to highly aligned, i.e.
correlated increments, while short increments display no
correlation. The de-correlation of the increments for very
small time differences τ is clear, yet this does not seem
to be the case for the two closest locations to CTH:
LTH and KTH. In this case, the Pearson correlations are
c(∆fLTH

τ ,∆fCTH
τ ) ∼ 0.25 and c(∆fKTH

τ ,∆fCTH
τ ) ∼ 0.25

at the lower limit of τ → 0. All Pearson correlations can
be found in App. A, Fig. 7.

This gives rise to the following question: Are fluctua-
tions in the increments correlated for shorter distances,
i.e., are there spatial correlations in the increments them-
selves? We examine this by studying the Pearson correla-
tions against the geographical distance between the loca-
tions in two manners: (1) find the Pearson correlation at
the lowest temporal lag τ = 0.02 s and the distance be-
tween the locations; (2) find how much time it takes for
the locations to surpass a given threshold of correlation
and the distance between the locations.
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FIG. 5. Time to reach correlation increases linearly with dis-
tance. (a) displays the Pearson correlation c(∆fXτ ,∆f

Y
τ ) of

two locations at the temporal lag τ = 0.1 s in relation to their
driving distance. The presence of non-vanishing correlations
at small distances can be observed, following an exponential-
like function exp(axk), with parameters a = −0.10 and
k = 0.47. (b) displays the time at which the Pearson correla-
tions between two locations become greater than 0.5, τc>0.5,
plotted against the distance between the locations. In similar
fashion, we see that the time it takes for the increments to
become correlated is linearly proportional to the distance be-
tween two locations. Shade area indicated the standard devia-
tion of the polynomial fitting. Three couplings are discarded:
Aalto–Tampere and Aalto–LTU, due to their seemingly small
anti-correlation at τ = 0.02 , which quickly becomes corre-
lated at τ > 0.1s, and the LTH–KTH coupling, which as seen
in Fig. 3a present microscopic noise, mooting possible corre-
lations.

Firstly we note that all sea cables in the Baltic Sea
or the Gulf of Bothnia are direct current (DC) cables,
thus these do not participate in the synchrony on the
system. That being the case, driving/walking distances
between two locations serves as a proxy to actual grid
distance, i.e., the actual power-line cable lengths between
two locations.

In Fig. 5a, the fifteen distance pairs between the six lo-
cations and their respective Pearson correlation at tem-
poral lag τ = 0.1 s are displayed. The Pearson corre-
lations c(∆fXτ ,∆fYτ ) for all locations at τ = 0.1 s are
plotted against the distances between the points. A pat-
tern of correlations emerges for short distances with non-
vanishing Pearson correlations. Three couplings are dis-
carded: (1) Aalto–Tampere and Aalto–LTU, due to their
small anti-correlation at very small τ = 0.02 s–0.1 s. (2)
the LTU–LTH coupling, where the present microscopic
noise moots evaluating correlations (see e.g. Fig. 3a).

In Fig. 5b we examine the speed at which correlations
between two locations become larger than 0.5 (50%), i.e.,
the find the time τc>0.5 at which the Pearson correla-
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tions c(∆fXτ ,∆fYτ ) > 0.5, in relation to the distance
between the locations. We observe that locations closer
to each other see their increments becoming correlated
faster than locations that are far apart. While this general
trend is expected, note the linear relation between phase-
synchronisation and geographical distance between the
sites. We will have cause to contrast this with ampli-
tude synchronisation in the following section. Further-
more, notice that this phenomena is strictly bound to
taking place < 2 s, i.e., phase synchronisation takes place
at very short temporal scales.

We now move forth to examine the emergence of am-
plitude synchronisation.

E. Amplitude synchronisation

We have seen that phases of increments synchronised
within < 2 s, so let us now move to amplitude synchroni-
sation. As we have seen in Fig. 3a the variance of the in-
crement statistics increases in a power-law relation to the
incremental lag τ . In order to best describe this—and to
retrieve the scaling constant α—we employ a Detrended
Fluctuation Analysis (DFA) of the power-grid frequency
recordings [36–38]. Recall that DFA studies the scaling
of the fluctuations of a time series by studying the lo-
cal properties of the data, in a similar fashion to what
increment statistics does. With DFA we extract the fluc-
tuation function F 2(r) over a scale r of a time series, in
a much similar fashion to our incremental lag τ . We will
keep τ and r distinct since the DFA is applied directly to
the power-grid frequency recordings, not the incremental
time series. Still, DFA and increment analysis are intrinsi-
cally related and studying the fluctuation function F 2(r)
in relation to the scale r will help us uncover the scaling
parameter α, as also observed in Fig. 3a.

The DFA procedure—applied on the power-grid
frequency recordings—is the following: Take non-
overlapping segments of the power-grid frequency, fit a
polynomial function (of order one, in this case), subtract
the fit from the segment of data, and extract the vari-
ance (i.e., fluctuation function F 2(r)) of each detrended
segment. By increasing the segment size one can study
the change of the variances as a function of the segment
size (the scale r). If the time series follows a power-law,
which we show in Fig. 3a it does, one can evaluate the
plots of the fluctuation function F 2(r) in the scale r in
a double logarithmic scale. The reason to compute the
fluctuation function F 2(r) instead of examining the orig-
inal time series is simple: Actual power-grid frequency
recording have trends, such as short-terms jumps due to
dispatch and market activity or a permanent small mis-
match of power generation and consumption. We wish to
disentangle these trends from the true underlying fluctu-
ation dynamics, which DFA is capable of.

For our purpose here, we have already established that
the incremental time series follow a diffusion scale with
a power-law like distribution given by Eq. (2), which is

manifestly larger in exponent than a Brownian motion.
We plot the fluctuation function F 2(r) of the six time
series in a scale r ∈ [1 s, 20 s] in Fig. 6a, normalised by the
scaling of a Brownian motion, which has a scaling power
αBm = 1.5. We fit the difference in scaling, represented
by α′ = α − αBm. We find that α′ ≈ 0.376, i.e., α =
1.876, for the range of r ∈ [5 s, 10 s]. Noticeable is also
the distinct separation of the curves at timescales r < 5 s,
which has been identified in Ref. [35] as a possible method
to study the synchronisation of fluctuation over spatial
distances. We compute the relative DFA function η(r),
as introduced in Ref. [35], with CTH as a reference in
Fig. 6b. This function represents the relative variations
of the fluctuations to a reference point, given by

η(r)Y =
F 2(r)X − F 2(r)Y

F 2(r)Y
, (4)

with Y the reference location, CTH in our case, and
X the remaining locations. The synchronous nature of
power-grids ensures all fluctuations eventually collapse
into a single function, i.e., all amplitudes become identi-
cal. This also implies that, in general, a set of recordings
with a temporal scale > 5 s anywhere in the Nordic grid
are indistinguishable.

To quantify this synchronisation, we define a ‘time-to-
bulk’ χ as follows. We record the time it takes each time
series’ relative fluctuations η to be reduced to 0.1 (10%)
and thereby become indiscernible from the reference (in-
dicated by the grey line in Fig 6b). Using CTH as a
reference, we obtain χCTH and observe how the time to-
wards synchronisation increases with distance in Fig. 6c.
An intuitive assumption is to compare the empirical data
with diffusive-like behaviour, i.e., a fit of quadratic order.
While this captures the general trend, it provides a sub-
optimal fit. Alternatively, we consider a (super-)diffusion
fit where we propose the ‘time-to-bulk’ χ scales with the
distance to the power of 2α. Indeed, this seems more ad-
equate to describe the data, suggesting the presence of
correlations in the noise structure (given by α) influence
the speed at which synchronisation of the fluctuations is
achieved in space.

We pause here and must thoroughly examine what
the ‘time-to-bulk’ analysis just uncovered. First, we con-
firmed the suspicion raised in Fig. 3a that the power-grid
frequency indeed exhibits temporally correlated noise,
i.e., the assumption that the high-frequency fluctuations
in power-grid frequency recordings are purely white noise
is not justified. In fact, α > 1.5 indicates the present of
positively correlated motions, which show a power-law
like diffusion, as seen in Fig. 3a. One finds that all time
series coalesce to a Hurst index of H = α − 1 = 0.876,
i.e., strongly positively correlated noise. This Hurst index
can be determined efficiently for any given power-grid fre-
quency measurement [38] and should be incorporated in
stochastic studies of power systems.

Secondly, we observe that these fluctuations display
a spatial relation between the locations, i.e., locations
which are closer see their fluctuation amplitude synchro-
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FIG. 6. Correlated, diffusive coupling revealed by DFA, rel-
ative DFA η(r), and ‘time-to-bulk’ χ. (a) displays the nor-
malised fluctuation function F 2(r) obtained from DFA with
first-order polynomials, normalised by the fluctuation func-
tion F 2(r)Bm of a Brownian motion (α−1 = 0.5). The scaling
α′ = 0.376, leading to an over scaling α = 1.876, or equiva-
lently a Hurst index H = α − 1 = 0.876, i.e., strongly pos-
itively correlated noise. (a) displays the relative fluctuation
function η(r)CTH, with CTH as reference. The fluctuations of
the other five locations decay in time. When indicated markers
are the points (in time) where the relative size of the fluctu-
ations hits 0.1 (10%) of the maximal relative fluctuation. (c)
shows the ‘time-to-bulk’ function χCTH against the distances
of each recordings’ location in relation to CTH. A diffusive-
like behaviour, i.e., a fit of quadratic order, with the distance
is compared with a super-diffusive fit of order 2α.

nise faster than those farther apart. Note that this a sec-
ond effect, different from the (temporal) correlation in
the time series, which we have examined before. Focusing
on the new spatial correlations, we know all power-grid
frequency recordings are highly correlated, they practi-
cally follow the same phenomena at timescales > 5 s, i.e.,
their dynamical oscillations around 50Hz. Moreover, we
have seen above that the correlations of the increments
are already large at these long timescales, while display-
ing zero or low correlations on short time scales. What

we now observe is a synchronisation of the amplitudes of
the fluctuations as a function of time. If we now compare
Fig. 6 to Fig. 5, we notice a sharp difference in the physics
of the synchronisation phenomena: The amplitude syn-
chronisation (Fig. 6) is achieved with a large power-like
relation with exponent 2α, much in contrast with the
linear relation for phase synchronisation (Fig. 5).

Yet, one more property is of paramount relevance. We
observe an amplitude synchronisation as a function of
the distance to the power 2α, intrinsically linking local
properties with the overall synchronisation phenomena
in space. Notice that we initially uncovered the scaling
exponent α from the variances of the incremental time se-
ries. This α is a uniquely temporal property of the noise
of a given time series—with no explicit spatial connec-
tion between locations. Using DFA, we revealed that this
seemingly local exponent α plays a crucial role on the rate
at which spatial amplitude synchronisation takes place.
Take, for example, that α would be 1.5 (H = α−1 = 0.5),
i.e., we would have a truly Brownian motion. By this rela-
tion, a conceptual location at 3000 km from CTH should
take ∼7.2 s to achieve amplitude synchronisation. If now
we take the empirical α = 1.876, this amplitude synchro-
nisation is only achieved at ∼ 13 s. The delay of global
amplitude synchronisation by local correlations becomes
even more noticeable for longer distances.

We note that a priori there is no necessary relation be-
tween local temporal properties of the incremental time
series and the spatial convergence of all oscillations into
one bulk behaviour. Nevertheless, that local temporal
properties affect the spatial correlations of systems that
rely heavily in synchronisation to operate is legitimate,
yet has not been described before.

III. CONCLUSION

In this article we have analysed synchronous record-
ings of the power-grid frequency from six locations in the
Nordic Grid from September 2013. The high temporal
resolution of theses recordings of just 0.02 s allows for a
detailed analysis of power system synchronisation via the
statistics and correlations of the increments. Essential in-
sights into the temporal and spatial scales of synchroni-
sations can be extracted from the ambient fluctuations in
a model-free approach. Our results further emphasise the
outstanding importance of a broad availability of high-
quality data for research on power system operation and
energy science in general [39].

We investigated the distribution of increments (fre-
quency differences) and noted severe deviations from
Gaussianity. In particular, increment distributions are
highly leptokurtic, i.e. display heavy tails. Noticeable dif-
ferences in the increment statistics at each six locations
are observed, indicating that the incremental time series
reflect above all the local phenomena of power genera-
tion and consumption in the location of the recording.
We saw as well a relaxation of the incremental time se-
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ries kurtosis for large time lags τ , yet even for very large
lags we observe a leptokurtic distribution with kurtosis
of κ(∆fτ�0) ≈ 3.35.

The emergence of phase synchronisation is revealed by
the correlations of the increments on different temporal
and spatial scales. Our analysis has shown two essential
results: (1) If locations are rather close, the increments
are correlated even at the shortest possible time lag of
0.02 s, indicating that ambient fluctuations of power gen-
eration and consumption that drive the frequency dy-
namics are correlated. In light of this result, any assump-
tion of spatially independent noise in power system simu-
lations should be carefully reviewed. (2) The increments
at locations get become strongly correlated on a time
scale of one second depending on the distance of the lo-
cation. The further two locations are from each other, the
longer it takes before correlations exceed a certain value.

Strong temporal correlations in the fluctuations are
revealed by the variance of the incremental time series
reveals. We find that the variance follows a power-law
∼ τ2α as a function of the incremental lag τ , with an ex-
ponent much higher than for ordinary uncorrelated Brow-
nian motion. This result is confirmed by a detrended
fluctuation analysis (DFA), which yields the exponent
2α = 1.876, i.e., a positively correlated Hurst index
H = 0.876. DFA is further used to study the time scales
of amplitude synchronisation by quantifying the time
needed until the fluctuation functions at two locations
become similar up to a certain level. This ‘time-to-bulk’
function scales as a power law with the distance with
an exponent 2α larger than one, hence faster than in
an ordinary diffusion process. This is particularly rele-
vant as it couples a temporal property of the incremental
time series, i.e., the scaling of the variance, with a spatial
property of the amplitude of the fluctuations, suggesting
that local temporal correlations enforces a global scale for
spatial synchronisation. A diffusive scaling was initially
proposed for amplitude synchronisation in Ref. [35], yet
here we argue further that the local temporal proper-
ties might influence the global synchronisation phenom-
ena even faster than a regular diffusion. Interestingly, the
linear scaling of phase synchronisation, compared to the
power law scaling of amplitude synchronisation implies
that locations far apart will first synchronise in their
phase, then amplitude, while the ordering might be re-
versed for locations geographically nearby. A definite an-
swer will require data from more locations, preferably in
large synchronous grids.

We remark here that the implications of these find-
ings are considerable for both the understanding of the
physical phenomena behind power-grid systems and for
simulations. We conclude that the implications of these
findings are considerable for both the understanding of
the dynamical processes in power grids as well as their
simulation, as the increments provide as a proxy for fluc-
tuations of the power imbalance that drives the frequency
dynamics. Foremost, we uncovered that the temporal
stochastic properties at each recording site impacts the

speed at which amplitude synchronisation is achieved.
This grants an exact measure for amplitude synchronisa-
tion across any power-grid, which can now be uncovered
solely from one single local recording, i.e., since the scal-
ing parameter α is a local property, a single power-grid
frequency measurement in a synchronous region allows
us to determine at which speed a far-away location will
be amplitude-synchronised with the rest of the grid. Fur-
thermore, two distinct and so far practically unaddressed
characteristics are uncovered: First, fluctuations at dif-
ferent locations are correlated. This implies immediately
that any simulation—especially for small power grids as
microgrids—must consider the presence not only of noise,
i.e., stochastic fluctuations, but of spatially correlated
noise. We observe that substantial correlations are seen
up to distances of 1000 km. Secondly, each location, each
power-grid frequency recordings, shows distinct strong
temporal correlation within itself. This is a clear indica-
tion that temporal correlations in the stochastic fluctu-
ations are present. In fact, these correlations dictate the
physics of the aforementioned amplitude synchronisation.
Thus, adequate simulations should extent their analysis
far beyond classical white noise (uncorrelated Brownian
noise) and consider instead spatio-temporally correlated
(non-white) noise.

All of these effects significantly impact risk assessment:
Heavy-tailed noise leads to larger deviations than ex-
pected from Gaussian noise, while correlated noise con-
tinues to push the system in one given direction, instead
of randomly fluctuating around zero. Hence, both cor-
relations and non-Gaussian distributions induce larger
frequency deviations than assumed from white Gaus-
sian noise and thereby increase the risk of destabilising
the system Simply adding a larger security margin when
carrying out simulations is barely appropriate: A broad
Gaussian noise distribution would imply that medium
deviations occur very often when instead rare large de-
viations are the problem. Hence, to properly dimension
back-up capacities and design adequate control options,
the non-standard statistics presented here should be in-
cluded.

In the future, it would be desirable to study the link
between local temporal correlation and spatial amplitude
synchronisation in different data sets. Also, further theo-
retical work is necessary to offer efficient simulation tools
including all discussed phenomena.
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Appendix A: Pearson correlation of increments of power-grid frequency recordings
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We introduce the bivariate jump-diffusion process, consisting of two-dimensional diffusion and two-
dimensional jumps, that can be coupled to one another. We present a data-driven, nonparametric estimation
procedure of higher-order (up to 8) Kramers-Moyal coefficients that allows one to reconstruct relevant aspects
of the underlying jump-diffusion processes and to recover the underlying parameters. The procedure is validated
with numerically integrated data using synthetic bivariate time series from continuous and discontinuous
processes. We further evaluate the possibility of estimating the parameters of the jump-diffusion model via
data-driven analyses of the higher-order Kramers-Moyal coefficients, and the limitations arising from the scarcity
of points in the data or disproportionate parameters in the system.
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I. INTRODUCTION

Research over the last two decades has demonstrated the
high suitability of the network paradigm in advancing our
understanding of natural and man-made complex dynamical
systems [1–7]. With this paradigm, a system component is
represented by a vertex and interactions between components
are conveyed by edges connecting vertices, and graph theory
provides a large repertoire of methods to characterize net-
works on various scales.

Characterizing properties of interactions using the knowl-
edge of the dynamics of each of the components is key
to understanding real-world systems. To achieve this goal,
a large number of time-series-analysis methods have been
developed that originate from synchronization theory, non-
linear dynamics, information theory, and statistical physics
(for an overview, see Refs. [8–15]). Some of these methods
make rather strict assumptions about the dynamics of network
components generating the time series and many approaches
preferentially focus on the low-dimensional deterministic part
of the dynamics.

Real-world systems, however, are typically influenced by
random forcing, and interactions between constituents are
highly nonlinear, which results in very complex, stochastic,
and nonstationary system behavior that exhibits both de-
terministic and stochastic features. Aiming at determining

*l.rydin.gorjao@fz-juelich.de
†jan.heysel@uni-bonn.de
‡klaus.lehnertz@ukbonn.de
§tabar@uni-oldenburg.de

characteristics and strength of fluctuating forces as well as
at assessing properties of nonlinear interactions, the analysis
of such systems is associated with the problem of retrieving
a stochastic dynamical system from measured time series.
There is a substantial existing literature [16–19] for the
modeling of complex dynamical systems which employs the
conventional Langevin equation that is based on the first- and
second-order Kramers-Moyal (KM) coefficients, known as
drift and diffusion terms. All functions and parameters of this
modeling can be found directly from the measured time series
employing a widely used nonparametric approach. There are
by now only few studies that make use of this ansatz to char-
acterize interactions between stochastic processes [20–24].

Despite its successful application in diverse scientific
fields, growing evidence indicates that the continuous stochas-
tic modeling of time series of complex systems (the white-
noise-driven Langevin equation) should account for the pres-
ence of discontinuous jump components [19,25–33]. In this
context, the jump-diffusion model [34–37] was shown to
provide a theoretical tool to study processes of known and
unknown nature that exhibit jumps. It allows one to separate
the deterministic drift term as well as different stochastic
behaviors, namely, diffusive and jumpy behavior [19,32,33].
Moreover, all of the unknown functions and coefficients of a
dynamical stochastic equation that describe a jump-diffusion
process can be derived directly from measured time series.
This approach involves estimating higher-order (�3) KM
coefficients and it provides an intuitive physical meaning of
these coefficients.

