
 
 

Analysis of insulin receptor function in the central nervous system 
by conditional inactivation of its gene in mice 

 
 
 
 
 
 
 
 
 
 
 
 

Inaugural-Dissertation 
zur 

Erlangung des Doktorgrades 
der Mathematisch-Naturwissenschaftlichen Fakultät 

der Universität zu Köln 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vorgelegt von 
 

Dinesh Chandra Gautam 
aus Janakpur, Nepal 

 
2002 

 
 
 
 
 
 
 
 
 
 



 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Berichterstatter:   Prof. Dr. Dagmar Mörsdorf 

     Prof. Dr. Thomas Langer 
 
 
 
Tag der mündlichen Prüfung  06-06-2002 

 
 

 



 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my beloved mother lekha Devi Gautam  

and late father Balram U. Gautam 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4 

Index 
 
 
1. Introduction         7 
 
1.1 Insulin          7 
1.2The insulin receptor (IR)        7 
1.3 Molecular mechanism of insulin signaling     9 
1.4 Role of insulin-signaling in apoptosis      12 
1.5 Mutation in insulin receptor (IR) and other insulin signaling genes  13 
1.5.1The Cre-Lox-P system        15 
1.6 CNS-regulated food intake and obesity in relation to insulin and leptin 17 
1.7 Role of insulin and insulin receptor in central nervous system   19 
1.8Aim of the study         21 
 
2. Materials and methods         23 
 
2.1Materials          23 
2.1.1Chemicals         23 
2.1.2 Buffers          23 
2.1.3 Cell culture media and buffers       25 
2.1.4 Stain for tissue sections        26 
2.1.5 Animal strain         27 
2.1.6 Synthetic oligonucleotides       27 
2.1.7 Primary and secondary antibodies      27 
 
2.2 Methods           28 
2.2.1 Breeding         28 
2.2.2 Backcross breeding        28 
2.2.3 Isolation of genomic DNA from mouse tail     28 
2.2.4 Polymerase chain reaction (PCR) for genotyping    28 
2.2.5 Methods for protein analysis       29 
2.2.5.1 Protein extraction from mouse tissues     29 
2.2.5.2 Immunopricipitation        29 
2.2.5.3 SDS-polyacrilamide gel electrophoresis (PAGE) and western blot analysis29 
2.2.6 General performance test       30 
2.2.6.1 Feeding behavioural study       30 
2.2.6.2 High fat diet         30 
2.2.6.3 Growth curve study        31 
2.2.6.4 Breeding performance       31 
2.2.7 Physiological tests        31 
2.2.7.1 Glucose tolerance test       31 
2.2.7.2 Insulin tolerance test        32 
2.2.7.3 Blood glucose concentration       32 
2.2.7.4 Serum triglycerides and cholesterol       32 
2.2.7.5 Free fatty acids        32 
2.2.7.6 Analysis of body composition      33 
2.2.8 Radioimmunoassay for different hormones     33 
2.2.9 Insulin and leptin ELISA       34 
2.2.10 Spermiogram         34 
2.2.11Estrus detection        34 



 5 

2.2.12Behavioural tests        35 
 
2.2.12.1Learning and memory       35 
2.2.12.1.1 Moris water maze        35 
2.2.12.2 Anxiety tests         36 
2.2.12.2.1Open field test        36 
2.2.12.2.2 Light and dark exploration test      36 
2.2.12.2.3 Elevated plus maze test       36 
2.2.12.3 Olfactory test        36 
2.2.13  Organ isolation for insulin signaling studies     37 
2.2.14  Xyline eosin tissue staining       37 
2.2.15  Hypogonadal animal models       37 
2.2.16  Primary culture of cerebellar granular cells     38 
 
3. Results          39 
3.1Generation of homozygous neuronal insulin receptor knockout (NIRKO) mice39 
3.2 Efficiency of recombination       40 
3.3 Reduced IR expression in cultured primary neurons     41 
3.4 Influence of insulin receptor expression on body weight and food intake 43 
3.4.1 Growth curve          43 
3.4.2 Increased amount of white adipose tissue in NIRKO mice   44 
3.4.3 Increased food intake of female NIRKO mice     45 
3.5 Physiological study of NIRKO mice      46 
3.5.1 Plasma leptin         46 
3.5.2 Fasting blood glucose measurement      47 
3.5.3 Plasma insulin         48 
3.5.4 Plasma triglyceride concentration      49 
3.5.5 Plasma cholesterol concentration      50 
3.5.6 Glucose tolerance test        50 
3.5.7 Leptin sensitivity study        51 
3.6 Fertility study         52 
3.6.1 Breeding study         52 
3.6.2 Reduced spermatogenesis in male NIRKO mice    53 
3.6.3 Sign of reduced gonadotropic stimulation in NIRKO mice   54 
3.6.4 Slightly delayed puberty in NIRKO female mice    54 
3.6.5 Cycling in NIRKO females       55 
3.7 Hypothalamic control of anterior pituitary function in NIRKO mice  56 
3.7.1 Plasma luteinizing hormone (LH) concentration    56 
3.7.2 Plasma adrenocorticotropic hormone (ACTH) concentration   57 
3.7.3 Unaltered plasma prolactin (Prl) concentration in NIRKO mice  59 
3.7.4 Unaltered thyroid regulation in NIRKO mice     59 
3.8 Analysis of the interaction of hypogonadism, obesity and insulin action 60 
3.8.1 Ovarectomy results in increased body weight      60 
3.8.2 Ovarectomy causes obesity       61 
3.8.3 Elevated plasma leptin concentration in ovarectomised mice   62 
3.8.4 Hypogonadism causes increased food intake     62 
3.8.5 Ovarectomised mice remain euglycemic     63 
3.8.6 Unaltered plasma insulin concentrations in ovarectomised mice  64 
3.8.7 Unaltered insulin tolerance in ovarectomised females    64 
3.8.8 Ovarectomised mice exhibit mildly impaired glucose tolerance  65 
3.8.9 Analysis of insulin secretion       66 



 6 

3.9 Behavioural study of NIRKO mice      67 
3.9.1 Moris water maze test        67 
3.9.2 Anxiety tests in NIRKO and control mice     69 
3.9.2.1 Open field test        69 
3.9.2.2 Elevated plus maze test       69 
3.9.2.3 Light and dark exploration test      70 
3.9.3 Olfactory test         71 
3.10 Role of IR expression in the regulation of  neuronal development and survival72 
3.10.1 Brain weight         72 
3.10.2 Apoptosis in cultured neurons from NIRKO and control mice  73 
3.10.3 Unaltered IGF-I receptor expression in cultured neurons from NIRKO mice76 
 
4. Discussion           77 
4.1 Generation of NIRKO mice       78 
4.2 Obesity in NIRKO mice        80 
4.3 Hypothalamic hypogonadism in NIRKO mice     81 
4.4 Obesity and impaired glucose homeostasis as a consequence of hypogonadism84 
4.5 Unaltered behavioural performance in NIRKO mice    86 
 
5. Summary          88 
 
6. Zusammenfassung        89 
 
7. Abstract          90  
 
8. References          92 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 7 

1.  Introduction 
 

 

1.1  Insulin 

 

Using pancreatic ß-cells from dogs, insulin was isolated in 1922 (Banting and Best, 1922), 

and Abel crystallized it. (Abel, 1926; Abel et al., 1927). In 1953 the primary sequence of 

insulin was elucidated (Sanger and Thompson, 1953), and in 1966 the crystal structure of the 

biologically active form of insulin was elucidated (Dodson et al 1966; Harding et al., 1966). 

In 1966, H. Zahn in Germany (Zahn, 1966) P.G. Katsoyannis in the USA (Katsoyannis et al., 

1966) and Niu Ching-I in Wang’s laboratory in Shanghai (Niu et al., 1966) independently 

synthesized insulin by chemical means. In 1967 Steiner discovered that insulin is synthesized 

as a prohormone – proinsulin –, which is processed to insulin by site-specific protease-

dependent cleavage (Steiner et al., 1967). 

  

In humans the insulin gene is located on the short arm of chromosome 11. Expression of the 

insulin gene yields a precursor protein called preproinsulin, of 104 to 109 amino acids, 

depending on the animal species, including a 24 amino acid signal peptide. After removal of 

the signal peptide in the endoplasmic reticulum proinsulin is formed. The next step involves 

generation of inter- and intra-chain disulphide bridges, facilitated by the removal of the 

bridging C-peptide. Then thereby separated A- and B-chains of mature insulin are then linked 

by inter-chain disulphide bridges (Gursky et al., 1992). The excised C-peptide is secreted 

together with mature insulin into bloodstream. No receptors for the C-peptide have been 

found, but currently the C-Peptide is supposed to have some, yet unknown, biological activity 

(Steiner et al., 1997). 

 

 

1.2   The insulin receptor (IR) 

 

IRs are present on all tissues in mammals, including the classic insulin responsive tissues 

muscle, fat, and liver and non-classic tissues such as brain, endothelial cells or gonadal cells. 

The insulin receptor is a prototype of a receptor tyrosine kinase (RTK), which transmits a 

hormonal signal. The IR is a hetero-tetrameric protein consisting of two a- and two ß-subunits 

linked by disulphide bonds (Fig. 1.1). The a-chain has a molecular weight of 135 kDa and is 

exclusively located extra cellular, whereas the ß-chain (95 kDa) contains extra cellular, 
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-s-s- -s-s- 
-s-s- 

transmembrane and cytosolic domains (Van Obberghen et al., 1981). The transmembrane and 

intracellular portions of the ß-subunit contain the insulin-regulated tyrosine-specific protein 

kinase that is critical for insulin activity (Kasuga et al., 1983; Chou et al., 1987; Ebina et al., 

1987). The extra cellular domain of the a-subunit contains the ligands binding site. The a- and 

ß-chains of the IR are products of a single gene and are derived from a common polypeptide 

precursor by proteolysis. 

 

                                                                a     Extra cellular 

                                                         ß 

 

                                                        Cytosol  

 

Figure 1.1   Schematic diagram of insulin receptor: A heterodimer 
     consisting of a- and ß-chains linked by disulphide bridges. 

 

 

The gene for the human insulin receptor is located on chromosome 19 and spans a region of 

more than 130 kbp comprising 22 exons (Seino et al., 1989, 1990). Exon 1 encodes the signal 

peptide, exon 15 the transmembrane domain. Unlike other housekeeping genes, the human 

insulin receptor gene does not contain TATA or CAAT boxes but several binding sites for the 

transcription factor Sp1.  

 

The complete amino acid sequences, structural details and frame work for the functiona l 

domains was determined by the cloning of cDNA of the human insulin receptor precursor 

(Ebina et al., 1985; Ullrich et al. 1985). The mouse and rat insulin receptor were also cloned 

and exhibit a highly conserved sequence to the human insulin receptor gene (Flores-Riveors et 

al., 1989; Goldstein et al., 1990). The insulin receptor cDNA encodes an open reading frame 

of 1370 or 1382 amino acids depending on inclusion of the alternatively spliced exon 11 

encoding 12 amino acids near to the C-terminus of the a-subunit. A tetra basic sequence Arg-

Lys-Arg-Arg marks the cleavage site for generation of the a-subunit of 732 (720) amino acids 

and ß-subunit of 620 amino acids, with a predicted molecular weight of 84 kDa and 70 kDa, 

respectively (Ebina et al., 1985). 

 

There are some receptors sharing similarities with the insulin receptor (IR). Homologues of 

the mammalian IR are the DAF-2 receptor in Caenorhabditis elegans (Kimura et al., 1997) 
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and the IR-like receptor in Drosophila (Fernandez et al., 1995). The DAF-2 receptor shares 

35% of its amino acid sequence with the human IR and 34% with the insulin like growth 

factor receptor-I (IGF-IR). The tyrosine kinase domain of the DAF-2 receptor is 70% similar 

and 50% identical to the tyrosine kinase domain of the human IR. The most closely related 

receptors to the insulin receptor are the receptor for insulin- like growth-factor-I (IGF-IR) 

(Ullrich et al., 1986) and insulin receptor related receptor (IRR) (Shier et al., 1989), both 

sharing 50 to 60% of the whole IR amino acid sequence, and being more than 80% identical 

in the kinase domain. 

 

A hybrid form of a receptor containing one a- and one ß-subunit of the insulin receptor and 

another a- and ß-subunit of IGF-IR receptor, ß- a- a*- ß* has been identified (Soos et al., 

1989 and 1990). These hybrids bind IGF-I with high affinity causing IGF-I-stimulated 

autophosphorylation of their ß-subunits. But the affinity for insulin appears to be relatively 

low (Moxham et al., 1989).    

 

 

1.3  Molecular mechanisms of insulin signalling 

 

The IR has diverse signaling pathways that generate the pleiotropic action of the hormone 

insulin. Binding of insulin to the a-subunit of the IR induces a conformational change of the 

receptor and activates the tyrosine kinase activity of the ß-subunits leading to 

autophosphorylation of the intracellular part of the ß-subunit (Kahn et al., 1978). 

Autophosphorylation occurs in an ordered cascade on seven tyrosine residues (in three groups 

of phosphotyrosils) located in the carboxyl-terminal tail and in a region close to the 

membrane of the cytosolic part of the ß-subunit (White et al., 1989; Wilden et al., 1990; 

Murakami et al., 1991), resulting in activation of the receptor kinase (Feener et al., 1993; 

Hubbard et al., 1997). Tyrosine-phosphorylated ß-subunits recruit and subsequently 

phosphorylate tyrosine residues of several intracellular insulin receptor substrates. The insulin 

receptor substrate (IRS) proteins are a family of structurally and functionally related proteins, 

comprising the members IRS-1 to 4 and the growth-factor-receptor-binding protein 2-

associated binder-1 (Gab-1). IRS-1 was the first identified and cloned substrate of the insulin 

receptor kinase (Sun et al., 1991), followed by IRS-2 (Sun et al., 1995), which is widely 

distributed in different tissues, IRS-3, expressed in adipose tissue, fibroblasts and liver cells 

(Lavan et al., 1997a; Smith-Hall et al., 1997), IRS-4, expressed in embryonic kidney (Lavan 
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et al., 1997b), and Gab1 (growth factor receptor binding protein 2-associated binder-1), 

distributed in several mammalian tissues (Holgado-Madruga et al., 1996). Other proteins 

phosphorylated upon IR-activation are p62dok (Yamanashi et al., 1997), the SH2- containing 

protein SHC (Pronk, et al., 1993), and the focal adhesion kinase, FAK (Leventhal et al., 

1997). 

 

All IRS-proteins exhibit a conserved structure with an N-terminal pleckstrin homology (PH) 

domain, which appears to be responsible for membrane targeting of the IRS-proteins 

(Musacchio et al., 1993). Moreover, the IRS-proteins exhibit a phosphotyrosine-binding 

(PTB)-domain (Kavanaugh et al., 1994), which interacts with tyrosine residue 960 of the IR 

when phosphorylated. The rest of the protein displays multiple tyrosine residues, which upon 

phosphorylation serve as a docking platform for Rous sarcoma virus (Src)-homology 2 (SH2) 

domain containing signaling proteins, such as the growth factor receptor binding protein 

(Grb)-2 and the regulatory subunit of the phosphatidylinositol (PI) 3-kinase.   

 

The a-collagen protein SHC exists in three isoforms of 46kDa, 52kDa and 66kDa and 

contains SH2 and PTB domains (Kovanica et al., 1993). SHC and IRS proteins compete for 

the same binding site in the juxtamembrane domain of the insulin receptor (Kaburagi et al., 

1995; Isakoff et al., 1996). 

 

Following phosphorylation, IRS proteins can bind to several SH2-containing cellular 

signaling proteins, such as phosphatidylinositol 3-kinase (PI 3-kinase), Grb2, Nck, CT10 

virus regulator of kinase (Crk) (for detail see review of White, 1997) and SHP-2 (small 

heterodimerization partner-2), among which the most important and best studied is PI 3-

kinase. This enzyme is a heterodimer consisting of a catalytic subunit called p110ß and one 

out of several different regulatory subunits: p85a, existing in alternatively spliced variants, 

p50 or p55 ?, either of them recruiting p110ß with high affinity through binding to SH2 

domains. Activation of the catalytically active subunit results in phosphorylation of PtdIns 

bisphosphate (PtdIns-3,4-P2 and PtdIns-4,5 P2) and related lipids at the D-3 position, 

subsequently phosphorylated by PIP 5-kinase and PIP 3-kinase, respectively (Whiteman et 

al., 1988; Skolnik et al., 1991) to generate PtdIns trisphosphate (PtdIns-3,4,5-P3). 

 

PtdIns-3,4-P2 and PtdIns-3,4,5-P3 can bind to the PH domain of protein kinase B (PKB), also 

known as Akt; (Burgering et al., 1995; Datta et al., 1996) followed by the translocation of 
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PKB to the plasma membrane and its co- localization with phosphoinositide-dependent protein 

kinase 1 (PDK 1) (Alessi et al., 1998; Walker et al., 1998; Chan et al., 1999). The subsequent 

conformational change enables PDK 1 to phosphorylate PKB on threonine 308 and serine 

473, thereby activating the enzyme. PKB itself is a serine/threonine kinase, of which three 

isoforms have been identified as PKBa, PKBß and PKB? (Walker et al., 1998). 

 

One target for PKB is the glycogen synthase kinase 3 (GSK-3), which undergoes 

phosphorylation and inhibition. Thus, the PDK/PKB phosphorylation cascade activates 

glycogen synthesis (Cross et al., 1995).  

 

A further downstream target of PKB is the serine/threonine kinase p70 S6 kinase (P70S6K). PKB 

phosphorylates the phosphoinositide-kinase related kinase mammalian target of rapamycin 

(mTOR), which activates P70S6K, thus leading to phosphorylation of the ribosomal protein 

S6 and the activation of protein synthesis (Scott et al., 1998).  

 

The activation of the  PI 3-Kinase, and the downstream phosphorylation of P70S6K, PKB, 

GSK-3 and protein kinase C (PKC) results in phosphorylation and activation of the small 

GTPase Rab and the insulin-stimulated translocation of the GLUT4-glucose transporter from 

the cytosol of muscle and adipose cells to the plasma membrane, followed by an increased 

glucose uptake (for review see Taha et al, 1999). 

 

Another major physiological role of insulin is the regulation of gene transcription through the 

MAP kinase cascade. Following insulin stimulation, IRS-proteins, Gab-1 and SHC bind to the 

SH2 domains of several small adaptor proteins such as GRB-2 (growth-factor receptor 

binding-2) protein. These proteins will then interact with the GDP/GTP exchange factor son 

of sevenless (SOS) leading to the activation of the small G-protein RAS (Sklonik et al., 

1993). Activated RAS binds to and thereby activates the RAF-kinase. RAF is serine/threonine 

kinase (Pronk et al., 1994). Activated RAF in turn phosphorylates and activates mitogen-

extracellular signal-responsive kinase (MEK), also known as MAPKK by phosphorylating 

two serine residues (Dent et al., 1990). MEK activates mitogen-activated protein kinase 

(MAPK) by phosphorylating tyrosine and threonine residues (Crews et al., 1992). Activation 

of MAPK leads to phosphorylation of the p90 ribosomal S6 kinase (p90 rsk), phospholipase 

A2 (PLA2) and several transcription factors including the ternary complex factor p62TCF  

resulting in the activation of gene transcription (Fingar et al., 1994; Gille et al., 1992). 
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1.4  Role of Insulin-signalling in apoptosis 

 

PKB plays a central role in insulin-stimulated inhibition of programmed cell death 

(apoptosis). One step in the promotion of cell survival is the phosphorylation of three 

members of the family of forkhead transcription factors such as FKHR, FKHR L1 and AFX.  

Phosphorylation of FKHR L1 enables binding of 14-3-3 proteins and retention of FKHR L1 

in the cytoplasm, thereby inhibiting the transcription of apoptosis promoting genes such as 

Fas ligand (Biggs et al., 1999; Brunet et al., 1999; Rena et al., 1999). The role of PKB and the 

forkhead transcription factors was first established in C. elegans, which follows the insulin-

like signaling pathway and suppresses the action of the DAF-16 gene, the homologue of the 

human FKHR which mediates insulin- like metabolic effects and longevity signals in C. 

elegans (Ogg et al, 1997). Taken together, insulin through phosphorylation-dependent 

inactivation of FKHR inhibits Fas-L-transcription and activation of the extrinsic apoptotic 

pathway (Brunet et al., 1999). 

 

PKB also regulates the interaction between Bcl-2 /Bcl-XL and BAD by phosphorylation to 

BAD-proteins. BAD and Bcl-XL are members of the Bcl-2 family and BAD was first 

identified because of its binding ability to Bcl-2 and Bcl-XL (Yang et al., 1995). Bcl-2 and 

Bcl-XL are anti-apoptotic proteins present on the outer membrane of the mitochondria bound 

to a fourth family member BAX. BAD binds with high affinity to Bcl-X L, thus breaking up 

the binding between BAX and Bcl-XL and reversing its effect as cell death repressor. The 

following release of cytochrome-C from mitochondria into the cytoplasm leads to the 

activation of apoptosis. PKB specifically phosphorylates BAD on serine 136, enabling the 

binding of 14-3-3 proteins, thus inhibiting the interaction with Bcl-2/Bcl-XL and the 

promotion of apoptosis (Datta et al., 1997; Yang et al., 1997). 

 

Mitochondria play a critical role in the control of cell death, providing a major intracellular 

apoptotic signal, cytochrome-C. Mitochondria undergo a permeability change that disrupts 

electron transport causing breakdown of membrane potential. As a result, mitochondrial 

proteins are shed including cytochrome-C, which combines with the APAF (apoptosis-

activating factor) and pro-caspase 9, forming a proteolytically active “apoptosome” (Zou et 

al., 1997; Cain et al., 1999). Caspases are cysteine melloproteases that cleave proteins after an 

aspartic acid residue.    
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1.5  Mutations in the insulin receptor (IR) and other insulin signaling genes 

 

Analysis of naturally occurring mutations and targeted ablation of the gene for the insulin 

receptor and its signaling proteins in the mouse have provided crucial information about their 

role in physiology.  

