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Abstract 
 
 
Research using the event-related potential (ERP) method to investigate cognitive 

processes has usually focused on the analysis of either individual peaks or the area 

under the curve as components of interest. These approaches, however, cannot 

analyse the substantial variation in size and shape across individual waveforms. 

The aim of my thesis is thus to introduce the gamma model analysis (GMA). The 

GMA addresses these specific restrictions of the usually applied methods and 

enables the analysis of additional time-dependent and shape-related information on 

ERP components by fitting mathematically computed gamma probability density 

function (PDF) waveforms to an ERP. 

The advantage of the GMA is demonstrated in a simulation study and a digit flanker 

task, as well as a force production task. The data of the digit flanker task is also used 

to examine a potential limitation of the GMA, namely the inability of the gamma PDF 

to execute a sign change. Finally, the gamma PDF was compared with three other 

PDFs concerning their goodness of fit. 

The different gamma model parameters were sensitive to various experimental 

manipulations across the empirical studies. Moreover, the GMA revealed several 

additional interrelated but non-redundant parameters compared to the classical 

methods, which were predictive of different aspects of behaviour, allowing for a more 

nuanced analysis of the cognitive processes. The GMA provides an elegant method 

for extracting easily interpretable indices for the rise and decline of the components 

that complement the classical parameters. This approach, therefore, provides a novel 

toolset to better understand the exact relationship between ERP components, 

behaviour, and cognition. 
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1 Introduction and Theoretical Background 

One possible way to describe psychology can be as the science of perception, 

awareness, cognition, and behaviour. Common methods often used in psychological 

research include self-reports, observations, and behavioural data. Nevertheless, it 

also encompasses a broad range of invasive and non-invasive neuropsychological 

methods to investigate, for instance, cognitive functions. The electroencephalogram 

(EEG), especially the event-related potential (ERP), is one of these methods. ERPs 

are small voltage fluctuations measured by the EEG, reflecting the 

electrophysiological brain responses to specific (e.g. sensory, cognitive, motor) 

events. The first ERP component, the contingent negative variation (Walter et al., 

1964), was identified approximately 30 years after the development of the EEG 

(Berger, 1931). Since then, the ERP has been increasingly used to gain a better 

understanding of electrophysiological activity in the human brain. The essential role 

of the ERP across various research areas has been demonstrated by the fivefold 

increase in research papers from 1995 to 2010 (Woodman, 2010). Since 2010, the 

number of published research papers has remained at a high level (Figure 1). 
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Figure 1. Number of event-related potential reports by year of publication. Data derived from 

PsycINFO searches for the terms event-related potential, ERP, or evoked potential in any search field 

(Woodman, 2010). 
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A vital part of the ERP research is the quantification of ERP components 

derived from the EEG data. Without quantification, ERP researchers could not use 

statistical testing, differentiate across conditions, or interpret ERP data. Two scoring 

methods are usually applied in the statistical analyses of ERP components: peak and 

area measures. The peak amplitude is determined by the most negative (or positive) 

point in a waveform within a specific time window of interest. The area is typically 

estimated by the mean activity (i.e. mean amplitude) within a specified time interval 

(Clayson et al., 2013). These approaches, however, cannot analyse the substantial 

variation in size and shape across individual waveforms (Kappenman & Luck, 2012; 

Luck, 2014). The aim of my thesis is thus to introduce the gamma model analysis 

(GMA): The GMA is a newly developed method which addresses these specific 

restrictions of the usually applied methods and enables the analysis of additional 

information on ERP components by fitting mathematically computed gamma 

waveforms to an ERP. It is therefore possible to describe the shape of the 

component, which was previously missed out. 

The thesis starts with an overview of the biological basis of EEG and ERP. 

This is followed by the introduction of a well-investigated ERP component, the 

medial-frontal negativity (MFN), which was used to evaluate the new approach. 

Further, commonly applied scoring methods for the statistical analysis of ERP 

components and their limitations will be described, before introducing the GMA, 

including the gamma probability density function (PDF) and the grid restrained 

nelder-mead algorithm (Bűrmen et al., 2006). Forming the empirical framework of the 

thesis, a simulation study (Study 1; Kummer et al., 2020) to evaluate our approach 

will be presented. In Study 2 (Kummer et al., 2020), the reanalysed data of a digit 

flanker task to examine the suitability of the process of fitting our novel approach to 

empirical data will be described. Study 3 (Kummer et al., 2020) investigated data 

from a force production task which was used to identify if the GMA was sensitive to 

experimentally induced variations of participant force production in the MFN. The 

data of the digit flanker task is also used to examine a potential limitation of the GMA, 

namely the inability of the Gamma PDF to execute a sign change (Study 4). Finally, 

the Gamma PDF was compared with three other PDFs concerning their goodness of 

fit (Study 5). Results of all studies will then be discussed with regards to their 

implications to the field and possible future directions in research. 
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2 Biological Basis of the EEG and Event-Related 

Potentials 

The EEG is one of the oldest and most widely used methods to investigate the 

electric activity within our brain (Kappenman & Luck, 2012; Luck, 2014). It takes 

advantage of the fact that the information processing of our brain works mainly 

through electrical impulses. The EEG records the electrical activity along the scalp, 

which is the result of a voltage fluctuation by the flow of current due to firing neurons 

in our brains. The EEG allows the assessment of ERP components, which are 

specific measurements of the brain’s response to a psychologically relevant event 

(Bucci & Galderisis, 2011; Luck, 2014; Nisar & Kim, 2015). To understand the origins 

of the EEG signal and what an ERP component is, a brief introduction to the 

biological basis of the EEG will be given in section 2.1. 

 

Electroencephalography 
 

The founder of the EEG was Hans Berger, a psychiatrist with a thorough 

interest in the relationship between mind and body. In 1924, he invented the first non- 

invasive scalp EEG for humans (Berger, 1931; Boutros, 2011). The EEG records the 

electrical potentials generated by cerebral neurons, attenuated by meningeal layers, 

skull, and scalp. Electrical potentials are the electrical charge differences between 

two points. The two electric potentials which are important for the EEG recording are 

the action potentials and the post-synaptic potentials (Bucci & Galderisis, 2011; 

Kamel & Malik, 2015). 

Before producing one of these electric potentials, a neuron has a resting 

membrane potential (-60 to -70 mV), which is generated by high concentrations of 

potassium (K+) and chloride (Cl-) ions inside a neuron, while high concentrations of 

sodium (Na+) and calcium (Ca2+) ions are kept outside (Birbaumer & Schmidt, 2010). 

Regarding the action potential, the membrane potential becomes less negative at 

first, because of a critical amount of Na+ entering the cell. This process is called 

depolarisation. After the depolarisation, K+ ions leave the cell and less Na+ ions enter 

the cell, causing a repolarisation. The resting membrane potential can be restored. 



Action potentials and thus voltage changes can pass through the cell body to 

axon terminals where the release of neurotransmitters (e.g. GABA, dopamine, 

acetylcholine) for the signal conduction is triggered, which is important for the post- 

synaptic potentials (Birbaumer & Schmidt, 2010; Bucci & Galderisis, 2011; Kamel & 

Malik, 2015). The released neurotransmitters are binding with specific receptors of a 

post-synaptic neuron. Through this binding, the concentration of ions across the 

membrane at the receptor location can change, and the consequences are post- 

synaptic potentials. 

Post-synaptic potentials can be either depolarising or hyperpolarising. The 

depolarisation works, in principle, similarly to the action potentials. Thus, these post- 

synaptic potentials are referred to as excitatory post-synaptic potentials because they 

increase the likelihood of a proper action potential. In contrast to the depolarisation, a 

hyperpolarisation is often the result of K+ ions leaving the cell and Cl- ions entering  

the cell. These post-synaptic potentials are referred to as inhibitory post-synaptic 

potentials because they decrease the likelihood of an action potential. Additionally, 

unlike an action potential, the duration of which is about one millisecond, post- 

synaptic potentials can stretch up to hundreds of milliseconds (Birbaumer & Schmidt, 

2010; Bucci & Galderisis, 2011; Kamel & Malik, 2015). These post-synaptic potentials 

are the main contributors to the neural activity measured by the EEG (Lopes da Silva, 

1991). The EEG cannot detect the electrical potential produced by a single neuron, 

because it is too small. However, when a large group of neurons, about hundreds of 

thousands, show synchronised activity, the summation of the produced electrical 

potentials is measurable at the scalp (Luck, 2014; Nunez & Srinivasan, 2006). Thus, 

the EEG can record human brain activity very precisely and can simultaneously 

monitor hundreds of different potential processes. However, figuring out which 

electrical potentials in the enormous mass of recorded EEG data could be linked to 

neurocognitive processes remains challenging. This can at least partially be realised 

through ERPs, which reflect the electrophysiological brain response to specific (e.g. 

sensory, cognitive, motor) events (e.g. Luck, 2014). 
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Event-related potentials 
 

Every psychological operation or function (e.g. action monitoring, attention 

mechanisms, processing of emotional stimuli) which researchers want to 

systematically manipulate and investigate in an experimental task (e.g. choice 

reaction time or force production tasks) comprises a temporal pattern of neural 

activity in a specific brain area (Kamel & Malik, 2015; Luck, 2014; Nisar & Kim, 2015). 

ERPs allow researchers to attain a deeper knowledge of the neural activity linked to 

the investigated psychological operations (Kropotov, 2009). The voltage change 

reflecting a psychological operation within a single event-locked EEG epoch is too 

small compared to the constantly present spontaneous neural activity. Thus, a signal 

processing technique is required which allows increasing the low signal-to-noise 

ratio. The averaging of several EEG epochs time-locked to the same repeated 

psychologically relevant event (e.g. stimulus, response) has proven itself to be useful 

in this context (Kamel & Malik, 2015; Luck, 2014; Nisar & Kim, 2015). Nevertheless, 

this procedure underlies two assumptions: The first assumption is that the recorded 

neural activity elicited through the psychological event is invariant (identical in shape 

and phase) throughout all trials. The second assumption is that the remaining neural 

background activity, recorded through the EEG, is randomly distributed noise. By 

averaging a sufficient number of trials, the random background activity should 

substantially decrease with respect to the ERP signal (Coles & Rugg, 2002; Kamel & 

Malik, 2015; Luck, 2014). 

Luck (2014) updated the definition of the ERP from Dochin et al. (1978) as 

follows: “An ERP component can be operationally defined as [a] set of voltage 

changes that are consistent with a single neural generator site and that 

systematically vary in amplitude across conditions, time, individuals, and so forth” 

(Luck, 2014, p.68). Usually, ERP components can be identified through their polarity 

and their peak latency (Kappenman & Luck, 2012; Luck, 2014). The first identified 

ERP component was the contingent negative variation (CNV; Walter et al., 1964) The 

CNV shows a negative peak between 250 ms and 470 ms after a warning stimulus 

(Tecce, 1972). Since the early findings regarding CNV, it has become well- 

recognised that ERPs reflect electrophysiological brain activity. As a consequence, 

they became more and more important in gaining a better understanding of the 

human brain (Coles & Rugg, 2002; Kappenman & Luck, 2012). 



A specific ERP component, the MFN (Luck, 2014), is described in the 

following section because this well-investigated ERP component was chosen to 

evaluate the GMA approach. 

 

The medial-frontal negativity 
 

Falkenstein et al. (1991) were the first researchers to observe a negative ERP 

component between 50 and 100 ms after an error had been committed by the 

experimental participants. They did so by analysing the response-locked waveforms 

of erroneous responses and correct responses in a speed choice reaction time task. 

This ERP component typically showed a larger negative peak-amplitude after an 

erroneous reaction compared to correct responses (Gehring et al., 2012). 

At first, the ERP component was explained as an error-detection signal and 

therefore named error negativity (Ne, Falkenstein et al., 1991) or error-related 

negativity (Gehring et al., 1993). However, researchers later discovered a small 

negativity which appeared after correct responses (correct-related negativity; Gehring 

& Knight, 2000; Scheffers & Coles, 2000). These two ERP components seem to 

reflect similar mechanisms of action monitoring and are thus in combination often 

referred to as MFN (Armbrecht et al., 2012; Gehring & Willoughby, 2002) 

The MFN does occur in speed choice reaction time tasks requiring a keypress 

by hand after visual stimuli (Gehring et al., 1993). Moreover, studies using tactile 

(Forster & Pavone, 2008) or auditory stimuli (Falkenstein et al., 1991) and oculomotor 

(Nieuwenhuis et al., 2001) or vocal responses (Masaki et al., 2001) elicited a MFN as 

well. Additionally, a sharp negative deflection does not only occur after erroneous 

responses, but also after partial errors: an incorrect muscular activation, which is not 

sufficient to produce an overt full error (Allain et al., 2004; Burle et al., 2002; 

Carbonnell & Falkenstein, 2006). Furthermore, the MFN also appears to be 

modulated by the force magnitude of a given response (peak force, PF) and the time 

between response onset and the peak of the produced force (time to peak, TTP; 

Armbrecht et al., 2012, 2013; Bruijn et al., 2003). 
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According to Armbrecht et al. (2013), the MFN showed a larger negative amplitude 

for either a higher target force or a shorter TTP. 

There are several theories addressing the previously reported MFN results. 

Thus, brief descriptions of four of the most relevant theories regarding the MFN are 

given in the following chapter to provide a better understanding of the ERP 

component chosen to investigate the GMA. 

 

Most relevant theories on the medial-frontal negativity 
 

One of the first theories which tried to explain the MFN was the Mismatch 

Theory (Bernstein et al., 1995; Falkenstein et al., 1991). In this theory the MFN 

amplitude is a result of a comparator system that evaluates differences between the 

intended response and the actual outcome (Gehring et al., 2012). 

Another influential theory was the reinforcement learning theory of the MFN 

(Holroyd & Coles, 2002). This theory postulated that the MFN is the result of an 

evaluation process as well, but, contrary to the Mismatch Theory, the evaluation 

process is here carried out on the subcortical level of the basal ganglia. According to 

the theory, the basal ganglia are producing an error signal (based on the so-called 

prediction error), which is transferred from the basal ganglia through the 

mesencephalic dopamine system to the anterior cingulate cortex (ACC). Eventually, 

the MFN amplitude is influenced by this signal of behavioural adjustment (Gehring et 

al., 2012; Holroyd & Coles, 2002). 