The focus of this paper is to introduce a method to
investigate bivariate time series with discontinuous jump

2470-0045/2019/100(6)/062127(12) 062127-1 ©2019 American Physical Society



LEONARDO RYDIN GORJÃO et al. PHYSICAL REVIEW E 100, 062127 (2019)

components. We begin with an overview of bivariate diffusion
processes that exhibit the known relation between the param-
eters and functions in stochastic modeling and the KM coeffi-
cients. Exemplary processes are portrayed, and we propose a
measure to judge the quality of our reconstruction procedure.
We then present bivariate jump-diffusion processes alongside
the associated KM expansion [32], and investigate the suit-
ability of our reconstruction procedure using various exam-
ples. We conclude this paper by summarizing our findings.

II. BIVARIATE JUMP-DIFFUSION MODEL

A bivariate jump-diffusion process can be modeled via
[19,32]

y︷ ︸︸ ︷(
dy1(t )
dy2(t )

)
=

N︷︸︸︷(
N1

N2

)
︸︷︷︸

drift

dt +

g︷ ︸︸ ︷(
g1,1 g1,2

g2,1 g2,2

) dw︷ ︸︸ ︷(
dw1

dw2

)
︸ ︷︷ ︸

diffusion

+

ξ︷ ︸︸ ︷(
ξ1,1 ξ1,2

ξ2,1 ξ2,2

) dJ︷ ︸︸ ︷(
dJ1

dJ2

)
︸ ︷︷ ︸

Poissonian jumps

, (1)

where all the elements of vectors N, dJ, and dw as well as of
matrices g and ξ may, in general, be state and time dependent
(dependencies not shown for convenience of notation). The
drift coefficient is a two-dimensional vector N = (N1, N2)
with N ∈ R2, where each dimension of N, i.e., Ni, may depend
on y1(t ) and y2(t ). The diffusion coefficient takes a matrix
g ∈ R2×2. The two Wiener processes w = (w1,w2) act as
independent Brownian noises for the state variables y1(t )
and y2(t ). The diagonal elements of g comprise the diffusion
coefficients of self-contained stochastic diffusive processes,
and the off-diagonal elements represent interdependencies
between the two Wiener processes, i.e., they result from an in-
teraction between the two processes. Each single-dimensional
stochastic process element dwi of dw is an increment of
a Wiener process, with 〈dwi〉 = 0, 〈dw2

i 〉 = dt,∀i. The dis-
continuous jump terms are contained in ξ ∈ R2×2 and dJ ∈
N2, where dJ represents a two-dimensional Poisson process.
These are Poisson-distributed jumps with an average jump
rate λ ∈ R2 in unit time t . The average expected number of
jumps of each jump process Ji in a timespan t is λit . The
jump amplitudes ξ are Gaussian distributed with zero mean
and standard deviation ξi, j .

We here consider merely autonomous systems. Nonergodic
problems are beyond the scope of this paper, and a more
delicate approach to both bivariate stochastic processes would
be needed.

III. BIVARIATE DIFFUSION PROCESSES

Let us begin with bivariate diffusion processes, for which
the model takes the form

y︷ ︸︸ ︷(
dy1(t )
dy2(t )

)
=

N︷︸︸︷(
N1

N2

)
dt︸ ︷︷ ︸

drift

+

g︷ ︸︸ ︷(
g1,1 g1,2

g2,1 g2,2

) dw︷ ︸︸ ︷(
dw1

dw2

)
︸ ︷︷ ︸

diffusion

. (2)

The model consists of six functions, two for the drift coeffi-
cients and four for the diffusion coefficients. Given a bivariate
diffusion process, can we reconstruct the aforementioned pa-
rameters strictly from data? Extensive work exists on this mat-
ter [18], especially covering purely diffusion processes, and
we will use these now as a stepping stone to jump-diffusion
processes. Understanding the working and contingencies of
reconstructing the parameters of a diffusion process [Eq. (2)]
will serve as a gateway to understand how a similar procedure
awards equivalent measures for jump-diffusion processes. We
address the aforementioned question first by revisiting the
mathematical foundation that allows one to recover, strictly
from data, the drift N and diffusion g coefficients. Subse-
quently, we numerically integrate diffusion processes with a
priori fixed values of the drift N and diffusion g coefficients
and aim at retrieving these values strictly from the generated
data (the Euler-Mayurama scheme with a time sampling of
10−3 over a total of 105 time units, i.e., 108 number of
data points). If the actual and retrieved values match, the
reconstruction method is effective.

A stochastic process has a probabilistic description given
by the master equation [16,19]. It does not describe a specific
stochastic process in itself, but the probabilistic evolution of
the process in time. The master equation accepts an expan-
sion in terms, the KM expansion, that allows for a purely
differential description of the process. More importantly, the
coefficients of the expansion, known as KM coefficients,
entail directly a relation to the aforementioned parameters of a
stochastic process given by Eq. (1). The exact relation will be
given below. There is, though, an important detail regarding
the KM coefficients: they are in themselves not constants
but functions on the underlying space or, in other words, a
scalar field, and for our purposes here they can be understood
as two-dimensional surfaces. We will denote these as KM
surfaces.

Lastly, and more familiar, the Fokker-Planck equation is
a truncation of the KM expansion at second order. It is
especially relevant given its connection to physical processes
and the Pawula theorem [38]. The Pawula theorem ensures
that the truncation is not ill suited for the underlying process
if the fourth-order KM coefficient approaches zero in the limit
dt → 0. It is now crucial to understand that the theorem holds
for a one-dimensional process, and we are not aware of a proof
for higher dimensions. This contrasts the common notion that
studying only the first two KM coefficients of two- or higher-
dimensional processes is sufficient (see Refs. [32,33,39] and
references therein).

The KM coefficients M[�,m](x1, x2) ∈ R2 of orders (�, m)
are defined as

M[�,m](x1, x2)

= lim
�t→0

1

�t

∫
[y1(t + �t ) − y1(t )]�[y2(t + �t ) − y2(t )]m

× P(y1, y2; t + �t |y1, y2; t )|y1(t )=x1,y2(t )=x2 dy1dy2

and can be obtained from bivariate time series (y1(t ), y2(t )).
Theoretically, �t should take the limiting case of �t → 0,
but the restriction of any measuring or storing devices—or
the nature of the observables themselves—permits only time-
sampled or discrete recordings. The relevance and importance
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of adequate time sampling was extensively studied and dis-
cussed in Refs. [19,33].

In the limiting case where �t is equivalent to the sampling
rate of the data, the KM coefficients take the form

M[�,m](x1, x2) = 1

�t

〈
�y�

1�ym
2

∣∣
y1(t )=x1,y2(t )=x2

〉
,

�yi = yi(t + �t ) − yi(t ). (3)

The algebraic relations between the KM coefficients and
functions in Eq. (2) are given by [19,32]

M[1,0] = N1,
(4)

M[0,1] = N2,

M[1,1] = g1,1g2,1 + g1,2g2,2,

M[2,0] = [
g2

1,1 + g2
1,2

]
, (5)

M[0,2] = [
g2

2,1 + g2
2,2

]
.

An explicit derivation can be found in Appendix A. Evidently,
this underdetermined set of five equations is insufficient to
uncover the six functions of a general stochastic diffusion
process. One must bare this in mind, for the same issue
will arise again when reconstructing jump-diffusion processes
from data. Nonetheless, under certain assumptions it is pos-
sible to reduce the dimension of the problem and therefore
obtain a system of equation which is not underdetermined.
Two methods for these cases are presented in Ref. [19] and
another criterion will be presented later.

In order to relate the results obtained from studying the
KM coefficients against the theoretical functions, we propose
a method to assess the difference between the values of the
theoretically expected functions and the estimated values of
the KM coefficients. Since for bivariate processes the KM
coefficients are two-dimensional—as are the parameters of
Eq. (1)—an adequate “distance” measure between the result-
ing two-dimensional surfaces is required.

Following Ref. [20], we propose a distance measure that
allows for the variability of the density of data in some regions
of the underlying space to be taken into consideration.

Let f [�,m](y1, y2) denote the theoretical value for orders
(�, m) introduced in the model, i.e., a nonlinear combination
of the various parameters of the system. The distance between
each surface can be defined as∫ ∫

U
(M[l,m](y1, y2) − f [l,m](y1, y2))2dy1dy2 =: V 2, (6)

where U denotes the domain of M[l,m](y1, y2). The least-
squared distance volume V between the surfaces is zero
if M[l,m](y1, y2) = f [l,m](y1, y2). It is this volume that one
aims to minimize such that the reconstructed KM coefficients
match the underlying theoretical functions in the model.
Since M[l,m](y1, y2) is a real-valued function measured over
a distribution space U , the density of data points is not
uniform over U . This implies that a comparative measure
on distances between M[l,m](y1, y2) and f [l,m](y1, y2) would
be non-normalized to the density of points of the space. We
therefore introduce a normalization to Eq. (6) that ensures
the less dense areas of U are normalized accordingly, thus
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FIG. 1. Two-dimensional Kramers-Moyal coefficients M[�,m] for two independent diffusion processes given by Eq. (11). The uncovered
KM surfaces match the expectation. In panel (a) the cubic term in the drift term N1 = −x3

1 + x1 along the first variable is visible in M[1,0], and
in panel (b) the negative-slope surface is visible in M[0,1]. In panel (d) the flat surfaces reproduce as well the expected form of the constant
terms involved in the diffusion terms for M[2,0]. Moreover, in panel (c), M[1,1], which accounts for the stochastic coupling terms of all diffusion
terms, is also zero almost everywhere, as expected, given that g1,2 and g2,1 are zero. In each panel, the theoretical expected surface, given by
Eqs. (4) and (6), is indicated by a grid, with f [�,m] denoting the respective theoretical values introduced in the model.
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FIG. 2. Two-dimensional Kramers-Moyal coefficients M[�,m] for two independent diffusion processes given by Eq. (12) and the theoretical
expected functions f [�,m] associated with each coefficient, according to Eq. (6). KM coefficients M[1,1], M[2,0], M[0,2], and M[2,2] exhibit the
quadratic multiplicative dependencies of the diffusion terms. In addition, M[1,1] in panel (a) displays both an offset from zero as well as a
quadratic shape, entailing the desired results emerging from Eq. (6), i.e., the noise-coupling term g1,2 with g2,2. In panel (b) M[2,0] displays an
offset and has a minimum close to g2

1,1/2 + g2
1,2/2 = 0.13. We also show the higher-order coefficient M[2,2] in panel (d) and the corresponding

theoretically expected value [given by Eq. (6)], both of which vanish. All obtained KM surfaces fit considerably well their theoretically
expected ones (V [1,1]

err = 0.03, V [2,0]
err = 0.94, V [0,2]

err = 0.03, V [2,2]
err < 0.01; error volumes are estimated over the displayed domain).

mitigating the effect of scarcity of points at the borders of
U and an overestimation of V due to outliers in the distri-
bution. We derive such a normalization by considering the
zeroth-order KM coefficient M[0,0](y1, y2) which captures
exactly the density of points in U , although it is in itself
not normalized as a distribution. The resulting normalized
volume error measure Verr between surfaces takes the form
(state dependencies not explicit)

∫ ∫
U

(M[l,m] − f [l,m] )2 p(y1, y2)dy1dy2 = V 2
err, (7)

where p(·) denotes the probability density. Coincidentally, the
numerical evaluation implemented via either a histogram or a
kernel-based estimator immediately yields this density, i.e.,
the zeroth power of the right-hand side of Eq. (3), before
applying the estimation operator. This makes it easy to retrieve
p(y1, y2) as one numerically evaluates data.

With this at hand, it is now possible to relate theoretical and
numerical results and to quantify the deviation of the obtained
KM coefficients from the functions employed.

To showcase what two-dimensional KM coefficients are
as well as how to identify drift and diffusion terms of bi-
variate diffusion processes, we present in the following two
exemplary processes with a priori known coefficients. In this
manner, by employing Eqs. (4) and (5), one can judge the
outcome of the KM coefficient estimation procedure from
discrete data in comparison with the expected theoretical
functions.

We begin with two uncoupled processes, where one has
constant diffusion and a quartic potential as the drift term:

N =
(

N1

N2

)
=

(−x3
1 + x1

−x2

)
,

g =
(

g1,1 g1,2

g2,1 g2,2

)
=

(
0.5 0.0
0.0 0.5

)
. (8)

In Fig. 1, we show the corresponding KM coefficients
M[1,0], M[0,1], M[1,1], and M[2,0] together with the the-
oretically expected functions. The per-design cubic-linear
function (N1 = −x3

1 + x1) acting as drift coefficient along the
first dimension as well as the negatively sloped surface of
N2 = −x2 are evident. Likewise, the constant diffusion term
leads to a flat constant-valued M[2,0], and the absence of
any nondiagonal elements (g1,2 = g2,1 = 0) agrees with the
zero-valued M[1,1]. Alongside the surfaces are plotted the
theoretically expected values, which agree well with the data
recovery.

We next extend Eq. (8) by adding multiplicative noise to
the diffusion term and by including a noise-coupling term
g1,2 �= 0:

N =
(

N1

N2

)
=

(−x3
1 + x1

−x2

)
,

g =
(

g1,1 g1,2

g2,1 g2,2

)
=

(
0.1 + x2

1 0.5
0.0 0.2 + 2x2

2

)
. (9)

The recovered KM coefficients (see Fig. 2) of the drift
terms remain unaltered, but as posited the second-order KM
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FIG. 3. Two-dimensional Kramers-Moyal coefficients M[�,m] of bivariate diffusion processes given by Eq. (15) (with φ = 0.0) together
with the theoretically expected functions f [�,m] associated with each coefficient according to Eqs. (13), (15), and (18). KM coefficients M[1,0],
M[0,1], M[1,1], M[2,0], M[0,2], M[2,2], M[4,0], M[0,4], and M[4,4] are shown in panels (a)–(i), respectively. Although seemingly small, the
higher-order moments [panels (f)–(i)] are all present and nonzero. We find M[4,0] = 0.012 in panel (g) and M[0,4] = 0.009 in panel (h), as
expected from Eq. (18). All obtained KM surfaces fit considerably well their theoretically expected ones (V [1,0]

err = 0.68, V [0,1]
err = 0.18, V [1,1]

err <

0.01, V [2,0]
err = 0.01, V [0,2]

err = 0.01, V [2,2]
err < 0.01, V [4,0]

err = 0.01, V [0,4]
err = 0.01, V [4,4]

err < 0.01; error volumes are estimated over the displayed
domain).

coefficients, i.e., M[1,1], M[2,0], M[0,2], and M[2,2], clearly
exhibit the influence of the multiplicative noise. The quadratic
multiplicative dependencies of M[2,0] and M[0,2] and their
offsets from zero are evident. More pertinently, one can notice
M[1,1] to display the expected shape arising from Eq. (5),
i.e., this value is nonzero and exhibits the parabolic shape
of g1,2g2,2 = 0.5(0.2 + 2x2

2 ). For x2 = 0, the minimum of
M[1,1] coincides with 0.1, as expected. This indicates that
the presence of the multiplicative noise does not hinder the
assertion of the KM coefficients. Again, the recovered KM
coefficients match the theoretical ones.

IV. BIVARIATE JUMP-DIFFUSION PROCESSES

The KM coefficients of bivariate jump-diffusion processes
take the following form [under the parameter prescription
used in the jump-diffusion model in Eq. (1)] [19,32,33]:

M[1,0] = N1,
(10)

M[0,1] = N2,

M[1,1] = g1,1g2,1 + g1,2g2,2,

M[2,0] = [
g2

1,1 + s1,1λ1 + g2
1,2 + s1,2λ2

]
, (11)

M[0,2] = [
g2

2,1 + s2,1λ1 + g2
2,2 + s2,2λ2

]
,

M[2,2] = [s1,1s2,1λ1 + s1,2s2,2λ2],

M[4,0] = 3
[
s2

1,1λ1 + s2
1,2λ2

]
,

(12)
M[0,4] = 3

[
s2

2,1λ1 + s2
2,2λ2

]
,

M[4,4] = 9
[
s2

1,1s2
2,1λ1 + s2

1,2s2
2,2λ2

]
,

M[6,0] = 15
[
s3

1,1λ1 + s3
1,2λ2

]
,

M[0,6] = 15
[
s3

2,1λ1 + s3
2,2λ2

]
, (13)

M[6,6] = 225
[
s3

1,1s3
2,1λ1 + s3

1,2s3
2,2λ2

]
,

M[8,0] = 105
[
s4

1,1λ1 + s4
1,2λ2

]
,

M[0,8] = 105
[
s4

2,1λ1 + s4
2,2λ2

]
, (14)

M[8,8] = 11 025
[
s4

2,1λ1 + s4
2,2λ2

]
,

where 〈ξ 2�
i j 〉 = s�

i j are the variances of the Gaussian-distributed
jump amplitudes. An extended derivation can be found in
Appendix A. The last equations here are taken from the
general form

M[2�,2m] = (2�)!

2��!

(2m)!

2mm!

[
s�

1,1sm
2,1λ1 + s�

1,2sm
2,2λ2

]
.
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A. Understanding the impact of jumps

As an illustrative case study, we investigate a general jump-
diffusion process that is based on Eq. (9) but excludes the
multiplicative diffusion terms. Taking into account the effect
of the jump terms, but maintaining the system independent in
at least one of the dimensions, we extend Eq. (9) to include
jumps only in the diagonal terms of ξ:

N =
(

N1

N2

)
=

(−x3
1 + x1

−x2

)
,

g =
(

g1,1 g1,2

g2,1 g2,2

)
=

(
0.1 0.5
0.0 0.2

)
,

ξ =
(

ξ1,1 ξ1,2

ξ2,1 ξ2,2

)
=

(
0.2 0.0
φ 0.1

)
,

λ =
(

λ1

λ2

)
=

(
0.1
0.3

)
,

(15)

where for the present case φ = 0.0. In this manner, jumps
are added to the first dimension of the process, having an
amplitude of ξ1,1 = 0.2 and occurring every 0.1t , given λ1 =
0.1. Similarly, jumps are added to the second dimension,
ξ2,2 = 0.1, but the jumps occur three times more often than
the aforementioned, given λ2 = 0.3. The influence of jumps
can be observed across all KM coefficients (see Fig. 3). The
previously smooth KM surfaces become rugged from the fast
variations emerging due to the jumps, and the higher-order
KM coefficients—although small compared to the lower-
order ones—clearly do not vanish. This indicates that the
continuous stochastic modeling of time series of complex
systems (the white-noise-driven Langevin equation) is invalid
for jump-diffusion processes. Modeling these processes with
only the first two orders of the KM expansion of the master
equation is therefore insufficient.

In order to understand further if it is possible to uncover
the jump amplitude terms of coupled processes, we use the
previous model Eq. (15) with φ = 0.3, thereby effectively in-
troducing a stochastic coupling via the off-diagonal elements
of the jump matrix ξ. We show, in Fig. 4, the corresponding
fourth-order KM coefficients. The impact of the stochastic
coupling is visible, although small, in M[4,4], which is no
longer zero. Likewise, M[4,0] and M[0,4] also do not vanish.
In Appendix B, we present the corresponding KM coefficients
up to order 8.

B. Criteria for recovering coefficients in diffusion
and jump-diffusion models

For the case of vanishing off-diagonal elements g2,1 and
ξ1,2, we can identify ways to recover the remaining coeffi-
cients of these processes.

