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Abstract
Even after a long time of research on dual-tasking, the question whether the two tasks are always processed serially (response 
selection bottleneck models, RSB) or also in parallel (capacity-sharing models) is still going on. The first models postulate 
that the central processing stages of two tasks cannot overlap, producing a central processing bottleneck in Task 2. The sec-
ond class of models posits that cognitive resources are shared between the central processing stages of two tasks, allowing 
for parallel processing. In a series of three experiments, we aimed at inducing parallel vs. serial processing by manipulating 
the relative frequency of short vs. long SOAs (Experiments 1 and 2) and including no-go trials in Task 2 (Experiment 3). 
Beyond the conventional response time (RT) analyses, we employed drift–diffusion model analyses to differentiate between 
parallel and serial processing. Even though our findings were rather consistent across the three experiments, they neither 
support unambiguously the assumptions derived from the RSB model nor those derived from capacity-sharing models. SOA 
frequency might lead to an adaptation to frequent time patterns. Overall, our diffusion model results and mean RTs seem to 
be better explained by participant’s time expectancies.

Introduction

Research in the field of dual-tasking so far showed that per-
forming more than one task concurrently produces costs, 
even with quite simple tasks (Koch, Poljac, Müller & Kiesel, 
2018). These dual-task costs have been extensively inves-
tigated within the Psychological Refractory Period (PRP) 
paradigm (Telford, 1931). Here, participants are instructed 
to concurrently conduct two stimulus–response tasks that 
are separated by a variable Stimulus-Onset Asynchrony 
(SOA). Whereas a manipulation of the SOA has only minor 
effects on primary task processing, response times (RT) of 

the secondary task increase with shorter SOAs. Based on the 
locus-of-slack method (Schweickert, 1978), Pashler (1994b) 
explored why the secondary response is postponed. By sys-
tematically manipulating each of three processing stages 
(i.e., stimulus encoding, response selection, and response 
production), he concluded that most likely the crucial limi-
tation (or bottleneck) in dual-task performance is located 
in the response selection stage. In the subsequent Response 
Selection Bottleneck (RSB) model, Pashler (1994a) sug-
gested that only one single response can be selected at a 
time. Therefore, response selection for the secondary task 
can start only after the response selection process of the 
primary task has finished. In this framework, task process-
ing in a dual-task paradigm is thought to be strictly serial 
(Pashler, 1998).

However, since Pashler’s seminal proposal of the RSB 
model, at least three classes of findings pose a challenge 
to the RSB model, because they might reflect parallel task 
processing. First, compelling evidence suggests that perfect 
time-sharing after intensive dual-task training is possible 
(Allport, Antonis, & Reynolds, 1972; Halvorson, Ebner & 
Hazeltine, 2013; Halvorson & Hazeltine, 2015; Israel & 
Cohen, 2011; Schumacher et al., 2001). Second, it has been 
demonstrated that an incompatibility between the primary 
and secondary tasks’ responses does not only prolong the RT 
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of the secondary task but also that of the primary task (Hom-
mel, 1998), a phenomenon known as the backward cross-
talk effect (BCE; Hommel, 1998; Janczyk, Pfister, Hommel, 
& Kunde, 2014; Logan & Schulkind, 2000; Miller, 2006). 
Third, several findings suggest that participants can strategi-
cally switch between mostly serial and mostly parallel task 
processing modes (Fischer, Gottschalk, & Dreisbach, 2014; 
Fischer & Dreisbach, 2015; Fischer & Plessow, 2015; Lehle 
& Hübner, 2009; Miller, Ulrich & Rolke, 2009). While the 
first two classes of findings are, at least in principle, rec-
oncilable with the framework of the RSB model, the third 
class of findings is more difficult to explain (but see Logan 
& Gordon, 2001).

With regard to the findings of no dual-task costs, Schu-
bert et al. (2017) propose that practice might improve the 
inter-task coordination, thereby optimizing processing in the 
bottleneck. This is supported by results that show residual 
dual-task costs even after extensive training of eight sessions 
(Liepelt, Fischer, Frensch, & Schubert, 2011). According to 
this latent bottleneck perspective (Ruthruff, Johnston, Van 
Selst, Whitsell, & Remington, 2003), processing optimized 
for the bottleneck rather than a parallel processing mode 
leads to the reduced dual-task costs (e.g., Strobach & Schu-
bert, 2017).

To integrate the second class of findings that demon-
strate a BCE into the framework of the RSB model, Hom-
mel (1998) argued that, based on the ideomotor principle 
(e.g., Prinz, 1984; Stock & Stock, 2004), merely perceiving 
the secondary stimulus automatically activates features of 
the secondary response (Hommel & Eglau, 2002; Hommel, 
1998; Janczyk et al., 2014; Röttger & Haider, 2017). Cru-
cially, the activation of these response features can proceed 
in parallel to other processing stages of Task 1, thereby 
causing crosstalk between the tasks. Distinguishing between 
response feature activation and response selection allows 
to account for a BCE despite the assumption of a structural 
bottleneck within the RSB model (Lien & Proctor, 2000; 
Paelecke & Kunde, 2007, but see Thomson, Danis, & Wat-
ter, 2015; Janczyk, Renas, & Durst, 2018). Thus, although 
the two classes of findings might point to parallel process-
ing, they are consistent with an extended RSB model (Hom-
mel, 1998; Lien & Procter, 2000; Schubert, Fischer, & Stel-
zel, 2008).

Yet, the third class of findings that assumes an abil-
ity to adaptively switch between a mostly parallel and a 
mostly serial processing mode (Fischer et al., 2014; Fis-
cher & Dreisbach, 2015; Fischer & Plessow, 2015; Lehle 
& Hübner, 2009; Miller et al., 2009), is more difficult to 
explain within the framework of the RSB model since it 
requires the assumption of higher-order control processes 
for active task scheduling or coordination (cf. Logan & 
Gordon, 2001). For instance, Fischer et al. (2014) con-
fronted participants with either high or low conflicting task 

contexts by manipulating response compatibility between 
the primary and the secondary task. In contexts with high 
response conflict, the RT differences between compatible 
and incompatible tasks were reduced. The authors inter-
pret these findings in favor of more task shielding and, 
thus, a switch to a mostly serial processing strategy.

In a similar vein, Lehle and Hübner (2009) manipulated 
participants’ performance via instruction. They used a ver-
sion of the Eriksen flanker task in which participants had 
to respond to the target (primary task) and to the flank-
ers (secondary task). They instructed their participants to 
conduct the two tasks in either a parallel or serial pro-
cessing mode. The results showed that performance was 
more prone to task interference under parallel than under 
serial task processing instructions, even though partici-
pants showed a bias towards parallel processing when no 
specific instruction was presented. In a follow-up study, 
Lehle, Steinhauser, and Hübner (2009) could demonstrate 
that mental effort, reflected by heart rate and electrodermal 
activity, was higher under serial processing compared to 
parallel processing. The authors concluded that partici-
pants preferred a processing mode that required less men-
tal effort and, thus, by default, adopted a moderate parallel 
processing strategy.

Overall, these findings suggest an adaptive modulation 
of processing strategies. Such a modulation can hardly be 
explained by the RSB model, as, according to its premises, 
the tasks should always be processed in a strictly serial pro-
cessing mode. However, such findings can easily be accom-
modated by capacity-sharing models (Navon & Miller, 2002; 
Tombu & Jolicoeur, 2003) or by cognitive control models 
(cf. Logan & Gordon, 2001).

Capacity-sharing and cognitive control models both pro-
pose that it is not a structural limitation but the limited cen-
tral capacity or conflicts (crosstalk) between the two tasks 
which narrows the possibility of concurrently conducting 
two tasks. If the processing of the two tasks overlaps in time, 
the limited capacity needs to be shared between them lead-
ing to parallel response selection, but—due to the shared 
limited capacity—also to dual-task costs and the PRP effect. 
Since it is additionally assumed that people can strategi-
cally distribute their limited capacities between the two tasks 
(e.g., Logan & Gordon, 2009; Tombu & Jolicoeur, 2003), 
the scope of this second class of theories is broader and more 
flexible than that of structural bottleneck theories. These 
models cannot only account for findings suggesting parallel 
processing, such as dual-tasking without any costs under 
specific conditions (Allport et al., 1972; Halvorson et al., 
2013; Halvorson & Hazeltine, 2015; Israel & Cohen, 2011; 
Schumacher et al., 2001) or the BCE (Janczyk et al., 2014; 
Logan & Schulkind, 2000). Additionally, they can account 
for findings suggesting serial processing (Miller et al., 2009) 
or for those showing that participants can adaptively switch 
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between parallel and serial processing modes (Fischer et al., 
2014; Fischer & Dreisbach, 2015; Lehle & Hübner, 2009).

