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1. Abstract 

Background/Aims 

The aim of the study was to develop a biological and technological method to investigate in-vitro the 

physiology and pathophysiology biomechanical phenomena of a vascular wall. In particular, cellular 

contraction and relaxation as a biomechanical response to vasoactive substances and different 

mechanical stimulation intervals were studied to provide data for basic research and pharmacological 

developments in cardiovascular diseases such as arterial hypertension. 

Methods: 

Methodologically, the study is based on CellDrum technology, which is a method to determine cellular 

stress changes of a few kilo Pascal(kPa). Especially for this study, a new approach was developed to 

characterize the cell stresses of monolayers and multilayer tissue equivalents in a standardized way. 

A monolayer model consisting of human aortic smooth muscle cells (haSMC) was primarily developed 

for CellDrum as a vascular in-vitro cell culture model. Also, a model of human aortic endothelial cells 

(haEC) was established, and an approach for a 3D co-culture model of both cell types was developed. 

Vasoactive substances with different mechanisms of action and concentrations were tested to 

represent the physiological properties of the model. For the first time, the biomechanical influence of 

blood sera was analyzed on the CellDrum models to test the potential possibility of a laboratory 

screening procedure. 

The PulSElect system was developed, which exposes the CellDrum models to a defined, cyclical, 

mechanical stress by stretching, to simulate the symptoms of mechanically induced hypertension. The 

influence of the mechanical stress was observed by cytoskeletal alignment quantification, 

transcriptome analysis, gene expression of mechanosensitive as well as biomechanically relevant 

genes and biomechanical stress evaluation to elucidate cellular stiffening and cellular stress 

management. 

Results 

The haSMC cell models showed significant physiological and biomechanical changes in cell tone after 

application of the vasoactive substances, sera and conditioned media (~-6-10% relative to initial 

tension). 

Mechanical stimulation of the cells allowed quantification of both mechanical and transcriptomic 

changes as well as morphological adaptation. Furthermore, it was possible to present the obtained 

results in a time-dependent manner. Also, mechanical stimulation has been shown to induce the 

development of the contractile phenotype of haSMC and improve its cellular integrity, resulting in 

increased basal tension and overall contractility. 

As an extension of a well-established haSMC CellDrum model, an approach for direct co-cultivation of 

human aortic smooth muscle cells and endothelial cells was elaborated. 

Conclusion 

Different CellDrum models have been established to replicate biomechanical processes of the vascular 

system. The study showed that the CellDrum technology is a suitable method to analyze biomechanical 

stress changes caused by different stimuli using haSMC. The analysis of blood sera using CellDrums 

allows for possible future use as a screening method for pharmacological and medical laboratory 

research. 

Since the CellDrum technology is not limited to the use of monolayers, it is possible to think about an 

extension of cell models with additional cell types and cell layers. Although we have already been able 
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to show partial co-cultivation of smooth muscle cells and endothelial cells, further research is needed 

to establish this sufficiently. 

Increased expression levels of mechanosensitive genes have been shown to correlate with literature 

data on the pathogenesis of hypertension, using microarray analysis (Affymetrix) and qPCR. 

Nevertheless, it remains a speculative reflection of the cellular changes due to induced hypertension. 

The data and findings obtained to provide the promising potential supporting research and 

development of personalized medication, sports medicine, cell biology and stem cell research using 

CellDrum technology. 
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Hintergrund /Ziele: 

Das Ziel der Studie ist es, ein biologisches und technologisches Verfahren zu entwickeln, um in-vitro 

Physiologie und Pathophysiologie biomechanischer Phänomene einer vaskulären Gefäßwand zu 

untersuchen. Insbesondere wird die zelluläre Kontraktion und Relaxation als biomechanische Antwort 

auf vasoaktive Substanzen und verschiedener Intervalle mechanischer Stimulationen untersucht, um 

Daten für die Grundlagenforschung und pharmakologische Entwicklungen kardiovaskuläre 

Erkrankungen wie Bluthochdruck zu erhalten. 

Methoden: 

Methodisch basiert die Studie auf der CellDrum-Technologie, welche ein Verfahren ist, um zelluläre 

Spannungsänderungen von wenigen Kilopascal (kPa) zu erfassen. Speziell für diese Studie wurde ein 

neues Analyseverfaren entwickelt, um die Zellspannungen von Zellmonolayern und mehrschichtigen 

Gewebeäquivalenten standardisiert zu charakterisieren und zu analysieren. 

Ein Monolayer-Modell, bestehend aus glatten Muskelzellen der menschlichen Aorta (haSMC), wurde 

primär für CellDrum als vaskuläres in-vitro-Zellkulturmodell entwickelt. Außerdem wurde ein Modell 

aus humanen Aortenendothelzellen (haEC) etabliert und ein Ansatz für ein 3D-Co-Kulturmodell beider 

Zelltypen entwickelt. 

Um die physiologischen Eigenschaften des Modells darzustellen, wurden Substanzen mit 

unterschiedlichen Wirkmechanismen und Konzentrationen getestet. Erstmals wurde der 

biomechanische Einfluss von Blutseren an den CellDrum-Modellen untersucht, um die potentielle 

Verwendung der CellDrum, als eines labortechnischen Screeningsverfahrens zu testen. 

Das PulSElect-System wurde entwickelt, um die CellDrum-Modelle durch Dehnung einer definierten, 

zyklischen, mechanischen Belastung auszusetzen. Dies soll die Symptome einer mechanisch 

induzierten Hypertonie simulieren. Der Einfluss des mechanischen Stresses wurde mittels 

Quantifizierung der zytoskelettalen Ausrichtung, Transkriptomanalyse, Genexpression 

mechanosensitiver sowie biomechanisch relevanter Gene und biomechanischer Analyse ausgewertet, 

um die zelluläre Verfestigung und das zelluläre Stressmanagement zu verdeutlichen. 

Ergebnisse: 

Die haSMC Zellmodelle zeigen nach Zugabe der vasoaktiven Substanzen, Seren und konditionierten 

Medien signifikante physiologisch-biomechanische Änderung der Zellspannung(~-6-10% relativ zur 

mechanischen Grundspannung). 

Die mechanische Stimulation der Zellen ließ sich, sowohl mechanisch als auch durch Änderungen des 

Transkriptoms sowie anhand morphologischer Anpassung quantifizieren. Darüber hinaus war es 

möglich die gewonnenen Ergebnisse zeitabhängig zueinander darzustellen. Außerdem hat sich gezeigt, 

dass die mechanische Stimulation die Ausprägungen des kontraktilen Phänotyps der haSMC verstärkt 

und deren zelluläre Integrität verbessert, was zu einer Erhöhung der Basalspannung und der 

Gesamtkontraktilität geführt hat. 

Als Erweiterung eines etablierten haSMC CellDrum-Modells wurde ein Ansatz zu einer direkten Co-

Kultivierung von humanen glatten Aortenmuskelzellen und Endothelzellen ausgearbeitet. 

Zusammenfassung: 

Verschiedene CellDrum-Zellmodelle konnten etabliert werden, um biomechanische Prozesse des 

vaskulären Systems nachzubilden. Die Studie zeigt, dass die CellDrum Technologie eine geeignete 

Methode ist, um biomechanische Spannungsänderungen durch verschiedene Stimuli anhand von 

haSMC zu analysieren. Die Auswertung der Blutseren mittels CellDrums lässt über eine zukünftige 

Nutzung als Screeningverfahren für pharmakologische und labortechnische Forschung spekulieren. 
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Da die CellDrum nicht auf die Nutzung von Monolayern limitiert ist kann man über eine Erweiterung 

des Zellmodels, mit weiteren Zellentypen und Zelllagen, nachdenken. Obwohl wir bereits teilweise Co-

Kultivierung von glatten Muskelzellen und Endothelzellen zeigen konnten, bedarf es weiterer 

Forschungsarbeit, um diese ausreichend zu etablieren. 

Mittels Transkriptom-Analyse und qPCR konnten erhöhte Expressionslevel von mechanosensitiven 

Genen gezeigt werden, welche mit Literaturdaten der Pathogenese von Bluthochdruckerkrankungen 

korrelieren. Nichtsdestotrotz bleibt es stets spekulativ, die erhobenen Daten auf eine mechanisch 

induzierte Hypertonie zu projizieren. 

Die gewonnenen Daten und Erkenntnisse liefern vielversprechendes Potential, um die Forschung und 

Entwicklung personalisierter Medikation, Sportmedizin, zellbiologischer Forschung und 

Stammzellforschung mittels CellDrum Technologie zu unterstützen. 
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2. Introduction 

Hypertension describes the chronic and pathological increase of blood pressure, which is a major cause 

of premature death worldwide. According to estimations of the WHO, 1,13 billion people suffer from 

hypertension worldwide. 

Arterial hypertension is called a “silent killer”, as there are usually no recognizable symptoms, 

especially in the early stages of pathogenesis. In severe cases, hypertension can cause fatigue, nausea, 

vomiting, confusion, anxiety, chest pain and muscle tremors. Even though medical progress has been 

made, there is still a leak of knowledge to fully understand the mechanism of hypertension 

pathogenesis and early recognition of the diagnosis. 

Global epidemiological statistics from 2015 (WHO), visualize increased prevalence and grade of 

severity in low or middle income. Increased degree of seriousness in low and middle-income countries 

is still a development issue and is explainable by missing awareness, diagnostics and effective health 

care services. 

In total, only approximately 75% of affected people are aware of their diagnosis from which less than 

one of five patients suffering from hypertension have the problem under control. A fatal consequence 

of uncontrolled hypertension can be the development of a cardiovascular disease (CVD), which is 

globally the number one cause of death. According to the World Health Organization(WHO), 17,9 

million people, representing 31% of all global deaths, died from CVD in 2016[CVD – WHO 17.5.2017 / 

checked 22.07.2019]. CVDs sum up a group of vessel and heart disorders, leading to insufficient 

sustenance of organs, cardiac and brain tissue, consequently having fatal consequences like heart 

attacks and strokes. 

The increase of blood pressure is most commonly associated with the increase in vascular wall stiffness 

caused by increased cellular tone, vascular injury or mechanical cardiac overload. Vascular smooth 

muscle cell tone is the primary regulation factor of the blood pressure and can vary to regulate 

temporary or long-lasting blood pressure imbalances. The cellular structure can adapt to none 

physiological conditions, causing pathophysiological developments and cardiovascular diseases. 

Due to the steady increase of medical findings, the development of medications needs methods that 

permit a fast, precise and personalized evaluation system for the development and testing of 

hypertensive regulating agents. Additionally, new combinations of applied medication need to be 

determined for their appropriate personalized dosages and side effects. 

Due to modern medicine and nowadays pharmacology, a great variety of suitable medications and 

treatments are available to decrease blood pressure. The pharmacological adjustment for each patient 

takes a lot of effort and expenditure to find an appropriate remedy, dosage and or even multi-

medication. 

For drug development and validation, animal testing is an essential matter, as appropriate in-vitro 

models to avoid animal testing are currently non-existent. Current trends try to minimize the usage of 

animal testing. Therefore, new approaches are required to analyze biological and medical relevant 

characteristics, which display comparable physiological conditions. 

Generally, in-vitro models are not capable to re-give the complexity of a living organism, including 

metabolism and real-live tissue. Nevertheless, in-vitro models offer ideal conditions to isolate cellular 

or tissue mechanisms, as they are easy to standardize, reproducible and ethically reasonable. Cell 

culture technique and tissue engineering enable to model living samples, which can be used for a broad 

field of experiments. Even though such models neglect great parts of the metabolic system, the 

specimen usually allows an excellent derivation of the cellular physiology and metabolism. Being aware 
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of this, this reduction of complexity allows an even better understanding of single pathway 

mechanisms. 

As the general physiology and biochemistry of vasoconstriction and -dilation, as well as stiffening of 

blood vessels, is largely understood. The possibilities for mechanical evaluation of single cells and cell 

clusters are always limited since the challenge is usually to enable direct force transmission without a 

preferred mechanical direction. Also, many methods only allow for one-time measurements due to 

complex sample handling and a sample damaging measurement procedure. In means of the research 

and development of new and existing pharmacological agents, measurement methods that can 

evaluate the biomechanics of agent combinations and their time-dependent characteristics are highly 

interesting. 

On the physiological level, there are also still open questions, especially regarding the adaptation to 

extrinsic and intrinsic changes. Thus, changes are known at both the macroscopic and transcriptomic 

level, but cannot be measured. 

The working hypothesis of this thesis is to create a vascular model that can be used for 

mechanobiological and pharmacological research. Investigation of cellular adaptation caused by 

mechanical stimulation might be similar to mechanically induced hypertension. 

For this purpose, a CellDrum approach is presented, which allows the measurement of functional 

cellular force generation, taking into account the cellular arrangement and composition of the 

extracellular matrix (ECM) as well as the anchoring of the cells within the surrounding matrix. In 

contrast or even better, complementary to standard in-vitro technologies such as microelectrode 

arrays (MEA), patch-clamp and high-resolution imaging. This approach is intended to provide answers 

to the question of the extent to which cellular and biochemical mechanisms turn into cellular force 

generation. 

For mechanical stimulation, a system specially adapted to the CellDrum was developed, which exposes 

the samples to a defined cyclical mechanical stimulus. The combination of the PulSElect system and 

the CellDrum technology enabled a rhythmic specimen stretching due to pressure pulses. This cellular 

mechanical stimulation provides insights to track changes in cellular tone increase and mechanically 

induced stress management of the cells. 

The herein presented work describes the biological and technical development of a systematical 

approach to elucidate the cellular effects of vasoactive substances under varying mechanical 

conditions, from scratch to potential medical lab applications. 
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3. Working Hypothesis 

 

1. With the in-vitro preparation of human arterial smooth muscle cells, the biomechanical effects 

of vasoactive and pharmacological agents can be demonstrated physiologically and 

functionally. 

 

2. Development of an in-vitro hypertension model. Due to cyclic mechanical stimulation of 

human arterial smooth muscle cells, physiological and pathological cellular adaptions on 

morphological, genetic and biomechanical levels can be identified and correlated.  

 

3. The direct co-cultivation of arterial smooth muscle cells and endothelial cells allows an 

advanced mechanobiological investigation, including NO-mediated vasoactivity. 

 

4. An established vascular CellDrum model can be used for clinical or laboratory examination of 

patient material. 
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4. Background 

4.1. Vascular Wall 

The circulatory system describes the vasculature network across the body, transporting nutrients, 

oxygen, carbon dioxide, hormones and blood cells throughout the organism. 

There are two categories of blood vessels depending on the direction of the blood transport, whether 

from (veins) or towards the heart (arteries). Veins transport deoxygenated blood from the tissue back 

to the heart. The structure of the two types is basically the same, only the composition of the individual 

layers are adapted to the requirements of the respective area[1]. In comparison to arteria, venous 

vascular walls are most commonly thinner, especially the intima-media, as the internal pressure is 

usually lower[2]. 

Arteries transport oxygenated blood from the heart towards the tissue. In direct comparison to veins, 

arteria walls are more robust due to their thickness and elasticity, but also have improved contractile 

abilities. Great lumen vessels close to the heart have high flexibility to turn pulsatile blood flow into a 

laminar bloodstream. The so-called Windkessel-function stores the high energetic bloodstream pulses 

from the cardiac contraction to a vascular extension, which can release it in a laminar stream. 

Additionally, this effect decreases the mechanical load of the heart muscle by storing energy during 

the vascular expansion [3,4]. 

To have an evenly distributed blood flow and appropriate tissue supply throughout the organism, the 

vascular wall thickness and lumen cross-section differ from adapting the variations in blood flow, 

depending on the body region. These differences are classified in further subgroups, elastic, contractile 

and a mixed type artery. 

Having a closer look at the arterial vessel wall, they consist out of three layers, the tunica intima, media 

and adventitia, which are composed of endothelial cells, smooth muscle cells and connective 

tissue[Figure 1]. 

The inner layer is called Intima and consists of a single endothelial cell layer, which is located on an 

internal elastic membrane of collagen type IV. These two layers build a direct barrier to the lumen and 

bloodstream. Like in other hollow organs, the lumen is lined by a single layer of endothelial cells, which 

primary task is to enable oxygen diffusion and prevent blood from clotting[5]. Also, endothelial cells 

have blood flow sensory properties to regulate blood flow and play a major role in vascular wall healing 

and angiogenesis [6,7]. Besides, regulation of the lumen diameter due to permanent secretion of 

vasoactive substances[8], the endothelium also regulates the proliferation of vascular muscles by 

producing a heparin-like substance to prevent lumen rejuvenation through cellular over-proliferation 

[9,10]. 

The outer layer is called tunica adventitia, which consists mainly of connective tissue and provides 

vascular anchorage to adjacent tissue and protects the inner layers. This protective and shaping 

structure accounts for a large part of the mechanical stability of the vascular wall. Under healthy 

physiological conditions, it is not involved in blood pressure generation.[11]. However, in the 

pathological case, the strength of the connective tissue structures can be linked to the development 

of certain hypertensive diseases[12,13]. 

In between, the tunica intima is situated, which mainly consists of smooth muscle cells and connective 

tissue. This layer provides regulation and stabilization of the blood flow by cellular contraction or 

relaxation. The key player for this feature is the smooth muscle cell, which mechanisms will be 

discussed in more detail during the next chapters. 
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Figure 1 Schematic structure of an 
artery with the designation of the 
individual functional layers 
(Adventitia, Media & Intima) and 
the related connecting layers. 

 

 

The ratio of connective tissue and cell amount varies depending on the body region and blood flow 

condition. Hence, arteria close to the heart is usually classified as elastic arteries, having a large lumen 

diameter consisting of a comparable low cell density, which is even less aligned. In contrast, 

peripherical arteries situated at the limbs contain higher smooth muscle cell density with higher 

cellular alignment, offering better contraction abilities and greater variations of the vessel volume. 

These features keep muscular tissue oxygenated during physical stress and provides stabilization of 

the body's core temperature. 

4.2. Blood pressure regulation 

Blood pressure regulation is a crucial player in keeping body homeostasis. Material transport, tissue 

nutrition, pH and body core temperature are depending on permanent and sufficient blood circulation. 

The mean arterial blood pressure consists of the resulting cardiac output and the peripheral arterial 

flow resistance and can be temporarily adjusted. The arterial blood pressure is measured by 

pressoreceptors situated in the aortic arch and the carotid sinus. Sensed blood pressure deviations are 

transmitted to the cardiovascular center of the vegetative nervous system, which is located in the 

medulla oblongata and nearby areas. For bilateral blood pressure regulation, there are two vasomotor 

centers, the excitatory, to increase and the inhibitory, to decrease the blood pressure. An additional 

blood pressure regulator is the hypothalamic center, adjusting blood pressure to the overall vegetative 

status[14]. 

Moreove, blood pressure can be regulated locally due to mechanical stimuli[15], drop of CO2 or O2 

partial pressure [16,17] or changes in pH-value. Local, as well as global blood pressure regulation, 

causes the vascular system to modulate the inner lumen diameter to adapt to current conditions. 

The endothelium of the intima permanently secretes vasoactive substances that contribute to the 

homeostasis of blood flow. Thus, blood pressure is regulated by the endothelium mostly via secreted 

messengers such as endothelin-1 (ET1), angiotensin-2 (AT2) and endothelial nitric oxide (eNO). Since 

the vascular endothelium is in direct contact with the bloodstream, it can react to biochemical changes 

in the blood and also mechanosensory to changes in blood flow. Studies have shown that the 

regulatory mechanisms of the endothelial cells can be affected and amplified by mechanical stimuli, 

especially shear and stretch forces[18–21]. 

Vascular constriction and dilation are provided by the contractile properties of smooth muscle cells. 

With the help of the Actin-myosin apparatus, the smooth muscle cells can vary the vascular wall tone 

and lumen cross-section, by cellular shortening and/or elongation[22,23]. The contractile apparatus 
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consists of alpha and beta Actin as well as Myosin light chains (MLC) and Myosin heavy chains (MHC), 

which are netlike distributed throughout the cellular body. Dense bodies within the sarcolemma are 

used as the anchoring points for (intermediate) actin filaments [Figure 2]. Further intermediary 

filaments like desmin, vimentin and filamin transduce the generated force of the myosin filaments to 

the sarcolemma. The contracting of smooth muscle cells can be mediated in several ways, but all seem 

to work through trimeric G-protein receptors [24]. 

Like all other muscle cells, the contraction of smooth muscle cells is Ca2+ dependent. As soon as the 

intracellular Ca2+ level increases, especially for smooth muscle cells of great lumen vessels, additional 

Ca2+ is released via the IP3 receptor, which is initiated by the endo-plasmatic reticulum. In its resting 

phase, the head domain of Myosin is fixed to an actin filament, while the head domain of the heavy 

myosin chain and light myosin chain is angled 90°. The cross-bridge cycle (CBC) of smooth muscle cells 

(SMC) is the same as the CBC of straightened muscle cells. However, the initiation is not triggered by 

Troponin C. Instead, Ca2+ ions bind to Calmodulin, resulting in a Ca2+-Calmodulin Complex, which 

activates the Myosin Light Chain Kinase (MLCK). MLCK phosphorylates the MLC, leading to activation 

of Myosin ATPase, resulting in cleavage of the myosin head transforming ATP to ADP by releasing a 

phosphate, triggering the CBC. Due to the biochemical binding in the CBC, the actin-myosin apparatus 

mechanically moved forward by changing the myosin head angle from 90° to 45°, resulting in smooth 

muscle contraction. 

 

Figure 2 Schematic 
representation of the net-like 
distribution of dense bodies and 
intermediate filaments that cross 
the sarcoplasm. The contraction 
of the actin-myosin complex 
causes the dense bodies and 
intermediate filaments to shrink, 
resulting in cellular deformation 
and shortening[1]. 
 

 

 

The sensitivity of LCM phosphorylation is increased due to RhoGTP. A parallel signaling-pathway 

activates the Rho-kinase, which partially inhibits myosin phosphatase, consequently increasing the 

number of phosphorylated myosin cross bridges and force generation at any given Ca2+ 

concentration[25]. 

For cellular relaxation, the myosin needs to be removed from the actin, requiring another ATP 

molecule. The phosphorylation of ATP causes the myosin heads to reach back to the initial resting 

state. Additionally, intracellular Ca2+ needs to be decreased, which is promoted by cyclic Adenosine 

Monophosphate(cAMP) and cyclic Guanosine Monophosphate (cGMP)[26–28]. 
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Figure 3 Contraction and relaxation mechanism of a smooth muscle cell as a schematic overview. The left half of the picture 

describes the contraction by electrical tension (1), receptor (2) and strain (3) dependent Ca2+ channels as well as by receptor-

controlled (4) release of CA2+ ions from the sarcoplasmic reticulum (SR). Muscle relaxing mechanisms are shown in the right 

half of the figure. Decrease of the cytosolic CA2+ nucleotide by CA2+-ATPase(5,6)and 3Na+/Ca2+ exchange (7) as well as the 

effect of the cyclic nucleotide cAMP (8) and cGMP (9). Molecular contraction mechanism in the center of the image, CAM 

calmodulin, PLC phospholipase C, AC adenylyl cyclase, G G protein, IP3 inositol triphosphate, ANP atriopeptin, GC 

guanylylcyclase[1] (figure adapted).  

 

The Ca2+ exchange is mainly ensured by voltage-dependent Ca2+ ion channels, including the L-type and 

T-type Ca2+ channels. Both channels are primarily responsible for the membrane potential of the cell 

and are activated and opened by depolarization so that Ca2+ ions can reach into the cell compartment. 

The L-Type Ca2+ channels describe a group of ion channels with long-lasting activation time and are 

essential for the contraction of smooth muscles. T type Ca2+ channels, on the other hand, have a lower 

depolarization limit than the L type Ca2+ channels and have a shorter activation time. This fast 

activation behavior enables the cell to react to quick and rhythmically arriving action potentials. 

The group of strain-dependent Ca2+ ions reacts to mechanical stimuli and allows depolarization and 

influx of Ca2+ by mechanical stretching of the cell membrane[26,29–31]. 