The response conflict theory, as a further important theory, is based on the 

assumption that the ACC is sensitive to response conflict (Botvinick et al., 2001; 

Carter et al., 1998; Yeung et al., 2004). This theory postulates, contrary to the 

theories described previously, that the process which elicits the MFN is not only 

about error detection but rather about the size of the response conflict (Gehring et al., 

2012). 

Lastly, the Force Unit Monitoring Model (Armbrecht et al., 2013) takes the 

force production parameters (PF and TTP) into account. Accordingly, in this model 

the shape of the MFN is correlated with the physical effort made by a brief button 

press. Depending on how much force production motor units and therefore muscle 

fibres are activated, the action monitoring system in the ACC must be more or less 

active. This seems to be reflected in the MFN (Armbrecht et al., 2013). 

Classical methods for ERP component quantification 



 

There are three scoring methods for the statistical analysis of ERP 

components which are usually used. All three component quantifications, namely the 

peak amplitude, the mean amplitude, and the peak latency (Clayson et al., 2013), 

have strengths and weaknesses (see chapter 2.6). Through both the peak amplitude 

and the mean amplitude measurement, ERP researchers can examine if there is a 

significant difference in the “brain response” for the conditions of interest (e.g. correct 

responses vs. erroneous responses). The peak latency identifies when the 

investigated component appeared in time, and if there is a significant temporal lag 

between different conditions (Clayson et al., 2013; Luck, 2014). 

The oldest method to quantify ERP amplitudes is the peak amplitude 

measurement (Luck, 2014). It is described as the most negative (or positive) point in 

a waveform within a specific time window. The peak amplitude is commonly 

determined within two steps. First, the researcher must specify the search window in 

which the location of the peak is assumed. Secondly, the peak within this search 

window must be defined. Hoormann et al. (1998) outlined that the search window 

should be wide enough to include all peaks of the chosen component, whereas it 

should exclude all neighboured peaks of the same polarity at the same time. For the 

determination of the peak amplitude, the maximum positive or negative voltage in the 

chosen search window is usually used. Luck (2014) describes this as the simple peak 

amplitude. He further distinguishes another peak amplitude measurement, the local 

peak amplitude. This amplitude measurement is defined as “the largest point in the 

measurement window that is surrounded on both sides by lower voltages” (Luck, 

2014). 

The mean amplitude is computed through averaging the voltage over a 

specific time window. The size for the time window can be determined by looking at 

the grand average waveform for the condition of interest (i.e. average of single- 

subject averages) or based on previous research (Clayson et al., 2013; Luck, 2014). 

The mean amplitude is not to be confused with the area amplitude. These two 

quantification methods are almost equivalent, but the area amplitude is not divided by 

the duration of the chosen time window as the mean amplitude. 

 

 

 

Thus, using the mean amplitude, researchers get microvolt (µV) as an easy 

interpretable unit instead of units that multiply amplitude and time (µV·ms; Clayson et 
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al., 2013; Kappenman & Luck, 2012). Keil et al. (2014) suggested using the 

terminology positive area or negative area (for positive or negative polarity), 

integrated area (subtracting the positive area from the negative area or vice versa), 

and geometric area (adding the positive area to the negative area, Figure 2). 

 
 

Figure 2. Illustration for the suggested terminology from Keil et al. (2014). In this example, the area is 

measured from 0 ms to 200 ms. The negative area corresponds to the dark grey dashed area. The 

integrated area is the light grey dashed area subtracted from the dark grey area. The geometric area 

is the light grey area added to the dark grey area. 

 

The peak latency is the time point of the measured simple peak amplitude or 

local peak amplitude and is one possibility of representing the timing of a component 

(Clayson et al., 2013; Luck, 2014). Another possibility is to assess the timing of a 

component through a fractional area latency. For this, the measured area has to be 

divided in a specific set of fractions, most frequently the time point “at which the area 

under the curve is divided into equal halves” (Clayson et al., 2013). 

  



The following section is focused on the peak amplitude, mean amplitude, and 

peak latency, because these are by far the most frequently used methods to quantify 

ERP components in ERP research (Clayson et al., 2013). Each of the introduced 

methods has its disadvantages, however, and some of the most important are briefly 

discussed. 

 

Weaknesses of the classical methods 
 

One of the most important points of criticism regarding the peak amplitude is that it is 

only a one-point measure of the ERP component. Therefore, the peak amplitude 

cannot be an appropriate representation of neural activity reflecting a sustained 

cognitive process (Luck, 2014; Woodman, 2010). Luck (2014) even goes so far as to 

say that “there is nothing special about the point at which the voltage reaches a local 

maximum” (p. 286). Moreover, the peak is at a different time-point for each 

participant in every single trial. This variability – the so-called latency jitter – results in 

smaller peak amplitudes for averaged waveforms, which is especially a problem if 

there is more latency jitter in one condition compared to the other conditions. Further, 

the peak amplitude is extremely sensitive to noise in the recorded EEG data (Luck, 

2012, 2014; Woodman, 2010). Noisier data results mostly in larger peak amplitudes, 

because the noise superimposes the true EEG signal (McGillem et al., 1985). 

Therefore, averaged waveforms with a lower trial number are noisier than averaged 

waveforms with a higher trial number. Hence, the peak amplitude is a biased 

measurement which should not be obtained if there are conditions with larger 

differences regarding noise. One possibility to compensate for this bias could be 

balancing the trial numbers for all relevant conditions. However, it proves to be 

almost impossible to get equal trial numbers for all relevant experimental conditions 

(e.g. oddball experiments; Luck, 2012; 2014). These disadvantages make the peak 

amplitude an invalid method to quantify ERP components, particularly in conditions 

with unbalanced trial numbers or a greater latency variability in one condition than 

another. Clayson et al. (2013) thus came to the conclusion that this quantification 

method “should rarely be used” (p. 185).  
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One main reason why it is still used, however, seems to be its economic use. As it 

is an easy and fast measurement, historically it proved to be the method of choice, 

especially when researchers only had slow or even no personal computers and 

needed “nothing but an x-y plotter, a ruler, and enough time” (Donchin & Heffley, 

1978). The point of criticism regarding the noise for the peak amplitude also applies 

to the peak latency. As described, it is the time-point of the measured peak 

amplitude. Thus, increased noise will also bias the peak latency measurement, 

because the true ERP peak is distorted (Clayson et al., 2013; Luck, 2014). The 

mean amplitude, however, is less sensitive to noise than the peak amplitude 

(Clayson et al., 2013) and more than just a point in time which defines the 

maximum voltage. Thus, the mean amplitude can capture more parts of an ERP 

component.  

Nevertheless, it can be influenced by the selected time window, especially 

when the latency varies across conditions. In such cases, the method might not 

capture the “true” amplitude (Clayson et al., 2013; Kappenman & Luck, 2012; Luck, 

2014). Consequently, the mean amplitude is the recommended method to quantify 

ERP components despite its restrictions (Luck, 2014). None of the scoring methods 

can capture the entire component in its size and shape. Almost all extractable 

information about the component’s shape, such as its rise and decline, cannot be 

analysed. These individual differences could reflect neuroanatomical variations or 

reflect differences in processing related to specific personality variables, behaviour, 

or other variables worth investigating (Kappenman & Luck, 2012; Luck, 2014). So 

far, variations in the sizes and shapes of ERP components have rarely been 

analysed systematically. There are some notable exceptions, however, for example 

Kiesel et al. (2008), who evaluated promising techniques to determine onset 

latencies (e.g. fractional area technique, jackknife- based approach). The authors 

stressed that they could only give rough recommendations, however, and that 

researchers always have to take the visual appearance of the ERP waveform into 

account. As such, this promising technique to estimate onset latencies has its 

limitations and does not provide information regarding the shape of the waveform.  

  



Other approaches include modelling ERP components as a joint model of 

behavioural and neuronal data, functional data analysis to identify meaningful 

variations in brain activity through fitting basis splines to EEG data (Thivierge, 

2007), and dynamic causal models to investigate underlying neuronal dynamics 

(David et al., 2006; Kiebel et al., 2006). There are also statistical methods to 

uncover hidden factors or sources of ERP data such as independent component 

analyses (ICA; Makeig et al., 1996) or correcting latency variability (i.e. residue 

iteration decomposition, RIDE; Ouyang et al., 2011). However, none of these 

approaches aim to model the entire shape of an ERP component.Mathematical 

modelling - that is, fitting mathematical models that describe the ERP components - 

might offer a solution to this problem. For example, Verleger and Wascher (1995) 

fitted an ex-Gauss function to individual ERP components (P3s) to investigate 

latency changes. By using the mean, the standard deviation, and the right skewness 

of the individually fitted ex-Gauss functions to their participant data, they were able 

to describe the characteristics of the P3 component. 

 

3 The Gamma Model Analysis 
 

In the following chapter, the GMA is introduced as an additional procedure for 

measuring ERP. In order to do so, firstly the gamma PDF will be explained. 

Secondly, the used grid restrained nelder-mead algorithm (Bűrmen et al., 2006) will 

be briefly described, followed by a more detailed explanation of how the GMA works, 

using both the Gamma PDF and the grid restrained nelder-mead algorithm. 

 

The gamma probability density function 
 

Around 1811, Adrien-Marie Legendre established the name “gamma function” 

and the associated symbol Γ. It is based on the generalisation of the factorial function 

to nonintegral values from Leonhard Euler (Bonnar, 2014). 

Γ(𝑥) = ∫ 𝑡𝑥−1 𝑒−𝑡𝑑𝑡
∞

0

 

 

x>0. 

(1) 

The gamma distribution with its PDF (see Equation 1) is used to model several 

processes statistically, for example the distribution of waiting times for customers or 

amounts of daily rainfall in a region (Krishnamoorthy, 2016). The following part is 

taken from Kummer et al. (2020). 
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The gamma PDF provides an excellent candidate to model ERP components, and it 

has already been applied to create simulated waveforms of single-trial lateralised 

readiness potentials (Stahl, Gibbons & Miller, 2010). A standard gamma PDF is 

given by: 

𝐹(𝑡) = {

0,

𝑎 (
𝑟𝑘

Γ(𝑘)
𝑡𝑘−1𝑒𝑥𝑝−𝑟𝑡) ,

    

 

t < 0 
 t ≥ 0. 

(2) 

 
with the rate parameter (r > 0), and shape parameter1 (k > 0) as functions of time (t > 

0). Additionally, the function is scaled by a scaling factor (a > 0). 

 
 

The gamma function is sufficiently flexible to fit waveforms with a rapid rise 

and a slow decline – a shape that is typical of most ERP components (Stahl, Gibbons 

& Miller, 2010). As subsequently demonstrated by fitting a gamma function to 

averaged ERP components, one obtains parameters that can be used as estimates 

of the ERP components’ shape. The GMA provides three types of parameters, basic 

parameters (shape parameter, rate parameter, scaling), time-dependent parameters 

(first inflection point, mode, second inflection point), and shape-dependent 

parameters (skewness, excess). The three basic parameters are essential for the 

model fitting process; that is, values of these parameters are estimated so that the 

gamma function models the observed waveforms as closely as possible (details will 

be given below). The other parameter types are derived from the basic parameters 

(the shape and rate parameter; see Equations 2 to 6). Hence, the essential 

information of two basic parameters is contained in the time- and shape- dependent 

parameters. The scaling parameter is a special case which is only required for the 

fitting process by adjusting the overall size of the gamma function to the ERP 

components’ shape. 

The time-dependent parameters describe the temporal course of the 

waveform through the first inflection point (IP), the mode, and the second IP, whereas 

the skewness and the excess reflect shape characteristics of a waveform more 

specifically. 

 
 

 

 

1The term ‘shape’ is used to refer to the shape of the function conceptually, but the term ‘shape parameter’ for 

the parameter k of a specific gamma function. 

  



The mode reflects the point in time of the maximum peak of a gamma 

waveform and is defined as 

rkMode 1−= , 

for all k ≥ 1. (3) 

The skewness (Q), a measure of the asymmetry of the distribution, is defined as 

kQ 2= . 

 (4) 

The excess (K), a measure of the tailedness of the distribution, is defined as 

kK 6= . 

 (5) 

The first and second IPs, the points of the distribution where the curvature changes 

its sign, when the convex (upward) aspect of the curve becomes concave 

(downward), or vice versa, are defined as 

rkkIP /)11( −−=  
for k > 
2. (6) 

 

Note that the time and shape dependent parameters cannot be interpreted 

independently as they are derived from the same basic parameters (k, r). Note that 

Equations 3 to 6 refer to the data point (s) and need a transformation to time (usually 

ms) in case the sampling rate is different from 1000 Hz. 
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Figure 3 illustrates how variations of the time- and shape parameters of the 

gamma distribution affect the shape of the distribution. As can be seen, a smaller 

shape parameter k results in waveforms with earlier mode and earlier IPs and a 

higher skewness and excess, which means more right-tailed waveforms with thicker 

tails (Figure 3 left panel). A smaller rate parameter r in turn results in waveforms with 

a later mode and later IPs and has no effect on the skewness or excess (Figure 3 

right panel). 

 
 
 

Figure 3. Gamma waveforms with varying shape parameter scores (left panel), and rate parameter 

scores (right panel), both with a fixed scaling and marked inflection points. 

 
 
 
 

The grid restrained nelder-mead algorithm 
 

The used grid restrained nelder-mead algorithm is derived from the original 

nelder-mead (NM) algorithm, which was published by Nelder and Mead (1965). The 

original NM algorithm is a direct search function (optimisation method), which tries to 

find a minimum of a scalar-valued nonlinear function with n real variables. To put it 

simply, the algorithm is looking for a set of variables where the value of a given 

function is the lowest through multiple iterations. 



