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Alexander Heinlein, Axel Klawonn, Martin Lanser, and Janine Weber

1 Introduction

For complex model problems with coe�cient or material distributions with large
jumps along or across the domain decomposition interface, the convergence rate of
classic domain decomposition methods for scalar elliptic problems usually deterio-
rates. In particular, the classic condition number bounds [1, 2, 13, 14] will depend
on the contrast of the coe�cient function. As a remedy, di�erent adaptive coarse
spaces, e.g, [15, 5], have been developed which are obtained by solving certain gen-
eralized eigenvalue problems on local parts of the interface, i.e., edges and/or faces.
A selection of the resulting eigenmodes, based on a user-defined tolerance, is then
used to enrich the coarse space and retain a robust convergence behavior. However,
the setup and the solution of the eigenvalue problems usually take up a significant
amount of time in a parallel computation, and for many realistic coe�cient distribu-
tions, a relatively high number of the eigenvalue problems is unnecessary since they
do not result in any additional coarse basis functions. Unfortunately, it is not known
a priori, which eigenvalue problems are unnecessary and thus can be omitted.

In order to reduce the number of eigenvalue problems, we have proposed to
train a neural network to make an automatic decision which of the eigenvalue
problems can be omitted in a preprocessing step. In [7, 10, 8], we have applied this
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approach to a certain adaptive FETI-DP (Finite Element Tearing and Interconnecting
- Dual Primal) method [15] for elliptic model problems in two dimensions and
investigated the e�ect of di�erent training data sets and di�erent sizes of input
data for the neural network. In [6], we have additionally extended our approach to
three-dimensional model problems for the corresponding adaptive FETI-DP method
in three dimensions [12]. In [11], for the first time, we additionally applied our
proposed machine learning framework to an overlapping domain decomposition
method, i.e., the adaptive GDSW (Generalized Dryja-Smith-Widlund) method [4].
The purpose of [11] was to provide a general overview of methods combining
machine learning with domain decomposition methods, and thus, we have solely
presented some preliminary results for adaptive GDSW. Here, we extend the results
shown in [11] by providing numerical experiments for additional test problems.
Furthermore, we take a closer look at the choice of the ML threshold which is used
for the classification between critical edges, for which the eigenvalue problem is
necessary, and edges where the eigenvalue problem can be omitted. The specific
choice of the threshold is now, for the first time, motivated by the corresponding
receiver operating characteristic (ROC) curve and the precision-recall graph.

We focus on a stationary di�usion problem in two dimensions and the adaptive
GDSW method [4]. The di�usion coe�cient function is defined on the basis of
di�erent subsections of a microsection of a dual-phase steel material.

2 Model Problem and Adaptive GDSW

As a model problem, we consider a stationary di�usion problem in two dimensions
with various heterogeneous coe�cient functions d : ⌦ := [0, 1] ⇥ [0, 1] ! R, i.e.,
the weak formulation of

� div (drD) = 1 in ⌦
D = 0 on m⌦.

(1)

In this paper, we apply the proposed machine learning-based strategy to an adaptive
GDSW method. We decompose the domain ⌦ into # 2 N nonoverlapping subdo-
mains ⌦8 , 8 = 1, . . . , # , such that ⌦ =

–#
8=1 ⌦8 . Next, we introduce overlapping

subdomains ⌦0
8 , 8 = 1, ..., # , which can be obtained from ⌦8 , 8 = 1, ..., # by re-

cursively adding : layers of finite elements. In the numerical experiments presented
in this paper, we always choose an overlap of width X = ⌘; this corresponds to
choosing : = 1. Due to space limitations, we do not describe the standard GDSW
preconditioner in detail; see, e.g., [1, 2] for a detailed description.