Another group of Ca2+ ion channels is the stored operated channels, which open after the intracellular 

Ca2+ stores of the cell are depleted and to refill the cellular Ca2+ storage. The exact physiological 

function and meaning of these channels are not yet clear at this stage. Furthermore, other ion channels 

can be summarized, which have a physiological and pathophysiological influence on intracellular Ca2+ 

levels and regulate the myogenic tone. These group of channels include, voltage-controlled K+ 

channels, Ca2+-activated K+ channels with high conductivity, ATP-sensitive K+ channels, ryanodine 

receptors, inositol 1,4,5-trisphosphate receptors (IP3Rs), and a multitude of channels of transient 

receptor[31,32]. 
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4.3. Hypertension 

A continuous pathological increase in arterial blood pressure is called arterial hypertension. The 

subjective perception of increased blood pressure varies from imperceptible to severe impairment. 

Therefore, hypertension is classified according to various ranges of blood pressure. As soon as the 

general blood pressure at rest overcomes 140-159mmHg and or systolic 90-99mmHg diastolic blood 

pressure, a person is diagnosed with hypertension. 

Table 1 High Hypertension categorization according to the level of blood pressure [1] 

Classification Systolic mmHg Diastolic mmHg 

Optimum <120 <80 

Normal 120-129 80-84 

High-Normal 130-139 85-84 

Mild Hypertension (1.) 140-159 90-99 

Moderate Hypertension (2.) 160-179 100-109 

Severe Hypertension (3.) >= 180 >= 110 

Isolated systolic hypertension >=140 <90 

 

Hypertension can be divided into two subgroups, primary (or essential) and secondary hypertension, 

whereas the pathogenesis of primary hypertension cannot be defined in 90-95% of all cases. Secondary 

hypertension is caused by another primary disease like renal, cardiac and nervous dysfunction, or 

endocrine imbalance. Both instances can be pathologically subdivided to increase peripheral 

resistance and increased heart time volume, leading to increased systolic blood pressure, as the 

diastolic pressure stays normal. Due to the increased load on the peripheral system, structural changes 

and adaptations of the vascular tissue can occur, which can manifest themselves in the compression 

of the connective tissue and ECM as well as cellular stiffening. In most cases, hypertension is often a 

hybrid of described subgroups. 

The pathogenesis of primary hypertension is mostly unknown, but various factors were identified, 

inducing hypertensive pathogenesis. 

Genetic deposits could be a decisive factor in the development of hypertension [33]. The most 

common are polygenic mutations that are responsible for a pathological increase in blood pressure 

due to malfunctioning of the genomic material, which has been demonstrated in various twin studies. 

In contrast, Liddle Syndrome is a rare example of monogenetic defects, which mutates the tubulin 

sodium channel of the distal kidney epithelia, increasing the resorption of water and hypertonic 

saline[34,35]. 

Psychosocial factors, in which acute racket and stress might amplify the activation of sympathoadrenal 

systems, causing increased vascular contraction through neurotransmitters. In addition, excessive 

sodium intake, obesity and regular alcohol consumption promote pathogenetic development. The 

coherence of excessive NaCl intake and hypertension was proved by only a partial group of global 

hypertension patients. It is assumed that the high consumption of NaCl increases cytosolic Na+, which 

deranges the Na+/ Ca2+ exchange, resulting in an increased intracellular Ca2+ level and a steady 

increased cellular tone[36]. 

Moreover, a disbalance of the body´s natural vasoactive substances like eNO, ET1, AT2[37–39] or 

imbalanced of the endocrine system affect the blood regulation significantly [Figure 4]. Patients with 

diagnosed hypertension showing an increased level of catecholamines and norepinephrine in the 

blood sera, leading to increased vascular tone[40,41]. In the case of pregnancy hypertension, elevated 

ET1 levels were often found in the blood of affected women. 
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To understand the multiple pathogenesis and their connections to the genomic level, multidirectional 

pathways can be described using big data analysis and so-called signature genes can be identified, 

which may be responsible for the development of hypertension[42–44]. 

 

Figure 4 Overview and progress of different causes of high blood pressure[1] (figure adapted) 

 

The development and problems of high blood pressure can also be traced back to changes in the 

vascular cells. Many of the already mentioned causes lead to uncontrolled cell proliferation or 

calcification at the macroscopic level, which in turn leads to narrowing of the vascular lumen[45]. As 

the number of cells increases, the elasticity of the vessel wall is also impaired. 

Genetic defects, mechanical overload and increased cell mass, can lead to severe changes in the 

connective tissue of the vessel wall[12,46]. In particular, the additional production and uncontrolled 

restructuring of the extracellular matrix can lead to reduced elasticity, strength or defective structures 

such as fibrosis[47]. 

Likewise, long-term biochemical and biomechanical changes cause adjustments of the ion channels 

and receptors located in the cell membrane[48,49]. Such adaptations may shift the resting or 

activation potential, making the cell more difficult to depolarize, or in the opposite, keep the cell 

depolarized all the time [50]. 

Till now, there is no pharmaceutical cure for hypertension. Only a timely adjustment of blood pressure 

during the pharmacological treatment can be achieved. In severe cases, surgical interventions can 

diminish hypertension long-dated. There are various drugs to relieve the symptoms of high blood 

pressure, but due to the multiple sources of hypertension, patients are usually medicated by several 

compounds at once. The most common anti-hypertensive regulating agents are ACE-inhibitors, AT1-

antagonists, Potassium inhibitor, beta-antagonists and thiazides. Aside from their desired effects, the 

drug administration goes along with side effects, prolonging the pharmaceutic adjustment and 

additional ailments. 
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4.4. Mechanical Cellular Stimulation 

Mammalian cells need mechanical tension to survive. The mechanical, environmental conditions 

determine the orientation, growth behavior, force development and essential functions of the cells. 

Cells in the human body are permanently exposed to mechanical stress caused by movement, 

digestion, respiration and in the vascular system by the pulsatile ejection of the heart. 

Since the mechanical stimulus of the cell plays such a crucial role in tissue development[51] and also 

in regenerative behavior [52], a wide variety of methods for mechanical cell stimulation have been 

developed over the last decades[53–55]. 

Mechanical stimulation at the cellular level can be subdivided according to physiological stimuli so that 

methodologies can be found in the literature that exposes cells to compression, shear stress and 

mechanical strain. Besides, the stimulation protocols differ in static and dynamic mechanical load. 

Static stimuli describe a one-time change in the stress situation to which the cells are exposed. Thus, 

some studies observe the growth behavior of cells on growth surfaces with varying degrees of solidity. 

Especially in stem cell research, these protocols gain great attention since the maturation of 

cardiomyocytes, in particular, is strongly influenced by the growth condition mechanics[56,57]. 

For the field of vascular research, cyclically dynamic mechanical stimulation methods of shear stresses 

and strain stresses are of particular interest. Thereby, cells are exposed to different, rhythmic and 

recurrent stimuli. The rheology of blood vessels has an essential effect on the cellular characteristics 

of the vascular endothelium. Thus, it has already been possible to show the correlation of mechanical 

stress and metabolites/messenger secretion[6]. 

Due to the permanent cyclical blood ejection of the heart, the cells of the vascular system experience 

mechanical stimulation throughout the organism. To understand the cellular response to this 

mechanical stimulation and also changes, methods for cellular stretching are of particular interest. 

To date, studies have shown that cyclical mechanical stimulation of vascular smooth muscle cells has 

a fundamental influence on their phenotype[58][59], biomechanics, cell connection, signaling[60][61] 

and restructuring of both intra- and extra-cellular structures[18,62,63]. All these findings serve for a 

detailed physiological understanding to better understand pathological developments and 

regenerative medicine in medical applications as well as biological and biomechanical research[19,64]. 

4.5. Biomechanics 

Biomechanics is an interdisciplinary discipline that applies the laws of mechanics and material sciences 

to biological organisms, biomaterials and tissue. The resulting data are used in research and medicine 

to explain mechanobiological phenomena based on experimental and mathematical models. 

Over the last decades, mechanical tissue properties have been studied in detail and their fields of 

application are as diverse as the methods used to determine them[46]. Thus, classical mechanical 

material parameters serve the necessary physiological characterization and the definition of material 

requirements for medical and tissue-engineered implants[65,66]. Due to the experimental research 

work by G.A.Holzapfel mechanical properties of vessels could be measured by dissections and tissue 

equivalents. This enables to determine both, the tensile strength and the deformation properties of 

biological material consisting of ECM and cells[67,68]. 

In extension, pathological or aging-related findings can also be correlated with biomechanical models, 

which can be reconstructed and improve fundamental understanding and prognosis[69,70]. 

In classical physiology, biomechanics is mostly applied to the study of movement and tissue 

consolidation or contraction and relaxation. At the beginning of the last century, the contractile force 
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of an isolated and perfused heart could be measured using the so-called Langendorff heart, which is 

still used in physiology today, especially for pharmacological investigations[71]. 

The measurement of force variations due to muscle shortening can be projected onto all other 

muscular structures, including vascular structures. Especially this requirement is still used today in so-

called aortic rings, whose cross-sectional deformation provides detailed information about 

mechanobiological processes[72–75] 

 

4.5.1. Cellular Force Measurement 

In addition to the macroscopic level, the biomechanical laws can also be applied to the microscopic 

and subcellular levels. Taking biophysical laws into account, complex and dynamic mechanical 

properties of individual cells and cell organelles can be measured[76–78]. 

The state of the art currently offers various methods to measure force changes of monolayers and 

single cells, both directly and indirectly. Due to different hypotheses of force distribution and stress 

development of the cells[79,80], diverse force measurement methods are considered, which can 

measure uniaxial, monoaxial or bi-axial stresses[81–83]. The high sensitivity of the methods is essential 

to resolve cellular forces in the pN-µN range. 

One of the most common methods for indirect force or stress measurement is atomic force microscopy 

and traction force microscopy[84–86]. Both techniques allow deformations of the growth substrate to 

be measured by induced cell forces. In addition, the atomic force microscopy method allows us to 

assess the strength of single cells. Due to material stiffness analysis, it is possible to infer cell 

contraction or relaxation indirectly[87]. 

Probably the most common method for measuring cell forces is tensile testing of cell cultures on 

defined growth substrates. Usually, biocompatible polymers or matrices in rectangular shape are 

prepared from which the induced forces of the cells are determined by means of using load cells. 

However, the geometry and fixation of these preparations usually generate different stress fields on 

the carrier material by the cells. Thus, in most cases, only an averaged and summed force generation 

of the cells can be shown. In order to counteract this problem, the group around Kit Parker has 

developed a procedure that enables the contraction of the cells through the deformation of eyelash 

structures. By deforming the "lash", a mechanical model can be used to determine the force of 

shrinking from the eyelash bending radius[88]. Micro-structuring of the carrier material across 

methods can help to direct the generated strength to a particular preferred direction, which makes 

the evaluation more precise and sensitive[89]. 

The bi-axial stress measurement neglects the directional stress distribution, as the stress distribution 

is the same in all directions in biaxial systems. For bi-axial stress measurement, methods that also serve 

for mechanical cell stimulation are usually used. Deviations of the parameters for precise adjustment 

of the strain can thus be indirectly inferred from changes in cell tension[60,90]. The best known and 

most widely used method for bi-axial stimulation is the FlexCell system, which transfers the principle 

of the simple tensile test in a round geometry[91,92]. 

The choice of methodology is therefore extremely versatile and can be made with the scientific 

question. While most in-vitro cell force methods currently serve for basic research and laboratory 

development, clinical approaches continue to pursue the use of tensile tests and deformation analyses 

of real tissues in-vitro. 
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4.6. In-vitro Model 

Developments in cell culture technology and tissue engineering make it gradually easier to produce 

tissue equivalents from cell cultures. Besides the less ethically questionable handling towards living 

tissue, isolated cells benefit the reduction of mechanically influencing factors. So that mechanical cell 

force alterations can be characterized more precisely without the passive contractive influence 

connective tissue. 

Cell culture technics and tissue engineering enables the cultivation of living tissue or tissue equivalents 

under in-vitro condition. Such models are idealized cellular systems for biological analyses. Due to the 

substantial simplification of a living organism, these models enable to multitudinous aspect elimination 

compared to in-vivo samples. 

From an ethical point of view, such in-vitro models are much more favorable than animal testing or 

experiments with living tissue dissections, as the specimen material can be cultured under laboratory 

conditions and reproduced to a certain extent. According to the 3Rs principle, the development of in 

vitro models makes it possible to reduce and replace animal experiments and to make the 

experimental set-ups more reproducible and ethically acceptable[93]. Nevertheless, for functional 

testing, animal testing is still an important matter as the functional testing of pharmaceutics to 

complete organisms cannot be simulated entirely[94]. 

Current studies show that there is an urgent need for disease models and functional physiological 

assays to support and improve medical findings and diagnostics in order to understand sophisticated 

mechano-biological phenomena of physiology, pathophysiology and aging in-vitro[95,96]. 

The scientific application and implementation of arterial in-vitro models are versatile and depend on 

the scientific problem and the phenomena to be observed, ranging from single-cell models and 

monolayers to three-dimensional tissue-equivalent or organoids. The knowledge gained from these 

models is used to analyze functional physiological processes concerning biochemical, 

electrophysiological and biomechanical phenomena. Beyond that, they are also used to answer more 

complex questions that arise at the molecular level or in regenerative medicine, in which processes 

such as angiogenesis or wound healing are central[56,97,98]. 

A great variety of model designs depend on the scientific question and observing phenomena and 

ranging from single-cell model and monolayer to three-dimensional tissue-equivalent or organoids. 

The most fundamental way to set up a cell culture model is the cultivation of a single monolayer of 

one cell type. Due to the isolation of cells, it is easy to characterize and interpret single-cell physiology 

and experimental findings. In terms of studying rheological effects within the vasculature, flow 

chambers and organ on a chip approaches became quite famous in recent years[99–103]. 

Especially while studying vascular walls, the cross-communication between smooth muscle cells and 

endothelial cells is a highly interesting topic, with high medical impact. To get inside to this topic, it 

requires a co-cultivation of both cell types, allowing intercellular signaling. According to literature, 

there are three main subgroups of co-cultures: Conditioned co-culture, direct co-culture and three-

dimensional co-culture. 

A conditioned co-culture offers no direct contact between the cells. Both cell types are physically 

separated from each other. Such systems can be realized by so-called inlet membranes, which 

separates two different culture compartments, but allows cell signaling and molecule transfusion 

throughout the separation layer. Another approach to achieve a conditioned cell-culture is to exchange 

or mix the media of two distinct cell cultures. Hence, the effect of metabolites and signaling molecules 

can be evaluated by employing a mono-culture[104,105]. 
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In contrast to conditioned co-cultures, direct co-cultures describes the cultivation of two different cell 

types in the same cell culture compartment. Respecting cellular communications, such systems are 

closer to physiological conditions, but also exacerbate the interpretation and analysis of differentiated 

results[106]. Concerning the physiology and experimental setup, it is possible to arrange the cell in a 

physiological pattern by gel structures or decellularized tissue[107–109]. Such a setup benefits the 

functionality of an in-vitro model as the arrangement of cells can be simulated equally to an in-vivo 

system[110]. 

Working with vascular three-dimensional cell models requires a well-defined matrix equivalent. In 

most cases, three-dimensional structures are generated by gel-like structures made of collages, 

matrices or similar[111–113]. The use of such systems usually has a relatively compact and stable 

structure due to the matrix components and is, therefore, mostly applied in biochemical and molecular 

biological research. 

A recent trend that is closely related to stem cell research is the application of organoids, which 

commonly suitable for the study at hollow organs. Organoids are spherically modeled organs made of 

primary or stem cells[56], promising to have great physiological properties and having similar in-vivo 

arrangement. 

4.6.1. CellDrum Technology 

The CellDrum technology was firstly described by Jürgen Tzerwiki, Institute for Bioengineering FH 

Aachen, in 2001 [114–116]. The CellDrum was developed to estimate the biomechanical properties of 

standardized cellular monolayer and 3D tissue equivalents[117]. The CellDrum is methodologically an 

important technology that, in contrast to known indirect electrophysiological methods, quantifies 

direct lateral bi-axial generated cellular forces in micronewton (µN). Previous studies have shown that 

the CellDrum is a useful tool to elucidate the mechano-pharmacological characterization of human-

induced pluripotent cardiomyocytes[118,119]. This has been shown in the experimental work by 

M.Goßmann, which has also demonstrated that a three-dimensional arrangement of different types 

of cells is possible[120]. Besides the possibility to biomechanically analyze cells, the softness of the 

membranes results in a unique growth surface, which provides mechanically seen an almost 

physiological growth environment. 

Over the past decades, the CellDrum went through various optimizations and changes, leading to the 

current state of the art, which will be presented in this work. Especially the description of standard 

operating protocols and automatization are described in detail in a recent publication by 

R.Bayer[121,122]. 

The recent developments of the CellDrum technology showed the versatile application of the standard 

CellDrum. In addition to mechanobiological characterization, the system can be used to expose the cell 

to mechanical stress. Combining both techniques could be an excellent foundation for biophysical and 

biomechanical basic research[122,123]. 
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5. Material & Methods 

 

Table 2 Chemicals 

Material Producer Vendor Cat.No. 

Cell culture    

M200 Gibco ThermoFisher M200500 

M231 Gibco ThermoFisher M231500 

DMEM-GlutaMAX Gibco ThermoFisher 31966021 

DMEM + F12 Gibco ThermoFisher 11330057 

M199 Gibco ThermoFisher 12340030 

DPBS Gibco ThermoFisher 14190250 

Trypsin/EDTA (0,05%) Gibco ThermoFisher 25300054 

FBS Gibco ThermoFisher 16140071 

SMGS Gibco ThermoFisher S00725 

SMDS Gibco ThermoFisher S0085 

LSGS-Kit Gibco ThermoFisher S003K 

Collagen Type I Merck Merck 9007-34-5 

Human Collagen Type IV Merck Merck CC076 

PureCol EZCollagen Type I Cellsystem Cellsystem 5074-35ml 

Fibronectin Bovine Plasma Merck Merck F1141-2MG 

DMSO Roth Roth 0728.1 

Trypan Blue Solution 0,4% Gibco ThermoFisher 15250061 

LIVE/DEAD® 
Viability/Cytotoxicity Kit 

Invitrogen ThermoFisher L3224 

LDH-KIT Invitrogen ThermoFisher - 

ET1-ELISA Kit Invitrogen ThermoFisher EIAET1 

    

Staining    

Alexa Fluor® 488 – 
Phalloidin 

Invitrogen ThermoFisher A12379 

CellTracker™ Deep Red Invitrogen ThermoFisher C34565 

CellTracker™ Green CMFDA Invitrogen ThermoFisher C7025 

Anti-Actin, α-Smooth 
Muscle - Cy3™ antibody 

Sigma-Aldrich Merck C6198-100UL 

Antibody CD31 Abcam Abcam Ab28364 

    

Gen Analysis    

SYBR Green Sigma Aldrich Merck 163795-75-3 

RNeasy Mini Kit Qiagen Qiagen 74106 

QIAshredder Qiagen Qiagen 79656 

miRNA Kit Qiagen Qiagen 217604 

QuantiNova Reverse 
Transcription Kit 

Qiagen Qiagen 205411 

SsoAdvanced Universal 
SYBR Green Supermix 

BioRad BioRad 1000076382 

Ultra Pure Water PCR grade Invitrogen ThermoFisher AM9935 

ROTIPURAN®Ultra Carl-Roth Carl-Roth HN68.3 

RNAseZAP Sigma Sigma R2020-250ML 
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CellDrum    

Sylgard 184 Dow Corning VWR SAFA761036-5EA 

Trimethoxy[2-(7-
oxabicyclo[4.1.0]hept-3-
yl)ethyl]silane 

Sigma Sigma 413321-25ML 

MES Buffer Carl-Roth Carl-Roth 4256.4 

Acetic Acid Sigma Sigma 64-19-7 

Perdrogen Sigma Sigma - 

Muriatic Acid 37% Carl-Roth Carl-Roth 4625.2 

Gypsum    

2-Propanol Carl-Roth Carl-Roth AE73.2 

    

Test Substances    

Nifedipine Sigma Sigma N7634-1G 

BayK 8644 Sigma Sigma B112-5MG 

Verapamil Sigma Sigma V-002-1ML 

Potassium Chloride Carl-Roth Carl-Roth 6781.1 

Diazoxid Sigma Sigma D9035-250MG 

CGRP Cayman Chemicals Cayman Chemicals 24405 

Glibenclamide Sigma Sigma G0639-5G 

Spermine NO-complex Sigma Sigma S150-25MG 

DEA/NONOate Cayman Chemicals Cayman Chemicals 82100 

Norepinephrine Sigma Sigma A7257-500MG 

Angiotensin II Sigma Sigma A9525-1MG 

Acetylcholine Chloride Sigma Sigma PHR1546-500MG 

Endothelin I Sigma Sigma E7764-.1MG 

Caffein Sigma Sigma C0750-100G 

Cytochalasin D Sigma Sigma C2618-200UL 

Sildenafil Sigma Sigma S-010-1ML 

L-Citrulline/L-Arginine GEN Amazon X00140JWWS1 
 

Table 3 Systems & Devices 

Device Company 

Automated CellCounter TC 20 BioRad 

Biophotometer Eppendorf 

Photospectrometer V-560 JASCO 

Multi-plate Reader 680 Biorad 

BioZero 8000 Keyence 

iCycler BioRad 

Axiovert 200 Zeiss 
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5.1. Technology Overview 

 
Figure 5 Overview of all systems and programs developed for this work. Orange Box: Adaptation of CellDrum and 
measurement methods for quality management. Blue Box: Measuring system for the biomechanical analysis of the 
CellDrums and software for data acquisition, evaluation and sensor calibration. Green Box: Technical development for 
mechanical stimulation of CellDrum samples. Red Box: Software for the quantification of cytoskeletal distribution. 
 

5.2. CellDrum 

 

A) 
 

 

B) 

 
Figure 6 A) Sliced computer-aided design scheme of a CellDrum with membrane and cell culture media. The CellDrum offers 
a 2cm² cultivation area, consisting of an ultra-flexible polydimethylsiloxane (PDMS) membrane. Due to surface 
functionalization, cells can attach to the membrane [124] B) Photo of CellDrum 2017. 

 

The CellDrum is a round-shaped cell culture well with a highly flexible 2cm² cultivation area made of a 

4µm thin polydimethylsiloxane (PDMS) membrane, which was developed to estimate biomechanical 

properties of standardized cellular monolayer and 3D tissue equivalents[116,117,124]. 

Especially for this thesis, the “CellDrum 2017” was developed, which has idealized dimensions and 

tolerances[Figure 6]. Additionally, the new version of the CellDrum does not require a sealing ring for 

storing anymore. The material is changed from Polymethylmethacrylate (PMMA) to 
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Polyetheretherketone (PEEK), which makes it much more stable for chemical and thermal stress, but 

is still biological compatible. 

All biomechanical experiments were carried out in self-made CellDrums with highly specified 

membrane properties. The manufacturing protocol has already been described in the dissertation of 

Dr. M. Goßmann[125]. Only membrane thickness and strength were adjusted to the requirements of 

this study. 

5.2.1. Membrane Characterization 

For standardized CellDrum membrane quality, the membrane thickness and initial tension were 

analyzed before each experiment. 

The thickness was measured photometrically and is a crucial parameter for the sample quality, as the 

thickness is required for the stress calculation[Figure 7]. The working principle is precisely described in 

the doctoral thesis of M.Gossmann[125]. Afterward, the method was established and automatized by 

J.Klinkhammer[126]. 

A) 

 
 

B) 

 
C) 

 

 
 

Figure 7 A) Illustration of the measuring principle for 
photometric layer thickness measurement. VIS light 
penetrates the CellDrum membrane and generates an 
interference pattern, which indicates the layer thickness 
by the refractive index, internal reflection and material 
parameters.B) Recorded interference pattern[126] C) 
Formula for determining the coating thickness using the 
wavelength interference. 

 

Pressure-deflection curves determined the initial membrane stress properties using the Tissue Tension 

Analyzer(TTA). This method is described in more detail later. For this study only CellDrums with an 

initial membrane tension without cells and functionalization around 100kPa were used. 

5.2.2. Membrane Functionalization 

PDMS is a medical-grade polymer with a silicon backbone structure. Due to its inert biological 

properties, adherent mammalian cells will not adhere to the surface sufficiently. To enable cellular 

adhesion, the membranes were treated wet-chemically. Surface functionalization is carried out by 

oxidation and silanization steps, which is detailed described in the work of M.Gossmann[125] and well 

characterized in the bachelor thesis of R.Bayer[127]. In addition to this, the surfaces are coated with a 

1% fibronectin solution to improve cell adhesion. 