In each iteration, the algorithm operates by generating a geometric simplex 

(polytope) with n + 1 vertices (Figure 4, indicated by the grey dots). Each vertex 

consists of a set of n different real variables. Accordingly, the NM algorithm would 

generate a 3-simplex with four vertices (triangular pyramid) for the Gamma PDF 

described above, because it includes three different parameters (rate, shape, 

scaling). 

 
 

 

Figure 4. Three different geometric simplices with different number of vertices. (A) 1-simplex with 2 

vertices - line segment (B) 2-simplex with 3 vertices - triangle (C) 3-simplex with 4 vertices - triangular 

pyramid. The grey dots mark the vertices. 

 

The NM algorithm processes the used function at each of the vertices for the 

given variables. After that, the results of the function are sorted from the worst 

(fewest desirable values) to the best (most desirable values). Then, the NM algorithm 

tries to replace the vertex with the worst result with new variables through a 

transformation based on five different patterns, namely reflection, expansion, outside 

contraction, inside contraction, and shrinkage (Figure 5). Reflection means that the 

worst vertex is mirrored through the centroid of the remaining vertices, expansion 

would expand the reflected vertex, and an outside contraction reduces it. If these 

three patterns do not show a better result than an inside contraction, reducing the 

initial worst vertex, would be executed. 
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A shrinkage, reducing the initial simplex towards the best vertex, would be 

made, if previous transformations failed. The newly created simplex after the 

transformation process is used as a starting point for the next evaluation of the 

vertices. 

 
 
 

Figure 5. Nelder-Mead simplex steps. A triangle with the vertex for the worst result W, which is either 

transformed through reflection (R), expansion (E), outside contraction (Co), inside contraction (Ci), or 

shrinkage (S). Adapted from Nelder-Mead User’s Manual by M. Baudin, 2010, Consortium Scilab – 

Digiteo, p. 47. 

 

According to Wright (1996), two criteria are typically used to terminate the NM 

algorithm: “either the function values at the vertices are close, or the simplex has 

become very small” (p. 196; for details see Lagarias et al., 1998). This means that 

either the algorithm cannot find any more relevant difference between the different 

evaluations of the given function or the overall evaluation for all simplices can be 

described as small enough. The NM algorithm only converges slowly and cannot 

always guarantee a global convergence (Lewis et al., 2000). Therefore, Bűrmen et al. 

(2006) published a convergent variant of the NM algorithm using the principles of grid 

restrainment. They restricted the examined parameters of the vertices to a specific 

grid, which can be improved by fulfilling specific conditions (for details see, Bűrmen et 

al., 2006). Thus, the grid restrained nelder-mead algorithm is used for the GMA, 

because it is more reliable than the original NM algorithm. The algorithm is 

customised to use the three basic gamma PDF parameters (shape parameter, rate 

parameter, scaling) as input for the GMA. 



The gamma model analysis 
 

Initially a Gamma PDF is fitted to an input waveform (see Equation 2) with the 

rate parameter r, shape parameter k and scaling factor a. Is the component of 

interest represented in the input waveform negative, the Gamma PDF must be 

inverted. 

As this is the first time to use GMA, there is no empirical evidence of 

reasonable starting parameters for the search algorithm. Consequently, the GMA 

starts with a broad range of starting parameters in a first pre-search to narrow down 

the search space. Up to 5,000 iterations were performed to derive appropriate 

starting parameters for the main search. Without the pre-search, the still unlimited 

parameter space would have been likely to have impacted negatively on our main 

search and to have resulted in a deadlock. To this end, uniformly distributed random 

values for the three parameters of the function for every iteration (rate parameter: 0 

to 500, shape parameter: 0 to 500, scaling: 0 to 500) are determined. Based on these 

randomly drawn values, a Gamma PDF with the same length of the input waveform 

in data points is calculated and compared with the input waveform by calculating the 

root mean square error (RMSE; Barnston, 1992). A new Gamma PDF with a specific 

RMSE for every iteration is obtained for every iteration. If an RMSE is smaller than 

the previous iteration, the GMA keeps the parameters of this specific function and 

discard the previous parameters. The pre-search procedure is repeated until no 

smaller RMSE is found. 

With the starting parameters from the pre-search, the finer main search 

determines the best-fitting Gamma PDF to the ERP waveform by using the adjusted 

grid-restrained nelder-mead algorithm (Bűrmen et al., 2006). These parameters were 

altered by the algorithm to find the smallest RMSE between the gamma waveform 

and the ERP waveform as described above. The parameters (basic, time-dependent, 

shape-dependent) of the Gamma PDF with the smallest RMSE are obtained. The 

obtained parameters are transformed from data points to ms. 

A sanity check is performed by estimating whether the mode parameter fell 

within a reasonable time window (the time window is customizable). Obtaining a 

mode parameter outside this time window would indicate that the GMA did not fit the 

input waveform correctly, and the fit would be marked as an unsuccessful mode 

match. Data with unsuccessful mode matches can be excluded from the analyses. 
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4 Study 1: Simulation Study 
 

Before fitting empirical data, a simulation study to evaluate the approach is 

conducted. The objective of the simulation study was to examine if it was possible to 

fit a Gamma PDF to simulated ERPs with varying noise levels. This made it possible 

to test whether the gamma model fitted the true ERP waveform and to ensure that it 

did not just fit the noise in the signal. Further it was examined whether a simulated 

effect, leading to differences in waveforms between two artificial conditions, would be 

reflected in the gamma model (GaM) parameters, providing support for the sensitivity 

of the approach to detect meaningful differences (which would be caused by 

differences in cognitive processes in real data). 

 
 
 

Method 
 

4.1.1 ERP Simulation 
 

To systematically evaluate the susceptibility of GMA to EEG noise, an ERP 

waveform with a negative sign was simulated to provide a ‘true’ waveform without 

noise. This artificial ERP component consisted of a gamma waveform covering -100 

ms before to 250 ms after the onset of the simulated event (Figure 6). To simulate an 

effect between two conditions, a first condition (A) is simulated, where n individual 

gamma waveforms with varying basic parameters (shape parameter: 20 ± 5; rate 

parameter: 0.2 ± 0.05; scaling parameter: 200 ± 50; sample size n = 100) are used; 

these variations reflected realistic varying averaged single-subject ERP components. 

The second condition (B) was simulated identically, but with larger shape parameters 

on average (25 ± 5) for every simulated participant. This resulted in simulated effects 

for every time-dependent and shape-dependent parameter. Overall, a variability of 

the GaM parameters of interest using this approach was obtained, and a known (i.e. 

‘true’) effect between two conditions, which should be identified by the subsequent 

GMA. 



The simulated EEG noise was created in a similar way to previous ERP 

simulation studies (Clayson et al., 2013; Gratton et al., 1989; Yeung et al., 2007). 

Fifty randomized sinusoids to simulate background EEG noise were summed. The 

sinusoids ranged in frequency from 0.1 to 125 Hz and had a fixed sampling rate of 

1000 Hz. The maximum amplitude of any single sinusoid was randomly varied within 

a range of maximum amplitude parameters (0.1 μV to 1 μV). In three runs, the range 

increased from 1 µV to 3 µV and further up to 6 µV to evaluate the effects of 

increased noise on the GMA. 

 
 
 

Figure 6. Main steps of the simulation procedure: (A) illustration of five phase-randomized noise 

sinusoids of various amplitudes and frequencies (note: 50 were used in the simulation) with a maximal 

amplitude range from 0.1 μV to 6 μV; (B) average of noise sinusoids; (C) the solid black line shows a 

simulated ‘true’ ERP waveform, the grey line shows the noisy ‘true’ ERP waveform (sum of true ERP 

and averaged noise waveform); (D) the solid black line shows simulated ‘true’ ERP waveform with 

noise, the grey line shows the resulting gamma waveform after the GMA. 

 

Simulation procedure 
 

The averaged ERP waveform of one simulated ‘individual’, with noise and 

without noise, was constructed as described above. This procedure was separately 

performed for 100 averaged ERP waveforms. In the next step, the range of maximum 

noise amplitude was increased. The range of maximum noise amplitude started with a 

lower boundary of 0.1 μV and an upper limit of 1 μV. The lower boundary was kept, 

and the upper limit was increased from 1 μV to 3 μV and 6 μV. 
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The amplitude of noise could vary randomly within the defined range. 

Consequently, three noise levels with 100 simulated individuals in two conditions were 

obtained, which resulted in 600 individual waveforms. 

4.2.1 Gamma model analysis 
 

The simulated averaged ERP waveforms from each simulated ‘individual’ for 

the GMA were used. The reasonable time window for the sanity check was defined 

from the simulated response onset to the end of the simulated event (0 ms to 250 ms). 

Everything else worked as described in Section 3.3. 

4.2.2 Data analysis 
 

Several dependent t-tests with the two simulated conditions (without noise) as 

the independent variable and the simulated GaM parameters as dependent variables 

to determine the ‘true’ effect were used. An estimation bias for all GaM parameters, 

which was defined as the difference between the ‘true’ GaM parameters of our 

simulated waveforms and the estimated GaM parameters from our GMA approach, 

was calculated. This was performed for all simulated waveforms, separately for the 

simulated conditions. Two-way analyses of variances (ANOVAs) were performed with 

the within-subject factors noise level (1 vs 3 vs 6 [µV]) and simulated condition (A vs 

B) for GaM parameters. Within-subject effects were analysed using Tukey’s HSD post 

hoc tests. 



Results 
 

4.3.1 Size of the ‘true’ effect 
 

Separate t-tests for each simulated GaM parameter with the simulated condition 

as the independent variable were performed. The t-tests revealed significant effects 

for all GaM parameters (all ps < .01; Table 1). 

 

Table 1. t-value and p-value for the time-dependent and the shape-dependent simulated 
gamma parameters (first IP, mode, second IP, skewness, excess; N=100). 

 t p r 

Time-dependent parameters    

First Inflection Point -8.56 <.01 .65 

Mode -8.00 <.01 .63 

Second Inflection Point 6.77 <.01 .56 

Shape-dependent Parameters    

Skewness 12.08 <.01 .77 

Excess 11.95 <.01 .77 

 

GMA successfully identified in the second condition the later first inflection point, 

the later mode and the later second inflection point compared to the first condition. 

Curves in the first condition were also more right-tailed and had thicker tails (for all 

means and standard deviations see Table A1, appendix). 
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4.3.2 Estimation bias and simulated conditions 
 

The estimation biases between the ‘true’ GaM parameters and the estimated 

GaM parameters for all three noise levels (Figure 7) show that the mean estimation 

biases were around zero, and more importantly, the means did not vary systematically 

with increasing noise level for any of the GaM parameters. 

 

 

Figure 7. (A) Estimation biases (i.e. ‘true’ parameter minus estimated parameter) in ms for the time- 

dependent gamma model parameters as box plots displayed separately for the three noise levels; the 

light grey boxes show the bias for the first IP, the black boxes show the bias for the mode and the dark 

grey boxes show the bias for the second IP; (B) calculated biases for the shape-dependent gamma 

model parameters as box plots displayed separately for the three noise levels; the light grey boxes show 

the bias for the excess and the black boxes show the bias for the skewness (Kummer et al., 2020). 

 

As expected, the standard deviations of the estimation biases increase linearly 

with increasing noise level for each GaM parameter (for all means and standard 

deviations see Table 2). 

 
Table 2. Mean, standard deviation (± SD) for the bias of the time-dependent and the shape- 
dependent gamma model parameters (first IP, mode, second IP, skewness, excess) for 
every noise level (N=600). 

Noise Level 1 3 6 

Estimation Bias    

First Inflection Point -0.02 ± 0.64 -0.13 ± 2.29 1.05 ± 8.80 

Mode -0.08 ± 0.80 -0.19 ± 3.57 0.49 ± 12.71 

Second Inflection Point -0.14 ± 1.36 -0.26 ± 5.95 -0.19 ± 18.24 

Skewness <0.01 ± <0.01 <0.01 ± 0.013 <0.01 ± 0.035 

Excess <0.01 ± <0.01 <0.01 ± 0.016 <0.01 ± 0.033 



The ANOVAs for each estimated GaM parameter with the within-subject factors’ 

simulated condition and noise level revealed no significant main effects for the noise 

level (all ps > .05). The analyses revealed significant effects for the simulated condition 

(with noise) for all GaM parameters (all ps < .05). The GMA identified again in the 

second condition a later first IP, a later mode and a later second IP point than in the 

first condition. Furthermore, curves in the first condition were more right-tailed and had 

thicker tails (for all means and standard deviations see Table A1, appendix). The 

interactions between the simulated condition and noise level revealed no significant 

effects (all ps > .05; for effect sizes and details, see Table A2, appendix). 

 
 
 

Discussion 
 

The main objectives of the simulation study were to examine the reliability and 

validity of the GMA. To this end, Study 1 tested whether the GMA was able to fit 

Gamma PDFs to simulated noisy ERPs and whether a simulated effect could be 

recovered despite the presence of noise. First, Figure 7 shows that the standard 

deviations of the estimation biases for the parameters increased linearly with the 

increasing noise level, indicating that the measurement was less reliable with more 

noise in the signal, which is to be expected. More importantly, however, the validity of 

the GMA was demonstrated because the mean estimation biases varied around zero 

for all three noise levels. This means there was no systematic over- or underestimation 

due to the presence of noise, thereby providing strong support for the GMA’s ability to 

recover the true shape of the curve even when noise levels increased. 

The GMA was also able to reliably identify the known (i.e. induced) effect 

between conditions, and the noise level showed no main effect on, or interaction with, 

the simulated conditions in any of the GaM parameters. Again, the presence of noise 

did not affect the estimation of the GaM parameters systematically, which may mitigate 

possible concerns that the GMA may just fit noise rather than ERP components. 

Having demonstrated the reliability/validity of the GMA in fitting simulated ERP 

waveforms, the goal of Study 2 was to evaluate whether the GMA was also able to fit 

empirical waveforms and to explore whether the GMA is related to behavioural 

variations. 
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5 Study 2: Flanker Task 
 

Study 2, as following, is taken from Kummer et al. (2020). For the second 

evaluation of the GMA, data from a large-scale study with a flanker task, which is a 

well-established paradigm for investigating error processing and variations in MFN 

(Bode & Stahl, 2014) was reanalysed. The objectives of this study were to examine 

whether the GMA was able to fit a Gamma PDF to the ERPs and to explore response- 

type effects (error vs correct) on the GaM parameters. 