First, given that the noise dω is Gaussian distributed, g is
sign-reversal symmetric and one can thus assume that it takes
only positive values. One obtains that if M[1,1] = 0 then at
least two elements of g must be zero, and if M[2,2] = 0 then
at least two elements of ξ must be zero (by assuming that
λ1 and λ2 are nonvanishing rates). These findings reduce the
dimensionality of the estimation procedure and ensure that the
underlying processes are less complex that the full-fledged
description of Eq. (1), although they do not grant which
coefficients are zero valued.

Second, if one either employs a heuristic argument of in-
dependence of the jump processes or neglects the off-diagonal
jump amplitudes ξ1,2 and ξ2,1 (e.g., by assuming they are small
compared to the diagonal terms of ξ), one finds the following
approximations:

1

5

M[6,0]

M[4,0]
= 1

5

15

3

s3
1,1λ1

s2
1,1λ1

= s1,1,

1

5

M[0,6]

M[0,4]
= 1

5

15

3

s3
2,2λ1

s2
2,2λ1

= s2,2. (16)

Likewise, the jump rates λ1 and λ2 can be obtained equiva-
lently as

105

9

M[4,0]2

M[8,0]
= 105

9

32

105

(
s2

1,1λ1
)2

s4
1,1λ1

= λ1,

105

9

M[0,4]2

M[0,8]
= 105

9

32

105

(
s2

2,2λ2
)2

s4
2,2λ2

= λ2. (17)

Taking again model Eq. (15) with φ = 0.0 and following
Eq. (16), we obtain

sest
1,1 = 0.16 ≈ 0.2 = s1,1,

sest
2,2 = 0.09 ≈ 0.1 = s2,2.

These estimated values (indicated by the superscript “est”)
are close to the actual ones. The criteria and approxima-
tions are especially relevant when constructing or analyzing
systems which are known to have a specific unidirectional
stochastic coupling form, e.g., a master-slave system, where,
for example, the noise or the slave system is dictated by the
driving master system.
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FIG. 4. Two-dimensional Kramers-Moyal coefficients M[4,0], M[0,4], and M[4,4] of bivariate jump-diffusion processes given by Eq. (15)
(with φ = 0.3) together with the respective theoretically expected functions f , associated with each coefficient according to Eqs. (13), (15),
and (18). Notice that the estimated KM coefficients agree well with the theoretical expected functions in all orders. For further details, see
Appendix B.
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FIG. 5. Error volume Verr for a bivariate jump-diffusion process
[Eq. (15)] depending on the number of data points n in the time
series, with the abscissa given in logarithmic scale. Each process is
numerically integrated with random initial conditions, for varying
number of data points n ∈ [104, 5 × 107] and over 50 times. The
time sampling used was of 10−3. The average value of Verr and
one standard deviation (shaded area) are displayed. Notice the clear
decrease on all KM coefficients with either � = 0 or m = 0, e.g.,
M[2,0] or M[0,2], as the number of data points n increases. This can
be seen since the volume between the theoretically expected values
and the KM coefficients decreases consistently, i.e., V [�,m]

err decreases
for an increasing number of data points. The KM coefficients with
� �= 0 and m �= 0, such as M[4,4] or M[6,6], present themselves as
nondecreasing, but the error volume is overall considerably small
in value (cf. Fig. 6). It is important to notice that V [1,0]

err does not
converge to zero since the KM coefficient is associated with the
quartic potential (i.e., the term N1 = −x3 + x). Due to its shape, the
process has two preferred states, at either x = −1 or 1, and thus
spends little time at any intermediary point, like x = 0, damaging
the statistics of the recovery.

C. Factors influencing the quality of recovery of coefficients

In order to validate the quality of the nonparametric recov-
ery of the KM coefficients, we now turn to two critical aspects:
first, bivariate processes may require a high number of data
points in a time series for the estimation to be reliable; second,
the interplay between the drift, diffusion, and jump parts of a
stochastic processes may render the estimation incorrect.

Addressing these aspects, we include a more contrived
model involving stochastic couplings and interactions in both
the diffusion and jump terms, thus theoretically resulting in
having all higher-order KM coefficients nonzero, and espe-
cially the KM coefficients with � �= 0 and m �= 0. The param-
eters for the model read

N =
(

N1

N2

)
=

(−x3
1 + x1

−x2

)
,

g =
(

g1,1 g1,2

g2,1 g2,2

)
=

(
0.1 0.5
α 0.2

)
,

ξ =
(

ξ1,1 ξ1,2

ξ2,1 ξ2,2

)
=

(
0.2 0.5
β 0.1

)
,

λ =
(

λ1

λ2

)
=

(
0.1
0.3

)
. (18)
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FIG. 6. Same as Fig. 5 but for the bivariate jump-diffusion
process [Eq. (18)] with α = β = 0.3, with the abscissa given in
logarithmic scale. Integration parameters are as in Fig. 5.

The diffusion-scaling parameter α and the jump-scaling pa-
rameter β (jump term) can be freely varied.

Let us focus first on the number of data points in a
time series. We utilize the models Eq. (15) with φ = 0.3
and Eq. (18) with α = β = 0.3, and show in Figs. 5 and 6,
respectively, the error volumes Verr for the KM coefficients for
an increasing number of data points. The reliability of the
recovery of the KM coefficient is valid for a higher amount
of data (n � 105), as expected, although the scarcity of data
posits no extensive problem for the calculation. It is especially
important to notice that a time series with a lower amount of
data entails naturally fewer jumps in the process, hindering the
possibility of accurately recovering the jump terms from such
short time series. For n � 106, the estimation seems reliable,
the standard deviations become minute, and most error values
approach zero, i.e., the theoretical and estimated KM surfaces
are close. Such a large number of data points might not be
available when investigating time-varying dynamical (e.g.,
biological) systems. Nevertheless, the amount of data needed
to reliably estimate KM coefficients can be considerably
reduced with kernel-based estimators [40].

One remark is necessary on the recovery of the drift terms.
The presence of noise and jumps in the process takes its toll
on the recovery of the exact form of the KM coefficients as
well as the explicit dependence of the state variables, i.e.,
the quartic potential in both Eqs. (15) and (18). A finer time
sampling can help to improve the results.

To further test the limitation of retrieving the KM coeffi-
cients from data, we utilize model Eq. (18) once more and
investigate the influence of the diffusion-scaling parameter α

and the jump-scaling parameter β. For increasing diffusion-
scaling parameter α (α ∈ [10−2, 102]) and jump-scaling pa-
rameter β = 0.3, we observe a considerable impact on the
error volume Verr after the order of magnitude on the diffusion
parameter α is tenfold bigger in comparison to the diffusion
parameter g1,2 (Fig. 7). Similarly, for increasing jump-scaling
parameter β (β ∈ [10−2, 102]) and diffusion-scaling param-
eter α = 0.3, the error volume Verr is considerably impacted
already when β is of similar size as the other parameters,
namely, ξ1,2 = 0.5 (Fig. 8).
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FIG. 7. Error volume Verr for the bivariate jump-diffusion process
Eq. (18) for a varying diffusion-scaling parameter α ∈ [10−2, 102],
given in double logarithmic scale. The vertical dotted line at α = 0.5
indicates the point where the the diffusion-scaling parameter α =
g2,1 = 0.5 is equal to g1,2 = 0.5. A small value of the diffusion-
scaling parameter α, in comparison to the diffusion parameters g2,1

and g1,2, ensures a good reconstruction, i.e., a small error volume Verr.
The average and one-standard deviations (shaded area) are displayed.
For each point 50 iterations are taken, each with a total number of
data points of 5 × 106 and a time sampling of 10−3.

These findings point to the difficulty of recovering the
KM coefficients in the presence of jumps. Nonetheless, our
findings indicate that the current understanding, modeling,
and numerical recovery of KM surfaces, for the case of jumps
of comparable size to the diffusion terms, is possible and
reliable [41]. This can be performed in minimal times on a
regular computer [42].

V. CONCLUSION

We introduced the bivariate jump-diffusion process, which
consists of two-dimensional diffusion and two-dimensional
jumps that can be coupled to one another.

For such a process we presented a data-driven, nonpara-
metric estimation procedure of higher-order Kramers-Moyal
coefficients and investigated its pros and cons using syn-
thetic bivariate time series from continuous and discontinuous
processes. The procedure allows one to reconstruct relevant
aspects of the underlying jump-diffusion processes and to
recover the underlying parameters.

Having now a traceable mathematical framework, the
model can be extended to embody other noise and jump
properties. An extension from the underlying Wiener process
to include, e.g., fractional Brownian motion is straightfor-
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FIG. 8. Error volume Verr for the bivariate jump-diffusion process
Eq. (18) for a varying jump-scaling parameter β ∈ [10−2, 102], given
in double logarithmic scale. The vertical dotted line indicates the
biggest jump term value ξ1,2 = 0.5 to compare with β. In direct
analogy to Fig. 7, a small jump-scaling parameter β ensures a good
reconstruction, i.e., a small error volume Verr. Increasing values of the
jump-scaling parameter β in comparison to the other parameters in
the system make the reconstruction unreliable. The iteration scheme
is identical to the one in Fig. 7.

ward but nevertheless requires further investigations to de-
rive an explicit forward Kolmogorov equation [19]. Also,
a generalization to continuous jump processes—originating
from alpha-stable or other heavy-tailed distributions (the Lévy
noise-driven Langevin equation)—is possible, however, with
the drawback that calculating the conditional moments may
not always be mathematically possible [19]. On the other
hand, a numerical estimation of generalized moments should
be possible but these still require a physical interpretation.

We are confident that our approach provides a general av-
enue to further understanding of interacting complex systems
(e.g., brain or power grids [33,43–45]) the dynamics of which
exhibit nontrivial noise contributions.
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APPENDIX A: EXTENDED DERIVATION OF THE TWO-DIMENSIONAL KRAMERS-MOYAL
COEFFICIENTS FOR A JUMP-DIFFUSION PROCESS

The following derivations stem from Eq. (3) and apply to the two-dimensional jump-diffusion process (y1, y2), as in Eq. (1).
All orders of the Kramers-Moyal coefficients M[�,m] are (�, m) ∈ N+.
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1. Kramers-Moyal coefficients M[1,0] and M[0,1]

M[1,0](x1, x2) = lim
dt→0

1

dt
〈(dy1)1(dx2)0〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
〈dy1〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
〈N1dt + g1,1dw1 + g1,2dw2 + ξ1,1dJ1 + ξ1,2dJ2〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
[N1dt + g1,1〈dw1〉 + g1,2〈dw2〉 + 〈ξ1,1〉〈dJ1〉 + 〈ξ1,2〉〈dJ2〉]

= N1,

where 〈gi, jdWj〉 = 〈gi, j〉〈dWj〉 = 0, because a Wiener process has the property 〈dWj〉 = 0. Further, 〈ξi, jdJj〉 = 〈ξi, j〉〈dJj〉 = 0,
since ξi, j is a Gaussian with zero mean, i.e., 〈ξi, j〉 = 0.

The same is true, mutatis mutandis-, for M[0,1].

2. Kramers-Moyal coefficient M[1,1]

M[1,1] = lim
dt→0

1

dt
〈(dy1)1(dy2)1〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
〈(N1dt + g1,1dw1 + g1,2dw2 + ξ1,1dJ1 + ξ1,2dJ2)

× (N2dt + g2,1dw1 + g2,2dw2 + ξ2,1dJ1 + ξ2,2dJ2)〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

[
N1N2dt + g1,1g2,1〈(dw1)2〉 1

dt
+ g1,2g2,2〈(dw2)2〉 1

dt
+ O(dt )

]
= g1,1g2,1 + g1,2g2,2,

where higher-order terms O(dt )ε , with ε > 0, vanish in the limit dt → 0. Recall as well 〈(dwi )2〉 = dt .

3. Kramers-Moyal coefficients M[2,0] and M[0,2]

M[2,0] = lim
dt→0

1

dt
〈(dy1)2〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
〈(N1dt + g1,1dw1 + g1,2dw2 + ξ1,1dJ1 + ξ1,2dJ2)2〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

[
N2

1 dt + g2
1,1〈(dw1)2〉 1

dt
+ g2

1,2〈(dw2)2〉 1

dt
+ 〈

ξ 2
1,1

〉〈(dJ1)2〉 1

dt
+ 〈

ξ 2
1,2

〉〈(dJ2)2〉 1

dt
+ O(dt )

]
= [

g2
1,1 + s1,1λ1 + g2

1,2 + s1,2λ2
]
,

using the previously employed nomenclature 〈ξ 2
i j〉 = σ 2

ξi j
= si j as well as 〈(dJi )2〉 = λidt .

Mutatis mutandis, the case for M[0,2] reads as

M[0,2] = [
g2

2,1 + s2,1λ1 + g2
2,2 + s2,2λ2

]
.

4. Kramers-Moyal coefficient M[2,2]

M[2,2] = lim
dt→0

1

dt
〈(dy1)2(dy2)2〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
〈(N1dt + g1,1dw1 + g1,2dw2 + ξ1,1dJ1 + ξ1,2dJ2)2

× (N2dt + g2,1dw1 + g2,2dw2 + ξ2,1dJ1 + ξ2,2dJ2)2〉|y1(t )=x1,y2(t )=x2
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= lim
dt→0

1

dt

[
terms(N1, N2, O(dt4)) + terms(gi j, O(dt2)) + terms(mixing ξi j )

+ 〈
ξ 2

1,1

〉〈
ξ 2

2,1

〉〈(dJ1)4〉 + 〈
ξ 2

1,2

〉〈
ξ 2

2,2

〉〈(dJ2)4〉 + 〈
ξ 2

1,1

〉〈
ξ 2

2,2

〉〈(dJ1)2〉〈(dJ2)2〉 + 〈
ξ 2

1,2

〉〈
ξ 2

2,1

〉〈(dJ1)2〉〈(dJ2)2〉]
= [s1,1s2,1λ1 + s1,2s2,2λ2].

Terms including dt on the right-hand side of the above equation vanish for dt → 0, where as well 〈ξ1,1ξ1,2〉 = 〈ξ1,1〉〈ξ1,2〉 = 0,
and 1

dt [〈(dJ1)2〉〈(dJ2)2〉] = 1
dt [λ1dtλ2dt] ∝ dt vanishes in the limit dt → 0.

5. Kramers-Moyal coefficients M[�,m], for 2 × (�, m) � 2

For (2�, 2m), with (�, m) � 4, the Kramers-Moyal coefficients M[2�,2m] are as follows:

M[2�,2m] = lim
dt→0

1

dt
〈(dy1)2�(dy2)2m〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
〈(N1dt + g1,1dw1 + g1,2dw2 + ξ1,1dJ1 + ξ1,2dJ2)2�

× (N2dt + g2,1dw1 + g2,2dw2 + ξ2,1dJ1 + ξ2,2dJ2)2m〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt

[〈
ξ 2�

1,1

〉〈
ξ 2m

2,1

〉〈(dJ1)2(�+m)〉 + 〈
ξ 2�

1,2

〉〈
ξ 2m

2,2

〉〈(dJ2)2(�+m)〉]
= [〈

ξ 2�
1,1

〉〈
ξ 2m

2,1

〉
λ1 + 〈

ξ 2�
1,2

〉〈
ξ 2m

2,2

〉
λ2

]
= (2�)!

2��!

(2m)!

2mm!

[
s�

1,1sm
2,1λ1 + s�

1,2sm
2,2λ2

]
.

In the last step, take the fact that the jump amplitudes ξi, j are Gaussian distributed; thus, 〈ξ 2�
i, j〉 ∝ σ 2�

ξi, j
= s�

i, j . In this manner, all

Kramers-Moyal coefficients M[2�,2m] with (�, m) � 1 are obtained.

APPENDIX B: EXTENDED RESULTS FOR MODELED DATA BY EQ. (15)

Figure 9 extends Fig. 4 and includes the Kramers-Moyal coefficients M[1,0], M[0,1], M[1,1], M[2,0], M[0,2], M[2,2], M[4,0],
M[0,4], M[4,4], M[6,0], M[0,6], M[6,6], M[8,0], and M[0,8].
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FIG. 9. Two-dimensional Kramers-Moyal coefficients M[�,m] of bivariate jump-diffusion processes given by Eq. (15) and all theoretical
expected functions f [�,m] associated with each KM coefficient according to Eqs. (13), (15), and (18). Shown are the KM coefficients M[1,0],
M[0,1], M[1,1], M[2,0], M[0,2], M[2,2], M[4,0], M[0,4], M[4,4], M[6,0], M[0,6], M[6,6], M[8,0], and M[0,8]. The respective error volumes read
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Abstract

Models of complex systems based on stochastic processes are ubiquitous across several
research fields. However, the complexity of the stochastic contributions lays often beyond
pure diffusive processes, such as Brownian motion and random walks, and are better
described through so-called jump processes. Jump-diffusion processes incorporate both
diffusive contributions as well as stochastic jumps, making them a natural extension of
pure diffusive processes towards several applications with sets of measurements. Reliable
computation libraries with all necessary tools implemented still lack in software and com-
puter science literature. In this paper we introduce a python library, called JumpDiff, which
includes all necessary functions to assess jump-diffusion processes. One of the strengths of
this library is that it includes functions which compute a set of non-parametric estimators
of all contributions composing a jump-diffusion process, namely the drift, the diffusion,
and the jump strengths. Therefore, having a set of measurements from jump-diffusion
process in nature, JumpDiff library is able to retrieve the evolution equation producing
data series statistically equivalent to the series of measurements. Moreover, the library is
also able to test if stochastic jump contributions are presents in the dynamics underlying
a set of measurements. The back-end calculations are based in second-order corrections
of the condition moments expressed from the series of Kramers–Moyal coefficients. Addi-
tionally, we introduce a simple iterative methods for deriving higher-order corrections of
any Kramers–Moyal coefficient.

Keywords: Stochastic differential equations, jump-diffusion processes, Kramers–Moyal expan-
sion, Kramers–Moyal coefficients, Python.
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1. Introduction

In order to understand processes either riddled or driven by noise, stochastic models can be
employed. At the core of several stochastic processes in natural and social sciences lies the
Langevin equation, which yields a direct connection to invariants in the process, such as energy
and noise contributions (Risken 1984). Because of its fundamental importance, considerably
effort has been made to develop methods to estimate non-parametrically from measured data
the parameters of stochastic processes, to implement them as numerical routines, as well as
extend them both to “processes through scales” (Friedrich and Peinke 1997) and to different
complex real systems such as turbulence, wind energy, and brain signal (Friedrich, Peinke,
Sahimi, and Tabar 2011). Moreover, complementing those equations with proper numerical
schemes, it became possible to apply them to general situations, namely when the set of mea-
surements are subjected to measurement and experimental noise. Such approaches have been
already made, for the simplest forms of additive and experimental noise (Böttcher, Peinke,
Kleinhans, Friedrich, Lind, and Haase 2006) as well as more general situations, e.g. when
measurement noise is time-correlated (Lehle 2011) or when an arbitrary number of stochastic
variables and experimental noise sources are coupled with each other simultaneously (Lehle
2013; Scholz, Raischel, Lopes, Lehle, Wächter, Peinke, and Lind 2017).