𝑑 =
𝜆1 ∗ 𝜆21

2𝑛 ∗ (𝜆1 − 𝜆2)
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5.3. Tissue Tension Analyzer 

The biomechanical analysis is carried out by a so-called TTA[120]. A TTA is mainly composed of a 

pressure sensor, deflection sensor and a syringe precision pump[Figure 8A] to analyze biomechanical 

properties by recording pressure deflection curves. 

For the measurement, the CellDrum is airtightly placed into the measurement socket[Figure 8B]. 

Afterward, the membrane is inflated with a precisely defined volume and flowrate of air by a precision 

pump. The TTA records the membrane deflection in dependency on the generated pressure 

progression, resulting in a pressure-deflection-curve. The slope of the pressure deflection curves is 

used to calculate the internal stress of the cell monolayer and the PDMS membrane[Figure 14] . 

 

A) 

 

B)

 
 

 

Figure 8 A) Picture of the Tissue Tension Analyzer with a detailed schematic arrangement of the measurement socket - 1) 
CellDrum; 2) Cells attached to the CellDrum membrane with cell culture media (500µl) on top; 3) GND electrode; 4) Counter 
electrode; 5) Electrical shielding; 6) Measurement socket; 7) Deflection sensor; 8) Pressure sensor; 9) Syringe pump; 10) 
Processing unit; 11)Peripheral computer and data storage[121,124]. B) Photographs of the TTA test base; above: Cover 
open with two CellDrums and view of the cylinder electrodes; bottom: Closed with cover and protective cap. 

5.3.1. Development 

For this thesis, a fully re-engineered TTA was developed, designed and improved to exact needs by 

Robin Bayer[Figure 8 B,C]. The central innovation of this device is the used proximity sensors. For the 

deflection measurement, a patented capacitive sensor principle is used, which is described in detail in 

the FH Aachen patent ”CellDrum Electrode arrangement for measuring mechanical stress”[128,129]. 

The latest iteration is capable of holding six samples at once. The measurement time has been 

shortened from 30 s to only 12 s per measurement, to decrease the cellular damage by overextension. 

Pauses of 30 s between the single measurement cycles have been established to stabilize the signal. 

Further, the device was fully automated, allowing measurement rows over extended time frames. 
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The entire engineering process required designs in the fields of mechanics, electronics and computer 

technology, the individual segments of which are described in more detail in the following chapters. 

5.3.1.1. Mechanical Construction 

The mechanical components were designed with Inventor AutoCAD and later on manufactured by the 

mechanical workshop of the FH Aachen or printed with a Formlabs II Printer. 

The sample sockets at the top side are designed to the dimensions of the CellDrum 2017 model, 

connecting the specimen to the proximity and pressure sensors. 

To increase the sensitivity and to minimize the distance between the proximity sensor and CellDrum, 

the proximity sensing unit is designed as a cylindric surface for the CellDrum. The proximity sensing 

units consist of two, and one side closed, high-quality steel cylinders which are separated by a spacer 

made of polyoxymethylene (POM). The inner component is used as a counter electrode, whereas the 

outer cylinder is used as shielding to prevent the measurements from interfering with each other. The 

measurement principle is explained in chapter 0. 

The electrical circuit responsible for the displacement measurement is situated directly to sensor 

cylinders to improve the signal-noise ratio. Therefore, two jack plugs (0,9mm) are designed 

underneath the sensor heads, which allow cableless connection to the analog-digital converter. 

For shielding and improved specimen fixation, a metal cap was designed, which holds a simple 

electrical board to connect the cell medium via a gold electrode to the inside of the system. 

5.3.1.2. Electronic Components 

The electronic components of this device were designed with Eagle software and printed to printed 

circuit boards by the company PCB Pool. All boards and electrical components were designed with 

surface mounted device components to improve the size and diminish electronic interferences. 

The motherboard is the central board, which connects all single components and is designed as a 

mounting device for the Arduino Due, so failure-prone cable connections are reduced. Its main 

function is to enable a conversation between the single components and the microcontroller. Plus, the 

motherboard supplies all necessary components with appropriate voltages ranging from 3,3V-

12V[Figure 9]. 

All signals are collected on this board, directed and managed to their final destination. The control of 

the valve system is realized by transistors circuits, which allow them to select the corresponding 

pneumatic channel and open the whole system to atmospheric pressure. The pressure data are 

measured by a customized HCLa pressure sensor (FirstSensor) in the range of ±100Pa. 

Incoming data from the TTA and further periphery are collected and processed by the Arduino DUE. 

The Arduino DUE was found to be appropriate as it allows the measurement of high frequencies due 

to its high clock frequency (84MHz). Additionally, it has preinstalled serial connections that allowed 

secure bidirectional data transfer via USB to a computer. 
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Figure 9 TTA motherboard for data acquisition and 
control of the system via computer. On the top left, in 
light blue, you can see the microvalves, which are 
pneumatically connected to the PMMA pressure 
distributor in the center. The pressure in the closed 
system is measured by an SMD pressure sensor on the 
bottom right. Power supply and voltage regulators can 
be seen on the bottom left. The slots of the individual 
measuring chambers can be seen at the top right. 
Directly below the motherboard is the microcontroller to 
establish communication with the computer. 
Underneath it is a mechanical relay that ensures the 
complete decoupling of the individual sensors. 

 

The electronic circuits for the displacement sensors are designed to single boards that are separated 

from each other and situated directly to the sensor sockets. These boards contain a self-exciting LC 

oscillation circuit with a resonance frequency of around 14MHz. For appropriate handling of such high 

frequencies, the signal is converted directly to the digital TTL level. To prevent electrical coupling, 

isolators for the signals and voltage supply are implemented. The signals analog to digital conversion 

are directly done within these circuits as well[Figure 10]. 

A)

 

B)

 
Figure 10 A) Bottom view of the measurement socket. Proximity sensors connected to the base, 0V electrode and pressure 
connection. B) TTA sealing cap bottom view with 0V gold electrodes for contacting the cell culture medium with LC-resonant 
circuit. 
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5.3.1.3. Proximity Measuring 

The measurement is based on an LC oscillating circuit, in which the dimension of the capacitor or 

inductivity results in a changing resonance frequency. 

In this case, the inductance is constant, while the CellDrum and the sample socket form a dynamic 

capacitance whose dimension depends on the area and the distance between the electrodes. 

A capacitance generally consists of two electrodes, which are separated by a dielectric material. To 

turn the CellDrum into a moving electrode, the culture medium is connected via a gold wire to the 

ground (GND) of the electric circuit. The counter electrode is situated directly under the CellDrum and 

is designed as the bottom plate of the sample socket. In between the dielectric materials are the 

CellDrum PDMS membrane and air[Figure 11]. This combination results in a capacitance composition 

of spherical and cylindric electrodes, in which the cellular biomechanics dynamically determines 

proximity and area of both capacitor electrodes. 

 
 

 
 
 
 
 
 

 
 

• Capacity of Capacitor 
• C~A 
• C~D-1 

 
 

Figure 11 Schematic diagram of the measuring electrode arrangement. All 
components are connected to one of the separated oscillating circuits. The 
capacitance change of the system takes place between the red CellDrum 
membrane and the blue active cylinder surface[129]. 

Formula 1 Physical law of the resonant 
frequency of an LC oscillating circuit and 
the associated capacitance dependence of 
electrode distance and area. 

 

5.3.1.4. Calibration 

Due to the complex geometry of the capacitor arrangement, the proximity sensors require calibration 

with later on linear fitting. An additional experimental setup was designed, in which pressure 

deflection curves were measured by the capacitive sensors and an industry standardized triangulation 

LASER sensor in parallel. Both deflection datasets were correlated over the measured pressure 

progression. 

A LabVIEW based calibration software merged both deflection profiles and plotted them to a combined 

graph. The resulting plot function was used for sensor linearization. As each sensor has unique 

characteristics, this calibration was carried out for each sensor head. The linearization function was 

implemented into the analysis software. 

 

Shielding 

0V connection 

Cells 

&Culture 

Medium 

Active Cylinder 

CellDrum 

Sensor 
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5.3.1.5. Programming 

For the biomechanical evaluation, three software programs were required: Controlling, Data collection 

and data analysis. 

The controlling software is uploaded to the Arduinos as so-called sketches. Sketches are program codes 

in a C++ like programming language, which can be coded, compiled and uploaded using Arduino IDE. 

The installed sketch of the microcontroller(µC) can detect high-frequency signals via external clock 

input, which is coming from the displacement sensors. The pressure data are read via 12bit analog 

input. 

Controlling of the valves and relays is realized by case-structures, which can be triggered by incoming 

commands send from the graphical user interfaces (GUI). For serial data transfer, all outgoing data are 

put into a Byte array of high and low bytes and later on encoded by the data collection software. Due 

to the optimized data conversation, data can be recorded with a sample rate >1kHz of each sensor 

type. 

The data collecting software is written in LabVIEW and is mainly designed for the application in the lab 

[Figure 12]. The GUI allows real-time visualization of the current measurement and allows to enter all 

necessary data to the measured specimen. Due to the implemented automation, the operator only 

needs to choose the sample number. Afterward, the appropriate signals are sent to the µC 

automatically. Every measurement is saved automatically and is written in a customized data format 

(.rb), which contains all necessary data for the data analyzation and customized user information. 

 

 
Figure 12 Interface of the measurement software. (A) Configuration of serial communication between TTA and 
computer. (B) Real-time monitoring of data acquisition. (C) Controlpanel to select sample chamber and control valves. 
(D) Timeout control and indicator enables automated pressure equilibration between the measurements. (E) Datafile 
configuration and save options. 

 

The data analyzation software requires high computational performance[Figure 13]. Therefore, the 

software was written as a standalone program. The operator needs to choose the folder of desired 
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measurements and software proceeds the analyzation automatically. All comprehensive steps are 

visualized to enable a follow up of the data processing. 

To calculate the mechanical tension, pressure and deflection data are merged. The Levenberg–

Marquardt algorithm is used for the curve fitting. The inflection point of the fitted plot is used to apply 

and calculate in the mathematical model for stress evaluation. All data are collected and saved into an 

array that can be exported. 

 

 
Figure 13 Interface of the analysis software. In (A) all data of the selected file path are listed. The file selected in (A) is 
opened in (B) where the data can be trimmed. The default settings for the analysis range is the time interval 0.5s-11.5s. 
The data is cut out and displayed in (C). Both data series are merged and the deflection over the pressure course is displayed 
in white. (D) also represents the best non-linear adaptation in red. The resulting data is presented in (E) and can be buffered 
in (F) using ADD. 
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5.4. Physical Model 

 

 

Figure 14 Key figure for the CellDrum physical model with 
CellDrum fitted Barlow´s formula to derive the cellular 
tension from recorded pressure deflection curves. r) Radius 
of the CellDrum (16mm). h) Indicates the deflection of the 
CellDrum membrane to the baseline (in µm). R) Radius of 
the theoretical hemisphere. The formula is used to derive 
the tension from the recorded pressure deflection curves. 𝜎) 
Calculated axial stress (N/m²). p) measured pressure (in Pa). 
s) CellDrum membrane thickness (in µm).[124] 

 

The calculation of the mechanical stress the CellDrum membrane and is based on the Barlow formula 

[Figure 15]. In the particular case assumed here, the silicone membrane is deflected by the medium to an 

idealized spherical cartilage. Thus it is possible to calculate the tangential stress of the membrane by using 

the Barlow formula from the ratio of the spherical cap radius of the pressure difference and the layer 

thickness. 

 
 

𝝈𝑻 =
𝒑 ∗ 𝑹

𝟐 ∗ 𝒔
 

 

Figure 15 The starting point of the mathematical 
model is the Barlow formula, which allows calculating 
the stress distribution in thin-walled boilers. For the 
calculation of the mechanical stress within the 
CellDrum membrane the calculation of the tangential 
stress 𝝈𝑻 is necessary. The formula for calculating a 
hemisphere is shown below the drawing 
 

 

Considering the special case that the membrane behaves similar to a spherical carotte, the radius of the 

spherical carotte can be described with the theorem of Pythagoras. 

Formula 2 Adaptation to the correlation of pressure and deflection using the Pythagoras Theorem. 

𝑹𝟐 = (𝑹 − 𝒉)² ∗ 𝒓𝟐 

𝑹𝟐 = 𝑹𝟐 − 𝟐𝑹𝒉 + 𝒉𝟐 + 𝒓𝟐 

𝟐𝑹𝒉 = 𝒉𝟐 + 𝒓𝟐 

𝑹 =
𝟏

𝟐𝒉
∗ (𝒉𝟐 + 𝒓𝟐) 

𝑹 =
𝒓²

𝟐𝒉
∗ (𝟏 +

𝒉²

𝒓²
) 

By combining the formula 2 and formula 1, the tangential stress of a ball cartilage is obtained as a function 

of pressure and deflection. 
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Formula 3 

𝝈𝑻𝑷 =
𝒑

𝒉
∗

𝒓𝟐

𝟒𝒔
∗ (𝟏 +

𝒉𝟐

𝒓𝟐
) 

The ration 
∆𝒑

∆𝒉
 corresponds to the reciprocal value of the pressure-deflection curves inflection point-slope. 

 

Formula 4 Adapted Barlow formula to the geometry of the CellDrum, which is used to evaluate the mechanical stress change 

due to tangentially induced cell forces. 

𝝈𝑻𝑷 =
∆𝒑

∆𝒉
∗

𝒓𝟐

𝟒𝒔
∗ (𝟏 +

𝒉𝟐

𝒓𝟐
) = 𝒌𝑷𝒂 

 

Formula 5 Conversion of the measured mechanical stress into force (N ), with an calculative example of 5% tension deviation. 

 

𝐅 = 𝝈𝑻𝑷 ∗ 𝒅 ∗ 𝑺 

𝐅 = ∆𝝈𝟓% ∗ 𝟏𝟔𝒎𝒎 ∗ 𝟒µ𝒎 = 𝟏𝟔𝟎µ𝑵 

 

5.5. General Biomechanics 

In terms of protocol standardization as well as proof of concept, the very first measurement correlated 

the number of seeded cells to the resulting biomechanical stress. Therefore, CellDrums were prepared 

as usual and measured after fibronectin coating. Afterward, the CellDrums were cultured with 

different cell densities. haSMC with 2.5x104, 5x104, 1x105,1.5x105 and 2x105 cells per CellDrum. As 

haECs are smaller in size, a higher amount of cells were seeded, 5x104,1x105, 2x105 and 3x105. The 

specimens were acclimated and incubated for seven days under cell culture conditions. On day eight, 

the specimens were measured again and the results before and after cell seeding were compared. The 

difference and optical appearance were key results to define the developed vascular mode. 

Also, the dependency between temperature and stress alteration was determined. Therefore, the 

cultivation media was entirely replaced by previously chilled media (4°C). Temperature and 

biomechanics were measured every 45 seconds and compared. This experiment was meant to examine 

the temperature sensitivity and impact on the cells. 

5.6. Cell Culture 

5.6.1. Human Aortic Smooth Muscle Cells 

Primary haSMCs (Thermofisher) were used and cultured in growth media [Figure 16 A]. For cell 

proliferation, the haSMCs were cultured in T75 flasks until they reached a confluence level of ~80-85%. 

Afterward, growth factors and supplements are changed to induce cellular differentiation. From this 

point on, the cells are kept in a cell culture flask for another eight days to establish a complete cellular 

differentiation. As the cells reached their final differentiation stage, the proliferation is stopped and 

the maximum capacity of contractility is developed. Due to quiescent, it is ensured that the 

biomechanical measurements are not affected by either proliferation or cell migration. Subsequently, 

the cells were passaged to the CellDrums. For maintaining the Cells within the T-flasks and CellDrums, 

the medium was changed every second day and was kept at a temperature of 37°C and 5% CO2 

atmosphere. 
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For passaging, the cells were washed with magnesium and calcium-free phosphate-buffered solution 

(PBS) once. The addition of 0,05% Trypsin detached the cells. To inhibit the trypsin, media with a high 

content (10%) of Fetal Bovine Serum (FBS) was added. To remove the trypsin from the cell suspension, 

the sample was centrifuged with 280g for four minutes. After centrifugation, a cell pellet has formed 

and the supernatant needs to be removed by the suction pump. Subsequently, the cells were 

resuspended in 1ml of cultivation media. The cells were counted and checked for their viability with 

trypan blue staining by an automated cell counter (TC 20 -Biorad). 

For plating the cell to another flask, the cell suspension was filled up with an appropriate amount of 

media to split the cell suspension even to the number of culture flasks (min. 2500cell/cm²). 

To passage the cells to CellDrums, differentiated haSMC’s were seeded in a density of 75.000 cells/cm² 

to the previous surface-functionalized CellDrum membranes. Twenty-four hours after seeding the cells 

were resupplied by fresh media containing 1% fibronectin to enhance mechanical durability for 

external mechanical stimulation. 

A) B) 

Figure 16 A) haSMC in cultivated on slides. Fixed and stained smooth muscle cell-alpha-actin. B) haEC grown on slides. 
Fixed and CD31 antibody stained. 

5.6.2. Human Aortic Endothelial Cells 

Primary haECs (Thermofisher) were cultured in basal media with low serum growth supplements 

[Figure 16 B]. The cultivation of these cells required an additional collagen type I coating of the T-Flasks. 

To maintain the cells, they were kept at the same incubator conditions as the haSMCs and media was 

changed every second day as well. As the cells are reaching a confluence level of 100%, cell 

proliferation is inhibited. The passaging procedure is executed as described by the haSMCs. Seeding 

haECs to the CellDrums requires 200.000cells/cm² to achieve an entire cell monolayer. 

5.6.3. Co-Cultures 

Co-Cultures describe cell cultures consisting of more than one type of cell. The co-culture of cells allow 

to the evaluation of  cellular communications and the analysis of cell coupled phenomena. Various 

approaches are used for the mutual cultivation of different cell types, depending on the scientific 

question and systematic setup[105,130]. 
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5.6.3.1. Conditioned Co-Culture 

For conditioned co-culturing, the cells are physically separated from each other and do not have direct 

access to each other[Figure 17 a]. This kind of co-culture was supposed to give information if the media 

taken from endothelia cells contains vasoactive substances, which either lead to a contraction or 

relaxation of haSMCs.The conditioned medium was collected from CellDrums seeded with endothelial 

cells. As a control, fresh medium was used to see if the components of the media might lead to 

biomechanical deviations. 

 

For evaluation, haSMCs were cultured on CellDrums, as written in the SOP (Standard Operation 

Procedure). The conditioned medium was analyzed as like as the pharmacological substances, except 

500µl of the medium was changed[Figure 17 b]. Afterward, a series of measurements were carried out 

over a time progression of ~30min. 

 

5.6.3.2. Direct Co-Culture 

In contrast to indirect, the direct co-cultivation of cells enables direct cell contact and bi-directional 

exchange of cell signals and secreted cell metabolites. 

Media composition plays a crucial role in the co-cultivation of different cells. Each media contains 

specific ingredients to provide certain cellular characteristics. While the endothelial cells are 

maintained in a low serum basal medium, the haSMC cultivation requires a proliferative and 

differentiation media. EC proliferation is contact inhibited, which means that the proliferation is 

stopped as soon as the cells reach 100% confluency. In contrast, haSMC proliferation is stopped as 

they reach their contractile phenotype. These quiescent proliferation states benefit the measurement 

conditions for the biomechanical evaluation. 

In search of an appropriate medium blend that provides high viability while maintaining cell-specific 

characteristics and quiescent proliferation behavior, various media compositions were tested. 

Commonly used basal medium was combined with essential supplements listed in Table 4. Viability 

parameters via proliferation curves and trypan blue viability tests were generated to evaluate the 

blended medium effects. 

Additionally, the cells were observed via phase-contrast microscopy over 14 days of culture in different 

media. Afterward, the cells were stained by cell-specific antibodies, alpha Actin (haSMCs) and CD31 

(haEC) to prove that the cells did not dedifferentiate. 

 
Figure 17 Drawing of the conditioned co-culture. Conditioning was carried out inside the CellDrums with 150.000 haSMCs 
and 200.000 haECs a.) Cells were cultivated in separate cell culture vessels with the cytospecific media. b) After 24h the 
medium of the haSMCs is removed and then replaced by the medium of the haEC. 
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After a series of trials, the cells were cultured in M199 basal media with 1% FBS, 30µg/ml Heparin and 

10ng/ml hEGF most successfully. 

 

Table 4 Overview of media additives and growth factors 

 

Table 5 Overview of media additives and growth factors effects on haSMCs and haECs respectively 

Component EC SMC 

FBS - Amplify cell growth 
Contains growth and adhesion 
factors 

- Amplify cell growth 
- Contains growth and adhesion factors 

Heparin - ECs degrade high-molecular-weight 
heparin fragments into low-
molecular-weight fragments 

- ECs produce heparan sulfate[131] 
- Inhibits FGF dependent proliferation 

- Antiproliferative effect of low weight 
Heparin 

- Inhibits thymidine and uridine uptake 
- Blocks SMC in the G0/G1 state[132] 

 

bFGF - Mitogen –> support cell growth 
- Induces cell division in vitro, 

Angiogenesis in vivo[133] 
- FGF localized in the ECM bound to 

heparin-like glycosaminoglycans 

- Binds to specific receptors on the 
surface of SMCs 

- Leads to Initiation of DNA synthesis 
- Mitogen[131] 
- bFGF can be displaced from 

extracellular matrix binding sites by 
heparin[134] 

EGF - Promote endothelial cell growth, 
migration and survival[135] 

- Mitogen 

- Associated with changes in cation 
movements like calcium 

- Stimulates proliferation of these cells 
in vitro 

- Mitogen[136] 

5.6.3.3. 3D Co-Culture 

The three-dimensional co-culture can as well be described as a direct co-culture but with a specific cell 

arrangement. The overall aim of the study is to establish a vascular wall like cell culture model. 

Therefore, the cells should be arranged like in vivo system. The setup of this model intends to have a 

base layer of haSMC with haEC on top[Figure 18]. As the arrangement is build up in a sandwich 

arrangement, an appropriate number of cells can be used. 

150.000 haSMCs were seeded to previously functionalized CellDrums. After 24 hours, SMCs were 

covered with a 1% fibronectin media solution. On day seven, cultivation media was supplemented by 

1% Collagen Type IV. The next day, 200.000 haECs were seeded on top of the haSMC monolayer. 

haEC Supplements haSMC 
proliferation supplements 

haSMC 
differentiation 
supplements 

- 2% FBS 
- 1µg/ml hydrocortisone 
- 10 ng/ml human epidermal growth 

factor(hEGF) 
- 3ng/ml basic fibroblast growth factor 

(bFGF) 
- 10µg/ml Heparin 

- 5% FBS 
- 0,5ng/ml hEGF 
- 2ng/ml bFGF 
- 2µg/ml Insulin 

- 1% FBS 
- 30µg/ml Heparin 
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For an even cell distribution, the media volume was raised from 300µl to 500µl over two days. After 

another five days, the samples were ready for analysis and testing. Additionally, staining with different 

CellTrackers was carried out. 

 

 

Figure 18 Graphic illustration of the planned three-
dimensional co-culture model consisting of smooth 
muscle cells and endothelial cells. 1) CellDrum 
membrane 2) Fibronectin coating 3) haSMC 
monolayer 4) Fibronectin coating 5th) collagen 
type IV coating 6) haEC monolayer  

 

 

5.6.4. Vitality Test 

Cell viability and amount were observed with various methods. 

Microscopic observation allows quick and subjective viability control. Especially for the fast control of 

CellDrum models, to ensure no monolayer rupture and cell detachment in large areas. 

For general cell cultivation and passaging, cell amount and viability was checked by trypan blue staining 

and an automated cell counter by BioRad (TC20TM Biorad). This procedure was always carried out for 

experimental preparation and CellDrum plating. 

Additionally, the cells were stained by a 

LIVE/DEAD assay (Thermofisher) 

[Figure 19]. The kit bases on two 

components staining with calcein AM and 

ethidium homodimer-1, allowing 

distinguishing optically between viable 

and damaged cells. This method was 

mainly used to create the SOP of 

mechanical stimulation. It allowed fast 

and precise evaluation of the viability of 

cells and also visualized cells that have 

taken damage but were still attached to 

the membrane. 