 
 
 

Material and methods 
 

5.1.1 Participants 
 

A total of 121 participants originally took part in the study (109 of those were 

included in Bode and Stahl (2014), which required a specific number of trials for the 

applied analyses; for a detailed description see their Method). To be included in the 

analyses for the present paper, a participant’s data set had to contain at least six 

usable trials (after EEG artefact removal) for each condition. Two data sets were 

removed because they were marked as unsuccessful mode-peak matches by the GMA 

(for details see below), and a further six data sets had to be excluded as extreme 

outliers corresponding according to Tukey fences (1977). The final sample contained 

113 (65 female) participants; their age ranged from 19 to 49 (M = 25.80; SD = 6.55). 

The study was approved by the ethics committee of the German Psychological Society 

(DGPs), and the study was conducted according to the Declaration of Helsinki. 

5.1.2 Apparatus 
 

The custom-made response keys, which were used to assess the response time 

and the response force, were composed of a plastic cuboid (110 mm x 619 mm x 62 

mm) attached to a spring steel plate held by an adjustable metal clamp at one end. 

Individually adjusted boards were located on the left and right sides of the computer 

screen, on which the participants rested their forearms and palms while both fingertips 

of their index fingers rested on the open end of the cuboid. The location and posture 

of the participants were kept constant by using an adjustable chin rest (at a 56 cm 

distance from the monitor). 



The response force of the index finger was measured by strain gauges at the 

fixed end of the cuboids. The analogue signal was digitized at a sampling rate of 500 

Hertz. 

5.1.3 Procedure 
 

Participants performed a digit flanker task (Stahl, 2010). A typical trial sequence 

of the task is depicted in Figure 8 (left side). Specifically, in each trial, a row of three 

white digits was presented in the centre of a black screen for 67 ms, and the participant 

had to respond to the parity of the central digit (1 to 8). Two identical digits (1 to 8), 

which were different from the central digit, were shown as flankers, one on each side. 

These were either congruent or incongruent in relation to the parity of the central digit 

(e.g. ‘262’ or ‘474’). The assignment of response hand to parity decision was 

counterbalanced across participants. Depending on the response, one of the three 

feedback types was presented for 200 ms: ‘R’ (‘richtig’, German for ‘correct’) indicated 

a correct response; ‘H’ indicated a ‘hand error’ (incorrect response, hereafter simply 

referred to as ‘error’); and ‘Z’ (‘Zeit’, German for ‘time’) indicated slow responses. Slow 

responses (i.e. beyond the response time window: 90% of a participant’s average 

response time in a practice block) were excluded from the analyses. The feedback 

screen was followed by a 1500 ms black screen before the onset of the next trial. 

Overall, participants completed one practice block and 10 experimental blocks, each 

block comprising 40 trials (20 congruent and 20 incongruent in random order). For five 

blocks, participants were instructed to respond as fast as possible; for the other five, 

they were instructed to respond as accurately as possible. The order of speed and 

accuracy blocks was counterbalanced across participants. To maximize the number of 

trials per condition, the data from the speed and accuracy blocks for the current 

analysis was aggregated. 
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Figure 8. Time course of the paradigms of Study 2, (A) a digit flanker task and Study 3, (B) a force 

production task (for details see the method sections; Kummer et al., 2020). 

 

 
5.1.4 Behavioural data 

 

The median response time (RT) was defined as the median of the time interval 

between the onset of stimulus presentation and the first response force exceeding 50 

cN. Two response force parameters were extracted, the PF and TTP. The PF was 

defined as the peak amplitude of the force curve after response onset in each trial. The 

TTP was defined as the time interval between response onset and the time point at 

which the PF was reached. 

5.1.5 Electrophysiological data 
 

EEG Recording. The EEG was recorded with 61 Ag/AgCl electrodes (Fp1, Fp2, 

AF7, AF3, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, 

FC2, FC4, FC6, FT8, T7, C5, C3, C3’, C1, Cz, C2, C4, C4’, C6, T8, TP7, CP5, CP3, 

CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, 

PO4, PO8, O1, Oz and O2). The active Ag/AgCl electrodes (actiCAP, Brain Products) 

were referenced against the left mastoid and the ground was placed at AFz. Vertical 

and horizontal electrooculograms (EOGs) were recorded from electrode positions 

infraorbital to the left eye, and 2 cm lateral from the outer canthi. The EEG was 

continuously recorded at a sampling rate of 500 Hz using a BrainAmp DC (Brain 

Products) amplifier. An online band-pass filter (DC – 70 Hz) was employed for all 

channels. The components were derived from the FCz electrode position at the local 

maximum of the component. 



EEG pre-processing. The EEG was analysed offline with epochs ranging from - 

100 ms to 400 ms after response onset. A baseline period of 100 ms preceding the 

response onset was used. The effects of eye blinks were eliminated by using the ocular 

correction algorithm of Gratton et al. (1983). All data were screened for artefacts, and 

contaminated trials exceeding maximum/minimum amplitudes of ±150 μV were 

rejected. Current source density (CSD; Perrin et al., 1989) transformations were 

implemented to reduce overlap of simultaneous activity of contiguous electrodes (e.g. 

Gibbons et al., 2011; Vidal et al., 2000; Vidal et al., 2003). The order of the splines was 

4, the maximal degree of the Legendre polynomial was 10 and the λ regularization 

value was 1.0e-005. 

The GMA can be applied to ERP waveforms with and without a CSD 

transformation because ultimately the GMA fits waveforms without considering any 

kind of mathematical transformation, and both waveforms are well described by 

Gamma PDFs. In general, CSD transformation has the advantage that it produces 

reference site-independent and more sharply localized components than the classical 

scalp potentials. The CSD transformation also removes the volume-conducted activity 

from other regions (Luck, 2014; Tenke & Kayser, 2005). In the present study, a CSD 

transformed waveforms were used because these were also used in the original study 

of Bode and Stahl (2014). 

The data were segmented into epochs from -100 ms to 250 ms around the 

response onset and averaged for erroneous responses and correct responses. All 

amplitude measurements were determined from each participant’s averaged ERP 

waveforms separately for each response type. 

The response-locked MFN peak amplitude was determined as the most 

negative peak in a time window ranging from 0 to 150 ms after response onset. The 

response-locked MFN area was determined as the integrated area, the unrectified 

mean amplitude, in a time window ranging from 0 to 150 ms (Keil et al., 2014). The 

MFN latency was measured as 50% fractional area latency at the time point that 

divides the area into halves (Luck, 2014). 
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5.1.6 Gamma model analysis and statistical analyses 
 

The GMA was performed identically to Section 3.3. Outliers of the GMA were 

determined by Tukey fences with the normalized RMSE as an exclusion criterion to 

detect possible far outliers. Tukey fences for one-sided far outliers are defined as the 

sum of the median of the upper half of the data and the interquartile range multiplied 

by three (Tukey, 1977). Goodness-of-fit analyses were performed by comparing the 

estimated gamma waveforms with the observed ERP waveforms by RMSE and 

correlating the two waveforms across the entire time range for all conditions. A t-test 

for the individual correlation coefficients to examine the (in)dependence of the 

goodness-of-fit analyses from the experimental variation was also used. The main 

analyses considered pairwise correlations between the individual ERP parameters, the 

GaM parameters, and the behavioural data. The reported correlation coefficients are 

Pearson’s correlations (before averaging the correlation coefficients, a Fisher’s z 

transformation was applied). Several t-tests were performed regarding response type 

(error vs correct) for the classical ERP parameters and the GaM parameters. All 

statistical analyses were corrected for multiple comparisons using the Šidák correction 

(Šidák, 1967). 

 

Results 
 

5.2.1 Goodness-of-fit analysis 
 

The averages of the best-fitting gamma waveforms and empirical ERP 

waveforms at the FCz electrode site are depicted in Figure 9. The imperfect fits of the 

GMA to the tail end are discussed below. The individual correlations for erroneous 

responses ranged from r = .66 to r = .99 (mean r = .90 ± .41) and from r = .49 to r = 

.99 (mean r = .92 ± .49) for correct responses. The t-test showed no significant 

difference between the correlation coefficients for correct and erroneous responses, 

t(112) = 0.97, p = .34. The RMSE for erroneous responses ranged from RMSE = 0.012 

to RMSE = 0.276 (mean RMSE = 0.076 ± 0.056) and from RMSE = 0.007 to RMSE = 

0.106 (mean RMSE = 0.039 ± 0.020) for correct responses. The t-test showed a 

significant difference between the RMSEs for correct and erroneous responses, t(112) 

= 8.17, p < .05. 



 
 

 

 

Figure 9. Grand average CSD-ERP waveform at electrode site FCz and averaged gamma waveforms 

for erroneous and correct responses extracted from the model fit. Negative values are plotted upwards 

and time point zero represents the response onset (Kummer et al., 2020). 

 

 
5.2.2 Error rate 

 

On average, the participants responded erroneously in 16.09 ± 5.83% of the 

trials. 
 

5.2.3 Correlations with the behavioural data 
 

The correlation analyses between the classical ERP parameters, the GaM 

parameters and the behavioural data were used to identify possible covariations 

between the behavioural parameters (median RT, PF, TTP) and all ERP parameters. 

The classical ERP parameters and the GaM parameters were also correlated to detect 

possible associations. 

Classical analyses. There were no significant correlations between the classical 

ERP parameters and any of the behavioural data for correct responses (rs ranging 

from -.06 to .27, all ps > .0008; for details see Table A3, appendix). The PF showed a 

significant correlation with the latency (r = .35, p < .0008) for erroneous responses. 

Gamma model analysis. There were no significant correlations between the 

behavioural variables and the GaM parameters for correct responses (rs ranging from 

-.18 to .18, all ps > .008; for details see Table A3, appendix). However, for erroneous 

responses, the PF showed several significant correlations (rate: r = -.32; mode: r = .34; 

second IP: r = .34; skewness: r = .34; excess: r = .32; all ps < .0008). 
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Overall, this pattern of correlations indicates that a higher PF was associated 

with a later mode and a later second IP in erroneous responses. The waveforms of 

erroneous responses were also more skewed to the right and more leptokurtic, with a 

higher PF or higher TTP. 

5.2.4 Correlations between ERP parameters and GaM parameters 
 

Table 3 shows all significant correlation coefficients between the classical ERP 

parameters and the GaM parameters (all ps ≤ .001; for all correlation coefficients see 

Table A4, appendix). 

 

Table 3. Overview of all significant Pearson’s correlation coefficients for the gamma model 

parameters with classical ERP parameters, separately for response type (error vs correct; 

N = 113). Corrected for multiple comparisons through Šidák correction (all ps ≤ .001) 

  
Peak 

Error 

Area 

 
Latency 

 
Peak 

Correct 

Area 

 
Latency 

Shape parameter       

Rate parameter  -.41 -.43 .37 -.51 -.47 

Scaling -.74 .85  -.81 .91 .44 

Mode   .71   .59 

2nd IP   .54   .60 

Skewness   .35  .46 .47 

Excess   .34  .41 .44 

Note: For all correlation coefficients see Table A4, appendix. 

 
 

Overall, the pattern of correlations for both correct and erroneous responses 

indicated that a more negative peak amplitude and a larger area were both associated 

with a higher scaling and lower rate parameter of the GMA. A longer latency was also 

associated with a lower rate parameter, with later time-dependent GaM parameters 

(mode and second IP), and with more right-skewed thicker-tailed waveforms. 

A higher negative peak amplitude for correct responses was associated with a 

larger rate parameter. A larger area for correct responses was also associated with 

more right-skewed and thicker-tailed waveforms. 



These results confirmed the close and reasonable relationship between classical ERP 

parameters and GaM parameters. The ERP parameters are usually used to investigate 

cognitive functions (e.g. investigating group-average differences between errors and 

correct response in the MFN time window), and so in the next step, this approach was 

applied to both the ERP parameters and the GaM parameters and compared their 

ability to identify behavioural experimental effects. 

5.2.5 Event-related potentials 
 

Classical analysis. Separate t-tests for each parameter of the classical ERP 

analysis were performed. The peak analysis showed a significant effect of response 

type, t(112) = 4.08, p < .001, r = .36. Specifically, erroneous responses had a larger 

negative peak (-0.31 ± 0.17 µV/cm²) than correct responses (-0.26 ± 0.14 µV/cm). The 

analyses of the area (correct: 0.16 ± 0.11 µV/cm²; error: 0.15 ± 0.10 µV/cm²; p = .13) 

and latency (correct: 56.96 ± 6.98 ms; error: 56.46 ± 6.25 ms; p = .44) showed no 

significant effects for response type. 

Gamma model analysis. Several t-tests were conducted to examine the effect 

of the response type on each of the GaM parameters (Table 4). Figure 9 shows the 

gamma waveforms that were extracted from the model fit as a function of the response 

type. As can be seen in Table 4, erroneous responses had a larger shape parameter 

than correct responses. The erroneous responses also had a larger rate parameter. 

Finally, erroneous responses had smaller scaling parameters than correct responses. 
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*non-significant: p > .006 

 
For the time-dependent GaM parameters, the analyses showed significant 

effects for two parameters. Correct responses showed an earlier first IP and a later 

second IP compared to erroneous responses. There was no significant effect for the 

mode parameter. The analyses of the shape-dependent parameters showed 

significant effects for the skewness and excess parameters. As shown in Table 4, the 

skewness parameter was significantly larger for correct than for erroneous responses. 

The excess parameter was also significantly larger for correct than for erroneous 

responses. 

Table 4. Mean, standard deviation (± SD), t-value, p-value and r for the gamma model 
parameters (shape parameter, rate parameter, scaling, first IP, second IP, mode, skewness, 
excess), separately for each response type (correct vs errors; N = 113). Corrected for multiple 
comparisons through Šidák correction. 

