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Abstract

Microarray technology provides access to expression levels of thousands of genes at once,

producing large amounts of data. However, the data show a considerable level of noise, low-

level signal intensities are unreliable and datasets commonly comprise outliers. Moreover, a

gene set observed to have a certain expression profile of interest will contain a considerable

number of false-positives because of the large number of genes under study compared to the

small number of conditions. Therefore, in addition to the ability to make amenable both genes

and conditions, analysis has to meet certain requirements. It has to be capable of integrating

multiple repeat hybridizations for each experimental condition. In addition, the method has

to suppress noise and should not be distracted by outliers.

The present work presents a storage system as well as methods to study interdependencies

among large-scale microarray data. I applied correspondence analysis as an explorative sta-

tistical tool to study interdependencies both between and among sets of variables, i.e. genes

and hybridizations that result from expression profiling. Data are carefully preprocessed and

correspondence analysis is performed in a way that integrates replicated hybridizations, ac-

counts for noise, and circumvents outliers, thus adapting the method to the particular pitfalls

of microarray data. Correspondence analysis is a projection method. Much like principal

component analysis it displays a low dimensional projection of the data, e.g. into a plane.

However, it does this for two variables simultaneously revealing associations between them.

To introduce the method, I show its application to the well-known Saccharomyces cerevisiae

cell-cycle synchronization data of Spellman et al. (Mol. Biol. Cell 9 (1998), 3273-3297). Fur-

thermore, correspondence analysis has been applied to a non-time-series data set of our own,

thus supporting its general applicability to microarray data of different complexity, underly-

ing structure and experimental strategy (both two-channel fluorescence-tag and radioactive

labeling).

Any method which is, like correspondence analysis, suitable for the analysis of hybridization

signals, is best used having access to a database holding the large datasets in a defined common

format, ready for preprocessing and analysis. However, it is not sufficient to provide this

platform only for hybridization intensities. It is equally necessary to supplement the intensity

data by information about genes that are represented by the array spots, and about the

1



experimental conditions for biological interpretation. For interpretation of large data sets,

these annotation data should be in a format amenable to computer aided analysis because

they are too numerous for visual inspection. Including annotated experimental parameters into

statistical analysis offers the opportunity to identify the global players behind transcription

patterns.

Free-text annotations of recent microarray databases are not suited for direct statistical access.

Parameter sets used for experiment annotation still change continously, and standards only

comprise minimal conventions that do not enable extensive description. Complex and highly

diverse experimental settings cause a high complexity and diversity in experiment descriptions,

requiring also a higher flexibility in data storage than that achieved by standard database

solutions. This is true in particular when data are stored in a statistically accessible format

restricted to defined values. A structure which is independent of the particular parameter set

enables updates of annotation hierarchies during normal database operation without altering

the structure.

A system has been developed and implemented to meet the above requirements and integrate

correspondence analysis into a larger framework of data platform and supplemental methods.

It has been named M-CHIPS (Multi-Conditional Hybridization Intensity Processing System).

It allows for statistical data analysis of all of its components including the experimental an-

notations. It addresses the rapid growth of the amount of hybridization data, more detailed

experimental descriptions, and new kinds of experiments in the future. Although different

organism-specific databases may contain different parameter sets for experiment annotation,

they share the same structure and therefore can be accessed by the very same statistical

algorithms.
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Introduction

Microarray technology

Cells accomplish metabolic processes, they comply with their growth program, adapt to chang-

ing environments, or communicate with other cells by accurately controlled expression of ap-

propriate proteins. The protein portfolio is tailored to the particular requirements of the

cell. To this end, gene-coding sequence in the DNA is transcribed and leaves the cell nucleus

as messenger RNA (mRNA). In the surrounding cytoplasm, each mRNA molecule conducts

the synthesis of the particular protein encoded. Presence and amount of a particular mRNA

regulates the presence and the amount of the encoded protein.

For a particular cell status, the level of mRNA can be measured in parallel for thousands of

genes by DNA chip technology. RNA is prepared from the cells and is reversely transcribed

into more stable DNA, simultaneously incorporating radioactive or fluorescent labels. The

labeled DNA is then applied to a DNA chip, also referred to as DNA array or microarray.

The microarray consists of support material, onto which DNA fragments of different sequence,

representing genes, have been spotted. These spots serve to measure the level of the applied

DNA obtained from the RNA sample. For DNA of the same kind, complementary single

strands will bind (‘hybridize’), resulting in double stranded DNA. Therefore, the level of

labeled DNA bound to a particular spot will correspond to the level of the particular kind of

mRNA in the cells. The amount of label is measured for each spot.

Thus, microarray technology provides insight into the transcriptional status of the cell (‘tran-

scriptome’), measuring RNA levels for thousands of genes at once [1, 2, 3, 4]. As such it has

become an important tool in functional genomics [4, 5, 3, 6].

In addition to the advantage of parallel investigation of many genes, the benefit of the technique

lies in its broad range of applications. Applications range from the study of organisms with

a particular gene inactivated (‘knockout mutants’) to the investigation of the adaptation of

cells to different environmental conditions (e.g. time series). Microarrays can be used in

pharmaceutical studies to gain information for discovery and design of effective substances

for medical therapy [7, 8]. Moreover, microarrays can be employed for diagnostic purposes,
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e.g. for the detection of dispositions for hereditary diseases [9]. In combination with mass

spectrometry, they enable the identification of SNPs (single nucleotide polymorphisms) [10].

For cancer research, genome-wide transcription is measured to classify tumor samples, i.e. to

predict class-membership for new samples [11,12].

Ongoing sequencing projects promise to yield complete gene sets for most model organisms

in the near future, which can then be mounted on DNA chips. This will increase the number

and diversity of transcriptional assays performed.

Experimental setting

A microarray consists of DNA fragments immobilized on a solid support. Common support

materials are nylon, polypropylene or glass. The surface is often chemically treated prior to

DNA immobilization to improve DNA binding properties. Immobilization on the support is

done by either ‘spotting’ cDNA fragments or synthesizing oligonucleotides ‘on chip’ [13,14,15,

16,17].

Transcriptional profiling with microarrays involves several steps (Fig. 1). mRNA is prepared

from cells growing under certain experimental conditions. For each condition the prepared

mRNA is separately subjected to reverse transcription with radioactively or fluorescent-tag

labeled nucleotides. Radioactive labeling is often carried out in combination with nylon or

polypropylene supports, while flurescence-labeled targets are mostly hybridized to glass chips.

Whereas radioactive labeling has not yet been reported to be used with more than one kind

of label per hybridization, fluorescent dyes of different color offer the opportunity to yield

more than one channel. With two-channel fluorescent-tag labeling each hybridization involves

additional application of a differently labeled cDNA, stemming from a control condition. Sub-

sequently, the labeled cDNA mixture is hybridized to the microarray. After detection of the

signals, image analysis programs are used to determine spot intensities [18].

Resulting data

I will refer to a set of conditions as a multi-conditional experiment when all hybridizations

are done with reference to one and the same control condition. Data thus produced by image

analysis may be regarded as a table, each row representing a gene, each column an experimental

condition. However, multiple measurements for each condition, involving repeated sampling,

labeling and hybridization, offer the opportunity of extracting more robust signals.

For the simple case of one channel per hybridization and with repeatedly performed hybridiza-

tions for each experimental condition, I will call the individual data set a hybridization and

represent it by a separate column in the table. One condition of a multi-conditional experiment

can thus comprise several columns (Fig. 1).
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total mRNA

labelled cDNA

gene 1
gene 2
gene 3
gene 4
gene 5
gene 6

12,154
 27,152

1,407
3,101

120,993

gene 8
gene 9

gene 7

...

14,243
 5,323

10,300
1,007

100,232

...

hybr. 1 hybr. 2 hybr. 3 hybr. 4 hybr. 7 hybr. 8 hybr. 9hybr. 6hybr. 5

condition 1 condition 2control condition

convert into numerical
values

...

cells growing under
specific conditions

immobilized DNA fragments

Intensity Table

hybridization

Figure 1: Microarray hybridization. mRNA is prepared from cells growing under specific
experimental conditions. It is labeled, i.e converted to more stable cDNA by reverse transcrip-
tion using radioactively or fluorescence-tagged nucleotides and hybridized to an array. The
scheme depicts only radioactive-label, i.e. a single-channel setup for simplicity. The detected
signals are then converted into numbers by imaging software. The output of several hybridiza-
tions can be regarded as a table with its rows representing the spotted elements. These may
be genes or expressed sequence tags (ESTs). The columns of the table stand for the performed
hybridizations. Courtesy of Benedikt Brors, modified.
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However, the intensity measurements in this table must not be taken at face value. Different

levels of background may result in additive offsets, or different amounts of mRNA or different

label incorporation rates may lead to multiplicative distortions among the hybridizations.

Therefore the columns of the table have to undergo a normalization procedure, correcting for

affine-linear transformation among the columns. Subsequently it is advisable to disregard all

genes which do not appear to be expressed under any of the conditions, or the transcription

values which do not reproducibly change between the different conditions under study.

Given a thoroughly preprocessed data set one expects to be ready to tackle the biological ques-

tions of data interpretation. However, filtering the genes by applying the above constraints

still results in large amounts of data. Furthermore, microarray data do not consist of the tran-

scription intensities alone. Data sets should also include information about the immobilized

DNA fragments as well as a detailed description of the experimental steps performed, impos-

ing high demands both on data analysis and storage. The storage should be interconnected

with analysis, i.e. it should hold the data in a format suitable for computer-based analysis,

because visual inspection is impractical due to the large volume of these data.

Current methods of data storage and analysis

Data storage

To enable interpretation of large data sets, the data produced need to be stored in a suitable

way to allow for global comparison [6]. For rapid and simple access, data should be stored in

common format, e.g. in a database, rather than in unequally structured flat files. Database

repositories provide the convenience of consistent view, defined interfaces and increased access

performance. Build-in methods for multiuser operation as well as a centralized administration

enable high standards for data security in addition.

The advantages of standardized storage apply not only to the signal intensities for each item

in an array but also to all available descriptions of the sample from which the RNA has been

derived, and all details of its treatment (Fig. 2).

Several database projects are currently addressing these questions. While ExpressDB (Har-

vard, [19]) aims at storing data from nearly all available platforms, i.e. cDNA and oligonu-

cleotide chips as well as SAGE (serial analysis of gene expression), a different focus has been

to develop systems for consistent description of the samples used and the genes mounted on

the array, e.g. in GeneX1 (NCGR), GEO2 (NCBI), ArrayDB (NHGRI, [20]), ArrayExpress

(EBI, [21]), and RAD3(UPenn, [22]), the last one combining both objectives.
1http://www.ncgr.org/research/genex/
2http://www.ncbi.nlm.nih.gov/geo/
3http://www.cbil.upenn.edu/RAD2
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Figure 2: Data upload. Along with the transcription intensities, experiment annotations
have to be stored. These should explicitely characterize the sample and its treatment, RNA
preparation and labeling steps, hybridization and washing as well as the imaging process in
sufficient detail. Courtesy of Benedikt Brors, modified.
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Data analysis

Most methods recently applied to microarray data fall into one of three groups, namely clas-

sification, clustering, or projection methods. Classification methods take as input a grouping

of objects and aim at delineating characteristic features common and discriminative to the

objects in the groups. The characteristic features are referred to as classifier. For new ob-

jects, the classifier can be used to determine the appropriate group. For cancer research, these

objects may consist of different tumor cell lines or of tumor samples of different tumor-type,

stage or grade, often supplemented by normal tissue of the particular organ [11]. Exam-

ples of classification methods range from linear discriminant analysis [23] to support vector

machines [24] or classification and regression trees (CART, [25,26]). Clustering allows investi-

gation of which genes or hybridizations appear to be different, and which transcription profiles

appear to be similar. Examples of clustering techniques are k-means clustering [27], hierar-

chical clustering [28], and self-organizing maps [29]. Clustering tends to be more explorative

than classification. No group affiliations have to be known in advance. However, parameters

such as the topology of the map for self-organizing maps or the expected number of clusters

for k-means clustering have to be selected. Varying parameters may result in altered output,

and inappropriate parametrization in uninformative results.

Projection methods produce a low dimensional projection of an originally high dimensional

data set. One can, for example, represent genes as numerical vectors with the number of

elements of each vector being the number of hybridizations involved. Therefore those vectors

could be plotted as points in hybridization dimensional space, if only the number of dimensions

were small enough for visualization. Methods such as multidimensional scaling (MDS) [30]

or principal component analysis (PCA) [31, 32] as well as the technique mentioned in this

study, project these points into a two or three dimensional subspace so that they can be

plotted. Such an embedding attempts to represent objects such that distances among points

in the projection resemble their original distances in the high dimensional space as closely

as possible. An example of the above mentioned objects is hybridizations as vectors in gene

space (Fig. 3). Vice versa, the rows of the data table, i.e. the n genes, can be represented in

m-dimensional hybridization space. MDS or PCA can be used to visualize either the former

or the latter.

Such a projection plot is an explorative way to visualize the underlying structure of a data

set. It shows which clusters are well separated and whether cluster borders are smooth. It

also allows visual judgement of the number of clusters.

Table 1 shows some of the methods recently used for microarray data analysis. Among them,

hierarchical clustering is most frequently applied.
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Figure 3: Planar embedding. The m columns of a table of n genes × m hybridizations are
represented in n-dimensional gene space (three dimensions are shown). n ranges from a few
hundred to tenths of thousands. Most microarrays comprise several thousand elements. A
plane is selected such that the distance of the hybridization vectors to the plane is minimal,
thus conserving point-to-point distances among these vector points as well as possible.
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Method Output Reference

Classification
Weighted voting
CART
Support vector machines
Artificial neural networks (ANN)
k-nearest neighbors
ISIS
Bayesian regression

Classifier
Tree
Classifier
Classifier
Classifier
Bipartitions
Classifier

[11]
[25,26]
[24,33]
[34]
[35]
[36]
[37]

Clustering
Hierarchical clustering
k-means clustering
Clustering affinity search
technique (CAST)
Kohonen maps
Cluster identification via
connectivity kernels (CLICK)
biclustering
Gene shaving

Tree
Set of clusters

Set of clusters
Set of clusters

Set of clusters
Set of clusters
Set of clusters

[28]
[27]

[38]
[29]

[39]
[40]
[41]

Planar embedding
(projection)

Multidimensional scaling
Principal components analysis
Singular value decomposition

2D- or 3D-
projection plot

[42]
[32]
[43]

Other methods
REVEAL
Bayesian networks

Directed graph
Directed graph

[44]
[45]

Table 1: Methods frequently used for microarray data analysis.
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Interaction of storage and analysis

Statistical thinking, while being largely dispensible for small-scale experimental settings,

is necessary for both the design and interpretation of microarray experiments [46]. Large

amounts of data as well as high levels of detail in data annotation render visual inspection of

these data impractical. They have to be investigated by automated computer-aided analysis.

This emphasizes the need for computer-readable data as well as for appropriate methods for

integrated analysis.

Current microarray database projects focus on the integration of multiple platforms and var-

ious fields of microarray experiments by means of flexible storage of transcription intensities

and consistent, often hierarchical sample description. However, most of the valuable informa-

tion contained in experiment annotation is currently not taken into account for analysis. This

is due to the fact that the annotations are stored in a way not readily accessible for statistical

methods. Frequencies of annotation values, e.g. within a set of experiments clustered by their

expression patterns, ought to be countable.

Figure 4 shows a simple way to determine the association of transcription patterns with ex-

perimental parameters. The graph shows a virtual data set. It depicts a planar projection

(e.g. a MDS or PCA plot) of 48 microarray hybridizations. Consider the yeast specific

enumeration-type annotation ‘growth phase’ that can take 3 different values, namely ‘expo-

nential’, ‘stationary’ or ‘pseudo-hyphal’. The corresponding hybridization data points are

drawn as rectangles, hexagons and triangles, respectively. Focusing on the triangles, one can

count their frequency in the encircled hybridization cluster, which is 1
2

(5 out of 10) as well as

in the entire set ( 8
48

= 1
6
). Dividing the first by the second frequency results in a 3-fold over-

representation of the value ‘pseudo-hyphal’ in the selected cluster. In the same manner, all

values of all annotations can be scanned for being characteristic, i.e. over- or underrepresented

in a hybridization cluster, thus enabling computer-based analysis of large and complex data

sets. The resulting (characteristic) experimental parameters are candidates for explaining the

cluster formation, i.e. they are candidates for being the active players which drive the cells to

the observed transcriptional state. While this is a fairly simple method, it already provides

good analytical access to long lists of annotations and huge sets of hybridizations, which could

not be thoroughly evaluated by visual inspection. More sophisticated multivariate statistics

can also be applied. However, any statistical analysis will require countablility of annotated

values. Misspellings, different textual representations of semantically identical items, and, vice

versa, ambiguous words whose meaning depends on the context, interfere with counting such

values. With these limitations to access for computer based, i.e. statistical, analysis, global

studies of large data sets will not be possible.

Another problem interfering with in-depth analysis of experiment annotations is the need for

reduction of the annotated parameters to achieve universal applicability. While it is suitable
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Cluster
stationary

exponential

pseudo-hyphal

growth
phase

Figure 4: Correlation between transcription pattern and experimental parameter.
The scheme — a planar projection (Fig. 3) of virtual data — sketches a simple method to
determine frequencies of annotation values for a cluster of hybridizations under study. It is
explained in the text. The dimensions of the axes correspond to the dimensions of the axes of
the original space. Triangles are filled to facilitate counting. All values of all annotations can
be scanned for being characteristic, i.e. over- or underrepresented in a hybridization cluster,
thus enabling computer-based analysis of large and complex data sets. However, these values
have to be countable in order to determine their frequencies inside and outside the cluster.
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and important to annotate the composition of culture medium for yeast, this annotation has

no meaning for cancer biopsies. Vice versa, parameters such as tumor stage or grade are

meaningless in the context of yeast experiments. Public data repositories have to take exper-

iments from very different fields of biological research. They focus on minimal standards such

as MIAME4, i.e. sets of annotations that are relevant for many different kinds of experiments.

However, mimimal-standard annotation inevitably records an experiment at a low level of de-

tail. Experimental settings may not be sufficiently described to detect artifacts or biologically

relevant but unexpected transcriptional responses to subtle experimental variations.

A third obstacle to the integrated analysis of hybridization data and its annotation is the

fact that most of the recently applied statistical methods are not able to properly visualize

more than one variable at the same time. Hierarchical clustering is widely accepted for the

analysis of microarray data. Genes and experiments are often displayed as a color-coded table

of hierarchically clustered rows and columns. This kind of visualization takes a lot of space —

often filling whole pages to display no more than 800 genes [47] — making it difficult to trace

columns. While it reflects associations among the genes and also among hybridizations, it is

easily outcompeted in revealing associations between genes and hybridizations by a method

designed for analysis of interdependencies between two variables, as I will show in example.

Contributions

I have developed a relational storage concept capable of keeping the entirety of available

information about microarray experiments in a form ready for statistical analysis. The concept

both ensures consistency of annotations and circumvents the difficulties of free-text parsing.

It is designed to permit annotation at any level of detail chosen by the collaborating biologists.

With the exception of numerical values, my annotation system is entirely categorical, allowing

a choice only between predefined enumeration-type values which can then be readily analyzed

in an automated fashion.