However, at least a few recent findings challenge the 
assumption of parallel task processing (Marti, Sigman, & 
Dehaene, 2012; Maslovat et al., 2013; Ruthruff, Johnston, 
& Remington, 2009). For instance, Maslovat et al. (2013) 
tested whether the second response in a single-choice 
dual-task paradigm is already prepared, while participants 
respond to the first task. They used a startle acoustic stimulus 
(SAS) that was intended to trigger more or less involuntarily 
an already prepared response. They found that with present-
ing the SAS at different SOAs, the secondary response was 
accelerated compared to a control condition without SAS. 
Yet, this effect was additive to the PRP effect, but, according 
to the second class of models, this effect should have been 
stronger for short than for long SOAs.

To summarize, the debate about whether the RSB or 
models allowing also for parallel processing are better suited 
to account for dual-task performance continues (e.g., Mit-
telstaedt & Miller, 2017). On the one hand, capacity-sharing 
and cognitive control models can more flexibly account for 
the current findings in multitasking than the RSB model. On 
the other hand, empirical findings unambiguously favoring 
either the one or the other class of models are still rare.

The goal of the current experiments is to contribute to 
this debate by focusing in particular on the question of par-
allel versus serial task processing. Building on a study of 
Miller et al. (2009), we first report three experiments aimed 
at establishing parallel versus serial processing in a dual-task 
setting. In a second step, we explore assumptions of parallel 
and serial task processing modes by means of the drift–dif-
fusion model (Ratcliff & Rouder, 1998). The drift–diffu-
sion model is a computational model which decomposes 
the single trial RTs into different underlying components. 
These components, reflected in the model’s parameters, can 
be linked to cognitive processes (e.g., Janczyk & Lerche, 
2019; Voss, Voss, & Lerche, 2015). The analysis of these 
components could help to distinguish between parallel and 
serial processing strategies.

Overview of the current study

The central assumption put forward by Miller et al. (2009) 
is that the selection of either a parallel or a serial process-
ing mode in dual-tasking is driven by the goal to minimize 
the total reaction time (TRT), which is the time needed to 
conduct both tasks. We see this TRT framework as instan-
tiation of capacity-sharing accounts. Based on mathemati-
cal simulations, Miller et al. (2009) demonstrate that serial 
processing is usually more efficient than parallel process-
ing. The only situation where parallel processing results in 

shorter TRTs is when short SOAs are frequently present 
within dual-task blocks.

To provide empirical evidence for this assumption, the 
authors ran three experiments in which they compared a 
block with frequently short SOAs against another block with 
frequently long SOAs. With frequently short SOAs, the RTs 
to the first task were slower than with frequently long SOAs. 
Concurrently, the secondary tasks’ RTs at short SOAs were 
faster in the frequently short SOA than in the frequently 
long SOA blocks. This is exactly what one would expect to 
find under the assumption that parallel processing is adopted 
when short SOAs are frequent: The parallel response selec-
tion in the frequently short SOA blocks reduces the speed 
of responding to the primary task and concurrently speeds 
up the processing in the secondary task given short SOAs, 
leading to flatter slopes. Thus, the findings are in line with 
the assumption that optimizing the TRT is obtained by the 
use of a mostly parallel versus a mostly serial processing 
mode within the PRP paradigm.

Yet, one finding of Miller et al. (2009) might be at odds 
with the assumption of mostly parallel task processing in 
the frequently short condition. In Task 1, the larger the RT 
differences between the frequently short and the frequently 
long conditions, the longer the SOAs (Experiments 1 and 2). 
If participants in the frequently short condition had shared 
their capacities between the two tasks, the reverse pattern 
should have been found as the need for capacity sharing 
should be larger when the SOAs are short.

In the current study, we build on the experimental strat-
egy of Miller et al. (2009). In all experiments, participants 
received either 80% short SOAs (short SOAs frequent (SF) 
condition) or 80% long SOAs (long SOAs frequent (LF) 
condition).

In Experiment 1, the SOAs were set to either 100 ms, 
300 ms, or 800 ms (in contrast to 16, 133, 500, and 1000 ms 
in Miller et al. 2009). In Experiment 2, we prolonged the 
SOAs to 300 ms, 500 ms, or 1000 ms. According to Miller 
et al. (2009), the goal to minimize the TRT triggers partici-
pants to prefer a mostly parallel or a mostly serial process-
ing strategy. If this was true, the longer SOAs in Experi-
ment 2 should increase the likelihood of serial processing 
irrespectively of whether short or long SOAs are frequent. 
Thus, the RT differences between the two SOA conditions 
should decrease in Experiment 2. In Experiment 3, we used 
the SOAs of Experiment 1, but enhanced the prioritiza-
tion of the primary task by providing a few trials in which 
participants had to respond only to the primary task. As 
already shown by Mittelstädt and Miller (2017), such Task 
2 no-go trials increase the likelihood of a serial process-
ing strategy. Therefore, we assumed that this manipulation 
should also decrease the RT differences between the two 
SOA conditions.
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To summarize, we expected to find indicators for mostly 
parallel processing in the SF condition and for mostly serial 
processing in the LF condition of Experiment 1. The addi-
tional manipulations in Experiments 2 and 3 should reduce 
these differences between the two SOA conditions. In a 
second step, we modeled the data with a diffusion model 
approach for further insights in the performance differences 
between the two experimental conditions.

Drift–diffusion model

Drift–diffusion models are computational methods describ-
ing the RT distributions in binary decision tasks (Fig. 1; 
Ratcliff & McKoon, 2008). The crucial assumption is that 
a response to a stimulus can be decomposed into four dif-
ferent components (Voss et al., 2015). The decision pro-
cess for the one or the other response relies on the evidence 
accumulation process, represented as the drift rate v. Evi-
dence accumulation continues until it reaches one of the two 
thresholds (boundary separation a), indicating that an overt 
response is initiated. The evidence accumulation process 
can start either at a neutral starting point (z = 0.5 a) or at a 
starting point closer to one of the two thresholds (z < 0.5 a 
or z > 0.5 a). In the latter case, the evidence accumulation 
process would be biased towards one of the two responses. 
In addition, all processes outside the decision process (e.g., 
stimulus encoding or motor processes) are subsumed in the 
non-decision time t0. In numerous empirical studies, these 
parameters have been linked to distinct cognitive processes 
(Durst & Janczyk, 2019; Janczyk & Lerche, 2019; Lerche & 
Voss, 2017; Naefgen, Dambacher & Janczyk, 2018; Ratcliff 
& Rouder, 1998; Voss, Nagler & Lerche, 2013).

With regard to dual-task experiments, only few research-
ers have already applied the drift–diffusion model (e.g., Durst 
& Janczyk, 2019; Kamienkowski, Pashler, Dehaene & Sig-
man, 2011). Nonetheless, for the research question at hand, 
this approach is promising. The drift–diffusion model makes 
precise predictions about the parameter configurations for par-
allel and serial processing and how these parameters should 
differ (see also Fig. 2).

The first prediction concerns the drift rate v: Participants 
in the SF condition should be more likely to process the two 
tasks in parallel. This means that for short SOAs, the central 
processing stages of Task 1 and Task 2 overlap. Due to this 
overlap, the central resources need to be shared, decreasing the 
speed of evidence accumulation reflected by the drift rate v. 
For long SOAs, however, this time overlap would be smaller 
and consequently the need to share central resources would 
be reduced. Accordingly, in the SF condition, the drift rate 
should be lower for short SOAs than for long SOAs. By con-
trast, participants in the LF condition should prefer a serial 
processing mode. Consequently, there should not be an overlap 
of the central processing stages of Task 1 and Task 2 neither 
for long nor for short SOAs. Therefore, the length of the given 
SOAs should not affect the drift rate. In addition, with short 
SOAs, the drift rate should be larger in the LF than in the SF 
condition.

The second prediction concerns the non-decision time t0: 
In the diffusion model, the non-decision time comprises all 
processes which are not related to the decision itself. When in 
serial processing, the central processing stage of Task 2 is post-
poned because it cannot overlap with the central processing 
stage of Task 1, this should be mapped onto the non-decision 
time of Task 2, given that no decisional processes occur dur-
ing this slack time. In the SF condition, participants should be 
more likely to process the two tasks in parallel. Accordingly, 
there should not be a postponement of the response selection 
in Task 2 and the non-decision times in both tasks exclu-
sively comprise stimulus encoding and the motor response. 
Thus, there should be no difference in the non-decision time 
in the SF condition neither between Task 1 and Task 2, nor 
between short and long SOAs. However, if participants pro-
cess the tasks serially, as is assumed to be the case in the LF 
condition, the response selection process of Task 2 must be 
postponed until the response selection process of Task 1 has 
finished when SOAs are short. This should be reflected in the 
non-decision time of Task 2, such that the non-decision time 
for Task 2 should be prolonged when the SOA is short but not 
when it is long. Figure 2 summarizes these predictions for the 
two conditions.