Response Type M t p r 

Basic Parameters 
 Shape parameter 

Correct 19.09 ± 16.5 
-5.81 < .006 .53 

Error 28.87 ± 13.5 
 Rate parameter 

Correct 0.23 ± 0.18 
-6.02 < .006 .55 

Error 0.36 ± 0.22 
 Scaling 

Correct 1.28 ± 0.90 
3.59 < .006 .33 Error 1.63 ± 1.18 

Time-Dependent Parameters    
 First inflection point [ms] 

Correct 16.69 ± 21.0 
-4.09 < .006 .38 

Error 25.05 ± 13.0 
 Mode [ms] 

Correct 67.78 ± 30.0 
2.42 .02* .21 

Error 59.78 ± 24.1 
 Second inflection point [ms] 

Correct 125.15 ± 57.8 
4.22 < .006 .39 Error 97.10 ± 53.6 

Shape-Dependent Parameters 
 Skewness 

Correct 0.56 ± 0.19 
7.85 < .006 .71 

Error 0.41 ± 0.12 
 Excess 

Correct 0.52 ± 0.34 
7.37 < .006 .67 

Error 0.27 ± 0.22 



Overall, the findings indicate that the ERP waveforms of correct responses had 

an earlier first IP, a later second IP and were more skewed to the right, with thicker 

tails compared to erroneous responses. 

 
 
 

Discussion 
 

Study 2 aimed to examine whether the GMA would generally be able to fit the 

shape of an empirical MFN and whether the GaM parameters would reasonably 

capture variations between the different response types (errors and correct response). 

The goodness-of-fit analyses showed high correlations between gamma waveforms 

and the ERP waveforms (on average, they explained 81% of the variance; R² ranged 

from 44% to 98%). The imperfect fits for some data sets and the significant differences 

between the RSMEs for correct and erroneous responses might be due to a possible 

sign change occurring at the tail of the component (see Figure 9), which results from 

an error-related positivity following the MFN. The Gamma PDF is not able to fit a sign 

change, which makes the fit not perfect at the end of the time window for single data 

sets. Despite this limitation, however, the GMA seemed to fit the observed waveforms 

very well. 

Furthermore, the correlation analyses of the classical ERP parameters with the 

behavioural parameters showed only one significant relationship between the PF and 

the latency for erroneous responses. Interestingly, some time-dependent GaM 

parameters and the shape-dependent GaM parameters correlated significantly with 

behavioural parameters across participants; for example, errors with a higher PF had 

a later second IP and a later mode in the GaM parameters. Moreover, erroneous 

responses with a higher PF or a longer TTP showed stronger skewness to the right 

with thicker tails in the GaM parameters. Importantly, using the classical ERP 

parameters (peak amplitude, area, latency) only a relationship between PF and 

erroneous responses regarding the latency could be detected. 

The correlation analyses between the ERP parameters and the GaM 

parameters revealed several interesting correlations. First, a later latency was 

associated with a later mode, a later second IP and a more right-skewed and thicker- 

tailed waveform. Second, a higher negative peak amplitude and a larger area were 

associated with a larger scaling parameter. 
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On the one hand, this shows the expected strong relationship between the 

modelled and the original component; on the other hand, as regards the behavioural 

measures, it also suggests that the GMA might provide a supplementary set of easily 

interpretable parameters in addition to the classical methods. For future research, all 

parameters (classical and GMA) could potentially be aggregated to interpret the ERP’s 

shape. 

Using GMA, our main goal was to identify the sensitivity of the GaM parameters 

to the two investigated conditions. Response-type effects for two basic parameters, 

the time-dependent parameters and the shape-dependent parameters were found. 

Most importantly, the time-dependent parameters showed an earlier first IP and a later 

second IP in correct trials compared to error trials. The analyses of the shape- 

dependent parameters also showed that correct responses were more skewed to the 

right with thicker tails. These observations could not be made by using classical ERP 

parameters. Thus, our approach could indeed provide additional insights into the rise 

and decline of a component’s waveform in relation to the cognitive process of interest. 

Study 2 revealed some interesting correlations between behavioural 

parameters that were connected to force production (TTP, PF) and the GaM 

parameters. Thus, the observed associations with behavioural parameters such as 

TTP and PF were investigated in more detail by using the data of a force production 

task in the following section. 

 

6 Study 3: Force Production Task 
 

As some GaM parameters (e.g. skewness and excess) correlated with PF and 

TTP in Study 2, the data of a force production task in which participants produced a 

specific amount of force (low, high) with a short or long TTP was reanalysed 

(Armbrecht et al., 2013). The study investigated contradictory results for the MFN 

regarding the effects of force magnitude and errors in force production in previous 

research (Armbrecht et al., 2012; Bruijn et al., 2003). Armbrecht et al. (2013) developed 

a mathematical model based on the observation that the shape of the component 

varies with their experimental manipulations (e.g. a broader component in the longer 

TTP condition), which, however, could not be tested with the classical approaches. 



The data of their study could thus serve as an appropriate test the GMA as the 

grand average waveforms showed clear variations in the shape of the components 

across conditions. It would be a strong demonstration of the benefits of the GMA if it 

was possible to identify and to statistically test such variations with GMA (e.g. testing 

mathematical models such as the model of Armbrecht et al., 2013). For the sake of 

brevity, the investigation focused only on the component’s shape variations related to 

PF and TTP for errors. Additionally, because the scaling parameter has no informative 

value beyond the amplitude, and the interpretation of the basic parameters is less 

intuitive, only the time-dependent GaM parameters and the shape-dependent GaM 

parameters were analysed. 

 

Material and methods 
 

6.1.1 Participants 
 

Twenty-four healthy students participated and either received course credits for 

their participation or were paid (€ 7.5/h). Three participants were excluded due to a low 

number of trials (< 6 after artefact removal), two participants were excluded because 

they were marked as unsuccessful mode-peak matches and one participant was 

excluded because the data was marked as a far outlier by Tukey fences (Tukey, 1977). 

The final sample contained 18 (11 female) participants (age ranged from 19 to 33; M 

= 23.28; SD = 3.88). 
 

6.1.2 Procedure 
 

The study contained two sessions: a practice session without EEG and the main 

experiment with EEG recording the next day (for details see Armbrecht et al., 2013). 

The participants were instructed to produce fast, isometric force pulses, which should 

peak within a specific target-force range (high or low; see below). The specific target- 

force ranges were determined individually. To this end, a participant’s maximum 

voluntary force (MVF) was first determined (i.e. mean force of seven force key 

responses that were as strong as possible) for each hand separately. Based on the 

MVF, two target-force ranges were obtained. The target-force range for the low PF 

condition was 15‒25 % of the MVF; the target-force range for the high PF was 34‒56 

% of the MVF. 
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In addition to the PF (high or low), the TTP (short vs long) was used as an 

independent variable while participants were asked to produce force pulses falling in 

the low or high force range and into a short (113 to 188 ms) or long TTP (300 to 500 

ms) range. Crossing the two experimental factors (PF and TTP) resulted in four 

conditions: lowPF-shortTTP, lowPF-longTTP, highPF-shortTTP and highPF-longTTP. 

The conditions were presented block-wise. 

The experiment included a total of 16 blocks (30 trials each) with four blocks 

(two for each hand) per condition. The participants had to produce one of the four 

force-TTP conditions (the order of the conditions was fully balanced across the 

participants). The first five trials of each block served as practice trials and were 

excluded from the analyses. A trial (Figure 8B) started with the presentation of a row 

of three white crosses (+++) on a black background (duration: 300 ms) as the starting 

signal in the centre of the white frame. Visual feedback was shown 2000 ms after 

stimulus onset. The feedback (red frame and green frame, 600 ms) indicated whether 

the force pulse was or was not within the required PF and TTP ranges. The instructions 

accentuated emphasized the response speed and accuracy equally (for more details, 

see Armbrecht et al., 2013). 

6.1.3 Behavioural data, electrophysiological data 
 

The behavioural data (median RT, TTP, PF) and the EEG data were recorded 

and pre-processed in the same way as in Study 2. 

6.1.4 Gamma model analysis and statistical analysis 
 

The GMA was performed identically to that the previous studies. Tukey fences 

outlier control and goodness-of-fit analyses were performed (see Study 2). Two-way 

analyses of variance (ANOVAs) with the within-subject factors Force Type (low vs high) 

and TTP Type (short vs long) for the within-subject correlation coefficients were 

performed to examine their independence from experimental variation. Correlation 

analyses were performed to investigate the individual variation in the ERP parameters 

and GaM parameters. The reported correlation coefficients are Pearson’s correlations 

(correlations were Fisher’s z-standardized before averaging). All analyses were 

corrected for multiple comparisons (Šidák, 1967). 

Two-way ANOVAs were performed with the within-subject factors Force Type 

(low vs high) and TTP Type (short vs long) for the classical ERP parameters and GaM 

parameters. 



Results 
 

6.2.1 Goodness-of-fit analysis 
 

Table 5 shows the mean, standard deviation, and range for all correlations and 

RMSEs of the goodness-of-fit analyses of the ERP waveforms and gamma waveforms 

(Figure 10). 

 

Table 5. Mean, standard deviation (± SD) and range for Pearson’s correlation coefficients 
and root mean square errors for the goodness-of-fit analyses comparing the estimated 
gamma waveforms with the observed ERP waveforms for all conditions of Study 4 (lowPF- 
shortTTP, lowPF-longTTP, highPF-shortTTP, highPF-longTTP; N = 18) 

Pearson’s correlation Root mean square errors 
 

 mean range mean range 

lowPF-shortTTP .91 ± .12 .55 to .99 0.058 ± 0.068 0.020 to 0.113 

lowPF-longTTP .86 ± .11 .63 to .98 0.045 ± 0.055 0.020 to 0.095 

highPF-shortTTP .94 ± .12 .63 to .99 0.068 ± 0.077 0.014 to 0.144 

highPF-longTTP .89 ± .11 .62 to .98 0.045 ± 0.048 0.019 to 0.098 

 
The ANOVA for the individual correlation coefficients showed no significant 

effects for Force Type, F(1, 17) = 3.71, p = .07, TTP Type, F(1, 17) = 4.24, p = .06 or 

their interaction, F(1, 17) < 0.01, p = .99. There were no significant RMSE effects for 

Force Type, F(1,17) = 0.11, p = .75 and the Force Type-TTP Type interaction, F(1,17) 

= 0.19, p = .67. For the TTP Type a significant effect was found,  F(1,17) = 13.54, p < 

.01, meaning that larger RMSEs were found for responses with a short TTP than for 

responses with a long TTP. 
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Figure 10. Grand average CSD-ERP waveforms at electrode site FCz and average of the gamma 

waveforms extracted from the model as a function of response type. Negative values are plotted 

upwards, and time point zero represents the response onset (Kummer et al., 2020). 

 
 

6.2.2 Correlations between ERP parameters and GaM parameters 
 

All significant correlation coefficients between the MFN latency and the GaM 

parameters are shown in Table 6. No significant correlations between two classical 

ERP parameters (peak amplitude, area) and the GaM parameters (time-dependent or 

shape-dependent) were found for any of the four conditions (for all correlation 

coefficients see Table A5, appendix). 

Table 6. Overview of all significant correlation coefficients between the latency of the ERP 
component and the gamma model parameters of Study 4 (N = 18). Corrected for multiple 
comparisons through Šidák correction (all ps < .0006) 

GaM parameters Latency 

lowPF-shortTTP 

highPF-shortTTP 

 
lowPF-longTTP 

highPF-longTTP 

 
Mode .85 

 
1st IP .70 

Mode .70 

 
1st IP .76 

 
1st IP .83 

 

Note: For all correlation coefficients, see Table A5, appendix. 



This means that participants with an earlier Mode in the short-TTP condition 

showed a later latency. For the long-TTP condition, participants with a later latency 

showed a later first IP. A later first IP is also shown for participants with a later latency 

in the highPF-shortTTP condition. 

 

6.2.3 Event-related potentials 
 

In the next step, it is explored how well both methods – classical ERP analyses 

and GMA – could identify differences between experimental conditions (for means and 

SD for the classical parameters and the GaM parameters, see Table A6, and for all 

ANOVAs, see Table A7, appendix). 

Classical analyses – peak. The ANOVA for peak amplitude showed that high 

force responses had a higher negative peak than low force responses, F(1, 17) = 

31.74, p < .001, and a higher negative peak in the short TTP condition than in the long 

TTP condition, F(1, 17) = 26.33, p < .001. The two factors did not interact, F(1, 17) = 

2.85, p = .11. 

Classical analyses – area. The ANOVA of the component’s first area revealed 

that high force responses had a larger area than low force responses, F(1, 17) = 23.80, 

p < .001, and that the area in the short TTP condition was larger than that in the long 

TTP condition, F (1, 17) = 13.14, p = .002. The Force Type x TTP Type interaction 

showed no significant effect, F (1, 17) = 3.39, p = .08. 

Classical analyses – latency. The analysis of the MFN latency revealed no 

significant effects. 

Gamma model analysis – time-dependent GaM parameters. There were no 

significant effects for the first IP and the mode. Although there were also no significant 

effects of Force Type or the Force Type x TTP Type interaction on the second IP (see 

Table A7), the ANOVA for the TTP Type revealed a significant effect on the second IP, 

F (1, 17) = 7.12, p = .02. Responses in the long TTP conditions had a significantly later 

second IP than responses in the short TTP conditions. 
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Gamma model analysis – shape-dependent GaM parameters. The ANOVAs of 

skewness and excess revealed neither a significant effect of Force Type nor a Force 

Type x TTP Type interaction. The TTP Type showed a significant effect on skewness, 

F(1, 17) = 14.73, p = .001. Responses with a longer TTP were significantly more 

skewed to the right than responses with a shorter TTP. There was also a significant 

effect of TTP Type on excess, F(1, 17) = 13.57, p = .002. Specifically, responses with 

a longer TTP had significantly thicker tails than responses with a shorter TTP. In 

summary, the gamma waveform of responses with a longer TTP was more skewed to 

the right and had heavier tails. 