Annotation storage should be flexible enough to allow easy inclusion of new attributes as well

as new values. I store the definitions for the annotations and their allowed values as separate

tables in the database, thus avoiding a fixed, ‘hard-wired’ structure that would be difficult to

extend. Storing these definitions as table content rather than attributes enables them to be

extended without changing the database structure and without adjustment of the analyzing

algorithms.

Here I present a storage and analysis concept called M-CHIPS (multi-conditional hybridization

intensity processing system). It has been implemented as a set of organism-specific databases,

namely for Saccharomyces cerevisiae, Arabidopsis thaliana, Trypanosoma brucëı, Neurospora

4http://www.mged.org/Workgroups/MIAME/miame.html
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crassa and human tumor samples. While differing in the annotations used to describe the

samples, these databases share a common structure and thus are accessed by the very same

analysis algorithms. The concept is able to integrate all types of intensity data obtained from

cDNA microarrays. It has been tailored to the needs of the collaborating groups which use

cDNA microarrays with either single-channel radioactive or multichannel fluorescence readout.

Furthermore I have incorporated a method particularily suitable for the detection of interde-

pendencies not only among one set of variables such as the genes but also between any gene

and hybridization under study. Correspondence analysis (CA) is an exploratory technique,

allowing to visualize structures within the data and thus revealing which questions could be

asked or which hypotheses could be put forward. Unlike many other methods, CA does not

require any prior choice of parameters.

Like other projection methods, CA represents variables such as transcription intensities of

genes as vectors in a high dimensional space. In our case the dimensionality of the space

would be the number of hybridizations involved. Both PCA and CA reveal the principal axes

of this high dimensional space, enabling projection into a subspace of low dimensionality that

accounts for the main variance in the data. Unlike PCA, CA is able to account for the genes in

hybridization-dimensional space and the hybridizations in gene-dimensional space at the same

time. Both representations of the data matrix will be projected into the same low dimensional

subspace, for example a plane (yielding a so-called ‘biplot’), revealing associations both within

and between these two variables.

I will show the general applicability of CA to microarray data analysis in examples, both with

radioactive and multichannel data.

14



Data Storage

Data analysis is intimately linked with data storage. Terms like ‘data warehousing’ reflect

this. Data warehousing aims at providing data in a format suitable for analysis. M-CHIPS

slightly differs from a classical data warehouse solution, in which data are held in one or

several so-called ‘operational’ databases. A warehouse then collects data from these databases

mainly used for storage and makes them fit into a unified data model [48, 49]. Typically,

a warehouse will collect only a few, ‘important’ attributes from each dataset. Operations

such as extractions and transformations are recorded as meta data. The warehouse may be

denormalized, i.e. it allows for redundancy in order to avoid frequent joining from distinct

tables.

Designed to assist analytical tasks rather than pure data storage, M-CHIPS may be considered

a data warehouse. It integrates different data sources and data formats into a denormalized

structure, records meta data and enables unified access for analysis algorithms. However,

there are no underlying operational databases, and data are directly entered into M-CHIPS.

Thus, analysis may be carried out immediately, enabling instant decisions about follow-up

experiments. There is also no loss of information in experiment description. Annotations are

not extracted by compliance to minimal standards, but entered directly at a level of detail

chosen by the experimenter defining the annotations. All annotations are in an analyzable

form that avoids text mining, which frequently results in a loss of information.

Database model

In principle, a microarray database could be either object-oriented or relational. The object-

oriented model is chosen for complex data sets where numerous relations exist between the

stored entities. In contrast, relational databases are convenient for simple-structured data and

easy to handle with respect to access automation, data portation, and database administration.

A microarray database will consist mostly (more than 99% of storage space in our databases)

of intensity data which can be perfectly stored in tables and show few relations to other items.

I therefore decided to focus on the relational rather than the object oriented model due to the

simplicity and good portability among different database management systems (DBMS).
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A relational database consists of

• relations, also called tables. Such a table relates between

• attributes also referred to as data fields or columns of such a table and may contain

an arbitrary number of

• tuples, also termed records or datasets, which are represented as the rows of a table.

In addition to ‘table’, ‘column’, and ‘row’, I will frequently use the formal relational terms

relation, attribute, and tuple, respectively.

A database query retrieves from a specified relation a set of tuples that fulfill a certain

condition (also specified in the query). The purpose of an index is to allow rapid access to

specified values within a relation. Without an index, the server process executing a query has

to read from the beginning of the table to the end, looking for relevant tuples. An index is

computed on a relation for one (or several) of its attributes, ordering the contained values and

storing pointers into the relation in an appropriate data structure (e.g. a b-tree or hash table).

A query is directed to the matching rows by the index, and thus carried out much faster than

without an index.

The PostgreSQL DBMS allows for construction of relation hierarchies by table inheritance5.

Let the table B be created inheriting from table A, then

• B inherits all attributes of A.

• All tuples of B are accessible by querying the parental table A

• by anyone having read permission on A regardless of permissions on B.

Another important issue is data integrity or data consistency. Suppose a valid alteration

of the data, defined by a block of sequentially permformed operations (such a block is called

a ’transaction’) breaks down after doing half of the work. A table could have been deleted

but remains registered in the table administrating system catalogue of the database system.

Another example may be the task to add 500 Euro to everyone’s salary in a table containing

employees and now it is unknown which row was updated and which not. In both cases data

integrity (database consistency) is violated.

5The relational database model does not comprise table inheritance. This feature represents an object-
relational extension provided by the DBMS. In the world of objects, database relations are represented as
classes, attributes are also referred to as slots (AI term), tuples as instances, individuals or objects.
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Design requirements

The data to store can be divided into raw transcription intensities, gene annotations and

experiment annotations. The last have the most complex structure among these.

Gene annotations

Gene annotations may consist of clone numbers, accession numbers and heterogeneous in-

formation such as chromosomal location, enzyme categorization number or structure of the

encoded protein. Since the only unique identifier for a spotted DNA fragment is its sequence,

the most important information is a link to a sequence database which also holds the addi-

tional information. Furthermore the possibility of dividing the gene set into partitions should

be provided. This information is necessary for separate normalization of certain sets of spots,

e.g. when they have been hybridized separately.

Transcription intensities

Raw intensity data rather than processed values should be stored because processing algo-

rithms change rapidly. Currently, image analysis itself cannot be carried out without human

interaction, thus separating image data from automated analysis. Therefore, analysis should

start with raw signal intensities performing processing steps like normalization and filtering

on the fly. A hybridization yields a simple although huge list of intensities and background

values for every spot on the array. These could, in principle, be stored in records or in so-called

‘binary large objects’ inside, or even in flat file format outside the database. However, it would

not be possible to select subsets of data fulfilling criteria such as intensity thresholds or to

perform simple calculations on database level. Such calculations may be necessary in future

in order to normalize huge datasets and to extract from the normalized data when they do

not fit into computer memory, suggesting storage of intensity data in database tables. The

system should be flexible enough to store intensities stemming from both monochannel (ra-

dioactive label) or multichannel (fluorescent label) hybridizations. Signal intensities obtained

by radioactive labeling do not represent the same quantities as those reflecting competition of

differently labeled hybridizing cDNA populations. For the former, absolute signal intensities

should be proportional to the amount of mRNA molecules in the target. For the latter, low

intensity for a particular channel may result either from low mRNA concentration for this

channel or from the fact that the binding sites on the array are occupied by high amounts of

differently labeled mRNA, to give an example. Preprocessing algorithms should be able to

recognize the difference and automatically apply suitable methods, e.g. for normalization.

17



Experiment annotations

Experiment annotations may comprise, among other things, the description of environmental

conditions, genotypes, clinical data, type of tissue, estimated degree of contamination by other

cell types, or the sampling method. Annotations related to the hybridization protocol, prop-

erties of the individual array or imaging process are also included. They fall into two classes:

First, there are common annotations that are useful for all fields of interest. These are techni-

cal annotations such as array characteristics, descriptions of labeling, hybridization or washing

conditions, and of signal detection. This set of annotations should be the same for all kinds

of microarray experiments. Second, there are organism-specific annotations that meet the dif-

ferential requirements of the specific research areas such as ‘transgene’ and ‘growth phase’ for

yeast or ‘tumor type’ and ‘metastasis location’ for tumor samples. Both common annotations

and multiple organism-specific annotation sets should be stored in a unified structure so that

they can be annotated and queried by the same algorithms. Otherwise, algorithmic efforts

would not be feasible for many different kinds of microarray experiments.

All experiment descriptions should be directly accessible to statistical analysis. This can

easily be achieved when data are not entered as free text but in a categorized, queryable

form. This allows for application of multivariate procedures for correlating expression data

and annotations.

To make all experiment descriptions directly accessible to statistical analysis, I permit only two

types of experiment annotations, either numbers of predefined unit or values from predefined

lists. For example, if we let an annotation ‘growth phase’ be an enumeration-type variable

comprising the defined values ‘exponential’, ‘stationary’ and ‘pseudo-hyphal’ (see Fig. 4), the

occurrence of any value can be counted within a set of hybridizations clustered by their expres-

sion profiles and compared with its overall frequency to determine whether it is characteristic,

i.e. either over- or underrepresented in the cluster.

While in free text descriptions the number of occurences of a value is not directly countable,

dispensing with free text also causes problems. An arbitrary-length free text field allows to

annotate each possible value and may also take any number of such atomic pieces of informa-

tion. In contrast, the type of annotation described above is restricted to predefined values.

New annotations and/or new values for existing annotations have to be added constantly as

new experiments are designed. This requires the ability to define new annotations rapidly

without altering the database scheme, i.e. during normal database operation. The absence

of highly flexible free text annotations has to be compensated for by increased flexibility in

database storage.
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Database implementation

Here I will sketch how these concepts have been implemented in our databases. A techni-

cal report on the associated web page6 lists all technical details. Figure 5 shows the main

components and the way in which they are related.

The data categories mentioned above, namely gene annotations, raw signal intensities, and

experiment annotations, were taken as a basis for implementation. The corresponding items

are displayed in blue, yellow and red, respectively, in Figs. 5 and 6. The gene annotations are

linked both with the expression intensities and with public external gene databases in order

to enable explicit characterization of genes showing a particular expression behavior. The

expression intensities are stored as measurements. A measurement comprises a single value

for each spot on the microarray. Experiment schemes record for each measurement which

hybridization and experimental condition it belongs to, and which multiconditional experi-

ment (MCE) this condition is contained in. The experiment schemes are the ‘storekeepers’

of the database, relating intensity data with experiment annotations, which allow for explicit

characterization of measurements showing a particular expression pattern. The annotation

relations themselves contain values that have been defined in the definition relations.

The following subsections will go into more detail about the implementation, dealing with

the main components one by one. Fig. 6 maintains the arrangement and color code of Fig.

5, dissolving the overview into database relations and their attributes. According to the

Unified Modeling Language (UML) specifications7 of the Object Management Group (OMG),

a database relation - in the world of objects represented by a so called ‘class’ - is depicted as

a box containing its name and, separated by a horizontal line, its attributes. Building on the

Entity-Relationship-Model (ERM) of P. Chen [51], relationships between these relations (or

classes) can be of three different kinds:

• 1-to-1 relationships are depicted as ‘1—1’. Each tuple (i.e. entry) of relation A corre-

sponds to exactly one tuple stored in relation B.

• Many-to-1 relationships, drawn ‘1..*—1’, indicate that each entry in B may correspond

to more than one entry in A.

• Many-to-many relationships are resolved by a connecting intermediate relation (e.g. the

green table in the center of the diagram).

Table inheritance - on a more abstract level represented by a generalized relationship of a

subclass sharing the structure or behaviour of a superclass - is indicated by arrows. In M-

CHIPS, all child tables have exactly the same structure as their parents (rather than showing
6http://www.dkfz.de/tbi/services/mchips
7http://www.omg.org/technology/documents/formal/uml.htm
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Figure 5: Overview. The majority of the data (in terms of both storage space and number of
tuples) consist of transcription intensities (yellow). The tuples storing these data are related
to the tuples of the gene annotation table (‘brief gene annotations’, blue), which link them
to external gene databases. They are also related to measurements (meas.), experimental
conditions (cond.) and multiconditional experiments (MCEs). These relations are further
characterized by experiment schemes (green). One MCE is described by many experiment
annotations, allowed values of which are stored as definition of experiment annotations (red).
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Figure 6: UML scheme of an M-CHIPS database. The tables are arranged and color
coded according to the categories introduced in Fig. 5 and explained in the text. Overlapping
tables show identical structure. Arrows indicate table inheritance. The scheme is further
explained in the text. From [50].
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Table = y1 genes

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| spotno | int4 | 4 |

| field | int4 | 4 |

| plate | int4 | 4 |

| letter | char() | 1 |

| number | int4 | 4 |

| ext link7 | char() | 7 |

| ext link10 | char() | 10 |

| partition | int4 | 4 |

| description | text | var |

| functional catalogue | text | var |

+----------------------------------+----------------------------------+-------+

Table 2: Gene annotations (table structure)

additional attributes). The attributes of these child tables have been omitted in the diagram

for visual clarity. For the same reason, tables of identical structure overlap.

Gene annotations

A database may comprise several types of microarrays differing in their sets of immobilized

DNA fragments. I refer to the data stemming from one type of microarray as an ‘array

family’. Each family thus consists of all multiconditional experiments carried out with the

same microarray spotting scheme. A microarray family is endowed with its own set of gene

annotations that reflect this spotting scheme. The gene annotations are linked both with

the expression intensities and with public external gene databases in order to enable explicit

characterization of genes showing a particular expression behavior.

Table 2 shows the structure of a gene annotation table (see also Fig. 6). The attribute ‘spotno’

serves as a key connecting to the tables which contain hybridization intensities. ‘Field’, ‘plate’,

‘letter’ and ‘number’ correspond to the spot location on the array as well as to the DNA stock

kept in microtiter plates. Two fields of fixed length (‘ext link7’ and ‘ext link10’) are reserved

for keys linking to external databases. Certain spotsets may have to be normalized separately,

as explained in ‘Design requirements’. The partition of the spots is recorded by the attribute

‘partition’. ‘Description’ and ‘functional catalogue’ are of variable format and size. They

contain a brief description of the encoded protein and its functional category.

Explicit categorization of genes is available in the form of e.g., organism-specific gene ontology

databases (GO consortium8, [52,53]) . They assign a gene to one or more categories (‘terms’),

which themselves are hierarchically ordered in a tree. In order to make this information avail-

able to statistical analysis, I cut the tree at a level where the subtrees rooted by the according

nodes each contain a sufficient number of genes. If the number of genes in a chosen category

was low (say two), a notable effect, e.g. that a considerable share (all) of the comprised genes

8http://www.geneontology.org
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are highly associated with a certain experimental condition, could occur by chance with high

probability. For statistical analysis, the information is required in a form enabling counting

of instances of occurence for each category rather than reflecting the hierarchy. I therefore

extract the gene categories at the chosen level of detail into the column ‘functional catalogue’

of the gene annotation table, recording for each gene the associated category. One gene may

also belong to more than one category. In that case the categories listed are separated by

semicolons.

Transcription intensities and query performance

While the tables containing the gene annotations have only as many tuples (table rows) as

there are genes, transcription intensities add up to this number of entries for each single

measurement (see according one-to-many relations in Fig. 6). A measurement may comprise

a hybridization in case of monochannel experiments, or a single channel of a multichannel

hybridization. Experiment schemes (Fig. 6, green tables) record for each measurement to

which hybridization and experimental condition it belongs, and in which multiconditional

experiment (MCE) this condition is contained. Gene and experiment annotations on average

only take 0.35% of the storage space. Since this amount is far too small to be relevant for query

performance, flexibility remains the only time-saving aspect related to experiment annotations.

Performance considerations are related only to the hybridization intensities.

Among all intensities, analysis focuses on spots that represent genes as opposed to empty

spots and various kinds of controls. For this reason I use different tables to store these kinds

of intensities, thus minimizing query space (Fig. 6, yellow tables). Their names include ‘g’ for

genes and ‘e’ for empty spots (i.e. no DNA was spotted on this location). The controls are

marked by ‘h’ for heterologous DNA in contrast to ‘k’ for heterologous DNA with known con-

centration. While both spot categories comprise heterologous DNA - that is DNA stemming

from species other than the one under study - and therefore in both cases the target hybridiz-

ing to these probes has to be explicitly added to the hybridization, the difference lies in the

target concentration. For the first category this concentration is not known. Therefore, such

spots, e.g. so-called ‘guide spots’ or ‘landing lights’ marking anchor points of the grid and thus

guiding the imaging process, cannot be used for normalization. In contrast, for heterologous

DNA with known target concentration, also called ‘external controls’, defined concentrations

of artificially made RNA are added to the sample before reverse transcription. This measure,

called ‘spiking’ accounts for different label incorporation rates and other technically caused

systematic errors by providing standard signals for normalization. The last spot category,

marked ‘r’ for reference, is reserved for future use with different and novel kinds of controls.

The tables of all categories show the same structure (Tab. 3). The first attribute holds the

ID of the stored measurement in family context. ‘Spotno’ identifies the spot, corresponding
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Table = y1 g 589

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| tableno | int4 | 4 |

| spotno | int4 | 4 |

| prim | float8 | 8 |

| sec | float8 | 8 |

| prim bkg | float8 | 8 |

| sec bkg | float8 | 8 |

+----------------------------------+----------------------------------+-------+

Indices: y1 g 589 ipr

y1 g 589 ise

y1 g 589 isn

Table 3: Transcription intensities (table structure)

to the identically named attribute of the gene annotation table ‘y1 genes’ (Tab. 2). In the

tables ‘y1 e 589’, ‘y1 h 589’, ‘y1 k 589’ and ‘y1 r 589’ this attribute corresponds to ‘spotno’ in

‘y1 empty’, ‘y1 hetrl’, ‘y1 hetkc’ and ‘y1 refgs’, respectively. The remaining attributes contain

the hybridization intensities. Each gene or EST has been spotted in duplicate resulting in two

intensities (‘prim’ and ‘sec’) per hybridisation. The last two attributes are intended to take a

local background value which is determined by many imaging software packages.

M-CHIPS so far contains data obtained with BioimageTM , XdigitizeTM , AISTM and GenepixTM .

Some imaging software packages (e.g. Genepix) yield more than one intensity and background

value per spot such as differently calculated intensities (e.g. pixel mean, median), different

background intensities and various kinds of quality or reliability measures. From these, the

contents of the above tables are either chosen or calculated as a starting point for standardized

analysis in the process of database upload. The objective is to store a number proportional

to the amount of hybridized label. This would be reflected by the integrated amount of signal

measured for one spot. Delivered with median and mean pixel intensity as well as with the

number of pixels per spot, I pick mean × number of pixels for database storage to resemble

this amount as closely as possible. The intensity is often not evenly distributed within the

spot area. It tends to be low in the spot center with a concentric rim of high intensity between

center and margin. The second problem is contamination by highly fluorescent dust. Favoring

the mean over the median in the product, I account for the first problem at the expense of

intensity levels elevated by dust. The reason for this is that non-evenly distributed staining is

much more frequent and thus more severe than dust contaminations.