Long-time observation, especially during 

mechanical stimulation, an L-lactatdehydrogenase (LDH) screening, was used to record a time profile 

of the LDH secretion within the media. LDH is leaked by dead and damaged cells. The amount of LDH 

can be followed by removing 50µl of media, which can later be on photometrically screened. 

5.6.5. Microscopic Analysis 

For cell culture purposes, a phase-contrast microscope was used to monitor cellular viability, 

attachment, confluency and especially for haSMC state of differentiation. Due to the high transparency 

of the PDMS CellDrum membrane, it was even possible to check the cell models for ruptures and 

homogeneity. 

 
Figure 19 Representative live/dead staining of haSMC monolayer on 
CellDrum. For functional testing, cell lesions were induced by 
excessive mechanical stress. Intact cells are displayed in green and 
damaged cells in red fluorescence[124]. 

6. 

5. 

4. 

3. 

2. 

1. 
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For fluorescent imaging, a BZ-8100 by Keyence was used. It was used in the experimental setups, which 

are described in chapters 5.11 and 5.6.4. 

For visualization of haSMCs and haECs in monocultures, Phalloidin 488 and DAPI were used. Phalloidin 

488 is specifically binding on f-Actin structures. Aside from the display, this dye was also used for the 

CMI evaluation 5.11. DAPI exclusively binds to the cell nucleus. Staining with Phalloidin 488 / DAPI was 

carried out as follows: 

Remove medium and washout for three times with PBS. For fixation, 4% Formaldehyde diluted in 

deionized water was added. Incubate for 5 min at room temperature. Afterward, two washing steps 

with PBS. Membrane permeabilization was made possible by a 0,1% Triton X solution, which was 

incubated for 5 min at room temperature. Subsequently, two washing steps were followed. Phalloidin 

488 stock solution was dissolved in 1,5ml, 100% methanol and stored at -20°C. Phalloidin 488 1:40 and 

DAPI 1:100 working solution was prepared with PBS. The working solution was added to the cells and 

incubated for 35 min,  protected from light at room temperature. After the incubation time, the sample 

was rinsed for at least three times with PBS to remove residual dye particles. The specimen was ready 

to be observed. 

For distinguishing different cell types in co-culture, an antibody linked fluorescent dyes were used. 

Anti-Actin, α-Smooth Muscle - Cy3™ antibody, Mouse monoclonal antibodies bind to contractile actin 

structures, which are exclusively present in the haSMCs. To indicate haECs cells mouse 

monoclonal[JC/70A] to CD31 (Alexa Fluor® 488) was used. These antibodies bind only to membrane 

structures of the endothelial cells. 

Staining with α-Smooth Muscle - Cy3™ antibody and Mouse monoclonal[JC/70A] to CD31 were carried 

out as followed: 

Antibody staining requires the same fixation as a permeabilization procedure as described before. 

After permeabilization and washing steps, 3% BSA was added and incubated for 1h at room 

temperature. Afterward, the antibodies are diluted 1:200 with PBS and added to the samples. 

Incubation has been carried out overnight at 4°C. The sample was washed at least three times with 

PBS. The samples are ready for use or for optional double staining. 

 

5.7. Pharmacological Testing 

The evaluation of pharmacological agents is the essential measurement of this thesis. These 

measurements were carried out as proof of concept, to ensure the functionality of the system and also 

to establish the physiological in-vitro cell model. 

For the biomechanical investigation, six CellDrums per test group were prepared and an additional 

number of six CellDrums were used for each control group. During the measurements, the CellDrums 

were kept in the Tissue Tension Analyzer socket, which prevents undesired shaking or temperature 

drop. The test substances were applied through a hole of the apparatus cap from above. Before the 

measurements, six successive measurements were carried out, purposing the normalization of each 

CellDrum and to describe the initial tension of the cells. 

The TTA system allows various measurement protocols. To determine the most suitable one, we have 

tested three different analysis modes: the "particular time mode" (PTM), the "long term mode" (LTM) 

and the "real-time mode" (RTM)[124]. 

The LTM describes the recording of a serial measurement, which is observed on the biomechanical 

effect of a sample for at least 25 minutes. This mode was used and established for testing new 
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substances in order to test the vasoactive effect of the test substances and to resolve it in time roughly. 

This mode was used for single test substances as well as for substance combinations. 

The PTM compares the biomechanical tension between five measurements per sample before and 

after substance application. The incubation time between the two measuring points can be adapted 

to the respective test substance. In most cases, an incubation time of five minutes was chosen, except 

for norepinephrine measurements(1 min), during which the sample was left alone. This mode has been 

used to record dose-response curves and to detect load variations by mechanical stimulation[124]. 

The RTM focused exclusively on the precise observation of membrane deflection without monitoring 

the generated pressure deviation. This mode is only suitable for concentric muscle contraction so that 

isometric contraction remains undetected. In this mode, the membrane deflection is monitored at a 

sampling rate of 1 kHz to make the membrane movement visible in the nanometer range. This 

measurement was only used in this study as proof of principle. 

In accordance with the scientific problem and task definition, we have referred exclusively to the two 

analysis modes in this work: PTM and LTM 

All substances were kept as a stock solution of 10mM at -80°C. Immediately before the measurements, 

the stock solutions were diluted to the final concentrations and acclimated to 37°C in the water bath. 

For the addition of substances, 50µl of media was removed and replaced by the agent, so the media 

reached the final concentrations. 

All control groups were only exposed to the corresponding solvent of the agent DMSO or ultrapure 

water. 

The contraction of muscle cells depends on the presence of Ca2+ ions. For that reason, the first 

measurements focused on L-type Ca2+ channel modulators, regulating the ion influx of Ca2+. In this 

thesis, we evaluated Bay K8644 as a Ca2+ channel agonist and Verapamil and Nifedipine as Ca2+ channel 

antagonists. 

Table 6 L-Type Ca2+-channel modulators 

Agent Concentration in nM Results Literature 

BayK 8644 1; 10; 50; 100; 1000 6.2.1; 6.2.6; 6.3 [137–139] 

Verapamil 1; 10; 50; 100; 1000 6.2.1; 6.2.6; 6.3 [140–142] 

Nifedipine 1; 10; 50; 100; 1000 6.2.1; 6.2.6; 6.3 [138,143] 

 

K+ dependent vasoactivity was tested with a KCl, Diazoxid, Calcitonin Gene related peptide (CGRP) and 

Glibenclamide. According to the literature, CGRP and Glibenclamide are competing agents, which bind 

to the same ATP dependent K+ channel. Especially for these two agents, an experiment with blended 

agents was carried out, to show that the presence of Glibenclamide does affect the addition of CGRP 

Table 7 K+ channel modulators 

Agent Concentration in µM Results Literature 

KCl 50.000 / 50mM 6.2.2 [144–146] 

Diazoxide 1 6.2.2 [147],[148] 

Glibenclamide 5 6.2.2; 6.2.6 [146] 

CGRP 5,2 6.2.2; 6.2.6 [146,148,149] 

 

The release of nitric oxide is one crucial vasodilation mechanism in the in-vivo system, most commonly 

derived from the intima endothelial cells (eNOs). To simulate the presence of endothelial cells and the 

natural release of NO, two NO donators were analyzed. NO groups are attached to molecular 
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complexes, which are released over time. Here we used Spermine-NO-Complex and Diethylammonium 

NONOate. 

 

Table 8 Nitric oxide donators 

Agent Concentration in nM Results Literature 

Spermine-NO-complex 0,1; 1; 10; 100; 1000; 5000 6.2.3; 6.2.6 [150] 
DEA NONOate 1000 6.2.3 [150,151] 

 

In-vivo, the body's vasoactive substances are permanently secreted to maintain homeostasis of blood 

pressure. The secretion of these messenger substances varies according to physical requirements or 

situations. We have placed particular emphasis on the two most potent vasoactive messengers, ET1 

and AT2. In addition, we investigated the effect of NE and acetylcholine, which are mediated by the 

autonomic nervous system. 

 

Table 9 Biological vasoconstrictors and catecholamines 

Agent Concentration in nM Results Literature 

Norepinephrine 0,1; 1; 10; 100; 1000; 6.2.4;6.2.7;6.3 [152] 

Angiotensin II 0,1 6.2.4 [26,73,153] 

Endothelin I 0,1 6.2.4; 6.2.7;6.3;6.4 [26] 

Acetylcholine 1 6.2.4 [152,154] 

 

In a last series of experiments, we tested known examples with vasoactive effect. Among these were 

the impact of caffeine and sildenafil, which is known for its potency-enhancing effect. Furthermore, 

cytochalasin-D was applied to investigate the complete deactivation of the myosin actin complex and 

experimentally, the spider venom GsMTx4 affecting stretch-activated Ca2+ channels. 

 

Table 10 PDE5 inhibitor 

Agent Concentration in µM Results Literature 

Sildenafil 1 6.2.6 [155] 

 

Table 11 List of stimulants and toxins 

Agent Concentration in µM Results Literature 

Caffeine 1 6.2.6 [156] 

Cytochalasin D 0,1 6.2.6 [157] 

GsMTx4 0,25 6.2.6 [158,159] 
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Figure 20 Overview of the vasoactive mechanisms of action of all substances used in this study. cAMP(cyclic adenosine 

monophosphate); cGMP (cyclic guanosine monophosphat); DAG (1,2-Diaglycerol); ER (endoplasmatic reticulum); GC-S 

(Guanincyclase-S); G-Protein; GTP (guanintriphosphate); IP3 (Inositol-1,4,5-triphosphate); M2,M3 (Muscarinreceptor 2,3); 

PDE-5 (phosphodiesterase type 5); PIP2 (phosphate idyilonositol-4,5-biphosphate); PKG (Proteinkinase G); PLC 

(Phospholipase C).  
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5.8. Blood Sera Screening 

5.8.1. Blood Collection and Sera Extraction 

The investigations of the biomechanical effect of blood sera were carried out in a self-experiment. The 

blood sera required for the analysis were taken and prepared by Mr. Robin Bayer under medical 

supervision. 

Blood sera were taken from male 30 years old healthy donor. The subject carried out two exercise ECG 

tests. Fresh blood was taken from the donor as control right before the first exercise ECG test. The ECG 

test was carried out until the subject was wholly exhausted. Afterward, another 15 ml of fresh blood 

was donated. 

After a break of 20 minutes, the ECG stress test was repeated. Fifteen minutes before the second ECG 

test, a mixture of arginine (3,3g) and citrulline(3,3g) was administrated to the proband. Citrulline and 

arginine are amino acids used in supplementation food to increase physique energy levels. Both 

substances increase the overall blood flow by vasodilation. Afterward, the second exercise ECG was 

started, with subsequent blood donation (15ml). This experiment was repeated on three consecutive 

days. 

For transport, the sera were kept at a temperature of ~4°C in special blood sera tubes. To separate the 

sera from the full blood sample, the tubes were centrifuged with 1000g for 10 minutes. 

5.8.2. Blood Sera Analysis 

The blood sera were handled as the pharmacological substances in chapter 5.7. The sera were warmed 

up to 37° in a water bath just before the measurement starts. Subsequently, 500µl of sera was applied 

to the CellDrums. Afterward, a time progression curve of 20 minutes was recorded (LTM). 

For the evaluation, four groups of each three CellDrums have been prepared: Control (media only), 

serum control (before exercise), stimulated serum (after exercise) and supplemented serum (after 

exercise and nutritional supplementation). 

5.9. PulSElect 

The PulSElect system was developed to stimulate CellDrum models with customized pressure pulses 

mechanically[122,123]. Deformations of the CellDrum membrane by pulsatile pressure waves cause 

cellular stretching and compression of the cells attached to the membranes[Figure 21]. The system is 

composed of a pressure generator, a control unit and a sample socket. 

The pressure generator is build up by an eight-inch speaker, which is driven by an Arduino self-

engineered frequency generator, offering a defined wave signal and frequency. The pulse wave shape 

can be programmed via a LabVIEW software, enabling to customize the pulse waves to any desired 

wave shape. 

For exclusively cellular elongation, a negative Gaussian bell-shaped pressure curve was created. Also, 

resting phases between the stimulation phases have been implemented, in which the cells expire no 

additional stress. The sample socket allows to stimulate twelve CellDrum at once and can be situated 

entirely in an incubator. Via a valve array, the mechanical stimulation can be turned on or off.  A remote 

control was designed, allowing access to the valves from outside of the incubator. Even more, a display 

allows supplying the operator with necessary information and data plots. The detailed engineering and 

characterization of the PulSElect system are documented in the master thesis of Till Creutz[123]. 
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A) 

 

B) 

 
C) 

 

D) 

 
E) F) 

 

Figure 21 A) PulSElect sample sockets for the mechanical stimulation of twelve CellDrums. A printed component made of 
clear resin with a FormLabs 2 3D printer B) Compilation of all components of the PulSElect system C) Sketch of the individual 
components of the PulSElect system and arrangement in operation. The green box indicates the incubator, including all 
parts which can be placed in the incubator during mechanical stimulation D) Calibration of the PulSElect system. The 
deflection is plotted against the increasing pressure applied to the system. The pressure is measured directly below the 
CellDrums, which is displayed in the second Y-axis[123]E) Software for creating user-defined pressure waves. The waveform 
can be generated from two Gaussian functions using the controllers. The data is then transposed into the appropriate data 
format to be compiled on the microcontroller. F) Real-time recording of the waveform created in Figure 21 E. The 
measurement was recorded using laser-assisted TTA at a sample rate of 1kHz[122]. 
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5.10. Stimulation Protocol 

The stimulation protocol describes the cell cultivation and mechanical stimulation routine for all 

experiments in which we exposed cells to mechanical stress. 

Differentiated haSMC cells were seeded to functionalized CellDrums, which is described in more detail 

in chapter 5.6.1. 

To define an appropriate dose and interval duration of mechanical stress, a series of experiments has 

been done. The main criteria were to prevent cellular detachment and to induce a measurable cellular 

response. The cellular viability was followed by an LDH assay and microscopic observation, as 

described in chapter 5.6.4. To determine a cellular response to the applied mechanical stress, the 

change of cytoskeletal structure arrangement by the cell morphology index (CMI) described in chapter 

5.11 was observed. 

For all experiments related to mechanical stimulation, a negative Gaussian-shaped pulse wave has 

been generated with a frequency of 2Hz. By choosing negatively directed pressure waves, we were 

dealing with cellular stretching exclusively. Furthermore, the cellular stimulation does have a few 

milliseconds of the resting phase, in which the cells are in their initial state. The stimulation rate refers 

to a heartbeat rate of 120 bpm [Figure 232]. 

Due to the calibration of the system, we are aware of the cellular stretch according to the applied 

pressure. The SOP was carried out with -40Pa, which equals a deflection of around 1,3mm and 1,5-

1,6% strain. 

A crucial stimulation parameter is the applied stress duration. The longer the mechanical stress 

duration, the higher the risk of monolayer ruptures. From our experimental results, we decided to 

stimulate the cells two times per day for 30 min each with at least 4 hours resting phase. With this 

stimulation characteristics, it was possible to measure intact cells over a period of five days. Proofing 

the specimen viability, the CellDrums were checked for cellular ruptures microscopically after each 

training. In between the stimulation periods, the cells were kept in the incubator under cell culture 

conditions. The cell medium was changed after every mechanical stimulation routine. 

  
Figure 22 Real-time recording of the mechn stimulation SOP 
signal. The measurements were recorded by laser-assisted 
TTA with a sampling rate of 1kHz. 

Figure 23 Flowchart of the stimulation SOP represented on 
a daily cycle. 
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5.11. Cell Morphology Index (CMI) 

The Cell Morphology Index (CMI) [Figure 24]. was developed to quantify the morphological changes of 

cytoskeletal structures within the cells objectively[160][161]  

The software was developed via LabVIEW [Linder, Goßmann & Bayer]and later on translated to Matlab 

by Mascha Schmitt[162]. 

Due to cytoskeletal fluorescence staining, the internal structures of the cell can be evaluated by angle-

dependent frequency analysis. The application of the CMI was used mainly to determine the SOP for 

the mechanical stimulation but also to understand the biomechanical stiffening of the cell by 

cytoskeletal rearrangement. 

To determine the CMI, 30 pictures of single cells from a single CellDrum have been taken and analyzed 

by the software. Each sample consisted of a sample and a control group, each consisting of three 

CellDrum. For data analysis, the data were pooled and evaluated.  

 

 

  

CMI 
0,96 

  

CMI 
0,27 

  

CMI 
0,1 

Figure 24 Explanation of the CMI analysis. Comparison of example models (left), similar cell examples (middle) and the 
resulting CMI value. Linear ordered structures result in a higher CMI value, whereas chaotic structures result in a CMI value 
close to zero. 
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5.12. Gene Analysis 

Gene analysis describes techniques to quantify potential cellular regulatory mechanisms on the 

transcriptomic level. Due to this work, the collected data should support the validity of the 

biomechanical measurements and enlighten the reasons for measured mechanical changes. 

5.12.1. Microarray Analysis 

Microarray analysis is a method for the complete analysis of the transcriptional level of the cell. The 

study was performed by the Gene Expression Affymetrix Facility of the Center for Molecular Medicine 

Cologne (CMMC). 

For the analysis, the complete RNA of the cell was obtained using the miRNA kit of Qiagen. The isolation 

was performed according to the manufacturer's instructions. The technical requirement for successful 

transcriptome analysis was 2µg/20µl total RNA necessary with A260/A280 ratio >1.8 and A260/A230 

>2.0. The quantity and purity of RNA were determined by photometric analysis first and later on 

checked again by the CMMC Affymetrix core facility via nanodrop technology. Transportation was 

done on dry ice around -80°C. 

The samples were analyzed by Clariom™ S Assays and an Affymetrix System. The focus on this 

part of the study was to elucidate the cellular stress management and support the collected data from 

mechanical stimulation within the CellDrum system. The purpose of the whole transcriptome analysis 

was to determine the impact of mechanical stimulation on the full transcriptomic level. 

The specimen was cultured on CellDrums and mechanically stimulated according to the SOP 5.6.1 & 

5.10. Three groups each six CellDrums were prepared. Six CellDrums as control and each six CellDrum 

for three and five days of stimulation. All specimens of each group were pooled and analyzed. 

5.12.1.1. Microarray Analysis Evaluation 

Data evaluation was carried out by TAC 4.0, a freeware software for the analysis of Affymetrix 

generated data. The data were evaluated by cluster and heatmap analysis to show general differences 

in mechanobiological relevant expression profiles. Special attention was paid to the genes and similar 

genes that had already been evaluated by qPCR. For further interpretation, the web-based g.profiler 

was used to show molecular pathways of specific regulation profiles. 

5.12.2. Quantitative PCR 

qPCR allows quantification of the gene expression levels, respectively, to a previously determined 

housekeeping gene. Due to this method, it is possible to determine the quantitative gene expression 

of target genes. For this gene expression analysis, we primarily focused on genes, which are directly 

related to structural changes, mechanosensitive and genes that are affecting the cellular contraction 

of smooth muscle cells. 

The specimen proceeded like described in 5.10. The same stress profile and the number of samples 

were analyzed. 

 

Description Gene Primer 

Glycerinaldehyd-3-
phosphate-
Dehydrogenase 

GAPDH 
Forward Primer GGAGCGAGATCCCTCCAAAAT 

Backward Primer GGCTGTTGTCATACTTCTCATGG 

Table 12 Housekeeping Gene 

https://de.wikipedia.org/wiki/Glycerinaldehyd-3-phosphat-Dehydrogenase
https://de.wikipedia.org/wiki/Glycerinaldehyd-3-phosphat-Dehydrogenase
https://de.wikipedia.org/wiki/Glycerinaldehyd-3-phosphat-Dehydrogenase
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Description Gene Primer 

beta Actin ACTB 
Forward Primer GTCTGCCTTGGTAGTGGATAATG 

Backward Primer TCGAGGACGCCCTATCATGG 

Tropomodulin 4 TMOD4 
Forward Primer CCCAAATCCCACAAACATTGAGG 

Backward Primer ACAGCTCACTTAGCATGGGTATT 

Filamin A FLNA 
Forward Primer CTTATCGCGCTGTTGGAGGT 

Backward Primer GCCACCGACACGTTCTCAA 

Smoothelin SMTN 
Forward Primer CCCTGGCATCCAAGCGTTT 

Backward Primer CTCCACATCGTTCATGGACTC 

Transgelin TAGLN 
Forward Primer AGTGCAGTCCAAAATCGAGAAG 

Backward Primer CTTGCTCAGAATCACGCCAT 
Table 13 Genes which are associated with changes in the cytoskeleton. 

Description Gene Primer 

CD49a ITGA1 
Forward Primer GCTCCTCACTGTTGTTCTACG 

Backward Primer CGGGCCGCTGAAAGTCATT 

P38 MAPK14 
Forward Primer TCAGTCCATCATTCATGCGAAA 

Backward Primer AACGTCCAACAGACCAATCAC 

MMP2 MMP2 
Forward Primer CGACCACAGCCAACTACGAT 

Backward Primer GTCAGGAGAGGCCCCATAGA 

MMP9 MMP9 
Forward Primer TGTACCGCTATGGTTACACTCG 

Backward Primer GGCAGGGACAGTTGCTTCT 

JNK 1 MAPK8 
Forward Primer GGGTATGCCCAAGAGGACAGA 

Backward Primer GTGTTGGAAAAGTGCGCTGG 

P4Hα1 P4HA1 
Forward Primer AGTACAGCGACAAAAGATCCAG 

Backward Primer CTCCAACTCACTCCACTCAGTA 

P21 CDKN1A 
Forward Primer ACATCGCCAAGGAAAAACGC 

Backward Primer GTCTGTTTCGGTACTGTCATCC 
Table 14 List of mechanosensitive genes that contribute to biomechanical adaptation and cellular signal transduction 

Description Gene Primer 

Desmin DES 
Forward Primer GAGACCATCGCGGCTAAGAAC 

Backward Primer GTGTAGGACTGGATCTGGTGT 

Tropomyosin TPM1 
Forward Primer GCCGACGTAGCTTCTCTGAAC 

Backward Primer TTTGGGCTCGACTCTCAATGA 

MYH11 MYH11 
Forward Primer CGCCAAGAGACTCGTCTGG 

Backward Primer TCTTTCCCAACCGTGACCTTC 

Calponin CNN1 
Forward Primer CTGTCAGCCGAGGTTAAGAAC 

Backward Primer GAGGCCGTCCATGAAGTTGTT 

Calmodulin CALM1 
Forward Primer TTGACTTCCCCGAATTTTTGACT 

Backward Primer GGAATGCCTCACGGATTTCTT 

α-smooth muscle actin ACTA2 
Forward Primer AAAAGACAGCTACGTGGGTGA 

Backward Primer GCCATGTTCTATCGGGTACTTC 
Table 15 Selection of genes that are directly related to the contractile force of the cell via the contractile mechanism 

 

In a second series, we focused on the gene expression of haSMC receptors and various ion channels, 

which are associated with the cellular tone, to elucidate potential increased reactivity of contraction 

and dilatation depending on ion channel and receptor transcription. Therefore, three groups of each 

twelve CellDrums have been prepared. Again, one control group and two stimulation groups. Six 

CellDrums were used for RNA isolation and six were used for pharmacological testing. To measure a 

variation in biomechanical response, we applied Bay K8644, verapamil, nifedipine and norepinephrine. 
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For comparable results, the cells were measured before and after drug application. As the 

measurements were carried out entirely after mechanical stimulation, the biomechanical changes 

according to the stimulation protocol are normalized. 

Description Gene Primer 

L Type Ca2+ Channel CACNA1C 
Forward Primer GAAGCGGCAGCAATATGGGA 

Backward Primer TTGGTGGCGTTGGAATCATCT 

T Type Ca2+ Channel CACNA1G 
Forward Primer TGTCTCCGCACGGTCTGTAA 

Backward Primer AAGCCGGTTCCAAGTGTCTC 

K+ ATP Channel KCNJ1 
Forward Primer GGTCGCTTCGTCAAGAAAGAC 

Backward Primer CACGCATGTGGTGAACAGG 

Transient Receptor 
Potential Canonical1 

TRPC1 
Forward Primer AGGATAGCCTCCGGCATTC 

Backward Primer TTCCACCTCCACAAGACTTAGT 

IP3 Receptor ITPR1 
Forward Primer GCGGAGGGATCGACAAATGG 

Backward Primer TGGGACATAGCTTAAAGAGGCA 

Alpha-1 Adrenergic 
Receptor 

ADRA1A 
Forward Primer CGCTACCCAACCATCGTCAC 

Backward Primer GAACAGGGGTCCAATGGATATG 

Alpha-2 Adrenergic 
Receptor 

ADRA2A 
Forward Primer TCGTCATCATCGCCGTGTTC 

Backward Primer AAGCCTTGCCGAAGTACCAG 

Beta-2 Adrenergic 
Receptor 

ADRB2 
Forward Primer TTGCTGGCACCCAATAGAAGC 

Backward Primer CAGACGCTCGAACTTGGCA 
Table 16 Selection of different genes that are related to the expression of receptors and ion channels responsible for cell 

contraction. 