Fig. 1  Exemplary illustration of the Drift–Diffusion Model. za indi-
cates the starting point of the evidence accumulation process pro-
gressing with drift rate v until it reaches the threshold a or  0. The 
non-decision time t0 includes both the stimulus encoding time and the 
response execution process
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General method

Stimulus and apparatus

All experiments were run on a 19-inch screen (resolution: 
1280 × 1024 pixels), controlled by a standard PC. Responses 
were made on a German standard QWERTZ keyboard using 
the keys “a” and “s” for the primary task (the two outer left 
keys in the third row of the keyboard) and “ö” and “ä” for 
the secondary task (the two outer right keys in the third row 
of the keyboard).

In all experiments, each trial consisted of a color dis-
crimination task (Task 1) and an object-identity task 

(Task 2). In the color discrimination task, participants 
were asked to indicate the color of the picture of either a 
banana or a plum by pressing the correspondingly marked 
yellow (“a” key) or blue key (“s” key) with their middle 
or index finger of the left hand. The stimuli of the color 
discrimination task appeared on the left side of a central 
fixation cross. In the object-identity task, participants saw 
either a dog or a donut appearing on the right from the 
fixation cross and responded with a left or right keypress 
on the “ö” and “ä” keys. The exact stimulus–key mapping 
was counterbalanced across participants instructing them 
to press the right or left key for the dog or donut.

Fig. 2  Illustration of the predicted SF (left) and LF (right) processing 
mode and resulting predictions regarding drift rate v and non-deci-
sion time t0. P1/P2, stimulus perception in Task 1/Task 2; RS1/RS2, 

response selection in Task 1/Task 2; MR1/MR2, motor response in 
Task 1/Task 2. Solid line, predictions for Task 1; dotted line: predic-
tions for Task 2
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Procedure

Informed consent was obtained from all individual par-
ticipants included in the study. The experiments began 
with computer-based instructions. The task was explained 
through standardized instruction on the screen, and the 
stimuli together with their assigned keys were introduced. 
Then, the practice phase started with a single block in which 
participants practiced each of the two tasks for 20 trials 
separately. Afterwards, participants received one warm-
up dual-task block with 80 trials. They were instructed to 
respond as quickly and accurately as possible to both tasks, 
and to give equal priority to both tasks and not to group their 
responses. The maximum response window was set to one 
minute. In each trial of this warm-up block, both, the color 
stimulus (banana vs. plum) and the object-identity stimu-
lus (dog vs. donut), appeared simultaneously on the screen 
(SOA = 0 ms) and participants had to respond to both. The 
rationale behind presenting the two tasks concurrently was 
that we wanted to give parallel task processing the maximal 
chance to occur. According to Miller et al. (2009), parallel 
processing is rarely used because in most cases, serial task 
processing is the more efficient strategy.

The following test phase consisted of a total of 400 
dual-task trials divided into five blocks with 80 trials each. 
They were separated by short self-paced breaks. Each block 
included three types of different SOA trials (100, 300, and 
800 ms in Experiments 1 and 3, and 300, 500, and 1000 ms 
in Experiment 2). In the SF condition, each block consisted 
of 80% short SOAs, 10% medium, and 10% long SOAs. Cor-
respondingly, the LF condition contained 80% long SOAs, 
10% medium, and 10% short SOAs. SOAs were crossed with 
the stimulus combinations and the resulting trials were pre-
sented in random order.1

Each trial in the dual-task blocks began with the pres-
entation of a central fixation cross for 250 ms. Following 
a blank screen for 250 ms, the first stimulus (banana or 
plum) appeared on the left side of the fixation cross. After 
the respective SOA, the second stimulus (dog or donut) 
appeared on the right side of the fixation cross. When the 
participants had made the two responses, the screen went 
black for 1500 ms and the next trial started. If a participant 
responded incorrectly, an error message appeared on the 
screen for 500 ms specifying whether the error occurred in 
the first, the second, or in both tasks.

Design and analyses

All three experiments consisted of a 2 × 3 mixed factorial 
design with SOA condition (SF vs. LF) as between-par-
ticipants variable and SOA (short vs. medium vs. long) as 
within-participants variable. RTs and error rates served as 
dependent variables.

Trials with incorrect responses on either task were 
excluded from RT analysis, and responses faster than 200 ms 
or slower than 2000 ms were eliminated (Experiment 1, 
2.64%; Experiment 2, 2.68%; Experiment 3, 0.68%). In addi-
tion, we checked whether excluding trials with short inter-
response intervals (IRIs < 100 ms; Miller et al., 2009) was 
warranted. Since the exclusion of trials with IRIs between 
100 and 200 ms did not alter the results, we decided not 
to exclude these trials. For further analyses, mean RTs and 
mean error rates as dependent variables were computed sep-
arately for each participant and each SOA. Partial η2 (ηp

2) 
are reported as effect sizes. If Mauchly’s test of sphericity 
reached significance, we report Greenhouse–Geisser-cor-
rected p values together with the original degrees of freedom 
and the value of ε. The alpha level for all analyses was set 
to α = 0.05.

Modeling

We used the HDDM Toolbox (Wiecki, Sofer, & Frank, 
2013) to fit the diffusion model to the RT data. The toolbox 
employs a Bayesian approach to estimate the parameters. 
Modeling results will be reported for all three experiments 
together after having covered mean RT-based analyses of the 
experiments individually.

In contrast to the RT analyses, we only included tri-
als with short or long SOAs, leaving out medium SOAs, 
because we wanted to keep the analyses as easy as possi-
ble. We applied the same exclusion criteria as used for the 
RT analyses. We fitted one diffusion model to the data of 
Task 1 and one diffusion model to the data of Task 2 inde-
pendently from each other. Note that we fitted the models 
to the accuracy coded data, i.e., the lower threshold 0 rep-
resented an error and the upper threshold a represented a 
correct response. In each model, we allowed only the drift 
rate v and the non-decision time t0 to vary between the two 
conditions (between-subjects factor: SF vs. LF condition) 
and SOA (within-subjects factor: short vs. long). Since 
there was no theoretical reason to expect differences in the 
boundary separation a between the conditions, we did not 
allow this parameter to vary between the conditions. How-
ever, the boundary separation parameter was estimated for 
every participant individually. Furthermore, we did not 
expect a response bias towards one of the two responses in 
the experimental task. Consequently, we fixed the starting 
point z at 0.5a, indicating that the evidence accumulation 

1 We are aware that a between-participants design is less powerful 
than a within-participants design. However, due to practical consid-
erations, we chose the between-participants design. These considera-
tions were partly due to the fact that we did not want our participants 
to endure twice the length of the experiment which would have been 
inevitable in a within-participants design. See also considerations in 
favor of a between-subjects approach in the “General discussion”.
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process always starts in the middle between both decision 
boundaries. The variability parameters of the drift rate, 
non-decision time and starting point were set to 0 and the 
diffusion constant was set to s = 1.

For each model estimation, we drew 6000 samples from 
the joint posterior distribution of the parameters using the 
Markov Chain Monte Carlo (MCMC) sampling and dis-
carded the first 1000 samples as the burn-in period. Thus, 
the posterior distribution of each parameter consisted of 
5000 samples. We examined MCMC convergence by visu-
ally inspecting the traces and computing the Ȓ statistic 
(Gelman & Rubin, 1992).

For the statistical analyses, the HDDM Toolbox pro-
duces a posterior distribution of the diffusion model 
parameters. Within a model, these distributions can be 
directly compared to each other. To test whether a param-
eter estimate differed substantially between long and short 
SOAs within a task, we examined the Bayesian posterior 
probability based on the group-level nodes. We, thus, com-
puted the proportion P of the parameter distribution for 
short SOAs which was larger/smaller than the parameter 
distribution for long SOAs. If P exceeded 0.950 indicating 
that 95% of one parameter distribution was larger/smaller 
than the other parameter distribution, we assumed a sub-
stantial difference.

Since the parameters for the different tasks are not esti-
mated simultaneously, unlike the parameters within a task, 
we could not use Bayesian posterior probabilities to com-
pare the parameters. Instead, we aggregate the posterior 
distributions per participant by computing the means. We 
then employed frequentist t tests and adjusted the p value 
for the number of comparisons on each parameter and 
in each experiment using the Bonferroni correction. We 
provide more information on the technical aspects of the 
parameter estimation procedure in the "Appendix".

Experiment 1

The first experiment aimed to replicate the qualitative pat-
tern of results of Miller et al. (2009). Instead of using their 
SOAs of 16 ms, 133 ms, 500 ms, and 1000 ms, the lengths 
of the SOAs here were either 100 ms, 300 ms, or 800 ms.