 

Through genetic engineering in mice, a number of the  genes playing crucial roles in insulin 

signaling and action, including insulin, insulin receptor (IR), downstream signalling 

molecules such as insulin receptor substrate-1 (IRS-1), IRS-2, glucose transporters (GLUT4, 

GLUT2) and important metabolic enzymes such as glucokinase have been altered to better 

understand the functional role of these genes in vivo. Genes encoding insulin- like growth 

factors (IGF-I and IGF-II) and their type I receptor (IGF-IR) have also been disrupted. The 

transgenic and knockout animal model provided novel insight about the pathophysiology of 

diabetes. A brief summary of these mutations is presented below. 

 

A transgenic mouse over expressing the human IR under the control of promoter/enhancer of 

rat myosin light-chain exhibited no change in the basal level of blood glucose and insulin in 

the fasting state as compared to their wild-type controls. The blood glucose and plasma 

insulin levels after intraperitoneal glucose injection were 25% lower, and blood glucose 

lowering effect after intraperitoneal injection of insulin was more pronounced in transgenic 

mice compared to wild-type controls. Thus, moderate increase of IR in muscle causes an 

increase in insulin-sensitivity (Benecke et al., 1993). 

 

The IR gene has been inactivated by conventional gene-targeting introducing stop codons in 

exon 4 (Acilli et al., 1996) and by deleting a part of the IR gene around exon 2 (Joshi et al., 

1996). The heterozygous mutants (IR+/-) do not exhibit any major metabolic abnormalities 

and show normal glucose tolerance following an intraperitoneal glucose tolerance test. 

Moreover, insulin levels were not significantly different compared to their controls. At birth 

the homozygous null mutant (IR-/-) mice are indistinguishable from their littermates. But they 

exhibit several major metabolic disorders immediately after suckling. The pups developed 

severe diabetes mellitus with ketoacidosis, increased levels of triacylglycerol and non-

esterified-fatty-acid levels. IR-deficient pups developed marked postnatal growth retardation 

and skeletal muscle dystrophy. The white and brown adipose tissues were decreased in 
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amount, and IR-deficient pups died between 3 to 7 days after birth (Acilli et al., 1996; Joshi et 

al., 1996; Cinti et al., 1998) as a consequence of diabetic ketoacidosis. 

The phenotype of transgenic and knockout mice of insulin and insulin-signaling proteins are 

summarized in the table below (Table 1.1). 

 

Inactivated 

genes 

Viable Diabetes 

mellitus 

Keto 

acidosis 

Metabolic disorders Striking phenotypes Reference 

Insulin No, 

death 

within 2 

days 

Yes Yes Hepatic steatosis  Intra-uterine growth 

retardation, 

hyperplastic islets 

Duvillie et 

al., 1997. 

IR No, 

death 

between 

3-7 days 

Yes Yes Hyperglycaemia, 

Hyperinsulinaemia  

Postnatal growth 

retardation and 

skeletal-muscle 

hypotrophy 

Accali et al., 

1996; Joshi 

et al., 1996 

IRS-1 Yes No No Mild peripheral 

insulin resistance, 

hyperglycaemia 

Intra-uterine and 

postnatal growth 

retardation 

Araki et al., 

1994; 

Tamemoto et 

al., 1994; 

Abe et al., 

1998 

IRS-2 Yes Yes No Hyperglycaemia, 

Hyperinsulinaemia 

Intra-uterine and 

postnatal growth 

retardation 

Withers et 

al., 1998 

IRS-3 Yes N.D. No Normal GTT Normal growth Liu et al., 

1999 

IRS-4 Yes N.D. N.D. Hyperglycaemia Normal growth Liu et al., 

1999 

IGF-I No/Ye s 

(based 

on 

genetic 

back 

ground) 

No No - Hyperplastic Islets, 

Dwarfism, 

Underdeveloped 

reproductive organs, 

Infertility, slower 

long-bone 

ossification 

Liu et al., 

1993;  

Powell-

Braxton et 

al., 1993 

IGF-IR No 

(death at 

birth) 

No No  Abnormal 

development of skin, 

CNS and bone, 

muscle hyperplasia, 

Dwarfism, 

Liu et al., 

1993  

 

p85(PI3-K) Yes Yes No Hypoglycaemia Immunological 

defects 

Terauchi et 

al., 1999 
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Inactivated 

genes 

Viable Diabetes 

mellitus 

Keto 

acidosis 

Metabolic disorders Striking phenotypes Reference 

Glut 4 Yes (5-7 

months) 

No No Hyperinsulinaemia Growth retardation, 

reduced fat 

deposition 

Katz et al., 

1995 

Glut 2 No 

(death 

within 

2-3 

weeks) 

Mild No Mild 

hyperglycaemia, 

mild 

hypoinsulinaemia, 

high free fatty 

acids 

Postnatal growth 

retardation 

Guillam et 

al., 1997 

GK No 

(death 

within 1 

week) 

Yes Yes High cholesterol 

and triacylglycerol 

level, depleted 

hepatic glycogen 

 Grupe et al., 

1995; 

Terauchi et 

al., 1995 

IR+/-IRS-1+/- Yes Yes  Hyperinsulinaemia,  Hyperplasia of ß cells  Bruning et 

al., 1997 

IRS-1+/-GK+/- Yes Yes  Glucose 

intolerance, fasting 

huperinsulinaemia 

Growth retardation Terauchi et 

al., 1997 

 

Table 1.1: Summary of the phenotypes of transgenic and conventional knockout animals of insulin and insulin 
signaling proteins. N.D. indicates not determined. 
 

 

1.5.1  The Cre-LoxP system 

 

The role of insulin action in individual tissue has been analyzed by the use of a recent 

developed technique, the cre-Lox-P system (Gu et al., 1994) to create tissue  specific IR 

ablation. This conditional inactivation of a gene uses the site-specific bacteriophage P1 Cre-

recombinase (Tsien et al., 1996). Cre recognises Lox-P-sites and excises DNA, which is 

flanked by Lox-P-sites (Sauer et al., 1987; Sauer et al., 1988). In transgenic experiments Lox-

P-sites can be integrated in a target gene without interfering with the function of the gene. In a 

second experiment mice are created, which express the Cre-recombinase in a tissue-specific 

fashion. If these mouse lines are crossed, the target gene will be inactivated in vivo, wherever 

Cre is expressed.  
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Through this technology, muscle specific IR knockout (MIRKO) mice have been created by 

mating mice carrying the IR gene with exon 4 flanked by Lox-P-sites (“floxed”) with 

transgenic mice expressing the Cre recombinase under control of the muscle creatinine kinase 

(MCK)-promoter/enhancer (Bruning et al., 1998). The MIRKO mice showed >95% reduction 

in IR-expression specifically in the skeletal muscle. MIRKO animals exhibited euglycemia up 

to the age of 20 months; plasma insulin concentration was indistinguishable between 

knockout and control animals and insulin and glucose tolerance tests showed no evidence for 

insulin resistance in these mice. The ability to maintain normoglycemia appears to be the 

result of shunting substrates from muscle to fat. MIRKO mice therefore exhibited a 40% 

increase in fat depots and exhibited hypertriglyceridemia and high level of serum free fatty 

acids (Bruning et al., 1998). In summary, selective insulin resistance in skeletal muscle 

appears to be dispensable for glucose homeostasis but can result in obesity and 

hypertriglyceridemia, which are hallmarks of the metabolic syndrome X (Reaven, 1987). 

 

Tissue-specific knockout of the IR gene in the pancreatic ß cell (ßIRKO) has also been 

achieved by breeding the IR “floxed” mice with transgenic mice expressing the Cre 

recombinase under control of the rat insulin promoter (Kuhn et al., 1995; Kulkarni et al., 

1999). The ßIRKO females show a dramatic decrease (85%) in insulin secretory response 

upon glucose stimulation compared to controls. However, the secretion of insulin was 

gradually increased in ßIRKO animals after 30 minutes upon glucose stimulation and was not 

significantly different from controls. Upon arginine stimulation, ßIRKO as well as control 

mice exhibited a 5 to 6 fold increase in insulin secretion, indicating that functional IR-

expression is necessary for glucose-stimulated insulin secretion by the pancreatic ß-cell. As a 

consequence of impaired glucose-stimulated insulin secretion, ßIRKO mice showed impaired 

glucose tolerance. Therefore, defects of insulin signaling at the level of the ß cell may 

contribute an alteration in insulin secretion in type 2 diabetes (Kulkarni et al., 1999).   

 

Moreover, liver-specific IR knockout (LIRKO) mice have been generated (Michael et al., 

2000) by breeding IR “floxed” mice (Bruning et al., 1998) with transgenic mice expressing 

the Cre recombinase from the rat albumin promoter (Postic et al., 1999; Postic et al., 2000). 

Two months old LIRKO male mice displayed markedly elevated levels of blood glucose in 

the fed state and 20 fold elevated plasma insulin levels. A 40-50% reduction of triglycerides 

and free fatty acids suggested an impairment of insulin action in the liver to promote 

triglyceride synthesis. LIRKO mice exhibited impaired glucose tolerance (hyperglycaemia 
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throughout the test period) and resistance to the blood glucose- lowering effect of insulin. By 

contrast, at the age of 4 months hyperglycaemia was normalised, but insulin resistance and 

glucose intolerance were unchanged. The initial body weight (until 6 weeks) of the LIRKO 

mice was less and the size of the liver was about 50% smaller compared to controls. The 

above results suggest that isolated liver insulin resistance causes severe defects in glucose and 

lipid homeostasis and may promote ß cell hyperplasia and hyperinsulinaemia observed in type 

2 diabetes (Michael et al., 2000).     

 

Similarly, brown adipose tissue (BAT) specific insulin receptor knockout (BATIRKO) mice 

were generated by breeding IR “floxed” mice with transgenic mice expressing the Cre  

recombinase under control of uncoupling protein (UCP)-1- promoter (Guerra et al., 2001). 

The IR expression was reduced to 95% in BATIRKO mice. The reduction of BAT mass in 

BATIRKO mice was age dependent, i.e. 50% reduction of BAT was observed in 3 month old 

mice and 75% in 6 to 12 months old animals compared to controls. BATIRKO mice 

developed age-dependent hyperglycemia with reduced insulin-stimulated insulin secretion. 

These results suggest that insulin plays an important role in development and maintenance of 

BAT that is BAT homeostasis and the regulation of insulin secretion and glucose homeostasis 

(Guerra et al., 2001). 

 

 

1.6 CNS-regulated food intake and obesity in relation to insulin and leptin 

 

Insulin and leptin receptors expressed on neurons present in the brain appear to be responsible 

for the regulation of energy homeostasis (Baskin et al., 1998 and 1999a; 1999b). It has been 

demonstrated, that intracerebroventricular (i.c.v.) administration of either peptide acutely 

causes hypophagia (Woods et al., 1979; Weigle et al., 1995). Deficiency in leptin as present 

in the genetically obese ob/ob-mouse causes hyperphagia (Cusin et al., 1995). 

Mechanis tically, in the hypothalamic region of the brain, insulin and leptin play a major role 

to regulate anabolic effectors, neuropeptide Y (NPY) and agouti-related protein (AGRP) and 

catabolic effectors such as proopiomelanocortin (POMC) and the cocaine- and amphetamine-

regulated transcript (CART). The NPY and AGRP are colocalized in neurons of the arcuate 

nucleus of the hypothalamus (Hahn et al., 1998; Broberger et al., 1998). Similarly, POMC 

and CART are colocalised in neurons of the arcuate nucleus (Elias et al., 1998). Following 

intracerebroventricular (i.c.v.) microinjection of leptin, the NPY/AGRP neurons are inhibited, 
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resulting in a reduced food intake and body weight in rats (Satoh et al., 1997), and they are 

activated when the leptin levels are low in the fed state (Schwart et al., 1996; Stephens et al., 

1995). Other experiments have demonstrated that insulin also inhibited NPY expressing 

neurons (Sipols et al., 1995; Williams et al., 1989) and stimulated POMC expression, a 

precursor of a-melanocortin stimulating hormone (a-MSH).  a-MSH binds to and activates 

the melanocortin receptor 4 (MC4) leading to the inhibition of food intake. The important role 

of the MC4 receptor in the regulation of energy homeostasis could be demonstrated by the 

creation of MC4 receptor knockout mice, which exhibit severe hyperphagia and obesity 

(Huszar et al., 1997). AGRP, which is co-expressed with NPY in the arcuate nucleus of the 

hypothalamus causes hyperphagia when administered i.c.v. The role of insulin and leptin in 

regulation of food intake and obesity is summarised in Fig. 1.2. 
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Figure 1.2: Schematic diagram of the role of insulin and leptin in control of food 
intake and obesity. This figure is taken from Schwartz et al., 2000.Nature, 404  
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1.7   Role of insulin and insulin receptor in the central nervous system 

 

Havrankova et al. first reported the localization of insulin in the CNS in 1978(a) by 

immunohistochemical staining of the rat brain with anti- insulin antibodies, which was further 

broadened by Dorn et al. (1981) using fluorescence staining, demonstrating the presence of 

insulin in neurons of the hypothalamus, thalamus, amygdale and hippocampus of the murine 

brain. But the concentration of insulin within the different brain regions varies greatly from 10 

to 100 fold higher than in plasma (Havrankova et al., 1978b; Baskin et al., 1983). These 

findings could indicate the synthesis of insulin within the CNS (Schechter et al., 1988; 1990; 

1996). It has been hypothesized that adult mammalian brain normally synthesizes an amount 

of insulin comparable to the peripheral source (Schwartz et al., 1992). Moreover, the 

pancreas-derived insulin enters into the CNS across the blood-brain-barrier (BBB) through an 

active transport mechanism (Jialal et al., 1984; King et al., 1985).   

 

In 1978 (b), Havrankova et al. demonstrated for the first time the localization of insulin 

receptor (IR) in the CNS, classically considered to be an insulin- insensitive tissue. The 

localization of insulin receptors in the CNS was further assessed by various techniques, 

including in vitro binding studies (Hill et al., 1986), in vivo and in vitro autoradiography and 

computerized densitometry (Van Houten et al., 1979; Van Houten et al., 1983; Baskin et al., 

1986; Hill et al., 1986; Werther et al., 1987) and immunocytochemistry (Unger et al., 1989). 

According to these studies insulin receptors are widely distributed in the brain with highest 

concentrations in the olfactory bulb, hypothalamus, cerebral cortex and hippocampus. 

Moreover, insulin receptor mRNA was detected in the olfactory bulb, cerebral cortex, 

hypothalamus, cerebellum and brain stem by in situ hybridisation with radiolabelled 

oligonucleotides probes (Marks et al., 1990). Insulin receptors are not only present in the 

CNS, but it has been reported that they are also present in the peripheral nervous system such 

as autonomic ganglia, sciatic nerve and dorsal root ganglia and colocalised with Schwann 

cells and integrins. It has been hypothesised that the IR in peripheral nerves is responsible for 

maintenance and repair of myelinated fibres (Waldbiling et al., 1987; Sugimoto et al., 2000).   

 

Another major role of insulin signaling through its receptors in the brain appears to be a 

neurotrophic function. The expression of IRs in the brain is developmentally regulated. It has 

been reported that insulin and its receptor levels change during different stages of CNS 

development. In general, insulin binding increases during the prenatal period, peaks during 
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early postnatal life and then rapidly declines and remains at a lower level throughout life 

(Kappy et al., 1984; Bassas et al., 1989). Experiments on primary fetal rat brain cell cultures 

suggested that insulin might play a role in the control of metabolism, growth and development 

of the CNS. It was shown that insulin could stimulate the activity of ornithine decarboxylase, 

an enzyme involved in the biosynthesis of polyamines thought to regulate cell growth and 

metabolism (Yang et al., 1981). The role of insulin for the development of the CNS is further 

supported by the ability of insulin to stimulate neurite outgrowth (Vanhems et al., 1990) and 

protein synthesis by increasing phosphorylation of ribosomal S6 protein in the cultured fetal 

neurons (Heidenreich et al., 1989). 

 

Moreover, it has also been reported that dysregulation of IR-expression could be linked to 

neurodegenerative disorders such as Alzheimer’s (AD) and Parkinson’s disease (PD). Like 

mentioned earlier, insulin concentration and IR density are reduced with aging. It has been 

reported that insulin concentrations and IR density are dramatically reduced in the brains of 

Alzheimer’s patients compared to their middle-aged controls, whereas the IGF-IR remain 

unchanged. AD patients also exhibited lower cerebrospinal fluid (CSF) insulin and higher 

plasma insulin concentrations (Craft et al., 1998), indicating an impaired brain insulin 

metabolism. Concurrently, administration of insulin to AD patients resulted in the 

improvement in memory and performance (Craft et al., 1999). Zhao et al. demonstrated in 

1999 a significant upregulation of IR mRNA in the CA1 and dentate gyrus area of the 

hippocampus after a spatial maze learning task. This upregulation of IR mRNA was followed 

by an increase in IR-protein in the hippocampus further suggesting a role for IR in the 

regulation of synaptic activities, such as neurotransmission and/or synaptic plasticity during 

memory formation. 

 

In cultured human neurons, Hong et al. (1997) showed that glycogen synthase kinase-3 

(GSK-3) can phosphorylate the neuronal protein tau. Hyperphosphorylated tau is the major 

component of paired helical filaments in neurofibrillary lesions associated with Alzheimer's 

disease. Hyperphosphorylation reduces the affinity of tau for microtubules and is thought to 

be a critical event in the pathogenesis of this disease. Insulin and the related hormone IGF-I 

have been shown to reduce the phosphorylation of tau protein by inhibiting activity of GSK-3.  

 

Intracerebroventricular injection of streptozotocin (STZ) into adult rats is considered as an 

animal model for chronic neuronal dysfunction that is characterized by a decrease in both the 
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neuronal metabolism of glucose and the formation of energy, as STZ can inhibit the insulin 

receptor kinase activity. STZ injections caused long-term and progressive deficit in learning, 

memory and cognitive behaviour, also indicating a role for the insulin receptor in this context 

(Lannert et al., 1998).  

 

It has been also reported that older diabetic patients (average age over 64 years) perform 

worse in learning task than age-matched nondiabetic patients (Reaven et al., 1990; Elias et al., 

1997), whereas no evidence of learning and memory impairment was detected in middle-aged 

(mean age 51 years) type 2 diabetic patients (Ryan et al., 2000). This effect could be due to 

the age-related functional changes in the hippocampus and related structures increasing the 

vulnerability of the memory processing system to impaired insulin action. 

 

 

1.8  Aim of the study 

 

As mentioned earlier, the insulin receptor (IR) is distributed throughout the whole body 

including the classical insulin target tissues liver, fat, and muscle, as well as organs classically 

considered to be insulin insensitive like brain, kidney etc. IR is activated upon insulin binding 

and mediates insulin’s diverse biological effects such as glucose homeostasis, gene 

transcription, mitogenesis and inhibition of gluconeogenesis.  The role of IR in muscle, fat 

and liver has been studied in detail; this thesis will focus on the functions of the IR in the 

central nervous system. 

 

The role of this receptor, which is abundantly expressed in variable densities in the different 

areas of the CNS such as olfactory bulb, cerebral cortex, hypothalamus, cerebellum and 

choroids plexus, is still unclear. However, some evidence suggests a role for IR and the 

corresponding hormone insulin in the CNS: IR in choroids plexus may be essential for 

regulating insulin concentrations in the cerebrospinal fluid (CSF) by affecting transport of 

insulin from peripheral system and removing cerebrospinal fluid insulin (Schwartz et al., 

1992); IR in hypothalamic region is responsible for regulation of food intake and body weight 

and IR in hippocampus, piryform cortex and amygdale is responsible for learning and 

memory (Zhao et al., 1999). The role of IR in the CNS is mainly focused on food intake and 

body adiposity, and some studies suggest that IR in cells of the CNS is important for neuronal 

plasticity and neuronal survival in vitro, and that impaired insulin signaling and altered energy 
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metabolism in CNS may lead to neuronal degenerative disease like Alzheimer’s disease and 

Parkinson’s disease. 

 

To study these pathophysiological process in vivo, we performed a targeted disruption of the 

IR gene expression specifically in a tissue specific manner, restricted to the CNS. For this 

purpose mice carrying Lox-P sites in the flanking regions of exon 4 of the IR gene (Bruning et 

al., 1998) were crossed with mice expressing the Cre recombinase under control of the neuron 

specific nestin promoter (Dahlstrand, 1995). The main objectives of these studies are: 

 

1. To characterize the morphological consequences of selective IR gene disruption in the 

brain, 

2. To study the effect of neuron specific IR gene disruption on glucose homeostasis, 

body weight regulation, food consumption and cognitive function, 

3. To study the role of IR in the neuronal insulin signaling system and  

4. To study the function of neuronal IR regarding neuronal cell death. 
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2.   Materials and Methods  

 

2.1   Materials 

 

2.1.1   Chemicals 

 

All analytical grade chemicals were purchased from Sigma-Aldrich, Merck, Serva, Bio-Rad, 

Pharmacia-Biotech, USB, Gibco BRL, and Applichem. Radiochemicals were obtained from 

ICN.  

 

Molecular weight markers for proteins (Broad Range) were purchased from Bio-Rad and 

DNA molecular weight standards from New England Biolabs. Antibodies were purchased 

from Santa-Cruz Biotechnology. Insulin and Leptin ELISA kits were purchased from Crystal 

Chem Inc., USA. 