Having stored intensities and background for genes, empty spots and different categories of

controls, fast querying of tuples for all these categories is mediated by so-called indices, which

immediately guide the search to the specified tuples. In Tab. 3 they are listed below the

attributes of the table. The three indices belong to, i.e. direct search within, the attributes

‘prim’, ’sec‘ and ‘spotno’, respectively, as abbreviated by the last two characters of their names.

If all measurements were stored in one large table per category, adding a new measurement

would be slow because of the time necessary for recomputing the indices. Therefore, new
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measurements are inserted as separate tables, computing indices only for the new tuples.

However, database search is slowed down by increasing the number of separate tables because

there is no global index immediately guiding the search to the table containing the tuples.

Although high performance for write/delete operations is achieved, read access is slow for a

large number of separate tables. In order to optimize both writing and reading operations, I

write or delete measurements as separate tables, but read from large ‘block’ tables that are

filled by over-night jobs collecting measurements that are no longer to be altered or deleted.

Thus, computation of large indices is performed at times of low traffic as an investment in

query performance. Table inheritance is used as an elegant aid in keeping track of both single

and block tables. Since each access to the intensity tables is directed via one of the parental

tables, query syntax does not change when a set of tables is merged into one block. This

block will be a child of a specific parental table as are the tables to be merged (Fig. 6, small

yellow tables). Thus the event takes place at the underlying database level, being completely

insulated from the level of accessing algorithms for reduced complexity.

The only access property changed by this process is query speed. On a SUN E450 server under

Solaris 2.7, a PostgreSQL 6.5.3 server process retrieves two consecutively uploaded hybridiza-

tions (comprising 6103 yeast genes in double spotting) out of 686 stored in separate tables on

average in 85 seconds. The same query performs in 2.3 seconds, if the 686 hybridizations are

assembled into one large table. Even retrieving two out of 2251 hybridizations takes only 2.8

seconds when all hybridizations are en bloc.

Experiment annotations — manifold variables under constant extension

To achieve direct access for statistical methods, all experiment descriptions have been dissected

into atomic items that can be represented by either numbers of predefined unit or values from

predefined lists. To meet the flexibility requirements described above, the annotations are

contained in tables rather than being implemented in the database structure itself. The web-

based annotation process involves reading these definition tables and recording the entered

numbers or selected values in annotation tables.

Definition tables. A separate database is maintained for each organism or field of research

which contains particular definitions of experiment annotations appropriate for the investi-

gated samples. Annotation definitions for S. cerevisiae, A. thaliana, human tumor biopsies,

T. brucëı and N. crassa are provided on the M-CHIPS web page9. Each database comes with

a certain set of experiment-annotation definitions that are ‘organism-specific’. However, some,

mostly hybridization-protocol related, ‘common’ annotations are used in all databases. To fa-

cilitate inter-field analyses for the future, this portion has to be kept as large as possible. New

9http://www.dkfz.de/tbi/services/mchips
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Table = annotationheadings

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| heading1no | int4 | 4 |

| heading1 | text | var |

| heading2no | int4 | 4 |

| heading2 | text | var |

| heading3no | int4 | 4 |

| heading3 | text | var |

+----------------------------------+----------------------------------+-------+

Table = annotations

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| lastheadingno | int4 | 4 |

| ano | int4 | 4 |

| nextano | int4 | 4 |

| annotation | text | var |

| vno | int4 | 4 |

| nextvno | int4 | 4 |

| value | text | var |

+----------------------------------+----------------------------------+-------+

Table 4: Experiment annotations (table structure)

common annotations are added to all databases automatically by means of administration

scripts. Each annotation has a unique identification number. They are stored as a linked list

including an attribute pointing to the ID of the annotation next in sequence. This structure

enables adding of annotations at arbitrary positions by linking the desired ancestor to a new

element that points to the ID of the element following in that list. In a similar manner the

whole set of defined values is stored by a second linked list within the same relation. Hierar-

chical structure of annotation sets used for experiment description is recorded by the content

of a second relation. Although the system has not been tested with other than three levels,

the nesting depth has been implemented to be arbitrary. Table 4 provides the structure for

both relations. As explained above, it does not show any annotations. These can be found

exclusively in the contents of such relations. Figure 7 provides an example, listing the first

part of the common annotations.

The structure of both tables is denormalized for visual clarity. Since the normalized form, con-

sisting of separated tables, would exclusively be queried by joining them, I have directly imple-

mented the joins as database tables. Such redundancies, though not common for databases,

are frequently used in data warehousing. The contents of these tables are used as meta data

by the web-based user interface to compile multiple-choice forms (Fig. 8). The results of the

annotation process are stored in annotation tables.

Annotation tables. A multiconditional experiment consists of at least two different experimen-

tal conditions, differing e.g. in growth conditions, tissue type or genotype of the biological

material under study. Each of these conditions comprises several repeated measurements.

Such a measurement may represent a hybridization in case of radioactively labeled targets or

a single channel of a multichannel fluorescence signal. The experiment schemes storing which
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yeast=> select * from annotationheadings order by heading1no, heading2no, heading3no;

heading1no|heading1 |heading2no|heading2 |heading3no|heading3

----------+-----------------------------+----------+-----------------+----------+------------------------

1|common annotations | 1|array | 1|-

1|common annotations | 2|hybridisation | 2|RNA preparation

1|common annotations | 2|hybridisation | 3|labeling

1|common annotations | 2|hybridisation | 4|hybridisation conditions

1|common annotations | 2|hybridisation | 5|stringency wash

1|common annotations | 2|hybridisation | 6|detection

1|common annotations | 3|sample | 7|-

1|common annotations | 4|submission | 8|-

2|organism specific annotations| 5|genotype | 9|-

(...)

yeast=> select * from annotations order by lastheadingno, ano, vno;

lastheadingno| ano|nextano|annotation | vno|nextvno|value

-------------+----+-------+-----------------------------------+----+-------+-----------------------------

1| 1| 2|array source | 10| 11|self made

1| 1| 2|array source | 11| 12|genome systems

1| 1| 2|array source | 12| 13|clontech

1| 1| 2|array source | 13| 14|research genetics

1| 2| 3|array series | 0| 0|[]

1| 3| 4|array individual | 0| 0|[]

1| 4| 5|array support | 14| 15|nylon

1| 4| 5|array support | 15| 16|polypropylene

1| 4| 5|array support | 16| 17|glass

1| 5| 6|spotted material | 17| 18|PCR

1| 5| 6|spotted material | 18| 19|colonies

1| 5| 6|spotted material | 19| 20|DNA-oligo

1| 5| 6|spotted material | 20| 21|PNA-oligo

1| 6| 7|readfile | 0| 0|[]

1| 7| 8|array hybridisation | 0| 0|[]

2| 8| 9|material source | 21| 22|fresh

2| 8| 9|material source | 22| 23|frozen

(...)

Figure 7: Example for experiment annotation definitions (table content). Two SQL
statements are listed along with the first few rows of their results. The first one shows the
content of a table named annotationheadings (topmost red in Fig. 6). These headings serve
to hierarchically structure the annotations into sections. This table is linked to the second one
through ‘heading3no’, here named ‘lastheadingno’, because the nesting depth is arbitrary and
may be decreased or increased in other databases. The annotations are stored in the second
table (Fig. 6, ‘annotations’) along with their allowed values. The attributes ‘ano’ and ‘vno’
are used as IDs to reference annotations or their values, respectively, as described above. The
attributes ‘nextano’ and ‘nextvno’ point to the next entry, thus implementing the linked-list
structure. Values that contain square brackets are not necessarily categorical but are meant
to take a number, e.g. a production batch ID. If a unit can be defined for the value, it will be
listed within the brackets. From [50].
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Figure 8: Experiment annotation process. The annotation process may start with copying
default values from the most similar multiconditional experiment (MCE). Secondly, from the
complete list of defined annotations the measurement-dependent ones are selected and then
annotated for each single measurement. Afterwards, from the remaining annotations, those
being condition-dependent for the particular experiment are chosen and annotated for each
experimental condition. For the constant annotations, it suffices to edit few, if the questionaire
is prefilled with default values copied from a similar experiment. The HTML form for the
constant annotations was compiled from the annotation definitions shown in Fig. 7. From [50].
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Table = y1 constant categoricalvalue 65

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| experiment | int4 | 4 |

| ano | int4 | 4 |

| annotation | text | var |

| vno | int4 | 4 |

| cvalue | text | var |

+----------------------------------+----------------------------------+-------+

Table = y1 constant number 65

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| experiment | int4 | 4 |

| ano | int4 | 4 |

| annotation | text | var |

| vno | int4 | 4 |

| nvalue | float8 | 8 |

+----------------------------------+----------------------------------+-------+

Table 5: Constant experiment annotations (table structure)

of these measurements belong to which experimental condition also record which of them were

performed simultaneously on the same array. Most of the experiment conditions are constant

for an entire experiment, some are condition-dependent or measurement-dependent, i.e. they

can take different values for each condition or measurement. This gives the designer a choice

of storing the annotations either according to these three categories or measurement-wise.

While data import by the user is easier when following the first scheme, the latter is prefer-

able for statistical analysis. Following the first scheme, I decided to store the three sets in

separate annotation tables for convenient algorithmical handling (Fig. 6, red tables, names

beginning with ‘y1’). Merging the tables for each measurement is easy, whereas splitting

up measurement-wise stored annotations would require repeated value comparison. Table 5

displays the structure of annotation tables storing the annotated values that are constant

throughout the experiment. Categorical, i.e. enumeration type annotations and numbers are

stored in separate tables. The latter may be of either categorical or of continous range. The

two types of annotation are reflected by the type of the attributes ‘cvalue’ and ‘nvalue’. This

is the only difference in the structure of the two tables.

As a representative of intended redundancy both number (‘ano’) and name (‘annotation’) are

listed for an annotation as well as for its value. For the small data volume of the annotations

(see 8 above) this does not have major consequences for storage space or for performance.

However the redundancy might serve to reconstruct experimental annotations if an error occurs

e.g. in numbering of annotations or values. Redundant storage appears advisable here because

annotation definitions are under constant change as new kinds of experiments evolve.

The tables storing condition- and measurement dependent annotations comprise condition and

measurement as additional attributes and integrate categorical values and numbers. Recorded

content - sorted by categories condition-dependent, measurement-dependent and constant -
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can be found e.g. at http://mips.gsf.de/proj/eurofan/eurofan_2/b2, linked in the ‘ex-

perimental condition’ - column.

The experiment annotations share the feature of writing separate tables, that are assembled

into one large block later as discussed for the transcription intensities. Fig. 6 shows four table

sets differing in the structure inherited from their parental tables, two containing constant

and one containing condition- and measurement dependent annotations, each. In contrast to

the transcription intensities, which are written by separate tables for each measurement, the

annotations are stored experiment-wise.

Database management

Having introduced the parts of M-CHIPS, I will now complete the picture. The tables in the

‘ANALYSIS’ box of Fig. 6 (beige) hold metadata (e.g. normalization parameters) and analysis

results, which can be stored back into the database. At this step, the results are automatically

made available via WWW, however protected by individual passwords for each array family

(i.e. type of array) within a certain (organism-specific) database. Links to those results

that are publicly available are given in Appendix C, which also discusses the presentation

format. In the database, those results are stored as binary large objects (BLOBs). These are

unstructured bitstreams as opposed to the structured tables. The topmost table in the green

‘DATABASE MANAGEMENT’ box is named ‘archive’. Its first two attributes flag whether

any table or binary large object (BLOB) in the database has been altered. This information

is used by an overnight backup mentioned below. The fourth table holds the nesting depth of

the headings, that hierarchically structure the annotations, the third refers to the structure

version of the database. Altering the database structure is always time-consuming, because all

accessing algorithms have to be adapted. Apart from version no. 2, which is described here,

there are older databases of version 1, which can deal with single-channel data only. Because

data transformation into the new structure is error-prone, data have been kept unchanged.

Storage and analysis algorithms have been adapted such that they can handle both versions.

It should be noticed, that for each of the relations discussed above the relation name starts

with ’y1’. Figure 6 exemplifies M-CHIPS storage rather than providing a complete formal

representation. The example database comprises three different families, i.e. experiments

carried out on three different types of microarrays. The remaining database management

tables (in green box) show the array families y1, y2 and y3 (e.g. referring to three different

types of yeast arrays). Outside the green box, all tables belonging to a particular array family

are represented by those belonging to the first one, names starting with y1. The other families

comprise identically structured tables which are not shown here. In fact, of the tables already

discussed, only ‘annotationheadings’ and ‘annotations’ do not belong to a particular array

family. The contained annotation definitions are valid for any experiment of the particular

30

http://mips.gsf.de/proj/eurofan/eurofan_2/b2


field of research, i.e. throughout the database. The number of tables within an M-CHIPS

database thus varies with the number of comprised array families. It also depends on how

many uploaded measurements have already been assembled into a block table. M-CHIPS

operates on a unified storage concept for standardized algorithmical access rather than on a

fixed database structure.

Methods for database operation

M-CHIPS allows for unified analytical access to microarray experiments from different fields

of research. An instance of the above described concept of storage is a field-specific (i.e.

organism-specific) database. Such a database is charged and queried by the experimenters

themselves using algorithms which mediate upload and annotation of experiments, as well

as data analysis. Although different databases adopt different parameter sets for experiment

annotation, they are accessed by the very same algorithms.

M-CHIPS consists of C, Perl and MATLAB functions. The system is currently available for

the SUN-Solaris and HPUX platform. Gene annotations are stored during the process of

generating a new database or a new microarray family within an existing database. While

up to now this is done by the database administrator, upload of both transcription intensities

and annotation of experiments are done by users.

Experiment Annotation

Experiments can be annotated remotely by the experimenters using a web-based interface.

Annotation appears to be a time-consuming process, if hundreds of experimental parameters

have to be entered for each single measurement. For this reason, I provide the possibility to

select annotations that are constant or condition-dependent as defined above and that have

to be entered only once, in contrast to measurement-dependent annotations. Furthermore, it

is possible to copy the whole set of annotations from a similar experiment and edit only those

that differ. Few parameters should be varied per condition, so the majority of the annotations

are constant throughout the experiment. Among these, the majority are constant not only

for one particular experiment, reflecting more or less constant execution of the same protocols

for e.g. hybridization and washing. The annotation process is sketched in Fig. 8. It avoids

redundant data entry, such that it is possible to enter detailed descriptions (111 annotations)

of large multiconditional experiments (24 measurements) in less than 15 minutes.
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Upload of transcription intensities

After image processing, the output files of the imaging software are uploaded. At first the

MCE is defined by entering information about

• how many conditions are comprised by the MCE,

• how many measurements are available for each condition,

• whether or not the MCE to upload is a multichannel experiment,

• which of these measurements are channels belonging to the same hybridization (only for

multichannel experiments), and

• path and filenames of the files containing the intensities of the measurements to upload.

If the experiment has been already annotated before upload, the first two items are already

present. After selecting the annotated MCE, hybridizations and imaging output files are

assigned to the corresponding conditions and measurements already defined in the database.

To avoid wrongly assigned input, all files are thoroughly tested by the routine before import.

Every spot provided in such a file is checked for being a member of the particular array type

which has been chosen for that experiment.

Safety aspects of database operation

Algorithms for storage and analysis are designed to be used by the people who generate the

data. To meet the requirements of the users, they have to allow for multiuser access including

safe management of simultaneous write access, short waiting periods and protection against

unauthorized access. In principle, consistency and security of the data are threatened by

global accidents, private errors and unauthorized access.

Global accidents are avoided by the ability of the DBMS to handle transactions, or they

may be reverted using global backups. A transaction gives the database an all-or-nothing

capability when making modifications. It can comprise one or multiple queries with each of

the performed changes becoming valid upon successful execution of the whole transaction and

none of them in case of an error. At the same time all other users are prevented from seeing

the partially committed transaction until it has been successfully finished, preventing database

consistency from being damaged by simultaneous write access. Although transaction-based

database management slows down performance, it would be unwise not to use a transaction-

based DBMS in a multiuser scenario. M-CHIPS has been operational for two and a half years
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without any global error. Nevertheless, the data are constantly recorded by over-night tape

backup to prepare for such an accident.

Private errors differ from global accidents in effect and measures taken for repair. In case

of accidentally deleting hybridizations from a single database it would be inappropriate to

reset the whole system to the state of the night before. To be prepared for such a case, SQL

(structured query language) dumps are performed separately for each database as part of a

nightly performed process. SQL is a common standardized language for database queries.

Such dumps consist of SQL statements that can be used to restore data subsets from a whole

database down to a single tuple of a particular table. The over-night process involved also

tests and reports important consistency and status parameters of all databases by e-mail.

Unauthorized access is prevented by password authentication. To ensure that data (which

may be unpublished) cannot be altered or read by unauthorized individuals, update and/or

read permissions can be granted on any database table to a particular user. Granting such

permissions to user groups rather than separately to each user is a common procedure to

circumvent the necessity of changing permissions for each database table upon registration of

a new user. In my implementation nearly all the relations inherit from few parental tables and

are accessed via their parental table only. Permission inheritance enables the administrator to

quickly grant e.g. read access to a new user by changing permissions for a few parental tables

in place of dealing with many tables or user groups. However, the main reason for access

via parental tables is to enable pooling of tuples from hybridisation tables into large blocks

without syntax alteration of accessing queries (compare ‘Transcription intensities’ above).

Authentication of the user is mostly taken care of by the operating system (OS) that is used

for running M-CHIPS, namely Solaris or HPUX. However, if access is conducted via WWW,

the OS account of any accessing user is the one of the webserver. In these cases, the user

is asked to provide an external username along with two passwords. The first password is

requested by the APACHE webserver and authenticates the user. The second one authorizes

access to either experiment annotations or results in a certain database. It is requested by

the web-interface itself and verified by comparison to an encrypted password file entry. Both

webserver and M-CHIPS web-interface use the UNIX System encryption method which is

based on the NBS DES10 algorithm. The size of the key space depends upon the randomness

of the password which is selected. Where the webserver uses only one global password file (for

the directory), access to any annotations or results section of any database can be granted

separately via separate password files by the web-interface. The web-interface consists of

CGI scripts. After successful login, it passes on authentication as a 10-digit random number

in a hidden tag on each successive HTML page until the user logs out. Therefore the user

keeps being authentified when the particular script ends. No reauthentication or permanent

client-server-connections are needed.

10National Bureau of Standards (USA) Data Encryption Standard
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Data Anlaysis

Preprocessing of hybridization intensities

Normalization

Prior to high-level analysis, data have to be normalized and filtered. In M-CHIPS, prepro-

cessing starts with normalization of raw signal intensities. Different levels of background may

result in additive offsets, or different amounts of mRNA or different label incorporation rates

may lead to multiplicative distortions among the hybridizations. The normalization is based on

robust affine-linear regression, i.e. it corrects for additive offsets and multiplicative distortions

at the same time. The algorithms fit one measurement versus a control measurement. The

performance may be judged from the scatterplot of the raw data (measurement versus control

measurement, Fig. 9). In this plot, a regression line represents the multiplicative distortion

(slope) and additive offset (intersect) determined by the fitting algorithm. The performance

of the fit is visible in how well the regression line matches the central dense part of the cloud.

Furthermore it can be observed which properties of the raw data led to an eventually sub-

optimal result. The scale of the plot can be switched between linear and double-logarithmic.