In recent years, with the goal of going beyond the narrow scope of Gaussian processes, ex-
tensions of classical stochastic processes have included jumps, both with the practical aim of
better describe the natural world, or by themselves for the riddling mathematical hardship
and interesting results. As a direct extension of the classical Langevin equation, jump-diffusion
processes came into focus (Duffie, Pan, and Singleton 2000; Johannes 2004; Benth, Di Nunno,
and Khedher 2011; Tabar 2019; Rydin Gorjão, Heysel, Lehnertz, and Tabar 2019). This fam-
ily of processes embodies both a conventional Gaussian (diffusion) contribution as well as
a Poissonian (jump) contributions and become particularly hard to tackle, requiring a re-
vised interpretation under the classic Kramers–Moyal expansion. This hardship is given by
the presence of jumps and required a revised interpretation under the classic Kramers–Moyal
expansion, particularly when the goal is to extract separately Gaussian and jump contri-
butions from a data set. By upgrading purely diffusive assumptions to more general ones,
incorporating the possibility of jump-diffusion processes, some of the applications mentioned
above could be brought to a new level of knowledge and forecasting capabilities. For example,
jump-diffusion processes have found application in the finances (Duffie et al. 2000; Andersen,
Benzoni, and Lund 2002; Johannes 2004), early-warning signal identification (Dakos, Car-
penter, Brock, Ellison, Guttal, Ives, Kéfi, Livina, Seekell, van Nes, and Scheffer 2012), soil
moisture dynamics (Daly and Porporato 2006), solar radiation and EEG recordings (Anvari,
Lohmann, Wächter, Milan, Lorenz, Heinemann, Tabar, and Peinke 2016a; Anvari, Tabar,
Peinke, and Lehnertz 2016b; Lehnertz, Zabawa, and Tabar 2018), neural activity (Giraudo
and Sacerdote 1997), amongst others.

In this paper we address two questions: first, we introduce a set of higher-order correc-
tions to the description of particularly simple jump-diffusion processes via the Kramers–
Moyal expansion, which links the realm of employing a partial differential representation to
stochastic differential representation of the stochastic process. Second, we implement this
in a Python library, called JumpDiff, for direct research application. The code is written in
Python3 (Van Rossum and Drake 2009). Using this library enables one to extract the pa-
rameters of the system in a non-parametrical way, and, in particular, to distinguish between
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pure diffusions and jump-diffusions. Our library is suited for the family of Poissonian jump
processes, and represents a step forward towards more complex stochastic processes, namely
Lévy-like processes (Siegert and Friedrich 2001; Lubashevsky, Friedrich, and Heuer 2009;
Zaburdaev, Denisov, and Klafter 2015; Zan, Xu, Kurths, Chechkin, and Metzler 2020).

2. Evolution and data-based inference of jump-diffusion processes

2.1. Theoretical aspects behind jump-diffusion processes
In this section we consider the stochastic evolution of a time-continuous Markov process,
X(t) ∈ R, that is governed by three independent contributions: one drift strength, one diffusive
strength, and one Poissonian (jump) strength. The evolution equation of such a variable reads:

dX(t) = a(x, t) dt+ b(x, t) dW (t) + ξdJ(t), (1)

where a(x, t) is the drift strength, b(x, t) is the diffusion or volatility,W (t) is a Wiener process,
and J(t) is a time-homogeneous Poisson jump process with rate λ(x, t) and an amplitude ξ,
which is normally distributed as ξ ∼ N (0, σ2

ξ ).
Jump-diffusion processes governed by Eq. (1) are a generalisation of diffusion processes, since
for the latter σξ = 0 (similarly λ(x, t) = 0) always. Below, we make use of the so-called
Kramers–Moyal expansion to connect the orders of the expansion with each parameter of
the jump-diffusion process, and thus enabling their estimation. Notice that the problem of
deriving an equation similar to Eq. (1) directly from data sets has been scarcely addressed
until very recently (Friedrich et al. 2011; Anvari et al. 2016b). However, while numerical
implementations enabling to model data series with drift and diffusion strengths is already
available, cf. (Rinn, Lind, Wächter, and Peinke 2016; Rydin Gorjão and Meirinhos 2019), its
extension to incorporate Poissonian contributions is here provided.
In order to link Eq. (1) to the evolution of the probability p(x, t+τ |x′, t), we use the so-called
Kramers–Moyal equation

∂

∂τ
p(x, t+τ |x′, t) = LKMp(x, t+τ |x′, t), (2)

where LKM denotes the Kramers–Moyal operator defined as (Risken 1984)

LKM =
∞∑

m=1

(
− ∂

∂x

)m
Dm(x). (3)

Functions Dm(x) are called Kramers–Moyal coefficients relate to the m-order conditional
moment Mm(x, τ), given by

Mm(x, t, τ) =
∫ ∞

−∞
(x′ − x)mp(x′, t+τ |x, t) dx′. (4)

For simplicity we drop the t-dependency focusing on stationary processes. The Kramers–Moyal
coefficients Dm(x) are thus defined for any integer m as

Dm(x) = 1
m! lim

τ→0

Mm(x, τ)
τ

, (5)
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The jump-diffusion process defined in Eq. (1) is linked to a particular case of the Kramers–
Moyal expansion defined in Eqs. (2) and (3), namely

∂

∂τ
p(x, t+τ |x′, t) =

[
−a(x, t) ∂

∂x
+
(
b(x, t)2 + λ(x, t)σξ

) ∂2

∂x2 +
∞∑

2k=4
σkξλ

∂2k

∂x2k

]
p(x, t+τ |x′, t) .

(6)
For purely diffusive processes, Eq. (2) reduces to the Fokker–Planck–Kolmogorov equation
(sometimes denoted solely Fokker–Planck or Smoluchowski equation) (Risken 1984), and the
estimates of the two first Kramers–Moyal coefficients are already available (Friedrich et al.
2011), even employing higher-order approximations (Gottschall and Peinke 2008). In the case
of jump-diffusion processes, higher-order coefficients should be taken into account as they are
non-vanishing.
For instance, in jump-diffusion processes (Anvari et al. 2016b) one typically needs the Kramers–
Moyal coefficients up to sixth order. Up to now, higher-order Kramers–Moyal coefficient were
estimated from first-order estimations of the conditional moments. Here, we derive the second-
order approximations, which imply a more cumbersome analytical approach to the Kramers–
Moyal Eq. (2).
By defining all coefficients Dm(x) one is able to define a model for the conditional probability
distribution of a given process, allowing one to (numerically) generate samples of that process.
The inverse problem however is not so trivial and implies deriving estimates of the coefficients
Dm(x) from sampled series of the process.

2.2. Numerical computation and approximations of the Kramers–Moyal co-
efficients
The numerical computation of the Kramers–Moyal coefficients is based on the numerical
computation of conditional moments Mm(x, t), which can be estimated directly from a set
of measurements X(t). Indeed, the instantaneous time rate of the moment of order n for the
process X(t), conditioned to a specific value x, is given by

Mm(x, τ) = 〈(X(t+τ)−X(t))m|X(t)=x〉 , (7)

with 〈X(t)〉 denoting the average of X(t), for all measured t. For pure diffusive processes, it
is only needed to compute the first and second conditional moment (m = 1, 2). For jump-
diffusion processes the spectrum of needed moments extends beyond the first two conditional
moments up to the sixth-order moment, noting here that all moments exist (Anvari et al.
2016b).
The conditional moments can be expressed as sums of products of Kramers–Moyal coefficients,
derived from the formal solution of Eq. (2), namely

p(x, t+τ |x′, t) = exp (τLKM)δ(x− x′) =
∞∑

k=0

(τLKM)k
k! δ(x− x′) . (8)

Depending on the number of terms used from the sum in Eq. (8) one obtains different orders of
approximation of the Kramers–Moyal operator. Here we will consider first- and second-order
approximations.
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First-order approximation

The first-order approximation is given by

exp (τLKM) ∼ 1 + τLKM , (9)

where expressing the Kramers–Moyal coefficients from Eq. (5), via the moments in Eq. (4)
yields

Dm(x) = 1
m! lim

τ→0

Mm(x, τ)
τ

. (10)

The full derivation is given in Appendix A.
Using this approximation the system mapping between six conditional momentsMn(x, t) and
the parameters defining Eq. (1) are given by (Anvari et al. 2016b):

a(x, t) = D1(x, t), (11a)
b2(x, t) = D2(x, t)− λ(x, t)σ2

ξ , (11b)

σ2
ξ = D6(x, t)

5D4(x, t) . (11c)

λ(x, t) = D4(x, t)
3σ4

ξ

, (11d)

Notice the relation of the parameters of a jump-diffusion process in Eq. (1) to the condi-
tional moments in Eq. (7) in given with all generality for higher-order terms by D2m =
(2m!)σmξ λ, for m ≥ 3 (Anvari et al. 2016b).

Second-order approximation

Higher-order approximations of the conditional moment are especially relevant when handling
low-sampled data. The second-order approximation of the conditional moments takes in one
additional term from the sum in Eq. (8), namely

exp (τLKM) ∼ 1 + τLKM + τ2

2 LKMLKM, (12)

where naturally the first-order terms ∼ τ are present at the first-order of the approximation.
The derivation, found in full detail in Appendix A, involves a set of relations between the
momentsMm(x, τ) of a given order m and the Kramers–Moyal coefficients Dn(x) of all orders
0 < n ≤ m. By inverting these relations with respect to the Kramers–Moyal coefficients yields

Dm(x) = 1
m! lim

τ→0

Fm(x, τ)
τ

, (13)

where Fm(x, τ) denotes the second-order approximation, in comparison with the first-order
approximation given above in Eq. (10). The second-order approximations Fm(x, τ) are given
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Function Parameters Outputs Internal
libraries

External
libraries

jdprocess()

time, delta_t,
drift a, diffusion b,
jump amplitude xi,
jump rate lamb

timeseries X None numpy

moments()

timeseries,
bins bins,

order power,
time lag lag,
correction

space edges,
moments

binning,
kernels

numpy,
scipy

jump_amplitude() moments estimator xi_est None numpy

jump_rate()
moments,

jump amplitude
xi_est

estimator lamb_est None numpy

Qratio() time lag lag,
timeseries

time lag lag,
ratio ratio moments numpy

corrections() moments m,
order power corrected moments None numpy

M_formula() order power symbolic term None sympy
F_formula() order power symbolic term None sympy

Table 1: Primary functions (top) and helping functions (bottom) implemented in the JumpDiff
library.

by (dependencies removed for clarity)

F1 = M1, (14a)
F2 = M2 −M2

1 , (14b)
F3 = M3 − 3M1M2 + 3M3

1 , (14c)
F4 = M4 − 4M1M3 + 18M2

1M2 − 3M2
2 − 15M4

1 , (14d)
F5 = M5 − 5M1M4 + 30M2

1M3 − 150M3
1M2 + 45M1M

2
2 − 10M2M3 + 105M5

1 , (14e)
F6 = M6 − 6M1M5 + 45M2

1M4 − 300M3
1M3 + 1575M4

1M2 − 675M2
1M

2
2

+ 180M1M2M3 + 45M3
2 − 15M2M4 − 10M2

3 − 945M6
1 . (14f)

Where naturally the first term on each right-hand side is the first-order approximation. This
second-order approximation neglects terms including derivatives of the Kramers–Moyal co-
efficients, which enables one to express the n-th Kramers–Moyal coefficient as a function of
conditional moments up to order n−1. In this way, we provide a general formula for improving
the estimates of Kramers–Moyal coefficient, generally taken as linear approximations of the
corresponding conditional moment.
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Figure 1: Illustration of a jump-diffusion process using function jdprocess which implements
Eq. (15). (Left) the full extent of Eq. (15) with N = 107. (Right) an exemplary jump in the
integrated process. Here θ = 0.5, σ = 0.75, σ2

ξ = 1.5, and λ = 1.75.

3. Implementation of the functions in library JumpDiff
In this section, we describe how we implement all functions for deriving a jump-diffusion
equation for stochastic processes, using the approximations above. All the functions are im-
plemented in the python library JumpDiff and are listed in Table (1).
Codes using the library JumpDiff must import the package, eventually attributing another
name, e.g.

import JumpDiff as jd

Notice that library JumpDiff requires libraries numpy (van der Walt, Colbert, and Varoquaux
2011), scipy (Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peter-
son, Weckesser, Bright, van der Walt, Brett, Wilson, Jarrod Millman, Mayorov, Nelson, Jones,
Kern, Larson, Carey, Polat, Feng, Moore, Vand erPlas, Laxalde, Perktold, Cimrman, Henrik-
sen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt, and Contributors 2020),
and sympy (Meurer, Smith, Paprocki, Čertík, Kirpichev, Rocklin, Kumar, Ivanov, Moore,
Singh, Rathnayake, Vig, Granger, Muller, Bonazzi, Gupta, Vats, Johansson, Pedregosa, Curry,
Terrel, Roučka, Saboo, Fernando, Kulal, Cimrman, and Scopatz 2017).

3.1. From equation to data: generating sample trajectories of jump-diffusion
processes
The package JumpDiff contains the function jdprocess() capable of generating sample trajec-
tories of a jump-diffusion process. We will generate a single trajectory of the process, and
subsequently employ the non-parametric estimators in JumpDiff to retrieve the parameters of
the jump-diffusion process generated, described in the following subsections.
To compare the first-order and second-order approximations derived above we first numeri-
cally generate a single trajectory of an Ornstein–Uhlenbeck process with Poissonian jumps,
namely

dX = −θx dt+ σ dW (t) + ξ dJ(t) . (15)

Function jdprocess() is used for integrating a jump-diffusion process. As an example, the
numerical integration of Eq. (15), with a number of points N = 1×107 (t = 104) and a
time-step of ∆t = 0.001, can be implemented as follows:
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Figure 2: Kramers–Moyal coefficients Dn(x) computed with first-order approximations
(dashed lines) and second-order approximations (solid lines). The data set used for computing
Kramers–Moyal coefficients was generated by integrating Eq. (15) with the same parameter
values as in Fig. 1. Three sampling rates are consider: (left) every integrated value, sf = 1,
(middle) sf = 0.05, (right) sf = 0.01. The dotted line indicates the theoretical result.

# integration time and time sampling
time = 10000
delta_t = 0.001
# define the drift function a(x)
def a(x):

return -0.5*x
# define the diffusion function b(x)
def b(x):

return 0.75
# define jump height and rate
xi = 1.5
lamb = 1.75
# generate the jump-diffusion process
X = jd.jdprocess(time, delta_t, a, b, xi, lamb)

Fig. 1 shows the trajectory generated with this code.
While in this example an Ornstein–Uhlenbeck process, i.e., linear drift strength and con-
stant diffusion strength, is chosen with a Poissonian jump strength, other higher polynomial
functions can be chosen for the different contributions by adjusting the drift and diffusion
functions.

3.2. From data to the jump-diffusion equation: the inverse problem
Having described how to generate series of values from a jump-diffusion equation, using the
function jdprocess(), we now consider the inverse problem: starting from that series of values,
derive the parameters of the jump-diffusion equation. To that end, we extract the Kramers–
Moyal coefficients Dm(x).
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Fig. 2 shows the derived results for the inverse problem, using first-order (dashed lines) and
second-order corrections (solid lines). The theoretical values are indicated by the dotted lines.
Furthermore, by down-sampling the process one studies the impact of second-order corrections
in a low-sampled data. We consider different sample rates, namely sf = 1, 0.05, and 0.01. As
can be seen in Fig. 2 second-order corrections improve the estimate of all Kramers–Moyal
coefficients Dm(x), m ≥ 2, especially in the cases with lowest sampling rates.
The Kramers–Moyal coefficients are estimated using the function moments():

# Choose bandwidth of kernel
bw = 0.35
# extract the Kramers--Moyal and space without second-order corrections
edge, simple_mom = jd.moments(timeseries = X, bw = bw, correction = False)
# and with second-order terms
edge, mom = jd.moments(timeseries = X, bw = bw, correction = True)

The function moments() performs a kernel-density estimation employing a Nadaraya–Watson
estimator (Nadaraya 1964; Watson 1964) of the different orders of the moments. By default
it employs an Epanechnikov kernel and uses a convolution method to perform the kernel-
density estimation of the moments. Four other kernels are also available, namely Gaussian,
uniform, triangular, and quartic kernels. Moreover, the function moments() includes the input
parameter lag, which is a time-lag that enables one to estimate the conditional moments at
different time-lags τ . If left unspecified, it assumes the shortest increment of the timeseries, i.e.,
the timeseries sampling rate τ = 1/sf . This is especially suited for evaluating the conditional
moments in the limiting case of τ → 0, since numerical accuracy is bounded by the sampling
rate sf . This evaluation is done by plotting a few time-lags, e.g. τ = 1/sf , . . . , 10/sf , and
extrapolate the limit τ → 0 (Böttcher et al. 2006; Lind, Haase, Böttcher, Peinke, Kleinhans,
and Friedrich 2010).

3.3. Extracting all parameters for a single trajectory
In Fig. 2 we can see the estimation of the Kramers–Moyal coefficients, with first- and second-
order corrections. The results reproduce well the theoretical values (dotted lines), which allows
us to further extract the parameters of our process via the Eqs. (11). Retrieving the drift and
diffusion functions, a(x, t) and b(x, t) respectively, are known problems, which imply studying
the first and second Kramers–Moyal coefficients.
From Eqs. (11) one recovers also the jump amplitude σ2

ξ and the jump rate λ of the time series,
by considering higher-order conditional moments. In JumpDiff library, functions jump_rate()
and jump_amplitude() implement Eqs. (11d) and (11c), respectively. The examples plotted
in Fig. 2 were generated with the following implementation:

# Take the timeseries X to obtain xi
sigma_xi_est = jd.jump_amplitude(timeseries = X)
# And to obtain lamb
lamb_est = jd.jump_rate(timeseries = X)

In Fig. 3 we numerically integrate Eq. (15), as before, and employ the estimators of the jump
amplitude and jump rate, for a timeseries with increasing number of data points N . The
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Figure 3: Estimation of the jump amplitude σ̂2
ξ (left) and the jump rate λ̂ (right) from 20

numerically simulated jump-diffusion processes with increasing time lengths N . The data
was generated by integrating Eq. (15), with the σξ = 1.5 and λ = 1.75 (dashed lines),
and each term was estimated using the functions jump_amplitude() and jump_rate(). The
estimates are shown as a function of the number of points N ∈ [1×105, 5× 107], always with
a time-step ∆t = 0.001. Top axis denotes the average number of jumps 〈λ〉 in the respective
numerically integrated time series. Each point is an average over 10 iterations. Standard
deviations depicted in the shaded areas.

a(x) b(x) σ2
ξ λ

Theoretical −0.5x 0.75 1.5 1.75
Estimated −0.496x 0.760 1.524 1.802

Table 2: Parameter estimation for the process Eq. (15) in Fig. 1, generated with jdprocess(),
with indicated parameters.

estimators converge to the theoretical values (dashed line) with increasing accuracy with the
average number on jumps 〈λ〉 in the timeseries. The comparison between theoretical values
and estimated parameters is given in Tab. 2. For a general method to recover all Kramers–
Moyal coefficients, for stochastic processes of any dimension, see Ref. (Rydin Gorjão and
Meirinhos 2019).

3.4. Evaluating if the process is purely a diffusion or a jump-diffusion

The presence of the jump contribution in Eq. (1) is the fundamental addition to a general
diffusion equation. However, assuming such Ansatz for purely diffusive process may lead to
spurious jump terms. To avoid this, one fundamental question to ask is whether we are in
the presence of a pure diffusion or a jump-diffusion process, in order to choose ab initio the
proper Ansatz.

Jump-diffusion processes—and in general jump processes—display higher-order conditional
moments. In Ref. (Lehnertz et al. 2018) the authors introduced a simple criteria to distinguish
between pure diffusive and jump-diffusions, which is based in the fourth- and sixth-order



11

101 102

τ

10−3

10−2

10−1

Q
-r

at
io

0.0

0.2

0.4

0.6

0.8

1.0

diffu
sive

jumpy

σ2
ξ

Figure 4: Illustration of the Q-ratio, defined in Eq. (16), for the process in Eq. (1) with
a(x) = −x and b(x) = 1 and varying jump amplitudes σ2

ξ ∈ [0, 1] with a fixed jump rate
λ = 0.1. The equation was numerically integrated with t = 1000 and timestep 0.001. Each
line is an average of 20 iterations.

moments. Defining the Q-ratio as

Q(x, τ) = M6(x, τ)
5M4(x, τ) , (16)

if the process is purely diffusive Q(x, τ) = τ(b(x))2 (linear function with τ), whereas if the
process has a jump term, Q(x, τ) = σ2

ξ (constant). This criterion can be employed directly
for any time series and is implemented as the function Qratio in library JumpDiff.