Method

Participants

Thirty-eight students (9 men, mean age M = 24.08 years; 
SD = 6.52) of the University of Cologne took part in the 
experiment for exchange of either course credit or a pay-
ment of 3 Euros. 21 participants were randomly assigned 
to the SF condition and 17 participants to the LF condition. 
Due to a high error rate (larger than 15% in all blocks), one 
participant of the LF condition had to be excluded. When 
including this participant, the results did not change.

Results and discussion

We first analyzed participants’ mean error rate (see Table 1). 
A 2 (SOA condition) × 3 (SOA) ANOVA with mean error 
rates as dependent variable did not reveal any significant 
effects (all Fs ≤ 1.34, ps ≥ 0.269 and F ≤ 2.97, p ≥ 0.058 for 
Task 1 and Task 2, respectively).

Figure 3a and b display the mean RTs as a function of 
SOA for the two experimental conditions in Task 1 and 
Task 2. The 2 (SOA condition) × 3 (SOA) ANOVA with 
RT1 as dependent variable revealed a significant main 
effect of SOA, (F(2,70) = 3.71, p = 0.029, ηp

2 = 0.10), but 
no significant main effect of SOA condition, (F(1,35) = 0.86, 

Table 1  Mean percent error and standard error in brackets for Experiments 1, 2, and 3 as a function of SOA and SOA conditions

a No-go trials were excluded

Experiment 1 Experiment 2 Experiment  3a

SOA Mean [SE] SOA Mean [SE] SOA Mean [SE]

SF condition LF condition SF condition LF condition SF condition LF condition

Task 1
 100 1.83 [0.69] 2.64 [0.77] 300 1.35 [0.58] 2.88 [0.59] 100 1.28 [0.56] 2.50 [0.52]
 300 2.14 [0.89] 3.67 [0.98] 500 1.78 [0.77] 2.50 [0.79] 300 1.45 [0.61] 1.79 [0.58]
 800 2.38 [0.62] 3.19 [0.69] 1000 2.14 [0.59] 2.66 [0.60] 800 1.18 [0.47] 2.01 [0.45]

Task 2
 100 5.73 [1.69] 10.71 [1.88] 300 5.89 [1.16] 4.50 [1.19] 100 3.34 [1.01] 3.69 [0.96]
 300 5.00 [1.07] 8.09 [1.20] 500 6.79 [1.31] 4.63 [1.34] 300 3.55 [0.96] 4.40 [0.91]
 800 4.88 [1.12] 6.34 [1.32] 1000 5.83 [1.02] 4.30 [1.05] 800 3.68 [0.73] 2.43 [0.69]
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Fig. 3  Mean RTs in Tasks 1 (a) and 2 (b) as a function of SOA and SOA condition in Experiments 1, 2, and 3. Error bars reflect between-partic-
ipants standard error (SE) of the mean
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p = 0.360, ηp
2 = 0.02). Yet, the SOA condition × SOA inter-

action reached significance (F(2,70) = 17.36, p < 0.001, 
ηp

2 = 0.33; ε = 0.598). As can be seen from Fig. 3a, the 
longer the SOAs were, the slower the participants in the SF 
condition responded; whereas, participants in the LF condi-
tion showed the reversed trend.

Regarding RT2, the analogous 2 × 3 ANOVA yielded a 
significant main effect for SOA (F(2,70) = 436.10, p < 0.001, 
ηp

2 = 0.93; ε = 0.941), indicating the expected PRP effect. 
There was no main effect of SOA condition (F(1,35) = 1.81, 
p = 0.186, ηp

2 = 0.05), but the SOA condition × SOA inter-
action was highly significant (F(2,70) = 18.27, p < 0.001, 
ηp

2 = 0.34; ε = 0.941). The latter was due to a flatter slope in 
the SF condition (see Fig. 3b).

Overall, this pattern of results is in line with Miller et al. 
(2009) who did not find significant main effects for the 
SOA conditions, neither for RT1 nor RT2, but significant 
interactions between SOA condition and SOA. Therefore, 
Experiment 1 replicates the qualitative pattern of the results 
of Miller et al. (2009) that are interpreted in favor of the 
assumption of mostly parallel processing in the SF and 
mostly serial processing in the LF condition.

Experiment 2

The goal of Experiment 2 was to test whether prolonging the 
shortest SOA would reduce the likelihood of parallel pro-
cessing in the SF condition. According to the TRT account 
(Miller et al., 2009), such a prolongation of the SOAs should 
decrease the likelihood that the parallel processing strategy 
is more efficient than a serial one. Consequently, the perfor-
mance differences between the two SOA conditions should 
decrease in Experiment 2. However, an alternative assump-
tion is that rather than the TRT, the respective distribution of 
the SOAs influences whether the participants prefer a paral-
lel or serial processing strategy. If this were the case, the SF 
condition should again rely on a mostly parallel processing 
strategy. In Experiment 2, we replicated the first experiment 
with SOAs 300 ms, 500 ms, and 1000 ms. Apart from this 
change, the experiment was identical to that of Experiment 
1.

Method

Participants

Forty-four students of the University of Cologne (5 men, 
mean age M = 21.56 years, SD = 2.57) participated in this 
experiment for exchange of either course credit or a payment 
of 3€. They were randomly assigned to the SF or LF condi-
tion (N = 23 in the SF and N = 21 in the LF condition). Due 
to a technical problem with data recording, two participants 

of the SF condition and one participant of the LF condition 
were excluded.

Apart from the prolonged SOAs, the stimuli and the pro-
cedure were as described in the "General method".

Results and discussion

Again, the error rates were rather low and were unaf-
fected by SOA or SOA condition (see Table 1; Fs ≤ 1.41, 
ps ≥ 0.242 and Fs ≤ 1.41, ps ≥ 0.242, for Task 1 and Task 2, 
respectively).

Figure 3a and 3b depict the mean RTs for Tasks 1 and 2 
in the two SOA conditions. The 2 × 3 ANOVA with RT1 as 
dependent variable revealed a significant main effect of SOA 
(F(2,78) = 5.22, p = 0.020, ηp

2 = 0.12; ε = 0.626). Contrary 
to Experiment 1, the main effect of SOA condition was now 
significant (F(1,39) = 8.28, p = 0.006, ηp

2 = 0.18), indicating 
that the participants responded slower in the SF condition 
than in the LF condition. In addition, also the SOA condition 
× SOA interaction was significant (F(2,78) = 7.37, p = 0.006, 
ηp

2 = 0.16; ε = 0.626). As can be seen from Fig. 3a, this inter-
action was again caused by an increase of RT1 with increas-
ing SOAs in the SF condition and the reversed pattern in the 
LF condition. Thus, contrary to the expectation derived from 
the TRT account, prolonging the SOAs did not reduce the 
RT differences between the two conditions in Task 1.

For RT2, the 2 × 3 ANOVA showed only a significant 
main effect of SOA (F(2,78) = 153.50, p < 0.001, ηp

2 = 0.79; 
ε = 0.768), reflecting the PRP effect. Neither the main effect 
of SOA condition (F(1,39) = 1.09, p = 0.303, ηp

2 = 0.03), nor 
the SOA condition × SOA interaction reached significance 
(F(2,78) = 1.01, p = 0.369, ηp

2 = 0.03). Despite the longer 
RTs in Task 1, participants in the SF condition showed no 
benefit in Task 2. This finding does not mirror the results 
obtained in Experiment 1, and fits neither with a mostly 
parallel nor a mostly serial processing strategy adopted in 
the SF condition. If the prolonged RT1 in the SF condition 
reflected a parallel processing mode, we should have also 
found at least a small beneficial effect in Task 2. Therefore, 
it seems probable that the slower processing of Task 1 in 
the SF condition might have been caused by other reasons 
than parallel processing. We will refer back to this in the 
“General discussion”.

Experiment 3

In Experiment 3, we tested whether interspersing trials that 
required no Task 2 response would increase serial processing 
irrespectively of the SOA distributions. Such a manipulation 
should enhance the prioritization of Task 1 by preventing 
concurrent Task 2 processing (Koch et al., 2018; Mittelstädt 
& Miller, 2017). Specifically, we replicated Experiment 1, 
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and included two additional stimuli in Task 1 (a lemon and 
grapes) which reliably announced the no-go trial in Task 
2. Furthermore, the no-go Stimulus of Task 2 (a cat) was 
never associated with any response beforehand. Neverthe-
less, since such no-go trials could have produced a no-go 
BCE (Janczyk et al., 2014), we excluded these trials from 
the data-analyses of Experiment 3.

Method

Participants

Forty students of the University of Cologne (8 men; mean 
age M = 23.58 years, SD = 3.00) participated in the experi-
ment either in exchange for course credit or a payment of 3€. 
19 participants were assigned to the SF, and 21 participants 
to the LF condition.