Gene analysis via qPCR requires to isolate and convert the specimen genomic material to cDNA. Hence, 

there are two necessary steps in advance to prepare an qPCR. 

5.12.2.1. RNA Isolation 

The RNA isolation is carried out by the RNeasy mini kit by Qiagen. This kit uses one column to isolate 

RNA from different types of cells. 

Working with RNA is a time-critical procedure, which also requires stable low temperatures and clean 

surroundings. The whole extraction was carried out on crushed ice to keep the temperature as low as 

possible. To clean the working area from RNAse, all tools and surfaces were wiped with RNaseZAP. The 

used disposables were Ribonucleases free certified and sterile. Besides, the material was stored in 

separate boxes to keep them away from potential contamination sources. 

In order to keep the genomic material as unaffected as possible, the cells were directly lysed on top of 

the CellDrum membrane without previous trypsinization. To ensure ideal lysis, the samples were 

homogenized in QIshredder tubes and centrifuged for at least 3min with 8000g. Afterward, the 

protocol was followed as described in the kit manual. 

5.12.2.2. Reverse Transcription 

Subsequent isolation, the single-stranded RNA was transcribed to a double-stranded cDNA for 

stabilization and further procedure. For this step, the QuantiNova reverse transcription kit was used. 

The protocol was followed without any changes to the kit manual. 

After successful transcription, the amount and purity of the yield cDNA were measured by an 

Eppendorf photometer. Specimen quality was determined by the photometric relation of 260/280 = 

2.0± 0,2 and 260/230 = 2 ±0,5. Samples showing impurities were discarded. The total amount of cDNA 
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was diluted to 500µg/ml with PCR grade water and evenly distributed to microtubes. Afterward, the 

samples were stored at -80°C till the qPCR analysis started. 

5.12.2.3. qPCR Analysis 

For qPCR applications, the SsoAdvanced Universal SYBR Green Supermix and the iCyclerTM from Biorad 

were used. Preparation of the working space was performed like described before. To prevent the 

samples from warming, the microplate was kept on top of crushed ice. The qPCR agents were mixed 

to a master mix, which was prepared as followed: 

Component Volume per 20µl Reaction 

SsoAdvanced universal SYBR Green supermix (2x)c 10µl 

Forward and reverse primers 2µl (each) 

Template 2µl 
Table 17 Components of SsoAdvanced universal SYBR Green supermix 

The following protocol was implemented to the I-Cycler software: 

   Amplification  

System 
 

Setting/ 
Mode 

Polymerase 
Activision and 
DNA 
Denaturation 

Denaturation 
at 98°C 

Annealing/ 
Extension + 
Plate read at 
60°C 

Cycles 
Melt-Curve 
Analysis 

Biorad  
I-Cycler 

Std. 
30 sec at 95°C for 
cDNA 

15 sec 10 sec 40 
65-95°C 
increment 
5 sec/step 

Table 18 Biorad I-Cycler Settings 

The qPCR analysis was carried out with four individual specimen batches, consisting of pooled material 

taken from at least five CellDrums. Additionally, two technical replicates for the qPCR was prepared. 

The measurement depicts the comparison of mechanically stimulated and non-stimulated cells over 

different periods. The used training protocol is described in chapter 5.10. 

5.12.3. Endothelin-1 ELISA 

To evaluate endothelial ET1 secretion due to mechanical stimulation, an ELISA ET1 Kit by Thermofisher 

was used to screen the media for ET1 concentration. 

Two groups of each six CellDrums were prepared as a control group and an experimental group that 

was exposed to mechanical stress. The mechanical stimulation protocol follows the SOP described in 

chapter 5.10. A medium volume of 200µl was removed daily after every second stimulation interval. 

The sample evaluation was carried out by a Model 680 Microplate Reader by Biorad. 

The samples have been pooled and technical triplicates were measured. The protocol was carried out 

according to the kit manual, attached to the Appendix.  
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6. Results 

6.1. Biomechanics – Proof of Principle 

The first data sets represent the results of the proof of principle measurements, which are used to verify 

the functionality of the fundamental procedure. 

 

 
 

Figure 25 RTM 
measurement of haSMC 
cells treated with 100nM 
Bay K8644 over time. The 
data points represent the 
movement of the CellDrum 
membrane in µm [124] 
 

 

 

Figure 26 Cell number 
dependent rise of 
mechanical tension. Each 
bar represents the mean 
value of three individual 
samples. The error bars 
show the SEM. All 
measurements show the 
change in mechanical 
stress compared to non-
populated CellDrum, both 
with smooth muscle cells 
and endothelial cells. 

 
 

 

Figure 27 Temperature-
dependent cell tonus 
measurement over time. 
The points represent the 
mean value of 6 
individually measured 
CellDrums, each loaded 
with a previously chilled 
medium. The error bars 
represent the SEM. 

 

The dependency between cell number and biomechanical stress is shown in Figure 26.CellDrums were 

measured with and without cells resulting in stress variation. 1,5x105 cells per CellDrum are required 

to aim for the most significant stress variation. More than 1,5x105 cells do not increase cellular stress 

further. 

Regarding biomechanical properties, also 1,5x105 haECs are required to result in the highest stress 

variation. Nevertheless, much more cells could have been cultured on this space. The cellular stress 

does not vary with more than 1,5x105 cells of both cell types. Comparing both cell types, haSMC 

generate 20% greater cell stress. 
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Figure 27 shows the effect of cooling on the mechanical properties of haSMCs. The Graph represents 

two curves, the temperature progression and the cell stress. After replacing the culture media with 

previous chilled media, cellular stress increases. Whereas, when the media are reheated to incubator 

temperatures of 37°C, the stress level of the haSMCs went back to the initial stress level. 

6.2. Pharmacology 

6.2.1. Ca² Channel Modulators 

A) 

 

Figure 28 Time courses of L-Type Ca2+ 
channel modulators CellDrum 
investigation via LTM (N=6 mean ± 1 
SEM). The change in the mechanical 
stress caused by the test substance is 
expressed as the relative difference of 
the mechanical stress (%) to the initial 
value. A) Application of 10nM 
nifedipine B) Analysis of the 
biomechanical effect of 50nM 
verapamil C) Biomechanical effect over 
time by S-Bayk8644[124] 

B) 

 
C) 

 
 

Due to the L-Type Ca2+ channel blockage of verapamil and nifedipine, the cellular stress was decreased. 

Compared to nifedipine, the effect of Verapamil is lower by about 3%. The result of nifedipine was 

increased after an incubation time of 600 seconds. 

Bay K8466 is a Ca2+ agonist, which increases the influx of Ca2+ ions, resulting in a cellular contraction. 

This measurable effect was visible directly after drug application and reached a plateau after 500 

seconds. 
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6.2.2. K+ Channel Modulators 

A) 

 

Figure 29 Time courses of substances 
acting on K+ channels, CellDrum 
investigation via LTM (N=6 mean ± 1 
SEM). The change in the mechanical 
stress caused by the test substance is 
expressed as the relative difference of 
the mechanical stress (%) to the initial 
value. A) 50mM KCl B) 5,2µM CGRP C) 
1µM Diazoxide D)5µM Glibenclamide 
 

B) 

 
C) 

 
D) 

 
The application of KCl shows a slow increase in cellular stress compared to the effect of the Ca2+ 

channel modulators. Diazoxide and CGRP were acting on ATP sensitive potassium channels, which 

were blocked by the substances. By blocking the potassium channels, the intracellular Ca2+ content 

decreases, which leads to a relaxation of the cell. 
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CGRP was tested in two different concentrations, showing a dose-dependent difference. In both cases, 

the effect increases after 1200 seconds and reaches a plateau.  

Glibenclamide did not show an apparent biomechanical effect. In contrast to the control group, there 

was a slight deviation between 600 to 1000 seconds, plus an overall increased standard deviation. This 

suggests a vasoactive effect, which, however, cannot be described as a significant change in cellular 

tone. 

 
Figure 30 Analysis of the single and combined biomechanical effect of CGRP and glibenclamide on haSMC over time. 
CellDrum investigation via LTM (N=6 mean ± 1 SEM). The change in the mechanical stress caused by the test substance is 
expressed as the relative difference of the mechanical stress (%) to the initial value. All substances were measured on 
separate CellDrum samples. The sample of the measurement series glibenclamide+CGRP was first pretreated with 
glibenclamide for 30 minutes. The measurement was started when the CGRP was added to illustrate the competitive 
substance effect. 

 

Figure 30 shows the experimental data, in which the cells were exposed to Glibenclamide and CGRP. 

The samples were pretreated with a concentration of 5µM glibenclamide. Afterward, GCRP was added. 

The addition of CGRP did not show any remarkable tension deviation as compared to the effect of only 

CGRP. 
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6.2.3. NO 

A) 

 

Figure 31 Time courses of NO-Donators. 
CellDrum investigation via LTM (N=6 
mean ± 1 SEM). The change in the 
mechanical stress caused by the test 
substance is expressed as the relative 
difference of the mechanical stress (%) to 
the initial value. A) 5mM Spermine NO-
complex KCl B) 1mM DEA/NO 

 

B) 

 
 

Spermine-NO-complex and DEA/NONOate are nitric oxide-releasing substances. The cell dilation is 

measurable around 1-2% relative to initial stress and stood stable over the whole measurement. While 

the effect of spermine-NO-complex continues over the entire measurement period, the effect of 

DEA/NONOate disappears after 1200s and the cellular tension returned to their original stress level. 
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6.2.4. Vasoactive Mediators 

A) 

 

Figure 32 Time courses of measurement 
of various hormonal vasoactive agents. 
CellDrum investigation via LTM (N=6 
mean ± 1 SEM). The change in the 
mechanical stress caused by the test 
substance is expressed as the relative 
difference of the mechanical stress (%) to 
the initial value. A) 1µM Norepinephrinel 
B) 1µM Acetylcholin C)100 nM 
Angiotensin II D) 100nM Endothelin I 
 

B) 

 
C) 

 
D) 

 
All tested substances lead to cellular contraction. The direct application of NE to smooth muscle cells 

leads to a fast and vigorous contraction, which affects lasted only around 1000s. Afterward, the cellular 

stress went back to the initial stress level. Acetylcholine used on a monoculture of haSMC lead to a 

cellular contraction. The measured effect persists over the entire time observed. AT2 and ET1 are 

natural vasoactive substances to increase the vascular cell tone. Compared to AT2, the effect of ET1 
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was more intense and lasted over the whole measurement period, whereas the cellular contraction by 

AT2 was decreasing in the end. 

6.2.5. PDE5 Inhibitor 

A)

 

Figure 33 Time courses of vasoactive 
agents with various mechanisms of 
effect. CellDrum investigation via LTM 
(N=6 mean ± 1 SEM). The change in the 
mechanical stress caused by the test 
substance is expressed as the relative 
difference of the mechanical stress (%) to 
the initial value. A) 1µM Sildenafil 

The addition of 1µM Sildenafil reduces the cell tonus slightly and varies between 1-2% mechanical 

tension relative to the initial value. The measured data show a negative trend, but with a comparably 

high standard deviation.  
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6.2.6. Stimulants & Toxins 

Figure 34 shows the effect of 10µM caffein. The relaxation started immediately after the application 

and went over to a plateau phase after 400s. The spider toxin GsmTx-4 caused an apparent 

relaxation of the cells at the beginning of the measurement, which is reproducible with repeated 

measures. This heavy relaxation ended after a few measurement cycles and ends in a slight decrease 

in the cell tone, which varies between 0-2% relaxation. Cytochalasin-D caused a fast and intense 

relaxation of the cell, with a minimum standard deviation between the individual samples. 

A) 

 

Figure 34 Time courses of vasoactive 
agents with various mechanisms of effect.  
CellDrum investigation via LTM (N=6 mean 
± 1 SEM). The change in the mechanical 
stress caused by the test substance is 
expressed as the relative difference of the 
mechanical stress (%) to the initial value. 
A) 10µM Caffeine B) 250nM GsMTx-4 
Spider Venom C) 100 nM Cytochalasin D  

B) 

 
C) 
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Results of Figure 35 show an attempt of a measurement series, in which cytochalasin-D was applied 

first and NE after 2000 seconds. The effect of cytochalasin-D was comparable to the single substance 

measurement, showing a fast and intense decrease in cellular tension. The followed application of NE 

increases cellular stress by 1% only. Both drugs show the same time responses in the single drug tests, 

whereas the effect of norepinephrine was comparably low. 

The same setup was repeated in the reverse chronology. Here NE was applied first and cytochalasin-D 

after 2000 s. The time course shows correlating results to the measured data from the single drug 

experiments, regarding time progression and effect. 

  

A)

 
B) 

 
Figure 35 Analysis of the biomechanical effect of serial application of cytochalasin D and norepinephrine over time. CellDrum 
investigation via LTM (N=6 mean ± 1 SEM). The change in the mechanical stress caused by the test substance expressed as 
the relative difference of the mechanical stress (%) to the initial value. Both substances were added in series to the same 
sample to show the effect of the substance mixture. A) Addition of 1µM norepinephrine followed by 100nM cytochalasin D. 
B) Stimulation of 100nM cytochalasin D followed by 1µM norepinephrine 
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6.2.7. Dose-Response Model 

 

 
Figure 36 Dose-response model of all tested agents in the concentrations of 0.1nM, 1nM, 10nM, 100nM and 1µM. Y-Axis 
indicates the deviation in mechanical stress relative to control in % to the initial stress. The X-Axis represents the substance 
concentration on a log scale. Every data point represents five (n=5) measurements taken from three individual 
samples(N=6). The error bars indicate the SEM [124](figure adapted) 

 

Figure 36 shows the dose-dependent biomechanical change of haSMC on the addition of Bay K8644, 

NE, nifedipine, verapamil and spermine-NO-complex, measured by PTM. The application of verapamil 

and nifedipine decreases the tension around 4% with comparable high standard deviation. In contrast, 

the use of Bay K8644 and norepinephrine increased mechanical stress around 10,6%, representing the 

greatest vasoconstriction during this study. The concentration dependency of the spermine-NO-

complexes was also tested, which showed its most potent effect already at a concentration of 10nM. 
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6.3. Mechanical Stimulation 

 
Figure 37 Showing the biomechanical changes of haSMC induced by mechanical stimulation over five days. CellDrum 
investigation via PTM.Every data point represents the mean value of five independent measured specimens and the error 
bars represent the SEM (N=6 mean n=5  ± 1 SEM). The time course data represent the stimulated specimen compared to the 
unstimulated specimen. 

 

Nevertheless, the mechanical stress of the cells increased, whether the cells were stimulated or remain 

in steady-state. After day three, the tension of the stimulated cells increases, whereas the control went 

over in a plateau phase. After five days, the cellular tension was around the values measured on the 

third day. The stress of the stimulated cells decreased minimally as the standard deviation increased. 

A  
Figure 38 Monitoring of cell vitality and cell count of haSMC throughout mechanical stimulation according to SOP for six days. 
A) Quantification of cell count and viability by automatic cell counter and trypan blue staining (N=6; n=2 ±SEM) B) Viability test 
by LDH assay and photometric analysis Comparison of stimulated and unstimulated samples (N=6; n=2 ±SEM). 

 

Figure 38 shows the results of the viability test, which was carried out analogous to the mechanical 

seat simulation. While the LDH assay initially indicates an increase in the LDH value secreted into the 

medium, cell count and viability of the haSMC remained stable over the stimulation period of six days 

with cell viability of greater than or equal to 90% on the CellDrums. 

0

5

10

15

20

25

0 1 2 3 4 5

St
re

ss
 d

ev
ia

ti
o

n
 r

el
at

iv
e 

to
 in

it
ia

l s
tr

es
s 

in
 

%

Days of mech. Stimulation

Control Mech.Stimulation

0

20

40

60

80

100

0

50000

100000

150000

0 1 2 3 4 5 6

V
ia

b
ili

ty
 in

 %

C
el

l n
u

m
b

er

Days
Cell number Viability

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

0 2 4 6

A
4

9
0

/6
8

0
n

m

Days

Control Trained Lysed Sample



57 
 

 
Figure 39 Monitoring of cell vitality and cell count of haEC throughout mechanical stimulation according to SOP for six days. 
A) Quantification of cell count and viability by automatic cell counter and trypan blue staining (N=6; n=2 ±SEM) B) Viability 
test by LDH assay and photometric analysis Comparison of stimulated and unstimulated samples (N=6; n=2 ±SEM). 

 

Figure 39 represents the results of the same experiment described above but performed with haEC. At 

the beginning of the experiment, cell count, vitality and LDH secretions indicate a remarkably intact 

sample. From day four on, a slight increase in LDH value is visible, whereas a minimal reduction of the 

cell number is perceptible with minimally decreasing cell viability. On day six, the maximum LDH value 

of the samples was measured, which indicates that the samples were severely damaged. Among other 

things, the SOP of the mechanical stimulation was aligned with this. 

In addition to the LDH assays, cell live and dead stainings were prepared to visually control the 

quality and functionality of the cell monolayer[Figure 40] 

  
 

Figure 40 Representative images of live/dead stainings, showing dead cells that have not detached from the CellDrum 
membrane. The parameters of the training were adjusted so that no more damaged cells could be detected. 
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Figure 41 CMI evaluation for the quantification of cytoskeletal f-actin alignment by mechanical stimulation on CellDrums. 
Each data set was stimulated and unstimulated with three individual CellDrums for the stimulation intervals 0min, 30min, 
60min, 90min (N=3; n=30 ±SEM). The intensity parameters correspond to the parameters of the SOP (f=2Hz, P=-40Pa). 
Below representative images of the corresponding stimulation protocols of haSMC, fixed and stained with Alexaflour 
Phalloidin 488. 

 

The results of the CMI evaluation [Figure 41] show that the cytoskeletal alignment correlates with the 

stimulation duration. The longer the cells were mechanically stressed per day, the more aligned the 

cytoskeletal structures are. Despite biaxial stretching, the fibers seem to align in a particular direction. 

Due to the individuality of the samples, the data are always presented in groups of stimulated versus 

control. So the effect triggered by the mechanical stimulation becomes clear. 
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Figure 42 Showing how mechanical stimulation affects the biomechanical response of haSMC to vasoactive agents. Every 
substance was tested by six individual CellDrums, which were measured after mechanical stimulation after 0 days, three days 
and five days via PTM and the error bars represent the SEM (N=6 mean n=5 ± 1 SEM)[163](figure adapted). 

 

The datasets above visualize the variation in response to vasoactive substances after mechanical 

stimulation. The stimulated cells were exposed to mechanical stimulation over five days and vasoactive 

agents were added after three and five days of stimulation. Each group consists of a set of six 

CellDrums. The data show the change in cell tone in direct comparison to the initial measurement, 

which was made shortly before the test substance application so that the overall increased cell tone 

did not affect the result shown. 
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Figure 43 Endothelin secretion measured via ET1 ELISA Kit over the time of 5 days. Every dataset represents the pooled values 
of three individual samples with two technical replicates of stimulated and unstimulated Cells(N=3 mean n=2 ± 1 SEM). The 
used CellDrum model consisted of each 200.000 haEC monolayer. 

Figure 43 shows the ET1 content determined by ELISA kit in the cell culture medium of haEC 

mechanically stimulated cells over time. Already on day 0, before the cells were exposed to mechanical 

stimulation, ET1 concentration of approx. 67pg/µl was measurable. In the course of time, a significant 

increase in the ET1 level was noticeable. When comparing the stimulated and unstimulated sample, 

the mechanical stress seemed to have only a slightly more substantial effect on the ET1 secretion, as 

the ET1 concentration of the control increases at a similar rate over time. Already after three days, an 

ET1 concentration maximum was measured, which does not significantly differ from the measurement 

after five days of mechanical stimulation. 

6.3.1. Microarray Analysis 

The data collected by the Affiemtrix system was analyzed by TAC 4.0 from the company applied biosystem. 

Figure 44 summarizes the results of up- and down-regulated genes from transcriptome analysis. The two 

stimulation durations were compared and each stimulation duration was compared with the unstimulated 

control. 

Quantity distribution clearly shows that more genes are addressed by more extended or more frequent 

mechanical stimulation. Thus, after three days, a change of 118 genes can be measured, while after five 

days, 1208 genes have already have been regulated. 

Furthermore, by comparing the two training cycles, it can also be shown that the expression profiles of the 

genes with the length of the stimulation sharply differ from each other. These deviations were later also 

made clear in the investigation of individual genes, that the genes addressed vary at different points in time 

Figure 45 shows the transcriptome comparison of not mechanical stimulated cells to the cells, which were 

stimulated for three days and five days, according to the SOP described in 5.10. 

Significantly down-regulated genes with a foldchange greater equal two are depicted in green color. 

Red dots indicate upregulated genes for the same conditions. 

The analysis of the transcription level showed that the response goes along with mechanical stimulation. 

Hence, the more stimuli, the higher the effect of the transcription level. 

For a more detailed examination of the data sets, genes that could be directly related to the 

development of hypertension were examined. Genes from different epidemiological studies were 

combined and projected onto the data collected in this study. The change in the expression profile is 

shown in Figure 45 C, based on a heat map.  
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A) 

       

B) 

       
C) 

                
D) 

                                   

Figure 44 A+B) Comparison of gene expression profile due to mechanical stimulation according to stimulation SOP after 
three and five days. Genes have been highlighted at a significant change in expression level (p<0.05; foldchanges >2 ; 
 <-2). C+D) Comparison of gene expression profile due to mechanical stimulation according to stimulation SOP after three 
and five days. Venn diagram to visualize the diversity of regulated genes. Data were evaluated by microarray analysis 
(Affymetrix) and TAC4.0 Software 
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A) 

 

B) 

 
C) 

                
Figure 45 A+B) Comparison of gene expression of pooled genes from different epidemiological studies, which could be 
related as signature genes for the pathogenesis of hypertension, after three and five days of mechanical 
stimulation[43,164–167]. Genes have been highlighted without consideration of significant fold change (Fold >0<; p>0< ). 
The arrangement of the data points suggests that the majority of signature genes were not significantly affected by 
mechanical manipulation. C) Heatmap of pooled signature genes. Data were evaluated by microarray analysis (Affymetrix) 
and TAC4.0 Software.   
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6.3.2. qPCR 

The qPCR results were split into subgroups for better evaluation. First data show the gene expression 

level of cytoskeletal related genes in a comparison of different mechanical stimulation protocols. A 

high deviation was detected for Filamin A after three days of stimulation. Compared to this, β-actin 

and tropomodulin 4 were highly expressed after five days of mechanical stimulation. 

A) 

 

B) 

 
C) 

 

Figure 46 Evaluation of qPCR data A) of genes related to 
changes in cytoskeletal structures B) of genes directly related 
to the contractile apparatus C) of mechanosensitive genes, 
which also respond to cell signaling and mechanical stress 
adaptation. Each data set describes the pooled data of three 
individual haSMC samples, each with three technical 
replicates. The error bars show the SEM. Direct comparison 
of gene expression after three and five days of mechanical 
stimulation concerning the unstimulated control 
 

 

Figure 46 B shows the expression level of genes that are directly related to the contractility of the cells. 

All genes except tropomyosin, experience increased gene upregulation at least after five days of 

mechanical stimulation. At last, the gene expression of genes that are sensitive to mechanical 

stimulation and also related to hypertension pathogenesis.  
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A) 

 

B) 

 
C) 

 

D)

 
Figure 47 Evaluation of the qPCR data A) androgenic receptors B) of different calcium channels C) of strain-dependent 
calcium channels D) of potassium channels in a direct comparison of gene expression after three and five days of 
mechanical stimulation with the unstimulated control. Each data set describes the pooled data of three individual samples 
with three technical replicates each. The error bars show the SEM. 