 

2.1.2   Buffers  

 

PBS 

 136 mM NaCl 

  2,6 mM KCl 

   10 mM Na2HPO4 

  1.5 mM KH2PO4, pH 7.4 

 

PBS-T 

 PBS + 0.1% (v/v) Tween 20 

 

TAE (10x) 

 2 M  Tris 

 5.7% (v/v)  Glacial acetic acid 

 50 mM EDTA 
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TBE (10x) 

 0.89 M  Tris-HCl, pH 8.0 

 0.89 M   Boric acid 

 20 mM EDTA 

 

TBS 

1.37 M  NaCl 

 250 mM Tris-HCl, pH 7.4 

 

TBS-T 

 TBS+0.1%(v/v) Tween 20 

 

Protein extraction buffer 

 50 mM Hepes, pH 7.4  

 1% (v/v)  Triton X-100 

 50 mM NaCl 

 100 mM NaF 

 10 mM EDTA 

 10 mM Na3VO4 

 0.1%(w/v)  SDS 

The buffer was supplemented with a cocktail of protease inhibitors (Leupeptin 10 ng/ml, 

Aprotinin 10 µg/ml, Benzamidine and PMSF 2mM) 

 

Lysis buffer for tail digestion 

 100 mM Tris HCl, pH 8.5 

 200 mM NaCl 

     5 mM EDTA 

         0.2% (w/v)  SDS 
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6x DNA loading buffer 

0.25%  Bromophenolblue 

0.25%  XylenecyanolFF 

40%(w/v)  Sucrose in water  

 

5x SDS protein loading buffer 

 312,5 mM Tris-HCl, pH 6.8 

    500 mM Dithiothreitol 

    10 mM EDTA 

  10% (w/v)  SDS 

   0.05% (w/v)  Bromophenolblue 

   50% (v/v)  Glycerol 

  

Protein transfer buffer 

10x Cathode Buffer -1 

25 mM Tris-HCl 

40 mM 6,Aminohexamineacid 

pH to 9.4 

10x Anode Buffer-1 

25 mM Tris-HCl, pH 10.4 

10x Anode Buffer-2 

300 mM Tris-HCl, pH 10.4 

 

 

2.1.3   Cell culture media and buffers  

 

HHGN  

 1x  Hanks balanced salt solution (HBSS) 

 2.5 mM Hepes, pH 7.3-7.5 

 2.5 M  Glucose 

 1 M  NaHCO3 
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TDn 

 250 µl  DNAse I (4,000 U/ml) 

 5 ml  HHGN 

 50 mg  Trypsin 

 

DnB 

 500 µl  DNAse I (4,000 U/ml) 

 10 ml  Basal medium Eagle (BME) 

 

CbC medium (Cerebellar Culture Medium) 

 100 ml  Basal medium Eagle (BME) 

 10 ml  Calf serum 

 1 ml   0.2 M Glutamine 

 1 ml  Penicillin and streptomycin (10,000 U) 

 0.8 ml   3M KCL 

CbC Starving Medium 

 100 ml  Basal medium Eagle (BME) 

 1 ml   0.2M Glutamine 

 1ml   Penicillin and streptomycin 

 0.1% (w/v)  Bovine serum albumin (BSA) 

 

2.1.4  Stain for tissue sections  

 

 Xyline Eosin stain 

  1 gm (w/v)   Hamatoxilline (in 1 lit. H2O) 

  0.2 gm (w/v)   NaIO3 

  50 gm (w/v)   KaI(SO4) 

  50 gm (w/v)   Chloral hydrate 

  1 gm (w/v)   Acetic acid 

  0.1 gm (w/v)   Eosin 
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2.1.5  Animal strains  

 

C57Bl/6J females sham operated, ovarectomised or ovarectomised and implanted with 

estradiol-releasing pellets were purchased from May and Bakers, Denmark. Insulin Receptor 

(IR) floxed mice were received from Joslin Diabetes Centre, Boston/USA and have been 

described previously (Bruning et al., 1998). Mice expressing the Cre-recombinase under 

control of the rat Nestin promoter were obtained from Rüdiger Klein (EMBL, Heidelberg) 

and have been previously described (Dahlstrand, 1995). 

 

 

2.1.6   Synthetic Oligonucleotides 

 

All oligonucleotides HPSF grade, were purchased from MWG Biotech. The following 

oligonucleotides were used for genotyping of mice by Polymerase Chain Reaction (PCR). 

 

Primer Sequence (5‘-3‘) Used for 

IR5’ -GATGTGCACCCCATGTCTG- PCR, to check the presence of IR floxed and wild-type allele 

IR3’ -CTGAATAGCTGAGACCACAG- PCR, to check the presence of IR floxed and wild-type allele 

Intron 3’ -ACGCCTACACATCACATGC- PCR, to check the absence of Exon IV of insulin receptor 

Cre5’ -ATGTCCAATTTACTGACCG- PCR, to check the presence of Nestin-Cre 

Cre3’ -CGCCGCATAACCAGTGAAAC- PCR, to check the presence of Nestin-Cre 

 

 

2.1.7   Primary and secondary antibodies 
 

Antibody  Type/label Dilution Source 

IR-ß Rabbit polyclonal 1:300 (WB) Joslin Diabetes Center, Boston/USA  

IGF-1R ß Rabbit polyclonal 1:200 Santa-Cruz 

IRS-1 Rabbit polyclonal 1:500 (WB) Joslin Diabetes Center, Boston/USA 

IRS-2 Rabbit polyclonal 1:500 (WB) Joslin Diabetes Center, Boston/USA 

p85 Rabbit polyclonal 1:500 (WB) Joslin Diabetes Center, Boston/USA 

IR-ß  Rabbit polyclonal 1:200 (WB) Santa-Cruz 

p-Tyr (PY 99) Mouse monoclonal 1:100 (WB) Santa-Cruz 

pAkt  Mouse polyclonal 1:500 Santa-Cruz 

Goat anti mouse IgG  Peroxide conjugate 1:1000 (WB) Sigma 

Goat anti rabbit IgG  Peroxide conjugate 1:1000 (WB Sigma 
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2.2   Methods 

 

2.2.1  Breeding 

 

Female Insulin Receptor (IR) floxed heterozygous (IR flox/+) mice were bred with male mice 

carrying a transgene expressing the Cre-recombinase under the control of the rat nestin 

promoter and enhancer to obtain IR floxed heterozygous nestin Cre + pups. These mice were 

again crossed with IR flox/+ mice to obtain IR flox/flox Cre+ mice and the appropriate 

control animals. 

 

 

2.2.2   Backcross breeding 

 

To generate NIRKO mice on a pure C57Bl/6J-background, heterozygous IR flox/+; Nestin 

Cre+ male mice were bred with C57Bl/6J females (Jackson Laboratory) and resulting pups 

were genotyped as described below. Resulting IR flox/+; Nestin Cre+ male mice were further 

bred with C57Bl/6J females. This proceeding was performed for 6 generations to obtain mice, 

which are more than 98% on a C57Bl/6J-background. 

 

 

2.2.3   Isolation of genomic DNA from mouse tail 

 

Tail samples (~0.75 cm long) were digested overnight at 55 0C with vigorous shaking in 600 

µl tail lysis buffer containing 60 µg proteinase K. Samples were centrifuged at maximum 

speed in a bench top centrifuge for 10 min. DNA was precipitated from the clear supernatants 

by adding an equal volume of isopropanol. Pellets were washed once with 70% ethanol and 

after a brief air drying step dissolved in 150 µl 10 mM Tris HCl, pH 8.0. 

 

 

2.2.4   Polymerase Chain Reaction (PCR) for genotyping 

 

A 50 µl reaction mixture usually contained 5 µl of 10x reaction buffer with MgCl2 (AGS 

Biochemicals), 0.2 mM of each of the dNTPs, 50 pmoles of each primer, 200 – 400 ng of 

genomic DNA template and 2 U Taq DNA polymerase (AGS Biochemicals).  
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PCR conditions used to check for the IR floxed allele and the presence of the Nestin-Cre-

transgene are described below. All reaction mixtures were submitted to an initial denaturation 

step at 94 0C for 2 min. 
 

PCR to detect: Denaturation Annealing Elongation 

 

Cycles 

IR floxed and wild-type 92 0C for 30 sec 61 0C for 90 sec 72 0C for 150 sec 30 

IR deleted allele 92 0C for 30 sec 61 0C for 90 sec 72 0C for 150 sec 30 

Presence of Nestin-Cre 920 C for 30 sec 58 0C for 60 sec 72 0C for 120 sec 40 

 

 

2.2.5   Methods for protein analysis 

 

2.2.5.1  Protein extraction from mouse tissues 

 

Mouse brain, muscle, liver, fat, heart and kidney were isolated, snap frozen in liquid nitrogen 

and stored at –80 0C. For isolation of protein, 1 ml protein extraction buffer was added for 

each 100 mg of tissue. The samples were then homogenised using a rotor-stator homogeniser 

(Ultra-Turrax T25, Janke & Kunkle). The homogenates were then centrifuged at 30,000 rpm 

in rotor T175 for 45 min. at 4 0C (Beckmann). Clear supernatants were collected and protein 

concentrations were determined using the Bio-Rad protein assay kit (Bio-Rad). 

 

 

2.2.5.2   Immunopricipitation 

 

Equal amounts of protein (10 mg) from each tissue were incubated with 10 µl polyclonal anti-

IR-antiserum (Joslin Diabetes Center), followed by overnight rotation at 4 0C. Then 70 µl 

Protein-A sepharose slurry (50% (v/v) in PBS) were added and allowed to rotate for 1 hour at 

4 0C. Three washings were performed with protein extraction buffer. 

 

 

2.2.5.3  SDS-polyacrylamide gel electrophoresis (PAGE) and Western Blot 

analysis 

 

SDS-PAGE was performed as published (Laemmli, 1970). The washed immunopricipitated 

samples were mixed with 35 µl 2x gel loading buffer and boiled for 5 min. prior to loading. 



 30 

Equal amounts of protein were resolved on 8% polyacrylamide gels and transferred onto 

Hybond-C SuperTM membranes in a semi-dry blotting chamber (BioRad) according to the 

manufacturer’s instructions. The membrane was then blocked with 4% BSA (w/v) in TBS 

overnight at 4 0C, followed by incubation with primary antibodies diluted in blocking buffer 

for 2 hours at room temperature. After washing 4 times for 15 min. with TBS-T buffer, the 

bound primary antibodies were detected using 50 µCi of radiolabelled 125I-Protein-A 

(Pharmacia). After washing 4 times for 15 min. with TBS-T buffer, bound Protein-A was 

visualised by exposing to an X-ray film. 

 

Alternatively, for non-radioactive detection, the protein transferred onto the membrane was 

blocked with 1x blocking reagent (Roche) overnight at 4 0C, followed by incubation with the 

primary antibodies diluted in 0.5x blocking reagent for two hours at room temperature. After 

washing 4 times for 15 min. with PBS-T buffer, the bound primary antibodies were detected 

using the appropriate peroxidase conjugated secondary antibodies. Bound antibodies were 

visualised by enhanced chemiluminescence according to the manufacturer’s instructions 

(ECLTM, Pharmacia-Biotech). 

 

 

2.2.6   General performance tests  

 

2.2.6.1  Feeding behavioural study 

 

Feeding studies were conducted for two weeks with equal numbers of mice in each group, 

knockout and controls, between 4 to 6 months of age. Equal animals with same sex were 

housed in each cage. Animals were provided with a defined amount of regular chow diet 

(Altromin). The amount of chow consumed was assessed by weighing the supplied food each 

morning between 9 to 10 am. Statistical analysis was performed using an unpaired Student’s 

T-test. 

 

 

2.2.6.2  High fat diet 

 

One group of animals were provided with high fat diet ad libitum, containing 60% soybean oil 

(Altromin) from 3 weeks (after weaning) to 8 months.  
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2.2.6.3  Growth curve study 

 

To determine the growth rates of the experimental groups of mice, animals were weighed on a 

weekly basis from 4 weeks up to 40 weeks of age. Body weight of each mouse was recorded 

and weight gain was compared among the groups of the animals. Statistical analysis was 

performed using an unpaired Student’s T-test. 

 

 

2.2.6.4  Breeding performance 

 

The breeding performance of the knockout mice for both males and females were compared 

with their wild-type (WT) littermates. To study breeding performance, animals aged 12 to 16 

weeks were selected and breeding was initiated with different possible combinations, such as 

WT male and WT female mice; WT male with neuronal insulin receptor knockout (NIRKO) 

females; NIRKO male with WT females. Females were examined for the occurrence of a 

vaginal mucous plug each morning between 8:00 and 10:00 am. Pregnancies and number of 

offspring were recorded. Statistical analysis was performed using an unpaired Student’s T-

test.    

 

 

2.2.7   Physiological tests 

 

2.2.7.1  Glucose tolerance test 

 

Glucose tolerance tests were performed with 4 to 6 months old mice. Animals were starved 

for 14 to 15 hours prior to each experiment but allowed free access to water. Animals received 

intraperitoneal injections of glucose, 2 mg D-glucose/gm body weight (Delta-Pharma 

GmBH). The blood glucose levels were then measured in blood taken from the tail tip by 

cutting 1 to 2 mm of tail, before and 15 min., 30 min., 60 min., and 120 min. after 

intraperitoneal administration of glucose. The glucose concentration was determined using an 

automatic blood glucose reader, Glucometer Elite Sensor ® (Bayer). 
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2.2.7.2  Insulin tolerance test 

 

Insulin tolerance tests were performed with 4 to 6 months old mice. Animals were kept 

fasting for 14 to 15 hours overnight but allowed free access to water. Animals were injected 

intraperitoneally with human regular insulin (Novo Nordisk Pharma, GmbH) 0.75 IU/kg body 

weight. The blood glucose level was measured in blood taken from the tail tip by cutting 1 to 

2 mm of tail, before and 15 min, 30 min, and 60 min after insulin administration. The glucose 

concentration was determined using an automatic glucose reader, Glucometer Elite Sensor ® 

(Bayer). 

 

 

2.2.7.3  Blood glucose concentration 

 

Blood glucose levels of animals were measured in random fed state and fasting blood glucose 

level was determined after overnight fasting. The glucose concentration was determined using 

an automatic glucose reader, Glucometer Elite Sensor ® (Bayer). 

 

 

2.2.7.4  Serum triglycerides and cholesterol 

 

For this study, 4 to 6 months old animals were selected and kept fasting overnight in fresh 

cages. The next morning blood was collected from the tail tip in a prechilled eppendorf tube. 

Immediately after bleeding serum was separated by centrifugation at 8,000 rpm on bench top 

centrifuge for 10 min. and stored at –80 °C. To determine the triglyceride and cholesterol 

concentrations, 10 µl of serum were diluted with 90 µl of sterile water and concentrations 

were determined on a Beckmann Analyzer in a routine procedure in the central analysis 

laboratory of the Universitätskliniken Köln. 

 

 

2.2.7.5  Free fatty acids  

 

Free fatty acid concentration was determined in 4 to 6 months old mice. Mice were kept 

fasting overnight but allowed free access to water. Tail vein blood was collected and serum 

was separated. Serum samples were then taken to analyze the plasma free fatty acids. The 
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protocol was used as provided by manufacturer (NEFA, Japan). The absorbance was then 

measured in a spectrophotometer (Beckman) at 550 nm wavelengths. 

 

2.2.7.6  Analysis of body composition 

 

To determine the triglyceride and protein concentration, 6 to 8 months old neuronal insulin 

receptor knockout (NIRKO) and wild-type (Wt) mice were selected. Animals were weighed 

and killed with CO2. Bodies were digested in 3M KOH dissolved in 70% ethanol. The final 

volume was brought to 100 ml by adding 3M KOH in 70% ethanol and the bottle was covered 

tightly and stored for two days at room temperature for complete digestion. 10 µl whole 

digested body were mixed with 50 µl sterilized water and both triglyceride and protein 

content were determined on Beckmann Analyzer in a routine procedure in the central analysis 

laboratory of the Universitatskliniken Koln. 

 

 

2.2.8   Radioimmunoassay for different hormones 

 

Animals were bled in random fed state from the tail vein and serum were separated 

immediately by centrifugation at 8,000 rpm in bench top centrifuge for 10 min. at 4 0C. Serum 

samples were sent to Prof. A.F.Parlow’s laboratory, National Hormone and Peptide Program, 

Harbor-UCLA Medical Centre, California, USA for the measurement of different anterior 

pituitary hormones such as Growth Hormone (GH), Luteinizing Hormone (LH), Thyroid 

Stimulating Hormone (TSH), Prolactin (Prl), Adrenocorticotropic Hormone (ACTH). For 

determination of ACTH-concentrations, each animal was housed in a single cage to avoid any 

kind of outside stress and blood was collected from the jugular vein immediately after 

cervical dislocation.  

 

To assess plasma LH-concentrations under basal and stimulated conditions, blood was taken 

after injection of Lupron (a GnRH agonist, 200 µg in 100 µl saline/animal) or saline. Tail vein 

blood was collected before injection and 1 hour after injection of Lupron and serum was 

separated immediately as mentioned earlier. Similarly, to determine Thyroid Releasing 

Hormone (TRH) intraperitoneal injection of Antepan®, a TRH agonist, (Henning Berlin 

GmbH) was injected. One group of animals was injected with 0.250 µg Antepan/animal and 

control animals received saline. Tail vein blood was collected before Antepan injection and 
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30 min after injection. Serum samples were then sent to Prof. Parlow’s laboratory for 

determination of hormones by radioimmunoassay.  

 

 

2.2.9   Insulin and leptin ELISA 

 

Blood was collected from tail vein and serum was separated immediately by centrifugation at 

8,000 rpm on bench top centrifuge at 4 0C. Determination of plasma insulin and plasma leptin 

concentrations was performed by ELISA according to the protocol provided by the 

manufacturer (Crystal Chem. Inc, USA). 

 

 

2.2.10   Spermiogram 

 

Male animals were killed with CO2 and the epidydimi were isolated and chopped into small 

pieces in Dulbecco’s modified eagle’s medium (DMEM, Sigma) to release the spermatozoa 

into the medium during 15 min. incubation in a cell culture incubator at 37 0C. After pipetting 

up and down and further incubation for 45 min. at 37 0C, the solution was centrifuged for 5 

min. at 1000 rpm on bench top centrifuge. The supernatant was discarded and the pellet was 

dissolved in 2 ml trypan blue. Spermatozoa were counted in a Neubauer chamber. 

 

 

2.2.11 Estrus detection 

 

After weaning the pups at day 21, monitoring of vaginal opening in NIRKO and their control 

mice were conducted every day until one and half months of the age. After vaginal opening, 

vaginal swab was taken every alternate day for one month with the help of sterile swab (“q” 

tips, Fichier Scientific, USA), and vaginal mucous was smeared on polylysine-L coated glass 

slides (Menzel-Glaser, Germany). The smeared mucous was air dried and then stained with 

0.4% methyline blue for 5 minutes followed by washing with water. The vaginal epithelial 

cells were then observed under the microscope to detect the state of oestrus (cycling) of the 

experimental animals. 
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2.2.12 Behavioural tests 

 

To study the behavioural tests a computer programme was used from Ethovision ®, version 

1.91 prepared by Noldus information technology, Wageningen, The Netherland. 

 

2.2.12.1  Learning and memory 

 

2.2.12.1.1  Moris water maze  

 

The cognitive abilities of mice were tested in the Moris water maze (Morris, 1984) tub. A 66 

cm diameter and 22 cm deep black circular water tub with a removable 12 cm high escape 

platform with black top was used for this experiment. The tub was filled with water at room 

temperature to a level of 14 cm so that the escape platform submerged 2 cm under water. A 

video camera was mounted in the centre above the water tub, which provided an overview of 

the pool on a TV monitor that is connected with a computer. The pool was divided into four 

quadrants, east, west, north and south. Each quadrant was further subdivided by a pattern of 

lines into a 4X4 matrix of squares. The escape platform was kept in the north quadrant.  

 

Animals were allowed to stay 15 sec. on the escape platform at the beginning of the first 

experiment. Each animal was allowed to swim for 90 sec., and swimming speed as well as the 

latency period to find the hidden escape platform were scored in the computer each time the 

mouse crossed a line dividing the squares with its whole body. According to the computer 

program, start points in different quadrants were chosen. This procedure was followed for five 

consecutive days. On the last day of the experiment, the hidden escape platform was removed 

from the tub and animals were allowed to swim for 90 sec., and their swimming speed and 

time spent in the different quadrants were monitored and recorded in the computer.     
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2.2.12.2 Anxiety tests 

 

2.2.12.2.1  Open field test 

 

For this study, a Perspex box of 60 cm2 and 14 cm height was used. The floor of the box was 

subdivided into 10 cm2. A video camera, mounted in the centre above the open field box, 

provided an overview of the field on a TV monitor. Each animal was allowed to move in this 

open field box for 300 sec. and their movement towards the walls, centre and corners were 

recorded in the computer. This test was performed for five consecutive days.  

 

 

2.2.12.2.2  Light and dark exploration test 

 

A box divided into a bright and a dark compartment was used to perform this test. Between 

the two compartments a small hole was made so the mice can explore both light and dark 

sides of the box. A video camera, mounted in the centre above the box, provided an overview 

of the box on a TV monitor. Each mouse was put into the dark side of the box and then 

allowed to move for 300 sec. Time spent in the bright and dark side of the box was recorded 

in the computer. This test was also performed for five consecutive days. 

 

 

2.2.12.2.3  Elevated plus maze test 

 

A 5 cm wide ring with a diameter of 50 cm and elevated 50 cm high from the ground were 

taken for this study. The ring was divided into two open and two closed arms. A video 

camera, mounted in the centre above the elevated maze, provided an overview of the maze on 

a TV monitor. Each individual mouse was allowed to move on this elevated maze for a period 

of 300 sec and time spent in the open arms and closed arms were recorded in the computer. 

 

 

2.2.12.3  Olfactory test  

 

A simple olfactory test was conducted. To study the sense of smell of the animals a small 

piece of cheese (1 cm3) was hidden under the bedding of a fresh cage. 300 sec. were provided 



 37 

to each animal to locate the hidden cheese and the time to locate the cheese was recorded by a 

stopwatch. 

 

 

2.2.13   Organ isolation for insulin signalling studies 

 

Animals were anaesthetized with thiopental sodium (Trapanal, BYK Gulden) and an incision 

was made to open the abdominal cavity. 5 IU human insulin (Novo Nordisk Pharma, GmbH) 

were injected carefully and slowly into the inferior vena cava. Organs were removed at 

different time points as follows: liver (after 1 min.), perigonadal fat (2 min.), muscle (3 min.), 

and brain (10 min.). 

 

 

2.2.14   Xyline eosin tissue staining 

 

Ovaries and testis were isolated from mice and kept on 10% formaldehyde followed by 

embedded in paraffin. Paraffin embedded tissues was cut at a thickness of 5 µm using a 

microtome (Reichert-Jung) and were transferred onto glass slide. Then the tissue sections 

were dipped into xyline (10 min for 2 times), isopropanol (2 min.) and one min. each in 

gradient EtOH beginning from 96%, 75% and 50%, respectively followed by 1min. dip in 

distilled water. After alcohol treatment the tissue section were incubated 4-5 min in 

hamatotoxilline dye followed by washing on warm running tap water to remove the excess 

dyes from the tissue. Then the tissue was stained with eosin dye for about 1 min and washed 

with water to remove the excess dye. The stained tissues were then allowed to dry on room 

temperature and embedded with glycerine-gelatine. 