# Take a sequence of integers lag
lag = logspace(0, 4, 25, dtype=int)
# Recover the Q-ratio of the timeseries X
lag, Q = jd.Qratio(lag, X)
# plot in a log-log scale
plt.loglog(lag, Q)

Fig. 4 illustrates the implementation of the function Qratio(), plotting it for several time-lags
τ in a log-log plot. If there is a linear dependence on τ the time series X(t) is a pure diffusive
process, whereas if the plot is approximately flat, showing a constant Q-ratio the time series
should have a jump term. Notice that increasing the jump rate from ξ = 0 (pure diffusion)
to ξ = b(x) = 1 (same amplitude as diffusion strength), the Q-ratio changes from linearly
depending on τ to a constant.

3.5. Kramers–Moyal coefficients of arbitrary order
The Kramers–Moyal coefficients given in Eq. (13) can be given for arbitrary order n, by
implementing the following general expression

Dn(x) = 1
τ(n!)

[
B̂n,1 (M1(x, τ),M2(x, τ), . . . ,Mn(x, τ))

−τ2 B̂n,2 (M1(x, τ),M2(x, τ), . . . ,Mn−1(x, τ))
]
,
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where B̂(·) refer to the ordinary Bell polynomials. The first term on the right-hand side
account for the first-order corrections, while the second term accounts for second-order cor-
rections. The derivation of this expression is given in Appendix B.
This formula and its reciprocal, which accounts for the relation of the conditional mo-
ments Mm(x, τ) with the Kramers–Moyal coefficients Dm(x), are implemented in functions
F_formula() and M_formula(), respectively, where python’s symbolic language sympy is used.

4. Discussion and conclusions
Jump-diffusion are stochastic models able to describe processes riddled with jumps. Along-
side with regular diffusion processes, their elegance lies in the possibility of estimating non-
parametrically the parameters via the Kramers–Moyal expansion. Access to higher-order mo-
ments of the Kramers–Moyal equation is computationally feasible, and thus permits a one-
to-one correspondence between model parameters and the estimators (cf. Eq. (11)). These on
the other hand are hampered by an assumption already existent at the level of the model: a
scarcity of total jumps. Where the diffusive strengths are ubiquitous, the jumps take place
sparsely in time. To this effect are corrections implemented here crucial to a correct retrieval
of the parameters of the model.
The application of jump-diffusion models as descriptive of processes beyond diffusion is ap-
plicable across different research fields, as evidenced by the vast publications mentioned in
the introduction. The elegance of the process lies not only on the general applicability, but
also the ease of applying non-parametric parameter estimation. In this sense, the presented
higher-order corrections are of substantial relevance, especially taking into account jumps
occur sparsely. Here we present a two-fold project, developing second-order corrections of the
Kramers–Moyal expansion of jump-diffusion processes and designing a easy-to-employ python
library.
The limitations and finite scope of the library here described motivate further development,
namely towards more general jumps types, having amplitudes and rates which are time (and
space) dependent. Moreover, beyond Poissonian jumps, new libraries can be developed, for
instance to approach Lévy-like processes.
Notice here that the problem is invertible in one dimension, i.e., knowing the conditional
moments allows one to know the parameters of the process, but it does not generalise for
higher-dimensions, as is already the case for diffusions. Two-dimensional jump-diffusion pro-
cesses have been addressed in Ref. (Rydin Gorjão et al. 2019).
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A. Second-order corrections of Kramers–Moyal coefficients
For the first-order approximation of conditional moments Mn, we substitute in Eq. (4) the
first-order approximation of the exponential operator, namely

exp (τLKM) ∼ 1 + τLKM,

yielding

Mn(x′, τ) ∼
∫ ∞

−∞
(x− x′)n(1 + τLKM)δ(x− x′) dx

=
∫ ∞

−∞
(x− x′)nδ(x− x′) dx+ τ

∫ ∞

−∞
(x− x′)n

[ ∞∑

m=1

(
− d

dx

)m
Dm(x)

]
δ(x− x′) dx

= 0 + τ
∞∑

m=1
(−1)mDm(x′)

∫ ∞

−∞
(x− x′)n

( d
dx

)m
δ(x− x′) dx. (17)

The last integral is given by:

I1 =
∫ ∞

−∞
(x− x′)n

( d
dx

)m
δ(x− x′) dx

=
[
(x− x′)n

( d
dx

)m−1]∞

−∞
−
∫ ∞

−∞
n(x− x′)n−1

( d
dx

)m−1
δ(x− x′) dx

= 0−
∫ ∞

−∞
n(x− x′)n−1

( d
dx

)m−1
δ(x− x′) dx

=





(−1)n(n!)
∫ ∞

−∞

( d
dx

)m−n
δ(x− x′) dx ⇐ m ≥ n

(−1)m n!
(n−m−1)!

∫ ∞

−∞
(x− x′)n−m−1δ(x− x′) dx ⇐ m < n

= (−1)n(n!)δnm

yielding

Mn(x′, τ) ∼ (n!)τDn(x′). (18)

This approximation is the one used in Ref. (Anvari et al. 2016b).
For the second-order approximation of conditional moments Mn, we substitute in Eq. (4) the
second-order approximation of the exponential operator, namely

exp (τLKM) ∼ 1 + τLKM + τ2

2 LKMLKM, (19)
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yielding

Mn(x′, τ) ∼
∫ ∞

−∞
(x− x′)n

(
1 + τLKM + τ2

2 LKMLKM

)
δ(x− x′) dx

= (n!)τDn(x′) + τ2

2

∫ ∞

−∞
(x− x′)nLKMLKMδ(x− x′) dx

= (n!)τDn(x′) + τ2

2

∫ ∞

−∞
(x− x′)n



∞∑

p=1

(
− d

dx

)p
Dp(x)



[ ∞∑

m=1

(
− d

dx

)m
Dm(x)

]
δ(x− x′) dx

= (n!)τDn(x′) + τ2

2

∞∑

p=1

∞∑

m=1

∫ ∞

−∞
(x− x′)n

(
− d

dx

)p
Dp(x)

(
− d

dx

)m
Dm(x)δ(x− x′) dx

= (n!)τDn(x′) + τ2

2

∞∑

p=1

∞∑

m=1
(−1)p+mDm(x′)

∫ ∞

−∞
(x− x′)n

( d
dx

)p
Dp(x)

( d
dx

)m
δ(x− x′) dx.

The last integral is derived as follows:

I2 =
∫ ∞

−∞
(x− x′)n

( d
dx

)p
Dp(x)

( d
dx

)m
δ(x− x′) dx

=
∫ ∞

−∞
(x− x′)n

p∑

s=0

(
p

s

)[( d
dx

)p−s
Dp(x)

] [( d
dx

)m+s
δ(x− x′)

]
dx

=
p∑

s=0

(
p

s

)∫ ∞

−∞
G(x)

( d
dx

)m+s
δ(x− x′) dx (20)

with

G(x) = (x− x′)n
( d

dx

)p−s
Dp(x).

The last member of Eq. (20) is computed in a similar way as integral I1, yielding

I2 =
p∑

s=0

(
p

s

)
(−1)m+s

[
dm+s

dxm+sF (x)
]

x=x′

=
p∑

s=0

(
p

s

)
(−1)m+s

m+s∑

q=0

(
m+s
q

)[
dm+s−q

dxm+s−q (x− x′)n
]

x=x′

[
dp−s+q

dxp−s+qDp(x)
]

x=x′
. (21)

If m+s− q > n, the derivative of (x−x′)n is zero; if m+s− q < n, the derivative of (x−x′)n
is proportional to (x− x′)n−m−s+q which also vanishes for x = x′. Thus, the only term in the
sum in (21) which is not zero is the one for which m+ s− q = n. The integral I2 thus is given
by

I2 =
p∑

s=0

(
p

s

)
(−1)m+s

(
m+s

m+s−n

)
(n!)

[
dp+m−n

dxp+m−nDp(x)
]

x=x′
, (22)
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yielding

Mn(x′, τ) ∼ (n!)τDn(x′) +
τ2

2

∞∑

p=1

∞∑

m=1
(−1)p+mDm(x′)

p∑

s=0

(
p

s

)
(−1)m+s(n!)

(
m+s

m+s−n

)( d
dx′

)p+m−n
Dp(x′)

= (n!)τDn(x′) + τ2

2

∞∑

m=1
Dm(x′)



∞∑

p=1

p∑

s=0

(−1)p+s p!(m+s)!
s!(p−s)!(m+s−n)!

( d
dx′

)p+m−n
Dp(x′)


 .

The last derivative within parenthesis is of a non-negative order, i.e., p ≥ n −m. Moreover,
factorials are of non-negative integers, i.e., s ≥ n−m. With both these conditions one arrives
at a final approximation of each conditional moment as a function of the Kramers–Moyal
coefficients and their derivatives, namely

Mn(x′, τ) ∼ (n!)τDn(x′) + τ2

2

∞∑

m=1
Dm(x′)

∞∑

p=p0

p∑

s=s0

(−1)p+s p!(m+s)!
s!(p−s)!(m+s−n)!

( d
dx′

)p+m−n
Dp(x′) ,

(23)

with p0 = max (1, n−m) and s0 = max (0, n−m). Eq. (23) yields the equations (13a) and
(13b) in Ref. (Gottschall and Peinke 2008) for n = 1 and n = 2 respectively.
Eq. (23) holds a set of equations relating the conditional moments as functions of the Kramers–
Moyal coefficients and their respective derivatives. In practice, one computes numerically the
conditional moments and from it estimates the Kramers–Moyal coefficients. However, invert-
ing Eq. (23) is not feasible, and a further approximation is required. Therefore, similarly
to what was done for the second-order correction of the first two Kramers–Moyal coeffi-
cients (Gottschall and Peinke 2008; Rinn et al. 2016), we approximate Eq. (23) neglecting
terms having derivatives, which implies p + m − n = 0, i.e., p = n −m. Furthermore, since
p ≥ max (1, n−m) and p ≥ s ≥ max (0, n−m), one has additionallym ≤ n−1 and s = n−m
respectively. Introducing these conditions in Eq. (23) yields our final approximation:

Mn(x′, τ) ∼ (n!)τDn(x′) + (n!)τ2

2

n−1∑

m=1
Dm(x′)Dn−m(x′). (24)

Notice that the approximation of the conditional moments, as given in Eq. (24), has the
practical advantage of expressing the conditional moment of order n-th from the Kramers–
Moyal coefficients up to order n, which enables to compute recursively the Kramers–Moyal
coefficients from the numerical computation of the conditional moments.
For jump processes we will need to estimate the first six Kramers–Moyal coefficients (Anvari
et al. 2016b), which, from Eq. (24), read

M1(x, τ) = τD1(x), (25a)
M2(x, τ) = 2τD2(x) + τ2D2

1(x), (25b)
M3(x, τ) = 6τD3(x) + 6τ2D1(x)D2(x), (25c)

M4(x, τ) = 24τD4(x) + 12τ2
(
2D1(x)D3(x) +D2

2(x)
)
, (25d)

M5(x, τ) = 120τD5(x) + 120τ2 (D1(x)D4(x) +D2(x)D3(x)) , (25e)

M6(x, τ) = 720τD6(x) + 360τ2
(
2D1(x)D5(x) + 2D2(x)D4(x) +D2

3(x)
)
. (25f)
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Finally, inverting Eqs. (25) yields Eqs. (14).
The formulas for the relations Eq. (25) and the corrections Fn given by Eq. (14) are given
in symbolic python by the function M_formula and F_formula, respectively. This numerical
procedure is generalised to any maximal order N needed for the data analysis. For jump-
diffusion processes N = 6 is sufficient.

B. Higher-order corrections and Kramers–Moyal coefficients
A more accurate approximation is possible by combining Eqs. (23) and (24). More precisely,
the steps to solve numerically Eq. (23) are the following ones:

• Solve Eqs. (14) introducing the conditional moments, extracted directly from the data,
up to order N , and derive the Kramers–Moyal coefficients Dn(x) as in Eq. (13).

• Compute the derivatives up to order Nd (see discussion below).

• Introduce the derivatives of the Kramers–Moyal coefficients and the empirical condi-
tional moments in Eq. (23) and solve it with respect to the Kramers–Moyal coefficients.

• Repeat steps S1 and S2 until the Kramers–Moyal coefficients converge within a pre-given
numerical accuracy.

Moreover, since the Kramers–Moyal coefficients are typically polynomials of lower order,
not larger than five or six, the derivative order Nd is a finite number, which leads to a
simplification of Eq. (23). Namely, the derivative in the sum obeys 0 ≤ p+m−n ≤ Nd. Thus,
p0 ≤ p ≤ Nd + n −m. Since p0 = max (1, n−m) one has Nd + n −m ≥ 1 and therfore the
sum over m is bounded by 1 ≤ m ≤ Nd + n− 1. Since Nd > 1, p0 = 1 and therefore the sum
over p is also bounded by 1 ≤ p ≤ Nd + n−m.
Introducing these bounds in Eq. (23) and following steps S0-S3 above, yields the second-order
approximation of the Kramers–Moyal coefficients.
Lastly, we present a general framework for obtaining all moments and Kramers–Moyal coef-
ficients. Eq. (24) can be written as

Mn(x′, τ) ∼ (n!)τB̂n,1
(
D1(x′), D2(x′), . . . , Dn(x′)

)

+ (n!)τ2

2 B̂n,2
(
D1(x′), D2(x′), . . . , Dn−1(x′)

)
, (26)

where B̂n,2 are ordinary Bell polynomials, given by

B̂n,k(x1, x2, . . . , xn−k+1) =
∑ k!

j1!j2! · · · jn−k+1!x
j1
1 x

j2
2 · · ·x

jn−k+1
n−k+1 . (27)

In the case of Eq. (26) we have k = 2.
The ordinary Bell’s polynomials fulfil a reciprocal relation, namely any sum of ordinary Bell’s
polynomials of the form

yn =
n∑

k=1
Bn,k(x1, . . . , xn−k+1) (28)



20 Jump-diffusion processes in Python

can be inverted as
xn =

n∑

k=1
(−1)k−1(k − 1)!Bn,k(y1, . . . , yn−k+1). (29)

Consequently, substituting xn and yn by Mn and Dn, respectively, and applying Eq. (29), the
inverse relation for Dn in Eq. (26) reads

Dn(x′) = 1
τ(n!)

[
B̂n,1

(
M1(x′, τ),M2(x′, τ), . . . ,Mn(x′, τ)

)

−τ2 B̂n,2
(
M1(x′, τ),M2(x′, τ), . . . ,Mn−1(x′, τ)

)]
. (30)

This relation simply requires an iterative process for obtaining the n−1 conditional moments
to retrieve the Kramers–Moyal coefficient Dn, which is computationally inexpensive.
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Dansgaard–Oeschger (D–O) events are sudden climatic transitions observed during the last glacial
period, which one finds across recordings of oxygen-18 (δ18O) and dust counts in Greenland’s ice
sheet, in the GRIP and NGRIP recording projects. The transition of states is attributed to a bista-
bility of potential of the recordings, which could lead to rapid changes as the climatic variables hop
between the minima of the potential. In this article we employ a data-driven analysis of the record-
ing under the purview of stochastic processes and show that: 1) there is a change from a bistable to
a unistable potential of the dust count, via an imperfect supercritical pitchfork bifurcation. 2) the
δ18O recording is discontinuous and thus best modelled via a jump-diffusion model. We present a
bivariate jump-diffusion model that further indicated there is no coupling between the diffusion and
jump variables, leaving only room for a coupling between the drift functions of the δ18O and dust
variables.

I. INTRODUCTION

Dansgaard–Oeschger (D–O) events are abrupt transi-
tion of the northern hemisphere temperature, seen across
paleo-climatic records from the past 100 000 years [1].
These abrupt transitions can result in changes of over
6◦ Celsius of the temperature in a span of less than 40
years and are visible across several proxy temperature
records from the Last Glacial Period. These events are
believed to be Poisson distributed [2, 3], superseding pre-
vious theory that purported a periodicity of roughly 1 470
years of the events [4]. Recent hypotheses supports that
D–O events emerge from a coupling effect between ocean
and atmosphere dynamics, possibly linked to the Atlantic
meridional overturning circulation [5, 6].

A well established method to model and examine D–O
events relies on stochastic modelling of paleo-climate pro-
cesses, which have seen successful application [7], even in-
cluding non-Markovian, i.e., memory in the modelling [8],
or explicit delayed coupling [9]. Commonly used mea-
surements are the concentration of the oxygen-18 iso-
tope, denoted δ18O, and the concentration of dust in
the ice-core recordings, which are proxies of the surface
air temperature and large-scale atmospheric circulation
changes, respectively. They describe local surface tem-
perature changes, in the former, and global atmospheric
circulation, in the latter. These seemingly distinct phe-
nomena show a large degree of correlation [10, 11].

In this article, we seek to extend the simple stochas-
tic models to include discontinuous trajectories, along-
side the common diffusion behaviour seen in the data, to
model δ18O and the concentration of dust. D–O events

are generically described as very abrupt transitions—i.e.,
jumps—in the temperature of the northern hemisphere.
Previous stochastic models describe these changes by
modelling the aforementioned variable with regime-
switching models or bistable potentials, which leads
to fast but nevertheless continuous transitions between
states. The aim of this work is three-fold. First, include
explicitly discontinuous jumps to account for the fast
D–O transitions. Then include and analyse a potential
coupling of the δ18O and dust recordings. Finally, ex-
tract non-parametrically the functional forms of the pa-
rameters underlying the stochastic process—i.e., the drift
functional, the diffusion, and the jumps,

This article is structured as follows. In Sec. II we intro-
duce the Kramers–Moyal expansion as the prime method
to extract the parameters of a stochastic model from
recorded time series. The higher-order terms in the ex-
pansion provide a distinguished test for the continuity
of the underlying process. Our analysis suggests that
the dynamics of δ18O, unlike the dynamics of the dust
recordings, cannot be modelled as a continuous stochastic
process, but should include jumps explicitly. In Sec. III,
we establish a generalised stochastic approach for the
analysis of Dansgaard–Oeschger (D–O) events under the
purview of jump-diffusion models. We present first a uni-
variate analysis of the recordings and extract the jump
rate and jump amplitude of the δ18O recordings. We then
extend the model to a bivariate (two-dimensional) jump-
diffusion model to account for a potential coupling of
the stochastic variables δ18O and dust count. We extract
non-parametrically the parameters of the process, show-
ing that there is no coupling in the diffusion or jump
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components of the model. Analysing of the drift func-
tions, we find that the dust count recordings exhibits
a change in stability dependent on the δ18O recordings,
changing from bistability to unistability, via an imperfect
supercritical pitchfork bifurcation.

II. KRAMERS–MOYAL EXPANSION OF
DISCONTINUOUS STOCHASTIC PROCESSES

In this section we will motivate an analysis of the
dynamics of δ18O and the dust count recordings under
the purview of stochastic processes. We introduce the
Kramers–Moyal expansion as the prime method to ex-
tract stochastic parameters from the data. We show that
the δ18O recordings exhibits elevated values for higher
Kramers–Moyal coefficient, suggesting the presence of
jumps or discontinuities in the underlying process. These
finding form the basis for the development of a stochastic
model in the next section.

A. Data and data pre-processing

Our analysis is based on the recordings of oxygen-18
(δ18O) and dust counts in Greenland’s ice sheet provided
by the GRIP and NGRIP projects, as displayed in Fig. 1.
Boers et al. [9] motivate a pre-processing of the signals,
which we implement here with a caveat. Firstly, recall
that the ice measurements are taken at a fixed 5 cm
cones, which, although spatially uniform, are not tempo-
rally uniform. We interpolate the data to an equidistant
time axis of 5 year intervals. Secondly, we fill the miss-
ing data with a next-neighbour interpolation. Finally, we
apply a Butterworth low pass filter of fourth order with
a cutoff frequency of 0.02, i.e., 50 years. The final step
comes with one caveat: the low-pass filter creates artificial
correlations in the increments of the data (see App. A),
which affects the stochastic analysis. For this reason we
will work with both the “raw” and the “processed” data
in the following. Later in Sec. II, and throughout Sec. III
to the end of the paper we will solely use the “raw” data,
and the presence of discontinuities becomes central to the
model presented below.