In log scale, the regression line appears as a curve whose curvature depends on the additive

offset between the two measurements.

M-CHIPS implements two algorithms as described in [54] and [55]. From amongst the options

given in [54] I use the 5% quantile11 of each hybridization as the additive offset to subtract

initially. The original algorithm results in a shift of the original data to a lower intensity level,

making it necessary to ignore values below a certain threshold. For correspondence analysis it

is advisable to use another normalization method because low intensity signals have to be kept

in order to avoid missing data. Instead, I shift all hybridizations additively to a higher range,

in order to prevent overly biasing CA by the large relative error common to low intensities.

This shifting is done such that the 5% quantiles coincide with that of the control measurement.

For both algorithms, the set of trusted spots of unvaried expression taken into account for

11Ranking the genes by signal intensity for a given hybridization, the maximum intensity of the lowest 5%
of the genes is referred to as 5% quantile of the hybridization.

34



fitting can be specified. In most cases, the share of differentially transcribed genes is low,

enabling to use the entire set for normalization. Otherwise, external control spots reporting

defined mRNA concentrations or trusted housekeeping genes have to be used. For the former,

defined amounts of complementary mRNA are added to the samples prior to the labelling

step. For the latter, a text file is imported into M-CHIPS, listing genes that are trusted to be

constitutively transcribed under the investigated experimental conditions.

In order to normalize a whole multiconditional experiment, the above algorithms are iterated.

All measurements are iteratively normalized with respect to one and the same control con-

dition, such that they can be compared afterwards. M-CHIPS discriminates between mono-

and multichannel experiments, applying different control measurements and iteration steps.

For monochannel (e.g. radioactive) data, each measurement is normalized versus the genewise

median of the hybridizations for the control condition, resulting in absolute intensities (Fig.

9). For multichannel hybridizations, the channel belonging to the control condition serves

to normalize the other channel(s) of the same hybridization. Here, the normalized intensity

values are not analyzed as such, but result in intensity ratios, calculated immediately after nor-

malization. Normalization requires, that each hybridization comprises one channel obtained

from the same control condition.

Filtering

Prior to high-level analysis, M-CHIPS provides a means to select genes which fulfill the fol-

lowing criteria: considerable absolute expression level in at least one of the conditions; sub-

stantial change relative to the control condition in at least one of the other conditions; and

reproducibility in the separation from the control condition (Fig. 10) in at least one of the

other conditions.

Intensity. For many arrays and experiments, the majority of genes spotted on the array are not

expressed to a measurable amount. While displaying notable ratios due to measurement fluc-

tuations, they can be eliminated by means of an intensity filter. For monochannel experiments,

meaningful intensity levels are obtained by the normalization procedure. For more than one

channel, apart from reflecting a low concentration of the corresponding mRNA, a low signal

can be caused e.g. by high concentrations of differently labeled mRNA taking the majority of

the binding sites of the spot. Therefore, multichannel intensity values are not valid as such but

only in conjunction with the other channel(s) of the same hybridization. This establishes the

above requirement of one and the same control condition on each hybridization for compara-

bility. For the same reason, normalized multichannel intensities cannot be used for high-level

analysis nor for intensity filtering. However, they can serve to compute ratios reflecting the

relative abundance of a certain mRNA sequence under a specific condition compared to a

control condition. To compute intensity levels from multichannel ratios for filtering purposes,
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Figure 9: Normalization of monochannel data. Original intensity levels are shown for
each hybridization and gene of a data set explicitly discussed in Fig. 15. It comprises four
experimental conditions, each of which has been studied by three to five repetitively performed
hybridizations. Necessity for normalization is stressed by apparently different intensity levels
for hybridizations representing the same experimental condition. Each single hybridization
is adapted to the gene-wise median of the hybridizations belonging to the control condition
(red). Thus, the normalization algorithm is iterated once for each hybridization including the
control hybridizations (that are adapted to their gene-wise median). The adaption is carried
out by log-linear regression as shown for the third hybridization of the green condition. The
scatterplot axes show arbitrary (machine dependent) intensity units.
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these ratios are multiplied with an average control measurement, being the gene-wise median

of the absolute intensities of the control channels. This average is a more stable basis for

the determination of intensity levels. Apart from eliminating outliers by averaging repeated

measurements, this procedure accounts for the above example of highly abundant differently

labeled mRNA. Provided that less than 50% of the non-control conditions under study show

such a high abundance of a specific mRNA, the intensity level of the control condition for that

mRNA will not be low due to lack of binding sites.

Ratio. For multichannel data, ratios for each measurement are computed by dividing each

normalized non-control channel gene-wise by the control channel of the same hybridization.

For monochannel data, each hybridization is divided by the gene-wise median of all control

hybridizations.

Separation. Apart from intensity and ratio filters, reproducibility measures [54] are applied to

extract genes that are reproducibly up- or down-regulated. These measures integrate repeat-

edly performed measurements for the same experimental condition by providing the separation

from a control condition (Fig. 10). Apart from being filter criteria for the set of genes, they are

plotted versus the average intensity level and ratio as a measure for quality control. Moreover,

they have been successfully applied directly as high-level analysis input (not shown). For this,

all negative separation values are set to zero and attached with a positive sign for upregulation

or a negative one for downregulation, instead. Thus they can be viewed as log ratio signal,

which is suppressed by imperfect reproducibility.

Filtering. To filter out genes displaying intensities clearly above the detection limit, significant

relative change and good reproducibility of this change, intensity-, ratio- and separation-

thresholds can be applied. Genes not satisfying these constraints are discarded. One can

also discard genes above rather than below a threshold which proved to be useful to account

for saturation effects occuring e.g. if radioactively labeled arrays were exposed too long. In

general, M-CHIPS provides AND-combination of three independent constraints, each of which

can be defined as

• selecting genes above or below a certain threshold;

• that threshold applies to raw or normalized intensities or ratios, condition-medians of

normalized intensities, ratios of condition-medians of intensities, min-max separations,

or standard-deviation separations;

• it may be operational only within a specified set of conditions, e.g. all the conditions

under study.
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Figure 10: Minmax- and standard-deviation separation. Distributions of repeated mea-
surements are differential among the genes, depending on the intensity level. Usually, there
are not more than three to five values per gene and condition available for averaging. Here
they are denoted as circles and crosses for control and non-control condition, respectively.
I decided to rely on the minimal separation between two conditions (minmax-separation).
Positive minmax-separation is restricted to well-sorted arrangements of the measurements of
two conditions as shown in the left panel. Outliers as in the right panel lead to a negative
minmax-separation. Tim Beißbarth developed the idea of diminishing the separation between
the condition-means by one standard deviation (σ) of either condition set [54]. The standard-
deviation separation is less restrictive which is preferable when higher numbers of repeatedly
performed measurements are available. In these cases it is desirable to tolerate single outliers
in otherwise well-sorted sets of measurements. From [54].
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Correspondence analysis applied to mono- and multi-

channel microarray data

For analysis of transcription intensities I implemented hierarchical clustering [28] and corre-

spondence analysis [55]. While the former yields easy to interpret output and is widely used

for microarray data analysis, it poorly visualizes important details as shown below. Moreover,

it is of limited use for integrated analysis of more than one variable and therefore not useful

for the investigation of interdependencies among genes and measurements intended here. In

contrast, CA provides the capability to simultaneously visualize more than one variable.

Correspondence Analysis

I provide here a concise summary of the technique, see refs. [56] and [57] for a thorough

exposition. An informal, intuitive description will be given below. The aim is to embed both

rows (genes) and columns (hybridizations) of a matrix in the same space, the first two or three

coordinates of which contain most of the information. Let I genes and J hybridizations be

collected into the I×J matrix N with elements nij . Let ni+ and n+j denote the sum of the ith

row and jth column, respectively. By n++ I denote the grand total of N. The mass of the jth

column is defined as cj = n+j/n++, and likewise the mass of the ith row is ri = ni+/n++. Basis

for the calculation is the correspondence matrix P with elements pij = nij/n++ from which

the matrix S with elements sij = (pij−ricj)/
√
ricj is derived. S is submitted to singular value

decomposition [58], i.e. it is decomposed into the product of three matrices: S=UΛVT . Λ is a

diagonal matrix, and its diagonal elements are referred to as the singular values of S. I think

of them as sorted from the largest to the smallest and denote them by λk. The coordinates

for gene i in the new space are then given by fik = λkuik/
√
ri, for k = 1, ..., J . Hybridizations

are viewed in the same space with hybridization j given coordinates gjk = λkvjk/
√
cj, for

k = 1, ..., J . These coordinates are called principal coordinates.

To reduce dimensionality, only the first two or three coordinates of the new space are plotted.

The loss of information associated with this dimension reduction is quantified in terms of the

proportion of the so-called total inertia
∑
k λ

2
k that is explained by the axis displayed. Total

inertia is proportional to the value of the χ2 statistic, and thus the amount of information

represented in, e.g., a planar embedding (λ2
1 + λ2

2)/
∑
k λ

2
k, corresponds to the proportion of

the χ2 statistic explained by the embedding.

The above summary is aimed to provide all the information needed to implement a simple CA

algorithm. This can be easily done by using nested for loops. A much shorter implementation

without loops can be achieved in any programming language supporting matrix multiplication

and providing a routine for singular value decomposition, e.g. in MATLAB (Appendix B).
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Standard coordinates as an aid in visualization

Correspondence analysis attempts to separate dissimilar objects (genes or hybridizations) from

each other; similar objects are clustered together resulting in small distances. In contrast, the

distance between a gene and a hybridization cannot be directly interpreted. For visualization

of between-variable association in the plot one includes virtual genes which have all their

intensity focused in one hybridization [57]. The coordinates of such a gene are called standard

coordinates of the hybridization where this gene is expressed. Likewise, one could introduce

standard coordinates for genes. The standard coordinates for the genes are computed as

uik/
√
ri and for the hybridizations as vjk/

√
cj. In practice, the spread of the set of real genes

and hybridizations is much smaller than the spread introduced when including these virtual

genes and hybridizations via their standard coordinates. As a consequence, the real points

would shrink to a tiny area, so I rather depict the direction from the centroid of the data to

the standard coordinates instead of the standard coordinates themselves.

Medians and replicate hybridizations in correspondence analysis

Typically, replicate hybridizations are performed for each condition under study leading to

several values for one gene/condition pair. The number of such repeated hybridizations is

often small. I therefore represent these values by their gene-wise median rather than their

gene-wise average because the median is less sensitive to outliers. The need remains, though,

to visualize also the original data and not only the median since they contain valuable informa-

tion about experimental variance and quality of individual hybridizations. In fact, CA offers

the possibility to reflect both aspects. To this end, CA is first effected by using the gene-wise

medians, determining the coordinate system to embed the original hybridization intensities.

These data points are then referred to as supplementary points or points without mass. Thus

the share of noise belonging to an experimental condition is shown by the spread of its hy-

bridizations around the median. As the dimensions of the data are reduced by using medians

of hybridizations per experimental condition, I refer to this strategy as hybridization-median

determined scaling (HMS).

The embedding for hybridizations without mass is computed as follows. Let the matrix N

contain only the hybridization medians and let N? of elements n?ij′ be the original data matrix

containing all the hybridizations. N is submitted to CA. Let P? have elements p?ij′ = n?ij′/n
?
++.

The principal coordinates for the supplementary hybridizations from correspondence matrix

P? are then calculated as

g?j′k =
1∑

i
p?ij′

∑
i

p?ij′fik

λk
.

In our own data sets, a single hybridization consists of two corresponding spot sets because each
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cDNA had been spotted twice on the array. I refer to these spot sets as primary and secondary

spots. They tend to show a higher correlation than hybridizations belonging to the same

experimental condition. Plotting them separately (duplicating the number of supplementary

points) provides an atomic unit of distance in the biplot, where no units are assigned to the

axes. The intensity unit cancels out when calculating the correspondence matrix P.

Interpretation of a correspondence analysis biplot

Correspondence analysis was originally developed for contingency tables and is intimately

connected with the χ2 test for homogeneity in a contingency table. The question asked by

this is whether the differences among the rows (or columns) of the table are large enough to

reject the hypothesis that the rows (columns) are homogenous. In other words, it is asked

whether the discrepancies between the observed rows and an average row profile expected for

the homogenous case, are so large that they are unlikely to occur by chance alone. The question

is answered by computing a measure of discrepancy between all the observed and expected

values: The difference between observed and expected value is squared and subsequently

divided by the expected value. The result is referred to as the χ2 distance between observed

and expected value. These distances, calculated for all elements of the table, sum up to the

χ2 statistic. The value of the χ2 statistic is high when there is an association between rows

and columns of the table. In CA, points are depicted such that the sum of the distances

of the points to their centroid (called “total inertia”) is proportional to the value of the χ2

statistic of the data table. The farther a point is away from the centroid, the higher is its row’s

contribution to the value of the statistic. In this sense, CA decomposes the overall χ2 statistic.

Distances among points are not meant to approximate Euclidean distances but rather the χ2

distance. This distance is low when the profiles of two vectors show similar shape, irrespective

of their absolute values.

Together with the row-points, CA displays points representing columns and does so using

the same χ2 criterion. This also establishes the link between row and column points. If a

column determines an outstanding entry of a row (and vice versa), then the corresponding

row and column points tend to lie on a common line through the centroid. For a positive

association the two points will lie on the same side of the centroid, with the distance to it

larger the stronger the association is. A negative association will cause the column-point and

the row-point to lie on opposite sides of the centroid. The following example demonstates

the practical use for microarray data analysis. For clarity, a fictitious example has been

constructed. Fig. 11 shows virtual profiles for 24 genes, transcription intensity plotted versus

experimental condition. Let each condition comprise two repeated hybridizations. CA will

decompose these profiles corresponding to their association to the hybridizations under study.

Fig. 12 shows the expected planar projection. The genes are depicted as black dots, the
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Figure 11: Virtual data example. To demonstrate interpretation of a CA biplot, a data
example has been constructed. It resembles real data in that the majority of the genes is
lowly or not transcribed to a measureable amount. It comprises only 24 genes and differs from
the real world in perfect reproducibility among the two hybridizations of each experimental
condition.
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hybridizations as boxes, color-coded according to the experimental condition they belong to.

To illustrate the locations of the genes, each gene cluster is shown together with the according

gene profiles. The following properties of such a plot are useful for its interpretation.

• Hybridizations showing high similarity in expression profile, for example because they

belong to the same experimental condition, have a short distance in the 24-dimensional

gene space, and therefore they will be neighbors in the projection as well.

• Genes with high intensities in a condition are located in the direction of this condition.

The two genes located in the direction of the blue condition (upper right corner) are

both upregulated particularly in the blue condition.

• Genes particularly downregulated under this condition are located at the opposite side

of the centroid. One can regard this gene (lower left corner) as being downregulated in

the blue condition. Another valid interpretation is, that it is located in the direction of

the bisection line between the red and the green condition because it is equally abundant

in these two conditions.

• All genes with unchanged expression, or those not expressed to a measurable amount

in any of the conditions under study are located near the centroid. For experiments

with comprehensive or complete gene sets, i.e. sets not particularly selected for high

expression, the genes that are not detectable will be the majority [59]. The CA plot will

show a centric cloud of many genes lacking significantly changed expression throughout

the experiment. The outer regions of the plot will contain the so-called ‘differential’

genes. Their distance to the centroid will reflect the significance of displaying differing

expression from the ‘average’ ones in terms of χ2 - statistics, which are placed at the

center of the plot.

The above items are sufficient for correct CA plot-interpretation of most real data examples.

However, the second item, claiming common directions for conditions and associated genes is

not mathematically correct and has to be seen more as a ‘rule of thumb’. It can be proven that

the directions of a condition and its highest possible associated gene never coincide exactly. To

properly visualize associations between conditions and genes, virtual genes will be used that

are fully concentrated on one condition. They serve as representatives of the hybridizations in

gene-space (see standard coordinates above). Because they show highest possible association

to the according conditions, they are located far away from the centroid. Plotting them directly

would cause all other points representing genes and hybridizations to be located in a small

centric area. I will represent them as lines from the centroid to their coordinates (see Fig.

14), with the latter lying outside the plot margins after zooming into the area of conditions

and ‘real’ genes.
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Figure 12: Planar projection by CA. The plot resembles output that can be expected for the
virtual data example shown in Fig. 11. It was constructed to demonstrate properties of such
projections more clearly than possible by showing a single plot of real data. Gene-clusters are
shown together with the according gene profiles, which are discussed in the text. The abscissa
represents the first, the ordinate the second principal axis. Both axes are dimensionless.
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Multichannel data example — analysis of a well-known data set

To introduce the method, its performance is demonstrated on a well-known data set. This set

comprises the hybridizations referred to by Spellman et al. [47] which are publicly available12.

Spellman et al arrested the S. cerevisiae cell cycle by four different methods, namely α factor-,

CDC15 - and CDC28 -based blocking, and elutrition. Here and in the legend to Fig. 14 I will

refer to these four methods as ‘alpha’, ‘cdc15’, ‘cdc28’, and ‘elu’, respectively. At certain

timepoints after releasing the block, samples from each of the methods had been drawn,

their cell cycle phase had been classified and the transcriptional status assayed by microarray

hybridization.

The data consist of two-channel fluorescence signals. Following the authors I based my analysis

on the log-ratio of the intensities of the two channels. To make the data analyzable by CA, they

were additively shifted to a positive range. In my analysis I gave mass to all hybridizations

instead of applying HMS. The standard coordinates of the hybridization medians, on the

other hand, were computed ‘without mass’ and are depicted as lines emanating from the

centroid. I analyzed the 800 cell-cycle associated genes depicted in Fig. 1 in ref. [47] over all

73 hybridizations. To allow for direct comparison, part B of the original figure, which also

marks the histone gene-cluster, is shown here as Fig. 13. The CA biplot is shown in Fig 14

with hybridizations colored according to their phase assignment and following the color code

of the original figure.

The planar embedding produced by CA (Fig. 14a) shows the hybridzations clearly separated

according to their cell cycle phase. They are arranged in circular order of correct sequence.

The lines denoting the direction of the hybridization medians emphasize this arrangement.

The black dots correspond to genes. Genes that show strong expression in a certain phase are

located in the direction determined by the hybridizations of this phase. The farther away from

the center the genes are, the more pronounced is their association with that phase. Genes that

are down-regulated in this phase appear on the opposite site of the centroid. As an example of

strong association with the S-phase, the gene profiles for the histone gene cluster, also marked

by Spellman et al., are encircled in black. Their profiles are shown in Fig. 14b which is further

subdivided according to the method of cell cycle arrest that had been used. The red-encircled

genes will be discussed in the next section in the context of CDC14 induction. Genes equally

transcribed in most or all of the cell cycle states had been removed by Spellman et al., causing

a hole near the centroid of the CA plot where otherwise genes would lie that show little change.