Apart from the exception that Task 1 contained two addi-
tional images, one of a yellow lemon and one of blue grapes, 
the procedure was identical to Experiment 1. These two 
stimuli led to the same yellow–blue responses but signaled 
participants that Task 2 will not require any response. There 
were 82.5% go trials and 17.5% no-go trials. The stimulus 
of Task 2 in these trials was always the image of a cat which 
was never assigned to any response key.

Results and discussion

We first analyzed participants’ error rates. The mean error 
rates are presented in Table 1. Again, neither SOA nor 
SOA condition affected the mean error rates (see Table 1; 
Fs ≤ 1.87, ps ≥ 0.179 and Fs ≤ 1.14, ps ≥ 0.325 in Task 1 and 
Task 2, respectively).

Figure 3a and b show the mean RTs for Tasks 1 and 2 
in the two conditions. For means of comparison between 
experiments, we did not include the Task 1 trials which were 
followed by a no-go trial in Task 2 because they might have 
produced a BCE. This seems also warranted because there 
was no significant difference between go and no-go trials 
and also no interaction between this and any other factor. 
The 2 (SOA condition) × 3 (SOA) ANOVA with RT1 as 
dependent variable showed a significant main effect of SOA 
(F(2, 76) = 6.04, p = 0.010, ηp

2 = 0.14, ε = 0.688) and of SOA 
condition (F(1,38) = 6.52, p = 0.014, ηp

2 = 0.15). In addition, 
also the interaction between SOA and SOA condition was 
significant, (F(2, 38) = 7.01, p = 0.006, ηp

2 = 0.16, ε = 0.688). 
Thus, the results of Experiment 3 resembled those of the 
former two experiments with the exception that, here, RT1 
did not increase as a function of SOA lengths in the SF con-
dition. Instead, the SOA condition × SOA interaction was 
solely caused by the LF condition which shows a shorter 
RT1 with longer SOAs.

With RT2 as dependent variable, the 2 × 3 ANOVA yielded 
only a significant main effect of SOA, (F(2, 76) = 199.58, 
p < 0.001, ηp

2 = 0.84, ε = 0.817). The main effect of SOA 
condition was not significant, F(1, 38) = 0.24, p = 0.625, 
ηp

2 = 0.01. The interaction just failed to reach the level of sig-
nificance, F(2, 76) = 2.84, p = 0.064, ηp

2 = 0.07.
Thus, the longer RT1 in the SF condition suggest that 

participants were more likely to conduct the two tasks in 
parallel. As in Experiment 2, however, RT2 as a function of 
SOA did not differ significantly between the two conditions.

Interim summary of the empirical findings

The empirical findings of Experiment 1 are in line with 
the TRT framework of Miller et al. (2009) that blocks with 
mostly short SOAs increase the likelihood of parallel pro-
cessing of the two tasks, because parallel processing is, in 
this case, the more efficient strategy. We found the interac-
tion between SOA condition and SOA for Task 1, and, in 
Task 2, the flatter slopes in the SF condition compared to 
the LF condition. However, even though the manipulations 
of prolonging the shortest SOA (Experiment 2) or enhancing 
the prioritization of Task 1 (Experiment 3) were thought to 
reduce the likelihood of parallel processing, the interactions 
between SOA condition and SOA in Task 1 remained sig-
nificant in Experiments 2 and 3. Only the pattern of results 
of Task 2 was in line with the expectation that these manipu-
lations reduced the probability of parallel processing. The 
patterns of Task 1 obtained in Experiments 2 and 3 are unex-
pected. As argued above, increasing the likelihood of serial 
processing should have speeded up RT1, thereby attenuating 
the differences between the SF and the LF conditions.

In addition, one further point in the data is noteworthy: 
When taking a closer look at RT1, it becomes obvious that 
the longer the SOAs, the slower the participants in the SF 
condition responded (at least in Experiments 1 and 2). This 
is what Miller et al. (2009; Fig. 3) had found as well. How-
ever, this result is contrary to what one would expect from 
the perspective of models assuming the possibility of paral-
lel processing: With short SOAs, the overlap between the 
two tasks is larger than at long SOAs and, thus, response 
speed should increase from short to long SOAs. Therefore, 
this finding does not match the conclusion of Miller et al. 
(2009) suggesting that participants try to optimize the TRT 
by either preferring a mostly parallel or a mostly serial pro-
cessing strategy.

Results from the drift–diffusion model

The MCMC chains converged according to visual inspection 
of the traces (see Figs. 6, 7, 8 in the "Appendix") and the 
Gelman Rubin statistics (Ȓ were all close to 1). Also, the fit 
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between the model and the empirical data was quite well. It 
was slightly better for Task 1 than for Task 2. Furthermore, 
since the error rate was rather low, the RT distribution of 
the erroneous responses was predicted less well than the RT 
distribution of the correct responses. The detailed model fit 
is shown in "Appendix".

Parameter pattern for the drift rate v

As described in Fig. 2, we expected mostly parallel process-
ing in the SF condition to lead to lower drift rates for short 
than for long SOAs in both tasks, reflecting the sharing of 
central capacities of parallel processing. By contrast, if the 
frequent long SOAs in the LF condition had biased the par-
ticipants towards a mostly serial processing mode, the drift 
rate should be unaffected. Figure 4 depicts the results of the 
drift rate v as a function of Task, SOA, and SOA condition 
separately for the three experiments.

As can be seen from Fig. 4, we obtained rather similar 
results across the three experiments. However, they are not 
entirely in line with our expectations. In the SF conditions, 
the hypothesized increase in the drift rate from short to long 
SOAs appeared only for Task 2, P > 0.999 (Experiment 1), 
P = 0.996 (Experiment 2), and P > 0.999 (Experiment 3).2 
By contrast, Task 1 drift rate was unaffected by SOA (all 
Ps > 0.73).

In addition, in all three experiments, the drift rate for 
short SOAs in the SF condition was significantly higher in 
Task 1 than in Task 2, t(20) = 6.83, p < 0.001 (Experiment 
1), t(20) = 5.78, p < 0.001 (Experiment 2), and t(18) = 8.66, 
p < 0.001 (Experiment 3). Thus, it seems as if participants 
allocated more of their resources to the processing of 
Task 1 than of Task 2 (Mittelstaedt & Miller, 2017) rather 
than processing both tasks fully in parallel and with equal 
importance.

For the LF condition, the results are surprising as well. 
Except for Experiment 2, the drift rates of both tasks 
increased significantly from short to long SOAs, P = 0.965 
and P > 0.999 (Tasks 1 and 2 in Experiment 1), P = 0.998 
and P > 0.999 (Tasks 1 and 2 in Experiment 3). Only in 
Experiment 2, in which we prolonged the shortest SOA, this 
increase in the drift rate disappeared for Task 1, but still was 
significant for Task 2, P = 0.959. Thus, the drift rates do not 
fit our expectation of a mostly serial task processing in the 
LF condition (see Fig. 2).

In addition, when comparing the drift rate between the 
two experimental conditions, the drift rate of Task 1 with 
short SOAs was not lower in the SF condition. In Experi-
ment 1, which was mostly a replication of the Miller et al. 
(2009) experiments, the drift rates for both tasks were even 
higher in the SF than in the LF condition, t(34.42) = 3.27, 
p = 0.002 (Task 1 in Experiment 1), and t(33.76) = 3.04, 
p = 0.005 (Task 2 in Experiment 1). Once again, this pat-
tern of results seems to be at odds with the assumption of 
mostly parallel processing when short SOAs were frequent.

Fig. 4  Posterior distribution of 
drift rate parameter estimates 
(violins) and mean of the 
distributions (points) of the SF 
and the LF conditions in Tasks 
1 and 2 in Experiments 1–3. For 
better identification of statisti-
cally substantial differences, 
frequentist p values (italics) and 
Bayesian P values (non-italics) 
are displayed. The black font 
indicates p < 0.05 and P > 0.95, 
and the gray font any other 
values

2 A P value larger than 0.950 indicates significant effects.
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Parameter pattern for non‑decision time t0

According to our hypotheses, the non-decision time t0 should 
not differ between short and long SOAs or between Task 1 
and Task 2 in the SF condition. By contrast, participants in 
the LF condition should show longer non-decision times in 
Task 2 with short than with long SOAs, and additionally 
longer non-decision times for Task 2 than for Task 1 with 
short SOAs (see Fig. 2). Figure 5 depicts the non-decision 
time t0 in Tasks 1 and 2 as a function of SOA, SOA condi-
tion and Experiment.

Again, contrary to our expectations, we found strong 
indicators for serial processing in the SF condition. In par-
ticular, in Task 2, the non-decision time was larger with 
short SOAs compared to long SOAs, all Ps > 0.995. Also, 
with short SOAs, the non-decision time was larger in Task 
2 compared to Task 1 in Experiments 1 and 3 (t(20) = 5.97, 
p < 0.001 and t(18) = 6.32, p < 0.001, in Experiments 1 and 
3, respectively).