B. Formal definitions

A stochastic process is the mathematical description
of the dynamics of a variable X(t) subject to random
influences. More precisely, a stochastic process is a map-
ping from time t ∈ R to the random variables X(t) in
some adequate state space. Stochastic processes can be
either analysed in terms of the random variables follow-
ing a stochastic differential equations or in terms of the
their probability density function p(x, t) following a par-
tial differential equation. The connection between these
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FIG. 1. a) Recordings of the δ18O measurements in Green-
land’s icesheet, raw and processed. b) Recordings (in loga-
rithmic scale) of dust in Greenland’s icesheet. Data can be
found in Ref. [12, 13]

two descriptions is given by the Kramers–Moyal expan-
sion.

The Kramers–Moyal equation, stemming from the
eponymous expansion, of the conditional probability den-
sity function p(x, t+τ |x′, t) is the partial differential equa-
tion given by

∂

∂t
p(x, t+τ |x′, t) =

∞∑

m=1

(
− ∂

∂x

)m
Dm(x)p(x, t+τ |x′, t).

(1)
If the process is sufficiently continuous, the third and
higher order terms vanish, which directly leads directly
to the Fokker–Planck equation (forward Kolmogorov or
Smoluchowski equation) for the conditional probability
p(x, t+τ |x′, t) given by

∂

∂t
p(x, t+τ |x′, t) =

∂

∂x
D1(x)p(x, t+τ |x′, t)

+
∂2

∂x2
D2(x)p(x, t+τ |x′, t).

(2)

We will later show that this is insufficient to represent
the evolution process of δ18O recordings.

Now to retrieve the Kramers–Moyal coefficients strictly
from data we evaluate the transition probability densities
in the limit of a vanishing time step τ → 0 (numerically
we consider the shortest increment in the data),

Dm(x) =
1

m!
lim
τ→0

Mm(x, τ)

τ

=
1

m!
lim
τ→0

1

τ
〈(x(t+ τ)− x(t))

m |x(t)=x〉,

in which above we employ a Nadaraya–Watson estimator
with an Epanechnikov kernel [14–16].

Under the purview of the Kramers–Moyal expansion
we analyse both the δ18O and the dust count (in a log-
arithmic scale, as seen in Fig. 1) to uncover a formal
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FIG. 2. a) Drift coefficient D1(x) of both the processes δ18O recordings and the raw (unprocessed) δ18O recordings (divided
by 20 to match the scale). c) The potential well associated with δ18O recordings, which shows a single minimum. Similarly,
b) displays the drift coefficient D1(x) of the dust count, and d) the associate potential well. Notice that this suggest the dust
count could be modelled via a double-well potential, but less so the dynamics of the δ18O.

structure of the parameters of the underlying stochas-
tic processes. Let us now evaluate the first, second, and
fourth Kramers–Moyal coefficient in a univariate (one-
dimensional) setting and discuss the existence of mono
and bistable potentials before moving to a bivariate set-
ting in Sec. III.

C. Univariate stability of the δ18O and dust count

The first Kramers–Moyal coefficients D1(x) relates to
a stochastic process drift, i.e., the nature of the process to
follow a deterministic behaviour, sometimes called mean-
reverting strength. In the physics literature this relates
directly to the potential energy, if one is to think of the
described process as a particle moving in a given potential
well.

In Fig. 2 we display the drift coefficient and the as-
sociated potential well, i.e., the integral over the drift
−
∫
D1(x)dx (integration constant apart). In case of the

dust count, the integral appears as a double-well poten-
tial, suggesting a bistable dynamics. This finding is not
surprising in view of the rapid changes between different
regimes observed in the time series in Fig. 1. Remarkably,
no such bistability is found for the δ18O data despite the
existence of rapid changes in the trajectory. If one con-
siders either the raw or the processed data, both seem to
account for a single well (linear drift) of the δ18O record-
ing.

Here we emphasise two important issues: first, the pres-
ence of a bimodal distribution of the probability density
function p(x, t) of the recordings is not a sufficient argu-
ment that the drift (i.e., potential) is bistable. Bistability
can be achieved variously via complicated diffusion func-
tions, or generally with more complicated form of noise

(e.g. Lévy-like noise) [17–19]. Secondly, we note here that
in the subsequent analysis in Sec. III we will show that
the bistability of the dust count is explicitly dependent
on the δ18O recordings, which is impossible to judge from
the univariate analysis presented thus far.

Relevantly, this does not preclude the δ18O recordings
from seemingly having two states of existence, and hence-
forward we will argue that the dynamical driver for the
apparent two states—obvious and justified in the dust
count—is riddled with jumps, possibly induced from the
changes of state in the dust count.

Before we do so, let us evaluate, for the sake on com-
pletion, the second Kramers–Moyal coefficient D2(x) to
show that a constant value is sufficient to describe the
noise amplitude, which excludes the necessity of state-
dependent noise. More importantly, we need to evaluate
the second Kramers–Moyal coefficient D2(x) in contrast
with the fourth Kramers–Moyal coefficient D4(x) to mo-
tivate the presence of jumps in the data, which we do
below.

D. Studying the diffusion of the processes

In Fig. 3 we display the second Kramers–Moyal coeffi-
cient D2(x) as a function of the respective state variable
x. We have included direct results via Eq. (3) alongside
with a set of corrections proposed in Ref. [20] and de-
scribed in detail in the App. B. Our main finding is that
the fluctuation (noise) strength is constant to good ap-
proximation, i.e., it does not depend on the value of δ18O
or dust count, respectively.
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FIG. 3. Diffusion coefficients D2(x) of a) δ18O measurements
and b) dust (in logarithmic scale) in Greenland’s icesheet. In-
clude as well are a set of corrections relevant for low-sampled
recording [20], discussed in App. B. For both recordings (solid
lines) the respective diffusion coefficients can be taken as con-
stant. The protrusion in the centre of the −log(dust) count
in panel b) is the local maximum of the double-well potential
(see Fig. 2 d)), where the number of recordings is minute. (the
raw data is divide by 20 to match the scale).

E. The emergence of discontinuities in the
δ18O recording

Lastly, we examine the higher-order coefficient of the
Kramers–Moyal coefficients, in particularly the fourth
Kramers–Moyal coefficient D4(x). Higher-order coeffi-
cient of the Kramers–Moyal coefficients are vanishing for
a regular continuous stochastic process, commonly re-
ferred to as Pawula’s theorem [21, 22]. In the presence
of some discontinuous or jumpy processes these coeffi-
cients deviate from zero (in comparison with the first
and second Kramers–Moyal coefficient). In this case the
the Fokker–Planck equation (2) is no longer suited to
describe the process and one needs to consider the full
expansion given by Eq. (1). We note here that the pres-
ence of correlated forms of noise is also sufficient to gen-
erate higher-order Kramers–Moyal coefficients. However,
we exclude this option as the auto-correlation of the in-
crements of the data shows no correlations (apart from
the shortest increment), see App. A). Internal correla-
tions of the increments are possible (and likely), but
that the sampling rate of our recordings is not sufficient
to capture this, i.e., we are above the Einstein–Markov
length [15], and a stochastic processes without correla-
tions is an adequate description.

In Fig. 4 we display the fourth Kramers–Moyal co-
efficient D4(x) for the two processes in comparison to
the second coefficient. The ratio D4(x)/D2(x) shown in
the insets provides a versatile indicator for the presence
of vanishing of this higher order moment. Interestingly,
the raw δ18O recordings display a D4(x) of equivalent
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FIG. 4. Fourth-order Kramers–Moyal coefficient D4(x) of a)
δ18O measurements (raw and processd) and b) dust (in loga-
rithmic scale) from the NGRIP Greenland’s icesheet record-
ings. The inset’s in each subplot compare D4(x)/D2(x), a
common ratio to evaluate if higher-order moments are van-
ishing. The raw δ18O measurements display non-vanishing
higher-order moments, suggesting the presence of discontinu-
ities in the recordings.

magnitude to D2(x), suggesting that this process dis-
plays discontinuities. This is unsurprisingly not the case
for the processed data since we applied a low-pass filter
which quenches high frequencies, i.e., possible jumps in
the data.

D–O event, seen as sudden transitions in the earth’s
temperature, could possibly be related with this jumps
in the concentration of δ18O. We will precise the ratio-
nale for the existence of discontinuous transitions in the
following section.

F. Jumps in stochastic data

In Ref. [23], Lehnertz et al. study the comparative con-
vergence of the moments of a stochastic process by eval-
uating their scaling with τ and propose a criterion to
distinguish pure diffusion processes from processes with
discontinuity, e.g., jump-diffusion processes. This crite-
rion, denoted Q-ratio, is given by

Q(x, τ) =
M6(x, τ)

5M4(x, τ)
∼
{
τ, for diffusions,
c, for jumpy processes, (3)

where the moments Mm(x, τ) are given by Eq. (3). If
the process is purely diffusive Q(x, τ) ∼ τ (i.e., a linear
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FIG. 5. Q-ratio of the δ18O and the dust count, according to
Eq. (3), in a double logarithmic scale. For the δ18O one can
observe the constant relation of Q(x, τ) with τ , indicating
that, especially the raw recordings, are jumpy processes. The
log dust count exhibits a linear relation with τ . The state x in
Q(x, τ) is chosen at the maximum of the distribution of the
recordings.

function of τ) and if the process exhibits discontinuous
trajectories, Q(x, τ) ∼ c (i.e., a constant over τ).

In Fig. 5 one can clearly see a constant relation of
Q(x, τ) with τ for the raw δ18O recordings, suggesting
that this is a jump-like stochastic process. On the other
hand, we observe a linear relation of Q(x, τ) with τ for
the dust count, suggesting a purely diffusive process.

Having argued for the presence of discontinuities of the
raw δ18O recordings, we propose a two-fold augmentation
of our analysis: First, we will introduce univariate jump-
diffusion processes, which account for both a diffusion-
like process, e.g. of a similar nature to a Langevin pro-
cess, as well a jump-like components, which in our case
is given by a Poisson distribution of the jumps. Indeed,
the Poissonian distribution of the transitions seen in the
δ18O recordings have already been confirmed in Ref. [3].
Second, we will redesign our analysis into a bivariate case,
i.e., we will study the two recordings in a two-dimensional
setting, and introduced equivalently a bivariate jump-
diffusion stochastic process [15, 16, 24].

III. UNIVARIATE AND BIVARIATE
JUMP-DIFFUSION PROCESSES

Our previous results suggest including jumps explic-
itly in the analysis of D–O events. A large amount
of models exist in the mathematical literature that in-
clude both a noise term ∼ dB and a jump-like element
∼ dJ . Generally the problem surrounding these models
is the ability to retrieve parameters strictly and non-
parametrically from data, i.e., to be able to derive a
model directly from the data. Jump-diffusion processes
offer a direct relation between the partial differential
representation of the evolution of the probability den-
sity function, through the Kramers–Moyal expansion in
Eq. (1), and the parameters of the stochastic differential
equation. Moreover, jump-diffusion processes produce ex-
actly the commonly observed non-vanishing higher-order

Kramers–Moyal coefficients—just as seen in the record-
ings of δ18O in Fig. 4.

Take a time-continuous Markov process, X(t) ∈ R
given by three terms: one drift term, one diffusive term,
and one Poissonian (jump) term. The evolution equation
is given by

dX(t) = a(x, t) dt+ b(x, t) dB(t) + ξ dJ(t), (4)

where a(x, t) is the drift strength, b(x, t) is the diffusion
strength or volatility, B(t) is a Wiener process (Brow-
nian motion), and J(t) is a time-homogeneous Poisson
jump process with jump rate λ(x, t) and jump ampli-
tude ξ, which is normally distributed ξ ∼ N (0, s), with
a variance s = 〈ξ2〉 [15, 24, 25]. For the case we con-
sider here, we restrict ourselves to the set of stationary
processes, thus a(x, t) = a(x), b(x, t) = b(x), s(x, t) = s,
and λ(x, t) = λ do not depend on time. The jump terms
considered are also not state dependent.

Using the Kramers–Moyal expansion, one can recover
the parameters of the jump-diffusion process (4), as given
in Refs. [15, 24]

D1(x) = a(x),

D2(x) =
1

2

[
b2(x) + λs

]
,

D2n(x) =
λsn

2n(n!)
, for n > 2.

(5)

One can see here directly the impact of the jumps on
the higher-order Kramers–Moyal coefficients, as well as
the possibility to utilise these to extract the jump rate
λ and jump amplitude s, for which we can employ the
relations [24]:

s =
6D6(x)

D4(x)
, λ =

8D4(x)

s2
=

2D4(x)3

9D6(x)2
. (6)

In Fig. 6 the jump amplitude sδ18O of the raw δ18O
recordings is retrieved via Eq. (6), which results in
sδ18O = 5.10 ± 1.65. A similar examination for the pro-
cessed data results in a jump amplitude of ŝδ18O =
0.13± 0.02. This is not surprising since the high frequen-
cies of this recording have been quenched by the low-pass
Butterworth filter employed, as already mentioned above.
Hence, this result needs to be interpreted with care.

The ratio of the Kramers–Moyal coefficients D4 to D2

shown in Fig. 4 suggests the processed data has vanishing
higher-order Kramers–Moyal (m > 2) coefficients, which
renders invalid the extraction of a jump term for the pro-
cessed data.

Using Eq. (6) we can also recover the jump rate λδ18O
of the raw recordings, yielding λδ18O = 0.70± 0.49. This
non-parametric extraction needs to be evaluated with
care, as it is given by the ratio of cubic over quadratic
Kramers–Moyal coefficients, and thus has a high uncer-
tainty. This nevertheless suggests that a jump of height
s (2s) has a probability of taking place approximately
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parison, the processed data, in which the high frequencies are
quenched, results in ŝδ18O = 0.13±0.02 (this last result should
be interpreted with care).

0.34 (0.12) times each 5 years, with s the variance of a
Gaussian distribution with mean 0.

Having now extracted the jump rate and amplitude
of the raw δ18O recording we will motivate extending
this analysis to a bivariate (two-dimensional) stochastic
process, and in particular to a bivariate jump-diffusion
process.

A. Why consider a bivariate (two-dimensional)
jump-diffusion model?

A coupling of the δ18O and the dust count has been
posited as a possible explanation for the abrupt transi-
tions in the recordings. The common method to model
this is to coupled the variables directly in the drift, and
possibly in the diffusion terms. This although precludes
a coupling of the noises of the processes. In the following
we will employ a bivariate (two-dimensional) analysis of
the timeseries, assuming the existence of jumps in the
system, thus offering ab initio a model capable of in-
cluding couplings between the variables in their different
terms (drift, diffusion, and jumps), but without posit-
ing the actual coupling structures. We find that there is
no coupling between the diffusion (noise) terms nor the
jump terms of the recordings, leaving only a possible cou-
pling in the drift functions. In fact, we find that there is
a coupling of the drift function of the dust count to the
δ18O, but not the opposite. Here we most emphasise that
the analysis put forth below is not restricted to bivari-
ate jump-diffusion processes. Analysing the two processes
solely under the purview of a bivariate diffusion process
(i.e., set ξ = dJ = 0) equivalently leads to the conclusion
that there are no couplings between the diffusion terms,
and that the dust count is coupled to the δ18O, but not
the opposite. This although naturally fails to capture the
nature of the jumps of the δ18O recordings.

Let us first introduce the bivariate jump-diffusion
model [15, 16, 23, 24], which is simply an extension of
the univariate case introduced in Eq. (4), with couplings
between the diffusion (noise) terms dB1 and dB2 and
jump terms dJ1 and dJ2. The bivariate jump-diffusion
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model of a two-dimensional vector x = (x1, x2) ∈ R2

given by

dx︷ ︸︸ ︷(
dx1(t)
dx2(t)

)
=

a︷ ︸︸ ︷(
a1
a2

)

︸ ︷︷ ︸
drift

dt+

b︷ ︸︸ ︷(
b1,1 b1,2
b2,1 b2,2

)
dB︷ ︸︸ ︷(
dB1

dB2

)

︸ ︷︷ ︸
diffusion

+

ξ︷ ︸︸ ︷(
ξ1,1 ξ1,2
ξ2,1 ξ2,2

)
dJ︷ ︸︸ ︷(
dJ1
dJ2

)

︸ ︷︷ ︸
Poissonian jumps

,

(7)

where the set of drift and diffusion coefficients a = a(x)
and b = b(x) may be state dependent.

Particularly, the terms b1,2 and b2,1 account for the
coupling of one of the noise dimension to the other, e.g.,
how the stochastic fluctuation of the dust count affect
the δ18O recordings is manifested by b1,2 (converse fol-
lows for b2,1). In the same manner, the jumps in each
dimension of the process can be coupled. For the case
at hand it seems manifest that the dust count does not
exhibit jumps, as its univariate analysis shows a vanish-
ing ratio of D4(x)/D2(x) (see Fig. 4), so we will now try
to justify a data-driven analysis to obtain a stochastic
jump-diffusion process adequate for a bivariate process
of the δ18O and dust count.

In general, a Kramers–Moyal expansion is possible
for this two-dimensional process (and for any general
N -dimensional process), which requires redefining the
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FIG. 8. The bivariate potential of the Kramers–Moyal coeffi-
cient D0,1, which is obtained my performing a numerical in-
tegration of a2(x). Unlike the previous univariate case, which
indicated that the dust count exhibited bistability, here we
observe a set of different states, which is explicitly dependent
on the value of δ18O . For low counts of δ18O ∼ −45, the
dust count seems to be uni-stable, but from approximately
δ18O ∼ −42 there is an emergence of a second minimum,
which at approximately δ18O ∼ −39 turns into the global
minimum of the system. Numbers 1© to 4© indicate the loss
of bimodality of the −log(dust) count with changing values of
the raw δ18O. The inset show the three depicted potentials,
exhibiting the change in stability.

Kramers–Moyal coefficients as two-dimensional scalar
fields D(x)a,b = D(x1, x2)a,b, with a, b ∈ N the order of
the coefficients. Notice here that for a 6= b we generally
have D(x)a,b 6= D(x)b,a.

Similarly to the one-dimensional process, there exists a
set of relations between the Kramers–Moyal coefficients
D(x) and the parameters of Eq. (7), given by [24]

D1,0 = a1, D0,1 = a2, (8)

D1,1 = b1,1b2,1 + b1,2b2,2,

D2,0 =
1

2

[
b21,1 + b21,2 + s1,1λ1 + s1,2λ2

]
,

D0,2 =
1

2

[
b22,1 + b22,2 + s2,1λ1 + s2,2λ2

]
,

(9)

D2,2 =
1

4
[s1,1s2,1λ1 + s1,2s2,2λ2] ,

D4,0 =
1

8

[
s21,1λ1 + s21,2λ2

]
,

D0,4 =
1

8

[
s22,1λ1 + s22,2λ2

]
,

(10)

where all higher order terms obey

D2`,2m =
1

2``!

1

2mm!

[
s`1,1s

m
2,1λ1 + s`1,2s

m
2,2λ2

]
. (11)
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FIG. 9. Bifurcation of the potential of the dust count. By
tracking the minima and maximum, i.e., the stable and un-
stable fixed points, respectively, we can study the bifurcation
scheme of the potential of the dust count, which indicates that
roughly around δ18O ∈ [−44.5,−43.5] we observe an imper-
fect supercritical pitchfork bifurcation, giving rise to a pair of
fixed points (one stable, one unstable). Transitions between
these state can occur very rapidly, as the dust count can “hop”
between the minima of the system, particularly close to the
bifurcation point.