As discussed in [5], the condition number bound for the standard GDSW precon-
ditioner generally depends on the contrast of the coe�cient function for completely
arbitrary coe�cient distributions. As a remedy, additional coarse basis functions re-
sulting from the eigenmodes of local generalized eigenvalue problems are employed
to compute an adaptive coarse space which is robust and yields a coe�cient contrast-
independent condition number bound. In two dimensions, each of these eigenvalue
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problems is associated with a single edge and its two neighboring subdomains. Thus,
the main idea for the adaptive GDSW (AGDSW) coarse space [4] is to build edge
basis functions based on local generalized eigenvalue problems. In particular, the
coarse basis functions are defined as discrete harmonic extensions of certain corre-
sponding edge eigenmodes. The specific eigenmodes which are necessary to retain
a robust convergence behavior are chosen depending on a user-defined tolerance
C>;E� 0, which has to be chosen in relation to the spectrum of the preconditioned
system. For a detailed description of the specific local edge eigenvalue problems and
the computation of the discrete harmonic extensions, we refer to [4]. In particular,
in the AGDSW approach, all eigenmodes with eigenvalues lower or equal to C>;E
are chosen to build the adaptive coarse space. Since the left-hand side of the edge
eigenvalue problem is singular (cf. [4, Sec. 5]), for each edge, we always obtain one
eigenvalue equal to zero. It corresponds to the null space of the Neumann matrix
of (1), which consists of the constant functions. The corresponding coarse basis
function is also part of the standard GDSW coarse space, and we denote it as the
first coarse basis function in this paper. Let us note that the first coarse basis func-
tion is always necessary for the scalability of the approach, even for the case of a
constant coe�cient function. However, since it corresponds to the constant function
on the edge, it is known a priori and can be computed without actually solving the
eigenvalue problem.

As for most adaptive domain decomposition methods, for AGDSW, it is generally
not known a priori on which edges additional coarse basis functions are necessary
in order to obtain robustness. In general, building the adaptive coarse space, i.e, the
setup and the solution of the eigenvalue problems as well as the computation of the
discrete harmonic extensions, can make up the larger part of the time to solution in a
parallel implementation. Since the computation of the adaptive GDSW coarse space
is - similarly to the adaptive FETI-DP methods - based on local eigenvalue problems
associated with edges, we can apply the same machine learning strategy introduced
in [7, 10] to predict the location of necessary eigenvalue problems.

3 Machine Learning for Adaptive GDSW

Our approach is to train a neural network to make an automatic decision whether it
is necessary to solve a local eigenvalue problem for a specific edge to retain a robust
AGDSW algorithm. We denote this approach, which is inspired by the ML-FETI-
DP approach introduced in [7, 10], as ML-AGDSW. In particular, we use a dense
feedforward neural network, or more precisely, a multilayer perceptron [16, 3] to
make this decision. Since each eigenvalue problem for AGDSW is associated with
a single edge and both neighboring subdomains, we use samples of the coe�cient
function within the two adjacent subdomains as input data for the neural network;
cf. fig. 1. In particular, we apply a sampling approach which is independent of
the finite element mesh, using a fixed number of sampling points for all mesh
resolutions; this is reasonable as long as we can resolve all geometric features of the
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Fig. 1 Sampling of the coe�cient function; white color corresponds to a low coe�cient and red
color to a high coe�cient. In this representation, the samples are used as input data for a neural
network with two hidden layers. Only sampling points from slabs around the edge are chosen. Taken
from [8, Fig. 1].

coe�cient function. For more details on the computation of the sampling grid and
its generalization to more general subdomain geometries than square subdomains,
see [7].

As output for the neural network, we save the classification whether an adaptive
basis function has to be computed for the specific edge or not. As already mentioned,
in AGDSW, the first coarse basis function is always necessary but can be computed
without actually solving the eigenvalue problem. Hence, an eigenvalue problem will
only be marked as necessary in our approach if more than one coarse basis function
corresponds to an eigenvalue lower than the chosen tolerance C>;E . Therefore, for
ML-AGDSW, all critical edges, where more than the single constant constraint is
necessary, are classified as class 1. All other edges are classified as class 0. Let us
note that this is di�erent to the definition of class 1 for ML-FETI-DP introduced
in [7, 10], where the eigenvalue 0 corresponding to the constant functions does not
occur in the eigenvalue problem.