 

Focussing on gene expression levels related to ion channels and receptors which are responsible for 

cellular contraction is shown in Figure 47. 

Three days of SOP stimulation protocol induced a slight variation on gene expression. Exclusively, 

TRCP1 was significantly increased after three days. According to the qPCR analysis, five days of 

stimulation lead to significant upregulation of ADRA1A, CACNA1C and KCNJ1.  
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6.4. Co-Culture 

The most promising media blend was composed of basal media M199 with 2% FBS, 30µl/ml heparin, 

0,5ng/ml hEGF and 1% penicillin-streptomycin. The presented results were carried out with the final 

medium blend. Cell proliferation behavior and viability over time are represented in Figure 48 A/B. The 

number and viability of haSMC stood consistent over the whole period of observation. The cell count 

on days five and seven shows a high standard deviation. This was caused by cellular detachment from 

particular wells. We estimate this as an outlier, which was not representative. 

A)

 

B)

 
C)

 

D)

 
Figure 48 Reviews the cell number and cell viability due to exposure to standard media and co-culture media. The X-axis 
represents the time course in days, Y-axis 1 represents the total cell number and Y-axis 2 represents the cell viability in 
percentage. The displayed data show the mean values from three individual biological samples and two technical 
replicates, and the error bars show the standard deviation. A) Proliferation curve of haSMC with initial growth supplement. 
On day eight, the medium for cell differentiation was added. B) Proliferation curve of haEC with M200 medium and low 
serum growth supplement. C+D) Cultivation of haSMC and haEC in final co-culture medium. The initial cell count was 
adjusted according to the defined cell models. 

 

In contrast, endothelial cell number decreases by day nine, whereas the cellular viability stood 

consistent >90%. haECs was highly sensitive and had weak adhesion characteristics. Even during cell 

maintain, the cell always needed collagen-coated surfaces to grow on. The haEC graph (Figure 48 D) 

shows that even with collagen type 1 coated multi-well dishes, the cells started to detach. Since the 

samples were washed with PBS prior to trypsinization, the number of cells decreased while viability 

remained the same. 
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A) 

 

B) 

 
C) 

 

D) 

 
E) 

 

F) 

 
G) 

 

H) 

 
 

Figure 49 Strategic microscopic investigation of haSMC and haEC single and co-cultures in monolayer and three-
dimensional arrangement. A) Phase-contrast image of differentiated haSMC on polystyrene slides cultivated with co-
culture medium. B) Phase-contrast image of haEC grown on polystyrene slides in co-culture medium. C) Smooth muscle cell 
alpha-actin antibody staining of haSMC cultivated in co-culture medium. D) CD-31 antibody staining of haEC in co-culture 
medium. E) Phase-contrast image of a direct co-culture of haSMC and haEC in monolayer. Cell ratio 1:1, cultivated on 
polystyrene slide in co-culture medium. F) Co-culture of haSMC and haEC cultivated on polystyrene and stained with 
antibodies CD31 and smooth muscle cell alpha action. G+H) co-culture of two monolayers consisting of haSMC and haEC 
arranged three-dimensionally on top of each other in CellDrums. They were cultivated in the co-culture medium. 
Endothelium stained with CellTracker Deep red and smooth muscle cells with CellTracker green. 
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Microscopic analysis (Figure 49) showed that the cells contained cell-specific markers even after long 

time exposure to the co-culture media blend. Additionally, we were able to show successful co-

cultivation via light microscope evaluation and immunocytochemistry staining in a monolayer. Utilizing 

different Cell Trackers, we tried to display a three-dimensionally arranged co-culture on the CellDrums. 

It was possible to show both cell types independently of each other and to record them using 

microscopic Z-stack and full focus recordings. 

 

 
Figure 50 Time courses observation of biomechanical effect induces conditioned medium. CellDrum investigation via LTM 
(N=6 mean ± 1 SEM). The change in the mechanical stress caused by the test Media expressed as the relative difference of 
the mechanical stress (%) to the initial value. The control measurement was performed using M231 medium. The control 
measurement M200 was carried out with fresh M200 medium. Conditioned M200 was conditioned for 24h on CllDrums with 
200.000haEC before application. 

 

The data in Figure 50 depicts the biomechanical impact of conditioned culture media. Media from 
previously mechanical stimulated haECs was removed and added to a CellDrum cultured with haSMC. 
The control group was supplemented with fresh M200 media and M231. The data revealed that the 
SMCs started to contract in the presence of ECs conditioned media. The cellular tension increased 
within the first 400 seconds and stabilized in a plateau phase with relatively high SEM over the whole 
measurement time. 
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6.5. Blood Sera 

 
Figure 51 Analysis of the biomechanical effect of blood sera obtained from fresh blood collected from different scenarios 
over time. CellDrum investigation via LTM (N=6 mean ± 1 SEM). The change in the mechanical stress caused by the test 
substance is expressed as the relative difference of the mechanical stress (%) to the initial value. 

 

Figure 51 depicts the data from the exercise ECG test. Application of control sera leads to a slight 

increased haSMC tone, and the ECG exercise stress amplifies the effect. In contrast, the vascular tone 

was decreased after administering the arginine and citrulline mixture to the subject. It should be 

mentioned in particular that the contraction caused by the first two measurements have a maximum, 

which in both cases fall off again after 400s. On the other hand, the evaluation of the supplemented 

sera showed a more continuous tonus-lowering effect, but with enlarged variations of standard 

deviation.  

The test person was monitored by a medical specialist during the procedure. Figure 52 shows the 

monitoring of the subject representatively during the experiment. 

Pre 

 
 

Post 

 

Figure 52 ECG patient monitoring during the two ECG measurements. The curve Pre shows the ECG course of the first run 
without taking the sports supplements, whereas Post shows the ECG course after taking the supplements. It can be seen 
that the heart rate increases in the second run while the blood pressure is lower compared to the first run. 
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7. Discussion 

7.1. Mechanobiological Vascular in-vitro Model  

To establish the functional vascular CellDrum model, the in-vitro models were exposed to different 

stimuli and agents with known mechanisms of action to compare their biomechanical response with 

the physiological behavior of vascular cells.  

The determination of the temperature depending biomechanics of the cells was initially decisive as to 

whether the measurement would take place under the clean bench or in the incubator. Due to the 

cellular cooling with chilled media, a measurable contraction of the haSMC was shown. Especially for 

temperature <10°C the cellular tension has changed remarkably. After 1500 seconds, a temperature 

of ≥30°C, the cell tension has normalized. A considerable temperature drop from 37°C to 25°C room 

temperature is noticeable but not distressing. By these results, we assume that the measurements 

from the perspective of the biomechanical analysis can be done as well under clean bench conditions. 

Nevertheless, metabolic and molecular mechanisms could be affected by the temperature drop and 

the decreased CO2 saturation as well but were not inspected in this work. The measurements also 

provided interesting insights into the biomechanical temperature dependence of vascular smooth 

muscle cells[168]. 

Pharmacological testing: 

The application of calcium channel modulators has been discussed in detail in the publication 

“Mechano-pharmacological testing of L-type Ca2+ channel modulators by a human vascular CellDrum 

model” which we have published in April 2020. Modulation of Ca2+ channels leads to measurable 

relaxation and contraction of the cells with permanent effects. In addition to the application of Ca2+, 

we have evaluated different measurement protocols. 

All three Ca2+ channel modulators are capable of inducing significantly measurable changes in cellular 

strength. With the application of Bay K8644, the increase in cell tonus indicates an increased Ca2+ influx. 

Bay-K8644 increases the transient Ca2+ concentration in the cell from which an increased calcium-induced 

calcium release from the sarcoplasmic reticulum is assumed, leading to a raised cell[136,137,139]. In 

contrast, the Ca2+ channel antagonists nifedipine and verapamil block the Ca2+ inflow, which leads to a 

reduction of the intracellular Ca2+ and, in turn, to a relaxation of the cell[143,169,170]. While verapamil has 

a specific effect on the L-type Ca2+ channel, reference studies suggest a further non-specific effect of various 

other voltage-dependent Ca2+ channels. Besides the lower bioavailability, especially the blockade of various 

Ca2+ channels, could explain the significantly stronger relaxing effect of nifedipine[171,172]. 

KCl 

The stimulation via KCl leads to a depolarization of the smooth muscle cell and opens voltage-

dependent Ca2+ channels. The resulting influx of extracellular Ca2+ activates the Ca2+-dependent 

contraction mechanism and leads to an increase in cell tone, which can be measured 

biomechanically[31]. Compared to the measurements of Ca2+ channel modulators, the plateau phase 

was reached later around 600s.  

Diazoxide reduces the cell tone endothelium-independently by the presence of low concentrations of 

KCl. The vasodilatory properties of diazoxide are related to the inhibition of the Ca2+ influx, which 

seems to result from the activation of the ATP-dependent K+ channels[147,173]. 

The endocrine factor CGRP has a strong relaxing effect on haSMC, which can be explained by the 

activation of adenyl cyclase. In addition, both agents also seem to act on ATP-dependent K+ channels, 

which we will be discussed later via substance combination experiments[146]. 
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Glibenclamide also acts on the ATP-dependent K+ channels and regulates the Ca2+ flux by decreasing 

the influx of K+. In theory, it should lead to a relaxation of the smooth muscle cells. However, this effect 

could not be measured in our experiments. On the basis of the unsteady signal and comparably large 

SEM deviation, an effect can be suspected, but no significant difference can be determined[149,174]. 

NO donators: 

Spermine-NO-complex and DEA/NONOate are nitric releasing substances used to mimic the eNO 

release in-vivo. Both substances lead to a slight cellular relaxation of the haSMC layer, but not as much 

as the previously used agents have shown. Unlike the vasoactive substances, the NO donators 

releasing their NO in doses over a more extended period. In addition, these molecules are quite 

unstable at room temperature. Hence they decay and loos their potency over time. According to the 

results, spermine releases NO over the whole measurement span. The limited release and the effect 

NO induce a cellular relaxation around 2-3%. The dose-response model showed that the cell response 

correlates to the concentration of the applied substance. Spermine-NO-complex as NO donator was 

applied in two different doses. Even by increasing the dose by a factor of 100, the relaxation does not 

increase significantly, which is contrary to the literature data. In previous investigations, stronger 

relaxation effects were measured, so that it can be assumed that the maximum relaxation potential of 

NO could not be represented in this test arrangement. By this, we consider that even the lower 

concentration reached the maximum relaxation, which can be caused by NO, possibly caused by the 

low  NO release of the substance or by its rapid decomposition within the CellDrum setup[175]. 

Following the literature, DEA/NO does not have a significant relaxational effect on smoothing muscle cells 

[176]. We were able to measure slight relaxation over the first 800s. Compared to the control group, 

the addition of DEA caused a more significant SEM deviation. These fluctuations can be indicators of 

some measurable effects, which might go down within the signal-noise ratio. Nevertheless, the 

amplitude reaches initial tension after ~900s, which we interpret as that DEA has completely decayed. 

Vasoactive Mediators: 

ET1 and AT2 have been tested as natural vasoactive substances. Endothelin-1 is known as the most 

potent natural vasoactive substance to regulate vascular tone. The measurements showed a stable 

and robust increase in the cellular tone. Compared to this, angiotensin II is described in literature a 

less potent than ET1. Even though AT2 increased the tension by 5%, the effect decreased after 1400 s. 

Additionally, norepinephrine has been tested. Unlike all other tested substances, NE increased the 

cellular tension within the first 200s to a maximum contraction. Almost instantly, the effect diminishes 

and the cellular tone went back to initial stress within the early 1000s. This very short phase of 

concentration can also be traced back to the stability of the substance in solution, so that the active 

ingredient may no longer be present after 1000s. Studies on the half-life of norepinephrine show that 

it is dependent on concentration and light exposure[48,177]. NE loses its effect only after a few 

seconds, whereas comparable in-vitro studies show that the measurable contraction of vSMC 

decreases at a similar rate[145]. 

According to the literature, acetylcholine application in-vivo leads to vasodilatation by triggering the 

production of eNOs via the endothelial cells. As we are using only haSMC for the pharmacological 

study, the effect mechanism is acting on the muscarinic IP3 pathway, which leads to vasoconstriction 

by intracellular Ca2+ release. This has been shown in several publications and is also suspected to be a 

cause for coronary vessel constriction[178]. 
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Stimulants and Toxins: 

Caffeine is one of the most widely used stimulants and is taken in by most people every day through 

drinks, food and medication. Caffeine belongs to the group of xanthines and affects the vascular 

system through various direct and indirect mechanisms of action[156]. Indirectly, caffeine affects 

VSMC via the endothelial cells located in the lumen. Caffeine increases the cytoplasmic Ca2+ of the 

endothelial cells, by forming the calcium-calmodulin complex that activates the nitric oxide synthase 

enzyme to produce nitric oxide. This diffuses into the VSM and leads to NO-induced vasodilation. In 

addition, caffeine leads to an increase in cAMP, thereby decreasing the non-contractile intracellular 

Ca2+ and inhibiting MLCK. Caffeine also has a direct inhibitory effect on MLC kinase and actin-myosin 

interaction, resulting in smooth muscle cell relaxation in both cases. In contrast, caffeine also blocks 

the adenosine receptors in vascular tissue, which in turn, will lead to vasoconstriction[179,180]. 

Based on the data in Figure 34, we were able to measure a moderate but steady relaxation of haSMC 

in our experiments by the addition of caffeine. Based on the data, it cannot be ruled out that both 

mechanisms of action are effective or that the vasodilative effects compensate for the vasoconstrictive 

ones. Since the experiments were tested exclusively on haSMC, only direct mechanisms of action can 

be considered. 

GsMTx4 is a spider venom peptide that has an inhibitory effect on mechanosensitive cationic channels 

of cells[181]. Our measurements in Figure 34 show that after the addition of the substance, an intense 

relaxation occurs with a fast onset, which could be measured reproducibly with a relatively small SEM. 

The measurements correlate with data from the literature and can be explained as follows. GsMTx4 is 

integrated into the cell membrane in a voltage-dependent manner, which distorts the mechanical 

stress distribution around the corresponding mechanosensitive channels, thus making the 

transmission of force to the channel less efficient [159]. According to the literature, it can be assumed 

that GsMTx4 has no direct influence on channel activity and cell contraction[182]. The measured 

relaxation would therefore be due to the basic tone of the cells, which the cells develop on the soft 

substrates of the CellDrum. In addition, the signal becomes inconsistent after the initially very intense 

relaxation and alternates between 0% and 3% relaxation. These fluctuations could possibly be due to 

the mechanosensitive activation of the cell by the inflation measurement. Electrophysiological studies 

would enlighten the action of mechanism and the cellular response to the substance. 

Sildenafil is a substance that is mostly used as a drug for the treatment of erectile dysfunction. Through 

specific phosphodiesterase type 5 (PDE5) inhibition, NO-mediated vasodilation is enhanced by 

inhibition of cyclic guanosine monophosphate degradation of tissues[183]. As with the above-

mentioned substances, sildenafil acts both directly and indirectly on the tissue. Studies have shown 

that sildenafil can promote vSMC relaxation via cGMP, cAMP and K+ channel-dependent signaling 

pathways even without a nitrogen-mediated pathway, but this is the far less dominant effect [184]. 

Since sildenafil can only act via the direct vSMC signaling pathway due to the lack of endothelium in 

our model, only a marginal and not significant change in cell tension was measured despite the high 

dosage. As in the other experiments, the measurement was performed without endothelial cells, 

which means that the NO signaling pathway is entirely negligible. 

Cytochalasin D is known to inactivate the contractile apparatus of the cell entirely irreversibly. Aside 

from the cellular relaxational effect, cytochalasin-D measurements were essential to define maximum 

relaxation. Due to its irreversible effect, it is not useful for previous sample calibration but can be used 

to estimate the expected measurement range. Moreover, it may give insight into the residual tension 

which is build up by the ECM and cytoskeleton[11,185]. 
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Agent combinations: 

Serial measurements were used to demonstrate the cooperative and or competitive effects of multiple 

substances. These kinds of measurements were roughly examined, as the CellDrum technology needs 

further technical adjustments for a wash in and out experiments. The first experiment was based on a 

publication of Nelson et al., who showed that CGRP acts via ATP-dependent K+ channels[146]. CGRP 

causes intense vSMC relaxation, as shown in Figure 30. GCRP, in combination with glibenclamide, does 

not lead to any biomechanical vSMC response, as glibenclamide blocks the corresponding channel. 

Nelson et al., proofed that mechanism biomechanically and electrophysiologically. In this thesis, we 

have reconstructed the experimental setup and were able to prove the results via CellDrum 

technology. As glibenclamide does not have any measurable biomechanical effect, it was possible to 

apply glibenclamide in advance and add CGRP just as the measurement has started. 

A real wash in measurement, in which two substances have been added during a serial measurement, 

was carried out with NE and Cyochalasin D. This kind of measurements was only performed with one 

substance combination, as the pipetting procedure effort maximal precision to prevent a baseline shift 

of the whole measurement series. For futures analysis, this procedure needs to be automated. 

Dose-response model: 

The dose-response model proved that the biomechanical substance effects are dose-dependent and 

can also be resolved like that. From this data, we predict a maximum measurement range from 

approximately -4% to +10% tension deviation from initial tension, with unstimulated haSMC on 

CellDrums. Measurement was carried out by the PTM. Solely the effect of norepinephrine was 

evaluated after three minutes, whereas the other substances were incubated for five minutes 

according to the SOP. As shown in the single-dose experiments, the effect of NE diminishes over time. 

The maximum amplitude was no longer detectable for NE after five minutes. 

Spermine-NO-complex reaches the maximum effect already at the application of 10nM and, from then 

on, went into the saturation of relaxation. This supports our hypothesis that the effect of NO on our 

model is limited to -2% relaxation. 

General biomechanics: 

Comparing to similar studies that deal with the pharmacological effects of vasoactive substances, the 

results presented here seem comparably small [Table 19]. It should be noted that the samples for the 

experiments performed were neither chemically nor mechanically pretreated. Thus, the presented 

results are not scaled based on a pre-stress or maximum contraction but normalized to the initial 

mechanical tension. The defined mechanical initial stress of the model was set to 50±5kPa so that the 

calculated percentage deviation can be transformed into kPa in each case and further on in µN as well. 

Cell contraction and relaxation could be measured without prior pharmacological or mechanical 

stimulation, suggesting that the flexible CellDrum membrane and the components of the medium 

allow the cells to generate and maintain a certain biomechanical tone, which is slightly higher than the 

membrane tension alone. 
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Table 19 Comparison of the data acquired by us with comparable studies. Subject species: Rat (R); Human (H); Chicken 

(C) and Mouse (M) 

Test 
Substance 

Result Spec. Setup Ref. CellDrum 

  % µN 
Nifedipine ↓ 30±5mmHg R In-vivo [186] ↓ -4,15 -132,8 

 ↓ 15-20mmHg  In-vivo [143]    

 ↓ 40% to NE stim.  In-vitro [138]    
Verapamil ↓ 15-29% H In Vito [141] ↓ -1,87 -59,84 
Bay-K8644 ↑ ~130 to 

Vera/Nife. stim 
 Organ-bath [139] ↑ 4,4 140,8 

 ↑ 191±6mmHg R Organ-Bath [187]    

 ↑ 150% to Nife.  In-vitro [138]    
KCl ↑ 350% R Organ-bath [188] ↑ 2,6 83,2 
 ↑ 15-20% C In-vitro [189]    
CGRP ↑ 20% Ø R Organ-bath [149] ↓ -3 -96 
Diazoxide  - - -  ↓ -3,71 -118,72 
Glibenclamide ↓ ~60% ti PE stim.  Organ-bath [174] ↓ -0,66 -21,12 
Spermine ↓ ~60% to ACh  In-vitro [190] ↓ -1,81 -57,92 
DEA/NO ↑ ~60% M Organ-bath [191] ↓ -1,29 -41,28 
NE ↑ 1,75±0,17mN/m

m² 
R Organ-bath [145] ↑ 4,62 147,84 

 ↑ 4,58+-
0,006mN/mm² 

R In-vitro [145]    

Acetylcholine ↓ 1,75mm Ø  Organ-bath [192] ↑ 2,82 90,24 
 ↑ ~40% M Organ-bath [191]    
 ↑ 52,1±7,8N/mm² R Organ-bath [145]    
 ↑ 0,46±0,1N/mm² R In-vitro [145]    
AT2 ↓ 12% Ø R Organbath [73] ↑ 4,54 148,28 
ET1 ↑ 3,8±0,2mN/mm² R In-vivo [193] ↑ 5,36 171,52 
 ↑ 23,7±6,7% to KCl 

stim. 
C Organ-bath [194]    

Caffeine ↑ 3,-15mmHg H In-vivo [195] ↓ -2,99 -95,68 
GsMTX-4 - - - -  - -4,5 -144 
Cytochalasin-D ↓ 79% to KCl stim.  Organ-bath [188] ↓ -4,06 -129,92 
Sildenafil ↓ 3±8% H In-vivo [183] ↓ -0,62 -19,84 
 ↓ 5,3mmHg H In-vivo [196]    

 

The generation of cellular tone is illustrated by the results[Figure 26], which show an apparent change 

in tension that correlates with cell number. Furthermore, the soft growth surface of the CellDrums 

seems to promote the increase and development of cell tone. This is shown in the experiment of 

mechanical stimulation, where the control[Figure 26] also increases its cell tone in the first days. The 

effect measured here was recorded after eight days of cultivation so that it can be assumed that this 

effect is even higher during the growth phase and the subsequent acclimatization of the cells to the 

new mechanical conditions. 

Cell culture media used in this study contained at least 2% FBS. Even though the composition of the 

FBS used is not documented in detail, it can be assumed that the hormones, proteins and electrolytes 

contained therein interact with the cells. Based on the results obtained, it can be assumed that even 

traces of vasoactive mediators like ET1, AT2, NO, catecholamines and fluctuating ion concentrations 
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will have an impact on the biomechanical properties. In addition, serum proteins such as albumin and 

prostaglandin synthesizing substances such as indomethacin and corticosterone are expected to 

contribute to the sample baseline tension[197–199]. 

The measurement starting from its basal tension has the advantage that the sample can be examined 

biomechanically without any apparent effects interfering with each other. Nevertheless, the probe can 

still be FBS-starved to eliminate the influence of growth factors. 

The disadvantage of this method is that it creates two unequal maxima. While the maximum 

contractile force could theoretically go towards infinity, the mechanical preload of the membrane 

defines the maximum limit of relaxation. Thus, only the cellular relaxation until the initial tension of 

the membrane is reached can be measured. Taking into account the cellular production of extracellular 

matrix during cultivation, a new ratio to the total membrane tension is applied. Therefore, the initial 

membrane tension should not be reached even at maximum cellular relaxation. Thus the different 

maxima do not pose a problem for the measurement itself, but one should be aware of the 

measurement constraint of the relaxation maximum. 

In order to select the most suitable data acquisition, different measurement methods were examined 

and published in detail in our recent publication[124]. 

With regard to the measurement modes, it is evidential that the inflation tests of the LTM and PTM 

can already measure mechanical cell tension changes of a few N/m2, which do not necessarily lead to 

a change in CellDrum membrane displacement. We noticed this in a direct comparison of the 

evaluations of RTM and LTM, as the stress deviations in LTM were measurable much earlier than in 

RTM. Due to the force equilibrium of each CellDrum, the cells must overcome this first. Thus, the cells 

first generate isotonic stress changes, which can lead to an increase in force without deformation. 

Due to this inaccuracy and the lack of necessary data for biomechanical analysis, we refrain from using 

RTM for comparable studies.  

7.2. Hypertension Disease Model Induced by Mechanical Stimulation 

Mechanical stimulation was used to simulate arterial hypertension, which is induced by increasing 

mechanical stress on the circulatory system. The parameter for the SOP was designed for the strongest 

possible stimulation sequence without provoking cellular detachment or ruptures in the monolayer. 

The intensity of the stimulation can be defined via three parameters: Time, amplitude and frequency. 

Apart from the amplitude maximum, the applied deflection can also be modified via the deflection profile 

of the pressure waves. This characteristic was not considered in this study yet, but technologically already 

applied within the system. 