 

Discussion 
 

The reanalysis identified the same effects on the ERP components as 

Armbrecht et al. (2013) reported (i.e. higher peak/larger first area for high force 

condition than for low force condition; a higher peak/larger area for short TTP condition 

than for long TTP condition, with the largest area for high force and short TTP 

responses). Very good overall fits between the empirical and the gamma waveforms 

indicated that the GMA was again very successful in fitting the component’s shape. An 

effect of the TTP Type on the RMSEs was found, which might be due to a possible 

sign change occurring at the tail of the component for short TTP responses. 

The main goal of this analysis was to examine whether experimentally induced 

variations of Response Force and TTP were reliably reflected in systematic variations 

in the shape of the fitted gamma waveform. While the Response Force showed no 

effects on GaM parameters (time-dependent and shape-dependent), the TTP Type 

affected three GaM parameters. This means that the Response Force had an effect 

on the peak amplitude of the ERP waveform, but it did not affect the timing and the 

overall shape. GMA components for responses with a long TTP also showed later 

second IPs; these responses were also more right-tailed and thicker-tailed than 

responses with a short TTP. These findings can be interpreted as longer monitoring 

for prolonged responses (i.e. force pulses with a long TTP), but this possibility has to 

be explored in more detail in future research. 



Interestingly, as indicated by the non-significant correlation between two 

classical ERP parameters (peak amplitude, area) and the GaM parameters within the 

experimental conditions, these TTP Type relations with the GaM parameters appeared 

to be independent of any relations mirrored in these two classical ERP parameters. 

This suggests that the GaM parameters and the classical ERP parameters are not just 

two sides of the same coin; rather, the GMA seems to provide additional distinct 

information about the neural processes that are not captured by the ERP parameters. 

 

7 Study 4: Flanker Task – Sign Change 
 

As outlined previously, the gamma PDF is not able to fit a voltage-sign change, 

thus, the resulting fit of the GMA to the empirical ERP waveform is not perfect at the 

end of the time window. One might argue that the gamma PDF is therefore not the 

ideal function to fit ERP waveforms (Kummer et al., 2020). Since an ERP component 

can be defined as a “voltage change that reflects a specific neural or psychological 

process” (Kappenman & Luck, 2012, p. 2), this could reflect the beginning of a new 

component (most likely linked to a different cognitive process). 

According to this definition, a specific voltage change could be described as a 

polarity-change or the point where the curvature of the ERP waveform changes its 

sign. These points where the waveform changes from an increasing slope (going 

upward) to a decreasing slope (going downward) or vice versa can be measured 

through IPs. GMA, however, specifically aims to describe and determine the 

parameters of only one component. Therefore, GMA only has to fit the ERP waveform 

until one of these specific voltage changes. Accordingly, the GMA does not have to fit 

a voltage-sign change if the second IP is before this change of polarity. 

Subsequently, it was examined whether the second IPs are within the time- 

window of negative polarity and therefore before the voltage-sign change. Additionally, 

it was investigated whether the voltage-sign change has an influence on the resulting 

GaM parameters and the goodness-of-fit parameters from Studies 2 and 4 were 

compared. Thus, the sign-change should not affect the GaM parameters and the 

overall conclusion should be the same as in the previous study if the GMA only 

describes and models one component. 
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Therefore, the data from Study 2 was reanalysed, but with a flexible waveform 

length (see Material & Methods, section 4.1) at the end to avoid a voltage-sign change. 

 

Material and methods 
 

The participants, apparatus, procedure, and GMA are identical to Study 2. 
 

7.1.1 Electrophysiological data 
 

The EEG Recording and EEG pre-processing including the CSD transformation 

and segmentation are similar to Study 2. The flexible length for the ERP waveforms 

was attained through cropping each participant’s averaged ERP waveforms separately 

for each response type, if a voltage-sign change from negative to positive occurred 

after response onset. The voltage-sign change had to be at least 50 ms long before 

the ERP waveform changed again from positive to negative. If this was the case, the 

ERP waveform was cropped from -100 ms to the time point of the voltage-sign change 

from negative to positive. Figure 11 shows an example of cropping an individual 

averaged waveform. 

 

 

Figure 11. Two CSD-ERP waveforms at electrode site FCz as function of response type, (A) before 

cropping and (B) after cropping. Negative values are plotted upwards, and time point zero represents 

the response onset. 



7.1.2 Gamma model analysis and statistical analyses 
 

The GMA was performed identically to Section 3.3. The goodness-of-fit 

analyses were also identical to those of Study 2. For the polarity of the second IP, the 

current source density (µV/cm²) at corresponding IPs was measured. The frequency 

of a voltage-sign change was determined by measuring the point where ERP 

waveforms were cropped, as explained previously. Several t-tests were performed 

regarding response type (error vs correct) for the GaM parameters and regarding the 

goodness-of-fit parameters (Study 2 vs. Study 4). All statistical analyses were 

corrected for multiple comparisons using the Šidák correction (Šidák, 1967). 

 

Results 
 

7.2.1 Goodness-of-fit analysis 
 

The individual correlations for erroneous responses ranged from r = .63 to r = 

.99 (mean r = .95 ± .39) and from r = .49 to r = .99 (mean r = .95 ± .47) for correct 

responses. The t-test showed no significant difference between the correlation 

coefficients for correct and erroneous responses, t(112) = 1.94, p = .05. The RMSE for 

erroneous responses ranged from RMSE = 0.012 to RMSE = 0.126 (mean RMSE = 

0.036 ± 0.020) and from RMSE = 0.006 to RMSE = 0.117 (mean RMSE = 0.035 ± 

0.02) for correct responses. The t-test showed no significant difference between the 

RMSEs for correct and erroneous responses, t(112) = 0.60, p = .55. 

7.2.2 Polarity of the Second Inflection Point 
 

The voltage of the second IP for erroneous responses ranged from -0.002 

µV/cm² to -0.96 µV/cm² (mean: -0.22 ± 0.16 µV/cm²) and from -0.03 µV/cm² to -0.96 

µV/cm² (mean: -0.24 ± 0.15 µV/cm²) for correct responses. 

7.2.3 Event-Related Potentials 
 

Several t-tests were conducted to examine the effect of the response type on 

each of the GaM parameters (Table 7). Correct responses had a larger rate parameter, 

a smaller shape parameter, and smaller scaling as erroneous responses as can be 

seen in Table 7. The analyses showed significant effects for two time-dependent 

parameters. Erroneous responses showed a later first IP and an earlier second IP 

compared to correct responses. 
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There was no significant effect for the mode parameter. For the shape- 

dependent parameters, the analysis showed that correct responses had a larger 

skewness and excess parameter compared to the erroneous responses. 

*non-significant: p > .006 

 
The findings indicate that the ERP waveforms of erroneous responses had a 

later first IP, an earlier second IP, and were less skewed to the right, with thinner tails 

compared to correct responses. 

Table 7. Mean, standard deviation (± SD), t-value, p-value and r for the gamma model 
parameters (shape parameter, rate parameter, scaling, first IP, second IP, mode, skewness, 
excess), separately for each response type (correct vs errors; N = 113). Corrected for multiple 
comparisons through Šidák correction. 

Response Type M t p r 

Basic Parameters 

 Shape parameter 

Correct 20.86 ± 17.5 
-3.77 < .006 .34 

Error 27.20 ± 14.4 

 Rate parameter 

Correct 0.26 ± 0.24 
-3.65 < .006 .33 

Error 0.33 ± 0.18 

 Scaling 

Correct 1.32 ± 1.16 

3.09 < .006 .28 Error 1.61 ± 0.90 

Time-Dependent Parameters    
 First inflection point [ms] 

Correct 18.04 ± 21.6 
-2.91 < .006 .27 

Error 24.12 ± 13.2 

 Mode [ms] 

Correct 65.35 ± 27.6 
1.71 .09* .16 

Error 60.11 ± 24.0 

 Second inflection point [ms] 

Correct 117.92 ± 51.3 

3.21 < .006 .29 Error 98.85 ± 53.5 

Shape-Dependent Parameters 
 Skewness 

Correct 0.53 ± 0.18 
6.25 < .006 .51 

Error 0.42 ± 0.13 

 Excess 

Correct 0.47 ± 0.32 
5.92 < .006 .45 

Error 0.29 ± 0.22 



 

7.2.4 Comparing goodness-of-fit parameters 
 

Several t-tests were conducted to compare the goodness-of-fit parameters from 

Studies 2 and 4. The t-test revealed a significant difference between the correlation 

coefficients from Study 2 and Study 4 for correct responses, t(112) = 5.23, p < .001 

and erroneous responses, t(112) = 11.47, p < .001, with higher correlation coefficients 

for Study 4 (correct: .95 ± .47; error: .95 ± .39) compared to Study 2 (correct: .92 ± .49; 

error: .90 ± .41). 

Similarly, the t-test for the RMSEs exhibited a significant difference between 

Study 2 and Study 4 for correct responses, t(112) = 3.30, p = .001 and erroneous 

responses, t(112) = 8.50, p < .001, with smaller RMSEs for Study 4 (correct: 0.035 ± 

0.020; error: 0.036 ± 0.020) compared to Study 2 (correct: 0.039 ± 0.020; error: 0.076 

± 0.056). 
 
 
 

Discussion 
 

The goal of Study 4 was to examine whether the GMA only describes and 

models one ERP component or whether it is influenced through specific voltage 

changes which could be the beginning of a new component. Therefore, the study 

examined if all second IPs ranging within a time-window with negative polarity and if 

the voltage-sign change at the end of the empirical ERP waveforms influences the 

resulting GaM parameters. The data from Study 2 was reanalysed with a flexible 

waveform length, which were cropped at an appropriate voltage-sign change at the 

end of the waveform. 

The goodness-of-fit analyses still displayed high correlations between the 

gamma waveforms and ERP waveforms (on average, they explained 90% of the 

variance; R² ranged from 24% to 98%) and there was no significant difference between 

RMSEs for correct and erroneous responses. The GMA seemed to fit the observed 

waveforms very well. The significant differences between the RMSEs of correct and 

erroneous responses in Study 2 was not found in Study 4, which strengthens the 

argument that this difference in Study 2 occurred due to the sign change at the tail of 

the component. 
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Possible significant differences between the GaM parameters from Study 2 and 

Study 4 were not tested, because the flexible length of the empirical ERP waveforms 

lead to a different set of data for the GMA through the cropping procedure, which does 

not allow a comparison to be made between the two datasets. 

The analysis of the second IPs in Study 4 showed that they are all ranging within 

a negative polarity of the ERP waveform and are therefore before a voltage-sign 

change. Further analyses identified the same sensitivity of the GaM parameters for the 

two investigated conditions. For two basic parameters, the time-dependent parameters 

and the shape-dependent parameters, significant effects were found. Hence, the 

results of Studies 2 and 4 lead to the same conclusion. Therefore, the voltage-sign 

change does not influence the resulting parameters crucially and the GMA fits all 

relevant parts of the given empirical ERP waveforms before a specific voltage change 

occurs. 

Nevertheless, the calculated effect sizes r were higher in Study 2 and one might 

argue that Study 2 therefore showed better results using the uncropped ERP 

waveforms. However, since the GMA cannot model a voltage-sign change it performs 

an asymptotic approximation to the x-axis if the ERP waveform changes its polarity. 

This might have biased the model fit and led to an overestimation of the effect sizes in 

Study 2 through an unsatisfactory model. The significant better goodness-of-fit 

parameters in Study 4 support this impression that the size of the effect might not be 

the decisive parameter in this case. 

These results lead to the conclusion that, if possible, it seems preferable to use 

cropped ERP waveforms for the GMA in future research. 



8 Study 5: PDF Comparison 
 

The GMA was successfully applied in the previous studies, as demonstrated by 

the results of the simulation study and the high correlations between the estimated 

gamma waveform and the empirical ERP waveforms. It explained up to 98% of the 

components’ variance, independently of paradigm and behavioural manipulation. 

Nevertheless, there is the possibility that the application of other PDFs could show 

even better results regarding the goodness-of-fit analysis and consequently attain 

more precise shape-dependent and time-dependent parameters. Therefore, three 

additional PDFs (Weibull, Beta, Birnbaum-Saunders) were chosen to compare the 

respective goodness-of-fit parameters (RMSE, Pearson’s correlation coefficient) with 

the results of the Gamma PDF for Study 4. The additional PDFs were all implemented 

in the algorithm of the GMA instead of the Gamma PDF. 

 
 
 

Material and methods 
 

The apparatus, participants, procedure, behavioural data, and 

electrophysiological data are identical to Study 4. 

8.1.1 Model Analysis 
 

The model analysis was performed identically to the previous study, except the 

Gamma PDF was replaced with three different PDFs which are briefly introduced. 

 
Weibull PDF. The Weibull PDF is a commonly used distribution for survival 

analysis or failure data analysis and was chosen for this study because it has a similar 

shape compared to the Gamma PDF but is more platykurtic. This means it should show 

a better fit for distributions with thinner tails (Sagias & Karagiannidis, 2005; Weibull, 

1951). A standard Weibull PDF is given by: 

𝐹(𝑡) = {𝑎 (
𝛽

𝜂
   (
𝑡

𝜂
)
𝛽−1

𝑒𝑥𝑝
−(
𝑡
𝜂
)
𝛽

) 

 

t ≥ 0. 

(7) 

with the scale parameter (η > 0), and shape parameter (β > 0) as functions of time (t > 

0). Additionally, the function is scaled by a scaling factor (a > 0). 
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Beta PDF. The Beta PDF, also referred to as Pearson Type I distribution 

(Bagnoli & Bergstrom, 2005), was chosen because it is a well-known distribution and 

inter alia used in wavelet analysis (Kumar et al., 2012; Oliveira & Araújo, 2005). A 

standard Beta PDF is given by: 

 

𝐹(𝑡) = {𝜂 (
𝑡𝑎−1(1 − 𝑡)𝛽−1

B(𝑎, 𝛽)
) ,𝑤ℎ𝑒𝑟𝑒 B(r, k) =  

Γ(𝑎)Γ(𝛽)

Γ(𝑎 + 𝛽)
   

 

 

(8) 

with the shape parameter (𝑎 > 0), and shape parameter (β > 0) as functions of time (t 

> 0). Additionally, the function is scaled by a scaling factor (η > 0). 
 