For the LF condition, the pattern of results was as pre-
dicted. In all three experiments, the non-decision time was 
larger in Task 2 with short SOAs than with long SOAs, all 
Ps > 0.999. Furthermore, and also as expected, for short 
SOAs, the non-decision time in Task 2 was larger than 
in Task 1 in all three experiments, t(15) = 8.71, p < 0.001 
(Experiment 1), t(19) = 6.29, p < 0.001 (Experiment 2), and 
t(20) = 10.75, p < 0.001 (Experiment 3).

Thus, in both SOA conditions, the non-decision time was 
elevated in Task 2 with short SOAs, likely reflecting serial 

processing. Importantly, comparing these differences between 
Task 2 with short SOAs versus with long SOAs between con-
ditions revealed that they were substantially smaller in the SF 
than in the LF condition. To compare the two SOA condi-
tions, we subtracted the posterior distribution of Task 2 with 
long SOAs from the posterior distribution of Task 2 with short 
SOAs. We then compared the resulting distribution of differ-
ences between the SF and LF conditions. The difference in the 
non-decision time between Task 2 with short SOAs and Task 2 
with long SOAs was smaller in the SF condition compared to 
the LF condition, P = 0.999 (Experiment 1), P = 0.937 (Experi-
ment 2, marginal), P = 0.953 (Experiment 3). Likewise, the dif-
ferences between Task 2 and Task 1 with short SOAs were also 
smaller for the SF than for the LF condition, t(30.66) = 3.12, 
p = 0.004 (Experiment 1), t(38.76) = 2.83, p = 0.007 (Experi-
ment 2), t(36.87) = 4.50, p < 0.001 (Experiment 3).

Taken together, the analysis of the non-decision time 
suggests that despite having induced a parallel processing 
strategy by presenting frequently short SOAs (Miller et al., 
2009), we still found a rather strong bias towards serial pro-
cessing in all three experiments, albeit to a smaller extent in 
the SF condition.

General discussion

In the first part, we reported three dual-task experiments 
investigating the conclusion of Miller et al. (2009) that 
participants adapt their processing strategies to the given 

Fig. 5  Posterior distribution of 
non-decision time parameter 
estimates (violins) and mean 
of the distributions (points) of 
the SF and the LF conditions 
in Task 1 and 2 in Experiments 
1–3. For better identification 
of statistically substantial dif-
ferences, frequentist p values 
(italics) and Bayesian P values 
(non-italics) are displayed. The 
font is black for p < 0.05 and P 
> 0.95, and gray of any other 
values
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distribution of SOAs with the goal of minimizing the TRTs. 
For this purpose, we realized two experimental conditions: 
the SF condition with mostly short SOAs and the LF condi-
tion with mostly long SOAs. The participants should prefer a 
parallel processing mode in the SF condition because in this 
case, this strategy should lead to shorter TRTs. Contrary, a 
serial processing mode should be more efficient when long 
SOAs are most frequent, as was the case in the LF condition. 
In the second part of the article, we used the drift–diffusion 
model approach (Ratcliff & McKoon, 2008) to compare per-
formance in the two conditions in more detail. In terms of 
this approach, we expected that the preference of the paral-
lel processing mode in the SF condition would be reflected 
primarily in a reduced drift rate at short SOAs; whereas, the 
mostly serial processing strategy in the SF condition would 
influence the non-decision time at short SOAs. While we 
obtained rather consistent findings across the three experi-
ments, they do not entirely fit the predictions derived from 
Miller et al.’s TRT framework and, thus, require further 
discussion.

First, the RT pattern of Experiment 1 replicated the main 
findings of Miller et al. (2009). Comparing the two SOA 
conditions revealed that participants in the SF condition 
were slower in Task 1 and slightly faster in Task 2. At first 
glance, this is what would be expected under the assumption 
of models assuming the possibility of parallel task process-
ing. With short SOAs, parallel task processing should lead 
to a long RT1 and a short RT2. Although we found this 
interaction, our findings revealed that in the SF condition, 
RT1 increased with longer SOAs. As already mentioned, 
this mirrors the findings of Miller et al. (2009) and, thus, 
is not unique to our current results (see Experiments 1 and 
2 of Miller et. al, 2009; see also, Logan & Gordon, 2001; 
Experiment 3; Mittelstaedt & Miller, 2017). In addition, in 
Experiment 2, as we prolonged the shortest SOA from 100 
to 300 ms to foster serial processing in the SF condition, we 
found almost the same RT1 increase in the SF condition. If 
participants had tried to optimize the TRTs by adopting a 
mostly serial processing strategy (Miller et al., 2009), this 
RT1 increase should have disappeared. This was only the 
case in Experiment 3, when we introduced a few Task 2 
no-go trials to increase prioritization of Task 1. Thus, over-
all, these findings suggest that the longer RT1 in the SF 
condition in comparison to the LF condition is ambiguous in 
supporting the assumptions of the capacity-sharing account. 
Only the findings concerning Task 2 hint to mostly parallel 
processing in this condition by showing the flatter slopes in 
Experiment 1. This difference between the two SOA condi-
tions disappeared, as expected, in Experiments 2 and 3.

Second, the results from the drift–diffusion model analy-
sis also deviated from the predictions derived from the TRT 
framework. The drift rate does not seem to support the 
assumption of mostly parallel processing in the SF condition. 

In all three experiments, we only found the expected increase 
in the drift rate for Task 2, while Task 1 was almost entirely 
unaffected by SOA. Furthermore, in Experiment 1, the drift 
rate for both tasks was significantly higher with short SOA in 
the SF than in the LF conditions. Sharing capacities between 
tasks should have decreased the drift rate in the SF condition, 
in particular with short SOAs in Experiment 1. In addition, 
we expected that the non-decision time would decrease from 
short to long SOAs only in Task 2 within the LF condition. 
However, we found this decrease also in the SF condition, 
though to a significantly lesser extent. Thus, our results from 
the drift–diffusion model do not unambiguously support the 
assumption that participants had adapted their processing 
modes to optimize the TRTs, either.

One possibility to cope with these rather puzzling findings 
is to assume that the frequency manipulation of the SOAs 
has not primarily induced a parallel versus serial process-
ing mode. An alternative assumption could be that present-
ing mostly short SOAs might have led to grouping of the 
responses to the two tasks (cf. Lien, Schweickert, & Proc-
tor, 2003; Pashler, 1994a; Pashler & Johnston, 1989). For 
two reasons, however, the assumption of response grouping 
is unlikely in the present experiments. First, if participants 
withheld the first response until the second response had 
been selected, the non-decision time of Task 1 should have 
increased with SOA. However, in none of the experiments, 
we found such an increase. Second, even though the amount 
of IRIs smaller than 100 ms was higher in the SF than in the 
LF condition, it decreased in all experiments from approxi-
mately 20% with short SOAs to approximately 5% with long 
SOAs in the SF condition. Response grouping should have 
led to a rather stable amount of short IRIs (for similar argu-
ments, see Miller et al., 2009). Furthermore, excluding these 
short IRIs did not alter the qualitative pattern of results.

As a second alternative, it is conceivable that the fre-
quency manipulation in our experiments affected higher-
order (executive) control mechanisms as is assumed in cog-
nitive control models (cf. Fischer & Plessow, 2015; Lehle 
& Hübner, 2009; Logan & Gordon, 2001). For instance 
Lien, Ruthruff, Cornett, Goodin, & Allen (2008), provided 
evidence that even when the secondary task is presented 
in advance to the primary task in a PRP paradigm (i.e., 
with a negative SOA), participants maintain the order of 
task processing. This suggests that participants might have 
represented a specific task order that guided their dual-task 
performance (see Luria & Meiran, 2003, for similar assump-
tions). With regard to our experiments, one possibility is that 
the distribution of SOAs influenced the temporal expectan-
cies of participants which, in turn, might have helped them 
to schedule task processing (Bausenhart, Rolke, Hackley, & 
Ulrich, 2006; Lohmann, Herbort, Wagener, & Kiesel, 2009; 
Los & Horoufchin, 2011).
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According to the body of research on time expectancy, 
humans seem to represent time intervals not in an absolute 
but in a relative manner (Bausenhart, Bratzke, & Ulrich, 
2016; Bratzke & Bryce, 2016; Los, Kruijne, & Meeter, 
2017). Time expectancies are used to prepare for an upcom-
ing task. Even if the specific response is unknown yet, a 
decisive process in response preparation may be a “time-
based general preparation” process (Langner, Steinborn, 
Eickhoff, & Huestegge, 2018, p. 1331).