Upon close inspection the biplot reveals interesting details about the data. It should be

noticed that hybridization cdc15 30 (cdc15-based blocking, 30 min timepoint) classified as

M/G1 (yellow) lies in the green (classified G1) sector rather than in the yellow one. Likewise,

hybridization cdc15 70 is classified G1 but clusters together with the blue dots (S-phase), and

12http://genome-www.stanford.edu/cellcycle/data/rawdata/combined.txt
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Figure 13: Original figure 1B [47]. This figure has been reproduced from ref. [47]. It
shows gene expression during the yeast cell cycle. Genes correspond to rows, and the time
points of each experiment are the columns. The ratio of induction/repression is shown for
each gene such that the magnitude is indicated by the intensity of the colors displayed. If
the color is black, then the ratio of control to experimental cDNA is equal to 1, whereas the
brightest colors (red and green) represent a ratio of 2.8:1. Ratios >2.8 are displayed as the
brightest color as well. In all cases red indicates an increase in mRNA abundance, whereas
green indicates a decrease in abundance compared to the control samples (stemming from
asynchronous cultures of the same cells growing exponentially at the same temperature in the
same medium). Gray areas (when visible) indicate absent data or data of low quality. Color
bars on the right indicate the phase group to which a gene belongs (M/G1, yellow; G1, green;
S, purple; G2, red; M, orange). These same colors indicate cell cycle phase along the top.
Genes that share similar expression profiles are grouped. The dendrogram on the left shows
the structure of the cluster. 46
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Figure 14: Cell cycle synchronization data by Spellman et al. The data set composed
of 800 cell-cycle associated genes has been projected by CA as is. No HMS has been employed
in order not to bias the resulting plot in terms of separation of the cell-cycle phases. The
outlying hybridizations have been identified to be caused by a slight phase shift of the cdc15-
based synchronization visible in the upper right panel of Fig. 14b, which shows the profiles of
the nine histone genes HHF1, HHF2, HHT1, HTB2, HHT2, HTB1, HTA1, HTA2 and HHO1
encircled in black in Fig. 14a. Further explanation is given in the text. The abscissa represents
the first, the ordinate the second principal axis. Both axes are dimensionless. From [55].
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one S-phase hybridization, cdc15 80, lies in the red sector of G2 hybridizations. All these

outliers come from the series of hybridizations where the cell cycle arrest was achieved using

CDC15 -based blocking. This arrangement of cdc15 hybridizations suggests an improper phase

classification for these samples.

This hypothesis can be validated based on the gene profiles. For the histones, the shift towards

an earlier stage in cell cycle is visible in the upper right panel of Fig 14b. Timepoints cdc15 30

through cdc15 90 show the upregulation of the histones already at the end of M/G1 (yellow)

instead of G1 (green) as well as too early downregulation: the curves intersect the zero line

(identity to the control channel) at cdc15 90, classified as G2 (red) instead of M (brown),

as e.g. in the elutrition experiment. The nine histones are only a small subset of the 800

cell-cycle regulated genes. Profiles of other genes, though different from the ones plotted, also

display shifting of the above timepoints to expression patterns associated to an earlier state

in cell-cycle by the remaining timepoints (data not shown). CA computes the projection for

timepoints cdc15 30 to cdc15 90 according to their expression patterns in the entirety of the

geneset, independent of their phase classification. Fig 14a displays them displaced in clockwise

shift compared to equally colored squares, that is in positions inconsistent with their cell-cycle

state classification. While clustering together the nine histone genes, the original figure by

Spellman et al. [47] (printed here as Fig. 13 for direct comparison) does not properly show

this shift.

Monochannel data example — overexpression of CDC14

Instead of following the cell cycle through S phase, G2, mitosis and G1, this experiment focuses

on the transition from mitosis to G1. In late mitosis, mitotic cyclin-dependent protein kinases

have to be inactivated in order to exit mitosis. Cdc14p plays a major role in this transition to

G1 being a dual specific phosphatase. In this experiment cells were arrested in mitotic meta

phase, and CDC14 was overexpressed by inducing the controlling GAL1 -promoter. Thus, one

cannot directly observe the effect of CDC14 overexpression because it will be overlaid with

the gene expression changes due to the presence of galactose. To subtract for these effects,

wild type and transgenic strain were grown under repressing and inducing conditions leading

to four samples which were subjected to array hybridization: wild type without galactose;

wild type with galactose; transgenic yeast without galactose (no induction of CDC14 ); and

transgenic yeast with galactose.

In contrast to the previous example, CA was used to analyze transcription intensities instead

of two-channel ratios. The data, consisting of three to four hybridizations per condition

were normalized. Genes (1,400 of of 6,100) were extracted for being reproducibly differential

(positive minmax separation) from the control condition (WT strain without induction) in at

least one of the other conditions. Measurement noise was further reduced by HMS. Planar
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embedding by HMS (Fig. 15) explains 80.8% of the total inertia, compared to 52.5% in

case of embedding all the hybridizations separately (not shown). Hybridization medians are

represented both in principal coordinates and as lines to their standard coordinates. The

actual hybridizations, each separated into primary and secondary spot sets, are drawn as

supplementary points. They are represented only in principal coordinates as are the genes.

The biplot (Fig. 15) clearly shows four directions corresponding to the four conditions. Genes

in the direction of galactose induced transgenic yeast are those specifically upregulated upon

CDC14 induction as opposed to genes activated by galactose also in the WT strain, like GAL1

and GAL7. This subtraction has been achieved purely computationally and is based on the

provision of galactose activated genes in wild type as a separate condition. The set of genes

associated specifically to the Cdc14p overproducing condition comprises CDC14 itself as well

as SIC1, known to be accumulated in a Cdc14p dependent fashion [60] and CTS1 which

belongs to the cluster of SIC1 co-regulated genes [47]. RME1, CRH1 and PST1 are known

to be cell cycle regulated with peaks in mitosis/G1 transition, G1 or late G1, respectively but

have not yet been described in association with Cdc14p activity. YBR071W, PIR1, YGR086C,

YLR194C, and YFL006W have not been annotated to be cell cycle regulated, but these results

show that they are. This is in agreement with the data of Spellman et al. (see Fig. 14, genes

marked by red circles), which also show these genes to be transcribed during mitosis/G1

transition. The role of the nuclear pore protein GLE2 in a Cdc14p activation context remains

unclear.

Integration of gene and experiment annotations with tran-

scription profiling

With correspondence analysis, as discussed above, it is possible to visualize associations both

among and between genes and hybridizations. However, these associations extracted from

gene×measurement tables need biological interpretation to become meaningful results. Both

genes and measurements can be annotated by biologically relevant information. Much like the

intensity or ratio data themselves, these annotations are not suited for visual inspection due to

their high number. While they are usually reduced to a few putatively important parameters at

the risk of overlooking something unexpected, I want to keep all of them. Previously described

efforts in storing complex and detailed experiment annotations in a statistically accessible form

have to be seen as prerequisites for integrating as much information into analysis as possible.
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Figure 15: Overexpression of Cdc14p. In arrested yeast cultures Cdc14p expression was
induced under control of the GAL1 promoter and investigated in comparison to uninduced
transgenic, uninduced WT and inductor-exposed WT cells. Three to four hybridizations have
been performed for each experimental condition. Both spot sets of the array are drawn sep-
arately for each hybridization, primary, and secondary spot set depicted in light and dark
colors, respectively. The conditions are colored, and their hybridization medians are marked
according to the legend in the upper right corner. Lines are drawn in the direction of the stan-
dard coordinates of the condition medians in appropriate colors: genes like GAL7 and GAL1
are associated with both the WT and the transgenic strain grown in the presence of galactose
to an equal share. CDC14 is associated with the induced transgenic strain only. The ab-
scissa represents the first, the ordinate the second principal axis. Both axes are dimensionless.
From [55].
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General interconnectivity among different visualization plots

Analysis techniques provided by M-CHIPS include hierarchical clustering [28], CA [55], and

statistical analysis of experiment annotations for arbitrary sets of hybridizations, e.g. those

clustered by similar expression profiles. Comparison of different visualizations of a dataset

are facilitated by highlighting data points which have been selected in another plot. It is also

possible to mark all genes bearing a certain keyword like ‘cell cycle’ in their gene annotation

or to import multiple sets of gene tags from text lists. In the CA plot, several disjoint gene

sets can be visualized by different color, e.g. to highlight different functional categories or to

mark interesting clusters of genes. For the latter, gene sets can be selected by encircling them

by mouse clicks. Expression profiles of marked genes can be displayed in a parallel coordinate

plot.

In the same manner clusters of measurements can be selected. They are automatically scanned

for significant experiment annotation values. For each value of every annotation, instances of

occurence are counted. For a particular value, its frequency in the cluster is determined as the

number of its occurences in the cluster divided by the number of measurements in the cluster.

Comparison to its frequency in the whole set of measurements under study reveals whether it

is over- or underrepresented in the cluster as sketched in Fig. 4. An example is presented in

the following subsection.

Characterization of measurement clusters by experiment annotation scan

A time course has been recorded for wild type S. cerevisiae cells under oxidative stress by

0.2 M hydrogen peroxide. Data have been preprocessed and visualized by CA (Fig. 16).

Experimental and computational details are given in Fig. 17 and Appendix A. The plot com-

prises both genes and measurements. The genes are depicted as black dots. Measurements are

shown as squares, color-coded according to the experimental condition they belong to. There

is one outlying cluster of measurements belonging to the 30 min timepoint (pink), whereas

other measurements of the very same condition are located in a distant area, clustering with

other timepoints. Selecting these outliers, searching for at least 2-fold over- or underrepre-

sented annotation values results in values belonging to only 8 out of 111 annotations (Tab.

6). These annotations are possible candidates to explain the cluster formation. Some can

be excluded when considering their meaning in the experimental context. The annotation

‘incubation period’ records the time points, and ‘temporary additive’ describes whether or not

hydrogen peroxide was present in the growth medium, both only reflecting that the selected

measurements belong to the 30 min timepoint.

‘Label incorporation rate’ and ‘total activity’ of incorporated label can be also disregarded for

characterization of the cluster, because values annotated for the measurements in the cluster
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Figure 16: Oxidative stress. The correspondence analysis plot shows a dataset recorded
from wild type yeast cells responding to 0.2 M hydrogen peroxide in the medium. Genes are
depicted as black dots, measurements (in this case monochannel hybridizations) are shown as
squares, color-coded according to the experimental condition (here time point) they belong to.
Further explanation is given in the text. The outlying cluster of pink labeled measurements
(red arrow) is further characterized by experiment annotation values over- or underrepresented
in this cluster as shown in Tab. 6. The abscissa represents the first, the ordinate the second
principal axis. Both axes are dimensionless. From ref. [50], modified.
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More than or exactly 2x over- or underrepresented:

annotation 2 array series

value 59 is 7x overrepresented (2/2 in cluster : 2/14 in total)

value 61 is absent (0/2 in cluster : 12/14 in total)

annotation 3: array individual

value 1 is absent (0/2 in cluster : 2/14 in total)

value 2 is absent (0/2 in cluster : 2/14 in total)

value 3 is absent (0/2 in cluster : 2/14 in total)

value 4 is absent (0/2 in cluster : 2/14 in total)

value 5 is absent (0/2 in cluster : 4/14 in total)

value 6 is 7x overrepresented (2/2 in cluster : 2/14 in total)

annotation 7: array hybridisation

value 5 is absent (0/2 in cluster : 1/14 in total)

value 6 is absent (0/2 in cluster : 1/14 in total)

annotation 16: label incorporation rate

value 44 is absent (0/2 in cluster : 1/14 in total)

value 46 is absent (0/2 in cluster : 1/14 in total)

value 51 is absent (0/2 in cluster : 2/14 in total)

value 52 is 7x overrepresented (1/2 in cluster : 1/14 in total)

value 56 is 7x overrepresented (1/2 in cluster : 1/14 in total)

value 59 is absent (0/2 in cluster : 1/14 in total)

value 68 is absent (0/2 in cluster : 1/14 in total)

value 84 is absent (0/2 in cluster : 1/14 in total)

value 87 is absent (0/2 in cluster : 2/14 in total)

value 88 is absent (0/2 in cluster : 2/14 in total)

value 93 is absent (0/2 in cluster : 1/14 in total)

annotation 17: total activity

value 26000000 is absent (0/2 in cluster : 1/14 in total)

value 34000000 is absent (0/2 in cluster : 1/14 in total)

value 35000000 is absent (0/2 in cluster : 1/14 in total)

value 36000000 is absent (0/2 in cluster : 1/14 in total)

value 38000000 is 7x overrepresented (1/2 in cluster : 1/14 in total)

value 39000000 is absent (0/2 in cluster : 1/14 in total)

value 43000000 is 7x overrepresented (1/2 in cluster : 1/14 in total)

value 46000000 is absent (0/2 in cluster : 1/14 in total)

value 56000000 is absent (0/2 in cluster : 1/14 in total)

value 61000000 is absent (0/2 in cluster : 2/14 in total)

value 65000000 is absent (0/2 in cluster : 1/14 in total)

value 71000000 is absent (0/2 in cluster : 1/14 in total)

value 80000000 is absent (0/2 in cluster : 1/14 in total)

annotation 39: experimentator

value 104: bastuk is absent (0/2 in cluster : 2/14 in total)

annotation 1053: temporary additive

value 1123: none is absent (0/2 in cluster : 2/14 in total)

annotation 1055: incubation period

value 5 is absent (0/2 in cluster : 4/14 in total)

value 10 is absent (0/2 in cluster : 2/14 in total)

value 15 is absent (0/2 in cluster : 2/14 in total)

value 20 is absent (0/2 in cluster : 2/14 in total)

value 30 is 3.5x overrepresented (2/2 in cluster : 4/14 in total)

Table 6: Frequencies of characteristic annotation values
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show up in mid-range for both annotations in table 6.

The absence in the cluster of a particular ‘experimentator’, who performed two out of the

twelve measurements outside the cluster is unlikely to explain the difference between cluster

and other measurements. The same applies to not rehybridizing the array for the 5th or 6th

time (annotation ‘array hybridization’).

The first two annotations listed mean that the entire cluster was hybridized on ‘array individ-

ual’ 6 which is the only one stemming from ‘array series’ (i.e. production batch) 59, whereas

all other arrays were from series 61. From other experiments, sufficient comparability among

arrays of the same production series has been observed, whereas arrays of different batches

could not be directly compared. The differential array batch used for hybridization in the

selected measurements causes their profiles to be different. The CA plot in Figure 16 shows

them clearly separated not only from the remaining measurements of the 30 minutes timepoint

but also from all other measurements. This artifact distorts the projection of an otherwise

sound and revealing dataset. Omitting the two outlying measurements for analysis results in

the CA plot shown in Fig. 17.

Disregarding the measurements hybridized on a different array series, it is possible to dif-

ferentiate response phases and to identify the genes involved. Figure 17 reveals a leap in

transcriptional status of the cells between 15 and 20 minutes after start of treatment, consis-

tent with the work of Godon and co-workers [61]. This includes both genes with increased

and decreased transcription levels. As an example of a marked expression pattern I selected

a cluster of four genes being activated in the initial phase of the response but down-regulated

after 20 minutes (Fig. 18).

Scanning annotations of continuous range

For the example above, all annotations were treated as categorical. Sometimes, especially with

higher numbers of measurements, it is desirable to aggregate values for annotations of contin-

uous range (see no. 16 and 17 in Tab. 6). ‘Label incorporation rate’ may thus be discretized

into e.g. low, medium and high values. M-CHIPS provides methods enabling discretization

of annotation ranges into a chosen number of bins due to their particular distribution or by

expert knowledge. After selecting a cluster of measurements in a CA plot, a loop is entered for

repeated extraction of characteristic annotation values. At the beginning of each loop step, a

menu enables alteration of the representation factor threshold as well as discretization of an

annotation (Fig 19a). The discretization routine displays a histogram of all values annotated

for the selected annotation in the whole database (Fig. 19b). The number of intervals to

display as well as linear or logarithmic scale can be selected for the histogram. The routine

allows to discretize into equally spaced intervals. Alternatively, arbitrary interval centers can

be manually selected by mouse click. When the histogram shows the desired segmentation of
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Figure 17: Oxidative stress. Wild type yeast was grown in the presence of 0.2 M hydrogen
peroxide and sampled in 5 min-intervals (10 min at end). The experiment was performed
twice yielding two hybridizations per experimental condition (timepoint). These conditions
are color-coded according to the legend, double-spotting in dark and light colors. A black
arrow shows the course of the experiment. Four genes are tagged that are almost exclusively
associated with the 15 min timepoint. Their profiles are given in Fig. 18. The abscissa
represents the first, the ordinate the second principal axis. Both axes are dimensionless. From
the supplemental material to ref. [50], modified.
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Figure 18: Profile of the four genes tagged in Fig. 17. For the four genes tagged in Fig.
17, the median transcription intensity is plotted against the response time. Their ORF (open
reading frame) identifiers and their names are provided in the legend. The ordinate shows
arbitrary (machine dependent) intensity units.

the value range, the values can be replaced by the displayed interval centers. The effect of this

measure in conjunction with the choosen representation threshold is immediately visible in

the displayed list of characteristic values (see Tab. 6) and can be revoked, revised, improved

or augmented by discretization of other annotations in the next round.
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Figure 19: Processing annotations of continous range. The values of continuously
ranged annotations can be identified with a certain interval containing them. After selection
of appropriate intervals (equally spaced or customized in linear or logarithmic scale), the
values are assigned the center of the according interval and the scanning for characteristic
scores if performed with the new values. The procedure can be iterated (or reversed) until an
informative binning has been achieved.
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Discussion

The present work introduces a storage system and methods to study interdependencies among

large-scale microarray data. I applied correspondence analysis as an explorative and powerful

statistical tool to study interdependencies both between and among sets of variables, i.e. genes

and hybridizations obtained by expression profiling [55]. It is necessary to carefully preprocess

the data and to perform correspondence analysis in a way that is capable of dealing with

measurement noise and outliers, thus adapting the method to the particular requirements of

microarray data.

To achieve a wide analytic scope, it is not sufficient to put the hybridization intensities into

a common format as a platform for preprocessing and analysis. With more and more hy-

bridizations at hand, the necessity rises of providing this platform also for the experiment

annotations for biological interpretation. For the statictical analysis of numerous and large

datasets stemming from multiconditional microarray experiments, the data need to be prop-

erly annotated and stored in a manner such that both the datasets and their annotations are

accessible to statistical analysis. Including annotated experimental parameters into statistical

analysis offers the opportunity to identify the global players behind transcription patterns.

Free text annotation of recent microarray databases impairs its direct statistical access. Pa-

rameter sets used for experiment discription have not yet reached their final shape, and

standards are reduced to minimal conventions that do not yet enable extensive description.

Complex and highly diverse experimental settings cause a high complexity and diversity in

experiment descriptions, requiring also a higher flexibility in data storage than that achieved

by standard database solutions. This is true in particular when the data are stored in a statis-

tically accessible format restricted to defined values. A structure which is independent of the

particular parameter set enables updates of annotation hierarchies during normal database

operation without altering the structure.

A system has been developed and implemented to meet the requirements above and to inte-

grate CA into a larger framework of data platform and supplemental methods [50]. M-CHIPS

(Multi-Conditional Hybridization Intensity Processing System) allows for data analysis of all

of its components including the experimental annotations. It addresses the rapid growth in

the amount of hybridization data, more detailed experimental descriptions, and new kinds of

58



experiments in the future.

Data platform

M-CHIPS in the context of recent microarray data platforms

Previously published microarray database concepts have focused on the ability to include

intensity data from different platforms and to make these comparable [19,21]. These datasets

are valuable only if they are annotated by sufficiently detailed experiment descriptions.