In direct comparison with vascular physiology, the defined stimulation parameters are not 

physiological. While the aortic tissue in the human body resists stretching of up to 30%, in the present 

study, we work with a maximum stretching of 3%[3,122]. Also, cells in a living organism are exposed 

to cyclic stretching 24 hours a day, whereas in our experiments, they are exposed to stretching only 

one hour a day in total. Last but not least, the physiological resting heart frequency of an adult is 

between 60-80bpm, whereas our SOP works at 120bpm. Concerning hypertension, the heartbeat 

would even decrease with increasing peripheral resistance. Nevertheless, we have decided to induce 

the additional mechanical load primarily by the increased frequency. 

Comparing the parameters chosen in this study with equal studies, cyclical stress and also bi-axial 

stimulation show recurrent mechanobiological phenomena[Table 20]. In most reviews, the intensity 

of stimulation is expressed in mmHg of applied pressure, applied force in N (Newton) or strain and 
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elongation of the stretch. For a precise and comparable quantification of mechanical stimulation, the 

expression of mechanical strain is best used as it also takes into account the sample geometry. 

Table 20 Overview of stress parameters and results of comparable studies. Cell types: huaSMC (human umbilical artery smooth 
muscle cells); raSMC (rat artery smooth muscle cells); haSMC (human artery smooth muscle cells); huvEC (human umbilic vein 
smooth muscle cells); baEC(bovine artery smooth muscle cells). FX-2000/3000/4000, are cell stretching devices by the 
company Flexcell. ST-140, cell stretching device by STREX, enabling to apply uniaxial stress. 

System / 
Stress 

Strain Freq. Cells Results Lit. 

Uniaxial 7% 1Hz huaSMC SM α-actin↑; calponin↑; cellular orientation 
5d 

[200] 

Uniaxial 10% 1Hz hSMC P38↑ 3h [201] 

FX 3000 10% 1Hz raSMC P21 ↑ 24h [202] 

Biaxial 4%; 1Hz hSMC VEGF; PAI-1;MMP1 ↑; 24h [203] 

Biaxial 1-9% 1Hz haSMC P50↑ 24h [204] 

FX 4000 7-20% 1Hz raSMC IL-6, p38;JNK ↑ [205] 

FX 3000 15% 0,5Hz maSMC P47phox; MMP2 ↑; 0-24h [206] 

Uniaxial 7-25% static haSMC JNK;p38 ↑ [207] 

Uniaxial 10-18% static haSMC MMP-2; p4 α1; JNK; P38 ↑ [208] 

FX 4000 7-15% 1Hz raSMC P38;integrin;p53 ↑; 6h [209] 

      

Uniaxial 0-25% 1-3Hz huvEC Cell orientation ↑ [210] 

FX 2000 10-20% 1Hz huvEC E-modulus, cellular stiffening ↑ [211] 

ST-140 120% 1Hz baEC eNOs phosphorylation; NO↑ [212] 

Uniaxial 20-50% static huvEC eNOS ↑ [213] 

FX 2000 25% 1Hz huvEC ET1 ↑ [214] 

Uniaxial 10% 1Hz huvEC ET1 ↑ [215] 

      

CellDrum 0-3% 2Hz haEC ET1↑  

CellDrum 0-3% 2Hz haSMC SM α-actin; calponin; P21 ; P38; MMP-2; MMP-
9; p4Hα1; JNK; Desmin; Caldmodulin; MYH11; 
CD49; cellular orientation; E-modulus↑; 5d 

 

 

In a direct comparison with studies dealing with mono- or multi-axial mechanical tissue stimulation 

[Table 20], the strain we obtained is in the lower range to the smallest scale of the produced stress in 

this study. Thus, the applied elongation of vascular smooth muscle cells ranges between 3-

25%[200,207,216] and for endothelial cells, on average 10-25% up to >100% [20]. 

These values could not be achieved with the CellDrum technology without irreversibly damaging or 

detaching the cells on the surface. The determination of the parameters was based on our viability 

tests and various microscopic analyses. 

According to the data, the LDH level contained in the media is not significantly increased during the 

stimulation for eight days. In contrast to the haSMC, the haECs were strongly damaged and detached 

after seven days of stimulation. This experiment series limited our examination time to five days to 

ensure cell viability. 

In combination with the CMI measurements, we were able to define a particular stimulation interval 

without cell detachment. A single exposure to mechanical stress over 90min was possible but 

repetitions do critically harm the cells. Especially from these measurements, we have decided to 

stimulate the cell for only twice for 30 minutes each, per day. 
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Another decisive factor in the comparison of stimulation protocols is the type of cell attachment and 

the resulting force transmission[217]. For cell attachment, the PDMS cultivation area was coated with 

1% fibronectin. Depending on the fibronectin concentration used in an in-vitro model, the force 

transmission might differ from physiological equivalents[67,185]. Based on the very thin surface 

coating and the strong cellular binding, it can be assumed that the stretching parameters of the 

membrane are transduced one-to-one to the cells. If the corresponding strain parameters were 

projected onto a cell model on or in a gel matrix, the elasticity of the matrix would have to be 

considered in the actual cell strain. Due to the usually very elastic matrix structures, large amounts of 

the applied strain can be compensated by the deformation of the gel. 

Due to the chosen stimulation protocol, a significant increase in mechanical tension can be measured 

up to a maximum of ~19% of the initial tension on day one. Interestingly, the data of all sample groups 

show an equally increasing mechanical stress over the first three days. Even unstimulated cells 

increased mechanical tension by ~6%[Figure 37]. 

The increase of the cellular tension in both groups is explainable due to the sensible mechanical 

detection of smooth muscle cells[Figure 53]. The cultivation within CellDrums reduces the growth area 

tension from approximately 3000MPa, which is the physical tension of polystyrene of T-Flasks, down 

to 100kPa, which was measured from the CellDrum membranes[217,218]. Although the new 

biomechanical environment of cells whose physiology is similar, this is perceived by the cells as 

additional stress. Even though we acclimate the cells on CellDrums eight days before, the cells still 

seemed to adapt and align towards new mechanical conditions. Additionally, the pace of media change 

during the mechanical stimulation protocol is 400% higher compared to ordinary culture conditions, 

twice a day. Media changes cause a great mechanical stimulus, in which the membrane reaches back 

to its initial zero position, having a total height membrane deformation around 1500µm. This single 

but extreme membrane deflection change causes additional mechanical stress, inducing cellular tone, 

to be adapted over the first three days. 

Cytoskeletal adaptations are microscopically visible changes in the cell that adapt to changing 

mechanical stress states. Studies have shown that both cells and cytoskeleton align with the main 

mechanical stress directions[219,220]. This orientation increases not only the contraction force of the 

cell but also the mechanical load capacity. Under constant mechanical load change, this leads to an 

increased cell tone and a far greater and more coordinated contraction force compared to non-aligned 

cells. Studies with uniaxial mechanical stimulation clearly show the cell orientation in the main 

mechanical stress direction as well as the significant increase in contraction force [86,101,221]. Data 

represented in this study 5.11 show similar characteristics despite the assumption of uniform biaxial 

tension[117]. We assume that despite the supposed mechanical homogeneity of the membrane, 

minimal stress gradients lead to cellular alignment. In particular, we think that the changes in length 

due to strain increase concentrically to the center of the membrane. A high expression level of beta-

actin supportes the determination of strong morphological changes. 

Besides biomechanical properties, the cytoskeleton contains differentiation markers of smooth muscle 

cells. As described above, the smooth muscle cells are present in two different phenotypes, with 

individual tasks and therefore generate unique structures to implement them functionally. By 

analysing these markers, it can be determined whether the cells continue to mature or dedifferentiate 

as a result of mechanical stimulation. Proteins such as heavy chain myosin, smoothelin, calponin 1 and 

smooth alpha-actin are indicators of a contractile smooth muscle cell phenotype. The stronger these 

occur in the cell, the more maturation and differentiation is assumed[58,62,222], which would suggest 

a more potent contraction force. 
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The formation of this protein can be initiated by growth factors, but can also be promoted or enhanced 

by mechanical stimuli[223–225]. This behavior could be shown using qPCR. Both HCM, smoothelin and 

smooth alpha-actin were significantly higher expressed after five days at the latest. We assume that 

mechanical stimulation and cultivation on the soft membranes improved cell differentiation towards 

the contractile phenotype. To be able to make more meaningful statements in this regard, further 

investigations of these differentiation factors and the comparison between hard and soft growth 

surfaces are required. 

 

Figure 53 Scheme for mechanically-induced signal conversion in haSMCs. The mechanical stimulus is detected at the cell 
membrane by mechanosensitive receptors and ion channels and transmitted into the cell interior via molecular transfer. This 
leads intracellularly, to the activation of various unspecific signaling cascades, by protein phosphorylation and/or alteration 
of the intracellular ion concentration, which in turn activates further signaling pathways. Finally, the combination of the 
activated signaling pathways determines the functional response of the cell. These include phenotypic changes, cellular 
differentiation, migration, proliferation and apoptosis, each affecting the biomechanical properties of the cells. [30](figure 
adapted). 

The contractile phenotype is particularly suitable for the modeling of a contractile vascular cell model. 

Contrary to the assumption that stronger stimuli improve the differentiation, this effect can change 

into the opposite. According to the literature, excessive mechanical stress can lead to microcellular 

damages. This, in turn, leads to the dedifferentiation of the vSMCs, as this initiates the regenerative 

cascade [Figure 54] in which the cells return to their proliferative phenotypes to repair cell 

damages[22,213,226]. Especially to estimate the phenotypic change of the cells, we have observed the 

following genes to estimate the cell differentiation status. According to the qPCR, a strong expression 

increase of beta-actin can be seen due to the mechanical stimulation, which is a structuring non-

contractive cytoskeletal structural proteins and associated sources as a dedifferentiation marker. On 

the basis of the data, it can be assumed that mechanical stimulation causes the cellular 

dedifferentiation marker to increase after only a few cycles in order to repair potential cell damage.The 

LDH measurement of the mechanically stimulated cells, which shows increased LDH concentrations in 

the medium within the first three days, also speaks in favor of this. It is crucial for the measurements 



78 
 

of this study that cell proliferation was not initiated so that the measurements are not influenced by 

changing cell numbers. This was supported by the regulation of CDKN1A, which indicates inhibition of 

cell proliferation and keep the actual cell count from the viability tests stable[202,227–229]. 

 

Figure 54 Repair mechanism and phenotypic control of vSMC, by GSK3β, β-Catenin and Cadherine. Elementary for the 
mitogenic quiescence of the cell is a low cystolic concentration of β-catenin, which is ensured by the active phosphorylation of 
the GSK3β complex. Cellular or vascular damages lead to a cleavage of N-cadherin and the degradation of adherent junctions, 
which reduces the activity of the GSK3β/APC/axin complex. This increases the concentration of β-catenin and leads to a 
translocation of β-catenin into the cell nucleus. This leads to TCF regulation of the genes responsible for cell growth and 
proliferation. The damage of the N-cadherins additionally leads to the up-regulation of T-cadherins, which, by activating the 
PI3K/Akt signaling pathway, completely stops the phosphorylation of GSK3β and supports the following signaling cascade. 
[230](figure adapted). 

The development of hypertension can have many origins, but all of them result in an increase in blood 

pressure due to the hardening of the vessel wall. This is usually caused for two reasons, either by the 

cellular solidification or by increased cell proliferation. While the increase in solidity at the cellular level 

is based on cellular properties such as basic tension, elasticity and mechanical integrity, the increase 

in tissue is directly related to the dedifferentiation and proliferation of cells.  

Based on cellular biomechanics, two contrary indicators of the development of hypertension in-vitro. 

Pathophysiologically, tissue growth and hardening most likely occurs in combination. These 

mechanisms cannot be differentiated with the physical CellDrum model and would lead to recurrent 

results. Therefore, our investigations are limited exclusively to the biomechanical solidification of 

differentiated vSMCs. Under this premise, it is necessary to adapt the mechanical stimulus to avoid 

cellular dedifferentiation. 

The microarray analysis of the whole transcriptome shows significant changes in the overall expression 

profile after only three days of cyclic mechanical stimulation[Figure 44]. Contrary to expectations, 

genes that were significantly up- or downregulated after three days were not further amplified by a 

longer stimulation interval. Instead, the gene profile changed in its entirety. These overall changes 

suggest that the cells can use different mechanisms to adapt to long-term stress. 

We have compared data from databases and epidemiological studies to examine the expression of so-

called hypertension signature genes[43,44,167]. The results are scientifically intangible due to the 
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immense number of indefinable parameters, so we will refrain from including this purely theoretical 

analysis as a prelaminar outcome in this work. 

In order to better characterize the biomechanical effect of the mechanical stimulus, we have 

specifically studied the transcriptional level and specific genes that have served as indicators for a 

mechanobiological reaction. In general, a stress-induced signature was already apparent in the 

correlation between the amount of isolated RNA and stimulation duration. A significant impact on the 

total gene expression could be shown by microarray analysis. The statistics showed at a glance that 

118 genes were expressed differently after three days and 1208 genes after five days[Figure 44].  

The genes MMP2 and MMP9 were of particular interest because their expression is triggered by 

mechanical stimulation. MMPs are responsible for the restructuring of the extracellular matrix and 

thus crucial for the mechanical integrity and stress capacity of the cell. Through the activity of both 

MMP proteins, it can be assumed that the ECM is mechanically adapted and reconfigured by the cells. 

It should also be considered that the cells re-modulate the ECM to such an extent that they are ideally 

able to distribute tensions to the ECM. The importance of the immense influence of these and other 

non-contractile structures becomes especially evident in the experiments[Figure 34; Figure 35], in 

which the cellular tension can only be decreased by a few percentages below the initial mechanical 

stress. With regard to ECM development and restructuring, the expression of P4Hα1 plays an essential 

role since the expression of the gene is directly related to collagen production[208]. Based on these 

results, it can be assumed that additional collagen and other ECM components are produced, triggered 

by the increased mechanical load. These adaptation mechanisms are also described in the literature, 

which leads to solidification and narrowing of the vascular lumens, in particular, due to increased 

pressure and vascular stretching[231]. This assumption is supported above all by the results in Figure 

37, by the measurable offset of both signals, over time. Furthermore, it is also supported by the results 

in Figure 42, whereby the mechanical contraction on the active ingredients increases significantly after 

several days of mechanical stimulation. That the effects are not exclusively due to the development of 

ECM cannot be shown. Therefore, we assume a cumulative effect of the observed parameters. 

Nevertheless, the structure and plasticity of the ECM contribute significantly to the cellular force 

generation[232]. Assuming different firmness of the ECM, cell tensions are facilitated by an increased 

condensation and stiffness of the ECM and cell tensions by shortening the cells [Figure 55]. 

Filamin-A is responsible for the direct coupling to the pericellular matrix[233]. The qPCR analysis 

showed a substantial increase in gene expression after three days of mechanical stimulation [Figure 

46]. Filamin-A serves as a cross-linker of the contractile apparatus and the coupling of the cell to the 

surrounding tissue[234,235]. Although filamin-A is not directly part of the contractile apparatus, it 

plays a major role in mechanical transduction and cellular strength. In addition, it also appears to have 

a protective function via beta-1-integrin, which protects the cells from mechanical stress[236]. 

Also of interest are the genes P38 and JNK1, which are also triggered by various stimuli and especially 

mechanical stress, promote the transmission of stress signals. The expression of both genes can lead 

to an excessive sensitization of the cell, which causes the biomechanical homeostasis of the haSMC to 

become unbalanced. This could play a critical role in the pathogenesis of hypertension and vascular 

hardening with respect to basal cellular tone and reduction of depolarization potential[237–239]. 

In addition to structural and morphological cellular adaptation, also the regulation of the receptors 

and ion channels cannot be excluded [15,60,240,241]. As a result of such an adjustment, the sensitivity 

of the cell is increased and the ion exchange can be accomplished faster and more intensively. 

The expression profile of selected channels and receptors, which are significantly involved in cellular 

contraction listed in 5.12.2, shows a distinct impact by the mechanical stimulation. In particular, the 
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androgenic receptor ADRA1A and the Ca2+ ion channel CACNA1C show an increased expression after 

five days of mechanical stimulation. Both genes' expression level is also slightly elevated in the 

multiarray analysis but does not exceed the significance level threshold. 

 

 
 
Figure 55 Strongly simplified model for a simplified representation of how different ECM densities can affect the tissue's 
resulting shortening with identical cellular contraction. E-modulusECM(A)>E-modulusECM(B); ΔlCell(A)= ΔlCell(B). Due to 
the rigid ECM in (A), the entire length of the model is shortened by the cellular contraction. In contrast, the soft ECM in (B) 
compensated for the shortening of the cell by expanding and thus compensates for the shortening of the entire model. 

 

Functionally, the two results were verified by pharmacological measurements[Figure 28; Figure 32]. 

The biomechanical effect of NE and Bay-K8644 increases with the number of mechanical stimulation 

intervals[Figure 42]. However, taking into account the other adaptation and parameters Furthermore, 

it is also supported by the results in, the sensitization of the cell to the two substances cannot be 

exclusively attributed to the upregulation of both channels.  

From all the data, it can be shown that the biomechanics of the cell model is significantly influenced 

by the soft growth environment and the additional mechanical stimuli. Both the contractile force of 

the cells and the basal tension of the monolayer are increased by cellular remodeling of the contractile 

apparatus, cellular differentiation and enhanced cellular integration. In order to investigate a 

pathological development of the cell model, specific parameters have to be defined, which will be 

analyzed under consideration of the mechanobiological events examined in this study. 

7.3. Co-Cultivation and Arrangement of haSMC and haEC 

Under the objective of designing a functional vascular cell model for CellDrum, the two essential cell 

types of the vascular system haSMC and haEC were cultivated together. The interaction of EC and SMC 

regulates both temporary and long-term changes in blood pressure. The cellular combination, 

interplay and the physiological proximity of the cells make this part of the work an important point, as 

substance mechanisms and effects, may vary depending on the cellular composition. 

The various approaches to implement a three-dimensional structured and direct co-culture were based 

on models from the literature [Figure 56]. Primarily, the method of Robert A. Brown was used for the 

ultra-fast production of collagen-based sheets, as it was already successfully used on the CellDrum 

[125,242]. The production turned out to be complicated and error-prone. The condensation of the 
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collagen gels reduced the thickness of the sample to a theoretically evaluable thickness around 200µm. 

At the same time, its strength increased dramatically and no measurable cell force changes were 

resolvable. The collagen Type-I layer of a few tenths of a millimeter produced by the process seems to 

require a significantly higher cell count to achieve measurable results. Besides, cellular distribution and 

vitality can only be estimated using light microscopy and cannot be precisely controlled. In addition, 

the layer thickness and homogeneity of the collagen gel could not be precisely defined. 

Another intensively researched approach dealt with the separation of two monolayers of haSMC and 

haEC using a sandwich coating of poly-l-lysine and fibronectin[243]. This method was not successful 

because the lengthy process sharply restricted cell vitality. 

A method described by Mark D. Lavender provides for direct cultivation of both cell types separated 

by a layer of fibronectin and collagen IV [244]. This method seemed to be the most sensible, as the 

sample rigidity was not significantly more affected by the coating of fibronectin and collagen type IV, 

compared to the monolayer model. Also, the cultivation of the EC necessarily requires a collagen 

TypeI/TypeIV coating and the SMC monolayer was already produced in the SOP with the Fibronectin 

sandwich technique to have a better cell attachment to mechanical stimuli.  

Based on the results shown in Figure 49, we were able to show that the co-cultivation of both cell types 

is possible, even if this is initially only temporary. We assume that the lack of the necessary endothelial 

and fibroblast growth factors will lead to a further haEC detachment over time Figure 48. With the 

help of immunocytochemistry staining, we were able to demonstrate the combined cultivation of 

haSMC and haEC. However, it was not satisfactorily possible for us to represent the cellular 

arrangement according to the physiological vascular model. 

The time-consuming and challenging quality control of the sample makes the co-culture at present a 

not yet usable concept for the CellDrum technology. Too many parameters cannot currently be 

estimated to reproduce the measurement reliably. As long as the control of the sample requires 

fixation of the cells, we consider the model unsuitable due to the inestimable variables. Nevertheless, 

this problem can be brought to a successful model based on the obtained data 

 
 

Figure 56 Listing of different tested co-culture models. 
 A) Co-culture arrangement based on a condensed collagen 
type I gel (1) haEC (2) Collagen type I gel with haSMC 
(3)Fibronectin and biofunctionalization (4) CellDrum 
Membrane 
 
B) Co-culture without gel structure, layered from 
alternating layers of fibronectin and poly-lysine (1) haSMC 
with polylysine (2) fibronectin (3) CellDrum Membrane 
 
C) Co-culture arrangement of fibronectin and collagen type 
IV sandwich (1) haEC (2) Collagen IV and Fibronectin 
Coating (3) haSMC (4)Fibronectin Coating (5) CellDrum 
Membrane. 

In order to simplify the experimental design and to collect more reliable data, both cell types were 

evaluated separately. Both models have been described in detail, in which the cellular distribution and 
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cell tension was analyzed[Figure 26]. The focus of the vasoactive functionality was tested on haSMC. 

Nevertheless, the effect of haEC on haSMC was estimated by the experimental arrangement of indirect 

co-cultures, as well. 

The results from Figure 50 have shown that vasoactive substances must already be present in the 

conditioned medium, which has led to an increase in the haSMC initial tension. As the addition of 

conditioned medium causes an increased cellular tone, we instead assume that this effect is caused by 

vasoconstrictive substances like ET1 and or AT2. The production of eNOs cannot be excluded[212,245], 

but the nitric oxide-induced effect has already been shown to relax smooth muscle cells[Figure 31]. 

However, the effect was only small and would have been compensated by the presence of the two 

vaso constructive agents. Besides, eNO is very unstable in a liquid solution and decays within a few 

seconds, which could have also lead to a possible distortion of the results. 

ET1 shows a strong contracting effect on haSMC in Figure 32. The secretion of ET1 by endothelial cells 

is permanent and even accelerated by mechanical stimuli[55,246,247]. We were able to demonstrate 

this by ELISA as well as that the concentration of ET1 increases depending on the mechanical 

stimulation. Independent of this, a measurable amount of ET1 is already measurable in the 

unstimulated sample. The measured ET1 concentration is approximately 0.032nM, which could be 

responsible for the haSMC tone deviation[214,215]. 

In the end, we would expect an increase in the basal mechanical tension due to the combined 

cultivation of both cell types. The effect of the eNOs under culture conditions cannot be estimated at 

this point due to extremely short half-life in aqueous solution and difficult to estimate quantities [175]. 

The measured magnitude of the data of NO donors, ET1 and AT2 support the assumption. 

 

7.4. Application for Medical Laboratory Screening 

In order to test the potential application of the CellDrum system as a screening and diagnostic tool for 

clinical research and blood sera screening, sera from the athlete who was exposed to physiological 

stress were applied to the CellDrum models. 

Blood plasma consists of numerous components, which in themselves already influence the tone of 

the smooth muscles. Besides the plasma proteins globulins and albumins, there are also numerous 

other biochemical substances, catecholamine, and ions with vasoactive properties. Taking these 

substances into account, the increase in cellular tone after the addition of the serum control is evident. 

Since the exact concentrations of cell culture medium and growth factors are not available from the 

manufacturers and the test sera have not been further investigated in the laboratory, functional 

biomechanical changes in composition and concentration dependencies cannot be excluded. 

It can be assumed that the ingredients of the growth serum used for the cultivation differ 

fundamentally from the serum obtained from the test person. Thus, even marginal concentration 

inhomogeneities can lead to a change in cell tension[248]. Since these changes are relatively small, the 

primary stimulation by the cell culture medium can be determined. Thus, it can be assumed that the 

tonus change is increased if the cells have been previously cultivated in serum-free medium and 

starved conditions[198]. 

Physical exercise causes the hormone level in the blood serum to rise. Especially the concentration of 

growth hormones, insulin-like growth factor 1, testosterone, cortisol and catecholamines are 

increased[48,249]. In particular, catecholamines release leads to a corresponding adjustment of the 

blood flow by blood vessel relaxation[250]. In contrast to the physiological mechanism of NE, we have 
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already shown in pharmacological studies that the effect of NE on SMC without endothelium has the 

opposite effect [251]. From this, we conclude that the increased hormone level, in addition to the 

increased stress change through the test person's serum, leads to an amplified increase of the cell 

tone. 