In the following sections we will justify, under this bi-
variate model, which parameters exist and which vanish,
as well as which are state dependent or simply constant.

B. Simple linear coupling of the δ18O with the dust
count

We now evaluate the two-dimensional Kramers–Moyal
coefficients numerically to elucidate the properties of the
stochastic process. We start with the pivotal question of
stability in the recording of δ18O.

Figure 7 shows the negative of the integral of the two-
dimensional Kramers–Moyal coefficient D1,0, which can
be interpreted as a potential function for the dynamics
of δ18O as discussed above. The resulting potential is
shown for all values of the dust count, highlighting the re-
sult for the two particular values −log(dust)=−11.2 and
−log(dust)=−13.3. These two values have been obtained
as the minima of the bistable dust potential in the uni-
variate analysis in Fig. 2.

The reconstructed potential function shows a simple
parabolic shape for all values of the dust count, corre-
sponding to a linear drift term in the stochastic differen-
tial equation. However, the minimum of the parabola is
strongly shifted as a function of the dust count. In con-
clusion, the data suggests a rather simple linear mean-
reverting drift of δ18O, where the stable mean depends
on the dust count.

C. Changing stability of the dust count

More interestingly, we can now re-examine the poten-
tial of the dust count, which is given as the negative of the
integral over the Kramers–Moyal coefficient D0,1. This
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FIG. 10. Surfaces of the bivariate Kramers–Moyal coefficients D1,1, D2,2, and D0,4, all of which vanish. This allows us to
exclude, aided with our previous evaluation of vanishing jumps in the dust count, the terms s2,1 and s2,2 (or λ2.). This one
obtains evaluating D2,2 and D0,4, knowing ξ1 is non-vanishing. Moreover, evaluating D1,1 = 0 equivalently implies either b1,2
or b2,1 are vanishing.

potential function reveal the existence of three different
possible regimes for the dust dynamics, depending on the
value of δ18O.

Depending on the value of δ18O, the potential of the
−log(dust) count changes from a bimodal to a unimodal
regime, indicated by the numbers 1© to 4©. This change
of the underlying potential shape justifies the changes in
the trajectory of the −log(dust) seen in Fig. 1. Moreover,
the slow decay of the dust count after a transitions that
increases its value to ∼ −11 and then slowly returns to
∼ −13 is explained by the flatness of the potential (in
green), i.e., the change from state 3© to 4© takes place
slowly. This subsequently leads the dust count to state
1©, on the right side of the potential well.
From the potential seen in Fig. 8 we can extract the

bifurcation diagram of the emergence of the fixed points,
with δ18O as the bifurcation parameter. In Fig. 9 we ex-
amine the local and global minima, i.e., the stable fixed
points, potential in Fig. 8, as well as the local maxi-
mum, i.e., the unstable fixed point. The potential asso-
ciated with the dust count undergoes an imperfect su-
percritical pitchfork bifurcation, somewhere in the range
of δ18O ∈ [−44.5,−43.5]. This form of bifurcations are
often associated with rapid changes of the variables, es-

pecially close to the bifurcation point, where the system
can jump between the two minima. The potential around
the minimum of the −log(dust)∼ −11 becomes very shal-
low close to the bifurcation point, allowing the process to
easily be “kicked out” of the local minimum when subject
to fluctuations (induced by noise or inherent jumps).

D. Excluding noise and jump couplings in the
timeseries

The bivariate jump-diffusion model presented in
Eq. (7) has, in its full extent, twelve parameters. These
include interaction between the diffusive noises dB1 and
dB2, mediated by the terms b1,2 and b2,1, as well as inter-
actions between the jump terms dJ1 and dJ2, mediated
by ξ1,2 and ξ2,1. But in our example, while studying the
univariate case of the dust count, we excluded the possi-
bility of jumps (cf. Figs. 5 and 4). We will now in similar
fashion refer to the relations in Eqs. (9), (10), and (11),
and justify why several terms in our general formulation
are non-existent.

In Fig. 10 we exhibit the Kramers–Moyal coefficients
D2,0, D0,2, D4,0, D1,1, D2,2, and D0,4. The last three of
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these vanish (bottom row of Fig. 10).
First, the vanishing values of D0,4 and D2,2 exclude

the existence of jumps in the dust count recordings, as
observed before for the univariate analysis. This sets
ξ2,2 = λ2 = 0. Moreover, this also set s2,1 = 0, under the
relation that there are jumps in the δ18O (i.e., λ1 > 0).

Secondly, examining D2,0 and D0,2 indicates that nei-
ther of these two Kramers–Moyal coefficients vanish. For
D0,2 this implies that either or both b1,1 > 0 and b2,1 > 0.
Under the purview that both these recordings are to
some extent diffusion processes, they must have at least
b1,1 > 0 and b2,2 > 0. Now if one combines this with
D1,1 = 0 one has to obey that b1,1b2,1 + b1,2b2,2 = 0
(where bi,j > 0,∀i, j.), thus enforcing that b2,1 = b1,2 =
0. Notice here that the result is identical even under
b1,1 = b2,2 = 0, but this would just be a renaming of
the bi,j terms (b1,1 → b1,2 = 0 and b2,2 → b2,1 = 0)

Thus we are left with a rather reduced set of relevant
terms: Only δ18O exhibits jumps (s1,1 > 0, λ1 > 0, and
s2,1 = s2,2 = λ2 = 0, which also renders s1,2 irrelevant).
The diffusion terms bi,j do not show any coupling, as
D1,1 = 0 (b2,1 = b1,2 = 0). The drift terms we have
discussed before in Figs. 7 and 8, showing in the case of
the dust count an explicit dependence on δ18O.

Here at last we need to emphasise another point. The
couplings and correlations identified are not not neces-
sarily causation. The dependence of the dust count drift
function on the δ18O does not imply these two recordings
are explicitly dependent as weather or climate variables,
but instead that whatever coupling exists, these record-
ings serve as surrogates into the processes themselves
coupled. This is as far as the argument can reach, but
it does show quite clearly that the drift function of the
δ18O recordings remains pretty unaffected by the changes
in the dust count, possibly indicating a one-directional
coupling of these (or the underlying surrogate processes).

IV. CONCLUSION

In this article we have analysed the recordings of δ18O
and dust count from the NGRIP endeavour [1, 11]. We
study these recordings under the purview of stochastic
processes, in particular under jump-diffusion processes.
We put forward an analysis that precludes any data pro-
cessing of the recordings directly quenching slow or fast
processes, i.e., low-pass filtering. Instead we study the
“raw” data and find that the higher-order Kramers–Moyal
coefficients are non-vanishing (contrary to what is ex-
pected under a Langevin or Fokker–Planck theory). This
we posit is due to the presence of jumps (discontinuity)
in the data, and further offer a justification by studying
the scaling of the moments, known as Q-ratio, proposed
by Lehnertz et al. in Ref. [23]. Here we note that the pres-
ence of jumps is only found in the δ18O recordings, but
not on the dust count. On the other hand, the dust count
does seem convincingly well described by a double-well

potential.
These findings suggest an interpretation of the ob-

served time series in terms of generalised stochastic mod-
els. We offer an explanation in terms of a bivariate jump-
diffusion process with a simple constant coupling of the
δ18O to the dust count. On the other hand, the dust count
does seem convincingly well described by a double-well
potential.

In the bivariate analysis we observe a rich phenomenon
of changing drift function of the dust count, supporting
that this variable is explicitly dependent on the δ18O (or
whichever process this recording is surrogate for). We
observe that the underlying potential undergoes an im-
perfect supercritical pitchfork bifurcation, i.e. a transi-
tion from a unistable to a bistable potential of the dust
count.

Furthermore, from our bivariate analysis we exclude
the existence of a coupling of the jump variables be-
tween both recordings (s1,2 = s21 = 0), supporting that
the jumps observed in the δ18O recordings do not seem
to couple to the recordings of the dust count, neither
that there are induced jumps in the dust count arising
form the jumps present in the δ18O recordings. The dust
count also has no intrinsic jumps (s2,2 = λ2 = 0), which
matches what we observed previously from the univariate
analysis of the data. We also show that there is no evi-
dence of any noise coupling between the two recordings
(b1,2 = b21 = 0), thus each variable has its independent
noise function (B1 and B2). This leaves only room for
a complex drift structure of the variables, most promi-
nently of the dust count, as described above.

We hope this works puts forward a set of reasonable
arguments for the existence of discontinuities (jumps) in
the δ18O, which can find an interpretation under stochas-
tic processes with jumps. Furthermore, bivariate anal-
ysis, as the one presented here, could serve as well to
study other datasets, as they are a well-justified method
to study coupling between variables, even if somewhat
cumbersome to analyse. We hope that this mathemati-
cal analysis can also support climatologic studies, for in-
stance on the existence and interpretation of early warn-
ing signs for D–O events [26] or the physics of multista-
bility in the climate system [27].
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Appendix A: Butterworth low-pass filter and
correlations of increments

For the pre-processing of the data, discussed in
Sec. IIA, we introduced a method to reduce the noise
of the δ18O recordings by employing a Butterworth low-
pass filter of fourth order, with cut-off period of 50 kilo-
year. In Fig. 11 we plot the autocorrelation of the incre-
ments of the data, raw and processed, i.e., ∆ (x(t)) =
x(t+ 1)− x(t), at the shortest increment t = 5 years, to
show that this form of filtering might be ill-advised, as
it seems to induced in correlation of the data that might
not exist.
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FIG. 11. Autocorrelation of the increments of both datasets.
(a) displays the autocorrelation of the raw and processed δ18O
data, which indicated that the Butterworth low-pass filter in-
troduces correlations on the increments. (b) autocorrelation
of increments of the −log(dust).

Appendix B: Second-order correction to the
Kramers–Moyal operator

In order to correctly retrieve, from data, the Kramers–
Moyal coefficients, we need to evaluate the operation in
the Fokker–Planck equation Eq. (2). Let us focus on this
equation for the moment, and rewrite it in a more formal

manner as an operator

∂

∂t
p(x, t+τ |x′, t) =

∂

∂x
D1(x)p(x, t+τ |x′, t)

+
∂2

∂x2
D2(x)p(x, t+τ |x′, t)

= LFP p(x, t+τ |x′, t), (B1)

with LFP the formal Fokker–Planck operator and

Dm(x) =
1

m!
lim
τ→∞

Mm(x, τ)

τ
, (B2)

where Mm(x, τ) is the m-order conditional moment, i.e.,

Mm(x, τ) =

∫ ∞

−∞
(x′ − x)mp(x′, t+τ |x, t) dx′. (B3)

which we introduced in Eq. (3) in a similar notation. In
order to solve Eq. (2), one takes the formal step consid-
ering an initial conditions δ(x − x′) as a starting point
and employing the exponential representation of the op-
erator, which we can decompose it into a power series
as

p(x, t+τ |x′, t) = exp (τLFP)δ(x− x′)

=
∞∑

k=0

(τLKM)k

k!
δ(x− x′) . (B4)

From here we consider the 1st-order and 2nd-order ap-
proximation, i.e., truncation of the operation, as

exp (τLFP) ∼ 1 + τLFP +
τ2

2
LFPLFP. (B5)

Considering only the 1st-order, ∼ τ we recovers the well-
known relation between the conditional moments and the
Kramers–Moyal coefficients, given by

Dm(x) = lim
τ→0

Mm(x, τ)

(m!)τ
. (B6)

If we now include the 2nd-order approximation, i.e., we
consider terms up to ∼ τ2, we obtain a corrective term
for the second Kramers–Moyal coefficient

D1(x) = lim
τ→0

1

τ
M1(x, τ),

D2(x) = lim
τ→0

1

2τ

(
M2(x, τ)−M1(x, τ)2

)
.

We employ this correction to our examination solely to
show that the diffusion coefficient, i.e., the amplitude of
the fluctuations, is constant in space. In this work we
extend our analysis beyond the Fokker–Planck equation
to include higher-order terms, which elicits also the ex-
amination of considering second-order 2nd-order terms of
Eq. (1), i.e., replacing LFP with LKM that represents cor-
rectly the operator in Eq. (1). This is addressed in a
forthcoming publication [28].
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Chapter 3

Conclusions

The energy transition and the mitigation of climate change are two of the central chal-
lenges of mankind in the 21st century. Mastering theses challenges requires contributions
and collaborations from all areas of science and technology, not least physics and scien-
tific data analysis. The goal of this thesis is to contribute to the understanding of the
dynamics of electric power systems and paleo-climate transitions. Hopefully, this work
improves the understanding of these complex systems and that the developed software
proves to be helpful for other researchers and engineers.

This chapter provides a short comprehensive discussion of the results of this the-
sis, grouped into three sections on power-grid frequency dynamics and stability, paleo-
climatic events, and the software developed to analyse the respective data. The discussion
will focus on overarching aspects of all studies and the connections to physics, whereas
the domain specific conclusions and potential applications have already been discussed
in some detail in the respective publications.

3.1 Power systems and power-grid frequency

In publications #1, #2, #4, and #5 a series of studies of power-grid frequency recordings
are presented.

Results

The aforementioned studies include both a model-free statistical characterisation of
power-grid frequency fluctuations as well as model-base studies elucidating the role of
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different elements of the power system on the frequency. A comprehensive overview over
the empirical distributions of grid around the world is provided, verifying a naturally
occurring scaling phenomenon first proposed in Ref. [69]. The analysis of synchronous
measurements at different locations provides insights into emergence of phase and am-
plitude synchronisation. A relaxation time constant has extracted, revealing a diffusive
relation between the propagation of fluctuations and the distance, but a thorough theo-
retical understanding is yet to be developed. The existence of ubiquitous correlations in
power-grid frequency recordings is revealed, suggesting a more sophisticated stochastic
process with correlated elements is necessary in subsequent studies.

These works are relevant for the development of data-driven stochastic processes in
the energy sciences. They provide an avenue to incorporate stochastic processes as the
fundamental method of studying power-grid data, aided by the development of esti-
mators for the drift and diffusion terms. As recordings of power-grid specific measures
are usually scarce, dynamical models are often taken as the basis of an analysis in a
bottom-up approach. These are integrated and tested against scarcely existent data,
and naturally preclude the existence on intrinsic fluctuations, i.e., stochastic noise, in
these systems.

The offered data science approach is based on an elementary Langevin-like approach
to power-grid frequency dynamics. The characteristics of power-grid frequency data is
examined with the aid of data-driven estimators, which extract solely from data the
underlying fundamental characteristics of the data.

In publication #1 a Markovian Ornstein–Uhlenbeck process driven by a deterministic
function representing the power imbalance is proposed as an elementary model for power-
grid frequency fluctuations.

Strictly from a single recording of power-grid frequency data the fundamental param-
eters of the model are extracted: A short-term mean-reverting strength, equivalent to the
primary control mechanism in power-grids is obtained via a non-parametric estimation
of the drift coefficient; the long-term exponential relaxation of an Ornstein–Uhlenbeck is
obtained by extracting the relaxation constant of such relaxation; the noise or intrinsic
fluctuation terms are extracted via non-parametric estimation of the diffusion coefficient.
The deterministic disturbances brought about by power imbalances are determined via
the data science examination of their caused deviation from the nominal frequency.

In publication #2 a statistical study of power-grid frequency recordings is presented.
The data shows that frequency fluctuations are not Gaussian distributed neither in itself
nor in its increments, revealing rather large excess kurtosis in the latter. A superstatisti-
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cal q-Gaussian is fitted to the data [75, 76], showing better results at capturing the heavy-
tailedness of the data, yet no justification is offered for this particular model. A study of
time-reversibility is also proposed by the analysis of two distinct three-point correlation
functions, suggesting that the data is time-reversible. Furthermore, it is suggested that
the process can be assumed as Markovian by utilising the Chapman–Kolmogorov test.
This point in particular will be re-address in the discussion.

In publication #4 a first analysis of a large set of power-grid frequency recordings in
different power grids around the world is complemented with a set of six synchronous
recordings in the Central European grid. The natural scaling of fluctuation in these time-
series is shown to scale as 1/

√
N , with N the number of participants in a power-grid.

This is well in line with scaling of any i.i.d. random variable with well defined mean
and bounded variance, in accordance with the Lindeberg–Lévy central limit theorem.
Subsequently the distribution of the increments of these timeseries is examined as a
function of the time lag. Most scale-invariant stochastic processes exhibit non-Gaussian
distribution of their increment statistics [77, 78], most often distributed as a superpo-
sition of log-normally distributed Gaussian processes [79, 80], or more generally some
superstatistical formulation [75, 76]. Overall, all these distributions of incremental pro-
cesses show heavy-tailed distributions, i.e., large kurtosis, which may or may not relax
to Gaussian shaped distribution for increasing temporal lags. Both phenomena seem
present in power-grid frequency recordings. Lastly, an examination of the fluctuations in
six synchronous recordings in the same synchronous area is presented. A spatial analysis
shows that fluctuations synchronise in a diffusive-like manner in space, i.e., they become
identical between locations in a square relation with the distance between the locations.

In Publication #5 a thorough examination of a collection of six high-resolution syn-
chronous power-grid recordings from the Nordic synchronous area is presented. In this
work the aforementioned diffusive-like relation of amplitude synchronisation, first evi-
denced in Publication #4, is strengthened. This, moreover, is found to act as a stronger
form of diffusion, i.e., as a superdiffusive processes as ones commonly seen in anomalous
diffusion [81, 82], in a power relation with the Hurst coefficient of the underlying process.
Additionally, the high temporal resolution of the data allows to analyse phase and ampli-
tude synchronisation separately. This analysis suggest that phase synchronisation, i.e.,
the increase in correlation of the increments of the frequency recordings, occurs earlier
than amplitude synchronisation and the time to reach synchrony between two locations
scales only linearly with the distance.
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Discussion

The aforementioned publications offer a novel perspective on power-grid dynamics, cover-
ing the main aspects of the topic: data analysis, physical interpretations, and modelling.

The obvious first point to discuss is the nature of the chosen model. It has become
obvious throughout these investigations that the Markovian property is not strictly sat-
isfied and any Markovian model can only serve as a first approximation to describe the
dynamics of power-grid frequency The application of the aforementioned Chapman–
Kolmogorov test, stemming for the eponymous theorem, is not sufficient to discern
whether one-dimensional stochastic processes are Markovian [83, 78]. The application of
the Chapman–Kolmogorov test seems reliable solely at the level of increment statistics,
not directly on data. This agrees well with a closer examination of a structure function,
e.g., finite differences or log-returns, of the data, in the sense that it provides a nec-
essary condition for Markovianity of the increments. It although fails as a verification
that data—in particular, the increment statistics—is not Markovian. A closer examina-
tion of the increment statistics—in particular its covariance function—indicates without
rebuttal that exponential-like correlations are present. For the suggested process, i.e.,
a simple Ornstein–Uhlenbeck process with non-multiplicative noise, one can be certain
that the increment statistics reflects solely the nature of the noise.

The auto-correlation function is a natural tool to discern the Markovianity of a
stochastic process, but much more precise insights can be obtained from the increment
ratio statistics or power variations [84, 85]. Take a Ornstein–Uhlenbeck process with a
drift function with bounded variation, fractional Gaussian noise with any Hurst (Hölder)
index in (0, 1), and a non-multiplicative diffusion (volatility) parameter [86, 87, 88]. A
set of non-parametric estimators has been shown to exist that can precise the Hurst
(Hölder) index, the integral over the time-dependent diffusion strength (volatility), and
the drift strength. A set of pth-order kth-difference operator, with p > 1, k ≥ 1, which
can be used as an estimator for the aforementioned stochastic parameters, was shown
to converge in probability to these parameters, provided the process is stationary.