 

 

2.2.15  Hypogonadal animal models 

 

Three groups of 8 weeks old female C57Bl/6J animals were selected for this study. In the first 

group, females were sham operated, in the second group females were ovarectomised and in 

the third group, females were ovarectomised with subcutaneous implantation of a 17ß–

estradiol tablet with a 90–day release (Innovative Research of America) to maintain blood 

level of estrogen to 100 pg/ml. 
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2.2.16   Primary culture of cerebellar granular cells 

 

Five day old pups were killed by decapitation to remove cerebella. The skin was peeled off 

the back of the head, the skull was removed and the cerebellum was pinched off and kept on 

HHGN. Meningeges, blood vessels and other attached tissues were removed from the 

cerebella under a dissection microscope. The processed cerebella were then washed 3 times 

with HHGN, treated with TDn for 15 min. at room temperature, and washed 3 times with 

HHGN. To get single cells, cerebella were homogenised in DnB followed by centrifugation at 

1000 rpm on bench top centrifuge for 10 min. at 4 0C The supernatant was removed and cells 

were redissolved in CbC medium. For protein isolation, 2-5 x 106 cells per well were plated 

on 6-well plates, for apoptosis studies, 105 cells per well were plated in 96-well plates coated 

with poly–L-lysine coating (Becton and Dickinson, USA). Plates were then incubated for 24 

hour in a cell culture incubator at 37 °C and 5% CO2. To further purify the cultured cells and 

eliminate proliferating cells of other tissues, the cultured cells were treated with 10µM 

cytosine arabinoside (AraC), which only affects dividing cells but not neuronal cells. After 

another incubation at 37 0C for 72 hours, the CbC medium was removed and cells were 

washed twice with Basal medium eagle (BME) at room temperature. Then the cells were 

supplemented with low KCl starving medium (5mM KCl), which induces apoptosis of 

neuronal cells by depolarization of the plasma membrane. For apoptosis studies, cells were 

treated with different doses of insulin and IGF-I (0.1, 1, 10, 100 nM and 1 µM) followed by 

an incubation for 36 hours at 37 °C. Fixation of cells were done with 4% paraformaldehyde 

followed by washing with PBS and apoptotic cells were stained with Hoechst® stain. The 

portion of apoptotic cells was assessed using a fluorescence microscope. 

 

For protein isolation, cells were stimulated with 10 nM insulin or IGF-I for 10 min., then the 

medium was removed, dishes were washed with ice cold PBS and cells were scrapped into 70 

µl of protein lysis buffer containing a cocktail of protease inhibitors. Protein concentrations 

were determined by Bradford assay (Bradford, 1976).  
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3. Results 
 

3.1 Generation of homozygous neuronal insulin receptor knockout (NIRKO) mice 

 

Heterozygous IR(Lox/+) or homozygous IR(Lox/Lox) animals were mated with mice 

carrying a Cre allele (Cre +/-) under control of the rat nestin promoter and enhancer to 

generate mice double-heterozygous for the IR and Cre alleles (IR Lox/+ Cre +/-). These 

animals were then bred with heterozygous IR(Lox/+) mice to obtain IR (Lox/Lox):Nestin 

Cre(+/-) offspring, that is, mice with neuron-specific insulin receptor knockout (NIRKO). 

 
 

A. 

 

 

 
                                                                                                                                   

 
 
            IR “floxed” allele 

 
  
 B.  
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Figure 3.1: A. Annealing sites of the different primers are shown in the wild-type allele (top). Below: IR 
“floxed” with two Lox-P sites (closed triangles) 5’ and 3’ of exon 3 and 4 (grey box). B. Annealing sites of 
primers in the Cre transgene allele. Cre was expressed under the control of the promoter and enhancer present in 
the second intron of the rat central nervous system-specific nestin gene. Transcription is terminated by the 
polyadenylation sequence of the human growth hormone gene (hGHpoly (A)). C. PCR product was resolved on 
a 3% agarose gel. The presence of WT, heterozygous (Lox/+) and homozygous (Lox/Lox) IR alleles was 
detected by PCR-amplification of products of 250 bp (WT) and 300 bp (floxed) using the PCR primer pair IR3’ 
and IR5’ (Fig. A) (Fig. C, left panel). The presence and absence of the Cre transgene was assessed by presence 
or absence of a 250 bp PCR product using PCR primer pair Cre3’ and Cre5’ (Fig. B) (Fig. C, right panel). Lane 
1 and 2 (Fig.C, left and right panel) indicates DNA molecular weight markers and negative controls with no 
DNA templates, respectively. 
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To facilitate genotyping of large numbers of offspring, genomic DNA isolated from tail 

biopsies was analysed by a PCR strategy. All primer sequences are listed in 2.1.6 and 

annealing sites are outlined in Figure 3.1 A  and 3.1.B (see page 37). 

 
 
3.2. Efficiency of recombination 

 

To determine the efficiency of IR gene inactivation in the central nervous system of NIRKO 

mice, we determined IR-expression on the protein level. Protein was extracted from whole 

brains of NIRKO and control mice (IR +/+ with Cre – and IR flox/flox with Cre -), age  

between 6 to 8 months. Protein extracts were subjected to immunoprecipitation with antisera 

specific for the IR-ß subunit, IRS-1 and IRS-2, respectively. After immunoprecipitation, 

proteins were resolved on 8% polyacrylamide gels under reducing conditions, and after 

electrotransfer membranes were probed with the respective antiserum. As shown in Figure 3.2 

A, protein extracted from the brains of NIRKO mice exhibited a largely reduced amount of 

immunodetectable IR-protein. By contrast, expression of IR protein in the brains of wild type 

and homozygous IR-floxed mice was unaltered. The expression of related insulin signaling 

proteins, such as IRS-1 and IRS-2 was unaltered in the brain of NIRKO mice. Densitometric 

analysis of these blots revealed a reduced IR-expression in brain extracts of NIRKO mice by 

more than 95% compared to controls (Fig.3.2 B).  
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Figure 3.2: A Immunoblot analysis of insulin receptor expression in tissue extracts (10 mg) prepared from wild-
type (WT), IR Lox/Lox and NIRKO (KO) mice. Extracts were subjected to immunoprecipitation and proteins 
were resolved on 8% SDS-polyacrylamide gels under reducing conditions and blotted onto nitrocellulose 
membranes. The blots were probed with polyclonal antisera specific for the IR-ß subunit (1:300) (upper panel), 
IRS-1 (1:500) (middle panel) and IRS-2 (1:500) (lower panel) followed by incubation with125I-labelled Protein A 
to detect IR expression. B Quantification of IR immunoreactivity by densitometric scanning of IR immunoblots 
as shown in A. Data represent the mean ± SEM of n = 8 of each genotype and expression is shown relative to 
that of control mice. 
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To evaluate the specificity of IR-inactivation in NIRKO mice, we also determined the 

expression of the IR ß-subunit in different non-neuronal organs such as liver, muscle, heart, 

kidney, spleen and testis of NIRKO and control mice. This analysis revealed an unaltered IR 

expression in these organs (Fig. 3.3). 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.3: Immunoprecipitation and immunoblot analysis of insulin receptor expression from tissue extracts 
(10 mg) prepared from NIRKO (KO) and control (WT) mice. Extracts were subjected to immunoprecipitation 
and proteins were resolved on 8% SDS-polyacrylamide gels under reducing conditions and blotted onto 
nitrocellulose membranes. The blots were probed with polyclonal antisera specific for the IR-ß subunit (1:300) 
followed by incubation with125I-labelled Protein A to detect IR expression. 
 
 

These data show an inactivation of the IR-gene in NIRKO mice with high efficiency and 

specificity in the central nervous system. 

 

 

3.3 Reduced IR expression in cultured primary neurons  

 

Since the extracts from whole brain used in the experiments described before (3.2) represent 

heterogeneous cell populations such as neurons, glia cells and cells from vasculature, we 

decided to determine whether the faint residual signal for IR-expression detectable in whole 

brain extracts resulted from unrecombined IR-alleles in neurons or from non-neuronal tissues. 

Therefore, we analysed the recombination of the floxed IR-allele in neurons cultured from 

NIRKO and control mice. 

 

To evaluate the efficiency of recombination of the IR Lox allele, DNA was prepared from 

primary neuronal cultured cells of floxed/deleted IR mice and NIRKO mice. Figure 3.4 shows 

the position of the different primers used for PCR analysis. 0.6ng of DNA prepared from IR 

floxed/deleted and KO neuronal culture cells from 5 day old pups were used for PCR using 

the primers Intron3’ and IR5’ as forward primer and IR3’ as backward primer. In neurons 
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from IR floxed/deleted mice two bands of equal intensity of 300 bp and 250 bp were observed 

(Figure 3.4, lane 3 and 5). By contrast, a single band of 250 bp representing the deleted allele 

was detected in the neuronal DNA obtained from NIRKO mice (figure 3.4, lane 4). These 

data indicate a complete deletion of exon 4 in the neurons of NIRKO mice. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
 
 
Figure 3.4: Assessment of Cre-mediated recombination of the IR floxed allele in NIRKO mice. Schematic 
representation of the IR floxed allele (upper panel) showing the position of different primer annealing sites for 
PCR analysis. The knockout allele (middle panel) is shown indicating the resulting PCR-product of the primers 
Intron3’ and IR3’ in case of deletion of exon 4. The lower panel shows a representative PCR analysis of DNA 
extracted from cultured neurons resolved on a 1.5% agarose gel. DNA derived from IR floxed/deleted mice 
generated a 300 bp (primers IR5’ and IR3’) and a 250 bp (primers Intron3’ and IR3’) PCR product (lane 3 and 
5). A single 250 bp (primers Intron3’ and IR3’) (lane 4) PCR band representing the deleted allele is observed 
only in the NIRKO mice with PCR primers Intron3’ and IR3’. PCR primers Intron3’ and IR3’ are unable to 
amplify the IR floxed allele as both primers anneal too far apart. Lane 1 and 2 indicate the DNA molecular 
weight markers and control with no DNA templates, respectively. 
 

 

To further confirm the completeness of IR- inactivation in neurons from NIRKO mice, we 

performed Western Blot analysis on protein extracts from cultured neurons of different 

experimental mice. As shown in figure 3.5, IR expression in primary cultured neurons derived 

from NIRKO mice is completely abolished compared to cultured neurons from control 

littermates. 
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Figure 3.5: Immunoblot analysis of IR expression in the primary cultured neurons. Cerebellar granular cells 
were prepared from 5 day old pups and cells were grown in poly-L-lysine coated plates. Protein extracts 
prepared from Lox/Deleted mice (control) and NIRKO mice. Primary cerebellar granular cells were grown for 5 
days before protein extraction. Total protein extracts (50 µg/lane) were resolved on a 8% SDS-polyacrylamide 
gel under reducing conditions and were transferred onto a nitrocellulose membrane. The resulting blot was 
probed with IR-ß specific antiserum (1:200) anti rabbit IgG (1:1000) as secondary antibodies. Bound antibodies 
were detected using the ECL system. 
 
 
 
3.4. Influence of insulin receptor expression on body weight and food intake 

 

3.4.1 Growth curve 

 

Since previous studies have implicated neuronal insulin receptors in the regulation of food 

intake and energy homeostasis, we monitored the regulation of body weight in NIRKO and 

control (IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +) mice. At least 16 mice of 

each genotype and gender were weighed on a weekly basis from 6 to 21 weeks of age. The 

body weight of male NIRKO mice was indistinguishable from their control littermates during 

the first 6 months of life under normal chow diet (Fig. 3.6 A). By contrast, female NIRKO 

mice exhibited a consistent 10 to 15% increase of body weight (p < 0.05) as compared to their 

control littermates under normal chow diet.  

 

To test whether this phenotype of an increased body weight in female NIRKO animals is 

more pronounced under a high caloric diet, we exposed a second group of mice to a diet 

enriched in fat (60% soybean oil). Indeed, the mildly obese phenotype in female NIRKO mice 

was more pronounced when the mice were fed with this diet. Under high-fat diet, by as little 

as 14 weeks of age male NIRKO mice showed more than 10% elevation of body weight (p < 

0.05) and female NIRKO mice a 20% increase in body weight (p < 0.05) compared to their 

control littermates (Fig. 3.6 B).  
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In summary, these data indicate that neuron-specific disruption of the insulin receptor gene in 

mice results in a diet sensitive increase in body weight. 
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Figure 3.6:  Body weight of animals was determined under normal chow (A) and under high fat (60%) chow 
(B), NIRKO male (closed square), control male (open square); NIRKO female (closed triangle) and control 
female (open triangle)). The SEM at each point was below 10% of the indicated value. Body weights of female 
NIRKO mice were significantly different from their control littermates at every age with p<0.05 in an unpaired 
Student’s t-test under normal chow (A). Body weights of NIRKO males do not show any statistically significant 
difference during the same period compared to their controls under normal chow diet. By contrast, under high fat 
(60%) diet, the body weight of both NIRKO males and females were significantly different (p<0.05) as 
compared to their controls (B). Data represent the mean of at least 16 animals in A and at least 8 animals in B of 
each gender and genotype. Control indicates IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. 
 
 

 

3.4.2 Increased amount of white adipose tissue in NIRKO mice 

 

To determine whether the increase of body weight in the experiments described above 

resulted from an increased obesity, i.e. increased fat mass, we next determined the weight of 

white adipose tissue in NIRKO and control (IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, 

Cre – or +) mice. At least eight animals of each genotype and gender between 8 to 12 months 

of age were selected to determine the parametrial fat depots in female mice and epididymal fat 

depots in male mice. Both male and female NIRKO mice showed increased adipose tissue 

mass with an about 2-fold (p <0.005) increase in perigonadal white adipose tissue in NIRKO 

females and a 1.5-fold (p < 0.05) increase in male NIRKO mice compared to their controls 

under normal chow diet. 

 

These data indicate that the increased body weight in female NIRKO mice indeed results from 

increased obesity and that despite exhibiting a normal body weight as compared to controls, 

also male NIRKO mice exhibited mildly increased white adipose tissue mass (Fig. 3.7). 
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Fig. 3.7: White adipose tissue mass was determined in control indicated as “WT” male (open bar), NIRKO 
indicated as “KO” male (closed bar), control indicated as “WT” female (dotted bar) and NIRKO indicated as 
“KO” female (crossed bar) animals under normal chow diet. “WT” indicates control animals (IR Lox/Lox, Cre -;  
IR Lox/+, Cre -, and IR +/+, Cre – or +). Data represent the mean ± SEM of at least eight animals of each 
genotype and gender between 8 to 12 months of age (* = p <0.05; ** = p <0.005). 
 
 

3.4.3 Increased food intake of female NIRKO mice 

 

Since obesity can result from either increased food intake or reduced energy expenditure, we 

next determined the amount of food consumed by NIRKO mice as compared to their control 

(IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +) littermates. Food intake was 

assessed in 4 to 6 months old mice under normal chow diet. Food intake and body weight of 

14 animals of each genotype and gender was determined daily for a period of one week. The 

amount of food consumed by the male NIRKO mice did not differ significantly from that of 

controls (82 mg/gm body weight/day compared to 87 mg/gm body weight/day), whereas 

female NIRKO mice exhibited an about 20% increase in food intake as compared to their 

control littermates (121mg/gm body weight/day compared to 100mg/gm body weight/day; p < 

0.01). 

 

These data indicate, that deficiency in neuronal insulin receptors results in chronically 

increased food intake, leading to an obese phenotype (fig. 3.8). 

 
 

* 

** 



 46 

0

20

40

60

80

100

120

140

160

WT KO WT KO

F
oo

d 
in

ta
ke

 (
m

g/
gm

 B
W

)

 
 
 
Figure 3.8: Food intake was assessed for a week in control indicated as “WT” male (open bar), NIRKO 
indicated as “KO” male (closed bar), control indicated as “WT” female (dotted bar) and NIRKO indicated as 
“KO” female (crossed bar) under regular chow diet. “WT” represents control animals (IR Lox/Lox, Cre -; IR 
Lox/+, Cre -, and IR +/+, Cre –  or +). Data represent the mean ± SEM of at least 14 mice of 4 to 6 months old of 
each genotype and gender (** = p<0.01). 
 
 

 

3.5 Physiological study of NIRKO mice 

 

Since neuronal insulin receptor knockout mice exhibited mild obesity compared to their 

control littermates, we determined the different physiological values like plasma leptin, blood 

glucose, plasma insulin, plasma cholesterol concentrations, glucose tolerance and leptin 

sensitivity on those animals. 

 

3.5.1 Plasma leptin 

 

Leptin has been identified as an important regulator of food intake and energy homeostasis 

(Ingvartsen et al., 2001). It is secreted from adipocytes and acts on leptin receptors located in 

the hypothalamus leading to an inhibition of food intake and increased energy expenditure. To 

test whether the mild obesity in NIRKO mice results from dysregulated leptin concentrations, 

we determined plasma leptin concentrations in NIRKO and control (IR Lox/Lox, Cre -; IR 

Lox/+, Cre -, and IR +/+, Cre – or +) mice. Plasma leptin concentrations were determined by 

enzyme-linked immunoabsorbent assay (ELISA) in blood samples obtained from 6 to 8 

months old mice on regular and high fat chow diet. Data represent the mean of at least 8 to 10 

animals from each genotype and gender. Plasma leptin concentrations were elevated 1.5-fold 

in NIRKO male mice (p < 0.05) and 2.5-fold in female NIRKO mice (p < 0.01) compared to 

** 
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their controls under normal chow diet. Similarly, plasma leptin concentrations of these 

animals under high fat chow were 1.6-fold elevated in NIRKO male and 1.7-fold elevated in 

NIRKO females as compared to their control littermates (Fig. 3.9).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9: Plasma leptin concentrations were determined by ELISA in control indicated as “WT” male (open 
bar), NIRKO indicated as “KO” male (closed bar), control indicated as “WT” female (dotted bar) and NIRKO 
indicated as “KO” female (crossed bar) animals either under normal chow diet (A) or under high fat chow (60%) 
(B). Control animals indicates IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. Results represent the 
mean ± SEM of at least 10 animals under regular chow and at least 8 animals under high fat diet of each 
genotype and gender (* = p <0.05; **  = p <0.005). 
 
 

 

3.5.2 Fasting blood glucose measurement 

 

Since massive obesity has been demonstrated to result in systemic insulin resistance 

(Mittelman et al., 2002), we investigated glucose metabolism in NIRKO and control (IR 

Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +) mice. Therefore, we first analysed 

blood glucose concentrations in 6 to 8 months old mice after an overnight fasting period. 

These experiments revealed that despite the  presence of mild obesity in the NIRKO mice, 

blood glucose concentrations in these mice were unaltered (Fig. 3.10).  
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Figure 3.10: Blood glucose concentrations after an overnight fasting period, control indicated as “WT” male 
(open bar), NIRKO indicated as “KO” male (closed bar), control indicated as “WT” female (dotted bar) and 
NIRKO indicated as “KO” female (crossed bar) mice. (A) under normal chow diet and (B) under high fat (60%) 
chow. Blood glucose concentration was measured in tail tip blood with the help of an automatic blood glucose 
reader, Glucometer elite sensors. Control animals were IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or 
+. Data represent the mean ± SEM of at least 8 animals of each genotype and gender. 
 
 
 
 
3.5.3 Plasma insulin 

 

Plasma insulin concentrations were determined by ELISA in blood samples obtained from 6 

to 8 months old mice on normal chow diet (Fig. 3.11 A) and high fat-diet (Fig. 3.11 B). 

Plasma insulin levels were elevated 1.5-fold in male NIRKO mice and about 2-fold in female 

NIRKO mice (p < 0.005) compared to their controls (IR Lox/Lox, Cre -; IR Lox/+, Cre -, and 

IR +/+, Cre – or +) under normal chow diet. Whereas in animals under high fat-diet the 

elevation of plasma insulin levels were opposite to the normal chow diet, NIRKO males 

showed about 2-fold higher (p < 0.005) circulating insulin levels and female NIRKO mice 

showed about 1.5-fold higher plasma insulin levels compared to their control animals. 

This result indicates that NIRKO mice were insulin resistant under normal chow as well high 

fat diet. 
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Figure 3.11: Plasma insulin concentration was determined by ELISA in control indicated as “WT” male (open 
bar), NIRKO indicated as “KO” male (closed bar), control indicated as “WT” female (dotted bar) and NIRKO 
indicated as “KO” female (crossed bar). (A), animals under normal chow diet and (B), animals under high fat 
(60%) chow. Control animals indicates IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. Data 
represent the mean  ± SEM of at least 10 animals of each genotype and gender under regular diet and high fat 
diet, respectively (** = p<0.005) 
 

 

3.5.4 Plasma triglyceride concentrations  

 

Since NIRKO animals exhibited massive obesity, we demonstrated its effect on plasma 

triglycerides. Plasma triglyceride concentrations were determined in blood samples obtained 

from 6 to 8 months old mice under normal chow food (Fig 3.12). Both male and female 

NIRKO mice showed 30% increase in circulating triglycerides compared to their control (IR 

Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +) littermates, indicating that NIRKO 

mice show a hypertriglyceridemic phenotype. 

 

 

 

 

 

 
 
 
 
 
 
Figure 3.12: Plasma triglyceride concentrations: control indicated as “WT” male (open bar), NIRKO indicated 
as “KO male” (closed bar), control indicated as “WT” female (dotted bar) and NIRKO indicated as “KO” female 
(crossed bar), under normal chow diet. Plasma triglyceride was measured in a Beckmann Analyzer. Control 
animals were IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. Data represent the mean ± SEM of at 
least 10 animals of each genotype and gender of 6 to 8 months old mice (* = p<0.05) under normal chow diet. 
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3.5.5 Plasma cholesterol concentrations  

 

Plasma cholesterol concentrations were determined in blood samples obtained from 6 to 8 

months old mice under normal chow diet. The circulating plasma cholesterol concentrations 

in control (IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +) and NIRKO animals 

were indistinguishable (Fig. 3.13), indicating that the obesity in NIRKO mice was only 

associated with hypertriglyceridemia.  

 

Figure 3.13: Plasma cholesterol concentration: control indicated as “WT” male (open bar), NIRKO indicated as 
“KO” male (closed bar), control indicated as “WT” female (dotted bar) and NIRKO indicated as “KO” female 
(crossed bar) under regular chow diet. Plasma cholesterol concentration was determined in a Beckmann 
Analyser. Control animals were IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. Data represent the 
mean ± SEM of at least 11 animals of each genotype and gender under normal chow diet (p >0.15). 
 