However, in many databases a substantial number of these annotations is in free-text format

and not readily accessible to computer-aided analysis. Some projects have started to develop

controlled vocabulary for experiment description (e.g., ArrayExpress [21], RAD [22] and GEO

[62]). However, so far little effort has been made to categorize the descriptions down to

minute detail and make them amenable to analysis. To my knowledge, M-CHIPS is the first

micorarray repository without any free-text in experiment annotation.

Moreover, the concept of categorizing experiment description down to atomic annotations

stored as content of definition tables is unique to M-CHIPS. GeneX13 (NCGR), ArrayExpress14

(EBI), SMD15 (Standford, [63]), ArrayDB16 (NHGRI, [20]), ExpressDB17 (Harvard, [19]),

EpoDB18 (Upenn, [64,65]), RAD19 (UPenn), and GEO20 (NCBI) all show a number of biolog-

ical or protocol-related keywords in their UML structure representations or attribute listings,

indicating a more or less static, ‘hard-wired’ implementation.

As my concept is not meant to be implemented in a large public gene expression database,

I have not dealt with the inclusion of additional platforms such as oligonucleotide chips or

SAGE, but have concentrated on mining the wealth of information contained in the experiment

annotations. However, I have been able to serve several collaborating groups in providing

databases and analysis tools for data from different areas of research (i.e. experiments with S.

cerevisiae, A. thaliana, T. brucëı, N. crassa and human cancer samples), obtained by different

platforms (radioactive hybridization to nylon or polypropylene membranes and fluorescent

hybridization to glass slides), and by means of different imaging software.

13GeneX http://www.ncgr.org/genex/doc/GeneXSchema.pdf
14ArrayExpress http://www.ebi.ac.uk/arrayexpress/Full_Schema.gif
15SMD http://genome-www4.stanford.edu/MicroArray/SMD/doc/db_specifications.html
16ArrayDB http://genome.nhgri.nih.gov/arraydb/schema.html
17ExpressDB http://arep.med.harvard.edu/ExpressDB/ExpressDB.v200.help.htm
18EpoDB http://www.cbil.upenn.edu/EpoDB/release/schema/schema.html
19RAD http://www.cbil.upenn.edu/cgi-bin/RAD2/schemaBrowserRAD.pl
20GEO http://www.ncbi.nlm.nih.gov/geo/info/geo.tbl
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Analytical scope

The storage system provides an unprecedented level of detail for experiment description cap-

tured in categorical and continuous variables. For data entry, this ensures completeness of

experiment annotation, i.e. a level of completeness exceeding minimal standards. For analy-

sis, it provides the opportunity to include this complete experiment information as additional

variables, i.e. to study it by means of multivariate statistics. Additional attributes or addi-

tional allowed values for existing attributes can easily be added without changing the database

structure or any algorithm. Previously annotated experiments can be revisited to annotate

newly defined annotations. However, it is not necessary to do so. In a set of hybridizations

lacking an annotation for some cases, this annotation will be ignored, enabling correct anal-

ysis of the others. Thus, no pressure is put on the defining and annotating experimenter to

revisit hundreds of already stored experiments when he or she wishes to define a useful new

annotation.

In microarray research and other fields, biologists and bioinformaticians have to work together.

A way to share the work would be that the biologist does the practical work up to obtaining

data, which are then given to the bioinformatician, who then does the analysis. Statistical

implications may lead to a low value of the resulting data if the bioinformatician had not been

consulted for experimental design. Analysis carried out by the bioinformatician alone, might

be statistically sound, but has its weaknesses in biological interpretation.

I regard M-CHIPS to be also a communication tool. It supplies complete experiment informa-

tion to the bioinformatician. A technical parameter in the protocol, such as the concentration

of a particular buffer component, may be identified to be associated to the downregulation of

a set of genes — even by someone not knowing its purpose. On the other hand, I implemented

analysis algorithms in a way accessible to the biologist. A graphical user interface completely

replaces input of function names as well as any command line parameter, enabling to perform

the entire analysis by mouse clicks.

Sharing both the complete data and all analysis methods facilitates communication between

experimenter and bioinformatician, resulting in analysis methods that are tailor-made for the

special requirements of microarray data. Modular structure of the system and a MATLABTM

environment enable quick implementation of new tools. Likewise, the experimenter is able to

analyze the data herself or himself instantly after upload for direct and immediate feedback

into follow-up experiments.

Furthermore, M-CHIPS has already successfully served as a communication tool between

collaborating workgroups. The EUROFAN II, B2 data set21 was aquired by 5 European

groups. The raw intensities were collected and uploaded by Nicole Hauser. However, only

21http://mips.gsf.de/proj/eurofan/eurofan_2/b2
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the experimenters were able to provide detailed information about technical protocols and

experimental conditions. In M-CHIPS, experiment annotation is web-based to ensure that

any experiment can be annotated from remote by the experimenters themselves. The effort

involved in annotating experiments is minimized. After preprocessing, raw and preprocessed

data as well as gene- and experiment annotations were given to the Munich Information Center

for Protein Sequences (MIPS22) for web publication.

Reliability and universal applicability

The M-CHIPS concept allows information from heterogeneous experiments to be stored in

databases of similar structure so that the same algorithms for analysis can be applied. The

system has been used by collaborating groups since June 1999. Thus, all algorithms de-

scribed above have been extensively tested. Currently we have 33 yeast specific (MIAME

compliant23), 54 human tumor specific, 71 Arabidopsis specific (MIAME compliant), 41 Try-

panosome specific, 20 Neurospora specific and 78 common (technical, MIAME compliant)

experiment annotations. Compliance with standards such as those proposed by EBI (MI-

AME) is independent from my storage schema. The experimenter defining the annotations

decides on standard compliance and level of detail. The sets of hierarchically ordered anno-

tations are listed on the associated web page24. The entire descriptions of all hybridizations

stored in M-CHIPS databases can be analyzed statistically. Apart from reliably working for

two and a half years, the system has proven to be stable and performant with high amounts of

data. I currently perform adiministration for 1765 hybridizations in 12 databases. They be-

long to the above five fields of research and comprise both radioactive-label and multichannel

experiments. Although these databases may contain different parameter sets used for exper-

iment description, they share the same structure concept25 and therefore can be accessed by

the very same algorithms for statistical analysis.

Correspondence analysis applied to microarray data

The peculiarities of microarray data

Microarray technology provides access to expression levels of thousands of genes at once.

However, there can be systematic errors induced by, for example, one needle always spotting

a little less liquid than the other needles, a microtiter plate opened for a longer time and

22http://mips.gsf.de
23http://www.mged.org/Workgroups/MIAME/miame.html
24http://www.dkfz.de/tbi/services/mchips
25M-CHIPS databases do not share exactly the same database structure as shown in chapter ‘Data Storage’,

section ‘Database implementation’.
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Figure 20: Schematic gene profiles of related shape. The plotted profiles are of similar
shape, although showing different absolute values.

thus containing higher concentrations due to evaporation as well as lower or higher label

incorporation rates. Additionally, these data show a substantial amount of random noise.

Different levels of background may result in additive offsets, or different amounts of mRNA

or different label incorporation rates may lead to multiplicative distortions among the hy-

bridizations. Therefore, the columns of the data table (hybridizations) have to undergo a

normalization process, correcting for affine-linear transformation among the columns.

Another problem is that ratios are unreliable at low levels of intensity. Figure 20 shows

three similar profiles. For biological interpretation it would be useful to cluster genes one and

two together because they show the same expression behaviour although being expressed at

different absolute levels. In this sense, the curve of gene three shows the same shape. However,

commonly the majority of genes are not expressed to a measureable amount and their signals

flicker with measurement noise. Let curve three resemble such a gene profile determined by

chance rather than reflecting mRNA abundance. The set of untranscribed genes is often large

enough to hold several genes for any profile under study. Therefore they have to be discarded

by intensity filtering. It is also advisable to disregard all genes the values of which do not

change in the entirety of conditions.

In spite of these measures, single gene profiles obtained by microarray hybridization are com-

monly verified by northern blot prior to further investigation of the genes. Let the expression

profiles be prices in a supermarket. Thus a certain profile — e.g. a high expression level in

the first and no abundance in the two remaining conditions — is represented by 2.49 Euro.

This price will reliably identify the shampoo if only four articles have been bought. However,

a microarray experiment is more like buying the entire store. Resulting data tables normally

are only a few hybridizations wide, but maybe tens of thousands of genes long, having the

shape of very long supermarket bill. Given a certain amount of noise, any particular gene

profile will have a high probability of occuring somewhere in the list by chance.

62



SHY1 FUR1 PRE3 MET14 DNM1 CDA1 YPT53 PHO80 MGM1 NAB3 FLO1 SCT1 CHK1 HEX3 SAN1 
0

1

2

3

4

5

6

7
x 10

4

genes

in
te

ns
iti

es

 

no NaCl
 
 
 
0.3M
 
 
 
0.8M
 
 
 
1M
 
 
 

Figure 21: Reproducibility of signals in a multiconditional experiment. Wild type
yeast was exposed to different concentrations of sodium chloride in the medium (see legend).
Normalized transcription intensities of 14 genes are shown in a parallel coordinates plot, lines
representing measurements (here hybridizations) and being color coded according to their
particular experimental condition. The plot presents a typical subset of genes, representative
with regard to the high number of genes not expressed to a measurable amount. Whereas the
different conditions are reproducibly measured for most genes, SCT1 shows one far outlying
signal for 0.3M NaCl (blue), which in this case is due to agglutinated label. The corresponding
image is provided in Appendix A (Fig. 22). The bright dots of unspecifically bound label are
common to radioactively labeled targets, whereas the most severe outliers among multichan-
nel data are frequently caused by highly flourescent dust (not shown). The ordinate shows
arbitrary (machine dependent) intensity units.

Therefore, any microarray experiment is of low value if it does not comprise several repetitions.

Repeated measurements allow the signals to be filtered according to reproducibility measures

before analysis. Investigating the reproducibility of single signals by means of repeated mea-

surements will lead to the identification and subsequent elemination of outliers (Fig. 21).

Adaption of correspondence analysis

For the above reasons, a thorough preprocessing is essential. Different normalization algo-

rithms are applied to single and multichannel data for the different meaning of the particular

raw intensities. Intensity-, ratio-, and reproducibility filters are applied to extract genes of

marked expression for both types of data.

Genes with generally low reproducibility for most of the conditions under study are filtered

out by the reproducibility filter. However, with increasing numbers of conditions, discarding

all genes with low reproducibility in one of the conditions will leave no gene undiscarded. The

same is true for the intensity filter. It is therefore reasonable to use these filters to discard only

genes with low abundance or low reproducibility (often coinciding) in all the conditions under
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study. Thus, outliers as shown by Fig. 21 have to be handled by other measures. Otherwise,

they would seriously interfere with CA analysis, which in contrast to other methods is not

similarity-driven but aims at displaying variance. Any difference to the default state (expected

value) such as an outlier, will be regarded as important for the projection. The larger the

difference, the more distinctly the corresponding point will be plotted.

I prevent this by choosing the principal axes according to the condition medians only (HMS).

My HMS technique furthermore allows the original data to be still visible in the plot thus

combining the noise reduction capabiliy of HMS with the quality control aspect of retaining

the original data. Projection methods generally aim at explaining the major trends in the data

while at the same time ignoring minor fluctuations. HMS has been demonstrated to further

enhance this effect [55].

It is equally important to tackle the problem of unduly high ratios in the low intensity region.

As already mentioned, only those genes are filtered out that are low in every condition under

study. To lower the impact of low intensities on the intensity ratios, the normalization method

described in [54] has been modified, additively shifting the normalized matrix back to its

original expression level. To exemplify the benefit of simply adding a certain number to all of

the values, consider that a shift from 0.02 to 0.04 resembles upregulation by factor 2, whereas

a change from 1000.02 to 1000.04 does not.

Due to all these precautions and given a sufficient number of repeated hybridizations, the

variance explained by a CA plot will largely reflect biological changes, displaying the sig-

nificance of differences both among the genes and among the hybridizations in terms of the

χ2-statistic. The power of the CA technique however is that it is able to show associations

between genes and hybridizations. To fully exploit this property, it is necessary to examine

the exact directions of gene-association with the experimental conditions. These are given by

the standard coordinates of the according condition medians rather than by their principle

coordinates. Plotting the standard coordinates directly would cause all principle coordinates

to shrink into a small area in the middle of the plot. The introduction of lines representing

the standard coordinates is of great help in the interpretation of the plots, relating genes and

conditions to each other and circumventing direct plotting.

Applicability to microarray data

Traditionally, correspondence analysis has been used predominantly on categorical data in the

social sciences [66,67], but its application has been extended also to (positive) physical quanti-

ties [56] and to proteomics [68,69]. I have shown that CA applied to microarray data provides

an informative and concise means of visualizing these data, being capable of uncovering re-

lationships both among either genes or hybridizations and between genes and hybridizations.

The method has proved to be generally applicable to microarray data, regardless of whether
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they have been obtained by radioactive labeling or by two-channel fluorescent-tag labeling.

Normalization procedures lead to intensity values that can be interpreted as being propor-

tional to a cell’s content of mRNA molecules per gene and per condition. For two-channel

intensities, the log ratios of red versus green channel appear to work just as well.

The CA analysis algorithms are embedded into a larger sofware package named M-CHIPS.

The system enables preprocessing, e.g. different methods for normalization, the performance

of which can be visually checked, quality control plots, and gene extraction by intensity, ratio

and reproducibility thresholds. These thresholds can be applied to raw data, normalized

data, ratios, minmax-separation, standard-deviation separation, condition-medians of fitted

intensities or to ratios of these condition-medians. These categories can also be used for

sorting the genes. Comparison of different visualizations of a dataset are facilitated by shared

gene tags. It is also possible to mark all genes bearing a certain keyword such as ‘cell cycle’ in

their gene annotation or to import multiple sets of gene tags from text lists. High-level analysis

can be carried out for raw or fitted intensities, ratios, distances or ranks. In addition to CA,

hierarchical clustering can be performed for comparison, permitting arbitrary combination of

five distance measures with five linkage methods to cluster genes, measurements or condition-

medians. Thus M-CHIPS not only integrates data stemming from different platforms for

access by CA but also enables a highly flexible use of the CA routines as well as interaction

with other algorithms.

Moreover, the platform enables integrated analysis of both transcription intensities and com-

plex experiment annotations. Statistical analysis of experiment annotations can be applied

for arbitrary sets of hybridizations in any CA plot by mouse click, e.g. for those clustered by

similar expression profiles. This provides a means to reveal both experimental artifacts and

biologically meaningful correlations from huge sets of experiment descriptions in an automated

way. The resulting experimental parameters are candidates for being the active players which

drive the cells to the expression pattern observed in the corresponding hybridization cluster.

While this is a fairly simple method, it already provides good analytical access to long lists

of annotations and huge sets of hybridizations which could not be thoroughly evaluated by

visual inspection. More sophisticated statistical methods can also be directly applied because,

unlike with free text annotation, instances of occurrence are readily countable for all annota-

tion values. Future plans include integrated visualization of both transcription intensities and

experiment annotations by correspondence analysis.

This work demonstrates the applicability of correspondence analysis to and high value for the

analysis of microarray data, displaying associations between genes and experiments. It has

been adapted to deal with the particular difficulties of microarray data, and its applicability has

been further enhanced by incorporation into a framework of annotation data and supplemental

algorithms. To introduce the method, I have shown its application to the well-known S.

cerevisiae cell-cycle synchronization data by Spellman et al. [47], allowing for comparison

65



with their visualization of this data set. Furthermore I have applied correspondence analysis

to a non-time-series data set of our own, thus supporting its general applicability to microarray

data of different complexity, underlying structure and experimental strategy (both two-channel

fluorescence-tag and radioactive labeling). This example also shows that CA is capable of

subtracting particular effects, such as the influence of galactose in the medium.

Correspondence analysis versus other methods

Correspondence analysis is an explorative computational method for the study of associations

between variables. For many other methods, unequal choice of parameters such as the number

of clusters will focus on different properties of the transcription profiles and may therefore

produce unequal results for the same data. CA does not require any choice of parameters.

Similar to principal component analysis it displays a low dimensional projection of the data,

e.g. into a plane. Thus it visualizes clusters of data points, also showing how fuzzy or defined

cluster borders are. However, it does this for two variables simultaneously thus revealing

associations between them.

Visualization using CA is based on representing the χ2 distance among genes and among hy-

bridizations, thus representing a decomposition of the value of the χ2 statistic. Emphasis is

placed on the genes and hybridizations that contribute to this value through their association.

In this respect it resembles the doubly sorted hierarchical clusterings [70], although our ex-

amples demonstrate that CA is capable of revealing intricate detail, e.g. subtle discrepancies

between phase classification and transcription pattern of hybridizations. The emphasis on

association between genes and hybridizations distinguishes CA from other embedding meth-

ods such as principal component analysis or multidimensional scaling although these methods

share the idea of representing objects in a two or three dimensional space that can be visual-

ized. While CA and PCA use the same mathematical machinery for dimension reduction and

visualization, namely singular value decomposition, their difference stems from the different

distance measures used.

Alter et al. [43] successfully applied singular value decomposition to the analysis of the same

data set that I used as my first example. In my plots, the distance of a given gene from

the centroid represents the strength of its association with a hybridization lying in the same

direction and vice versa. A direct comparison with phase and radius in the visualization of

Alter et al.26 shows that this is not necessarily the case in the singular value decomposition

alone. Moreover, CA does not depend on model assumptions as demonstrated in my second

example. There genes were identified whose transcripts are specifically up-regulated in an

overexpressing mutant yeast strain that is induced by galactose, whereas they are at normal

levels (or even undetectable) in this mutant strain without galactose and likewise in wild type,

26as given e.g. at http://genome-www.stanford.edu/SVD/PNAS/Datasets/Sort Elutriation.txt
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irrespective of the additive. Thus I find CA to be generally applicable to and particularly

well-suited for gene expression data because of its ability to display simultaneously genes and

hybridizations as well as the strength of their association.

Perspectives

M-CHIPS focuses on experiment annotations. Gene annotations are restricted to spot loca-

tion, functional categories and external links. In the example given, an outlying cluster of

hybridizations was successfully determined to be caused by a different array batch. It is not

known whether this is due to different numbers of PCR cycles, different batches of polymerase

or array support, spotting humidity or template contamination. Currently, efforts are be-

ing made to extend the M-CHIPS concept also to array production. Besides being a central

laboratory information management system (LIMS) recording e.g. primers and clones, it is

meant to further improve on the amount of parameters already amenable to statistical analy-

sis. Future plans comprise compiling the MATLAB code to provide a homogeneous and easy

to install software package and implementing an XML interface for data exchange with a pub-

lic microarray data repository. Also, it would be interesting to compare the transcriptional

information acquired to data on actual gene expression, for example obtained with protein

arrays. M-CHIPS should be equally applicable to both kinds of data, since they share the

same data structure.