Transferring the notion of time expectancy to the cur-
rent study, one prediction is that participants would show 
an advantage in trials containing the most frequent SOA. 
Accordingly, participants in the SF condition should be 
faster when SOAs are short and slower when they are long. 
The LF condition should show the reverse pattern.

For Task 1, the RT pattern of both conditions fits these 
hypotheses almost perfectly: RTs were longer when pre-
senting the less likely SOA.3 Only in the SF condition of 
Experiment 3, this increase of RTs from short to long SOA is 
missing. A plausible explanation is that the few interspersed 
no-go trials in the secondary task might have prompted par-
ticipants to adapt their processing strategy in a trial-by-trial 
manner (Mittelstaedt & Miller, 2017). Two findings from 
the drift–diffusion model further fit well with the time-
expectancy notion. First, the drift rate for Task 1 in the SF 
condition was relatively high. Second, the drift rate in the 
LF condition increased from short to long SOAs. Against 
the backdrop of time expectancy, this can be explained by 
assuming that participants in the LF condition were simply 
less prepared at unexpected short SOAs leading to the lower 
drift rate (Langner et al., 2018). However, this increase of 
the drift rate was not found for Experiment 2. Here, the pro-
longation of the shortest SOA from 100 to 300 ms might 
have been sufficient to compensate the initial lack of task 
preparation at short SOAs. This argument is in line with 
findings in the field of time expectancy: In experiments in 
which the foreperiods (i.e., the temporal distance between 
warning signal and reaction stimulus) were manipulated, a 
general preparedness advantage for long foreperiods due to 
sufficient preparation time was found, despite worse tem-
poral estimation with longer foreperiods (De Jong, 1995; 

Langner et al., 2018; Niemi & Näätänen, 1981). Presuppos-
ing that in our experiments, the Task 2 stimulus functions 
as a warning signal, the overall result pattern for Task 1 is 
well in line with the assumption that participants relied on 
temporal expectancies established by the manipulation of 
SOA frequencies. In addition, this account can explain why 
participants in the SF condition showed the increase in RT1s 
for longer SOAs.

For Task 2, the picture of results is less clear. In line with 
the time-expectancy account, the behavioral data show that 
participants in the SF condition were, at least in Experiment 
1, faster at short SOAs than the LF condition. Likely, they 
were simply better prepared for this frequent SOA. Yet, the 
reverse benefit for long SOAs is missing in the LF condition. 
Again, this can be explained by assuming that long SOAs 
generally led to a better performance, as these trials provide 
sufficient time to prepare for an upcoming task even when 
participants were less prepared for these unexpected long 
SOAs (De Jong, 1995; Langner et al., 2018). Thus, with 
this additional assumption, the behavioral data of Task 2 
can be explained in the context of a time expectancy account 
as well.

However, the Task 2 findings are ambiguous in support-
ing the time expectancy account because the capacity-shar-
ing account of Miller et al. (2009) would come to rather the 
same predictions. The results from the drift–diffusion model 
might help clarifying this ambiguity. The findings for Task 2 
suggest that, according to our prediction of longer non-deci-
sion times with shorter SOAs, participants not only in the 
LF, but also in the SF condition relied on a mostly serial pro-
cessing strategy. In both conditions, the non-decision time 
in Task 2 decreased with longer SOA. Concurrently, in the 
SF condition, the drift rate in Task 2 was lower than in Task 
1 with short SOAs and increased from short to long SOAs. 
These latter findings can be reconciled with the assumption 
of, for instance, the capacity-sharing account only if one 
assumes that participants strongly prioritized Task 1 pro-
cessing (Tombu & Jolicoeur, 2003). Task 2 processing then 
progresses rather slowly unless Task 1 has been finished. In 
some cases, this strong prioritization of Task 1 might have 
led to serial processing reflected by the longer non-decision 
times for Task 2 when the SOA was short.

Taken together, while the data pattern of Task 1 seems 
to be better explained by focusing on higher-order control 
processes like the role of time expectancy, the findings for 
Task 2 are in line with both the time expectancy and the 
capacity-sharing accounts of Miller et al. (2009).

Why might time expectancy play a role 
in dual‑tasking?

It is conceivable that expecting a short (SF) or long 
(LF) SOA can involve a temporal structuring of the task 

3 One way to quantify the expectancy effects is to subtract the RT 
for the respective frequent SOA from the RT for the respective 
infrequent SOA condition (while ignoring the middle SOA) within 
the SF and the LF condition, and then averaging across the SF and 
LF conditions. Thereby, SOA effects average out and expectancy 
effects can be seen in isolation. For RT1, the expectancy effects 
were M = 143.26  ms, SD = 177.77  ms (Exp. 1), M = 73.61  ms, 
SD = 152.74  ms (Exp. 2), and M = 61.47  ms, SD = 134.58  ms 
(Exp. 3). For RT2, the expectancy effects were M = 68.91  ms, 
SD = 76.49  ms (Exp. 1), M = −  2.86  ms, SD = 111.86  ms (Exp. 2), 
and M = 35.03 ms, SD = 107.35 ms (Exp. 3).



Psychological Research 

1 3

material that extends beyond the current trial. Based on the 
literature on time-expectancy, we suggest that participants 
might interpret the appearance of the second stimulus after 
varying SOAs as an externally presented rhythm (Adams 
& Creamer, 1962; Grosjean, Rosenbaum, & Elsinger, 
2001; Wing & Kristofferson, 1973a, b). We further assume 
that they try to adopt a global rhythm holding for most 
of the trials within a block. As shown by, for instance, 
Krampe, Mayr and Kliegl (2005), switching between dif-
ferent rhythms requires mental effort. Therefore, a less 
effortful strategy might be to adopt the global rhythm that 
is comfortable for most of the presented SOAs (for an 
analogous point, see Lehle & Huebner, 2009).

In the current experiments, the different SOA distribu-
tions in the two experimental conditions led to the experi-
ence of different external rhythms: a relatively fast one in 
the SF condition, and a rather slow one in the LF condition. 
In the SF condition with the rather fast rhythm, participants 
expect the secondary stimulus to occur immediately after 
the primary stimulus. They might have used this rhythm 
of the appearance of the secondary task as an external 
impulse generator to start processing the primary task. In 
the case of unexpected long SOAs, the later appearance 
of the secondary task leads to deferred processing of the 
primary task because participants must have realized that 
they had to initiate Task 1 processing without this external 
impulse generator. This then might have caused the rather 
slow responses for long SOAs in the SF condition. In the 
LF condition, by contrast, the slower rhythm and, thus, the 
expectancy of longer time intervals might have hindered 
participants to use the appearance of the secondary task as 
an external impulse generator. Instead, they immediately 
started to process the primary task after the primary stimu-
lus was presented. In case of a rare short SOA, they had to 
reorganize their global scheduling strategy, thus needing 
more time to respond to the stimulus.

Thus, unlike Miller et  al. (2009), our notion of time 
expectancy does not focus primarily on the distinction 
between parallel versus serial task processing. Rather, we 
suspect that, in a similar vein as with other parameters in 
cognitive control models, the different frequencies of the 
SOAs might have biased participants to adopt a global 
temporal expectancy when to process the secondary stimu-
lus. Temporal expectancy might either influence when the 
stimulus is being processed by setting up when to attend 
the stimulus. As such, this would not be specific to dual-
tasking. Alternatively, this temporal expectancy might help 
to more optimally set task control parameters (e.g., atten-
tional breath, stimulus prioritization; e.g., Logan & Gordon, 
2001). This might enable participants to optimally schedule 
the dual-task processing (cf. Schubert et al., 2017) based 
on the respective most frequent SOA without the need for 
choosing either a serial or parallel processing strategy.

There is at least one (not mutually exclusive) alternative 
explanation proposed by Strobach, Salminen, Karbach, & 
Schubert (2014). These authors assume that participants 
can instantiate either both tasks together at the beginning 
of each trial or separately, immediately before processing 
the respective task. By instantiation, Strobach et al. (2014) 
mean the process of loading task rules into working memory. 
According to this assumption, the high proportion of short 
SOAs in the SF condition could have led participants to 
instantiate both tasks together at the beginning of each trial. 
When the SOA is short, Task 2 processing should be faster 
than in the LF condition because with frequently long SOAs, 
participants must go back to activating the secondary task 
before it can be processed. This additional switching com-
ponent then prolongs RT2 in the LF condition. The longer 
the SOAs, the smaller is the effect of this extra loading time 
on RT2. Thus, according to this proposal, the manipulation 
of SOA distributions does not affect a parallel or serial pro-
cessing mode either. Rather, it affects the task coordination 
processes (Strobach & Schubert, 2017).