 

3.5.6 Glucose tolerance test 

 

To test whether the obese phenotype resulting from isolated insulin resistance in the central 

nervous system has any impact on whole body glucose metabolism, we performed 

intraperitoneal glucose tolerance tests in NIRKO and control (IR Lox/Lox, Cre -; IR Lox/+, 

Cre -, and IR +/+, Cre – or +) mice, both under regular and high fat diet. Fasting blood 

glucose concentrations were indistinguishable between NIRKO and control mice as was the 

glucose clearance rate after intraperitoneal glucose challenge (Fig. 3.14 A). However, animals 

under high fat diet exhibited an impaired glucose tolerance as compared to mice on regular 

chow diet (Fig. 3.14 B), indicating that high fat- induced obesity alters systemic insulin 

sensitivity. On the other hand, mild aggravation of obesity by isolated insulin resistance in the 

central nervous system had no further effect on systemic glucose metabolism.  
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Figure 3.14 Glucose tolerance test of animals under regular chow (A) and under high fat (60%) chow (B). 
NIRKO male (closed square), control male (open square); NIRKO female (closed triangle) and control female 
(open triangle). Control animals were IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. Blood glucose 
was determined with an automatic glucose reader (Glucometer elite sensor, Bayer) before intraperitoneal 
injection (IP) of glucose, indicating as “0” min. and after IP injection indicating as 15, 30, 60 and 120 min. Data 
represent the mean ± SEM of at least 8 animals of each genotype and gender under each diet. 
 

 

 3.5.7 Leptin sensitivity study 
 

As described in the introduction, leptin secreted from the adipose tissue acts as an anorectic 

peptide through its receptors in the hypothalamus. Since obesity in the NIRKO mice occurred 

despite elevated plasma leptin concentrations, we next investigated whether isolated insulin 

resistance in the central nervous system results in leptin-resistance, offering a mechanism for 

the development of obesity in these mice. To study leptin-sensitivity of NIRKO and control 

(IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +) mice, we injected daily either 

mouse recombinant leptin (10 µg/g body weight) or PBS for one week. Body weight of 

animals was measured daily in the morning before leptin or PBS injection. While mice 

receiving a daily injection of PBS showed no difference or even a slight increase in body 

weight, both control and NIRKO mice receiving leptin injections significantly lost weight 

over the period of one week (fig. 3.15). These data indicate that NIRKO mice develop obesity 

and increased plasma leptin concentrations despite unaltered sensitivity to leptin’s anorectic 

effect in vivo. 
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Figure 3.15: Leptin sensitivity study: (A), female and (B) male mice; control mice received PBS (closed circle), 
NIRKO mice received PBS (open circle), control mice received recombinant mouse leptin, 10 µg/gm BWT 
(closed triangle) and NIRKO mice received intraperitoneal recombinant mouse leptin, 10 µg/gm BWT (open 
triangle) by daily intraperitoneal injection over the period of one week. Shown is the change of body weight in % 
as compared to the body weight before the respective treatment. Control animals were IR Lox/Lox, Cre -; IR 
Lox/+, Cre -, and IR +/+, Cre – or +. Data represent the mean ± SEM of at least 8 animals of each genotype and 
gender. 
 
 
 
3.6 Fertility studies 
 
 
3.6.1 Breeding Study 
  
During the course of these studies we tried to expand the mouse colony more rapidly by 

mating NIRKO mice with IR flox/flox mice. Since the breeding efficiency from these 

crossings appeared to be impaired, we decided to study the reproductive performance of 

NIRKO mice in greater detail. Therefore, breeding were initiated between mice of the 

different genotypes, i.e. breedings among control mice (C57Bl/6J male (WtM) x C57Bl/6J 

female (WtF)); breedings between control male and NIRKO females (C57Bl/6J male (WtM) 

x neuronal insulin knockout- female (KO-F)); breedings between NIRKO (neuronal insulin 

receptor knockout) male (KO-M) and control (C57Bl/6J) female (WtF)). At least 10 breedings 

of each combination were monitored for offspring over a period of two months (Fig. 3.16). 

76% of the matings established between control mice (WtM x WtF) produced offspring, 

whereas breeding of male NIRKO mice with control females (KO-M x WtF) produced 

offspring in only 42% of the cases (p < 0.05). Similarly, breeding of control male with 

NIRKO females (WtM x KO-F) produced offspring in only 40% of the breedings (p < 0.05). 
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Figure 3.16: Breeding efficiency is indicated for control male with control female (C57Bl/6J male (WtM) X 
C57Bl/6J female (WtF), (black bar)), NIRKO-male (KO-M) with control female (C57Bl/6J female (WtF), (grey 
bar)) and control male (C57Bl/6J male (WtM) with NIRKO female (KO-F), (white bar)). The initial values for 
10 breedings were set arbitrarily as 100% Data represent the mean of at least 10 breedings in each combination 
in each group (*, p < 0.05). 
 
 

3.6.2 Reduced spermatogenesis in male NIRKO mice 

 

To further analyse the cause of reduced fertility in male NIRKO mice, we determined the 

epididymal sperm content in NIRKO and control mice. Therefore, epididymi of control (IR 

Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +)  and NIRKO mice were removed, and 

spermatozoa were allowed to diffuse into culture medium as described in materials and 

methods. After centrifugation, total epididymal sperm content was determined as shown in 

Fig. 3.17. This analysis revealed a 60% reduced epididymal sperm content in NIRKO males 

compared to their age matched controls (p <0.05). 
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Figure 3.17: Spermiogram of control male indicated as “WT” mice (open bar) and NIRKO male indicated as 
“KO” mice (closed bar). Total epididymal spermatozoa are counted under a microscope. Control animals were 
IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. Data represent the mean ± SEM of at least 10 
animals of each group (* = p < 0.05). 
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3.6.3 Signs of reduced gonadotropic stimulation in NIRKO mice 

 

To further investigate the reduced fertility in NIRKO mice, we assessed the morphology of 

testes and ovaries in NIRKO and control (IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre 

– or +) mice. Therefore, the respective organs were removed and fixed in 10% formaldehyde, 

sectioned to 5 µm and stained with haematoxylin eosin stain as mentioned in materials and 

methods. This result shows a reduced number of Leydig cells and reduced interstitial stroma 

in male NIRKO whereas female NIRKO mice exhibited a reduced number of antral follicles 

(Fig. 3.18). 

     
 

Fig. 3 18: Histological sections of testis and ovary of control and NIRKO mice. Testis section of control male 
indicated as “WT-M” (upper left panel), testis section of NIRKO male indicated as “KO-M” (upper right panel), 
ovary section of control female indicated as “WT-F” (lower left panel) and ovary section of NIRKO female 
indicated as “KO-F” (lower right panel). Testes and ovaries were removed from control and NIRKO mice and 
fixed in 10% formalin. 5 µm Paraffin-embedded sections were stained with haematoxylin and eosin. The scale 
bar indicates about 100 mm. 
 

 

3.6.4 Slightly delayed puberty in NIRKO female mice 

 

The reduced fertility of NIRKO female mice was further investigated by determinig the onset 

of puberty in these mice by monitoring the ocurrence of vaginal opening in NIRKO and 

control females (IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +). NIRKO females 

exhibited a slightly delayed onset of puberty compared to their littermates and this delay was 

statistical significant (Fig. 3.19).  
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Figure 3.19: Vaginal opening of NIRKO and control females. Control indicated as “WT” female (open bar) and 
NIRKO indicated as “KO” female (closed bar). Opening of the vagina was monitored after weaning at age 21 to 
45 days. Control animals were IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. Data represent the 
mean ± SEM of at least 8 animals of each genotype (* = p < 0.05). 
   
 
 
3.6.5 Cycling in NIRKO females 

 

Luteinizing Hormone (LH) has an effect on gonads by inducing ovulation in females (Patton 

et al., 1989). Therefore, we decided to monitor the cycling in NIRKO females and control (IR 

Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +) littermates. For this study vaginal 

smears were taken on every alternate day over the period of two months. The smeared vaginal 

epithelial cells were stained with 0.4% methylene blue and viewed under a microscope. 

Epithelial cells under the influence of the estrogen exhibit a cuboidal shape. These results 

revealed a prolonged estrous phase in cycling NIRKO females, and a higher proportion of 

mice with persistent estrous phase (33% in NIRKO vs. 20% in control mice) (Fig. 3.20). 

 

 

 

 

 

 

 

 

Figure 3.20: Estrous cycle duration in control and NIRKO females. Control indicated as “WT” female (open 
bar) and NIRKO indicated as “KO” (closed bar). Data represent the mean ± SEM of at least 6 animals of each 
genotype.   
 

 

 

 

* 

0 

5 

10 

15 

20 

WT KO 

D
ur

at
io

n 
of

 e
st

ro
us

 c
yc

le
 (d

ay
s)

 



 56 

3.7 Hypothalamic control of anterior pituitary function in NIRKO mice 

 

Since reduced fertility in NIRKO mice was associated with less sperm count in males, 

morphological abnormality of gonads in both males and females, and delayed onset of 

puberty in females, we investigated the hypothalamic-pituitary-gonadal axis by determining 

the concentrations of luteinizing hormone, growth hormone, adrenocorticotropic hormone, 

prolactin, and thyroid stimulating hormone. 

 

 

3.7.1 Plasma luteinizing hormone (LH) concentration 

 

Since both the histology of reproductive organs and the slightly delayed onset of puberty in 

NIRKO mice suggested dysregulation of gonadotropin secretion in the presence of isolated 

insulin resistance in the central nervous system, we decided to directly assess circulating 

plasma concentrations of luteinizing hormone (LH) in NIRKO and control (IR Lox/Lox, Cre-; 

IR Lox/+, Cre -; and IR +/+, Cre – or +) mice. LH is responsible for the stimulation of ovarian 

follicle growth and ovulation in females whereas in males it stimulates the testes to produce 

spermatozoa and male sex hormones (Patton et al., 1989). Plasma LH concentrations were 

determined by radioimmunoassay in serum samples obtained from 6 to 7 months old mice. 

This assay showed a 60% reduction of basal LH-concentrations in NIRKO males as compared 

to control male mice (p < 0.05) and a 90% reduction in NIRKO females (p <0.01) compared 

to their controls (Fig. 3.21). 

 

To further characterise the defect in gonadotropin secretion, we next determined plasma LH 

concentrations one hour after intraperitoneal injection of lupron (200 µg/animal), a 

gonadotropin releasing hormone (GnRH) agonist. In this assay male NIRKO mice exhibited 

an increase in circulating LH concentration comparable to that of their control littermates. 

Female NIRKO mice exhibited even higher concentrations of circulating LH after lupron 

stimulation compared to their controls (Fig 3.21 B) (p <0.01). 
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Figure 3.21: Plasma LH concentration (A), basal and (B), one hour after intraperitoneal injection of lupron (a 
GnRH agonist). Control indicated as “WT” male (open bar), NIRKO indicated as “KO” male (closed bar), 
control indicated as “WT” female (dotted bar) and NIRKO indicated as “KO” female (crossed bar). Plasma LH 
concentration was determined by radioimmunoassay. Control animals were IR Lox/Lox, Cre -; IR Lox/+, Cre -, 
and IR +/+, Cre – or +. Data represent the mean ± SEM from 6 to 7 months old mice of at least 8 animals of each 
genotype and gender (* = p < 0.05; **  = p <0.005). 
 
 
These data indicate that reduced concentrations of gonadotropins in NIRKO mice result from 

hypothalamic dysregulation of GnRH secretion rather than from reduced pituitary LH 

production. Indeed further immunohistochemical analysis of anterior pituitary sections 

revealed unaltered LH expression in the pituitary of NIRKO mice as compared to control 

animals (data not shown).  

 

 

3.7.2 Plasma adrenocorticotropic hormone (ACTH) concentrations  

 

To test whether NIRKO mice exhibit an isolated defect in hypothalamic gonadotropin 

regulation or combined defects in the regulation of other anterior pituitary axes, we 

determined plasma ACTH concentrations in NIRKO and control mice. As ACTH 

concentrations are strongly influenced by stress (Leal et al., 1999; Bulygina et al., 2002; Dal-

Zotto et al., 2002), each animal was housed individually for seven days. Animals were rapidly 

killed by cervical dislocation and blood was collected from the jugular vein. Plasma ACTH 

concentration was determined in serum samples of 6 to 7 months old NIRKO and control (IR 

Lox/Lox, Cre -; IR Lox/+, Cre -; and IR +/+, Cre – or +) mice by radioimmunoassay. This 

analysis revealed indistinguishable basal plasma ACTH concentrations in both male and 

female NIRKO animals compared to their controls (Fig. 3.22).   
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Figure 3.22: Adrenocorticotropic hormone (ACTH) concentrations in NIRKO and control mice: Control 
indicated as “WT”, male (open bar), NIRKO indicated as “KO” male (closed bar), control indicated as “WT” 
female (dotted bar) and NIRKO indicated as “KO” female (crossed bar). Plasma ACTH concentration was 
determined by radioimmunoassay. Control animals were IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – 
or +. Data represent the mean ± SEM of at least 8 animals of each genotype and gender of 6 to 7 months old 
animals. 
 
 
 
To further characterise the endocrine response to stress in NIRKO and control (IR Lox/Lox, 

Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +) mice, blood glucose concentrations under 

restrain stress in NIRKO and control mice were determined. Therefore animals were 

immobilised and blood glucose concentrations were determined immediately before and 15, 

30 and 60 minutes after intraperitoneal glucose injection under restrain condition. This 

analysis revealed that NIRKO mice exhibited a significantly reduced stress- induced increase 

in blood glucose concentrations as compared to their controls (Fig. 3.23), indicating that the 

endocrine response to stress was impaired despite unaltered basal plasma ACTH-

concentrations. 
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Figure3.23: Stress induced glucose tolerance test in NIRKO and control (IR Lox/Lox, Cre -; IR Lox/+, Cre -, 
and IR +/+, Cre – or +) mice. NIRKO (open circle) and control (closed circle). Data represent the mean ± SEM 
of at least 15 animals in each group and are 8 to 9 months old. Blood glucose levels were determined with an 
automatic blood glucose reader (Glucometer elite sensor, Bayer) in blood obtained from the tail tip before 
intraperitoneal (IP) injection of glucose (2 mg/g body weight) indicated as 0 min and 15, 30, and 60 min after IP 
injection. 
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3.7.3 Unaltered plasma prolactin concentrations in NIRKO mice 

 

To further assess anterior pituitary function in the absence of neuronal insulin signaling, we 

determined plasma prolactin (prl)-concentrations in NIRKO and control (IR Lox/Lox, Cre -; 

IR Lox/+, Cre -, and IR +/+, Cre – or +) mice. This analysis revealed that as previously 

described female mice exhibited significantly higher plasma prl-concentrations as compared 

to male mice, but there was no difference detectable between NIRKO and control mice, 

indicating that the dopaminergic regulation of prl-secretion was unaltered in the absence of 

neuronal insulin receptor signaling (Fig. 3.24). 
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Figure 3.24: Plasma prolactin concentrations in control indicated as “WT” male (open bar), NIRKO indicated as 
“KO” male (closed bar), control indicated as “WT” female (dotted bar) and NIRKO indicated as “KO” female 
(crossed bar). Plasma prolactin concentration was estimated by radioimmunoassay. Control animals were IR 
Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. Data represent the mean ± SEM of at least 15 animals of 
each genotype and gender at the age of 6 to 7 months. 
 

Similar to the normal regulation of prolactin secretion, basal growth hormone concentrations 

were unaltered in NIRKO mice when measured by radioimmunoassay (data not shown). 

 

 

3.7.4 Unaltered thyroid regulation in NIRKO mice 

 

Since thyroid hormone represents an important factor in the regulation of energy homeostasis 

(Ingram, et al., 1986; Silva, 2001) and given both the obese and hypogonadal phenotype of 

NIRKO mice, we investigated the hypothalamic/pituitary regulation of thyroid function in 

NIRKO and control (IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +) mice. 

Therefore, plasma concentrations of thyroid stimulating hormone (TSH) were determined by 

radioimmunoassay before and 30 minutes after intraperitoneal injection of TSH releasing 



 60 

hormone (TRH) (0.250 µg/animal) as shown in Fig. 3.25. Both basal TSH concentrations and 

those after TRH-stimulation were indistinguishable between control and NIRKO mice (Fig. 

3.25), indicating an intact regulation of thyroid function in NIRKO animals. 
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Figure 3.25: Thyroid stimulating hormone (TSH) concentration: (A), basal TSH levels and (B), TSH levels 30 
minutes after TRH injection. Control indicated as “WT” male (open bar), NIRKO indicated as “KO”male 
(closed bar), control indicated as “WT” female (dotted bar) and NIRKO indicated as “KO” female (crossed bar) 
mice. Plasma TSH concentration was determined by radioimmunoassay. Control animals were IR Lox/Lox, Cre 
-; IR Lox/+, Cre -, and IR +/+, Cre  – or +. Data represent the mean ± SEM of at least 15 animals of each 
genotype and gender. 
 
 
 
 
3. 8 Analysis of the interaction of hypogonadism, obesity and insulin action 

 

Since NIRKO mice exhibited both a hypogonadal and mildly obese phenotype our next 

experiments aimed at the identification of the interaction of these phenotypes. We therefore 

established a mouse model of defined hypogonadism by using ovarectomised female 

C57Bl/6J mice at the age of 8 weeks (May and Baker, Denmark). We decided to compare 

these mice to two different control groups, one being only sham-operated and another being 

ovarectomised but implanted with pellets releasing estradiol for 90 days to achieve serum 

estradiol concentrations of 100 pg/ml in the high physiological range. 

 

3.8.1 Ovarectomy results in increased body weight 

 

When the body weight of the three different groups of mice was monitored, there was no 

significant difference between the animals of the different experimental group at the age of 9 

weeks, i.e. one week after surgery. By contrast, at the age of 11 weeks, ovarectomised mice 

started to show significantly increased body weight as compared to both control groups,. and 

this phenotype further aggravated with increasing age. Therefore, ovarectomised mice 

exhibited a 10% increase in body weight at the age of 17 weeks (Fig. 3.26). In conclusion, 
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isolated hypogonadism results in an increased body weight comparable to that seen in female 

NIRKO mice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure3.26: Body weight of ovarectomised females (closed square), ovarectomised females implanted with 
estradiol-releasing pellets (closed triangle) and sham-operated females (closed circle). Surgery was performed at 
the age of 8 weeks. Data represent the mean ± SEM of at least 12 animals in each group (* = p < 0.05; **  = p 
<0.005).   
 
 

3.8.2 Ovarectomy causes obesity 

 

To determine whether the increase in body weight seen in the ovarectomised females was 

indeed the consequence of increased obesity, we determined the weight of white adipose 

tissue depots in the different groups of animals. Therefore, mice were sacrificed at the age of 

12 weeks and parametrial fat was removed and weighed (Fig. 3.27). This analysis revealed an 

approximately 2-fold increased white adipose tissue mass in the ovarectomised mice 

compared to sham-operated controls. Estradiol-replaced ovarectomised mice exhibited a 

reduced fat mass compared to the controls. 

 

0

0.2

0.4

0.6

0.8

1

1.2

WT Ova Ova+E

F
at

 p
ad

 w
ei

gh
t (

gm
)

 
 
Figure 3.27: Parametrial adipose tissue mass in sham-operated indicated as “WT” (open bar), ovarectomised 
(“Ova”, hatched bar) and ovarectomised females implanted with estradiol-releasing pellets (“Ova+E”, crossed 
bar). Data represent the mean ± SEM of at least 12 animals in each group (*** = p <0.005). 
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These data indicate that the increased body weight in the ovarectomised mice was indeed due 

to increased obesity. 

 

 

3.8.3 Elevated plasma leptin concentrations in ovarectomised mice 

 

To further confirm that the observed obesity is a consequence of hypogonadism, we 

determined the circulating plasma leptin concentrations in the different groups of mice by 

ELISA as described in materials and methods. Consistent with the increase in white adipose 

tissue mass, ovarectomised animals exhibited a 3-fold increase in circulating plasma leptin 

concentrations (** = p<0.005) compared to both control groups (Fig. 3.28).  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 3.28: Plasma leptin concentrations in sham operated (“WT”, open bar), ovarectomised (“Ova”, hatched 
bar) and ovarectomised, estradiol-replaced mice (“Ova+E” crossed bar) was determined by ELISA. Data 
represent the mean ± SEM of at least 12 animals in each group (** = p <0.005).   
 

 

3.8.4 Hypogonadism causes increased food intake 

 

As obesity can result from either increased food intake or reduced energy expenditure, we 

determined the amount of food consumed by ovarectomised animals and controls over a 

period of one week. In these experiments ovarectomised mice exhibited a 10% higher food 

intake compared to sham-operated or ovarectomised mice under estradiol replacement (Fig. 

3.29). In conclusion, hypogonadism in female mice resulted in mild obesity, at least in part 

due to an increased food intake. 
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Figure 3.29: Food intake in sham-operated (“WT”, open bar), ovarectomised (“Ova”, hatched bar) and 
ovarectomised, estradiol-replaced mice (“Ova+E”, crossed bar). Data represent the mean ± SEM of at least 10 
animals in each group (* = p < 0.05).   
 
 

3.8.5 Ovarectomised mice remain euglycemic  

 

To determine, whether the obese phenotype of ovarectomised female mice has an effect on 

glucose metabolism, we first determined the blood glucose concentrations in the different 

groups of mice with an automated glucose reader in a small drop of tail tip blood. The 

ovarectomised animals exhibited ~10% higher blood glucose levels than their controls (sham-

operated and ovarectomised mice under estradiol-replacement). But this difference did not 

reach statistical significance (Fig. 3.30). 
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Figure 3.30: Blood glucose levels in sham-operated (“WT”, open bar), ovarectomised (“Ova”, hatched bar) and 
ovarectomised, estradiol-replaced mice (“Ova+E”, crossed bar) mice were determined by automatic blood 
glucose reader (Glucometer elite, Bayer) in a drop of tail tip blood. Data represent the mean ± SEM of at least 10 
animals of each group. 
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3.8.6 Unaltered plasma insulin concentrations in ovarectomised mice 

 

To determine whether the slight elevation of blood glucose concentrations in the fed state in 

ovarectomised mice (Fig. 3.30) resulted from systemic insulin resistance, we also determined 

plasma insulin concentrations in the different groups of animals by ELISA as described in 

materials and methods. Again, as for the blood glucose concentrations, there was a trend 

towards higher plasma insulin concentrations in ovarectomised females compared to both 

control groups, but this difference did not reach statistical significance (Fig. 3.31).  
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Figure 3.31: Plasma insulin levels in sham-operated (“WT”, open bar), ovarectomised (“Ova”, hatched bar) and 
ovarectomised mice under estradiol replacement (“Ova+E”, crossed bar). Plasma insulin concentration was 
determined in serum samples by ELISA. Data represent the mean  ± SEM of at least 8 animals in each group. 
 