The second experimental run was carried out according to precisely the same protocol, except that the 

volunteer was given a dose of L-citrulline and L-arginine in advance. Both substances are non-essential 

amino acids and are used in sports nutrition as performance-enhancing supplements. L-citrulline 

occurs as a by-product of L-arginine's nitric oxide production, resulting in a vasodilating and blood 

circulation-enhancing effect[252,253]. The combination of these substances leads, on the one hand, 

to an effective enhancement since the addition of citrulline increases the body's synthesis of arginine 

and additionally enhances its bioavailability[254,255]. 

The vasodilating effect of both administered substances also seems to be measurable in the blood 

serum using the CellDrum model. Taking into account the previously measured increase in tone due to 

the addition of blood sera, a significant decrease in mechanical tension due to the supplementation is 

evident. 

In the body, the vasodilatory effect is realized via the pathway of endothelial nitric oxide release, which 

is primarily made possible by the action of vascular endothelium. The strongly measurable SMC 

relaxation could thus be explained by the increased release of eNOs of the proband during physical 

stress. However, this would require very high stability of the eNOs, so that it does not disintegrate 

during sample preparation. On the other hand, citrulline can lead to endothelial-independent 

relaxation [256] and L-arginine can lead to the production of cGMPs, which increases the sensitivity to 

eNOs and also has an endothelium-independent relaxing effect on smooth muscle cells [151,257]. 

The effect of dietary supplements can also be seen in the ECG monitoring of the volunteer[Figure 37]. 

In direct comparison with the previous run, the intake of the supplements results in a reduction of 

blood pressure with a slightly increased heart rate. 

The dilative effect is comparatively low in contrast to the other substances. Still, it has to be taken into 

account that the relaxing effect needs to compensate for the contractive effects, which have been 

shown by the sera only measurements as well. Therefore, a baseline shift must be considered so that 

it can be assumed that the supplemented blood serum would have a much stronger relaxing effect 

under better-defined conditions. 

7.5. Methodical Discussion 

State of the art technology used in this work combines much of the technology and knowledge gained 

from the last 20 years of CellDrum development. Due to the resulting data, the CellDrum technology 

has been established as a precise measurement method with versatile types of applications. 

Due to geometric adaptation of the CellDrum2017, it leads to demonstrably less cell detachment and 

a far more stable mechanical signal on repeated measurements. Too small dimensioned tolerances led 

to a variation of CellDrum membrane residual stress, by repeated analysis and placement into the TTA. 

The detachment of the cells seems to have been a consequence of the resulting changes in membrane 

tension. The new dimension of the CellDrums helped to keep the residual stress of the membrane 

stable unaffiliated from the measurement cycles. 

By using PEEK as CellDrum body material, high-temperature resistance, biocompatible 

thermoplasticity, and the form stability of the CellDrum was highly increased. Thus, the mechanical 

influence of geometric changes through repeated autoclaving and cleaning of the CellDrum can be 
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excluded. The high dimensional stability also ensures the consistent biaxial stress distribution of the 

membranes. Only this allows a uniform cellular stress distribution and prevents the formation of 

mechanical preferential directions. 

By characterizing the membranes concerning their thickness and mechanical properties, it is possible 

to eliminate further variation, affecting measurement results and integrating the gained knowledge of 

membrane properties into the manufacturing process. 

The characterization of the membrane allows adjusting both the thickness and the mechanical strength 

to the respective application's physiological parameters. Based on the characterization data obtained 

from hundreds of manufactured CellDrums, it can be concluded that the layer thickness does not 

necessarily correlate with the mechanical strength of the membranes. Therefore, the initial membrane 

tension must be measured before each measurement to enable a standardized measurement. 

In addition to the physiological approximation, the membrane characteristics determined for this study 

also have reasons for their handling. The production process has been optimized so that the 

membranes can be produced as soft as possible with consistent quality and with as few defect 

productions as possible. In this way, the membranes can be manufactured with mechanical stress of 

about 100kPa residual stress. Compared to the rigidity of real vascular tissue, the mechanical 

properties depend strongly on the vessel segment and particular function. However, coated and 

cultured CellDrum having residual stress of about 50kPa and are in a tissue-like range in terms of 

physiological conditions [67–69]. Compared to a disposable cell culture dish made of polystyrene, 

having mechanical stress around 1000 MPa (DIN 53457), cells experience a >2000-fold change in the 

ambient tension after passaging. This immense change of the mechanical culture conditions seems to 

have such a strong influence on the mechanobiology of the cells that this could be an independent 

part of a follow-up study. 

The geometry of the deflected CellDrum membrane is considered a spherical segment to apply the 

described physical model. Due to the medium's hydrostatic pressure, it can be assumed that the 

membrane deforms in a parabolic deflection. Taking into account the investigations of J. Trzewik [117] 

on the stress curve of the CellDrum membrane, the idealized assumption is correct for small 

deformations. The deformations generated by the PulSElect system are not in the range of 

considerable small deformations, so the spherical model is no longer applicable. The deformations 

induced by the PulSElect system can be better described as parabolic deformations. This results in 

minimal inhomogeneities of membrane stress and globally calculated has a minimally smaller strain 

on the entire sample than estimated in the idealized model. 

In terms of system adaptation, the final iteration of the TTA is fully automated. Its measurement cycles 

are optimally configured to measure contractive tissue with significant consideration of cell viability. A 

dramatic reduction of the measurement inflation time from 30 to 12 s (20µlAir/s) accelerated the 

measurement and prevented overstretching of the cells, which has often led to cell detachment and 

monolayer rupture. Measurement shortening made the repetition of measures and subsequent serial 

measurements possible. However, it should be noted that the interpretation of the acquired data must 

be inverted. Since the sample is no longer inflated to positive strain, as the measurement ends shortly 

after the transition from the membrane zero deflection point.  
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8. Conclusion 

The work shows the establishment of a human arterial in-vitro model, which allows the analysis of 

mechanobiological phenomena and the functional testing of vasoactive substances.  

The application of vasoactive substances with different mechanisms of action has confirmed that the 

developed vascular model, consisting of primary arterial smooth muscle cells, represents 

biomechanical effects physiologically and functionally. Furthermore, the in-vitro model allows for 

resolving these effects as a function of time and concentration. The majority of the tested substances 

yielded physiologically plausible biomechanical results, leading to mechanical tension alterations of  

-6% up to +10%, relative to the initial stress (50kPa). However, there seems to be an unexplained 

problem with the measurement of NO-induced relaxation. This should be further clarified in the 

following, whether this is a biochemical or purely technical problem.  

For the development of a hypertension disease model, the PulSElect system was designed. This, which 

exposes the vascular models to defined cyclic mechanical stress to induce pathological cell alterations 

similar to mechanical stress-induced hypertension. In combination with the CellDrum technology, 

morphological as well as biochemical and transcriptomic cell adaptations could be evaluated and 

biomechanically correlated. With regard to the increase of cellular tone, cell differentiation markers 

and cytoskeletal transformations show that cellular differentiation is favored by the mechanical 

stimulation and the growth environment of the CellDrum. In addition, these results raise further 

exciting questions concerning time-dependent cellular development, which should be investigated 

under a newly formulated hypothesis. 

Ultimately, the development of a disease model cannot be precisely defined and, therefore, does not 

allow a clear statement about the model of the presented work. Nevertheless, biomechanical and 

cellular responses at several cellular levels have been identified that have significantly influenced the 

samples' properties and may already show possible tendencies of pathological changes.  

Two cell culture models were established, and the foundation for a co-culture model was laid, which 

meet the physical requirements of the CellDrum technology and thus allow reliable biomechanical 

measurements. The results of the work show that the co-cultivation of haEC and haSMC is possible 

and that they can also be arranged within CellDrum using the described method. However, due to the 

highly time and cost-consuming quality control of the three-dimensional co-culture, we cannot speak 

of an established 3D CellDrum co-culture model yet and retain the right to discuss the biomechanical 

results at this point. CellDrum technology, as a methodically established measuring procedure, 

currently provides excellent research potential. Directly related to the work, all that is now required is 

a fast and precise evaluation procedure to check 3D co-cultures for quality and goodness to perform 

further biomechanical analyses using haSMC and haEC. 

Last but not least, the investigation of blood sera suggests that the CellDrum could be used for 

pharmacological development and testing as well as a potential screening method for medical and 

clinical laboratories. The already developed haSMC model should be tested for further clinical 

investigations, sera from healthy individuals and patients with cardiovascular diseases so that 

indicators for hypertension patients can already be identified. Moreover, sports medicine studies could 

be supported by CellDrum generated data. Studies that demonstrate the effects of different training 

conditions, diets and lifestyles could be functionally proven in-vitro. 

This research's biological and systematic developments make the CellDrum technology a precise and 

standardized measurement method for the biomechanical analysis of human vascular cell models. In 

particular, the introduction of a CellDrum quality management concept allows repeatable and 

comparable determination of even the smallest cell force deviations(<50µN). Due to the precise 
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characterization and easy handling of the CellDrums, the vascular models would be ideally suited for 

long-term pharmacological or mechanobiological studies. Even if this work could already extend 

sample observation from a few minutes to several days, interesting effects from long-term medication 

and stimulation over months could also be expected.  

In the future, hIPSC-derived vascular cells derived from hypertension patients could also be used to 

develop and study individual disease models based on existing or induced genetic defects. These and 

other modified in vitro models could be further investigated with the developed CellDrum and 

PulSElect system combined with conventional electrophysiological, molecular biological and 

fluorescent imaging techniques to answer crucial mechanobiological questions in physiological and 

pathophysiological developments and to understand their functional and physical implications. 
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10. Appendix 

10.1. List of Abbreviations 

     

µC Microcontroller  LDH L-Lactatdehydrogenase 

ACE Angiotensin-Converting Enzyme  LMA Levenberg-Marquardt Algorithm 

ADP Adinosindiphosphate  LTM Long Term Mode 

AT2 Angiotensin 2  MEA Multielectrode Array 

ATP Adinosintriphosphate  MHC Myosin Heavy Chain 

bFGF Basic Fibroblast Growth Factor  MLC Myosin Light Chain 

Ca2+ Calcium Ion  MLCK Myosin Light Chain Kinase 

cAMP Adenosine Monophosphate  Na+ Sodium-Ion 

CBC Cross Bridge Cycle  NaCl Sodium chloride 

cDNA complementary DNA  NE Norepinephrine 

cGMP cyclic Guanosine Monophosphate  O2 Oxygen 

CGRP Calcitonin gene-related peptide  PBS Phosphate-buffered saline 

CMI Cell Morphology Index  PCB Printed Circuit Board 

CMMC 
Center For Molecular Medicine 
Cologne 

 

PDE-5 Phosphodiesterase-5 

CO2 Carbon Dioxide  PDMS Polydimethylsiloxane 

CVD Cardiovascular Disease  PEEK Polyetheretherketone 

DAG   PIP2 Phosphatidylinositol-4,5-bisphosphate 

DAPI 4′,6-diamidino-2-phenylindole  PMMA Polymethylmethacrylate 

DEA/NO Diethylamine NONOate  PTM Particular Time Mode 

DMEM 
Dulbecco's modified Eagle's 
medium 

 

RNA Ribonucleic acid 

DMSO Dimethyl Sulfoxide  RNAse Ribonuclease 

EC Endothelial Cells  RTM Real-Time Mode 

ECM Extra Cellular Matrix  qPCR Quantitative Polymerase Chain Reaktion 

EDTA Ethylenediaminetetraacetic  SEM Standard Error of Mean 

eNO Endothelial Nitric Oxide  SMC Smooth Muscle Cells 

ER Endoplasmatic Reticulum  SMD Surface Mounted Device 

ET1 Endothelin 1 

 

SMDS 
Smooth Muscle Cell Differentiation 
Serum 

FBS Fetal Bovine Serum  SMGS Smooth Muscle Cells Growth Serum 

GCS   SOP Standard Operation Procedure 

GND Ground  TTA Tissue Tension Analyzer 

GUI Graphic User Interface  TTL Transistor to Transistor Logic 

haEC human aortic endothelial cells  vSMC Vascular Smooth Muscle Cells 

haSMC human aortic smooth muscle cells  WHO World health organization 

hEGF Human Endothelial Growth Factor  KCL Potassium Chloride 

IDE 
Integrated Development 
Environment 

 

LDH L-Lactatdehydrogenase 

IP3 Inositol trisphosphate  LMA Levenberg-Marquardt Algorithm 

K+ Potassium Ion    
  

https://en.wikipedia.org/wiki/Renato_Dulbecco
https://en.wikipedia.org/wiki/Renato_Dulbecco
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10.2. List of Figures 

 

Figure 1 Schematic structure of an artery with the designation of the individual functional layers (Adventitia, 

Media & Intima) and the related connecting layers. .............................................................................................. 9 

 
Figure 2 Schematic ................................................................................................................................................ 10 
Figure 3 Contraction and relaxation mechanism of a smooth muscle cell as a schematic overview. The left half of 

the picture describes the contraction by electrical tension (1), receptor (2) and strain (3) dependent Ca2+ 

channels as well as by receptor-controlled (4) release of CA2+ ions from the sarcoplasmic reticulum (SR). Muscle 

relaxing mechanisms are shown in the right half of the figure. Decrease of the cytosolic CA2+ nucleotide by CA2+-

ATPase(5,6)and 3Na+/Ca2+ exchange (7) as well as the effect of the cyclic nucleotide cAMP (8) and cGMP (9). 

Molecular contraction mechanism in the center of the image, CAM calmodulin, PLC phospholipase C, AC 

adenylyl cyclase, G G protein, IP3 inositol triphosphate, ANP atriopeptin, GC guanylylcyclase[1] (figure adapted).

 .............................................................................................................................................................................. 11 

 
Figure 4 Overview and progress of different causes of high blood pressure[1] (figure adapted) ......................... 13 
Figure 5 Overview of all systems and programs developed for this work. Orange Box: Adaptation of CellDrum 

and measurement methods for quality management. Blue Box: Measuring system for the biomechanical 

analysis of the CellDrums and software for data acquisition, evaluation and sensor calibration. Green Box: 

Technical development for mechanical stimulation of CellDrum samples. Red Box: Software for the 

quantification of cytoskeletal distribution. ........................................................................................................... 20 

 

Figure 6 A) Sliced computer-aided design scheme of a CellDrum with membrane and cell culture media. The 

CellDrum offers a 2cm² cultivation area, consisting of an ultra-flexible polydimethylsiloxane (PDMS) membrane. 

Due to surface functionalization, cells can attach to the membrane [124] B) Photo of CellDrum 2017. .............. 20 

 

Figure 7 A) Illustration of the measuring principle for photometric layer thickness measurement. VIS light 

penetrates the CellDrum membrane and generates an interference pattern, which indicates the layer thickness 

by the refractive index, internal reflection and material parameters.B) Recorded interference pattern[126] C) 

Formula for determining the coating thickness using the wavelength interference. ............................................ 21 

 

Figure 8 A) Picture of the Tissue Tension Analyzer with a detailed schematic arrangement of the measurement 

socket - 1) CellDrum; 2) Cells attached to the CellDrum membrane with cell culture media (500µl) on top; 3) GND 

electrode; 4) Counter electrode; 5) Electrical shielding; 6) Measurement socket; 7) Deflection sensor; 8) Pressure 

sensor; 9) Syringe pump; 10) Processing unit; 11)Peripheral computer and data storage[121,124]. B) 

Photographs of the TTA test base; above: Cover open with two CellDrums and view of the cylinder electrodes; 

bottom: Closed with cover and protective cap. ..................................................................................................... 22 

 
Figure 9 TTA motherboard for data acquisition and control of the system via computer. On the top left, in light 

blue, you can see the microvalves, which are pneumatically connected to the PMMA pressure distributor in the 

center. The pressure in the closed system is measured by an SMD pressure sensor on the bottom right. Power 

supply and voltage regulators can be seen on the bottom left. The slots of the individual measuring chambers 

can be seen at the top right. Directly below the motherboard is the microcontroller to establish communication 

with the computer. Underneath it is a mechanical relay that ensures the complete decoupling of the individual 

sensors. ................................................................................................................................................................. 24 

 

 

Figure 10 A) Bottom view of the measurement socket. Proximity sensors connected to the base, 0V electrode 
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Figure 11 Schematic diagram of the measuring electrode arrangement. All components are connected to one of 

the separated oscillating circuits. The capacitance change of the system takes place between the red CellDrum 

membrane and the blue active cylinder surface[129]. .......................................................................................... 25 

 

Figure 12 Interface of the measurement software. (A) Configuration of serial communication between TTA and 

computer. (B) Real-time monitoring of data acquisition. (C) Controlpanel to select sample chamber and control 

valves. (D) Timeout control and indicator enables automated pressure equilibration between the 
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Figure 13 Interface of the analysis software. In (A) all data of the selected file path are listed. The file selected in 

(A) is opened in (B) where the data can be trimmed. The default settings for the analysis range is the time 

interval 0.5s-11.5s. The data is cut out and displayed in (C). Both data series are merged and the deflection over 

the pressure course is displayed in white. (D) also represents the best non-linear adaptation in red. The resulting 

data is presented in (E) and can be buffered in (F) using ADD. ............................................................................. 27 

 
Figure 14 Key figure for the CellDrum physical model with CellDrum fitted Barlow´s formula to derive the cellular 

tension from recorded pressure deflection curves. r) Radius of the CellDrum (16mm). h) Indicates the deflection 

of the CellDrum membrane to the baseline (in µm). R) Radius of the theoretical hemisphere. The formula is used 

to derive the tension from the recorded pressure deflection curves. 𝜎) Calculated axial stress (N/m²). p) 

measured pressure (in Pa). s) CellDrum membrane thickness (in µm).[124] ........................................................ 28 

 
Figure 15 The starting point of the mathematical model is the Barlow formula, which allows calculating the 

stress distribution in thin-walled boilers. For the calculation of the mechanical stress within the CellDrum 

membrane the calculation of the tangential stress 𝜎𝑇is necessary. The formula for calculating a hemisphere is 
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Figure 16 A) haSMC in cultivated on slides. Fixed and stained smooth muscle cell-alpha-actin. B) haEC grown on 
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Figure 17 Drawing of the conditioned co-culture. Conditioning was carried out inside the CellDrums with 

150.000 haSMCs and 200.000 haECs a.) Cells were cultivated in separate cell culture vessels with the 

cytospecific media. b) After 24h the medium of the haSMCs is removed and then replaced by the medium of the 
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M2,M3 (Muscarinreceptor 2,3); PDE-5 (phosphodiesterase type 5); PIP2 (phosphate idyilonositol-4,5-
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Figure 21 A) PulSElect sample sockets for the mechanical stimulation of twelve CellDrums. A printed component 

made of clear resin with a FormLabs 2 3D printer B) Compilation of all components of the PulSElect system C) 

Sketch of the individual components of the PulSElect system and arrangement in operation. The green box 

indicates the incubator, including all parts which can be placed in the incubator during mechanical stimulation 

D) Calibration of the PulSElect system. The deflection is plotted against the increasing pressure applied to the 

system. The pressure is measured directly below the CellDrums, which is displayed in the second Y-axis[123]E) 

Software for creating user-defined pressure waves. The waveform can be generated from two Gaussian 

functions using the controllers. The data is then transposed into the appropriate data format to be compiled on 

the microcontroller. F) Real-time recording of the waveform created in Figure 21 E. The measurement was 

recorded using laser-assisted TTA at a sample rate of 1kHz[122]. ....................................................................... 39 
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assisted TTA with a sampling rate of 1kHz. ........................................................................................................... 40 

 

Figure 23 Flowchart of the stimulation SOP represented on a daily cycle. ........................................................... 40 
Figure 24 Explanation of the CMI analysis. Comparison of example models (left), similar cell examples (middle) 

and the resulting CMI value. Linear ordered structures result in a higher CMI value, whereas chaotic structures 

result in a CMI value close to zero. ........................................................................................................................ 41 
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Figure 32 Time courses of measurement of various hormonal vasoactive agents. CellDrum investigation via LTM 

(N=6 mean ± 1 SEM). The change in the mechanical stress caused by the test substance is expressed as the 

relative difference of the mechanical stress (%) to the initial value. A) 1µM Norepinephrinel B) 1µM Acetylcholin 
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Figure 41 CMI evaluation for the quantification of cytoskeletal f-actin alignment by mechanical stimulation on 

CellDrums. Each data set was stimulated and unstimulated with three individual CellDrums for the stimulation 

intervals 0min, 30min, 60min, 90min (N=3; n=30 ±SEM). The intensity parameters correspond to the parameters 

of the SOP (f=2Hz, P=-40Pa). Below representative images of the corresponding stimulation protocols of haSMC, 
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(foldchanges >2 ; <-2). C+D)Comparision of gene expression profile due to mechanical stimulation according to 
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Figure 49 Strategic microscopic investigation of haSMC and haEC single and co-cultures in monolayer and three-

dimensional arrangement. A) Phase-contrast image of differentiated haSMC on polystyrene slides cultivated 

with co-culture medium. B) Phase-contrast image of haEC grown on polystyrene slides in co-culture medium. C) 

Smooth muscle cell alpha-actin antibody staining of haSMC cultivated in co-culture medium. D) CD-31 antibody 

staining of haEC in co-culture medium. E) Phase-contrast image of a direct co-culture of haSMC and haEC in 

monolayer. Cell ratio 1:1, cultivated on polystyrene slide in co-culture medium. F) Co-culture of haSMC and haEC 

cultivated on polystyrene and stained with antibodies CD31 and smooth muscle cell alpha action. G+H) co-

culture of two monolayers consisting of haSMC and haEC arranged three-dimensionally on top of each other in 

CellDrums. They were cultivated in the co-culture medium. Endothelium stained with CellTracker Deep red and 
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10.6. Coding 

#include <DueTimer.h> 
#include <Wire.h> 
#include <DueTC.h> 
unsigned int count0; 
byte dat[4]; 
byte v[]={2,14,15,16,17,18,19}; 
byte s[]={41,43,45,47,49,51,53}; 
String inputString = ""; 
boolean stringComplete = false; 
void setup(){ 
for (int i=0; i<7; i++){ 
pinMode(v[i],OUTPUT); 
digitalWrite(v[i],LOW); 
pinMode(s[i],OUTPUT); 
digitalWrite(s[i],HIGH); 
analogReadResolution(16); 
Serial.begin(115200); 
REG_TC0_WPMR  = 0x54494D00; 
REG_TC1_WPMR  = 0x54494D00; 
REG_PMC_PCER0 = 
0b11111000000000000000000100000000; 
REG_PMC_PCER1 = 
0b00000000000000000000000100101111; 
REG_TC0_CMR0  = 
0b00000000000000001001001000000101; 
REG_TC0_BMR   = 
0b00000000000000000000000000000000; 
REG_TC0_CCR0  = 
0b00000000000000000000000000000001; 
Timer3.attachInterrupt(senden); 
Timer3.start(1000); 
}} 
void loop(){ 
if (stringComplete) {Ventil();} 
} 
void senden(){ 
count0 = REG_TC0_CV0; 
REG_TC0_CCR0 = 
0b00000000000000000000000000000100; 
int Druck = analogRead(A0); 
dat[0] = byte(lowByte(count0)); 
dat[1] = byte(highByte(count0)); 

dat[2] = byte(lowByte(Druck)); 
dat[3] = byte(highByte(Druck)); 
Serial.write(dat,4); 
Serial.println(); 
} 
void Ventil() { 
if (stringComplete) { 
Serial.println(inputString); 
if (inputString.startsWith("v")) { 
int i = inputString.substring(1).toInt(); 
digitalWrite(v[i], HIGH); 
} 
if (inputString.startsWith("V")) { 
int i = inputString.substring(1).toInt(); 
digitalWrite(v[i], LOW); 
} 
if (inputString.startsWith("s")) { 
int i = inputString.substring(1).toInt(); 
digitalWrite(s[i],HIGH); 
} 
if (inputString.startsWith("S")) { 
int i = inputString.substring(1).toInt(); 
digitalWrite(s[i],LOW); 
} 
if (inputString.startsWith("stop")) { 
while (1) {} 
} 
inputString=""; 
stringComplete=false; 
} 
} 
void serialEvent() { 
while (Serial.available()) { 
char inChar = (char)Serial.read(); 
if (inChar == '\n') { 
stringComplete = true; 
} 

else { 

inputString += inChar; 

}}} 
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