Birnbaum-Saunders PDF. The Birnbaum-Saunders PDF, which has a close 

relationship to the normal distribution, was developed as a new two-parameter 

parametric distribution for fatigue studies in material science (Birnbaum & Saunders, 

1969). The Birnbaum-Saunders PDF was chosen because it is described as a “highly 

flexible lifetime model that admits different degrees of kurtosis and asymmetry” 

(Sanhueza et al., 2008, S. 646). Additionally, it is supported that this PDF should be 

used for distributions with moderate or large excess and skewness (Genç, 2013). The 

Birnbaum-Saunders PDF is given by: 

𝐹(𝑡) =
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(9) 

 

with the scale parameter (β > 0), and shape parameter (γ > 0) as functions of time (t > 

0). Additionally, the function is scaled by a scaling factor (α > 0). 



8.1.2 Statistical analysis 
 

Goodness-of-fit analyses were performed for all used PDFs (see Study 2). Two-way 

analyses of variance (ANOVAs) with the within-subject factors Response Type (error 

vs. correct) and PDF Type (Gamma vs. Beta vs. Weibull vs. Birnbaum-Saunders) for 

the within-subject RMSEs. Furthermore, correlation coefficients were performed to 

compare the goodness-of-fit for the different PDFs. The reported correlation 

coefficients are Pearson’s correlations (correlations including Fisher’s z-standardised 

before averaging). Within-subject effects were analysed using Tukey’s HSD post hoc 

tests. 

 
 
 

Results 
 

Table 8 shows the mean, standard deviation, and range for all correlations and 

RMSEs of the goodness-of-fit analyses of the ERP waveforms and the PDFs used 

(Figure 12). 

 
Figure 12. Grand average CSD-ERP waveform at electrode site FCz and averaged gamma waveforms 

for erroneous and correct responses extracted from the model fit. (A) Weibull PDF, Birnbaum-Saunders 

PDF, and ERP waveform for erroneous responses. (B) Beta PDF, Gamma PDF, and ERP waveform for 

erroneous responses. (C) Weibull PDF, Birnbaum-Saunders PDF, and ERP waveform for correct 

responses. (D) Beta PDF, Gamma PDF, and ERP waveform for correct responses. Negative values are 

plotted upwards and time point zero represents the response onset. 
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The ANOVA for Pearson’s correlations showed that erroneous responses (.94 ± .46) 

had a higher correlation coefficient than correct responses (.92 ± .52), F(1, 121) = 

12.65, p < .001. There was also a significant effect for PDF Type, F(1, 121) = 5.83, p 

< .001. Post-hoc tests indicated that the correlation coefficient for the Gamma PDF 

(.94 ± .47) was significantly higher compared to the Weibull PDF (.92 ± 50) and 

Birnbaum-Saunders PDF (.92 ± .56), while the test showed no significant differences 

between the Beta PDF (.93 ± .44) and the other three PDFs. The interaction between 

the Response Type and PDF Type also showed a significant effect, F(1, 121) = 7.031, 

p < .001. Post-hoc tests for correct responses revealed the Gamma PDF, Beta PDF, 

and Birnbaum-Saunders PDF had significantly higher correlation coefficients 

compared to the Weibull PDF. For the erroneous responses, the post-hoc tests showed 

that the Birnbaum-Saunders PDF had a significantly lower correlation coefficient than 

the Gamma PDF and the Weibull PDF. 

 

Table 8. Mean, standard deviation (± SD) and range for Pearson’s correlation coefficients 
and root mean square errors for the goodness-of-fit analyses comparing the estimated PDF 
waveforms (Gamma, Weibull, Beta, Birnbaum-Saunders) with the observed ERP waveforms 
for both Response Types (error vs correct; N = 18) 

 

Pearson’s correlation Root mean square errors 
 

 mean range mean range 

Erroneous Responses     

Gamma .95 ± .41 .51 to .99 0.037 ± 0.021 0.012 to 0.126 

Weibull .95 ± .48 .12 to .99 0.036 ± 0.020 0.011 to 0.115 

Beta .94 ± .41 .47 to .99 0.037 ± 0.019 0.011 to 0.124 

Birnbaum .92 ± .53 .25 to .99 0.041 ± 0.021 0.011 to 0.121 

Correct Responses 
    

Gamma .93 ± .52 .49 to .99 0.035 ± 0.018 0.006 to 0.084 

Weibull .89 ± .51 .08 to .99 0.042 ± 0.022 0.008 to 0.111 

Beta .92 ± .48 .10 to .99 0.039 ± 0.037 0.008 to 0.343 

Birnbaum .92 ± .58 .10 to .99 0.037 ± 0.019 0.007 to 0.114 

 
The ANOVA for RMSEs showed neither a significant effect for the Response 

Type, F(1, 121) = 0.160, p = .69, nor for the PDF Type, F(1, 121) = 1.48, p = .22. The 

interaction between Response Type and PDF Type revealed a significant effect,  F(1, 

121) = 3.50, p < .02. Post-hoc tests revealed that the Gamma PDF showed a smaller 

RMSE compared to the Weibull PDF for correct responses. 



Discussion 
 

Study 5 examined if a PDF other than the commonly used Gamma PDF could 

obtain a better fit to the empirical ERP waveforms by using the introduced model fit 

analysis. Three different PDFs (Weibull, Beta, Birnbaum-Saunders) were chosen and 

implemented in the previously used grid restrained nelder-mead algorithm to compare 

the respective goodness-of-fit parameters (RMSE, Pearson’s correlation coefficient). 

Finally, the resulting goodness-of-fit parameters were compared with the findings from 

Study 4. 

The goodness-of-fit analysis for the three implemented PDFs all displayed fairly 

good results. The statistical analysis showed no significant differences between the 

Gamma PDF and Beta PDF, for the RMSEs, nor for the correlation coefficients. 

However, for the RMSEs the analysis identified one significant difference 

between the Gamma PDF and the Weibull PDF for correct responses. For the 

correlation coefficients there were several significant differences. First, the Weibull 

PDF definitively obtained the lowest correlation coefficient for the correct responses 

compared to the other three PDFs. Second, the Birnbaum-Saunders showed the 

lowest correlation coefficient regarding erroneous responses compared to the three 

other PDFs. 

These results can be explained by looking at the properties of the PDFs and the 

empirical ERP waveforms. As shown in Study 2 and Study 4, the ERP waveforms for 

correct responses were more skewed to the right with thicker tails, which means they 

had higher skewness and excess parameters. Since the Weibull PDF is more 

platykurtic and therefore has thinner tails (Sagias & Karagiannidis, 2005), it had 

difficulties in achieving a good fit regarding the correct responses. On the other hand, 

the Birnbaum-Saunders PDF should be used for distributions with moderate to large 

excess and skewness (Genç, 2013). Thus, the Birnbaum-Saunders PDF attained good 

results regarding the right-skewed and thicker-tailed waveforms of the correct 

responses, but had trouble fitting the erroneous responses with smaller excess and 

skewness parameters. 

As a result, the Gamma PDF and Beta PDF showed the best results for the 

goodness-of-fit analysis and seemed to preferably handle the different skewness and 

tailedness of the empirical ERP waveforms in this study. Consequently, the Gamma 

PDF can be maintained for the introduced model analysis, because none of the three 

additional implemented PDFs showed better results. 
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Nevertheless, the results also suggest that model fit depends on the distribution 

of the empirical ERP waveform. This study included only the MFN and it could be that, 

for example, the Birnbaum-Saunders PDF might show a better model fit analysing the 

waveform of the P3 because of its properties. One line of future research could 

therefore be the investigation of different PDFs for different ERP components. 

 
 

9 General Discussion 
 

The goal of this thesis was to introduce the GMA as a new method to analyse 

ERP data. The reason for developing an additional scoring method was that the 

commonly applied scoring methods, namely peak, area, and latency measures, were 

unable to analyse the essential variations in size and shape across individual ERP 

waveforms, besides all their aforementioned weaknesses. Thus, significant information 

from ERP waveforms was frequently missed out. This information could indicate 

neuroanatomical variations or reflect differences in processing related to specific 

personality and behavioural variables, among others (Kappenman & Luck, 2012; Luck, 

2014). Supplementary to the classical scoring methods (peak, area, and latency), the 

GMA therefore enables the analysis of specific shape-related and different time-related 

information regarding an ERP component through statistical testing of changes in the 

resulting GaM parameters (Kummer et al., 2020). 

The GMA was evaluated in a simulation study (Study 1), in which the reliability 

and validity of the method was examined by applying the GMA to simulated noisy ERPs 

with an induced effect. The results showed that the GMA was able to identify this 

induced effect and that there was neither systematic overestimation nor a systematic 

underestimation due to the generated noise. 

Subsequently, data of a digit flanker task (Study 2) and from a force production 

task (Study 3) were reanalysed to investigate whether the GMA was an appropriate 

method to fit empirical data and if the GaM parameters were sensitive to experimentally 

induced variations. Regardless of the limitation that the gamma PDF is not able to 

perform a voltage-sign change, the GMA showed a very good model fit to the observed 

waveforms in Study 2 and Study 3. 



Additionally, the results of both studies indicate that the GMA provides an 

additional set of interpretable parameters with unique information about the neural 

process, like the rise and decline of a component’s waveform, which are not captured 

by the classical ERP parameters (Kummer et al., 2020). 

Thereafter, the data from Study 3 was used to investigate the inability of the 

Gamma PDF to model a voltage-sign change as a potential limitation (Study 4). The 

results signified that there is no crucial influence on the resulting GaM parameters 

through a voltage-sign change and that the GMA is able to fit all essential parts of the 

given empirical ERP waveforms. After showing that PDFs are able to fit empirical ERP 

waveforms successfully, Study 5 eventually examined if other PDFs revealed better 

results regarding the goodness-of-fit parameters compared to the chosen Gamma 

PDF. Three different PDFs (Weibull, Beta, Birnbaum-Saunders) were implemented in 

the algorithm previously used for the GMA instead of the Gamma PDF. In this study, 

the Gamma PDF and Beta PDF showed the best goodness-of-fit parameters, since 

the Gamma PDF and the Beta PDF seem to be substantially more flexible than the 

Weibull PDF and the Birnbaum-Saunders PDF regarding the shape of the examined 

ERP waveforms. 

 

Why use the gamma PDF? 
 

The Gamma PDF was used as a mathematical function, since it had been 

applied successfully to comparable EEG data in a previous study (Stahl, 2010). The 

typical characteristics of most ERP waveforms are a prompt rise and a slow decline, 

which is also a feature of the Gamma PDF. However, as mentioned previously the 

GMA is not able to fit the positive component following the MFN, as PDFs in general 

cannot model a voltage-sign change. This can be seen in the reduced fits at the tail 

end of the component due to an asymptotic approximation to the x-axis. This might 

raise the question of whether PDFs are the right functions to fit ERP waveforms. 

Indeed, it might arguably be better to model a voltage-sign change or rather the 

transition between the neural processes with more complex functions (e.g. 

polynomials). A major disadvantage of using polynomials, however, would be that an 

individual equation must be created for every single ERP waveform of interest. 

Furthermore, the polynomial had to be at least cubic, and correspondingly it would 

clearly be more complex to obtain shape-dependent parameters and time-dependent 

parameters, like the GMA does. 
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In case of the IPs, for example, the second derivate would have to be computed 

separately for every waveform. In contrast, PDFs are relatively simple functions, which 

can be computed much easier; as such, one PDF can be used for all ERP waveforms 

of interest. Additionally, the interpretation and calculation of the parameters in PDFs is 

straightforward and uncomplicated. The significantly better goodness-of-fit parameters 

even lead to the conclusion that it might be preferable to use cropped ERP waveforms 

for the GMA in future research. Ultimately, the goal of GMA is to analyse ERPs and 

not voltage-sign changes (Kummer et al., 2020). Along with the results from Study 5, 

which showed that no investigated PDF had better goodness-of-fit than the Gamma 

PDF, it can be summarised that the Gamma PDF should be kept for the introduced 

model analysis. 

 

Outlier analysis 
 

The number of dropouts (Study 2: n = 8 out of 121; Study 3: n = 3 out of 24) due 

to an inappropriate mode-peak match or the RMSE-based outlier test may be 

perceived as a disadvantage of GMA. On the one hand, the method might neglect 

important effects that would be reflected in the data when using the classical scoring 

methods, especially in studies with a small sample. On the other hand, if the GMA is 

not capable of fitting a component for an individual, this could suggest that the 

individual’s component has no clear shape. This might be due to high levels of noise 

or the absence of a solid, reproducible ERP component. Indeed, visual inspection of 

the ERPs in the studies with unsuccessful model fits supports the latter assumption 

(Figure 13). Therefore, rather than being a limitation of the method, unsuccessful 

model fits might help to identify ill-described individual components and could provide 

a reasonable basis for excluding participants who would otherwise add noise to the 

analyses. Unlike classical analyses, which would rely on visual inspection, GMA has 

the benefit of being a mathematical procedure, thus allowing for an objective and 

automated exclusion approach. Of course, future studies are required to investigate 

systematic variations in dropouts (e.g. with experimental conditions, or individual 

characteristics such as RT, personality scores, etc.). No indication of such systematic 

variation was found in the present studies. 



 

 
 

 
Figure 13. Examples of individual CSD-ERP waveforms at electrode site FCz for the RMSE outliers and 

the inappropriate mode-peak match for both studies. Negative values are plotted upwards and time point 

zero represents the response onset. The identified individuals did not show waveforms that could be 

described as the ERN/Ne in a meaningful way. 

 

Meaning of the gamma model parameters 
 

Information about the time course of the waveform is given by three time- 

dependent parameters: the first IP, the mode, and the second IP. Information about 

the shape of a waveform is given by the two shape parameters, skewness, and excess. 