 

3.8.7 Unaltered insulin tolerance in ovarectomised females 

 

To further analyse whether estradiol-deficiency may lead to insulin resistance, we 

investigated the blood glucose lowering effect of intraperitoneally administered insulin (0.75 

IU/Kg body weight), following an overnight fasting period. Blood glucose levels were 

determined with an automatic blood glucose reader (Glucometer elite sensor, Bayer) in tail tip 

blood before insulin injection (0 min.) and 15, 30 and 60 min after insulin injection. These 

experiments revealed a similar drop of blood glucose concentrations in response to 

exogenously administered insulin in all three groups of experimental animals, indicating the 

absence of significant insulin resistance as a consequence of hypogonadism (Fig. 3.32). 
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Figure 3.32: Insulin tolerance test in ovarectomised animals: ovarectomised females (closed triangle) and sham-
operated females (closed circle), estradiol-replaced females (closed square). Animals were injected 
intraperitoneally insulin (0.75 IU/Kg body weight), and blood glucose level was determined before injection 
indicating as 0 min, and 15, 30 and 60 min after insulin injection. The initial values at 0 min (blood glucose level 
75 to 84 mg/dL) are set arbitrarily as 100%. Data represent the mean ± SEM of at least 10 animals in each group. 
 

 

3.8.8 Ovarectomised mice exhibit mildly impaired glucose tolerance 

 

Since dysregulation of glucose homeostasis can result both from impaired insulin action, i.e. 

insulin resistance, and impaired insulin secretion (Cretti et al., 2001; Meyer et al., 2002;), we 

tested the ability of ovarectomised animals to metabolise an intraperitoneal challenge of 

glucose. Animals were injected with glucose (2 mg/g body weight) intraperitoneally, and 

blood glucose was measured before injection (0 min) and 15, 30, 60, and 120 min after 

injection. Blood glucose was assayed with an automatic glucose reader in blood obtained 

from the tail tip. This analysis revealed that ovarectomised mice exhibited a statistically 

significant slower decrease in blood glucose concentrations at 30 and 60 minutes time point 

after intraperitoneal application of glucose (Fig. 3.33) compared to both control groups, 

indicating that ovarectomy resulted not only in mild obesity but also in impaired glucose 

metabolism, most likely due to impaired insulin secretion. 

 

 

 
 
 
 
 
 
 
 
Figure 3.33: Glucose tolerance test in ovarectomised females (closed triangle), sham-operated females (closed 
circle) and ovarectomised, estradiol-replaced females (closed square). Blood glucose was determined before (0 
min.) and after (15, 30, 60 and 120 min) intraperitoneal injection of glucose with an automatic glucose reader 
(Glucometer elite sensor, Bayer) in blood from tail tips. Data represent the mean ± SEM of at least 15 animals in 
each group (* = p < 0.05).   
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3.8.9 Analysis of insulin secretion 

 

To evaluate the effect of ovarectomy on the pancreatic ß-cell function, insulin release was 

measured in response to intraperitoneal application of glucose. To determine the insulin 

release upon glucose stimulation, animals received an intraperitoneal injection of glucose, (3 

mg/g body weight) following an overnight fasting period. Then blood was collected from the 

tail vein after 2, 5, 15 and 30 minutes. Plasma insulin concentrations were determined by 

ELISA. While in sham-operated mice a 1-fold and in ovarectomised estradiol-replaced 

females a 1.5-fold increase in insulin secretion was observed at 2 minutes after glucose 

injection, there was no significant increase of insulin release detectable in ovarectomised mice 

at this time point. By contrast, plasma insulin concentrations 30 minutes after glucose 

injection were indistinguishable between the different groups of mice, indicating that the 

slow, second phase of glucose-stimulated insulin secretion was intact in the ovarectomised 

animals (Fig. 3.34).   
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Figure 3.34: Glucose-stimulated insulin secretion in ovarectomised females (closed triangle), sham-operated 
females (closed circle) and ovarectomised with estradiol-replaced females (closed square). Serum insulin 
concentrations were determined by ELISA. A statistically significant difference was observed for ovarectomised 
females compared to ovarectomised estradiol-replaced females at the 2 and 5 minute time intervals. Data 
represent the mean ± SEM of at least 10 animals in each group (* = p < 0.05).   
 

 
In summary, these data indicate that ovarectomy resulted in a mildly obese phenotype, at least 

in part due to hyperphagia, a phenotype comparable to that seen in NIRKO-female mice. By 

contrast, hypogonadism did not result in significant insulin resistance but rather in impaired 

glucose-stimulated insulin secretion.  
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3.9 Behavioural analysis of NIRKO mice 

 
3.9.1 Morris water maze test (Morris, 1984) 

 

Since insulin signalling in the central nervous system has been implicated in the regulation of 

learning and memory (Zhao et al., 1999), NIRKO mice represent an excellent model to study 

the role of IR in this process in vivo. Therefore, we analysed the learning capabilities of 

NIRKO mice in a Morris Water Maze test. Female and male controls (IR Lox/Lox, Cre -; IR 

Lox/+, Cre -, and IR +/+, Cre – or +)  and NIRKO mice aged 4 to 6 months were selected for 

this study. 

Each animal was put into a water filled tub and allowed to swim for 90 seconds to locate and 

escape to a submerged, hidden platform. The test was performed on 5 consecutive days and 

both the time spent and distance swom to the platform were recorded. This analysis revealed 

that escape latencies did not differ for control and NIRKO mice (Fig. 3.35 A). 
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Figure 3.35 A: Escape latency of mice in the Morris water maze test: Control (closed square) and NIRKO (open 
square). B: Time spent in different pool quadrants during the probe trial in the Morris water maze test: Control 
(open bar) and NIRKO (closed bar); N=north quadrant; E=east quadrant; S=south quadrant and W=west 
quadrant. C: Swimming speed of NIRKO and control mice in the Morris Water Maze test: Control (“WT”, open 
bar) and NIRKO (“KO”, closed bar). Controls were  IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. 
Data represent the mean ± SEM of at least 12 animals of each group. 
 
 

During the 5 day training period, the hidden platform was kept to the north quadrant. After 5 

days, a probe trial was performed, in which the platform was removed from the pool. Again, 

mice were allowed to swim for 90 sec and the time spent in different quadrants of the pool 

was recorded. Both NIRKO mice and controls performed similarly in the probe trial, spending 

significantly more time in the north quadrant as compared to the others (Fig. 3.35 B). 

 

These data indicated, that despite severe insulin resistance in the central nervous system, 

NIRKO mice did not exhibit any severe impairment in learning in this test paradigm. 

 

A B C 
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Moreover, the Morris Water Maze test serves to evaluate the motoric capabilities of NIRKO 

and control mice. Therefore, the swimming speed was calculated from the time spent and the 

distance swom to escape to the platform. This analysis revealed that swimming capabilities 

were not significantly different in NIRKO and control animals (Fig. 3.35 C). 

 

In the course of these different behavioural experiments it became obvious, that the animals 

within each group exhibited a large variation in terms of their performance. Since 

neuropsychological performance in mice strongly depends on the genetic background strain, 

and the NIRKO mouse colony was first kept on a mixed C57Bl/6J/129sv background, we 

decided to backcross these mice on a C57Bl/6J background, in order to better be able to detect 

differences in learning and memory capabilities, potentially masked by the intergroup 

variation. Therefore, NIRKO mice were backcrossed for 6 generations on a C57Bl/6J 

background, resulting in >95% pure genetic background. 

 

The Morris Water Maze test was then repeated on these animals. This analysis revealed, that 

by backcrossing, the large intra-group variation was virtually abolished, but that also under 

these conditions NIRKO and control mice performed similarly (Fig.3.35 D). 
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Fig. 3.35 D: Morris Water Maze test with NIRKO and control mice after backcrossing to the C57Bl/6J 
background. Control mice (closed square) and NIRKO mice (open squares). During 5 consecutive days of trial, 
the escape latency of NIRKO was reduced and is comparable with their control littermates. Controls were IR 
Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. Data represent the mean ± SEM of at least 8 animals of 
each group. 
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3.9.2 Anxiety tests in NIRKO and control mice 

 

The implication of anxiety tests was to investigate the role of IR signalling in the central 

nervous system in the regulation of mechanisms underlying anxiety such as generalised 

anxiety, panic, phobia and posttraumatic disorders. 

 

3.9.2.1 Open field test (Corman et al., 1967; Barclay et al., 1982) 

 

Anxiety, phobia and motoric activity of mice can be determined in the open field test. 4 to 6 

months old animals (male and female) were selected for this study. They were allowed to 

move in a Perspex box for 300 seconds, and their movements to the centre, to the corners and 

along the wall were recorded. Indicating the shelter provided by corners and walls, both 

NIRKO and control mice spent the majority of the test period in these regions when exposed 

to this new environment, showing an indistinguishable performance between the two groups 

of mice (Fig. 3.36). 
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Figure 3.36: Open field test: Control (open bar) and NIRKO mice (closed bar). Open field test was performed 
according to the standard experimental procedures. In this test each animal was allowed to perform 5 consecutive 
days and their movements to the wall, centre and corner were recorded in a computer. Controls were IR 
Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. Data represent the mean ± SEM of at least 24 animals of 
each group. 
 

 

3.9.2.2 Elevated plus maze test (Pellow et al., 1985 and 1986) 

 

Another paradigm aimed to assess anxiety-related behaviour is the elevated plus maze test. 4 

to 6 months old animals were selected for this study. 

In this test, mice can freely choose to walk on a wall-sheltered arm and an unsheltered arm, 

while the maze is elevated 50 cm above the ground. Mice were allowed to spend 300 sec on 

this maze and their time spent in the open arm and closed arm was recorded. Both NIRKO 
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and control (IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +) mice spent 

significantly more time in the closed arm and there was no statistically significant difference 

observed among these groups (Fig. 3.37).  
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Figure 3.37: Elevated plus maze test: Control (open bars) and NIRKO (closed bars). The elevated plus maze test 
was performed according to the standard experimental procedures. In this test animals were allowed to perform 5 
consecutive days and their movement to the open arm and closed arm was recorded in computer. Control 
indicates IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. Data represent the mean ± SEM of at least 
24 animals of each group. 
 
 

Consistent with the results obtained in the open field test (Fig. 3.36), the elevated plus maze 

test did not provide any evidence for altered anxiety-related behaviour in the absence of 

neuronal insulin receptor signalling. 

 

 

3.9.2.3 Light and dark exploration test (Ambrogi et al., 1984) 

 

To further test behavioural performance, the light and dark exploration test was performed. 

For this test a box containing a light and a dark compartment was used, the two compartments 

connected by a small tunnel. The mice were placed in the dark compartment of the test box 

and both the time of first crossing into the light compartment and the total time spent in each 

compartment were recorded, each mouse being allowed to explore the test area for 300 

seconds. Again consistent with the performance in the open field and elevated plus maze test, 

there was no significantly different performance detectable between NIRKO and control (IR 

Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +) mice (Fig. 3.38) 
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Figure 3.38: Light and dark exploration test: Control (open bars) and NIRKO (closed bars) mice Control 
animals indicates IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. In this test animal was allowed to 
perform 5 consecutive days and their movement to the light and dark side of the box was recorded. Controls 
were IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. Data represent the mean ± SEM of at least 24 
animals of each group. 
 
 

In summary, NIRKO mice did not exhibit any abnormalities in these different anxiety tests. 

Therefore, neuronal IR signalling appears not to be involved in the formation of behavioural 

paradigms related to exploration and anxiety. 

 

 

3.9.3 Olfactory test  

 

Lack of sense of smell will interfere with behaviour of the mice with respect to many 

behavioural structures such as feeding, social interaction, aggressive encounters, sexual 

behaviours, and parental behaviours. We therefore tested the impact of lacking neuronal IR-

signalling on the ability of mice to locate a hidden cheese (smell stimulus) over a 300 second 

test period. The time required to locate the cheese (olfactory stimulus) was recorded. Both 

NIRKO and control (IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +) mice 

exhibited indistinguishable latency periods in locating the olfactory stimulus, indicating that 

neuronal IR-signalling is dispensable for normal olfactory function (Fig. 3.39). 
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Figure 3.39: Olfactory test: Control (open bars) and NIRKO (closed bars). Mice are allowed to locate hidden 
cheese inside the cage. In this test animal was allowed to perform once and the time needed to locate the hidden 
cheese was recorded. Control indicates IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +. Data 
represent the mean ± SEM of at least 12 animals of each group. 
 
 
 
 
 
3.10 Role of IR expression in the regulation of neuronal development and survival 

 

3.10.1 Brain weight 

 

Since in vitro studies have implicated a role for IR signalling in neuronal differentiation and 

survival (Yamada et al., 1997; Nakamura et al., 2001), we analysed the weight of brains from 

NIRKO and control (IR Lox/Lox, Cre -; IR Lox/+, Cre -, and IR +/+, Cre – or +) mice. In 

addition, possible morphological alterations were assessed by histological analysis of brains 

sections. The first analysis revealed that brain weights of NIRKO and control mice did not 

exhibit any statistically significant difference (Fig. 3.40), indicating that neuronal IR 

signalling has no profound impact on brain development in 6 to 8 months old male and female 

mice. 

 

Figure 3.40: Brain weight of control (“WT”, open bar) and NIRKO (“KO”, closed bar) mice. Data represent the 
mean SEM ± of at least 20 animals of each genotype. Control animals were IR Lox/Lox, Cre -; IR Lox/+, Cre -, 
and IR +/+, Cre – or +.  
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Moreover, histological examination of sections prepared from NIRKO and control brains did 

not reveal any gross structural alterations due to impaired IR signalling (data not shown). 

These results indicate that neuronal IRs appear not to be a major factor in normal brain 

development. 

 

 

3.10.2 Apoptosis in cultured neurons from NIRKO and control mice 

 

In order to investigate the role of neuronal IR signalling in the regulation of apoptosis, we 

analysed the ability of insulin and IGF-I to prevent neuronal apoptosis in cultured cerebellar 

granular cells of NIRKO and control mice. 105 cerebellar neuronal cells were plated in 96 

wells cell culture plate coated with poly-L- lysine. After 5 days of culture the cerebellar 

neuronal cells were potassium-depleted for 24 hours to induce apoptosis, with or without 

addition of insulin or IGF-I. The percentage of apoptotic cells was assessed by Hoechst Dye 

staining of condensed nuclei. Fig. 3.41 shows a representative example for one of these 

experiments. Potassium withdrawal leading to membrane depolarisation resulted in profound 

induction of apoptosis (fig. 3.41; left upper and lower panel), which could be prevented by 

incubation with increasing doses of IGF-I in case of control mice (fig. 3.41; lower right panel) 

and also with insulin (fig. 3.41, lower middle panel), while insulin failed to inhibit apoptosis 

in the neurons cultured from NIRKO mice (fig 3.41; upper middle panel). 

 

 

    

 

 

 

 

 

 

 

 

 

 
Figure 3.41: Primarily cultured cerebellar granular cells of 5-day old NIRKO (upper panel) and control (lower 
panel) mice were subjected to low KCl-containing (5mM) medium to induce apoptosis (left lane); cells were 
incubated (24 hours) with 100nM insulin (middle panel) and with 100nM IGF-I (right panel) and condensed 
nuclei were stained with Hoechst Dye. 
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To analyse more detailed the ability of insulin and IGF-I to inhibit apoptosis in cultured 

neurons, we performed similar experiments with increasing doses of insulin and IGF-I. While 

in control neurons insulin was able to inhibit apoptosis in a dose-dependent fashion from 77% 

of apoptotic cells to 50% at a concentration of 10 nM and 35% at 100 nM, insulin was not 

able to inhibit apoptosis in neurons cultured from NIRKO mice (Fig. 3.42 A). Performing the 

same type of experiments with increasing doses of IGF-I revealed two major findings. First, 

in cells obtained from control mice, IGF-I was clearly more potent to inhibit apoptosis than 

insulin. The percentage of apoptotic cells was reduced to 15% at 100 nM IGF-I (Fig. 3.42 B). 

Surprisingly, although also neurons cultured from NIRKO mice exhibited a strong response to 

the anti-apoptotic effect of IGF-I compared to cells from control mice, there was a shift in the 

dose response to the right (Fig 3.42 B). 
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Figure 3.42: Anti-apoptotic effect of insulin and IGF -I on primary cerebellar granular cells. Control (open bars) 
and NIRKO mice (closed bars). Cerebellar granular neuronals cells were prepared from 5 day old pups from 
NIRKO and control (IR Lox/Lox, Cre -) mice individually. 105 cells per well were plated on 96 well plates 
coated with poly-L-lysine, and incubated for 5 days in 37 0C incubator with 5% CO2. To induce apoptosis, on 
day 6 cells were grown for 24 hours in KCl-depleted (5mM) medium. To save them from apoptosis, cells were 
stimulated with 0nM, 0.1nM, 1.0nM, 10nM and 100nM insulin (A) or IGF-I  (B). Cells were fixed in 4% 
paraformaldehyde and stained with Hoechst dye. Cells from each well were then counted under a fluorescent 
microscope. Percentages of live and dead cells were assessed from the total cell count. Control indicates 
neuronal cells from IR Lox/Lox, Cre – pups. Data represent the mean ± SEM of al least 8 animals of each 
genotype.  
 

 

To further investigate the molecular mechanisms involved in the anti-apoptotic effect of 

insulin and IGF-I, we determined the activation of the serine-kinase Akt. In overexpression 

studies Akt has been demonstrated to be able to inhibit apoptosis, thus representing an 

important downstream target of the PI 3-kinase pathway following insulin and IGF-I-

stimulation (Kuemmerle et al., 1998; Wymann et al., 1998; Imai et al., 1999). Akt itself is 

activated through serine/threonine-phosphorylation by phospholipid-dependent kinases (PDK) 

(Bertrand et al., 1999). Phosphorylation of Akt was determined upon insulin and IGF-I 

A B 
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pAkt 

       1       2          3          4           5          6 
Insulin    (10 nM)      -       +           -           -        +       - 
IGF-I    (10 nM)      -       -            +           -         -          + 
                    Control   NIRKO 

stimulation in neurons cultured from NIRKO and control (IR Lox/Lox with Cre -) mice. For 

this study cerebellar granular cells were prepared from 5 day old pups from NIRKO and 

control mice. 3 x 106 cells per well were grown for five days in 6-well-plates coated with 

poly-L-lysine. On day six, cells were stimulated for 10 min with 10 nM insulin or IGF-I and 

harvested as described above. Proteins were resolved on an 8% polyacrylamide gel under 

reducing conditions and transferred onto a nitrocellulose membrane. The membrane was the 

probed with a pAkt specific antibody. This analysis revealed that despite insulin fails to 

inhibit apoptosis in primary neuronal cells of NIRKO mice, it still can induce Akt 

phosphorylation although to a lesser extent than IGF-I both in neurons from control and 

NIRKO mice (Fig. 3.44).  

 

 
 

 

 

Figure 3.44: Immunoblot analysis of Akt phosphorylation in primary neuronal cell culture following stimulation 
with insulin or IGF -I (10nM) for 10 min. Cerebellar granular cells from 5-day-old control (IR Lox/Lox Cre -) 
(lane 1,2,and 3) and NIRKO (lane 4,5 and 6) mice were processed and cultured as described previously. After an 
overnight starving period in serum-free medium, cells were either left untreated (lane 1 and 4) or stimulated with 
insulin (lane 2 and 5) or IGF-I (lane 3 and 6). Total protein extracts (50 µg/lane) were resolved on an 8% SDS-
polyacrylamide gel under reducing conditions and were transferred onto a nitrocellulose membrane. The 
resulting blot was probed with pAkt specific antiserum (1:200). Anti rabbit IgG (1:1000) was used as secondary 
antibodie. Bound antibodies were detected using the ECL system. Data represent the mean ± SEM of al least 6 
animals of each genotype. 
 

 

These data indicate that Akt phosphorylation activated by insulin stimulation even in the 

absence of IR expression is not sufficient to mediate the anti-apoptotic effect of insulin. 

Neurons cultured from NIRKO mice therefore represent a useful model to further investigate 

the exact molecular mechanism of IR mediated inhibition of apoptosis. 
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IGF-I Receptor ß-subunit 

  Control              NIRKO 

3.10.3 Unaltered IGF-I receptor expression in cultured neurons from NIRKO mice  

 

To further investigate whether the deletion of the insulin receptor in the brain of NIRKO 

mouse leads to alterations in the expression of the closely related IGF-I receptor, we 

determined the expression of this receptor in neurons cultured from NIRKO and control mice 

by Western Blot analysis as described in detail in material and methods. As shown in Fig. 

3.43 deletion of IR in NIRKO mice did not result in any changes, as for example 

compensatory upregulation of IGF-I receptor expression. 

 

 
 

Figure 3.43: Immunoblot analysis of IGF -I Receptor expression in cultured neurons from control (IR Lox/Lox 
Cre -) and NIRKO pups. Cerebellar granular cells were prepared from 5 day old pups and cells were grown in 
polylysine-L coated plates for 5 days before protein extraction. Total protein extracts (50 µg/lane) were resolved 
on an 8% SDS-polyacrilamide gel under reducing conditions and were transferred onto a nitrocellulose 
membrane. The resulting blot was probed with IGF -1R-ß specific antiserum (1:200). Anti rabbit IgG (1:1000) 
was used as secondary antibody. Bound antibodies were detected unsing the ECL system. Data represent the 
mean ± SEM of al least 6 animals of each genotype. 
 