Limitations of the current study

Two limitations of the current study should be noted: First, 
the shortest SOA in our experiments was 100 ms (80% of 
the trials in the SF condition). This SOA is slightly longer 
than Miller et al.’s (2009) SOA of 16 ms (40% of the trials 
in Experiment 1), but it is faster than the SOA of 133 ms 
which they presented in 30% of the trials. Thus, it is not that 
likely that the longer SOA in our study might have altered 
the results. Furthermore, our findings of Experiment 1 rep-
licated those of Miller et al. (2009). Nevertheless, it could 
be worthwhile to replicate exactly the SOAs of Miller et al. 
and analyze these findings with the drift–diffusion model. 
This should involve exploring the potential effects of admin-
istering the SOA frequency manipulation within subjects 
(Miller et al., 2009) or between subjects (current study). In 
the between-subjects variant, it is not an issue how quickly 
and to what extent participants adopt to a changed SOA 
distribution. Furthermore, post-experimental questioning 
to probe into awareness could be included. Yet, the within-
subjects variant is beneficial in terms of statistical power.

Although there are multiple studies which have validated 
the diffusion model (e.g., Durst & Janczyk, 2019; Lerche & 
Voss, 2017), some studies have warned to map the diffusion 
model parameters exclusively to a single cognitive process 
(e.g., Rieger & Miller, 2019). Accordingly, the results of the 
diffusion model analyses should be interpreted cautiously. 
We believe, however, that combining conventional RT analy-
ses (which must be interpreted similarly cautiously due to 
the many processes that are captured in the RTs) and diffu-
sion model analyses helps to obtain a more complete picture 
of the topic under investigation.
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A further issue concerns our experimental tasks. In all three 
experiments, the two tasks were always visual–manual tasks 
which might have increased the interference between them. 
This might have hindered or reduced the use of a parallel pro-
cessing mode (cf. Fischer, et al., 2014; Fischer & Plessow, 
2015). The findings of Miller et al. (2009; Experiment 3) sug-
gest that presenting two tasks in different modalities slightly 
increases parallel processing in the SF condition. Thus, it is 
possible that in our study using the same modality in both 
tasks could have reduced the likelihood of a parallel process-
ing of both tasks.

Conclusion

We started our series of experiments with the intention to 
provide further evidence for parallel and serial task process-
ing. The results, however, leave us at a point where we tend 
to argue that the RT pattern and the results of the drift–dif-
fusion model analysis might not reflect parallel versus serial 
processing, but rather simply an efficient strategy based on 
participants’ time expectancies referring to the occurrence of 
the secondary task stimulus. Such a strategy might enable par-
ticipants to reduce their mental effort while processing the dual 
task. Whether this might be true for parallel and serial process-
ing in general remains an open question for further research.
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Appendix

A1: MCMC convergence

To evaluate model fit, we visually inspected the trace 
plots of the group-level parameter estimates. The absence 
of a trend in the trace indicates convergence (Hamra, 
MacLehose, & Richardson, 2013). Figures 6, 7, 8 show 
the trace plot of the traces for the drift rate v and the non-
decision time t0 in Tasks 1 and 2 of the three experiments 
for five independent chains, each. In all experiments, there 
was clearly no trend in the traces and on each iteration, a 
parameter estimate was randomly sampled from the pos-
terior distribution, indicating convergence. Furthermore, 
the five independent chains all sampled from the same 
posterior distribution of the respective task and experi-
ment. In short, the trace plots indicated convergence for all 
parameters in both tasks of the three experiments.

Another method to evaluate convergence is the Gelman 
Rubin statistic Ȓ (Gelman & Rubin, 1992). This statistic 
compares the variability within a posterior distribution 
with the variability between a number of independently 
sampled posterior distributions of a parameter estimate. 
Values near 1 indicate convergence. Ȓ should not exceed 
1.02 (Wiecki et al., 2013). We ran our models five times 
and computed Ȓ based on these five chains for each dif-
fusion model parameter in each condition for each par-
ticipant and on the group level. All Ȓ were close to 1 and 
none exceeded 1.02, indicating chain convergence in all 
parameters and all experiments. Thus, the posterior distri-
butions of all nodes were reliably estimated.

Overall, the results of the visual inspection of the trace 
plots and the Gelman Rubin statistic consistently indi-
cate convergence of the MCMC chains. Accordingly, the 
parameter estimates can be reliably reproduced which is 
the basis for interpreting the parameters.

http://creativecommons.org/licenses/by/4.0/
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A2: Model fit

To assess the model fit, we conducted posterior predic-
tive checks. We randomly drew a set of parameters from 
the posterior distribution and generated RTs and response 
accuracy according to the diffusion model based on this 
parameter configuration. We repeated this procedure 500 
times, resulting in 500 sets of RT and accuracy data which 
served as the basis to compare the generated data based on 
the parameter estimates to the observed data.

For each generated data set, we computed quantiles of 
the RTs for correct and incorrect responses, resulting in a 
distribution of the quantiles. We then compared the mean 

of these distributions to the corresponding quantiles of the 
observed RTs (Figs. 9, 10).

In all three experiments, the predicted RT quantiles 
for correct responses were close to the observed quantiles 
(Fig. 9). In general, the fit for Task 1 seemed to be slightly 
better than the fit for Task 2. For Task 2, the model produced 
slightly slower RTs at the tail of the distribution compared 
to the observed RTs (see also Fig. 10). The head of the dis-
tribution yielded a good fit to the observed data in Task 2, 
too. The model also predicted the error rate well. However, 
given that the error rate was very low in all experiments and 
especially in Task 1 (see Table 1), the predicted response 
quantiles deviated from the observed quantiles.

Fig. 6  Trace plot for the drift rate v and the non-decision time t0 in both SOA conditions of Experiment 1. The plots are separated by SOA (short 
vs. long) and Task. The five independent chains sample from the same posterior distribution of the parameter
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A3: Technical aspects of the estimation 
procedure

There are numerous procedures to estimate the parameters 
of the diffusion model. Conventional procedures provide 
point estimates of the parameters (e.g., maximum likeli-
hood, chi-square approach; Voss, Voss, & Lerche, 2015), 
i.e., they retrieve the most likely value of the parameters. 
Bayesian approaches of parameter estimation, however, 
provide a posterior probability distribution of parameter 
estimates. While these distributions also contain informa-
tion about the probability of parameter values, they addi-
tionally provide information about the certainty of param-
eter estimates (Wiecki et al., 2013). Wide distributions 

cover a large range of parameter values indicating uncer-
tainty of the estimates, while narrow distributions only 
cover a small range of parameter values indicating high 
certainty of the estimates. Furthermore, unlike conven-
tional procedures, hierarchical Bayesian approaches esti-
mate the parameters of all participants on the individual 
level and on the group level simultaneously, taking into 
account similarities between the individuals. As a con-
sequence, these approaches may provide more precise 
parameter estimates and may need less trials per person 
for the parameter estimation compared to conventional 
estimation procedures (for a comparison of the estimation 
procedures, see Wiecki et al., 2013).

Fig. 7  Trace plot for the drift rate v and the non-decision time t0 in both SOA conditions of Experiment 2. The plots are separated by SOA (short 
vs. long) and Task. The five independent chains sample from the same posterior distribution of the parameter
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During Bayesian parameter estimation, an algorithm 
draws samples of parameter estimates. This parameter sam-
pling produces a trace of parameters. At the beginning of the 
estimation procedure, there is a trend in the trace, indicating 
that the algorithm is not yet sampling from the posterior 
distribution of the parameter. The samples of parameters 
which cover this trend need to be discarded because they 
are not part of the posterior distribution. This is why a burn-
in period is defined specifying the number of initial draws 

which are discarded. To ensure that in the final parameter 
sample, parameters were only sampled from the posterior 
distribution, indicating convergence, the trace plots can be 
examined (Figs. 6, 7, 8). The trace plots show the value 
of a given parameter (vertical axis) for each draw from the 
posterior distribution (horizontal axis). At convergence, 
there should be no trend in the trace, i.e., the parameter val-
ues were randomly drawn from the posterior distribution. 
Furthermore, when estimating the same parameter multiple 

Fig. 8  Trace plot for the drift rate v and the non-decision time t0 in both SOA conditions of Experiment 3. The plots are separated by SOA (short 
vs. long) and Task. The five independent chains sample from the same posterior distribution of the parameter
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times and displaying the traces in the same trace plot, the 
traces should mix, as is the case for all trace plots in Figs. 6, 
7, 8. This indicates that the algorithm has arrived at the 
same posterior distribution for all independent parameter 
estimations.

Note that hierarchical Bayesian parameter estimation as 
implemented in the HDDM Toolbox (Wiecki et al., 2013) is 
not restricted to the diffusion model. It is a global procedure 
which can be used to estimate parameters in a multitude of 
contexts (Kruschke, 2010; Lee & Wagenmakers, 2013).

Fig. 9  Cumulative probability plot for experiments 1–3 and Tasks 1 and 2 based on group-level parameter estimations
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