CA is an intuitive means of explorative microarray data analysis. It shows which questions

could be asked or which hypotheses could be put forward. It decomposes the overall χ2-

statistic, distances among points in the plots approximate χ2-distances. Thus they resemble

the statistical significance of an observed Euclidean distance with respect to all other distances

measured, rather than the absolute distance itself. However, statistical significance is not a

crucial requirement for justifying an inspection of the maps. Correspondence analysis can be

regarded as a way of re-expressing the data in pictorial form for ease of interpretation [71].

In the present work, I used CA to transform data tables of genes versus measurements into

two-dimensional maps. Alternatively, one could cluster genes or measurements into discrete

groups of similar profiles [72]. Moreover, CA can be used in discriminant analysis and classi-

fication [73]. As already mentioned, CA has been applied prevalently to survey data in social

sciences. To grasp the full potential of the technique, one should consider that using CA

to simultaneously display genes and hybridizations is analogous to investigating a question-

naire comprising two questions. More than two variables can be integrated by applicative

arrangement in a two-way table or by multiple or joint CA of multiway tables. For microarray

data analysis this enables straightforward inclusion of additional information such as gene

and experiment annotations, if stored in a format accessible to statistical analysis. Integra-

tion of gene- and experiment annotation data may enable to identifiy active players among
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these parameters that drive the cells to the observed expression patterns. Sequence patterns

in regulatory elements also show great promise for linking with microarray data [74, 75, 76].

Discovery of complex interdependencies between experimental parameters, gene properties,

promotor sequences, mRNA abundance, and protein levels might be possible by integrated

analysis of all these variables.
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[49] C. Schönbach, P. Kowalski-Saunders, and V. Brusic. Data warehousing in molecular

biology. Briefings in Bioinformatics, 1:190–198, 2000.

[50] K. Fellenberg, N. C. Hauser, B. Brors, J. D. Hoheisel, and M. Vingron. Microarray

data warehouse allowing for inclusion of experiment annotations in statistical analysis.

Bioinformatics, in press.

[51] P. Chen. The entity-relationship approach: Toward a unified view of data. ACM Trans-

actions on Database Systems, 1(1):9–36, 1976.

[52] GOC. Gene ontology: tool for the unification of biology. Nature Genet., 25:25–29, 2000.

[53] GOC. Creating the gene ontology resource: design and implementation. Genome Res.,

11(8):1425–1433, 2001.

[54] T. Beißbarth, K. Fellenberg, B. Brors, R. Arribas-Prat, J. M. Boer, N. C. Hauser,

M. Scheideler, J. D. Hoheisel, G. Schütz, A. Poustka, and M. Vingron. Processing and

quality control of DNA array hybridization data. Bioinformatics, 16:1014–1022, 2000.

74



[55] K. Fellenberg, N. C. Hauser, B. Brors, A. Neutzner, J. D. Hoheisel, and M. Vingron. Cor-

respondence analysis applied to microarray data. Proc. Natl. Acad. Sci. U.S.A., 98:10781–

10786, 2001.

[56] M. J. Greenacre. Theory and Applications of Correspondence Analysis, page 223. Aca-

demic Press, London, 1st edition, 1984.

[57] M. J. Greenacre. Correspondence Analysis in Practice, pages 181–183 and 36. Academic

Press, London, 1st edition, 1993.

[58] G. H. Golub and C. Reinsch. Singular value decomposition and least squares solutions.

Numer. Math., 14:403–420, 1970.

[59] V. E. Velculescu, S. L. Madden, L. Zhang, A. E. Lash, J. Yu, C. Rago, A. Lal, C. J. Wang,

G. A. Beaudry, K. M. Ciriello, B. P. Cook, M. R. Dufault, A. T. Ferguson, Y. Gao, T.-C.

He, H. Hermeking, S. K. Hiraldo, P. M. Hwang, M. A. Lopez, H. F. Luderer, B. Mathews,

J. M. Petroziello, K. Polyak, L. Zawel, W. Zhang, X. Zhang, F. G. Zhou, W. Haluska,

J. Jen, S. Sukumar, G. M. Landes, G. J. Riggins, B. Vogelstein, and K. W. Kinzler.

Analysis of human transcriptomes. Nat. Genet., 23:387–388, 1999.

[60] D. O. Morgan. Regulation of the apc and the exit from mitosis. Nat. Cell Biol., 1(2):E47–

53, Jun 1999.

[61] C. Godon, G. Lagniel, J. Lee, J. M. Buhler, S. Kieffer, M. Perrot, H. Boucherie, M. B.

Toledano, and J. Labarre. The H2O2 stimulon in saccharomyces cerevisiae. J. Biol.

Chem., 273(35):22480–9, Aug 1998.

[62] R. Edgar, M. Domrachev, and A. E. Lash. Gene expression omnibus: Ncbi gene expression

and hybridization array data repository. Nucl. Acids Res., 30(1):207–10, Jan 2002.

[63] G. Sherlock, T. Hernandez-Boussard, A. Kasarskis, G. Binkley, J. C. Matese, S. S. Dwight,

M. Kaloper, S. Weng, H. Jin, C. A. Ball, M. B. Eisen, P. T. Spellman, P. O. Brown,

D. Botstein, and J. M. Cherry. The stanford microarray database. Nucl. Acids Res.,

29(1):152–5, Jan 2001.

[64] F. Salas, J. Haas, B. Brunk, C. J. Stoeckert Jr, and G. C. Overton. Epodb: a database

of genes expressed during vertebrate erythropoiesis. Nucl. Acids Res., 26(1):288–9, Jan

1998.

[65] C. J. Stoeckert Jr, F. Salas, B. Brunk, and G. C. Overton. Epodb: a prototype database

for the analysis of genes expressed during vertebrate erythropoiesis. Nucl. Acids Res.,

27(1):200–3, Jan 1999.

75



[66] J . Blasius and M. J. Greenacre, editors. Visualization of Categorical Data. Academic

Press, London, 1st edition, 1998.

[67] M. J. Greenacre and J. Blasius, editors. Correspondence Analysis in the Social Sciences.

Academic Press, London, 1st edition, 1994.

[68] T. Pun, D. F. Hochstrasser, R. D. Appel, M. Funk, V. Villars-Augsburger, and C. Pelle-

grini. Computerized classification of two-dimensional gel electrophoretograms by corre-

spondence analysis and ascendant hierarchical clustering. Appl. Theoret. Electrophoresis,

1:3–9, 1988.

[69] K. P. Pleissner, V. Regitz-Zagrosek, B. Krudewagen, J. Trenkner, B. Hocher, and

E. Fleck. Effects of renovascular hypertension on myocardial protein patterns: analysis by

computer-assisted two-dimensional gel electrophoresis. Electrophoresis, 19(11):2043–50,

Aug 1998.

[70] C. M. Perou, S. S. Jeffrey, M. van de Rijn, C. A. Rees, M. B. Eisen, D. T. Ross, A. Perga-

menschikov, C. F. Williams, S. X. Zhu, J. C. F. Lee, D. Lashkari, D. Shalon, P. O. Brown,

and D. Botstein. Distinctive gene expression patterns in human mammary epithelial cells

and breast cancers. Proc. Natl. Acad. Sci. U.S.A., 96:9212–9217, 1999.

[71] M. J. Greenacre. Correspondence Analysis in Practice, chapter 10, pages 74–85. Academic

Press, London, 1st edition, 1993.

[72] M. J. Greenacre. Correspondence Analysis in Practice, chapter 14, pages 111–118. Aca-

demic Press, London, 1st edition, 1993.

[73] M. J. Greenacre. Theory and Applications of Correspondence Analysis, chapter 7, pages

185–206. Academic Press, London, 1st edition, 1984.

[74] J. van Helden, B. Andre, and J. Collado-Vides. Extracting regulatory sites from the

upstream region of yeast genes by computational analysis of oligonucleotide frequencies.

J. Mol. Biol., 281(5):827–42, Sep 1998.

[75] A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. Predicting gene regulatory elements in

silico on a genomic scale. Genome Res., 8(11):1202–15, Nov 1998.

[76] J. Vilo, A. Brazma, I. Jonassen, A. Robinson, and E. Ukkonen. Mining for putative

regulatory elements in the yeast genome using gene expression data. Proc. Int. Conf.

Intell. Syst. Mol. Biol., 8:384–94, 2000.

[77] N. C. Hauser, M. Vingron, M. Scheideler, B. Krems, K. Hellmuth, K. D. Entian, and J. D.

Hoheisel. Transcriptional profiling of all open reading frames of Saccharomyces cerevisiae.

Yeast, 14:1209–1221, 1998.

76



[78] N. C. Hauser, K. Fellenberg, R. Gil, S. Bastuck, J. D. Hoheisel, and J. E. Perez-Ortin.

Whole genome analysis of a wine yeast strain. Comp. Funct. Genome., 2:69–79, 2001.

77



Appendix

A - Data examples

Data examples discussed in this thesis have been acquired by Spellman et al. [47], Nicole

Hauser, Sonja Bastuck, Melanie Bier and Albert Neutzner.

Spellman et al. cell-cycle data

For direct comparability I used the list of cell-cycle regulated genes as displayed in [47] Fig.

1A (webversion incl. gene names27 ) as well as the displayed values from the associated web

page28. Missing entries were treated as unchanged. The data were shifted to a positive range

by adding the minimum value + 1. The resulting data table29 was submitted to CA without

further processing.

CDC14 overexpression

Sampling and hybridization. The yeast strains used were derivatives of W303 (ade2-1,

his3-11, 15, leu2-3, 112, trp1-1, ura3, ssd1∆, can1-100, [psi+],ho) which were either WT or

overproducing Cdc14p after induction. The strains are referred to as WT or CDC14 transgenic

(ura3::GAL1-MycCDC14-URA3 CLB2HA3 ). Yeast cultures of both strains were grown in

complete medium plus 2% raffinose to mid-logarithmic growth phase (OD600=0.5) at which

point nocodazole was added to a final concentration of 15 µg/ml. Samples were taken before

addition of nocodazole and when synchronization of the cell culture was verified by microscopy.

For overexpression of Cdc14p, cells were induced by 2% galactose and samples were taken after

1 h. Harvesting of cells for RNA preparation, radioactive labeling by reverse transcription, and

hybridization onto the PCR-based whole genome DNA-array were performed as described [77].

27http://genome-www.stanford.edu/cellcycle/figures/figure1Anames.html
28http://genome-www.stanford.edu/cellcycle/data/rawdata/combined.txt
29http://www.dkfz-heidelberg.de/tbi/people/fellenberg/fig1.asc
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Normalization and filtering. The raw intensity data were obtained from AIS imaging

software. Normalization was performed as described [54,55]. The normalized data matrix was

filtered for genes with positive minmax separation for at least one of the conditions under

study [54].

Data. A tab delimited table (comprehensive list) on the associated web page30 lists both raw

and normalized data for the primary and secondary spot of each gene on the filters. It also

contains reproducibility measures and genewise medians used for filtering and correspondence

analysis, respectively. The filtered set of 1402 genes are marked by an asterisk in the first

column. The associated web page also provides the complete experiment annotations as well

as detailed information about the elements spotted on the array.

Oxidative stress

Sampling and hybridization. Yeast strain FY1679 (MATa/MATa ura3-52/ura3-52

trpD63/TRP1 leu2D1/LEU2 his3D200/HIS3 GAL2/GAL2 ) was grown to mid-logarithmic

growth phase, at which point the culture was split and hydrogen peroxide added to a final

concentration of 200 mM. Samples were taken 5, 10, 15, 20 and 30 min after treatment. Cells

were harvested for RNA preparation as described [77]. Radioactive labeling by reverse tran-

scription and hybridization on the PCR-based whole genome DNA-array were also performed

according to [77].

Normalization and filtering. The raw intensity data as obtained from AIS imaging software

were normalized as described [54, 55]. After normalization the data were filtered for genes

fulfilling the following criteria:

• Significant absolute intensity, i.e. normalized intensity of at least 5000 in at least one of

the hybridizations.

• Significant relative change, i.e. normalized intensity divided by the median of normalized

intensities for the control hybridizations of at least 4 or <= 1/4.

• Significant reproducibility of this maximum relative change, i.e. minmax separation of

at least 1 for at least one of the conditions under study [54].

508 out of 6103 genes were extracted by the above constraints. In the data table31 they are

marked by an asterisk in the first column. The data have been subjected to correspondence

analysis, further reducing measurement noise by HMS [55]. Planar embedding explains only

30http://www.dkfz-heidelberg.de/tbi/services/mchips/cdc14.html
31http://www.dkfz-heidelberg.de/tbi/services/mchips/ox_stress.asc
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76.4% (50.3% without HMS) of the total variance within this dataset, demonstrating the

ability of CA to show the major variances among the data and overlook minor changes.

Data. A tab delimited table31 both provides the raw intensities as computed by AIS imaging

software and the preprocessed data for high-level analysis. The table lists raw and normal-

ized data for the primary and secondary spot of each gene on the filters. It also contains

reproducibility measures and gene-wise medians used for filtering and correspondence analy-

sis, respectively. The filtered set of 508 genes is marked by an asterisk in the first column.

A HTML document32 holds the experiment annotations for the described experiment. It is

divided into condition-dependent, measurement-dependent and constant annotations and com-

prises also the measurement-dependent annotations for measurement no. 60 and 61 (different

array series) disregarded in the analysis shown by Fig. 17 but included in Fig. 16.

Sodium chloride concentration series

These data were used to exemplify an outlying intensity signal (Discussion, Fig. 21). Exper-

iment annotations are listed on an HTML page33. The raw intensity data as obtained from

AIS imaging software were normalized as described [54, 55]. Figure 22 shows an area of low

quality of the scanned image. The outlier shown in Fig. 21 is marked by a blue arrow. The

corresponding replicate spot, expected to show about the same signal intensity, is marked by

a green arrow.

31http://www.dkfz-heidelberg.de/tbi/services/mchips/ox_stress.asc
32http://www.dkfz-heidelberg.de/tbi/services/mchips/ox_stress.html
33http://www.dkfz-heidelberg.de/tbi/people/fellenberg/diss/NaCl_conc_series.html
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Figure 22: Outlying measurement using radioactive label. This particular area of the
filter shows a high amount of unspecifically bound aggregated label. These ‘stars’ differ from
the mostly larger spots in that they show a much higher intensity than spots of comparable
size. At first sight the outlier shown in Fig. 21 in the discussion (blue arrow) appears as a spot.
Its large size and location almost perfectly in a grid position lead to this impression. However,
comparison with real spots show that the staining is much too intense for the corresponding
area. The corresponding secondary spot (green arrow) explains the immense difference of the
primary spot intensity to all other values for the gene SCT1 shown in Fig. 21.
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B - MATLABTM implementation

Algorithm 1 lists a short implementation of simple correspondence analysis. More complex

ones, adapted to the requirements of microarray data analysis, are at the core of M-CHIPS.

P=N./sum(sum(N)); % correspondence matrix P

q=sum(p’)’*sum(p); % q=ricj
[U,D,V]=svd((P-q)./sqrt(q),0); % ‘‘,0’’ produces economy size decomposition,

% can be omitted

F=diag(1./sqrt(sum(P’)))*U*D; % gene coordinates

G=diag(1./sqrt(sum(P)))*V*D; % hybridization coordinates

% The following statements plot out the above computed coordinates:
plot(F(:,1),F(:,2),’.k’); hold on; % plots ...

text(F(:,1),F(:,2),num2str([1:size(F,1)]’)); % & annotates genes

plot(G(:,1),G(:,2),’s’); % and hybridizations

text(G(:,1),G(:,2),num2str([1:size(G,1)]’));

% In order to correctly display χ2-distances, the two axes have to be scaled

% identically:
from=min([get(gca,’xlim’) get(gca,’ylim’)]); % determines ...

to=max([get(gca,’xlim’) get(gca,’ylim’)]); % ... max. range

set(gca,’xlim’,[from to]); set(gca,’ylim’,[from to]); % fixes range

Algorithm 1: A simple correspondence analysis program in MATLAB
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C - WWW presentation of analysis results

Results can be stored in the database by the analyst (e.g. the experimenter), which auto-

matically makes them available via Internet. Here they are, however, protected by passwords.

Access can be granted on individual sets e.g. to collaborating persons. A password is valid

in conjunction with a user name for accessing a particular array family (i.e. type of array)

within a certain (organism-specific) database only. Some results, however, have been copied

to a conventional web page to make them publicly available:

• CDC14 induction. The dataset comprises one multiconditional yeast experiment (13

hybridizations, complete array). It is discussed in this thesis and in [55].

http://www.dkfz-heidelberg.de/tbi/services/mchips/cdc14.html

• Oxidative stress (timecourse). The dataset consists of one multiconditional yeast

experiment (14 hybridizations, complete array). It is discussed in this thesis and in the

supplemental material to ref. [50].

http://www.dkfz-heidelberg.de/tbi/services/mchips/supplement_bioinformatics.

html

• Eurofan II, B2. The dataset comprises 36 multiconditional yeast experiments (253

hybridizations, complete array) dealing with filamentous growth, ceramide signalling,

stresses, hypoxia, PKC pathway, C and N-limited growth in continous culture and other

conditions. It was aquired by Alistair Brown and Helene Tournu (Aberdeen, GB), Rudi

Planta and Arno Meijer (Amsterdam, NL), Esperanza Cerdan and Manuel Becerra and

Luis Lombarda (La Coruna, ES), Joerg Hoheisel and Nicole Hauser (Heidelberg, DE),

and Steve Oliver and Andy Hayes (Manchester, GB). Nicole Hauser collected and up-

loaded the intensity data. They were annotated by the experimenters themselves via

web annotator, processed in M-CHIPS and presented by the Munich Information Center

for Protein Sequences (MIPS).

http://mips.gsf.de/proj/eurofan/eurofan_2/b2

• Heatshock-timecourse. The dataset comprises one multiconditional yeast experiment

(12 hybridzations, complete array, [54])

http://www.dkfz-heidelberg.de/funct_genome/yeast-data.html\#heat-shock

• Wine-yeast versus laboratory strain. A transcriptional and genomic comparison

was carried out on all open reading frames of the wine yeast strain T73 and a standard

laboratory strain (MYC730) as described [78]:

http://www.dkfz-heidelberg.de/funct_genome/yeast-data.html\#wine
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Such a result may either represent a single multiconditional experiment or is a recombination

of conditions and/or measurements stemming from different multiconditional experiments.

Experiment annotations can be viewed both in the original form, i.e. for the experiments and

recombined for the results. For each result, the data comprised have been at least normalized

and filtered. Visually supervised normalization as well as choice of filter parameters have been

performed by the analyst named in the result header, who stored it in the database. There

may be two different types of results, namely a ‘color coded list’ or a ‘complete list’.

Color coded list

These lists comprise factors of relative changes with respect to the control condition and the

median value of normalized signal intensities. Significance levels were assessed by two repro-

ducibility criteria as described [54]. The highly stringent ‘minmax separation’ is calculated by

taking the minimum pairwise distance between data points of one condition and data points

of the control condition. The less stringent criteria, called ‘standard-deviation separation’, is

defined as the difference of the means of the two data sets diminished by one standard devia-

tion. Nicole Hauser developed the idea of color-coding the factors in these lists according to

the two stringency measures. Data are classified as being of high or medium significance (Fig.

23).