9.3.1 Additional temporal information of the neural process. 
 

In Study 3 and Study 4, significant correlations between the three time- 

dependent parameters (first IP, mode, second IP) and the peak latency were found, 

showing that the temporal dynamics of a neural process are not independent. As 

demonstrated by the significant response type effect (erroneous vs. correct response) 

on the time-dependent GaM parameters in the first empirical study, however, these 

parameters revealed additional information about the ERP component which were not 

reflected by the peak latency. Specifically, correct responses had an earlier first IP and 

later second IP compared to erroneous responses. A similar effect was not present in 

the latency parameter, though. 
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By considering the time-dependent GaM parameters, it is possible to 

differentiate between temporal aspects of an ERP waveform. Moreover, the first IP and 

second IP also contained further information, respectively. The second IP, but not the 

first IP, was sensitive to TTP Type variations in the second study. In the long TTP 

condition, compared to the short TTP condition, a significantly later second IP was 

found. Assuming that a longer TTP requires longer action monitoring (Armbrecht et al., 

2013), a later second IP presumably reflects a longer duration of neuronal processing. 

Although no effect on the first IP was revealed, it is reasonable to assume that 

an effect could be found for some paradigms in which the onset of neural processes is 

expected to vary. This is due to more or less available information per time unit, or 

because of individual variations (e.g. the neural efficiency hypothesis of intelligence, 

Neubauer & Fink, 2009). Temporal predictions could be tested using the first IP as a 

measure. 

9.3.2 Additional shape information of the neural process. 
 

The two shape parameters — skewness and excess — are mathematically 

related terms (see Equations 3 and 4). A positive skewness means that the waveform 

is skewed to the right. The excess parameter relates to how heavy tailed an ERP 

waveform is. A positive excess means that the waveform has heavier and longer tails. 

Higher positive skewness and excess parameters thus indicate that the ERP waveform 

is more skewed to the right and has a longer right tail. Considering the two IPs with 

regard to skewness and excess, it is also possible to learn more about the component’s 

rise and decline (for the parameters’ relationships see Equations 5 and 6). This 

information might help, as described above, to test hypotheses about the variation of 

neuronal accumulation during action monitoring (e.g. Bode & Stahl, 2014) and how this 

might vary between experimental conditions. 



9.3.3 Interdependence of the GaM parameters 
 

It is important to bear in mind that, while different parameters shed light on 

separate features of the component (and therefore relate to different aspects of the 

cognitive process of interest), the interdependence of the GaM parameters also always 

require the findings to be interpreted more holistically. This is demonstrated in the 

following example: the fitted GMA waveforms in the long TTP condition compared to 

the short TTP condition (Study 3) showed no difference in the first IP, but they were 

more skewed to the right, had a later second IP and heavier tails. This means that the 

ERP for the longer TTP had a similar rise but a slower decline of neural activity. 

An interpretation of this may be that the two processes start similarly, but then 

a longer TTP requires longer and sustained ongoing neuronal processing than a 

shorter TTP (see Armbrecht et al., 2013). The full picture here does not emerge from 

the interpretation of single parameters but from their integration. 

 

Limitations of the approach and future research 
 

A possible limitation of the GMA is the number of parameters which the method 

produces. This could give the impression that GMA is just another way to search for 

significance in experimental data, also known as ‘p hacking’ (e.g. Head et al., 2015; 

Ioannidis, 2005) Nevertheless, different methods that produce several parameters can 

make the same impression. One crucial advantage of the GMA’s supply of data, 

though, is that researchers can make transparent and exact predictions in advance to 

test their models and theories (for example, testing Armbrecht et al.’s mathematical 

model of force unit monitoring; Armbrecht et al., 2013; Kummer et al., 2020). 

The GMA requires further exploratory studies to understand the reaction and 

significance of the GaM parameters to different experimental variations. For example, 

a later second IP and a more right-skewed waveform in Study 3 could indeed imply a 

longer action monitoring process. By contrast, a prolonged response in this task might 

lead to the activation of a different set of neurons than in a short response. Accordingly, 

the measured variation in the ERP waveform could also be attributed to the underlying 

cortical folding and not be a temporal aspect (Kappenman & Luck, 2012; Kropotov, 

2009; Luck, 2014). 



59  

Nonetheless, Bishop et al. (2007) wrote that they require methods to detect 

neurobiological abnormalities in auditory ERPs to research developmental language 

disorders. The GMA might thus be an additional method to discover relevant 

neurobiological differences in the auditory ERP waveforms, which the classical 

methods might neglect. 

Besides the possible neuroanatomical variations, the research field could 

benefit from GMA with regards to the detection of individual differences. Luck (2014) 

proposed the idea that variation in the ERP waveform could also reflect personality- 

related variations. For instance, the GMA might detect previously unknown shape- 

related or time-related differences in ERP waveforms regarding different personality 

traits (e.g. perfectionism, narcissism, neuroticism; Kummer et al., 2020). 

The GMA could also lead to new insights regarding the effect of behavioural 

variations on ERPs. For example, covert incorrect response, so-called partial errors, 

might not only influence the MFN amplitude but also lead to shape-related differences 

in the ERP waveform. This might help to gain further insights into the contradictory 

findings of decreased MFN amplitudes for partial errors compared to so-called full 

errors (Endrass et al., 2008; Masaki & Segalowitz, 2004), and same-sized MFN 

amplitudes for partial errors and full errors (Carbonnell & Falkenstein, 2006; Scheffers 

et al., 1996). 

Furthermore, the GMA might also be used as an approximation to measure the 

onset or offset latency of an ERP component; this might be more useful in the testing 

of various neurocognitive or affective theories than the usual method of measuring the 

process timing (the peak latency). As already pointed out, the peak latency is the time- 

point of the maximum amplitude and therefore not necessarily sensitive to an actual 

temporal shift, nor the starting time or ending time of an ERP component (Kiesel et al., 

2008; Luck, 2014). 

However, there are some promising techniques to evaluate the onset latencies 

of ERP components like the fractional area technique (Luck, 2014), the fractional peak 

latency (Luck, 2014), and the jackknife approach (Stahl & Gibbons, 2004; Ulrich & 

Miller, 2001). However, these methods also have their limitations, since researchers 

must still consider the visual appearance of the ERP waveform and have to handle 

rough recommendations on how to use these methods (Kiesel et al., 2008). 



The GMA might provide supplementary information about the time-course of an 

ERP component without being affected by these limitations, as it is possible to 

calculate the point in time where the modelled gamma waveform shows a substantial 

deviation from zero, both at the start and the ending. Future simulation studies using 

the GMA to measure the onset and offset latencies of ERP waveforms can provide 

further insights into whether the GMA is an appropriate technique in these cases. 

Finally, a further benefit of the GMA is that the method could be more directly 

integrated into mathematical modelling compared to the classical ERP analyses, since 

the method facilitates a mathematical description of ERP components (for a discussion 

on the benefit of mathematical models in neuroscience, see Ulrich, 2009). 

 

Conclusion 
 

GMA is a novel approach to the investigation of ERP components’ shape, here 

demonstrated for the MFN (and simulated data). The different GaM parameters were 

sensitive to various experimental manipulations across the empirical studies. 

Moreover, the GMA revealed several additional interrelated but non-redundant 

parameters compared to the classical methods (peak amplitude, area measurement), 

which were predictive of different aspects of behaviour, allowing for a more nuanced 

analysis of the cognitive processes. GMA provides an elegant method for extracting 

easily interpretable indices for the rise and decline of the components that complement 

the classical parameters. This can be beneficial in gaining a better understanding of 

the neural mechanisms that underlie cognitive processes. 
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11 Appendix 
 

Table A1. Study 1 - Mean and standard deviation (± SD) for the time-dependent and the 
shape-dependent gamma model parameters (first IP, mode, second IP, skewness, excess) 
for both simulated conditions and separately for simulated and estimated parameters and 

  noise level (N=100).  
Simulated Condition 1 2 

Simulated Parameters   

First Inflection Point 52.63 ± 40.02 99.30 ± 37.78 
Mode 97.89 ± 48.69 150.10 ± 44.95 
Second Inflection Point 145.50 ± 57.47 202.97 ± 52.41 
Skewness 0.45 ± 0.03 0.40 ± 0.02 
Excess 0.31 ± 0.05 0.24 ± 0.03 

 

Estimated Parameters 
Noise Level 1 

First Inflection Point 52.53 ± 40.12 99.36 ± 37.76 
Mode 97.81 ± 48.68 150.02 ± 44.86 
Second Inflection Point 145.44 ± 57.53 202.75 ± 52.25 
Skewness 0.45 ± 0.03 0.40 ± 0.02 
Excess 0.31 ± 0.05 0.24 ± 0.03 

Noise Level 3 
First Inflection Point 

 
52.89 ± 40.55 

 
99.30 ± 38.09 

Mode 97.96 ± 48.75 150.41 ± 46.03 
Second Inflection Point 145.35 ± 57.22 203.64 ± 54.52 
Skewness 0.45 ± 0.04 0.40 ± 0.03 
Excess 0.31 ± 0.05 0.24 ± 0.03 

Noise Level 6   

First Inflection Point 52.36 ± 40.26 97.48 ± 37.14 
Mode 97.99 ± 48.43 149.03 ± 46.59 
Second Inflection Point 146.05 ± 57.11 202.81 ± 57.34 
Skewness 0.46 ± 0.04 0.40 ± 0.05 
Excess 0.31 ± 0.05 0.25 ± 0.04 
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p 

Table A2. Study 1 - F-value and p-value for the time-dependent and the shape-dependent 
estimated gamma model parameters (first IP, mode, second IP, skewness, excess) 
separately for the noise level (1 vs. 3 vs. 6) and simulated condition (1 vs. 2; N=100). 

 

F p η 2 
 

Time-dependent parameters 
 

First Inflection Point 

 
 
 

 
 
Simulated Condition 71.46 <.01 .42 
Noise Level  2.60 .08 .03 

Noise Level by Simulated Condition 1.91 .15 .02 
 

Mode 
Simulated Condition 62.37 <.01 .39 
Noise Level 0.38 .68 <.01 
Noise Level by Simulated Condition 0.55 .58 .01 

 

Second Inflection Point  
Simulated Condition 55.05 <.01 .36 
Noise Level 0.07 .93 <.01 

Noise Level by Simulated Condition 0.25 .78 <.01 
 

Shape-dependent parameters 
 

Skewness  
Simulated Condition 119.83 <.01 .55 
Noise Level 2.21 .11 .02 

Noise Level by Simulated Condition 0.35 .70 <.01 
 

Excess 
Simulated Condition 126.98 <.01 .56 
Noise Level 1.35 .26 .01 
Noise Level by Simulated Condition 0.94 .39 .01 



Table A3. Study 2 - Pearson’s correlation coefficients, for the gamma model parameters 
(shape parameter, rate parameter, scaling, first IP, mode, second IP, skewness, excess) 
and classical ERP parameters (peak, area, latency) correlated with the reaction time (RT), 
time to peak (TTP) and the peak force (PF), separately for Response Type (error vs. 
correct; N=113). Corrected for multiple comparisons through Šidák correction. 

 

Error Correct 
 

median 
RT 

PF TTP median 
RT 

PF TTP 

GaM parameter      

Shape parameter -.01 -.28 -.13 -.09 -.17 -.11 

Rate parameter <.01 -.32* -.16 -.07 -.18 -.12 

Scaling .08 .20 .07 .04 .13 .12 

1st IP -.02 .03 -.08 -.17 <.01 -.04 

Mode -.08 .34* .17 -.07 .10 .12 

2nd IP -.08 .34* .20 <.01 .12 .16 

Skewness -.04 .34* .29* .12 .13 .17 

Excess -.05 .32* .30* .11 .11 .18 

Classical Parameters      

Peak -.23 .03 .11 -.02 -.06 .02 

Area .12 .11 <.01 .02 .15 .07 

Latency -.05 .36* .20 -.07 .27 .25 

*p < .0008      

 

 
Table A4. Study 2 - Pearson’s correlation coefficients, for the gamma model parameters 
(shape parameter, rate parameter, scaling, first IP, mode, second IP, skewness, excess) 
with classical ERP parameters (peak, area, latency), separately for Response Type (error 
vs. correct; N=113). Corrected for multiple comparisons through Šidák correction. 

  
Peak 

Error 

Area 

 
Latency 

 
Peak 

Correct 

Area Latency 

GaM parameter      

Shape parameter .01 -.37* -.27 .37* -.52* -.39* 

Rate parameter .02 -.41* -.43* .37* -.51* -.47* 

Scaling -.74* .85* .29 -.81* .91* .44* 

1st IP -.06 .02 .60* .20 -.24 .16 

Mode .04 .13 .71* <.01 .13 .59* 

2nd IP .07 .12 .54* -.09 .26 .60* 

Skewness .07 .23 .35* -.27 .46* .47* 

Excess .10 .14 .34* -.22 .41* .44* 

*p <.001      
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Table A5. Study 3 - Pearson’s correlation coefficients, for the gamma model parameters 
(shape parameter, rate parameter, scaling, first IP, mode, second IP, skewness, excess) 
with classical ERP parameters (peak, area, latency), separately for Force Type (low PF vs. 
high PF) and TTP Type (short TTP vs. long TTP; N=18). Corrected for multiple 

  comparisons through Šidák correction.  

 Peak Area Area Latency 

Low PF – Short TTP     

1st IP -.01 -.09 .28 .60 

Mode -.10 .20 -.56 .85* 

2nd IP -.07 .23 -.72 .59 

Skewness -.18 .36 -.75* .16 

Excess -.08 .26 -.74* .20 

Low PF – Long TTP     

1st IP .20 -.19 .01 .76* 

Mode .19 -.09 -.73* .30 

2nd IP .18 -.08 -.91* .21 

Skewness -.22 .38 -.74* .17 

Excess -.10 .26 -.77* .22 

High PF – Short TTP     

1st IP .22 -.23 -.19 .70* 

Mode .25 -.17 -.72 .70* 

2nd IP .20 -.11 -.71 .49 

Skewness -.05 .17 -.61 .17 

Excess .04 .06 -.59 .06 

High PF – Long TTP     

1st IP .40 -.54 -.21 .83* 

Mode .38 -.29 -.79* .17 

2nd IP .34 -.24 -.81* .06 

Skewness -.10 .30 -.68 -.23 

Excess -.07 .11 -.61 -.09 

*p<.0006 
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