 

Therefore, cultured neurons from NIRKO mice represent a useful tool to analyse insulin and 

IGF-I-mediated signalling in the absence of insulin receptors and without the occurrence of 

compensatory changes in IGF-I-receptor expression. 
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4.  Discussion 
 

Insulin receptors has been reported to be widely expressed in the different areas of the CNS 

with variable densities such as olfactory bulb, cerebral cortex, hypothalamus, hippocampus, 

cerebellum and choroids plexus (Baskin et al., 1988; LeRoith et al., 1988; Adamo et al., 

1989; Marks et al., 1991; Unger et al., 1991; Zhao et al., 1999). Although subject to research 

for more than 20 years, the functional role of IR expressed in those areas remained largely 

unclear.  

 

The first important issue regarding insulin action in the CNS is the question how insulin can 

cross the blood brain barrier to act on neuronal insulin receptors. There have been several 

reports demonstrating an active transport mechanism for insulin across the blood brain barrier, 

which can be inhibited by glucocorticoids (Baura et al., 1993; Baura et al., 1996), on the other 

hand there has been evidence for insulin production directly in the central nervous system 

(Schechter et al., 2001). Regardless of the mechanism it appears possible that insulin 

signaling can occur in the central nervous system under physiological conditions. Since it has 

been stated that neuronal insulin receptors might participate in the transport of insulin across 

the blood brain barrier, future experiments using the generated mouse lines with insulin 

receptor ablation in the CNS (NIRKO mice) will provide an excellent tool to analyse the 

importance of IR action in this mechanism, by determining insulin concentrations in the 

cerebral spinal fluid of NIRKO and control mice.  

 

The research on the role of IR expressed in the CNS has been directed by different 

hypotheses. First, insulin is the key metabolic hormone regulating postprandial glucose 

disposition and its concentrations rise quickly after ingestion of a carbohydrate-containing 

meal (Porksen, 2002). Therefore, insulin represents a prime candidate as a negative feedback 

regulator for food intake, by acting on hypothalamic centers regulating feeding behaviour. 

Along this line the expression pattern of insulin receptors in the CNS with high levels of 

expression in the hypothalamus has further prompted this hypothesis (Marks et al., 1990). The 

hypothesis of insulin acting as a negative feedback mechanism on the regulation of food 

intake was then further emphasized when Schwartz et al. (1992) could demonstrate that 

intracerebroventricular injection of insulin can acutely inhibit food intake. 

 

Although glucose uptake in the central nervous system has been classically viewed as being 

insulin- independent, over the last years components of the insulin sensitive glucose transport 
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signaling system, such as the Glut4-transporter have been identified in the CNS (Alquier et 

al., 2001). 

 

Given the importance for insulin in the regulation of glucose uptake in adipose tissue and 

skeletal muscle, this has revived research investigating a possible role for neuronal insulin 

receptors in the regulation of brain glucose metabolism. Therefore, studies have been 

performed on the expression of insulin signaling proteins in states with impaired brain glucose 

metabolism, i.e. in brains from patients suffering from neurodegenerative diseases such as 

Alzheimer’s and Parkinson’s disease. Indeed these studies revealed reduced expression of 

insulin receptors under these conditions, leaving the question open, whether this plays any 

causal role in the development of these diseases (Craft et al., 1998). Moreover, further studies 

in rats could demonstrate the activation of the insulin-signaling cascade upon learning (Zhoa 

et al., 1999). Furthermore, mainly studies on cultured neurons have shown that insulin and 

IGF-I can promote neuronal differentiation and survival in vitro (Aizeman et al., 1987; Svrzic 

et al., 1990; Fernyhough et al., 1993). 

 

Taken together, there has been emerging evidence that insulin, acting through the insulin 

receptor in the central nervous system might play an important role in the regulation of 

essential functions like food intake, obesity, and learning and memory in mammals (Zhoa et 

al., 1999; Schwartz, 2000), but definite proof for its role in the physiological context has been 

missing. Therefore, the generation and characterisation of mice lacking functional IR 

expression in the CNS provided an excellent model to test these hypotheses. 

 

 

4.1 Generation of NIRKO mice 

 

Generation of mice with disruption of the insulin receptor in the central nervous system was 

achieved by the use of Cre-LoxP-mediated recombination in mice (Gu et al., 1994). Mice 

carrying a “floxed” allele of the IR gene, which had been previously demonstrated to lack 

functional IR expression upon Cre-mediated deletion (Brüning et al., 1998) were mated to 

mice expressing Cre-recombinase under cont rol of the rat nestin promoter and enhancer 

(Dahlstrand, 1995). Nestin is a 38 kDa intermediate filament protein specifically expressed in 

neuroepithelial stem cells (Lendahl et al., 1990). Immunoblot analysis using a polyclonal 

antiserum against the IR-ß subunit showed a > 95% reduction of IR expression in whole brain 
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extracts obtained from NIRKO animals compared to their controls. Since the CNS represents 

a complex organ harbouring a variety of different cell types, the question remained, whether 

the residual expression of IR in the whole brain extracts did arise from cell types different 

from neuroepithelial stem cells, or represented inefficient deletion in neuroepithelial stem 

cells. Further experiments therefore focused on the establishment of an 

immunohistochemistry protocol to detect IR expression in situ in brain sections prepared from 

NIRKO and control mice. Unfortunately, these experiments did not allow a conclusive answer 

to this question. Although a variety of different anti-IR antibodies have been tested for this 

purpose, no specific signal for IR expressed in the central nervous system could be achieved. 

These findings are consistent with the notion, that insulin receptors are expressed at relatively 

low abundance in the CNS, and that previous studies from other groups yielded conflicting 

data describing the sites of IR expression in the CNS (Baskin et al., 1988; LeRoith et al., 

1988; Adamo et al., 1989; Marks et al., 1991; Unger et al., 1991; Zhao et al., 1999). 

Moreover, previous studies lacked the negative control as exemplified by NIRKO mice and 

might therefore have also reported unspecific staining. 

 

To circumvent this problem and to further define the efficiency of IR deletion in neurons of 

NIRKO mice, we analysed the expression of IR in cultured neurons, i.e. cerebellar granular 

cells from NIRKO and control mice. The principle of the culture protocol is based on the fact 

that postnatal neurons can still be cultured, but are postmitotic and can therefore be separated 

from non-neuronal cells by treatment with the cell cycle-dependent cytostatic agent cytosine 

arabinoside (AraC), which only affects dividing cells (Oorschot and Jones, 1986). Following 

this protocol it was possible to obtain a highly enriched neuronal culture from these animals 

allowing us to detect complete recombination of the floxed IR allele and abolished IR 

expression as assessed by PCR and Western blot analysis on cultured neuronal cells obtained 

from NIRKO mice. These findings further support that the inactivation of the IR gene in 

NIRKO mice appeared to be rather complete in neuroepithelial stem cell derived populations. 

Along this line it is worth noting that the same line of Cre-transgenic mice has been used to 

achieve efficient inactivation of the glucocorticoid receptor gene in the CNS of mice (Tronche 

et al., 1999). 

 

In conclusion, the data obtained in our experiments show that inactivation of the IR gene in 

the CNS of NIRKO mice occurred with high efficiency in neuroepithelial stem cell derived 

cell populations. 
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4.2 Obesity in NIRKO mice 

 

The results reported in this study provide for the first time direct evidence for a role of insulin 

receptors in the regulation of energy homeostasis in a physiological context. Three lines of 

evidence confirmed the mild obese phenotype of NIRKO mice: 

 

The increased body weight, consistent with an increase in directly assessed white adipose 

tissue mass, and corresponding to elevated plasma leptin concentrations - a hormone 

previously shown to correlate well with the fat content of an organism (Shimizu et al., 1997). 

Therefore, we conclude that chronic insulin resistance in the central nervous system indeed 

can predispose for development of obesity. Nevertheless, the relevance of insulin in the 

regulation of body weight has to be put into context with other hormones regulating energy 

homeostasis. It had been demonstrated that after intracerebroventricular injection both leptin 

and insulin inhibited food intake by regulating the same neuronal populations in the arcuate 

nucleus of the hypothalamus (Schwartz et al., 1992). Comparing the phenotype of genetically 

leptin-resistant animals, the ob/ob-mouse, which exhibits a morbidly obese phenotype 

(Coleman et al., 1973), the obesity detectable in NIRKO mice is relatively mild. 

 

These data indicate that leptin in comparison to insulin could be a much more important factor 

in the regulation of energy homeostasis. Alternatively, this discrepancy might be explained by 

the existence of alternative mediators for insulin action in the CNS, i.e. IGF-I receptors. This 

is further supported by a recent study of Baudry et al (2001), in the absence of IR in the 

muscle cells lead to metabolic effects through the IGF-I receptor with an efficiency that is 

comparable to that of IR. Interestingly, IGF-IR expression assessed by westernblot analysis 

on cultured neuronal cells obtained from NIRKO and  control mice exhibited equal 

expression, so any potential compensatory effect mediated through IGF-I receptors does not 

seem to occur via an upregulation of receptor expression. Therefore, ongoing studies aim to 

analyse the potential compensatory role for IGF-IR in NIRKO mice by the creation of animals 

with CNS specific deletion of both the IR and IGF-IR. 

 

Energy homeostasis results from the balance of energy intake and energy expenditure. In the 

present study only one side of this equilibrium has been analysed. Namely, we could detect an 

increased food intake, at least in female NIRKO mice as a result of CNS-specific insulin 

resistance. Hence, it will be important to also determine the energy expenditure in NIRKO 
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mice by indirect calorimetrie. Indeed, there has been evidence for insulin to regulate 

sympathetic activity in the CNS, a fact, which certainly needs further proof in NIRKO mice 

(Ruggeri et al., 2001). 

 

Regarding the increased food intake of NIRKO mice, further studies have provided some 

evidence for the signaling events involved in insulin-stimulated regulation of feeding 

behaviour of these animals. In the arcuate nucleus of the hypothalamus, both insulin and 

leptin regulate expression of orexigenic (NPY and AGRP), and anorexigenic (POMC and 

CART) peptides in hyperthalamic neurons. It has been observed that following the 

intracerebroventricular injection of leptin, NPY/AGRP-expressing neurons are inhibited 

(Satoh et al., 1997) and similarly, insulin also inhibited expression of NPY (Sipols et al., 

1995). Further studies from our laboratory have revealed, that in NIRKO mice under steady 

state conditions, NPY expression is elevated ~2-fold in NIRKO mice as compared to control 

animals (J. Gillette, Klinik und Poliklinik für Innere Medizin, personal communication). 

Although intracerebroventricular injection studies had suggested a negative regulatory 

function of insulin on the expression of POMC, expression of this peptide-precursor was 

found unaltered in the NIRKO mice (J. Gillette, Klinik und Poliklinik für Innere Medizin, 

personal communication). Since also leptin regulates POMC expression and leptin levels are 

elevated in the NIRKO mice, and we have demonstrated that NIRKO mice are still leptin-

sensitive in vivo, it appears likely that leptin can compensate for the lack of IR signaling in 

this pathway or alternatively, that leptin under physiological conditions is the major regulator 

of this pathway. 

 

Regardless of the molecular mechanisms of cerebral insulin resistance leading to obesity, our 

data support a unifying hypothesis that insulin resistance also in the central nervous system 

might be responsible for the close association of obesity and diabetes mellitus type 2 (De 

Fronzo et al., 1991). 

 

 

4.3 Hypothalamic hypogonadism in NIRKO mice 

 

Beside the mild obesity, NIRKO mice exhibited reduced fertility due to hypothalamic 

hypogonadism. This finding can be linked to the evolutionary conservation of insulin 

signaling. Orthologues of the IR have been identified in C.elegans, and Drosophila (Fig. 4.1).  
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Fig. 4.1: Insulin receptor orthologues in C.elegans and Drosophila melanogaster and related signaling pathways 
(Ogg et al., 1997; Tissenbaum et al, 1998; Taha et al, 1999).  
 

 

Interestingly, an inactivating mutation of the C.elegans orthologue DAF-2 results in transition 

of the organism to the Dauer-stage, representing reduced fertility (Kenyon et al., 1993; 

Kimura et al., 1997; Thissenbaum et al., 1998). This phenotype is associated with increased 

lipid storage and longevity (Kimura et al., 1997). Similarly, in Drosophila at least in female 

flies, both single mutations of the insulin receptor orthologue and the insulin receptor 

substrate orthologue CHICO result in reduced fertility, increased lipid storage and longevity 

(Clancy et al., 2001; Tatar et al., 2001). While ubiquitous reexpression of DAF-2 in DAF-2-

mutant C.elegans restores these defects, transgenic rescue of DAF-2 selectively in skeletal 

muscle fails to do so (Wolkow et al., 2000). Interestingly, selective expression of DAF-1 in 

the central nervous system is also able to rescue the DAF-1-mutant phenotype in C.elegans 

(Wolkow et al., 2000). 

 

In conclusion, the phenotype observed in NIRKO mice points to an evolutionary conserved 

signaling pathway regulating fertility and full homeostasis and possibly longevity. Therefore, 

ongoing studies aim to determine life span of NIRKO mice, to test this tempting hypothesis. 

 

Another striking similarity has been described in mice with conventional targeted disruption 

of the IRS-2 gene. Matings between IRS2-/- males and females did not result in any pregnancy 
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and IRS2-/- males exhibited reduced fertility (Burks et al., 2000). Like in IRS2-/- females, the 

histological section of NIRKO females also revealed a reduced number of antral follicles and 

corpora lutea, indicating that NIRKO mice had insufficient gonadotropin input for the proper 

maintenance of ovarian follicle maturation. Likewise, in male NIRKO and IRS-2-deficient 

mice, insufficient gonadotropin results in impaired Leyding cell function as well as 

spermatogenesis (Burks et al., 2000). 

 

Reduced gonadotropin secretion can result from defects on different levels of gonadotropin 

release. The neurosecretory neurons present in the arcuate nucleus of hypothalamus produce 

the peptide hormone gonadotropin-releasing hormone (GnRH). GnRH is transported to the 

anterior pituitary through a capillary network and acts on the gonadotropin-secreting cells to 

stimulate the production and release of two glycoproteins, luteinizing hormone (LH) and 

follicle-stimulating hormone (FSH) (Fig. 4.2). These gonadotropins are secreted into the 

blood stream to be transported to the gonads (Patton et al., 1989). 

 

 

         

 

 

 

 

 

 

 

Fig. 4.2: Schematic survey of gonadotropin regulation 

 

In the female, gonadotropin stimulates the growth of ovarian follicles, induces ovulation, and 

initiate the formation of the corpus luteum. The gonadotropins also stimulate the production 

of estrogens, progestins, and inhibin. Similarly, in case of the male, LH and FSH stimulate the 

testis to produce spermatozoa and male sex hormones, including testosterone and inhibin. The 

sex hormones play a role for the maturation and transport of sperm. Those sex hormones 

prime the reproductive tract both in female and male, and act as feedback signals to the brain 

and pituitary axis (Patton et al., 1989). 
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Our further experiments revealed that LH-expression in the anterior pituitary of NIRKO mice 

as it is in the pituitary of IRS-2-deficient mice was unaltered. Moreover, although basal levels 

of LH were low both in male and female NIRKO mice, exogenous GnRH was able to 

stimulate LH secretion in NIRKO mice, again indicating that the pituitary content of LH was 

unaltered, locating the defect to the hypothalamus. Therefore, we postulate that insulin 

receptors, likely through recruitment of IRS-2 regulate GnRH-secretion. To date we cannot 

determine exactly which ligand is responsible for the activation of IR, but it has been 

demonstrated in cultured hypothalamic neurons, that insulin like growth factor II, a high 

affinity ligand for the IR, can stimulate GnRH-release (Soldani et al., 1994, Olson et al., 

1995). Moreover, proper gonadotropin release requires an exact pattern of pulsatile GnRH-

release (Vaquez-Martinez et al., 2001). Therefore, it might be possible that IR mediated 

signals regulate pulsatility of GnRH-secretion. Unfortunately, this hypothesis is difficult to 

test directly, since the relatively high sample volume required for LH-detection does not allow 

serial determinations in the mouse. Interestingly, it could be demonstrated, that GnRH 

pulsatility is associated with pulsatility in body temperature, and it might therefore be feasible 

to monitor the oscillation of body temperature in NIRKO and control mice, to obtain an 

indirect assessment of gonadotropin regulation (H. Jarry, Division of Clinical Endocrinology, 

Department of Obstetrics and Gynecology, University of Göttingen, Germany; personal 

communication). 

 

Since hypothalamic hypogonadism occurred in NIRKO mice and hypothalamic dysregulation 

often result in combined defects of other anterior pituitary axes, we also tested the regulation 

of ACTH, prolactin, growth hormone and TSH in the NIRKO mice and found them unaltered 

in these animals. These data suggest, that insulin receptors mediate specifically signals in 

GnRH-expressing neurons of the hypothalamus. 

 

4.4 Obesity and impaired glucose homeostasis as a consequence of hypogonadism 

 

Since NIRKO mice exhibited a combination of both obesity and hypothalamic hypogonadism, 

further experiments aimed to identify the link between these two phenotypical changes. 

Therefore, we investigated the impact of defined hypogonadism in ovarectomised female 

mice on the regulation of energy homeostasis and glucose metabolism. These experiments 

revealed that ovarectomised animals exhibited an increase in body weight, white adipose 

tissue mass and circulating plasma leptin concentrations. Moreover, food intake was 
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significantly increased. In terms of glucose metabolism, ovarectomy resulted in impaired 

glucose tolerance and impairment of glucose stimulated insulin secretion. These phenotypical 

alterations were corrected by estradiol substitution in one group of ovarectomised mice, 

indicating the specificity of the observed phenotype was due to a lack of estradiol. 

 

These findings are consistent with previous experiments ana lysing mice with targeted 

disruption of the aromatase gene, the enzyme required for estradiol-biosynthesis. Both male 

and female aromatase-deficient mice develop a phenotype of mild obesity and mild 

impairment of blood glucose metabolism (Jones et al., 2000). This phenotype resembles the 

metabolic profile of mice lacking the estrogen receptor (ER)-a, which also exhibit increased 

obesity (Ohlsson et al., 2000), indicating that estradiol’s metabolic effects are mediated 

through this receptor-isoform. Although Jones et al. (2000) describe an impairment of glucose 

tolerance in aromatase-deficient mice, they do not provide further evidence, whether this 

results from impaired insulin action, i.e. insulin resistance, or impaired glucose-stimulated 

insulin secretion. There have been conflicting data with respect to estradiol’s effect on insulin 

action and secretion. Whereas earlier studies concluded that transdermal estrogen therapy in 

postmenopausal women is associated with a slight, but significant improvement of insulin 

action and lipid metabolism, recent studies have indicated no alterations in insulin sensitivity 

after estrogen replacement, while a very recent study even indicates a deterioration of insulin 

sensitivity following estrogen replacement of postmenopausal women, even when women are 

of comparable total and abdominal adiposity (Lindheim et al., 1994; Duncan et al., 1999; 

Ryan et al., 2002). On the other hand, few studies have investigated the effect of hormone 

replacement of postmenopausal women on insulin secretion, paradoxically showing an 

impairment of insulin secretion after hormone replacement (Godsland et al., 1993). 

 

There is a clear lack of studies investigating the regulation of insulin action by estradiol on a 

molecular level. Our in vivo data indicate that estradiol-deficiency does not result in insulin 

resistance. Along this line analysis of insulin action in our different experimental groups of 

mice revealed unaltered expression of IRs and unaltered insulin-stimulated IR-tyrosine 

phosphorylation, and activation of the PI 3-kinase effector Akt in liver and skeletal muscle in 

ovarectomised mice (data not shown). Given our results, the impairment of glucose 

homeostasis in response to ovarectomy appears to be a consequence of alterations in glucose-

stimulated insulin secretion. The analysis of the molecular mechanisms for this phenomenon 

clearly requires further studies. 
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With respect to the phenotype of NIRKO mice, ovarectomised mice exhibit striking 

similarities in terms of the development of obesity. Therefore, it cannot be ruled out that the 

obese phenotype of NIRKO mice – at least in part – results from hypogonadism. On the other 

hand, hypogonadism in NIRKO mice is only partial, as indicated by the presence of estrous 

phases in the analysis of vaginal cytology of female NIRKO mice. Therefore, it appears rather 

unlikely that the metabolic phenotype of NIRKO mice strictly results from hypothalamic 

hypogonadism. Further studies using subregion-specific disruption of IR-signaling in the 

central nervous system will therefore try to dissect the role of hypothalamic hypogonadism 

and the metabolic alterations seen in NIRKO mice. 

 

 

4.5 Unaltered behavioural performance in NIRKO mice  

 

Another challenging hypothesis for the initiation of our experiments was that IR could be 

responsible for learning and memory through the regulation of cerebral glucose metabolism 

(Mayer et al., 1990). Moreover, the relatively high density of IR present in hippocampus and 

parts of the cerebral cortex, brain regions responsible for learning and memory formation, had 

given rise to speculations in terms of IR regulating this processes (Wickelgren, 1998; Zhao et 

al., 1999). It had also been demonstrated that IR downregulation is associated with 

neurodegenerative disorders like Alzheimer’s disease (AD) (Frolich et al., 1998) and 

Parkinson’s disease (PD) (Takahasi et al., 1996) and that administration of insulin in AD 

patients resulted in memory improvement (Craft et al., 1995; 1999). Animal studies suggested 

that learning and memory could be impaired following blockade of neuronal IR function via 

intracerebroventricular injection of streptozotocin (Biessels et al., 1996; Lannert et al., 1998). 

Moreover, recent studies could demonstrate that during hyperinsulinemic, euglycemic clamp 

conditions memory improved in healthy volunteers (Kern et al., 2001).  