A direct application of these non-parametric estimator—much in contrast with the
employed Nadaraya–Watson estimators—show directly that power-grid frequency does
does not obey the Markov property. This has important consequences for the modelling
of stochastic processes but also for the methods used to analyse them. In a recent pub-
lication [89] it was shown that Nadaraya–Watson estimators are not adequate objects
to study correlated processes as any choice of non-white noise renders these estimators
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invalid. The proofs rely once more on the abnormal convergence in probability, which are
shown to diverge from the actual parameters in non-Markovian stochastic differential
equations. Nadaraya–Watson estimators rely solely on convergence in probability.

At this stage one must conclude that all Markovian approaches to the analysis and
modelling of power-grid frequency dynamics must be regarded as a first approximation—
elucidating some essential properties of the dynamics but failing to capture more in-
triguing aspects. This holds in particular for publication #2. Whereas all results on
the distribution of frequencies and increments are still in good standing, the analysis of
correlations is clearly oversimplified and should be corrected.

Note here that from a statistical point of view, at the distributional level most work
is still in good standing. Take any correlated process with incremental which is Gaus-
sian distributed, it does not invalidate nor alter in any fashion the observation of heavy
platykurtic distributions at both the level of the power-grid frequency recordings or their
increments (see, for example, the distributional properties of fractional Brownian mo-
tion). The examination offered in Publication #4 does not rely on the Markov property,
except on the calculation of the scaling phenomena, which relies on the Nadaraya–
Watson estimator. Nevertheless, a purely data science estimation is given in the Supple-
mental Material that does corroborates the findings.

Contemporaneous works

Power-grid frequency dynamics studies are not uncommon in the large scope of energy
engineering [90], control theory [42, 91], nor by now the physics community [69, 92]. Yet,
many studies are based on direct model analysiss, in particular with emphasis on stability
criteria [93, 42], graph-theoretical approaches [94, 95, 96], or numerical simulation [97,
98].

Data-driven approaches and real-world data analysis of power-grid frequency are
scarce, with the notable exception of studies on intra and inter-area oscillations and
their eigenfrequencies oscillations [99, 100, 101, 102] in the engineering community and
a handful examples in the physics community [69, 92, 103, 104]. Real-world studies are
difficult to perform given the lack of freely available data, which has seen critique from
within the scientific community [105, 106].

One obvious obstacle to empirical studies of power-grid operation and stability is the
lack of openly available data. Power grid operators closely monitor the grid and thus
collect huge amounts of data, but are reluctant to share. This lack of data has been a
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main motivation the effort to create an open data base [72, 4]. The importance of open
data for energy science in general has been discussed and summarised in [105, 106].

As discussed repeatedly before, the power-grid frequency is intimately connected to
the balance of generation and consumption of electric power. Frequency fluctuations are
direct consequences of the stochastic fluctuations at the level of power generation and
consumption. Recent studies have emphasised the importance of temporal correlations in
wind turbine power generation from extensive real-world recordings [107]. The theoretical
analysis of the recordings assumes fractional noise added on a cubic drift functional and
incorporates a subsequent truncation for a lower and upper bound of power generation.
This is perhaps the most daunting point as the choice of additive (fractional) noise
is not bounded. The authors set a lower and upper cut-off power-generation, where
possible more adequate stochastic models, as a Cox–Ingersoll–Ross model [108], general
a Constant Elasticity of Variance (CEV) model [109], or more adequate Pearson diffusion
processes [110] would render these effect without ad hoc criteria. The authors show that
correlated noise can produce more adequate probability density functions than compared
to plain uncorrelated Gaussian noises. They include as well an examination of the Hurst
coefficient of the timeseries via detrended fluctuation analysis [111], thus justifying their
choice of motion.

These results align particularly well with other examinations of temporal correla-
tions of wind speeds [37], relegated to the supplemental information of the publication,
where an examination of wind speed reveals likewise positively correlated phenomena.
In Ref. [104] the authors study directly the detrended fluctuation analysis on scales
larger than ten seconds, thus providing an analysis of the scaling phenomena at large
scales, i.e., minutes, hours, days. The actual short-term memory properties of power-grid
frequency are left unaddressed.

The particular structure of the underlying power-grid frequency fluctuations—in the
purview of stochastic processes—has so far been conjectured to be a potential Lévy α-
stable distribution, or, to account for different time scales in the process, a q-Gaussian
distribution [69]. The first seems unlike, as it required unbounded, ill-defined variances,
and thus must be seen with care. The second seems more in line with results in Ref. [104],
including explicitly different time scales in the stochastic process. This, unfortunately, is
not shown to a great extent, as the suggested q-Gaussian distribution are simply fitted
to the probability density function of power-grid frequency recordings. An examination
of the underlying structure function, i.e., the finite differences of power-grid frequency
recordings, could unveiled the actual scale structure of the potential q-Gaussian-like
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distributions [66]. Similarly, multifractal detrended fluctuation analysis [112] can be em-
ployed to unveil the scaling of the structure functions.

All of this combined forms a steady progress in adding to the comprehension of the
stochastic nature of power-grid frequency dynamics, to which some of the publications
present in this thesis contribute.

3.2 Bivariate jump-diffusion processes and

Dansgaard–Oeschger events

Results

In publication #6 a standard model for univariate jump-diffusion processes proposed in
Refs. [47, 67, 38] is extended to two dimensions

For the case of symmetric coupling in either the diffusive or jump terms, or for both,
a close form linking the conditional moments and the parameters of the jump-diffusion
process is possible. The actual solution of recovering the parameters is possible—within
the limitations of their non-linearity and availability of data—and is it possible non-
parametrically with the methods and software developed in publications #3 and #7.

In publication #8 bivariate jump-diffusion processes are utilised to model and analyse
abrupt transitions in paleoclimatic records generally referred to as Dansgaard–Oeschger
events. This framework provides a straightforward model for the abrupt transitions and
allows to investigate the coupling or dependencies between two essential indicators of the
climatic dynamics, the temperature and the concentration of dust in the atmosphere.
The data analysis suggests the existence of an imperfect supercritical pitchfork bifurca-
tion in the dust dynamics, which can be posited as one of the mechanisms behind the
Dansgaard–Oeschger events.

Discussion

Application of data-driven stochastic models in paleo-climate data is not uncommon [62],
yet most approaches fall under the category of pre-designed functional form for the drift
and diffusion terms. Complex descriptions, involving generalised Langevin equations,
offer a window into incorporating memory terms into these stochastic descriptions [113].
Yet, no approach with explicit discontinuous stochastic processes is known. Here note
that bistable models always offer fast transitions between states, but these are not math-
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ematically discontinuous transitions. A clear-cut distinction can be obtain by examining
the structure function of the recordings, possible through, for example, spectral analysis,
multifractal detrended fluctuation [112], or wavelet transform [114].

One noticeable difference in publication #8 to others in the field is the explicit ab-
sence of an a priori given model. In this work the use of non-parametric estimators
eschew the need to propose a model prior to the data analysis—on the contrary, an
examination of the estimators gives access to the functional form of a stochastic model’s
parameters. Moreover, the particular augmentation of a general continuous-time diffu-
sion (i.e., continuous stochastic process) to a discontinuous jump-diffusion process is not
limiting. In opposition, by both examining the higher-order conditional moments of the
timeseries as well as the method to distinguish jump-diffusions from pure diffusion from
Ref. [68], the necessity to include a specific jump component becomes evident and well
grounded.

A noticeable drawback—not intrinsic to the models but to the work in Publication
#8—is the absence of an explicit memory kernel in the Langevin-like equation. Recent
works have utilised generalised Langevin equations [113], but again always with a priori
defined stochastic models, thus not providing a method to examine or extract the actual
functional form of the memory kernel.

Contemporaneous works

Jump-diffusion processes are common in the mathematical literature in stochastic pro-
cesses [115, 116]. Fast, discontinuous transitions are common in financial market data
modelling [117, 118], commonly denoted market crashes. Poisson distributed jumps are
perhaps the more common in the literature, but these prima facie naturally lead to an
asymmetric, one-side distributions [119]. Poisson jump distributions with a Gaussian
distributed amplitudes offer a neat and applicable model for symmetric distributed pro-
cesses [120]. They naturally resemble symmetric Lévy α-stable distribution, yet have
bounded variance [66]. A noteworthy pre-print publication addressing non-parametric
estimators for Lévy driven processes could prove to be a breakthrough in the particularly
difficult terrain of unbounded variance processes [65].

Jump-diffusion equations are much less common in the stochastic modelling of actual
data sets than ordinary diffusion equations, while there is well established mathematical
theory [120]. Two notable exceptions include the intermittency of solar power generation
due to cloud coverage in Ref. [38], and the analysis of electroencephalogram timeseries
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of brain activity [67, 68]. This comes hand-in-hand with the difficulty of disentangling
the underlying parameters of timeseries from solely data-driven methods. This is ag-
gravated with the interpretation of jumps in physical systems, which at first principle
are assumed to be continuous. Interestingly, in Ref. [68] a first applicable criterion to
distinguish purely diffusive and jump-diffusions is presented, denote Q-ratio. This, in a
very similar fashion to the non-parametric Nadaraya–Watson estimators, relies on the
scaling properties of the incremental timeseries for increasing finite-order differences.
Fundamentally, a distinction is possible by examining the higher-order moments of an
extended Fokker–Planck equation, i.e., the Kramers–Moyal equation, by comparing the
scaling of moments for different finite differences. This, although hard to employ in
timeseries analysis, is just a reflection of the Lindeberg continuity theorem [66], i.e., a
process with jumps does not scale as the increments of a classical continuous Brownian
equivalent, in a power relation with time (or space).

3.3 Software development

Results

In publications #3 and #7 two closely connected software programmes are developed.
Publication #3 implements an elementary kernel-density estimator to extract Kramers–
Moyal coefficients for stochastic processes in any dimension, based on a Nadaraya–
Watson like estimator [121, 122] for stochastic processes [123, 124] It relies on a numerical
convolution procedure to extract the coefficient in Fourier space, making it computa-
tionally efficient.

Publication #7 specialised the software in Publication #3 for jump-diffusion pro-
cesses in one dimension, alongside the explicit derivation of a set of second-order correc-
tions to the exponential representation of the Kramers–Moyal operator of jump-diffusion
processes. The software extracts up to the eight order of the conditional moments up to
eighth order of a (continuous-time) stochastic timeseries. As presented in Ref. [67] a rela-
tion between the parameters of a jump-diffusion process and the conditional moments up
to eight order allows for a closed form solution, making it possible to invert the problem
and retrieve the parameters non-parametrically from data, in a similar fashion to what is
shown in Publication #3. The set of second-order corrections of the representation of the
Kramers–Moyal operator puts the non-parametric recovery of the underlying parameters
of the jump-diffusion process at equal footing to what was developed in Ref. [74].
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Discussion

Non-parametric estimators are a common tool to uncover the parameters of stochastic
timeseries, having been applied extensively for over two decades [78, 124, 66]. Their
applicability relies on a set of criteria which is often hard to justify for real-world data:
stationarity and Markovianity.

Firstly, the numerical method developed in Publication #3 results from a conven-
tional usage of convolutional methods in Fourier space. This naturally offers considerable
numerical speed-ups, but can find a natural drawback when examining jump-like events
in stochastic processes, as these jumps are fundamentally discontinuous transitions in a
timeseries, which in Fourier space can lie outside the Nyquist frequency in the numerical
implementation of a discreet Fourier transform (this being the method employed in the
Fourier transform).

Secondly, the developed second-order approximation of the Kramers–Moyal opera-
tor, relegated to the appendix in Publication #7 begs re-examination. Fundamentally
the representation of the exponential representation of the operator, and the subse-
quent approximation of this exponential operator in a power series, leads to the emer-
gence of terms with derivatives of the Kramers–Moyal coefficients. Naturally these are
bounded in continuous diffusion, as the semi-group of the Brownian motion is bounded
to second-order derivatives, but for discontinuous stochastic processes—such as the dis-
cussed jump-diffusion process—either an integral over a Lévy measure or an infinite
sum of differential operators appears. The first-order approximation, i.e., the commonly
employed estimators, does not see the emergence of derivative terms, but the second-
order does, and so subsequently do the following orders. In the particular derivation
for jump-diffusion processes presented in Publication #7 the terms with derivatives are
discarded, under the assumption that the Kramers–Moyal coefficients are lower-order
polynomials [74]. This assumption, absolutely fair, seems appropriate, but a verification
of whether the derived moments are indeed correctly normalised when discarding these
elements is yet to be provided. This truncation seems benign for diffusions, see Ref. [74],
however the presence of infinite sums of Kramers–Moyal coefficients and their respective
derivatives could become problematic for jump-diffusion processes.

Contemporaneous works

Numerical implementations of kernel density estimators are not uncommon in statistics
software packages [125], but no know implementation of parametric or non-parametric



3.3. Software development 147

Kramers–Moyal coefficient estimators are known to exist in the computational language
Python, but an implementation in the computational language R exists for one a two-
dimensional timeseries [126]. Existing implementations are limited to work in real space
and do not enjoy the computational speed-ups provided by been able to employ a con-
volution of the conditional moments with kernel in Fourier space. Implementing con-
volutional methods has the added flexibility of being generalisable to any dimension.
Likewise, implementations specific to Poissonian jump-diffusion processes are too novel
to have been thus far developed.
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L. Rydin Gorjão, M. Anvari, H. Kantz, C. Beck, D. Witthaut, M. Timme, and B.
Schäfer. Data-Driven Model of the Power-Grid Frequency Dynamics. IEEE Access 8,
2020, pp. 43082–43097, Ref. [1].

Author contributions The model, its implementation, all data collection, and anal-
ysis is the work of the first author. The particularity of the model choice was discussed
with all authors. Discussion and conclusions drawn in the paper are a common effort.

Publication #2

M. Anvari, L. Rydin Gorjão, M. Timme, D. Witthaut, B. Schäfer, and H. Kantz. Stochas-
tic properties of the frequency dynamics in real and synthetic power grids. Physical Re-
view Research 2(1), 2020, p. 013339. Ref. [2].

Author contributions The statistical properties of extensive physics drawn from the
data are the work of the first author. The synthetic model is work of the second author.
The non-extensive physical properties are authored by the penultimate author. The
particularity of the statistical interpretation was discussed with all authors. Discussion
and conclusions drawn in the paper are a common effort.
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Publication #4

L. Rydin Gorjão, R. Jumar, H. Maass, V. Hagenmeyer, J. Kruse, M. Timme, C. Beck,
D. Witthaut, and B. Schäfer. Open data base analysis of scaling and spatio-temporal
properties of power grid frequencies. Nature Communications 11, p. 6362, 2020, Ref. [4].

Author contributions The analysis is the work of the first-author and last author.
The data collection was work of the second and third author. The interpretation of the
Karhunen–Loève results are a joint effort of the first, fifth and last author. Discussion
and conclusions drawn in the paper are a common effort.

Publication #5

L. Rydin Gorjão, L. Vanfretti, D. Witthaut, C. Beck and B. Schäfer, under the working
title Phase and amplitude synchronisation in power-grid frequency fluctuations, Ref. [5].

Author contributions The analysis is the work of the first-author. The provision of
the data is work of the second author. Discussion and conclusions drawn in the paper
are a common effort.

Publication #3

L. Rydin Gorjão and F. Meirinhos. kramersmoyal: Kramers–Moyal coefficients for stochas-
tic processes. Journal of Open Source Software 4(44), 2019, p. 1693, Ref. [3].

Author contributions The theoretical background is work of the first author. The
prototypical numerical procedure in one and two dimensions is work of the first author,
generalised to N dimension by the second author. The discussion is work of the first
author.

Publication #6

L. Rydin Gorjão, J. Heysel, K. Lehnertz, and M. R. R. Tabar. Analysis and data-
driven reconstruction of bivariate jump-diffusion processes. Physical Review E 100, 2019,
p. 062127, Ref. [6].



Author contributions The theoretical background is work of the two last authors.
The implementation, analysis, and employed study models is work of the first author.
Discussion and conclusions drawn in the paper are a common effort.

Publication #7

L. Rydin Gorjão, D. Witthaut, and P. G. Lind. JumpDiff: A Python library for statistical
inference of jump-diffusion processes in sets of measurements, submitted to the Journal
of Statistical Software, 2020, Ref. [7].

Author contributions The theoretical background is joint work of the first and last
author. The implementation, analysis, and numerical development is work of the first
author. Discussion and conclusions drawn in the paper are a common effort.

Publication #8

L. Rydin Gorjão, K. Riechers, F. Hassanibesheli, D. Witthaut, and P. G. Lind, under
the working title Dansgaard–Oeschger events: Change in stability and jumps modelled
via univariate and bivariate jump-diffusion processes, Ref. [8].

Author contributions The model implementation, analysis, and conclusions are
work of the first author. The field-specific interpretation is work of the first three authors.
Discussion and conclusions drawn in the paper are a common effort.





Appendix B

Data availability

B.1 Power-grid systems

Power-grid frequency is more familiarly known as the 50Hz in Europe, Russian, India,
China, and parts of Japan (60 Hz in the United States of America and other parts of
Japan). Power-grid frequency data is rarely freely available across different power-grid
systems in the world. In Continental Europe, which comprises the majority of countries
in Europe and a large array of different power-grid operators, only two recordings of
power-grid frequency are freely available, provided by the French Réseau de Transport
d’Électricité (RTE) [127] and the German TransnetBW [128]. Likewise in the Nordic
grid, comprising Norway, Sweden, Finland, and a small part of Denmark, the only avail-
able source of data is provided my the Finish operating system FinGrid [129]. Lastly,
the operating system in Great Britain is controlled by the National Grid ESO [130],
providing also a single recording at a single location.

A portion of this thesis comprised a concerted effort in acquiring more power-grid
frequency data, which is openly available in Ref. [131], and is documented in Ref. [72].

Lastly, a set of synchronous recordings from power-grid frequency measurements from
the Nordic synchronous areas were utilised in Publication #5. Unfortunately, this data
set has been provided under Non-Disclosure Agreement and thus cannot be made freely
available. Hopefully the Non-Disclosure Agreement will be lifted in the future such that
the data set can be published along with the article [5].
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B.1.1 List of sources

Links as of the 21st of December 2020.

Publication #1: Continental European data [128]. Great Britain [130].

Publication #2: Continental European data [127, 128]. Great Britain [130].

Publication #4: All data [131, 72]. Documented in
lrydin.github.io/Power-Grid-Frequency/.

Publication #5: Protected under Non-Disclosure Agreement.

B.2 Paleo-climate high-frequency data

The data employed in this thesis relates stems from the North Greenland Ice Core Project
NGRIP project [54, 55, 56]. The data are freely available with the aforementioned pub-
lications, with the care for particular pre-processing employed by the authors of each
work. Moreover, for comparison, the data from the Greenland Ice Sheet Project Two
(GISP2) and the Greenland Ice Core Project (GRIP) were employed [57]. The analysis
is solely conveyed on the data from the NGRIP project.

B.2.1 List of sources

Links as of the 21st of December 2020.

Publication #8: NGRIP project data www.iceandclimate.nbi.ku.dk/data/. Doc-
umented in [132, 133].

https://lrydin.github.io/Power-Grid-Frequency/
https://www.iceandclimate.nbi.ku.dk/data/
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tigt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten und nicht veröf-
fentlichtenWerken demWortlaut oder dem Sinn nach entnommen wurden, sind als solche
kenntlich gemacht. Ich versichere an Eides statt, dass diese Dissertation noch keiner an-
deren Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie—abgesehen von
unten angegebenen Teilpublikationen und eingebundenen Artikeln und Manuskripten—
noch nicht veröffentlicht worden ist sowie, dass ich eine Veröffentlichung der Disserta-
tion vor Abschluss der Promotion nicht ohne Genehmigung des Promotionsausschusses
vornehmen werde. Die Bestimmungen dieser Ordnung sind mir bekannt. Darüber hinaus
erkläre ich hiermit, dass ich die Ordnung zur Sicherung guter wissenschaftlicher Praxis
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