Complete list

A complete list shows the complete data as tab-delimited ASCII file. The tables include

raw and fitted (i.e. normalized) intensities for each individual measurement as well as ratios

which were calculated by division of each individual hybridization by the gene wise median

of all control hybridizations for monochannel data and by division of each channel by the

corresponding control channel of the same hybridization for multichannel data. In addition

the medians and reproducibility measures [54] for repeat measurements are provided.
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Figure 23: Reproducibilty color-coding. Upregulations are marked by warm (red and
yellow), downregulations by cold colors (blue and light blue); high reproducibility is shown by
dark (red and blue), medium reproducibility by light colors (yellow and light blue). If none of
the two criteria is fulfilled the signal should by regarded as not reliable - even if a high ratio
is displayed - and is tagged white in the color coded list. From [54], modified.
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Software used

The following software packages were used. The programs were run on a Sun Ultra 10 work-

station or Sun E 450 server machine under the Solaris operating system or on a HP Superdome

mainframe computer34 under HPUX:

• PostgreSQL (Version 6.5.3): Open source object-relational DBMS (database manage-

ment system) suited for transaction-based multi-user database operation. Publicly avail-

able at http://www.postgresql.org

• Apache (Version 1.3): Open source WWW server program. In the context of the present

work, both HTML (hypertext markup language, Version 4.0 specifications) documents

and CGI (common gateway interface) programs (C and Perl code) have been created.

Publicly Available at http://www.apache.org

• Matlab (Version 6.0) incl. Statistics Toolbox: Interpreted numerical programming envi-

ronment suited for matrix algebra. MathWorks Inc. MA, U.S.A.

• Perl (Version 5.004 04): Interpreted programming language suited e.g. for regular ex-

pression search in texts developed by Larry Wall. Publicly available at http://www.

perl.com

• I am grateful to Tim Beissbarth for permitting me to incorporate fdiffs, a scatterplot-

based tool suited for f inding differentially transcribed genes into the M-CHIPS data

platform.

• Futhermore, I thank Dieter Finkenzeller for interfacing cl-vishn, his OpenGL-accelerated

3D-visualization tool, to show M-CHIPS-generated three-dimentional CA projection

plots. The interactive 3D plots allow for seamless rotation and return sets of genes

that have been selected by the user.

34Recently among the 200 fastest computers in the world (http://www.top500.org, February 2002). More
information about the Superdome installation at the German Cancer Research Center can be found at http:
//www.dkfz.de/zdv
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Our data examples that are discussed in this thesis were acquired by Nicole Hauser, Sonja

Bastuck, Melanie Bier and Albert Neutzner using the AIS imaging software (Version 3.0, Array

Vision Module, Imaging Research Inc., St. Catherines, Canada) running on a Pentium PC

under Windows NT. The program automatically detects spots and calculates intensity values.
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Zusammenfassung

Die Zelle bewirkt Stoffwechselvorgänge und die genaue Einhaltung ihres Wachstumsprogramms,

Anpassungen an veränderte Umgebungsbedingungen oder Kommunikation mit anderen Zellen

im Organverbund durch feinregulierte Ausprägung eines Portfolios von Proteinen. Dieses ist

genau auf die jeweiligen Einflüsse abgestimmt. Hierzu wird die im Zellkern als DNS gespei-

cherte Sequenzinformation kopiert und gelangt als Boten-RNS in das den Kern umgebende

Zellplasma, wo sie die Synthese des von ihr codierten Proteins bestimmt. Dabei sind Vorhan-

densein bzw. Menge der Boten-RNS eine wichtige Regulationsgröße für Vorhandensein und

Menge des jeweiligen Proteins.

Die in einem bestimmten Zustand der Zelle vorhandene Menge an Boten-RNS ist mittels DNS-

Chip-Technologie erstmals für tausende, in manchen Fällen für alle Gene eines Organismus zur

gleichen Zeit meßbar. Dazu wird aus den zu untersuchenden Zellen die RNS isoliert und unter

Einbau radioaktiv- oder fluoreszenzmarkierter Bausteine in DNS umgeschrieben, welche besser

handhabbar ist. Bei der sog. “Hybridisierung” wird sie auf einen DNS-Chip aufgebracht.

Dieser besteht aus einem Glasplättchen oder einer Nylonfolie als Trägermaterial, auf das DNS-

Fragmente unterschiedlicher Sequenz punktförmig aufgetupft wurden. Diese DNS Punkte

(sog. “Spots”) dienen zur Mengenbestimmung der anschließend aufgebrachten, aus der Auf-

bereitung des Biomaterials stammenden DNS. Da sich DNS gleicher Sorte zu Doppelsträngen

verbindet (“hybridisiert”), ist auf einem solchen Spot an der Menge hybridisierter markierter

DNS Vorhandensein bzw. Menge der Boten-RNS für dieses Protein ablesbar. Auf manchen

Chips sind für einen bestimmten Organismus alle proteincodierenden DNS-Fragmente als Spot

vertreten.

Die für alle Gene einzeln erfaßte Menge an Boten-RNS nennt man “Transkriptionsstatus”

der Zelle bzw. “Transkriptom”. In einer Meßreihe kann z.B. für mehrere experimentelle

Bedingungen, denen die Zellen ausgesetzt werden, einzeln der Transkriptionsstatus per DNS-

Chip-Hybridisierung festgestellt werden.

Der Nutzen dieser Technik beruht neben der gleichzeitigen Erfassung vieler Gene auf ihrer

breiten Anwendbarkeit. Sie wird in der Grundlagenforschung z.B. zum Studium der Funk-

tion einzelner Gene durch Untersuchung von Organismen verwendet, in denen dieses Gen

inaktiviert wurde. Weiterhin können DNS-Chips in der pharmazeutischen Forschung zum
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Auffinden oder zum Design therapeutisch wirksamer Substanzen, sowie in der Medizin zum

Testen genetischer Veranlagung für bestimmte Erbkrankheiten oder zur Krebsdiagnostik einge-

setzt werden. Allerdings werden mit dieser Methode sehr große Datenmengen produziert,

deren Interpretation bisher noch ein Problem darstellt.

Unterschiedliche Hintergrundsignalstärken bewirken einen additiven Signalwertversatz, andere

technisch bedingte systematische Fehlerquellen wie Einsatz unterschiedlicher Gesamtmengen

an RNS oder verschiedene Einbauraten bei der Markierung der RNS führen zu multiplikativen

Unterschieden zwischen Hybridisierungen. Diese linearen Versätze der Signalstärken werden

durch “Normalisierung” vor einer weiterführenden Datenanalyse korrigiert. Außerdem gehört

zur Vorverarbeitung der Daten das Herausfiltern aller Gene, die in keiner der untersuchten

Bedingungen signifikante (bzw. reproduzierbare, s.u.) Signaländerungen erfahren.

Neben systematischen Abweichungen zeigen die Daten einen beträchtlichen Rauschpegel, die

Proportionen der Signale im unteren Intensitätsbereich sind unzuverlässig und die Datensätze

enthalten gewöhnlich Ausreißer. Weiterhin ist die Anzahl der Spots auf einem Chip gegenüber

der Anzahl experimenteller Bedingungen überproportional hoch. Das führt dazu, daß eine

Menge von Genen, für die über eine Serie von experimentellen Bedingungen ein bestimmtes

Genprofil gemessen wurde, eine erhebliche Anzahl falsch-positiver Gene enthält, die zufallsbe-

dingt aufgrund des Meßrauschens und der großen Anzahl Gene auftreten.

Abgesehen von der Fähigkeit, sowohl Gene als auch experimentelle Bedingungen gleichzeitig zu

visualisieren, müssen deshalb von einer weiterführenden Analyse zusätzliche Anforderungen

erfüllt werden. Um die statistische Signifikanz von Beobachtungen zu erhöhen, wird jede

experimentelle Bedingung wiederholt, d.h. durch mehrere Hybridisierungen vermessen. Die

Anzahl dieser Wiederholungen ist oft klein, so daß es nicht empfehlenswert ist, diese durch

ihren Durchschnitt und ihre Standardabweichung zu repräsentieren. Eine Analysemethode

muß deshalb wiederholte Messungen integrieren können. Ausserdem muß sie in der Lage sein,

Meßrauschen zu unterdrücken und Ausreißer zu tolerieren.

Die vorliegende Arbeit stellt ein System zur intelligenten Speicherung von DNS-Chip-Daten

vor, sowie Methoden zur Datenanalyse von DNS-Chip-Messreihen mit hohem Datenvolumen.

Das System ermöglicht eine sorgfältige Vorbehandlung der Daten. Ein Kernpunkt ist die An-

wendung einer speziellen statistischen Analysemethode, die das Studium von Abhängigkeiten

sowohl innerhalb als auch zwischen Variablenmengen — hier Genen und DNS-Chip Hybri-

disierungen — erlaubt.

Dieses Verfahren, die “Korrespondenzanalyse”, ist an die speziellen Anforderungen von DNS-

Chip-Daten so angepasst worden, daß wiederholte Messungen bei Rauschunterdrückung und

Toleranz gegen Ausreißer integriert werden können, ohne auf die Visualisierung jeder einzelnen

Messung zu verzichten.

Das Verfahren ist eine Projektionsmethode. Ähnlich wie bei der Hauptkomponentenanalyse

89



erhält man eine niedrigdimensionale Projektion hochdimensionaler Daten. Die Korrespon-

denzanalyse tut dies allerdings gleichzeitig für Gene und Hybridisierungen, so daß Assozia-

tionen zwischen einzelnen Genen und Experimenten sichtbar werden. Die vorliegende Arbeit

demonstriert die Anwendbarkeit der Korrespondenzanalyse auf und den hohen Nutzen für

die Analyse von DNS-Chip-Daten. Um die Methode einzuführen, wird ihre Anwendung auf

einen bekannten, publizierten Datensatz, die Hefe-Zellzyklus-Synchronisation von Spellman et

al. (Mol. Biol. Cell 9 (1998), 3273-3297), gezeigt und die Visualisierung durch Korrespon-

denzanalyse mit der in der Originalpublikation gewählten Darstellung verglichen. Zusätzlich

wird die Korrespondenzanalyse auf ein Experiment aus unserer Arbeitsgruppe angewandt, um

ihre Eignung für Daten unterschiedlicher Komplexität, Struktur und experimenteller Technik

(Zweikanal-Fluoreszenz- bzw. radioaktive Markierung) zu demonstrieren.

Eine für die Analyse von Chip-Daten geeignete Methode muß uneingeschränkten Zugriff auf die

Daten haben. Dazu sollte sie in eine Datenbankplattform integriert sein, die große Datensätze

in einem definierten Format für Datenvorverarbeitung und Analyse bereithält.

Neben Speicherung und Analyse der Hybridisierungssignale sind für die biologische Interpre-

tation der daraus resultierenden Ergebnisse Informationen über die auf dem Chip repräsen-

tierten Gene sowie eine genaue Beschreibung der untersuchten experimentellen Bedingungen

unerläßlich. Für die Interpretation großer Datensätze sollten diese Beschreibungen (“Annota-

tionen”) in einem für computerbasierte Analyse geeigneten Format vorliegen, da eine visuelle

Auswertung am hohen Datenaufkommen scheitert. Die Einbeziehung solcher experimentellen

Parameter in eine statistische Analyse eröffnet die Möglichkeit, biologisch bedeutsame, den

Transkriptionsmustern zugrundeliegende Zusammenhänge oder Mechanismen zu identifizieren.

Die Freitext-Annotation heutiger DNS-Chip-Datenbanken behindert einen direkten Zugriff auf

diese Daten mittels statistischer Methoden. Experiment-Ontologien haben ihre endgültige

Form noch nicht erreicht und Standards sind reduziert auf Minimalkonventionen, die für

ausführliche Experimentbeschreibungen ungeeignet sind. Komplexe und hochvariante experi-

mentelle Szenarien verursachen eine hohe Komplexität und Vielgestaltigkeit experimenteller

Annotationen und erfordern daher eine flexibleres Speicherkonzept als das einer Standard-

Datenbanklösung. Dies gilt insbesonders, wenn die Daten in einem mit statistischen Methoden

zugreifbaren Format vorliegen sollen. Eine ontologieunabhängige Datenbankstruktur erlaubt

die Aktualisierung von Beschreibungshierarchien während des normalen Datenbankbetriebs.

Eine Änderung der Datenbankstruktur ist hierzu nicht erforderlich.

Ich habe ein Sytem entwickelt und implementiert, welches den oben angeführten Anforderun-

gen genügt. Es integriert die Korrespondenzanalyse in ein größeres Rahmenwerk aus Datenbank-

Plattform und ergänzenden Algorithmen. Der Name M-CHIPS steht für “Multi-Conditional

Hybridization Intensity Processing System”. Es erlaubt eine direkte statistische Analyse aller

erfaßten Daten inklusive der experimentellen Annotationen. Es berücksichtigt das schnelle
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Anwachsen des Datenvolumens für die Hybridisierungsdaten, Experimentbeschreibungen be-

liebigen Detailgrades sowie zukünftige Experimentszenarien. Es stellt ein universelles Spei-

cherkonzept zur Verfügung. Eine Organismus-spezifische Datenbank ist eine einzelne In-

stanz dieses Konzepts. Obwohl solche Datenbanken unterschiedliche Systeme experimenteller

Beschreibungen enthalten, haben sie gleiche Datenbankstruktur, was den Zugriff durch das-

selbe Algorithmenpaket ermöglicht.
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Kurzzusammenfassung

DNS-Chips (“Microarrays”) ermöglichen global ausgelegte transkriptionelle Studien durch

gleichzeitige Erfassung mehrerer zehntausend Gene. Hierdurch werden große Datenmengen

produziert. Diese Daten enthalten Meßrauschen, Signale im unteren Intensitätsbereich sind

unzuverlässig und die Datensätze enthalten gewöhnlich Ausreißer. Darüberhinaus ist die An-

zahl der Spots auf einem Chip gegenüber der Anzahl experimenteller Bedingungen überpro-

portional hoch. Das führt dazu, daß eine Menge von Genen, für die über eine Serie von ex-

perimentellen Bedingungen ein bestimmtes Genprofil gemessen wurde, eine erhebliche Anzahl

falsch-positiver Gene enthält, die zufallsbedingt aufgrund des Meßrauschens und der großen

Anzahl Gene auftreten. Abgesehen von der Fähigkeit, sowohl Gene als auch experimentelle

Bedingungen gleichzeitig zu visualisieren, muß eine weiterführende Analyse deshalb mehrere,

für eine experimentelle Bedingung wiederholt ausgeführte Messungen integrieren können, und

außerdem in der Lage sein, Meßrauschen zu unterdrücken und Ausreißer zu tolerieren.

Die vorliegende Arbeit stellt ein System zur intelligenten Speicherung von DNS-Chip-Daten

vor, sowie Methoden zur Datenanalyse von DNS-Chip-Messreihen mit hohem Datenvolumen.

Das System ermöglicht eine sorgfältige Vorbehandlung der Daten. Ein Kernpunkt ist die An-

wendung einer speziellen statistischen Analysemethode, die das Studium von Abhängigkeiten

sowohl innerhalb als auch zwischen Variablenmengen — hier Genen und DNS-Chip Hybri-

disierungen — erlaubt. Dieses Verfahren, die “Korrespondenzanalyse”, ist an die speziellen

Anforderungen von DNS-Chip-Daten so angepasst worden, daß wiederholte Messungen bei

Rauschunterdrückung und Toleranz gegen Ausreißer integriert werden können, ohne auf die

Visualisierung jeder einzelnen Messung zu verzichten.

Die vorliegende Arbeit demonstriert die Anwendbarkeit der Korrespondenzanalyse auf und

den hohen Nutzen für die Analyse von DNS-Chip-Daten. Zur Einführung wird ihre Anwen-

dung auf einen bekannten, publizierten Datensatz, die Hefe-Zellzyklus-Synchronisation von

Spellman et al. (Mol. Biol. Cell 9 (1998), 3273-3297), gezeigt und die resultierende Vi-

sualisierung mit der in der Originalpublikation gewählten Darstellung verglichen. Zusätzlich

wird die Korrespondenzanalyse auf ein Experiment aus unserer Arbeitsgruppe angewandt, um

ihre Eignung für Daten unterschiedlicher Komplexität, Struktur und experimenteller Technik

(Zweikanal-Fluoreszenz- bzw. radioaktive Markierung) zu demonstrieren.

92



Eine für die Analyse von Chip-Daten geeignete Methode sollte uneingeschränkten Zugriff

auf die Daten haben. Ich habe ein Sytem entwickelt und implementiert, welches die Kor-

respondenzanalyse in ein größeres Rahmenwerk aus Datenbank-Plattform und ergänzenden

Algorithmen integriert. Der Name M-CHIPS steht für “Multi-Conditional Hybridization In-

tensity Processing System”. Es erlaubt eine direkte statistische Analyse aller erfaßten Daten

inklusive der experimentellen Annotationen. Es berücksichtigt das schnelle Anwachsen des

Datenvolumens für die Hybridisierungsdaten, Experimentbeschreibungen beliebigen Detail-

grades sowie zukünftige Experimentszenarien. Es stellt ein universelles Speicherkonzept zur

Verfügung. Obwohl einzelne, organismus-spezifische Datenbanken unterschiedliche Systeme

experimenteller Beschreibungen enthalten, haben sie gleichartige Datenbankstruktur, was den

Zugriff durch dasselbe Algorithmenpaket ermöglicht.
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Köln, den 26. Februar 2002

98

http://www.dkfz-heidelberg.de/tbi/people/fellenberg/report/report.pdf

	Abbreviations
	Abstract
	Introduction
	Microarray technology
	Experimental setting
	Resulting data

	Current methods of data storage and analysis
	Data storage
	Data analysis

	Interaction of storage and analysis
	Contributions

	Data Storage
	Database model
	Design requirements
	Gene annotations
	Transcription intensities 
	Experiment annotations

	Database implementation
	Gene annotations 
	Transcription intensities and query performance
	Experiment annotations --- manifold variables under constant extension
	Database management

	Methods for database operation
	Experiment Annotation
	Upload of transcription intensities
	Safety aspects of database operation


	Data Anlaysis
	Preprocessing of hybridization intensities
	Normalization
	Filtering

	Correspondence analysis applied to mono- and multichannel microarray data
	Correspondence Analysis
	Standard coordinates as an aid in visualization
	Medians and replicate hybridizations in correspondence analysis
	Interpretation of a correspondence analysis biplot
	Multichannel data example --- analysis of a well-known data set
	Monochannel data example --- overexpression of CDC14

	Integration of gene and experiment annotations with transcription profiling
	General interconnectivity among different visualization plots
	Characterization of measurement clusters by experiment annotation scan
	Scanning annotations of continuous range


	Discussion
	Data platform
	M-CHIPS in the context of recent microarray data platforms
	Analytical scope
	Reliability and universal applicability

	Correspondence analysis applied to microarray data
	The peculiarities of microarray data
	Adaption of correspondence analysis
	Applicability to microarray data
	Correspondence analysis versus other methods

	Perspectives 

	Acknowledgements
	Bibliography
	Appendix
	A - Data examples
	Spellman et al. cell-cycle data
	CDC14 overexpression
	Oxidative stress
	Sodium chloride concentration series

	B - MATLAB TM implementation
	C - WWW presentation of analysis results
	Color coded list
	Complete list


	Software used
	Zusammenfassung
	Kurzzusammenfassung
	Lebenslauf
	Erklärung