 

Therefore, careful analysis of neuropsychological performance of NIRKO mice provides an 

excellent model to address directly the role of IR mediated signals in the regulation of these 

processes. Our data revealed unaltered performance of NIRKO mice in the Morris water maze 

task for learning and memory, as well as different paradigms of anxiety tests. Since the initial 

tests were performed with mice on a mixed genetic background, and recent work has pointed 

out extreme variations in neuropsychological performance between different mouse strains 
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(Owen et al., 1997), we generated NIRKO mice on a >95% pure C57Bl/6J-background by 

backcrossing them for six generations. But also on this background, there was no significant 

difference detectable between NIRKO and control mice in the Morris water maze task, 

although the intra-group variation decreased significantly in the backcross population. These 

data clearly indicate, that although numerous lines of evidence had suggested a causal role for 

insulin resistance in the development of memory deficits, CNS-specific disruption of the IR 

gene in mice has no effect on learning. These findings support the importance of defined 

transgenic animal models to test hypotheses generated from indirect studies. 
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5. Summary 

 

To study the role of the insulin receptors expressed in the central nervous system (CNS), we 

have generated and analysed mice with CNS restricted inactivation of the insulin receptor 

gene using Cre/loxP-mediated recombination in vivo. We could demonstrate that: 

 

1. By crossing mice carrying a loxP-flanked exon 4 of the IR gene with mice expressing 

Cre-recombinase under control of the rat nestin promoter efficient inactivation of the 

IR-gene could be achieved in the CNS, 

2. NIRKO mice develop a mildly obese phenotype, which is pronounced in female mice 

and exaggerated under exposure to high caloric diet,  

3. Obesity in female NIRKO mice results from hyperphagia, and 

4. NIRKO mice exhibit a hypotha lamic hypogonadism. 

5. Ovarectomy in female mice results in a similar phenotype than that of female NIRKO 

mice, indicating that part of the metabolic phenotype may result from hypogonadism, 

6. NIRKO mice exhibit unaltered neuropsychological performance. 

 

Taken together, these results reveal a novel role for insulin receptors in the central nervous 

system in the regulation of hypothalamic control of reproduction and energy homeostasis. On 

the other hand these experiments could rule out a causative role for isolated neuronal insulin 

resistance in the CNS as a cause for diseases associated with memory deficiencies, such as 

Alzheimer’s disease. Moreover, the NIRKO mice created during the course of these 

experiments provide an excellent model to further characterise the function of IR-mediated 

signals in the regulation of brain glucose metabolism in vivo. 
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6. Zusammenfassung 

 

 

Um die Rolle des Insulinrezeptors (IR) im zentralen Nervensystem (ZNS) zu untersuchen 

wurden im Rahmen der vorliegenden Arbeit Mäuse geschaffen und analysiert, in denen der 

Insulinrezeptor mit Hilfe der Cre/loxP-vermittelten Rekombination gezielt im zentralen 

Nervensystem inaktiviert wurde. Es konnte gezeigt werden, daß: 

 

1. durch Kreuzung von Mäusen, die ein loxP-flankiertes Exon 4 des IR-Gens tragen, mit 

Mäusen, die die Cre-Rekombinase unter der Kontrolle des Nestin-Promotors der Ratte 

exprimieren, eine effiziente Inaktivierung des IR-Gens im ZNS erreicht werden 

konnte,  

2. NIRKO-Mäuse einen leicht adipösen Phänotyp entwickeln, der in Weibchen 

besonders ausgeprägt ist und durch Gabe einer hochkalorischen Diät verstärkt wird, 

3. die Adipositas in weiblichen NIRKO-Mäusen durch verstärkte Futteraufnahme 

zustande kommt, 

4. NIRKO-Mäuse einen hypothalamischen  Hypogonadismus aufweisen. 

5. Ovarektomie in weiblichen Mäusen in einem den NIRKO-Weibchen ähnlichem 

Phänotyp resultiert, was darauf hindeutet, daß ein Teil des metabolischen Phänotyps 

vom Hypogonadismus herrührt, 

6. NIRKO-Mäuse unveränderte neuropsychologische Leistungen zeigen. 

 

Zusammengenommen bedeuten diese Ergebnisse eine neue Rolle von zentralnervösen 

Insulinrezeptoren bei der Regulation der hypothalamischen Kontrolle von Reproduktion und 

Energiehomöostase. Darüberhinaus zeigen unsere Ergebnisse, dass einer isolierten neuronalen 

Insulinresistenz keine kausale Bedeutung in der Entstehung neurodegenerativer Erkrankungen 

zukommt. 

Außerdem stellen die NIRKO-Mäuse, die im Verlauf dieser Arbeiten geschaffen wurden, ein 

exzellentes Modell dar, um die Funktion der IR-vermittelten Signaltransduktion bei der 

Regulation des Glukosestoffwechsels im Gehirn in vivo weite 
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 7.   Abstract 
 

Analysis of insulin receptor function in the central nervous system 
by conditional inactivation of its gene in mice 

 
Insulin receptors (IRs) and insulin signaling proteins are widely distributed throughout the 

central nervous system (CNS). To study the physiological role of insulin signaling in the 

brain, we created mice with a neuron-specific disruption of the IR gene (NIRKO mice). 

Inactivation of the IR had no impact on brain development or neuronal survival. However, 

female NIRKO mice showed increased food intake, and both male and female mice 

developed diet-sensitive obesity with increases in body fat and plasma leptin levels, mild 

insulin resistance, elevated plasma insulin levels, and hypertriglyceridemia. NIRKO mice also 

exhibited impaired spermatogenesis and ovarian follicle maturation because of hypothalamic 

dysregulation of luteinizing hormone. In vitro studies of apoptosis in pure neuronal cultures 

derived from NIRKO and control animals revealed a role of IR in insulin and IGF-I mediated 

prevention of apoptosis. Behavioural studies showed that disruption of IR in the CNS has no 

effect on learning and memory, and anxiety in our animal model.     

Thus, IR signa ling in the CNS plays an important role in regulation of energy disposal, fuel 

metabolism, and reproduction. 

 



 91 

Analyse der Funktion des zentralnervösen Insulinrezeptors durch 
konditionelle Inaktivierung seines Gens in der Maus 

 
 
Insulinrezeptoren (IR) und Insulin-Signalproteine sind im zentralen Nervensystem weit 

verbreitet. Um die physiologische Rolle der Insulin-vermittelten Signaltransduktion im 

Gehirn zu untersuchen, wurde unter Nutzung Cre- loxP-vermittelter Rekombination eine 

transgene Maus etabliert, deren IR-Gen Neuron-spezifisch ausgeschaltet wurde (NIRKO 

Maus). Die Inaktivierung des IR-Gens hatte keinen Einfluß auf die Entwicklung des Gehirns 

und das neuronale Überleben. Dagegen zeigten weibliche NIRKO Mäuse eine erhöhte 

Futteraufnahme, und sowohl männliche als auch weibliche Mäuse entwickelten eine 

ernährungsabhängige Adipositas mit erhöhtem Anteil an Körperfett und erhöhtem Leptin-

Plasmaspiegel, sowie eine milde Insulinresistenz, erhöhte Insulin-Plasmaspiegel und eine 

Hypertriglyzeridämie. Außerdem zeigten NIRKO Mäuse eine gestörte Spermatogenese und 

Follikelreifung aufgrund einer hypothalamischen Dysregulation des Luteinisierenden 

Hormons. In vitro Apoptosestudien an kultivierten Neuronen aus NIRKO und Kontrolltieren 

zeigten, dass der Insulinrezeptor eine Rolle in der Insulin-  und IGF-I-vermittelten 

Verhinderung von Apoptose spielt. Verhaltensstudien ergaben keinen Hinweis auf einen 

Einfluß des Insulinrezeptors auf Lernen, Gedächtnis und Angstverhalten in unserem 

Tiermodell. 

Die vorliegenden Ergebnisse zeigen, dass Insulinrezeptor-vermittelte Signaltransduktion im 

ZNS eine wichtige Rolle bei der Regulation des Energiehaushalts und der Reproduktion 

spielt. 
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Role of Brain Insulin Receptor in Control of Body Weight 
and Reproduction  
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Insulin receptors (IRs) and insulin signaling proteins are widely distributed throughout the 
central nervous system (CNS). To study the physiological role of insulin signaling in the 
brain, we created mice with a neuron-specific disruption of the IR gene (NIRKO mice). 
Inactivation of the IR had no impact on brain development  or neuronal survival. However, 
female NIRKO mice showed increased food intake, and both male and female mice developed 
diet-sensitive obesity with increases in body fat and plasma leptin levels, mild insulin 
resistance, elevated plasma insulin levels, and hypertriglyceridemia. NIRKO mice also 
exhibited impaired spermatogenesis and ovarian follicle maturation because of hypothalamic 
dysregulation of luteinizing hormone. Thus, IR signaling in the CNS plays an important role  

in regulation of energy disposal, fuel metabolism, and reproduction.   
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Insulin receptors (IR) are expressed in most tissues of the body, including classic insulin-
sensitive tissues (liver, muscle, and fat), as well as "insulin- insensitive" tissue, such as red  

blood cells and the neuronal tissue of the CNS. In the CNS, the  IR displays distinct patterns of 
expression in the olfactory bulb, the hypothalamus, and the pituitary (1-3), although its 
function in these regions remains largely unknown.  Previous experiments have suggested a 
role for insulin signaling in the regulation of food intake (4, 5) and neuronal growth and 
differentiation (6, 7). Moreover, insulin has been shown to regulate neurotransmitter  release 
and synaptic plasticity (8, 9), and dysregulation of insulin signaling in the CNS has been 
linked to the pathogenesis of neurodegenerative disorders such as Alzheimer's and Parkinson's 
disease (10, 11).  

We have used the Cre- loxP system to generate mice with CNS-specific disruption of the IR 
gene (12-14). Mice carrying a "floxed" allele of the IR gene (IR- lox mice) were crossed with 
mice expressing the Cre-recombinase under control of the rat nestin promoter and enhancer. 
Nestin is an intermediate filament protein that is expressed in neuroepithelial stem cells (15, 
16). The resultant brain-specific IR knockout (NIRKO) mice showed a >95% reduction in the 
level of brain IR protein (Fig. 1, A and B). In contrast, the  abundance of other insulin 
signaling proteins, such as insulin receptor substrates-1 and -2 (IRS-1 and IRS-2), was 
unaltered in brain extracts of NIRKO mice (Fig. 1A). Inactivation of the IR gene was specific 
to the brain, as no change in IR expression was detectable in skeletal muscle, heart, liver, 
kidney, spleen,  and gonads (Fig. 1C).  
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Fig. 1. Insulin receptor expression is specifically disrupted in the brain 
of NIRKO mice. (A) Brain extracts prepared from wild-type (WT), 
IRlox/lox, and NIRKO (KO) mice were subjected to 
immunoprecipitation followed by Western blot analyses with antisera 
specific for the IR-  subunit, IRS-1, and IRS-2 (30). (B) IR 
immunoreactivity was quantified by densitometric scanning of blots 
similar to that in (A). Data represent the mean ± SEM of n = 8 of each 
genotype and are expressed relative to the control mice. (C) Western 
blot analyses of IR-  subunit content in tissues from control and NIRKO 
(KO) mice. [View Larger Version of this Image (35K GIF file)] 
 
 

 

Because insulin stimulates growth of neurons in culture (16, 17), we investigated the impact 
of IR deletion on brain development and morphology. Brain weights in NIRKO mice were not 
significantly different from those in control mice (475 mg compared with 483 mg, 
P = 0.18, n = 10 each genotype), and histological analysis revealed no apparent differences in 
brain development or morphology (18). Immunohistochemical analyses of brain sections with 
antisera against glial fibrillar acidic protein (GFAP), a marker of glial cell activation, also  

showed no differences between NIRKO and control mice (18), suggesting that IR expression 
is not required for neuronal survival in vivo. 

Although the body weights of male NIRKO mice were indistinguishable from those of their 
control littermates during the first 6 months of life on a normal chow diet, female NIRKO 
mice exhibited  a consistent 10 to 15% increase of body weight in comparison with controls 
(Fig. 2A). In addition, on this diet, both male  and female NIRKO mice demonstrated 
increased adipose tissue mass with an ~twofold increase in perigonadal white adipose tissue  

(WAT) in NIRKO females and a 1.5-fold increase in NIRKO males (Fig. 2B). Paralleling the 
increase in adipose mass, plasma leptin concentrations were elevated 2.5-fold in female  

NIRKO mice (P < 0.01) and 1.5-fold in male NIRKO mice (P < 0.05) (Fig. 2C). The 
increased body weight of NIRKO females also correlated with an ~20% increase in food 
intake as compared  with female controls [121 mg per gram of body weight (BW) per day 
compared with 100 mg per gram of BW per day; P < 0.01] (Fig. 2D). In contrast, food intake 
of male NIRKO mice on the normal chow diet did not differ significantly from that of controls 
(82 mg per gram of BW per day compared with 87 mg per gram of BW per day; 
P = 0.15, n = 14 each genotype). This mild obesity was enhanced when the mice were 
challenged with a high-fat (60%) diet. Under these conditions, by as little as 14 weeks of age, 
male NIRKO mice exhibited a 10% elevation of body weight (P < 0.05) and female  NIRKO 
mice a 20% increase in body weight (P < 0.05) as compared with control mice on the same 
diet (Fig. 2E).  

 
Fig. 2. Absence of IR expression causes obesity. (A) Body 
weights of NIRKO and control mice were determined at the 
indicated ages. Data represent the mean of at least 16 mice 
of each gender and genotype. , Wild-type male; , NIRKO 
male; , wild-type female; , NIRKO female. The SEM at 
each point was below 10% of the indicated value. Body 
weights of female NIRKO mice were significantly different 
from female controls at every age with P < 0.05 in an 
unpaired Student's t test. (B) White adipose tissue (WAT) 
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mass (parametrial fat depots in female  mice and epididymal fat depots in male mice) was 
determined in mice at 8 to 12 months of age. Data represent the mean ± SEM of at least eight 
animals of each genotype and gender (*, P < 0.05; **, P < 0.005). (C) Plasma leptin 
concentrations were determined by enzyme-linked immunosorbent assay (ELISA) on blood 
samples obtained from 6- to 8-month-old mice on a regular chow diet. Data represent the 
mean ± SEM of at least 10 animals of each genotype and gender (*, P < 0.05; **, P < 0.005). 
(D) Food intake and body weight of 4- to 6-month-old mice were determined daily over 
1 week. Data represent the mean ± SEM of at least eight mice of each genotype and gender 
(**, P < 0.01). (E) Body weight of male and female control and NIRKO mice is given at the 
age of 14 weeks. In these experiments, control and NIRKO mice were put on a high-fat (60%) 
diet between 5 and 9 weeks of age. Data represent the mean ± SEM of at least six animals of 
each genotype and gender (*, P < 0.05). [View Larger Version of this Image (26K GIF file)]  
 

 

The obesity in NIRKO mice was associated with insulin resistance and hypertriglyceridemia. 
At 4 to 6 months of age, the NIRKO mice showed normal fasting blood glucose levels (Fig. 
3A), but the circulating plasma insulin levels were elevated by 1.5-fold in males and ~twofold 
in females (Fig. 3B). Consistent with their obesity phenotype, female NIRKO mice showed a 
significantly blunted response 15 min after insulin injection and a trend toward elevated blood 
glucose 30 to 60 min later, whereas after pharmacologic  doses of insulin, male NIRKO mice 
performed similarly to controls (Fig. 3C). Intraperitoneal glucose tolerance tests were normal 
in both male and female NIRKO mice. Finally, both male and female NIRKO mice showed a 
30% increase in circulating triglycerides (Fig. 3D) but had normal plasma cholesterol 
concentrations  (105 mg/dl compared with 109 mg/dl; P = 0.16, n = 9 each genotype). Thus, 
brain-specific disruption of the IR gene results in hyperphagia  in female mice and causes 
obesity, hyperleptinemia, insulin resistance, and hypertriglyceridemia in both male and female 
mice.  

 
Fig. 3. Obesity in NIRKO mice causes mild insulin resistance 
and dyslipidemia. (A) Blood glucose concentrations were 
determined on control and NIRKO mice after an overnight 
fast with a Glucometer Elite. Data represent the mean ± SEM 
of at least 10 animals of each genotype and gender. (B) 
Plasma insulin concentrations were determined by ELISA on 
blood samples obtained from 6- to 8-month-old mice on a 
normal chow diet. Data represent the mean ± SEM of at least 
10 animals of each genotype and gender (**, P < 0.005). (C) 

Intraperitoneal insulin tolerance tests were performed with 0.75 U of insulin per kg of body 
weight (30). Data represent the mean ± SEM of at least eight animals of each genotype and 
gender. , wild-type male; , NIRKO male; , wild-type female; , NIRKO female. (D) 
Plasma triglyceride concentrations were determined on blood drawn from 6- to 8-month-old 
mice. Data represent the mean ± SEM of at least 10 animals of each genotype and gender (*, 
P < 0.05). [View Larger Version of this Image (22K GIF file)]  
 

 

Another phenotype of NIRKO mice manifested itself in breeding experiments. Although 76% 
of the matings established between control mice yielded offspring, breedings of male NIRKO 
mice with control females produced offspring in only 46% of the cases (P < 0.05). Rates were 
similarly reduced to 42% when NIRKO females (P < 0.05) were bred to male controls. The 
reduction in male fertility was due to impaired spermatogenesis; epididymal sperm content  

was reduced by 30% (P < 0.05) in NIRKO mice as compared with age-matched controls (Fig. 
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4A). Histological examination of testis sections revealed that, although spermatogenesis was 
proceeding normally in many seminiferous tubules of NIRKO males, ~20% of tubules lacked 
a lumen and presented few, if any, maturing spermatogenic cells. Moreover, there was a 
reduction of the Leydig cell population,  and the interstitial stroma did not support organization 
of seminiferous  tubules within the NIRKO testis (Fig. 4B). The seminal vesicles, prostate, and 
epididymis did not appear morphologically altered in NIRKO males (20). Histological 
examination of ovaries from female NIRKO mice also revealed abnormalities. NIRKO ovaries 
contained reduced numbers of antral follicles (wild type: 2.8 ± 0.46, n = 8) and corpora lutea 
(wild type: 4.0 ± 0.31, n = 5, compared with NIRKO: 1.12 ± 0.36, n = 8) (Fig. 4B). These 
observations suggest that NIRKO mice had insufficient gonadotropin input for proper 
maintenance of ovarian follicle maturation, Leydig cell function, or spermatogenesis.  

 
Fig. 4. Absence of brain IR expression results in 
hypothalamic hypogonadism. (A) Epididymi of control and 
NIRKO mice were removed, and spermatozoa were allowed 
to diffuse into culture medium. After centrifugation, total 
epididymal sperm content was determined. Data represent 
the mean ± SEM of at least 10 animals of each group (*, 
P < 0.05). (B) Testes and ovaries were removed from control 
and NIRKO mice and fixed in 10% formalin. Paraffin-
embedded sections were stained with hematoxylin and eosin. 
The scale bar indicates about 100 µm. (C) Plasma LH 

concentrations were determined by radioimmunoassay on serum samples from 6- to 7-month-
old mice. Data represent the mean ± SEM of at least eight animals of each genotype and 
gender (*, P < 0.05; **, P < 0.01). (D) Pituitaries were dissected from paraformaldehyde-
perfused mice. One-micrometer sections were prepared from wild-type and NIRKO mice and 
stained with polyclonal antibodies to LH. (E) Plasma LH concentrations were determined by 
radioimmunoassay on serum samples obtained 1 hour after intraperitoneal injection of lupron. 
Data represent the mean ± SEM of at least six animals of each genotype and gender (*, 
P < 0.05). [View Larger Version of this Image (49K GIF file)]  
 

 

To assess the role of the hypothalamic-pituitary axis in the gonadal insufficiency, we 
measured plasma levels of luteinizing hormone (LH) in the NIRKO mice. This assay revealed 
a 60% reduction of circulating LH concentrations in males (P < 0.05) and a 90% reduction in 
females (P < 0.01) (Fig. 4C). This decrease occurred with no alteration in pituitary 
morphology, as determined by methylene blue staining (20), or pituitary LH content, as 
estimated by immunohistochemical analysis with antisera to LH (Fig. 4D). To test whether the 
pituitaries of the  NIRKO mice respond to LH releasing hormone (LHRH), we injected the 
mice intraperitoneally with lupron, a GnRH receptor agonist. Male NIRKO mice actually 
exhibited a normal increase in circulating LH concentrations, whereas female NIRKO mice 
displayed a twofold enhancement of response compared with controls (Fig. 4E). These data 
indicate that neuronal expression of the IR is essential for normal regulation of the 
hypothalamic-pituitary-gonadal axis through its effects on LH secretion.  

In summary, this study documents that IR in the CNS plays an important functional role in the 
regulation of energy homeostasis and reproductive endocrinology. This provides a mechanism 
for the previous observations that intraventricular injection of insulin inhibits food intake (21, 
22) and the evidence that insulin may play a role in regulation of body weight at a central level 
(4, 23). Thus, insulin acting in the CNS through its receptor appears to provide a negative  

feedback loop for postprandial inhibition of food uptake. Obesity in NIRKO mice occurs 
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despite elevated circulating plasma leptin concentrations, suggesting that the CNS insulin 
resistance is also associated with some degree of CNS resistance to leptin action,  creating an 
interesting link between insulin and leptin action in the regulation of body weight. The current 
data also suggest a mechanism by which insulin resistance in the CNS can modify the 
metabolic syndrome by leading to hyperphagia, obesity with hyperleptinemia, and 
hypertriglyceridemia, thereby further aggravating peripheral insulin resistance. Taken together 
with our previous  studies indicating a role for the insulin receptor in  cells for normal glucose 
sensing (24), this study demonstrates that genetically determined insulin resistance in classical 
insulin target tissues, and nonclassical target tissues such as the brain and beta cell, may act 
synergistically in the induction of obesity,  insulin resistance, glucose intolerance, and 
dyslipidemia, leading to the complex metabolic syndrome associated with type 2 diabetes (14, 
24, 25).  

Our results also reveal an important link between brain insulin signaling and reproduction. 
There are at least two possible  mechanisms by which insulin might regulate the reproductive 
axis at a central level. First, although leptin concentrations are only mildly elevated, the 
elevated plasma leptin concentrations  may modify LHRH secretion in NIRKO mice. This 
seems unlikely, however, because the phenotype of the NIRKO mice differs from leptin-
overexpressing mice, which exhibit reduced LH secretion in response to exogenous LHRH 
(26). Alternatively, the IR expressed on GnRH-producing neurons or at some even higher  

center may mediate GnRH synthesis or secretion. Indeed, in cultured hypothalamic neurons, 
IGF-2, a high-affinity ligand for IR, induces GnRH release (27). In a number of severe insulin 
resistance  states, such as the Type A syndrome and lipoatrophic diabetes,  hypothalamic-
pituitary-gonadal function is perturbed with alterations  in menstrual function and even 
polycystic ovarian disease (28,  29). Thus, the NIRKO mice will provide an important tool for 
studying insulin action in the CNS and will likely add unexpected aspects to our 
understanding of genetically determined insulin resistance, obesity, and reproductive function.   
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