For the numerical results presented in this paper, we train the neural network on
two regular subdomains sharing a straight edge and di�erent types of coe�cient
functions. Using the same techniques as in [10, 11], we have generated a training
and validation data set of 4 500 randomized coe�cient distributions. In particular,
the coe�cient distributions are not completely random but we impose some sort of
structure on the coe�cients; see also [10] for a detailed discussion. For the first part of
this training set, we randomly generate the coe�cient for each pixel, consisting of two
triangular finite elements, independently and only control the ratio of high and low
coe�cient values. Here, we use 30%, 20%, 10%, and 5% of high coe�cient values.
For the second part, we also control the distribution of the coe�cients to a certain
degree by randomly generating either horizontal or vertical stripes of a maximum
length of four or eight pixels, respectively; see Figure fig. 2. Additionally, we generate
new coe�cient distributions by superimposing pairs of coe�cient distributions with
horizontal and vertical stripes. We denote the resulting training data set by R1’. Let
us note that the generation of the randomized coe�cient distributions as training
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Fig. 2 Examples of three di�erent randomly distributed coe�cient functions obtained by using the
same randomly generated coe�cient for a horizontal (left) or vertical (middle) stripe of a maximum
length of four finite element pixels, as well as by pairwise superimposing (right).

data for AGDSW is in complete analogy to our randomized training data for the
ML-FETI-DP approach in [10]. However, we explicitly built a separate set of labels
for the training and validation data for AGDSW since the classification of critical
edges can be di�erent for adaptive GDSW and adaptive FETI-DP.

To generate the output data for the neural network, we solve the eigenvalue prob-
lem as described in [5] for each edge in the aforementioned training and validation
data. For all our training and validation data, we use a tolerance of C>;E = 0.01 to
generate the output for each edge.

Note that, for ML-FETI-DP, we additionally considered the extension to three
classes, where we distinguished between zero, one, or more than one constraints.
For the edges which require only one constraint, we used frugal constraints [9]
instead of solving the eigenvalue problem; see [7] for more details. Consequently,
the eigenvalue problem only had to be solved for edges with more than one constraint.
However, this approach does not easily extend to AGDSW since we always obtain
at least one a priori known coarse basis function on each edge; as mentioned earlier,
we always obtain a constant eigenfunction corresponding to eigenvalue 0.

4 Numerical Results

In this section, we apply our machine learning approach to AGDSW. We will present
numerical results both for the training and validation data as well as for a specific test
problem and compare the resulting condition number estimates and iteration counts
with those obtained using both standard and adaptive GDSW; we use pcg with a
relative residual reduction of 14 � 8. For the numerical experiments, we consider a
discretization of the model problem eq. (1) by piecewise linear finite elements.

First, we present results for the complete set of training data R1’ using cross-
validation and a fixed ratio of 20% validation data in table 1. We observe that
choosing the ML threshold as g = 0.5 to distinguish between class 0 and 1, i.e.,
assuming an equal distribution among the two classes, results in an accuracy which
is comparable to the corresponding ML-FETI-DP approach; see [10, 11]. Besides
the accuracy values for the training data in table 1, we also provide the ROC curve
and a precision-recall plot in fig. 3. Both curves provide an evidence whether we
obtain a reliable machine learning model [16, Sec. 5]. As mentioned in section 3,
our aim is to identify all critical edges where an adaptive coarse basis function is
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training configuration threshold fp fn acc

R1’, full sampling 0.4 11.5% 2.7% 85.8%
0.5 6.7% 7.1% 86.2%

Table 1 Results on the complete training data set for the GDSW method and stationary di�usion;
the numbers are averages over all training configurations. See table 2 for the column labeling.

necessary for robustness. For the remainder of this paper, we will refer to these
critical edges as ’positive’ or ’positive edges’ and to edges where the eigenvalue
problem is unnecessary as ’negative’ or ’negative edges’.Thus, only false negative
edges are critical for the convergence of ML-AGDSW, whereas false positive edges
correspond to some unnecessary eigenvalue problems. increases the computational
e�ort of our algorithm but does not negatively a�ect its convergence behavior; note
that the additionally computed eigenfunctions will not enter the coarse space since
the tolerance criterion will not be satisfied. When considering the precision-recall
plot in fig. 3 (right) we observe that using the ML threshold g = 0.4 compared to
g = 0.45 results in a higher recall for the validation data while preserving nearly the
same precision value. This is caused by a decrease in the number of false negative
edges compared to g = 0.45. Moreover, the precision for both training and validation
data strongly decreases when using ML thresholds smaller than 0.4. Since our
predominant aim is to avoid false negative edges while still preserving a su�cient
accuracy of the classification, using the ML threshold g = 0.4 seems to work best
for our purpose. Besides, for g = 0.4 the ROC curve for the validation data in fig. 3
(left) is close to the respective curve for the training data which suggests that we
obtain a model with good generalization properties. We will thus use g = 0.4 for the
classification of our test problems and also provide comparative results for g = 0.5.

As a test problem for our trained neural network, we use 10 di�erent randomly
chosen subsections of a microsection of a dual-phase steel as shown in fig. 4 (right). In
all presented computations, we consider d = 146 in the black part of the microsection
and d = 1 elsewhere. We use a regular decomposition of the domain ⌦ := [0, 1] ⇥
[0, 1] into 8 ⇥ 8 square subdomains with an overlap of X = ⌘, a subdomain size
of �/⌘ = 56, and a tolerance of C>;E = 0.01. For the test data, we only solve the
local eigenvalue problem on edges which are classified as class 1 by the neural
network. For all edges classified as class 0, we do not solve the eigenvalue problem
and only enforce the constant constraint on the respective edge. When considering
the results for one specific mircosection in table 2 as well as the average values for
all 10 di�erent subsections in table 3, we observe that, in both cases, we are able to
obtain no false negative edges for the classification using the ML threshold g = 0.4.
Analogously to the training and validation data in table 1, using the lower threshold
g = 0.4 compared to g = 0.5 decreases the false negative rate of the predictions and
thus increases the robustness of our algorithm. In particular, in table 3, we obtain
zero false negative edges for all 10 di�erent microsection subsections when using
g = 0.4. On the other hand, on average, we only solve 5.2 unnecessary eigenvalue
problems. This implies that our framework is robust for di�erent heterogeneous
coe�cient distributions and can successfully be applied to AGDSW.
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Fig. 3 ROC curve (left) and precision-recall plot (right) for the ML-AGDSW method. We define
precision as true positives divided by (true positives+false positives), and recall as true positives
divided by (true positives+false negatives). The thresholds used in section 4 are indicated as circles.

Model Problem Algorithm g cond it evp fp fn acc
standard GDSW - 3.66e06 500 0 - - -

Microsection adaptive GDSW - 162.60 95 112 - - -
Problem ML-AGDSW 0.5 9.64e4 98 25 2 2 0.95

ML-AGDSW 0.4 163.21 95 29 6 0 0.95

Table 2 Comparison of standard GDSW, adaptive GDSW, and ML-AGDSW for a regular domain
decomposition with 8 ⇥ 8 subdomains and �/⌘ = 56 for the two-class model, with C>;E = 0.01.
We show the ML threshold (g), the condition number (cond), the number of CG iterations (it),
the number of solved eigenvalue problems (evp), the number of false positives (fp), the number of
false negatives (fn), and the accuracy in the classification (acc). We define the accuracy (acc) as
the number of true positives and true negatives divided by the total number of edges.

Alg. g cond it evp fp fn acc
standard - 4.7e06 (5.11e06) 511.2 (518) 0 - - -
adaptive - 178.6 ( 181.4) 87.2 ( 98) 112.0 (112) - - -

ML-AGDSW 0.5 7.8e04 (9.2e04) 92.2 (102) 26.4 ( 29) 1.6 (2) 1.8 (3) 0.96 (0.95)
0.4 178.7 ( 181.4) 87.3 ( 98) 33.4 ( 36) 5.2 (8) 0 (0) 0.95 (0.94)

Table 3 Comparison of standard GDSW, adaptive GDSW, and ML-AGDSW for a regular domain
decomposition with 8 ⇥ 8 subdomains and �/⌘ = 56 for the two-class model, with C>;E = 0.01,
for 10 di�erent subsections of the microsection in fig. 4 (right) for a stationary di�usion problem.
See table 2 for the column labeling.
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